leftri rightri



This is PART 30: Centers X(58001) - X(60000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)

X(58001) = ISOTOMIC CONJUGATE OF X(936)

Barycentrics    b*c*((a+b)^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3-a^2*(b-3*c)-a*(b-3*c)*(b+c)+(b-c)^2*(b+c)) : :

X(58001) lies on these lines: {1, 40424}, {2, 322}, {7, 2478}, {27, 3306}, {75, 1210}, {85, 1440}, {86, 937}, {273, 40701}, {938, 58002}, {1226, 44190}, {1268, 5705}, {2255, 14621}, {4360, 56026}, {4373, 17863}, {5936, 20895}, {18147, 57825}, {20171, 27494}, {20946, 39749}, {28626, 30806}

X(58001) = isotomic conjugate of X(936)
X(58001) = trilinear pole of line {17896, 514}
X(58001) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 11406}, {6, 2256}, {31, 936}, {55, 1466}
X(58001) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 936}, {9, 2256}, {223, 1466}, {36103, 11406}
X(58001) = X(i)-cross conjugate of X(j) for these {i, j}: {6919, 312}, {9612, 92}, {9776, 85}, {9843, 2}
X(58001) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1108)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(29), X(341)}}, {{A, B, C, X(69), X(40420)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(158), X(43531)}}, {{A, B, C, X(286), X(312)}}, {{A, B, C, X(307), X(3306)}}, {{A, B, C, X(309), X(31643)}}, {{A, B, C, X(313), X(40014)}}, {{A, B, C, X(342), X(1226)}}, {{A, B, C, X(936), X(9843)}}, {{A, B, C, X(1125), X(5705)}}, {{A, B, C, X(1220), X(40836)}}, {{A, B, C, X(1257), X(39702)}}, {{A, B, C, X(3577), X(31359)}}, {{A, B, C, X(3668), X(8056)}}, {{A, B, C, X(5703), X(5704)}}, {{A, B, C, X(14534), X(34404)}}, {{A, B, C, X(17863), X(18743)}}, {{A, B, C, X(19802), X(20336)}}, {{A, B, C, X(20171), X(30963)}}, {{A, B, C, X(30608), X(40412)}}, {{A, B, C, X(40430), X(56101)}}, {{A, B, C, X(46435), X(54972)}}
X(58001) = barycentric product X(i)*X(j) for these (i, j): {76, 937}, {2255, 561}
X(58001) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2256}, {2, 936}, {19, 11406}, {57, 1466}, {937, 6}, {2255, 31}, {14551, 54322}


X(58002) = ISOTOMIC CONJUGATE OF X(938)

Barycentrics    ((a-b)^3*(a+b)+2*b*(a+b)^2*c+2*a*(-a+b)*c^2-2*b*c^3+c^4)*(a^4-2*a^3*c+2*a^2*b*(-b+c)+(b-c)^3*(b+c)+2*a*c*(b+c)^2) : :

X(58002) lies on these lines: {2, 3692}, {7, 78}, {8, 273}, {27, 329}, {69, 1088}, {75, 1265}, {86, 939}, {271, 307}, {673, 2343}, {938, 58001}, {1659, 31413}, {18815, 32087}

X(58002) = isotomic conjugate of X(938)
X(58002) = trilinear pole of line {514, 57055}
X(58002) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2257}, {25, 10884}, {31, 938}, {55, 1467}, {56, 10382}, {2208, 37421}
X(58002) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 10382}, {2, 938}, {9, 2257}, {223, 1467}, {6505, 10884}
X(58002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8814)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(2297)}}, {{A, B, C, X(8), X(69)}}, {{A, B, C, X(10), X(5703)}}, {{A, B, C, X(29), X(1219)}}, {{A, B, C, X(76), X(30705)}}, {{A, B, C, X(77), X(40399)}}, {{A, B, C, X(189), X(2997)}}, {{A, B, C, X(253), X(312)}}, {{A, B, C, X(264), X(6557)}}, {{A, B, C, X(282), X(6601)}}, {{A, B, C, X(307), X(321)}}, {{A, B, C, X(314), X(8817)}}, {{A, B, C, X(319), X(32099)}}, {{A, B, C, X(320), X(32087)}}, {{A, B, C, X(347), X(47634)}}, {{A, B, C, X(596), X(40836)}}, {{A, B, C, X(936), X(938)}}, {{A, B, C, X(962), X(4385)}}, {{A, B, C, X(1119), X(8056)}}, {{A, B, C, X(1170), X(56328)}}, {{A, B, C, X(1439), X(51497)}}, {{A, B, C, X(1441), X(50442)}}, {{A, B, C, X(2481), X(30501)}}, {{A, B, C, X(5704), X(6700)}}, {{A, B, C, X(6734), X(27383)}}, {{A, B, C, X(7149), X(51498)}}, {{A, B, C, X(7319), X(8044)}}, {{A, B, C, X(7321), X(52709)}}, {{A, B, C, X(8797), X(38255)}}, {{A, B, C, X(21296), X(42696)}}, {{A, B, C, X(28786), X(52389)}}, {{A, B, C, X(30479), X(34399)}}, {{A, B, C, X(31995), X(42697)}}, {{A, B, C, X(34401), X(40023)}}, {{A, B, C, X(47487), X(56003)}}
X(58002) = barycentric product X(i)*X(j) for these (i, j): {76, 939}, {2343, 6063}
X(58002) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2257}, {2, 938}, {9, 10382}, {57, 1467}, {63, 10884}, {329, 37421}, {939, 6}, {2343, 55}


X(58003) = ISOTOMIC CONJUGATE OF X(944)

Barycentrics    ((a^2-b^2)^2-2*(a-b)^2*(a+b)*c+2*(a-b)^2*c^2+2*(a+b)*c^3-3*c^4)*(a^4-2*a^3*b+2*a*b*(b-c)^2+2*a^2*(b^2+b*c-c^2)-(b-c)*(b+c)*(3*b^2-2*b*c+c^2)) : :

X(58003) lies on these lines: {69, 22464}, {332, 945}, {345, 908}, {944, 57816}, {3262, 3718}

X(58003) = isotomic conjugate of X(944)
X(58003) = trilinear pole of line {6332, 10015}
X(58003) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2261}, {31, 944}, {212, 54200}
X(58003) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 944}, {9, 2261}, {40837, 54200}
X(58003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(264)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(86), X(8797)}}, {{A, B, C, X(95), X(5936)}}, {{A, B, C, X(253), X(2997)}}, {{A, B, C, X(280), X(34406)}}, {{A, B, C, X(281), X(44184)}}, {{A, B, C, X(286), X(20223)}}, {{A, B, C, X(309), X(903)}}, {{A, B, C, X(322), X(42697)}}, {{A, B, C, X(348), X(1969)}}, {{A, B, C, X(355), X(944)}}, {{A, B, C, X(1268), X(36948)}}, {{A, B, C, X(1385), X(5730)}}, {{A, B, C, X(1494), X(36588)}}, {{A, B, C, X(2995), X(46133)}}, {{A, B, C, X(3261), X(30705)}}, {{A, B, C, X(3655), X(38074)}}, {{A, B, C, X(5603), X(17757)}}, {{A, B, C, X(5734), X(5828)}}, {{A, B, C, X(8048), X(18815)}}, {{A, B, C, X(18025), X(39710)}}, {{A, B, C, X(18811), X(34413)}}, {{A, B, C, X(28204), X(34627)}}, {{A, B, C, X(28626), X(40410)}}, {{A, B, C, X(34401), X(44190)}}, {{A, B, C, X(39707), X(44186)}}, {{A, B, C, X(42709), X(50101)}}
X(58003) = barycentric product X(i)*X(j) for these (i, j): {76, 945}
X(58003) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2261}, {2, 944}, {278, 54200}, {945, 6}


X(58004) = ISOTOMIC CONJUGATE OF X(948)

Barycentrics    (a-b-c)*((a-b)^2*(a+b)-(a+b)^2*c+(a+b)*c^2-c^3)*(a^3-a^2*(b+c)+a*(b^2-2*b*c-c^2)-(b-c)*(b^2+c^2)) : :

X(58004) lies on these lines: {2, 7182}, {8, 28071}, {9, 69}, {63, 8817}, {75, 281}, {76, 6554}, {200, 345}, {220, 4437}, {241, 30705}, {332, 949}, {333, 4183}, {346, 3718}, {2297, 17353}, {3423, 5273}, {4391, 28132}, {5744, 6183}, {6350, 57801}, {6605, 17776}, {7110, 56445}, {14943, 17755}, {17257, 26540}, {17263, 28753}, {17264, 36916}, {17740, 41798}, {23617, 26685}, {27549, 41228}, {34404, 57492}, {36101, 56668}, {36910, 50107}, {40838, 56596}, {52663, 56753}

X(58004) = isotomic conjugate of X(948)
X(58004) = trilinear pole of line {6332, 44448}
X(58004) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2263}, {31, 948}, {56, 40131}, {57, 37580}, {604, 2550}, {1402, 16054}, {1407, 28043}, {1415, 47123}, {1461, 6182}, {2212, 23603}
X(58004) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40131}, {2, 948}, {9, 2263}, {1146, 47123}, {3161, 2550}, {5452, 37580}, {24771, 28043}, {35508, 6182}, {40605, 16054}
X(58004) = X(i)-cross conjugate of X(j) for these {i, j}: {37658, 8}
X(58004) = pole of line {948, 16054} with respect to the Wallace hyperbola
X(58004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(9)}}, {{A, B, C, X(8), X(76)}}, {{A, B, C, X(21), X(41791)}}, {{A, B, C, X(29), X(37169)}}, {{A, B, C, X(55), X(39957)}}, {{A, B, C, X(63), X(27509)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(78), X(40403)}}, {{A, B, C, X(85), X(1043)}}, {{A, B, C, X(189), X(7058)}}, {{A, B, C, X(220), X(241)}}, {{A, B, C, X(271), X(3926)}}, {{A, B, C, X(274), X(280)}}, {{A, B, C, X(277), X(1247)}}, {{A, B, C, X(278), X(3512)}}, {{A, B, C, X(312), X(344)}}, {{A, B, C, X(318), X(32022)}}, {{A, B, C, X(335), X(6601)}}, {{A, B, C, X(341), X(32008)}}, {{A, B, C, X(348), X(1098)}}, {{A, B, C, X(522), X(39721)}}, {{A, B, C, X(650), X(39981)}}, {{A, B, C, X(673), X(51190)}}, {{A, B, C, X(1000), X(52517)}}, {{A, B, C, X(1229), X(17776)}}, {{A, B, C, X(1948), X(6350)}}, {{A, B, C, X(2195), X(42290)}}, {{A, B, C, X(2996), X(6598)}}, {{A, B, C, X(3452), X(26685)}}, {{A, B, C, X(3680), X(54123)}}, {{A, B, C, X(3886), X(27549)}}, {{A, B, C, X(4357), X(5273)}}, {{A, B, C, X(4416), X(34277)}}, {{A, B, C, X(4900), X(34892)}}, {{A, B, C, X(4901), X(10005)}}, {{A, B, C, X(5744), X(40880)}}, {{A, B, C, X(5745), X(17257)}}, {{A, B, C, X(6557), X(25101)}}, {{A, B, C, X(14621), X(34919)}}, {{A, B, C, X(14942), X(27475)}}, {{A, B, C, X(17263), X(42032)}}, {{A, B, C, X(17264), X(28808)}}, {{A, B, C, X(17296), X(30711)}}, {{A, B, C, X(17353), X(18228)}}, {{A, B, C, X(17758), X(56146)}}, {{A, B, C, X(17811), X(25091)}}, {{A, B, C, X(28827), X(31225)}}, {{A, B, C, X(32851), X(50107)}}, {{A, B, C, X(39273), X(56098)}}
X(58004) = barycentric product X(i)*X(j) for these (i, j): {76, 949}, {312, 39273}, {3423, 3596}, {4397, 6183}, {56098, 75}
X(58004) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2263}, {2, 948}, {8, 2550}, {9, 40131}, {55, 37580}, {200, 28043}, {333, 16054}, {348, 23603}, {522, 47123}, {949, 6}, {3423, 56}, {3900, 6182}, {6183, 934}, {39273, 57}, {45974, 1469}, {56098, 1}


X(58005) = ISOTOMIC CONJUGATE OF X(950)

Barycentrics    (a+b-c)*(a-b+c)*((a-b)^2*(a+b)+(a+b)*c^2+2*c^3)*(a^3+2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c)) : :

X(58005) lies on these lines: {7, 345}, {8, 6046}, {69, 279}, {75, 1847}, {85, 3718}, {307, 333}, {332, 951}, {349, 44130}, {2369, 29163}, {2983, 4357}, {3668, 7270}, {7182, 23062}, {8822, 40431}

X(58005) = isotomic conjugate of X(950)
X(58005) = trilinear pole of line {3676, 6332}
X(58005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2264}, {21, 40984}, {31, 950}, {41, 40940}, {55, 1104}, {212, 1842}, {284, 40977}, {440, 2204}, {650, 53290}, {1172, 44093}, {1834, 2194}, {2175, 17863}, {2212, 18650}, {2299, 18673}, {3063, 14543}
X(58005) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 950}, {9, 2264}, {223, 1104}, {226, 18673}, {1214, 1834}, {3160, 40940}, {10001, 14543}, {40590, 40977}, {40593, 17863}, {40611, 40984}, {40615, 29162}, {40837, 1842}
X(58005) = X(i)-cross conjugate of X(j) for these {i, j}: {4560, 4554}, {17094, 664}, {57284, 2}
X(58005) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(85)}}, {{A, B, C, X(8), X(20007)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(86), X(6063)}}, {{A, B, C, X(92), X(39695)}}, {{A, B, C, X(189), X(4373)}}, {{A, B, C, X(226), X(6046)}}, {{A, B, C, X(253), X(312)}}, {{A, B, C, X(264), X(4997)}}, {{A, B, C, X(273), X(40420)}}, {{A, B, C, X(286), X(903)}}, {{A, B, C, X(307), X(349)}}, {{A, B, C, X(314), X(18025)}}, {{A, B, C, X(673), X(15314)}}, {{A, B, C, X(1119), X(42304)}}, {{A, B, C, X(1121), X(2997)}}, {{A, B, C, X(1220), X(54125)}}, {{A, B, C, X(1222), X(34406)}}, {{A, B, C, X(1223), X(3912)}}, {{A, B, C, X(1257), X(40445)}}, {{A, B, C, X(1268), X(4998)}}, {{A, B, C, X(1494), X(4102)}}, {{A, B, C, X(3340), X(9578)}}, {{A, B, C, X(3596), X(56026)}}, {{A, B, C, X(3601), X(11523)}}, {{A, B, C, X(3719), X(19611)}}, {{A, B, C, X(4357), X(4509)}}, {{A, B, C, X(5438), X(9581)}}, {{A, B, C, X(7131), X(8809)}}, {{A, B, C, X(8814), X(44733)}}, {{A, B, C, X(18811), X(39710)}}, {{A, B, C, X(18816), X(42333)}}, {{A, B, C, X(20567), X(52156)}}, {{A, B, C, X(51567), X(54121)}}
X(58005) = barycentric product X(i)*X(j) for these (i, j): {76, 951}, {307, 40414}, {348, 40445}, {1231, 40431}, {1257, 85}, {2983, 6063}, {29163, 52621}
X(58005) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2264}, {2, 950}, {7, 40940}, {57, 1104}, {65, 40977}, {73, 44093}, {85, 17863}, {109, 53290}, {226, 1834}, {278, 1842}, {307, 440}, {348, 18650}, {664, 14543}, {951, 6}, {1214, 18673}, {1257, 9}, {1400, 40984}, {2983, 55}, {3676, 29162}, {22464, 51410}, {26942, 21671}, {29163, 3939}, {40414, 29}, {40431, 1172}, {40445, 281}, {52561, 2318}, {57390, 2299}


X(58006) = ISOTOMIC CONJUGATE OF X(954)

Barycentrics    -(b*c*(2*a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c-2*(a+b)*(a^2+a*b+b^2)*c^2+2*(a+b)*c^4-c^5)*(b*(b-c)^3*(b+c)-a^4*(b+2*c)-2*a*(b^2-c^2)^2+2*a^3*(b^2+c^2)+2*a^2*c*(2*b^2+b*c+c^2))) : :

X(58006) lies on these lines: {69, 31618}, {75, 25935}, {85, 6734}, {274, 955}, {286, 16713}, {331, 20880}, {18750, 55983}

X(58006) = isotomic conjugate of X(954)
X(58006) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2266}, {31, 954}
X(58006) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 954}, {9, 2266}
X(58006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(25935)}}, {{A, B, C, X(8), X(264)}}, {{A, B, C, X(69), X(16713)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(189), X(40216)}}, {{A, B, C, X(333), X(6063)}}, {{A, B, C, X(1441), X(10405)}}, {{A, B, C, X(7233), X(39273)}}, {{A, B, C, X(32015), X(40424)}}
X(58006) = barycentric product X(i)*X(j) for these (i, j): {76, 955}
X(58006) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2266}, {2, 954}, {955, 6}


X(58007) = ISOTOMIC CONJUGATE OF X(956)

Barycentrics    b*c*(2*a*b*(a+b)+(a-b)^2*c-c^3)*(-b^3+b*c^2+2*a*c*(-b+c)+a^2*(b+2*c)) : :

X(58007) lies on these lines: {2, 57827}, {7, 1361}, {75, 908}, {76, 3262}, {85, 4389}, {264, 21664}, {274, 957}, {286, 3672}, {693, 42757}, {767, 32722}, {956, 57881}, {2481, 50101}, {5603, 18816}, {17321, 31643}, {17757, 58029}, {24547, 57831}, {39995, 40014}

X(58007) = isotomic conjugate of X(956)
X(58007) = trilinear pole of line {693, 10015}
X(58007) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2267}, {31, 956}
X(58007) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 956}, {9, 2267}
X(58007) = X(i)-cross conjugate of X(j) for these {i, j}: {495, 2}, {33151, 76}
X(58007) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(264)}}, {{A, B, C, X(56), X(3597)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(3596)}}, {{A, B, C, X(92), X(18816)}}, {{A, B, C, X(95), X(8048)}}, {{A, B, C, X(262), X(513)}}, {{A, B, C, X(495), X(956)}}, {{A, B, C, X(903), X(6063)}}, {{A, B, C, X(999), X(17757)}}, {{A, B, C, X(1056), X(3421)}}, {{A, B, C, X(1440), X(8797)}}, {{A, B, C, X(1441), X(4054)}}, {{A, B, C, X(1444), X(25060)}}, {{A, B, C, X(1494), X(13577)}}, {{A, B, C, X(3263), X(50101)}}, {{A, B, C, X(3296), X(41013)}}, {{A, B, C, X(3445), X(51870)}}, {{A, B, C, X(3668), X(17753)}}, {{A, B, C, X(3672), X(20336)}}, {{A, B, C, X(5936), X(30501)}}, {{A, B, C, X(7318), X(40410)}}, {{A, B, C, X(8822), X(33949)}}, {{A, B, C, X(9227), X(38247)}}, {{A, B, C, X(9307), X(13476)}}, {{A, B, C, X(14260), X(21664)}}, {{A, B, C, X(16705), X(17321)}}, {{A, B, C, X(18018), X(39723)}}, {{A, B, C, X(18575), X(40086)}}, {{A, B, C, X(18810), X(35164)}}, {{A, B, C, X(20565), X(39707)}}, {{A, B, C, X(20566), X(32023)}}, {{A, B, C, X(20615), X(45104)}}, {{A, B, C, X(21453), X(34393)}}, {{A, B, C, X(24547), X(44140)}}, {{A, B, C, X(27475), X(27489)}}, {{A, B, C, X(27492), X(41527)}}, {{A, B, C, X(30479), X(40412)}}, {{A, B, C, X(31360), X(39745)}}, {{A, B, C, X(36588), X(40216)}}, {{A, B, C, X(44184), X(56144)}}, {{A, B, C, X(55089), X(56155)}}
X(58007) = barycentric product X(i)*X(j) for these (i, j): {76, 957}, {274, 54933}, {32722, 40495}
X(58007) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2267}, {2, 956}, {957, 6}, {32722, 692}, {54933, 37}


X(58008) = ISOTOMIC CONJUGATE OF X(958)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(c*(b+c)+a*(2*b+c))*(b*(b+c)+a*(b+2*c)) : :

X(58008) lies on these lines: {2, 31643}, {7, 274}, {12, 3596}, {56, 261}, {75, 226}, {76, 1441}, {85, 3668}, {86, 10571}, {264, 56827}, {278, 286}, {314, 3485}, {331, 54314}, {388, 30479}, {767, 32693}, {870, 1423}, {941, 2481}, {2258, 40719}, {4328, 55946}, {5331, 55082}, {6063, 6385}, {6383, 7179}, {6648, 34261}, {10472, 44350}, {15282, 54121}, {24547, 27184}, {30946, 31618}, {34259, 52560}, {34263, 37800}, {53476, 56914}

X(58008) = isotomic conjugate of X(958)
X(58008) = trilinear pole of line {693, 7178}
X(58008) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2268}, {9, 5019}, {31, 958}, {32, 11679}, {41, 940}, {42, 54417}, {55, 1468}, {184, 54396}, {205, 34279}, {212, 4185}, {604, 3713}, {643, 8639}, {692, 17418}, {2149, 53561}, {2175, 10436}, {2200, 44734}, {2206, 3714}, {5307, 52425}, {9447, 34284}, {23880, 32739}, {23990, 53526}, {31993, 57657}
X(58008) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 958}, {9, 2268}, {223, 1468}, {478, 5019}, {650, 53561}, {1086, 17418}, {3160, 940}, {3161, 3713}, {6376, 11679}, {40592, 54417}, {40593, 10436}, {40603, 3714}, {40615, 48144}, {40619, 23880}, {40622, 8672}, {40837, 4185}, {55060, 8639}
X(58008) = X(i)-cross conjugate of X(j) for these {i, j}: {24547, 75}, {25466, 2}, {27184, 76}, {31359, 34258}, {45746, 664}, {50197, 1446}
X(58008) = pole of line {958, 54417} with respect to the Wallace hyperbola
X(58008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9307)}}, {{A, B, C, X(2), X(261)}}, {{A, B, C, X(7), X(226)}}, {{A, B, C, X(12), X(56)}}, {{A, B, C, X(69), X(40419)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(87), X(262)}}, {{A, B, C, X(92), X(314)}}, {{A, B, C, X(142), X(30946)}}, {{A, B, C, X(269), X(7249)}}, {{A, B, C, X(348), X(17321)}}, {{A, B, C, X(523), X(10013)}}, {{A, B, C, X(693), X(30712)}}, {{A, B, C, X(958), X(25466)}}, {{A, B, C, X(959), X(50040)}}, {{A, B, C, X(1268), X(40420)}}, {{A, B, C, X(1329), X(25524)}}, {{A, B, C, X(1423), X(7179)}}, {{A, B, C, X(2297), X(4518)}}, {{A, B, C, X(2995), X(30690)}}, {{A, B, C, X(3262), X(8797)}}, {{A, B, C, X(3263), X(3672)}}, {{A, B, C, X(3600), X(5261)}}, {{A, B, C, X(3613), X(55919)}}, {{A, B, C, X(4373), X(40216)}}, {{A, B, C, X(5253), X(11681)}}, {{A, B, C, X(5434), X(11237)}}, {{A, B, C, X(7201), X(7233)}}, {{A, B, C, X(7288), X(10588)}}, {{A, B, C, X(8822), X(40701)}}, {{A, B, C, X(9309), X(45964)}}, {{A, B, C, X(9436), X(26125)}}, {{A, B, C, X(10436), X(27184)}}, {{A, B, C, X(18760), X(35140)}}, {{A, B, C, X(20565), X(39704)}}, {{A, B, C, X(20566), X(30598)}}, {{A, B, C, X(31637), X(40032)}}, {{A, B, C, X(36487), X(36493)}}, {{A, B, C, X(36508), X(36513)}}
X(58008) = barycentric product X(i)*X(j) for these (i, j): {76, 959}, {331, 34259}, {349, 5331}, {1441, 37870}, {6063, 941}, {20567, 2258}, {31359, 85}, {32038, 693}, {32693, 40495}, {33949, 34265}, {34258, 7}, {34263, 57777}, {34284, 50040}, {40828, 56}, {44733, 75}
X(58008) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2268}, {2, 958}, {7, 940}, {8, 3713}, {11, 53561}, {56, 5019}, {57, 1468}, {75, 11679}, {81, 54417}, {85, 10436}, {92, 54396}, {273, 5307}, {278, 4185}, {286, 44734}, {321, 3714}, {388, 34261}, {514, 17418}, {693, 23880}, {931, 5546}, {941, 55}, {959, 6}, {1111, 53526}, {1358, 53543}, {1441, 31993}, {2258, 41}, {3676, 48144}, {4077, 50457}, {5331, 284}, {6063, 34284}, {7178, 8672}, {7180, 8639}, {8048, 34279}, {24002, 43067}, {31359, 9}, {32038, 100}, {32693, 692}, {34258, 8}, {34259, 219}, {34260, 1036}, {34263, 197}, {37870, 21}, {40149, 1867}, {40828, 3596}, {44733, 1}, {50040, 941}, {52931, 4559}, {56914, 40966}


X(58009) = ISOTOMIC CONJUGATE OF X(962)

Barycentrics    ((a-b)*(a+b)^3-2*(a-b)^2*b*c-2*a*(a+b)*c^2+2*b*c^3+c^4)*(a^4+2*a^3*c-2*a*(b-c)^2*c-2*a^2*b*(b+c)+(b-c)*(b+c)^3) : :

X(58009) lies on cubic K133 and these lines: {2, 52063}, {4, 30501}, {7, 318}, {8, 77}, {63, 346}, {69, 341}, {75, 7056}, {81, 2322}, {189, 21279}, {253, 9436}, {280, 55119}, {309, 962}, {938, 56328}, {963, 1043}, {1814, 6559}, {17880, 55015}, {21296, 52392}, {31995, 52344}, {40443, 56118}

X(58009) = isogonal conjugate of X(20991)
X(58009) = isotomic conjugate of X(962)
X(58009) = trilinear pole of line {905, 3239}
X(58009) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20991}, {6, 2270}, {19, 22124}, {31, 962}, {32, 20921}, {604, 27508}, {692, 7661}, {1333, 21068}
X(58009) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 962}, {3, 20991}, {6, 22124}, {9, 2270}, {37, 21068}, {1086, 7661}, {3161, 27508}, {6376, 20921}
X(58009) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {963, 20211}, {43744, 5932}
X(58009) = pole of line {20991, 22124} with respect to the Stammler hyperbola
X(58009) = pole of line {962, 20991} with respect to the Wallace hyperbola
X(58009) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(309)}}, {{A, B, C, X(4), X(5815)}}, {{A, B, C, X(7), X(63)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(40), X(962)}}, {{A, B, C, X(78), X(46355)}}, {{A, B, C, X(86), X(37655)}}, {{A, B, C, X(95), X(28626)}}, {{A, B, C, X(264), X(5936)}}, {{A, B, C, X(314), X(8817)}}, {{A, B, C, X(319), X(31995)}}, {{A, B, C, X(320), X(21296)}}, {{A, B, C, X(938), X(54433)}}, {{A, B, C, X(1268), X(44186)}}, {{A, B, C, X(1440), X(34234)}}, {{A, B, C, X(1494), X(36588)}}, {{A, B, C, X(2184), X(8829)}}, {{A, B, C, X(2994), X(4373)}}, {{A, B, C, X(2997), X(42361)}}, {{A, B, C, X(3427), X(3668)}}, {{A, B, C, X(3562), X(10461)}}, {{A, B, C, X(5558), X(40438)}}, {{A, B, C, X(6557), X(20570)}}, {{A, B, C, X(6601), X(47850)}}, {{A, B, C, X(8047), X(39695)}}, {{A, B, C, X(8814), X(10435)}}, {{A, B, C, X(9436), X(14615)}}, {{A, B, C, X(10327), X(36845)}}, {{A, B, C, X(11024), X(31435)}}, {{A, B, C, X(14256), X(21279)}}, {{A, B, C, X(19611), X(44189)}}, {{A, B, C, X(21739), X(36606)}}, {{A, B, C, X(26062), X(41012)}}, {{A, B, C, X(28194), X(34632)}}, {{A, B, C, X(30479), X(34409)}}, {{A, B, C, X(32087), X(42696)}}, {{A, B, C, X(32099), X(42697)}}, {{A, B, C, X(36100), X(56287)}}, {{A, B, C, X(38255), X(40716)}}, {{A, B, C, X(39709), X(46136)}}
X(58009) = barycentric product X(i)*X(j) for these (i, j): {76, 963}, {309, 52063}, {312, 43744}
X(58009) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2270}, {2, 962}, {3, 22124}, {6, 20991}, {8, 27508}, {10, 21068}, {75, 20921}, {514, 7661}, {963, 6}, {43744, 57}, {52063, 40}


X(58010) = ISOTOMIC CONJUGATE OF X(964)

Barycentrics    (a*b*(a+b)^2+(a+b)*(a^2+a*b+b^2)*c+(a+b)^2*c^2+(a+b)*c^3+c^4)*(a^3*(b+c)+b*(b+c)*(b^2+c^2)+a*(b+c)*(b^2+b*c+c^2)+a^2*(b^2+2*b*c+2*c^2)) : :

X(58010) lies on these lines: {69, 16705}, {81, 57876}, {264, 5051}, {306, 4357}, {307, 3674}, {1441, 16062}, {1494, 50321}, {1509, 57853}, {4202, 57831}, {5224, 20336}, {13725, 57818}, {16342, 40412}, {26167, 57820}, {37314, 57858}, {52258, 57830}

X(58010) = isogonal conjugate of X(44115)
X(58010) = isotomic conjugate of X(964)
X(58010) = trilinear pole of line {3004, 14349}
X(58010) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44115}, {31, 964}
X(58010) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 964}, {3, 44115}
X(58010) = pole of line {964, 44115} with respect to the Wallace hyperbola
X(58010) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5051)}}, {{A, B, C, X(7), X(76)}}, {{A, B, C, X(10), X(941)}}, {{A, B, C, X(21), X(3718)}}, {{A, B, C, X(30), X(50321)}}, {{A, B, C, X(75), X(81)}}, {{A, B, C, X(86), X(561)}}, {{A, B, C, X(256), X(56342)}}, {{A, B, C, X(257), X(2997)}}, {{A, B, C, X(321), X(1246)}}, {{A, B, C, X(377), X(13725)}}, {{A, B, C, X(404), X(52258)}}, {{A, B, C, X(405), X(4202)}}, {{A, B, C, X(442), X(16342)}}, {{A, B, C, X(443), X(37314)}}, {{A, B, C, X(964), X(13728)}}, {{A, B, C, X(1257), X(2346)}}, {{A, B, C, X(2476), X(19270)}}, {{A, B, C, X(3596), X(46880)}}, {{A, B, C, X(4197), X(11110)}}, {{A, B, C, X(4201), X(26117)}}, {{A, B, C, X(4205), X(16454)}}, {{A, B, C, X(4389), X(18133)}}, {{A, B, C, X(5047), X(33833)}}, {{A, B, C, X(9307), X(14624)}}, {{A, B, C, X(11108), X(17674)}}, {{A, B, C, X(11346), X(48815)}}, {{A, B, C, X(11359), X(49735)}}, {{A, B, C, X(13745), X(17679)}}, {{A, B, C, X(14005), X(37039)}}, {{A, B, C, X(16060), X(17550)}}, {{A, B, C, X(16346), X(25015)}}, {{A, B, C, X(16393), X(50058)}}, {{A, B, C, X(16906), X(33047)}}, {{A, B, C, X(17080), X(51612)}}, {{A, B, C, X(17321), X(19835)}}, {{A, B, C, X(17684), X(33834)}}, {{A, B, C, X(19520), X(25017)}}, {{A, B, C, X(24984), X(37228)}}, {{A, B, C, X(30479), X(41791)}}, {{A, B, C, X(43531), X(43712)}}, {{A, B, C, X(50055), X(51665)}}, {{A, B, C, X(50171), X(51677)}}
X(58010) = barycentric product X(i)*X(j) for these (i, j): {57743, 76}
X(58010) = barycentric quotient X(i)/X(j) for these (i, j): {2, 964}, {6, 44115}, {57743, 6}


X(58011) = ISOTOMIC CONJUGATE OF X(965)

Barycentrics    b*c*(2*a*b*(a+b)^2+(a+b)^3*c-(a^2+b^2)*c^2-(a+b)*c^3+c^4)*(-(a^2*(b-4*c)*(b+c))+b*(b-c)^2*(b+c)-a*(b-2*c)*(b+c)^2+a^3*(b+2*c)) : :

X(58011) lies on the Kiepert hyperbola and these lines: {2, 57744}, {10, 322}, {76, 18635}, {85, 8808}, {86, 54972}, {226, 40702}, {1751, 16054}, {14534, 19727}, {19716, 40395}, {40149, 40701}

X(58011) = isotomic conjugate of X(965)
X(58011) = trilinear pole of line {17896, 523}
X(58011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 965}, {48, 11323}
X(58011) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 965}, {1249, 11323}
X(58011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(18635)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(86), X(331)}}, {{A, B, C, X(273), X(274)}}, {{A, B, C, X(304), X(31643)}}, {{A, B, C, X(1211), X(19727)}}, {{A, B, C, X(5125), X(16054)}}, {{A, B, C, X(5736), X(5740)}}, {{A, B, C, X(5742), X(15668)}}, {{A, B, C, X(9289), X(52389)}}, {{A, B, C, X(32023), X(44129)}}
X(58011) = barycentric product X(i)*X(j) for these (i, j): {57744, 76}
X(58011) = barycentric quotient X(i)/X(j) for these (i, j): {2, 965}, {4, 11323}, {57744, 6}


X(58012) = ISOTOMIC CONJUGATE OF X(966)

Barycentrics    ((a+b)^2+2*(a+b)*c-c^2)*(a^2-b^2+2*b*c+c^2+2*a*(b+c)) : :

X(58012) lies on the Kiepert hyperbola and these lines: {2, 967}, {4, 86}, {6, 32022}, {10, 69}, {30, 54862}, {76, 4648}, {85, 40149}, {226, 348}, {274, 5712}, {304, 321}, {337, 43534}, {376, 54657}, {377, 13576}, {381, 54532}, {443, 37632}, {1509, 37642}, {2051, 36698}, {2052, 44129}, {2271, 33039}, {3424, 7379}, {3524, 54885}, {3545, 54740}, {3926, 17056}, {3945, 26051}, {4052, 48838}, {4297, 54668}, {4340, 16992}, {4352, 26109}, {5275, 40403}, {5286, 20131}, {5392, 26541}, {6625, 33029}, {6857, 17103}, {6999, 45100}, {7385, 14484}, {8796, 54372}, {8808, 34400}, {10159, 53665}, {11599, 15903}, {13478, 36662}, {13725, 40718}, {17169, 45964}, {17234, 18840}, {17300, 56210}, {17321, 51706}, {17378, 54786}, {17379, 33028}, {17381, 18841}, {17582, 37678}, {17732, 40515}, {18135, 40013}, {18140, 40012}, {26131, 45962}, {27187, 30588}, {32828, 37674}, {33031, 54795}, {33044, 33863}, {36474, 54946}, {36660, 43672}, {36706, 56144}, {43677, 49518}, {48813, 48822}, {50282, 50428}

X(58012) = isogonal conjugate of X(2271)
X(58012) = isotomic conjugate of X(966)
X(58012) = trilinear pole of line {4025, 30184}
X(58012) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2271}, {6, 968}, {31, 966}, {41, 3485}, {48, 4207}, {101, 48099}, {213, 11110}, {607, 54320}, {692, 45745}, {1824, 4288}, {7650, 32739}
X(58012) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 966}, {3, 2271}, {9, 968}, {1015, 48099}, {1086, 45745}, {1249, 4207}, {3160, 3485}, {6626, 11110}, {40619, 7650}
X(58012) = X(i)-cross conjugate of X(j) for these {i, j}: {15668, 2}, {48038, 190}
X(58012) = pole of line {15668, 58012} with respect to the Kiepert hyperbola
X(58012) = pole of line {966, 2271} with respect to the Wallace hyperbola
X(58012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2991)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37474)}}, {{A, B, C, X(6), X(4648)}}, {{A, B, C, X(7), X(274)}}, {{A, B, C, X(8), X(16831)}}, {{A, B, C, X(27), X(37153)}}, {{A, B, C, X(29), X(37169)}}, {{A, B, C, X(65), X(39981)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(79), X(39721)}}, {{A, B, C, X(189), X(37870)}}, {{A, B, C, X(277), X(14621)}}, {{A, B, C, X(279), X(1509)}}, {{A, B, C, X(330), X(3296)}}, {{A, B, C, X(377), X(15149)}}, {{A, B, C, X(514), X(34379)}}, {{A, B, C, X(940), X(1427)}}, {{A, B, C, X(966), X(15668)}}, {{A, B, C, X(996), X(54123)}}, {{A, B, C, X(1000), X(39738)}}, {{A, B, C, X(1218), X(40827)}}, {{A, B, C, X(1220), X(27475)}}, {{A, B, C, X(1268), X(40023)}}, {{A, B, C, X(1434), X(39704)}}, {{A, B, C, X(2165), X(21698)}}, {{A, B, C, X(2296), X(8817)}}, {{A, B, C, X(2333), X(8770)}}, {{A, B, C, X(3227), X(5558)}}, {{A, B, C, X(3615), X(41791)}}, {{A, B, C, X(3616), X(17294)}}, {{A, B, C, X(3618), X(17234)}}, {{A, B, C, X(3619), X(17381)}}, {{A, B, C, X(3622), X(49765)}}, {{A, B, C, X(3926), X(56382)}}, {{A, B, C, X(4196), X(33026)}}, {{A, B, C, X(4212), X(33028)}}, {{A, B, C, X(4213), X(33029)}}, {{A, B, C, X(4297), X(10004)}}, {{A, B, C, X(4352), X(30092)}}, {{A, B, C, X(5275), X(16583)}}, {{A, B, C, X(5308), X(49495)}}, {{A, B, C, X(5551), X(39740)}}, {{A, B, C, X(5557), X(36871)}}, {{A, B, C, X(5736), X(5738)}}, {{A, B, C, X(5936), X(32018)}}, {{A, B, C, X(6340), X(40071)}}, {{A, B, C, X(6650), X(39736)}}, {{A, B, C, X(7261), X(17270)}}, {{A, B, C, X(7379), X(52283)}}, {{A, B, C, X(7385), X(52288)}}, {{A, B, C, X(7490), X(26051)}}, {{A, B, C, X(7763), X(26541)}}, {{A, B, C, X(8813), X(34386)}}, {{A, B, C, X(8814), X(40409)}}, {{A, B, C, X(11109), X(36698)}}, {{A, B, C, X(13725), X(31909)}}, {{A, B, C, X(14377), X(43972)}}, {{A, B, C, X(14548), X(14828)}}, {{A, B, C, X(14996), X(37635)}}, {{A, B, C, X(15474), X(56047)}}, {{A, B, C, X(17056), X(37642)}}, {{A, B, C, X(17230), X(48822)}}, {{A, B, C, X(17244), X(50282)}}, {{A, B, C, X(17245), X(37650)}}, {{A, B, C, X(17300), X(17379)}}, {{A, B, C, X(17555), X(36662)}}, {{A, B, C, X(17732), X(17911)}}, {{A, B, C, X(18135), X(18140)}}, {{A, B, C, X(18299), X(32021)}}, {{A, B, C, X(18490), X(38247)}}, {{A, B, C, X(21246), X(26125)}}, {{A, B, C, X(24553), X(26540)}}, {{A, B, C, X(25430), X(43073)}}, {{A, B, C, X(26003), X(36660)}}, {{A, B, C, X(26109), X(37683)}}, {{A, B, C, X(28081), X(41247)}}, {{A, B, C, X(28660), X(30479)}}, {{A, B, C, X(30598), X(40014)}}, {{A, B, C, X(30962), X(37632)}}, {{A, B, C, X(31359), X(42335)}}, {{A, B, C, X(31916), X(48813)}}, {{A, B, C, X(36706), X(37448)}}, {{A, B, C, X(37128), X(51223)}}, {{A, B, C, X(37654), X(49738)}}, {{A, B, C, X(39735), X(40011)}}, {{A, B, C, X(49598), X(51314)}}
X(58012) = barycentric product X(i)*X(j) for these (i, j): {1, 58013}, {75, 969}, {76, 967}
X(58012) = barycentric quotient X(i)/X(j) for these (i, j): {1, 968}, {2, 966}, {4, 4207}, {6, 2271}, {7, 3485}, {77, 54320}, {86, 11110}, {513, 48099}, {514, 45745}, {693, 7650}, {967, 6}, {969, 1}, {1790, 4288}, {58013, 75}


X(58013) = ISOTOMIC CONJUGATE OF X(968)

Barycentrics    b*c*((a+b)^2+2*(a+b)*c-c^2)*(a^2-b^2+2*b*c+c^2+2*a*(b+c)) : :

X(58013) lies on these lines: {75, 969}, {92, 274}, {304, 321}, {305, 313}, {873, 44735}, {1441, 7182}, {6063, 57809}, {16739, 58026}, {57796, 57806}

X(58013) = isotomic conjugate of X(968)
X(58013) = trilinear pole of line {1577, 15413}
X(58013) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2271}, {31, 968}, {32, 966}, {184, 4207}, {692, 48099}, {1918, 11110}, {2175, 3485}, {2212, 54320}, {2333, 4288}, {32739, 45745}
X(58013) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 968}, {9, 2271}, {1086, 48099}, {6376, 966}, {34021, 11110}, {40593, 3485}, {40619, 45745}
X(58013) = X(i)-cross conjugate of X(j) for these {i, j}: {32092, 75}
X(58013) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7233)}}, {{A, B, C, X(10), X(17156)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(85), X(310)}}, {{A, B, C, X(86), X(15474)}}, {{A, B, C, X(91), X(17874)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(873), X(1088)}}, {{A, B, C, X(1824), X(8769)}}, {{A, B, C, X(3668), X(10436)}}, {{A, B, C, X(3914), X(50314)}}, {{A, B, C, X(18698), X(44735)}}, {{A, B, C, X(30690), X(40028)}}, {{A, B, C, X(31997), X(33943)}}, {{A, B, C, X(33933), X(39731)}}
X(58013) = barycentric product X(i)*X(j) for these (i, j): {76, 969}, {561, 967}, {58012, 75}
X(58013) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2271}, {2, 968}, {75, 966}, {85, 3485}, {92, 4207}, {274, 11110}, {348, 54320}, {514, 48099}, {693, 45745}, {967, 31}, {969, 6}, {1444, 4288}, {3261, 7650}, {58012, 1}


X(58014) = ISOTOMIC CONJUGATE OF X(970)

Barycentrics    b^2*c^2*(a^5+a^4*b+a*b^4+b^5+(a^4+2*a^3*b+2*a*b^3+b^4)*c-(a+b)*(a^2+b^2)*c^2-(a+b)^2*c^3)*(a^2*(a-b)*(a+b)^2+a*(a-b)*(a+b)*(a+2*b)*c-b^2*(a+b)*c^2+(2*a-b)*b*c^3+(a+b)*c^4+c^5) : :

X(58014) lies on these lines: {69, 40828}, {76, 37415}, {86, 57905}, {264, 940}, {311, 40827}, {313, 14829}, {31643, 56412}

X(58014) = isotomic conjugate of X(970)
X(58014) = trilinear pole of line {850, 17496}
X(58014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37415)}}, {{A, B, C, X(69), X(940)}}, {{A, B, C, X(75), X(18021)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(86), X(95)}}, {{A, B, C, X(309), X(6384)}}, {{A, B, C, X(1441), X(34384)}}, {{A, B, C, X(8795), X(40149)}}
X(58014) = barycentric product X(i)*X(j) for these (i, j): {57745, 76}
X(58014) = barycentric quotient X(i)/X(j) for these (i, j): {2, 970}, {57745, 6}


X(58015) = ISOTOMIC CONJUGATE OF X(973)

Barycentrics    b^2*c^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(3*b^2+2*c^2)+a^6*(2*b^4+b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(3*b^4+3*b^2*c^2+2*c^4)+a^4*(2*b^6+b^4*c^2+4*b^2*c^4+c^6))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(2*b^2+3*c^2)+a^6*(b^4+b^2*c^2+2*c^4)-a^2*(b^2-c^2)^2*(2*b^4+3*b^2*c^2+3*c^4)+a^4*(b^6+4*b^4*c^2+b^2*c^4+2*c^6)) : :

X(58015) lies on these lines: {95, 28706}, {275, 311}

X(58015) = isotomic conjugate of X(973)
X(58015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(311)}}, {{A, B, C, X(95), X(275)}}
X(58015) = barycentric product X(i)*X(j) for these (i, j): {57746, 76}
X(58015) = barycentric quotient X(i)/X(j) for these (i, j): {2, 973}, {57746, 6}


X(58016) = ISOTOMIC CONJUGATE OF X(974)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4*(a^4+a^2*b^2+b^4)-3*(a^2-b^2)^2*(a^6-2*a^4*b^2-2*a^2*b^4+b^6)*c^2+(a^2-b^2)^2*(2*a^4-7*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*(2*a^4-3*a^2*b^2+2*b^4)*c^6+(-3*a^4+2*a^2*b^2-3*b^4)*c^8+(a^2+b^2)*c^10)*(a^12-3*a^10*(b^2+c^2)+c^2*(b^2-c^2)^4*(b^2+c^2)+a^8*(2*b^4+12*b^2*c^2+3*c^4)+a^2*(b^2-c^2)^2*(b^6+4*b^4*c^2+6*b^2*c^4-3*c^6)+a^6*(2*b^6-11*b^4*c^2-9*b^2*c^4-2*c^6)-a^4*(3*b^8+b^6*c^2-18*b^4*c^4+9*b^2*c^6-3*c^8)) : :

X(58016) lies on these lines: {38937, 52552}, {44138, 57747}, {57487, 57819}

X(58016) = isotomic conjugate of X(974)
X(58016) = X(i)-cross conjugate of X(j) for these {i, j}: {2394, 6331}
X(58016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(3260)}}, {{A, B, C, X(95), X(18020)}}, {{A, B, C, X(264), X(44138)}}, {{A, B, C, X(340), X(34405)}}
X(58016) = barycentric product X(i)*X(j) for these (i, j): {57747, 76}
X(58016) = barycentric quotient X(i)/X(j) for these (i, j): {2, 974}, {57747, 6}


X(58017) = ISOTOMIC CONJUGATE OF X(975)

Barycentrics    b*c*((a+b)^3+(a^2+4*a*b+b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+3*c)+a*(b+c)*(b+3*c)+(b+c)*(b^2+c^2)) : :

X(58017) lies on these lines: {27, 19804}, {75, 52258}, {86, 57748}, {5936, 20336}, {18156, 30598}, {26580, 39700}, {26627, 56047}

X(58017) = isotomic conjugate of X(975)
X(58017) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 975}, {32, 19822}
X(58017) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 975}, {6376, 19822}
X(58017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(34)}}, {{A, B, C, X(28), X(31359)}}, {{A, B, C, X(85), X(313)}}, {{A, B, C, X(158), X(34265)}}, {{A, B, C, X(256), X(46010)}}, {{A, B, C, X(264), X(274)}}, {{A, B, C, X(286), X(34258)}}, {{A, B, C, X(751), X(1169)}}, {{A, B, C, X(3718), X(30608)}}, {{A, B, C, X(7182), X(19804)}}
X(58017) = barycentric product X(i)*X(j) for these (i, j): {57748, 76}
X(58017) = barycentric quotient X(i)/X(j) for these (i, j): {2, 975}, {75, 19822}, {57748, 6}


X(58018) = ISOTOMIC CONJUGATE OF X(976)

Barycentrics    b*c*((a+b)*(a^2+b^2)+c^3)*(b^3+(a+c)*(a^2+c^2)) : :

X(58018) lies on these lines: {2, 2064}, {7, 315}, {27, 19805}, {75, 24995}, {86, 977}, {272, 274}, {335, 4812}, {675, 833}, {903, 57976}, {1240, 17861}, {1441, 56358}, {14621, 56342}, {15467, 20567}, {27475, 27477}, {36503, 44733}, {40075, 57923}

X(58018) = isotomic conjugate of X(976)
X(58018) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2273}, {31, 976}, {32, 32777}, {100, 8636}, {184, 5090}, {228, 17520}, {692, 832}, {32739, 48300}
X(58018) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 976}, {9, 2273}, {1086, 832}, {6376, 32777}, {8054, 8636}, {40619, 48300}, {52657, 22398}
X(58018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36568)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(28082)}}, {{A, B, C, X(264), X(3112)}}, {{A, B, C, X(274), X(20567)}}, {{A, B, C, X(286), X(561)}}, {{A, B, C, X(315), X(44130)}}, {{A, B, C, X(350), X(4812)}}, {{A, B, C, X(870), X(1441)}}, {{A, B, C, X(976), X(987)}}, {{A, B, C, X(2064), X(6063)}}, {{A, B, C, X(2997), X(7018)}}, {{A, B, C, X(3596), X(33940)}}, {{A, B, C, X(4357), X(17861)}}, {{A, B, C, X(7357), X(18812)}}, {{A, B, C, X(10436), X(36503)}}, {{A, B, C, X(18891), X(31905)}}, {{A, B, C, X(19805), X(20336)}}, {{A, B, C, X(24995), X(39712)}}, {{A, B, C, X(36499), X(36505)}}
X(58018) = barycentric product X(i)*X(j) for these (i, j): {76, 977}, {514, 57976}, {561, 56342}, {3261, 833}
X(58018) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2273}, {2, 976}, {27, 17520}, {75, 32777}, {92, 5090}, {514, 832}, {649, 8636}, {693, 48300}, {833, 101}, {977, 6}, {982, 22398}, {56342, 31}, {57976, 190}


X(58019) = ISOTOMIC CONJUGATE OF X(978)

Barycentrics    -(b*c*(-(a*b*(a+b))+(a^2-a*b+b^2)*c+(a+b)*c^2)*(a^2*(b-c)+b*c*(b+c)+a*(b^2-b*c-c^2))) : :

X(58019) lies on these lines: {2, 17786}, {7, 2899}, {27, 19806}, {75, 3831}, {86, 979}, {313, 6384}, {322, 18149}, {335, 20923}, {350, 39741}, {673, 56279}, {675, 53625}, {1246, 18147}, {3596, 46827}, {4110, 28244}, {4360, 32011}, {16099, 18749}, {18133, 39704}, {18743, 44733}, {20891, 27494}, {23794, 57187}, {27633, 56247}, {30598, 56249}, {30712, 39701}, {30963, 40418}, {39707, 39995}, {42696, 56163}, {52138, 55970}

X(58019) = isotomic conjugate of X(978)
X(58019) = trilinear pole of line {21438, 23685}
X(58019) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 21769}, {25, 20805}, {31, 978}, {32, 3210}, {604, 3169}, {1252, 16614}, {1333, 21857}, {1397, 19582}
X(58019) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 978}, {9, 21769}, {37, 21857}, {661, 16614}, {3161, 3169}, {6376, 3210}, {6505, 20805}
X(58019) = X(i)-cross conjugate of X(j) for these {i, j}: {3596, 75}, {40012, 40014}, {46827, 2}
X(58019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3831)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(264), X(334)}}, {{A, B, C, X(286), X(7033)}}, {{A, B, C, X(291), X(34445)}}, {{A, B, C, X(313), X(6376)}}, {{A, B, C, X(314), X(36805)}}, {{A, B, C, X(341), X(2899)}}, {{A, B, C, X(350), X(20923)}}, {{A, B, C, X(749), X(1400)}}, {{A, B, C, X(978), X(46827)}}, {{A, B, C, X(1221), X(40031)}}, {{A, B, C, X(2997), X(7035)}}, {{A, B, C, X(3445), X(7241)}}, {{A, B, C, X(3596), X(40012)}}, {{A, B, C, X(4479), X(29982)}}, {{A, B, C, X(6383), X(32020)}}, {{A, B, C, X(17743), X(18812)}}, {{A, B, C, X(18135), X(28660)}}, {{A, B, C, X(18827), X(39970)}}, {{A, B, C, X(19806), X(20336)}}, {{A, B, C, X(20891), X(30963)}}, {{A, B, C, X(24172), X(39714)}}, {{A, B, C, X(27424), X(45242)}}, {{A, B, C, X(31359), X(39983)}}, {{A, B, C, X(31643), X(32017)}}, {{A, B, C, X(39994), X(54121)}}, {{A, B, C, X(40017), X(40025)}}, {{A, B, C, X(42027), X(52654)}}
X(58019) = barycentric product X(i)*X(j) for these (i, j): {76, 979}, {3261, 53625}, {39694, 75}, {39701, 40014}, {56276, 85}, {56279, 6063}
X(58019) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21769}, {2, 978}, {8, 3169}, {10, 21857}, {63, 20805}, {75, 3210}, {244, 16614}, {312, 19582}, {979, 6}, {39694, 1}, {39701, 1743}, {40014, 27835}, {53625, 101}, {56276, 9}, {56279, 55}


X(58020) = ISOTOMIC CONJUGATE OF X(980)

Barycentrics    b*c*(a^3*(b+c)+a^2*c*(b+c)+b^2*c*(b+c)+a*b*(b^2+b*c+c^2))*(a^3*(b+c)+a^2*b*(b+c)+b*c^2*(b+c)+a*c*(b^2+b*c+c^2)) : :

X(58020) lies on these lines: {2, 40072}, {6, 314}, {25, 31623}, {37, 3596}, {42, 312}, {75, 1400}, {76, 39957}, {264, 1880}, {274, 39981}, {941, 28809}, {1169, 52550}, {1218, 1502}, {1427, 6063}, {3696, 34258}, {4417, 7018}, {16606, 44417}, {34284, 42290}, {36796, 56853}

X(58020) = isotomic conjugate of X(980)
X(58020) = trilinear pole of line {4391, 48080}
X(58020) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2274}, {31, 980}, {604, 35628}, {1468, 45787}
X(58020) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 980}, {9, 2274}, {3161, 35628}
X(58020) = X(i)-cross conjugate of X(j) for these {i, j}: {47975, 668}
X(58020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(40827)}}, {{A, B, C, X(57), X(42328)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(81), X(42358)}}, {{A, B, C, X(92), X(6385)}}, {{A, B, C, X(192), X(44417)}}, {{A, B, C, X(274), X(9311)}}, {{A, B, C, X(321), X(1502)}}, {{A, B, C, X(330), X(34434)}}, {{A, B, C, X(335), X(32931)}}, {{A, B, C, X(469), X(14012)}}, {{A, B, C, X(871), X(3112)}}, {{A, B, C, X(1221), X(27475)}}, {{A, B, C, X(1500), X(5283)}}, {{A, B, C, X(2051), X(42027)}}, {{A, B, C, X(3696), X(3714)}}, {{A, B, C, X(3739), X(41839)}}, {{A, B, C, X(4417), X(27958)}}, {{A, B, C, X(4699), X(35652)}}, {{A, B, C, X(13476), X(39694)}}, {{A, B, C, X(14534), X(32085)}}, {{A, B, C, X(27318), X(30863)}}, {{A, B, C, X(27483), X(32915)}}, {{A, B, C, X(37870), X(39737)}}, {{A, B, C, X(39735), X(40012)}}, {{A, B, C, X(40828), X(41013)}}
X(58020) = barycentric product X(i)*X(j) for these (i, j): {76, 981}
X(58020) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2274}, {2, 980}, {8, 35628}, {314, 52196}, {941, 45787}, {981, 6}


X(58021) = ISOTOMIC CONJUGATE OF X(986)

Barycentrics    b*c*(a^3+b^3+(a^2+a*b+b^2)*c)*(a^3+a^2*b+a*b*c+c^2*(b+c)) : :

X(58021) lies on these lines: {1, 3596}, {6, 312}, {8, 43070}, {34, 264}, {56, 75}, {58, 314}, {69, 1431}, {86, 4485}, {242, 51686}, {269, 6063}, {292, 2345}, {309, 1413}, {350, 56328}, {1240, 49487}, {1411, 20566}, {1438, 36796}, {1474, 27958}, {2163, 10447}, {3757, 34445}, {4362, 57399}, {5224, 17954}, {5736, 18059}, {9432, 17777}, {10455, 39949}, {11679, 34258}, {20565, 52372}, {40746, 52652}

X(58021) = isotomic conjugate of X(986)
X(58021) = trilinear pole of line {649, 4391}
X(58021) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2277}, {31, 986}, {32, 27184}
X(58021) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 986}, {9, 2277}, {6376, 27184}
X(58021) = X(i)-cross conjugate of X(j) for these {i, j}: {17418, 190}
X(58021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(1999)}}, {{A, B, C, X(7), X(3112)}}, {{A, B, C, X(10), X(17733)}}, {{A, B, C, X(29), X(37091)}}, {{A, B, C, X(69), X(336)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(242), X(350)}}, {{A, B, C, X(256), X(56138)}}, {{A, B, C, X(261), X(2985)}}, {{A, B, C, X(274), X(30022)}}, {{A, B, C, X(286), X(6384)}}, {{A, B, C, X(310), X(2997)}}, {{A, B, C, X(756), X(32915)}}, {{A, B, C, X(873), X(28626)}}, {{A, B, C, X(894), X(2998)}}, {{A, B, C, X(903), X(10435)}}, {{A, B, C, X(969), X(40418)}}, {{A, B, C, X(1218), X(4601)}}, {{A, B, C, X(1246), X(18827)}}, {{A, B, C, X(1826), X(3923)}}, {{A, B, C, X(2296), X(56048)}}, {{A, B, C, X(3741), X(4362)}}, {{A, B, C, X(3757), X(10453)}}, {{A, B, C, X(4360), X(10455)}}, {{A, B, C, X(4373), X(39744)}}, {{A, B, C, X(5224), X(19623)}}, {{A, B, C, X(5936), X(7035)}}, {{A, B, C, X(10436), X(25430)}}, {{A, B, C, X(13478), X(18812)}}, {{A, B, C, X(17164), X(25253)}}, {{A, B, C, X(18147), X(19808)}}, {{A, B, C, X(20028), X(35058)}}, {{A, B, C, X(24174), X(25079)}}, {{A, B, C, X(24443), X(25591)}}, {{A, B, C, X(26076), X(27922)}}, {{A, B, C, X(26734), X(40013)}}, {{A, B, C, X(29651), X(42057)}}, {{A, B, C, X(30598), X(37870)}}, {{A, B, C, X(31643), X(32017)}}
X(58021) = barycentric product X(i)*X(j) for these (i, j): {76, 987}, {56046, 75}, {56202, 85}
X(58021) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2277}, {2, 986}, {75, 27184}, {987, 6}, {56046, 1}, {56202, 9}


X(58022) = ISOTOMIC CONJUGATE OF X(988)

Barycentrics    b*c*(a^3-b^3+b^2*c+3*b*c^2+c^3+a^2*(3*b+c)+a*(b^2+c^2))*(a^3+a^2*(b+3*c)+(b+c)*(b^2+2*b*c-c^2)+a*(b^2+c^2)) : :

X(58022) lies on these lines: {75, 1788}, {309, 1909}, {312, 17314}, {314, 989}, {322, 7018}, {3596, 4078}, {30758, 40072}

X(58022) = isotomic conjugate of X(988)
X(58022) = trilinear pole of line {4391, 28478}
X(58022) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5530)}}, {{A, B, C, X(37), X(3751)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(273), X(3112)}}, {{A, B, C, X(313), X(4385)}}, {{A, B, C, X(322), X(1909)}}, {{A, B, C, X(393), X(1220)}}, {{A, B, C, X(1000), X(1222)}}, {{A, B, C, X(1502), X(40023)}}
X(58022) = barycentric product X(i)*X(j) for these (i, j): {76, 989}
X(58022) = barycentric quotient X(i)/X(j) for these (i, j): {2, 988}, {989, 6}


X(58023) = ISOTOMIC CONJUGATE OF X(990)

Barycentrics    b*c*((a-b)^2*(a+b)^3-(a-b)^2*(a^2+b^2)*c-2*a*b*c^3-(a+b)*c^4+c^5)*(a^5+2*a^3*(b-c)*c+a^4*(-b+c)-2*a^2*c^2*(b+c)-a*(b-c)*(b+c)^3+(b-c)^2*(b+c)*(b^2+c^2)) : :

X(58023) lies on these lines: {280, 1231}, {318, 35517}, {322, 2322}, {341, 18738}, {1043, 56139}, {7182, 18025}

X(58023) = isotomic conjugate of X(990)
X(58023) = trilinear pole of line {3239, 23806}
X(58023) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(8), X(75)}}, {{A, B, C, X(69), X(30701)}}, {{A, B, C, X(76), X(46137)}}, {{A, B, C, X(95), X(32019)}}, {{A, B, C, X(264), X(274)}}, {{A, B, C, X(273), X(9311)}}, {{A, B, C, X(312), X(7182)}}, {{A, B, C, X(313), X(322)}}, {{A, B, C, X(990), X(12618)}}, {{A, B, C, X(20570), X(40440)}}, {{A, B, C, X(35164), X(40028)}}
X(58023) = barycentric product X(i)*X(j) for these (i, j): {56139, 76}
X(58023) = barycentric quotient X(i)/X(j) for these (i, j): {2, 990}, {56139, 6}


X(58024) = ISOTOMIC CONJUGATE OF X(991)

Barycentrics    b^2*c^2*(a^4-a^3*(b+c)+b*(b-c)^2*(b+c)-a^2*c*(b+c)-a*(b-c)*(b+c)^2)*(a^4-a^3*(b+c)-a^2*b*(b+c)+(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^2) : :

X(58024) lies on these lines: {8, 349}, {76, 1043}, {264, 2322}, {313, 346}, {318, 52575}, {341, 27801}, {480, 34388}, {6063, 18025}, {16992, 30737}, {26592, 37658}

X(58024) = isotomic conjugate of X(991)
X(58024) = trilinear pole of line {850, 3239}
X(58024) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 991}, {32, 24635}, {1397, 41228}, {9247, 37448}
X(58024) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 991}, {6376, 24635}
X(58024) = X(i)-cross conjugate of X(j) for these {i, j}: {26592, 76}, {48888, 2}
X(58024) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(26003)}}, {{A, B, C, X(4), X(13727)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(69), X(17277)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(92), X(15467)}}, {{A, B, C, X(274), X(46137)}}, {{A, B, C, X(310), X(44186)}}, {{A, B, C, X(870), X(35164)}}, {{A, B, C, X(991), X(48888)}}, {{A, B, C, X(4417), X(16992)}}, {{A, B, C, X(6063), X(7017)}}, {{A, B, C, X(39717), X(53210)}}
X(58024) = barycentric product X(i)*X(j) for these (i, j): {56144, 76}
X(58024) = barycentric quotient X(i)/X(j) for these (i, j): {2, 991}, {75, 24635}, {264, 37448}, {312, 41228}, {56144, 6}


X(58025) = ISOTOMIC CONJUGATE OF X(992)

Barycentrics    b*c*(a*b*(a+b)^2+a*b*(a+b)*c-(a^2+b^2)*c^2-(a+b)*c^3)*(a^3*c-a^2*(b-2*c)*(b+c)-b^2*c*(b+c)+a*(-b^3+b*c^2+c^3)) : :

X(58025) lies on the Kiepert hyperbola and these lines: {2, 57749}, {10, 24575}, {226, 18140}, {28660, 40013}, {30022, 40012}, {37042, 40718}, {43534, 46937}, {50411, 54119}

X(58025) = isotomic conjugate of X(992)
X(58025) = trilinear pole of line {23684, 523}
X(58025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(334), X(9239)}}, {{A, B, C, X(1016), X(55036)}}, {{A, B, C, X(3144), X(50411)}}, {{A, B, C, X(18135), X(30022)}}, {{A, B, C, X(18140), X(20568)}}, {{A, B, C, X(24575), X(40763)}}, {{A, B, C, X(31909), X(37042)}}, {{A, B, C, X(32020), X(44129)}}, {{A, B, C, X(40010), X(40827)}}
X(58025) = barycentric product X(i)*X(j) for these (i, j): {57749, 76}
X(58025) = barycentric quotient X(i)/X(j) for these (i, j): {2, 992}, {57749, 6}


X(58026) = ISOTOMIC CONJUGATE OF X(993)

Barycentrics    b*c*(a*b*(a+b)+(a^2+b^2)*c-c^3)*(-b^3+a*c^2+b*c^2+a^2*(b+c)) : :

X(58026) lies on these lines: {1, 14616}, {75, 758}, {86, 2995}, {313, 45095}, {321, 3262}, {561, 35550}, {1441, 5224}, {2997, 4360}, {4957, 5718}, {7951, 20566}, {16739, 58013}, {39149, 44188}, {52031, 57788}

X(58026) = isotomic conjugate of X(993)
X(58026) = trilinear pole of line {1577, 2610}
X(58026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2278}, {31, 993}, {32, 1150}, {184, 5136}, {692, 55969}, {1397, 49492}, {32739, 48321}
X(58026) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 993}, {9, 2278}, {1086, 55969}, {6376, 1150}, {40619, 48321}, {40622, 51659}, {46398, 14299}
X(58026) = X(i)-cross conjugate of X(j) for these {i, j}: {3822, 2}, {26580, 76}
X(58026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(12)}}, {{A, B, C, X(2), X(20566)}}, {{A, B, C, X(5), X(37694)}}, {{A, B, C, X(7), X(20565)}}, {{A, B, C, X(36), X(7951)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(87), X(3613)}}, {{A, B, C, X(262), X(37129)}}, {{A, B, C, X(274), X(40828)}}, {{A, B, C, X(333), X(1268)}}, {{A, B, C, X(693), X(39704)}}, {{A, B, C, X(751), X(45964)}}, {{A, B, C, X(903), X(6063)}}, {{A, B, C, X(993), X(3822)}}, {{A, B, C, X(994), X(45095)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1218), X(44187)}}, {{A, B, C, X(1221), X(1502)}}, {{A, B, C, X(1227), X(14628)}}, {{A, B, C, X(1494), X(40419)}}, {{A, B, C, X(2994), X(5936)}}, {{A, B, C, X(3263), X(4664)}}, {{A, B, C, X(3264), X(6376)}}, {{A, B, C, X(4293), X(10590)}}, {{A, B, C, X(5219), X(5718)}}, {{A, B, C, X(5252), X(37716)}}, {{A, B, C, X(9307), X(40433)}}, {{A, B, C, X(10013), X(13481)}}, {{A, B, C, X(14387), X(18299)}}, {{A, B, C, X(17160), X(33933)}}, {{A, B, C, X(18575), X(55919)}}, {{A, B, C, X(18760), X(35149)}}, {{A, B, C, X(18815), X(30690)}}, {{A, B, C, X(20567), X(39735)}}, {{A, B, C, X(20569), X(33934)}}, {{A, B, C, X(22030), X(42285)}}, {{A, B, C, X(31359), X(41013)}}, {{A, B, C, X(31643), X(46133)}}, {{A, B, C, X(32020), X(40826)}}, {{A, B, C, X(35058), X(39769)}}, {{A, B, C, X(35145), X(39717)}}, {{A, B, C, X(36598), X(45108)}}, {{A, B, C, X(52031), X(52553)}}, {{A, B, C, X(55958), X(56365)}}
X(58026) = barycentric product X(i)*X(j) for these (i, j): {76, 994}, {274, 45095}, {46018, 561}
X(58026) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2278}, {2, 993}, {75, 1150}, {92, 5136}, {312, 49492}, {514, 55969}, {693, 48321}, {994, 6}, {7178, 51659}, {10015, 14299}, {45095, 37}, {46018, 31}


X(58027) = ISOTOMIC CONJUGATE OF X(995)

Barycentrics    b^2*c^2*(a^2+a*(-b+c)+b*(b+c))*(a^2+a*(b-c)+c*(b+c)) : :

X(58027) lies on these lines: {2, 3264}, {7, 313}, {27, 7017}, {75, 1739}, {76, 903}, {86, 996}, {183, 675}, {310, 40363}, {350, 56166}, {1237, 18815}, {1269, 4373}, {3261, 6548}, {7249, 35550}, {14621, 17790}, {17160, 32011}, {18043, 35516}, {28654, 37674}, {30596, 39707}, {39716, 41316}, {55942, 56047}

X(58027) = isotomic conjugate of X(995)
X(58027) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 23206}, {31, 995}, {32, 4850}, {228, 4247}, {560, 4389}, {604, 4266}, {692, 9002}, {1397, 3877}, {1501, 33934}, {1576, 48350}, {2205, 16712}, {2206, 4424}, {20973, 28607}, {32739, 48335}
X(58027) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 995}, {1086, 9002}, {3161, 4266}, {4858, 48350}, {6374, 4389}, {6376, 4850}, {6505, 23206}, {36901, 50453}, {36911, 20973}, {40603, 4424}, {40619, 48335}
X(58027) = X(i)-cross conjugate of X(j) for these {i, j}: {4791, 1978}, {17720, 57906}
X(58027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(30116)}}, {{A, B, C, X(76), X(3261)}}, {{A, B, C, X(291), X(46018)}}, {{A, B, C, X(308), X(6383)}}, {{A, B, C, X(313), X(3596)}}, {{A, B, C, X(330), X(10566)}}, {{A, B, C, X(514), X(9462)}}, {{A, B, C, X(561), X(20566)}}, {{A, B, C, X(596), X(1739)}}, {{A, B, C, X(957), X(34860)}}, {{A, B, C, X(1002), X(41683)}}, {{A, B, C, X(1224), X(34265)}}, {{A, B, C, X(1237), X(35550)}}, {{A, B, C, X(7033), X(14616)}}, {{A, B, C, X(7241), X(34445)}}, {{A, B, C, X(17790), X(33931)}}, {{A, B, C, X(18816), X(32017)}}, {{A, B, C, X(19807), X(20336)}}, {{A, B, C, X(44130), X(44147)}}
X(58027) = barycentric product X(i)*X(j) for these (i, j): {76, 996}, {313, 55942}, {3261, 9059}, {40401, 561}
X(58027) = barycentric quotient X(i)/X(j) for these (i, j): {2, 995}, {8, 4266}, {27, 4247}, {63, 23206}, {75, 4850}, {76, 4389}, {310, 16712}, {312, 3877}, {313, 26580}, {321, 4424}, {514, 9002}, {561, 33934}, {693, 48335}, {850, 50453}, {996, 6}, {1577, 48350}, {3261, 44435}, {3596, 5233}, {3679, 20973}, {4671, 17461}, {9059, 101}, {32686, 32719}, {36091, 32665}, {40401, 31}, {40426, 2163}, {55942, 58}


X(58028) = ISOTOMIC CONJUGATE OF X(997)

Barycentrics    b*c*(a^3+a^2*b+a*b^2+b^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)+a*(-b^2+2*b*c+c^2)) : :

X(58028) lies on these lines: {2, 3262}, {7, 5080}, {75, 1737}, {86, 998}, {673, 8257}, {675, 9058}, {903, 3673}, {1441, 7318}, {3264, 57925}, {4360, 40424}, {17160, 56026}, {17863, 39695}, {37788, 39749}

X(58028) = isotomic conjugate of X(997)
X(58028) = trilinear pole of line {36038, 514}
X(58028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 11383}, {31, 997}, {32, 17740}, {55, 1470}, {213, 26637}, {228, 4227}, {692, 9001}, {34446, 52148}, {34858, 41389}
X(58028) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 997}, {223, 1470}, {1086, 9001}, {6376, 17740}, {6626, 26637}, {16586, 41389}, {36103, 11383}
X(58028) = X(i)-cross conjugate of X(j) for these {i, j}: {1478, 92}, {3306, 85}
X(58028) = pole of line {997, 26637} with respect to the Wallace hyperbola
X(58028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1737)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(17098)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(91), X(43531)}}, {{A, B, C, X(92), X(20566)}}, {{A, B, C, X(158), X(1220)}}, {{A, B, C, X(264), X(20928)}}, {{A, B, C, X(286), X(3596)}}, {{A, B, C, X(312), X(14616)}}, {{A, B, C, X(313), X(40149)}}, {{A, B, C, X(318), X(5080)}}, {{A, B, C, X(751), X(18771)}}, {{A, B, C, X(860), X(11116)}}, {{A, B, C, X(997), X(7284)}}, {{A, B, C, X(1389), X(31359)}}, {{A, B, C, X(1441), X(20930)}}, {{A, B, C, X(2995), X(20570)}}, {{A, B, C, X(3264), X(3673)}}, {{A, B, C, X(3668), X(39947)}}, {{A, B, C, X(8257), X(9436)}}, {{A, B, C, X(9311), X(10566)}}, {{A, B, C, X(15179), X(34860)}}, {{A, B, C, X(18816), X(32023)}}, {{A, B, C, X(34393), X(40420)}}
X(58028) = barycentric product X(i)*X(j) for these (i, j): {76, 998}, {3261, 9058}, {30513, 85}
X(58028) = barycentric quotient X(i)/X(j) for these (i, j): {2, 997}, {19, 11383}, {27, 4227}, {57, 1470}, {75, 17740}, {86, 26637}, {514, 9001}, {908, 41389}, {998, 6}, {3306, 52148}, {9058, 101}, {30513, 9}, {36090, 32641}, {45998, 2267}


X(58029) = ISOTOMIC CONJUGATE OF X(999)

Barycentrics    b^2*c^2*(a^2-4*a*b+b^2-c^2)*(a^2-b^2-4*a*c+c^2) : :

X(58029) lies on these lines: {8, 18816}, {75, 6735}, {76, 51984}, {264, 20895}, {312, 3264}, {314, 1000}, {1056, 57827}, {3262, 6063}, {4397, 33089}, {9708, 57881}, {17757, 58007}, {30680, 31623}, {32087, 40422}, {35516, 44186}, {36796, 36916}, {40875, 52652}

X(58029) = isotomic conjugate of X(999)
X(58029) = trilinear pole of line {4391, 47790}
X(58029) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 999}, {32, 3306}, {56, 52428}, {560, 42697}, {604, 55432}, {667, 35281}, {1397, 3872}, {1501, 20925}, {1973, 22129}, {2206, 3753}, {9447, 17079}, {52434, 56426}
X(58029) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52428}, {2, 999}, {3161, 55432}, {6337, 22129}, {6374, 42697}, {6376, 3306}, {6631, 35281}, {40603, 3753}
X(58029) = X(i)-cross conjugate of X(j) for these {i, j}: {3820, 2}, {4671, 76}
X(58029) = pole of line {999, 22129} with respect to the Wallace hyperbola
X(58029) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(8), X(3262)}}, {{A, B, C, X(69), X(20895)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(76), X(3261)}}, {{A, B, C, X(86), X(42339)}}, {{A, B, C, X(95), X(30479)}}, {{A, B, C, X(100), X(33089)}}, {{A, B, C, X(189), X(5936)}}, {{A, B, C, X(262), X(4492)}}, {{A, B, C, X(313), X(40018)}}, {{A, B, C, X(495), X(9708)}}, {{A, B, C, X(693), X(36588)}}, {{A, B, C, X(903), X(32023)}}, {{A, B, C, X(956), X(17757)}}, {{A, B, C, X(999), X(3820)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1219), X(3701)}}, {{A, B, C, X(1268), X(40420)}}, {{A, B, C, X(1441), X(6539)}}, {{A, B, C, X(1494), X(8817)}}, {{A, B, C, X(3263), X(50107)}}, {{A, B, C, X(4441), X(37788)}}, {{A, B, C, X(4451), X(56179)}}, {{A, B, C, X(7241), X(9307)}}, {{A, B, C, X(17862), X(44140)}}, {{A, B, C, X(31360), X(40099)}}, {{A, B, C, X(33931), X(40875)}}, {{A, B, C, X(34393), X(56026)}}, {{A, B, C, X(40012), X(40039)}}, {{A, B, C, X(40023), X(44190)}}, {{A, B, C, X(44130), X(44149)}}
X(58029) = barycentric product X(i)*X(j) for these (i, j): {264, 30680}, {349, 56107}, {1000, 76}, {1502, 34446}, {3261, 51564}, {20567, 52429}, {36916, 6063}
X(58029) = barycentric quotient X(i)/X(j) for these (i, j): {2, 999}, {8, 55432}, {9, 52428}, {69, 22129}, {75, 3306}, {76, 42697}, {190, 35281}, {312, 3872}, {313, 4054}, {321, 3753}, {561, 20925}, {1000, 6}, {3261, 21183}, {3596, 28808}, {4671, 40587}, {6063, 17079}, {14556, 1191}, {17740, 52148}, {18359, 56426}, {26591, 39779}, {30680, 3}, {31018, 1480}, {31623, 17519}, {34446, 32}, {36596, 2316}, {36916, 55}, {51564, 101}, {52429, 41}, {56107, 284}


X(58030) = X(5)X(6)∩X(3070)X(42808)

Barycentrics    Sqrt[6]*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) - 4*(a^4 - 2*a^2*b^2 + 3*b^4 - 2*a^2*c^2 - 6*b^2*c^2 + 3*c^4)*S : :

X(58030) lies on the Evans conic and these lines: {5, 6}, {3070, 42808}, {3071, 42807}, {3526, 42560}, {3843, 42559}, {5334, 14782}, {5335, 14783}, {11488, 14784}, {11489, 14785}, {14813, 41976}, {14814, 41975}, {15765, 41979}, {18585, 41980}


X(58031) = X(5)X(6)∩X(3070)X(42807)

Barycentrics    Sqrt[6]*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) + 4*(a^4 - 2*a^2*b^2 + 3*b^4 - 2*a^2*c^2 - 6*b^2*c^2 + 3*c^4)*S : :

X(58031) lies on the Evans conic and these lines: {5, 6}, {3070, 42807}, {3071, 42808}, {3526, 42559}, {3843, 42560}, {5334, 14783}, {5335, 14782}, {11488, 14785}, {11489, 14784}, {14813, 41975}, {14814, 41976}, {15765, 41980}, {18585, 41979}


X(58032) = X(2)X(49312)∩X(99)X(141)

Barycentrics    3*a^6*b^2 - 4*a^4*b^4 - b^8 + 3*a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + 4*b^4*c^4 - b^2*c^6 - c^8 - 2*(2*a^6 - a^4*b^2 - a^2*b^4 - b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - c^6)*S : :
X(58032) = 3 X[3070] - 4 X[50722], 2 X[8997] - 3 X[32497]

X(58032) lies on the Evans conic and these lines: {2, 49312}, {69, 49368}, {98, 53479}, {99, 141}, {115, 615}, {148, 492}, {230, 13653}, {490, 13758}, {542, 41945}, {590, 12042}, {1151, 33431}, {2782, 3071}, {3070, 6036}, {6034, 13972}, {8997, 10991}, {13749, 33372}, {13882, 22502}, {14061, 45872}, {14639, 45860}, {21736, 49310}, {33340, 44531}, {35783, 35824}, {38224, 49103}, {41953, 50721}, {41955, 50724}, {44390, 53419}


X(58033) = X(2)X(49311)∩X(99)X(141)

Barycentrics    3*a^6*b^2 - 4*a^4*b^4 - b^8 + 3*a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + 4*b^4*c^4 - b^2*c^6 - c^8 + 2*(2*a^6 - a^4*b^2 - a^2*b^4 - b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - c^6)*S : :
X(58033) = 3 X[3071] - 4 X[50721], 2 X[13989] - 3 X[32494]

X(58033) lies on the Evans conic and these lines: {2, 49311}, {69, 49367}, {98, 53480}, {99, 141}, {115, 590}, {148, 491}, {230, 13773}, {489, 13638}, {542, 41946}, {615, 12042}, {1152, 33430}, {2782, 3070}, {3071, 6036}, {6034, 13910}, {10991, 13989}, {13748, 33373}, {13934, 22501}, {14061, 45871}, {14639, 45861}, {33341, 44531}, {35782, 35825}, {38224, 49104}, {41954, 50722}, {41956, 50723}, {44391, 53419}


X(58034) = X(1)X(85)∩X39)X(16365)

Barycentrics    a*(a^4*b^2 - 2*a^3*b^3 + a^2*b^4 - a^4*b*c + a^3*b^2*c + a^2*b^3*c - a*b^4*c + a^4*c^2 + a^3*b*c^2 - 3*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 - 2*a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 - a*b*c^4 - b^2*c^4) : :

X(58034) lies on the excentral-hexyl ellipse and these lines: {1, 85}, {3, 16365}, {4, 6196}, {40, 6310}, {84, 43748}, {101, 39341}, {170, 21214}, {291, 2808}, {515, 3510}, {663, 9317}, {1044, 41403}, {1045, 2783}, {1053, 4040}, {1054, 2821}, {1447, 3010}, {1721, 1740}, {1742, 3576}, {1768, 5539}, {2636, 2640}, {2664, 9441}, {2951, 46943}, {3022, 43063}, {3309, 34460}, {3783, 28849}, {5272, 56380}, {5400, 16576}, {5527, 47623}, {5538, 34996}, {5851, 24722}, {8924, 55004}, {9318, 46177}, {9355, 9359}, {37527, 40737}, {39954, 55288}

X(58034) = excentral-isogonal conjugate of X(4063)
X(58034) = X(i)-Ceva conjugate of X(j) for these (i,j): {663, 1}, {9317, 5540}
X(58034) = X(4554)-Dao conjugate of X(4572)
X(58034) = crossdifference of every pair of points on line {21320, 46388}


X(58035) = X(1)X(85)∩X63)X(100)

Barycentrics    a*(a^6*b - 3*a^5*b^2 + 2*a^4*b^3 + 2*a^3*b^4 - 3*a^2*b^5 + a*b^6 + a^6*c - 2*a^5*b*c - a^4*b^2*c + 4*a^3*b^3*c - a^2*b^4*c - 2*a*b^5*c + b^6*c - 3*a^5*c^2 - a^4*b*c^2 + 3*a*b^4*c^2 + b^5*c^2 + 2*a^4*c^3 + 4*a^3*b*c^3 - 4*a*b^3*c^3 - 2*b^4*c^3 + 2*a^3*c^4 - a^2*b*c^4 + 3*a*b^2*c^4 - 2*b^3*c^4 - 3*a^2*c^5 - 2*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6) : :

X(58035) lies on the excentral-hexyl ellipse, the Steiner-Wallace right hyperbola (Kiepert circumhyperbola of the anticomplementary triangle), and these lines: {1, 85}, {2, 991}, {3, 16552}, {63, 100}, {78, 30625}, {152, 20533}, {516, 20347}, {644, 38666}, {936, 24036}, {971, 3693}, {990, 3870}, {1018, 2808}, {1023, 38572}, {1350, 1764}, {1490, 16550}, {1536, 51384}, {1699, 30985}, {1742, 17272}, {1818, 40869}, {2826, 6326}, {3041, 56715}, {3110, 55067}, {3935, 30579}, {4300, 19868}, {4511, 47621}, {4666, 30562}, {6712, 24582}, {7988, 30993}, {8580, 32916}, {10431, 52025}, {10434, 15626}, {10582, 41930}, {19541, 37521}, {22392, 51860}, {26932, 35338}, {52164, 56381}

X(58035) = anticomplement of X(43672)
X(58035) = anticomplement of the isogonal conjugate of X(13329)
X(58035) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2149, 1025}, {13329, 8}, {26003, 21270}, {53308, 149}, {53357, 21293}


X(58036) = X(1)X(4559)∩X(9)X(48)

Barycentrics    a*(a^5*b - 2*a^4*b^2 + 2*a^2*b^4 - a*b^5 + a^5*c + a^3*b^2*c - 3*a^2*b^3*c + 2*a*b^4*c - b^5*c - 2*a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 - 3*a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + 2*a^2*c^4 + 2*a*b*c^4 - a*c^5 - b*c^5) : :

X(58036) lies on the excentral-hexyl ellipse and these lines: {1, 4559}, {2, 17219}, {3, 16552}, {4, 4253}, {6, 1012}, {9, 48}, {39, 37732}, {40, 21384}, {41, 5450}, {57, 1111}, {63, 5773}, {84, 294}, {140, 46196}, {150, 1025}, {153, 26074}, {169, 39006}, {184, 28121}, {218, 12114}, {355, 16549}, {376, 573}, {514, 53409}, {515, 672}, {517, 45751}, {579, 5822}, {644, 38669}, {654, 1768}, {912, 57015}, {918, 16560}, {944, 3730}, {946, 1475}, {952, 1018}, {1015, 32486}, {1023, 12773}, {1071, 1212}, {1158, 2082}, {1334, 5882}, {1385, 3294}, {1565, 39063}, {1713, 5120}, {1759, 24467}, {1777, 56913}, {2051, 54497}, {2077, 3684}, {2096, 5819}, {2170, 2800}, {2272, 8074}, {2285, 17417}, {3061, 5693}, {3073, 5299}, {3149, 5022}, {3501, 5881}, {3560, 16783}, {3691, 6684}, {4251, 6906}, {4262, 6950}, {4551, 13006}, {4712, 37399}, {4875, 31788}, {4919, 6264}, {5021, 37530}, {5030, 6905}, {5035, 8557}, {5276, 37469}, {5400, 21894}, {5587, 17754}, {5701, 53260}, {5721, 15048}, {5778, 50204}, {5816, 6854}, {5838, 54052}, {5884, 17451}, {6001, 43065}, {6776, 33536}, {6996, 18206}, {7719, 37117}, {9259, 41343}, {9355, 9359}, {10265, 21044}, {11491, 24047}, {11715, 17439}, {12005, 21808}, {12115, 56746}, {12116, 17732}, {12251, 36697}, {12528, 26690}, {12672, 40133}, {12675, 16601}, {13464, 17474}, {13478, 54739}, {14872, 25066}, {16788, 22758}, {17746, 31837}, {18164, 24220}, {18391, 56546}, {18908, 44798}, {20117, 39244}, {21061, 37620}, {23887, 53404}, {30223, 44085}, {37022, 56527}, {37569, 51194}, {37611, 54330}

X(58036) = reflection of X(4) in X(43672)
X(58036) = Fuhrmann-circle-inverse of X(11308)
X(58036) = X(4560)-Ceva conjugate of X(1)
X(58036) = X(4551)-Dao conjugate of X(4552)
X(58036) = crossdifference of every pair of points on line {1769, 21320}
X(58036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2250, 2265, 9}, {4559, 11998, 1}


X(58037) = X(9)X(118)∩X(11)X(57)

Barycentrics    a*(a^9*b - 2*a^8*b^2 - 2*a^7*b^3 + 6*a^6*b^4 - 6*a^4*b^6 + 2*a^3*b^7 + 2*a^2*b^8 - a*b^9 + a^9*c - 4*a^8*b*c + 3*a^7*b^2*c - 3*a^6*b^3*c + 5*a^5*b^4*c + 5*a^4*b^5*c - 7*a^3*b^6*c - a^2*b^7*c - 2*a*b^8*c + 3*b^9*c - 2*a^8*c^2 + 3*a^7*b*c^2 + 6*a^6*b^2*c^2 - 9*a^5*b^3*c^2 - 2*a^4*b^4*c^2 + a^3*b^5*c^2 + 2*a^2*b^6*c^2 + 5*a*b^7*c^2 - 4*b^8*c^2 - 2*a^7*c^3 - 3*a^6*b*c^3 - 9*a^5*b^2*c^3 + 6*a^4*b^3*c^3 + 4*a^3*b^4*c^3 + a^2*b^5*c^3 + 7*a*b^6*c^3 - 4*b^7*c^3 + 6*a^6*c^4 + 5*a^5*b*c^4 - 2*a^4*b^2*c^4 + 4*a^3*b^3*c^4 - 8*a^2*b^4*c^4 - 9*a*b^5*c^4 + 4*b^6*c^4 + 5*a^4*b*c^5 + a^3*b^2*c^5 + a^2*b^3*c^5 - 9*a*b^4*c^5 + 2*b^5*c^5 - 6*a^4*c^6 - 7*a^3*b*c^6 + 2*a^2*b^2*c^6 + 7*a*b^3*c^6 + 4*b^4*c^6 + 2*a^3*c^7 - a^2*b*c^7 + 5*a*b^2*c^7 - 4*b^3*c^7 + 2*a^2*c^8 - 2*a*b*c^8 - 4*b^2*c^8 - a*c^9 + 3*b*c^9) : :

X(58037) lies on the excentral-hexyl ellipse and these lines: {2, 33536}, {4, 4253}, {9, 118}, {11, 57}, {40, 2883}, {152, 1025}, {154, 7580}, {516, 2272}, {672, 1541}, {1536, 39690}, {1754, 4383}, {2140, 8227}, {2947, 4551}, {3887, 6326}, {11019, 52373}


X(58038) = X(19)X(102)∩X(101)X(610)

Barycentrics    a*(a^9 - a^8*b - 2*a^5*b^4 + 2*a^4*b^5 + a*b^8 - b^9 - a^8*c + a^7*b*c + 3*a^5*b^3*c - 4*a^4*b^4*c - a^3*b^5*c + 4*a^2*b^6*c - 3*a*b^7*c + b^8*c - 2*a^5*b^2*c^2 + 2*a^4*b^3*c^2 + 4*a^3*b^4*c^2 - 4*a^2*b^5*c^2 - 2*a*b^6*c^2 + 2*b^7*c^2 + 3*a^5*b*c^3 + 2*a^4*b^2*c^3 - 6*a^3*b^3*c^3 + 3*a*b^5*c^3 - 2*b^6*c^3 - 2*a^5*c^4 - 4*a^4*b*c^4 + 4*a^3*b^2*c^4 + 2*a*b^4*c^4 + 2*a^4*c^5 - a^3*b*c^5 - 4*a^2*b^2*c^5 + 3*a*b^3*c^5 + 4*a^2*b*c^6 - 2*a*b^2*c^6 - 2*b^3*c^6 - 3*a*b*c^7 + 2*b^2*c^7 + a*c^8 + b*c^8 - c^9) : :

X(58038) lies on the excentral-hexyl ellipse and these lines: {1, 20613}, {3, 25087}, {9, 40616}, {19, 102}, {40, 2883}, {101, 610}, {169, 56857}, {517, 22144}, {918, 16560}, {1490, 16550}, {1753, 2338}, {1768, 16562}, {1783, 2817}, {2184, 21370}, {2636, 2640}, {2814, 5400}, {2831, 6326}, {6996, 21602}, {7412, 25063}, {16528, 16561}

X(58038) = excentral-isogonal conjugate of X(1734)
X(58038) = X(6332)-Ceva conjugate of X(1)
X(58038) = X(2)-isoconjugate of X(34187)
X(58038) = X(i)-Dao conjugate of X(j) for these (i,j): {108, 653}, {32664, 34187}
X(58038) = barycentric product X(1)*X(34188)
X(58038) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 34187}, {34188, 75}


X(58039) = X(7)X(104)∩X(176)X(53804)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(a + b + c) - (2*a^6 - 2*a^5*b - 3*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - 3*a^4*c^2 - 2*a^3*b*c^2 + 4*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 + 2*a^2*c^4 - 4*a*b*c^4 + b^2*c^4 + 2*b*c^5 - c^6)*S : :

X(58039) lies on the inner Soddy circle and these lines: {7, 104}, {176, 53804}, {482, 1360}, {34494, 51764}


X(58040) = X(7)X(104)∩X(11)X(482)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(2*a^4 - 2*a^3*b - 3*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c + 8*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4) - 4*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*S) : :

X(58040) lies on the inner Soddy circle and these lines: {7, 104}, {11, 482}, {80, 1371}, {176, 952}, {1317, 22107}, {1373, 16173}, {1768, 15995}, {2800, 39794}, {7972, 17806}, {12019, 31601}, {12515, 52419}, {12735, 17805}, {18240, 39795}, {25416, 57266}, {34122, 57267}


X(58041) = X(7)X(104)∩X(175)X(53804)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(a + b + c) + (2*a^6 - 2*a^5*b - 3*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - 3*a^4*c^2 - 2*a^3*b*c^2 + 4*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 + 2*a^2*c^4 - 4*a*b*c^4 + b^2*c^4 + 2*b*c^5 - c^6)*S : :

X(58041) lies on the outer Soddy circle and these lines: {7, 104}, {175, 53804}, {481, 1360}, {34495, 51763}


X(58042) = X(7)X(104)∩X(11)X(481)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(2*a^4 - 2*a^3*b - 3*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c + 8*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4) + 4*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*S) : :

X(58042) lies on the outer Soddy circle and these lines: {7, 104}, {11, 481}, {80, 1372}, {175, 952}, {1317, 22106}, {1374, 16173}, {1768, 15996}, {2800, 39795}, {7972, 17803}, {12019, 31602}, {12515, 52420}, {12735, 17802}, {18240, 39794}, {25416, 57267}, {34122, 57266}


X(58043) = X(30)X(98)∩X(511)X(42008)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^10 - 11*a^8*b^2 + 13*a^6*b^4 - 5*a^4*b^6 + 4*a^2*b^8 - 2*b^10 - 11*a^8*c^2 + 7*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 4*b^8*c^2 + 13*a^6*c^4 + 3*a^4*b^2*c^4 - 6*a^2*b^4*c^4 - 2*b^6*c^4 - 5*a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + 4*a^2*c^8 + 4*b^2*c^8 - 2*c^10) : :

X(58043) lies on the Artzt circle (see X(11168)) and these lines: {30, 98}, {511, 42008}, {523, 9877}, {892, 6054}, {1513, 17948}, {1551, 10753}, {3849, 9769}, {5968, 40248}, {6792, 16188}, {7617, 12434}, {8704, 9759}, {38227, 52141}, {52232, 56925}, {52483, 57634}


X(58044) = X(74)X(111)∩X(98)X(11593)

Barycentrics    a^2*(2*a^10*b^4 - 4*a^8*b^6 + 4*a^4*b^10 - 2*a^2*b^12 + 5*a^10*b^2*c^2 - 5*a^8*b^4*c^2 - 3*a^6*b^6*c^2 + 11*a^4*b^8*c^2 - 10*a^2*b^10*c^2 + 2*b^12*c^2 + 2*a^10*c^4 - 5*a^8*b^2*c^4 + 15*a^6*b^4*c^4 - 15*a^4*b^6*c^4 + 15*a^2*b^8*c^4 - 12*b^10*c^4 - 4*a^8*c^6 - 3*a^6*b^2*c^6 - 15*a^4*b^4*c^6 - 6*a^2*b^6*c^6 + 10*b^8*c^6 + 11*a^4*b^2*c^8 + 15*a^2*b^4*c^8 + 10*b^6*c^8 + 4*a^4*c^10 - 10*a^2*b^2*c^10 - 12*b^4*c^10 - 2*a^2*c^12 + 2*b^2*c^12) : :

X(58044) lies on the Artzt circle (see X(11168)) and these lines: {74, 111}, {98, 11593}, {125, 263}, {511, 42008}, {526, 9769}, {1350, 12149}, {2698, 6325}, {2781, 5640}, {5663, 9759}, {9140, 11673}


X(58045) = X(3)X(76)∩X(262)X(3228)

Barycentrics    2*a^10*b^4 - 2*a^6*b^8 - 5*a^10*b^2*c^2 + 11*a^8*b^4*c^2 - 15*a^6*b^6*c^2 + 7*a^4*b^8*c^2 - 2*a^2*b^10*c^2 + 2*a^10*c^4 + 11*a^8*b^2*c^4 + a^6*b^4*c^4 - 5*a^4*b^6*c^4 + 9*a^2*b^8*c^4 - 2*b^10*c^4 - 15*a^6*b^2*c^6 - 5*a^4*b^4*c^6 - 6*a^2*b^6*c^6 + 2*b^8*c^6 - 2*a^6*c^8 + 7*a^4*b^2*c^8 + 9*a^2*b^4*c^8 + 2*b^6*c^8 - 2*a^2*b^2*c^10 - 2*b^4*c^10 : :

X(58045) lies on the Artzt circle (see X(11168)) and these lines: {3, 76}, {262, 3228}, {352, 12177}, {543, 13191}, {804, 9877}, {2793, 9869}, {3849, 12434}, {5182, 35275}, {6233, 53604}, {8704, 13225}


X(58046) = X(2)X(9769)∩X(4)X(111)

Barycentrics    a^12 - 11*a^10*b^2 + 20*a^6*b^6 - 5*a^4*b^8 - 9*a^2*b^10 + 4*b^12 - 11*a^10*c^2 + 33*a^8*b^2*c^2 - 22*a^6*b^4*c^2 - 26*a^4*b^6*c^2 + 33*a^2*b^8*c^2 - 7*b^10*c^2 - 22*a^6*b^2*c^4 + 54*a^4*b^4*c^4 - 24*a^2*b^6*c^4 - 4*b^8*c^4 + 20*a^6*c^6 - 26*a^4*b^2*c^6 - 24*a^2*b^4*c^6 + 14*b^6*c^6 - 5*a^4*c^8 + 33*a^2*b^2*c^8 - 4*b^4*c^8 - 9*a^2*c^10 - 7*b^2*c^10 + 4*c^12 : :

X(58046) lies on the Artzt circle (see X(11168)) and these lines: {2, 9769}, {4, 111}, {98, 9745}, {1078, 2373}, {5913, 38227}, {7426, 35278}, {7828, 11638}, {9168, 55135}, {9185, 9759}, {14655, 37953}, {44218, 57373}

X(58046) = orthoptic-circle-of-Steiner-inellipse-inverse of X(15303)


X(58047) = X(2)X(32)∩X(381)X(9769)

Barycentrics    a^14 - 11*a^12*b^2 + 14*a^10*b^4 + 6*a^8*b^6 - 11*a^6*b^8 + a^4*b^10 - 4*a^2*b^12 + 4*b^14 - 11*a^12*c^2 + 5*a^10*b^2*c^2 - 8*a^8*b^4*c^2 + 16*a^6*b^6*c^2 - a^4*b^8*c^2 + 11*a^2*b^10*c^2 - 12*b^12*c^2 + 14*a^10*c^4 - 8*a^8*b^2*c^4 - 18*a^6*b^4*c^4 + 12*b^10*c^4 + 6*a^8*c^6 + 16*a^6*b^2*c^6 - 14*a^2*b^6*c^6 - 4*b^8*c^6 - 11*a^6*c^8 - a^4*b^2*c^8 - 4*b^6*c^8 + a^4*c^10 + 11*a^2*b^2*c^10 + 12*b^4*c^10 - 4*a^2*c^12 - 12*b^2*c^12 + 4*c^14 : : X(58047) = 8 X[132] + X[19164]

X(58047) lies on the Artzt circle (see X(11168)) and these lines: {4, 32}, {381, 9769}, {2781, 5640}, {2799, 9877}, {3163, 7710}, {6128, 9748}, {7426, 34312}, {34217, 37953}, {44218, 57304}


X(58048) = X(54)X(133)∩X(110)X(122)

Barycentrics    a^2*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 - 3*a^2*b^2*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + a^6*c^2 + 2*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + b^4*c^4 + a^2*c^6 - 2*b^2*c^6 + c^8) : : X(58048) lies on the sine-triple-angle circle and these lines: {49, 53803}, {54, 133}, {107, 184}, {110, 122}, {156, 10745}, {206, 10762}, {215, 7158}, {1092, 38714}, {1147, 1294}, {1614, 2777}, {2477, 3324}, {2797, 3044}, {2803, 3045}, {2811, 3046}, {2847, 3048}, {3047, 9033}, {3184, 52525}, {5012, 6716}, {6759, 10152}, {9544, 34186}, {9545, 34549}, {9703, 38591}, {9704, 38577}, {9707, 14703}, {10540, 49117}, {11449, 40082}, {13352, 44985}, {14673, 26864}, {22115, 38621}, {32046, 57301}, {36520, 43598}


X(58049) = X(54)X(132)∩X(110)X(127)

Barycentrics    a^4*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + a^2*b^2*c^2 + a^2*c^4 - c^6)*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*c^2 + a^2*b^2*c^2 - a^2*c^4 + c^6) : :

X(58049) lies on the sine-triple-angle circle and these lines: {49, 53795}, {54, 132}, {110, 127}, {112, 184}, {156, 10749}, {206, 10766}, {215, 6020}, {1092, 38717}, {1147, 1297}, {1199, 16224}, {1614, 2794}, {2477, 3320}, {2781, 3043}, {2799, 3044}, {2806, 3045}, {3046, 9518}, {3047, 9517}, {3203, 13195}, {5012, 6720}, {6759, 10735}, {9544, 13219}, {9545, 12384}, {9586, 12408}, {9587, 13221}, {9652, 13296}, {9653, 12945}, {9666, 12955}, {9667, 13297}, {9703, 13115}, {9704, 13310}, {9707, 19165}, {10540, 19163}, {11464, 34217}, {11641, 26864}, {13352, 44988}, {14689, 52525}, {19160, 37472}, {22115, 38624}, {32046, 57304}


X(58050) = X(108)X(184)∩X(110)X(123)

Barycentrics    a^3*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^5*c + 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c + 2*a*b^4*c - b^5*c - 2*a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 - a*b^2*c^3 + b^3*c^3 + a^2*c^4 - a*c^5)*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 + 2*a^4*b*c - 2*a^2*b^3*c - a^4*c^2 - a^3*b*c^2 + 3*a^2*b^2*c^2 - a*b^3*c^2 - a^2*b*c^3 + b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 - b*c^5 + c^6) : :

X(58050) lies on the sine-triple-angle circle and these lines: {54, 25640}, {108, 184}, {110, 123}, {156, 10746}, {206, 10763}, {215, 3318}, {1092, 38715}, {1147, 1295}, {1359, 2477}, {1614, 2829}, {2778, 3043}, {2798, 3044}, {2804, 3045}, {2812, 3046}, {2850, 3047}, {2851, 3048}, {5012, 6717}, {6759, 10731}, {9544, 34188}, {9545, 34550}, {9563, 34456}, {9703, 38592}, {9704, 38578}, {9707, 54064}, {13352, 44986}, {22115, 38622}, {32046, 57302}


X(58051) = X(109)X(184)∩X(110)X(124)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c - a*b*c^2 + b^2*c^2 + a*c^3 - c^4)*(a^4 - a^3*b + a*b^3 - b^4 + a^2*b*c - a*b^2*c - 2*a^2*c^2 + a*b*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(58051) lies on the sine-triple-angle circle and these lines: {49, 2818}, {54, 117}, {102, 1147}, {109, 184}, {110, 124}, {151, 9545}, {156, 10747}, {206, 10764}, {215, 501}, {928, 3046}, {1092, 38691}, {1361, 2477}, {2773, 3047}, {2779, 3043}, {2785, 3044}, {2852, 3048}, {3040, 9701}, {3042, 9702}, {3045, 3738}, {5012, 6718}, {6759, 10732}, {9544, 33650}, {9562, 34455}, {9703, 38573}, {9704, 38579}, {10571, 36059}, {10726, 13352}, {14529, 34242}, {22115, 38600}, {32046, 57303}, {38785, 52525}


X(58052) = X(106)X(184)∩X(110)X(121)

Barycentrics    a^4*(a^3 - 2*a^2*b - 2*a*b^2 + b^3 + a^2*c + b^2*c - a*c^2 + 2*b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - 2*a^2*c + 2*b^2*c - 2*a*c^2 + b*c^2 + c^3) : :

X(58052) lies on the sine-triple-angle circle and these lines: {49, 53790}, {54, 5510}, {106, 184}, {110, 121}, {156, 10744}, {206, 10761}, {215, 6018}, {1054, 9587}, {1092, 38713}, {1147, 1293}, {1357, 2477}, {2776, 3043}, {2796, 3044}, {2802, 3045}, {2810, 3046}, {2842, 3047}, {2843, 3048}, {3030, 9563}, {3038, 9701}, {5012, 6715}, {6759, 10730}, {9544, 21290}, {9545, 34548}, {9703, 38590}, {9704, 38576}, {13352, 44984}, {22115, 38620}, {32046, 57300}


X(58053) = X(105)X(184)∩X(110)X(120)

Barycentrics    a^3*(a^4 - b^4 - a^3*c - 2*a^2*b*c + 2*a*b^2*c + b^3*c - a^2*c^2 + a*c^3)*(a^4 - a^3*b - a^2*b^2 + a*b^3 - 2*a^2*b*c + 2*a*b*c^2 + b*c^3 - c^4) : :

X(58053) lies on the sine-triple-angle circle and these lines: {49, 28915}, {54, 5511}, {105, 184}, {110, 120}, {156, 10743}, {206, 10760}, {215, 3021}, {528, 3045}, {1092, 38712}, {1147, 1292}, {1358, 2477}, {2775, 3043}, {2795, 3044}, {2809, 3046}, {2836, 3047}, {2837, 3048}, {3034, 9563}, {3039, 9701}, {5012, 6714}, {5540, 9587}, {6759, 10729}, {9544, 20344}, {9545, 34547}, {9703, 38589}, {9704, 38575}, {13352, 44983}, {22115, 38619}, {32046, 57299}


X(58054) = X(54)X(121)∩X(110)X(5510)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 - 3*a^3*c + 3*a^2*b*c + 3*a*b^2*c - 3*b^3*c - 3*a*b*c^2 + b^2*c^2 + 3*a*c^3 - c^4)*(a^4 - 3*a^3*b + 3*a*b^3 - b^4 + 3*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 + 3*a*b*c^2 + b^2*c^2 - 3*b*c^3 + c^4) : :

X(58054) lies on the sine-triple-angle circle and these lines: {49, 53790}, {54, 121}, {106, 1147}, {110, 5510}, {156, 15522}, {184, 1293}, {215, 1357}, {1054, 9586}, {1092, 38695}, {2477, 6018}, {2776, 3047}, {2789, 3044}, {2821, 3046}, {2827, 3045}, {2842, 3043}, {3030, 9562}, {3038, 9702}, {3048, 9526}, {6759, 44984}, {9544, 34548}, {9545, 21290}, {9703, 38576}, {9704, 38590}, {10730, 13352}, {22115, 38604}, {32046, 57328}


X(58055) = X(54)X(129)∩X(110)X(5511)

Barycentrics    a^3*(a^5 - a^4*b - a*b^4 + b^5 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - a*c^4)*(a^5 - 2*a^4*b + 2*a^2*b^3 - a*b^4 - a^4*c + a^3*b*c - a^2*b^2*c + a*b^3*c + 2*a^2*b*c^2 - 2*a*b^2*c^2 + a*b*c^3 + b^2*c^3 - a*c^4 - 2*b*c^4 + c^5) : :

X(58055) lies on the sine-triple-angle circle and these lines: {49, 28915}, {54, 120}, {105, 1147}, {110, 5511}, {156, 15521}, {184, 1292}, {215, 1358}, {1092, 38694}, {2477, 3021}, {2775, 3047}, {2788, 3044}, {2820, 3046}, {2826, 3045}, {2836, 3043}, {3034, 9562}, {3039, 9702}, {3048, 9522}, {5540, 9586}, {6759, 44983}, {9544, 34547}, {9545, 20344}, {9703, 38575}, {9704, 38589}, {10729, 13352}, {22115, 38603}, {32046, 57327}


X(58056) = X(11)X(54)∩X(110)X(119)

Barycentrics    a^3*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 + a^3*b*c - a*b^3*c - 2*a^3*c^2 + a^2*b*c^2 + b^3*c^2 - a*b*c^3 + a*c^4)*(a^5 - 2*a^3*b^2 + a*b^4 - a^4*c + a^3*b*c + a^2*b^2*c - a*b^3*c - 2*a^3*c^2 + 2*a^2*c^3 - a*b*c^3 + b^2*c^3 + a*c^4 - c^5) : :

X(58056) lies on the sine-triple-angle circle and these lines: {11, 54}, {49, 952}, {100, 1147}, {104, 184}, {110, 119}, {149, 9545}, {153, 9544}, {156, 10742}, {206, 10759}, {215, 1317}, {569, 31272}, {1092, 34474}, {1614, 2829}, {1768, 9587}, {2771, 3047}, {2783, 3044}, {2801, 3046}, {2830, 3048}, {3032, 9562}, {3035, 9701}, {3036, 9702}, {3043, 8674}, {3203, 12199}, {5012, 6713}, {5541, 9586}, {5840, 34148}, {6174, 43572}, {6264, 9622}, {6326, 9621}, {6667, 43651}, {6759, 10728}, {9563, 34458}, {9652, 12763}, {9653, 13273}, {9666, 13274}, {9667, 12764}, {9703, 12331}, {9704, 12773}, {9705, 37725}, {9706, 37726}, {9707, 54065}, {9913, 26864}, {10540, 22799}, {10724, 13352}, {10767, 15463}, {13353, 34126}, {13434, 23513}, {14157, 52836}, {19128, 51198}, {22115, 33814}, {22938, 37472}, {24466, 43574}, {32046, 57298}, {38761, 52525}

X(58056) = reflection of X(3045) in X(49)


X(58057) = X(54)X(116)∩X(110)X(118)

Barycentrics    a^4*(a^5 - a^3*b^2 - a^2*b^3 + b^5 - a^4*c + 2*a^2*b^2*c - b^4*c - 2*a^3*c^2 - a*b^2*c^2 + b^3*c^2 + 2*a^2*c^3 + a*c^4 - c^5)*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^3*c^2 + 2*a^2*b*c^2 - a*b^2*c^2 - a^2*c^3 + b^2*c^3 - b*c^4 + c^5) : :

X(58057) lies on the sine-triple-angle circle and these lines: {49, 2808}, {54, 116}, {101, 1147}, {103, 184}, {110, 118}, {150, 9545}, {152, 9544}, {156, 10741}, {206, 10758}, {215, 1362}, {569, 31273}, {1092, 38690}, {1282, 9586}, {2477, 3022}, {2772, 3047}, {2774, 3043}, {2784, 3044}, {2801, 3045}, {2824, 3048}, {3033, 9562}, {3041, 9702}, {5012, 6712}, {6759, 10727}, {9563, 34457}, {9587, 39156}, {9703, 38572}, {9704, 38574}, {10725, 13352}, {22115, 38599}, {32046, 57297}, {36059, 56549}, {38773, 52525}

X(58057) = reflection of X(3046) in X(49)


X(58058) = X(2)X(98)∩X(54)X(115)

Barycentrics    a^2*(a^6 - 2*a^4*b^2 + 2*a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - 2*a^4*c^2 + 2*a^2*c^4 + b^2*c^4 - c^6) : :

X(58058) lies on the sine-triple-angle circle and these lines: {2, 98}, {24, 39839}, {49, 2782}, {54, 115}, {99, 1147}, {136, 275}, {148, 9545}, {156, 6033}, {193, 39811}, {206, 10753}, {215, 3027}, {217, 43828}, {569, 14061}, {578, 14639}, {690, 3043}, {1092, 21166}, {1569, 9696}, {1614, 2794}, {1971, 5111}, {1993, 39828}, {1994, 39806}, {2023, 9604}, {2477, 3023}, {2482, 43572}, {2783, 3045}, {2784, 3046}, {2793, 3048}, {3029, 9562}, {3147, 39833}, {3167, 39803}, {3203, 12176}, {3518, 39835}, {3563, 8537}, {5477, 19128}, {5889, 39825}, {6241, 39860}, {6722, 43651}, {6759, 10722}, {9563, 34454}, {9586, 13174}, {9587, 9860}, {9637, 39822}, {9638, 39851}, {9652, 12184}, {9653, 13182}, {9666, 13183}, {9667, 12185}, {9703, 13188}, {9704, 12188}, {9705, 14981}, {9707, 39857}, {9861, 26864}, {10282, 39846}, {10540, 22505}, {10723, 13352}, {11456, 39841}, {11464, 39837}, {11674, 19627}, {12289, 39847}, {13353, 34127}, {13434, 23514}, {14157, 39838}, {14651, 39834}, {19165, 44453}, {19357, 39849}, {22115, 33813}, {22515, 37472}, {23698, 34148}, {32046, 38224}, {32737, 34981}, {34224, 39845}, {34834, 43969}, {34986, 39817}, {36519, 43598}, {37645, 39813}, {38738, 43574}, {38749, 52525}

X(58058) = reflection of X(3044) in X(49)
X(58058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {184, 57011, 98}, {11464, 39837, 39854}


X(58059) = X(54)X(126)∩X(110)X(5512)

Barycentrics    a^4*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 5*a^4*c^2 + 5*a^2*b^2*c^2 - 4*b^4*c^2 + 5*a^2*c^4 - c^6)*(a^6 - 5*a^4*b^2 + 5*a^2*b^4 - b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - a^2*c^4 - 4*b^2*c^4 + c^6) : :

X(58059) lies on the sine-triple-angle circle and these lines: {49, 3048}, {54, 126}, {110, 5512}, {111, 1147}, {156, 22338}, {184, 1296}, {215, 3325}, {567, 40340}, {1092, 38698}, {1993, 14657}, {2477, 6019}, {2780, 3047}, {2793, 3044}, {2824, 3046}, {2830, 3045}, {2854, 3043}, {5012, 40556}, {6759, 44987}, {9172, 43572}, {9545, 14360}, {9677, 11835}, {9686, 11833}, {9703, 11258}, {9704, 38593}, {10734, 13352}, {14650, 22115}, {23699, 34148}, {32046, 57331}, {38805, 52525}

X(58059) = reflection of X(3048) in X(49)


X(58060) = X(54)X(124)∩X(110)X(117)

Barycentrics    a^4*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 + a^4*b*c - a^3*b^2*c - a^2*b^3*c + a*b^4*c - 3*a^4*c^2 + 2*a^3*b*c^2 + a^2*b^2*c^2 - 2*a^2*b*c^3 + a*b^2*c^3 - b^3*c^3 + 3*a^2*c^4 - a*b*c^4 + b*c^5 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^5*c + a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c - a*b^4*c + b^5*c - a^4*c^2 - a^3*b*c^2 + a^2*b^2*c^2 + a*b^3*c^2 + 2*a^3*c^3 - a^2*b*c^3 - b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 + c^6) : :

X(58060) lies on the sine-triple-angle circle and these lines: {49, 2818}, {54, 124}, {102, 184}, {109, 1147}, {110, 117}, {151, 9544}, {156, 10740}, {206, 10757}, {215, 1361}, {1092, 38697}, {1364, 2477}, {2773, 3043}, {2779, 3047}, {2792, 3044}, {2800, 3045}, {2807, 3046}, {2819, 3048}, {3040, 9702}, {3042, 9701}, {5012, 6711}, {6759, 10726}, {9545, 33650}, {9562, 34459}, {9563, 34455}, {9703, 38579}, {9704, 38573}, {10732, 13352}, {22115, 38607}, {32046, 38776}, {38785, 43574}


X(58061) = X(4)X(110)∩X(54)X(131)

Barycentrics    a^2*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 - a^2*b^2*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + a^2*b^2*c^4 + b^4*c^4 - a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(58061) lies on the sine-triple-angle circle and these lines: {4, 110}, {49, 53802}, {54, 131}, {156, 13556}, {184, 925}, {511, 50384}, {1092, 38718}, {1154, 13557}, {1993, 13558}, {3047, 55121}, {5012, 34844}, {5889, 5961}, {6759, 44974}, {9705, 21667}, {32046, 57314}


X(58062) = X(54)X(128)∩X(110)X(137)

Barycentrics    a^2*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*b^6*c^2 + 3*a^4*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - 2*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^4*c^4 + b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(58062) lies on the sine-triple-angle circle and these lines: {49, 25150}, {54, 128}, {110, 137}, {184, 930}, {215, 3327}, {323, 14652}, {1092, 38710}, {1141, 1147}, {1594, 3043}, {1993, 15959}, {2477, 7159}, {3047, 45147}, {5012, 13372}, {5889, 23320}, {6759, 44976}, {9544, 11671}, {9703, 38587}, {9704, 13512}, {12026, 40111}, {13352, 44981}, {14769, 23292}, {15366, 37636}, {22115, 38618}, {23516, 43598}, {32046, 57316}, {34418, 56292}

X(58062) = midpoint of X(34418) and X(56292)


X(58063) = X(54)X(123)∩X(110)X(25640)

Barycentrics    a^3*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - a^7*c + 2*a^6*b*c - 3*a^4*b^3*c + 3*a^3*b^4*c - 2*a*b^6*c + b^7*c - 3*a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 2*b^6*c^2 + 3*a^5*c^3 - 4*a^4*b*c^3 + 2*a^2*b^3*c^3 + a*b^4*c^3 - 2*b^5*c^3 + 3*a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^3*c^5 + 2*a^2*b*c^5 + b^3*c^5 - a^2*c^6 + a*c^7)*(a^8 - a^7*b - 3*a^6*b^2 + 3*a^5*b^3 + 3*a^4*b^4 - 3*a^3*b^5 - a^2*b^6 + a*b^7 + 2*a^6*b*c - 4*a^4*b^3*c + 2*a^2*b^5*c - 2*a^6*c^2 + 4*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - 3*a^4*b*c^3 + 2*a^2*b^3*c^3 + b^5*c^3 + 3*a^3*b*c^4 - 3*a^2*b^2*c^4 + a*b^3*c^4 - b^4*c^4 - 2*b^3*c^5 + 2*a^2*c^6 - 2*a*b*c^6 + 2*b^2*c^6 + b*c^7 - c^8) : :

X(58063) lies on the sine-triple-angle circle and these lines: {54, 123}, {108, 1147}, {110, 25640}, {156, 33566}, {184, 1295}, {215, 1359}, {1092, 38696}, {1993, 54064}, {2477, 3318}, {2778, 3047}, {2791, 3044}, {2823, 3046}, {2829, 3045}, {2850, 3043}, {3048, 9531}, {6759, 44986}, {9544, 34550}, {9545, 34188}, {9562, 34456}, {9703, 38578}, {9704, 38592}, {10731, 13352}, {22115, 38606}, {32046, 57330}


X(58064) = X(54)X(127)∩X(110)X(132)

Barycentrics    a^4*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 - 2*b^4*c^4 + 2*a^2*c^6 + b^2*c^6 - c^8)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + 2*a^4*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + b^2*c^6 + c^8) : :

X(58064) lies on the sine-triple-angle circle and these lines: {49, 53795}, {54, 127}, {110, 132}, {112, 1147}, {156, 12918}, {184, 1297}, {215, 3320}, {1092, 38699}, {1993, 19165}, {2477, 6020}, {2781, 3047}, {2794, 3044}, {2825, 3046}, {2831, 3045}, {3043, 9517}, {3203, 12207}, {5012, 34841}, {5889, 34217}, {6759, 44988}, {9544, 12384}, {9545, 13219}, {9586, 13221}, {9587, 12408}, {9652, 12945}, {9653, 13296}, {9666, 13297}, {9667, 12955}, {9703, 13310}, {9704, 13115}, {10540, 19160}, {10735, 13352}, {12413, 26864}, {14689, 43574}, {16224, 44802}, {19163, 37472}, {22115, 38608}, {32046, 57332}


X(58065) = X(54)X(129)∩X(110)X(130)

Barycentrics    a^2*(a^10 - a^8*b^2 - a^6*b^4 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 2*a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 2*a^2*b^6*c^2 + 2*b^8*c^2 + 6*a^6*c^4 - a^4*b^2*c^4 - a^2*b^4*c^4 - b^6*c^4 - 4*a^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - a^8*c^2 + 2*a^6*b^2*c^2 - a^4*b^4*c^2 - a^6*c^4 + 2*a^4*b^2*c^4 - a^2*b^4*c^4 - 2*a^2*b^2*c^6 - b^4*c^6 + 2*a^2*c^8 + 2*b^2*c^8 - c^10) : :

X(58065) lies on the sine-triple-angle circle and these lines: {54, 129}, {110, 130}, {184, 1303}, {1147, 1298}, {3043, 32438}, {5012, 34839}, {6759, 44991}, {9703, 38594}, {13352, 44989}, {21661, 34986}, {32046, 57335}


X(58066) = X(54)X(136)∩X(110)X(131)

Barycentrics    a^2*(a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 4*a^6*b^2*c^2 + a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - 2*a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 2*a^8*c^2 + 4*a^6*b^2*c^2 - 2*a^4*b^4*c^2 + a^6*c^4 + a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(58066) lies on the sine-triple-angle circle and these lines: {49, 53802}, {54, 136}, {74, 54087}, {110, 131}, {184, 1300}, {925, 1147}, {1614, 3047}, {3043, 55121}, {5012, 34840}, {5961, 11464}, {6241, 13496}, {6759, 44990}, {9706, 21667}, {9707, 13558}, {12289, 22823}, {13352, 44974}, {32046, 57334}, {32692, 39013}


X(58067) = X(54)X(122)∩X(110)X(133)

Barycentrics    a^2*(a^10 - 5*a^6*b^4 + 5*a^4*b^6 - b^10 - 4*a^8*c^2 + 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - 4*a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 + 2*a^2*b^2*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 + 2*a^6*b^2*c^2 - 4*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 5*a^6*c^4 + 3*a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 + 5*a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 3*b^2*c^8 - c^10) : :

X(58067) lies on the sine-triple-angle circle and these lines: {49, 53803}, {54, 122}, {107, 1147}, {110, 133}, {156, 22337}, {184, 1294}, {215, 3324}, {1092, 23239}, {1993, 14703}, {2477, 7158}, {2777, 3047}, {2790, 3044}, {2822, 3046}, {2828, 3045}, {3043, 9033}, {3048, 9529}, {3184, 43574}, {5012, 34842}, {5890, 40082}, {6759, 44985}, {9544, 34549}, {9545, 34186}, {9703, 38577}, {9704, 38591}, {10152, 13352}, {13434, 36520}, {14157, 38956}, {22115, 38605}, {32046, 57329}, {37472, 49117}


X(58068) = X(54)X(137)∩X(110)X(128)

Barycentrics    a^2*(a^10 - 3*a^8*b^2 + 4*a^6*b^4 - 4*a^4*b^6 + 3*a^2*b^8 - b^10 - 4*a^8*c^2 + 5*a^6*b^2*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 - a^2*b^2*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 3*a^8*c^2 + 5*a^6*b^2*c^2 - a^4*b^4*c^2 - a^2*b^6*c^2 + 4*a^6*c^4 + a^2*b^4*c^4 + b^6*c^4 - 4*a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 3*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(58068) lies on the sine-triple-angle circle and these lines: {49, 25150}, {54, 137}, {110, 128}, {156, 31656}, {184, 1141}, {215, 7159}, {403, 32410}, {930, 1147}, {1092, 38706}, {2477, 3327}, {3043, 45147}, {3047, 10024}, {5012, 34837}, {6592, 40111}, {6759, 44981}, {8154, 13557}, {9545, 11671}, {9703, 13512}, {9704, 38587}, {9707, 15959}, {11464, 13505}, {11597, 14071}, {12134, 14769}, {13352, 44976}, {13434, 23516}, {15960, 26864}, {22115, 38615}, {23319, 34224}, {27423, 52417}, {32046, 57324}

X(58068) = {X(11464),X(13505)}-harmonic conjugate of X(23320)


X(58069) = X(54)X(130)∩X(110)X(129)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^10 - 3*a^8*b^2 + 3*a^6*b^4 - 2*a^2*b^8 + b^10 - 4*a^8*c^2 + 6*a^6*b^2*c^2 - 2*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 2*b^8*c^2 + 6*a^6*c^4 - 3*a^4*b^2*c^4 - a^2*b^4*c^4 + b^6*c^4 - 4*a^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 3*a^8*c^2 + 6*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + 3*a^6*c^4 - 2*a^4*b^2*c^4 - a^2*b^4*c^4 + 2*a^2*b^2*c^6 + b^4*c^6 - 2*a^2*c^8 - 2*b^2*c^8 + c^10) : :

X(58069) lies on the sine-triple-angle circle and these lines: {23, 2967}, {54, 130}, {110, 129}, {137, 275}, {184, 933}, {1147, 1303}, {3044, 43844}, {3047, 32438}, {5012, 34838}, {5966, 10311}, {6759, 44989}, {9704, 38594}, {10282, 21661}, {13352, 44991}, {19357, 22552}, {22551, 26864}, {32046, 57333}


X(58070) = X(4)X(6)∩X(107)X(26714)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(58070) lies on the cubic K027 and these lines: {4, 6}, {107, 26714}, {112, 1576}, {232, 7418}, {250, 56389}, {297, 36823}, {511, 39265}, {647, 46587}, {648, 1625}, {877, 2421}, {2420, 52916}, {2445, 2715}, {3289, 56605}, {4230, 14966}, {8779, 43952}, {9308, 44155}, {10097, 32695}, {10766, 43717}, {16318, 52672}, {19189, 52967}, {23964, 53176}, {32661, 52915}, {33885, 53328}, {34131, 38663}, {34235, 45141}, {34854, 51980}, {37930, 46942}, {51334, 52199}, {53175, 53708}

X(58070) = isogonal conjugate of X(53173)
X(58070) = isotomic conjugate of the isogonal conjugate of X(34859)
X(58070) = polar conjugate of the isotomic conjugate of X(4230)
X(58070) = X(i)-Ceva conjugate of X(j) for these (i,j): {23964, 51334}, {32687, 112}
X(58070) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53173}, {63, 879}, {98, 24018}, {248, 14208}, {255, 43665}, {287, 656}, {290, 822}, {293, 525}, {304, 878}, {326, 2395}, {336, 647}, {520, 1821}, {661, 6394}, {810, 57799}, {1102, 53149}, {1577, 17974}, {1910, 3265}, {2632, 2966}, {2715, 17879}, {3269, 36036}, {3708, 17932}, {4592, 51404}, {15526, 36084}, {20031, 24020}, {20902, 43754}, {22456, 37754}, {36120, 52613}, {39201, 46273}
X(58070) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 53173}, {132, 525}, {2679, 3269}, {3162, 879}, {5139, 51404}, {5976, 52617}, {6523, 43665}, {11672, 3265}, {15259, 2395}, {35088, 36793}, {36830, 6394}, {38970, 339}, {38987, 15526}, {39039, 14208}, {39052, 336}, {39062, 57799}, {39073, 39473}, {40596, 287}, {40601, 520}, {41167, 23616}, {46094, 52613}, {52878, 17434}
X(58070) = cevapoint of X(i) and X(j) for these (i,j): {232, 3569}, {2211, 17994}, {39469, 52967}
X(58070) = trilinear pole of line {232, 237}
X(58070) = crossdifference of every pair of points on line {520, 15526}
X(58070) = barycentric product X(i)*X(j) for these {i,j}: {4, 4230}, {25, 877}, {76, 34859}, {99, 34854}, {107, 511}, {110, 6530}, {112, 297}, {132, 44770}, {158, 23997}, {162, 240}, {232, 648}, {237, 6528}, {250, 16230}, {325, 32713}, {393, 2421}, {684, 32230}, {685, 2967}, {811, 57653}, {823, 1755}, {933, 39569}, {1301, 44704}, {1959, 24019}, {2052, 14966}, {2207, 2396}, {2211, 6331}, {2409, 39265}, {2715, 36426}, {2799, 23964}, {2966, 51334}, {3289, 15352}, {3569, 23582}, {4240, 35908}, {5317, 42717}, {6529, 36212}, {7473, 52492}, {9417, 57973}, {14356, 53176}, {15595, 32687}, {17994, 18020}, {19189, 35360}, {20031, 36790}, {32676, 40703}, {32695, 51389}, {35907, 46787}, {37937, 47110}, {42405, 52967}, {46151, 51862}, {46587, 56605}, {46592, 52486}
X(58070) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53173}, {25, 879}, {107, 290}, {110, 6394}, {112, 287}, {162, 336}, {232, 525}, {237, 520}, {240, 14208}, {250, 17932}, {297, 3267}, {325, 52617}, {393, 43665}, {511, 3265}, {648, 57799}, {823, 46273}, {877, 305}, {1576, 17974}, {1755, 24018}, {1974, 878}, {2207, 2395}, {2211, 647}, {2421, 3926}, {2445, 34156}, {2489, 51404}, {2491, 3269}, {2799, 36793}, {2967, 6333}, {3289, 52613}, {3569, 15526}, {4230, 69}, {5360, 57109}, {6528, 18024}, {6529, 16081}, {6530, 850}, {9417, 822}, {9418, 39201}, {9475, 39473}, {14966, 394}, {16230, 339}, {17209, 30805}, {17994, 125}, {20031, 34536}, {23347, 35912}, {23582, 43187}, {23964, 2966}, {23975, 20031}, {23977, 57490}, {23997, 326}, {24000, 36036}, {24019, 1821}, {32230, 22456}, {32649, 15407}, {32676, 293}, {32687, 9476}, {32696, 47388}, {32713, 98}, {34854, 523}, {34859, 6}, {35907, 46786}, {35908, 34767}, {36212, 4143}, {36417, 2422}, {39265, 2419}, {39469, 2972}, {41172, 23616}, {41937, 2715}, {44114, 5489}, {44770, 57761}, {46587, 36893}, {51324, 24284}, {51334, 2799}, {51822, 2435}, {52199, 35911}, {52439, 53149}, {52604, 53174}, {52917, 31635}, {52967, 17434}, {53521, 17216}, {57653, 656}, {57655, 43754}


X(58071) = X(4)X(51)∩X(107)X(1624)

Barycentrics    (a^2 - b^2)*b^2*(a^2 - c^2)*c^2*(a^2 + b^2 - c^2)^3*(a^2 - b^2 + c^2)^3*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(58071) lies on the cubic K027 and these lines: {4, 51}, {107, 1624}, {3134, 6530}, {32230, 53176}, {34334, 47111}, {39174, 40664}, {45289, 46106}

X(58071) = X(i)-isoconjugate of X(j) for these (i,j): {255, 14380}, {520, 35200}, {822, 14919}, {2159, 52613}, {2349, 32320}, {2394, 4100}, {2433, 6507}, {2972, 36034}, {16077, 42080}, {18877, 24018}, {24020, 32715}, {34767, 52430}, {37754, 44769}
X(58071) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 520}, {3163, 52613}, {3258, 2972}, {6523, 14380}
X(58071) = cevapoint of X(1990) and X(9409)
X(58071) = trilinear pole of line {1990, 47433}
X(58071) = crossdifference of every pair of points on line {32320, 35071}
X(58071) = barycentric product X(i)*X(j) for these {i,j}: {30, 15352}, {107, 46106}, {158, 24001}, {648, 52661}, {823, 1784}, {1093, 2407}, {1990, 6528}, {2052, 4240}, {3260, 6529}, {9033, 34538}, {9409, 57556}, {14206, 36126}, {15459, 34334}, {18027, 23347}, {32230, 41079}, {52779, 52945}, {52938, 52956}, {56829, 57806}
X(58071) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 52613}, {107, 14919}, {393, 14380}, {1093, 2394}, {1495, 32320}, {1637, 2972}, {1784, 24018}, {1990, 520}, {2052, 34767}, {2407, 3964}, {2420, 1092}, {2442, 39174}, {3260, 4143}, {4240, 394}, {6524, 2433}, {6529, 74}, {9409, 35071}, {14398, 34980}, {14581, 39201}, {15352, 1494}, {16240, 1636}, {23347, 577}, {23590, 1304}, {23975, 32715}, {24001, 326}, {24019, 35200}, {24022, 36131}, {32230, 44769}, {32646, 15404}, {32713, 18877}, {34334, 41077}, {34538, 16077}, {36126, 2349}, {43752, 15414}, {46106, 3265}, {52661, 525}, {52954, 4091}, {52955, 23224}, {52956, 57241}, {56829, 255}


X(58072) = X(4)X(15453)∩X(186)X(53234)

Barycentrics    a^2*(b^2 - c^2)*(a^2 + b^2 - c^2)^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)^2*(a^8 - a^4*b^4 - 2*a^2*b^6 + 2*b^8 - 4*a^6*c^2 + 4*a^2*b^4*c^2 - 2*b^6*c^2 + 6*a^4*c^4 - b^4*c^4 - 4*a^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^4*c^4 + 4*a^2*b^2*c^4 - b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + 2*c^8) : :

X(58072) lies on the cubic K027 and these lines: {4, 15453}, {186, 53234}, {250, 15329}, {526, 38936}, {2433, 40388}, {14222, 35235}, {43709, 57636}

X(58072) = X(17702)-isoconjugate of X(36061)
X(58072) = X(16221)-Dao conjugate of X(17702)
X(58072) = barycentric product X(i)*X(j) for these {i,j}: {2052, 53234}, {14165, 15453}, {32710, 44427}
X(58072) = barycentric quotient X(i)/X(j) for these {i,j}: {14222, 52498}, {47230, 17702}, {52418, 7471}, {53234, 394}


X(58073) = X(2)X(39748)∩X(3)X(34594)

Barycentrics    (a*b + b^2 - a*c + b*c)*(a*b - a*c - b*c - c^2)*(a^3 - a*b^2 + a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(58073) lies on the cubic K028 and these lines: {2, 39748}, {3, 34594}, {4, 37482}, {7, 57915}, {8, 596}, {388, 20615}, {966, 39798}, {3616, 40148}, {17531, 29714}, {20060, 56133}, {23345, 40086}

X(58073) = X(i)-isoconjugate of X(j) for these (i,j): {595, 57666}, {56248, 57096}
X(58073) = barycentric product X(i)*X(j) for these {i,j}: {404, 40013}, {596, 32939}, {8050, 47796}, {39747, 56318}, {39798, 44139}
X(58073) = barycentric quotient X(i)/X(j) for these {i,j}: {404, 32911}, {8050, 56248}, {20293, 47793}, {32939, 4360}, {39798, 57666}, {40013, 57830}, {44085, 2220}, {44139, 18140}, {47796, 20295}, {48281, 4063}, {56318, 3995}
X(58073) = {X(596),X(8050)}-harmonic conjugate of X(8)


X(58074) = X(3)X(917)∩X(4)X(916)

Barycentrics    b^2*(-a + b - c)*(a + b - c)*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^3 + b^3 - a*b*c - a*c^2 - b*c^2)*(-a^3 + a*b^2 + a*b*c + b^2*c - c^3) : :

X(58074) lies on the cubic K028 and these lines: {3, 917}, {4, 916}, {27, 331}, {92, 20926}, {264, 40445}, {1751, 40573}, {6336, 40701}, {7513, 56146}, {14249, 54232}, {37543, 40574}

X(58074) = isogonal conjugate of X(57501)
X(58074) = polar conjugate of X(3190)
X(58074) = polar conjugate of the isotomic conjugate of X(15467)
X(58074) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57501}, {48, 3190}, {184, 27396}, {209, 2193}, {212, 579}, {219, 2352}, {228, 56000}, {255, 41320}, {283, 2198}, {906, 8676}, {1802, 4306}, {1946, 57217}, {2194, 51574}, {3868, 52425}, {23207, 40572}
X(58074) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57501}, {1214, 51574}, {1249, 3190}, {5190, 8676}, {6523, 41320}, {39053, 57217}, {40837, 579}, {47345, 209}
X(58074) = cevapoint of X(514) and X(2973)
X(58074) = trilinear pole of line {7649, 21184}
X(58074) = barycentric product X(i)*X(j) for these {i,j}: {4, 15467}, {225, 57784}, {272, 57809}, {273, 2997}, {278, 40011}, {331, 1751}, {349, 40574}, {1305, 46107}, {2218, 57787}
X(58074) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3190}, {6, 57501}, {27, 56000}, {34, 2352}, {92, 27396}, {225, 209}, {226, 51574}, {272, 283}, {273, 3868}, {278, 579}, {331, 18134}, {393, 41320}, {653, 57217}, {1119, 4306}, {1305, 1331}, {1751, 219}, {1860, 14053}, {1880, 2198}, {2218, 212}, {2997, 78}, {7649, 8676}, {15467, 69}, {23289, 57108}, {28786, 3682}, {40011, 345}, {40149, 22021}, {40573, 40572}, {40574, 284}, {41506, 2318}, {46107, 20294}, {51566, 4571}, {56146, 1260}, {57784, 332}, {57809, 57808}


X(58075) = X(3)X(1289)∩X(4)X(66)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-a^4 + b^4 - c^4)*(a^4 + b^4 - c^4)*(-a^6 - a^4*b^2 + a^2*b^4 + b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6) : :

X(58075) lies on the cubic K028 and these lines: {3, 1289}, {4, 66}, {264, 40009}, {427, 18018}, {847, 39265}, {1370, 17407}, {3162, 40357}, {3541, 14376}, {14265, 34756}, {31099, 52512}, {44766, 56015}

X(58075) = isogonal conjugate of X(39172)
X(58075) = polar conjugate of X(40358)
X(58075) = isotomic conjugate of the isogonal conjugate of X(17407)
X(58075) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 18018}, {40421, 43678}
X(58075) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39172}, {48, 40358}, {63, 46767}, {2172, 52041}, {22075, 39733}
X(58075) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39172}, {25, 206}, {1249, 40358}, {3162, 46767}, {14376, 3}, {53822, 8673}
X(58075) = barycentric product X(i)*X(j) for these {i,j}: {76, 17407}, {1235, 40357}, {1370, 43678}, {3162, 40421}, {18018, 41361}
X(58075) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 40358}, {6, 39172}, {25, 46767}, {66, 52041}, {159, 10316}, {1289, 56008}, {1370, 20806}, {3162, 206}, {13854, 34207}, {17407, 6}, {40357, 1176}, {41361, 22}, {41766, 8743}, {43678, 13575}, {46766, 10547}, {47125, 8673}


X(58076) = X(3)X(1290)∩X(4)X(2771)

Barycentrics    (a^3 + a^2*b + a*b^2 + b^3 - a^2*c - a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c - a*b*c - b^2*c + a*c^2 - b*c^2 + c^3)*(a^4 - b^4 + a^2*b*c - a*b^2*c - a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(58076) lies on the cubic K028 and these lines: {3, 1290}, {4, 2771}, {76, 35156}, {267, 3336}, {4581, 9782}, {5902, 38938}, {6888, 45934}, {14246, 14267}, {14254, 14266}, {38937, 54241}

X(58076) = isogonal conjugate of X(51470)
X(58076) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51470}, {5127, 10693}
X(58076) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51470}, {36, 35204}, {5520, 8674}
X(58076) = barycentric product X(i)*X(j) for these {i,j}: {5080, 21907}, {11604, 37798}, {35156, 47227}
X(58076) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51470}, {1325, 37783}, {5080, 32849}, {11604, 52500}, {20989, 17796}, {21907, 55022}, {40584, 35204}, {47227, 8674}, {56906, 5172}


X(58077) = X(3)X(9058)∩X(4)X(5554)

Barycentrics    (a^3 + a^2*b + a*b^2 + b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 + c^3)*(a^4 - b^4 + 4*a^2*b*c - 4*a*b^2*c - 4*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(58077) lies on the cubic K028 and these lines: {3, 9058}, {4, 5554}, {76, 14266}, {998, 15955}, {3338, 13161}, {8743, 54241}, {14262, 14267}, {14268, 38938}, {45998, 57664}

X(58077) = X(997)-isoconjugate of X(3420)
X(58077) = X(i)-Dao conjugate of X(j) for these (i,j): {999, 52148}, {53837, 9001}
X(58077) = barycentric quotient X(i)/X(j) for these {i,j}: {3421, 17740}, {4221, 26637}, {40134, 9001}


X(58078) = X(3)X(2373)∩X(4)X(850)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^2*b^2*c^2 - a^2*c^4 - b^2*c^4)*(-a^6 + a^2*b^4 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 - c^6) : :

X(58078) lies on the cubic K028 and these lines: {3, 2373}, {4, 850}, {76, 648}, {264, 14246}, {2868, 10423}, {3266, 4235}, {14249, 14262}, {34537, 55270}, {40856, 57496}, {44146, 53777}

X(58078) = isogonal conjugate of X(34158)
X(58078) = polar conjugate of X(57485)
X(58078) = isogonal conjugate of the complement of X(56685)
X(58078) = isotomic conjugate of the isogonal conjugate of X(51823)
X(58078) = X(46140)-Ceva conjugate of X(44146)
X(58078) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34158}, {48, 57485}, {63, 51962}, {923, 14961}, {1973, 51253}, {2393, 36060}, {14908, 18669}, {36142, 42665}
X(58078) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 34158}, {1249, 57485}, {1560, 2393}, {2373, 14909}, {2482, 14961}, {3162, 51962}, {6337, 51253}, {23992, 42665}
X(58078) = cevapoint of X(524) and X(34336)
X(58078) = trilinear pole of line {468, 35522}
X(58078) = barycentric product X(i)*X(j) for these {i,j}: {76, 51823}, {468, 46140}, {2052, 53784}, {2373, 44146}, {52145, 52486}
X(58078) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57485}, {6, 34158}, {25, 51962}, {69, 51253}, {468, 2393}, {524, 14961}, {690, 42665}, {1177, 14908}, {2373, 895}, {5095, 47426}, {10423, 32729}, {34336, 5181}, {36095, 36142}, {37778, 5523}, {44146, 858}, {46140, 30786}, {51823, 6}, {52486, 5968}, {53784, 394}
X(58078) = {X(52486),X(56685)}-harmonic conjugate of X(4)


X(58079) = X(3)X(933)∩X(4)X(54)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + 2*a^2*c^6 + b^2*c^6 - c^8) : :

X(58079) lies on the cubic K028 and these lines: {2, 52677}, {3, 933}, {4, 54}, {24, 1166}, {49, 43995}, {76, 18831}, {95, 44177}, {156, 50463}, {186, 15620}, {317, 9545}, {1141, 16868}, {1157, 21844}, {6240, 36842}, {7488, 57474}, {7502, 19210}, {10018, 40631}, {11449, 15958}, {11464, 46089}, {13353, 51939}, {13434, 14860}, {14247, 39265}, {14586, 39575}, {15872, 52280}, {16035, 37954}, {25042, 35473}, {34782, 46064}, {38435, 56306}

X(58079) = polar conjugate of the isotomic conjugate of X(57474)
X(58079) = X(264)-Ceva conjugate of X(57489)
X(58079) = X(6145)-isoconjugate of X(44706)
X(58079) = X(i)-Dao conjugate of X(j) for these (i,j): {1594, 1209}, {20625, 6368}, {25044, 3}
X(58079) = barycentric product X(i)*X(j) for these {i,j}: {4, 57474}, {275, 7488}, {16040, 18831}
X(58079) = barycentric quotient X(i)/X(j) for these {i,j}: {933, 16039}, {7488, 343}, {8882, 6145}, {16040, 6368}, {57474, 69}
X(58079) = {X(3462),X(10274)}-harmonic conjugate of X(53176)


X(58080) = X(3)X(40118)∩X(4)X(14984)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6)*(a^6 - 2*a^4*b^2 - 2*a^2*b^4 + b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(58080) lies on the cubic K028 and these lines: {3, 40118}, {4, 14984}, {2501, 5254}, {6337, 10603}, {14249, 38939}, {14263, 39269}, {14265, 38937}, {18020, 54412}

X(58080) = isogonal conjugate of X(39169)
X(58080) = polar conjugate of X(57491)
X(58080) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39169}, {48, 57491}, {897, 41615}, {923, 5866}, {36060, 37784}
X(58080) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39169}, {1249, 57491}, {1560, 37784}, {2482, 5866}, {6593, 41615}
X(58080) = barycentric product X(i)*X(j) for these {i,j}: {3266, 41521}, {40347, 44146}
X(58080) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57491}, {6, 39169}, {187, 41615}, {468, 37784}, {524, 5866}, {40347, 895}, {41521, 111}, {44102, 41336}, {44146, 37803}


X(58081) = X(3)X(53958)∩X(4)X(3580)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4)*(a^6 + a^4*b^2 - 5*a^2*b^4 + 3*b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - 5*b^4*c^2 - a^2*c^4 + b^2*c^4 + c^6)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 - 5*b^2*c^4 + 3*c^6) : :

X(58081) lies on the cubics K028 and K1172 and these lines: {3, 53958}, {4, 3580}, {186, 52168}, {1990, 56710}, {8743, 8749}, {16080, 40387}, {35488, 50935}, {40384, 40392}

X(58081) = isogonal conjugate of X(51471)
X(58081) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51471}, {63, 52165}
X(58081) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51471}, {3162, 52165}
X(58081) = barycentric product X(15066)*X(52487)
X(58081) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51471}, {25, 52165}, {378, 37645}, {5063, 47391}, {8749, 40387}, {47649, 52168}, {52487, 34289}, {56710, 39263}


X(58082) = X(3)X(9064)∩X(4)X(3426)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 + 4*b^2*c^2 - 5*c^4)*(a^4 + 4*a^2*b^2 - 5*b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 16*a^4*b^2*c^2 - 10*a^2*b^4*c^2 - 4*b^6*c^2 - 10*a^2*b^2*c^4 + 10*b^4*c^4 + 2*a^2*c^6 - 4*b^2*c^6 - c^8) : :

X(58082) lies on the cubic K028 and these lines: {3, 9064}, {4, 3426}, {25, 52168}, {76, 54988}, {7395, 34426}, {14248, 14264}, {14262, 39265}, {14268, 54241}

X(58082) = barycentric product X(21312)*X(56270)
X(58082) = barycentric quotient X(36876)/X(52147)


X(58083) = X(3)X(2971)∩X(4)X(3566)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^2*b^2 + 2*b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 2*c^4)*(a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 4*b^6*c^2 - a^4*c^4 + 3*a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58083) lies on the cubic K028 and these lines: {3, 2971}, {4, 3566}, {24, 32697}, {76, 847}, {8743, 34756}, {10008, 52091}, {14246, 38936}

X(58083) = isogonal conjugate of the complement of X(56689)
X(58083) = X(264)-Ceva conjugate of X(57493)
X(58083) = X(i)-Dao conjugate of X(j) for these (i,j): {31842, 3564}, {34157, 3}
X(58083) = barycentric product X(i)*X(j) for these {i,j}: {2052, 53787}, {56688, 57493}
X(58083) = barycentric quotient X(i)/X(j) for these {i,j}: {3563, 56006}, {53787, 394}, {57493, 56574}
X(58083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 56604, 56689}, {4, 56689, 47108}


X(58084) = X(3)X(847)∩X(4)X(924)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(2*a^8 - 3*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58084) lies on the cubic K028 and these lines: {3, 847}, {4, 924}, {264, 57760}, {12038, 15454}, {12095, 30512}, {14248, 39263}, {14249, 34756}, {14254, 38936}, {39170, 39375}, {52582, 57638}

X(58084) = isogonal conjugate of the complement of X(56684)
X(58084) = X(i)-isoconjugate of X(j) for these (i,j): {2315, 43756}, {6149, 39373}
X(58084) = X(i)-Dao conjugate of X(j) for these (i,j): {131, 13754}, {14993, 39373}, {15454, 3}
X(58084) = barycentric product X(2052)*X(53788)
X(58084) = barycentric quotient X(i)/X(j) for these {i,j}: {1300, 43756}, {1989, 39373}, {16310, 13754}, {53788, 394}


X(58085) = X(3)X(107)∩X(4)X(520)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 3*a^6*c^2 + 3*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 4*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 - 2*a^6*c^2 - 3*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + b^6*c^2 + 6*a^4*c^4 - 3*a^2*b^2*c^4 - 3*b^4*c^4 - 2*a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(58085) lies on the cubic K028 and these lines: {3, 107}, {4, 520}, {76, 54988}, {250, 52578}, {847, 39268}, {1093, 2693}, {2052, 8431}, {4240, 23097}, {8743, 39263}, {11589, 52661}, {14254, 38937}, {15404, 47392}, {52494, 53235}

X(58085) = isogonal conjugate of X(39174)
X(58085) = polar conjugate of X(57488)
X(58085) = isogonal conjugate of the complement of X(56683)
X(58085) = X(54988)-Ceva conjugate of X(46106)
X(58085) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39174}, {48, 57488}, {63, 51964}, {255, 52646}, {2159, 44436}, {6000, 35200}, {6149, 39376}
X(58085) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39174}, {30, 40948}, {133, 6000}, {1249, 57488}, {3162, 51964}, {3163, 44436}, {6523, 52646}, {14993, 39376}
X(58085) = cevapoint of X(30) and X(34334)
X(58085) = trilinear pole of line {1636, 1990}
X(58085) = barycentric product X(i)*X(j) for these {i,j}: {1294, 46106}, {1990, 54988}, {2052, 53789}
X(58085) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57488}, {6, 39174}, {25, 51964}, {30, 44436}, {393, 52646}, {1294, 14919}, {1989, 39376}, {1990, 6000}, {3163, 40948}, {16240, 47433}, {32646, 1304}, {51965, 51895}, {52661, 51358}, {53789, 394}, {56605, 35910}
X(58085) = {X(4),X(56605)}-harmonic conjugate of X(56683)


X(58086) = X(3)X(476)∩X(4)X(526)

Barycentrics    b^2*c^2*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 2*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 - a^6*c^2 - 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 - 2*a^2*b^2*c^4 - 3*b^4*c^4 - a^2*c^6 + 3*b^2*c^6 - c^8)*(2*a^8 - 2*a^6*b^2 - a^4*b^4 + b^8 - 2*a^6*c^2 + 4*a^4*b^2*c^2 - 4*b^6*c^2 - a^4*c^4 + 6*b^4*c^4 - 4*b^2*c^6 + c^8) : :

X(58086) lies on the cubic K028 and these lines: {3, 476}, {4, 526}, {847, 38937}, {14246, 39263}, {14249, 38936}, {34148, 34210}, {36193, 52603}

X(58086) = X(i)-Dao conjugate of X(j) for these (i,j): {25641, 5663}, {47084, 39987}, {51475, 3}
X(58086) = barycentric product X(i)*X(j) for these {i,j}: {34150, 46789}, {39985, 52498}
X(58086) = barycentric quotient X(i)/X(j) for these {i,j}: {2436, 53234}, {3018, 5663}, {32650, 35189}, {34150, 46788}, {52498, 39988}


X(58087) = X(3)X(935)∩X(4)X(9517)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*(a^10 - a^6*b^4 - a^4*b^6 + b^10 - 2*a^8*c^2 + 2*a^6*b^2*c^2 + 2*a^2*b^6*c^2 - 2*b^8*c^2 - a^4*b^2*c^4 - a^2*b^4*c^4 + 2*a^4*c^6 + 2*b^4*c^6 - a^2*c^8 - b^2*c^8)*(-a^10 + 2*a^8*b^2 - 2*a^4*b^6 + a^2*b^8 - 2*a^6*b^2*c^2 + a^4*b^4*c^2 + b^8*c^2 + a^6*c^4 + a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 2*a^2*b^2*c^6 + 2*b^2*c^8 - c^10) : :

X(5807) lies on the cubic K028 and these lines: {3, 935}, {4, 9517}, {76, 16077}, {685, 52641}, {8743, 14254}, {10312, 46340}, {14246, 14249}, {17986, 18312}

X(58087) = isogonal conjugate of X(51472)
X(58087) = X(1)-isoconjugate of X(51472)
X(58087) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51472}, {42426, 2781}
X(58087) = cevapoint of X(542) and X(38552)
X(58087) = barycentric product X(46786)*X(47110)
X(58087) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51472}, {6103, 2781}, {34369, 40079}, {35907, 37937}, {47110, 46787}


X(58088) = X(3)X(40118)∩X(4)X(51480)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 + a^2*c^6 + b^2*c^6)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8)*(2*a^10 - 4*a^8*b^2 + a^6*b^4 + 3*a^4*b^6 - 3*a^2*b^8 + b^10 - 4*a^8*c^2 + 8*a^6*b^2*c^2 - 5*a^4*b^4*c^2 + 8*a^2*b^6*c^2 - 3*b^8*c^2 + a^6*c^4 - 5*a^4*b^2*c^4 - 10*a^2*b^4*c^4 + 2*b^6*c^4 + 3*a^4*c^6 + 8*a^2*b^2*c^6 + 2*b^4*c^6 - 3*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(58088) lies on the cubic K028 and these lines: {3, 40118}, {4, 51480}, {76, 18878}, {847, 14246}, {8548, 44768}, {14248, 14254}, {34756, 39269}

X(58088) = X(51474)-Dao conjugate of X(3)
X(58088) = barycentric quotient X(47108)/X(52515)


X(58089) = X(101)X(8683)∩X(106)X(3295)

Barycentrics    a^2*(a-b)*(a+b-7*c)*(a-c)*(a-7*b+c) : :

X(58089) lies on the circumcircle and these lines: {101, 8683}, {104, 31509}, {105, 31508}, {106, 3295}, {1018, 53630}, {1331, 28222}, {2718, 5122}, {3361, 8686}, {3939, 8699}, {8694, 23832}, {23845, 28226}, {28184, 35281}, {29227, 54440}, {53280, 58110}

X(58089) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58148}, {513, 3623}, {1019, 4098}
X(58089) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58148}, {39026, 3623}
X(58089) = X(i)-cross conjugate of X(j) for these {i, j}: {58148, 6}
X(58089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(8683)}}, {{A, B, C, X(1461), X(37212)}}, {{A, B, C, X(2283), X(31508)}}, {{A, B, C, X(3295), X(23703)}}, {{A, B, C, X(3361), X(23832)}}, {{A, B, C, X(23981), X(35242)}}
X(58089) = barycentric product X(i)*X(j) for these (i, j): {31509, 651}
X(58089) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58148}, {101, 3623}, {31509, 4391}


X(58090) = X(74)X(2930)∩X(98)X(2482)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+7*b^2+c^2)*(a^2+b^2+7*c^2) : :

X(58090) lies on the circumcircle and these lines: {74, 2930}, {98, 2482}, {111, 5024}, {112, 9145}, {476, 47293}, {729, 5039}, {842, 37946}, {1296, 1634}, {2770, 37904}, {4558, 11636}, {5467, 58101}, {11634, 58091}, {35357, 58102}

X(58090) = trilinear pole of line {6, 5646}
X(58090) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52301}, {1577, 21309}
X(58090) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 52301}
X(58090) = X(i)-cross conjugate of X(j) for these {i, j}: {53095, 249}
X(58090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2418), X(5024)}}, {{A, B, C, X(2420), X(31884)}}, {{A, B, C, X(2421), X(42850)}}, {{A, B, C, X(2434), X(4235)}}, {{A, B, C, X(2482), X(9155)}}, {{A, B, C, X(2966), X(9124)}}, {{A, B, C, X(3524), X(4230)}}, {{A, B, C, X(4240), X(41463)}}, {{A, B, C, X(4558), X(9145)}}, {{A, B, C, X(5039), X(5118)}}, {{A, B, C, X(5968), X(36890)}}, {{A, B, C, X(7473), X(37946)}}, {{A, B, C, X(7482), X(37904)}}, {{A, B, C, X(9186), X(46144)}}, {{A, B, C, X(41498), X(44468)}}
X(58090) = barycentric quotient X(i)/X(j) for these (i, j): {112, 52301}, {1576, 21309}


X(58091) = X(98)X(8591)∩X(729)X(5034)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-11*c^2)*(a^2-11*b^2+c^2) : :

X(58091) lies on the circumcircle and these lines: {74, 55610}, {98, 8591}, {111, 40916}, {729, 5034}, {1300, 35483}, {1597, 3563}, {2374, 52301}, {2696, 47293}, {2770, 47313}, {3565, 9145}, {4558, 58099}, {11634, 58090}, {37934, 40118}

X(58091) = trilinear pole of line {6, 5544}
X(58091) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 5032}
X(58091) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 5032}
X(58091) = X(i)-cross conjugate of X(j) for these {i, j}: {5585, 249}
X(58091)= pole of line {5032, 11284} with respect to the Kiepert parabola
X(58091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1597), X(4226)}}, {{A, B, C, X(2420), X(55610)}}, {{A, B, C, X(4230), X(10304)}}, {{A, B, C, X(4235), X(40916)}}, {{A, B, C, X(5034), X(5118)}}, {{A, B, C, X(5467), X(53095)}}, {{A, B, C, X(7468), X(37934)}}, {{A, B, C, X(7482), X(47313)}}, {{A, B, C, X(11634), X(52301)}}, {{A, B, C, X(15329), X(35483)}}, {{A, B, C, X(35178), X(46639)}}
X(58091) = barycentric quotient X(i)/X(j) for these (i, j): {110, 5032}


X(58092) = X(98)X(8703)∩X(111)X(7496)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-8*c^2)*(a^2-8*b^2+c^2) : :

X(58092) lies on the circumcircle and these lines: {74, 55606}, {98, 8703}, {111, 7496}, {729, 5038}, {842, 35001}, {1300, 35492}, {2374, 10301}, {2696, 47288}, {2770, 37901}, {3563, 13596}, {4576, 6082}, {7472, 53951}, {8600, 45722}, {9145, 33638}, {11634, 12074}

X(58092) = trilinear pole of line {6, 5643}
X(58092) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 8584}
X(58092) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 8584}
X(58092) = X(i)-cross conjugate of X(j) for these {i, j}: {8588, 249}
X(58092)= pole of line {8584, 16042} with respect to the Kiepert parabola
X(58092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(55606)}}, {{A, B, C, X(4226), X(13596)}}, {{A, B, C, X(4230), X(8703)}}, {{A, B, C, X(4235), X(7496)}}, {{A, B, C, X(5038), X(5118)}}, {{A, B, C, X(5467), X(8589)}}, {{A, B, C, X(7473), X(35001)}}, {{A, B, C, X(7482), X(37901)}}, {{A, B, C, X(10301), X(11634)}}, {{A, B, C, X(15329), X(35492)}}, {{A, B, C, X(34574), X(42367)}}, {{A, B, C, X(35178), X(44769)}}
X(58092) = barycentric quotient X(i)/X(j) for these (i, j): {110, 8584}


X(58093) = X(3)X(43662)∩X(98)X(3522)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-7*c^2)*(a^2-7*b^2+c^2) : :

X(58093) lies on the circumcircle and these lines: {3, 43662}, {74, 55604}, {98, 3522}, {111, 7485}, {376, 45138}, {477, 47337}, {842, 37944}, {907, 11634}, {1593, 3563}, {2374, 6995}, {2696, 47289}, {2770, 37900}, {4558, 58097}, {5966, 15745}, {37931, 40118}, {37977, 40119}, {53273, 58116}

X(58093) = reflection of X(i) in X(j) for these {i,j}: {43662, 3}
X(58093) = trilinear pole of line {6, 5644}
X(58093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 51170}, {1577, 22331}
X(58093) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 51170}
X(58093)= pole of line {5020, 51170} with respect to the Kiepert parabola
X(58093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1593), X(4226)}}, {{A, B, C, X(2420), X(55604)}}, {{A, B, C, X(3522), X(4230)}}, {{A, B, C, X(4235), X(7485)}}, {{A, B, C, X(6995), X(11634)}}, {{A, B, C, X(7468), X(37931)}}, {{A, B, C, X(7472), X(37977)}}, {{A, B, C, X(7473), X(37944)}}, {{A, B, C, X(7480), X(47337)}}, {{A, B, C, X(7482), X(37900)}}, {{A, B, C, X(32713), X(35137)}}
X(58093) = barycentric product X(i)*X(j) for these (i, j): {110, 43681}
X(58093) = barycentric quotient X(i)/X(j) for these (i, j): {110, 51170}, {1576, 22331}, {43681, 850}


X(58094) = X(98)X(548)∩X(428)X(2374)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-6*c^2)*(a^2-6*b^2+c^2) : :

X(58094) lies on the circumcircle and these lines: {74, 55601}, {98, 548}, {111, 15246}, {376, 13597}, {428, 2374}, {842, 35452}, {2770, 20063}, {3563, 14865}, {4611, 58099}, {5966, 34864}, {7953, 11634}, {12074, 53273}, {35489, 40118}, {35921, 43657}, {37920, 40119}

X(58094) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 32455}
X(58094) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 32455}
X(58094) = X(i)-cross conjugate of X(j) for these {i, j}: {15513, 249}
X(58094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(428), X(11634)}}, {{A, B, C, X(548), X(4230)}}, {{A, B, C, X(2420), X(55601)}}, {{A, B, C, X(4226), X(14865)}}, {{A, B, C, X(4235), X(15246)}}, {{A, B, C, X(7468), X(35489)}}, {{A, B, C, X(7472), X(37920)}}, {{A, B, C, X(7473), X(35452)}}, {{A, B, C, X(7482), X(20063)}}
X(58094) = barycentric quotient X(i)/X(j) for these (i, j): {110, 32455}


X(58095) = X(74)X(55585)∩X(98)X(1657)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^2+b^2)-5*c^2)*(2*a^2-5*b^2+2*c^2) : :

X(58095) lies on the circumcircle and these lines: {74, 55585}, {98, 1657}, {111, 37913}, {376, 20480}, {842, 34152}, {2374, 37453}, {2770, 30745}, {3563, 21844}, {4611, 58096}, {5966, 12107}, {7954, 53273}, {11634, 58098}, {35488, 40120}, {47290, 53895}, {52630, 58097}

X(58095) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 6144}
X(58095) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 6144}
X(58095) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1657), X(4230)}}, {{A, B, C, X(2420), X(55585)}}, {{A, B, C, X(4226), X(21844)}}, {{A, B, C, X(4235), X(37913)}}, {{A, B, C, X(7473), X(34152)}}, {{A, B, C, X(7482), X(30745)}}, {{A, B, C, X(11634), X(37453)}}
X(58095) = barycentric quotient X(i)/X(j) for these (i, j): {110, 6144}


X(58096) = X(98)X(3529)∩X(111)X(9909)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-7*c^2)*(3*a^2-7*b^2+3*c^2) : :

X(58096) lies on the circumcircle and these lines: {74, 55582}, {98, 3529}, {111, 9909}, {842, 37948}, {2373, 7396}, {2374, 38282}, {2770, 5159}, {3563, 32534}, {4558, 53884}, {4611, 58095}, {5896, 21312}, {11634, 58097}, {40118, 57584}, {47291, 53895}, {53273, 58102}

X(58096) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 11008}
X(58096) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 11008}
X(58096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(55582)}}, {{A, B, C, X(3529), X(4230)}}, {{A, B, C, X(4226), X(32534)}}, {{A, B, C, X(4235), X(9909)}}, {{A, B, C, X(5159), X(7482)}}, {{A, B, C, X(7396), X(46592)}}, {{A, B, C, X(7473), X(37948)}}, {{A, B, C, X(11634), X(38282)}}, {{A, B, C, X(32713), X(35179)}}
X(58096) = barycentric quotient X(i)/X(j) for these (i, j): {110, 11008}


X(58097) = X(98)X(3146)∩X(111)X(1611)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-5*c^2)*(3*a^2-5*b^2+3*c^2) : :

X(58097) lies on the circumcircle and these lines: {74, 38263}, {98, 3146}, {111, 1611}, {842, 37941}, {935, 47291}, {1300, 36611}, {3515, 3563}, {4230, 44060}, {4558, 58093}, {4611, 53884}, {6622, 40120}, {9218, 10425}, {10151, 40118}, {11634, 58096}, {52630, 58095}, {53273, 58100}

X(58097) = trilinear pole of line {6, 8780}
X(58097) = X(i)-isoconjugate-of-X(j) for these {i, j}: {523, 16570}, {656, 38282}, {661, 20080}, {1577, 5023}
X(58097) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 20080}, {40596, 38282}
X(58097) = X(i)-cross conjugate of X(j) for these {i, j}: {20850, 250}
X(58097)= pole of line {9909, 20080} with respect to the Kiepert parabola
X(58097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(892), X(32713)}}, {{A, B, C, X(1611), X(5468)}}, {{A, B, C, X(2407), X(40318)}}, {{A, B, C, X(2420), X(44456)}}, {{A, B, C, X(3146), X(4230)}}, {{A, B, C, X(3515), X(4226)}}, {{A, B, C, X(6529), X(44768)}}, {{A, B, C, X(7468), X(10151)}}, {{A, B, C, X(7473), X(37941)}}, {{A, B, C, X(32697), X(46639)}}, {{A, B, C, X(39562), X(41392)}}
X(58097) = barycentric product X(i)*X(j) for these (i, j): {110, 38259}, {36611, 4558}, {36616, 99}, {38263, 648}
X(58097) = barycentric quotient X(i)/X(j) for these (i, j): {110, 20080}, {112, 38282}, {163, 16570}, {1576, 5023}, {36611, 14618}, {36616, 523}, {38259, 850}, {38263, 525}


X(58098) = X(2)X(43663)∩X(98)X(382)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^2+b^2)-3*c^2)*(2*a^2-3*b^2+2*c^2) : :

X(58098) lies on the circumcircle and these lines: {2, 43663}, {58, 28551}, {74, 37517}, {98, 382}, {842, 15646}, {935, 47290}, {1296, 4611}, {2373, 30744}, {3563, 44879}, {3565, 52630}, {4230, 33640}, {11634, 58095}, {11636, 53273}, {35278, 53957}, {47291, 53950}

X(58098) = trilinear pole of line {6, 9544}
X(58098) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 37453}, {661, 40341}, {1577, 5206}
X(58098) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 40341}, {40596, 37453}
X(58098) = X(i)-cross conjugate of X(j) for these {i, j}: {34777, 23964}
X(58098)= pole of line {37913, 40341} with respect to the Kiepert parabola
X(58098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(382), X(4230)}}, {{A, B, C, X(512), X(42345)}}, {{A, B, C, X(2420), X(37517)}}, {{A, B, C, X(4226), X(44879)}}, {{A, B, C, X(7473), X(15646)}}, {{A, B, C, X(30744), X(46592)}}, {{A, B, C, X(44173), X(46005)}}
X(58098) = barycentric product X(i)*X(j) for these (i, j): {110, 53105}
X(58098) = barycentric quotient X(i)/X(j) for these (i, j): {110, 40341}, {112, 37453}, {1576, 5206}, {53105, 850}


X(58099) = X(74)X(1351)∩X(111)X(3053)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)-7*c^2)*(5*a^2-7*b^2+5*c^2) : :

X(58099) lies on the circumcircle and these lines: {74, 1351}, {98, 3543}, {99, 53351}, {111, 3053}, {477, 47031}, {842, 37952}, {843, 1692}, {935, 47292}, {2709, 9218}, {3563, 55572}, {3565, 5467}, {4558, 58091}, {4611, 58094}, {9181, 10425}, {9737, 14388}, {33638, 52630}, {35383, 53973}, {37984, 40118}

X(58099) = trilinear pole of line {6, 40350}
X(58099) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52290}, {661, 11160}, {1577, 5210}
X(58099) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 11160}, {40596, 52290}
X(58099) = X(i)-cross conjugate of X(j) for these {i, j}: {17813, 23964}
X(58099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1351), X(2420)}}, {{A, B, C, X(1692), X(9181)}}, {{A, B, C, X(3053), X(5467)}}, {{A, B, C, X(3543), X(4230)}}, {{A, B, C, X(5649), X(46639)}}, {{A, B, C, X(7468), X(37984)}}, {{A, B, C, X(7473), X(37952)}}, {{A, B, C, X(7480), X(47031)}}, {{A, B, C, X(9186), X(32738)}}, {{A, B, C, X(14248), X(32713)}}
X(58099) = barycentric product X(i)*X(j) for these (i, j): {110, 41895}
X(58099) = barycentric quotient X(i)/X(j) for these (i, j): {110, 11160}, {112, 52290}, {1576, 5210}, {41895, 850}


X(58100) = X(98)X(3091)∩X(111)X(1184)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-c^2)*(3*a^2-b^2+3*c^2) : :

X(58100) lies on the circumcircle and these lines: {74, 12017}, {98, 3091}, {111, 1184}, {477, 47340}, {755, 31506}, {842, 37940}, {935, 47289}, {1297, 38444}, {1576, 3565}, {2367, 56067}, {3517, 3563}, {4226, 53862}, {4558, 58116}, {4611, 7953}, {7954, 52630}, {9076, 39668}, {37942, 40118}, {53273, 58097}

X(58100) = trilinear pole of line {6, 9909}
X(58100) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 8889}, {661, 3620}, {1577, 5013}, {12167, 14208}
X(58100) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 3620}, {40596, 8889}
X(58100) = X(i)-cross conjugate of X(j) for these {i, j}: {5020, 250}, {19132, 23964}, {22331, 249}
X(58100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1184), X(5468)}}, {{A, B, C, X(2407), X(26206)}}, {{A, B, C, X(2409), X(38444)}}, {{A, B, C, X(2420), X(12017)}}, {{A, B, C, X(3091), X(4230)}}, {{A, B, C, X(3517), X(4226)}}, {{A, B, C, X(7468), X(37942)}}, {{A, B, C, X(7473), X(37940)}}, {{A, B, C, X(7480), X(47340)}}, {{A, B, C, X(32713), X(35138)}}, {{A, B, C, X(39668), X(52630)}}, {{A, B, C, X(41392), X(45016)}}
X(58100) = barycentric product X(i)*X(j) for these (i, j): {110, 5395}, {1576, 56067}, {31506, 4577}
X(58100) = barycentric quotient X(i)/X(j) for these (i, j): {110, 3620}, {112, 8889}, {1576, 5013}, {5395, 850}, {31506, 826}, {56067, 44173}


X(58101) = X(74)X(5085)∩X(98)X(3545)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)-c^2)*(5*a^2-b^2+5*c^2) : :

X(58101) lies on the circumcircle and these lines: {74, 5085}, {98, 3545}, {111, 21309}, {112, 35357}, {476, 47292}, {842, 37953}, {843, 38010}, {907, 9145}, {1296, 1576}, {1297, 51240}, {2697, 47339}, {4558, 12074}, {4611, 58121}, {5467, 58090}, {6323, 42852}, {39382, 57153}

X(58101) = trilinear pole of line {6, 35268}
X(58101) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52284}, {661, 21356}, {1577, 5024}
X(58101) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 21356}, {40596, 52284}
X(58101) = X(i)-cross conjugate of X(j) for these {i, j}: {11284, 250}
X(58101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(5085)}}, {{A, B, C, X(2434), X(40126)}}, {{A, B, C, X(3545), X(4230)}}, {{A, B, C, X(4558), X(35357)}}, {{A, B, C, X(5467), X(21309)}}, {{A, B, C, X(6593), X(52951)}}, {{A, B, C, X(7473), X(37953)}}, {{A, B, C, X(9181), X(38010)}}, {{A, B, C, X(37937), X(47339)}}
X(58101) = barycentric product X(i)*X(j) for these (i, j): {110, 18842}
X(58101) = barycentric quotient X(i)/X(j) for these (i, j): {110, 21356}, {112, 52284}, {1576, 5024}, {18842, 850}


X(58102) = X(98)X(3090)∩X(111)X(5359)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)+c^2)*(3*a^2+b^2+3*c^2) : :

X(58102) lies on the circumcircle and these lines: {74, 55676}, {98, 3090}, {111, 5359}, {842, 37939}, {907, 1576}, {1289, 57153}, {1297, 9715}, {2770, 47316}, {4558, 7953}, {4611, 7954}, {14929, 51508}, {35278, 53862}, {35357, 58090}, {53273, 58096}

X(58102) = trilinear pole of line {6, 21969}
X(58102) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7378}, {661, 3619}, {1577, 9605}, {7716, 14208}
X(58102) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 3619}, {40596, 7378}
X(58102) = X(i)-cross conjugate of X(j) for these {i, j}: {7484, 250}
X(58102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2409), X(9715)}}, {{A, B, C, X(2420), X(55676)}}, {{A, B, C, X(3090), X(4230)}}, {{A, B, C, X(4558), X(57678)}}, {{A, B, C, X(5359), X(5468)}}, {{A, B, C, X(7473), X(37939)}}, {{A, B, C, X(7482), X(47316)}}, {{A, B, C, X(41676), X(43188)}}
X(58102) = barycentric product X(i)*X(j) for these (i, j): {110, 18841}
X(58102) = barycentric quotient X(i)/X(j) for these (i, j): {110, 3619}, {112, 7378}, {1576, 9605}, {18841, 850}


X(58103) = X(103)X(3295)∩X(105)X(3361)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a-b)^2-4*(a+b)*c+3*c^2)*(a^2+3*b^2-4*b*c+c^2-2*a*(2*b+c)) : :

X(58103) lies on the circumcircle and these lines: {103, 3295}, {104, 10390}, {105, 3361}, {106, 34821}, {675, 56348}, {972, 35242}, {1311, 56054}, {1461, 53243}, {1477, 51773}, {2283, 8694}, {2717, 5122}, {15731, 31508}

X(58103) = trilinear pole of line {6, 34821}
X(58103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 10389}, {650, 18230}
X(58103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(3361)}}
X(58103) = barycentric product X(i)*X(j) for these (i, j): {101, 56348}, {109, 56054}, {190, 34821}, {10390, 651}
X(58103) = barycentric quotient X(i)/X(j) for these (i, j): {109, 18230}, {1415, 10389}, {10390, 4391}, {34821, 514}, {56054, 35519}, {56348, 3261}


X(58104) = X(103)X(3746)∩X(104)X(5049)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2-3*a*b+2*b^2-2*a*c-3*b*c+c^2)*((a-b)^2-3*(a+b)*c+2*c^2) : :

X(58104) lies on the circumcircle and these lines: {103, 3746}, {104, 5049}, {105, 32636}, {692, 58107}, {919, 36075}, {972, 31663}, {1202, 2291}, {1311, 32015}, {2283, 8701}, {2717, 5131}, {8693, 36074}

X(58104) = trilinear pole of line {6, 38849}
X(58104) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 3748}, {650, 6666}, {4041, 17201}, {42438, 56322}
X(58104) = X(i)-cross conjugate of X(j) for these {i, j}: {1475, 1262}
X(58104) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(32636)}}, {{A, B, C, X(5049), X(23981)}}
X(58104) = barycentric product X(i)*X(j) for these (i, j): {109, 32015}
X(58104) = barycentric quotient X(i)/X(j) for these (i, j): {109, 6666}, {1415, 3748}, {4565, 17201}, {32015, 35519}


X(58105) = X(41)X(2291)∩X(106)X(1471)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*(a-b)^2-(a+b)*c-c^2)*(2*a^2-(b-c)*(b+2*c)-a*(b+4*c)) : :

X(58105) lies on the circumcircle and these lines: {41, 2291}, {59, 53887}, {103, 5010}, {104, 37606}, {105, 2099}, {106, 1471}, {651, 1308}, {692, 14733}, {934, 23346}, {1110, 39640}, {1311, 55954}, {1633, 46003}, {2222, 35280}, {2283, 4588}, {2717, 3245}, {4559, 28899}, {15728, 38859}, {23890, 32630}

X(58105) = trilinear pole of line {6, 2078}
X(58105) = X(i)-isoconjugate-of-X(j) for these {i, j}: {85, 17425}, {513, 5231}, {522, 4860}, {650, 6173}, {3676, 42014}, {3900, 21314}, {24002, 32578}, {35348, 44785}
X(58105) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 5231}
X(58105) = X(i)-cross conjugate of X(j) for these {i, j}: {37541, 59}
X(58105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(41), X(692)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(1170)}}, {{A, B, C, X(2099), X(2283)}}, {{A, B, C, X(5549), X(36086)}}, {{A, B, C, X(23981), X(37606)}}
X(58105) = barycentric product X(i)*X(j) for these (i, j): {109, 55954}, {55920, 651}
X(58105) = barycentric quotient X(i)/X(j) for these (i, j): {101, 5231}, {109, 6173}, {692, 34522}, {1415, 4860}, {1461, 21314}, {2175, 17425}, {55920, 4391}, {55954, 35519}


X(58106) = X(103)X(5217)∩X(105)X(3340)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(3*(a-b)^2-2*(a+b)*c-c^2)*(3*a^2-2*a*(b+3*c)-(b-c)*(b+3*c)) : :

X(58106) lies on the circumcircle and these lines: {103, 5217}, {104, 53054}, {105, 3340}, {675, 56331}, {692, 53622}, {1190, 2291}, {2283, 28162}, {2717, 5183}, {3939, 43344}, {4559, 26716}

X(58106) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 10980}
X(58106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(3340)}}, {{A, B, C, X(23981), X(53054)}}
X(58106) = barycentric product X(i)*X(j) for these (i, j): {101, 56331}
X(58106) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 10980}, {56331, 3261}


X(58107) = X(104)X(56028)∩X(105)X(5221)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*(a-b)^2-3*(a+b)*c+c^2)*(2*a^2-3*a*b+b^2-4*a*c-3*b*c+2*c^2) : :

X(58107) lies on the circumcircle and these lines: {104, 56028}, {105, 5221}, {692, 58104}, {919, 36074}, {1311, 56060}, {2283, 8652}, {8693, 36075}, {26700, 35280}

X(58107) = X(i)-isoconjugate-of-X(j) for these {i, j}: {650, 20195}
X(58107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(5221)}}
X(58107) = barycentric product X(i)*X(j) for these (i, j): {109, 56060}, {56028, 651}, {56350, 934}
X(58107) = barycentric quotient X(i)/X(j) for these (i, j): {109, 20195}, {56028, 4391}, {56060, 35519}, {56350, 4397}


X(58108) = X(103)X(5204)∩X(1615)X(2291)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(3*(a-b)^2+2*(a+b)*c-5*c^2)*(3*a^2+2*a*b-5*b^2-6*a*c+2*b*c+3*c^2) : :

X(58108) lies on the circumcircle and these lines: {103, 5204}, {675, 38254}, {972, 7991}, {1311, 36605}, {1615, 2291}, {2283, 8699}, {2370, 36625}, {2717, 5048}

X(58108) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 53056}, {650, 20059}, {693, 38293}, {3239, 33633}
X(58108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6614), X(32675)}}
X(58108) = barycentric product X(i)*X(j) for these (i, j): {101, 38254}, {109, 36605}, {1461, 36625}, {36627, 934}
X(58108) = barycentric quotient X(i)/X(j) for these (i, j): {109, 20059}, {1415, 53056}, {32739, 38293}, {36605, 35519}, {36625, 52622}, {36627, 4397}, {38254, 3261}


X(58109) = X(1)X(15731)∩X(103)X(999)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a-b)^2+4*(a+b)*c-5*c^2)*(a^2+4*a*b-5*b^2-2*a*c+4*b*c+c^2) : :

X(58109) lies on the circumcircle and these lines: {1, 15731}, {36, 43080}, {56, 2291}, {100, 23890}, {101, 23346}, {103, 999}, {104, 11372}, {105, 13462}, {106, 42314}, {675, 56274}, {972, 3576}, {1311, 55948}, {1319, 53181}, {1420, 15728}, {1461, 14733}, {2283, 6014}, {2717, 5126}, {5563, 38451}, {30244, 41343}

X(58109) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 46919}, {522, 35445}, {650, 6172}, {664, 23056}, {4105, 47374}
X(58109) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 46919}, {39025, 23056}
X(58109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4626)}}, {{A, B, C, X(56), X(1461)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(653), X(7091)}}, {{A, B, C, X(2283), X(13462)}}, {{A, B, C, X(3445), X(8750)}}
X(58109) = barycentric product X(i)*X(j) for these (i, j): {101, 56274}, {109, 55948}, {55922, 651}
X(58109) = barycentric quotient X(i)/X(j) for these (i, j): {56, 46919}, {109, 6172}, {1415, 35445}, {3063, 23056}, {4617, 47374}, {55922, 4391}, {55948, 35519}, {56274, 3261}


X(58110) = X(99)X(58127)∩X(105)X(678)

Barycentrics    a^2*(a-b)*(a-c)*(a+7*b+c)*(a+b+7*c) : :

X(58110) lies on the circumcircle and these lines: {99, 58127}, {105, 678}, {1331, 28206}, {2291, 3196}, {3939, 4588}, {4557, 6014}, {15506, 15731}, {23344, 28170}, {53280, 58089}, {54440, 58115}

X(58110) = trilinear pole of line {6, 8162}
X(58110) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58136}, {513, 38314}
X(58110) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58136}, {39026, 38314}
X(58110) = X(i)-cross conjugate of X(j) for these {i, j}: {58136, 6}
X(58110) = barycentric product X(i)*X(j) for these (i, j): {6, 58127}
X(58110) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58136}, {101, 38314}, {58127, 76}


X(58111) = X(32)X(737)∩X(98)X(3407)

Barycentrics    a^2*(a^6-b^6)*(a^6-c^6) : :

X(58111) lies on the circumcircle and these lines: {32, 737}, {74, 26316}, {98, 3407}, {99, 14574}, {111, 18898}, {560, 723}, {689, 4630}, {707, 1501}, {733, 46288}, {753, 38813}, {805, 1576}, {815, 34069}, {833, 1492}, {1297, 19121}, {1916, 19575}, {2367, 3114}, {2857, 8840}, {9075, 40415}, {9076, 14617}, {29011, 35422}

X(58111) = trilinear pole of line {6, 6660}
X(58111) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 50549}, {523, 51836}, {525, 46507}, {561, 17415}, {656, 5117}, {661, 3314}, {824, 3721}, {850, 3116}, {982, 4122}, {984, 3801}, {1491, 2887}, {1577, 3094}, {1928, 9006}, {3117, 20948}, {3250, 20234}, {3773, 3777}, {4481, 16886}, {14208, 56920}, {18904, 23596}, {30870, 40935}
X(58111) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 50549}, {36830, 3314}, {39054, 56784}, {40368, 17415}, {40369, 9006}, {40596, 5117}
X(58111) = X(i)-cross conjugate of X(j) for these {i, j}: {11328, 250}, {42826, 57655}, {50549, 6}
X(58111)= pole of line {3314, 46546} with respect to the Kiepert parabola
X(58111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(52081)}}, {{A, B, C, X(877), X(3818)}}, {{A, B, C, X(1576), X(46288)}}, {{A, B, C, X(2420), X(26316)}}, {{A, B, C, X(2421), X(7806)}}, {{A, B, C, X(4230), X(13862)}}, {{A, B, C, X(4630), X(14574)}}, {{A, B, C, X(14560), X(35138)}}, {{A, B, C, X(14966), X(39750)}}
X(58111) = barycentric product X(i)*X(j) for these (i, j): {110, 3407}, {163, 3113}, {1501, 9063}, {1576, 3114}, {2715, 8840}, {14602, 41073}, {14617, 827}, {18898, 99}, {33514, 6}, {34069, 38810}, {38813, 4586}, {40415, 825}, {43722, 648}
X(58111) = barycentric quotient X(i)/X(j) for these (i, j): {32, 50549}, {110, 3314}, {112, 5117}, {163, 51836}, {662, 56784}, {825, 2887}, {1492, 20234}, {1501, 17415}, {1576, 3094}, {3113, 20948}, {3114, 44173}, {3407, 850}, {8685, 16603}, {9063, 40362}, {9233, 9006}, {14574, 3117}, {14617, 23285}, {18898, 523}, {32676, 46507}, {33514, 76}, {34069, 3721}, {38810, 30870}, {38813, 824}, {38840, 30872}, {40746, 3801}, {41073, 44160}, {43722, 525}, {56980, 9865}


X(58112) = X(99)X(2528)∩X(100)X(5389)

Barycentrics    a^2*(a-b)*(a+b)*(a^2+b^2)*(a-c)*(a+c)*(a^2+c^2)*(a^4+b^4-2*c^4)*(a^4-2*b^4+c^4) : :

X(58112) lies on the circumcircle and these lines: {74, 56917}, {99, 2528}, {100, 5389}, {110, 57132}, {111, 46228}, {251, 53969}, {689, 23285}, {703, 51320}, {755, 8627}, {827, 3005}, {4577, 9069}, {9076, 43098}

X(58112) = isogonal conjugate of X(33907)
X(58112) = trilinear pole of line {6, 755}
X(58112) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33907}, {38, 14420}, {561, 14403}, {661, 52906}, {754, 8061}, {826, 2244}, {1930, 14428}, {2084, 35549}, {2530, 4156}
X(58112) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 33907}, {36830, 52906}, {40368, 14403}
X(58112) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(351), X(17997)}}, {{A, B, C, X(2528), X(3005)}}
X(58112) = barycentric product X(i)*X(j) for these (i, j): {4577, 755}, {43098, 827}, {52376, 5389}
X(58112) = barycentric quotient X(i)/X(j) for these (i, j): {6, 33907}, {110, 52906}, {251, 14420}, {755, 826}, {827, 754}, {1501, 14403}, {4577, 35549}, {4628, 4156}, {4630, 8627}, {34072, 2244}, {43098, 23285}, {46288, 14428}


X(58113) = X(112)X(4630)∩X(251)X(1297)

Barycentrics    a^2*(a^4-b^4)*(a^4-c^4)*(a^8-b^8+2*b^4*c^4-c^8) : :

X(58113) lies on the circumcircle and these lines: {66, 9076}, {74, 46765}, {98, 16277}, {99, 44766}, {111, 33632}, {112, 4630}, {251, 1297}, {711, 38838}, {733, 40146}, {755, 2353}, {935, 15388}, {1176, 46766}, {1501, 18018}, {1691, 37801}, {2373, 40404}, {34168, 40357}, {34237, 46243}

X(58113) = isogonal conjugate of X(23881)
X(58113) = trilinear pole of line {6, 2353}
X(58113) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23881}, {38, 33294}, {315, 8061}, {826, 1760}, {1577, 3313}, {1930, 2485}, {2084, 40073}, {2172, 23285}, {2530, 4150}, {3005, 20641}, {3954, 21178}, {4064, 16715}, {4456, 48084}, {4463, 16892}, {4599, 55070}, {8673, 20883}, {14208, 40938}, {15523, 16757}, {17442, 57069}, {20948, 23208}, {24018, 41375}
X(58113) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23881}, {3124, 55070}
X(58113) = X(i)-cross conjugate of X(j) for these {i, j}: {66, 15388}, {3005, 18018}, {20960, 250}, {23285, 38826}
X(58113) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32713), X(56008)}}
X(58113) = barycentric product X(i)*X(j) for these (i, j): {66, 827}, {110, 16277}, {112, 40404}, {251, 44766}, {1176, 1289}, {2156, 4599}, {2353, 4577}, {15388, 4580}, {18018, 4630}, {21458, 46967}, {40146, 689}, {40357, 56008}, {46765, 648}, {53657, 6}
X(58113) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23881}, {66, 23285}, {251, 33294}, {827, 315}, {1176, 57069}, {1289, 1235}, {1576, 3313}, {2353, 826}, {3005, 55070}, {4577, 40073}, {4599, 20641}, {4628, 4150}, {4630, 22}, {10547, 8673}, {14574, 23208}, {15388, 41676}, {16277, 850}, {18105, 53569}, {32713, 41375}, {33515, 38842}, {34072, 1760}, {40146, 3005}, {40404, 3267}, {44766, 8024}, {46288, 2485}, {46765, 525}, {46766, 47125}, {53657, 76}


X(58114) = X(99)X(33515)∩X(711)X(1501)

Barycentrics    a^2*(a^8-b^8)*(a^8-c^8) : :

X(58114) lies on the circumcircle and these lines: {99, 33515}, {711, 1501}, {733, 44167}, {755, 38826}, {805, 4630}, {817, 34072}, {2367, 3115}, {9076, 40416}

X(58114) = trilinear pole of line {6, 33717}
X(58114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {626, 8061}, {656, 46508}, {661, 16893}, {826, 4118}, {2084, 44166}, {2085, 23285}, {2530, 16894}, {3005, 20627}, {3118, 20948}, {3954, 21110}
X(58114) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 16893}, {40596, 46508}
X(58114) = barycentric product X(i)*X(j) for these (i, j): {1576, 3115}, {33515, 6}, {34072, 38847}, {38826, 4577}, {38830, 4630}, {40416, 827}, {44167, 689}
X(58114) = barycentric quotient X(i)/X(j) for these (i, j): {110, 16893}, {112, 46508}, {689, 8039}, {827, 626}, {3115, 44173}, {4577, 44166}, {4599, 20627}, {4628, 16894}, {4630, 20859}, {14574, 3118}, {33515, 76}, {34072, 4118}, {38826, 826}, {40416, 23285}, {44167, 3005}


X(58115) = X(106)X(4649)∩X(213)X(739)

Barycentrics    a*(a-b)*(a-c)*(4*a*b+(a+b)*c)*(b*c+a*(b+4*c)) : :

X(58115) lies on the circumcircle and these lines: {99, 23343}, {106, 4649}, {111, 56156}, {213, 739}, {675, 56169}, {759, 56126}, {898, 4557}, {1023, 28841}, {3573, 28210}, {54440, 58110}

X(58115) = trilinear pole of line {6, 30653}
X(58115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 30950}, {514, 16971}, {4519, 43924}
X(58115) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 4688}, {39026, 30950}
X(58115) = X(i)-cross conjugate of X(j) for these {i, j}: {54981, 1016}
X(58115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(213), X(4557)}}, {{A, B, C, X(662), X(40408)}}, {{A, B, C, X(666), X(4604)}}, {{A, B, C, X(1023), X(4649)}}, {{A, B, C, X(4555), X(37138)}}, {{A, B, C, X(5549), X(36802)}}
X(58115) = barycentric product X(i)*X(j) for these (i, j): {101, 56169}, {190, 55932}, {56126, 662}, {56156, 99}
X(58115) = barycentric quotient X(i)/X(j) for these (i, j): {100, 4688}, {101, 30950}, {644, 4519}, {692, 16971}, {55932, 514}, {56126, 1577}, {56156, 523}, {56169, 3261}


X(58116) = X(74)X(55639)∩X(98)X(3523)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+5*b^2+c^2)*(a^2+b^2+5*c^2) : :

X(58116) lies on the circumcircle and these lines: {74, 55639}, {98, 3523}, {477, 47092}, {842, 37945}, {1297, 33524}, {1598, 3563}, {1634, 3565}, {4558, 58100}, {37935, 40118}, {53273, 58093}

X(58116) = trilinear pole of line {6, 3787}
X(58116) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7714}, {661, 51171}
X(58116) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 51171}, {40596, 7714}
X(58116) = X(i)-cross conjugate of X(j) for these {i, j}: {15815, 249}, {47133, 2}
X(58116)= pole of line {7484, 51171} with respect to the Kiepert parabola
X(58116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2409), X(33524)}}, {{A, B, C, X(3523), X(4230)}}, {{A, B, C, X(7468), X(37935)}}, {{A, B, C, X(7473), X(37945)}}, {{A, B, C, X(7480), X(47092)}}, {{A, B, C, X(11794), X(52608)}}
X(58116) = barycentric quotient X(i)/X(j) for these (i, j): {110, 51171}, {112, 7714}


X(58117) = X(1)X(28523)∩X(727)X(1468)

Barycentrics    a*(a-b)*(a-c)*(3*a*b-a*c+3*b*c)*(a*b-3*(a+b)*c) : :

X(58117) lies on the circumcircle and these lines: {1, 28523}, {105, 39740}, {190, 29227}, {715, 39673}, {727, 1468}, {3573, 28162}, {5284, 28326}, {5303, 9103}, {8699, 54440}

X(58117) = trilinear pole of line {6, 16569}
X(58117) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 42043}, {649, 4704}
X(58117) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 4704}, {39026, 42043}
X(58117) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32042)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(799), X(32039)}}, {{A, B, C, X(4586), X(27834)}}
X(58117) = barycentric product X(i)*X(j) for these (i, j): {100, 39740}
X(58117) = barycentric quotient X(i)/X(j) for these (i, j): {100, 4704}, {101, 42043}, {39740, 693}


X(58118) = X(98)X(31630)∩X(689)X(1634)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(2*a^2*b^2+(a^2+b^2)*c^2)*(b^2*c^2+a^2*(b^2+2*c^2)) : :

X(58118) lies on the circumcircle and these lines: {98, 31630}, {111, 39968}, {689, 1634}, {729, 42346}, {733, 31613}, {805, 10330}, {4576, 43357}, {4609, 35566}, {7953, 17941}, {31622, 39427}, {34537, 53621}, {43187, 53701}

X(58118) = trilinear pole of line {6, 1078}
X(58118) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 21113}, {512, 17445}, {661, 20965}, {667, 21022}, {669, 20889}, {798, 3934}, {2084, 18092}, {17176, 50487}, {18070, 42548}
X(58118) = X(i)-Dao conjugate of X(j) for these {i, j}: {6626, 21113}, {6631, 21022}, {31998, 3934}, {36830, 20965}, {39054, 17445}
X(58118) = X(i)-cross conjugate of X(j) for these {i, j}: {83, 4590}, {3051, 34537}, {41328, 249}
X(58118)= pole of line {7824, 20965} with respect to the Kiepert parabola
X(58118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1634), X(17938)}}, {{A, B, C, X(2966), X(52936)}}, {{A, B, C, X(4576), X(18829)}}, {{A, B, C, X(4577), X(43187)}}, {{A, B, C, X(10330), X(17941)}}, {{A, B, C, X(11794), X(53080)}}, {{A, B, C, X(31614), X(39291)}}, {{A, B, C, X(35137), X(41209)}}
X(58118) = barycentric product X(i)*X(j) for these (i, j): {110, 31630}, {1634, 31622}, {31613, 689}, {39968, 99}, {42346, 670}
X(58118) = barycentric quotient X(i)/X(j) for these (i, j): {86, 21113}, {99, 3934}, {110, 20965}, {190, 21022}, {662, 17445}, {799, 20889}, {4558, 22062}, {4577, 18092}, {4610, 17176}, {6331, 42394}, {31613, 3005}, {31622, 52618}, {31630, 850}, {39968, 523}, {42346, 512}


X(58119) = X(111)X(38262)∩X(729)X(33786)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(3*a^2*b^2-(a^2+b^2)*c^2)*(b^2*c^2+a^2*(b^2-3*c^2)) : :

X(58119) lies on the circumcircle and these lines: {111, 38262}, {729, 33786}, {741, 38275}, {805, 57216}, {3565, 17941}, {4563, 25424}, {5970, 32530}, {26233, 43663}

X(58119) = trilinear pole of line {6, 3552}
X(58119) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 21206}, {512, 16571}, {661, 21001}, {667, 21095}, {669, 20945}, {798, 20081}
X(58119) = X(i)-Dao conjugate of X(j) for these {i, j}: {6626, 21206}, {6631, 21095}, {31998, 20081}, {36830, 21001}, {39054, 16571}
X(58119) = X(i)-cross conjugate of X(j) for these {i, j}: {36650, 34537}, {57150, 99}
X(58119)= pole of line {57150, 58119} with respect to the circumcircle
X(58119)= pole of line {21001, 33014} with respect to the Kiepert parabola
X(58119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4603), X(56053)}}, {{A, B, C, X(18829), X(43188)}}, {{A, B, C, X(35136), X(41209)}}, {{A, B, C, X(37880), X(44766)}}
X(58119) = barycentric product X(i)*X(j) for these (i, j): {36615, 670}, {38262, 99}, {38275, 799}
X(58119) = barycentric quotient X(i)/X(j) for these (i, j): {86, 21206}, {99, 20081}, {110, 21001}, {190, 21095}, {662, 16571}, {799, 20945}, {4558, 22152}, {4573, 17091}, {36615, 512}, {38262, 523}, {38275, 661}, {57150, 32746}


X(58120) = X(98)X(547)∩X(111)X(5007)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)+2*c^2)*(5*a^2+2*b^2+5*c^2) : :

X(58120) lies on the circumcircle and these lines: {74, 55674}, {98, 547}, {111, 5007}, {842, 37923}, {5467, 7953}, {6323, 12055}, {12074, 35357}, {32694, 33803}

X(58120) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 20582}
X(58120) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 20582}
X(58120) = X(i)-cross conjugate of X(j) for these {i, j}: {5008, 249}, {7496, 250}
X(58120) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(547), X(4230)}}, {{A, B, C, X(2420), X(55674)}}, {{A, B, C, X(5007), X(5467)}}, {{A, B, C, X(7473), X(37923)}}
X(58120) = barycentric quotient X(i)/X(j) for these (i, j): {110, 20582}


X(58121) = X(74)X(55658)∩X(98)X(3526)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*a^2+3*b^2+2*c^2)*(2*(a^2+b^2)+3*c^2) : :

X(58121) lies on the circumcircle and these lines: {74, 55658}, {98, 3526}, {842, 37947}, {1634, 7954}, {4611, 58101}, {6573, 57150}, {20189, 35278}, {33638, 53273}

X(58121) = trilinear pole of line {6, 15246}
X(58121) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 48138}, {661, 47355}
X(58121) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 47355}, {40589, 48138}
X(58121) = X(i)-cross conjugate of X(j) for these {i, j}: {9605, 249}
X(58121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2396), X(7930)}}, {{A, B, C, X(3526), X(4230)}}, {{A, B, C, X(7473), X(37947)}}
X(58121) = barycentric quotient X(i)/X(j) for these (i, j): {58, 48138}, {110, 47355}


X(58122) = X(99)X(6631)∩X(100)X(4979)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+3*a*b+b^2-(a+b)*c-3*c^2)*(a^2-a*b-3*b^2+3*a*c-b*c+c^2) : :

X(58122) lies on the circumcircle and these lines: {99, 6631}, {100, 4979}, {101, 50512}, {110, 41405}, {649, 8701}, {902, 8700}, {1252, 28176}, {1914, 28517}, {2291, 20670}, {17735, 53688}

X(58122) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 20016}
X(58122) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(649), X(4979)}}, {{A, B, C, X(6631), X(41405)}}
X(58122) = barycentric quotient X(i)/X(j) for these (i, j): {101, 20016}


X(58123) = X(6)X(28323)∩X(106)X(7280)

Barycentrics    a^2*(a-b)*(2*(a+b)-5*c)*(a-c)*(2*a-5*b+2*c) : :

X(58123) lies on the circumcircle and these lines: {6, 28323}, {104, 12702}, {106, 7280}, {692, 28188}, {1331, 58124}, {1388, 8686}, {4756, 8706}, {8652, 23845}, {8683, 58126}, {8697, 23832}, {28148, 35281}, {53280, 58125}

X(58123) = trilinear pole of line {6, 9336}
X(58123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58152}, {513, 3633}, {649, 46938}
X(58123) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58152}, {5375, 46938}, {39026, 3633}
X(58123) = X(i)-cross conjugate of X(j) for these {i, j}: {58152, 6}
X(58123) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1388), X(23832)}}, {{A, B, C, X(4756), X(23845)}}, {{A, B, C, X(7280), X(23703)}}, {{A, B, C, X(12702), X(23981)}}
X(58123) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58152}, {100, 46938}, {101, 3633}


X(58124) = X(104)X(7991)∩X(106)X(5204)

Barycentrics    a^2*(a-b)*(3*(a+b)-7*c)*(a-c)*(3*a-7*b+3*c) : :

X(58124) lies on the circumcircle and these lines: {104, 7991}, {106, 5204}, {675, 39709}, {1331, 58123}, {2718, 5048}, {3939, 28218}, {8652, 35281}, {8699, 23832}, {23845, 28148}, {28891, 41405}

X(58124) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58153}, {513, 20050}
X(58124) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58153}, {39026, 20050}
X(58124) = X(i)-cross conjugate of X(j) for these {i, j}: {58153, 6}
X(58124) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3257), X(38828)}}, {{A, B, C, X(5204), X(23703)}}, {{A, B, C, X(7991), X(23981)}}
X(58124) = barycentric product X(i)*X(j) for these (i, j): {101, 39709}
X(58124) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58153}, {101, 20050}, {39709, 3261}


X(58125) = X(99)X(4767)∩X(106)X(5313)

Barycentrics    a^2*(a-b)*(a-c)*(2*a+5*b+2*c)*(2*(a+b)+5*c) : :

X(58125) lies on the circumcircle and these lines: {99, 4767}, {106, 5313}, {692, 28180}, {4557, 4588}, {4756, 46961}, {23344, 28152}, {52923, 53637}, {53280, 58123}

X(58125) = isogonal conjugate of X(28220)
X(58125) = trilinear pole of line {6, 9331}
X(58125) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 28220}, {75, 58141}, {513, 25055}, {1019, 52706}
X(58125) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 28220}, {206, 58141}, {39026, 25055}
X(58125) = X(i)-cross conjugate of X(j) for these {i, j}: {58141, 6}
X(58125)= pole of line {28220, 58141} with respect to the Stammler hyperbola
X(58125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4557), X(4767)}}, {{A, B, C, X(5313), X(17780)}}, {{A, B, C, X(37138), X(51562)}}
X(58125) = barycentric quotient X(i)/X(j) for these (i, j): {6, 28220}, {32, 58141}, {101, 25055}, {4557, 52706}


X(58126) = X(106)X(5010)∩X(2718)X(3245)

Barycentrics    a^2*(a-b)*(2*(a+b)-7*c)*(a-c)*(2*a-7*b+2*c) : :

X(58126) lies on the circumcircle and these lines: {106, 5010}, {2099, 8686}, {2718, 3245}, {4588, 23832}, {4767, 6079}, {8683, 58123}, {23845, 28196}, {28170, 35281}

X(58126) = trilinear pole of line {6, 37602}
X(58126) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58151}
X(58126) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58151}, {39026, 51093}
X(58126) = X(i)-cross conjugate of X(j) for these {i, j}: {58151, 6}
X(58126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2099), X(4767)}}, {{A, B, C, X(5010), X(23703)}}
X(58126) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58151}, {101, 51093}


X(58127) = X(99)X(58110)∩X(664)X(4767)

Barycentrics    (a-b)*(a-c)*(a+7*b+c)*(a+b+7*c) : :

X(58127) lies on the Steiner circumellipse and these lines: {99, 58110}, {664, 4767}, {666, 53582}, {903, 52709}, {1121, 30578}, {2481, 4738}, {3227, 16831}, {3699, 4597}, {3952, 53659}, {4781, 58135}, {17780, 58133}

X(58127) = isogonal conjugate of X(58136)
X(58127) = trilinear pole of line {2, 4029}
X(58127) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58136}, {667, 38314}
X(58127) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58136}, {6631, 38314}
X(58127) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(3699), X(4767)}}, {{A, B, C, X(16831), X(23891)}}
X(58127) = barycentric product X(i)*X(j) for these (i, j): {58110, 76}
X(58127) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58136}, {190, 38314}, {58110, 6}


X(58128) = X(10)X(903)∩X(190)X(4169)

Barycentrics    (a-b)*(a-c)*(a+4*b+c)*(a+b+4*c) : :

X(58128) lies on the Steiner circumellipse and these lines: {10, 903}, {99, 17780}, {100, 58134}, {190, 4169}, {671, 27797}, {2481, 56115}, {3226, 41434}, {3227, 16826}, {3699, 58133}, {3952, 4555}, {4597, 4767}, {6542, 35168}, {6633, 35148}, {14616, 51975}, {18822, 50016}, {18827, 56134}, {29615, 35170}, {33948, 53647}, {53332, 58130}

X(58128) = isogonal conjugate of X(58139)
X(58128) = isotomic conjugate of X(28209)
X(58128) = trilinear pole of line {2, 3943}
X(58128) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58139}, {31, 28209}, {41, 30722}, {513, 21747}, {551, 667}, {649, 16666}, {798, 26860}, {1919, 24589}, {3063, 4031}, {3248, 4781}, {3707, 57181}, {3733, 21806}, {6591, 22357}, {9456, 14435}
X(58128) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28209}, {3, 58139}, {3160, 30722}, {4370, 14435}, {5375, 16666}, {6631, 551}, {9296, 24589}, {10001, 4031}, {31998, 26860}, {39026, 21747}
X(58128) = X(i)-cross conjugate of X(j) for these {i, j}: {3679, 1016}, {17360, 4998}, {28209, 2}, {31035, 31625}
X(58128)= pole of line {28209, 58139} with respect to the Wallace hyperbola
X(58128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3952)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(4756), X(46961)}}, {{A, B, C, X(4767), X(9059)}}, {{A, B, C, X(6542), X(6633)}}, {{A, B, C, X(8709), X(37209)}}, {{A, B, C, X(9180), X(18004)}}, {{A, B, C, X(13396), X(27834)}}, {{A, B, C, X(16826), X(23891)}}, {{A, B, C, X(48163), X(48247)}}
X(58128) = barycentric product X(i)*X(j) for these (i, j): {190, 55955}, {1978, 41434}, {4554, 56115}, {27797, 99}, {28210, 76}, {40434, 668}, {56134, 799}
X(58128) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28209}, {6, 58139}, {7, 30722}, {99, 26860}, {100, 16666}, {101, 21747}, {190, 551}, {519, 14435}, {646, 3902}, {664, 4031}, {668, 24589}, {1016, 4781}, {1018, 21806}, {1331, 22357}, {3699, 3707}, {3807, 4407}, {4033, 4714}, {4076, 30727}, {4555, 42026}, {4767, 16590}, {27797, 523}, {28210, 6}, {40434, 513}, {41434, 649}, {55955, 514}, {56115, 650}, {56134, 661}


X(58129) = X(99)X(28214)∩X(903)X(28653)

Barycentrics    (a-b)*(a-c)*(3*a+4*b+3*c)*(3*(a+b)+4*c) : :

X(58129) lies on the Steiner circumellipse and these lines: {99, 28214}, {671, 56209}, {903, 28653}, {2481, 56206}, {3227, 56037}, {4756, 32042}, {18827, 56215}, {32094, 35148}, {33948, 58132}

X(58129) = isogonal conjugate of X(58145)
X(58129) = isotomic conjugate of X(28213)
X(58129) = trilinear pole of line {2, 4399}
X(58129) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58145}, {31, 28213}, {667, 19862}, {3063, 4114}, {4983, 39670}
X(58129) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28213}, {3, 58145}, {6631, 19862}, {10001, 4114}
X(58129) = X(i)-cross conjugate of X(j) for these {i, j}: {1698, 1016}, {28213, 2}, {32101, 4600}
X(58129)= pole of line {19862, 43985} with respect to the Yff parabola
X(58129)= pole of line {28213, 58145} with respect to the Wallace hyperbola
X(58129) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(835), X(4756)}}, {{A, B, C, X(18004), X(42345)}}, {{A, B, C, X(24004), X(28653)}}
X(58129) = barycentric product X(i)*X(j) for these (i, j): {190, 56061}, {4554, 56206}, {28214, 76}, {56037, 668}, {56209, 99}, {56215, 799}
X(58129) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28213}, {6, 58145}, {190, 19862}, {664, 4114}, {4629, 39670}, {28214, 6}, {56037, 513}, {56061, 514}, {56206, 650}, {56209, 523}, {56215, 661}


X(58130) = X(99)X(28218)∩X(319)X(903)

Barycentrics    (a-b)*(a+b-4*c)*(a-c)*(a-4*b+c) : :

X(58130) lies on the Steiner circumellipse and these lines: {99, 28218}, {319, 903}, {2481, 56091}, {3227, 27002}, {4561, 58131}, {6540, 21272}, {17791, 35175}, {18827, 56135}, {53332, 58128}

X(58130) = isogonal conjugate of X(58150)
X(58130) = isotomic conjugate of X(28217)
X(58130) = trilinear pole of line {2, 4398}
X(58130) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58150}, {31, 28217}, {41, 30726}, {649, 16669}, {667, 3244}
X(58130) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28217}, {3, 58150}, {3160, 30726}, {5375, 16669}, {6631, 3244}
X(58130) = X(i)-cross conjugate of X(j) for these {i, j}: {3632, 1016}, {17361, 4998}, {28217, 2}
X(58130)= pole of line {28217, 58150} with respect to the Wallace hyperbola
X(58130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(677), X(29337)}}, {{A, B, C, X(1441), X(27808)}}, {{A, B, C, X(8050), X(8706)}}, {{A, B, C, X(17780), X(34641)}}
X(58130) = barycentric product X(i)*X(j) for these (i, j): {190, 39710}, {4554, 56091}, {28218, 76}, {39962, 668}, {56135, 799}
X(58130) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28217}, {6, 58150}, {7, 30726}, {100, 16669}, {190, 3244}, {4076, 30732}, {28218, 6}, {39710, 514}, {39962, 513}, {56091, 650}, {56135, 661}


X(58131) = X(99)X(8699)∩X(1121)X(1997)

Barycentrics    (a-b)*(3*(a+b)-5*c)*(a-c)*(3*a-5*b+3*c) : :

X(58131) lies on the Steiner circumellipse and these lines: {99, 8699}, {903, 4452}, {1121, 1997}, {2481, 40026}, {3227, 36603}, {4561, 58130}, {17089, 32003}, {18822, 57033}, {21272, 58132}

X(58131) = isogonal conjugate of X(58154)
X(58131) = isotomic conjugate of X(4962)
X(58131) = trilinear pole of line {2, 4488}
X(58131) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58154}, {6, 2516}, {31, 4962}, {513, 21000}, {649, 3973}, {650, 38296}, {667, 3621}, {1919, 20942}, {4072, 57129}, {6591, 22147}
X(58131) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4962}, {3, 58154}, {9, 2516}, {5375, 3973}, {6631, 3621}, {9296, 20942}, {39026, 21000}
X(58131) = X(i)-cross conjugate of X(j) for these {i, j}: {4962, 2}, {20014, 1016}, {23813, 86}, {43290, 190}, {46873, 1275}
X(58131)= pole of line {43290, 58131} with respect to the Steiner circumellipse
X(58131)= pole of line {4962, 58154} with respect to the Wallace hyperbola
X(58131) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(4452), X(24004)}}, {{A, B, C, X(4638), X(6614)}}, {{A, B, C, X(6631), X(17089)}}, {{A, B, C, X(17780), X(20049)}}
X(58131) = barycentric product X(i)*X(j) for these (i, j): {76, 8699}, {100, 40026}, {190, 36606}, {36603, 668}, {36621, 3699}, {38255, 664}
X(58131) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2516}, {2, 4962}, {6, 58154}, {100, 3973}, {101, 21000}, {109, 38296}, {190, 3621}, {668, 20942}, {1331, 22147}, {3952, 4072}, {8699, 6}, {36603, 513}, {36606, 514}, {36621, 3676}, {38255, 522}, {40026, 693}


X(58132) = X(99)X(28162)∩X(190)X(17136)

Barycentrics    (a-b)*(a-c)*(3*(a+b)-c)*(3*a-b+3*c) : :

X(58132) lies on the Steiner circumellipse and these lines: {99, 28162}, {100, 53647}, {190, 17136}, {668, 43290}, {671, 56226}, {903, 3672}, {1121, 56201}, {2481, 31997}, {3227, 14759}, {4308, 32098}, {4561, 6540}, {4562, 34024}, {6013, 48343}, {18827, 31503}, {21272, 58131}, {33948, 58129}, {40014, 45036}, {53332, 58135}

X(58132) = isogonal conjugate of X(48338)
X(58132) = isotomic conjugate of X(28161)
X(58132) = trilinear pole of line {2, 1743}
X(58132) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 48338}, {31, 28161}, {649, 3731}, {663, 3340}, {667, 3617}, {1919, 42034}, {3063, 5226}, {4058, 57129}, {8643, 10563}, {14350, 38266}
X(58132) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28161}, {3, 48338}, {5375, 3731}, {6631, 3617}, {9296, 42034}, {10001, 5226}
X(58132) = X(i)-cross conjugate of X(j) for these {i, j}: {3623, 1016}, {10389, 765}, {26109, 4590}, {28161, 2}, {31995, 4998}, {43067, 86}
X(58132)= pole of line {28161, 48338} with respect to the Wallace hyperbola
X(58132) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6013)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(43290)}}, {{A, B, C, X(658), X(4610)}}, {{A, B, C, X(662), X(934)}}, {{A, B, C, X(932), X(37138)}}, {{A, B, C, X(1292), X(36147)}}, {{A, B, C, X(1310), X(4614)}}, {{A, B, C, X(1414), X(4604)}}, {{A, B, C, X(1897), X(46961)}}, {{A, B, C, X(3672), X(24004)}}, {{A, B, C, X(4596), X(13396)}}, {{A, B, C, X(4598), X(51563)}}, {{A, B, C, X(4624), X(37215)}}, {{A, B, C, X(6005), X(48343)}}, {{A, B, C, X(25272), X(54118)}}, {{A, B, C, X(28469), X(40519)}}, {{A, B, C, X(28483), X(32653)}}
X(58132) = barycentric product X(i)*X(j) for these (i, j): {190, 30712}, {28162, 76}, {31503, 799}, {39980, 668}, {56201, 664}, {56226, 99}
X(58132) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28161}, {6, 48338}, {100, 3731}, {145, 14350}, {190, 3617}, {651, 3340}, {664, 5226}, {668, 42034}, {1332, 3984}, {3952, 4058}, {27834, 10563}, {28162, 6}, {30712, 514}, {31503, 661}, {39980, 513}, {56201, 522}, {56226, 523}


X(58133) = X(99)X(28170)∩X(664)X(4781)

Barycentrics    (a-b)*(a-c)*(5*(a+b)-c)*(5*a-b+5*c) : :

X(58133) lies on the Steiner circumellipse and these lines: {99, 28170}, {100, 53659}, {190, 30727}, {664, 4781}, {671, 25529}, {903, 38314}, {1121, 51583}, {2481, 52716}, {3699, 58128}, {4767, 53658}, {6224, 18025}, {17136, 58135}, {17780, 58127}, {32043, 35170}

X(58133) = isogonal conjugate of X(58166)
X(58133) = isotomic conjugate of X(28169)
X(58133) = trilinear pole of line {2, 3707}
X(58133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58166}, {6, 47777}, {31, 28169}, {649, 16676}, {663, 18421}, {667, 53620}
X(58133) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28169}, {3, 58166}, {9, 47777}, {5375, 16676}, {6631, 53620}
X(58133) = X(i)-cross conjugate of X(j) for these {i, j}: {28169, 2}, {52709, 4998}
X(58133)= pole of line {28169, 58166} with respect to the Wallace hyperbola
X(58133) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(662), X(46962)}}, {{A, B, C, X(934), X(4614)}}, {{A, B, C, X(1897), X(4767)}}, {{A, B, C, X(3699), X(4781)}}, {{A, B, C, X(4604), X(4622)}}, {{A, B, C, X(13396), X(37211)}}, {{A, B, C, X(17780), X(38314)}}, {{A, B, C, X(29351), X(37138)}}, {{A, B, C, X(37209), X(51563)}}
X(58133) = barycentric product X(i)*X(j) for these (i, j): {28170, 76}
X(58133) = barycentric quotient X(i)/X(j) for these (i, j): {1, 47777}, {2, 28169}, {6, 58166}, {100, 16676}, {190, 53620}, {651, 18421}, {28170, 6}


X(58134) = X(99)X(28152)∩X(668)X(4781)

Barycentrics    (a-b)*(a-c)*(4*(a+b)+c)*(4*a+b+4*c) : :

X(58134) lies on the Steiner circumellipse and these lines: {99, 28152}, {100, 58128}, {668, 4781}, {903, 4432}, {3227, 30579}, {4427, 4597}, {4562, 53582}, {4767, 6540}, {9963, 35141}

X(58134) = isogonal conjugate of X(58173)
X(58134) = isotomic conjugate of X(28151)
X(58134) = trilinear pole of line {2, 4690}
X(58134) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58173}, {6, 48544}, {31, 28151}, {649, 16672}, {667, 19875}
X(58134) = X(i)-vertex conjugate of X(j) for these {i, j}: {4597, 40519}
X(58134) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28151}, {3, 58173}, {9, 48544}, {5375, 16672}, {6631, 19875}
X(58134) = X(i)-cross conjugate of X(j) for these {i, j}: {28151, 2}, {38314, 1016}
X(58134)= pole of line {28151, 58173} with respect to the Wallace hyperbola
X(58134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(4622)}}, {{A, B, C, X(4427), X(4767)}}, {{A, B, C, X(4606), X(46962)}}, {{A, B, C, X(13396), X(37212)}}, {{A, B, C, X(17780), X(25055)}}
X(58134) = barycentric product X(i)*X(j) for these (i, j): {28152, 76}
X(58134) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48544}, {2, 28151}, {6, 58173}, {100, 16672}, {190, 19875}, {28152, 6}


X(58135) = X(99)X(28148)∩X(664)X(4427)

Barycentrics    (a-b)*(a-c)*(3*(a+b)+c)*(3*a+b+3*c) : :

X(58135) lies on the Steiner circumellipse and these lines: {99, 28148}, {100, 53658}, {190, 30729}, {664, 4427}, {666, 32106}, {671, 19808}, {903, 17321}, {1121, 30711}, {2481, 32092}, {3227, 39948}, {3699, 6540}, {3732, 35177}, {4561, 32042}, {4781, 58127}, {6516, 53640}, {17136, 58133}, {40023, 51576}, {53332, 58132}

X(58135) = isogonal conjugate of X(50509)
X(58135) = isotomic conjugate of X(28147)
X(58135) = trilinear pole of line {2, 1449}
X(58135) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 50509}, {6, 48026}, {31, 28147}, {649, 3247}, {663, 3339}, {667, 9780}, {798, 25507}, {1919, 42029}
X(58135) = X(i)-vertex conjugate of X(j) for these {i, j}: {664, 40519}, {692, 4614}
X(58135) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28147}, {3, 50509}, {9, 48026}, {5375, 3247}, {6631, 9780}, {9296, 42029}, {31998, 25507}
X(58135) = X(i)-cross conjugate of X(j) for these {i, j}: {3622, 1016}, {26044, 4590}, {28147, 2}, {32087, 4998}, {48107, 86}
X(58135)= pole of line {5271, 17394} with respect to the Kiepert parabola
X(58135)= pole of line {28147, 50509} with respect to the Wallace hyperbola
X(58135) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(1414)}}, {{A, B, C, X(651), X(4614)}}, {{A, B, C, X(658), X(4633)}}, {{A, B, C, X(835), X(3699)}}, {{A, B, C, X(934), X(4606)}}, {{A, B, C, X(1018), X(29351)}}, {{A, B, C, X(1305), X(4626)}}, {{A, B, C, X(1310), X(37212)}}, {{A, B, C, X(4596), X(4604)}}, {{A, B, C, X(4625), X(51566)}}, {{A, B, C, X(4632), X(37215)}}, {{A, B, C, X(6013), X(37138)}}, {{A, B, C, X(6014), X(6614)}}, {{A, B, C, X(17321), X(24004)}}, {{A, B, C, X(19808), X(42721)}}, {{A, B, C, X(29119), X(32653)}}, {{A, B, C, X(37211), X(52935)}}
X(58135) = barycentric product X(i)*X(j) for these (i, j): {190, 28626}, {28148, 76}, {30711, 664}, {39948, 668}
X(58135) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48026}, {2, 28147}, {6, 50509}, {99, 25507}, {100, 3247}, {190, 9780}, {651, 3339}, {668, 42029}, {1332, 3951}, {4552, 3947}, {28148, 6}, {28626, 514}, {30711, 522}, {39948, 513}


X(58136) = X(187)X(237)∩X(4394)X(4814)

Barycentrics    a^2*(b-c)*(7*a+b+c) : :
X(58136) = 4*X[2516]+3*X[50517], -8*X[4394]+X[4814], -8*X[4401]+X[47929], 3*X[4498]+4*X[48344], 6*X[4782]+X[21343], -8*X[6050]+X[47912], X[26853]+6*X[45316], -9*X[47820]+2*X[49289], X[48019]+6*X[50515], 4*X[48026]+3*X[50526]

X(58136) lies on these lines: {187, 237}, {2516, 50517}, {4394, 4814}, {4401, 47929}, {4498, 48344}, {4782, 21343}, {6050, 47912}, {26853, 45316}, {47820, 49289}, {48019, 50515}, {48026, 50526}

X(58136) = midpoint of X(i) and X(j) for these {i,j}: {58142, 58148}
X(58136) = reflection of X(i) in X(j) for these {i,j}: {663, 58153}, {58148, 667}, {58153, 58148}
X(58136) = isogonal conjugate of X(58127)
X(58136) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58127}, {75, 58110}
X(58136) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58127}, {206, 58110}
X(58136) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58110, 6}
X(58136)= pole of line {6, 8162} with respect to the circumcircle
X(58136)= pole of line {6, 8162} with respect to the Brocard inellipse
X(58136)= pole of line {99, 58110} with respect to the Stammler hyperbola
X(58136)= pole of line {670, 58127} with respect to the Wallace hyperbola
X(58136) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(38314)}}, {{A, B, C, X(3733), X(8656)}}, {{A, B, C, X(4775), X(43924)}}, {{A, B, C, X(23345), X(58166)}}
X(58136) = barycentric product X(i)*X(j) for these (i, j): {38314, 649}
X(58136) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58127}, {32, 58110}, {38314, 1978}
X(58136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58148, 58153}, {512, 667, 58148}, {649, 1960, 58166}, {649, 58138, 58139}, {649, 58139, 58140}, {649, 58170, 58178}, {649, 663, 58170}, {663, 58140, 58143}, {667, 4834, 58149}, {667, 50512, 8643}, {667, 58137, 58138}, {667, 58141, 1960}, {667, 58144, 58150}, {1960, 50512, 58177}, {1960, 58139, 58141}, {1960, 58141, 649}, {1960, 58166, 663}, {1960, 58177, 4775}, {4834, 58149, 58154}, {4834, 58154, 58162}, {8643, 58168, 58156}, {8656, 58153, 58151}, {48338, 58144, 58180}, {50509, 58140, 50512}, {50512, 58156, 58181}, {58139, 58151, 58142}, {58142, 58148, 512}, {58144, 58150, 48338}, {58144, 58157, 58175}, {58145, 58155, 58172}, {58146, 58160, 58176}, {58148, 58151, 8656}, {58150, 58175, 58157}, {58152, 58179, 58161}, {58156, 58181, 58168}, {58168, 58181, 50509}


X(58137) = X(187)X(237)∩X(3733)X(6085)

Barycentrics    a^2*(b-c)*(6*a+b+c) : :
X(58137) = 2*X[4063]+X[48296], X[4770]+2*X[50517], 2*X[4782]+X[48328], -4*X[6050]+X[48005], X[31291]+2*X[53571], 2*X[48011]+X[48347], X[48053]+2*X[50515]

X(58137) lies on these lines: {187, 237}, {3733, 6085}, {4063, 48296}, {4401, 29198}, {4770, 50517}, {4782, 48328}, {4809, 29184}, {6050, 48005}, {26275, 29136}, {29176, 47804}, {29264, 48231}, {29340, 47818}, {31291, 53571}, {48011, 48347}, {48053, 50515}

X(58137) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58147}, {4775, 58176}, {4834, 58161}, {50512, 58149}, {649, 58155}, {663, 58181}, {667, 58140}, {58159, 58178}, {8643, 58144}
X(58137) = reflection of X(i) in X(j) for these {i,j}: {1960, 58149}, {50512, 58140}, {58140, 58139}, {58147, 50512}, {58149, 667}, {58155, 58150}, {58160, 58155}, {58161, 58156}, {58164, 58161}, {58175, 58181}, {58176, 58182}, {58179, 58147}, {58181, 58145}
X(58137) = perspector of circumconic {{A, B, C, X(6), X(16668)}}
X(58137)= pole of line {13476, 49503} with respect to the DeLongchamps ellipse
X(58137) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(3636)}}, {{A, B, C, X(3230), X(16668)}}, {{A, B, C, X(3733), X(58150)}}
X(58137) = barycentric product X(i)*X(j) for these (i, j): {3636, 649}, {16668, 513}
X(58137) = barycentric quotient X(i)/X(j) for these (i, j): {3636, 1978}, {16668, 668}
X(58137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58147}, {512, 58139, 58140}, {512, 58140, 50512}, {512, 58145, 58181}, {512, 58149, 1960}, {512, 58150, 58155}, {512, 58156, 58161}, {512, 58181, 58175}, {512, 58182, 58176}, {512, 667, 58149}, {649, 58153, 58165}, {649, 663, 58171}, {649, 667, 58150}, {649, 8643, 58162}, {667, 4775, 58148}, {667, 4834, 8656}, {667, 58138, 58139}, {667, 58141, 663}, {667, 58144, 8643}, {667, 58146, 58151}, {1960, 50512, 58179}, {1960, 58147, 512}, {1960, 58174, 58160}, {1960, 58179, 58163}, {4775, 58143, 58182}, {4834, 58156, 58164}, {4834, 8656, 58156}, {8643, 58140, 58144}, {8643, 58178, 58159}, {8656, 58142, 4834}, {48338, 58146, 58177}, {50509, 58152, 58158}, {50512, 58150, 58174}, {50512, 58160, 649}, {50512, 58175, 58145}, {58136, 58138, 667}, {58143, 58148, 4775}, {58144, 58159, 58178}, {58146, 58151, 48338}


X(58138) = X(187)X(237)∩X(4449)X(4782)

Barycentrics    a^2*(b-c)*(5*a+b+c) : :
X(58138) = 4*X[659]+X[48341], -6*X[905]+X[48116], 3*X[1019]+2*X[48065], 3*X[1635]+2*X[50517], 3*X[4063]+2*X[48287], -X[4382]+6*X[47820], 4*X[4394]+X[48322], -6*X[4401]+X[47970], X[4449]+4*X[4782], 3*X[4498]+2*X[48282], 2*X[4560]+3*X[48578], X[4813]+4*X[50515] and many others

X(58138) lies on these lines: {187, 237}, {659, 48341}, {905, 48116}, {1019, 48065}, {1635, 50517}, {4063, 48287}, {4382, 47820}, {4394, 48322}, {4401, 47970}, {4449, 4782}, {4498, 48282}, {4560, 48578}, {4813, 50515}, {4893, 6050}, {14419, 48122}, {14838, 48586}, {21301, 31207}, {21302, 45313}, {27013, 28470}, {30234, 48131}, {31286, 31291}, {48064, 48367}, {48099, 50525}, {48544, 50507}

X(58138) = midpoint of X(i) and X(j) for these {i,j}: {649, 58154}, {663, 58180}, {667, 58141}, {58146, 58152}, {8656, 58143}
X(58138) = reflection of X(i) in X(j) for these {i,j}: {649, 58143}, {663, 58152}, {58143, 58141}, {58146, 50512}, {58154, 8656}, {58180, 58146}, {8656, 667}
X(58138) = perspector of circumconic {{A, B, C, X(6), X(16667)}}
X(58138) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28226}
X(58138) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28226}
X(58138) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28226, 6}
X(58138)= pole of line {99, 28226} with respect to the Stammler hyperbola
X(58138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28225)}}, {{A, B, C, X(513), X(58172)}}, {{A, B, C, X(3009), X(3622)}}, {{A, B, C, X(3230), X(16667)}}, {{A, B, C, X(3733), X(8643)}}, {{A, B, C, X(43924), X(48338)}}
X(58138) = barycentric product X(i)*X(j) for these (i, j): {3622, 649}, {3733, 3986}, {14351, 3445}, {16667, 513}, {28225, 6}
X(58138) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28226}, {3622, 1978}, {3986, 27808}, {16667, 668}, {28225, 76}
X(58138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58146}, {512, 667, 8656}, {512, 8656, 58154}, {649, 48338, 58176}, {649, 58140, 58142}, {649, 667, 8643}, {649, 8643, 48338}, {663, 4834, 58168}, {663, 667, 58148}, {663, 8656, 58152}, {667, 4775, 58149}, {667, 4834, 58150}, {667, 57157, 8655}, {667, 58137, 58136}, {667, 58139, 58140}, {667, 58144, 1960}, {667, 58181, 58151}, {1960, 50509, 58161}, {1960, 50512, 58182}, {1960, 58144, 50509}, {1960, 58165, 663}, {1960, 58182, 58165}, {4775, 58145, 58178}, {4775, 58149, 58153}, {4834, 58168, 58172}, {6050, 50523, 4893}, {50507, 50526, 48544}, {50509, 58144, 649}, {50512, 58146, 58143}, {50512, 58149, 58174}, {50512, 58150, 4834}, {50512, 58152, 58180}, {50512, 58174, 58145}, {50512, 58182, 58144}, {58136, 58140, 667}, {58140, 58143, 58141}, {58141, 58146, 50512}, {58145, 58149, 4775}, {58146, 58152, 512}, {58147, 58156, 58173}, {58151, 58181, 58160}, {58155, 58179, 58166}, {58156, 58173, 58162}, {58160, 58181, 58170}


X(58139) = X(58)X(3733)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(4*a+b+c) : :
X(58139) = 3*X[659]+X[48320], -3*X[1635]+X[4770], 3*X[4063]+X[21343], 3*X[4367]+X[21385], -3*X[14422]+X[48335], -5*X[26798]+9*X[47839], -3*X[31149]+7*X[31207], -2*X[31286]+X[53571], X[31291]+3*X[47837], 3*X[45316]+X[48016], 3*X[47776]+X[48291], X[48005]+X[50523] and many others

X(58139) lies on these lines: {58, 3733}, {187, 237}, {659, 48320}, {798, 3249}, {891, 4782}, {1635, 4770}, {2516, 8678}, {4063, 21343}, {4142, 29138}, {4367, 21385}, {4401, 6372}, {4874, 29340}, {9181, 17940}, {13246, 29029}, {14422, 48335}, {20517, 29184}, {23892, 25426}, {26798, 47839}, {31149, 31207}, {31286, 53571}, {31291, 47837}, {45316, 48016}, {47776, 48291}, {48005, 50523}, {48011, 48330}, {48019, 48053}, {48026, 50507}, {48064, 48331}, {49289, 52601}, {50504, 50517}

X(58139) = midpoint of X(i) and X(j) for these {i,j}: {4063, 48328}, {4775, 58175}, {4834, 58160}, {48005, 50523}, {48011, 48330}, {48064, 48331}, {48338, 58174}, {50504, 50517}, {50507, 50515}, {50509, 58163}, {649, 1960}, {663, 58179}, {667, 50512}, {58137, 58140}, {58144, 58149}, {58145, 58150}, {58156, 58182}, {58158, 58177}, {58164, 58173}, {8643, 58147}
X(58139) = reflection of X(i) in X(j) for these {i,j}: {53571, 31286}, {58145, 50512}, {58150, 667}, {58156, 58150}, {58158, 1960}, {58177, 649}, {58182, 58145}
X(58139) = isogonal conjugate of X(58128)
X(58139) = perspector of circumconic {{A, B, C, X(6), X(16666)}}
X(58139) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58128}, {75, 28210}, {99, 56134}, {100, 55955}, {190, 40434}, {662, 27797}, {664, 56115}, {668, 41434}
X(58139) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58128}, {206, 28210}, {1084, 27797}, {8054, 55955}, {16590, 1978}, {38986, 56134}, {39025, 56115}, {51570, 668}, {55053, 40434}
X(58139) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2163, 1015}, {4781, 16666}, {28210, 6}
X(58139)= pole of line {6, 6767} with respect to the circumcircle
X(58139)= pole of line {262, 27797} with respect to the orthoptic circle of the Steiner Inellipse
X(58139)= pole of line {6, 6767} with respect to the Brocard inellipse
X(58139)= pole of line {13476, 49448} with respect to the DeLongchamps ellipse
X(58139)= pole of line {99, 17780} with respect to the Stammler hyperbola
X(58139)= pole of line {670, 58128} with respect to the Wallace hyperbola
X(58139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(902)}}, {{A, B, C, X(512), X(23345)}}, {{A, B, C, X(513), X(58173)}}, {{A, B, C, X(551), X(3009)}}, {{A, B, C, X(665), X(30722)}}, {{A, B, C, X(890), X(4781)}}, {{A, B, C, X(1960), X(3733)}}, {{A, B, C, X(3230), X(16666)}}, {{A, B, C, X(3231), X(26860)}}, {{A, B, C, X(3724), X(16944)}}, {{A, B, C, X(8620), X(24589)}}, {{A, B, C, X(8649), X(17962)}}, {{A, B, C, X(43924), X(58166)}}
X(58139) = barycentric product X(i)*X(j) for these (i, j): {106, 14435}, {551, 649}, {1015, 4781}, {1019, 21806}, {1357, 30727}, {1960, 42026}, {3707, 43924}, {3902, 57181}, {4031, 663}, {4714, 57129}, {16666, 513}, {21747, 514}, {21754, 52620}, {22357, 7649}, {24589, 667}, {26860, 512}, {28209, 6}, {30722, 55}
X(58139) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58128}, {32, 28210}, {512, 27797}, {551, 1978}, {649, 55955}, {667, 40434}, {798, 56134}, {1919, 41434}, {3063, 56115}, {4031, 4572}, {4781, 31625}, {14435, 3264}, {16666, 668}, {21747, 190}, {21754, 4767}, {21806, 4033}, {22357, 4561}, {24589, 6386}, {26860, 670}, {28209, 76}, {30722, 6063}
X(58139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58158}, {512, 50512, 58145}, {512, 649, 58177}, {512, 667, 58150}, {649, 4775, 58175}, {649, 58138, 58136}, {649, 58140, 58141}, {663, 58140, 58142}, {663, 58176, 58167}, {663, 667, 58149}, {667, 4775, 8656}, {667, 4834, 8643}, {667, 58138, 58137}, {667, 58155, 58148}, {667, 58181, 58152}, {1960, 50512, 649}, {1960, 58149, 58151}, {1960, 58158, 58156}, {1960, 58160, 58157}, {1960, 58164, 663}, {1960, 58175, 4775}, {1960, 58179, 58164}, {4775, 58175, 512}, {4775, 8656, 1960}, {4834, 58143, 58147}, {4834, 58157, 58166}, {4834, 8643, 58160}, {48338, 58181, 58174}, {50509, 58148, 58155}, {50509, 58155, 58163}, {50512, 58137, 667}, {50512, 58147, 58143}, {50512, 58149, 58179}, {50512, 58150, 58182}, {50512, 58163, 58146}, {50512, 58179, 58144}, {58142, 58144, 50512}, {58144, 58151, 58173}, {58146, 58155, 50509}, {58147, 58160, 4834}, {58152, 58181, 48338}, {58153, 58172, 58159}, {58154, 58178, 58165}, {58161, 58180, 58171}


X(58140) = X(1)X(48011)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a+b+c) : :
X(58140) = X[1]+2*X[48011], -4*X[650]+X[47912], -X[661]+4*X[6050], -4*X[905]+X[48122], X[1019]+2*X[4401], X[2254]+2*X[3803], X[4040]+2*X[48064], -X[4041]+4*X[4394], 2*X[4063]+X[4449], -X[4105]+4*X[48387], 2*X[4367]+X[4498], -X[4382]+4*X[52601] and many others

X(58140) lies on these lines: {1, 48011}, {187, 237}, {513, 28284}, {514, 48240}, {650, 47912}, {659, 29198}, {661, 6050}, {784, 48578}, {798, 9010}, {812, 47820}, {830, 47828}, {834, 53315}, {905, 48122}, {1019, 4401}, {1428, 3733}, {1635, 8678}, {2254, 3803}, {2484, 14407}, {3361, 30723}, {3907, 48565}, {4040, 48064}, {4041, 4394}, {4063, 4449}, {4105, 48387}, {4367, 4498}, {4379, 29070}, {4382, 52601}, {4448, 29170}, {4728, 48564}, {4729, 4959}, {4763, 47814}, {4773, 4843}, {4778, 48580}, {4784, 48331}, {4785, 47840}, {4790, 4822}, {4801, 4830}, {4809, 29025}, {4813, 50507}, {4814, 48322}, {4895, 50499}, {4979, 48099}, {4983, 50525}, {6002, 47804}, {6372, 48572}, {8712, 14413}, {13246, 47708}, {14430, 48559}, {14432, 28478}, {14838, 48023}, {15309, 47826}, {17072, 27013}, {17166, 48008}, {17418, 53390}, {21052, 28475}, {21260, 31207}, {21301, 31286}, {21385, 48343}, {23882, 47813}, {25901, 25955}, {28470, 45313}, {28507, 31131}, {28525, 30709}, {29013, 47818}, {29037, 47771}, {29051, 47762}, {29066, 48566}, {29118, 47798}, {29148, 47817}, {29152, 47872}, {29186, 48568}, {29232, 47874}, {29238, 47833}, {29278, 47767}, {29340, 47875}, {30835, 31288}, {31147, 47839}, {47935, 48136}, {48029, 48149}, {48058, 48110}, {48150, 50336}

X(58140) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58159}, {50509, 58162}, {50512, 58137}, {649, 8643}, {663, 58178}, {667, 58144}, {58147, 58149}, {58155, 58181}, {58161, 58176}
X(58140) = reflection of X(i) in X(j) for these {i,j}: {14430, 48559}, {17418, 53390}, {31147, 47839}, {4728, 48564}, {47814, 4763}, {47832, 47818}, {47836, 45313}, {48338, 58159}, {48579, 48568}, {50509, 58178}, {649, 58144}, {663, 8643}, {667, 58137}, {58137, 58139}, {58144, 50512}, {58155, 58149}, {58159, 1960}, {58161, 58155}, {58162, 663}, {58166, 58162}, {58176, 58181}, {58178, 649}, {58181, 58147}, {8643, 667}
X(58140) = isogonal conjugate of X(53658)
X(58140) = perspector of circumconic {{A, B, C, X(6), X(1412)}}
X(58140) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53658}, {2, 4606}, {9, 4624}, {10, 4614}, {37, 4633}, {75, 8694}, {76, 34074}, {99, 56237}, {100, 5936}, {101, 40023}, {190, 25430}, {321, 4627}, {644, 57826}, {646, 57663}, {651, 56086}, {664, 4866}, {668, 2334}, {1016, 47915}, {1268, 35339}, {3701, 5545}, {3952, 56048}, {4552, 56204}, {4554, 34820}, {14626, 51560}, {56183, 57873}
X(58140) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 53658}, {206, 8694}, {478, 4624}, {1015, 40023}, {8054, 5936}, {32664, 4606}, {38986, 56237}, {38991, 56086}, {39025, 4866}, {40589, 4633}, {51576, 668}, {55053, 25430}, {55056, 313}
X(58140) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2258, 3248}, {8694, 6}
X(58140) = X(i)-cross conjugate of X(j) for these {i, j}: {4832, 4790}
X(58140)= pole of line {574, 1201} with respect to the 1st Brocard circle
X(58140)= pole of line {9049, 44453} with respect to the 2nd Brocard circle
X(58140)= pole of line {6, 1334} with respect to the circumcircle
X(58140)= pole of line {9049, 44439} with respect to the 2nd DrozFarny circle
X(58140)= pole of line {9049, 44456} with respect to the Stammler circle
X(58140)= pole of line {6, 1334} with respect to the Brocard inellipse
X(58140)= pole of line {13476, 14626} with respect to the DeLongchamps ellipse
X(58140)= pole of line {99, 3699} with respect to the Stammler hyperbola
X(58140)= pole of line {194, 29584} with respect to the Steiner circumellipse
X(58140)= pole of line {670, 53658} with respect to the Wallace hyperbola
X(58140) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(237), X(31903)}}, {{A, B, C, X(263), X(34244)}}, {{A, B, C, X(512), X(4778)}}, {{A, B, C, X(513), X(50509)}}, {{A, B, C, X(649), X(4790)}}, {{A, B, C, X(663), X(3733)}}, {{A, B, C, X(665), X(30723)}}, {{A, B, C, X(1055), X(46010)}}, {{A, B, C, X(1428), X(3747)}}, {{A, B, C, X(1449), X(3230)}}, {{A, B, C, X(1472), X(2223)}}, {{A, B, C, X(3009), X(3616)}}, {{A, B, C, X(3231), X(42028)}}, {{A, B, C, X(3250), X(4801)}}, {{A, B, C, X(3724), X(52440)}}, {{A, B, C, X(4258), X(8647)}}, {{A, B, C, X(4765), X(52326)}}, {{A, B, C, X(4841), X(42664)}}, {{A, B, C, X(4843), X(9002)}}, {{A, B, C, X(8620), X(19804)}}, {{A, B, C, X(50344), X(58178)}}
X(58140) = barycentric product X(i)*X(j) for these (i, j): {1, 4790}, {31, 4801}, {42, 48580}, {106, 4773}, {269, 4827}, {292, 4830}, {391, 43924}, {1019, 37593}, {1333, 4815}, {1357, 30728}, {1412, 4843}, {1434, 8653}, {1438, 50357}, {1449, 513}, {2334, 53586}, {2423, 51423}, {3361, 650}, {3616, 649}, {3669, 4512}, {3671, 7252}, {3676, 4258}, {3733, 5257}, {4047, 57200}, {4101, 43925}, {4627, 52332}, {4652, 6591}, {4673, 57181}, {4765, 56}, {4778, 6}, {4811, 604}, {4822, 81}, {4832, 86}, {4839, 741}, {4841, 58}, {5338, 905}, {19804, 667}, {20981, 4835}, {21454, 663}, {22383, 5342}, {23345, 4700}, {23892, 4706}, {30723, 55}, {31903, 647}, {40746, 4818}, {42028, 512}, {43929, 4684}
X(58140) = barycentric quotient X(i)/X(j) for these (i, j): {6, 53658}, {31, 4606}, {32, 8694}, {56, 4624}, {58, 4633}, {513, 40023}, {560, 34074}, {649, 5936}, {663, 56086}, {667, 25430}, {798, 56237}, {1333, 4614}, {1449, 668}, {1919, 2334}, {2206, 4627}, {3063, 4866}, {3248, 47915}, {3361, 4554}, {3616, 1978}, {4258, 3699}, {4512, 646}, {4765, 3596}, {4773, 3264}, {4778, 76}, {4790, 75}, {4801, 561}, {4811, 28659}, {4815, 27801}, {4822, 321}, {4827, 341}, {4830, 1921}, {4832, 10}, {4839, 35544}, {4841, 313}, {4843, 30713}, {5257, 27808}, {5338, 6335}, {8653, 2321}, {16947, 5545}, {19804, 6386}, {21454, 4572}, {30723, 6063}, {31903, 6331}, {37593, 4033}, {42028, 670}, {43924, 57826}, {48580, 310}, {57129, 56048}
X(58140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58159}, {512, 50512, 58144}, {512, 58139, 58137}, {512, 58147, 58181}, {512, 58149, 58155}, {512, 58155, 58161}, {512, 58162, 58166}, {512, 58181, 58176}, {512, 649, 58178}, {512, 663, 58162}, {512, 667, 8643}, {649, 50509, 58180}, {649, 58139, 58136}, {649, 58142, 50512}, {650, 50523, 47912}, {659, 48144, 47929}, {661, 50515, 50526}, {663, 8656, 58153}, {667, 1960, 58148}, {667, 4775, 58150}, {667, 58139, 58138}, {667, 58165, 58151}, {667, 58173, 58152}, {667, 8637, 8655}, {1019, 4401, 4724}, {1960, 48338, 663}, {1960, 4834, 48338}, {1960, 50512, 58145}, {1960, 58145, 4834}, {4367, 4782, 4498}, {4775, 58146, 58179}, {4775, 58150, 58154}, {4775, 58179, 58172}, {4784, 48331, 48367}, {4834, 48338, 58170}, {4834, 58145, 649}, {4834, 58159, 512}, {4834, 58170, 50509}, {6050, 50515, 661}, {28470, 45313, 47836}, {29013, 47818, 47832}, {29186, 48568, 48579}, {48322, 50501, 4814}, {48338, 58148, 1960}, {50512, 58139, 667}, {50512, 58141, 58142}, {50512, 58149, 58147}, {50512, 58150, 58146}, {58137, 58147, 58149}, {58138, 58141, 58143}, {58138, 58143, 8656}, {58150, 58179, 4775}, {58151, 58165, 58156}, {58152, 58173, 58160}, {58152, 58182, 58168}, {58156, 58175, 58165}, {58157, 58171, 58163}, {58158, 58174, 58167}, {58160, 58182, 58173}, {58163, 58177, 58171}


X(58141) = X(187)X(237)∩X(2516)X(4705)

Barycentrics    a^2*(b-c)*(5*a+2*(b+c)) : :
X(58141) = 2*X[2515]+3*X[21003], -8*X[2516]+3*X[4705], 3*X[4063]+2*X[48344], X[4378]+4*X[4782], -6*X[6050]+X[48026], -7*X[27138]+12*X[31288], -3*X[31149]+8*X[31286], 4*X[48011]+X[48333], -X[48019]+6*X[50507], 4*X[48064]+X[48351]

X(58141) lies on these lines: {187, 237}, {2515, 21003}, {2516, 4705}, {4063, 48344}, {4378, 4782}, {6050, 48026}, {27138, 31288}, {31149, 31286}, {48011, 48333}, {48019, 50507}, {48064, 48351}

X(58141) = midpoint of X(i) and X(j) for these {i,j}: {649, 8656}, {667, 58146}, {58138, 58143}, {58154, 58180}
X(58141) = reflection of X(i) in X(j) for these {i,j}: {4775, 58157}, {667, 58138}, {58143, 50512}, {58146, 58143}, {58152, 667}, {58157, 8656}
X(58141) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58125}
X(58141) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58125}
X(58141) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58125, 6}
X(58141)= pole of line {6, 9331} with respect to the circumcircle
X(58141)= pole of line {6, 9331} with respect to the Brocard inellipse
X(58141)= pole of line {99, 4767} with respect to the Stammler hyperbola
X(58141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28220)}}, {{A, B, C, X(513), X(58175)}}, {{A, B, C, X(3009), X(25055)}}, {{A, B, C, X(3733), X(4775)}}, {{A, B, C, X(23345), X(58173)}}
X(58141) = barycentric product X(i)*X(j) for these (i, j): {3733, 52706}, {25055, 649}, {28220, 6}
X(58141) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58125}, {25055, 1978}, {28220, 76}, {52706, 27808}
X(58141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58143}, {512, 667, 58152}, {649, 58136, 1960}, {649, 58138, 8656}, {649, 58140, 58139}, {649, 58166, 58177}, {649, 58170, 58179}, {649, 58175, 58181}, {667, 58159, 58150}, {667, 58165, 8643}, {1960, 58136, 667}, {1960, 58139, 58136}, {1960, 58173, 4775}, {1960, 58177, 58166}, {4775, 58144, 649}, {4775, 58151, 58155}, {4775, 58152, 58157}, {4775, 58171, 58169}, {4834, 58155, 58167}, {8643, 58170, 58158}, {50509, 58150, 58159}, {50512, 58137, 58145}, {50512, 58138, 58146}, {58137, 58145, 663}, {58138, 58143, 512}, {58139, 58144, 58151}, {58140, 58142, 50512}, {58140, 58143, 58138}, {58143, 58146, 58144}, {58146, 58152, 4834}, {58147, 58150, 50509}, {58148, 58178, 58160}, {58149, 58182, 48338}, {58153, 58176, 58163}, {58158, 58170, 58165}, {58158, 58179, 58170}, {58166, 58177, 58173}, {58169, 58175, 58171}, {58169, 58181, 58175}


X(58142) = X(187)X(237)∩X(4813)X(6050)

Barycentrics    a^2*(b-c)*(7*a+3*(b+c)) : :
X(58142) = 4*X[1019]+3*X[48572], 3*X[4498]+4*X[48343], 6*X[4782]+X[48323], -X[4813]+8*X[6050], 3*X[4893]+4*X[50515], 6*X[30234]+X[47935], X[31291]+6*X[45313]

X(58142) lies on these lines: {187, 237}, {1019, 48572}, {4498, 48343}, {4782, 48323}, {4813, 6050}, {4893, 50515}, {30234, 47935}, {31291, 45313}

X(58142) = midpoint of X(i) and X(j) for these {i,j}: {649, 58148}
X(58142) = reflection of X(i) in X(j) for these {i,j}: {663, 58151}, {58148, 58136}, {58153, 667}
X(58142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(46934)}}, {{A, B, C, X(3733), X(48338)}}, {{A, B, C, X(43924), X(58172)}}
X(58142) = barycentric product X(i)*X(j) for these (i, j): {46934, 649}
X(58142) = barycentric quotient X(i)/X(j) for these (i, j): {46934, 1978}
X(58142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58136, 58148}, {512, 58151, 663}, {512, 667, 58153}, {649, 58138, 8643}, {649, 58140, 58138}, {649, 58148, 512}, {649, 58161, 4834}, {649, 663, 58176}, {649, 8643, 58172}, {663, 50509, 58167}, {663, 58140, 58139}, {667, 4834, 58156}, {667, 50509, 58154}, {667, 50512, 58143}, {667, 58144, 58179}, {667, 58146, 58171}, {667, 58171, 1960}, {1960, 58146, 58178}, {1960, 58178, 58168}, {4775, 58147, 58180}, {4834, 58137, 8656}, {4834, 8656, 58161}, {48338, 58138, 667}, {50509, 58143, 58145}, {50509, 58145, 649}, {50509, 58154, 48338}, {50512, 58139, 58144}, {50512, 58141, 58140}, {58139, 58151, 58136}, {58150, 58181, 58166}, {58152, 58175, 58162}, {58155, 58182, 58170}, {58167, 58179, 50509}


X(58143) = X(187)X(237)∩X(4979)X(6050)

Barycentrics    a^2*(b-c)*(5*a+3*(b+c)) : :
X(58143) = 4*X[650]+X[50526], 4*X[1019]+X[47929], -6*X[1635]+X[47912], 3*X[4063]+2*X[48343], 4*X[4394]+X[50523], X[4449]+4*X[48011], -X[4474]+6*X[48565], 3*X[4498]+2*X[48323], X[4724]+4*X[48064], 4*X[4782]+X[48144], X[4814]+4*X[50517], 2*X[4830]+3*X[48570] and many others

X(58143) lies on these lines: {187, 237}, {650, 50526}, {1019, 47929}, {1635, 47912}, {4063, 48343}, {4394, 50523}, {4449, 48011}, {4474, 48565}, {4498, 48323}, {4724, 48064}, {4782, 48144}, {4814, 50517}, {4830, 48570}, {4959, 50499}, {4979, 6050}, {21301, 45313}, {31147, 31288}, {47826, 48110}, {47840, 48016}, {47911, 48226}, {48114, 48564}, {48119, 48568}, {50507, 50525}

X(58143) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58157}, {649, 58138}, {58141, 58146}, {8656, 58180}
X(58143) = reflection of X(i) in X(j) for these {i,j}: {649, 58146}, {663, 8656}, {58138, 58141}, {58141, 50512}, {58154, 667}, {58180, 649}, {8656, 58138}
X(58143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28230}
X(58143) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28230}
X(58143) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28230, 6}
X(58143)= pole of line {99, 28230} with respect to the Stammler hyperbola
X(58143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28229)}}, {{A, B, C, X(513), X(58178)}}, {{A, B, C, X(3009), X(5550)}}, {{A, B, C, X(3733), X(50509)}}, {{A, B, C, X(4834), X(43924)}}
X(58143) = barycentric product X(i)*X(j) for these (i, j): {5550, 649}, {28229, 6}
X(58143) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28230}, {5550, 1978}, {28229, 76}
X(58143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58141}, {512, 58138, 8656}, {512, 649, 58180}, {512, 667, 58154}, {649, 48338, 58179}, {649, 58136, 58170}, {649, 58172, 58181}, {649, 58176, 58182}, {649, 663, 58178}, {663, 58140, 58136}, {667, 48338, 58153}, {667, 4834, 58160}, {667, 50512, 58142}, {667, 58144, 58145}, {667, 58167, 1960}, {667, 58171, 58156}, {667, 58181, 58167}, {1635, 50515, 47912}, {1960, 58162, 663}, {1960, 58172, 58162}, {1960, 58181, 58172}, {4775, 58137, 58148}, {4775, 58182, 58176}, {4834, 58139, 8643}, {4834, 58147, 649}, {4834, 58157, 512}, {4834, 8643, 58166}, {8656, 58166, 58157}, {48338, 58179, 50509}, {50509, 58140, 667}, {50509, 58153, 48338}, {50512, 58146, 58138}, {50512, 58147, 58139}, {58137, 58182, 4775}, {58138, 58141, 58140}, {58139, 58147, 4834}, {58141, 58144, 58146}, {58149, 58177, 58165}, {58150, 58173, 58161}, {58155, 58175, 58168}, {58156, 58179, 58171}


X(58144) = X(187)X(237)∩X(513)X(5131)

Barycentrics    a^2*(b-c)*(3*a+2*(b+c)) : :
X(58144) = X[659]+2*X[48064], X[1019]+2*X[4782], -4*X[2516]+X[47956], -4*X[2527]+X[48395], 2*X[4063]+X[4378], X[4367]+2*X[48011], X[4380]+2*X[52601], -4*X[4394]+X[4705], 2*X[4401]+X[4784], X[4730]+2*X[50517], 2*X[4790]+X[4983], X[4979]+2*X[50507] and many others

X(58144) lies on these lines: {187, 237}, {513, 5131}, {659, 48064}, {814, 48566}, {838, 8027}, {1019, 4782}, {2516, 47956}, {2527, 48395}, {2787, 48565}, {4063, 4378}, {4367, 48011}, {4380, 52601}, {4394, 4705}, {4401, 4784}, {4730, 50517}, {4785, 47839}, {4790, 4983}, {4809, 29158}, {4979, 50507}, {6008, 48564}, {15309, 48226}, {20295, 31288}, {21260, 27013}, {29013, 47875}, {29070, 47762}, {29090, 47771}, {29150, 47804}, {29170, 47817}, {29178, 47872}, {29232, 47767}, {29266, 47874}, {29270, 47833}, {29292, 48236}, {29328, 47818}, {29362, 48568}, {31149, 45313}, {31251, 31286}, {48005, 50526}, {48053, 50525}, {48214, 48551}, {48240, 48580}, {50455, 54279}, {50488, 50514}, {50504, 50523}

X(58144) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58155}, {48240, 48580}, {50509, 58161}, {50512, 58147}, {649, 58140}, {663, 58176}, {667, 58181}, {58149, 58179}, {8643, 58178}
X(58144) = reflection of X(i) in X(j) for these {i,j}: {31149, 47837}, {4775, 58155}, {4834, 58181}, {47837, 45313}, {48551, 48214}, {649, 58147}, {663, 58149}, {667, 58140}, {58140, 50512}, {58147, 58145}, {58149, 58139}, {58155, 667}, {58159, 8643}, {58161, 1960}, {58165, 58161}, {58173, 58176}, {58176, 58179}, {58181, 649}, {8643, 58137}
X(58144) = perspector of circumconic {{A, B, C, X(6), X(16884)}}
X(58144) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28196}, {100, 28650}, {190, 27789}, {1016, 48587}
X(58144) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28196}, {8054, 28650}, {55053, 27789}
X(58144) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28196, 6}
X(58144)= pole of line {3336, 44421} with respect to the Bevan circle
X(58144)= pole of line {574, 3915} with respect to the 1st Brocard circle
X(58144)= pole of line {6, 3746} with respect to the circumcircle
X(58144)= pole of line {21746, 50192} with respect to the incircle
X(58144)= pole of line {6, 3746} with respect to the Brocard inellipse
X(58144)= pole of line {13476, 50192} with respect to the DeLongchamps ellipse
X(58144)= pole of line {99, 4756} with respect to the Stammler hyperbola
X(58144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(237), X(31901)}}, {{A, B, C, X(512), X(28195)}}, {{A, B, C, X(513), X(58179)}}, {{A, B, C, X(649), X(50525)}}, {{A, B, C, X(3009), X(3624)}}, {{A, B, C, X(3230), X(16884)}}, {{A, B, C, X(3231), X(42025)}}, {{A, B, C, X(3733), X(4834)}}, {{A, B, C, X(42664), X(47669)}}, {{A, B, C, X(43924), X(58178)}}, {{A, B, C, X(50344), X(58181)}}
X(58144) = barycentric product X(i)*X(j) for these (i, j): {1, 50525}, {2605, 43261}, {3624, 649}, {4034, 43924}, {16884, 513}, {28195, 6}, {31901, 647}, {42025, 512}, {42031, 57129}, {47669, 58}, {48053, 81}
X(58144) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28196}, {649, 28650}, {667, 27789}, {3248, 48587}, {3624, 1978}, {16884, 668}, {28195, 76}, {31901, 6331}, {42025, 670}, {47669, 313}, {48053, 321}, {50525, 75}
X(58144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58161}, {512, 50512, 58140}, {512, 58137, 8643}, {512, 58139, 58149}, {512, 58145, 58147}, {512, 58149, 663}, {512, 58155, 4775}, {512, 58179, 58176}, {512, 649, 58181}, {512, 667, 58155}, {512, 8643, 58159}, {649, 48338, 58180}, {649, 50509, 58182}, {649, 58143, 50512}, {649, 58145, 58146}, {649, 663, 58179}, {649, 8643, 58178}, {649, 8656, 58177}, {667, 4775, 58152}, {1960, 50509, 58165}, {1960, 58138, 667}, {1960, 58182, 50509}, {4394, 50515, 4705}, {4401, 4784, 48351}, {4775, 4834, 58171}, {4790, 6050, 4983}, {4834, 58151, 58167}, {4834, 58155, 512}, {4834, 58167, 58173}, {8643, 58140, 58137}, {8656, 58172, 58160}, {48338, 58136, 58150}, {48338, 58150, 58157}, {48338, 58180, 58175}, {50509, 58138, 1960}, {50512, 58139, 58142}, {50512, 58145, 649}, {50512, 58146, 4834}, {50512, 58179, 58139}, {50512, 58182, 58138}, {58136, 58180, 48338}, {58139, 58173, 58151}, {58143, 58146, 58141}, {58148, 58166, 58156}, {58153, 58168, 58158}, {58154, 58170, 58163}, {58156, 58174, 58166}, {58160, 58172, 58169}, {58160, 58177, 58172}


X(58145) = X(187)X(237)∩X(4782)X(6372)

Barycentrics    a^2*(b-c)*(4*a+3*(b+c)) : :
X(58145) = -3*X[1635]+X[48005], 3*X[4063]+X[48323], X[4770]+X[50523], X[4790]+X[50507], X[4979]+X[48053], 3*X[8027]+X[50488], 3*X[14419]+X[47935], -X[21260]+3*X[45313], X[26853]+3*X[47839], X[47994]+X[48110], X[48028]+X[48074], X[48093]+X[48624] and many others

X(58145) lies on these lines: {187, 237}, {891, 48011}, {1635, 48005}, {2527, 29232}, {4063, 48323}, {4770, 50523}, {4782, 6372}, {4785, 31288}, {4790, 50507}, {4979, 48053}, {8027, 50488}, {14419, 47935}, {21260, 45313}, {26853, 47839}, {47994, 48110}, {48028, 48074}, {48093, 48624}, {48213, 48601}, {50504, 50515}

X(58145) = midpoint of X(i) and X(j) for these {i,j}: {1960, 4834}, {4770, 50523}, {4775, 58174}, {4782, 48064}, {4790, 50507}, {4979, 48053}, {47994, 48110}, {48028, 48074}, {48093, 48624}, {50504, 50515}, {50509, 58160}, {649, 50512}, {663, 58175}, {667, 58179}, {58137, 58181}, {58139, 58182}, {58144, 58147}, {58149, 58178}, {58150, 58177}, {58163, 58173}, {58164, 58172}
X(58145) = reflection of X(i) in X(j) for these {i,j}: {58139, 50512}, {58150, 58139}, {58156, 667}, {58158, 58150}, {58177, 58182}, {58182, 649}
X(58145) = isogonal conjugate of X(58129)
X(58145) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58129}, {75, 28214}, {99, 56215}, {100, 56061}, {190, 56037}, {662, 56209}, {664, 56206}
X(58145) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58129}, {206, 28214}, {1084, 56209}, {8054, 56061}, {38986, 56215}, {39025, 56206}, {55053, 56037}
X(58145) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28214, 6}, {56343, 1015}
X(58145)= pole of line {262, 56209} with respect to the orthoptic circle of the Steiner Inellipse
X(58145)= pole of line {13476, 56215} with respect to the DeLongchamps ellipse
X(58145)= pole of line {99, 28214} with respect to the Stammler hyperbola
X(58145)= pole of line {670, 58129} with respect to the Wallace hyperbola
X(58145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28213)}}, {{A, B, C, X(513), X(58181)}}, {{A, B, C, X(3009), X(19862)}}, {{A, B, C, X(3733), X(58179)}}
X(58145) = barycentric product X(i)*X(j) for these (i, j): {4114, 663}, {19862, 649}, {28213, 6}, {39670, 4988}
X(58145) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58129}, {32, 28214}, {512, 56209}, {649, 56061}, {667, 56037}, {798, 56215}, {3063, 56206}, {4114, 4572}, {19862, 1978}, {28213, 76}, {39670, 4632}
X(58145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58139}, {512, 58150, 58158}, {512, 58182, 58177}, {512, 649, 58182}, {512, 667, 58156}, {649, 58138, 58178}, {649, 58141, 58175}, {649, 58144, 50512}, {649, 58146, 58147}, {649, 663, 58181}, {649, 667, 58179}, {649, 8643, 58180}, {667, 4775, 58153}, {667, 4834, 48338}, {667, 58144, 58143}, {667, 58167, 58154}, {667, 58181, 58171}, {1960, 4834, 512}, {1960, 50512, 58140}, {1960, 58175, 58169}, {4775, 58138, 58149}, {4775, 58178, 58174}, {4834, 58140, 1960}, {4834, 58159, 58170}, {8643, 58173, 58163}, {8643, 58180, 58173}, {8656, 58176, 58165}, {48110, 48226, 47994}, {48338, 58140, 667}, {50509, 58143, 58142}, {50509, 58154, 58167}, {50512, 58137, 58141}, {50512, 58147, 649}, {50512, 58174, 58138}, {50512, 58175, 58137}, {50512, 58182, 58150}, {58136, 58172, 58155}, {58137, 58175, 663}, {58138, 58178, 4775}, {58140, 58170, 58148}, {58148, 58170, 58159}, {58154, 58167, 58160}, {58155, 58172, 58164}, {58160, 58179, 50509}, {58169, 58181, 4834}


X(58146) = X(187)X(237)∩X(4378)X(48011)

Barycentrics    a^2*(b-c)*(5*a+4*(b+c)) : :
X(58146) = X[4378]+4*X[48011], -6*X[4394]+X[47956], -6*X[4782]+X[47970], 3*X[4784]+2*X[48065], -3*X[4825]+8*X[50501], -6*X[9508]+X[48586], X[26853]+4*X[31288], -2*X[27013]+X[31251], 3*X[47839]+2*X[48016], -9*X[47888]+4*X[48052], 2*X[48074]+3*X[48162]

X(58146) lies on these lines: {187, 237}, {4378, 48011}, {4394, 47956}, {4782, 47970}, {4784, 48065}, {4825, 50501}, {9508, 48586}, {26853, 31288}, {27013, 31251}, {47839, 48016}, {47888, 48052}, {48074, 48162}

X(58146) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58152}, {649, 58143}, {58138, 58180}
X(58146) = reflection of X(i) in X(j) for these {i,j}: {31251, 27013}, {4775, 58154}, {4834, 58180}, {667, 58141}, {58138, 50512}, {58141, 58143}, {58152, 58138}, {58157, 667}
X(58146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(34595)}}, {{A, B, C, X(3733), X(58181)}}
X(58146) = barycentric product X(i)*X(j) for these (i, j): {34595, 649}
X(58146) = barycentric quotient X(i)/X(j) for these (i, j): {34595, 1978}
X(58146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58138}, {512, 58154, 4775}, {512, 58180, 4834}, {512, 667, 58157}, {649, 58138, 58180}, {649, 58140, 58179}, {649, 58142, 58178}, {649, 58145, 58144}, {649, 663, 58182}, {649, 667, 58181}, {667, 58173, 58159}, {1960, 58178, 58171}, {4775, 4834, 58172}, {4775, 58140, 667}, {4834, 58141, 58152}, {4834, 58144, 50512}, {4834, 58148, 58169}, {4834, 58152, 512}, {4834, 58165, 58173}, {8643, 58175, 58167}, {48338, 58137, 58151}, {50509, 58139, 58155}, {50509, 58148, 58163}, {50512, 58138, 58141}, {50512, 58150, 58140}, {50512, 58163, 58139}, {50512, 58179, 58150}, {50512, 58182, 663}, {58136, 58176, 58160}, {58137, 58177, 48338}, {58138, 58172, 58154}, {58139, 58163, 58148}, {58141, 58144, 58143}, {58142, 58178, 1960}, {58145, 58147, 649}, {58163, 58169, 58165}


X(58147) = X(187)X(237)∩X(4773)X(6367)

Barycentrics    a^2*(b-c)*(6*a+5*(b+c)) : :
X(58147) = -4*X[4394]+X[48005], X[4770]+2*X[50515], 2*X[4790]+X[48053], 2*X[31288]+X[48016]

X(58147) lies on circumconic {{A, B, C, X(3009), X(19878)}} and these lines: {187, 237}, {4394, 48005}, {4770, 50515}, {4773, 6367}, {4790, 48053}, {29176, 48565}, {29198, 48064}, {29226, 48011}, {29266, 47767}, {29340, 48566}, {31288, 48016}

X(58147) = midpoint of X(i) and X(j) for these {i,j}: {4834, 8643}, {50509, 58159}, {649, 58144}, {667, 58178}, {58137, 58179}, {58140, 58181}, {58155, 58176}, {58162, 58173}
X(58147) = reflection of X(i) in X(j) for these {i,j}: {1960, 58137}, {50512, 58144}, {58137, 50512}, {58144, 58145}, {58149, 58140}, {58159, 58150}, {58160, 8643}, {58162, 58156}, {58164, 58159}, {58175, 58178}, {58178, 58182}, {8643, 58139}
X(58147) = barycentric product X(i)*X(j) for these (i, j): {19878, 649}, {43924, 4545}
X(58147) = barycentric quotient X(i)/X(j) for these (i, j): {19878, 1978}
X(58147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58137}, {512, 58139, 8643}, {512, 58140, 58149}, {512, 58144, 50512}, {512, 58145, 58144}, {512, 58150, 58159}, {512, 58156, 58162}, {512, 58178, 58175}, {512, 58182, 58178}, {649, 58140, 58181}, {649, 58142, 58180}, {649, 58143, 4834}, {649, 58146, 58145}, {649, 667, 58182}, {667, 4834, 58166}, {667, 58172, 58158}, {1960, 58179, 58174}, {4834, 58139, 58160}, {4834, 58143, 58139}, {4834, 8643, 512}, {50509, 58141, 58150}, {50509, 58150, 58164}, {50512, 58149, 58140}, {50512, 58175, 667}, {50512, 58179, 1960}, {50512, 58182, 58163}, {58138, 58173, 58156}, {58140, 58176, 58155}, {58140, 58178, 58161}, {58142, 58180, 4775}, {58155, 58181, 58176}, {58175, 58182, 58179}


X(58148) = X(187)X(237)∩X(3803)X(48116)

Barycentrics    a^2*(7*a-b-c)*(b-c) : :
X(58148) = 6*X[3803]+X[48116], 4*X[4367]+3*X[48572], 6*X[4401]+X[48282], 3*X[4498]+4*X[48287], 3*X[4893]+4*X[50517], 6*X[30234]+X[48150], 5*X[30835]+2*X[31291], 4*X[47970]+3*X[48341], 4*X[48065]+3*X[48144], 3*X[48544]+4*X[50523]

X(58148) lies on these lines: {187, 237}, {3803, 48116}, {4367, 48572}, {4401, 48282}, {4498, 48287}, {4893, 50517}, {28470, 31207}, {30234, 48150}, {30835, 31291}, {47970, 48341}, {48065, 48144}, {48544, 50523}

X(58148) = midpoint of X(i) and X(j) for these {i,j}: {667, 58151}, {58136, 58153}
X(58148) = reflection of X(i) in X(j) for these {i,j}: {649, 58142}, {58136, 667}, {58142, 58136}, {58153, 58151}
X(58148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58089}, {664, 31509}
X(58148) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58089}, {39025, 31509}
X(58148) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58089, 6}
X(58148)= pole of line {99, 58089} with respect to the Stammler hyperbola
X(58148) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(3623)}}, {{A, B, C, X(43924), X(58154)}}
X(58148) = barycentric product X(i)*X(j) for these (i, j): {3623, 649}, {3733, 4098}
X(58148) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58089}, {3063, 31509}, {3623, 1978}, {4098, 27808}
X(58148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58136, 58142}, {512, 58151, 58153}, {512, 667, 58136}, {649, 58154, 58161}, {649, 663, 58168}, {649, 8643, 58154}, {663, 58180, 58165}, {663, 667, 58138}, {663, 8656, 58150}, {667, 1960, 58140}, {667, 4775, 58137}, {667, 58149, 8656}, {667, 58155, 58139}, {1960, 4834, 663}, {1960, 58139, 58169}, {1960, 58140, 48338}, {1960, 58145, 58159}, {4775, 58137, 58143}, {4775, 58143, 58176}, {8643, 48338, 1960}, {8656, 58136, 58151}, {48338, 58140, 649}, {50512, 58150, 58152}, {50512, 58165, 58180}, {58136, 58153, 512}, {58138, 58172, 50512}, {58139, 58155, 50509}, {58139, 58163, 58146}, {58140, 58170, 58145}, {58141, 58160, 58178}, {58144, 58156, 58166}, {58145, 58159, 58170}, {58146, 58155, 58163}, {58146, 58169, 4834}, {58151, 58153, 8643}, {58157, 58179, 58162}, {58165, 58180, 58172}


X(58149) = X(187)X(237)∩X(4057)X(6085)

Barycentrics    a^2*(6*a-b-c)*(b-c) : :
X(58149) = -X[4770]+4*X[6050], 2*X[4782]+X[48347], X[48005]+2*X[50517], -X[48296]+4*X[48330], X[50353]+X[53390]

X(58149) lies on these lines: {187, 237}, {4057, 6085}, {4401, 29226}, {4770, 6050}, {4782, 48347}, {4809, 29272}, {6004, 30234}, {6371, 53315}, {29138, 47798}, {29182, 47818}, {29198, 48623}, {29268, 47804}, {48005, 50517}, {48296, 48330}, {50353, 53390}

X(58149) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58137}, {4775, 58178}, {4834, 58162}, {50353, 53390}, {649, 58159}, {663, 58144}, {667, 8643}, {58140, 58155}, {58161, 58181}
X(58149) = reflection of X(i) in X(j) for these {i,j}: {1960, 8643}, {50512, 58137}, {58137, 667}, {58144, 58139}, {58147, 58140}, {58159, 58156}, {58162, 58158}, {58163, 58159}, {58174, 58178}, {58178, 58145}, {58179, 58144}, {8643, 58150}
X(58149) = perspector of circumconic {{A, B, C, X(6), X(16671)}}
X(58149) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8698}
X(58149) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8698}
X(58149) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8698, 6}
X(58149)= pole of line {6, 9327} with respect to the circumcircle
X(58149)= pole of line {6, 9327} with respect to the Brocard inellipse
X(58149)= pole of line {99, 8698} with respect to the Stammler hyperbola
X(58149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(39386)}}, {{A, B, C, X(3230), X(16671)}}
X(58149) = barycentric product X(i)*X(j) for these (i, j): {3635, 649}, {16671, 513}
X(58149) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8698}, {3635, 1978}, {16671, 668}
X(58149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58137, 50512}, {512, 58139, 58144}, {512, 58140, 58147}, {512, 58145, 58178}, {512, 58150, 8643}, {512, 58156, 58159}, {512, 58158, 58162}, {512, 58159, 58163}, {512, 667, 58137}, {512, 8643, 1960}, {649, 663, 58167}, {663, 58140, 58176}, {663, 58142, 58173}, {663, 667, 58139}, {667, 4775, 58138}, {667, 4834, 58136}, {667, 58152, 649}, {667, 8656, 58150}, {1960, 50512, 58160}, {1960, 58137, 512}, {1960, 58139, 58164}, {1960, 58163, 58156}, {1960, 58179, 663}, {4775, 58138, 58145}, {4775, 58145, 58174}, {4834, 58154, 58158}, {8643, 58140, 58155}, {8656, 58148, 667}, {48338, 58141, 58182}, {50512, 58160, 58175}, {50512, 58164, 58179}, {58136, 58154, 4834}, {58137, 58147, 58140}, {58138, 58153, 4775}, {58140, 58161, 58181}, {58143, 58165, 58177}, {58151, 58167, 58152}, {58155, 58181, 58161}


X(58150) = X(187)X(237)∩X(891)X(4401)

Barycentrics    a^2*(4*a-b-c)*(b-c) : :
X(58150) = 3*X[659]+X[48282], 3*X[3251]+X[4729], -X[3777]+3*X[14422], 3*X[3803]+X[48616], X[4063]+3*X[25569], 3*X[4367]+X[47970], X[4498]+X[48296], X[4770]+X[48322], X[4782]+X[48294], X[4922]+3*X[47817], X[9508]+X[48345], 3*X[14419]+X[48150] and many others

X(58150) lies on these lines: {187, 237}, {659, 48282}, {676, 29336}, {891, 4401}, {2821, 39227}, {3251, 4729}, {3716, 29176}, {3777, 14422}, {3803, 48616}, {3906, 48299}, {4057, 6363}, {4063, 25569}, {4367, 47970}, {4498, 48296}, {4770, 48322}, {4782, 48294}, {4874, 29182}, {4922, 47817}, {4990, 29266}, {6372, 48065}, {9508, 48345}, {13246, 29094}, {14419, 48150}, {20517, 29272}, {28470, 31288}, {30234, 48329}, {31291, 47839}, {40952, 50493}, {47777, 47956}, {48053, 50523}, {48059, 48586}, {48327, 50504}

X(58150) = midpoint of X(i) and X(j) for these {i,j}: {4063, 48347}, {4401, 48330}, {4498, 48296}, {4770, 48322}, {4775, 58179}, {4782, 48294}, {4834, 58163}, {48053, 50523}, {48327, 50504}, {48338, 58175}, {50507, 50517}, {50509, 58164}, {649, 58160}, {659, 48328}, {663, 50512}, {667, 1960}, {58137, 58155}, {58139, 58156}, {58145, 58158}, {58147, 58159}, {58165, 58174}, {8643, 58149}, {9508, 48345}
X(58150) = reflection of X(i) in X(j) for these {i,j}: {53571, 31288}, {58139, 667}, {58145, 58139}, {58156, 1960}, {58158, 58156}, {58177, 58145}, {58182, 50512}
X(58150) = isogonal conjugate of X(58130)
X(58150) = perspector of circumconic {{A, B, C, X(6), X(16669)}}
X(58150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58130}, {75, 28218}, {99, 56135}, {100, 39710}, {190, 39962}, {664, 56091}
X(58150) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58130}, {206, 28218}, {8054, 39710}, {38986, 56135}, {39025, 56091}, {55053, 39962}
X(58150) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28218, 6}
X(58150)= pole of line {6, 7373} with respect to the circumcircle
X(58150)= pole of line {6, 7373} with respect to the Brocard inellipse
X(58150)= pole of line {13476, 49498} with respect to the DeLongchamps ellipse
X(58150)= pole of line {99, 28218} with respect to the Stammler hyperbola
X(58150)= pole of line {670, 58130} with respect to the Wallace hyperbola
X(58150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28217)}}, {{A, B, C, X(513), X(58165)}}, {{A, B, C, X(665), X(30726)}}, {{A, B, C, X(902), X(6186)}}, {{A, B, C, X(3009), X(3244)}}, {{A, B, C, X(3230), X(16669)}}
X(58150) = barycentric product X(i)*X(j) for these (i, j): {1357, 30732}, {3244, 649}, {16669, 513}, {28217, 6}, {30726, 55}
X(58150) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58130}, {32, 28218}, {649, 39710}, {667, 39962}, {798, 56135}, {3063, 56091}, {3244, 1978}, {16669, 668}, {28217, 76}, {30726, 6063}
X(58150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58156}, {512, 50512, 58182}, {512, 58145, 58177}, {512, 667, 58139}, {649, 58162, 58171}, {649, 667, 58137}, {649, 8643, 58153}, {663, 4834, 58163}, {663, 58136, 58180}, {663, 8643, 58152}, {663, 8656, 58148}, {667, 4775, 58140}, {667, 4834, 58138}, {667, 58144, 58136}, {667, 58151, 8643}, {667, 58159, 58141}, {667, 8656, 58149}, {1960, 50512, 663}, {1960, 58137, 58160}, {1960, 58139, 58158}, {1960, 58149, 667}, {1960, 58160, 58155}, {1960, 58175, 58157}, {4063, 25569, 48347}, {4401, 48330, 891}, {4775, 58140, 58179}, {4775, 58146, 58172}, {4775, 58179, 512}, {4834, 58138, 50512}, {48338, 58136, 58144}, {48338, 58144, 58175}, {50509, 58141, 58147}, {50509, 58159, 58164}, {50512, 58160, 58174}, {50512, 58163, 4834}, {50512, 58174, 649}, {50512, 58179, 58146}, {50512, 58182, 58145}, {58140, 58154, 4775}, {58141, 58159, 50509}, {58142, 58166, 58181}, {58143, 58161, 58173}, {58144, 58157, 48338}, {58146, 58152, 58154}, {58153, 58155, 1960}, {58160, 58174, 58165}


X(58151) = X(187)X(237)∩X(3251)X(4394)

Barycentrics    a^2*(b-c)*(7*a-2*(b+c)) : :
X(58151) = 4*X[2516]+3*X[48327], 3*X[3251]+4*X[4394], 5*X[4367]+2*X[48623], 6*X[4401]+X[21343], X[6161]+6*X[30234], X[21385]+6*X[48330], X[48320]+6*X[48331]

X(58151) lies on circumconic {{A, B, C, X(3009), X(51093)}} and these lines: {187, 237}, {2516, 48327}, {3251, 4394}, {4367, 48623}, {4401, 21343}, {6161, 30234}, {21385, 48330}, {48320, 48331}

X(58151) = midpoint of X(i) and X(j) for these {i,j}: {663, 58142}, {58148, 58153}
X(58151) = reflection of X(i) in X(j) for these {i,j}: {667, 58148}
X(58151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58126}
X(58151) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58126}
X(58151) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58126, 6}
X(58151)= pole of line {6, 37602} with respect to the circumcircle
X(58151)= pole of line {6, 37602} with respect to the Brocard inellipse
X(58151)= pole of line {99, 58126} with respect to the Stammler hyperbola
X(58151) = barycentric product X(i)*X(j) for these (i, j): {51093, 649}
X(58151) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58126}, {51093, 1978}
X(58151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 1960, 58157}, {649, 58158, 58169}, {649, 663, 58164}, {667, 58146, 58137}, {667, 58159, 50512}, {667, 58165, 58140}, {667, 58181, 58138}, {667, 8643, 58152}, {1960, 4775, 58155}, {1960, 58139, 663}, {1960, 58149, 58139}, {1960, 58150, 8656}, {1960, 58175, 58156}, {1960, 8656, 667}, {4775, 58141, 4834}, {4775, 58144, 58173}, {4775, 58152, 1960}, {4775, 58171, 58166}, {4775, 58173, 58167}, {8643, 58148, 58153}, {8656, 58136, 58148}, {8656, 58153, 58136}, {48338, 58137, 58146}, {50512, 58154, 58159}, {50512, 58159, 58171}, {58138, 58160, 58181}, {58139, 58144, 58141}, {58139, 58164, 649}, {58139, 58173, 58144}, {58140, 58156, 58165}, {58141, 58155, 4775}, {58148, 58153, 512}, {58157, 58169, 58158}


X(58152) = X(187)X(237)∩X(659)X(48287)

Barycentrics    a^2*(b-c)*(5*a-2*(b+c)) : :
X(58152) = 3*X[659]+2*X[48287], 3*X[3251]+2*X[50501], 3*X[4367]+2*X[48065], 3*X[4378]+2*X[47970], 2*X[4401]+3*X[25569], 3*X[14419]+2*X[48329], 3*X[47888]+2*X[48324], -X[48282]+6*X[48330]

X(58152) lies on these lines: {187, 237}, {659, 48287}, {3251, 50501}, {4367, 48065}, {4378, 47970}, {4401, 25569}, {14419, 48329}, {28470, 31251}, {47888, 48324}, {48282, 48330}

X(58152) = midpoint of X(i) and X(j) for these {i,j}: {663, 58138}, {667, 58157}, {8656, 58154}
X(58152) = reflection of X(i) in X(j) for these {i,j}: {4834, 58146}, {667, 8656}, {58141, 667}, {58146, 58138}, {58154, 1960}, {58157, 58154}, {58180, 50512}
X(58152) = perspector of circumconic {{A, B, C, X(6), X(28323)}}
X(58152) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58123}
X(58152) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58123}
X(58152) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58123, 6}
X(58152)= pole of line {6, 9336} with respect to the circumcircle
X(58152)= pole of line {6, 9336} with respect to the Brocard inellipse
X(58152)= pole of line {99, 58123} with respect to the Stammler hyperbola
X(58152) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58163)}}, {{A, B, C, X(3009), X(3633)}}, {{A, B, C, X(8620), X(46938)}}
X(58152) = barycentric product X(i)*X(j) for these (i, j): {3633, 649}, {46938, 667}
X(58152) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58123}, {3633, 1978}, {46938, 6386}
X(58152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58154}, {512, 50512, 58180}, {512, 667, 58141}, {649, 58156, 58159}, {649, 58159, 58167}, {649, 663, 58163}, {663, 50512, 58165}, {663, 58138, 512}, {663, 58168, 58160}, {663, 8643, 58150}, {663, 8656, 58138}, {667, 4775, 58144}, {667, 58173, 58140}, {667, 58181, 58139}, {667, 8643, 58151}, {1960, 58149, 58156}, {1960, 58150, 663}, {1960, 58151, 4775}, {1960, 8643, 667}, {1960, 8656, 58157}, {4401, 25569, 48333}, {4775, 58144, 58171}, {4834, 58141, 58146}, {8643, 58153, 1960}, {48338, 58139, 58181}, {50512, 58150, 58148}, {50512, 58165, 4834}, {58136, 58161, 58179}, {58137, 58158, 50509}, {58138, 58180, 50512}, {58140, 58160, 58173}, {58140, 58168, 58182}, {58141, 58151, 8656}, {58142, 58162, 58175}, {58149, 58156, 649}, {58151, 58167, 58149}, {58154, 58157, 58155}, {58160, 58182, 58168}, {58161, 58179, 58169}


X(58153) = X(187)X(237)∩X(1635)X(4959)

Barycentrics    a^2*(b-c)*(7*a-3*(b+c)) : :
X(58153) = 6*X[1635]+X[4959], 4*X[4491]+3*X[43924], X[4498]+6*X[25569], 3*X[4724]+4*X[48343], -X[4814]+8*X[6050], -5*X[21301]+12*X[45339], X[31291]+6*X[45316], -12*X[47777]+5*X[47912], 3*X[47828]+4*X[48345], 3*X[47929]+4*X[48323], 4*X[48328]+3*X[48572]

X(58153) lies on these lines: {187, 237}, {1635, 4959}, {4491, 43924}, {4498, 25569}, {4724, 48343}, {4814, 6050}, {21301, 45339}, {31291, 45316}, {47777, 47912}, {47828, 48345}, {47929, 48323}, {48328, 48572}

X(58153) = midpoint of X(i) and X(j) for these {i,j}: {663, 58136}
X(58153) = reflection of X(i) in X(j) for these {i,j}: {58136, 58148}, {58142, 667}, {58148, 58151}
X(58153) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58124}, {100, 39709}
X(58153) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58124}, {8054, 39709}
X(58153) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58124, 6}
X(58153)= pole of line {99, 58124} with respect to the Stammler hyperbola
X(58153) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(20050)}}, {{A, B, C, X(43924), X(58150)}}
X(58153) = barycentric product X(i)*X(j) for these (i, j): {20050, 649}
X(58153) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58124}, {649, 39709}, {20050, 1978}
X(58153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58148, 58136}, {512, 58151, 58148}, {512, 667, 58142}, {649, 48338, 58171}, {649, 663, 58162}, {649, 8643, 58150}, {663, 58136, 512}, {663, 58140, 58166}, {663, 58178, 4775}, {663, 8656, 58140}, {667, 1960, 58154}, {667, 4775, 58145}, {667, 48338, 58143}, {667, 58155, 58160}, {667, 58157, 58167}, {667, 58167, 50512}, {1960, 58150, 58155}, {1960, 58152, 8643}, {1960, 8643, 663}, {4775, 58138, 58178}, {4775, 58149, 58138}, {8643, 58148, 58151}, {48338, 58143, 50509}, {48338, 58154, 58156}, {50512, 58157, 58161}, {50512, 58161, 58170}, {58136, 58151, 8656}, {58137, 58165, 649}, {58139, 58159, 58172}, {58140, 58166, 58180}, {58141, 58163, 58176}, {58142, 58148, 667}, {58144, 58158, 58168}, {58160, 58171, 48338}


X(58154) = X(187)X(237)∩X(1459)X(4491)

Barycentrics    a^2*(b-c)*(5*a-3*(b+c)) : :
X(58154) = 3*X[1459]+2*X[4491], 3*X[1635]+2*X[4162], -6*X[3251]+X[4959], 4*X[4040]+X[48341], -4*X[4163]+9*X[6544], -X[4449]+6*X[25569], X[4498]+4*X[48294], 3*X[4724]+2*X[48323], 4*X[4794]+X[48144], X[4813]+4*X[50517], 3*X[4893]+2*X[48322], X[4895]+4*X[6050] and many others

X(58154) lies on these lines: {187, 237}, {1459, 4491}, {1635, 4162}, {3251, 4959}, {4040, 48341}, {4163, 6544}, {4449, 25569}, {4498, 48294}, {4724, 48323}, {4794, 48144}, {4813, 50517}, {4893, 48322}, {4895, 6050}, {6545, 52596}, {21301, 45316}, {21302, 31207}, {28470, 30835}, {31147, 31291}, {47817, 48285}, {47929, 48328}, {48099, 48544}, {50508, 50525}

X(58154) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58146}, {663, 8656}, {58152, 58157}
X(58154) = reflection of X(i) in X(j) for these {i,j}: {649, 58138}, {663, 58157}, {58138, 8656}, {58143, 667}, {58152, 1960}, {58180, 58141}, {8656, 58152}
X(58154) = isogonal conjugate of X(58131)
X(58154) = perspector of circumconic {{A, B, C, X(6), X(3973)}}
X(58154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58131}, {75, 8699}, {100, 36606}, {101, 40026}, {190, 36603}, {644, 36621}, {651, 38255}
X(58154) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58131}, {206, 8699}, {1015, 40026}, {8054, 36606}, {38991, 38255}, {55053, 36603}
X(58154) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8699, 6}
X(58154)= pole of line {6, 32577} with respect to the circumcircle
X(58154)= pole of line {6, 32577} with respect to the Brocard inellipse
X(58154)= pole of line {99, 8699} with respect to the Stammler hyperbola
X(58154)= pole of line {670, 58131} with respect to the Wallace hyperbola
X(58154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4962)}}, {{A, B, C, X(649), X(2516)}}, {{A, B, C, X(902), X(21000)}}, {{A, B, C, X(1055), X(38296)}}, {{A, B, C, X(3009), X(3621)}}, {{A, B, C, X(3230), X(3973)}}, {{A, B, C, X(8620), X(20942)}}, {{A, B, C, X(8659), X(9262)}}
X(58154) = barycentric product X(i)*X(j) for these (i, j): {1, 2516}, {3621, 649}, {3733, 4072}, {3973, 513}, {4962, 6}, {20942, 667}, {21000, 514}, {22147, 7649}, {38296, 522}
X(58154) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58131}, {32, 8699}, {513, 40026}, {649, 36606}, {663, 38255}, {667, 36603}, {2516, 75}, {3621, 1978}, {3973, 668}, {4072, 27808}, {4962, 76}, {20942, 6386}, {21000, 190}, {22147, 4561}, {38296, 664}, {43924, 36621}
X(58154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58152}, {512, 58141, 58180}, {512, 667, 58143}, {512, 8656, 58138}, {649, 58161, 58168}, {649, 663, 58161}, {649, 8643, 58148}, {663, 1960, 8643}, {663, 50509, 58160}, {663, 58140, 4775}, {663, 58162, 58158}, {663, 58166, 58159}, {667, 1960, 58153}, {667, 4775, 58179}, {667, 50509, 58142}, {667, 58155, 58156}, {667, 58159, 58171}, {667, 58167, 58145}, {1960, 58155, 663}, {1960, 58156, 667}, {1960, 58157, 8656}, {4449, 48331, 48572}, {4775, 58140, 58172}, {4775, 58146, 512}, {4775, 58150, 58140}, {4834, 58149, 58136}, {4834, 58158, 58162}, {25569, 48331, 4449}, {48338, 58142, 50509}, {50509, 58142, 649}, {50509, 58160, 48338}, {50512, 58159, 58166}, {50512, 58166, 58176}, {58136, 58162, 4834}, {58138, 58172, 58146}, {58139, 58165, 58178}, {58144, 58163, 58170}, {58145, 58160, 58167}, {58146, 58152, 58150}, {58151, 58159, 50512}, {58152, 58155, 58157}


X(58155) = X(1)X(29226)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-2*(b+c)) : :
X(58155) = X[659]+2*X[48294], 2*X[905]+X[6161], X[1491]+2*X[48345], X[2530]+2*X[48329], -5*X[3616]+2*X[23815], 2*X[4040]+X[4378], X[4367]+2*X[4794], 2*X[4401]+X[4879], X[4498]+2*X[48347], X[4705]+2*X[48327], X[4724]+2*X[48328], 2*X[4782]+X[48337] and many others

X(58155) lies on these lines: {1, 29226}, {101, 28891}, {187, 237}, {513, 53315}, {514, 25569}, {659, 48294}, {905, 6161}, {1459, 6085}, {1491, 48345}, {2530, 48329}, {2605, 9002}, {3063, 14407}, {3158, 3251}, {3309, 14419}, {3616, 23815}, {3810, 30580}, {4040, 4378}, {4145, 48302}, {4367, 4794}, {4401, 4879}, {4455, 9010}, {4498, 48347}, {4705, 48327}, {4724, 48328}, {4782, 48337}, {4800, 29344}, {4809, 29304}, {4983, 50517}, {8678, 47777}, {21302, 31288}, {23493, 57114}, {26275, 28473}, {28470, 31149}, {28585, 47802}, {29066, 47875}, {29094, 47798}, {29154, 48223}, {29182, 47832}, {29188, 47820}, {29298, 47804}, {29366, 47818}, {47970, 48344}, {48065, 48323}, {48284, 48301}, {48307, 53390}, {48322, 50507}, {48348, 50358}

X(58155) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58144}, {48307, 53390}, {48338, 58178}, {649, 58162}, {663, 8643}, {667, 58159}, {58137, 58160}, {58140, 58161}
X(58155) = reflection of X(i) in X(j) for these {i,j}: {31149, 47839}, {4775, 58159}, {4834, 58144}, {47839, 45316}, {649, 58137}, {667, 8643}, {58137, 58150}, {58140, 58149}, {58144, 667}, {58159, 663}, {58162, 58160}, {58165, 58162}, {58173, 58178}, {58176, 58147}, {58178, 50512}, {58181, 58140}, {8643, 1960}
X(58155) = perspector of circumconic {{A, B, C, X(6), X(4921)}}
X(58155) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8697}, {100, 39707}, {190, 26745}, {664, 1392}
X(58155) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8697}, {8054, 39707}, {39025, 1392}, {51577, 668}, {55053, 26745}
X(58155) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8697, 6}
X(58155)= pole of line {574, 9310} with respect to the 1st Brocard circle
X(58155)= pole of line {6, 5563} with respect to the circumcircle
X(58155)= pole of line {21746, 29229} with respect to the incircle
X(58155)= pole of line {6, 5563} with respect to the Brocard inellipse
X(58155)= pole of line {13476, 31794} with respect to the DeLongchamps ellipse
X(58155)= pole of line {99, 8697} with respect to the Stammler hyperbola
X(58155)= pole of line {29229, 50193} with respect to the Suppa-Cucoanes circle
X(58155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4926)}}, {{A, B, C, X(513), X(58160)}}, {{A, B, C, X(649), X(28891)}}, {{A, B, C, X(663), X(4959)}}, {{A, B, C, X(1388), X(2223)}}, {{A, B, C, X(3009), X(3632)}}, {{A, B, C, X(3230), X(16885)}}, {{A, B, C, X(3231), X(4921)}}
X(58155) = barycentric product X(i)*X(j) for these (i, j): {1388, 650}, {3632, 649}, {4921, 512}, {4926, 6}, {4959, 57}, {16885, 513}, {31231, 663}
X(58155) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8697}, {649, 39707}, {667, 26745}, {1388, 4554}, {3063, 1392}, {3632, 1978}, {4921, 670}, {4926, 76}, {4959, 312}, {16885, 668}, {31231, 4572}
X(58155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 8643}, {512, 50512, 58178}, {512, 58137, 649}, {512, 58140, 58181}, {512, 58144, 4834}, {512, 58147, 58176}, {512, 58149, 58140}, {512, 58150, 58137}, {512, 58160, 58162}, {512, 663, 58159}, {512, 667, 58144}, {649, 58165, 58171}, {649, 663, 58160}, {659, 48294, 48333}, {663, 48338, 58158}, {663, 58140, 58161}, {663, 58148, 58163}, {663, 58154, 1960}, {663, 58156, 58157}, {667, 58173, 50512}, {1960, 4775, 58151}, {1960, 58150, 58153}, {1960, 58156, 663}, {1960, 58157, 4775}, {1960, 58158, 8656}, {1960, 58160, 58150}, {4040, 48330, 4378}, {4367, 4794, 48351}, {4775, 4834, 58167}, {4775, 58144, 512}, {4775, 58151, 58141}, {4775, 58152, 667}, {4775, 58171, 58165}, {8643, 58140, 58149}, {28470, 45316, 47839}, {28470, 47839, 31149}, {48338, 50512, 58173}, {50509, 58139, 58146}, {50509, 58148, 58139}, {50509, 58163, 58169}, {50512, 58158, 48338}, {58136, 58172, 58145}, {58138, 58166, 58179}, {58139, 58163, 50509}, {58140, 58176, 58147}, {58142, 58170, 58182}, {58143, 58168, 58175}, {58145, 58164, 58172}, {58154, 58157, 58152}


X(58156) = X(187)X(237)∩X(2605)X(4491)

Barycentrics    a^2*(b-c)*(4*a-3*(b+c)) : :
X(58156) = -3*X[551]+X[48406], X[659]+X[48347], 3*X[2605]+X[4491], 3*X[3251]+X[4041], X[4040]+3*X[25569], X[4162]+X[50504], -X[4905]+3*X[14422], 3*X[14421]+X[47936], -X[21260]+3*X[45316], X[48005]+X[48322], X[48059]+X[48324], X[48065]+X[48344] and many others

X(58156) lies on these lines: {187, 237}, {551, 48406}, {659, 48347}, {891, 48294}, {2605, 4491}, {3251, 4041}, {3716, 29268}, {4040, 25569}, {4162, 50504}, {4794, 6372}, {4905, 14422}, {4990, 29058}, {7950, 48299}, {14421, 47936}, {21260, 45316}, {48005, 48322}, {48059, 48324}, {48065, 48344}, {48327, 50507}

X(58156) = midpoint of X(i) and X(j) for these {i,j}: {4040, 48328}, {4162, 50504}, {4775, 50512}, {4794, 48330}, {4834, 58164}, {48005, 48322}, {48059, 48324}, {48065, 48344}, {48294, 48331}, {48327, 50507}, {48338, 58179}, {649, 58163}, {659, 48347}, {663, 1960}, {667, 58160}, {58137, 58161}, {58147, 58162}, {58149, 58159}, {58150, 58158}, {58165, 58175}, {58166, 58174}
X(58156) = reflection of X(i) in X(j) for these {i,j}: {58139, 58150}, {58145, 667}, {58150, 1960}, {58158, 663}, {58177, 50512}, {58182, 58139}
X(58156) = perspector of circumconic {{A, B, C, X(6), X(15492)}}
X(58156) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28222}
X(58156) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28222}
X(58156) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28222, 6}
X(58156)= pole of line {99, 28222} with respect to the Stammler hyperbola
X(58156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28221)}}, {{A, B, C, X(513), X(58159)}}, {{A, B, C, X(3009), X(3625)}}, {{A, B, C, X(3230), X(15492)}}
X(58156) = barycentric product X(i)*X(j) for these (i, j): {3625, 649}, {15492, 513}, {28221, 6}
X(58156) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28222}, {3625, 1978}, {15492, 668}, {28221, 76}
X(58156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58150}, {512, 50512, 58177}, {512, 58139, 58182}, {512, 663, 58158}, {512, 667, 58145}, {649, 58159, 58163}, {663, 58155, 1960}, {663, 667, 58160}, {663, 8656, 58161}, {667, 4775, 50509}, {667, 4834, 58142}, {667, 58155, 58154}, {667, 58159, 58167}, {667, 58171, 58143}, {1960, 50512, 8643}, {1960, 58149, 58152}, {1960, 58158, 58139}, {1960, 58160, 667}, {1960, 58163, 58149}, {1960, 58164, 8656}, {1960, 58175, 58151}, {4040, 25569, 48328}, {4775, 50512, 512}, {4775, 58181, 58168}, {4775, 8643, 50512}, {4794, 48330, 6372}, {4834, 58161, 58164}, {4834, 8656, 58137}, {8643, 58168, 58136}, {48294, 48331, 891}, {48338, 58143, 58171}, {48338, 58154, 58153}, {58136, 58168, 58181}, {58137, 58164, 4834}, {58138, 58162, 58173}, {58138, 58173, 58147}, {58140, 58165, 58175}, {58143, 58171, 58179}, {58144, 58166, 58174}, {58148, 58166, 58144}, {58149, 58163, 649}, {58151, 58165, 58140}, {58155, 58157, 663}, {58158, 58177, 4775}, {58160, 58179, 48338}


X(58157) = X(187)X(237)∩X(650)X(3251)

Barycentrics    a^2*(b-c)*(5*a-4*(b+c)) : :
X(58157) = 2*X[650]+3*X[3251], -8*X[2516]+3*X[4730], 3*X[4040]+2*X[48344], X[4378]+4*X[4794], 3*X[4448]+2*X[48285], -X[21343]+6*X[48294], -X[21385]+6*X[48331], -14*X[27138]+9*X[31149], 2*X[48296]+3*X[48572], -X[48320]+6*X[48330], 3*X[55969]+2*X[57051]

X(58157) lies on circumconic {{A, B, C, X(3009), X(4677)}} and these lines: {187, 237}, {650, 3251}, {2516, 4730}, {4040, 48344}, {4378, 4794}, {4448, 48285}, {21343, 48294}, {21385, 48331}, {27138, 31149}, {48296, 48572}, {48320, 48330}, {55969, 57051}

X(58157) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58141}, {48338, 58180}, {663, 58154}
X(58157) = reflection of X(i) in X(j) for these {i,j}: {4834, 58143}, {667, 58152}, {58141, 8656}, {58146, 667}, {58152, 58154}, {8656, 1960}
X(58157)= pole of line {6, 37587} with respect to the circumcircle
X(58157)= pole of line {6, 37587} with respect to the Brocard inellipse
X(58157) = barycentric product X(i)*X(j) for these (i, j): {4677, 649}
X(58157) = barycentric quotient X(i)/X(j) for these (i, j): {4677, 1978}
X(58157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 8656}, {512, 58143, 4834}, {512, 667, 58146}, {649, 1960, 58151}, {649, 58169, 58173}, {649, 663, 58158}, {663, 58153, 58161}, {663, 58156, 58155}, {663, 667, 58159}, {663, 8643, 58160}, {667, 58165, 58181}, {1960, 4775, 667}, {1960, 58139, 8643}, {1960, 58158, 649}, {1960, 58160, 58139}, {1960, 58175, 58150}, {1960, 8656, 58152}, {4775, 4834, 58166}, {4775, 58141, 512}, {4775, 58152, 58141}, {4775, 58155, 1960}, {4775, 58173, 58165}, {4794, 25569, 4378}, {8656, 58166, 58143}, {48338, 58136, 58175}, {48338, 58150, 58144}, {50512, 58161, 58167}, {58140, 58163, 58171}, {58148, 58162, 58179}, {58150, 58175, 58136}, {58151, 58158, 58169}, {58152, 58155, 58154}, {58153, 58161, 50512}, {58159, 58173, 4775}


X(58158) = X(187)X(237)∩X(661)X(3251)

Barycentrics    a^2*(b-c)*(4*a-5*(b+c)) : :
X(58158) = X[661]+3*X[3251], 3*X[4040]+X[21343], X[4162]+X[50507], X[4724]+X[48296], X[4770]+X[4895], 3*X[4879]+X[21385], -3*X[14422]+X[50359], 3*X[25569]+X[48352], X[48026]+3*X[48327], X[48053]+X[48322], -X[48320]+3*X[48328]

X(58158) lies on circumconic {{A, B, C, X(3009), X(4669)}} and these lines: {187, 237}, {661, 3251}, {891, 4794}, {4040, 21343}, {4162, 50507}, {4724, 48296}, {4770, 4895}, {4879, 21385}, {6363, 48306}, {6372, 48294}, {14422, 50359}, {25569, 48352}, {48026, 48327}, {48053, 48322}, {48320, 48328}

X(58158) = midpoint of X(i) and X(j) for these {i,j}: {1960, 4775}, {4040, 48347}, {4162, 50507}, {4724, 48296}, {4770, 4895}, {48053, 48322}, {48328, 48336}, {48338, 50512}, {649, 58164}, {663, 58160}, {667, 58163}, {58149, 58162}, {58165, 58179}, {58166, 58175}, {58167, 58174}
X(58158) = reflection of X(i) in X(j) for these {i,j}: {58139, 1960}, {58145, 58150}, {58150, 58156}, {58156, 663}, {58177, 58139}, {58182, 667}
X(58158) = barycentric product X(i)*X(j) for these (i, j): {4669, 649}
X(58158) = barycentric quotient X(i)/X(j) for these (i, j): {4669, 1978}
X(58158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58139}, {512, 58150, 58145}, {512, 663, 58156}, {512, 667, 58182}, {649, 4775, 58164}, {649, 663, 58157}, {663, 48338, 58155}, {663, 58159, 58160}, {663, 58162, 58154}, {667, 58172, 58147}, {1960, 4775, 512}, {1960, 50512, 8656}, {1960, 58139, 58150}, {1960, 58160, 4775}, {1960, 58163, 58175}, {1960, 58164, 649}, {1960, 58175, 667}, {4775, 58141, 58165}, {4775, 58151, 58169}, {4775, 58155, 58173}, {4775, 58156, 58177}, {4775, 58166, 58163}, {4775, 58173, 48338}, {4834, 58154, 58149}, {8643, 58170, 58141}, {8656, 58166, 58178}, {48338, 58155, 50512}, {50509, 58152, 58137}, {58139, 58156, 1960}, {58140, 58167, 58174}, {58141, 58165, 58170}, {58141, 58170, 58179}, {58153, 58168, 58144}, {58154, 58162, 4834}, {58157, 58169, 58151}, {58160, 58163, 58161}, {58163, 58175, 58166}


X(58159) = X(1)X(29198)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-4*(b+c)) : :
X(58159) = 2*X[4162]+X[4705], -X[4378]+4*X[48294], X[4724]+2*X[48347], 2*X[4770]+X[4959], 2*X[4794]+X[4879], X[4895]+2*X[50507], X[4983]+2*X[48327], X[6161]+2*X[48136], -2*X[21302]+5*X[31251], X[21343]+2*X[48065], -X[31149]+2*X[47840], -2*X[45316]+X[47837] and many others

X(58159) lies on these lines: {1, 29198}, {187, 237}, {3251, 8678}, {3887, 47888}, {3900, 4825}, {4040, 29226}, {4145, 48297}, {4162, 4705}, {4378, 48294}, {4724, 48347}, {4770, 4959}, {4794, 4879}, {4844, 47872}, {4895, 50507}, {4983, 48327}, {6005, 25569}, {6085, 48340}, {6161, 48136}, {9002, 48306}, {21302, 31251}, {21343, 48065}, {29366, 47875}, {31149, 47840}, {45316, 47837}, {47929, 48296}, {48123, 48345}, {48265, 48285}, {48328, 48367}, {48330, 48352}, {48331, 48337}

X(58159) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58155}, {48338, 58140}, {663, 58161}, {58147, 58164}, {58149, 58163}, {58165, 58181}, {58166, 58176}, {8643, 58162}
X(58159) = reflection of X(i) in X(j) for these {i,j}: {31149, 47840}, {4775, 58161}, {4834, 58140}, {47837, 45316}, {50509, 58147}, {649, 58149}, {667, 58155}, {58140, 1960}, {58144, 8643}, {58147, 58150}, {58149, 58156}, {58155, 663}, {58161, 58160}, {58171, 58176}, {58173, 58181}, {58176, 50512}, {58178, 58137}, {58181, 667}
X(58159) = perspector of circumconic {{A, B, C, X(6), X(17782)}}
X(58159) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28206}
X(58159) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28206}
X(58159) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28206, 6}
X(58159)= pole of line {21746, 50193} with respect to the incircle
X(58159)= pole of line {13476, 50193} with respect to the DeLongchamps ellipse
X(58159)= pole of line {99, 28206} with respect to the Stammler hyperbola
X(58159) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28205)}}, {{A, B, C, X(513), X(58156)}}, {{A, B, C, X(902), X(17782)}}, {{A, B, C, X(3009), X(4668)}}
X(58159) = barycentric product X(i)*X(j) for these (i, j): {4668, 649}, {17782, 514}, {28205, 6}
X(58159) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28206}, {4668, 1978}, {17782, 190}, {28205, 76}
X(58159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58140}, {512, 50512, 58176}, {512, 58137, 58178}, {512, 58147, 50509}, {512, 58149, 649}, {512, 58150, 58147}, {512, 58156, 58149}, {512, 58160, 58161}, {512, 58161, 4775}, {512, 663, 58155}, {512, 667, 58181}, {512, 8643, 58144}, {649, 58156, 58152}, {663, 48338, 1960}, {663, 58166, 58154}, {663, 667, 58157}, {667, 58173, 58146}, {1960, 4775, 58169}, {1960, 48338, 4834}, {1960, 4834, 667}, {1960, 58145, 58148}, {4775, 4834, 48338}, {4775, 58141, 58164}, {4775, 58151, 58166}, {4775, 58152, 58167}, {4775, 58155, 512}, {4775, 58157, 58173}, {4775, 58167, 58163}, {8643, 58161, 58162}, {8643, 58178, 58137}, {8656, 58168, 58179}, {48338, 58148, 58170}, {48338, 58169, 58165}, {50509, 58150, 58141}, {50512, 58154, 58151}, {50512, 58166, 58171}, {58144, 58155, 8643}, {58148, 58170, 58145}, {58151, 58171, 50512}, {58153, 58172, 58139}, {58158, 58160, 663}


X(58160) = X(1)X(6372)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(2*a-3*(b+c)) : :
X(58160) = -X[8]+3*X[48553], X[659]+X[48337], -X[1019]+3*X[25569], 3*X[3251]+X[4983], -5*X[3616]+3*X[48569], 5*X[4162]+3*X[47777], X[4367]+X[48352], X[4378]+X[48367], X[4449]+X[48351], X[4705]+X[4895], X[4724]+X[48333], 3*X[4893]+X[4959] and many others

X(58160) lies on these lines: {1, 6372}, {8, 48553}, {187, 237}, {513, 25405}, {514, 48296}, {519, 48401}, {659, 48337}, {891, 4040}, {1019, 25569}, {3251, 4983}, {3616, 48569}, {3716, 29298}, {3900, 4770}, {4010, 29182}, {4083, 4794}, {4139, 48297}, {4160, 47994}, {4162, 47777}, {4170, 29340}, {4367, 48352}, {4378, 48367}, {4449, 48351}, {4491, 6371}, {4705, 4895}, {4724, 48333}, {4893, 4959}, {5592, 29098}, {6004, 48136}, {6005, 48330}, {6161, 48131}, {6363, 48340}, {7927, 48299}, {7950, 49279}, {8672, 48302}, {8678, 48053}, {8714, 48289}, {14421, 23738}, {21260, 45339}, {21302, 47839}, {21343, 47970}, {23057, 47918}, {29074, 49288}, {29138, 47728}, {29168, 48290}, {29176, 48080}, {29184, 48349}, {29198, 48287}, {29226, 48065}, {29246, 48295}, {29256, 50340}, {29264, 50326}, {29268, 47729}, {29272, 47712}, {29324, 48285}, {29350, 48331}, {31288, 45316}, {48123, 48324}, {48327, 50508}

X(58160) = midpoint of X(i) and X(j) for these {i,j}: {1, 48336}, {1960, 58163}, {21343, 47970}, {4040, 4879}, {4162, 48099}, {4367, 48352}, {4378, 48367}, {4449, 48351}, {4705, 4895}, {4724, 48333}, {4834, 58166}, {4983, 48322}, {47729, 48267}, {48123, 48324}, {48327, 50508}, {50509, 58167}, {50512, 58164}, {649, 58165}, {659, 48337}, {663, 4775}, {667, 48338}, {6161, 48131}, {58155, 58162}, {58159, 58161}, {58168, 58173}, {58169, 58172}
X(58160) = reflection of X(i) in X(j) for these {i,j}: {1960, 663}, {21302, 53571}, {4770, 50507}, {4834, 58139}, {48005, 48099}, {48296, 48347}, {48328, 48294}, {50509, 58145}, {50512, 1960}, {649, 58150}, {663, 58158}, {667, 58156}, {58137, 58155}, {58147, 8643}, {58163, 4775}, {58164, 58163}, {58172, 58177}, {58173, 58182}, {58174, 649}, {58175, 50512}, {58179, 667}
X(58160) = perspector of circumconic {{A, B, C, X(6), X(16814)}}
X(58160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28184}
X(58160) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28184}
X(58160) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28184, 6}
X(58160)= pole of line {5903, 21746} with respect to the incircle
X(58160)= pole of line {5903, 13476} with respect to the DeLongchamps ellipse
X(58160)= pole of line {99, 28184} with respect to the Stammler hyperbola
X(58160)= pole of line {39, 29628} with respect to the Steiner inellipse
X(58160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28183)}}, {{A, B, C, X(513), X(58155)}}, {{A, B, C, X(2223), X(11011)}}, {{A, B, C, X(3009), X(3626)}}, {{A, B, C, X(3230), X(16814)}}, {{A, B, C, X(8708), X(48323)}}
X(58160) = barycentric product X(i)*X(j) for these (i, j): {3626, 649}, {11011, 650}, {16814, 513}, {28183, 6}
X(58160) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28184}, {3626, 1978}, {11011, 4554}, {16814, 668}, {28183, 76}
X(58160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48336, 6372}, {512, 1960, 50512}, {512, 4775, 58163}, {512, 58139, 4834}, {512, 58150, 649}, {512, 58177, 58172}, {512, 58182, 58173}, {512, 649, 58174}, {513, 48294, 48328}, {649, 663, 58155}, {663, 50509, 58154}, {663, 58159, 58158}, {663, 58161, 4775}, {663, 58168, 58152}, {663, 667, 58156}, {663, 8643, 58157}, {667, 4775, 48338}, {667, 4834, 58143}, {667, 58155, 58153}, {1960, 4775, 58164}, {1960, 50512, 58149}, {1960, 58137, 58150}, {1960, 58163, 512}, {1960, 58164, 58175}, {1960, 58174, 58137}, {1960, 58179, 667}, {3251, 4983, 48322}, {3900, 50507, 4770}, {4775, 58155, 58165}, {4775, 58157, 58166}, {4775, 58158, 1960}, {4775, 58159, 663}, {4775, 58165, 58162}, {4834, 58139, 58147}, {4834, 58157, 8643}, {4834, 8643, 58139}, {8656, 58172, 58144}, {48338, 50509, 58167}, {48338, 58153, 58171}, {48338, 58154, 50509}, {48338, 58156, 58179}, {58136, 58176, 58146}, {58138, 58170, 58181}, {58140, 58173, 58182}, {58144, 58172, 58177}, {58148, 58178, 58141}, {58151, 58181, 58138}, {58152, 58173, 58140}, {58154, 58167, 58145}


X(58161) = X(1)X(48341)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-5*(b+c)) : :
X(58161) = -4*X[1]+X[48341], X[661]+2*X[4162], -X[4498]+4*X[4794], 2*X[4705]+X[4959], X[4724]+2*X[4879], -X[4814]+4*X[50507], X[4822]+2*X[48327], X[4895]+2*X[48099], 2*X[6161]+X[48122], -2*X[21302]+5*X[30835], -2*X[45316]+X[47836], X[47929]+2*X[48333] and many others

X(58161) lies on circumconic {{A, B, C, X(513), X(58154)}} and these lines: {1, 48341}, {187, 237}, {661, 4162}, {3900, 4893}, {4083, 48572}, {4145, 46385}, {4449, 29198}, {4498, 4794}, {4705, 4959}, {4724, 4879}, {4814, 50507}, {4822, 48327}, {4895, 48099}, {6161, 48122}, {6545, 8713}, {8540, 9029}, {8678, 48544}, {8710, 47765}, {9002, 48340}, {21302, 30835}, {28470, 31147}, {29366, 47832}, {45316, 47836}, {47929, 48333}, {48004, 50767}, {48121, 48324}, {48144, 48294}, {48347, 48351}, {50517, 50525}

X(58161) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58159}, {663, 58162}, {58137, 58164}, {58144, 58165}, {58166, 58178}, {8643, 48338}
X(58161) = reflection of X(i) in X(j) for these {i,j}: {4834, 58137}, {47836, 45316}, {48338, 58162}, {50509, 58144}, {649, 8643}, {663, 58159}, {58137, 58156}, {58140, 58155}, {58144, 1960}, {58159, 58160}, {58162, 4775}, {58172, 58178}, {58176, 58140}, {58178, 667}, {58181, 58149}, {8643, 663}
X(58161) = perspector of circumconic {{A, B, C, X(6), X(36603)}}
X(58161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28192}
X(58161) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28192}
X(58161) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28192, 6}
X(58161)= pole of line {6, 22357} with respect to the circumcircle
X(58161)= pole of line {262, 38054} with respect to the orthoptic circle of the Steiner Inellipse
X(58161)= pole of line {6, 22357} with respect to the Brocard inellipse
X(58161)= pole of line {99, 28192} with respect to the Stammler hyperbola
X(58161)= pole of line {194, 16833} with respect to the Steiner circumellipse
X(58161) = barycentric product X(i)*X(j) for these (i, j): {4678, 649}
X(58161) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28192}, {4678, 1978}
X(58161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48367, 48341}, {512, 1960, 58144}, {512, 4775, 58162}, {512, 58137, 4834}, {512, 58140, 58176}, {512, 58149, 58181}, {512, 58155, 58140}, {512, 58156, 58137}, {512, 58160, 58159}, {512, 58162, 48338}, {512, 58178, 58172}, {512, 663, 8643}, {512, 667, 58178}, {649, 48338, 58168}, {649, 58154, 58148}, {649, 663, 58154}, {663, 50509, 1960}, {663, 58140, 58155}, {663, 58153, 58157}, {663, 8656, 58156}, {667, 4775, 58163}, {1960, 50509, 58138}, {1960, 58165, 50509}, {1960, 58182, 667}, {4775, 58158, 58166}, {4775, 58159, 512}, {4775, 58160, 663}, {4794, 48337, 4498}, {4834, 58142, 649}, {4834, 58156, 8656}, {4834, 8656, 58142}, {48294, 48352, 48144}, {48322, 50508, 4813}, {50512, 58157, 58153}, {50512, 58167, 58170}, {58138, 58172, 58182}, {58139, 58171, 58180}, {58140, 58178, 58147}, {58150, 58173, 58143}, {58152, 58169, 58179}, {58152, 58179, 58136}, {58153, 58170, 50512}, {58155, 58181, 58149}, {58160, 58163, 58158}, {58163, 58182, 58165}


X(58162) = X(187)X(237)∩X(661)X(4959)

Barycentrics    a^2*(b-c)*(3*a-7*(b+c)) : :
X(58162) = 2*X[661]+X[4959], 2*X[4162]+X[4822], X[4449]+2*X[48352], X[4724]+2*X[48337], -X[4814]+4*X[48099], 2*X[4895]+X[47912], -4*X[45339]+5*X[47840], -X[48341]+4*X[48347]

X(58162) lies on these lines: {187, 237}, {661, 4959}, {3900, 47777}, {4162, 4822}, {4449, 48352}, {4724, 48337}, {4814, 48099}, {4879, 29198}, {4895, 47912}, {28579, 47797}, {29226, 47929}, {45339, 47840}, {48341, 48347}

X(58162) = midpoint of X(i) and X(j) for these {i,j}: {48338, 58161}, {58140, 58166}, {58155, 58165}, {58167, 58181}, {58168, 58176}
X(58162) = reflection of X(i) in X(j) for these {i,j}: {4834, 58149}, {50509, 58140}, {649, 58155}, {663, 58161}, {58140, 663}, {58147, 58156}, {58149, 58158}, {58155, 58160}, {58161, 4775}, {58170, 58176}, {58172, 58181}, {58173, 58147}, {58176, 667}, {58178, 8643}, {58181, 1960}, {8643, 58159}
X(58162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58181}, {512, 4775, 58161}, {512, 58140, 50509}, {512, 58147, 58173}, {512, 58149, 4834}, {512, 58155, 649}, {512, 58156, 58147}, {512, 58158, 58149}, {512, 58159, 8643}, {512, 58160, 58155}, {512, 58176, 58170}, {512, 663, 58140}, {512, 667, 58176}, {512, 8643, 58178}, {649, 48338, 58165}, {649, 663, 58153}, {649, 8643, 58137}, {663, 50509, 8656}, {663, 58143, 1960}, {663, 58168, 58180}, {663, 58170, 667}, {1960, 58167, 58172}, {1960, 58172, 58143}, {4775, 48338, 663}, {4775, 58163, 48338}, {4775, 58165, 58160}, {4834, 58154, 58136}, {4834, 58158, 58154}, {4895, 50508, 47912}, {8643, 58161, 58159}, {48338, 58161, 512}, {48338, 58168, 58164}, {58152, 58175, 58142}, {58156, 58173, 58138}, {58157, 58179, 58148}, {58160, 58164, 58174}, {58164, 58170, 58166}, {58165, 58174, 58168}


X(58163) = X(187)X(237)∩X(4895)X(4983)

Barycentrics    a^2*(b-c)*(2*a-5*(b+c)) : :
X(58163) = -3*X[3251]+X[50523], -X[4770]+2*X[48099], X[4895]+X[4983], -3*X[47840]+2*X[53571], X[47913]+X[50767], -2*X[47956]+3*X[48053], -3*X[48123]+X[48586], X[48333]+X[48367]

X(58163) lies on circumconic {{A, B, C, X(512), X(28187)}} and these lines: {187, 237}, {513, 48287}, {891, 47970}, {3251, 50523}, {3887, 48059}, {3900, 48005}, {4083, 48065}, {4170, 29182}, {4770, 48099}, {4879, 6372}, {4895, 4983}, {6004, 48616}, {6005, 48328}, {12073, 48299}, {29170, 48285}, {29176, 47729}, {29268, 48080}, {29272, 48349}, {47840, 53571}, {47913, 50767}, {47956, 48053}, {48123, 48586}, {48333, 48367}

X(58163) = midpoint of X(i) and X(j) for these {i,j}: {4775, 48338}, {4834, 58168}, {4879, 48352}, {4895, 4983}, {47913, 50767}, {48333, 48367}, {48336, 48337}, {50509, 58169}, {649, 58167}, {663, 58165}, {667, 58166}, {58160, 58164}
X(58163) = reflection of X(i) in X(j) for these {i,j}: {1960, 58160}, {4770, 48099}, {4834, 58150}, {48053, 50508}, {48296, 4879}, {50509, 58139}, {50512, 663}, {649, 58156}, {667, 58158}, {58149, 58159}, {58160, 4775}, {58164, 48338}, {58171, 58177}, {58172, 58182}, {58173, 58145}, {58174, 50512}, {58175, 667}, {58179, 1960}
X(58163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28188}
X(58163) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28188}
X(58163) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28188, 6}
X(58163)= pole of line {6, 9341} with respect to the circumcircle
X(58163)= pole of line {5697, 21746} with respect to the incircle
X(58163)= pole of line {6, 9341} with respect to the Brocard inellipse
X(58163)= pole of line {5697, 13476} with respect to the DeLongchamps ellipse
X(58163)= pole of line {99, 28188} with respect to the Stammler hyperbola
X(58163) = barycentric product X(i)*X(j) for these (i, j): {4691, 649}, {28187, 6}
X(58163) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28188}, {4691, 1978}, {28187, 76}
X(58163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4775, 58160}, {512, 48338, 58164}, {512, 50512, 58174}, {512, 58139, 50509}, {512, 58145, 58173}, {512, 58150, 4834}, {512, 58156, 649}, {512, 58159, 58149}, {512, 58177, 58171}, {512, 58182, 58172}, {512, 667, 58175}, {649, 58159, 58156}, {649, 663, 58152}, {663, 48338, 58165}, {663, 4834, 58150}, {663, 58148, 58155}, {663, 58180, 8643}, {667, 4775, 58161}, {1960, 58147, 667}, {1960, 58174, 50512}, {1960, 58179, 58137}, {4775, 48338, 512}, {4775, 58164, 1960}, {4775, 58165, 663}, {4775, 58166, 58158}, {4775, 58167, 58159}, {4834, 58165, 58168}, {4879, 48352, 6372}, {8643, 58173, 58145}, {48336, 48337, 891}, {48338, 58161, 58166}, {48338, 58162, 4775}, {50509, 58148, 58146}, {50509, 58155, 58139}, {50512, 58174, 58179}, {50512, 58175, 58182}, {50512, 58182, 58147}, {58140, 58171, 58177}, {58146, 58155, 58148}, {58146, 58165, 58169}, {58149, 58164, 58167}, {58153, 58176, 58141}, {58154, 58170, 58144}, {58157, 58171, 58140}


X(58164) = X(187)X(237)∩X(3251)X(4979)

Barycentrics    a^2*(b-c)*(2*a-7*(b+c)) : :
X(58164) = -3*X[3251]+X[4979], -3*X[4879]+X[48320], 3*X[4895]+X[48019], -X[21385]+3*X[48336], -7*X[27138]+6*X[53571], -X[48005]+2*X[50508]

X(58164) lies on circumconic {{A, B, C, X(3009), X(4745)}} and these lines: {187, 237}, {513, 48296}, {891, 48352}, {3251, 4979}, {3900, 48053}, {4083, 48623}, {4879, 48320}, {4895, 48019}, {6005, 48344}, {6372, 21343}, {21385, 48336}, {27138, 53571}, {28209, 50761}, {29188, 49289}, {48005, 50508}

X(58164) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58166}, {48338, 58165}, {649, 58169}, {663, 58167}, {667, 58168}
X(58164) = reflection of X(i) in X(j) for these {i,j}: {1960, 4775}, {4834, 58156}, {48005, 50508}, {50509, 58150}, {50512, 58160}, {649, 58158}, {58137, 58161}, {58147, 58159}, {58160, 58163}, {58163, 48338}, {58170, 58177}, {58171, 58182}, {58172, 58145}, {58173, 58139}, {58174, 667}, {58175, 1960}, {58179, 663}
X(58164)= pole of line {43149, 44456} with respect to the Stammler circle
X(58164) = barycentric product X(i)*X(j) for these (i, j): {4745, 649}
X(58164) = barycentric quotient X(i)/X(j) for these (i, j): {4745, 1978}
X(58164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58175}, {512, 4775, 1960}, {512, 48338, 58163}, {512, 58145, 58172}, {512, 58150, 50509}, {512, 58156, 4834}, {512, 58177, 58170}, {512, 58182, 58171}, {512, 663, 58179}, {512, 667, 58174}, {649, 4775, 58158}, {649, 58166, 58169}, {649, 663, 58151}, {1960, 4775, 58160}, {1960, 58137, 8656}, {1960, 58139, 58149}, {1960, 58163, 4775}, {1960, 58175, 50512}, {1960, 58179, 58139}, {4775, 58141, 58159}, {4775, 58165, 58166}, {4775, 58166, 512}, {4775, 58167, 58173}, {4775, 58168, 58177}, {4775, 58169, 649}, {4775, 58173, 663}, {4834, 58156, 58137}, {4834, 58161, 58156}, {8643, 58171, 58182}, {48338, 58168, 58162}, {50509, 58150, 58147}, {50509, 58159, 58150}, {58155, 58172, 58145}, {58162, 58168, 667}, {58166, 58170, 58168}, {58174, 58179, 58176}


X(58165) = X(187)X(237)∩X(3063)X(4826)

Barycentrics    a^2*(b-c)*(a-4*(b+c)) : :
X(58165) = -3*X[3251]+2*X[50517], -X[4378]+2*X[4879], -4*X[4705]+3*X[4825], -X[4729]+2*X[50507], -X[4730]+2*X[48099], -2*X[4761]+3*X[47875], -X[4784]+2*X[48294], -2*X[4807]+3*X[47822], X[4813]+X[4959], -X[4814]+2*X[48005], -5*X[17072]+6*X[45339], -2*X[21302]+3*X[31149] and many others

X(58165) lies on these lines: {187, 237}, {513, 48282}, {891, 48367}, {3063, 4826}, {3251, 50517}, {3309, 48616}, {3800, 49279}, {3887, 48052}, {3900, 4983}, {4083, 47970}, {4170, 29366}, {4378, 4879}, {4705, 4825}, {4729, 50507}, {4730, 48099}, {4761, 47875}, {4784, 48294}, {4807, 47822}, {4813, 4959}, {4814, 48005}, {6004, 48116}, {12073, 48300}, {14077, 47949}, {17072, 45339}, {21302, 31149}, {23057, 48149}, {25569, 48064}, {29150, 47729}, {29200, 47727}, {29208, 49276}, {29298, 48080}, {29304, 48349}, {29350, 48065}, {31251, 47840}, {47888, 50355}, {48144, 48347}, {48296, 48341}, {48348, 50359}

X(58165) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58167}, {4813, 4959}, {48338, 58166}, {663, 58168}, {667, 58169}
X(58165) = reflection of X(i) in X(j) for these {i,j}: {4378, 4879}, {4705, 50508}, {4729, 50507}, {4730, 48099}, {4775, 48338}, {4784, 48294}, {4814, 48005}, {4834, 663}, {48144, 48347}, {48333, 48337}, {48338, 58164}, {48341, 48296}, {48351, 48352}, {50359, 48348}, {50509, 1960}, {649, 58160}, {663, 58163}, {667, 4775}, {58144, 58161}, {58155, 58162}, {58167, 58166}, {58169, 58167}, {58170, 58179}, {58171, 649}, {58172, 50512}, {58173, 667}, {58174, 58150}, {58175, 58156}, {58179, 58158}, {58181, 58159}
X(58165) = perspector of circumconic {{A, B, C, X(6), X(16675)}}
X(58165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28166}
X(58165) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28166}
X(58165) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28166, 6}
X(58165)= pole of line {6, 7280} with respect to the circumcircle
X(58165)= pole of line {9957, 21746} with respect to the incircle
X(58165)= pole of line {22769, 44456} with respect to the Stammler circle
X(58165)= pole of line {6, 7280} with respect to the Brocard inellipse
X(58165)= pole of line {9957, 13476} with respect to the DeLongchamps ellipse
X(58165)= pole of line {99, 28166} with respect to the Stammler hyperbola
X(58165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28165)}}, {{A, B, C, X(513), X(58150)}}, {{A, B, C, X(3230), X(16675)}}
X(58165) = barycentric product X(i)*X(j) for these (i, j): {16675, 513}, {28165, 6}
X(58165) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28166}, {16675, 668}, {28165, 76}
X(58165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 50509}, {512, 48338, 4775}, {512, 50512, 58172}, {512, 58156, 58175}, {512, 58158, 58179}, {512, 58160, 649}, {512, 58164, 48338}, {512, 58166, 58167}, {512, 58179, 58170}, {512, 649, 58171}, {513, 48337, 48333}, {649, 48338, 58162}, {649, 58153, 58137}, {663, 48338, 58163}, {663, 50512, 58152}, {663, 58166, 58168}, {663, 58180, 58148}, {1960, 50509, 58144}, {1960, 58144, 667}, {1960, 58182, 58138}, {4083, 48352, 48351}, {4775, 4834, 663}, {4775, 58141, 58158}, {4775, 58155, 58160}, {4775, 58166, 58169}, {4775, 58167, 512}, {4775, 58169, 58173}, {4775, 58171, 58155}, {4775, 58173, 58157}, {4834, 58144, 58182}, {4834, 58146, 58181}, {4834, 58152, 50512}, {4834, 58171, 58174}, {4879, 6005, 4378}, {8656, 58176, 58145}, {48338, 58169, 58159}, {50509, 58161, 1960}, {50509, 58182, 4834}, {58140, 58156, 58151}, {58148, 58172, 58180}, {58149, 58177, 58143}, {58154, 58178, 58139}, {58156, 58175, 58140}, {58158, 58170, 58141}, {58158, 58179, 8643}, {58160, 58174, 58150}, {58163, 58169, 58146}, {58163, 58182, 58161}


X(58166) = X(8)X(48043)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(a-5*(b+c)) : :
X(58166) = -X[8]+2*X[48043], -2*X[661]+X[4814], -4*X[2516]+3*X[50499], -X[4041]+2*X[50508], -3*X[4105]+4*X[53249], -2*X[4162]+X[50523], -X[4474]+2*X[48080], -X[4498]+2*X[48336], -X[4543]+2*X[47764], -3*X[4724]+2*X[21385], -X[4729]+2*X[48099], -2*X[4730]+3*X[4893] and many others

X(58166) lies on these lines: {8, 48043}, {187, 237}, {513, 4895}, {661, 4814}, {2516, 50499}, {3309, 48122}, {3667, 48298}, {3887, 48023}, {3900, 4822}, {4041, 50508}, {4083, 47929}, {4105, 53249}, {4162, 50523}, {4382, 29188}, {4449, 6005}, {4474, 48080}, {4498, 48336}, {4543, 47764}, {4724, 21385}, {4729, 48099}, {4730, 4893}, {4761, 47832}, {4778, 48304}, {4807, 47838}, {4879, 48144}, {4959, 8678}, {4979, 48327}, {6006, 21222}, {7659, 14413}, {12073, 49279}, {14077, 48021}, {14432, 48069}, {17072, 27138}, {21302, 26798}, {27013, 45316}, {47935, 48329}, {47976, 48345}, {48118, 49276}, {48141, 48291}, {48142, 48339}, {48295, 48579}, {48322, 50526}, {48333, 48341}

X(58166) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58169}, {48338, 58168}, {58165, 58167}
X(58166) = reflection of X(i) in X(j) for these {i,j}: {4041, 50508}, {4449, 48337}, {4474, 48080}, {4498, 48336}, {4543, 47764}, {4724, 48352}, {4729, 48099}, {4775, 58164}, {4814, 661}, {4834, 58160}, {4979, 48327}, {47912, 4822}, {47929, 48367}, {47935, 48329}, {47976, 48345}, {48118, 49276}, {48141, 48291}, {48142, 48339}, {48144, 4879}, {48338, 58165}, {48341, 48333}, {50509, 663}, {50523, 4162}, {50526, 48322}, {649, 4775}, {663, 48338}, {667, 58163}, {58140, 58162}, {58168, 58167}, {58170, 649}, {58171, 50512}, {58172, 667}, {58173, 1960}, {58174, 58156}, {58175, 58158}, {58176, 58159}, {58178, 58161}, {8, 48043}
X(58166) = isogonal conjugate of X(58133)
X(58166) = perspector of circumconic {{A, B, C, X(6), X(16676)}}
X(58166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58133}, {75, 28170}
X(58166) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58133}, {206, 28170}
X(58166) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28170, 6}
X(58166)= pole of line {5919, 21746} with respect to the incircle
X(58166)= pole of line {5919, 13476} with respect to the DeLongchamps ellipse
X(58166)= pole of line {99, 28170} with respect to the Stammler hyperbola
X(58166)= pole of line {194, 16815} with respect to the Steiner circumellipse
X(58166)= pole of line {39, 31197} with respect to the Steiner inellipse
X(58166)= pole of line {670, 58133} with respect to the Wallace hyperbola
X(58166) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(512), X(28169)}}, {{A, B, C, X(513), X(8656)}}, {{A, B, C, X(649), X(47777)}}, {{A, B, C, X(2223), X(18421)}}, {{A, B, C, X(3230), X(16676)}}, {{A, B, C, X(23345), X(58136)}}, {{A, B, C, X(43924), X(58139)}}
X(58166) = barycentric product X(i)*X(j) for these (i, j): {1, 47777}, {16676, 513}, {18421, 650}, {28169, 6}, {53620, 649}
X(58166) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58133}, {32, 28170}, {16676, 668}, {18421, 4554}, {28169, 76}, {47777, 75}, {53620, 1978}
X(58166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58173}, {512, 50512, 58171}, {512, 58156, 58174}, {512, 58158, 58175}, {512, 58160, 4834}, {512, 58161, 58178}, {512, 58162, 58140}, {512, 58163, 667}, {512, 58164, 4775}, {512, 58167, 58168}, {512, 663, 50509}, {512, 667, 58172}, {649, 1960, 58136}, {663, 58140, 58153}, {667, 4834, 58147}, {1960, 58136, 8656}, {1960, 58173, 649}, {1960, 58177, 58141}, {3900, 4822, 47912}, {4083, 48367, 47929}, {4775, 4834, 58157}, {4775, 58151, 58159}, {4775, 58157, 58160}, {4775, 58158, 58161}, {4775, 58164, 48338}, {4775, 58165, 58164}, {4775, 58167, 58169}, {4775, 58169, 512}, {4775, 58171, 58151}, {4775, 58173, 1960}, {4834, 58157, 58139}, {4834, 58160, 8643}, {4834, 8643, 58143}, {29350, 48352, 4724}, {48338, 58161, 58163}, {48338, 58169, 58170}, {50509, 58140, 58180}, {50509, 58162, 663}, {50512, 58159, 58154}, {50512, 58171, 58176}, {58141, 58173, 58177}, {58144, 58156, 58148}, {58150, 58181, 58142}, {58154, 58176, 50512}, {58155, 58179, 58138}, {58156, 58174, 58144}, {58163, 58175, 58158}, {58164, 58170, 58162}


X(58167) = X(187)X(237)∩X(3251)X(50515)

Barycentrics    a^2*(b-c)*(a-6*(b+c)) : :
X(58167) = -3*X[3251]+2*X[50515], -X[4378]+2*X[48337], -X[4730]+2*X[50508], -X[4814]+2*X[48053], -3*X[4825]+4*X[48005], -3*X[4879]+2*X[48343]

X(58167) lies on these lines: {187, 237}, {3251, 50515}, {4378, 48337}, {4730, 50508}, {4814, 48053}, {4825, 48005}, {4879, 48343}, {6005, 48323}, {29350, 48351}

X(58167) = midpoint of X(i) and X(j) for these {i,j}: {58165, 58169}, {58166, 58168}
X(58167) = reflection of X(i) in X(j) for these {i,j}: {4378, 48337}, {4730, 50508}, {4775, 58165}, {4814, 48053}, {4834, 4775}, {50509, 58160}, {649, 58163}, {663, 58164}, {667, 48338}, {58165, 58166}, {58169, 58168}, {58170, 50512}, {58171, 667}, {58172, 1960}, {58173, 663}, {58174, 58158}, {58181, 58162}
X(58167) = perspector of circumconic {{A, B, C, X(6), X(16677)}}
X(58167)= pole of line {21746, 31792} with respect to the incircle
X(58167)= pole of line {13476, 31792} with respect to the DeLongchamps ellipse
X(58167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58149)}}, {{A, B, C, X(3230), X(16677)}}
X(58167) = barycentric product X(i)*X(j) for these (i, j): {16677, 513}
X(58167) = barycentric quotient X(i)/X(j) for these (i, j): {16677, 668}
X(58167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58172}, {512, 4775, 4834}, {512, 50512, 58170}, {512, 58158, 58174}, {512, 58160, 50509}, {512, 58163, 649}, {512, 58165, 4775}, {512, 58166, 58165}, {512, 58168, 58169}, {512, 663, 58173}, {512, 667, 58171}, {649, 58159, 58152}, {649, 663, 58149}, {663, 50509, 58142}, {663, 58176, 58139}, {667, 58157, 58153}, {667, 58159, 58156}, {667, 58165, 48338}, {667, 58181, 58143}, {1960, 58143, 667}, {1960, 58172, 58181}, {4775, 4834, 58155}, {4775, 58144, 663}, {4775, 58152, 58159}, {4775, 58173, 58151}, {4834, 58151, 58144}, {4834, 58155, 58141}, {8643, 58175, 58146}, {48338, 50509, 58160}, {50509, 58142, 58179}, {50509, 58154, 58145}, {50512, 58161, 58157}, {58145, 58160, 58154}, {58149, 58164, 58163}, {58158, 58174, 58140}, {58161, 58170, 50512}, {58162, 58172, 1960}, {58165, 58169, 512}


X(58168) = X(187)X(237)∩X(657)X(4826)

Barycentrics    a^2*(b-c)*(a-7*(b+c)) : :
X(58168) = -2*X[4162]+X[4979], -3*X[4498]+4*X[48065], -2*X[4546]+3*X[47764], -2*X[4729]+3*X[4893], -X[4814]+2*X[4983], -3*X[4822]+2*X[47956], -2*X[21302]+3*X[31147], -3*X[48144]+4*X[48287], -2*X[48322]+X[50525], -4*X[48336]+3*X[48572], -8*X[48395]+9*X[53584]

X(58168) lies on these lines: {187, 237}, {657, 4826}, {3309, 48116}, {3887, 48121}, {3900, 4813}, {4162, 4979}, {4498, 48065}, {4546, 47764}, {4729, 4893}, {4814, 4983}, {4822, 47956}, {4843, 50482}, {6005, 48282}, {8710, 49284}, {21302, 31147}, {29350, 47970}, {48144, 48287}, {48322, 50525}, {48336, 48572}, {48395, 53584}

X(58168) = midpoint of X(i) and X(j) for these {i,j}: {58167, 58169}
X(58168) = reflection of X(i) in X(j) for these {i,j}: {4498, 48352}, {4729, 50508}, {4814, 4983}, {4834, 58163}, {4979, 4162}, {48144, 48337}, {48338, 58166}, {50509, 4775}, {50525, 48322}, {649, 48338}, {663, 58165}, {667, 58164}, {58166, 58167}, {58170, 667}, {58171, 1960}, {58172, 663}, {58173, 58160}, {58176, 58162}
X(58168)= pole of line {194, 16832} with respect to the Steiner circumellipse
X(58168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58171}, {512, 4775, 50509}, {512, 58160, 58173}, {512, 58163, 4834}, {512, 58164, 667}, {512, 58166, 48338}, {512, 58167, 58166}, {512, 663, 58172}, {512, 667, 58170}, {649, 48338, 58161}, {649, 58161, 58154}, {649, 663, 58148}, {663, 4834, 58138}, {663, 50509, 50512}, {663, 58166, 58165}, {663, 58170, 58180}, {1960, 58171, 58178}, {1960, 58178, 58142}, {4729, 50508, 4893}, {4775, 50509, 8643}, {4775, 50512, 663}, {4775, 58181, 58156}, {4834, 58138, 649}, {4834, 58165, 58163}, {50509, 58136, 58181}, {50509, 58177, 58176}, {50512, 58174, 58177}, {58144, 58158, 58153}, {58152, 58173, 58182}, {58152, 58182, 58140}, {58155, 58175, 58143}, {58156, 58181, 58136}, {58159, 58179, 8656}, {58160, 58182, 58152}, {58164, 58177, 4775}, {58165, 58174, 58162}, {58166, 58170, 58164}, {58167, 58169, 512}, {58170, 58180, 58174}


X(58169) = X(187)X(237)∩X(661)X(4825)

Barycentrics    a^2*(b-c)*(a-8*(b+c)) : :
X(58169) = -4*X[661]+3*X[4825], -3*X[3251]+2*X[4790], -2*X[21385]+3*X[48351], -10*X[26798]+9*X[31149], -2*X[48320]+3*X[48333], -3*X[48337]+2*X[48344]

X(58169) lies on circumconic {{A, B, C, X(3009), X(51066)}} and these lines: {187, 237}, {513, 50767}, {661, 4825}, {3251, 4790}, {6005, 21343}, {21385, 48351}, {26798, 31149}, {48320, 48333}, {48337, 48344}

X(58169) = reflection of X(i) in X(j) for these {i,j}: {4775, 58166}, {4834, 48338}, {50509, 58163}, {649, 58164}, {667, 58165}, {58165, 58167}, {58167, 58168}, {58170, 1960}, {58171, 663}, {58172, 58160}, {58173, 4775}
X(58169) = barycentric product X(i)*X(j) for these (i, j): {51066, 649}
X(58169) = barycentric quotient X(i)/X(j) for these (i, j): {51066, 1978}
X(58169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58170}, {512, 58160, 58172}, {512, 58163, 50509}, {512, 58164, 649}, {512, 58168, 58167}, {512, 663, 58171}, {649, 58158, 58151}, {649, 58166, 58164}, {1960, 4775, 58159}, {1960, 48338, 4775}, {1960, 58139, 58148}, {1960, 58170, 4834}, {1960, 58175, 58145}, {4775, 4834, 1960}, {4775, 58141, 663}, {4775, 58151, 58158}, {4775, 58166, 58165}, {4775, 58167, 58166}, {4775, 58171, 58141}, {4775, 58173, 667}, {4834, 58145, 58181}, {4834, 58148, 58146}, {4834, 58170, 58173}, {8656, 58172, 58177}, {50509, 58163, 58155}, {58141, 58171, 58175}, {58146, 58165, 58163}, {58151, 58158, 58157}, {58159, 58165, 48338}, {58160, 58172, 58144}, {58160, 58177, 8656}, {58161, 58179, 58152}


X(58170) = X(187)X(237)∩X(834)X(2334)

Barycentrics    a^2*(b-c)*(a+7*(b+c)) : :
X(58170) = -4*X[2516]+3*X[50508], -3*X[4041]+2*X[48026], -2*X[4729]+X[47912], -2*X[4730]+X[4813], -4*X[4770]+3*X[48544], -3*X[4784]+2*X[48344], -2*X[4790]+X[4895], -X[4822]+2*X[50499], -X[4959]+2*X[50523], -6*X[17072]+5*X[26798], -2*X[21343]+3*X[48144], -X[48121]+2*X[50355] and many others

X(58170) lies on these lines: {187, 237}, {513, 4814}, {834, 2334}, {1499, 48106}, {2516, 50508}, {3900, 50526}, {4041, 48026}, {4729, 47912}, {4730, 4813}, {4770, 48544}, {4784, 48344}, {4790, 4895}, {4822, 50499}, {4959, 50523}, {6005, 21385}, {17072, 26798}, {21343, 48144}, {29350, 48320}, {48121, 50355}, {48291, 48577}

X(58170) = reflection of X(i) in X(j) for these {i,j}: {4775, 58175}, {4813, 4730}, {4822, 50499}, {4895, 4790}, {4959, 50523}, {47912, 4729}, {48121, 50355}, {48338, 4834}, {50509, 58172}, {649, 58173}, {663, 50509}, {667, 58174}, {58162, 58176}, {58164, 58177}, {58165, 58179}, {58166, 649}, {58167, 50512}, {58168, 667}, {58169, 1960}, {58172, 58171}
X(58170)= pole of line {194, 29578} with respect to the Steiner circumellipse
X(58170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58136)}}, {{A, B, C, X(902), X(2334)}}, {{A, B, C, X(23345), X(58140)}}, {{A, B, C, X(43924), X(58141)}}, {{A, B, C, X(50344), X(58166)}}
X(58170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58169}, {512, 50512, 58167}, {512, 58171, 58172}, {512, 58172, 50509}, {512, 58174, 667}, {512, 58175, 4775}, {512, 58176, 58162}, {512, 58177, 58164}, {512, 58179, 58165}, {512, 667, 58168}, {649, 4775, 8656}, {649, 58136, 58143}, {649, 58172, 58173}, {649, 663, 58136}, {663, 50509, 58178}, {1960, 4834, 649}, {1960, 58169, 48338}, {4775, 58173, 58175}, {4775, 8656, 663}, {4834, 48338, 58140}, {4834, 58159, 58145}, {4834, 58169, 1960}, {48338, 58148, 58159}, {48338, 58169, 58166}, {50509, 58140, 4834}, {50509, 58162, 58180}, {50509, 58180, 58176}, {50512, 58161, 58153}, {50512, 58167, 58161}, {58141, 58158, 8643}, {58141, 58165, 58158}, {58144, 58163, 58154}, {58145, 58159, 58148}, {58155, 58182, 58142}, {58158, 58179, 58141}, {58160, 58181, 58138}, {58164, 58174, 58177}, {58168, 58172, 58174}


X(58171) = X(187)X(237)∩X(513)X(53411)

Barycentrics    a^2*(b-c)*(a+6*(b+c)) : :
X(58171) = -2*X[4784]+X[48333], -3*X[4825]+2*X[47912], -5*X[4983]+6*X[47777], -25*X[31251]+24*X[45339]

X(58171) lies on these lines: {187, 237}, {513, 53411}, {4784, 48333}, {4825, 47912}, {4983, 47777}, {29350, 48323}, {31251, 45339}, {32478, 48106}

X(58171) = midpoint of X(i) and X(j) for these {i,j}: {58170, 58172}
X(58171) = reflection of X(i) in X(j) for these {i,j}: {4775, 4834}, {4834, 58173}, {4983, 50499}, {48333, 4784}, {48338, 58179}, {649, 58174}, {663, 58175}, {667, 50509}, {58159, 58176}, {58163, 58177}, {58164, 58182}, {58165, 649}, {58166, 50512}, {58167, 667}, {58168, 1960}, {58169, 663}, {58173, 58172}
X(58171) = perspector of circumconic {{A, B, C, X(6), X(16674)}}
X(58171)= pole of line {11010, 44421} with respect to the Bevan circle
X(58171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3230), X(16674)}}, {{A, B, C, X(50344), X(58165)}}
X(58171) = barycentric product X(i)*X(j) for these (i, j): {16674, 513}
X(58171) = barycentric quotient X(i)/X(j) for these (i, j): {16674, 668}
X(58171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58168}, {512, 4834, 4775}, {512, 50512, 58166}, {512, 58172, 58173}, {512, 58173, 4834}, {512, 58175, 663}, {512, 58177, 58163}, {512, 58179, 48338}, {512, 58182, 58164}, {512, 649, 58165}, {512, 663, 58169}, {512, 667, 58167}, {649, 48338, 58153}, {649, 58162, 58150}, {649, 58165, 58155}, {649, 663, 58137}, {667, 58146, 58142}, {667, 58159, 58154}, {667, 58173, 50509}, {667, 58181, 58145}, {1960, 58142, 667}, {1960, 58178, 58146}, {4775, 4834, 58144}, {4775, 58144, 58152}, {4834, 58141, 58181}, {4834, 58155, 649}, {48338, 50509, 58179}, {48338, 58143, 58156}, {48338, 58153, 58160}, {50512, 58159, 58151}, {50512, 58166, 58159}, {58137, 58174, 58175}, {58140, 58163, 58157}, {58156, 58179, 58143}, {58161, 58180, 58139}, {58163, 58177, 58140}, {58164, 58182, 8643}, {58166, 58176, 50512}, {58168, 58178, 1960}, {58169, 58175, 58141}, {58170, 58172, 512}


X(58172) = X(187)X(237)∩X(513)X(4729)

Barycentrics    a^2*(b-c)*(a+5*(b+c)) : :
X(58172) = -X[661]+2*X[50499], -3*X[1019]+2*X[48287], -X[1459]+2*X[50344], -3*X[1635]+2*X[50508], -3*X[1734]+2*X[48052], -3*X[2254]+2*X[48616], -2*X[4041]+X[4813], -3*X[4063]+2*X[48065], -2*X[4163]+X[49284], -X[4449]+2*X[4784], -4*X[4705]+3*X[48544], -2*X[4730]+X[47912] and many others

X(58172) lies on these lines: {187, 237}, {513, 4729}, {661, 50499}, {1019, 48287}, {1459, 50344}, {1499, 48300}, {1635, 50508}, {1734, 48052}, {2254, 48616}, {3309, 47935}, {3566, 48106}, {3887, 47976}, {3900, 4979}, {4041, 4813}, {4063, 48065}, {4083, 48341}, {4163, 49284}, {4449, 4784}, {4474, 29150}, {4498, 6005}, {4705, 48544}, {4730, 47912}, {4785, 21302}, {4790, 48322}, {4822, 4893}, {4843, 48275}, {4895, 50515}, {4961, 47724}, {6367, 53585}, {7659, 48334}, {8678, 50525}, {14077, 48149}, {17072, 31147}, {17166, 48577}, {26853, 28470}, {29200, 48118}, {29350, 48144}, {30835, 47836}, {31207, 47840}, {31291, 48016}, {47828, 48123}, {48011, 48352}, {48023, 50355}, {48064, 48337}, {48129, 48244}, {48279, 48579}

X(58172) = midpoint of X(i) and X(j) for these {i,j}: {50509, 58170}, {58171, 58173}
X(58172) = reflection of X(i) in X(j) for these {i,j}: {1459, 50344}, {31291, 48016}, {4449, 4784}, {4775, 58179}, {4813, 4041}, {4822, 50501}, {4834, 58174}, {4895, 50515}, {47912, 4730}, {48023, 50355}, {48121, 1734}, {48322, 4790}, {48334, 7659}, {48337, 48064}, {48338, 649}, {48352, 48011}, {48367, 4063}, {49284, 4163}, {50509, 58173}, {649, 50509}, {661, 50499}, {663, 4834}, {667, 58175}, {58160, 58177}, {58161, 58178}, {58162, 58181}, {58163, 58182}, {58164, 58145}, {58165, 50512}, {58166, 667}, {58167, 1960}, {58168, 663}, {58169, 58160}, {58170, 58171}, {8643, 58176}
X(58172) = perspector of circumconic {{A, B, C, X(6), X(16673)}}
X(58172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28156}
X(58172) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28156}
X(58172) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28156, 6}
X(58172)= pole of line {99, 28156} with respect to the Stammler hyperbola
X(58172)= pole of line {194, 16831} with respect to the Steiner circumellipse
X(58172)= pole of line {20979, 48341} with respect to the Yff parabola
X(58172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28155)}}, {{A, B, C, X(513), X(58138)}}, {{A, B, C, X(3009), X(46933)}}, {{A, B, C, X(3230), X(16673)}}, {{A, B, C, X(48338), X(50344)}}
X(58172) = barycentric product X(i)*X(j) for these (i, j): {16673, 513}, {28155, 6}, {46933, 649}
X(58172) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28156}, {16673, 668}, {28155, 76}, {46933, 1978}
X(58172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58167}, {512, 50512, 58165}, {512, 58145, 58164}, {512, 58160, 58169}, {512, 58171, 58170}, {512, 58174, 4834}, {512, 58175, 667}, {512, 58176, 8643}, {512, 58177, 58160}, {512, 58178, 58161}, {512, 58179, 4775}, {512, 58182, 58163}, {512, 649, 48338}, {512, 663, 58168}, {512, 667, 58166}, {649, 8643, 58142}, {1960, 58167, 58162}, {1960, 58181, 58143}, {4775, 4834, 58146}, {4775, 58140, 58154}, {4775, 58146, 58150}, {4775, 58150, 663}, {4775, 58179, 58140}, {4822, 50501, 4893}, {4834, 50512, 58180}, {4834, 58146, 58179}, {4834, 58165, 50512}, {4834, 58168, 58138}, {4834, 58173, 58174}, {4834, 58174, 50509}, {4834, 58182, 58178}, {48338, 58176, 649}, {50509, 58170, 512}, {50509, 58178, 58175}, {58139, 58159, 58153}, {58143, 58162, 1960}, {58144, 58160, 8656}, {58145, 58155, 58136}, {58145, 58164, 58155}, {58160, 58177, 58144}, {58163, 58175, 58182}, {58165, 58180, 58148}, {58168, 58174, 58176}


X(58173) = X(187)X(237)∩X(513)X(3245)

Barycentrics    a^2*(b-c)*(a+4*(b+c)) : :
X(58173) = -X[764]+2*X[7659], -2*X[1019]+X[48333], -4*X[2516]+3*X[48099], -3*X[4041]+X[48019], -2*X[4063]+X[48351], -2*X[4170]+3*X[47875], -X[4378]+2*X[4784], -3*X[4705]+2*X[48026], -2*X[4770]+X[4813], -2*X[4782]+X[48352], X[4814]+X[50525], -X[4822]+2*X[50504] and many others

X(58173) lies on these lines: {187, 237}, {513, 3245}, {514, 50339}, {690, 48106}, {764, 7659}, {1019, 48333}, {1499, 49279}, {2516, 48099}, {4041, 48019}, {4063, 48351}, {4083, 48320}, {4170, 47875}, {4378, 4784}, {4380, 29188}, {4705, 48026}, {4761, 29328}, {4770, 4813}, {4774, 29178}, {4782, 48352}, {4814, 50525}, {4822, 50504}, {4879, 48064}, {4932, 48291}, {4983, 50501}, {4992, 48573}, {6004, 47935}, {6005, 48623}, {20295, 31149}, {21260, 26798}, {22037, 48188}, {27138, 31251}, {31147, 53571}, {32478, 48300}, {47888, 48123}, {48011, 48336}, {49289, 50352}

X(58173) = midpoint of X(i) and X(j) for these {i,j}: {4814, 50525}, {4834, 58171}, {50509, 58172}, {649, 58170}
X(58173) = reflection of X(i) in X(j) for these {i,j}: {1960, 58177}, {4378, 4784}, {4705, 50499}, {4775, 649}, {4813, 4770}, {4822, 50504}, {4834, 50509}, {4879, 48064}, {4983, 50501}, {48291, 4932}, {48333, 1019}, {48336, 48011}, {48338, 50512}, {48351, 4063}, {48352, 4782}, {50509, 58174}, {649, 58175}, {663, 58179}, {667, 4834}, {58144, 58176}, {58155, 58178}, {58159, 58181}, {58160, 58182}, {58162, 58147}, {58163, 58145}, {58164, 58139}, {58165, 667}, {58166, 1960}, {58167, 663}, {58168, 58160}, {58169, 4775}, {58171, 58172}, {764, 7659}
X(58173) = isogonal conjugate of X(58134)
X(58173) = perspector of circumconic {{A, B, C, X(6), X(16672)}}
X(58173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58134}, {75, 28152}
X(58173) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58134}, {206, 28152}
X(58173) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28152, 6}
X(58173)= pole of line {5119, 44421} with respect to the Bevan circle
X(58173)= pole of line {6, 5010} with respect to the circumcircle
X(58173)= pole of line {5049, 21746} with respect to the incircle
X(58173)= pole of line {12329, 44456} with respect to the Stammler circle
X(58173)= pole of line {6, 5010} with respect to the Brocard inellipse
X(58173)= pole of line {5049, 13476} with respect to the DeLongchamps ellipse
X(58173)= pole of line {99, 28152} with respect to the Stammler hyperbola
X(58173)= pole of line {194, 29595} with respect to the Steiner circumellipse
X(58173)= pole of line {20979, 48320} with respect to the Yff parabola
X(58173)= pole of line {670, 58134} with respect to the Wallace hyperbola
X(58173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28151)}}, {{A, B, C, X(513), X(58139)}}, {{A, B, C, X(649), X(48544)}}, {{A, B, C, X(3009), X(19875)}}, {{A, B, C, X(3230), X(16672)}}, {{A, B, C, X(4775), X(50344)}}, {{A, B, C, X(23345), X(58141)}}
X(58173) = barycentric product X(i)*X(j) for these (i, j): {1, 48544}, {16672, 513}, {19875, 649}, {28151, 6}
X(58173) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58134}, {32, 28152}, {16672, 668}, {19875, 1978}, {28151, 76}, {48544, 75}
X(58173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58166}, {512, 50509, 4834}, {512, 50512, 48338}, {512, 58145, 58163}, {512, 58147, 58162}, {512, 58160, 58168}, {512, 58172, 58171}, {512, 58174, 50509}, {512, 58182, 58160}, {512, 663, 58167}, {649, 50509, 58175}, {649, 58169, 58157}, {649, 58172, 58170}, {663, 50509, 58176}, {663, 58142, 58149}, {1960, 58141, 667}, {1960, 58166, 4775}, {1960, 58175, 58177}, {1960, 58177, 649}, {4775, 58141, 1960}, {4775, 58144, 58151}, {4775, 58151, 663}, {4775, 58155, 58158}, {4775, 58157, 58159}, {4775, 58167, 58164}, {4775, 58169, 58165}, {4784, 29350, 4378}, {4834, 58144, 58179}, {4834, 58152, 58182}, {4834, 58165, 58146}, {4834, 58167, 58144}, {4834, 58170, 58169}, {4834, 58171, 512}, {8643, 58180, 58145}, {48338, 50512, 58155}, {48338, 58178, 50512}, {50512, 58158, 8656}, {58138, 58162, 58156}, {58140, 58160, 58152}, {58143, 58161, 58150}, {58144, 58151, 58139}, {58145, 58163, 8643}, {58147, 58156, 58138}, {58158, 58175, 58178}, {58160, 58182, 58140}, {58166, 58177, 58141}, {58169, 58175, 58181}


X(58174) = X(187)X(237)∩X(1019)X(48296)

Barycentrics    a^2*(b-c)*(2*a+7*(b+c)) : :
X(58174) = -2*X[1019]+X[48296], -3*X[4770]+2*X[47956], -3*X[4784]+X[48282], -6*X[47777]+5*X[48053], -2*X[48064]+X[48347], -X[48586]+3*X[50355], -3*X[50344]+X[53314]

X(58174) lies on circumconic {{A, B, C, X(50344), X(58160)}} and these lines: {187, 237}, {1019, 48296}, {4770, 47956}, {4784, 48282}, {47777, 48053}, {48064, 48347}, {48586, 50355}, {50344, 53314}

X(58174) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58172}, {50509, 58173}, {649, 58171}, {667, 58170}
X(58174) = reflection of X(i) in X(j) for these {i,j}: {1960, 58179}, {4770, 50499}, {4775, 58145}, {48053, 50501}, {48296, 1019}, {48338, 58139}, {48347, 48064}, {50512, 4834}, {663, 58182}, {667, 58177}, {58149, 58178}, {58160, 649}, {58163, 50512}, {58164, 667}, {58165, 58150}, {58166, 58156}, {58167, 58158}, {58175, 50509}, {58179, 58175}
X(58174)= pole of line {43146, 44456} with respect to the Stammler circle
X(58174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 50512}, {512, 50509, 58175}, {512, 50512, 58163}, {512, 58139, 48338}, {512, 58145, 4775}, {512, 58156, 58166}, {512, 58158, 58167}, {512, 58177, 667}, {512, 58182, 663}, {512, 649, 58160}, {512, 667, 58164}, {663, 4834, 58182}, {1960, 58179, 58147}, {4775, 58145, 58149}, {4775, 58178, 58145}, {4834, 50512, 58179}, {4834, 58152, 58181}, {4834, 58165, 649}, {4834, 58171, 58165}, {4834, 58172, 512}, {4834, 58173, 58172}, {4834, 58180, 58177}, {48338, 58181, 58139}, {50509, 58170, 58176}, {50509, 58172, 4834}, {50512, 58149, 58138}, {50512, 58150, 58137}, {50512, 58160, 58150}, {50512, 58163, 1960}, {58140, 58167, 58158}, {58144, 58166, 58156}, {58160, 58164, 58162}, {58168, 58172, 58170}, {58168, 58176, 58180}, {58170, 58180, 58168}


X(58175) = X(187)X(237)∩X(513)X(4770)

Barycentrics    a^2*(b-c)*(2*a+5*(b+c)) : :
X(58175) = -3*X[1019]+X[21343], -4*X[2516]+3*X[50507], -3*X[4705]+X[48019], X[4730]+X[4979], -X[20295]+2*X[53571], -5*X[26798]+9*X[47836], -7*X[27138]+9*X[47837], -3*X[47763]+X[48291], X[47976]+X[50355], -3*X[48005]+2*X[48026], -X[48053]+2*X[50504], -2*X[48064]+X[48328]

X(58175) lies on these lines: {187, 237}, {513, 4770}, {891, 4784}, {1019, 21343}, {1126, 6371}, {2515, 9313}, {2516, 50507}, {3906, 48106}, {4705, 48019}, {4730, 4979}, {4761, 29340}, {6372, 21385}, {20295, 53571}, {26798, 47836}, {27138, 47837}, {29350, 48296}, {47763, 48291}, {47976, 50355}, {48005, 48026}, {48053, 50504}, {48064, 48328}

X(58175) = midpoint of X(i) and X(j) for these {i,j}: {4730, 4979}, {4775, 58170}, {4834, 50509}, {47976, 50355}, {649, 58173}, {663, 58171}, {667, 58172}, {58174, 58179}
X(58175) = reflection of X(i) in X(j) for these {i,j}: {1960, 649}, {20295, 53571}, {4775, 58139}, {48005, 50501}, {48053, 50504}, {48328, 48064}, {48338, 58150}, {50512, 58179}, {649, 58177}, {663, 58145}, {667, 58182}, {58137, 58181}, {58147, 58178}, {58160, 50512}, {58163, 667}, {58164, 1960}, {58165, 58156}, {58166, 58158}, {58174, 50509}, {58179, 4834}
X(58175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28180}
X(58175) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28180}
X(58175) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28180, 6}, {41434, 1015}
X(58175)= pole of line {31393, 44421} with respect to the Bevan circle
X(58175)= pole of line {6, 41451} with respect to the circumcircle
X(58175)= pole of line {6, 41451} with respect to the Brocard inellipse
X(58175)= pole of line {99, 28180} with respect to the Stammler hyperbola
X(58175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28179)}}, {{A, B, C, X(513), X(58141)}}, {{A, B, C, X(902), X(1126)}}, {{A, B, C, X(1960), X(50344)}}, {{A, B, C, X(3009), X(3828)}}, {{A, B, C, X(23345), X(50512)}}
X(58175) = barycentric product X(i)*X(j) for these (i, j): {3828, 649}, {28179, 6}
X(58175) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28180}, {3828, 1978}, {28179, 76}
X(58175) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58164}, {512, 4834, 58179}, {512, 50509, 58174}, {512, 58139, 4775}, {512, 58145, 663}, {512, 58150, 48338}, {512, 58156, 58165}, {512, 58158, 58166}, {512, 58178, 58147}, {512, 58181, 58137}, {512, 58182, 667}, {512, 667, 58163}, {649, 4775, 58139}, {649, 4834, 58177}, {649, 50509, 58173}, {649, 58141, 58145}, {667, 4834, 58178}, {1960, 58163, 58158}, {1960, 58164, 58160}, {1960, 58179, 649}, {4775, 58139, 1960}, {4775, 58170, 512}, {4775, 58173, 58170}, {4834, 58171, 58181}, {4834, 58172, 58182}, {4834, 58174, 50512}, {48338, 58136, 58157}, {48338, 58144, 58150}, {48338, 58180, 58144}, {50509, 58176, 4834}, {50509, 58178, 58172}, {50512, 58160, 58149}, {58137, 58174, 58171}, {58140, 58165, 58156}, {58141, 58171, 58169}, {58142, 58162, 58152}, {58143, 58168, 58155}, {58144, 58157, 58136}, {58146, 58167, 8643}, {58169, 58181, 58141}


X(58176) = X(187)X(237)∩X(4729)X(4790)

Barycentrics    a^2*(b-c)*(3*a+7*(b+c)) : :
X(58176) = 2*X[4041]+X[50525], -5*X[4063]+2*X[48623], X[4729]+2*X[4790], 2*X[4730]+X[50526], -X[4813]+4*X[50501], X[4979]+2*X[50499], X[21302]+2*X[48016], -X[31147]+2*X[47836], -4*X[48011]+X[48367]

X(58176) lies on circumconic {{A, B, C, X(3009), X(46932)}} and these lines: {187, 237}, {4041, 50525}, {4063, 48623}, {4729, 4790}, {4730, 50526}, {4784, 29226}, {4813, 50501}, {4979, 50499}, {6005, 48572}, {9002, 50344}, {21302, 48016}, {31147, 47836}, {48011, 48367}

X(58176) = midpoint of X(i) and X(j) for these {i,j}: {50509, 58178}, {58144, 58173}, {58159, 58171}, {58162, 58170}, {8643, 58172}
X(58176) = reflection of X(i) in X(j) for these {i,j}: {31147, 47836}, {4775, 58137}, {48338, 8643}, {649, 58178}, {663, 58144}, {58137, 58182}, {58140, 58181}, {58144, 58179}, {58155, 58147}, {58159, 50512}, {58161, 58140}, {58162, 667}, {58166, 58159}, {58168, 58162}, {58178, 4834}, {8643, 649}
X(58176)= pole of line {37556, 44421} with respect to the Bevan circle
X(58176)= pole of line {194, 29597} with respect to the Steiner circumellipse
X(58176) = barycentric product X(i)*X(j) for these (i, j): {46932, 649}
X(58176) = barycentric quotient X(i)/X(j) for these (i, j): {46932, 1978}
X(58176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58178}, {512, 50512, 58159}, {512, 58137, 4775}, {512, 58140, 58161}, {512, 58144, 663}, {512, 58147, 58155}, {512, 58179, 58144}, {512, 58181, 58140}, {512, 58182, 58137}, {512, 649, 8643}, {512, 667, 58162}, {512, 8643, 48338}, {649, 48338, 58138}, {649, 58154, 50512}, {649, 663, 58142}, {663, 50509, 58173}, {663, 58140, 58149}, {667, 4834, 58177}, {4775, 58143, 58148}, {4775, 58182, 58143}, {4834, 50509, 649}, {4834, 58173, 58179}, {4834, 58174, 58180}, {4834, 58175, 50509}, {50509, 58170, 58174}, {50509, 58177, 58168}, {50509, 58178, 512}, {50509, 58180, 58170}, {50512, 58166, 58154}, {50512, 58171, 58166}, {58140, 58178, 58181}, {58141, 58163, 58153}, {58145, 58165, 8656}, {58146, 58160, 58136}, {58155, 58181, 58147}, {58168, 58174, 58172}, {58170, 58180, 667}, {58174, 58179, 58164}


X(58177) = X(187)X(237)∩X(4770)X(4979)

Barycentrics    a^2*(b-c)*(4*a+7*(b+c)) : :
X(58177) = X[4770]+X[4979], 3*X[4784]+X[21385], -5*X[26798]+9*X[47837], 3*X[30595]+X[48146], -3*X[48005]+X[48019], -X[48026]+3*X[50504], -3*X[48064]+X[48344]

X(58177) lies on these lines: {187, 237}, {4770, 4979}, {4784, 21385}, {4785, 53571}, {26798, 47837}, {30595, 48146}, {48005, 48019}, {48026, 50504}, {48064, 48344}

X(58177) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58173}, {4770, 4979}, {4834, 58179}, {50509, 50512}, {649, 58175}, {667, 58174}, {58160, 58172}, {58163, 58171}, {58164, 58170}
X(58177) = reflection of X(i) in X(j) for these {i,j}: {58139, 649}, {58145, 58182}, {58150, 58145}, {58156, 50512}, {58158, 58139}, {58182, 58179}
X(58177) = perspector of circumconic {{A, B, C, X(6), X(39260)}}
X(58177) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3230), X(39260)}}, {{A, B, C, X(50344), X(58139)}}
X(58177) = barycentric product X(i)*X(j) for these (i, j): {39260, 513}
X(58177) = barycentric quotient X(i)/X(j) for these (i, j): {39260, 668}
X(58177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58156}, {512, 58145, 58150}, {512, 58179, 58182}, {512, 58182, 58145}, {512, 649, 58139}, {649, 4834, 58175}, {649, 50509, 4775}, {649, 58166, 58141}, {649, 8656, 58144}, {667, 4834, 58176}, {1960, 50512, 58136}, {1960, 58173, 512}, {1960, 58175, 58173}, {4775, 58136, 1960}, {4775, 58156, 58158}, {4775, 58168, 58164}, {4775, 58181, 649}, {4834, 58178, 58179}, {4834, 58180, 58174}, {4834, 58181, 50509}, {8656, 58172, 58169}, {48338, 58146, 58137}, {50509, 58181, 50512}, {50512, 58174, 58168}, {50512, 58179, 58181}, {58140, 58171, 58163}, {58141, 58173, 58166}, {58143, 58165, 58149}, {58144, 58169, 8656}, {58144, 58172, 58160}, {58164, 58174, 58170}, {58176, 58180, 667}


X(58178) = X(187)X(237)∩X(4041)X(4790)

Barycentrics    a^2*(b-c)*(3*a+5*(b+c)) : :
X(58178) = X[4041]+2*X[4790], -4*X[4063]+X[47929], -4*X[4394]+X[4822], -X[4449]+4*X[48064], X[4498]+2*X[4784], 2*X[4705]+X[50525], -X[4724]+4*X[48011], X[4729]+2*X[50515], -4*X[4782]+X[48367], -X[4813]+4*X[50504], -X[4814]+4*X[50499], -X[4959]+4*X[50517] and many others

X(58178) lies on these lines: {187, 237}, {4041, 4790}, {4063, 47929}, {4394, 4822}, {4449, 48064}, {4498, 4784}, {4705, 50525}, {4724, 48011}, {4729, 50515}, {4782, 48367}, {4785, 47836}, {4813, 50504}, {4814, 50499}, {4959, 50517}, {4979, 47912}, {9508, 48121}, {17072, 26853}, {21192, 47924}, {21301, 48016}, {28493, 47809}, {29226, 48144}, {29302, 48579}, {31147, 47837}, {45313, 47840}, {47832, 48566}, {47935, 48122}, {47948, 48624}, {47976, 48023}

X(58178) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58181}, {50509, 58140}, {649, 58176}, {58147, 58175}, {58149, 58174}, {58155, 58173}, {58161, 58172}
X(58178) = reflection of X(i) in X(j) for these {i,j}: {31147, 47837}, {4775, 58149}, {47832, 48566}, {47840, 45313}, {48338, 58155}, {50509, 58176}, {649, 58181}, {663, 58140}, {667, 58147}, {58140, 649}, {58147, 58182}, {58149, 58145}, {58155, 50512}, {58159, 58137}, {58161, 667}, {58162, 8643}, {58166, 58161}, {58176, 4834}, {58181, 58179}, {8643, 58144}
X(58178)= pole of line {194, 29580} with respect to the Steiner circumellipse
X(58178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28191)}}, {{A, B, C, X(513), X(58143)}}, {{A, B, C, X(3009), X(19877)}}, {{A, B, C, X(43924), X(58144)}}, {{A, B, C, X(50344), X(58140)}}
X(58178) = barycentric product X(i)*X(j) for these (i, j): {19877, 649}, {28191, 6}
X(58178) = barycentric quotient X(i)/X(j) for these (i, j): {19877, 1978}, {28191, 76}
X(58178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58176}, {512, 50512, 58155}, {512, 58137, 58159}, {512, 58144, 8643}, {512, 58145, 58149}, {512, 58149, 4775}, {512, 58161, 58166}, {512, 58176, 50509}, {512, 58179, 58181}, {512, 58182, 58147}, {512, 649, 58140}, {512, 667, 58161}, {512, 8643, 58162}, {649, 48338, 50512}, {649, 58138, 58145}, {649, 58142, 58146}, {649, 58170, 58136}, {649, 58179, 58180}, {649, 663, 58143}, {649, 8643, 58144}, {663, 50509, 58170}, {667, 4834, 58175}, {1960, 58146, 58142}, {1960, 58171, 58168}, {4041, 4790, 50526}, {4775, 58138, 58153}, {4775, 58145, 58138}, {4775, 58153, 663}, {4834, 58179, 649}, {4834, 58181, 512}, {4834, 58182, 58172}, {4979, 50501, 47912}, {8656, 58166, 58158}, {47935, 50336, 48122}, {48338, 50512, 8656}, {50512, 58158, 667}, {50512, 58173, 48338}, {58139, 58165, 58154}, {58141, 58160, 58148}, {58142, 58168, 1960}, {58144, 58159, 58137}, {58158, 58175, 58173}, {58175, 58179, 58182}, {58177, 58179, 4834}


X(58179) = X(187)X(237)∩X(891)X(1019)

Barycentrics    a^2*(b-c)*(2*a+3*(b+c)) : :
X(58179) = -2*X[650]+X[48053], X[1491]+X[47976], -3*X[1635]+X[4983], X[2530]+X[47935], -X[4010]+3*X[48566], X[4063]+X[4784], -2*X[4367]+X[48296], X[4380]+X[50352], -2*X[4394]+X[50507], X[4490]+X[48110], X[4705]+X[4979], X[4730]+X[50523] and many others

X(58179) lies on these lines: {187, 237}, {513, 47987}, {514, 50021}, {650, 48053}, {838, 4507}, {891, 1019}, {1491, 47976}, {1635, 4983}, {2530, 47935}, {2533, 29340}, {4010, 48566}, {4063, 4784}, {4083, 48064}, {4367, 48296}, {4380, 50352}, {4394, 50507}, {4490, 48110}, {4491, 17990}, {4705, 4979}, {4707, 29184}, {4730, 50523}, {4761, 29182}, {4770, 4790}, {4782, 6005}, {4785, 21260}, {4897, 29354}, {4961, 48090}, {6367, 48276}, {7950, 48106}, {9508, 48059}, {10015, 29136}, {14422, 48348}, {17072, 48016}, {17940, 33803}, {20295, 47837}, {24719, 48573}, {26853, 47836}, {27013, 47839}, {29216, 48405}, {29252, 47890}, {29266, 48395}, {29350, 48328}, {31147, 31251}, {31288, 45313}, {32478, 48299}, {47762, 48273}, {47827, 48085}, {47888, 48121}, {48081, 48226}, {48086, 48244}, {48267, 48565}, {48279, 48568}, {50499, 50515}

X(58179) = midpoint of X(i) and X(j) for these {i,j}: {1491, 47976}, {1960, 58174}, {17072, 48016}, {2530, 47935}, {4063, 4784}, {4380, 50352}, {4490, 48110}, {4705, 4979}, {4730, 50523}, {4775, 58172}, {4790, 50501}, {48012, 48624}, {48338, 58171}, {50499, 50515}, {50512, 58175}, {649, 4834}, {663, 58173}, {667, 50509}, {58144, 58176}, {58165, 58170}, {58177, 58182}, {58178, 58181}
X(58179) = reflection of X(i) in X(j) for these {i,j}: {1960, 50512}, {4770, 50501}, {4775, 58150}, {4834, 58177}, {47994, 48003}, {48005, 50504}, {48053, 650}, {48059, 9508}, {48296, 4367}, {48338, 58156}, {50507, 4394}, {50512, 649}, {649, 58182}, {663, 58139}, {667, 58145}, {58137, 58147}, {58149, 58144}, {58160, 667}, {58163, 1960}, {58164, 663}, {58165, 58158}, {58174, 58175}, {58175, 4834}
X(58179) = perspector of circumconic {{A, B, C, X(6), X(3723)}}
X(58179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28176}
X(58179) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28176}, {51573, 668}
X(58179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1126, 1015}, {2308, 3122}, {28176, 6}
X(58179)= pole of line {3333, 44421} with respect to the Bevan circle
X(58179)= pole of line {6, 24047} with respect to the circumcircle
X(58179)= pole of line {21746, 50190} with respect to the incircle
X(58179)= pole of line {6, 24047} with respect to the Brocard inellipse
X(58179)= pole of line {13476, 50190} with respect to the DeLongchamps ellipse
X(58179)= pole of line {99, 28176} with respect to the Stammler hyperbola
X(58179)= pole of line {39, 29612} with respect to the Steiner inellipse
X(58179)= pole of line {20979, 48064} with respect to the Yff parabola
X(58179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28175)}}, {{A, B, C, X(513), X(58144)}}, {{A, B, C, X(649), X(48019)}}, {{A, B, C, X(3009), X(3634)}}, {{A, B, C, X(3230), X(3723)}}, {{A, B, C, X(3733), X(58145)}}, {{A, B, C, X(4980), X(8620)}}, {{A, B, C, X(50344), X(50512)}}
X(58179) = barycentric product X(i)*X(j) for these (i, j): {1, 48019}, {3634, 649}, {3723, 513}, {3982, 663}, {4060, 43924}, {4980, 667}, {28175, 6}
X(58179) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28176}, {3634, 1978}, {3723, 668}, {3982, 4572}, {4980, 6386}, {28175, 76}, {48019, 75}
X(58179) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58175}, {512, 50512, 1960}, {512, 58139, 663}, {512, 58150, 4775}, {512, 58158, 58165}, {512, 58177, 4834}, {512, 663, 58164}, {513, 48003, 47994}, {513, 50504, 48005}, {649, 48338, 58143}, {649, 58140, 58146}, {649, 58170, 58141}, {649, 58180, 58181}, {649, 663, 58144}, {649, 667, 58145}, {667, 4775, 58154}, {667, 4834, 50509}, {667, 58144, 58142}, {1960, 50512, 58137}, {1960, 58147, 50512}, {1960, 58174, 512}, {4063, 4784, 6372}, {4775, 58140, 58150}, {4775, 58146, 58140}, {4834, 50512, 58174}, {4834, 58144, 58173}, {4834, 58146, 58172}, {4834, 58173, 58176}, {4834, 58178, 58177}, {4834, 58180, 58182}, {4834, 58181, 649}, {8656, 58168, 58159}, {48012, 48624, 513}, {48338, 50509, 58171}, {48338, 58143, 667}, {48338, 58156, 58160}, {50509, 58142, 58167}, {50509, 58143, 48338}, {50512, 58149, 58139}, {50512, 58164, 58149}, {50512, 58174, 58163}, {58136, 58161, 58152}, {58138, 58166, 58155}, {58141, 58165, 8643}, {58141, 58170, 58158}, {58143, 58171, 58156}, {58148, 58162, 58157}, {58152, 58169, 58161}, {58175, 58182, 58147}


X(58180) = X(187)X(237)∩X(4784)X(47929)

Barycentrics    a^2*(b-c)*(5*a+7*(b+c)) : :
X(58180) = 4*X[4784]+X[47929], 4*X[4790]+X[47912], X[4814]+4*X[50515], 3*X[4979]+2*X[47956], 3*X[47828]+2*X[47976], 3*X[47836]+2*X[48016], 3*X[47935]+2*X[48616], -X[47970]+6*X[48011], -6*X[48064]+X[48282], -X[48116]+6*X[50336], 4*X[50501]+X[50526], 4*X[50504]+X[50525]

X(58180) lies on these lines: {187, 237}, {4784, 47929}, {4790, 47912}, {4814, 50515}, {4979, 47956}, {47828, 47976}, {47836, 48016}, {47935, 48616}, {47970, 48011}, {48064, 48282}, {48116, 50336}, {50501, 50526}, {50504, 50525}

X(58180) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58146}, {8656, 50509}
X(58180) = reflection of X(i) in X(j) for these {i,j}: {48338, 58157}, {663, 58138}, {58138, 58146}, {58143, 649}, {58152, 50512}, {58154, 58141}, {8656, 58143}
X(58180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(43924), X(58145)}}, {{A, B, C, X(50344), X(58143)}}
X(58180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58152}, {512, 58141, 58154}, {512, 58143, 8656}, {512, 58157, 48338}, {512, 649, 58143}, {649, 48338, 58144}, {649, 50509, 58140}, {649, 58138, 58146}, {649, 58142, 58147}, {649, 58176, 667}, {649, 58179, 58178}, {649, 8643, 58145}, {663, 58136, 58150}, {663, 58168, 58162}, {663, 58170, 58168}, {4775, 58147, 58142}, {4834, 50512, 58172}, {4834, 58146, 512}, {4834, 58174, 58176}, {4834, 58181, 58182}, {4834, 58182, 649}, {48338, 58144, 58136}, {48338, 58150, 663}, {50509, 58140, 58166}, {50509, 58162, 58170}, {50512, 58152, 58138}, {50512, 58165, 58148}, {58139, 58171, 58161}, {58140, 58166, 58153}, {58145, 58173, 8643}, {58146, 58152, 50512}, {58148, 58172, 58165}, {58168, 58176, 58174}, {58170, 58176, 50509}, {58174, 58177, 4834}


X(58181) = X(187)X(237)∩X(4394)X(4983)

Barycentrics    a^2*(b-c)*(3*a+4*(b+c)) : :
X(58181) = -X[4378]+4*X[48064], -4*X[4394]+X[4983], X[4705]+2*X[4790], X[4730]+2*X[50515], 2*X[4770]+X[50526], -4*X[4782]+X[48351], X[4784]+2*X[48011], X[4979]+2*X[50504], 2*X[9508]+X[47976], -2*X[20295]+5*X[31251], 2*X[21260]+X[26853], -X[31149]+2*X[47836] and many others

X(58181) lies on these lines: {187, 237}, {1019, 29226}, {4063, 29198}, {4378, 48064}, {4394, 4983}, {4705, 4790}, {4730, 50515}, {4770, 50526}, {4782, 48351}, {4784, 48011}, {4785, 47837}, {4825, 8678}, {4961, 47833}, {4979, 50504}, {9508, 47976}, {20295, 31251}, {21260, 26853}, {29150, 48565}, {29328, 47875}, {31149, 47836}, {45313, 47839}, {48005, 50525}

X(58181) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58144}, {649, 58178}, {58137, 58175}, {58140, 58176}, {58159, 58173}, {58162, 58172}, {8643, 50509}
X(58181) = reflection of X(i) in X(j) for these {i,j}: {31149, 47836}, {4775, 8643}, {4834, 58178}, {47839, 45313}, {47875, 48566}, {663, 58137}, {667, 58144}, {58137, 58145}, {58140, 58147}, {58144, 649}, {58155, 58140}, {58159, 667}, {58161, 58149}, {58162, 1960}, {58165, 58159}, {58167, 58162}, {58178, 58179}, {8643, 50512}
X(58181) = perspector of circumconic {{A, B, C, X(6), X(56037)}}
X(58181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28200}
X(58181) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28200}
X(58181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28200, 6}
X(58181)= pole of line {3338, 44421} with respect to the Bevan circle
X(58181)= pole of line {21746, 50191} with respect to the incircle
X(58181)= pole of line {13476, 50191} with respect to the DeLongchamps ellipse
X(58181)= pole of line {99, 28200} with respect to the Stammler hyperbola
X(58181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28199)}}, {{A, B, C, X(513), X(58145)}}, {{A, B, C, X(50344), X(58144)}}
X(58181) = barycentric product X(i)*X(j) for these (i, j): {28199, 6}
X(58181) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28200}, {28199, 76}
X(58181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58162}, {512, 50512, 8643}, {512, 58137, 663}, {512, 58140, 58155}, {512, 58145, 58137}, {512, 58147, 58140}, {512, 58149, 58161}, {512, 58179, 58178}, {512, 649, 58144}, {512, 667, 58159}, {649, 50509, 50512}, {649, 58140, 58147}, {649, 58172, 58143}, {649, 58175, 58141}, {649, 58180, 58179}, {649, 663, 58145}, {649, 667, 58146}, {667, 58165, 58157}, {1960, 58172, 58167}, {4775, 4834, 50509}, {4775, 50512, 667}, {4834, 58141, 58171}, {4834, 58144, 512}, {4834, 58145, 58169}, {4834, 58146, 58165}, {4834, 58152, 58174}, {4834, 58171, 58175}, {29328, 48566, 47875}, {48338, 58139, 58152}, {50509, 50512, 4775}, {50509, 58136, 58168}, {50509, 58177, 4834}, {50512, 58156, 58136}, {50512, 58179, 58177}, {58136, 58168, 58156}, {58138, 58160, 58151}, {58138, 58170, 58160}, {58139, 58174, 48338}, {58140, 58161, 58149}, {58140, 58178, 58176}, {58142, 58166, 58150}, {58143, 58172, 1960}, {58169, 58175, 58173}, {58179, 58182, 649}


X(58182) = X(187)X(237)∩X(891)X(48064)

Barycentrics    a^2*(b-c)*(4*a+5*(b+c)) : :
X(58182) = -3*X[1635]+X[48053], -3*X[4782]+X[48065], 3*X[4784]+X[47970], 3*X[4790]+X[47956], X[4979]+X[48005], -3*X[9508]+X[48052], X[21260]+X[48016], X[26853]+3*X[47837], X[47967]+X[48074], X[47976]+X[48059], X[48030]+X[48624], -3*X[48194]+X[48602]

X(58182) lies on these lines: {187, 237}, {891, 48064}, {1635, 48053}, {4782, 48065}, {4784, 47970}, {4790, 47956}, {4979, 48005}, {6372, 48011}, {9508, 48052}, {21260, 48016}, {26853, 47837}, {47967, 48074}, {47976, 48059}, {48030, 48624}, {48194, 48602}

X(58182) = midpoint of X(i) and X(j) for these {i,j}: {1960, 50509}, {21260, 48016}, {4790, 50504}, {4834, 50512}, {4979, 48005}, {47967, 48074}, {47976, 48059}, {48030, 48624}, {649, 58179}, {663, 58174}, {667, 58175}, {58137, 58176}, {58145, 58177}, {58147, 58178}, {58160, 58173}, {58163, 58172}, {58164, 58171}
X(58182) = reflection of X(i) in X(j) for these {i,j}: {58139, 58145}, {58145, 649}, {58150, 50512}, {58156, 58139}, {58158, 667}, {58177, 58179}
X(58182) = perspector of circumconic {{A, B, C, X(6), X(46845)}}
X(58182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(51073)}}, {{A, B, C, X(3230), X(46845)}}, {{A, B, C, X(50344), X(58145)}}
X(58182) = barycentric product X(i)*X(j) for these (i, j): {46845, 513}, {51073, 649}
X(58182) = barycentric quotient X(i)/X(j) for these (i, j): {46845, 668}, {51073, 1978}
X(58182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58150}, {512, 58139, 58156}, {512, 58179, 58177}, {512, 649, 58145}, {512, 667, 58158}, {649, 50509, 58144}, {649, 58176, 58143}, {649, 663, 58146}, {649, 667, 58147}, {663, 4834, 58174}, {1960, 50509, 512}, {1960, 50512, 58138}, {4775, 58143, 58137}, {4834, 58144, 58165}, {4834, 58146, 663}, {4834, 58152, 58173}, {4834, 58165, 50509}, {4834, 58172, 58175}, {4834, 58180, 58179}, {4834, 58181, 58180}, {8643, 58171, 58164}, {48338, 58141, 58149}, {50509, 58144, 1960}, {50512, 58150, 58139}, {50512, 58163, 667}, {50512, 58175, 58163}, {50512, 58179, 4834}, {58138, 58144, 50512}, {58138, 58172, 58161}, {58140, 58168, 58152}, {58140, 58173, 58160}, {58142, 58170, 58155}, {58143, 58176, 4775}, {58152, 58173, 58168}, {58163, 58175, 58172}, {58175, 58179, 58178}


X(58183) = X(2)X(3)∩X(395)X(43500)

Barycentrics    146*a^4-(b^2-c^2)^2-145*a^2*(b^2+c^2) : :
X(58183) = -X[2]+49*X[3], -X[3656]+49*X[58215], X[32455]+35*X[55661], -X[50872]+49*X[58220], X[51138]+5*X[55653]

X(58183) lies on these lines: {2, 3}, {395, 43500}, {396, 43499}, {3656, 58215}, {28212, 58216}, {32455, 55661}, {42435, 42792}, {42436, 42791}, {42910, 43299}, {42911, 43298}, {50872, 58220}, {51138, 55653}

X(58183) = midpoint of X(i) and X(j) for these {i,j}: {11812, 15688}, {548, 14890}
X(58183) = reflection of X(i) in X(j) for these {i,j}: {12811, 11539}
X(58183) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/12
X(58183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 11539, 12811}, {548, 14893, 3534}, {548, 15706, 14890}, {548, 15712, 3628}, {548, 5066, 15686}, {549, 3856, 11540}, {549, 8703, 17800}, {3524, 7491, 5}, {3850, 14891, 12100}, {5055, 15720, 15709}, {5071, 15698, 15717}, {10304, 15698, 5054}, {11812, 15688, 30}, {12100, 14093, 3850}, {12100, 15702, 3530}, {14093, 15706, 5055}, {14890, 14891, 15706}, {14891, 15759, 548}, {15684, 15698, 15712}, {16239, 17800, 3856}


X(58184) = X(2)X(3)∩X(193)X(55661)

Barycentrics    83*a^4-(b^2-c^2)^2-82*a^2*(b^2+c^2) : :
X(58184) = -X[2]+28*X[3], X[193]+80*X[55661], X[5032]+8*X[55649], -32*X[10168]+5*X[51211], -34*X[19872]+7*X[50867], 13*X[19877]+14*X[50820], 4*X[32455]+77*X[55656], X[33748]+8*X[55654], 13*X[34595]+14*X[51083], 25*X[35242]+2*X[51077], -29*X[46930]+56*X[51088], 13*X[46934]+14*X[50813] and many others

X(58184) lies on circumconic {{A, B, C, X(49140), X(57822)}} and these lines: {2, 3}, {193, 55661}, {516, 58213}, {5032, 55649}, {6411, 43258}, {6412, 43259}, {7811, 32876}, {10168, 51211}, {16962, 42932}, {16963, 42933}, {19872, 50867}, {19877, 50820}, {22236, 43003}, {22238, 43002}, {28212, 58218}, {32455, 55656}, {32888, 43459}, {33748, 55654}, {34595, 51083}, {35242, 51077}, {42435, 42510}, {42436, 42511}, {42588, 42773}, {42589, 42774}, {46930, 51088}, {46934, 50813}, {50808, 58217}, {50966, 55678}, {50967, 55658}, {51028, 55676}, {51132, 55646}, {51171, 55665}, {54132, 55669}, {54174, 55651}

X(58184) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/9
X(58184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11287, 17674}, {2, 14033, 17683}, {2, 15683, 3843}, {2, 15684, 3091}, {2, 15705, 15706}, {2, 17538, 3543}, {2, 3522, 15686}, {3, 15710, 15705}, {3, 15714, 15698}, {3, 15759, 15715}, {20, 381, 15640}, {140, 3855, 17697}, {376, 11812, 17578}, {376, 3524, 15699}, {381, 15701, 632}, {548, 15706, 15709}, {548, 632, 1657}, {548, 6868, 3528}, {1657, 14890, 3545}, {3524, 10304, 20}, {3524, 15682, 5054}, {3524, 3545, 15701}, {3529, 15702, 6944}, {3543, 10304, 15688}, {5054, 15688, 17800}, {5067, 15682, 381}, {5073, 8703, 376}, {8703, 14892, 15689}, {10304, 15692, 3839}, {10304, 15705, 15708}, {14891, 15689, 3524}, {14891, 15712, 15716}, {15640, 15692, 3523}, {15697, 15721, 3861}, {15698, 17538, 15718}, {15705, 15708, 15692}, {15705, 15710, 10304}, {15706, 15707, 15712}, {15715, 15759, 3522}, {15717, 17556, 15693}, {15718, 17538, 2}


X(58185) = X(2)X(3)∩X(516)X(58214)

Barycentrics    66*a^4-(b^2-c^2)^2-65*a^2*(b^2+c^2) : :
X(58185) = -3*X[2]+67*X[3], X[12007]+15*X[55657], -X[16881]+9*X[55166], 3*X[51138]+5*X[55631], -X[51732]+9*X[55667]

X(58185) lies on these lines: {2, 3}, {516, 58214}, {3411, 42686}, {3412, 42687}, {9680, 43338}, {12007, 55657}, {16881, 55166}, {28212, 58219}, {34380, 55659}, {42930, 43499}, {42931, 43500}, {51138, 55631}, {51732, 55667}

X(58185) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/8
X(58185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(12101), X(34483)}}, {{A, B, C, X(43970), X(49139)}}
X(58185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15710, 15712}, {3, 15714, 140}, {4, 10303, 15703}, {4, 15689, 15704}, {20, 3525, 3843}, {20, 3530, 16239}, {20, 5067, 3830}, {140, 548, 17800}, {548, 15717, 3628}, {548, 3530, 3856}, {549, 10304, 15690}, {549, 15704, 1656}, {3522, 10303, 6949}, {3524, 6961, 5}, {3526, 17800, 3855}, {3528, 12100, 3861}, {3528, 15704, 548}, {10304, 14891, 11540}, {14891, 15759, 10304}, {15688, 15698, 549}, {15690, 15693, 10109}


X(58186) = X(2)X(3)∩X(193)X(55657)

Barycentrics    51*a^4-(b^2-c^2)^2-50*a^2*(b^2+c^2) : :
X(58186) = -3*X[2]+52*X[3], X[193]+48*X[55657], -X[962]+50*X[58217], 10*X[4816]+39*X[5731], 9*X[5032]+40*X[55637], -5*X[5734]+54*X[58221], X[6776]+48*X[55663], 4*X[12007]+45*X[55654], -64*X[25555]+15*X[51211], 9*X[33748]+40*X[55646], 4*X[33749]+45*X[55655], 9*X[33750]+40*X[55661] and many others

X(58186) lies on circumconic {{A, B, C, X(34483), X(38335)}} and these lines: {2, 3}, {193, 55657}, {516, 58215}, {962, 58217}, {4816, 5731}, {5032, 55637}, {5734, 58221}, {6411, 9692}, {6450, 9693}, {6452, 9543}, {6453, 43525}, {6454, 43526}, {6776, 55663}, {12007, 55654}, {16772, 43242}, {16773, 43243}, {22235, 42528}, {22237, 42529}, {25555, 51211}, {28212, 58220}, {31454, 43338}, {33748, 55646}, {33749, 55655}, {33750, 55661}, {35814, 43383}, {35815, 43382}, {42433, 43013}, {42434, 43012}, {42494, 51944}, {42495, 51945}, {42596, 43643}, {42597, 43638}, {42688, 43464}, {42689, 43463}, {43560, 43787}, {43561, 43788}, {51138, 55614}, {51170, 55648}, {51171, 55669}

X(58186) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/7
X(58186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3522, 12103}, {3, 15710, 3522}, {3, 15759, 4}, {20, 15708, 5}, {20, 15717, 10303}, {382, 3090, 3832}, {382, 5070, 3850}, {382, 631, 13735}, {548, 16239, 15704}, {548, 549, 382}, {631, 3627, 17567}, {631, 3856, 15674}, {631, 3861, 2}, {3091, 3523, 15702}, {3526, 15698, 15717}, {3526, 15717, 3523}, {3526, 17800, 3857}, {3526, 3832, 7486}, {3528, 15698, 3526}, {6961, 17504, 631}, {7486, 10304, 548}, {7491, 14093, 8703}, {10303, 15640, 5056}, {10304, 15692, 15640}, {10304, 15717, 20}, {15689, 15708, 3839}


X(58187) = X(2)X(3)∩X(524)X(55657)

Barycentrics    38*a^4-(b^2-c^2)^2-37*a^2*(b^2+c^2) : :
X(58187) = -X[2]+13*X[3], -X[597]+7*X[55669], X[1992]+11*X[55648], 5*X[3098]+X[51132], 5*X[3579]+X[51077], 5*X[4816]+13*X[34773], X[5032]+3*X[55624], -2*X[6053]+5*X[11694], X[8584]+5*X[55637], X[9955]+2*X[50816], -5*X[10168]+2*X[51130], X[11179]+11*X[55656] and many others

X(58187) lies on these lines: {2, 3}, {516, 58216}, {524, 55657}, {542, 55663}, {597, 55669}, {1992, 55648}, {3098, 51132}, {3564, 55660}, {3579, 51077}, {4816, 34773}, {5032, 55624}, {5351, 42791}, {5352, 42792}, {5585, 7739}, {6053, 11694}, {6409, 43436}, {6410, 43437}, {8584, 55637}, {9955, 50816}, {10168, 51130}, {11179, 55656}, {12699, 50833}, {12820, 43467}, {12821, 43468}, {13391, 55166}, {16267, 42123}, {16268, 42122}, {16772, 43109}, {16773, 43108}, {18357, 50815}, {18358, 50971}, {18440, 50981}, {18525, 50826}, {18583, 55666}, {19130, 50972}, {19924, 55664}, {20582, 33751}, {20583, 55612}, {25055, 28216}, {28212, 58221}, {31162, 58217}, {31670, 50988}, {31673, 51088}, {31834, 55286}, {34380, 55654}, {34628, 50825}, {34632, 50832}, {34638, 51084}, {35242, 50824}, {41943, 43773}, {41944, 43774}, {41973, 42505}, {41974, 42504}, {42631, 42945}, {42632, 42944}, {42641, 43336}, {42642, 43337}, {42793, 42977}, {42794, 42976}, {42888, 42910}, {42889, 42911}, {42912, 43014}, {42913, 43015}, {42916, 43481}, {42917, 43482}, {43016, 46334}, {43017, 46335}, {43100, 43417}, {43105, 43484}, {43106, 43483}, {43107, 43416}, {43150, 51135}, {43638, 54592}, {43643, 54591}, {44456, 51181}, {48892, 50984}, {48906, 50961}, {50828, 58219}, {50865, 58215}, {50965, 55672}, {50966, 55705}, {50970, 55636}, {50979, 55646}, {50983, 55668}, {50987, 54170}, {51138, 55594}, {51732, 55671}, {51737, 55655}, {54169, 55658}

X(58187) = midpoint of X(i) and X(j) for these {i,j}: {10304, 17504}, {14892, 15691}, {15689, 15699}, {376, 11539}, {3524, 8703}, {3839, 15686}, {549, 15688}, {550, 5055}
X(58187) = reflection of X(i) in X(j) for these {i,j}: {140, 3524}, {11539, 3530}, {12101, 14892}, {14892, 140}, {14893, 5055}, {15690, 15688}, {3524, 14891}, {3839, 3628}, {5, 14890}, {5055, 11812}, {5066, 11539}
X(58187) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/6
X(58187) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15319), X(41991)}}, {{A, B, C, X(17800), X(57822)}}, {{A, B, C, X(18317), X(47599)}}
X(58187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 381}, {2, 376, 17800}, {3, 10304, 17504}, {3, 14093, 15698}, {3, 15688, 15705}, {3, 15714, 15759}, {3, 3534, 15715}, {3, 376, 15711}, {3, 8703, 14891}, {4, 3533, 17566}, {5, 15707, 14890}, {20, 140, 546}, {20, 1656, 3627}, {20, 549, 10109}, {30, 11539, 5066}, {30, 11812, 5055}, {30, 140, 14892}, {30, 15688, 15690}, {30, 3530, 11539}, {30, 3628, 3839}, {140, 12101, 547}, {140, 12103, 3861}, {140, 14891, 12100}, {140, 15691, 12101}, {140, 3853, 3090}, {140, 8703, 15691}, {443, 6902, 6923}, {549, 3525, 11812}, {549, 3830, 16239}, {549, 8703, 20}, {1012, 5059, 382}, {3090, 3524, 15708}, {3091, 10303, 16864}, {3522, 15700, 3845}, {3523, 15687, 11540}, {3523, 15695, 15687}, {3524, 10304, 15689}, {3524, 15689, 15699}, {3524, 15705, 15716}, {3524, 15721, 15707}, {3528, 15693, 15686}, {3528, 16434, 3522}, {3534, 10124, 3853}, {3534, 15712, 10124}, {3534, 15715, 15712}, {3545, 10304, 15688}, {3627, 8703, 376}, {3845, 15700, 12108}, {5066, 14893, 3832}, {8703, 15691, 548}, {8703, 15692, 12811}, {8703, 15711, 15701}, {10304, 15689, 8703}, {10304, 15705, 3545}, {10304, 17504, 30}, {11001, 15718, 632}, {11539, 15706, 3530}, {11539, 15711, 15706}, {11540, 15687, 12812}, {12100, 15691, 140}, {12811, 15682, 14893}, {14093, 15698, 5}, {15681, 15713, 3850}, {15681, 15717, 15713}, {15686, 15693, 3628}, {15688, 15705, 549}, {15688, 15706, 1656}, {15689, 15701, 14269}, {15694, 15704, 3860}, {15699, 17504, 3524}


X(58188) = X(2)X(3)∩X(165)X(3635)

Barycentrics    27*a^4-(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(58188) = -3*X[2]+28*X[3], 21*X[165]+4*X[3635], X[193]+24*X[55649], 3*X[1992]+22*X[55641], 16*X[3098]+9*X[33748], -3*X[3617]+8*X[31447], -X[3620]+16*X[55661], 4*X[3625]+21*X[5731], 4*X[3630]+21*X[25406], X[3633]+49*X[16192], -2*X[3817]+27*X[58213], -2*X[4301]+27*X[58221] and many others

X(58188) lies on these lines: {2, 3}, {99, 32878}, {165, 3635}, {193, 55649}, {516, 58217}, {1078, 32888}, {1992, 55641}, {3098, 33748}, {3312, 9693}, {3616, 28232}, {3617, 31447}, {3620, 55661}, {3625, 5731}, {3630, 25406}, {3633, 16192}, {3817, 58213}, {4301, 58221}, {4309, 5265}, {4317, 5281}, {4668, 28236}, {4691, 9588}, {5032, 55606}, {5131, 18221}, {5304, 15513}, {5319, 8588}, {5585, 7738}, {5734, 7987}, {5965, 55655}, {6144, 55651}, {6398, 9543}, {6409, 9692}, {6410, 42523}, {6776, 55657}, {7586, 9681}, {7751, 11148}, {7796, 32876}, {8591, 55829}, {9542, 43511}, {9589, 54445}, {10519, 55658}, {10541, 51028}, {10645, 42435}, {10646, 42436}, {11179, 55652}, {11362, 20053}, {11482, 50966}, {14531, 20791}, {14853, 55669}, {14912, 55648}, {14981, 52886}, {15515, 37665}, {15589, 32877}, {16772, 42982}, {16773, 42983}, {17502, 20070}, {22235, 36968}, {22237, 36967}, {28212, 58224}, {28234, 35242}, {30389, 50872}, {31454, 42637}, {31884, 32455}, {33749, 50967}, {33750, 55653}, {36836, 42516}, {36843, 42517}, {40107, 55660}, {40693, 43242}, {40694, 43243}, {41112, 42959}, {41113, 42958}, {42133, 43371}, {42134, 43370}, {42150, 42967}, {42151, 42966}, {42163, 51915}, {42166, 51916}, {42500, 42775}, {42501, 42776}, {42598, 51944}, {42599, 51945}, {42801, 42991}, {42802, 42990}, {42928, 43014}, {42929, 43015}, {42932, 42943}, {42933, 42942}, {43016, 43403}, {43017, 43404}, {43603, 52987}, {46226, 55735}, {46264, 55663}, {48873, 55664}, {51170, 55629}, {51171, 55674}, {54132, 55681}, {54170, 55684}, {54174, 55626}

X(58188)= pole of line {185, 15705} with respect to the Jerabek hyperbola
X(58188) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/5
X(58188) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(12101)}}, {{A, B, C, X(1105), X(15705)}}, {{A, B, C, X(1217), X(48154)}}, {{A, B, C, X(3544), X(15318)}}, {{A, B, C, X(15720), X(51348)}}
X(58188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15718, 15708}, {2, 3146, 3850}, {3, 10304, 3523}, {3, 140, 15715}, {3, 1656, 15711}, {3, 1657, 14891}, {3, 3528, 15717}, {3, 4, 15705}, {3, 550, 15698}, {3, 8703, 10299}, {4, 15686, 6996}, {5, 15709, 8728}, {20, 10303, 3832}, {20, 3523, 7486}, {20, 5056, 382}, {20, 631, 3091}, {20, 7486, 3543}, {376, 3524, 5066}, {548, 15712, 3843}, {548, 3530, 3627}, {631, 5067, 15694}, {631, 5071, 3526}, {632, 5066, 1656}, {1656, 15696, 17800}, {2041, 2042, 3544}, {3522, 14636, 15709}, {3522, 15717, 17578}, {3522, 17578, 15696}, {3627, 3850, 14269}, {3843, 14093, 548}, {3843, 5072, 3859}, {3859, 15694, 5067}, {5066, 11539, 15703}, {8703, 10299, 3146}, {8703, 14269, 376}, {10299, 15688, 13587}, {10304, 15692, 15697}, {11001, 15720, 15022}, {12103, 15700, 3533}, {12108, 15689, 4}, {12108, 15712, 15693}, {12812, 14891, 15712}, {14093, 15693, 15689}, {14093, 15712, 17538}, {14093, 17538, 3522}, {14784, 14785, 12101}, {14892, 15702, 2}, {15686, 15712, 632}, {15689, 15706, 11539}, {15693, 15705, 15692}, {15696, 17578, 20}, {15702, 15704, 3854}, {15717, 17578, 631}, {15717, 17800, 10303}


X(58189) = X(2)X(3)∩X(516)X(58218)

Barycentrics    89*a^4-4*(b^2-c^2)^2-85*a^2*(b^2+c^2) : :
X(58189) = -4*X[2]+31*X[3], -5*X[8148]+32*X[51085], 25*X[35242]+2*X[51087], -5*X[44456]+32*X[51138], -X[50955]+28*X[55658], 5*X[50968]+22*X[55665], 2*X[51140]+25*X[55646]

X(58189) lies on these lines: {2, 3}, {516, 58218}, {6417, 43526}, {6418, 43525}, {6451, 43318}, {6452, 43319}, {8148, 51085}, {11485, 42796}, {11486, 42795}, {16241, 42689}, {16242, 42688}, {28154, 58213}, {28212, 58226}, {33606, 43194}, {33607, 43193}, {35242, 51087}, {42122, 42969}, {42123, 42968}, {42518, 42891}, {42519, 42890}, {43100, 51915}, {43107, 51916}, {43254, 43789}, {43255, 43790}, {43382, 43797}, {43383, 43798}, {44456, 51138}, {50955, 55658}, {50968, 55665}, {51140, 55646}

X(58189) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/9
X(58189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10304, 5055}, {3, 14093, 15701}, {3, 15684, 15698}, {3, 15722, 15715}, {3, 8703, 15718}, {20, 15698, 549}, {548, 15759, 15714}, {549, 10304, 15688}, {549, 15690, 4}, {549, 15704, 10109}, {549, 15705, 15706}, {549, 5066, 3525}, {3146, 5071, 3845}, {3523, 16858, 631}, {3524, 10304, 548}, {3524, 3845, 5054}, {3534, 15706, 15709}, {3534, 3628, 15684}, {3830, 15688, 15689}, {3850, 8703, 376}, {5054, 15688, 20}, {5055, 15689, 17800}, {5070, 5076, 3851}, {10124, 17504, 3524}, {10299, 15688, 14269}, {15685, 15973, 15687}, {15688, 15716, 3545}, {15690, 15701, 3830}, {15696, 15715, 15722}, {15705, 15708, 10299}, {15708, 15718, 15707}


X(58190) = X(2)X(3)∩X(13)X(51916)

Barycentrics    18*a^4-(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(58190) = -3*X[2]+19*X[3], -X[141]+9*X[55660], -3*X[597]+11*X[55675], -X[1353]+9*X[33750], -X[3589]+5*X[55666], X[3629]+7*X[55633], 3*X[4297]+5*X[31447], -X[4301]+9*X[17502], -X[5446]+9*X[55166], -X[5480]+9*X[55667], -3*X[5655]+19*X[15023], -X[6329]+3*X[55680] and many others

X(58190) lies on these lines: {2, 3}, {13, 51916}, {14, 51915}, {141, 55660}, {516, 58219}, {524, 55647}, {597, 55675}, {1353, 33750}, {1503, 55659}, {3411, 42942}, {3412, 42943}, {3564, 55653}, {3589, 55666}, {3629, 55633}, {4297, 31447}, {4301, 17502}, {4330, 15325}, {5131, 15174}, {5206, 9607}, {5210, 5319}, {5237, 43023}, {5238, 43022}, {5305, 8588}, {5349, 42591}, {5350, 42590}, {5351, 42925}, {5352, 42924}, {5355, 15513}, {5446, 55166}, {5480, 55667}, {5655, 15023}, {5844, 31663}, {6000, 11592}, {6329, 55680}, {6409, 43318}, {6410, 9681}, {6417, 9693}, {6451, 19117}, {6452, 19116}, {6453, 52048}, {6454, 52047}, {6496, 42637}, {6497, 42638}, {7280, 15172}, {7849, 32459}, {8550, 55644}, {8584, 55600}, {9589, 38028}, {9606, 15515}, {9680, 42216}, {9955, 58216}, {10990, 11694}, {11542, 42433}, {11543, 42434}, {12007, 55627}, {12512, 28216}, {13391, 17704}, {13392, 15063}, {13491, 44324}, {13624, 28212}, {13754, 55286}, {13925, 42261}, {13993, 42260}, {14677, 15036}, {14810, 34380}, {15042, 22251}, {15057, 38723}, {15069, 55656}, {16192, 34773}, {16772, 42123}, {16773, 42122}, {16836, 16881}, {16964, 43012}, {16965, 43013}, {17508, 51732}, {18481, 31425}, {18538, 51910}, {18553, 50971}, {18583, 55672}, {18762, 51911}, {18907, 31450}, {20379, 38726}, {21167, 55662}, {21850, 55673}, {22392, 48927}, {22791, 58221}, {23238, 38706}, {25555, 51130}, {28154, 58214}, {29181, 55668}, {31666, 50808}, {32455, 55615}, {32523, 33706}, {33749, 55631}, {33751, 55663}, {35242, 37727}, {38022, 50812}, {38079, 50968}, {38081, 50819}, {38083, 51079}, {38110, 55671}, {40107, 55657}, {40647, 54044}, {40693, 43635}, {40694, 43634}, {42090, 42491}, {42091, 42490}, {42093, 43644}, {42094, 43649}, {42104, 42611}, {42105, 42610}, {42119, 43198}, {42120, 43197}, {42121, 43194}, {42124, 43193}, {42130, 43772}, {42131, 43771}, {42136, 42489}, {42137, 42488}, {42415, 42686}, {42416, 42687}, {42496, 42528}, {42497, 42529}, {42584, 42813}, {42585, 42814}, {42682, 42954}, {42683, 42955}, {42773, 51944}, {42774, 51945}, {42777, 43485}, {42778, 43486}, {42785, 55665}, {42888, 43102}, {42889, 43103}, {42912, 42990}, {42913, 42991}, {42916, 43777}, {42917, 43778}, {42980, 43020}, {42981, 43021}, {44882, 55658}, {48874, 55676}, {48876, 55654}, {48881, 55669}, {48906, 55651}, {50965, 55687}, {50979, 55614}, {51132, 52987}, {51737, 55637}, {52100, 54434}, {54169, 55652}

X(58190) = midpoint of X(i) and X(j) for these {i,j}: {10109, 15691}, {10124, 15690}, {15327, 15336}, {20, 3861}, {376, 11812}, {3534, 11737}, {3850, 12103}, {3860, 15686}, {548, 3530}, {550, 3628}, {8703, 14891}
X(58190) = reflection of X(i) in X(j) for these {i,j}: {12811, 140}, {16239, 3530}, {3856, 16239}
X(58190) = complement of X(12102)
X(58190)= pole of line {185, 11592} with respect to the Jerabek hyperbola
X(58190) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/4
X(58190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(17504)}}, {{A, B, C, X(1657), X(43970)}}, {{A, B, C, X(3544), X(6662)}}, {{A, B, C, X(3858), X(15319)}}, {{A, B, C, X(5072), X(15318)}}
X(58190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 140, 14891}, {3, 14093, 4}, {3, 15696, 15717}, {3, 15720, 15705}, {3, 1656, 15698}, {3, 1657, 15692}, {3, 3522, 549}, {3, 3523, 15711}, {3, 3534, 10299}, {3, 376, 15712}, {3, 4, 17504}, {3, 5073, 15716}, {3, 548, 3530}, {3, 8703, 140}, {5, 17800, 3853}, {5, 550, 17800}, {20, 140, 3861}, {20, 15721, 3832}, {20, 3090, 382}, {20, 3524, 5070}, {20, 3832, 11541}, {20, 631, 381}, {20, 8703, 548}, {30, 140, 12811}, {30, 16239, 3856}, {30, 3530, 16239}, {140, 11541, 11737}, {140, 12101, 3090}, {140, 12103, 12101}, {140, 15691, 3627}, {140, 3627, 10109}, {140, 381, 3628}, {140, 546, 15699}, {140, 548, 20}, {376, 15712, 546}, {381, 10304, 8703}, {381, 15689, 11001}, {381, 15716, 15707}, {546, 15712, 11812}, {549, 3522, 12103}, {550, 11539, 3146}, {550, 15712, 5056}, {631, 5056, 3526}, {1657, 14869, 5066}, {1657, 15692, 14869}, {2041, 2042, 5072}, {3090, 12101, 3850}, {3090, 3522, 15689}, {3522, 15710, 3}, {3523, 15688, 15704}, {3524, 8703, 15691}, {3526, 15707, 631}, {3528, 15717, 15696}, {3530, 16239, 12108}, {3534, 10299, 632}, {3832, 15717, 17533}, {5059, 15694, 3857}, {6928, 15706, 4209}, {8703, 15699, 376}, {8703, 15711, 15682}, {10109, 14891, 3524}, {10109, 15691, 30}, {10299, 11541, 15721}, {10303, 15681, 3858}, {10304, 15714, 12100}, {10304, 15715, 15695}, {13168, 15706, 550}, {14093, 17504, 15690}, {14892, 15701, 10124}, {15688, 15711, 547}, {15695, 15715, 11539}, {15696, 15717, 5}, {15704, 15711, 3523}, {15705, 17538, 15720}, {15720, 17538, 3845}, {33750, 55639, 1353}


X(58191) = X(2)X(3)∩X(516)X(58220)

Barycentrics    57*a^4-4*(b^2-c^2)^2-53*a^2*(b^2+c^2) : :
X(58191) = -12*X[2]+61*X[3], 16*X[33749]+33*X[55620], -32*X[51700]+81*X[58226]

X(58191) lies on these lines: {2, 3}, {516, 58220}, {10145, 43511}, {10146, 43512}, {28154, 58215}, {28212, 58228}, {33749, 55620}, {42149, 51915}, {42152, 51916}, {42894, 43194}, {42895, 43193}, {51700, 58226}

X(58191) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/7
X(58191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15684, 10299}, {3, 3522, 5055}, {3, 550, 15718}, {3, 8703, 5073}, {20, 7397, 376}, {140, 3529, 381}, {140, 3627, 5071}, {376, 7491, 15695}, {382, 15696, 15686}, {548, 17504, 17578}, {548, 3529, 15696}, {3522, 6988, 17800}, {3523, 15022, 15702}, {3523, 3528, 548}, {3832, 10304, 3528}, {3851, 6916, 3523}, {5073, 15701, 3090}, {15685, 15698, 15701}, {15686, 15700, 15703}, {15696, 15700, 3832}, {15714, 15720, 3}


X(58192) = X(2)X(3)∩X(516)X(58224)

Barycentrics    33*a^4-4*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(58192) = -12*X[2]+37*X[3], -24*X[10165]+49*X[58220], -24*X[10283]+49*X[58228], 16*X[12512]+9*X[58230], X[15069]+24*X[33751], 4*X[18553]+21*X[50976], 2*X[31666]+3*X[50812], 16*X[33749]+9*X[33878], 16*X[37853]+9*X[38638], 9*X[38633]+16*X[38726], 9*X[38634]+16*X[38736], 9*X[38635]+16*X[38747] and many others

X(58192) lies on these lines: {2, 3}, {516, 58224}, {3411, 42626}, {3412, 42625}, {5351, 51945}, {5352, 51944}, {5418, 41950}, {5420, 41949}, {5965, 55629}, {6395, 9681}, {7581, 10145}, {7582, 10146}, {7765, 15655}, {10165, 58220}, {10283, 58228}, {12512, 58230}, {15069, 33751}, {16960, 43193}, {16961, 43194}, {18553, 50976}, {22236, 43006}, {22238, 43007}, {28154, 58217}, {28212, 58233}, {28228, 37624}, {31666, 50812}, {33749, 33878}, {35820, 43881}, {35821, 43882}, {36836, 43018}, {36843, 43019}, {37853, 38638}, {38633, 38726}, {38634, 38736}, {38635, 38747}, {38636, 38759}, {40107, 55648}, {42115, 42991}, {42116, 42990}, {42164, 42513}, {42165, 42512}, {42516, 42924}, {42517, 42925}, {42526, 43432}, {42527, 43433}, {42928, 43009}, {42929, 43008}, {50955, 55644}, {50968, 55687}

X(58192)= pole of line {185, 15718} with respect to the Jerabek hyperbola
X(58192) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/5
X(58192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(15718)}}, {{A, B, C, X(15318), X(38071)}}
X(58192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15684, 3523}, {3, 15685, 15720}, {3, 15689, 3851}, {3, 1657, 15701}, {3, 3522, 15695}, {3, 376, 5073}, {3, 4, 15718}, {3, 5073, 15707}, {3, 550, 5055}, {5, 3530, 15702}, {20, 10299, 5}, {20, 15717, 3545}, {20, 16239, 382}, {20, 3830, 17800}, {376, 15699, 3534}, {546, 5073, 3830}, {550, 15692, 5076}, {631, 3522, 548}, {631, 5070, 15694}, {632, 15697, 1657}, {632, 3545, 1656}, {1656, 15696, 20}, {3522, 10304, 17538}, {3522, 14093, 3}, {3534, 8703, 6891}, {3832, 15692, 631}, {3843, 15695, 15696}, {3843, 5073, 17578}, {3861, 15701, 5070}, {5055, 15681, 15682}, {10299, 15682, 3525}, {11812, 14893, 15699}, {14093, 15693, 10304}, {14893, 15714, 15692}, {15688, 15716, 376}, {15694, 15695, 15689}, {15694, 17800, 3843}, {15695, 15701, 15697}, {15712, 17578, 3526}


X(58193) = X(2)X(3)∩X(193)X(55600)

Barycentrics    67*a^4-9*(b^2-c^2)^2-58*a^2*(b^2+c^2) : :
X(58193) = -27*X[2]+76*X[3], 9*X[193]+40*X[55600], -15*X[3620]+64*X[55647], 9*X[6776]+40*X[55623], -81*X[33748]+32*X[55718], -81*X[33750]+32*X[55704]

X(58193) lies on these lines: {2, 3}, {193, 55600}, {516, 58225}, {3620, 55647}, {5237, 43243}, {5238, 43242}, {6459, 10148}, {6460, 10147}, {6776, 55623}, {28212, 58235}, {33748, 55718}, {33750, 55704}

X(58193) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/7
X(58193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3859, 5056}, {3, 12811, 3524}, {3, 17538, 15022}, {20, 10303, 3627}, {20, 140, 3543}, {20, 15692, 5068}, {548, 1656, 376}, {3090, 3524, 14869}, {3090, 3627, 3832}, {3522, 8703, 20}, {3523, 3528, 10304}, {3523, 7486, 15702}, {3524, 3855, 140}, {3526, 15692, 3523}, {3529, 3845, 3146}, {3534, 6882, 550}, {3627, 15701, 3090}, {3851, 15722, 3526}


X(58194) = X(2)X(3)∩X(516)X(58227)

Barycentrics    131*a^4-25*(b^2-c^2)^2-106*a^2*(b^2+c^2) : :
X(58194) = -25*X[2]+52*X[3], -40*X[4746]+13*X[50871], X[4816]+26*X[51079], -5*X[11160]+32*X[55612], -5*X[11180]+32*X[55636], -X[34632]+28*X[51083], -35*X[50969]+8*X[55594], 20*X[50971]+7*X[55607], 80*X[50972]+X[51214], 80*X[51134]+X[51215]

X(58194) lies on these lines: {2, 3}, {516, 58227}, {4746, 50871}, {4816, 51079}, {5365, 42953}, {5366, 42952}, {6484, 43256}, {6485, 43257}, {11160, 55612}, {11180, 55636}, {34632, 51083}, {42115, 43253}, {42116, 43252}, {42528, 43243}, {42529, 43242}, {42625, 42804}, {42626, 42803}, {43012, 43480}, {43013, 43479}, {50969, 55594}, {50971, 55607}, {50972, 51214}, {51134, 51215}

X(58194) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/9
X(58194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15695, 6960}, {20, 15688, 10304}, {20, 15692, 3830}, {382, 15686, 11001}, {548, 3090, 3522}, {549, 12101, 1656}, {549, 15710, 15705}, {549, 3830, 3090}, {632, 3832, 5056}, {3522, 15689, 3839}, {3545, 15705, 15708}, {11001, 15719, 12101}, {11737, 15692, 15721}, {13635, 15714, 2}, {15688, 15689, 549}, {15688, 15690, 3545}


X(58195) = X(2)X(3)∩X(193)X(55588)

Barycentrics    43*a^4-9*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(58195) = -27*X[2]+52*X[3], 9*X[193]+16*X[55588], -3*X[3620]+8*X[55637], X[5493]+24*X[51081], -27*X[5731]+2*X[58245], -3*X[5921]+28*X[55626], 9*X[5984]+16*X[38628], 9*X[6776]+16*X[55597], 9*X[14683]+16*X[38626], 3*X[14927]+22*X[55641], 9*X[20070]+16*X[58240], -3*X[20080]+28*X[55602] and many others

X(58195) lies on circumconic {{A, B, C, X(3346), X(41106)}} and these lines: {2, 3}, {193, 55588}, {516, 58229}, {3620, 55637}, {4816, 28236}, {5237, 42983}, {5238, 42982}, {5351, 42894}, {5352, 42895}, {5493, 51081}, {5731, 58245}, {5921, 55626}, {5965, 55600}, {5984, 38628}, {6449, 43787}, {6450, 43788}, {6488, 42542}, {6489, 42541}, {6776, 55597}, {9542, 10147}, {14683, 38626}, {14927, 55641}, {16189, 28228}, {17852, 42258}, {20070, 58240}, {20080, 55602}, {20094, 38627}, {20095, 38631}, {22235, 42932}, {22236, 43242}, {22237, 42933}, {22238, 43243}, {28212, 58236}, {31399, 50863}, {33748, 48881}, {33751, 51171}, {35770, 43383}, {35771, 43382}, {39874, 55620}, {40330, 55650}, {42090, 43031}, {42091, 43030}, {42147, 42517}, {42148, 42516}, {42160, 43870}, {42161, 43869}, {42431, 42512}, {42432, 42513}, {42777, 51945}, {42778, 51944}, {42906, 43871}, {42907, 43872}, {43511, 51911}, {43512, 51910}, {46264, 55617}, {48873, 55704}, {48885, 55708}, {48892, 55611}

X(58195) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/5
X(58195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 2}, {3, 12103, 11541}, {3, 1657, 12811}, {3, 3529, 15022}, {3, 6942, 16864}, {4, 14892, 3832}, {20, 10304, 5056}, {20, 3522, 15692}, {20, 3523, 15640}, {140, 3545, 2476}, {140, 7491, 3528}, {376, 15696, 3522}, {381, 12100, 15709}, {546, 12811, 6924}, {548, 550, 381}, {550, 3853, 3534}, {631, 15715, 15712}, {631, 3522, 10304}, {632, 3529, 17578}, {1656, 12100, 631}, {1656, 15696, 15689}, {3091, 15697, 17538}, {3091, 17538, 20}, {3091, 3523, 632}, {3146, 5187, 3545}, {3522, 15696, 15697}, {3523, 15686, 6943}, {3524, 6935, 3533}, {3543, 10304, 12100}, {3545, 5084, 7486}, {3628, 11001, 3146}, {3861, 12103, 15704}, {11812, 15717, 3523}, {13727, 15712, 10303}, {14636, 15685, 3091}, {15695, 15696, 550}, {16435, 17542, 14636}


X(58196) = X(2)X(3)∩X(516)X(58232)

Barycentrics    34*a^4-9*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(58196) = -27*X[2]+43*X[3], 5*X[5493]+3*X[51087], -X[12007]+5*X[48892], -9*X[12699]+25*X[58229], -3*X[18358]+7*X[55644], -5*X[31399]+21*X[51083], -9*X[34773]+X[58245], -3*X[39884]+11*X[55641], -9*X[43150]+25*X[55623], -9*X[44882]+X[55721], 9*X[48873]+7*X[53858], 9*X[48880]+7*X[55708] and many others

X(58196) lies on these lines: {2, 3}, {516, 58232}, {1151, 43336}, {1152, 43337}, {1503, 55617}, {3564, 55597}, {5237, 42585}, {5238, 42584}, {5493, 51087}, {6409, 43791}, {6410, 43792}, {6417, 43383}, {6418, 43382}, {6561, 17852}, {11542, 42965}, {11543, 42964}, {12007, 48892}, {12699, 58229}, {13607, 28212}, {15178, 28216}, {18358, 55644}, {28154, 58223}, {29181, 55704}, {31399, 51083}, {34380, 48885}, {34773, 58245}, {39884, 55641}, {42087, 43015}, {42088, 43014}, {42099, 42686}, {42100, 42687}, {42104, 43644}, {42105, 43649}, {42108, 42954}, {42109, 42955}, {42150, 43635}, {42151, 43634}, {42215, 43338}, {42216, 43339}, {42225, 43431}, {42226, 43430}, {42263, 43341}, {42264, 43340}, {42598, 42889}, {42599, 42888}, {42612, 42891}, {42613, 42890}, {42934, 42943}, {42935, 42942}, {43105, 43303}, {43106, 43302}, {43150, 55623}, {43442, 51916}, {43443, 51915}, {43511, 43798}, {43512, 43797}, {43525, 43793}, {43526, 43794}, {44882, 55721}, {48873, 53858}, {48880, 55708}, {48881, 55583}, {48898, 55611}, {51163, 55675}, {51732, 55694}

X(58196) = midpoint of X(i) and X(j) for these {i,j}: {1657, 3861}, {11001, 11737}, {11812, 15681}, {3628, 15704}
X(58196) = reflection of X(i) in X(j) for these {i,j}: {12811, 3}
X(58196) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/4
X(58196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(12811)}}, {{A, B, C, X(15688), X(43970)}}
X(58196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 5}, {3, 12811, 12108}, {3, 15022, 549}, {3, 30, 12811}, {4, 548, 15759}, {5, 550, 15689}, {20, 3545, 1657}, {20, 376, 1656}, {20, 550, 15690}, {140, 15711, 3530}, {140, 5072, 3628}, {140, 548, 10304}, {376, 14269, 8703}, {546, 12103, 20}, {546, 3525, 10109}, {546, 3530, 1010}, {548, 12103, 15704}, {548, 1657, 14890}, {550, 15686, 15696}, {550, 3534, 548}, {1656, 3830, 3832}, {1657, 5055, 6941}, {3090, 6950, 15022}, {3522, 3853, 14891}, {3528, 3854, 15716}, {3529, 10304, 5072}, {3529, 5071, 3146}, {3530, 3628, 10303}, {3534, 10304, 15686}, {3534, 15689, 15683}, {3534, 15704, 12103}, {3544, 3857, 5066}, {3627, 15704, 17800}, {3628, 12102, 3857}, {3628, 12108, 11540}, {3628, 14890, 632}, {10303, 17800, 3627}, {11001, 11737, 30}, {12103, 15690, 546}, {12103, 15691, 17538}, {15686, 15696, 140}, {15706, 17800, 4}


X(58197) = X(2)X(3)∩X(42510)X(42967)

Barycentrics    179*a^4-49*(b^2-c^2)^2-130*a^2*(b^2+c^2) : :
X(58197) = -49*X[2]+76*X[3], -8*X[43150]+35*X[50969], -35*X[50975]+8*X[55716]

X(58197) lies on these lines: {2, 3}, {42510, 42967}, {42511, 42966}, {42932, 42973}, {42933, 42972}, {43150, 50969}, {43201, 51945}, {43202, 51944}, {43298, 43401}, {43299, 43402}, {50975, 55716}

X(58197) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/9
X(58197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 11001, 3530}, {376, 15701, 3522}, {376, 3544, 8703}, {548, 15704, 3851}, {5055, 10304, 15692}, {5066, 15706, 15709}, {7486, 15683, 15640}, {10109, 15684, 4}, {10304, 15683, 3839}, {11539, 15689, 376}, {14893, 15682, 17578}, {15688, 15717, 10304}, {15693, 15710, 15705}


X(58198) = X(2)X(3)∩X(516)X(58233)

Barycentrics    57*a^4-16*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(58198) = -48*X[2]+73*X[3], -96*X[10165]+121*X[58222], 16*X[48891]+9*X[55624], 16*X[48920]+9*X[55697]

X(58198) lies on these lines: {2, 3}, {516, 58233}, {6472, 6560}, {6473, 6561}, {9690, 51911}, {10165, 58222}, {16936, 37496}, {28154, 58224}, {42433, 42897}, {42434, 42896}, {42688, 42938}, {42689, 42939}, {43415, 51910}, {48891, 55624}, {48920, 55697}

X(58198) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4/5
X(58198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 15696, 3843}, {382, 11001, 17800}, {382, 15696, 3522}, {548, 15697, 15696}, {550, 12103, 11001}, {550, 15686, 3628}, {631, 15696, 15695}, {1656, 15696, 548}, {3146, 15714, 1656}, {3146, 3855, 3853}, {10304, 17578, 631}, {15686, 16434, 1657}, {15694, 15695, 10304}, {15695, 15707, 14093}


X(58199) = X(2)X(3)∩X(516)X(58234)

Barycentrics    86*a^4-25*(b^2-c^2)^2-61*a^2*(b^2+c^2) : :
X(58199) = -25*X[2]+37*X[3], -5*X[10168]+2*X[51165], X[11278]+5*X[34638], -25*X[31162]+49*X[58231], -25*X[32900]+7*X[58244], -X[33697]+7*X[51083], -5*X[47354]+11*X[55642], 5*X[48880]+X[51166], -2*X[50664]+5*X[50971], -25*X[50811]+X[58248], -X[51025]+4*X[55636]

X(58199) lies on these lines: {2, 3}, {516, 58234}, {10168, 51165}, {11278, 34638}, {28212, 58241}, {31162, 58231}, {32900, 58244}, {33697, 51083}, {41977, 42164}, {41978, 42165}, {42136, 43200}, {42137, 43199}, {42528, 43198}, {42529, 43197}, {42890, 43229}, {42891, 43228}, {47354, 55642}, {48880, 51166}, {50664, 50971}, {50811, 58248}, {51025, 55636}

X(58199) = midpoint of X(i) and X(j) for these {i,j}: {11001, 11539}, {3524, 15704}
X(58199) = reflection of X(i) in X(j) for these {i,j}: {140, 15688}, {14893, 3524}, {15687, 14890}, {3839, 14891}, {3853, 11539}
X(58199) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/6
X(58199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 3851, 15704}, {20, 550, 3628}, {30, 11539, 3853}, {30, 14890, 15687}, {30, 14891, 3839}, {30, 15688, 140}, {30, 3524, 14893}, {376, 11001, 5056}, {376, 3526, 8703}, {547, 15690, 548}, {3146, 6843, 12102}, {3534, 12103, 15691}, {3534, 6958, 11001}, {3543, 11001, 17800}, {3845, 15686, 20}, {3845, 5071, 3850}, {3853, 5056, 546}, {5054, 14269, 5071}, {5054, 15695, 10304}, {5056, 15707, 11539}, {11001, 11539, 30}, {11001, 15690, 12100}, {11001, 15695, 3845}, {11539, 15707, 11812}, {12100, 15691, 550}, {12103, 15690, 15686}, {15686, 15691, 547}, {15699, 15712, 5054}


X(58200) = X(2)X(3)∩X(5237)X(42543)

Barycentrics    134*a^4-49*(b^2-c^2)^2-85*a^2*(b^2+c^2) : :
X(58200) = -49*X[2]+61*X[3], 5*X[48905]+X[50985], -49*X[50811]+25*X[58239], -7*X[50982]+10*X[55601]

X(58200) lies on these lines: {2, 3}, {5237, 42543}, {5238, 42544}, {28212, 58243}, {42122, 56608}, {42123, 56609}, {42136, 42796}, {42137, 42795}, {42275, 43319}, {42276, 43318}, {42429, 43000}, {42430, 43001}, {42684, 42973}, {42685, 42972}, {48905, 50985}, {50811, 58239}, {50982, 55601}

X(58200) = midpoint of X(i) and X(j) for these {i,j}: {3529, 11539}
X(58200) = reflection of X(i) in X(j) for these {i,j}: {14892, 15690}, {14893, 15688}
X(58200) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/6
X(58200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 1657, 632}, {20, 3850, 12103}, {30, 15688, 14893}, {30, 15690, 14892}, {376, 6838, 15696}, {549, 15704, 11001}, {3529, 11539, 30}, {5054, 15689, 3522}, {5055, 15706, 15702}, {5055, 15710, 549}, {5066, 15691, 548}, {14093, 15687, 10124}, {15682, 15683, 17800}, {15682, 15759, 5066}, {15686, 17800, 15759}


X(58201) = X(2)X(3)∩X(516)X(58237)

Barycentrics    66*a^4-25*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(58201) = -75*X[2]+91*X[3], X[3630]+7*X[48896], -25*X[18481]+9*X[58241], -5*X[25555]+3*X[51165]

X(58201) lies on these lines: {2, 3}, {516, 58237}, {3630, 48896}, {4746, 28186}, {9693, 43889}, {18481, 58241}, {25555, 51165}, {28212, 58244}, {42122, 42435}, {42123, 42436}, {42136, 42928}, {42137, 42929}, {42429, 43491}, {42430, 43492}, {42584, 42891}, {42585, 42890}, {42924, 43245}, {42925, 43244}

X(58201) = midpoint of X(i) and X(j) for these {i,j}: {3861, 17800}
X(58201) = reflection of X(i) in X(j) for these {i,j}: {12811, 550}
X(58201) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/4
X(58201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 17538, 548}, {5, 548, 14891}, {20, 3529, 3526}, {20, 3855, 3534}, {30, 550, 12811}, {382, 10304, 5}, {382, 15696, 15701}, {547, 15690, 10304}, {548, 3843, 3530}, {1657, 15681, 17538}, {1657, 15689, 3529}, {1657, 5072, 15685}, {3525, 5076, 3857}, {3845, 12812, 3850}, {3845, 15686, 15689}, {3853, 16239, 3856}, {3857, 15712, 2}, {3861, 17800, 30}, {5068, 15692, 3525}, {12103, 17800, 3861}, {14890, 14891, 15693}, {15682, 15690, 11812}


X(58202) = X(2)X(3)∩X(3070)X(6472)

Barycentrics    41*a^4-16*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(58202) = -16*X[2]+19*X[3], -X[8148]+4*X[34628], -8*X[11178]+11*X[55632], -4*X[11693]+3*X[38789], -5*X[12699]+8*X[51085], -5*X[18440]+8*X[50982], -5*X[18493]+8*X[50815], -X[18525]+4*X[34638], -8*X[25561]+11*X[55648], -5*X[31670]+8*X[51138], -2*X[33697]+5*X[50812], -5*X[34632]+2*X[50830] and many others

X(58202) lies on circumconic {{A, B, C, X(13623), X(15702)}} and these lines: {2, 3}, {516, 58238}, {3070, 6472}, {3071, 6473}, {5318, 56608}, {5321, 56609}, {6474, 42260}, {6475, 42261}, {6500, 42267}, {6501, 42266}, {8148, 34628}, {8976, 43380}, {9690, 43258}, {9691, 35815}, {10145, 53130}, {10146, 53131}, {10247, 28202}, {11178, 55632}, {11645, 55593}, {11693, 38789}, {12699, 51085}, {13951, 43381}, {15655, 39563}, {16962, 42097}, {16963, 42096}, {17851, 42275}, {18440, 50982}, {18493, 50815}, {18525, 34638}, {19106, 42795}, {19107, 42796}, {25561, 55648}, {28154, 58230}, {29323, 55624}, {31670, 51138}, {33697, 50812}, {34632, 50830}, {34748, 58247}, {35242, 50800}, {35822, 43339}, {35823, 43338}, {36969, 42691}, {36970, 42690}, {37640, 42968}, {37641, 42969}, {41100, 42544}, {41101, 42543}, {41957, 43336}, {41958, 43337}, {42093, 43545}, {42094, 43544}, {42103, 42985}, {42106, 42984}, {42112, 42685}, {42113, 42684}, {42115, 42972}, {42116, 42973}, {42121, 43202}, {42124, 43201}, {42154, 43031}, {42155, 43030}, {42276, 43342}, {42413, 52048}, {42414, 52047}, {42518, 43546}, {42519, 43547}, {42637, 43341}, {42638, 43340}, {42686, 43402}, {42687, 43401}, {43028, 43293}, {43029, 43292}, {43150, 55604}, {43259, 43415}, {43330, 43499}, {43331, 43500}, {43399, 43467}, {43400, 43468}, {43789, 52045}, {43790, 52046}, {44456, 48879}, {47353, 48920}, {48880, 50955}, {48884, 50968}, {48891, 51024}, {48896, 55584}, {50818, 58250}, {50869, 58222}, {50957, 55646}, {50976, 55678}, {50985, 54170}, {51189, 55600}

X(58202) = midpoint of X(i) and X(j) for these {i,j}: {5055, 17800}
X(58202) = reflection of X(i) in X(j) for these {i,j}: {11539, 12103}, {14269, 15689}, {15682, 11539}, {15684, 5055}, {15688, 20}, {382, 3524}, {3524, 15686}, {3830, 15688}, {3839, 550}, {5055, 3534}
X(58202) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4/3
X(58202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16434, 15717}, {20, 3854, 17538}, {20, 5059, 3525}, {30, 11539, 15682}, {30, 12103, 11539}, {30, 15686, 3524}, {30, 15688, 3830}, {30, 15689, 14269}, {30, 3524, 382}, {30, 3534, 5055}, {30, 550, 3839}, {376, 546, 15716}, {381, 3534, 548}, {382, 15695, 15703}, {546, 15688, 15707}, {546, 15699, 3545}, {546, 15712, 13735}, {1656, 15688, 15705}, {1657, 11001, 15681}, {1657, 3534, 15683}, {3091, 3522, 7390}, {3146, 15691, 15693}, {3526, 15716, 549}, {3526, 3534, 376}, {3528, 12101, 15723}, {3534, 10304, 15689}, {3534, 5066, 15695}, {3543, 15696, 15701}, {3627, 15697, 15700}, {3830, 15681, 20}, {3851, 14093, 15722}, {5055, 15689, 10304}, {5055, 15707, 3526}, {5055, 17800, 30}, {5072, 15698, 15694}, {5073, 15689, 15699}, {6949, 15683, 550}, {10304, 15709, 17504}, {11001, 15683, 15704}, {11812, 17578, 381}, {12103, 15682, 14093}, {13635, 15704, 15696}, {14093, 15682, 3851}, {14093, 15722, 3}, {15640, 15683, 3529}, {15681, 15683, 15684}, {15681, 17800, 3534}, {15683, 17800, 15685}, {15684, 15685, 17800}, {15685, 15700, 6971}, {15690, 15705, 15688}, {15699, 17504, 11812}


X(58203) = X(2)X(3)∩X(6)X(43326)

Barycentrics    22*a^4-9*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(58203) = -27*X[2]+31*X[3], -9*X[141]+11*X[55628], -9*X[5480]+11*X[55694], -7*X[10541]+3*X[43621], -45*X[10595]+49*X[58235], -4*X[11592]+3*X[46847], -X[14449]+2*X[46850], -3*X[14855]+2*X[16881], 3*X[14927]+X[55580], -5*X[16189]+9*X[18481], -2*X[16982]+3*X[40647], -3*X[18358]+4*X[55631] and many others

X(58203) lies on these lines: {2, 3}, {6, 43326}, {61, 42585}, {62, 42584}, {141, 55628}, {397, 42429}, {398, 42430}, {485, 6488}, {486, 6489}, {516, 32900}, {1503, 55588}, {2777, 38632}, {2794, 38628}, {2829, 38629}, {3564, 48879}, {3592, 42226}, {3594, 42225}, {5237, 42136}, {5238, 42137}, {5351, 42108}, {5352, 42109}, {5480, 55694}, {5840, 38631}, {5901, 28158}, {6053, 34584}, {6425, 42276}, {6426, 42275}, {6427, 43407}, {6428, 43408}, {6431, 43337}, {6432, 43336}, {7756, 41940}, {7982, 28216}, {7991, 28224}, {8981, 10147}, {10141, 43430}, {10142, 43431}, {10148, 13966}, {10222, 28178}, {10541, 43621}, {10595, 58235}, {11592, 46847}, {13925, 42272}, {13993, 42271}, {14449, 46850}, {14855, 16881}, {14927, 55580}, {15178, 28150}, {16189, 18481}, {16964, 43019}, {16965, 43018}, {16982, 40647}, {17702, 38626}, {18358, 55631}, {18526, 58249}, {18583, 48891}, {19116, 42413}, {19117, 42414}, {22234, 48898}, {22236, 42145}, {22238, 42144}, {22250, 38791}, {22330, 29317}, {22331, 43619}, {22332, 43618}, {23698, 38627}, {28154, 58232}, {28212, 58245}, {29012, 55597}, {29181, 55718}, {29323, 55617}, {31447, 50862}, {31666, 51118}, {31730, 38176}, {32137, 40247}, {32139, 33534}, {33606, 42545}, {33607, 42546}, {34380, 48872}, {35255, 41950}, {35256, 41949}, {36836, 42113}, {36843, 42112}, {38136, 55684}, {39884, 55614}, {41957, 42267}, {41958, 42266}, {42099, 42966}, {42100, 42967}, {42115, 43772}, {42116, 43771}, {42122, 42165}, {42123, 42164}, {42147, 43775}, {42148, 43776}, {42157, 43007}, {42158, 43006}, {42159, 42888}, {42162, 42889}, {42163, 42904}, {42166, 42905}, {42433, 43417}, {42434, 43416}, {42590, 43370}, {42591, 43371}, {42612, 43645}, {42613, 43646}, {42785, 51163}, {42890, 43485}, {42891, 43486}, {42912, 43773}, {42913, 43774}, {42924, 43632}, {42925, 43633}, {43465, 43648}, {43466, 43647}, {43781, 56608}, {43782, 56609}, {44882, 55708}, {46849, 54044}, {48880, 55600}, {48881, 55611}, {48896, 55721}, {48906, 53858}, {48920, 55623}

X(58203) = midpoint of X(i) and X(j) for these {i,j}: {3529, 15704}, {5, 5059}, {550, 17800}
X(58203) = reflection of X(i) in X(j) for these {i,j}: {140, 20}, {12101, 15691}, {12103, 15704}, {14449, 46850}, {14893, 3534}, {15682, 14891}, {15684, 11812}, {15690, 15681}, {18583, 48891}, {3146, 3628}, {3853, 550}, {546, 12103}, {5066, 15686}, {5073, 3861}
X(58203) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/2
X(58203) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15319), X(15687)}}, {{A, B, C, X(15689), X(18848)}}, {{A, B, C, X(32533), X(50690)}}, {{A, B, C, X(43970), X(45759)}}
X(58203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 3627}, {3, 12102, 12812}, {3, 15022, 14869}, {3, 3627, 12811}, {3, 5076, 15022}, {4, 15693, 5}, {4, 20, 15689}, {5, 10299, 11540}, {5, 550, 10304}, {20, 11541, 3}, {20, 140, 15691}, {20, 5059, 15682}, {30, 11812, 15684}, {30, 15681, 15690}, {30, 15686, 5066}, {30, 15691, 12101}, {30, 15704, 12103}, {30, 3534, 14893}, {30, 3628, 3146}, {30, 3861, 5073}, {30, 550, 3853}, {140, 15691, 548}, {140, 3861, 14892}, {381, 11539, 10109}, {381, 15695, 3524}, {382, 15695, 5056}, {382, 15703, 4}, {632, 15703, 1010}, {1657, 15685, 20}, {1657, 17800, 11001}, {1657, 3529, 15704}, {3090, 3627, 3861}, {3146, 12103, 12100}, {3146, 3529, 17800}, {3522, 15687, 16239}, {3523, 3830, 6970}, {3528, 15684, 3858}, {3528, 3858, 11812}, {3529, 15704, 30}, {3529, 17538, 5059}, {3543, 15712, 3856}, {3627, 15689, 12108}, {3627, 17538, 14891}, {3627, 8703, 3090}, {3628, 12108, 11539}, {3830, 6922, 1656}, {5076, 14869, 3850}, {5187, 10303, 631}, {10304, 11001, 15681}, {10304, 15682, 381}, {11001, 17800, 550}, {12102, 12812, 546}, {12103, 15690, 17538}, {14892, 15691, 8703}, {15699, 17697, 3628}, {15701, 16239, 140}, {15702, 15705, 15693}, {43326, 43327, 6}


X(58204) = X(2)X(3)∩X(1131)X(6484)

Barycentrics    59*a^4-25*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(58204) = -25*X[2]+28*X[3], -25*X[145]+16*X[58244], -10*X[1698]+7*X[50867], -10*X[3618]+7*X[51213], -4*X[3625]+7*X[34632], -10*X[3630]+7*X[51027], -25*X[3633]+7*X[58248], -10*X[3763]+7*X[51217], -10*X[4668]+7*X[50864], -11*X[5550]+14*X[50820], -10*X[6144]+7*X[51214], -5*X[11160]+8*X[55587] and many others

X(58204) lies on these lines: {2, 3}, {145, 58244}, {516, 58241}, {1131, 6484}, {1132, 6485}, {1151, 42538}, {1152, 42537}, {1327, 6486}, {1328, 6487}, {1698, 50867}, {3618, 51213}, {3625, 34632}, {3630, 51027}, {3633, 58248}, {3763, 51217}, {4114, 15933}, {4668, 50864}, {5032, 29317}, {5418, 43566}, {5420, 43567}, {5550, 50820}, {6144, 51214}, {6221, 42542}, {6398, 42541}, {6431, 42414}, {6432, 42413}, {6433, 52667}, {6434, 52666}, {6445, 42540}, {6446, 42539}, {7802, 32877}, {7811, 32878}, {9541, 43889}, {11160, 55587}, {11179, 51211}, {11180, 55594}, {11480, 43201}, {11481, 43202}, {11485, 43252}, {11486, 43253}, {16960, 43231}, {16961, 43230}, {16962, 42113}, {16963, 42112}, {18481, 58237}, {19862, 50874}, {21356, 55618}, {25055, 58227}, {28154, 58234}, {28158, 30392}, {28172, 53620}, {32455, 51166}, {35770, 43256}, {35771, 43257}, {36967, 42982}, {36968, 42983}, {41112, 43491}, {41113, 43492}, {41943, 43550}, {41944, 43551}, {41949, 52046}, {41950, 52045}, {42090, 42903}, {42091, 42902}, {42129, 43553}, {42132, 43552}, {42133, 42928}, {42134, 42929}, {42154, 43242}, {42155, 43243}, {42433, 43017}, {42434, 43016}, {42588, 43194}, {42589, 43193}, {42637, 43888}, {42638, 43887}, {42890, 42998}, {42891, 42999}, {43014, 43465}, {43015, 43466}, {43621, 50975}, {46933, 50813}, {48872, 54174}, {48879, 50967}, {48896, 54132}, {48905, 51028}, {50969, 55636}, {51025, 55607}, {51126, 51164}, {51216, 54169}

X(58204) = reflection of X(i) in X(j) for these {i,j}: {15640, 3839}, {15682, 15688}, {15688, 15704}, {3146, 3524}, {3524, 15681}, {3839, 20}
X(58204) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/3
X(58204) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15701), X(18850)}}, {{A, B, C, X(16251), X(41106)}}
X(58204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14893, 3091}, {2, 15683, 1657}, {2, 15689, 10304}, {2, 15712, 15721}, {2, 3522, 14891}, {4, 376, 15701}, {20, 15640, 15692}, {20, 30, 3839}, {30, 15681, 3524}, {30, 15688, 15682}, {30, 15704, 15688}, {30, 3524, 3146}, {30, 3839, 15640}, {376, 15682, 3544}, {376, 3544, 15711}, {548, 12811, 15712}, {548, 3627, 1656}, {1656, 15701, 10124}, {1657, 15686, 11001}, {1657, 17800, 3627}, {1657, 3843, 15704}, {3091, 15697, 15714}, {3146, 15681, 15697}, {3146, 3845, 3543}, {3524, 15714, 15705}, {3529, 15685, 15683}, {3530, 3534, 376}, {3545, 10304, 15708}, {3545, 14269, 3832}, {3545, 15702, 15699}, {3832, 10303, 5056}, {3845, 15686, 548}, {11539, 14269, 3545}, {11539, 15708, 10303}, {12101, 15715, 15022}, {14269, 15689, 15706}, {15681, 15697, 20}, {15684, 17538, 2}


X(58205) = X(2)X(3)∩X(516)X(58243)

Barycentrics    107*a^4-49*(b^2-c^2)^2-58*a^2*(b^2+c^2) : :
X(58205) = -49*X[2]+52*X[3], -16*X[4746]+13*X[50864], -10*X[4816]+13*X[34632], -8*X[34638]+5*X[50863], -7*X[50961]+10*X[55585], -35*X[50975]+32*X[55696]

X(58205) lies on these lines: {2, 3}, {516, 58243}, {4746, 50864}, {4816, 34632}, {9543, 43521}, {34638, 50863}, {42429, 43466}, {42430, 43465}, {43030, 43243}, {43031, 43242}, {43775, 49876}, {43776, 49875}, {50961, 55585}, {50975, 55696}

X(58205) = reflection of X(i) in X(j) for these {i,j}: {3524, 15685}, {3839, 15683}
X(58205) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/3
X(58205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 15640, 381}, {20, 15682, 15721}, {20, 15721, 15697}, {20, 5073, 3091}, {30, 15685, 3524}, {376, 5076, 2}, {381, 11812, 3090}, {381, 15682, 17578}, {381, 15689, 17504}, {548, 3091, 3523}, {3091, 10304, 5054}, {3523, 15640, 3543}, {3529, 5067, 1657}, {3543, 15697, 7486}, {3832, 15717, 6904}, {3839, 15708, 5071}, {5073, 15687, 15682}, {10109, 15685, 11001}, {15682, 15683, 20}, {15682, 15691, 5068}, {15709, 17578, 3839}, {15711, 15718, 10299}


X(58206) = X(2)X(3)∩X(516)X(58244)

Barycentrics    54*a^4-25*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(58206) = -75*X[2]+79*X[3], -25*X[38034]+27*X[58227]

X(58206) lies on these lines: {2, 3}, {516, 58244}, {6447, 42538}, {6448, 42537}, {10141, 43794}, {10142, 43793}, {11278, 28182}, {28154, 58237}, {28158, 33179}, {28212, 58248}, {34754, 43634}, {34755, 43635}, {35812, 43789}, {35813, 43790}, {38034, 58227}, {42090, 42907}, {42091, 42906}, {42433, 43198}, {42434, 43197}

X(58206) = reflection of X(i) in X(j) for these {i,j}: {140, 3529}, {14893, 15685}
X(58206) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/2
X(58206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 13725, 3854}, {20, 16239, 15690}, {20, 382, 549}, {20, 546, 548}, {30, 15685, 14893}, {30, 3529, 140}, {140, 3830, 546}, {140, 3853, 3832}, {546, 12100, 1656}, {548, 3853, 547}, {549, 3839, 10109}, {1532, 15688, 5}, {3090, 3845, 3850}, {3529, 10304, 1657}, {3543, 11001, 15689}, {3543, 3861, 3853}, {3830, 15688, 5071}, {3832, 5067, 5072}, {3845, 15686, 10304}, {3850, 11001, 12103}, {10109, 16239, 5067}, {11539, 13742, 16239}, {15696, 17800, 3529}


X(58207) = X(2)X(3)∩X(516)X(58247)

Barycentrics    33*a^4-16*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(58207) = -48*X[2]+49*X[3], -8*X[3630]+7*X[48662], -48*X[5886]+49*X[58228], -8*X[33749]+9*X[48905], -8*X[48879]+7*X[55616], -8*X[48884]+9*X[55624], -8*X[48896]+7*X[55705], -8*X[48904]+9*X[55697], -8*X[48942]+9*X[55643], -8*X[48943]+9*X[55682], -21*X[50957]+22*X[55641]

X(58207) lies on circumconic {{A, B, C, X(15318), X(33699)}} and these lines: {2, 3}, {516, 58247}, {1327, 43786}, {1328, 43785}, {3411, 42429}, {3412, 42430}, {3625, 28172}, {3630, 48662}, {3633, 28146}, {5886, 58228}, {6144, 29317}, {6472, 13665}, {6473, 13785}, {6500, 42264}, {6501, 42263}, {8148, 28154}, {20053, 28186}, {23251, 43318}, {23261, 43319}, {28158, 37727}, {28212, 58250}, {29323, 55584}, {31487, 42272}, {33636, 52945}, {33749, 48905}, {42093, 42928}, {42094, 42929}, {42096, 42991}, {42097, 42990}, {42433, 42904}, {42434, 42905}, {42435, 43194}, {42436, 43193}, {42688, 43499}, {42689, 43500}, {42934, 43636}, {42935, 43637}, {43006, 43776}, {43007, 43775}, {43018, 43491}, {43019, 43492}, {48879, 55616}, {48884, 55624}, {48896, 55705}, {48904, 55697}, {48942, 55643}, {48943, 55682}, {50957, 55641}

X(58207) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4
X(58207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 10299, 3526}, {5, 11540, 5067}, {20, 140, 15696}, {20, 15682, 5}, {20, 17578, 3524}, {20, 17800, 15685}, {20, 3528, 15691}, {20, 382, 5070}, {381, 11541, 5073}, {382, 15696, 3832}, {382, 1657, 548}, {382, 3832, 3830}, {382, 548, 3843}, {548, 14893, 16239}, {548, 3859, 12108}, {548, 7486, 15706}, {632, 3853, 6830}, {1657, 15684, 3}, {1657, 17538, 15681}, {1657, 3146, 15718}, {1657, 5072, 15686}, {3529, 15686, 1657}, {3627, 14892, 4}, {3627, 15686, 140}, {3627, 5073, 15684}, {3627, 8703, 3850}, {3830, 15681, 10304}, {3830, 5071, 14269}, {3850, 5071, 5072}, {5059, 10304, 3529}, {5070, 5073, 382}, {5073, 15689, 3627}, {5073, 17800, 20}, {14093, 14892, 15701}, {14892, 15690, 14891}, {15684, 15685, 15689}, {15689, 15701, 14093}, {15689, 15718, 8703}


X(58208) = X(2)X(3)∩X(1131)X(6480)

Barycentrics    51*a^4-25*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(58208) = -75*X[2]+76*X[3], -50*X[4297]+49*X[58231], -16*X[8550]+15*X[51211], -25*X[9589]+27*X[58241], -25*X[11522]+24*X[51119], -9*X[33748]+8*X[43621], -16*X[43174]+15*X[50863]

X(58208) lies on these lines: {2, 3}, {516, 58248}, {1131, 6480}, {1132, 6481}, {3592, 42538}, {3594, 42537}, {4297, 58231}, {5343, 42429}, {5344, 42430}, {6407, 42540}, {6408, 42539}, {6429, 52667}, {6430, 52666}, {6431, 42413}, {6432, 42414}, {6437, 31414}, {6486, 23253}, {6487, 23263}, {8550, 51211}, {9589, 58241}, {10653, 42967}, {10654, 42966}, {11522, 51119}, {11531, 28158}, {16964, 43242}, {16965, 43243}, {28154, 58244}, {33748, 43621}, {35812, 43507}, {35813, 43508}, {35820, 43889}, {35821, 43890}, {42112, 42991}, {42113, 42990}, {42140, 43326}, {42141, 43327}, {42157, 42803}, {42158, 42804}, {42982, 43194}, {42983, 43193}, {42998, 43245}, {42999, 43244}, {43030, 43465}, {43031, 43466}, {43174, 50863}, {50709, 54211}

X(58208) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5
X(58208) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15640), X(15749)}}, {{A, B, C, X(17703), X(45000)}}, {{A, B, C, X(18846), X(19710)}}
X(58208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15721, 3091}, {4, 16239, 7377}, {20, 10303, 15696}, {20, 15640, 17578}, {20, 15717, 15697}, {20, 382, 7486}, {20, 3839, 3528}, {381, 548, 631}, {548, 3861, 632}, {631, 3544, 5070}, {1657, 15717, 20}, {3146, 11001, 5056}, {3146, 5056, 3543}, {3146, 5059, 11001}, {3543, 11001, 10304}, {3543, 15697, 3545}, {3545, 3861, 3832}, {5059, 11541, 15708}, {5068, 17531, 5055}, {6941, 17800, 15717}, {10303, 17504, 3523}


X(58209) = X(2)X(3)∩X(516)X(58250)

Barycentrics    129*a^4-64*(b^2-c^2)^2-65*a^2*(b^2+c^2) : :
X(58209) = -192*X[2]+193*X[3]

X(58209) lies on these lines: {2, 3}, {516, 58250}, {28154, 58247}, {31487, 43337}, {42545, 42891}, {42546, 42890}, {42688, 43633}, {42689, 43632}, {42690, 43012}, {42691, 43013}

X(58209) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=8
X(58209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 17678, 3857}, {20, 13742, 376}, {382, 15685, 6882}, {382, 15696, 3839}, {3525, 14892, 1656}, {3543, 13741, 4}, {3850, 15713, 3090}, {3856, 10304, 3526}, {5059, 6834, 15704}, {5073, 17800, 548}, {15684, 15685, 10304}


X(58210) = X(3)X(695)∩X(51)X(33208)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-9*b^2*c^2+c^4)-a^4*(b^6-10*b^4*c^2-10*b^2*c^4+c^6) : :
X(58210) = 7*X[3523]+2*X[14135], -2*X[6310]+11*X[15717], -X[12525]+3*X[15707], 5*X[15692]+X[35687]

X(58210) lies on these lines: {3, 695}, {51, 33208}, {373, 33187}, {511, 5032}, {3523, 14135}, {5943, 35927}, {6310, 15717}, {12525, 15707}, {15692, 35687}, {33008, 52658}

X(58210)= pole of line {384, 16187} with respect to the Stammler hyperbola
X(58210) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1/3


X(58211) = X(3)X(695)∩X(5)X(14135)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-4*b^2*c^2+c^4)-a^4*(b^6-5*b^4*c^2-5*b^2*c^4+c^6) : :
X(58211) = X[5]+X[14135], -3*X[549]+X[6310], 5*X[631]+3*X[35687], -9*X[12525]+17*X[55863]

X(58211) lies on these lines: {3, 695}, {5, 14135}, {51, 33250}, {511, 548}, {549, 6310}, {574, 36960}, {631, 35687}, {3060, 33268}, {3111, 7765}, {5038, 9226}, {7782, 40951}, {11451, 14032}, {12525, 55863}, {13586, 27374}, {30209, 43839}, {32205, 33962}, {33267, 33873}

X(58211) = midpoint of X(i) and X(j) for these {i,j}: {5, 14135}
X(58211) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1/2


X(58212) = X(3)X(695)∩X(20)X(185)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-b^2*c^2+c^4)-a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58212) = -3*X[2]+2*X[6310], -11*X[5]+9*X[20326], -11*X[5070]+9*X[12525]

X(58212) lies on these lines: {2, 6310}, {3, 695}, {4, 3978}, {5, 20326}, {20, 185}, {51, 14035}, {64, 31952}, {74, 809}, {263, 32981}, {305, 37889}, {373, 33269}, {512, 7759}, {694, 3360}, {1003, 27374}, {1975, 40951}, {2387, 7781}, {2979, 33260}, {3060, 6658}, {3491, 3926}, {3767, 35060}, {3819, 32990}, {3917, 32965}, {4173, 31859}, {5070, 12525}, {5167, 7763}, {5650, 33258}, {5943, 32971}, {6337, 51427}, {6787, 7814}, {7748, 14962}, {7756, 41262}, {7779, 32547}, {7791, 52658}, {8152, 44423}, {9306, 11326}, {9737, 23098}, {9879, 32967}, {10342, 12110}, {11325, 36213}, {11673, 33014}, {15740, 19222}, {21969, 33193}, {32964, 47638}, {33019, 33873}, {33198, 34236}, {33717, 38661}, {35002, 36960}

X(58212) = reflection of X(i) in X(j) for these {i,j}: {20, 14135}
X(58212) = anticomplement of X(6310)
X(58212) = X(i)-Dao conjugate of X(j) for these {i, j}: {6310, 6310}
X(58212)= pole of line {3221, 16229} with respect to the polar circle
X(58212)= pole of line {384, 9306} with respect to the Stammler hyperbola
X(58212)= pole of line {1975, 9230} with respect to the Wallace hyperbola
X(58212) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1
X(58212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(695), X(9307)}}, {{A, B, C, X(9289), X(40162)}}, {{A, B, C, X(9292), X(51948)}}
X(58212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 35687, 14135}, {511, 14135, 20}


X(58213) = X(1)X(3)∩X(516)X(58184)

Barycentrics    a*(81*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-81*b^2+2*b*c-81*c^2)) : :
X(58213) = X[1]+80*X[3], 2*X[3817]+25*X[58188], X[7988]+8*X[45759], -88*X[15715]+7*X[19876], 16*X[19878]+65*X[21734]

X(58213) lies on these lines: {1, 3}, {516, 58184}, {3817, 58188}, {7988, 45759}, {15705, 28164}, {15710, 28150}, {15715, 19876}, {19878, 21734}, {28154, 58189}

X(58213) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/9
X(58213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 3576, 58245}, {7987, 35242, 58242}, {16191, 58221, 7987}, {16192, 58221, 30392}


X(58214) = X(1)X(3)∩X(516)X(58185)

Barycentrics    a*(64*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-64*b^2+2*b*c-64*c^2)) : :
X(58214) = X[1]+63*X[3], -X[3634]+9*X[14891], -X[4663]+33*X[55665], X[9955]+15*X[15714], -21*X[12100]+5*X[31253], -261*X[15705]+5*X[50863], -81*X[15706]+17*X[19872], -33*X[15715]+X[18480], -33*X[15716]+X[33697], -33*X[17504]+X[50862], 5*X[19862]+27*X[45759], X[19878]+3*X[46332] and many others

X(58214) lies on these lines: {1, 3}, {516, 58185}, {3634, 14891}, {4663, 55665}, {9955, 15714}, {12100, 31253}, {15705, 50863}, {15706, 19872}, {15715, 18480}, {15716, 33697}, {17504, 50862}, {19862, 45759}, {19878, 46332}, {28154, 58190}, {46934, 50813}

X(58214) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/8
X(58214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58250}, {40, 58230, 10222}, {1385, 3579, 58247}, {3579, 58221, 13624}, {3579, 58224, 31662}, {10247, 35242, 3579}, {13624, 31663, 8148}


X(58215) = X(1)X(3)∩X(1698)X(15705)

Barycentrics    a*(49*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-49*b^2+2*b*c-49*c^2)) : :
X(58215) = X[1]+48*X[3], -5*X[1698]+54*X[15705], X[3656]+48*X[58183], 9*X[7988]+40*X[46853], -X[7989]+8*X[44682], -3*X[10248]+10*X[19862], 36*X[10304]+13*X[34595], -55*X[15692]+6*X[38076], -8*X[15698]+X[19876], -54*X[15706]+5*X[18492], -55*X[15715]+6*X[38068], -66*X[15717]+17*X[19872] and many others

X(58215) lies on these lines: {1, 3}, {516, 58186}, {1698, 15705}, {3656, 58183}, {6452, 9585}, {7988, 46853}, {7989, 44682}, {10248, 19862}, {10304, 34595}, {15692, 38076}, {15698, 19876}, {15706, 18492}, {15715, 38068}, {15717, 19872}, {15759, 41869}, {18483, 19708}, {28154, 58191}, {50865, 58187}

X(58215) = midpoint of X(i) and X(j) for these {i,j}: {16192, 58225}
X(58215) = reflection of X(i) in X(j) for these {i,j}: {1, 58231}
X(58215) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/7
X(58215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58217, 1}, {40, 58232, 11224}, {165, 3576, 58243}, {165, 7987, 15178}, {1385, 3579, 58246}, {7987, 15178, 58227}, {7987, 35242, 58239}, {10246, 58224, 13624}, {16192, 58221, 30389}, {16192, 58225, 517}, {58221, 58245, 7987}


X(58216) = X(1)X(3)∩X(548)X(19878)

Barycentrics    a*(36*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-36*b^2+2*b*c-36*c^2)) : :
X(58216) = X[1]+35*X[3], 5*X[548]+4*X[19878], -14*X[3530]+5*X[31253], X[3817]+5*X[46853], -X[3828]+10*X[14891], -7*X[4678]+25*X[31447], X[9955]+8*X[58190], X[10165]+5*X[15714], -X[10175]+7*X[44682], X[11230]+5*X[19708], -X[11231]+7*X[15698], -7*X[15700]+X[38140] and many others

X(58216) lies on these lines: {1, 3}, {516, 58187}, {548, 19878}, {3524, 28168}, {3530, 31253}, {3817, 46853}, {3828, 14891}, {4678, 31447}, {4745, 28224}, {9955, 58190}, {10165, 15714}, {10175, 44682}, {10304, 28154}, {11230, 19708}, {11231, 15698}, {12100, 28164}, {15700, 38140}, {15705, 28208}, {15710, 28202}, {15711, 38138}, {15712, 51073}, {15759, 28178}, {17504, 28160}, {19883, 28146}, {28150, 34200}, {28158, 41982}, {28172, 41983}, {28212, 58183}, {28232, 51108}

X(58216) = midpoint of X(i) and X(j) for these {i,j}: {3579, 30392}
X(58216) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/6
X(58216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58249}, {3, 58219, 31663}, {165, 3576, 8148}, {1385, 3579, 58245}, {1385, 58237, 15178}, {3576, 58232, 31662}, {3579, 30392, 517}, {7987, 35242, 58236}, {8148, 15178, 33179}, {13624, 31663, 58240}, {34556, 34557, 7982}, {58221, 58230, 17502}


X(58217) = X(1)X(3)∩X(10)X(15705)

Barycentrics    a*(25*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-25*b^2+2*b*c-25*c^2)) : :
X(58217) = X[1]+24*X[3], -2*X[10]+27*X[15705], 12*X[376]+13*X[34595], 16*X[548]+9*X[7988], X[962]+49*X[58186], -X[1698]+6*X[15692], 3*X[1699]+22*X[21735], 3*X[3522]+2*X[19862], -42*X[3523]+17*X[19872], -27*X[3524]+2*X[31673], 21*X[3528]+4*X[18483], -32*X[3530]+7*X[7989] and many others

X(58217) lies on these lines: {1, 3}, {10, 15705}, {376, 34595}, {516, 58188}, {548, 7988}, {631, 28172}, {962, 58186}, {1698, 15692}, {1699, 21735}, {3522, 19862}, {3523, 19872}, {3524, 31673}, {3528, 18483}, {3530, 7989}, {3624, 10304}, {3634, 15717}, {4663, 55673}, {4882, 5303}, {5550, 21734}, {5585, 9575}, {5587, 44682}, {5691, 10299}, {6361, 51110}, {6398, 9585}, {6411, 19003}, {6412, 19004}, {8227, 28182}, {9589, 15808}, {12100, 19876}, {12512, 46934}, {12699, 15759}, {14093, 30308}, {14891, 18481}, {15693, 18492}, {15698, 19875}, {15706, 18480}, {15707, 33697}, {15710, 31730}, {15711, 51066}, {16475, 55656}, {17504, 18357}, {18493, 50812}, {19877, 50815}, {28154, 58192}, {31162, 58187}, {34200, 41869}, {38029, 55662}, {45759, 50865}, {50808, 58184}

X(58217) = reflection of X(i) in X(j) for these {i,j}: {58229, 7987}, {58239, 1}
X(58217) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/5
X(58217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58248}, {1, 517, 58239}, {1, 58215, 3}, {1, 58248, 16191}, {3, 58220, 12702}, {3, 58221, 16192}, {165, 3576, 58241}, {517, 7987, 58229}, {1385, 3579, 58244}, {7987, 16189, 3576}, {12702, 30389, 1}, {13624, 31663, 58237}, {16192, 58245, 165}


X(58218) = X(1)X(3)∩X(516)X(58189)

Barycentrics    a*(81*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-81*b^2+8*b*c-81*c^2)) : :
X(58218) = 4*X[1]+77*X[3], 17*X[3830]+64*X[51081], -110*X[15712]+29*X[46930], -98*X[44682]+17*X[46932]

X(58218) lies on these lines: {1, 3}, {516, 58189}, {3830, 51081}, {15705, 28224}, {15706, 28186}, {15707, 28164}, {15710, 28216}, {15712, 46930}, {28212, 58184}, {44682, 46932}

X(58218) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/9
X(58218) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 58235, 8148}, {165, 3576, 58240}


X(58219) = X(1)X(3)∩X(8)X(15715)

Barycentrics    a*(16*a^3-a^2*(b+c)+(b-c)^2*(b+c)+2*a*(-8*b^2+b*c-8*c^2)) : :
X(58219) = X[1]+15*X[3], -X[8]+33*X[15715], -X[10]+9*X[17504], 3*X[548]+X[18483], -9*X[549]+X[31673], 3*X[550]+5*X[19862], X[1386]+7*X[55658], -5*X[1698]+21*X[15700], 5*X[3522]+3*X[11230], -9*X[3524]+X[18480], 21*X[3528]+11*X[5550], -3*X[3530]+X[3634] and many others

X(58219) lies on these lines: {1, 3}, {8, 15715}, {10, 17504}, {30, 19878}, {140, 28168}, {516, 58190}, {518, 55668}, {548, 18483}, {549, 31673}, {550, 19862}, {960, 51570}, {1125, 28202}, {1386, 55658}, {1698, 15700}, {1902, 23040}, {3522, 11230}, {3524, 18480}, {3528, 5550}, {3530, 3634}, {3616, 15710}, {3624, 15688}, {3654, 20014}, {3655, 20053}, {3828, 12100}, {4297, 38138}, {4663, 17508}, {4669, 15711}, {4678, 15705}, {4691, 14891}, {4701, 50827}, {5054, 33697}, {5731, 31447}, {5886, 21734}, {6497, 9615}, {6501, 9617}, {8703, 9955}, {9780, 10299}, {9956, 15712}, {10164, 37705}, {10165, 46853}, {11231, 15717}, {12108, 28164}, {12699, 19708}, {14093, 41869}, {14636, 28257}, {14890, 50803}, {15681, 34595}, {15692, 18481}, {15698, 53620}, {15701, 18492}, {15714, 22791}, {15716, 18525}, {15718, 38083}, {15720, 19872}, {15759, 28198}, {16239, 28172}, {16668, 37508}, {21161, 26202}, {28146, 33923}, {28158, 41981}, {28212, 58185}, {31730, 45759}, {32900, 50831}, {34628, 51088}, {34638, 50833}, {38071, 51079}, {41983, 50815}, {46932, 50819}, {48939, 49992}, {50828, 58187}

X(58219) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/4
X(58219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17502, 13624}, {1, 40, 58247}, {3, 17502, 31663}, {3, 35202, 33862}, {3, 58221, 1385}, {165, 31666, 33179}, {165, 3576, 58238}, {1385, 16200, 15178}, {1385, 3579, 8148}, {1385, 58229, 31662}, {1482, 12702, 58250}, {7987, 35242, 58233}, {7987, 58245, 3576}, {8148, 35242, 3579}, {12702, 58230, 1}, {12702, 58233, 16200}, {31663, 58216, 3}, {34556, 34557, 10247}


X(58220) = X(1)X(3)∩X(516)X(58191)

Barycentrics    a*(49*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-49*b^2+8*b*c-49*c^2)) : :
X(58220) = 4*X[1]+45*X[3], -72*X[3530]+23*X[46931], -5*X[3617]+54*X[17504], -X[3621]+99*X[15715], -32*X[3634]+81*X[15707], -15*X[3830]+64*X[19878], -X[4678]+15*X[15698], 22*X[5550]+27*X[15688], -2*X[9780]+9*X[15700], 24*X[10165]+25*X[58192], 2*X[10248]+5*X[15696], -60*X[12100]+11*X[46933] and many others

X(58220) lies on these lines: {1, 3}, {516, 58191}, {3530, 46931}, {3617, 17504}, {3621, 15715}, {3634, 15707}, {3830, 19878}, {4678, 15698}, {5550, 15688}, {9780, 15700}, {10165, 58192}, {10248, 15696}, {12100, 46933}, {14891, 18526}, {15681, 19862}, {15692, 38081}, {15693, 19877}, {15695, 19883}, {15701, 51073}, {15711, 31145}, {15716, 53620}, {15717, 38138}, {28212, 58186}, {34200, 46934}, {50872, 58183}

X(58220) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/7
X(58220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58246}, {3, 58224, 8148}, {3579, 13624, 30392}, {12702, 58217, 3}, {35242, 58245, 3579}, {58230, 58249, 37624}


X(58221) = X(1)X(3)∩X(2)X(28164)

Barycentrics    a*(9*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-9*b^2+2*b*c-9*c^2)) : :
X(58221) = X[1]+8*X[3], -4*X[4]+13*X[34595], -2*X[10]+11*X[15717], 2*X[20]+7*X[3624], -16*X[140]+7*X[7989], -X[210]+4*X[33575], 8*X[214]+X[12767], -X[355]+10*X[15712], 2*X[376]+X[1699], X[392]+2*X[10178], 2*X[548]+X[38034], -4*X[549]+X[5587] and many others

X(58221) lies on these lines: {1, 3}, {2, 28164}, {4, 34595}, {10, 15717}, {20, 3624}, {30, 7988}, {100, 4915}, {140, 7989}, {187, 9592}, {210, 33575}, {214, 12767}, {355, 15712}, {376, 1699}, {392, 10178}, {499, 37108}, {515, 3524}, {516, 10304}, {518, 55673}, {519, 15705}, {548, 38034}, {549, 5587}, {550, 8227}, {551, 9778}, {631, 5691}, {910, 52705}, {936, 5267}, {944, 4668}, {946, 3528}, {952, 17504}, {960, 45036}, {991, 5313}, {993, 8580}, {1006, 1750}, {1125, 3522}, {1151, 19003}, {1152, 9615}, {1203, 37501}, {1386, 55651}, {1572, 8588}, {1698, 3523}, {1742, 49997}, {2801, 15015}, {2948, 15051}, {2951, 6909}, {2975, 4882}, {3097, 21163}, {3146, 19862}, {3158, 11194}, {3311, 9585}, {3525, 31673}, {3526, 18492}, {3530, 18481}, {3534, 11230}, {3543, 10171}, {3545, 28172}, {3583, 6916}, {3585, 6865}, {3616, 9589}, {3622, 5493}, {3636, 20070}, {3646, 17571}, {3653, 28174}, {3654, 15711}, {3655, 14891}, {3656, 15759}, {3679, 5731}, {3681, 4855}, {3740, 5234}, {3751, 53094}, {3753, 19705}, {3830, 50820}, {3832, 19878}, {3848, 5436}, {3871, 12127}, {3928, 56177}, {3973, 5529}, {4189, 8583}, {4299, 37423}, {4301, 58188}, {4311, 51784}, {4314, 5265}, {4315, 5281}, {4316, 6987}, {4355, 5703}, {4512, 17549}, {4663, 55684}, {4677, 5657}, {4881, 35258}, {5023, 9575}, {5054, 28160}, {5055, 28168}, {5059, 12571}, {5070, 33697}, {5219, 15326}, {5223, 5440}, {5253, 12511}, {5259, 37022}, {5428, 16138}, {5432, 5726}, {5442, 37721}, {5531, 38602}, {5550, 50693}, {5603, 19708}, {5690, 31425}, {5692, 10167}, {5732, 37106}, {5734, 58186}, {5790, 15700}, {5881, 38112}, {5886, 8703}, {6199, 9617}, {6200, 9584}, {6284, 50444}, {6396, 9583}, {6409, 18992}, {6410, 18991}, {6411, 9616}, {6459, 13942}, {6460, 13888}, {6496, 31439}, {6684, 10299}, {6827, 18513}, {6850, 18514}, {6914, 41860}, {6947, 41698}, {7508, 50528}, {7713, 15750}, {7741, 37424}, {7951, 37364}, {7967, 15715}, {7992, 37837}, {7993, 33814}, {8567, 9899}, {8589, 9620}, {8616, 46943}, {8715, 11519}, {8722, 10789}, {8983, 42637}, {9519, 38695}, {9574, 53095}, {9578, 52793}, {9587, 10984}, {9593, 37512}, {9619, 15513}, {9624, 46853}, {9779, 19883}, {9955, 15696}, {10172, 15702}, {10176, 11220}, {10283, 15714}, {10303, 19872}, {10864, 40262}, {11231, 15693}, {11522, 21735}, {11539, 28190}, {11709, 15036}, {12100, 26446}, {12407, 38728}, {12528, 32632}, {12645, 31447}, {12699, 33923}, {13146, 17009}, {13971, 42638}, {15017, 38761}, {15175, 31507}, {15338, 50443}, {15515, 31421}, {15688, 28146}, {15689, 28154}, {15690, 50833}, {15694, 38140}, {15697, 50802}, {15706, 28204}, {15707, 28208}, {15710, 28194}, {15716, 50821}, {15719, 50796}, {15720, 18480}, {15721, 34648}, {15726, 16370}, {15735, 39156}, {16132, 19919}, {16469, 50677}, {16475, 31884}, {16491, 55656}, {16667, 37499}, {17538, 18483}, {17548, 19861}, {18515, 18528}, {19535, 31435}, {19711, 38138}, {19860, 37307}, {21154, 37718}, {21161, 52027}, {21578, 31434}, {22753, 41853}, {22791, 58190}, {24644, 38031}, {25502, 37400}, {25522, 57002}, {25917, 31805}, {28212, 58187}, {28216, 31162}, {28228, 38314}, {33538, 51420}, {37719, 50031}, {38022, 41982}, {38024, 38454}, {38029, 55649}, {38155, 50829}, {38316, 40726}, {41106, 50866}, {43151, 44675}, {50808, 51105}, {50810, 51097}, {50812, 51709}, {50816, 51109}, {50824, 51094}

X(58221) = midpoint of X(i) and X(j) for these {i,j}: {165, 30392}, {10304, 54445}
X(58221) = reflection of X(i) in X(j) for these {i,j}: {1, 30392}, {16191, 1}, {25055, 54445}, {30392, 3576}, {54447, 5054}, {58243, 58241}, {9779, 19883}
X(58221)= pole of line {28161, 44429} with respect to the orthoptic circle of the Steiner Inellipse
X(58221)= pole of line {21, 16192} with respect to the Stammler hyperbola
X(58221) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/3
X(58221) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(16192)}}, {{A, B, C, X(102), X(6767)}}, {{A, B, C, X(947), X(7373)}}, {{A, B, C, X(1320), X(16191)}}, {{A, B, C, X(5902), X(31507)}}, {{A, B, C, X(15175), X(31508)}}
X(58221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 16192}, {1, 31508, 53052}, {1, 40, 58245}, {1, 5010, 31508}, {1, 517, 16191}, {1, 58229, 1385}, {3, 10269, 7688}, {3, 1385, 35242}, {3, 15931, 5010}, {3, 3576, 165}, {3, 8273, 35}, {57, 37600, 53054}, {165, 11224, 40}, {165, 21164, 5131}, {165, 30389, 11224}, {165, 30392, 517}, {354, 37544, 5902}, {376, 10165, 1699}, {516, 54445, 25055}, {517, 3576, 30392}, {517, 58241, 58243}, {549, 34628, 19876}, {1152, 9615, 19004}, {1155, 13384, 18421}, {1319, 35445, 9819}, {1385, 35242, 7991}, {1385, 3579, 58240}, {1385, 58219, 3}, {1420, 5217, 53053}, {1482, 12702, 58249}, {1482, 58244, 7982}, {3523, 4297, 1698}, {3530, 18481, 31423}, {3576, 10246, 30389}, {3576, 17502, 7987}, {3579, 31662, 10247}, {3579, 58237, 12702}, {3601, 5204, 3361}, {3616, 12512, 9589}, {3616, 21734, 12512}, {5010, 7280, 14793}, {5054, 28160, 54447}, {5122, 37606, 11529}, {5126, 31393, 53058}, {5550, 50693, 51118}, {5731, 15692, 10164}, {7982, 58247, 11531}, {7987, 30389, 13624}, {7987, 35242, 58229}, {10246, 11224, 1}, {10246, 13624, 3576}, {10247, 58240, 16200}, {10303, 19925, 19872}, {10304, 54445, 516}, {11224, 30389, 10246}, {13624, 31663, 58232}, {13624, 58214, 3579}, {16191, 58243, 58241}, {16192, 58229, 58248}, {17502, 58216, 58230}, {17549, 35262, 4512}, {18481, 31423, 37714}, {19883, 28158, 9779}, {26446, 37712, 51066}, {26446, 50811, 37712}, {34556, 34557, 15178}


X(58222) = X(1)X(3)∩X(4678)X(15706)

Barycentrics    a*(121*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-121*b^2+32*b*c-121*c^2)) : :
X(58222) = 16*X[1]+105*X[3], -14*X[4678]+135*X[15706], 96*X[10165]+25*X[58198], 120*X[14891]+X[20014], -189*X[15707]+68*X[46932], -15*X[15718]+4*X[46933], -153*X[15722]+32*X[18357], -126*X[17504]+5*X[20052], 64*X[50869]+57*X[58202]

X(58222) lies on these lines: {1, 3}, {4678, 15706}, {10165, 58198}, {14891, 20014}, {15707, 46932}, {15718, 46933}, {15722, 18357}, {17504, 20052}, {50869, 58202}

X(58222) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/11
X(58222) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 58247, 58238}, {17502, 58240, 7987}


X(58223) = X(1)X(3)∩X(3530)X(51069)

Barycentrics    a*(64*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(32*b^2-9*b*c+32*c^2)) : :
X(58223) = 9*X[1]+55*X[3], -11*X[3530]+3*X[51069], -17*X[3628]+9*X[50803], -3*X[4669]+35*X[44682], -13*X[5079]+45*X[51084], -143*X[10299]+15*X[51072], 7*X[12103]+9*X[50802], -5*X[12811]+9*X[19878], 5*X[15704]+27*X[19883], 25*X[15714]+7*X[51106], -35*X[31447]+3*X[50804], 5*X[33923]+3*X[51108]

X(58223) lies on these lines: {1, 3}, {3530, 51069}, {3628, 50803}, {4669, 44682}, {5079, 51084}, {10299, 51072}, {12103, 50802}, {12108, 28208}, {12811, 19878}, {15704, 19883}, {15714, 51106}, {17543, 35271}, {28154, 58196}, {31447, 50804}, {33923, 51108}

X(58223) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/8
X(58223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1385, 3579, 58238}, {7982, 7991, 58250}, {13624, 31663, 58230}


X(58224) = X(1)X(3)∩X(8)X(15706)

Barycentrics    a*(25*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-25*b^2+8*b*c-25*c^2)) : :
X(58224) = 4*X[1]+21*X[3], -2*X[8]+27*X[15706], -8*X[10]+33*X[15718], X[145]+24*X[14891], 12*X[548]+13*X[46934], -42*X[549]+17*X[46932], 16*X[1125]+9*X[15689], 3*X[1657]+22*X[5550], -27*X[3524]+2*X[37705], 2*X[3616]+3*X[14093], -X[3617]+6*X[15712], 7*X[3622]+18*X[45759] and many others

X(58224) lies on these lines: {1, 3}, {8, 15706}, {10, 15718}, {145, 14891}, {516, 58192}, {548, 46934}, {549, 46932}, {1125, 15689}, {1656, 28190}, {1657, 5550}, {3524, 37705}, {3616, 14093}, {3617, 15712}, {3622, 45759}, {3624, 15684}, {3843, 19862}, {4297, 55863}, {4663, 55692}, {4746, 51705}, {4816, 31447}, {5055, 50862}, {5070, 31673}, {10165, 17800}, {10299, 12645}, {10308, 28443}, {11230, 49139}, {12100, 18526}, {12108, 46931}, {15681, 18483}, {15692, 20052}, {15694, 31253}, {15695, 18493}, {15696, 28182}, {15698, 20049}, {15700, 34773}, {15701, 18481}, {15707, 18525}, {15711, 51092}, {15720, 18357}, {15808, 48661}, {16853, 35271}, {17504, 20054}, {18492, 51084}, {28154, 58198}, {28160, 55866}, {28212, 58188}, {38335, 50833}, {41983, 46933}

X(58224) = reflection of X(i) in X(j) for these {i,j}: {58236, 37624}
X(58224) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/5
X(58224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58244}, {165, 3576, 58234}, {517, 37624, 58236}, {1385, 3579, 58237}, {1482, 12702, 58248}, {3576, 58245, 1385}, {3579, 31662, 1}, {7987, 35242, 13624}, {8148, 58220, 3}, {11278, 13624, 3576}, {13624, 58215, 10246}, {13624, 58219, 11278}, {31662, 58214, 3579}


X(58225) = X(1)X(3)∩X(632)X(34628)

Barycentrics    a*(49*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)+a*(-49*b^2+18*b*c-49*c^2)) : :
X(58225) = 9*X[1]+40*X[3], 40*X[632]+9*X[34628], -5*X[3146]+54*X[19883], 25*X[3522]+24*X[51108], 4*X[3528]+3*X[51110], -64*X[3530]+15*X[51066], -68*X[3544]+117*X[34595], -9*X[3624]+2*X[50688], -6*X[4669]+55*X[15717], -3*X[4677]+52*X[10299], -81*X[7988]+32*X[12102], -9*X[7989]+16*X[55862] and many others

X(58225) lies on these lines: {1, 3}, {516, 58193}, {632, 34628}, {3146, 19883}, {3522, 51108}, {3528, 51110}, {3530, 51066}, {3544, 34595}, {3624, 50688}, {4669, 15717}, {4677, 10299}, {7988, 12102}, {7989, 55862}, {10147, 18992}, {10148, 18991}, {12108, 37714}, {14869, 19876}, {15022, 19878}, {15705, 51091}, {15715, 51097}, {30308, 49137}, {38029, 55628}

X(58225) = midpoint of X(i) and X(j) for these {i,j}: {16192, 58231}
X(58225) = reflection of X(i) in X(j) for these {i,j}: {16192, 58215}
X(58225) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/7
X(58225) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58243}, {1, 58213, 31663}, {3, 3576, 16189}, {3, 58229, 58245}, {517, 58215, 16192}, {7987, 17502, 1}, {16192, 58231, 517}


X(58226) = X(1)X(3)∩X(10165)X(35403)

Barycentrics    a*(81*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-81*b^2+32*b*c-81*c^2)) : :
X(58226) = 16*X[1]+65*X[3], -32*X[10165]+5*X[35403], -35*X[15701]+8*X[38138], 77*X[15716]+4*X[50831], -130*X[50825]+49*X[51068], 32*X[51700]+49*X[58191]

X(58226) lies on these lines: {1, 3}, {10165, 35403}, {15701, 38138}, {15707, 28224}, {15716, 50831}, {28212, 58189}, {50825, 51068}, {51700, 58191}

X(58226) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/9
X(58226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 3576, 58232}, {3576, 58225, 17502}


X(58227) = X(1)X(3)∩X(516)X(58194)

Barycentrics    a*(81*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-81*b^2+50*b*c-81*c^2)) : :
X(58227) = 25*X[1]+56*X[3], -32*X[11812]+5*X[37712], 25*X[25055]+2*X[58204], 25*X[38034]+2*X[58206], -2*X[38076]+11*X[54445], -14*X[50869]+95*X[51109]

X(58227) lies on these lines: {1, 3}, {516, 58194}, {11812, 37712}, {15708, 28236}, {25055, 58204}, {38034, 58206}, {38076, 54445}, {50869, 51109}

X(58227) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/9
X(58227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58242}, {3, 30392, 58241}, {165, 3576, 58229}, {7987, 15178, 58215}, {7987, 30389, 12702}, {16191, 58221, 16192}, {16200, 58230, 30392}


X(58228) = X(1)X(3)∩X(1125)X(35403)

Barycentrics    a*(49*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-49*b^2+32*b*c-49*c^2)) : :
X(58228) = 16*X[1]+33*X[3], -64*X[1125]+15*X[35403], -3*X[5073]+52*X[46934], 24*X[5731]+25*X[55866], 48*X[5886]+X[58207], -8*X[10248]+X[49134], 24*X[10283]+25*X[58192], -165*X[15694]+116*X[46930], 45*X[15707]+4*X[50818], -187*X[15722]+40*X[51072], 25*X[18493]+24*X[50815], 13*X[31673]+36*X[51080] and many others

X(58228) lies on these lines: {1, 3}, {1125, 35403}, {5073, 46934}, {5731, 55866}, {5886, 58207}, {10248, 49134}, {10283, 58192}, {15694, 46930}, {15707, 50818}, {15722, 51072}, {18493, 50815}, {28212, 58191}, {31673, 51080}, {38028, 49139}, {54445, 55860}

X(58228) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/7
X(58228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58233, 58247}, {1385, 58245, 10246}, {1482, 12702, 58246}


X(58229) = X(1)X(3)∩X(20)X(51110)

Barycentrics    a*(25*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)+a*(-25*b^2+18*b*c-25*c^2)) : :
X(58229) = 9*X[1]+16*X[3], 4*X[20]+21*X[51110], 16*X[546]+9*X[34628], 18*X[551]+7*X[50693], -8*X[631]+3*X[51066], -8*X[632]+3*X[37714], -36*X[1125]+11*X[50689], -27*X[1699]+2*X[11541], 7*X[3090]+18*X[51705], -29*X[3091]+9*X[50863], -2*X[3146]+27*X[25055], 2*X[3522]+3*X[51105] and many others

X(58229) lies on these lines: {1, 3}, {20, 51110}, {516, 58195}, {546, 34628}, {551, 50693}, {631, 51066}, {632, 37714}, {1125, 50689}, {1699, 11541}, {3090, 51705}, {3091, 50863}, {3146, 25055}, {3522, 51105}, {3523, 4677}, {3525, 19876}, {3544, 5691}, {3616, 28158}, {3624, 15022}, {3627, 3653}, {3628, 50811}, {3655, 12108}, {3679, 51086}, {3857, 7988}, {4297, 50688}, {5059, 51108}, {5076, 30308}, {5531, 38631}, {5587, 55861}, {5731, 34595}, {5881, 14869}, {7969, 17852}, {7993, 38629}, {8227, 28190}, {8583, 17544}, {9584, 10147}, {9588, 50827}, {9592, 41940}, {9624, 15704}, {10299, 51094}, {10303, 19875}, {11522, 17538}, {12103, 50865}, {12699, 58196}, {12811, 18481}, {15692, 51097}, {15717, 51093}, {16491, 55614}, {16496, 55684}, {17578, 51109}, {21734, 51103}, {30315, 55858}, {31162, 44245}, {31425, 50824}, {38021, 49136}, {38029, 55721}

X(58229) = reflection of X(i) in X(j) for these {i,j}: {58217, 7987}, {58233, 1385}, {58242, 16189}
X(58229) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/5
X(58229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58241}, {165, 3576, 58227}, {517, 1385, 58233}, {517, 16189, 58242}, {517, 7987, 58217}, {1385, 3579, 58234}, {1385, 58221, 1}, {7982, 7991, 58248}, {7987, 35242, 58221}, {7991, 58240, 58245}, {13624, 30392, 16192}, {31662, 58219, 1385}, {58225, 58245, 3}


X(58230) = X(1)X(3)∩X(2)X(28224)

Barycentrics    a*(9*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-9*b^2+8*b*c-9*c^2)) : :
X(58230) = 4*X[1]+5*X[3], -2*X[8]+11*X[15720], -8*X[10]+17*X[55863], X[20]+8*X[51700], 8*X[140]+X[18526], X[145]+8*X[3530], -4*X[355]+13*X[46219], X[376]+2*X[10283], X[381]+2*X[5731], -X[382]+10*X[3616], 2*X[549]+X[7967], 2*X[550]+7*X[3622] and many others

X(58230) lies on these lines: {1, 3}, {2, 28224}, {8, 15720}, {10, 55863}, {20, 51700}, {104, 28152}, {140, 18526}, {145, 3530}, {214, 9708}, {355, 46219}, {376, 10283}, {381, 5731}, {382, 3616}, {515, 3653}, {516, 15689}, {518, 55697}, {519, 15707}, {549, 7967}, {550, 3622}, {551, 15681}, {572, 16675}, {631, 4678}, {912, 28451}, {944, 3526}, {946, 17800}, {952, 5054}, {960, 51577}, {1125, 3851}, {1386, 55584}, {1483, 3523}, {1656, 34773}, {1657, 5901}, {1699, 15684}, {1702, 9691}, {2320, 14496}, {2800, 38637}, {2801, 38031}, {2802, 38636}, {3083, 21570}, {3084, 21577}, {3241, 15700}, {3524, 5844}, {3525, 37705}, {3534, 5603}, {3617, 14869}, {3654, 51085}, {3655, 3828}, {3656, 15695}, {3817, 3843}, {3830, 5886}, {3897, 16408}, {4297, 5073}, {4669, 15701}, {4677, 51084}, {4691, 5882}, {4701, 37727}, {4881, 16417}, {5070, 10175}, {5079, 5550}, {5093, 38029}, {5587, 15703}, {5657, 15693}, {5690, 20053}, {5818, 55858}, {6221, 35762}, {6398, 35763}, {6411, 35811}, {6412, 35810}, {6445, 35775}, {6446, 35774}, {6449, 44636}, {6450, 44635}, {6455, 35642}, {6456, 35641}, {6496, 35610}, {6497, 35611}, {6883, 12773}, {7988, 28208}, {8692, 9353}, {9592, 22246}, {9619, 43136}, {9624, 49134}, {9709, 51111}, {9778, 14093}, {9779, 28190}, {9956, 55866}, {10164, 15718}, {10304, 28212}, {11230, 19709}, {11231, 50798}, {11396, 55570}, {11709, 12308}, {11812, 50818}, {12100, 50805}, {12245, 15712}, {12266, 54202}, {12512, 58192}, {14269, 25055}, {14891, 34631}, {15685, 51709}, {15688, 28174}, {15696, 22791}, {15699, 54448}, {15716, 50810}, {15719, 50823}, {15722, 50821}, {15723, 34627}, {15735, 38574}, {15759, 50872}, {16853, 17614}, {16857, 35272}, {16866, 19861}, {18357, 55857}, {20070, 46853}, {21572, 56384}, {21575, 56427}, {22793, 49139}, {24558, 50241}, {28154, 58202}, {28168, 38021}, {34123, 38755}, {34628, 35403}, {35452, 51701}, {38030, 51514}, {38032, 51517}, {38033, 51518}, {38315, 55610}, {40273, 49137}, {41722, 55574}, {44457, 51707}, {44580, 50831}, {50806, 51110}

X(58230) = midpoint of X(i) and X(j) for these {i,j}: {3576, 30392}, {40, 16191}
X(58230) = reflection of X(i) in X(j) for these {i,j}: {10246, 30392}, {30392, 1385}, {38335, 9779}, {5054, 54445}, {54448, 15699}, {9779, 38022}
X(58230)= pole of line {28221, 44429} with respect to the orthoptic circle of the Steiner Inellipse
X(58230) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/3
X(58230) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(102), X(51817)}}, {{A, B, C, X(2099), X(9353)}}, {{A, B, C, X(2320), X(17502)}}, {{A, B, C, X(23981), X(28152)}}
X(58230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3576, 17502}, {1, 40, 58240}, {1, 58219, 12702}, {3, 10246, 10247}, {3, 37624, 8148}, {165, 3576, 13624}, {517, 1385, 30392}, {952, 54445, 5054}, {1319, 37606, 6767}, {1385, 31662, 3576}, {1385, 3579, 58232}, {1482, 12702, 58245}, {1482, 13624, 3}, {3576, 16200, 7987}, {3576, 30389, 31662}, {3576, 30392, 517}, {3655, 10165, 5790}, {4297, 18493, 5073}, {5126, 13384, 15934}, {5731, 38028, 381}, {5790, 10165, 15694}, {9779, 28190, 38335}, {10222, 58214, 40}, {10246, 10247, 37624}, {10246, 58221, 58238}, {11224, 58232, 10246}, {13624, 31663, 58223}, {15701, 51515, 26446}, {17502, 58216, 58221}, {17502, 58234, 58243}, {28190, 38022, 9779}, {30392, 58227, 16200}, {37624, 58220, 58249}, {58221, 58241, 165}


X(58231) = X(1)X(3)∩X(3632)X(15708)

Barycentrics    a*(49*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-49*b^2+50*b*c-49*c^2)) : :
X(58231) = 25*X[1]+24*X[3], -55*X[3616]+6*X[50862], -5*X[3632]+54*X[15708], 25*X[3655]+24*X[41985], -3*X[3832]+10*X[15808], -50*X[4297]+X[58208], -5*X[4816]+54*X[54445], 44*X[15719]+5*X[34747], -64*X[16239]+15*X[37712], 16*X[19711]+5*X[51094], -85*X[19872]+36*X[38155], 25*X[31162]+24*X[58199] and many others

X(58231) lies on these lines: {1, 3}, {3616, 50862}, {3632, 15708}, {3655, 41985}, {3832, 15808}, {4297, 58208}, {4816, 54445}, {15719, 34747}, {16239, 37712}, {19711, 51094}, {19872, 38155}, {31162, 58199}, {35402, 38021}

X(58231) = midpoint of X(i) and X(j) for these {i,j}: {1, 58215}
X(58231) = reflection of X(i) in X(j) for these {i,j}: {16192, 58225}
X(58231)= pole of line {21, 58248} with respect to the Stammler hyperbola
X(58231) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/7
X(58231) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 58248}, {1, 40, 58239}, {1, 58215, 517}, {517, 58225, 16192}


X(58232) = X(1)X(3)∩X(5)X(51109)

Barycentrics    a*(16*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(8*b^2-9*b*c+8*c^2)) : :
X(58232) = 9*X[1]+7*X[3], -7*X[5]+15*X[51109], -7*X[140]+3*X[4745], X[548]+3*X[51103], 7*X[549]+X[51096], -9*X[551]+X[3627], 5*X[632]+3*X[5882], 9*X[944]+23*X[46936], -9*X[1125]+5*X[12812], -9*X[1386]+X[55721], X[1657]+15*X[51105], 7*X[3090]+9*X[3655] and many others

X(58232) lies on these lines: {1, 3}, {5, 51109}, {30, 41150}, {140, 4745}, {515, 12811}, {516, 58196}, {518, 55704}, {519, 12108}, {546, 28208}, {548, 51103}, {549, 51096}, {551, 3627}, {632, 5882}, {944, 46936}, {1125, 12812}, {1386, 55721}, {1657, 51105}, {3090, 3655}, {3146, 51709}, {3241, 31447}, {3523, 51092}, {3525, 3653}, {3530, 51095}, {3544, 18480}, {3622, 49140}, {3628, 28204}, {3636, 28146}, {3656, 50693}, {3843, 51110}, {3850, 51108}, {3857, 34773}, {5072, 25055}, {5076, 9624}, {5881, 55858}, {5886, 50689}, {5901, 28168}, {9588, 51084}, {9956, 55861}, {10165, 32900}, {10303, 37727}, {11230, 15022}, {11522, 49137}, {11541, 22793}, {12102, 28160}, {12103, 13464}, {14869, 34641}, {14890, 51070}, {14891, 51107}, {15686, 51106}, {15704, 51705}, {15712, 51071}, {15718, 51097}, {16491, 55580}, {17538, 38314}, {17852, 35774}, {18481, 50688}, {20049, 50821}, {20052, 26446}, {26088, 31805}, {28154, 58203}, {28198, 44245}, {31253, 55862}, {31399, 41992}, {31425, 50805}, {34747, 51088}, {37967, 51701}, {38022, 41991}, {41983, 51091}, {45759, 51104}, {45760, 51069}, {49465, 55687}

X(58232) = midpoint of X(i) and X(j) for these {i,j}: {14891, 51107}, {26088, 31805}
X(58232) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/4
X(58232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1385, 31662}, {1, 40, 58238}, {165, 3576, 58226}, {1385, 10222, 30389}, {1385, 3579, 58230}, {3576, 16189, 3}, {7982, 7991, 58247}, {10222, 10246, 15178}, {10222, 30389, 13624}, {10222, 58245, 58240}, {10246, 30389, 10222}, {10246, 58230, 11224}, {11224, 58215, 40}, {13624, 31663, 58221}, {17502, 58247, 31663}, {31662, 58216, 3576}


X(58233) = X(1)X(3)∩X(145)X(15701)

Barycentrics    a*(25*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-25*b^2+32*b*c-25*c^2)) : :
X(58233) = 16*X[1]+9*X[3], 4*X[145]+21*X[15701], 8*X[1483]+17*X[55863], 8*X[3241]+17*X[15722], -8*X[3616]+3*X[19709], -4*X[3617]+9*X[15694], -2*X[3621]+27*X[5054], -28*X[3622]+3*X[3830], 2*X[3623]+3*X[15693], -2*X[3625]+27*X[3653], 16*X[3626]+9*X[34748], 17*X[3655]+8*X[50803] and many others

X(58233) lies on these lines: {1, 3}, {145, 15701}, {516, 58198}, {952, 55866}, {1483, 55863}, {3241, 15722}, {3616, 19709}, {3617, 15694}, {3621, 5054}, {3622, 3830}, {3623, 15693}, {3625, 3653}, {3626, 34748}, {3655, 50803}, {3851, 51700}, {5055, 46934}, {5070, 37705}, {5550, 15703}, {5603, 49139}, {5731, 49134}, {6472, 35775}, {6473, 35774}, {6500, 35762}, {6501, 35763}, {7967, 46219}, {9780, 50824}, {10283, 17800}, {11812, 20014}, {12699, 51085}, {14269, 34773}, {15685, 38314}, {15713, 20052}, {15808, 18525}, {18493, 35403}, {19872, 50798}, {28212, 58192}, {34718, 51086}, {38028, 55860}

X(58233) = reflection of X(i) in X(j) for these {i,j}: {58229, 1385}
X(58233) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/5
X(58233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58237}, {517, 1385, 58229}, {1385, 15178, 16200}, {1385, 58240, 3576}, {1482, 12702, 58244}, {7987, 35242, 58219}, {10247, 58249, 1482}, {12702, 16200, 8148}, {16200, 58219, 12702}, {58228, 58247, 3}


X(58234) = X(1)X(3)∩X(3636)X(3853)

Barycentrics    a*(36*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-36*b^2+50*b*c-36*c^2)) : :
X(58234) = 25*X[1]+11*X[3], -25*X[1699]+13*X[35402], -10*X[3636]+X[3853], -11*X[11231]+5*X[51072], -11*X[11539]+5*X[38098], -14*X[11812]+5*X[50827], 5*X[13607]+4*X[16239], -11*X[15723]+5*X[38176], X[38155]+5*X[50824], -23*X[41992]+5*X[47745]

X(58234) lies on these lines: {1, 3}, {516, 58199}, {547, 28236}, {952, 41985}, {1699, 35402}, {3636, 3853}, {11231, 51072}, {11539, 38098}, {11812, 50827}, {13607, 16239}, {15690, 28232}, {15723, 38176}, {28154, 58204}, {28168, 38314}, {28178, 51103}, {28228, 41982}, {28234, 41983}, {38155, 50824}, {41992, 47745}

X(58234) = midpoint of X(i) and X(j) for these {i,j}: {3579, 16191}
X(58234) = reflection of X(i) in X(j) for these {i,j}: {31662, 30392}
X(58234) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/6
X(58234) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58236}, {3, 33179, 58244}, {165, 3576, 58224}, {517, 30392, 31662}, {1385, 3579, 58229}, {1385, 58240, 13624}, {3579, 16191, 517}, {58230, 58243, 17502}


X(58235) = X(1)X(3)∩X(3622)X(3857)

Barycentrics    a*(49*a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)+a*(-49*b^2+72*b*c-49*c^2)) : :
X(58235) = 36*X[1]+13*X[3], 40*X[632]+9*X[34748], -13*X[3526]+6*X[51068], -9*X[3622]+2*X[3857], 40*X[3628]+9*X[50818], -5*X[5076]+54*X[38314], 13*X[5079]+36*X[50824], 45*X[10595]+4*X[58203], 40*X[12812]+9*X[18526], X[17800]+48*X[51103], -23*X[46936]+72*X[51700]

X(58235) lies on these lines: {1, 3}, {632, 34748}, {3526, 51068}, {3622, 3857}, {3628, 50818}, {5076, 38314}, {5079, 50824}, {6488, 35811}, {6489, 35810}, {10595, 58203}, {12812, 18526}, {17800, 51103}, {28212, 58193}, {46936, 51700}

X(58235) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6/7
X(58235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58236, 58249}, {1482, 12702, 58243}, {7982, 7991, 58246}, {8148, 58218, 40}, {10246, 37624, 8148}


X(58236) = X(1)X(3)∩X(145)X(12811)

Barycentrics    a*(25*a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)+a*(-25*b^2+72*b*c-25*c^2)) : :
X(58236) = -36*X[1]+11*X[3], 9*X[145]+16*X[12811], 16*X[546]+9*X[34748], 18*X[1483]+7*X[50688], -11*X[1656]+6*X[51072], -14*X[3091]+9*X[50797], -34*X[3544]+9*X[12645], 16*X[3628]+9*X[50805], 2*X[3858]+3*X[51092], -121*X[5070]+96*X[51069], X[5073]+24*X[51071], -X[5076]+6*X[5734] and many others

X(58236) lies on these lines: {1, 3}, {145, 12811}, {546, 34748}, {1483, 50688}, {1656, 51072}, {3091, 50797}, {3544, 12645}, {3628, 50805}, {3858, 51092}, {5070, 51069}, {5073, 51071}, {5076, 5734}, {10595, 12812}, {12102, 18526}, {12108, 34631}, {13464, 50804}, {28212, 58195}, {35403, 51097}, {46930, 55861}

X(58236) = reflection of X(i) in X(j) for these {i,j}: {58224, 37624}
X(58236) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6/5
X(58236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58234}, {517, 37624, 58224}, {1482, 12702, 58241}, {1482, 58230, 8148}, {7982, 7991, 58244}, {7987, 35242, 58216}, {13624, 16200, 1482}, {58235, 58249, 3}


X(58237) = X(1)X(3)∩X(547)X(3626)

Barycentrics    a*(16*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)-2*a*(8*b^2-25*b*c+8*c^2)) : :
X(58237) = -25*X[1]+9*X[3], -9*X[547]+5*X[3626], 5*X[3244]+3*X[3845], 27*X[3545]+5*X[20050], -X[3621]+9*X[51709], -25*X[3634]+27*X[41985], -5*X[3636]+3*X[11812], -3*X[11001]+35*X[20057], -27*X[11539]+35*X[15808], -25*X[18481]+9*X[58204], 25*X[18526]+39*X[35402], -11*X[22791]+3*X[50862] and many others

X(58237) lies on these lines: {1, 3}, {516, 58201}, {547, 3626}, {3244, 3845}, {3545, 20050}, {3621, 51709}, {3634, 41985}, {3636, 11812}, {11001, 20057}, {11539, 15808}, {16239, 28234}, {18481, 58204}, {18526, 35402}, {22791, 50862}, {28154, 58206}, {28228, 41981}, {34773, 51120}, {38127, 41992}, {38335, 51087}

X(58237) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/4
X(58237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58233}, {3, 11278, 58244}, {3, 1482, 58241}, {1385, 3579, 58224}, {1482, 58230, 7982}, {10222, 16200, 33179}, {12702, 58221, 3579}, {13624, 31663, 58217}, {15178, 58216, 1385}, {31662, 58240, 11531}, {33179, 58240, 31662}


X(58238) = X(1)X(3)∩X(5)X(20052)

Barycentrics    a*(9*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-9*b^2+32*b*c-9*c^2)) : :
X(58238) = -16*X[1]+7*X[3], -14*X[5]+5*X[20052], 4*X[145]+5*X[3843], 7*X[381]+2*X[20049], 8*X[944]+X[49134], 8*X[962]+X[49139], 8*X[1483]+X[5073], -X[1657]+10*X[3623], 8*X[3241]+X[15684], -2*X[3621]+11*X[5072], -7*X[3654]+16*X[41150], 7*X[3656]+2*X[51096] and many others

X(58238) lies on these lines: {1, 3}, {5, 20052}, {145, 3843}, {381, 20049}, {516, 58202}, {944, 49134}, {952, 14269}, {962, 49139}, {1483, 5073}, {1597, 31948}, {1657, 3623}, {3241, 15684}, {3621, 5072}, {3654, 41150}, {3656, 51096}, {3830, 28224}, {3850, 20014}, {3851, 20054}, {4745, 5886}, {4746, 10175}, {5055, 5844}, {5070, 10595}, {5330, 16853}, {5603, 19709}, {5690, 55866}, {5734, 12645}, {5790, 34641}, {5901, 55860}, {6199, 35810}, {6395, 35811}, {6472, 49226}, {6473, 49227}, {6500, 35642}, {6501, 35641}, {7967, 15681}, {9690, 35763}, {9812, 18526}, {10283, 15694}, {12245, 46219}, {15685, 28178}, {15689, 28212}, {15695, 50872}, {15722, 50810}, {26446, 51109}, {28164, 51095}, {28232, 51071}, {28236, 34748}, {31253, 38127}, {35762, 43415}, {37712, 50806}, {48662, 51147}

X(58238) = midpoint of X(i) and X(j) for these {i,j}: {16191, 16200}, {7982, 30392}
X(58238) = reflection of X(i) in X(j) for these {i,j}: {1482, 16191}
X(58238) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/3
X(58238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58232}, {1, 58247, 58222}, {165, 3576, 58219}, {517, 16191, 1482}, {1385, 3579, 58223}, {1482, 10246, 11224}, {1482, 12702, 58240}, {5603, 51515, 19709}, {10222, 10246, 10247}, {10222, 11224, 10246}, {10222, 58240, 30389}, {10246, 11224, 8148}, {10246, 58221, 58230}, {11224, 16200, 10222}, {16191, 16200, 517}, {30392, 58213, 3576}, {31666, 33179, 1}


X(58239) = X(1)X(3)∩X(3633)X(3839)

Barycentrics    a*(25*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-25*b^2+98*b*c-25*c^2)) : :
X(58239) = -49*X[1]+24*X[3], 19*X[3244]+6*X[50869], -14*X[3625]+39*X[5068], -11*X[3632]+36*X[38076], 7*X[3633]+18*X[3839], -7*X[4668]+12*X[5071], -X[4816]+6*X[5734], 16*X[18483]+9*X[34747], 13*X[34595]+12*X[34631], 4*X[41869]+21*X[51094], -49*X[50811]+24*X[58200]

X(58239) lies on these lines: {1, 3}, {3244, 50869}, {3625, 5068}, {3632, 38076}, {3633, 3839}, {4668, 5071}, {4816, 5734}, {18483, 34747}, {34595, 34631}, {41869, 51094}, {50811, 58200}

X(58239) = reflection of X(i) in X(j) for these {i,j}: {58217, 1}
X(58239) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/5
X(58239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58231}, {1, 517, 58217}, {7987, 16189, 16200}, {7987, 35242, 58215}, {10222, 58241, 16192}, {11278, 58247, 7982}


X(58240) = X(1)X(3)∩X(5)X(4669)

Barycentrics    a*(4*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(2*b^2-9*b*c+2*c^2)) : :
X(58240) = -9*X[1]+5*X[3], -5*X[5]+3*X[4669], -9*X[8]+17*X[3544], -5*X[140]+6*X[51108], X[145]+X[22793], -5*X[355]+X[20053], X[382]+3*X[51093], -5*X[549]+7*X[51106], -X[550]+3*X[51071], -9*X[551]+7*X[14869], -5*X[632]+3*X[11362], -9*X[946]+7*X[3857] and many others

X(58240) lies on circumconic {{A, B, C, X(1320), X(31663)}} and these lines: {1, 3}, {5, 4669}, {8, 3544}, {30, 51091}, {140, 51108}, {145, 22793}, {355, 20053}, {382, 51093}, {516, 32900}, {518, 26200}, {519, 546}, {549, 51106}, {550, 51071}, {551, 14869}, {632, 11362}, {944, 28154}, {946, 3857}, {952, 12102}, {960, 51573}, {962, 11541}, {1386, 55708}, {1389, 56115}, {1483, 28146}, {1829, 26863}, {2800, 38631}, {2809, 38630}, {3090, 5734}, {3091, 3656}, {3241, 3529}, {3525, 50821}, {3530, 51103}, {3625, 38034}, {3627, 4301}, {3628, 3828}, {3632, 38140}, {3654, 10303}, {3655, 17538}, {3679, 5079}, {3680, 4930}, {3851, 4677}, {3877, 17544}, {4678, 5603}, {4691, 9956}, {4701, 5844}, {4745, 35018}, {4867, 11524}, {4870, 5559}, {5072, 11522}, {5076, 31162}, {5493, 50824}, {5690, 51073}, {5777, 26088}, {5881, 50805}, {5882, 15704}, {5886, 46933}, {5901, 19878}, {9589, 49137}, {9624, 34718}, {10595, 11231}, {11230, 12245}, {11526, 15008}, {12103, 28194}, {12108, 43174}, {13607, 28212}, {15681, 51097}, {15687, 51096}, {15720, 51105}, {16491, 55701}, {16496, 55724}, {17504, 51104}, {18480, 20014}, {20070, 58195}, {25485, 51525}, {31399, 50823}, {31425, 51084}, {31439, 35810}, {31447, 50810}, {34200, 51107}, {38022, 41992}, {38076, 50830}, {38083, 50817}, {41991, 50796}, {47478, 51070}, {49135, 51092}, {49136, 51087}, {49139, 51094}, {49465, 52987}, {50693, 50872}, {51110, 55863}

X(58240) = midpoint of X(i) and X(j) for these {i,j}: {145, 22793}, {1385, 8148}, {1482, 11278}, {15687, 51096}, {3579, 11531}, {34631, 51709}, {7982, 10222}
X(58240) = reflection of X(i) in X(j) for these {i,j}: {13624, 33179}, {15178, 10222}, {31662, 10247}, {31663, 1}, {34200, 51107}, {5777, 26088}
X(58240) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/2
X(58240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58230}, {1, 517, 31663}, {1, 58247, 3579}, {3, 1482, 16189}, {165, 3576, 58218}, {517, 10222, 15178}, {517, 33179, 13624}, {1385, 3579, 58221}, {1385, 8148, 517}, {1482, 11224, 11278}, {1482, 12702, 58238}, {1482, 7982, 10222}, {1482, 8148, 16200}, {5048, 11280, 50193}, {7982, 16189, 3}, {7982, 7991, 8148}, {7987, 58222, 17502}, {10222, 11278, 7982}, {10222, 15178, 33179}, {10222, 58245, 58232}, {10246, 58250, 40}, {11531, 58237, 31662}, {13624, 31663, 58216}, {13624, 58234, 1385}, {16200, 58221, 10247}, {58229, 58245, 7991}


X(58241) = X(1)X(3)∩X(3632)X(3832)

Barycentrics    a*(9*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-9*b^2+50*b*c-9*c^2)) : :
X(58241) = -25*X[1]+16*X[3], X[1699]+2*X[34631], -10*X[3244]+X[5059], -5*X[3632]+14*X[3832], X[3633]+2*X[9812], -8*X[3817]+5*X[4668], -8*X[3845]+5*X[37712], -5*X[4677]+8*X[38155], -13*X[5067]+10*X[38127], -8*X[5603]+5*X[51066], 25*X[9589]+2*X[58208], -25*X[18481]+16*X[58201] and many others

X(58241) lies on these lines: {1, 3}, {516, 58204}, {1699, 34631}, {3244, 5059}, {3543, 28236}, {3545, 28234}, {3632, 3832}, {3633, 9812}, {3817, 4668}, {3845, 37712}, {4677, 38155}, {5067, 38127}, {5603, 51066}, {9589, 58208}, {11001, 28232}, {18481, 58201}, {18526, 35405}, {28164, 51093}, {28212, 58199}, {28216, 34628}, {28224, 50865}, {50872, 51097}, {51071, 51081}, {51096, 51119}

X(58241) = midpoint of X(i) and X(j) for these {i,j}: {11531, 30392}, {58221, 58243}
X(58241) = reflection of X(i) in X(j) for these {i,j}: {1, 16191}, {16191, 11224}, {30392, 16200}
X(58241) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/3
X(58241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58229}, {3, 11531, 58248}, {3, 1482, 58237}, {3, 30392, 58227}, {165, 11224, 1482}, {165, 3576, 58217}, {517, 11224, 16191}, {517, 16200, 30392}, {1482, 12702, 58236}, {3576, 16200, 33179}, {7982, 11278, 11531}, {7982, 7991, 58242}, {10222, 16192, 1}, {11224, 11531, 16200}, {11278, 16200, 11224}, {11531, 30392, 517}, {16191, 58243, 58221}, {16192, 58239, 10222}


X(58242) = X(1)X(3)∩X(4745)X(15022)

Barycentrics    a*(25*a^3-81*a^2*(b+c)+81*(b-c)^2*(b+c)+a*(-25*b^2+162*b*c-25*c^2)) : :
X(58242) = -81*X[1]+56*X[3], 7*X[3146]+18*X[51096], -108*X[4745]+133*X[15022], -32*X[12812]+27*X[51066], -4*X[17538]+9*X[51097], 11*X[20049]+14*X[50862], -31*X[34641]+56*X[51076], -2*X[49140]+27*X[51093]

X(58242) lies on these lines: {1, 3}, {3146, 51096}, {4745, 15022}, {12812, 51066}, {17538, 51097}, {20049, 50862}, {34641, 51076}, {49140, 51093}

X(58242) = reflection of X(i) in X(j) for these {i,j}: {58229, 16189}
X(58242) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=9/5
X(58242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58227}, {517, 16189, 58229}, {7982, 7991, 58241}, {7987, 35242, 58213}, {11224, 11531, 3579}


X(58243) = X(1)X(3)∩X(3855)X(4668)

Barycentrics    a*(9*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-9*b^2+98*b*c-9*c^2)) : :
X(58243) = -49*X[1]+40*X[3], 7*X[3633]+2*X[49135], -44*X[3855]+35*X[4668], -31*X[4669]+40*X[51076], -56*X[4691]+65*X[5068], -25*X[17578]+7*X[20053]

X(58243) lies on these lines: {1, 3}, {516, 58205}, {3633, 49135}, {3855, 4668}, {4669, 51076}, {4691, 5068}, {17578, 20053}, {28150, 34747}, {28212, 58200}

X(58243) = midpoint of X(i) and X(j) for these {i,j}: {16191, 58245}
X(58243) = reflection of X(i) in X(j) for these {i,j}: {30392, 7982}, {58221, 58241}
X(58243) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/3
X(58243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58225}, {1, 58213, 30392}, {165, 3576, 58215}, {517, 58241, 58221}, {1482, 12702, 58235}, {7982, 58248, 16192}, {16189, 31663, 1}, {16191, 58245, 517}, {16192, 58245, 58248}, {17502, 58234, 58230}, {58221, 58241, 16191}


X(58244) = X(1)X(3)∩X(145)X(58204)

Barycentrics    a*(4*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-4*b^2+50*b*c-4*c^2)) : :
X(58244) = -25*X[1]+21*X[3], -25*X[145]+9*X[58204], -5*X[3244]+3*X[15686], -21*X[3543]+5*X[20054], -5*X[3626]+6*X[3850], -5*X[3632]+9*X[38335], -10*X[3636]+9*X[41983], -21*X[3656]+17*X[46932], -7*X[3845]+5*X[34641], -6*X[4745]+7*X[9955], -6*X[4746]+7*X[18357], -7*X[6361]+15*X[51092] and many others

X(58244) lies on these lines: {1, 3}, {145, 58204}, {516, 58206}, {3244, 15686}, {3543, 20054}, {3626, 3850}, {3632, 38335}, {3636, 41983}, {3656, 46932}, {3845, 34641}, {3853, 28234}, {4745, 9955}, {4746, 18357}, {6361, 51092}, {13607, 41981}, {15690, 51095}, {18480, 20052}, {20049, 28208}, {20050, 33703}, {22791, 38076}, {28154, 58208}, {28198, 51096}, {28212, 58201}, {28647, 47746}, {31253, 41985}, {31673, 51120}, {32900, 58199}, {33697, 50871}

X(58244) = midpoint of X(i) and X(j) for these {i,j}: {13624, 58246}
X(58244) = reflection of X(i) in X(j) for these {i,j}: {31663, 7982}
X(58244) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/2
X(58244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58224}, {3, 11278, 58237}, {3, 33179, 58234}, {517, 7982, 31663}, {1385, 3579, 58217}, {1482, 12702, 58233}, {7982, 58221, 1482}, {7982, 7991, 58236}, {11531, 58245, 16200}, {13624, 58246, 517}, {15178, 16200, 33179}


X(58245) = X(1)X(3)∩X(4)X(4677)

Barycentrics    a*(a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-a*(b^2-18*b*c+c^2)) : :
X(58245) = -9*X[1]+8*X[3], -4*X[4]+3*X[4677], -16*X[5]+15*X[51066], -9*X[8]+11*X[50689], -18*X[10]+19*X[15022], -2*X[20]+3*X[51093], -4*X[376]+5*X[51097], -8*X[546]+9*X[31162], -16*X[550]+21*X[51094], -20*X[631]+21*X[51110], -10*X[632]+9*X[3654], -18*X[946]+17*X[3544] and many others

X(58245) lies on these lines: {1, 3}, {4, 4677}, {5, 51066}, {8, 50689}, {10, 15022}, {20, 51093}, {145, 28228}, {376, 51097}, {388, 8275}, {515, 11541}, {516, 3633}, {519, 3146}, {546, 31162}, {550, 51094}, {631, 51110}, {632, 3654}, {758, 11519}, {946, 3544}, {950, 16236}, {960, 11530}, {962, 3632}, {1698, 46936}, {1699, 4668}, {3090, 11362}, {3091, 3679}, {3241, 5493}, {3244, 20070}, {3522, 51071}, {3523, 51105}, {3525, 9588}, {3529, 28194}, {3621, 51118}, {3623, 12512}, {3625, 9812}, {3627, 5881}, {3628, 3656}, {3635, 9778}, {3655, 44245}, {3680, 44663}, {3681, 32634}, {3832, 4669}, {3854, 51072}, {3857, 5587}, {3868, 12127}, {3869, 4915}, {3877, 17546}, {3951, 4853}, {3984, 4882}, {4005, 11379}, {4678, 12571}, {4691, 9779}, {4745, 5068}, {4746, 54448}, {4866, 31165}, {5072, 30308}, {5079, 30315}, {5250, 17543}, {5657, 34595}, {5690, 7988}, {5691, 28234}, {5731, 58195}, {5734, 10303}, {5844, 41869}, {5882, 17538}, {5886, 55861}, {6048, 10563}, {6264, 38631}, {6326, 38629}, {6488, 9615}, {7989, 12811}, {9582, 35810}, {9614, 30286}, {9620, 41940}, {10248, 20052}, {10541, 16491}, {11512, 52181}, {11528, 55169}, {12102, 12699}, {12103, 50811}, {12653, 12767}, {13253, 38665}, {13541, 38685}, {15104, 45776}, {15683, 51096}, {15704, 34628}, {15705, 51104}, {15717, 51103}, {16126, 33557}, {16490, 37501}, {16496, 53097}, {17544, 19860}, {17852, 44636}, {18594, 22356}, {19546, 36634}, {19647, 42043}, {20050, 28164}, {21872, 52705}, {26446, 55862}, {28198, 49137}, {28204, 49136}, {28212, 58203}, {31145, 51120}, {33535, 38626}, {34773, 58196}, {38671, 52182}, {40663, 50444}, {41991, 50823}, {49465, 55614}, {50797, 50817}, {50813, 51077}, {50821, 55858}, {51709, 55857}

X(58245) = midpoint of X(i) and X(j) for these {i,j}: {1482, 58247}
X(58245) = reflection of X(i) in X(j) for these {i,j}: {1, 11531}, {12767, 12653}, {15683, 51096}, {16191, 58243}, {20070, 3244}, {3621, 51118}, {3632, 962}, {3679, 50872}, {31145, 51120}, {40, 8148}, {55169, 11528}, {7991, 7982}
X(58245) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3
X(58245) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1420), X(41446)}}, {{A, B, C, X(4900), X(16192)}}, {{A, B, C, X(53056), X(56152)}}
X(58245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58221}, {1, 58241, 1482}, {3, 58229, 58225}, {3, 7982, 16189}, {40, 10222, 30389}, {40, 13624, 165}, {40, 8148, 11224}, {165, 3576, 58213}, {165, 58217, 16192}, {517, 58243, 16191}, {517, 7982, 7991}, {517, 8148, 40}, {1385, 3579, 58216}, {1385, 58224, 3576}, {1482, 12702, 58230}, {1482, 58247, 517}, {3579, 58220, 35242}, {5734, 43174, 25055}, {7991, 11531, 7982}, {7991, 16189, 3}, {7991, 58240, 58229}, {8148, 58250, 12702}, {10222, 30389, 1}, {10246, 58228, 1385}, {11224, 11531, 8148}, {11224, 30389, 10222}, {11362, 11522, 19875}, {12702, 16200, 7987}, {12702, 58233, 3579}, {13464, 50810, 9588}, {16200, 58244, 11531}


X(58246) = X(1)X(3)∩X(4691)X(5066)

Barycentrics    a*(4*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-4*b^2+98*b*c-4*c^2)) : :
X(58246) = -49*X[1]+45*X[3], -29*X[3621]+45*X[50863], -7*X[3625]+9*X[15687], -14*X[4691]+15*X[5066], -15*X[15682]+7*X[20053], -6*X[15691]+7*X[32900]

X(58246) lies on these lines: {1, 3}, {3621, 50863}, {3625, 15687}, {4691, 5066}, {15682, 20053}, {15691, 32900}, {20014, 28208}, {20050, 28202}

X(58246) = midpoint of X(i) and X(j) for these {i,j}: {3579, 58248}
X(58246) = reflection of X(i) in X(j) for these {i,j}: {13624, 58244}
X(58246) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/2
X(58246) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58220}, {517, 58244, 13624}, {1385, 3579, 58215}, {1482, 12702, 58228}, {3576, 8148, 11278}, {3579, 58248, 517}, {7982, 7991, 58235}, {8148, 12702, 16189}, {58216, 58240, 33179}


X(58247) = X(1)X(3)∩X(8)X(14269)

Barycentrics    a*(a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)-a*(b^2-32*b*c+c^2)) : :
X(58247) = -16*X[1]+15*X[3], -8*X[8]+9*X[14269], -4*X[145]+3*X[15681], -15*X[381]+14*X[4678], -3*X[382]+2*X[3621], -4*X[962]+3*X[51515], -20*X[3617]+21*X[3851], -28*X[3622]+27*X[15707], -10*X[3623]+9*X[15688], -15*X[3654]+16*X[19878], -17*X[3655]+16*X[51081], -15*X[3656]+14*X[51073] and many others

X(58247) lies on these lines: {1, 3}, {8, 14269}, {30, 20014}, {145, 15681}, {381, 4678}, {382, 3621}, {516, 58207}, {952, 49134}, {962, 51515}, {3617, 3851}, {3622, 15707}, {3623, 15688}, {3654, 19878}, {3655, 51081}, {3656, 51073}, {3828, 18493}, {3830, 31145}, {4669, 18483}, {4701, 12699}, {4816, 22793}, {5073, 5844}, {5603, 55860}, {5657, 55866}, {6361, 50805}, {9690, 44635}, {15684, 20053}, {15685, 18526}, {15687, 20052}, {15689, 34631}, {15703, 19877}, {17800, 28212}, {18525, 50804}, {19709, 22791}, {20050, 28174}, {28154, 58209}, {31730, 51091}, {31948, 55570}, {34748, 58202}, {43415, 44636}, {46934, 55863}

X(58247) = reflection of X(i) in X(j) for these {i,j}: {1482, 58245}
X(58247) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4
X(58247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58219}, {3, 58233, 58228}, {517, 58245, 1482}, {1385, 3579, 58214}, {1482, 12702, 13624}, {3579, 58240, 1}, {7982, 58239, 11278}, {7982, 7991, 58232}, {11531, 58221, 7982}, {31663, 58232, 17502}


X(58248) = X(1)X(3)∩X(8)X(51120)

Barycentrics    a*(a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)-a*(b^2-50*b*c+c^2)) : :
X(58248) = -25*X[1]+24*X[3], -5*X[8]+6*X[51120], -6*X[962]+5*X[4816], -5*X[1698]+6*X[50872], -13*X[3244]+12*X[51080], -6*X[3543]+5*X[3632], -21*X[3545]+20*X[50827], -2*X[3621]+3*X[9589], -49*X[3622]+48*X[51086], -20*X[3626]+21*X[3832], -25*X[3633]+18*X[58204], -25*X[3656]+24*X[41985] and many others

X(58248) lies on circumconic {{A, B, C, X(16192), X(31509)}} and these lines: {1, 3}, {8, 51120}, {516, 58208}, {962, 4816}, {1698, 50872}, {3244, 51080}, {3543, 3632}, {3545, 50827}, {3621, 9589}, {3622, 51086}, {3626, 3832}, {3633, 58204}, {3656, 41985}, {3853, 37712}, {4668, 18483}, {5059, 20050}, {5529, 52182}, {11001, 34747}, {15690, 51094}, {22791, 51066}, {28212, 58206}, {28234, 33703}, {34595, 50810}, {34628, 50831}, {34632, 51083}, {37705, 50865}, {38335, 50817}, {50811, 58199}

X(58248) = reflection of X(i) in X(j) for these {i,j}: {3579, 58246}
X(58248)= pole of line {21, 58231} with respect to the Stammler hyperbola
X(58248) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5
X(58248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 58231}, {1, 40, 58217}, {3, 11531, 58241}, {40, 31666, 165}, {517, 58246, 3579}, {1482, 12702, 58224}, {7982, 7991, 58229}, {7991, 11531, 16200}, {11531, 30392, 7982}, {16191, 58217, 1}, {16192, 58229, 58221}, {16192, 58245, 58243}


X(58249) = X(1)X(3)∩X(3843)X(4669)

Barycentrics    a*(a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)-a*(b^2-72*b*c+c^2)) : :
X(58249) = -36*X[1]+35*X[3], -14*X[550]+15*X[51092], -55*X[3091]+54*X[38081], -7*X[3529]+9*X[20049], -10*X[3627]+9*X[31145], -8*X[3628]+9*X[50872], -25*X[3843]+24*X[4669], -49*X[3851]+48*X[4745], -55*X[5072]+54*X[53620], -8*X[12103]+9*X[50805], -100*X[12812]+99*X[46933], -7*X[15681]+8*X[51096] and many others

X(58249) lies on these lines: {1, 3}, {550, 51092}, {3091, 38081}, {3529, 20049}, {3627, 31145}, {3628, 50872}, {3843, 4669}, {3851, 4745}, {5072, 53620}, {5844, 11541}, {12103, 50805}, {12812, 46933}, {15681, 51096}, {15689, 51091}, {15704, 34748}, {15707, 41150}, {15718, 51106}, {18526, 58203}, {20014, 28212}, {20052, 50688}, {34631, 44245}, {38138, 50689}, {50810, 55858}, {51109, 55863}

X(58249) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6
X(58249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58216}, {3, 58236, 58235}, {1482, 12702, 58221}, {1482, 58233, 10247}, {7982, 16192, 10222}, {7982, 7991, 13624}, {10247, 13624, 37624}, {12702, 16189, 3}, {37624, 58220, 58230}


X(58250) = X(1)X(3)∩X(516)X(58209)

Barycentrics    a*(a^3-64*a^2*(b+c)+64*(b-c)^2*(b+c)-a*(b^2-128*b*c+c^2)) : :
X(58250) = -64*X[1]+63*X[3], -8*X[3621]+9*X[15684], -21*X[3830]+20*X[20052], -7*X[15685]+8*X[20049], -31*X[34718]+32*X[51076], -16*X[50818]+15*X[58202]

X(58250) lies on these lines: {1, 3}, {516, 58209}, {3621, 15684}, {3830, 20052}, {15685, 20049}, {28212, 58207}, {34718, 51076}, {50818, 58202}

X(58250) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=8
X(58250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58214}, {40, 58240, 10246}, {1482, 12702, 58219}, {7982, 7991, 58223}, {12702, 58245, 8148}


X(58251) = X(6)X(39112)∩X(25)X(52)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*(a^8 - 2*a^6*b^2 + 4*a^4*b^4 - 6*a^2*b^6 + 3*b^8 - 4*a^6*c^2 + 2*a^4*b^2*c^2 - 6*b^6*c^2 + 6*a^4*c^4 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - 4*a^2*c^6 - 2*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 2*b^6*c^2 + 4*a^4*c^4 + 4*b^4*c^4 - 6*a^2*c^6 - 6*b^2*c^6 + 3*c^8) : :

X(58251) lies on the cubic K350 and these lines: {6, 39112}, {25, 52}, {53, 41524}, {3542, 39115}

See HGT (2023)

X(58251) = isogonal conjugate of the isotomic conjugate of X(39115)
X(58251) = X(i)-isoconjugate of X(j) for these (i,j): {921, 6193}, {2169, 39117}
X(58251) = X(14363)-Dao conjugate of X(39117)
X(58251) = barycentric product X(i)*X(j) for these {i,j}: {6, 39115}, {1609, 55031}, {6515, 34428}, {39110, 39116}, {40697, 41525}
X(58251) = barycentric quotient X(i)/X(j) for these {i,j}: {53, 39117}, {1609, 6193}, {34428, 6504}, {39110, 57484}, {39115, 76}, {41525, 254}, {47731, 40698}


X(58252) = X(3)X(76)∩X(5191)X(51474)

Barycentrics    b^2*c^2*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)^3 : :

X(58252) lies on the cubic K244 and these lines: {3, 76}, {5191, 51474}, {23097, 23105}, {23106, 23107}

X(58252) = isotomic conjugate of the isogonal conjugate of X(46048)
X(58252) = X(542)-Dao conjugate of X(842)
X(58252) = barycentric product X(76)*X(46048)
X(58252) = barycentric quotient X(i)/X(j) for these {i,j}: {23967, 842}, {46048, 6}


X(58253) = X(76)X(35518)∩X(271)X(521)

Barycentrics    a*(a - b - c)^3*(b - c)^3*(a^2 - b^2 - c^2)^3 : :

X(58253) lies on the cubic K244 and these lines: {76, 35518}, {271, 521}, {1946, 39167}, {4163, 56942}, {15411, 51978}, {52565, 52616}

X(58253) = isotomic conjugate of the isogonal conjugate of X(23614)
X(58253) = X(35518)-Ceva conjugate of X(23983)
X(58253) = X(i)-isoconjugate of X(j) for these (i,j): {108, 24033}, {653, 23985}, {23984, 32674}
X(58253) = X(i)-Dao conjugate of X(j) for these (i,j): {521, 108}, {656, 36127}, {3239, 54240}, {35072, 23984}, {38983, 24033}, {40626, 24032}
X(58253) = barycentric product X(i)*X(j) for these {i,j}: {76, 23614}, {521, 23983}, {1102, 23615}, {1364, 15416}, {6332, 24031}, {6507, 23104}, {16731, 52355}, {17880, 57057}, {23107, 23609}, {34591, 52616}, {35072, 35518}
X(58253) = barycentric quotient X(i)/X(j) for these {i,j}: {521, 23984}, {652, 24033}, {1364, 32714}, {1946, 23985}, {2638, 32674}, {2968, 54240}, {6332, 24032}, {7215, 4617}, {23104, 6521}, {23614, 6}, {23615, 6520}, {23983, 18026}, {24031, 653}, {34591, 36127}, {35072, 108}, {35518, 57538}, {57057, 7012}, {57241, 7128}


X(58254) = X(10)X(75)∩X(902)X(57506)

Barycentrics    b^2*c^2*(-2*a + b + c)^3 : :

X(58254) lies on the cubic K244 and these lines: {10, 75}, {902, 57506}, {1647, 3992}, {4723, 51975}, {4738, 36791}, {14507, 52627}, {23869, 46937}

X(58254) = isotomic conjugate of the isogonal conjugate of X(8028)
X(58254) = X(3264)-Ceva conjugate of X(36791)
X(58254) = X(i)-isoconjugate of X(j) for these (i,j): {88, 41935}, {667, 39414}, {1318, 1417}, {2226, 9456}
X(58254) = X(i)-Dao conjugate of X(j) for these (i,j): {519, 106}, {900, 43922}, {1647, 23345}, {4370, 2226}, {6631, 39414}, {52871, 1318}
X(58254) = crossdifference of every pair of points on line {1919, 41935}
X(58254) = barycentric product X(i)*X(j) for these {i,j}: {76, 8028}, {519, 36791}, {1978, 33922}, {3264, 4370}, {3992, 16729}, {4358, 4738}, {17780, 52627}
X(58254) = barycentric quotient X(i)/X(j) for these {i,j}: {190, 39414}, {519, 2226}, {678, 9456}, {902, 41935}, {2325, 1318}, {3264, 54974}, {3992, 30575}, {4152, 2316}, {4358, 679}, {4370, 106}, {4738, 88}, {6544, 23345}, {8028, 6}, {14637, 3249}, {17780, 4638}, {22371, 32659}, {24004, 4618}, {33922, 649}, {35092, 43922}, {36791, 903}, {42070, 8752}, {46050, 21143}, {52627, 6548}, {53582, 901}


X(58255) = X(76)X(690)∩X(882)X(43665)

Barycentrics    b^2*c^2*(b^2 - c^2)^3*(-a^2 + b*c)^3*(a^2 + b*c)^3 : :

X(58255) lies on the cubic K244 and these lines: {76, 690}, {882, 43665}, {5027, 14382}, {23099, 23105}

X(58255) = X(804)-Dao conjugate of X(805)
X(58255) = barycentric product X(14295)*X(35078)
X(58255) = barycentric quotient X(i)/X(j) for these {i,j}: {14295, 57558}, {35078, 805}


X(58256) = X(20)X(76)∩X(2409)X(34156)

Barycentrics    b^2*c^2*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6)^3 : :

X(58256) lies on the cubic K244 and these lines: {20, 76}, {2409, 34156}, {2848, 41079}, {14376, 53844}

X(58256) = X(1503)-Dao conjugate of X(1297)
X(58256) = barycentric product X(23976)*X(30737)
X(58256) = barycentric quotient X(i)/X(j) for these {i,j}: {15639, 44770}, {23976, 1297}, {30737, 57549}


X(58257) = X(1553)X(23097)∩X(5489)X(23107)

Barycentrics    b^2*c^2(b^2 - c^2)^3*(-a^2 + b^2 + c^2)^3*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)^3 : :

X(58257) lies on the cubic K244 and these lines: {1553, 23097}, {5489, 23107}, {9409, 51346}, {47111, 58085}, {51254, 53235}

X(58257) = X(i)-Dao conjugate of X(j) for these (i,j): {9033, 1304}, {14401, 34568}
X(58257) = crossdifference of every pair of points on line {40353, 41937}
X(58257) = barycentric product X(i)*X(j) for these {i,j}: {1650, 52624}, {3081, 23107}, {23097, 23616}
X(58257) = barycentric quotient X(i)/X(j) for these {i,j}: {1650, 34568}, {39008, 1304}, {52624, 42308}


X(58258) = X(39)X(14376)∩X(115)X(127)

Barycentrics    b^2*c^2*(b^2 - c^2)^2*(-a^2 + b^2 + c^2)^2*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(58258) lies on the cubic K583 and these lines: {39, 14376}, {115, 127}, {122, 36793}, {253, 264}, {5489, 23107}, {14919, 18019}, {41009, 44155}

X(58258) = X(i)-isoconjugate of X(j) for these (i,j): {112, 36046}, {162, 32649}, {163, 32687}, {1576, 36092}, {8767, 57655}, {32676, 44770}
X(58258) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 32687}, {125, 32649}, {525, 1297}, {647, 43717}, {4858, 36092}, {14401, 51937}, {15526, 44770}, {15595, 250}, {23285, 6330}, {23976, 23964}, {33504, 112}, {34591, 36046}, {39071, 57655}, {41167, 51822}
X(58258) = crossdifference of every pair of points on line {1576, 32649}
X(58258) = barycentric product X(i)*X(j) for these {i,j}: {339, 441}, {850, 39473}, {1503, 36793}, {2409, 23107}, {15526, 30737}, {41530, 57296}
X(58258) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 43717}, {339, 6330}, {441, 250}, {523, 32687}, {525, 44770}, {647, 32649}, {656, 36046}, {1503, 23964}, {1577, 36092}, {1650, 51937}, {5489, 34212}, {8779, 57655}, {15526, 1297}, {20902, 8767}, {23107, 2419}, {23616, 2435}, {30737, 23582}, {36793, 35140}, {39473, 110}, {41172, 51822}, {42671, 41937}, {57296, 154}, {57426, 8744}, {57430, 34854}


X(58259) = X(116)X(2973)∩X(158)X(273)

Barycentrics    b^2*c^2*(b - c)^2*(-2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3) : :

X(58259) lies on the cubic K583 and these lines: {116, 2973}, {158, 273}, {1565, 53564}, {4077, 35015}, {14377, 40955}, {14505, 23100}, {38372, 42757}

X(58259) = X(i)-isoconjugate of X(j) for these (i,j): {100, 32642}, {101, 36039}, {103, 1110}, {677, 692}, {906, 40116}, {911, 1252}, {2149, 2338}, {6066, 43736}, {23990, 36101}
X(58259) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 103}, {650, 2338}, {661, 911}, {676, 2340}, {1015, 36039}, {1086, 677}, {1566, 101}, {5190, 40116}, {6544, 45144}, {8054, 32642}, {23972, 1252}, {50441, 6065}
X(58259) = crossdifference of every pair of points on line {23990, 32642}
X(58259) = barycentric product X(i)*X(j) for these {i,j}: {516, 23989}, {676, 3261}, {1086, 35517}, {1111, 30807}, {2398, 23100}, {2973, 26006}, {14953, 21207}, {24015, 42455}, {34387, 43035}, {39470, 46107}
X(58259) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 2338}, {244, 911}, {513, 36039}, {514, 677}, {516, 1252}, {649, 32642}, {676, 101}, {910, 1110}, {1086, 103}, {1111, 36101}, {1456, 2149}, {1565, 1815}, {1566, 2340}, {1647, 45144}, {2973, 52781}, {3261, 57928}, {3937, 32657}, {3942, 36056}, {6545, 2424}, {7649, 40116}, {14953, 4570}, {23100, 2400}, {23973, 4619}, {23989, 18025}, {30807, 765}, {35517, 1016}, {39470, 1331}, {40869, 6065}, {42719, 57731}, {42756, 2427}, {43035, 59}, {43932, 32668}, {57292, 1260}, {57439, 5526}


X(58260) = X(32)X(682)∩X(115)X(2971)

Barycentrics    a^4*(b^2 - c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(58260) lies on the cubic K583 and these lines: {25, 58070}, {32, 682}, {98, 17980}, {115, 2971}, {235, 6530}, {237, 14966}, {446, 511}, {647, 865}, {868, 33752}, {881, 2086}, {887, 1084}, {1648, 3005}, {2679, 38974}, {2882, 21444}, {3095, 21850}, {5661, 45900}, {6071, 21906}, {6374, 7752}, {7790, 38526}, {9993, 56920}, {10754, 36214}, {18114, 19130}, {39009, 48316}

X(58260) = isogonal conjugate of the isotomic conjugate of X(44114)
X(58260) = X(i)-Ceva conjugate of X(j) for these (i,j): {237, 2491}, {325, 3569}, {881, 23099}, {14601, 669}, {17980, 512}, {51441, 3124}
X(58260) = X(i)-isoconjugate of X(j) for these (i,j): {63, 41174}, {75, 57991}, {98, 24037}, {99, 36036}, {249, 46273}, {287, 46254}, {290, 24041}, {336, 18020}, {561, 57742}, {662, 43187}, {670, 36084}, {685, 55202}, {799, 2966}, {811, 17932}, {1101, 18024}, {1821, 4590}, {1910, 34537}, {2715, 4602}, {4592, 22456}, {6394, 23999}, {36104, 52608}, {36120, 47389}, {43754, 57968}, {46238, 57562}
X(58260) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 57991}, {512, 98}, {523, 18024}, {1084, 43187}, {2491, 3978}, {2679, 99}, {3005, 290}, {3162, 41174}, {5139, 22456}, {5976, 44168}, {11672, 34537}, {17423, 17932}, {21905, 52145}, {35088, 4609}, {38986, 36036}, {38987, 670}, {38996, 2966}, {39000, 52608}, {40368, 57742}, {40601, 4590}, {41167, 305}, {46094, 47389}, {55267, 1502}
X(58260) = crossdifference of every pair of points on line {670, 2966}
X(58260) = barycentric product X(i)*X(j) for these {i,j}: {6, 44114}, {25, 41172}, {32, 868}, {115, 237}, {125, 2211}, {232, 20975}, {325, 1084}, {338, 9418}, {351, 8430}, {511, 3124}, {512, 3569}, {523, 2491}, {647, 17994}, {669, 2799}, {684, 2489}, {694, 2679}, {1109, 9417}, {1648, 51980}, {1755, 2643}, {2086, 40810}, {2396, 23099}, {2421, 22260}, {2422, 41167}, {2501, 39469}, {2971, 36212}, {3049, 16230}, {3125, 5360}, {3269, 34854}, {3289, 8754}, {3708, 57653}, {4079, 53521}, {4117, 46238}, {5489, 34859}, {5968, 21906}, {6041, 23350}, {6071, 51229}, {6333, 57204}, {6393, 42068}, {6784, 51543}, {8029, 14966}, {8901, 52967}, {11672, 51441}, {14398, 32112}, {14601, 35088}, {15630, 36790}, {23216, 44132}, {32740, 51429}, {41221, 41270}, {43112, 47229}, {51428, 52199}, {52625, 52765}
X(58260) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 41174}, {32, 57991}, {115, 18024}, {237, 4590}, {325, 44168}, {511, 34537}, {512, 43187}, {669, 2966}, {684, 52608}, {798, 36036}, {868, 1502}, {881, 39291}, {1084, 98}, {1501, 57742}, {1645, 36822}, {1755, 24037}, {1924, 36084}, {2086, 14382}, {2211, 18020}, {2489, 22456}, {2491, 99}, {2643, 46273}, {2679, 3978}, {2799, 4609}, {2971, 16081}, {3049, 17932}, {3124, 290}, {3289, 47389}, {3569, 670}, {4117, 1910}, {5360, 4601}, {7063, 15628}, {8430, 53080}, {9417, 24041}, {9418, 249}, {9426, 2715}, {9427, 1976}, {14251, 39292}, {14601, 57562}, {14966, 31614}, {15630, 34536}, {17994, 6331}, {20975, 57799}, {21906, 52145}, {22260, 43665}, {23099, 2395}, {23216, 248}, {23610, 2422}, {39469, 4563}, {41172, 305}, {42068, 6531}, {44114, 76}, {47418, 12215}, {51441, 57541}, {51980, 52940}, {52631, 53196}, {53521, 52612}, {57204, 685}, {57653, 46254}
X(58260) = {X(5661),X(52471)}-harmonic conjugate of X(45900)


X(58261) = X(4)X(51)∩X(125)X(136)

Barycentrics    b^2*c^2*(b^2 - c^2)^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(58261) = 4 X[14254] - X[23097]

X(58261) lies on the cubic K583 and these lines: {2, 47213}, {4, 51}, {30, 14254}, {74, 6344}, {94, 9140}, {110, 18030}, {125, 136}, {137, 46658}, {290, 46111}, {402, 16319}, {403, 18279}, {427, 18121}, {523, 3134}, {850, 34765}, {868, 5489}, {1495, 4240}, {1650, 3258}, {2088, 14582}, {2790, 47208}, {3142, 45934}, {3154, 18039}, {3260, 9214}, {3471, 46114}, {5466, 43665}, {5642, 36789}, {7417, 57490}, {7418, 47207}, {10412, 12079}, {11059, 30775}, {11251, 51403}, {12077, 41172}, {13202, 18507}, {13417, 35360}, {13448, 57486}, {15454, 51394}, {15469, 39375}, {16311, 44227}, {30512, 52772}, {31105, 44422}, {36164, 58086}, {36188, 52603}, {41204, 53176}, {43085, 46858}, {43086, 46859}, {43089, 47146}, {45289, 52472}, {46423, 48377}, {47327, 53267}, {51481, 53161}, {55265, 55276}

X(58261) = reflection of X(16186) in X(3134)
X(58261) = reflection of X(16186) in the Euler line
X(58261) = X(i)-Ceva conjugate of X(j) for these (i,j): {3260, 41079}, {6344, 523}, {10412, 23105}, {46106, 1637}, {52552, 52624}
X(58261) = X(i)-isoconjugate of X(j) for these (i,j): {74, 1101}, {110, 36034}, {163, 44769}, {249, 2159}, {250, 35200}, {662, 32640}, {1304, 4575}, {1494, 23995}, {2349, 23357}, {4558, 36131}, {4592, 32715}, {6149, 15395}, {23963, 33805}, {24041, 40352}, {36119, 47390}, {36134, 36831}, {42308, 52430}
X(58261) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 44769}, {133, 250}, {136, 1304}, {137, 36831}, {244, 36034}, {523, 74}, {647, 14919}, {1084, 32640}, {1511, 47390}, {1637, 323}, {1649, 9717}, {3005, 40352}, {3163, 249}, {3258, 110}, {5139, 32715}, {8552, 52437}, {8562, 3470}, {9033, 51394}, {14401, 394}, {14993, 15395}, {18314, 1494}, {39008, 4558}, {55267, 35910}, {57295, 3}
X(58261) = crossdifference of every pair of points on line {23357, 32320}
X(58261) = barycentric product X(i)*X(j) for these {i,j}: {30, 338}, {94, 3258}, {115, 3260}, {125, 46106}, {339, 1990}, {523, 41079}, {850, 1637}, {1109, 14206}, {1495, 23962}, {1577, 36035}, {1650, 2052}, {1784, 20902}, {2173, 23994}, {2407, 23105}, {2643, 46234}, {2682, 18023}, {2970, 11064}, {5664, 10412}, {6070, 46789}, {9033, 14618}, {9214, 52628}, {11125, 52623}, {12079, 36789}, {14398, 44173}, {15526, 52661}, {18808, 52624}, {18817, 47414}, {23616, 58071}, {35235, 57482}
X(58261) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 249}, {115, 74}, {125, 14919}, {338, 1494}, {512, 32640}, {523, 44769}, {661, 36034}, {868, 35910}, {1109, 2349}, {1495, 23357}, {1637, 110}, {1640, 51262}, {1648, 9717}, {1650, 394}, {1989, 15395}, {1990, 250}, {2052, 42308}, {2088, 14385}, {2173, 1101}, {2489, 32715}, {2501, 1304}, {2631, 4575}, {2643, 2159}, {2682, 187}, {2970, 16080}, {2971, 40354}, {3124, 40352}, {3258, 323}, {3260, 4590}, {3284, 47390}, {3708, 35200}, {4092, 15627}, {4240, 47443}, {5664, 10411}, {6070, 46788}, {8029, 2433}, {8754, 8749}, {9033, 4558}, {9406, 23995}, {9407, 23963}, {9409, 32661}, {10412, 39290}, {10413, 3470}, {11125, 4556}, {12077, 36831}, {12079, 40384}, {14206, 24041}, {14254, 39295}, {14391, 23181}, {14398, 1576}, {14400, 4636}, {14581, 57655}, {14618, 16077}, {15454, 18879}, {18808, 34568}, {20975, 18877}, {23105, 2394}, {23994, 33805}, {35235, 57487}, {35906, 57742}, {36035, 662}, {39008, 51394}, {39691, 46147}, {41079, 99}, {42068, 40351}, {46106, 18020}, {46234, 24037}, {47414, 22115}, {51428, 48451}, {52628, 36890}, {52661, 23582}, {52743, 52603}, {53178, 30528}, {55265, 15329}, {55276, 46587}, {56645, 9273}, {57424, 44436}
X(58261) = {X(39240),X(39241)}-harmonic conjugate of X(125)


X(58262) = X(39)X(512)∩X(51)X(647)

Barycentrics    a^4*(b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)^2 : :
X(58262) = X[23099] - 4 X[45911], 3 X[262] - X[43665]

X(58262) lies on the cubic K583 and these lines: {6, 878}, {32, 39201}, {39, 512}, {51, 647}, {114, 132}, {184, 669}, {262, 523}, {351, 51335}, {525, 3095}, {804, 38383}, {826, 3574}, {1649, 16186}, {2491, 9419}, {2679, 38974}, {2881, 38652}, {3001, 18311}, {3005, 8029}, {3049, 40823}, {3265, 57518}, {6072, 23098}, {6785, 34291}, {7752, 44173}, {9409, 9475}, {9737, 22089}, {14443, 21731}, {20968, 34952}, {23103, 39265}, {23611, 33569}, {23878, 44422}, {42665, 55265}, {46953, 50649}

X(58262) = reflection of X(i) in X(j) for these {i,j}: {9420, 2491}, {23099, 34347}, {34347, 45911}, {39201, 52590}
X(58262) = isogonal conjugate of the isotomic conjugate of X(41167)
X(58262) = X(i)-Ceva conjugate of X(j) for these (i,j): {523, 3569}, {1576, 237}, {3613, 868}
X(58262) = X(i)-isoconjugate of X(j) for these (i,j): {75, 41173}, {98, 36036}, {163, 57541}, {290, 36084}, {293, 22456}, {336, 685}, {662, 34536}, {799, 41932}, {811, 47388}, {1577, 57562}, {1821, 2966}, {1910, 43187}, {1966, 18858}, {2715, 46273}, {17932, 36120}, {36104, 57799}
X(58262) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 57541}, {132, 22456}, {206, 41173}, {511, 99}, {1084, 34536}, {2679, 98}, {2799, 44173}, {9467, 18858}, {11672, 43187}, {17423, 47388}, {35088, 18024}, {38987, 290}, {38996, 41932}, {39000, 57799}, {39469, 39201}, {40601, 2966}, {41172, 76}, {46094, 17932}, {57294, 3}
X(58262) = crossdifference of every pair of points on line {248, 290}
X(58262) = barycentric product X(i)*X(j) for these {i,j}: {6, 41167}, {232, 684}, {237, 2799}, {262, 33569}, {297, 39469}, {325, 2491}, {511, 3569}, {512, 36790}, {520, 51334}, {523, 11672}, {647, 2967}, {661, 23996}, {669, 32458}, {850, 9419}, {868, 14966}, {882, 46888}, {1355, 3700}, {1576, 35088}, {1577, 42075}, {2211, 6333}, {2395, 23098}, {2421, 44114}, {3124, 15631}, {3289, 16230}, {4230, 41172}, {4705, 16725}, {7062, 7178}, {8430, 9155}, {9420, 46807}, {17994, 36212}, {23611, 43665}, {34157, 55267}, {36425, 44173}, {36426, 39201}, {51229, 55143}
X(58262) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 41173}, {232, 22456}, {237, 2966}, {511, 43187}, {512, 34536}, {523, 57541}, {669, 41932}, {684, 57799}, {1355, 4573}, {1576, 57562}, {1755, 36036}, {2211, 685}, {2491, 98}, {2799, 18024}, {2967, 6331}, {3049, 47388}, {3289, 17932}, {3569, 290}, {4230, 41174}, {7062, 645}, {9417, 36084}, {9418, 2715}, {9419, 110}, {9420, 46806}, {9468, 18858}, {11672, 99}, {14251, 39291}, {14966, 57991}, {15631, 34537}, {16725, 4623}, {17994, 16081}, {23098, 2396}, {23611, 2421}, {23996, 799}, {32458, 4609}, {33569, 183}, {34157, 55266}, {35088, 44173}, {36425, 1576}, {36790, 670}, {39469, 287}, {41167, 76}, {42075, 662}, {43112, 53229}, {44114, 43665}, {46888, 880}, {51334, 6528}, {51543, 53196}


X(58263) = X(4)X(520)∩X(5)X(523)

Barycentrics    b^2*c^2*(b^2 - c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)^2 : :
X(58263) = X[10412] - 3 X[18039], 4 X[10412] - 3 X[23105], 4 X[18039] - X[23105], 3 X[381] - X[14380]

X(58263) lies on the cubic K583 and these lines: {3, 53320}, {4, 520}, {5, 523}, {30, 53178}, {107, 53881}, {113, 133}, {264, 850}, {381, 14380}, {512, 4846}, {526, 1539}, {924, 22802}, {1510, 43585}, {1553, 23097}, {1650, 3258}, {3818, 8675}, {4240, 58071}, {6086, 38605}, {6368, 14978}, {7728, 14220}, {8057, 22660}, {8562, 45694}, {9003, 32271}, {9007, 21850}, {10255, 40494}, {11897, 57295}, {12075, 22260}, {14249, 18504}, {14934, 51475}, {16171, 38610}, {37084, 37846}, {46045, 58086}, {46106, 47071}, {51270, 57122}, {51277, 57123}, {52661, 53159}, {52743, 56399}

X(58263) = midpoint of X(i) and X(j) for these {i,j}: {3, 53320}, {7728, 14220}
X(58263) = polar conjugate of X(34568)
X(58263) = polar conjugate of the isotomic conjugate of X(52624)
X(58263) = polar conjugate of the isogonal conjugate of X(14401)
X(58263) = X(i)-Ceva conjugate of X(j) for these (i,j): {850, 41079}, {6528, 46106}
X(58263) = X(i)-isoconjugate of X(j) for these (i,j): {48, 34568}, {74, 36034}, {163, 40384}, {662, 40353}, {1304, 35200}, {2159, 44769}, {2349, 32640}, {14919, 36131}
X(58263) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 110}, {115, 40384}, {133, 1304}, {1084, 40353}, {1249, 34568}, {1650, 3}, {3163, 44769}, {3258, 74}, {9033, 520}, {36901, 31621}, {39008, 14919}, {52869, 36831}, {57295, 14380}, {57465, 54439}
X(58263) = crossdifference of every pair of points on line {50, 18877}
X(58263) = barycentric product X(i)*X(j) for these {i,j}: {4, 52624}, {30, 41079}, {264, 14401}, {338, 3233}, {523, 36789}, {525, 34334}, {850, 3163}, {1099, 1577}, {1637, 3260}, {2394, 23097}, {3267, 16240}, {5664, 14254}, {6528, 39008}, {9033, 46106}, {9408, 44173}, {14206, 36035}, {14391, 43752}, {14618, 16163}, {20948, 42074}, {41077, 52661}, {46789, 55141}, {52552, 55265}
X(58263) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 34568}, {30, 44769}, {512, 40353}, {523, 40384}, {850, 31621}, {1099, 662}, {1354, 4565}, {1495, 32640}, {1637, 74}, {1990, 1304}, {2173, 36034}, {2631, 35200}, {3081, 2420}, {3163, 110}, {3233, 249}, {6062, 5546}, {6528, 57570}, {9033, 14919}, {9408, 1576}, {9409, 18877}, {14254, 39290}, {14391, 44715}, {14398, 40352}, {14401, 3}, {14581, 32715}, {16163, 4558}, {16240, 112}, {18558, 50464}, {23097, 2407}, {34288, 52933}, {34334, 648}, {36035, 2349}, {36789, 99}, {38956, 46639}, {39008, 520}, {41079, 1494}, {41392, 15395}, {41995, 5995}, {41996, 5994}, {42074, 163}, {46106, 16077}, {52552, 55264}, {52624, 69}, {52661, 15459}, {52743, 14385}, {52945, 36831}, {55141, 46788}, {55265, 14264}, {55276, 52646}


X(58264) = X(271)X(521)∩X(522)X(20264)

Barycentrics    a*(a - b - c)*(b - c)*(a^2 - b^2 - c^2)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6)^2 : :

X(58264) lies on the cubic K583 and these lines: {271, 521}, {522, 20264}, {14249, 44426}, {14302, 39130}, {14312, 25640}, {35580, 52114}, {43728, 57495}

X(58264) = X(1295)-isoconjugate of X(36044)
X(58264) = X(i)-Dao conjugate of X(j) for these (i,j): {6001, 108}, {35580, 1295}


X(58265) = BARYCENTRIC PRODUCT OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(a^6 + 2*a^4*b^2 - 7*a^2*b^4 + 4*b^6 + 2*a^4*c^2 + 18*a^2*b^2*c^2 - 4*b^4*c^2 - 7*a^2*c^4 - 4*b^2*c^4 + 4*c^6) : :

X(58265) lies on these lines: {3, 6}, {115, 34288}, {1383, 8749}, {3163, 7735}, {3269, 51990}, {5254, 47338}, {5306, 47169}, {5309, 16303}, {9142, 19136}, {10986, 15262}, {11648, 47322}, {15526, 37643}, {20975, 34417}, {37665, 39389}, {43448, 52945}

X(58265) = crossdifference of every pair of points on line {523, 54995}
X(58265) = barycentric product X(3426)*X(44750)
X(58265) = barycentric quotient X(44750)/X(44133)
X(58265) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 574, 33871}, {6, 1384, 3284}, {6, 3003, 574}, {6, 33872, 14075}, {5008, 40135, 6}


X(58266) = CROSSSUM OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(8*a^8 - 22*a^6*b^2 + 18*a^4*b^4 - 2*a^2*b^6 - 2*b^8 - 22*a^6*c^2 + 25*a^4*b^2*c^2 - 6*a^2*b^4*c^2 + 3*b^6*c^2 + 18*a^4*c^4 - 6*a^2*b^2*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + 3*b^2*c^6 - 2*c^8) : :

X(58266) lies on these lines: {2, 15027}, {3, 9544}, {110, 3431}, {154, 37946}, {184, 15034}, {576, 47485}, {1147, 7556}, {1181, 15748}, {1899, 3525}, {1993, 37953}, {3043, 9970}, {3091, 43818}, {3292, 11464}, {3518, 53860}, {7464, 47391}, {7492, 22115}, {7550, 19357}, {7575, 9703}, {9143, 18580}, {9545, 12106}, {9705, 21844}, {11001, 44110}, {11002, 11935}, {11003, 32609}, {11422, 51393}, {11541, 50414}, {12584, 43697}, {13472, 15317}, {14094, 35473}, {15039, 49671}, {15702, 20190}, {18445, 37952}, {35493, 51522}

X(58266) = {X(7575),X(9703)}-harmonic conjugate of X(9716)


X(58267) = CROSSDIFFERENCE OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(4*a^6 - 7*a^4*b^2 + 2*a^2*b^4 + b^6 - 7*a^4*c^2 + 6*a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(58267) = X[5191] - 3 X[23200]

X(58267) lies on these lines: {2, 54803}, {3, 6}, {30, 3018}, {111, 10313}, {112, 841}, {230, 6128}, {231, 43291}, {232, 37969}, {248, 5505}, {323, 4558}, {401, 48540}, {526, 647}, {1495, 1576}, {1971, 46276}, {2393, 5191}, {3054, 6749}, {3163, 6781}, {3289, 39689}, {3292, 9145}, {3849, 45331}, {5106, 18371}, {8585, 10311}, {8744, 52952}, {8779, 18877}, {9142, 52144}, {10752, 52279}, {11614, 52704}, {12367, 42671}, {15303, 37461}, {15993, 17416}, {16303, 47031}, {16310, 47339}, {18487, 47275}, {22151, 54439}, {32113, 35282}, {32640, 52976}, {32662, 45723}, {33629, 43753}, {34288, 36427}, {35298, 52699}, {39231, 44102}, {40879, 51372}, {41254, 44375}, {43620, 46262}, {43754, 48984}, {47281, 51611}

X(58267) = Schoutte-circle-inverse of X(32110)
X(58267) = complement of the isotomic conjugate of X(11564)
X(58267) = isogonal conjugate of the isotomic conjugate of X(40112)
X(58267) = isogonal conjugate of the polar conjugate of X(10295)
X(58267) = X(11564)-complementary conjugate of X(2887)
X(58267) = X(48362)-Ceva conjugate of X(184)
X(58267) = X(i)-isoconjugate of X(j) for these (i,j): {92, 34802}, {1577, 9060}
X(58267) = X(22391)-Dao conjugate of X(34802)
X(58267) = crossdifference of every pair of points on line {381, 523}
X(58267) = barycentric product X(i)*X(j) for these {i,j}: {3, 10295}, {6, 40112}, {110, 9003}, {34210, 41390}
X(58267) = barycentric quotient X(i)/X(j) for these {i,j}: {184, 34802}, {1576, 9060}, {9003, 850}, {10295, 264}, {26864, 52447}, {40112, 76}
X(58267) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 50, 187}, {6, 187, 3003}, {6, 3284, 46203}, {6, 5585, 52703}, {6, 21309, 33872}, {15, 16, 32110}, {50, 3284, 3003}, {50, 10317, 571}, {50, 18365, 3284}, {50, 34569, 46222}, {187, 3284, 6}, {577, 3284, 14961}, {1384, 40115, 187}, {3003, 14961, 570}, {3003, 46203, 6}, {3163, 6781, 47322}, {10317, 15905, 3284}, {10317, 40115, 1384}, {11063, 40135, 3003}, {15166, 15167, 566}, {15513, 15860, 18573}, {34569, 46211, 6}, {57025, 57026, 5063}


X(58268) = TRILINEAR POLE OF BICENTRIC PAIR PU(214)

Barycentrics    (a^6 + 2*a^4*b^2 - 7*a^2*b^4 + 4*b^6 - a^4*c^2 + 6*a^2*b^2*c^2 - 7*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 + c^6)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 + 6*a^2*b^2*c^2 + 2*b^4*c^2 - 7*a^2*c^4 - 7*b^2*c^4 + 4*c^6) : :

X(58268) lies on the Kiepert circumhyperbola and these lines: {2, 3018}, {4, 541}, {6, 54803}, {96, 34351}, {98, 7426}, {115, 54918}, {262, 15363}, {338, 34289}, {476, 18316}, {524, 2986}, {543, 54925}, {598, 41254}, {648, 43530}, {671, 3580}, {2394, 9979}, {5466, 55121}, {5485, 54395}, {6515, 54784}, {9221, 49674}, {11161, 54662}, {11433, 54792}, {12079, 47332}, {13567, 54864}, {14484, 31127}, {14494, 30789}, {16080, 37765}, {21358, 36789}, {44555, 55957}, {46105, 46106}, {46201, 47296}, {51481, 55973}

X(58268) = reflection of X(54918) in X(115)
X(58268) = isotomic conjugate of X(40112)
X(58268) = polar conjugate of X(10295)
X(58268) = antigonal image of X(54918)
X(58268) = antitomic image of X(54918)
X(58268) = isotomic conjugate of the anticomplement of X(44569)
X(58268) = isotomic conjugate of the complement of X(44555)
X(58268) = polar conjugate of the isogonal conjugate of X(34802)
X(58268) = X(i)-isoconjugate of X(j) for these (i,j): {31, 40112}, {48, 10295}, {163, 9003}
X(58268) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 40112}, {115, 9003}, {1249, 10295}
X(58268) = cevapoint of X(i) and X(j) for these (i,j): {2, 44555}, {6, 7575}
X(58268) = trilinear pole of line {381, 523}
X(58268) = barycentric product X(i)*X(j) for these {i,j}: {264, 34802}, {850, 9060}, {36889, 52447}
X(58268) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 40112}, {4, 10295}, {523, 9003}, {9060, 110}, {34209, 41390}, {34802, 3}, {52447, 376}




leftri   Points on the Yff hyperbola: X(58269) - X(58278)  rightri

A barycentric equation for the Yff hyperbola (MathWorld) is the following:

a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 - b^2 - c^2)*x^2 + (2*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 - 3*a^2*b^2*c^4 + b^4*c^4 + a^2*c^6 + b^2*c^6 - c^8)*x*y + b^2*(a^2 - b^2)*(b^2 - c^2)*(a^2 - b^2 + c^2)*y^2 - (a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 - 2*a^6*c^2 - a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 + 4*a^4*c^4 - a^2*b^2*c^4 - b^4*c^4 - 2*a^2*c^6 + b^2*c^6)*x*z - (a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - a^6*c^2 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 + 4*b^4*c^4 + a^2*c^6 - 2*b^2*c^6)*y*z - c^2*(a^2 - c^2)*(b^2 - c^2)*(a^2 + b^2 - c^2)*z^2 = 0.

The center of the Yff hyperbola is X(381), and the hyperbola passes through X(i) for i = 2, 4, 14163, 14164, 14214, 14215, and 58269-58278. See PU(213) in Bicentric Pairs.

The perspector of the Yff hyperbola is X(13481). Other than X(381), the asymptotes meet the line at infinity in these points:

3*a^2*(a^2 - b^2 - c^2) + 2*Sqrt[3]*(b^2 - c^2)*S + 4*S^2:: on lines {{30, 511}}. (to be continued)

underbar



X(58269) = X(184)X(386)∩X(3216)X(21381)

Barycentrics    a^2*(a*b^3 + b^4 + a^3*c + a^2*b*c + a*b^2*c + b^3*c + a^2*c^2 - a*c^3 - b*c^3 - c^4)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^2*b*c - b^3*c + a*b*c^2 + a*c^3 + b*c^3 + c^4) : :

X(58269) lies on the Yff hyperbola and these lines: {184, 386}, {3216, 21381}, {4705, 13514}, {16414, 46127}, {20975, 52375}


X(58270) = X(2)X(39)∩X(4)X(18309)

Barycentrics    b^2*c^2*(-a^6 + 3*a^4*b^2 - 4*a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^2*c^4)*(a^6 + a^4*b^2 - 3*a^4*c^2 - 3*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 - c^6) : :

X(58270) lies on the Yff hyperbola and these lines: {2, 39}, {4, 18309}, {6792, 52629}, {14948, 18311}


X(58271) = X(2)X(18121)∩X(4)X(525)

Barycentrics    (a^10 - a^8*b^2 + 2*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 + b^10 - a^8*c^2 + a^6*b^2*c^2 + 2*a^4*b^4*c^2 + a^2*b^6*c^2 - 3*b^8*c^2 - 2*a^6*c^4 + 4*b^6*c^4 + 2*a^4*c^6 - 3*a^2*b^2*c^6 - 4*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10)*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + a^6*b^2*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 + 2*a^6*c^4 + 2*a^4*b^2*c^4 - 4*b^6*c^4 - 4*a^4*c^6 + a^2*b^2*c^6 + 4*b^4*c^6 + a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(58271) lies on the Yff hyperbola and these lines: {2, 18121}, {4, 525}, {4240, 6525}


X(58272) = X(2)X(23105)∩X(4)X(69)

Barycentrics    b^2*c^2*(a^6 - a^4*b^2 + b^6 - a^4*c^2 + a^2*b^2*c^2 - 2*b^4*c^2 + b^2*c^4)*(a^6 - a^4*b^2 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - 2*b^2*c^4 + c^6) : :

X(58272) lies on the Yff hyperbola and these lines: {2, 23105}, {4, 69}, {14163, 36163}, {14164, 52628}, {35139, 51429}, {35922, 58261}


X(58273) = X(4)X(6)∩X(868)X(14164)

Barycentrics    (a^8 - 2*a^4*b^4 + b^8 - 2*a^6*c^2 + 3*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 - a^2*b^2*c^4 + 2*b^4*c^4 - 2*b^2*c^6 + c^8)*(a^8 - 2*a^6*b^2 + b^8 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 2*b^2*c^6 + c^8) : : X(58273) lies on the Yff hyperbola and these lines: {4, 6}, {868, 14164}, {1316, 14163}, {14214, 50149}, {14215, 14995}


X(58274) = X(2)X(525)∩X(4)X(47284)

Barycentrics    (a^8 + 2*a^6*b^2 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 - 5*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 + 2*a^6*c^2 - 5*a^4*b^2*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 7*a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8) : :

X(58274) lies on the Yff hyperbola and these lines: {2, 525}, {4, 47284}, {14164, 57598}, {47076, 52628}


X(58275) = X(2)X(647)∩X(4)X(52628)

Barycentrics    b^2*c^2*(a^8 - 2*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - b^4*c^4 + b^2*c^6)*(a^8 - a^4*b^4 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 - b^4*c^4 - a^2*c^6 - b^2*c^6 + c^8) : :

X(58275) lies on the Yff hyperbola and these lines: {2, 647}, {4, 52628}, {76, 35923}


X(58276) = X(2)X(47213)∩X(4)X(512)

Barycentrics    b^2*c^2*(-a^8 + a^4*b^4 - a^2*b^6 + b^8 + 2*a^6*c^2 - a^4*b^2*c^2 + a^2*b^4*c^2 - 3*b^6*c^2 - a^4*c^4 + 3*b^4*c^4 - b^2*c^6)*(a^8 - 2*a^6*b^2 + a^4*b^4 + a^4*b^2*c^2 + b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 - 3*b^4*c^4 + a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(58276) lies on the Yff hyperbola and these lines: {2, 47213}, {4, 512}, {14254, 58252}, {18121, 36183}, {47076, 52628}


X(58277) = X(4)X(597)∩X(14163)X(34094)

Barycentrics    (5*a^8 - 10*a^4*b^4 + 5*b^8 - 6*a^6*c^2 + 11*a^4*b^2*c^2 + 5*a^2*b^4*c^2 - 6*b^6*c^2 - 4*a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 - 6*b^2*c^6 + 5*c^8)*(5*a^8 - 6*a^6*b^2 - 4*a^4*b^4 + 5*b^8 + 11*a^4*b^2*c^2 - a^2*b^4*c^2 - 6*b^6*c^2 - 10*a^4*c^4 + 5*a^2*b^2*c^4 + 2*b^4*c^4 - 6*b^2*c^6 + 5*c^8) : :

X(58277) lies on the Yff hyperbola and these lines: {4, 597}, {14163, 34094}, {14214, 50147}


X(58278) = X(4)X(599)∩X(14163)X(36194)

Barycentrics    (a^8 + 6*a^6*b^2 - 8*a^4*b^4 + b^8 - 5*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 6*b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 - 14*b^4*c^4 + 6*b^2*c^6 + c^8)*(a^8 - 2*a^4*b^4 + b^8 + 6*a^6*c^2 - 5*a^4*b^2*c^2 + a^2*b^4*c^2 + 6*b^6*c^2 - 8*a^4*c^4 + 7*a^2*b^2*c^4 - 14*b^4*c^4 + 6*b^2*c^6 + c^8) : :

X(58278) lies on the Yff hyperbola and these lines: {4, 599}, {14163, 36194}, {14164, 57618}, {14214, 50146}


X(58279) = PERSPECTOR OF 1ST YFF-MOSES HYPERBOLA

Barycentrics    (3*a*b - b^2 - a*c + 3*b*c)*(a*b - 3*a*c - 3*b*c + c^2) : :

Peter Moses showed that the locus of the bicentric pair P(t) = (-t + cot B)((t + cot C) : : and U(t) = (-t + cot C)((t + cot B) : : lies on the Yff hypebola. For many choices of a function f or g, the bicentric pairs given by the forms

P(t) = (-t + f(B))((t + f(C)) : : and U(t) = (-t + f(C))((t + f(B)) : :

and

P(t) = (-t + g(b))((t + b(c)) : : and U(t) = (-t + g(c))((t + g(b)) : :

likewise represent hyperbolas, here introduced as the family of Yff-Moses hyperbolas. The 1st Yff-Moses hyperbola is defined by

P(t) = (-u + b)(u + c) : : , where u = (a+b+c)t and t = t(a,b,c) is symmetric in a,b,c and homogeneous of degree 0; e.g., t can be a real variable.

A barycentric equation for the 1st Yff-Moses hyperbola, denoted by YM1, follows:

2*a*(a - b)*(a - c)*(b + c)*x^2 - (a^3*b - 6*a^2*b^2 + a*b^3 + a^3*c + 3*a^2*b*c + 3*a*b^2*c + b^3*c + a^2*c^2 - 6*a*b*c^2 + b^2*c^2)*x*y - 2*(a - b)*b*(b - c)*(a + c)*y^2 - (a^3*b + a^2*b^2 + a^3*c + 3*a^2*b*c - 6*a*b^2*c - 6*a^2*c^2 + 3*a*b*c^2 + b^2*c^2 + a*c^3 + b*c^3)*x*z - (a^2*b^2 + a*b^3 - 6*a^2*b*c + 3*a*b^2*c + b^3*c + a^2*c^2 + 3*a*b*c^2 - 6*b^2*c^2 + a*c^3 + b*c^3)*y*z + 2*(a + b)*(a - c)*(b - c)*c*z^2 = 0

The center of YM1 is X(4688), and YM1 passes through X(2) and X(75).

X(58279) lies on these lines: {10, 7200}, {257, 17205}, {740, 3244}, {3948, 27793}, {6532, 21139}, {17118, 56145}

X(58279) = X(101)-isoconjugate of X(48337)
X(58279) = X(1015)-Dao conjugate of X(48337)
X(58279) = trilinear pole of line {4010, 28217}
X(58279) = barycentric quotient X(513)/X(48337)


X(58280) = X(85)X(514)∩X(92)X(3239)

Barycentrics    b^2*(b - c)*c^2*(-2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3)^2 : :

X(58280) lies on the cubic K583 and these lines: {85, 514}, {92, 3239}, {118, 20622}, {1566, 58259}, {4091, 14377}, {41013, 52623}.

> X(58280) = X(i)-isoconjugate of X(j) for these (i,j): {103, 36039}, {677, 911}, {32642, 36101}, {36056, 40116}. X(58280) = X(i)-Dao conjugate of X(j) for these (i,j): {516, 101}, {1566, 103}, {20622, 40116}, {23972, 677}, {39470, 4091}, {57292, 3}. X(58280) = crossdifference of every pair of points on line {32642, 32657}. X(58280) = barycentric product X(i)*X(j) for these {i,j}: {676, 35517}, {693, 24014}, {1360, 35519}, {2398, 58259}, {3234, 23989}, {3261, 23972}, {3676, 55019}, {4025, 21665}, {40495, 42077}. X(58280) = barycentric quotient X(i)/X(j) for these {i,j}: {516, 677}, {676, 103}, {910, 36039}, {1360, 109}, {1886, 40116}, {3234, 1252}, {3261, 57548}, {21665, 1897}, {23972, 101}, {24014, 100}, {35517, 57928}, {39470, 1815}, {42073, 8750}, {42077, 692}, {55019, 3699}, {58259, 2400}.


X(58281) = X(518)X(23102)∩X(5511)X(53990)

Barycentrics    a*(b - c)^2*(a*b - b^2 + a*c - c^2)*(a^2 - 2*a*b + b^2 - 2*a*c + c^2)^2 : :

X(58281) lies on the cubic K583 and these lines: {518, 23102}, {5511, 53990}.

X(58281) = X(i)-isoconjugate of X(j) for these (i,j): {1292, 36041}, {32644, 37206}. X(58281) = X(i)-Dao conjugate of X(j) for these (i,j): {3126, 55013}, {3309, 105}, {5519, 1292}. X(58281) = barycentric product X(4437)*X(15636). X(58281) = barycentric quotient X(i)/X(j) for these {i,j}: {8642, 32644}, {15636, 6185}, {17435, 55013}.


X(58282) = X(519)X(58254)∩X(4939)X(5510)

Barycentrics    b^2*(b - c)^2*c^2*(-3*a + b + c)^2*(-2*a + b + c) : :

X(58282) lies on the cubic K583 and these lines: {519, 58254}, {4939, 5510}, {31680, 44721}.

X(58282) = X(i)-isoconjugate of X(j) for these (i,j): {1293, 36042}, {27834, 32645}. X(58282) = X(i)-Dao conjugate of X(j) for these (i,j): {3667, 106}, {5516, 1293}. X(58282) = barycentric product X(i)*X(j) for these {i,j}: {3264, 40621}, {15637, 36791}. X(58282) = barycentric quotient X(i)/X(j) for these {i,j}: {3264, 57578}, {4394, 36042}, {4487, 5382}, {4530, 33963}, {4943, 5548}, {8643, 32645}, {14425, 1293}, {15637, 2226}, {31182, 901}, {40621, 106}.


X(58283) = X(524)X(23106)∩X(5512)X(53992)

Barycentrics    b^2*(b^2 - c^2)^2*c^2*(-5*a^2 + b^2 + c^2)^2*(-2*a^2 + b^2 + c^2) : :

X(58283) lies on the cubic K583 and these lines: {524, 23106}, {5512, 53992}, {14249, 37778}, {23992, 52628}, {35133, 35234}.

X(58283) = X(i)-isoconjugate of X(j) for these (i,j): {1296, 36045}, {32648, 37216}. X(58283) = X(i)-Dao conjugate of X(j) for these (i,j): {1499, 111}, {9125, 13492}, {31654, 1296}. X(58283) = barycentric product X(i)*X(j) for these {i,j}: {3266, 35133}, {15638, 36792}. X(58283) = barycentric quotient X(i)/X(j) for these {i,j}: {3266, 57569}, {8644, 32648}, {9125, 1296}, {15638, 10630}, {31654, 13492}, {35133, 111}.


X(58284) = X(126)X(1560)∩X(647)X(34511)

Barycentrics    b^2*(b^2 - c^2)*c^2*(-5*a^2 + b^2 + c^2)*(-2*a^2 + b^2 + c^2)^2 : :

X(58284) lies on the cubic K583 and these lines: {126, 1560}, {647, 34511}, {850, 44010}, {1649, 6077}, {2408, 11059}, {14360, 18309}.

X(58284) = X(i)-isoconjugate of X(j) for these (i,j): {111, 36045}, {897, 32648}, {37216, 41936}. X(58284) = X(i)-Dao conjugate of X(j) for these (i,j): {524, 1296}, {1648, 21448}, {6593, 32648}, {11147, 34574}, {31654, 111}, {35133, 10630}. X(58284) = crossdifference of every pair of points on line {14908, 32648}. X(58284) = barycentric product X(i)*X(j) for these {i,j}: {1499, 36792}, {1649, 11059}, {1992, 52629}, {2408, 23106}, {3266, 9125}, {14207, 24038}, {15471, 45807}, {27088, 35522}. X(58284) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 32648}, {896, 36045}, {1499, 10630}, {1649, 21448}, {1992, 34574}, {2482, 1296}, {8030, 2434}, {8644, 41936}, {9125, 111}, {23106, 2418}, {24038, 37216}, {27088, 691}, {33915, 57467}, {36792, 35179}, {52629, 5485}, {54274, 39238}.


X(58285) = X(35)X(15107)∩X(42)X(181)

Barycentrics    a^2*(b+c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(58285) lies on these lines: {35, 15107}, {42, 181}, {267, 7161}, {484, 17484}, {512, 58286}, {756, 21353}, {902, 2183}, {1334, 21822}, {2223, 20962}, {2245, 21805}, {2347, 21747}, {3711, 5036}, {20683, 21745}, {20961, 54327}, {21363, 29690}

X(58285) = perspector of circumconic {{A, B, C, X(4559), X(52555)}}
X(58285) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 40716}, {81, 21739}, {86, 3065}, {274, 19302}, {18155, 34921}
X(58285) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 40716}, {40586, 21739}, {40600, 3065}
X(58285) = X(i)-Ceva conjugate of X(j) for these {i, j}: {484, 21864}, {34857, 42}
X(58285)= pole of line {661, 4272} with respect to the Brocard inellipse
X(58285) = perspector of cevian triangle of X(484) and inverse-of-ABC in bicevian conic of X(1) and X(484)
X(58285) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(484), X(1402)}}, {{A, B, C, X(1400), X(17484)}}, {{A, B, C, X(3724), X(42657)}}
X(58285) = barycentric product X(i)*X(j) for these (i, j): {1, 21864}, {10, 19297}, {37, 484}, {1500, 56935}, {1826, 23071}, {11076, 3678}, {17484, 42}, {17791, 213}, {21805, 47058}, {21859, 35055}, {26744, 52383}, {34857, 40612}, {42657, 4552}
X(58285) = barycentric quotient X(i)/X(j) for these (i, j): {37, 40716}, {42, 21739}, {213, 3065}, {484, 274}, {1918, 19302}, {17484, 310}, {17791, 6385}, {19297, 86}, {21864, 75}, {23071, 17206}, {42657, 4560}
X(58285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3724, 51377, 42}


X(58286) = X(10)X(850)∩X(42)X(647)

Barycentrics    a^2*(b-c)*(b+c)*(-b^2-b*c-c^2+a*(b+c)) : :

X(58286) lies on these lines: {8, 25258}, {10, 850}, {31, 9404}, {38, 17069}, {42, 647}, {512, 58285}, {523, 21727}, {612, 1021}, {649, 50494}, {656, 4088}, {661, 2512}, {669, 17990}, {756, 3700}, {798, 50496}, {899, 24782}, {968, 57067}, {984, 4467}, {1734, 25259}, {2254, 48047}, {2501, 4024}, {3005, 50491}, {3250, 50481}, {3681, 16751}, {3720, 25084}, {4079, 50483}, {4122, 57099}, {4155, 58360}, {4651, 31296}, {4685, 36900}, {4770, 42666}, {4841, 40471}, {8013, 21719}, {17494, 24462}, {17989, 50544}, {23792, 47656}, {23800, 47698}, {24622, 26037}, {30864, 30970}, {42039, 45669}, {42664, 50487}, {50484, 57234}

X(58286) = reflection of X(i) in X(j) for these {i,j}: {3700, 58362}, {58288, 58303}, {58293, 58298}, {58298, 58289}, {58300, 58299}
X(58286) = perspector of circumconic {{A, B, C, X(1826), X(3730)}}
X(58286) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 43190}, {662, 14377}, {1019, 57750}, {1333, 31624}, {1444, 26705}, {4575, 57497}, {7199, 15378}, {15320, 52935}, {16727, 31616}
X(58286) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 31624}, {116, 86}, {136, 57497}, {1084, 14377}, {6586, 52619}, {17463, 3673}, {40586, 43190}, {57501, 4558}
X(58286) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 21045}, {3681, 20974}, {6586, 21837}, {31010, 4079}
X(58286)= pole of line {86, 57497} with respect to the polar circle
X(58286)= pole of line {4272, 39690} with respect to the Brocard inellipse
X(58286)= pole of line {21045, 21946} with respect to the Kiepert hyperbola
X(58286)= pole of line {57054, 57078} with respect to the Yff parabola
X(58286) = perspector of cevian triangle of X(1734) and inverse-of-ABC in bicevian conic of X(1) and X(1734)
X(58286) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(850), X(4557)}}, {{A, B, C, X(1734), X(21837)}}, {{A, B, C, X(2501), X(6586)}}, {{A, B, C, X(3700), X(38358)}}, {{A, B, C, X(16751), X(20974)}}
X(58286) = barycentric product X(i)*X(j) for these (i, j): {10, 6586}, {101, 21045}, {116, 4557}, {1018, 17463}, {1500, 57214}, {1734, 37}, {1824, 57106}, {2333, 57054}, {2501, 56813}, {3681, 661}, {3730, 523}, {4006, 513}, {4024, 4184}, {15624, 1577}, {16751, 756}, {17233, 512}, {17916, 656}, {18184, 40521}, {20974, 3952}, {21837, 75}, {25259, 42}, {33297, 4079}, {33298, 3709}, {33932, 798}, {38358, 4551}
X(58286) = barycentric quotient X(i)/X(j) for these (i, j): {10, 31624}, {42, 43190}, {116, 52619}, {512, 14377}, {1734, 274}, {2333, 26705}, {2501, 57497}, {3681, 799}, {3730, 99}, {4006, 668}, {4079, 15320}, {4184, 4610}, {4557, 57750}, {6586, 86}, {15624, 662}, {16751, 873}, {17233, 670}, {17463, 7199}, {17916, 811}, {20974, 7192}, {21045, 3261}, {21837, 1}, {22084, 15419}, {22388, 1790}, {25259, 310}, {33297, 52612}, {33932, 4602}, {38358, 18155}, {56813, 4563}
X(58286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58298}, {512, 58298, 58293}, {512, 58299, 58300}, {512, 58303, 58288}, {647, 4524, 42}


X(58287) = X(8)X(6535)∩X(42)X(213)

Barycentrics    a^2*(b+c)*(a^2-b^2-b*c-c^2+a*(b+c)) : :

X(58287) lies on these lines: {8, 6535}, {9, 21803}, {31, 4517}, {42, 213}, {44, 40521}, {292, 672}, {512, 58285}, {756, 2295}, {758, 20703}, {869, 3730}, {896, 4447}, {902, 1110}, {1126, 1203}, {1757, 6541}, {1909, 32938}, {1931, 40794}, {2308, 5280}, {2643, 21864}, {3219, 17799}, {3230, 20456}, {3952, 4039}, {3971, 41233}, {4071, 21718}, {4433, 21805}, {5168, 17798}, {7064, 20964}, {7122, 52405}, {17033, 32925}, {17137, 29687}, {17316, 32912}, {17735, 18266}, {20590, 49692}, {29569, 32913}

X(58287) = perspector of circumconic {{A, B, C, X(4557), X(52555)}}
X(58287) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 18032}, {81, 6650}, {86, 1929}, {274, 17962}, {286, 17972}, {513, 17930}, {693, 17940}, {757, 11599}, {763, 6543}, {873, 2054}, {1019, 35148}, {1444, 17982}, {1509, 9278}, {2702, 7199}, {4623, 18001}, {7192, 37135}, {9505, 33295}, {9506, 30940}, {16709, 53688}, {18014, 52935}, {18827, 40767}, {37128, 40725}
X(58287) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 18032}, {35080, 52619}, {39026, 17930}, {39041, 274}, {39042, 873}, {40586, 6650}, {40600, 1929}, {40607, 11599}, {41841, 310}
X(58287) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1757, 20693}
X(58287)= pole of line {798, 4272} with respect to the Brocard inellipse
X(58287)= pole of line {1509, 17205} with respect to the Stammler hyperbola
X(58287)= pole of line {52539, 52592} with respect to the Steiner inellipse
X(58287) = perspector of cevian triangle of X(1757) and inverse-of-ABC in bicevian conic of X(1) and X(1757)
X(58287) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(42), X(1252)}}, {{A, B, C, X(213), X(1110)}}, {{A, B, C, X(292), X(1931)}}, {{A, B, C, X(512), X(1126)}}, {{A, B, C, X(1334), X(6065)}}, {{A, B, C, X(1500), X(6541)}}, {{A, B, C, X(2107), X(8298)}}, {{A, B, C, X(2388), X(2786)}}, {{A, B, C, X(17731), X(21753)}}, {{A, B, C, X(17990), X(52963)}}
X(58287) = barycentric product X(i)*X(j) for these (i, j): {1, 20693}, {6, 6541}, {10, 17735}, {42, 6542}, {101, 18004}, {1018, 9508}, {1326, 594}, {1500, 17731}, {1757, 37}, {1931, 756}, {2238, 40794}, {2786, 4557}, {3690, 423}, {3952, 5029}, {17927, 71}, {17934, 4079}, {17943, 4024}, {17976, 1826}, {17990, 190}, {18266, 321}, {20947, 213}, {52137, 872}
X(58287) = barycentric quotient X(i)/X(j) for these (i, j): {37, 18032}, {42, 6650}, {101, 17930}, {213, 1929}, {872, 9278}, {1326, 1509}, {1500, 11599}, {1757, 274}, {1918, 17962}, {1931, 873}, {2200, 17972}, {2333, 17982}, {2681, 58259}, {2786, 52619}, {3690, 57848}, {3747, 40725}, {4079, 18014}, {4557, 35148}, {5029, 7192}, {6541, 76}, {6542, 310}, {7109, 2054}, {8298, 30940}, {9508, 7199}, {17735, 86}, {17927, 44129}, {17934, 52612}, {17943, 4610}, {17976, 17206}, {17990, 514}, {18004, 3261}, {18266, 81}, {20693, 75}, {20947, 6385}, {32739, 17940}, {40794, 40017}, {41333, 40767}, {52137, 57992}, {53581, 18001}
X(58287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3747, 20683, 42}, {20683, 52963, 3747}


X(58288) = X(42)X(669)∩X(44)X(513)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-b*c+a*(b+c)) : :

X(58288) lies on these lines: {2, 18197}, {6, 57129}, {10, 44445}, {42, 669}, {44, 513}, {71, 14321}, {512, 58285}, {514, 27673}, {523, 57078}, {663, 50481}, {667, 20456}, {810, 8643}, {812, 29512}, {1019, 31290}, {1193, 27677}, {1400, 7180}, {1577, 4382}, {2084, 5029}, {2308, 56242}, {2333, 2501}, {2350, 3572}, {3005, 17990}, {3124, 38346}, {3250, 52592}, {3700, 57163}, {3709, 42664}, {3720, 25537}, {3804, 4524}, {3835, 27045}, {4024, 4039}, {4057, 57096}, {4063, 4129}, {4455, 50487}, {4481, 24948}, {4651, 31299}, {4832, 50495}, {4988, 57234}, {6371, 27675}, {6544, 52087}, {7234, 14404}, {8655, 23655}, {10459, 28401}, {14407, 55210}, {14838, 27469}, {14991, 21763}, {15107, 39577}, {20461, 20981}, {20909, 20953}, {21053, 22224}, {21099, 21720}, {21297, 29426}, {21383, 46148}, {21385, 26824}, {24719, 31946}, {25299, 26037}, {25636, 30968}, {26148, 31330}, {26983, 31286}, {27020, 27077}, {28247, 28286}, {29545, 47776}, {29807, 47759}, {30970, 31003}, {40147, 55261}, {47794, 52586}, {47908, 48144}, {47984, 48064}, {48011, 48041}

X(58288) = reflection of X(i) in X(j) for these {i,j}: {58286, 58303}, {58294, 58298}, {58295, 58289}, {58298, 58299}, {58361, 29512}
X(58288) = isogonal conjugate of X(37205)
X(58288) = perspector of circumconic {{A, B, C, X(1), X(595)}}
X(58288) = center of circumconic {{A, B, C, X(3733), X(4063)}}
X(58288) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37205}, {2, 34594}, {81, 8050}, {99, 39798}, {100, 39747}, {110, 40013}, {163, 57915}, {190, 39949}, {274, 40519}, {596, 662}, {645, 20615}, {799, 40148}, {4567, 40086}, {40085, 52935}
X(58288) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 37205}, {115, 57915}, {244, 40013}, {594, 27808}, {649, 7192}, {1084, 596}, {4129, 7199}, {4132, 4129}, {8054, 39747}, {32664, 34594}, {38986, 39798}, {38996, 40148}, {40586, 8050}, {40627, 40086}, {55053, 39949}
X(58288) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 4065}, {3733, 512}, {3952, 42}, {4063, 4132}, {32911, 8054}, {37205, 1}
X(58288) = X(i)-complementary conjugate of X(j) for these {i, j}: {39748, 53564}, {39964, 17761}, {42471, 21252}, {53627, 3741}
X(58288)= pole of line {57, 16704} with respect to the Bevan circle
X(58288)= pole of line {2051, 3936} with respect to the excircles-radical circle
X(58288)= pole of line {21026, 44411} with respect to the nine-point circle
X(58288)= pole of line {92, 17171} with respect to the polar circle
X(58288)= pole of line {37, 42} with respect to the Brocard inellipse
X(58288)= pole of line {13478, 40013} with respect to the excentral-hexyl ellipse
X(58288)= pole of line {662, 37205} with respect to the Stammler hyperbola
X(58288)= pole of line {192, 4065} with respect to the Steiner circumellipse
X(58288)= pole of line {37, 4075} with respect to the Steiner inellipse
X(58288)= pole of line {649, 4057} with respect to the Yff parabola
X(58288)= pole of line {799, 37205} with respect to the Wallace hyperbola
X(58288) = perspector of cevian triangle of X(4063) and inverse-of-ABC in bicevian conic of X(1) and X(4063)
X(58288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(1575)}}, {{A, B, C, X(44), X(1400)}}, {{A, B, C, X(512), X(4979)}}, {{A, B, C, X(513), X(4057)}}, {{A, B, C, X(595), X(896)}}, {{A, B, C, X(649), X(4063)}}, {{A, B, C, X(650), X(47793)}}, {{A, B, C, X(659), X(8054)}}, {{A, B, C, X(661), X(4129)}}, {{A, B, C, X(672), X(40147)}}, {{A, B, C, X(851), X(4222)}}, {{A, B, C, X(899), X(3293)}}, {{A, B, C, X(1018), X(57129)}}, {{A, B, C, X(1126), X(4065)}}, {{A, B, C, X(1635), X(7180)}}, {{A, B, C, X(2220), X(2245)}}, {{A, B, C, X(2225), X(2333)}}, {{A, B, C, X(2227), X(40087)}}, {{A, B, C, X(2229), X(18140)}}, {{A, B, C, X(2234), X(4360)}}, {{A, B, C, X(2236), X(4039)}}, {{A, B, C, X(2238), X(2350)}}, {{A, B, C, X(4024), X(8061)}}, {{A, B, C, X(17418), X(48307)}}, {{A, B, C, X(21832), X(46387)}}
X(58288) = barycentric product X(i)*X(j) for these (i, j): {1, 4132}, {10, 4057}, {37, 4063}, {321, 57096}, {523, 595}, {1400, 47793}, {1577, 2220}, {1826, 22154}, {2321, 57238}, {3293, 513}, {3668, 58336}, {3733, 4075}, {3871, 4017}, {3952, 8054}, {3995, 649}, {4065, 50344}, {4129, 6}, {4222, 656}, {4360, 512}, {17922, 71}, {18140, 798}, {20295, 42}, {20949, 213}, {21208, 4557}, {32911, 661}, {40087, 669}, {40093, 4455}, {45222, 58294}, {48307, 65}, {51650, 8}, {56249, 667}, {56326, 7252}, {57080, 594}
X(58288) = barycentric quotient X(i)/X(j) for these (i, j): {6, 37205}, {31, 34594}, {42, 8050}, {512, 596}, {523, 57915}, {595, 99}, {649, 39747}, {661, 40013}, {667, 39949}, {669, 40148}, {798, 39798}, {1918, 40519}, {2220, 662}, {3122, 40086}, {3293, 668}, {3871, 7257}, {3995, 1978}, {4057, 86}, {4063, 274}, {4075, 27808}, {4079, 40085}, {4129, 76}, {4132, 75}, {4222, 811}, {4360, 670}, {8054, 7192}, {17922, 44129}, {18140, 4602}, {20295, 310}, {20949, 6385}, {21208, 52619}, {22154, 17206}, {32911, 799}, {40087, 4609}, {47793, 28660}, {48307, 314}, {51641, 20615}, {51650, 7}, {56249, 6386}, {57080, 1509}, {57096, 81}, {57238, 1434}, {58336, 1043}
X(58288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58295}, {512, 58298, 58294}, {512, 58299, 58298}, {512, 58303, 58286}, {661, 798, 649}, {812, 29512, 58361}, {3709, 42664, 57133}, {3709, 50492, 42664}, {4498, 28398, 4382}


X(58289) = X(37)X(57077)∩X(661)X(756)

Barycentrics    a^2*(b-c)*(b+c)^3 : :

X(58289) lies on these lines: {37, 57077}, {42, 57133}, {351, 7234}, {512, 58285}, {523, 58360}, {649, 17990}, {650, 17989}, {661, 756}, {669, 3709}, {762, 23099}, {850, 21051}, {876, 31290}, {1215, 25666}, {1252, 4557}, {1491, 18004}, {2512, 14321}, {2530, 48082}, {3250, 20983}, {3805, 27647}, {3842, 4369}, {3952, 27805}, {4024, 4705}, {4079, 8663}, {4088, 50330}, {4096, 45315}, {4122, 47842}, {4155, 21727}, {4455, 8664}, {4490, 47656}, {7180, 17414}, {8029, 55197}, {8665, 50490}, {21350, 48404}, {21438, 47814}, {23768, 48548}, {23948, 56810}, {26822, 40549}, {27710, 35352}, {42664, 50491}, {50489, 57234}, {52922, 54099}

X(58289) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58298}, {58288, 58295}
X(58289) = reflection of X(i) in X(j) for these {i,j}: {58290, 58303}, {58296, 58298}, {58364, 58362}
X(58289) = perspector of circumconic {{A, B, C, X(594), X(762)}}
X(58289) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 55196}, {58, 4623}, {60, 4625}, {81, 4610}, {86, 52935}, {99, 757}, {100, 6628}, {101, 57949}, {110, 873}, {190, 763}, {244, 31614}, {249, 7199}, {261, 1414}, {274, 4556}, {552, 643}, {593, 799}, {662, 1509}, {670, 849}, {1019, 4590}, {1098, 4616}, {1101, 52619}, {1333, 52612}, {1412, 4631}, {1434, 4612}, {1437, 55229}, {1576, 57992}, {1790, 55231}, {2185, 4573}, {2189, 55205}, {3733, 24037}, {3737, 7340}, {3942, 55270}, {4565, 52379}, {4596, 30593}, {4615, 30576}, {4632, 30581}, {4635, 7054}, {4636, 57785}, {4637, 7058}, {6064, 7203}, {6578, 16709}, {7192, 24041}, {7254, 46254}, {7257, 7341}, {23609, 52937}, {33295, 36066}, {34537, 57129}, {47389, 57200}
X(58289) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4623}, {37, 52612}, {244, 873}, {512, 3733}, {523, 52619}, {1015, 57949}, {1084, 1509}, {2643, 33944}, {3005, 7192}, {4075, 670}, {4858, 57992}, {5452, 55196}, {6741, 18021}, {8054, 6628}, {15267, 4616}, {21709, 1269}, {38978, 33295}, {38986, 757}, {38996, 593}, {40586, 4610}, {40599, 4631}, {40600, 52935}, {40607, 99}, {40608, 261}, {55053, 763}, {55060, 552}, {55064, 52379}, {55065, 310}
X(58289) = X(i)-Ceva conjugate of X(j) for these {i, j}: {756, 3124}, {4557, 1500}, {27808, 594}
X(58289)= pole of line {35212, 35216} with respect to the circumcircle
X(58289)= pole of line {46707, 46714} with respect to the Steiner circumellipse
X(58289)= pole of line {6537, 52539} with respect to the Steiner inellipse
X(58289)= pole of line {33889, 57078} with respect to the Yff parabola
X(58289) = perspector of cevian triangle of X(4705) and inverse-of-ABC in bicevian conic of X(1) and X(4705)
X(58289) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(46532)}}, {{A, B, C, X(512), X(6367)}}, {{A, B, C, X(523), X(50538)}}, {{A, B, C, X(661), X(3124)}}, {{A, B, C, X(669), X(42661)}}, {{A, B, C, X(1252), X(1500)}}, {{A, B, C, X(4024), X(4079)}}, {{A, B, C, X(4705), X(50487)}}, {{A, B, C, X(7109), X(7140)}}
X(58289) = barycentric product X(i)*X(j) for these (i, j): {10, 4079}, {12, 3709}, {37, 4705}, {55, 55197}, {100, 21833}, {101, 21043}, {115, 4557}, {181, 3700}, {201, 55206}, {210, 57185}, {213, 4036}, {313, 53581}, {321, 50487}, {512, 594}, {513, 762}, {647, 7140}, {649, 6535}, {661, 756}, {1016, 22260}, {1018, 2643}, {1084, 27808}, {1089, 798}, {1252, 8029}, {1254, 4171}, {1500, 523}, {1577, 872}, {1824, 55232}, {1826, 55230}, {1918, 52623}, {2171, 4041}, {2333, 4064}, {2489, 3695}, {2501, 3690}, {2610, 34857}, {2971, 52609}, {3049, 7141}, {3122, 4103}, {3124, 3952}, {3125, 40521}, {4024, 42}, {4092, 4559}, {4524, 6354}, {4574, 8754}, {6057, 7180}, {6058, 7252}, {6539, 8663}, {7064, 7178}, {7109, 850}, {14407, 4013}, {14624, 42661}, {17990, 6543}, {21046, 8750}, {21051, 6378}, {21725, 56257}, {21810, 57162}, {21824, 56193}, {21834, 7148}, {21859, 4516}, {23099, 31625}, {23105, 23990}, {28654, 669}, {43534, 46390}, {52065, 6386}, {52555, 6367}, {53008, 55234}, {58294, 8013}, {58304, 8818}
X(58289) = barycentric quotient X(i)/X(j) for these (i, j): {10, 52612}, {37, 4623}, {42, 4610}, {55, 55196}, {115, 52619}, {181, 4573}, {201, 55205}, {210, 4631}, {213, 52935}, {512, 1509}, {513, 57949}, {594, 670}, {649, 6628}, {661, 873}, {667, 763}, {669, 593}, {756, 799}, {762, 668}, {798, 757}, {872, 662}, {1018, 24037}, {1084, 3733}, {1089, 4602}, {1252, 31614}, {1254, 4635}, {1500, 99}, {1577, 57992}, {1824, 55231}, {1826, 55229}, {1918, 4556}, {1924, 849}, {2171, 4625}, {2643, 7199}, {2971, 17925}, {3124, 7192}, {3690, 4563}, {3695, 52608}, {3700, 18021}, {3709, 261}, {3949, 55202}, {3952, 34537}, {4024, 310}, {4036, 6385}, {4041, 52379}, {4079, 86}, {4117, 57129}, {4155, 30940}, {4524, 7058}, {4557, 4590}, {4559, 7340}, {4574, 47389}, {4705, 274}, {6358, 55213}, {6367, 52572}, {6378, 56053}, {6535, 1978}, {7063, 7252}, {7064, 645}, {7109, 110}, {7140, 6331}, {7180, 552}, {8029, 23989}, {8663, 8025}, {20975, 15419}, {21043, 3261}, {21725, 16737}, {21823, 17212}, {21833, 693}, {22260, 1086}, {23099, 1015}, {23610, 1977}, {27808, 44168}, {28654, 4609}, {40521, 4601}, {42068, 43925}, {42661, 16705}, {46390, 33295}, {50487, 81}, {50491, 7304}, {50538, 16748}, {52065, 667}, {53008, 55233}, {53581, 58}, {55197, 6063}, {55206, 57779}, {55230, 17206}, {57185, 57785}, {58304, 34016}
X(58289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58296}, {512, 58303, 58290}, {523, 58362, 58364}, {661, 3005, 8034}, {3709, 50494, 669}, {4024, 4705, 50538}, {4079, 50487, 8663}, {4455, 50496, 8664}, {7234, 55210, 351}, {58286, 58298, 512}


X(58290) = X(669)X(798)∩X(890)X(4507)

Barycentrics    a^3*(b-c)*(b+c)*(a+2*(b+c)) : :

X(58290) lies on these lines: {512, 58285}, {649, 6373}, {661, 50544}, {667, 50481}, {669, 798}, {834, 27675}, {890, 4507}, {3005, 50492}, {3709, 8663}, {4083, 27673}, {4132, 58360}, {4455, 50483}, {4784, 31290}, {4813, 4834}, {4832, 50494}, {4840, 4963}, {8639, 50488}, {9508, 27469}, {17990, 42664}, {20295, 21051}

X(58290) = reflection of X(i) in X(j) for these {i,j}: {58289, 58303}, {58296, 58299}
X(58290) = perspector of circumconic {{A, B, C, X(213), X(16777)}}
X(58290) = X(i)-isoconjugate-of-X(j) for these {i, j}: {86, 32042}, {99, 30598}, {274, 37211}, {310, 8652}, {670, 56343}, {799, 25417}, {4573, 42030}, {4601, 48074}, {4602, 34819}, {4623, 56221}, {4625, 56203}, {6331, 56070}, {28625, 52612}
X(58290) = X(i)-Dao conjugate of X(j) for these {i, j}: {38986, 30598}, {38996, 25417}, {40600, 32042}, {51572, 670}, {53167, 6385}
X(58290) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4834, 4826}
X(58290)= pole of line {2276, 4272} with respect to the Brocard inellipse
X(58290) = perspector of cevian triangle of X(4834) and inverse-of-ABC in bicevian conic of X(1) and X(4834)
X(58290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(4834)}}, {{A, B, C, X(798), X(4813)}}, {{A, B, C, X(48005), X(50487)}}
X(58290) = barycentric product X(i)*X(j) for these (i, j): {1, 4826}, {31, 4838}, {37, 4834}, {42, 4813}, {213, 4802}, {1402, 4820}, {1500, 4840}, {1698, 798}, {1918, 4823}, {1919, 4066}, {1924, 30596}, {2489, 3927}, {3121, 4756}, {3709, 5221}, {3715, 7180}, {4007, 51641}, {4079, 4658}, {4960, 872}, {16777, 512}, {28605, 669}, {36074, 4516}, {48005, 6}, {50487, 5333}
X(58290) = barycentric quotient X(i)/X(j) for these (i, j): {213, 32042}, {669, 25417}, {798, 30598}, {1698, 4602}, {1918, 37211}, {1924, 56343}, {2205, 8652}, {3927, 52608}, {4654, 55213}, {4658, 52612}, {4802, 6385}, {4813, 310}, {4820, 40072}, {4826, 75}, {4834, 274}, {4838, 561}, {4960, 57992}, {9426, 34819}, {16777, 670}, {28605, 4609}, {48005, 76}, {53581, 56221}
X(58290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58299, 58296}, {512, 58303, 58289}, {798, 50487, 669}


X(58291) = X(523)X(50491)∩X(872)X(7234)

Barycentrics    a^2*(b-c)*(b+c)^2*(b^2*c^2+a^3*(b+c)+a^2*(b^2+3*b*c+c^2)) : :

X(58291) lies on these lines: {512, 58285}, {523, 50491}, {756, 50487}, {872, 7234}, {4132, 29512}, {4155, 58364}, {4507, 40607}, {6372, 31290}, {17990, 50510}

X(58291) = X(i)-Dao conjugate of X(j) for these {i, j}: {4079, 514}
X(58291) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 1500}
X(58291)= pole of line {27042, 52539} with respect to the Steiner inellipse
X(58291)= pole of line {17159, 57078} with respect to the Yff parabola
X(58291) = perspector of cevian triangle of X(22320) and inverse-of-ABC in bicevian conic of X(1) and X(22320)
X(58291) = barycentric product X(i)*X(j) for these (i, j): {10, 57078}, {1500, 17159}, {22320, 37}
X(58291) = barycentric quotient X(i)/X(j) for these (i, j): {22320, 274}, {57078, 86}


X(58292) = X(37)X(42)∩X(726)X(899)

Barycentrics    a^2*(b+c)^2*(a^2-3*b*c+a*(b+c)) : :

X(58292) lies on these lines: {37, 42}, {512, 58285}, {726, 899}, {902, 4557}, {1201, 3678}, {1215, 24589}, {1326, 8701}, {3009, 45751}, {3214, 4075}, {3720, 17145}, {3842, 30950}, {8661, 17990}, {14752, 19998}, {20964, 21747}, {31855, 52872}, {39697, 49997}

X(58292) = perspector of circumconic {{A, B, C, X(1018), X(52555)}}
X(58292) = X(i)-isoconjugate-of-X(j) for these {i, j}: {593, 39994}, {757, 39697}, {1509, 39982}
X(58292) = X(i)-Dao conjugate of X(j) for these {i, j}: {40607, 39697}
X(58292)= pole of line {4272, 58288} with respect to the Brocard inellipse
X(58292) = perspector of cevian triangle of X(31855) and inverse-of-ABC in bicevian conic of X(1) and X(31855)
X(58292) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(58294)}}, {{A, B, C, X(42), X(31855)}}, {{A, B, C, X(512), X(1962)}}, {{A, B, C, X(1500), X(21806)}}, {{A, B, C, X(2054), X(4491)}}, {{A, B, C, X(2238), X(37680)}}, {{A, B, C, X(2667), X(17160)}}, {{A, B, C, X(3728), X(40089)}}, {{A, B, C, X(4272), X(33882)}}, {{A, B, C, X(21805), X(52872)}}
X(58292) = barycentric product X(i)*X(j) for these (i, j): {101, 21714}, {1018, 4145}, {1089, 33882}, {1500, 17160}, {4103, 4491}, {18145, 872}, {21385, 40521}, {31855, 37}, {37680, 756}, {40089, 7109}, {40091, 594}
X(58292) = barycentric quotient X(i)/X(j) for these (i, j): {756, 39994}, {872, 39982}, {1500, 39697}, {4145, 7199}, {18145, 57992}, {21714, 3261}, {31855, 274}, {33882, 757}, {37680, 873}, {40091, 1509}


X(58293) = X(512)X(58285)∩X(4024)X(4822)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+5*b*c+c^2+3*a*(b+c)) : :

X(58293) lies on circumconic {{A, B, C, X(47674), X(58294)}} and these lines: {512, 58285}, {4024, 4822}, {4826, 50486}, {5996, 24083}, {42664, 50497}, {47656, 48081}, {47671, 48021}, {47674, 47942}, {48053, 50538}

X(58293) = reflection of X(i) in X(j) for these {i,j}: {58286, 58298}, {58295, 58297}, {58298, 58296}
X(58293) = perspector of cevian triangle of X(47942) and inverse-of-ABC in bicevian conic of X(1) and X(47942)
X(58293) = barycentric product X(i)*X(j) for these (i, j): {37, 47942}, {42, 47674}
X(58293) = barycentric quotient X(i)/X(j) for these (i, j): {47674, 310}, {47942, 274}
X(58293) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58298}, {512, 58297, 58295}, {512, 58298, 58286}


X(58294) = X(2)X(24083)∩X(37)X(4979)

Barycentrics    a^2*(b-c)*(b+c)*(a+2*b+c)*(a+b+2*c) : :

X(58294) lies on these lines: {2, 24083}, {37, 4979}, {42, 8663}, {321, 48049}, {512, 58285}, {514, 4024}, {649, 4057}, {661, 4132}, {1252, 2702}, {4988, 24089}, {6540, 53195}, {7180, 42664}, {7192, 22043}, {22042, 49293}, {22044, 50522}, {49284, 57169}, {50525, 57234}, {52555, 55263}, {55230, 58172}

X(58294) = reflection of X(i) in X(j) for these {i,j}: {57078, 4079}, {58288, 58298}, {58298, 58297}, {58300, 58296}
X(58294) = trilinear pole of line {3122, 17990}
X(58294) = perspector of circumconic {{A, B, C, X(1126), X(1268)}}
X(58294) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 4427}, {86, 35342}, {99, 1100}, {100, 8025}, {101, 16709}, {110, 4359}, {162, 4001}, {163, 1269}, {249, 30591}, {274, 35327}, {314, 36075}, {553, 643}, {645, 32636}, {648, 3916}, {662, 1125}, {692, 52572}, {757, 4115}, {799, 2308}, {811, 22054}, {1014, 30729}, {1018, 30593}, {1213, 52935}, {1332, 31900}, {1414, 3686}, {1839, 4592}, {1962, 4610}, {2355, 4563}, {3578, 13486}, {3649, 4612}, {3683, 4573}, {3702, 4565}, {3952, 30581}, {4556, 4647}, {4558, 56875}, {4567, 4977}, {4570, 4978}, {4584, 4974}, {4590, 4983}, {4591, 4975}, {4600, 4979}, {4601, 50512}, {4603, 4697}, {4622, 4969}, {4623, 20970}, {4629, 6533}, {4973, 47318}, {4985, 52378}, {4988, 24041}, {6331, 23201}, {6742, 17190}, {22080, 55231}, {34594, 45222}, {35339, 42028}
X(58294) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 1269}, {125, 4001}, {244, 4359}, {1015, 16709}, {1084, 1125}, {1086, 52572}, {3005, 4988}, {5139, 1839}, {8054, 8025}, {17423, 22054}, {38986, 1100}, {38996, 2308}, {40586, 4427}, {40600, 35342}, {40607, 4115}, {40608, 3686}, {40627, 4977}, {50330, 4978}, {50497, 4979}, {55060, 553}, {55064, 3702}, {55065, 1230}, {55066, 3916}
X(58294) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4629, 1126}, {8701, 42}, {50344, 58301}
X(58294) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 50344}, {1015, 37}, {3124, 42}, {20974, 40147}, {20982, 1400}
X(58294)= pole of line {1269, 1839} with respect to the polar circle
X(58294)= pole of line {3634, 52539} with respect to the Steiner inellipse
X(58294)= pole of line {523, 57078} with respect to the Yff parabola
X(58294) = perspector of cevian triangle of X(47947) and inverse-of-ABC in bicevian conic of X(1) and X(47947)
X(58294) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(21522)}}, {{A, B, C, X(42), X(1252)}}, {{A, B, C, X(101), X(22037)}}, {{A, B, C, X(512), X(514)}}, {{A, B, C, X(513), X(4057)}}, {{A, B, C, X(523), X(47656)}}, {{A, B, C, X(647), X(48338)}}, {{A, B, C, X(663), X(3700)}}, {{A, B, C, X(667), X(48085)}}, {{A, B, C, X(798), X(4813)}}, {{A, B, C, X(1015), X(4115)}}, {{A, B, C, X(1042), X(5195)}}, {{A, B, C, X(1126), X(31013)}}, {{A, B, C, X(1171), X(31064)}}, {{A, B, C, X(1400), X(17484)}}, {{A, B, C, X(1824), X(40147)}}, {{A, B, C, X(2333), X(5134)}}, {{A, B, C, X(2501), X(6586)}}, {{A, B, C, X(3124), X(5029)}}, {{A, B, C, X(3572), X(31290)}}, {{A, B, C, X(3952), X(50520)}}, {{A, B, C, X(4017), X(48268)}}, {{A, B, C, X(4024), X(4079)}}, {{A, B, C, X(4041), X(50495)}}, {{A, B, C, X(4557), X(53289)}}, {{A, B, C, X(4559), X(49274)}}, {{A, B, C, X(4608), X(50344)}}, {{A, B, C, X(4705), X(47678)}}, {{A, B, C, X(4822), X(50492)}}, {{A, B, C, X(7265), X(55210)}}, {{A, B, C, X(18105), X(47659)}}, {{A, B, C, X(21832), X(50497)}}, {{A, B, C, X(24290), X(50496)}}, {{A, B, C, X(31011), X(52555)}}, {{A, B, C, X(35162), X(39441)}}, {{A, B, C, X(40148), X(52651)}}, {{A, B, C, X(48121), X(51641)}}
X(58294) = barycentric product X(i)*X(j) for these (i, j): {10, 50344}, {37, 47947}, {42, 4608}, {115, 4629}, {514, 52555}, {649, 6539}, {1126, 523}, {1171, 4024}, {1255, 661}, {1268, 512}, {1577, 28615}, {1796, 2501}, {2643, 4596}, {3120, 8701}, {3122, 6540}, {3124, 4632}, {3125, 37212}, {3733, 6538}, {4102, 7180}, {18004, 53688}, {21043, 6578}, {30582, 4979}, {30594, 50512}, {31010, 6}, {31011, 55263}, {31013, 9178}, {32014, 4079}, {32018, 798}, {32635, 4017}, {33635, 7178}, {40438, 4705}, {57099, 57419}, {58301, 75}
X(58294) = barycentric quotient X(i)/X(j) for these (i, j): {42, 4427}, {213, 35342}, {512, 1125}, {513, 16709}, {514, 52572}, {523, 1269}, {647, 4001}, {649, 8025}, {661, 4359}, {669, 2308}, {798, 1100}, {810, 3916}, {1126, 99}, {1171, 4610}, {1255, 799}, {1268, 670}, {1334, 30729}, {1500, 4115}, {1796, 4563}, {1918, 35327}, {2489, 1839}, {2643, 30591}, {3049, 22054}, {3121, 4979}, {3122, 4977}, {3124, 4988}, {3125, 4978}, {3709, 3686}, {3733, 30593}, {4024, 1230}, {4041, 3702}, {4079, 1213}, {4455, 4974}, {4516, 4985}, {4596, 24037}, {4608, 310}, {4629, 4590}, {4632, 34537}, {4705, 4647}, {4730, 4975}, {4770, 4717}, {4983, 6533}, {6538, 27808}, {6539, 1978}, {7180, 553}, {7234, 4697}, {8663, 8040}, {8701, 4600}, {14407, 4969}, {21837, 17746}, {28615, 662}, {31010, 76}, {31011, 55262}, {32014, 52612}, {32018, 4602}, {32635, 7257}, {33635, 645}, {37212, 4601}, {38836, 57060}, {40438, 4623}, {42067, 46542}, {47947, 274}, {50344, 86}, {50487, 1962}, {50491, 4970}, {50498, 41818}, {51641, 32636}, {52555, 190}, {53581, 20970}, {53688, 17930}, {55210, 3578}, {55230, 41014}, {57129, 30581}, {58288, 45222}, {58289, 8013}, {58301, 1}
X(58294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58300}, {512, 58297, 58298}, {512, 58298, 58288}, {649, 4079, 57133}, {4079, 50498, 649}


X(58295) = X(42)X(42664)∩X(512)X(58285)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+2*b^2+3*b*c+2*c^2+a*(b+c)) : :

X(58295) lies on circumconic {{A, B, C, X(18105), X(47659)}} and these lines: {42, 42664}, {512, 58285}, {669, 57133}, {4079, 18105}, {4122, 48023}, {4132, 21727}, {4826, 46390}, {21834, 50484}, {47659, 47948}, {48086, 49273}, {48117, 48122}

X(58295) = reflection of X(i) in X(j) for these {i,j}: {58288, 58289}, {58293, 58297}, {58300, 58298}
X(58295) = perspector of cevian triangle of X(47948) and inverse-of-ABC in bicevian conic of X(1) and X(47948)
X(58295) = barycentric product X(i)*X(j) for these (i, j): {37, 47948}, {42, 47659}
X(58295) = barycentric quotient X(i)/X(j) for these (i, j): {47659, 310}, {47948, 274}
X(58295) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58288}, {512, 58297, 58293}, {512, 58298, 58300}, {42664, 50494, 42}


X(58296) = X(661)X(4155)∩X(850)X(4806)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+4*b*c+c^2+2*a*(b+c)) : :

X(58296) lies on circumconic {{A, B, C, X(47671), X(58294)}} and these lines: {512, 58285}, {661, 4155}, {669, 50495}, {850, 4806}, {2978, 4502}, {3005, 4079}, {4024, 4983}, {4455, 50498}, {8034, 42664}, {25259, 48123}, {47656, 48024}, {47671, 47949}, {47674, 47913}

X(58296) = midpoint of X(i) and X(j) for these {i,j}: {58293, 58298}, {58294, 58300}
X(58296) = reflection of X(i) in X(j) for these {i,j}: {58289, 58298}, {58290, 58299}
X(58296) = perspector of cevian triangle of X(47949) and inverse-of-ABC in bicevian conic of X(1) and X(47949)
X(58296) = barycentric product X(i)*X(j) for these (i, j): {37, 47949}, {42, 47671}
X(58296) = barycentric quotient X(i)/X(j) for these (i, j): {47671, 310}, {47949, 274}
X(58296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58289}, {512, 58299, 58290}, {58293, 58298, 512}


X(58297) = X(647)X(4079)∩X(661)X(4139)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+3*b^2+8*b*c+3*c^2+4*a*(b+c)) : :

X(58297) lies on these lines: {512, 58285}, {647, 4079}, {661, 4139}, {3709, 50498}, {4502, 50511}, {4806, 47128}, {4826, 50492}, {28175, 48026}

X(58297) = midpoint of X(i) and X(j) for these {i,j}: {58293, 58295}, {58294, 58298}
X(58297) = reflection of X(i) in X(j) for these {i,j}: {58299, 58298}
X(58297) = perspector of circumconic {{A, B, C, X(52555), X(56237)}}
X(58297) = perspector of cevian triangle of X(47955) and inverse-of-ABC in bicevian conic of X(1) and X(47955)
X(58297) = barycentric product X(i)*X(j) for these (i, j): {37, 47955}
X(58297) = barycentric quotient X(i)/X(j) for these (i, j): {47955, 274}
X(58297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58299}, {58293, 58295, 512}


X(58298) = X(523)X(661)∩X(649)X(3709)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+3*b*c+c^2+a*(b+c)) : :

X(58298) lies on these lines: {512, 58285}, {523, 661}, {647, 57133}, {649, 3709}, {798, 50498}, {850, 4129}, {2786, 27647}, {3250, 4813}, {4481, 44449}, {4776, 21438}, {4979, 14408}, {8663, 50491}, {8714, 48269}, {14349, 25259}, {21123, 48019}, {21720, 21958}, {22043, 50557}, {47656, 47959}, {47671, 47918}, {48005, 50538}, {48082, 48131}, {48306, 57096}

X(58298) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58293}, {58288, 58294}, {58289, 58296}, {58295, 58300}, {58297, 58299}
X(58298) = reflection of X(i) in X(j) for these {i,j}: {58286, 58289}, {58288, 58299}, {58293, 58296}, {58294, 58297}
X(58298) = perspector of circumconic {{A, B, C, X(10), X(2334)}}
X(58298) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 46961}, {4612, 35576}
X(58298) = X(i)-Dao conjugate of X(j) for these {i, j}: {28651, 799}, {40586, 46961}
X(58298)= pole of line {27, 29767} with respect to the polar circle
X(58298)= pole of line {4272, 20966} with respect to the Brocard inellipse
X(58298)= pole of line {1213, 1574} with respect to the Steiner inellipse
X(58298)= pole of line {4024, 47129} with respect to the Yff parabola
X(58298) = perspector of cevian triangle of X(47959) and inverse-of-ABC in bicevian conic of X(1) and X(47959)
X(58298) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4988)}}, {{A, B, C, X(523), X(47656)}}, {{A, B, C, X(649), X(4841)}}, {{A, B, C, X(661), X(47959)}}
X(58298) = barycentric product X(i)*X(j) for these (i, j): {37, 47959}, {42, 47656}
X(58298) = barycentric quotient X(i)/X(j) for these (i, j): {42, 46961}, {47656, 310}, {47959, 274}
X(58298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58286}, {512, 58296, 58293}, {512, 58297, 58294}, {512, 58299, 58288}, {661, 21834, 4988}, {661, 4079, 42664}, {3709, 50495, 649}, {58286, 58293, 512}


X(58299) = X(37)X(4841)∩X(42)X(8653)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+4*b*c+c^2) : :

X(58299) lies on these lines: {37, 4841}, {42, 8653}, {512, 58285}, {647, 661}, {650, 900}, {665, 4813}, {798, 50495}, {905, 48038}, {3288, 57176}, {3700, 24089}, {3804, 4455}, {4024, 4808}, {4079, 50492}, {4526, 48277}, {4832, 50498}, {4893, 52326}, {6586, 48026}, {6589, 47777}, {7192, 25084}, {7234, 8644}, {14298, 33525}, {20979, 50511}, {23792, 47959}, {24948, 44449}, {25098, 47783}, {27045, 30476}, {27527, 30864}, {27648, 47769}, {27674, 28846}, {47965, 48268}

X(58299) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58300}, {58288, 58298}, {58290, 58296}
X(58299) = reflection of X(i) in X(j) for these {i,j}: {58297, 58298}
X(58299) = perspector of circumconic {{A, B, C, X(65), X(1000)}}
X(58299) = X(i)-isoconjugate-of-X(j) for these {i, j}: {162, 30679}, {662, 3296}
X(58299) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 30679}, {1084, 3296}
X(58299)= pole of line {16713, 30599} with respect to the polar circle
X(58299)= pole of line {198, 4272} with respect to the Brocard inellipse
X(58299)= pole of line {45, 2092} with respect to the Steiner inellipse
X(58299)= pole of line {47766, 57078} with respect to the Yff parabola
X(58299) = perspector of cevian triangle of X(47965) and inverse-of-ABC in bicevian conic of X(1) and X(47965)
X(58299) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4017), X(48268)}}, {{A, B, C, X(7180), X(47965)}}
X(58299) = barycentric product X(i)*X(j) for these (i, j): {10, 48340}, {37, 47965}, {42, 48268}, {521, 53861}, {2501, 55466}, {3295, 523}, {3305, 661}, {3697, 513}, {3700, 52424}, {3709, 52422}, {4041, 7190}, {42032, 7180}, {42696, 512}, {56843, 57099}
X(58299) = barycentric quotient X(i)/X(j) for these (i, j): {512, 3296}, {647, 30679}, {3295, 99}, {3305, 799}, {3697, 668}, {7190, 4625}, {42696, 670}, {47965, 274}, {48268, 310}, {48340, 86}, {52424, 4573}, {53861, 18026}, {55466, 4563}
X(58299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58297}, {661, 3709, 647}, {661, 55210, 7180}, {3709, 7180, 55210}, {4455, 50494, 3804}, {58286, 58300, 512}


X(58300) = X(1)X(31290)∩X(42)X(661)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-3*b*c-a*(b+c)) : :

X(58300) lies on circumconic {{A, B, C, X(26824), X(58294)}} and these lines: {1, 31290}, {37, 40471}, {42, 661}, {238, 57148}, {512, 58285}, {649, 4455}, {663, 2520}, {1125, 26822}, {1201, 27469}, {2054, 5098}, {2308, 7252}, {2309, 4833}, {3005, 57133}, {3120, 24198}, {3720, 7192}, {3741, 26775}, {4010, 4382}, {4040, 20295}, {4079, 50486}, {4129, 44445}, {4369, 30950}, {4449, 47908}, {4775, 20983}, {4794, 48041}, {4822, 55212}, {4963, 48292}, {6005, 27673}, {23655, 48544}, {23792, 48081}, {24666, 48577}, {26824, 47970}, {27114, 31241}, {27527, 30970}, {28361, 28372}, {28398, 48367}, {30591, 48119}, {42664, 50490}, {47909, 48303}, {47929, 48393}, {47945, 48307}, {47984, 48294}, {48023, 48340}, {48065, 49287}, {48338, 50481}

X(58300) = reflection of X(i) in X(j) for these {i,j}: {58286, 58299}, {58294, 58296}, {58295, 58298}
X(58300) = perspector of circumconic {{A, B, C, X(2160), X(4068)}}
X(58300)= pole of line {2260, 4272} with respect to the Brocard inellipse
X(58300)= pole of line {10566, 57078} with respect to the Yff parabola
X(58300) = perspector of cevian triangle of X(47970) and inverse-of-ABC in bicevian conic of X(1) and X(47970)
X(58300) = barycentric product X(i)*X(j) for these (i, j): {37, 47970}, {4068, 514}, {5284, 661}, {17163, 649}, {24044, 3733}, {26824, 42}, {46196, 513}
X(58300) = barycentric quotient X(i)/X(j) for these (i, j): {4068, 190}, {5284, 799}, {17163, 1978}, {24044, 27808}, {26824, 310}, {46196, 668}, {47970, 274}
X(58300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58294}, {512, 58298, 58295}, {512, 58299, 58286}, {4455, 50497, 649}


X(58301) = X(42)X(50512)∩X(484)X(513)

Barycentrics    a^3*(b-c)*(b+c)*(a+2*b+c)*(a+b+2*c) : :

X(58301) lies on these lines: {42, 50512}, {484, 513}, {512, 58285}, {667, 18266}, {798, 21837}, {2533, 29302}, {2703, 8701}, {4151, 31010}, {4730, 57162}, {4992, 16828}, {6540, 53216}, {7234, 58144}, {50488, 51641}, {50515, 57232}

X(58301) = perspector of circumconic {{A, B, C, X(1255), X(28615)}}
X(58301) = X(i)-isoconjugate-of-X(j) for these {i, j}: {86, 4427}, {99, 1125}, {100, 16709}, {101, 52572}, {110, 1269}, {190, 8025}, {274, 35342}, {310, 35327}, {553, 645}, {648, 4001}, {662, 4359}, {670, 2308}, {799, 1100}, {811, 3916}, {1213, 4610}, {1230, 4556}, {1414, 3702}, {1434, 30729}, {1509, 4115}, {1839, 4563}, {1962, 4623}, {2355, 55202}, {3683, 4625}, {3686, 4573}, {3952, 30593}, {3958, 55231}, {4033, 30581}, {4561, 31900}, {4567, 4978}, {4589, 4974}, {4590, 4988}, {4592, 56875}, {4594, 4697}, {4596, 6533}, {4600, 4977}, {4601, 4979}, {4615, 4969}, {4620, 4976}, {4622, 4975}, {4647, 52935}, {4970, 56053}, {4983, 24037}, {6331, 22054}, {7257, 32636}, {15455, 17190}, {17454, 55209}, {20970, 52612}, {22080, 55229}, {23201, 57968}, {24041, 30591}, {28660, 36075}, {37205, 45222}
X(58301) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 1269}, {512, 4983}, {1015, 52572}, {1084, 4359}, {3005, 30591}, {5139, 56875}, {8054, 16709}, {17423, 3916}, {38986, 1125}, {38996, 1100}, {40600, 4427}, {40608, 3702}, {40627, 4978}, {50497, 4977}, {55053, 8025}, {55066, 4001}
X(58301) = X(i)-Ceva conjugate of X(j) for these {i, j}: {50344, 58294}
X(58301) = X(i)-cross conjugate of X(j) for these {i, j}: {3248, 42}
X(58301)= pole of line {44307, 52539} with respect to the Steiner inellipse
X(58301)= pole of line {1019, 57078} with respect to the Yff parabola
X(58301) = perspector of cevian triangle of X(50344) and inverse-of-ABC in bicevian conic of X(1) and X(50344)
X(58301) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(31855)}}, {{A, B, C, X(213), X(1110)}}, {{A, B, C, X(484), X(1402)}}, {{A, B, C, X(512), X(513)}}, {{A, B, C, X(649), X(4063)}}, {{A, B, C, X(661), X(47959)}}, {{A, B, C, X(669), X(4834)}}, {{A, B, C, X(788), X(4151)}}, {{A, B, C, X(1734), X(21837)}}, {{A, B, C, X(3063), X(4041)}}, {{A, B, C, X(3248), X(50512)}}, {{A, B, C, X(4705), X(50487)}}, {{A, B, C, X(4775), X(8639)}}, {{A, B, C, X(7180), X(47965)}}, {{A, B, C, X(8646), X(48395)}}, {{A, B, C, X(47947), X(58294)}}, {{A, B, C, X(47976), X(57181)}}
X(58301) = barycentric product X(i)*X(j) for these (i, j): {1, 58294}, {31, 31010}, {37, 50344}, {42, 47947}, {213, 4608}, {513, 52555}, {1126, 661}, {1171, 4705}, {1255, 512}, {1268, 798}, {2643, 4629}, {3121, 6540}, {3122, 37212}, {3124, 4596}, {3125, 8701}, {4102, 51641}, {6539, 667}, {21833, 6578}, {28615, 523}, {30582, 50512}, {32014, 50487}, {32018, 669}, {32635, 7180}, {33635, 4017}, {40438, 4079}, {55210, 57419}, {57129, 6538}
X(58301) = barycentric quotient X(i)/X(j) for these (i, j): {213, 4427}, {512, 4359}, {513, 52572}, {649, 16709}, {661, 1269}, {667, 8025}, {669, 1100}, {798, 1125}, {810, 4001}, {872, 4115}, {1084, 4983}, {1126, 799}, {1171, 4623}, {1255, 670}, {1268, 4602}, {1796, 55202}, {1918, 35342}, {1924, 2308}, {2205, 35327}, {2489, 56875}, {3049, 3916}, {3121, 4977}, {3122, 4978}, {3124, 30591}, {3709, 3702}, {4079, 4647}, {4596, 34537}, {4608, 6385}, {4629, 24037}, {4705, 1230}, {6539, 6386}, {8701, 4601}, {14407, 4975}, {21835, 4992}, {28615, 99}, {31010, 561}, {32018, 4609}, {33635, 7257}, {40438, 52612}, {47947, 310}, {50344, 274}, {50487, 1213}, {51641, 553}, {52065, 8663}, {52555, 668}, {53581, 1962}, {57129, 30593}, {57204, 2355}, {57419, 55209}, {58294, 75}


X(58302) = X(10)X(4040)∩X(42)X(663)

Barycentrics    a^2*(b-c)*(b+c)*(a^3-3*b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(58302) lies on these lines: {10, 4040}, {42, 663}, {512, 58285}, {661, 51641}, {2533, 4724}, {3214, 4794}, {3720, 17166}, {3900, 21727}, {4036, 46385}, {4162, 57232}, {4449, 4824}, {5260, 57189}, {7234, 8643}, {16828, 50337}, {17478, 47934}, {22320, 48336}, {28248, 47778}, {30950, 52601}, {42661, 57133}, {47970, 56191}, {48322, 57077}, {48338, 50487}, {48340, 57099}

X(58302) = perspector of circumconic {{A, B, C, X(2161), X(52555)}}
X(58302) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 55090}, {1414, 55091}
X(58302) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 55090}, {40608, 55091}
X(58302)= pole of line {2183, 4272} with respect to the Brocard inellipse
X(58302)= pole of line {49758, 52539} with respect to the Steiner inellipse
X(58302) = perspector of cevian triangle of X(50346) and inverse-of-ABC in bicevian conic of X(1) and X(50346)
X(58302) = barycentric product X(i)*X(j) for these (i, j): {37, 50346}, {512, 55095}, {523, 55100}, {1500, 57248}, {2171, 57093}, {3700, 55101}, {3709, 55096}, {4581, 55333}, {5260, 661}, {24224, 4557}, {55378, 56320}, {57189, 756}
X(58302) = barycentric quotient X(i)/X(j) for these (i, j): {512, 55090}, {3709, 55091}, {5260, 799}, {24224, 52619}, {50346, 274}, {55095, 670}, {55100, 99}, {55101, 4573}, {55333, 53332}, {57093, 52379}, {57189, 873}
X(58302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 4705, 42}


X(58303) = X(42)X(8651)∩X(669)X(4524)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+2*a*(b+c)-(b+c)^2) : :

X(58303) lies on circumconic {{A, B, C, X(48269), X(58294)}} and these lines: {42, 8651}, {512, 58285}, {647, 17990}, {657, 8646}, {665, 20983}, {669, 4524}, {798, 50494}, {802, 25627}, {3709, 50487}, {4139, 58360}, {7180, 14404}, {21005, 22108}, {25084, 50524}, {48038, 50336}, {48269, 50501}

X(58303) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58288}, {58289, 58290}
X(58303) = perspector of circumconic {{A, B, C, X(14974), X(17314)}}
X(58303) = X(i)-Dao conjugate of X(j) for these {i, j}: {20315, 52619}
X(58303) = perspector of cevian triangle of X(50501) and inverse-of-ABC in bicevian conic of X(1) and X(50501)
X(58303) = barycentric product X(i)*X(j) for these (i, j): {37, 50501}, {42, 48269}, {1778, 4705}, {1788, 3709}, {4079, 56018}, {14974, 523}, {17314, 512}, {20315, 2333}, {46937, 798}
X(58303) = barycentric quotient X(i)/X(j) for these (i, j): {1778, 4623}, {14974, 99}, {17314, 670}, {46937, 4602}, {48269, 310}, {50501, 274}, {56018, 52612}
X(58303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17990, 50491, 647}, {58286, 58288, 512}


X(58304) = X(42)X(42653)∩X(810)X(872)

Barycentrics    a^2*(b-c)*(b+c)^2*(-a^2+b^2+b*c+c^2) : :

X(58304) lies on these lines: {42, 42653}, {210, 57131}, {512, 58285}, {667, 17990}, {756, 4041}, {810, 872}, {1110, 4557}, {1734, 18004}, {3005, 50493}, {3678, 14838}, {4147, 18003}, {4705, 42666}, {4843, 58362}, {6367, 21727}, {7265, 57099}, {17989, 50504}, {20964, 21761}

X(58304) = perspector of circumconic {{A, B, C, X(2171), X(3969)}}
X(58304) = X(i)-isoconjugate-of-X(j) for these {i, j}: {79, 52935}, {86, 13486}, {99, 52375}, {261, 26700}, {593, 15455}, {662, 52393}, {757, 6742}, {1333, 55209}, {1414, 3615}, {2160, 4610}, {2185, 38340}, {3960, 39295}, {4556, 30690}, {4560, 35049}, {4612, 52374}, {4623, 6186}, {6578, 52569}, {6628, 56193}
X(58304) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 55209}, {1084, 52393}, {8287, 873}, {14838, 52619}, {38986, 52375}, {40600, 13486}, {40607, 6742}, {40608, 3615}, {55042, 261}, {55065, 20565}, {56948, 55196}
X(58304) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3678, 20982}, {4559, 1500}
X(58304)= pole of line {4272, 5280} with respect to the Brocard inellipse
X(58304) = perspector of cevian triangle of X(57099) and inverse-of-ABC in bicevian conic of X(1) and X(57099)
X(58304) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(2605)}}, {{A, B, C, X(756), X(1110)}}, {{A, B, C, X(810), X(22094)}}, {{A, B, C, X(1500), X(2594)}}, {{A, B, C, X(4041), X(42666)}}, {{A, B, C, X(7265), X(55210)}}, {{A, B, C, X(14838), X(20982)}}
X(58304) = barycentric product X(i)*X(j) for these (i, j): {10, 55210}, {12, 9404}, {35, 4024}, {37, 57099}, {42, 7265}, {100, 21824}, {101, 21054}, {181, 57066}, {319, 4079}, {649, 7206}, {1018, 2611}, {1500, 4467}, {1825, 8611}, {2088, 51562}, {2171, 35057}, {2174, 4036}, {2594, 3700}, {2605, 594}, {2610, 56422}, {3219, 4705}, {3678, 661}, {3709, 40999}, {3949, 54244}, {3969, 512}, {4103, 53542}, {4420, 57185}, {4557, 8287}, {4559, 6741}, {14838, 756}, {15065, 2624}, {16577, 4041}, {18160, 872}, {20982, 3952}, {21741, 4086}, {21794, 522}, {21859, 53524}, {32679, 34857}, {33939, 50487}, {34016, 58289}, {35193, 55197}, {40521, 7202}, {41226, 42666}, {52412, 55230}, {55232, 6198}
X(58304) = barycentric quotient X(i)/X(j) for these (i, j): {10, 55209}, {35, 4610}, {181, 38340}, {213, 13486}, {319, 52612}, {512, 52393}, {756, 15455}, {798, 52375}, {1500, 6742}, {2088, 4453}, {2174, 52935}, {2594, 4573}, {2605, 1509}, {2611, 7199}, {3219, 4623}, {3678, 799}, {3709, 3615}, {3969, 670}, {4024, 20565}, {4079, 79}, {4420, 4631}, {4705, 30690}, {6198, 55231}, {7206, 1978}, {7265, 310}, {8287, 52619}, {9404, 261}, {14838, 873}, {16577, 4625}, {18160, 57992}, {20982, 7192}, {21054, 3261}, {21741, 1414}, {21794, 664}, {21824, 693}, {22094, 15419}, {34857, 32680}, {35057, 52379}, {35193, 55196}, {50487, 2160}, {52412, 55229}, {53563, 30940}, {53581, 6186}, {55210, 86}, {55230, 52381}, {57066, 18021}, {57099, 274}, {58289, 8818}
X(58304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4705, 55230, 42666}


X(58305) = X(30)X(511)∩X(130)X(39019)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)^3*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(58305) lies on these lines: {30, 511}, {130, 39019}, {1303, 18831}, {15451, 17434}, {23613, 32078}, {32320, 39201}, {34980, 41212}, {42658, 54257}

X(58305) = isogonal conjugate of X(52779)
X(58305) = isotomic conjugate of X(54950)
X(58305) = perspector of circumconic {{A, B, C, X(2), X(216)}}
X(58305) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52779}, {19, 42405}, {31, 54950}, {48, 42401}, {92, 16813}, {95, 36126}, {107, 40440}, {158, 18831}, {162, 8795}, {275, 823}, {276, 24019}, {662, 8794}, {811, 8884}, {933, 57806}, {2167, 15352}, {2190, 6528}, {6521, 18315}, {8882, 57973}, {9247, 42369}, {15422, 46254}, {32676, 57844}
X(58305) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54950}, {3, 52779}, {5, 6528}, {6, 42405}, {125, 8795}, {130, 4}, {1084, 8794}, {1147, 18831}, {1249, 42401}, {2972, 264}, {15450, 2052}, {15526, 57844}, {17423, 8884}, {22391, 16813}, {34980, 19209}, {35071, 276}, {38985, 40440}, {38999, 43752}, {39019, 18027}, {40588, 15352}, {46093, 95}, {55073, 317}
X(58305) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3, 35071}, {4, 38976}, {68, 39019}, {418, 41219}, {520, 17434}, {1303, 3}, {1625, 46394}, {15958, 577}, {17434, 42293}, {23606, 34980}, {35360, 216}, {42487, 2972}, {54950, 2}
X(58305) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 38976}, {158, 39019}, {275, 16595}, {811, 10600}, {933, 828}, {2190, 35071}, {8794, 8287}, {8795, 34846}, {8884, 16573}, {16813, 1214}, {24021, 17434}, {36126, 233}, {40440, 122}, {42401, 20305}, {42405, 18589}, {52779, 10}, {54950, 2887}, {57806, 20625}
X(58305) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {8794, 21221}, {16813, 6360}, {36126, 17035}, {40440, 34186}, {42401, 21270}, {42405, 4329}, {52779, 8}, {54950, 6327}
X(58305) = X(i)-cross conjugate of X(j) for these {i, j}: {41219, 418}
X(58305)= pole of line {4, 6752} with respect to the anticomplementary circle
X(58305)= pole of line {3, 8612} with respect to the 2nd Brocard circle
X(58305)= pole of line {3, 8612} with respect to the circumcircle
X(58305)= pole of line {4, 6752} with respect to the 1st DrozFarny circle
X(58305)= pole of line {3, 8612} with respect to the 2nd DrozFarny circle
X(58305)= pole of line {4, 6752} with respect to the circumcircle of the Johnson triangle
X(58305)= pole of line {4, 6752} with respect to the polar circle
X(58305)= pole of line {3, 8612} with respect to the Stammler circle
X(58305)= pole of line {11, 38976} with respect to the Feuerbach hyperbola
X(58305)= pole of line {125, 35071} with respect to the Jerabek hyperbola
X(58305)= pole of line {5, 53} with respect to the Johnson circumconic
X(58305)= pole of line {115, 38976} with respect to the Kiepert hyperbola
X(58305)= pole of line {6, 6638} with respect to the MacBeath circumconic
X(58305)= pole of line {6, 8612} with respect to the Orthic inconic
X(58305)= pole of line {110, 6528} with respect to the Stammler hyperbola
X(58305)= pole of line {2, 276} with respect to the Steiner circumellipse
X(58305)= pole of line {2, 276} with respect to the Steiner inellipse
X(58305)= pole of line {99, 52779} with respect to the Wallace hyperbola
X(58305) = perspector of cevian triangle of X(520) and inverse-of-ABC in bicevian conic of X(3) and X(520)
X(58305) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(32428)}}, {{A, B, C, X(30), X(418)}}, {{A, B, C, X(51), X(6000)}}, {{A, B, C, X(68), X(36433)}}, {{A, B, C, X(184), X(18400)}}, {{A, B, C, X(217), X(1503)}}, {{A, B, C, X(265), X(32438)}}, {{A, B, C, X(511), X(5562)}}, {{A, B, C, X(512), X(58310)}}, {{A, B, C, X(523), X(15451)}}, {{A, B, C, X(525), X(17434)}}, {{A, B, C, X(526), X(34980)}}, {{A, B, C, X(1092), X(5965)}}, {{A, B, C, X(1154), X(23606)}}, {{A, B, C, X(1625), X(35071)}}, {{A, B, C, X(2393), X(44088)}}, {{A, B, C, X(2797), X(23181)}}, {{A, B, C, X(6086), X(52604)}}, {{A, B, C, X(6368), X(34983)}}, {{A, B, C, X(9033), X(41219)}}, {{A, B, C, X(12077), X(46088)}}, {{A, B, C, X(14585), X(44668)}}, {{A, B, C, X(23878), X(52613)}}, {{A, B, C, X(27372), X(34146)}}, {{A, B, C, X(41212), X(55132)}}
X(58305) = barycentric product X(i)*X(j) for these (i, j): {51, 52613}, {216, 520}, {217, 3265}, {343, 39201}, {418, 525}, {577, 6368}, {1092, 12077}, {1625, 2972}, {1636, 44715}, {2617, 37754}, {2618, 4100}, {3049, 52347}, {3267, 44088}, {3964, 55219}, {5562, 647}, {14570, 34980}, {15451, 394}, {15958, 39019}, {16391, 52317}, {17434, 3}, {18314, 23606}, {18315, 41212}, {19210, 57195}, {23181, 3269}, {27372, 58359}, {28706, 58310}, {32320, 5}, {32661, 35442}, {34983, 97}, {35071, 35360}, {40981, 4143}, {41219, 648}, {42293, 69}, {44706, 822}
X(58305) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54950}, {3, 42405}, {4, 42401}, {6, 52779}, {51, 15352}, {184, 16813}, {216, 6528}, {217, 107}, {264, 42369}, {418, 648}, {512, 8794}, {520, 276}, {525, 57844}, {577, 18831}, {647, 8795}, {822, 40440}, {1636, 43752}, {2179, 36126}, {3049, 8884}, {3265, 57790}, {3964, 55218}, {5562, 6331}, {6368, 18027}, {14585, 933}, {15451, 2052}, {15958, 57573}, {17434, 264}, {19210, 52939}, {23606, 18315}, {32320, 95}, {34980, 15412}, {34983, 324}, {35360, 57556}, {36433, 15958}, {39201, 275}, {40981, 6529}, {41212, 18314}, {41219, 525}, {42293, 4}, {44088, 112}, {44706, 57973}, {46394, 35360}, {52177, 41210}, {52604, 34538}, {52613, 34384}, {55219, 1093}, {58310, 8882}
X(58305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15451, 17434, 34983}


X(58306) = X(4)X(54)∩X(25)X(3202)

Barycentrics    a^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(-b^4-c^4+a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(58306) lies on these lines: {4, 54}, {25, 3202}, {32, 44077}, {95, 19126}, {97, 37184}, {206, 14533}, {237, 41270}, {263, 1974}, {511, 19189}, {512, 2623}, {933, 2698}, {9418, 34854}, {13854, 41271}, {18831, 53197}, {19173, 36747}, {19185, 46728}, {32046, 43132}, {33651, 34386}, {43768, 46518}

X(58306) = perspector of circumconic {{A, B, C, X(8882), X(16813)}}
X(58306) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 336}, {63, 53245}, {75, 53174}, {98, 18695}, {216, 46273}, {287, 14213}, {290, 44706}, {293, 311}, {343, 1821}, {1910, 28706}, {1953, 57799}, {2618, 17932}, {6368, 36036}, {36120, 52347}
X(58306) = X(i)-Dao conjugate of X(j) for these {i, j}: {132, 311}, {206, 53174}, {2679, 6368}, {3162, 53245}, {11672, 28706}, {38970, 15415}, {40601, 343}, {46094, 52347}
X(58306) = X(i)-Ceva conjugate of X(j) for these {i, j}: {19189, 41270}, {23233, 571}
X(58306)= pole of line {571, 23286} with respect to the circumcircle
X(58306)= pole of line {311, 6368} with respect to the polar circle
X(58306)= pole of line {12077, 47328} with respect to the Orthic inconic
X(58306)= pole of line {5562, 28706} with respect to the Stammler hyperbola
X(58306) = perspector of cevian triangle of X(19189) and inverse-of-ABC in bicevian conic of X(4) and X(19189)
X(58306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(32)}}, {{A, B, C, X(25), X(1629)}}, {{A, B, C, X(54), X(58308)}}, {{A, B, C, X(184), X(9418)}}, {{A, B, C, X(232), X(6753)}}, {{A, B, C, X(275), X(2623)}}, {{A, B, C, X(578), X(46680)}}, {{A, B, C, X(1976), X(58317)}}, {{A, B, C, X(3289), X(11427)}}, {{A, B, C, X(6750), X(52967)}}, {{A, B, C, X(8884), X(19189)}}, {{A, B, C, X(9155), X(14332)}}, {{A, B, C, X(14157), X(58316)}}, {{A, B, C, X(14966), X(32708)}}, {{A, B, C, X(18400), X(39469)}}, {{A, B, C, X(32696), X(34859)}}, {{A, B, C, X(34397), X(53176)}}, {{A, B, C, X(57653), X(58313)}}
X(58306) = barycentric product X(i)*X(j) for these (i, j): {4, 41270}, {232, 54}, {237, 275}, {276, 9418}, {297, 54034}, {511, 8882}, {1755, 2190}, {2148, 240}, {2167, 57653}, {2211, 95}, {2623, 4230}, {3289, 8884}, {3569, 933}, {14533, 6530}, {14573, 44132}, {14586, 16230}, {16813, 39469}, {17994, 18315}, {18831, 2491}, {19189, 6}, {23286, 58070}, {34854, 97}, {40440, 9417}
X(58306) = barycentric quotient X(i)/X(j) for these (i, j): {25, 53245}, {32, 53174}, {54, 57799}, {232, 311}, {237, 343}, {275, 18024}, {511, 28706}, {933, 43187}, {1755, 18695}, {2148, 336}, {2190, 46273}, {2211, 5}, {2491, 6368}, {3289, 52347}, {5360, 42698}, {8882, 290}, {9417, 44706}, {9418, 216}, {9419, 44716}, {14533, 6394}, {14573, 248}, {14586, 17932}, {16230, 15415}, {17994, 18314}, {19189, 76}, {34854, 324}, {34859, 35360}, {41270, 69}, {54034, 287}, {57653, 14213}, {58308, 53173}


X(58307) = X(25)X(1692)∩X(184)X(1613)

Barycentrics    a^2*(3*a^8-b^2*c^2*(b^2-c^2)^2-6*a^6*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(5*b^4-b^2*c^2+5*c^4)) : :

X(58307) lies on these lines: {25, 1692}, {154, 35006}, {184, 1613}, {263, 1501}, {394, 52992}, {511, 3796}, {512, 2623}, {1971, 6784}, {1976, 14567}, {1993, 35383}, {2030, 26864}, {2076, 17809}, {2080, 11003}, {2456, 5012}, {2459, 10132}, {2460, 10133}, {5104, 44109}, {5111, 10329}, {34986, 35375}, {35296, 39907}, {51444, 54034}

X(58307)= pole of line {7697, 10008} with respect to the Stammler hyperbola
X(58307) = perspector of cevian triangle of X(21445) and inverse-of-ABC in bicevian conic of X(4) and X(21445)
X(58307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(51444)}}, {{A, B, C, X(21445), X(47643)}}
X(58307) = barycentric product X(i)*X(j) for these (i, j): {21445, 6}
X(58307) = barycentric quotient X(i)/X(j) for these (i, j): {21445, 76}


X(58308) = X(54)X(826)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(58308) lies on these lines: {54, 826}, {184, 15451}, {512, 2623}, {520, 6760}, {569, 18314}, {933, 2713}, {3049, 19627}, {15422, 51513}, {30451, 39201}

X(58308) = midpoint of X(i) and X(j) for these {i,j}: {30451, 39201}
X(58308) = perspector of circumconic {{A, B, C, X(97), X(8882)}}
X(58308) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 811}, {51, 57968}, {53, 799}, {75, 35360}, {92, 14570}, {107, 18695}, {162, 311}, {216, 57973}, {264, 2617}, {324, 662}, {343, 823}, {561, 52604}, {648, 14213}, {670, 2181}, {1087, 18831}, {1273, 36129}, {1625, 1969}, {1953, 6331}, {2618, 18020}, {3199, 4602}, {4592, 13450}, {4593, 27371}, {6335, 17167}, {6368, 23999}, {6528, 44706}, {12077, 46254}, {14569, 55202}, {14576, 55215}, {14918, 32680}, {21011, 55231}, {21807, 55229}, {23181, 57806}, {23290, 24041}, {24019, 28706}, {24037, 51513}, {35139, 51801}, {36036, 39569}, {36126, 52347}, {42698, 52919}
X(58308) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 311}, {206, 35360}, {512, 51513}, {577, 55252}, {647, 15415}, {1084, 324}, {2679, 39569}, {3005, 23290}, {5139, 13450}, {15450, 45793}, {17423, 5}, {22391, 14570}, {35071, 28706}, {38985, 18695}, {38996, 53}, {40368, 52604}, {46093, 52347}, {55050, 27371}, {55066, 14213}
X(58308) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15958, 14533}, {23286, 46088}, {52932, 57703}
X(58308) = X(i)-cross conjugate of X(j) for these {i, j}: {3049, 2623}, {17423, 3}, {20975, 184}
X(58308)= pole of line {571, 6759} with respect to the circumcircle
X(58308)= pole of line {311, 13450} with respect to the polar circle
X(58308)= pole of line {577, 23158} with respect to the MacBeath circumconic
X(58308) = perspector of cevian triangle of X(23286) and inverse-of-ABC in bicevian conic of X(4) and X(23286)
X(58308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(32545)}}, {{A, B, C, X(54), X(58306)}}, {{A, B, C, X(184), X(14355)}}, {{A, B, C, X(512), X(520)}}, {{A, B, C, X(577), X(58312)}}, {{A, B, C, X(647), X(6753)}}, {{A, B, C, X(810), X(58313)}}, {{A, B, C, X(826), X(6333)}}, {{A, B, C, X(2623), X(46088)}}, {{A, B, C, X(3455), X(52177)}}, {{A, B, C, X(6760), X(33581)}}, {{A, B, C, X(14270), X(15451)}}, {{A, B, C, X(14574), X(58317)}}, {{A, B, C, X(14586), X(15412)}}, {{A, B, C, X(15389), X(58309)}}, {{A, B, C, X(32713), X(58316)}}, {{A, B, C, X(32725), X(58310)}}, {{A, B, C, X(42293), X(51513)}}, {{A, B, C, X(42658), X(42660)}}
X(58308) = barycentric product X(i)*X(j) for these (i, j): {4, 46088}, {54, 647}, {115, 15958}, {125, 14586}, {275, 39201}, {276, 58310}, {512, 97}, {520, 8882}, {525, 54034}, {1092, 15422}, {1147, 55253}, {1576, 53576}, {1637, 46090}, {2148, 656}, {2167, 810}, {2169, 661}, {2190, 822}, {2616, 48}, {2623, 3}, {3049, 95}, {3269, 933}, {3288, 51444}, {11077, 526}, {12077, 46089}, {13366, 39181}, {14371, 30442}, {14533, 523}, {14573, 3267}, {15412, 184}, {15414, 1974}, {16813, 34980}, {18315, 20975}, {19210, 2501}, {20574, 55280}, {20775, 39182}, {22383, 56254}, {23216, 55218}, {23286, 6}, {30451, 96}, {32320, 8884}, {32661, 8901}, {34386, 669}, {34952, 57875}, {35196, 55234}, {36134, 3708}, {39013, 52932}, {41270, 879}, {41271, 52584}, {47230, 50463}, {53173, 58306}, {57703, 924}
X(58308) = barycentric quotient X(i)/X(j) for these (i, j): {32, 35360}, {54, 6331}, {97, 670}, {125, 15415}, {184, 14570}, {252, 55217}, {512, 324}, {520, 28706}, {647, 311}, {669, 53}, {688, 27371}, {810, 14213}, {822, 18695}, {878, 53245}, {1084, 51513}, {1147, 55252}, {1501, 52604}, {1924, 2181}, {2148, 811}, {2167, 57968}, {2169, 799}, {2190, 57973}, {2489, 13450}, {2491, 39569}, {2616, 1969}, {2623, 264}, {3049, 5}, {3124, 23290}, {8882, 6528}, {9247, 2617}, {9426, 3199}, {11077, 35139}, {14270, 14918}, {14533, 99}, {14573, 112}, {14575, 1625}, {14585, 23181}, {14586, 18020}, {14587, 55270}, {15412, 18022}, {15414, 40050}, {15451, 45793}, {15958, 4590}, {19210, 4563}, {20574, 55279}, {20975, 18314}, {23216, 55219}, {23286, 76}, {30451, 39113}, {32320, 52347}, {34386, 4609}, {34952, 467}, {35196, 55233}, {36134, 46254}, {39201, 343}, {41270, 877}, {41271, 30450}, {41488, 42395}, {46088, 69}, {53576, 44173}, {54034, 648}, {55253, 55553}, {57204, 14569}, {57703, 46134}, {58310, 216}


X(58309) = X(4)X(2080)∩X(25)X(187)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+3*b^2*c^2-2*a^2*(b^2+c^2)) : :

X(58309) lies on these lines: {4, 2080}, {24, 38225}, {25, 187}, {112, 5970}, {186, 2971}, {235, 38227}, {316, 427}, {378, 35002}, {385, 5186}, {428, 51224}, {468, 691}, {511, 1593}, {512, 2623}, {625, 5094}, {842, 44281}, {1398, 5194}, {1597, 9301}, {1691, 1968}, {1692, 3172}, {1829, 5184}, {1843, 5104}, {2021, 2207}, {2030, 19118}, {2076, 7716}, {2386, 39832}, {2459, 8948}, {2460, 8946}, {3291, 54066}, {3515, 14248}, {3516, 18860}, {3542, 14693}, {3575, 19169}, {3849, 5064}, {5148, 7071}, {5167, 44080}, {7507, 13449}, {7527, 23635}, {8541, 8586}, {8753, 41404}, {9218, 15143}, {9855, 12132}, {10317, 56957}, {11363, 38221}, {11405, 44496}, {11676, 12131}, {14581, 44090}, {14908, 43291}, {21841, 38230}, {31275, 52298}, {32527, 39652}, {44102, 52678}, {47618, 55571}

X(58309) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 9227}, {75, 38279}
X(58309) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 38279}, {3162, 9227}, {39027, 69}
X(58309) = X(i)-Ceva conjugate of X(j) for these {i, j}: {38294, 9225}
X(58309)= pole of line {311, 55271} with respect to the polar circle
X(58309)= pole of line {38279, 47412} with respect to the Stammler hyperbola
X(58309) = perspector of cevian triangle of X(38294) and inverse-of-ABC in bicevian conic of X(4) and X(38294)
X(58309) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2623), X(3224)}}, {{A, B, C, X(15389), X(58308)}}
X(58309) = barycentric product X(i)*X(j) for these (i, j): {4, 9225}, {112, 45689}, {38294, 6}
X(58309) = barycentric quotient X(i)/X(j) for these (i, j): {25, 9227}, {32, 38279}, {9225, 69}, {38294, 76}, {45689, 3267}
X(58309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 46522, 44089}, {187, 5140, 25}, {1968, 11325, 11380}


X(58310) = X(184)X(647)∩X(669)X(688)

Barycentrics    a^6*(b-c)*(b+c)*(-a^2+b^2+c^2)^2 : :

X(58310) lies on these lines: {110, 22264}, {182, 30476}, {184, 647}, {512, 2623}, {520, 58353}, {669, 688}, {850, 5012}, {879, 11003}, {1181, 9242}, {1974, 58344}, {3796, 54272}, {5027, 6562}, {11402, 54269}, {23590, 32713}, {30451, 39469}, {31277, 43650}, {32320, 39201}, {47252, 51733}

X(58310) = perspector of circumconic {{A, B, C, X(32), X(248)}}
X(58310) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 57973}, {4, 57968}, {75, 6528}, {76, 823}, {92, 6331}, {99, 57806}, {107, 561}, {158, 670}, {162, 18022}, {264, 811}, {304, 15352}, {305, 36126}, {314, 52938}, {393, 4602}, {648, 1969}, {662, 18027}, {799, 2052}, {850, 23999}, {1093, 55202}, {1096, 4609}, {1502, 24019}, {1857, 55213}, {1896, 4572}, {1897, 57796}, {1928, 32713}, {2617, 57844}, {4563, 6521}, {6335, 44129}, {6386, 8747}, {6520, 52608}, {6529, 40364}, {11547, 55215}, {14213, 42405}, {14618, 46254}, {15459, 46234}, {18026, 44130}, {18695, 52779}, {18833, 46151}, {20948, 23582}, {22456, 40703}, {24000, 44173}, {24018, 57556}, {24021, 52617}, {27376, 37204}, {27801, 52919}, {28660, 54240}, {31623, 46404}, {32676, 44161}, {36127, 40072}, {36797, 57787}, {40149, 55233}, {41013, 55229}, {41679, 57898}, {44706, 54950}, {55227, 57716}
X(58310) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 18022}, {130, 311}, {206, 6528}, {520, 52617}, {1084, 18027}, {1147, 670}, {6503, 4609}, {15526, 44161}, {17423, 264}, {22391, 6331}, {32664, 57973}, {34467, 57796}, {35071, 1502}, {36033, 57968}, {37867, 52608}, {38985, 561}, {38986, 57806}, {38996, 2052}, {39469, 41167}, {40368, 107}, {40369, 32713}, {46093, 305}, {55066, 1969}
X(58310) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14574, 14575}, {32713, 32}, {58308, 3049}
X(58310)= pole of line {30495, 57533} with respect to the 1st Brocard circle
X(58310)= pole of line {571, 1613} with respect to the circumcircle
X(58310)= pole of line {311, 18022} with respect to the polar circle
X(58310)= pole of line {3051, 8779} with respect to the Brocard inellipse
X(58310)= pole of line {6638, 10316} with respect to the MacBeath circumconic
X(58310)= pole of line {40951, 47328} with respect to the Orthic inconic
X(58310)= pole of line {670, 877} with respect to the Stammler hyperbola
X(58310)= pole of line {8265, 28697} with respect to the Steiner inellipse
X(58310) = perspector of cevian triangle of X(39201) and inverse-of-ABC in bicevian conic of X(4) and X(39201)
X(58310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(864)}}, {{A, B, C, X(32), X(23590)}}, {{A, B, C, X(184), X(9418)}}, {{A, B, C, X(394), X(32748)}}, {{A, B, C, X(520), X(688)}}, {{A, B, C, X(577), X(33875)}}, {{A, B, C, X(647), X(2491)}}, {{A, B, C, X(669), X(878)}}, {{A, B, C, X(822), X(46386)}}, {{A, B, C, X(2623), X(3049)}}, {{A, B, C, X(3265), X(17415)}}, {{A, B, C, X(6753), X(42293)}}, {{A, B, C, X(9407), X(14575)}}, {{A, B, C, X(14567), X(14585)}}, {{A, B, C, X(32725), X(58308)}}, {{A, B, C, X(34397), X(44088)}}, {{A, B, C, X(54034), X(58311)}}
X(58310) = barycentric product X(i)*X(j) for these (i, j): {3, 3049}, {25, 32320}, {31, 822}, {32, 520}, {41, 51640}, {48, 810}, {112, 34980}, {184, 647}, {213, 23224}, {216, 58308}, {217, 23286}, {248, 39469}, {255, 798}, {394, 669}, {512, 577}, {656, 9247}, {1092, 2489}, {1402, 36054}, {1409, 1946}, {1459, 2200}, {1501, 3265}, {1576, 3269}, {1636, 40352}, {1918, 4091}, {1919, 3682}, {1924, 326}, {1971, 53175}, {1974, 52613}, {1980, 3998}, {2205, 4131}, {2289, 51641}, {2351, 30451}, {2623, 418}, {3051, 58353}, {3267, 40373}, {3289, 878}, {3709, 7335}, {3926, 9426}, {3964, 57204}, {3990, 667}, {4055, 649}, {4143, 44162}, {6056, 7180}, {10097, 23200}, {14270, 50433}, {14533, 15451}, {14574, 15526}, {14575, 525}, {14585, 523}, {14600, 684}, {14642, 42658}, {15389, 2524}, {15412, 44088}, {17434, 54034}, {17974, 2491}, {18604, 50487}, {18877, 9409}, {19210, 55219}, {19627, 43083}, {20975, 32661}, {22096, 4574}, {22341, 3063}, {22383, 228}, {23103, 23975}, {23216, 4563}, {23590, 23613}, {23606, 2501}, {23963, 5489}, {24018, 560}, {24019, 42080}, {28724, 688}, {32676, 37754}, {32713, 35071}, {32725, 33571}, {34952, 55549}, {39201, 6}, {39687, 53321}, {40146, 58359}, {40353, 58345}, {40823, 47194}, {42293, 54}, {46088, 51}, {52430, 661}, {52617, 9233}, {53173, 9418}, {58305, 8882}, {58354, 881}
X(58310) = barycentric quotient X(i)/X(j) for these (i, j): {31, 57973}, {32, 6528}, {48, 57968}, {184, 6331}, {255, 4602}, {394, 4609}, {512, 18027}, {520, 1502}, {525, 44161}, {560, 823}, {577, 670}, {647, 18022}, {669, 2052}, {798, 57806}, {810, 1969}, {822, 561}, {1092, 52608}, {1501, 107}, {1799, 42395}, {1917, 24019}, {1924, 158}, {1974, 15352}, {2623, 57844}, {3049, 264}, {3265, 40362}, {3269, 44173}, {3990, 6386}, {4055, 1978}, {4100, 55202}, {4143, 40360}, {7125, 55213}, {8882, 54950}, {8884, 42369}, {9233, 32713}, {9247, 811}, {9426, 393}, {9494, 27376}, {14573, 16813}, {14574, 23582}, {14575, 648}, {14585, 99}, {14600, 22456}, {19210, 55218}, {22383, 57796}, {23216, 2501}, {23224, 6385}, {23286, 57790}, {23606, 4563}, {23613, 23974}, {24018, 1928}, {28724, 42371}, {32320, 305}, {32713, 57556}, {34980, 3267}, {35071, 52617}, {36054, 40072}, {39201, 76}, {39469, 44132}, {40373, 112}, {41331, 46151}, {42293, 311}, {44088, 14570}, {44162, 6529}, {46088, 34384}, {51477, 55217}, {51640, 20567}, {52430, 799}, {52435, 55227}, {52613, 40050}, {52617, 40359}, {54034, 42405}, {57204, 1093}, {58305, 28706}, {58308, 276}, {58353, 40016}


X(58311) = X(25)X(32)∩X(112)X(237)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8+b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+b^2*c^2+c^4)) : :

X(58311) lies on these lines: {4, 34396}, {6, 6751}, {20, 23606}, {25, 32}, {110, 15143}, {112, 237}, {157, 8746}, {184, 1968}, {232, 52144}, {393, 14575}, {401, 32428}, {419, 47202}, {458, 3398}, {460, 6531}, {512, 2623}, {578, 1181}, {1033, 19118}, {1576, 1990}, {1629, 12110}, {1974, 51936}, {1976, 2211}, {2393, 52952}, {2782, 44328}, {2967, 37183}, {3148, 8743}, {3164, 43131}, {3575, 8884}, {5191, 8744}, {5702, 46327}, {6620, 44162}, {8745, 40947}, {8778, 52277}, {9308, 37893}, {9407, 32713}, {9512, 37778}, {11325, 44077}, {11547, 36998}, {14900, 51458}, {18374, 52604}, {20975, 52418}, {21531, 41253}, {23590, 58341}, {26864, 41376}, {32078, 37126}, {32695, 32725}, {33695, 51939}, {34982, 44084}, {37457, 39575}, {38861, 47158}, {41363, 51335}, {56296, 56372}

X(58311) = perspector of circumconic {{A, B, C, X(8882), X(32713)}}
X(58311) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 1972}, {69, 1956}, {75, 14941}, {304, 1987}, {336, 40804}, {561, 52177}, {1298, 18695}, {24018, 53205}, {53175, 57968}
X(58311) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 14941}, {3162, 1972}, {38974, 3267}, {39038, 304}, {39045, 69}, {39081, 305}, {40368, 52177}, {52128, 52347}
X(58311) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1976, 25}, {2211, 44089}, {41204, 1971}
X(58311)= pole of line {571, 2485} with respect to the circumcircle
X(58311)= pole of line {311, 3267} with respect to the polar circle
X(58311)= pole of line {10311, 34131} with respect to the Jerabek hyperbola
X(58311)= pole of line {3926, 14941} with respect to the Stammler hyperbola
X(58311) = perspector of cevian triangle of X(41204) and inverse-of-ABC in bicevian conic of X(4) and X(41204)
X(58311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(401)}}, {{A, B, C, X(32), X(32545)}}, {{A, B, C, X(512), X(3199)}}, {{A, B, C, X(2207), X(41204)}}, {{A, B, C, X(6130), X(14580)}}, {{A, B, C, X(6531), X(34854)}}, {{A, B, C, X(32696), X(34859)}}, {{A, B, C, X(54034), X(58310)}}
X(58311) = barycentric product X(i)*X(j) for these (i, j): {19, 1955}, {25, 401}, {112, 6130}, {232, 32545}, {1971, 4}, {1974, 44137}, {2190, 2313}, {10311, 39682}, {16089, 32}, {32428, 8882}, {41204, 6}, {52128, 6531}
X(58311) = barycentric quotient X(i)/X(j) for these (i, j): {25, 1972}, {32, 14941}, {401, 305}, {1501, 52177}, {1955, 304}, {1971, 69}, {1973, 1956}, {1974, 1987}, {2211, 40804}, {2313, 18695}, {6130, 3267}, {16089, 1502}, {32428, 28706}, {32545, 57799}, {32713, 53205}, {41204, 76}, {44137, 40050}, {51437, 51960}, {52128, 6393}
X(58311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1576, 1990, 44096}, {14581, 42671, 34854}, {34854, 42671, 25}


X(58312) = X(3)X(6)∩X(4)X(52436)

Barycentrics    a^2*(a^8-b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+b^2*c^2+c^4)) : :

X(58312) lies on these lines: {3, 6}, {4, 52436}, {54, 11674}, {110, 45938}, {115, 1971}, {128, 36472}, {184, 5167}, {186, 47421}, {230, 32661}, {231, 30714}, {249, 3580}, {316, 14389}, {338, 54076}, {512, 2623}, {538, 58354}, {1176, 49122}, {1300, 2715}, {1501, 7737}, {1915, 5475}, {2387, 39834}, {2450, 46243}, {2909, 11325}, {3331, 14567}, {3767, 14585}, {7735, 52438}, {9225, 45935}, {9609, 44415}, {12022, 38227}, {13754, 39839}, {14574, 44089}, {14917, 39832}, {21843, 43653}, {32654, 44221}

X(58312) = inverse of X(571) in circumcircle
X(58312) = perspector of circumconic {{A, B, C, X(110), X(8882)}}
X(58312) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 57846}, {92, 57679}
X(58312) = X(i)-vertex conjugate of X(j) for these {i, j}: {512, 571}
X(58312) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 57846}, {22391, 57679}
X(58312) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44375, 51458}
X(58312)= pole of line {512, 571} with respect to the circumcircle
X(58312)= pole of line {34964, 45801} with respect to the nine-point circle
X(58312)= pole of line {311, 14618} with respect to the polar circle
X(58312)= pole of line {184, 39839} with respect to the Jerabek hyperbola
X(58312)= pole of line {5, 1576} with respect to the Kiepert hyperbola
X(58312)= pole of line {924, 47328} with respect to the Orthic inconic
X(58312)= pole of line {2, 47421} with respect to the Stammler hyperbola
X(58312) = perspector of cevian triangle of X(44375) and inverse-of-ABC in bicevian conic of X(4) and X(44375)
X(58312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(421)}}, {{A, B, C, X(6), X(44375)}}, {{A, B, C, X(52), X(6753)}}, {{A, B, C, X(216), X(512)}}, {{A, B, C, X(249), X(571)}}, {{A, B, C, X(511), X(1300)}}, {{A, B, C, X(577), X(58308)}}, {{A, B, C, X(842), X(37478)}}, {{A, B, C, X(2065), X(19131)}}, {{A, B, C, X(2088), X(37802)}}, {{A, B, C, X(3003), X(6531)}}, {{A, B, C, X(8553), X(9217)}}, {{A, B, C, X(14966), X(32708)}}, {{A, B, C, X(32762), X(45135)}}
X(58312) = barycentric product X(i)*X(j) for these (i, j): {3, 421}, {4, 51458}, {44375, 6}
X(58312) = barycentric quotient X(i)/X(j) for these (i, j): {3, 57846}, {184, 57679}, {421, 264}, {44375, 76}, {51458, 69}
X(58312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 19627, 1971}, {187, 1692, 50387}, {1379, 1380, 571}, {2459, 2460, 32762}


X(58313) = X(25)X(1960)∩X(661)X(663)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+b*c-c^2)*(a^2-b^2+c^2) : :

X(58313) lies on these lines: {25, 1960}, {33, 58369}, {512, 2623}, {659, 1829}, {661, 663}, {692, 2498}, {891, 11396}, {1398, 53539}, {1411, 39534}, {1459, 43923}, {1593, 2821}, {1946, 6589}, {2605, 7649}, {3904, 6369}, {5094, 53571}, {8648, 21828}, {9032, 12167}, {11363, 25569}, {42666, 47230}, {43925, 52326}, {44426, 47729}, {48302, 57044}, {48306, 54244}

X(58313) = perspector of circumconic {{A, B, C, X(19), X(2189)}}
X(58313) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 35174}, {48, 46405}, {63, 655}, {69, 2222}, {77, 51562}, {80, 6516}, {99, 52391}, {100, 52392}, {222, 36804}, {304, 32675}, {651, 52351}, {664, 1807}, {1214, 47318}, {1331, 18815}, {1332, 2006}, {1411, 4561}, {1793, 4566}, {1813, 18359}, {4025, 52377}, {4551, 57985}, {4554, 52431}, {4592, 52383}, {14616, 23067}, {18695, 36078}, {20566, 36059}, {22342, 35139}, {26942, 37140}, {36061, 40999}, {36069, 57807}
X(58313) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 46405}, {3162, 655}, {5139, 52383}, {5521, 18815}, {8054, 52392}, {13999, 75}, {16221, 40999}, {20620, 20566}, {35128, 304}, {35204, 4561}, {36103, 35174}, {38966, 52409}, {38982, 57807}, {38984, 69}, {38986, 52391}, {38991, 52351}, {39025, 1807}, {57434, 3718}
X(58313) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8749, 14936}, {14776, 25}, {36067, 608}, {44428, 654}
X(58313)= pole of line {571, 608} with respect to the circumcircle
X(58313)= pole of line {75, 311} with respect to the polar circle
X(58313)= pole of line {1824, 2875} with respect to the Orthic inconic
X(58313) = perspector of cevian triangle of X(44428) and inverse-of-ABC in bicevian conic of X(4) and X(44428)
X(58313) = intersection, other than A, B, C, of circumconics {{A, B, C, X(112), X(8735)}}, {{A, B, C, X(512), X(6369)}}, {{A, B, C, X(654), X(661)}}, {{A, B, C, X(663), X(692)}}, {{A, B, C, X(810), X(58308)}}, {{A, B, C, X(862), X(17515)}}, {{A, B, C, X(884), X(53525)}}, {{A, B, C, X(1411), X(2361)}}, {{A, B, C, X(1438), X(2323)}}, {{A, B, C, X(1870), X(2356)}}, {{A, B, C, X(2423), X(53046)}}, {{A, B, C, X(3738), X(8678)}}, {{A, B, C, X(6591), X(32674)}}, {{A, B, C, X(7113), X(8776)}}, {{A, B, C, X(8750), X(18344)}}, {{A, B, C, X(57653), X(58306)}}
X(58313) = barycentric product X(i)*X(j) for these (i, j): {4, 654}, {19, 3738}, {25, 3904}, {27, 53562}, {33, 3960}, {278, 53285}, {281, 53314}, {514, 52427}, {522, 52413}, {1021, 1835}, {1172, 53527}, {1464, 17926}, {1783, 53525}, {1870, 650}, {2170, 4242}, {2189, 6370}, {2190, 2600}, {2299, 4707}, {2323, 7649}, {2326, 51663}, {2610, 270}, {3064, 36}, {3615, 47230}, {3724, 57215}, {4453, 607}, {4511, 6591}, {5081, 649}, {6369, 8882}, {7252, 860}, {8648, 92}, {14776, 46398}, {17515, 661}, {17923, 663}, {17924, 2361}, {18344, 3218}, {21758, 318}, {21828, 29}, {24006, 4282}, {32702, 57434}, {36123, 53046}, {42666, 46103}, {44113, 4560}, {44426, 7113}, {44428, 6}, {46107, 52426}, {46110, 52434}, {46384, 7012}, {53047, 909}, {53546, 56183}
X(58313) = barycentric quotient X(i)/X(j) for these (i, j): {4, 46405}, {19, 35174}, {25, 655}, {33, 36804}, {607, 51562}, {649, 52392}, {654, 69}, {663, 52351}, {798, 52391}, {1870, 4554}, {1973, 2222}, {1974, 32675}, {2299, 47318}, {2323, 4561}, {2361, 1332}, {2489, 52383}, {2600, 18695}, {2610, 57807}, {3063, 1807}, {3064, 20566}, {3738, 304}, {3904, 305}, {3960, 7182}, {4282, 4592}, {4453, 57918}, {5081, 1978}, {6369, 28706}, {6591, 18815}, {7113, 6516}, {7252, 57985}, {8648, 63}, {17515, 799}, {17923, 4572}, {18344, 18359}, {21758, 77}, {21828, 307}, {22379, 7183}, {42666, 26942}, {44113, 4552}, {44428, 76}, {46384, 17880}, {47230, 40999}, {52413, 664}, {52426, 1331}, {52427, 190}, {52434, 1813}, {53285, 345}, {53314, 348}, {53525, 15413}, {53527, 1231}, {53562, 306}, {55206, 15065}


X(58314) = X(184)X(667)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(a^5+a^2*b*c*(b+c)-b*c*(b+c)*(b^2+c^2)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(58314) lies on these lines: {182, 21260}, {184, 667}, {512, 2623}, {1147, 39227}, {1960, 9404}, {5012, 21301}, {9306, 31288}, {11003, 31291}, {18344, 44077}, {31251, 43650}, {34948, 34975}, {57097, 57131}

X(58314) = perspector of circumconic {{A, B, C, X(8882), X(32655)}}
X(58314) = X(i)-Dao conjugate of X(j) for these {i, j}: {22383, 15413}
X(58314) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1783, 32}
X(58314)= pole of line {311, 17864} with respect to the polar circle
X(58314) = perspector of cevian triangle of X(48383) and inverse-of-ABC in bicevian conic of X(4) and X(48383)
X(58314) = barycentric product X(i)*X(j) for these (i, j): {1783, 34467}, {48383, 6}
X(58314) = barycentric quotient X(i)/X(j) for these (i, j): {34467, 15413}, {48383, 76}


X(58315) = X(182)X(3835)∩X(184)X(649)

Barycentrics    a^4*(a-b-c)*(b-c)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(58315) lies on circumconic {{A, B, C, X(2623), X(3063)}} and these lines: {32, 23575}, {110, 27013}, {182, 3835}, {184, 649}, {386, 23148}, {512, 2623}, {663, 57133}, {692, 23865}, {1980, 8641}, {2488, 57172}, {5012, 20295}, {5651, 31207}, {6139, 56242}, {8653, 9426}, {9306, 31286}, {11003, 26853}, {30835, 43650}, {48387, 57042}, {57096, 57175}

X(58315) = perspector of circumconic {{A, B, C, X(2204), X(8882)}}
X(58315) = X(i)-isoconjugate-of-X(j) for these {i, j}: {85, 56248}, {664, 57830}, {1969, 40518}, {4569, 44040}, {4572, 57666}
X(58315) = X(i)-Dao conjugate of X(j) for these {i, j}: {39025, 57830}
X(58315) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8750, 32}
X(58315) = perspector of cevian triangle of X(48387) and inverse-of-ABC in bicevian conic of X(4) and X(48387)
X(58315) = barycentric product X(i)*X(j) for these (i, j): {19, 57103}, {25, 57042}, {41, 48281}, {42, 57212}, {2175, 47796}, {3063, 404}, {20293, 32}, {32739, 44311}, {39006, 8750}, {44085, 650}, {48387, 6}
X(58315) = barycentric quotient X(i)/X(j) for these (i, j): {2175, 56248}, {3063, 57830}, {14575, 40518}, {20293, 1502}, {44085, 4554}, {47796, 41283}, {48281, 20567}, {48387, 76}, {57042, 305}, {57103, 304}, {57212, 310}


X(58316) = X(184)X(9409)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*(a^8+3*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4-b^2*c^2+3*c^4)) : :

X(58316) lies on these lines: {184, 9409}, {512, 2623}, {684, 10984}, {1147, 44810}, {6130, 6759}, {6529, 23977}, {9306, 44818}, {14270, 40352}, {52525, 53345}

X(58316) = perspector of circumconic {{A, B, C, X(8882), X(23590)}}
X(58316) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32695, 32}
X(58316) = perspector of cevian triangle of X(53255) and inverse-of-ABC in bicevian conic of X(4) and X(53255)
X(58316) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2623), X(6529)}}, {{A, B, C, X(14157), X(58306)}}, {{A, B, C, X(32713), X(58308)}}
X(58316) = barycentric product X(i)*X(j) for these (i, j): {14157, 647}, {32695, 38999}, {53255, 6}
X(58316) = barycentric quotient X(i)/X(j) for these (i, j): {14157, 6331}, {53255, 76}


X(58317) = X(184)X(3569)∩X(206)X(2492)

Barycentrics    a^4*(a^8*(b-c)*(b+c)+b^2*c^2*(b^2-c^2)^3+a^6*(-b^4+c^4)+a^4*(-b^6+c^6)+a^2*(b^8-c^8)) : :

X(58317) lies on these lines: {182, 24284}, {184, 3569}, {206, 2492}, {512, 2623}, {669, 14602}, {690, 13198}, {1974, 14398}, {1976, 2395}, {2491, 14601}, {5012, 53331}, {5157, 35522}, {9035, 19126}, {14574, 34859}, {52588, 57075}

X(58317) = perspector of circumconic {{A, B, C, X(8882), X(10313)}}
X(58317) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32696, 32}
X(58317)= pole of line {1899, 2549} with respect to the 1st Brocard circle
X(58317)= pole of line {15631, 52617} with respect to the Stammler hyperbola
X(58317) = perspector of cevian triangle of X(53265) and inverse-of-ABC in bicevian conic of X(4) and X(53265)
X(58317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(53345)}}, {{A, B, C, X(1976), X(58306)}}, {{A, B, C, X(2395), X(34859)}}, {{A, B, C, X(14574), X(58308)}}
X(58317) = barycentric product X(i)*X(j) for these (i, j): {32, 53345}, {2715, 38368}, {10313, 512}, {32696, 39000}, {53265, 6}
X(58317) = barycentric quotient X(i)/X(j) for these (i, j): {10313, 670}, {53265, 76}, {53345, 1502}


X(58318) = X(55)X(57092)∩X(512)X(2623)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(58318) lies on these lines: {55, 57092}, {512, 2623}, {663, 51726}, {884, 7154}, {1946, 6591}, {3064, 21789}, {4705, 8641}, {8648, 55208}, {11406, 50501}, {17924, 22160}, {23865, 54247}

X(58318) = perspector of circumconic {{A, B, C, X(2299), X(8882)}}
X(58318) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6516, 57719}, {36059, 57910}
X(58318) = X(i)-Dao conjugate of X(j) for these {i, j}: {17924, 40495}, {20620, 57910}
X(58318) = X(i)-Ceva conjugate of X(j) for these {i, j}: {692, 25}
X(58318)= pole of line {571, 1841} with respect to the circumcircle
X(58318)= pole of line {311, 349} with respect to the polar circle
X(58318) = perspector of cevian triangle of X(57089) and inverse-of-ABC in bicevian conic of X(4) and X(57089)
X(58318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(663), X(2623)}}, {{A, B, C, X(7154), X(41227)}}
X(58318) = barycentric product X(i)*X(j) for these (i, j): {3064, 580}, {37279, 663}, {41227, 650}, {57089, 6}
X(58318) = barycentric quotient X(i)/X(j) for these (i, j): {3064, 57910}, {37279, 4572}, {41227, 4554}, {57089, 76}


X(58319) = X(3)X(57065)∩X(25)X(34952)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2*(a^2-b^2)^3-(a^2-b^2)^2*(3*a^2+b^2)*c^2+(3*a^4-a^2*b^2+2*b^4)*c^4-(a^2+b^2)*c^6) : :

X(58319) lies on these lines: {3, 57065}, {25, 34952}, {512, 2623}, {523, 37954}, {669, 44705}, {1033, 46615}, {1593, 3566}, {2489, 42658}, {2501, 39201}, {3172, 57204}, {3185, 57124}, {3515, 44680}, {5198, 42399}, {14270, 51513}, {15451, 47230}, {16229, 53263}

X(58319) = perspector of circumconic {{A, B, C, X(8882), X(40402)}}
X(58319) = X(i)-Dao conjugate of X(j) for these {i, j}: {14618, 44173}, {53577, 52347}
X(58319) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1576, 25}
X(58319)= pole of line {53, 571} with respect to the circumcircle
X(58319)= pole of line {311, 13160} with respect to the polar circle
X(58319) = perspector of cevian triangle of X(57120) and inverse-of-ABC in bicevian conic of X(4) and X(57120)
X(58319) = barycentric product X(i)*X(j) for these (i, j): {112, 53577}, {2501, 34148}, {57120, 6}
X(58319) = barycentric quotient X(i)/X(j) for these (i, j): {34148, 4563}, {53577, 3267}, {57120, 76}


X(58320) = X(6)X(57)∩X(41)X(279)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4+b*(b-c)^2*c-2*a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58320) lies on cubic K225 and these lines: {6, 57}, {7, 2280}, {41, 279}, {55, 1742}, {56, 34497}, {77, 40131}, {85, 24249}, {100, 6168}, {101, 1323}, {105, 1458}, {109, 39421}, {144, 6602}, {226, 4872}, {238, 52161}, {241, 2348}, {278, 2201}, {388, 28845}, {511, 1362}, {513, 2078}, {604, 3598}, {651, 672}, {664, 46180}, {934, 1055}, {1155, 9357}, {1174, 10509}, {1202, 38818}, {1282, 5018}, {1319, 43064}, {1400, 34028}, {1414, 5060}, {1420, 2124}, {1423, 1617}, {1429, 1438}, {1443, 2246}, {1475, 38859}, {2082, 4350}, {2170, 38459}, {2202, 36118}, {2266, 4644}, {2329, 9312}, {3160, 9310}, {3684, 9436}, {4251, 10481}, {4318, 53552}, {4326, 10389}, {4334, 37492}, {4625, 56432}, {7201, 44670}, {8012, 37659}, {10025, 14189}, {16503, 40719}, {17093, 51190}, {43694, 57737}, {44664, 58325}

X(58320) = isogonal conjugate of X(14943)
X(58320) = perspector of circumconic {{A, B, C, X(934), X(1170)}}
X(58320) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14943}, {2, 52001}, {9, 9442}
X(58320) = X(i)-vertex conjugate of X(j) for these {i, j}: {57, 8641}
X(58320) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14943}, {478, 9442}, {9436, 3263}, {32664, 52001}, {56715, 51972}
X(58320) = X(i)-Ceva conjugate of X(j) for these {i, j}: {105, 57}, {1458, 1429}, {14189, 9441}
X(58320)= pole of line {57, 8641} with respect to the circumcircle
X(58320)= pole of line {5173, 6182} with respect to the incircle
X(58320)= pole of line {2287, 14943} with respect to the Stammler hyperbola
X(58320) = perspector of cevian triangle of X(14189) and inverse-of-ABC in bicevian conic of X(7) and X(14189)
X(58320) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(55), X(20995)}}, {{A, B, C, X(57), X(6185)}}, {{A, B, C, X(269), X(14189)}}, {{A, B, C, X(513), X(1418)}}, {{A, B, C, X(1174), X(8641)}}, {{A, B, C, X(1427), X(40864)}}, {{A, B, C, X(1438), X(52635)}}, {{A, B, C, X(2999), X(28058)}}, {{A, B, C, X(24471), X(33677)}}, {{A, B, C, X(34855), X(36905)}}
X(58320) = barycentric product X(i)*X(j) for these (i, j): {1, 14189}, {7, 9441}, {105, 36905}, {269, 28058}, {10025, 57}, {33677, 56}, {40864, 6}, {56715, 56783}
X(58320) = barycentric quotient X(i)/X(j) for these (i, j): {6, 14943}, {31, 52001}, {56, 9442}, {9441, 8}, {10025, 312}, {14189, 75}, {28058, 341}, {33677, 3596}, {36905, 3263}, {40864, 76}, {56715, 3717}
X(58320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {910, 34855, 57}, {910, 6610, 34855}


X(58321) = X(649)X(1200)∩X(661)X(665)

Barycentrics    a*(b-c)*(-2*a*(b-c)^2*(b+c)+a^2*(b^2+c^2)+(b-c)^2*(b^2+c^2)) : :
X(58321) = -4*X[28984]+3*X[58331]

X(58321) lies on these lines: {513, 2078}, {649, 1200}, {661, 665}, {764, 48398}, {918, 58335}, {2254, 4524}, {2488, 53544}, {3126, 4468}, {3669, 17115}, {23726, 52305}, {28984, 58331}

X(58321) = reflection of X(i) in X(j) for these {i,j}: {8641, 43049}
X(58321) = perspector of circumconic {{A, B, C, X(1170), X(13476)}}
X(58321) = X(i)-Dao conjugate of X(j) for these {i, j}: {21258, 4578}
X(58321) = perspector of cevian triangle of X(23748) and inverse-of-ABC in bicevian conic of X(7) and X(23748)
X(58321) = barycentric product X(i)*X(j) for these (i, j): {1, 23748}, {1019, 21931}, {17924, 22440}, {21258, 513}, {21346, 514}, {21436, 649}, {23653, 693}, {24002, 39789}
X(58321) = barycentric quotient X(i)/X(j) for these (i, j): {21258, 668}, {21346, 190}, {21436, 1978}, {21931, 4033}, {22440, 1332}, {23653, 100}, {23748, 75}, {39789, 644}
X(58321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 43049, 8641}


X(58322) = X(1)X(21104)∩X(57)X(2488)

Barycentrics    a*(b-c)*((a-b)^2-(a+b)*c)*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(58322) lies on these lines: {1, 21104}, {57, 2488}, {513, 2078}, {522, 3935}, {650, 1734}, {661, 1024}, {663, 3676}, {676, 48306}, {846, 56255}, {1170, 35348}, {1252, 35338}, {2222, 53243}, {2254, 3737}, {2346, 23838}, {2499, 48336}, {2736, 53244}, {3120, 24198}, {4077, 21453}, {4551, 36086}, {4794, 7658}, {6606, 53208}, {7649, 48340}, {18155, 29051}, {23954, 47811}, {47123, 48307}, {47704, 48293}

X(58322) = reflection of X(i) in X(j) for these {i,j}: {58324, 8641}
X(58322) = isogonal conjugate of X(35338)
X(58322) = trilinear pole of line {2170, 17463}
X(58322) = perspector of circumconic {{A, B, C, X(1170), X(2346)}}
X(58322) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 35338}, {2, 35326}, {55, 35312}, {57, 35341}, {59, 6362}, {81, 35310}, {82, 35335}, {99, 52020}, {100, 354}, {101, 142}, {109, 4847}, {110, 3925}, {190, 1475}, {644, 1418}, {651, 1212}, {658, 8012}, {662, 21808}, {664, 2293}, {692, 20880}, {765, 48151}, {901, 51463}, {919, 51384}, {934, 3059}, {1018, 18164}, {1229, 1415}, {1233, 32739}, {1252, 21104}, {1275, 10581}, {1292, 15185}, {1414, 21039}, {1461, 51972}, {1813, 1855}, {1827, 6516}, {1897, 22053}, {2284, 53241}, {2488, 4998}, {2720, 51416}, {2742, 41555}, {3939, 10481}, {4551, 17194}, {4554, 20229}, {4557, 17169}, {4559, 16713}, {4561, 40983}, {4564, 21127}, {4570, 55282}, {4573, 21795}, {4574, 53238}, {4617, 45791}, {5546, 52023}, {6067, 53243}, {6608, 7045}, {8551, 36838}, {18026, 22079}, {18087, 46148}, {23344, 53240}, {28291, 41570}, {40606, 43190}, {41573, 53888}
X(58322) = X(i)-vertex conjugate of X(j) for these {i, j}: {2149, 7045}
X(58322) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 35338}, {11, 4847}, {141, 35335}, {223, 35312}, {244, 3925}, {513, 48151}, {661, 21104}, {1015, 142}, {1084, 21808}, {1086, 20880}, {1146, 1229}, {5452, 35341}, {6615, 6362}, {8054, 354}, {14714, 3059}, {17115, 6608}, {32664, 35326}, {34467, 22053}, {35508, 51972}, {38979, 51463}, {38980, 51384}, {38981, 51416}, {38986, 52020}, {38991, 1212}, {39025, 2293}, {40586, 35310}, {40608, 21039}, {40617, 10481}, {40619, 1233}, {40620, 16708}, {50330, 55282}, {55053, 1475}, {55067, 16713}
X(58322) = X(i)-cross conjugate of X(j) for these {i, j}: {1086, 1}, {14936, 57}, {38365, 6}, {43050, 35348}
X(58322)= pole of line {3779, 7289} with respect to the Bevan circle
X(58322)= pole of line {57, 13476} with respect to the circumcircle
X(58322)= pole of line {35892, 38454} with respect to the Conway circle
X(58322)= pole of line {5173, 5572} with respect to the incircle
X(58322)= pole of line {497, 24220} with respect to the excentral-hexyl ellipse
X(58322)= pole of line {35335, 35338} with respect to the Stammler hyperbola
X(58322)= pole of line {9, 25237} with respect to the Steiner circumellipse
X(58322)= pole of line {6666, 16601} with respect to the Steiner inellipse
X(58322)= pole of line {693, 21390} with respect to the Yff parabola
X(58322)= pole of line {5728, 38454} with respect to the Suppa-Cucoanes circle
X(58322) = perspector of cevian triangle of X(56322) and inverse-of-ABC in bicevian conic of X(7) and X(56322)
X(58322) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(840)}}, {{A, B, C, X(43), X(17266)}}, {{A, B, C, X(57), X(6185)}}, {{A, B, C, X(84), X(2723)}}, {{A, B, C, X(87), X(9325)}}, {{A, B, C, X(100), X(7192)}}, {{A, B, C, X(103), X(36124)}}, {{A, B, C, X(108), X(17926)}}, {{A, B, C, X(109), X(7252)}}, {{A, B, C, X(190), X(53284)}}, {{A, B, C, X(294), X(15728)}}, {{A, B, C, X(512), X(29051)}}, {{A, B, C, X(513), X(522)}}, {{A, B, C, X(514), X(2736)}}, {{A, B, C, X(518), X(43948)}}, {{A, B, C, X(525), X(830)}}, {{A, B, C, X(649), X(1027)}}, {{A, B, C, X(661), X(2254)}}, {{A, B, C, X(663), X(4105)}}, {{A, B, C, X(693), X(35355)}}, {{A, B, C, X(846), X(16366)}}, {{A, B, C, X(885), X(1021)}}, {{A, B, C, X(1019), X(4040)}}, {{A, B, C, X(1086), X(21104)}}, {{A, B, C, X(1096), X(7213)}}, {{A, B, C, X(1174), X(21453)}}, {{A, B, C, X(1422), X(8917)}}, {{A, B, C, X(1459), X(48340)}}, {{A, B, C, X(1477), X(14942)}}, {{A, B, C, X(1734), X(16751)}}, {{A, B, C, X(2006), X(9442)}}, {{A, B, C, X(2149), X(12032)}}, {{A, B, C, X(2191), X(52429)}}, {{A, B, C, X(2291), X(56783)}}, {{A, B, C, X(2488), X(14936)}}, {{A, B, C, X(2605), X(48306)}}, {{A, B, C, X(3062), X(44425)}}, {{A, B, C, X(3065), X(19628)}}, {{A, B, C, X(3223), X(18795)}}, {{A, B, C, X(3362), X(45818)}}, {{A, B, C, X(3423), X(56144)}}, {{A, B, C, X(3900), X(8713)}}, {{A, B, C, X(3911), X(43946)}}, {{A, B, C, X(4367), X(48336)}}, {{A, B, C, X(4813), X(47828)}}, {{A, B, C, X(4822), X(50523)}}, {{A, B, C, X(4979), X(47811)}}, {{A, B, C, X(4983), X(23954)}}, {{A, B, C, X(6004), X(23877)}}, {{A, B, C, X(6005), X(23882)}}, {{A, B, C, X(7045), X(53181)}}, {{A, B, C, X(15731), X(34051)}}, {{A, B, C, X(23696), X(57055)}}, {{A, B, C, X(29352), X(34234)}}, {{A, B, C, X(34496), X(56323)}}, {{A, B, C, X(36127), X(53299)}}, {{A, B, C, X(48131), X(48150)}}, {{A, B, C, X(48136), X(48329)}}, {{A, B, C, X(48144), X(48367)}}, {{A, B, C, X(50508), X(50517)}}
X(58322) = barycentric product X(i)*X(j) for these (i, j): {1, 56322}, {1019, 56157}, {1170, 522}, {1174, 693}, {1803, 44426}, {2170, 6606}, {2346, 514}, {3064, 40443}, {3125, 55281}, {3669, 56118}, {3676, 6605}, {3733, 56127}, {4564, 56284}, {4858, 53243}, {10482, 24002}, {10509, 3900}, {17924, 47487}, {21453, 650}, {31618, 663}, {32008, 513}, {42310, 4724}, {42311, 657}, {56255, 7192}, {57815, 649}
X(58322) = barycentric quotient X(i)/X(j) for these (i, j): {6, 35338}, {31, 35326}, {39, 35335}, {42, 35310}, {55, 35341}, {57, 35312}, {244, 21104}, {512, 21808}, {513, 142}, {514, 20880}, {522, 1229}, {649, 354}, {650, 4847}, {657, 3059}, {661, 3925}, {663, 1212}, {667, 1475}, {693, 1233}, {798, 52020}, {830, 17672}, {876, 53239}, {1015, 48151}, {1019, 17169}, {1022, 53240}, {1027, 53241}, {1170, 664}, {1174, 100}, {1358, 23599}, {1635, 51463}, {1803, 6516}, {2170, 6362}, {2254, 51384}, {2346, 190}, {3063, 2293}, {3125, 55282}, {3271, 21127}, {3669, 10481}, {3709, 21039}, {3733, 18164}, {3737, 16713}, {3900, 51972}, {4017, 52023}, {4105, 45791}, {6605, 3699}, {7192, 16708}, {7199, 53236}, {7252, 17194}, {8641, 8012}, {10482, 644}, {10509, 4569}, {14936, 6608}, {18108, 18087}, {18344, 1855}, {21007, 55340}, {21127, 6067}, {21453, 4554}, {22383, 22053}, {31618, 4572}, {32008, 668}, {42311, 46406}, {43924, 1418}, {46393, 51416}, {47487, 1332}, {53243, 4564}, {55281, 4601}, {56118, 646}, {56127, 27808}, {56157, 4033}, {56255, 3952}, {56284, 4858}, {56322, 75}, {57200, 53238}, {57815, 1978}
X(58322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 8641, 58324}


X(58323) = X(9)X(31605)∩X(513)X(2078)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a*(a-b)^3-(a-b)^2*(3*a+b)*c+(3*a^2-a*b+2*b^2)*c^2-(a+b)*c^3) : :

X(58323) lies on these lines: {9, 31605}, {513, 2078}, {657, 3676}, {1419, 43924}, {3669, 20980}, {20981, 53544}, {21127, 43050}, {21390, 43042}, {28878, 30719}

X(58323) = X(i)-Dao conjugate of X(j) for these {i, j}: {24002, 3261}
X(58323) = X(i)-Ceva conjugate of X(j) for these {i, j}: {101, 57}
X(58323)= pole of line {2389, 5173} with respect to the incircle
X(58323) = perspector of cevian triangle of X(57090) and inverse-of-ABC in bicevian conic of X(7) and X(57090)
X(58323) = barycentric product X(i)*X(j) for these (i, j): {1, 57090}
X(58323) = barycentric quotient X(i)/X(j) for these (i, j): {57090, 75}
X(58323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43049, 57140, 58324}


X(58324) = X(9)X(4468)∩X(57)X(649)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a^2-b*c-a*(b+c)) : :

X(58324) lies on these lines: {7, 26853}, {9, 4468}, {55, 44319}, {57, 649}, {63, 47676}, {226, 20295}, {513, 2078}, {514, 652}, {654, 21104}, {661, 43050}, {812, 4077}, {905, 14300}, {1014, 57112}, {1019, 1429}, {1021, 4762}, {1697, 28292}, {1708, 47663}, {2149, 36146}, {3340, 29350}, {3500, 47444}, {3737, 28374}, {3835, 5219}, {3911, 27013}, {4017, 18108}, {4040, 22160}, {4063, 7178}, {4380, 24002}, {4521, 7308}, {4654, 4785}, {4784, 53539}, {4905, 40910}, {4979, 53544}, {5226, 26798}, {6005, 51652}, {6358, 20952}, {6588, 23792}, {7216, 47935}, {10436, 26652}, {15599, 35445}, {17282, 26571}, {17494, 57167}, {21385, 43052}, {21390, 47890}, {30719, 48144}, {30723, 48064}, {30725, 48320}, {31231, 31286}, {31603, 47652}, {31605, 48060}, {37736, 37998}, {43924, 50520}, {47123, 53395}, {48151, 57175}, {48281, 53550}, {50354, 57179}

X(58324) = reflection of X(i) in X(j) for these {i,j}: {4040, 22160}, {58322, 8641}
X(58324) = perspector of circumconic {{A, B, C, X(1014), X(1170)}}
X(58324) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 54118}, {644, 13476}, {1334, 53649}, {2321, 43076}, {2350, 3699}, {3939, 17758}, {4069, 39950}
X(58324) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 54118}, {693, 35519}, {1015, 55076}, {17761, 2321}, {40615, 40216}, {40617, 17758}
X(58324) = X(i)-Ceva conjugate of X(j) for these {i, j}: {109, 57}, {57167, 4040}
X(58324) = X(i)-cross conjugate of X(j) for these {i, j}: {21007, 4040}, {38346, 55086}
X(58324)= pole of line {19, 672} with respect to the Bevan circle
X(58324)= pole of line {57, 3941} with respect to the circumcircle
X(58324)= pole of line {674, 5173} with respect to the incircle
X(58324)= pole of line {34772, 41246} with respect to the Steiner circumellipse
X(58324)= pole of line {6003, 13258} with respect to the Yff parabola
X(58324)= pole of line {674, 24476} with respect to the Suppa-Cucoanes circle
X(58324) = perspector of cevian triangle of X(57167) and inverse-of-ABC in bicevian conic of X(7) and X(57167)
X(58324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(33765)}}, {{A, B, C, X(649), X(38346)}}, {{A, B, C, X(1019), X(4040)}}, {{A, B, C, X(1024), X(7252)}}, {{A, B, C, X(1621), X(52210)}}, {{A, B, C, X(3294), X(16784)}}, {{A, B, C, X(3500), X(4251)}}, {{A, B, C, X(7203), X(43930)}}, {{A, B, C, X(7254), X(22160)}}, {{A, B, C, X(23726), X(50354)}}
X(58324) = barycentric product X(i)*X(j) for these (i, j): {1, 57167}, {109, 40619}, {226, 57148}, {513, 55082}, {1014, 4151}, {1412, 58361}, {1414, 2486}, {1621, 3676}, {3996, 43932}, {4040, 7}, {4651, 7203}, {17096, 3294}, {17143, 43924}, {17277, 3669}, {17494, 57}, {17761, 651}, {18152, 57181}, {20954, 56}, {21007, 85}, {21727, 552}, {22160, 273}, {24002, 4251}, {33765, 650}, {38346, 4554}, {38347, 658}, {38365, 4569}, {38859, 522}, {42454, 7045}, {55086, 693}, {57247, 6}
X(58324) = barycentric quotient X(i)/X(j) for these (i, j): {57, 54118}, {513, 55076}, {1014, 53649}, {1408, 43076}, {1621, 3699}, {2486, 4086}, {3294, 30730}, {3669, 17758}, {3676, 40216}, {4040, 8}, {4151, 3701}, {4251, 644}, {7203, 39734}, {17096, 40004}, {17277, 646}, {17494, 312}, {17761, 4391}, {20616, 4103}, {20954, 3596}, {21007, 9}, {21727, 6057}, {22160, 78}, {33765, 4554}, {38346, 650}, {38347, 3239}, {38365, 3900}, {38859, 664}, {40619, 35519}, {42454, 24026}, {43924, 13476}, {55082, 668}, {55086, 100}, {57148, 333}, {57167, 75}, {57181, 2350}, {57247, 76}, {58361, 30713}
X(58324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 8641, 58322}, {649, 3676, 57}, {3669, 57181, 7203}, {43049, 57140, 58323}


X(58325) = X(1)X(6)∩X(8)X(1802)

Barycentrics    a*(-a+b+c)^2*(a^4-b*(b-c)^2*c-a^2*(b^2-b*c+c^2)) : :

X(58325) lies on these lines: {1, 6}, {8, 1802}, {41, 3486}, {48, 5731}, {78, 7079}, {101, 515}, {243, 2202}, {281, 2289}, {388, 9310}, {517, 51376}, {519, 31896}, {758, 8558}, {908, 4564}, {1021, 3900}, {1043, 2322}, {1055, 52888}, {1105, 1826}, {1146, 3684}, {1630, 8804}, {1729, 37625}, {1783, 22350}, {1855, 57287}, {1936, 1951}, {1944, 5088}, {2272, 6909}, {2301, 4304}, {4251, 41006}, {4390, 6602}, {4511, 34591}, {4513, 7368}, {4587, 6735}, {5307, 27413}, {5794, 46835}, {6559, 51565}, {7359, 10609}, {7719, 37531}, {9028, 40880}, {9367, 21008}, {18162, 26130}, {20769, 37774}, {20818, 30283}, {22356, 38669}, {25935, 54357}, {27384, 27471}, {27410, 57501}, {44664, 58320}

X(58325) = perspector of circumconic {{A, B, C, X(100), X(2287)}}
X(58325) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1945}, {34, 40843}, {56, 1952}, {57, 1937}, {273, 1949}, {278, 296}, {608, 57801}, {649, 53211}, {1042, 35145}, {1427, 37142}, {2249, 3668}, {4017, 41206}, {36118, 52222}
X(58325) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1952}, {5375, 53211}, {5452, 1937}, {11517, 40843}, {34961, 41206}, {35075, 1446}, {39032, 7}, {39033, 273}, {39035, 85}, {39036, 331}, {39037, 57}
X(58325) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1944, 1936}
X(58325)= pole of line {610, 667} with respect to the circumcircle
X(58325)= pole of line {17924, 42462} with respect to the polar circle
X(58325)= pole of line {81, 934} with respect to the Stammler hyperbola
X(58325)= pole of line {100, 57108} with respect to the Hutson-Moses hyperbola
X(58325)= pole of line {274, 4569} with respect to the Wallace hyperbola
X(58325) = perspector of cevian triangle of X(1944) and inverse-of-ABC in bicevian conic of X(8) and X(1944)
X(58325) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(243)}}, {{A, B, C, X(6), X(1951)}}, {{A, B, C, X(9), X(1944)}}, {{A, B, C, X(37), X(2322)}}, {{A, B, C, X(72), X(1043)}}, {{A, B, C, X(80), X(1736)}}, {{A, B, C, X(213), X(2332)}}, {{A, B, C, X(219), X(4564)}}, {{A, B, C, X(405), X(15146)}}, {{A, B, C, X(518), X(51565)}}, {{A, B, C, X(1104), X(1430)}}, {{A, B, C, X(1191), X(26884)}}, {{A, B, C, X(1948), X(40937)}}, {{A, B, C, X(1984), X(26003)}}, {{A, B, C, X(5236), X(17435)}}, {{A, B, C, X(23693), X(45393)}}
X(58325) = barycentric product X(i)*X(j) for these (i, j): {1, 7360}, {200, 5088}, {212, 57812}, {243, 78}, {281, 6518}, {1043, 851}, {1265, 1430}, {1936, 8}, {1944, 9}, {1948, 219}, {1951, 312}, {1981, 57055}, {2202, 345}, {2287, 8680}, {2328, 44150}, {3718, 51726}, {15146, 72}, {15418, 657}, {26884, 341}
X(58325) = barycentric quotient X(i)/X(j) for these (i, j): {9, 1952}, {41, 1945}, {55, 1937}, {78, 57801}, {100, 53211}, {212, 296}, {219, 40843}, {243, 273}, {851, 3668}, {1043, 57980}, {1430, 1119}, {1936, 7}, {1944, 85}, {1948, 331}, {1951, 57}, {1981, 13149}, {2202, 278}, {2287, 35145}, {2328, 37142}, {5088, 1088}, {5546, 41206}, {6518, 348}, {7360, 75}, {8680, 1446}, {15146, 286}, {15418, 46406}, {23353, 36118}, {26884, 269}, {42669, 1427}, {44112, 1042}, {51726, 34}, {52425, 1949}, {57812, 57787}
X(58325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {281, 2289, 54316}


X(58326) = X(1)X(3)∩X(33)X(169)

Barycentrics    a^2*(-a+b+c)^2*(a^4-a^2*b*c-(b-c)^2*(b^2+b*c+c^2)) : :

X(58326) lies on these lines: {1, 3}, {9, 7071}, {33, 169}, {100, 26006}, {200, 56857}, {212, 3730}, {390, 50861}, {497, 30809}, {516, 5236}, {610, 18621}, {728, 1260}, {1021, 3900}, {1419, 42460}, {1621, 25935}, {1633, 45275}, {1731, 2310}, {1827, 16547}, {2323, 3270}, {2328, 2332}, {2338, 2340}, {3100, 3220}, {3208, 56315}, {4907, 7083}, {5011, 52427}, {5432, 31186}, {5514, 33306}, {5853, 28071}, {6056, 11189}, {6060, 9799}, {7074, 22131}, {7411, 56382}, {8153, 15326}, {23058, 28044}

X(58326) = perspector of circumconic {{A, B, C, X(651), X(2287)}}
X(58326) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1427, 37202}, {1446, 57735}, {3668, 26702}
X(58326)= pole of line {513, 610} with respect to the circumcircle
X(58326)= pole of line {1, 22144} with respect to the Feuerbach hyperbola
X(58326)= pole of line {21, 934} with respect to the Stammler hyperbola
X(58326)= pole of line {314, 4569} with respect to the Wallace hyperbola
X(58326) = perspector of cevian triangle of X(3100) and inverse-of-ABC in bicevian conic of X(8) and X(3100)
X(58326) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3100)}}, {{A, B, C, X(40), X(728)}}, {{A, B, C, X(56), X(3220)}}, {{A, B, C, X(57), X(1021)}}, {{A, B, C, X(65), X(2332)}}, {{A, B, C, X(200), X(8270)}}, {{A, B, C, X(241), X(2338)}}, {{A, B, C, X(354), X(4872)}}, {{A, B, C, X(1214), X(2328)}}, {{A, B, C, X(1253), X(37586)}}, {{A, B, C, X(1260), X(2149)}}, {{A, B, C, X(1402), X(8641)}}, {{A, B, C, X(2342), X(8758)}}, {{A, B, C, X(7071), X(37580)}}, {{A, B, C, X(28071), X(40910)}}
X(58326) = barycentric product X(i)*X(j) for these (i, j): {200, 7291}, {220, 4872}, {1043, 39690}, {1253, 7112}, {2287, 44661}, {2328, 857}, {3100, 9}, {3220, 346}, {37774, 55}
X(58326) = barycentric quotient X(i)/X(j) for these (i, j): {2328, 37202}, {3100, 85}, {3220, 279}, {4872, 57792}, {7291, 1088}, {37774, 6063}, {39690, 3668}, {44661, 1446}
X(58326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 41339, 40910}, {55, 7070, 5285}


X(58327) = X(1)X(25083)∩X(31)X(145)

Barycentrics    a*(-a+b+c)^2*(a^2-b*c) : :

X(58327) lies on these lines: {1, 25083}, {9, 11997}, {31, 145}, {55, 2053}, {100, 56714}, {171, 17316}, {200, 220}, {238, 239}, {291, 56111}, {346, 1253}, {644, 2340}, {748, 24599}, {750, 29621}, {958, 1697}, {968, 19860}, {1018, 40910}, {1021, 3900}, {1043, 1098}, {1429, 8299}, {1731, 24394}, {1936, 3712}, {1975, 9312}, {2115, 3693}, {2195, 3717}, {2223, 56530}, {2325, 3939}, {2975, 35270}, {3169, 7083}, {3501, 37580}, {3573, 20769}, {3683, 4875}, {3684, 4433}, {3692, 4073}, {3729, 9440}, {3912, 9441}, {3943, 19624}, {4336, 27396}, {5247, 49495}, {5255, 49476}, {5687, 35273}, {5919, 36476}, {15733, 52978}, {17122, 17244}, {17314, 21059}, {20367, 45765}, {25082, 28125}, {25237, 32936}, {28043, 55337}, {28124, 56937}, {28850, 40863}, {28982, 35293}, {39775, 56413}

X(58327) = perspector of circumconic {{A, B, C, X(2287), X(3570)}}
X(58327) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 7233}, {269, 291}, {279, 292}, {295, 1119}, {334, 1106}, {335, 1407}, {337, 1398}, {479, 7077}, {658, 3572}, {660, 43932}, {738, 4876}, {741, 3668}, {875, 4569}, {876, 934}, {1042, 18827}, {1088, 1911}, {1426, 57738}, {1427, 37128}, {1446, 18268}, {1461, 4444}, {1847, 2196}, {1922, 57792}, {4518, 7023}, {4584, 7216}, {4589, 7250}, {18265, 57880}, {18895, 52410}, {23062, 51858}, {34855, 52030}
X(58327) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7233}, {6552, 334}, {6600, 291}, {6651, 1088}, {8299, 3668}, {14714, 876}, {19557, 279}, {24771, 335}, {35068, 1446}, {35508, 4444}, {39028, 57792}, {39029, 269}
X(58327) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3685, 3684}, {28071, 200}, {56111, 9}
X(58327)= pole of line {3061, 37658} with respect to the Feuerbach hyperbola
X(58327)= pole of line {741, 934} with respect to the Stammler hyperbola
X(58327)= pole of line {3668, 4569} with respect to the Wallace hyperbola
X(58327) = perspector of cevian triangle of X(3685) and inverse-of-ABC in bicevian conic of X(8) and X(3685)
X(58327) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(200), X(239)}}, {{A, B, C, X(220), X(238)}}, {{A, B, C, X(346), X(3797)}}, {{A, B, C, X(350), X(45791)}}, {{A, B, C, X(728), X(3685)}}, {{A, B, C, X(740), X(1043)}}, {{A, B, C, X(2287), X(20142)}}, {{A, B, C, X(2328), X(3747)}}, {{A, B, C, X(3975), X(4148)}}, {{A, B, C, X(3985), X(57055)}}, {{A, B, C, X(4087), X(7046)}}, {{A, B, C, X(4366), X(28071)}}, {{A, B, C, X(30706), X(57654)}}
X(58327) = barycentric product X(i)*X(j) for these (i, j): {21, 3985}, {100, 4148}, {200, 239}, {220, 350}, {238, 346}, {242, 3692}, {333, 4433}, {657, 874}, {1043, 2238}, {1098, 4037}, {1253, 1921}, {1265, 2201}, {1428, 30693}, {1429, 5423}, {1447, 728}, {1802, 40717}, {1914, 341}, {2287, 740}, {2328, 3948}, {3239, 3573}, {3570, 3900}, {3684, 8}, {3685, 9}, {3699, 4435}, {3716, 644}, {3975, 55}, {4010, 7259}, {4087, 41}, {4455, 7258}, {4578, 812}, {6558, 659}, {6559, 8299}, {7101, 7193}, {10030, 480}, {14024, 3694}, {14827, 18891}, {16609, 56182}, {17755, 28071}, {18033, 6602}, {20769, 7046}, {21832, 7256}, {27853, 8641}, {33295, 4515}, {52406, 57654}
X(58327) = barycentric quotient X(i)/X(j) for these (i, j): {9, 7233}, {200, 335}, {220, 291}, {238, 279}, {239, 1088}, {242, 1847}, {341, 18895}, {346, 334}, {350, 57792}, {480, 4876}, {657, 876}, {728, 4518}, {740, 1446}, {874, 46406}, {1043, 40017}, {1253, 292}, {1428, 738}, {1429, 479}, {1447, 23062}, {1802, 295}, {1914, 269}, {2201, 1119}, {2210, 1407}, {2238, 3668}, {2287, 18827}, {2327, 57738}, {2328, 37128}, {3059, 53239}, {3570, 4569}, {3573, 658}, {3684, 7}, {3685, 85}, {3692, 337}, {3716, 24002}, {3747, 1427}, {3900, 4444}, {3975, 6063}, {3985, 1441}, {4087, 20567}, {4148, 693}, {4171, 35352}, {4433, 226}, {4435, 3676}, {4455, 7216}, {4515, 43534}, {4578, 4562}, {6558, 4583}, {6602, 7077}, {7193, 7177}, {7256, 4639}, {7259, 4589}, {8632, 43932}, {8641, 3572}, {10030, 57880}, {14599, 1106}, {14827, 1911}, {16514, 7204}, {18892, 52410}, {20769, 7056}, {28071, 52209}, {41333, 1042}, {56182, 36800}, {57654, 1435}
X(58327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3692, 4319, 4073}, {3912, 54440, 9441}


X(58328) = X(1)X(1259)∩X(9)X(55)

Barycentrics    a^2*(-a+b+c)^2*(a^2-b^2+b*c-c^2) : :

X(58328) lies on these lines: {1, 1259}, {3, 12526}, {8, 3746}, {9, 55}, {21, 6737}, {31, 3190}, {35, 78}, {36, 214}, {40, 11517}, {63, 15931}, {72, 10902}, {80, 6735}, {100, 516}, {109, 1818}, {224, 15071}, {228, 21078}, {404, 3671}, {518, 2078}, {519, 51506}, {528, 51416}, {765, 43978}, {902, 1110}, {936, 11507}, {956, 34486}, {1001, 5231}, {1004, 4312}, {1005, 51090}, {1021, 3900}, {1283, 44694}, {1320, 56117}, {1376, 3256}, {1621, 4847}, {1631, 3185}, {1936, 53388}, {1998, 15299}, {2077, 2932}, {2136, 26358}, {2177, 23659}, {2323, 2361}, {2327, 2328}, {2911, 3052}, {2968, 3712}, {3072, 3191}, {3220, 53280}, {3243, 33925}, {3295, 4853}, {3339, 37282}, {3553, 5269}, {3680, 10965}, {3685, 7360}, {3717, 4571}, {3811, 18397}, {3841, 27529}, {3870, 18412}, {3871, 4314}, {3913, 5727}, {3928, 37578}, {3935, 14740}, {3940, 32613}, {4294, 7080}, {4295, 25440}, {4421, 31142}, {4551, 23693}, {4652, 35202}, {4855, 12520}, {4936, 7368}, {5253, 12563}, {5259, 6734}, {5438, 11509}, {5531, 17615}, {5552, 6871}, {5563, 12559}, {5587, 5687}, {5720, 11248}, {5730, 11012}, {5744, 52769}, {5842, 17757}, {5904, 14798}, {6181, 28047}, {6762, 11510}, {6765, 11508}, {7085, 10434}, {7411, 43182}, {7742, 54422}, {10267, 57279}, {10306, 12651}, {10310, 12565}, {10522, 37719}, {11019, 54348}, {11491, 21075}, {11502, 30827}, {11523, 37579}, {11529, 37249}, {11681, 52850}, {12331, 51362}, {12558, 52367}, {12560, 37541}, {12609, 27385}, {12617, 57287}, {12635, 37583}, {12709, 17612}, {12711, 56176}, {14882, 18251}, {15829, 26357}, {17860, 32929}, {20236, 32932}, {25893, 31249}, {25968, 51366}, {27525, 50689}, {31146, 42884}, {32760, 51379}, {32845, 44311}, {34179, 40910}, {34790, 37621}, {37309, 53056}, {41853, 44447}

X(58328) = perspector of circumconic {{A, B, C, X(644), X(2287)}}
X(58328) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1411}, {34, 52392}, {56, 18815}, {57, 2006}, {80, 269}, {279, 2161}, {479, 52371}, {655, 3669}, {738, 36910}, {759, 3668}, {1014, 52383}, {1042, 14616}, {1088, 6187}, {1106, 20566}, {1119, 1807}, {1358, 52377}, {1407, 18359}, {1426, 57985}, {1427, 24624}, {1435, 52351}, {1446, 34079}, {1847, 52431}, {2222, 3676}, {4637, 55238}, {6046, 52380}, {6614, 52356}, {7023, 52409}, {7216, 47318}, {14584, 56049}, {23592, 53546}, {24002, 32675}, {34051, 52212}, {35174, 43924}, {43932, 51562}, {46405, 57181}, {52440, 57645}
X(58328) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 18815}, {3738, 4089}, {5452, 2006}, {6149, 1443}, {6552, 20566}, {6600, 80}, {11517, 52392}, {24771, 18359}, {34586, 3668}, {35069, 1446}, {35128, 24002}, {35204, 7}, {36909, 57645}, {38984, 3676}, {40584, 279}, {40612, 1088}, {57434, 693}
X(58328) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4511, 2323}, {45393, 9}, {52409, 52405}
X(58328)= pole of line {610, 4394} with respect to the circumcircle
X(58328)= pole of line {9, 6596} with respect to the Feuerbach hyperbola
X(58328)= pole of line {759, 934} with respect to the Stammler hyperbola
X(58328)= pole of line {4569, 14616} with respect to the Wallace hyperbola
X(58328) = perspector of cevian triangle of X(4511) and inverse-of-ABC in bicevian conic of X(8) and X(4511)
X(58328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(1021)}}, {{A, B, C, X(36), X(55)}}, {{A, B, C, X(80), X(2342)}}, {{A, B, C, X(200), X(2750)}}, {{A, B, C, X(210), X(758)}}, {{A, B, C, X(214), X(3689)}}, {{A, B, C, X(220), X(3711)}}, {{A, B, C, X(320), X(3059)}}, {{A, B, C, X(654), X(2348)}}, {{A, B, C, X(1443), X(4326)}}, {{A, B, C, X(1864), X(51476)}}, {{A, B, C, X(1870), X(10382)}}, {{A, B, C, X(2259), X(2264)}}, {{A, B, C, X(3158), X(4881)}}, {{A, B, C, X(3683), X(4973)}}, {{A, B, C, X(3684), X(27950)}}, {{A, B, C, X(3693), X(32851)}}, {{A, B, C, X(3694), X(57055)}}, {{A, B, C, X(3715), X(4880)}}, {{A, B, C, X(3724), X(8641)}}, {{A, B, C, X(3738), X(15733)}}, {{A, B, C, X(4183), X(27086)}}, {{A, B, C, X(4254), X(4282)}}, {{A, B, C, X(4996), X(45393)}}, {{A, B, C, X(6596), X(39778)}}, {{A, B, C, X(7082), X(51803)}}, {{A, B, C, X(7083), X(34446)}}, {{A, B, C, X(7367), X(39166)}}, {{A, B, C, X(13615), X(17515)}}, {{A, B, C, X(20967), X(52426)}}, {{A, B, C, X(22128), X(51376)}}
X(58328) = barycentric product X(i)*X(j) for these (i, j): {190, 53285}, {200, 3218}, {219, 5081}, {220, 320}, {341, 7113}, {345, 52427}, {346, 36}, {646, 8648}, {1043, 2245}, {1098, 4053}, {1253, 20924}, {1260, 17923}, {1265, 52413}, {1443, 728}, {1870, 3692}, {1983, 4397}, {2287, 758}, {2323, 8}, {2327, 860}, {2328, 3936}, {2361, 312}, {3596, 52426}, {3699, 654}, {3701, 4282}, {3738, 644}, {3900, 4585}, {3904, 3939}, {3960, 4578}, {4242, 57055}, {4511, 9}, {4524, 55237}, {14827, 40075}, {17078, 480}, {17515, 3694}, {18593, 56182}, {21828, 7256}, {22128, 7046}, {30693, 52440}, {32851, 55}, {34544, 52409}, {36910, 4996}, {44428, 4587}, {46384, 57731}, {52407, 7101}, {53314, 6558}, {53527, 7259}, {53562, 645}
X(58328) = barycentric quotient X(i)/X(j) for these (i, j): {9, 18815}, {36, 279}, {41, 1411}, {55, 2006}, {200, 18359}, {219, 52392}, {220, 80}, {320, 57792}, {346, 20566}, {480, 36910}, {644, 35174}, {654, 3676}, {728, 52409}, {758, 1446}, {1253, 2161}, {1260, 52351}, {1334, 52383}, {1443, 23062}, {1802, 1807}, {1870, 1847}, {1983, 934}, {2245, 3668}, {2287, 14616}, {2323, 7}, {2327, 57985}, {2328, 24624}, {2361, 57}, {3218, 1088}, {3689, 14628}, {3699, 46405}, {3724, 1427}, {3738, 24002}, {3904, 52621}, {3939, 655}, {4130, 52356}, {4242, 13149}, {4282, 1014}, {4511, 85}, {4515, 15065}, {4524, 55238}, {4578, 36804}, {4585, 4569}, {4996, 17078}, {5081, 331}, {6602, 52371}, {7113, 269}, {8648, 3669}, {14827, 6187}, {17078, 57880}, {21758, 43932}, {22128, 7056}, {32851, 6063}, {34544, 1443}, {35128, 4089}, {36910, 57645}, {52370, 52391}, {52371, 34535}, {52407, 7177}, {52413, 1119}, {52426, 56}, {52427, 278}, {52434, 1407}, {52440, 738}, {53285, 514}, {53562, 7178}
X(58328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 908, 44425}, {200, 4512, 42012}, {1376, 42843, 5219}, {3685, 7360, 24026}, {3689, 51380, 200}, {4867, 35204, 36}, {5440, 41389, 6326}


X(58329) = X(1)X(525)∩X(522)X(663)

Barycentrics    a*(a+b)*(a-b-c)^3*(b-c)*(a+c) : :

X(58329) lies on these lines: {1, 525}, {55, 57121}, {78, 57066}, {522, 663}, {643, 4567}, {667, 23864}, {759, 2750}, {926, 21388}, {1019, 3309}, {1021, 3900}, {1577, 36027}, {2328, 57134}, {3239, 17926}, {4040, 23882}, {4041, 57067}, {4069, 6065}, {4086, 57198}, {4105, 4163}, {4130, 57180}, {4151, 56320}, {4162, 7252}, {4551, 36797}, {4990, 53285}, {7192, 8713}, {7203, 23829}, {8062, 17898}, {18155, 29051}, {21831, 42662}, {24026, 55068}, {34496, 51641}, {48303, 57200}

X(58329) = reflection of X(i) in X(j) for these {i,j}: {1021, 21789}, {17898, 8062}, {58333, 57055}
X(58329) = perspector of circumconic {{A, B, C, X(333), X(2287)}}
X(58329) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 53321}, {10, 6614}, {37, 4617}, {42, 4626}, {56, 4566}, {57, 1020}, {65, 934}, {73, 36118}, {99, 7143}, {108, 1439}, {109, 3668}, {110, 6046}, {112, 20618}, {181, 4616}, {213, 36838}, {222, 52607}, {226, 1461}, {269, 4551}, {278, 52610}, {279, 4559}, {479, 4557}, {523, 7339}, {651, 1427}, {653, 52373}, {658, 1400}, {662, 7147}, {664, 1042}, {738, 1018}, {1119, 23067}, {1214, 32714}, {1254, 1414}, {1262, 7178}, {1275, 7180}, {1310, 10376}, {1402, 4569}, {1407, 4552}, {1409, 13149}, {1410, 18026}, {1412, 4605}, {1415, 1446}, {1426, 6516}, {1918, 52937}, {2171, 4637}, {3700, 23971}, {3709, 23586}, {3952, 7023}, {4017, 7045}, {4033, 7366}, {4041, 24013}, {4077, 24027}, {4564, 7216}, {4565, 6354}, {4619, 53545}, {4998, 7250}, {5930, 36079}, {7128, 51664}, {8269, 40961}, {24032, 51640}, {32651, 55010}, {32674, 56382}, {41003, 52928}
X(58329) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4566}, {11, 3668}, {244, 6046}, {522, 4077}, {656, 17094}, {1084, 7147}, {1146, 1446}, {2968, 1441}, {3119, 52023}, {3900, 4041}, {5452, 1020}, {6600, 4551}, {6608, 523}, {6626, 36838}, {7358, 307}, {14714, 65}, {17115, 4017}, {24771, 4552}, {34021, 52937}, {34591, 20618}, {34961, 7045}, {35072, 56382}, {35508, 226}, {38966, 225}, {38983, 1439}, {38986, 7143}, {38991, 1427}, {39025, 1042}, {40582, 658}, {40589, 4617}, {40592, 4626}, {40599, 4605}, {40602, 934}, {40605, 4569}, {40608, 1254}, {40620, 23062}, {40625, 1088}, {55064, 6354}, {55067, 279}, {55068, 7}, {57434, 41804}
X(58329) = X(i)-Ceva conjugate of X(j) for these {i, j}: {643, 2287}, {4625, 333}, {7253, 1021}, {36797, 9}
X(58329) = X(i)-cross conjugate of X(j) for these {i, j}: {3022, 728}, {4081, 200}, {57108, 58338}
X(58329)= pole of line {610, 23361} with respect to the circumcircle
X(58329)= pole of line {1503, 10454} with respect to the Conway circle
X(58329)= pole of line {950, 1503} with respect to the incircle
X(58329)= pole of line {225, 3668} with respect to the polar circle
X(58329)= pole of line {18191, 55067} with respect to the Feuerbach hyperbola
X(58329)= pole of line {7253, 50333} with respect to the Kiepert parabola
X(58329)= pole of line {109, 934} with respect to the Stammler hyperbola
X(58329)= pole of line {63, 14953} with respect to the Steiner circumellipse
X(58329)= pole of line {1375, 5745} with respect to the Steiner inellipse
X(58329)= pole of line {664, 4569} with respect to the Wallace hyperbola
X(58329)= pole of line {1503, 10572} with respect to the Suppa-Cucoanes circle
X(58329) = perspector of cevian triangle of X(7253) and inverse-of-ABC in bicevian conic of X(8) and X(7253)
X(58329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3100)}}, {{A, B, C, X(9), X(1944)}}, {{A, B, C, X(33), X(45272)}}, {{A, B, C, X(200), X(2750)}}, {{A, B, C, X(522), X(3900)}}, {{A, B, C, X(657), X(17418)}}, {{A, B, C, X(663), X(4105)}}, {{A, B, C, X(728), X(3685)}}, {{A, B, C, X(1021), X(4560)}}, {{A, B, C, X(2287), X(4567)}}, {{A, B, C, X(2328), X(56107)}}, {{A, B, C, X(3119), X(14432)}}, {{A, B, C, X(3239), X(6332)}}, {{A, B, C, X(3737), X(21789)}}, {{A, B, C, X(4069), X(4081)}}, {{A, B, C, X(4397), X(20294)}}, {{A, B, C, X(6607), X(29051)}}, {{A, B, C, X(7367), X(10570)}}, {{A, B, C, X(17924), X(23893)}}, {{A, B, C, X(57108), X(57241)}}
X(58329) = barycentric product X(i)*X(j) for these (i, j): {11, 7259}, {21, 3239}, {29, 57055}, {200, 4560}, {261, 4171}, {274, 4105}, {281, 57081}, {284, 4397}, {285, 57049}, {310, 57180}, {314, 657}, {333, 3900}, {341, 7252}, {346, 3737}, {480, 7199}, {514, 56182}, {1019, 5423}, {1021, 8}, {1043, 650}, {1098, 3700}, {1146, 643}, {1260, 57215}, {1414, 23970}, {1577, 6061}, {1792, 3064}, {1896, 57057}, {2170, 7256}, {2194, 52622}, {2287, 522}, {2310, 645}, {2322, 521}, {2326, 52355}, {2327, 44426}, {2328, 4391}, {2332, 35518}, {3022, 799}, {3119, 99}, {3271, 7258}, {3965, 57161}, {4041, 7058}, {4081, 662}, {4086, 7054}, {4130, 86}, {4148, 56154}, {4163, 81}, {4183, 6332}, {4524, 52379}, {4612, 52335}, {7192, 728}, {7253, 9}, {14936, 7257}, {15411, 33}, {15416, 2299}, {17197, 4578}, {17926, 78}, {18155, 220}, {18191, 6558}, {21789, 312}, {23090, 318}, {23189, 7101}, {23609, 52623}, {23615, 4567}, {24010, 4573}, {24026, 5546}, {26856, 4069}, {28660, 8641}, {30681, 57200}, {30693, 3733}, {31623, 57108}, {34591, 36797}, {35508, 4625}, {40213, 6065}, {46880, 58339}, {52619, 6602}, {57134, 7017}, {57213, 57492}, {58338, 92}
X(58329) = barycentric quotient X(i)/X(j) for these (i, j): {9, 4566}, {21, 658}, {29, 13149}, {33, 52607}, {41, 53321}, {55, 1020}, {58, 4617}, {60, 4637}, {81, 4626}, {86, 36838}, {163, 7339}, {200, 4552}, {210, 4605}, {212, 52610}, {220, 4551}, {261, 4635}, {274, 52937}, {284, 934}, {314, 46406}, {333, 4569}, {480, 1018}, {512, 7147}, {521, 56382}, {522, 1446}, {643, 1275}, {650, 3668}, {652, 1439}, {656, 20618}, {657, 65}, {661, 6046}, {663, 1427}, {728, 3952}, {798, 7143}, {1019, 479}, {1021, 7}, {1043, 4554}, {1098, 4573}, {1146, 4077}, {1172, 36118}, {1253, 4559}, {1333, 6614}, {1414, 23586}, {1802, 23067}, {1946, 52373}, {2185, 4616}, {2194, 1461}, {2287, 664}, {2299, 32714}, {2310, 7178}, {2322, 18026}, {2327, 6516}, {2328, 651}, {2332, 108}, {2484, 10376}, {3022, 661}, {3063, 1042}, {3119, 523}, {3239, 1441}, {3270, 51664}, {3271, 7216}, {3709, 1254}, {3733, 738}, {3737, 279}, {3900, 226}, {4041, 6354}, {4081, 1577}, {4105, 37}, {4130, 10}, {4163, 321}, {4171, 12}, {4183, 653}, {4397, 349}, {4477, 4032}, {4524, 2171}, {4560, 1088}, {4565, 24013}, {4573, 24011}, {4625, 57581}, {4827, 3671}, {5423, 4033}, {5546, 7045}, {6061, 662}, {6602, 4557}, {6607, 21808}, {6608, 52023}, {7054, 1414}, {7058, 4625}, {7192, 23062}, {7199, 57880}, {7252, 269}, {7253, 85}, {7259, 4998}, {8042, 41292}, {8611, 6356}, {8641, 1400}, {14427, 40663}, {14936, 4017}, {15411, 7182}, {17926, 273}, {18155, 57792}, {21789, 57}, {23090, 77}, {23189, 7177}, {23609, 4556}, {23615, 16732}, {23970, 4086}, {24010, 3700}, {24012, 3709}, {30693, 27808}, {34591, 17094}, {35508, 4041}, {39687, 51640}, {52064, 4524}, {53285, 18593}, {56182, 190}, {57049, 57810}, {57055, 307}, {57057, 52385}, {57081, 348}, {57108, 1214}, {57129, 7023}, {57134, 222}, {57158, 45196}, {57180, 42}, {57213, 57479}, {58333, 56559}, {58334, 28387}, {58338, 63}, {58339, 52358}, {58340, 40152}
X(58329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 21789, 1021}, {3900, 57055, 58333}, {7253, 57081, 3737}


X(58330) = X(40)X(956)∩X(200)X(219)

Barycentrics    a*(-a+b+c)^2*(a^6+a^4*(-2*b^2+3*b*c-2*c^2)-b*c*(b^2-c^2)^2+a^2*(b-c)^2*(b^2+c^2)) : :

X(58330) lies on these lines: {8, 7538}, {40, 956}, {55, 56315}, {200, 219}, {212, 7046}, {238, 24026}, {255, 280}, {318, 3074}, {519, 1795}, {1021, 3900}, {1936, 2968}, {2322, 2328}, {2361, 4081}, {3100, 24031}, {5285, 15621}, {7358, 33305}, {24410, 37790}, {42012, 44670}, {51380, 52978}

X(58330) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1410, 57983}, {1439, 57734}, {3668, 26701}
X(58330) = X(i)-Dao conjugate of X(j) for these {i, j}: {856, 22464}
X(58330) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1809, 9}
X(58330)= pole of line {934, 26701} with respect to the Stammler hyperbola
X(58330) = perspector of cevian triangle of X(10538) and inverse-of-ABC in bicevian conic of X(8) and X(10538)
X(58330) = intersection, other than A, B, C, of circumconics {{A, B, C, X(282), X(1021)}}, {{A, B, C, X(2192), X(10535)}}, {{A, B, C, X(2322), X(57055)}}, {{A, B, C, X(3900), X(53013)}}
X(58330) = barycentric product X(i)*X(j) for these (i, j): {1043, 3330}, {2322, 856}, {10535, 312}, {10538, 9}
X(58330) = barycentric quotient X(i)/X(j) for these (i, j): {856, 56382}, {2322, 57983}, {2332, 57734}, {3330, 3668}, {10535, 57}, {10538, 85}


X(58331) = X(351)X(690)∩X(1021)X(3900)

Barycentrics    a*(b-c)*(-a+b+c)^2*(-2*a^2+b^2+c^2) : :
X(58331) = -4*X[28984]+X[58321]

X(58331) lies on these lines: {351, 690}, {926, 14418}, {1021, 3900}, {1639, 11124}, {1962, 14399}, {2310, 3119}, {5075, 24290}, {28984, 58321}

X(58331) = perspector of circumconic {{A, B, C, X(524), X(2287)}}
X(58331) = X(i)-isoconjugate-of-X(j) for these {i, j}: {111, 658}, {269, 5380}, {664, 7316}, {671, 1461}, {691, 3668}, {892, 1042}, {895, 36118}, {897, 934}, {923, 4569}, {1427, 36085}, {1446, 36142}, {4626, 5547}, {13149, 36060}, {32740, 46406}
X(58331) = X(i)-Dao conjugate of X(j) for these {i, j}: {1560, 13149}, {2482, 4569}, {2968, 46277}, {6593, 934}, {6600, 5380}, {7358, 30786}, {14714, 897}, {23992, 1446}, {35508, 671}, {38966, 17983}, {38988, 1427}, {39025, 7316}
X(58331)= pole of line {610, 2930} with respect to the circumcircle
X(58331)= pole of line {13149, 17983} with respect to the polar circle
X(58331)= pole of line {691, 934} with respect to the Stammler hyperbola
X(58331)= pole of line {2482, 35508} with respect to the Steiner inellipse
X(58331)= pole of line {892, 4569} with respect to the Wallace hyperbola
X(58331) = perspector of cevian triangle of X(14432) and inverse-of-ABC in bicevian conic of X(8) and X(14432)
X(58331) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(351), X(8641)}}, {{A, B, C, X(690), X(3900)}}, {{A, B, C, X(896), X(46392)}}, {{A, B, C, X(1021), X(2310)}}, {{A, B, C, X(1641), X(2287)}}, {{A, B, C, X(3119), X(14432)}}, {{A, B, C, X(3712), X(52614)}}, {{A, B, C, X(4183), X(45662)}}, {{A, B, C, X(7367), X(14357)}}, {{A, B, C, X(14417), X(57055)}}, {{A, B, C, X(14419), X(14936)}}
X(58331) = barycentric product X(i)*X(j) for these (i, j): {187, 4397}, {200, 4750}, {468, 57055}, {1021, 4062}, {1043, 2642}, {2287, 690}, {3239, 896}, {3266, 8641}, {3712, 650}, {3900, 524}, {4130, 7181}, {4163, 51653}, {4171, 6629}, {14210, 657}, {14273, 1792}, {14417, 4183}, {14419, 346}, {14427, 52759}, {14432, 9}, {14936, 42721}, {15416, 44102}, {16741, 4524}, {21789, 42713}, {21839, 7253}, {23889, 52335}, {36197, 5468}, {37778, 58340}, {52622, 922}, {52898, 58335}
X(58331) = barycentric quotient X(i)/X(j) for these (i, j): {187, 934}, {220, 5380}, {351, 1427}, {468, 13149}, {524, 4569}, {657, 897}, {690, 1446}, {896, 658}, {922, 1461}, {2287, 892}, {2328, 36085}, {2642, 3668}, {3063, 7316}, {3239, 46277}, {3712, 4554}, {3900, 671}, {4397, 18023}, {4750, 1088}, {6629, 4635}, {7181, 36838}, {8641, 111}, {14210, 46406}, {14392, 52764}, {14419, 279}, {14427, 52747}, {14432, 85}, {16702, 4616}, {21839, 4566}, {36197, 5466}, {44102, 32714}, {51653, 4626}, {52622, 57999}, {57055, 30786}, {57180, 5547}, {58335, 31125}
X(58331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8641, 57055, 58335}


X(58332) = X(512)X(652)∩X(650)X(667)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2+2*b*c+a*(b+c)) : :

X(58332) lies on these lines: {512, 652}, {650, 667}, {654, 4834}, {657, 663}, {693, 25901}, {832, 17420}, {905, 53551}, {958, 23880}, {1021, 3900}, {1946, 4041}, {2812, 14838}, {4083, 53400}, {4163, 4477}, {4524, 57108}, {4775, 9404}, {4983, 46389}, {8043, 34948}, {8639, 8672}, {8642, 48322}, {11124, 33969}, {14077, 22160}, {14298, 48099}, {14300, 50515}, {20980, 51641}, {21120, 29240}, {21127, 50523}, {21260, 28834}, {22091, 47828}, {24561, 26049}, {27417, 47820}, {40137, 53286}, {46393, 50507}

X(58332) = midpoint of X(i) and X(j) for these {i,j}: {1021, 58339}
X(58332) = reflection of X(i) in X(j) for these {i,j}: {53551, 905}, {58334, 8641}, {8641, 21789}
X(58332) = perspector of circumconic {{A, B, C, X(55), X(940)}}
X(58332) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 32038}, {85, 32693}, {86, 52931}, {109, 58008}, {651, 44733}, {658, 941}, {664, 959}, {931, 3668}, {934, 31359}, {1020, 37870}, {1461, 34258}, {2258, 4569}, {4566, 5331}, {34259, 36118}
X(58332) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 58008}, {5452, 32038}, {14714, 31359}, {17417, 85}, {34261, 4554}, {35508, 34258}, {38991, 44733}, {39025, 959}, {40600, 52931}
X(58332) = X(i)-Ceva conjugate of X(j) for these {i, j}: {958, 53561}
X(58332)= pole of line {37, 610} with respect to the circumcircle
X(58332)= pole of line {44841, 52013} with respect to the mixtilinear incircles radical circle
X(58332)= pole of line {331, 54314} with respect to the polar circle
X(58332)= pole of line {41, 52159} with respect to the Brocard inellipse
X(58332)= pole of line {931, 934} with respect to the Stammler hyperbola
X(58332) = perspector of cevian triangle of X(17418) and inverse-of-ABC in bicevian conic of X(8) and X(17418)
X(58332) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(657), X(17418)}}, {{A, B, C, X(663), X(1021)}}, {{A, B, C, X(853), X(44734)}}, {{A, B, C, X(926), X(23880)}}, {{A, B, C, X(3063), X(21789)}}, {{A, B, C, X(3709), X(3900)}}, {{A, B, C, X(4397), X(4705)}}, {{A, B, C, X(8639), X(8641)}}, {{A, B, C, X(10581), X(43067)}}
X(58332) = barycentric product X(i)*X(j) for these (i, j): {100, 53561}, {200, 48144}, {220, 43067}, {650, 958}, {1468, 3239}, {1867, 23090}, {2268, 522}, {2287, 8672}, {2328, 50457}, {3700, 54417}, {3713, 513}, {3714, 7252}, {3900, 940}, {3939, 53526}, {4185, 57055}, {4397, 5019}, {4578, 53543}, {5307, 57108}, {10436, 657}, {11679, 663}, {17418, 9}, {21789, 31993}, {23880, 55}, {34284, 8641}, {54396, 652}
X(58332) = barycentric quotient X(i)/X(j) for these (i, j): {55, 32038}, {213, 52931}, {650, 58008}, {657, 31359}, {663, 44733}, {940, 4569}, {958, 4554}, {1468, 658}, {2175, 32693}, {2268, 664}, {3063, 959}, {3713, 668}, {3900, 34258}, {4185, 13149}, {4397, 40828}, {5019, 934}, {8639, 1427}, {8641, 941}, {8672, 1446}, {10436, 46406}, {11679, 4572}, {17418, 85}, {21789, 37870}, {23880, 6063}, {43067, 57792}, {48144, 1088}, {53526, 52621}, {53561, 693}, {54396, 46404}, {54417, 4573}
X(58332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1021, 58339, 3900}, {3900, 21789, 8641}, {3900, 8641, 58334}


X(58333) = X(9)X(18344)∩X(40)X(3309)

Barycentrics    a*(b-c)*(-a+b+c)^2*(-b^3+a*b*c-c^3+a^2*(b+c)) : :
X(58333) = -3*X[1699]+4*X[44930], -3*X[5587]+2*X[39536]

X(58333) lies on these lines: {9, 18344}, {10, 17924}, {40, 3309}, {522, 3717}, {525, 1734}, {667, 5285}, {1021, 3900}, {1699, 44930}, {2804, 14308}, {3690, 21645}, {4077, 17072}, {4162, 7070}, {5587, 39536}, {8713, 48060}, {20294, 23800}, {21301, 50861}, {29066, 56320}, {57043, 57092}

X(58333) = midpoint of X(i) and X(j) for these {i,j}: {44448, 57245}
X(58333) = reflection of X(i) in X(j) for these {i,j}: {17924, 10}, {4077, 17072}, {58329, 57055}
X(58333) = perspector of circumconic {{A, B, C, X(312), X(2287)}}
X(58333) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 1305}, {272, 53321}, {934, 2218}, {1106, 51566}, {1461, 1751}, {6614, 56146}, {7339, 23289}, {32660, 58074}, {40574, 52610}
X(58333) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1305}, {2968, 2997}, {6552, 51566}, {6608, 23289}, {14714, 2218}, {35508, 1751}, {40624, 15467}, {55068, 272}
X(58333) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4571, 9}
X(58333)= pole of line {518, 9924} with respect to the Bevan circle
X(58333)= pole of line {610, 2933} with respect to the circumcircle
X(58333)= pole of line {34, 4341} with respect to the polar circle
X(58333)= pole of line {329, 31015} with respect to the Steiner circumellipse
X(58333)= pole of line {3452, 30810} with respect to the Steiner inellipse
X(58333)= pole of line {1414, 4569} with respect to the Wallace hyperbola
X(58333)= pole of line {1479, 41004} with respect to the Suppa-Cucoanes circle
X(58333) = perspector of cevian triangle of X(20294) and inverse-of-ABC in bicevian conic of X(8) and X(20294)
X(58333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(522), X(8676)}}, {{A, B, C, X(579), X(40880)}}, {{A, B, C, X(1021), X(4391)}}, {{A, B, C, X(2352), X(45269)}}, {{A, B, C, X(3190), X(6735)}}, {{A, B, C, X(3868), X(44692)}}, {{A, B, C, X(3900), X(4086)}}, {{A, B, C, X(4041), X(8641)}}, {{A, B, C, X(4397), X(20294)}}
X(58333) = barycentric product X(i)*X(j) for these (i, j): {312, 8676}, {341, 43060}, {345, 57092}, {1021, 57808}, {1265, 57173}, {2352, 52622}, {3190, 4391}, {3239, 3868}, {3694, 57072}, {4086, 56000}, {4397, 579}, {4571, 5190}, {5125, 57055}, {17878, 3939}, {18134, 3900}, {20294, 9}, {22021, 7253}, {23800, 346}, {24026, 57217}, {27396, 522}, {35518, 41320}, {56559, 58329}, {57043, 78}
X(58333) = barycentric quotient X(i)/X(j) for these (i, j): {9, 1305}, {209, 1020}, {346, 51566}, {579, 934}, {657, 2218}, {1021, 272}, {2198, 53321}, {2352, 1461}, {3119, 23289}, {3190, 651}, {3239, 2997}, {3868, 658}, {3900, 1751}, {4130, 56146}, {4171, 41506}, {4306, 4617}, {4391, 15467}, {4397, 40011}, {5125, 13149}, {8611, 28786}, {8676, 57}, {17878, 52621}, {18134, 4569}, {20294, 85}, {22021, 4566}, {23800, 279}, {27396, 664}, {40572, 36048}, {41320, 108}, {43060, 269}, {44426, 58074}, {56000, 1414}, {57043, 273}, {57092, 278}, {57173, 1119}, {57217, 7045}, {57501, 36059}
X(58333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 57055, 58329}, {44448, 57245, 522}


X(58334) = X(11)X(31251)∩X(55)X(667)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2-2*b*c+a*(b+c)) : :

X(58334) lies on these lines: {11, 31251}, {55, 667}, {390, 21301}, {497, 21260}, {764, 10965}, {1021, 3900}, {1621, 25901}, {1697, 4083}, {1946, 4895}, {3057, 48333}, {3058, 31149}, {3295, 3309}, {3303, 3669}, {3601, 48330}, {3913, 20317}, {4063, 53053}, {4139, 4498}, {4705, 11934}, {4729, 8642}, {5218, 31288}, {6161, 26358}, {7071, 18344}, {9010, 10387}, {9511, 52596}, {12053, 47841}, {45269, 48302}, {58155, 58369}

X(58334) = reflection of X(i) in X(j) for these {i,j}: {58332, 8641}, {8641, 58336}
X(58334) = perspector of circumconic {{A, B, C, X(2287), X(3217)}}
X(58334) = X(i)-isoconjugate-of-X(j) for these {i, j}: {651, 42304}, {658, 39956}, {664, 56155}, {934, 34860}, {1461, 40012}, {3668, 8690}, {4616, 56192}, {4637, 56123}
X(58334) = X(i)-Dao conjugate of X(j) for these {i, j}: {14714, 34860}, {35508, 40012}, {38991, 42304}, {39025, 56155}
X(58334) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7252, 657}
X(58334)= pole of line {44, 610} with respect to the circumcircle
X(58334)= pole of line {1420, 3246} with respect to the mixtilinear incircles radical circle
X(58334)= pole of line {934, 8690} with respect to the Stammler hyperbola
X(58334) = perspector of cevian triangle of X(42312) and inverse-of-ABC in bicevian conic of X(8) and X(42312)
X(58334) = intersection, other than A, B, C, of circumconics {{A, B, C, X(667), X(4578)}}, {{A, B, C, X(1021), X(4498)}}, {{A, B, C, X(3900), X(4139)}}
X(58334) = barycentric product X(i)*X(j) for these (i, j): {200, 4498}, {220, 4106}, {1021, 3214}, {2287, 4139}, {3217, 522}, {3239, 3915}, {3875, 657}, {3900, 4383}, {3913, 650}, {4186, 57055}, {16946, 4397}, {17477, 6558}, {18135, 8641}, {20317, 55}, {21789, 3175}, {21963, 7259}, {28387, 58329}, {30568, 663}, {42312, 9}
X(58334) = barycentric quotient X(i)/X(j) for these (i, j): {657, 34860}, {663, 42304}, {3063, 56155}, {3217, 664}, {3875, 46406}, {3900, 40012}, {3913, 4554}, {3915, 658}, {4106, 57792}, {4139, 1446}, {4186, 13149}, {4383, 4569}, {4498, 1088}, {4524, 56123}, {8641, 39956}, {16946, 934}, {20317, 6063}, {30568, 4572}, {42312, 85}
X(58334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 4162, 667}, {3900, 58336, 8641}, {3900, 8641, 58332}


X(58335) = X(826)X(2474)∩X(1021)X(3900)

Barycentrics    a*(b-c)*(-a+b+c)^2*(b^2+c^2) : :

X(58335) lies on these lines: {826, 2474}, {918, 58321}, {926, 8611}, {1021, 3900}, {1734, 25098}, {2512, 50345}, {3126, 4025}, {3239, 4082}, {4041, 52326}, {4130, 17115}, {4171, 6608}, {4474, 47926}, {4705, 45745}, {4730, 8640}, {8662, 50501}, {23742, 23887}

X(58335) = reflection of X(i) in X(j) for these {i,j}: {8641, 57055}
X(58335) = perspector of circumconic {{A, B, C, X(141), X(2287)}}
X(58335) = X(i)-isoconjugate-of-X(j) for these {i, j}: {82, 934}, {83, 1461}, {251, 658}, {279, 4628}, {827, 3668}, {1020, 52376}, {1042, 4577}, {1176, 36118}, {1262, 10566}, {1427, 4599}, {1446, 34072}, {4565, 18097}, {4569, 46289}, {4617, 56245}, {4637, 18098}, {7045, 18108}, {32714, 34055}, {41284, 46153}, {42396, 52373}, {46288, 46406}, {52394, 53321}
X(58335) = X(i)-Dao conjugate of X(j) for these {i, j}: {39, 4569}, {141, 934}, {2968, 3112}, {3119, 18087}, {3124, 1427}, {7358, 1799}, {14714, 82}, {15449, 1446}, {17115, 18108}, {35508, 83}, {38966, 32085}, {40585, 658}, {40938, 13149}, {55043, 3668}, {55064, 18097}, {55068, 52394}
X(58335) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4553, 33299}
X(58335)= pole of line {610, 2916} with respect to the circumcircle
X(58335)= pole of line {827, 934} with respect to the Stammler hyperbola
X(58335)= pole of line {4569, 4577} with respect to the Wallace hyperbola
X(58335) = perspector of cevian triangle of X(48278) and inverse-of-ABC in bicevian conic of X(8) and X(48278)
X(58335) = intersection, other than A, B, C, of circumconics {{A, B, C, X(826), X(3900)}}, {{A, B, C, X(1021), X(16892)}}, {{A, B, C, X(2287), X(52906)}}, {{A, B, C, X(2525), X(57055)}}, {{A, B, C, X(2530), X(21789)}}, {{A, B, C, X(3005), X(4397)}}, {{A, B, C, X(4183), X(46539)}}, {{A, B, C, X(7367), X(14378)}}
X(58335) = barycentric product X(i)*X(j) for these (i, j): {39, 4397}, {141, 3900}, {220, 48084}, {427, 57055}, {1021, 15523}, {1043, 8061}, {1146, 4553}, {1930, 657}, {1964, 52622}, {2287, 826}, {2310, 4568}, {2525, 4183}, {2530, 346}, {3239, 38}, {3665, 4130}, {3688, 4391}, {3703, 650}, {3954, 7253}, {8024, 8641}, {15416, 1843}, {16703, 4524}, {16887, 4171}, {16892, 200}, {20883, 57108}, {21016, 57081}, {21108, 3692}, {21123, 341}, {24026, 46148}, {31125, 58331}, {33299, 522}, {35519, 40972}, {36197, 4576}, {48278, 9}
X(58335) = barycentric quotient X(i)/X(j) for these (i, j): {38, 658}, {39, 934}, {141, 4569}, {427, 13149}, {657, 82}, {826, 1446}, {1021, 52394}, {1043, 4593}, {1253, 4628}, {1401, 4617}, {1843, 32714}, {1930, 46406}, {1964, 1461}, {2084, 1042}, {2287, 4577}, {2310, 10566}, {2328, 4599}, {2530, 279}, {3005, 1427}, {3239, 3112}, {3665, 36838}, {3688, 651}, {3703, 4554}, {3900, 83}, {3954, 4566}, {4041, 18097}, {4105, 56245}, {4171, 18082}, {4183, 42396}, {4397, 308}, {4524, 18098}, {4553, 1275}, {6608, 18087}, {8061, 3668}, {8641, 251}, {14936, 18108}, {16696, 4616}, {16887, 4635}, {16892, 1088}, {17187, 4637}, {17442, 36118}, {21035, 1020}, {21108, 1847}, {21123, 269}, {21789, 52376}, {21814, 53321}, {33299, 664}, {40972, 109}, {46148, 7045}, {48084, 57792}, {48278, 85}, {50521, 1407}, {52335, 18070}, {52622, 18833}, {57055, 1799}, {57108, 34055}, {58331, 52898}, {58340, 28724}
X(58335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 57055, 8641}, {8641, 57055, 58331}


X(58336) = X(1)X(44408)∩X(55)X(663)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2-b*c+a*(b+c)) : :

X(58336) lies on these lines: {1, 44408}, {3, 48294}, {55, 663}, {512, 23865}, {514, 3295}, {595, 22154}, {905, 53278}, {999, 39476}, {1001, 17072}, {1021, 3900}, {1191, 22090}, {1260, 4546}, {1334, 57053}, {1621, 21302}, {1946, 4162}, {3303, 4449}, {3309, 53308}, {3746, 4040}, {3871, 47793}, {3887, 22160}, {3913, 4147}, {4057, 4063}, {4421, 45316}, {4477, 4990}, {4729, 8645}, {5687, 47794}, {6767, 48287}, {8642, 50499}, {9709, 48196}, {15599, 52596}, {32195, 44824}, {39199, 48302}, {39541, 53300}, {50355, 53309}, {50501, 53287}

X(58336) = midpoint of X(i) and X(j) for these {i,j}: {8641, 58334}
X(58336) = reflection of X(i) in X(j) for these {i,j}: {21789, 8641}
X(58336) = perspector of circumconic {{A, B, C, X(2287), X(2316)}}
X(58336) = X(i)-isoconjugate-of-X(j) for these {i, j}: {269, 8050}, {596, 934}, {658, 39798}, {664, 20615}, {1020, 39747}, {1088, 40519}, {1427, 37205}, {1461, 40013}, {3668, 34594}, {4566, 39949}, {4569, 40148}, {4637, 40085}, {7045, 40086}
X(58336) = X(i)-Dao conjugate of X(j) for these {i, j}: {2968, 57915}, {6600, 8050}, {14714, 596}, {17115, 40086}, {35508, 40013}, {39025, 20615}, {48303, 17894}
X(58336) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6558, 220}
X(58336)= pole of line {579, 610} with respect to the circumcircle
X(58336)= pole of line {516, 3881} with respect to the DeLongchamps ellipse
X(58336)= pole of line {934, 34594} with respect to the Stammler hyperbola
X(58336) = perspector of cevian triangle of X(48307) and inverse-of-ABC in bicevian conic of X(8) and X(48307)
X(58336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1021), X(4063)}}, {{A, B, C, X(2332), X(3293)}}, {{A, B, C, X(3900), X(4132)}}, {{A, B, C, X(3939), X(48387)}}, {{A, B, C, X(4057), X(21789)}}
X(58336) = barycentric product X(i)*X(j) for these (i, j): {200, 4063}, {341, 57096}, {346, 4057}, {1021, 3293}, {1043, 58288}, {1253, 20949}, {1260, 17922}, {2220, 4397}, {2287, 4132}, {2328, 4129}, {3239, 595}, {3871, 650}, {4082, 57080}, {4222, 57055}, {4360, 657}, {5423, 57238}, {6558, 8054}, {18140, 8641}, {20295, 220}, {21789, 3995}, {22154, 7046}, {32911, 3900}, {47793, 55}, {48307, 9}
X(58336) = barycentric quotient X(i)/X(j) for these (i, j): {220, 8050}, {595, 658}, {657, 596}, {2220, 934}, {2328, 37205}, {3063, 20615}, {3239, 57915}, {3871, 4554}, {3900, 40013}, {4057, 279}, {4063, 1088}, {4132, 1446}, {4222, 13149}, {4360, 46406}, {4524, 40085}, {8641, 39798}, {14827, 40519}, {14936, 40086}, {20295, 57792}, {21789, 39747}, {22154, 7056}, {32911, 4569}, {47793, 6063}, {48307, 85}, {57096, 269}, {57238, 479}, {58288, 3668}
X(58336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 663, 48387}, {3900, 8641, 21789}, {8641, 58334, 3900}


X(58337) = X(21)X(942)∩X(30)X(113)

Barycentrics    a*(a+b)*(a+c)*(-a+b+c)^2*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(58337) lies on these lines: {2, 54508}, {21, 942}, {30, 113}, {72, 11107}, {110, 971}, {517, 2074}, {1021, 3900}, {2287, 2326}, {2328, 2361}, {3615, 3824}, {3838, 17188}, {5057, 17923}, {5440, 15776}, {6062, 7359}, {16418, 45923}, {17613, 54442}, {31445, 35193}

X(58337) = perspector of circumconic {{A, B, C, X(2287), X(2407)}}
X(58337) = X(i)-isoconjugate-of-X(j) for these {i, j}: {74, 3668}, {658, 2433}, {1042, 1494}, {1427, 2349}, {1439, 36119}, {1446, 2159}, {1461, 2394}, {8749, 56382}, {14380, 36118}, {16080, 52373}
X(58337) = X(i)-Dao conjugate of X(j) for these {i, j}: {1511, 1439}, {3163, 1446}, {6739, 1441}, {7358, 34767}, {35508, 2394}, {38966, 18808}
X(58337) = X(i)-Ceva conjugate of X(j) for these {i, j}: {51382, 52949}
X(58337)= pole of line {284, 33857} with respect to the Feuerbach hyperbola
X(58337)= pole of line {74, 934} with respect to the Stammler hyperbola
X(58337)= pole of line {1494, 4569} with respect to the Wallace hyperbola
X(58337) = perspector of cevian triangle of X(51382) and inverse-of-ABC in bicevian conic of X(8) and X(51382)
X(58337) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(3900)}}, {{A, B, C, X(33), X(1558)}}, {{A, B, C, X(1021), X(2326)}}, {{A, B, C, X(1495), X(8641)}}, {{A, B, C, X(1511), X(2361)}}, {{A, B, C, X(1544), X(7079)}}, {{A, B, C, X(2287), X(7359)}}, {{A, B, C, X(2685), X(51418)}}, {{A, B, C, X(6062), X(16163)}}, {{A, B, C, X(7367), X(15454)}}, {{A, B, C, X(21789), X(51420)}}
X(58337) = barycentric product X(i)*X(j) for these (i, j): {21, 7359}, {346, 51420}, {1043, 2173}, {1265, 52955}, {1784, 2327}, {1792, 1990}, {2287, 30}, {2407, 3900}, {2420, 4397}, {3692, 52954}, {4240, 57055}, {11064, 4183}, {11125, 7259}, {14206, 2328}, {14395, 36797}, {14399, 7256}, {14400, 643}, {15416, 23347}, {18653, 200}, {21789, 42716}, {24001, 57108}, {51382, 9}, {52949, 8}, {52956, 78}, {56182, 6357}
X(58337) = barycentric quotient X(i)/X(j) for these (i, j): {30, 1446}, {1043, 33805}, {1495, 1427}, {2173, 3668}, {2287, 1494}, {2328, 2349}, {2332, 36119}, {2407, 4569}, {2420, 934}, {3284, 1439}, {3900, 2394}, {4183, 16080}, {4240, 13149}, {7359, 1441}, {8641, 2433}, {9406, 1042}, {14395, 17094}, {14400, 4077}, {14581, 1426}, {18653, 1088}, {23347, 32714}, {36197, 12079}, {51382, 85}, {51420, 279}, {52948, 36908}, {52949, 7}, {52954, 1847}, {52955, 1119}, {52956, 273}, {56829, 36118}, {57055, 34767}


X(58338) = X(3)X(24018)∩X(521)X(1946)

Barycentrics    a^2*(a+b)*(a-b-c)^3*(b-c)*(a+c)*(a^2-b^2-c^2) : :

X(58338) lies on these lines: {3, 24018}, {521, 1946}, {643, 4564}, {906, 57084}, {1021, 3900}, {1792, 15411}, {3737, 57101}, {7234, 23864}, {7253, 15776}, {8674, 57109}, {23090, 57057}

X(58338) = perspector of circumconic {{A, B, C, X(1812), X(2287)}}
X(58338) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 4566}, {57, 52607}, {65, 36118}, {108, 3668}, {162, 6046}, {225, 934}, {226, 32714}, {273, 53321}, {278, 1020}, {648, 7147}, {653, 1427}, {658, 1880}, {664, 1426}, {811, 7143}, {1042, 18026}, {1119, 4551}, {1275, 55208}, {1396, 4605}, {1400, 13149}, {1410, 52938}, {1435, 4552}, {1439, 36127}, {1446, 32674}, {1461, 40149}, {1824, 4626}, {1826, 4617}, {1847, 4559}, {2333, 36838}, {4017, 55346}, {4569, 57652}, {4637, 8736}, {6614, 41013}, {7128, 7178}, {7216, 46102}, {7339, 24006}, {17094, 24033}, {20618, 24019}, {23586, 55206}, {23984, 51664}, {52373, 54240}
X(58338) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 6046}, {521, 17094}, {656, 4077}, {2968, 57809}, {5452, 52607}, {6608, 24006}, {7358, 1441}, {11517, 4566}, {14714, 225}, {17423, 7143}, {34961, 55346}, {35071, 20618}, {35072, 1446}, {35508, 40149}, {38983, 3668}, {39025, 1426}, {40582, 13149}, {40602, 36118}, {55066, 7147}, {55067, 1847}, {55068, 273}
X(58338) = X(i)-Ceva conjugate of X(j) for these {i, j}: {643, 219}, {36797, 2287}, {57081, 23090}
X(58338) = X(i)-cross conjugate of X(j) for these {i, j}: {57108, 58329}
X(58338)= pole of line {610, 1761} with respect to the circumcircle
X(58338)= pole of line {6046, 57285} with respect to the polar circle
X(58338)= pole of line {108, 934} with respect to the Stammler hyperbola
X(58338)= pole of line {4569, 18026} with respect to the Wallace hyperbola
X(58338) = perspector of cevian triangle of X(57081) and inverse-of-ABC in bicevian conic of X(8) and X(57081)
X(58338) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(219), X(4564)}}, {{A, B, C, X(521), X(3900)}}, {{A, B, C, X(1021), X(23090)}}, {{A, B, C, X(1946), X(8641)}}, {{A, B, C, X(7367), X(39167)}}, {{A, B, C, X(8021), X(15776)}}, {{A, B, C, X(21789), X(23189)}}
X(58338) = barycentric product X(i)*X(j) for these (i, j): {21, 57055}, {29, 57057}, {219, 7253}, {283, 3239}, {312, 57134}, {332, 657}, {333, 57108}, {525, 6061}, {1021, 78}, {1043, 652}, {1098, 8611}, {1259, 17926}, {1260, 4560}, {1265, 7252}, {1444, 4130}, {1790, 4163}, {1792, 650}, {1802, 18155}, {1808, 4148}, {1812, 3900}, {2193, 4397}, {2287, 521}, {2322, 57241}, {2327, 522}, {2328, 6332}, {2332, 52616}, {2968, 5546}, {3022, 4563}, {3119, 4592}, {3270, 645}, {3692, 3737}, {4081, 4558}, {5423, 7254}, {7004, 7259}, {7117, 7256}, {15411, 55}, {15416, 2194}, {15419, 480}, {16731, 56183}, {17206, 4105}, {21789, 345}, {23090, 8}, {23189, 346}, {24012, 55205}, {30681, 3733}, {31623, 58340}, {34591, 643}, {35072, 36797}, {52158, 57045}, {52355, 7054}, {56182, 905}, {57081, 9}, {58329, 63}
X(58338) = barycentric quotient X(i)/X(j) for these (i, j): {21, 13149}, {55, 52607}, {212, 1020}, {219, 4566}, {283, 658}, {284, 36118}, {332, 46406}, {520, 20618}, {521, 1446}, {647, 6046}, {652, 3668}, {657, 225}, {810, 7147}, {1021, 273}, {1043, 46404}, {1260, 4552}, {1437, 4617}, {1444, 36838}, {1790, 4626}, {1792, 4554}, {1802, 4551}, {1812, 4569}, {1946, 1427}, {2193, 934}, {2194, 32714}, {2287, 18026}, {2318, 4605}, {2322, 52938}, {2327, 664}, {2328, 653}, {2332, 36127}, {2638, 51664}, {3022, 2501}, {3049, 7143}, {3063, 1426}, {3119, 24006}, {3239, 57809}, {3270, 7178}, {3737, 1847}, {3900, 40149}, {4081, 14618}, {4105, 1826}, {4130, 41013}, {4171, 56285}, {4183, 54240}, {4397, 52575}, {4524, 8736}, {5546, 55346}, {6056, 52610}, {6061, 648}, {7252, 1119}, {7253, 331}, {7254, 479}, {8641, 1880}, {15411, 6063}, {15419, 57880}, {17206, 52937}, {21789, 278}, {23090, 7}, {23189, 279}, {24012, 55206}, {30681, 27808}, {32661, 7339}, {34591, 4077}, {35072, 17094}, {36054, 1439}, {36797, 57538}, {52425, 53321}, {56182, 6335}, {57055, 1441}, {57057, 307}, {57081, 85}, {57108, 226}, {57134, 57}, {57180, 1824}, {57241, 56382}, {58329, 92}, {58340, 1214}
X(58338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57108, 57134, 23090}


X(58339) = X(1)X(6332)∩X(200)X(4163)

Barycentrics    a*(b-c)*(-a+b+c)^2*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(58339) lies on these lines: {1, 6332}, {200, 4163}, {644, 57084}, {650, 57159}, {663, 3239}, {1021, 3900}, {1946, 57121}, {2812, 24018}, {3063, 4130}, {3904, 48282}, {4040, 4391}, {4105, 4546}, {4397, 57081}, {4936, 38379}, {10582, 52596}, {17496, 21173}, {20517, 54318}, {48307, 57158}, {56112, 56194}

X(58339) = reflection of X(i) in X(j) for these {i,j}: {1021, 58332}
X(58339) = perspector of circumconic {{A, B, C, X(1261), X(2287)}}
X(58339) = X(i)-isoconjugate-of-X(j) for these {i, j}: {269, 56194}, {934, 34434}, {1020, 53083}, {1106, 56252}, {1407, 56188}, {1461, 2051}, {4566, 52150}, {20028, 53321}
X(58339) = X(i)-Dao conjugate of X(j) for these {i, j}: {2968, 54121}, {4391, 52621}, {6552, 56252}, {6600, 56194}, {14714, 34434}, {24771, 56188}, {34589, 3668}, {35508, 2051}, {55068, 20028}
X(58339) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3939, 200}, {56112, 9}
X(58339)= pole of line {1764, 7291} with respect to the Steiner circumellipse
X(58339) = perspector of cevian triangle of X(57091) and inverse-of-ABC in bicevian conic of X(8) and X(57091)
X(58339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1021), X(17496)}}, {{A, B, C, X(2328), X(52139)}}, {{A, B, C, X(21173), X(21789)}}
X(58339) = barycentric product X(i)*X(j) for these (i, j): {220, 57244}, {1021, 17751}, {2321, 57125}, {2975, 3239}, {3939, 40624}, {4397, 572}, {11109, 57055}, {11998, 3699}, {14829, 3900}, {17074, 4163}, {17496, 200}, {20986, 52622}, {21061, 7253}, {21173, 346}, {23187, 7101}, {24237, 4578}, {34589, 644}, {52358, 58329}, {53566, 7259}, {57091, 9}
X(58339) = barycentric quotient X(i)/X(j) for these (i, j): {200, 56188}, {220, 56194}, {346, 56252}, {572, 934}, {657, 34434}, {1021, 20028}, {2975, 658}, {3239, 54121}, {3900, 2051}, {4171, 51870}, {4397, 57905}, {11109, 13149}, {11998, 3676}, {14829, 4569}, {14973, 4605}, {17074, 4626}, {17496, 1088}, {20986, 1461}, {21061, 4566}, {21173, 279}, {21789, 53083}, {23187, 7177}, {34589, 24002}, {40624, 52621}, {52139, 1020}, {57091, 85}, {57125, 1434}, {57244, 57792}, {58329, 46880}
X(58339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 58332, 1021}, {4163, 57108, 200}


X(58340) = X(513)X(2077)∩X(906)X(1110)

Barycentrics    a^3*(b-c)*(-a+b+c)^2*(-a^2+b^2+c^2)^2 : :

X(58340) lies on these lines: {100, 46102}, {513, 2077}, {520, 4091}, {521, 22160}, {652, 1946}, {663, 52307}, {667, 8676}, {906, 1110}, {1021, 3900}, {1792, 15416}, {3126, 11517}, {6056, 23614}, {14414, 22091}, {22383, 57103}, {34975, 52408}

X(58340) = midpoint of X(i) and X(j) for these {i,j}: {652, 57108}
X(58340) = trilinear pole of line {2638, 39687}
X(58340) = perspector of circumconic {{A, B, C, X(219), X(394)}}
X(58340) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 36118}, {7, 36127}, {19, 13149}, {27, 52607}, {34, 18026}, {56, 52938}, {57, 54240}, {92, 32714}, {107, 3668}, {108, 273}, {158, 934}, {278, 653}, {331, 32674}, {393, 658}, {513, 24032}, {514, 23984}, {608, 46404}, {649, 57538}, {664, 1118}, {693, 24033}, {811, 1426}, {823, 1427}, {1042, 6528}, {1096, 4569}, {1119, 1897}, {1435, 6335}, {1439, 36126}, {1446, 24019}, {1461, 2052}, {1783, 1847}, {1857, 4626}, {2207, 46406}, {3261, 23985}, {3924, 54948}, {4566, 8747}, {4572, 7337}, {4605, 36419}, {6046, 52921}, {6059, 52937}, {6354, 52919}, {6529, 56382}, {7128, 17924}, {7649, 55346}, {14249, 36079}, {15352, 52373}, {17861, 52775}, {26934, 42381}
X(58340) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52938}, {6, 13149}, {521, 693}, {656, 46107}, {1147, 934}, {2968, 57806}, {3270, 37372}, {5375, 57538}, {5452, 54240}, {6503, 4569}, {7358, 264}, {11517, 18026}, {14714, 158}, {17423, 1426}, {22391, 32714}, {34467, 1119}, {35071, 1446}, {35072, 331}, {35508, 2052}, {36033, 36118}, {38966, 1093}, {38983, 273}, {38985, 3668}, {39006, 1847}, {39025, 1118}, {39026, 24032}, {40626, 57787}, {46093, 1439}, {55063, 40701}
X(58340) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 219}, {906, 1802}, {1259, 35072}, {1331, 3990}, {57241, 36054}, {58338, 57108}
X(58340)= pole of line {40, 219} with respect to the circumcircle
X(58340)= pole of line {3990, 15905} with respect to the MacBeath circumconic
X(58340)= pole of line {107, 934} with respect to the Stammler hyperbola
X(58340)= pole of line {6509, 25091} with respect to the Steiner inellipse
X(58340)= pole of line {4569, 6528} with respect to the Wallace hyperbola
X(58340) = perspector of cevian triangle of X(57241) and inverse-of-ABC in bicevian conic of X(8) and X(57241)
X(58340) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(219), X(46102)}}, {{A, B, C, X(255), X(1110)}}, {{A, B, C, X(520), X(3900)}}, {{A, B, C, X(652), X(1021)}}, {{A, B, C, X(1260), X(6056)}}, {{A, B, C, X(1946), X(21789)}}, {{A, B, C, X(7367), X(14379)}}, {{A, B, C, X(8641), X(39201)}}, {{A, B, C, X(52613), X(57055)}}, {{A, B, C, X(57108), X(57241)}}
X(58340) = barycentric product X(i)*X(j) for these (i, j): {1, 57057}, {3, 57055}, {41, 52616}, {100, 35072}, {101, 24031}, {190, 2638}, {200, 4091}, {212, 6332}, {219, 521}, {220, 4131}, {255, 3239}, {268, 57101}, {283, 8611}, {306, 57134}, {326, 657}, {652, 78}, {1021, 3682}, {1043, 822}, {1214, 58338}, {1253, 30805}, {1259, 650}, {1260, 905}, {1264, 3063}, {1265, 22383}, {1331, 34591}, {1332, 3270}, {1364, 644}, {1459, 3692}, {1792, 647}, {1802, 4025}, {1804, 4130}, {1809, 52307}, {1946, 345}, {2188, 57245}, {2193, 52355}, {2287, 520}, {2289, 522}, {2327, 656}, {2328, 24018}, {2968, 906}, {3119, 6517}, {3719, 663}, {3900, 394}, {3926, 8641}, {3990, 7253}, {4041, 6514}, {4105, 7183}, {4163, 7125}, {4183, 52613}, {4391, 6056}, {4397, 577}, {4571, 7117}, {4587, 7004}, {10397, 271}, {15411, 228}, {15416, 184}, {16731, 4557}, {19614, 57045}, {21789, 3998}, {23090, 72}, {23189, 3694}, {23224, 346}, {23614, 46102}, {23983, 692}, {28724, 58335}, {35518, 52425}, {36054, 8}, {39687, 668}, {40152, 58329}, {52430, 52622}, {57081, 71}, {57108, 63}, {57109, 7054}, {57180, 7055}, {57241, 9}, {58253, 7115}
X(58340) = barycentric quotient X(i)/X(j) for these (i, j): {3, 13149}, {9, 52938}, {41, 36127}, {48, 36118}, {55, 54240}, {78, 46404}, {100, 57538}, {101, 24032}, {184, 32714}, {212, 653}, {219, 18026}, {228, 52607}, {255, 658}, {326, 46406}, {394, 4569}, {520, 1446}, {521, 331}, {577, 934}, {652, 273}, {657, 158}, {692, 23984}, {822, 3668}, {906, 55346}, {1043, 57973}, {1259, 4554}, {1260, 6335}, {1364, 24002}, {1459, 1847}, {1792, 6331}, {1802, 1897}, {1804, 36838}, {1946, 278}, {2287, 6528}, {2289, 664}, {2327, 811}, {2328, 823}, {2332, 36126}, {2638, 514}, {3049, 1426}, {3063, 1118}, {3239, 57806}, {3270, 17924}, {3719, 4572}, {3900, 2052}, {3990, 4566}, {4055, 1020}, {4091, 1088}, {4131, 57792}, {4183, 15352}, {4397, 18027}, {6056, 651}, {6332, 57787}, {6514, 4625}, {7125, 4626}, {7183, 52937}, {7335, 4617}, {8611, 57809}, {8641, 393}, {10397, 342}, {15411, 57796}, {15416, 18022}, {16731, 52619}, {18604, 4616}, {22383, 1119}, {23090, 286}, {23224, 279}, {23614, 26932}, {23983, 40495}, {24031, 3261}, {32320, 1439}, {32656, 7128}, {32739, 24033}, {34591, 46107}, {35072, 693}, {36054, 7}, {39201, 1427}, {39687, 513}, {52355, 52575}, {52425, 108}, {52430, 1461}, {52616, 20567}, {56003, 54948}, {56305, 42381}, {57055, 264}, {57057, 75}, {57081, 44129}, {57101, 40701}, {57108, 92}, {57134, 27}, {57180, 1857}, {57241, 85}, {58331, 37778}, {58338, 31623}


X(58341) = X(133)X(1515)∩X(154)X(1249)

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2))^2*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+4*b^2*c^2-3*c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(58341) lies on these lines: {20, 41372}, {107, 15312}, {133, 1515}, {154, 1249}, {1294, 27089}, {5656, 6616}, {13155, 14249}, {23590, 58311}

X(58341) = perspector of circumconic {{A, B, C, X(2404), X(57219)}}
X(58341) = X(i)-Dao conjugate of X(j) for these {i, j}: {50937, 52559}
X(58341)= pole of line {43701, 52559} with respect to the polar circle
X(58341) = perspector of cevian triangle of X(1559) and inverse-of-ABC in bicevian conic of X(20) and X(1559)
X(58341) = intersection, other than A, B, C, of circumconics {{A, B, C, X(154), X(6000)}}, {{A, B, C, X(1249), X(23590)}}, {{A, B, C, X(1559), X(3079)}}, {{A, B, C, X(6525), X(51385)}}
X(58341) = barycentric product X(i)*X(j) for these (i, j): {1249, 1559}, {2404, 58342}, {3079, 51358}, {36413, 51385}, {55127, 57219}
X(58341) = barycentric quotient X(i)/X(j) for these (i, j): {1559, 34403}, {2442, 53886}, {55127, 14638}, {58342, 2416}


X(58342) = X(20)X(14343)∩X(30)X(511)

Barycentrics    (b-c)*(b+c)*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2))^2 : :

X(58342) lies on these lines: {20, 14343}, {30, 511}, {154, 58352}, {1576, 32646}, {3265, 20298}, {5489, 33893}, {6130, 42399}, {6587, 42658}, {9409, 46005}, {39197, 40596}, {39228, 52737}

X(58342) = isogonal conjugate of X(53886)
X(58342) = perspector of circumconic {{A, B, C, X(2), X(1249)}}
X(58342) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53886}, {162, 52559}, {822, 57574}, {1301, 19611}, {2155, 44326}, {2184, 46639}, {4592, 31942}, {19614, 53639}
X(58342) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 15312}
X(58342) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 53886}, {4, 53639}, {122, 253}, {125, 52559}, {5139, 31942}, {6587, 14638}, {8057, 3265}, {39020, 34403}, {45245, 44326}, {55058, 5931}
X(58342) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 13613}, {20, 39020}, {107, 1249}, {8057, 6587}, {33893, 1562}, {53639, 46829}
X(58342) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 13613}, {19611, 35968}, {19614, 39020}, {46639, 36908}, {52158, 55063}, {52559, 34846}, {53639, 20308}, {53886, 10}
X(58342) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53886, 8}
X(58342)= pole of line {4, 253} with respect to the anticomplementary circle
X(58342)= pole of line {40, 15312} with respect to the Bevan circle
X(58342)= pole of line {182, 15312} with respect to the 1st Brocard circle
X(58342)= pole of line {3, 1033} with respect to the 2nd Brocard circle
X(58342)= pole of line {3, 1033} with respect to the circumcircle
X(58342)= pole of line {1, 15312} with respect to the Conway circle
X(58342)= pole of line {6, 15312} with respect to the cosine circle
X(58342)= pole of line {20, 15312} with respect to the DeLongchamps circle
X(58342)= pole of line {4, 253} with respect to the 1st DrozFarny circle
X(58342)= pole of line {3, 1033} with respect to the 2nd DrozFarny circle
X(58342)= pole of line {10, 15312} with respect to the excircles-radical circle
X(58342)= pole of line {182, 15312} with respect to the 1st Lemoine circle
X(58342)= pole of line {355, 15312} with respect to the Fuhrmann circle
X(58342)= pole of line {39, 15312} with respect to the Gallatly circle
X(58342)= pole of line {5893, 15312} with respect to the half-altitude circle
X(58342)= pole of line {39, 15312} with respect to the half Moses circle
X(58342)= pole of line {1, 15312} with respect to the incircle
X(58342)= pole of line {4, 253} with respect to the circumcircle of the Johnson triangle
X(58342)= pole of line {1478, 15312} with respect to the 1st Johnson-Yff circle
X(58342)= pole of line {1479, 15312} with respect to the 2nd Johnson-Yff circle
X(58342)= pole of line {962, 15312} with respect to the Longuet-Higgins circle
X(58342)= pole of line {999, 15312} with respect to the mixtilinear incircles radical circle
X(58342)= pole of line {39, 15312} with respect to the Moses circle
X(58342)= pole of line {8148, 15312} with respect to the Moses-Longuet-Higgins circle
X(58342)= pole of line {5, 6523} with respect to the nine-point circle
X(58342)= pole of line {381, 15312} with respect to the orthocentroidal circle
X(58342)= pole of line {2, 15312} with respect to the orthoptic circle of the Steiner Inellipse
X(58342)= pole of line {351, 15312} with respect to the Parry circle
X(58342)= pole of line {4, 253} with respect to the polar circle
X(58342)= pole of line {10, 15312} with respect to the Spieker circle
X(58342)= pole of line {3, 1033} with respect to the Stammler circle
X(58342)= pole of line {5, 6523} with respect to the Steiner circle
X(58342)= pole of line {8152, 15312} with respect to the symmedial circle
X(58342)= pole of line {26, 15312} with respect to the tangential circle
X(58342)= pole of line {11, 13613} with respect to the Feuerbach hyperbola
X(58342)= pole of line {125, 13613} with respect to the Jerabek hyperbola
X(58342)= pole of line {5, 5910} with respect to the Johnson circumconic
X(58342)= pole of line {115, 13613} with respect to the Kiepert hyperbola
X(58342)= pole of line {6, 20313} with respect to the MacBeath circumconic
X(58342)= pole of line {6, 6525} with respect to the Orthic inconic
X(58342)= pole of line {110, 53886} with respect to the Stammler hyperbola
X(58342)= pole of line {2, 34403} with respect to the Steiner circumellipse
X(58342)= pole of line {2, 34403} with respect to the Steiner inellipse
X(58342)= pole of line {99, 53886} with respect to the Wallace hyperbola
X(58342)= pole of line {1, 15312} with respect to the Suppa-Cucoanes circle
X(58342)= pole of line {7610, 15312} with respect to the Artzt circle
X(58342)= pole of line {599, 15312} with respect to the anti-Artzt circle
X(58342) = perspector of cevian triangle of X(8057) and inverse-of-ABC in bicevian conic of X(20) and X(8057)
X(58342) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(15312)}}, {{A, B, C, X(20), X(1503)}}, {{A, B, C, X(30), X(3079)}}, {{A, B, C, X(154), X(6000)}}, {{A, B, C, X(511), X(52578)}}, {{A, B, C, X(520), X(42658)}}, {{A, B, C, X(523), X(44705)}}, {{A, B, C, X(524), X(36413)}}, {{A, B, C, X(525), X(6587)}}, {{A, B, C, X(740), X(1097)}}, {{A, B, C, X(3172), X(34146)}}, {{A, B, C, X(3198), X(6001)}}, {{A, B, C, X(3564), X(53050)}}, {{A, B, C, X(6060), X(44669)}}, {{A, B, C, X(6525), X(15311)}}, {{A, B, C, X(7338), X(17768)}}, {{A, B, C, X(8058), X(14308)}}, {{A, B, C, X(9530), X(10152)}}, {{A, B, C, X(20580), X(39020)}}, {{A, B, C, X(32713), X(46063)}}
X(58342) = barycentric product X(i)*X(j) for these (i, j): {4, 57201}, {20, 6587}, {107, 39020}, {122, 57219}, {1097, 661}, {1249, 8057}, {1562, 52913}, {2416, 58341}, {2501, 53050}, {3079, 525}, {3700, 7338}, {6060, 7178}, {10152, 14345}, {14308, 18623}, {14331, 5930}, {15466, 42658}, {17898, 610}, {20580, 6525}, {21172, 8804}, {36413, 523}, {37669, 44705}, {52578, 647}
X(58342) = barycentric quotient X(i)/X(j) for these (i, j): {6, 53886}, {20, 44326}, {107, 57574}, {122, 14638}, {154, 46639}, {647, 52559}, {1097, 799}, {1249, 53639}, {2489, 31942}, {3079, 648}, {3172, 1301}, {3198, 56235}, {6060, 645}, {6587, 253}, {7338, 4573}, {8057, 34403}, {14331, 5931}, {17898, 57921}, {23608, 36841}, {36413, 99}, {39020, 3265}, {42658, 1073}, {44705, 459}, {52578, 6331}, {53050, 4563}, {57201, 69}, {57219, 44181}, {58341, 2404}
X(58342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6086, 9007, 523}


X(58343) = X(3)X(373)∩X(511)X(4230)

Barycentrics    (-b^4-c^4+a^2*(b^2+c^2))*(-2*a^5+a*(b^2-c^2)^2+a^3*(b^2+c^2))^2 : :

X(58343) lies on these lines: {3, 373}, {237, 44114}, {511, 4230}, {1495, 2420}, {3081, 14401}, {3098, 48871}, {5640, 37918}, {5650, 56961}, {16163, 16240}, {21460, 52238}, {35268, 37921}, {35922, 51538}

X(58343) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1821, 40384}, {1910, 31621}, {40353, 46273}
X(58343) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 290}, {11672, 31621}, {40601, 40384}
X(58343)= pole of line {3524, 31621} with respect to the Stammler hyperbola
X(58343) = perspector of cevian triangle of X(511) and inverse-of-ABC in bicevian conic of X(30) and X(511)
X(58343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(511), X(23097)}}, {{A, B, C, X(3081), X(4230)}}, {{A, B, C, X(3531), X(9408)}}, {{A, B, C, X(14401), X(35910)}}
X(58343) = barycentric product X(i)*X(j) for these (i, j): {110, 58351}, {237, 36789}, {325, 9408}, {1099, 1755}, {1495, 51389}, {1959, 42074}, {2396, 58344}, {2421, 58346}, {3081, 35910}, {3163, 511}, {3233, 3569}, {3289, 34334}, {5968, 58347}, {14401, 4230}, {14966, 58263}, {16163, 232}, {16240, 36212}, {43034, 6062}, {46787, 58348}, {48453, 57431}
X(58343) = barycentric quotient X(i)/X(j) for these (i, j): {237, 40384}, {511, 31621}, {1099, 46273}, {3163, 290}, {3233, 43187}, {9408, 98}, {9418, 40353}, {16163, 57799}, {16240, 16081}, {36789, 18024}, {42074, 1821}, {58344, 2395}, {58345, 53173}, {58346, 43665}, {58347, 52145}, {58348, 46786}, {58351, 850}
X(58343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3081, 58347, 58348}


X(58344) = X(23)X(41167)∩X(25)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))^2 : :

X(58344) lies on these lines: {23, 41167}, {25, 512}, {669, 6041}, {879, 52301}, {1495, 52743}, {1974, 58310}, {3081, 14401}, {4232, 22264}, {9171, 44127}, {30476, 48884}, {32237, 33752}, {41424, 42654}, {44114, 54274}

X(58344) = perspector of circumconic {{A, B, C, X(3163), X(8749)}}
X(58344) = X(i)-isoconjugate-of-X(j) for these {i, j}: {304, 34568}, {662, 31621}, {799, 40384}, {4602, 40353}, {24018, 57570}, {33805, 44769}
X(58344) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 670}, {1084, 31621}, {1650, 305}, {9033, 52617}, {38996, 40384}
X(58344) = X(i)-Ceva conjugate of X(j) for these {i, j}: {512, 14398}, {32713, 14581}
X(58344) = perspector of cevian triangle of X(512) and inverse-of-ABC in bicevian conic of X(30) and X(512)
X(58344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(3081)}}, {{A, B, C, X(2433), X(14398)}}, {{A, B, C, X(6041), X(52743)}}
X(58344) = barycentric product X(i)*X(j) for these (i, j): {6, 58346}, {32, 58263}, {111, 58349}, {393, 58345}, {523, 9408}, {1099, 798}, {1354, 3709}, {1495, 1637}, {1974, 52624}, {1976, 58351}, {1990, 9409}, {2395, 58343}, {2433, 3081}, {3049, 34334}, {3124, 3233}, {3163, 512}, {6062, 7180}, {11070, 42656}, {14398, 30}, {14401, 25}, {14581, 9033}, {14583, 52743}, {14998, 58348}, {16163, 2489}, {16240, 647}, {32713, 39008}, {36035, 9406}, {36789, 669}, {41079, 9407}, {41489, 58352}, {41995, 6137}, {41996, 6138}, {42074, 661}, {58347, 9178}
X(58344) = barycentric quotient X(i)/X(j) for these (i, j): {512, 31621}, {669, 40384}, {1099, 4602}, {1974, 34568}, {3163, 670}, {3233, 34537}, {9407, 44769}, {9408, 99}, {9426, 40353}, {14398, 1494}, {14401, 305}, {14581, 16077}, {16163, 52608}, {16240, 6331}, {32713, 57570}, {36789, 4609}, {39008, 52617}, {42074, 799}, {52624, 40050}, {58263, 1502}, {58343, 2396}, {58345, 3926}, {58346, 76}, {58349, 3266}


X(58345) = X(3)X(520)∩X(154)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+c^2)^2*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58345) lies on these lines: {3, 520}, {154, 512}, {184, 2430}, {418, 34983}, {525, 8703}, {1511, 9517}, {1636, 9409}, {2420, 23347}, {3081, 14401}, {3165, 57122}, {3166, 57123}, {5664, 9033}, {6368, 18556}, {8717, 30209}, {9007, 51737}, {9411, 14396}, {15774, 57128}, {16163, 52624}, {23208, 42660}, {23613, 32078}, {39469, 47405}, {41089, 57142}, {41090, 57143}

X(58345) = midpoint of X(i) and X(j) for these {i,j}: {1636, 9409}, {58346, 58352}
X(58345) = perspector of circumconic {{A, B, C, X(1636), X(3163)}}
X(58345) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 34568}, {661, 57570}, {823, 40384}, {2349, 15459}, {16077, 36119}, {24019, 31621}, {32695, 33805}, {40353, 57973}
X(58345) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 6528}, {1511, 16077}, {1650, 264}, {9033, 850}, {22391, 34568}, {35071, 31621}, {36830, 57570}, {38999, 1494}
X(58345) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 3284}, {520, 1636}, {16163, 39008}
X(58345)= pole of line {3284, 5668} with respect to the circumcircle
X(58345)= pole of line {4240, 16077} with respect to the Stammler hyperbola
X(58345)= pole of line {44436, 44578} with respect to the Steiner inellipse
X(58345) = perspector of cevian triangle of X(520) and inverse-of-ABC in bicevian conic of X(30) and X(520)
X(58345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(3081)}}, {{A, B, C, X(184), X(16240)}}, {{A, B, C, X(1636), X(2420)}}, {{A, B, C, X(5664), X(18558)}}, {{A, B, C, X(9409), X(14380)}}, {{A, B, C, X(39008), X(52624)}}
X(58345) = barycentric product X(i)*X(j) for these (i, j): {110, 39008}, {184, 52624}, {394, 58346}, {577, 58263}, {1073, 58352}, {1099, 822}, {1495, 41077}, {1511, 18558}, {1636, 30}, {1637, 51394}, {1650, 2420}, {3163, 520}, {3233, 3269}, {3265, 9408}, {3284, 9033}, {3926, 58344}, {11064, 9409}, {11589, 14345}, {14401, 3}, {16163, 647}, {16240, 52613}, {17974, 58351}, {24018, 42074}, {32320, 34334}, {35911, 58348}, {36789, 39201}, {51254, 52743}, {53173, 58343}
X(58345) = barycentric quotient X(i)/X(j) for these (i, j): {110, 57570}, {184, 34568}, {520, 31621}, {1099, 57973}, {1495, 15459}, {1636, 1494}, {2420, 42308}, {3163, 6528}, {3284, 16077}, {9407, 32695}, {9408, 107}, {9409, 16080}, {14401, 264}, {16163, 6331}, {16240, 15352}, {39008, 850}, {39201, 40384}, {42074, 823}, {52624, 18022}, {58263, 18027}, {58310, 40353}, {58344, 393}, {58346, 2052}, {58349, 37778}, {58352, 15466}
X(58345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14401, 58352, 58346}


X(58346) = X(4)X(523)∩X(132)X(133)

Barycentrics    (b-c)*(b+c)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :
X(58346) = -2*X[74]+3*X[42739], -3*X[381]+2*X[14566], -3*X[3839]+X[53383], X[10722]+X[14223], -3*X[14269]+2*X[39491]

X(58346) lies on these lines: {4, 523}, {5, 18556}, {25, 9209}, {30, 5664}, {51, 512}, {74, 42739}, {132, 133}, {381, 14566}, {525, 3830}, {647, 33842}, {690, 13202}, {868, 1649}, {879, 3531}, {1316, 8371}, {1553, 23097}, {1576, 32650}, {1637, 9409}, {2682, 57464}, {2794, 42738}, {2881, 20410}, {3081, 14401}, {3265, 32827}, {3534, 45681}, {3839, 53383}, {9007, 54132}, {9178, 52187}, {10722, 14223}, {14269, 39491}, {14443, 55122}, {14847, 42736}, {15000, 47255}, {15451, 53386}, {30474, 31133}, {33885, 47233}, {34291, 47076}, {38368, 58262}, {42656, 52743}

X(58346) = midpoint of X(i) and X(j) for these {i,j}: {10722, 14223}
X(58346) = reflection of X(i) in X(j) for these {i,j}: {18556, 5}, {3534, 45681}, {42733, 4}, {5489, 42733}, {58352, 58345}, {9409, 1637}
X(58346) = inverse of X(17986) in polar circle
X(58346) = perspector of circumconic {{A, B, C, X(1637), X(1989)}}
X(58346) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 34568}, {163, 31621}, {662, 40384}, {799, 40353}, {822, 57570}, {1494, 36034}, {2349, 44769}, {16077, 35200}, {32640, 33805}
X(58346) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 99}, {115, 31621}, {133, 16077}, {1084, 40384}, {1650, 69}, {3162, 34568}, {3258, 1494}, {9033, 3265}, {38996, 40353}, {57295, 34767}
X(58346) = X(i)-Ceva conjugate of X(j) for these {i, j}: {107, 1990}, {523, 1637}, {3233, 3163}, {38956, 39008}, {58263, 14401}
X(58346)= pole of line {186, 1138} with respect to the circumcircle
X(58346)= pole of line {403, 52464} with respect to the nine-point circle
X(58346)= pole of line {4, 2453} with respect to the orthocentroidal circle
X(58346)= pole of line {107, 468} with respect to the orthoptic circle of the Steiner Inellipse
X(58346)= pole of line {30, 340} with respect to the polar circle
X(58346)= pole of line {3003, 47414} with respect to the Brocard inellipse
X(58346)= pole of line {1495, 1990} with respect to the Orthic inconic
X(58346)= pole of line {10411, 51262} with respect to the Stammler hyperbola
X(58346)= pole of line {3580, 19570} with respect to the Steiner circumellipse
X(58346)= pole of line {4, 15356} with respect to the Yff hyperbola
X(58346) = perspector of cevian triangle of X(523) and inverse-of-ABC in bicevian conic of X(30) and X(523)
X(58346) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3081)}}, {{A, B, C, X(25), X(52646)}}, {{A, B, C, X(30), X(17986)}}, {{A, B, C, X(107), X(42733)}}, {{A, B, C, X(1495), X(1553)}}, {{A, B, C, X(1637), X(2394)}}, {{A, B, C, X(1640), X(5664)}}, {{A, B, C, X(2682), X(3233)}}, {{A, B, C, X(3163), X(35906)}}, {{A, B, C, X(3531), X(9408)}}, {{A, B, C, X(9409), X(14380)}}, {{A, B, C, X(15475), X(18808)}}, {{A, B, C, X(16163), X(36875)}}, {{A, B, C, X(36435), X(52464)}}
X(58346) = barycentric product X(i)*X(j) for these (i, j): {25, 52624}, {107, 39008}, {115, 3233}, {459, 58352}, {850, 9408}, {1099, 661}, {1354, 3700}, {1495, 41079}, {1577, 42074}, {1636, 52661}, {1637, 30}, {1784, 2631}, {1990, 9033}, {2052, 58345}, {2173, 36035}, {2394, 3081}, {2420, 58261}, {3163, 523}, {3258, 41392}, {5466, 58347}, {6062, 7178}, {14223, 58348}, {14254, 52743}, {14398, 3260}, {14401, 4}, {14583, 5664}, {15454, 55265}, {16163, 2501}, {16240, 525}, {23097, 2433}, {23870, 41995}, {23871, 41996}, {34334, 647}, {36789, 512}, {38956, 6587}, {43665, 58343}, {46106, 9409}, {53789, 55276}, {58263, 6}, {58344, 76}, {58349, 671}, {58351, 98}
X(58346) = barycentric quotient X(i)/X(j) for these (i, j): {25, 34568}, {107, 57570}, {512, 40384}, {523, 31621}, {669, 40353}, {1099, 799}, {1354, 4573}, {1495, 44769}, {1637, 1494}, {1990, 16077}, {3081, 2407}, {3163, 99}, {3233, 4590}, {6062, 645}, {9406, 36034}, {9407, 32640}, {9408, 110}, {9409, 14919}, {14398, 74}, {14401, 69}, {14581, 1304}, {14583, 39290}, {15454, 55264}, {16163, 4563}, {16240, 648}, {34334, 6331}, {36035, 33805}, {36435, 3233}, {36789, 670}, {38956, 44326}, {39008, 3265}, {41995, 23895}, {41996, 23896}, {42074, 662}, {52624, 305}, {58263, 76}, {58343, 2421}, {58344, 6}, {58345, 394}, {58347, 5468}, {58348, 14999}, {58349, 524}, {58351, 325}, {58352, 37669}
X(58346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 523, 42733}, {25, 53330, 39201}, {523, 42733, 5489}, {14401, 58352, 58345}, {46988, 52464, 52219}


X(58347) = X(6)X(376)∩X(30)X(2420)

Barycentrics    (2*a^2-b^2-c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58347) lies on these lines: {6, 376}, {30, 2420}, {187, 1648}, {524, 4235}, {1501, 32761}, {3081, 14401}, {3163, 9408}, {3284, 12113}, {5477, 14444}, {5655, 32661}, {6794, 11001}, {7737, 36194}, {9412, 12383}, {15544, 21969}, {23334, 52283}

X(58347) = perspector of circumconic {{A, B, C, X(3163), X(3233)}}
X(58347) = X(i)-isoconjugate-of-X(j) for these {i, j}: {897, 40384}, {923, 31621}, {2349, 9139}, {40353, 46277}
X(58347) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 671}, {1650, 14977}, {2482, 31621}, {6593, 40384}
X(58347) = X(i)-Ceva conjugate of X(j) for these {i, j}: {524, 5642}
X(58347)= pole of line {35910, 40384} with respect to the Stammler hyperbola
X(58347)= pole of line {31621, 32836} with respect to the Wallace hyperbola
X(58347) = perspector of cevian triangle of X(524) and inverse-of-ABC in bicevian conic of X(30) and X(524)
X(58347) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3081), X(4235)}}, {{A, B, C, X(3163), X(35906)}}, {{A, B, C, X(5642), X(14401)}}
X(58347) = barycentric product X(i)*X(j) for these (i, j): {30, 5642}, {187, 36789}, {1099, 896}, {1354, 3712}, {3081, 36890}, {3163, 524}, {3233, 690}, {3266, 9408}, {3292, 34334}, {5467, 58263}, {5468, 58346}, {6062, 7181}, {14210, 42074}, {14401, 4235}, {16163, 468}, {16240, 6390}, {23097, 9717}, {52094, 58348}, {52145, 58343}, {58349, 99}
X(58347) = barycentric quotient X(i)/X(j) for these (i, j): {187, 40384}, {524, 31621}, {1099, 46277}, {1495, 9139}, {2682, 12079}, {3081, 9214}, {3163, 671}, {3233, 892}, {5642, 1494}, {9408, 111}, {14401, 14977}, {14567, 40353}, {16163, 30786}, {16240, 17983}, {34334, 46111}, {36789, 18023}, {41995, 36307}, {41996, 36310}, {42074, 897}, {58263, 52632}, {58343, 5968}, {58344, 9178}, {58346, 5466}, {58348, 16092}, {58349, 523}
X(58347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58343, 58348, 3081}


X(58348) = X(30)X(113)∩X(542)X(7473)

Barycentrics    (-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(2*a^6-2*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+c^4)) : :

X(58348) lies on these lines: {30, 113}, {542, 7473}, {1640, 46048}, {3081, 14401}, {5191, 23967}, {6148, 19571}, {9408, 36435}, {11645, 15595}, {15448, 46988}

X(58348) = reflection of X(i) in X(j) for these {i,j}: {51428, 23967}, {58351, 58349}
X(58348) = perspector of circumconic {{A, B, C, X(2407), X(3163)}}
X(58348) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 5641}, {23967, 31621}
X(58348) = perspector of cevian triangle of X(542) and inverse-of-ABC in bicevian conic of X(30) and X(542)
X(58348) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(17986)}}, {{A, B, C, X(542), X(16163)}}, {{A, B, C, X(1511), X(5191)}}, {{A, B, C, X(3081), X(3233)}}, {{A, B, C, X(3163), X(51389)}}, {{A, B, C, X(3258), X(14583)}}, {{A, B, C, X(5642), X(16240)}}, {{A, B, C, X(11064), X(14401)}}
X(58348) = barycentric product X(i)*X(j) for these (i, j): {1099, 2247}, {1640, 3233}, {3081, 51227}, {3163, 542}, {14401, 7473}, {14999, 58346}, {16092, 58347}, {16163, 6103}, {23097, 48451}, {34761, 58351}, {35906, 57431}, {36789, 5191}, {46786, 58343}, {50941, 58349}
X(58348) = barycentric quotient X(i)/X(j) for these (i, j): {542, 31621}, {3081, 51228}, {3163, 5641}, {3233, 6035}, {5191, 40384}, {9408, 842}, {58343, 46787}, {58344, 14998}, {58345, 35911}, {58346, 14223}, {58347, 52094}, {58349, 50942}, {58351, 34765}
X(58348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1495, 51431, 2682}, {3081, 58347, 58343}


X(58349) = X(468)X(690)∩X(1495)X(1637)

Barycentrics    (b-c)*(b+c)*(-2*a^2+b^2+c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58349) lies on these lines: {351, 33919}, {468, 690}, {512, 9209}, {523, 15448}, {1495, 1637}, {1499, 22264}, {1503, 42736}, {1513, 9189}, {3081, 14401}, {7426, 14697}, {9033, 35266}, {11645, 44564}, {19596, 53318}, {32225, 39474}, {32267, 55142}, {33915, 51429}

X(58349) = midpoint of X(i) and X(j) for these {i,j}: {1495, 1637}, {58348, 58351}, {7426, 14697}
X(58349) = perspector of circumconic {{A, B, C, X(3163), X(35906)}}
X(58349) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31621, 36142}, {36085, 40384}
X(58349) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 892}, {1650, 30786}, {23992, 31621}, {38988, 40384}
X(58349)= pole of line {9214, 52710} with respect to the polar circle
X(58349) = perspector of cevian triangle of X(690) and inverse-of-ABC in bicevian conic of X(30) and X(690)
X(58349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(468), X(3081)}}, {{A, B, C, X(2682), X(3233)}}, {{A, B, C, X(5642), X(16240)}}
X(58349) = barycentric product X(i)*X(j) for these (i, j): {187, 58263}, {351, 36789}, {523, 58347}, {524, 58346}, {1099, 2642}, {1637, 5642}, {1648, 3233}, {2407, 2682}, {3163, 690}, {3266, 58344}, {5967, 58351}, {14273, 16163}, {14401, 468}, {14417, 16240}, {35522, 9408}, {37778, 58345}, {41995, 9204}, {41996, 9205}, {44102, 52624}, {50942, 58348}
X(58349) = barycentric quotient X(i)/X(j) for these (i, j): {351, 40384}, {690, 31621}, {2682, 2394}, {3163, 892}, {3233, 52940}, {9408, 691}, {14398, 9139}, {14401, 30786}, {36789, 53080}, {42074, 36085}, {44102, 34568}, {58263, 18023}, {58344, 111}, {58346, 671}, {58347, 99}, {58348, 50941}


X(58350) = X(1495)X(1990)∩X(1552)X(2777)

Barycentrics    (-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(2*a^10-2*a^8*(b^2+c^2)+7*a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(-5*b^4+12*b^2*c^2-5*c^4)-a^2*(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)) : :

X(58350) lies on these lines: {468, 13202}, {1495, 1990}, {1503, 14847}, {1552, 2777}, {3079, 57655}, {3081, 14401}, {3258, 47351}, {14583, 44082}, {15448, 52464}

X(58350) = reflection of X(i) in X(j) for these {i,j}: {57424, 14847}
X(58350)= pole of line {34767, 53159} with respect to the polar circle
X(58350) = perspector of cevian triangle of X(2777) and inverse-of-ABC in bicevian conic of X(30) and X(2777)
X(58350) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1990), X(14401)}}, {{A, B, C, X(2777), X(16240)}}, {{A, B, C, X(3081), X(31510)}}
X(58350) = barycentric product X(i)*X(j) for these (i, j): {2777, 3163}, {12113, 1990}, {14401, 31510}
X(58350) = barycentric quotient X(i)/X(j) for these (i, j): {2777, 31621}, {9408, 2693}
X(58350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 14847, 57424}


X(58351) = X(30)X(1637)∩X(297)X(2799)

Barycentrics    (b-c)*(b+c)*(b^4+c^4-a^2*(b^2+c^2))*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :
X(58351) = -X[3268]+3*X[44579]

X(58351) lies on these lines: {30, 1637}, {297, 2799}, {3081, 14401}, {3268, 44579}, {9033, 18487}, {9209, 37904}, {9979, 40885}, {14417, 44216}, {40884, 44564}, {52945, 55141}

X(58351) = midpoint of X(i) and X(j) for these {i,j}: {9979, 40885}
X(58351) = reflection of X(i) in X(j) for these {i,j}: {14417, 44216}, {40884, 44564}, {58348, 58349}
X(58351) = perspector of circumconic {{A, B, C, X(3163), X(9214)}}
X(58351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {293, 34568}, {36036, 40353}, {36084, 40384}
X(58351) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 2966}, {132, 34568}, {1650, 287}, {2679, 40353}, {9033, 53173}, {35088, 31621}, {38987, 40384}
X(58351)= pole of line {34568, 35906} with respect to the polar circle
X(58351) = perspector of cevian triangle of X(2799) and inverse-of-ABC in bicevian conic of X(30) and X(2799)
X(58351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(297), X(3081)}}, {{A, B, C, X(3163), X(51389)}}, {{A, B, C, X(3233), X(14401)}}, {{A, B, C, X(39008), X(52624)}}
X(58351) = barycentric product X(i)*X(j) for these (i, j): {232, 52624}, {325, 58346}, {511, 58263}, {1637, 51389}, {2799, 3163}, {3233, 868}, {3569, 36789}, {14401, 297}, {16163, 16230}, {16240, 6333}, {23097, 32112}, {34334, 684}, {34765, 58348}, {58343, 850}
X(58351) = barycentric quotient X(i)/X(j) for these (i, j): {232, 34568}, {1099, 36036}, {2491, 40353}, {2799, 31621}, {3163, 2966}, {3233, 57991}, {3569, 40384}, {9408, 2715}, {14401, 287}, {16163, 17932}, {16240, 685}, {34334, 22456}, {36789, 43187}, {39008, 53173}, {42074, 36084}, {52624, 57799}, {58263, 290}, {58343, 110}, {58344, 1976}, {58345, 17974}, {58346, 98}, {58348, 34761}, {58349, 5967}


X(58352) = X(20)X(8057)∩X(525)X(11001)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2)) : :

X(58352) lies on these lines: {20, 8057}, {154, 58342}, {512, 34750}, {525, 11001}, {3079, 44705}, {3081, 14401}, {9409, 14391}, {46472, 57290}

X(58352) = reflection of X(i) in X(j) for these {i,j}: {14391, 9409}, {58346, 58345}
X(58352) = perspector of circumconic {{A, B, C, X(3163), X(14345)}}
X(58352) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2184, 34568}
X(58352) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 53639}, {1650, 253}, {39020, 31621}, {52874, 16077}
X(58352) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8057, 14345}
X(58352) = perspector of cevian triangle of X(8057) and inverse-of-ABC in bicevian conic of X(30) and X(8057)
X(58352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(3081)}}, {{A, B, C, X(14345), X(14401)}}
X(58352) = barycentric product X(i)*X(j) for these (i, j): {154, 52624}, {1562, 3233}, {3163, 8057}, {14345, 30}, {14401, 20}, {15466, 58345}, {15905, 58263}, {16163, 6587}, {16240, 20580}, {36789, 42658}, {37669, 58346}, {38956, 57201}, {39008, 52913}
X(58352) = barycentric quotient X(i)/X(j) for these (i, j): {154, 34568}, {3163, 53639}, {8057, 31621}, {9408, 1301}, {14345, 1494}, {14401, 253}, {16163, 44326}, {42658, 40384}, {52624, 41530}, {52913, 57570}, {58263, 52581}, {58344, 41489}, {58345, 1073}, {58346, 459}


X(58353) = X(3)X(2525)∩X(23)X(385)

Barycentrics    a^2*(a^2+b^2)*(b-c)*(b+c)*(a^2+c^2)*(-a^2+b^2+c^2)^2 : :

X(58353) lies on these lines: {3, 2525}, {23, 385}, {251, 16040}, {520, 58310}, {525, 54060}, {647, 8673}, {684, 23286}, {827, 1304}, {850, 53265}, {878, 1799}, {1176, 14380}, {1624, 4630}, {1634, 23357}, {2697, 9076}, {3005, 56917}, {3265, 39201}, {5489, 51252}, {9420, 52618}, {23181, 43754}, {46967, 58113}

X(58353) = isogonal conjugate of X(46151)
X(58353) = trilinear pole of line {3269, 47413}
X(58353) = perspector of circumconic {{A, B, C, X(83), X(1176)}}
X(58353) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46151}, {19, 41676}, {29, 46152}, {38, 107}, {39, 823}, {92, 35325}, {112, 20883}, {141, 24019}, {158, 1634}, {162, 427}, {648, 17442}, {662, 27376}, {811, 1843}, {826, 24000}, {1096, 4576}, {1235, 32676}, {1783, 17171}, {1896, 46153}, {1930, 32713}, {1964, 6528}, {2207, 55239}, {2586, 46167}, {2587, 46166}, {2617, 19174}, {3005, 23999}, {3051, 57973}, {3917, 36126}, {3954, 52919}, {4020, 15352}, {4553, 8747}, {4568, 5317}, {5379, 21108}, {8061, 23582}, {8750, 16747}, {15523, 52920}, {24024, 46164}, {27369, 57968}, {34856, 52922}, {35309, 36419}
X(58353) = X(i)-vertex conjugate of X(j) for these {i, j}: {2, 21458}, {23590, 44181}
X(58353) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46151}, {6, 41676}, {125, 427}, {127, 41375}, {525, 23285}, {1084, 27376}, {1147, 1634}, {6503, 4576}, {15450, 27371}, {15526, 1235}, {17423, 1843}, {17434, 2525}, {22391, 35325}, {26932, 16747}, {34591, 20883}, {35071, 141}, {38985, 38}, {38999, 51360}, {39006, 17171}, {41884, 6528}, {46093, 3917}, {55066, 17442}
X(58353) = X(i)-Ceva conjugate of X(j) for these {i, j}: {827, 1176}, {53657, 6}
X(58353) = X(i)-cross conjugate of X(j) for these {i, j}: {15526, 3}, {55047, 52041}
X(58353)= pole of line {2, 66} with respect to the circumcircle
X(58353)= pole of line {427, 41375} with respect to the polar circle
X(58353)= pole of line {3830, 34775} with respect to the Stammler circle
X(58353)= pole of line {20965, 21637} with respect to the Brocard inellipse
X(58353)= pole of line {512, 58359} with respect to the Kiepert parabola
X(58353)= pole of line {184, 4173} with respect to the MacBeath circumconic
X(58353)= pole of line {1634, 41676} with respect to the Stammler hyperbola
X(58353)= pole of line {6, 10548} with respect to the Steiner circumellipse
X(58353)= pole of line {4576, 46151} with respect to the Wallace hyperbola
X(58353) = perspector of cevian triangle of X(4580) and inverse-of-ABC in bicevian conic of X(69) and X(4580)
X(58353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(44894)}}, {{A, B, C, X(3), X(23)}}, {{A, B, C, X(6), X(46243)}}, {{A, B, C, X(69), X(46603)}}, {{A, B, C, X(110), X(53345)}}, {{A, B, C, X(228), X(20875)}}, {{A, B, C, X(251), X(21458)}}, {{A, B, C, X(385), X(394)}}, {{A, B, C, X(520), X(523)}}, {{A, B, C, X(525), X(8673)}}, {{A, B, C, X(577), X(5201)}}, {{A, B, C, X(659), X(822)}}, {{A, B, C, X(669), X(878)}}, {{A, B, C, X(684), X(17434)}}, {{A, B, C, X(850), X(2435)}}, {{A, B, C, X(879), X(2623)}}, {{A, B, C, X(1634), X(2525)}}, {{A, B, C, X(1799), X(51862)}}, {{A, B, C, X(3269), X(14420)}}, {{A, B, C, X(3682), X(20045)}}, {{A, B, C, X(4055), X(20475)}}, {{A, B, C, X(4057), X(23224)}}, {{A, B, C, X(4091), X(17494)}}, {{A, B, C, X(4131), X(47694)}}, {{A, B, C, X(6394), X(9149)}}, {{A, B, C, X(6753), X(47194)}}, {{A, B, C, X(11064), X(11595)}}, {{A, B, C, X(15329), X(37987)}}, {{A, B, C, X(15394), X(22263)}}, {{A, B, C, X(15407), X(23964)}}, {{A, B, C, X(21225), X(23093)}}, {{A, B, C, X(23067), X(47695)}}, {{A, B, C, X(24018), X(47660)}}, {{A, B, C, X(28724), X(52898)}}, {{A, B, C, X(31296), X(53173)}}, {{A, B, C, X(46088), X(53263)}}, {{A, B, C, X(50353), X(51640)}}
X(58353) = barycentric product X(i)*X(j) for these (i, j): {3, 4580}, {251, 3265}, {308, 39201}, {326, 55240}, {520, 83}, {1176, 525}, {1799, 647}, {2632, 4599}, {2972, 42396}, {3112, 822}, {3269, 4577}, {10547, 3267}, {10566, 3682}, {14638, 51508}, {15526, 827}, {16277, 58359}, {17216, 4628}, {17434, 39287}, {17879, 34072}, {18070, 255}, {18082, 4091}, {18097, 57241}, {18098, 4131}, {18105, 3926}, {18108, 3998}, {23224, 56186}, {24018, 82}, {28724, 523}, {32085, 52613}, {32320, 46104}, {34055, 656}, {36793, 4630}, {39179, 52387}, {39182, 5562}, {40016, 58310}, {40404, 8673}, {41488, 42293}, {46288, 52617}, {46765, 57069}, {47413, 53657}, {51862, 53173}, {52376, 57109}, {52618, 577}
X(58353) = barycentric quotient X(i)/X(j) for these (i, j): {3, 41676}, {6, 46151}, {82, 823}, {83, 6528}, {184, 35325}, {251, 107}, {326, 55239}, {394, 4576}, {418, 35319}, {512, 27376}, {520, 141}, {525, 1235}, {577, 1634}, {647, 427}, {656, 20883}, {810, 17442}, {822, 38}, {827, 23582}, {905, 16747}, {1176, 648}, {1409, 46152}, {1459, 17171}, {1636, 51360}, {1799, 6331}, {2485, 41375}, {2623, 19174}, {2972, 2525}, {3049, 1843}, {3112, 57973}, {3265, 8024}, {3269, 826}, {3682, 4568}, {3990, 4553}, {4055, 46148}, {4091, 16887}, {4131, 16703}, {4580, 264}, {4599, 23999}, {4630, 23964}, {10547, 112}, {15451, 27371}, {15526, 23285}, {18070, 57806}, {18097, 52938}, {18105, 393}, {22105, 37778}, {23224, 16696}, {24018, 1930}, {28724, 99}, {32085, 15352}, {32320, 3917}, {34055, 811}, {34072, 24000}, {39182, 8795}, {39201, 39}, {39287, 42405}, {46088, 16030}, {46288, 32713}, {46289, 24019}, {46765, 1289}, {47413, 23881}, {50433, 46155}, {51508, 57219}, {52613, 3933}, {52617, 52568}, {52618, 18027}, {55230, 21016}, {55240, 158}, {58310, 3051}


X(58354) = X(2)X(53500)∩X(394)X(577)

Barycentrics    a^2*(-a^2+b^2+c^2)^2*(a^4-b^2*c^2) : :

X(58354) lies on these lines: {2, 53500}, {110, 56437}, {184, 3504}, {193, 1501}, {325, 1971}, {385, 732}, {394, 577}, {511, 39803}, {520, 58310}, {538, 58312}, {1915, 7774}, {1970, 1975}, {3289, 4558}, {3796, 8681}, {3926, 14585}, {6390, 32661}, {6393, 14600}, {6461, 35602}, {7758, 52436}, {7813, 19627}, {8779, 36212}, {36213, 44089}, {40888, 57275}, {46888, 51343}

X(58354) = perspector of circumconic {{A, B, C, X(17941), X(28724)}}
X(58354) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 17980}, {158, 694}, {393, 1581}, {823, 882}, {881, 57973}, {1096, 1916}, {1927, 18027}, {1934, 2207}, {1967, 2052}, {6520, 36214}, {6521, 17970}, {9468, 57806}, {27376, 43763}
X(58354) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 694}, {6338, 18896}, {6503, 1916}, {8290, 2052}, {8623, 6530}, {19576, 393}, {22391, 17980}, {36213, 27376}, {37867, 36214}, {39031, 1096}, {39043, 158}, {39044, 57806}
X(58354) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17974, 394}
X(58354)= pole of line {22138, 50666} with respect to the Jerabek hyperbola
X(58354)= pole of line {10316, 52584} with respect to the MacBeath circumconic
X(58354)= pole of line {393, 694} with respect to the Stammler hyperbola
X(58354)= pole of line {1916, 2052} with respect to the Wallace hyperbola
X(58354) = perspector of cevian triangle of X(12215) and inverse-of-ABC in bicevian conic of X(69) and X(12215)
X(58354) = intersection, other than A, B, C, of circumconics {{A, B, C, X(385), X(394)}}, {{A, B, C, X(520), X(732)}}, {{A, B, C, X(577), X(1691)}}, {{A, B, C, X(3926), X(9865)}}, {{A, B, C, X(3964), X(12215)}}, {{A, B, C, X(4027), X(17974)}}, {{A, B, C, X(5976), X(6394)}}, {{A, B, C, X(56915), X(58310)}}
X(58354) = barycentric product X(i)*X(j) for these (i, j): {385, 394}, {1092, 17984}, {1102, 56828}, {1580, 326}, {1691, 3926}, {1926, 52430}, {1966, 255}, {3265, 56980}, {3964, 419}, {3978, 577}, {4176, 44089}, {12215, 3}, {14585, 14603}, {17941, 520}, {17974, 5976}, {24018, 56982}, {24284, 4558}, {28724, 732}, {36213, 6394}, {39201, 880}, {40820, 51386}
X(58354) = barycentric quotient X(i)/X(j) for these (i, j): {184, 17980}, {255, 1581}, {326, 1934}, {385, 2052}, {394, 1916}, {419, 1093}, {577, 694}, {1092, 36214}, {1580, 158}, {1691, 393}, {1933, 1096}, {1966, 57806}, {3265, 56981}, {3926, 18896}, {3964, 40708}, {3978, 18027}, {5026, 37778}, {8623, 27376}, {12215, 264}, {14585, 9468}, {14602, 2207}, {17941, 6528}, {17974, 36897}, {18902, 36417}, {23606, 17970}, {24284, 14618}, {28724, 14970}, {36213, 6530}, {39201, 882}, {44089, 6524}, {46888, 36426}, {51430, 52661}, {52430, 1967}, {56828, 6520}, {56980, 107}, {56982, 823}, {58310, 881}


X(58355) = X(3)X(3203)∩X(184)X(418)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(-(b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)-a^2*(b^6+c^6)) : :

X(58355) lies on these lines: {3, 3203}, {184, 418}, {520, 58310}, {524, 19126}, {3202, 23115}, {3284, 9418}, {10316, 40643}, {14917, 14961}

X(58355) = perspector of circumconic {{A, B, C, X(28724), X(32661)}}
X(58355) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 55033}
X(58355) = X(i)-Dao conjugate of X(j) for these {i, j}: {237, 6530}, {1147, 55033}
X(58355) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6394, 577}
X(58355)= pole of line {264, 46151} with respect to the Stammler hyperbola
X(58355) = perspector of cevian triangle of X(14965) and inverse-of-ABC in bicevian conic of X(69) and X(14965)
X(58355) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(418), X(14957)}}, {{A, B, C, X(520), X(20775)}}, {{A, B, C, X(577), X(14965)}}
X(58355) = barycentric product X(i)*X(j) for these (i, j): {14957, 577}, {14965, 3}, {16564, 255}, {40601, 6394}
X(58355) = barycentric quotient X(i)/X(j) for these (i, j): {577, 55033}, {14957, 18027}, {14965, 264}, {16564, 57806}, {40601, 6530}


X(58356) = X(3)X(6)∩X(250)X(858)

Barycentrics    a^2*(-a^2+b^2+c^2)^2*(a^8-b^2*c^2*(b^2-c^2)^2-a^4*(b^4-b^2*c^2+c^4)) : :

X(58356) lies on these lines: {3, 6}, {250, 858}, {340, 7495}, {441, 1576}, {520, 58310}, {852, 9407}, {6389, 14575}, {6394, 43754}, {12225, 41375}, {13160, 51031}, {18374, 44894}, {20968, 28696}, {22151, 47413}, {23583, 44096}, {23606, 43653}, {41168, 46442}, {44888, 51458}, {54080, 56565}

X(58356) = inverse of X(10316) in MacBeath circumconic
X(58356) = perspector of circumconic {{A, B, C, X(110), X(28724)}}
X(58356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 46239}
X(58356) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 46239}, {39086, 4}
X(58356) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15013, 46243}
X(58356)= pole of line {14618, 55273} with respect to the polar circle
X(58356)= pole of line {520, 10316} with respect to the MacBeath circumconic
X(58356)= pole of line {2, 46151} with respect to the Stammler hyperbola
X(58356) = perspector of cevian triangle of X(15013) and inverse-of-ABC in bicevian conic of X(69) and X(15013)
X(58356) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(15013)}}, {{A, B, C, X(6), X(46243)}}, {{A, B, C, X(39), X(520)}}, {{A, B, C, X(250), X(10316)}}, {{A, B, C, X(3003), X(47205)}}, {{A, B, C, X(6394), X(14961)}}, {{A, B, C, X(41331), X(58310)}}
X(58356) = barycentric product X(i)*X(j) for these (i, j): {4558, 47205}, {10316, 16097}, {15013, 3}, {46243, 69}
X(58356) = barycentric quotient X(i)/X(j) for these (i, j): {3, 46239}, {15013, 264}, {46243, 4}, {47205, 14618}


X(58357) = X(3)X(49)∩X(110)X(858)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(a^4-b^4+b^2*c^2-c^4) : :

X(58357) lies on these lines: {3, 49}, {22, 34117}, {23, 6593}, {25, 44469}, {50, 3289}, {69, 11003}, {110, 858}, {154, 26283}, {156, 14791}, {182, 26869}, {323, 37978}, {343, 5012}, {450, 36789}, {468, 15462}, {511, 19504}, {520, 58310}, {524, 32245}, {548, 47360}, {566, 9604}, {1495, 37972}, {1531, 38789}, {1568, 7574}, {1594, 43598}, {1993, 37473}, {2071, 15138}, {2072, 15133}, {2781, 37929}, {2883, 12225}, {3410, 23330}, {3564, 13198}, {3581, 22109}, {5094, 9306}, {6800, 20806}, {7387, 34116}, {8681, 32251}, {9544, 16063}, {9909, 44078}, {10274, 15644}, {10295, 43574}, {11206, 37444}, {11245, 43810}, {11402, 44480}, {11440, 40928}, {11597, 16163}, {12215, 36793}, {12233, 34148}, {12241, 13160}, {13346, 37196}, {13353, 43573}, {13366, 32284}, {14826, 37119}, {14965, 46243}, {15080, 41716}, {15122, 15132}, {15134, 43817}, {15135, 34986}, {17974, 44888}, {18569, 31383}, {19128, 32269}, {25711, 45171}, {26883, 34725}, {30552, 46374}, {33586, 44077}, {34002, 40441}, {35259, 44080}, {37498, 52432}, {37777, 41670}, {37928, 45016}, {44704, 52917}, {44791, 47308}

X(58357) = perspector of circumconic {{A, B, C, X(4558), X(28724)}}
X(58357) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 46105}, {67, 158}, {92, 8791}, {935, 24006}, {1096, 18019}, {2052, 2157}, {3455, 57806}, {6520, 34897}, {27376, 37221}, {36128, 57496}
X(58357) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 46105}, {187, 37778}, {1147, 67}, {5181, 39269}, {6503, 18019}, {22391, 8791}, {37867, 34897}, {39169, 17983}, {40583, 2052}, {55048, 14618}
X(58357) = X(i)-Ceva conjugate of X(j) for these {i, j}: {22151, 10317}
X(58357)= pole of line {7473, 23181} with respect to the Kiepert parabola
X(58357)= pole of line {647, 10316} with respect to the MacBeath circumconic
X(58357)= pole of line {4, 67} with respect to the Stammler hyperbola
X(58357)= pole of line {264, 5169} with respect to the Wallace hyperbola
X(58357) = perspector of cevian triangle of X(22151) and inverse-of-ABC in bicevian conic of X(69) and X(22151)
X(58357) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(23)}}, {{A, B, C, X(50), X(16186)}}, {{A, B, C, X(67), X(40949)}}, {{A, B, C, X(184), X(18374)}}, {{A, B, C, X(316), X(5562)}}, {{A, B, C, X(394), X(22151)}}, {{A, B, C, X(520), X(3917)}}, {{A, B, C, X(577), X(10510)}}, {{A, B, C, X(1176), X(27085)}}, {{A, B, C, X(1181), X(8744)}}, {{A, B, C, X(2492), X(47195)}}, {{A, B, C, X(3292), X(6593)}}, {{A, B, C, X(5504), X(15136)}}, {{A, B, C, X(9517), X(12824)}}, {{A, B, C, X(16165), X(51394)}}, {{A, B, C, X(17974), X(22115)}}, {{A, B, C, X(23039), X(54032)}}, {{A, B, C, X(34783), X(52449)}}, {{A, B, C, X(36212), X(37804)}}, {{A, B, C, X(37765), X(46832)}}, {{A, B, C, X(42659), X(52144)}}
X(58357) = barycentric product X(i)*X(j) for these (i, j): {23, 394}, {184, 37804}, {316, 577}, {520, 52630}, {1092, 37765}, {3292, 57481}, {3964, 8744}, {4558, 9517}, {10317, 69}, {14585, 40074}, {14919, 16165}, {16568, 255}, {17088, 6056}, {18374, 3926}, {20806, 54060}, {20944, 52430}, {22151, 3}, {28724, 9019}, {39201, 55226}, {42659, 4563}, {52613, 52916}
X(58357) = barycentric quotient X(i)/X(j) for these (i, j): {3, 46105}, {23, 2052}, {184, 8791}, {316, 18027}, {394, 18019}, {577, 67}, {1092, 34897}, {3292, 57496}, {6593, 37778}, {8744, 1093}, {9517, 14618}, {10316, 11605}, {10317, 4}, {14585, 3455}, {14961, 39269}, {16165, 46106}, {16568, 57806}, {18374, 393}, {22151, 264}, {32661, 935}, {37804, 18022}, {42659, 2501}, {52430, 2157}, {52630, 6528}, {52916, 15352}, {52951, 52661}, {54060, 43678}, {57481, 46111}
X(58357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 22115, 15136}, {110, 858, 15139}, {184, 3292, 41615}, {15122, 40111, 15132}, {22115, 41615, 3292}


X(58358) = X(6)X(25)∩X(49)X(23172)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(a^8-b^8-a^4*b^2*c^2+b^6*c^2+b^2*c^6-c^8) : :

X(58358) lies on these lines: {6, 25}, {49, 23172}, {160, 22075}, {520, 58310}, {1154, 38624}, {1899, 30794}, {3564, 17974}, {33582, 40146}, {34137, 38652}, {41375, 56297}

X(58358) = perspector of circumconic {{A, B, C, X(112), X(28724)}}
X(58358) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 34129}
X(58358) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 34129}
X(58358)= pole of line {8673, 10316} with respect to the MacBeath circumconic
X(58358)= pole of line {69, 41766} with respect to the Stammler hyperbola
X(58358) = perspector of cevian triangle of X(34137) and inverse-of-ABC in bicevian conic of X(69) and X(34137)
X(58358) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(34137)}}, {{A, B, C, X(159), X(3964)}}, {{A, B, C, X(232), X(38652)}}, {{A, B, C, X(520), X(1843)}}, {{A, B, C, X(9969), X(34237)}}
X(58358) = barycentric product X(i)*X(j) for these (i, j): {3, 34137}, {10316, 34237}, {17974, 38652}
X(58358) = barycentric quotient X(i)/X(j) for these (i, j): {184, 34129}, {34137, 264}


X(58359) = X(3)X(30213)∩X(441)X(525)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+c^2)^2*(a^4-b^4-c^4) : :

X(58359) lies on these lines: {3, 30213}, {22, 57126}, {110, 46967}, {441, 525}, {520, 58310}, {669, 684}, {2485, 16757}, {2799, 6753}, {3005, 22089}, {3267, 31296}, {4558, 23357}, {7630, 30476}, {7631, 12075}, {8651, 57075}, {52350, 53173}

X(58359) = perspector of circumconic {{A, B, C, X(69), X(315)}}
X(58359) = center of circumconic {{A, B, C, X(52617), X(57069)}}
X(58359) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1289}, {66, 24019}, {107, 2156}, {162, 13854}, {823, 2353}, {1096, 44766}, {15388, 24006}, {32676, 43678}, {40146, 57973}
X(58359) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 1289}, {32, 32713}, {125, 13854}, {127, 393}, {2485, 14618}, {3265, 850}, {6503, 44766}, {8673, 2485}, {15526, 43678}, {35071, 66}, {38985, 2156}, {47413, 27376}, {55047, 4}
X(58359) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 3313}, {110, 394}, {4558, 10316}, {4611, 20806}, {52617, 520}, {57069, 8673}
X(58359) = X(i)-complementary conjugate of X(j) for these {i, j}: {34207, 21253}, {39417, 20305}, {56008, 2887}
X(58359) = X(i)-cross conjugate of X(j) for these {i, j}: {55047, 10316}
X(58359)= pole of line {159, 394} with respect to the circumcircle
X(58359)= pole of line {253, 7378} with respect to the DeLongchamps circle
X(58359)= pole of line {6643, 7710} with respect to the orthoptic circle of the Steiner Inellipse
X(58359)= pole of line {393, 13854} with respect to the polar circle
X(58359)= pole of line {3265, 39201} with respect to the Kiepert parabola
X(58359)= pole of line {394, 10316} with respect to the MacBeath circumconic
X(58359)= pole of line {112, 1289} with respect to the Stammler hyperbola
X(58359)= pole of line {20, 3313} with respect to the Steiner circumellipse
X(58359)= pole of line {3, 206} with respect to the Steiner inellipse
X(58359)= pole of line {648, 44766} with respect to the Wallace hyperbola
X(58359) = perspector of cevian triangle of X(57069) and inverse-of-ABC in bicevian conic of X(69) and X(57069)
X(58359) = intersection, other than A, B, C, of circumconics {{A, B, C, X(22), X(394)}}, {{A, B, C, X(127), X(6334)}}, {{A, B, C, X(520), X(2525)}}, {{A, B, C, X(525), X(8673)}}, {{A, B, C, X(647), X(2485)}}, {{A, B, C, X(905), X(16757)}}, {{A, B, C, X(1073), X(40358)}}, {{A, B, C, X(3926), X(10316)}}, {{A, B, C, X(4025), X(21178)}}, {{A, B, C, X(4611), X(41077)}}, {{A, B, C, X(8743), X(15341)}}, {{A, B, C, X(11064), X(20806)}}, {{A, B, C, X(14376), X(39172)}}, {{A, B, C, X(14417), X(47413)}}, {{A, B, C, X(14919), X(52513)}}, {{A, B, C, X(17409), X(51336)}}, {{A, B, C, X(17907), X(44436)}}, {{A, B, C, X(34254), X(36212)}}, {{A, B, C, X(52584), X(53173)}}
X(58359) = barycentric product X(i)*X(j) for these (i, j): {3, 57069}, {22, 3265}, {69, 8673}, {127, 4558}, {206, 52617}, {315, 520}, {1332, 18187}, {1760, 24018}, {2485, 3926}, {3269, 55225}, {4091, 4150}, {4131, 4463}, {4143, 8743}, {10316, 3267}, {15526, 4611}, {16757, 3998}, {17907, 52613}, {20641, 822}, {20806, 525}, {21178, 3682}, {23881, 28724}, {30805, 4456}, {33294, 394}, {34254, 647}, {38356, 4563}, {39201, 40073}, {47413, 99}
X(58359) = barycentric quotient X(i)/X(j) for these (i, j): {3, 1289}, {22, 107}, {127, 14618}, {206, 32713}, {315, 6528}, {394, 44766}, {520, 66}, {525, 43678}, {647, 13854}, {822, 2156}, {1760, 823}, {2172, 24019}, {2485, 393}, {3265, 18018}, {3313, 46151}, {4558, 44183}, {4611, 23582}, {8673, 4}, {8743, 6529}, {10316, 112}, {11610, 20031}, {14396, 1990}, {17907, 15352}, {18187, 17924}, {20641, 57973}, {20806, 648}, {28724, 53657}, {32661, 15388}, {33294, 2052}, {34254, 6331}, {38356, 2501}, {39172, 39417}, {39201, 2353}, {47413, 523}, {52613, 14376}, {52617, 40421}, {52915, 32230}, {55047, 2485}, {55273, 2970}, {57069, 264}, {57202, 8743}, {58305, 27372}, {58310, 40146}, {58353, 16277}
X(58359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {647, 52613, 3265}


X(58360) = X(37)X(669)∩X(192)X(25299)

Barycentrics    a*(b-c)*(b+c)*(-(b*c*(b+c))+a*(b^2+b*c+c^2)) : :

X(58360) lies on these lines: {37, 669}, {192, 25299}, {312, 31003}, {321, 23301}, {512, 20703}, {523, 58289}, {647, 17989}, {756, 50491}, {764, 48112}, {876, 44449}, {984, 50524}, {1491, 47665}, {3005, 3700}, {3175, 31176}, {3773, 21726}, {3777, 49272}, {3835, 21350}, {3995, 44445}, {4132, 58290}, {4139, 58303}, {4155, 58286}, {4359, 25126}, {4490, 47655}, {4705, 4838}, {5311, 56242}, {8034, 14321}, {17458, 20983}, {20295, 21349}, {20711, 21834}, {20909, 21260}, {21441, 33931}, {23768, 47769}, {23886, 25627}, {24533, 28606}, {25686, 33157}, {26148, 41839}, {31279, 31993}, {42661, 48395}

X(58360) = perspector of circumconic {{A, B, C, X(27810), X(30473)}}
X(58360) = X(i)-Dao conjugate of X(j) for these {i, j}: {21260, 3733}
X(58360) = X(i)-Ceva conjugate of X(j) for these {i, j}: {21260, 21055}
X(58360) = perspector of cevian triangle of X(17458) and inverse-of-ABC in bicevian conic of X(75) and X(17458)
X(58360) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(27808)}}, {{A, B, C, X(17458), X(20909)}}, {{A, B, C, X(20983), X(21260)}}
X(58360) = barycentric product X(i)*X(j) for these (i, j): {1, 21055}, {10, 17458}, {1018, 21142}, {4705, 56023}, {20909, 42}, {20983, 321}, {21260, 37}, {22095, 41013}, {30473, 512}, {32925, 661}
X(58360) = barycentric quotient X(i)/X(j) for these (i, j): {17458, 86}, {20909, 310}, {20983, 81}, {21055, 75}, {21142, 7199}, {21260, 274}, {22095, 1444}, {30473, 670}, {32925, 799}, {56023, 4623}


X(58361) = X(2)X(16751)∩X(321)X(850)

Barycentrics    b*(b-c)*c*(b+c)*(-a^2+b*c+a*(b+c)) : :

X(58361) lies on these lines: {2, 16751}, {37, 31296}, {321, 850}, {514, 661}, {522, 25627}, {523, 58289}, {650, 27045}, {656, 4811}, {798, 4380}, {812, 29512}, {1021, 5278}, {1491, 31946}, {2254, 4985}, {2517, 48080}, {2533, 50497}, {3261, 25259}, {4010, 4036}, {4086, 4804}, {4151, 21727}, {4170, 50483}, {4359, 4467}, {4374, 44449}, {4408, 20953}, {4444, 40013}, {4560, 24948}, {4815, 47934}, {4824, 27575}, {4841, 50557}, {4885, 21894}, {7192, 18154}, {7199, 31290}, {7650, 47842}, {8061, 27710}, {17069, 24589}, {17494, 20954}, {17496, 27193}, {18071, 21297}, {18160, 51384}, {20906, 47665}, {20949, 47659}, {20950, 49273}, {20952, 47870}, {21960, 27731}, {23655, 47832}, {23880, 27674}, {24900, 27527}, {26985, 57244}, {27469, 42327}, {27610, 48152}, {29404, 47776}, {29771, 47775}, {29808, 47780}, {30024, 47762}, {31072, 31993}, {35519, 47790}, {48024, 50334}, {48273, 50493}

X(58361) = reflection of X(i) in X(j) for these {i,j}: {58288, 29512}
X(58361) = perspector of circumconic {{A, B, C, X(75), X(4043)}}
X(58361) = center of circumconic {{A, B, C, X(20954), X(52619)}}
X(58361) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43076}, {32, 53649}, {110, 2350}, {163, 13476}, {692, 39950}, {1576, 17758}, {2206, 54118}, {32739, 39734}
X(58361) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 43076}, {115, 13476}, {244, 2350}, {693, 7192}, {1086, 39950}, {1500, 4557}, {2486, 20963}, {3925, 35326}, {4858, 17758}, {6376, 53649}, {17761, 6}, {36901, 40216}, {40603, 54118}, {40619, 39734}
X(58361) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3952, 321}, {18152, 40619}, {20954, 4151}, {52619, 523}
X(58361) = X(i)-complementary conjugate of X(j) for these {i, j}: {6577, 3739}, {34444, 17761}, {39797, 53564}, {40147, 11}, {40504, 116}, {40515, 21252}, {53651, 21240}
X(58361)= pole of line {4972, 27042} with respect to the nine-point circle
X(58361)= pole of line {19, 13476} with respect to the polar circle
X(58361)= pole of line {1086, 16727} with respect to the Kiepert hyperbola
X(58361)= pole of line {8, 3770} with respect to the Steiner circumellipse
X(58361)= pole of line {10, 15281} with respect to the Steiner inellipse
X(58361) = perspector of cevian triangle of X(20954) and inverse-of-ABC in bicevian conic of X(75) and X(20954)
X(58361) = intersection, other than A, B, C, of circumconics {{A, B, C, X(321), X(3912)}}, {{A, B, C, X(514), X(4151)}}, {{A, B, C, X(523), X(47672)}}, {{A, B, C, X(661), X(21727)}}, {{A, B, C, X(693), X(18070)}}, {{A, B, C, X(857), X(14004)}}, {{A, B, C, X(908), X(30588)}}, {{A, B, C, X(1621), X(1959)}}, {{A, B, C, X(2084), X(50487)}}, {{A, B, C, X(2486), X(4728)}}, {{A, B, C, X(3250), X(58294)}}, {{A, B, C, X(3294), X(57015)}}, {{A, B, C, X(3766), X(40619)}}, {{A, B, C, X(3835), X(35353)}}, {{A, B, C, X(3936), X(17277)}}, {{A, B, C, X(3948), X(18152)}}, {{A, B, C, X(4040), X(14349)}}, {{A, B, C, X(4043), X(4358)}}, {{A, B, C, X(4129), X(4444)}}, {{A, B, C, X(4251), X(14963)}}, {{A, B, C, X(4551), X(16751)}}, {{A, B, C, X(7178), X(47918)}}, {{A, B, C, X(14210), X(17143)}}, {{A, B, C, X(24002), X(47675)}}, {{A, B, C, X(40094), X(43685)}}
X(58361) = barycentric product X(i)*X(j) for these (i, j): {10, 20954}, {313, 4040}, {1577, 17277}, {1621, 850}, {2321, 57247}, {2486, 668}, {3261, 3294}, {3701, 57167}, {3952, 40619}, {3996, 4077}, {4043, 514}, {4086, 55082}, {4151, 75}, {4651, 693}, {14004, 14208}, {17143, 523}, {17494, 321}, {17761, 4033}, {18152, 661}, {20948, 4251}, {21007, 27801}, {21727, 310}, {28654, 57148}, {30713, 58324}, {40088, 512}, {40094, 4010}, {40607, 52619}, {52618, 56537}
X(58361) = barycentric quotient X(i)/X(j) for these (i, j): {1, 43076}, {75, 53649}, {321, 54118}, {514, 39950}, {523, 13476}, {661, 2350}, {693, 39734}, {850, 40216}, {1577, 17758}, {1621, 110}, {2486, 513}, {3261, 40004}, {3294, 101}, {3996, 643}, {4040, 58}, {4043, 190}, {4086, 55076}, {4151, 1}, {4251, 163}, {4651, 100}, {14004, 162}, {17143, 99}, {17277, 662}, {17494, 81}, {17761, 1019}, {18152, 799}, {20616, 4559}, {20954, 86}, {21007, 1333}, {21727, 42}, {22160, 1437}, {26846, 57148}, {33765, 4637}, {38346, 57129}, {38347, 7252}, {40088, 670}, {40094, 4589}, {40607, 4557}, {40619, 7192}, {42454, 18191}, {55082, 1414}, {56537, 1634}, {57148, 593}, {57167, 1014}, {57247, 1434}, {58324, 1412}
X(58361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 1577, 693}, {693, 4462, 47675}, {812, 29512, 58288}, {850, 3700, 321}, {4467, 24622, 4359}, {4885, 21894, 26983}, {23794, 30061, 4380}


X(58362) = X(756)X(3700)∩X(1213)X(23954)

Barycentrics    (b-c)*(b+c)^2*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(58362) lies on these lines: {523, 58289}, {756, 3700}, {1213, 23954}, {2490, 17989}, {3842, 17069}, {4524, 40607}, {4843, 58304}, {17056, 23949}, {22042, 57232}

X(58362) = midpoint of X(i) and X(j) for these {i,j}: {3700, 58286}, {58289, 58364}
X(58362) = X(i)-Dao conjugate of X(j) for these {i, j}: {4041, 3737}
X(58362) = perspector of cevian triangle of X(22042) and inverse-of-ABC in bicevian conic of X(75) and X(22042)
X(58362) = barycentric product X(i)*X(j) for these (i, j): {10, 22042}, {313, 57176}, {321, 57232}, {23821, 4103}, {57067, 6358}
X(58362) = barycentric quotient X(i)/X(j) for these (i, j): {22042, 86}, {55064, 3737}, {57067, 2185}, {57176, 58}, {57232, 81}
X(58362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58289, 58364, 523}


X(58363) = X(756)X(4010)∩X(918)X(3837)

Barycentrics    (b-c)*(b+c)^2*(-(b^2*c^2)+a^3*(b+c)-2*a*b*c*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58363) lies on these lines: {523, 58289}, {756, 4010}, {918, 3837}, {1089, 14431}, {3842, 9508}, {4096, 45342}, {4122, 31946}, {4132, 29512}, {21051, 23879}, {25259, 44316}, {40086, 48082}

X(58363) = perspector of circumconic {{A, B, C, X(6538), X(40098)}}
X(58363) = X(i)-Dao conjugate of X(j) for these {i, j}: {21832, 50456}
X(58363) = perspector of cevian triangle of X(22043) and inverse-of-ABC in bicevian conic of X(75) and X(22043)
X(58363) = barycentric product X(i)*X(j) for these (i, j): {10, 22043}, {23822, 4103}
X(58363) = barycentric quotient X(i)/X(j) for these (i, j): {22043, 86}


X(58364) = X(512)X(3700)∩X(756)X(4024)

Barycentrics    (b-c)*(b+c)^2*(a^3+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(58364) lies on circumconic {{A, B, C, X(512), X(16874)}} and these lines: {512, 3700}, {523, 58289}, {756, 4024}, {3766, 48274}, {3842, 21196}, {4075, 4500}, {4096, 45343}, {4151, 29512}, {4155, 58291}, {4976, 17990}, {4977, 18004}, {22044, 57077}, {40607, 57232}

X(58364) = midpoint of X(i) and X(j) for these {i,j}: {4024, 21727}
X(58364) = reflection of X(i) in X(j) for these {i,j}: {58289, 58362}
X(58364) = X(i)-isoconjugate-of-X(j) for these {i, j}: {849, 42363}
X(58364) = X(i)-Dao conjugate of X(j) for these {i, j}: {4075, 42363}, {4705, 513}
X(58364) = X(i)-Ceva conjugate of X(j) for these {i, j}: {668, 594}
X(58364) = perspector of cevian triangle of X(22044) and inverse-of-ABC in bicevian conic of X(75) and X(22044)
X(58364) = barycentric product X(i)*X(j) for these (i, j): {10, 22044}, {321, 57077}, {16874, 28654}, {17166, 594}, {18154, 756}, {23823, 4103}
X(58364) = barycentric quotient X(i)/X(j) for these (i, j): {594, 42363}, {16874, 593}, {17166, 1509}, {18154, 873}, {22044, 86}, {57077, 81}
X(58364) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 58362, 58289}


X(58365) = X(12)X(313)∩X(190)X(20715)

Barycentrics    (b+c)*(-(b^2*c^2)+a^2*(b^2+b*c+c^2)-a*(b^3+c^3)) : :

X(58365) lies on circumconic {{A, B, C, X(349), X(49753)}} and these lines: {12, 313}, {190, 20715}, {523, 58289}, {714, 20703}, {3952, 4053}, {4043, 21804}, {4075, 6541}, {4358, 35552}, {16817, 32922}

X(58365) = perspector of cevian triangle of X(49753) and inverse-of-ABC in bicevian conic of X(75) and X(49753)
X(58365) = barycentric product X(i)*X(j) for these (i, j): {10, 49753}
X(58365) = barycentric quotient X(i)/X(j) for these (i, j): {49753, 86}


X(58366) = X(75)X(29569)∩X(321)X(3943)

Barycentrics    b*c*(b+c)*(-3*a^2+b^2-b*c+c^2+a*(b+c)) : :

X(58366) lies on circumconic {{A, B, C, X(20072), X(30588)}} and these lines: {75, 29569}, {192, 33930}, {320, 21864}, {321, 3943}, {523, 58289}, {594, 27705}, {740, 56222}, {1089, 3178}, {1441, 22016}, {3262, 4358}, {3685, 29073}, {3762, 24109}, {3932, 21031}, {3936, 21801}, {3950, 20234}, {4033, 42713}, {4359, 17021}, {4395, 24589}, {4480, 49780}, {17452, 29964}, {20072, 49779}, {20715, 21295}, {20895, 29982}

X(58366) = X(i)-Dao conjugate of X(j) for these {i, j}: {45674, 2087}
X(58366) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15065, 321}
X(58366)= pole of line {21951, 26580} with respect to the Kiepert hyperbola
X(58366) = perspector of cevian triangle of X(49779) and inverse-of-ABC in bicevian conic of X(75) and X(49779)
X(58366) = barycentric product X(i)*X(j) for these (i, j): {10, 49779}, {4033, 45674}, {20072, 321}
X(58366) = barycentric quotient X(i)/X(j) for these (i, j): {20072, 81}, {23166, 1437}, {45674, 1019}, {49779, 86}
X(58366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3943, 35550, 321}


X(58367) = X(76)X(762)∩X(313)X(321)

Barycentrics    b*c*(b+c)*(-(b^2*c^2)-a*b*c*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58367) lies on these lines: {76, 762}, {313, 321}, {334, 3263}, {350, 20693}, {523, 58289}, {668, 8682}, {756, 3963}, {3701, 22028}, {3930, 3948}, {4033, 4037}, {4103, 6381}, {6376, 21021}, {17759, 21897}, {18133, 24326}, {21101, 56253}, {30473, 33931}, {35543, 44169}, {43534, 43685}

X(58367) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 51333}, {593, 2107}, {849, 54980}, {1333, 2665}, {2206, 39925}, {18268, 40769}, {53624, 57129}
X(58367) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 51333}, {37, 2665}, {350, 33295}, {4075, 54980}, {35068, 40769}, {39056, 58}, {39057, 757}, {40603, 39925}
X(58367) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43534, 321}
X(58367) = perspector of cevian triangle of X(52049) and inverse-of-ABC in bicevian conic of X(75) and X(52049)
X(58367) = intersection, other than A, B, C, of circumconics {{A, B, C, X(313), X(52049)}}, {{A, B, C, X(321), X(17759)}}, {{A, B, C, X(334), X(35544)}}, {{A, B, C, X(594), X(21897)}}, {{A, B, C, X(1211), X(2106)}}, {{A, B, C, X(1230), X(40874)}}
X(58367) = barycentric product X(i)*X(j) for these (i, j): {10, 52049}, {1089, 2669}, {2106, 28654}, {2664, 313}, {17759, 321}, {21788, 27801}, {21897, 76}, {35544, 40796}, {39028, 43534}, {40874, 594}, {41535, 756}
X(58367) = barycentric quotient X(i)/X(j) for these (i, j): {10, 2665}, {37, 51333}, {321, 39925}, {594, 54980}, {740, 40769}, {756, 2107}, {2106, 593}, {2664, 58}, {2669, 757}, {3952, 53624}, {17759, 81}, {20796, 1437}, {21085, 8937}, {21788, 1333}, {21897, 6}, {27808, 53216}, {27854, 50456}, {28654, 43685}, {39028, 33295}, {40796, 741}, {40874, 1509}, {41535, 873}, {52049, 86}, {56837, 849}


X(58368) = X(6)X(292)∩X(9)X(4516)

Barycentrics    a^2*(a-b-c)*(a^2-b^2+3*b*c-c^2-a*(b+c)) : :

X(58368) lies on these lines: {6, 292}, {9, 4516}, {31, 23858}, {44, 21889}, {55, 2316}, {56, 2810}, {101, 20958}, {109, 3030}, {573, 20670}, {765, 24820}, {926, 58369}, {1054, 14122}, {1155, 53394}, {1376, 3888}, {1757, 37510}, {2183, 17798}, {2330, 2347}, {2340, 8540}, {2835, 37567}, {3196, 35327}, {4440, 6163}, {4579, 8301}, {5091, 21362}, {5204, 53298}, {5856, 24837}, {16569, 22161}, {16686, 23344}, {24715, 36280}

X(58368) = perspector of circumconic {{A, B, C, X(813), X(5548)}}
X(58368) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 9282}, {57, 6630}, {651, 42555}, {664, 6164}, {4554, 9262}
X(58368) = X(i)-Dao conjugate of X(j) for these {i, j}: {190, 4572}, {5452, 6630}, {38991, 42555}, {39025, 6164}, {39065, 4554}
X(58368) = X(i)-Ceva conjugate of X(j) for these {i, j}: {663, 55}, {1054, 9259}
X(58368) = perspector of cevian triangle of X(6163) and inverse-of-ABC in bicevian conic of X(100) and X(6163)
X(58368) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(55), X(14122)}}, {{A, B, C, X(292), X(2316)}}, {{A, B, C, X(1054), X(7077)}}, {{A, B, C, X(3252), X(4440)}}
X(58368) = barycentric product X(i)*X(j) for these (i, j): {1, 4919}, {8, 9259}, {21, 21888}, {663, 6631}, {1054, 9}, {3271, 6634}, {4440, 55}, {6163, 650}, {17089, 220}, {18159, 41}, {21093, 284}, {21204, 3939}, {22148, 281}, {27912, 7077}, {41405, 522}, {54270, 9268}
X(58368) = barycentric quotient X(i)/X(j) for these (i, j): {41, 9282}, {55, 6630}, {663, 42555}, {1054, 85}, {3063, 6164}, {4440, 6063}, {4919, 75}, {6163, 4554}, {6631, 4572}, {9259, 7}, {17089, 57792}, {18159, 20567}, {21093, 349}, {21204, 52621}, {21888, 1441}, {22148, 348}, {27912, 18033}, {41405, 664}
X(58368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {765, 25048, 24820}, {2316, 3939, 3271}, {3271, 3939, 55}


X(58369) = X(1)X(2826)∩X(55)X(1960)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^3-a^2*(b+c)-a*(b^2-5*b*c+c^2)+(b+c)*(b^2-3*b*c+c^2)) : :

X(58369) lies on these lines: {1, 2826}, {33, 58313}, {55, 1960}, {56, 2821}, {650, 663}, {654, 2342}, {659, 3057}, {891, 2098}, {900, 12740}, {926, 58368}, {2310, 3248}, {2605, 4926}, {2646, 25569}, {2827, 41554}, {3304, 53539}, {3837, 11376}, {4449, 23745}, {4925, 19861}, {5048, 21343}, {5119, 44805}, {7962, 21385}, {11934, 48327}, {12758, 19916}, {14284, 21173}, {15558, 41191}, {58155, 58334}

X(58369) = perspector of circumconic {{A, B, C, X(9), X(37789)}}
X(58369) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 2743}, {934, 12641}
X(58369) = X(i)-Dao conjugate of X(j) for these {i, j}: {14714, 12641}
X(58369) = X(i)-Ceva conjugate of X(j) for these {i, j}: {900, 654}
X(58369)= pole of line {198, 909} with respect to the circumcircle
X(58369)= pole of line {528, 12743} with respect to the incircle
X(58369)= pole of line {649, 2170} with respect to the Feuerbach hyperbola
X(58369) = perspector of cevian triangle of X(38460) and inverse-of-ABC in bicevian conic of X(100) and X(38460)
X(58369) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2340), X(38460)}}, {{A, B, C, X(2342), X(3689)}}, {{A, B, C, X(2827), X(3900)}}, {{A, B, C, X(3939), X(4162)}}, {{A, B, C, X(5193), X(41339)}}, {{A, B, C, X(5548), X(30725)}}, {{A, B, C, X(37789), X(52888)}}
X(58369) = barycentric product X(i)*X(j) for these (i, j): {1635, 56938}, {2827, 9}, {3239, 5193}, {37758, 663}, {37789, 3900}, {38460, 650}
X(58369) = barycentric quotient X(i)/X(j) for these (i, j): {41, 2743}, {657, 12641}, {2827, 85}, {5193, 658}, {37758, 4572}, {37789, 4569}, {38460, 4554}
X(58369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 4895, 53285}, {53286, 53549, 654}


X(58370) = X(6)X(663)∩X(56)X(513)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^4+3*b*(b-c)^2*c-a^3*(b+c)+a*(b-c)^2*(b+c)-a^2*(b^2-3*b*c+c^2)) : :

X(58370) lies on these lines: {6, 663}, {55, 650}, {56, 513}, {220, 657}, {480, 3900}, {514, 42884}, {885, 1001}, {926, 58368}, {4413, 10006}, {8648, 16686}, {9000, 12595}, {22108, 53549}, {35348, 37541}, {52873, 53055}

X(58370) = perspector of circumconic {{A, B, C, X(294), X(2291)}}
X(58370)= pole of line {910, 1055} with respect to the circumcircle
X(58370) = perspector of cevian triangle of X(53055) and inverse-of-ABC in bicevian conic of X(100) and X(53055)
X(58370) = intersection, other than A, B, C, of circumconics {{A, B, C, X(55), X(53055)}}, {{A, B, C, X(926), X(11124)}}
X(58370) = barycentric product X(i)*X(j) for these (i, j): {53055, 650}
X(58370) = barycentric quotient X(i)/X(j) for these (i, j): {53055, 4554}


X(58371) = X(2)X(1280)∩X(8)X(244)

Barycentrics    a^3-b^3-c^3-2*a^2*(b+c)+a*(4*b^2-3*b*c+4*c^2) : :

X(58371) lies on these lines: {1, 8258}, {2, 1280}, {8, 244}, {11, 24841}, {38, 9791}, {56, 100}, {88, 3621}, {105, 37652}, {106, 6790}, {149, 900}, {192, 25266}, {291, 10453}, {345, 46178}, {518, 5211}, {519, 1054}, {522, 24126}, {537, 17777}, {899, 49707}, {952, 20098}, {1155, 49695}, {1281, 50635}, {1283, 8666}, {1450, 34772}, {1469, 3873}, {1999, 9451}, {2108, 42057}, {3210, 36845}, {3218, 49704}, {3227, 30225}, {3241, 3722}, {3434, 24836}, {3616, 33115}, {3617, 24988}, {3622, 24542}, {3623, 51583}, {3667, 34548}, {3685, 49989}, {3952, 26139}, {3999, 32850}, {4388, 29844}, {4514, 21342}, {4578, 25919}, {4645, 17449}, {4679, 49501}, {4694, 16086}, {4712, 10580}, {4864, 32851}, {4906, 33118}, {5205, 24216}, {5347, 37639}, {6164, 6630}, {6788, 21290}, {9263, 39351}, {9507, 26044}, {12649, 17480}, {14594, 41556}, {14839, 38478}, {16610, 49698}, {17145, 32842}, {17146, 33112}, {17232, 31091}, {17300, 29832}, {17302, 29835}, {17314, 20331}, {17721, 49499}, {17722, 49491}, {17723, 51055}, {17765, 18201}, {19993, 37683}, {20020, 31073}, {20036, 27628}, {20090, 24311}, {20999, 37311}, {21222, 38325}, {21963, 24397}, {24627, 49466}, {25979, 44720}, {26015, 37759}, {28393, 52923}, {30861, 53661}, {31146, 49446}, {32919, 50015}, {32922, 51463}, {36926, 53619}, {40868, 41794}, {43055, 43290}

X(58371) = reflection of X(i) in X(j) for these {i,j}: {145, 1120}, {21290, 6788}, {3699, 3756}, {36926, 53619}, {5205, 24216}, {6790, 106}, {8, 26727}
X(58371) = anticomplement of X(3699)
X(58371) = X(i)-Dao conjugate of X(j) for these {i, j}: {3699, 3699}
X(58371) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3676, 2}
X(58371) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {6, 4462}, {7, 21301}, {31, 4468}, {34, 20293}, {56, 513}, {57, 20295}, {85, 21304}, {109, 3952}, {244, 33650}, {269, 21302}, {513, 3436}, {514, 21286}, {603, 20294}, {604, 514}, {608, 4391}, {649, 329}, {650, 54113}, {651, 668}, {667, 144}, {738, 46402}, {875, 56555}, {934, 3888}, {961, 6371}, {1014, 512}, {1015, 37781}, {1019, 20245}, {1106, 522}, {1357, 149}, {1358, 21293}, {1395, 25259}, {1396, 850}, {1397, 17494}, {1398, 521}, {1402, 31290}, {1407, 693}, {1408, 523}, {1412, 7192}, {1413, 4397}, {1414, 53338}, {1415, 190}, {1416, 53343}, {1417, 900}, {1434, 17217}, {1435, 46400}, {1436, 20296}, {1459, 52366}, {1461, 21272}, {1462, 3766}, {1476, 6363}, {1919, 3177}, {1980, 21218}, {3063, 30695}, {3248, 39351}, {3572, 56883}, {3669, 69}, {3676, 6327}, {3733, 3869}, {3937, 34188}, {4017, 1330}, {4565, 53332}, {4573, 53363}, {4637, 53355}, {6611, 20297}, {6612, 4131}, {7023, 3900}, {7178, 21287}, {7180, 2895}, {7203, 17135}, {7216, 2893}, {7250, 2475}, {7252, 18750}, {7316, 30709}, {7341, 17166}, {7366, 4025}, {8027, 17036}, {8686, 6085}, {16945, 3667}, {16947, 4560}, {17096, 17137}, {20615, 44444}, {22383, 56943}, {23345, 5176}, {23979, 43991}, {24002, 315}, {31615, 54099}, {32735, 53358}, {34080, 27834}, {40151, 4106}, {43041, 20554}, {43923, 4}, {43924, 8}, {43925, 92}, {43929, 30807}, {43930, 20556}, {43931, 20557}, {43932, 3434}, {51641, 1654}, {51656, 42020}, {52013, 47685}, {52410, 17496}, {52621, 21275}, {53321, 3909}, {53528, 21290}, {53538, 150}, {53539, 20344}, {53540, 3448}, {53544, 20552}, {53545, 21294}, {56496, 6005}, {57129, 63}, {57181, 2}, {57238, 18133}, {57663, 48079}, {57785, 44445}, {58324, 40007}
X(58371)= pole of line {23831, 50351} with respect to the Kiepert parabola
X(58371)= pole of line {1086, 1358} with respect to the Steiner circumellipse
X(58371)= pole of line {6084, 40480} with respect to the Steiner inellipse
X(58371) = perspector of cevian triangle of X(30721) and inverse-of-ABC in bicevian conic of X(190) and X(30721)
X(58371) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1280), X(8686)}}, {{A, B, C, X(6164), X(7241)}}, {{A, B, C, X(6553), X(56642)}}, {{A, B, C, X(30721), X(44184)}}
X(58371) = barycentric product X(i)*X(j) for these (i, j): {30721, 514}
X(58371) = barycentric quotient X(i)/X(j) for these (i, j): {30721, 190}
X(58371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 244, 26073}, {149, 17154, 4440}, {1120, 5854, 145}, {3699, 3756, 2}, {3756, 9041, 3699}, {3873, 29840, 17778}, {4514, 21342, 26840}, {17154, 20042, 149}


X(58372) = X(149)X(900)∩X(514)X(659)

Barycentrics    (b-c)*(a^3+3*a*b*c-2*(b^3+c^3)) : :
X(58372) = -4*X[676]+X[48083], -4*X[3776]+X[50328], -2*X[3837]+3*X[6548], -4*X[4025]+X[50339], -X[4088]+3*X[14475], 2*X[4707]+X[21343], X[4784]+2*X[47691], -3*X[6544]+2*X[48056], 2*X[21104]+X[50340], 2*X[47131]+X[50359], X[47692]+3*X[52620], -3*X[47827]+4*X[47882] and many others

X(58372) lies on these lines: {149, 900}, {513, 21115}, {514, 659}, {523, 4453}, {676, 48083}, {693, 29370}, {826, 47889}, {918, 4800}, {1491, 47754}, {1635, 4802}, {2254, 4777}, {3776, 50328}, {3837, 6548}, {4025, 50339}, {4088, 14475}, {4379, 29204}, {4448, 28890}, {4707, 21343}, {4784, 47691}, {4874, 48557}, {4893, 48212}, {4948, 47886}, {4951, 45320}, {4977, 44433}, {6006, 49295}, {6544, 48056}, {6545, 48167}, {9508, 28151}, {10196, 45668}, {14421, 23884}, {21104, 50340}, {25569, 29102}, {25574, 53356}, {28147, 45674}, {28175, 47892}, {28179, 46915}, {28209, 47944}, {28220, 47961}, {28851, 48177}, {28910, 48024}, {29174, 48570}, {29354, 47872}, {30519, 48189}, {30520, 48234}, {47131, 50359}, {47692, 52620}, {47767, 48103}, {47772, 48183}, {47779, 48188}, {47797, 48162}, {47827, 47882}, {47833, 47874}, {48171, 48206}, {48208, 48233}, {48248, 49302}, {49299, 50358}

X(58372) = midpoint of X(i) and X(j) for these {i,j}: {4809, 48326}, {47691, 47755}
X(58372) = reflection of X(i) in X(j) for these {i,j}: {10196, 45668}, {1491, 47754}, {4784, 47755}, {4809, 4458}, {4893, 48212}, {4948, 47886}, {4951, 45320}, {47772, 48183}, {47827, 48227}, {47833, 47887}, {48103, 47767}, {48162, 47797}, {48167, 6545}, {48171, 48206}, {48188, 47779}, {48208, 48233}, {48244, 4453}, {48557, 4874}, {659, 4809}
X(58372) = perspector of circumconic {{A, B, C, X(14621), X(31151)}}
X(58372)= pole of line {17724, 50307} with respect to the incircle
X(58372)= pole of line {4784, 50351} with respect to the Kiepert parabola
X(58372)= pole of line {1086, 4393} with respect to the Steiner circumellipse
X(58372)= pole of line {17023, 40480} with respect to the Steiner inellipse
X(58372) = perspector of cevian triangle of X(31151) and inverse-of-ABC in bicevian conic of X(190) and X(31151)
X(58372) = barycentric product X(i)*X(j) for these (i, j): {31151, 514}
X(58372) = barycentric quotient X(i)/X(j) for these (i, j): {31151, 190}
X(58372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 4458, 4809}, {523, 4453, 48244}, {4458, 48326, 659}, {4809, 48326, 514}, {23770, 50342, 4810}, {47695, 58374, 58376}, {47695, 58375, 58374}


X(58373) = X(100)X(764)∩X(149)X(900)

Barycentrics    a*(b-c)*(a^2-2*a*b+2*b^2-2*b*c+c^2)*(a^2+b^2-2*(a+b)*c+2*c^2) : :

X(58373) lies on these lines: {88, 6164}, {100, 764}, {149, 900}, {513, 3315}, {1022, 3722}, {1054, 1635}, {1421, 53528}, {2254, 53411}, {23814, 33115}

X(58373) = isogonal conjugate of X(46973)
X(58373) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46973}, {6, 32094}, {100, 3722}, {101, 4422}, {692, 4986}, {765, 6161}, {1252, 6546}, {1331, 1862}, {9268, 33905}
X(58373) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46973}, {9, 32094}, {513, 6161}, {661, 6546}, {1015, 4422}, {1086, 4986}, {5521, 1862}, {8054, 3722}
X(58373) = X(i)-cross conjugate of X(j) for these {i, j}: {44, 1022}, {3999, 43928}
X(58373) = perspector of cevian triangle of X(46972) and inverse-of-ABC in bicevian conic of X(190) and X(46972)
X(58373) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3315)}}, {{A, B, C, X(44), X(3722)}}, {{A, B, C, X(80), X(105)}}, {{A, B, C, X(88), X(1054)}}, {{A, B, C, X(100), X(244)}}, {{A, B, C, X(108), X(3676)}}, {{A, B, C, X(291), X(17154)}}, {{A, B, C, X(514), X(2832)}}, {{A, B, C, X(649), X(8697)}}, {{A, B, C, X(659), X(4756)}}, {{A, B, C, X(693), X(2969)}}, {{A, B, C, X(1019), X(48571)}}, {{A, B, C, X(1027), X(6548)}}, {{A, B, C, X(1280), X(8686)}}, {{A, B, C, X(1358), X(43974)}}, {{A, B, C, X(1929), X(44006)}}, {{A, B, C, X(2254), X(4790)}}, {{A, B, C, X(7192), X(8050)}}, {{A, B, C, X(35355), X(43928)}}, {{A, B, C, X(48151), X(51642)}}
X(58373) = barycentric product X(i)*X(j) for these (i, j): {46972, 514}
X(58373) = barycentric quotient X(i)/X(j) for these (i, j): {1, 32094}, {6, 46973}, {244, 6546}, {513, 4422}, {514, 4986}, {649, 3722}, {764, 6547}, {1015, 6161}, {2087, 33905}, {6591, 1862}, {46972, 190}


X(58374) = X(44)X(513)∩X(149)X(900)

Barycentrics    a*(b-c)*(a^2+2*b^2-b*c+2*c^2-2*a*(b+c)) : :
X(58374) = -3*X[1022]+2*X[48296], -4*X[2505]+3*X[48182], -2*X[2976]+3*X[26275], -4*X[3716]+5*X[30795], -4*X[3837]+3*X[4800], -2*X[4010]+3*X[48167], -2*X[4040]+3*X[47893], -4*X[4369]+3*X[48251], -3*X[4448]+4*X[25380], -2*X[4806]+3*X[48164], -2*X[4925]+X[48055], -3*X[4948]+4*X[48017] and many others

X(58374) lies on these lines: {44, 513}, {100, 8697}, {149, 900}, {244, 38390}, {522, 48326}, {523, 49301}, {667, 48075}, {764, 3887}, {876, 4876}, {1022, 48296}, {2505, 48182}, {2530, 42325}, {2785, 53533}, {2786, 24721}, {2827, 13252}, {2832, 4730}, {2976, 26275}, {3309, 3777}, {3667, 4458}, {3716, 30795}, {3837, 4800}, {3900, 23765}, {3960, 6161}, {4010, 48167}, {4040, 47893}, {4367, 4905}, {4369, 48251}, {4382, 4926}, {4448, 25380}, {4453, 4897}, {4491, 27666}, {4777, 47705}, {4778, 4963}, {4806, 48164}, {4809, 6006}, {4922, 28521}, {4925, 48055}, {4948, 48017}, {4977, 48408}, {6366, 24097}, {8689, 48575}, {13246, 48555}, {13259, 50355}, {18004, 31131}, {20983, 50513}, {21143, 23656}, {21146, 49292}, {23789, 47889}, {23828, 50556}, {24720, 47833}, {26824, 28183}, {28209, 47945}, {28220, 47909}, {28393, 28396}, {29144, 47973}, {29246, 48410}, {29328, 47685}, {29362, 50339}, {31290, 47892}, {36280, 46409}, {45328, 53580}, {45674, 48041}, {47694, 48253}, {47823, 48063}, {47824, 48248}, {47872, 50337}, {47877, 48006}, {47885, 48061}, {47888, 48065}, {47977, 50504}, {48002, 48157}, {48009, 48176}, {48066, 48351}, {48083, 50333}, {48100, 48367}, {48137, 48338}, {48151, 48323}, {50340, 50348}

X(58374) = reflection of X(i) in X(j) for these {i,j}: {21343, 764}, {4367, 4905}, {4724, 50335}, {4784, 50359}, {4810, 46403}, {4879, 3777}, {47695, 58375}, {47977, 50504}, {48024, 2526}, {48032, 9508}, {48055, 4925}, {48083, 50333}, {48305, 23789}, {48323, 48151}, {48336, 2530}, {48338, 48137}, {48351, 48066}, {48367, 48100}, {50339, 50356}, {50340, 50348}, {50342, 50357}, {50358, 50336}, {53343, 3837}, {659, 2254}, {667, 48075}, {6161, 3960}, {58376, 47695}
X(58374) = perspector of circumconic {{A, B, C, X(1), X(17266)}}
X(58374) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 28891}
X(58374) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 28891}
X(58374)= pole of line {149, 20012} with respect to the anticomplementary circle
X(58374)= pole of line {55, 4392} with respect to the circumcircle
X(58374)= pole of line {354, 17724} with respect to the incircle
X(58374)= pole of line {5901, 44430} with respect to the orthoptic circle of the Steiner Inellipse
X(58374)= pole of line {92, 1862} with respect to the polar circle
X(58374)= pole of line {4367, 8666} with respect to the Kiepert parabola
X(58374)= pole of line {192, 1086} with respect to the Steiner circumellipse
X(58374)= pole of line {37, 40480} with respect to the Steiner inellipse
X(58374)= pole of line {6163, 16885} with respect to the Hutson-Moses hyperbola
X(58374)= pole of line {5902, 24222} with respect to the Suppa-Cucoanes circle
X(58374) = perspector of cevian triangle of X(49675) and inverse-of-ABC in bicevian conic of X(190) and X(49675)
X(58374) = intersection, other than A, B, C, of circumconics {{A, B, C, X(44), X(49675)}}, {{A, B, C, X(513), X(28890)}}, {{A, B, C, X(649), X(8697)}}, {{A, B, C, X(659), X(35355)}}, {{A, B, C, X(851), X(31921)}}, {{A, B, C, X(876), X(48032)}}, {{A, B, C, X(899), X(17266)}}, {{A, B, C, X(2348), X(4876)}}
X(58374) = barycentric product X(i)*X(j) for these (i, j): {1, 28890}, {17266, 513}, {31921, 656}, {49675, 514}
X(58374) = barycentric quotient X(i)/X(j) for these (i, j): {31, 28891}, {17266, 668}, {28890, 75}, {31921, 811}, {49675, 190}
X(58374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 2254, 659}, {513, 2526, 48024}, {513, 50335, 4724}, {513, 50336, 50358}, {513, 50359, 4784}, {513, 9508, 48032}, {659, 2254, 48244}, {764, 3887, 21343}, {900, 46403, 4810}, {900, 47695, 58376}, {900, 50357, 50342}, {2254, 48032, 9508}, {2530, 42325, 48336}, {3309, 3777, 4879}, {3716, 36848, 30795}, {3960, 6161, 25569}, {4724, 50335, 47827}, {4905, 6004, 4367}, {23789, 48305, 47889}, {29362, 50356, 50339}, {47695, 58375, 58372}, {58372, 58376, 47695}


X(58375) = X(2)X(48083)∩X(149)X(900)

Barycentrics    (b-c)*(b^3+a*(b-c)^2+c^3-a^2*(b+c)) : :
X(58375) = -3*X[2]+X[48083], -3*X[1638]+X[48055], -2*X[2977]+3*X[48229], -2*X[3239]+3*X[48198], -X[4010]+3*X[6545], -X[4088]+3*X[36848], -X[4122]+3*X[47812], -X[4724]+3*X[48227], -3*X[4927]+X[50326], -4*X[7658]+3*X[48214], -X[21132]+3*X[21145], -3*X[21183]+X[49286] and many others

X(58375) lies on these lines: {2, 48083}, {149, 900}, {513, 3776}, {514, 9508}, {523, 2254}, {525, 48406}, {659, 3004}, {764, 4707}, {824, 48098}, {826, 23789}, {918, 3837}, {1491, 47676}, {1635, 4841}, {1638, 48055}, {2977, 48229}, {3239, 48198}, {3669, 29082}, {3676, 4874}, {3766, 18014}, {3801, 48151}, {3904, 24099}, {3913, 6366}, {3960, 29102}, {4010, 6545}, {4025, 29362}, {4088, 36848}, {4122, 47812}, {4367, 23866}, {4724, 48227}, {4778, 13246}, {4784, 47652}, {4802, 4818}, {4809, 28209}, {4927, 50326}, {6362, 13256}, {7658, 48214}, {10015, 24093}, {18006, 30725}, {19882, 49276}, {19945, 24136}, {21132, 21145}, {21183, 49286}, {23815, 23875}, {24126, 53527}, {24719, 47971}, {24924, 48113}, {25259, 48184}, {25380, 28602}, {25666, 48048}, {28175, 47653}, {28195, 45674}, {28840, 47999}, {28851, 48030}, {28859, 48621}, {29078, 48089}, {29144, 48073}, {29328, 48398}, {29354, 50337}, {29370, 49285}, {30520, 48405}, {30565, 30795}, {30724, 48299}, {31148, 47931}, {44435, 48024}, {45746, 48143}, {47660, 48253}, {47666, 47877}, {47686, 47755}, {47691, 50359}, {47701, 48425}, {47720, 50355}, {47754, 48029}, {47757, 48040}, {47761, 48096}, {47771, 48604}, {47781, 47910}, {47802, 48087}, {47822, 48078}, {47823, 48094}, {47824, 48103}, {47833, 49275}, {47880, 47963}, {47890, 48245}, {47923, 48579}, {47925, 49282}, {47944, 48156}, {47972, 48224}, {48007, 49296}, {48021, 48552}, {48036, 48555}, {48046, 48178}, {48080, 48421}, {48090, 48415}, {48108, 48422}, {48117, 48185}, {48118, 48235}, {48124, 48219}, {48174, 48432}, {48216, 48614}, {48241, 50340}, {48577, 48598}, {49299, 50336}, {53300, 53578}

X(58375) = midpoint of X(i) and X(j) for these {i,j}: {1491, 47676}, {16892, 21146}, {2254, 48326}, {21104, 50348}, {23770, 50357}, {24719, 47971}, {3801, 48151}, {4122, 47930}, {4784, 47652}, {45746, 48143}, {46403, 50342}, {47691, 50359}, {47695, 58374}, {47704, 50341}, {47720, 50355}, {47925, 49282}, {48007, 49296}, {48103, 49302}, {49299, 50336}, {659, 49301}, {764, 4707}, {7192, 47968}
X(58375) = reflection of X(i) in X(j) for these {i,j}: {18004, 3837}, {24093, 10015}, {3904, 24099}, {4874, 3676}, {48048, 25666}, {48056, 25380}, {48090, 48415}
X(58375) = complement of X(48083)
X(58375) = perspector of circumconic {{A, B, C, X(1509), X(17758)}}
X(58375) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18827, 1086}
X(58375)= pole of line {1621, 16064} with respect to the circumcircle
X(58375)= pole of line {171, 17724} with respect to the incircle
X(58375)= pole of line {1862, 7140} with respect to the polar circle
X(58375)= pole of line {1019, 6763} with respect to the Kiepert parabola
X(58375)= pole of line {1086, 4360} with respect to the Steiner circumellipse
X(58375)= pole of line {16706, 16826} with respect to the Steiner inellipse
X(58375)= pole of line {26853, 48082} with respect to the Yff parabola
X(58375) = perspector of cevian triangle of X(49676) and inverse-of-ABC in bicevian conic of X(190) and X(49676)
X(58375) = intersection, other than A, B, C, of circumconics {{A, B, C, X(659), X(18014)}}, {{A, B, C, X(3766), X(18004)}}, {{A, B, C, X(18032), X(33295)}}
X(58375) = barycentric product X(i)*X(j) for these (i, j): {49676, 514}
X(58375) = barycentric quotient X(i)/X(j) for these (i, j): {21718, 4103}, {49676, 190}
X(58375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {659, 49301, 4977}, {918, 3837, 18004}, {2254, 21115, 48326}, {4453, 49301, 659}, {16892, 21146, 523}, {23770, 50357, 900}, {25380, 28890, 48056}, {25380, 48056, 28602}, {46403, 48571, 50342}, {47812, 47930, 4122}, {47824, 49302, 48103}, {58372, 58374, 47695}


X(58376) = X(149)X(900)∩X(522)X(659)

Barycentrics    (b-c)*(3*a^3-4*a^2*(b+c)+a*(4*b^2+b*c+4*c^2)-2*(b^3+c^3)) : :
X(58376) = -2*X[3837]+3*X[53361], -3*X[4800]+4*X[53523]

X(58376) lies on these lines: {149, 900}, {513, 47705}, {522, 659}, {1635, 4820}, {2254, 4926}, {3667, 48326}, {3837, 53361}, {4458, 4962}, {4777, 48032}, {4800, 53523}, {28183, 48408}, {28217, 49301}, {28221, 48172}

X(58376) = reflection of X(i) in X(j) for these {i,j}: {58374, 47695}
X(58376) = perspector of circumconic {{A, B, C, X(17743), X(49677)}}
X(58376)= pole of line {17605, 17724} with respect to the incircle
X(58376)= pole of line {4879, 50351} with respect to the Kiepert parabola
X(58376)= pole of line {1086, 17350} with respect to the Steiner circumellipse
X(58376)= pole of line {7228, 17353} with respect to the Steiner inellipse
X(58376) = perspector of cevian triangle of X(49677) and inverse-of-ABC in bicevian conic of X(190) and X(49677)
X(58376) = barycentric product X(i)*X(j) for these (i, j): {49677, 514}
X(58376) = barycentric quotient X(i)/X(j) for these (i, j): {49677, 190}
X(58376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {900, 47695, 58374}, {47695, 58374, 58372}


X(58377) = X(75)X(25128)∩X(325)X(523)

Barycentrics    b^2*(b-c)*c^2*(b*c-a*(b+c))^2 : :

X(58377) lies on these lines: {75, 25128}, {325, 523}, {561, 20909}, {649, 40087}, {1978, 30835}, {3835, 6382}, {6384, 21197}, {10009, 31286}, {20451, 20952}, {21438, 23756}, {24749, 41318}

X(58377) = X(i)-isoconjugate-of-X(j) for these {i, j}: {560, 32039}, {692, 53146}, {7121, 34071}, {32739, 53678}
X(58377) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 932}, {1086, 53146}, {4083, 1919}, {6374, 32039}, {6377, 2162}, {23886, 57050}, {40598, 34071}, {40610, 7121}, {40619, 53678}, {55062, 57264}
X(58377) = perspector of cevian triangle of X(20906) and inverse-of-ABC in bicevian conic of X(192) and X(20906)
X(58377) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(21128)}}, {{A, B, C, X(523), X(23886)}}, {{A, B, C, X(1491), X(25142)}}, {{A, B, C, X(3005), X(57050)}}, {{A, B, C, X(3006), X(53675)}}, {{A, B, C, X(3263), X(8026)}}, {{A, B, C, X(3835), X(3837)}}, {{A, B, C, X(6382), X(35538)}}, {{A, B, C, X(21051), X(23301)}}, {{A, B, C, X(35552), X(53676)}}
X(58377) = barycentric product X(i)*X(j) for these (i, j): {693, 8026}, {1502, 57050}, {3261, 53675}, {3835, 6382}, {20906, 6376}, {20979, 40367}, {23886, 76}, {25142, 561}, {40495, 53676}
X(58377) = barycentric quotient X(i)/X(j) for these (i, j): {76, 32039}, {192, 34071}, {514, 53146}, {693, 53678}, {3261, 53677}, {3835, 2162}, {4083, 7121}, {4147, 2053}, {6376, 932}, {6382, 4598}, {8026, 100}, {20906, 87}, {21051, 23493}, {21834, 21759}, {23886, 6}, {25098, 15373}, {25142, 31}, {40495, 53679}, {40610, 1919}, {53145, 32739}, {53675, 101}, {53676, 692}, {57050, 32}
X(58377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 20906, 21128}


X(58378) = X(2)X(185)∩X(20)X(125)

Barycentrics    (a^2-b^2-c^2)*(3*a^8-8*a^4*(b^2-c^2)^2-3*(b^2-c^2)^4-2*a^6*(b^2+c^2)+10*a^2*(b^2-c^2)^2*(b^2+c^2)) : :
X(58378) = -X[12383]+4*X[39084], -5*X[17538]+2*X[44788]

X(58378) lies on these lines: {2, 185}, {3, 15077}, {4, 1192}, {5, 18931}, {20, 125}, {64, 6622}, {68, 6699}, {69, 16196}, {140, 11487}, {141, 631}, {182, 43617}, {184, 10303}, {254, 18808}, {287, 32989}, {378, 45045}, {389, 16879}, {403, 12250}, {468, 12324}, {549, 18925}, {550, 18918}, {1092, 5622}, {1181, 3525}, {1204, 3091}, {1216, 3546}, {1368, 11821}, {1498, 38282}, {1503, 32603}, {1593, 37643}, {1620, 41362}, {1656, 45073}, {1899, 2888}, {2917, 21844}, {3088, 10110}, {3089, 13474}, {3090, 10605}, {3146, 21663}, {3147, 34781}, {3357, 6623}, {3515, 32064}, {3524, 6146}, {3528, 18396}, {3541, 3567}, {3542, 12290}, {3548, 12358}, {3740, 6889}, {3832, 7703}, {5054, 18914}, {5059, 13851}, {5218, 26955}, {5432, 18915}, {5433, 18922}, {5656, 7505}, {5878, 20417}, {5890, 43841}, {5893, 32601}, {6247, 6353}, {6530, 41425}, {6643, 22661}, {7288, 26956}, {7396, 46730}, {7486, 43831}, {7487, 20299}, {7689, 20397}, {8889, 9786}, {10257, 11411}, {10263, 44441}, {10304, 21659}, {10360, 13411}, {10519, 11574}, {10996, 37638}, {11270, 15081}, {11425, 18950}, {11457, 35486}, {12174, 52297}, {12233, 52299}, {12383, 39084}, {12429, 16976}, {13093, 37942}, {14216, 44673}, {14927, 16195}, {15526, 31377}, {15717, 19467}, {15720, 31804}, {15739, 37119}, {15751, 38791}, {16252, 52290}, {17538, 44788}, {17821, 39874}, {18381, 37460}, {18533, 23294}, {18916, 37118}, {18951, 23336}, {19457, 22549}, {20376, 32334}, {22533, 22581}, {25563, 39571}, {34780, 37935}, {35450, 44960}, {37197, 43903}, {43905, 49671}

X(58378) = midpoint of X(i) and X(j) for these {i,j}: {15077, 27082}
X(58378) = reflection of X(i) in X(j) for these {i,j}: {16879, 389}, {27082, 3}
X(58378) = inverse of X(20) in Jerabek hyperbola
X(58378) = complement of X(32605)
X(58378)= pole of line {20, 45187} with respect to the Jerabek hyperbola
X(58378)= pole of line {3515, 13346} with respect to the Stammler hyperbola
X(58378)= pole of line {6622, 32001} with respect to the Wallace hyperbola
X(58378) = orthologic center of inverse-of-ABC in bicevian conic of X(2) and X(3146) and ABC
X(58378) = intersection, other than A, B, C, of circumconics {{A, B, C, X(13380), X(15077)}}, {{A, B, C, X(27082), X(34286)}}
X(58378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 26937, 18913}, {3, 23291, 18945}, {64, 47296, 6622}, {549, 26944, 18925}, {1192, 23332, 4}, {12429, 16976, 53050}, {37197, 43903, 54050}


X(58379) = X(10)X(141)∩X(37)X(899)

Barycentrics    a*(a^2*(b+c)^2-a*(b+c)^3-b*c*(b^2+6*b*c+c^2)) : :
X(58379) = -3*X[3921]+X[51034], 5*X[25917]+X[49468]

X(58379) is the centroid of the tangential triangle of this circumcubic.X(58379) lies on these lines: {2, 44671}, {10, 141}, {37, 899}, {75, 3952}, {210, 4688}, {392, 3696}, {513, 17330}, {536, 3740}, {537, 3956}, {2802, 4732}, {3216, 31318}, {3697, 28611}, {3880, 51036}, {3921, 51034}, {3983, 24443}, {4111, 17245}, {4665, 40521}, {4967, 21865}, {5044, 42031}, {5692, 20718}, {6007, 49731}, {10176, 50096}, {10179, 28581}, {14973, 26037}, {15624, 46917}, {16482, 17277}, {16815, 57024}, {25917, 49468}, {30970, 31238}, {34434, 46772}

X(58379) = midpoint of X(i) and X(j) for these {i,j}: {10176, 50096}, {210, 4688}, {392, 3696}
X(58379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3739, 22271, 13476}


X(58380) = X(1)X(21)∩X(3)X(4068)

Barycentrics    a*(b+c)*(3*a^2+b^2+3*b*c+c^2+4*a*(b+c)) : :
X(58380) = -X[8]+9*X[27811], 3*X[551]+X[4065], -5*X[1698]+9*X[53034], -5*X[3616]+X[4647], -7*X[3624]+3*X[21020], -11*X[5550]+3*X[17163], -X[17164]+9*X[38314], -5*X[19862]+3*X[27798]

X(58380) lies on these lines: {1, 21}, {3, 4068}, {8, 27811}, {10, 4046}, {30, 32167}, {35, 17019}, {37, 3678}, {42, 4015}, {79, 37635}, {187, 3723}, {386, 2667}, {513, 10108}, {515, 58383}, {516, 58385}, {517, 58382}, {518, 58384}, {519, 49730}, {540, 12579}, {551, 4065}, {581, 31871}, {714, 3159}, {726, 58400}, {740, 1125}, {756, 4547}, {952, 58388}, {986, 48855}, {1089, 29822}, {1698, 53034}, {1961, 33771}, {2294, 16553}, {2771, 10618}, {2802, 37548}, {2901, 43223}, {3247, 3811}, {3293, 4540}, {3616, 4647}, {3624, 21020}, {3648, 41819}, {3666, 24167}, {3724, 3746}, {3754, 3931}, {3833, 17592}, {3896, 16828}, {3918, 3987}, {3956, 50587}, {3960, 53563}, {3968, 4646}, {3985, 24051}, {3993, 25124}, {4132, 58139}, {4205, 21081}, {4356, 12609}, {4418, 28619}, {4854, 11263}, {4890, 10974}, {5044, 44671}, {5045, 20718}, {5160, 44913}, {5259, 17011}, {5283, 25426}, {5287, 25440}, {5297, 25431}, {5453, 8143}, {5530, 6702}, {5550, 17163}, {5625, 24850}, {5703, 23555}, {5847, 58394}, {5850, 58398}, {6155, 16611}, {6701, 17056}, {8614, 41546}, {8715, 37553}, {9327, 42669}, {10149, 20129}, {10176, 19767}, {11553, 18593}, {11809, 13407}, {12432, 16577}, {15934, 53035}, {16429, 19765}, {16672, 53037}, {16673, 40977}, {16777, 18755}, {16844, 49486}, {17012, 25542}, {17164, 38314}, {19858, 49470}, {19862, 27798}, {24342, 28620}, {24394, 56176}, {37565, 58626}, {39595, 58404}, {40952, 56894}, {41813, 54335}, {42031, 49462}, {42443, 44661}, {49560, 52782}

X(58380) = midpoint of X(i) and X(j) for these {i,j}: {1, 3743}, {12579, 49564}, {3960, 53563}, {3993, 25124}, {4065, 49598}, {5453, 8143}, {58386, 58399}
X(58380) = reflection of X(i) in X(j) for these {i,j}: {58386, 58387}, {58392, 58382}
X(58380)= pole of line {3733, 15309} with respect to the circumcircle
X(58380)= pole of line {4132, 4840} with respect to the DeLongchamps ellipse
X(58380)= pole of line {3841, 4047} with respect to the Kiepert hyperbola
X(58380)= pole of line {1, 33774} with respect to the Stammler hyperbola
X(58380)= pole of line {7192, 14838} with respect to the Steiner inellipse
X(58380)= pole of line {75, 33770} with respect to the Wallace hyperbola
X(58380) = center of the nine-point conic of quadrilateral XYZX(1) where XYZ is the cevian triangle of X(1)
X(58380) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(37), X(4658)}}, {{A, B, C, X(58), X(28625)}}, {{A, B, C, X(81), X(56221)}}, {{A, B, C, X(3678), X(27789)}}
X(58380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1962, 3743}, {1, 28606, 3874}, {1, 3743, 758}, {1, 846, 4658}, {517, 58382, 58392}, {519, 58387, 58386}, {551, 4065, 49598}, {4046, 17514, 10}, {12579, 49564, 540}, {58381, 58386, 58387}, {58386, 58399, 519}


X(58381) = X(1)X(41629)∩X(2)X(740)

Barycentrics    (b+c)*(7*a^2+b*c+4*a*(b+c)) : :
X(58381) = X[2292]+3*X[38314], X[4065]+3*X[19883], -3*X[25055]+X[49598]

X(58381) lies on these lines: {1, 41629}, {2, 740}, {30, 58382}, {37, 4090}, {519, 49730}, {524, 58384}, {527, 58385}, {528, 58388}, {536, 58396}, {537, 58391}, {551, 3743}, {752, 58390}, {758, 5049}, {846, 5625}, {968, 50293}, {1255, 4434}, {2292, 38314}, {2667, 42043}, {3175, 43223}, {3247, 26244}, {3679, 51597}, {3723, 50252}, {3725, 42042}, {3747, 29580}, {3842, 4685}, {4065, 19883}, {4068, 4421}, {4428, 37590}, {4664, 25124}, {4672, 19722}, {4697, 42025}, {6682, 15569}, {11194, 12567}, {16672, 29670}, {19723, 49489}, {20718, 58560}, {23812, 28546}, {25055, 49598}, {28194, 58392}, {28558, 37631}, {28606, 42055}, {32090, 51296}, {39926, 41143}, {44663, 58393}, {44671, 58629}, {45328, 53563}

X(58381) = midpoint of X(i) and X(j) for these {i,j}: {1962, 10180}, {27798, 27804}, {39926, 41143}, {4664, 25124}, {45328, 53563}, {551, 3743}
X(58381)= pole of line {28840, 48580} with respect to the Steiner inellipse
X(58381)= pole of line {25590, 51356} with respect to the Wallace hyperbola
X(58381) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(1)
X(58381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1962, 10180, 740}, {1962, 27811, 10180}, {1962, 53034, 27804}, {10180, 27798, 53034}, {27804, 53034, 27798}, {58380, 58386, 58399}, {58380, 58387, 58386}, {58382, 58383, 58389}


X(58382) = X(3)X(1962)∩X(5)X(10180)

Barycentrics    a*(b+c)*(3*a^5+2*a^4*(b+c)+(b-c)^2*(b+c)^3+a^3*(-5*b^2+b*c-5*c^2)-3*a^2*(b+c)*(b^2+c^2)+a*(2*b^4-b^3*c-4*b^2*c^2-b*c^3+2*c^4)) : :
X(58382) = X[3]+3*X[1962], -X[4]+9*X[27811], -X[5]+3*X[10180], 5*X[631]+3*X[27804], -5*X[632]+3*X[27798], -5*X[1656]+9*X[53034], X[2292]+3*X[10246], -X[2650]+5*X[37624], -11*X[3525]+3*X[17163], -7*X[3526]+3*X[21020], -17*X[3533]+9*X[27812], X[4065]+3*X[10165] and many others

X(58382) lies on these lines: {3, 1962}, {4, 27811}, {5, 10180}, {30, 58381}, {140, 740}, {511, 32167}, {515, 58387}, {517, 58380}, {631, 27804}, {632, 27798}, {758, 12104}, {912, 58395}, {952, 58386}, {1385, 3743}, {1656, 53034}, {2292, 10246}, {2650, 37624}, {3525, 17163}, {3526, 21020}, {3533, 27812}, {3564, 58394}, {3724, 37621}, {3725, 37698}, {4065, 10165}, {4068, 11248}, {5453, 9959}, {5762, 58385}, {5840, 58388}, {5843, 58398}, {5844, 58399}, {8143, 48893}, {11203, 48907}, {12567, 32153}, {13373, 20718}, {25124, 51046}, {29010, 58396}, {37528, 58401}, {38028, 49598}, {44671, 58630}, {53039, 55859}

X(58382) = midpoint of X(i) and X(j) for these {i,j}: {1385, 3743}, {25124, 51046}, {5453, 9959}, {58380, 58392}, {58383, 58389}, {8143, 48893}
X(58382)= pole of line {3897, 37029} with respect to the Stammler hyperbola
X(58382) = center of the nine-point conic of quadrilateral XYZX(3) where XYZ is the cevian triangle of X(1)
X(58382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58380, 58392, 517}, {58381, 58389, 58383}, {58383, 58389, 30}


X(58383) = X(4)X(1962)∩X(5)X(740)

Barycentrics    (b+c)*(a^6+2*a*(b-c)^2*(b+c)^3+3*a^2*(b^2-c^2)^2+b*c*(b^2-c^2)^2-2*a^3*(b+c)*(b^2+c^2)-a^4*(4*b^2+b*c+4*c^2)) : :
X(58383) = -X[3]+3*X[10180], X[4]+3*X[1962], -X[20]+9*X[27811], -5*X[631]+9*X[53034], X[946]+X[3743], -5*X[1656]+3*X[27798], X[2292]+3*X[5603], -X[2650]+5*X[10595], -7*X[3090]+3*X[21020], 5*X[3091]+3*X[27804], 3*X[3817]+X[4065], -X[4647]+5*X[8227] and many others

X(58383) lies on these lines: {3, 10180}, {4, 1962}, {5, 740}, {20, 27811}, {30, 58381}, {511, 58394}, {515, 58380}, {516, 58387}, {517, 50418}, {631, 53034}, {758, 13464}, {812, 11615}, {946, 3743}, {952, 58399}, {971, 58385}, {1503, 58384}, {1656, 27798}, {2292, 5603}, {2650, 10595}, {2667, 37699}, {2784, 9958}, {2829, 58388}, {3072, 3747}, {3090, 21020}, {3091, 27804}, {3178, 30444}, {3579, 48932}, {3725, 37529}, {3817, 4065}, {4068, 11500}, {4647, 8227}, {5056, 17163}, {5070, 53039}, {5762, 58398}, {5840, 58397}, {5886, 49598}, {6001, 58393}, {7486, 27812}, {8143, 29057}, {11203, 48941}, {11249, 12567}, {13374, 20718}, {20430, 25124}, {29010, 58400}, {44671, 58631}

X(58383) = midpoint of X(i) and X(j) for these {i,j}: {20430, 25124}, {8143, 48931}, {946, 3743}
X(58383) = reflection of X(i) in X(j) for these {i,j}: {58389, 58382}, {58392, 58387}
X(58383) = center of the nine-point conic of quadrilateral XYZX(4) where XYZ is the cevian triangle of X(1)
X(58383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 58382, 58389}, {516, 58387, 58392}, {8143, 48931, 29057}


X(58384) = X(6)X(1962)∩X(141)X(10180)

Barycentrics    a*(b+c)*(3*a^3+2*a^2*(b+c)+(b+c)*(b^2+c^2)+a*(2*b^2+b*c+2*c^2)) : :
X(58384) = X[6]+3*X[1962], -X[69]+9*X[27811], -X[141]+3*X[10180], X[2292]+3*X[38315], 5*X[3618]+3*X[27804], -5*X[3763]+9*X[53034], X[4065]+3*X[38049], -3*X[21020]+7*X[47355], -3*X[27798]+5*X[51126]

X(58384) lies on these lines: {6, 1962}, {69, 27811}, {141, 10180}, {511, 32167}, {518, 58380}, {524, 58381}, {674, 58390}, {740, 3589}, {742, 58396}, {1386, 3743}, {1495, 3745}, {1503, 58383}, {2292, 38315}, {3618, 27804}, {3690, 22277}, {3763, 53034}, {3827, 58393}, {4065, 38049}, {4068, 12329}, {5845, 58385}, {5846, 58386}, {5847, 58387}, {5848, 58388}, {9020, 58391}, {9024, 58397}, {9053, 58399}, {9055, 58400}, {18675, 20991}, {20718, 58562}, {21020, 47355}, {27798, 51126}, {29181, 58389}, {37553, 41454}, {44671, 58633}

X(58384) = midpoint of X(i) and X(j) for these {i,j}: {1386, 3743}
X(58384) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(1)


X(58385) = X(7)X(1962)∩X(9)X(10180)

Barycentrics    (b+c)*(a^4+b*(b-c)^2*c-4*a^3*(b+c)+2*a*(b-c)^2*(b+c)+a^2*(b^2-11*b*c+c^2)) : :
X(58385) = X[7]+3*X[1962], -X[9]+3*X[10180], -X[144]+9*X[27811], X[2292]+3*X[11038], X[2667]+3*X[27475], X[3743]+X[5542], X[4065]+3*X[38054], -5*X[18230]+9*X[53034], -5*X[20195]+3*X[27798], -3*X[38053]+X[49598]

X(58385) lies on these lines: {7, 1962}, {9, 10180}, {142, 740}, {144, 27811}, {516, 58380}, {518, 58386}, {527, 58381}, {971, 58383}, {2292, 11038}, {2346, 3724}, {2667, 27475}, {3743, 5542}, {3842, 22312}, {4065, 38054}, {4068, 11495}, {5762, 58382}, {5845, 58384}, {5850, 58387}, {5851, 58388}, {5853, 58399}, {5856, 58397}, {18230, 53034}, {20195, 27798}, {20718, 58563}, {25124, 51058}, {38053, 49598}, {44671, 58634}

X(58385) = midpoint of X(i) and X(j) for these {i,j}: {25124, 51058}, {3743, 5542}
X(58385) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(1)
X(58385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58394, 58396, 58386}


X(58386) = X(1)X(333)∩X(10)X(37)

Barycentrics    (b+c)*(a^3+3*a^2*(b+c)+b*c*(b+c)+a*(2*b^2+3*b*c+2*c^2)) : :
X(58386) = X[8]+3*X[1962], -X[145]+9*X[27811], -X[2650]+5*X[3616], 5*X[3617]+3*X[27804], 3*X[3989]+X[4968], -7*X[9780]+3*X[21020], 3*X[11203]+X[15971], -3*X[17163]+11*X[46933], -9*X[27812]+17*X[46932], -X[46895]+3*X[53039]

X(58386) lies on these lines: {1, 333}, {2, 986}, {3, 12567}, {8, 1962}, {9, 40978}, {10, 37}, {21, 3724}, {30, 12579}, {40, 6998}, {72, 43223}, {86, 1046}, {145, 27811}, {191, 4697}, {312, 1698}, {442, 4425}, {498, 28811}, {515, 58389}, {516, 58398}, {517, 50418}, {518, 58385}, {519, 49730}, {523, 32212}, {524, 49564}, {690, 25380}, {756, 26115}, {758, 942}, {846, 1010}, {952, 58382}, {975, 32916}, {984, 25124}, {1126, 4753}, {1211, 3178}, {1330, 24697}, {1403, 19518}, {1513, 39605}, {1761, 5327}, {2049, 3923}, {2176, 5711}, {2650, 3616}, {2667, 50581}, {3185, 5248}, {3295, 36480}, {3617, 27804}, {3634, 17070}, {3670, 25512}, {3673, 18698}, {3702, 30970}, {3716, 42666}, {3741, 6051}, {3747, 5255}, {3754, 22299}, {3812, 4698}, {3821, 8728}, {3828, 35652}, {3831, 44307}, {3884, 34434}, {3907, 42653}, {3913, 4068}, {3936, 27577}, {3980, 16458}, {3985, 21816}, {3987, 19870}, {3989, 4968}, {4015, 14973}, {4016, 20271}, {4197, 32776}, {4364, 8680}, {4414, 16454}, {4418, 14005}, {4424, 16828}, {4427, 17589}, {4642, 19874}, {4658, 5625}, {4662, 44671}, {4672, 43531}, {4683, 26131}, {4771, 6155}, {5044, 6685}, {5051, 6536}, {5235, 27368}, {5277, 28631}, {5283, 40986}, {5296, 40977}, {5333, 11684}, {5439, 25501}, {5496, 30147}, {5530, 49652}, {5737, 17733}, {5743, 17748}, {5791, 29635}, {5846, 58384}, {5854, 58388}, {6042, 17322}, {7413, 8235}, {8040, 27714}, {9534, 17592}, {9780, 21020}, {9791, 24851}, {9959, 15973}, {10479, 27785}, {10887, 54035}, {11203, 15971}, {13161, 47286}, {14007, 24342}, {14210, 17210}, {15569, 35633}, {15852, 45305}, {16466, 29644}, {16609, 52567}, {17056, 56949}, {17163, 46933}, {17527, 20545}, {17529, 24169}, {17596, 56766}, {17770, 49743}, {19853, 37598}, {19859, 50314}, {19865, 32780}, {19878, 58467}, {20653, 41809}, {24248, 37153}, {24295, 50318}, {25446, 33135}, {25524, 53042}, {27081, 27558}, {27509, 56839}, {27784, 50605}, {27812, 46932}, {28558, 50226}, {28606, 31339}, {28850, 37528}, {33944, 35550}, {35016, 54399}, {37164, 49512}, {37425, 45705}, {37607, 38000}, {38456, 49728}, {46895, 53039}, {50252, 50775}

X(58386) = midpoint of X(i) and X(j) for these {i,j}: {10, 3743}, {2292, 49598}, {3716, 42666}, {984, 25124}, {9959, 15973}
X(58386) = reflection of X(i) in X(j) for these {i,j}: {58380, 58387}, {58389, 58392}, {58399, 58380}
X(58386) = complement of X(49598)
X(58386) = perspector of circumconic {{A, B, C, X(3952), X(54986)}}
X(58386) = X(i)-complementary conjugate of X(j) for these {i, j}: {43070, 442}, {43071, 17052}, {43072, 21530}, {43073, 3454}, {43074, 34829}
X(58386)= pole of line {661, 50643} with respect to the orthoptic circle of the Steiner Inellipse
X(58386)= pole of line {10, 34528} with respect to the Kiepert hyperbola
X(58386)= pole of line {593, 1468} with respect to the Stammler hyperbola
X(58386)= pole of line {6002, 31290} with respect to the Steiner circumellipse
X(58386)= pole of line {661, 4560} with respect to the Steiner inellipse
X(58386)= pole of line {1509, 10436} with respect to the Wallace hyperbola
X(58386) = center of the nine-point conic of quadrilateral XYZX(8) where XYZ is the cevian triangle of X(1)
X(58386) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(37870)}}, {{A, B, C, X(37), X(5331)}}, {{A, B, C, X(333), X(3714)}}, {{A, B, C, X(594), X(31359)}}, {{A, B, C, X(1400), X(4281)}}, {{A, B, C, X(1500), X(2258)}}, {{A, B, C, X(2321), X(55091)}}, {{A, B, C, X(5295), X(40718)}}
X(58386) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2292, 49598}, {10, 25354, 4205}, {10, 3743, 740}, {10, 3993, 5295}, {191, 25526, 4697}, {515, 58392, 58389}, {519, 58380, 58399}, {519, 58387, 58380}, {846, 1010, 24850}, {1125, 58449, 6693}, {1125, 8258, 6703}, {1213, 3704, 10}, {1698, 4647, 27798}, {2650, 53034, 3616}, {5257, 38408, 1213}, {6536, 21674, 5051}, {6703, 18253, 8258}, {9791, 26051, 24851}, {9959, 15973, 29057}, {58380, 58387, 58381}, {58394, 58396, 58385}


X(58387) = X(1)X(16704)∩X(2)X(4065)

Barycentrics    (b+c)*(4*a^3+7*a^2*(b+c)+b*c*(b+c)+3*a*(b+c)^2) : :
X(58387) = 3*X[2]+X[4065], X[10]+3*X[1962], 3*X[551]+X[2292], 5*X[1698]+3*X[27804], -X[4647]+5*X[19862], -11*X[5550]+3*X[46895], -X[17164]+9*X[25055], -17*X[19872]+9*X[27812], -3*X[21020]+7*X[51073], -3*X[27798]+5*X[31253]

X(58387) lies on these lines: {1, 16704}, {2, 4065}, {10, 1962}, {37, 4075}, {515, 58382}, {516, 58383}, {519, 49730}, {551, 2292}, {596, 28606}, {726, 58396}, {740, 3634}, {758, 3636}, {896, 41815}, {1125, 3666}, {1698, 27804}, {2238, 55343}, {2667, 50587}, {2802, 58388}, {3159, 43223}, {3943, 6538}, {4015, 44671}, {4066, 22016}, {4068, 8715}, {4151, 42653}, {4647, 19862}, {5550, 46895}, {5847, 58384}, {5850, 58385}, {17164, 25055}, {17768, 43972}, {19872, 27812}, {20108, 27784}, {20718, 58565}, {21020, 51073}, {21081, 25354}, {24051, 52538}, {25591, 27785}, {27798, 31253}, {28164, 58389}, {28522, 58400}, {31320, 32771}, {34379, 58394}

X(58387) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3743}, {58380, 58386}, {58383, 58392}, {58393, 58395}
X(58387)= pole of line {1019, 31290} with respect to the Steiner inellipse
X(58387) = center of the nine-point conic of quadrilateral XYZX(10) where XYZ is the cevian triangle of X(1)
X(58387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1125, 3666, 6532}, {3743, 10180, 1125}, {4647, 53034, 19862}, {58380, 58386, 519}, {58381, 58386, 58380}, {58383, 58392, 516}, {58393, 58395, 758}


X(58388) = X(11)X(1962)∩X(100)X(4068)

Barycentrics    (b+c)*(4*a^5-2*a^4*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(-7*b^2+10*b*c-7*c^2)+a*(b-c)^2*(3*b^2+5*b*c+3*c^2)+2*a^2*(b^3+c^3)) : :
X(58388) = X[11]+3*X[1962], X[1387]+X[3743], -X[3035]+3*X[10180], X[4065]+3*X[32557], X[8143]+X[10035], 3*X[27804]+5*X[31272], -5*X[31235]+9*X[53034]

X(58388) lies on these lines: {11, 1962}, {100, 4068}, {528, 58381}, {740, 6667}, {900, 58401}, {952, 58380}, {1387, 3743}, {2800, 58393}, {2802, 58387}, {2829, 58383}, {3035, 10180}, {4065, 32557}, {5840, 58382}, {5848, 58384}, {5851, 58385}, {5854, 58386}, {8143, 10035}, {15368, 28217}, {18240, 20718}, {27804, 31272}, {31235, 53034}, {38055, 53035}, {44671, 46694}

X(58388) = midpoint of X(i) and X(j) for these {i,j}: {1387, 3743}, {8143, 10035}
X(58388) = center of the nine-point conic of quadrilateral XYZX(11) where XYZ is the cevian triangle of X(1)


X(58389) = X(1)X(7415)∩X(3)X(740)

Barycentrics    -((b+c)*(-5*a^6-4*a^5*(b+c)+b*c*(b^2-c^2)^2+4*a^3*(b+c)*(b^2+c^2)+a^4*(6*b^2-3*b*c+6*c^2)-a^2*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4))) : :
X(58389) = -X[4]+3*X[10180], X[20]+3*X[1962], -5*X[631]+3*X[27798], X[2292]+3*X[5731], -5*X[3091]+9*X[53034], -X[3146]+9*X[27811], 5*X[3522]+3*X[27804], -7*X[3523]+3*X[21020], -11*X[3525]+9*X[53039], -3*X[3576]+X[49598], -X[4647]+5*X[7987], 3*X[11203]+X[48923] and many others

X(58389) lies on these lines: {1, 7415}, {3, 740}, {4, 10180}, {20, 1962}, {30, 58381}, {515, 58386}, {516, 58380}, {517, 58399}, {631, 27798}, {758, 12675}, {971, 58395}, {1503, 58394}, {2292, 5731}, {2829, 58397}, {3091, 53034}, {3146, 27811}, {3522, 27804}, {3523, 21020}, {3525, 53039}, {3576, 49598}, {3743, 4297}, {4647, 7987}, {8680, 42443}, {11203, 48923}, {12114, 12567}, {15717, 17163}, {18444, 31880}, {20718, 58567}, {25124, 30273}, {28164, 58387}, {29057, 48893}, {29181, 58384}, {37528, 58391}, {44671, 58637}

X(58389) = midpoint of X(i) and X(j) for these {i,j}: {25124, 30273}, {3743, 4297}
X(58389) = reflection of X(i) in X(j) for these {i,j}: {58383, 58382}, {58386, 58392}
X(58389) = center of the nine-point conic of quadrilateral XYZX(20) where XYZ is the cevian triangle of X(1)
X(58389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 58382, 58383}, {515, 58392, 58386}, {58382, 58383, 58381}


X(58390) = X(1)X(21)∩X(37)X(40984)

Barycentrics    a*(b+c)*(3*a^4+b^4+a^2*b*c+b^3*c+b*c^3+c^4+2*a^3*(b+c)+2*a*(b^3+c^3)) : :
X(58390) = -X[2887]+3*X[10180], -X[6327]+9*X[27811], -5*X[31237]+9*X[53034]

X(58390) lies on these lines: {1, 21}, {37, 40984}, {42, 58697}, {200, 40977}, {209, 37593}, {228, 16600}, {612, 25081}, {674, 58384}, {740, 6679}, {744, 58396}, {752, 58381}, {2294, 5269}, {2835, 58401}, {2887, 10180}, {3052, 4016}, {3190, 3725}, {3666, 58624}, {3724, 5310}, {3744, 44661}, {4418, 17189}, {5266, 42671}, {6327, 27811}, {24394, 56178}, {25078, 54426}, {29634, 49512}, {31237, 53034}, {37528, 58392}

X(58390) = midpoint of X(i) and X(j) for these {i,j}: {3743, 49480}
X(58390)= pole of line {3733, 16612} with respect to the circumcircle
X(58390) = center of the nine-point conic of quadrilateral XYZX(31) where XYZ is the cevian triangle of X(1)
X(58390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {968, 1962, 3743}, {3743, 49480, 758}


X(58391) = X(1)X(21)∩X(37)X(714)

Barycentrics    a*(b+c)*(a*b*(a+b)^2+(a^3+a^2*b+2*a*b^2+b^3)*c+(2*a^2+2*a*b+b^2)*c^2+(a+b)*c^3) : :
X(58391) = -X[17165]+9*X[27811], -5*X[31264]+9*X[53034]

X(58391) lies on these lines: {1, 21}, {37, 714}, {43, 3728}, {537, 58381}, {740, 3666}, {893, 4362}, {980, 3980}, {984, 3725}, {1402, 16577}, {2092, 21085}, {2667, 17592}, {3210, 4647}, {3724, 3920}, {3752, 27798}, {3896, 4868}, {4065, 50608}, {4359, 19863}, {4697, 16696}, {4850, 21020}, {5283, 30646}, {9020, 58384}, {10453, 27804}, {10479, 32860}, {16602, 53039}, {17165, 27811}, {19582, 27785}, {21061, 21840}, {21814, 28594}, {22275, 37593}, {24165, 37592}, {24896, 33135}, {25081, 26242}, {25591, 27784}, {29110, 42653}, {31264, 53034}, {37528, 58389}, {37548, 58399}, {44671, 58642}

X(58391)= pole of line {17921, 24006} with respect to the polar circle
X(58391)= pole of line {2887, 5949} with respect to the Kiepert hyperbola
X(58391)= pole of line {798, 4481} with respect to the Steiner inellipse
X(58391)= pole of line {75, 7304} with respect to the Wallace hyperbola
X(58391) = center of the nine-point conic of quadrilateral XYZX(38) where XYZ is the cevian triangle of X(1)
X(58391) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(6378)}}, {{A, B, C, X(37), X(38832)}}, {{A, B, C, X(58), X(16606)}}, {{A, B, C, X(81), X(42027)}}
X(58391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 846, 38832}, {1962, 28606, 3743}, {10180, 25124, 43223}, {22024, 43223, 1215}


X(58392) = X(3)X(3743)∩X(40)X(1962)

Barycentrics    a*(b+c)*(3*a^5+3*a^4*(b+c)+a^3*(-4*b^2+b*c-4*c^2)+a*(b+c)^2*(b^2-3*b*c+c^2)+(b-c)^2*(b+c)*(b^2+b*c+c^2)-a^2*(b+c)*(4*b^2-b*c+4*c^2)) : :
X(58392) = X[40]+3*X[1962], -3*X[351]+X[38324], -5*X[631]+X[4647], -X[946]+3*X[10180], -X[962]+9*X[27811], X[2292]+3*X[3576], X[4065]+3*X[10164], -5*X[8227]+9*X[53034], -3*X[10165]+X[49598], 3*X[11203]+X[48897], -X[17164]+9*X[54445], -3*X[21020]+7*X[31423]

X(58392) lies on these lines: {3, 3743}, {40, 1962}, {351, 38324}, {515, 58386}, {516, 58383}, {517, 58380}, {581, 3725}, {631, 4647}, {740, 6684}, {758, 1385}, {946, 10180}, {962, 27811}, {2292, 3576}, {2294, 10268}, {2800, 58397}, {2820, 11615}, {3724, 10902}, {4065, 10164}, {4068, 10306}, {4155, 38327}, {5450, 12567}, {6001, 58395}, {6176, 31870}, {8227, 53034}, {8715, 24394}, {9940, 20718}, {9959, 48893}, {10158, 11499}, {10165, 49598}, {10267, 39475}, {11203, 48897}, {11221, 11491}, {11500, 25081}, {17164, 54445}, {19543, 27784}, {21020, 31423}, {28194, 58381}, {28234, 58399}, {29054, 58396}, {37528, 58390}, {44671, 58643}

X(58392) = midpoint of X(i) and X(j) for these {i,j}: {3, 3743}, {58386, 58389}, {9959, 48893}
X(58392) = reflection of X(i) in X(j) for these {i,j}: {58380, 58382}, {58383, 58387}
X(58392) = center of the nine-point conic of quadrilateral XYZX(40) where XYZ is the cevian triangle of X(1)
X(58392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 58387, 58383}, {517, 58382, 58380}, {58386, 58389, 515}


X(58393) = X(1)X(859)∩X(65)X(1962)

Barycentrics    a*(b+c)*(a^4*(b+c)-b*(b-c)^2*c*(b+c)-a^2*(b+c)*(b^2-9*b*c+c^2)-a*(b+c)^2*(b^2-4*b*c+c^2)+a^3*(b^2+6*b*c+c^2)) : :
X(58393) = X[65]+3*X[1962], 3*X[354]+X[2292], -X[960]+3*X[10180], -X[2650]+5*X[17609], -3*X[3742]+X[49598], -X[3869]+9*X[27811], X[4065]+3*X[5883], -X[4647]+5*X[5439], -5*X[25917]+9*X[53034]

X(58393) lies on these lines: {1, 859}, {10, 44671}, {37, 40978}, {40, 4068}, {65, 1962}, {341, 25295}, {354, 2292}, {513, 49743}, {517, 58380}, {518, 58385}, {740, 3812}, {758, 3636}, {942, 3743}, {960, 10180}, {1125, 58572}, {1834, 4890}, {2294, 42440}, {2392, 10108}, {2650, 17609}, {2667, 4646}, {2800, 58388}, {3695, 22279}, {3724, 37080}, {3742, 49598}, {3827, 58384}, {3869, 27811}, {3880, 58399}, {3931, 43220}, {4065, 5883}, {4647, 5439}, {6001, 58383}, {12564, 40636}, {16201, 44661}, {22300, 37593}, {25917, 53034}, {31880, 44840}, {44663, 58381}

X(58393) = midpoint of X(i) and X(j) for these {i,j}: {942, 3743}
X(58393) = reflection of X(i) in X(j) for these {i,j}: {58395, 58387}
X(58393)= pole of line {523, 1019} with respect to the DeLongchamps ellipse
X(58393) = center of the nine-point conic of quadrilateral XYZX(65) where XYZ is the cevian triangle of X(1)
X(58393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 58387, 58395}, {942, 3743, 20718}


X(58394) = X(6)X(10180)∩X(141)X(740)

Barycentrics    (b+c)*(a^4+b*c*(b^2+c^2)+2*a*(b+c)*(b^2+c^2)+a^2*(3*b^2-b*c+3*c^2)) : :
X(58394) = -X[6]+3*X[10180], X[69]+3*X[1962], -X[193]+9*X[27811], -5*X[3618]+9*X[53034], -7*X[3619]+3*X[21020], 5*X[3620]+3*X[27804], X[3743]+X[49511], -5*X[3763]+3*X[27798], X[25124]+X[49509]

X(58394) lies on these lines: {6, 10180}, {69, 1962}, {141, 740}, {193, 27811}, {511, 58383}, {518, 58385}, {524, 58381}, {742, 58400}, {1503, 58389}, {3564, 58382}, {3618, 53034}, {3619, 21020}, {3620, 27804}, {3743, 49511}, {3763, 27798}, {3842, 22277}, {5845, 58398}, {5846, 58399}, {5847, 58380}, {5848, 58397}, {9791, 26731}, {12567, 22769}, {20718, 58581}, {25124, 49509}, {34379, 58387}, {34381, 58395}, {44671, 58653}

X(58394) = midpoint of X(i) and X(j) for these {i,j}: {25124, 49509}, {3743, 49511}
X(58394) = center of the nine-point conic of quadrilateral XYZX(69) where XYZ is the cevian triangle of X(1)
X(58394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58385, 58386, 58396}


X(58395) = X(1)X(23114)∩X(72)X(1962)

Barycentrics    a*(b+c)*(a^3*(b-c)^2+a^4*(b+c)-a*(b+c)^4-b*c*(b+c)*(b^2+c^2)-a^2*(b+c)*(b^2+5*b*c+c^2)) : :
X(58395) = X[72]+3*X[1962], -X[942]+3*X[10180], X[960]+X[3743], -X[3868]+9*X[27811], 5*X[3876]+3*X[27804], X[4065]+3*X[10176], -X[4647]+5*X[25917], -5*X[5439]+9*X[53034]

X(58395) lies on these lines: {1, 23114}, {72, 1962}, {392, 1201}, {500, 45705}, {517, 50418}, {518, 58380}, {740, 5044}, {758, 3636}, {912, 58382}, {942, 10180}, {960, 3743}, {971, 58389}, {1125, 20718}, {1385, 12567}, {2771, 58397}, {3678, 44671}, {3725, 3931}, {3747, 5266}, {3811, 4068}, {3868, 27811}, {3876, 27804}, {4065, 10176}, {4075, 58644}, {4205, 40966}, {4647, 25917}, {5248, 42443}, {5439, 53034}, {6001, 58392}, {10108, 17770}, {34381, 58394}

X(58395) = midpoint of X(i) and X(j) for these {i,j}: {960, 3743}
X(58395) = reflection of X(i) in X(j) for these {i,j}: {58393, 58387}
X(58395) = center of the nine-point conic of quadrilateral XYZX(72) where XYZ is the cevian triangle of X(1)
X(58395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 58387, 58393}


X(58396) = X(2)X(2667)∩X(37)X(714)

Barycentrics    (b+c)*(a^2*b*(2*a+b)+a*(2*a+b)*(a+2*b)*c+(a+b)^2*c^2) : :
X(58396) = 3*X[2]+X[2667], X[75]+3*X[1962], -X[192]+9*X[27811], -X[3728]+5*X[4687], X[3743]+X[24325], -X[4647]+5*X[40328], 5*X[4699]+3*X[27804], -7*X[4751]+3*X[21020], X[25295]+7*X[27268]

X(58396) lies on these lines: {1, 27164}, {2, 2667}, {37, 714}, {75, 1962}, {86, 3747}, {192, 27811}, {518, 58385}, {536, 58381}, {726, 58387}, {740, 1125}, {742, 58384}, {744, 58390}, {758, 13476}, {872, 29822}, {1045, 25508}, {3728, 4687}, {3743, 24325}, {3842, 4015}, {4068, 15668}, {4647, 40328}, {4698, 6685}, {4699, 27804}, {4709, 46772}, {4751, 21020}, {6682, 58571}, {20718, 58583}, {22316, 37593}, {25295, 27268}, {25501, 27798}, {25660, 30571}, {28581, 58399}, {29010, 58382}, {29054, 58392}

X(58396) = midpoint of X(i) and X(j) for these {i,j}: {37, 25124}, {3743, 24325}
X(58396)= pole of line {2887, 6537} with respect to the Kiepert hyperbola
X(58396)= pole of line {798, 7192} with respect to the Steiner inellipse
X(58396)= pole of line {7304, 33770} with respect to the Wallace hyperbola
X(58396) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(1)
X(58396) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6378), X(39737)}}, {{A, B, C, X(16606), X(34585)}}
X(58396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 25124, 714}, {3728, 53034, 4687}, {10180, 25124, 37}, {58385, 58386, 58394}


X(58397) = X(11)X(10180)∩X(100)X(1255)

Barycentrics    a*(b+c)*(3*a^4+b^4-b^2*c^2+c^4-a^3*(b+c)-4*a^2*(b^2-b*c+c^2)+a*(b^3+c^3)) : :
X(58397) = -X[11]+3*X[10180], -X[149]+9*X[27811], X[214]+X[3743], X[19922]+X[48893], X[25124]+X[51062], -3*X[27798]+5*X[31235], -5*X[31272]+9*X[53034], -3*X[34123]+X[49598]

X(58397) lies on these lines: {11, 10180}, {100, 1255}, {104, 12567}, {149, 27811}, {214, 3743}, {512, 38018}, {528, 58381}, {740, 3035}, {758, 1319}, {952, 58382}, {2771, 58395}, {2800, 58392}, {2802, 37548}, {2829, 58389}, {4068, 13205}, {5840, 58383}, {5848, 58394}, {5851, 58398}, {5854, 58399}, {5856, 58385}, {9024, 58384}, {9978, 47625}, {19922, 48893}, {20718, 58591}, {25124, 51062}, {27798, 31235}, {31272, 53034}, {34123, 49598}, {44671, 58663}

X(58397) = midpoint of X(i) and X(j) for these {i,j}: {19922, 48893}, {214, 3743}, {25124, 51062}
X(58397) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(1)


X(58398) = X(7)X(10180)∩X(9)X(740)

Barycentrics    -((b+c)*(-5*a^4+b*(b-c)^2*c+2*a^3*(b+c)+2*a*b*c*(b+c)+a^2*(3*b^2+7*b*c+3*c^2))) : :
X(58398) = -X[7]+3*X[10180], X[144]+3*X[1962], X[2292]+3*X[52653], X[3743]+X[51090], -5*X[18230]+3*X[27798], -X[20059]+9*X[27811], X[25124]+X[51052]

X(58398) lies on these lines: {7, 10180}, {9, 740}, {144, 1962}, {516, 58386}, {518, 58399}, {527, 58381}, {758, 5572}, {971, 58389}, {1001, 12567}, {2292, 52653}, {3725, 4335}, {3743, 51090}, {5762, 58383}, {5843, 58382}, {5845, 58394}, {5850, 58380}, {5851, 58397}, {12579, 29181}, {18230, 27798}, {20059, 27811}, {20718, 58608}, {25124, 51052}, {44671, 58678}

X(58398) = midpoint of X(i) and X(j) for these {i,j}: {25124, 51052}, {3743, 51090}
X(58398) = center of the nine-point conic of quadrilateral XYZX(144) where XYZ is the cevian triangle of X(1)


X(58399) = X(1)X(75)∩X(8)X(10180)

Barycentrics    (b+c)*(5*a^3+3*a*b*c+5*a^2*(b+c)-b*c*(b+c)) : :
X(58399) = -X[8]+3*X[10180], X[145]+3*X[1962], X[2292]+3*X[3241], -X[2650]+5*X[3623], -5*X[3616]+3*X[27798], -5*X[3617]+9*X[53034], -X[3621]+9*X[27811], -7*X[3622]+3*X[21020], X[4065]+3*X[51071], -11*X[5550]+9*X[53039]

X(58399) lies on these lines: {1, 75}, {8, 10180}, {30, 49564}, {42, 52353}, {145, 1962}, {405, 49489}, {517, 58389}, {518, 58398}, {519, 49730}, {524, 12579}, {758, 3635}, {952, 58383}, {986, 48858}, {1125, 4891}, {2292, 3241}, {2650, 3623}, {3244, 3743}, {3616, 27798}, {3617, 53034}, {3621, 27811}, {3622, 21020}, {3880, 58393}, {3957, 31880}, {3983, 4946}, {4065, 51071}, {4068, 12513}, {4457, 19874}, {4658, 24850}, {5302, 49685}, {5550, 53039}, {5844, 58382}, {5846, 58394}, {5853, 58385}, {5854, 58397}, {6682, 35633}, {9053, 58384}, {17480, 20057}, {17751, 21806}, {19767, 25591}, {20718, 58609}, {27784, 50588}, {28234, 58392}, {28581, 58396}, {37548, 58391}, {44671, 58679}, {49477, 51715}

X(58399) = midpoint of X(i) and X(j) for these {i,j}: {25124, 49470}, {3244, 3743}
X(58399) = reflection of X(i) in X(j) for these {i,j}: {58386, 58380}
X(58399) = center of the nine-point conic of quadrilateral XYZX(145) where XYZ is the cevian triangle of X(1)
X(58399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1010, 5625}, {519, 58380, 58386}, {3623, 27804, 2650}, {4068, 12513, 12567}, {25124, 49470, 740}, {58380, 58386, 58381}


X(58400) = X(10)X(37)∩X(192)X(1962)

Barycentrics    (b+c)*(-(b^2*c^2)+3*a^3*(b+c)+a*b*c*(b+c)+a^2*(2*b+c)*(b+2*c)) : :
X(58400) = -X[75]+3*X[10180], X[192]+3*X[1962], -X[1278]+9*X[27811], X[2667]+3*X[4664], -X[3728]+5*X[4704], -5*X[4687]+3*X[27798], -5*X[4699]+9*X[53034], -3*X[21020]+7*X[27268]

X(58400) lies on circumconic {{A, B, C, X(2998), X(3842)}} and these lines: {10, 37}, {75, 10180}, {192, 1962}, {518, 58398}, {536, 58381}, {714, 4681}, {726, 58380}, {742, 58394}, {1278, 27811}, {2663, 32026}, {2667, 4664}, {3728, 4704}, {3747, 17319}, {4687, 27798}, {4699, 53034}, {9055, 58384}, {20718, 58620}, {21020, 27268}, {21080, 37593}, {25106, 46904}, {25123, 41839}, {28522, 58387}, {29010, 58383}, {44671, 58693}, {48855, 50111}

X(58400) = midpoint of X(i) and X(j) for these {i,j}: {192, 25124}, {3743, 3993}
X(58400) = center of the nine-point conic of quadrilateral XYZX(192) where XYZ is the cevian triangle of X(1)
X(58400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 22316, 3842}, {192, 1962, 25124}, {3743, 3993, 740}, {4704, 27804, 3728}


X(58401) = X(1)X(18174)∩X(37)X(3121)

Barycentrics    a*(b+c)*(a*b*(a+b)^2+(a^3-6*a^2*b-2*a*b^2+b^3)*c+2*a*(a-b)*c^2+(a+b)*c^3) : :
X(58401) = X[244]+3*X[1962]

X(58401) lies on these lines: {1, 18174}, {37, 3121}, {244, 1962}, {351, 4145}, {537, 58381}, {665, 4773}, {740, 4706}, {900, 58388}, {940, 53389}, {2292, 10179}, {2802, 37548}, {2835, 58390}, {3636, 3743}, {3716, 17724}, {3723, 5163}, {3752, 27804}, {3922, 3931}, {3999, 20718}, {4068, 4689}, {4427, 16726}, {6051, 34587}, {6685, 10180}, {16602, 17163}, {16728, 17154}, {22045, 43223}, {22313, 37593}, {27812, 31197}, {33148, 57023}, {37528, 58382}

X(58401) = midpoint of X(i) and X(j) for these {i,j}: {244, 14752}
X(58401)= pole of line {4145, 17154} with respect to the DeLongchamps ellipse
X(58401) = center of the nine-point conic of quadrilateral XYZX(244) where XYZ is the cevian triangle of X(1)
X(58401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {244, 1962, 14752}


X(58402) = X(2)X(33)∩X(5)X(515)

Barycentrics    2*a^6-a^4*(b-c)^2-a^5*(b+c)-2*a^3*b*c*(b+c)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b-c)^2*(b^2+3*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+4*b*c+c^2) : :
X(58402) = 3*X[2]+X[33], -5*X[631]+X[36984], -5*X[3091]+X[52848], 7*X[3624]+X[36985]

X(58402) lies on these lines: {2, 33}, {5, 515}, {10, 37696}, {197, 1001}, {406, 34823}, {519, 37729}, {551, 37697}, {631, 36984}, {971, 58460}, {1038, 4194}, {1848, 33849}, {1997, 27385}, {2635, 18652}, {2823, 6692}, {3091, 52848}, {3616, 19372}, {3624, 36985}, {3812, 6696}, {4698, 6677}, {5248, 6642}, {6668, 58465}, {6681, 52262}, {6700, 52260}, {6708, 13405}, {7392, 26105}, {7404, 10200}, {7532, 13411}, {9816, 40132}, {10157, 36949}, {11479, 25524}, {14767, 20530}, {16238, 58404}, {17073, 19541}, {18589, 19544}, {24983, 40950}, {27504, 54346}, {37034, 39579}, {58451, 58458}

X(58402) = midpoint of X(i) and X(j) for these {i,j}: {33, 34822}
X(58402) = complement of X(34822)
X(58402) = X(i)-complementary conjugate of X(j) for these {i, j}: {57393, 10}
X(58402) = center of the nine-point conic of quadrilateral XYZX(33) where XYZ is the cevian triangle of X(2)
X(58402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33, 34822}, {5, 1125, 58403}


X(58403) = X(2)X(34)∩X(5)X(515)

Barycentrics    2*a^7+a^6*(b+c)+2*a*(b-c)^4*(b+c)^2-a^2*(b-c)^2*(b+c)^3-2*a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+(b-c)^2*(b+c)^3*(b^2+c^2)-2*a^3*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4) : :
X(58403) = 3*X[2]+X[34], -5*X[631]+X[36986], -5*X[3091]+X[52849]

X(58403) lies on these lines: {2, 34}, {5, 515}, {10, 37697}, {142, 7535}, {475, 34822}, {551, 37696}, {631, 36986}, {942, 36949}, {1001, 11479}, {1040, 4200}, {1465, 34851}, {1877, 24984}, {2840, 6715}, {3091, 52849}, {3445, 44675}, {3589, 3812}, {3616, 9817}, {3636, 37729}, {5020, 22654}, {5084, 17917}, {5248, 9818}, {6667, 58465}, {6677, 6691}, {6681, 16238}, {6692, 6693}, {6706, 6707}, {6718, 58405}, {7404, 10198}, {9816, 28629}, {11108, 17073}, {18589, 37415}, {37800, 54396}, {52262, 58404}

X(58403) = midpoint of X(i) and X(j) for these {i,j}: {34, 34823}
X(58403) = complement of X(34823)
X(58403) = X(i)-complementary conjugate of X(j) for these {i, j}: {57394, 10}
X(58403) = center of the nine-point conic of quadrilateral XYZX(34) where XYZ is the cevian triangle of X(2)
X(58403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34, 34823}, {5, 1125, 58402}, {1125, 20201, 58411}


X(58404) = X(2)X(35)∩X(12)X(535)

Barycentrics    2*a^4-a*b*c*(b+c)+(b^2-c^2)^2-a^2*(3*b^2+2*b*c+3*c^2) : :
X(58404) = 3*X[2]+X[35], X[20]+3*X[52850], X[2975]+3*X[3584], X[3585]+3*X[17549], -5*X[3616]+X[11009], 7*X[3624]+X[11010], X[4324]+3*X[17577], 3*X[4995]+X[24390], X[6831]+3*X[21155], -X[11280]+9*X[25055], -X[12047]+3*X[38062], X[15338]+3*X[17530] and many others

X(58404) lies on circumconic {{A, B, C, X(20565), X(31262)}} and these lines: {2, 35}, {3, 3822}, {5, 20104}, {10, 2646}, {12, 535}, {20, 52850}, {21, 3814}, {30, 6668}, {36, 37291}, {37, 7749}, {55, 24387}, {56, 10197}, {140, 517}, {214, 24987}, {230, 25092}, {404, 14794}, {405, 31246}, {442, 52793}, {468, 1900}, {498, 993}, {515, 31659}, {516, 52265}, {518, 58569}, {519, 4999}, {549, 25466}, {551, 4848}, {631, 10198}, {632, 3816}, {758, 13411}, {908, 3647}, {1001, 3526}, {1155, 11263}, {1698, 4855}, {1737, 35016}, {2077, 6853}, {2320, 37706}, {2476, 5010}, {2779, 6699}, {2975, 3584}, {3035, 3634}, {3085, 8666}, {3149, 12558}, {3218, 37731}, {3525, 10200}, {3533, 26105}, {3555, 52638}, {3583, 7504}, {3585, 17549}, {3589, 9047}, {3614, 57002}, {3616, 11009}, {3624, 11010}, {3636, 15325}, {3678, 5745}, {3828, 47742}, {3829, 10386}, {3838, 31663}, {3847, 55856}, {3881, 13405}, {3911, 12432}, {4015, 6745}, {4187, 5326}, {4189, 7951}, {4299, 10585}, {4302, 6933}, {4324, 17577}, {4421, 31493}, {4426, 31501}, {4973, 13407}, {4995, 24390}, {5044, 58449}, {5054, 25524}, {5082, 5218}, {5251, 27529}, {5270, 5303}, {5437, 24468}, {5442, 27003}, {5450, 26487}, {6666, 58415}, {6667, 16239}, {6679, 20108}, {6685, 6693}, {6701, 58463}, {6796, 6862}, {6831, 21155}, {6857, 26364}, {6888, 44425}, {6891, 52769}, {6952, 10902}, {6972, 15931}, {6988, 12511}, {7080, 31458}, {7907, 27255}, {10039, 51111}, {10164, 12609}, {10176, 27385}, {10265, 24299}, {10483, 17548}, {10527, 25439}, {10895, 19535}, {11280, 25055}, {11281, 33815}, {12047, 38062}, {13747, 19862}, {15175, 45392}, {15296, 37612}, {15338, 17530}, {15865, 22766}, {16238, 58402}, {17575, 31235}, {17596, 24160}, {19547, 49553}, {19847, 24542}, {19878, 52264}, {22836, 26066}, {24914, 30143}, {25645, 32918}, {25669, 32781}, {26446, 30147}, {27065, 52126}, {29678, 37522}, {30478, 45701}, {31019, 37524}, {31253, 50205}, {31263, 37162}, {31423, 54318}, {31757, 34466}, {33140, 33771}, {33281, 38028}, {35258, 37692}, {37354, 39583}, {37573, 45939}, {37701, 56288}, {37816, 52244}, {38472, 58474}, {39595, 58380}, {41684, 51683}, {52262, 58403}, {58578, 58630}

X(58404) = midpoint of X(i) and X(j) for these {i,j}: {10, 2646}, {12, 5267}, {10039, 51111}, {35, 25639}, {3647, 14526}, {5, 33862}, {58569, 58640}
X(58404) = reflection of X(i) in X(j) for these {i,j}: {3881, 16193}
X(58404) = complement of X(25639)
X(58404) = X(i)-complementary conjugate of X(j) for these {i, j}: {57395, 10}
X(58404)= pole of line {3878, 37734} with respect to the Feuerbach hyperbola
X(58404)= pole of line {4278, 14792} with respect to the Stammler hyperbola
X(58404)= pole of line {17496, 23875} with respect to the Steiner inellipse
X(58404) = center of the nine-point conic of quadrilateral XYZX(35) where XYZ is the cevian triangle of X(2)
X(58404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25440, 3841}, {2, 35, 25639}, {2, 52367, 31262}, {12, 37298, 5267}, {12, 5267, 535}, {35, 31159, 20066}, {35, 31262, 52367}, {140, 1125, 6681}, {140, 6690, 1125}, {498, 6910, 993}, {632, 3816, 20107}, {1125, 58405, 3833}, {1125, 58441, 58405}, {1125, 6684, 3754}, {3035, 6675, 3634}, {5218, 26363, 8715}, {5432, 7483, 10}, {10527, 31452, 25439}, {22836, 26066, 54288}, {58569, 58640, 518}


X(58405) = X(2)X(46)∩X(10)X(56)

Barycentrics    2*a^4+a^3*(b+c)+a^2*(-3*b^2+2*b*c-3*c^2)+(b^2-c^2)^2-a*(b+c)*(b^2-4*b*c+c^2) : :
X(58405) = 3*X[2]+X[46], -3*X[551]+X[2098], -5*X[1698]+X[3436], X[1837]+3*X[16371], -5*X[3091]+X[52860], -5*X[3616]+X[30323], 3*X[3679]+X[36977], -3*X[4669]+X[36972], -3*X[4745]+2*X[33559], 3*X[5587]+X[37002], X[5687]+3*X[17728], 7*X[9780]+X[20076] and many others

X(58405) lies on these lines: {1, 6921}, {2, 46}, {5, 58415}, {10, 56}, {36, 24982}, {40, 6967}, {57, 21077}, {65, 13747}, {79, 31263}, {140, 517}, {142, 15296}, {404, 1737}, {442, 18977}, {484, 41012}, {498, 3306}, {499, 31224}, {515, 6924}, {516, 3825}, {518, 34753}, {519, 8256}, {529, 3828}, {551, 2098}, {595, 5121}, {631, 54318}, {758, 6700}, {908, 3336}, {942, 3035}, {946, 6958}, {960, 52264}, {993, 8582}, {997, 1788}, {998, 1722}, {999, 10915}, {1001, 35448}, {1054, 23537}, {1145, 20323}, {1155, 4187}, {1158, 6944}, {1210, 8069}, {1329, 3634}, {1376, 10916}, {1512, 37561}, {1656, 5880}, {1698, 3436}, {1706, 45700}, {1709, 6953}, {1738, 45939}, {1770, 4193}, {1837, 16371}, {2829, 6702}, {3086, 26062}, {3091, 52860}, {3304, 49626}, {3333, 45701}, {3338, 5552}, {3525, 28629}, {3526, 28628}, {3579, 3816}, {3616, 30323}, {3626, 38455}, {3628, 3838}, {3635, 5854}, {3649, 31235}, {3678, 20103}, {3679, 36977}, {3683, 17575}, {3687, 41822}, {3753, 5433}, {3814, 4292}, {3824, 6668}, {3831, 37255}, {3847, 22793}, {3874, 6745}, {3881, 58576}, {4004, 15950}, {4188, 10572}, {4190, 10826}, {4640, 17527}, {4666, 31452}, {4669, 36972}, {4745, 33559}, {4848, 30144}, {4973, 12527}, {5122, 57288}, {5123, 18990}, {5128, 25522}, {5248, 9843}, {5251, 5442}, {5253, 10039}, {5267, 19524}, {5432, 5439}, {5435, 5815}, {5437, 10198}, {5438, 49168}, {5445, 24987}, {5482, 58493}, {5554, 37618}, {5563, 6735}, {5587, 37002}, {5687, 17728}, {5794, 16417}, {5836, 15325}, {5883, 13411}, {5902, 27385}, {6261, 6970}, {6666, 6701}, {6667, 9955}, {6686, 8258}, {6718, 58403}, {6825, 8257}, {6911, 12616}, {6918, 12617}, {6925, 16209}, {6927, 12520}, {6959, 12608}, {6964, 54370}, {7354, 17619}, {8715, 11019}, {9780, 20076}, {10165, 30147}, {10175, 37821}, {10199, 12053}, {10528, 51816}, {10573, 35262}, {10680, 25524}, {11011, 34123}, {11024, 31188}, {11112, 17606}, {11231, 25466}, {11263, 16140}, {11573, 38472}, {12447, 54288}, {12559, 27383}, {13405, 50196}, {13407, 27003}, {15254, 51559}, {16408, 26066}, {17614, 40663}, {17700, 41540}, {17734, 24178}, {17757, 32636}, {19862, 37567}, {20104, 58463}, {20196, 54290}, {24881, 25451}, {24907, 25441}, {25005, 45287}, {25681, 36279}, {26363, 31231}, {28018, 37610}, {31141, 57005}, {31246, 51073}, {31286, 44314}, {31792, 32157}, {31896, 46830}, {32554, 38133}, {33596, 38760}, {35059, 42450}, {37762, 56318}, {58623, 58643}

X(58405) = midpoint of X(i) and X(j) for these {i,j}: {10, 56}, {1210, 25440}, {1329, 37582}, {34753, 47742}, {46, 21616}, {4848, 30144}, {5687, 49627}, {58573, 58645}, {8256, 24928}
X(58405) = reflection of X(i) in X(j) for these {i,j}: {1125, 6691}, {1329, 3634}, {3678, 58649}, {3881, 58576}, {50196, 58565}
X(58405) = complement of X(21616)
X(58405) = X(i)-complementary conjugate of X(j) for these {i, j}: {57403, 10}
X(58405) = center of the nine-point conic of quadrilateral XYZX(46) where XYZ is the cevian triangle of X(2)
X(58405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 46, 21616}, {40, 31190, 10200}, {57, 26364, 21077}, {140, 3812, 1125}, {404, 1737, 17647}, {474, 24914, 10}, {498, 3306, 51706}, {999, 37828, 10915}, {1125, 43174, 3884}, {1125, 58441, 58404}, {3086, 26062, 54286}, {3634, 12436, 3822}, {4193, 9352, 1770}, {5437, 31423, 10198}, {5687, 17728, 49627}, {8256, 24928, 519}, {9843, 10164, 5248}, {27003, 27529, 13407}, {31253, 58449, 6666}, {34753, 47742, 518}


X(58406) = X(2)X(48)∩X(140)X(916)

Barycentrics    2*a^5-2*a^3*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+b*c+c^2)-a^2*(b^3+c^3) : :
X(58406) = 3*X[2]+X[48], X[1826]+3*X[35290], -5*X[3091]+X[52862]

X(58406) lies on circumconic {{A, B, C, X(1969), X(31265)}} and these lines: {2, 48}, {36, 25651}, {71, 24581}, {140, 916}, {610, 24682}, {857, 22054}, {1125, 9895}, {1375, 34830}, {1826, 35290}, {2174, 26012}, {2317, 25000}, {2801, 6666}, {3091, 52862}, {3589, 6691}, {3634, 29219}, {3739, 40539}, {6690, 58434}, {8680, 40942}, {16608, 31186}, {17073, 24315}, {17438, 48381}, {18589, 24684}, {18671, 26208}, {20769, 28755}, {21231, 26006}, {22273, 43223}, {22356, 40999}, {22390, 37050}, {23305, 48932}, {25582, 30885}, {28845, 44412}

X(58406) = midpoint of X(i) and X(j) for these {i,j}: {48, 20305}
X(58406) = complement of X(20305)
X(58406) = X(i)-complementary conjugate of X(j) for these {i, j}: {57405, 10}
X(58406) = center of the nine-point conic of quadrilateral XYZX(48) where XYZ is the cevian triangle of X(2)
X(58406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21270, 31265}, {2, 48, 20305}, {48, 31163, 20074}, {48, 31265, 21270}, {140, 58457, 58410}


X(58407) = X(2)X(49)∩X(5)X(13367)

Barycentrics    2*a^10-6*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+a^6*(5*b^4+6*b^2*c^2+5*c^4)+a^4*(b^6+c^6)-3*a^2*(b^8-b^6*c^2-b^2*c^6+c^8) : :
X(58407) = 3*X[2]+X[49], 5*X[632]+X[43844], -5*X[3091]+X[52863], 3*X[7552]+X[37495]

X(58407) lies on these lines: {2, 49}, {3, 34798}, {5, 13367}, {30, 44516}, {140, 9729}, {143, 10020}, {184, 13561}, {389, 10125}, {403, 15807}, {468, 10095}, {511, 34577}, {567, 14940}, {632, 43844}, {1154, 7542}, {1209, 40111}, {1493, 3580}, {1495, 33332}, {1511, 13160}, {1594, 5944}, {2072, 10610}, {3091, 52863}, {3292, 21230}, {3530, 14156}, {3574, 7575}, {3628, 5972}, {5446, 18282}, {5447, 34004}, {5449, 11264}, {5462, 8254}, {5498, 40647}, {5946, 10018}, {6288, 54000}, {6676, 10627}, {6699, 34421}, {7552, 37495}, {7564, 17821}, {7568, 11064}, {9704, 23293}, {9707, 34514}, {9827, 32205}, {10024, 43394}, {10096, 10110}, {10224, 13470}, {10282, 39504}, {11430, 13406}, {12006, 44452}, {12038, 46029}, {12043, 40685}, {12233, 34477}, {12242, 16881}, {13363, 16238}, {13364, 44232}, {13413, 45286}, {13491, 37118}, {14389, 15026}, {14643, 35500}, {14865, 51548}, {15331, 18388}, {16197, 54044}, {16252, 32137}, {16625, 22051}, {16982, 32269}, {18403, 51033}, {18580, 32138}, {18583, 58450}, {18914, 20379}, {26883, 44287}, {34513, 37444}, {35487, 43865}, {37484, 52300}, {43598, 48411}, {44900, 58531}, {45958, 51425}, {45959, 52262}, {46172, 58455}, {55704, 55862}

X(58407) = midpoint of X(i) and X(j) for these {i,j}: {10024, 43394}, {140, 15806}, {1594, 5944}, {49, 34826}, {5, 13367}
X(58407) = complement of X(34826)
X(58407) = X(i)-complementary conjugate of X(j) for these {i, j}: {57406, 10}
X(58407)= pole of line {6102, 15332} with respect to the Jerabek hyperbola
X(58407)= pole of line {6243, 18570} with respect to the Stammler hyperbola
X(58407) = center of the nine-point conic of quadrilateral XYZX(49) where XYZ is the cevian triangle of X(2)
X(58407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 49, 34826}, {5, 13367, 30522}, {140, 15806, 13754}, {140, 9820, 11591}, {184, 13561, 45732}, {5972, 6689, 3628}, {7568, 11064, 32142}, {8254, 44234, 5462}, {10020, 23292, 143}, {10224, 18475, 13470}, {16252, 44236, 32137}, {34004, 46114, 5447}, {43839, 58447, 140}


X(58408) = X(2)X(53)∩X(5)X(182)

Barycentrics    2*a^8-3*a^6*(b^2+c^2)-5*a^2*(b^2-c^2)^2*(b^2+c^2)+3*a^4*(b^2+c^2)^2+(b^2-c^2)^2*(3*b^4-2*b^2*c^2+3*c^4) : :
X(58408) = 3*X[2]+X[53], -9*X[373]+X[6751], -5*X[631]+X[36988], -5*X[1656]+X[42353], 7*X[3090]+X[33971], 5*X[3091]+3*X[20792], -9*X[5055]+X[18437]

X(58408) lies on circumconic {{A, B, C, X(2980), X(8796)}} and these lines: {2, 53}, {5, 182}, {95, 297}, {141, 52251}, {157, 5020}, {373, 6751}, {441, 36412}, {631, 36988}, {1656, 42353}, {1990, 45198}, {2165, 13567}, {2790, 6722}, {2871, 9822}, {3090, 33971}, {3091, 20792}, {3628, 32428}, {4993, 37649}, {5055, 18437}, {6329, 23583}, {6642, 37813}, {6677, 44381}, {6720, 10127}, {6748, 52247}, {7392, 41761}, {11737, 40477}, {14767, 34573}, {17825, 17849}, {18380, 18420}, {18928, 18953}, {19188, 19212}, {33228, 53490}, {36748, 37174}, {45871, 55887}, {45872, 55892}

X(58408) = midpoint of X(i) and X(j) for these {i,j}: {53, 34828}
X(58408) = complement of X(34828)
X(58408) = X(i)-complementary conjugate of X(j) for these {i, j}: {57409, 10}
X(58408)= pole of line {32, 11433} with respect to the Kiepert hyperbola
X(58408)= pole of line {2979, 36748} with respect to the Stammler hyperbola
X(58408)= pole of line {33294, 57211} with respect to the Steiner inellipse
X(58408) = center of the nine-point conic of quadrilateral XYZX(53) where XYZ is the cevian triangle of X(2)
X(58408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53, 34828}, {14767, 44334, 34573}


X(58409) = X(2)X(70)∩X(125)X(1147)

Barycentrics    (a^2-b^2-c^2)*((b^2-c^2)^6*(b^2+c^2)-3*a^2*(b^2-c^2)^4*(b^2+c^2)^2+2*a^4*(b^2-c^2)^2*(b^2+c^2)^3+a^10*(b^4+c^4)+2*a^6*(b^4+c^4)*(b^4-b^2*c^2+c^4)-a^8*(3*b^6+b^4*c^2+b^2*c^4+3*c^6)) : :
X(58409) = 3*X[2]+X[70], X[3]+X[51757], X[5]+X[34115], -5*X[15059]+X[38534]

X(58409) lies on these lines: {2, 70}, {3, 51757}, {5, 34115}, {125, 1147}, {140, 13561}, {141, 15074}, {143, 10224}, {343, 1216}, {394, 3519}, {1209, 7509}, {2904, 5422}, {6642, 34438}, {6644, 49108}, {6689, 14076}, {6696, 31833}, {6699, 20299}, {7399, 40647}, {12585, 15118}, {13368, 32351}, {14788, 23330}, {14852, 22808}, {15059, 38534}, {22962, 23329}, {24206, 44516}, {26917, 37644}

X(58409) = midpoint of X(i) and X(j) for these {i,j}: {3, 51757}, {5, 34115}, {70, 34116}
X(58409) = complement of X(34116)
X(58409) = X(i)-complementary conjugate of X(j) for these {i, j}: {91, 34116}, {2158, 52032}, {57415, 10}
X(58409) = center of the nine-point conic of quadrilateral XYZX(70) where XYZ is the cevian triangle of X(2)
X(58409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 70, 34116}


X(58410) = X(2)X(71)∩X(5)X(516)

Barycentrics    2*a^4*(b+c)+b*(b-c)^2*c*(b+c)+a*(b^2-c^2)^2-a^3*(b^2+c^2)-a^2*(b+c)*(2*b^2+b*c+2*c^2) : :
X(58410) = 3*X[2]+X[71], X[3]+X[51758], -7*X[3526]+X[43165], -5*X[15059]+X[38535], X[21231]+X[40937], 7*X[31423]+X[33536]

X(58410) lies on these lines: {2, 71}, {3, 51758}, {5, 516}, {9, 15669}, {10, 15624}, {140, 916}, {141, 5745}, {219, 25523}, {440, 910}, {469, 1839}, {674, 3589}, {899, 2293}, {1269, 3977}, {1376, 8053}, {1788, 42289}, {2772, 6699}, {3011, 21035}, {3526, 43165}, {3812, 4698}, {3831, 17279}, {3911, 17245}, {5224, 18650}, {5294, 27042}, {6696, 58458}, {6818, 26040}, {13405, 22277}, {14021, 26063}, {15059, 38535}, {17260, 50198}, {17277, 54316}, {17348, 56176}, {18589, 24317}, {20305, 30810}, {20992, 25613}, {21012, 48381}, {21231, 40937}, {22054, 31016}, {25341, 40942}, {25362, 41010}, {31423, 33536}, {37111, 40999}, {40940, 56926}

X(58410) = midpoint of X(i) and X(j) for these {i,j}: {21231, 40937}, {3, 51758}, {71, 34830}
X(58410) = complement of X(34830)
X(58410) = X(i)-complementary conjugate of X(j) for these {i, j}: {57416, 10}
X(58410)= pole of line {20970, 40940} with respect to the Kiepert hyperbola
X(58410)= pole of line {4064, 20294} with respect to the Steiner inellipse
X(58410) = center of the nine-point conic of quadrilateral XYZX(71) where XYZ is the cevian triangle of X(2)
X(58410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 71, 34830}, {140, 58457, 58406}, {6666, 6684, 40530}


X(58411) = X(2)X(73)∩X(5)X(515)

Barycentrics    2*a^6*(b+c)+b*(b-c)^2*c*(b+c)^3+a^5*(b^2+c^2)+2*a^2*(b-c)^2*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-a^4*(b+c)*(4*b^2-3*b*c+4*c^2)-2*a^3*(b^4+c^4) : :
X(58411) = 3*X[2]+X[73]

X(58411) lies on these lines: {2, 73}, {3, 51759}, {5, 515}, {140, 58460}, {141, 6700}, {142, 16415}, {960, 20617}, {1001, 15622}, {1745, 25490}, {2594, 26013}, {2779, 6699}, {3589, 6691}, {3812, 6685}, {3911, 56412}, {4300, 26095}, {5125, 40950}, {6675, 36949}, {6681, 6689}, {6690, 6696}, {6692, 20108}, {11374, 17073}, {13411, 17056}, {18134, 27385}, {22053, 27506}, {22350, 37154}, {23361, 25524}, {25517, 54411}, {25525, 37093}, {28628, 43223}

X(58411) = midpoint of X(i) and X(j) for these {i,j}: {3, 51759}, {73, 34831}, {960, 20617}
X(58411) = complement of X(34831)
X(58411) = X(i)-complementary conjugate of X(j) for these {i, j}: {57417, 10}
X(58411)= pole of line {56560, 57243} with respect to the Steiner inellipse
X(58411) = center of the nine-point conic of quadrilateral XYZX(73) where XYZ is the cevian triangle of X(2)
X(58411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 73, 34831}, {1125, 20201, 58403}


X(58412) = X(2)X(77)∩X(3)X(142)

Barycentrics    2*a^5+a^4*(b+c)-2*a^2*(b-c)^2*(b+c)+(b-c)^2*(b+c)^3-4*a^3*(b^2+c^2)+2*a*(b-c)^2*(b^2+c^2) : :
X(58412) = 3*X[2]+X[77]

X(58412) lies on these lines: {2, 77}, {3, 142}, {10, 53996}, {37, 44356}, {141, 6700}, {241, 40942}, {348, 27384}, {515, 21239}, {1442, 26001}, {1445, 24553}, {3589, 58466}, {3686, 6510}, {3739, 17044}, {3946, 17043}, {4000, 44675}, {4648, 13411}, {4682, 13405}, {4869, 27385}, {5437, 54420}, {5745, 53415}, {5908, 6684}, {6666, 36949}, {6692, 6703}, {6706, 6707}, {6711, 40555}, {6745, 17296}, {8074, 18161}, {9120, 37407}, {11108, 47441}, {14743, 20328}, {16578, 17355}, {17077, 26006}, {17758, 56227}, {17917, 37276}, {21258, 28639}, {26660, 27170}, {31435, 34498}

X(58412) = midpoint of X(i) and X(j) for these {i,j}: {77, 20262}
X(58412) = complement of X(20262)
X(58412) = perspector of circumconic {{A, B, C, X(43190), X(53642)}}
X(58412) = X(i)-complementary conjugate of X(j) for these {i, j}: {947, 3452}, {40396, 41883}, {40417, 21244}, {55987, 1329}, {57418, 10}
X(58412)= pole of line {4025, 8058} with respect to the Steiner inellipse
X(58412)= pole of line {27398, 33297} with respect to the Wallace hyperbola
X(58412) = center of the nine-point conic of quadrilateral XYZX(77) where XYZ is the cevian triangle of X(2)
X(58412) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1440), X(14377)}}, {{A, B, C, X(8808), X(15320)}}
X(58412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 77, 20262}, {31534, 31535, 946}


X(58413) = X(2)X(45)∩X(8)X(1120)

Barycentrics    2*a^3-4*a^2*(b+c)-5*a*(b^2-4*b*c+c^2)+(b+c)*(b^2-4*b*c+c^2) : :

X(58413) lies on these lines: {2, 45}, {8, 1120}, {320, 51415}, {528, 25377}, {1125, 1387}, {1698, 24222}, {3589, 58414}, {3623, 43290}, {3911, 6687}, {3960, 21198}, {4013, 58423}, {4152, 9041}, {4395, 8610}, {4763, 6009}, {5437, 21362}, {6692, 36949}, {6703, 40539}, {6714, 22102}, {12035, 24841}, {14951, 16604}, {17337, 30608}, {17367, 31233}, {23808, 25380}, {24216, 49702}, {25351, 45310}, {31190, 40537}, {36812, 40546}, {40532, 52259}, {40533, 40538}

X(58413) = midpoint of X(i) and X(j) for these {i,j}: {88, 16594}
X(58413) = complement of X(16594)
X(58413) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2415, 514}
X(58413) = X(i)-complementary conjugate of X(j) for these {i, j}: {9456, 52871}, {40400, 121}
X(58413)= pole of line {900, 1120} with respect to the Steiner inellipse
X(58413) = center of the nine-point conic of quadrilateral XYZX(88) where XYZ is the cevian triangle of X(2)
X(58413) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1120), X(31227)}}, {{A, B, C, X(3445), X(52206)}}, {{A, B, C, X(4358), X(31271)}}
X(58413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24183, 37691}, {2, 30578, 31271}, {2, 43055, 4422}, {2, 88, 16594}, {88, 16594, 545}, {88, 31171, 20092}, {88, 31271, 30578}


X(58414) = X(2)X(44)∩X(65)X(392)

Barycentrics    4*a^3+a^2*(b+c)-a*(b^2-10*b*c+c^2)+2*(b^3+c^3) : :

X(58414) lies on circumconic {{A, B, C, X(30608), X(42285)}} and these lines: {2, 44}, {37, 51583}, {65, 392}, {88, 17382}, {354, 58443}, {894, 4997}, {996, 36919}, {1698, 37607}, {3306, 17290}, {3589, 58413}, {3707, 5241}, {3742, 29638}, {3752, 26747}, {4049, 4369}, {4152, 49529}, {5437, 9816}, {6692, 14557}, {14475, 47761}, {16594, 50115}, {16604, 16610}, {17023, 32043}, {17122, 29861}, {17320, 30577}, {17351, 30578}, {17360, 37684}, {17369, 30818}, {17720, 42697}, {19701, 31231}, {25378, 28534}, {27757, 37633}, {28600, 50362}, {29569, 32851}, {29848, 58560}, {31187, 31244}, {31202, 47352}, {31285, 54357}, {31993, 37634}, {35466, 36812}, {37691, 50116}, {39595, 42051}

X(58414) = inverse of X(29908) in Steiner inellipse
X(58414) = perspector of circumconic {{A, B, C, X(4597), X(46480)}}
X(58414) = X(i)-complementary conjugate of X(j) for these {i, j}: {40401, 21251}, {40426, 2887}
X(58414)= pole of line {4777, 29908} with respect to the Steiner inellipse
X(58414) = center of the nine-point conic of quadrilateral XYZX(89) where XYZ is the cevian triangle of X(2)
X(58414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24593, 17237}, {2, 39704, 27751}, {2, 4675, 30823}, {89, 31172, 20093}


X(58415) = X(2)X(90)∩X(10)X(55)

Barycentrics    2*a^7-a^6*(b+c)+(b-c)^4*(b+c)^3-2*a*(b-c)^2*(b+c)^4-6*a^5*(b^2+c^2)+2*a^3*(b+c)^2*(3*b^2-4*b*c+3*c^2)-a^2*(b+c)*(b^2+c^2)*(3*b^2-4*b*c+3*c^2)+a^4*(b+c)*(3*b^2-2*b*c+3*c^2) : :
X(58415) = 3*X[2]+X[90], -5*X[1656]+X[41688]

X(58415) lies on these lines: {2, 90}, {5, 58405}, {10, 55}, {63, 499}, {142, 6861}, {912, 1125}, {960, 1387}, {1656, 41688}, {1728, 21077}, {3825, 5745}, {3874, 44675}, {3911, 7702}, {5840, 6684}, {6666, 58404}, {6675, 58461}, {6681, 6705}, {6692, 6701}, {6713, 13369}, {6734, 45393}, {6832, 12609}, {6928, 24042}, {10052, 37692}, {10198, 45632}, {43740, 54357}

X(58415) = midpoint of X(i) and X(j) for these {i,j}: {90, 41540}
X(58415) = complement of X(41540)
X(58415) = center of the nine-point conic of quadrilateral XYZX(90) where XYZ is the cevian triangle of X(2)
X(58415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 90, 41540}


X(58416) = X(2)X(94)∩X(5)X(113)

Barycentrics    2*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)-4*a^8*(b^4+c^4)+a^6*(b^2+c^2)*(6*b^4-7*b^2*c^2+6*c^4)+a^2*(b^2-c^2)^2*(b^6+c^6)-4*a^4*(b^8-b^4*c^4+c^8) : :
X(58416) = 3*X[2]+X[94]

X(58416) lies on these lines: {2, 94}, {3, 46260}, {5, 113}, {468, 6036}, {1637, 6334}, {1995, 9756}, {2023, 47298}, {2986, 40879}, {3124, 13881}, {3258, 51847}, {3580, 34827}, {5461, 44569}, {6699, 18780}, {7542, 15366}, {11062, 46106}, {11064, 16310}, {13567, 34989}, {14061, 16080}, {15928, 40352}, {23292, 41665}, {23583, 37649}, {34981, 36190}, {37643, 39143}, {41673, 53577}

X(58416) = midpoint of X(i) and X(j) for these {i,j}: {94, 34834}
X(58416) = complement of X(34834)
X(58416) = X(i)-complementary conjugate of X(j) for these {i, j}: {12028, 18589}, {40427, 2887}
X(58416)= pole of line {3003, 3580} with respect to the Kiepert hyperbola
X(58416)= pole of line {50, 43574} with respect to the Stammler hyperbola
X(58416)= pole of line {265, 526} with respect to the Steiner inellipse
X(58416) = center of the nine-point conic of quadrilateral XYZX(94) where XYZ is the cevian triangle of X(2)
X(58416) = intersection, other than A, B, C, of circumconics {{A, B, C, X(94), X(43917)}}, {{A, B, C, X(34834), X(40427)}}
X(58416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 94, 34834}, {5, 47208, 41670}


X(58417) = X(2)X(95)∩X(3)X(6750)

Barycentrics    2*a^12-8*a^10*(b^2+c^2)-4*a^2*(b^2-c^2)^4*(b^2+c^2)+(b^2-c^2)^4*(b^4+c^4)-12*a^6*(b^2+c^2)*(b^4+c^4)+a^8*(13*b^4+20*b^2*c^2+13*c^4)+8*a^4*(b^8-b^6*c^2-b^2*c^6+c^8) : :

X(58417) lies on circumconic {{A, B, C, X(275), X(35717)}} and these lines: {2, 95}, {3, 6750}, {140, 389}, {216, 56297}, {372, 8955}, {465, 6116}, {466, 6117}, {631, 3183}, {3078, 35884}, {3533, 56346}, {3788, 17811}, {5972, 32438}, {6761, 40448}, {7499, 34841}, {8613, 36412}, {10600, 19179}, {10979, 11547}, {11064, 50671}, {14165, 36422}, {15066, 56347}, {22052, 52280}, {26897, 31881}, {31626, 37766}, {37649, 58454}

X(58417) = midpoint of X(i) and X(j) for these {i,j}: {97, 34836}
X(58417) = complement of X(34836)
X(58417)= pole of line {233, 23292} with respect to the Kiepert hyperbola
X(58417)= pole of line {216, 13434} with respect to the Stammler hyperbola
X(58417)= pole of line {3484, 6368} with respect to the Steiner inellipse
X(58417) = center of the nine-point conic of quadrilateral XYZX(97) where XYZ is the cevian triangle of X(2)
X(58417) = barycentric product X(i)*X(j) for these (i, j): {35717, 69}
X(58417) = barycentric quotient X(i)/X(j) for these (i, j): {35717, 4}
X(58417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 275, 233}, {2, 97, 34836}


X(58418) = X(2)X(101)∩X(5)X(6712)

Barycentrics    2*a^4+2*a^2*b*c-2*a^3*(b+c)-3*a*(b-c)^2*(b+c)+3*(b-c)^2*(b^2+b*c+c^2) : :
X(58418) = -9*X[2]+X[101], X[103]+7*X[3090], -X[118]+5*X[1656], -X[152]+17*X[7486], 3*X[381]+X[38773], -5*X[632]+X[38599], -X[1282]+17*X[19872], 5*X[3091]+3*X[38692], 7*X[3523]+X[10725], -11*X[3525]+3*X[38690], 7*X[3526]+X[10739], -9*X[3545]+X[10727] and many others

X(58418) lies on these lines: {2, 101}, {4, 38771}, {5, 6712}, {10, 11726}, {103, 3090}, {118, 1656}, {152, 7486}, {381, 38773}, {511, 58519}, {514, 40483}, {632, 38599}, {928, 58426}, {1282, 19872}, {2772, 12900}, {2774, 6723}, {2784, 6721}, {2786, 6722}, {2801, 58421}, {2807, 58419}, {2808, 3628}, {2809, 3634}, {2810, 34573}, {2811, 58424}, {2812, 58425}, {2813, 58427}, {2822, 58431}, {2825, 58430}, {3091, 38692}, {3523, 10725}, {3525, 38690}, {3526, 10739}, {3545, 10727}, {3619, 10756}, {3624, 50896}, {3843, 38766}, {3848, 58592}, {3851, 38765}, {3887, 6667}, {5055, 10741}, {5056, 33521}, {5067, 38770}, {5070, 38764}, {6688, 58505}, {8363, 38644}, {9518, 58428}, {9780, 10695}, {10175, 11714}, {11230, 11728}, {11712, 19862}, {11793, 58507}, {13374, 58665}, {17675, 42316}, {19876, 50898}, {23513, 53741}, {23514, 53732}, {23515, 53751}, {28346, 31253}, {31235, 53739}, {31274, 53730}, {33520, 38774}, {36518, 53714}, {38572, 38775}, {38668, 46936}, {43651, 58057}, {50903, 54447}, {51526, 55861}, {58451, 58612}, {58594, 58631}

X(58418) = midpoint of X(i) and X(j) for these {i,j}: {10, 11726}, {103, 38769}, {116, 6710}, {11793, 58507}, {13374, 58665}, {4, 38771}, {5, 6712}, {58592, 58684}, {58594, 58631}, {58612, 58664}
X(58418) = reflection of X(i) in X(j) for these {i,j}: {20401, 58420}, {35024, 6710}, {58420, 3628}
X(58418) = complement of X(6710)
X(58418)= pole of line {23887, 44006} with respect to the Steiner inellipse
X(58418) = center of the nine-point conic of quadrilateral XYZX(116) where XYZ is the cevian triangle of X(2)
X(58418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 116, 6710}, {2, 31273, 116}, {116, 6710, 544}, {544, 6710, 35024}, {1656, 57297, 118}, {2808, 3628, 58420}, {2808, 58420, 20401}, {3848, 58684, 58592}


X(58419) = X(2)X(102)∩X(5)X(6718)

Barycentrics    2*a^10-2*a^9*(b+c)-3*a*(b-c)^6*(b+c)^3+a^8*(-8*b^2+6*b*c-8*c^2)+3*(b^2-c^2)^4*(b^2-b*c+c^2)+a^4*(b-c)^2*(b^2+b*c+c^2)*(b^2+22*b*c+c^2)+3*a^7*(b+c)*(3*b^2-2*b*c+3*c^2)-3*a^5*(b-c)^2*(b+c)*(5*b^2+2*b*c+5*c^2)+a^3*(b-c)^4*(b+c)*(11*b^2+14*b*c+11*c^2)+3*a^6*(3*b^4-7*b^3*c+4*b^2*c^2-7*b*c^3+3*c^4)-a^2*(b^2-c^2)^2*(7*b^4+3*b^3*c-12*b^2*c^2+3*b*c^3+7*c^4) : :
X(58419) = -9*X[2]+X[102], X[109]+7*X[3090], -X[124]+5*X[1656], 3*X[381]+X[38785], -5*X[632]+X[38600], 5*X[3091]+3*X[38697], 7*X[3523]+X[10726], -11*X[3525]+3*X[38691], 7*X[3526]+X[10740], -9*X[3545]+X[10732], 7*X[3619]+X[10757], 7*X[3624]+X[50899] and many others

X(58419) lies on these lines: {2, 102}, {4, 38783}, {5, 6718}, {10, 11727}, {109, 3090}, {124, 1656}, {381, 38785}, {511, 58520}, {632, 38600}, {928, 58420}, {2773, 12900}, {2779, 6723}, {2785, 6721}, {2792, 6722}, {2800, 3812}, {2807, 58418}, {2814, 58422}, {2815, 58423}, {2816, 58424}, {2817, 3634}, {2818, 3628}, {2819, 58427}, {2846, 58431}, {2853, 58430}, {3091, 38697}, {3523, 10726}, {3525, 38691}, {3526, 10740}, {3545, 10732}, {3619, 10757}, {3624, 50899}, {3738, 58421}, {3817, 14690}, {3843, 38778}, {3848, 58593}, {3851, 38777}, {5055, 10747}, {5067, 38782}, {5070, 38776}, {6688, 58506}, {7486, 33650}, {9532, 58428}, {9780, 10696}, {10175, 11700}, {11230, 11734}, {11713, 19862}, {11793, 58513}, {13374, 58670}, {13532, 54447}, {19876, 50901}, {23513, 53742}, {23514, 53734}, {23515, 53758}, {31235, 53740}, {31274, 53731}, {36518, 53717}, {36519, 53724}, {38573, 38787}, {38674, 46936}, {38786, 46219}, {43651, 58051}, {51527, 55861}, {58600, 58631}

X(58419) = midpoint of X(i) and X(j) for these {i,j}: {10, 11727}, {109, 38781}, {117, 6711}, {11793, 58513}, {13374, 58670}, {4, 38783}, {5, 6718}, {58593, 58685}, {58600, 58631}
X(58419) = reflection of X(i) in X(j) for these {i,j}: {58426, 3628}
X(58419) = complement of X(6711)
X(58419) = center of the nine-point conic of quadrilateral XYZX(117) where XYZ is the cevian triangle of X(2)
X(58419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 117, 6711}, {3526, 10740, 38784}, {3848, 58685, 58593}


X(58420) = X(2)X(103)∩X(5)X(6710)

Barycentrics    2*a^8-2*a^7*(b+c)-8*a^3*b*(b-c)^2*c*(b+c)-3*a*(b-c)^4*(b+c)^3+a^6*(-6*b^2+2*b*c-6*c^2)+3*(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^5*(b+c)*(5*b^2+2*b*c+5*c^2)-4*a^2*(b-c)^2*(b^4+c^4)+a^4*(5*b^4-7*b^3*c-8*b^2*c^2-7*b*c^3+5*c^4) : :
X(58420) = -9*X[2]+X[103], X[4]+3*X[38772], X[101]+7*X[3090], -X[116]+5*X[1656], -X[150]+17*X[7486], 3*X[381]+5*X[38774], -3*X[549]+X[38771], -5*X[631]+X[38773], -5*X[632]+X[38601], 5*X[3091]+3*X[38690], 7*X[3523]+X[10727], -11*X[3525]+3*X[38692] and many others

X(58420) lies on these lines: {2, 103}, {4, 38772}, {5, 6710}, {10, 11728}, {101, 3090}, {116, 1656}, {150, 7486}, {381, 38774}, {511, 58521}, {544, 547}, {549, 38771}, {631, 38773}, {632, 38601}, {928, 58419}, {2772, 6723}, {2774, 12900}, {2784, 6722}, {2786, 6721}, {2801, 3848}, {2807, 58426}, {2808, 3628}, {2811, 58431}, {2820, 58422}, {2821, 58423}, {2822, 58424}, {2823, 58425}, {2824, 58427}, {2825, 58428}, {3046, 43651}, {3091, 38690}, {3523, 10727}, {3525, 38692}, {3526, 10741}, {3545, 10725}, {3619, 10758}, {3624, 50903}, {3887, 58421}, {5054, 38765}, {5055, 10739}, {5056, 33520}, {5067, 31273}, {5070, 57297}, {6688, 58507}, {8363, 38645}, {9518, 58430}, {9780, 10697}, {10171, 28346}, {10175, 11712}, {11230, 11726}, {11714, 19862}, {11793, 58505}, {13374, 58664}, {15694, 38768}, {15720, 38766}, {19872, 39156}, {19876, 50905}, {23513, 53739}, {23514, 53730}, {23515, 53747}, {31235, 53741}, {31274, 53732}, {33521, 38767}, {35018, 35024}, {36518, 53712}, {36519, 53721}, {38574, 55857}, {38666, 46936}, {38770, 55856}, {50896, 54447}, {51528, 55861}, {58451, 58665}, {58592, 58631}

X(58420) = midpoint of X(i) and X(j) for these {i,j}: {10, 11728}, {118, 6712}, {11793, 58505}, {13374, 58664}, {20401, 58418}, {38601, 38769}, {5, 6710}, {58592, 58631}, {58594, 58686}
X(58420) = reflection of X(i) in X(j) for these {i,j}: {58418, 3628}
X(58420) = complement of X(6712)
X(58420) = center of the nine-point conic of quadrilateral XYZX(118) where XYZ is the cevian triangle of X(2)
X(58420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 118, 6712}, {3848, 58686, 58594}, {20401, 58418, 2808}, {58594, 58686, 2801}


X(58421) = X(2)X(104)∩X(11)X(498)

Barycentrics    2*a^7-2*a^6*(b+c)-a*(b-3*c)*(b-c)^2*(3*b-c)*(b+c)^2+3*(b-c)^4*(b+c)^3+a^5*(-7*b^2+4*b*c-7*c^2)-8*a^2*(b-c)^2*(b+c)*(b^2+b*c+c^2)+a^4*(b+c)*(7*b^2-2*b*c+7*c^2)+2*a^3*(4*b^4-7*b^3*c-7*b*c^3+4*c^4) : :
X(58421) = -9*X[2]+X[104], -X[3]+5*X[31235], X[4]+3*X[38760], X[100]+7*X[3090], -X[149]+17*X[7486], X[214]+3*X[10175], X[355]+3*X[34123], 3*X[381]+X[24466], 3*X[549]+X[22799], -5*X[631]+X[38761], -5*X[632]+X[38602], X[1145]+3*X[5886] and many others

X(58421) lies on these lines: {2, 104}, {3, 31235}, {4, 38760}, {5, 3035}, {10, 11729}, {11, 498}, {80, 13384}, {100, 3090}, {140, 2829}, {149, 7486}, {214, 10175}, {355, 34123}, {381, 24466}, {485, 13991}, {486, 13922}, {499, 10956}, {511, 58522}, {515, 58453}, {518, 58604}, {528, 547}, {549, 22799}, {631, 38761}, {632, 38602}, {952, 1125}, {1145, 5886}, {1317, 5790}, {1387, 11230}, {1484, 10197}, {1537, 26446}, {1698, 13253}, {1768, 19872}, {2771, 6723}, {2783, 6722}, {2787, 6721}, {2800, 3634}, {2801, 58418}, {2803, 58431}, {2806, 58430}, {2826, 58422}, {2827, 58423}, {2828, 58424}, {2830, 58427}, {2831, 58428}, {3036, 19907}, {3045, 43651}, {3091, 34474}, {3523, 10728}, {3525, 38693}, {3526, 10742}, {3533, 12248}, {3545, 10724}, {3614, 45976}, {3619, 10759}, {3624, 12751}, {3738, 58419}, {3814, 5841}, {3847, 32141}, {3848, 58595}, {3887, 58420}, {4187, 31659}, {4996, 6946}, {5054, 38753}, {5055, 6174}, {5056, 10993}, {5067, 31272}, {5070, 37725}, {5071, 13199}, {5316, 11231}, {5326, 7489}, {5848, 24206}, {5854, 5901}, {6068, 38107}, {6154, 51517}, {6265, 19860}, {6688, 58508}, {6842, 55297}, {6863, 31246}, {6881, 8068}, {6882, 31263}, {6911, 51506}, {6920, 17100}, {6931, 11499}, {6959, 22753}, {6961, 45631}, {6969, 35238}, {6978, 18491}, {6981, 11248}, {7393, 54065}, {7988, 14217}, {7989, 12119}, {8252, 13977}, {8253, 13913}, {8363, 38646}, {8582, 9952}, {8674, 12900}, {9780, 10698}, {9897, 30315}, {9913, 16419}, {10171, 16174}, {10199, 32213}, {10202, 12665}, {10427, 38108}, {11484, 13222}, {11698, 20418}, {11715, 19862}, {11793, 58504}, {12019, 22935}, {12767, 15017}, {12773, 55857}, {13374, 58663}, {14503, 57341}, {14504, 57340}, {14561, 51007}, {15694, 38756}, {15720, 38754}, {15863, 31399}, {17531, 18861}, {19081, 32786}, {19082, 32785}, {19876, 50908}, {21635, 38133}, {23514, 53729}, {23515, 53743}, {26492, 30283}, {31274, 53733}, {31423, 34789}, {32789, 48700}, {32790, 48701}, {35018, 35023}, {36518, 53711}, {36519, 53720}, {38119, 47355}, {38665, 46936}, {38755, 46219}, {42582, 48715}, {42583, 48714}, {51529, 55861}, {58451, 58613}, {58591, 58631}

X(58421) = midpoint of X(i) and X(j) for these {i,j}: {10, 11729}, {119, 6713}, {11698, 20418}, {11793, 58504}, {12019, 22935}, {13374, 58663}, {22799, 38759}, {3036, 19907}, {34126, 38758}, {38319, 38752}, {38602, 38757}, {5, 3035}, {6667, 20400}, {58591, 58631}, {58595, 58687}, {58604, 58674}, {58613, 58666}
X(58421) = reflection of X(i) in X(j) for these {i,j}: {6667, 3628}
X(58421) = complement of X(6713)
X(58421) = center of the nine-point conic of quadrilateral XYZX(119) where XYZ is the cevian triangle of X(2)
X(58421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10711, 38069}, {2, 119, 6713}, {5, 3035, 5840}, {11, 1656, 38319}, {100, 3090, 23513}, {381, 38762, 24466}, {549, 22799, 38759}, {952, 3628, 6667}, {1656, 38752, 11}, {3526, 10742, 21154}, {3624, 12751, 38032}, {3848, 58687, 58595}, {6667, 20400, 952}, {9780, 10698, 38128}, {11698, 34126, 20418}, {11698, 55856, 34126}, {20418, 38758, 11698}, {21635, 51073, 38133}, {22935, 38182, 12019}, {58451, 58613, 58666}, {58604, 58674, 518}


X(58422) = X(2)X(11)∩X(10)X(11730)

Barycentrics    2*a^5-2*a^4*(b+c)+3*(b-c)^2*(b+c)*(b^2+c^2)-a^3*(b^2+8*b*c+c^2)+a^2*(b+c)*(b^2+10*b*c+c^2)-a*(b^2+4*b*c+c^2)*(3*b^2-4*b*c+3*c^2) : :
X(58422) = 3*X[5]+X[38619], -5*X[632]+X[38603], X[1292]+7*X[3090], -5*X[1656]+X[5511], 5*X[3091]+3*X[38712], 7*X[3523]+X[10729], -11*X[3525]+3*X[38694], 7*X[3526]+X[10743], -9*X[3545]+X[44983], 7*X[3619]+X[10760], 7*X[3624]+X[50911], -3*X[3848]+X[58596] and many others

X(58422) lies on these lines: {2, 11}, {5, 38619}, {10, 11730}, {632, 38603}, {1292, 3090}, {1358, 52422}, {1656, 5511}, {2775, 12900}, {2788, 6721}, {2795, 6722}, {2809, 3634}, {2814, 58419}, {2820, 58420}, {2826, 58421}, {2832, 58423}, {2833, 58424}, {2834, 58425}, {2835, 58426}, {2836, 6723}, {2837, 58427}, {2838, 58428}, {3039, 46835}, {3091, 38712}, {3523, 10729}, {3525, 38694}, {3526, 10743}, {3545, 44983}, {3619, 10760}, {3624, 50911}, {3628, 28915}, {3848, 58596}, {5055, 15521}, {5070, 57299}, {5540, 19872}, {5852, 51400}, {6668, 6706}, {6688, 58509}, {7486, 34547}, {8363, 38647}, {9520, 58431}, {9523, 58430}, {9780, 10699}, {11716, 19862}, {19876, 50913}, {30742, 56796}, {38575, 55857}, {38684, 46936}, {43651, 58055}, {51530, 55861}, {53573, 55133}

X(58422) = midpoint of X(i) and X(j) for these {i,j}: {10, 11730}, {120, 6714}
X(58422) = inverse of X(20095) in orthoptic circle of the Steiner Inellipse
X(58422) = complement of X(6714)
X(58422)= pole of line {3837, 55137} with respect to the nine-point circle
X(58422)= pole of line {2826, 20095} with respect to the orthoptic circle of the Steiner Inellipse
X(58422) = center of the nine-point conic of quadrilateral XYZX(120) where XYZ is the cevian triangle of X(2)
X(58422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 120, 6714}, {120, 6714, 528}, {1656, 57327, 5511}


X(58423) = X(2)X(106)∩X(10)X(11731)

Barycentrics    2*a^4-2*a^3*(b+c)-3*a*(b+c)*(b^2-6*b*c+c^2)+3*(b+c)^2*(b^2-3*b*c+c^2)-10*a^2*(b^2-b*c+c^2) : :
X(58423) = -9*X[2]+X[106], 3*X[5]+X[38620], -5*X[632]+X[38604], -X[1054]+17*X[19872], X[1293]+7*X[3090], -5*X[1656]+X[5510], 15*X[1698]+X[13541], 5*X[3091]+3*X[38713], 7*X[3523]+X[10730], -11*X[3525]+3*X[38695], 7*X[3526]+X[10744], -9*X[3545]+X[44984] and many others

X(58423) lies on these lines: {2, 106}, {5, 38620}, {10, 11731}, {511, 58523}, {632, 38604}, {1054, 19872}, {1293, 3090}, {1656, 5510}, {1698, 13541}, {2776, 12900}, {2789, 6721}, {2796, 6722}, {2802, 3634}, {2810, 34573}, {2815, 58419}, {2821, 58420}, {2827, 58421}, {2832, 58422}, {2839, 58424}, {2840, 58425}, {2841, 58426}, {2842, 6723}, {2843, 58427}, {2844, 58428}, {3091, 38713}, {3523, 10730}, {3525, 38695}, {3526, 10744}, {3545, 44984}, {3619, 10761}, {3624, 50914}, {3628, 53790}, {3848, 58597}, {4013, 58413}, {5055, 15522}, {5070, 57300}, {6688, 58510}, {7486, 34548}, {8363, 38648}, {9524, 58431}, {9527, 58430}, {9780, 10700}, {11717, 19862}, {11814, 51073}, {19876, 50915}, {38576, 55857}, {38685, 46936}, {43651, 58054}, {51531, 55861}, {58451, 58667}

X(58423) = midpoint of X(i) and X(j) for these {i,j}: {10, 11731}, {121, 6715}
X(58423) = complement of X(6715)
X(58423) = center of the nine-point conic of quadrilateral XYZX(121) where XYZ is the cevian triangle of X(2)
X(58423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 121, 6715}, {1656, 57328, 5510}


X(58424) = X(2)X(107)∩X(3)X(33892)

Barycentrics    2*a^12-2*a^10*(b^2+c^2)+28*a^6*(b^2-c^2)^2*(b^2+c^2)+a^8*(-13*b^4+28*b^2*c^2-13*c^4)-8*a^4*(b^2-c^2)^2*(2*b^4+7*b^2*c^2+2*c^4)+(b^2-c^2)^4*(3*b^4+8*b^2*c^2+3*c^4)-2*a^2*(b^2-c^2)^2*(b^6-13*b^4*c^2-13*b^2*c^4+c^6) : :
X(58424) = -9*X[2]+X[107], -X[133]+5*X[1656], 3*X[549]+X[49117], -5*X[631]+X[3184], -5*X[632]+X[38605], X[1294]+7*X[3090], 5*X[3091]+3*X[38714], 7*X[3523]+X[10152], -11*X[3525]+3*X[23239], 7*X[3526]+X[10745], -17*X[3533]+X[5667], -9*X[3545]+X[44985] and many others

X(58424) lies on these lines: {2, 107}, {3, 33892}, {5, 34842}, {10, 11732}, {133, 1656}, {140, 2777}, {511, 58524}, {549, 49117}, {631, 3184}, {632, 38605}, {1294, 3090}, {2790, 6721}, {2797, 6722}, {2803, 6667}, {2811, 58418}, {2816, 58419}, {2822, 58420}, {2828, 58421}, {2833, 58422}, {2839, 58423}, {2845, 58425}, {2846, 58426}, {2847, 58427}, {2848, 58428}, {3091, 38714}, {3523, 10152}, {3525, 23239}, {3526, 10745}, {3533, 5667}, {3545, 44985}, {3619, 10762}, {3624, 50916}, {3628, 53803}, {3848, 58598}, {5054, 23240}, {5055, 22337}, {5070, 57301}, {6688, 58511}, {6723, 9033}, {7393, 14703}, {7486, 34549}, {7503, 40082}, {8363, 38649}, {9780, 10701}, {11718, 19862}, {14673, 16419}, {38577, 55857}, {38686, 46936}, {43651, 58067}, {46219, 52057}, {51532, 55861}, {58451, 58668}

X(58424) = midpoint of X(i) and X(j) for these {i,j}: {10, 11732}, {122, 6716}, {5, 34842}
X(58424) = reflection of X(i) in X(j) for these {i,j}: {58431, 3628}
X(58424) = complement of X(6716)
X(58424)= pole of line {39352, 39473} with respect to the Steiner inellipse
X(58424) = center of the nine-point conic of quadrilateral XYZX(122) where XYZ is the cevian triangle of X(2)
X(58424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 122, 6716}, {122, 6716, 9530}, {1656, 57329, 133}, {3091, 38714, 38956}, {3628, 53803, 58431}


X(58425) = X(2)X(108)∩X(10)X(11733)

Barycentrics    2*a^9-2*a^8*(b+c)+5*a^6*(b-c)^2*(b+c)+a^7*(-5*b^2+12*b*c-5*c^2)+3*(b-c)^4*(b+c)^3*(b^2+c^2)-a^4*(b-c)^2*(b+c)*(b^2-16*b*c+c^2)+a^5*(b-c)^2*(b^2-12*b*c+c^2)-a*(b^2-c^2)^2*(3*b^4-14*b^3*c+10*b^2*c^2-14*b*c^3+3*c^4)+a^3*(b-c)^2*(5*b^4-2*b^3*c-26*b^2*c^2-2*b*c^3+5*c^4)-a^2*(b-c)^2*(b+c)*(5*b^4+12*b^3*c-10*b^2*c^2+12*b*c^3+5*c^4) : :
X(58425) = -9*X[2]+X[108], 3*X[5]+X[38622], -5*X[632]+X[38606], X[1295]+7*X[3090], -5*X[1656]+X[25640], 5*X[3091]+3*X[38715], 7*X[3523]+X[10731], -11*X[3525]+3*X[38696], 7*X[3526]+X[10746], -9*X[3545]+X[44986], 7*X[3619]+X[10763], 7*X[3624]+X[50917] and many others

X(58425) lies on these lines: {2, 108}, {5, 38622}, {10, 11733}, {140, 2829}, {511, 58525}, {632, 38606}, {1295, 3090}, {1656, 25640}, {2778, 12900}, {2791, 6721}, {2798, 6722}, {2804, 6667}, {2812, 58418}, {2817, 3634}, {2823, 58420}, {2834, 58422}, {2840, 58423}, {2845, 58424}, {2849, 58426}, {2850, 6723}, {2851, 58427}, {3091, 38715}, {3523, 10731}, {3525, 38696}, {3526, 10746}, {3545, 44986}, {3619, 10763}, {3624, 50917}, {3848, 58599}, {5055, 33566}, {5070, 57302}, {6688, 58512}, {7393, 54064}, {7486, 34550}, {9528, 58431}, {9780, 10702}, {11719, 19862}, {38578, 55857}, {38687, 46936}, {43651, 58063}, {51533, 55861}, {58451, 58669}

X(58425) = midpoint of X(i) and X(j) for these {i,j}: {10, 11733}, {123, 6717}
X(58425) = complement of X(6717)
X(58425) = center of the nine-point conic of quadrilateral XYZX(123) where XYZ is the cevian triangle of X(2)
X(58425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 123, 6717}, {1656, 57330, 25640}


X(58426) = X(2)X(109)∩X(5)X(6711)

Barycentrics    2*a^6-2*a^5*(b+c)+5*a^3*(b-c)^2*(b+c)-3*a*(b-c)^4*(b+c)-2*a^4*(b^2-3*b*c+c^2)+3*(b^2-c^2)^2*(b^2-b*c+c^2)-a^2*(b-c)^2*(3*b^2+11*b*c+3*c^2) : :
X(58426) = -9*X[2]+X[109], X[4]+3*X[38784], X[102]+7*X[3090], -X[117]+5*X[1656], -X[151]+17*X[7486], 3*X[381]+5*X[38786], -3*X[549]+X[38783], -5*X[631]+X[38785], -5*X[632]+X[38607], -3*X[1125]+X[47115], 5*X[3091]+3*X[38691], 7*X[3523]+X[10732] and many others

X(58426) lies on these lines: {2, 109}, {4, 38784}, {5, 6711}, {10, 11734}, {102, 3090}, {117, 1656}, {151, 7486}, {381, 38786}, {511, 58526}, {549, 38783}, {631, 38785}, {632, 38607}, {928, 58418}, {1125, 47115}, {2773, 6723}, {2779, 12900}, {2785, 6722}, {2792, 6721}, {2800, 3634}, {2807, 58420}, {2816, 58431}, {2818, 3628}, {2835, 58422}, {2841, 58423}, {2846, 58424}, {2849, 58425}, {2852, 58427}, {2853, 58428}, {3091, 38691}, {3523, 10732}, {3525, 38697}, {3526, 10747}, {3545, 10726}, {3619, 10764}, {3624, 13532}, {3738, 6667}, {3848, 58600}, {5054, 38777}, {5055, 10740}, {5070, 57303}, {6688, 58513}, {9532, 58430}, {9780, 10703}, {10175, 11713}, {11230, 11727}, {11700, 19862}, {11793, 58506}, {15694, 38780}, {15720, 38778}, {19876, 50918}, {23513, 53740}, {23514, 53731}, {23515, 53749}, {31235, 53742}, {31274, 53734}, {36518, 53713}, {38579, 55857}, {38667, 46936}, {38779, 46219}, {38782, 55856}, {43651, 58060}, {50899, 54447}, {51534, 55861}, {58451, 58670}, {58593, 58631}

X(58426) = midpoint of X(i) and X(j) for these {i,j}: {10, 11734}, {124, 6718}, {11793, 58506}, {38607, 38781}, {5, 6711}, {58593, 58631}
X(58426) = reflection of X(i) in X(j) for these {i,j}: {58419, 3628}
X(58426) = complement of X(6718)
X(58426) = center of the nine-point conic of quadrilateral XYZX(124) where XYZ is the cevian triangle of X(2)
X(58426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 124, 6718}, {1656, 38776, 117}, {2818, 3628, 58419}


X(58427) = X(2)X(99)∩X(4)X(38803)

Barycentrics    2*a^6-8*a^4*(b^2+c^2)+a^2*(-7*b^4+40*b^2*c^2-7*c^4)+3*(b^2+c^2)*(b^4-4*b^2*c^2+c^4) : :
X(58427) = 3*X[5]+X[38623], 3*X[381]+X[38805], -5*X[632]+X[14650], X[1296]+7*X[3090], -5*X[1656]+X[5512], 5*X[3091]+3*X[38716], 7*X[3523]+X[10734], -11*X[3525]+3*X[38698], 7*X[3526]+X[10748], -17*X[3533]+X[14654], -9*X[3545]+X[44987], 7*X[3619]+X[10765] and many others

X(58427) lies on these lines: {2, 99}, {4, 38803}, {5, 38623}, {6, 52881}, {140, 23699}, {381, 38805}, {511, 58527}, {632, 14650}, {1296, 3090}, {1656, 5512}, {2780, 12900}, {2793, 6721}, {2805, 6667}, {2813, 58418}, {2819, 58419}, {2824, 58420}, {2830, 58421}, {2837, 58422}, {2843, 58423}, {2847, 58424}, {2851, 58425}, {2852, 58426}, {2854, 6723}, {3091, 38716}, {3523, 10734}, {3525, 38698}, {3526, 10748}, {3533, 14654}, {3545, 44987}, {3619, 10765}, {3624, 50924}, {3628, 33962}, {3843, 38798}, {3848, 58602}, {3851, 38797}, {5055, 22338}, {5067, 38802}, {5070, 38796}, {6688, 58514}, {7393, 14657}, {8363, 38651}, {9529, 58431}, {9780, 10704}, {10124, 32424}, {10162, 44574}, {11258, 38807}, {11721, 19862}, {11835, 42274}, {11836, 42277}, {14645, 32525}, {19876, 50926}, {28662, 51126}, {31235, 53744}, {36883, 47355}, {38688, 46936}, {38806, 46219}, {40486, 44377}, {43651, 58059}, {51535, 55861}, {52698, 55858}, {58451, 58672}

X(58427) = midpoint of X(i) and X(j) for these {i,j}: {126, 6719}, {140, 40340}, {1296, 38801}, {4, 38803}, {5, 40556}
X(58427) = inverse of X(20094) in orthoptic circle of the Steiner Inellipse
X(58427) = complement of X(6719)
X(58427)= pole of line {2793, 20094} with respect to the orthoptic circle of the Steiner Inellipse
X(58427)= pole of line {690, 57087} with respect to the Steiner inellipse
X(58427) = center of the nine-point conic of quadrilateral XYZX(126) where XYZ is the cevian triangle of X(2)
X(58427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 126, 6719}, {126, 6719, 543}, {126, 9172, 14360}, {140, 40340, 23699}, {1656, 57331, 5512}, {3526, 10748, 38804}


X(58428) = X(2)X(112)∩X(5)X(19160)

Barycentrics    2*a^10-2*a^8*(b^2+c^2)-a^4*(b^2-c^2)^2*(b^2+c^2)+a^6*(b^4+c^4)-a^2*(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)+3*(b^10-b^8*c^2-b^2*c^8+c^10) : :
X(58428) = -9*X[2]+X[112], -5*X[5]+X[19160], -X[132]+5*X[1656], 3*X[549]+X[19163], -5*X[631]+X[14689], -5*X[632]+X[38608], X[1297]+7*X[3090], 5*X[3091]+3*X[38717], 7*X[3523]+X[10735], -11*X[3525]+3*X[38699], 7*X[3526]+X[10749], -17*X[3533]+X[13200] and many others

X(58428) lies on these lines: {2, 112}, {5, 19160}, {132, 1656}, {140, 2794}, {485, 13985}, {486, 13918}, {511, 58528}, {547, 9530}, {549, 19163}, {625, 44337}, {631, 14689}, {632, 38608}, {1297, 3090}, {2781, 12900}, {2799, 6722}, {2806, 6667}, {2825, 58420}, {2831, 58421}, {2838, 58422}, {2844, 58423}, {2848, 58424}, {2853, 58426}, {3091, 38717}, {3523, 10735}, {3525, 38699}, {3526, 10749}, {3533, 13200}, {3545, 44988}, {3619, 10766}, {3624, 13280}, {3628, 53795}, {3848, 58603}, {5055, 12918}, {5070, 57304}, {5071, 12253}, {6688, 58515}, {6723, 9517}, {7393, 19165}, {7486, 12384}, {7514, 34217}, {7866, 51454}, {8252, 13992}, {8253, 13923}, {8363, 38652}, {9518, 58418}, {9532, 58419}, {9780, 10705}, {10175, 12265}, {11484, 12413}, {11641, 16419}, {11722, 19862}, {12784, 54447}, {13154, 15562}, {13221, 19872}, {13310, 55857}, {14900, 46219}, {15694, 48681}, {19114, 32786}, {19115, 32785}, {28343, 51126}, {31235, 53745}, {31274, 53737}, {32789, 49270}, {32790, 49271}, {38689, 46936}, {42582, 49219}, {42583, 49218}, {43651, 58064}, {51536, 55861}, {58451, 58673}

X(58428) = midpoint of X(i) and X(j) for these {i,j}: {127, 6720}, {5, 34841}
X(58428) = reflection of X(i) in X(j) for these {i,j}: {58430, 3628}
X(58428) = complement of X(6720)
X(58428) = center of the nine-point conic of quadrilateral XYZX(127) where XYZ is the cevian triangle of X(2)
X(58428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 127, 6720}, {1656, 57332, 132}, {3628, 53795, 58430}


X(58429) = X(2)X(128)∩X(5)X(13372)

Barycentrics    2*a^16-14*a^14*(b^2+c^2)+(b^2-c^2)^6*(3*b^4+b^2*c^2+3*c^4)+14*a^12*(3*b^4+4*b^2*c^2+3*c^4)-a^10*(b^2+c^2)*(73*b^4+10*b^2*c^2+73*c^4)-a^2*(b^2-c^2)^4*(17*b^6+8*b^4*c^2+8*b^2*c^4+17*c^6)-3*a^6*(b^2+c^2)*(24*b^8-35*b^6*c^2+40*b^4*c^4-35*b^2*c^6+24*c^8)+a^4*(b^2-c^2)^2*(44*b^8+9*b^6*c^2+18*b^4*c^4+9*b^2*c^6+44*c^8)+a^8*(85*b^8+44*b^6*c^2+48*b^4*c^4+44*b^2*c^6+85*c^8) : :
X(58429) = 3*X[2]+X[128], -X[137]+5*X[1656], 3*X[547]+X[6592], 5*X[632]+3*X[23237], X[930]+7*X[3090], 3*X[1209]+X[27423], -X[1263]+9*X[15699], 5*X[3091]+3*X[38706], 7*X[3523]+X[44981], -11*X[3525]+3*X[38710], 7*X[3526]+X[31656], -9*X[3545]+X[44976] and many others

X(58429) lies on these lines: {2, 128}, {5, 13372}, {137, 1656}, {547, 6592}, {632, 23237}, {930, 3090}, {1209, 27423}, {1263, 15699}, {3091, 38706}, {3523, 44981}, {3525, 38710}, {3526, 31656}, {3545, 44976}, {3628, 25150}, {5070, 57324}, {6723, 16239}, {7393, 15959}, {7486, 11671}, {7514, 23320}, {12026, 48154}, {12900, 45147}, {14072, 55856}, {15960, 16419}, {38587, 55857}, {38681, 46936}, {43651, 58062}

X(58429) = midpoint of X(i) and X(j) for these {i,j}: {128, 34837}, {5, 13372}
X(58429) = reflection of X(i) in X(j) for these {i,j}: {58432, 3628}
X(58429) = complement of X(34837)
X(58429) = center of the nine-point conic of quadrilateral XYZX(128) where XYZ is the cevian triangle of X(2)
X(58429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 128, 34837}, {632, 23237, 38618}, {930, 3090, 23516}, {1656, 57316, 137}, {3628, 25150, 58432}


X(58430) = X(2)X(107)∩X(5)X(2794)

Barycentrics    2*a^14-8*a^12*(b^2+c^2)-4*a^6*(b^2-c^2)^2*(b^4+c^4)+3*(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)-a^8*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)+2*a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)+a^10*(9*b^4+8*b^2*c^2+9*c^4)-a^2*(7*b^12-8*b^10*c^2+b^8*c^4+b^4*c^8-8*b^2*c^10+7*c^12) : :
X(58430) = X[112]+7*X[3090], -X[127]+5*X[1656], 3*X[381]+X[14689], 3*X[549]+X[19160], -5*X[632]+X[38624], 5*X[3091]+3*X[38699], 7*X[3523]+X[44988], -11*X[3525]+3*X[38717], 7*X[3526]+X[12918], -17*X[3533]+X[12253], -9*X[3545]+X[10735], 7*X[3624]+X[12784] and many others

X(58430) lies on these lines: {2, 107}, {5, 2794}, {112, 3090}, {114, 23583}, {127, 1656}, {381, 14689}, {485, 13992}, {486, 13923}, {511, 58529}, {549, 19160}, {632, 38624}, {2781, 6688}, {2799, 6721}, {2806, 58421}, {2825, 58418}, {2831, 6667}, {2848, 58431}, {2853, 58419}, {3091, 38699}, {3523, 44988}, {3525, 38717}, {3526, 12918}, {3533, 12253}, {3545, 10735}, {3624, 12784}, {3628, 53795}, {5020, 19165}, {5055, 10749}, {5056, 14900}, {5070, 57332}, {5071, 13200}, {5562, 16224}, {6642, 34217}, {7486, 13219}, {8252, 13985}, {8253, 13918}, {8889, 13611}, {9517, 12900}, {9518, 58420}, {9523, 58422}, {9527, 58423}, {9532, 58426}, {9780, 13099}, {10011, 58464}, {10128, 58432}, {10175, 11722}, {10314, 11610}, {11484, 11641}, {11793, 58515}, {12265, 19862}, {12408, 19872}, {12413, 16419}, {13115, 55857}, {13280, 54447}, {13374, 58673}, {14489, 51454}, {15694, 48658}, {19093, 32786}, {19094, 32785}, {23513, 53745}, {23514, 53737}, {23515, 53760}, {32789, 49218}, {32790, 49219}, {36518, 53719}, {38676, 46936}, {42582, 49271}, {42583, 49270}, {43651, 58049}, {58603, 58631}

X(58430) = midpoint of X(i) and X(j) for these {i,j}: {132, 34841}, {11793, 58515}, {13374, 58673}, {5, 6720}, {58603, 58631}
X(58430) = reflection of X(i) in X(j) for these {i,j}: {58428, 3628}
X(58430) = complement of X(34841)
X(58430)= pole of line {39473, 40867} with respect to the Steiner inellipse
X(58430) = center of the nine-point conic of quadrilateral XYZX(132) where XYZ is the cevian triangle of X(2)
X(58430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 132, 34841}, {5, 6720, 2794}, {132, 34841, 9530}, {3628, 53795, 58428}


X(58431) = X(2)X(133)∩X(5)X(1539)

Barycentrics    2*a^16-8*a^14*(b^2+c^2)+(b-c)^6*(b+c)^6*(3*b^2+c^2)*(b^2+3*c^2)+a^12*(3*b^4+20*b^2*c^2+3*c^4)+12*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(4*b^4+3*b^2*c^2+4*c^4)+2*a^10*(b^2+c^2)*(16*b^4-35*b^2*c^2+16*c^4)-a^8*(b^2-c^2)^2*(65*b^4+74*b^2*c^2+65*c^4)-2*a^2*(b^2-c^2)^4*(4*b^6-5*b^4*c^2-5*b^2*c^4+4*c^6)-a^4*(b^2-c^2)^2*(7*b^8+66*b^6*c^2-18*b^4*c^4+66*b^2*c^6+7*c^8) : :
X(58431) = 3*X[2]+X[133], 3*X[3]+X[38956], X[107]+7*X[3090], -X[122]+5*X[1656], 3*X[381]+X[3184], -5*X[632]+X[38621], 5*X[3091]+3*X[23239], 7*X[3523]+X[44985], -11*X[3525]+3*X[38714], 7*X[3526]+X[22337], -9*X[3545]+X[10152], 7*X[3851]+X[23240] and many others

X(58431) lies on these lines: {2, 133}, {3, 38956}, {5, 1539}, {107, 3090}, {122, 1656}, {381, 3184}, {402, 48378}, {511, 58530}, {547, 9530}, {632, 38621}, {2790, 6722}, {2797, 6721}, {2803, 58421}, {2811, 58420}, {2816, 58426}, {2822, 58418}, {2828, 6667}, {2846, 58419}, {2848, 58430}, {3091, 23239}, {3523, 44985}, {3525, 38714}, {3526, 22337}, {3545, 10152}, {3628, 53803}, {3851, 23240}, {5020, 14703}, {5055, 10745}, {5056, 52057}, {5070, 57329}, {5071, 5667}, {7486, 34186}, {9033, 12900}, {9520, 58422}, {9524, 58423}, {9528, 58425}, {9529, 58427}, {10175, 11718}, {11230, 11732}, {11484, 14673}, {11793, 58511}, {13374, 58668}, {14356, 41768}, {15183, 47087}, {23515, 53757}, {36518, 53716}, {36519, 53723}, {38591, 55857}, {38672, 46936}, {43651, 58048}, {50916, 54447}, {58598, 58631}

X(58431) = midpoint of X(i) and X(j) for these {i,j}: {133, 34842}, {11793, 58511}, {13374, 58668}, {5, 6716}, {58598, 58631}
X(58431) = reflection of X(i) in X(j) for these {i,j}: {58424, 3628}
X(58431) = complement of X(34842)
X(58431) = center of the nine-point conic of quadrilateral XYZX(133) where XYZ is the cevian triangle of X(2)
X(58431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 133, 34842}, {5, 6716, 2777}, {107, 3090, 36520}


X(58432) = X(2)X(137)∩X(5)X(11701)

Barycentrics    2*a^12-8*a^10*(b^2+c^2)+(b^2-c^2)^4*(3*b^4-b^2*c^2+3*c^4)+2*a^8*(7*b^4+8*b^2*c^2+7*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(11*b^4-13*b^2*c^2+11*c^4)-a^6*(17*b^6+7*b^4*c^2+7*b^2*c^4+17*c^6)+a^4*(17*b^8-12*b^6*c^2+8*b^4*c^4-12*b^2*c^6+17*c^8) : :
X(58432) = 3*X[2]+X[137], X[3]+3*X[23516], -X[128]+5*X[1656], 3*X[547]+X[12026], 5*X[632]+3*X[25147], X[1141]+7*X[3090], X[1263]+7*X[55856], 5*X[3091]+3*X[38710], 7*X[3523]+X[44976], -11*X[3525]+3*X[38706], -9*X[3545]+X[44981], -9*X[5055]+X[31656] and many others

X(58432) lies on these lines: {2, 137}, {3, 23516}, {5, 11701}, {30, 25339}, {128, 1656}, {468, 15366}, {547, 12026}, {632, 25147}, {1141, 3090}, {1263, 55856}, {3091, 38710}, {3523, 44976}, {3525, 38706}, {3545, 44981}, {3628, 25150}, {5020, 15959}, {5055, 31656}, {5067, 47065}, {5070, 57316}, {5972, 45258}, {6592, 48154}, {6642, 23320}, {6721, 11548}, {6722, 40490}, {6723, 45147}, {7570, 7711}, {8254, 23281}, {10128, 58430}, {11451, 13504}, {11465, 13505}, {11484, 15960}, {12900, 15088}, {13512, 55857}, {14072, 15699}, {14769, 37990}, {15367, 50143}, {16336, 44674}, {34128, 43966}, {35311, 45943}, {38683, 46936}, {43651, 58068}, {45259, 55132}

X(58432) = midpoint of X(i) and X(j) for these {i,j}: {137, 13372}, {16336, 44674}, {5, 34837}, {5972, 45258}
X(58432) = reflection of X(i) in X(j) for these {i,j}: {58429, 3628}
X(58432) = complement of X(13372)
X(58432) = center of the nine-point conic of quadrilateral XYZX(137) where XYZ is the cevian triangle of X(2)
X(58432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 137, 13372}, {632, 25147, 38615}, {3628, 25150, 58429}


X(58433) = X(2)X(7)∩X(140)X(516)

Barycentrics    2*a^2+3*(b-c)^2-5*a*(b+c) : :
X(58433) = 15*X[2]+X[7], 3*X[549]+X[18482], 5*X[631]+3*X[38150], -5*X[632]+X[31658], 5*X[1656]+3*X[38122], -5*X[1698]+X[24393], X[2550]+7*X[3624], 7*X[3090]+X[5732], X[3174]+3*X[24386], X[3243]+7*X[9780], 7*X[3523]+X[52835], -11*X[3525]+3*X[21153] and many others

X(58433) lies on these lines: {2, 7}, {10, 17265}, {11, 15006}, {37, 17067}, {140, 516}, {141, 31211}, {518, 3634}, {528, 33709}, {549, 18482}, {594, 41141}, {631, 38150}, {632, 31658}, {954, 16864}, {971, 3628}, {1001, 16408}, {1086, 25072}, {1100, 3008}, {1125, 3813}, {1210, 50207}, {1213, 31243}, {1656, 38122}, {1698, 24393}, {2325, 17263}, {2346, 9342}, {2391, 20328}, {2550, 3624}, {2801, 58418}, {3090, 5732}, {3174, 24386}, {3243, 9780}, {3523, 52835}, {3525, 21153}, {3526, 5805}, {3533, 5759}, {3589, 4758}, {3616, 38200}, {3619, 51194}, {3626, 15570}, {3663, 16675}, {3664, 16669}, {3686, 17234}, {3707, 17298}, {3711, 41573}, {3742, 40659}, {3763, 38186}, {3817, 11495}, {3848, 58564}, {3879, 29628}, {3912, 4060}, {3946, 16777}, {3986, 17290}, {4000, 16673}, {4292, 17590}, {4304, 57005}, {4321, 10588}, {4326, 10589}, {4361, 29600}, {4464, 29575}, {4545, 17295}, {4648, 16667}, {4667, 37650}, {4698, 40480}, {4700, 17300}, {4751, 29596}, {4852, 29606}, {4887, 16814}, {4896, 16885}, {4967, 17266}, {4982, 17391}, {5055, 31672}, {5067, 21151}, {5070, 38108}, {5199, 6706}, {5220, 38054}, {5223, 19872}, {5326, 15837}, {5433, 12573}, {5542, 51073}, {5550, 38316}, {5762, 16239}, {5779, 55857}, {5845, 51127}, {5880, 38059}, {6067, 6745}, {6594, 31235}, {6667, 58608}, {6688, 58473}, {6707, 40539}, {6887, 7171}, {6911, 52769}, {7263, 28301}, {7486, 36991}, {7679, 10106}, {7717, 52290}, {8167, 16411}, {8730, 16863}, {9843, 50726}, {10171, 37364}, {10175, 18528}, {11038, 19877}, {11231, 20330}, {12045, 58534}, {12436, 50205}, {15481, 43180}, {15668, 31191}, {15694, 31671}, {15723, 38067}, {16593, 17384}, {16832, 53665}, {17049, 25108}, {17133, 17243}, {17235, 31285}, {17241, 50095}, {17259, 21255}, {17283, 24603}, {17285, 55955}, {17303, 31244}, {17317, 41140}, {17355, 34824}, {17366, 46845}, {17529, 57284}, {17567, 34595}, {19855, 51723}, {19876, 51099}, {19883, 30331}, {25557, 31253}, {25558, 38216}, {27475, 28650}, {29604, 31238}, {31260, 38206}, {31618, 52980}, {31657, 38318}, {38107, 46219}, {38111, 55861}, {38113, 55859}, {38123, 54370}, {41313, 53594}, {47355, 47595}, {51128, 51150}, {58451, 58563}, {58619, 58658}

X(58433) = midpoint of X(i) and X(j) for these {i,j}: {142, 6666}, {1125, 3826}, {15481, 43180}, {3626, 15570}, {42356, 43151}, {6706, 10012}, {58563, 58635}, {58564, 58634}, {58607, 58677}
X(58433) = inverse of X(40868) in Steiner inellipse
X(58433) = complement of X(6666)
X(58433) = X(i)-complementary conjugate of X(j) for these {i, j}: {32015, 2887}, {58104, 4885}
X(58433)= pole of line {522, 26824} with respect to the Steiner inellipse
X(58433) = center of the nine-point conic of quadrilateral XYZX(142) where XYZ is the cevian triangle of X(2)
X(58433) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(673), X(3982)}}, {{A, B, C, X(6666), X(32015)}}, {{A, B, C, X(10025), X(40510)}}, {{A, B, C, X(18230), X(43971)}}, {{A, B, C, X(28650), X(40719)}}, {{A, B, C, X(36956), X(40868)}}
X(58433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 142, 6666}, {2, 17282, 5257}, {2, 20195, 142}, {2, 27147, 17353}, {2, 41867, 3452}, {9, 6173, 20059}, {142, 6666, 527}, {632, 38171, 31658}, {1125, 3826, 5853}, {3848, 58634, 58564}, {5242, 5243, 40869}, {5550, 40333, 38316}, {10171, 43151, 42356}, {17278, 29571, 3946}, {18230, 20059, 9}, {19862, 38204, 1001}, {31657, 55856, 38318}, {58607, 58677, 518}


X(58434) = X(2)X(154)∩X(3)X(5893)

Barycentrics    6*a^6-4*a^2*(b^2-c^2)^2-5*a^4*(b^2+c^2)+3*(b^2-c^2)^2*(b^2+c^2) : :
X(58434) = 3*X[2]+X[154], 2*X[3]+X[5893], X[5]+X[11202], -X[64]+13*X[10303], -X[66]+7*X[51128], X[141]+X[19153], X[159]+5*X[51126], X[206]+2*X[34573], -3*X[549]+X[11204], 5*X[631]+X[2883], 5*X[632]+X[6759], X[1498]+11*X[3525] and many others

X(58434) lies on these lines: {2, 154}, {3, 5893}, {5, 11202}, {6, 38282}, {25, 35228}, {30, 10182}, {51, 468}, {64, 10303}, {66, 51128}, {125, 44108}, {140, 6000}, {141, 19153}, {159, 51126}, {160, 38283}, {184, 47296}, {206, 34573}, {376, 50709}, {420, 7745}, {427, 15448}, {436, 53506}, {459, 15576}, {511, 58544}, {547, 18400}, {549, 11204}, {590, 11242}, {597, 5644}, {615, 11241}, {631, 2883}, {632, 6759}, {1154, 9820}, {1498, 3525}, {1514, 35473}, {1585, 14239}, {1586, 14235}, {1619, 15579}, {1656, 34782}, {1899, 52292}, {1971, 3055}, {2390, 6679}, {2393, 3589}, {2777, 12100}, {2781, 3819}, {2979, 11064}, {3054, 53496}, {3079, 42854}, {3090, 17821}, {3147, 12233}, {3357, 14869}, {3523, 5894}, {3526, 6247}, {3533, 40686}, {3535, 14233}, {3536, 14230}, {3541, 16656}, {3566, 45693}, {3618, 17813}, {3619, 19132}, {3628, 10282}, {3631, 41593}, {3763, 34774}, {3827, 3848}, {5020, 15577}, {5050, 21974}, {5054, 23328}, {5055, 23324}, {5056, 17845}, {5070, 9833}, {5071, 18405}, {5326, 10535}, {5432, 11189}, {5433, 32065}, {5480, 6353}, {5650, 41580}, {5656, 15702}, {5799, 7521}, {5878, 15720}, {5890, 10018}, {5891, 7542}, {5892, 16238}, {5895, 15717}, {5925, 10299}, {5943, 44668}, {6001, 10156}, {6143, 16655}, {6146, 14940}, {6690, 58406}, {7294, 26888}, {7378, 41424}, {7392, 18382}, {7484, 15578}, {7495, 41715}, {7505, 12241}, {8550, 18950}, {8888, 34286}, {10117, 15246}, {10125, 44158}, {10154, 29181}, {10193, 11812}, {10250, 38110}, {10257, 14855}, {10274, 21357}, {10533, 32790}, {10534, 32789}, {10565, 48881}, {11243, 23303}, {11244, 23302}, {11284, 15582}, {11402, 12007}, {11430, 37942}, {11433, 53857}, {11451, 34751}, {11455, 37118}, {11539, 23329}, {11550, 52293}, {11793, 41589}, {13154, 32321}, {13364, 44232}, {13383, 43839}, {14156, 16618}, {14216, 46219}, {14530, 55858}, {15011, 21851}, {15583, 47355}, {15647, 22352}, {15699, 23325}, {15708, 54050}, {15712, 22802}, {16239, 20299}, {16419, 44883}, {16621, 37119}, {16657, 37943}, {17809, 37643}, {17811, 34117}, {17819, 32786}, {17820, 32785}, {18381, 55856}, {18383, 35018}, {18388, 37935}, {18435, 51425}, {18475, 44911}, {19862, 40660}, {20391, 43598}, {20725, 35493}, {20791, 40928}, {20850, 51163}, {21358, 41719}, {23048, 38079}, {23195, 44889}, {23300, 51127}, {23326, 47352}, {23327, 48310}, {25337, 54044}, {30771, 44882}, {31383, 52298}, {32767, 48154}, {34577, 44324}, {34780, 55866}, {36990, 52299}, {37808, 54075}, {44569, 45968}, {44914, 58436}, {45760, 52102}, {50414, 55862}, {51877, 56297}

X(58434) = midpoint of X(i) and X(j) for these {i,j}: {141, 19153}, {154, 23332}, {10274, 21357}, {2, 10192}, {2883, 10606}, {3819, 45979}, {5, 11202}, {6247, 32063}
X(58434) = reflection of X(i) in X(j) for these {i,j}: {10193, 11812}, {12100, 46265}
X(58434) = complement of X(23332)
X(58434)= pole of line {7735, 52299} with respect to the Kiepert hyperbola
X(58434)= pole of line {1350, 11443} with respect to the Stammler hyperbola
X(58434) = center of the nine-point conic of quadrilateral XYZX(154) where XYZ is the cevian triangle of X(2)
X(58434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 154, 23332}, {2, 35260, 1853}, {2, 35264, 45303}, {140, 16252, 6696}, {154, 23332, 1503}, {184, 52297, 47296}, {2777, 46265, 12100}, {3090, 17821, 41362}, {3589, 58437, 15585}, {3819, 45979, 2781}, {5972, 6676, 53415}, {6677, 58437, 58439}, {10020, 58435, 9820}, {10192, 23332, 154}, {58437, 58450, 3589}


X(58435) = X(2)X(156)∩X(5)X(13367)

Barycentrics    2*a^10-6*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-a^2*(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)+a^6*(5*b^4+6*b^2*c^2+5*c^4)+a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58435) = 3*X[2]+X[156], X[141]+X[19155], 3*X[154]+5*X[31283], -3*X[549]+X[32210], -3*X[597]+X[32155], -5*X[631]+X[32138], 7*X[3526]+X[32139], X[5448]+3*X[10182], -X[5449]+3*X[34330], 3*X[10192]+X[13371], X[10224]+X[10282], 3*X[11202]+X[18377] and many others

X(58435) lies on these lines: {2, 156}, {5, 13367}, {30, 32903}, {49, 11264}, {110, 34826}, {125, 45732}, {140, 5663}, {141, 19155}, {143, 468}, {154, 31283}, {389, 15806}, {403, 43394}, {511, 18282}, {547, 6689}, {548, 14156}, {549, 32210}, {550, 1531}, {590, 32170}, {597, 32155}, {615, 32169}, {631, 32138}, {1154, 9820}, {1209, 5642}, {1216, 34577}, {1511, 10024}, {1539, 35491}, {1656, 41171}, {2072, 5944}, {3521, 37941}, {3526, 32139}, {3564, 58450}, {3628, 58447}, {3819, 34004}, {5432, 32168}, {5433, 32143}, {5446, 10096}, {5448, 10182}, {5449, 34330}, {5498, 6000}, {5893, 34584}, {5943, 6153}, {6102, 10018}, {6143, 10540}, {6146, 20304}, {6676, 32142}, {6677, 32205}, {6723, 18128}, {7488, 51391}, {7542, 11591}, {9704, 26917}, {10095, 23292}, {10113, 35487}, {10125, 13754}, {10192, 13371}, {10224, 10282}, {10254, 11449}, {10255, 11464}, {10619, 23515}, {10627, 11064}, {11202, 18377}, {11424, 44270}, {11430, 15807}, {11592, 16197}, {12006, 16238}, {12038, 13406}, {12161, 37453}, {12897, 44961}, {13346, 44278}, {13383, 13391}, {13403, 46031}, {13421, 32269}, {13567, 32136}, {13568, 16531}, {13598, 25338}, {13630, 44452}, {14118, 14643}, {14449, 32223}, {15350, 43575}, {15644, 46114}, {15646, 43831}, {15800, 37940}, {16252, 23336}, {16881, 44900}, {18475, 49673}, {18951, 52290}, {19154, 31267}, {20299, 34331}, {21844, 34798}, {22660, 34477}, {23302, 32208}, {23303, 32207}, {25563, 34421}, {30551, 44106}, {32137, 46817}, {34149, 37636}, {34514, 52296}, {37126, 51521}, {37472, 37943}, {37968, 43577}, {43588, 47296}, {43614, 48411}, {43652, 44262}, {45958, 52262}, {45959, 51425}, {55286, 55295}, {55700, 58445}

X(58435) = midpoint of X(i) and X(j) for these {i,j}: {141, 19155}, {156, 13561}, {10224, 10282}, {12038, 13406}, {16252, 23336}, {5, 32171}, {5448, 15331}, {9820, 10020}
X(58435) = reflection of X(i) in X(j) for these {i,j}: {25563, 34421}
X(58435) = complement of X(13561)
X(58435)= pole of line {11250, 37484} with respect to the Stammler hyperbola
X(58435) = center of the nine-point conic of quadrilateral XYZX(156) where XYZ is the cevian triangle of X(2)
X(58435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 156, 13561}, {5, 32171, 30522}, {140, 10272, 5907}, {2072, 5944, 13470}, {5448, 10182, 15331}, {5972, 44516, 140}, {9820, 58434, 10020}, {11430, 44235, 15807}, {23292, 44232, 10095}


X(58436) = X(2)X(157)∩X(53)X(468)

Barycentrics    2*a^8-3*a^6*(b^2+c^2)-3*a^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^2*(b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58436) = 3*X[2]+X[157], -3*X[5]+X[18380], X[141]+X[19156]

X(58436) lies on these lines: {2, 157}, {5, 18380}, {53, 468}, {140, 1503}, {141, 19156}, {233, 35282}, {441, 34845}, {570, 47200}, {1576, 45198}, {2871, 3589}, {2980, 7499}, {6676, 34828}, {6677, 44381}, {7542, 42353}, {10018, 33971}, {10020, 32428}, {14913, 46184}, {15366, 35283}, {20576, 58532}, {44914, 58434}, {56308, 57529}, {58450, 58454}

X(58436) = midpoint of X(i) and X(j) for these {i,j}: {141, 19156}, {157, 23333}, {5, 37813}
X(58436) = complement of X(23333)
X(58436)= pole of line {7755, 42295} with respect to the Kiepert hyperbola
X(58436) = center of the nine-point conic of quadrilateral XYZX(157) where XYZ is the cevian triangle of X(2)
X(58436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 157, 23333}, {140, 58437, 58438}


X(58437) = X(2)X(159)∩X(6)X(468)

Barycentrics    2*a^8+a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+(b^4-c^4)^2-a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58437) = 3*X[2]+X[159], X[5]+X[15577], X[66]+3*X[154], X[69]+3*X[19153], X[141]+X[206], -3*X[549]+X[44883], 3*X[599]+5*X[19132], 5*X[632]+X[15581], X[2883]+3*X[21167], 7*X[3523]+X[41735], 7*X[3526]+X[39879], -2*X[3530]+X[15578] and many others

X(58437) lies on these lines: {2, 159}, {5, 15577}, {6, 468}, {22, 28408}, {30, 35228}, {66, 154}, {69, 19153}, {140, 1503}, {141, 206}, {160, 441}, {161, 37439}, {182, 16238}, {419, 53477}, {427, 20987}, {511, 9820}, {524, 41593}, {549, 44883}, {599, 19132}, {632, 15581}, {1125, 3827}, {1176, 26156}, {1352, 7542}, {1576, 41008}, {1843, 51744}, {1974, 54347}, {2393, 3589}, {2777, 55653}, {2781, 10272}, {2883, 21167}, {2916, 7667}, {3098, 16618}, {3313, 11064}, {3523, 41735}, {3526, 39879}, {3530, 15578}, {3556, 19836}, {3564, 10020}, {3618, 10169}, {3619, 5596}, {3620, 41719}, {3628, 15582}, {3631, 40342}, {3818, 11202}, {5157, 13394}, {5159, 35707}, {5480, 21841}, {5895, 55651}, {5925, 55654}, {5972, 11574}, {6329, 39125}, {6776, 10018}, {7485, 35219}, {7493, 28419}, {7494, 34207}, {7568, 34118}, {7767, 15257}, {7819, 15270}, {8254, 18583}, {8788, 56430}, {9924, 23327}, {9969, 23292}, {10257, 46264}, {10300, 23315}, {10516, 17821}, {11178, 34776}, {11216, 51171}, {11331, 41761}, {11793, 16197}, {12108, 15579}, {14561, 34787}, {15116, 15647}, {15580, 16239}, {15583, 51126}, {16196, 44882}, {16789, 20806}, {18282, 34380}, {18589, 40560}, {18935, 52290}, {19130, 44233}, {19149, 34002}, {19459, 37453}, {20775, 44887}, {21358, 31166}, {22052, 35282}, {22802, 55649}, {23042, 34507}, {23325, 42786}, {23332, 51128}, {23333, 44334}, {25564, 34200}, {31670, 37971}, {32125, 43957}, {32621, 38282}, {34117, 48876}, {34779, 50977}, {34782, 51756}, {36201, 48378}, {44452, 48906}, {47090, 48905}, {47093, 48910}, {47200, 53414}, {50649, 51734}

X(58437) = midpoint of X(i) and X(j) for these {i,j}: {141, 206}, {159, 23300}, {10282, 24206}, {15116, 15647}, {15582, 20300}, {3589, 15585}, {34117, 48876}, {34507, 41729}, {34782, 51756}, {5, 15577}
X(58437) = reflection of X(i) in X(j) for these {i,j}: {15578, 3530}, {20300, 3628}, {3589, 58450}, {39125, 6329}, {6697, 34573}
X(58437) = complement of X(23300)
X(58437) = perspector of circumconic {{A, B, C, X(30247), X(54705)}}
X(58437)= pole of line {1184, 5094} with respect to the Kiepert hyperbola
X(58437)= pole of line {12220, 34777} with respect to the Stammler hyperbola
X(58437)= pole of line {52058, 57069} with respect to the Steiner inellipse
X(58437)= pole of line {7917, 40123} with respect to the Wallace hyperbola
X(58437) = center of the nine-point conic of quadrilateral XYZX(159) where XYZ is the cevian triangle of X(2)
X(58437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 159, 23300}, {141, 10192, 206}, {154, 3763, 66}, {1503, 34573, 6697}, {3589, 15585, 2393}, {3589, 58434, 58450}, {3619, 35260, 5596}, {7493, 28419, 37485}, {9924, 47355, 23327}, {10282, 24206, 1503}, {15585, 58434, 3589}, {23042, 34507, 41729}, {58434, 58439, 6677}, {58436, 58438, 140}


X(58438) = X(2)X(160)∩X(216)X(523)

Barycentrics    b^2*c^2*(b^2-c^2)^2+2*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)-a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58438) = 3*X[2]+X[160]

X(58438) lies on these lines: {2, 160}, {51, 45108}, {95, 1576}, {140, 1503}, {141, 36213}, {157, 37067}, {184, 45838}, {216, 523}, {237, 3613}, {468, 3055}, {1316, 15109}, {1485, 6641}, {2393, 58454}, {3589, 34236}, {6676, 14725}, {7483, 19864}, {7668, 20775}, {8589, 36157}, {10003, 44668}, {11272, 58532}, {16264, 37118}, {30259, 45848}, {34577, 34804}, {35282, 36422}, {35345, 37647}, {39231, 53485}, {40559, 58450}, {44088, 53576}

X(58438) = midpoint of X(i) and X(j) for these {i,j}: {160, 34845}
X(58438) = complement of X(34845)
X(58438) = X(i)-complementary conjugate of X(j) for these {i, j}: {36198, 8287}
X(58438)= pole of line {3051, 7755} with respect to the Kiepert hyperbola
X(58438)= pole of line {3289, 36198} with respect to the Steiner inellipse
X(58438) = center of the nine-point conic of quadrilateral XYZX(160) where XYZ is the cevian triangle of X(2)
X(58438) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 160, 34845}, {140, 58437, 58436}


X(58439) = X(2)X(161)∩X(184)X(468)

Barycentrics    2*a^12-4*a^4*b^2*c^2*(b^2-c^2)^2-3*a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2+a^8*(-3*b^4+2*b^2*c^2-3*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+6*a^6*(b^6+c^6) : :
X(58439) = 3*X[2]+X[161], 3*X[154]+X[11442], X[12827]+X[15647], X[41602]+3*X[44210]

X(58439) lies on these lines: {2, 161}, {140, 13470}, {154, 11442}, {184, 468}, {1368, 35228}, {1503, 6676}, {1594, 2917}, {1853, 7495}, {2393, 3589}, {5133, 56924}, {5449, 10020}, {5462, 44232}, {6000, 25337}, {6030, 41738}, {6146, 32391}, {6247, 34002}, {6636, 32125}, {6696, 16197}, {7494, 44883}, {7499, 23332}, {7542, 18474}, {7568, 18381}, {7667, 23315}, {10018, 17821}, {10274, 32358}, {11202, 44452}, {11206, 52300}, {11262, 58489}, {11745, 18388}, {12827, 15647}, {13383, 13754}, {14389, 34751}, {15139, 37636}, {15311, 16618}, {16238, 18475}, {18935, 38282}, {21852, 58544}, {22352, 41603}, {23041, 26958}, {23292, 44668}, {26906, 37813}, {32191, 58550}, {32223, 45979}, {41602, 44210}

X(58439) = midpoint of X(i) and X(j) for these {i,j}: {12827, 15647}, {18474, 34782}
X(58439) = center of the nine-point conic of quadrilateral XYZX(161) where XYZ is the cevian triangle of X(2)
X(58439) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6677, 58437, 58434}, {58450, 58494, 3589}


X(58440) = X(2)X(164)∩X(10)X(12523)

Barycentrics    c*(-sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3))-b*(sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3))-2*a*(-sqrt(a*(a+b-c)*(a-b+c))+sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3)) : :
Barycentrics    (-2*a + b + c)*Sin[A/2] + (2*a - b + c)*Sin[B/2] + (2*a + b - c)*Sin[C/2] : : (Peter Moses, September 22, 2023)

X(58440) lies on these lines: {2, 164}, {8, 55175}, {10, 12523}, {140, 53810}, {177, 3911}, {178, 52797}, {516, 12614}, {518, 58614}, {519, 55172}, {551, 55173}, {631, 12844}, {1125, 55174}, {1698, 55168}, {3244, 55176}, {3616, 12656}, {3624, 55169}, {3634, 12622}, {5432, 17641}, {5571, 13405}, {5745, 12443}, {6692, 58444}, {8074, 16016}, {10164, 12518}, {12539, 54357}, {12813, 34753}, {19862, 55170}, {20103, 58689}, {31734, 51782}, {35644, 43223}

X(58440) = midpoint of X(i) and X(j) for these {i,j}: {10, 12523}, {164, 21633}, {12622, 55171}
X(58440) = reflection of X(i) in X(j) for these {i,j}: {12622, 3634}
X(58440) = complement of X(21633)
X(58440) = center of the nine-point conic of quadrilateral XYZX(164) where XYZ is the cevian triangle of X(2)
X(58440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 164, 21633}


X(58441) = X(2)X(165)∩X(10)X(631)

Barycentrics    6*a^3-4*a*(b-c)^2-5*a^2*(b+c)+3*(b-c)^2*(b+c) : :
X(58441) = -X[1]+13*X[10303], 3*X[2]+X[165], X[3]+2*X[3634], -X[4]+7*X[51073], 2*X[5]+X[12512], X[8]+3*X[30392], X[10]+5*X[631], X[40]+11*X[3525], X[355]+11*X[15720], X[376]+3*X[54447], X[551]+X[5657], 5*X[632]+X[3579] and many others

X(58441) lies on circumconic {{A, B, C, X(10171), X(18025)}} and these lines: {1, 10303}, {2, 165}, {3, 3634}, {4, 51073}, {5, 12512}, {8, 30392}, {10, 631}, {30, 10172}, {36, 51782}, {40, 3525}, {57, 43180}, {140, 517}, {354, 3911}, {355, 15720}, {371, 49619}, {372, 49618}, {376, 54447}, {381, 28158}, {498, 4298}, {499, 12575}, {511, 58548}, {515, 549}, {518, 10156}, {519, 3653}, {547, 28146}, {551, 5657}, {632, 3579}, {726, 15819}, {946, 3526}, {950, 52793}, {952, 4745}, {962, 34595}, {971, 58451}, {991, 16569}, {1064, 49992}, {1155, 5326}, {1376, 52769}, {1385, 3626}, {1656, 12571}, {1698, 3523}, {1754, 17124}, {1768, 27065}, {2784, 38737}, {2801, 3035}, {2820, 45675}, {3008, 54474}, {3054, 31443}, {3085, 12577}, {3090, 35242}, {3091, 16192}, {3522, 7989}, {3524, 5587}, {3528, 18492}, {3530, 9956}, {3533, 5493}, {3534, 50803}, {3616, 9588}, {3617, 30389}, {3624, 4301}, {3628, 18483}, {3635, 5690}, {3636, 10247}, {3654, 51108}, {3667, 45666}, {3678, 9940}, {3679, 15721}, {3681, 6745}, {3683, 31235}, {3826, 37364}, {3830, 50816}, {3841, 6922}, {3881, 58643}, {3918, 31786}, {3947, 15803}, {4015, 12675}, {4067, 15016}, {4292, 5131}, {4315, 31434}, {4353, 17591}, {4421, 24386}, {4669, 7967}, {4691, 5882}, {4701, 13607}, {5066, 28154}, {5067, 41869}, {5071, 34638}, {5199, 41795}, {5218, 10389}, {5226, 30424}, {5265, 51784}, {5267, 6940}, {5273, 43177}, {5274, 31508}, {5281, 30331}, {5284, 5537}, {5418, 13975}, {5420, 13912}, {5433, 5919}, {5435, 5542}, {5442, 13407}, {5447, 31760}, {5550, 7991}, {5584, 16862}, {5603, 15709}, {5691, 15717}, {5731, 15708}, {5744, 21060}, {5790, 15701}, {5850, 38122}, {5886, 15694}, {5902, 12563}, {5927, 43181}, {6036, 51578}, {6244, 8167}, {6361, 31425}, {6666, 15726}, {6685, 10440}, {6686, 29353}, {6700, 10176}, {6714, 9519}, {6718, 20201}, {6738, 24914}, {6889, 12572}, {6910, 8582}, {6918, 12511}, {6927, 21628}, {6943, 41859}, {6946, 7688}, {6988, 12617}, {6989, 12436}, {7294, 37568}, {7982, 15808}, {7987, 9780}, {8258, 54208}, {8703, 28172}, {9342, 44425}, {9540, 49547}, {9590, 15246}, {9616, 32786}, {9729, 31752}, {9955, 16239}, {10109, 28182}, {10124, 28174}, {10157, 10178}, {10167, 15064}, {10265, 38762}, {10304, 38076}, {10439, 43223}, {10589, 35445}, {10791, 52770}, {11220, 54357}, {11230, 11539}, {11235, 38121}, {11531, 46934}, {11540, 28212}, {11695, 31757}, {12005, 58630}, {12100, 28160}, {12108, 13624}, {12447, 26066}, {12527, 27529}, {12699, 46219}, {13329, 17122}, {13935, 49548}, {14891, 28190}, {15528, 58698}, {15644, 58474}, {15685, 50870}, {15692, 19876}, {15693, 50796}, {15712, 18480}, {15713, 28234}, {15722, 51080}, {16836, 52796}, {17504, 38083}, {17525, 38161}, {17529, 50031}, {17592, 39595}, {17715, 51615}, {18230, 43182}, {18250, 21164}, {18481, 31399}, {19540, 41430}, {19708, 50862}, {19711, 50868}, {20117, 40296}, {21843, 31441}, {22791, 31447}, {22793, 55856}, {24982, 37291}, {26201, 58632}, {28168, 34200}, {28198, 47598}, {28202, 47599}, {28208, 41983}, {28463, 38182}, {28465, 38133}, {28600, 29311}, {28909, 41141}, {30315, 46930}, {30827, 51090}, {31658, 58463}, {31666, 37705}, {31806, 33815}, {31884, 38146}, {33574, 47742}, {33697, 46853}, {34379, 38118}, {34628, 54448}, {35271, 38058}, {37714, 46932}, {40273, 55862}, {41106, 50812}, {41150, 51077}, {48661, 55866}, {50799, 51081}, {50810, 51109}, {50814, 50825}, {50817, 51104}, {50818, 51067}, {50827, 51091}, {51066, 51082}, {51780, 54370}

X(58441) = midpoint of X(i) and X(j) for these {i,j}: {10, 3576}, {165, 3817}, {10157, 10178}, {10165, 26446}, {10167, 15064}, {10246, 38127}, {10247, 11362}, {10304, 38076}, {1385, 38112}, {10440, 37521}, {1699, 50808}, {16836, 52796}, {17502, 38042}, {17504, 38083}, {2, 10164}, {21153, 38204}, {3, 10175}, {3579, 38034}, {3740, 11227}, {31884, 38146}, {38028, 50821}, {38122, 38130}, {38133, 38760}, {4421, 24386}, {4669, 7967}, {549, 11231}, {551, 5657}, {5054, 38068}, {5731, 38155}, {5790, 51705}, {58615, 58688}, {8703, 38140}
X(58441) = reflection of X(i) in X(j) for these {i,j}: {10164, 50829}, {10171, 2}, {10175, 3634}, {10247, 3636}, {19925, 10175}, {3626, 38112}, {3828, 11231}, {5790, 51069}, {50801, 5790}, {50802, 10171}, {51103, 38028}, {7967, 51085}
X(58441) = complement of X(3817)
X(58441)= pole of line {4962, 48043} with respect to the excircles-radical circle
X(58441)= pole of line {514, 48169} with respect to the orthoptic circle of the Steiner Inellipse
X(58441)= pole of line {3716, 4962} with respect to the Spieker circle
X(58441)= pole of line {30331, 37734} with respect to the Feuerbach hyperbola
X(58441) = center of the nine-point conic of quadrilateral XYZX(165) where XYZ is the cevian triangle of X(2)
X(58441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 165, 3817}, {2, 516, 10171}, {2, 9778, 7988}, {3, 10175, 28164}, {10, 3576, 28236}, {40, 3525, 19862}, {140, 6684, 1125}, {165, 3817, 516}, {515, 11231, 3828}, {516, 10171, 50802}, {516, 50829, 10164}, {549, 38042, 17502}, {631, 31423, 10}, {946, 3526, 19878}, {1125, 6684, 43174}, {1656, 31730, 12571}, {1698, 3523, 4297}, {3035, 5745, 20103}, {3090, 35242, 51118}, {3579, 38034, 28232}, {3628, 31663, 18483}, {3634, 28164, 10175}, {3740, 11227, 2801}, {3817, 10164, 165}, {3911, 5432, 13405}, {5054, 26446, 10165}, {5218, 31231, 11019}, {5226, 53056, 30424}, {5731, 19875, 38155}, {8703, 38140, 28172}, {10156, 58688, 58615}, {10165, 26446, 519}, {10165, 38068, 26446}, {10165, 38127, 10246}, {10175, 28164, 19925}, {10246, 26446, 38127}, {10589, 35445, 51783}, {11231, 17502, 38042}, {12512, 31253, 5}, {15692, 19876, 34648}, {15701, 51705, 51086}, {15717, 19877, 5691}, {16192, 19872, 3091}, {17502, 38042, 515}, {28234, 38028, 51103}, {38028, 50821, 28234}, {38122, 38130, 5850}, {51069, 51086, 51705}, {51069, 51705, 50801}, {58615, 58688, 518}


X(58442) = X(2)X(169)∩X(5)X(516)

Barycentrics    2*a^4-3*a^3*(b+c)-3*a*(b-c)^2*(b+c)+(b-c)^2*(b^2+c^2)+a^2*(3*b^2+2*b*c+3*c^2) : :
X(58442) = 3*X[2]+X[169], X[10]+X[52015]

X(58442) lies on these lines: {2, 169}, {5, 516}, {10, 52015}, {517, 58458}, {1125, 2809}, {1212, 51775}, {2140, 40869}, {3589, 34381}, {3812, 58456}, {3911, 10481}, {5179, 17682}, {5745, 31211}, {5791, 17259}, {5836, 40534}, {9709, 17279}, {9956, 40483}, {13374, 58457}, {16601, 26007}, {17050, 24455}, {17683, 27132}, {20269, 31203}, {21073, 24596}, {24784, 31192}

X(58442) = midpoint of X(i) and X(j) for these {i,j}: {10, 52015}, {169, 34847}
X(58442) = complement of X(34847)
X(58442) = perspector of circumconic {{A, B, C, X(43191), X(53643)}}
X(58442) = center of the nine-point conic of quadrilateral XYZX(169) where XYZ is the cevian triangle of X(2)


X(58443) = X(2)X(31)∩X(140)X(517)

Barycentrics    2*a^3+b^3+4*a*b*c+c^3 : :

X(58443) lies on these lines: {2, 31}, {10, 37646}, {100, 29845}, {140, 517}, {230, 5750}, {354, 58414}, {740, 39595}, {908, 4697}, {1054, 19786}, {1155, 4425}, {1376, 4085}, {1961, 32851}, {2792, 6036}, {3035, 6685}, {3306, 26128}, {3452, 4672}, {3589, 6686}, {3634, 6693}, {3687, 17772}, {3705, 50288}, {3741, 37634}, {3742, 29656}, {3752, 29645}, {3771, 37674}, {3773, 29649}, {3775, 14829}, {3816, 49482}, {3842, 5745}, {3911, 6682}, {3980, 17720}, {3989, 51583}, {4359, 29683}, {4413, 25453}, {4415, 17767}, {4417, 37604}, {4438, 5268}, {4439, 33167}, {4457, 50758}, {4682, 29671}, {4850, 29847}, {4883, 50748}, {5044, 8258}, {5205, 32780}, {5294, 24003}, {5297, 33119}, {5432, 21334}, {5880, 48649}, {5955, 17733}, {9342, 29850}, {9347, 29849}, {9352, 32776}, {10164, 50290}, {11019, 49473}, {11679, 50312}, {16610, 29654}, {17063, 29634}, {17064, 24693}, {17239, 44379}, {17602, 24165}, {17698, 46827}, {17728, 29652}, {17748, 37594}, {17764, 24210}, {17765, 29655}, {18193, 50285}, {19284, 21935}, {19721, 43531}, {19804, 29658}, {21242, 29662}, {24988, 29867}, {26627, 33127}, {27003, 32775}, {29826, 31224}, {29846, 37633}, {30832, 33085}, {30867, 33096}, {32773, 56010}, {33064, 37520}, {33084, 37684}, {33121, 49693}, {33163, 53673}, {33170, 53660}, {33682, 37662}, {37603, 52258}, {38049, 45204}

X(58443) = midpoint of X(i) and X(j) for these {i,j}: {171, 3846}
X(58443) = complement of X(3846)
X(58443)= pole of line {37734, 49471} with respect to the Feuerbach hyperbola
X(58443)= pole of line {824, 17496} with respect to the Steiner inellipse
X(58443) = center of the nine-point conic of quadrilateral XYZX(171) where XYZ is the cevian triangle of X(2)
X(58443) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 171, 3846}, {2, 17122, 3836}, {2, 17126, 25960}, {2, 32916, 50298}, {2, 6679, 31289}, {2, 750, 2887}, {171, 3846, 752}, {1376, 29635, 4085}, {3035, 6703, 6685}


X(58444) = X(1)X(236)∩X(2)X(177)

Barycentrics    2*sqrt(a)*(b-c)*(sqrt(b*(a+b-c))-sqrt(c*(a-b+c)))-2*a^(3/2)*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c)))+a*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+b*sqrt(c)*(-sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))-c^(3/2)*(sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))+a*sqrt(b)*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c)))+sqrt(b)*c*(-sqrt(a*(a+b-c))+sqrt(c*(-a+b+c)))-b^(3/2)*(sqrt(a*(a+b-c))+sqrt(c*(-a+b+c))) : :
Barycentrics    Cos[C/2]*(1 + Sin[A/2] + Sin[B/2]) + Cos[B/2]*(1 + Sin[A/2] + Sin[C/2]) : : (Peter Moses, September 22, 2023)

X(58444) lies on these lines: {1, 236}, {2, 177}, {8, 11191}, {10, 178}, {142, 12443}, {164, 5437}, {518, 58616}, {551, 32183}, {946, 31790}, {960, 31768}, {1001, 12518}, {3616, 8422}, {3622, 11234}, {3742, 5571}, {3812, 55174}, {3816, 12614}, {4301, 31800}, {5044, 12813}, {5836, 31766}, {6692, 58440}, {7028, 13092}, {10164, 31801}, {10165, 31791}, {10179, 31767}, {12523, 25524}, {12622, 25466}, {12694, 25525}, {31735, 57288}, {31770, 49736}, {58614, 58623}

X(58444) = midpoint of X(i) and X(j) for these {i,j}: {10, 12908}, {12443, 21633}, {31735, 57288}, {4301, 31800}, {5044, 12813}, {5836, 31766}, {58616, 58689}, {946, 31790}, {960, 31768}
X(58444) = complement of X(18258)
X(58444) = center of the nine-point conic of quadrilateral XYZX(177) where XYZ is the cevian triangle of X(2)
X(58444) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 177, 18258}, {58616, 58689, 518}


X(58445) = X(2)X(98)∩X(140)X(143)

Barycentrics    2*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+8*b^2*c^2+c^4) : :
X(58445) = X[4]+3*X[17508], X[5]+X[5092], -X[20]+5*X[55672], X[66]+3*X[23042], -X[69]+17*X[3533], X[141]+X[575], -X[193]+5*X[22234], X[206]+X[20299], 3*X[376]+X[48904], 3*X[381]+X[48898], X[382]+7*X[55676], -X[548]+2*X[55668] and many others

X(58445) lies on these lines: {2, 98}, {3, 7889}, {4, 17508}, {5, 5092}, {6, 3411}, {20, 55672}, {24, 52990}, {30, 25565}, {66, 23042}, {69, 3533}, {115, 5116}, {140, 143}, {141, 575}, {187, 53484}, {193, 22234}, {206, 20299}, {343, 32068}, {373, 7495}, {376, 48904}, {381, 48898}, {382, 55676}, {524, 10124}, {546, 29323}, {547, 11645}, {548, 55668}, {549, 5480}, {550, 48895}, {576, 3525}, {597, 5097}, {599, 53091}, {620, 24256}, {623, 20416}, {624, 20415}, {626, 39750}, {631, 3098}, {1176, 43811}, {1350, 5054}, {1351, 15694}, {1386, 11231}, {1503, 3628}, {1506, 1691}, {1511, 20301}, {1656, 3818}, {1657, 55673}, {1698, 38029}, {1843, 10018}, {1974, 37119}, {2030, 3055}, {2548, 41412}, {2777, 15578}, {2783, 24295}, {2888, 46865}, {2916, 13621}, {2918, 6642}, {3068, 42832}, {3069, 42833}, {3090, 46264}, {3091, 48884}, {3096, 10359}, {3146, 55675}, {3329, 35426}, {3398, 6292}, {3406, 10292}, {3518, 46026}, {3522, 48879}, {3523, 31670}, {3524, 48873}, {3528, 43621}, {3530, 29181}, {3534, 55671}, {3545, 55683}, {3548, 19126}, {3564, 16239}, {3616, 38116}, {3619, 55710}, {3620, 55712}, {3627, 48891}, {3629, 55713}, {3763, 5050}, {3819, 37649}, {3821, 53792}, {3832, 33750}, {3843, 55678}, {3845, 48942}, {3850, 55680}, {3851, 48905}, {3934, 50652}, {3955, 56451}, {4045, 23698}, {4048, 20398}, {5026, 34127}, {5055, 36990}, {5056, 55685}, {5067, 25406}, {5070, 10516}, {5071, 14927}, {5079, 55684}, {5103, 7830}, {5150, 24251}, {5181, 45973}, {5650, 14389}, {5655, 14926}, {5898, 12584}, {5943, 7499}, {6034, 36782}, {6143, 19128}, {6249, 7470}, {6329, 22330}, {6593, 34128}, {6640, 19131}, {6656, 13449}, {6676, 6688}, {6677, 10219}, {6719, 10160}, {6722, 51848}, {6759, 31267}, {7193, 56454}, {7404, 13347}, {7486, 55689}, {7496, 51360}, {7505, 19124}, {7514, 7706}, {7542, 11574}, {7568, 9969}, {7571, 11550}, {7605, 15107}, {7606, 7619}, {7697, 32429}, {7746, 50659}, {7755, 13331}, {7764, 8177}, {7765, 12055}, {7769, 51371}, {7786, 52997}, {7790, 38734}, {7792, 15819}, {7810, 11842}, {7819, 13334}, {7820, 11171}, {7824, 35375}, {7828, 43157}, {7829, 44423}, {7844, 51520}, {7859, 52995}, {7875, 22712}, {7876, 32152}, {7907, 52996}, {7913, 37348}, {7919, 23514}, {7943, 37446}, {8252, 19145}, {8253, 19146}, {8359, 47113}, {8362, 13335}, {8550, 43150}, {8703, 48920}, {8981, 13972}, {9053, 51700}, {9751, 40236}, {9822, 16238}, {10112, 43651}, {10182, 15577}, {10257, 47581}, {10282, 23300}, {10299, 51538}, {10303, 14853}, {10519, 37517}, {10541, 18440}, {10545, 44300}, {11064, 15082}, {11174, 35431}, {11225, 37636}, {11257, 16895}, {11285, 35424}, {11289, 20428}, {11290, 20429}, {11291, 12974}, {11292, 12975}, {11307, 49105}, {11308, 49106}, {11309, 44514}, {11310, 44513}, {11427, 44833}, {11585, 32396}, {11649, 44452}, {11812, 55612}, {11898, 15723}, {12007, 20582}, {12100, 55659}, {12108, 55631}, {12294, 37118}, {13349, 37340}, {13350, 37341}, {13373, 58633}, {13910, 13966}, {14643, 32305}, {14786, 37515}, {14788, 44829}, {14848, 55722}, {14869, 21167}, {14891, 51139}, {14893, 50971}, {14912, 55708}, {14994, 37688}, {15018, 41586}, {15035, 32273}, {15061, 19140}, {15069, 55705}, {15520, 51171}, {15559, 44091}, {15683, 50964}, {15687, 50988}, {15692, 55662}, {15693, 38072}, {15699, 25561}, {15700, 51024}, {15701, 54131}, {15702, 20423}, {15703, 43273}, {15704, 48943}, {15707, 55648}, {15708, 55633}, {15709, 54173}, {15712, 38136}, {15713, 38079}, {15717, 55658}, {15718, 50963}, {15720, 31884}, {15721, 51141}, {16419, 37488}, {16987, 37455}, {17004, 32451}, {17712, 50136}, {18230, 38115}, {18358, 48154}, {18374, 48411}, {18381, 23041}, {18400, 20300}, {18442, 32600}, {18553, 44516}, {19149, 23329}, {19161, 44673}, {19862, 38118}, {19872, 39885}, {20113, 37283}, {20195, 38117}, {20417, 40280}, {20806, 44494}, {21356, 51140}, {21531, 39506}, {22352, 37990}, {22687, 42673}, {22689, 42672}, {23325, 36989}, {24250, 24253}, {24273, 38224}, {25338, 32416}, {25556, 49116}, {25563, 34146}, {26889, 55903}, {26890, 55901}, {29646, 31395}, {30259, 34990}, {31235, 38119}, {31260, 38120}, {31489, 40825}, {32205, 58532}, {32218, 40670}, {32271, 38727}, {32467, 46226}, {33237, 52771}, {33554, 53845}, {33878, 55863}, {33923, 55664}, {34126, 51157}, {34200, 50959}, {35018, 55686}, {35404, 51129}, {35422, 37334}, {35925, 38736}, {36201, 50140}, {36757, 42937}, {36758, 42936}, {37124, 39569}, {37646, 50595}, {38028, 49524}, {38111, 51144}, {38112, 51147}, {38113, 51150}, {38751, 43456}, {39530, 52289}, {39870, 51073}, {39899, 55703}, {40341, 53092}, {41716, 52989}, {42785, 55646}, {44682, 55661}, {45760, 55715}, {50984, 55592}, {51179, 55714}, {53093, 55858}, {54132, 55581}, {54170, 55605}, {55697, 55860}, {55698, 55861}, {55700, 58435}, {55704, 55862}, {58562, 58630}

X(58445) = midpoint of X(i) and X(j) for these {i,j}: {140, 3589}, {141, 575}, {182, 24206}, {10282, 23300}, {1511, 20301}, {13373, 58633}, {14893, 50971}, {15704, 48943}, {15819, 51829}, {18553, 48906}, {2, 10168}, {206, 20299}, {20113, 37283}, {21850, 55606}, {25556, 49116}, {25561, 51737}, {3, 19130}, {3627, 48891}, {3934, 50652}, {32149, 40108}, {34200, 50959}, {38136, 55657}, {4, 48892}, {44423, 49111}, {44882, 48889}, {48885, 48901}, {48920, 51163}, {5, 5092}, {547, 50983}, {550, 48895}, {5097, 48876}, {5447, 58471}, {5480, 14810}, {6, 40107}, {626, 39750}, {58562, 58630}, {7606, 7619}, {7764, 8177}, {8550, 43150}
X(58445) = reflection of X(i) in X(j) for these {i,j}: {12007, 55709}, {14891, 51139}, {15516, 51732}, {22330, 6329}, {25555, 3589}, {3628, 51127}, {33749, 50664}, {33751, 55674}, {34573, 16239}, {548, 55668}, {55653, 3530}, {58532, 32205}
X(58445) = inverse of X(40870) in Steiner inellipse
X(58445) = complement of X(24206)
X(58445) = perspector of circumconic {{A, B, C, X(2966), X(20189)}}
X(58445)= pole of line {7927, 53263} with respect to the circumcircle
X(58445)= pole of line {826, 39512} with respect to the nine-point circle
X(58445)= pole of line {230, 1506} with respect to the Kiepert hyperbola
X(58445)= pole of line {511, 15246} with respect to the Stammler hyperbola
X(58445)= pole of line {2799, 31296} with respect to the Steiner inellipse
X(58445)= pole of line {325, 3628} with respect to the Wallace hyperbola
X(58445) = center of the nine-point conic of quadrilateral XYZX(182) where XYZ is the cevian triangle of X(2)
X(58445) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(45108)}}, {{A, B, C, X(287), X(34483)}}, {{A, B, C, X(1976), X(34567)}}
X(58445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 182, 24206}, {2, 38064, 11178}, {2, 43650, 21243}, {3, 19130, 29317}, {3, 38317, 19130}, {3, 47355, 38317}, {3, 48901, 48885}, {3, 53023, 48880}, {4, 17508, 48892}, {5, 44882, 48889}, {30, 55674, 33751}, {140, 3589, 511}, {141, 38110, 575}, {141, 575, 5965}, {182, 11178, 6776}, {182, 24206, 542}, {373, 7495, 32223}, {381, 53094, 48898}, {511, 3589, 25555}, {524, 51732, 15516}, {547, 50983, 11645}, {549, 5480, 14810}, {597, 48876, 5097}, {631, 14561, 3098}, {632, 38110, 141}, {1503, 51127, 3628}, {1656, 5085, 3818}, {3523, 31670, 55649}, {3524, 48873, 55655}, {3530, 29181, 55653}, {3564, 16239, 34573}, {3564, 50664, 33749}, {3763, 5050, 34507}, {3851, 55682, 48905}, {5050, 46219, 3763}, {5070, 10516, 42786}, {5070, 12017, 10516}, {5092, 48889, 44882}, {5480, 14810, 19924}, {6329, 34380, 22330}, {8703, 51163, 48920}, {10168, 24206, 182}, {14869, 21850, 21167}, {15516, 46267, 51732}, {15694, 47352, 50977}, {15699, 51737, 25561}, {15712, 38136, 48881}, {15712, 48881, 55657}, {15713, 38079, 54169}, {18553, 55695, 48906}, {19130, 48885, 48901}, {21167, 21850, 55606}, {21358, 55711, 11898}, {43150, 55706, 8550}, {44882, 48889, 29012}, {47365, 47366, 5984}, {47369, 47370, 98}, {48879, 55667, 3522}, {48895, 55670, 550}, {48904, 51137, 55669}, {48904, 55669, 376}, {48920, 55666, 8703}


X(58446) = X(2)X(6)∩X(5)X(5171)

Barycentrics    2*a^4+b^4-6*b^2*c^2+c^4-5*a^2*(b^2+c^2) : :
X(58446) = X[14907]+3*X[44543]

X(58446) lies on these lines: {2, 6}, {5, 5171}, {115, 8359}, {140, 620}, {148, 7824}, {468, 10163}, {546, 7830}, {547, 625}, {549, 3734}, {623, 52263}, {624, 52266}, {626, 3628}, {632, 3788}, {1078, 7745}, {1368, 34845}, {1447, 7228}, {1503, 37451}, {1506, 7767}, {1656, 7800}, {1975, 33001}, {2896, 16922}, {3035, 21264}, {3053, 32968}, {3090, 7784}, {3096, 33249}, {3526, 7795}, {3530, 7816}, {3533, 53033}, {3705, 4478}, {3785, 32975}, {3793, 7753}, {3850, 7842}, {3933, 31455}, {4045, 43291}, {4399, 7081}, {5013, 32828}, {5023, 32971}, {5026, 6055}, {5066, 40344}, {5077, 20112}, {5103, 38227}, {5116, 46318}, {5210, 14033}, {5254, 11285}, {5305, 6683}, {5585, 35927}, {6054, 50958}, {6292, 8361}, {6390, 9466}, {6392, 22332}, {6656, 14061}, {6676, 34828}, {6677, 14767}, {6690, 20530}, {6722, 8360}, {7179, 7238}, {7603, 7810}, {7746, 7913}, {7749, 7819}, {7750, 16921}, {7751, 31406}, {7754, 9606}, {7758, 31467}, {7771, 8370}, {7773, 32999}, {7775, 14929}, {7804, 8367}, {7831, 33228}, {7841, 53127}, {7849, 48154}, {7862, 55856}, {7865, 15699}, {7869, 55859}, {7880, 10124}, {7886, 8364}, {7904, 33002}, {7914, 33186}, {8356, 53419}, {8357, 39565}, {8368, 50370}, {8716, 52713}, {9172, 34227}, {9756, 44882}, {9769, 25329}, {9993, 50959}, {10011, 24206}, {10185, 56064}, {10256, 49793}, {11286, 21843}, {11287, 43620}, {11632, 15483}, {12100, 32456}, {13860, 29181}, {13881, 16043}, {14001, 44535}, {14064, 32867}, {14907, 44543}, {15031, 19695}, {15048, 15482}, {15810, 37350}, {15819, 24256}, {16923, 46226}, {17372, 49554}, {17390, 24239}, {18584, 32827}, {18840, 53103}, {19687, 43459}, {20190, 35021}, {26235, 53474}, {31276, 33015}, {32815, 53095}, {32819, 33004}, {32883, 32969}, {32897, 33202}, {32960, 52718}, {32990, 44518}, {33021, 44536}, {33215, 44526}, {34827, 37454}, {40248, 47354}, {41579, 51412}, {47239, 57588}, {49484, 49631}

X(58446) = midpoint of X(i) and X(j) for these {i,j}: {183, 3815}, {14907, 53418}, {2, 11168}
X(58446) = inverse of X(39099) in Steiner inellipse
X(58446) = complement of X(3815)
X(58446) = X(i)-complementary conjugate of X(j) for these {i, j}: {30535, 10}
X(58446)= pole of line {2, 5034} with respect to the Kiepert hyperbola
X(58446)= pole of line {523, 39099} with respect to the Steiner inellipse
X(58446) = center of the nine-point conic of quadrilateral XYZX(183) where XYZ is the cevian triangle of X(2)
X(58446) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(31489)}}, {{A, B, C, X(83), X(15491)}}, {{A, B, C, X(3055), X(8781)}}, {{A, B, C, X(3618), X(53103)}}, {{A, B, C, X(3620), X(43458)}}, {{A, B, C, X(7607), X(11174)}}, {{A, B, C, X(7792), X(53104)}}, {{A, B, C, X(9771), X(10302)}}, {{A, B, C, X(10159), X(44377)}}, {{A, B, C, X(15993), X(40511)}}, {{A, B, C, X(17005), X(42006)}}, {{A, B, C, X(18840), X(34803)}}, {{A, B, C, X(36953), X(39099)}}
X(58446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 141, 44377}, {2, 15271, 141}, {2, 15597, 44401}, {2, 17004, 7792}, {2, 17008, 11174}, {2, 183, 3815}, {2, 230, 3589}, {2, 23055, 47352}, {2, 3054, 44381}, {2, 325, 3055}, {2, 3314, 37647}, {2, 3620, 34803}, {2, 37688, 230}, {2, 42850, 11184}, {2, 599, 9771}, {2, 6, 15491}, {2, 69, 31489}, {2, 7610, 597}, {6, 34229, 13468}, {69, 8556, 15598}, {140, 3934, 7789}, {183, 3815, 524}, {385, 9300, 32455}, {549, 3734, 32459}, {1078, 32992, 7745}, {3314, 37647, 22110}, {3815, 11168, 183}, {5306, 11174, 6329}, {7736, 8667, 3629}, {7749, 31239, 7819}, {7777, 37671, 50771}, {7778, 7792, 44380}, {7792, 37688, 17004}, {8556, 31489, 69}, {9766, 15589, 3630}, {11174, 17008, 5306}, {11184, 42850, 22165}, {11285, 32832, 5254}, {13468, 15491, 6}, {14907, 44543, 53418}, {15491, 34229, 50774}, {16043, 32838, 13881}, {32828, 32978, 5013}, {34573, 44381, 2}, {39022, 39023, 39099}, {44382, 44383, 20582}, {45472, 45473, 3619}


X(58447) = X(2)X(98)∩X(5)X(5944)

Barycentrics    2*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4) : :
X(58447) = X[3]+X[18388], X[427]+3*X[13394], -5*X[1656]+X[18474], 7*X[3526]+X[18445], -5*X[3618]+X[8541], 3*X[6800]+X[11550], X[7391]+3*X[35268], X[11430]+X[15760], 3*X[34513]+X[44288]

X(58447) lies on these lines: {2, 98}, {3, 18388}, {5, 5944}, {22, 29317}, {25, 19130}, {49, 1209}, {51, 14389}, {52, 12242}, {54, 10112}, {83, 420}, {140, 9729}, {141, 53022}, {143, 8254}, {154, 3818}, {161, 5020}, {275, 41203}, {343, 5965}, {389, 7542}, {394, 15135}, {427, 13394}, {428, 32237}, {436, 39569}, {441, 13334}, {465, 13349}, {466, 13350}, {468, 5943}, {511, 6676}, {549, 14156}, {569, 6639}, {575, 13567}, {576, 11427}, {578, 3549}, {858, 22352}, {970, 7561}, {1092, 7558}, {1216, 7568}, {1368, 5092}, {1370, 48892}, {1495, 5133}, {1506, 19627}, {1533, 13596}, {1568, 35921}, {1589, 12975}, {1590, 12974}, {1594, 44829}, {1656, 18474}, {1994, 41586}, {2072, 37513}, {2387, 6680}, {2393, 3589}, {2595, 41279}, {2777, 18570}, {2875, 6690}, {2888, 9706}, {3060, 52300}, {3098, 7494}, {3167, 34507}, {3292, 37636}, {3521, 18364}, {3526, 18445}, {3546, 13347}, {3547, 13346}, {3548, 37515}, {3574, 7488}, {3580, 11225}, {3618, 8541}, {3628, 58435}, {3796, 5094}, {3819, 7499}, {3917, 7495}, {4846, 11204}, {5050, 26958}, {5054, 37475}, {5085, 30771}, {5097, 41588}, {5159, 20190}, {5169, 26881}, {5189, 6030}, {5449, 32046}, {5462, 10020}, {5476, 17810}, {5480, 10154}, {5562, 32348}, {5576, 13419}, {5892, 44452}, {6000, 52262}, {6053, 18435}, {6353, 14561}, {6636, 32598}, {6640, 13336}, {6644, 10182}, {6683, 14917}, {6750, 37127}, {6800, 11550}, {7378, 48884}, {7386, 17508}, {7391, 35268}, {7394, 44082}, {7426, 44106}, {7527, 51403}, {7536, 48886}, {7539, 35259}, {7552, 15033}, {7569, 9707}, {7664, 33798}, {7667, 33751}, {7687, 10254}, {7706, 18324}, {7749, 21001}, {7907, 35294}, {8041, 41939}, {8718, 35482}, {8780, 10516}, {8889, 46264}, {8964, 43144}, {9730, 44673}, {9909, 48901}, {10024, 13403}, {10095, 18282}, {10096, 13364}, {10110, 13383}, {10116, 34826}, {10125, 12006}, {10193, 18580}, {10257, 16836}, {10274, 40441}, {10300, 55679}, {10540, 48411}, {10565, 31670}, {10601, 37453}, {10615, 30481}, {10627, 34004}, {10691, 55674}, {10984, 37119}, {11202, 18420}, {11245, 33749}, {11272, 44347}, {11402, 37638}, {11430, 15760}, {11433, 39561}, {11585, 44862}, {11695, 16238}, {11745, 44277}, {12038, 20302}, {12900, 50140}, {13160, 13367}, {13348, 16197}, {13353, 43817}, {13363, 44234}, {13561, 18128}, {14118, 43831}, {14133, 37125}, {14915, 44236}, {14940, 43651}, {15060, 16534}, {15080, 31074}, {15115, 50008}, {15118, 32299}, {15644, 34002}, {16030, 23181}, {16051, 55687}, {16196, 17704}, {16252, 44870}, {16511, 32300}, {17702, 46029}, {17825, 44503}, {18020, 39287}, {18114, 44891}, {18390, 37506}, {18392, 21659}, {18583, 58470}, {18928, 52290}, {19137, 31267}, {19481, 46085}, {19924, 44210}, {20268, 24332}, {20850, 53023}, {21849, 32269}, {23332, 48906}, {25406, 52299}, {25563, 40647}, {25739, 54000}, {26884, 56462}, {26885, 56464}, {31860, 42785}, {32154, 32283}, {32225, 34565}, {32340, 41482}, {33522, 55587}, {34007, 51033}, {34218, 56308}, {34513, 44288}, {34608, 48904}, {34609, 48898}, {35473, 37853}, {35926, 38736}, {37347, 51393}, {37505, 41587}, {37643, 55710}, {37645, 43653}, {37648, 52297}, {37779, 55038}, {37894, 51371}, {39504, 44407}, {43120, 55890}, {43121, 55885}, {44108, 46818}, {44109, 45968}, {44442, 48896}, {44888, 46832}, {45298, 47296}, {46728, 47525}, {50433, 51269}

X(58447) = midpoint of X(i) and X(j) for these {i,j}: {184, 21243}, {11430, 15760}, {3, 18388}, {343, 34986}, {389, 45118}, {5, 18475}, {6676, 23292}
X(58447) = complement of X(21243)
X(58447)= pole of line {6368, 53567} with respect to the nine-point circle
X(58447)= pole of line {511, 7691} with respect to the Stammler hyperbola
X(58447)= pole of line {2799, 39652} with respect to the Steiner inellipse
X(58447) = center of the nine-point conic of quadrilateral XYZX(184) where XYZ is the cevian triangle of X(2)
X(58447) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(15619)}}, {{A, B, C, X(125), X(39287)}}
X(58447) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11003, 23293}, {2, 184, 21243}, {2, 5012, 125}, {2, 9306, 24206}, {5, 18475, 18400}, {5, 5944, 45286}, {140, 13630, 20191}, {140, 15806, 11591}, {140, 58407, 43839}, {140, 9820, 11793}, {184, 21243, 542}, {468, 37649, 5943}, {575, 13567, 32068}, {3580, 13366, 11225}, {3589, 58434, 6677}, {3589, 58437, 9822}, {3589, 6677, 6688}, {5943, 37649, 25555}, {6676, 23292, 511}, {6689, 44516, 5}, {6800, 31236, 11550}, {7499, 11064, 3819}, {8254, 34577, 143}


X(58448) = X(2)X(187)∩X(140)X(143)

Barycentrics    4*a^4-3*a^2*(b^2+c^2)+2*(b^4-b^2*c^2+c^4) : :
X(58448) = 3*X[2]+X[187], X[5]+X[47113], X[69]+3*X[1692], X[99]+X[32457], X[115]+X[32456], X[141]+X[2030], -X[325]+5*X[31274], 5*X[632]+3*X[38230], X[1513]+3*X[38737], -5*X[1656]+X[13449], 3*X[1691]+5*X[3763], 5*X[1698]+3*X[38221] and many others

X(58448) lies on these lines: {2, 187}, {3, 7844}, {5, 47113}, {30, 6722}, {32, 33233}, {39, 7806}, {69, 1692}, {83, 10631}, {99, 32457}, {115, 32456}, {140, 143}, {141, 2030}, {183, 7880}, {230, 538}, {325, 31274}, {468, 5140}, {512, 31286}, {524, 22244}, {540, 44399}, {543, 32459}, {549, 4045}, {574, 7817}, {597, 7619}, {631, 7834}, {632, 38230}, {754, 44377}, {1078, 7849}, {1384, 7775}, {1506, 53489}, {1513, 38737}, {1570, 31401}, {1656, 13449}, {1691, 3763}, {1698, 38221}, {2021, 3934}, {2031, 3815}, {2080, 3526}, {2459, 10576}, {2460, 10577}, {2482, 15301}, {2548, 32977}, {2549, 33216}, {2794, 10011}, {3053, 7843}, {3054, 8369}, {3111, 5167}, {3291, 7664}, {3552, 39565}, {3564, 20399}, {3618, 5107}, {3624, 5184}, {3629, 7764}, {3734, 11288}, {3767, 32989}, {3793, 22110}, {3818, 37466}, {5007, 7769}, {5008, 7777}, {5023, 7825}, {5024, 7622}, {5025, 15513}, {5031, 33185}, {5054, 15482}, {5077, 5585}, {5104, 47355}, {5148, 5432}, {5162, 11285}, {5170, 30834}, {5194, 5433}, {5206, 7842}, {5210, 11318}, {5461, 27088}, {6036, 37459}, {6642, 32762}, {6681, 40479}, {6720, 16760}, {6781, 33228}, {7746, 7816}, {7747, 33249}, {7748, 32964}, {7752, 35007}, {7753, 37647}, {7755, 32450}, {7763, 7805}, {7778, 7848}, {7790, 8589}, {7792, 44562}, {7793, 7821}, {7795, 33203}, {7797, 31652}, {7800, 33189}, {7801, 17008}, {7803, 33206}, {7813, 9167}, {7824, 7852}, {7828, 33259}, {7830, 8361}, {7835, 9466}, {7841, 8588}, {7845, 7925}, {7846, 33015}, {7851, 15515}, {7869, 35006}, {7873, 7899}, {7882, 7888}, {7892, 31239}, {7901, 43459}, {7902, 15815}, {7908, 8667}, {7918, 33022}, {7919, 33273}, {7935, 33218}, {7942, 33004}, {8365, 34573}, {8368, 50370}, {8586, 47352}, {8598, 14971}, {8859, 39785}, {9301, 15694}, {10104, 43150}, {10160, 35060}, {10257, 47584}, {11064, 50387}, {11149, 32480}, {11184, 21309}, {11361, 39601}, {11539, 15491}, {12150, 17005}, {12506, 37811}, {13586, 14061}, {14928, 53475}, {14962, 47638}, {15602, 52691}, {16188, 44214}, {16385, 39603}, {17694, 36812}, {18424, 33007}, {31455, 33000}, {31481, 50375}, {32807, 50374}, {32829, 51170}, {32967, 39590}, {32984, 43618}, {32985, 43620}, {33255, 53127}, {34504, 43448}, {34511, 37689}, {35287, 43619}, {35605, 46818}, {38611, 44282}, {38738, 39663}, {39554, 40335}, {39555, 40334}, {42215, 45872}, {42216, 45871}, {45879, 48314}, {45880, 48313}, {47618, 55863}, {50253, 51371}, {51848, 55674}, {52021, 53458}, {52022, 53469}

X(58448) = midpoint of X(i) and X(j) for these {i,j}: {115, 32456}, {140, 14693}, {141, 2030}, {187, 625}, {10150, 26613}, {15301, 47286}, {2021, 3934}, {230, 620}, {32459, 43291}, {468, 40544}, {5, 47113}, {5461, 27088}, {6036, 37459}, {6671, 6672}, {99, 32457}
X(58448) = reflection of X(i) in X(j) for these {i,j}: {6722, 44381}
X(58448) = inverse of X(40871) in Steiner inellipse
X(58448) = complement of X(625)
X(58448) = perspector of circumconic {{A, B, C, X(35138), X(38262)}}
X(58448) = X(i)-complementary conjugate of X(j) for these {i, j}: {57729, 10}, {57926, 2887}
X(58448)= pole of line {8704, 44434} with respect to the orthoptic circle of the Steiner Inellipse
X(58448)= pole of line {597, 1506} with respect to the Kiepert hyperbola
X(58448)= pole of line {3906, 20105} with respect to the Steiner circumellipse
X(58448)= pole of line {194, 3906} with respect to the Steiner inellipse
X(58448)= pole of line {599, 7887} with respect to the Wallace hyperbola
X(58448) = center of the nine-point conic of quadrilateral XYZX(187) where XYZ is the cevian triangle of X(2)
X(58448) = intersection, other than A, B, C, of circumconics {{A, B, C, X(598), X(45108)}}, {{A, B, C, X(625), X(57926)}}, {{A, B, C, X(7934), X(30542)}}, {{A, B, C, X(18023), X(31275)}}
X(58448) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 187, 625}, {2, 21843, 7761}, {2, 26613, 31173}, {2, 31173, 10150}, {2, 316, 31275}, {2, 37809, 8176}, {2, 3972, 7603}, {2, 7771, 7853}, {3, 7886, 7861}, {30, 44381, 6722}, {115, 35297, 32456}, {140, 14693, 511}, {140, 6680, 6683}, {187, 31173, 14712}, {187, 31275, 316}, {230, 620, 538}, {631, 38227, 18860}, {1078, 33245, 7874}, {1078, 7874, 7849}, {3053, 7862, 7843}, {3788, 7780, 7895}, {5206, 7887, 7842}, {5461, 27088, 32479}, {6720, 44452, 58464}, {7746, 16925, 7816}, {7749, 7807, 3934}, {7749, 7820, 37688}, {7761, 21843, 46893}, {7771, 7853, 40344}, {7790, 33274, 8589}, {7807, 37688, 7820}, {7815, 32954, 7915}, {7835, 17004, 9466}, {10150, 26613, 3849}, {11288, 37637, 3734}, {14712, 26613, 187}, {27088, 41139, 5461}, {32459, 43291, 543}, {32459, 44401, 43291}, {32954, 44535, 7815}


X(58449) = X(2)X(191)∩X(10)X(21)

Barycentrics    2*a^4+a^3*(b+c)+(b^2-c^2)^2-a*(b+c)*(b^2+3*b*c+c^2)-a^2*(3*b^2+4*b*c+3*c^2) : :
X(58449) = -X[1]+5*X[15674], 3*X[2]+X[191], X[5]+X[22937], X[8]+3*X[5426], X[10]+X[21], X[72]+X[47319], -X[79]+5*X[31254], 3*X[165]+X[37433], X[355]+3*X[28443], -X[551]+3*X[15671], -5*X[631]+X[16132], -5*X[632]+X[33668] and many others

X(58449) lies on these lines: {1, 15674}, {2, 191}, {5, 22937}, {8, 5426}, {10, 21}, {12, 41542}, {30, 3828}, {72, 47319}, {79, 31254}, {140, 2771}, {165, 37433}, {226, 41697}, {333, 21081}, {355, 28443}, {442, 1155}, {515, 5428}, {516, 6841}, {517, 10021}, {518, 58619}, {519, 15670}, {551, 15671}, {631, 16132}, {632, 33668}, {758, 942}, {846, 24880}, {944, 31669}, {946, 16139}, {952, 44254}, {993, 37308}, {1213, 15586}, {1376, 37292}, {1385, 31650}, {1656, 16159}, {1698, 2475}, {1749, 14526}, {2292, 50757}, {2795, 51578}, {3120, 24902}, {3452, 20104}, {3526, 13465}, {3579, 16160}, {3616, 16126}, {3626, 44669}, {3628, 31756}, {3649, 3911}, {3651, 10164}, {3678, 6690}, {3679, 15672}, {3683, 25639}, {3743, 35466}, {3811, 31446}, {3817, 49177}, {3822, 31445}, {3825, 15254}, {3833, 50205}, {3841, 4640}, {3878, 24953}, {3881, 58568}, {4065, 50755}, {4066, 56078}, {4127, 5719}, {4193, 41872}, {4297, 21161}, {4298, 41547}, {4533, 52638}, {4669, 15675}, {4691, 10543}, {4701, 15174}, {4745, 15673}, {5044, 58404}, {5047, 41557}, {5141, 56203}, {5248, 5791}, {5267, 27086}, {5273, 10198}, {5325, 21077}, {5427, 10106}, {5432, 17637}, {5442, 17535}, {5499, 11231}, {5847, 51729}, {6533, 51583}, {6666, 6701}, {6745, 31938}, {6853, 21635}, {6857, 22836}, {7483, 10176}, {7701, 31423}, {9780, 15680}, {10122, 13405}, {10165, 33858}, {10175, 37230}, {10197, 41229}, {10916, 51724}, {11041, 30147}, {11277, 58451}, {11604, 37162}, {11684, 19862}, {13089, 51569}, {13743, 26446}, {13995, 51573}, {15677, 19875}, {16117, 31672}, {16118, 19877}, {16138, 38068}, {16617, 43174}, {16858, 37702}, {17525, 51069}, {17558, 49168}, {18180, 56894}, {18483, 46028}, {19919, 49107}, {21674, 52680}, {22837, 31458}, {25440, 37286}, {27529, 52126}, {27784, 37646}, {28150, 44258}, {28164, 44238}, {28194, 44257}, {28460, 50796}, {31157, 51714}, {31757, 58479}, {33812, 51111}, {34600, 37291}, {34753, 58586}, {35637, 43223}, {37298, 50844}, {40937, 45927}, {43151, 51489}, {47742, 58658}, {51118, 52269}, {54335, 56313}

X(58449) = midpoint of X(i) and X(j) for these {i,j}: {10, 21}, {191, 11263}, {18180, 56894}, {19919, 49107}, {21677, 35016}, {28460, 50796}, {3579, 16160}, {442, 3647}, {5, 22937}, {5499, 22936}, {6675, 18253}, {58619, 58692}, {72, 47319}, {946, 16139}
X(58449) = reflection of X(i) in X(j) for these {i,j}: {1125, 6675}, {18483, 46028}, {3678, 58638}, {3881, 58568}, {31757, 58479}, {442, 3634}
X(58449) = complement of X(11263)
X(58449) = perspector of circumconic {{A, B, C, X(42362), X(47318)}}
X(58449) = X(i)-complementary conjugate of X(j) for these {i, j}: {7161, 3454}, {7372, 21252}
X(58449)= pole of line {1100, 31488} with respect to the Kiepert hyperbola
X(58449)= pole of line {36, 15792} with respect to the Stammler hyperbola
X(58449)= pole of line {4560, 7265} with respect to the Steiner inellipse
X(58449) = center of the nine-point conic of quadrilateral XYZX(191) where XYZ is the cevian triangle of X(2)
X(58449) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(758), X(5260)}}, {{A, B, C, X(6740), X(55091)}}, {{A, B, C, X(24624), X(55090)}}
X(58449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 191, 11263}, {8, 15676, 5426}, {846, 24880, 36250}, {6666, 58405, 31253}, {6675, 18253, 758}, {6693, 58386, 1125}, {11231, 22936, 5499}, {15670, 21677, 35016}, {21677, 35016, 519}, {58619, 58692, 518}


X(58450) = X(2)X(66)∩X(6)X(13622)

Barycentrics    2*a^8+(b^4-c^4)^2-3*a^4*(b^4+c^4) : :
X(58450) = -9*X[2]+X[66], -3*X[597]+X[39125], X[626]+X[42826], 5*X[1656]+3*X[23041], 7*X[3090]+X[36989], 11*X[3525]+X[9968], 7*X[3526]+X[19149], 5*X[3763]+3*X[19153], -9*X[5054]+X[34778], -9*X[5055]+X[34775], 3*X[10192]+X[23300], X[10282]+X[20300] and many others

X(58450) lies on circumconic {{A, B, C, X(13622), X(40404)}} and these lines: {2, 66}, {6, 13622}, {140, 34146}, {141, 5972}, {159, 11284}, {182, 44516}, {420, 53485}, {468, 9969}, {511, 10020}, {542, 34330}, {570, 44887}, {597, 39125}, {626, 42826}, {1503, 3628}, {1560, 46242}, {1656, 23041}, {2393, 3589}, {3090, 36989}, {3098, 14156}, {3525, 9968}, {3526, 19149}, {3564, 58435}, {3618, 5643}, {3763, 19153}, {3852, 6680}, {5054, 34778}, {5055, 34775}, {5092, 12900}, {6292, 15257}, {6467, 15118}, {6676, 58547}, {6689, 15577}, {7499, 45979}, {7889, 15270}, {10018, 19161}, {10182, 12106}, {10192, 23300}, {10224, 29012}, {10282, 20300}, {11202, 18382}, {12107, 29317}, {13365, 25555}, {13623, 35450}, {14076, 24206}, {15583, 48310}, {16419, 34207}, {18583, 58407}, {19125, 52292}, {23042, 34118}, {23292, 58471}, {29181, 44277}, {32191, 58489}, {32344, 43811}, {34774, 51128}, {34776, 42786}, {34777, 47352}, {40559, 58438}, {46265, 55653}, {53023, 55578}, {58436, 58454}

X(58450) = midpoint of X(i) and X(j) for these {i,j}: {141, 41593}, {10282, 20300}, {19130, 35228}, {206, 6697}, {3589, 58437}, {626, 42826}
X(58450) = complement of X(6697)
X(58450)= pole of line {3313, 11416} with respect to the Stammler hyperbola
X(58450) = center of the nine-point conic of quadrilateral XYZX(206) where XYZ is the cevian triangle of X(2)
X(58450) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 206, 6697}, {2, 31267, 206}, {3589, 58434, 58437}, {3589, 58437, 2393}, {3589, 58439, 58494}, {10192, 51126, 23300}


X(58451) = X(2)X(210)∩X(10)X(496)

Barycentrics    a*(-b^2-8*b*c-c^2+a*(b+c)) : :
X(58451) = 3*X[2]+X[210], 2*X[5]+X[58637], -X[65]+13*X[19877], -4*X[140]+X[58567], 2*X[141]+X[58694], 2*X[142]+X[58678], X[375]+X[3819], X[392]+3*X[19875], 2*X[620]+X[58682], X[942]+X[4134], X[960]+5*X[1698], X[1125]+X[3956] and many others

X(58451) lies on these lines: {2, 210}, {5, 58637}, {9, 8169}, {10, 496}, {37, 16569}, {43, 15569}, {44, 17122}, {57, 15481}, {65, 19877}, {75, 4903}, {140, 58567}, {141, 58694}, {142, 58678}, {200, 8167}, {375, 3819}, {392, 19875}, {474, 5302}, {517, 547}, {620, 58682}, {674, 6688}, {756, 16610}, {758, 3634}, {899, 1962}, {936, 56177}, {942, 4134}, {960, 1698}, {971, 58441}, {982, 31197}, {984, 16602}, {1001, 3158}, {1125, 3956}, {1155, 9342}, {1212, 41796}, {1213, 25144}, {1376, 4512}, {1386, 5268}, {2801, 10156}, {2802, 51069}, {2810, 58646}, {2836, 45311}, {2886, 5316}, {3035, 58683}, {3057, 46933}, {3246, 17123}, {3305, 4413}, {3306, 3715}, {3338, 16864}, {3452, 3826}, {3525, 14872}, {3526, 12675}, {3555, 34595}, {3589, 58621}, {3616, 3983}, {3624, 3697}, {3628, 13374}, {3636, 4540}, {3646, 3913}, {3678, 31253}, {3679, 10179}, {3683, 35595}, {3689, 5284}, {3696, 18743}, {3698, 46932}, {3711, 4666}, {3739, 24182}, {3744, 17125}, {3745, 37680}, {3751, 37682}, {3811, 16853}, {3823, 3846}, {3833, 4532}, {3842, 6686}, {3844, 5743}, {3869, 46931}, {3877, 4731}, {3892, 19862}, {3894, 4539}, {3919, 10176}, {3925, 5087}, {3934, 58695}, {3967, 19804}, {3971, 28555}, {3995, 4706}, {4009, 4359}, {4015, 5045}, {4059, 25585}, {4096, 28582}, {4113, 29824}, {4135, 4726}, {4358, 17163}, {4383, 4682}, {4420, 17534}, {4428, 46917}, {4519, 46938}, {4525, 5883}, {4533, 18398}, {4641, 17124}, {4650, 15492}, {4663, 37674}, {4685, 4891}, {4689, 9350}, {4698, 6685}, {4708, 25353}, {4719, 17749}, {4849, 26102}, {4881, 5260}, {4883, 21805}, {5049, 19883}, {5056, 7957}, {5094, 41611}, {5123, 38058}, {5159, 58639}, {5220, 5437}, {5224, 25108}, {5272, 49465}, {5281, 17604}, {5297, 37687}, {5426, 5440}, {5692, 19876}, {5745, 10855}, {5880, 18228}, {5919, 53620}, {5927, 10178}, {5943, 9047}, {6001, 11231}, {6036, 58681}, {6666, 6690}, {6667, 58611}, {6679, 6687}, {6683, 58622}, {6699, 58680}, {6710, 58684}, {6711, 58685}, {6712, 58686}, {6713, 58687}, {6721, 58661}, {6722, 58610}, {6723, 58671}, {7322, 54390}, {8583, 11260}, {9004, 20582}, {9025, 49731}, {9049, 12045}, {9052, 10219}, {9943, 31423}, {10157, 10164}, {10303, 12680}, {10582, 15570}, {10916, 51559}, {11108, 56176}, {11227, 15064}, {11235, 38200}, {11277, 58449}, {11997, 17358}, {12900, 58654}, {13373, 16239}, {15587, 18230}, {16616, 46028}, {16669, 37604}, {16814, 17596}, {16842, 51715}, {16862, 41229}, {16863, 51572}, {17063, 49515}, {17308, 30825}, {17348, 29649}, {17490, 49523}, {17535, 32636}, {17536, 37080}, {17616, 54357}, {18247, 30478}, {19855, 25681}, {21031, 24564}, {21060, 25557}, {21677, 25011}, {21870, 29814}, {23155, 33879}, {24003, 27798}, {24165, 42056}, {24703, 26040}, {24987, 50038}, {25068, 46196}, {25502, 49478}, {26037, 30818}, {26103, 49450}, {27538, 49483}, {27778, 31235}, {28164, 33575}, {28484, 35652}, {31287, 54271}, {31399, 31786}, {33160, 41310}, {34573, 58581}, {40480, 58691}, {40607, 58583}, {40998, 46916}, {41836, 49514}, {46694, 58591}, {51127, 58562}, {58402, 58458}, {58418, 58612}, {58420, 58665}, {58421, 58613}, {58423, 58667}, {58424, 58668}, {58425, 58669}, {58426, 58670}, {58427, 58672}, {58428, 58673}, {58433, 58563}, {58453, 58659}, {58561, 58675}, {58564, 58677}, {58578, 58699}, {58587, 58698}, {58595, 58674}

X(58451) = midpoint of X(i) and X(j) for these {i,j}: {1, 4711}, {1125, 3956}, {10157, 10164}, {11227, 15064}, {2, 3740}, {210, 3742}, {375, 3819}, {3679, 10179}, {3848, 58629}, {3877, 5836}, {3892, 34790}, {4685, 4891}, {40998, 49732}, {5927, 10178}, {942, 4134}, {960, 3753}
X(58451) = reflection of X(i) in X(j) for these {i,j}: {10107, 3753}, {3848, 2}, {4662, 3956}, {58560, 3848}, {58629, 3740}
X(58451) = complement of X(3742)
X(58451)= pole of line {390, 20014} with respect to the Feuerbach hyperbola
X(58451)= pole of line {4140, 4462} with respect to the Steiner inellipse
X(58451) = center of the nine-point conic of quadrilateral XYZX(210) where XYZ is the cevian triangle of X(2)
X(58451) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2481), X(3848)}}, {{A, B, C, X(27475), X(31507)}}
X(58451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3921, 4711}, {2, 210, 3742}, {2, 3740, 518}, {2, 518, 3848}, {2, 58629, 58560}, {140, 58631, 58567}, {200, 8167, 42819}, {210, 354, 4661}, {375, 3819, 9037}, {518, 3740, 58629}, {1125, 4662, 58609}, {1376, 7308, 15254}, {3305, 4413, 4640}, {3452, 3826, 3838}, {3589, 58653, 58621}, {3624, 3697, 34791}, {3628, 58630, 13374}, {3634, 5044, 3812}, {3740, 3742, 210}, {3877, 4731, 5836}, {3877, 9780, 4731}, {4015, 19878, 5045}, {4539, 5439, 3894}, {4698, 58655, 58620}, {5268, 37679, 1386}, {6666, 20103, 6690}, {6666, 58634, 58608}, {6667, 58663, 58611}, {6683, 58656, 58622}, {6722, 58662, 58610}, {8580, 36835, 51780}, {8580, 51780, 1001}, {9342, 27065, 1155}, {10157, 10164, 15726}, {16239, 58632, 13373}, {18743, 26038, 3696}, {34573, 58633, 58581}, {40998, 46916, 49732}, {51127, 58676, 58562}, {58418, 58664, 58612}, {58421, 58666, 58613}, {58433, 58635, 58563}


X(58452) = X(2)X(213)∩X(6)X(30110)

Barycentrics    2*a^3*(b+c)+b*c*(b^2+c^2)+a*(b^3+c^3) : :
X(58452) = 3*X[2]+X[213], X[1930]+3*X[46907], X[3721]+3*X[46899]

X(58452) lies on these lines: {2, 213}, {6, 30110}, {39, 17353}, {41, 25497}, {44, 16887}, {386, 17279}, {518, 1125}, {712, 16600}, {766, 6679}, {1107, 30106}, {1912, 31288}, {1930, 46907}, {2140, 17356}, {2176, 30107}, {2388, 6685}, {3008, 6704}, {3230, 26965}, {3263, 21802}, {3721, 46899}, {3912, 20970}, {3997, 20255}, {4357, 27637}, {4358, 17367}, {4422, 25092}, {4721, 26978}, {4805, 26099}, {5432, 42397}, {5750, 36812}, {6693, 6710}, {16519, 30126}, {16583, 24254}, {16886, 30915}, {16974, 30108}, {17023, 44307}, {17030, 17352}, {17259, 19858}, {17277, 27274}, {20963, 27097}, {21904, 40006}, {24330, 24790}, {25345, 40690}, {25610, 29400}, {41310, 46913}

X(58452) = midpoint of X(i) and X(j) for these {i,j}: {213, 21240}
X(58452) = complement of X(21240)
X(58452)= pole of line {784, 8640} with respect to the Steiner inellipse
X(58452) = center of the nine-point conic of quadrilateral XYZX(213) where XYZ is the cevian triangle of X(2)
X(58452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 213, 21240}, {6679, 31284, 6680}


X(58453) = X(2)X(80)∩X(10)X(1317)

Barycentrics    4*a^4-a^3*(b+c)+a^2*(-6*b^2+4*b*c-6*c^2)+2*(b^2-c^2)^2+a*(b+c)*(b^2+b*c+c^2) : :
X(58453) = -9*X[2]+X[80], 3*X[10]+X[1317], X[100]+7*X[3624], X[119]+3*X[10165], 3*X[549]+X[12611], 3*X[551]+X[1145], -5*X[631]+X[46684], -5*X[632]+X[12619], X[946]+3*X[38760], -3*X[1125]+X[1387], -X[1320]+9*X[25055], X[1537]+3*X[10164] and many others

X(58453) lies on these lines: {2, 80}, {10, 1317}, {11, 3841}, {100, 3624}, {119, 10165}, {140, 2800}, {515, 58421}, {518, 58625}, {528, 33709}, {549, 12611}, {551, 1145}, {631, 46684}, {632, 12619}, {758, 3911}, {946, 38760}, {952, 3634}, {1125, 1387}, {1320, 25055}, {1484, 3826}, {1537, 10164}, {1656, 6246}, {1698, 15863}, {2801, 6666}, {2932, 4423}, {3036, 3828}, {3065, 15671}, {3090, 12119}, {3523, 34789}, {3526, 6265}, {3533, 12247}, {3626, 12735}, {3636, 5854}, {3678, 5083}, {3754, 13747}, {3814, 21578}, {3817, 24466}, {3825, 4304}, {3833, 12736}, {3848, 58587}, {3878, 17566}, {3881, 14740}, {3898, 39776}, {3919, 39782}, {4015, 6700}, {4432, 19636}, {4881, 31263}, {4973, 17484}, {4996, 38062}, {4999, 46694}, {5044, 58591}, {5045, 58663}, {5054, 12515}, {5219, 51506}, {5259, 17100}, {5432, 15558}, {5550, 9802}, {5719, 6691}, {5775, 31188}, {5886, 38762}, {6068, 38054}, {6174, 12732}, {6667, 19878}, {6684, 11729}, {6688, 58501}, {7972, 9780}, {7988, 10724}, {8227, 34474}, {8252, 13976}, {8253, 8988}, {8715, 37704}, {8983, 13991}, {9897, 19872}, {9912, 16419}, {9945, 45310}, {9963, 15015}, {10031, 19876}, {10176, 11570}, {10427, 38059}, {10698, 31423}, {11230, 16174}, {11231, 19907}, {11274, 12531}, {11715, 38752}, {12747, 55857}, {12832, 54288}, {13411, 18240}, {13922, 13971}, {15017, 38693}, {15325, 46681}, {15670, 51569}, {15694, 48667}, {15702, 50908}, {17460, 24871}, {17502, 22799}, {18254, 54357}, {19077, 32786}, {19078, 32785}, {21154, 21635}, {22935, 34126}, {23708, 25440}, {25485, 26446}, {26726, 38314}, {27529, 51714}, {32789, 49240}, {32790, 49241}, {33337, 34122}, {38032, 38763}, {38049, 51007}, {38182, 55856}, {38197, 47355}, {58451, 58659}

X(58453) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3035}, {16174, 33814}, {214, 6702}, {3036, 33812}, {3626, 12735}, {3678, 5083}, {3881, 14740}, {45310, 50844}, {5044, 58591}, {5045, 58663}, {6684, 11729}, {58625, 58698}
X(58453) = reflection of X(i) in X(j) for these {i,j}: {6667, 19878}
X(58453) = complement of X(6702)
X(58453)= pole of line {21222, 23884} with respect to the Steiner inellipse
X(58453) = center of the nine-point conic of quadrilateral XYZX(214) where XYZ is the cevian triangle of X(2)
X(58453) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 214, 6702}, {100, 3624, 32557}, {1125, 3035, 2802}, {3090, 12119, 38161}, {3526, 6265, 38133}, {11230, 33814, 16174}, {15015, 34595, 31272}, {31235, 34123, 10}, {58625, 58698, 518}


X(58454) = X(2)X(216)∩X(140)X(143)

Barycentrics    2*b^2*c^2*(b^2-c^2)^2+3*a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)-2*a^4*(3*b^4+b^2*c^2+3*c^4) : :
X(58454) = 3*X[2]+X[216], X[3]+X[44924], -3*X[547]+X[42862], -5*X[1656]+X[39530], 7*X[3090]+X[42329], 7*X[3526]+X[30258], -3*X[3819]+X[42487], -6*X[10219]+X[45873], -5*X[19862]+X[57289], -5*X[40329]+13*X[46219]

X(58454) lies on these lines: {2, 216}, {3, 44924}, {95, 3284}, {140, 143}, {187, 53485}, {233, 297}, {458, 10979}, {547, 42862}, {577, 37067}, {632, 20204}, {852, 42556}, {1232, 36212}, {1656, 39530}, {2393, 58438}, {3090, 42329}, {3526, 30258}, {3618, 36948}, {3628, 32428}, {3819, 42487}, {6666, 40482}, {6688, 44914}, {6709, 23583}, {7393, 7808}, {7514, 7804}, {7824, 53490}, {7886, 50648}, {9822, 52261}, {10124, 40477}, {10219, 45873}, {11793, 58455}, {14786, 22270}, {15860, 52712}, {19862, 57289}, {22052, 36794}, {34573, 40484}, {37649, 58417}, {40329, 46219}, {40885, 54105}, {44335, 51127}, {58436, 58450}

X(58454) = midpoint of X(i) and X(j) for these {i,j}: {140, 10003}, {216, 14767}, {3, 44924}
X(58454) = complement of X(14767)
X(58454)= pole of line {1506, 13567} with respect to the Kiepert hyperbola
X(58454)= pole of line {520, 31296} with respect to the Steiner inellipse
X(58454) = center of the nine-point conic of quadrilateral XYZX(216) where XYZ is the cevian triangle of X(2)
X(58454) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34003)}}, {{A, B, C, X(2052), X(45108)}}
X(58454) = barycentric product X(i)*X(j) for these (i, j): {264, 34003}
X(58454) = barycentric quotient X(i)/X(j) for these (i, j): {34003, 3}
X(58454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 216, 14767}, {140, 10003, 511}


X(58455) = X(2)X(217)∩X(5)X(182)

Barycentrics    2*a^8*(b^2+c^2)-3*a^4*b^2*c^2*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-c^4)^2-3*a^6*(b^4+c^4) : :
X(58455) = 3*X[2]+X[217], -3*X[5943]+X[27370]

X(58455) lies on circumconic {{A, B, C, X(275), X(27366)}} and these lines: {2, 217}, {5, 182}, {32, 23292}, {83, 275}, {441, 46394}, {511, 40645}, {524, 36952}, {1078, 11064}, {1990, 42368}, {2387, 6680}, {5943, 27370}, {6683, 9729}, {6689, 6720}, {7787, 14389}, {7815, 53415}, {7819, 11672}, {9820, 10104}, {11328, 23208}, {11695, 58464}, {11793, 58454}, {12054, 44231}, {46172, 58407}

X(58455) = midpoint of X(i) and X(j) for these {i,j}: {217, 34850}, {40645, 45112}
X(58455) = complement of X(34850)
X(58455)= pole of line {32, 53485} with respect to the Kiepert hyperbola
X(58455)= pole of line {2979, 26216} with respect to the Stammler hyperbola
X(58455) = center of the nine-point conic of quadrilateral XYZX(217) where XYZ is the cevian triangle of X(2)
X(58455) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40645, 45112, 511}


X(58456) = X(1)X(40534)∩X(2)X(218)

Barycentrics    2*a^4-4*a^3*(b+c)+3*a^2*(b^2+c^2)+(b-c)^2*(b^2+c^2)-2*a*(b^3+c^3) : :
X(58456) = 3*X[2]+X[218]

X(58456) lies on these lines: {1, 40534}, {2, 218}, {5, 40561}, {140, 31284}, {474, 3423}, {518, 1125}, {936, 17698}, {3452, 30618}, {3811, 17279}, {3812, 58442}, {4251, 16593}, {5219, 30617}, {5748, 30616}, {6686, 43158}, {6691, 6710}, {7308, 17742}, {7819, 17353}, {8257, 36949}, {16549, 26007}, {17745, 51384}, {19843, 37650}, {24781, 27064}, {58460, 58466}

X(58456) = center of the nine-point conic of quadrilateral XYZX(218) where XYZ is the cevian triangle of X(2)
X(58456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3589, 58458, 1125}


X(58457) = X(2)X(219)∩X(9)X(1020)

Barycentrics    2*a^5-2*a^4*(b+c)+a^2*(b+c)^3-a*(b^2-c^2)^2-a^3*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+c^2) : :
X(58457) = 3*X[2]+X[219], X[11677]+3*X[35273], -5*X[31261]+X[41004]

X(58457) lies on these lines: {2, 219}, {9, 1020}, {10, 51699}, {12, 25651}, {44, 53596}, {48, 30810}, {71, 1375}, {140, 916}, {307, 18644}, {517, 40530}, {518, 1125}, {857, 20289}, {997, 1807}, {1441, 7359}, {2287, 28757}, {2323, 25964}, {2807, 6710}, {3086, 37650}, {3820, 20204}, {3925, 17188}, {4422, 25078}, {5231, 30620}, {5745, 53415}, {6684, 16252}, {8271, 10582}, {9119, 23292}, {10916, 17348}, {11019, 30621}, {11064, 52385}, {11677, 35273}, {13374, 58442}, {17043, 26006}, {17243, 22836}, {17259, 26363}, {17278, 24179}, {17917, 18228}, {18249, 58459}, {20103, 20202}, {20818, 26130}, {23151, 28753}, {25878, 56445}, {26063, 30808}, {26668, 55432}, {26932, 37659}, {31261, 41004}, {41007, 54324}

X(58457) = midpoint of X(i) and X(j) for these {i,j}: {219, 16608}
X(58457) = complement of X(16608)
X(58457) = center of the nine-point conic of quadrilateral XYZX(219) where XYZ is the cevian triangle of X(2)
X(58457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 219, 16608}, {3589, 58458, 6666}, {5745, 53415, 58460}, {26006, 40937, 17043}, {58406, 58410, 140}


X(58458) = X(2)X(220)∩X(140)X(2808)

Barycentrics    2*a^4-4*a^3*(b+c)-2*a*(b-c)^2*(b+c)+(b-c)^2*(b^2+c^2)+a^2*(3*b^2+4*b*c+3*c^2) : :
X(58458) = 3*X[2]+X[220], X[17732]+3*X[57521]

X(58458) lies on these lines: {2, 220}, {10, 40483}, {44, 53597}, {140, 2808}, {277, 24352}, {517, 58442}, {518, 1125}, {936, 17279}, {1212, 17044}, {1334, 26007}, {2389, 6690}, {3305, 7131}, {3634, 28849}, {3811, 17243}, {3826, 48900}, {4357, 25891}, {4415, 24781}, {4422, 7789}, {5745, 58466}, {5845, 34847}, {6554, 31994}, {6696, 58410}, {6706, 40869}, {7288, 52013}, {14986, 37650}, {17259, 19843}, {17675, 56746}, {17682, 17747}, {17732, 57521}, {26036, 30825}, {26658, 34522}, {28740, 37658}, {29598, 51780}, {40530, 58637}, {58402, 58451}

X(58458) = midpoint of X(i) and X(j) for these {i,j}: {220, 21258}
X(58458) = complement of X(21258)
X(58458)= pole of line {6362, 17494} with respect to the Steiner inellipse
X(58458) = center of the nine-point conic of quadrilateral XYZX(220) where XYZ is the cevian triangle of X(2)
X(58458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 220, 21258}, {2, 43984, 33298}, {1125, 58456, 3589}


X(58459) = X(2)X(221)∩X(10)X(36949)

Barycentrics    2*a^7+2*a^6*(b+c)-4*a^2*b*(b-c)^2*c*(b+c)-3*a^5*(b^2+c^2)+(b-c)^2*(b+c)^3*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-a^4*(b+c)*(3*b^2-4*b*c+3*c^2) : :
X(58459) = 3*X[2]+X[221], X[1329]+X[47380], -X[1854]+5*X[3616], -X[3556]+3*X[10192]

X(58459) lies on these lines: {2, 221}, {10, 36949}, {65, 23292}, {73, 25968}, {140, 2818}, {142, 40660}, {468, 42448}, {960, 53415}, {1001, 2883}, {1125, 6001}, {1329, 47380}, {1456, 46878}, {1503, 14529}, {1854, 3616}, {2390, 6679}, {2778, 3884}, {3085, 20307}, {3556, 10192}, {3589, 3812}, {3743, 17043}, {3838, 58462}, {3869, 11064}, {4295, 17917}, {5248, 15311}, {5436, 12779}, {6247, 10198}, {6684, 20201}, {6690, 6696}, {6703, 28628}, {7789, 17044}, {9820, 14988}, {11109, 51421}, {12514, 17073}, {16466, 20266}, {17398, 21767}, {17911, 45929}, {18249, 58457}, {24565, 56821}, {24953, 32065}, {26932, 34043}, {40266, 51425}

X(58459) = midpoint of X(i) and X(j) for these {i,j}: {1329, 47380}, {221, 20306}
X(58459) = complement of X(20306)
X(58459) = center of the nine-point conic of quadrilateral XYZX(221) where XYZ is the cevian triangle of X(2)


X(58460) = X(2)X(222)∩X(142)X(6678)

Barycentrics    2*a^6-4*a^2*b*(b-c)^2*c-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+a^4*(-3*b^2+4*b*c-3*c^2)+(b^2-c^2)^2*(b^2+c^2) : :
X(58460) = 3*X[2]+X[222], -X[1905]+5*X[5439]

X(58460) lies on these lines: {2, 222}, {57, 17073}, {140, 58411}, {142, 6678}, {940, 16608}, {971, 58402}, {1125, 6001}, {1465, 18652}, {1763, 5437}, {1905, 5439}, {2003, 26005}, {2807, 6690}, {3075, 18641}, {3589, 6692}, {3666, 17043}, {3687, 6510}, {3812, 44662}, {3824, 58462}, {3911, 23292}, {4657, 42467}, {5739, 23140}, {5745, 53415}, {5928, 25525}, {6691, 6693}, {6708, 34050}, {9776, 17917}, {13478, 21239}, {14058, 52260}, {16578, 44416}, {17044, 24254}, {18644, 37520}, {20268, 40688}, {22053, 33305}, {23304, 29207}, {25934, 56366}, {39595, 44356}, {58456, 58466}

X(58460) = midpoint of X(i) and X(j) for these {i,j}: {222, 41883}
X(58460) = complement of X(41883)
X(58460) = center of the nine-point conic of quadrilateral XYZX(222) where XYZ is the cevian triangle of X(2)
X(58460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17074, 26932}, {2, 222, 41883}, {940, 20266, 16608}, {5745, 53415, 58457}


X(58461) = X(2)X(224)∩X(3)X(12608)

Barycentrics    2*a^7-3*a^6*(b+c)+(b-c)^4*(b+c)^3-2*a*b*c*(b^2-c^2)^2-4*a^5*(b^2+b*c+c^2)-a^2*(b+c)*(b^2+c^2)*(5*b^2-6*b*c+5*c^2)+a^4*(b+c)*(7*b^2-4*b*c+7*c^2)+2*a^3*(b^4+3*b^3*c+3*b*c^3+c^4) : :
X(58461) = 3*X[2]+X[224], X[78]+X[41565], 7*X[3624]+X[56583]

X(58461) lies on these lines: {2, 224}, {3, 12608}, {10, 37615}, {57, 6921}, {78, 41565}, {90, 6857}, {140, 912}, {142, 474}, {226, 37282}, {496, 1125}, {631, 55869}, {942, 3035}, {950, 25962}, {997, 6989}, {1376, 12260}, {3523, 52457}, {3624, 56583}, {3812, 13405}, {4423, 19520}, {5433, 41537}, {5438, 37462}, {5552, 34489}, {5553, 21164}, {5703, 56278}, {5794, 50726}, {5840, 9955}, {6245, 6958}, {6675, 58415}, {6691, 11018}, {6745, 24391}, {6881, 17647}, {6967, 8726}, {10052, 15803}, {11375, 37270}, {12437, 44675}, {15934, 37828}, {18443, 26364}, {25440, 55108}, {28628, 37271}

X(58461) = midpoint of X(i) and X(j) for these {i,j}: {224, 10395}, {78, 41565}
X(58461) = complement of X(10395)
X(58461) = center of the nine-point conic of quadrilateral XYZX(224) where XYZ is the cevian triangle of X(2)
X(58461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 224, 10395}


X(58462) = X(2)X(225)∩X(5)X(515)

Barycentrics    2*a^7+a^6*(b+c)-4*a^5*(b^2+c^2)+a^4*(b+c)*(b^2+c^2)+2*a^3*(b^2+c^2)^2+(b-c)^2*(b+c)^3*(3*b^2-4*b*c+3*c^2)-a^2*(b-c)^2*(b+c)*(5*b^2+6*b*c+5*c^2) : :
X(58462) = 3*X[2]+X[225]

X(58462) lies on these lines: {2, 225}, {5, 515}, {1210, 3772}, {2217, 25524}, {2385, 40530}, {3739, 14767}, {3824, 58460}, {3838, 58459}, {4698, 6668}, {5020, 23843}, {6642, 37812}, {6717, 52259}, {6718, 34840}, {6738, 15252}, {6856, 17917}, {7392, 29855}, {9817, 54392}, {19372, 19861}, {30143, 37696}, {30144, 37697}

X(58462) = midpoint of X(i) and X(j) for these {i,j}: {225, 34851}
X(58462) = complement of X(34851)
X(58462) = center of the nine-point conic of quadrilateral XYZX(225) where XYZ is the cevian triangle of X(2)
X(58462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 225, 34851}


X(58463) = X(2)X(7)∩X(5)X(515)

Barycentrics    2*a^3-3*a^2*(b+c)+3*(b-c)^2*(b+c)-2*a*(b^2+c^2) : :
X(58463) = X[1478]+7*X[3624], 7*X[3090]+X[18446], -11*X[3525]+3*X[21165], 7*X[3526]+X[37826], -3*X[3828]+X[54288], X[4304]+3*X[17532], X[4847]+3*X[17718], -5*X[5439]+X[18389], -3*X[6688]+X[58491], -X[11608]+5*X[14061]

X(58463) lies on these lines: {1, 6856}, {2, 7}, {5, 515}, {10, 3940}, {12, 5795}, {140, 3824}, {306, 30834}, {442, 5440}, {511, 58558}, {516, 3838}, {518, 58626}, {519, 5719}, {551, 5722}, {758, 3634}, {912, 3628}, {940, 23140}, {946, 6825}, {950, 2476}, {958, 3947}, {993, 11108}, {1001, 3817}, {1211, 30823}, {1215, 50752}, {1465, 16579}, {1478, 3624}, {1490, 6855}, {1656, 9843}, {1698, 28629}, {1737, 26725}, {2051, 34830}, {2325, 33116}, {2635, 17194}, {2792, 6036}, {2801, 3848}, {2886, 5853}, {3008, 17062}, {3011, 17469}, {3086, 51723}, {3090, 18446}, {3091, 5436}, {3173, 17825}, {3475, 5231}, {3485, 5837}, {3487, 5705}, {3525, 21165}, {3526, 37826}, {3576, 6844}, {3589, 9028}, {3601, 5177}, {3616, 9581}, {3622, 37723}, {3636, 12433}, {3664, 37646}, {3671, 26066}, {3686, 4417}, {3706, 50753}, {3752, 17067}, {3754, 31837}, {3755, 17064}, {3772, 3946}, {3826, 20103}, {3828, 54288}, {3829, 42819}, {3912, 41878}, {3914, 29678}, {3925, 6745}, {3934, 6706}, {4035, 11679}, {4052, 17262}, {4054, 33113}, {4060, 55095}, {4138, 32916}, {4197, 27385}, {4208, 5438}, {4292, 7483}, {4298, 4999}, {4304, 17532}, {4428, 51783}, {4641, 17775}, {4667, 37642}, {4698, 8680}, {4758, 6703}, {4847, 17718}, {5248, 6985}, {5274, 38316}, {5290, 30478}, {5307, 17917}, {5333, 17168}, {5439, 18389}, {5461, 17044}, {5530, 24161}, {5550, 6919}, {5703, 12437}, {5714, 31424}, {5715, 6988}, {5718, 40940}, {5720, 6858}, {5743, 16608}, {5761, 11362}, {5763, 43174}, {5804, 9624}, {5806, 58679}, {5880, 10164}, {5886, 7682}, {6260, 6824}, {6510, 17052}, {6675, 12572}, {6683, 46179}, {6684, 12609}, {6688, 58491}, {6691, 19878}, {6700, 8728}, {6701, 58404}, {6705, 6862}, {6738, 11281}, {6827, 10165}, {6843, 52026}, {6846, 9842}, {6848, 8227}, {6857, 9612}, {6859, 18443}, {6860, 10884}, {6863, 55108}, {6866, 31673}, {6887, 10200}, {6933, 54392}, {6956, 8726}, {7319, 46934}, {7988, 26105}, {8164, 9623}, {9669, 51724}, {9756, 50302}, {10106, 24541}, {10172, 37713}, {10177, 17604}, {10578, 24392}, {10582, 10589}, {10585, 19860}, {11235, 30331}, {11608, 14061}, {12527, 24953}, {12640, 51784}, {13478, 15668}, {13881, 29571}, {15935, 51103}, {16578, 25080}, {16831, 24268}, {16853, 22667}, {17022, 53996}, {17049, 25135}, {17097, 24987}, {17278, 45204}, {17552, 34595}, {17605, 40998}, {18482, 50802}, {18592, 44360}, {19544, 51687}, {19786, 25529}, {19854, 21075}, {20104, 58405}, {20106, 44417}, {21258, 31211}, {21620, 26363}, {24160, 34937}, {24210, 29640}, {24239, 33130}, {24387, 40270}, {24393, 25568}, {28557, 48643}, {29639, 33127}, {29857, 53663}, {30147, 37700}, {30686, 37799}, {30768, 31264}, {31260, 32636}, {31280, 32781}, {31281, 32774}, {31623, 52982}, {31658, 58441}, {32015, 42339}, {33709, 51108}, {34377, 34573}, {34612, 52638}, {37229, 54430}, {38255, 56054}

X(58463) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3822}, {226, 5745}, {2886, 13405}, {3838, 6690}, {58626, 58699}
X(58463) = inverse of X(17950) in Steiner inellipse
X(58463) = complement of X(5745)
X(58463) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17136, 523}
X(58463) = X(i)-complementary conjugate of X(j) for these {i, j}: {17097, 141}, {40430, 21246}, {40442, 18589}
X(58463)= pole of line {28292, 48239} with respect to the orthoptic circle of the Steiner Inellipse
X(58463)= pole of line {3664, 5745} with respect to the Kiepert hyperbola
X(58463)= pole of line {522, 17950} with respect to the Steiner inellipse
X(58463) = center of the nine-point conic of quadrilateral XYZX(226) where XYZ is the cevian triangle of X(2)
X(58463) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1944), X(40510)}}, {{A, B, C, X(5226), X(13478)}}, {{A, B, C, X(6666), X(42339)}}, {{A, B, C, X(6692), X(32015)}}, {{A, B, C, X(17950), X(36956)}}, {{A, B, C, X(18230), X(38255)}}, {{A, B, C, X(30275), X(45098)}}
X(58463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 142, 6692}, {2, 226, 5745}, {2, 25525, 142}, {2, 30852, 5316}, {2, 31053, 54357}, {2, 31266, 226}, {2, 3452, 6666}, {2, 46873, 18230}, {2, 5219, 3452}, {2, 5226, 9}, {2, 5249, 3911}, {2, 5328, 51780}, {2, 5748, 7308}, {2, 5905, 55867}, {2, 9776, 31231}, {140, 3824, 12436}, {226, 5745, 527}, {442, 13411, 57284}, {1125, 10171, 3816}, {1125, 3822, 515}, {3487, 5705, 24391}, {3812, 6668, 3634}, {3838, 6690, 516}, {5219, 7308, 5748}, {5437, 7308, 8257}, {5720, 6858, 10175}, {11679, 30828, 4035}, {17718, 31245, 4847}, {58626, 58699, 518}


X(58464) = X(2)X(216)∩X(5)X(4045)

Barycentrics    3*a^8*(b^2+c^2)+2*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^4+c^4)-a^6*(3*b^4+4*b^2*c^2+3*c^4)+a^4*(-3*b^6+5*b^4*c^2+5*b^2*c^4-3*c^6) : :
X(58464) = X[30476]+X[47233]

X(58464) lies on these lines: {2, 216}, {5, 4045}, {230, 23583}, {468, 51412}, {523, 14341}, {620, 44340}, {2393, 3589}, {3199, 28407}, {6642, 7808}, {6644, 7804}, {6680, 16238}, {6719, 40557}, {6720, 16760}, {6722, 44911}, {9818, 15482}, {10011, 58430}, {10314, 11174}, {11695, 58455}, {15014, 40349}, {30476, 47233}, {31489, 52251}, {32456, 40856}, {44334, 44377}

X(58464) = midpoint of X(i) and X(j) for these {i,j}: {30476, 47233}
X(58464) = perspector of circumconic {{A, B, C, X(6528), X(38259)}}
X(58464)= pole of line {20850, 41300} with respect to the circumcircle
X(58464)= pole of line {3146, 31296} with respect to the orthoptic circle of the Steiner Inellipse
X(58464)= pole of line {647, 38282} with respect to the polar circle
X(58464)= pole of line {5052, 13567} with respect to the Kiepert hyperbola
X(58464)= pole of line {193, 520} with respect to the Steiner inellipse
X(58464) = center of the nine-point conic of quadrilateral XYZX(232) where XYZ is the cevian triangle of X(2)
X(58464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6720, 44452, 58448}


X(58465) = X(2)X(3)∩X(10)X(51702)

Barycentrics    2*a^10-7*a^8*(b^2+c^2)+3*(b^2-c^2)^4*(b^2+c^2)+4*a^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-4*a^2*(b^2-c^2)^2*(2*b^4-b^2*c^2+2*c^4)+a^6*(6*b^4+8*b^2*c^2+6*c^4) : :
X(58465) = X[10]+X[51702], X[141]+X[51734], 3*X[10175]+X[51694], X[11793]+X[58482], X[20771]+3*X[23515]

X(58465) lies on these lines: {2, 3}, {10, 51702}, {141, 51734}, {511, 58559}, {5462, 12900}, {5907, 47296}, {5972, 12241}, {6667, 58403}, {6668, 58402}, {6723, 44870}, {7746, 46432}, {9603, 9721}, {9729, 22967}, {9822, 32396}, {10175, 51694}, {10272, 43588}, {10961, 42583}, {10963, 42582}, {11064, 13142}, {11793, 58482}, {12164, 37643}, {15448, 44829}, {18418, 51491}, {18914, 43817}, {19137, 51730}, {20771, 23515}, {23326, 38317}, {34380, 41587}, {39884, 52028}, {44877, 45300}, {45195, 45199}

X(58465) = midpoint of X(i) and X(j) for these {i,j}: {10, 51702}, {141, 51734}, {11793, 58482}, {235, 16196}, {5, 16238}, {5907, 52003}
X(58465) = complement of X(16196)
X(58465) = center of the nine-point conic of quadrilateral XYZX(235) where XYZ is the cevian triangle of X(2)
X(58465) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6353), X(45195)}}, {{A, B, C, X(10151), X(45300)}}, {{A, B, C, X(13380), X(44438)}}, {{A, B, C, X(40448), X(44920)}}
X(58465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 235, 16196}, {2, 6622, 3}, {2, 6823, 140}, {5, 632, 9818}, {5, 6644, 546}, {5, 6677, 9825}, {140, 546, 11250}, {235, 16196, 30}, {3090, 5020, 5}, {13487, 16976, 1885}, {43817, 51425, 18914}


X(58466) = X(2)X(85)∩X(140)X(517)

Barycentrics    3*a^4*(b+c)+2*b*(b-c)^2*c*(b+c)+3*a*(b-c)^2*(b^2+c^2)-a^2*(b+c)*(3*b^2-8*b*c+3*c^2)-a^3*(3*b^2+4*b*c+3*c^2) : :

X(58466) lies on these lines: {2, 85}, {140, 517}, {142, 3986}, {514, 2490}, {536, 16578}, {3008, 17044}, {3589, 58412}, {4422, 44356}, {4646, 14986}, {4670, 8257}, {5437, 20367}, {5745, 58458}, {6687, 36949}, {17073, 17356}, {17077, 25067}, {17265, 18634}, {17348, 53996}, {19512, 51775}, {21258, 29571}, {25524, 39586}, {29598, 31190}, {31186, 31191}, {37662, 53597}, {58456, 58460}

X(58466) = midpoint of X(i) and X(j) for these {i,j}: {241, 34852}
X(58466) = inverse of X(44351) in Steiner inellipse
X(58466) = complement of X(34852)
X(58466) = perspector of circumconic {{A, B, C, X(4569), X(36606)}}
X(58466)= pole of line {3900, 20014} with respect to the Steiner circumellipse
X(58466)= pole of line {145, 3900} with respect to the Steiner inellipse
X(58466) = center of the nine-point conic of quadrilateral XYZX(241) where XYZ is the cevian triangle of X(2)
X(58466) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 241, 34852}, {2, 31225, 1212}, {241, 34852, 44664}


X(58467) = X(1)X(31233)∩X(2)X(38)

Barycentrics    a^2*(b+c)+b*c*(b+c)+2*a*(b^2-4*b*c+c^2) : :
X(58467) = -5*X[1698]+X[4738], -5*X[3616]+X[17460], 7*X[3624]+X[4674], -5*X[4687]+X[42083], 7*X[4751]+X[41683], -3*X[10180]+X[14752], -5*X[19862]+X[34587], -5*X[31253]+X[52872], X[39697]+7*X[51073]

X(58467) lies on circumconic {{A, B, C, X(24003), X(32016)}} and these lines: {1, 31233}, {2, 38}, {8, 31228}, {10, 3756}, {11, 25351}, {37, 24182}, {474, 28083}, {740, 4706}, {891, 40479}, {900, 6667}, {1001, 8683}, {1054, 4432}, {1086, 11814}, {1125, 1387}, {1647, 24988}, {1698, 4738}, {2835, 6679}, {3120, 24183}, {3306, 4672}, {3315, 9458}, {3616, 17460}, {3624, 4674}, {3696, 3840}, {3739, 40562}, {3742, 6686}, {3752, 3993}, {3836, 5121}, {3848, 6685}, {3911, 31289}, {4358, 28516}, {4413, 49473}, {4434, 7292}, {4687, 42083}, {4732, 30942}, {4751, 41683}, {5437, 51435}, {6085, 53580}, {10180, 14752}, {16569, 49450}, {16594, 21093}, {17123, 27002}, {18743, 49445}, {19804, 31242}, {19847, 49598}, {19862, 34587}, {19878, 58386}, {22045, 31993}, {22313, 43223}, {24175, 48643}, {24216, 49693}, {24715, 26139}, {25524, 53303}, {27130, 33103}, {29650, 37682}, {30829, 49456}, {30861, 49493}, {30947, 49471}, {30948, 49459}, {31253, 52872}, {39697, 51073}, {40487, 45663}, {49676, 51415}

X(58467) = midpoint of X(i) and X(j) for these {i,j}: {244, 24003}, {4871, 16610}
X(58467) = complement of X(24003)
X(58467) = X(i)-complementary conjugate of X(j) for these {i, j}: {32016, 2887}
X(58467)= pole of line {812, 4440} with respect to the Steiner inellipse
X(58467) = center of the nine-point conic of quadrilateral XYZX(244) where XYZ is the cevian triangle of X(2)
X(58467) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 244, 24003}, {244, 24003, 537}, {1054, 25531, 4432}, {4871, 16610, 740}


X(58468) = X(3)X(54)∩X(143)X(216)

Barycentrics    a^2*(a^2-b^2-c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(3*a^8-10*a^6*(b^2+c^2)-6*a^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)+3*a^4*(4*b^4+3*b^2*c^2+4*c^4)) : :
X(58468) = -3*X[2]+X[35719], -X[5]+3*X[12012], X[550]+X[45997], -5*X[631]+X[14978], -5*X[632]+3*X[10184], -7*X[3526]+3*X[11197], -X[3627]+3*X[14635], -2*X[3628]+3*X[44914]

X(58468) lies on these lines: {2, 35719}, {3, 54}, {5, 12012}, {26, 36751}, {140, 6709}, {143, 216}, {156, 26898}, {381, 26896}, {418, 10095}, {550, 45997}, {631, 14978}, {632, 10184}, {1656, 26895}, {3526, 11197}, {3627, 14635}, {3628, 44914}, {5946, 26876}, {7514, 23709}, {7542, 13467}, {10263, 26874}, {10600, 13565}, {13363, 42556}, {13421, 30258}, {13561, 26905}, {13861, 26909}, {14627, 39243}, {25043, 47525}, {25150, 34002}, {26870, 32140}, {32142, 46832}

X(58468) = midpoint of X(i) and X(j) for these {i,j}: {3, 46025}, {550, 45997}
X(58468) = complement of X(35719)
X(58468)= pole of line {5, 39243} with respect to the Stammler hyperbola
X(58468) = center of the nine-point conic of quadrilateral XYZX(3) where XYZ is the cevian triangle of X(3)
X(58468) = intersection, other than A, B, C, of circumconics {{A, B, C, X(54), X(30102)}}, {{A, B, C, X(97), X(40207)}}, {{A, B, C, X(11273), X(16266)}}, {{A, B, C, X(19210), X(55074)}}
X(58468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 32078, 46025}, {3, 34833, 12363}, {3, 46025, 1154}


X(58469) = X(1)X(51)∩X(8)X(5640)

Barycentrics    a^2*(-((b-c)^2*(b+c)^3)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2)-a*(b^4-4*b^2*c^2+c^4)) : :
X(58469) = X[1]+3*X[51], -X[8]+9*X[5640], -X[10]+3*X[5943], X[52]+3*X[5886], X[143]+X[5901], X[185]+3*X[1699], -9*X[373]+5*X[1698], -3*X[375]+X[34790], X[389]+X[946], X[551]+X[21849], 3*X[568]+5*X[18493], X[942]+X[42450] and many others

X(58469) lies on these lines: {1, 51}, {6, 11365}, {8, 5640}, {10, 5943}, {11, 18180}, {52, 5886}, {58, 3271}, {65, 2841}, {72, 41002}, {79, 38389}, {143, 5901}, {181, 595}, {182, 49553}, {184, 16472}, {185, 1699}, {238, 10974}, {373, 1698}, {375, 34790}, {386, 21746}, {389, 946}, {500, 20470}, {511, 1125}, {513, 24470}, {515, 10110}, {516, 9729}, {517, 5462}, {518, 58471}, {519, 23841}, {537, 58553}, {551, 21849}, {568, 18493}, {613, 27802}, {674, 5044}, {692, 37509}, {726, 58554}, {730, 58500}, {740, 58499}, {758, 12109}, {912, 58545}, {942, 42450}, {944, 9781}, {952, 10095}, {962, 15043}, {970, 5248}, {971, 58617}, {975, 3056}, {978, 50597}, {1001, 5752}, {1112, 11735}, {1193, 20961}, {1203, 40952}, {1216, 11230}, {1385, 5446}, {1386, 9969}, {1486, 36754}, {1656, 52796}, {1682, 4653}, {1829, 44084}, {1843, 16475}, {2360, 37993}, {2390, 31794}, {2392, 58565}, {2784, 58537}, {2800, 58508}, {2801, 44865}, {2802, 58504}, {2808, 31871}, {2809, 58505}, {2810, 3881}, {2817, 58506}, {2818, 31870}, {2979, 5550}, {3002, 40955}, {3060, 3616}, {3159, 14839}, {3337, 3937}, {3338, 26892}, {3567, 5603}, {3576, 45186}, {3579, 5892}, {3622, 11002}, {3624, 3917}, {3634, 6688}, {3649, 56884}, {3678, 9052}, {3742, 11573}, {3746, 51377}, {3816, 37536}, {3817, 5907}, {3819, 19862}, {3827, 58547}, {3874, 15049}, {3884, 45955}, {4260, 52018}, {4297, 13598}, {5045, 8679}, {5259, 22076}, {5396, 23383}, {5399, 18613}, {5482, 6691}, {5562, 8227}, {5650, 34595}, {5657, 15024}, {5690, 15026}, {5844, 58531}, {5846, 58532}, {5847, 9822}, {5850, 58534}, {5902, 42448}, {5946, 22791}, {6000, 18483}, {6102, 38034}, {6361, 15045}, {6684, 11695}, {6690, 34466}, {7713, 44079}, {7989, 27355}, {8185, 34417}, {8193, 10601}, {9565, 48863}, {9587, 44109}, {9591, 22352}, {9730, 12699}, {9779, 12111}, {9780, 11451}, {9798, 17810}, {9812, 10574}, {9911, 37514}, {9955, 13754}, {10165, 15644}, {10171, 31752}, {10200, 37521}, {10219, 31253}, {10248, 12279}, {10263, 38028}, {11363, 47328}, {11557, 12261}, {11574, 38049}, {11709, 11807}, {11720, 11800}, {11723, 12236}, {11724, 39806}, {11725, 39835}, {11808, 12266}, {12006, 28174}, {12436, 29353}, {12512, 17704}, {12571, 44870}, {13364, 18357}, {13464, 31760}, {13630, 40273}, {14054, 41581}, {14831, 38021}, {14913, 51196}, {15004, 16473}, {15171, 22300}, {16226, 31162}, {16569, 50585}, {16836, 31730}, {17104, 20959}, {18398, 23154}, {19161, 38035}, {19366, 34036}, {21969, 25055}, {22793, 40647}, {23850, 55086}, {25524, 37482}, {30116, 50621}, {32411, 51713}, {34379, 58555}, {34434, 37730}, {37557, 43650}, {38220, 39846}, {40660, 45979}, {41014, 57024}, {44547, 58550}, {44659, 58477}, {44660, 58478}, {44662, 58483}, {46850, 51118}, {50192, 58574}, {54081, 55101}

X(58469) = midpoint of X(i) and X(j) for these {i,j}: {143, 5901}, {1112, 11735}, {1125, 31757}, {1385, 5446}, {1386, 9969}, {11557, 12261}, {11709, 11807}, {11720, 11800}, {11723, 12236}, {11724, 39806}, {11725, 39835}, {11808, 12266}, {13464, 31760}, {13630, 40273}, {14913, 51196}, {15171, 22300}, {22793, 40647}, {23841, 58535}, {389, 946}, {3874, 29958}, {32411, 51713}, {34434, 37730}, {4297, 13598}, {46850, 51118}, {551, 21849}, {5907, 31732}, {942, 42450}
X(58469) = reflection of X(i) in X(j) for these {i,j}: {12512, 17704}, {23841, 58474}, {44870, 12571}, {6684, 11695}, {58487, 5462}, {58501, 58475}
X(58469) = center of the nine-point conic of quadrilateral XYZX(1) where XYZ is the cevian triangle of X(4)
X(58469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 946, 2807}, {517, 5462, 58487}, {519, 58474, 23841}, {952, 58475, 58501}, {1125, 31757, 511}, {3817, 31732, 5907}, {3874, 15049, 29958}, {5462, 58487, 58548}, {12109, 58479, 58491}, {23841, 58470, 58474}, {58471, 58485, 58473}, {58475, 58476, 10095}


X(58470) = X(2)X(51)∩X(25)X(575)

Barycentrics    a^2*(-3*b^4+8*b^2*c^2-3*c^4+3*a^2*(b^2+c^2)) : :
X(58470) = X[2]+3*X[51], X[52]+3*X[5055], X[143]+X[547], X[185]+3*X[3839], X[376]+7*X[9781], X[381]+X[389], 2*X[546]+X[13382], X[548]+2*X[12002], X[549]+X[5446], X[568]+3*X[14845], X[597]+X[9969], X[1112]+X[45311] and many others

X(58470) lies on these lines: {2, 51}, {4, 15010}, {5, 16254}, {6, 8780}, {22, 20190}, {23, 12834}, {25, 575}, {30, 5462}, {52, 5055}, {110, 34565}, {143, 547}, {154, 39561}, {182, 9909}, {184, 15516}, {185, 3839}, {375, 9052}, {376, 9781}, {381, 389}, {394, 55716}, {428, 11645}, {450, 55084}, {516, 58548}, {519, 23841}, {524, 9822}, {527, 58472}, {528, 58475}, {529, 58476}, {530, 58478}, {531, 58477}, {536, 58485}, {538, 58486}, {539, 23410}, {541, 58498}, {542, 11746}, {543, 58503}, {544, 58505}, {545, 58553}, {546, 13382}, {548, 12002}, {549, 5446}, {568, 14845}, {569, 51519}, {576, 5020}, {597, 9969}, {598, 5140}, {674, 58629}, {970, 16418}, {1112, 45311}, {1154, 10109}, {1173, 43572}, {1194, 13410}, {1196, 44500}, {1216, 15699}, {1495, 34545}, {1503, 32068}, {1899, 48889}, {1992, 14913}, {1993, 55715}, {1994, 10545}, {1995, 15004}, {2807, 50802}, {3066, 5097}, {3098, 17825}, {3131, 21402}, {3132, 21401}, {3167, 15520}, {3168, 39530}, {3292, 53863}, {3448, 13402}, {3524, 15024}, {3527, 13346}, {3534, 16836}, {3543, 15043}, {3545, 3567}, {3628, 15606}, {3796, 55706}, {3818, 11433}, {3828, 31757}, {3830, 9730}, {3845, 5946}, {3849, 58552}, {3860, 5663}, {5012, 32237}, {5054, 15644}, {5056, 14531}, {5066, 13364}, {5068, 45187}, {5071, 5562}, {5085, 5644}, {5092, 10601}, {5422, 34417}, {5447, 10124}, {5461, 39835}, {5544, 55587}, {5642, 11800}, {5643, 15246}, {5646, 55581}, {5752, 16857}, {5889, 27355}, {5890, 41099}, {5891, 13321}, {5892, 8703}, {6102, 38071}, {6243, 15703}, {6310, 32983}, {6515, 43150}, {6636, 55679}, {6676, 25555}, {6997, 18553}, {7392, 34507}, {7484, 55606}, {7485, 55631}, {7496, 55617}, {7506, 37505}, {7714, 11179}, {8550, 15011}, {8584, 8681}, {8679, 58560}, {8705, 41153}, {8854, 44501}, {8855, 44502}, {9027, 41149}, {9166, 39846}, {9530, 58511}, {9544, 44111}, {9971, 51185}, {10245, 37476}, {10263, 11539}, {10551, 42037}, {10574, 50687}, {10575, 38335}, {10625, 15694}, {10627, 47598}, {10691, 19924}, {11001, 15045}, {11163, 51426}, {11284, 55718}, {11402, 55713}, {11424, 15078}, {11465, 15709}, {11554, 57598}, {11574, 47352}, {11591, 47478}, {11592, 14890}, {11737, 16881}, {11812, 13391}, {12046, 45757}, {12100, 13363}, {12101, 14915}, {12109, 58497}, {12237, 55040}, {12238, 55041}, {13192, 38862}, {13330, 36650}, {13353, 37956}, {13365, 58557}, {13366, 13595}, {13421, 48154}, {13434, 37940}, {13474, 14269}, {13482, 51394}, {13490, 43573}, {13567, 19130}, {13630, 14893}, {14002, 44110}, {14153, 40350}, {14449, 47599}, {14537, 50387}, {14641, 35404}, {14810, 33586}, {14891, 55320}, {15018, 22352}, {15028, 15692}, {15030, 41106}, {15038, 51393}, {15107, 55668}, {15431, 23291}, {15489, 16370}, {15534, 29959}, {15685, 40280}, {15687, 40647}, {15698, 36987}, {16187, 55719}, {16239, 16982}, {16419, 52987}, {16861, 22076}, {16980, 38314}, {17533, 18180}, {17809, 22234}, {17811, 37517}, {18583, 58447}, {18928, 31670}, {19161, 38072}, {20192, 47328}, {20583, 41579}, {20850, 53093}, {21659, 38320}, {21746, 42043}, {21851, 26958}, {21971, 37669}, {22112, 55612}, {23234, 39817}, {23332, 38136}, {23638, 39543}, {24206, 41588}, {24473, 29958}, {26863, 43600}, {27375, 44562}, {28194, 58487}, {29012, 45298}, {31732, 38076}, {31833, 40240}, {31860, 55710}, {32137, 41987}, {32223, 37649}, {34146, 50959}, {34854, 52281}, {36769, 53048}, {37643, 42785}, {37939, 38848}, {37990, 41586}, {40284, 45759}, {40670, 50991}, {40916, 55597}, {41278, 50370}, {41424, 55712}, {43650, 55674}, {44210, 46267}, {44212, 44495}, {44442, 48901}, {44663, 58493}, {45979, 50979}, {47867, 53049}, {48850, 50623}, {48855, 50594}, {52520, 54131}, {58506, 58520}, {58507, 58521}, {58508, 58522}, {58510, 58523}, {58512, 58525}, {58513, 58526}, {58515, 58528}

X(58470) = midpoint of X(i) and X(j) for these {i,j}: {143, 547}, {1112, 45311}, {1992, 14913}, {11737, 16881}, {12237, 55040}, {12238, 55041}, {13363, 13451}, {13490, 43573}, {13630, 14893}, {14641, 35404}, {15687, 40647}, {2, 21849}, {20583, 41579}, {24473, 29958}, {27375, 44562}, {3060, 3819}, {376, 13598}, {381, 389}, {3543, 46850}, {3828, 31757}, {51, 5943}, {549, 5446}, {597, 9969}, {5461, 39835}, {5642, 11800}, {5890, 46847}, {5907, 14831}, {52520, 54131}
X(58470) = reflection of X(i) in X(j) for these {i,j}: {10124, 32205}, {11737, 18874}, {11793, 547}, {13348, 549}, {14893, 44863}, {376, 17704}, {3819, 10219}, {44870, 381}, {549, 11695}, {5447, 10124}, {6688, 5943}
X(58470)= pole of line {6776, 15520} with respect to the Jerabek hyperbola
X(58470)= pole of line {3815, 42459} with respect to the Kiepert hyperbola
X(58470)= pole of line {182, 20080} with respect to the Stammler hyperbola
X(58470) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(4)
X(58470) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(36616)}}, {{A, B, C, X(31371), X(54032)}}, {{A, B, C, X(38263), X(42313)}}
X(58470) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21849, 511}, {2, 51, 21849}, {51, 373, 3060}, {51, 3917, 11002}, {51, 5640, 5943}, {373, 10219, 6688}, {373, 3060, 3819}, {3060, 11451, 33879}, {3060, 5943, 10219}, {3066, 9777, 9306}, {3545, 14831, 5907}, {3819, 5943, 373}, {5012, 44106, 32237}, {5446, 11695, 13348}, {5446, 15026, 11695}, {5462, 10095, 10110}, {5462, 10110, 9729}, {5462, 58483, 58480}, {5943, 21849, 2}, {9306, 9777, 5097}, {9822, 58471, 58555}, {10095, 58531, 5462}, {11002, 11451, 3917}, {15004, 34986, 22330}, {23841, 58469, 58535}, {58469, 58474, 23841}, {58471, 58532, 9822}, {58472, 58473, 58534}, {58475, 58504, 58539}, {58480, 58483, 58481}, {58485, 58499, 58554}, {58486, 58500, 58556}, {58498, 58516, 58536}, {58502, 58517, 58537}, {58503, 58518, 58538}, {58505, 58519, 58540}, {58506, 58520, 58541}, {58507, 58521, 58542}, {58508, 58522, 58543}


X(58471) = X(6)X(25)∩X(140)X(143)

Barycentrics    6*a^4*b^2*c^2+a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2) : :
X(58471) = X[52]+3*X[14561], -X[69]+9*X[5640], -X[141]+3*X[5943], X[182]+X[5446], X[185]+3*X[53023], X[193]+3*X[29959], -9*X[373]+5*X[3763], -3*X[597]+X[11574], X[1112]+X[15118], -X[1216]+3*X[38317], X[1353]+X[43130], 3*X[3060]+X[3313] and many others

X(58471) lies on these lines: {4, 43726}, {6, 25}, {52, 14561}, {66, 11433}, {69, 5640}, {140, 143}, {141, 5943}, {182, 5446}, {185, 53023}, {193, 29959}, {237, 5421}, {373, 3763}, {389, 1595}, {518, 58469}, {524, 9822}, {538, 6664}, {542, 58516}, {570, 40981}, {575, 17714}, {576, 19137}, {597, 11574}, {674, 58490}, {698, 58556}, {732, 58500}, {742, 58499}, {924, 54273}, {1112, 15118}, {1173, 19128}, {1176, 34545}, {1216, 38317}, {1350, 31521}, {1353, 43130}, {1503, 10110}, {1692, 46288}, {2781, 58498}, {2810, 58505}, {2854, 41671}, {3060, 3313}, {3098, 5892}, {3147, 50649}, {3148, 13345}, {3527, 34207}, {3541, 3567}, {3564, 10095}, {3619, 11451}, {3629, 9027}, {3631, 40670}, {3819, 51126}, {3827, 58493}, {3917, 47355}, {5052, 16285}, {5085, 45186}, {5097, 34382}, {5140, 7745}, {5157, 5422}, {5356, 42067}, {5845, 58472}, {5846, 23841}, {5847, 58474}, {5848, 58475}, {5849, 58476}, {5946, 21850}, {5965, 58557}, {5969, 58503}, {6034, 39846}, {6102, 38136}, {6153, 19150}, {6329, 9019}, {6375, 46313}, {6593, 11800}, {6688, 34573}, {6697, 13567}, {6748, 34854}, {6776, 9781}, {7668, 52878}, {8265, 46305}, {8679, 58562}, {8681, 32455}, {8705, 47460}, {9021, 12109}, {9024, 58504}, {9028, 58558}, {9053, 58535}, {9055, 58553}, {9119, 14717}, {9300, 51412}, {9729, 29181}, {9730, 31670}, {9967, 47525}, {10263, 38110}, {10519, 15024}, {10574, 51538}, {10601, 37485}, {11002, 51171}, {11188, 51170}, {11426, 23041}, {11427, 31267}, {11432, 19149}, {11746, 58495}, {11806, 32271}, {12235, 19139}, {12329, 55432}, {13364, 18358}, {13392, 14984}, {13470, 29323}, {13598, 44882}, {13754, 19130}, {14641, 48904}, {14831, 38072}, {14848, 18438}, {14855, 43621}, {14915, 48895}, {15019, 19121}, {15026, 48876}, {15043, 51212}, {15321, 22336}, {15520, 32284}, {15544, 52471}, {16226, 54131}, {16836, 48881}, {16980, 38315}, {17500, 51481}, {19510, 26156}, {20423, 37511}, {20977, 23642}, {21969, 47352}, {22330, 58488}, {23292, 58450}, {27367, 56891}, {27374, 53484}, {29012, 40240}, {31732, 38146}, {32411, 51742}, {33872, 40947}, {34377, 58491}, {34380, 58531}, {34437, 34468}, {34828, 50675}, {35222, 36212}, {36851, 41580}, {36987, 55676}, {39571, 51756}, {39871, 43823}, {40647, 48901}, {41724, 46448}, {44495, 44668}, {44863, 48889}, {45237, 56565}, {46737, 58494}, {46850, 51163}, {47454, 58551}, {52144, 52433}, {58484, 58533}

X(58471) = midpoint of X(i) and X(j) for these {i,j}: {143, 18583}, {182, 5446}, {1112, 15118}, {1353, 43130}, {1843, 32366}, {11806, 32271}, {12235, 19139}, {13598, 44882}, {14641, 48904}, {389, 5480}, {3629, 14913}, {32284, 41714}, {32411, 51742}, {32455, 41579}, {40647, 48901}, {46850, 51163}, {597, 21849}, {6, 9969}, {6153, 19150}, {6593, 11800}, {9822, 58555}
X(58471) = reflection of X(i) in X(j) for these {i,j}: {22829, 6}, {48889, 44863}, {5447, 58445}, {5462, 58549}, {58495, 11746}, {9822, 58532}
X(58471) = inverse of X(19596) in the orthic inconic
X(58471)= pole of line {6, 52789} with respect to the Jerabek hyperbola
X(58471)= pole of line {427, 1506} with respect to the Kiepert hyperbola
X(58471)= pole of line {512, 2076} with respect to the Orthic inconic
X(58471)= pole of line {2485, 31296} with respect to the Steiner inellipse
X(58471)= pole of line {305, 40916} with respect to the Wallace hyperbola
X(58471) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(4)
X(58471) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(37990)}}, {{A, B, C, X(159), X(3527)}}, {{A, B, C, X(184), X(43726)}}, {{A, B, C, X(895), X(22829)}}, {{A, B, C, X(1173), X(9969)}}, {{A, B, C, X(1974), X(38005)}}, {{A, B, C, X(11402), X(34207)}}
X(58471) = barycentric product X(i)*X(j) for these (i, j): {37990, 6}
X(58471) = barycentric quotient X(i)/X(j) for these (i, j): {37990, 76}
X(58471) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 17810, 159}, {6, 1843, 32366}, {6, 19136, 41593}, {6, 2393, 22829}, {6, 51, 9969}, {6, 56918, 21637}, {6, 7716, 32621}, {6, 9971, 6467}, {6, 9973, 40673}, {51, 15004, 47328}, {51, 58550, 58483}, {143, 18583, 511}, {389, 5480, 34146}, {511, 58445, 5447}, {511, 58549, 5462}, {524, 58532, 9822}, {1843, 32366, 2393}, {1974, 15004, 6}, {3060, 3618, 3313}, {3629, 16776, 14913}, {9822, 58470, 58532}, {9822, 58555, 524}, {9969, 32366, 1843}, {9969, 58550, 58547}, {15520, 41714, 32284}, {44125, 44126, 19596}, {58469, 58473, 58485}, {58483, 58550, 58544}


X(58472) = X(7)X(51)∩X(9)X(5943)

Barycentrics    a^2*(2*a*(b-c)^2*(b+c)^3+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-2*a^2*b*c*(b^2-b*c+c^2)-(b-c)^2*(b^4-4*b^2*c^2+c^4)) : :
X(58472) = X[7]+3*X[51], -X[9]+3*X[5943], X[52]+3*X[38107], -X[144]+9*X[5640], -9*X[373]+5*X[18230], X[389]+X[5805], -X[1216]+3*X[38171], X[2262]+X[29957], -3*X[3819]+5*X[20195], X[5446]+X[31657], X[5732]+X[13598], -X[5907]+3*X[38150] and many others

X(58472) lies on these lines: {7, 51}, {9, 5943}, {52, 38107}, {142, 511}, {144, 5640}, {373, 18230}, {389, 5805}, {516, 9729}, {518, 9822}, {527, 58470}, {673, 40954}, {674, 58634}, {970, 1001}, {971, 10110}, {1216, 38171}, {2262, 29957}, {2346, 51377}, {2801, 58501}, {3819, 20195}, {5446, 31657}, {5462, 5762}, {5732, 13598}, {5843, 10095}, {5845, 58471}, {5850, 58474}, {5851, 58475}, {5852, 58476}, {5853, 58535}, {5856, 58504}, {5907, 38150}, {6000, 18482}, {6102, 38137}, {6173, 21849}, {6666, 6688}, {7717, 44079}, {8679, 58563}, {9052, 40659}, {9730, 31671}, {9781, 36996}, {9969, 51150}, {10263, 38111}, {11038, 16980}, {11574, 38186}, {11695, 31658}, {14831, 38073}, {14913, 51194}, {15024, 21168}, {15644, 38122}, {17768, 58479}, {19161, 38143}, {21151, 45186}, {31732, 38151}, {37502, 39543}, {38454, 58490}, {46850, 52835}

X(58472) = midpoint of X(i) and X(j) for these {i,j}: {14913, 51194}, {2262, 29957}, {389, 5805}, {46850, 52835}, {5446, 31657}, {5732, 13598}, {6173, 21849}, {9969, 51150}
X(58472) = reflection of X(i) in X(j) for these {i,j}: {31658, 11695}, {58534, 58473}
X(58472) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(4)
X(58472) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {527, 58473, 58534}, {9822, 58499, 23841}, {58470, 58534, 58473}


X(58473) = X(7)X(5640)∩X(9)X(51)

Barycentrics    a^2*(-((b-c)^4*(b+c)^2)+2*a*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-2*a^2*b*c*(b^2-3*b*c+c^2)) : :
X(58473) = -X[7]+9*X[5640], X[9]+3*X[51], X[52]+3*X[38108], -X[142]+3*X[5943], -9*X[373]+5*X[20195], -3*X[375]+X[40659], -X[1216]+3*X[38318], 3*X[3060]+5*X[18230], 5*X[3567]+3*X[5817], X[5446]+X[31658], X[5759]+7*X[9781], X[6102]+3*X[38139] and many others

X(58473) lies on these lines: {7, 5640}, {9, 51}, {52, 38108}, {142, 5943}, {373, 20195}, {375, 40659}, {511, 6666}, {516, 10110}, {518, 58469}, {527, 58470}, {528, 58501}, {674, 58635}, {971, 5462}, {1216, 38318}, {2801, 58505}, {2807, 42356}, {3060, 18230}, {3567, 5817}, {4343, 20962}, {5446, 31658}, {5759, 9781}, {5762, 10095}, {5843, 58531}, {5845, 58532}, {5853, 23841}, {5856, 58475}, {5857, 58476}, {6102, 38139}, {6688, 58433}, {8679, 58564}, {9730, 31672}, {10263, 38113}, {14831, 38075}, {15024, 21151}, {15026, 31657}, {15043, 36991}, {15049, 30329}, {15726, 58548}, {15733, 58490}, {16980, 38316}, {19161, 38145}, {21153, 45186}, {31732, 38158}, {58499, 58553}

X(58473) = midpoint of X(i) and X(j) for these {i,j}: {5446, 31658}, {58472, 58534}
X(58473) = center of the nine-point conic of quadrilateral XYZX(9) where XYZ is the cevian triangle of X(4)
X(58473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58470, 58534, 58472}, {58471, 58485, 58469}, {58472, 58534, 527}


X(58474) = X(1)X(5640)∩X(10)X(51)

Barycentrics    a^2*(-(a*(b^2-c^2)^2)-(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2)) : :
X(58474) = -X[1]+9*X[5640], -3*X[5]+X[31751], X[10]+3*X[51], X[40]+7*X[9781], X[52]+3*X[10175], X[65]+3*X[15049], X[143]+X[9956], -9*X[373]+5*X[19862], -3*X[375]+X[3678], 3*X[381]+X[31728], X[389]+X[19925], 3*X[551]+X[16980] and many others

X(58474) lies on these lines: {1, 5640}, {5, 31751}, {10, 51}, {40, 9781}, {52, 10175}, {65, 15049}, {143, 9956}, {373, 19862}, {375, 3678}, {381, 31728}, {389, 19925}, {511, 3634}, {515, 5462}, {516, 10110}, {517, 10095}, {518, 58532}, {519, 23841}, {551, 16980}, {674, 4015}, {726, 58499}, {730, 58486}, {740, 58485}, {758, 58476}, {952, 58531}, {1125, 5943}, {1216, 10172}, {1385, 15026}, {1656, 31738}, {1698, 3060}, {1902, 43823}, {1995, 16473}, {2392, 3812}, {2784, 58502}, {2796, 58553}, {2800, 58522}, {2802, 58475}, {2807, 12571}, {2809, 58519}, {2817, 58520}, {2842, 31794}, {3293, 20961}, {3567, 5587}, {3576, 15024}, {3624, 11451}, {3742, 23157}, {3754, 42450}, {3814, 18180}, {3819, 31253}, {3828, 21849}, {3833, 11573}, {3917, 51073}, {3919, 42448}, {4547, 58646}, {4663, 16776}, {5259, 56878}, {5422, 8185}, {5439, 23156}, {5446, 6684}, {5691, 15043}, {5847, 58471}, {5850, 58472}, {5889, 7989}, {5890, 18492}, {5946, 18480}, {6102, 38140}, {6688, 19878}, {7987, 15028}, {7998, 19872}, {8679, 58565}, {9590, 13434}, {9625, 38848}, {9626, 43651}, {9729, 28164}, {9730, 31673}, {9780, 11002}, {9822, 34379}, {9955, 13364}, {10164, 45186}, {10263, 11231}, {11412, 54447}, {11746, 44547}, {12006, 28160}, {12512, 13598}, {13363, 13624}, {14831, 38076}, {15644, 58441}, {16226, 34648}, {16569, 50599}, {16981, 46931}, {17810, 49553}, {19161, 38146}, {21746, 50587}, {28522, 58554}, {37162, 38474}, {38472, 58404}, {44084, 49542}, {46827, 50610}, {58479, 58501}

X(58474) = midpoint of X(i) and X(j) for these {i,j}: {10, 31757}, {143, 9956}, {10110, 58487}, {12512, 13598}, {23841, 58469}, {389, 19925}, {3754, 42450}, {3828, 21849}, {5, 31760}, {52, 31752}, {5446, 6684}, {58493, 58497}, {58501, 58504}
X(58474) = center of the nine-point conic of quadrilateral XYZX(10) where XYZ is the cevian triangle of X(4)
X(58474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 51, 31757}, {52, 10175, 31752}, {1698, 3060, 31737}, {10110, 58487, 516}, {23841, 58470, 58469}, {58476, 58493, 58558}


X(58475) = X(11)X(51)∩X(100)X(5640)

Barycentrics    a^2*((a-b)^3*b^2*(a+b)^2+b^2*(-a+b)*(a+b)*(a^2-3*a*b+b^2)*c+(a-b)*(a^4-2*a*b^3-4*b^4)*c^2-(a^4-3*a^3*b+2*a^2*b^2-8*a*b^3+4*b^4)*c^3-2*(a^3+a*b^2+2*b^3)*c^4+(2*a^2-3*a*b+4*b^2)*c^5+(a+b)*c^6-c^7) : :
X(58475) = X[11]+3*X[51], X[52]+3*X[23513], -X[100]+9*X[5640], X[104]+7*X[9781], -9*X[373]+5*X[31235], -3*X[375]+X[14740], -X[1216]+3*X[38319], -X[3035]+3*X[5943], 3*X[3060]+5*X[31272], X[5446]+X[6713], 3*X[5946]+X[22938], X[6102]+3*X[38141] and many others

X(58475) lies on these lines: {11, 51}, {52, 23513}, {100, 5640}, {104, 9781}, {373, 31235}, {375, 14740}, {511, 6667}, {513, 24465}, {528, 58470}, {674, 46694}, {952, 10095}, {1216, 38319}, {2771, 58516}, {2783, 58517}, {2787, 58518}, {2800, 58493}, {2801, 58521}, {2802, 58474}, {2803, 58524}, {2804, 58525}, {2805, 58527}, {2806, 58528}, {2828, 58530}, {2829, 10110}, {2831, 58529}, {3035, 5943}, {3045, 13595}, {3060, 31272}, {3738, 58526}, {3887, 58519}, {5446, 6713}, {5462, 5840}, {5848, 58471}, {5851, 58472}, {5854, 23841}, {5856, 58473}, {5946, 22938}, {6102, 38141}, {6702, 31757}, {8674, 11746}, {8679, 18240}, {9024, 58532}, {10263, 34126}, {10724, 15043}, {12138, 43823}, {12736, 42450}, {13598, 38759}, {14831, 38077}, {15024, 34474}, {15026, 33814}, {16174, 31760}, {17810, 54065}, {18180, 39692}, {19161, 38147}, {21154, 45186}, {21849, 45310}, {31732, 38161}

X(58475) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58508}, {12736, 42450}, {13598, 38759}, {16174, 31760}, {21849, 45310}, {5446, 6713}, {6702, 31757}, {58469, 58501}, {58504, 58539}
X(58475) = reflection of X(i) in X(j) for these {i,j}: {58522, 10095}
X(58475) = center of the nine-point conic of quadrilateral XYZX(11) where XYZ is the cevian triangle of X(4)
X(58475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 10095, 58522}, {10095, 58469, 58476}, {10110, 58508, 2829}, {58469, 58501, 952}, {58470, 58539, 58504}, {58504, 58539, 528}


X(58476) = X(12)X(51)∩X(52)X(38109)

Barycentrics    a^2*(a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)-a^3*b*c*(b+c)*(b^2+c^2)-a^4*(b^2-b*c+c^2)*(3*b^2+4*b*c+3*c^2)-(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)+a^2*(b+c)^2*(3*b^4-5*b^3*c+3*b^2*c^2-5*b*c^3+3*c^4)) : :
X(58476) = X[12]+3*X[51], X[52]+3*X[38109], -9*X[373]+5*X[31260], -X[2975]+9*X[5640], -X[4999]+3*X[5943], X[5446]+X[31659], X[6102]+3*X[38142], 7*X[9781]+X[11491], X[10263]+3*X[38114], X[14831]+3*X[38078], X[19161]+3*X[38148], 3*X[21155]+X[45186] and many others

X(58476) lies on these lines: {12, 51}, {52, 38109}, {373, 31260}, {511, 6668}, {529, 58470}, {674, 58636}, {758, 58474}, {952, 10095}, {2975, 5640}, {4999, 5943}, {5446, 31659}, {5462, 5841}, {5842, 10110}, {5849, 58471}, {5852, 58472}, {5855, 23841}, {5857, 58473}, {6102, 38142}, {8068, 18180}, {8679, 58566}, {9781, 11491}, {10263, 38114}, {14831, 38078}, {19161, 38148}, {20962, 31880}, {21155, 45186}, {31732, 38162}, {33961, 58479}

X(58476) = midpoint of X(i) and X(j) for these {i,j}: {5446, 31659}
X(58476) = center of the nine-point conic of quadrilateral XYZX(12) where XYZ is the cevian triangle of X(4)
X(58476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 58469, 58475}, {58474, 58558, 58493}


X(58477) = X(15)X(51)∩X(140)X(143)

Barycentrics    -(a^2*(-(sqrt(3)*a^6*(b^2+c^2))+a^4*(b^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+3*sqrt(3)*(b^4+c^4))+a^2*(6*b^2*c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+sqrt(3)*(-3*b^6+5*b^4*c^2+5*b^2*c^4-3*c^6))+(b-c)^2*(b+c)^2*(sqrt(3)*b^4+sqrt(3)*c^4-c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))-b^2*(2*sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))))) : :
Barycentrics    a^2*(2*(a^4*b^2 - b^6 + a^4*c^2 + 6*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6)*S - Sqrt[3]*(a^2*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) - 16*S^4)) : : (Peter Moses, September 22, 2023)

X(58477) lies on these lines: {15, 51}, {140, 143}, {185, 41036}, {187, 51547}, {373, 40334}, {389, 7684}, {463, 6110}, {531, 58470}, {621, 5640}, {623, 5943}, {1843, 36757}, {2913, 36759}, {5446, 13350}, {5892, 36755}, {9781, 36993}, {10110, 44666}, {10617, 36978}, {21158, 45186}, {21849, 45879}, {22510, 39846}, {44659, 58469}

X(58477) = midpoint of X(i) and X(j) for these {i,j}: {21849, 45879}, {389, 7684}, {5446, 13350}
X(58477) = reflection of X(i) in X(j) for these {i,j}: {58478, 58552}
X(58477) = center of the nine-point conic of quadrilateral XYZX(15) where XYZ is the cevian triangle of X(4)
X(58477) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 58552, 58478}


X(58478) = X(16)X(51)∩X(140)X(143)

Barycentrics    sqrt(3)*a^8*(b^2+c^2)+a^6*(b^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))-3*sqrt(3)*(b^4+c^4))+a^4*(6*b^2*c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+sqrt(3)*(b^2+c^2)*(3*b^4-8*b^2*c^2+3*c^4))-a^2*(b-c)^2*(b+c)^2*(sqrt(3)*b^4+b^2*(-2*sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))+c^2*(sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))) : :
Barycentrics    a^2*(2*(a^4*b^2 - b^6 + a^4*c^2 + 6*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6)*S + Sqrt[3]*(a^2*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) - 16*S^4)) : : (Peter Moses, September 22, 2023)

X(58478) lies on these lines: {16, 51}, {140, 143}, {185, 41037}, {187, 51546}, {373, 40335}, {389, 7685}, {462, 6111}, {530, 58470}, {622, 5640}, {624, 5943}, {1843, 36758}, {2912, 36760}, {5446, 13349}, {5892, 36756}, {9781, 36995}, {10110, 44667}, {10616, 36980}, {21159, 45186}, {21849, 45880}, {22511, 39846}, {44660, 58469}

X(58478) = midpoint of X(i) and X(j) for these {i,j}: {21849, 45880}, {389, 7685}, {5446, 13349}
X(58478) = reflection of X(i) in X(j) for these {i,j}: {58477, 58552}
X(58478) = center of the nine-point conic of quadrilateral XYZX(16) where XYZ is the cevian triangle of X(4)
X(58478) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 58552, 58477}


X(58479) = X(21)X(51)∩X(30)X(5462)

Barycentrics    a^2*(-(b^2-c^2)^4+a^6*(b^2+c^2)-3*a^3*b*c*(b+c)*(b^2+c^2)-3*a^4*(b^4+b^3*c+b*c^3+c^4)+a*b*c*(b+c)*(3*b^4-8*b^2*c^2+3*c^4)+a^2*(b^2+b*c+c^2)*(3*b^4-8*b^2*c^2+3*c^4)) : :
X(58479) = X[21]+3*X[51], X[143]+X[10021], X[185]+3*X[52269], -9*X[373]+5*X[31254], X[389]+X[6841], -X[442]+3*X[5943], -X[2475]+9*X[5640], 3*X[3060]+5*X[15674], X[5428]+X[5446], -X[5499]+5*X[15026], 3*X[5946]+X[16160], X[8261]+X[42450] and many others

X(58479) lies on these lines: {21, 51}, {30, 5462}, {143, 10021}, {185, 52269}, {373, 31254}, {389, 6841}, {442, 5943}, {511, 6675}, {674, 58638}, {758, 12109}, {2475, 5640}, {2771, 41671}, {2795, 58503}, {3060, 15674}, {5428, 5446}, {5499, 15026}, {5946, 16160}, {8261, 42450}, {8679, 58568}, {9528, 58511}, {9969, 51729}, {10263, 31650}, {11002, 15676}, {11277, 13363}, {11800, 16164}, {13598, 44238}, {13754, 46028}, {15043, 37433}, {15049, 47319}, {15644, 28465}, {15670, 21849}, {15671, 21969}, {17768, 58472}, {21161, 45186}, {23841, 44669}, {29958, 39772}, {31757, 58449}, {33961, 58476}, {40647, 44258}, {58474, 58501}

X(58479) = midpoint of X(i) and X(j) for these {i,j}: {143, 10021}, {11800, 16164}, {13598, 44238}, {15670, 21849}, {29958, 39772}, {389, 6841}, {31757, 58449}, {40647, 44258}, {5428, 5446}, {8261, 42450}, {9969, 51729}
X(58479) = center of the nine-point conic of quadrilateral XYZX(21) where XYZ is the cevian triangle of X(4)
X(58479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58491, 12109}


X(58480) = X(2)X(54384)∩X(22)X(51)

Barycentrics    a^2*(a^8*(b^2+c^2)-2*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+2*a^2*(b^8-2*b^6*c^2-2*b^2*c^6+c^8)) : :
X(58480) = 3*X[2]+X[54384], X[22]+3*X[51], X[143]+X[25337], 3*X[184]+X[27365], -9*X[373]+5*X[31236], X[389]+X[15760], -X[427]+3*X[5943], X[5446]+X[7502], -9*X[5640]+X[7391], -3*X[5892]+X[18570], 7*X[9781]+X[44831], X[9969]+X[19127] and many others

X(58480) lies on these lines: {2, 54384}, {5, 34115}, {22, 51}, {25, 44480}, {30, 5462}, {143, 25337}, {154, 41714}, {184, 27365}, {373, 31236}, {378, 15010}, {389, 15760}, {427, 5943}, {511, 6676}, {569, 44259}, {575, 44260}, {1112, 37649}, {2781, 6688}, {3628, 58546}, {3818, 41580}, {5446, 7502}, {5447, 58488}, {5640, 7391}, {5892, 18570}, {6329, 9019}, {9730, 18390}, {9781, 44831}, {9822, 58547}, {9969, 19127}, {9971, 20850}, {11695, 52262}, {11746, 45298}, {11793, 58545}, {11800, 16165}, {12083, 37514}, {12824, 37990}, {13363, 44236}, {13598, 44239}, {13754, 46029}, {15043, 44440}, {15045, 35481}, {15818, 44491}, {16776, 53022}, {16836, 44249}, {16950, 41255}, {18383, 40647}, {21849, 44210}, {21969, 47596}, {41578, 46818}, {44837, 45186}

X(58480) = midpoint of X(i) and X(j) for these {i,j}: {143, 25337}, {11800, 16165}, {13598, 44239}, {21849, 44210}, {389, 15760}, {40647, 44263}, {5446, 7502}, {9969, 19127}
X(58480) = reflection of X(i) in X(j) for these {i,j}: {52262, 11695}
X(58480) = center of the nine-point conic of quadrilateral XYZX(22) where XYZ is the cevian triangle of X(4)
X(58480) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5462, 58483, 58470}, {5462, 58484, 58482}, {58470, 58481, 58483}


X(58481) = X(23)X(51)∩X(30)X(5462)

Barycentrics    a^2*(a^8*(b^2+c^2)+a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+a^2*(2*b^8-7*b^6*c^2+8*b^4*c^4-7*b^2*c^6+2*c^8)) : :
X(58481) = X[23]+3*X[51], X[143]+X[25338], -9*X[373]+5*X[30745], X[389]+X[11799], -3*X[403]+X[5907], -X[858]+3*X[5943], -X[1216]+3*X[44282], X[1533]+3*X[46430], X[1843]+3*X[52238], 3*X[3060]+5*X[37760], -X[3313]+5*X[47453], -2*X[5159]+3*X[6688] and many others

X(58481) lies on these lines: {6, 37973}, {23, 51}, {30, 5462}, {143, 25338}, {182, 37928}, {186, 15010}, {373, 30745}, {389, 11799}, {403, 5907}, {468, 511}, {578, 2070}, {674, 58639}, {858, 5943}, {1173, 43579}, {1216, 44282}, {1495, 3047}, {1533, 46430}, {1843, 52238}, {3060, 37760}, {3313, 47453}, {5092, 37929}, {5159, 6688}, {5189, 5640}, {5446, 7575}, {5892, 37950}, {5899, 36752}, {6000, 36253}, {6102, 11563}, {7426, 21849}, {8681, 47549}, {8705, 47460}, {9019, 32300}, {9730, 18325}, {9820, 10096}, {9969, 32217}, {10295, 13598}, {10574, 52403}, {10575, 31726}, {10627, 44234}, {11412, 37943}, {11574, 47455}, {11649, 37897}, {11692, 37936}, {11695, 15122}, {11746, 29012}, {11806, 51548}, {11807, 32110}, {12105, 58489}, {12824, 41586}, {13346, 37933}, {13391, 22249}, {13565, 46031}, {13754, 44961}, {14913, 32220}, {14915, 58498}, {15012, 16227}, {15644, 44214}, {17810, 37972}, {21969, 37907}, {32284, 45979}, {32411, 37971}, {33586, 37920}, {37777, 44079}, {37910, 58549}, {37940, 48914}, {37984, 44870}, {40647, 44267}, {44264, 58488}, {47153, 58502}, {47316, 58544}, {58514, 58552}, {58547, 58555}

X(58481) = midpoint of X(i) and X(j) for these {i,j}: {143, 25338}, {1112, 32223}, {10295, 13598}, {1495, 11800}, {11692, 37936}, {11806, 51548}, {11807, 32110}, {14913, 32220}, {389, 11799}, {32411, 37971}, {40647, 44267}, {5446, 7575}, {7426, 21849}, {9969, 32217}
X(58481) = reflection of X(i) in X(j) for these {i,j}: {15122, 11695}, {41671, 44084}, {44870, 37984}
X(58481)= pole of line {32271, 33749} with respect to the Jerabek hyperbola
X(58481)= pole of line {5622, 40107} with respect to the Stammler hyperbola
X(58481) = center of the nine-point conic of quadrilateral XYZX(23) where XYZ is the cevian triangle of X(4)
X(58481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 44084, 41671}, {1112, 32223, 511}, {58480, 58483, 58470}


X(58482) = X(24)X(51)∩X(235)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-6*a^6*b^2*c^2*(b^4+c^4)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-12*b^2*c^2+5*c^4)+a^8*(5*b^6+b^4*c^2+b^2*c^4+5*c^6)+4*a^2*(b^2-c^2)^2*(b^8-2*b^6*c^2+b^4*c^4-2*b^2*c^6+c^8)) : :
X(58482) = X[24]+3*X[51], X[235]+X[389], -9*X[373]+5*X[31282], X[5446]+X[37814], -9*X[5640]+X[37444], -3*X[5943]+X[11585], 3*X[9730]+X[31725], 7*X[9781]+X[35471], -2*X[11695]+X[16196], -X[11793]+2*X[58465], X[11800]+X[20771], X[13598]+X[44240] and many others

X(58482) lies on these lines: {24, 51}, {30, 5462}, {143, 9820}, {235, 389}, {373, 31282}, {511, 16238}, {575, 9969}, {576, 44752}, {5446, 37814}, {5480, 15026}, {5640, 37444}, {5943, 11585}, {5946, 15873}, {6000, 44226}, {6756, 11746}, {6759, 44079}, {7517, 17810}, {9730, 31725}, {9781, 35471}, {10274, 44102}, {11695, 16196}, {11793, 58465}, {11800, 20771}, {13598, 44240}, {13754, 15887}, {15078, 45186}, {15465, 58492}, {16625, 41671}, {16881, 58546}, {21841, 46363}, {21849, 44211}, {22833, 44267}, {40647, 44271}, {44495, 44668}, {44803, 46430}, {44872, 46849}

X(58482) = midpoint of X(i) and X(j) for these {i,j}: {143, 44232}, {11800, 20771}, {13598, 44240}, {235, 389}, {21849, 44211}, {40647, 44271}, {44226, 52003}, {5446, 37814}, {9969, 51730}
X(58482) = reflection of X(i) in X(j) for these {i,j}: {10110, 58559}, {11793, 58465}, {16196, 11695}
X(58482)= pole of line {7592, 22802} with respect to the Jerabek hyperbola
X(58482) = center of the nine-point conic of quadrilateral XYZX(24) where XYZ is the cevian triangle of X(4)
X(58482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {143, 44232, 45780}, {5462, 58484, 58480}, {10095, 11745, 10110}, {10110, 58551, 5462}, {16625, 41671, 58545}, {44226, 52003, 6000}


X(58483) = X(4)X(31978)∩X(6)X(25)

Barycentrics    a^2*(a^8*(b^2+c^2)+4*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+2*a^2*(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)-2*a^6*(b^4-b^2*c^2+c^4)) : :
X(58483) = X[143]+X[44233], -9*X[373]+5*X[31255], X[389]+X[1596], -X[1370]+9*X[5640], X[5446]+X[6644], 7*X[9781]+X[18533], X[11800]+X[20772], X[13598]+X[44241], X[21849]+X[44212], X[21969]+3*X[47597], 3*X[37917]+X[48914], X[40647]+X[44276]

X(58483) lies on these lines: {4, 31978}, {6, 25}, {30, 5462}, {143, 44233}, {263, 40323}, {373, 31255}, {389, 1596}, {511, 6677}, {576, 34966}, {1368, 5480}, {1370, 5640}, {2790, 58502}, {2834, 58509}, {3060, 37669}, {3148, 40320}, {5446, 6644}, {6353, 50649}, {7398, 29959}, {9781, 18533}, {9786, 46373}, {10154, 44479}, {11433, 41580}, {11746, 36201}, {11800, 20772}, {12099, 52285}, {12235, 13861}, {12294, 26958}, {13567, 34146}, {13598, 44241}, {13754, 46030}, {14984, 41671}, {15043, 15740}, {16252, 46363}, {21849, 44212}, {21969, 47597}, {22967, 52003}, {23292, 51734}, {37917, 48914}, {37951, 38848}, {40647, 44276}, {42450, 46017}, {44662, 58469}, {44670, 58485}, {44802, 57648}, {58514, 58515}, {58533, 58546}

X(58483) = midpoint of X(i) and X(j) for these {i,j}: {143, 44233}, {11800, 20772}, {13598, 44241}, {21849, 44212}, {389, 1596}, {40647, 44276}, {5446, 6644}, {9969, 19136}
X(58483)= pole of line {850, 30211} with respect to the polar circle
X(58483) = center of the nine-point conic of quadrilateral XYZX(25) where XYZ is the cevian triangle of X(4)
X(58483) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1660)}}, {{A, B, C, X(184), X(43695)}}, {{A, B, C, X(10311), X(40323)}}
X(58483) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 25, 1660}, {6, 44079, 45979}, {51, 17810, 9969}, {51, 34417, 47328}, {51, 44079, 6}, {51, 44084, 58550}, {51, 58550, 58471}, {9969, 19136, 2393}, {10095, 58484, 5462}, {11745, 58559, 10110}, {44084, 58550, 58544}, {58470, 58481, 58480}


X(58484) = X(26)X(51)∩X(30)X(5462)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(b^2+c^2)*(5*b^4-6*b^2*c^2+5*c^4)+2*a^2*(b^2-c^2)^2*(2*b^8-3*b^6*c^2-3*b^2*c^6+2*c^8)-a^4*(b^2+c^2)*(5*b^8-16*b^6*c^2+18*b^4*c^4-16*b^2*c^6+5*c^8)) : :
X(58484) = X[26]+3*X[51], X[52]+3*X[10201], X[143]+X[13383], X[156]+X[12235], -9*X[373]+5*X[31283], X[389]+X[15761], X[1658]+X[5446], -X[5447]+2*X[10125], -9*X[5640]+X[14790], -3*X[5892]+X[11250], -3*X[5943]+X[13371], X[9969]+X[19154] and many others

X(58484) lies on these lines: {5, 44084}, {26, 51}, {30, 5462}, {52, 10201}, {143, 13383}, {156, 12235}, {373, 31283}, {389, 15761}, {511, 10020}, {1112, 7542}, {1154, 58544}, {1658, 5446}, {2393, 32155}, {3564, 58547}, {5447, 10125}, {5640, 14790}, {5892, 11250}, {5943, 13371}, {6152, 7426}, {6746, 37971}, {7514, 15010}, {9826, 31829}, {9969, 19154}, {10024, 52000}, {10263, 34351}, {11695, 23336}, {11793, 12900}, {11800, 20773}, {12084, 37470}, {12605, 43823}, {13406, 13754}, {13434, 45171}, {13561, 34146}, {13598, 44242}, {13861, 44079}, {15024, 44441}, {15026, 23335}, {15047, 37928}, {15644, 34477}, {18282, 58488}, {18324, 45186}, {18567, 44863}, {19155, 34382}, {21849, 44213}, {32140, 41580}, {32144, 32205}, {37440, 47328}, {40647, 44279}, {50664, 58549}, {52073, 58516}, {58471, 58533}

X(58484) = midpoint of X(i) and X(j) for these {i,j}: {143, 13383}, {156, 12235}, {1658, 5446}, {11800, 20773}, {13598, 44242}, {21849, 44213}, {389, 15761}, {40647, 44279}, {9969, 19154}
X(58484) = reflection of X(i) in X(j) for these {i,j}: {18567, 44863}, {23336, 11695}, {32144, 32205}, {5447, 10125}, {58545, 58546}
X(58484) = center of the nine-point conic of quadrilateral XYZX(26) where XYZ is the cevian triangle of X(4)
X(58484) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1154, 58546, 58545}, {5462, 58483, 10095}, {12235, 45979, 156}, {58480, 58482, 5462}, {58544, 58545, 58546}


X(58485) = X(37)X(51)∩X(75)X(5640)

Barycentrics    a^2*(-(b*c*(b^2-c^2)^2)-a*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^2*b*c*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)) : :
X(58485) = X[37]+3*X[51], -X[75]+9*X[5640], -9*X[373]+5*X[31238], -3*X[375]+X[22271], 3*X[3060]+5*X[4687], -X[3739]+3*X[5943], X[3842]+X[31757], -7*X[4751]+15*X[11451], X[4755]+X[21849], 7*X[9781]+X[30273], 9*X[11002]+7*X[27268], 7*X[15043]+X[51063]

X(58485) lies on these lines: {37, 51}, {44, 40954}, {75, 5640}, {373, 31238}, {375, 22271}, {511, 4698}, {516, 40504}, {518, 58469}, {536, 58470}, {674, 40607}, {726, 58486}, {740, 58474}, {742, 58532}, {872, 20961}, {2183, 2293}, {2667, 20962}, {2805, 58504}, {3060, 4687}, {3739, 5943}, {3842, 31757}, {4751, 11451}, {4755, 21849}, {8679, 58571}, {8680, 58558}, {9781, 30273}, {10095, 29010}, {11002, 27268}, {12572, 20718}, {15043, 51063}, {23841, 28581}, {44670, 58483}

X(58485) = midpoint of X(i) and X(j) for these {i,j}: {3842, 31757}, {4755, 21849}, {58499, 58554}
X(58485) = center of the nine-point conic of quadrilateral XYZX(37) where XYZ is the cevian triangle of X(4)
X(58485) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58473, 58471}, {58470, 58554, 58499}


X(58486) = X(6)X(3202)∩X(39)X(51)

Barycentrics    -(a^2*b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)^2-a^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4) : :
X(58486) = X[39]+3*X[51], -X[76]+9*X[5640], X[185]+3*X[22682], 3*X[262]+5*X[3567], -9*X[373]+5*X[31239], X[2023]+X[39835], 3*X[3060]+5*X[7786], -X[3934]+3*X[5943], X[5446]+X[13334], 3*X[5946]+X[14881], 3*X[7753]+X[40951], 7*X[9781]+X[11257] and many others

X(58486) lies on these lines: {6, 3202}, {39, 51}, {76, 5640}, {83, 14962}, {140, 143}, {185, 22682}, {211, 3815}, {232, 27370}, {262, 3567}, {263, 31401}, {373, 31239}, {389, 40645}, {427, 15897}, {512, 7745}, {538, 58470}, {726, 58485}, {730, 58474}, {732, 58532}, {1506, 27374}, {2023, 39835}, {2393, 46337}, {2782, 10095}, {3060, 7786}, {3124, 42548}, {3159, 14839}, {3934, 5943}, {5368, 6784}, {5446, 13334}, {5946, 14881}, {7753, 40951}, {7859, 33873}, {7915, 34236}, {9781, 11257}, {10263, 40108}, {11174, 41262}, {13451, 32516}, {14917, 58550}, {14990, 46305}, {15024, 22712}, {15026, 49111}, {21163, 45186}, {21849, 44562}, {31869, 53570}, {32515, 58531}, {40643, 43843}, {46179, 58558}

X(58486) = midpoint of X(i) and X(j) for these {i,j}: {143, 11272}, {2023, 39835}, {21849, 44562}, {39, 27375}, {5446, 13334}, {58500, 58556}
X(58486) = reflection of X(i) in X(j) for these {i,j}: {52042, 6683}
X(58486) = X(i)-complementary conjugate of X(j) for these {i, j}: {82, 34452}, {55028, 21249}
X(58486)= pole of line {1506, 3613} with respect to the Kiepert hyperbola
X(58486)= pole of line {31296, 52618} with respect to the Steiner inellipse
X(58486) = center of the nine-point conic of quadrilateral XYZX(39) where XYZ is the cevian triangle of X(4)
X(58486) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3203), X(30505)}}, {{A, B, C, X(27375), X(45108)}}, {{A, B, C, X(43679), X(55075)}}
X(58486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 51, 27375}, {143, 11272, 511}, {511, 6683, 52042}, {58470, 58556, 58500}


X(58487) = X(10)X(389)∩X(40)X(51)

Barycentrics    a^2*(2*a^3*b^2*c^2*(b+c)-2*a*b^2*(b-c)^2*c^2*(b+c)-(b^2-c^2)^4+a^6*(b^2+c^2)-3*a^4*(b^4+c^4)+a^2*(3*b^6-5*b^4*c^2-4*b^3*c^3-5*b^2*c^4+3*c^6)) : :
X(58487) = X[8]+7*X[15043], X[10]+X[389], X[40]+3*X[51], X[52]+3*X[26446], 3*X[165]+X[45186], X[185]+3*X[5587], X[355]+3*X[9730], -9*X[373]+5*X[8227], -3*X[375]+X[5777], -X[944]+9*X[15045], -X[946]+3*X[5943], -X[962]+9*X[5640] and many others

X(58487) lies on these lines: {5, 2807}, {8, 15043}, {10, 389}, {40, 51}, {52, 26446}, {165, 45186}, {181, 580}, {185, 5587}, {355, 9730}, {373, 8227}, {375, 5777}, {511, 6684}, {515, 9729}, {516, 10110}, {517, 5462}, {581, 23638}, {674, 58643}, {912, 58647}, {916, 58631}, {944, 15045}, {946, 5943}, {952, 12006}, {962, 5640}, {1092, 16473}, {1125, 11695}, {1216, 11231}, {1385, 5892}, {1698, 5562}, {1902, 44084}, {2800, 58504}, {2802, 58508}, {2809, 58507}, {2810, 12005}, {2816, 58541}, {2817, 58513}, {2818, 3754}, {2841, 35004}, {3567, 5657}, {3576, 16980}, {3579, 5446}, {3616, 15028}, {3634, 11793}, {3679, 16226}, {3819, 31738}, {3828, 31752}, {3917, 31423}, {4297, 16836}, {4300, 20962}, {5603, 15024}, {5690, 5946}, {5790, 37481}, {5818, 5890}, {5840, 58501}, {5884, 29958}, {5889, 9780}, {5901, 13363}, {5907, 10175}, {6000, 19925}, {6001, 58492}, {6102, 38042}, {6361, 9781}, {6986, 56878}, {7989, 15030}, {8185, 10984}, {8679, 9940}, {9622, 44109}, {9626, 22352}, {9798, 37514}, {9911, 17810}, {9956, 13754}, {10095, 28174}, {10164, 15644}, {10172, 31751}, {10902, 51377}, {11381, 18492}, {11444, 19877}, {11574, 38118}, {12239, 13973}, {12240, 13911}, {13211, 16223}, {13280, 16225}, {13364, 40273}, {13598, 31730}, {13630, 18357}, {14641, 33697}, {14831, 19875}, {15016, 23154}, {15026, 22791}, {16192, 36987}, {18480, 40647}, {19161, 38047}, {22300, 31789}, {24025, 34956}, {28194, 58470}, {28212, 58531}, {28234, 58535}, {29054, 58499}, {31673, 46850}, {31757, 43174}, {31788, 42450}, {38472, 52265}, {40658, 45979}

X(58487) = midpoint of X(i) and X(j) for these {i,j}: {10, 389}, {13598, 31730}, {13630, 18357}, {14641, 33697}, {18480, 40647}, {22300, 31789}, {3579, 5446}, {31673, 46850}, {31757, 43174}, {31788, 42450}, {5884, 29958}, {5907, 31728}, {6684, 31760}, {58493, 58690}, {9729, 23841}
X(58487) = reflection of X(i) in X(j) for these {i,j}: {10110, 58474}, {1125, 11695}, {11793, 3634}, {58469, 5462}
X(58487) = center of the nine-point conic of quadrilateral XYZX(40) where XYZ is the cevian triangle of X(4)
X(58487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 58474, 10110}, {517, 5462, 58469}, {1698, 5562, 52796}, {6684, 31760, 511}, {9729, 23841, 515}, {10175, 31728, 5907}, {58469, 58548, 5462}, {58493, 58690, 517}


X(58488) = X(5)X(389)∩X(49)X(51)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^2*(b^2-c^2)^4*(4*b^4+5*b^2*c^2+4*c^4)+a^8*(b^2+c^2)*(5*b^4-9*b^2*c^2+5*c^4)+a^6*(9*b^6*c^2+8*b^4*c^4+9*b^2*c^6)+a^4*(-5*b^10+2*b^8*c^2+b^6*c^4+b^4*c^6+2*b^2*c^8-5*c^10)) : :
X(58488) = X[49]+3*X[51]

X(58488) lies on these lines: {5, 389}, {49, 51}, {54, 11692}, {110, 6153}, {143, 10096}, {511, 34577}, {1493, 11800}, {1568, 11802}, {2070, 5446}, {3153, 40647}, {3518, 44084}, {3567, 21451}, {3574, 11557}, {5447, 58480}, {5892, 34864}, {7471, 36842}, {10095, 13163}, {10110, 30522}, {12010, 16625}, {13376, 43575}, {14915, 31724}, {16881, 58551}, {18282, 58484}, {18369, 43844}, {22330, 58471}, {23409, 58531}, {38789, 54007}, {40240, 58516}, {44264, 58481}

X(58488) = midpoint of X(i) and X(j) for these {i,j}: {143, 15806}, {5446, 13367}
X(58488)= pole of line {21659, 43845} with respect to the Jerabek hyperbola
X(58488)= pole of line {12325, 34148} with respect to the Stammler hyperbola
X(58488) = center of the nine-point conic of quadrilateral XYZX(49) where XYZ is the cevian triangle of X(4)
X(58488) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {41671, 58489, 10095}


X(58489) = X(51)X(54)∩X(125)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4+9*b^2*c^2+5*c^4)+3*a^6*(5*b^6*c^2+4*b^4*c^4+5*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-b^6*c^2-8*b^4*c^4-b^2*c^6+4*c^8)) : :
X(58489) = X[5]+X[10115], 3*X[51]+X[54], X[140]+X[44056], X[143]+X[8254], -X[1209]+3*X[5943], X[1493]+X[6153], -X[2888]+9*X[5640], X[5446]+X[10610], -3*X[5946]+X[11802], X[6152]+X[40632], 3*X[7730]+X[21660], 3*X[9730]+X[15800] and many others

X(58489) lies on these lines: {5, 10115}, {6, 10274}, {30, 16106}, {51, 54}, {125, 389}, {140, 44056}, {143, 8254}, {195, 9306}, {468, 973}, {511, 6689}, {539, 23410}, {1154, 3628}, {1209, 5943}, {1493, 6153}, {2888, 5640}, {3567, 14940}, {5446, 10610}, {5946, 11802}, {5965, 9822}, {6152, 40632}, {6756, 10110}, {7730, 21660}, {9730, 15800}, {9781, 12254}, {9820, 22051}, {9920, 17810}, {10095, 13163}, {11262, 58439}, {11432, 17824}, {11557, 11804}, {11576, 44084}, {11597, 11800}, {11695, 32348}, {11805, 11806}, {12105, 58481}, {12233, 43392}, {13365, 50708}, {13382, 58492}, {13567, 14076}, {14831, 41726}, {15012, 47341}, {15026, 21230}, {15801, 16042}, {16223, 36853}, {18874, 20584}, {32191, 58450}, {34565, 52417}, {40645, 58515}, {43582, 43823}, {44264, 58533}, {44495, 44668}, {58497, 58575}

X(58489) = midpoint of X(i) and X(j) for these {i,j}: {140, 44056}, {143, 8254}, {1493, 6153}, {11557, 11804}, {11597, 11800}, {11802, 20424}, {11805, 11806}, {389, 3574}, {5, 10115}, {54, 11808}, {5446, 10610}, {5462, 58557}, {6152, 40632}, {973, 12242}
X(58489) = reflection of X(i) in X(j) for these {i,j}: {11793, 32396}, {13365, 58531}, {20584, 18874}, {32348, 11695}
X(58489)= pole of line {1199, 18400} with respect to the Jerabek hyperbola
X(58489) = center of the nine-point conic of quadrilateral XYZX(54) where XYZ is the cevian triangle of X(4)
X(58489) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 54, 11808}, {389, 3574, 10628}, {1154, 32396, 11793}, {5462, 58557, 1154}, {10095, 58488, 41671}, {50708, 58531, 13365}


X(58490) = X(51)X(55)∩X(517)X(5462)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-2*a^3*(b^4-b^2*c^2+c^4)+2*a^2*(b^5-2*b^3*c^2-2*b^2*c^3+c^5)) : :
X(58490) = 3*X[51]+X[55], -9*X[373]+5*X[31245], X[389]+X[7680], -X[2886]+3*X[5943], -X[3434]+9*X[5640], X[5446]+X[32613], 7*X[9781]+X[37000], X[9969]+X[47373], -X[10537]+3*X[45979], X[42450]+X[50195]

X(58490) lies on these lines: {51, 55}, {373, 31245}, {389, 7680}, {511, 6690}, {516, 58558}, {517, 5462}, {518, 58491}, {528, 58470}, {674, 58471}, {692, 40952}, {1824, 44084}, {2807, 58507}, {2875, 14717}, {2886, 5943}, {3434, 5640}, {5446, 32613}, {5842, 10110}, {5855, 58535}, {8679, 11018}, {9781, 37000}, {9969, 47373}, {10537, 45979}, {15733, 58473}, {23841, 44669}, {38454, 58472}, {42450, 50195}, {44670, 58483}

X(58490) = midpoint of X(i) and X(j) for these {i,j}: {389, 7680}, {42450, 50195}, {5446, 32613}, {9969, 47373}
X(58490) = center of the nine-point conic of quadrilateral XYZX(55) where XYZ is the cevian triangle of X(4)
X(58490) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58487, 58493}


X(58491) = X(51)X(63)∩X(970)X(993)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+2*a^2*(b-c)^2*(b+c)*(b^2+b*c+c^2)+a*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-2*a^3*(b^4-b^2*c^2+c^4)) : :
X(58491) = 3*X[51]+X[63], -X[226]+3*X[5943], -9*X[373]+5*X[31266], X[389]+X[51755], 3*X[3060]+5*X[55868], -3*X[3917]+7*X[55867], -9*X[5640]+X[5905], -3*X[6688]+2*X[58463], X[18389]+X[29958], 3*X[21165]+X[45186]

X(58491) lies on these lines: {51, 63}, {226, 5943}, {373, 31266}, {389, 51755}, {511, 5745}, {515, 9729}, {518, 58490}, {527, 58470}, {674, 58651}, {758, 12109}, {912, 5462}, {970, 993}, {2792, 58537}, {2801, 58504}, {3060, 55868}, {3173, 5020}, {3917, 55867}, {5640, 5905}, {6688, 58463}, {7193, 40952}, {8679, 58578}, {8680, 58499}, {9028, 9822}, {18389, 29958}, {21165, 45186}, {23638, 37502}, {34377, 58471}, {39796, 47522}, {46179, 58500}, {46180, 58556}

X(58491) = midpoint of X(i) and X(j) for these {i,j}: {18389, 29958}, {389, 51755}
X(58491) = center of the nine-point conic of quadrilateral XYZX(63) where XYZ is the cevian triangle of X(4)
X(58491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12109, 58479, 58469}


X(58492) = X(3)X(2393)∩X(51)X(64)

Barycentrics    a^2*(-12*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-18*b^2*c^2+5*c^4)+a^8*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-5*b^6*c^2-10*b^4*c^4-5*b^2*c^6+2*c^8)) : :
X(58492) = X[4]+X[31978], 3*X[51]+X[64], X[185]+3*X[1853], -X[1216]+3*X[23329], -X[1498]+3*X[45979], -X[2883]+3*X[5943], -5*X[3091]+X[36982], X[3357]+X[5446], -9*X[3839]+X[36983], -X[5447]+2*X[25563], -X[5562]+5*X[40686], -9*X[5640]+X[6225] and many others

X(58492) lies on these lines: {3, 2393}, {4, 31978}, {30, 58496}, {51, 64}, {66, 18909}, {185, 1853}, {206, 37514}, {389, 1595}, {511, 6696}, {546, 5462}, {578, 22829}, {674, 58652}, {974, 32393}, {1192, 1843}, {1204, 47328}, {1216, 23329}, {1498, 45979}, {1503, 9729}, {1594, 15126}, {1620, 9973}, {2781, 16625}, {2883, 5943}, {3088, 23327}, {3091, 36982}, {3357, 5446}, {3574, 32125}, {3827, 58690}, {3839, 36983}, {5447, 25563}, {5562, 40686}, {5640, 6225}, {5656, 15024}, {5663, 58545}, {5890, 32392}, {5892, 6759}, {5894, 13598}, {5907, 23332}, {6001, 58487}, {6756, 16270}, {7528, 9730}, {7729, 11381}, {8567, 34751}, {8679, 58579}, {9781, 12250}, {9786, 9969}, {9914, 17810}, {10110, 15311}, {10250, 32284}, {10574, 32064}, {10606, 45186}, {11425, 32366}, {11598, 11800}, {11695, 16252}, {11743, 13568}, {11745, 58494}, {12006, 23411}, {12084, 12235}, {12272, 53050}, {12324, 15043}, {13160, 41603}, {13347, 15577}, {13348, 44668}, {13371, 13754}, {13382, 58489}, {13474, 23324}, {14641, 34786}, {14915, 18383}, {15045, 34781}, {15465, 58482}, {15583, 52520}, {15644, 23328}, {15811, 44079}, {16836, 34782}, {18381, 40647}, {18913, 19161}, {18919, 50649}, {21651, 37497}, {21663, 32345}, {32767, 49673}, {36747, 39125}, {36752, 41593}, {41362, 46850}, {44883, 46730}

X(58492) = midpoint of X(i) and X(j) for these {i,j}: {11598, 11800}, {12084, 12235}, {14641, 34786}, {15583, 52520}, {18381, 40647}, {389, 6247}, {3357, 5446}, {4, 31978}, {41362, 46850}, {5894, 13598}
X(58492) = reflection of X(i) in X(j) for these {i,j}: {16252, 11695}, {41589, 15012}, {5447, 25563}, {9729, 32184}
X(58492)= pole of line {30211, 57120} with respect to the 1st DrozFarny circle
X(58492)= pole of line {12173, 15811} with respect to the Jerabek hyperbola
X(58492) = center of the nine-point conic of quadrilateral XYZX(64) where XYZ is the cevian triangle of X(4)
X(58492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 6247, 34146}, {1503, 32184, 9729}, {6000, 15012, 41589}, {12324, 15043, 41580}


X(58493) = X(10)X(674)∩X(51)X(65)

Barycentrics    a^2*(-(a*(b^2-c^2)^2)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+b*c+c^2)-(b-c)^2*(b+c)*(b^2+3*b*c+c^2)) : :
X(58493) = 3*X[51]+X[65], -X[72]+3*X[375], 3*X[354]+X[16980], -9*X[373]+5*X[25917], X[389]+X[7686], X[950]+X[22300], -X[960]+3*X[5943], -2*X[3678]+3*X[58646], X[3754]+X[31757], -X[3869]+9*X[5640], X[4084]+3*X[15049], -2*X[5045]+3*X[58574] and many others

X(58493) lies on these lines: {1, 25579}, {4, 15320}, {6, 2333}, {10, 674}, {42, 23383}, {51, 65}, {72, 375}, {181, 1104}, {354, 16980}, {373, 25917}, {389, 7686}, {405, 22276}, {511, 3812}, {515, 58617}, {517, 5462}, {518, 9822}, {758, 58474}, {912, 58496}, {916, 19925}, {942, 8679}, {950, 22300}, {952, 58575}, {960, 5943}, {1125, 34466}, {1451, 23843}, {1469, 17054}, {1722, 4259}, {1736, 42440}, {1737, 18180}, {1834, 40954}, {2392, 33815}, {2650, 20962}, {2771, 58501}, {2778, 58498}, {2800, 58475}, {2807, 5806}, {3338, 41682}, {3556, 17810}, {3678, 58646}, {3696, 50623}, {3754, 31757}, {3816, 35631}, {3827, 58471}, {3869, 5640}, {3874, 9026}, {3880, 58535}, {4084, 15049}, {4642, 20961}, {4646, 21746}, {4662, 9052}, {5045, 58574}, {5221, 26892}, {5396, 37836}, {5446, 34339}, {5482, 58405}, {5530, 18165}, {5728, 52359}, {5752, 54318}, {5883, 11573}, {6000, 16616}, {6001, 10110}, {8608, 40955}, {9049, 34790}, {9786, 34935}, {9943, 13598}, {10095, 14988}, {11365, 44414}, {12572, 20718}, {13411, 38472}, {15229, 28208}, {17063, 50630}, {21896, 50583}, {22654, 52424}, {25048, 41261}, {31760, 31870}, {37080, 51377}, {43073, 45223}, {44545, 44547}, {44663, 58470}, {45955, 58679}, {49478, 50580}, {50626, 52541}

X(58493) = midpoint of X(i) and X(j) for these {i,j}: {12109, 23841}, {389, 7686}, {3754, 31757}, {31760, 31870}, {44545, 44547}, {5446, 34339}, {65, 42450}, {950, 22300}, {9943, 13598}
X(58493) = reflection of X(i) in X(j) for these {i,j}: {58497, 58474}, {58690, 58487}
X(58493)= pole of line {1867, 10955} with respect to the Feuerbach hyperbola
X(58493)= pole of line {1834, 41011} with respect to the Jerabek hyperbola
X(58493)= pole of line {649, 4057} with respect to the Orthic inconic
X(58493) = center of the nine-point conic of quadrilateral XYZX(65) where XYZ is the cevian triangle of X(4)
X(58493) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 65, 42450}, {65, 42450, 2390}, {65, 57666, 41011}, {517, 58487, 58690}, {758, 58474, 58497}, {12109, 23841, 518}, {58469, 58487, 58490}, {58474, 58558, 58476}


X(58494) = X(6)X(14580)∩X(51)X(66)

Barycentrics    a^2*(a^10*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)^3-a^8*(b^4+c^4)+2*a^4*(b^2-c^2)^2*(b^4+c^4)-2*a^6*(b^2+c^2)*(b^4+c^4)-(b^4-c^4)^2*(b^4-4*b^2*c^2+c^4)) : :
X(58494) = 3*X[51]+X[66], -X[206]+3*X[5943], -9*X[373]+5*X[31267], X[389]+X[51756], X[1843]+3*X[23327], 5*X[3763]+3*X[34751], -X[5596]+9*X[5640], 3*X[9730]+X[34775], -3*X[10169]+X[32366], X[11800]+X[15116], X[15583]+3*X[16776], 3*X[23049]+X[37511] and many others

X(58494) lies on these lines: {6, 14580}, {51, 66}, {159, 10601}, {206, 5943}, {373, 31267}, {389, 51756}, {511, 5449}, {1503, 5462}, {1843, 23327}, {2393, 3589}, {2781, 21852}, {3313, 37638}, {3763, 34751}, {3827, 58497}, {3867, 9969}, {5596, 5640}, {8681, 39125}, {9730, 34775}, {10110, 16198}, {10169, 32366}, {11745, 58492}, {11800, 15116}, {15580, 50664}, {15583, 16776}, {17810, 34207}, {23049, 37511}, {27365, 28408}, {29959, 34777}, {34573, 44668}, {36201, 58498}, {46737, 58471}

X(58494) = midpoint of X(i) and X(j) for these {i,j}: {11800, 15116}, {389, 51756}, {9969, 23300}
X(58494) = reflection of X(i) in X(j) for these {i,j}: {58547, 58532}
X(58494) = center of the nine-point conic of quadrilateral XYZX(66) where XYZ is the cevian triangle of X(4)
X(58494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 58532, 58547}, {3589, 58439, 58450}


X(58495) = X(6)X(32226)∩X(51)X(67)

Barycentrics    a^2*(a^10*(b^2+c^2)-a^8*(b^4+c^4)-(b^4-c^4)^2*(b^4-4*b^2*c^2+c^4)+2*a^4*(b^4-b^2*c^2+c^4)^2+a^6*(-2*b^6+b^4*c^2+b^2*c^4-2*c^6)+a^2*(b^2-c^2)^2*(b^6+c^6)) : :
X(58495) = 3*X[51]+X[67], X[125]+X[9969], X[141]+X[11800], X[389]+X[32274], 3*X[597]+X[32299], X[1205]+3*X[9971], -X[3313]+5*X[15059], X[3818]+X[11806], X[5181]+3*X[45237], X[5446]+X[49116], -9*X[5640]+X[11061], -3*X[5943]+X[6593] and many others

X(58495) lies on these lines: {6, 32226}, {51, 67}, {125, 9969}, {141, 11800}, {373, 32227}, {389, 32274}, {468, 2393}, {511, 6698}, {542, 5462}, {597, 32299}, {895, 16042}, {1205, 9971}, {1503, 58498}, {1594, 15116}, {2781, 10110}, {2836, 58497}, {2854, 6329}, {3313, 15059}, {3518, 5622}, {3628, 14984}, {3818, 11806}, {5181, 45237}, {5446, 49116}, {5640, 11061}, {5943, 6593}, {6756, 16270}, {7687, 34146}, {8254, 25555}, {9781, 32247}, {10516, 21649}, {10628, 32191}, {11746, 58471}, {11808, 32351}, {13358, 18358}, {14644, 19161}, {14940, 15073}, {16776, 25328}, {17810, 32262}, {19136, 32251}, {32239, 44084}, {41671, 58532}, {44321, 47629}

X(58495) = midpoint of X(i) and X(j) for these {i,j}: {125, 9969}, {141, 11800}, {13358, 18358}, {15118, 32246}, {389, 32274}, {3818, 11806}, {5446, 49116}
X(58495) = reflection of X(i) in X(j) for these {i,j}: {41671, 58532}, {58471, 11746}
X(58495)= pole of line {5095, 47466} with respect to the Jerabek hyperbola
X(58495)= pole of line {10097, 34437} with respect to the Orthic inconic
X(58495) = center of the nine-point conic of quadrilateral XYZX(67) where XYZ is the cevian triangle of X(4)
X(58495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12099, 32246, 15118}, {15118, 32246, 2393}


X(58496) = X(5)X(12235)∩X(51)X(68)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10*(b^2+c^2)+2*a^6*(b^2+c^2)*(b^4+c^4)+(b^2-c^2)^4*(b^4-4*b^2*c^2+c^4)-a^8*(3*b^4+4*b^2*c^2+3*c^4)-a^2*(b^2-c^2)^2*(3*b^6-7*b^4*c^2-7*b^2*c^4+3*c^6)+2*a^4*(b^8-2*b^6*c^2-2*b^4*c^4-2*b^2*c^6+c^8)) : :
X(58496) = X[5]+X[12235], 3*X[51]+X[68], -X[1147]+3*X[5943], -9*X[5640]+X[6193], 3*X[5654]+X[21651], -3*X[6688]+2*X[43839], X[7689]+X[13598], 3*X[9730]+X[12293], 7*X[9781]+X[11411], -2*X[11695]+X[12038], X[11800]+X[46085], -3*X[12099]+X[15115] and many others

X(58496) lies on these lines: {5, 12235}, {30, 58492}, {51, 68}, {52, 7507}, {143, 546}, {155, 9777}, {156, 41593}, {182, 32048}, {389, 7706}, {511, 5449}, {539, 23410}, {542, 32166}, {912, 58493}, {1147, 5943}, {1594, 15123}, {1595, 5446}, {2393, 13383}, {3564, 10095}, {3628, 14984}, {5020, 15316}, {5462, 9825}, {5640, 6193}, {5651, 44752}, {5654, 21651}, {6000, 44279}, {6688, 43839}, {7505, 27365}, {7529, 19458}, {7689, 13598}, {8548, 13861}, {8679, 58580}, {8681, 22330}, {9729, 17702}, {9730, 12293}, {9781, 11411}, {9820, 9822}, {9908, 17810}, {11403, 12163}, {11695, 12038}, {11793, 45780}, {11800, 46085}, {12099, 15115}, {12134, 44084}, {12310, 13353}, {13160, 45237}, {13292, 58550}, {13348, 20191}, {18369, 41615}, {21243, 33563}, {41587, 47328}

X(58496) = midpoint of X(i) and X(j) for these {i,j}: {11800, 46085}, {389, 9927}, {5, 12235}, {5446, 12359}, {7689, 13598}, {8548, 43130}
X(58496) = reflection of X(i) in X(j) for these {i,j}: {12038, 11695}, {13348, 20191}, {58545, 10095}
X(58496) = center of the nine-point conic of quadrilateral XYZX(68) where XYZ is the cevian triangle of X(4)
X(58496) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3564, 10095, 58545}


X(58497) = X(10)X(375)∩X(51)X(72)

Barycentrics    a^2*((a-b)*b^2*(a+b)^2+(a^3+2*a*b^2+3*b^3)*c^2+(a^2+3*b^2)*c^3-a*c^4-c^5) : :
X(58497) = -3*X[2]+X[11573], -X[10]+3*X[375], 3*X[51]+X[72], X[143]+X[31835], X[185]+3*X[5927], -9*X[373]+5*X[5439], 3*X[392]+X[16980], -X[942]+3*X[5943], 3*X[3060]+5*X[3876], 3*X[3753]+X[42448], -X[3868]+9*X[5640], -2*X[4015]+3*X[58646] and many others

X(58497) lies on these lines: {2, 11573}, {3, 2183}, {5, 34831}, {6, 27802}, {9, 5752}, {10, 375}, {37, 50594}, {44, 10974}, {51, 72}, {73, 4245}, {143, 31835}, {185, 5927}, {226, 56885}, {373, 5439}, {389, 916}, {392, 16980}, {474, 26892}, {511, 5044}, {516, 58690}, {517, 5795}, {518, 58469}, {674, 3678}, {758, 58474}, {908, 18180}, {912, 5462}, {936, 37482}, {942, 5943}, {970, 31445}, {971, 9729}, {975, 37516}, {1125, 8679}, {1437, 54444}, {1745, 16415}, {1818, 48907}, {2292, 20962}, {2390, 3754}, {2392, 3634}, {2551, 31778}, {2771, 58498}, {2801, 58617}, {2808, 15012}, {2810, 5045}, {2836, 58495}, {2841, 10107}, {2842, 33815}, {2915, 26890}, {3060, 3876}, {3074, 36011}, {3157, 5020}, {3271, 5266}, {3452, 37536}, {3753, 42448}, {3784, 16408}, {3827, 58494}, {3868, 5640}, {3881, 9026}, {3931, 23638}, {4015, 58646}, {4303, 16414}, {5446, 31837}, {5482, 6700}, {5550, 23155}, {5745, 34466}, {5892, 13369}, {5907, 10157}, {6001, 58487}, {6642, 47371}, {7193, 37509}, {7535, 19366}, {9021, 58532}, {9730, 40263}, {9822, 34381}, {9940, 11695}, {10175, 31825}, {11365, 45729}, {12109, 58470}, {12241, 31832}, {12528, 15043}, {12664, 23840}, {13598, 31793}, {14557, 41340}, {15026, 24475}, {15064, 31732}, {16286, 22097}, {17362, 50602}, {17704, 31805}, {17810, 37547}, {18743, 50633}, {19862, 23156}, {20117, 31760}, {20122, 37694}, {23619, 24511}, {24320, 36754}, {36949, 52259}, {37034, 55400}, {41609, 47328}, {49457, 50603}, {58489, 58575}

X(58497) = midpoint of X(i) and X(j) for these {i,j}: {10, 42450}, {143, 31835}, {12241, 31832}, {13598, 31793}, {20117, 31760}, {375, 15049}, {389, 5777}, {3678, 31757}, {5446, 31837}, {942, 29958}, {9729, 44865}
X(58497) = reflection of X(i) in X(j) for these {i,j}: {31805, 17704}, {58493, 58474}, {9940, 11695}
X(58497) = complement of X(11573)
X(58497) = X(i)-complementary conjugate of X(j) for these {i, j}: {3453, 37565}, {40394, 18589}
X(58497)= pole of line {834, 4129} with respect to the Spieker circle
X(58497)= pole of line {17922, 37770} with respect to the Steiner inellipse
X(58497) = center of the nine-point conic of quadrilateral XYZX(72) where XYZ is the cevian triangle of X(4)
X(58497) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 15049, 42450}, {373, 23154, 5439}, {389, 5777, 916}, {758, 58474, 58493}, {3678, 31757, 674}, {5943, 29958, 942}, {9729, 44865, 971}


X(58498) = X(2)X(12273)∩X(51)X(74)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-5*a^4*(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)-3*a^6*(3*b^6*c^2-4*b^4*c^4+3*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-9*b^6*c^2-8*b^4*c^4-9*b^2*c^6+4*c^8)) : :
X(58498) = -9*X[2]+X[12273], X[3]+X[11800], X[4]+X[17855], X[5]+X[11806], 3*X[51]+X[74], X[52]+3*X[15061], -X[113]+3*X[5943], X[125]+X[389], X[140]+X[13358], -X[146]+9*X[5640], X[185]+3*X[14644], X[265]+3*X[9730] and many others

X(58498) lies on these lines: {2, 12273}, {3, 11800}, {4, 17855}, {5, 11806}, {51, 74}, {52, 15061}, {54, 17701}, {113, 5943}, {125, 389}, {140, 13358}, {146, 5640}, {182, 2931}, {185, 14644}, {186, 10821}, {265, 9730}, {511, 6699}, {541, 58470}, {542, 9822}, {575, 12228}, {674, 58654}, {690, 58502}, {974, 1514}, {1112, 20417}, {1154, 40685}, {1173, 43391}, {1199, 32226}, {1216, 34128}, {1352, 18932}, {1503, 58495}, {1511, 5892}, {1843, 5622}, {2771, 58497}, {2772, 58505}, {2773, 58506}, {2774, 58507}, {2775, 58509}, {2776, 58510}, {2777, 10110}, {2778, 58493}, {2779, 58513}, {2780, 58514}, {2781, 58471}, {2929, 19361}, {3043, 13366}, {3090, 12284}, {3448, 15043}, {3567, 13417}, {3850, 5462}, {5020, 17838}, {5446, 12041}, {5562, 15059}, {5621, 19348}, {5890, 15081}, {5907, 23515}, {5946, 10264}, {5972, 11695}, {6053, 41670}, {6688, 12900}, {6723, 11793}, {7393, 15085}, {8674, 58508}, {8679, 58582}, {9140, 16226}, {9306, 19456}, {9729, 17702}, {9781, 12244}, {9919, 17810}, {10113, 40647}, {10114, 11245}, {10272, 13363}, {10282, 13198}, {10601, 12168}, {10625, 38728}, {11432, 17847}, {11438, 19457}, {11562, 37481}, {11597, 15037}, {11801, 13630}, {11802, 11804}, {12006, 32423}, {12052, 32417}, {12219, 14831}, {12295, 46850}, {12310, 37514}, {12358, 45311}, {12383, 15045}, {13416, 15606}, {13474, 17854}, {13598, 16111}, {13754, 20304}, {14528, 38638}, {14708, 15012}, {14912, 32260}, {14915, 58481}, {14984, 48378}, {15055, 45186}, {15089, 43809}, {15463, 37505}, {15465, 58482}, {15644, 38727}, {16003, 16222}, {16163, 16836}, {16625, 20397}, {17704, 38726}, {17812, 18535}, {17853, 46431}, {19481, 44665}, {32248, 33748}, {33565, 38006}, {36201, 58494}

X(58498) = midpoint of X(i) and X(j) for these {i,j}: {125, 389}, {140, 13358}, {1112, 20417}, {10113, 40647}, {10264, 11557}, {11746, 16270}, {11801, 13630}, {11802, 11804}, {12295, 46850}, {13474, 17854}, {13598, 16111}, {14708, 36253}, {16836, 45237}, {3, 11800}, {4, 17855}, {5, 11806}, {5446, 12041}, {6699, 12236}, {74, 11807}, {974, 7687}
X(58498) = reflection of X(i) in X(j) for these {i,j}: {10110, 11746}, {11793, 6723}, {14708, 15012}, {15606, 13416}, {38726, 17704}, {41671, 5462}, {5972, 11695}, {58536, 58516}
X(58498)= pole of line {2914, 12112} with respect to the Jerabek hyperbola
X(58498)= pole of line {2081, 2433} with respect to the Orthic inconic
X(58498) = center of the nine-point conic of quadrilateral XYZX(74) where XYZ is the cevian triangle of X(4)
X(58498) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 74, 11807}, {125, 389, 10628}, {125, 46430, 389}, {541, 58516, 58536}, {974, 12099, 7687}, {974, 7687, 6000}, {2777, 11746, 10110}, {3448, 15043, 16223}, {5462, 5663, 41671}, {5890, 15081, 21650}, {5946, 10264, 11557}, {6699, 12236, 511}, {11746, 16270, 2777}, {37481, 38724, 11562}, {58470, 58536, 58516}


X(58499) = X(37)X(5943)∩X(51)X(75)

Barycentrics    a^2*(-(a*(b-c)^2*(b+c)^3)+a^2*b*c*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-b*c*(b^4-4*b^2*c^2+c^4)) : :
X(58499) = -X[37]+3*X[5943], 3*X[51]+X[75], -X[192]+9*X[5640], -9*X[373]+5*X[4687], 3*X[3060]+5*X[4699], -3*X[3819]+5*X[31238], -3*X[3917]+7*X[4751], X[4688]+X[21849], -2*X[4698]+3*X[6688], 7*X[4772]+9*X[11002], X[9969]+X[49481], -15*X[11451]+7*X[27268] and many others

X(58499) lies on these lines: {37, 5943}, {51, 75}, {192, 5640}, {239, 40954}, {373, 4687}, {511, 3739}, {518, 9822}, {536, 58470}, {674, 58655}, {726, 58474}, {740, 58469}, {742, 58471}, {2805, 58539}, {2810, 13476}, {3060, 4699}, {3819, 31238}, {3917, 4751}, {4688, 21849}, {4698, 6688}, {4772, 11002}, {5462, 29010}, {8679, 58583}, {8680, 58491}, {9052, 22271}, {9055, 58532}, {9969, 49481}, {11451, 27268}, {13598, 30271}, {15026, 51046}, {28581, 58535}, {29054, 58487}, {46850, 52852}, {58473, 58553}

X(58499) = midpoint of X(i) and X(j) for these {i,j}: {13598, 30271}, {4688, 21849}, {46850, 52852}, {9969, 49481}
X(58499) = reflection of X(i) in X(j) for these {i,j}: {58554, 58485}
X(58499) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(4)
X(58499) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {536, 58485, 58554}, {23841, 58472, 9822}, {58470, 58554, 58485}


X(58500) = X(5)X(141)∩X(51)X(76)

Barycentrics    a^6*(b^2+c^2)^2-a^2*b^2*c^2*(b^4-4*b^2*c^2+c^4)-a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58500) = 3*X[51]+X[76], X[52]+3*X[7697], -X[194]+9*X[5640], -9*X[373]+5*X[7786], X[389]+X[6248], 3*X[3060]+5*X[31276], -X[3313]+5*X[40332], -3*X[3819]+5*X[31239], X[5052]+X[14913], X[5188]+X[13598], -2*X[6683]+3*X[6688], -3*X[7709]+11*X[15024] and many others

X(58500) lies on these lines: {5, 141}, {39, 3981}, {51, 76}, {52, 7697}, {194, 5640}, {263, 32828}, {373, 7786}, {384, 35060}, {389, 6248}, {538, 58470}, {674, 58656}, {698, 58532}, {726, 58474}, {730, 58469}, {732, 58471}, {1506, 51427}, {2782, 5462}, {3060, 31276}, {3313, 40332}, {3491, 5475}, {3819, 31239}, {5052, 14913}, {5167, 16044}, {5188, 13598}, {6683, 6688}, {7709, 15024}, {7834, 34236}, {8370, 40951}, {8679, 58584}, {8681, 44500}, {9466, 21849}, {9781, 12251}, {9917, 17810}, {10095, 32515}, {11695, 13334}, {12143, 44084}, {13330, 29959}, {13363, 32516}, {14839, 23841}, {15026, 32448}, {15028, 32522}, {15644, 15819}, {18027, 34854}, {19573, 47846}, {22655, 37476}, {22712, 45186}, {33873, 46226}, {37481, 48663}, {46179, 58491}, {46180, 58558}, {46850, 52854}

X(58500) = midpoint of X(i) and X(j) for these {i,j}: {389, 6248}, {3934, 27375}, {46850, 52854}, {5052, 14913}, {5188, 13598}, {5446, 49111}, {9466, 21849}, {9969, 24256}
X(58500) = reflection of X(i) in X(j) for these {i,j}: {13334, 11695}, {58556, 58486}
X(58500)= pole of line {5012, 7793} with respect to the Stammler hyperbola
X(58500) = center of the nine-point conic of quadrilateral XYZX(76) where XYZ is the cevian triangle of X(4)
X(58500) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {538, 58486, 58556}, {3934, 27375, 511}, {58470, 58556, 58486}


X(58501) = X(51)X(80)∩X(214)X(5943)

Barycentrics    a^2*(a^3*b*c*(b+c)^3+a^6*(b^2+c^2)-a*b*(b-c)^2*c*(b+c)*(b^2+4*b*c+c^2)-a^4*(b^2-b*c+c^2)*(3*b^2+2*b*c+3*c^2)-(b^2-c^2)^2*(b^4-4*b^2*c^2+c^4)+a^2*(3*b^6-b^5*c-3*b^4*c^2-3*b^2*c^4-b*c^5+3*c^6)) : :
X(58501) = 3*X[51]+X[80], -X[214]+3*X[5943], X[389]+X[6246], -X[1216]+3*X[38182], X[5446]+X[12619], -9*X[5640]+X[6224], -X[5907]+3*X[38161], -3*X[6688]+2*X[58453], X[6797]+X[42450], 7*X[9781]+X[12247], -X[11574]+3*X[38197], X[13598]+X[46684] and many others

X(58501) lies on these lines: {51, 80}, {214, 5943}, {389, 6246}, {511, 6702}, {515, 58508}, {528, 58473}, {674, 58659}, {952, 10095}, {1216, 38182}, {2771, 58493}, {2800, 10110}, {2801, 58472}, {2802, 23841}, {5446, 12619}, {5640, 6224}, {5840, 58487}, {5907, 38161}, {6688, 58453}, {6797, 42450}, {8679, 58587}, {9781, 12247}, {9912, 17810}, {11574, 38197}, {12137, 44084}, {13598, 46684}, {15644, 38133}, {16173, 16980}, {58474, 58479}

X(58501) = midpoint of X(i) and X(j) for these {i,j}: {13598, 46684}, {23841, 58539}, {389, 6246}, {5446, 12619}, {6797, 42450}
X(58501) = reflection of X(i) in X(j) for these {i,j}: {58469, 58475}, {58504, 58474}
X(58501) = center of the nine-point conic of quadrilateral XYZX(80) where XYZ is the cevian triangle of X(4)
X(58501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 58475, 58469}, {23841, 58539, 2802}


X(58502) = X(51)X(98)∩X(115)X(129)

Barycentrics    a^2*(a^10*(b^2+c^2)-2*a^8*(2*b^4+b^2*c^2+2*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(4*b^4-7*b^2*c^2+4*c^4)+7*a^6*(b^6+c^6)+a^4*(-7*b^8+7*b^6*c^2-6*b^4*c^4+7*b^2*c^6-7*c^8)-(b^2-c^2)^2*(b^8-3*b^6*c^2+6*b^4*c^4-3*b^2*c^6+c^8)) : :
X(58502) = -9*X[2]+X[39807], 3*X[51]+X[98], X[52]+3*X[38224], -X[114]+3*X[5943], -X[147]+9*X[5640], X[148]+7*X[15043], X[185]+3*X[14639], -X[620]+2*X[11695], X[671]+3*X[16226], -X[1216]+3*X[34127], 7*X[3090]+X[39808], 5*X[3567]+3*X[14651] and many others

X(58502) lies on these lines: {2, 39807}, {6, 57011}, {51, 98}, {52, 38224}, {114, 5943}, {115, 129}, {147, 5640}, {148, 15043}, {182, 3981}, {185, 14639}, {230, 511}, {542, 11746}, {575, 39805}, {620, 11695}, {671, 16226}, {674, 58661}, {690, 58498}, {1216, 34127}, {1352, 39804}, {2782, 5462}, {2783, 58504}, {2784, 58474}, {2785, 58506}, {2786, 58507}, {2787, 58508}, {2788, 58509}, {2789, 58510}, {2790, 58483}, {2791, 58512}, {2792, 58513}, {2793, 58514}, {2794, 10110}, {3090, 39808}, {3124, 52128}, {3567, 14651}, {5020, 39820}, {5446, 12042}, {5562, 14061}, {5892, 33813}, {5907, 23514}, {6034, 19161}, {6055, 21849}, {6102, 38229}, {6321, 9730}, {6688, 6721}, {6722, 11793}, {8679, 58589}, {9166, 14831}, {9306, 39810}, {9729, 23698}, {9781, 9862}, {9861, 17810}, {10282, 39834}, {10601, 39803}, {10625, 38739}, {10628, 15359}, {11432, 39849}, {11557, 15535}, {11623, 39835}, {11800, 53725}, {11807, 53709}, {12131, 44084}, {12236, 33511}, {13172, 15045}, {13175, 37514}, {13366, 58058}, {13598, 38749}, {15012, 38734}, {15026, 51872}, {15644, 38737}, {16278, 46430}, {16625, 20398}, {16836, 38738}, {17704, 38736}, {17974, 39024}, {22515, 40647}, {34473, 45186}, {37481, 38732}, {39809, 46850}, {47153, 58481}

X(58502) = midpoint of X(i) and X(j) for these {i,j}: {115, 389}, {11557, 15535}, {11623, 39835}, {11800, 53725}, {11807, 53709}, {12236, 33511}, {13598, 38749}, {22515, 40647}, {39809, 46850}, {5446, 12042}, {6036, 39806}, {6055, 21849}, {9729, 58538}
X(58502) = reflection of X(i) in X(j) for these {i,j}: {10110, 58518}, {11793, 6722}, {38736, 17704}, {620, 11695}, {58503, 5462}, {58537, 58517}
X(58502)= pole of line {114, 32428} with respect to the Kiepert hyperbola
X(58502) = center of the nine-point conic of quadrilateral XYZX(98) where XYZ is the cevian triangle of X(4)
X(58502) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {542, 58517, 58537}, {2782, 5462, 58503}, {2794, 58518, 10110}, {3567, 14651, 39846}, {6036, 39806, 511}, {9729, 58538, 23698}, {58470, 58537, 58517}


X(58503) = X(51)X(99)∩X(114)X(389)

Barycentrics    a^2*(-b^8+3*b^6*c^2-2*b^4*c^4+3*b^2*c^6-c^8+a^6*(b^2+c^2)-2*a^4*(b^4-b^2*c^2+c^4)+a^2*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6)) : :
X(58503) = -9*X[2]+X[39836], 3*X[51]+X[99], X[52]+3*X[15561], X[114]+X[389], -X[115]+3*X[5943], X[147]+7*X[15043], -X[148]+9*X[5640], -9*X[373]+5*X[14061], X[1843]+3*X[5182], X[2482]+X[21849], 7*X[3090]+X[39837], -5*X[3567]+X[39817] and many others

X(58503) lies on these lines: {2, 39836}, {51, 99}, {52, 15561}, {114, 389}, {115, 5943}, {147, 15043}, {148, 5640}, {182, 39857}, {373, 14061}, {511, 620}, {538, 58552}, {542, 9822}, {543, 58470}, {575, 39834}, {674, 58662}, {690, 41671}, {1352, 39833}, {1843, 5182}, {2482, 21849}, {2782, 5462}, {2783, 58508}, {2784, 58507}, {2785, 58513}, {2786, 58505}, {2787, 58504}, {2792, 58506}, {2794, 9729}, {2795, 58479}, {2796, 58510}, {2797, 58511}, {2798, 58512}, {2799, 58515}, {3044, 13366}, {3090, 39837}, {3567, 39817}, {3819, 31274}, {5020, 39849}, {5026, 9969}, {5186, 44084}, {5446, 33813}, {5477, 14913}, {5892, 12042}, {5907, 36519}, {5946, 51872}, {5969, 58471}, {6033, 9730}, {6036, 11695}, {6054, 16226}, {6642, 57011}, {6688, 6722}, {6721, 11793}, {8679, 58590}, {8681, 41672}, {9306, 39839}, {9781, 13172}, {9861, 37514}, {9862, 15045}, {10110, 23698}, {10282, 39805}, {10601, 39832}, {10625, 38750}, {11005, 16223}, {11432, 39820}, {11800, 53735}, {11807, 53710}, {12236, 33512}, {13175, 17810}, {13598, 38738}, {14645, 58555}, {14651, 15024}, {14831, 23234}, {15012, 38745}, {15644, 38748}, {16625, 20399}, {16836, 38749}, {17704, 38747}, {21166, 45186}, {21969, 41134}, {22505, 40647}, {28438, 46124}, {31757, 51578}, {36213, 47421}, {37481, 38743}, {39838, 46850}

X(58503) = midpoint of X(i) and X(j) for these {i,j}: {114, 389}, {11800, 53735}, {11807, 53710}, {12236, 33512}, {13598, 38738}, {2482, 21849}, {22505, 40647}, {31757, 51578}, {39838, 46850}, {5026, 9969}, {5446, 33813}, {5477, 14913}, {620, 39835}, {9729, 58537}
X(58503) = reflection of X(i) in X(j) for these {i,j}: {10110, 58517}, {11793, 6721}, {38747, 17704}, {6036, 11695}, {58502, 5462}, {58538, 58518}
X(58503) = center of the nine-point conic of quadrilateral XYZX(99) where XYZ is the cevian triangle of X(4)
X(58503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {543, 58518, 58538}, {620, 39835, 511}, {9729, 58537, 2794}, {23698, 58517, 10110}, {58470, 58538, 58518}


X(58504) = X(51)X(100)∩X(119)X(389)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+a^3*(-2*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3-2*c^4)+2*a^2*(b^5-2*b^3*c^2-2*b^2*c^3+c^5)+a*(b^6-3*b^5*c-b^4*c^2+8*b^3*c^3-b^2*c^4-3*b*c^5+c^6)) : :
X(58504) = -X[11]+3*X[5943], 3*X[51]+X[100], X[52]+3*X[38752], X[119]+X[389], -X[149]+9*X[5640], X[153]+7*X[15043], -9*X[373]+5*X[31272], -X[1484]+5*X[15026], -3*X[3819]+5*X[31235], X[5446]+X[33814], -3*X[5892]+X[38602], 3*X[5946]+X[11698] and many others

X(58504) lies on these lines: {11, 5943}, {51, 100}, {52, 38752}, {119, 389}, {149, 5640}, {153, 15043}, {182, 54065}, {373, 31272}, {511, 3035}, {528, 58470}, {674, 58663}, {900, 58553}, {952, 5462}, {970, 51506}, {1484, 15026}, {1862, 44084}, {2771, 58497}, {2783, 58502}, {2787, 58503}, {2800, 58487}, {2801, 58491}, {2802, 58469}, {2803, 58511}, {2804, 58512}, {2805, 58485}, {2806, 58515}, {2810, 5083}, {2829, 9729}, {3045, 13366}, {3738, 58513}, {3819, 31235}, {3887, 58505}, {5446, 33814}, {5840, 10110}, {5848, 9822}, {5851, 58534}, {5854, 58535}, {5856, 58472}, {5892, 38602}, {5946, 11698}, {6174, 21849}, {6667, 6688}, {6713, 11695}, {8674, 41671}, {8679, 58591}, {9024, 58471}, {9052, 14740}, {9730, 10742}, {9781, 13199}, {9913, 37514}, {9969, 51157}, {10625, 38762}, {10711, 16226}, {11570, 29958}, {11793, 58421}, {11800, 53743}, {11807, 53711}, {12248, 15045}, {13222, 17810}, {13598, 24466}, {14913, 51198}, {15012, 38757}, {15644, 38760}, {16625, 20400}, {16836, 38761}, {17704, 38759}, {22799, 40647}, {34474, 45186}, {37481, 38755}, {46850, 52836}, {58474, 58479}

X(58504) = midpoint of X(i) and X(j) for these {i,j}: {119, 389}, {11570, 29958}, {11800, 53743}, {11807, 53711}, {13598, 24466}, {14913, 51198}, {22799, 40647}, {46850, 52836}, {5446, 33814}, {6174, 21849}, {9729, 58543}, {9969, 51157}
X(58504) = reflection of X(i) in X(j) for these {i,j}: {10110, 58522}, {11793, 58421}, {38759, 17704}, {6713, 11695}, {58501, 58474}, {58508, 5462}, {58539, 58475}
X(58504) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(4)
X(58504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {528, 58475, 58539}, {5840, 58522, 10110}, {9729, 58543, 2829}, {58470, 58539, 58475}


X(58505) = X(51)X(101)∩X(118)X(389)

Barycentrics    a^2*(a*(b-c)^4*(b+c)^3+a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)+2*a^3*b*c*(b+c)*(b^2-3*b*c+c^2)-a^4*(b+c)^2*(b^2-3*b*c+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^2*(b^6-2*b^5*c+b^4*c^2+2*b^3*c^3+b^2*c^4-2*b*c^5+c^6)) : :
X(58505) = 3*X[51]+X[101], X[52]+3*X[38764], -X[116]+3*X[5943], X[118]+X[389], -X[150]+9*X[5640], X[152]+7*X[15043], -9*X[373]+5*X[31273], X[5446]+X[38599], -3*X[5892]+X[38601], -3*X[6688]+2*X[58418], -X[6712]+2*X[11695], X[9729]+X[58542] and many others

X(58505) lies on these lines: {51, 101}, {52, 38764}, {116, 5943}, {118, 389}, {150, 5640}, {152, 15043}, {373, 31273}, {511, 6710}, {544, 58470}, {674, 58664}, {928, 58513}, {2772, 58498}, {2774, 41671}, {2784, 58474}, {2786, 58503}, {2801, 58473}, {2807, 58506}, {2808, 5462}, {2809, 58469}, {2810, 58471}, {2811, 58511}, {2812, 58512}, {2813, 58514}, {3046, 13366}, {3887, 58504}, {5185, 44084}, {5446, 38599}, {5892, 38601}, {6688, 58418}, {6712, 11695}, {8679, 58592}, {9518, 58515}, {9729, 58542}, {9730, 10741}, {10110, 58521}, {10625, 38774}, {10710, 16226}, {11793, 58420}, {11800, 53747}, {11807, 53712}, {15012, 38769}, {15644, 38772}, {16625, 20401}, {16836, 38773}, {17704, 38771}, {28346, 31757}, {37481, 38767}, {38690, 45186}

X(58505) = midpoint of X(i) and X(j) for these {i,j}: {118, 389}, {11800, 53747}, {11807, 53712}, {28346, 31757}, {5446, 38599}, {9729, 58542}
X(58505) = reflection of X(i) in X(j) for these {i,j}: {10110, 58521}, {11793, 58420}, {38771, 17704}, {6712, 11695}, {58507, 5462}, {58540, 58519}
X(58505) = center of the nine-point conic of quadrilateral XYZX(101) where XYZ is the cevian triangle of X(4)
X(58505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {544, 58519, 58540}, {58470, 58540, 58519}


X(58506) = X(51)X(102)∩X(124)X(389)

Barycentrics    a^2*(a*(b-c)^8*(b+c)^5+a^12*(b^2+c^2)-a^11*(b+c)*(b^2+c^2)-(b^2-c^2)^6*(b^2-b*c+c^2)-2*a^7*(b-c)^2*(b+c)*(b^2-b*c+c^2)*(5*b^2+7*b*c+5*c^2)+a^10*(-4*b^4+3*b^3*c-2*b^2*c^2+3*b*c^3-4*c^4)+2*a^5*(b-c)^4*(b+c)*(5*b^4+8*b^3*c+7*b^2*c^2+8*b*c^3+5*c^4)-a^3*(b-c)^6*(b+c)*(5*b^4+14*b^3*c+16*b^2*c^2+14*b*c^3+5*c^4)+2*a^6*b*(b-c)^2*c*(7*b^4+5*b^3*c+b^2*c^2+5*b*c^3+7*c^4)+a^9*(5*b^5+b^4*c+b*c^4+5*c^5)+a^8*(5*b^6-11*b^5*c+5*b^4*c^2-4*b^3*c^3+5*b^2*c^4-11*b*c^5+5*c^6)+a^2*(b^2-c^2)^2*(4*b^8-b^7*c-12*b^6*c^2+7*b^5*c^3-4*b^4*c^4+7*b^3*c^5-12*b^2*c^6-b*c^7+4*c^8)-a^4*(b-c)^2*(5*b^8+16*b^7*c-2*b^6*c^2-22*b^5*c^3-10*b^4*c^4-22*b^3*c^5-2*b^2*c^6+16*b*c^7+5*c^8)) : :
X(58506) = 3*X[51]+X[102], X[52]+3*X[38776], -X[117]+3*X[5943], X[124]+X[389], -X[151]+9*X[5640], X[5446]+X[38600], -3*X[5892]+X[38607], -3*X[6688]+2*X[58419], -X[6718]+2*X[11695], 3*X[9730]+X[10747], -X[10110]+2*X[58526], -X[10625]+5*X[38786] and many others

X(58506) lies on these lines: {51, 102}, {52, 38776}, {117, 5943}, {124, 389}, {151, 5640}, {511, 6711}, {928, 58507}, {2773, 58498}, {2779, 41671}, {2785, 58502}, {2792, 58503}, {2800, 58487}, {2807, 58505}, {2814, 58509}, {2815, 58510}, {2816, 58511}, {2817, 58469}, {2818, 5462}, {2819, 58514}, {3738, 58508}, {5446, 38600}, {5892, 38607}, {6688, 58419}, {6718, 11695}, {8679, 58593}, {9532, 58515}, {9730, 10747}, {10110, 58526}, {10625, 38786}, {10716, 16226}, {11793, 58426}, {11800, 53749}, {11807, 53713}, {13366, 58060}, {15012, 38781}, {15043, 33650}, {15644, 38784}, {16836, 38785}, {17704, 38783}, {37481, 38779}, {38691, 45186}, {58470, 58520}

X(58506) = midpoint of X(i) and X(j) for these {i,j}: {124, 389}, {11800, 53749}, {11807, 53713}, {5446, 38600}
X(58506) = reflection of X(i) in X(j) for these {i,j}: {10110, 58526}, {11793, 58426}, {38783, 17704}, {6718, 11695}, {58513, 5462}, {58541, 58520}
X(58506) = center of the nine-point conic of quadrilateral XYZX(102) where XYZ is the cevian triangle of X(4)
X(58506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2818, 5462, 58513}, {58470, 58541, 58520}


X(58507) = X(51)X(103)∩X(116)X(389)

Barycentrics    a^2*(a*(b-c)^6*(b+c)^5+a^10*(b^2+c^2)-a^9*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^4*(b^2+b*c+c^2)-2*a^5*b*(b-c)^2*c*(b+c)*(3*b^2+4*b*c+3*c^2)+a^8*(-3*b^4+b^3*c+b*c^3-3*c^4)+2*a^7*(b^5+2*b^4*c+2*b*c^4+c^5)-2*a^3*(b-c)^2*(b+c)*(b^6-b^5*c-4*b^4*c^2-4*b^2*c^4-b*c^5+c^6)-2*a^4*(b-c)^2*(2*b^6+b^5*c-2*b^4*c^2-4*b^3*c^3-2*b^2*c^4+b*c^5+2*c^6)+a^6*(4*b^6-4*b^5*c-2*b^4*c^2-2*b^3*c^3-2*b^2*c^4-4*b*c^5+4*c^6)+a^2*(b-c)^2*(3*b^8+2*b^7*c-6*b^6*c^2-8*b^5*c^3-14*b^4*c^4-8*b^3*c^5-6*b^2*c^6+2*b*c^7+3*c^8)) : :
X(58507) = 3*X[51]+X[103], X[52]+3*X[57297], X[116]+X[389], -X[118]+3*X[5943], X[150]+7*X[15043], -X[152]+9*X[5640], X[5446]+X[38601], -X[5562]+5*X[31273], -3*X[5892]+X[38599], -3*X[6688]+2*X[58420], -X[6710]+2*X[11695], X[9729]+X[58540] and many others

X(58507) lies on these lines: {51, 103}, {52, 57297}, {116, 389}, {118, 5943}, {150, 15043}, {152, 5640}, {511, 6712}, {674, 58665}, {928, 58506}, {2772, 41671}, {2774, 58498}, {2784, 58503}, {2786, 58502}, {2801, 58491}, {2807, 58490}, {2808, 5462}, {2809, 58487}, {2820, 58509}, {2821, 58510}, {2822, 58511}, {2823, 58512}, {2824, 58514}, {2825, 58515}, {3887, 58508}, {5446, 38601}, {5562, 31273}, {5892, 38599}, {6688, 58420}, {6710, 11695}, {8679, 58594}, {9729, 58540}, {9730, 10739}, {10110, 58519}, {10708, 16226}, {11793, 58418}, {11800, 53751}, {11807, 53714}, {13366, 58057}, {13598, 38773}, {38692, 45186}, {58470, 58521}

X(58507) = midpoint of X(i) and X(j) for these {i,j}: {116, 389}, {11800, 53751}, {11807, 53714}, {13598, 38773}, {5446, 38601}, {9729, 58540}
X(58507) = reflection of X(i) in X(j) for these {i,j}: {10110, 58519}, {11793, 58418}, {6710, 11695}, {58505, 5462}, {58542, 58521}
X(58507) = center of the nine-point conic of quadrilateral XYZX(103) where XYZ is the cevian triangle of X(4)
X(58507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 5462, 58505}, {58470, 58542, 58521}


X(58508) = X(11)X(389)∩X(51)X(104)

Barycentrics    a^2*(-((b-c)^6*(b+c)^5)+a^9*(b^2+c^2)-a^8*(b+c)*(b^2+c^2)+a^7*(-4*b^4+3*b^3*c-2*b^2*c^2+3*b*c^3-4*c^4)+2*a^2*(b-c)^4*(b+c)*(2*b^4+5*b^3*c+5*b^2*c^2+5*b*c^3+2*c^4)-2*a^4*(b-c)^2*(b+c)*(3*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3+3*c^4)+2*a^6*(2*b^5+b^4*c+b*c^4+2*c^5)+a*(b^2-c^2)^2*(b^6-3*b^5*c-b^4*c^2+4*b^3*c^3-b^2*c^4-3*b*c^5+c^6)-a^3*(b-c)^2*(4*b^6-b^5*c-12*b^4*c^2-6*b^3*c^3-12*b^2*c^4-b*c^5+4*c^6)+a^5*(6*b^6-9*b^5*c-2*b^4*c^2+4*b^3*c^3-2*b^2*c^4-9*b*c^5+6*c^6)) : :
X(58508) = X[11]+X[389], 3*X[51]+X[104], X[52]+3*X[57298], -X[119]+3*X[5943], X[149]+7*X[15043], -X[153]+9*X[5640], -X[1216]+3*X[34126], X[1484]+3*X[5946], -X[3035]+2*X[11695], X[5446]+X[38602], -X[5562]+5*X[31272], -3*X[5892]+X[33814] and many others

X(58508) lies on these lines: {11, 389}, {51, 104}, {52, 57298}, {119, 5943}, {149, 15043}, {153, 5640}, {511, 6713}, {515, 58501}, {674, 58666}, {952, 5462}, {1216, 34126}, {1484, 5946}, {2771, 41671}, {2783, 58503}, {2787, 58502}, {2800, 58469}, {2801, 58473}, {2802, 58487}, {2807, 16174}, {2818, 12736}, {2826, 58509}, {2827, 58510}, {2828, 58511}, {2829, 10110}, {2830, 58514}, {2831, 58515}, {3035, 11695}, {3271, 38607}, {3738, 58506}, {3887, 58507}, {5446, 38602}, {5562, 31272}, {5840, 9729}, {5892, 33814}, {5907, 23513}, {6667, 11793}, {6688, 58421}, {8674, 58498}, {8679, 58595}, {9730, 10738}, {9781, 12248}, {9913, 17810}, {10707, 16226}, {10778, 16223}, {10780, 16225}, {11574, 38119}, {11698, 15026}, {11800, 53753}, {11807, 53715}, {12138, 44084}, {13199, 15045}, {13222, 37514}, {13366, 58056}, {13598, 38761}, {15644, 21154}, {16836, 24466}, {22938, 40647}, {37481, 51517}, {38693, 45186}, {58470, 58522}

X(58508) = midpoint of X(i) and X(j) for these {i,j}: {11, 389}, {11800, 53753}, {11807, 53715}, {13598, 38761}, {22938, 40647}, {5446, 38602}, {9729, 58539}
X(58508) = reflection of X(i) in X(j) for these {i,j}: {10110, 58475}, {11793, 6667}, {3035, 11695}, {58504, 5462}, {58543, 58522}
X(58508) = center of the nine-point conic of quadrilateral XYZX(104) where XYZ is the cevian triangle of X(4)
X(58508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 5462, 58504}, {2829, 58475, 10110}, {9729, 58539, 5840}, {58470, 58543, 58522}


X(58509) = X(51)X(105)∩X(120)X(5943)

Barycentrics    a^2*(a^7*(b^2+c^2)-a^6*(b+c)*(b^2+c^2)-(b-c)^4*(b+c)^3*(b^2+c^2)+a^2*(b-c)^2*(b+c)*(b^4-4*b^3*c-8*b^2*c^2-4*b*c^3+c^4)-a^5*(b^4+3*b^3*c-4*b^2*c^2+3*b*c^3+c^4)+a^4*(b^5+5*b^4*c+5*b*c^4+c^5)-a^3*(b^6-5*b^4*c^2+14*b^3*c^3-5*b^2*c^4+c^6)+a*(b-c)^2*(b^6+5*b^5*c+3*b^4*c^2-4*b^3*c^3+3*b^2*c^4+5*b*c^5+c^6)) : :
X(58509) = 3*X[51]+X[105], X[52]+3*X[57299], -X[120]+3*X[5943], X[389]+X[5511], X[5446]+X[38603], -9*X[5640]+X[20344], -3*X[5892]+X[38619], -3*X[6688]+2*X[58422], 3*X[9730]+X[15521], X[11800]+X[53756], 7*X[15043]+X[34547], 3*X[38694]+X[45186]

X(58509) lies on these lines: {51, 105}, {52, 57299}, {120, 5943}, {389, 5511}, {511, 6714}, {528, 58470}, {2775, 58498}, {2788, 58502}, {2795, 58479}, {2809, 58469}, {2814, 58506}, {2820, 58507}, {2826, 58508}, {2832, 58510}, {2833, 58511}, {2834, 58483}, {2835, 58513}, {2836, 41671}, {2837, 58514}, {2838, 58515}, {5446, 38603}, {5462, 28915}, {5640, 20344}, {5892, 38619}, {6688, 58422}, {8679, 58596}, {9519, 58548}, {9730, 15521}, {11800, 53756}, {13366, 58053}, {15043, 34547}, {38694, 45186}

X(58509) = midpoint of X(i) and X(j) for these {i,j}: {11800, 53756}, {389, 5511}, {5446, 38603}
X(58509) = center of the nine-point conic of quadrilateral XYZX(105) where XYZ is the cevian triangle of X(4)


X(58510) = X(51)X(106)∩X(121)X(5943)

Barycentrics    a^2*(a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)+a*(b-c)^2*(b+c)^3*(b^2-6*b*c+c^2)-(b-c)^2*(b+c)^4*(b^2-3*b*c+c^2)+6*a^3*b*c*(b^3+c^3)+a^4*(-5*b^4+5*b^3*c-4*b^2*c^2+5*b*c^3-5*c^4)+a^2*(5*b^6-6*b^5*c-11*b^4*c^2+18*b^3*c^3-11*b^2*c^4-6*b*c^5+5*c^6)) : :
X(58510) = 3*X[51]+X[106], X[52]+3*X[57300], -X[121]+3*X[5943], X[389]+X[5510], X[5446]+X[38604], -9*X[5640]+X[21290], -3*X[5892]+X[38620], -3*X[6688]+2*X[58423], 3*X[9730]+X[15522], 7*X[15043]+X[34548], 3*X[38695]+X[45186], -3*X[58470]+2*X[58523]

X(58510) lies on these lines: {51, 106}, {52, 57300}, {121, 5943}, {389, 5510}, {511, 6715}, {674, 58667}, {2776, 58498}, {2789, 58502}, {2796, 58503}, {2802, 58469}, {2810, 58471}, {2815, 58506}, {2821, 58507}, {2827, 58508}, {2832, 58509}, {2839, 58511}, {2840, 58512}, {2841, 58513}, {2842, 41671}, {2843, 58514}, {2844, 58515}, {5446, 38604}, {5462, 53790}, {5640, 21290}, {5892, 38620}, {6688, 58423}, {8679, 58597}, {9730, 15522}, {13366, 58052}, {15043, 34548}, {37999, 44084}, {38695, 45186}, {58470, 58523}

X(58510) = midpoint of X(i) and X(j) for these {i,j}: {389, 5510}, {5446, 38604}
X(58510) = center of the nine-point conic of quadrilateral XYZX(106) where XYZ is the cevian triangle of X(4)


X(58511) = X(51)X(107)∩X(133)X(389)

Barycentrics    a^2*(a^14*(b^2+c^2)-2*a^12*(b^4-b^2*c^2+c^4)+a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(2*b^4-9*b^2*c^2+2*c^4)-a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(15*b^4-4*b^2*c^2+15*c^4)+a^10*(-4*b^6+3*b^4*c^2+3*b^2*c^4-4*c^6)-(b^2-c^2)^4*(b^8+b^6*c^2-6*b^4*c^4+b^2*c^6+c^8)+4*a^4*(b^2-c^2)^2*(b^8+5*b^6*c^2-5*b^4*c^4+5*b^2*c^6+c^8)+a^8*(15*b^8-25*b^6*c^2+22*b^4*c^4-25*b^2*c^6+15*c^8)) : :
X(58511) = 3*X[51]+X[107], X[52]+3*X[57301], -X[122]+3*X[5943], X[133]+X[389], X[1112]+X[24930], X[3184]+X[13598], X[5446]+X[38605], -9*X[5640]+X[34186], X[5667]+7*X[9781], -3*X[5892]+X[38621], -3*X[6688]+2*X[58424], 3*X[9730]+X[22337] and many others

X(58511) lies on these lines: {51, 107}, {52, 57301}, {122, 5943}, {133, 389}, {511, 6716}, {674, 58668}, {1112, 24930}, {2777, 10110}, {2790, 58483}, {2797, 58503}, {2803, 58504}, {2811, 58505}, {2816, 58506}, {2822, 58507}, {2828, 58508}, {2833, 58509}, {2839, 58510}, {2845, 58512}, {2846, 58513}, {2847, 58514}, {2848, 58515}, {3184, 13598}, {5446, 38605}, {5462, 53803}, {5640, 34186}, {5667, 9781}, {5892, 38621}, {6688, 58424}, {8679, 58598}, {9033, 41671}, {9528, 58479}, {9530, 58470}, {9730, 22337}, {11695, 34842}, {11793, 58431}, {11800, 53757}, {11807, 53716}, {13366, 58048}, {14673, 17810}, {15043, 34549}, {23239, 45186}, {38956, 46850}

X(58511) = midpoint of X(i) and X(j) for these {i,j}: {133, 389}, {1112, 24930}, {11800, 53757}, {11807, 53716}, {3184, 13598}, {38956, 46850}, {5446, 38605}
X(58511) = reflection of X(i) in X(j) for these {i,j}: {10110, 58530}, {11793, 58431}, {34842, 11695}
X(58511)= pole of line {41204, 51892} with respect to the Jerabek hyperbola
X(58511) = center of the nine-point conic of quadrilateral XYZX(107) where XYZ is the cevian triangle of X(4)
X(58511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2777, 58530, 10110}


X(58512) = X(51)X(108)∩X(123)X(5943)

Barycentrics    a^2*(a^11*(b^2+c^2)-a^10*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^5*(b^2+c^2)+a^9*(-3*b^4+5*b^3*c+5*b*c^3-3*c^4)-2*a^6*(b-c)^2*(b+c)*(b^4-3*b^3*c-3*b^2*c^2-3*b*c^3+c^4)+a^8*(b+c)*(3*b^4-4*b^3*c-4*b*c^3+3*c^4)+a^2*(b-c)^4*(b+c)^3*(3*b^4+4*b^3*c-4*b^2*c^2+4*b*c^3+3*c^4)+2*a^7*(b^6-5*b^5*c+3*b^4*c^2+3*b^3*c^3+3*b^2*c^4-5*b*c^5+c^6)+a*(b-c)^4*(b+c)^2*(b^6-3*b^5*c-5*b^4*c^2-5*b^2*c^4-3*b*c^5+c^6)-2*a^4*(b-c)^2*(b+c)*(b^6+5*b^5*c-2*b^4*c^2-4*b^3*c^3-2*b^2*c^4+5*b*c^5+c^6)-a^3*(b^2-c^2)^2*(3*b^6-10*b^5*c-3*b^4*c^2+14*b^3*c^3-3*b^2*c^4-10*b*c^5+3*c^6)+2*a^5*(b^8-8*b^6*c^2+3*b^5*c^3+8*b^4*c^4+3*b^3*c^5-8*b^2*c^6+c^8)) : :
X(58512) = 3*X[51]+X[108], X[52]+3*X[57302], -X[123]+3*X[5943], X[389]+X[25640], X[5446]+X[38606], -9*X[5640]+X[34188], -3*X[5892]+X[38622], -3*X[6688]+2*X[58425], 3*X[9730]+X[33566], 7*X[15043]+X[34550], 3*X[38696]+X[45186], -3*X[58470]+2*X[58525]

X(58512) lies on these lines: {51, 108}, {52, 57302}, {123, 5943}, {389, 25640}, {511, 6717}, {674, 58669}, {2778, 58493}, {2791, 58502}, {2798, 58503}, {2804, 58504}, {2812, 58505}, {2817, 58469}, {2823, 58507}, {2829, 10110}, {2834, 58483}, {2840, 58510}, {2845, 58511}, {2849, 58513}, {2850, 41671}, {2851, 58514}, {5446, 38606}, {5640, 34188}, {5892, 38622}, {6688, 58425}, {8679, 58599}, {9730, 33566}, {13366, 58050}, {15043, 34550}, {38696, 45186}, {58470, 58525}

X(58512) = midpoint of X(i) and X(j) for these {i,j}: {389, 25640}, {5446, 38606}
X(58512) = center of the nine-point conic of quadrilateral XYZX(108) where XYZ is the cevian triangle of X(4)


X(58513) = X(51)X(109)∩X(117)X(389)

Barycentrics    a^2*(a*(b-c)^6*(b+c)^3+a^8*(b^2+c^2)-a^7*(b+c)*(b^2+c^2)-(b^2-c^2)^4*(b^2-b*c+c^2)+a^4*b*c*(-5*b^4+2*b^3*c+8*b^2*c^2+2*b*c^3-5*c^4)+a^6*(-2*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3-2*c^4)+a^5*(b+c)*(3*b^4-4*b^3*c-4*b*c^3+3*c^4)-a^3*(b-c)^2*(b+c)*(3*b^4-2*b^3*c-4*b^2*c^2-2*b*c^3+3*c^4)+a^2*(b-c)^2*(2*b^6+5*b^5*c-8*b^3*c^3+5*b*c^5+2*c^6)) : :
X(58513) = 3*X[51]+X[109], X[52]+3*X[57303], X[117]+X[389], -X[124]+3*X[5943], X[151]+7*X[15043], X[5446]+X[38607], -9*X[5640]+X[33650], -3*X[5892]+X[38600], -3*X[6688]+2*X[58426], -X[6711]+2*X[11695], X[9729]+X[58541], 3*X[9730]+X[10740] and many others

X(58513) lies on these lines: {51, 109}, {52, 57303}, {117, 389}, {124, 5943}, {151, 15043}, {511, 6718}, {674, 58670}, {928, 58505}, {2773, 41671}, {2779, 58498}, {2785, 58503}, {2792, 58502}, {2800, 58469}, {2807, 58490}, {2817, 58487}, {2818, 5462}, {2835, 58509}, {2841, 58510}, {2846, 58511}, {2849, 58512}, {2852, 58514}, {2853, 58515}, {3738, 58504}, {5446, 38607}, {5640, 33650}, {5892, 38600}, {6688, 58426}, {6711, 11695}, {8679, 58600}, {9729, 58541}, {9730, 10740}, {10110, 58520}, {10709, 16226}, {11793, 58419}, {11800, 53758}, {11807, 53717}, {13366, 58051}, {13598, 38785}, {38697, 45186}, {58470, 58526}

X(58513) = midpoint of X(i) and X(j) for these {i,j}: {117, 389}, {11800, 53758}, {11807, 53717}, {13598, 38785}, {5446, 38607}, {9729, 58541}
X(58513) = reflection of X(i) in X(j) for these {i,j}: {10110, 58520}, {11793, 58419}, {6711, 11695}, {58506, 5462}
X(58513) = center of the nine-point conic of quadrilateral XYZX(109) where XYZ is the cevian triangle of X(4)


X(58514) = X(51)X(111)∩X(126)X(5943)

Barycentrics    a^2*(a^8*(b^2+c^2)+7*a^4*b^2*c^2*(b^2+c^2)-(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-2*a^6*(2*b^4+b^2*c^2+2*c^4)+a^2*(4*b^8-27*b^6*c^2+40*b^4*c^4-27*b^2*c^6+4*c^8)) : :
X(58514) = 3*X[51]+X[111], X[52]+3*X[38796], -X[126]+3*X[5943], X[389]+X[5512], X[1843]+3*X[36696], X[5446]+X[14650], -9*X[5640]+X[14360], -3*X[5892]+X[38623], -3*X[6688]+2*X[58427], X[9129]+X[11800], X[9172]+X[21849], 3*X[9730]+X[22338] and many others

X(58514) lies on these lines: {51, 111}, {52, 38796}, {126, 5943}, {389, 5512}, {511, 6719}, {543, 58470}, {674, 58672}, {1843, 36696}, {2780, 58498}, {2793, 58502}, {2805, 58485}, {2813, 58505}, {2819, 58506}, {2824, 58507}, {2830, 58508}, {2837, 58509}, {2843, 58510}, {2847, 58511}, {2851, 58512}, {2852, 58513}, {2854, 41671}, {3048, 13366}, {5446, 14650}, {5462, 33962}, {5640, 14360}, {5892, 38623}, {6688, 58427}, {8679, 58602}, {9129, 11800}, {9172, 21849}, {9730, 22338}, {9781, 14654}, {9969, 28662}, {10110, 23699}, {10625, 38806}, {11695, 40556}, {11807, 53718}, {15012, 38801}, {15644, 38804}, {16836, 38805}, {17704, 38803}, {37481, 38799}, {38698, 45186}, {58481, 58552}, {58483, 58515}

X(58514) = midpoint of X(i) and X(j) for these {i,j}: {11807, 53718}, {389, 5512}, {5446, 14650}, {9129, 11800}, {9172, 21849}, {9969, 28662}
X(58514) = reflection of X(i) in X(j) for these {i,j}: {38803, 17704}, {40556, 11695}
X(58514) = center of the nine-point conic of quadrilateral XYZX(111) where XYZ is the cevian triangle of X(4)


X(58515) = X(51)X(112)∩X(132)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)-2*a^10*(b^4-b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(b^6+c^6)+a^8*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^6*(-3*b^6*c^2+8*b^4*c^4-3*b^2*c^6)+a^2*(b^2-c^2)^2*(2*b^8+b^6*c^2+b^2*c^6+2*c^8)) : :
X(58515) = X[4]+3*X[16225], 3*X[51]+X[112], X[52]+3*X[57304], -X[127]+3*X[5943], X[132]+X[389], X[5446]+X[38608], -9*X[5640]+X[13219], -3*X[5892]+X[38624], -3*X[6688]+2*X[58428], 3*X[9730]+X[12918], 7*X[9781]+X[13200], X[9969]+X[28343] and many others

X(58515) lies on these lines: {4, 16225}, {51, 112}, {52, 57304}, {127, 5943}, {132, 389}, {511, 6720}, {674, 58673}, {2781, 58471}, {2794, 10110}, {2799, 58503}, {2806, 58504}, {2825, 58507}, {2831, 58508}, {2838, 58509}, {2844, 58510}, {2848, 58511}, {2853, 58513}, {5446, 38608}, {5462, 53795}, {5640, 13219}, {5892, 38624}, {6688, 58428}, {8679, 58603}, {9517, 41671}, {9518, 58505}, {9532, 58506}, {9730, 12918}, {9781, 13200}, {9969, 28343}, {11437, 20299}, {11641, 17810}, {11695, 34841}, {11793, 58430}, {11800, 53760}, {11807, 53719}, {12253, 15045}, {12384, 15043}, {12413, 37514}, {13166, 44084}, {13366, 58049}, {13598, 14689}, {19160, 40647}, {38699, 45186}, {40645, 58489}, {58470, 58528}, {58483, 58514}, {58551, 58552}

X(58515) = midpoint of X(i) and X(j) for these {i,j}: {132, 389}, {11800, 53760}, {11807, 53719}, {13598, 14689}, {19160, 40647}, {5446, 38608}, {9969, 28343}
X(58515) = reflection of X(i) in X(j) for these {i,j}: {10110, 58529}, {11793, 58430}, {34841, 11695}
X(58515) = center of the nine-point conic of quadrilateral XYZX(112) where XYZ is the cevian triangle of X(4)
X(58515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2794, 58529, 10110}


X(58516) = X(5)X(1112)∩X(51)X(113)

Barycentrics    a^2*(2*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-4*a^10*(b^4+b^2*c^2+c^4)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-3*b^6*c^2+3*b^4*c^4-3*b^2*c^6+2*c^8)-a^4*(5*b^10-7*b^8*c^2+4*b^6*c^4+4*b^4*c^6-7*b^2*c^8+5*c^10)) : :
X(58516) = X[4]+X[14708], X[5]+X[1112], 3*X[51]+X[113], X[52]+3*X[36518], -X[74]+9*X[5640], X[110]+7*X[9781], 3*X[381]+X[1986], X[399]+3*X[45237], 3*X[568]+X[12825], X[974]+X[1539], -5*X[3091]+X[7723], -9*X[3545]+X[12219] and many others

X(58516) lies on these lines: {4, 14708}, {5, 1112}, {25, 12228}, {30, 9826}, {51, 113}, {52, 36518}, {74, 5640}, {110, 9781}, {143, 5448}, {265, 11818}, {381, 1986}, {389, 546}, {399, 45237}, {511, 12900}, {541, 58470}, {542, 58471}, {568, 12825}, {690, 58517}, {974, 1539}, {1154, 46031}, {1511, 12106}, {2771, 58475}, {2772, 58519}, {2773, 58520}, {2774, 58521}, {2776, 58523}, {2777, 5462}, {2778, 58525}, {2779, 58526}, {2780, 58527}, {2781, 6697}, {2854, 5097}, {2931, 17810}, {3043, 13595}, {3091, 7723}, {3545, 12219}, {3627, 44573}, {3628, 13416}, {3832, 7722}, {3843, 12292}, {3845, 12133}, {3858, 13148}, {5446, 5972}, {5480, 23306}, {5504, 39522}, {5892, 37853}, {5943, 6699}, {6644, 15472}, {7506, 15463}, {7529, 19504}, {7564, 14644}, {7728, 46430}, {8674, 58522}, {9033, 58530}, {9517, 58529}, {9730, 13202}, {9777, 19456}, {9827, 12811}, {9969, 10272}, {10110, 17702}, {10113, 25711}, {10201, 18438}, {10223, 53802}, {10263, 41673}, {10264, 12099}, {10721, 15043}, {11060, 52951}, {11574, 25337}, {11800, 16534}, {12006, 34584}, {12041, 15026}, {12140, 13490}, {12227, 46261}, {12241, 58546}, {12295, 16223}, {12897, 45971}, {13376, 44407}, {13391, 14156}, {13417, 23515}, {13598, 38726}, {14561, 40949}, {15024, 15055}, {15044, 15102}, {15088, 18874}, {15647, 32046}, {15738, 38898}, {16270, 58531}, {16531, 48378}, {17854, 37481}, {18369, 54073}, {23323, 52000}, {38793, 45186}, {40240, 58488}, {52073, 58484}

X(58516) = midpoint of X(i) and X(j) for these {i,j}: {113, 12236}, {10110, 41671}, {10113, 25711}, {10263, 41673}, {11800, 16534}, {11806, 38791}, {12041, 16105}, {13598, 38726}, {15738, 38898}, {23323, 52000}, {389, 46686}, {3627, 44573}, {4, 14708}, {5, 1112}, {5446, 5972}, {6699, 11807}, {58498, 58536}, {7687, 11557}, {974, 1539}
X(58516) = reflection of X(i) in X(j) for these {i,j}: {11746, 10095}, {11801, 15465}, {13416, 3628}, {15088, 18874}
X(58516) = center of the nine-point conic of quadrilateral XYZX(113) where XYZ is the cevian triangle of X(4)
X(58516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 12228, 20773}, {51, 113, 12236}, {1539, 5946, 974}, {5663, 10095, 11746}, {5663, 15465, 11801}, {5943, 11807, 6699}, {6644, 15472, 25487}, {10110, 41671, 17702}, {11806, 38791, 5663}, {58498, 58536, 541}


X(58517) = X(5)X(39835)∩X(51)X(114)

Barycentrics    a^2*(a^10*(b^2+c^2)-4*a^8*(b^4+b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(7*b^4+6*b^2*c^2+7*c^4)+7*a^6*(b^6+c^6)-(b^2-c^2)^2*(b^8-4*b^6*c^2+4*b^4*c^4-4*b^2*c^6+c^8)+a^2*(b^2+c^2)*(4*b^8-15*b^6*c^2+20*b^4*c^4-15*b^2*c^6+4*c^8)) : :
X(58517) = X[5]+X[39835], 3*X[51]+X[114], X[52]+3*X[36519], -X[98]+9*X[5640], X[99]+7*X[9781], X[620]+X[5446], -3*X[5892]+X[38747], -3*X[5943]+X[6036], 3*X[5946]+X[22505], 3*X[9730]+X[39838], -X[10625]+5*X[31274], X[10722]+7*X[15043] and many others

X(58517) lies on these lines: {5, 39835}, {25, 39805}, {51, 114}, {52, 36519}, {98, 5640}, {99, 9781}, {511, 6721}, {542, 11746}, {620, 5446}, {690, 58516}, {2782, 10095}, {2783, 58475}, {2784, 58519}, {2785, 58520}, {2786, 58521}, {2787, 58522}, {2789, 58523}, {2790, 58524}, {2791, 58525}, {2792, 58526}, {2793, 58527}, {2794, 5462}, {2797, 58530}, {2799, 58529}, {5186, 43823}, {5480, 39816}, {5892, 38747}, {5943, 6036}, {5946, 22505}, {7529, 39839}, {9730, 39838}, {9777, 39810}, {10110, 23698}, {10625, 31274}, {10722, 15043}, {12042, 15026}, {13595, 58058}, {13598, 38736}, {15024, 34473}, {15092, 18874}, {17810, 39828}, {23234, 39807}, {23514, 39846}, {38748, 45186}, {41672, 43130}

X(58517) = midpoint of X(i) and X(j) for these {i,j}: {114, 39806}, {10110, 58503}, {13598, 38736}, {41672, 43130}, {5, 39835}, {620, 5446}, {58502, 58537}
X(58517) = reflection of X(i) in X(j) for these {i,j}: {15092, 18874}, {58518, 10095}
X(58517) = center of the nine-point conic of quadrilateral XYZX(114) where XYZ is the cevian triangle of X(4)
X(58517) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 114, 39806}, {2782, 10095, 58518}, {58502, 58537, 542}


X(58518) = X(5)X(39806)∩X(51)X(115)

Barycentrics    -(a^2*(b^2-c^2)^4)+a^8*(b^2+c^2)-2*a^6*(b^4+c^4)+a^4*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4) : :
X(58518) = X[5]+X[39806], 3*X[51]+X[115], X[52]+3*X[23514], X[98]+7*X[9781], -X[99]+9*X[5640], -9*X[373]+5*X[31274], -X[620]+3*X[5943], X[1112]+X[15359], X[2023]+X[27375], 3*X[3060]+5*X[14061], 5*X[3567]+3*X[14639], X[5446]+X[6036] and many others

X(58518) lies on these lines: {5, 39806}, {25, 39834}, {30, 58552}, {51, 115}, {52, 23514}, {98, 9781}, {99, 5640}, {373, 31274}, {511, 6722}, {542, 58471}, {543, 58470}, {620, 5943}, {690, 11746}, {1112, 15359}, {1154, 15092}, {2023, 27375}, {2782, 10095}, {2783, 58522}, {2784, 58521}, {2785, 58526}, {2786, 58519}, {2787, 58475}, {2790, 58530}, {2792, 58520}, {2794, 10110}, {2796, 58523}, {2797, 58524}, {2798, 58525}, {2799, 58528}, {3044, 13595}, {3060, 14061}, {3567, 14639}, {5446, 6036}, {5461, 21849}, {5462, 23698}, {5480, 39845}, {5892, 38736}, {5946, 22515}, {5969, 6665}, {7529, 39810}, {9166, 39836}, {9730, 39809}, {9777, 39839}, {9822, 14645}, {10263, 34127}, {10723, 15043}, {11623, 52878}, {12131, 43823}, {13598, 38747}, {14971, 21969}, {15024, 21166}, {15026, 33813}, {17810, 39857}, {32552, 53049}, {32553, 53048}, {36519, 39817}, {38737, 45186}, {41671, 50711}

X(58518) = midpoint of X(i) and X(j) for these {i,j}: {115, 39835}, {10110, 58502}, {1112, 15359}, {13598, 38747}, {2023, 27375}, {5, 39806}, {5446, 6036}, {5461, 21849}, {58503, 58538}
X(58518) = reflection of X(i) in X(j) for these {i,j}: {58517, 10095}
X(58518) = center of the nine-point conic of quadrilateral XYZX(115) where XYZ is the cevian triangle of X(4)
X(58518) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 115, 39835}, {2782, 10095, 58517}, {10110, 58502, 2794}, {58470, 58538, 58503}, {58503, 58538, 543}


X(58519) = X(51)X(116)∩X(101)X(5640)

Barycentrics    a^2*(2*a^3*b*(b-c)^2*c*(b+c)+a*(b-c)^2*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)-(b-c)^2*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+b*c+c^2)+a^4*(-b^4+b^3*c+2*b^2*c^2+b*c^3-c^4)+a^2*(b-c)^2*(b^4+c^4)) : :
X(58519) = 3*X[51]+X[116], -X[101]+9*X[5640], X[103]+7*X[9781], 3*X[3060]+5*X[31273], X[5446]+X[6712], -3*X[5943]+X[6710], X[10110]+X[58507], X[10725]+7*X[15043], X[13598]+X[38771], -11*X[15024]+3*X[38690], -5*X[15026]+X[38599]

X(58519) lies on these lines: {51, 116}, {101, 5640}, {103, 9781}, {511, 58418}, {544, 58470}, {928, 58526}, {2772, 58516}, {2774, 11746}, {2784, 58517}, {2786, 58518}, {2801, 58522}, {2807, 58520}, {2808, 10095}, {2809, 58474}, {2810, 58523}, {2811, 58524}, {2812, 58525}, {2813, 58527}, {2822, 58530}, {2825, 58529}, {3046, 13595}, {3060, 31273}, {3887, 58475}, {5446, 6712}, {5943, 6710}, {9518, 58528}, {10110, 58507}, {10725, 15043}, {13598, 38771}, {15024, 38690}, {15026, 38599}

X(58519) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58507}, {13598, 38771}, {5446, 6712}, {58505, 58540}
X(58519) = reflection of X(i) in X(j) for these {i,j}: {58521, 10095}
X(58519) = center of the nine-point conic of quadrilateral XYZX(116) where XYZ i