leftri rightri



This is PART 30: Centers X(58001) - X(60000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)

X(58001) = ISOTOMIC CONJUGATE OF X(936)

Barycentrics    b*c*((a+b)^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3-a^2*(b-3*c)-a*(b-3*c)*(b+c)+(b-c)^2*(b+c)) : :

X(58001) lies on these lines: {1, 40424}, {2, 322}, {7, 2478}, {27, 3306}, {75, 1210}, {85, 1440}, {86, 937}, {273, 40701}, {938, 58002}, {1226, 44190}, {1268, 5705}, {2255, 14621}, {4360, 56026}, {4373, 17863}, {5936, 20895}, {18147, 57825}, {20171, 27494}, {20946, 39749}, {28626, 30806}

X(58001) = isotomic conjugate of X(936)
X(58001) = trilinear pole of line {17896, 514}
X(58001) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 11406}, {6, 2256}, {31, 936}, {55, 1466}
X(58001) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 936}, {9, 2256}, {223, 1466}, {36103, 11406}
X(58001) = X(i)-cross conjugate of X(j) for these {i, j}: {6919, 312}, {9612, 92}, {9776, 85}, {9843, 2}
X(58001) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1108)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(29), X(341)}}, {{A, B, C, X(69), X(40420)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(158), X(43531)}}, {{A, B, C, X(286), X(312)}}, {{A, B, C, X(307), X(3306)}}, {{A, B, C, X(309), X(31643)}}, {{A, B, C, X(313), X(40014)}}, {{A, B, C, X(342), X(1226)}}, {{A, B, C, X(936), X(9843)}}, {{A, B, C, X(1125), X(5705)}}, {{A, B, C, X(1220), X(40836)}}, {{A, B, C, X(1257), X(39702)}}, {{A, B, C, X(3577), X(31359)}}, {{A, B, C, X(3668), X(8056)}}, {{A, B, C, X(5703), X(5704)}}, {{A, B, C, X(14534), X(34404)}}, {{A, B, C, X(17863), X(18743)}}, {{A, B, C, X(19802), X(20336)}}, {{A, B, C, X(20171), X(30963)}}, {{A, B, C, X(30608), X(40412)}}, {{A, B, C, X(40430), X(56101)}}, {{A, B, C, X(46435), X(54972)}}
X(58001) = barycentric product X(i)*X(j) for these (i, j): {76, 937}, {2255, 561}
X(58001) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2256}, {2, 936}, {19, 11406}, {57, 1466}, {937, 6}, {2255, 31}, {14551, 54322}


X(58002) = ISOTOMIC CONJUGATE OF X(938)

Barycentrics    ((a-b)^3*(a+b)+2*b*(a+b)^2*c+2*a*(-a+b)*c^2-2*b*c^3+c^4)*(a^4-2*a^3*c+2*a^2*b*(-b+c)+(b-c)^3*(b+c)+2*a*c*(b+c)^2) : :

X(58002) lies on these lines: {2, 3692}, {7, 78}, {8, 273}, {27, 329}, {69, 1088}, {75, 1265}, {86, 939}, {271, 307}, {673, 2343}, {938, 58001}, {1659, 31413}, {18815, 32087}

X(58002) = isotomic conjugate of X(938)
X(58002) = trilinear pole of line {514, 57055}
X(58002) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2257}, {25, 10884}, {31, 938}, {55, 1467}, {56, 10382}, {2208, 37421}
X(58002) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 10382}, {2, 938}, {9, 2257}, {223, 1467}, {6505, 10884}
X(58002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8814)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(2297)}}, {{A, B, C, X(8), X(69)}}, {{A, B, C, X(10), X(5703)}}, {{A, B, C, X(29), X(1219)}}, {{A, B, C, X(76), X(30705)}}, {{A, B, C, X(77), X(40399)}}, {{A, B, C, X(189), X(2997)}}, {{A, B, C, X(253), X(312)}}, {{A, B, C, X(264), X(6557)}}, {{A, B, C, X(282), X(6601)}}, {{A, B, C, X(307), X(321)}}, {{A, B, C, X(314), X(8817)}}, {{A, B, C, X(319), X(32099)}}, {{A, B, C, X(320), X(32087)}}, {{A, B, C, X(347), X(47634)}}, {{A, B, C, X(596), X(40836)}}, {{A, B, C, X(936), X(938)}}, {{A, B, C, X(962), X(4385)}}, {{A, B, C, X(1119), X(8056)}}, {{A, B, C, X(1170), X(56328)}}, {{A, B, C, X(1439), X(51497)}}, {{A, B, C, X(1441), X(50442)}}, {{A, B, C, X(2481), X(30501)}}, {{A, B, C, X(5704), X(6700)}}, {{A, B, C, X(6734), X(27383)}}, {{A, B, C, X(7149), X(51498)}}, {{A, B, C, X(7319), X(8044)}}, {{A, B, C, X(7321), X(52709)}}, {{A, B, C, X(8797), X(38255)}}, {{A, B, C, X(21296), X(42696)}}, {{A, B, C, X(28786), X(52389)}}, {{A, B, C, X(30479), X(34399)}}, {{A, B, C, X(31995), X(42697)}}, {{A, B, C, X(34401), X(40023)}}, {{A, B, C, X(47487), X(56003)}}
X(58002) = barycentric product X(i)*X(j) for these (i, j): {76, 939}, {2343, 6063}
X(58002) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2257}, {2, 938}, {9, 10382}, {57, 1467}, {63, 10884}, {329, 37421}, {939, 6}, {2343, 55}


X(58003) = ISOTOMIC CONJUGATE OF X(944)

Barycentrics    ((a^2-b^2)^2-2*(a-b)^2*(a+b)*c+2*(a-b)^2*c^2+2*(a+b)*c^3-3*c^4)*(a^4-2*a^3*b+2*a*b*(b-c)^2+2*a^2*(b^2+b*c-c^2)-(b-c)*(b+c)*(3*b^2-2*b*c+c^2)) : :

X(58003) lies on these lines: {69, 22464}, {332, 945}, {345, 908}, {944, 57816}, {3262, 3718}

X(58003) = isotomic conjugate of X(944)
X(58003) = trilinear pole of line {6332, 10015}
X(58003) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2261}, {31, 944}, {212, 54200}
X(58003) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 944}, {9, 2261}, {40837, 54200}
X(58003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(264)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(86), X(8797)}}, {{A, B, C, X(95), X(5936)}}, {{A, B, C, X(253), X(2997)}}, {{A, B, C, X(280), X(34406)}}, {{A, B, C, X(281), X(44184)}}, {{A, B, C, X(286), X(20223)}}, {{A, B, C, X(309), X(903)}}, {{A, B, C, X(322), X(42697)}}, {{A, B, C, X(348), X(1969)}}, {{A, B, C, X(355), X(944)}}, {{A, B, C, X(1268), X(36948)}}, {{A, B, C, X(1385), X(5730)}}, {{A, B, C, X(1494), X(36588)}}, {{A, B, C, X(2995), X(46133)}}, {{A, B, C, X(3261), X(30705)}}, {{A, B, C, X(3655), X(38074)}}, {{A, B, C, X(5603), X(17757)}}, {{A, B, C, X(5734), X(5828)}}, {{A, B, C, X(8048), X(18815)}}, {{A, B, C, X(18025), X(39710)}}, {{A, B, C, X(18811), X(34413)}}, {{A, B, C, X(28204), X(34627)}}, {{A, B, C, X(28626), X(40410)}}, {{A, B, C, X(34401), X(44190)}}, {{A, B, C, X(39707), X(44186)}}, {{A, B, C, X(42709), X(50101)}}
X(58003) = barycentric product X(i)*X(j) for these (i, j): {76, 945}
X(58003) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2261}, {2, 944}, {278, 54200}, {945, 6}


X(58004) = ISOTOMIC CONJUGATE OF X(948)

Barycentrics    (a-b-c)*((a-b)^2*(a+b)-(a+b)^2*c+(a+b)*c^2-c^3)*(a^3-a^2*(b+c)+a*(b^2-2*b*c-c^2)-(b-c)*(b^2+c^2)) : :

X(58004) lies on these lines: {2, 7182}, {8, 28071}, {9, 69}, {63, 8817}, {75, 281}, {76, 6554}, {200, 345}, {220, 4437}, {241, 30705}, {332, 949}, {333, 4183}, {346, 3718}, {2297, 17353}, {3423, 5273}, {4391, 28132}, {5744, 6183}, {6350, 57801}, {6605, 17776}, {7110, 56445}, {14943, 17755}, {17257, 26540}, {17263, 28753}, {17264, 36916}, {17740, 41798}, {23617, 26685}, {27549, 41228}, {34404, 57492}, {36101, 56668}, {36910, 50107}, {40838, 56596}, {52663, 56753}

X(58004) = isotomic conjugate of X(948)
X(58004) = trilinear pole of line {6332, 44448}
X(58004) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2263}, {31, 948}, {56, 40131}, {57, 37580}, {604, 2550}, {1402, 16054}, {1407, 28043}, {1415, 47123}, {1461, 6182}, {2212, 23603}
X(58004) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40131}, {2, 948}, {9, 2263}, {1146, 47123}, {3161, 2550}, {5452, 37580}, {24771, 28043}, {35508, 6182}, {40605, 16054}
X(58004) = X(i)-cross conjugate of X(j) for these {i, j}: {37658, 8}
X(58004) = pole of line {948, 16054} with respect to the Wallace hyperbola
X(58004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(9)}}, {{A, B, C, X(8), X(76)}}, {{A, B, C, X(21), X(41791)}}, {{A, B, C, X(29), X(37169)}}, {{A, B, C, X(55), X(39957)}}, {{A, B, C, X(63), X(27509)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(78), X(40403)}}, {{A, B, C, X(85), X(1043)}}, {{A, B, C, X(189), X(7058)}}, {{A, B, C, X(220), X(241)}}, {{A, B, C, X(271), X(3926)}}, {{A, B, C, X(274), X(280)}}, {{A, B, C, X(277), X(1247)}}, {{A, B, C, X(278), X(3512)}}, {{A, B, C, X(312), X(344)}}, {{A, B, C, X(318), X(32022)}}, {{A, B, C, X(335), X(6601)}}, {{A, B, C, X(341), X(32008)}}, {{A, B, C, X(348), X(1098)}}, {{A, B, C, X(522), X(39721)}}, {{A, B, C, X(650), X(39981)}}, {{A, B, C, X(673), X(51190)}}, {{A, B, C, X(1000), X(52517)}}, {{A, B, C, X(1229), X(17776)}}, {{A, B, C, X(1948), X(6350)}}, {{A, B, C, X(2195), X(42290)}}, {{A, B, C, X(2996), X(6598)}}, {{A, B, C, X(3452), X(26685)}}, {{A, B, C, X(3680), X(54123)}}, {{A, B, C, X(3886), X(27549)}}, {{A, B, C, X(4357), X(5273)}}, {{A, B, C, X(4416), X(34277)}}, {{A, B, C, X(4900), X(34892)}}, {{A, B, C, X(4901), X(10005)}}, {{A, B, C, X(5744), X(40880)}}, {{A, B, C, X(5745), X(17257)}}, {{A, B, C, X(6557), X(25101)}}, {{A, B, C, X(14621), X(34919)}}, {{A, B, C, X(14942), X(27475)}}, {{A, B, C, X(17263), X(42032)}}, {{A, B, C, X(17264), X(28808)}}, {{A, B, C, X(17296), X(30711)}}, {{A, B, C, X(17353), X(18228)}}, {{A, B, C, X(17758), X(56146)}}, {{A, B, C, X(17811), X(25091)}}, {{A, B, C, X(28827), X(31225)}}, {{A, B, C, X(32851), X(50107)}}, {{A, B, C, X(39273), X(56098)}}
X(58004) = barycentric product X(i)*X(j) for these (i, j): {76, 949}, {312, 39273}, {3423, 3596}, {4397, 6183}, {56098, 75}
X(58004) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2263}, {2, 948}, {8, 2550}, {9, 40131}, {55, 37580}, {200, 28043}, {333, 16054}, {348, 23603}, {522, 47123}, {949, 6}, {3423, 56}, {3900, 6182}, {6183, 934}, {39273, 57}, {45974, 1469}, {56098, 1}


X(58005) = ISOTOMIC CONJUGATE OF X(950)

Barycentrics    (a+b-c)*(a-b+c)*((a-b)^2*(a+b)+(a+b)*c^2+2*c^3)*(a^3+2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c)) : :

X(58005) lies on these lines: {7, 345}, {8, 6046}, {69, 279}, {75, 1847}, {85, 3718}, {307, 333}, {332, 951}, {349, 44130}, {2369, 29163}, {2983, 4357}, {3668, 7270}, {7182, 23062}, {8822, 40431}

X(58005) = isotomic conjugate of X(950)
X(58005) = trilinear pole of line {3676, 6332}
X(58005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2264}, {21, 40984}, {31, 950}, {41, 40940}, {55, 1104}, {212, 1842}, {284, 40977}, {440, 2204}, {650, 53290}, {1172, 44093}, {1834, 2194}, {2175, 17863}, {2212, 18650}, {2299, 18673}, {3063, 14543}
X(58005) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 950}, {9, 2264}, {223, 1104}, {226, 18673}, {1214, 1834}, {3160, 40940}, {10001, 14543}, {40590, 40977}, {40593, 17863}, {40611, 40984}, {40615, 29162}, {40837, 1842}
X(58005) = X(i)-cross conjugate of X(j) for these {i, j}: {4560, 4554}, {17094, 664}, {57284, 2}
X(58005) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(85)}}, {{A, B, C, X(8), X(20007)}}, {{A, B, C, X(69), X(75)}}, {{A, B, C, X(86), X(6063)}}, {{A, B, C, X(92), X(39695)}}, {{A, B, C, X(189), X(4373)}}, {{A, B, C, X(226), X(6046)}}, {{A, B, C, X(253), X(312)}}, {{A, B, C, X(264), X(4997)}}, {{A, B, C, X(273), X(40420)}}, {{A, B, C, X(286), X(903)}}, {{A, B, C, X(307), X(349)}}, {{A, B, C, X(314), X(18025)}}, {{A, B, C, X(673), X(15314)}}, {{A, B, C, X(1119), X(42304)}}, {{A, B, C, X(1121), X(2997)}}, {{A, B, C, X(1220), X(54125)}}, {{A, B, C, X(1222), X(34406)}}, {{A, B, C, X(1223), X(3912)}}, {{A, B, C, X(1257), X(40445)}}, {{A, B, C, X(1268), X(4998)}}, {{A, B, C, X(1494), X(4102)}}, {{A, B, C, X(3340), X(9578)}}, {{A, B, C, X(3596), X(56026)}}, {{A, B, C, X(3601), X(11523)}}, {{A, B, C, X(3719), X(19611)}}, {{A, B, C, X(4357), X(4509)}}, {{A, B, C, X(5438), X(9581)}}, {{A, B, C, X(7131), X(8809)}}, {{A, B, C, X(8814), X(44733)}}, {{A, B, C, X(18811), X(39710)}}, {{A, B, C, X(18816), X(42333)}}, {{A, B, C, X(20567), X(52156)}}, {{A, B, C, X(51567), X(54121)}}
X(58005) = barycentric product X(i)*X(j) for these (i, j): {76, 951}, {307, 40414}, {348, 40445}, {1231, 40431}, {1257, 85}, {2983, 6063}, {29163, 52621}
X(58005) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2264}, {2, 950}, {7, 40940}, {57, 1104}, {65, 40977}, {73, 44093}, {85, 17863}, {109, 53290}, {226, 1834}, {278, 1842}, {307, 440}, {348, 18650}, {664, 14543}, {951, 6}, {1214, 18673}, {1257, 9}, {1400, 40984}, {2983, 55}, {3676, 29162}, {22464, 51410}, {26942, 21671}, {29163, 3939}, {40414, 29}, {40431, 1172}, {40445, 281}, {52561, 2318}, {57390, 2299}


X(58006) = ISOTOMIC CONJUGATE OF X(954)

Barycentrics    -(b*c*(2*a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c-2*(a+b)*(a^2+a*b+b^2)*c^2+2*(a+b)*c^4-c^5)*(b*(b-c)^3*(b+c)-a^4*(b+2*c)-2*a*(b^2-c^2)^2+2*a^3*(b^2+c^2)+2*a^2*c*(2*b^2+b*c+c^2))) : :

X(58006) lies on these lines: {69, 31618}, {75, 25935}, {85, 6734}, {274, 955}, {286, 16713}, {331, 20880}, {18750, 55983}

X(58006) = isotomic conjugate of X(954)
X(58006) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2266}, {31, 954}
X(58006) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 954}, {9, 2266}
X(58006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(25935)}}, {{A, B, C, X(8), X(264)}}, {{A, B, C, X(69), X(16713)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(189), X(40216)}}, {{A, B, C, X(333), X(6063)}}, {{A, B, C, X(1441), X(10405)}}, {{A, B, C, X(7233), X(39273)}}, {{A, B, C, X(32015), X(40424)}}
X(58006) = barycentric product X(i)*X(j) for these (i, j): {76, 955}
X(58006) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2266}, {2, 954}, {955, 6}


X(58007) = ISOTOMIC CONJUGATE OF X(956)

Barycentrics    b*c*(2*a*b*(a+b)+(a-b)^2*c-c^3)*(-b^3+b*c^2+2*a*c*(-b+c)+a^2*(b+2*c)) : :

X(58007) lies on these lines: {2, 57827}, {7, 1361}, {75, 908}, {76, 3262}, {85, 4389}, {264, 21664}, {274, 957}, {286, 3672}, {693, 42757}, {767, 32722}, {956, 57881}, {2481, 50101}, {5603, 18816}, {17321, 31643}, {17757, 58029}, {24547, 57831}, {39995, 40014}

X(58007) = isotomic conjugate of X(956)
X(58007) = trilinear pole of line {693, 10015}
X(58007) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2267}, {31, 956}
X(58007) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 956}, {9, 2267}
X(58007) = X(i)-cross conjugate of X(j) for these {i, j}: {495, 2}, {33151, 76}
X(58007) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(7), X(264)}}, {{A, B, C, X(56), X(3597)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(3596)}}, {{A, B, C, X(92), X(18816)}}, {{A, B, C, X(95), X(8048)}}, {{A, B, C, X(262), X(513)}}, {{A, B, C, X(495), X(956)}}, {{A, B, C, X(903), X(6063)}}, {{A, B, C, X(999), X(17757)}}, {{A, B, C, X(1056), X(3421)}}, {{A, B, C, X(1440), X(8797)}}, {{A, B, C, X(1441), X(4054)}}, {{A, B, C, X(1444), X(25060)}}, {{A, B, C, X(1494), X(13577)}}, {{A, B, C, X(3263), X(50101)}}, {{A, B, C, X(3296), X(41013)}}, {{A, B, C, X(3445), X(51870)}}, {{A, B, C, X(3668), X(17753)}}, {{A, B, C, X(3672), X(20336)}}, {{A, B, C, X(5936), X(30501)}}, {{A, B, C, X(7318), X(40410)}}, {{A, B, C, X(8822), X(33949)}}, {{A, B, C, X(9227), X(38247)}}, {{A, B, C, X(9307), X(13476)}}, {{A, B, C, X(14260), X(21664)}}, {{A, B, C, X(16705), X(17321)}}, {{A, B, C, X(18018), X(39723)}}, {{A, B, C, X(18575), X(40086)}}, {{A, B, C, X(18810), X(35164)}}, {{A, B, C, X(20565), X(39707)}}, {{A, B, C, X(20566), X(32023)}}, {{A, B, C, X(20615), X(45104)}}, {{A, B, C, X(21453), X(34393)}}, {{A, B, C, X(24547), X(44140)}}, {{A, B, C, X(27475), X(27489)}}, {{A, B, C, X(27492), X(41527)}}, {{A, B, C, X(30479), X(40412)}}, {{A, B, C, X(31360), X(39745)}}, {{A, B, C, X(36588), X(40216)}}, {{A, B, C, X(44184), X(56144)}}, {{A, B, C, X(55089), X(56155)}}
X(58007) = barycentric product X(i)*X(j) for these (i, j): {76, 957}, {274, 54933}, {32722, 40495}
X(58007) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2267}, {2, 956}, {957, 6}, {32722, 692}, {54933, 37}


X(58008) = ISOTOMIC CONJUGATE OF X(958)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(c*(b+c)+a*(2*b+c))*(b*(b+c)+a*(b+2*c)) : :

X(58008) lies on these lines: {2, 31643}, {7, 274}, {12, 3596}, {56, 261}, {75, 226}, {76, 1441}, {85, 3668}, {86, 10571}, {264, 56827}, {278, 286}, {314, 3485}, {331, 54314}, {388, 30479}, {767, 32693}, {870, 1423}, {941, 2481}, {2258, 40719}, {4328, 55946}, {5331, 55082}, {6063, 6385}, {6383, 7179}, {6648, 34261}, {10472, 44350}, {15282, 54121}, {24547, 27184}, {30946, 31618}, {34259, 52560}, {34263, 37800}, {53476, 56914}

X(58008) = isotomic conjugate of X(958)
X(58008) = trilinear pole of line {693, 7178}
X(58008) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2268}, {9, 5019}, {31, 958}, {32, 11679}, {41, 940}, {42, 54417}, {55, 1468}, {184, 54396}, {205, 34279}, {212, 4185}, {604, 3713}, {643, 8639}, {692, 17418}, {2149, 53561}, {2175, 10436}, {2200, 44734}, {2206, 3714}, {5307, 52425}, {9447, 34284}, {23880, 32739}, {23990, 53526}, {31993, 57657}
X(58008) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 958}, {9, 2268}, {223, 1468}, {478, 5019}, {650, 53561}, {1086, 17418}, {3160, 940}, {3161, 3713}, {6376, 11679}, {40592, 54417}, {40593, 10436}, {40603, 3714}, {40615, 48144}, {40619, 23880}, {40622, 8672}, {40837, 4185}, {55060, 8639}
X(58008) = X(i)-cross conjugate of X(j) for these {i, j}: {24547, 75}, {25466, 2}, {27184, 76}, {31359, 34258}, {45746, 664}, {50197, 1446}
X(58008) = pole of line {958, 54417} with respect to the Wallace hyperbola
X(58008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9307)}}, {{A, B, C, X(2), X(261)}}, {{A, B, C, X(7), X(226)}}, {{A, B, C, X(12), X(56)}}, {{A, B, C, X(69), X(40419)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(87), X(262)}}, {{A, B, C, X(92), X(314)}}, {{A, B, C, X(142), X(30946)}}, {{A, B, C, X(269), X(7249)}}, {{A, B, C, X(348), X(17321)}}, {{A, B, C, X(523), X(10013)}}, {{A, B, C, X(693), X(30712)}}, {{A, B, C, X(958), X(25466)}}, {{A, B, C, X(959), X(50040)}}, {{A, B, C, X(1268), X(40420)}}, {{A, B, C, X(1329), X(25524)}}, {{A, B, C, X(1423), X(7179)}}, {{A, B, C, X(2297), X(4518)}}, {{A, B, C, X(2995), X(30690)}}, {{A, B, C, X(3262), X(8797)}}, {{A, B, C, X(3263), X(3672)}}, {{A, B, C, X(3600), X(5261)}}, {{A, B, C, X(3613), X(55919)}}, {{A, B, C, X(4373), X(40216)}}, {{A, B, C, X(5253), X(11681)}}, {{A, B, C, X(5434), X(11237)}}, {{A, B, C, X(7201), X(7233)}}, {{A, B, C, X(7288), X(10588)}}, {{A, B, C, X(8822), X(40701)}}, {{A, B, C, X(9309), X(45964)}}, {{A, B, C, X(9436), X(26125)}}, {{A, B, C, X(10436), X(27184)}}, {{A, B, C, X(18760), X(35140)}}, {{A, B, C, X(20565), X(39704)}}, {{A, B, C, X(20566), X(30598)}}, {{A, B, C, X(31637), X(40032)}}, {{A, B, C, X(36487), X(36493)}}, {{A, B, C, X(36508), X(36513)}}
X(58008) = barycentric product X(i)*X(j) for these (i, j): {76, 959}, {331, 34259}, {349, 5331}, {1441, 37870}, {6063, 941}, {20567, 2258}, {31359, 85}, {32038, 693}, {32693, 40495}, {33949, 34265}, {34258, 7}, {34263, 57777}, {34284, 50040}, {40828, 56}, {44733, 75}
X(58008) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2268}, {2, 958}, {7, 940}, {8, 3713}, {11, 53561}, {56, 5019}, {57, 1468}, {75, 11679}, {81, 54417}, {85, 10436}, {92, 54396}, {273, 5307}, {278, 4185}, {286, 44734}, {321, 3714}, {388, 34261}, {514, 17418}, {693, 23880}, {931, 5546}, {941, 55}, {959, 6}, {1111, 53526}, {1358, 53543}, {1441, 31993}, {2258, 41}, {3676, 48144}, {4077, 50457}, {5331, 284}, {6063, 34284}, {7178, 8672}, {7180, 8639}, {8048, 34279}, {24002, 43067}, {31359, 9}, {32038, 100}, {32693, 692}, {34258, 8}, {34259, 219}, {34260, 1036}, {34263, 197}, {37870, 21}, {40149, 1867}, {40828, 3596}, {44733, 1}, {50040, 941}, {52931, 4559}, {56914, 40966}


X(58009) = ISOTOMIC CONJUGATE OF X(962)

Barycentrics    ((a-b)*(a+b)^3-2*(a-b)^2*b*c-2*a*(a+b)*c^2+2*b*c^3+c^4)*(a^4+2*a^3*c-2*a*(b-c)^2*c-2*a^2*b*(b+c)+(b-c)*(b+c)^3) : :

X(58009) lies on cubic K133 and these lines: {2, 52063}, {4, 30501}, {7, 318}, {8, 77}, {63, 346}, {69, 341}, {75, 7056}, {81, 2322}, {189, 21279}, {253, 9436}, {280, 55119}, {309, 962}, {938, 56328}, {963, 1043}, {1814, 6559}, {17880, 55015}, {21296, 52392}, {31995, 52344}, {40443, 56118}

X(58009) = isogonal conjugate of X(20991)
X(58009) = isotomic conjugate of X(962)
X(58009) = trilinear pole of line {905, 3239}
X(58009) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 20991}, {6, 2270}, {19, 22124}, {31, 962}, {32, 20921}, {604, 27508}, {692, 7661}, {1333, 21068}
X(58009) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 962}, {3, 20991}, {6, 22124}, {9, 2270}, {37, 21068}, {1086, 7661}, {3161, 27508}, {6376, 20921}
X(58009) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {963, 20211}, {43744, 5932}
X(58009) = pole of line {20991, 22124} with respect to the Stammler hyperbola
X(58009) = pole of line {962, 20991} with respect to the Wallace hyperbola
X(58009) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(309)}}, {{A, B, C, X(4), X(5815)}}, {{A, B, C, X(7), X(63)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(40), X(962)}}, {{A, B, C, X(78), X(46355)}}, {{A, B, C, X(86), X(37655)}}, {{A, B, C, X(95), X(28626)}}, {{A, B, C, X(264), X(5936)}}, {{A, B, C, X(314), X(8817)}}, {{A, B, C, X(319), X(31995)}}, {{A, B, C, X(320), X(21296)}}, {{A, B, C, X(938), X(54433)}}, {{A, B, C, X(1268), X(44186)}}, {{A, B, C, X(1440), X(34234)}}, {{A, B, C, X(1494), X(36588)}}, {{A, B, C, X(2184), X(8829)}}, {{A, B, C, X(2994), X(4373)}}, {{A, B, C, X(2997), X(42361)}}, {{A, B, C, X(3427), X(3668)}}, {{A, B, C, X(3562), X(10461)}}, {{A, B, C, X(5558), X(40438)}}, {{A, B, C, X(6557), X(20570)}}, {{A, B, C, X(6601), X(47850)}}, {{A, B, C, X(8047), X(39695)}}, {{A, B, C, X(8814), X(10435)}}, {{A, B, C, X(9436), X(14615)}}, {{A, B, C, X(10327), X(36845)}}, {{A, B, C, X(11024), X(31435)}}, {{A, B, C, X(14256), X(21279)}}, {{A, B, C, X(19611), X(44189)}}, {{A, B, C, X(21739), X(36606)}}, {{A, B, C, X(26062), X(41012)}}, {{A, B, C, X(28194), X(34632)}}, {{A, B, C, X(30479), X(34409)}}, {{A, B, C, X(32087), X(42696)}}, {{A, B, C, X(32099), X(42697)}}, {{A, B, C, X(36100), X(56287)}}, {{A, B, C, X(38255), X(40716)}}, {{A, B, C, X(39709), X(46136)}}
X(58009) = barycentric product X(i)*X(j) for these (i, j): {76, 963}, {309, 52063}, {312, 43744}
X(58009) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2270}, {2, 962}, {3, 22124}, {6, 20991}, {8, 27508}, {10, 21068}, {75, 20921}, {514, 7661}, {963, 6}, {43744, 57}, {52063, 40}


X(58010) = ISOTOMIC CONJUGATE OF X(964)

Barycentrics    (a*b*(a+b)^2+(a+b)*(a^2+a*b+b^2)*c+(a+b)^2*c^2+(a+b)*c^3+c^4)*(a^3*(b+c)+b*(b+c)*(b^2+c^2)+a*(b+c)*(b^2+b*c+c^2)+a^2*(b^2+2*b*c+2*c^2)) : :

X(58010) lies on these lines: {69, 16705}, {81, 57876}, {264, 5051}, {306, 4357}, {307, 3674}, {1441, 16062}, {1494, 50321}, {1509, 57853}, {4202, 57831}, {5224, 20336}, {13725, 57818}, {16342, 40412}, {26167, 57820}, {37314, 57858}, {52258, 57830}

X(58010) = isogonal conjugate of X(44115)
X(58010) = isotomic conjugate of X(964)
X(58010) = trilinear pole of line {3004, 14349}
X(58010) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44115}, {31, 964}
X(58010) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 964}, {3, 44115}
X(58010) = pole of line {964, 44115} with respect to the Wallace hyperbola
X(58010) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(5051)}}, {{A, B, C, X(7), X(76)}}, {{A, B, C, X(10), X(941)}}, {{A, B, C, X(21), X(3718)}}, {{A, B, C, X(30), X(50321)}}, {{A, B, C, X(75), X(81)}}, {{A, B, C, X(86), X(561)}}, {{A, B, C, X(256), X(56342)}}, {{A, B, C, X(257), X(2997)}}, {{A, B, C, X(321), X(1246)}}, {{A, B, C, X(377), X(13725)}}, {{A, B, C, X(404), X(52258)}}, {{A, B, C, X(405), X(4202)}}, {{A, B, C, X(442), X(16342)}}, {{A, B, C, X(443), X(37314)}}, {{A, B, C, X(964), X(13728)}}, {{A, B, C, X(1257), X(2346)}}, {{A, B, C, X(2476), X(19270)}}, {{A, B, C, X(3596), X(46880)}}, {{A, B, C, X(4197), X(11110)}}, {{A, B, C, X(4201), X(26117)}}, {{A, B, C, X(4205), X(16454)}}, {{A, B, C, X(4389), X(18133)}}, {{A, B, C, X(5047), X(33833)}}, {{A, B, C, X(9307), X(14624)}}, {{A, B, C, X(11108), X(17674)}}, {{A, B, C, X(11346), X(48815)}}, {{A, B, C, X(11359), X(49735)}}, {{A, B, C, X(13745), X(17679)}}, {{A, B, C, X(14005), X(37039)}}, {{A, B, C, X(16060), X(17550)}}, {{A, B, C, X(16346), X(25015)}}, {{A, B, C, X(16393), X(50058)}}, {{A, B, C, X(16906), X(33047)}}, {{A, B, C, X(17080), X(51612)}}, {{A, B, C, X(17321), X(19835)}}, {{A, B, C, X(17684), X(33834)}}, {{A, B, C, X(19520), X(25017)}}, {{A, B, C, X(24984), X(37228)}}, {{A, B, C, X(30479), X(41791)}}, {{A, B, C, X(43531), X(43712)}}, {{A, B, C, X(50055), X(51665)}}, {{A, B, C, X(50171), X(51677)}}
X(58010) = barycentric product X(i)*X(j) for these (i, j): {57743, 76}
X(58010) = barycentric quotient X(i)/X(j) for these (i, j): {2, 964}, {6, 44115}, {57743, 6}


X(58011) = ISOTOMIC CONJUGATE OF X(965)

Barycentrics    b*c*(2*a*b*(a+b)^2+(a+b)^3*c-(a^2+b^2)*c^2-(a+b)*c^3+c^4)*(-(a^2*(b-4*c)*(b+c))+b*(b-c)^2*(b+c)-a*(b-2*c)*(b+c)^2+a^3*(b+2*c)) : :

X(58011) lies on the Kiepert hyperbola and these lines: {2, 57744}, {10, 322}, {76, 18635}, {85, 8808}, {86, 54972}, {226, 40702}, {1751, 16054}, {14534, 19727}, {19716, 40395}, {40149, 40701}

X(58011) = isotomic conjugate of X(965)
X(58011) = trilinear pole of line {17896, 523}
X(58011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 965}, {48, 11323}
X(58011) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 965}, {1249, 11323}
X(58011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(18635)}}, {{A, B, C, X(85), X(264)}}, {{A, B, C, X(86), X(331)}}, {{A, B, C, X(273), X(274)}}, {{A, B, C, X(304), X(31643)}}, {{A, B, C, X(1211), X(19727)}}, {{A, B, C, X(5125), X(16054)}}, {{A, B, C, X(5736), X(5740)}}, {{A, B, C, X(5742), X(15668)}}, {{A, B, C, X(9289), X(52389)}}, {{A, B, C, X(32023), X(44129)}}
X(58011) = barycentric product X(i)*X(j) for these (i, j): {57744, 76}
X(58011) = barycentric quotient X(i)/X(j) for these (i, j): {2, 965}, {4, 11323}, {57744, 6}


X(58012) = ISOTOMIC CONJUGATE OF X(966)

Barycentrics    ((a+b)^2+2*(a+b)*c-c^2)*(a^2-b^2+2*b*c+c^2+2*a*(b+c)) : :

X(58012) lies on the Kiepert hyperbola and these lines: {2, 967}, {4, 86}, {6, 32022}, {10, 69}, {30, 54862}, {76, 4648}, {85, 40149}, {226, 348}, {274, 5712}, {304, 321}, {337, 43534}, {376, 54657}, {377, 13576}, {381, 54532}, {443, 37632}, {1509, 37642}, {2051, 36698}, {2052, 44129}, {2271, 33039}, {3424, 7379}, {3524, 54885}, {3545, 54740}, {3926, 17056}, {3945, 26051}, {4052, 48838}, {4297, 54668}, {4340, 16992}, {4352, 26109}, {5275, 40403}, {5286, 20131}, {5392, 26541}, {6625, 33029}, {6857, 17103}, {6999, 45100}, {7385, 14484}, {8796, 54372}, {8808, 34400}, {10159, 53665}, {11599, 15903}, {13478, 36662}, {13725, 40718}, {17169, 45964}, {17234, 18840}, {17300, 56210}, {17321, 51706}, {17378, 54786}, {17379, 33028}, {17381, 18841}, {17582, 37678}, {17732, 40515}, {18135, 40013}, {18140, 40012}, {26131, 45962}, {27187, 30588}, {32828, 37674}, {33031, 54795}, {33044, 33863}, {36474, 54946}, {36660, 43672}, {36706, 56144}, {43677, 49518}, {48813, 48822}, {50282, 50428}

X(58012) = isogonal conjugate of X(2271)
X(58012) = isotomic conjugate of X(966)
X(58012) = trilinear pole of line {4025, 30184}
X(58012) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2271}, {6, 968}, {31, 966}, {41, 3485}, {48, 4207}, {101, 48099}, {213, 11110}, {607, 54320}, {692, 45745}, {1824, 4288}, {7650, 32739}
X(58012) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 966}, {3, 2271}, {9, 968}, {1015, 48099}, {1086, 45745}, {1249, 4207}, {3160, 3485}, {6626, 11110}, {40619, 7650}
X(58012) = X(i)-cross conjugate of X(j) for these {i, j}: {15668, 2}, {48038, 190}
X(58012) = pole of line {15668, 58012} with respect to the Kiepert hyperbola
X(58012) = pole of line {966, 2271} with respect to the Wallace hyperbola
X(58012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2991)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37474)}}, {{A, B, C, X(6), X(4648)}}, {{A, B, C, X(7), X(274)}}, {{A, B, C, X(8), X(16831)}}, {{A, B, C, X(27), X(37153)}}, {{A, B, C, X(29), X(37169)}}, {{A, B, C, X(65), X(39981)}}, {{A, B, C, X(69), X(85)}}, {{A, B, C, X(79), X(39721)}}, {{A, B, C, X(189), X(37870)}}, {{A, B, C, X(277), X(14621)}}, {{A, B, C, X(279), X(1509)}}, {{A, B, C, X(330), X(3296)}}, {{A, B, C, X(377), X(15149)}}, {{A, B, C, X(514), X(34379)}}, {{A, B, C, X(940), X(1427)}}, {{A, B, C, X(966), X(15668)}}, {{A, B, C, X(996), X(54123)}}, {{A, B, C, X(1000), X(39738)}}, {{A, B, C, X(1218), X(40827)}}, {{A, B, C, X(1220), X(27475)}}, {{A, B, C, X(1268), X(40023)}}, {{A, B, C, X(1434), X(39704)}}, {{A, B, C, X(2165), X(21698)}}, {{A, B, C, X(2296), X(8817)}}, {{A, B, C, X(2333), X(8770)}}, {{A, B, C, X(3227), X(5558)}}, {{A, B, C, X(3615), X(41791)}}, {{A, B, C, X(3616), X(17294)}}, {{A, B, C, X(3618), X(17234)}}, {{A, B, C, X(3619), X(17381)}}, {{A, B, C, X(3622), X(49765)}}, {{A, B, C, X(3926), X(56382)}}, {{A, B, C, X(4196), X(33026)}}, {{A, B, C, X(4212), X(33028)}}, {{A, B, C, X(4213), X(33029)}}, {{A, B, C, X(4297), X(10004)}}, {{A, B, C, X(4352), X(30092)}}, {{A, B, C, X(5275), X(16583)}}, {{A, B, C, X(5308), X(49495)}}, {{A, B, C, X(5551), X(39740)}}, {{A, B, C, X(5557), X(36871)}}, {{A, B, C, X(5736), X(5738)}}, {{A, B, C, X(5936), X(32018)}}, {{A, B, C, X(6340), X(40071)}}, {{A, B, C, X(6650), X(39736)}}, {{A, B, C, X(7261), X(17270)}}, {{A, B, C, X(7379), X(52283)}}, {{A, B, C, X(7385), X(52288)}}, {{A, B, C, X(7490), X(26051)}}, {{A, B, C, X(7763), X(26541)}}, {{A, B, C, X(8813), X(34386)}}, {{A, B, C, X(8814), X(40409)}}, {{A, B, C, X(11109), X(36698)}}, {{A, B, C, X(13725), X(31909)}}, {{A, B, C, X(14377), X(43972)}}, {{A, B, C, X(14548), X(14828)}}, {{A, B, C, X(14996), X(37635)}}, {{A, B, C, X(15474), X(56047)}}, {{A, B, C, X(17056), X(37642)}}, {{A, B, C, X(17230), X(48822)}}, {{A, B, C, X(17244), X(50282)}}, {{A, B, C, X(17245), X(37650)}}, {{A, B, C, X(17300), X(17379)}}, {{A, B, C, X(17555), X(36662)}}, {{A, B, C, X(17732), X(17911)}}, {{A, B, C, X(18135), X(18140)}}, {{A, B, C, X(18299), X(32021)}}, {{A, B, C, X(18490), X(38247)}}, {{A, B, C, X(21246), X(26125)}}, {{A, B, C, X(24553), X(26540)}}, {{A, B, C, X(25430), X(43073)}}, {{A, B, C, X(26003), X(36660)}}, {{A, B, C, X(26109), X(37683)}}, {{A, B, C, X(28081), X(41247)}}, {{A, B, C, X(28660), X(30479)}}, {{A, B, C, X(30598), X(40014)}}, {{A, B, C, X(30962), X(37632)}}, {{A, B, C, X(31359), X(42335)}}, {{A, B, C, X(31916), X(48813)}}, {{A, B, C, X(36706), X(37448)}}, {{A, B, C, X(37128), X(51223)}}, {{A, B, C, X(37654), X(49738)}}, {{A, B, C, X(39735), X(40011)}}, {{A, B, C, X(49598), X(51314)}}
X(58012) = barycentric product X(i)*X(j) for these (i, j): {1, 58013}, {75, 969}, {76, 967}
X(58012) = barycentric quotient X(i)/X(j) for these (i, j): {1, 968}, {2, 966}, {4, 4207}, {6, 2271}, {7, 3485}, {77, 54320}, {86, 11110}, {513, 48099}, {514, 45745}, {693, 7650}, {967, 6}, {969, 1}, {1790, 4288}, {58013, 75}


X(58013) = ISOTOMIC CONJUGATE OF X(968)

Barycentrics    b*c*((a+b)^2+2*(a+b)*c-c^2)*(a^2-b^2+2*b*c+c^2+2*a*(b+c)) : :

X(58013) lies on these lines: {75, 969}, {92, 274}, {304, 321}, {305, 313}, {873, 44735}, {1441, 7182}, {6063, 57809}, {16739, 58026}, {57796, 57806}

X(58013) = isotomic conjugate of X(968)
X(58013) = trilinear pole of line {1577, 15413}
X(58013) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2271}, {31, 968}, {32, 966}, {184, 4207}, {692, 48099}, {1918, 11110}, {2175, 3485}, {2212, 54320}, {2333, 4288}, {32739, 45745}
X(58013) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 968}, {9, 2271}, {1086, 48099}, {6376, 966}, {34021, 11110}, {40593, 3485}, {40619, 45745}
X(58013) = X(i)-cross conjugate of X(j) for these {i, j}: {32092, 75}
X(58013) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(2), X(7233)}}, {{A, B, C, X(10), X(17156)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(85), X(310)}}, {{A, B, C, X(86), X(15474)}}, {{A, B, C, X(91), X(17874)}}, {{A, B, C, X(274), X(304)}}, {{A, B, C, X(873), X(1088)}}, {{A, B, C, X(1824), X(8769)}}, {{A, B, C, X(3668), X(10436)}}, {{A, B, C, X(3914), X(50314)}}, {{A, B, C, X(18698), X(44735)}}, {{A, B, C, X(30690), X(40028)}}, {{A, B, C, X(31997), X(33943)}}, {{A, B, C, X(33933), X(39731)}}
X(58013) = barycentric product X(i)*X(j) for these (i, j): {76, 969}, {561, 967}, {58012, 75}
X(58013) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2271}, {2, 968}, {75, 966}, {85, 3485}, {92, 4207}, {274, 11110}, {348, 54320}, {514, 48099}, {693, 45745}, {967, 31}, {969, 6}, {1444, 4288}, {3261, 7650}, {58012, 1}


X(58014) = ISOTOMIC CONJUGATE OF X(970)

Barycentrics    b^2*c^2*(a^5+a^4*b+a*b^4+b^5+(a^4+2*a^3*b+2*a*b^3+b^4)*c-(a+b)*(a^2+b^2)*c^2-(a+b)^2*c^3)*(a^2*(a-b)*(a+b)^2+a*(a-b)*(a+b)*(a+2*b)*c-b^2*(a+b)*c^2+(2*a-b)*b*c^3+(a+b)*c^4+c^5) : :

X(58014) lies on these lines: {69, 40828}, {76, 37415}, {86, 57905}, {264, 940}, {311, 40827}, {313, 14829}, {31643, 56412}

X(58014) = isotomic conjugate of X(970)
X(58014) = trilinear pole of line {850, 17496}
X(58014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37415)}}, {{A, B, C, X(69), X(940)}}, {{A, B, C, X(75), X(18021)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(86), X(95)}}, {{A, B, C, X(309), X(6384)}}, {{A, B, C, X(1441), X(34384)}}, {{A, B, C, X(8795), X(40149)}}
X(58014) = barycentric product X(i)*X(j) for these (i, j): {57745, 76}
X(58014) = barycentric quotient X(i)/X(j) for these (i, j): {2, 970}, {57745, 6}


X(58015) = ISOTOMIC CONJUGATE OF X(973)

Barycentrics    b^2*c^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(3*b^2+2*c^2)+a^6*(2*b^4+b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(3*b^4+3*b^2*c^2+2*c^4)+a^4*(2*b^6+b^4*c^2+4*b^2*c^4+c^6))*(a^10+(b^2-c^2)^4*(b^2+c^2)-a^8*(2*b^2+3*c^2)+a^6*(b^4+b^2*c^2+2*c^4)-a^2*(b^2-c^2)^2*(2*b^4+3*b^2*c^2+3*c^4)+a^4*(b^6+4*b^4*c^2+b^2*c^4+2*c^6)) : :

X(58015) lies on these lines: {95, 28706}, {275, 311}

X(58015) = isotomic conjugate of X(973)
X(58015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(311)}}, {{A, B, C, X(95), X(275)}}
X(58015) = barycentric product X(i)*X(j) for these (i, j): {57746, 76}
X(58015) = barycentric quotient X(i)/X(j) for these (i, j): {2, 973}, {57746, 6}


X(58016) = ISOTOMIC CONJUGATE OF X(974)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4*(a^4+a^2*b^2+b^4)-3*(a^2-b^2)^2*(a^6-2*a^4*b^2-2*a^2*b^4+b^6)*c^2+(a^2-b^2)^2*(2*a^4-7*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*(2*a^4-3*a^2*b^2+2*b^4)*c^6+(-3*a^4+2*a^2*b^2-3*b^4)*c^8+(a^2+b^2)*c^10)*(a^12-3*a^10*(b^2+c^2)+c^2*(b^2-c^2)^4*(b^2+c^2)+a^8*(2*b^4+12*b^2*c^2+3*c^4)+a^2*(b^2-c^2)^2*(b^6+4*b^4*c^2+6*b^2*c^4-3*c^6)+a^6*(2*b^6-11*b^4*c^2-9*b^2*c^4-2*c^6)-a^4*(3*b^8+b^6*c^2-18*b^4*c^4+9*b^2*c^6-3*c^8)) : :

X(58016) lies on these lines: {38937, 52552}, {44138, 57747}, {57487, 57819}

X(58016) = isotomic conjugate of X(974)
X(58016) = X(i)-cross conjugate of X(j) for these {i, j}: {2394, 6331}
X(58016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(3260)}}, {{A, B, C, X(95), X(18020)}}, {{A, B, C, X(264), X(44138)}}, {{A, B, C, X(340), X(34405)}}
X(58016) = barycentric product X(i)*X(j) for these (i, j): {57747, 76}
X(58016) = barycentric quotient X(i)/X(j) for these (i, j): {2, 974}, {57747, 6}


X(58017) = ISOTOMIC CONJUGATE OF X(975)

Barycentrics    b*c*((a+b)^3+(a^2+4*a*b+b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+3*c)+a*(b+c)*(b+3*c)+(b+c)*(b^2+c^2)) : :

X(58017) lies on these lines: {27, 19804}, {75, 52258}, {86, 57748}, {5936, 20336}, {18156, 30598}, {26580, 39700}, {26627, 56047}

X(58017) = isotomic conjugate of X(975)
X(58017) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 975}, {32, 19822}
X(58017) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 975}, {6376, 19822}
X(58017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(34)}}, {{A, B, C, X(28), X(31359)}}, {{A, B, C, X(85), X(313)}}, {{A, B, C, X(158), X(34265)}}, {{A, B, C, X(256), X(46010)}}, {{A, B, C, X(264), X(274)}}, {{A, B, C, X(286), X(34258)}}, {{A, B, C, X(751), X(1169)}}, {{A, B, C, X(3718), X(30608)}}, {{A, B, C, X(7182), X(19804)}}
X(58017) = barycentric product X(i)*X(j) for these (i, j): {57748, 76}
X(58017) = barycentric quotient X(i)/X(j) for these (i, j): {2, 975}, {75, 19822}, {57748, 6}


X(58018) = ISOTOMIC CONJUGATE OF X(976)

Barycentrics    b*c*((a+b)*(a^2+b^2)+c^3)*(b^3+(a+c)*(a^2+c^2)) : :

X(58018) lies on these lines: {2, 2064}, {7, 315}, {27, 19805}, {75, 24995}, {86, 977}, {272, 274}, {335, 4812}, {675, 833}, {903, 57976}, {1240, 17861}, {1441, 56358}, {14621, 56342}, {15467, 20567}, {27475, 27477}, {36503, 44733}, {40075, 57923}

X(58018) = isotomic conjugate of X(976)
X(58018) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2273}, {31, 976}, {32, 32777}, {100, 8636}, {184, 5090}, {228, 17520}, {692, 832}, {32739, 48300}
X(58018) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 976}, {9, 2273}, {1086, 832}, {6376, 32777}, {8054, 8636}, {40619, 48300}, {52657, 22398}
X(58018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36568)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(28082)}}, {{A, B, C, X(264), X(3112)}}, {{A, B, C, X(274), X(20567)}}, {{A, B, C, X(286), X(561)}}, {{A, B, C, X(315), X(44130)}}, {{A, B, C, X(350), X(4812)}}, {{A, B, C, X(870), X(1441)}}, {{A, B, C, X(976), X(987)}}, {{A, B, C, X(2064), X(6063)}}, {{A, B, C, X(2997), X(7018)}}, {{A, B, C, X(3596), X(33940)}}, {{A, B, C, X(4357), X(17861)}}, {{A, B, C, X(7357), X(18812)}}, {{A, B, C, X(10436), X(36503)}}, {{A, B, C, X(18891), X(31905)}}, {{A, B, C, X(19805), X(20336)}}, {{A, B, C, X(24995), X(39712)}}, {{A, B, C, X(36499), X(36505)}}
X(58018) = barycentric product X(i)*X(j) for these (i, j): {76, 977}, {514, 57976}, {561, 56342}, {3261, 833}
X(58018) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2273}, {2, 976}, {27, 17520}, {75, 32777}, {92, 5090}, {514, 832}, {649, 8636}, {693, 48300}, {833, 101}, {977, 6}, {982, 22398}, {56342, 31}, {57976, 190}


X(58019) = ISOTOMIC CONJUGATE OF X(978)

Barycentrics    -(b*c*(-(a*b*(a+b))+(a^2-a*b+b^2)*c+(a+b)*c^2)*(a^2*(b-c)+b*c*(b+c)+a*(b^2-b*c-c^2))) : :

X(58019) lies on these lines: {2, 17786}, {7, 2899}, {27, 19806}, {75, 3831}, {86, 979}, {313, 6384}, {322, 18149}, {335, 20923}, {350, 39741}, {673, 56279}, {675, 53625}, {1246, 18147}, {3596, 46827}, {4110, 28244}, {4360, 32011}, {16099, 18749}, {18133, 39704}, {18743, 44733}, {20891, 27494}, {23794, 57187}, {27633, 56247}, {30598, 56249}, {30712, 39701}, {30963, 40418}, {39707, 39995}, {42696, 56163}, {52138, 55970}

X(58019) = isotomic conjugate of X(978)
X(58019) = trilinear pole of line {21438, 23685}
X(58019) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 21769}, {25, 20805}, {31, 978}, {32, 3210}, {604, 3169}, {1252, 16614}, {1333, 21857}, {1397, 19582}
X(58019) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 978}, {9, 21769}, {37, 21857}, {661, 16614}, {3161, 3169}, {6376, 3210}, {6505, 20805}
X(58019) = X(i)-cross conjugate of X(j) for these {i, j}: {3596, 75}, {40012, 40014}, {46827, 2}
X(58019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3831)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(264), X(334)}}, {{A, B, C, X(286), X(7033)}}, {{A, B, C, X(291), X(34445)}}, {{A, B, C, X(313), X(6376)}}, {{A, B, C, X(314), X(36805)}}, {{A, B, C, X(341), X(2899)}}, {{A, B, C, X(350), X(20923)}}, {{A, B, C, X(749), X(1400)}}, {{A, B, C, X(978), X(46827)}}, {{A, B, C, X(1221), X(40031)}}, {{A, B, C, X(2997), X(7035)}}, {{A, B, C, X(3445), X(7241)}}, {{A, B, C, X(3596), X(40012)}}, {{A, B, C, X(4479), X(29982)}}, {{A, B, C, X(6383), X(32020)}}, {{A, B, C, X(17743), X(18812)}}, {{A, B, C, X(18135), X(28660)}}, {{A, B, C, X(18827), X(39970)}}, {{A, B, C, X(19806), X(20336)}}, {{A, B, C, X(20891), X(30963)}}, {{A, B, C, X(24172), X(39714)}}, {{A, B, C, X(27424), X(45242)}}, {{A, B, C, X(31359), X(39983)}}, {{A, B, C, X(31643), X(32017)}}, {{A, B, C, X(39994), X(54121)}}, {{A, B, C, X(40017), X(40025)}}, {{A, B, C, X(42027), X(52654)}}
X(58019) = barycentric product X(i)*X(j) for these (i, j): {76, 979}, {3261, 53625}, {39694, 75}, {39701, 40014}, {56276, 85}, {56279, 6063}
X(58019) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21769}, {2, 978}, {8, 3169}, {10, 21857}, {63, 20805}, {75, 3210}, {244, 16614}, {312, 19582}, {979, 6}, {39694, 1}, {39701, 1743}, {40014, 27835}, {53625, 101}, {56276, 9}, {56279, 55}


X(58020) = ISOTOMIC CONJUGATE OF X(980)

Barycentrics    b*c*(a^3*(b+c)+a^2*c*(b+c)+b^2*c*(b+c)+a*b*(b^2+b*c+c^2))*(a^3*(b+c)+a^2*b*(b+c)+b*c^2*(b+c)+a*c*(b^2+b*c+c^2)) : :

X(58020) lies on these lines: {2, 40072}, {6, 314}, {25, 31623}, {37, 3596}, {42, 312}, {75, 1400}, {76, 39957}, {264, 1880}, {274, 39981}, {941, 28809}, {1169, 52550}, {1218, 1502}, {1427, 6063}, {3696, 34258}, {4417, 7018}, {16606, 44417}, {34284, 42290}, {36796, 56853}

X(58020) = isotomic conjugate of X(980)
X(58020) = trilinear pole of line {4391, 48080}
X(58020) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2274}, {31, 980}, {604, 35628}, {1468, 45787}
X(58020) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 980}, {9, 2274}, {3161, 35628}
X(58020) = X(i)-cross conjugate of X(j) for these {i, j}: {47975, 668}
X(58020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(4), X(40827)}}, {{A, B, C, X(57), X(42328)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(81), X(42358)}}, {{A, B, C, X(92), X(6385)}}, {{A, B, C, X(192), X(44417)}}, {{A, B, C, X(274), X(9311)}}, {{A, B, C, X(321), X(1502)}}, {{A, B, C, X(330), X(34434)}}, {{A, B, C, X(335), X(32931)}}, {{A, B, C, X(469), X(14012)}}, {{A, B, C, X(871), X(3112)}}, {{A, B, C, X(1221), X(27475)}}, {{A, B, C, X(1500), X(5283)}}, {{A, B, C, X(2051), X(42027)}}, {{A, B, C, X(3696), X(3714)}}, {{A, B, C, X(3739), X(41839)}}, {{A, B, C, X(4417), X(27958)}}, {{A, B, C, X(4699), X(35652)}}, {{A, B, C, X(13476), X(39694)}}, {{A, B, C, X(14534), X(32085)}}, {{A, B, C, X(27318), X(30863)}}, {{A, B, C, X(27483), X(32915)}}, {{A, B, C, X(37870), X(39737)}}, {{A, B, C, X(39735), X(40012)}}, {{A, B, C, X(40828), X(41013)}}
X(58020) = barycentric product X(i)*X(j) for these (i, j): {76, 981}
X(58020) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2274}, {2, 980}, {8, 35628}, {314, 52196}, {941, 45787}, {981, 6}


X(58021) = ISOTOMIC CONJUGATE OF X(986)

Barycentrics    b*c*(a^3+b^3+(a^2+a*b+b^2)*c)*(a^3+a^2*b+a*b*c+c^2*(b+c)) : :

X(58021) lies on these lines: {1, 3596}, {6, 312}, {8, 43070}, {34, 264}, {56, 75}, {58, 314}, {69, 1431}, {86, 4485}, {242, 51686}, {269, 6063}, {292, 2345}, {309, 1413}, {350, 56328}, {1240, 49487}, {1411, 20566}, {1438, 36796}, {1474, 27958}, {2163, 10447}, {3757, 34445}, {4362, 57399}, {5224, 17954}, {5736, 18059}, {9432, 17777}, {10455, 39949}, {11679, 34258}, {20565, 52372}, {40746, 52652}

X(58021) = isotomic conjugate of X(986)
X(58021) = trilinear pole of line {649, 4391}
X(58021) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2277}, {31, 986}, {32, 27184}
X(58021) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 986}, {9, 2277}, {6376, 27184}
X(58021) = X(i)-cross conjugate of X(j) for these {i, j}: {17418, 190}
X(58021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(1999)}}, {{A, B, C, X(7), X(3112)}}, {{A, B, C, X(10), X(17733)}}, {{A, B, C, X(29), X(37091)}}, {{A, B, C, X(69), X(336)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(242), X(350)}}, {{A, B, C, X(256), X(56138)}}, {{A, B, C, X(261), X(2985)}}, {{A, B, C, X(274), X(30022)}}, {{A, B, C, X(286), X(6384)}}, {{A, B, C, X(310), X(2997)}}, {{A, B, C, X(756), X(32915)}}, {{A, B, C, X(873), X(28626)}}, {{A, B, C, X(894), X(2998)}}, {{A, B, C, X(903), X(10435)}}, {{A, B, C, X(969), X(40418)}}, {{A, B, C, X(1218), X(4601)}}, {{A, B, C, X(1246), X(18827)}}, {{A, B, C, X(1826), X(3923)}}, {{A, B, C, X(2296), X(56048)}}, {{A, B, C, X(3741), X(4362)}}, {{A, B, C, X(3757), X(10453)}}, {{A, B, C, X(4360), X(10455)}}, {{A, B, C, X(4373), X(39744)}}, {{A, B, C, X(5224), X(19623)}}, {{A, B, C, X(5936), X(7035)}}, {{A, B, C, X(10436), X(25430)}}, {{A, B, C, X(13478), X(18812)}}, {{A, B, C, X(17164), X(25253)}}, {{A, B, C, X(18147), X(19808)}}, {{A, B, C, X(20028), X(35058)}}, {{A, B, C, X(24174), X(25079)}}, {{A, B, C, X(24443), X(25591)}}, {{A, B, C, X(26076), X(27922)}}, {{A, B, C, X(26734), X(40013)}}, {{A, B, C, X(29651), X(42057)}}, {{A, B, C, X(30598), X(37870)}}, {{A, B, C, X(31643), X(32017)}}
X(58021) = barycentric product X(i)*X(j) for these (i, j): {76, 987}, {56046, 75}, {56202, 85}
X(58021) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2277}, {2, 986}, {75, 27184}, {987, 6}, {56046, 1}, {56202, 9}


X(58022) = ISOTOMIC CONJUGATE OF X(988)

Barycentrics    b*c*(a^3-b^3+b^2*c+3*b*c^2+c^3+a^2*(3*b+c)+a*(b^2+c^2))*(a^3+a^2*(b+3*c)+(b+c)*(b^2+2*b*c-c^2)+a*(b^2+c^2)) : :

X(58022) lies on these lines: {75, 1788}, {309, 1909}, {312, 17314}, {314, 989}, {322, 7018}, {3596, 4078}, {30758, 40072}

X(58022) = isotomic conjugate of X(988)
X(58022) = trilinear pole of line {4391, 28478}
X(58022) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5530)}}, {{A, B, C, X(37), X(3751)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(273), X(3112)}}, {{A, B, C, X(313), X(4385)}}, {{A, B, C, X(322), X(1909)}}, {{A, B, C, X(393), X(1220)}}, {{A, B, C, X(1000), X(1222)}}, {{A, B, C, X(1502), X(40023)}}
X(58022) = barycentric product X(i)*X(j) for these (i, j): {76, 989}
X(58022) = barycentric quotient X(i)/X(j) for these (i, j): {2, 988}, {989, 6}


X(58023) = ISOTOMIC CONJUGATE OF X(990)

Barycentrics    b*c*((a-b)^2*(a+b)^3-(a-b)^2*(a^2+b^2)*c-2*a*b*c^3-(a+b)*c^4+c^5)*(a^5+2*a^3*(b-c)*c+a^4*(-b+c)-2*a^2*c^2*(b+c)-a*(b-c)*(b+c)^3+(b-c)^2*(b+c)*(b^2+c^2)) : :

X(58023) lies on these lines: {280, 1231}, {318, 35517}, {322, 2322}, {341, 18738}, {1043, 56139}, {7182, 18025}

X(58023) = isotomic conjugate of X(990)
X(58023) = trilinear pole of line {3239, 23806}
X(58023) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(8), X(75)}}, {{A, B, C, X(69), X(30701)}}, {{A, B, C, X(76), X(46137)}}, {{A, B, C, X(95), X(32019)}}, {{A, B, C, X(264), X(274)}}, {{A, B, C, X(273), X(9311)}}, {{A, B, C, X(312), X(7182)}}, {{A, B, C, X(313), X(322)}}, {{A, B, C, X(990), X(12618)}}, {{A, B, C, X(20570), X(40440)}}, {{A, B, C, X(35164), X(40028)}}
X(58023) = barycentric product X(i)*X(j) for these (i, j): {56139, 76}
X(58023) = barycentric quotient X(i)/X(j) for these (i, j): {2, 990}, {56139, 6}


X(58024) = ISOTOMIC CONJUGATE OF X(991)

Barycentrics    b^2*c^2*(a^4-a^3*(b+c)+b*(b-c)^2*(b+c)-a^2*c*(b+c)-a*(b-c)*(b+c)^2)*(a^4-a^3*(b+c)-a^2*b*(b+c)+(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^2) : :

X(58024) lies on these lines: {8, 349}, {76, 1043}, {264, 2322}, {313, 346}, {318, 52575}, {341, 27801}, {480, 34388}, {6063, 18025}, {16992, 30737}, {26592, 37658}

X(58024) = isotomic conjugate of X(991)
X(58024) = trilinear pole of line {850, 3239}
X(58024) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 991}, {32, 24635}, {1397, 41228}, {9247, 37448}
X(58024) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 991}, {6376, 24635}
X(58024) = X(i)-cross conjugate of X(j) for these {i, j}: {26592, 76}, {48888, 2}
X(58024) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(26003)}}, {{A, B, C, X(4), X(13727)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(69), X(17277)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(92), X(15467)}}, {{A, B, C, X(274), X(46137)}}, {{A, B, C, X(310), X(44186)}}, {{A, B, C, X(870), X(35164)}}, {{A, B, C, X(991), X(48888)}}, {{A, B, C, X(4417), X(16992)}}, {{A, B, C, X(6063), X(7017)}}, {{A, B, C, X(39717), X(53210)}}
X(58024) = barycentric product X(i)*X(j) for these (i, j): {56144, 76}
X(58024) = barycentric quotient X(i)/X(j) for these (i, j): {2, 991}, {75, 24635}, {264, 37448}, {312, 41228}, {56144, 6}


X(58025) = ISOTOMIC CONJUGATE OF X(992)

Barycentrics    b*c*(a*b*(a+b)^2+a*b*(a+b)*c-(a^2+b^2)*c^2-(a+b)*c^3)*(a^3*c-a^2*(b-2*c)*(b+c)-b^2*c*(b+c)+a*(-b^3+b*c^2+c^3)) : :

X(58025) lies on the Kiepert hyperbola and these lines: {2, 57749}, {10, 24575}, {226, 18140}, {28660, 40013}, {30022, 40012}, {37042, 40718}, {43534, 46937}, {50411, 54119}

X(58025) = isotomic conjugate of X(992)
X(58025) = trilinear pole of line {23684, 523}
X(58025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(85), X(308)}}, {{A, B, C, X(334), X(9239)}}, {{A, B, C, X(1016), X(55036)}}, {{A, B, C, X(3144), X(50411)}}, {{A, B, C, X(18135), X(30022)}}, {{A, B, C, X(18140), X(20568)}}, {{A, B, C, X(24575), X(40763)}}, {{A, B, C, X(31909), X(37042)}}, {{A, B, C, X(32020), X(44129)}}, {{A, B, C, X(40010), X(40827)}}
X(58025) = barycentric product X(i)*X(j) for these (i, j): {57749, 76}
X(58025) = barycentric quotient X(i)/X(j) for these (i, j): {2, 992}, {57749, 6}


X(58026) = ISOTOMIC CONJUGATE OF X(993)

Barycentrics    b*c*(a*b*(a+b)+(a^2+b^2)*c-c^3)*(-b^3+a*c^2+b*c^2+a^2*(b+c)) : :

X(58026) lies on these lines: {1, 14616}, {75, 758}, {86, 2995}, {313, 45095}, {321, 3262}, {561, 35550}, {1441, 5224}, {2997, 4360}, {4957, 5718}, {7951, 20566}, {16739, 58013}, {39149, 44188}, {52031, 57788}

X(58026) = isotomic conjugate of X(993)
X(58026) = trilinear pole of line {1577, 2610}
X(58026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2278}, {31, 993}, {32, 1150}, {184, 5136}, {692, 55969}, {1397, 49492}, {32739, 48321}
X(58026) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 993}, {9, 2278}, {1086, 55969}, {6376, 1150}, {40619, 48321}, {40622, 51659}, {46398, 14299}
X(58026) = X(i)-cross conjugate of X(j) for these {i, j}: {3822, 2}, {26580, 76}
X(58026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(12)}}, {{A, B, C, X(2), X(20566)}}, {{A, B, C, X(5), X(37694)}}, {{A, B, C, X(7), X(20565)}}, {{A, B, C, X(36), X(7951)}}, {{A, B, C, X(75), X(92)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(86), X(264)}}, {{A, B, C, X(87), X(3613)}}, {{A, B, C, X(262), X(37129)}}, {{A, B, C, X(274), X(40828)}}, {{A, B, C, X(333), X(1268)}}, {{A, B, C, X(693), X(39704)}}, {{A, B, C, X(751), X(45964)}}, {{A, B, C, X(903), X(6063)}}, {{A, B, C, X(993), X(3822)}}, {{A, B, C, X(994), X(45095)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1218), X(44187)}}, {{A, B, C, X(1221), X(1502)}}, {{A, B, C, X(1227), X(14628)}}, {{A, B, C, X(1494), X(40419)}}, {{A, B, C, X(2994), X(5936)}}, {{A, B, C, X(3263), X(4664)}}, {{A, B, C, X(3264), X(6376)}}, {{A, B, C, X(4293), X(10590)}}, {{A, B, C, X(5219), X(5718)}}, {{A, B, C, X(5252), X(37716)}}, {{A, B, C, X(9307), X(40433)}}, {{A, B, C, X(10013), X(13481)}}, {{A, B, C, X(14387), X(18299)}}, {{A, B, C, X(17160), X(33933)}}, {{A, B, C, X(18575), X(55919)}}, {{A, B, C, X(18760), X(35149)}}, {{A, B, C, X(18815), X(30690)}}, {{A, B, C, X(20567), X(39735)}}, {{A, B, C, X(20569), X(33934)}}, {{A, B, C, X(22030), X(42285)}}, {{A, B, C, X(31359), X(41013)}}, {{A, B, C, X(31643), X(46133)}}, {{A, B, C, X(32020), X(40826)}}, {{A, B, C, X(35058), X(39769)}}, {{A, B, C, X(35145), X(39717)}}, {{A, B, C, X(36598), X(45108)}}, {{A, B, C, X(52031), X(52553)}}, {{A, B, C, X(55958), X(56365)}}
X(58026) = barycentric product X(i)*X(j) for these (i, j): {76, 994}, {274, 45095}, {46018, 561}
X(58026) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2278}, {2, 993}, {75, 1150}, {92, 5136}, {312, 49492}, {514, 55969}, {693, 48321}, {994, 6}, {7178, 51659}, {10015, 14299}, {45095, 37}, {46018, 31}


X(58027) = ISOTOMIC CONJUGATE OF X(995)

Barycentrics    b^2*c^2*(a^2+a*(-b+c)+b*(b+c))*(a^2+a*(b-c)+c*(b+c)) : :

X(58027) lies on these lines: {2, 3264}, {7, 313}, {27, 7017}, {75, 1739}, {76, 903}, {86, 996}, {183, 675}, {310, 40363}, {350, 56166}, {1237, 18815}, {1269, 4373}, {3261, 6548}, {7249, 35550}, {14621, 17790}, {17160, 32011}, {18043, 35516}, {28654, 37674}, {30596, 39707}, {39716, 41316}, {55942, 56047}

X(58027) = isotomic conjugate of X(995)
X(58027) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 23206}, {31, 995}, {32, 4850}, {228, 4247}, {560, 4389}, {604, 4266}, {692, 9002}, {1397, 3877}, {1501, 33934}, {1576, 48350}, {2205, 16712}, {2206, 4424}, {20973, 28607}, {32739, 48335}
X(58027) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 995}, {1086, 9002}, {3161, 4266}, {4858, 48350}, {6374, 4389}, {6376, 4850}, {6505, 23206}, {36901, 50453}, {36911, 20973}, {40603, 4424}, {40619, 48335}
X(58027) = X(i)-cross conjugate of X(j) for these {i, j}: {4791, 1978}, {17720, 57906}
X(58027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(30116)}}, {{A, B, C, X(76), X(3261)}}, {{A, B, C, X(291), X(46018)}}, {{A, B, C, X(308), X(6383)}}, {{A, B, C, X(313), X(3596)}}, {{A, B, C, X(330), X(10566)}}, {{A, B, C, X(514), X(9462)}}, {{A, B, C, X(561), X(20566)}}, {{A, B, C, X(596), X(1739)}}, {{A, B, C, X(957), X(34860)}}, {{A, B, C, X(1002), X(41683)}}, {{A, B, C, X(1224), X(34265)}}, {{A, B, C, X(1237), X(35550)}}, {{A, B, C, X(7033), X(14616)}}, {{A, B, C, X(7241), X(34445)}}, {{A, B, C, X(17790), X(33931)}}, {{A, B, C, X(18816), X(32017)}}, {{A, B, C, X(19807), X(20336)}}, {{A, B, C, X(44130), X(44147)}}
X(58027) = barycentric product X(i)*X(j) for these (i, j): {76, 996}, {313, 55942}, {3261, 9059}, {40401, 561}
X(58027) = barycentric quotient X(i)/X(j) for these (i, j): {2, 995}, {8, 4266}, {27, 4247}, {63, 23206}, {75, 4850}, {76, 4389}, {310, 16712}, {312, 3877}, {313, 26580}, {321, 4424}, {514, 9002}, {561, 33934}, {693, 48335}, {850, 50453}, {996, 6}, {1577, 48350}, {3261, 44435}, {3596, 5233}, {3679, 20973}, {4671, 17461}, {9059, 101}, {32686, 32719}, {36091, 32665}, {40401, 31}, {40426, 2163}, {55942, 58}


X(58028) = ISOTOMIC CONJUGATE OF X(997)

Barycentrics    b*c*(a^3+a^2*b+a*b^2+b^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)+a*(-b^2+2*b*c+c^2)) : :

X(58028) lies on these lines: {2, 3262}, {7, 5080}, {75, 1737}, {86, 998}, {673, 8257}, {675, 9058}, {903, 3673}, {1441, 7318}, {3264, 57925}, {4360, 40424}, {17160, 56026}, {17863, 39695}, {37788, 39749}

X(58028) = isotomic conjugate of X(997)
X(58028) = trilinear pole of line {36038, 514}
X(58028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 11383}, {31, 997}, {32, 17740}, {55, 1470}, {213, 26637}, {228, 4227}, {692, 9001}, {34446, 52148}, {34858, 41389}
X(58028) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 997}, {223, 1470}, {1086, 9001}, {6376, 17740}, {6626, 26637}, {16586, 41389}, {36103, 11383}
X(58028) = X(i)-cross conjugate of X(j) for these {i, j}: {1478, 92}, {3306, 85}
X(58028) = pole of line {997, 26637} with respect to the Wallace hyperbola
X(58028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1737)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(10), X(17098)}}, {{A, B, C, X(85), X(1969)}}, {{A, B, C, X(91), X(43531)}}, {{A, B, C, X(92), X(20566)}}, {{A, B, C, X(158), X(1220)}}, {{A, B, C, X(264), X(20928)}}, {{A, B, C, X(286), X(3596)}}, {{A, B, C, X(312), X(14616)}}, {{A, B, C, X(313), X(40149)}}, {{A, B, C, X(318), X(5080)}}, {{A, B, C, X(751), X(18771)}}, {{A, B, C, X(860), X(11116)}}, {{A, B, C, X(997), X(7284)}}, {{A, B, C, X(1389), X(31359)}}, {{A, B, C, X(1441), X(20930)}}, {{A, B, C, X(2995), X(20570)}}, {{A, B, C, X(3264), X(3673)}}, {{A, B, C, X(3668), X(39947)}}, {{A, B, C, X(8257), X(9436)}}, {{A, B, C, X(9311), X(10566)}}, {{A, B, C, X(15179), X(34860)}}, {{A, B, C, X(18816), X(32023)}}, {{A, B, C, X(34393), X(40420)}}
X(58028) = barycentric product X(i)*X(j) for these (i, j): {76, 998}, {3261, 9058}, {30513, 85}
X(58028) = barycentric quotient X(i)/X(j) for these (i, j): {2, 997}, {19, 11383}, {27, 4227}, {57, 1470}, {75, 17740}, {86, 26637}, {514, 9001}, {908, 41389}, {998, 6}, {3306, 52148}, {9058, 101}, {30513, 9}, {36090, 32641}, {45998, 2267}


X(58029) = ISOTOMIC CONJUGATE OF X(999)

Barycentrics    b^2*c^2*(a^2-4*a*b+b^2-c^2)*(a^2-b^2-4*a*c+c^2) : :

X(58029) lies on these lines: {8, 18816}, {75, 6735}, {76, 51984}, {264, 20895}, {312, 3264}, {314, 1000}, {1056, 57827}, {3262, 6063}, {4397, 33089}, {9708, 57881}, {17757, 58007}, {30680, 31623}, {32087, 40422}, {35516, 44186}, {36796, 36916}, {40875, 52652}

X(58029) = isotomic conjugate of X(999)
X(58029) = trilinear pole of line {4391, 47790}
X(58029) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 999}, {32, 3306}, {56, 52428}, {560, 42697}, {604, 55432}, {667, 35281}, {1397, 3872}, {1501, 20925}, {1973, 22129}, {2206, 3753}, {9447, 17079}, {52434, 56426}
X(58029) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52428}, {2, 999}, {3161, 55432}, {6337, 22129}, {6374, 42697}, {6376, 3306}, {6631, 35281}, {40603, 3753}
X(58029) = X(i)-cross conjugate of X(j) for these {i, j}: {3820, 2}, {4671, 76}
X(58029) = pole of line {999, 22129} with respect to the Wallace hyperbola
X(58029) = intersection, other than A, B, C, of these circumconics: {{A, B, C, X(8), X(3262)}}, {{A, B, C, X(69), X(20895)}}, {{A, B, C, X(75), X(264)}}, {{A, B, C, X(76), X(3261)}}, {{A, B, C, X(86), X(42339)}}, {{A, B, C, X(95), X(30479)}}, {{A, B, C, X(100), X(33089)}}, {{A, B, C, X(189), X(5936)}}, {{A, B, C, X(262), X(4492)}}, {{A, B, C, X(313), X(40018)}}, {{A, B, C, X(495), X(9708)}}, {{A, B, C, X(693), X(36588)}}, {{A, B, C, X(903), X(32023)}}, {{A, B, C, X(956), X(17757)}}, {{A, B, C, X(999), X(3820)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1219), X(3701)}}, {{A, B, C, X(1268), X(40420)}}, {{A, B, C, X(1441), X(6539)}}, {{A, B, C, X(1494), X(8817)}}, {{A, B, C, X(3263), X(50107)}}, {{A, B, C, X(4441), X(37788)}}, {{A, B, C, X(4451), X(56179)}}, {{A, B, C, X(7241), X(9307)}}, {{A, B, C, X(17862), X(44140)}}, {{A, B, C, X(31360), X(40099)}}, {{A, B, C, X(33931), X(40875)}}, {{A, B, C, X(34393), X(56026)}}, {{A, B, C, X(40012), X(40039)}}, {{A, B, C, X(40023), X(44190)}}, {{A, B, C, X(44130), X(44149)}}
X(58029) = barycentric product X(i)*X(j) for these (i, j): {264, 30680}, {349, 56107}, {1000, 76}, {1502, 34446}, {3261, 51564}, {20567, 52429}, {36916, 6063}
X(58029) = barycentric quotient X(i)/X(j) for these (i, j): {2, 999}, {8, 55432}, {9, 52428}, {69, 22129}, {75, 3306}, {76, 42697}, {190, 35281}, {312, 3872}, {313, 4054}, {321, 3753}, {561, 20925}, {1000, 6}, {3261, 21183}, {3596, 28808}, {4671, 40587}, {6063, 17079}, {14556, 1191}, {17740, 52148}, {18359, 56426}, {26591, 39779}, {30680, 3}, {31018, 1480}, {31623, 17519}, {34446, 32}, {36596, 2316}, {36916, 55}, {51564, 101}, {52429, 41}, {56107, 284}


X(58030) = X(5)X(6)∩X(3070)X(42808)

Barycentrics    Sqrt[6]*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) - 4*(a^4 - 2*a^2*b^2 + 3*b^4 - 2*a^2*c^2 - 6*b^2*c^2 + 3*c^4)*S : :

X(58030) lies on the Evans conic and these lines: {5, 6}, {3070, 42808}, {3071, 42807}, {3526, 42560}, {3843, 42559}, {5334, 14782}, {5335, 14783}, {11488, 14784}, {11489, 14785}, {14813, 41976}, {14814, 41975}, {15765, 41979}, {18585, 41980}


X(58031) = X(5)X(6)∩X(3070)X(42807)

Barycentrics    Sqrt[6]*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) + 4*(a^4 - 2*a^2*b^2 + 3*b^4 - 2*a^2*c^2 - 6*b^2*c^2 + 3*c^4)*S : :

X(58031) lies on the Evans conic and these lines: {5, 6}, {3070, 42807}, {3071, 42808}, {3526, 42559}, {3843, 42560}, {5334, 14783}, {5335, 14782}, {11488, 14785}, {11489, 14784}, {14813, 41975}, {14814, 41976}, {15765, 41980}, {18585, 41979}


X(58032) = X(2)X(49312)∩X(99)X(141)

Barycentrics    3*a^6*b^2 - 4*a^4*b^4 - b^8 + 3*a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + 4*b^4*c^4 - b^2*c^6 - c^8 - 2*(2*a^6 - a^4*b^2 - a^2*b^4 - b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - c^6)*S : :
X(58032) = 3 X[3070] - 4 X[50722], 2 X[8997] - 3 X[32497]

X(58032) lies on the Evans conic and these lines: {2, 49312}, {69, 49368}, {98, 53479}, {99, 141}, {115, 615}, {148, 492}, {230, 13653}, {490, 13758}, {542, 41945}, {590, 12042}, {1151, 33431}, {2782, 3071}, {3070, 6036}, {6034, 13972}, {8997, 10991}, {13749, 33372}, {13882, 22502}, {14061, 45872}, {14639, 45860}, {21736, 49310}, {33340, 44531}, {35783, 35824}, {38224, 49103}, {41953, 50721}, {41955, 50724}, {44390, 53419}


X(58033) = X(2)X(49311)∩X(99)X(141)

Barycentrics    3*a^6*b^2 - 4*a^4*b^4 - b^8 + 3*a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + 4*b^4*c^4 - b^2*c^6 - c^8 + 2*(2*a^6 - a^4*b^2 - a^2*b^4 - b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 - c^6)*S : :
X(58033) = 3 X[3071] - 4 X[50721], 2 X[13989] - 3 X[32494]

X(58033) lies on the Evans conic and these lines: {2, 49311}, {69, 49367}, {98, 53480}, {99, 141}, {115, 590}, {148, 491}, {230, 13773}, {489, 13638}, {542, 41946}, {615, 12042}, {1152, 33430}, {2782, 3070}, {3071, 6036}, {6034, 13910}, {10991, 13989}, {13748, 33373}, {13934, 22501}, {14061, 45871}, {14639, 45861}, {33341, 44531}, {35782, 35825}, {38224, 49104}, {41954, 50722}, {41956, 50723}, {44391, 53419}


X(58034) = X(1)X(85)∩X39)X(16365)

Barycentrics    a*(a^4*b^2 - 2*a^3*b^3 + a^2*b^4 - a^4*b*c + a^3*b^2*c + a^2*b^3*c - a*b^4*c + a^4*c^2 + a^3*b*c^2 - 3*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 - 2*a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 + a^2*c^4 - a*b*c^4 - b^2*c^4) : :

X(58034) lies on the excentral-hexyl ellipse and these lines: {1, 85}, {3, 16365}, {4, 6196}, {40, 6310}, {84, 43748}, {101, 39341}, {170, 21214}, {291, 2808}, {515, 3510}, {663, 9317}, {1044, 41403}, {1045, 2783}, {1053, 4040}, {1054, 2821}, {1447, 3010}, {1721, 1740}, {1742, 3576}, {1768, 5539}, {2636, 2640}, {2664, 9441}, {2951, 46943}, {3022, 43063}, {3309, 34460}, {3783, 28849}, {5272, 56380}, {5400, 16576}, {5527, 47623}, {5538, 34996}, {5851, 24722}, {8924, 55004}, {9318, 46177}, {9355, 9359}, {37527, 40737}, {39954, 55288}

X(58034) = excentral-isogonal conjugate of X(4063)
X(58034) = X(i)-Ceva conjugate of X(j) for these (i,j): {663, 1}, {9317, 5540}
X(58034) = X(4554)-Dao conjugate of X(4572)
X(58034) = crossdifference of every pair of points on line {21320, 46388}


X(58035) = X(1)X(85)∩X63)X(100)

Barycentrics    a*(a^6*b - 3*a^5*b^2 + 2*a^4*b^3 + 2*a^3*b^4 - 3*a^2*b^5 + a*b^6 + a^6*c - 2*a^5*b*c - a^4*b^2*c + 4*a^3*b^3*c - a^2*b^4*c - 2*a*b^5*c + b^6*c - 3*a^5*c^2 - a^4*b*c^2 + 3*a*b^4*c^2 + b^5*c^2 + 2*a^4*c^3 + 4*a^3*b*c^3 - 4*a*b^3*c^3 - 2*b^4*c^3 + 2*a^3*c^4 - a^2*b*c^4 + 3*a*b^2*c^4 - 2*b^3*c^4 - 3*a^2*c^5 - 2*a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6) : :

X(58035) lies on the excentral-hexyl ellipse, the Steiner-Wallace right hyperbola (Kiepert circumhyperbola of the anticomplementary triangle), and these lines: {1, 85}, {2, 991}, {3, 16552}, {63, 100}, {78, 30625}, {152, 20533}, {516, 20347}, {644, 38666}, {936, 24036}, {971, 3693}, {990, 3870}, {1018, 2808}, {1023, 38572}, {1350, 1764}, {1490, 16550}, {1536, 51384}, {1699, 30985}, {1742, 17272}, {1818, 40869}, {2826, 6326}, {3041, 56715}, {3110, 55067}, {3935, 30579}, {4300, 19868}, {4511, 47621}, {4666, 30562}, {6712, 24582}, {7988, 30993}, {8580, 32916}, {10431, 52025}, {10434, 15626}, {10582, 41930}, {19541, 37521}, {22392, 51860}, {26932, 35338}, {52164, 56381}

X(58035) = anticomplement of X(43672)
X(58035) = anticomplement of the isogonal conjugate of X(13329)
X(58035) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2149, 1025}, {13329, 8}, {26003, 21270}, {53308, 149}, {53357, 21293}


X(58036) = X(1)X(4559)∩X(9)X(48)

Barycentrics    a*(a^5*b - 2*a^4*b^2 + 2*a^2*b^4 - a*b^5 + a^5*c + a^3*b^2*c - 3*a^2*b^3*c + 2*a*b^4*c - b^5*c - 2*a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 - 3*a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + 2*a^2*c^4 + 2*a*b*c^4 - a*c^5 - b*c^5) : :

X(58036) lies on the excentral-hexyl ellipse and these lines: {1, 4559}, {2, 17219}, {3, 16552}, {4, 4253}, {6, 1012}, {9, 48}, {39, 37732}, {40, 21384}, {41, 5450}, {57, 1111}, {63, 5773}, {84, 294}, {140, 46196}, {150, 1025}, {153, 26074}, {169, 39006}, {184, 28121}, {218, 12114}, {355, 16549}, {376, 573}, {514, 53409}, {515, 672}, {517, 45751}, {579, 5822}, {644, 38669}, {654, 1768}, {912, 57015}, {918, 16560}, {944, 3730}, {946, 1475}, {952, 1018}, {1015, 32486}, {1023, 12773}, {1071, 1212}, {1158, 2082}, {1334, 5882}, {1385, 3294}, {1565, 39063}, {1713, 5120}, {1759, 24467}, {1777, 56913}, {2051, 54497}, {2077, 3684}, {2096, 5819}, {2170, 2800}, {2272, 8074}, {2285, 17417}, {3061, 5693}, {3073, 5299}, {3149, 5022}, {3501, 5881}, {3560, 16783}, {3691, 6684}, {4251, 6906}, {4262, 6950}, {4551, 13006}, {4712, 37399}, {4875, 31788}, {4919, 6264}, {5021, 37530}, {5030, 6905}, {5035, 8557}, {5276, 37469}, {5400, 21894}, {5587, 17754}, {5701, 53260}, {5721, 15048}, {5778, 50204}, {5816, 6854}, {5838, 54052}, {5884, 17451}, {6001, 43065}, {6776, 33536}, {6996, 18206}, {7719, 37117}, {9259, 41343}, {9355, 9359}, {10265, 21044}, {11491, 24047}, {11715, 17439}, {12005, 21808}, {12115, 56746}, {12116, 17732}, {12251, 36697}, {12528, 26690}, {12672, 40133}, {12675, 16601}, {13464, 17474}, {13478, 54739}, {14872, 25066}, {16788, 22758}, {17746, 31837}, {18164, 24220}, {18391, 56546}, {18908, 44798}, {20117, 39244}, {21061, 37620}, {23887, 53404}, {30223, 44085}, {37022, 56527}, {37569, 51194}, {37611, 54330}

X(58036) = reflection of X(4) in X(43672)
X(58036) = Fuhrmann-circle-inverse of X(11308)
X(58036) = X(4560)-Ceva conjugate of X(1)
X(58036) = X(4551)-Dao conjugate of X(4552)
X(58036) = crossdifference of every pair of points on line {1769, 21320}
X(58036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2250, 2265, 9}, {4559, 11998, 1}


X(58037) = X(9)X(118)∩X(11)X(57)

Barycentrics    a*(a^9*b - 2*a^8*b^2 - 2*a^7*b^3 + 6*a^6*b^4 - 6*a^4*b^6 + 2*a^3*b^7 + 2*a^2*b^8 - a*b^9 + a^9*c - 4*a^8*b*c + 3*a^7*b^2*c - 3*a^6*b^3*c + 5*a^5*b^4*c + 5*a^4*b^5*c - 7*a^3*b^6*c - a^2*b^7*c - 2*a*b^8*c + 3*b^9*c - 2*a^8*c^2 + 3*a^7*b*c^2 + 6*a^6*b^2*c^2 - 9*a^5*b^3*c^2 - 2*a^4*b^4*c^2 + a^3*b^5*c^2 + 2*a^2*b^6*c^2 + 5*a*b^7*c^2 - 4*b^8*c^2 - 2*a^7*c^3 - 3*a^6*b*c^3 - 9*a^5*b^2*c^3 + 6*a^4*b^3*c^3 + 4*a^3*b^4*c^3 + a^2*b^5*c^3 + 7*a*b^6*c^3 - 4*b^7*c^3 + 6*a^6*c^4 + 5*a^5*b*c^4 - 2*a^4*b^2*c^4 + 4*a^3*b^3*c^4 - 8*a^2*b^4*c^4 - 9*a*b^5*c^4 + 4*b^6*c^4 + 5*a^4*b*c^5 + a^3*b^2*c^5 + a^2*b^3*c^5 - 9*a*b^4*c^5 + 2*b^5*c^5 - 6*a^4*c^6 - 7*a^3*b*c^6 + 2*a^2*b^2*c^6 + 7*a*b^3*c^6 + 4*b^4*c^6 + 2*a^3*c^7 - a^2*b*c^7 + 5*a*b^2*c^7 - 4*b^3*c^7 + 2*a^2*c^8 - 2*a*b*c^8 - 4*b^2*c^8 - a*c^9 + 3*b*c^9) : :

X(58037) lies on the excentral-hexyl ellipse and these lines: {2, 33536}, {4, 4253}, {9, 118}, {11, 57}, {40, 2883}, {152, 1025}, {154, 7580}, {516, 2272}, {672, 1541}, {1536, 39690}, {1754, 4383}, {2140, 8227}, {2947, 4551}, {3887, 6326}, {11019, 52373}


X(58038) = X(19)X(102)∩X(101)X(610)

Barycentrics    a*(a^9 - a^8*b - 2*a^5*b^4 + 2*a^4*b^5 + a*b^8 - b^9 - a^8*c + a^7*b*c + 3*a^5*b^3*c - 4*a^4*b^4*c - a^3*b^5*c + 4*a^2*b^6*c - 3*a*b^7*c + b^8*c - 2*a^5*b^2*c^2 + 2*a^4*b^3*c^2 + 4*a^3*b^4*c^2 - 4*a^2*b^5*c^2 - 2*a*b^6*c^2 + 2*b^7*c^2 + 3*a^5*b*c^3 + 2*a^4*b^2*c^3 - 6*a^3*b^3*c^3 + 3*a*b^5*c^3 - 2*b^6*c^3 - 2*a^5*c^4 - 4*a^4*b*c^4 + 4*a^3*b^2*c^4 + 2*a*b^4*c^4 + 2*a^4*c^5 - a^3*b*c^5 - 4*a^2*b^2*c^5 + 3*a*b^3*c^5 + 4*a^2*b*c^6 - 2*a*b^2*c^6 - 2*b^3*c^6 - 3*a*b*c^7 + 2*b^2*c^7 + a*c^8 + b*c^8 - c^9) : :

X(58038) lies on the excentral-hexyl ellipse and these lines: {1, 20613}, {3, 25087}, {9, 40616}, {19, 102}, {40, 2883}, {101, 610}, {169, 56857}, {517, 22144}, {918, 16560}, {1490, 16550}, {1753, 2338}, {1768, 16562}, {1783, 2817}, {2184, 21370}, {2636, 2640}, {2814, 5400}, {2831, 6326}, {6996, 21602}, {7412, 25063}, {16528, 16561}

X(58038) = excentral-isogonal conjugate of X(1734)
X(58038) = X(6332)-Ceva conjugate of X(1)
X(58038) = X(2)-isoconjugate of X(34187)
X(58038) = X(i)-Dao conjugate of X(j) for these (i,j): {108, 653}, {32664, 34187}
X(58038) = barycentric product X(1)*X(34188)
X(58038) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 34187}, {34188, 75}


X(58039) = X(7)X(104)∩X(176)X(53804)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(a + b + c) - (2*a^6 - 2*a^5*b - 3*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - 3*a^4*c^2 - 2*a^3*b*c^2 + 4*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 + 2*a^2*c^4 - 4*a*b*c^4 + b^2*c^4 + 2*b*c^5 - c^6)*S : :

X(58039) lies on the inner Soddy circle and these lines: {7, 104}, {176, 53804}, {482, 1360}, {34494, 51764}


X(58040) = X(7)X(104)∩X(11)X(482)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(2*a^4 - 2*a^3*b - 3*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c + 8*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4) - 4*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*S) : :

X(58040) lies on the inner Soddy circle and these lines: {7, 104}, {11, 482}, {80, 1371}, {176, 952}, {1317, 22107}, {1373, 16173}, {1768, 15995}, {2800, 39794}, {7972, 17806}, {12019, 31601}, {12515, 52419}, {12735, 17805}, {18240, 39795}, {25416, 57266}, {34122, 57267}


X(58041) = X(7)X(104)∩X(175)X(53804)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(a + b + c) + (2*a^6 - 2*a^5*b - 3*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 2*a^2*b^3*c - 4*a*b^4*c + 2*b^5*c - 3*a^4*c^2 - 2*a^3*b*c^2 + 4*a*b^3*c^2 + b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 + 2*a^2*c^4 - 4*a*b*c^4 + b^2*c^4 + 2*b*c^5 - c^6)*S : :

X(58041) lies on the outer Soddy circle and these lines: {7, 104}, {175, 53804}, {481, 1360}, {34495, 51763}


X(58042) = X(7)X(104)∩X(11)X(481)

Barycentrics    (a + b - c)*(a - b + c)*((a - b - c)*(2*a^4 - 2*a^3*b - 3*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c + 8*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4) + 4*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*S) : :

X(58042) lies on the outer Soddy circle and these lines: {7, 104}, {11, 481}, {80, 1372}, {175, 952}, {1317, 22106}, {1374, 16173}, {1768, 15996}, {2800, 39795}, {7972, 17803}, {12019, 31602}, {12515, 52420}, {12735, 17802}, {18240, 39794}, {25416, 57267}, {34122, 57266}


X(58043) = X(30)X(98)∩X(511)X(42008)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^10 - 11*a^8*b^2 + 13*a^6*b^4 - 5*a^4*b^6 + 4*a^2*b^8 - 2*b^10 - 11*a^8*c^2 + 7*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 4*b^8*c^2 + 13*a^6*c^4 + 3*a^4*b^2*c^4 - 6*a^2*b^4*c^4 - 2*b^6*c^4 - 5*a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + 4*a^2*c^8 + 4*b^2*c^8 - 2*c^10) : :

X(58043) lies on the Artzt circle (see X(11168)) and these lines: {30, 98}, {511, 42008}, {523, 9877}, {892, 6054}, {1513, 17948}, {1551, 10753}, {3849, 9769}, {5968, 40248}, {6792, 16188}, {7617, 12434}, {8704, 9759}, {38227, 52141}, {52232, 56925}, {52483, 57634}


X(58044) = X(74)X(111)∩X(98)X(11593)

Barycentrics    a^2*(2*a^10*b^4 - 4*a^8*b^6 + 4*a^4*b^10 - 2*a^2*b^12 + 5*a^10*b^2*c^2 - 5*a^8*b^4*c^2 - 3*a^6*b^6*c^2 + 11*a^4*b^8*c^2 - 10*a^2*b^10*c^2 + 2*b^12*c^2 + 2*a^10*c^4 - 5*a^8*b^2*c^4 + 15*a^6*b^4*c^4 - 15*a^4*b^6*c^4 + 15*a^2*b^8*c^4 - 12*b^10*c^4 - 4*a^8*c^6 - 3*a^6*b^2*c^6 - 15*a^4*b^4*c^6 - 6*a^2*b^6*c^6 + 10*b^8*c^6 + 11*a^4*b^2*c^8 + 15*a^2*b^4*c^8 + 10*b^6*c^8 + 4*a^4*c^10 - 10*a^2*b^2*c^10 - 12*b^4*c^10 - 2*a^2*c^12 + 2*b^2*c^12) : :

X(58044) lies on the Artzt circle (see X(11168)) and these lines: {74, 111}, {98, 11593}, {125, 263}, {511, 42008}, {526, 9769}, {1350, 12149}, {2698, 6325}, {2781, 5640}, {5663, 9759}, {9140, 11673}


X(58045) = X(3)X(76)∩X(262)X(3228)

Barycentrics    2*a^10*b^4 - 2*a^6*b^8 - 5*a^10*b^2*c^2 + 11*a^8*b^4*c^2 - 15*a^6*b^6*c^2 + 7*a^4*b^8*c^2 - 2*a^2*b^10*c^2 + 2*a^10*c^4 + 11*a^8*b^2*c^4 + a^6*b^4*c^4 - 5*a^4*b^6*c^4 + 9*a^2*b^8*c^4 - 2*b^10*c^4 - 15*a^6*b^2*c^6 - 5*a^4*b^4*c^6 - 6*a^2*b^6*c^6 + 2*b^8*c^6 - 2*a^6*c^8 + 7*a^4*b^2*c^8 + 9*a^2*b^4*c^8 + 2*b^6*c^8 - 2*a^2*b^2*c^10 - 2*b^4*c^10 : :

X(58045) lies on the Artzt circle (see X(11168)) and these lines: {3, 76}, {262, 3228}, {352, 12177}, {543, 13191}, {804, 9877}, {2793, 9869}, {3849, 12434}, {5182, 35275}, {6233, 53604}, {8704, 13225}


X(58046) = X(2)X(9769)∩X(4)X(111)

Barycentrics    a^12 - 11*a^10*b^2 + 20*a^6*b^6 - 5*a^4*b^8 - 9*a^2*b^10 + 4*b^12 - 11*a^10*c^2 + 33*a^8*b^2*c^2 - 22*a^6*b^4*c^2 - 26*a^4*b^6*c^2 + 33*a^2*b^8*c^2 - 7*b^10*c^2 - 22*a^6*b^2*c^4 + 54*a^4*b^4*c^4 - 24*a^2*b^6*c^4 - 4*b^8*c^4 + 20*a^6*c^6 - 26*a^4*b^2*c^6 - 24*a^2*b^4*c^6 + 14*b^6*c^6 - 5*a^4*c^8 + 33*a^2*b^2*c^8 - 4*b^4*c^8 - 9*a^2*c^10 - 7*b^2*c^10 + 4*c^12 : :

X(58046) lies on the Artzt circle (see X(11168)) and these lines: {2, 9769}, {4, 111}, {98, 9745}, {1078, 2373}, {5913, 38227}, {7426, 35278}, {7828, 11638}, {9168, 55135}, {9185, 9759}, {14655, 37953}, {44218, 57373}

X(58046) = orthoptic-circle-of-Steiner-inellipse-inverse of X(15303)


X(58047) = X(2)X(32)∩X(381)X(9769)

Barycentrics    a^14 - 11*a^12*b^2 + 14*a^10*b^4 + 6*a^8*b^6 - 11*a^6*b^8 + a^4*b^10 - 4*a^2*b^12 + 4*b^14 - 11*a^12*c^2 + 5*a^10*b^2*c^2 - 8*a^8*b^4*c^2 + 16*a^6*b^6*c^2 - a^4*b^8*c^2 + 11*a^2*b^10*c^2 - 12*b^12*c^2 + 14*a^10*c^4 - 8*a^8*b^2*c^4 - 18*a^6*b^4*c^4 + 12*b^10*c^4 + 6*a^8*c^6 + 16*a^6*b^2*c^6 - 14*a^2*b^6*c^6 - 4*b^8*c^6 - 11*a^6*c^8 - a^4*b^2*c^8 - 4*b^6*c^8 + a^4*c^10 + 11*a^2*b^2*c^10 + 12*b^4*c^10 - 4*a^2*c^12 - 12*b^2*c^12 + 4*c^14 : : X(58047) = 8 X[132] + X[19164]

X(58047) lies on the Artzt circle (see X(11168)) and these lines: {4, 32}, {381, 9769}, {2781, 5640}, {2799, 9877}, {3163, 7710}, {6128, 9748}, {7426, 34312}, {34217, 37953}, {44218, 57304}


X(58048) = X(54)X(133)∩X(110)X(122)

Barycentrics    a^2*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 - 3*a^2*b^2*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + a^6*c^2 + 2*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 4*a^4*c^4 + 3*a^2*b^2*c^4 + b^4*c^4 + a^2*c^6 - 2*b^2*c^6 + c^8) : : X(58048) lies on the sine-triple-angle circle and these lines: {49, 53803}, {54, 133}, {107, 184}, {110, 122}, {156, 10745}, {206, 10762}, {215, 7158}, {1092, 38714}, {1147, 1294}, {1614, 2777}, {2477, 3324}, {2797, 3044}, {2803, 3045}, {2811, 3046}, {2847, 3048}, {3047, 9033}, {3184, 52525}, {5012, 6716}, {6759, 10152}, {9544, 34186}, {9545, 34549}, {9703, 38591}, {9704, 38577}, {9707, 14703}, {10540, 49117}, {11449, 40082}, {13352, 44985}, {14673, 26864}, {22115, 38621}, {32046, 57301}, {36520, 43598}


X(58049) = X(54)X(132)∩X(110)X(127)

Barycentrics    a^4*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + a^2*b^2*c^2 + a^2*c^4 - c^6)*(a^6 - a^4*b^2 + a^2*b^4 - b^6 - a^4*c^2 + a^2*b^2*c^2 - a^2*c^4 + c^6) : :

X(58049) lies on the sine-triple-angle circle and these lines: {49, 53795}, {54, 132}, {110, 127}, {112, 184}, {156, 10749}, {206, 10766}, {215, 6020}, {1092, 38717}, {1147, 1297}, {1199, 16224}, {1614, 2794}, {2477, 3320}, {2781, 3043}, {2799, 3044}, {2806, 3045}, {3046, 9518}, {3047, 9517}, {3203, 13195}, {5012, 6720}, {6759, 10735}, {9544, 13219}, {9545, 12384}, {9586, 12408}, {9587, 13221}, {9652, 13296}, {9653, 12945}, {9666, 12955}, {9667, 13297}, {9703, 13115}, {9704, 13310}, {9707, 19165}, {10540, 19163}, {11464, 34217}, {11641, 26864}, {13352, 44988}, {14689, 52525}, {19160, 37472}, {22115, 38624}, {32046, 57304}


X(58050) = X(108)X(184)∩X(110)X(123)

Barycentrics    a^3*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^5*c + 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c + 2*a*b^4*c - b^5*c - 2*a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 - a*b^2*c^3 + b^3*c^3 + a^2*c^4 - a*c^5)*(a^6 - a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - a*b^5 + 2*a^4*b*c - 2*a^2*b^3*c - a^4*c^2 - a^3*b*c^2 + 3*a^2*b^2*c^2 - a*b^3*c^2 - a^2*b*c^3 + b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 - b*c^5 + c^6) : :

X(58050) lies on the sine-triple-angle circle and these lines: {54, 25640}, {108, 184}, {110, 123}, {156, 10746}, {206, 10763}, {215, 3318}, {1092, 38715}, {1147, 1295}, {1359, 2477}, {1614, 2829}, {2778, 3043}, {2798, 3044}, {2804, 3045}, {2812, 3046}, {2850, 3047}, {2851, 3048}, {5012, 6717}, {6759, 10731}, {9544, 34188}, {9545, 34550}, {9563, 34456}, {9703, 38592}, {9704, 38578}, {9707, 54064}, {13352, 44986}, {22115, 38622}, {32046, 57302}


X(58051) = X(109)X(184)∩X(110)X(124)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c - a*b*c^2 + b^2*c^2 + a*c^3 - c^4)*(a^4 - a^3*b + a*b^3 - b^4 + a^2*b*c - a*b^2*c - 2*a^2*c^2 + a*b*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(58051) lies on the sine-triple-angle circle and these lines: {49, 2818}, {54, 117}, {102, 1147}, {109, 184}, {110, 124}, {151, 9545}, {156, 10747}, {206, 10764}, {215, 501}, {928, 3046}, {1092, 38691}, {1361, 2477}, {2773, 3047}, {2779, 3043}, {2785, 3044}, {2852, 3048}, {3040, 9701}, {3042, 9702}, {3045, 3738}, {5012, 6718}, {6759, 10732}, {9544, 33650}, {9562, 34455}, {9703, 38573}, {9704, 38579}, {10571, 36059}, {10726, 13352}, {14529, 34242}, {22115, 38600}, {32046, 57303}, {38785, 52525}


X(58052) = X(106)X(184)∩X(110)X(121)

Barycentrics    a^4*(a^3 - 2*a^2*b - 2*a*b^2 + b^3 + a^2*c + b^2*c - a*c^2 + 2*b*c^2 - c^3)*(a^3 + a^2*b - a*b^2 - b^3 - 2*a^2*c + 2*b^2*c - 2*a*c^2 + b*c^2 + c^3) : :

X(58052) lies on the sine-triple-angle circle and these lines: {49, 53790}, {54, 5510}, {106, 184}, {110, 121}, {156, 10744}, {206, 10761}, {215, 6018}, {1054, 9587}, {1092, 38713}, {1147, 1293}, {1357, 2477}, {2776, 3043}, {2796, 3044}, {2802, 3045}, {2810, 3046}, {2842, 3047}, {2843, 3048}, {3030, 9563}, {3038, 9701}, {5012, 6715}, {6759, 10730}, {9544, 21290}, {9545, 34548}, {9703, 38590}, {9704, 38576}, {13352, 44984}, {22115, 38620}, {32046, 57300}


X(58053) = X(105)X(184)∩X(110)X(120)

Barycentrics    a^3*(a^4 - b^4 - a^3*c - 2*a^2*b*c + 2*a*b^2*c + b^3*c - a^2*c^2 + a*c^3)*(a^4 - a^3*b - a^2*b^2 + a*b^3 - 2*a^2*b*c + 2*a*b*c^2 + b*c^3 - c^4) : :

X(58053) lies on the sine-triple-angle circle and these lines: {49, 28915}, {54, 5511}, {105, 184}, {110, 120}, {156, 10743}, {206, 10760}, {215, 3021}, {528, 3045}, {1092, 38712}, {1147, 1292}, {1358, 2477}, {2775, 3043}, {2795, 3044}, {2809, 3046}, {2836, 3047}, {2837, 3048}, {3034, 9563}, {3039, 9701}, {5012, 6714}, {5540, 9587}, {6759, 10729}, {9544, 20344}, {9545, 34547}, {9703, 38589}, {9704, 38575}, {13352, 44983}, {22115, 38619}, {32046, 57299}


X(58054) = X(54)X(121)∩X(110)X(5510)

Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 - 3*a^3*c + 3*a^2*b*c + 3*a*b^2*c - 3*b^3*c - 3*a*b*c^2 + b^2*c^2 + 3*a*c^3 - c^4)*(a^4 - 3*a^3*b + 3*a*b^3 - b^4 + 3*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 + 3*a*b*c^2 + b^2*c^2 - 3*b*c^3 + c^4) : :

X(58054) lies on the sine-triple-angle circle and these lines: {49, 53790}, {54, 121}, {106, 1147}, {110, 5510}, {156, 15522}, {184, 1293}, {215, 1357}, {1054, 9586}, {1092, 38695}, {2477, 6018}, {2776, 3047}, {2789, 3044}, {2821, 3046}, {2827, 3045}, {2842, 3043}, {3030, 9562}, {3038, 9702}, {3048, 9526}, {6759, 44984}, {9544, 34548}, {9545, 21290}, {9703, 38576}, {9704, 38590}, {10730, 13352}, {22115, 38604}, {32046, 57328}


X(58055) = X(54)X(129)∩X(110)X(5511)

Barycentrics    a^3*(a^5 - a^4*b - a*b^4 + b^5 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - a*c^4)*(a^5 - 2*a^4*b + 2*a^2*b^3 - a*b^4 - a^4*c + a^3*b*c - a^2*b^2*c + a*b^3*c + 2*a^2*b*c^2 - 2*a*b^2*c^2 + a*b*c^3 + b^2*c^3 - a*c^4 - 2*b*c^4 + c^5) : :

X(58055) lies on the sine-triple-angle circle and these lines: {49, 28915}, {54, 120}, {105, 1147}, {110, 5511}, {156, 15521}, {184, 1292}, {215, 1358}, {1092, 38694}, {2477, 3021}, {2775, 3047}, {2788, 3044}, {2820, 3046}, {2826, 3045}, {2836, 3043}, {3034, 9562}, {3039, 9702}, {3048, 9522}, {5540, 9586}, {6759, 44983}, {9544, 34547}, {9545, 20344}, {9703, 38575}, {9704, 38589}, {10729, 13352}, {22115, 38603}, {32046, 57327}


X(58056) = X(11)X(54)∩X(110)X(119)

Barycentrics    a^3*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 + a^3*b*c - a*b^3*c - 2*a^3*c^2 + a^2*b*c^2 + b^3*c^2 - a*b*c^3 + a*c^4)*(a^5 - 2*a^3*b^2 + a*b^4 - a^4*c + a^3*b*c + a^2*b^2*c - a*b^3*c - 2*a^3*c^2 + 2*a^2*c^3 - a*b*c^3 + b^2*c^3 + a*c^4 - c^5) : :

X(58056) lies on the sine-triple-angle circle and these lines: {11, 54}, {49, 952}, {100, 1147}, {104, 184}, {110, 119}, {149, 9545}, {153, 9544}, {156, 10742}, {206, 10759}, {215, 1317}, {569, 31272}, {1092, 34474}, {1614, 2829}, {1768, 9587}, {2771, 3047}, {2783, 3044}, {2801, 3046}, {2830, 3048}, {3032, 9562}, {3035, 9701}, {3036, 9702}, {3043, 8674}, {3203, 12199}, {5012, 6713}, {5541, 9586}, {5840, 34148}, {6174, 43572}, {6264, 9622}, {6326, 9621}, {6667, 43651}, {6759, 10728}, {9563, 34458}, {9652, 12763}, {9653, 13273}, {9666, 13274}, {9667, 12764}, {9703, 12331}, {9704, 12773}, {9705, 37725}, {9706, 37726}, {9707, 54065}, {9913, 26864}, {10540, 22799}, {10724, 13352}, {10767, 15463}, {13353, 34126}, {13434, 23513}, {14157, 52836}, {19128, 51198}, {22115, 33814}, {22938, 37472}, {24466, 43574}, {32046, 57298}, {38761, 52525}

X(58056) = reflection of X(3045) in X(49)


X(58057) = X(54)X(116)∩X(110)X(118)

Barycentrics    a^4*(a^5 - a^3*b^2 - a^2*b^3 + b^5 - a^4*c + 2*a^2*b^2*c - b^4*c - 2*a^3*c^2 - a*b^2*c^2 + b^3*c^2 + 2*a^2*c^3 + a*c^4 - c^5)*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^3*c^2 + 2*a^2*b*c^2 - a*b^2*c^2 - a^2*c^3 + b^2*c^3 - b*c^4 + c^5) : :

X(58057) lies on the sine-triple-angle circle and these lines: {49, 2808}, {54, 116}, {101, 1147}, {103, 184}, {110, 118}, {150, 9545}, {152, 9544}, {156, 10741}, {206, 10758}, {215, 1362}, {569, 31273}, {1092, 38690}, {1282, 9586}, {2477, 3022}, {2772, 3047}, {2774, 3043}, {2784, 3044}, {2801, 3045}, {2824, 3048}, {3033, 9562}, {3041, 9702}, {5012, 6712}, {6759, 10727}, {9563, 34457}, {9587, 39156}, {9703, 38572}, {9704, 38574}, {10725, 13352}, {22115, 38599}, {32046, 57297}, {36059, 56549}, {38773, 52525}

X(58057) = reflection of X(3046) in X(49)


X(58058) = X(2)X(98)∩X(54)X(115)

Barycentrics    a^2*(a^6 - 2*a^4*b^2 + 2*a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - 2*a^4*c^2 + 2*a^2*c^4 + b^2*c^4 - c^6) : :

X(58058) lies on the sine-triple-angle circle and these lines: {2, 98}, {24, 39839}, {49, 2782}, {54, 115}, {99, 1147}, {136, 275}, {148, 9545}, {156, 6033}, {193, 39811}, {206, 10753}, {215, 3027}, {217, 43828}, {569, 14061}, {578, 14639}, {690, 3043}, {1092, 21166}, {1569, 9696}, {1614, 2794}, {1971, 5111}, {1993, 39828}, {1994, 39806}, {2023, 9604}, {2477, 3023}, {2482, 43572}, {2783, 3045}, {2784, 3046}, {2793, 3048}, {3029, 9562}, {3147, 39833}, {3167, 39803}, {3203, 12176}, {3518, 39835}, {3563, 8537}, {5477, 19128}, {5889, 39825}, {6241, 39860}, {6722, 43651}, {6759, 10722}, {9563, 34454}, {9586, 13174}, {9587, 9860}, {9637, 39822}, {9638, 39851}, {9652, 12184}, {9653, 13182}, {9666, 13183}, {9667, 12185}, {9703, 13188}, {9704, 12188}, {9705, 14981}, {9707, 39857}, {9861, 26864}, {10282, 39846}, {10540, 22505}, {10723, 13352}, {11456, 39841}, {11464, 39837}, {11674, 19627}, {12289, 39847}, {13353, 34127}, {13434, 23514}, {14157, 39838}, {14651, 39834}, {19165, 44453}, {19357, 39849}, {22115, 33813}, {22515, 37472}, {23698, 34148}, {32046, 38224}, {32737, 34981}, {34224, 39845}, {34834, 43969}, {34986, 39817}, {36519, 43598}, {37645, 39813}, {38738, 43574}, {38749, 52525}

X(58058) = reflection of X(3044) in X(49)
X(58058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {184, 57011, 98}, {11464, 39837, 39854}


X(58059) = X(54)X(126)∩X(110)X(5512)

Barycentrics    a^4*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 5*a^4*c^2 + 5*a^2*b^2*c^2 - 4*b^4*c^2 + 5*a^2*c^4 - c^6)*(a^6 - 5*a^4*b^2 + 5*a^2*b^4 - b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - a^2*c^4 - 4*b^2*c^4 + c^6) : :

X(58059) lies on the sine-triple-angle circle and these lines: {49, 3048}, {54, 126}, {110, 5512}, {111, 1147}, {156, 22338}, {184, 1296}, {215, 3325}, {567, 40340}, {1092, 38698}, {1993, 14657}, {2477, 6019}, {2780, 3047}, {2793, 3044}, {2824, 3046}, {2830, 3045}, {2854, 3043}, {5012, 40556}, {6759, 44987}, {9172, 43572}, {9545, 14360}, {9677, 11835}, {9686, 11833}, {9703, 11258}, {9704, 38593}, {10734, 13352}, {14650, 22115}, {23699, 34148}, {32046, 57331}, {38805, 52525}

X(58059) = reflection of X(3048) in X(49)


X(58060) = X(54)X(124)∩X(110)X(117)

Barycentrics    a^4*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 + a^4*b*c - a^3*b^2*c - a^2*b^3*c + a*b^4*c - 3*a^4*c^2 + 2*a^3*b*c^2 + a^2*b^2*c^2 - 2*a^2*b*c^3 + a*b^2*c^3 - b^3*c^3 + 3*a^2*c^4 - a*b*c^4 + b*c^5 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^5*c + a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c - a*b^4*c + b^5*c - a^4*c^2 - a^3*b*c^2 + a^2*b^2*c^2 + a*b^3*c^2 + 2*a^3*c^3 - a^2*b*c^3 - b^3*c^3 - a^2*c^4 + a*b*c^4 - a*c^5 + c^6) : :

X(58060) lies on the sine-triple-angle circle and these lines: {49, 2818}, {54, 124}, {102, 184}, {109, 1147}, {110, 117}, {151, 9544}, {156, 10740}, {206, 10757}, {215, 1361}, {1092, 38697}, {1364, 2477}, {2773, 3043}, {2779, 3047}, {2792, 3044}, {2800, 3045}, {2807, 3046}, {2819, 3048}, {3040, 9702}, {3042, 9701}, {5012, 6711}, {6759, 10726}, {9545, 33650}, {9562, 34459}, {9563, 34455}, {9703, 38579}, {9704, 38573}, {10732, 13352}, {22115, 38607}, {32046, 38776}, {38785, 43574}


X(58061) = X(4)X(110)∩X(54)X(131)

Barycentrics    a^2*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 + 3*a^4*c^4 - a^2*b^2*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + a^2*b^2*c^4 + b^4*c^4 - a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(58061) lies on the sine-triple-angle circle and these lines: {4, 110}, {49, 53802}, {54, 131}, {156, 13556}, {184, 925}, {511, 50384}, {1092, 38718}, {1154, 13557}, {1993, 13558}, {3047, 55121}, {5012, 34844}, {5889, 5961}, {6759, 44974}, {9705, 21667}, {32046, 57314}


X(58062) = X(54)X(128)∩X(110)X(137)

Barycentrics    a^2*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*b^6*c^2 + 3*a^4*c^4 + b^4*c^4 - a^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 - 2*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^4*c^4 + b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(58062) lies on the sine-triple-angle circle and these lines: {49, 25150}, {54, 128}, {110, 137}, {184, 930}, {215, 3327}, {323, 14652}, {1092, 38710}, {1141, 1147}, {1594, 3043}, {1993, 15959}, {2477, 7159}, {3047, 45147}, {5012, 13372}, {5889, 23320}, {6759, 44976}, {9544, 11671}, {9703, 38587}, {9704, 13512}, {12026, 40111}, {13352, 44981}, {14769, 23292}, {15366, 37636}, {22115, 38618}, {23516, 43598}, {32046, 57316}, {34418, 56292}

X(58062) = midpoint of X(34418) and X(56292)


X(58063) = X(54)X(123)∩X(110)X(25640)

Barycentrics    a^3*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - a^7*c + 2*a^6*b*c - 3*a^4*b^3*c + 3*a^3*b^4*c - 2*a*b^6*c + b^7*c - 3*a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 2*b^6*c^2 + 3*a^5*c^3 - 4*a^4*b*c^3 + 2*a^2*b^3*c^3 + a*b^4*c^3 - 2*b^5*c^3 + 3*a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^3*c^5 + 2*a^2*b*c^5 + b^3*c^5 - a^2*c^6 + a*c^7)*(a^8 - a^7*b - 3*a^6*b^2 + 3*a^5*b^3 + 3*a^4*b^4 - 3*a^3*b^5 - a^2*b^6 + a*b^7 + 2*a^6*b*c - 4*a^4*b^3*c + 2*a^2*b^5*c - 2*a^6*c^2 + 4*a^4*b^2*c^2 - 2*a^2*b^4*c^2 - 3*a^4*b*c^3 + 2*a^2*b^3*c^3 + b^5*c^3 + 3*a^3*b*c^4 - 3*a^2*b^2*c^4 + a*b^3*c^4 - b^4*c^4 - 2*b^3*c^5 + 2*a^2*c^6 - 2*a*b*c^6 + 2*b^2*c^6 + b*c^7 - c^8) : :

X(58063) lies on the sine-triple-angle circle and these lines: {54, 123}, {108, 1147}, {110, 25640}, {156, 33566}, {184, 1295}, {215, 1359}, {1092, 38696}, {1993, 54064}, {2477, 3318}, {2778, 3047}, {2791, 3044}, {2823, 3046}, {2829, 3045}, {2850, 3043}, {3048, 9531}, {6759, 44986}, {9544, 34550}, {9545, 34188}, {9562, 34456}, {9703, 38578}, {9704, 38592}, {10731, 13352}, {22115, 38606}, {32046, 57330}


X(58064) = X(54)X(127)∩X(110)X(132)

Barycentrics    a^4*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 - 2*b^4*c^4 + 2*a^2*c^6 + b^2*c^6 - c^8)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + 2*a^4*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + b^2*c^6 + c^8) : :

X(58064) lies on the sine-triple-angle circle and these lines: {49, 53795}, {54, 127}, {110, 132}, {112, 1147}, {156, 12918}, {184, 1297}, {215, 3320}, {1092, 38699}, {1993, 19165}, {2477, 6020}, {2781, 3047}, {2794, 3044}, {2825, 3046}, {2831, 3045}, {3043, 9517}, {3203, 12207}, {5012, 34841}, {5889, 34217}, {6759, 44988}, {9544, 12384}, {9545, 13219}, {9586, 13221}, {9587, 12408}, {9652, 12945}, {9653, 13296}, {9666, 13297}, {9667, 12955}, {9703, 13310}, {9704, 13115}, {10540, 19160}, {10735, 13352}, {12413, 26864}, {14689, 43574}, {16224, 44802}, {19163, 37472}, {22115, 38608}, {32046, 57332}


X(58065) = X(54)X(129)∩X(110)X(130)

Barycentrics    a^2*(a^10 - a^8*b^2 - a^6*b^4 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 2*a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 2*a^2*b^6*c^2 + 2*b^8*c^2 + 6*a^6*c^4 - a^4*b^2*c^4 - a^2*b^4*c^4 - b^6*c^4 - 4*a^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - a^8*c^2 + 2*a^6*b^2*c^2 - a^4*b^4*c^2 - a^6*c^4 + 2*a^4*b^2*c^4 - a^2*b^4*c^4 - 2*a^2*b^2*c^6 - b^4*c^6 + 2*a^2*c^8 + 2*b^2*c^8 - c^10) : :

X(58065) lies on the sine-triple-angle circle and these lines: {54, 129}, {110, 130}, {184, 1303}, {1147, 1298}, {3043, 32438}, {5012, 34839}, {6759, 44991}, {9703, 38594}, {13352, 44989}, {21661, 34986}, {32046, 57335}


X(58066) = X(54)X(136)∩X(110)X(131)

Barycentrics    a^2*(a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 4*a^8*c^2 + 4*a^6*b^2*c^2 + a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - 2*a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 2*a^8*c^2 + 4*a^6*b^2*c^2 - 2*a^4*b^4*c^2 + a^6*c^4 + a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(58066) lies on the sine-triple-angle circle and these lines: {49, 53802}, {54, 136}, {74, 54087}, {110, 131}, {184, 1300}, {925, 1147}, {1614, 3047}, {3043, 55121}, {5012, 34840}, {5961, 11464}, {6241, 13496}, {6759, 44990}, {9706, 21667}, {9707, 13558}, {12289, 22823}, {13352, 44974}, {32046, 57334}, {32692, 39013}


X(58067) = X(54)X(122)∩X(110)X(133)

Barycentrics    a^2*(a^10 - 5*a^6*b^4 + 5*a^4*b^6 - b^10 - 4*a^8*c^2 + 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - 4*a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 + 2*a^2*b^2*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 + 2*a^6*b^2*c^2 - 4*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 5*a^6*c^4 + 3*a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 + 5*a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 3*b^2*c^8 - c^10) : :

X(58067) lies on the sine-triple-angle circle and these lines: {49, 53803}, {54, 122}, {107, 1147}, {110, 133}, {156, 22337}, {184, 1294}, {215, 3324}, {1092, 23239}, {1993, 14703}, {2477, 7158}, {2777, 3047}, {2790, 3044}, {2822, 3046}, {2828, 3045}, {3043, 9033}, {3048, 9529}, {3184, 43574}, {5012, 34842}, {5890, 40082}, {6759, 44985}, {9544, 34549}, {9545, 34186}, {9703, 38577}, {9704, 38591}, {10152, 13352}, {13434, 36520}, {14157, 38956}, {22115, 38605}, {32046, 57329}, {37472, 49117}


X(58068) = X(54)X(137)∩X(110)X(128)

Barycentrics    a^2*(a^10 - 3*a^8*b^2 + 4*a^6*b^4 - 4*a^4*b^6 + 3*a^2*b^8 - b^10 - 4*a^8*c^2 + 5*a^6*b^2*c^2 - 4*a^2*b^6*c^2 + 3*b^8*c^2 + 6*a^6*c^4 - a^4*b^2*c^4 + a^2*b^4*c^4 - 3*b^6*c^4 - 4*a^4*c^6 - a^2*b^2*c^6 + b^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 3*a^8*c^2 + 5*a^6*b^2*c^2 - a^4*b^4*c^2 - a^2*b^6*c^2 + 4*a^6*c^4 + a^2*b^4*c^4 + b^6*c^4 - 4*a^4*c^6 - 4*a^2*b^2*c^6 - 3*b^4*c^6 + 3*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(58068) lies on the sine-triple-angle circle and these lines: {49, 25150}, {54, 137}, {110, 128}, {156, 31656}, {184, 1141}, {215, 7159}, {403, 32410}, {930, 1147}, {1092, 38706}, {2477, 3327}, {3043, 45147}, {3047, 10024}, {5012, 34837}, {6592, 40111}, {6759, 44981}, {8154, 13557}, {9545, 11671}, {9703, 13512}, {9704, 38587}, {9707, 15959}, {11464, 13505}, {11597, 14071}, {12134, 14769}, {13352, 44976}, {13434, 23516}, {15960, 26864}, {22115, 38615}, {23319, 34224}, {27423, 52417}, {32046, 57324}

X(58068) = {X(11464),X(13505)}-harmonic conjugate of X(23320)


X(58069) = X(54)X(130)∩X(110)X(129)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^10 - 3*a^8*b^2 + 3*a^6*b^4 - 2*a^2*b^8 + b^10 - 4*a^8*c^2 + 6*a^6*b^2*c^2 - 2*a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 2*b^8*c^2 + 6*a^6*c^4 - 3*a^4*b^2*c^4 - a^2*b^4*c^4 + b^6*c^4 - 4*a^4*c^6 + a^2*c^8)*(a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 - 3*a^8*c^2 + 6*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + 3*a^6*c^4 - 2*a^4*b^2*c^4 - a^2*b^4*c^4 + 2*a^2*b^2*c^6 + b^4*c^6 - 2*a^2*c^8 - 2*b^2*c^8 + c^10) : :

X(58069) lies on the sine-triple-angle circle and these lines: {23, 2967}, {54, 130}, {110, 129}, {137, 275}, {184, 933}, {1147, 1303}, {3044, 43844}, {3047, 32438}, {5012, 34838}, {5966, 10311}, {6759, 44989}, {9704, 38594}, {10282, 21661}, {13352, 44991}, {19357, 22552}, {22551, 26864}, {32046, 57333}


X(58070) = X(4)X(6)∩X(107)X(26714)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(58070) lies on the cubic K027 and these lines: {4, 6}, {107, 26714}, {112, 1576}, {232, 7418}, {250, 56389}, {297, 36823}, {511, 39265}, {647, 46587}, {648, 1625}, {877, 2421}, {2420, 52916}, {2445, 2715}, {3289, 56605}, {4230, 14966}, {8779, 43952}, {9308, 44155}, {10097, 32695}, {10766, 43717}, {16318, 52672}, {19189, 52967}, {23964, 53176}, {32661, 52915}, {33885, 53328}, {34131, 38663}, {34235, 45141}, {34854, 51980}, {37930, 46942}, {51334, 52199}, {53175, 53708}

X(58070) = isogonal conjugate of X(53173)
X(58070) = isotomic conjugate of the isogonal conjugate of X(34859)
X(58070) = polar conjugate of the isotomic conjugate of X(4230)
X(58070) = X(i)-Ceva conjugate of X(j) for these (i,j): {23964, 51334}, {32687, 112}
X(58070) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53173}, {63, 879}, {98, 24018}, {248, 14208}, {255, 43665}, {287, 656}, {290, 822}, {293, 525}, {304, 878}, {326, 2395}, {336, 647}, {520, 1821}, {661, 6394}, {810, 57799}, {1102, 53149}, {1577, 17974}, {1910, 3265}, {2632, 2966}, {2715, 17879}, {3269, 36036}, {3708, 17932}, {4592, 51404}, {15526, 36084}, {20031, 24020}, {20902, 43754}, {22456, 37754}, {36120, 52613}, {39201, 46273}
X(58070) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 53173}, {132, 525}, {2679, 3269}, {3162, 879}, {5139, 51404}, {5976, 52617}, {6523, 43665}, {11672, 3265}, {15259, 2395}, {35088, 36793}, {36830, 6394}, {38970, 339}, {38987, 15526}, {39039, 14208}, {39052, 336}, {39062, 57799}, {39073, 39473}, {40596, 287}, {40601, 520}, {41167, 23616}, {46094, 52613}, {52878, 17434}
X(58070) = cevapoint of X(i) and X(j) for these (i,j): {232, 3569}, {2211, 17994}, {39469, 52967}
X(58070) = trilinear pole of line {232, 237}
X(58070) = crossdifference of every pair of points on line {520, 15526}
X(58070) = barycentric product X(i)*X(j) for these {i,j}: {4, 4230}, {25, 877}, {76, 34859}, {99, 34854}, {107, 511}, {110, 6530}, {112, 297}, {132, 44770}, {158, 23997}, {162, 240}, {232, 648}, {237, 6528}, {250, 16230}, {325, 32713}, {393, 2421}, {684, 32230}, {685, 2967}, {811, 57653}, {823, 1755}, {933, 39569}, {1301, 44704}, {1959, 24019}, {2052, 14966}, {2207, 2396}, {2211, 6331}, {2409, 39265}, {2715, 36426}, {2799, 23964}, {2966, 51334}, {3289, 15352}, {3569, 23582}, {4240, 35908}, {5317, 42717}, {6529, 36212}, {7473, 52492}, {9417, 57973}, {14356, 53176}, {15595, 32687}, {17994, 18020}, {19189, 35360}, {20031, 36790}, {32676, 40703}, {32695, 51389}, {35907, 46787}, {37937, 47110}, {42405, 52967}, {46151, 51862}, {46587, 56605}, {46592, 52486}
X(58070) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53173}, {25, 879}, {107, 290}, {110, 6394}, {112, 287}, {162, 336}, {232, 525}, {237, 520}, {240, 14208}, {250, 17932}, {297, 3267}, {325, 52617}, {393, 43665}, {511, 3265}, {648, 57799}, {823, 46273}, {877, 305}, {1576, 17974}, {1755, 24018}, {1974, 878}, {2207, 2395}, {2211, 647}, {2421, 3926}, {2445, 34156}, {2489, 51404}, {2491, 3269}, {2799, 36793}, {2967, 6333}, {3289, 52613}, {3569, 15526}, {4230, 69}, {5360, 57109}, {6528, 18024}, {6529, 16081}, {6530, 850}, {9417, 822}, {9418, 39201}, {9475, 39473}, {14966, 394}, {16230, 339}, {17209, 30805}, {17994, 125}, {20031, 34536}, {23347, 35912}, {23582, 43187}, {23964, 2966}, {23975, 20031}, {23977, 57490}, {23997, 326}, {24000, 36036}, {24019, 1821}, {32230, 22456}, {32649, 15407}, {32676, 293}, {32687, 9476}, {32696, 47388}, {32713, 98}, {34854, 523}, {34859, 6}, {35907, 46786}, {35908, 34767}, {36212, 4143}, {36417, 2422}, {39265, 2419}, {39469, 2972}, {41172, 23616}, {41937, 2715}, {44114, 5489}, {44770, 57761}, {46587, 36893}, {51324, 24284}, {51334, 2799}, {51822, 2435}, {52199, 35911}, {52439, 53149}, {52604, 53174}, {52917, 31635}, {52967, 17434}, {53521, 17216}, {57653, 656}, {57655, 43754}


X(58071) = X(4)X(51)∩X(107)X(1624)

Barycentrics    (a^2 - b^2)*b^2*(a^2 - c^2)*c^2*(a^2 + b^2 - c^2)^3*(a^2 - b^2 + c^2)^3*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(58071) lies on the cubic K027 and these lines: {4, 51}, {107, 1624}, {3134, 6530}, {32230, 53176}, {34334, 47111}, {39174, 40664}, {45289, 46106}

X(58071) = X(i)-isoconjugate of X(j) for these (i,j): {255, 14380}, {520, 35200}, {822, 14919}, {2159, 52613}, {2349, 32320}, {2394, 4100}, {2433, 6507}, {2972, 36034}, {16077, 42080}, {18877, 24018}, {24020, 32715}, {34767, 52430}, {37754, 44769}
X(58071) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 520}, {3163, 52613}, {3258, 2972}, {6523, 14380}
X(58071) = cevapoint of X(1990) and X(9409)
X(58071) = trilinear pole of line {1990, 47433}
X(58071) = crossdifference of every pair of points on line {32320, 35071}
X(58071) = barycentric product X(i)*X(j) for these {i,j}: {30, 15352}, {107, 46106}, {158, 24001}, {648, 52661}, {823, 1784}, {1093, 2407}, {1990, 6528}, {2052, 4240}, {3260, 6529}, {9033, 34538}, {9409, 57556}, {14206, 36126}, {15459, 34334}, {18027, 23347}, {32230, 41079}, {52779, 52945}, {52938, 52956}, {56829, 57806}
X(58071) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 52613}, {107, 14919}, {393, 14380}, {1093, 2394}, {1495, 32320}, {1637, 2972}, {1784, 24018}, {1990, 520}, {2052, 34767}, {2407, 3964}, {2420, 1092}, {2442, 39174}, {3260, 4143}, {4240, 394}, {6524, 2433}, {6529, 74}, {9409, 35071}, {14398, 34980}, {14581, 39201}, {15352, 1494}, {16240, 1636}, {23347, 577}, {23590, 1304}, {23975, 32715}, {24001, 326}, {24019, 35200}, {24022, 36131}, {32230, 44769}, {32646, 15404}, {32713, 18877}, {34334, 41077}, {34538, 16077}, {36126, 2349}, {43752, 15414}, {46106, 3265}, {52661, 525}, {52954, 4091}, {52955, 23224}, {52956, 57241}, {56829, 255}


X(58072) = X(4)X(15453)∩X(186)X(53234)

Barycentrics    a^2*(b^2 - c^2)*(a^2 + b^2 - c^2)^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)^2*(a^8 - a^4*b^4 - 2*a^2*b^6 + 2*b^8 - 4*a^6*c^2 + 4*a^2*b^4*c^2 - 2*b^6*c^2 + 6*a^4*c^4 - b^4*c^4 - 4*a^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^4*c^4 + 4*a^2*b^2*c^4 - b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + 2*c^8) : :

X(58072) lies on the cubic K027 and these lines: {4, 15453}, {186, 53234}, {250, 15329}, {526, 38936}, {2433, 40388}, {14222, 35235}, {43709, 57636}

X(58072) = X(17702)-isoconjugate of X(36061)
X(58072) = X(16221)-Dao conjugate of X(17702)
X(58072) = barycentric product X(i)*X(j) for these {i,j}: {2052, 53234}, {14165, 15453}, {32710, 44427}
X(58072) = barycentric quotient X(i)/X(j) for these {i,j}: {14222, 52498}, {47230, 17702}, {52418, 7471}, {53234, 394}


X(58073) = X(2)X(39748)∩X(3)X(34594)

Barycentrics    (a*b + b^2 - a*c + b*c)*(a*b - a*c - b*c - c^2)*(a^3 - a*b^2 + a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(58073) lies on the cubic K028 and these lines: {2, 39748}, {3, 34594}, {4, 37482}, {7, 57915}, {8, 596}, {388, 20615}, {966, 39798}, {3616, 40148}, {17531, 29714}, {20060, 56133}, {23345, 40086}

X(58073) = X(i)-isoconjugate of X(j) for these (i,j): {595, 57666}, {56248, 57096}
X(58073) = barycentric product X(i)*X(j) for these {i,j}: {404, 40013}, {596, 32939}, {8050, 47796}, {39747, 56318}, {39798, 44139}
X(58073) = barycentric quotient X(i)/X(j) for these {i,j}: {404, 32911}, {8050, 56248}, {20293, 47793}, {32939, 4360}, {39798, 57666}, {40013, 57830}, {44085, 2220}, {44139, 18140}, {47796, 20295}, {48281, 4063}, {56318, 3995}
X(58073) = {X(596),X(8050)}-harmonic conjugate of X(8)


X(58074) = X(3)X(917)∩X(4)X(916)

Barycentrics    b^2*(-a + b - c)*(a + b - c)*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^3 + b^3 - a*b*c - a*c^2 - b*c^2)*(-a^3 + a*b^2 + a*b*c + b^2*c - c^3) : :

X(58074) lies on the cubic K028 and these lines: {3, 917}, {4, 916}, {27, 331}, {92, 20926}, {264, 40445}, {1751, 40573}, {6336, 40701}, {7513, 56146}, {14249, 54232}, {37543, 40574}

X(58074) = isogonal conjugate of X(57501)
X(58074) = polar conjugate of X(3190)
X(58074) = polar conjugate of the isotomic conjugate of X(15467)
X(58074) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57501}, {48, 3190}, {184, 27396}, {209, 2193}, {212, 579}, {219, 2352}, {228, 56000}, {255, 41320}, {283, 2198}, {906, 8676}, {1802, 4306}, {1946, 57217}, {2194, 51574}, {3868, 52425}, {23207, 40572}
X(58074) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57501}, {1214, 51574}, {1249, 3190}, {5190, 8676}, {6523, 41320}, {39053, 57217}, {40837, 579}, {47345, 209}
X(58074) = cevapoint of X(514) and X(2973)
X(58074) = trilinear pole of line {7649, 21184}
X(58074) = barycentric product X(i)*X(j) for these {i,j}: {4, 15467}, {225, 57784}, {272, 57809}, {273, 2997}, {278, 40011}, {331, 1751}, {349, 40574}, {1305, 46107}, {2218, 57787}
X(58074) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3190}, {6, 57501}, {27, 56000}, {34, 2352}, {92, 27396}, {225, 209}, {226, 51574}, {272, 283}, {273, 3868}, {278, 579}, {331, 18134}, {393, 41320}, {653, 57217}, {1119, 4306}, {1305, 1331}, {1751, 219}, {1860, 14053}, {1880, 2198}, {2218, 212}, {2997, 78}, {7649, 8676}, {15467, 69}, {23289, 57108}, {28786, 3682}, {40011, 345}, {40149, 22021}, {40573, 40572}, {40574, 284}, {41506, 2318}, {46107, 20294}, {51566, 4571}, {56146, 1260}, {57784, 332}, {57809, 57808}


X(58075) = X(3)X(1289)∩X(4)X(66)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-a^4 + b^4 - c^4)*(a^4 + b^4 - c^4)*(-a^6 - a^4*b^2 + a^2*b^4 + b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6) : :

X(58075) lies on the cubic K028 and these lines: {3, 1289}, {4, 66}, {264, 40009}, {427, 18018}, {847, 39265}, {1370, 17407}, {3162, 40357}, {3541, 14376}, {14265, 34756}, {31099, 52512}, {44766, 56015}

X(58075) = isogonal conjugate of X(39172)
X(58075) = polar conjugate of X(40358)
X(58075) = isotomic conjugate of the isogonal conjugate of X(17407)
X(58075) = X(i)-Ceva conjugate of X(j) for these (i,j): {264, 18018}, {40421, 43678}
X(58075) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39172}, {48, 40358}, {63, 46767}, {2172, 52041}, {22075, 39733}
X(58075) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39172}, {25, 206}, {1249, 40358}, {3162, 46767}, {14376, 3}, {53822, 8673}
X(58075) = barycentric product X(i)*X(j) for these {i,j}: {76, 17407}, {1235, 40357}, {1370, 43678}, {3162, 40421}, {18018, 41361}
X(58075) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 40358}, {6, 39172}, {25, 46767}, {66, 52041}, {159, 10316}, {1289, 56008}, {1370, 20806}, {3162, 206}, {13854, 34207}, {17407, 6}, {40357, 1176}, {41361, 22}, {41766, 8743}, {43678, 13575}, {46766, 10547}, {47125, 8673}


X(58076) = X(3)X(1290)∩X(4)X(2771)

Barycentrics    (a^3 + a^2*b + a*b^2 + b^3 - a^2*c - a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c - a*b*c - b^2*c + a*c^2 - b*c^2 + c^3)*(a^4 - b^4 + a^2*b*c - a*b^2*c - a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(58076) lies on the cubic K028 and these lines: {3, 1290}, {4, 2771}, {76, 35156}, {267, 3336}, {4581, 9782}, {5902, 38938}, {6888, 45934}, {14246, 14267}, {14254, 14266}, {38937, 54241}

X(58076) = isogonal conjugate of X(51470)
X(58076) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51470}, {5127, 10693}
X(58076) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51470}, {36, 35204}, {5520, 8674}
X(58076) = barycentric product X(i)*X(j) for these {i,j}: {5080, 21907}, {11604, 37798}, {35156, 47227}
X(58076) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51470}, {1325, 37783}, {5080, 32849}, {11604, 52500}, {20989, 17796}, {21907, 55022}, {40584, 35204}, {47227, 8674}, {56906, 5172}


X(58077) = X(3)X(9058)∩X(4)X(5554)

Barycentrics    (a^3 + a^2*b + a*b^2 + b^3 - a^2*c + 2*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 + a^2*c + 2*a*b*c - b^2*c + a*c^2 - b*c^2 + c^3)*(a^4 - b^4 + 4*a^2*b*c - 4*a*b^2*c - 4*a*b*c^2 + 2*b^2*c^2 - c^4) : :

X(58077) lies on the cubic K028 and these lines: {3, 9058}, {4, 5554}, {76, 14266}, {998, 15955}, {3338, 13161}, {8743, 54241}, {14262, 14267}, {14268, 38938}, {45998, 57664}

X(58077) = X(997)-isoconjugate of X(3420)
X(58077) = X(i)-Dao conjugate of X(j) for these (i,j): {999, 52148}, {53837, 9001}
X(58077) = barycentric quotient X(i)/X(j) for these {i,j}: {3421, 17740}, {4221, 26637}, {40134, 9001}


X(58078) = X(3)X(2373)∩X(4)X(850)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^2*b^2*c^2 - a^2*c^4 - b^2*c^4)*(-a^6 + a^2*b^4 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 - c^6) : :

X(58078) lies on the cubic K028 and these lines: {3, 2373}, {4, 850}, {76, 648}, {264, 14246}, {2868, 10423}, {3266, 4235}, {14249, 14262}, {34537, 55270}, {40856, 57496}, {44146, 53777}

X(58078) = isogonal conjugate of X(34158)
X(58078) = polar conjugate of X(57485)
X(58078) = isogonal conjugate of the complement of X(56685)
X(58078) = isotomic conjugate of the isogonal conjugate of X(51823)
X(58078) = X(46140)-Ceva conjugate of X(44146)
X(58078) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34158}, {48, 57485}, {63, 51962}, {923, 14961}, {1973, 51253}, {2393, 36060}, {14908, 18669}, {36142, 42665}
X(58078) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 34158}, {1249, 57485}, {1560, 2393}, {2373, 14909}, {2482, 14961}, {3162, 51962}, {6337, 51253}, {23992, 42665}
X(58078) = cevapoint of X(524) and X(34336)
X(58078) = trilinear pole of line {468, 35522}
X(58078) = barycentric product X(i)*X(j) for these {i,j}: {76, 51823}, {468, 46140}, {2052, 53784}, {2373, 44146}, {52145, 52486}
X(58078) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57485}, {6, 34158}, {25, 51962}, {69, 51253}, {468, 2393}, {524, 14961}, {690, 42665}, {1177, 14908}, {2373, 895}, {5095, 47426}, {10423, 32729}, {34336, 5181}, {36095, 36142}, {37778, 5523}, {44146, 858}, {46140, 30786}, {51823, 6}, {52486, 5968}, {53784, 394}
X(58078) = {X(52486),X(56685)}-harmonic conjugate of X(4)


X(58079) = X(3)X(933)∩X(4)X(54)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + 2*a^2*c^6 + b^2*c^6 - c^8) : :

X(58079) lies on the cubic K028 and these lines: {2, 52677}, {3, 933}, {4, 54}, {24, 1166}, {49, 43995}, {76, 18831}, {95, 44177}, {156, 50463}, {186, 15620}, {317, 9545}, {1141, 16868}, {1157, 21844}, {6240, 36842}, {7488, 57474}, {7502, 19210}, {10018, 40631}, {11449, 15958}, {11464, 46089}, {13353, 51939}, {13434, 14860}, {14247, 39265}, {14586, 39575}, {15872, 52280}, {16035, 37954}, {25042, 35473}, {34782, 46064}, {38435, 56306}

X(58079) = polar conjugate of the isotomic conjugate of X(57474)
X(58079) = X(264)-Ceva conjugate of X(57489)
X(58079) = X(6145)-isoconjugate of X(44706)
X(58079) = X(i)-Dao conjugate of X(j) for these (i,j): {1594, 1209}, {20625, 6368}, {25044, 3}
X(58079) = barycentric product X(i)*X(j) for these {i,j}: {4, 57474}, {275, 7488}, {16040, 18831}
X(58079) = barycentric quotient X(i)/X(j) for these {i,j}: {933, 16039}, {7488, 343}, {8882, 6145}, {16040, 6368}, {57474, 69}
X(58079) = {X(3462),X(10274)}-harmonic conjugate of X(53176)


X(58080) = X(3)X(40118)∩X(4)X(14984)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^2 + b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6)*(a^6 - 2*a^4*b^2 - 2*a^2*b^4 + b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(58080) lies on the cubic K028 and these lines: {3, 40118}, {4, 14984}, {2501, 5254}, {6337, 10603}, {14249, 38939}, {14263, 39269}, {14265, 38937}, {18020, 54412}

X(58080) = isogonal conjugate of X(39169)
X(58080) = polar conjugate of X(57491)
X(58080) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39169}, {48, 57491}, {897, 41615}, {923, 5866}, {36060, 37784}
X(58080) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39169}, {1249, 57491}, {1560, 37784}, {2482, 5866}, {6593, 41615}
X(58080) = barycentric product X(i)*X(j) for these {i,j}: {3266, 41521}, {40347, 44146}
X(58080) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57491}, {6, 39169}, {187, 41615}, {468, 37784}, {524, 5866}, {40347, 895}, {41521, 111}, {44102, 41336}, {44146, 37803}


X(58081) = X(3)X(53958)∩X(4)X(3580)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4)*(a^6 + a^4*b^2 - 5*a^2*b^4 + 3*b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - 5*b^4*c^2 - a^2*c^4 + b^2*c^4 + c^6)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 - 5*b^2*c^4 + 3*c^6) : :

X(58081) lies on the cubics K028 and K1172 and these lines: {3, 53958}, {4, 3580}, {186, 52168}, {1990, 56710}, {8743, 8749}, {16080, 40387}, {35488, 50935}, {40384, 40392}

X(58081) = isogonal conjugate of X(51471)
X(58081) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51471}, {63, 52165}
X(58081) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51471}, {3162, 52165}
X(58081) = barycentric product X(15066)*X(52487)
X(58081) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51471}, {25, 52165}, {378, 37645}, {5063, 47391}, {8749, 40387}, {47649, 52168}, {52487, 34289}, {56710, 39263}


X(58082) = X(3)X(9064)∩X(4)X(3426)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 + 4*b^2*c^2 - 5*c^4)*(a^4 + 4*a^2*b^2 - 5*b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 16*a^4*b^2*c^2 - 10*a^2*b^4*c^2 - 4*b^6*c^2 - 10*a^2*b^2*c^4 + 10*b^4*c^4 + 2*a^2*c^6 - 4*b^2*c^6 - c^8) : :

X(58082) lies on the cubic K028 and these lines: {3, 9064}, {4, 3426}, {25, 52168}, {76, 54988}, {7395, 34426}, {14248, 14264}, {14262, 39265}, {14268, 54241}

X(58082) = barycentric product X(21312)*X(56270)
X(58082) = barycentric quotient X(36876)/X(52147)


X(58083) = X(3)X(2971)∩X(4)X(3566)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - a^2*b^2 + 2*b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 2*c^4)*(a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 - 4*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 4*b^6*c^2 - a^4*c^4 + 3*a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58083) lies on the cubic K028 and these lines: {3, 2971}, {4, 3566}, {24, 32697}, {76, 847}, {8743, 34756}, {10008, 52091}, {14246, 38936}

X(58083) = isogonal conjugate of the complement of X(56689)
X(58083) = X(264)-Ceva conjugate of X(57493)
X(58083) = X(i)-Dao conjugate of X(j) for these (i,j): {31842, 3564}, {34157, 3}
X(58083) = barycentric product X(i)*X(j) for these {i,j}: {2052, 53787}, {56688, 57493}
X(58083) = barycentric quotient X(i)/X(j) for these {i,j}: {3563, 56006}, {53787, 394}, {57493, 56574}
X(58083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 56604, 56689}, {4, 56689, 47108}


X(58084) = X(3)X(847)∩X(4)X(924)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(2*a^8 - 3*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58084) lies on the cubic K028 and these lines: {3, 847}, {4, 924}, {264, 57760}, {12038, 15454}, {12095, 30512}, {14248, 39263}, {14249, 34756}, {14254, 38936}, {39170, 39375}, {52582, 57638}

X(58084) = isogonal conjugate of the complement of X(56684)
X(58084) = X(i)-isoconjugate of X(j) for these (i,j): {2315, 43756}, {6149, 39373}
X(58084) = X(i)-Dao conjugate of X(j) for these (i,j): {131, 13754}, {14993, 39373}, {15454, 3}
X(58084) = barycentric product X(2052)*X(53788)
X(58084) = barycentric quotient X(i)/X(j) for these {i,j}: {1300, 43756}, {1989, 39373}, {16310, 13754}, {53788, 394}


X(58085) = X(3)X(107)∩X(4)X(520)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 3*a^6*c^2 + 3*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 4*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 - 2*a^6*c^2 - 3*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + b^6*c^2 + 6*a^4*c^4 - 3*a^2*b^2*c^4 - 3*b^4*c^4 - 2*a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(58085) lies on the cubic K028 and these lines: {3, 107}, {4, 520}, {76, 54988}, {250, 52578}, {847, 39268}, {1093, 2693}, {2052, 8431}, {4240, 23097}, {8743, 39263}, {11589, 52661}, {14254, 38937}, {15404, 47392}, {52494, 53235}

X(58085) = isogonal conjugate of X(39174)
X(58085) = polar conjugate of X(57488)
X(58085) = isogonal conjugate of the complement of X(56683)
X(58085) = X(54988)-Ceva conjugate of X(46106)
X(58085) = X(i)-isoconjugate of X(j) for these (i,j): {1, 39174}, {48, 57488}, {63, 51964}, {255, 52646}, {2159, 44436}, {6000, 35200}, {6149, 39376}
X(58085) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 39174}, {30, 40948}, {133, 6000}, {1249, 57488}, {3162, 51964}, {3163, 44436}, {6523, 52646}, {14993, 39376}
X(58085) = cevapoint of X(30) and X(34334)
X(58085) = trilinear pole of line {1636, 1990}
X(58085) = barycentric product X(i)*X(j) for these {i,j}: {1294, 46106}, {1990, 54988}, {2052, 53789}
X(58085) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57488}, {6, 39174}, {25, 51964}, {30, 44436}, {393, 52646}, {1294, 14919}, {1989, 39376}, {1990, 6000}, {3163, 40948}, {16240, 47433}, {32646, 1304}, {51965, 51895}, {52661, 51358}, {53789, 394}, {56605, 35910}
X(58085) = {X(4),X(56605)}-harmonic conjugate of X(56683)


X(58086) = X(3)X(476)∩X(4)X(526)

Barycentrics    b^2*c^2*(a^8 + a^6*b^2 - 4*a^4*b^4 + a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 2*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 - a^6*c^2 - 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 - 2*a^2*b^2*c^4 - 3*b^4*c^4 - a^2*c^6 + 3*b^2*c^6 - c^8)*(2*a^8 - 2*a^6*b^2 - a^4*b^4 + b^8 - 2*a^6*c^2 + 4*a^4*b^2*c^2 - 4*b^6*c^2 - a^4*c^4 + 6*b^4*c^4 - 4*b^2*c^6 + c^8) : :

X(58086) lies on the cubic K028 and these lines: {3, 476}, {4, 526}, {847, 38937}, {14246, 39263}, {14249, 38936}, {34148, 34210}, {36193, 52603}

X(58086) = X(i)-Dao conjugate of X(j) for these (i,j): {25641, 5663}, {47084, 39987}, {51475, 3}
X(58086) = barycentric product X(i)*X(j) for these {i,j}: {34150, 46789}, {39985, 52498}
X(58086) = barycentric quotient X(i)/X(j) for these {i,j}: {2436, 53234}, {3018, 5663}, {32650, 35189}, {34150, 46788}, {52498, 39988}


X(58087) = X(3)X(935)∩X(4)X(9517)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*(a^10 - a^6*b^4 - a^4*b^6 + b^10 - 2*a^8*c^2 + 2*a^6*b^2*c^2 + 2*a^2*b^6*c^2 - 2*b^8*c^2 - a^4*b^2*c^4 - a^2*b^4*c^4 + 2*a^4*c^6 + 2*b^4*c^6 - a^2*c^8 - b^2*c^8)*(-a^10 + 2*a^8*b^2 - 2*a^4*b^6 + a^2*b^8 - 2*a^6*b^2*c^2 + a^4*b^4*c^2 + b^8*c^2 + a^6*c^4 + a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 2*a^2*b^2*c^6 + 2*b^2*c^8 - c^10) : :

X(5807) lies on the cubic K028 and these lines: {3, 935}, {4, 9517}, {76, 16077}, {685, 52641}, {8743, 14254}, {10312, 46340}, {14246, 14249}, {17986, 18312}

X(58087) = isogonal conjugate of X(51472)
X(58087) = X(1)-isoconjugate of X(51472)
X(58087) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51472}, {42426, 2781}
X(58087) = cevapoint of X(542) and X(38552)
X(58087) = barycentric product X(46786)*X(47110)
X(58087) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51472}, {6103, 2781}, {34369, 40079}, {35907, 37937}, {47110, 46787}


X(58088) = X(3)X(40118)∩X(4)X(51480)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - 2*a^2*b^2*c^4 - b^4*c^4 + a^2*c^6 + b^2*c^6)*(a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 - b^4*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8)*(2*a^10 - 4*a^8*b^2 + a^6*b^4 + 3*a^4*b^6 - 3*a^2*b^8 + b^10 - 4*a^8*c^2 + 8*a^6*b^2*c^2 - 5*a^4*b^4*c^2 + 8*a^2*b^6*c^2 - 3*b^8*c^2 + a^6*c^4 - 5*a^4*b^2*c^4 - 10*a^2*b^4*c^4 + 2*b^6*c^4 + 3*a^4*c^6 + 8*a^2*b^2*c^6 + 2*b^4*c^6 - 3*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(58088) lies on the cubic K028 and these lines: {3, 40118}, {4, 51480}, {76, 18878}, {847, 14246}, {8548, 44768}, {14248, 14254}, {34756, 39269}

X(58088) = X(51474)-Dao conjugate of X(3)
X(58088) = barycentric quotient X(47108)/X(52515)


X(58089) = X(101)X(8683)∩X(106)X(3295)

Barycentrics    a^2*(a-b)*(a+b-7*c)*(a-c)*(a-7*b+c) : :

X(58089) lies on the circumcircle and these lines: {101, 8683}, {104, 31509}, {105, 31508}, {106, 3295}, {1018, 53630}, {1331, 28222}, {2718, 5122}, {3361, 8686}, {3939, 8699}, {8694, 23832}, {23845, 28226}, {28184, 35281}, {29227, 54440}, {53280, 58110}

X(58089) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58148}, {513, 3623}, {1019, 4098}
X(58089) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58148}, {39026, 3623}
X(58089) = X(i)-cross conjugate of X(j) for these {i, j}: {58148, 6}
X(58089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(8683)}}, {{A, B, C, X(1461), X(37212)}}, {{A, B, C, X(2283), X(31508)}}, {{A, B, C, X(3295), X(23703)}}, {{A, B, C, X(3361), X(23832)}}, {{A, B, C, X(23981), X(35242)}}
X(58089) = barycentric product X(i)*X(j) for these (i, j): {31509, 651}
X(58089) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58148}, {101, 3623}, {31509, 4391}


X(58090) = X(74)X(2930)∩X(98)X(2482)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+7*b^2+c^2)*(a^2+b^2+7*c^2) : :

X(58090) lies on the circumcircle and these lines: {74, 2930}, {98, 2482}, {111, 5024}, {112, 9145}, {476, 47293}, {729, 5039}, {842, 37946}, {1296, 1634}, {2770, 37904}, {4558, 11636}, {5467, 58101}, {11634, 58091}, {35357, 58102}

X(58090) = trilinear pole of line {6, 5646}
X(58090) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52301}, {1577, 21309}
X(58090) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 52301}
X(58090) = X(i)-cross conjugate of X(j) for these {i, j}: {53095, 249}
X(58090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2418), X(5024)}}, {{A, B, C, X(2420), X(31884)}}, {{A, B, C, X(2421), X(42850)}}, {{A, B, C, X(2434), X(4235)}}, {{A, B, C, X(2482), X(9155)}}, {{A, B, C, X(2966), X(9124)}}, {{A, B, C, X(3524), X(4230)}}, {{A, B, C, X(4240), X(41463)}}, {{A, B, C, X(4558), X(9145)}}, {{A, B, C, X(5039), X(5118)}}, {{A, B, C, X(5968), X(36890)}}, {{A, B, C, X(7473), X(37946)}}, {{A, B, C, X(7482), X(37904)}}, {{A, B, C, X(9186), X(46144)}}, {{A, B, C, X(41498), X(44468)}}
X(58090) = barycentric quotient X(i)/X(j) for these (i, j): {112, 52301}, {1576, 21309}


X(58091) = X(98)X(8591)∩X(729)X(5034)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-11*c^2)*(a^2-11*b^2+c^2) : :

X(58091) lies on the circumcircle and these lines: {74, 55610}, {98, 8591}, {111, 40916}, {729, 5034}, {1300, 35483}, {1597, 3563}, {2374, 52301}, {2696, 47293}, {2770, 47313}, {3565, 9145}, {4558, 58099}, {11634, 58090}, {37934, 40118}

X(58091) = trilinear pole of line {6, 5544}
X(58091) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 5032}
X(58091) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 5032}
X(58091) = X(i)-cross conjugate of X(j) for these {i, j}: {5585, 249}
X(58091)= pole of line {5032, 11284} with respect to the Kiepert parabola
X(58091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1597), X(4226)}}, {{A, B, C, X(2420), X(55610)}}, {{A, B, C, X(4230), X(10304)}}, {{A, B, C, X(4235), X(40916)}}, {{A, B, C, X(5034), X(5118)}}, {{A, B, C, X(5467), X(53095)}}, {{A, B, C, X(7468), X(37934)}}, {{A, B, C, X(7482), X(47313)}}, {{A, B, C, X(11634), X(52301)}}, {{A, B, C, X(15329), X(35483)}}, {{A, B, C, X(35178), X(46639)}}
X(58091) = barycentric quotient X(i)/X(j) for these (i, j): {110, 5032}


X(58092) = X(98)X(8703)∩X(111)X(7496)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-8*c^2)*(a^2-8*b^2+c^2) : :

X(58092) lies on the circumcircle and these lines: {74, 55606}, {98, 8703}, {111, 7496}, {729, 5038}, {842, 35001}, {1300, 35492}, {2374, 10301}, {2696, 47288}, {2770, 37901}, {3563, 13596}, {4576, 6082}, {7472, 53951}, {8600, 45722}, {9145, 33638}, {11634, 12074}

X(58092) = trilinear pole of line {6, 5643}
X(58092) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 8584}
X(58092) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 8584}
X(58092) = X(i)-cross conjugate of X(j) for these {i, j}: {8588, 249}
X(58092)= pole of line {8584, 16042} with respect to the Kiepert parabola
X(58092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(55606)}}, {{A, B, C, X(4226), X(13596)}}, {{A, B, C, X(4230), X(8703)}}, {{A, B, C, X(4235), X(7496)}}, {{A, B, C, X(5038), X(5118)}}, {{A, B, C, X(5467), X(8589)}}, {{A, B, C, X(7473), X(35001)}}, {{A, B, C, X(7482), X(37901)}}, {{A, B, C, X(10301), X(11634)}}, {{A, B, C, X(15329), X(35492)}}, {{A, B, C, X(34574), X(42367)}}, {{A, B, C, X(35178), X(44769)}}
X(58092) = barycentric quotient X(i)/X(j) for these (i, j): {110, 8584}


X(58093) = X(3)X(43662)∩X(98)X(3522)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-7*c^2)*(a^2-7*b^2+c^2) : :

X(58093) lies on the circumcircle and these lines: {3, 43662}, {74, 55604}, {98, 3522}, {111, 7485}, {376, 45138}, {477, 47337}, {842, 37944}, {907, 11634}, {1593, 3563}, {2374, 6995}, {2696, 47289}, {2770, 37900}, {4558, 58097}, {5966, 15745}, {37931, 40118}, {37977, 40119}, {53273, 58116}

X(58093) = reflection of X(i) in X(j) for these {i,j}: {43662, 3}
X(58093) = trilinear pole of line {6, 5644}
X(58093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 51170}, {1577, 22331}
X(58093) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 51170}
X(58093)= pole of line {5020, 51170} with respect to the Kiepert parabola
X(58093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1593), X(4226)}}, {{A, B, C, X(2420), X(55604)}}, {{A, B, C, X(3522), X(4230)}}, {{A, B, C, X(4235), X(7485)}}, {{A, B, C, X(6995), X(11634)}}, {{A, B, C, X(7468), X(37931)}}, {{A, B, C, X(7472), X(37977)}}, {{A, B, C, X(7473), X(37944)}}, {{A, B, C, X(7480), X(47337)}}, {{A, B, C, X(7482), X(37900)}}, {{A, B, C, X(32713), X(35137)}}
X(58093) = barycentric product X(i)*X(j) for these (i, j): {110, 43681}
X(58093) = barycentric quotient X(i)/X(j) for these (i, j): {110, 51170}, {1576, 22331}, {43681, 850}


X(58094) = X(98)X(548)∩X(428)X(2374)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-6*c^2)*(a^2-6*b^2+c^2) : :

X(58094) lies on the circumcircle and these lines: {74, 55601}, {98, 548}, {111, 15246}, {376, 13597}, {428, 2374}, {842, 35452}, {2770, 20063}, {3563, 14865}, {4611, 58099}, {5966, 34864}, {7953, 11634}, {12074, 53273}, {35489, 40118}, {35921, 43657}, {37920, 40119}

X(58094) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 32455}
X(58094) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 32455}
X(58094) = X(i)-cross conjugate of X(j) for these {i, j}: {15513, 249}
X(58094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(428), X(11634)}}, {{A, B, C, X(548), X(4230)}}, {{A, B, C, X(2420), X(55601)}}, {{A, B, C, X(4226), X(14865)}}, {{A, B, C, X(4235), X(15246)}}, {{A, B, C, X(7468), X(35489)}}, {{A, B, C, X(7472), X(37920)}}, {{A, B, C, X(7473), X(35452)}}, {{A, B, C, X(7482), X(20063)}}
X(58094) = barycentric quotient X(i)/X(j) for these (i, j): {110, 32455}


X(58095) = X(74)X(55585)∩X(98)X(1657)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^2+b^2)-5*c^2)*(2*a^2-5*b^2+2*c^2) : :

X(58095) lies on the circumcircle and these lines: {74, 55585}, {98, 1657}, {111, 37913}, {376, 20480}, {842, 34152}, {2374, 37453}, {2770, 30745}, {3563, 21844}, {4611, 58096}, {5966, 12107}, {7954, 53273}, {11634, 58098}, {35488, 40120}, {47290, 53895}, {52630, 58097}

X(58095) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 6144}
X(58095) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 6144}
X(58095) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1657), X(4230)}}, {{A, B, C, X(2420), X(55585)}}, {{A, B, C, X(4226), X(21844)}}, {{A, B, C, X(4235), X(37913)}}, {{A, B, C, X(7473), X(34152)}}, {{A, B, C, X(7482), X(30745)}}, {{A, B, C, X(11634), X(37453)}}
X(58095) = barycentric quotient X(i)/X(j) for these (i, j): {110, 6144}


X(58096) = X(98)X(3529)∩X(111)X(9909)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-7*c^2)*(3*a^2-7*b^2+3*c^2) : :

X(58096) lies on the circumcircle and these lines: {74, 55582}, {98, 3529}, {111, 9909}, {842, 37948}, {2373, 7396}, {2374, 38282}, {2770, 5159}, {3563, 32534}, {4558, 53884}, {4611, 58095}, {5896, 21312}, {11634, 58097}, {40118, 57584}, {47291, 53895}, {53273, 58102}

X(58096) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 11008}
X(58096) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 11008}
X(58096) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(55582)}}, {{A, B, C, X(3529), X(4230)}}, {{A, B, C, X(4226), X(32534)}}, {{A, B, C, X(4235), X(9909)}}, {{A, B, C, X(5159), X(7482)}}, {{A, B, C, X(7396), X(46592)}}, {{A, B, C, X(7473), X(37948)}}, {{A, B, C, X(11634), X(38282)}}, {{A, B, C, X(32713), X(35179)}}
X(58096) = barycentric quotient X(i)/X(j) for these (i, j): {110, 11008}


X(58097) = X(98)X(3146)∩X(111)X(1611)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-5*c^2)*(3*a^2-5*b^2+3*c^2) : :

X(58097) lies on the circumcircle and these lines: {74, 38263}, {98, 3146}, {111, 1611}, {842, 37941}, {935, 47291}, {1300, 36611}, {3515, 3563}, {4230, 44060}, {4558, 58093}, {4611, 53884}, {6622, 40120}, {9218, 10425}, {10151, 40118}, {11634, 58096}, {52630, 58095}, {53273, 58100}

X(58097) = trilinear pole of line {6, 8780}
X(58097) = X(i)-isoconjugate-of-X(j) for these {i, j}: {523, 16570}, {656, 38282}, {661, 20080}, {1577, 5023}
X(58097) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 20080}, {40596, 38282}
X(58097) = X(i)-cross conjugate of X(j) for these {i, j}: {20850, 250}
X(58097)= pole of line {9909, 20080} with respect to the Kiepert parabola
X(58097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(892), X(32713)}}, {{A, B, C, X(1611), X(5468)}}, {{A, B, C, X(2407), X(40318)}}, {{A, B, C, X(2420), X(44456)}}, {{A, B, C, X(3146), X(4230)}}, {{A, B, C, X(3515), X(4226)}}, {{A, B, C, X(6529), X(44768)}}, {{A, B, C, X(7468), X(10151)}}, {{A, B, C, X(7473), X(37941)}}, {{A, B, C, X(32697), X(46639)}}, {{A, B, C, X(39562), X(41392)}}
X(58097) = barycentric product X(i)*X(j) for these (i, j): {110, 38259}, {36611, 4558}, {36616, 99}, {38263, 648}
X(58097) = barycentric quotient X(i)/X(j) for these (i, j): {110, 20080}, {112, 38282}, {163, 16570}, {1576, 5023}, {36611, 14618}, {36616, 523}, {38259, 850}, {38263, 525}


X(58098) = X(2)X(43663)∩X(98)X(382)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^2+b^2)-3*c^2)*(2*a^2-3*b^2+2*c^2) : :

X(58098) lies on the circumcircle and these lines: {2, 43663}, {58, 28551}, {74, 37517}, {98, 382}, {842, 15646}, {935, 47290}, {1296, 4611}, {2373, 30744}, {3563, 44879}, {3565, 52630}, {4230, 33640}, {11634, 58095}, {11636, 53273}, {35278, 53957}, {47291, 53950}

X(58098) = trilinear pole of line {6, 9544}
X(58098) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 37453}, {661, 40341}, {1577, 5206}
X(58098) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 40341}, {40596, 37453}
X(58098) = X(i)-cross conjugate of X(j) for these {i, j}: {34777, 23964}
X(58098)= pole of line {37913, 40341} with respect to the Kiepert parabola
X(58098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(382), X(4230)}}, {{A, B, C, X(512), X(42345)}}, {{A, B, C, X(2420), X(37517)}}, {{A, B, C, X(4226), X(44879)}}, {{A, B, C, X(7473), X(15646)}}, {{A, B, C, X(30744), X(46592)}}, {{A, B, C, X(44173), X(46005)}}
X(58098) = barycentric product X(i)*X(j) for these (i, j): {110, 53105}
X(58098) = barycentric quotient X(i)/X(j) for these (i, j): {110, 40341}, {112, 37453}, {1576, 5206}, {53105, 850}


X(58099) = X(74)X(1351)∩X(111)X(3053)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)-7*c^2)*(5*a^2-7*b^2+5*c^2) : :

X(58099) lies on the circumcircle and these lines: {74, 1351}, {98, 3543}, {99, 53351}, {111, 3053}, {477, 47031}, {842, 37952}, {843, 1692}, {935, 47292}, {2709, 9218}, {3563, 55572}, {3565, 5467}, {4558, 58091}, {4611, 58094}, {9181, 10425}, {9737, 14388}, {33638, 52630}, {35383, 53973}, {37984, 40118}

X(58099) = trilinear pole of line {6, 40350}
X(58099) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52290}, {661, 11160}, {1577, 5210}
X(58099) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 11160}, {40596, 52290}
X(58099) = X(i)-cross conjugate of X(j) for these {i, j}: {17813, 23964}
X(58099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1351), X(2420)}}, {{A, B, C, X(1692), X(9181)}}, {{A, B, C, X(3053), X(5467)}}, {{A, B, C, X(3543), X(4230)}}, {{A, B, C, X(5649), X(46639)}}, {{A, B, C, X(7468), X(37984)}}, {{A, B, C, X(7473), X(37952)}}, {{A, B, C, X(7480), X(47031)}}, {{A, B, C, X(9186), X(32738)}}, {{A, B, C, X(14248), X(32713)}}
X(58099) = barycentric product X(i)*X(j) for these (i, j): {110, 41895}
X(58099) = barycentric quotient X(i)/X(j) for these (i, j): {110, 11160}, {112, 52290}, {1576, 5210}, {41895, 850}


X(58100) = X(98)X(3091)∩X(111)X(1184)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)-c^2)*(3*a^2-b^2+3*c^2) : :

X(58100) lies on the circumcircle and these lines: {74, 12017}, {98, 3091}, {111, 1184}, {477, 47340}, {755, 31506}, {842, 37940}, {935, 47289}, {1297, 38444}, {1576, 3565}, {2367, 56067}, {3517, 3563}, {4226, 53862}, {4558, 58116}, {4611, 7953}, {7954, 52630}, {9076, 39668}, {37942, 40118}, {53273, 58097}

X(58100) = trilinear pole of line {6, 9909}
X(58100) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 8889}, {661, 3620}, {1577, 5013}, {12167, 14208}
X(58100) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 3620}, {40596, 8889}
X(58100) = X(i)-cross conjugate of X(j) for these {i, j}: {5020, 250}, {19132, 23964}, {22331, 249}
X(58100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1184), X(5468)}}, {{A, B, C, X(2407), X(26206)}}, {{A, B, C, X(2409), X(38444)}}, {{A, B, C, X(2420), X(12017)}}, {{A, B, C, X(3091), X(4230)}}, {{A, B, C, X(3517), X(4226)}}, {{A, B, C, X(7468), X(37942)}}, {{A, B, C, X(7473), X(37940)}}, {{A, B, C, X(7480), X(47340)}}, {{A, B, C, X(32713), X(35138)}}, {{A, B, C, X(39668), X(52630)}}, {{A, B, C, X(41392), X(45016)}}
X(58100) = barycentric product X(i)*X(j) for these (i, j): {110, 5395}, {1576, 56067}, {31506, 4577}
X(58100) = barycentric quotient X(i)/X(j) for these (i, j): {110, 3620}, {112, 8889}, {1576, 5013}, {5395, 850}, {31506, 826}, {56067, 44173}


X(58101) = X(74)X(5085)∩X(98)X(3545)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)-c^2)*(5*a^2-b^2+5*c^2) : :

X(58101) lies on the circumcircle and these lines: {74, 5085}, {98, 3545}, {111, 21309}, {112, 35357}, {476, 47292}, {842, 37953}, {843, 38010}, {907, 9145}, {1296, 1576}, {1297, 51240}, {2697, 47339}, {4558, 12074}, {4611, 58121}, {5467, 58090}, {6323, 42852}, {39382, 57153}

X(58101) = trilinear pole of line {6, 35268}
X(58101) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52284}, {661, 21356}, {1577, 5024}
X(58101) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 21356}, {40596, 52284}
X(58101) = X(i)-cross conjugate of X(j) for these {i, j}: {11284, 250}
X(58101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(5085)}}, {{A, B, C, X(2434), X(40126)}}, {{A, B, C, X(3545), X(4230)}}, {{A, B, C, X(4558), X(35357)}}, {{A, B, C, X(5467), X(21309)}}, {{A, B, C, X(6593), X(52951)}}, {{A, B, C, X(7473), X(37953)}}, {{A, B, C, X(9181), X(38010)}}, {{A, B, C, X(37937), X(47339)}}
X(58101) = barycentric product X(i)*X(j) for these (i, j): {110, 18842}
X(58101) = barycentric quotient X(i)/X(j) for these (i, j): {110, 21356}, {112, 52284}, {1576, 5024}, {18842, 850}


X(58102) = X(98)X(3090)∩X(111)X(5359)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*(a^2+b^2)+c^2)*(3*a^2+b^2+3*c^2) : :

X(58102) lies on the circumcircle and these lines: {74, 55676}, {98, 3090}, {111, 5359}, {842, 37939}, {907, 1576}, {1289, 57153}, {1297, 9715}, {2770, 47316}, {4558, 7953}, {4611, 7954}, {14929, 51508}, {35278, 53862}, {35357, 58090}, {53273, 58096}

X(58102) = trilinear pole of line {6, 21969}
X(58102) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7378}, {661, 3619}, {1577, 9605}, {7716, 14208}
X(58102) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 3619}, {40596, 7378}
X(58102) = X(i)-cross conjugate of X(j) for these {i, j}: {7484, 250}
X(58102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2409), X(9715)}}, {{A, B, C, X(2420), X(55676)}}, {{A, B, C, X(3090), X(4230)}}, {{A, B, C, X(4558), X(57678)}}, {{A, B, C, X(5359), X(5468)}}, {{A, B, C, X(7473), X(37939)}}, {{A, B, C, X(7482), X(47316)}}, {{A, B, C, X(41676), X(43188)}}
X(58102) = barycentric product X(i)*X(j) for these (i, j): {110, 18841}
X(58102) = barycentric quotient X(i)/X(j) for these (i, j): {110, 3619}, {112, 7378}, {1576, 9605}, {18841, 850}


X(58103) = X(103)X(3295)∩X(105)X(3361)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a-b)^2-4*(a+b)*c+3*c^2)*(a^2+3*b^2-4*b*c+c^2-2*a*(2*b+c)) : :

X(58103) lies on the circumcircle and these lines: {103, 3295}, {104, 10390}, {105, 3361}, {106, 34821}, {675, 56348}, {972, 35242}, {1311, 56054}, {1461, 53243}, {1477, 51773}, {2283, 8694}, {2717, 5122}, {15731, 31508}

X(58103) = trilinear pole of line {6, 34821}
X(58103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 10389}, {650, 18230}
X(58103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(3361)}}
X(58103) = barycentric product X(i)*X(j) for these (i, j): {101, 56348}, {109, 56054}, {190, 34821}, {10390, 651}
X(58103) = barycentric quotient X(i)/X(j) for these (i, j): {109, 18230}, {1415, 10389}, {10390, 4391}, {34821, 514}, {56054, 35519}, {56348, 3261}


X(58104) = X(103)X(3746)∩X(104)X(5049)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2-3*a*b+2*b^2-2*a*c-3*b*c+c^2)*((a-b)^2-3*(a+b)*c+2*c^2) : :

X(58104) lies on the circumcircle and these lines: {103, 3746}, {104, 5049}, {105, 32636}, {692, 58107}, {919, 36075}, {972, 31663}, {1202, 2291}, {1311, 32015}, {2283, 8701}, {2717, 5131}, {8693, 36074}

X(58104) = trilinear pole of line {6, 38849}
X(58104) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 3748}, {650, 6666}, {4041, 17201}, {42438, 56322}
X(58104) = X(i)-cross conjugate of X(j) for these {i, j}: {1475, 1262}
X(58104) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(32636)}}, {{A, B, C, X(5049), X(23981)}}
X(58104) = barycentric product X(i)*X(j) for these (i, j): {109, 32015}
X(58104) = barycentric quotient X(i)/X(j) for these (i, j): {109, 6666}, {1415, 3748}, {4565, 17201}, {32015, 35519}


X(58105) = X(41)X(2291)∩X(106)X(1471)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*(a-b)^2-(a+b)*c-c^2)*(2*a^2-(b-c)*(b+2*c)-a*(b+4*c)) : :

X(58105) lies on the circumcircle and these lines: {41, 2291}, {59, 53887}, {103, 5010}, {104, 37606}, {105, 2099}, {106, 1471}, {651, 1308}, {692, 14733}, {934, 23346}, {1110, 39640}, {1311, 55954}, {1633, 46003}, {2222, 35280}, {2283, 4588}, {2717, 3245}, {4559, 28899}, {15728, 38859}, {23890, 32630}

X(58105) = trilinear pole of line {6, 2078}
X(58105) = X(i)-isoconjugate-of-X(j) for these {i, j}: {85, 17425}, {513, 5231}, {522, 4860}, {650, 6173}, {3676, 42014}, {3900, 21314}, {24002, 32578}, {35348, 44785}
X(58105) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 5231}
X(58105) = X(i)-cross conjugate of X(j) for these {i, j}: {37541, 59}
X(58105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(41), X(692)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(1170)}}, {{A, B, C, X(2099), X(2283)}}, {{A, B, C, X(5549), X(36086)}}, {{A, B, C, X(23981), X(37606)}}
X(58105) = barycentric product X(i)*X(j) for these (i, j): {109, 55954}, {55920, 651}
X(58105) = barycentric quotient X(i)/X(j) for these (i, j): {101, 5231}, {109, 6173}, {692, 34522}, {1415, 4860}, {1461, 21314}, {2175, 17425}, {55920, 4391}, {55954, 35519}


X(58106) = X(103)X(5217)∩X(105)X(3340)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(3*(a-b)^2-2*(a+b)*c-c^2)*(3*a^2-2*a*(b+3*c)-(b-c)*(b+3*c)) : :

X(58106) lies on the circumcircle and these lines: {103, 5217}, {104, 53054}, {105, 3340}, {675, 56331}, {692, 53622}, {1190, 2291}, {2283, 28162}, {2717, 5183}, {3939, 43344}, {4559, 26716}

X(58106) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 10980}
X(58106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(3340)}}, {{A, B, C, X(23981), X(53054)}}
X(58106) = barycentric product X(i)*X(j) for these (i, j): {101, 56331}
X(58106) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 10980}, {56331, 3261}


X(58107) = X(104)X(56028)∩X(105)X(5221)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*(a-b)^2-3*(a+b)*c+c^2)*(2*a^2-3*a*b+b^2-4*a*c-3*b*c+2*c^2) : :

X(58107) lies on the circumcircle and these lines: {104, 56028}, {105, 5221}, {692, 58104}, {919, 36074}, {1311, 56060}, {2283, 8652}, {8693, 36075}, {26700, 35280}

X(58107) = X(i)-isoconjugate-of-X(j) for these {i, j}: {650, 20195}
X(58107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2283), X(5221)}}
X(58107) = barycentric product X(i)*X(j) for these (i, j): {109, 56060}, {56028, 651}, {56350, 934}
X(58107) = barycentric quotient X(i)/X(j) for these (i, j): {109, 20195}, {56028, 4391}, {56060, 35519}, {56350, 4397}


X(58108) = X(103)X(5204)∩X(1615)X(2291)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(3*(a-b)^2+2*(a+b)*c-5*c^2)*(3*a^2+2*a*b-5*b^2-6*a*c+2*b*c+3*c^2) : :

X(58108) lies on the circumcircle and these lines: {103, 5204}, {675, 38254}, {972, 7991}, {1311, 36605}, {1615, 2291}, {2283, 8699}, {2370, 36625}, {2717, 5048}

X(58108) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 53056}, {650, 20059}, {693, 38293}, {3239, 33633}
X(58108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6614), X(32675)}}
X(58108) = barycentric product X(i)*X(j) for these (i, j): {101, 38254}, {109, 36605}, {1461, 36625}, {36627, 934}
X(58108) = barycentric quotient X(i)/X(j) for these (i, j): {109, 20059}, {1415, 53056}, {32739, 38293}, {36605, 35519}, {36625, 52622}, {36627, 4397}, {38254, 3261}


X(58109) = X(1)X(15731)∩X(103)X(999)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a-b)^2+4*(a+b)*c-5*c^2)*(a^2+4*a*b-5*b^2-2*a*c+4*b*c+c^2) : :

X(58109) lies on the circumcircle and these lines: {1, 15731}, {36, 43080}, {56, 2291}, {100, 23890}, {101, 23346}, {103, 999}, {104, 11372}, {105, 13462}, {106, 42314}, {675, 56274}, {972, 3576}, {1311, 55948}, {1319, 53181}, {1420, 15728}, {1461, 14733}, {2283, 6014}, {2717, 5126}, {5563, 38451}, {30244, 41343}

X(58109) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 46919}, {522, 35445}, {650, 6172}, {664, 23056}, {4105, 47374}
X(58109) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 46919}, {39025, 23056}
X(58109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4626)}}, {{A, B, C, X(56), X(1461)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(653), X(7091)}}, {{A, B, C, X(2283), X(13462)}}, {{A, B, C, X(3445), X(8750)}}
X(58109) = barycentric product X(i)*X(j) for these (i, j): {101, 56274}, {109, 55948}, {55922, 651}
X(58109) = barycentric quotient X(i)/X(j) for these (i, j): {56, 46919}, {109, 6172}, {1415, 35445}, {3063, 23056}, {4617, 47374}, {55922, 4391}, {55948, 35519}, {56274, 3261}


X(58110) = X(99)X(58127)∩X(105)X(678)

Barycentrics    a^2*(a-b)*(a-c)*(a+7*b+c)*(a+b+7*c) : :

X(58110) lies on the circumcircle and these lines: {99, 58127}, {105, 678}, {1331, 28206}, {2291, 3196}, {3939, 4588}, {4557, 6014}, {15506, 15731}, {23344, 28170}, {53280, 58089}, {54440, 58115}

X(58110) = trilinear pole of line {6, 8162}
X(58110) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58136}, {513, 38314}
X(58110) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58136}, {39026, 38314}
X(58110) = X(i)-cross conjugate of X(j) for these {i, j}: {58136, 6}
X(58110) = barycentric product X(i)*X(j) for these (i, j): {6, 58127}
X(58110) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58136}, {101, 38314}, {58127, 76}


X(58111) = X(32)X(737)∩X(98)X(3407)

Barycentrics    a^2*(a^6-b^6)*(a^6-c^6) : :

X(58111) lies on the circumcircle and these lines: {32, 737}, {74, 26316}, {98, 3407}, {99, 14574}, {111, 18898}, {560, 723}, {689, 4630}, {707, 1501}, {733, 46288}, {753, 38813}, {805, 1576}, {815, 34069}, {833, 1492}, {1297, 19121}, {1916, 19575}, {2367, 3114}, {2857, 8840}, {9075, 40415}, {9076, 14617}, {29011, 35422}

X(58111) = trilinear pole of line {6, 6660}
X(58111) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 50549}, {523, 51836}, {525, 46507}, {561, 17415}, {656, 5117}, {661, 3314}, {824, 3721}, {850, 3116}, {982, 4122}, {984, 3801}, {1491, 2887}, {1577, 3094}, {1928, 9006}, {3117, 20948}, {3250, 20234}, {3773, 3777}, {4481, 16886}, {14208, 56920}, {18904, 23596}, {30870, 40935}
X(58111) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 50549}, {36830, 3314}, {39054, 56784}, {40368, 17415}, {40369, 9006}, {40596, 5117}
X(58111) = X(i)-cross conjugate of X(j) for these {i, j}: {11328, 250}, {42826, 57655}, {50549, 6}
X(58111)= pole of line {3314, 46546} with respect to the Kiepert parabola
X(58111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(52081)}}, {{A, B, C, X(877), X(3818)}}, {{A, B, C, X(1576), X(46288)}}, {{A, B, C, X(2420), X(26316)}}, {{A, B, C, X(2421), X(7806)}}, {{A, B, C, X(4230), X(13862)}}, {{A, B, C, X(4630), X(14574)}}, {{A, B, C, X(14560), X(35138)}}, {{A, B, C, X(14966), X(39750)}}
X(58111) = barycentric product X(i)*X(j) for these (i, j): {110, 3407}, {163, 3113}, {1501, 9063}, {1576, 3114}, {2715, 8840}, {14602, 41073}, {14617, 827}, {18898, 99}, {33514, 6}, {34069, 38810}, {38813, 4586}, {40415, 825}, {43722, 648}
X(58111) = barycentric quotient X(i)/X(j) for these (i, j): {32, 50549}, {110, 3314}, {112, 5117}, {163, 51836}, {662, 56784}, {825, 2887}, {1492, 20234}, {1501, 17415}, {1576, 3094}, {3113, 20948}, {3114, 44173}, {3407, 850}, {8685, 16603}, {9063, 40362}, {9233, 9006}, {14574, 3117}, {14617, 23285}, {18898, 523}, {32676, 46507}, {33514, 76}, {34069, 3721}, {38810, 30870}, {38813, 824}, {38840, 30872}, {40746, 3801}, {41073, 44160}, {43722, 525}, {56980, 9865}


X(58112) = X(99)X(2528)∩X(100)X(5389)

Barycentrics    a^2*(a-b)*(a+b)*(a^2+b^2)*(a-c)*(a+c)*(a^2+c^2)*(a^4+b^4-2*c^4)*(a^4-2*b^4+c^4) : :

X(58112) lies on the circumcircle and these lines: {74, 56917}, {99, 2528}, {100, 5389}, {110, 57132}, {111, 46228}, {251, 53969}, {689, 23285}, {703, 51320}, {755, 8627}, {827, 3005}, {4577, 9069}, {9076, 43098}

X(58112) = isogonal conjugate of X(33907)
X(58112) = trilinear pole of line {6, 755}
X(58112) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33907}, {38, 14420}, {561, 14403}, {661, 52906}, {754, 8061}, {826, 2244}, {1930, 14428}, {2084, 35549}, {2530, 4156}
X(58112) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 33907}, {36830, 52906}, {40368, 14403}
X(58112) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(351), X(17997)}}, {{A, B, C, X(2528), X(3005)}}
X(58112) = barycentric product X(i)*X(j) for these (i, j): {4577, 755}, {43098, 827}, {52376, 5389}
X(58112) = barycentric quotient X(i)/X(j) for these (i, j): {6, 33907}, {110, 52906}, {251, 14420}, {755, 826}, {827, 754}, {1501, 14403}, {4577, 35549}, {4628, 4156}, {4630, 8627}, {34072, 2244}, {43098, 23285}, {46288, 14428}


X(58113) = X(112)X(4630)∩X(251)X(1297)

Barycentrics    a^2*(a^4-b^4)*(a^4-c^4)*(a^8-b^8+2*b^4*c^4-c^8) : :

X(58113) lies on the circumcircle and these lines: {66, 9076}, {74, 46765}, {98, 16277}, {99, 44766}, {111, 33632}, {112, 4630}, {251, 1297}, {711, 38838}, {733, 40146}, {755, 2353}, {935, 15388}, {1176, 46766}, {1501, 18018}, {1691, 37801}, {2373, 40404}, {34168, 40357}, {34237, 46243}

X(58113) = isogonal conjugate of X(23881)
X(58113) = trilinear pole of line {6, 2353}
X(58113) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23881}, {38, 33294}, {315, 8061}, {826, 1760}, {1577, 3313}, {1930, 2485}, {2084, 40073}, {2172, 23285}, {2530, 4150}, {3005, 20641}, {3954, 21178}, {4064, 16715}, {4456, 48084}, {4463, 16892}, {4599, 55070}, {8673, 20883}, {14208, 40938}, {15523, 16757}, {17442, 57069}, {20948, 23208}, {24018, 41375}
X(58113) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23881}, {3124, 55070}
X(58113) = X(i)-cross conjugate of X(j) for these {i, j}: {66, 15388}, {3005, 18018}, {20960, 250}, {23285, 38826}
X(58113) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32713), X(56008)}}
X(58113) = barycentric product X(i)*X(j) for these (i, j): {66, 827}, {110, 16277}, {112, 40404}, {251, 44766}, {1176, 1289}, {2156, 4599}, {2353, 4577}, {15388, 4580}, {18018, 4630}, {21458, 46967}, {40146, 689}, {40357, 56008}, {46765, 648}, {53657, 6}
X(58113) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23881}, {66, 23285}, {251, 33294}, {827, 315}, {1176, 57069}, {1289, 1235}, {1576, 3313}, {2353, 826}, {3005, 55070}, {4577, 40073}, {4599, 20641}, {4628, 4150}, {4630, 22}, {10547, 8673}, {14574, 23208}, {15388, 41676}, {16277, 850}, {18105, 53569}, {32713, 41375}, {33515, 38842}, {34072, 1760}, {40146, 3005}, {40404, 3267}, {44766, 8024}, {46288, 2485}, {46765, 525}, {46766, 47125}, {53657, 76}


X(58114) = X(99)X(33515)∩X(711)X(1501)

Barycentrics    a^2*(a^8-b^8)*(a^8-c^8) : :

X(58114) lies on the circumcircle and these lines: {99, 33515}, {711, 1501}, {733, 44167}, {755, 38826}, {805, 4630}, {817, 34072}, {2367, 3115}, {9076, 40416}

X(58114) = trilinear pole of line {6, 33717}
X(58114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {626, 8061}, {656, 46508}, {661, 16893}, {826, 4118}, {2084, 44166}, {2085, 23285}, {2530, 16894}, {3005, 20627}, {3118, 20948}, {3954, 21110}
X(58114) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 16893}, {40596, 46508}
X(58114) = barycentric product X(i)*X(j) for these (i, j): {1576, 3115}, {33515, 6}, {34072, 38847}, {38826, 4577}, {38830, 4630}, {40416, 827}, {44167, 689}
X(58114) = barycentric quotient X(i)/X(j) for these (i, j): {110, 16893}, {112, 46508}, {689, 8039}, {827, 626}, {3115, 44173}, {4577, 44166}, {4599, 20627}, {4628, 16894}, {4630, 20859}, {14574, 3118}, {33515, 76}, {34072, 4118}, {38826, 826}, {40416, 23285}, {44167, 3005}


X(58115) = X(106)X(4649)∩X(213)X(739)

Barycentrics    a*(a-b)*(a-c)*(4*a*b+(a+b)*c)*(b*c+a*(b+4*c)) : :

X(58115) lies on the circumcircle and these lines: {99, 23343}, {106, 4649}, {111, 56156}, {213, 739}, {675, 56169}, {759, 56126}, {898, 4557}, {1023, 28841}, {3573, 28210}, {54440, 58110}

X(58115) = trilinear pole of line {6, 30653}
X(58115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 30950}, {514, 16971}, {4519, 43924}
X(58115) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 4688}, {39026, 30950}
X(58115) = X(i)-cross conjugate of X(j) for these {i, j}: {54981, 1016}
X(58115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(213), X(4557)}}, {{A, B, C, X(662), X(40408)}}, {{A, B, C, X(666), X(4604)}}, {{A, B, C, X(1023), X(4649)}}, {{A, B, C, X(4555), X(37138)}}, {{A, B, C, X(5549), X(36802)}}
X(58115) = barycentric product X(i)*X(j) for these (i, j): {101, 56169}, {190, 55932}, {56126, 662}, {56156, 99}
X(58115) = barycentric quotient X(i)/X(j) for these (i, j): {100, 4688}, {101, 30950}, {644, 4519}, {692, 16971}, {55932, 514}, {56126, 1577}, {56156, 523}, {56169, 3261}


X(58116) = X(74)X(55639)∩X(98)X(3523)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+5*b^2+c^2)*(a^2+b^2+5*c^2) : :

X(58116) lies on the circumcircle and these lines: {74, 55639}, {98, 3523}, {477, 47092}, {842, 37945}, {1297, 33524}, {1598, 3563}, {1634, 3565}, {4558, 58100}, {37935, 40118}, {53273, 58093}

X(58116) = trilinear pole of line {6, 3787}
X(58116) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7714}, {661, 51171}
X(58116) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 51171}, {40596, 7714}
X(58116) = X(i)-cross conjugate of X(j) for these {i, j}: {15815, 249}, {47133, 2}
X(58116)= pole of line {7484, 51171} with respect to the Kiepert parabola
X(58116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2409), X(33524)}}, {{A, B, C, X(3523), X(4230)}}, {{A, B, C, X(7468), X(37935)}}, {{A, B, C, X(7473), X(37945)}}, {{A, B, C, X(7480), X(47092)}}, {{A, B, C, X(11794), X(52608)}}
X(58116) = barycentric quotient X(i)/X(j) for these (i, j): {110, 51171}, {112, 7714}


X(58117) = X(1)X(28523)∩X(727)X(1468)

Barycentrics    a*(a-b)*(a-c)*(3*a*b-a*c+3*b*c)*(a*b-3*(a+b)*c) : :

X(58117) lies on the circumcircle and these lines: {1, 28523}, {105, 39740}, {190, 29227}, {715, 39673}, {727, 1468}, {3573, 28162}, {5284, 28326}, {5303, 9103}, {8699, 54440}

X(58117) = trilinear pole of line {6, 16569}
X(58117) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 42043}, {649, 4704}
X(58117) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 4704}, {39026, 42043}
X(58117) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32042)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(799), X(32039)}}, {{A, B, C, X(4586), X(27834)}}
X(58117) = barycentric product X(i)*X(j) for these (i, j): {100, 39740}
X(58117) = barycentric quotient X(i)/X(j) for these (i, j): {100, 4704}, {101, 42043}, {39740, 693}


X(58118) = X(98)X(31630)∩X(689)X(1634)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(2*a^2*b^2+(a^2+b^2)*c^2)*(b^2*c^2+a^2*(b^2+2*c^2)) : :

X(58118) lies on the circumcircle and these lines: {98, 31630}, {111, 39968}, {689, 1634}, {729, 42346}, {733, 31613}, {805, 10330}, {4576, 43357}, {4609, 35566}, {7953, 17941}, {31622, 39427}, {34537, 53621}, {43187, 53701}

X(58118) = trilinear pole of line {6, 1078}
X(58118) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 21113}, {512, 17445}, {661, 20965}, {667, 21022}, {669, 20889}, {798, 3934}, {2084, 18092}, {17176, 50487}, {18070, 42548}
X(58118) = X(i)-Dao conjugate of X(j) for these {i, j}: {6626, 21113}, {6631, 21022}, {31998, 3934}, {36830, 20965}, {39054, 17445}
X(58118) = X(i)-cross conjugate of X(j) for these {i, j}: {83, 4590}, {3051, 34537}, {41328, 249}
X(58118)= pole of line {7824, 20965} with respect to the Kiepert parabola
X(58118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1634), X(17938)}}, {{A, B, C, X(2966), X(52936)}}, {{A, B, C, X(4576), X(18829)}}, {{A, B, C, X(4577), X(43187)}}, {{A, B, C, X(10330), X(17941)}}, {{A, B, C, X(11794), X(53080)}}, {{A, B, C, X(31614), X(39291)}}, {{A, B, C, X(35137), X(41209)}}
X(58118) = barycentric product X(i)*X(j) for these (i, j): {110, 31630}, {1634, 31622}, {31613, 689}, {39968, 99}, {42346, 670}
X(58118) = barycentric quotient X(i)/X(j) for these (i, j): {86, 21113}, {99, 3934}, {110, 20965}, {190, 21022}, {662, 17445}, {799, 20889}, {4558, 22062}, {4577, 18092}, {4610, 17176}, {6331, 42394}, {31613, 3005}, {31622, 52618}, {31630, 850}, {39968, 523}, {42346, 512}


X(58119) = X(111)X(38262)∩X(729)X(33786)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(3*a^2*b^2-(a^2+b^2)*c^2)*(b^2*c^2+a^2*(b^2-3*c^2)) : :

X(58119) lies on the circumcircle and these lines: {111, 38262}, {729, 33786}, {741, 38275}, {805, 57216}, {3565, 17941}, {4563, 25424}, {5970, 32530}, {26233, 43663}

X(58119) = trilinear pole of line {6, 3552}
X(58119) = X(i)-isoconjugate-of-X(j) for these {i, j}: {213, 21206}, {512, 16571}, {661, 21001}, {667, 21095}, {669, 20945}, {798, 20081}
X(58119) = X(i)-Dao conjugate of X(j) for these {i, j}: {6626, 21206}, {6631, 21095}, {31998, 20081}, {36830, 21001}, {39054, 16571}
X(58119) = X(i)-cross conjugate of X(j) for these {i, j}: {36650, 34537}, {57150, 99}
X(58119)= pole of line {57150, 58119} with respect to the circumcircle
X(58119)= pole of line {21001, 33014} with respect to the Kiepert parabola
X(58119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4603), X(56053)}}, {{A, B, C, X(18829), X(43188)}}, {{A, B, C, X(35136), X(41209)}}, {{A, B, C, X(37880), X(44766)}}
X(58119) = barycentric product X(i)*X(j) for these (i, j): {36615, 670}, {38262, 99}, {38275, 799}
X(58119) = barycentric quotient X(i)/X(j) for these (i, j): {86, 21206}, {99, 20081}, {110, 21001}, {190, 21095}, {662, 16571}, {799, 20945}, {4558, 22152}, {4573, 17091}, {36615, 512}, {38262, 523}, {38275, 661}, {57150, 32746}


X(58120) = X(98)X(547)∩X(111)X(5007)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*(a^2+b^2)+2*c^2)*(5*a^2+2*b^2+5*c^2) : :

X(58120) lies on the circumcircle and these lines: {74, 55674}, {98, 547}, {111, 5007}, {842, 37923}, {5467, 7953}, {6323, 12055}, {12074, 35357}, {32694, 33803}

X(58120) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 20582}
X(58120) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 20582}
X(58120) = X(i)-cross conjugate of X(j) for these {i, j}: {5008, 249}, {7496, 250}
X(58120) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(547), X(4230)}}, {{A, B, C, X(2420), X(55674)}}, {{A, B, C, X(5007), X(5467)}}, {{A, B, C, X(7473), X(37923)}}
X(58120) = barycentric quotient X(i)/X(j) for these (i, j): {110, 20582}


X(58121) = X(74)X(55658)∩X(98)X(3526)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*a^2+3*b^2+2*c^2)*(2*(a^2+b^2)+3*c^2) : :

X(58121) lies on the circumcircle and these lines: {74, 55658}, {98, 3526}, {842, 37947}, {1634, 7954}, {4611, 58101}, {6573, 57150}, {20189, 35278}, {33638, 53273}

X(58121) = trilinear pole of line {6, 15246}
X(58121) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 48138}, {661, 47355}
X(58121) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 47355}, {40589, 48138}
X(58121) = X(i)-cross conjugate of X(j) for these {i, j}: {9605, 249}
X(58121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2396), X(7930)}}, {{A, B, C, X(3526), X(4230)}}, {{A, B, C, X(7473), X(37947)}}
X(58121) = barycentric quotient X(i)/X(j) for these (i, j): {58, 48138}, {110, 47355}


X(58122) = X(99)X(6631)∩X(100)X(4979)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+3*a*b+b^2-(a+b)*c-3*c^2)*(a^2-a*b-3*b^2+3*a*c-b*c+c^2) : :

X(58122) lies on the circumcircle and these lines: {99, 6631}, {100, 4979}, {101, 50512}, {110, 41405}, {649, 8701}, {902, 8700}, {1252, 28176}, {1914, 28517}, {2291, 20670}, {17735, 53688}

X(58122) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 20016}
X(58122) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(649), X(4979)}}, {{A, B, C, X(6631), X(41405)}}
X(58122) = barycentric quotient X(i)/X(j) for these (i, j): {101, 20016}


X(58123) = X(6)X(28323)∩X(106)X(7280)

Barycentrics    a^2*(a-b)*(2*(a+b)-5*c)*(a-c)*(2*a-5*b+2*c) : :

X(58123) lies on the circumcircle and these lines: {6, 28323}, {104, 12702}, {106, 7280}, {692, 28188}, {1331, 58124}, {1388, 8686}, {4756, 8706}, {8652, 23845}, {8683, 58126}, {8697, 23832}, {28148, 35281}, {53280, 58125}

X(58123) = trilinear pole of line {6, 9336}
X(58123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58152}, {513, 3633}, {649, 46938}
X(58123) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58152}, {5375, 46938}, {39026, 3633}
X(58123) = X(i)-cross conjugate of X(j) for these {i, j}: {58152, 6}
X(58123) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1388), X(23832)}}, {{A, B, C, X(4756), X(23845)}}, {{A, B, C, X(7280), X(23703)}}, {{A, B, C, X(12702), X(23981)}}
X(58123) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58152}, {100, 46938}, {101, 3633}


X(58124) = X(104)X(7991)∩X(106)X(5204)

Barycentrics    a^2*(a-b)*(3*(a+b)-7*c)*(a-c)*(3*a-7*b+3*c) : :

X(58124) lies on the circumcircle and these lines: {104, 7991}, {106, 5204}, {675, 39709}, {1331, 58123}, {2718, 5048}, {3939, 28218}, {8652, 35281}, {8699, 23832}, {23845, 28148}, {28891, 41405}

X(58124) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58153}, {513, 20050}
X(58124) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58153}, {39026, 20050}
X(58124) = X(i)-cross conjugate of X(j) for these {i, j}: {58153, 6}
X(58124) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3257), X(38828)}}, {{A, B, C, X(5204), X(23703)}}, {{A, B, C, X(7991), X(23981)}}
X(58124) = barycentric product X(i)*X(j) for these (i, j): {101, 39709}
X(58124) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58153}, {101, 20050}, {39709, 3261}


X(58125) = X(99)X(4767)∩X(106)X(5313)

Barycentrics    a^2*(a-b)*(a-c)*(2*a+5*b+2*c)*(2*(a+b)+5*c) : :

X(58125) lies on the circumcircle and these lines: {99, 4767}, {106, 5313}, {692, 28180}, {4557, 4588}, {4756, 46961}, {23344, 28152}, {52923, 53637}, {53280, 58123}

X(58125) = isogonal conjugate of X(28220)
X(58125) = trilinear pole of line {6, 9331}
X(58125) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 28220}, {75, 58141}, {513, 25055}, {1019, 52706}
X(58125) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 28220}, {206, 58141}, {39026, 25055}
X(58125) = X(i)-cross conjugate of X(j) for these {i, j}: {58141, 6}
X(58125)= pole of line {28220, 58141} with respect to the Stammler hyperbola
X(58125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4557), X(4767)}}, {{A, B, C, X(5313), X(17780)}}, {{A, B, C, X(37138), X(51562)}}
X(58125) = barycentric quotient X(i)/X(j) for these (i, j): {6, 28220}, {32, 58141}, {101, 25055}, {4557, 52706}


X(58126) = X(106)X(5010)∩X(2718)X(3245)

Barycentrics    a^2*(a-b)*(2*(a+b)-7*c)*(a-c)*(2*a-7*b+2*c) : :

X(58126) lies on the circumcircle and these lines: {106, 5010}, {2099, 8686}, {2718, 3245}, {4588, 23832}, {4767, 6079}, {8683, 58123}, {23845, 28196}, {28170, 35281}

X(58126) = trilinear pole of line {6, 37602}
X(58126) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58151}
X(58126) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58151}, {39026, 51093}
X(58126) = X(i)-cross conjugate of X(j) for these {i, j}: {58151, 6}
X(58126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2099), X(4767)}}, {{A, B, C, X(5010), X(23703)}}
X(58126) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58151}, {101, 51093}


X(58127) = X(99)X(58110)∩X(664)X(4767)

Barycentrics    (a-b)*(a-c)*(a+7*b+c)*(a+b+7*c) : :

X(58127) lies on the Steiner circumellipse and these lines: {99, 58110}, {664, 4767}, {666, 53582}, {903, 52709}, {1121, 30578}, {2481, 4738}, {3227, 16831}, {3699, 4597}, {3952, 53659}, {4781, 58135}, {17780, 58133}

X(58127) = isogonal conjugate of X(58136)
X(58127) = trilinear pole of line {2, 4029}
X(58127) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58136}, {667, 38314}
X(58127) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58136}, {6631, 38314}
X(58127) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(3699), X(4767)}}, {{A, B, C, X(16831), X(23891)}}
X(58127) = barycentric product X(i)*X(j) for these (i, j): {58110, 76}
X(58127) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58136}, {190, 38314}, {58110, 6}


X(58128) = X(10)X(903)∩X(190)X(4169)

Barycentrics    (a-b)*(a-c)*(a+4*b+c)*(a+b+4*c) : :

X(58128) lies on the Steiner circumellipse and these lines: {10, 903}, {99, 17780}, {100, 58134}, {190, 4169}, {671, 27797}, {2481, 56115}, {3226, 41434}, {3227, 16826}, {3699, 58133}, {3952, 4555}, {4597, 4767}, {6542, 35168}, {6633, 35148}, {14616, 51975}, {18822, 50016}, {18827, 56134}, {29615, 35170}, {33948, 53647}, {53332, 58130}

X(58128) = isogonal conjugate of X(58139)
X(58128) = isotomic conjugate of X(28209)
X(58128) = trilinear pole of line {2, 3943}
X(58128) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58139}, {31, 28209}, {41, 30722}, {513, 21747}, {551, 667}, {649, 16666}, {798, 26860}, {1919, 24589}, {3063, 4031}, {3248, 4781}, {3707, 57181}, {3733, 21806}, {6591, 22357}, {9456, 14435}
X(58128) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28209}, {3, 58139}, {3160, 30722}, {4370, 14435}, {5375, 16666}, {6631, 551}, {9296, 24589}, {10001, 4031}, {31998, 26860}, {39026, 21747}
X(58128) = X(i)-cross conjugate of X(j) for these {i, j}: {3679, 1016}, {17360, 4998}, {28209, 2}, {31035, 31625}
X(58128)= pole of line {28209, 58139} with respect to the Wallace hyperbola
X(58128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3952)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(4756), X(46961)}}, {{A, B, C, X(4767), X(9059)}}, {{A, B, C, X(6542), X(6633)}}, {{A, B, C, X(8709), X(37209)}}, {{A, B, C, X(9180), X(18004)}}, {{A, B, C, X(13396), X(27834)}}, {{A, B, C, X(16826), X(23891)}}, {{A, B, C, X(48163), X(48247)}}
X(58128) = barycentric product X(i)*X(j) for these (i, j): {190, 55955}, {1978, 41434}, {4554, 56115}, {27797, 99}, {28210, 76}, {40434, 668}, {56134, 799}
X(58128) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28209}, {6, 58139}, {7, 30722}, {99, 26860}, {100, 16666}, {101, 21747}, {190, 551}, {519, 14435}, {646, 3902}, {664, 4031}, {668, 24589}, {1016, 4781}, {1018, 21806}, {1331, 22357}, {3699, 3707}, {3807, 4407}, {4033, 4714}, {4076, 30727}, {4555, 42026}, {4767, 16590}, {27797, 523}, {28210, 6}, {40434, 513}, {41434, 649}, {55955, 514}, {56115, 650}, {56134, 661}


X(58129) = X(99)X(28214)∩X(903)X(28653)

Barycentrics    (a-b)*(a-c)*(3*a+4*b+3*c)*(3*(a+b)+4*c) : :

X(58129) lies on the Steiner circumellipse and these lines: {99, 28214}, {671, 56209}, {903, 28653}, {2481, 56206}, {3227, 56037}, {4756, 32042}, {18827, 56215}, {32094, 35148}, {33948, 58132}

X(58129) = isogonal conjugate of X(58145)
X(58129) = isotomic conjugate of X(28213)
X(58129) = trilinear pole of line {2, 4399}
X(58129) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58145}, {31, 28213}, {667, 19862}, {3063, 4114}, {4983, 39670}
X(58129) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28213}, {3, 58145}, {6631, 19862}, {10001, 4114}
X(58129) = X(i)-cross conjugate of X(j) for these {i, j}: {1698, 1016}, {28213, 2}, {32101, 4600}
X(58129)= pole of line {19862, 43985} with respect to the Yff parabola
X(58129)= pole of line {28213, 58145} with respect to the Wallace hyperbola
X(58129) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(835), X(4756)}}, {{A, B, C, X(18004), X(42345)}}, {{A, B, C, X(24004), X(28653)}}
X(58129) = barycentric product X(i)*X(j) for these (i, j): {190, 56061}, {4554, 56206}, {28214, 76}, {56037, 668}, {56209, 99}, {56215, 799}
X(58129) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28213}, {6, 58145}, {190, 19862}, {664, 4114}, {4629, 39670}, {28214, 6}, {56037, 513}, {56061, 514}, {56206, 650}, {56209, 523}, {56215, 661}


X(58130) = X(99)X(28218)∩X(319)X(903)

Barycentrics    (a-b)*(a+b-4*c)*(a-c)*(a-4*b+c) : :

X(58130) lies on the Steiner circumellipse and these lines: {99, 28218}, {319, 903}, {2481, 56091}, {3227, 27002}, {4561, 58131}, {6540, 21272}, {17791, 35175}, {18827, 56135}, {53332, 58128}

X(58130) = isogonal conjugate of X(58150)
X(58130) = isotomic conjugate of X(28217)
X(58130) = trilinear pole of line {2, 4398}
X(58130) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58150}, {31, 28217}, {41, 30726}, {649, 16669}, {667, 3244}
X(58130) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28217}, {3, 58150}, {3160, 30726}, {5375, 16669}, {6631, 3244}
X(58130) = X(i)-cross conjugate of X(j) for these {i, j}: {3632, 1016}, {17361, 4998}, {28217, 2}
X(58130)= pole of line {28217, 58150} with respect to the Wallace hyperbola
X(58130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(677), X(29337)}}, {{A, B, C, X(1441), X(27808)}}, {{A, B, C, X(8050), X(8706)}}, {{A, B, C, X(17780), X(34641)}}
X(58130) = barycentric product X(i)*X(j) for these (i, j): {190, 39710}, {4554, 56091}, {28218, 76}, {39962, 668}, {56135, 799}
X(58130) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28217}, {6, 58150}, {7, 30726}, {100, 16669}, {190, 3244}, {4076, 30732}, {28218, 6}, {39710, 514}, {39962, 513}, {56091, 650}, {56135, 661}


X(58131) = X(99)X(8699)∩X(1121)X(1997)

Barycentrics    (a-b)*(3*(a+b)-5*c)*(a-c)*(3*a-5*b+3*c) : :

X(58131) lies on the Steiner circumellipse and these lines: {99, 8699}, {903, 4452}, {1121, 1997}, {2481, 40026}, {3227, 36603}, {4561, 58130}, {17089, 32003}, {18822, 57033}, {21272, 58132}

X(58131) = isogonal conjugate of X(58154)
X(58131) = isotomic conjugate of X(4962)
X(58131) = trilinear pole of line {2, 4488}
X(58131) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58154}, {6, 2516}, {31, 4962}, {513, 21000}, {649, 3973}, {650, 38296}, {667, 3621}, {1919, 20942}, {4072, 57129}, {6591, 22147}
X(58131) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 4962}, {3, 58154}, {9, 2516}, {5375, 3973}, {6631, 3621}, {9296, 20942}, {39026, 21000}
X(58131) = X(i)-cross conjugate of X(j) for these {i, j}: {4962, 2}, {20014, 1016}, {23813, 86}, {43290, 190}, {46873, 1275}
X(58131)= pole of line {43290, 58131} with respect to the Steiner circumellipse
X(58131)= pole of line {4962, 58154} with respect to the Wallace hyperbola
X(58131) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(4452), X(24004)}}, {{A, B, C, X(4638), X(6614)}}, {{A, B, C, X(6631), X(17089)}}, {{A, B, C, X(17780), X(20049)}}
X(58131) = barycentric product X(i)*X(j) for these (i, j): {76, 8699}, {100, 40026}, {190, 36606}, {36603, 668}, {36621, 3699}, {38255, 664}
X(58131) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2516}, {2, 4962}, {6, 58154}, {100, 3973}, {101, 21000}, {109, 38296}, {190, 3621}, {668, 20942}, {1331, 22147}, {3952, 4072}, {8699, 6}, {36603, 513}, {36606, 514}, {36621, 3676}, {38255, 522}, {40026, 693}


X(58132) = X(99)X(28162)∩X(190)X(17136)

Barycentrics    (a-b)*(a-c)*(3*(a+b)-c)*(3*a-b+3*c) : :

X(58132) lies on the Steiner circumellipse and these lines: {99, 28162}, {100, 53647}, {190, 17136}, {668, 43290}, {671, 56226}, {903, 3672}, {1121, 56201}, {2481, 31997}, {3227, 14759}, {4308, 32098}, {4561, 6540}, {4562, 34024}, {6013, 48343}, {18827, 31503}, {21272, 58131}, {33948, 58129}, {40014, 45036}, {53332, 58135}

X(58132) = isogonal conjugate of X(48338)
X(58132) = isotomic conjugate of X(28161)
X(58132) = trilinear pole of line {2, 1743}
X(58132) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 48338}, {31, 28161}, {649, 3731}, {663, 3340}, {667, 3617}, {1919, 42034}, {3063, 5226}, {4058, 57129}, {8643, 10563}, {14350, 38266}
X(58132) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28161}, {3, 48338}, {5375, 3731}, {6631, 3617}, {9296, 42034}, {10001, 5226}
X(58132) = X(i)-cross conjugate of X(j) for these {i, j}: {3623, 1016}, {10389, 765}, {26109, 4590}, {28161, 2}, {31995, 4998}, {43067, 86}
X(58132)= pole of line {28161, 48338} with respect to the Wallace hyperbola
X(58132) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6013)}}, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(43290)}}, {{A, B, C, X(658), X(4610)}}, {{A, B, C, X(662), X(934)}}, {{A, B, C, X(932), X(37138)}}, {{A, B, C, X(1292), X(36147)}}, {{A, B, C, X(1310), X(4614)}}, {{A, B, C, X(1414), X(4604)}}, {{A, B, C, X(1897), X(46961)}}, {{A, B, C, X(3672), X(24004)}}, {{A, B, C, X(4596), X(13396)}}, {{A, B, C, X(4598), X(51563)}}, {{A, B, C, X(4624), X(37215)}}, {{A, B, C, X(6005), X(48343)}}, {{A, B, C, X(25272), X(54118)}}, {{A, B, C, X(28469), X(40519)}}, {{A, B, C, X(28483), X(32653)}}
X(58132) = barycentric product X(i)*X(j) for these (i, j): {190, 30712}, {28162, 76}, {31503, 799}, {39980, 668}, {56201, 664}, {56226, 99}
X(58132) = barycentric quotient X(i)/X(j) for these (i, j): {2, 28161}, {6, 48338}, {100, 3731}, {145, 14350}, {190, 3617}, {651, 3340}, {664, 5226}, {668, 42034}, {1332, 3984}, {3952, 4058}, {27834, 10563}, {28162, 6}, {30712, 514}, {31503, 661}, {39980, 513}, {56201, 522}, {56226, 523}


X(58133) = X(99)X(28170)∩X(664)X(4781)

Barycentrics    (a-b)*(a-c)*(5*(a+b)-c)*(5*a-b+5*c) : :

X(58133) lies on the Steiner circumellipse and these lines: {99, 28170}, {100, 53659}, {190, 30727}, {664, 4781}, {671, 25529}, {903, 38314}, {1121, 51583}, {2481, 52716}, {3699, 58128}, {4767, 53658}, {6224, 18025}, {17136, 58135}, {17780, 58127}, {32043, 35170}

X(58133) = isogonal conjugate of X(58166)
X(58133) = isotomic conjugate of X(28169)
X(58133) = trilinear pole of line {2, 3707}
X(58133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58166}, {6, 47777}, {31, 28169}, {649, 16676}, {663, 18421}, {667, 53620}
X(58133) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28169}, {3, 58166}, {9, 47777}, {5375, 16676}, {6631, 53620}
X(58133) = X(i)-cross conjugate of X(j) for these {i, j}: {28169, 2}, {52709, 4998}
X(58133)= pole of line {28169, 58166} with respect to the Wallace hyperbola
X(58133) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(662), X(46962)}}, {{A, B, C, X(934), X(4614)}}, {{A, B, C, X(1897), X(4767)}}, {{A, B, C, X(3699), X(4781)}}, {{A, B, C, X(4604), X(4622)}}, {{A, B, C, X(13396), X(37211)}}, {{A, B, C, X(17780), X(38314)}}, {{A, B, C, X(29351), X(37138)}}, {{A, B, C, X(37209), X(51563)}}
X(58133) = barycentric product X(i)*X(j) for these (i, j): {28170, 76}
X(58133) = barycentric quotient X(i)/X(j) for these (i, j): {1, 47777}, {2, 28169}, {6, 58166}, {100, 16676}, {190, 53620}, {651, 18421}, {28170, 6}


X(58134) = X(99)X(28152)∩X(668)X(4781)

Barycentrics    (a-b)*(a-c)*(4*(a+b)+c)*(4*a+b+4*c) : :

X(58134) lies on the Steiner circumellipse and these lines: {99, 28152}, {100, 58128}, {668, 4781}, {903, 4432}, {3227, 30579}, {4427, 4597}, {4562, 53582}, {4767, 6540}, {9963, 35141}

X(58134) = isogonal conjugate of X(58173)
X(58134) = isotomic conjugate of X(28151)
X(58134) = trilinear pole of line {2, 4690}
X(58134) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58173}, {6, 48544}, {31, 28151}, {649, 16672}, {667, 19875}
X(58134) = X(i)-vertex conjugate of X(j) for these {i, j}: {4597, 40519}
X(58134) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28151}, {3, 58173}, {9, 48544}, {5375, 16672}, {6631, 19875}
X(58134) = X(i)-cross conjugate of X(j) for these {i, j}: {28151, 2}, {38314, 1016}
X(58134)= pole of line {28151, 58173} with respect to the Wallace hyperbola
X(58134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(4622)}}, {{A, B, C, X(4427), X(4767)}}, {{A, B, C, X(4606), X(46962)}}, {{A, B, C, X(13396), X(37212)}}, {{A, B, C, X(17780), X(25055)}}
X(58134) = barycentric product X(i)*X(j) for these (i, j): {28152, 76}
X(58134) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48544}, {2, 28151}, {6, 58173}, {100, 16672}, {190, 19875}, {28152, 6}


X(58135) = X(99)X(28148)∩X(664)X(4427)

Barycentrics    (a-b)*(a-c)*(3*(a+b)+c)*(3*a+b+3*c) : :

X(58135) lies on the Steiner circumellipse and these lines: {99, 28148}, {100, 53658}, {190, 30729}, {664, 4427}, {666, 32106}, {671, 19808}, {903, 17321}, {1121, 30711}, {2481, 32092}, {3227, 39948}, {3699, 6540}, {3732, 35177}, {4561, 32042}, {4781, 58127}, {6516, 53640}, {17136, 58133}, {40023, 51576}, {53332, 58132}

X(58135) = isogonal conjugate of X(50509)
X(58135) = isotomic conjugate of X(28147)
X(58135) = trilinear pole of line {2, 1449}
X(58135) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 50509}, {6, 48026}, {31, 28147}, {649, 3247}, {663, 3339}, {667, 9780}, {798, 25507}, {1919, 42029}
X(58135) = X(i)-vertex conjugate of X(j) for these {i, j}: {664, 40519}, {692, 4614}
X(58135) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 28147}, {3, 50509}, {9, 48026}, {5375, 3247}, {6631, 9780}, {9296, 42029}, {31998, 25507}
X(58135) = X(i)-cross conjugate of X(j) for these {i, j}: {3622, 1016}, {26044, 4590}, {28147, 2}, {32087, 4998}, {48107, 86}
X(58135)= pole of line {5271, 17394} with respect to the Kiepert parabola
X(58135)= pole of line {28147, 50509} with respect to the Wallace hyperbola
X(58135) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(99), X(190)}}, {{A, B, C, X(100), X(1414)}}, {{A, B, C, X(651), X(4614)}}, {{A, B, C, X(658), X(4633)}}, {{A, B, C, X(835), X(3699)}}, {{A, B, C, X(934), X(4606)}}, {{A, B, C, X(1018), X(29351)}}, {{A, B, C, X(1305), X(4626)}}, {{A, B, C, X(1310), X(37212)}}, {{A, B, C, X(4596), X(4604)}}, {{A, B, C, X(4625), X(51566)}}, {{A, B, C, X(4632), X(37215)}}, {{A, B, C, X(6013), X(37138)}}, {{A, B, C, X(6014), X(6614)}}, {{A, B, C, X(17321), X(24004)}}, {{A, B, C, X(19808), X(42721)}}, {{A, B, C, X(29119), X(32653)}}, {{A, B, C, X(37211), X(52935)}}
X(58135) = barycentric product X(i)*X(j) for these (i, j): {190, 28626}, {28148, 76}, {30711, 664}, {39948, 668}
X(58135) = barycentric quotient X(i)/X(j) for these (i, j): {1, 48026}, {2, 28147}, {6, 50509}, {99, 25507}, {100, 3247}, {190, 9780}, {651, 3339}, {668, 42029}, {1332, 3951}, {4552, 3947}, {28148, 6}, {28626, 514}, {30711, 522}, {39948, 513}


X(58136) = X(187)X(237)∩X(4394)X(4814)

Barycentrics    a^2*(b-c)*(7*a+b+c) : :
X(58136) = 4*X[2516]+3*X[50517], -8*X[4394]+X[4814], -8*X[4401]+X[47929], 3*X[4498]+4*X[48344], 6*X[4782]+X[21343], -8*X[6050]+X[47912], X[26853]+6*X[45316], -9*X[47820]+2*X[49289], X[48019]+6*X[50515], 4*X[48026]+3*X[50526]

X(58136) lies on these lines: {187, 237}, {2516, 50517}, {4394, 4814}, {4401, 47929}, {4498, 48344}, {4782, 21343}, {6050, 47912}, {26853, 45316}, {47820, 49289}, {48019, 50515}, {48026, 50526}

X(58136) = midpoint of X(i) and X(j) for these {i,j}: {58142, 58148}
X(58136) = reflection of X(i) in X(j) for these {i,j}: {663, 58153}, {58148, 667}, {58153, 58148}
X(58136) = isogonal conjugate of X(58127)
X(58136) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58127}, {75, 58110}
X(58136) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58127}, {206, 58110}
X(58136) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58110, 6}
X(58136)= pole of line {6, 8162} with respect to the circumcircle
X(58136)= pole of line {6, 8162} with respect to the Brocard inellipse
X(58136)= pole of line {99, 58110} with respect to the Stammler hyperbola
X(58136)= pole of line {670, 58127} with respect to the Wallace hyperbola
X(58136) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(38314)}}, {{A, B, C, X(3733), X(8656)}}, {{A, B, C, X(4775), X(43924)}}, {{A, B, C, X(23345), X(58166)}}
X(58136) = barycentric product X(i)*X(j) for these (i, j): {38314, 649}
X(58136) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58127}, {32, 58110}, {38314, 1978}
X(58136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58148, 58153}, {512, 667, 58148}, {649, 1960, 58166}, {649, 58138, 58139}, {649, 58139, 58140}, {649, 58170, 58178}, {649, 663, 58170}, {663, 58140, 58143}, {667, 4834, 58149}, {667, 50512, 8643}, {667, 58137, 58138}, {667, 58141, 1960}, {667, 58144, 58150}, {1960, 50512, 58177}, {1960, 58139, 58141}, {1960, 58141, 649}, {1960, 58166, 663}, {1960, 58177, 4775}, {4834, 58149, 58154}, {4834, 58154, 58162}, {8643, 58168, 58156}, {8656, 58153, 58151}, {48338, 58144, 58180}, {50509, 58140, 50512}, {50512, 58156, 58181}, {58139, 58151, 58142}, {58142, 58148, 512}, {58144, 58150, 48338}, {58144, 58157, 58175}, {58145, 58155, 58172}, {58146, 58160, 58176}, {58148, 58151, 8656}, {58150, 58175, 58157}, {58152, 58179, 58161}, {58156, 58181, 58168}, {58168, 58181, 50509}


X(58137) = X(187)X(237)∩X(3733)X(6085)

Barycentrics    a^2*(b-c)*(6*a+b+c) : :
X(58137) = 2*X[4063]+X[48296], X[4770]+2*X[50517], 2*X[4782]+X[48328], -4*X[6050]+X[48005], X[31291]+2*X[53571], 2*X[48011]+X[48347], X[48053]+2*X[50515]

X(58137) lies on these lines: {187, 237}, {3733, 6085}, {4063, 48296}, {4401, 29198}, {4770, 50517}, {4782, 48328}, {4809, 29184}, {6050, 48005}, {26275, 29136}, {29176, 47804}, {29264, 48231}, {29340, 47818}, {31291, 53571}, {48011, 48347}, {48053, 50515}

X(58137) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58147}, {4775, 58176}, {4834, 58161}, {50512, 58149}, {649, 58155}, {663, 58181}, {667, 58140}, {58159, 58178}, {8643, 58144}
X(58137) = reflection of X(i) in X(j) for these {i,j}: {1960, 58149}, {50512, 58140}, {58140, 58139}, {58147, 50512}, {58149, 667}, {58155, 58150}, {58160, 58155}, {58161, 58156}, {58164, 58161}, {58175, 58181}, {58176, 58182}, {58179, 58147}, {58181, 58145}
X(58137) = perspector of circumconic {{A, B, C, X(6), X(16668)}}
X(58137)= pole of line {13476, 49503} with respect to the DeLongchamps ellipse
X(58137) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(3636)}}, {{A, B, C, X(3230), X(16668)}}, {{A, B, C, X(3733), X(58150)}}
X(58137) = barycentric product X(i)*X(j) for these (i, j): {3636, 649}, {16668, 513}
X(58137) = barycentric quotient X(i)/X(j) for these (i, j): {3636, 1978}, {16668, 668}
X(58137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58147}, {512, 58139, 58140}, {512, 58140, 50512}, {512, 58145, 58181}, {512, 58149, 1960}, {512, 58150, 58155}, {512, 58156, 58161}, {512, 58181, 58175}, {512, 58182, 58176}, {512, 667, 58149}, {649, 58153, 58165}, {649, 663, 58171}, {649, 667, 58150}, {649, 8643, 58162}, {667, 4775, 58148}, {667, 4834, 8656}, {667, 58138, 58139}, {667, 58141, 663}, {667, 58144, 8643}, {667, 58146, 58151}, {1960, 50512, 58179}, {1960, 58147, 512}, {1960, 58174, 58160}, {1960, 58179, 58163}, {4775, 58143, 58182}, {4834, 58156, 58164}, {4834, 8656, 58156}, {8643, 58140, 58144}, {8643, 58178, 58159}, {8656, 58142, 4834}, {48338, 58146, 58177}, {50509, 58152, 58158}, {50512, 58150, 58174}, {50512, 58160, 649}, {50512, 58175, 58145}, {58136, 58138, 667}, {58143, 58148, 4775}, {58144, 58159, 58178}, {58146, 58151, 48338}


X(58138) = X(187)X(237)∩X(4449)X(4782)

Barycentrics    a^2*(b-c)*(5*a+b+c) : :
X(58138) = 4*X[659]+X[48341], -6*X[905]+X[48116], 3*X[1019]+2*X[48065], 3*X[1635]+2*X[50517], 3*X[4063]+2*X[48287], -X[4382]+6*X[47820], 4*X[4394]+X[48322], -6*X[4401]+X[47970], X[4449]+4*X[4782], 3*X[4498]+2*X[48282], 2*X[4560]+3*X[48578], X[4813]+4*X[50515] and many others

X(58138) lies on these lines: {187, 237}, {659, 48341}, {905, 48116}, {1019, 48065}, {1635, 50517}, {4063, 48287}, {4382, 47820}, {4394, 48322}, {4401, 47970}, {4449, 4782}, {4498, 48282}, {4560, 48578}, {4813, 50515}, {4893, 6050}, {14419, 48122}, {14838, 48586}, {21301, 31207}, {21302, 45313}, {27013, 28470}, {30234, 48131}, {31286, 31291}, {48064, 48367}, {48099, 50525}, {48544, 50507}

X(58138) = midpoint of X(i) and X(j) for these {i,j}: {649, 58154}, {663, 58180}, {667, 58141}, {58146, 58152}, {8656, 58143}
X(58138) = reflection of X(i) in X(j) for these {i,j}: {649, 58143}, {663, 58152}, {58143, 58141}, {58146, 50512}, {58154, 8656}, {58180, 58146}, {8656, 667}
X(58138) = perspector of circumconic {{A, B, C, X(6), X(16667)}}
X(58138) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28226}
X(58138) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28226}
X(58138) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28226, 6}
X(58138)= pole of line {99, 28226} with respect to the Stammler hyperbola
X(58138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28225)}}, {{A, B, C, X(513), X(58172)}}, {{A, B, C, X(3009), X(3622)}}, {{A, B, C, X(3230), X(16667)}}, {{A, B, C, X(3733), X(8643)}}, {{A, B, C, X(43924), X(48338)}}
X(58138) = barycentric product X(i)*X(j) for these (i, j): {3622, 649}, {3733, 3986}, {14351, 3445}, {16667, 513}, {28225, 6}
X(58138) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28226}, {3622, 1978}, {3986, 27808}, {16667, 668}, {28225, 76}
X(58138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58146}, {512, 667, 8656}, {512, 8656, 58154}, {649, 48338, 58176}, {649, 58140, 58142}, {649, 667, 8643}, {649, 8643, 48338}, {663, 4834, 58168}, {663, 667, 58148}, {663, 8656, 58152}, {667, 4775, 58149}, {667, 4834, 58150}, {667, 57157, 8655}, {667, 58137, 58136}, {667, 58139, 58140}, {667, 58144, 1960}, {667, 58181, 58151}, {1960, 50509, 58161}, {1960, 50512, 58182}, {1960, 58144, 50509}, {1960, 58165, 663}, {1960, 58182, 58165}, {4775, 58145, 58178}, {4775, 58149, 58153}, {4834, 58168, 58172}, {6050, 50523, 4893}, {50507, 50526, 48544}, {50509, 58144, 649}, {50512, 58146, 58143}, {50512, 58149, 58174}, {50512, 58150, 4834}, {50512, 58152, 58180}, {50512, 58174, 58145}, {50512, 58182, 58144}, {58136, 58140, 667}, {58140, 58143, 58141}, {58141, 58146, 50512}, {58145, 58149, 4775}, {58146, 58152, 512}, {58147, 58156, 58173}, {58151, 58181, 58160}, {58155, 58179, 58166}, {58156, 58173, 58162}, {58160, 58181, 58170}


X(58139) = X(58)X(3733)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(4*a+b+c) : :
X(58139) = 3*X[659]+X[48320], -3*X[1635]+X[4770], 3*X[4063]+X[21343], 3*X[4367]+X[21385], -3*X[14422]+X[48335], -5*X[26798]+9*X[47839], -3*X[31149]+7*X[31207], -2*X[31286]+X[53571], X[31291]+3*X[47837], 3*X[45316]+X[48016], 3*X[47776]+X[48291], X[48005]+X[50523] and many others

X(58139) lies on these lines: {58, 3733}, {187, 237}, {659, 48320}, {798, 3249}, {891, 4782}, {1635, 4770}, {2516, 8678}, {4063, 21343}, {4142, 29138}, {4367, 21385}, {4401, 6372}, {4874, 29340}, {9181, 17940}, {13246, 29029}, {14422, 48335}, {20517, 29184}, {23892, 25426}, {26798, 47839}, {31149, 31207}, {31286, 53571}, {31291, 47837}, {45316, 48016}, {47776, 48291}, {48005, 50523}, {48011, 48330}, {48019, 48053}, {48026, 50507}, {48064, 48331}, {49289, 52601}, {50504, 50517}

X(58139) = midpoint of X(i) and X(j) for these {i,j}: {4063, 48328}, {4775, 58175}, {4834, 58160}, {48005, 50523}, {48011, 48330}, {48064, 48331}, {48338, 58174}, {50504, 50517}, {50507, 50515}, {50509, 58163}, {649, 1960}, {663, 58179}, {667, 50512}, {58137, 58140}, {58144, 58149}, {58145, 58150}, {58156, 58182}, {58158, 58177}, {58164, 58173}, {8643, 58147}
X(58139) = reflection of X(i) in X(j) for these {i,j}: {53571, 31286}, {58145, 50512}, {58150, 667}, {58156, 58150}, {58158, 1960}, {58177, 649}, {58182, 58145}
X(58139) = isogonal conjugate of X(58128)
X(58139) = perspector of circumconic {{A, B, C, X(6), X(16666)}}
X(58139) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58128}, {75, 28210}, {99, 56134}, {100, 55955}, {190, 40434}, {662, 27797}, {664, 56115}, {668, 41434}
X(58139) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58128}, {206, 28210}, {1084, 27797}, {8054, 55955}, {16590, 1978}, {38986, 56134}, {39025, 56115}, {51570, 668}, {55053, 40434}
X(58139) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2163, 1015}, {4781, 16666}, {28210, 6}
X(58139)= pole of line {6, 6767} with respect to the circumcircle
X(58139)= pole of line {262, 27797} with respect to the orthoptic circle of the Steiner Inellipse
X(58139)= pole of line {6, 6767} with respect to the Brocard inellipse
X(58139)= pole of line {13476, 49448} with respect to the DeLongchamps ellipse
X(58139)= pole of line {99, 17780} with respect to the Stammler hyperbola
X(58139)= pole of line {670, 58128} with respect to the Wallace hyperbola
X(58139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(902)}}, {{A, B, C, X(512), X(23345)}}, {{A, B, C, X(513), X(58173)}}, {{A, B, C, X(551), X(3009)}}, {{A, B, C, X(665), X(30722)}}, {{A, B, C, X(890), X(4781)}}, {{A, B, C, X(1960), X(3733)}}, {{A, B, C, X(3230), X(16666)}}, {{A, B, C, X(3231), X(26860)}}, {{A, B, C, X(3724), X(16944)}}, {{A, B, C, X(8620), X(24589)}}, {{A, B, C, X(8649), X(17962)}}, {{A, B, C, X(43924), X(58166)}}
X(58139) = barycentric product X(i)*X(j) for these (i, j): {106, 14435}, {551, 649}, {1015, 4781}, {1019, 21806}, {1357, 30727}, {1960, 42026}, {3707, 43924}, {3902, 57181}, {4031, 663}, {4714, 57129}, {16666, 513}, {21747, 514}, {21754, 52620}, {22357, 7649}, {24589, 667}, {26860, 512}, {28209, 6}, {30722, 55}
X(58139) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58128}, {32, 28210}, {512, 27797}, {551, 1978}, {649, 55955}, {667, 40434}, {798, 56134}, {1919, 41434}, {3063, 56115}, {4031, 4572}, {4781, 31625}, {14435, 3264}, {16666, 668}, {21747, 190}, {21754, 4767}, {21806, 4033}, {22357, 4561}, {24589, 6386}, {26860, 670}, {28209, 76}, {30722, 6063}
X(58139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58158}, {512, 50512, 58145}, {512, 649, 58177}, {512, 667, 58150}, {649, 4775, 58175}, {649, 58138, 58136}, {649, 58140, 58141}, {663, 58140, 58142}, {663, 58176, 58167}, {663, 667, 58149}, {667, 4775, 8656}, {667, 4834, 8643}, {667, 58138, 58137}, {667, 58155, 58148}, {667, 58181, 58152}, {1960, 50512, 649}, {1960, 58149, 58151}, {1960, 58158, 58156}, {1960, 58160, 58157}, {1960, 58164, 663}, {1960, 58175, 4775}, {1960, 58179, 58164}, {4775, 58175, 512}, {4775, 8656, 1960}, {4834, 58143, 58147}, {4834, 58157, 58166}, {4834, 8643, 58160}, {48338, 58181, 58174}, {50509, 58148, 58155}, {50509, 58155, 58163}, {50512, 58137, 667}, {50512, 58147, 58143}, {50512, 58149, 58179}, {50512, 58150, 58182}, {50512, 58163, 58146}, {50512, 58179, 58144}, {58142, 58144, 50512}, {58144, 58151, 58173}, {58146, 58155, 50509}, {58147, 58160, 4834}, {58152, 58181, 48338}, {58153, 58172, 58159}, {58154, 58178, 58165}, {58161, 58180, 58171}


X(58140) = X(1)X(48011)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a+b+c) : :
X(58140) = X[1]+2*X[48011], -4*X[650]+X[47912], -X[661]+4*X[6050], -4*X[905]+X[48122], X[1019]+2*X[4401], X[2254]+2*X[3803], X[4040]+2*X[48064], -X[4041]+4*X[4394], 2*X[4063]+X[4449], -X[4105]+4*X[48387], 2*X[4367]+X[4498], -X[4382]+4*X[52601] and many others

X(58140) lies on these lines: {1, 48011}, {187, 237}, {513, 28284}, {514, 48240}, {650, 47912}, {659, 29198}, {661, 6050}, {784, 48578}, {798, 9010}, {812, 47820}, {830, 47828}, {834, 53315}, {905, 48122}, {1019, 4401}, {1428, 3733}, {1635, 8678}, {2254, 3803}, {2484, 14407}, {3361, 30723}, {3907, 48565}, {4040, 48064}, {4041, 4394}, {4063, 4449}, {4105, 48387}, {4367, 4498}, {4379, 29070}, {4382, 52601}, {4448, 29170}, {4728, 48564}, {4729, 4959}, {4763, 47814}, {4773, 4843}, {4778, 48580}, {4784, 48331}, {4785, 47840}, {4790, 4822}, {4801, 4830}, {4809, 29025}, {4813, 50507}, {4814, 48322}, {4895, 50499}, {4979, 48099}, {4983, 50525}, {6002, 47804}, {6372, 48572}, {8712, 14413}, {13246, 47708}, {14430, 48559}, {14432, 28478}, {14838, 48023}, {15309, 47826}, {17072, 27013}, {17166, 48008}, {17418, 53390}, {21052, 28475}, {21260, 31207}, {21301, 31286}, {21385, 48343}, {23882, 47813}, {25901, 25955}, {28470, 45313}, {28507, 31131}, {28525, 30709}, {29013, 47818}, {29037, 47771}, {29051, 47762}, {29066, 48566}, {29118, 47798}, {29148, 47817}, {29152, 47872}, {29186, 48568}, {29232, 47874}, {29238, 47833}, {29278, 47767}, {29340, 47875}, {30835, 31288}, {31147, 47839}, {47935, 48136}, {48029, 48149}, {48058, 48110}, {48150, 50336}

X(58140) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58159}, {50509, 58162}, {50512, 58137}, {649, 8643}, {663, 58178}, {667, 58144}, {58147, 58149}, {58155, 58181}, {58161, 58176}
X(58140) = reflection of X(i) in X(j) for these {i,j}: {14430, 48559}, {17418, 53390}, {31147, 47839}, {4728, 48564}, {47814, 4763}, {47832, 47818}, {47836, 45313}, {48338, 58159}, {48579, 48568}, {50509, 58178}, {649, 58144}, {663, 8643}, {667, 58137}, {58137, 58139}, {58144, 50512}, {58155, 58149}, {58159, 1960}, {58161, 58155}, {58162, 663}, {58166, 58162}, {58176, 58181}, {58178, 649}, {58181, 58147}, {8643, 667}
X(58140) = isogonal conjugate of X(53658)
X(58140) = perspector of circumconic {{A, B, C, X(6), X(1412)}}
X(58140) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53658}, {2, 4606}, {9, 4624}, {10, 4614}, {37, 4633}, {75, 8694}, {76, 34074}, {99, 56237}, {100, 5936}, {101, 40023}, {190, 25430}, {321, 4627}, {644, 57826}, {646, 57663}, {651, 56086}, {664, 4866}, {668, 2334}, {1016, 47915}, {1268, 35339}, {3701, 5545}, {3952, 56048}, {4552, 56204}, {4554, 34820}, {14626, 51560}, {56183, 57873}
X(58140) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 53658}, {206, 8694}, {478, 4624}, {1015, 40023}, {8054, 5936}, {32664, 4606}, {38986, 56237}, {38991, 56086}, {39025, 4866}, {40589, 4633}, {51576, 668}, {55053, 25430}, {55056, 313}
X(58140) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2258, 3248}, {8694, 6}
X(58140) = X(i)-cross conjugate of X(j) for these {i, j}: {4832, 4790}
X(58140)= pole of line {574, 1201} with respect to the 1st Brocard circle
X(58140)= pole of line {9049, 44453} with respect to the 2nd Brocard circle
X(58140)= pole of line {6, 1334} with respect to the circumcircle
X(58140)= pole of line {9049, 44439} with respect to the 2nd DrozFarny circle
X(58140)= pole of line {9049, 44456} with respect to the Stammler circle
X(58140)= pole of line {6, 1334} with respect to the Brocard inellipse
X(58140)= pole of line {13476, 14626} with respect to the DeLongchamps ellipse
X(58140)= pole of line {99, 3699} with respect to the Stammler hyperbola
X(58140)= pole of line {194, 29584} with respect to the Steiner circumellipse
X(58140)= pole of line {670, 53658} with respect to the Wallace hyperbola
X(58140) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(237), X(31903)}}, {{A, B, C, X(263), X(34244)}}, {{A, B, C, X(512), X(4778)}}, {{A, B, C, X(513), X(50509)}}, {{A, B, C, X(649), X(4790)}}, {{A, B, C, X(663), X(3733)}}, {{A, B, C, X(665), X(30723)}}, {{A, B, C, X(1055), X(46010)}}, {{A, B, C, X(1428), X(3747)}}, {{A, B, C, X(1449), X(3230)}}, {{A, B, C, X(1472), X(2223)}}, {{A, B, C, X(3009), X(3616)}}, {{A, B, C, X(3231), X(42028)}}, {{A, B, C, X(3250), X(4801)}}, {{A, B, C, X(3724), X(52440)}}, {{A, B, C, X(4258), X(8647)}}, {{A, B, C, X(4765), X(52326)}}, {{A, B, C, X(4841), X(42664)}}, {{A, B, C, X(4843), X(9002)}}, {{A, B, C, X(8620), X(19804)}}, {{A, B, C, X(50344), X(58178)}}
X(58140) = barycentric product X(i)*X(j) for these (i, j): {1, 4790}, {31, 4801}, {42, 48580}, {106, 4773}, {269, 4827}, {292, 4830}, {391, 43924}, {1019, 37593}, {1333, 4815}, {1357, 30728}, {1412, 4843}, {1434, 8653}, {1438, 50357}, {1449, 513}, {2334, 53586}, {2423, 51423}, {3361, 650}, {3616, 649}, {3669, 4512}, {3671, 7252}, {3676, 4258}, {3733, 5257}, {4047, 57200}, {4101, 43925}, {4627, 52332}, {4652, 6591}, {4673, 57181}, {4765, 56}, {4778, 6}, {4811, 604}, {4822, 81}, {4832, 86}, {4839, 741}, {4841, 58}, {5338, 905}, {19804, 667}, {20981, 4835}, {21454, 663}, {22383, 5342}, {23345, 4700}, {23892, 4706}, {30723, 55}, {31903, 647}, {40746, 4818}, {42028, 512}, {43929, 4684}
X(58140) = barycentric quotient X(i)/X(j) for these (i, j): {6, 53658}, {31, 4606}, {32, 8694}, {56, 4624}, {58, 4633}, {513, 40023}, {560, 34074}, {649, 5936}, {663, 56086}, {667, 25430}, {798, 56237}, {1333, 4614}, {1449, 668}, {1919, 2334}, {2206, 4627}, {3063, 4866}, {3248, 47915}, {3361, 4554}, {3616, 1978}, {4258, 3699}, {4512, 646}, {4765, 3596}, {4773, 3264}, {4778, 76}, {4790, 75}, {4801, 561}, {4811, 28659}, {4815, 27801}, {4822, 321}, {4827, 341}, {4830, 1921}, {4832, 10}, {4839, 35544}, {4841, 313}, {4843, 30713}, {5257, 27808}, {5338, 6335}, {8653, 2321}, {16947, 5545}, {19804, 6386}, {21454, 4572}, {30723, 6063}, {31903, 6331}, {37593, 4033}, {42028, 670}, {43924, 57826}, {48580, 310}, {57129, 56048}
X(58140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58159}, {512, 50512, 58144}, {512, 58139, 58137}, {512, 58147, 58181}, {512, 58149, 58155}, {512, 58155, 58161}, {512, 58162, 58166}, {512, 58181, 58176}, {512, 649, 58178}, {512, 663, 58162}, {512, 667, 8643}, {649, 50509, 58180}, {649, 58139, 58136}, {649, 58142, 50512}, {650, 50523, 47912}, {659, 48144, 47929}, {661, 50515, 50526}, {663, 8656, 58153}, {667, 1960, 58148}, {667, 4775, 58150}, {667, 58139, 58138}, {667, 58165, 58151}, {667, 58173, 58152}, {667, 8637, 8655}, {1019, 4401, 4724}, {1960, 48338, 663}, {1960, 4834, 48338}, {1960, 50512, 58145}, {1960, 58145, 4834}, {4367, 4782, 4498}, {4775, 58146, 58179}, {4775, 58150, 58154}, {4775, 58179, 58172}, {4784, 48331, 48367}, {4834, 48338, 58170}, {4834, 58145, 649}, {4834, 58159, 512}, {4834, 58170, 50509}, {6050, 50515, 661}, {28470, 45313, 47836}, {29013, 47818, 47832}, {29186, 48568, 48579}, {48322, 50501, 4814}, {48338, 58148, 1960}, {50512, 58139, 667}, {50512, 58141, 58142}, {50512, 58149, 58147}, {50512, 58150, 58146}, {58137, 58147, 58149}, {58138, 58141, 58143}, {58138, 58143, 8656}, {58150, 58179, 4775}, {58151, 58165, 58156}, {58152, 58173, 58160}, {58152, 58182, 58168}, {58156, 58175, 58165}, {58157, 58171, 58163}, {58158, 58174, 58167}, {58160, 58182, 58173}, {58163, 58177, 58171}


X(58141) = X(187)X(237)∩X(2516)X(4705)

Barycentrics    a^2*(b-c)*(5*a+2*(b+c)) : :
X(58141) = 2*X[2515]+3*X[21003], -8*X[2516]+3*X[4705], 3*X[4063]+2*X[48344], X[4378]+4*X[4782], -6*X[6050]+X[48026], -7*X[27138]+12*X[31288], -3*X[31149]+8*X[31286], 4*X[48011]+X[48333], -X[48019]+6*X[50507], 4*X[48064]+X[48351]

X(58141) lies on these lines: {187, 237}, {2515, 21003}, {2516, 4705}, {4063, 48344}, {4378, 4782}, {6050, 48026}, {27138, 31288}, {31149, 31286}, {48011, 48333}, {48019, 50507}, {48064, 48351}

X(58141) = midpoint of X(i) and X(j) for these {i,j}: {649, 8656}, {667, 58146}, {58138, 58143}, {58154, 58180}
X(58141) = reflection of X(i) in X(j) for these {i,j}: {4775, 58157}, {667, 58138}, {58143, 50512}, {58146, 58143}, {58152, 667}, {58157, 8656}
X(58141) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58125}
X(58141) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58125}
X(58141) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58125, 6}
X(58141)= pole of line {6, 9331} with respect to the circumcircle
X(58141)= pole of line {6, 9331} with respect to the Brocard inellipse
X(58141)= pole of line {99, 4767} with respect to the Stammler hyperbola
X(58141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28220)}}, {{A, B, C, X(513), X(58175)}}, {{A, B, C, X(3009), X(25055)}}, {{A, B, C, X(3733), X(4775)}}, {{A, B, C, X(23345), X(58173)}}
X(58141) = barycentric product X(i)*X(j) for these (i, j): {3733, 52706}, {25055, 649}, {28220, 6}
X(58141) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58125}, {25055, 1978}, {28220, 76}, {52706, 27808}
X(58141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58143}, {512, 667, 58152}, {649, 58136, 1960}, {649, 58138, 8656}, {649, 58140, 58139}, {649, 58166, 58177}, {649, 58170, 58179}, {649, 58175, 58181}, {667, 58159, 58150}, {667, 58165, 8643}, {1960, 58136, 667}, {1960, 58139, 58136}, {1960, 58173, 4775}, {1960, 58177, 58166}, {4775, 58144, 649}, {4775, 58151, 58155}, {4775, 58152, 58157}, {4775, 58171, 58169}, {4834, 58155, 58167}, {8643, 58170, 58158}, {50509, 58150, 58159}, {50512, 58137, 58145}, {50512, 58138, 58146}, {58137, 58145, 663}, {58138, 58143, 512}, {58139, 58144, 58151}, {58140, 58142, 50512}, {58140, 58143, 58138}, {58143, 58146, 58144}, {58146, 58152, 4834}, {58147, 58150, 50509}, {58148, 58178, 58160}, {58149, 58182, 48338}, {58153, 58176, 58163}, {58158, 58170, 58165}, {58158, 58179, 58170}, {58166, 58177, 58173}, {58169, 58175, 58171}, {58169, 58181, 58175}


X(58142) = X(187)X(237)∩X(4813)X(6050)

Barycentrics    a^2*(b-c)*(7*a+3*(b+c)) : :
X(58142) = 4*X[1019]+3*X[48572], 3*X[4498]+4*X[48343], 6*X[4782]+X[48323], -X[4813]+8*X[6050], 3*X[4893]+4*X[50515], 6*X[30234]+X[47935], X[31291]+6*X[45313]

X(58142) lies on these lines: {187, 237}, {1019, 48572}, {4498, 48343}, {4782, 48323}, {4813, 6050}, {4893, 50515}, {30234, 47935}, {31291, 45313}

X(58142) = midpoint of X(i) and X(j) for these {i,j}: {649, 58148}
X(58142) = reflection of X(i) in X(j) for these {i,j}: {663, 58151}, {58148, 58136}, {58153, 667}
X(58142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(46934)}}, {{A, B, C, X(3733), X(48338)}}, {{A, B, C, X(43924), X(58172)}}
X(58142) = barycentric product X(i)*X(j) for these (i, j): {46934, 649}
X(58142) = barycentric quotient X(i)/X(j) for these (i, j): {46934, 1978}
X(58142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58136, 58148}, {512, 58151, 663}, {512, 667, 58153}, {649, 58138, 8643}, {649, 58140, 58138}, {649, 58148, 512}, {649, 58161, 4834}, {649, 663, 58176}, {649, 8643, 58172}, {663, 50509, 58167}, {663, 58140, 58139}, {667, 4834, 58156}, {667, 50509, 58154}, {667, 50512, 58143}, {667, 58144, 58179}, {667, 58146, 58171}, {667, 58171, 1960}, {1960, 58146, 58178}, {1960, 58178, 58168}, {4775, 58147, 58180}, {4834, 58137, 8656}, {4834, 8656, 58161}, {48338, 58138, 667}, {50509, 58143, 58145}, {50509, 58145, 649}, {50509, 58154, 48338}, {50512, 58139, 58144}, {50512, 58141, 58140}, {58139, 58151, 58136}, {58150, 58181, 58166}, {58152, 58175, 58162}, {58155, 58182, 58170}, {58167, 58179, 50509}


X(58143) = X(187)X(237)∩X(4979)X(6050)

Barycentrics    a^2*(b-c)*(5*a+3*(b+c)) : :
X(58143) = 4*X[650]+X[50526], 4*X[1019]+X[47929], -6*X[1635]+X[47912], 3*X[4063]+2*X[48343], 4*X[4394]+X[50523], X[4449]+4*X[48011], -X[4474]+6*X[48565], 3*X[4498]+2*X[48323], X[4724]+4*X[48064], 4*X[4782]+X[48144], X[4814]+4*X[50517], 2*X[4830]+3*X[48570] and many others

X(58143) lies on these lines: {187, 237}, {650, 50526}, {1019, 47929}, {1635, 47912}, {4063, 48343}, {4394, 50523}, {4449, 48011}, {4474, 48565}, {4498, 48323}, {4724, 48064}, {4782, 48144}, {4814, 50517}, {4830, 48570}, {4959, 50499}, {4979, 6050}, {21301, 45313}, {31147, 31288}, {47826, 48110}, {47840, 48016}, {47911, 48226}, {48114, 48564}, {48119, 48568}, {50507, 50525}

X(58143) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58157}, {649, 58138}, {58141, 58146}, {8656, 58180}
X(58143) = reflection of X(i) in X(j) for these {i,j}: {649, 58146}, {663, 8656}, {58138, 58141}, {58141, 50512}, {58154, 667}, {58180, 649}, {8656, 58138}
X(58143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28230}
X(58143) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28230}
X(58143) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28230, 6}
X(58143)= pole of line {99, 28230} with respect to the Stammler hyperbola
X(58143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28229)}}, {{A, B, C, X(513), X(58178)}}, {{A, B, C, X(3009), X(5550)}}, {{A, B, C, X(3733), X(50509)}}, {{A, B, C, X(4834), X(43924)}}
X(58143) = barycentric product X(i)*X(j) for these (i, j): {5550, 649}, {28229, 6}
X(58143) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28230}, {5550, 1978}, {28229, 76}
X(58143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58141}, {512, 58138, 8656}, {512, 649, 58180}, {512, 667, 58154}, {649, 48338, 58179}, {649, 58136, 58170}, {649, 58172, 58181}, {649, 58176, 58182}, {649, 663, 58178}, {663, 58140, 58136}, {667, 48338, 58153}, {667, 4834, 58160}, {667, 50512, 58142}, {667, 58144, 58145}, {667, 58167, 1960}, {667, 58171, 58156}, {667, 58181, 58167}, {1635, 50515, 47912}, {1960, 58162, 663}, {1960, 58172, 58162}, {1960, 58181, 58172}, {4775, 58137, 58148}, {4775, 58182, 58176}, {4834, 58139, 8643}, {4834, 58147, 649}, {4834, 58157, 512}, {4834, 8643, 58166}, {8656, 58166, 58157}, {48338, 58179, 50509}, {50509, 58140, 667}, {50509, 58153, 48338}, {50512, 58146, 58138}, {50512, 58147, 58139}, {58137, 58182, 4775}, {58138, 58141, 58140}, {58139, 58147, 4834}, {58141, 58144, 58146}, {58149, 58177, 58165}, {58150, 58173, 58161}, {58155, 58175, 58168}, {58156, 58179, 58171}


X(58144) = X(187)X(237)∩X(513)X(5131)

Barycentrics    a^2*(b-c)*(3*a+2*(b+c)) : :
X(58144) = X[659]+2*X[48064], X[1019]+2*X[4782], -4*X[2516]+X[47956], -4*X[2527]+X[48395], 2*X[4063]+X[4378], X[4367]+2*X[48011], X[4380]+2*X[52601], -4*X[4394]+X[4705], 2*X[4401]+X[4784], X[4730]+2*X[50517], 2*X[4790]+X[4983], X[4979]+2*X[50507] and many others

X(58144) lies on these lines: {187, 237}, {513, 5131}, {659, 48064}, {814, 48566}, {838, 8027}, {1019, 4782}, {2516, 47956}, {2527, 48395}, {2787, 48565}, {4063, 4378}, {4367, 48011}, {4380, 52601}, {4394, 4705}, {4401, 4784}, {4730, 50517}, {4785, 47839}, {4790, 4983}, {4809, 29158}, {4979, 50507}, {6008, 48564}, {15309, 48226}, {20295, 31288}, {21260, 27013}, {29013, 47875}, {29070, 47762}, {29090, 47771}, {29150, 47804}, {29170, 47817}, {29178, 47872}, {29232, 47767}, {29266, 47874}, {29270, 47833}, {29292, 48236}, {29328, 47818}, {29362, 48568}, {31149, 45313}, {31251, 31286}, {48005, 50526}, {48053, 50525}, {48214, 48551}, {48240, 48580}, {50455, 54279}, {50488, 50514}, {50504, 50523}

X(58144) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58155}, {48240, 48580}, {50509, 58161}, {50512, 58147}, {649, 58140}, {663, 58176}, {667, 58181}, {58149, 58179}, {8643, 58178}
X(58144) = reflection of X(i) in X(j) for these {i,j}: {31149, 47837}, {4775, 58155}, {4834, 58181}, {47837, 45313}, {48551, 48214}, {649, 58147}, {663, 58149}, {667, 58140}, {58140, 50512}, {58147, 58145}, {58149, 58139}, {58155, 667}, {58159, 8643}, {58161, 1960}, {58165, 58161}, {58173, 58176}, {58176, 58179}, {58181, 649}, {8643, 58137}
X(58144) = perspector of circumconic {{A, B, C, X(6), X(16884)}}
X(58144) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28196}, {100, 28650}, {190, 27789}, {1016, 48587}
X(58144) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28196}, {8054, 28650}, {55053, 27789}
X(58144) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28196, 6}
X(58144)= pole of line {3336, 44421} with respect to the Bevan circle
X(58144)= pole of line {574, 3915} with respect to the 1st Brocard circle
X(58144)= pole of line {6, 3746} with respect to the circumcircle
X(58144)= pole of line {21746, 50192} with respect to the incircle
X(58144)= pole of line {6, 3746} with respect to the Brocard inellipse
X(58144)= pole of line {13476, 50192} with respect to the DeLongchamps ellipse
X(58144)= pole of line {99, 4756} with respect to the Stammler hyperbola
X(58144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(237), X(31901)}}, {{A, B, C, X(512), X(28195)}}, {{A, B, C, X(513), X(58179)}}, {{A, B, C, X(649), X(50525)}}, {{A, B, C, X(3009), X(3624)}}, {{A, B, C, X(3230), X(16884)}}, {{A, B, C, X(3231), X(42025)}}, {{A, B, C, X(3733), X(4834)}}, {{A, B, C, X(42664), X(47669)}}, {{A, B, C, X(43924), X(58178)}}, {{A, B, C, X(50344), X(58181)}}
X(58144) = barycentric product X(i)*X(j) for these (i, j): {1, 50525}, {2605, 43261}, {3624, 649}, {4034, 43924}, {16884, 513}, {28195, 6}, {31901, 647}, {42025, 512}, {42031, 57129}, {47669, 58}, {48053, 81}
X(58144) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28196}, {649, 28650}, {667, 27789}, {3248, 48587}, {3624, 1978}, {16884, 668}, {28195, 76}, {31901, 6331}, {42025, 670}, {47669, 313}, {48053, 321}, {50525, 75}
X(58144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58161}, {512, 50512, 58140}, {512, 58137, 8643}, {512, 58139, 58149}, {512, 58145, 58147}, {512, 58149, 663}, {512, 58155, 4775}, {512, 58179, 58176}, {512, 649, 58181}, {512, 667, 58155}, {512, 8643, 58159}, {649, 48338, 58180}, {649, 50509, 58182}, {649, 58143, 50512}, {649, 58145, 58146}, {649, 663, 58179}, {649, 8643, 58178}, {649, 8656, 58177}, {667, 4775, 58152}, {1960, 50509, 58165}, {1960, 58138, 667}, {1960, 58182, 50509}, {4394, 50515, 4705}, {4401, 4784, 48351}, {4775, 4834, 58171}, {4790, 6050, 4983}, {4834, 58151, 58167}, {4834, 58155, 512}, {4834, 58167, 58173}, {8643, 58140, 58137}, {8656, 58172, 58160}, {48338, 58136, 58150}, {48338, 58150, 58157}, {48338, 58180, 58175}, {50509, 58138, 1960}, {50512, 58139, 58142}, {50512, 58145, 649}, {50512, 58146, 4834}, {50512, 58179, 58139}, {50512, 58182, 58138}, {58136, 58180, 48338}, {58139, 58173, 58151}, {58143, 58146, 58141}, {58148, 58166, 58156}, {58153, 58168, 58158}, {58154, 58170, 58163}, {58156, 58174, 58166}, {58160, 58172, 58169}, {58160, 58177, 58172}


X(58145) = X(187)X(237)∩X(4782)X(6372)

Barycentrics    a^2*(b-c)*(4*a+3*(b+c)) : :
X(58145) = -3*X[1635]+X[48005], 3*X[4063]+X[48323], X[4770]+X[50523], X[4790]+X[50507], X[4979]+X[48053], 3*X[8027]+X[50488], 3*X[14419]+X[47935], -X[21260]+3*X[45313], X[26853]+3*X[47839], X[47994]+X[48110], X[48028]+X[48074], X[48093]+X[48624] and many others

X(58145) lies on these lines: {187, 237}, {891, 48011}, {1635, 48005}, {2527, 29232}, {4063, 48323}, {4770, 50523}, {4782, 6372}, {4785, 31288}, {4790, 50507}, {4979, 48053}, {8027, 50488}, {14419, 47935}, {21260, 45313}, {26853, 47839}, {47994, 48110}, {48028, 48074}, {48093, 48624}, {48213, 48601}, {50504, 50515}

X(58145) = midpoint of X(i) and X(j) for these {i,j}: {1960, 4834}, {4770, 50523}, {4775, 58174}, {4782, 48064}, {4790, 50507}, {4979, 48053}, {47994, 48110}, {48028, 48074}, {48093, 48624}, {50504, 50515}, {50509, 58160}, {649, 50512}, {663, 58175}, {667, 58179}, {58137, 58181}, {58139, 58182}, {58144, 58147}, {58149, 58178}, {58150, 58177}, {58163, 58173}, {58164, 58172}
X(58145) = reflection of X(i) in X(j) for these {i,j}: {58139, 50512}, {58150, 58139}, {58156, 667}, {58158, 58150}, {58177, 58182}, {58182, 649}
X(58145) = isogonal conjugate of X(58129)
X(58145) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58129}, {75, 28214}, {99, 56215}, {100, 56061}, {190, 56037}, {662, 56209}, {664, 56206}
X(58145) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58129}, {206, 28214}, {1084, 56209}, {8054, 56061}, {38986, 56215}, {39025, 56206}, {55053, 56037}
X(58145) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28214, 6}, {56343, 1015}
X(58145)= pole of line {262, 56209} with respect to the orthoptic circle of the Steiner Inellipse
X(58145)= pole of line {13476, 56215} with respect to the DeLongchamps ellipse
X(58145)= pole of line {99, 28214} with respect to the Stammler hyperbola
X(58145)= pole of line {670, 58129} with respect to the Wallace hyperbola
X(58145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28213)}}, {{A, B, C, X(513), X(58181)}}, {{A, B, C, X(3009), X(19862)}}, {{A, B, C, X(3733), X(58179)}}
X(58145) = barycentric product X(i)*X(j) for these (i, j): {4114, 663}, {19862, 649}, {28213, 6}, {39670, 4988}
X(58145) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58129}, {32, 28214}, {512, 56209}, {649, 56061}, {667, 56037}, {798, 56215}, {3063, 56206}, {4114, 4572}, {19862, 1978}, {28213, 76}, {39670, 4632}
X(58145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58139}, {512, 58150, 58158}, {512, 58182, 58177}, {512, 649, 58182}, {512, 667, 58156}, {649, 58138, 58178}, {649, 58141, 58175}, {649, 58144, 50512}, {649, 58146, 58147}, {649, 663, 58181}, {649, 667, 58179}, {649, 8643, 58180}, {667, 4775, 58153}, {667, 4834, 48338}, {667, 58144, 58143}, {667, 58167, 58154}, {667, 58181, 58171}, {1960, 4834, 512}, {1960, 50512, 58140}, {1960, 58175, 58169}, {4775, 58138, 58149}, {4775, 58178, 58174}, {4834, 58140, 1960}, {4834, 58159, 58170}, {8643, 58173, 58163}, {8643, 58180, 58173}, {8656, 58176, 58165}, {48110, 48226, 47994}, {48338, 58140, 667}, {50509, 58143, 58142}, {50509, 58154, 58167}, {50512, 58137, 58141}, {50512, 58147, 649}, {50512, 58174, 58138}, {50512, 58175, 58137}, {50512, 58182, 58150}, {58136, 58172, 58155}, {58137, 58175, 663}, {58138, 58178, 4775}, {58140, 58170, 58148}, {58148, 58170, 58159}, {58154, 58167, 58160}, {58155, 58172, 58164}, {58160, 58179, 50509}, {58169, 58181, 4834}


X(58146) = X(187)X(237)∩X(4378)X(48011)

Barycentrics    a^2*(b-c)*(5*a+4*(b+c)) : :
X(58146) = X[4378]+4*X[48011], -6*X[4394]+X[47956], -6*X[4782]+X[47970], 3*X[4784]+2*X[48065], -3*X[4825]+8*X[50501], -6*X[9508]+X[48586], X[26853]+4*X[31288], -2*X[27013]+X[31251], 3*X[47839]+2*X[48016], -9*X[47888]+4*X[48052], 2*X[48074]+3*X[48162]

X(58146) lies on these lines: {187, 237}, {4378, 48011}, {4394, 47956}, {4782, 47970}, {4784, 48065}, {4825, 50501}, {9508, 48586}, {26853, 31288}, {27013, 31251}, {47839, 48016}, {47888, 48052}, {48074, 48162}

X(58146) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58152}, {649, 58143}, {58138, 58180}
X(58146) = reflection of X(i) in X(j) for these {i,j}: {31251, 27013}, {4775, 58154}, {4834, 58180}, {667, 58141}, {58138, 50512}, {58141, 58143}, {58152, 58138}, {58157, 667}
X(58146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(34595)}}, {{A, B, C, X(3733), X(58181)}}
X(58146) = barycentric product X(i)*X(j) for these (i, j): {34595, 649}
X(58146) = barycentric quotient X(i)/X(j) for these (i, j): {34595, 1978}
X(58146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58138}, {512, 58154, 4775}, {512, 58180, 4834}, {512, 667, 58157}, {649, 58138, 58180}, {649, 58140, 58179}, {649, 58142, 58178}, {649, 58145, 58144}, {649, 663, 58182}, {649, 667, 58181}, {667, 58173, 58159}, {1960, 58178, 58171}, {4775, 4834, 58172}, {4775, 58140, 667}, {4834, 58141, 58152}, {4834, 58144, 50512}, {4834, 58148, 58169}, {4834, 58152, 512}, {4834, 58165, 58173}, {8643, 58175, 58167}, {48338, 58137, 58151}, {50509, 58139, 58155}, {50509, 58148, 58163}, {50512, 58138, 58141}, {50512, 58150, 58140}, {50512, 58163, 58139}, {50512, 58179, 58150}, {50512, 58182, 663}, {58136, 58176, 58160}, {58137, 58177, 48338}, {58138, 58172, 58154}, {58139, 58163, 58148}, {58141, 58144, 58143}, {58142, 58178, 1960}, {58145, 58147, 649}, {58163, 58169, 58165}


X(58147) = X(187)X(237)∩X(4773)X(6367)

Barycentrics    a^2*(b-c)*(6*a+5*(b+c)) : :
X(58147) = -4*X[4394]+X[48005], X[4770]+2*X[50515], 2*X[4790]+X[48053], 2*X[31288]+X[48016]

X(58147) lies on circumconic {{A, B, C, X(3009), X(19878)}} and these lines: {187, 237}, {4394, 48005}, {4770, 50515}, {4773, 6367}, {4790, 48053}, {29176, 48565}, {29198, 48064}, {29226, 48011}, {29266, 47767}, {29340, 48566}, {31288, 48016}

X(58147) = midpoint of X(i) and X(j) for these {i,j}: {4834, 8643}, {50509, 58159}, {649, 58144}, {667, 58178}, {58137, 58179}, {58140, 58181}, {58155, 58176}, {58162, 58173}
X(58147) = reflection of X(i) in X(j) for these {i,j}: {1960, 58137}, {50512, 58144}, {58137, 50512}, {58144, 58145}, {58149, 58140}, {58159, 58150}, {58160, 8643}, {58162, 58156}, {58164, 58159}, {58175, 58178}, {58178, 58182}, {8643, 58139}
X(58147) = barycentric product X(i)*X(j) for these (i, j): {19878, 649}, {43924, 4545}
X(58147) = barycentric quotient X(i)/X(j) for these (i, j): {19878, 1978}
X(58147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58137}, {512, 58139, 8643}, {512, 58140, 58149}, {512, 58144, 50512}, {512, 58145, 58144}, {512, 58150, 58159}, {512, 58156, 58162}, {512, 58178, 58175}, {512, 58182, 58178}, {649, 58140, 58181}, {649, 58142, 58180}, {649, 58143, 4834}, {649, 58146, 58145}, {649, 667, 58182}, {667, 4834, 58166}, {667, 58172, 58158}, {1960, 58179, 58174}, {4834, 58139, 58160}, {4834, 58143, 58139}, {4834, 8643, 512}, {50509, 58141, 58150}, {50509, 58150, 58164}, {50512, 58149, 58140}, {50512, 58175, 667}, {50512, 58179, 1960}, {50512, 58182, 58163}, {58138, 58173, 58156}, {58140, 58176, 58155}, {58140, 58178, 58161}, {58142, 58180, 4775}, {58155, 58181, 58176}, {58175, 58182, 58179}


X(58148) = X(187)X(237)∩X(3803)X(48116)

Barycentrics    a^2*(7*a-b-c)*(b-c) : :
X(58148) = 6*X[3803]+X[48116], 4*X[4367]+3*X[48572], 6*X[4401]+X[48282], 3*X[4498]+4*X[48287], 3*X[4893]+4*X[50517], 6*X[30234]+X[48150], 5*X[30835]+2*X[31291], 4*X[47970]+3*X[48341], 4*X[48065]+3*X[48144], 3*X[48544]+4*X[50523]

X(58148) lies on these lines: {187, 237}, {3803, 48116}, {4367, 48572}, {4401, 48282}, {4498, 48287}, {4893, 50517}, {28470, 31207}, {30234, 48150}, {30835, 31291}, {47970, 48341}, {48065, 48144}, {48544, 50523}

X(58148) = midpoint of X(i) and X(j) for these {i,j}: {667, 58151}, {58136, 58153}
X(58148) = reflection of X(i) in X(j) for these {i,j}: {649, 58142}, {58136, 667}, {58142, 58136}, {58153, 58151}
X(58148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58089}, {664, 31509}
X(58148) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58089}, {39025, 31509}
X(58148) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58089, 6}
X(58148)= pole of line {99, 58089} with respect to the Stammler hyperbola
X(58148) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(3623)}}, {{A, B, C, X(43924), X(58154)}}
X(58148) = barycentric product X(i)*X(j) for these (i, j): {3623, 649}, {3733, 4098}
X(58148) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58089}, {3063, 31509}, {3623, 1978}, {4098, 27808}
X(58148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58136, 58142}, {512, 58151, 58153}, {512, 667, 58136}, {649, 58154, 58161}, {649, 663, 58168}, {649, 8643, 58154}, {663, 58180, 58165}, {663, 667, 58138}, {663, 8656, 58150}, {667, 1960, 58140}, {667, 4775, 58137}, {667, 58149, 8656}, {667, 58155, 58139}, {1960, 4834, 663}, {1960, 58139, 58169}, {1960, 58140, 48338}, {1960, 58145, 58159}, {4775, 58137, 58143}, {4775, 58143, 58176}, {8643, 48338, 1960}, {8656, 58136, 58151}, {48338, 58140, 649}, {50512, 58150, 58152}, {50512, 58165, 58180}, {58136, 58153, 512}, {58138, 58172, 50512}, {58139, 58155, 50509}, {58139, 58163, 58146}, {58140, 58170, 58145}, {58141, 58160, 58178}, {58144, 58156, 58166}, {58145, 58159, 58170}, {58146, 58155, 58163}, {58146, 58169, 4834}, {58151, 58153, 8643}, {58157, 58179, 58162}, {58165, 58180, 58172}


X(58149) = X(187)X(237)∩X(4057)X(6085)

Barycentrics    a^2*(6*a-b-c)*(b-c) : :
X(58149) = -X[4770]+4*X[6050], 2*X[4782]+X[48347], X[48005]+2*X[50517], -X[48296]+4*X[48330], X[50353]+X[53390]

X(58149) lies on these lines: {187, 237}, {4057, 6085}, {4401, 29226}, {4770, 6050}, {4782, 48347}, {4809, 29272}, {6004, 30234}, {6371, 53315}, {29138, 47798}, {29182, 47818}, {29198, 48623}, {29268, 47804}, {48005, 50517}, {48296, 48330}, {50353, 53390}

X(58149) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58137}, {4775, 58178}, {4834, 58162}, {50353, 53390}, {649, 58159}, {663, 58144}, {667, 8643}, {58140, 58155}, {58161, 58181}
X(58149) = reflection of X(i) in X(j) for these {i,j}: {1960, 8643}, {50512, 58137}, {58137, 667}, {58144, 58139}, {58147, 58140}, {58159, 58156}, {58162, 58158}, {58163, 58159}, {58174, 58178}, {58178, 58145}, {58179, 58144}, {8643, 58150}
X(58149) = perspector of circumconic {{A, B, C, X(6), X(16671)}}
X(58149) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8698}
X(58149) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8698}
X(58149) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8698, 6}
X(58149)= pole of line {6, 9327} with respect to the circumcircle
X(58149)= pole of line {6, 9327} with respect to the Brocard inellipse
X(58149)= pole of line {99, 8698} with respect to the Stammler hyperbola
X(58149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(39386)}}, {{A, B, C, X(3230), X(16671)}}
X(58149) = barycentric product X(i)*X(j) for these (i, j): {3635, 649}, {16671, 513}
X(58149) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8698}, {3635, 1978}, {16671, 668}
X(58149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58137, 50512}, {512, 58139, 58144}, {512, 58140, 58147}, {512, 58145, 58178}, {512, 58150, 8643}, {512, 58156, 58159}, {512, 58158, 58162}, {512, 58159, 58163}, {512, 667, 58137}, {512, 8643, 1960}, {649, 663, 58167}, {663, 58140, 58176}, {663, 58142, 58173}, {663, 667, 58139}, {667, 4775, 58138}, {667, 4834, 58136}, {667, 58152, 649}, {667, 8656, 58150}, {1960, 50512, 58160}, {1960, 58137, 512}, {1960, 58139, 58164}, {1960, 58163, 58156}, {1960, 58179, 663}, {4775, 58138, 58145}, {4775, 58145, 58174}, {4834, 58154, 58158}, {8643, 58140, 58155}, {8656, 58148, 667}, {48338, 58141, 58182}, {50512, 58160, 58175}, {50512, 58164, 58179}, {58136, 58154, 4834}, {58137, 58147, 58140}, {58138, 58153, 4775}, {58140, 58161, 58181}, {58143, 58165, 58177}, {58151, 58167, 58152}, {58155, 58181, 58161}


X(58150) = X(187)X(237)∩X(891)X(4401)

Barycentrics    a^2*(4*a-b-c)*(b-c) : :
X(58150) = 3*X[659]+X[48282], 3*X[3251]+X[4729], -X[3777]+3*X[14422], 3*X[3803]+X[48616], X[4063]+3*X[25569], 3*X[4367]+X[47970], X[4498]+X[48296], X[4770]+X[48322], X[4782]+X[48294], X[4922]+3*X[47817], X[9508]+X[48345], 3*X[14419]+X[48150] and many others

X(58150) lies on these lines: {187, 237}, {659, 48282}, {676, 29336}, {891, 4401}, {2821, 39227}, {3251, 4729}, {3716, 29176}, {3777, 14422}, {3803, 48616}, {3906, 48299}, {4057, 6363}, {4063, 25569}, {4367, 47970}, {4498, 48296}, {4770, 48322}, {4782, 48294}, {4874, 29182}, {4922, 47817}, {4990, 29266}, {6372, 48065}, {9508, 48345}, {13246, 29094}, {14419, 48150}, {20517, 29272}, {28470, 31288}, {30234, 48329}, {31291, 47839}, {40952, 50493}, {47777, 47956}, {48053, 50523}, {48059, 48586}, {48327, 50504}

X(58150) = midpoint of X(i) and X(j) for these {i,j}: {4063, 48347}, {4401, 48330}, {4498, 48296}, {4770, 48322}, {4775, 58179}, {4782, 48294}, {4834, 58163}, {48053, 50523}, {48327, 50504}, {48338, 58175}, {50507, 50517}, {50509, 58164}, {649, 58160}, {659, 48328}, {663, 50512}, {667, 1960}, {58137, 58155}, {58139, 58156}, {58145, 58158}, {58147, 58159}, {58165, 58174}, {8643, 58149}, {9508, 48345}
X(58150) = reflection of X(i) in X(j) for these {i,j}: {53571, 31288}, {58139, 667}, {58145, 58139}, {58156, 1960}, {58158, 58156}, {58177, 58145}, {58182, 50512}
X(58150) = isogonal conjugate of X(58130)
X(58150) = perspector of circumconic {{A, B, C, X(6), X(16669)}}
X(58150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58130}, {75, 28218}, {99, 56135}, {100, 39710}, {190, 39962}, {664, 56091}
X(58150) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58130}, {206, 28218}, {8054, 39710}, {38986, 56135}, {39025, 56091}, {55053, 39962}
X(58150) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28218, 6}
X(58150)= pole of line {6, 7373} with respect to the circumcircle
X(58150)= pole of line {6, 7373} with respect to the Brocard inellipse
X(58150)= pole of line {13476, 49498} with respect to the DeLongchamps ellipse
X(58150)= pole of line {99, 28218} with respect to the Stammler hyperbola
X(58150)= pole of line {670, 58130} with respect to the Wallace hyperbola
X(58150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28217)}}, {{A, B, C, X(513), X(58165)}}, {{A, B, C, X(665), X(30726)}}, {{A, B, C, X(902), X(6186)}}, {{A, B, C, X(3009), X(3244)}}, {{A, B, C, X(3230), X(16669)}}
X(58150) = barycentric product X(i)*X(j) for these (i, j): {1357, 30732}, {3244, 649}, {16669, 513}, {28217, 6}, {30726, 55}
X(58150) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58130}, {32, 28218}, {649, 39710}, {667, 39962}, {798, 56135}, {3063, 56091}, {3244, 1978}, {16669, 668}, {28217, 76}, {30726, 6063}
X(58150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58156}, {512, 50512, 58182}, {512, 58145, 58177}, {512, 667, 58139}, {649, 58162, 58171}, {649, 667, 58137}, {649, 8643, 58153}, {663, 4834, 58163}, {663, 58136, 58180}, {663, 8643, 58152}, {663, 8656, 58148}, {667, 4775, 58140}, {667, 4834, 58138}, {667, 58144, 58136}, {667, 58151, 8643}, {667, 58159, 58141}, {667, 8656, 58149}, {1960, 50512, 663}, {1960, 58137, 58160}, {1960, 58139, 58158}, {1960, 58149, 667}, {1960, 58160, 58155}, {1960, 58175, 58157}, {4063, 25569, 48347}, {4401, 48330, 891}, {4775, 58140, 58179}, {4775, 58146, 58172}, {4775, 58179, 512}, {4834, 58138, 50512}, {48338, 58136, 58144}, {48338, 58144, 58175}, {50509, 58141, 58147}, {50509, 58159, 58164}, {50512, 58160, 58174}, {50512, 58163, 4834}, {50512, 58174, 649}, {50512, 58179, 58146}, {50512, 58182, 58145}, {58140, 58154, 4775}, {58141, 58159, 50509}, {58142, 58166, 58181}, {58143, 58161, 58173}, {58144, 58157, 48338}, {58146, 58152, 58154}, {58153, 58155, 1960}, {58160, 58174, 58165}


X(58151) = X(187)X(237)∩X(3251)X(4394)

Barycentrics    a^2*(b-c)*(7*a-2*(b+c)) : :
X(58151) = 4*X[2516]+3*X[48327], 3*X[3251]+4*X[4394], 5*X[4367]+2*X[48623], 6*X[4401]+X[21343], X[6161]+6*X[30234], X[21385]+6*X[48330], X[48320]+6*X[48331]

X(58151) lies on circumconic {{A, B, C, X(3009), X(51093)}} and these lines: {187, 237}, {2516, 48327}, {3251, 4394}, {4367, 48623}, {4401, 21343}, {6161, 30234}, {21385, 48330}, {48320, 48331}

X(58151) = midpoint of X(i) and X(j) for these {i,j}: {663, 58142}, {58148, 58153}
X(58151) = reflection of X(i) in X(j) for these {i,j}: {667, 58148}
X(58151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58126}
X(58151) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58126}
X(58151) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58126, 6}
X(58151)= pole of line {6, 37602} with respect to the circumcircle
X(58151)= pole of line {6, 37602} with respect to the Brocard inellipse
X(58151)= pole of line {99, 58126} with respect to the Stammler hyperbola
X(58151) = barycentric product X(i)*X(j) for these (i, j): {51093, 649}
X(58151) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58126}, {51093, 1978}
X(58151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {649, 1960, 58157}, {649, 58158, 58169}, {649, 663, 58164}, {667, 58146, 58137}, {667, 58159, 50512}, {667, 58165, 58140}, {667, 58181, 58138}, {667, 8643, 58152}, {1960, 4775, 58155}, {1960, 58139, 663}, {1960, 58149, 58139}, {1960, 58150, 8656}, {1960, 58175, 58156}, {1960, 8656, 667}, {4775, 58141, 4834}, {4775, 58144, 58173}, {4775, 58152, 1960}, {4775, 58171, 58166}, {4775, 58173, 58167}, {8643, 58148, 58153}, {8656, 58136, 58148}, {8656, 58153, 58136}, {48338, 58137, 58146}, {50512, 58154, 58159}, {50512, 58159, 58171}, {58138, 58160, 58181}, {58139, 58144, 58141}, {58139, 58164, 649}, {58139, 58173, 58144}, {58140, 58156, 58165}, {58141, 58155, 4775}, {58148, 58153, 512}, {58157, 58169, 58158}


X(58152) = X(187)X(237)∩X(659)X(48287)

Barycentrics    a^2*(b-c)*(5*a-2*(b+c)) : :
X(58152) = 3*X[659]+2*X[48287], 3*X[3251]+2*X[50501], 3*X[4367]+2*X[48065], 3*X[4378]+2*X[47970], 2*X[4401]+3*X[25569], 3*X[14419]+2*X[48329], 3*X[47888]+2*X[48324], -X[48282]+6*X[48330]

X(58152) lies on these lines: {187, 237}, {659, 48287}, {3251, 50501}, {4367, 48065}, {4378, 47970}, {4401, 25569}, {14419, 48329}, {28470, 31251}, {47888, 48324}, {48282, 48330}

X(58152) = midpoint of X(i) and X(j) for these {i,j}: {663, 58138}, {667, 58157}, {8656, 58154}
X(58152) = reflection of X(i) in X(j) for these {i,j}: {4834, 58146}, {667, 8656}, {58141, 667}, {58146, 58138}, {58154, 1960}, {58157, 58154}, {58180, 50512}
X(58152) = perspector of circumconic {{A, B, C, X(6), X(28323)}}
X(58152) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58123}
X(58152) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58123}
X(58152) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58123, 6}
X(58152)= pole of line {6, 9336} with respect to the circumcircle
X(58152)= pole of line {6, 9336} with respect to the Brocard inellipse
X(58152)= pole of line {99, 58123} with respect to the Stammler hyperbola
X(58152) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58163)}}, {{A, B, C, X(3009), X(3633)}}, {{A, B, C, X(8620), X(46938)}}
X(58152) = barycentric product X(i)*X(j) for these (i, j): {3633, 649}, {46938, 667}
X(58152) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58123}, {3633, 1978}, {46938, 6386}
X(58152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58154}, {512, 50512, 58180}, {512, 667, 58141}, {649, 58156, 58159}, {649, 58159, 58167}, {649, 663, 58163}, {663, 50512, 58165}, {663, 58138, 512}, {663, 58168, 58160}, {663, 8643, 58150}, {663, 8656, 58138}, {667, 4775, 58144}, {667, 58173, 58140}, {667, 58181, 58139}, {667, 8643, 58151}, {1960, 58149, 58156}, {1960, 58150, 663}, {1960, 58151, 4775}, {1960, 8643, 667}, {1960, 8656, 58157}, {4401, 25569, 48333}, {4775, 58144, 58171}, {4834, 58141, 58146}, {8643, 58153, 1960}, {48338, 58139, 58181}, {50512, 58150, 58148}, {50512, 58165, 4834}, {58136, 58161, 58179}, {58137, 58158, 50509}, {58138, 58180, 50512}, {58140, 58160, 58173}, {58140, 58168, 58182}, {58141, 58151, 8656}, {58142, 58162, 58175}, {58149, 58156, 649}, {58151, 58167, 58149}, {58154, 58157, 58155}, {58160, 58182, 58168}, {58161, 58179, 58169}


X(58153) = X(187)X(237)∩X(1635)X(4959)

Barycentrics    a^2*(b-c)*(7*a-3*(b+c)) : :
X(58153) = 6*X[1635]+X[4959], 4*X[4491]+3*X[43924], X[4498]+6*X[25569], 3*X[4724]+4*X[48343], -X[4814]+8*X[6050], -5*X[21301]+12*X[45339], X[31291]+6*X[45316], -12*X[47777]+5*X[47912], 3*X[47828]+4*X[48345], 3*X[47929]+4*X[48323], 4*X[48328]+3*X[48572]

X(58153) lies on these lines: {187, 237}, {1635, 4959}, {4491, 43924}, {4498, 25569}, {4724, 48343}, {4814, 6050}, {21301, 45339}, {31291, 45316}, {47777, 47912}, {47828, 48345}, {47929, 48323}, {48328, 48572}

X(58153) = midpoint of X(i) and X(j) for these {i,j}: {663, 58136}
X(58153) = reflection of X(i) in X(j) for these {i,j}: {58136, 58148}, {58142, 667}, {58148, 58151}
X(58153) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 58124}, {100, 39709}
X(58153) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 58124}, {8054, 39709}
X(58153) = X(i)-Ceva conjugate of X(j) for these {i, j}: {58124, 6}
X(58153)= pole of line {99, 58124} with respect to the Stammler hyperbola
X(58153) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3009), X(20050)}}, {{A, B, C, X(43924), X(58150)}}
X(58153) = barycentric product X(i)*X(j) for these (i, j): {20050, 649}
X(58153) = barycentric quotient X(i)/X(j) for these (i, j): {32, 58124}, {649, 39709}, {20050, 1978}
X(58153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58148, 58136}, {512, 58151, 58148}, {512, 667, 58142}, {649, 48338, 58171}, {649, 663, 58162}, {649, 8643, 58150}, {663, 58136, 512}, {663, 58140, 58166}, {663, 58178, 4775}, {663, 8656, 58140}, {667, 1960, 58154}, {667, 4775, 58145}, {667, 48338, 58143}, {667, 58155, 58160}, {667, 58157, 58167}, {667, 58167, 50512}, {1960, 58150, 58155}, {1960, 58152, 8643}, {1960, 8643, 663}, {4775, 58138, 58178}, {4775, 58149, 58138}, {8643, 58148, 58151}, {48338, 58143, 50509}, {48338, 58154, 58156}, {50512, 58157, 58161}, {50512, 58161, 58170}, {58136, 58151, 8656}, {58137, 58165, 649}, {58139, 58159, 58172}, {58140, 58166, 58180}, {58141, 58163, 58176}, {58142, 58148, 667}, {58144, 58158, 58168}, {58160, 58171, 48338}


X(58154) = X(187)X(237)∩X(1459)X(4491)

Barycentrics    a^2*(b-c)*(5*a-3*(b+c)) : :
X(58154) = 3*X[1459]+2*X[4491], 3*X[1635]+2*X[4162], -6*X[3251]+X[4959], 4*X[4040]+X[48341], -4*X[4163]+9*X[6544], -X[4449]+6*X[25569], X[4498]+4*X[48294], 3*X[4724]+2*X[48323], 4*X[4794]+X[48144], X[4813]+4*X[50517], 3*X[4893]+2*X[48322], X[4895]+4*X[6050] and many others

X(58154) lies on these lines: {187, 237}, {1459, 4491}, {1635, 4162}, {3251, 4959}, {4040, 48341}, {4163, 6544}, {4449, 25569}, {4498, 48294}, {4724, 48323}, {4794, 48144}, {4813, 50517}, {4893, 48322}, {4895, 6050}, {6545, 52596}, {21301, 45316}, {21302, 31207}, {28470, 30835}, {31147, 31291}, {47817, 48285}, {47929, 48328}, {48099, 48544}, {50508, 50525}

X(58154) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58146}, {663, 8656}, {58152, 58157}
X(58154) = reflection of X(i) in X(j) for these {i,j}: {649, 58138}, {663, 58157}, {58138, 8656}, {58143, 667}, {58152, 1960}, {58180, 58141}, {8656, 58152}
X(58154) = isogonal conjugate of X(58131)
X(58154) = perspector of circumconic {{A, B, C, X(6), X(3973)}}
X(58154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58131}, {75, 8699}, {100, 36606}, {101, 40026}, {190, 36603}, {644, 36621}, {651, 38255}
X(58154) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58131}, {206, 8699}, {1015, 40026}, {8054, 36606}, {38991, 38255}, {55053, 36603}
X(58154) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8699, 6}
X(58154)= pole of line {6, 32577} with respect to the circumcircle
X(58154)= pole of line {6, 32577} with respect to the Brocard inellipse
X(58154)= pole of line {99, 8699} with respect to the Stammler hyperbola
X(58154)= pole of line {670, 58131} with respect to the Wallace hyperbola
X(58154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4962)}}, {{A, B, C, X(649), X(2516)}}, {{A, B, C, X(902), X(21000)}}, {{A, B, C, X(1055), X(38296)}}, {{A, B, C, X(3009), X(3621)}}, {{A, B, C, X(3230), X(3973)}}, {{A, B, C, X(8620), X(20942)}}, {{A, B, C, X(8659), X(9262)}}
X(58154) = barycentric product X(i)*X(j) for these (i, j): {1, 2516}, {3621, 649}, {3733, 4072}, {3973, 513}, {4962, 6}, {20942, 667}, {21000, 514}, {22147, 7649}, {38296, 522}
X(58154) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58131}, {32, 8699}, {513, 40026}, {649, 36606}, {663, 38255}, {667, 36603}, {2516, 75}, {3621, 1978}, {3973, 668}, {4072, 27808}, {4962, 76}, {20942, 6386}, {21000, 190}, {22147, 4561}, {38296, 664}, {43924, 36621}
X(58154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58152}, {512, 58141, 58180}, {512, 667, 58143}, {512, 8656, 58138}, {649, 58161, 58168}, {649, 663, 58161}, {649, 8643, 58148}, {663, 1960, 8643}, {663, 50509, 58160}, {663, 58140, 4775}, {663, 58162, 58158}, {663, 58166, 58159}, {667, 1960, 58153}, {667, 4775, 58179}, {667, 50509, 58142}, {667, 58155, 58156}, {667, 58159, 58171}, {667, 58167, 58145}, {1960, 58155, 663}, {1960, 58156, 667}, {1960, 58157, 8656}, {4449, 48331, 48572}, {4775, 58140, 58172}, {4775, 58146, 512}, {4775, 58150, 58140}, {4834, 58149, 58136}, {4834, 58158, 58162}, {25569, 48331, 4449}, {48338, 58142, 50509}, {50509, 58142, 649}, {50509, 58160, 48338}, {50512, 58159, 58166}, {50512, 58166, 58176}, {58136, 58162, 4834}, {58138, 58172, 58146}, {58139, 58165, 58178}, {58144, 58163, 58170}, {58145, 58160, 58167}, {58146, 58152, 58150}, {58151, 58159, 50512}, {58152, 58155, 58157}


X(58155) = X(1)X(29226)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-2*(b+c)) : :
X(58155) = X[659]+2*X[48294], 2*X[905]+X[6161], X[1491]+2*X[48345], X[2530]+2*X[48329], -5*X[3616]+2*X[23815], 2*X[4040]+X[4378], X[4367]+2*X[4794], 2*X[4401]+X[4879], X[4498]+2*X[48347], X[4705]+2*X[48327], X[4724]+2*X[48328], 2*X[4782]+X[48337] and many others

X(58155) lies on these lines: {1, 29226}, {101, 28891}, {187, 237}, {513, 53315}, {514, 25569}, {659, 48294}, {905, 6161}, {1459, 6085}, {1491, 48345}, {2530, 48329}, {2605, 9002}, {3063, 14407}, {3158, 3251}, {3309, 14419}, {3616, 23815}, {3810, 30580}, {4040, 4378}, {4145, 48302}, {4367, 4794}, {4401, 4879}, {4455, 9010}, {4498, 48347}, {4705, 48327}, {4724, 48328}, {4782, 48337}, {4800, 29344}, {4809, 29304}, {4983, 50517}, {8678, 47777}, {21302, 31288}, {23493, 57114}, {26275, 28473}, {28470, 31149}, {28585, 47802}, {29066, 47875}, {29094, 47798}, {29154, 48223}, {29182, 47832}, {29188, 47820}, {29298, 47804}, {29366, 47818}, {47970, 48344}, {48065, 48323}, {48284, 48301}, {48307, 53390}, {48322, 50507}, {48348, 50358}

X(58155) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58144}, {48307, 53390}, {48338, 58178}, {649, 58162}, {663, 8643}, {667, 58159}, {58137, 58160}, {58140, 58161}
X(58155) = reflection of X(i) in X(j) for these {i,j}: {31149, 47839}, {4775, 58159}, {4834, 58144}, {47839, 45316}, {649, 58137}, {667, 8643}, {58137, 58150}, {58140, 58149}, {58144, 667}, {58159, 663}, {58162, 58160}, {58165, 58162}, {58173, 58178}, {58176, 58147}, {58178, 50512}, {58181, 58140}, {8643, 1960}
X(58155) = perspector of circumconic {{A, B, C, X(6), X(4921)}}
X(58155) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 8697}, {100, 39707}, {190, 26745}, {664, 1392}
X(58155) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 8697}, {8054, 39707}, {39025, 1392}, {51577, 668}, {55053, 26745}
X(58155) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8697, 6}
X(58155)= pole of line {574, 9310} with respect to the 1st Brocard circle
X(58155)= pole of line {6, 5563} with respect to the circumcircle
X(58155)= pole of line {21746, 29229} with respect to the incircle
X(58155)= pole of line {6, 5563} with respect to the Brocard inellipse
X(58155)= pole of line {13476, 31794} with respect to the DeLongchamps ellipse
X(58155)= pole of line {99, 8697} with respect to the Stammler hyperbola
X(58155)= pole of line {29229, 50193} with respect to the Suppa-Cucoanes circle
X(58155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4926)}}, {{A, B, C, X(513), X(58160)}}, {{A, B, C, X(649), X(28891)}}, {{A, B, C, X(663), X(4959)}}, {{A, B, C, X(1388), X(2223)}}, {{A, B, C, X(3009), X(3632)}}, {{A, B, C, X(3230), X(16885)}}, {{A, B, C, X(3231), X(4921)}}
X(58155) = barycentric product X(i)*X(j) for these (i, j): {1388, 650}, {3632, 649}, {4921, 512}, {4926, 6}, {4959, 57}, {16885, 513}, {31231, 663}
X(58155) = barycentric quotient X(i)/X(j) for these (i, j): {32, 8697}, {649, 39707}, {667, 26745}, {1388, 4554}, {3063, 1392}, {3632, 1978}, {4921, 670}, {4926, 76}, {4959, 312}, {16885, 668}, {31231, 4572}
X(58155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 8643}, {512, 50512, 58178}, {512, 58137, 649}, {512, 58140, 58181}, {512, 58144, 4834}, {512, 58147, 58176}, {512, 58149, 58140}, {512, 58150, 58137}, {512, 58160, 58162}, {512, 663, 58159}, {512, 667, 58144}, {649, 58165, 58171}, {649, 663, 58160}, {659, 48294, 48333}, {663, 48338, 58158}, {663, 58140, 58161}, {663, 58148, 58163}, {663, 58154, 1960}, {663, 58156, 58157}, {667, 58173, 50512}, {1960, 4775, 58151}, {1960, 58150, 58153}, {1960, 58156, 663}, {1960, 58157, 4775}, {1960, 58158, 8656}, {1960, 58160, 58150}, {4040, 48330, 4378}, {4367, 4794, 48351}, {4775, 4834, 58167}, {4775, 58144, 512}, {4775, 58151, 58141}, {4775, 58152, 667}, {4775, 58171, 58165}, {8643, 58140, 58149}, {28470, 45316, 47839}, {28470, 47839, 31149}, {48338, 50512, 58173}, {50509, 58139, 58146}, {50509, 58148, 58139}, {50509, 58163, 58169}, {50512, 58158, 48338}, {58136, 58172, 58145}, {58138, 58166, 58179}, {58139, 58163, 50509}, {58140, 58176, 58147}, {58142, 58170, 58182}, {58143, 58168, 58175}, {58145, 58164, 58172}, {58154, 58157, 58152}


X(58156) = X(187)X(237)∩X(2605)X(4491)

Barycentrics    a^2*(b-c)*(4*a-3*(b+c)) : :
X(58156) = -3*X[551]+X[48406], X[659]+X[48347], 3*X[2605]+X[4491], 3*X[3251]+X[4041], X[4040]+3*X[25569], X[4162]+X[50504], -X[4905]+3*X[14422], 3*X[14421]+X[47936], -X[21260]+3*X[45316], X[48005]+X[48322], X[48059]+X[48324], X[48065]+X[48344] and many others

X(58156) lies on these lines: {187, 237}, {551, 48406}, {659, 48347}, {891, 48294}, {2605, 4491}, {3251, 4041}, {3716, 29268}, {4040, 25569}, {4162, 50504}, {4794, 6372}, {4905, 14422}, {4990, 29058}, {7950, 48299}, {14421, 47936}, {21260, 45316}, {48005, 48322}, {48059, 48324}, {48065, 48344}, {48327, 50507}

X(58156) = midpoint of X(i) and X(j) for these {i,j}: {4040, 48328}, {4162, 50504}, {4775, 50512}, {4794, 48330}, {4834, 58164}, {48005, 48322}, {48059, 48324}, {48065, 48344}, {48294, 48331}, {48327, 50507}, {48338, 58179}, {649, 58163}, {659, 48347}, {663, 1960}, {667, 58160}, {58137, 58161}, {58147, 58162}, {58149, 58159}, {58150, 58158}, {58165, 58175}, {58166, 58174}
X(58156) = reflection of X(i) in X(j) for these {i,j}: {58139, 58150}, {58145, 667}, {58150, 1960}, {58158, 663}, {58177, 50512}, {58182, 58139}
X(58156) = perspector of circumconic {{A, B, C, X(6), X(15492)}}
X(58156) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28222}
X(58156) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28222}
X(58156) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28222, 6}
X(58156)= pole of line {99, 28222} with respect to the Stammler hyperbola
X(58156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28221)}}, {{A, B, C, X(513), X(58159)}}, {{A, B, C, X(3009), X(3625)}}, {{A, B, C, X(3230), X(15492)}}
X(58156) = barycentric product X(i)*X(j) for these (i, j): {3625, 649}, {15492, 513}, {28221, 6}
X(58156) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28222}, {3625, 1978}, {15492, 668}, {28221, 76}
X(58156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58150}, {512, 50512, 58177}, {512, 58139, 58182}, {512, 663, 58158}, {512, 667, 58145}, {649, 58159, 58163}, {663, 58155, 1960}, {663, 667, 58160}, {663, 8656, 58161}, {667, 4775, 50509}, {667, 4834, 58142}, {667, 58155, 58154}, {667, 58159, 58167}, {667, 58171, 58143}, {1960, 50512, 8643}, {1960, 58149, 58152}, {1960, 58158, 58139}, {1960, 58160, 667}, {1960, 58163, 58149}, {1960, 58164, 8656}, {1960, 58175, 58151}, {4040, 25569, 48328}, {4775, 50512, 512}, {4775, 58181, 58168}, {4775, 8643, 50512}, {4794, 48330, 6372}, {4834, 58161, 58164}, {4834, 8656, 58137}, {8643, 58168, 58136}, {48294, 48331, 891}, {48338, 58143, 58171}, {48338, 58154, 58153}, {58136, 58168, 58181}, {58137, 58164, 4834}, {58138, 58162, 58173}, {58138, 58173, 58147}, {58140, 58165, 58175}, {58143, 58171, 58179}, {58144, 58166, 58174}, {58148, 58166, 58144}, {58149, 58163, 649}, {58151, 58165, 58140}, {58155, 58157, 663}, {58158, 58177, 4775}, {58160, 58179, 48338}


X(58157) = X(187)X(237)∩X(650)X(3251)

Barycentrics    a^2*(b-c)*(5*a-4*(b+c)) : :
X(58157) = 2*X[650]+3*X[3251], -8*X[2516]+3*X[4730], 3*X[4040]+2*X[48344], X[4378]+4*X[4794], 3*X[4448]+2*X[48285], -X[21343]+6*X[48294], -X[21385]+6*X[48331], -14*X[27138]+9*X[31149], 2*X[48296]+3*X[48572], -X[48320]+6*X[48330], 3*X[55969]+2*X[57051]

X(58157) lies on circumconic {{A, B, C, X(3009), X(4677)}} and these lines: {187, 237}, {650, 3251}, {2516, 4730}, {4040, 48344}, {4378, 4794}, {4448, 48285}, {21343, 48294}, {21385, 48331}, {27138, 31149}, {48296, 48572}, {48320, 48330}, {55969, 57051}

X(58157) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58141}, {48338, 58180}, {663, 58154}
X(58157) = reflection of X(i) in X(j) for these {i,j}: {4834, 58143}, {667, 58152}, {58141, 8656}, {58146, 667}, {58152, 58154}, {8656, 1960}
X(58157)= pole of line {6, 37587} with respect to the circumcircle
X(58157)= pole of line {6, 37587} with respect to the Brocard inellipse
X(58157) = barycentric product X(i)*X(j) for these (i, j): {4677, 649}
X(58157) = barycentric quotient X(i)/X(j) for these (i, j): {4677, 1978}
X(58157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 8656}, {512, 58143, 4834}, {512, 667, 58146}, {649, 1960, 58151}, {649, 58169, 58173}, {649, 663, 58158}, {663, 58153, 58161}, {663, 58156, 58155}, {663, 667, 58159}, {663, 8643, 58160}, {667, 58165, 58181}, {1960, 4775, 667}, {1960, 58139, 8643}, {1960, 58158, 649}, {1960, 58160, 58139}, {1960, 58175, 58150}, {1960, 8656, 58152}, {4775, 4834, 58166}, {4775, 58141, 512}, {4775, 58152, 58141}, {4775, 58155, 1960}, {4775, 58173, 58165}, {4794, 25569, 4378}, {8656, 58166, 58143}, {48338, 58136, 58175}, {48338, 58150, 58144}, {50512, 58161, 58167}, {58140, 58163, 58171}, {58148, 58162, 58179}, {58150, 58175, 58136}, {58151, 58158, 58169}, {58152, 58155, 58154}, {58153, 58161, 50512}, {58159, 58173, 4775}


X(58158) = X(187)X(237)∩X(661)X(3251)

Barycentrics    a^2*(b-c)*(4*a-5*(b+c)) : :
X(58158) = X[661]+3*X[3251], 3*X[4040]+X[21343], X[4162]+X[50507], X[4724]+X[48296], X[4770]+X[4895], 3*X[4879]+X[21385], -3*X[14422]+X[50359], 3*X[25569]+X[48352], X[48026]+3*X[48327], X[48053]+X[48322], -X[48320]+3*X[48328]

X(58158) lies on circumconic {{A, B, C, X(3009), X(4669)}} and these lines: {187, 237}, {661, 3251}, {891, 4794}, {4040, 21343}, {4162, 50507}, {4724, 48296}, {4770, 4895}, {4879, 21385}, {6363, 48306}, {6372, 48294}, {14422, 50359}, {25569, 48352}, {48026, 48327}, {48053, 48322}, {48320, 48328}

X(58158) = midpoint of X(i) and X(j) for these {i,j}: {1960, 4775}, {4040, 48347}, {4162, 50507}, {4724, 48296}, {4770, 4895}, {48053, 48322}, {48328, 48336}, {48338, 50512}, {649, 58164}, {663, 58160}, {667, 58163}, {58149, 58162}, {58165, 58179}, {58166, 58175}, {58167, 58174}
X(58158) = reflection of X(i) in X(j) for these {i,j}: {58139, 1960}, {58145, 58150}, {58150, 58156}, {58156, 663}, {58177, 58139}, {58182, 667}
X(58158) = barycentric product X(i)*X(j) for these (i, j): {4669, 649}
X(58158) = barycentric quotient X(i)/X(j) for these (i, j): {4669, 1978}
X(58158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58139}, {512, 58150, 58145}, {512, 663, 58156}, {512, 667, 58182}, {649, 4775, 58164}, {649, 663, 58157}, {663, 48338, 58155}, {663, 58159, 58160}, {663, 58162, 58154}, {667, 58172, 58147}, {1960, 4775, 512}, {1960, 50512, 8656}, {1960, 58139, 58150}, {1960, 58160, 4775}, {1960, 58163, 58175}, {1960, 58164, 649}, {1960, 58175, 667}, {4775, 58141, 58165}, {4775, 58151, 58169}, {4775, 58155, 58173}, {4775, 58156, 58177}, {4775, 58166, 58163}, {4775, 58173, 48338}, {4834, 58154, 58149}, {8643, 58170, 58141}, {8656, 58166, 58178}, {48338, 58155, 50512}, {50509, 58152, 58137}, {58139, 58156, 1960}, {58140, 58167, 58174}, {58141, 58165, 58170}, {58141, 58170, 58179}, {58153, 58168, 58144}, {58154, 58162, 4834}, {58157, 58169, 58151}, {58160, 58163, 58161}, {58163, 58175, 58166}


X(58159) = X(1)X(29198)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-4*(b+c)) : :
X(58159) = 2*X[4162]+X[4705], -X[4378]+4*X[48294], X[4724]+2*X[48347], 2*X[4770]+X[4959], 2*X[4794]+X[4879], X[4895]+2*X[50507], X[4983]+2*X[48327], X[6161]+2*X[48136], -2*X[21302]+5*X[31251], X[21343]+2*X[48065], -X[31149]+2*X[47840], -2*X[45316]+X[47837] and many others

X(58159) lies on these lines: {1, 29198}, {187, 237}, {3251, 8678}, {3887, 47888}, {3900, 4825}, {4040, 29226}, {4145, 48297}, {4162, 4705}, {4378, 48294}, {4724, 48347}, {4770, 4959}, {4794, 4879}, {4844, 47872}, {4895, 50507}, {4983, 48327}, {6005, 25569}, {6085, 48340}, {6161, 48136}, {9002, 48306}, {21302, 31251}, {21343, 48065}, {29366, 47875}, {31149, 47840}, {45316, 47837}, {47929, 48296}, {48123, 48345}, {48265, 48285}, {48328, 48367}, {48330, 48352}, {48331, 48337}

X(58159) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58155}, {48338, 58140}, {663, 58161}, {58147, 58164}, {58149, 58163}, {58165, 58181}, {58166, 58176}, {8643, 58162}
X(58159) = reflection of X(i) in X(j) for these {i,j}: {31149, 47840}, {4775, 58161}, {4834, 58140}, {47837, 45316}, {50509, 58147}, {649, 58149}, {667, 58155}, {58140, 1960}, {58144, 8643}, {58147, 58150}, {58149, 58156}, {58155, 663}, {58161, 58160}, {58171, 58176}, {58173, 58181}, {58176, 50512}, {58178, 58137}, {58181, 667}
X(58159) = perspector of circumconic {{A, B, C, X(6), X(17782)}}
X(58159) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28206}
X(58159) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28206}
X(58159) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28206, 6}
X(58159)= pole of line {21746, 50193} with respect to the incircle
X(58159)= pole of line {13476, 50193} with respect to the DeLongchamps ellipse
X(58159)= pole of line {99, 28206} with respect to the Stammler hyperbola
X(58159) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28205)}}, {{A, B, C, X(513), X(58156)}}, {{A, B, C, X(902), X(17782)}}, {{A, B, C, X(3009), X(4668)}}
X(58159) = barycentric product X(i)*X(j) for these (i, j): {4668, 649}, {17782, 514}, {28205, 6}
X(58159) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28206}, {4668, 1978}, {17782, 190}, {28205, 76}
X(58159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58140}, {512, 50512, 58176}, {512, 58137, 58178}, {512, 58147, 50509}, {512, 58149, 649}, {512, 58150, 58147}, {512, 58156, 58149}, {512, 58160, 58161}, {512, 58161, 4775}, {512, 663, 58155}, {512, 667, 58181}, {512, 8643, 58144}, {649, 58156, 58152}, {663, 48338, 1960}, {663, 58166, 58154}, {663, 667, 58157}, {667, 58173, 58146}, {1960, 4775, 58169}, {1960, 48338, 4834}, {1960, 4834, 667}, {1960, 58145, 58148}, {4775, 4834, 48338}, {4775, 58141, 58164}, {4775, 58151, 58166}, {4775, 58152, 58167}, {4775, 58155, 512}, {4775, 58157, 58173}, {4775, 58167, 58163}, {8643, 58161, 58162}, {8643, 58178, 58137}, {8656, 58168, 58179}, {48338, 58148, 58170}, {48338, 58169, 58165}, {50509, 58150, 58141}, {50512, 58154, 58151}, {50512, 58166, 58171}, {58144, 58155, 8643}, {58148, 58170, 58145}, {58151, 58171, 50512}, {58153, 58172, 58139}, {58158, 58160, 663}


X(58160) = X(1)X(6372)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(2*a-3*(b+c)) : :
X(58160) = -X[8]+3*X[48553], X[659]+X[48337], -X[1019]+3*X[25569], 3*X[3251]+X[4983], -5*X[3616]+3*X[48569], 5*X[4162]+3*X[47777], X[4367]+X[48352], X[4378]+X[48367], X[4449]+X[48351], X[4705]+X[4895], X[4724]+X[48333], 3*X[4893]+X[4959] and many others

X(58160) lies on these lines: {1, 6372}, {8, 48553}, {187, 237}, {513, 25405}, {514, 48296}, {519, 48401}, {659, 48337}, {891, 4040}, {1019, 25569}, {3251, 4983}, {3616, 48569}, {3716, 29298}, {3900, 4770}, {4010, 29182}, {4083, 4794}, {4139, 48297}, {4160, 47994}, {4162, 47777}, {4170, 29340}, {4367, 48352}, {4378, 48367}, {4449, 48351}, {4491, 6371}, {4705, 4895}, {4724, 48333}, {4893, 4959}, {5592, 29098}, {6004, 48136}, {6005, 48330}, {6161, 48131}, {6363, 48340}, {7927, 48299}, {7950, 49279}, {8672, 48302}, {8678, 48053}, {8714, 48289}, {14421, 23738}, {21260, 45339}, {21302, 47839}, {21343, 47970}, {23057, 47918}, {29074, 49288}, {29138, 47728}, {29168, 48290}, {29176, 48080}, {29184, 48349}, {29198, 48287}, {29226, 48065}, {29246, 48295}, {29256, 50340}, {29264, 50326}, {29268, 47729}, {29272, 47712}, {29324, 48285}, {29350, 48331}, {31288, 45316}, {48123, 48324}, {48327, 50508}

X(58160) = midpoint of X(i) and X(j) for these {i,j}: {1, 48336}, {1960, 58163}, {21343, 47970}, {4040, 4879}, {4162, 48099}, {4367, 48352}, {4378, 48367}, {4449, 48351}, {4705, 4895}, {4724, 48333}, {4834, 58166}, {4983, 48322}, {47729, 48267}, {48123, 48324}, {48327, 50508}, {50509, 58167}, {50512, 58164}, {649, 58165}, {659, 48337}, {663, 4775}, {667, 48338}, {6161, 48131}, {58155, 58162}, {58159, 58161}, {58168, 58173}, {58169, 58172}
X(58160) = reflection of X(i) in X(j) for these {i,j}: {1960, 663}, {21302, 53571}, {4770, 50507}, {4834, 58139}, {48005, 48099}, {48296, 48347}, {48328, 48294}, {50509, 58145}, {50512, 1960}, {649, 58150}, {663, 58158}, {667, 58156}, {58137, 58155}, {58147, 8643}, {58163, 4775}, {58164, 58163}, {58172, 58177}, {58173, 58182}, {58174, 649}, {58175, 50512}, {58179, 667}
X(58160) = perspector of circumconic {{A, B, C, X(6), X(16814)}}
X(58160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28184}
X(58160) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28184}
X(58160) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28184, 6}
X(58160)= pole of line {5903, 21746} with respect to the incircle
X(58160)= pole of line {5903, 13476} with respect to the DeLongchamps ellipse
X(58160)= pole of line {99, 28184} with respect to the Stammler hyperbola
X(58160)= pole of line {39, 29628} with respect to the Steiner inellipse
X(58160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28183)}}, {{A, B, C, X(513), X(58155)}}, {{A, B, C, X(2223), X(11011)}}, {{A, B, C, X(3009), X(3626)}}, {{A, B, C, X(3230), X(16814)}}, {{A, B, C, X(8708), X(48323)}}
X(58160) = barycentric product X(i)*X(j) for these (i, j): {3626, 649}, {11011, 650}, {16814, 513}, {28183, 6}
X(58160) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28184}, {3626, 1978}, {11011, 4554}, {16814, 668}, {28183, 76}
X(58160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48336, 6372}, {512, 1960, 50512}, {512, 4775, 58163}, {512, 58139, 4834}, {512, 58150, 649}, {512, 58177, 58172}, {512, 58182, 58173}, {512, 649, 58174}, {513, 48294, 48328}, {649, 663, 58155}, {663, 50509, 58154}, {663, 58159, 58158}, {663, 58161, 4775}, {663, 58168, 58152}, {663, 667, 58156}, {663, 8643, 58157}, {667, 4775, 48338}, {667, 4834, 58143}, {667, 58155, 58153}, {1960, 4775, 58164}, {1960, 50512, 58149}, {1960, 58137, 58150}, {1960, 58163, 512}, {1960, 58164, 58175}, {1960, 58174, 58137}, {1960, 58179, 667}, {3251, 4983, 48322}, {3900, 50507, 4770}, {4775, 58155, 58165}, {4775, 58157, 58166}, {4775, 58158, 1960}, {4775, 58159, 663}, {4775, 58165, 58162}, {4834, 58139, 58147}, {4834, 58157, 8643}, {4834, 8643, 58139}, {8656, 58172, 58144}, {48338, 50509, 58167}, {48338, 58153, 58171}, {48338, 58154, 50509}, {48338, 58156, 58179}, {58136, 58176, 58146}, {58138, 58170, 58181}, {58140, 58173, 58182}, {58144, 58172, 58177}, {58148, 58178, 58141}, {58151, 58181, 58138}, {58152, 58173, 58140}, {58154, 58167, 58145}


X(58161) = X(1)X(48341)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(3*a-5*(b+c)) : :
X(58161) = -4*X[1]+X[48341], X[661]+2*X[4162], -X[4498]+4*X[4794], 2*X[4705]+X[4959], X[4724]+2*X[4879], -X[4814]+4*X[50507], X[4822]+2*X[48327], X[4895]+2*X[48099], 2*X[6161]+X[48122], -2*X[21302]+5*X[30835], -2*X[45316]+X[47836], X[47929]+2*X[48333] and many others

X(58161) lies on circumconic {{A, B, C, X(513), X(58154)}} and these lines: {1, 48341}, {187, 237}, {661, 4162}, {3900, 4893}, {4083, 48572}, {4145, 46385}, {4449, 29198}, {4498, 4794}, {4705, 4959}, {4724, 4879}, {4814, 50507}, {4822, 48327}, {4895, 48099}, {6161, 48122}, {6545, 8713}, {8540, 9029}, {8678, 48544}, {8710, 47765}, {9002, 48340}, {21302, 30835}, {28470, 31147}, {29366, 47832}, {45316, 47836}, {47929, 48333}, {48004, 50767}, {48121, 48324}, {48144, 48294}, {48347, 48351}, {50517, 50525}

X(58161) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58159}, {663, 58162}, {58137, 58164}, {58144, 58165}, {58166, 58178}, {8643, 48338}
X(58161) = reflection of X(i) in X(j) for these {i,j}: {4834, 58137}, {47836, 45316}, {48338, 58162}, {50509, 58144}, {649, 8643}, {663, 58159}, {58137, 58156}, {58140, 58155}, {58144, 1960}, {58159, 58160}, {58162, 4775}, {58172, 58178}, {58176, 58140}, {58178, 667}, {58181, 58149}, {8643, 663}
X(58161) = perspector of circumconic {{A, B, C, X(6), X(36603)}}
X(58161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28192}
X(58161) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28192}
X(58161) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28192, 6}
X(58161)= pole of line {6, 22357} with respect to the circumcircle
X(58161)= pole of line {262, 38054} with respect to the orthoptic circle of the Steiner Inellipse
X(58161)= pole of line {6, 22357} with respect to the Brocard inellipse
X(58161)= pole of line {99, 28192} with respect to the Stammler hyperbola
X(58161)= pole of line {194, 16833} with respect to the Steiner circumellipse
X(58161) = barycentric product X(i)*X(j) for these (i, j): {4678, 649}
X(58161) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28192}, {4678, 1978}
X(58161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48367, 48341}, {512, 1960, 58144}, {512, 4775, 58162}, {512, 58137, 4834}, {512, 58140, 58176}, {512, 58149, 58181}, {512, 58155, 58140}, {512, 58156, 58137}, {512, 58160, 58159}, {512, 58162, 48338}, {512, 58178, 58172}, {512, 663, 8643}, {512, 667, 58178}, {649, 48338, 58168}, {649, 58154, 58148}, {649, 663, 58154}, {663, 50509, 1960}, {663, 58140, 58155}, {663, 58153, 58157}, {663, 8656, 58156}, {667, 4775, 58163}, {1960, 50509, 58138}, {1960, 58165, 50509}, {1960, 58182, 667}, {4775, 58158, 58166}, {4775, 58159, 512}, {4775, 58160, 663}, {4794, 48337, 4498}, {4834, 58142, 649}, {4834, 58156, 8656}, {4834, 8656, 58142}, {48294, 48352, 48144}, {48322, 50508, 4813}, {50512, 58157, 58153}, {50512, 58167, 58170}, {58138, 58172, 58182}, {58139, 58171, 58180}, {58140, 58178, 58147}, {58150, 58173, 58143}, {58152, 58169, 58179}, {58152, 58179, 58136}, {58153, 58170, 50512}, {58155, 58181, 58149}, {58160, 58163, 58158}, {58163, 58182, 58165}


X(58162) = X(187)X(237)∩X(661)X(4959)

Barycentrics    a^2*(b-c)*(3*a-7*(b+c)) : :
X(58162) = 2*X[661]+X[4959], 2*X[4162]+X[4822], X[4449]+2*X[48352], X[4724]+2*X[48337], -X[4814]+4*X[48099], 2*X[4895]+X[47912], -4*X[45339]+5*X[47840], -X[48341]+4*X[48347]

X(58162) lies on these lines: {187, 237}, {661, 4959}, {3900, 47777}, {4162, 4822}, {4449, 48352}, {4724, 48337}, {4814, 48099}, {4879, 29198}, {4895, 47912}, {28579, 47797}, {29226, 47929}, {45339, 47840}, {48341, 48347}

X(58162) = midpoint of X(i) and X(j) for these {i,j}: {48338, 58161}, {58140, 58166}, {58155, 58165}, {58167, 58181}, {58168, 58176}
X(58162) = reflection of X(i) in X(j) for these {i,j}: {4834, 58149}, {50509, 58140}, {649, 58155}, {663, 58161}, {58140, 663}, {58147, 58156}, {58149, 58158}, {58155, 58160}, {58161, 4775}, {58170, 58176}, {58172, 58181}, {58173, 58147}, {58176, 667}, {58178, 8643}, {58181, 1960}, {8643, 58159}
X(58162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58181}, {512, 4775, 58161}, {512, 58140, 50509}, {512, 58147, 58173}, {512, 58149, 4834}, {512, 58155, 649}, {512, 58156, 58147}, {512, 58158, 58149}, {512, 58159, 8643}, {512, 58160, 58155}, {512, 58176, 58170}, {512, 663, 58140}, {512, 667, 58176}, {512, 8643, 58178}, {649, 48338, 58165}, {649, 663, 58153}, {649, 8643, 58137}, {663, 50509, 8656}, {663, 58143, 1960}, {663, 58168, 58180}, {663, 58170, 667}, {1960, 58167, 58172}, {1960, 58172, 58143}, {4775, 48338, 663}, {4775, 58163, 48338}, {4775, 58165, 58160}, {4834, 58154, 58136}, {4834, 58158, 58154}, {4895, 50508, 47912}, {8643, 58161, 58159}, {48338, 58161, 512}, {48338, 58168, 58164}, {58152, 58175, 58142}, {58156, 58173, 58138}, {58157, 58179, 58148}, {58160, 58164, 58174}, {58164, 58170, 58166}, {58165, 58174, 58168}


X(58163) = X(187)X(237)∩X(4895)X(4983)

Barycentrics    a^2*(b-c)*(2*a-5*(b+c)) : :
X(58163) = -3*X[3251]+X[50523], -X[4770]+2*X[48099], X[4895]+X[4983], -3*X[47840]+2*X[53571], X[47913]+X[50767], -2*X[47956]+3*X[48053], -3*X[48123]+X[48586], X[48333]+X[48367]

X(58163) lies on circumconic {{A, B, C, X(512), X(28187)}} and these lines: {187, 237}, {513, 48287}, {891, 47970}, {3251, 50523}, {3887, 48059}, {3900, 48005}, {4083, 48065}, {4170, 29182}, {4770, 48099}, {4879, 6372}, {4895, 4983}, {6004, 48616}, {6005, 48328}, {12073, 48299}, {29170, 48285}, {29176, 47729}, {29268, 48080}, {29272, 48349}, {47840, 53571}, {47913, 50767}, {47956, 48053}, {48123, 48586}, {48333, 48367}

X(58163) = midpoint of X(i) and X(j) for these {i,j}: {4775, 48338}, {4834, 58168}, {4879, 48352}, {4895, 4983}, {47913, 50767}, {48333, 48367}, {48336, 48337}, {50509, 58169}, {649, 58167}, {663, 58165}, {667, 58166}, {58160, 58164}
X(58163) = reflection of X(i) in X(j) for these {i,j}: {1960, 58160}, {4770, 48099}, {4834, 58150}, {48053, 50508}, {48296, 4879}, {50509, 58139}, {50512, 663}, {649, 58156}, {667, 58158}, {58149, 58159}, {58160, 4775}, {58164, 48338}, {58171, 58177}, {58172, 58182}, {58173, 58145}, {58174, 50512}, {58175, 667}, {58179, 1960}
X(58163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28188}
X(58163) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28188}
X(58163) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28188, 6}
X(58163)= pole of line {6, 9341} with respect to the circumcircle
X(58163)= pole of line {5697, 21746} with respect to the incircle
X(58163)= pole of line {6, 9341} with respect to the Brocard inellipse
X(58163)= pole of line {5697, 13476} with respect to the DeLongchamps ellipse
X(58163)= pole of line {99, 28188} with respect to the Stammler hyperbola
X(58163) = barycentric product X(i)*X(j) for these (i, j): {4691, 649}, {28187, 6}
X(58163) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28188}, {4691, 1978}, {28187, 76}
X(58163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4775, 58160}, {512, 48338, 58164}, {512, 50512, 58174}, {512, 58139, 50509}, {512, 58145, 58173}, {512, 58150, 4834}, {512, 58156, 649}, {512, 58159, 58149}, {512, 58177, 58171}, {512, 58182, 58172}, {512, 667, 58175}, {649, 58159, 58156}, {649, 663, 58152}, {663, 48338, 58165}, {663, 4834, 58150}, {663, 58148, 58155}, {663, 58180, 8643}, {667, 4775, 58161}, {1960, 58147, 667}, {1960, 58174, 50512}, {1960, 58179, 58137}, {4775, 48338, 512}, {4775, 58164, 1960}, {4775, 58165, 663}, {4775, 58166, 58158}, {4775, 58167, 58159}, {4834, 58165, 58168}, {4879, 48352, 6372}, {8643, 58173, 58145}, {48336, 48337, 891}, {48338, 58161, 58166}, {48338, 58162, 4775}, {50509, 58148, 58146}, {50509, 58155, 58139}, {50512, 58174, 58179}, {50512, 58175, 58182}, {50512, 58182, 58147}, {58140, 58171, 58177}, {58146, 58155, 58148}, {58146, 58165, 58169}, {58149, 58164, 58167}, {58153, 58176, 58141}, {58154, 58170, 58144}, {58157, 58171, 58140}


X(58164) = X(187)X(237)∩X(3251)X(4979)

Barycentrics    a^2*(b-c)*(2*a-7*(b+c)) : :
X(58164) = -3*X[3251]+X[4979], -3*X[4879]+X[48320], 3*X[4895]+X[48019], -X[21385]+3*X[48336], -7*X[27138]+6*X[53571], -X[48005]+2*X[50508]

X(58164) lies on circumconic {{A, B, C, X(3009), X(4745)}} and these lines: {187, 237}, {513, 48296}, {891, 48352}, {3251, 4979}, {3900, 48053}, {4083, 48623}, {4879, 48320}, {4895, 48019}, {6005, 48344}, {6372, 21343}, {21385, 48336}, {27138, 53571}, {28209, 50761}, {29188, 49289}, {48005, 50508}

X(58164) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58166}, {48338, 58165}, {649, 58169}, {663, 58167}, {667, 58168}
X(58164) = reflection of X(i) in X(j) for these {i,j}: {1960, 4775}, {4834, 58156}, {48005, 50508}, {50509, 58150}, {50512, 58160}, {649, 58158}, {58137, 58161}, {58147, 58159}, {58160, 58163}, {58163, 48338}, {58170, 58177}, {58171, 58182}, {58172, 58145}, {58173, 58139}, {58174, 667}, {58175, 1960}, {58179, 663}
X(58164)= pole of line {43149, 44456} with respect to the Stammler circle
X(58164) = barycentric product X(i)*X(j) for these (i, j): {4745, 649}
X(58164) = barycentric quotient X(i)/X(j) for these (i, j): {4745, 1978}
X(58164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58175}, {512, 4775, 1960}, {512, 48338, 58163}, {512, 58145, 58172}, {512, 58150, 50509}, {512, 58156, 4834}, {512, 58177, 58170}, {512, 58182, 58171}, {512, 663, 58179}, {512, 667, 58174}, {649, 4775, 58158}, {649, 58166, 58169}, {649, 663, 58151}, {1960, 4775, 58160}, {1960, 58137, 8656}, {1960, 58139, 58149}, {1960, 58163, 4775}, {1960, 58175, 50512}, {1960, 58179, 58139}, {4775, 58141, 58159}, {4775, 58165, 58166}, {4775, 58166, 512}, {4775, 58167, 58173}, {4775, 58168, 58177}, {4775, 58169, 649}, {4775, 58173, 663}, {4834, 58156, 58137}, {4834, 58161, 58156}, {8643, 58171, 58182}, {48338, 58168, 58162}, {50509, 58150, 58147}, {50509, 58159, 58150}, {58155, 58172, 58145}, {58162, 58168, 667}, {58166, 58170, 58168}, {58174, 58179, 58176}


X(58165) = X(187)X(237)∩X(3063)X(4826)

Barycentrics    a^2*(b-c)*(a-4*(b+c)) : :
X(58165) = -3*X[3251]+2*X[50517], -X[4378]+2*X[4879], -4*X[4705]+3*X[4825], -X[4729]+2*X[50507], -X[4730]+2*X[48099], -2*X[4761]+3*X[47875], -X[4784]+2*X[48294], -2*X[4807]+3*X[47822], X[4813]+X[4959], -X[4814]+2*X[48005], -5*X[17072]+6*X[45339], -2*X[21302]+3*X[31149] and many others

X(58165) lies on these lines: {187, 237}, {513, 48282}, {891, 48367}, {3063, 4826}, {3251, 50517}, {3309, 48616}, {3800, 49279}, {3887, 48052}, {3900, 4983}, {4083, 47970}, {4170, 29366}, {4378, 4879}, {4705, 4825}, {4729, 50507}, {4730, 48099}, {4761, 47875}, {4784, 48294}, {4807, 47822}, {4813, 4959}, {4814, 48005}, {6004, 48116}, {12073, 48300}, {14077, 47949}, {17072, 45339}, {21302, 31149}, {23057, 48149}, {25569, 48064}, {29150, 47729}, {29200, 47727}, {29208, 49276}, {29298, 48080}, {29304, 48349}, {29350, 48065}, {31251, 47840}, {47888, 50355}, {48144, 48347}, {48296, 48341}, {48348, 50359}

X(58165) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58167}, {4813, 4959}, {48338, 58166}, {663, 58168}, {667, 58169}
X(58165) = reflection of X(i) in X(j) for these {i,j}: {4378, 4879}, {4705, 50508}, {4729, 50507}, {4730, 48099}, {4775, 48338}, {4784, 48294}, {4814, 48005}, {4834, 663}, {48144, 48347}, {48333, 48337}, {48338, 58164}, {48341, 48296}, {48351, 48352}, {50359, 48348}, {50509, 1960}, {649, 58160}, {663, 58163}, {667, 4775}, {58144, 58161}, {58155, 58162}, {58167, 58166}, {58169, 58167}, {58170, 58179}, {58171, 649}, {58172, 50512}, {58173, 667}, {58174, 58150}, {58175, 58156}, {58179, 58158}, {58181, 58159}
X(58165) = perspector of circumconic {{A, B, C, X(6), X(16675)}}
X(58165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28166}
X(58165) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28166}
X(58165) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28166, 6}
X(58165)= pole of line {6, 7280} with respect to the circumcircle
X(58165)= pole of line {9957, 21746} with respect to the incircle
X(58165)= pole of line {22769, 44456} with respect to the Stammler circle
X(58165)= pole of line {6, 7280} with respect to the Brocard inellipse
X(58165)= pole of line {9957, 13476} with respect to the DeLongchamps ellipse
X(58165)= pole of line {99, 28166} with respect to the Stammler hyperbola
X(58165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28165)}}, {{A, B, C, X(513), X(58150)}}, {{A, B, C, X(3230), X(16675)}}
X(58165) = barycentric product X(i)*X(j) for these (i, j): {16675, 513}, {28165, 6}
X(58165) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28166}, {16675, 668}, {28165, 76}
X(58165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 50509}, {512, 48338, 4775}, {512, 50512, 58172}, {512, 58156, 58175}, {512, 58158, 58179}, {512, 58160, 649}, {512, 58164, 48338}, {512, 58166, 58167}, {512, 58179, 58170}, {512, 649, 58171}, {513, 48337, 48333}, {649, 48338, 58162}, {649, 58153, 58137}, {663, 48338, 58163}, {663, 50512, 58152}, {663, 58166, 58168}, {663, 58180, 58148}, {1960, 50509, 58144}, {1960, 58144, 667}, {1960, 58182, 58138}, {4083, 48352, 48351}, {4775, 4834, 663}, {4775, 58141, 58158}, {4775, 58155, 58160}, {4775, 58166, 58169}, {4775, 58167, 512}, {4775, 58169, 58173}, {4775, 58171, 58155}, {4775, 58173, 58157}, {4834, 58144, 58182}, {4834, 58146, 58181}, {4834, 58152, 50512}, {4834, 58171, 58174}, {4879, 6005, 4378}, {8656, 58176, 58145}, {48338, 58169, 58159}, {50509, 58161, 1960}, {50509, 58182, 4834}, {58140, 58156, 58151}, {58148, 58172, 58180}, {58149, 58177, 58143}, {58154, 58178, 58139}, {58156, 58175, 58140}, {58158, 58170, 58141}, {58158, 58179, 8643}, {58160, 58174, 58150}, {58163, 58169, 58146}, {58163, 58182, 58161}


X(58166) = X(8)X(48043)∩X(187)X(237)

Barycentrics    a^2*(b-c)*(a-5*(b+c)) : :
X(58166) = -X[8]+2*X[48043], -2*X[661]+X[4814], -4*X[2516]+3*X[50499], -X[4041]+2*X[50508], -3*X[4105]+4*X[53249], -2*X[4162]+X[50523], -X[4474]+2*X[48080], -X[4498]+2*X[48336], -X[4543]+2*X[47764], -3*X[4724]+2*X[21385], -X[4729]+2*X[48099], -2*X[4730]+3*X[4893] and many others

X(58166) lies on these lines: {8, 48043}, {187, 237}, {513, 4895}, {661, 4814}, {2516, 50499}, {3309, 48122}, {3667, 48298}, {3887, 48023}, {3900, 4822}, {4041, 50508}, {4083, 47929}, {4105, 53249}, {4162, 50523}, {4382, 29188}, {4449, 6005}, {4474, 48080}, {4498, 48336}, {4543, 47764}, {4724, 21385}, {4729, 48099}, {4730, 4893}, {4761, 47832}, {4778, 48304}, {4807, 47838}, {4879, 48144}, {4959, 8678}, {4979, 48327}, {6006, 21222}, {7659, 14413}, {12073, 49279}, {14077, 48021}, {14432, 48069}, {17072, 27138}, {21302, 26798}, {27013, 45316}, {47935, 48329}, {47976, 48345}, {48118, 49276}, {48141, 48291}, {48142, 48339}, {48295, 48579}, {48322, 50526}, {48333, 48341}

X(58166) = midpoint of X(i) and X(j) for these {i,j}: {4775, 58169}, {48338, 58168}, {58165, 58167}
X(58166) = reflection of X(i) in X(j) for these {i,j}: {4041, 50508}, {4449, 48337}, {4474, 48080}, {4498, 48336}, {4543, 47764}, {4724, 48352}, {4729, 48099}, {4775, 58164}, {4814, 661}, {4834, 58160}, {4979, 48327}, {47912, 4822}, {47929, 48367}, {47935, 48329}, {47976, 48345}, {48118, 49276}, {48141, 48291}, {48142, 48339}, {48144, 4879}, {48338, 58165}, {48341, 48333}, {50509, 663}, {50523, 4162}, {50526, 48322}, {649, 4775}, {663, 48338}, {667, 58163}, {58140, 58162}, {58168, 58167}, {58170, 649}, {58171, 50512}, {58172, 667}, {58173, 1960}, {58174, 58156}, {58175, 58158}, {58176, 58159}, {58178, 58161}, {8, 48043}
X(58166) = isogonal conjugate of X(58133)
X(58166) = perspector of circumconic {{A, B, C, X(6), X(16676)}}
X(58166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58133}, {75, 28170}
X(58166) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58133}, {206, 28170}
X(58166) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28170, 6}
X(58166)= pole of line {5919, 21746} with respect to the incircle
X(58166)= pole of line {5919, 13476} with respect to the DeLongchamps ellipse
X(58166)= pole of line {99, 28170} with respect to the Stammler hyperbola
X(58166)= pole of line {194, 16815} with respect to the Steiner circumellipse
X(58166)= pole of line {39, 31197} with respect to the Steiner inellipse
X(58166)= pole of line {670, 58133} with respect to the Wallace hyperbola
X(58166) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(512), X(28169)}}, {{A, B, C, X(513), X(8656)}}, {{A, B, C, X(649), X(47777)}}, {{A, B, C, X(2223), X(18421)}}, {{A, B, C, X(3230), X(16676)}}, {{A, B, C, X(23345), X(58136)}}, {{A, B, C, X(43924), X(58139)}}
X(58166) = barycentric product X(i)*X(j) for these (i, j): {1, 47777}, {16676, 513}, {18421, 650}, {28169, 6}, {53620, 649}
X(58166) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58133}, {32, 28170}, {16676, 668}, {18421, 4554}, {28169, 76}, {47777, 75}, {53620, 1978}
X(58166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58173}, {512, 50512, 58171}, {512, 58156, 58174}, {512, 58158, 58175}, {512, 58160, 4834}, {512, 58161, 58178}, {512, 58162, 58140}, {512, 58163, 667}, {512, 58164, 4775}, {512, 58167, 58168}, {512, 663, 50509}, {512, 667, 58172}, {649, 1960, 58136}, {663, 58140, 58153}, {667, 4834, 58147}, {1960, 58136, 8656}, {1960, 58173, 649}, {1960, 58177, 58141}, {3900, 4822, 47912}, {4083, 48367, 47929}, {4775, 4834, 58157}, {4775, 58151, 58159}, {4775, 58157, 58160}, {4775, 58158, 58161}, {4775, 58164, 48338}, {4775, 58165, 58164}, {4775, 58167, 58169}, {4775, 58169, 512}, {4775, 58171, 58151}, {4775, 58173, 1960}, {4834, 58157, 58139}, {4834, 58160, 8643}, {4834, 8643, 58143}, {29350, 48352, 4724}, {48338, 58161, 58163}, {48338, 58169, 58170}, {50509, 58140, 58180}, {50509, 58162, 663}, {50512, 58159, 58154}, {50512, 58171, 58176}, {58141, 58173, 58177}, {58144, 58156, 58148}, {58150, 58181, 58142}, {58154, 58176, 50512}, {58155, 58179, 58138}, {58156, 58174, 58144}, {58163, 58175, 58158}, {58164, 58170, 58162}


X(58167) = X(187)X(237)∩X(3251)X(50515)

Barycentrics    a^2*(b-c)*(a-6*(b+c)) : :
X(58167) = -3*X[3251]+2*X[50515], -X[4378]+2*X[48337], -X[4730]+2*X[50508], -X[4814]+2*X[48053], -3*X[4825]+4*X[48005], -3*X[4879]+2*X[48343]

X(58167) lies on these lines: {187, 237}, {3251, 50515}, {4378, 48337}, {4730, 50508}, {4814, 48053}, {4825, 48005}, {4879, 48343}, {6005, 48323}, {29350, 48351}

X(58167) = midpoint of X(i) and X(j) for these {i,j}: {58165, 58169}, {58166, 58168}
X(58167) = reflection of X(i) in X(j) for these {i,j}: {4378, 48337}, {4730, 50508}, {4775, 58165}, {4814, 48053}, {4834, 4775}, {50509, 58160}, {649, 58163}, {663, 58164}, {667, 48338}, {58165, 58166}, {58169, 58168}, {58170, 50512}, {58171, 667}, {58172, 1960}, {58173, 663}, {58174, 58158}, {58181, 58162}
X(58167) = perspector of circumconic {{A, B, C, X(6), X(16677)}}
X(58167)= pole of line {21746, 31792} with respect to the incircle
X(58167)= pole of line {13476, 31792} with respect to the DeLongchamps ellipse
X(58167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58149)}}, {{A, B, C, X(3230), X(16677)}}
X(58167) = barycentric product X(i)*X(j) for these (i, j): {16677, 513}
X(58167) = barycentric quotient X(i)/X(j) for these (i, j): {16677, 668}
X(58167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58172}, {512, 4775, 4834}, {512, 50512, 58170}, {512, 58158, 58174}, {512, 58160, 50509}, {512, 58163, 649}, {512, 58165, 4775}, {512, 58166, 58165}, {512, 58168, 58169}, {512, 663, 58173}, {512, 667, 58171}, {649, 58159, 58152}, {649, 663, 58149}, {663, 50509, 58142}, {663, 58176, 58139}, {667, 58157, 58153}, {667, 58159, 58156}, {667, 58165, 48338}, {667, 58181, 58143}, {1960, 58143, 667}, {1960, 58172, 58181}, {4775, 4834, 58155}, {4775, 58144, 663}, {4775, 58152, 58159}, {4775, 58173, 58151}, {4834, 58151, 58144}, {4834, 58155, 58141}, {8643, 58175, 58146}, {48338, 50509, 58160}, {50509, 58142, 58179}, {50509, 58154, 58145}, {50512, 58161, 58157}, {58145, 58160, 58154}, {58149, 58164, 58163}, {58158, 58174, 58140}, {58161, 58170, 50512}, {58162, 58172, 1960}, {58165, 58169, 512}


X(58168) = X(187)X(237)∩X(657)X(4826)

Barycentrics    a^2*(b-c)*(a-7*(b+c)) : :
X(58168) = -2*X[4162]+X[4979], -3*X[4498]+4*X[48065], -2*X[4546]+3*X[47764], -2*X[4729]+3*X[4893], -X[4814]+2*X[4983], -3*X[4822]+2*X[47956], -2*X[21302]+3*X[31147], -3*X[48144]+4*X[48287], -2*X[48322]+X[50525], -4*X[48336]+3*X[48572], -8*X[48395]+9*X[53584]

X(58168) lies on these lines: {187, 237}, {657, 4826}, {3309, 48116}, {3887, 48121}, {3900, 4813}, {4162, 4979}, {4498, 48065}, {4546, 47764}, {4729, 4893}, {4814, 4983}, {4822, 47956}, {4843, 50482}, {6005, 48282}, {8710, 49284}, {21302, 31147}, {29350, 47970}, {48144, 48287}, {48322, 50525}, {48336, 48572}, {48395, 53584}

X(58168) = midpoint of X(i) and X(j) for these {i,j}: {58167, 58169}
X(58168) = reflection of X(i) in X(j) for these {i,j}: {4498, 48352}, {4729, 50508}, {4814, 4983}, {4834, 58163}, {4979, 4162}, {48144, 48337}, {48338, 58166}, {50509, 4775}, {50525, 48322}, {649, 48338}, {663, 58165}, {667, 58164}, {58166, 58167}, {58170, 667}, {58171, 1960}, {58172, 663}, {58173, 58160}, {58176, 58162}
X(58168)= pole of line {194, 16832} with respect to the Steiner circumellipse
X(58168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58171}, {512, 4775, 50509}, {512, 58160, 58173}, {512, 58163, 4834}, {512, 58164, 667}, {512, 58166, 48338}, {512, 58167, 58166}, {512, 663, 58172}, {512, 667, 58170}, {649, 48338, 58161}, {649, 58161, 58154}, {649, 663, 58148}, {663, 4834, 58138}, {663, 50509, 50512}, {663, 58166, 58165}, {663, 58170, 58180}, {1960, 58171, 58178}, {1960, 58178, 58142}, {4729, 50508, 4893}, {4775, 50509, 8643}, {4775, 50512, 663}, {4775, 58181, 58156}, {4834, 58138, 649}, {4834, 58165, 58163}, {50509, 58136, 58181}, {50509, 58177, 58176}, {50512, 58174, 58177}, {58144, 58158, 58153}, {58152, 58173, 58182}, {58152, 58182, 58140}, {58155, 58175, 58143}, {58156, 58181, 58136}, {58159, 58179, 8656}, {58160, 58182, 58152}, {58164, 58177, 4775}, {58165, 58174, 58162}, {58166, 58170, 58164}, {58167, 58169, 512}, {58170, 58180, 58174}


X(58169) = X(187)X(237)∩X(661)X(4825)

Barycentrics    a^2*(b-c)*(a-8*(b+c)) : :
X(58169) = -4*X[661]+3*X[4825], -3*X[3251]+2*X[4790], -2*X[21385]+3*X[48351], -10*X[26798]+9*X[31149], -2*X[48320]+3*X[48333], -3*X[48337]+2*X[48344]

X(58169) lies on circumconic {{A, B, C, X(3009), X(51066)}} and these lines: {187, 237}, {513, 50767}, {661, 4825}, {3251, 4790}, {6005, 21343}, {21385, 48351}, {26798, 31149}, {48320, 48333}, {48337, 48344}

X(58169) = reflection of X(i) in X(j) for these {i,j}: {4775, 58166}, {4834, 48338}, {50509, 58163}, {649, 58164}, {667, 58165}, {58165, 58167}, {58167, 58168}, {58170, 1960}, {58171, 663}, {58172, 58160}, {58173, 4775}
X(58169) = barycentric product X(i)*X(j) for these (i, j): {51066, 649}
X(58169) = barycentric quotient X(i)/X(j) for these (i, j): {51066, 1978}
X(58169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58170}, {512, 58160, 58172}, {512, 58163, 50509}, {512, 58164, 649}, {512, 58168, 58167}, {512, 663, 58171}, {649, 58158, 58151}, {649, 58166, 58164}, {1960, 4775, 58159}, {1960, 48338, 4775}, {1960, 58139, 58148}, {1960, 58170, 4834}, {1960, 58175, 58145}, {4775, 4834, 1960}, {4775, 58141, 663}, {4775, 58151, 58158}, {4775, 58166, 58165}, {4775, 58167, 58166}, {4775, 58171, 58141}, {4775, 58173, 667}, {4834, 58145, 58181}, {4834, 58148, 58146}, {4834, 58170, 58173}, {8656, 58172, 58177}, {50509, 58163, 58155}, {58141, 58171, 58175}, {58146, 58165, 58163}, {58151, 58158, 58157}, {58159, 58165, 48338}, {58160, 58172, 58144}, {58160, 58177, 8656}, {58161, 58179, 58152}


X(58170) = X(187)X(237)∩X(834)X(2334)

Barycentrics    a^2*(b-c)*(a+7*(b+c)) : :
X(58170) = -4*X[2516]+3*X[50508], -3*X[4041]+2*X[48026], -2*X[4729]+X[47912], -2*X[4730]+X[4813], -4*X[4770]+3*X[48544], -3*X[4784]+2*X[48344], -2*X[4790]+X[4895], -X[4822]+2*X[50499], -X[4959]+2*X[50523], -6*X[17072]+5*X[26798], -2*X[21343]+3*X[48144], -X[48121]+2*X[50355] and many others

X(58170) lies on these lines: {187, 237}, {513, 4814}, {834, 2334}, {1499, 48106}, {2516, 50508}, {3900, 50526}, {4041, 48026}, {4729, 47912}, {4730, 4813}, {4770, 48544}, {4784, 48344}, {4790, 4895}, {4822, 50499}, {4959, 50523}, {6005, 21385}, {17072, 26798}, {21343, 48144}, {29350, 48320}, {48121, 50355}, {48291, 48577}

X(58170) = reflection of X(i) in X(j) for these {i,j}: {4775, 58175}, {4813, 4730}, {4822, 50499}, {4895, 4790}, {4959, 50523}, {47912, 4729}, {48121, 50355}, {48338, 4834}, {50509, 58172}, {649, 58173}, {663, 50509}, {667, 58174}, {58162, 58176}, {58164, 58177}, {58165, 58179}, {58166, 649}, {58167, 50512}, {58168, 667}, {58169, 1960}, {58172, 58171}
X(58170)= pole of line {194, 29578} with respect to the Steiner circumellipse
X(58170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(58136)}}, {{A, B, C, X(902), X(2334)}}, {{A, B, C, X(23345), X(58140)}}, {{A, B, C, X(43924), X(58141)}}, {{A, B, C, X(50344), X(58166)}}
X(58170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58169}, {512, 50512, 58167}, {512, 58171, 58172}, {512, 58172, 50509}, {512, 58174, 667}, {512, 58175, 4775}, {512, 58176, 58162}, {512, 58177, 58164}, {512, 58179, 58165}, {512, 667, 58168}, {649, 4775, 8656}, {649, 58136, 58143}, {649, 58172, 58173}, {649, 663, 58136}, {663, 50509, 58178}, {1960, 4834, 649}, {1960, 58169, 48338}, {4775, 58173, 58175}, {4775, 8656, 663}, {4834, 48338, 58140}, {4834, 58159, 58145}, {4834, 58169, 1960}, {48338, 58148, 58159}, {48338, 58169, 58166}, {50509, 58140, 4834}, {50509, 58162, 58180}, {50509, 58180, 58176}, {50512, 58161, 58153}, {50512, 58167, 58161}, {58141, 58158, 8643}, {58141, 58165, 58158}, {58144, 58163, 58154}, {58145, 58159, 58148}, {58155, 58182, 58142}, {58158, 58179, 58141}, {58160, 58181, 58138}, {58164, 58174, 58177}, {58168, 58172, 58174}


X(58171) = X(187)X(237)∩X(513)X(53411)

Barycentrics    a^2*(b-c)*(a+6*(b+c)) : :
X(58171) = -2*X[4784]+X[48333], -3*X[4825]+2*X[47912], -5*X[4983]+6*X[47777], -25*X[31251]+24*X[45339]

X(58171) lies on these lines: {187, 237}, {513, 53411}, {4784, 48333}, {4825, 47912}, {4983, 47777}, {29350, 48323}, {31251, 45339}, {32478, 48106}

X(58171) = midpoint of X(i) and X(j) for these {i,j}: {58170, 58172}
X(58171) = reflection of X(i) in X(j) for these {i,j}: {4775, 4834}, {4834, 58173}, {4983, 50499}, {48333, 4784}, {48338, 58179}, {649, 58174}, {663, 58175}, {667, 50509}, {58159, 58176}, {58163, 58177}, {58164, 58182}, {58165, 649}, {58166, 50512}, {58167, 667}, {58168, 1960}, {58169, 663}, {58173, 58172}
X(58171) = perspector of circumconic {{A, B, C, X(6), X(16674)}}
X(58171)= pole of line {11010, 44421} with respect to the Bevan circle
X(58171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3230), X(16674)}}, {{A, B, C, X(50344), X(58165)}}
X(58171) = barycentric product X(i)*X(j) for these (i, j): {16674, 513}
X(58171) = barycentric quotient X(i)/X(j) for these (i, j): {16674, 668}
X(58171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58168}, {512, 4834, 4775}, {512, 50512, 58166}, {512, 58172, 58173}, {512, 58173, 4834}, {512, 58175, 663}, {512, 58177, 58163}, {512, 58179, 48338}, {512, 58182, 58164}, {512, 649, 58165}, {512, 663, 58169}, {512, 667, 58167}, {649, 48338, 58153}, {649, 58162, 58150}, {649, 58165, 58155}, {649, 663, 58137}, {667, 58146, 58142}, {667, 58159, 58154}, {667, 58173, 50509}, {667, 58181, 58145}, {1960, 58142, 667}, {1960, 58178, 58146}, {4775, 4834, 58144}, {4775, 58144, 58152}, {4834, 58141, 58181}, {4834, 58155, 649}, {48338, 50509, 58179}, {48338, 58143, 58156}, {48338, 58153, 58160}, {50512, 58159, 58151}, {50512, 58166, 58159}, {58137, 58174, 58175}, {58140, 58163, 58157}, {58156, 58179, 58143}, {58161, 58180, 58139}, {58163, 58177, 58140}, {58164, 58182, 8643}, {58166, 58176, 50512}, {58168, 58178, 1960}, {58169, 58175, 58141}, {58170, 58172, 512}


X(58172) = X(187)X(237)∩X(513)X(4729)

Barycentrics    a^2*(b-c)*(a+5*(b+c)) : :
X(58172) = -X[661]+2*X[50499], -3*X[1019]+2*X[48287], -X[1459]+2*X[50344], -3*X[1635]+2*X[50508], -3*X[1734]+2*X[48052], -3*X[2254]+2*X[48616], -2*X[4041]+X[4813], -3*X[4063]+2*X[48065], -2*X[4163]+X[49284], -X[4449]+2*X[4784], -4*X[4705]+3*X[48544], -2*X[4730]+X[47912] and many others

X(58172) lies on these lines: {187, 237}, {513, 4729}, {661, 50499}, {1019, 48287}, {1459, 50344}, {1499, 48300}, {1635, 50508}, {1734, 48052}, {2254, 48616}, {3309, 47935}, {3566, 48106}, {3887, 47976}, {3900, 4979}, {4041, 4813}, {4063, 48065}, {4083, 48341}, {4163, 49284}, {4449, 4784}, {4474, 29150}, {4498, 6005}, {4705, 48544}, {4730, 47912}, {4785, 21302}, {4790, 48322}, {4822, 4893}, {4843, 48275}, {4895, 50515}, {4961, 47724}, {6367, 53585}, {7659, 48334}, {8678, 50525}, {14077, 48149}, {17072, 31147}, {17166, 48577}, {26853, 28470}, {29200, 48118}, {29350, 48144}, {30835, 47836}, {31207, 47840}, {31291, 48016}, {47828, 48123}, {48011, 48352}, {48023, 50355}, {48064, 48337}, {48129, 48244}, {48279, 48579}

X(58172) = midpoint of X(i) and X(j) for these {i,j}: {50509, 58170}, {58171, 58173}
X(58172) = reflection of X(i) in X(j) for these {i,j}: {1459, 50344}, {31291, 48016}, {4449, 4784}, {4775, 58179}, {4813, 4041}, {4822, 50501}, {4834, 58174}, {4895, 50515}, {47912, 4730}, {48023, 50355}, {48121, 1734}, {48322, 4790}, {48334, 7659}, {48337, 48064}, {48338, 649}, {48352, 48011}, {48367, 4063}, {49284, 4163}, {50509, 58173}, {649, 50509}, {661, 50499}, {663, 4834}, {667, 58175}, {58160, 58177}, {58161, 58178}, {58162, 58181}, {58163, 58182}, {58164, 58145}, {58165, 50512}, {58166, 667}, {58167, 1960}, {58168, 663}, {58169, 58160}, {58170, 58171}, {8643, 58176}
X(58172) = perspector of circumconic {{A, B, C, X(6), X(16673)}}
X(58172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28156}
X(58172) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28156}
X(58172) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28156, 6}
X(58172)= pole of line {99, 28156} with respect to the Stammler hyperbola
X(58172)= pole of line {194, 16831} with respect to the Steiner circumellipse
X(58172)= pole of line {20979, 48341} with respect to the Yff parabola
X(58172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28155)}}, {{A, B, C, X(513), X(58138)}}, {{A, B, C, X(3009), X(46933)}}, {{A, B, C, X(3230), X(16673)}}, {{A, B, C, X(48338), X(50344)}}
X(58172) = barycentric product X(i)*X(j) for these (i, j): {16673, 513}, {28155, 6}, {46933, 649}
X(58172) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28156}, {16673, 668}, {28155, 76}, {46933, 1978}
X(58172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58167}, {512, 50512, 58165}, {512, 58145, 58164}, {512, 58160, 58169}, {512, 58171, 58170}, {512, 58174, 4834}, {512, 58175, 667}, {512, 58176, 8643}, {512, 58177, 58160}, {512, 58178, 58161}, {512, 58179, 4775}, {512, 58182, 58163}, {512, 649, 48338}, {512, 663, 58168}, {512, 667, 58166}, {649, 8643, 58142}, {1960, 58167, 58162}, {1960, 58181, 58143}, {4775, 4834, 58146}, {4775, 58140, 58154}, {4775, 58146, 58150}, {4775, 58150, 663}, {4775, 58179, 58140}, {4822, 50501, 4893}, {4834, 50512, 58180}, {4834, 58146, 58179}, {4834, 58165, 50512}, {4834, 58168, 58138}, {4834, 58173, 58174}, {4834, 58174, 50509}, {4834, 58182, 58178}, {48338, 58176, 649}, {50509, 58170, 512}, {50509, 58178, 58175}, {58139, 58159, 58153}, {58143, 58162, 1960}, {58144, 58160, 8656}, {58145, 58155, 58136}, {58145, 58164, 58155}, {58160, 58177, 58144}, {58163, 58175, 58182}, {58165, 58180, 58148}, {58168, 58174, 58176}


X(58173) = X(187)X(237)∩X(513)X(3245)

Barycentrics    a^2*(b-c)*(a+4*(b+c)) : :
X(58173) = -X[764]+2*X[7659], -2*X[1019]+X[48333], -4*X[2516]+3*X[48099], -3*X[4041]+X[48019], -2*X[4063]+X[48351], -2*X[4170]+3*X[47875], -X[4378]+2*X[4784], -3*X[4705]+2*X[48026], -2*X[4770]+X[4813], -2*X[4782]+X[48352], X[4814]+X[50525], -X[4822]+2*X[50504] and many others

X(58173) lies on these lines: {187, 237}, {513, 3245}, {514, 50339}, {690, 48106}, {764, 7659}, {1019, 48333}, {1499, 49279}, {2516, 48099}, {4041, 48019}, {4063, 48351}, {4083, 48320}, {4170, 47875}, {4378, 4784}, {4380, 29188}, {4705, 48026}, {4761, 29328}, {4770, 4813}, {4774, 29178}, {4782, 48352}, {4814, 50525}, {4822, 50504}, {4879, 48064}, {4932, 48291}, {4983, 50501}, {4992, 48573}, {6004, 47935}, {6005, 48623}, {20295, 31149}, {21260, 26798}, {22037, 48188}, {27138, 31251}, {31147, 53571}, {32478, 48300}, {47888, 48123}, {48011, 48336}, {49289, 50352}

X(58173) = midpoint of X(i) and X(j) for these {i,j}: {4814, 50525}, {4834, 58171}, {50509, 58172}, {649, 58170}
X(58173) = reflection of X(i) in X(j) for these {i,j}: {1960, 58177}, {4378, 4784}, {4705, 50499}, {4775, 649}, {4813, 4770}, {4822, 50504}, {4834, 50509}, {4879, 48064}, {4983, 50501}, {48291, 4932}, {48333, 1019}, {48336, 48011}, {48338, 50512}, {48351, 4063}, {48352, 4782}, {50509, 58174}, {649, 58175}, {663, 58179}, {667, 4834}, {58144, 58176}, {58155, 58178}, {58159, 58181}, {58160, 58182}, {58162, 58147}, {58163, 58145}, {58164, 58139}, {58165, 667}, {58166, 1960}, {58167, 663}, {58168, 58160}, {58169, 4775}, {58171, 58172}, {764, 7659}
X(58173) = isogonal conjugate of X(58134)
X(58173) = perspector of circumconic {{A, B, C, X(6), X(16672)}}
X(58173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58134}, {75, 28152}
X(58173) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58134}, {206, 28152}
X(58173) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28152, 6}
X(58173)= pole of line {5119, 44421} with respect to the Bevan circle
X(58173)= pole of line {6, 5010} with respect to the circumcircle
X(58173)= pole of line {5049, 21746} with respect to the incircle
X(58173)= pole of line {12329, 44456} with respect to the Stammler circle
X(58173)= pole of line {6, 5010} with respect to the Brocard inellipse
X(58173)= pole of line {5049, 13476} with respect to the DeLongchamps ellipse
X(58173)= pole of line {99, 28152} with respect to the Stammler hyperbola
X(58173)= pole of line {194, 29595} with respect to the Steiner circumellipse
X(58173)= pole of line {20979, 48320} with respect to the Yff parabola
X(58173)= pole of line {670, 58134} with respect to the Wallace hyperbola
X(58173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28151)}}, {{A, B, C, X(513), X(58139)}}, {{A, B, C, X(649), X(48544)}}, {{A, B, C, X(3009), X(19875)}}, {{A, B, C, X(3230), X(16672)}}, {{A, B, C, X(4775), X(50344)}}, {{A, B, C, X(23345), X(58141)}}
X(58173) = barycentric product X(i)*X(j) for these (i, j): {1, 48544}, {16672, 513}, {19875, 649}, {28151, 6}
X(58173) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58134}, {32, 28152}, {16672, 668}, {19875, 1978}, {28151, 76}, {48544, 75}
X(58173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58166}, {512, 50509, 4834}, {512, 50512, 48338}, {512, 58145, 58163}, {512, 58147, 58162}, {512, 58160, 58168}, {512, 58172, 58171}, {512, 58174, 50509}, {512, 58182, 58160}, {512, 663, 58167}, {649, 50509, 58175}, {649, 58169, 58157}, {649, 58172, 58170}, {663, 50509, 58176}, {663, 58142, 58149}, {1960, 58141, 667}, {1960, 58166, 4775}, {1960, 58175, 58177}, {1960, 58177, 649}, {4775, 58141, 1960}, {4775, 58144, 58151}, {4775, 58151, 663}, {4775, 58155, 58158}, {4775, 58157, 58159}, {4775, 58167, 58164}, {4775, 58169, 58165}, {4784, 29350, 4378}, {4834, 58144, 58179}, {4834, 58152, 58182}, {4834, 58165, 58146}, {4834, 58167, 58144}, {4834, 58170, 58169}, {4834, 58171, 512}, {8643, 58180, 58145}, {48338, 50512, 58155}, {48338, 58178, 50512}, {50512, 58158, 8656}, {58138, 58162, 58156}, {58140, 58160, 58152}, {58143, 58161, 58150}, {58144, 58151, 58139}, {58145, 58163, 8643}, {58147, 58156, 58138}, {58158, 58175, 58178}, {58160, 58182, 58140}, {58166, 58177, 58141}, {58169, 58175, 58181}


X(58174) = X(187)X(237)∩X(1019)X(48296)

Barycentrics    a^2*(b-c)*(2*a+7*(b+c)) : :
X(58174) = -2*X[1019]+X[48296], -3*X[4770]+2*X[47956], -3*X[4784]+X[48282], -6*X[47777]+5*X[48053], -2*X[48064]+X[48347], -X[48586]+3*X[50355], -3*X[50344]+X[53314]

X(58174) lies on circumconic {{A, B, C, X(50344), X(58160)}} and these lines: {187, 237}, {1019, 48296}, {4770, 47956}, {4784, 48282}, {47777, 48053}, {48064, 48347}, {48586, 50355}, {50344, 53314}

X(58174) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58172}, {50509, 58173}, {649, 58171}, {667, 58170}
X(58174) = reflection of X(i) in X(j) for these {i,j}: {1960, 58179}, {4770, 50499}, {4775, 58145}, {48053, 50501}, {48296, 1019}, {48338, 58139}, {48347, 48064}, {50512, 4834}, {663, 58182}, {667, 58177}, {58149, 58178}, {58160, 649}, {58163, 50512}, {58164, 667}, {58165, 58150}, {58166, 58156}, {58167, 58158}, {58175, 50509}, {58179, 58175}
X(58174)= pole of line {43146, 44456} with respect to the Stammler circle
X(58174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 50512}, {512, 50509, 58175}, {512, 50512, 58163}, {512, 58139, 48338}, {512, 58145, 4775}, {512, 58156, 58166}, {512, 58158, 58167}, {512, 58177, 667}, {512, 58182, 663}, {512, 649, 58160}, {512, 667, 58164}, {663, 4834, 58182}, {1960, 58179, 58147}, {4775, 58145, 58149}, {4775, 58178, 58145}, {4834, 50512, 58179}, {4834, 58152, 58181}, {4834, 58165, 649}, {4834, 58171, 58165}, {4834, 58172, 512}, {4834, 58173, 58172}, {4834, 58180, 58177}, {48338, 58181, 58139}, {50509, 58170, 58176}, {50509, 58172, 4834}, {50512, 58149, 58138}, {50512, 58150, 58137}, {50512, 58160, 58150}, {50512, 58163, 1960}, {58140, 58167, 58158}, {58144, 58166, 58156}, {58160, 58164, 58162}, {58168, 58172, 58170}, {58168, 58176, 58180}, {58170, 58180, 58168}


X(58175) = X(187)X(237)∩X(513)X(4770)

Barycentrics    a^2*(b-c)*(2*a+5*(b+c)) : :
X(58175) = -3*X[1019]+X[21343], -4*X[2516]+3*X[50507], -3*X[4705]+X[48019], X[4730]+X[4979], -X[20295]+2*X[53571], -5*X[26798]+9*X[47836], -7*X[27138]+9*X[47837], -3*X[47763]+X[48291], X[47976]+X[50355], -3*X[48005]+2*X[48026], -X[48053]+2*X[50504], -2*X[48064]+X[48328]

X(58175) lies on these lines: {187, 237}, {513, 4770}, {891, 4784}, {1019, 21343}, {1126, 6371}, {2515, 9313}, {2516, 50507}, {3906, 48106}, {4705, 48019}, {4730, 4979}, {4761, 29340}, {6372, 21385}, {20295, 53571}, {26798, 47836}, {27138, 47837}, {29350, 48296}, {47763, 48291}, {47976, 50355}, {48005, 48026}, {48053, 50504}, {48064, 48328}

X(58175) = midpoint of X(i) and X(j) for these {i,j}: {4730, 4979}, {4775, 58170}, {4834, 50509}, {47976, 50355}, {649, 58173}, {663, 58171}, {667, 58172}, {58174, 58179}
X(58175) = reflection of X(i) in X(j) for these {i,j}: {1960, 649}, {20295, 53571}, {4775, 58139}, {48005, 50501}, {48053, 50504}, {48328, 48064}, {48338, 58150}, {50512, 58179}, {649, 58177}, {663, 58145}, {667, 58182}, {58137, 58181}, {58147, 58178}, {58160, 50512}, {58163, 667}, {58164, 1960}, {58165, 58156}, {58166, 58158}, {58174, 50509}, {58179, 4834}
X(58175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28180}
X(58175) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28180}
X(58175) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28180, 6}, {41434, 1015}
X(58175)= pole of line {31393, 44421} with respect to the Bevan circle
X(58175)= pole of line {6, 41451} with respect to the circumcircle
X(58175)= pole of line {6, 41451} with respect to the Brocard inellipse
X(58175)= pole of line {99, 28180} with respect to the Stammler hyperbola
X(58175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28179)}}, {{A, B, C, X(513), X(58141)}}, {{A, B, C, X(902), X(1126)}}, {{A, B, C, X(1960), X(50344)}}, {{A, B, C, X(3009), X(3828)}}, {{A, B, C, X(23345), X(50512)}}
X(58175) = barycentric product X(i)*X(j) for these (i, j): {3828, 649}, {28179, 6}
X(58175) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28180}, {3828, 1978}, {28179, 76}
X(58175) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58164}, {512, 4834, 58179}, {512, 50509, 58174}, {512, 58139, 4775}, {512, 58145, 663}, {512, 58150, 48338}, {512, 58156, 58165}, {512, 58158, 58166}, {512, 58178, 58147}, {512, 58181, 58137}, {512, 58182, 667}, {512, 667, 58163}, {649, 4775, 58139}, {649, 4834, 58177}, {649, 50509, 58173}, {649, 58141, 58145}, {667, 4834, 58178}, {1960, 58163, 58158}, {1960, 58164, 58160}, {1960, 58179, 649}, {4775, 58139, 1960}, {4775, 58170, 512}, {4775, 58173, 58170}, {4834, 58171, 58181}, {4834, 58172, 58182}, {4834, 58174, 50512}, {48338, 58136, 58157}, {48338, 58144, 58150}, {48338, 58180, 58144}, {50509, 58176, 4834}, {50509, 58178, 58172}, {50512, 58160, 58149}, {58137, 58174, 58171}, {58140, 58165, 58156}, {58141, 58171, 58169}, {58142, 58162, 58152}, {58143, 58168, 58155}, {58144, 58157, 58136}, {58146, 58167, 8643}, {58169, 58181, 58141}


X(58176) = X(187)X(237)∩X(4729)X(4790)

Barycentrics    a^2*(b-c)*(3*a+7*(b+c)) : :
X(58176) = 2*X[4041]+X[50525], -5*X[4063]+2*X[48623], X[4729]+2*X[4790], 2*X[4730]+X[50526], -X[4813]+4*X[50501], X[4979]+2*X[50499], X[21302]+2*X[48016], -X[31147]+2*X[47836], -4*X[48011]+X[48367]

X(58176) lies on circumconic {{A, B, C, X(3009), X(46932)}} and these lines: {187, 237}, {4041, 50525}, {4063, 48623}, {4729, 4790}, {4730, 50526}, {4784, 29226}, {4813, 50501}, {4979, 50499}, {6005, 48572}, {9002, 50344}, {21302, 48016}, {31147, 47836}, {48011, 48367}

X(58176) = midpoint of X(i) and X(j) for these {i,j}: {50509, 58178}, {58144, 58173}, {58159, 58171}, {58162, 58170}, {8643, 58172}
X(58176) = reflection of X(i) in X(j) for these {i,j}: {31147, 47836}, {4775, 58137}, {48338, 8643}, {649, 58178}, {663, 58144}, {58137, 58182}, {58140, 58181}, {58144, 58179}, {58155, 58147}, {58159, 50512}, {58161, 58140}, {58162, 667}, {58166, 58159}, {58168, 58162}, {58178, 4834}, {8643, 649}
X(58176)= pole of line {37556, 44421} with respect to the Bevan circle
X(58176)= pole of line {194, 29597} with respect to the Steiner circumellipse
X(58176) = barycentric product X(i)*X(j) for these (i, j): {46932, 649}
X(58176) = barycentric quotient X(i)/X(j) for these (i, j): {46932, 1978}
X(58176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58178}, {512, 50512, 58159}, {512, 58137, 4775}, {512, 58140, 58161}, {512, 58144, 663}, {512, 58147, 58155}, {512, 58179, 58144}, {512, 58181, 58140}, {512, 58182, 58137}, {512, 649, 8643}, {512, 667, 58162}, {512, 8643, 48338}, {649, 48338, 58138}, {649, 58154, 50512}, {649, 663, 58142}, {663, 50509, 58173}, {663, 58140, 58149}, {667, 4834, 58177}, {4775, 58143, 58148}, {4775, 58182, 58143}, {4834, 50509, 649}, {4834, 58173, 58179}, {4834, 58174, 58180}, {4834, 58175, 50509}, {50509, 58170, 58174}, {50509, 58177, 58168}, {50509, 58178, 512}, {50509, 58180, 58170}, {50512, 58166, 58154}, {50512, 58171, 58166}, {58140, 58178, 58181}, {58141, 58163, 58153}, {58145, 58165, 8656}, {58146, 58160, 58136}, {58155, 58181, 58147}, {58168, 58174, 58172}, {58170, 58180, 667}, {58174, 58179, 58164}


X(58177) = X(187)X(237)∩X(4770)X(4979)

Barycentrics    a^2*(b-c)*(4*a+7*(b+c)) : :
X(58177) = X[4770]+X[4979], 3*X[4784]+X[21385], -5*X[26798]+9*X[47837], 3*X[30595]+X[48146], -3*X[48005]+X[48019], -X[48026]+3*X[50504], -3*X[48064]+X[48344]

X(58177) lies on these lines: {187, 237}, {4770, 4979}, {4784, 21385}, {4785, 53571}, {26798, 47837}, {30595, 48146}, {48005, 48019}, {48026, 50504}, {48064, 48344}

X(58177) = midpoint of X(i) and X(j) for these {i,j}: {1960, 58173}, {4770, 4979}, {4834, 58179}, {50509, 50512}, {649, 58175}, {667, 58174}, {58160, 58172}, {58163, 58171}, {58164, 58170}
X(58177) = reflection of X(i) in X(j) for these {i,j}: {58139, 649}, {58145, 58182}, {58150, 58145}, {58156, 50512}, {58158, 58139}, {58182, 58179}
X(58177) = perspector of circumconic {{A, B, C, X(6), X(39260)}}
X(58177) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3230), X(39260)}}, {{A, B, C, X(50344), X(58139)}}
X(58177) = barycentric product X(i)*X(j) for these (i, j): {39260, 513}
X(58177) = barycentric quotient X(i)/X(j) for these (i, j): {39260, 668}
X(58177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58156}, {512, 58145, 58150}, {512, 58179, 58182}, {512, 58182, 58145}, {512, 649, 58139}, {649, 4834, 58175}, {649, 50509, 4775}, {649, 58166, 58141}, {649, 8656, 58144}, {667, 4834, 58176}, {1960, 50512, 58136}, {1960, 58173, 512}, {1960, 58175, 58173}, {4775, 58136, 1960}, {4775, 58156, 58158}, {4775, 58168, 58164}, {4775, 58181, 649}, {4834, 58178, 58179}, {4834, 58180, 58174}, {4834, 58181, 50509}, {8656, 58172, 58169}, {48338, 58146, 58137}, {50509, 58181, 50512}, {50512, 58174, 58168}, {50512, 58179, 58181}, {58140, 58171, 58163}, {58141, 58173, 58166}, {58143, 58165, 58149}, {58144, 58169, 8656}, {58144, 58172, 58160}, {58164, 58174, 58170}, {58176, 58180, 667}


X(58178) = X(187)X(237)∩X(4041)X(4790)

Barycentrics    a^2*(b-c)*(3*a+5*(b+c)) : :
X(58178) = X[4041]+2*X[4790], -4*X[4063]+X[47929], -4*X[4394]+X[4822], -X[4449]+4*X[48064], X[4498]+2*X[4784], 2*X[4705]+X[50525], -X[4724]+4*X[48011], X[4729]+2*X[50515], -4*X[4782]+X[48367], -X[4813]+4*X[50504], -X[4814]+4*X[50499], -X[4959]+4*X[50517] and many others

X(58178) lies on these lines: {187, 237}, {4041, 4790}, {4063, 47929}, {4394, 4822}, {4449, 48064}, {4498, 4784}, {4705, 50525}, {4724, 48011}, {4729, 50515}, {4782, 48367}, {4785, 47836}, {4813, 50504}, {4814, 50499}, {4959, 50517}, {4979, 47912}, {9508, 48121}, {17072, 26853}, {21192, 47924}, {21301, 48016}, {28493, 47809}, {29226, 48144}, {29302, 48579}, {31147, 47837}, {45313, 47840}, {47832, 48566}, {47935, 48122}, {47948, 48624}, {47976, 48023}

X(58178) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58181}, {50509, 58140}, {649, 58176}, {58147, 58175}, {58149, 58174}, {58155, 58173}, {58161, 58172}
X(58178) = reflection of X(i) in X(j) for these {i,j}: {31147, 47837}, {4775, 58149}, {47832, 48566}, {47840, 45313}, {48338, 58155}, {50509, 58176}, {649, 58181}, {663, 58140}, {667, 58147}, {58140, 649}, {58147, 58182}, {58149, 58145}, {58155, 50512}, {58159, 58137}, {58161, 667}, {58162, 8643}, {58166, 58161}, {58176, 4834}, {58181, 58179}, {8643, 58144}
X(58178)= pole of line {194, 29580} with respect to the Steiner circumellipse
X(58178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28191)}}, {{A, B, C, X(513), X(58143)}}, {{A, B, C, X(3009), X(19877)}}, {{A, B, C, X(43924), X(58144)}}, {{A, B, C, X(50344), X(58140)}}
X(58178) = barycentric product X(i)*X(j) for these (i, j): {19877, 649}, {28191, 6}
X(58178) = barycentric quotient X(i)/X(j) for these (i, j): {19877, 1978}, {28191, 76}
X(58178) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58176}, {512, 50512, 58155}, {512, 58137, 58159}, {512, 58144, 8643}, {512, 58145, 58149}, {512, 58149, 4775}, {512, 58161, 58166}, {512, 58176, 50509}, {512, 58179, 58181}, {512, 58182, 58147}, {512, 649, 58140}, {512, 667, 58161}, {512, 8643, 58162}, {649, 48338, 50512}, {649, 58138, 58145}, {649, 58142, 58146}, {649, 58170, 58136}, {649, 58179, 58180}, {649, 663, 58143}, {649, 8643, 58144}, {663, 50509, 58170}, {667, 4834, 58175}, {1960, 58146, 58142}, {1960, 58171, 58168}, {4041, 4790, 50526}, {4775, 58138, 58153}, {4775, 58145, 58138}, {4775, 58153, 663}, {4834, 58179, 649}, {4834, 58181, 512}, {4834, 58182, 58172}, {4979, 50501, 47912}, {8656, 58166, 58158}, {47935, 50336, 48122}, {48338, 50512, 8656}, {50512, 58158, 667}, {50512, 58173, 48338}, {58139, 58165, 58154}, {58141, 58160, 58148}, {58142, 58168, 1960}, {58144, 58159, 58137}, {58158, 58175, 58173}, {58175, 58179, 58182}, {58177, 58179, 4834}


X(58179) = X(187)X(237)∩X(891)X(1019)

Barycentrics    a^2*(b-c)*(2*a+3*(b+c)) : :
X(58179) = -2*X[650]+X[48053], X[1491]+X[47976], -3*X[1635]+X[4983], X[2530]+X[47935], -X[4010]+3*X[48566], X[4063]+X[4784], -2*X[4367]+X[48296], X[4380]+X[50352], -2*X[4394]+X[50507], X[4490]+X[48110], X[4705]+X[4979], X[4730]+X[50523] and many others

X(58179) lies on these lines: {187, 237}, {513, 47987}, {514, 50021}, {650, 48053}, {838, 4507}, {891, 1019}, {1491, 47976}, {1635, 4983}, {2530, 47935}, {2533, 29340}, {4010, 48566}, {4063, 4784}, {4083, 48064}, {4367, 48296}, {4380, 50352}, {4394, 50507}, {4490, 48110}, {4491, 17990}, {4705, 4979}, {4707, 29184}, {4730, 50523}, {4761, 29182}, {4770, 4790}, {4782, 6005}, {4785, 21260}, {4897, 29354}, {4961, 48090}, {6367, 48276}, {7950, 48106}, {9508, 48059}, {10015, 29136}, {14422, 48348}, {17072, 48016}, {17940, 33803}, {20295, 47837}, {24719, 48573}, {26853, 47836}, {27013, 47839}, {29216, 48405}, {29252, 47890}, {29266, 48395}, {29350, 48328}, {31147, 31251}, {31288, 45313}, {32478, 48299}, {47762, 48273}, {47827, 48085}, {47888, 48121}, {48081, 48226}, {48086, 48244}, {48267, 48565}, {48279, 48568}, {50499, 50515}

X(58179) = midpoint of X(i) and X(j) for these {i,j}: {1491, 47976}, {1960, 58174}, {17072, 48016}, {2530, 47935}, {4063, 4784}, {4380, 50352}, {4490, 48110}, {4705, 4979}, {4730, 50523}, {4775, 58172}, {4790, 50501}, {48012, 48624}, {48338, 58171}, {50499, 50515}, {50512, 58175}, {649, 4834}, {663, 58173}, {667, 50509}, {58144, 58176}, {58165, 58170}, {58177, 58182}, {58178, 58181}
X(58179) = reflection of X(i) in X(j) for these {i,j}: {1960, 50512}, {4770, 50501}, {4775, 58150}, {4834, 58177}, {47994, 48003}, {48005, 50504}, {48053, 650}, {48059, 9508}, {48296, 4367}, {48338, 58156}, {50507, 4394}, {50512, 649}, {649, 58182}, {663, 58139}, {667, 58145}, {58137, 58147}, {58149, 58144}, {58160, 667}, {58163, 1960}, {58164, 663}, {58165, 58158}, {58174, 58175}, {58175, 4834}
X(58179) = perspector of circumconic {{A, B, C, X(6), X(3723)}}
X(58179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28176}
X(58179) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28176}, {51573, 668}
X(58179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1126, 1015}, {2308, 3122}, {28176, 6}
X(58179)= pole of line {3333, 44421} with respect to the Bevan circle
X(58179)= pole of line {6, 24047} with respect to the circumcircle
X(58179)= pole of line {21746, 50190} with respect to the incircle
X(58179)= pole of line {6, 24047} with respect to the Brocard inellipse
X(58179)= pole of line {13476, 50190} with respect to the DeLongchamps ellipse
X(58179)= pole of line {99, 28176} with respect to the Stammler hyperbola
X(58179)= pole of line {39, 29612} with respect to the Steiner inellipse
X(58179)= pole of line {20979, 48064} with respect to the Yff parabola
X(58179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28175)}}, {{A, B, C, X(513), X(58144)}}, {{A, B, C, X(649), X(48019)}}, {{A, B, C, X(3009), X(3634)}}, {{A, B, C, X(3230), X(3723)}}, {{A, B, C, X(3733), X(58145)}}, {{A, B, C, X(4980), X(8620)}}, {{A, B, C, X(50344), X(50512)}}
X(58179) = barycentric product X(i)*X(j) for these (i, j): {1, 48019}, {3634, 649}, {3723, 513}, {3982, 663}, {4060, 43924}, {4980, 667}, {28175, 6}
X(58179) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28176}, {3634, 1978}, {3723, 668}, {3982, 4572}, {4980, 6386}, {28175, 76}, {48019, 75}
X(58179) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 4834, 58175}, {512, 50512, 1960}, {512, 58139, 663}, {512, 58150, 4775}, {512, 58158, 58165}, {512, 58177, 4834}, {512, 663, 58164}, {513, 48003, 47994}, {513, 50504, 48005}, {649, 48338, 58143}, {649, 58140, 58146}, {649, 58170, 58141}, {649, 58180, 58181}, {649, 663, 58144}, {649, 667, 58145}, {667, 4775, 58154}, {667, 4834, 50509}, {667, 58144, 58142}, {1960, 50512, 58137}, {1960, 58147, 50512}, {1960, 58174, 512}, {4063, 4784, 6372}, {4775, 58140, 58150}, {4775, 58146, 58140}, {4834, 50512, 58174}, {4834, 58144, 58173}, {4834, 58146, 58172}, {4834, 58173, 58176}, {4834, 58178, 58177}, {4834, 58180, 58182}, {4834, 58181, 649}, {8656, 58168, 58159}, {48012, 48624, 513}, {48338, 50509, 58171}, {48338, 58143, 667}, {48338, 58156, 58160}, {50509, 58142, 58167}, {50509, 58143, 48338}, {50512, 58149, 58139}, {50512, 58164, 58149}, {50512, 58174, 58163}, {58136, 58161, 58152}, {58138, 58166, 58155}, {58141, 58165, 8643}, {58141, 58170, 58158}, {58143, 58171, 58156}, {58148, 58162, 58157}, {58152, 58169, 58161}, {58175, 58182, 58147}


X(58180) = X(187)X(237)∩X(4784)X(47929)

Barycentrics    a^2*(b-c)*(5*a+7*(b+c)) : :
X(58180) = 4*X[4784]+X[47929], 4*X[4790]+X[47912], X[4814]+4*X[50515], 3*X[4979]+2*X[47956], 3*X[47828]+2*X[47976], 3*X[47836]+2*X[48016], 3*X[47935]+2*X[48616], -X[47970]+6*X[48011], -6*X[48064]+X[48282], -X[48116]+6*X[50336], 4*X[50501]+X[50526], 4*X[50504]+X[50525]

X(58180) lies on these lines: {187, 237}, {4784, 47929}, {4790, 47912}, {4814, 50515}, {4979, 47956}, {47828, 47976}, {47836, 48016}, {47935, 48616}, {47970, 48011}, {48064, 48282}, {48116, 50336}, {50501, 50526}, {50504, 50525}

X(58180) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58146}, {8656, 50509}
X(58180) = reflection of X(i) in X(j) for these {i,j}: {48338, 58157}, {663, 58138}, {58138, 58146}, {58143, 649}, {58152, 50512}, {58154, 58141}, {8656, 58143}
X(58180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(43924), X(58145)}}, {{A, B, C, X(50344), X(58143)}}
X(58180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58152}, {512, 58141, 58154}, {512, 58143, 8656}, {512, 58157, 48338}, {512, 649, 58143}, {649, 48338, 58144}, {649, 50509, 58140}, {649, 58138, 58146}, {649, 58142, 58147}, {649, 58176, 667}, {649, 58179, 58178}, {649, 8643, 58145}, {663, 58136, 58150}, {663, 58168, 58162}, {663, 58170, 58168}, {4775, 58147, 58142}, {4834, 50512, 58172}, {4834, 58146, 512}, {4834, 58174, 58176}, {4834, 58181, 58182}, {4834, 58182, 649}, {48338, 58144, 58136}, {48338, 58150, 663}, {50509, 58140, 58166}, {50509, 58162, 58170}, {50512, 58152, 58138}, {50512, 58165, 58148}, {58139, 58171, 58161}, {58140, 58166, 58153}, {58145, 58173, 8643}, {58146, 58152, 50512}, {58148, 58172, 58165}, {58168, 58176, 58174}, {58170, 58176, 50509}, {58174, 58177, 4834}


X(58181) = X(187)X(237)∩X(4394)X(4983)

Barycentrics    a^2*(b-c)*(3*a+4*(b+c)) : :
X(58181) = -X[4378]+4*X[48064], -4*X[4394]+X[4983], X[4705]+2*X[4790], X[4730]+2*X[50515], 2*X[4770]+X[50526], -4*X[4782]+X[48351], X[4784]+2*X[48011], X[4979]+2*X[50504], 2*X[9508]+X[47976], -2*X[20295]+5*X[31251], 2*X[21260]+X[26853], -X[31149]+2*X[47836] and many others

X(58181) lies on these lines: {187, 237}, {1019, 29226}, {4063, 29198}, {4378, 48064}, {4394, 4983}, {4705, 4790}, {4730, 50515}, {4770, 50526}, {4782, 48351}, {4784, 48011}, {4785, 47837}, {4825, 8678}, {4961, 47833}, {4979, 50504}, {9508, 47976}, {20295, 31251}, {21260, 26853}, {29150, 48565}, {29328, 47875}, {31149, 47836}, {45313, 47839}, {48005, 50525}

X(58181) = midpoint of X(i) and X(j) for these {i,j}: {4834, 58144}, {649, 58178}, {58137, 58175}, {58140, 58176}, {58159, 58173}, {58162, 58172}, {8643, 50509}
X(58181) = reflection of X(i) in X(j) for these {i,j}: {31149, 47836}, {4775, 8643}, {4834, 58178}, {47839, 45313}, {47875, 48566}, {663, 58137}, {667, 58144}, {58137, 58145}, {58140, 58147}, {58144, 649}, {58155, 58140}, {58159, 667}, {58161, 58149}, {58162, 1960}, {58165, 58159}, {58167, 58162}, {58178, 58179}, {8643, 50512}
X(58181) = perspector of circumconic {{A, B, C, X(6), X(56037)}}
X(58181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 28200}
X(58181) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 28200}
X(58181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28200, 6}
X(58181)= pole of line {3338, 44421} with respect to the Bevan circle
X(58181)= pole of line {21746, 50191} with respect to the incircle
X(58181)= pole of line {13476, 50191} with respect to the DeLongchamps ellipse
X(58181)= pole of line {99, 28200} with respect to the Stammler hyperbola
X(58181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(28199)}}, {{A, B, C, X(513), X(58145)}}, {{A, B, C, X(50344), X(58144)}}
X(58181) = barycentric product X(i)*X(j) for these (i, j): {28199, 6}
X(58181) = barycentric quotient X(i)/X(j) for these (i, j): {32, 28200}, {28199, 76}
X(58181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 1960, 58162}, {512, 50512, 8643}, {512, 58137, 663}, {512, 58140, 58155}, {512, 58145, 58137}, {512, 58147, 58140}, {512, 58149, 58161}, {512, 58179, 58178}, {512, 649, 58144}, {512, 667, 58159}, {649, 50509, 50512}, {649, 58140, 58147}, {649, 58172, 58143}, {649, 58175, 58141}, {649, 58180, 58179}, {649, 663, 58145}, {649, 667, 58146}, {667, 58165, 58157}, {1960, 58172, 58167}, {4775, 4834, 50509}, {4775, 50512, 667}, {4834, 58141, 58171}, {4834, 58144, 512}, {4834, 58145, 58169}, {4834, 58146, 58165}, {4834, 58152, 58174}, {4834, 58171, 58175}, {29328, 48566, 47875}, {48338, 58139, 58152}, {50509, 50512, 4775}, {50509, 58136, 58168}, {50509, 58177, 4834}, {50512, 58156, 58136}, {50512, 58179, 58177}, {58136, 58168, 58156}, {58138, 58160, 58151}, {58138, 58170, 58160}, {58139, 58174, 48338}, {58140, 58161, 58149}, {58140, 58178, 58176}, {58142, 58166, 58150}, {58143, 58172, 1960}, {58169, 58175, 58173}, {58179, 58182, 649}


X(58182) = X(187)X(237)∩X(891)X(48064)

Barycentrics    a^2*(b-c)*(4*a+5*(b+c)) : :
X(58182) = -3*X[1635]+X[48053], -3*X[4782]+X[48065], 3*X[4784]+X[47970], 3*X[4790]+X[47956], X[4979]+X[48005], -3*X[9508]+X[48052], X[21260]+X[48016], X[26853]+3*X[47837], X[47967]+X[48074], X[47976]+X[48059], X[48030]+X[48624], -3*X[48194]+X[48602]

X(58182) lies on these lines: {187, 237}, {891, 48064}, {1635, 48053}, {4782, 48065}, {4784, 47970}, {4790, 47956}, {4979, 48005}, {6372, 48011}, {9508, 48052}, {21260, 48016}, {26853, 47837}, {47967, 48074}, {47976, 48059}, {48030, 48624}, {48194, 48602}

X(58182) = midpoint of X(i) and X(j) for these {i,j}: {1960, 50509}, {21260, 48016}, {4790, 50504}, {4834, 50512}, {4979, 48005}, {47967, 48074}, {47976, 48059}, {48030, 48624}, {649, 58179}, {663, 58174}, {667, 58175}, {58137, 58176}, {58145, 58177}, {58147, 58178}, {58160, 58173}, {58163, 58172}, {58164, 58171}
X(58182) = reflection of X(i) in X(j) for these {i,j}: {58139, 58145}, {58145, 649}, {58150, 50512}, {58156, 58139}, {58158, 667}, {58177, 58179}
X(58182) = perspector of circumconic {{A, B, C, X(6), X(46845)}}
X(58182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3009), X(51073)}}, {{A, B, C, X(3230), X(46845)}}, {{A, B, C, X(50344), X(58145)}}
X(58182) = barycentric product X(i)*X(j) for these (i, j): {46845, 513}, {51073, 649}
X(58182) = barycentric quotient X(i)/X(j) for these (i, j): {46845, 668}, {51073, 1978}
X(58182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 50512, 58150}, {512, 58139, 58156}, {512, 58179, 58177}, {512, 649, 58145}, {512, 667, 58158}, {649, 50509, 58144}, {649, 58176, 58143}, {649, 663, 58146}, {649, 667, 58147}, {663, 4834, 58174}, {1960, 50509, 512}, {1960, 50512, 58138}, {4775, 58143, 58137}, {4834, 58144, 58165}, {4834, 58146, 663}, {4834, 58152, 58173}, {4834, 58165, 50509}, {4834, 58172, 58175}, {4834, 58180, 58179}, {4834, 58181, 58180}, {8643, 58171, 58164}, {48338, 58141, 58149}, {50509, 58144, 1960}, {50512, 58150, 58139}, {50512, 58163, 667}, {50512, 58175, 58163}, {50512, 58179, 4834}, {58138, 58144, 50512}, {58138, 58172, 58161}, {58140, 58168, 58152}, {58140, 58173, 58160}, {58142, 58170, 58155}, {58143, 58176, 4775}, {58152, 58173, 58168}, {58163, 58175, 58172}, {58175, 58179, 58178}


X(58183) = X(2)X(3)∩X(395)X(43500)

Barycentrics    146*a^4-(b^2-c^2)^2-145*a^2*(b^2+c^2) : :
X(58183) = -X[2]+49*X[3], -X[3656]+49*X[58215], X[32455]+35*X[55661], -X[50872]+49*X[58220], X[51138]+5*X[55653]

X(58183) lies on these lines: {2, 3}, {395, 43500}, {396, 43499}, {3656, 58215}, {28212, 58216}, {32455, 55661}, {42435, 42792}, {42436, 42791}, {42910, 43299}, {42911, 43298}, {50872, 58220}, {51138, 55653}

X(58183) = midpoint of X(i) and X(j) for these {i,j}: {11812, 15688}, {548, 14890}
X(58183) = reflection of X(i) in X(j) for these {i,j}: {12811, 11539}
X(58183) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/12
X(58183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 11539, 12811}, {548, 14893, 3534}, {548, 15706, 14890}, {548, 15712, 3628}, {548, 5066, 15686}, {549, 3856, 11540}, {549, 8703, 17800}, {3524, 7491, 5}, {3850, 14891, 12100}, {5055, 15720, 15709}, {5071, 15698, 15717}, {10304, 15698, 5054}, {11812, 15688, 30}, {12100, 14093, 3850}, {12100, 15702, 3530}, {14093, 15706, 5055}, {14890, 14891, 15706}, {14891, 15759, 548}, {15684, 15698, 15712}, {16239, 17800, 3856}


X(58184) = X(2)X(3)∩X(193)X(55661)

Barycentrics    83*a^4-(b^2-c^2)^2-82*a^2*(b^2+c^2) : :
X(58184) = -X[2]+28*X[3], X[193]+80*X[55661], X[5032]+8*X[55649], -32*X[10168]+5*X[51211], -34*X[19872]+7*X[50867], 13*X[19877]+14*X[50820], 4*X[32455]+77*X[55656], X[33748]+8*X[55654], 13*X[34595]+14*X[51083], 25*X[35242]+2*X[51077], -29*X[46930]+56*X[51088], 13*X[46934]+14*X[50813] and many others

X(58184) lies on circumconic {{A, B, C, X(49140), X(57822)}} and these lines: {2, 3}, {193, 55661}, {516, 58213}, {5032, 55649}, {6411, 43258}, {6412, 43259}, {7811, 32876}, {10168, 51211}, {16962, 42932}, {16963, 42933}, {19872, 50867}, {19877, 50820}, {22236, 43003}, {22238, 43002}, {28212, 58218}, {32455, 55656}, {32888, 43459}, {33748, 55654}, {34595, 51083}, {35242, 51077}, {42435, 42510}, {42436, 42511}, {42588, 42773}, {42589, 42774}, {46930, 51088}, {46934, 50813}, {50808, 58217}, {50966, 55678}, {50967, 55658}, {51028, 55676}, {51132, 55646}, {51171, 55665}, {54132, 55669}, {54174, 55651}

X(58184) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/9
X(58184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11287, 17674}, {2, 14033, 17683}, {2, 15683, 3843}, {2, 15684, 3091}, {2, 15705, 15706}, {2, 17538, 3543}, {2, 3522, 15686}, {3, 15710, 15705}, {3, 15714, 15698}, {3, 15759, 15715}, {20, 381, 15640}, {140, 3855, 17697}, {376, 11812, 17578}, {376, 3524, 15699}, {381, 15701, 632}, {548, 15706, 15709}, {548, 632, 1657}, {548, 6868, 3528}, {1657, 14890, 3545}, {3524, 10304, 20}, {3524, 15682, 5054}, {3524, 3545, 15701}, {3529, 15702, 6944}, {3543, 10304, 15688}, {5054, 15688, 17800}, {5067, 15682, 381}, {5073, 8703, 376}, {8703, 14892, 15689}, {10304, 15692, 3839}, {10304, 15705, 15708}, {14891, 15689, 3524}, {14891, 15712, 15716}, {15640, 15692, 3523}, {15697, 15721, 3861}, {15698, 17538, 15718}, {15705, 15708, 15692}, {15705, 15710, 10304}, {15706, 15707, 15712}, {15715, 15759, 3522}, {15717, 17556, 15693}, {15718, 17538, 2}


X(58185) = X(2)X(3)∩X(516)X(58214)

Barycentrics    66*a^4-(b^2-c^2)^2-65*a^2*(b^2+c^2) : :
X(58185) = -3*X[2]+67*X[3], X[12007]+15*X[55657], -X[16881]+9*X[55166], 3*X[51138]+5*X[55631], -X[51732]+9*X[55667]

X(58185) lies on these lines: {2, 3}, {516, 58214}, {3411, 42686}, {3412, 42687}, {9680, 43338}, {12007, 55657}, {16881, 55166}, {28212, 58219}, {34380, 55659}, {42930, 43499}, {42931, 43500}, {51138, 55631}, {51732, 55667}

X(58185) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/8
X(58185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(12101), X(34483)}}, {{A, B, C, X(43970), X(49139)}}
X(58185) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15710, 15712}, {3, 15714, 140}, {4, 10303, 15703}, {4, 15689, 15704}, {20, 3525, 3843}, {20, 3530, 16239}, {20, 5067, 3830}, {140, 548, 17800}, {548, 15717, 3628}, {548, 3530, 3856}, {549, 10304, 15690}, {549, 15704, 1656}, {3522, 10303, 6949}, {3524, 6961, 5}, {3526, 17800, 3855}, {3528, 12100, 3861}, {3528, 15704, 548}, {10304, 14891, 11540}, {14891, 15759, 10304}, {15688, 15698, 549}, {15690, 15693, 10109}


X(58186) = X(2)X(3)∩X(193)X(55657)

Barycentrics    51*a^4-(b^2-c^2)^2-50*a^2*(b^2+c^2) : :
X(58186) = -3*X[2]+52*X[3], X[193]+48*X[55657], -X[962]+50*X[58217], 10*X[4816]+39*X[5731], 9*X[5032]+40*X[55637], -5*X[5734]+54*X[58221], X[6776]+48*X[55663], 4*X[12007]+45*X[55654], -64*X[25555]+15*X[51211], 9*X[33748]+40*X[55646], 4*X[33749]+45*X[55655], 9*X[33750]+40*X[55661] and many others

X(58186) lies on circumconic {{A, B, C, X(34483), X(38335)}} and these lines: {2, 3}, {193, 55657}, {516, 58215}, {962, 58217}, {4816, 5731}, {5032, 55637}, {5734, 58221}, {6411, 9692}, {6450, 9693}, {6452, 9543}, {6453, 43525}, {6454, 43526}, {6776, 55663}, {12007, 55654}, {16772, 43242}, {16773, 43243}, {22235, 42528}, {22237, 42529}, {25555, 51211}, {28212, 58220}, {31454, 43338}, {33748, 55646}, {33749, 55655}, {33750, 55661}, {35814, 43383}, {35815, 43382}, {42433, 43013}, {42434, 43012}, {42494, 51944}, {42495, 51945}, {42596, 43643}, {42597, 43638}, {42688, 43464}, {42689, 43463}, {43560, 43787}, {43561, 43788}, {51138, 55614}, {51170, 55648}, {51171, 55669}

X(58186) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/7
X(58186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3522, 12103}, {3, 15710, 3522}, {3, 15759, 4}, {20, 15708, 5}, {20, 15717, 10303}, {382, 3090, 3832}, {382, 5070, 3850}, {382, 631, 13735}, {548, 16239, 15704}, {548, 549, 382}, {631, 3627, 17567}, {631, 3856, 15674}, {631, 3861, 2}, {3091, 3523, 15702}, {3526, 15698, 15717}, {3526, 15717, 3523}, {3526, 17800, 3857}, {3526, 3832, 7486}, {3528, 15698, 3526}, {6961, 17504, 631}, {7486, 10304, 548}, {7491, 14093, 8703}, {10303, 15640, 5056}, {10304, 15692, 15640}, {10304, 15717, 20}, {15689, 15708, 3839}


X(58187) = X(2)X(3)∩X(524)X(55657)

Barycentrics    38*a^4-(b^2-c^2)^2-37*a^2*(b^2+c^2) : :
X(58187) = -X[2]+13*X[3], -X[597]+7*X[55669], X[1992]+11*X[55648], 5*X[3098]+X[51132], 5*X[3579]+X[51077], 5*X[4816]+13*X[34773], X[5032]+3*X[55624], -2*X[6053]+5*X[11694], X[8584]+5*X[55637], X[9955]+2*X[50816], -5*X[10168]+2*X[51130], X[11179]+11*X[55656] and many others

X(58187) lies on these lines: {2, 3}, {516, 58216}, {524, 55657}, {542, 55663}, {597, 55669}, {1992, 55648}, {3098, 51132}, {3564, 55660}, {3579, 51077}, {4816, 34773}, {5032, 55624}, {5351, 42791}, {5352, 42792}, {5585, 7739}, {6053, 11694}, {6409, 43436}, {6410, 43437}, {8584, 55637}, {9955, 50816}, {10168, 51130}, {11179, 55656}, {12699, 50833}, {12820, 43467}, {12821, 43468}, {13391, 55166}, {16267, 42123}, {16268, 42122}, {16772, 43109}, {16773, 43108}, {18357, 50815}, {18358, 50971}, {18440, 50981}, {18525, 50826}, {18583, 55666}, {19130, 50972}, {19924, 55664}, {20582, 33751}, {20583, 55612}, {25055, 28216}, {28212, 58221}, {31162, 58217}, {31670, 50988}, {31673, 51088}, {31834, 55286}, {34380, 55654}, {34628, 50825}, {34632, 50832}, {34638, 51084}, {35242, 50824}, {41943, 43773}, {41944, 43774}, {41973, 42505}, {41974, 42504}, {42631, 42945}, {42632, 42944}, {42641, 43336}, {42642, 43337}, {42793, 42977}, {42794, 42976}, {42888, 42910}, {42889, 42911}, {42912, 43014}, {42913, 43015}, {42916, 43481}, {42917, 43482}, {43016, 46334}, {43017, 46335}, {43100, 43417}, {43105, 43484}, {43106, 43483}, {43107, 43416}, {43150, 51135}, {43638, 54592}, {43643, 54591}, {44456, 51181}, {48892, 50984}, {48906, 50961}, {50828, 58219}, {50865, 58215}, {50965, 55672}, {50966, 55705}, {50970, 55636}, {50979, 55646}, {50983, 55668}, {50987, 54170}, {51138, 55594}, {51732, 55671}, {51737, 55655}, {54169, 55658}

X(58187) = midpoint of X(i) and X(j) for these {i,j}: {10304, 17504}, {14892, 15691}, {15689, 15699}, {376, 11539}, {3524, 8703}, {3839, 15686}, {549, 15688}, {550, 5055}
X(58187) = reflection of X(i) in X(j) for these {i,j}: {140, 3524}, {11539, 3530}, {12101, 14892}, {14892, 140}, {14893, 5055}, {15690, 15688}, {3524, 14891}, {3839, 3628}, {5, 14890}, {5055, 11812}, {5066, 11539}
X(58187) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/6
X(58187) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15319), X(41991)}}, {{A, B, C, X(17800), X(57822)}}, {{A, B, C, X(18317), X(47599)}}
X(58187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 381}, {2, 376, 17800}, {3, 10304, 17504}, {3, 14093, 15698}, {3, 15688, 15705}, {3, 15714, 15759}, {3, 3534, 15715}, {3, 376, 15711}, {3, 8703, 14891}, {4, 3533, 17566}, {5, 15707, 14890}, {20, 140, 546}, {20, 1656, 3627}, {20, 549, 10109}, {30, 11539, 5066}, {30, 11812, 5055}, {30, 140, 14892}, {30, 15688, 15690}, {30, 3530, 11539}, {30, 3628, 3839}, {140, 12101, 547}, {140, 12103, 3861}, {140, 14891, 12100}, {140, 15691, 12101}, {140, 3853, 3090}, {140, 8703, 15691}, {443, 6902, 6923}, {549, 3525, 11812}, {549, 3830, 16239}, {549, 8703, 20}, {1012, 5059, 382}, {3090, 3524, 15708}, {3091, 10303, 16864}, {3522, 15700, 3845}, {3523, 15687, 11540}, {3523, 15695, 15687}, {3524, 10304, 15689}, {3524, 15689, 15699}, {3524, 15705, 15716}, {3524, 15721, 15707}, {3528, 15693, 15686}, {3528, 16434, 3522}, {3534, 10124, 3853}, {3534, 15712, 10124}, {3534, 15715, 15712}, {3545, 10304, 15688}, {3627, 8703, 376}, {3845, 15700, 12108}, {5066, 14893, 3832}, {8703, 15691, 548}, {8703, 15692, 12811}, {8703, 15711, 15701}, {10304, 15689, 8703}, {10304, 15705, 3545}, {10304, 17504, 30}, {11001, 15718, 632}, {11539, 15706, 3530}, {11539, 15711, 15706}, {11540, 15687, 12812}, {12100, 15691, 140}, {12811, 15682, 14893}, {14093, 15698, 5}, {15681, 15713, 3850}, {15681, 15717, 15713}, {15686, 15693, 3628}, {15688, 15705, 549}, {15688, 15706, 1656}, {15689, 15701, 14269}, {15694, 15704, 3860}, {15699, 17504, 3524}


X(58188) = X(2)X(3)∩X(165)X(3635)

Barycentrics    27*a^4-(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(58188) = -3*X[2]+28*X[3], 21*X[165]+4*X[3635], X[193]+24*X[55649], 3*X[1992]+22*X[55641], 16*X[3098]+9*X[33748], -3*X[3617]+8*X[31447], -X[3620]+16*X[55661], 4*X[3625]+21*X[5731], 4*X[3630]+21*X[25406], X[3633]+49*X[16192], -2*X[3817]+27*X[58213], -2*X[4301]+27*X[58221] and many others

X(58188) lies on these lines: {2, 3}, {99, 32878}, {165, 3635}, {193, 55649}, {516, 58217}, {1078, 32888}, {1992, 55641}, {3098, 33748}, {3312, 9693}, {3616, 28232}, {3617, 31447}, {3620, 55661}, {3625, 5731}, {3630, 25406}, {3633, 16192}, {3817, 58213}, {4301, 58221}, {4309, 5265}, {4317, 5281}, {4668, 28236}, {4691, 9588}, {5032, 55606}, {5131, 18221}, {5304, 15513}, {5319, 8588}, {5585, 7738}, {5734, 7987}, {5965, 55655}, {6144, 55651}, {6398, 9543}, {6409, 9692}, {6410, 42523}, {6776, 55657}, {7586, 9681}, {7751, 11148}, {7796, 32876}, {8591, 55829}, {9542, 43511}, {9589, 54445}, {10519, 55658}, {10541, 51028}, {10645, 42435}, {10646, 42436}, {11179, 55652}, {11362, 20053}, {11482, 50966}, {14531, 20791}, {14853, 55669}, {14912, 55648}, {14981, 52886}, {15515, 37665}, {15589, 32877}, {16772, 42982}, {16773, 42983}, {17502, 20070}, {22235, 36968}, {22237, 36967}, {28212, 58224}, {28234, 35242}, {30389, 50872}, {31454, 42637}, {31884, 32455}, {33749, 50967}, {33750, 55653}, {36836, 42516}, {36843, 42517}, {40107, 55660}, {40693, 43242}, {40694, 43243}, {41112, 42959}, {41113, 42958}, {42133, 43371}, {42134, 43370}, {42150, 42967}, {42151, 42966}, {42163, 51915}, {42166, 51916}, {42500, 42775}, {42501, 42776}, {42598, 51944}, {42599, 51945}, {42801, 42991}, {42802, 42990}, {42928, 43014}, {42929, 43015}, {42932, 42943}, {42933, 42942}, {43016, 43403}, {43017, 43404}, {43603, 52987}, {46226, 55735}, {46264, 55663}, {48873, 55664}, {51170, 55629}, {51171, 55674}, {54132, 55681}, {54170, 55684}, {54174, 55626}

X(58188)= pole of line {185, 15705} with respect to the Jerabek hyperbola
X(58188) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/5
X(58188) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(12101)}}, {{A, B, C, X(1105), X(15705)}}, {{A, B, C, X(1217), X(48154)}}, {{A, B, C, X(3544), X(15318)}}, {{A, B, C, X(15720), X(51348)}}
X(58188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15718, 15708}, {2, 3146, 3850}, {3, 10304, 3523}, {3, 140, 15715}, {3, 1656, 15711}, {3, 1657, 14891}, {3, 3528, 15717}, {3, 4, 15705}, {3, 550, 15698}, {3, 8703, 10299}, {4, 15686, 6996}, {5, 15709, 8728}, {20, 10303, 3832}, {20, 3523, 7486}, {20, 5056, 382}, {20, 631, 3091}, {20, 7486, 3543}, {376, 3524, 5066}, {548, 15712, 3843}, {548, 3530, 3627}, {631, 5067, 15694}, {631, 5071, 3526}, {632, 5066, 1656}, {1656, 15696, 17800}, {2041, 2042, 3544}, {3522, 14636, 15709}, {3522, 15717, 17578}, {3522, 17578, 15696}, {3627, 3850, 14269}, {3843, 14093, 548}, {3843, 5072, 3859}, {3859, 15694, 5067}, {5066, 11539, 15703}, {8703, 10299, 3146}, {8703, 14269, 376}, {10299, 15688, 13587}, {10304, 15692, 15697}, {11001, 15720, 15022}, {12103, 15700, 3533}, {12108, 15689, 4}, {12108, 15712, 15693}, {12812, 14891, 15712}, {14093, 15693, 15689}, {14093, 15712, 17538}, {14093, 17538, 3522}, {14784, 14785, 12101}, {14892, 15702, 2}, {15686, 15712, 632}, {15689, 15706, 11539}, {15693, 15705, 15692}, {15696, 17578, 20}, {15702, 15704, 3854}, {15717, 17578, 631}, {15717, 17800, 10303}


X(58189) = X(2)X(3)∩X(516)X(58218)

Barycentrics    89*a^4-4*(b^2-c^2)^2-85*a^2*(b^2+c^2) : :
X(58189) = -4*X[2]+31*X[3], -5*X[8148]+32*X[51085], 25*X[35242]+2*X[51087], -5*X[44456]+32*X[51138], -X[50955]+28*X[55658], 5*X[50968]+22*X[55665], 2*X[51140]+25*X[55646]

X(58189) lies on these lines: {2, 3}, {516, 58218}, {6417, 43526}, {6418, 43525}, {6451, 43318}, {6452, 43319}, {8148, 51085}, {11485, 42796}, {11486, 42795}, {16241, 42689}, {16242, 42688}, {28154, 58213}, {28212, 58226}, {33606, 43194}, {33607, 43193}, {35242, 51087}, {42122, 42969}, {42123, 42968}, {42518, 42891}, {42519, 42890}, {43100, 51915}, {43107, 51916}, {43254, 43789}, {43255, 43790}, {43382, 43797}, {43383, 43798}, {44456, 51138}, {50955, 55658}, {50968, 55665}, {51140, 55646}

X(58189) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/9
X(58189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10304, 5055}, {3, 14093, 15701}, {3, 15684, 15698}, {3, 15722, 15715}, {3, 8703, 15718}, {20, 15698, 549}, {548, 15759, 15714}, {549, 10304, 15688}, {549, 15690, 4}, {549, 15704, 10109}, {549, 15705, 15706}, {549, 5066, 3525}, {3146, 5071, 3845}, {3523, 16858, 631}, {3524, 10304, 548}, {3524, 3845, 5054}, {3534, 15706, 15709}, {3534, 3628, 15684}, {3830, 15688, 15689}, {3850, 8703, 376}, {5054, 15688, 20}, {5055, 15689, 17800}, {5070, 5076, 3851}, {10124, 17504, 3524}, {10299, 15688, 14269}, {15685, 15973, 15687}, {15688, 15716, 3545}, {15690, 15701, 3830}, {15696, 15715, 15722}, {15705, 15708, 10299}, {15708, 15718, 15707}


X(58190) = X(2)X(3)∩X(13)X(51916)

Barycentrics    18*a^4-(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(58190) = -3*X[2]+19*X[3], -X[141]+9*X[55660], -3*X[597]+11*X[55675], -X[1353]+9*X[33750], -X[3589]+5*X[55666], X[3629]+7*X[55633], 3*X[4297]+5*X[31447], -X[4301]+9*X[17502], -X[5446]+9*X[55166], -X[5480]+9*X[55667], -3*X[5655]+19*X[15023], -X[6329]+3*X[55680] and many others

X(58190) lies on these lines: {2, 3}, {13, 51916}, {14, 51915}, {141, 55660}, {516, 58219}, {524, 55647}, {597, 55675}, {1353, 33750}, {1503, 55659}, {3411, 42942}, {3412, 42943}, {3564, 55653}, {3589, 55666}, {3629, 55633}, {4297, 31447}, {4301, 17502}, {4330, 15325}, {5131, 15174}, {5206, 9607}, {5210, 5319}, {5237, 43023}, {5238, 43022}, {5305, 8588}, {5349, 42591}, {5350, 42590}, {5351, 42925}, {5352, 42924}, {5355, 15513}, {5446, 55166}, {5480, 55667}, {5655, 15023}, {5844, 31663}, {6000, 11592}, {6329, 55680}, {6409, 43318}, {6410, 9681}, {6417, 9693}, {6451, 19117}, {6452, 19116}, {6453, 52048}, {6454, 52047}, {6496, 42637}, {6497, 42638}, {7280, 15172}, {7849, 32459}, {8550, 55644}, {8584, 55600}, {9589, 38028}, {9606, 15515}, {9680, 42216}, {9955, 58216}, {10990, 11694}, {11542, 42433}, {11543, 42434}, {12007, 55627}, {12512, 28216}, {13391, 17704}, {13392, 15063}, {13491, 44324}, {13624, 28212}, {13754, 55286}, {13925, 42261}, {13993, 42260}, {14677, 15036}, {14810, 34380}, {15042, 22251}, {15057, 38723}, {15069, 55656}, {16192, 34773}, {16772, 42123}, {16773, 42122}, {16836, 16881}, {16964, 43012}, {16965, 43013}, {17508, 51732}, {18481, 31425}, {18538, 51910}, {18553, 50971}, {18583, 55672}, {18762, 51911}, {18907, 31450}, {20379, 38726}, {21167, 55662}, {21850, 55673}, {22392, 48927}, {22791, 58221}, {23238, 38706}, {25555, 51130}, {28154, 58214}, {29181, 55668}, {31666, 50808}, {32455, 55615}, {32523, 33706}, {33749, 55631}, {33751, 55663}, {35242, 37727}, {38022, 50812}, {38079, 50968}, {38081, 50819}, {38083, 51079}, {38110, 55671}, {40107, 55657}, {40647, 54044}, {40693, 43635}, {40694, 43634}, {42090, 42491}, {42091, 42490}, {42093, 43644}, {42094, 43649}, {42104, 42611}, {42105, 42610}, {42119, 43198}, {42120, 43197}, {42121, 43194}, {42124, 43193}, {42130, 43772}, {42131, 43771}, {42136, 42489}, {42137, 42488}, {42415, 42686}, {42416, 42687}, {42496, 42528}, {42497, 42529}, {42584, 42813}, {42585, 42814}, {42682, 42954}, {42683, 42955}, {42773, 51944}, {42774, 51945}, {42777, 43485}, {42778, 43486}, {42785, 55665}, {42888, 43102}, {42889, 43103}, {42912, 42990}, {42913, 42991}, {42916, 43777}, {42917, 43778}, {42980, 43020}, {42981, 43021}, {44882, 55658}, {48874, 55676}, {48876, 55654}, {48881, 55669}, {48906, 55651}, {50965, 55687}, {50979, 55614}, {51132, 52987}, {51737, 55637}, {52100, 54434}, {54169, 55652}

X(58190) = midpoint of X(i) and X(j) for these {i,j}: {10109, 15691}, {10124, 15690}, {15327, 15336}, {20, 3861}, {376, 11812}, {3534, 11737}, {3850, 12103}, {3860, 15686}, {548, 3530}, {550, 3628}, {8703, 14891}
X(58190) = reflection of X(i) in X(j) for these {i,j}: {12811, 140}, {16239, 3530}, {3856, 16239}
X(58190) = complement of X(12102)
X(58190)= pole of line {185, 11592} with respect to the Jerabek hyperbola
X(58190) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=1/4
X(58190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(17504)}}, {{A, B, C, X(1657), X(43970)}}, {{A, B, C, X(3544), X(6662)}}, {{A, B, C, X(3858), X(15319)}}, {{A, B, C, X(5072), X(15318)}}
X(58190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 140, 14891}, {3, 14093, 4}, {3, 15696, 15717}, {3, 15720, 15705}, {3, 1656, 15698}, {3, 1657, 15692}, {3, 3522, 549}, {3, 3523, 15711}, {3, 3534, 10299}, {3, 376, 15712}, {3, 4, 17504}, {3, 5073, 15716}, {3, 548, 3530}, {3, 8703, 140}, {5, 17800, 3853}, {5, 550, 17800}, {20, 140, 3861}, {20, 15721, 3832}, {20, 3090, 382}, {20, 3524, 5070}, {20, 3832, 11541}, {20, 631, 381}, {20, 8703, 548}, {30, 140, 12811}, {30, 16239, 3856}, {30, 3530, 16239}, {140, 11541, 11737}, {140, 12101, 3090}, {140, 12103, 12101}, {140, 15691, 3627}, {140, 3627, 10109}, {140, 381, 3628}, {140, 546, 15699}, {140, 548, 20}, {376, 15712, 546}, {381, 10304, 8703}, {381, 15689, 11001}, {381, 15716, 15707}, {546, 15712, 11812}, {549, 3522, 12103}, {550, 11539, 3146}, {550, 15712, 5056}, {631, 5056, 3526}, {1657, 14869, 5066}, {1657, 15692, 14869}, {2041, 2042, 5072}, {3090, 12101, 3850}, {3090, 3522, 15689}, {3522, 15710, 3}, {3523, 15688, 15704}, {3524, 8703, 15691}, {3526, 15707, 631}, {3528, 15717, 15696}, {3530, 16239, 12108}, {3534, 10299, 632}, {3832, 15717, 17533}, {5059, 15694, 3857}, {6928, 15706, 4209}, {8703, 15699, 376}, {8703, 15711, 15682}, {10109, 14891, 3524}, {10109, 15691, 30}, {10299, 11541, 15721}, {10303, 15681, 3858}, {10304, 15714, 12100}, {10304, 15715, 15695}, {13168, 15706, 550}, {14093, 17504, 15690}, {14892, 15701, 10124}, {15688, 15711, 547}, {15695, 15715, 11539}, {15696, 15717, 5}, {15704, 15711, 3523}, {15705, 17538, 15720}, {15720, 17538, 3845}, {33750, 55639, 1353}


X(58191) = X(2)X(3)∩X(516)X(58220)

Barycentrics    57*a^4-4*(b^2-c^2)^2-53*a^2*(b^2+c^2) : :
X(58191) = -12*X[2]+61*X[3], 16*X[33749]+33*X[55620], -32*X[51700]+81*X[58226]

X(58191) lies on these lines: {2, 3}, {516, 58220}, {10145, 43511}, {10146, 43512}, {28154, 58215}, {28212, 58228}, {33749, 55620}, {42149, 51915}, {42152, 51916}, {42894, 43194}, {42895, 43193}, {51700, 58226}

X(58191) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/7
X(58191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15684, 10299}, {3, 3522, 5055}, {3, 550, 15718}, {3, 8703, 5073}, {20, 7397, 376}, {140, 3529, 381}, {140, 3627, 5071}, {376, 7491, 15695}, {382, 15696, 15686}, {548, 17504, 17578}, {548, 3529, 15696}, {3522, 6988, 17800}, {3523, 15022, 15702}, {3523, 3528, 548}, {3832, 10304, 3528}, {3851, 6916, 3523}, {5073, 15701, 3090}, {15685, 15698, 15701}, {15686, 15700, 15703}, {15696, 15700, 3832}, {15714, 15720, 3}


X(58192) = X(2)X(3)∩X(516)X(58224)

Barycentrics    33*a^4-4*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(58192) = -12*X[2]+37*X[3], -24*X[10165]+49*X[58220], -24*X[10283]+49*X[58228], 16*X[12512]+9*X[58230], X[15069]+24*X[33751], 4*X[18553]+21*X[50976], 2*X[31666]+3*X[50812], 16*X[33749]+9*X[33878], 16*X[37853]+9*X[38638], 9*X[38633]+16*X[38726], 9*X[38634]+16*X[38736], 9*X[38635]+16*X[38747] and many others

X(58192) lies on these lines: {2, 3}, {516, 58224}, {3411, 42626}, {3412, 42625}, {5351, 51945}, {5352, 51944}, {5418, 41950}, {5420, 41949}, {5965, 55629}, {6395, 9681}, {7581, 10145}, {7582, 10146}, {7765, 15655}, {10165, 58220}, {10283, 58228}, {12512, 58230}, {15069, 33751}, {16960, 43193}, {16961, 43194}, {18553, 50976}, {22236, 43006}, {22238, 43007}, {28154, 58217}, {28212, 58233}, {28228, 37624}, {31666, 50812}, {33749, 33878}, {35820, 43881}, {35821, 43882}, {36836, 43018}, {36843, 43019}, {37853, 38638}, {38633, 38726}, {38634, 38736}, {38635, 38747}, {38636, 38759}, {40107, 55648}, {42115, 42991}, {42116, 42990}, {42164, 42513}, {42165, 42512}, {42516, 42924}, {42517, 42925}, {42526, 43432}, {42527, 43433}, {42928, 43009}, {42929, 43008}, {50955, 55644}, {50968, 55687}

X(58192)= pole of line {185, 15718} with respect to the Jerabek hyperbola
X(58192) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=2/5
X(58192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(15718)}}, {{A, B, C, X(15318), X(38071)}}
X(58192) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15684, 3523}, {3, 15685, 15720}, {3, 15689, 3851}, {3, 1657, 15701}, {3, 3522, 15695}, {3, 376, 5073}, {3, 4, 15718}, {3, 5073, 15707}, {3, 550, 5055}, {5, 3530, 15702}, {20, 10299, 5}, {20, 15717, 3545}, {20, 16239, 382}, {20, 3830, 17800}, {376, 15699, 3534}, {546, 5073, 3830}, {550, 15692, 5076}, {631, 3522, 548}, {631, 5070, 15694}, {632, 15697, 1657}, {632, 3545, 1656}, {1656, 15696, 20}, {3522, 10304, 17538}, {3522, 14093, 3}, {3534, 8703, 6891}, {3832, 15692, 631}, {3843, 15695, 15696}, {3843, 5073, 17578}, {3861, 15701, 5070}, {5055, 15681, 15682}, {10299, 15682, 3525}, {11812, 14893, 15699}, {14093, 15693, 10304}, {14893, 15714, 15692}, {15688, 15716, 376}, {15694, 15695, 15689}, {15694, 17800, 3843}, {15695, 15701, 15697}, {15712, 17578, 3526}


X(58193) = X(2)X(3)∩X(193)X(55600)

Barycentrics    67*a^4-9*(b^2-c^2)^2-58*a^2*(b^2+c^2) : :
X(58193) = -27*X[2]+76*X[3], 9*X[193]+40*X[55600], -15*X[3620]+64*X[55647], 9*X[6776]+40*X[55623], -81*X[33748]+32*X[55718], -81*X[33750]+32*X[55704]

X(58193) lies on these lines: {2, 3}, {193, 55600}, {516, 58225}, {3620, 55647}, {5237, 43243}, {5238, 43242}, {6459, 10148}, {6460, 10147}, {6776, 55623}, {28212, 58235}, {33748, 55718}, {33750, 55704}

X(58193) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/7
X(58193) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3859, 5056}, {3, 12811, 3524}, {3, 17538, 15022}, {20, 10303, 3627}, {20, 140, 3543}, {20, 15692, 5068}, {548, 1656, 376}, {3090, 3524, 14869}, {3090, 3627, 3832}, {3522, 8703, 20}, {3523, 3528, 10304}, {3523, 7486, 15702}, {3524, 3855, 140}, {3526, 15692, 3523}, {3529, 3845, 3146}, {3534, 6882, 550}, {3627, 15701, 3090}, {3851, 15722, 3526}


X(58194) = X(2)X(3)∩X(516)X(58227)

Barycentrics    131*a^4-25*(b^2-c^2)^2-106*a^2*(b^2+c^2) : :
X(58194) = -25*X[2]+52*X[3], -40*X[4746]+13*X[50871], X[4816]+26*X[51079], -5*X[11160]+32*X[55612], -5*X[11180]+32*X[55636], -X[34632]+28*X[51083], -35*X[50969]+8*X[55594], 20*X[50971]+7*X[55607], 80*X[50972]+X[51214], 80*X[51134]+X[51215]

X(58194) lies on these lines: {2, 3}, {516, 58227}, {4746, 50871}, {4816, 51079}, {5365, 42953}, {5366, 42952}, {6484, 43256}, {6485, 43257}, {11160, 55612}, {11180, 55636}, {34632, 51083}, {42115, 43253}, {42116, 43252}, {42528, 43243}, {42529, 43242}, {42625, 42804}, {42626, 42803}, {43012, 43480}, {43013, 43479}, {50969, 55594}, {50971, 55607}, {50972, 51214}, {51134, 51215}

X(58194) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/9
X(58194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15695, 6960}, {20, 15688, 10304}, {20, 15692, 3830}, {382, 15686, 11001}, {548, 3090, 3522}, {549, 12101, 1656}, {549, 15710, 15705}, {549, 3830, 3090}, {632, 3832, 5056}, {3522, 15689, 3839}, {3545, 15705, 15708}, {11001, 15719, 12101}, {11737, 15692, 15721}, {13635, 15714, 2}, {15688, 15689, 549}, {15688, 15690, 3545}


X(58195) = X(2)X(3)∩X(193)X(55588)

Barycentrics    43*a^4-9*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(58195) = -27*X[2]+52*X[3], 9*X[193]+16*X[55588], -3*X[3620]+8*X[55637], X[5493]+24*X[51081], -27*X[5731]+2*X[58245], -3*X[5921]+28*X[55626], 9*X[5984]+16*X[38628], 9*X[6776]+16*X[55597], 9*X[14683]+16*X[38626], 3*X[14927]+22*X[55641], 9*X[20070]+16*X[58240], -3*X[20080]+28*X[55602] and many others

X(58195) lies on circumconic {{A, B, C, X(3346), X(41106)}} and these lines: {2, 3}, {193, 55588}, {516, 58229}, {3620, 55637}, {4816, 28236}, {5237, 42983}, {5238, 42982}, {5351, 42894}, {5352, 42895}, {5493, 51081}, {5731, 58245}, {5921, 55626}, {5965, 55600}, {5984, 38628}, {6449, 43787}, {6450, 43788}, {6488, 42542}, {6489, 42541}, {6776, 55597}, {9542, 10147}, {14683, 38626}, {14927, 55641}, {16189, 28228}, {17852, 42258}, {20070, 58240}, {20080, 55602}, {20094, 38627}, {20095, 38631}, {22235, 42932}, {22236, 43242}, {22237, 42933}, {22238, 43243}, {28212, 58236}, {31399, 50863}, {33748, 48881}, {33751, 51171}, {35770, 43383}, {35771, 43382}, {39874, 55620}, {40330, 55650}, {42090, 43031}, {42091, 43030}, {42147, 42517}, {42148, 42516}, {42160, 43870}, {42161, 43869}, {42431, 42512}, {42432, 42513}, {42777, 51945}, {42778, 51944}, {42906, 43871}, {42907, 43872}, {43511, 51911}, {43512, 51910}, {46264, 55617}, {48873, 55704}, {48885, 55708}, {48892, 55611}

X(58195) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/5
X(58195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 2}, {3, 12103, 11541}, {3, 1657, 12811}, {3, 3529, 15022}, {3, 6942, 16864}, {4, 14892, 3832}, {20, 10304, 5056}, {20, 3522, 15692}, {20, 3523, 15640}, {140, 3545, 2476}, {140, 7491, 3528}, {376, 15696, 3522}, {381, 12100, 15709}, {546, 12811, 6924}, {548, 550, 381}, {550, 3853, 3534}, {631, 15715, 15712}, {631, 3522, 10304}, {632, 3529, 17578}, {1656, 12100, 631}, {1656, 15696, 15689}, {3091, 15697, 17538}, {3091, 17538, 20}, {3091, 3523, 632}, {3146, 5187, 3545}, {3522, 15696, 15697}, {3523, 15686, 6943}, {3524, 6935, 3533}, {3543, 10304, 12100}, {3545, 5084, 7486}, {3628, 11001, 3146}, {3861, 12103, 15704}, {11812, 15717, 3523}, {13727, 15712, 10303}, {14636, 15685, 3091}, {15695, 15696, 550}, {16435, 17542, 14636}


X(58196) = X(2)X(3)∩X(516)X(58232)

Barycentrics    34*a^4-9*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(58196) = -27*X[2]+43*X[3], 5*X[5493]+3*X[51087], -X[12007]+5*X[48892], -9*X[12699]+25*X[58229], -3*X[18358]+7*X[55644], -5*X[31399]+21*X[51083], -9*X[34773]+X[58245], -3*X[39884]+11*X[55641], -9*X[43150]+25*X[55623], -9*X[44882]+X[55721], 9*X[48873]+7*X[53858], 9*X[48880]+7*X[55708] and many others

X(58196) lies on these lines: {2, 3}, {516, 58232}, {1151, 43336}, {1152, 43337}, {1503, 55617}, {3564, 55597}, {5237, 42585}, {5238, 42584}, {5493, 51087}, {6409, 43791}, {6410, 43792}, {6417, 43383}, {6418, 43382}, {6561, 17852}, {11542, 42965}, {11543, 42964}, {12007, 48892}, {12699, 58229}, {13607, 28212}, {15178, 28216}, {18358, 55644}, {28154, 58223}, {29181, 55704}, {31399, 51083}, {34380, 48885}, {34773, 58245}, {39884, 55641}, {42087, 43015}, {42088, 43014}, {42099, 42686}, {42100, 42687}, {42104, 43644}, {42105, 43649}, {42108, 42954}, {42109, 42955}, {42150, 43635}, {42151, 43634}, {42215, 43338}, {42216, 43339}, {42225, 43431}, {42226, 43430}, {42263, 43341}, {42264, 43340}, {42598, 42889}, {42599, 42888}, {42612, 42891}, {42613, 42890}, {42934, 42943}, {42935, 42942}, {43105, 43303}, {43106, 43302}, {43150, 55623}, {43442, 51916}, {43443, 51915}, {43511, 43798}, {43512, 43797}, {43525, 43793}, {43526, 43794}, {44882, 55721}, {48873, 53858}, {48880, 55708}, {48881, 55583}, {48898, 55611}, {51163, 55675}, {51732, 55694}

X(58196) = midpoint of X(i) and X(j) for these {i,j}: {1657, 3861}, {11001, 11737}, {11812, 15681}, {3628, 15704}
X(58196) = reflection of X(i) in X(j) for these {i,j}: {12811, 3}
X(58196) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/4
X(58196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(12811)}}, {{A, B, C, X(15688), X(43970)}}
X(58196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 5}, {3, 12811, 12108}, {3, 15022, 549}, {3, 30, 12811}, {4, 548, 15759}, {5, 550, 15689}, {20, 3545, 1657}, {20, 376, 1656}, {20, 550, 15690}, {140, 15711, 3530}, {140, 5072, 3628}, {140, 548, 10304}, {376, 14269, 8703}, {546, 12103, 20}, {546, 3525, 10109}, {546, 3530, 1010}, {548, 12103, 15704}, {548, 1657, 14890}, {550, 15686, 15696}, {550, 3534, 548}, {1656, 3830, 3832}, {1657, 5055, 6941}, {3090, 6950, 15022}, {3522, 3853, 14891}, {3528, 3854, 15716}, {3529, 10304, 5072}, {3529, 5071, 3146}, {3530, 3628, 10303}, {3534, 10304, 15686}, {3534, 15689, 15683}, {3534, 15704, 12103}, {3544, 3857, 5066}, {3627, 15704, 17800}, {3628, 12102, 3857}, {3628, 12108, 11540}, {3628, 14890, 632}, {10303, 17800, 3627}, {11001, 11737, 30}, {12103, 15690, 546}, {12103, 15691, 17538}, {15686, 15696, 140}, {15706, 17800, 4}


X(58197) = X(2)X(3)∩X(42510)X(42967)

Barycentrics    179*a^4-49*(b^2-c^2)^2-130*a^2*(b^2+c^2) : :
X(58197) = -49*X[2]+76*X[3], -8*X[43150]+35*X[50969], -35*X[50975]+8*X[55716]

X(58197) lies on these lines: {2, 3}, {42510, 42967}, {42511, 42966}, {42932, 42973}, {42933, 42972}, {43150, 50969}, {43201, 51945}, {43202, 51944}, {43298, 43401}, {43299, 43402}, {50975, 55716}

X(58197) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/9
X(58197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {376, 11001, 3530}, {376, 15701, 3522}, {376, 3544, 8703}, {548, 15704, 3851}, {5055, 10304, 15692}, {5066, 15706, 15709}, {7486, 15683, 15640}, {10109, 15684, 4}, {10304, 15683, 3839}, {11539, 15689, 376}, {14893, 15682, 17578}, {15688, 15717, 10304}, {15693, 15710, 15705}


X(58198) = X(2)X(3)∩X(516)X(58233)

Barycentrics    57*a^4-16*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(58198) = -48*X[2]+73*X[3], -96*X[10165]+121*X[58222], 16*X[48891]+9*X[55624], 16*X[48920]+9*X[55697]

X(58198) lies on these lines: {2, 3}, {516, 58233}, {6472, 6560}, {6473, 6561}, {9690, 51911}, {10165, 58222}, {16936, 37496}, {28154, 58224}, {42433, 42897}, {42434, 42896}, {42688, 42938}, {42689, 42939}, {43415, 51910}, {48891, 55624}, {48920, 55697}

X(58198) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4/5
X(58198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 15696, 3843}, {382, 11001, 17800}, {382, 15696, 3522}, {548, 15697, 15696}, {550, 12103, 11001}, {550, 15686, 3628}, {631, 15696, 15695}, {1656, 15696, 548}, {3146, 15714, 1656}, {3146, 3855, 3853}, {10304, 17578, 631}, {15686, 16434, 1657}, {15694, 15695, 10304}, {15695, 15707, 14093}


X(58199) = X(2)X(3)∩X(516)X(58234)

Barycentrics    86*a^4-25*(b^2-c^2)^2-61*a^2*(b^2+c^2) : :
X(58199) = -25*X[2]+37*X[3], -5*X[10168]+2*X[51165], X[11278]+5*X[34638], -25*X[31162]+49*X[58231], -25*X[32900]+7*X[58244], -X[33697]+7*X[51083], -5*X[47354]+11*X[55642], 5*X[48880]+X[51166], -2*X[50664]+5*X[50971], -25*X[50811]+X[58248], -X[51025]+4*X[55636]

X(58199) lies on these lines: {2, 3}, {516, 58234}, {10168, 51165}, {11278, 34638}, {28212, 58241}, {31162, 58231}, {32900, 58244}, {33697, 51083}, {41977, 42164}, {41978, 42165}, {42136, 43200}, {42137, 43199}, {42528, 43198}, {42529, 43197}, {42890, 43229}, {42891, 43228}, {47354, 55642}, {48880, 51166}, {50664, 50971}, {50811, 58248}, {51025, 55636}

X(58199) = midpoint of X(i) and X(j) for these {i,j}: {11001, 11539}, {3524, 15704}
X(58199) = reflection of X(i) in X(j) for these {i,j}: {140, 15688}, {14893, 3524}, {15687, 14890}, {3839, 14891}, {3853, 11539}
X(58199) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/6
X(58199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 3851, 15704}, {20, 550, 3628}, {30, 11539, 3853}, {30, 14890, 15687}, {30, 14891, 3839}, {30, 15688, 140}, {30, 3524, 14893}, {376, 11001, 5056}, {376, 3526, 8703}, {547, 15690, 548}, {3146, 6843, 12102}, {3534, 12103, 15691}, {3534, 6958, 11001}, {3543, 11001, 17800}, {3845, 15686, 20}, {3845, 5071, 3850}, {3853, 5056, 546}, {5054, 14269, 5071}, {5054, 15695, 10304}, {5056, 15707, 11539}, {11001, 11539, 30}, {11001, 15690, 12100}, {11001, 15695, 3845}, {11539, 15707, 11812}, {12100, 15691, 550}, {12103, 15690, 15686}, {15686, 15691, 547}, {15699, 15712, 5054}


X(58200) = X(2)X(3)∩X(5237)X(42543)

Barycentrics    134*a^4-49*(b^2-c^2)^2-85*a^2*(b^2+c^2) : :
X(58200) = -49*X[2]+61*X[3], 5*X[48905]+X[50985], -49*X[50811]+25*X[58239], -7*X[50982]+10*X[55601]

X(58200) lies on these lines: {2, 3}, {5237, 42543}, {5238, 42544}, {28212, 58243}, {42122, 56608}, {42123, 56609}, {42136, 42796}, {42137, 42795}, {42275, 43319}, {42276, 43318}, {42429, 43000}, {42430, 43001}, {42684, 42973}, {42685, 42972}, {48905, 50985}, {50811, 58239}, {50982, 55601}

X(58200) = midpoint of X(i) and X(j) for these {i,j}: {3529, 11539}
X(58200) = reflection of X(i) in X(j) for these {i,j}: {14892, 15690}, {14893, 15688}
X(58200) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/6
X(58200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 1657, 632}, {20, 3850, 12103}, {30, 15688, 14893}, {30, 15690, 14892}, {376, 6838, 15696}, {549, 15704, 11001}, {3529, 11539, 30}, {5054, 15689, 3522}, {5055, 15706, 15702}, {5055, 15710, 549}, {5066, 15691, 548}, {14093, 15687, 10124}, {15682, 15683, 17800}, {15682, 15759, 5066}, {15686, 17800, 15759}


X(58201) = X(2)X(3)∩X(516)X(58237)

Barycentrics    66*a^4-25*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(58201) = -75*X[2]+91*X[3], X[3630]+7*X[48896], -25*X[18481]+9*X[58241], -5*X[25555]+3*X[51165]

X(58201) lies on these lines: {2, 3}, {516, 58237}, {3630, 48896}, {4746, 28186}, {9693, 43889}, {18481, 58241}, {25555, 51165}, {28212, 58244}, {42122, 42435}, {42123, 42436}, {42136, 42928}, {42137, 42929}, {42429, 43491}, {42430, 43492}, {42584, 42891}, {42585, 42890}, {42924, 43245}, {42925, 43244}

X(58201) = midpoint of X(i) and X(j) for these {i,j}: {3861, 17800}
X(58201) = reflection of X(i) in X(j) for these {i,j}: {12811, 550}
X(58201) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/4
X(58201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 17538, 548}, {5, 548, 14891}, {20, 3529, 3526}, {20, 3855, 3534}, {30, 550, 12811}, {382, 10304, 5}, {382, 15696, 15701}, {547, 15690, 10304}, {548, 3843, 3530}, {1657, 15681, 17538}, {1657, 15689, 3529}, {1657, 5072, 15685}, {3525, 5076, 3857}, {3845, 12812, 3850}, {3845, 15686, 15689}, {3853, 16239, 3856}, {3857, 15712, 2}, {3861, 17800, 30}, {5068, 15692, 3525}, {12103, 17800, 3861}, {14890, 14891, 15693}, {15682, 15690, 11812}


X(58202) = X(2)X(3)∩X(3070)X(6472)

Barycentrics    41*a^4-16*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(58202) = -16*X[2]+19*X[3], -X[8148]+4*X[34628], -8*X[11178]+11*X[55632], -4*X[11693]+3*X[38789], -5*X[12699]+8*X[51085], -5*X[18440]+8*X[50982], -5*X[18493]+8*X[50815], -X[18525]+4*X[34638], -8*X[25561]+11*X[55648], -5*X[31670]+8*X[51138], -2*X[33697]+5*X[50812], -5*X[34632]+2*X[50830] and many others

X(58202) lies on circumconic {{A, B, C, X(13623), X(15702)}} and these lines: {2, 3}, {516, 58238}, {3070, 6472}, {3071, 6473}, {5318, 56608}, {5321, 56609}, {6474, 42260}, {6475, 42261}, {6500, 42267}, {6501, 42266}, {8148, 34628}, {8976, 43380}, {9690, 43258}, {9691, 35815}, {10145, 53130}, {10146, 53131}, {10247, 28202}, {11178, 55632}, {11645, 55593}, {11693, 38789}, {12699, 51085}, {13951, 43381}, {15655, 39563}, {16962, 42097}, {16963, 42096}, {17851, 42275}, {18440, 50982}, {18493, 50815}, {18525, 34638}, {19106, 42795}, {19107, 42796}, {25561, 55648}, {28154, 58230}, {29323, 55624}, {31670, 51138}, {33697, 50812}, {34632, 50830}, {34748, 58247}, {35242, 50800}, {35822, 43339}, {35823, 43338}, {36969, 42691}, {36970, 42690}, {37640, 42968}, {37641, 42969}, {41100, 42544}, {41101, 42543}, {41957, 43336}, {41958, 43337}, {42093, 43545}, {42094, 43544}, {42103, 42985}, {42106, 42984}, {42112, 42685}, {42113, 42684}, {42115, 42972}, {42116, 42973}, {42121, 43202}, {42124, 43201}, {42154, 43031}, {42155, 43030}, {42276, 43342}, {42413, 52048}, {42414, 52047}, {42518, 43546}, {42519, 43547}, {42637, 43341}, {42638, 43340}, {42686, 43402}, {42687, 43401}, {43028, 43293}, {43029, 43292}, {43150, 55604}, {43259, 43415}, {43330, 43499}, {43331, 43500}, {43399, 43467}, {43400, 43468}, {43789, 52045}, {43790, 52046}, {44456, 48879}, {47353, 48920}, {48880, 50955}, {48884, 50968}, {48891, 51024}, {48896, 55584}, {50818, 58250}, {50869, 58222}, {50957, 55646}, {50976, 55678}, {50985, 54170}, {51189, 55600}

X(58202) = midpoint of X(i) and X(j) for these {i,j}: {5055, 17800}
X(58202) = reflection of X(i) in X(j) for these {i,j}: {11539, 12103}, {14269, 15689}, {15682, 11539}, {15684, 5055}, {15688, 20}, {382, 3524}, {3524, 15686}, {3830, 15688}, {3839, 550}, {5055, 3534}
X(58202) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4/3
X(58202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16434, 15717}, {20, 3854, 17538}, {20, 5059, 3525}, {30, 11539, 15682}, {30, 12103, 11539}, {30, 15686, 3524}, {30, 15688, 3830}, {30, 15689, 14269}, {30, 3524, 382}, {30, 3534, 5055}, {30, 550, 3839}, {376, 546, 15716}, {381, 3534, 548}, {382, 15695, 15703}, {546, 15688, 15707}, {546, 15699, 3545}, {546, 15712, 13735}, {1656, 15688, 15705}, {1657, 11001, 15681}, {1657, 3534, 15683}, {3091, 3522, 7390}, {3146, 15691, 15693}, {3526, 15716, 549}, {3526, 3534, 376}, {3528, 12101, 15723}, {3534, 10304, 15689}, {3534, 5066, 15695}, {3543, 15696, 15701}, {3627, 15697, 15700}, {3830, 15681, 20}, {3851, 14093, 15722}, {5055, 15689, 10304}, {5055, 15707, 3526}, {5055, 17800, 30}, {5072, 15698, 15694}, {5073, 15689, 15699}, {6949, 15683, 550}, {10304, 15709, 17504}, {11001, 15683, 15704}, {11812, 17578, 381}, {12103, 15682, 14093}, {13635, 15704, 15696}, {14093, 15682, 3851}, {14093, 15722, 3}, {15640, 15683, 3529}, {15681, 15683, 15684}, {15681, 17800, 3534}, {15683, 17800, 15685}, {15684, 15685, 17800}, {15685, 15700, 6971}, {15690, 15705, 15688}, {15699, 17504, 11812}


X(58203) = X(2)X(3)∩X(6)X(43326)

Barycentrics    22*a^4-9*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(58203) = -27*X[2]+31*X[3], -9*X[141]+11*X[55628], -9*X[5480]+11*X[55694], -7*X[10541]+3*X[43621], -45*X[10595]+49*X[58235], -4*X[11592]+3*X[46847], -X[14449]+2*X[46850], -3*X[14855]+2*X[16881], 3*X[14927]+X[55580], -5*X[16189]+9*X[18481], -2*X[16982]+3*X[40647], -3*X[18358]+4*X[55631] and many others

X(58203) lies on these lines: {2, 3}, {6, 43326}, {61, 42585}, {62, 42584}, {141, 55628}, {397, 42429}, {398, 42430}, {485, 6488}, {486, 6489}, {516, 32900}, {1503, 55588}, {2777, 38632}, {2794, 38628}, {2829, 38629}, {3564, 48879}, {3592, 42226}, {3594, 42225}, {5237, 42136}, {5238, 42137}, {5351, 42108}, {5352, 42109}, {5480, 55694}, {5840, 38631}, {5901, 28158}, {6053, 34584}, {6425, 42276}, {6426, 42275}, {6427, 43407}, {6428, 43408}, {6431, 43337}, {6432, 43336}, {7756, 41940}, {7982, 28216}, {7991, 28224}, {8981, 10147}, {10141, 43430}, {10142, 43431}, {10148, 13966}, {10222, 28178}, {10541, 43621}, {10595, 58235}, {11592, 46847}, {13925, 42272}, {13993, 42271}, {14449, 46850}, {14855, 16881}, {14927, 55580}, {15178, 28150}, {16189, 18481}, {16964, 43019}, {16965, 43018}, {16982, 40647}, {17702, 38626}, {18358, 55631}, {18526, 58249}, {18583, 48891}, {19116, 42413}, {19117, 42414}, {22234, 48898}, {22236, 42145}, {22238, 42144}, {22250, 38791}, {22330, 29317}, {22331, 43619}, {22332, 43618}, {23698, 38627}, {28154, 58232}, {28212, 58245}, {29012, 55597}, {29181, 55718}, {29323, 55617}, {31447, 50862}, {31666, 51118}, {31730, 38176}, {32137, 40247}, {32139, 33534}, {33606, 42545}, {33607, 42546}, {34380, 48872}, {35255, 41950}, {35256, 41949}, {36836, 42113}, {36843, 42112}, {38136, 55684}, {39884, 55614}, {41957, 42267}, {41958, 42266}, {42099, 42966}, {42100, 42967}, {42115, 43772}, {42116, 43771}, {42122, 42165}, {42123, 42164}, {42147, 43775}, {42148, 43776}, {42157, 43007}, {42158, 43006}, {42159, 42888}, {42162, 42889}, {42163, 42904}, {42166, 42905}, {42433, 43417}, {42434, 43416}, {42590, 43370}, {42591, 43371}, {42612, 43645}, {42613, 43646}, {42785, 51163}, {42890, 43485}, {42891, 43486}, {42912, 43773}, {42913, 43774}, {42924, 43632}, {42925, 43633}, {43465, 43648}, {43466, 43647}, {43781, 56608}, {43782, 56609}, {44882, 55708}, {46849, 54044}, {48880, 55600}, {48881, 55611}, {48896, 55721}, {48906, 53858}, {48920, 55623}

X(58203) = midpoint of X(i) and X(j) for these {i,j}: {3529, 15704}, {5, 5059}, {550, 17800}
X(58203) = reflection of X(i) in X(j) for these {i,j}: {140, 20}, {12101, 15691}, {12103, 15704}, {14449, 46850}, {14893, 3534}, {15682, 14891}, {15684, 11812}, {15690, 15681}, {18583, 48891}, {3146, 3628}, {3853, 550}, {546, 12103}, {5066, 15686}, {5073, 3861}
X(58203) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=3/2
X(58203) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15319), X(15687)}}, {{A, B, C, X(15689), X(18848)}}, {{A, B, C, X(32533), X(50690)}}, {{A, B, C, X(43970), X(45759)}}
X(58203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 3627}, {3, 12102, 12812}, {3, 15022, 14869}, {3, 3627, 12811}, {3, 5076, 15022}, {4, 15693, 5}, {4, 20, 15689}, {5, 10299, 11540}, {5, 550, 10304}, {20, 11541, 3}, {20, 140, 15691}, {20, 5059, 15682}, {30, 11812, 15684}, {30, 15681, 15690}, {30, 15686, 5066}, {30, 15691, 12101}, {30, 15704, 12103}, {30, 3534, 14893}, {30, 3628, 3146}, {30, 3861, 5073}, {30, 550, 3853}, {140, 15691, 548}, {140, 3861, 14892}, {381, 11539, 10109}, {381, 15695, 3524}, {382, 15695, 5056}, {382, 15703, 4}, {632, 15703, 1010}, {1657, 15685, 20}, {1657, 17800, 11001}, {1657, 3529, 15704}, {3090, 3627, 3861}, {3146, 12103, 12100}, {3146, 3529, 17800}, {3522, 15687, 16239}, {3523, 3830, 6970}, {3528, 15684, 3858}, {3528, 3858, 11812}, {3529, 15704, 30}, {3529, 17538, 5059}, {3543, 15712, 3856}, {3627, 15689, 12108}, {3627, 17538, 14891}, {3627, 8703, 3090}, {3628, 12108, 11539}, {3830, 6922, 1656}, {5076, 14869, 3850}, {5187, 10303, 631}, {10304, 11001, 15681}, {10304, 15682, 381}, {11001, 17800, 550}, {12102, 12812, 546}, {12103, 15690, 17538}, {14892, 15691, 8703}, {15699, 17697, 3628}, {15701, 16239, 140}, {15702, 15705, 15693}, {43326, 43327, 6}


X(58204) = X(2)X(3)∩X(1131)X(6484)

Barycentrics    59*a^4-25*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(58204) = -25*X[2]+28*X[3], -25*X[145]+16*X[58244], -10*X[1698]+7*X[50867], -10*X[3618]+7*X[51213], -4*X[3625]+7*X[34632], -10*X[3630]+7*X[51027], -25*X[3633]+7*X[58248], -10*X[3763]+7*X[51217], -10*X[4668]+7*X[50864], -11*X[5550]+14*X[50820], -10*X[6144]+7*X[51214], -5*X[11160]+8*X[55587] and many others

X(58204) lies on these lines: {2, 3}, {145, 58244}, {516, 58241}, {1131, 6484}, {1132, 6485}, {1151, 42538}, {1152, 42537}, {1327, 6486}, {1328, 6487}, {1698, 50867}, {3618, 51213}, {3625, 34632}, {3630, 51027}, {3633, 58248}, {3763, 51217}, {4114, 15933}, {4668, 50864}, {5032, 29317}, {5418, 43566}, {5420, 43567}, {5550, 50820}, {6144, 51214}, {6221, 42542}, {6398, 42541}, {6431, 42414}, {6432, 42413}, {6433, 52667}, {6434, 52666}, {6445, 42540}, {6446, 42539}, {7802, 32877}, {7811, 32878}, {9541, 43889}, {11160, 55587}, {11179, 51211}, {11180, 55594}, {11480, 43201}, {11481, 43202}, {11485, 43252}, {11486, 43253}, {16960, 43231}, {16961, 43230}, {16962, 42113}, {16963, 42112}, {18481, 58237}, {19862, 50874}, {21356, 55618}, {25055, 58227}, {28154, 58234}, {28158, 30392}, {28172, 53620}, {32455, 51166}, {35770, 43256}, {35771, 43257}, {36967, 42982}, {36968, 42983}, {41112, 43491}, {41113, 43492}, {41943, 43550}, {41944, 43551}, {41949, 52046}, {41950, 52045}, {42090, 42903}, {42091, 42902}, {42129, 43553}, {42132, 43552}, {42133, 42928}, {42134, 42929}, {42154, 43242}, {42155, 43243}, {42433, 43017}, {42434, 43016}, {42588, 43194}, {42589, 43193}, {42637, 43888}, {42638, 43887}, {42890, 42998}, {42891, 42999}, {43014, 43465}, {43015, 43466}, {43621, 50975}, {46933, 50813}, {48872, 54174}, {48879, 50967}, {48896, 54132}, {48905, 51028}, {50969, 55636}, {51025, 55607}, {51126, 51164}, {51216, 54169}

X(58204) = reflection of X(i) in X(j) for these {i,j}: {15640, 3839}, {15682, 15688}, {15688, 15704}, {3146, 3524}, {3524, 15681}, {3839, 20}
X(58204) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/3
X(58204) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15701), X(18850)}}, {{A, B, C, X(16251), X(41106)}}
X(58204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14893, 3091}, {2, 15683, 1657}, {2, 15689, 10304}, {2, 15712, 15721}, {2, 3522, 14891}, {4, 376, 15701}, {20, 15640, 15692}, {20, 30, 3839}, {30, 15681, 3524}, {30, 15688, 15682}, {30, 15704, 15688}, {30, 3524, 3146}, {30, 3839, 15640}, {376, 15682, 3544}, {376, 3544, 15711}, {548, 12811, 15712}, {548, 3627, 1656}, {1656, 15701, 10124}, {1657, 15686, 11001}, {1657, 17800, 3627}, {1657, 3843, 15704}, {3091, 15697, 15714}, {3146, 15681, 15697}, {3146, 3845, 3543}, {3524, 15714, 15705}, {3529, 15685, 15683}, {3530, 3534, 376}, {3545, 10304, 15708}, {3545, 14269, 3832}, {3545, 15702, 15699}, {3832, 10303, 5056}, {3845, 15686, 548}, {11539, 14269, 3545}, {11539, 15708, 10303}, {12101, 15715, 15022}, {14269, 15689, 15706}, {15681, 15697, 20}, {15684, 17538, 2}


X(58205) = X(2)X(3)∩X(516)X(58243)

Barycentrics    107*a^4-49*(b^2-c^2)^2-58*a^2*(b^2+c^2) : :
X(58205) = -49*X[2]+52*X[3], -16*X[4746]+13*X[50864], -10*X[4816]+13*X[34632], -8*X[34638]+5*X[50863], -7*X[50961]+10*X[55585], -35*X[50975]+32*X[55696]

X(58205) lies on these lines: {2, 3}, {516, 58243}, {4746, 50864}, {4816, 34632}, {9543, 43521}, {34638, 50863}, {42429, 43466}, {42430, 43465}, {43030, 43243}, {43031, 43242}, {43775, 49876}, {43776, 49875}, {50961, 55585}, {50975, 55696}

X(58205) = reflection of X(i) in X(j) for these {i,j}: {3524, 15685}, {3839, 15683}
X(58205) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=7/3
X(58205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 15640, 381}, {20, 15682, 15721}, {20, 15721, 15697}, {20, 5073, 3091}, {30, 15685, 3524}, {376, 5076, 2}, {381, 11812, 3090}, {381, 15682, 17578}, {381, 15689, 17504}, {548, 3091, 3523}, {3091, 10304, 5054}, {3523, 15640, 3543}, {3529, 5067, 1657}, {3543, 15697, 7486}, {3832, 15717, 6904}, {3839, 15708, 5071}, {5073, 15687, 15682}, {10109, 15685, 11001}, {15682, 15683, 20}, {15682, 15691, 5068}, {15709, 17578, 3839}, {15711, 15718, 10299}


X(58206) = X(2)X(3)∩X(516)X(58244)

Barycentrics    54*a^4-25*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(58206) = -75*X[2]+79*X[3], -25*X[38034]+27*X[58227]

X(58206) lies on these lines: {2, 3}, {516, 58244}, {6447, 42538}, {6448, 42537}, {10141, 43794}, {10142, 43793}, {11278, 28182}, {28154, 58237}, {28158, 33179}, {28212, 58248}, {34754, 43634}, {34755, 43635}, {35812, 43789}, {35813, 43790}, {38034, 58227}, {42090, 42907}, {42091, 42906}, {42433, 43198}, {42434, 43197}

X(58206) = reflection of X(i) in X(j) for these {i,j}: {140, 3529}, {14893, 15685}
X(58206) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5/2
X(58206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 13725, 3854}, {20, 16239, 15690}, {20, 382, 549}, {20, 546, 548}, {30, 15685, 14893}, {30, 3529, 140}, {140, 3830, 546}, {140, 3853, 3832}, {546, 12100, 1656}, {548, 3853, 547}, {549, 3839, 10109}, {1532, 15688, 5}, {3090, 3845, 3850}, {3529, 10304, 1657}, {3543, 11001, 15689}, {3543, 3861, 3853}, {3830, 15688, 5071}, {3832, 5067, 5072}, {3845, 15686, 10304}, {3850, 11001, 12103}, {10109, 16239, 5067}, {11539, 13742, 16239}, {15696, 17800, 3529}


X(58207) = X(2)X(3)∩X(516)X(58247)

Barycentrics    33*a^4-16*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(58207) = -48*X[2]+49*X[3], -8*X[3630]+7*X[48662], -48*X[5886]+49*X[58228], -8*X[33749]+9*X[48905], -8*X[48879]+7*X[55616], -8*X[48884]+9*X[55624], -8*X[48896]+7*X[55705], -8*X[48904]+9*X[55697], -8*X[48942]+9*X[55643], -8*X[48943]+9*X[55682], -21*X[50957]+22*X[55641]

X(58207) lies on circumconic {{A, B, C, X(15318), X(33699)}} and these lines: {2, 3}, {516, 58247}, {1327, 43786}, {1328, 43785}, {3411, 42429}, {3412, 42430}, {3625, 28172}, {3630, 48662}, {3633, 28146}, {5886, 58228}, {6144, 29317}, {6472, 13665}, {6473, 13785}, {6500, 42264}, {6501, 42263}, {8148, 28154}, {20053, 28186}, {23251, 43318}, {23261, 43319}, {28158, 37727}, {28212, 58250}, {29323, 55584}, {31487, 42272}, {33636, 52945}, {33749, 48905}, {42093, 42928}, {42094, 42929}, {42096, 42991}, {42097, 42990}, {42433, 42904}, {42434, 42905}, {42435, 43194}, {42436, 43193}, {42688, 43499}, {42689, 43500}, {42934, 43636}, {42935, 43637}, {43006, 43776}, {43007, 43775}, {43018, 43491}, {43019, 43492}, {48879, 55616}, {48884, 55624}, {48896, 55705}, {48904, 55697}, {48942, 55643}, {48943, 55682}, {50957, 55641}

X(58207) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=4
X(58207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 10299, 3526}, {5, 11540, 5067}, {20, 140, 15696}, {20, 15682, 5}, {20, 17578, 3524}, {20, 17800, 15685}, {20, 3528, 15691}, {20, 382, 5070}, {381, 11541, 5073}, {382, 15696, 3832}, {382, 1657, 548}, {382, 3832, 3830}, {382, 548, 3843}, {548, 14893, 16239}, {548, 3859, 12108}, {548, 7486, 15706}, {632, 3853, 6830}, {1657, 15684, 3}, {1657, 17538, 15681}, {1657, 3146, 15718}, {1657, 5072, 15686}, {3529, 15686, 1657}, {3627, 14892, 4}, {3627, 15686, 140}, {3627, 5073, 15684}, {3627, 8703, 3850}, {3830, 15681, 10304}, {3830, 5071, 14269}, {3850, 5071, 5072}, {5059, 10304, 3529}, {5070, 5073, 382}, {5073, 15689, 3627}, {5073, 17800, 20}, {14093, 14892, 15701}, {14892, 15690, 14891}, {15684, 15685, 15689}, {15689, 15701, 14093}, {15689, 15718, 8703}


X(58208) = X(2)X(3)∩X(1131)X(6480)

Barycentrics    51*a^4-25*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(58208) = -75*X[2]+76*X[3], -50*X[4297]+49*X[58231], -16*X[8550]+15*X[51211], -25*X[9589]+27*X[58241], -25*X[11522]+24*X[51119], -9*X[33748]+8*X[43621], -16*X[43174]+15*X[50863]

X(58208) lies on these lines: {2, 3}, {516, 58248}, {1131, 6480}, {1132, 6481}, {3592, 42538}, {3594, 42537}, {4297, 58231}, {5343, 42429}, {5344, 42430}, {6407, 42540}, {6408, 42539}, {6429, 52667}, {6430, 52666}, {6431, 42413}, {6432, 42414}, {6437, 31414}, {6486, 23253}, {6487, 23263}, {8550, 51211}, {9589, 58241}, {10653, 42967}, {10654, 42966}, {11522, 51119}, {11531, 28158}, {16964, 43242}, {16965, 43243}, {28154, 58244}, {33748, 43621}, {35812, 43507}, {35813, 43508}, {35820, 43889}, {35821, 43890}, {42112, 42991}, {42113, 42990}, {42140, 43326}, {42141, 43327}, {42157, 42803}, {42158, 42804}, {42982, 43194}, {42983, 43193}, {42998, 43245}, {42999, 43244}, {43030, 43465}, {43031, 43466}, {43174, 50863}, {50709, 54211}

X(58208) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=5
X(58208) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(15640), X(15749)}}, {{A, B, C, X(17703), X(45000)}}, {{A, B, C, X(18846), X(19710)}}
X(58208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15721, 3091}, {4, 16239, 7377}, {20, 10303, 15696}, {20, 15640, 17578}, {20, 15717, 15697}, {20, 382, 7486}, {20, 3839, 3528}, {381, 548, 631}, {548, 3861, 632}, {631, 3544, 5070}, {1657, 15717, 20}, {3146, 11001, 5056}, {3146, 5056, 3543}, {3146, 5059, 11001}, {3543, 11001, 10304}, {3543, 15697, 3545}, {3545, 3861, 3832}, {5059, 11541, 15708}, {5068, 17531, 5055}, {6941, 17800, 15717}, {10303, 17504, 3523}


X(58209) = X(2)X(3)∩X(516)X(58250)

Barycentrics    129*a^4-64*(b^2-c^2)^2-65*a^2*(b^2+c^2) : :
X(58209) = -192*X[2]+193*X[3]

X(58209) lies on these lines: {2, 3}, {516, 58250}, {28154, 58247}, {31487, 43337}, {42545, 42891}, {42546, 42890}, {42688, 43633}, {42689, 43632}, {42690, 43012}, {42691, 43013}

X(58209) = radical center of circles (A, t*a), (B, t*b), (C, t*c) for t=8
X(58209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 17678, 3857}, {20, 13742, 376}, {382, 15685, 6882}, {382, 15696, 3839}, {3525, 14892, 1656}, {3543, 13741, 4}, {3850, 15713, 3090}, {3856, 10304, 3526}, {5059, 6834, 15704}, {5073, 17800, 548}, {15684, 15685, 10304}


X(58210) = X(3)X(695)∩X(51)X(33208)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-9*b^2*c^2+c^4)-a^4*(b^6-10*b^4*c^2-10*b^2*c^4+c^6) : :
X(58210) = 7*X[3523]+2*X[14135], -2*X[6310]+11*X[15717], -X[12525]+3*X[15707], 5*X[15692]+X[35687]

X(58210) lies on these lines: {3, 695}, {51, 33208}, {373, 33187}, {511, 5032}, {3523, 14135}, {5943, 35927}, {6310, 15717}, {12525, 15707}, {15692, 35687}, {33008, 52658}

X(58210)= pole of line {384, 16187} with respect to the Stammler hyperbola
X(58210) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1/3


X(58211) = X(3)X(695)∩X(5)X(14135)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-4*b^2*c^2+c^4)-a^4*(b^6-5*b^4*c^2-5*b^2*c^4+c^6) : :
X(58211) = X[5]+X[14135], -3*X[549]+X[6310], 5*X[631]+3*X[35687], -9*X[12525]+17*X[55863]

X(58211) lies on these lines: {3, 695}, {5, 14135}, {51, 33250}, {511, 548}, {549, 6310}, {574, 36960}, {631, 35687}, {3060, 33268}, {3111, 7765}, {5038, 9226}, {7782, 40951}, {11451, 14032}, {12525, 55863}, {13586, 27374}, {30209, 43839}, {32205, 33962}, {33267, 33873}

X(58211) = midpoint of X(i) and X(j) for these {i,j}: {5, 14135}
X(58211) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1/2


X(58212) = X(3)X(695)∩X(20)X(185)

Barycentrics    -2*a^2*b^4*c^4+a^6*(b^4-b^2*c^2+c^4)-a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58212) = -3*X[2]+2*X[6310], -11*X[5]+9*X[20326], -11*X[5070]+9*X[12525]

X(58212) lies on these lines: {2, 6310}, {3, 695}, {4, 3978}, {5, 20326}, {20, 185}, {51, 14035}, {64, 31952}, {74, 809}, {263, 32981}, {305, 37889}, {373, 33269}, {512, 7759}, {694, 3360}, {1003, 27374}, {1975, 40951}, {2387, 7781}, {2979, 33260}, {3060, 6658}, {3491, 3926}, {3767, 35060}, {3819, 32990}, {3917, 32965}, {4173, 31859}, {5070, 12525}, {5167, 7763}, {5650, 33258}, {5943, 32971}, {6337, 51427}, {6787, 7814}, {7748, 14962}, {7756, 41262}, {7779, 32547}, {7791, 52658}, {8152, 44423}, {9306, 11326}, {9737, 23098}, {9879, 32967}, {10342, 12110}, {11325, 36213}, {11673, 33014}, {15740, 19222}, {21969, 33193}, {32964, 47638}, {33019, 33873}, {33198, 34236}, {33717, 38661}, {35002, 36960}

X(58212) = reflection of X(i) in X(j) for these {i,j}: {20, 14135}
X(58212) = anticomplement of X(6310)
X(58212) = X(i)-Dao conjugate of X(j) for these {i, j}: {6310, 6310}
X(58212)= pole of line {3221, 16229} with respect to the polar circle
X(58212)= pole of line {384, 9306} with respect to the Stammler hyperbola
X(58212)= pole of line {1975, 9230} with respect to the Wallace hyperbola
X(58212) = radical center of circles (A, t*b*c/a), (B, t*a*c/b), (C, t*a*b/c) for t=1
X(58212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(695), X(9307)}}, {{A, B, C, X(9289), X(40162)}}, {{A, B, C, X(9292), X(51948)}}
X(58212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 35687, 14135}, {511, 14135, 20}


X(58213) = X(1)X(3)∩X(516)X(58184)

Barycentrics    a*(81*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-81*b^2+2*b*c-81*c^2)) : :
X(58213) = X[1]+80*X[3], 2*X[3817]+25*X[58188], X[7988]+8*X[45759], -88*X[15715]+7*X[19876], 16*X[19878]+65*X[21734]

X(58213) lies on these lines: {1, 3}, {516, 58184}, {3817, 58188}, {7988, 45759}, {15705, 28164}, {15710, 28150}, {15715, 19876}, {19878, 21734}, {28154, 58189}

X(58213) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/9
X(58213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 3576, 58245}, {7987, 35242, 58242}, {16191, 58221, 7987}, {16192, 58221, 30392}


X(58214) = X(1)X(3)∩X(516)X(58185)

Barycentrics    a*(64*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-64*b^2+2*b*c-64*c^2)) : :
X(58214) = X[1]+63*X[3], -X[3634]+9*X[14891], -X[4663]+33*X[55665], X[9955]+15*X[15714], -21*X[12100]+5*X[31253], -261*X[15705]+5*X[50863], -81*X[15706]+17*X[19872], -33*X[15715]+X[18480], -33*X[15716]+X[33697], -33*X[17504]+X[50862], 5*X[19862]+27*X[45759], X[19878]+3*X[46332] and many others

X(58214) lies on these lines: {1, 3}, {516, 58185}, {3634, 14891}, {4663, 55665}, {9955, 15714}, {12100, 31253}, {15705, 50863}, {15706, 19872}, {15715, 18480}, {15716, 33697}, {17504, 50862}, {19862, 45759}, {19878, 46332}, {28154, 58190}, {46934, 50813}

X(58214) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/8
X(58214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58250}, {40, 58230, 10222}, {1385, 3579, 58247}, {3579, 58221, 13624}, {3579, 58224, 31662}, {10247, 35242, 3579}, {13624, 31663, 8148}


X(58215) = X(1)X(3)∩X(1698)X(15705)

Barycentrics    a*(49*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-49*b^2+2*b*c-49*c^2)) : :
X(58215) = X[1]+48*X[3], -5*X[1698]+54*X[15705], X[3656]+48*X[58183], 9*X[7988]+40*X[46853], -X[7989]+8*X[44682], -3*X[10248]+10*X[19862], 36*X[10304]+13*X[34595], -55*X[15692]+6*X[38076], -8*X[15698]+X[19876], -54*X[15706]+5*X[18492], -55*X[15715]+6*X[38068], -66*X[15717]+17*X[19872] and many others

X(58215) lies on these lines: {1, 3}, {516, 58186}, {1698, 15705}, {3656, 58183}, {6452, 9585}, {7988, 46853}, {7989, 44682}, {10248, 19862}, {10304, 34595}, {15692, 38076}, {15698, 19876}, {15706, 18492}, {15715, 38068}, {15717, 19872}, {15759, 41869}, {18483, 19708}, {28154, 58191}, {50865, 58187}

X(58215) = midpoint of X(i) and X(j) for these {i,j}: {16192, 58225}
X(58215) = reflection of X(i) in X(j) for these {i,j}: {1, 58231}
X(58215) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/7
X(58215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58217, 1}, {40, 58232, 11224}, {165, 3576, 58243}, {165, 7987, 15178}, {1385, 3579, 58246}, {7987, 15178, 58227}, {7987, 35242, 58239}, {10246, 58224, 13624}, {16192, 58221, 30389}, {16192, 58225, 517}, {58221, 58245, 7987}


X(58216) = X(1)X(3)∩X(548)X(19878)

Barycentrics    a*(36*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-36*b^2+2*b*c-36*c^2)) : :
X(58216) = X[1]+35*X[3], 5*X[548]+4*X[19878], -14*X[3530]+5*X[31253], X[3817]+5*X[46853], -X[3828]+10*X[14891], -7*X[4678]+25*X[31447], X[9955]+8*X[58190], X[10165]+5*X[15714], -X[10175]+7*X[44682], X[11230]+5*X[19708], -X[11231]+7*X[15698], -7*X[15700]+X[38140] and many others

X(58216) lies on these lines: {1, 3}, {516, 58187}, {548, 19878}, {3524, 28168}, {3530, 31253}, {3817, 46853}, {3828, 14891}, {4678, 31447}, {4745, 28224}, {9955, 58190}, {10165, 15714}, {10175, 44682}, {10304, 28154}, {11230, 19708}, {11231, 15698}, {12100, 28164}, {15700, 38140}, {15705, 28208}, {15710, 28202}, {15711, 38138}, {15712, 51073}, {15759, 28178}, {17504, 28160}, {19883, 28146}, {28150, 34200}, {28158, 41982}, {28172, 41983}, {28212, 58183}, {28232, 51108}

X(58216) = midpoint of X(i) and X(j) for these {i,j}: {3579, 30392}
X(58216) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/6
X(58216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58249}, {3, 58219, 31663}, {165, 3576, 8148}, {1385, 3579, 58245}, {1385, 58237, 15178}, {3576, 58232, 31662}, {3579, 30392, 517}, {7987, 35242, 58236}, {8148, 15178, 33179}, {13624, 31663, 58240}, {34556, 34557, 7982}, {58221, 58230, 17502}


X(58217) = X(1)X(3)∩X(10)X(15705)

Barycentrics    a*(25*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-25*b^2+2*b*c-25*c^2)) : :
X(58217) = X[1]+24*X[3], -2*X[10]+27*X[15705], 12*X[376]+13*X[34595], 16*X[548]+9*X[7988], X[962]+49*X[58186], -X[1698]+6*X[15692], 3*X[1699]+22*X[21735], 3*X[3522]+2*X[19862], -42*X[3523]+17*X[19872], -27*X[3524]+2*X[31673], 21*X[3528]+4*X[18483], -32*X[3530]+7*X[7989] and many others

X(58217) lies on these lines: {1, 3}, {10, 15705}, {376, 34595}, {516, 58188}, {548, 7988}, {631, 28172}, {962, 58186}, {1698, 15692}, {1699, 21735}, {3522, 19862}, {3523, 19872}, {3524, 31673}, {3528, 18483}, {3530, 7989}, {3624, 10304}, {3634, 15717}, {4663, 55673}, {4882, 5303}, {5550, 21734}, {5585, 9575}, {5587, 44682}, {5691, 10299}, {6361, 51110}, {6398, 9585}, {6411, 19003}, {6412, 19004}, {8227, 28182}, {9589, 15808}, {12100, 19876}, {12512, 46934}, {12699, 15759}, {14093, 30308}, {14891, 18481}, {15693, 18492}, {15698, 19875}, {15706, 18480}, {15707, 33697}, {15710, 31730}, {15711, 51066}, {16475, 55656}, {17504, 18357}, {18493, 50812}, {19877, 50815}, {28154, 58192}, {31162, 58187}, {34200, 41869}, {38029, 55662}, {45759, 50865}, {50808, 58184}

X(58217) = reflection of X(i) in X(j) for these {i,j}: {58229, 7987}, {58239, 1}
X(58217) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/5
X(58217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58248}, {1, 517, 58239}, {1, 58215, 3}, {1, 58248, 16191}, {3, 58220, 12702}, {3, 58221, 16192}, {165, 3576, 58241}, {517, 7987, 58229}, {1385, 3579, 58244}, {7987, 16189, 3576}, {12702, 30389, 1}, {13624, 31663, 58237}, {16192, 58245, 165}


X(58218) = X(1)X(3)∩X(516)X(58189)

Barycentrics    a*(81*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-81*b^2+8*b*c-81*c^2)) : :
X(58218) = 4*X[1]+77*X[3], 17*X[3830]+64*X[51081], -110*X[15712]+29*X[46930], -98*X[44682]+17*X[46932]

X(58218) lies on these lines: {1, 3}, {516, 58189}, {3830, 51081}, {15705, 28224}, {15706, 28186}, {15707, 28164}, {15710, 28216}, {15712, 46930}, {28212, 58184}, {44682, 46932}

X(58218) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/9
X(58218) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 58235, 8148}, {165, 3576, 58240}


X(58219) = X(1)X(3)∩X(8)X(15715)

Barycentrics    a*(16*a^3-a^2*(b+c)+(b-c)^2*(b+c)+2*a*(-8*b^2+b*c-8*c^2)) : :
X(58219) = X[1]+15*X[3], -X[8]+33*X[15715], -X[10]+9*X[17504], 3*X[548]+X[18483], -9*X[549]+X[31673], 3*X[550]+5*X[19862], X[1386]+7*X[55658], -5*X[1698]+21*X[15700], 5*X[3522]+3*X[11230], -9*X[3524]+X[18480], 21*X[3528]+11*X[5550], -3*X[3530]+X[3634] and many others

X(58219) lies on these lines: {1, 3}, {8, 15715}, {10, 17504}, {30, 19878}, {140, 28168}, {516, 58190}, {518, 55668}, {548, 18483}, {549, 31673}, {550, 19862}, {960, 51570}, {1125, 28202}, {1386, 55658}, {1698, 15700}, {1902, 23040}, {3522, 11230}, {3524, 18480}, {3528, 5550}, {3530, 3634}, {3616, 15710}, {3624, 15688}, {3654, 20014}, {3655, 20053}, {3828, 12100}, {4297, 38138}, {4663, 17508}, {4669, 15711}, {4678, 15705}, {4691, 14891}, {4701, 50827}, {5054, 33697}, {5731, 31447}, {5886, 21734}, {6497, 9615}, {6501, 9617}, {8703, 9955}, {9780, 10299}, {9956, 15712}, {10164, 37705}, {10165, 46853}, {11231, 15717}, {12108, 28164}, {12699, 19708}, {14093, 41869}, {14636, 28257}, {14890, 50803}, {15681, 34595}, {15692, 18481}, {15698, 53620}, {15701, 18492}, {15714, 22791}, {15716, 18525}, {15718, 38083}, {15720, 19872}, {15759, 28198}, {16239, 28172}, {16668, 37508}, {21161, 26202}, {28146, 33923}, {28158, 41981}, {28212, 58185}, {31730, 45759}, {32900, 50831}, {34628, 51088}, {34638, 50833}, {38071, 51079}, {41983, 50815}, {46932, 50819}, {48939, 49992}, {50828, 58187}

X(58219) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/4
X(58219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17502, 13624}, {1, 40, 58247}, {3, 17502, 31663}, {3, 35202, 33862}, {3, 58221, 1385}, {165, 31666, 33179}, {165, 3576, 58238}, {1385, 16200, 15178}, {1385, 3579, 8148}, {1385, 58229, 31662}, {1482, 12702, 58250}, {7987, 35242, 58233}, {7987, 58245, 3576}, {8148, 35242, 3579}, {12702, 58230, 1}, {12702, 58233, 16200}, {31663, 58216, 3}, {34556, 34557, 10247}


X(58220) = X(1)X(3)∩X(516)X(58191)

Barycentrics    a*(49*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-49*b^2+8*b*c-49*c^2)) : :
X(58220) = 4*X[1]+45*X[3], -72*X[3530]+23*X[46931], -5*X[3617]+54*X[17504], -X[3621]+99*X[15715], -32*X[3634]+81*X[15707], -15*X[3830]+64*X[19878], -X[4678]+15*X[15698], 22*X[5550]+27*X[15688], -2*X[9780]+9*X[15700], 24*X[10165]+25*X[58192], 2*X[10248]+5*X[15696], -60*X[12100]+11*X[46933] and many others

X(58220) lies on these lines: {1, 3}, {516, 58191}, {3530, 46931}, {3617, 17504}, {3621, 15715}, {3634, 15707}, {3830, 19878}, {4678, 15698}, {5550, 15688}, {9780, 15700}, {10165, 58192}, {10248, 15696}, {12100, 46933}, {14891, 18526}, {15681, 19862}, {15692, 38081}, {15693, 19877}, {15695, 19883}, {15701, 51073}, {15711, 31145}, {15716, 53620}, {15717, 38138}, {28212, 58186}, {34200, 46934}, {50872, 58183}

X(58220) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/7
X(58220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58246}, {3, 58224, 8148}, {3579, 13624, 30392}, {12702, 58217, 3}, {35242, 58245, 3579}, {58230, 58249, 37624}


X(58221) = X(1)X(3)∩X(2)X(28164)

Barycentrics    a*(9*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-9*b^2+2*b*c-9*c^2)) : :
X(58221) = X[1]+8*X[3], -4*X[4]+13*X[34595], -2*X[10]+11*X[15717], 2*X[20]+7*X[3624], -16*X[140]+7*X[7989], -X[210]+4*X[33575], 8*X[214]+X[12767], -X[355]+10*X[15712], 2*X[376]+X[1699], X[392]+2*X[10178], 2*X[548]+X[38034], -4*X[549]+X[5587] and many others

X(58221) lies on these lines: {1, 3}, {2, 28164}, {4, 34595}, {10, 15717}, {20, 3624}, {30, 7988}, {100, 4915}, {140, 7989}, {187, 9592}, {210, 33575}, {214, 12767}, {355, 15712}, {376, 1699}, {392, 10178}, {499, 37108}, {515, 3524}, {516, 10304}, {518, 55673}, {519, 15705}, {548, 38034}, {549, 5587}, {550, 8227}, {551, 9778}, {631, 5691}, {910, 52705}, {936, 5267}, {944, 4668}, {946, 3528}, {952, 17504}, {960, 45036}, {991, 5313}, {993, 8580}, {1006, 1750}, {1125, 3522}, {1151, 19003}, {1152, 9615}, {1203, 37501}, {1386, 55651}, {1572, 8588}, {1698, 3523}, {1742, 49997}, {2801, 15015}, {2948, 15051}, {2951, 6909}, {2975, 4882}, {3097, 21163}, {3146, 19862}, {3158, 11194}, {3311, 9585}, {3525, 31673}, {3526, 18492}, {3530, 18481}, {3534, 11230}, {3543, 10171}, {3545, 28172}, {3583, 6916}, {3585, 6865}, {3616, 9589}, {3622, 5493}, {3636, 20070}, {3646, 17571}, {3653, 28174}, {3654, 15711}, {3655, 14891}, {3656, 15759}, {3679, 5731}, {3681, 4855}, {3740, 5234}, {3751, 53094}, {3753, 19705}, {3830, 50820}, {3832, 19878}, {3848, 5436}, {3871, 12127}, {3928, 56177}, {3973, 5529}, {4189, 8583}, {4299, 37423}, {4301, 58188}, {4311, 51784}, {4314, 5265}, {4315, 5281}, {4316, 6987}, {4355, 5703}, {4512, 17549}, {4663, 55684}, {4677, 5657}, {4881, 35258}, {5023, 9575}, {5054, 28160}, {5055, 28168}, {5059, 12571}, {5070, 33697}, {5219, 15326}, {5223, 5440}, {5253, 12511}, {5259, 37022}, {5428, 16138}, {5432, 5726}, {5442, 37721}, {5531, 38602}, {5550, 50693}, {5603, 19708}, {5690, 31425}, {5692, 10167}, {5732, 37106}, {5734, 58186}, {5790, 15700}, {5881, 38112}, {5886, 8703}, {6199, 9617}, {6200, 9584}, {6284, 50444}, {6396, 9583}, {6409, 18992}, {6410, 18991}, {6411, 9616}, {6459, 13942}, {6460, 13888}, {6496, 31439}, {6684, 10299}, {6827, 18513}, {6850, 18514}, {6914, 41860}, {6947, 41698}, {7508, 50528}, {7713, 15750}, {7741, 37424}, {7951, 37364}, {7967, 15715}, {7992, 37837}, {7993, 33814}, {8567, 9899}, {8589, 9620}, {8616, 46943}, {8715, 11519}, {8722, 10789}, {8983, 42637}, {9519, 38695}, {9574, 53095}, {9578, 52793}, {9587, 10984}, {9593, 37512}, {9619, 15513}, {9624, 46853}, {9779, 19883}, {9955, 15696}, {10172, 15702}, {10176, 11220}, {10283, 15714}, {10303, 19872}, {10864, 40262}, {11231, 15693}, {11522, 21735}, {11539, 28190}, {11709, 15036}, {12100, 26446}, {12407, 38728}, {12528, 32632}, {12645, 31447}, {12699, 33923}, {13146, 17009}, {13971, 42638}, {15017, 38761}, {15175, 31507}, {15338, 50443}, {15515, 31421}, {15688, 28146}, {15689, 28154}, {15690, 50833}, {15694, 38140}, {15697, 50802}, {15706, 28204}, {15707, 28208}, {15710, 28194}, {15716, 50821}, {15719, 50796}, {15720, 18480}, {15721, 34648}, {15726, 16370}, {15735, 39156}, {16132, 19919}, {16469, 50677}, {16475, 31884}, {16491, 55656}, {16667, 37499}, {17538, 18483}, {17548, 19861}, {18515, 18528}, {19535, 31435}, {19711, 38138}, {19860, 37307}, {21154, 37718}, {21161, 52027}, {21578, 31434}, {22753, 41853}, {22791, 58190}, {24644, 38031}, {25502, 37400}, {25522, 57002}, {25917, 31805}, {28212, 58187}, {28216, 31162}, {28228, 38314}, {33538, 51420}, {37719, 50031}, {38022, 41982}, {38024, 38454}, {38029, 55649}, {38155, 50829}, {38316, 40726}, {41106, 50866}, {43151, 44675}, {50808, 51105}, {50810, 51097}, {50812, 51709}, {50816, 51109}, {50824, 51094}

X(58221) = midpoint of X(i) and X(j) for these {i,j}: {165, 30392}, {10304, 54445}
X(58221) = reflection of X(i) in X(j) for these {i,j}: {1, 30392}, {16191, 1}, {25055, 54445}, {30392, 3576}, {54447, 5054}, {58243, 58241}, {9779, 19883}
X(58221)= pole of line {28161, 44429} with respect to the orthoptic circle of the Steiner Inellipse
X(58221)= pole of line {21, 16192} with respect to the Stammler hyperbola
X(58221) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=1/3
X(58221) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(16192)}}, {{A, B, C, X(102), X(6767)}}, {{A, B, C, X(947), X(7373)}}, {{A, B, C, X(1320), X(16191)}}, {{A, B, C, X(5902), X(31507)}}, {{A, B, C, X(15175), X(31508)}}
X(58221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 16192}, {1, 31508, 53052}, {1, 40, 58245}, {1, 5010, 31508}, {1, 517, 16191}, {1, 58229, 1385}, {3, 10269, 7688}, {3, 1385, 35242}, {3, 15931, 5010}, {3, 3576, 165}, {3, 8273, 35}, {57, 37600, 53054}, {165, 11224, 40}, {165, 21164, 5131}, {165, 30389, 11224}, {165, 30392, 517}, {354, 37544, 5902}, {376, 10165, 1699}, {516, 54445, 25055}, {517, 3576, 30392}, {517, 58241, 58243}, {549, 34628, 19876}, {1152, 9615, 19004}, {1155, 13384, 18421}, {1319, 35445, 9819}, {1385, 35242, 7991}, {1385, 3579, 58240}, {1385, 58219, 3}, {1420, 5217, 53053}, {1482, 12702, 58249}, {1482, 58244, 7982}, {3523, 4297, 1698}, {3530, 18481, 31423}, {3576, 10246, 30389}, {3576, 17502, 7987}, {3579, 31662, 10247}, {3579, 58237, 12702}, {3601, 5204, 3361}, {3616, 12512, 9589}, {3616, 21734, 12512}, {5010, 7280, 14793}, {5054, 28160, 54447}, {5122, 37606, 11529}, {5126, 31393, 53058}, {5550, 50693, 51118}, {5731, 15692, 10164}, {7982, 58247, 11531}, {7987, 30389, 13624}, {7987, 35242, 58229}, {10246, 11224, 1}, {10246, 13624, 3576}, {10247, 58240, 16200}, {10303, 19925, 19872}, {10304, 54445, 516}, {11224, 30389, 10246}, {13624, 31663, 58232}, {13624, 58214, 3579}, {16191, 58243, 58241}, {16192, 58229, 58248}, {17502, 58216, 58230}, {17549, 35262, 4512}, {18481, 31423, 37714}, {19883, 28158, 9779}, {26446, 37712, 51066}, {26446, 50811, 37712}, {34556, 34557, 15178}


X(58222) = X(1)X(3)∩X(4678)X(15706)

Barycentrics    a*(121*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-121*b^2+32*b*c-121*c^2)) : :
X(58222) = 16*X[1]+105*X[3], -14*X[4678]+135*X[15706], 96*X[10165]+25*X[58198], 120*X[14891]+X[20014], -189*X[15707]+68*X[46932], -15*X[15718]+4*X[46933], -153*X[15722]+32*X[18357], -126*X[17504]+5*X[20052], 64*X[50869]+57*X[58202]

X(58222) lies on these lines: {1, 3}, {4678, 15706}, {10165, 58198}, {14891, 20014}, {15707, 46932}, {15718, 46933}, {15722, 18357}, {17504, 20052}, {50869, 58202}

X(58222) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/11
X(58222) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 58247, 58238}, {17502, 58240, 7987}


X(58223) = X(1)X(3)∩X(3530)X(51069)

Barycentrics    a*(64*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(32*b^2-9*b*c+32*c^2)) : :
X(58223) = 9*X[1]+55*X[3], -11*X[3530]+3*X[51069], -17*X[3628]+9*X[50803], -3*X[4669]+35*X[44682], -13*X[5079]+45*X[51084], -143*X[10299]+15*X[51072], 7*X[12103]+9*X[50802], -5*X[12811]+9*X[19878], 5*X[15704]+27*X[19883], 25*X[15714]+7*X[51106], -35*X[31447]+3*X[50804], 5*X[33923]+3*X[51108]

X(58223) lies on these lines: {1, 3}, {3530, 51069}, {3628, 50803}, {4669, 44682}, {5079, 51084}, {10299, 51072}, {12103, 50802}, {12108, 28208}, {12811, 19878}, {15704, 19883}, {15714, 51106}, {17543, 35271}, {28154, 58196}, {31447, 50804}, {33923, 51108}

X(58223) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/8
X(58223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1385, 3579, 58238}, {7982, 7991, 58250}, {13624, 31663, 58230}


X(58224) = X(1)X(3)∩X(8)X(15706)

Barycentrics    a*(25*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-25*b^2+8*b*c-25*c^2)) : :
X(58224) = 4*X[1]+21*X[3], -2*X[8]+27*X[15706], -8*X[10]+33*X[15718], X[145]+24*X[14891], 12*X[548]+13*X[46934], -42*X[549]+17*X[46932], 16*X[1125]+9*X[15689], 3*X[1657]+22*X[5550], -27*X[3524]+2*X[37705], 2*X[3616]+3*X[14093], -X[3617]+6*X[15712], 7*X[3622]+18*X[45759] and many others

X(58224) lies on these lines: {1, 3}, {8, 15706}, {10, 15718}, {145, 14891}, {516, 58192}, {548, 46934}, {549, 46932}, {1125, 15689}, {1656, 28190}, {1657, 5550}, {3524, 37705}, {3616, 14093}, {3617, 15712}, {3622, 45759}, {3624, 15684}, {3843, 19862}, {4297, 55863}, {4663, 55692}, {4746, 51705}, {4816, 31447}, {5055, 50862}, {5070, 31673}, {10165, 17800}, {10299, 12645}, {10308, 28443}, {11230, 49139}, {12100, 18526}, {12108, 46931}, {15681, 18483}, {15692, 20052}, {15694, 31253}, {15695, 18493}, {15696, 28182}, {15698, 20049}, {15700, 34773}, {15701, 18481}, {15707, 18525}, {15711, 51092}, {15720, 18357}, {15808, 48661}, {16853, 35271}, {17504, 20054}, {18492, 51084}, {28154, 58198}, {28160, 55866}, {28212, 58188}, {38335, 50833}, {41983, 46933}

X(58224) = reflection of X(i) in X(j) for these {i,j}: {58236, 37624}
X(58224) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/5
X(58224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58244}, {165, 3576, 58234}, {517, 37624, 58236}, {1385, 3579, 58237}, {1482, 12702, 58248}, {3576, 58245, 1385}, {3579, 31662, 1}, {7987, 35242, 13624}, {8148, 58220, 3}, {11278, 13624, 3576}, {13624, 58215, 10246}, {13624, 58219, 11278}, {31662, 58214, 3579}


X(58225) = X(1)X(3)∩X(632)X(34628)

Barycentrics    a*(49*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)+a*(-49*b^2+18*b*c-49*c^2)) : :
X(58225) = 9*X[1]+40*X[3], 40*X[632]+9*X[34628], -5*X[3146]+54*X[19883], 25*X[3522]+24*X[51108], 4*X[3528]+3*X[51110], -64*X[3530]+15*X[51066], -68*X[3544]+117*X[34595], -9*X[3624]+2*X[50688], -6*X[4669]+55*X[15717], -3*X[4677]+52*X[10299], -81*X[7988]+32*X[12102], -9*X[7989]+16*X[55862] and many others

X(58225) lies on these lines: {1, 3}, {516, 58193}, {632, 34628}, {3146, 19883}, {3522, 51108}, {3528, 51110}, {3530, 51066}, {3544, 34595}, {3624, 50688}, {4669, 15717}, {4677, 10299}, {7988, 12102}, {7989, 55862}, {10147, 18992}, {10148, 18991}, {12108, 37714}, {14869, 19876}, {15022, 19878}, {15705, 51091}, {15715, 51097}, {30308, 49137}, {38029, 55628}

X(58225) = midpoint of X(i) and X(j) for these {i,j}: {16192, 58231}
X(58225) = reflection of X(i) in X(j) for these {i,j}: {16192, 58215}
X(58225) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/7
X(58225) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58243}, {1, 58213, 31663}, {3, 3576, 16189}, {3, 58229, 58245}, {517, 58215, 16192}, {7987, 17502, 1}, {16192, 58231, 517}


X(58226) = X(1)X(3)∩X(10165)X(35403)

Barycentrics    a*(81*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-81*b^2+32*b*c-81*c^2)) : :
X(58226) = 16*X[1]+65*X[3], -32*X[10165]+5*X[35403], -35*X[15701]+8*X[38138], 77*X[15716]+4*X[50831], -130*X[50825]+49*X[51068], 32*X[51700]+49*X[58191]

X(58226) lies on these lines: {1, 3}, {10165, 35403}, {15701, 38138}, {15707, 28224}, {15716, 50831}, {28212, 58189}, {50825, 51068}, {51700, 58191}

X(58226) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/9
X(58226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {165, 3576, 58232}, {3576, 58225, 17502}


X(58227) = X(1)X(3)∩X(516)X(58194)

Barycentrics    a*(81*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-81*b^2+50*b*c-81*c^2)) : :
X(58227) = 25*X[1]+56*X[3], -32*X[11812]+5*X[37712], 25*X[25055]+2*X[58204], 25*X[38034]+2*X[58206], -2*X[38076]+11*X[54445], -14*X[50869]+95*X[51109]

X(58227) lies on these lines: {1, 3}, {516, 58194}, {11812, 37712}, {15708, 28236}, {25055, 58204}, {38034, 58206}, {38076, 54445}, {50869, 51109}

X(58227) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/9
X(58227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58242}, {3, 30392, 58241}, {165, 3576, 58229}, {7987, 15178, 58215}, {7987, 30389, 12702}, {16191, 58221, 16192}, {16200, 58230, 30392}


X(58228) = X(1)X(3)∩X(1125)X(35403)

Barycentrics    a*(49*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-49*b^2+32*b*c-49*c^2)) : :
X(58228) = 16*X[1]+33*X[3], -64*X[1125]+15*X[35403], -3*X[5073]+52*X[46934], 24*X[5731]+25*X[55866], 48*X[5886]+X[58207], -8*X[10248]+X[49134], 24*X[10283]+25*X[58192], -165*X[15694]+116*X[46930], 45*X[15707]+4*X[50818], -187*X[15722]+40*X[51072], 25*X[18493]+24*X[50815], 13*X[31673]+36*X[51080] and many others

X(58228) lies on these lines: {1, 3}, {1125, 35403}, {5073, 46934}, {5731, 55866}, {5886, 58207}, {10248, 49134}, {10283, 58192}, {15694, 46930}, {15707, 50818}, {15722, 51072}, {18493, 50815}, {28212, 58191}, {31673, 51080}, {38028, 49139}, {54445, 55860}

X(58228) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/7
X(58228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58233, 58247}, {1385, 58245, 10246}, {1482, 12702, 58246}


X(58229) = X(1)X(3)∩X(20)X(51110)

Barycentrics    a*(25*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)+a*(-25*b^2+18*b*c-25*c^2)) : :
X(58229) = 9*X[1]+16*X[3], 4*X[20]+21*X[51110], 16*X[546]+9*X[34628], 18*X[551]+7*X[50693], -8*X[631]+3*X[51066], -8*X[632]+3*X[37714], -36*X[1125]+11*X[50689], -27*X[1699]+2*X[11541], 7*X[3090]+18*X[51705], -29*X[3091]+9*X[50863], -2*X[3146]+27*X[25055], 2*X[3522]+3*X[51105] and many others

X(58229) lies on these lines: {1, 3}, {20, 51110}, {516, 58195}, {546, 34628}, {551, 50693}, {631, 51066}, {632, 37714}, {1125, 50689}, {1699, 11541}, {3090, 51705}, {3091, 50863}, {3146, 25055}, {3522, 51105}, {3523, 4677}, {3525, 19876}, {3544, 5691}, {3616, 28158}, {3624, 15022}, {3627, 3653}, {3628, 50811}, {3655, 12108}, {3679, 51086}, {3857, 7988}, {4297, 50688}, {5059, 51108}, {5076, 30308}, {5531, 38631}, {5587, 55861}, {5731, 34595}, {5881, 14869}, {7969, 17852}, {7993, 38629}, {8227, 28190}, {8583, 17544}, {9584, 10147}, {9588, 50827}, {9592, 41940}, {9624, 15704}, {10299, 51094}, {10303, 19875}, {11522, 17538}, {12103, 50865}, {12699, 58196}, {12811, 18481}, {15692, 51097}, {15717, 51093}, {16491, 55614}, {16496, 55684}, {17578, 51109}, {21734, 51103}, {30315, 55858}, {31162, 44245}, {31425, 50824}, {38021, 49136}, {38029, 55721}

X(58229) = reflection of X(i) in X(j) for these {i,j}: {58217, 7987}, {58233, 1385}, {58242, 16189}
X(58229) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/5
X(58229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58241}, {165, 3576, 58227}, {517, 1385, 58233}, {517, 16189, 58242}, {517, 7987, 58217}, {1385, 3579, 58234}, {1385, 58221, 1}, {7982, 7991, 58248}, {7987, 35242, 58221}, {7991, 58240, 58245}, {13624, 30392, 16192}, {31662, 58219, 1385}, {58225, 58245, 3}


X(58230) = X(1)X(3)∩X(2)X(28224)

Barycentrics    a*(9*a^3-4*a^2*(b+c)+4*(b-c)^2*(b+c)+a*(-9*b^2+8*b*c-9*c^2)) : :
X(58230) = 4*X[1]+5*X[3], -2*X[8]+11*X[15720], -8*X[10]+17*X[55863], X[20]+8*X[51700], 8*X[140]+X[18526], X[145]+8*X[3530], -4*X[355]+13*X[46219], X[376]+2*X[10283], X[381]+2*X[5731], -X[382]+10*X[3616], 2*X[549]+X[7967], 2*X[550]+7*X[3622] and many others

X(58230) lies on these lines: {1, 3}, {2, 28224}, {8, 15720}, {10, 55863}, {20, 51700}, {104, 28152}, {140, 18526}, {145, 3530}, {214, 9708}, {355, 46219}, {376, 10283}, {381, 5731}, {382, 3616}, {515, 3653}, {516, 15689}, {518, 55697}, {519, 15707}, {549, 7967}, {550, 3622}, {551, 15681}, {572, 16675}, {631, 4678}, {912, 28451}, {944, 3526}, {946, 17800}, {952, 5054}, {960, 51577}, {1125, 3851}, {1386, 55584}, {1483, 3523}, {1656, 34773}, {1657, 5901}, {1699, 15684}, {1702, 9691}, {2320, 14496}, {2800, 38637}, {2801, 38031}, {2802, 38636}, {3083, 21570}, {3084, 21577}, {3241, 15700}, {3524, 5844}, {3525, 37705}, {3534, 5603}, {3617, 14869}, {3654, 51085}, {3655, 3828}, {3656, 15695}, {3817, 3843}, {3830, 5886}, {3897, 16408}, {4297, 5073}, {4669, 15701}, {4677, 51084}, {4691, 5882}, {4701, 37727}, {4881, 16417}, {5070, 10175}, {5079, 5550}, {5093, 38029}, {5587, 15703}, {5657, 15693}, {5690, 20053}, {5818, 55858}, {6221, 35762}, {6398, 35763}, {6411, 35811}, {6412, 35810}, {6445, 35775}, {6446, 35774}, {6449, 44636}, {6450, 44635}, {6455, 35642}, {6456, 35641}, {6496, 35610}, {6497, 35611}, {6883, 12773}, {7988, 28208}, {8692, 9353}, {9592, 22246}, {9619, 43136}, {9624, 49134}, {9709, 51111}, {9778, 14093}, {9779, 28190}, {9956, 55866}, {10164, 15718}, {10304, 28212}, {11230, 19709}, {11231, 50798}, {11396, 55570}, {11709, 12308}, {11812, 50818}, {12100, 50805}, {12245, 15712}, {12266, 54202}, {12512, 58192}, {14269, 25055}, {14891, 34631}, {15685, 51709}, {15688, 28174}, {15696, 22791}, {15699, 54448}, {15716, 50810}, {15719, 50823}, {15722, 50821}, {15723, 34627}, {15735, 38574}, {15759, 50872}, {16853, 17614}, {16857, 35272}, {16866, 19861}, {18357, 55857}, {20070, 46853}, {21572, 56384}, {21575, 56427}, {22793, 49139}, {24558, 50241}, {28154, 58202}, {28168, 38021}, {34123, 38755}, {34628, 35403}, {35452, 51701}, {38030, 51514}, {38032, 51517}, {38033, 51518}, {38315, 55610}, {40273, 49137}, {41722, 55574}, {44457, 51707}, {44580, 50831}, {50806, 51110}

X(58230) = midpoint of X(i) and X(j) for these {i,j}: {3576, 30392}, {40, 16191}
X(58230) = reflection of X(i) in X(j) for these {i,j}: {10246, 30392}, {30392, 1385}, {38335, 9779}, {5054, 54445}, {54448, 15699}, {9779, 38022}
X(58230)= pole of line {28221, 44429} with respect to the orthoptic circle of the Steiner Inellipse
X(58230) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=2/3
X(58230) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(102), X(51817)}}, {{A, B, C, X(2099), X(9353)}}, {{A, B, C, X(2320), X(17502)}}, {{A, B, C, X(23981), X(28152)}}
X(58230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3576, 17502}, {1, 40, 58240}, {1, 58219, 12702}, {3, 10246, 10247}, {3, 37624, 8148}, {165, 3576, 13624}, {517, 1385, 30392}, {952, 54445, 5054}, {1319, 37606, 6767}, {1385, 31662, 3576}, {1385, 3579, 58232}, {1482, 12702, 58245}, {1482, 13624, 3}, {3576, 16200, 7987}, {3576, 30389, 31662}, {3576, 30392, 517}, {3655, 10165, 5790}, {4297, 18493, 5073}, {5126, 13384, 15934}, {5731, 38028, 381}, {5790, 10165, 15694}, {9779, 28190, 38335}, {10222, 58214, 40}, {10246, 10247, 37624}, {10246, 58221, 58238}, {11224, 58232, 10246}, {13624, 31663, 58223}, {15701, 51515, 26446}, {17502, 58216, 58221}, {17502, 58234, 58243}, {28190, 38022, 9779}, {30392, 58227, 16200}, {37624, 58220, 58249}, {58221, 58241, 165}


X(58231) = X(1)X(3)∩X(3632)X(15708)

Barycentrics    a*(49*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-49*b^2+50*b*c-49*c^2)) : :
X(58231) = 25*X[1]+24*X[3], -55*X[3616]+6*X[50862], -5*X[3632]+54*X[15708], 25*X[3655]+24*X[41985], -3*X[3832]+10*X[15808], -50*X[4297]+X[58208], -5*X[4816]+54*X[54445], 44*X[15719]+5*X[34747], -64*X[16239]+15*X[37712], 16*X[19711]+5*X[51094], -85*X[19872]+36*X[38155], 25*X[31162]+24*X[58199] and many others

X(58231) lies on these lines: {1, 3}, {3616, 50862}, {3632, 15708}, {3655, 41985}, {3832, 15808}, {4297, 58208}, {4816, 54445}, {15719, 34747}, {16239, 37712}, {19711, 51094}, {19872, 38155}, {31162, 58199}, {35402, 38021}

X(58231) = midpoint of X(i) and X(j) for these {i,j}: {1, 58215}
X(58231) = reflection of X(i) in X(j) for these {i,j}: {16192, 58225}
X(58231)= pole of line {21, 58248} with respect to the Stammler hyperbola
X(58231) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/7
X(58231) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 58248}, {1, 40, 58239}, {1, 58215, 517}, {517, 58225, 16192}


X(58232) = X(1)X(3)∩X(5)X(51109)

Barycentrics    a*(16*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(8*b^2-9*b*c+8*c^2)) : :
X(58232) = 9*X[1]+7*X[3], -7*X[5]+15*X[51109], -7*X[140]+3*X[4745], X[548]+3*X[51103], 7*X[549]+X[51096], -9*X[551]+X[3627], 5*X[632]+3*X[5882], 9*X[944]+23*X[46936], -9*X[1125]+5*X[12812], -9*X[1386]+X[55721], X[1657]+15*X[51105], 7*X[3090]+9*X[3655] and many others

X(58232) lies on these lines: {1, 3}, {5, 51109}, {30, 41150}, {140, 4745}, {515, 12811}, {516, 58196}, {518, 55704}, {519, 12108}, {546, 28208}, {548, 51103}, {549, 51096}, {551, 3627}, {632, 5882}, {944, 46936}, {1125, 12812}, {1386, 55721}, {1657, 51105}, {3090, 3655}, {3146, 51709}, {3241, 31447}, {3523, 51092}, {3525, 3653}, {3530, 51095}, {3544, 18480}, {3622, 49140}, {3628, 28204}, {3636, 28146}, {3656, 50693}, {3843, 51110}, {3850, 51108}, {3857, 34773}, {5072, 25055}, {5076, 9624}, {5881, 55858}, {5886, 50689}, {5901, 28168}, {9588, 51084}, {9956, 55861}, {10165, 32900}, {10303, 37727}, {11230, 15022}, {11522, 49137}, {11541, 22793}, {12102, 28160}, {12103, 13464}, {14869, 34641}, {14890, 51070}, {14891, 51107}, {15686, 51106}, {15704, 51705}, {15712, 51071}, {15718, 51097}, {16491, 55580}, {17538, 38314}, {17852, 35774}, {18481, 50688}, {20049, 50821}, {20052, 26446}, {26088, 31805}, {28154, 58203}, {28198, 44245}, {31253, 55862}, {31399, 41992}, {31425, 50805}, {34747, 51088}, {37967, 51701}, {38022, 41991}, {41983, 51091}, {45759, 51104}, {45760, 51069}, {49465, 55687}

X(58232) = midpoint of X(i) and X(j) for these {i,j}: {14891, 51107}, {26088, 31805}
X(58232) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/4
X(58232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1385, 31662}, {1, 40, 58238}, {165, 3576, 58226}, {1385, 10222, 30389}, {1385, 3579, 58230}, {3576, 16189, 3}, {7982, 7991, 58247}, {10222, 10246, 15178}, {10222, 30389, 13624}, {10222, 58245, 58240}, {10246, 30389, 10222}, {10246, 58230, 11224}, {11224, 58215, 40}, {13624, 31663, 58221}, {17502, 58247, 31663}, {31662, 58216, 3576}


X(58233) = X(1)X(3)∩X(145)X(15701)

Barycentrics    a*(25*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-25*b^2+32*b*c-25*c^2)) : :
X(58233) = 16*X[1]+9*X[3], 4*X[145]+21*X[15701], 8*X[1483]+17*X[55863], 8*X[3241]+17*X[15722], -8*X[3616]+3*X[19709], -4*X[3617]+9*X[15694], -2*X[3621]+27*X[5054], -28*X[3622]+3*X[3830], 2*X[3623]+3*X[15693], -2*X[3625]+27*X[3653], 16*X[3626]+9*X[34748], 17*X[3655]+8*X[50803] and many others

X(58233) lies on these lines: {1, 3}, {145, 15701}, {516, 58198}, {952, 55866}, {1483, 55863}, {3241, 15722}, {3616, 19709}, {3617, 15694}, {3621, 5054}, {3622, 3830}, {3623, 15693}, {3625, 3653}, {3626, 34748}, {3655, 50803}, {3851, 51700}, {5055, 46934}, {5070, 37705}, {5550, 15703}, {5603, 49139}, {5731, 49134}, {6472, 35775}, {6473, 35774}, {6500, 35762}, {6501, 35763}, {7967, 46219}, {9780, 50824}, {10283, 17800}, {11812, 20014}, {12699, 51085}, {14269, 34773}, {15685, 38314}, {15713, 20052}, {15808, 18525}, {18493, 35403}, {19872, 50798}, {28212, 58192}, {34718, 51086}, {38028, 55860}

X(58233) = reflection of X(i) in X(j) for these {i,j}: {58229, 1385}
X(58233) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/5
X(58233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58237}, {517, 1385, 58229}, {1385, 15178, 16200}, {1385, 58240, 3576}, {1482, 12702, 58244}, {7987, 35242, 58219}, {10247, 58249, 1482}, {12702, 16200, 8148}, {16200, 58219, 12702}, {58228, 58247, 3}


X(58234) = X(1)X(3)∩X(3636)X(3853)

Barycentrics    a*(36*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-36*b^2+50*b*c-36*c^2)) : :
X(58234) = 25*X[1]+11*X[3], -25*X[1699]+13*X[35402], -10*X[3636]+X[3853], -11*X[11231]+5*X[51072], -11*X[11539]+5*X[38098], -14*X[11812]+5*X[50827], 5*X[13607]+4*X[16239], -11*X[15723]+5*X[38176], X[38155]+5*X[50824], -23*X[41992]+5*X[47745]

X(58234) lies on these lines: {1, 3}, {516, 58199}, {547, 28236}, {952, 41985}, {1699, 35402}, {3636, 3853}, {11231, 51072}, {11539, 38098}, {11812, 50827}, {13607, 16239}, {15690, 28232}, {15723, 38176}, {28154, 58204}, {28168, 38314}, {28178, 51103}, {28228, 41982}, {28234, 41983}, {38155, 50824}, {41992, 47745}

X(58234) = midpoint of X(i) and X(j) for these {i,j}: {3579, 16191}
X(58234) = reflection of X(i) in X(j) for these {i,j}: {31662, 30392}
X(58234) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/6
X(58234) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58236}, {3, 33179, 58244}, {165, 3576, 58224}, {517, 30392, 31662}, {1385, 3579, 58229}, {1385, 58240, 13624}, {3579, 16191, 517}, {58230, 58243, 17502}


X(58235) = X(1)X(3)∩X(3622)X(3857)

Barycentrics    a*(49*a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)+a*(-49*b^2+72*b*c-49*c^2)) : :
X(58235) = 36*X[1]+13*X[3], 40*X[632]+9*X[34748], -13*X[3526]+6*X[51068], -9*X[3622]+2*X[3857], 40*X[3628]+9*X[50818], -5*X[5076]+54*X[38314], 13*X[5079]+36*X[50824], 45*X[10595]+4*X[58203], 40*X[12812]+9*X[18526], X[17800]+48*X[51103], -23*X[46936]+72*X[51700]

X(58235) lies on these lines: {1, 3}, {632, 34748}, {3526, 51068}, {3622, 3857}, {3628, 50818}, {5076, 38314}, {5079, 50824}, {6488, 35811}, {6489, 35810}, {10595, 58203}, {12812, 18526}, {17800, 51103}, {28212, 58193}, {46936, 51700}

X(58235) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6/7
X(58235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 58236, 58249}, {1482, 12702, 58243}, {7982, 7991, 58246}, {8148, 58218, 40}, {10246, 37624, 8148}


X(58236) = X(1)X(3)∩X(145)X(12811)

Barycentrics    a*(25*a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)+a*(-25*b^2+72*b*c-25*c^2)) : :
X(58236) = -36*X[1]+11*X[3], 9*X[145]+16*X[12811], 16*X[546]+9*X[34748], 18*X[1483]+7*X[50688], -11*X[1656]+6*X[51072], -14*X[3091]+9*X[50797], -34*X[3544]+9*X[12645], 16*X[3628]+9*X[50805], 2*X[3858]+3*X[51092], -121*X[5070]+96*X[51069], X[5073]+24*X[51071], -X[5076]+6*X[5734] and many others

X(58236) lies on these lines: {1, 3}, {145, 12811}, {546, 34748}, {1483, 50688}, {1656, 51072}, {3091, 50797}, {3544, 12645}, {3628, 50805}, {3858, 51092}, {5070, 51069}, {5073, 51071}, {5076, 5734}, {10595, 12812}, {12102, 18526}, {12108, 34631}, {13464, 50804}, {28212, 58195}, {35403, 51097}, {46930, 55861}

X(58236) = reflection of X(i) in X(j) for these {i,j}: {58224, 37624}
X(58236) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6/5
X(58236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58234}, {517, 37624, 58224}, {1482, 12702, 58241}, {1482, 58230, 8148}, {7982, 7991, 58244}, {7987, 35242, 58216}, {13624, 16200, 1482}, {58235, 58249, 3}


X(58237) = X(1)X(3)∩X(547)X(3626)

Barycentrics    a*(16*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)-2*a*(8*b^2-25*b*c+8*c^2)) : :
X(58237) = -25*X[1]+9*X[3], -9*X[547]+5*X[3626], 5*X[3244]+3*X[3845], 27*X[3545]+5*X[20050], -X[3621]+9*X[51709], -25*X[3634]+27*X[41985], -5*X[3636]+3*X[11812], -3*X[11001]+35*X[20057], -27*X[11539]+35*X[15808], -25*X[18481]+9*X[58204], 25*X[18526]+39*X[35402], -11*X[22791]+3*X[50862] and many others

X(58237) lies on these lines: {1, 3}, {516, 58201}, {547, 3626}, {3244, 3845}, {3545, 20050}, {3621, 51709}, {3634, 41985}, {3636, 11812}, {11001, 20057}, {11539, 15808}, {16239, 28234}, {18481, 58204}, {18526, 35402}, {22791, 50862}, {28154, 58206}, {28228, 41981}, {34773, 51120}, {38127, 41992}, {38335, 51087}

X(58237) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/4
X(58237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58233}, {3, 11278, 58244}, {3, 1482, 58241}, {1385, 3579, 58224}, {1482, 58230, 7982}, {10222, 16200, 33179}, {12702, 58221, 3579}, {13624, 31663, 58217}, {15178, 58216, 1385}, {31662, 58240, 11531}, {33179, 58240, 31662}


X(58238) = X(1)X(3)∩X(5)X(20052)

Barycentrics    a*(9*a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)+a*(-9*b^2+32*b*c-9*c^2)) : :
X(58238) = -16*X[1]+7*X[3], -14*X[5]+5*X[20052], 4*X[145]+5*X[3843], 7*X[381]+2*X[20049], 8*X[944]+X[49134], 8*X[962]+X[49139], 8*X[1483]+X[5073], -X[1657]+10*X[3623], 8*X[3241]+X[15684], -2*X[3621]+11*X[5072], -7*X[3654]+16*X[41150], 7*X[3656]+2*X[51096] and many others

X(58238) lies on these lines: {1, 3}, {5, 20052}, {145, 3843}, {381, 20049}, {516, 58202}, {944, 49134}, {952, 14269}, {962, 49139}, {1483, 5073}, {1597, 31948}, {1657, 3623}, {3241, 15684}, {3621, 5072}, {3654, 41150}, {3656, 51096}, {3830, 28224}, {3850, 20014}, {3851, 20054}, {4745, 5886}, {4746, 10175}, {5055, 5844}, {5070, 10595}, {5330, 16853}, {5603, 19709}, {5690, 55866}, {5734, 12645}, {5790, 34641}, {5901, 55860}, {6199, 35810}, {6395, 35811}, {6472, 49226}, {6473, 49227}, {6500, 35642}, {6501, 35641}, {7967, 15681}, {9690, 35763}, {9812, 18526}, {10283, 15694}, {12245, 46219}, {15685, 28178}, {15689, 28212}, {15695, 50872}, {15722, 50810}, {26446, 51109}, {28164, 51095}, {28232, 51071}, {28236, 34748}, {31253, 38127}, {35762, 43415}, {37712, 50806}, {48662, 51147}

X(58238) = midpoint of X(i) and X(j) for these {i,j}: {16191, 16200}, {7982, 30392}
X(58238) = reflection of X(i) in X(j) for these {i,j}: {1482, 16191}
X(58238) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4/3
X(58238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58232}, {1, 58247, 58222}, {165, 3576, 58219}, {517, 16191, 1482}, {1385, 3579, 58223}, {1482, 10246, 11224}, {1482, 12702, 58240}, {5603, 51515, 19709}, {10222, 10246, 10247}, {10222, 11224, 10246}, {10222, 58240, 30389}, {10246, 11224, 8148}, {10246, 58221, 58230}, {11224, 16200, 10222}, {16191, 16200, 517}, {30392, 58213, 3576}, {31666, 33179, 1}


X(58239) = X(1)X(3)∩X(3633)X(3839)

Barycentrics    a*(25*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-25*b^2+98*b*c-25*c^2)) : :
X(58239) = -49*X[1]+24*X[3], 19*X[3244]+6*X[50869], -14*X[3625]+39*X[5068], -11*X[3632]+36*X[38076], 7*X[3633]+18*X[3839], -7*X[4668]+12*X[5071], -X[4816]+6*X[5734], 16*X[18483]+9*X[34747], 13*X[34595]+12*X[34631], 4*X[41869]+21*X[51094], -49*X[50811]+24*X[58200]

X(58239) lies on these lines: {1, 3}, {3244, 50869}, {3625, 5068}, {3632, 38076}, {3633, 3839}, {4668, 5071}, {4816, 5734}, {18483, 34747}, {34595, 34631}, {41869, 51094}, {50811, 58200}

X(58239) = reflection of X(i) in X(j) for these {i,j}: {58217, 1}
X(58239) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/5
X(58239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58231}, {1, 517, 58217}, {7987, 16189, 16200}, {7987, 35242, 58215}, {10222, 58241, 16192}, {11278, 58247, 7982}


X(58240) = X(1)X(3)∩X(5)X(4669)

Barycentrics    a*(4*a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-2*a*(2*b^2-9*b*c+2*c^2)) : :
X(58240) = -9*X[1]+5*X[3], -5*X[5]+3*X[4669], -9*X[8]+17*X[3544], -5*X[140]+6*X[51108], X[145]+X[22793], -5*X[355]+X[20053], X[382]+3*X[51093], -5*X[549]+7*X[51106], -X[550]+3*X[51071], -9*X[551]+7*X[14869], -5*X[632]+3*X[11362], -9*X[946]+7*X[3857] and many others

X(58240) lies on circumconic {{A, B, C, X(1320), X(31663)}} and these lines: {1, 3}, {5, 4669}, {8, 3544}, {30, 51091}, {140, 51108}, {145, 22793}, {355, 20053}, {382, 51093}, {516, 32900}, {518, 26200}, {519, 546}, {549, 51106}, {550, 51071}, {551, 14869}, {632, 11362}, {944, 28154}, {946, 3857}, {952, 12102}, {960, 51573}, {962, 11541}, {1386, 55708}, {1389, 56115}, {1483, 28146}, {1829, 26863}, {2800, 38631}, {2809, 38630}, {3090, 5734}, {3091, 3656}, {3241, 3529}, {3525, 50821}, {3530, 51103}, {3625, 38034}, {3627, 4301}, {3628, 3828}, {3632, 38140}, {3654, 10303}, {3655, 17538}, {3679, 5079}, {3680, 4930}, {3851, 4677}, {3877, 17544}, {4678, 5603}, {4691, 9956}, {4701, 5844}, {4745, 35018}, {4867, 11524}, {4870, 5559}, {5072, 11522}, {5076, 31162}, {5493, 50824}, {5690, 51073}, {5777, 26088}, {5881, 50805}, {5882, 15704}, {5886, 46933}, {5901, 19878}, {9589, 49137}, {9624, 34718}, {10595, 11231}, {11230, 12245}, {11526, 15008}, {12103, 28194}, {12108, 43174}, {13607, 28212}, {15681, 51097}, {15687, 51096}, {15720, 51105}, {16491, 55701}, {16496, 55724}, {17504, 51104}, {18480, 20014}, {20070, 58195}, {25485, 51525}, {31399, 50823}, {31425, 51084}, {31439, 35810}, {31447, 50810}, {34200, 51107}, {38022, 41992}, {38076, 50830}, {38083, 50817}, {41991, 50796}, {47478, 51070}, {49135, 51092}, {49136, 51087}, {49139, 51094}, {49465, 52987}, {50693, 50872}, {51110, 55863}

X(58240) = midpoint of X(i) and X(j) for these {i,j}: {145, 22793}, {1385, 8148}, {1482, 11278}, {15687, 51096}, {3579, 11531}, {34631, 51709}, {7982, 10222}
X(58240) = reflection of X(i) in X(j) for these {i,j}: {13624, 33179}, {15178, 10222}, {31662, 10247}, {31663, 1}, {34200, 51107}, {5777, 26088}
X(58240) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3/2
X(58240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58230}, {1, 517, 31663}, {1, 58247, 3579}, {3, 1482, 16189}, {165, 3576, 58218}, {517, 10222, 15178}, {517, 33179, 13624}, {1385, 3579, 58221}, {1385, 8148, 517}, {1482, 11224, 11278}, {1482, 12702, 58238}, {1482, 7982, 10222}, {1482, 8148, 16200}, {5048, 11280, 50193}, {7982, 16189, 3}, {7982, 7991, 8148}, {7987, 58222, 17502}, {10222, 11278, 7982}, {10222, 15178, 33179}, {10222, 58245, 58232}, {10246, 58250, 40}, {11531, 58237, 31662}, {13624, 31663, 58216}, {13624, 58234, 1385}, {16200, 58221, 10247}, {58229, 58245, 7991}


X(58241) = X(1)X(3)∩X(3632)X(3832)

Barycentrics    a*(9*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-9*b^2+50*b*c-9*c^2)) : :
X(58241) = -25*X[1]+16*X[3], X[1699]+2*X[34631], -10*X[3244]+X[5059], -5*X[3632]+14*X[3832], X[3633]+2*X[9812], -8*X[3817]+5*X[4668], -8*X[3845]+5*X[37712], -5*X[4677]+8*X[38155], -13*X[5067]+10*X[38127], -8*X[5603]+5*X[51066], 25*X[9589]+2*X[58208], -25*X[18481]+16*X[58201] and many others

X(58241) lies on these lines: {1, 3}, {516, 58204}, {1699, 34631}, {3244, 5059}, {3543, 28236}, {3545, 28234}, {3632, 3832}, {3633, 9812}, {3817, 4668}, {3845, 37712}, {4677, 38155}, {5067, 38127}, {5603, 51066}, {9589, 58208}, {11001, 28232}, {18481, 58201}, {18526, 35405}, {28164, 51093}, {28212, 58199}, {28216, 34628}, {28224, 50865}, {50872, 51097}, {51071, 51081}, {51096, 51119}

X(58241) = midpoint of X(i) and X(j) for these {i,j}: {11531, 30392}, {58221, 58243}
X(58241) = reflection of X(i) in X(j) for these {i,j}: {1, 16191}, {16191, 11224}, {30392, 16200}
X(58241) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/3
X(58241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58229}, {3, 11531, 58248}, {3, 1482, 58237}, {3, 30392, 58227}, {165, 11224, 1482}, {165, 3576, 58217}, {517, 11224, 16191}, {517, 16200, 30392}, {1482, 12702, 58236}, {3576, 16200, 33179}, {7982, 11278, 11531}, {7982, 7991, 58242}, {10222, 16192, 1}, {11224, 11531, 16200}, {11278, 16200, 11224}, {11531, 30392, 517}, {16191, 58243, 58221}, {16192, 58239, 10222}


X(58242) = X(1)X(3)∩X(4745)X(15022)

Barycentrics    a*(25*a^3-81*a^2*(b+c)+81*(b-c)^2*(b+c)+a*(-25*b^2+162*b*c-25*c^2)) : :
X(58242) = -81*X[1]+56*X[3], 7*X[3146]+18*X[51096], -108*X[4745]+133*X[15022], -32*X[12812]+27*X[51066], -4*X[17538]+9*X[51097], 11*X[20049]+14*X[50862], -31*X[34641]+56*X[51076], -2*X[49140]+27*X[51093]

X(58242) lies on these lines: {1, 3}, {3146, 51096}, {4745, 15022}, {12812, 51066}, {17538, 51097}, {20049, 50862}, {34641, 51076}, {49140, 51093}

X(58242) = reflection of X(i) in X(j) for these {i,j}: {58229, 16189}
X(58242) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=9/5
X(58242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58227}, {517, 16189, 58229}, {7982, 7991, 58241}, {7987, 35242, 58213}, {11224, 11531, 3579}


X(58243) = X(1)X(3)∩X(3855)X(4668)

Barycentrics    a*(9*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-9*b^2+98*b*c-9*c^2)) : :
X(58243) = -49*X[1]+40*X[3], 7*X[3633]+2*X[49135], -44*X[3855]+35*X[4668], -31*X[4669]+40*X[51076], -56*X[4691]+65*X[5068], -25*X[17578]+7*X[20053]

X(58243) lies on these lines: {1, 3}, {516, 58205}, {3633, 49135}, {3855, 4668}, {4669, 51076}, {4691, 5068}, {17578, 20053}, {28150, 34747}, {28212, 58200}

X(58243) = midpoint of X(i) and X(j) for these {i,j}: {16191, 58245}
X(58243) = reflection of X(i) in X(j) for these {i,j}: {30392, 7982}, {58221, 58241}
X(58243) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/3
X(58243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58225}, {1, 58213, 30392}, {165, 3576, 58215}, {517, 58241, 58221}, {1482, 12702, 58235}, {7982, 58248, 16192}, {16189, 31663, 1}, {16191, 58245, 517}, {16192, 58245, 58248}, {17502, 58234, 58230}, {58221, 58241, 16191}


X(58244) = X(1)X(3)∩X(145)X(58204)

Barycentrics    a*(4*a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)+a*(-4*b^2+50*b*c-4*c^2)) : :
X(58244) = -25*X[1]+21*X[3], -25*X[145]+9*X[58204], -5*X[3244]+3*X[15686], -21*X[3543]+5*X[20054], -5*X[3626]+6*X[3850], -5*X[3632]+9*X[38335], -10*X[3636]+9*X[41983], -21*X[3656]+17*X[46932], -7*X[3845]+5*X[34641], -6*X[4745]+7*X[9955], -6*X[4746]+7*X[18357], -7*X[6361]+15*X[51092] and many others

X(58244) lies on these lines: {1, 3}, {145, 58204}, {516, 58206}, {3244, 15686}, {3543, 20054}, {3626, 3850}, {3632, 38335}, {3636, 41983}, {3656, 46932}, {3845, 34641}, {3853, 28234}, {4745, 9955}, {4746, 18357}, {6361, 51092}, {13607, 41981}, {15690, 51095}, {18480, 20052}, {20049, 28208}, {20050, 33703}, {22791, 38076}, {28154, 58208}, {28198, 51096}, {28212, 58201}, {28647, 47746}, {31253, 41985}, {31673, 51120}, {32900, 58199}, {33697, 50871}

X(58244) = midpoint of X(i) and X(j) for these {i,j}: {13624, 58246}
X(58244) = reflection of X(i) in X(j) for these {i,j}: {31663, 7982}
X(58244) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5/2
X(58244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58224}, {3, 11278, 58237}, {3, 33179, 58234}, {517, 7982, 31663}, {1385, 3579, 58217}, {1482, 12702, 58233}, {7982, 58221, 1482}, {7982, 7991, 58236}, {11531, 58245, 16200}, {13624, 58246, 517}, {15178, 16200, 33179}


X(58245) = X(1)X(3)∩X(4)X(4677)

Barycentrics    a*(a^3-9*a^2*(b+c)+9*(b-c)^2*(b+c)-a*(b^2-18*b*c+c^2)) : :
X(58245) = -9*X[1]+8*X[3], -4*X[4]+3*X[4677], -16*X[5]+15*X[51066], -9*X[8]+11*X[50689], -18*X[10]+19*X[15022], -2*X[20]+3*X[51093], -4*X[376]+5*X[51097], -8*X[546]+9*X[31162], -16*X[550]+21*X[51094], -20*X[631]+21*X[51110], -10*X[632]+9*X[3654], -18*X[946]+17*X[3544] and many others

X(58245) lies on these lines: {1, 3}, {4, 4677}, {5, 51066}, {8, 50689}, {10, 15022}, {20, 51093}, {145, 28228}, {376, 51097}, {388, 8275}, {515, 11541}, {516, 3633}, {519, 3146}, {546, 31162}, {550, 51094}, {631, 51110}, {632, 3654}, {758, 11519}, {946, 3544}, {950, 16236}, {960, 11530}, {962, 3632}, {1698, 46936}, {1699, 4668}, {3090, 11362}, {3091, 3679}, {3241, 5493}, {3244, 20070}, {3522, 51071}, {3523, 51105}, {3525, 9588}, {3529, 28194}, {3621, 51118}, {3623, 12512}, {3625, 9812}, {3627, 5881}, {3628, 3656}, {3635, 9778}, {3655, 44245}, {3680, 44663}, {3681, 32634}, {3832, 4669}, {3854, 51072}, {3857, 5587}, {3868, 12127}, {3869, 4915}, {3877, 17546}, {3951, 4853}, {3984, 4882}, {4005, 11379}, {4678, 12571}, {4691, 9779}, {4745, 5068}, {4746, 54448}, {4866, 31165}, {5072, 30308}, {5079, 30315}, {5250, 17543}, {5657, 34595}, {5690, 7988}, {5691, 28234}, {5731, 58195}, {5734, 10303}, {5844, 41869}, {5882, 17538}, {5886, 55861}, {6048, 10563}, {6264, 38631}, {6326, 38629}, {6488, 9615}, {7989, 12811}, {9582, 35810}, {9614, 30286}, {9620, 41940}, {10248, 20052}, {10541, 16491}, {11512, 52181}, {11528, 55169}, {12102, 12699}, {12103, 50811}, {12653, 12767}, {13253, 38665}, {13541, 38685}, {15104, 45776}, {15683, 51096}, {15704, 34628}, {15705, 51104}, {15717, 51103}, {16126, 33557}, {16490, 37501}, {16496, 53097}, {17544, 19860}, {17852, 44636}, {18594, 22356}, {19546, 36634}, {19647, 42043}, {20050, 28164}, {21872, 52705}, {26446, 55862}, {28198, 49137}, {28204, 49136}, {28212, 58203}, {31145, 51120}, {33535, 38626}, {34773, 58196}, {38671, 52182}, {40663, 50444}, {41991, 50823}, {49465, 55614}, {50797, 50817}, {50813, 51077}, {50821, 55858}, {51709, 55857}

X(58245) = midpoint of X(i) and X(j) for these {i,j}: {1482, 58247}
X(58245) = reflection of X(i) in X(j) for these {i,j}: {1, 11531}, {12767, 12653}, {15683, 51096}, {16191, 58243}, {20070, 3244}, {3621, 51118}, {3632, 962}, {3679, 50872}, {31145, 51120}, {40, 8148}, {55169, 11528}, {7991, 7982}
X(58245) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=3
X(58245) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1420), X(41446)}}, {{A, B, C, X(4900), X(16192)}}, {{A, B, C, X(53056), X(56152)}}
X(58245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58221}, {1, 58241, 1482}, {3, 58229, 58225}, {3, 7982, 16189}, {40, 10222, 30389}, {40, 13624, 165}, {40, 8148, 11224}, {165, 3576, 58213}, {165, 58217, 16192}, {517, 58243, 16191}, {517, 7982, 7991}, {517, 8148, 40}, {1385, 3579, 58216}, {1385, 58224, 3576}, {1482, 12702, 58230}, {1482, 58247, 517}, {3579, 58220, 35242}, {5734, 43174, 25055}, {7991, 11531, 7982}, {7991, 16189, 3}, {7991, 58240, 58229}, {8148, 58250, 12702}, {10222, 30389, 1}, {10246, 58228, 1385}, {11224, 11531, 8148}, {11224, 30389, 10222}, {11362, 11522, 19875}, {12702, 16200, 7987}, {12702, 58233, 3579}, {13464, 50810, 9588}, {16200, 58244, 11531}


X(58246) = X(1)X(3)∩X(4691)X(5066)

Barycentrics    a*(4*a^3-49*a^2*(b+c)+49*(b-c)^2*(b+c)+a*(-4*b^2+98*b*c-4*c^2)) : :
X(58246) = -49*X[1]+45*X[3], -29*X[3621]+45*X[50863], -7*X[3625]+9*X[15687], -14*X[4691]+15*X[5066], -15*X[15682]+7*X[20053], -6*X[15691]+7*X[32900]

X(58246) lies on these lines: {1, 3}, {3621, 50863}, {3625, 15687}, {4691, 5066}, {15682, 20053}, {15691, 32900}, {20014, 28208}, {20050, 28202}

X(58246) = midpoint of X(i) and X(j) for these {i,j}: {3579, 58248}
X(58246) = reflection of X(i) in X(j) for these {i,j}: {13624, 58244}
X(58246) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=7/2
X(58246) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58220}, {517, 58244, 13624}, {1385, 3579, 58215}, {1482, 12702, 58228}, {3576, 8148, 11278}, {3579, 58248, 517}, {7982, 7991, 58235}, {8148, 12702, 16189}, {58216, 58240, 33179}


X(58247) = X(1)X(3)∩X(8)X(14269)

Barycentrics    a*(a^3-16*a^2*(b+c)+16*(b-c)^2*(b+c)-a*(b^2-32*b*c+c^2)) : :
X(58247) = -16*X[1]+15*X[3], -8*X[8]+9*X[14269], -4*X[145]+3*X[15681], -15*X[381]+14*X[4678], -3*X[382]+2*X[3621], -4*X[962]+3*X[51515], -20*X[3617]+21*X[3851], -28*X[3622]+27*X[15707], -10*X[3623]+9*X[15688], -15*X[3654]+16*X[19878], -17*X[3655]+16*X[51081], -15*X[3656]+14*X[51073] and many others

X(58247) lies on these lines: {1, 3}, {8, 14269}, {30, 20014}, {145, 15681}, {381, 4678}, {382, 3621}, {516, 58207}, {952, 49134}, {962, 51515}, {3617, 3851}, {3622, 15707}, {3623, 15688}, {3654, 19878}, {3655, 51081}, {3656, 51073}, {3828, 18493}, {3830, 31145}, {4669, 18483}, {4701, 12699}, {4816, 22793}, {5073, 5844}, {5603, 55860}, {5657, 55866}, {6361, 50805}, {9690, 44635}, {15684, 20053}, {15685, 18526}, {15687, 20052}, {15689, 34631}, {15703, 19877}, {17800, 28212}, {18525, 50804}, {19709, 22791}, {20050, 28174}, {28154, 58209}, {31730, 51091}, {31948, 55570}, {34748, 58202}, {43415, 44636}, {46934, 55863}

X(58247) = reflection of X(i) in X(j) for these {i,j}: {1482, 58245}
X(58247) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=4
X(58247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58219}, {3, 58233, 58228}, {517, 58245, 1482}, {1385, 3579, 58214}, {1482, 12702, 13624}, {3579, 58240, 1}, {7982, 58239, 11278}, {7982, 7991, 58232}, {11531, 58221, 7982}, {31663, 58232, 17502}


X(58248) = X(1)X(3)∩X(8)X(51120)

Barycentrics    a*(a^3-25*a^2*(b+c)+25*(b-c)^2*(b+c)-a*(b^2-50*b*c+c^2)) : :
X(58248) = -25*X[1]+24*X[3], -5*X[8]+6*X[51120], -6*X[962]+5*X[4816], -5*X[1698]+6*X[50872], -13*X[3244]+12*X[51080], -6*X[3543]+5*X[3632], -21*X[3545]+20*X[50827], -2*X[3621]+3*X[9589], -49*X[3622]+48*X[51086], -20*X[3626]+21*X[3832], -25*X[3633]+18*X[58204], -25*X[3656]+24*X[41985] and many others

X(58248) lies on circumconic {{A, B, C, X(16192), X(31509)}} and these lines: {1, 3}, {8, 51120}, {516, 58208}, {962, 4816}, {1698, 50872}, {3244, 51080}, {3543, 3632}, {3545, 50827}, {3621, 9589}, {3622, 51086}, {3626, 3832}, {3633, 58204}, {3656, 41985}, {3853, 37712}, {4668, 18483}, {5059, 20050}, {5529, 52182}, {11001, 34747}, {15690, 51094}, {22791, 51066}, {28212, 58206}, {28234, 33703}, {34595, 50810}, {34628, 50831}, {34632, 51083}, {37705, 50865}, {38335, 50817}, {50811, 58199}

X(58248) = reflection of X(i) in X(j) for these {i,j}: {3579, 58246}
X(58248)= pole of line {21, 58231} with respect to the Stammler hyperbola
X(58248) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=5
X(58248) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3, 58231}, {1, 40, 58217}, {3, 11531, 58241}, {40, 31666, 165}, {517, 58246, 3579}, {1482, 12702, 58224}, {7982, 7991, 58229}, {7991, 11531, 16200}, {11531, 30392, 7982}, {16191, 58217, 1}, {16192, 58229, 58221}, {16192, 58245, 58243}


X(58249) = X(1)X(3)∩X(3843)X(4669)

Barycentrics    a*(a^3-36*a^2*(b+c)+36*(b-c)^2*(b+c)-a*(b^2-72*b*c+c^2)) : :
X(58249) = -36*X[1]+35*X[3], -14*X[550]+15*X[51092], -55*X[3091]+54*X[38081], -7*X[3529]+9*X[20049], -10*X[3627]+9*X[31145], -8*X[3628]+9*X[50872], -25*X[3843]+24*X[4669], -49*X[3851]+48*X[4745], -55*X[5072]+54*X[53620], -8*X[12103]+9*X[50805], -100*X[12812]+99*X[46933], -7*X[15681]+8*X[51096] and many others

X(58249) lies on these lines: {1, 3}, {550, 51092}, {3091, 38081}, {3529, 20049}, {3627, 31145}, {3628, 50872}, {3843, 4669}, {3851, 4745}, {5072, 53620}, {5844, 11541}, {12103, 50805}, {12812, 46933}, {15681, 51096}, {15689, 51091}, {15704, 34748}, {15707, 41150}, {15718, 51106}, {18526, 58203}, {20014, 28212}, {20052, 50688}, {34631, 44245}, {38138, 50689}, {50810, 55858}, {51109, 55863}

X(58249) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=6
X(58249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58216}, {3, 58236, 58235}, {1482, 12702, 58221}, {1482, 58233, 10247}, {7982, 16192, 10222}, {7982, 7991, 13624}, {10247, 13624, 37624}, {12702, 16189, 3}, {37624, 58220, 58230}


X(58250) = X(1)X(3)∩X(516)X(58209)

Barycentrics    a*(a^3-64*a^2*(b+c)+64*(b-c)^2*(b+c)-a*(b^2-128*b*c+c^2)) : :
X(58250) = -64*X[1]+63*X[3], -8*X[3621]+9*X[15684], -21*X[3830]+20*X[20052], -7*X[15685]+8*X[20049], -31*X[34718]+32*X[51076], -16*X[50818]+15*X[58202]

X(58250) lies on these lines: {1, 3}, {516, 58209}, {3621, 15684}, {3830, 20052}, {15685, 20049}, {28212, 58207}, {34718, 51076}, {50818, 58202}

X(58250) = radical center of circles (A, t*sa), (B, t*sb), (C, t*sc) for t=8
X(58250) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 58214}, {40, 58240, 10246}, {1482, 12702, 58219}, {7982, 7991, 58223}, {12702, 58245, 8148}


X(58251) = X(6)X(39112)∩X(25)X(52)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*(a^8 - 2*a^6*b^2 + 4*a^4*b^4 - 6*a^2*b^6 + 3*b^8 - 4*a^6*c^2 + 2*a^4*b^2*c^2 - 6*b^6*c^2 + 6*a^4*c^4 + 2*a^2*b^2*c^4 + 4*b^4*c^4 - 4*a^2*c^6 - 2*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 2*b^6*c^2 + 4*a^4*c^4 + 4*b^4*c^4 - 6*a^2*c^6 - 6*b^2*c^6 + 3*c^8) : :

X(58251) lies on the cubic K350 and these lines: {6, 39112}, {25, 52}, {53, 41524}, {3542, 39115}

See HGT (2023)

X(58251) = isogonal conjugate of the isotomic conjugate of X(39115)
X(58251) = X(i)-isoconjugate of X(j) for these (i,j): {921, 6193}, {2169, 39117}
X(58251) = X(14363)-Dao conjugate of X(39117)
X(58251) = barycentric product X(i)*X(j) for these {i,j}: {6, 39115}, {1609, 55031}, {6515, 34428}, {39110, 39116}, {40697, 41525}
X(58251) = barycentric quotient X(i)/X(j) for these {i,j}: {53, 39117}, {1609, 6193}, {34428, 6504}, {39110, 57484}, {39115, 76}, {41525, 254}, {47731, 40698}


X(58252) = X(3)X(76)∩X(5191)X(51474)

Barycentrics    b^2*c^2*(-2*a^6 + 2*a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)^3 : :

X(58252) lies on the cubic K244 and these lines: {3, 76}, {5191, 51474}, {23097, 23105}, {23106, 23107}

X(58252) = isotomic conjugate of the isogonal conjugate of X(46048)
X(58252) = X(542)-Dao conjugate of X(842)
X(58252) = barycentric product X(76)*X(46048)
X(58252) = barycentric quotient X(i)/X(j) for these {i,j}: {23967, 842}, {46048, 6}


X(58253) = X(76)X(35518)∩X(271)X(521)

Barycentrics    a*(a - b - c)^3*(b - c)^3*(a^2 - b^2 - c^2)^3 : :

X(58253) lies on the cubic K244 and these lines: {76, 35518}, {271, 521}, {1946, 39167}, {4163, 56942}, {15411, 51978}, {52565, 52616}

X(58253) = isotomic conjugate of the isogonal conjugate of X(23614)
X(58253) = X(35518)-Ceva conjugate of X(23983)
X(58253) = X(i)-isoconjugate of X(j) for these (i,j): {108, 24033}, {653, 23985}, {23984, 32674}
X(58253) = X(i)-Dao conjugate of X(j) for these (i,j): {521, 108}, {656, 36127}, {3239, 54240}, {35072, 23984}, {38983, 24033}, {40626, 24032}
X(58253) = barycentric product X(i)*X(j) for these {i,j}: {76, 23614}, {521, 23983}, {1102, 23615}, {1364, 15416}, {6332, 24031}, {6507, 23104}, {16731, 52355}, {17880, 57057}, {23107, 23609}, {34591, 52616}, {35072, 35518}
X(58253) = barycentric quotient X(i)/X(j) for these {i,j}: {521, 23984}, {652, 24033}, {1364, 32714}, {1946, 23985}, {2638, 32674}, {2968, 54240}, {6332, 24032}, {7215, 4617}, {23104, 6521}, {23614, 6}, {23615, 6520}, {23983, 18026}, {24031, 653}, {34591, 36127}, {35072, 108}, {35518, 57538}, {57057, 7012}, {57241, 7128}


X(58254) = X(10)X(75)∩X(902)X(57506)

Barycentrics    b^2*c^2*(-2*a + b + c)^3 : :

X(58254) lies on the cubic K244 and these lines: {10, 75}, {902, 57506}, {1647, 3992}, {4723, 51975}, {4738, 36791}, {14507, 52627}, {23869, 46937}

X(58254) = isotomic conjugate of the isogonal conjugate of X(8028)
X(58254) = X(3264)-Ceva conjugate of X(36791)
X(58254) = X(i)-isoconjugate of X(j) for these (i,j): {88, 41935}, {667, 39414}, {1318, 1417}, {2226, 9456}
X(58254) = X(i)-Dao conjugate of X(j) for these (i,j): {519, 106}, {900, 43922}, {1647, 23345}, {4370, 2226}, {6631, 39414}, {52871, 1318}
X(58254) = crossdifference of every pair of points on line {1919, 41935}
X(58254) = barycentric product X(i)*X(j) for these {i,j}: {76, 8028}, {519, 36791}, {1978, 33922}, {3264, 4370}, {3992, 16729}, {4358, 4738}, {17780, 52627}
X(58254) = barycentric quotient X(i)/X(j) for these {i,j}: {190, 39414}, {519, 2226}, {678, 9456}, {902, 41935}, {2325, 1318}, {3264, 54974}, {3992, 30575}, {4152, 2316}, {4358, 679}, {4370, 106}, {4738, 88}, {6544, 23345}, {8028, 6}, {14637, 3249}, {17780, 4638}, {22371, 32659}, {24004, 4618}, {33922, 649}, {35092, 43922}, {36791, 903}, {42070, 8752}, {46050, 21143}, {52627, 6548}, {53582, 901}


X(58255) = X(76)X(690)∩X(882)X(43665)

Barycentrics    b^2*c^2*(b^2 - c^2)^3*(-a^2 + b*c)^3*(a^2 + b*c)^3 : :

X(58255) lies on the cubic K244 and these lines: {76, 690}, {882, 43665}, {5027, 14382}, {23099, 23105}

X(58255) = X(804)-Dao conjugate of X(805)
X(58255) = barycentric product X(14295)*X(35078)
X(58255) = barycentric quotient X(i)/X(j) for these {i,j}: {14295, 57558}, {35078, 805}


X(58256) = X(20)X(76)∩X(2409)X(34156)

Barycentrics    b^2*c^2*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6)^3 : :

X(58256) lies on the cubic K244 and these lines: {20, 76}, {2409, 34156}, {2848, 41079}, {14376, 53844}

X(58256) = X(1503)-Dao conjugate of X(1297)
X(58256) = barycentric product X(23976)*X(30737)
X(58256) = barycentric quotient X(i)/X(j) for these {i,j}: {15639, 44770}, {23976, 1297}, {30737, 57549}


X(58257) = X(1553)X(23097)∩X(5489)X(23107)

Barycentrics    b^2*c^2(b^2 - c^2)^3*(-a^2 + b^2 + c^2)^3*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)^3 : :

X(58257) lies on the cubic K244 and these lines: {1553, 23097}, {5489, 23107}, {9409, 51346}, {47111, 58085}, {51254, 53235}

X(58257) = X(i)-Dao conjugate of X(j) for these (i,j): {9033, 1304}, {14401, 34568}
X(58257) = crossdifference of every pair of points on line {40353, 41937}
X(58257) = barycentric product X(i)*X(j) for these {i,j}: {1650, 52624}, {3081, 23107}, {23097, 23616}
X(58257) = barycentric quotient X(i)/X(j) for these {i,j}: {1650, 34568}, {39008, 1304}, {52624, 42308}


X(58258) = X(39)X(14376)∩X(115)X(127)

Barycentrics    b^2*c^2*(b^2 - c^2)^2*(-a^2 + b^2 + c^2)^2*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(58258) lies on the cubic K583 and these lines: {39, 14376}, {115, 127}, {122, 36793}, {253, 264}, {5489, 23107}, {14919, 18019}, {41009, 44155}

X(58258) = X(i)-isoconjugate of X(j) for these (i,j): {112, 36046}, {162, 32649}, {163, 32687}, {1576, 36092}, {8767, 57655}, {32676, 44770}
X(58258) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 32687}, {125, 32649}, {525, 1297}, {647, 43717}, {4858, 36092}, {14401, 51937}, {15526, 44770}, {15595, 250}, {23285, 6330}, {23976, 23964}, {33504, 112}, {34591, 36046}, {39071, 57655}, {41167, 51822}
X(58258) = crossdifference of every pair of points on line {1576, 32649}
X(58258) = barycentric product X(i)*X(j) for these {i,j}: {339, 441}, {850, 39473}, {1503, 36793}, {2409, 23107}, {15526, 30737}, {41530, 57296}
X(58258) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 43717}, {339, 6330}, {441, 250}, {523, 32687}, {525, 44770}, {647, 32649}, {656, 36046}, {1503, 23964}, {1577, 36092}, {1650, 51937}, {5489, 34212}, {8779, 57655}, {15526, 1297}, {20902, 8767}, {23107, 2419}, {23616, 2435}, {30737, 23582}, {36793, 35140}, {39473, 110}, {41172, 51822}, {42671, 41937}, {57296, 154}, {57426, 8744}, {57430, 34854}


X(58259) = X(116)X(2973)∩X(158)X(273)

Barycentrics    b^2*c^2*(b - c)^2*(-2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3) : :

X(58259) lies on the cubic K583 and these lines: {116, 2973}, {158, 273}, {1565, 53564}, {4077, 35015}, {14377, 40955}, {14505, 23100}, {38372, 42757}

X(58259) = X(i)-isoconjugate of X(j) for these (i,j): {100, 32642}, {101, 36039}, {103, 1110}, {677, 692}, {906, 40116}, {911, 1252}, {2149, 2338}, {6066, 43736}, {23990, 36101}
X(58259) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 103}, {650, 2338}, {661, 911}, {676, 2340}, {1015, 36039}, {1086, 677}, {1566, 101}, {5190, 40116}, {6544, 45144}, {8054, 32642}, {23972, 1252}, {50441, 6065}
X(58259) = crossdifference of every pair of points on line {23990, 32642}
X(58259) = barycentric product X(i)*X(j) for these {i,j}: {516, 23989}, {676, 3261}, {1086, 35517}, {1111, 30807}, {2398, 23100}, {2973, 26006}, {14953, 21207}, {24015, 42455}, {34387, 43035}, {39470, 46107}
X(58259) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 2338}, {244, 911}, {513, 36039}, {514, 677}, {516, 1252}, {649, 32642}, {676, 101}, {910, 1110}, {1086, 103}, {1111, 36101}, {1456, 2149}, {1565, 1815}, {1566, 2340}, {1647, 45144}, {2973, 52781}, {3261, 57928}, {3937, 32657}, {3942, 36056}, {6545, 2424}, {7649, 40116}, {14953, 4570}, {23100, 2400}, {23973, 4619}, {23989, 18025}, {30807, 765}, {35517, 1016}, {39470, 1331}, {40869, 6065}, {42719, 57731}, {42756, 2427}, {43035, 59}, {43932, 32668}, {57292, 1260}, {57439, 5526}


X(58260) = X(32)X(682)∩X(115)X(2971)

Barycentrics    a^4*(b^2 - c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(58260) lies on the cubic K583 and these lines: {25, 58070}, {32, 682}, {98, 17980}, {115, 2971}, {235, 6530}, {237, 14966}, {446, 511}, {647, 865}, {868, 33752}, {881, 2086}, {887, 1084}, {1648, 3005}, {2679, 38974}, {2882, 21444}, {3095, 21850}, {5661, 45900}, {6071, 21906}, {6374, 7752}, {7790, 38526}, {9993, 56920}, {10754, 36214}, {18114, 19130}, {39009, 48316}

X(58260) = isogonal conjugate of the isotomic conjugate of X(44114)
X(58260) = X(i)-Ceva conjugate of X(j) for these (i,j): {237, 2491}, {325, 3569}, {881, 23099}, {14601, 669}, {17980, 512}, {51441, 3124}
X(58260) = X(i)-isoconjugate of X(j) for these (i,j): {63, 41174}, {75, 57991}, {98, 24037}, {99, 36036}, {249, 46273}, {287, 46254}, {290, 24041}, {336, 18020}, {561, 57742}, {662, 43187}, {670, 36084}, {685, 55202}, {799, 2966}, {811, 17932}, {1101, 18024}, {1821, 4590}, {1910, 34537}, {2715, 4602}, {4592, 22456}, {6394, 23999}, {36104, 52608}, {36120, 47389}, {43754, 57968}, {46238, 57562}
X(58260) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 57991}, {512, 98}, {523, 18024}, {1084, 43187}, {2491, 3978}, {2679, 99}, {3005, 290}, {3162, 41174}, {5139, 22456}, {5976, 44168}, {11672, 34537}, {17423, 17932}, {21905, 52145}, {35088, 4609}, {38986, 36036}, {38987, 670}, {38996, 2966}, {39000, 52608}, {40368, 57742}, {40601, 4590}, {41167, 305}, {46094, 47389}, {55267, 1502}
X(58260) = crossdifference of every pair of points on line {670, 2966}
X(58260) = barycentric product X(i)*X(j) for these {i,j}: {6, 44114}, {25, 41172}, {32, 868}, {115, 237}, {125, 2211}, {232, 20975}, {325, 1084}, {338, 9418}, {351, 8430}, {511, 3124}, {512, 3569}, {523, 2491}, {647, 17994}, {669, 2799}, {684, 2489}, {694, 2679}, {1109, 9417}, {1648, 51980}, {1755, 2643}, {2086, 40810}, {2396, 23099}, {2421, 22260}, {2422, 41167}, {2501, 39469}, {2971, 36212}, {3049, 16230}, {3125, 5360}, {3269, 34854}, {3289, 8754}, {3708, 57653}, {4079, 53521}, {4117, 46238}, {5489, 34859}, {5968, 21906}, {6041, 23350}, {6071, 51229}, {6333, 57204}, {6393, 42068}, {6784, 51543}, {8029, 14966}, {8901, 52967}, {11672, 51441}, {14398, 32112}, {14601, 35088}, {15630, 36790}, {23216, 44132}, {32740, 51429}, {41221, 41270}, {43112, 47229}, {51428, 52199}, {52625, 52765}
X(58260) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 41174}, {32, 57991}, {115, 18024}, {237, 4590}, {325, 44168}, {511, 34537}, {512, 43187}, {669, 2966}, {684, 52608}, {798, 36036}, {868, 1502}, {881, 39291}, {1084, 98}, {1501, 57742}, {1645, 36822}, {1755, 24037}, {1924, 36084}, {2086, 14382}, {2211, 18020}, {2489, 22456}, {2491, 99}, {2643, 46273}, {2679, 3978}, {2799, 4609}, {2971, 16081}, {3049, 17932}, {3124, 290}, {3289, 47389}, {3569, 670}, {4117, 1910}, {5360, 4601}, {7063, 15628}, {8430, 53080}, {9417, 24041}, {9418, 249}, {9426, 2715}, {9427, 1976}, {14251, 39292}, {14601, 57562}, {14966, 31614}, {15630, 34536}, {17994, 6331}, {20975, 57799}, {21906, 52145}, {22260, 43665}, {23099, 2395}, {23216, 248}, {23610, 2422}, {39469, 4563}, {41172, 305}, {42068, 6531}, {44114, 76}, {47418, 12215}, {51441, 57541}, {51980, 52940}, {52631, 53196}, {53521, 52612}, {57204, 685}, {57653, 46254}
X(58260) = {X(5661),X(52471)}-harmonic conjugate of X(45900)


X(58261) = X(4)X(51)∩X(125)X(136)

Barycentrics    b^2*c^2*(b^2 - c^2)^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(58261) = 4 X[14254] - X[23097]

X(58261) lies on the cubic K583 and these lines: {2, 47213}, {4, 51}, {30, 14254}, {74, 6344}, {94, 9140}, {110, 18030}, {125, 136}, {137, 46658}, {290, 46111}, {402, 16319}, {403, 18279}, {427, 18121}, {523, 3134}, {850, 34765}, {868, 5489}, {1495, 4240}, {1650, 3258}, {2088, 14582}, {2790, 47208}, {3142, 45934}, {3154, 18039}, {3260, 9214}, {3471, 46114}, {5466, 43665}, {5642, 36789}, {7417, 57490}, {7418, 47207}, {10412, 12079}, {11059, 30775}, {11251, 51403}, {12077, 41172}, {13202, 18507}, {13417, 35360}, {13448, 57486}, {15454, 51394}, {15469, 39375}, {16311, 44227}, {30512, 52772}, {31105, 44422}, {36164, 58086}, {36188, 52603}, {41204, 53176}, {43085, 46858}, {43086, 46859}, {43089, 47146}, {45289, 52472}, {46423, 48377}, {47327, 53267}, {51481, 53161}, {55265, 55276}

X(58261) = reflection of X(16186) in X(3134)
X(58261) = reflection of X(16186) in the Euler line
X(58261) = X(i)-Ceva conjugate of X(j) for these (i,j): {3260, 41079}, {6344, 523}, {10412, 23105}, {46106, 1637}, {52552, 52624}
X(58261) = X(i)-isoconjugate of X(j) for these (i,j): {74, 1101}, {110, 36034}, {163, 44769}, {249, 2159}, {250, 35200}, {662, 32640}, {1304, 4575}, {1494, 23995}, {2349, 23357}, {4558, 36131}, {4592, 32715}, {6149, 15395}, {23963, 33805}, {24041, 40352}, {36119, 47390}, {36134, 36831}, {42308, 52430}
X(58261) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 44769}, {133, 250}, {136, 1304}, {137, 36831}, {244, 36034}, {523, 74}, {647, 14919}, {1084, 32640}, {1511, 47390}, {1637, 323}, {1649, 9717}, {3005, 40352}, {3163, 249}, {3258, 110}, {5139, 32715}, {8552, 52437}, {8562, 3470}, {9033, 51394}, {14401, 394}, {14993, 15395}, {18314, 1494}, {39008, 4558}, {55267, 35910}, {57295, 3}
X(58261) = crossdifference of every pair of points on line {23357, 32320}
X(58261) = barycentric product X(i)*X(j) for these {i,j}: {30, 338}, {94, 3258}, {115, 3260}, {125, 46106}, {339, 1990}, {523, 41079}, {850, 1637}, {1109, 14206}, {1495, 23962}, {1577, 36035}, {1650, 2052}, {1784, 20902}, {2173, 23994}, {2407, 23105}, {2643, 46234}, {2682, 18023}, {2970, 11064}, {5664, 10412}, {6070, 46789}, {9033, 14618}, {9214, 52628}, {11125, 52623}, {12079, 36789}, {14398, 44173}, {15526, 52661}, {18808, 52624}, {18817, 47414}, {23616, 58071}, {35235, 57482}
X(58261) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 249}, {115, 74}, {125, 14919}, {338, 1494}, {512, 32640}, {523, 44769}, {661, 36034}, {868, 35910}, {1109, 2349}, {1495, 23357}, {1637, 110}, {1640, 51262}, {1648, 9717}, {1650, 394}, {1989, 15395}, {1990, 250}, {2052, 42308}, {2088, 14385}, {2173, 1101}, {2489, 32715}, {2501, 1304}, {2631, 4575}, {2643, 2159}, {2682, 187}, {2970, 16080}, {2971, 40354}, {3124, 40352}, {3258, 323}, {3260, 4590}, {3284, 47390}, {3708, 35200}, {4092, 15627}, {4240, 47443}, {5664, 10411}, {6070, 46788}, {8029, 2433}, {8754, 8749}, {9033, 4558}, {9406, 23995}, {9407, 23963}, {9409, 32661}, {10412, 39290}, {10413, 3470}, {11125, 4556}, {12077, 36831}, {12079, 40384}, {14206, 24041}, {14254, 39295}, {14391, 23181}, {14398, 1576}, {14400, 4636}, {14581, 57655}, {14618, 16077}, {15454, 18879}, {18808, 34568}, {20975, 18877}, {23105, 2394}, {23994, 33805}, {35235, 57487}, {35906, 57742}, {36035, 662}, {39008, 51394}, {39691, 46147}, {41079, 99}, {42068, 40351}, {46106, 18020}, {46234, 24037}, {47414, 22115}, {51428, 48451}, {52628, 36890}, {52661, 23582}, {52743, 52603}, {53178, 30528}, {55265, 15329}, {55276, 46587}, {56645, 9273}, {57424, 44436}
X(58261) = {X(39240),X(39241)}-harmonic conjugate of X(125)


X(58262) = X(39)X(512)∩X(51)X(647)

Barycentrics    a^4*(b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)^2 : :
X(58262) = X[23099] - 4 X[45911], 3 X[262] - X[43665]

X(58262) lies on the cubic K583 and these lines: {6, 878}, {32, 39201}, {39, 512}, {51, 647}, {114, 132}, {184, 669}, {262, 523}, {351, 51335}, {525, 3095}, {804, 38383}, {826, 3574}, {1649, 16186}, {2491, 9419}, {2679, 38974}, {2881, 38652}, {3001, 18311}, {3005, 8029}, {3049, 40823}, {3265, 57518}, {6072, 23098}, {6785, 34291}, {7752, 44173}, {9409, 9475}, {9737, 22089}, {14443, 21731}, {20968, 34952}, {23103, 39265}, {23611, 33569}, {23878, 44422}, {42665, 55265}, {46953, 50649}

X(58262) = reflection of X(i) in X(j) for these {i,j}: {9420, 2491}, {23099, 34347}, {34347, 45911}, {39201, 52590}
X(58262) = isogonal conjugate of the isotomic conjugate of X(41167)
X(58262) = X(i)-Ceva conjugate of X(j) for these (i,j): {523, 3569}, {1576, 237}, {3613, 868}
X(58262) = X(i)-isoconjugate of X(j) for these (i,j): {75, 41173}, {98, 36036}, {163, 57541}, {290, 36084}, {293, 22456}, {336, 685}, {662, 34536}, {799, 41932}, {811, 47388}, {1577, 57562}, {1821, 2966}, {1910, 43187}, {1966, 18858}, {2715, 46273}, {17932, 36120}, {36104, 57799}
X(58262) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 57541}, {132, 22456}, {206, 41173}, {511, 99}, {1084, 34536}, {2679, 98}, {2799, 44173}, {9467, 18858}, {11672, 43187}, {17423, 47388}, {35088, 18024}, {38987, 290}, {38996, 41932}, {39000, 57799}, {39469, 39201}, {40601, 2966}, {41172, 76}, {46094, 17932}, {57294, 3}
X(58262) = crossdifference of every pair of points on line {248, 290}
X(58262) = barycentric product X(i)*X(j) for these {i,j}: {6, 41167}, {232, 684}, {237, 2799}, {262, 33569}, {297, 39469}, {325, 2491}, {511, 3569}, {512, 36790}, {520, 51334}, {523, 11672}, {647, 2967}, {661, 23996}, {669, 32458}, {850, 9419}, {868, 14966}, {882, 46888}, {1355, 3700}, {1576, 35088}, {1577, 42075}, {2211, 6333}, {2395, 23098}, {2421, 44114}, {3124, 15631}, {3289, 16230}, {4230, 41172}, {4705, 16725}, {7062, 7178}, {8430, 9155}, {9420, 46807}, {17994, 36212}, {23611, 43665}, {34157, 55267}, {36425, 44173}, {36426, 39201}, {51229, 55143}
X(58262) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 41173}, {232, 22456}, {237, 2966}, {511, 43187}, {512, 34536}, {523, 57541}, {669, 41932}, {684, 57799}, {1355, 4573}, {1576, 57562}, {1755, 36036}, {2211, 685}, {2491, 98}, {2799, 18024}, {2967, 6331}, {3049, 47388}, {3289, 17932}, {3569, 290}, {4230, 41174}, {7062, 645}, {9417, 36084}, {9418, 2715}, {9419, 110}, {9420, 46806}, {9468, 18858}, {11672, 99}, {14251, 39291}, {14966, 57991}, {15631, 34537}, {16725, 4623}, {17994, 16081}, {23098, 2396}, {23611, 2421}, {23996, 799}, {32458, 4609}, {33569, 183}, {34157, 55266}, {35088, 44173}, {36425, 1576}, {36790, 670}, {39469, 287}, {41167, 76}, {42075, 662}, {43112, 53229}, {44114, 43665}, {46888, 880}, {51334, 6528}, {51543, 53196}


X(58263) = X(4)X(520)∩X(5)X(523)

Barycentrics    b^2*c^2*(b^2 - c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)^2 : :
X(58263) = X[10412] - 3 X[18039], 4 X[10412] - 3 X[23105], 4 X[18039] - X[23105], 3 X[381] - X[14380]

X(58263) lies on the cubic K583 and these lines: {3, 53320}, {4, 520}, {5, 523}, {30, 53178}, {107, 53881}, {113, 133}, {264, 850}, {381, 14380}, {512, 4846}, {526, 1539}, {924, 22802}, {1510, 43585}, {1553, 23097}, {1650, 3258}, {3818, 8675}, {4240, 58071}, {6086, 38605}, {6368, 14978}, {7728, 14220}, {8057, 22660}, {8562, 45694}, {9003, 32271}, {9007, 21850}, {10255, 40494}, {11897, 57295}, {12075, 22260}, {14249, 18504}, {14934, 51475}, {16171, 38610}, {37084, 37846}, {46045, 58086}, {46106, 47071}, {51270, 57122}, {51277, 57123}, {52661, 53159}, {52743, 56399}

X(58263) = midpoint of X(i) and X(j) for these {i,j}: {3, 53320}, {7728, 14220}
X(58263) = polar conjugate of X(34568)
X(58263) = polar conjugate of the isotomic conjugate of X(52624)
X(58263) = polar conjugate of the isogonal conjugate of X(14401)
X(58263) = X(i)-Ceva conjugate of X(j) for these (i,j): {850, 41079}, {6528, 46106}
X(58263) = X(i)-isoconjugate of X(j) for these (i,j): {48, 34568}, {74, 36034}, {163, 40384}, {662, 40353}, {1304, 35200}, {2159, 44769}, {2349, 32640}, {14919, 36131}
X(58263) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 110}, {115, 40384}, {133, 1304}, {1084, 40353}, {1249, 34568}, {1650, 3}, {3163, 44769}, {3258, 74}, {9033, 520}, {36901, 31621}, {39008, 14919}, {52869, 36831}, {57295, 14380}, {57465, 54439}
X(58263) = crossdifference of every pair of points on line {50, 18877}
X(58263) = barycentric product X(i)*X(j) for these {i,j}: {4, 52624}, {30, 41079}, {264, 14401}, {338, 3233}, {523, 36789}, {525, 34334}, {850, 3163}, {1099, 1577}, {1637, 3260}, {2394, 23097}, {3267, 16240}, {5664, 14254}, {6528, 39008}, {9033, 46106}, {9408, 44173}, {14206, 36035}, {14391, 43752}, {14618, 16163}, {20948, 42074}, {41077, 52661}, {46789, 55141}, {52552, 55265}
X(58263) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 34568}, {30, 44769}, {512, 40353}, {523, 40384}, {850, 31621}, {1099, 662}, {1354, 4565}, {1495, 32640}, {1637, 74}, {1990, 1304}, {2173, 36034}, {2631, 35200}, {3081, 2420}, {3163, 110}, {3233, 249}, {6062, 5546}, {6528, 57570}, {9033, 14919}, {9408, 1576}, {9409, 18877}, {14254, 39290}, {14391, 44715}, {14398, 40352}, {14401, 3}, {14581, 32715}, {16163, 4558}, {16240, 112}, {18558, 50464}, {23097, 2407}, {34288, 52933}, {34334, 648}, {36035, 2349}, {36789, 99}, {38956, 46639}, {39008, 520}, {41079, 1494}, {41392, 15395}, {41995, 5995}, {41996, 5994}, {42074, 163}, {46106, 16077}, {52552, 55264}, {52624, 69}, {52661, 15459}, {52743, 14385}, {52945, 36831}, {55141, 46788}, {55265, 14264}, {55276, 52646}


X(58264) = X(271)X(521)∩X(522)X(20264)

Barycentrics    a*(a - b - c)*(b - c)*(a^2 - b^2 - c^2)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 4*a^2*b^2*c^2 + 2*a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a*b^2*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6)^2 : :

X(58264) lies on the cubic K583 and these lines: {271, 521}, {522, 20264}, {14249, 44426}, {14302, 39130}, {14312, 25640}, {35580, 52114}, {43728, 57495}

X(58264) = X(1295)-isoconjugate of X(36044)
X(58264) = X(i)-Dao conjugate of X(j) for these (i,j): {6001, 108}, {35580, 1295}


X(58265) = BARYCENTRIC PRODUCT OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(a^6 + 2*a^4*b^2 - 7*a^2*b^4 + 4*b^6 + 2*a^4*c^2 + 18*a^2*b^2*c^2 - 4*b^4*c^2 - 7*a^2*c^4 - 4*b^2*c^4 + 4*c^6) : :

X(58265) lies on these lines: {3, 6}, {115, 34288}, {1383, 8749}, {3163, 7735}, {3269, 51990}, {5254, 47338}, {5306, 47169}, {5309, 16303}, {9142, 19136}, {10986, 15262}, {11648, 47322}, {15526, 37643}, {20975, 34417}, {37665, 39389}, {43448, 52945}

X(58265) = crossdifference of every pair of points on line {523, 54995}
X(58265) = barycentric product X(3426)*X(44750)
X(58265) = barycentric quotient X(44750)/X(44133)
X(58265) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 574, 33871}, {6, 1384, 3284}, {6, 3003, 574}, {6, 33872, 14075}, {5008, 40135, 6}


X(58266) = CROSSSUM OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(8*a^8 - 22*a^6*b^2 + 18*a^4*b^4 - 2*a^2*b^6 - 2*b^8 - 22*a^6*c^2 + 25*a^4*b^2*c^2 - 6*a^2*b^4*c^2 + 3*b^6*c^2 + 18*a^4*c^4 - 6*a^2*b^2*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + 3*b^2*c^6 - 2*c^8) : :

X(58266) lies on these lines: {2, 15027}, {3, 9544}, {110, 3431}, {154, 37946}, {184, 15034}, {576, 47485}, {1147, 7556}, {1181, 15748}, {1899, 3525}, {1993, 37953}, {3043, 9970}, {3091, 43818}, {3292, 11464}, {3518, 53860}, {7464, 47391}, {7492, 22115}, {7550, 19357}, {7575, 9703}, {9143, 18580}, {9545, 12106}, {9705, 21844}, {11001, 44110}, {11002, 11935}, {11003, 32609}, {11422, 51393}, {11541, 50414}, {12584, 43697}, {13472, 15317}, {14094, 35473}, {15039, 49671}, {15702, 20190}, {18445, 37952}, {35493, 51522}

X(58266) = {X(7575),X(9703)}-harmonic conjugate of X(9716)


X(58267) = CROSSDIFFERENCE OF BICENTRIC PAIR PU(214)

Barycentrics    a^2*(4*a^6 - 7*a^4*b^2 + 2*a^2*b^4 + b^6 - 7*a^4*c^2 + 6*a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4 + c^6) : :
X(58267) = X[5191] - 3 X[23200]

X(58267) lies on these lines: {2, 54803}, {3, 6}, {30, 3018}, {111, 10313}, {112, 841}, {230, 6128}, {231, 43291}, {232, 37969}, {248, 5505}, {323, 4558}, {401, 48540}, {526, 647}, {1495, 1576}, {1971, 46276}, {2393, 5191}, {3054, 6749}, {3163, 6781}, {3289, 39689}, {3292, 9145}, {3849, 45331}, {5106, 18371}, {8585, 10311}, {8744, 52952}, {8779, 18877}, {9142, 52144}, {10752, 52279}, {11614, 52704}, {12367, 42671}, {15303, 37461}, {15993, 17416}, {16303, 47031}, {16310, 47339}, {18487, 47275}, {22151, 54439}, {32113, 35282}, {32640, 52976}, {32662, 45723}, {33629, 43753}, {34288, 36427}, {35298, 52699}, {39231, 44102}, {40879, 51372}, {41254, 44375}, {43620, 46262}, {43754, 48984}, {47281, 51611}

X(58267) = Schoutte-circle-inverse of X(32110)
X(58267) = complement of the isotomic conjugate of X(11564)
X(58267) = isogonal conjugate of the isotomic conjugate of X(40112)
X(58267) = isogonal conjugate of the polar conjugate of X(10295)
X(58267) = X(11564)-complementary conjugate of X(2887)
X(58267) = X(48362)-Ceva conjugate of X(184)
X(58267) = X(i)-isoconjugate of X(j) for these (i,j): {92, 34802}, {1577, 9060}
X(58267) = X(22391)-Dao conjugate of X(34802)
X(58267) = crossdifference of every pair of points on line {381, 523}
X(58267) = barycentric product X(i)*X(j) for these {i,j}: {3, 10295}, {6, 40112}, {110, 9003}, {34210, 41390}
X(58267) = barycentric quotient X(i)/X(j) for these {i,j}: {184, 34802}, {1576, 9060}, {9003, 850}, {10295, 264}, {26864, 52447}, {40112, 76}
X(58267) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 50, 187}, {6, 187, 3003}, {6, 3284, 46203}, {6, 5585, 52703}, {6, 21309, 33872}, {15, 16, 32110}, {50, 3284, 3003}, {50, 10317, 571}, {50, 18365, 3284}, {50, 34569, 46222}, {187, 3284, 6}, {577, 3284, 14961}, {1384, 40115, 187}, {3003, 14961, 570}, {3003, 46203, 6}, {3163, 6781, 47322}, {10317, 15905, 3284}, {10317, 40115, 1384}, {11063, 40135, 3003}, {15166, 15167, 566}, {15513, 15860, 18573}, {34569, 46211, 6}, {57025, 57026, 5063}


X(58268) = TRILINEAR POLE OF BICENTRIC PAIR PU(214)

Barycentrics    (a^6 + 2*a^4*b^2 - 7*a^2*b^4 + 4*b^6 - a^4*c^2 + 6*a^2*b^2*c^2 - 7*b^4*c^2 - a^2*c^4 + 2*b^2*c^4 + c^6)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*c^2 + 6*a^2*b^2*c^2 + 2*b^4*c^2 - 7*a^2*c^4 - 7*b^2*c^4 + 4*c^6) : :

X(58268) lies on the Kiepert circumhyperbola and these lines: {2, 3018}, {4, 541}, {6, 54803}, {96, 34351}, {98, 7426}, {115, 54918}, {262, 15363}, {338, 34289}, {476, 18316}, {524, 2986}, {543, 54925}, {598, 41254}, {648, 43530}, {671, 3580}, {2394, 9979}, {5466, 55121}, {5485, 54395}, {6515, 54784}, {9221, 49674}, {11161, 54662}, {11433, 54792}, {12079, 47332}, {13567, 54864}, {14484, 31127}, {14494, 30789}, {16080, 37765}, {21358, 36789}, {44555, 55957}, {46105, 46106}, {46201, 47296}, {51481, 55973}

X(58268) = reflection of X(54918) in X(115)
X(58268) = isotomic conjugate of X(40112)
X(58268) = polar conjugate of X(10295)
X(58268) = antigonal image of X(54918)
X(58268) = antitomic image of X(54918)
X(58268) = isotomic conjugate of the anticomplement of X(44569)
X(58268) = isotomic conjugate of the complement of X(44555)
X(58268) = polar conjugate of the isogonal conjugate of X(34802)
X(58268) = X(i)-isoconjugate of X(j) for these (i,j): {31, 40112}, {48, 10295}, {163, 9003}
X(58268) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 40112}, {115, 9003}, {1249, 10295}
X(58268) = cevapoint of X(i) and X(j) for these (i,j): {2, 44555}, {6, 7575}
X(58268) = trilinear pole of line {381, 523}
X(58268) = barycentric product X(i)*X(j) for these {i,j}: {264, 34802}, {850, 9060}, {36889, 52447}
X(58268) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 40112}, {4, 10295}, {523, 9003}, {9060, 110}, {34209, 41390}, {34802, 3}, {52447, 376}




leftri   Points on the Yff hyperbola: X(58269) - X(58278)  rightri

A barycentric equation for the Yff hyperbola (MathWorld) is the following:

a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 - b^2 - c^2)*x^2 + (2*a^6*b^2 - 4*a^4*b^4 + 2*a^2*b^6 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 - 3*a^2*b^2*c^4 + b^4*c^4 + a^2*c^6 + b^2*c^6 - c^8)*x*y + b^2*(a^2 - b^2)*(b^2 - c^2)*(a^2 - b^2 + c^2)*y^2 - (a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 - 2*a^6*c^2 - a^4*b^2*c^2 + 3*a^2*b^4*c^2 - b^6*c^2 + 4*a^4*c^4 - a^2*b^2*c^4 - b^4*c^4 - 2*a^2*c^6 + b^2*c^6)*x*z - (a^8 - a^6*b^2 - a^4*b^4 + a^2*b^6 - a^6*c^2 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 + 4*b^4*c^4 + a^2*c^6 - 2*b^2*c^6)*y*z - c^2*(a^2 - c^2)*(b^2 - c^2)*(a^2 + b^2 - c^2)*z^2 = 0.

The center of the Yff hyperbola is X(381), and the hyperbola passes through X(i) for i = 2, 4, 14163, 14164, 14214, 14215, and 58269-58278. See PU(213) in Bicentric Pairs.

The perspector of the Yff hyperbola is X(13481). Other than X(381), the asymptotes meet the line at infinity in these points:

3*a^2*(a^2 - b^2 - c^2) + 2*Sqrt[3]*(b^2 - c^2)*S + 4*S^2:: on lines {{30, 511}}. (to be continued)

underbar



X(58269) = X(184)X(386)∩X(3216)X(21381)

Barycentrics    a^2*(a*b^3 + b^4 + a^3*c + a^2*b*c + a*b^2*c + b^3*c + a^2*c^2 - a*c^3 - b*c^3 - c^4)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^2*b*c - b^3*c + a*b*c^2 + a*c^3 + b*c^3 + c^4) : :

X(58269) lies on the Yff hyperbola and these lines: {184, 386}, {3216, 21381}, {4705, 13514}, {16414, 46127}, {20975, 52375}


X(58270) = X(2)X(39)∩X(4)X(18309)

Barycentrics    b^2*c^2*(-a^6 + 3*a^4*b^2 - 4*a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^2*c^4)*(a^6 + a^4*b^2 - 3*a^4*c^2 - 3*a^2*b^2*c^2 + b^4*c^2 + 4*a^2*c^4 - c^6) : :

X(58270) lies on the Yff hyperbola and these lines: {2, 39}, {4, 18309}, {6792, 52629}, {14948, 18311}


X(58271) = X(2)X(18121)∩X(4)X(525)

Barycentrics    (a^10 - a^8*b^2 + 2*a^6*b^4 - 4*a^4*b^6 + a^2*b^8 + b^10 - a^8*c^2 + a^6*b^2*c^2 + 2*a^4*b^4*c^2 + a^2*b^6*c^2 - 3*b^8*c^2 - 2*a^6*c^4 + 4*b^6*c^4 + 2*a^4*c^6 - 3*a^2*b^2*c^6 - 4*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10)*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + a^6*b^2*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 + 2*a^6*c^4 + 2*a^4*b^2*c^4 - 4*b^6*c^4 - 4*a^4*c^6 + a^2*b^2*c^6 + 4*b^4*c^6 + a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(58271) lies on the Yff hyperbola and these lines: {2, 18121}, {4, 525}, {4240, 6525}


X(58272) = X(2)X(23105)∩X(4)X(69)

Barycentrics    b^2*c^2*(a^6 - a^4*b^2 + b^6 - a^4*c^2 + a^2*b^2*c^2 - 2*b^4*c^2 + b^2*c^4)*(a^6 - a^4*b^2 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - 2*b^2*c^4 + c^6) : :

X(58272) lies on the Yff hyperbola and these lines: {2, 23105}, {4, 69}, {14163, 36163}, {14164, 52628}, {35139, 51429}, {35922, 58261}


X(58273) = X(4)X(6)∩X(868)X(14164)

Barycentrics    (a^8 - 2*a^4*b^4 + b^8 - 2*a^6*c^2 + 3*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 - a^2*b^2*c^4 + 2*b^4*c^4 - 2*b^2*c^6 + c^8)*(a^8 - 2*a^6*b^2 + b^8 + 3*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 2*b^2*c^6 + c^8) : : X(58273) lies on the Yff hyperbola and these lines: {4, 6}, {868, 14164}, {1316, 14163}, {14214, 50149}, {14215, 14995}


X(58274) = X(2)X(525)∩X(4)X(47284)

Barycentrics    (a^8 + 2*a^6*b^2 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 - 5*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 + 2*a^6*c^2 - 5*a^4*b^2*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 7*a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8) : :

X(58274) lies on the Yff hyperbola and these lines: {2, 525}, {4, 47284}, {14164, 57598}, {47076, 52628}


X(58275) = X(2)X(647)∩X(4)X(52628)

Barycentrics    b^2*c^2*(a^8 - 2*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 - a^4*c^4 - b^4*c^4 + b^2*c^6)*(a^8 - a^4*b^4 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 - b^4*c^4 - a^2*c^6 - b^2*c^6 + c^8) : :

X(58275) lies on the Yff hyperbola and these lines: {2, 647}, {4, 52628}, {76, 35923}


X(58276) = X(2)X(47213)∩X(4)X(512)

Barycentrics    b^2*c^2*(-a^8 + a^4*b^4 - a^2*b^6 + b^8 + 2*a^6*c^2 - a^4*b^2*c^2 + a^2*b^4*c^2 - 3*b^6*c^2 - a^4*c^4 + 3*b^4*c^4 - b^2*c^6)*(a^8 - 2*a^6*b^2 + a^4*b^4 + a^4*b^2*c^2 + b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 - 3*b^4*c^4 + a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(58276) lies on the Yff hyperbola and these lines: {2, 47213}, {4, 512}, {14254, 58252}, {18121, 36183}, {47076, 52628}


X(58277) = X(4)X(597)∩X(14163)X(34094)

Barycentrics    (5*a^8 - 10*a^4*b^4 + 5*b^8 - 6*a^6*c^2 + 11*a^4*b^2*c^2 + 5*a^2*b^4*c^2 - 6*b^6*c^2 - 4*a^4*c^4 - a^2*b^2*c^4 + 2*b^4*c^4 - 6*b^2*c^6 + 5*c^8)*(5*a^8 - 6*a^6*b^2 - 4*a^4*b^4 + 5*b^8 + 11*a^4*b^2*c^2 - a^2*b^4*c^2 - 6*b^6*c^2 - 10*a^4*c^4 + 5*a^2*b^2*c^4 + 2*b^4*c^4 - 6*b^2*c^6 + 5*c^8) : :

X(58277) lies on the Yff hyperbola and these lines: {4, 597}, {14163, 34094}, {14214, 50147}


X(58278) = X(4)X(599)∩X(14163)X(36194)

Barycentrics    (a^8 + 6*a^6*b^2 - 8*a^4*b^4 + b^8 - 5*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 6*b^6*c^2 - 2*a^4*c^4 + a^2*b^2*c^4 - 14*b^4*c^4 + 6*b^2*c^6 + c^8)*(a^8 - 2*a^4*b^4 + b^8 + 6*a^6*c^2 - 5*a^4*b^2*c^2 + a^2*b^4*c^2 + 6*b^6*c^2 - 8*a^4*c^4 + 7*a^2*b^2*c^4 - 14*b^4*c^4 + 6*b^2*c^6 + c^8) : :

X(58278) lies on the Yff hyperbola and these lines: {4, 599}, {14163, 36194}, {14164, 57618}, {14214, 50146}


X(58279) = PERSPECTOR OF 1ST YFF-MOSES HYPERBOLA

Barycentrics    (3*a*b - b^2 - a*c + 3*b*c)*(a*b - 3*a*c - 3*b*c + c^2) : :

Peter Moses showed that the locus of the bicentric pair P(t) = (-t + cot B)((t + cot C) : : and U(t) = (-t + cot C)((t + cot B) : : lies on the Yff hypebola. For many choices of a function f or g, the bicentric pairs given by the forms

P(t) = (-t + f(B))((t + f(C)) : : and U(t) = (-t + f(C))((t + f(B)) : :

and

P(t) = (-t + g(b))((t + b(c)) : : and U(t) = (-t + g(c))((t + g(b)) : :

likewise represent hyperbolas, here introduced as the family of Yff-Moses hyperbolas. The 1st Yff-Moses hyperbola is defined by

P(t) = (-u + b)(u + c) : : , where u = (a+b+c)t and t = t(a,b,c) is symmetric in a,b,c and homogeneous of degree 0; e.g., t can be a real variable.

A barycentric equation for the 1st Yff-Moses hyperbola, denoted by YM1, follows:

2*a*(a - b)*(a - c)*(b + c)*x^2 - (a^3*b - 6*a^2*b^2 + a*b^3 + a^3*c + 3*a^2*b*c + 3*a*b^2*c + b^3*c + a^2*c^2 - 6*a*b*c^2 + b^2*c^2)*x*y - 2*(a - b)*b*(b - c)*(a + c)*y^2 - (a^3*b + a^2*b^2 + a^3*c + 3*a^2*b*c - 6*a*b^2*c - 6*a^2*c^2 + 3*a*b*c^2 + b^2*c^2 + a*c^3 + b*c^3)*x*z - (a^2*b^2 + a*b^3 - 6*a^2*b*c + 3*a*b^2*c + b^3*c + a^2*c^2 + 3*a*b*c^2 - 6*b^2*c^2 + a*c^3 + b*c^3)*y*z + 2*(a + b)*(a - c)*(b - c)*c*z^2 = 0

The center of YM1 is X(4688), and YM1 passes through X(2) and X(75).

X(58279) lies on these lines: {10, 7200}, {257, 17205}, {740, 3244}, {3948, 27793}, {6532, 21139}, {17118, 56145}

X(58279) = X(101)-isoconjugate of X(48337)
X(58279) = X(1015)-Dao conjugate of X(48337)
X(58279) = trilinear pole of line {4010, 28217}
X(58279) = barycentric quotient X(513)/X(48337)


X(58280) = X(85)X(514)∩X(92)X(3239)

Barycentrics    b^2*(b - c)*c^2*(-2*a^3 + a^2*b + b^3 + a^2*c - b^2*c - b*c^2 + c^3)^2 : :

X(58280) lies on the cubic K583 and these lines: {85, 514}, {92, 3239}, {118, 20622}, {1566, 58259}, {4091, 14377}, {41013, 52623}.

> X(58280) = X(i)-isoconjugate of X(j) for these (i,j): {103, 36039}, {677, 911}, {32642, 36101}, {36056, 40116}. X(58280) = X(i)-Dao conjugate of X(j) for these (i,j): {516, 101}, {1566, 103}, {20622, 40116}, {23972, 677}, {39470, 4091}, {57292, 3}. X(58280) = crossdifference of every pair of points on line {32642, 32657}. X(58280) = barycentric product X(i)*X(j) for these {i,j}: {676, 35517}, {693, 24014}, {1360, 35519}, {2398, 58259}, {3234, 23989}, {3261, 23972}, {3676, 55019}, {4025, 21665}, {40495, 42077}. X(58280) = barycentric quotient X(i)/X(j) for these {i,j}: {516, 677}, {676, 103}, {910, 36039}, {1360, 109}, {1886, 40116}, {3234, 1252}, {3261, 57548}, {21665, 1897}, {23972, 101}, {24014, 100}, {35517, 57928}, {39470, 1815}, {42073, 8750}, {42077, 692}, {55019, 3699}, {58259, 2400}.


X(58281) = X(518)X(23102)∩X(5511)X(53990)

Barycentrics    a*(b - c)^2*(a*b - b^2 + a*c - c^2)*(a^2 - 2*a*b + b^2 - 2*a*c + c^2)^2 : :

X(58281) lies on the cubic K583 and these lines: {518, 23102}, {5511, 53990}.

X(58281) = X(i)-isoconjugate of X(j) for these (i,j): {1292, 36041}, {32644, 37206}. X(58281) = X(i)-Dao conjugate of X(j) for these (i,j): {3126, 55013}, {3309, 105}, {5519, 1292}. X(58281) = barycentric product X(4437)*X(15636). X(58281) = barycentric quotient X(i)/X(j) for these {i,j}: {8642, 32644}, {15636, 6185}, {17435, 55013}.


X(58282) = X(519)X(58254)∩X(4939)X(5510)

Barycentrics    b^2*(b - c)^2*c^2*(-3*a + b + c)^2*(-2*a + b + c) : :

X(58282) lies on the cubic K583 and these lines: {519, 58254}, {4939, 5510}, {31680, 44721}.

X(58282) = X(i)-isoconjugate of X(j) for these (i,j): {1293, 36042}, {27834, 32645}. X(58282) = X(i)-Dao conjugate of X(j) for these (i,j): {3667, 106}, {5516, 1293}. X(58282) = barycentric product X(i)*X(j) for these {i,j}: {3264, 40621}, {15637, 36791}. X(58282) = barycentric quotient X(i)/X(j) for these {i,j}: {3264, 57578}, {4394, 36042}, {4487, 5382}, {4530, 33963}, {4943, 5548}, {8643, 32645}, {14425, 1293}, {15637, 2226}, {31182, 901}, {40621, 106}.


X(58283) = X(524)X(23106)∩X(5512)X(53992)

Barycentrics    b^2*(b^2 - c^2)^2*c^2*(-5*a^2 + b^2 + c^2)^2*(-2*a^2 + b^2 + c^2) : :

X(58283) lies on the cubic K583 and these lines: {524, 23106}, {5512, 53992}, {14249, 37778}, {23992, 52628}, {35133, 35234}.

X(58283) = X(i)-isoconjugate of X(j) for these (i,j): {1296, 36045}, {32648, 37216}. X(58283) = X(i)-Dao conjugate of X(j) for these (i,j): {1499, 111}, {9125, 13492}, {31654, 1296}. X(58283) = barycentric product X(i)*X(j) for these {i,j}: {3266, 35133}, {15638, 36792}. X(58283) = barycentric quotient X(i)/X(j) for these {i,j}: {3266, 57569}, {8644, 32648}, {9125, 1296}, {15638, 10630}, {31654, 13492}, {35133, 111}.


X(58284) = X(126)X(1560)∩X(647)X(34511)

Barycentrics    b^2*(b^2 - c^2)*c^2*(-5*a^2 + b^2 + c^2)*(-2*a^2 + b^2 + c^2)^2 : :

X(58284) lies on the cubic K583 and these lines: {126, 1560}, {647, 34511}, {850, 44010}, {1649, 6077}, {2408, 11059}, {14360, 18309}.

X(58284) = X(i)-isoconjugate of X(j) for these (i,j): {111, 36045}, {897, 32648}, {37216, 41936}. X(58284) = X(i)-Dao conjugate of X(j) for these (i,j): {524, 1296}, {1648, 21448}, {6593, 32648}, {11147, 34574}, {31654, 111}, {35133, 10630}. X(58284) = crossdifference of every pair of points on line {14908, 32648}. X(58284) = barycentric product X(i)*X(j) for these {i,j}: {1499, 36792}, {1649, 11059}, {1992, 52629}, {2408, 23106}, {3266, 9125}, {14207, 24038}, {15471, 45807}, {27088, 35522}. X(58284) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 32648}, {896, 36045}, {1499, 10630}, {1649, 21448}, {1992, 34574}, {2482, 1296}, {8030, 2434}, {8644, 41936}, {9125, 111}, {23106, 2418}, {24038, 37216}, {27088, 691}, {33915, 57467}, {36792, 35179}, {52629, 5485}, {54274, 39238}.


X(58285) = X(35)X(15107)∩X(42)X(181)

Barycentrics    a^2*(b+c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(58285) lies on these lines: {35, 15107}, {42, 181}, {267, 7161}, {484, 17484}, {512, 58286}, {756, 21353}, {902, 2183}, {1334, 21822}, {2223, 20962}, {2245, 21805}, {2347, 21747}, {3711, 5036}, {20683, 21745}, {20961, 54327}, {21363, 29690}

X(58285) = perspector of circumconic {{A, B, C, X(4559), X(52555)}}
X(58285) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 40716}, {81, 21739}, {86, 3065}, {274, 19302}, {18155, 34921}
X(58285) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 40716}, {40586, 21739}, {40600, 3065}
X(58285) = X(i)-Ceva conjugate of X(j) for these {i, j}: {484, 21864}, {34857, 42}
X(58285)= pole of line {661, 4272} with respect to the Brocard inellipse
X(58285) = perspector of cevian triangle of X(484) and inverse-of-ABC in bicevian conic of X(1) and X(484)
X(58285) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(484), X(1402)}}, {{A, B, C, X(1400), X(17484)}}, {{A, B, C, X(3724), X(42657)}}
X(58285) = barycentric product X(i)*X(j) for these (i, j): {1, 21864}, {10, 19297}, {37, 484}, {1500, 56935}, {1826, 23071}, {11076, 3678}, {17484, 42}, {17791, 213}, {21805, 47058}, {21859, 35055}, {26744, 52383}, {34857, 40612}, {42657, 4552}
X(58285) = barycentric quotient X(i)/X(j) for these (i, j): {37, 40716}, {42, 21739}, {213, 3065}, {484, 274}, {1918, 19302}, {17484, 310}, {17791, 6385}, {19297, 86}, {21864, 75}, {23071, 17206}, {42657, 4560}
X(58285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3724, 51377, 42}


X(58286) = X(10)X(850)∩X(42)X(647)

Barycentrics    a^2*(b-c)*(b+c)*(-b^2-b*c-c^2+a*(b+c)) : :

X(58286) lies on these lines: {8, 25258}, {10, 850}, {31, 9404}, {38, 17069}, {42, 647}, {512, 58285}, {523, 21727}, {612, 1021}, {649, 50494}, {656, 4088}, {661, 2512}, {669, 17990}, {756, 3700}, {798, 50496}, {899, 24782}, {968, 57067}, {984, 4467}, {1734, 25259}, {2254, 48047}, {2501, 4024}, {3005, 50491}, {3250, 50481}, {3681, 16751}, {3720, 25084}, {4079, 50483}, {4122, 57099}, {4155, 58360}, {4651, 31296}, {4685, 36900}, {4770, 42666}, {4841, 40471}, {8013, 21719}, {17494, 24462}, {17989, 50544}, {23792, 47656}, {23800, 47698}, {24622, 26037}, {30864, 30970}, {42039, 45669}, {42664, 50487}, {50484, 57234}

X(58286) = reflection of X(i) in X(j) for these {i,j}: {3700, 58362}, {58288, 58303}, {58293, 58298}, {58298, 58289}, {58300, 58299}
X(58286) = perspector of circumconic {{A, B, C, X(1826), X(3730)}}
X(58286) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 43190}, {662, 14377}, {1019, 57750}, {1333, 31624}, {1444, 26705}, {4575, 57497}, {7199, 15378}, {15320, 52935}, {16727, 31616}
X(58286) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 31624}, {116, 86}, {136, 57497}, {1084, 14377}, {6586, 52619}, {17463, 3673}, {40586, 43190}, {57501, 4558}
X(58286) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10, 21045}, {3681, 20974}, {6586, 21837}, {31010, 4079}
X(58286)= pole of line {86, 57497} with respect to the polar circle
X(58286)= pole of line {4272, 39690} with respect to the Brocard inellipse
X(58286)= pole of line {21045, 21946} with respect to the Kiepert hyperbola
X(58286)= pole of line {57054, 57078} with respect to the Yff parabola
X(58286) = perspector of cevian triangle of X(1734) and inverse-of-ABC in bicevian conic of X(1) and X(1734)
X(58286) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(850), X(4557)}}, {{A, B, C, X(1734), X(21837)}}, {{A, B, C, X(2501), X(6586)}}, {{A, B, C, X(3700), X(38358)}}, {{A, B, C, X(16751), X(20974)}}
X(58286) = barycentric product X(i)*X(j) for these (i, j): {10, 6586}, {101, 21045}, {116, 4557}, {1018, 17463}, {1500, 57214}, {1734, 37}, {1824, 57106}, {2333, 57054}, {2501, 56813}, {3681, 661}, {3730, 523}, {4006, 513}, {4024, 4184}, {15624, 1577}, {16751, 756}, {17233, 512}, {17916, 656}, {18184, 40521}, {20974, 3952}, {21837, 75}, {25259, 42}, {33297, 4079}, {33298, 3709}, {33932, 798}, {38358, 4551}
X(58286) = barycentric quotient X(i)/X(j) for these (i, j): {10, 31624}, {42, 43190}, {116, 52619}, {512, 14377}, {1734, 274}, {2333, 26705}, {2501, 57497}, {3681, 799}, {3730, 99}, {4006, 668}, {4079, 15320}, {4184, 4610}, {4557, 57750}, {6586, 86}, {15624, 662}, {16751, 873}, {17233, 670}, {17463, 7199}, {17916, 811}, {20974, 7192}, {21045, 3261}, {21837, 1}, {22084, 15419}, {22388, 1790}, {25259, 310}, {33297, 52612}, {33932, 4602}, {38358, 18155}, {56813, 4563}
X(58286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58298}, {512, 58298, 58293}, {512, 58299, 58300}, {512, 58303, 58288}, {647, 4524, 42}


X(58287) = X(8)X(6535)∩X(42)X(213)

Barycentrics    a^2*(b+c)*(a^2-b^2-b*c-c^2+a*(b+c)) : :

X(58287) lies on these lines: {8, 6535}, {9, 21803}, {31, 4517}, {42, 213}, {44, 40521}, {292, 672}, {512, 58285}, {756, 2295}, {758, 20703}, {869, 3730}, {896, 4447}, {902, 1110}, {1126, 1203}, {1757, 6541}, {1909, 32938}, {1931, 40794}, {2308, 5280}, {2643, 21864}, {3219, 17799}, {3230, 20456}, {3952, 4039}, {3971, 41233}, {4071, 21718}, {4433, 21805}, {5168, 17798}, {7064, 20964}, {7122, 52405}, {17033, 32925}, {17137, 29687}, {17316, 32912}, {17735, 18266}, {20590, 49692}, {29569, 32913}

X(58287) = perspector of circumconic {{A, B, C, X(4557), X(52555)}}
X(58287) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 18032}, {81, 6650}, {86, 1929}, {274, 17962}, {286, 17972}, {513, 17930}, {693, 17940}, {757, 11599}, {763, 6543}, {873, 2054}, {1019, 35148}, {1444, 17982}, {1509, 9278}, {2702, 7199}, {4623, 18001}, {7192, 37135}, {9505, 33295}, {9506, 30940}, {16709, 53688}, {18014, 52935}, {18827, 40767}, {37128, 40725}
X(58287) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 18032}, {35080, 52619}, {39026, 17930}, {39041, 274}, {39042, 873}, {40586, 6650}, {40600, 1929}, {40607, 11599}, {41841, 310}
X(58287) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1757, 20693}
X(58287)= pole of line {798, 4272} with respect to the Brocard inellipse
X(58287)= pole of line {1509, 17205} with respect to the Stammler hyperbola
X(58287)= pole of line {52539, 52592} with respect to the Steiner inellipse
X(58287) = perspector of cevian triangle of X(1757) and inverse-of-ABC in bicevian conic of X(1) and X(1757)
X(58287) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(42), X(1252)}}, {{A, B, C, X(213), X(1110)}}, {{A, B, C, X(292), X(1931)}}, {{A, B, C, X(512), X(1126)}}, {{A, B, C, X(1334), X(6065)}}, {{A, B, C, X(1500), X(6541)}}, {{A, B, C, X(2107), X(8298)}}, {{A, B, C, X(2388), X(2786)}}, {{A, B, C, X(17731), X(21753)}}, {{A, B, C, X(17990), X(52963)}}
X(58287) = barycentric product X(i)*X(j) for these (i, j): {1, 20693}, {6, 6541}, {10, 17735}, {42, 6542}, {101, 18004}, {1018, 9508}, {1326, 594}, {1500, 17731}, {1757, 37}, {1931, 756}, {2238, 40794}, {2786, 4557}, {3690, 423}, {3952, 5029}, {17927, 71}, {17934, 4079}, {17943, 4024}, {17976, 1826}, {17990, 190}, {18266, 321}, {20947, 213}, {52137, 872}
X(58287) = barycentric quotient X(i)/X(j) for these (i, j): {37, 18032}, {42, 6650}, {101, 17930}, {213, 1929}, {872, 9278}, {1326, 1509}, {1500, 11599}, {1757, 274}, {1918, 17962}, {1931, 873}, {2200, 17972}, {2333, 17982}, {2681, 58259}, {2786, 52619}, {3690, 57848}, {3747, 40725}, {4079, 18014}, {4557, 35148}, {5029, 7192}, {6541, 76}, {6542, 310}, {7109, 2054}, {8298, 30940}, {9508, 7199}, {17735, 86}, {17927, 44129}, {17934, 52612}, {17943, 4610}, {17976, 17206}, {17990, 514}, {18004, 3261}, {18266, 81}, {20693, 75}, {20947, 6385}, {32739, 17940}, {40794, 40017}, {41333, 40767}, {52137, 57992}, {53581, 18001}
X(58287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3747, 20683, 42}, {20683, 52963, 3747}


X(58288) = X(42)X(669)∩X(44)X(513)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-b*c+a*(b+c)) : :

X(58288) lies on these lines: {2, 18197}, {6, 57129}, {10, 44445}, {42, 669}, {44, 513}, {71, 14321}, {512, 58285}, {514, 27673}, {523, 57078}, {663, 50481}, {667, 20456}, {810, 8643}, {812, 29512}, {1019, 31290}, {1193, 27677}, {1400, 7180}, {1577, 4382}, {2084, 5029}, {2308, 56242}, {2333, 2501}, {2350, 3572}, {3005, 17990}, {3124, 38346}, {3250, 52592}, {3700, 57163}, {3709, 42664}, {3720, 25537}, {3804, 4524}, {3835, 27045}, {4024, 4039}, {4057, 57096}, {4063, 4129}, {4455, 50487}, {4481, 24948}, {4651, 31299}, {4832, 50495}, {4988, 57234}, {6371, 27675}, {6544, 52087}, {7234, 14404}, {8655, 23655}, {10459, 28401}, {14407, 55210}, {14838, 27469}, {14991, 21763}, {15107, 39577}, {20461, 20981}, {20909, 20953}, {21053, 22224}, {21099, 21720}, {21297, 29426}, {21383, 46148}, {21385, 26824}, {24719, 31946}, {25299, 26037}, {25636, 30968}, {26148, 31330}, {26983, 31286}, {27020, 27077}, {28247, 28286}, {29545, 47776}, {29807, 47759}, {30970, 31003}, {40147, 55261}, {47794, 52586}, {47908, 48144}, {47984, 48064}, {48011, 48041}

X(58288) = reflection of X(i) in X(j) for these {i,j}: {58286, 58303}, {58294, 58298}, {58295, 58289}, {58298, 58299}, {58361, 29512}
X(58288) = isogonal conjugate of X(37205)
X(58288) = perspector of circumconic {{A, B, C, X(1), X(595)}}
X(58288) = center of circumconic {{A, B, C, X(3733), X(4063)}}
X(58288) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 37205}, {2, 34594}, {81, 8050}, {99, 39798}, {100, 39747}, {110, 40013}, {163, 57915}, {190, 39949}, {274, 40519}, {596, 662}, {645, 20615}, {799, 40148}, {4567, 40086}, {40085, 52935}
X(58288) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 37205}, {115, 57915}, {244, 40013}, {594, 27808}, {649, 7192}, {1084, 596}, {4129, 7199}, {4132, 4129}, {8054, 39747}, {32664, 34594}, {38986, 39798}, {38996, 40148}, {40586, 8050}, {40627, 40086}, {55053, 39949}
X(58288) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 4065}, {3733, 512}, {3952, 42}, {4063, 4132}, {32911, 8054}, {37205, 1}
X(58288) = X(i)-complementary conjugate of X(j) for these {i, j}: {39748, 53564}, {39964, 17761}, {42471, 21252}, {53627, 3741}
X(58288)= pole of line {57, 16704} with respect to the Bevan circle
X(58288)= pole of line {2051, 3936} with respect to the excircles-radical circle
X(58288)= pole of line {21026, 44411} with respect to the nine-point circle
X(58288)= pole of line {92, 17171} with respect to the polar circle
X(58288)= pole of line {37, 42} with respect to the Brocard inellipse
X(58288)= pole of line {13478, 40013} with respect to the excentral-hexyl ellipse
X(58288)= pole of line {662, 37205} with respect to the Stammler hyperbola
X(58288)= pole of line {192, 4065} with respect to the Steiner circumellipse
X(58288)= pole of line {37, 4075} with respect to the Steiner inellipse
X(58288)= pole of line {649, 4057} with respect to the Yff parabola
X(58288)= pole of line {799, 37205} with respect to the Wallace hyperbola
X(58288) = perspector of cevian triangle of X(4063) and inverse-of-ABC in bicevian conic of X(1) and X(4063)
X(58288) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(1575)}}, {{A, B, C, X(44), X(1400)}}, {{A, B, C, X(512), X(4979)}}, {{A, B, C, X(513), X(4057)}}, {{A, B, C, X(595), X(896)}}, {{A, B, C, X(649), X(4063)}}, {{A, B, C, X(650), X(47793)}}, {{A, B, C, X(659), X(8054)}}, {{A, B, C, X(661), X(4129)}}, {{A, B, C, X(672), X(40147)}}, {{A, B, C, X(851), X(4222)}}, {{A, B, C, X(899), X(3293)}}, {{A, B, C, X(1018), X(57129)}}, {{A, B, C, X(1126), X(4065)}}, {{A, B, C, X(1635), X(7180)}}, {{A, B, C, X(2220), X(2245)}}, {{A, B, C, X(2225), X(2333)}}, {{A, B, C, X(2227), X(40087)}}, {{A, B, C, X(2229), X(18140)}}, {{A, B, C, X(2234), X(4360)}}, {{A, B, C, X(2236), X(4039)}}, {{A, B, C, X(2238), X(2350)}}, {{A, B, C, X(4024), X(8061)}}, {{A, B, C, X(17418), X(48307)}}, {{A, B, C, X(21832), X(46387)}}
X(58288) = barycentric product X(i)*X(j) for these (i, j): {1, 4132}, {10, 4057}, {37, 4063}, {321, 57096}, {523, 595}, {1400, 47793}, {1577, 2220}, {1826, 22154}, {2321, 57238}, {3293, 513}, {3668, 58336}, {3733, 4075}, {3871, 4017}, {3952, 8054}, {3995, 649}, {4065, 50344}, {4129, 6}, {4222, 656}, {4360, 512}, {17922, 71}, {18140, 798}, {20295, 42}, {20949, 213}, {21208, 4557}, {32911, 661}, {40087, 669}, {40093, 4455}, {45222, 58294}, {48307, 65}, {51650, 8}, {56249, 667}, {56326, 7252}, {57080, 594}
X(58288) = barycentric quotient X(i)/X(j) for these (i, j): {6, 37205}, {31, 34594}, {42, 8050}, {512, 596}, {523, 57915}, {595, 99}, {649, 39747}, {661, 40013}, {667, 39949}, {669, 40148}, {798, 39798}, {1918, 40519}, {2220, 662}, {3122, 40086}, {3293, 668}, {3871, 7257}, {3995, 1978}, {4057, 86}, {4063, 274}, {4075, 27808}, {4079, 40085}, {4129, 76}, {4132, 75}, {4222, 811}, {4360, 670}, {8054, 7192}, {17922, 44129}, {18140, 4602}, {20295, 310}, {20949, 6385}, {21208, 52619}, {22154, 17206}, {32911, 799}, {40087, 4609}, {47793, 28660}, {48307, 314}, {51641, 20615}, {51650, 7}, {56249, 6386}, {57080, 1509}, {57096, 81}, {57238, 1434}, {58336, 1043}
X(58288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58295}, {512, 58298, 58294}, {512, 58299, 58298}, {512, 58303, 58286}, {661, 798, 649}, {812, 29512, 58361}, {3709, 42664, 57133}, {3709, 50492, 42664}, {4498, 28398, 4382}


X(58289) = X(37)X(57077)∩X(661)X(756)

Barycentrics    a^2*(b-c)*(b+c)^3 : :

X(58289) lies on these lines: {37, 57077}, {42, 57133}, {351, 7234}, {512, 58285}, {523, 58360}, {649, 17990}, {650, 17989}, {661, 756}, {669, 3709}, {762, 23099}, {850, 21051}, {876, 31290}, {1215, 25666}, {1252, 4557}, {1491, 18004}, {2512, 14321}, {2530, 48082}, {3250, 20983}, {3805, 27647}, {3842, 4369}, {3952, 27805}, {4024, 4705}, {4079, 8663}, {4088, 50330}, {4096, 45315}, {4122, 47842}, {4155, 21727}, {4455, 8664}, {4490, 47656}, {7180, 17414}, {8029, 55197}, {8665, 50490}, {21350, 48404}, {21438, 47814}, {23768, 48548}, {23948, 56810}, {26822, 40549}, {27710, 35352}, {42664, 50491}, {50489, 57234}, {52922, 54099}

X(58289) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58298}, {58288, 58295}
X(58289) = reflection of X(i) in X(j) for these {i,j}: {58290, 58303}, {58296, 58298}, {58364, 58362}
X(58289) = perspector of circumconic {{A, B, C, X(594), X(762)}}
X(58289) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 55196}, {58, 4623}, {60, 4625}, {81, 4610}, {86, 52935}, {99, 757}, {100, 6628}, {101, 57949}, {110, 873}, {190, 763}, {244, 31614}, {249, 7199}, {261, 1414}, {274, 4556}, {552, 643}, {593, 799}, {662, 1509}, {670, 849}, {1019, 4590}, {1098, 4616}, {1101, 52619}, {1333, 52612}, {1412, 4631}, {1434, 4612}, {1437, 55229}, {1576, 57992}, {1790, 55231}, {2185, 4573}, {2189, 55205}, {3733, 24037}, {3737, 7340}, {3942, 55270}, {4565, 52379}, {4596, 30593}, {4615, 30576}, {4632, 30581}, {4635, 7054}, {4636, 57785}, {4637, 7058}, {6064, 7203}, {6578, 16709}, {7192, 24041}, {7254, 46254}, {7257, 7341}, {23609, 52937}, {33295, 36066}, {34537, 57129}, {47389, 57200}
X(58289) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 4623}, {37, 52612}, {244, 873}, {512, 3733}, {523, 52619}, {1015, 57949}, {1084, 1509}, {2643, 33944}, {3005, 7192}, {4075, 670}, {4858, 57992}, {5452, 55196}, {6741, 18021}, {8054, 6628}, {15267, 4616}, {21709, 1269}, {38978, 33295}, {38986, 757}, {38996, 593}, {40586, 4610}, {40599, 4631}, {40600, 52935}, {40607, 99}, {40608, 261}, {55053, 763}, {55060, 552}, {55064, 52379}, {55065, 310}
X(58289) = X(i)-Ceva conjugate of X(j) for these {i, j}: {756, 3124}, {4557, 1500}, {27808, 594}
X(58289)= pole of line {35212, 35216} with respect to the circumcircle
X(58289)= pole of line {46707, 46714} with respect to the Steiner circumellipse
X(58289)= pole of line {6537, 52539} with respect to the Steiner inellipse
X(58289)= pole of line {33889, 57078} with respect to the Yff parabola
X(58289) = perspector of cevian triangle of X(4705) and inverse-of-ABC in bicevian conic of X(1) and X(4705)
X(58289) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(46532)}}, {{A, B, C, X(512), X(6367)}}, {{A, B, C, X(523), X(50538)}}, {{A, B, C, X(661), X(3124)}}, {{A, B, C, X(669), X(42661)}}, {{A, B, C, X(1252), X(1500)}}, {{A, B, C, X(4024), X(4079)}}, {{A, B, C, X(4705), X(50487)}}, {{A, B, C, X(7109), X(7140)}}
X(58289) = barycentric product X(i)*X(j) for these (i, j): {10, 4079}, {12, 3709}, {37, 4705}, {55, 55197}, {100, 21833}, {101, 21043}, {115, 4557}, {181, 3700}, {201, 55206}, {210, 57185}, {213, 4036}, {313, 53581}, {321, 50487}, {512, 594}, {513, 762}, {647, 7140}, {649, 6535}, {661, 756}, {1016, 22260}, {1018, 2643}, {1084, 27808}, {1089, 798}, {1252, 8029}, {1254, 4171}, {1500, 523}, {1577, 872}, {1824, 55232}, {1826, 55230}, {1918, 52623}, {2171, 4041}, {2333, 4064}, {2489, 3695}, {2501, 3690}, {2610, 34857}, {2971, 52609}, {3049, 7141}, {3122, 4103}, {3124, 3952}, {3125, 40521}, {4024, 42}, {4092, 4559}, {4524, 6354}, {4574, 8754}, {6057, 7180}, {6058, 7252}, {6539, 8663}, {7064, 7178}, {7109, 850}, {14407, 4013}, {14624, 42661}, {17990, 6543}, {21046, 8750}, {21051, 6378}, {21725, 56257}, {21810, 57162}, {21824, 56193}, {21834, 7148}, {21859, 4516}, {23099, 31625}, {23105, 23990}, {28654, 669}, {43534, 46390}, {52065, 6386}, {52555, 6367}, {53008, 55234}, {58294, 8013}, {58304, 8818}
X(58289) = barycentric quotient X(i)/X(j) for these (i, j): {10, 52612}, {37, 4623}, {42, 4610}, {55, 55196}, {115, 52619}, {181, 4573}, {201, 55205}, {210, 4631}, {213, 52935}, {512, 1509}, {513, 57949}, {594, 670}, {649, 6628}, {661, 873}, {667, 763}, {669, 593}, {756, 799}, {762, 668}, {798, 757}, {872, 662}, {1018, 24037}, {1084, 3733}, {1089, 4602}, {1252, 31614}, {1254, 4635}, {1500, 99}, {1577, 57992}, {1824, 55231}, {1826, 55229}, {1918, 4556}, {1924, 849}, {2171, 4625}, {2643, 7199}, {2971, 17925}, {3124, 7192}, {3690, 4563}, {3695, 52608}, {3700, 18021}, {3709, 261}, {3949, 55202}, {3952, 34537}, {4024, 310}, {4036, 6385}, {4041, 52379}, {4079, 86}, {4117, 57129}, {4155, 30940}, {4524, 7058}, {4557, 4590}, {4559, 7340}, {4574, 47389}, {4705, 274}, {6358, 55213}, {6367, 52572}, {6378, 56053}, {6535, 1978}, {7063, 7252}, {7064, 645}, {7109, 110}, {7140, 6331}, {7180, 552}, {8029, 23989}, {8663, 8025}, {20975, 15419}, {21043, 3261}, {21725, 16737}, {21823, 17212}, {21833, 693}, {22260, 1086}, {23099, 1015}, {23610, 1977}, {27808, 44168}, {28654, 4609}, {40521, 4601}, {42068, 43925}, {42661, 16705}, {46390, 33295}, {50487, 81}, {50491, 7304}, {50538, 16748}, {52065, 667}, {53008, 55233}, {53581, 58}, {55197, 6063}, {55206, 57779}, {55230, 17206}, {57185, 57785}, {58304, 34016}
X(58289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58296}, {512, 58303, 58290}, {523, 58362, 58364}, {661, 3005, 8034}, {3709, 50494, 669}, {4024, 4705, 50538}, {4079, 50487, 8663}, {4455, 50496, 8664}, {7234, 55210, 351}, {58286, 58298, 512}


X(58290) = X(669)X(798)∩X(890)X(4507)

Barycentrics    a^3*(b-c)*(b+c)*(a+2*(b+c)) : :

X(58290) lies on these lines: {512, 58285}, {649, 6373}, {661, 50544}, {667, 50481}, {669, 798}, {834, 27675}, {890, 4507}, {3005, 50492}, {3709, 8663}, {4083, 27673}, {4132, 58360}, {4455, 50483}, {4784, 31290}, {4813, 4834}, {4832, 50494}, {4840, 4963}, {8639, 50488}, {9508, 27469}, {17990, 42664}, {20295, 21051}

X(58290) = reflection of X(i) in X(j) for these {i,j}: {58289, 58303}, {58296, 58299}
X(58290) = perspector of circumconic {{A, B, C, X(213), X(16777)}}
X(58290) = X(i)-isoconjugate-of-X(j) for these {i, j}: {86, 32042}, {99, 30598}, {274, 37211}, {310, 8652}, {670, 56343}, {799, 25417}, {4573, 42030}, {4601, 48074}, {4602, 34819}, {4623, 56221}, {4625, 56203}, {6331, 56070}, {28625, 52612}
X(58290) = X(i)-Dao conjugate of X(j) for these {i, j}: {38986, 30598}, {38996, 25417}, {40600, 32042}, {51572, 670}, {53167, 6385}
X(58290) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4834, 4826}
X(58290)= pole of line {2276, 4272} with respect to the Brocard inellipse
X(58290) = perspector of cevian triangle of X(4834) and inverse-of-ABC in bicevian conic of X(1) and X(4834)
X(58290) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(4834)}}, {{A, B, C, X(798), X(4813)}}, {{A, B, C, X(48005), X(50487)}}
X(58290) = barycentric product X(i)*X(j) for these (i, j): {1, 4826}, {31, 4838}, {37, 4834}, {42, 4813}, {213, 4802}, {1402, 4820}, {1500, 4840}, {1698, 798}, {1918, 4823}, {1919, 4066}, {1924, 30596}, {2489, 3927}, {3121, 4756}, {3709, 5221}, {3715, 7180}, {4007, 51641}, {4079, 4658}, {4960, 872}, {16777, 512}, {28605, 669}, {36074, 4516}, {48005, 6}, {50487, 5333}
X(58290) = barycentric quotient X(i)/X(j) for these (i, j): {213, 32042}, {669, 25417}, {798, 30598}, {1698, 4602}, {1918, 37211}, {1924, 56343}, {2205, 8652}, {3927, 52608}, {4654, 55213}, {4658, 52612}, {4802, 6385}, {4813, 310}, {4820, 40072}, {4826, 75}, {4834, 274}, {4838, 561}, {4960, 57992}, {9426, 34819}, {16777, 670}, {28605, 4609}, {48005, 76}, {53581, 56221}
X(58290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58299, 58296}, {512, 58303, 58289}, {798, 50487, 669}


X(58291) = X(523)X(50491)∩X(872)X(7234)

Barycentrics    a^2*(b-c)*(b+c)^2*(b^2*c^2+a^3*(b+c)+a^2*(b^2+3*b*c+c^2)) : :

X(58291) lies on these lines: {512, 58285}, {523, 50491}, {756, 50487}, {872, 7234}, {4132, 29512}, {4155, 58364}, {4507, 40607}, {6372, 31290}, {17990, 50510}

X(58291) = X(i)-Dao conjugate of X(j) for these {i, j}: {4079, 514}
X(58291) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 1500}
X(58291)= pole of line {27042, 52539} with respect to the Steiner inellipse
X(58291)= pole of line {17159, 57078} with respect to the Yff parabola
X(58291) = perspector of cevian triangle of X(22320) and inverse-of-ABC in bicevian conic of X(1) and X(22320)
X(58291) = barycentric product X(i)*X(j) for these (i, j): {10, 57078}, {1500, 17159}, {22320, 37}
X(58291) = barycentric quotient X(i)/X(j) for these (i, j): {22320, 274}, {57078, 86}


X(58292) = X(37)X(42)∩X(726)X(899)

Barycentrics    a^2*(b+c)^2*(a^2-3*b*c+a*(b+c)) : :

X(58292) lies on these lines: {37, 42}, {512, 58285}, {726, 899}, {902, 4557}, {1201, 3678}, {1215, 24589}, {1326, 8701}, {3009, 45751}, {3214, 4075}, {3720, 17145}, {3842, 30950}, {8661, 17990}, {14752, 19998}, {20964, 21747}, {31855, 52872}, {39697, 49997}

X(58292) = perspector of circumconic {{A, B, C, X(1018), X(52555)}}
X(58292) = X(i)-isoconjugate-of-X(j) for these {i, j}: {593, 39994}, {757, 39697}, {1509, 39982}
X(58292) = X(i)-Dao conjugate of X(j) for these {i, j}: {40607, 39697}
X(58292)= pole of line {4272, 58288} with respect to the Brocard inellipse
X(58292) = perspector of cevian triangle of X(31855) and inverse-of-ABC in bicevian conic of X(1) and X(31855)
X(58292) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(58294)}}, {{A, B, C, X(42), X(31855)}}, {{A, B, C, X(512), X(1962)}}, {{A, B, C, X(1500), X(21806)}}, {{A, B, C, X(2054), X(4491)}}, {{A, B, C, X(2238), X(37680)}}, {{A, B, C, X(2667), X(17160)}}, {{A, B, C, X(3728), X(40089)}}, {{A, B, C, X(4272), X(33882)}}, {{A, B, C, X(21805), X(52872)}}
X(58292) = barycentric product X(i)*X(j) for these (i, j): {101, 21714}, {1018, 4145}, {1089, 33882}, {1500, 17160}, {4103, 4491}, {18145, 872}, {21385, 40521}, {31855, 37}, {37680, 756}, {40089, 7109}, {40091, 594}
X(58292) = barycentric quotient X(i)/X(j) for these (i, j): {756, 39994}, {872, 39982}, {1500, 39697}, {4145, 7199}, {18145, 57992}, {21714, 3261}, {31855, 274}, {33882, 757}, {37680, 873}, {40091, 1509}


X(58293) = X(512)X(58285)∩X(4024)X(4822)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+5*b*c+c^2+3*a*(b+c)) : :

X(58293) lies on circumconic {{A, B, C, X(47674), X(58294)}} and these lines: {512, 58285}, {4024, 4822}, {4826, 50486}, {5996, 24083}, {42664, 50497}, {47656, 48081}, {47671, 48021}, {47674, 47942}, {48053, 50538}

X(58293) = reflection of X(i) in X(j) for these {i,j}: {58286, 58298}, {58295, 58297}, {58298, 58296}
X(58293) = perspector of cevian triangle of X(47942) and inverse-of-ABC in bicevian conic of X(1) and X(47942)
X(58293) = barycentric product X(i)*X(j) for these (i, j): {37, 47942}, {42, 47674}
X(58293) = barycentric quotient X(i)/X(j) for these (i, j): {47674, 310}, {47942, 274}
X(58293) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58298}, {512, 58297, 58295}, {512, 58298, 58286}


X(58294) = X(2)X(24083)∩X(37)X(4979)

Barycentrics    a^2*(b-c)*(b+c)*(a+2*b+c)*(a+b+2*c) : :

X(58294) lies on these lines: {2, 24083}, {37, 4979}, {42, 8663}, {321, 48049}, {512, 58285}, {514, 4024}, {649, 4057}, {661, 4132}, {1252, 2702}, {4988, 24089}, {6540, 53195}, {7180, 42664}, {7192, 22043}, {22042, 49293}, {22044, 50522}, {49284, 57169}, {50525, 57234}, {52555, 55263}, {55230, 58172}

X(58294) = reflection of X(i) in X(j) for these {i,j}: {57078, 4079}, {58288, 58298}, {58298, 58297}, {58300, 58296}
X(58294) = trilinear pole of line {3122, 17990}
X(58294) = perspector of circumconic {{A, B, C, X(1126), X(1268)}}
X(58294) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 4427}, {86, 35342}, {99, 1100}, {100, 8025}, {101, 16709}, {110, 4359}, {162, 4001}, {163, 1269}, {249, 30591}, {274, 35327}, {314, 36075}, {553, 643}, {645, 32636}, {648, 3916}, {662, 1125}, {692, 52572}, {757, 4115}, {799, 2308}, {811, 22054}, {1014, 30729}, {1018, 30593}, {1213, 52935}, {1332, 31900}, {1414, 3686}, {1839, 4592}, {1962, 4610}, {2355, 4563}, {3578, 13486}, {3649, 4612}, {3683, 4573}, {3702, 4565}, {3952, 30581}, {4556, 4647}, {4558, 56875}, {4567, 4977}, {4570, 4978}, {4584, 4974}, {4590, 4983}, {4591, 4975}, {4600, 4979}, {4601, 50512}, {4603, 4697}, {4622, 4969}, {4623, 20970}, {4629, 6533}, {4973, 47318}, {4985, 52378}, {4988, 24041}, {6331, 23201}, {6742, 17190}, {22080, 55231}, {34594, 45222}, {35339, 42028}
X(58294) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 1269}, {125, 4001}, {244, 4359}, {1015, 16709}, {1084, 1125}, {1086, 52572}, {3005, 4988}, {5139, 1839}, {8054, 8025}, {17423, 22054}, {38986, 1100}, {38996, 2308}, {40586, 4427}, {40600, 35342}, {40607, 4115}, {40608, 3686}, {40627, 4977}, {50330, 4978}, {50497, 4979}, {55060, 553}, {55064, 3702}, {55065, 1230}, {55066, 3916}
X(58294) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4629, 1126}, {8701, 42}, {50344, 58301}
X(58294) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 50344}, {1015, 37}, {3124, 42}, {20974, 40147}, {20982, 1400}
X(58294)= pole of line {1269, 1839} with respect to the polar circle
X(58294)= pole of line {3634, 52539} with respect to the Steiner inellipse
X(58294)= pole of line {523, 57078} with respect to the Yff parabola
X(58294) = perspector of cevian triangle of X(47947) and inverse-of-ABC in bicevian conic of X(1) and X(47947)
X(58294) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(21522)}}, {{A, B, C, X(42), X(1252)}}, {{A, B, C, X(101), X(22037)}}, {{A, B, C, X(512), X(514)}}, {{A, B, C, X(513), X(4057)}}, {{A, B, C, X(523), X(47656)}}, {{A, B, C, X(647), X(48338)}}, {{A, B, C, X(663), X(3700)}}, {{A, B, C, X(667), X(48085)}}, {{A, B, C, X(798), X(4813)}}, {{A, B, C, X(1015), X(4115)}}, {{A, B, C, X(1042), X(5195)}}, {{A, B, C, X(1126), X(31013)}}, {{A, B, C, X(1171), X(31064)}}, {{A, B, C, X(1400), X(17484)}}, {{A, B, C, X(1824), X(40147)}}, {{A, B, C, X(2333), X(5134)}}, {{A, B, C, X(2501), X(6586)}}, {{A, B, C, X(3124), X(5029)}}, {{A, B, C, X(3572), X(31290)}}, {{A, B, C, X(3952), X(50520)}}, {{A, B, C, X(4017), X(48268)}}, {{A, B, C, X(4024), X(4079)}}, {{A, B, C, X(4041), X(50495)}}, {{A, B, C, X(4557), X(53289)}}, {{A, B, C, X(4559), X(49274)}}, {{A, B, C, X(4608), X(50344)}}, {{A, B, C, X(4705), X(47678)}}, {{A, B, C, X(4822), X(50492)}}, {{A, B, C, X(7265), X(55210)}}, {{A, B, C, X(18105), X(47659)}}, {{A, B, C, X(21832), X(50497)}}, {{A, B, C, X(24290), X(50496)}}, {{A, B, C, X(31011), X(52555)}}, {{A, B, C, X(35162), X(39441)}}, {{A, B, C, X(40148), X(52651)}}, {{A, B, C, X(48121), X(51641)}}
X(58294) = barycentric product X(i)*X(j) for these (i, j): {10, 50344}, {37, 47947}, {42, 4608}, {115, 4629}, {514, 52555}, {649, 6539}, {1126, 523}, {1171, 4024}, {1255, 661}, {1268, 512}, {1577, 28615}, {1796, 2501}, {2643, 4596}, {3120, 8701}, {3122, 6540}, {3124, 4632}, {3125, 37212}, {3733, 6538}, {4102, 7180}, {18004, 53688}, {21043, 6578}, {30582, 4979}, {30594, 50512}, {31010, 6}, {31011, 55263}, {31013, 9178}, {32014, 4079}, {32018, 798}, {32635, 4017}, {33635, 7178}, {40438, 4705}, {57099, 57419}, {58301, 75}
X(58294) = barycentric quotient X(i)/X(j) for these (i, j): {42, 4427}, {213, 35342}, {512, 1125}, {513, 16709}, {514, 52572}, {523, 1269}, {647, 4001}, {649, 8025}, {661, 4359}, {669, 2308}, {798, 1100}, {810, 3916}, {1126, 99}, {1171, 4610}, {1255, 799}, {1268, 670}, {1334, 30729}, {1500, 4115}, {1796, 4563}, {1918, 35327}, {2489, 1839}, {2643, 30591}, {3049, 22054}, {3121, 4979}, {3122, 4977}, {3124, 4988}, {3125, 4978}, {3709, 3686}, {3733, 30593}, {4024, 1230}, {4041, 3702}, {4079, 1213}, {4455, 4974}, {4516, 4985}, {4596, 24037}, {4608, 310}, {4629, 4590}, {4632, 34537}, {4705, 4647}, {4730, 4975}, {4770, 4717}, {4983, 6533}, {6538, 27808}, {6539, 1978}, {7180, 553}, {7234, 4697}, {8663, 8040}, {8701, 4600}, {14407, 4969}, {21837, 17746}, {28615, 662}, {31010, 76}, {31011, 55262}, {32014, 52612}, {32018, 4602}, {32635, 7257}, {33635, 645}, {37212, 4601}, {38836, 57060}, {40438, 4623}, {42067, 46542}, {47947, 274}, {50344, 86}, {50487, 1962}, {50491, 4970}, {50498, 41818}, {51641, 32636}, {52555, 190}, {53581, 20970}, {53688, 17930}, {55210, 3578}, {55230, 41014}, {57129, 30581}, {58288, 45222}, {58289, 8013}, {58301, 1}
X(58294) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58300}, {512, 58297, 58298}, {512, 58298, 58288}, {649, 4079, 57133}, {4079, 50498, 649}


X(58295) = X(42)X(42664)∩X(512)X(58285)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+2*b^2+3*b*c+2*c^2+a*(b+c)) : :

X(58295) lies on circumconic {{A, B, C, X(18105), X(47659)}} and these lines: {42, 42664}, {512, 58285}, {669, 57133}, {4079, 18105}, {4122, 48023}, {4132, 21727}, {4826, 46390}, {21834, 50484}, {47659, 47948}, {48086, 49273}, {48117, 48122}

X(58295) = reflection of X(i) in X(j) for these {i,j}: {58288, 58289}, {58293, 58297}, {58300, 58298}
X(58295) = perspector of cevian triangle of X(47948) and inverse-of-ABC in bicevian conic of X(1) and X(47948)
X(58295) = barycentric product X(i)*X(j) for these (i, j): {37, 47948}, {42, 47659}
X(58295) = barycentric quotient X(i)/X(j) for these (i, j): {47659, 310}, {47948, 274}
X(58295) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58288}, {512, 58297, 58293}, {512, 58298, 58300}, {42664, 50494, 42}


X(58296) = X(661)X(4155)∩X(850)X(4806)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+4*b*c+c^2+2*a*(b+c)) : :

X(58296) lies on circumconic {{A, B, C, X(47671), X(58294)}} and these lines: {512, 58285}, {661, 4155}, {669, 50495}, {850, 4806}, {2978, 4502}, {3005, 4079}, {4024, 4983}, {4455, 50498}, {8034, 42664}, {25259, 48123}, {47656, 48024}, {47671, 47949}, {47674, 47913}

X(58296) = midpoint of X(i) and X(j) for these {i,j}: {58293, 58298}, {58294, 58300}
X(58296) = reflection of X(i) in X(j) for these {i,j}: {58289, 58298}, {58290, 58299}
X(58296) = perspector of cevian triangle of X(47949) and inverse-of-ABC in bicevian conic of X(1) and X(47949)
X(58296) = barycentric product X(i)*X(j) for these (i, j): {37, 47949}, {42, 47671}
X(58296) = barycentric quotient X(i)/X(j) for these (i, j): {47671, 310}, {47949, 274}
X(58296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58289}, {512, 58299, 58290}, {58293, 58298, 512}


X(58297) = X(647)X(4079)∩X(661)X(4139)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+3*b^2+8*b*c+3*c^2+4*a*(b+c)) : :

X(58297) lies on these lines: {512, 58285}, {647, 4079}, {661, 4139}, {3709, 50498}, {4502, 50511}, {4806, 47128}, {4826, 50492}, {28175, 48026}

X(58297) = midpoint of X(i) and X(j) for these {i,j}: {58293, 58295}, {58294, 58298}
X(58297) = reflection of X(i) in X(j) for these {i,j}: {58299, 58298}
X(58297) = perspector of circumconic {{A, B, C, X(52555), X(56237)}}
X(58297) = perspector of cevian triangle of X(47955) and inverse-of-ABC in bicevian conic of X(1) and X(47955)
X(58297) = barycentric product X(i)*X(j) for these (i, j): {37, 47955}
X(58297) = barycentric quotient X(i)/X(j) for these (i, j): {47955, 274}
X(58297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58299}, {58293, 58295, 512}


X(58298) = X(523)X(661)∩X(649)X(3709)

Barycentrics    a^2*(b-c)*(b+c)*(b^2+3*b*c+c^2+a*(b+c)) : :

X(58298) lies on these lines: {512, 58285}, {523, 661}, {647, 57133}, {649, 3709}, {798, 50498}, {850, 4129}, {2786, 27647}, {3250, 4813}, {4481, 44449}, {4776, 21438}, {4979, 14408}, {8663, 50491}, {8714, 48269}, {14349, 25259}, {21123, 48019}, {21720, 21958}, {22043, 50557}, {47656, 47959}, {47671, 47918}, {48005, 50538}, {48082, 48131}, {48306, 57096}

X(58298) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58293}, {58288, 58294}, {58289, 58296}, {58295, 58300}, {58297, 58299}
X(58298) = reflection of X(i) in X(j) for these {i,j}: {58286, 58289}, {58288, 58299}, {58293, 58296}, {58294, 58297}
X(58298) = perspector of circumconic {{A, B, C, X(10), X(2334)}}
X(58298) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 46961}, {4612, 35576}
X(58298) = X(i)-Dao conjugate of X(j) for these {i, j}: {28651, 799}, {40586, 46961}
X(58298)= pole of line {27, 29767} with respect to the polar circle
X(58298)= pole of line {4272, 20966} with respect to the Brocard inellipse
X(58298)= pole of line {1213, 1574} with respect to the Steiner inellipse
X(58298)= pole of line {4024, 47129} with respect to the Yff parabola
X(58298) = perspector of cevian triangle of X(47959) and inverse-of-ABC in bicevian conic of X(1) and X(47959)
X(58298) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(4988)}}, {{A, B, C, X(523), X(47656)}}, {{A, B, C, X(649), X(4841)}}, {{A, B, C, X(661), X(47959)}}
X(58298) = barycentric product X(i)*X(j) for these (i, j): {37, 47959}, {42, 47656}
X(58298) = barycentric quotient X(i)/X(j) for these (i, j): {42, 46961}, {47656, 310}, {47959, 274}
X(58298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58289, 58286}, {512, 58296, 58293}, {512, 58297, 58294}, {512, 58299, 58288}, {661, 21834, 4988}, {661, 4079, 42664}, {3709, 50495, 649}, {58286, 58293, 512}


X(58299) = X(37)X(4841)∩X(42)X(8653)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+4*b*c+c^2) : :

X(58299) lies on these lines: {37, 4841}, {42, 8653}, {512, 58285}, {647, 661}, {650, 900}, {665, 4813}, {798, 50495}, {905, 48038}, {3288, 57176}, {3700, 24089}, {3804, 4455}, {4024, 4808}, {4079, 50492}, {4526, 48277}, {4832, 50498}, {4893, 52326}, {6586, 48026}, {6589, 47777}, {7192, 25084}, {7234, 8644}, {14298, 33525}, {20979, 50511}, {23792, 47959}, {24948, 44449}, {25098, 47783}, {27045, 30476}, {27527, 30864}, {27648, 47769}, {27674, 28846}, {47965, 48268}

X(58299) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58300}, {58288, 58298}, {58290, 58296}
X(58299) = reflection of X(i) in X(j) for these {i,j}: {58297, 58298}
X(58299) = perspector of circumconic {{A, B, C, X(65), X(1000)}}
X(58299) = X(i)-isoconjugate-of-X(j) for these {i, j}: {162, 30679}, {662, 3296}
X(58299) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 30679}, {1084, 3296}
X(58299)= pole of line {16713, 30599} with respect to the polar circle
X(58299)= pole of line {198, 4272} with respect to the Brocard inellipse
X(58299)= pole of line {45, 2092} with respect to the Steiner inellipse
X(58299)= pole of line {47766, 57078} with respect to the Yff parabola
X(58299) = perspector of cevian triangle of X(47965) and inverse-of-ABC in bicevian conic of X(1) and X(47965)
X(58299) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4017), X(48268)}}, {{A, B, C, X(7180), X(47965)}}
X(58299) = barycentric product X(i)*X(j) for these (i, j): {10, 48340}, {37, 47965}, {42, 48268}, {521, 53861}, {2501, 55466}, {3295, 523}, {3305, 661}, {3697, 513}, {3700, 52424}, {3709, 52422}, {4041, 7190}, {42032, 7180}, {42696, 512}, {56843, 57099}
X(58299) = barycentric quotient X(i)/X(j) for these (i, j): {512, 3296}, {647, 30679}, {3295, 99}, {3305, 799}, {3697, 668}, {7190, 4625}, {42696, 670}, {47965, 274}, {48268, 310}, {48340, 86}, {52424, 4573}, {53861, 18026}, {55466, 4563}
X(58299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58298, 58297}, {661, 3709, 647}, {661, 55210, 7180}, {3709, 7180, 55210}, {4455, 50494, 3804}, {58286, 58300, 512}


X(58300) = X(1)X(31290)∩X(42)X(661)

Barycentrics    a^2*(b-c)*(b+c)*(a^2-3*b*c-a*(b+c)) : :

X(58300) lies on circumconic {{A, B, C, X(26824), X(58294)}} and these lines: {1, 31290}, {37, 40471}, {42, 661}, {238, 57148}, {512, 58285}, {649, 4455}, {663, 2520}, {1125, 26822}, {1201, 27469}, {2054, 5098}, {2308, 7252}, {2309, 4833}, {3005, 57133}, {3120, 24198}, {3720, 7192}, {3741, 26775}, {4010, 4382}, {4040, 20295}, {4079, 50486}, {4129, 44445}, {4369, 30950}, {4449, 47908}, {4775, 20983}, {4794, 48041}, {4822, 55212}, {4963, 48292}, {6005, 27673}, {23655, 48544}, {23792, 48081}, {24666, 48577}, {26824, 47970}, {27114, 31241}, {27527, 30970}, {28361, 28372}, {28398, 48367}, {30591, 48119}, {42664, 50490}, {47909, 48303}, {47929, 48393}, {47945, 48307}, {47984, 48294}, {48023, 48340}, {48065, 49287}, {48338, 50481}

X(58300) = reflection of X(i) in X(j) for these {i,j}: {58286, 58299}, {58294, 58296}, {58295, 58298}
X(58300) = perspector of circumconic {{A, B, C, X(2160), X(4068)}}
X(58300)= pole of line {2260, 4272} with respect to the Brocard inellipse
X(58300)= pole of line {10566, 57078} with respect to the Yff parabola
X(58300) = perspector of cevian triangle of X(47970) and inverse-of-ABC in bicevian conic of X(1) and X(47970)
X(58300) = barycentric product X(i)*X(j) for these (i, j): {37, 47970}, {4068, 514}, {5284, 661}, {17163, 649}, {24044, 3733}, {26824, 42}, {46196, 513}
X(58300) = barycentric quotient X(i)/X(j) for these (i, j): {4068, 190}, {5284, 799}, {17163, 1978}, {24044, 27808}, {26824, 310}, {46196, 668}, {47970, 274}
X(58300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 58296, 58294}, {512, 58298, 58295}, {512, 58299, 58286}, {4455, 50497, 649}


X(58301) = X(42)X(50512)∩X(484)X(513)

Barycentrics    a^3*(b-c)*(b+c)*(a+2*b+c)*(a+b+2*c) : :

X(58301) lies on these lines: {42, 50512}, {484, 513}, {512, 58285}, {667, 18266}, {798, 21837}, {2533, 29302}, {2703, 8701}, {4151, 31010}, {4730, 57162}, {4992, 16828}, {6540, 53216}, {7234, 58144}, {50488, 51641}, {50515, 57232}

X(58301) = perspector of circumconic {{A, B, C, X(1255), X(28615)}}
X(58301) = X(i)-isoconjugate-of-X(j) for these {i, j}: {86, 4427}, {99, 1125}, {100, 16709}, {101, 52572}, {110, 1269}, {190, 8025}, {274, 35342}, {310, 35327}, {553, 645}, {648, 4001}, {662, 4359}, {670, 2308}, {799, 1100}, {811, 3916}, {1213, 4610}, {1230, 4556}, {1414, 3702}, {1434, 30729}, {1509, 4115}, {1839, 4563}, {1962, 4623}, {2355, 55202}, {3683, 4625}, {3686, 4573}, {3952, 30593}, {3958, 55231}, {4033, 30581}, {4561, 31900}, {4567, 4978}, {4589, 4974}, {4590, 4988}, {4592, 56875}, {4594, 4697}, {4596, 6533}, {4600, 4977}, {4601, 4979}, {4615, 4969}, {4620, 4976}, {4622, 4975}, {4647, 52935}, {4970, 56053}, {4983, 24037}, {6331, 22054}, {7257, 32636}, {15455, 17190}, {17454, 55209}, {20970, 52612}, {22080, 55229}, {23201, 57968}, {24041, 30591}, {28660, 36075}, {37205, 45222}
X(58301) = X(i)-Dao conjugate of X(j) for these {i, j}: {244, 1269}, {512, 4983}, {1015, 52572}, {1084, 4359}, {3005, 30591}, {5139, 56875}, {8054, 16709}, {17423, 3916}, {38986, 1125}, {38996, 1100}, {40600, 4427}, {40608, 3702}, {40627, 4978}, {50497, 4977}, {55053, 8025}, {55066, 4001}
X(58301) = X(i)-Ceva conjugate of X(j) for these {i, j}: {50344, 58294}
X(58301) = X(i)-cross conjugate of X(j) for these {i, j}: {3248, 42}
X(58301)= pole of line {44307, 52539} with respect to the Steiner inellipse
X(58301)= pole of line {1019, 57078} with respect to the Yff parabola
X(58301) = perspector of cevian triangle of X(50344) and inverse-of-ABC in bicevian conic of X(1) and X(50344)
X(58301) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(31855)}}, {{A, B, C, X(213), X(1110)}}, {{A, B, C, X(484), X(1402)}}, {{A, B, C, X(512), X(513)}}, {{A, B, C, X(649), X(4063)}}, {{A, B, C, X(661), X(47959)}}, {{A, B, C, X(669), X(4834)}}, {{A, B, C, X(788), X(4151)}}, {{A, B, C, X(1734), X(21837)}}, {{A, B, C, X(3063), X(4041)}}, {{A, B, C, X(3248), X(50512)}}, {{A, B, C, X(4705), X(50487)}}, {{A, B, C, X(4775), X(8639)}}, {{A, B, C, X(7180), X(47965)}}, {{A, B, C, X(8646), X(48395)}}, {{A, B, C, X(47947), X(58294)}}, {{A, B, C, X(47976), X(57181)}}
X(58301) = barycentric product X(i)*X(j) for these (i, j): {1, 58294}, {31, 31010}, {37, 50344}, {42, 47947}, {213, 4608}, {513, 52555}, {1126, 661}, {1171, 4705}, {1255, 512}, {1268, 798}, {2643, 4629}, {3121, 6540}, {3122, 37212}, {3124, 4596}, {3125, 8701}, {4102, 51641}, {6539, 667}, {21833, 6578}, {28615, 523}, {30582, 50512}, {32014, 50487}, {32018, 669}, {32635, 7180}, {33635, 4017}, {40438, 4079}, {55210, 57419}, {57129, 6538}
X(58301) = barycentric quotient X(i)/X(j) for these (i, j): {213, 4427}, {512, 4359}, {513, 52572}, {649, 16709}, {661, 1269}, {667, 8025}, {669, 1100}, {798, 1125}, {810, 4001}, {872, 4115}, {1084, 4983}, {1126, 799}, {1171, 4623}, {1255, 670}, {1268, 4602}, {1796, 55202}, {1918, 35342}, {1924, 2308}, {2205, 35327}, {2489, 56875}, {3049, 3916}, {3121, 4977}, {3122, 4978}, {3124, 30591}, {3709, 3702}, {4079, 4647}, {4596, 34537}, {4608, 6385}, {4629, 24037}, {4705, 1230}, {6539, 6386}, {8701, 4601}, {14407, 4975}, {21835, 4992}, {28615, 99}, {31010, 561}, {32018, 4609}, {33635, 7257}, {40438, 52612}, {47947, 310}, {50344, 274}, {50487, 1213}, {51641, 553}, {52065, 8663}, {52555, 668}, {53581, 1962}, {57129, 30593}, {57204, 2355}, {57419, 55209}, {58294, 75}


X(58302) = X(10)X(4040)∩X(42)X(663)

Barycentrics    a^2*(b-c)*(b+c)*(a^3-3*b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(58302) lies on these lines: {10, 4040}, {42, 663}, {512, 58285}, {661, 51641}, {2533, 4724}, {3214, 4794}, {3720, 17166}, {3900, 21727}, {4036, 46385}, {4162, 57232}, {4449, 4824}, {5260, 57189}, {7234, 8643}, {16828, 50337}, {17478, 47934}, {22320, 48336}, {28248, 47778}, {30950, 52601}, {42661, 57133}, {47970, 56191}, {48322, 57077}, {48338, 50487}, {48340, 57099}

X(58302) = perspector of circumconic {{A, B, C, X(2161), X(52555)}}
X(58302) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 55090}, {1414, 55091}
X(58302) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 55090}, {40608, 55091}
X(58302)= pole of line {2183, 4272} with respect to the Brocard inellipse
X(58302)= pole of line {49758, 52539} with respect to the Steiner inellipse
X(58302) = perspector of cevian triangle of X(50346) and inverse-of-ABC in bicevian conic of X(1) and X(50346)
X(58302) = barycentric product X(i)*X(j) for these (i, j): {37, 50346}, {512, 55095}, {523, 55100}, {1500, 57248}, {2171, 57093}, {3700, 55101}, {3709, 55096}, {4581, 55333}, {5260, 661}, {24224, 4557}, {55378, 56320}, {57189, 756}
X(58302) = barycentric quotient X(i)/X(j) for these (i, j): {512, 55090}, {3709, 55091}, {5260, 799}, {24224, 52619}, {50346, 274}, {55095, 670}, {55100, 99}, {55101, 4573}, {55333, 53332}, {57093, 52379}, {57189, 873}
X(58302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 4705, 42}


X(58303) = X(42)X(8651)∩X(669)X(4524)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+2*a*(b+c)-(b+c)^2) : :

X(58303) lies on circumconic {{A, B, C, X(48269), X(58294)}} and these lines: {42, 8651}, {512, 58285}, {647, 17990}, {657, 8646}, {665, 20983}, {669, 4524}, {798, 50494}, {802, 25627}, {3709, 50487}, {4139, 58360}, {7180, 14404}, {21005, 22108}, {25084, 50524}, {48038, 50336}, {48269, 50501}

X(58303) = midpoint of X(i) and X(j) for these {i,j}: {58286, 58288}, {58289, 58290}
X(58303) = perspector of circumconic {{A, B, C, X(14974), X(17314)}}
X(58303) = X(i)-Dao conjugate of X(j) for these {i, j}: {20315, 52619}
X(58303) = perspector of cevian triangle of X(50501) and inverse-of-ABC in bicevian conic of X(1) and X(50501)
X(58303) = barycentric product X(i)*X(j) for these (i, j): {37, 50501}, {42, 48269}, {1778, 4705}, {1788, 3709}, {4079, 56018}, {14974, 523}, {17314, 512}, {20315, 2333}, {46937, 798}
X(58303) = barycentric quotient X(i)/X(j) for these (i, j): {1778, 4623}, {14974, 99}, {17314, 670}, {46937, 4602}, {48269, 310}, {50501, 274}, {56018, 52612}
X(58303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17990, 50491, 647}, {58286, 58288, 512}


X(58304) = X(42)X(42653)∩X(810)X(872)

Barycentrics    a^2*(b-c)*(b+c)^2*(-a^2+b^2+b*c+c^2) : :

X(58304) lies on these lines: {42, 42653}, {210, 57131}, {512, 58285}, {667, 17990}, {756, 4041}, {810, 872}, {1110, 4557}, {1734, 18004}, {3005, 50493}, {3678, 14838}, {4147, 18003}, {4705, 42666}, {4843, 58362}, {6367, 21727}, {7265, 57099}, {17989, 50504}, {20964, 21761}

X(58304) = perspector of circumconic {{A, B, C, X(2171), X(3969)}}
X(58304) = X(i)-isoconjugate-of-X(j) for these {i, j}: {79, 52935}, {86, 13486}, {99, 52375}, {261, 26700}, {593, 15455}, {662, 52393}, {757, 6742}, {1333, 55209}, {1414, 3615}, {2160, 4610}, {2185, 38340}, {3960, 39295}, {4556, 30690}, {4560, 35049}, {4612, 52374}, {4623, 6186}, {6578, 52569}, {6628, 56193}
X(58304) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 55209}, {1084, 52393}, {8287, 873}, {14838, 52619}, {38986, 52375}, {40600, 13486}, {40607, 6742}, {40608, 3615}, {55042, 261}, {55065, 20565}, {56948, 55196}
X(58304) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3678, 20982}, {4559, 1500}
X(58304)= pole of line {4272, 5280} with respect to the Brocard inellipse
X(58304) = perspector of cevian triangle of X(57099) and inverse-of-ABC in bicevian conic of X(1) and X(57099)
X(58304) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(2605)}}, {{A, B, C, X(756), X(1110)}}, {{A, B, C, X(810), X(22094)}}, {{A, B, C, X(1500), X(2594)}}, {{A, B, C, X(4041), X(42666)}}, {{A, B, C, X(7265), X(55210)}}, {{A, B, C, X(14838), X(20982)}}
X(58304) = barycentric product X(i)*X(j) for these (i, j): {10, 55210}, {12, 9404}, {35, 4024}, {37, 57099}, {42, 7265}, {100, 21824}, {101, 21054}, {181, 57066}, {319, 4079}, {649, 7206}, {1018, 2611}, {1500, 4467}, {1825, 8611}, {2088, 51562}, {2171, 35057}, {2174, 4036}, {2594, 3700}, {2605, 594}, {2610, 56422}, {3219, 4705}, {3678, 661}, {3709, 40999}, {3949, 54244}, {3969, 512}, {4103, 53542}, {4420, 57185}, {4557, 8287}, {4559, 6741}, {14838, 756}, {15065, 2624}, {16577, 4041}, {18160, 872}, {20982, 3952}, {21741, 4086}, {21794, 522}, {21859, 53524}, {32679, 34857}, {33939, 50487}, {34016, 58289}, {35193, 55197}, {40521, 7202}, {41226, 42666}, {52412, 55230}, {55232, 6198}
X(58304) = barycentric quotient X(i)/X(j) for these (i, j): {10, 55209}, {35, 4610}, {181, 38340}, {213, 13486}, {319, 52612}, {512, 52393}, {756, 15455}, {798, 52375}, {1500, 6742}, {2088, 4453}, {2174, 52935}, {2594, 4573}, {2605, 1509}, {2611, 7199}, {3219, 4623}, {3678, 799}, {3709, 3615}, {3969, 670}, {4024, 20565}, {4079, 79}, {4420, 4631}, {4705, 30690}, {6198, 55231}, {7206, 1978}, {7265, 310}, {8287, 52619}, {9404, 261}, {14838, 873}, {16577, 4625}, {18160, 57992}, {20982, 7192}, {21054, 3261}, {21741, 1414}, {21794, 664}, {21824, 693}, {22094, 15419}, {34857, 32680}, {35057, 52379}, {35193, 55196}, {50487, 2160}, {52412, 55229}, {53563, 30940}, {53581, 6186}, {55210, 86}, {55230, 52381}, {57066, 18021}, {57099, 274}, {58289, 8818}
X(58304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4705, 55230, 42666}


X(58305) = X(30)X(511)∩X(130)X(39019)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)^3*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(58305) lies on these lines: {30, 511}, {130, 39019}, {1303, 18831}, {15451, 17434}, {23613, 32078}, {32320, 39201}, {34980, 41212}, {42658, 54257}

X(58305) = isogonal conjugate of X(52779)
X(58305) = isotomic conjugate of X(54950)
X(58305) = perspector of circumconic {{A, B, C, X(2), X(216)}}
X(58305) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52779}, {19, 42405}, {31, 54950}, {48, 42401}, {92, 16813}, {95, 36126}, {107, 40440}, {158, 18831}, {162, 8795}, {275, 823}, {276, 24019}, {662, 8794}, {811, 8884}, {933, 57806}, {2167, 15352}, {2190, 6528}, {6521, 18315}, {8882, 57973}, {9247, 42369}, {15422, 46254}, {32676, 57844}
X(58305) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54950}, {3, 52779}, {5, 6528}, {6, 42405}, {125, 8795}, {130, 4}, {1084, 8794}, {1147, 18831}, {1249, 42401}, {2972, 264}, {15450, 2052}, {15526, 57844}, {17423, 8884}, {22391, 16813}, {34980, 19209}, {35071, 276}, {38985, 40440}, {38999, 43752}, {39019, 18027}, {40588, 15352}, {46093, 95}, {55073, 317}
X(58305) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3, 35071}, {4, 38976}, {68, 39019}, {418, 41219}, {520, 17434}, {1303, 3}, {1625, 46394}, {15958, 577}, {17434, 42293}, {23606, 34980}, {35360, 216}, {42487, 2972}, {54950, 2}
X(58305) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 38976}, {158, 39019}, {275, 16595}, {811, 10600}, {933, 828}, {2190, 35071}, {8794, 8287}, {8795, 34846}, {8884, 16573}, {16813, 1214}, {24021, 17434}, {36126, 233}, {40440, 122}, {42401, 20305}, {42405, 18589}, {52779, 10}, {54950, 2887}, {57806, 20625}
X(58305) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {8794, 21221}, {16813, 6360}, {36126, 17035}, {40440, 34186}, {42401, 21270}, {42405, 4329}, {52779, 8}, {54950, 6327}
X(58305) = X(i)-cross conjugate of X(j) for these {i, j}: {41219, 418}
X(58305)= pole of line {4, 6752} with respect to the anticomplementary circle
X(58305)= pole of line {3, 8612} with respect to the 2nd Brocard circle
X(58305)= pole of line {3, 8612} with respect to the circumcircle
X(58305)= pole of line {4, 6752} with respect to the 1st DrozFarny circle
X(58305)= pole of line {3, 8612} with respect to the 2nd DrozFarny circle
X(58305)= pole of line {4, 6752} with respect to the circumcircle of the Johnson triangle
X(58305)= pole of line {4, 6752} with respect to the polar circle
X(58305)= pole of line {3, 8612} with respect to the Stammler circle
X(58305)= pole of line {11, 38976} with respect to the Feuerbach hyperbola
X(58305)= pole of line {125, 35071} with respect to the Jerabek hyperbola
X(58305)= pole of line {5, 53} with respect to the Johnson circumconic
X(58305)= pole of line {115, 38976} with respect to the Kiepert hyperbola
X(58305)= pole of line {6, 6638} with respect to the MacBeath circumconic
X(58305)= pole of line {6, 8612} with respect to the Orthic inconic
X(58305)= pole of line {110, 6528} with respect to the Stammler hyperbola
X(58305)= pole of line {2, 276} with respect to the Steiner circumellipse
X(58305)= pole of line {2, 276} with respect to the Steiner inellipse
X(58305)= pole of line {99, 52779} with respect to the Wallace hyperbola
X(58305) = perspector of cevian triangle of X(520) and inverse-of-ABC in bicevian conic of X(3) and X(520)
X(58305) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(32428)}}, {{A, B, C, X(30), X(418)}}, {{A, B, C, X(51), X(6000)}}, {{A, B, C, X(68), X(36433)}}, {{A, B, C, X(184), X(18400)}}, {{A, B, C, X(217), X(1503)}}, {{A, B, C, X(265), X(32438)}}, {{A, B, C, X(511), X(5562)}}, {{A, B, C, X(512), X(58310)}}, {{A, B, C, X(523), X(15451)}}, {{A, B, C, X(525), X(17434)}}, {{A, B, C, X(526), X(34980)}}, {{A, B, C, X(1092), X(5965)}}, {{A, B, C, X(1154), X(23606)}}, {{A, B, C, X(1625), X(35071)}}, {{A, B, C, X(2393), X(44088)}}, {{A, B, C, X(2797), X(23181)}}, {{A, B, C, X(6086), X(52604)}}, {{A, B, C, X(6368), X(34983)}}, {{A, B, C, X(9033), X(41219)}}, {{A, B, C, X(12077), X(46088)}}, {{A, B, C, X(14585), X(44668)}}, {{A, B, C, X(23878), X(52613)}}, {{A, B, C, X(27372), X(34146)}}, {{A, B, C, X(41212), X(55132)}}
X(58305) = barycentric product X(i)*X(j) for these (i, j): {51, 52613}, {216, 520}, {217, 3265}, {343, 39201}, {418, 525}, {577, 6368}, {1092, 12077}, {1625, 2972}, {1636, 44715}, {2617, 37754}, {2618, 4100}, {3049, 52347}, {3267, 44088}, {3964, 55219}, {5562, 647}, {14570, 34980}, {15451, 394}, {15958, 39019}, {16391, 52317}, {17434, 3}, {18314, 23606}, {18315, 41212}, {19210, 57195}, {23181, 3269}, {27372, 58359}, {28706, 58310}, {32320, 5}, {32661, 35442}, {34983, 97}, {35071, 35360}, {40981, 4143}, {41219, 648}, {42293, 69}, {44706, 822}
X(58305) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54950}, {3, 42405}, {4, 42401}, {6, 52779}, {51, 15352}, {184, 16813}, {216, 6528}, {217, 107}, {264, 42369}, {418, 648}, {512, 8794}, {520, 276}, {525, 57844}, {577, 18831}, {647, 8795}, {822, 40440}, {1636, 43752}, {2179, 36126}, {3049, 8884}, {3265, 57790}, {3964, 55218}, {5562, 6331}, {6368, 18027}, {14585, 933}, {15451, 2052}, {15958, 57573}, {17434, 264}, {19210, 52939}, {23606, 18315}, {32320, 95}, {34980, 15412}, {34983, 324}, {35360, 57556}, {36433, 15958}, {39201, 275}, {40981, 6529}, {41212, 18314}, {41219, 525}, {42293, 4}, {44088, 112}, {44706, 57973}, {46394, 35360}, {52177, 41210}, {52604, 34538}, {52613, 34384}, {55219, 1093}, {58310, 8882}
X(58305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15451, 17434, 34983}


X(58306) = X(4)X(54)∩X(25)X(3202)

Barycentrics    a^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(-b^4-c^4+a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(58306) lies on these lines: {4, 54}, {25, 3202}, {32, 44077}, {95, 19126}, {97, 37184}, {206, 14533}, {237, 41270}, {263, 1974}, {511, 19189}, {512, 2623}, {933, 2698}, {9418, 34854}, {13854, 41271}, {18831, 53197}, {19173, 36747}, {19185, 46728}, {32046, 43132}, {33651, 34386}, {43768, 46518}

X(58306) = perspector of circumconic {{A, B, C, X(8882), X(16813)}}
X(58306) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 336}, {63, 53245}, {75, 53174}, {98, 18695}, {216, 46273}, {287, 14213}, {290, 44706}, {293, 311}, {343, 1821}, {1910, 28706}, {1953, 57799}, {2618, 17932}, {6368, 36036}, {36120, 52347}
X(58306) = X(i)-Dao conjugate of X(j) for these {i, j}: {132, 311}, {206, 53174}, {2679, 6368}, {3162, 53245}, {11672, 28706}, {38970, 15415}, {40601, 343}, {46094, 52347}
X(58306) = X(i)-Ceva conjugate of X(j) for these {i, j}: {19189, 41270}, {23233, 571}
X(58306)= pole of line {571, 23286} with respect to the circumcircle
X(58306)= pole of line {311, 6368} with respect to the polar circle
X(58306)= pole of line {12077, 47328} with respect to the Orthic inconic
X(58306)= pole of line {5562, 28706} with respect to the Stammler hyperbola
X(58306) = perspector of cevian triangle of X(19189) and inverse-of-ABC in bicevian conic of X(4) and X(19189)
X(58306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(32)}}, {{A, B, C, X(25), X(1629)}}, {{A, B, C, X(54), X(58308)}}, {{A, B, C, X(184), X(9418)}}, {{A, B, C, X(232), X(6753)}}, {{A, B, C, X(275), X(2623)}}, {{A, B, C, X(578), X(46680)}}, {{A, B, C, X(1976), X(58317)}}, {{A, B, C, X(3289), X(11427)}}, {{A, B, C, X(6750), X(52967)}}, {{A, B, C, X(8884), X(19189)}}, {{A, B, C, X(9155), X(14332)}}, {{A, B, C, X(14157), X(58316)}}, {{A, B, C, X(14966), X(32708)}}, {{A, B, C, X(18400), X(39469)}}, {{A, B, C, X(32696), X(34859)}}, {{A, B, C, X(34397), X(53176)}}, {{A, B, C, X(57653), X(58313)}}
X(58306) = barycentric product X(i)*X(j) for these (i, j): {4, 41270}, {232, 54}, {237, 275}, {276, 9418}, {297, 54034}, {511, 8882}, {1755, 2190}, {2148, 240}, {2167, 57653}, {2211, 95}, {2623, 4230}, {3289, 8884}, {3569, 933}, {14533, 6530}, {14573, 44132}, {14586, 16230}, {16813, 39469}, {17994, 18315}, {18831, 2491}, {19189, 6}, {23286, 58070}, {34854, 97}, {40440, 9417}
X(58306) = barycentric quotient X(i)/X(j) for these (i, j): {25, 53245}, {32, 53174}, {54, 57799}, {232, 311}, {237, 343}, {275, 18024}, {511, 28706}, {933, 43187}, {1755, 18695}, {2148, 336}, {2190, 46273}, {2211, 5}, {2491, 6368}, {3289, 52347}, {5360, 42698}, {8882, 290}, {9417, 44706}, {9418, 216}, {9419, 44716}, {14533, 6394}, {14573, 248}, {14586, 17932}, {16230, 15415}, {17994, 18314}, {19189, 76}, {34854, 324}, {34859, 35360}, {41270, 69}, {54034, 287}, {57653, 14213}, {58308, 53173}


X(58307) = X(25)X(1692)∩X(184)X(1613)

Barycentrics    a^2*(3*a^8-b^2*c^2*(b^2-c^2)^2-6*a^6*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(5*b^4-b^2*c^2+5*c^4)) : :

X(58307) lies on these lines: {25, 1692}, {154, 35006}, {184, 1613}, {263, 1501}, {394, 52992}, {511, 3796}, {512, 2623}, {1971, 6784}, {1976, 14567}, {1993, 35383}, {2030, 26864}, {2076, 17809}, {2080, 11003}, {2456, 5012}, {2459, 10132}, {2460, 10133}, {5104, 44109}, {5111, 10329}, {34986, 35375}, {35296, 39907}, {51444, 54034}

X(58307)= pole of line {7697, 10008} with respect to the Stammler hyperbola
X(58307) = perspector of cevian triangle of X(21445) and inverse-of-ABC in bicevian conic of X(4) and X(21445)
X(58307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(512), X(51444)}}, {{A, B, C, X(21445), X(47643)}}
X(58307) = barycentric product X(i)*X(j) for these (i, j): {21445, 6}
X(58307) = barycentric quotient X(i)/X(j) for these (i, j): {21445, 76}


X(58308) = X(54)X(826)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(58308) lies on these lines: {54, 826}, {184, 15451}, {512, 2623}, {520, 6760}, {569, 18314}, {933, 2713}, {3049, 19627}, {15422, 51513}, {30451, 39201}

X(58308) = midpoint of X(i) and X(j) for these {i,j}: {30451, 39201}
X(58308) = perspector of circumconic {{A, B, C, X(97), X(8882)}}
X(58308) = X(i)-isoconjugate-of-X(j) for these {i, j}: {5, 811}, {51, 57968}, {53, 799}, {75, 35360}, {92, 14570}, {107, 18695}, {162, 311}, {216, 57973}, {264, 2617}, {324, 662}, {343, 823}, {561, 52604}, {648, 14213}, {670, 2181}, {1087, 18831}, {1273, 36129}, {1625, 1969}, {1953, 6331}, {2618, 18020}, {3199, 4602}, {4592, 13450}, {4593, 27371}, {6335, 17167}, {6368, 23999}, {6528, 44706}, {12077, 46254}, {14569, 55202}, {14576, 55215}, {14918, 32680}, {21011, 55231}, {21807, 55229}, {23181, 57806}, {23290, 24041}, {24019, 28706}, {24037, 51513}, {35139, 51801}, {36036, 39569}, {36126, 52347}, {42698, 52919}
X(58308) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 311}, {206, 35360}, {512, 51513}, {577, 55252}, {647, 15415}, {1084, 324}, {2679, 39569}, {3005, 23290}, {5139, 13450}, {15450, 45793}, {17423, 5}, {22391, 14570}, {35071, 28706}, {38985, 18695}, {38996, 53}, {40368, 52604}, {46093, 52347}, {55050, 27371}, {55066, 14213}
X(58308) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15958, 14533}, {23286, 46088}, {52932, 57703}
X(58308) = X(i)-cross conjugate of X(j) for these {i, j}: {3049, 2623}, {17423, 3}, {20975, 184}
X(58308)= pole of line {571, 6759} with respect to the circumcircle
X(58308)= pole of line {311, 13450} with respect to the polar circle
X(58308)= pole of line {577, 23158} with respect to the MacBeath circumconic
X(58308) = perspector of cevian triangle of X(23286) and inverse-of-ABC in bicevian conic of X(4) and X(23286)
X(58308) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(32545)}}, {{A, B, C, X(54), X(58306)}}, {{A, B, C, X(184), X(14355)}}, {{A, B, C, X(512), X(520)}}, {{A, B, C, X(577), X(58312)}}, {{A, B, C, X(647), X(6753)}}, {{A, B, C, X(810), X(58313)}}, {{A, B, C, X(826), X(6333)}}, {{A, B, C, X(2623), X(46088)}}, {{A, B, C, X(3455), X(52177)}}, {{A, B, C, X(6760), X(33581)}}, {{A, B, C, X(14270), X(15451)}}, {{A, B, C, X(14574), X(58317)}}, {{A, B, C, X(14586), X(15412)}}, {{A, B, C, X(15389), X(58309)}}, {{A, B, C, X(32713), X(58316)}}, {{A, B, C, X(32725), X(58310)}}, {{A, B, C, X(42293), X(51513)}}, {{A, B, C, X(42658), X(42660)}}
X(58308) = barycentric product X(i)*X(j) for these (i, j): {4, 46088}, {54, 647}, {115, 15958}, {125, 14586}, {275, 39201}, {276, 58310}, {512, 97}, {520, 8882}, {525, 54034}, {1092, 15422}, {1147, 55253}, {1576, 53576}, {1637, 46090}, {2148, 656}, {2167, 810}, {2169, 661}, {2190, 822}, {2616, 48}, {2623, 3}, {3049, 95}, {3269, 933}, {3288, 51444}, {11077, 526}, {12077, 46089}, {13366, 39181}, {14371, 30442}, {14533, 523}, {14573, 3267}, {15412, 184}, {15414, 1974}, {16813, 34980}, {18315, 20975}, {19210, 2501}, {20574, 55280}, {20775, 39182}, {22383, 56254}, {23216, 55218}, {23286, 6}, {30451, 96}, {32320, 8884}, {32661, 8901}, {34386, 669}, {34952, 57875}, {35196, 55234}, {36134, 3708}, {39013, 52932}, {41270, 879}, {41271, 52584}, {47230, 50463}, {53173, 58306}, {57703, 924}
X(58308) = barycentric quotient X(i)/X(j) for these (i, j): {32, 35360}, {54, 6331}, {97, 670}, {125, 15415}, {184, 14570}, {252, 55217}, {512, 324}, {520, 28706}, {647, 311}, {669, 53}, {688, 27371}, {810, 14213}, {822, 18695}, {878, 53245}, {1084, 51513}, {1147, 55252}, {1501, 52604}, {1924, 2181}, {2148, 811}, {2167, 57968}, {2169, 799}, {2190, 57973}, {2489, 13450}, {2491, 39569}, {2616, 1969}, {2623, 264}, {3049, 5}, {3124, 23290}, {8882, 6528}, {9247, 2617}, {9426, 3199}, {11077, 35139}, {14270, 14918}, {14533, 99}, {14573, 112}, {14575, 1625}, {14585, 23181}, {14586, 18020}, {14587, 55270}, {15412, 18022}, {15414, 40050}, {15451, 45793}, {15958, 4590}, {19210, 4563}, {20574, 55279}, {20975, 18314}, {23216, 55219}, {23286, 76}, {30451, 39113}, {32320, 52347}, {34386, 4609}, {34952, 467}, {35196, 55233}, {36134, 46254}, {39201, 343}, {41270, 877}, {41271, 30450}, {41488, 42395}, {46088, 69}, {53576, 44173}, {54034, 648}, {55253, 55553}, {57204, 14569}, {57703, 46134}, {58310, 216}


X(58309) = X(4)X(2080)∩X(25)X(187)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+3*b^2*c^2-2*a^2*(b^2+c^2)) : :

X(58309) lies on these lines: {4, 2080}, {24, 38225}, {25, 187}, {112, 5970}, {186, 2971}, {235, 38227}, {316, 427}, {378, 35002}, {385, 5186}, {428, 51224}, {468, 691}, {511, 1593}, {512, 2623}, {625, 5094}, {842, 44281}, {1398, 5194}, {1597, 9301}, {1691, 1968}, {1692, 3172}, {1829, 5184}, {1843, 5104}, {2021, 2207}, {2030, 19118}, {2076, 7716}, {2386, 39832}, {2459, 8948}, {2460, 8946}, {3291, 54066}, {3515, 14248}, {3516, 18860}, {3542, 14693}, {3575, 19169}, {3849, 5064}, {5148, 7071}, {5167, 44080}, {7507, 13449}, {7527, 23635}, {8541, 8586}, {8753, 41404}, {9218, 15143}, {9855, 12132}, {10317, 56957}, {11363, 38221}, {11405, 44496}, {11676, 12131}, {14581, 44090}, {14908, 43291}, {21841, 38230}, {31275, 52298}, {32527, 39652}, {44102, 52678}, {47618, 55571}

X(58309) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 9227}, {75, 38279}
X(58309) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 38279}, {3162, 9227}, {39027, 69}
X(58309) = X(i)-Ceva conjugate of X(j) for these {i, j}: {38294, 9225}
X(58309)= pole of line {311, 55271} with respect to the polar circle
X(58309)= pole of line {38279, 47412} with respect to the Stammler hyperbola
X(58309) = perspector of cevian triangle of X(38294) and inverse-of-ABC in bicevian conic of X(4) and X(38294)
X(58309) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2623), X(3224)}}, {{A, B, C, X(15389), X(58308)}}
X(58309) = barycentric product X(i)*X(j) for these (i, j): {4, 9225}, {112, 45689}, {38294, 6}
X(58309) = barycentric quotient X(i)/X(j) for these (i, j): {25, 9227}, {32, 38279}, {9225, 69}, {38294, 76}, {45689, 3267}
X(58309) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {112, 46522, 44089}, {187, 5140, 25}, {1968, 11325, 11380}


X(58310) = X(184)X(647)∩X(669)X(688)

Barycentrics    a^6*(b-c)*(b+c)*(-a^2+b^2+c^2)^2 : :

X(58310) lies on these lines: {110, 22264}, {182, 30476}, {184, 647}, {512, 2623}, {520, 58353}, {669, 688}, {850, 5012}, {879, 11003}, {1181, 9242}, {1974, 58344}, {3796, 54272}, {5027, 6562}, {11402, 54269}, {23590, 32713}, {30451, 39469}, {31277, 43650}, {32320, 39201}, {47252, 51733}

X(58310) = perspector of circumconic {{A, B, C, X(32), X(248)}}
X(58310) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 57973}, {4, 57968}, {75, 6528}, {76, 823}, {92, 6331}, {99, 57806}, {107, 561}, {158, 670}, {162, 18022}, {264, 811}, {304, 15352}, {305, 36126}, {314, 52938}, {393, 4602}, {648, 1969}, {662, 18027}, {799, 2052}, {850, 23999}, {1093, 55202}, {1096, 4609}, {1502, 24019}, {1857, 55213}, {1896, 4572}, {1897, 57796}, {1928, 32713}, {2617, 57844}, {4563, 6521}, {6335, 44129}, {6386, 8747}, {6520, 52608}, {6529, 40364}, {11547, 55215}, {14213, 42405}, {14618, 46254}, {15459, 46234}, {18026, 44130}, {18695, 52779}, {18833, 46151}, {20948, 23582}, {22456, 40703}, {24000, 44173}, {24018, 57556}, {24021, 52617}, {27376, 37204}, {27801, 52919}, {28660, 54240}, {31623, 46404}, {32676, 44161}, {36127, 40072}, {36797, 57787}, {40149, 55233}, {41013, 55229}, {41679, 57898}, {44706, 54950}, {55227, 57716}
X(58310) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 18022}, {130, 311}, {206, 6528}, {520, 52617}, {1084, 18027}, {1147, 670}, {6503, 4609}, {15526, 44161}, {17423, 264}, {22391, 6331}, {32664, 57973}, {34467, 57796}, {35071, 1502}, {36033, 57968}, {37867, 52608}, {38985, 561}, {38986, 57806}, {38996, 2052}, {39469, 41167}, {40368, 107}, {40369, 32713}, {46093, 305}, {55066, 1969}
X(58310) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14574, 14575}, {32713, 32}, {58308, 3049}
X(58310)= pole of line {30495, 57533} with respect to the 1st Brocard circle
X(58310)= pole of line {571, 1613} with respect to the circumcircle
X(58310)= pole of line {311, 18022} with respect to the polar circle
X(58310)= pole of line {3051, 8779} with respect to the Brocard inellipse
X(58310)= pole of line {6638, 10316} with respect to the MacBeath circumconic
X(58310)= pole of line {40951, 47328} with respect to the Orthic inconic
X(58310)= pole of line {670, 877} with respect to the Stammler hyperbola
X(58310)= pole of line {8265, 28697} with respect to the Steiner inellipse
X(58310) = perspector of cevian triangle of X(39201) and inverse-of-ABC in bicevian conic of X(4) and X(39201)
X(58310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(864)}}, {{A, B, C, X(32), X(23590)}}, {{A, B, C, X(184), X(9418)}}, {{A, B, C, X(394), X(32748)}}, {{A, B, C, X(520), X(688)}}, {{A, B, C, X(577), X(33875)}}, {{A, B, C, X(647), X(2491)}}, {{A, B, C, X(669), X(878)}}, {{A, B, C, X(822), X(46386)}}, {{A, B, C, X(2623), X(3049)}}, {{A, B, C, X(3265), X(17415)}}, {{A, B, C, X(6753), X(42293)}}, {{A, B, C, X(9407), X(14575)}}, {{A, B, C, X(14567), X(14585)}}, {{A, B, C, X(32725), X(58308)}}, {{A, B, C, X(34397), X(44088)}}, {{A, B, C, X(54034), X(58311)}}
X(58310) = barycentric product X(i)*X(j) for these (i, j): {3, 3049}, {25, 32320}, {31, 822}, {32, 520}, {41, 51640}, {48, 810}, {112, 34980}, {184, 647}, {213, 23224}, {216, 58308}, {217, 23286}, {248, 39469}, {255, 798}, {394, 669}, {512, 577}, {656, 9247}, {1092, 2489}, {1402, 36054}, {1409, 1946}, {1459, 2200}, {1501, 3265}, {1576, 3269}, {1636, 40352}, {1918, 4091}, {1919, 3682}, {1924, 326}, {1971, 53175}, {1974, 52613}, {1980, 3998}, {2205, 4131}, {2289, 51641}, {2351, 30451}, {2623, 418}, {3051, 58353}, {3267, 40373}, {3289, 878}, {3709, 7335}, {3926, 9426}, {3964, 57204}, {3990, 667}, {4055, 649}, {4143, 44162}, {6056, 7180}, {10097, 23200}, {14270, 50433}, {14533, 15451}, {14574, 15526}, {14575, 525}, {14585, 523}, {14600, 684}, {14642, 42658}, {15389, 2524}, {15412, 44088}, {17434, 54034}, {17974, 2491}, {18604, 50487}, {18877, 9409}, {19210, 55219}, {19627, 43083}, {20975, 32661}, {22096, 4574}, {22341, 3063}, {22383, 228}, {23103, 23975}, {23216, 4563}, {23590, 23613}, {23606, 2501}, {23963, 5489}, {24018, 560}, {24019, 42080}, {28724, 688}, {32676, 37754}, {32713, 35071}, {32725, 33571}, {34952, 55549}, {39201, 6}, {39687, 53321}, {40146, 58359}, {40353, 58345}, {40823, 47194}, {42293, 54}, {46088, 51}, {52430, 661}, {52617, 9233}, {53173, 9418}, {58305, 8882}, {58354, 881}
X(58310) = barycentric quotient X(i)/X(j) for these (i, j): {31, 57973}, {32, 6528}, {48, 57968}, {184, 6331}, {255, 4602}, {394, 4609}, {512, 18027}, {520, 1502}, {525, 44161}, {560, 823}, {577, 670}, {647, 18022}, {669, 2052}, {798, 57806}, {810, 1969}, {822, 561}, {1092, 52608}, {1501, 107}, {1799, 42395}, {1917, 24019}, {1924, 158}, {1974, 15352}, {2623, 57844}, {3049, 264}, {3265, 40362}, {3269, 44173}, {3990, 6386}, {4055, 1978}, {4100, 55202}, {4143, 40360}, {7125, 55213}, {8882, 54950}, {8884, 42369}, {9233, 32713}, {9247, 811}, {9426, 393}, {9494, 27376}, {14573, 16813}, {14574, 23582}, {14575, 648}, {14585, 99}, {14600, 22456}, {19210, 55218}, {22383, 57796}, {23216, 2501}, {23224, 6385}, {23286, 57790}, {23606, 4563}, {23613, 23974}, {24018, 1928}, {28724, 42371}, {32320, 305}, {32713, 57556}, {34980, 3267}, {35071, 52617}, {36054, 40072}, {39201, 76}, {39469, 44132}, {40373, 112}, {41331, 46151}, {42293, 311}, {44088, 14570}, {44162, 6529}, {46088, 34384}, {51477, 55217}, {51640, 20567}, {52430, 799}, {52435, 55227}, {52613, 40050}, {52617, 40359}, {54034, 42405}, {57204, 1093}, {58305, 28706}, {58308, 276}, {58353, 40016}


X(58311) = X(25)X(32)∩X(112)X(237)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8+b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+b^2*c^2+c^4)) : :

X(58311) lies on these lines: {4, 34396}, {6, 6751}, {20, 23606}, {25, 32}, {110, 15143}, {112, 237}, {157, 8746}, {184, 1968}, {232, 52144}, {393, 14575}, {401, 32428}, {419, 47202}, {458, 3398}, {460, 6531}, {512, 2623}, {578, 1181}, {1033, 19118}, {1576, 1990}, {1629, 12110}, {1974, 51936}, {1976, 2211}, {2393, 52952}, {2782, 44328}, {2967, 37183}, {3148, 8743}, {3164, 43131}, {3575, 8884}, {5191, 8744}, {5702, 46327}, {6620, 44162}, {8745, 40947}, {8778, 52277}, {9308, 37893}, {9407, 32713}, {9512, 37778}, {11325, 44077}, {11547, 36998}, {14900, 51458}, {18374, 52604}, {20975, 52418}, {21531, 41253}, {23590, 58341}, {26864, 41376}, {32078, 37126}, {32695, 32725}, {33695, 51939}, {34982, 44084}, {37457, 39575}, {38861, 47158}, {41363, 51335}, {56296, 56372}

X(58311) = perspector of circumconic {{A, B, C, X(8882), X(32713)}}
X(58311) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 1972}, {69, 1956}, {75, 14941}, {304, 1987}, {336, 40804}, {561, 52177}, {1298, 18695}, {24018, 53205}, {53175, 57968}
X(58311) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 14941}, {3162, 1972}, {38974, 3267}, {39038, 304}, {39045, 69}, {39081, 305}, {40368, 52177}, {52128, 52347}
X(58311) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1976, 25}, {2211, 44089}, {41204, 1971}
X(58311)= pole of line {571, 2485} with respect to the circumcircle
X(58311)= pole of line {311, 3267} with respect to the polar circle
X(58311)= pole of line {10311, 34131} with respect to the Jerabek hyperbola
X(58311)= pole of line {3926, 14941} with respect to the Stammler hyperbola
X(58311) = perspector of cevian triangle of X(41204) and inverse-of-ABC in bicevian conic of X(4) and X(41204)
X(58311) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(401)}}, {{A, B, C, X(32), X(32545)}}, {{A, B, C, X(512), X(3199)}}, {{A, B, C, X(2207), X(41204)}}, {{A, B, C, X(6130), X(14580)}}, {{A, B, C, X(6531), X(34854)}}, {{A, B, C, X(32696), X(34859)}}, {{A, B, C, X(54034), X(58310)}}
X(58311) = barycentric product X(i)*X(j) for these (i, j): {19, 1955}, {25, 401}, {112, 6130}, {232, 32545}, {1971, 4}, {1974, 44137}, {2190, 2313}, {10311, 39682}, {16089, 32}, {32428, 8882}, {41204, 6}, {52128, 6531}
X(58311) = barycentric quotient X(i)/X(j) for these (i, j): {25, 1972}, {32, 14941}, {401, 305}, {1501, 52177}, {1955, 304}, {1971, 69}, {1973, 1956}, {1974, 1987}, {2211, 40804}, {2313, 18695}, {6130, 3267}, {16089, 1502}, {32428, 28706}, {32545, 57799}, {32713, 53205}, {41204, 76}, {44137, 40050}, {51437, 51960}, {52128, 6393}
X(58311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1576, 1990, 44096}, {14581, 42671, 34854}, {34854, 42671, 25}


X(58312) = X(3)X(6)∩X(4)X(52436)

Barycentrics    a^2*(a^8-b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)+a^4*(b^4+b^2*c^2+c^4)) : :

X(58312) lies on these lines: {3, 6}, {4, 52436}, {54, 11674}, {110, 45938}, {115, 1971}, {128, 36472}, {184, 5167}, {186, 47421}, {230, 32661}, {231, 30714}, {249, 3580}, {316, 14389}, {338, 54076}, {512, 2623}, {538, 58354}, {1176, 49122}, {1300, 2715}, {1501, 7737}, {1915, 5475}, {2387, 39834}, {2450, 46243}, {2909, 11325}, {3331, 14567}, {3767, 14585}, {7735, 52438}, {9225, 45935}, {9609, 44415}, {12022, 38227}, {13754, 39839}, {14574, 44089}, {14917, 39832}, {21843, 43653}, {32654, 44221}

X(58312) = inverse of X(571) in circumcircle
X(58312) = perspector of circumconic {{A, B, C, X(110), X(8882)}}
X(58312) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 57846}, {92, 57679}
X(58312) = X(i)-vertex conjugate of X(j) for these {i, j}: {512, 571}
X(58312) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 57846}, {22391, 57679}
X(58312) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44375, 51458}
X(58312)= pole of line {512, 571} with respect to the circumcircle
X(58312)= pole of line {34964, 45801} with respect to the nine-point circle
X(58312)= pole of line {311, 14618} with respect to the polar circle
X(58312)= pole of line {184, 39839} with respect to the Jerabek hyperbola
X(58312)= pole of line {5, 1576} with respect to the Kiepert hyperbola
X(58312)= pole of line {924, 47328} with respect to the Orthic inconic
X(58312)= pole of line {2, 47421} with respect to the Stammler hyperbola
X(58312) = perspector of cevian triangle of X(44375) and inverse-of-ABC in bicevian conic of X(4) and X(44375)
X(58312) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(421)}}, {{A, B, C, X(6), X(44375)}}, {{A, B, C, X(52), X(6753)}}, {{A, B, C, X(216), X(512)}}, {{A, B, C, X(249), X(571)}}, {{A, B, C, X(511), X(1300)}}, {{A, B, C, X(577), X(58308)}}, {{A, B, C, X(842), X(37478)}}, {{A, B, C, X(2065), X(19131)}}, {{A, B, C, X(2088), X(37802)}}, {{A, B, C, X(3003), X(6531)}}, {{A, B, C, X(8553), X(9217)}}, {{A, B, C, X(14966), X(32708)}}, {{A, B, C, X(32762), X(45135)}}
X(58312) = barycentric product X(i)*X(j) for these (i, j): {3, 421}, {4, 51458}, {44375, 6}
X(58312) = barycentric quotient X(i)/X(j) for these (i, j): {3, 57846}, {184, 57679}, {421, 264}, {44375, 76}, {51458, 69}
X(58312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 19627, 1971}, {187, 1692, 50387}, {1379, 1380, 571}, {2459, 2460, 32762}


X(58313) = X(25)X(1960)∩X(661)X(663)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+b*c-c^2)*(a^2-b^2+c^2) : :

X(58313) lies on these lines: {25, 1960}, {33, 58369}, {512, 2623}, {659, 1829}, {661, 663}, {692, 2498}, {891, 11396}, {1398, 53539}, {1411, 39534}, {1459, 43923}, {1593, 2821}, {1946, 6589}, {2605, 7649}, {3904, 6369}, {5094, 53571}, {8648, 21828}, {9032, 12167}, {11363, 25569}, {42666, 47230}, {43925, 52326}, {44426, 47729}, {48302, 57044}, {48306, 54244}

X(58313) = perspector of circumconic {{A, B, C, X(19), X(2189)}}
X(58313) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 35174}, {48, 46405}, {63, 655}, {69, 2222}, {77, 51562}, {80, 6516}, {99, 52391}, {100, 52392}, {222, 36804}, {304, 32675}, {651, 52351}, {664, 1807}, {1214, 47318}, {1331, 18815}, {1332, 2006}, {1411, 4561}, {1793, 4566}, {1813, 18359}, {4025, 52377}, {4551, 57985}, {4554, 52431}, {4592, 52383}, {14616, 23067}, {18695, 36078}, {20566, 36059}, {22342, 35139}, {26942, 37140}, {36061, 40999}, {36069, 57807}
X(58313) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 46405}, {3162, 655}, {5139, 52383}, {5521, 18815}, {8054, 52392}, {13999, 75}, {16221, 40999}, {20620, 20566}, {35128, 304}, {35204, 4561}, {36103, 35174}, {38966, 52409}, {38982, 57807}, {38984, 69}, {38986, 52391}, {38991, 52351}, {39025, 1807}, {57434, 3718}
X(58313) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8749, 14936}, {14776, 25}, {36067, 608}, {44428, 654}
X(58313)= pole of line {571, 608} with respect to the circumcircle
X(58313)= pole of line {75, 311} with respect to the polar circle
X(58313)= pole of line {1824, 2875} with respect to the Orthic inconic
X(58313) = perspector of cevian triangle of X(44428) and inverse-of-ABC in bicevian conic of X(4) and X(44428)
X(58313) = intersection, other than A, B, C, of circumconics {{A, B, C, X(112), X(8735)}}, {{A, B, C, X(512), X(6369)}}, {{A, B, C, X(654), X(661)}}, {{A, B, C, X(663), X(692)}}, {{A, B, C, X(810), X(58308)}}, {{A, B, C, X(862), X(17515)}}, {{A, B, C, X(884), X(53525)}}, {{A, B, C, X(1411), X(2361)}}, {{A, B, C, X(1438), X(2323)}}, {{A, B, C, X(1870), X(2356)}}, {{A, B, C, X(2423), X(53046)}}, {{A, B, C, X(3738), X(8678)}}, {{A, B, C, X(6591), X(32674)}}, {{A, B, C, X(7113), X(8776)}}, {{A, B, C, X(8750), X(18344)}}, {{A, B, C, X(57653), X(58306)}}
X(58313) = barycentric product X(i)*X(j) for these (i, j): {4, 654}, {19, 3738}, {25, 3904}, {27, 53562}, {33, 3960}, {278, 53285}, {281, 53314}, {514, 52427}, {522, 52413}, {1021, 1835}, {1172, 53527}, {1464, 17926}, {1783, 53525}, {1870, 650}, {2170, 4242}, {2189, 6370}, {2190, 2600}, {2299, 4707}, {2323, 7649}, {2326, 51663}, {2610, 270}, {3064, 36}, {3615, 47230}, {3724, 57215}, {4453, 607}, {4511, 6591}, {5081, 649}, {6369, 8882}, {7252, 860}, {8648, 92}, {14776, 46398}, {17515, 661}, {17923, 663}, {17924, 2361}, {18344, 3218}, {21758, 318}, {21828, 29}, {24006, 4282}, {32702, 57434}, {36123, 53046}, {42666, 46103}, {44113, 4560}, {44426, 7113}, {44428, 6}, {46107, 52426}, {46110, 52434}, {46384, 7012}, {53047, 909}, {53546, 56183}
X(58313) = barycentric quotient X(i)/X(j) for these (i, j): {4, 46405}, {19, 35174}, {25, 655}, {33, 36804}, {607, 51562}, {649, 52392}, {654, 69}, {663, 52351}, {798, 52391}, {1870, 4554}, {1973, 2222}, {1974, 32675}, {2299, 47318}, {2323, 4561}, {2361, 1332}, {2489, 52383}, {2600, 18695}, {2610, 57807}, {3063, 1807}, {3064, 20566}, {3738, 304}, {3904, 305}, {3960, 7182}, {4282, 4592}, {4453, 57918}, {5081, 1978}, {6369, 28706}, {6591, 18815}, {7113, 6516}, {7252, 57985}, {8648, 63}, {17515, 799}, {17923, 4572}, {18344, 18359}, {21758, 77}, {21828, 307}, {22379, 7183}, {42666, 26942}, {44113, 4552}, {44428, 76}, {46384, 17880}, {47230, 40999}, {52413, 664}, {52426, 1331}, {52427, 190}, {52434, 1813}, {53285, 345}, {53314, 348}, {53525, 15413}, {53527, 1231}, {53562, 306}, {55206, 15065}


X(58314) = X(184)X(667)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(a^5+a^2*b*c*(b+c)-b*c*(b+c)*(b^2+c^2)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(58314) lies on these lines: {182, 21260}, {184, 667}, {512, 2623}, {1147, 39227}, {1960, 9404}, {5012, 21301}, {9306, 31288}, {11003, 31291}, {18344, 44077}, {31251, 43650}, {34948, 34975}, {57097, 57131}

X(58314) = perspector of circumconic {{A, B, C, X(8882), X(32655)}}
X(58314) = X(i)-Dao conjugate of X(j) for these {i, j}: {22383, 15413}
X(58314) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1783, 32}
X(58314)= pole of line {311, 17864} with respect to the polar circle
X(58314) = perspector of cevian triangle of X(48383) and inverse-of-ABC in bicevian conic of X(4) and X(48383)
X(58314) = barycentric product X(i)*X(j) for these (i, j): {1783, 34467}, {48383, 6}
X(58314) = barycentric quotient X(i)/X(j) for these (i, j): {34467, 15413}, {48383, 76}


X(58315) = X(182)X(3835)∩X(184)X(649)

Barycentrics    a^4*(a-b-c)*(b-c)*(a^3+b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(58315) lies on circumconic {{A, B, C, X(2623), X(3063)}} and these lines: {32, 23575}, {110, 27013}, {182, 3835}, {184, 649}, {386, 23148}, {512, 2623}, {663, 57133}, {692, 23865}, {1980, 8641}, {2488, 57172}, {5012, 20295}, {5651, 31207}, {6139, 56242}, {8653, 9426}, {9306, 31286}, {11003, 26853}, {30835, 43650}, {48387, 57042}, {57096, 57175}

X(58315) = perspector of circumconic {{A, B, C, X(2204), X(8882)}}
X(58315) = X(i)-isoconjugate-of-X(j) for these {i, j}: {85, 56248}, {664, 57830}, {1969, 40518}, {4569, 44040}, {4572, 57666}
X(58315) = X(i)-Dao conjugate of X(j) for these {i, j}: {39025, 57830}
X(58315) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8750, 32}
X(58315) = perspector of cevian triangle of X(48387) and inverse-of-ABC in bicevian conic of X(4) and X(48387)
X(58315) = barycentric product X(i)*X(j) for these (i, j): {19, 57103}, {25, 57042}, {41, 48281}, {42, 57212}, {2175, 47796}, {3063, 404}, {20293, 32}, {32739, 44311}, {39006, 8750}, {44085, 650}, {48387, 6}
X(58315) = barycentric quotient X(i)/X(j) for these (i, j): {2175, 56248}, {3063, 57830}, {14575, 40518}, {20293, 1502}, {44085, 4554}, {47796, 41283}, {48281, 20567}, {48387, 76}, {57042, 305}, {57103, 304}, {57212, 310}


X(58316) = X(184)X(9409)∩X(512)X(2623)

Barycentrics    a^4*(b-c)*(b+c)*(a^2-b^2-c^2)*(a^8+3*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4-b^2*c^2+3*c^4)) : :

X(58316) lies on these lines: {184, 9409}, {512, 2623}, {684, 10984}, {1147, 44810}, {6130, 6759}, {6529, 23977}, {9306, 44818}, {14270, 40352}, {52525, 53345}

X(58316) = perspector of circumconic {{A, B, C, X(8882), X(23590)}}
X(58316) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32695, 32}
X(58316) = perspector of cevian triangle of X(53255) and inverse-of-ABC in bicevian conic of X(4) and X(53255)
X(58316) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2623), X(6529)}}, {{A, B, C, X(14157), X(58306)}}, {{A, B, C, X(32713), X(58308)}}
X(58316) = barycentric product X(i)*X(j) for these (i, j): {14157, 647}, {32695, 38999}, {53255, 6}
X(58316) = barycentric quotient X(i)/X(j) for these (i, j): {14157, 6331}, {53255, 76}


X(58317) = X(184)X(3569)∩X(206)X(2492)

Barycentrics    a^4*(a^8*(b-c)*(b+c)+b^2*c^2*(b^2-c^2)^3+a^6*(-b^4+c^4)+a^4*(-b^6+c^6)+a^2*(b^8-c^8)) : :

X(58317) lies on these lines: {182, 24284}, {184, 3569}, {206, 2492}, {512, 2623}, {669, 14602}, {690, 13198}, {1974, 14398}, {1976, 2395}, {2491, 14601}, {5012, 53331}, {5157, 35522}, {9035, 19126}, {14574, 34859}, {52588, 57075}

X(58317) = perspector of circumconic {{A, B, C, X(8882), X(10313)}}
X(58317) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32696, 32}
X(58317)= pole of line {1899, 2549} with respect to the 1st Brocard circle
X(58317)= pole of line {15631, 52617} with respect to the Stammler hyperbola
X(58317) = perspector of cevian triangle of X(53265) and inverse-of-ABC in bicevian conic of X(4) and X(53265)
X(58317) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(53345)}}, {{A, B, C, X(1976), X(58306)}}, {{A, B, C, X(2395), X(34859)}}, {{A, B, C, X(14574), X(58308)}}
X(58317) = barycentric product X(i)*X(j) for these (i, j): {32, 53345}, {2715, 38368}, {10313, 512}, {32696, 39000}, {53265, 6}
X(58317) = barycentric quotient X(i)/X(j) for these (i, j): {10313, 670}, {53265, 76}, {53345, 1502}


X(58318) = X(55)X(57092)∩X(512)X(2623)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(58318) lies on these lines: {55, 57092}, {512, 2623}, {663, 51726}, {884, 7154}, {1946, 6591}, {3064, 21789}, {4705, 8641}, {8648, 55208}, {11406, 50501}, {17924, 22160}, {23865, 54247}

X(58318) = perspector of circumconic {{A, B, C, X(2299), X(8882)}}
X(58318) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6516, 57719}, {36059, 57910}
X(58318) = X(i)-Dao conjugate of X(j) for these {i, j}: {17924, 40495}, {20620, 57910}
X(58318) = X(i)-Ceva conjugate of X(j) for these {i, j}: {692, 25}
X(58318)= pole of line {571, 1841} with respect to the circumcircle
X(58318)= pole of line {311, 349} with respect to the polar circle
X(58318) = perspector of cevian triangle of X(57089) and inverse-of-ABC in bicevian conic of X(4) and X(57089)
X(58318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(663), X(2623)}}, {{A, B, C, X(7154), X(41227)}}
X(58318) = barycentric product X(i)*X(j) for these (i, j): {3064, 580}, {37279, 663}, {41227, 650}, {57089, 6}
X(58318) = barycentric quotient X(i)/X(j) for these (i, j): {3064, 57910}, {37279, 4572}, {41227, 4554}, {57089, 76}


X(58319) = X(3)X(57065)∩X(25)X(34952)

Barycentrics    a^2*(b-c)*(b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2*(a^2-b^2)^3-(a^2-b^2)^2*(3*a^2+b^2)*c^2+(3*a^4-a^2*b^2+2*b^4)*c^4-(a^2+b^2)*c^6) : :

X(58319) lies on these lines: {3, 57065}, {25, 34952}, {512, 2623}, {523, 37954}, {669, 44705}, {1033, 46615}, {1593, 3566}, {2489, 42658}, {2501, 39201}, {3172, 57204}, {3185, 57124}, {3515, 44680}, {5198, 42399}, {14270, 51513}, {15451, 47230}, {16229, 53263}

X(58319) = perspector of circumconic {{A, B, C, X(8882), X(40402)}}
X(58319) = X(i)-Dao conjugate of X(j) for these {i, j}: {14618, 44173}, {53577, 52347}
X(58319) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1576, 25}
X(58319)= pole of line {53, 571} with respect to the circumcircle
X(58319)= pole of line {311, 13160} with respect to the polar circle
X(58319) = perspector of cevian triangle of X(57120) and inverse-of-ABC in bicevian conic of X(4) and X(57120)
X(58319) = barycentric product X(i)*X(j) for these (i, j): {112, 53577}, {2501, 34148}, {57120, 6}
X(58319) = barycentric quotient X(i)/X(j) for these (i, j): {34148, 4563}, {53577, 3267}, {57120, 76}


X(58320) = X(6)X(57)∩X(41)X(279)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4+b*(b-c)^2*c-2*a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58320) lies on cubic K225 and these lines: {6, 57}, {7, 2280}, {41, 279}, {55, 1742}, {56, 34497}, {77, 40131}, {85, 24249}, {100, 6168}, {101, 1323}, {105, 1458}, {109, 39421}, {144, 6602}, {226, 4872}, {238, 52161}, {241, 2348}, {278, 2201}, {388, 28845}, {511, 1362}, {513, 2078}, {604, 3598}, {651, 672}, {664, 46180}, {934, 1055}, {1155, 9357}, {1174, 10509}, {1202, 38818}, {1282, 5018}, {1319, 43064}, {1400, 34028}, {1414, 5060}, {1420, 2124}, {1423, 1617}, {1429, 1438}, {1443, 2246}, {1475, 38859}, {2082, 4350}, {2170, 38459}, {2202, 36118}, {2266, 4644}, {2329, 9312}, {3160, 9310}, {3684, 9436}, {4251, 10481}, {4318, 53552}, {4326, 10389}, {4334, 37492}, {4625, 56432}, {7201, 44670}, {8012, 37659}, {10025, 14189}, {16503, 40719}, {17093, 51190}, {43694, 57737}, {44664, 58325}

X(58320) = isogonal conjugate of X(14943)
X(58320) = perspector of circumconic {{A, B, C, X(934), X(1170)}}
X(58320) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14943}, {2, 52001}, {9, 9442}
X(58320) = X(i)-vertex conjugate of X(j) for these {i, j}: {57, 8641}
X(58320) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14943}, {478, 9442}, {9436, 3263}, {32664, 52001}, {56715, 51972}
X(58320) = X(i)-Ceva conjugate of X(j) for these {i, j}: {105, 57}, {1458, 1429}, {14189, 9441}
X(58320)= pole of line {57, 8641} with respect to the circumcircle
X(58320)= pole of line {5173, 6182} with respect to the incircle
X(58320)= pole of line {2287, 14943} with respect to the Stammler hyperbola
X(58320) = perspector of cevian triangle of X(14189) and inverse-of-ABC in bicevian conic of X(7) and X(14189)
X(58320) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(55), X(20995)}}, {{A, B, C, X(57), X(6185)}}, {{A, B, C, X(269), X(14189)}}, {{A, B, C, X(513), X(1418)}}, {{A, B, C, X(1174), X(8641)}}, {{A, B, C, X(1427), X(40864)}}, {{A, B, C, X(1438), X(52635)}}, {{A, B, C, X(2999), X(28058)}}, {{A, B, C, X(24471), X(33677)}}, {{A, B, C, X(34855), X(36905)}}
X(58320) = barycentric product X(i)*X(j) for these (i, j): {1, 14189}, {7, 9441}, {105, 36905}, {269, 28058}, {10025, 57}, {33677, 56}, {40864, 6}, {56715, 56783}
X(58320) = barycentric quotient X(i)/X(j) for these (i, j): {6, 14943}, {31, 52001}, {56, 9442}, {9441, 8}, {10025, 312}, {14189, 75}, {28058, 341}, {33677, 3596}, {36905, 3263}, {40864, 76}, {56715, 3717}
X(58320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {910, 34855, 57}, {910, 6610, 34855}


X(58321) = X(649)X(1200)∩X(661)X(665)

Barycentrics    a*(b-c)*(-2*a*(b-c)^2*(b+c)+a^2*(b^2+c^2)+(b-c)^2*(b^2+c^2)) : :
X(58321) = -4*X[28984]+3*X[58331]

X(58321) lies on these lines: {513, 2078}, {649, 1200}, {661, 665}, {764, 48398}, {918, 58335}, {2254, 4524}, {2488, 53544}, {3126, 4468}, {3669, 17115}, {23726, 52305}, {28984, 58331}

X(58321) = reflection of X(i) in X(j) for these {i,j}: {8641, 43049}
X(58321) = perspector of circumconic {{A, B, C, X(1170), X(13476)}}
X(58321) = X(i)-Dao conjugate of X(j) for these {i, j}: {21258, 4578}
X(58321) = perspector of cevian triangle of X(23748) and inverse-of-ABC in bicevian conic of X(7) and X(23748)
X(58321) = barycentric product X(i)*X(j) for these (i, j): {1, 23748}, {1019, 21931}, {17924, 22440}, {21258, 513}, {21346, 514}, {21436, 649}, {23653, 693}, {24002, 39789}
X(58321) = barycentric quotient X(i)/X(j) for these (i, j): {21258, 668}, {21346, 190}, {21436, 1978}, {21931, 4033}, {22440, 1332}, {23653, 100}, {23748, 75}, {39789, 644}
X(58321) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 43049, 8641}


X(58322) = X(1)X(21104)∩X(57)X(2488)

Barycentrics    a*(b-c)*((a-b)^2-(a+b)*c)*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(58322) lies on these lines: {1, 21104}, {57, 2488}, {513, 2078}, {522, 3935}, {650, 1734}, {661, 1024}, {663, 3676}, {676, 48306}, {846, 56255}, {1170, 35348}, {1252, 35338}, {2222, 53243}, {2254, 3737}, {2346, 23838}, {2499, 48336}, {2736, 53244}, {3120, 24198}, {4077, 21453}, {4551, 36086}, {4794, 7658}, {6606, 53208}, {7649, 48340}, {18155, 29051}, {23954, 47811}, {47123, 48307}, {47704, 48293}

X(58322) = reflection of X(i) in X(j) for these {i,j}: {58324, 8641}
X(58322) = isogonal conjugate of X(35338)
X(58322) = trilinear pole of line {2170, 17463}
X(58322) = perspector of circumconic {{A, B, C, X(1170), X(2346)}}
X(58322) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 35338}, {2, 35326}, {55, 35312}, {57, 35341}, {59, 6362}, {81, 35310}, {82, 35335}, {99, 52020}, {100, 354}, {101, 142}, {109, 4847}, {110, 3925}, {190, 1475}, {644, 1418}, {651, 1212}, {658, 8012}, {662, 21808}, {664, 2293}, {692, 20880}, {765, 48151}, {901, 51463}, {919, 51384}, {934, 3059}, {1018, 18164}, {1229, 1415}, {1233, 32739}, {1252, 21104}, {1275, 10581}, {1292, 15185}, {1414, 21039}, {1461, 51972}, {1813, 1855}, {1827, 6516}, {1897, 22053}, {2284, 53241}, {2488, 4998}, {2720, 51416}, {2742, 41555}, {3939, 10481}, {4551, 17194}, {4554, 20229}, {4557, 17169}, {4559, 16713}, {4561, 40983}, {4564, 21127}, {4570, 55282}, {4573, 21795}, {4574, 53238}, {4617, 45791}, {5546, 52023}, {6067, 53243}, {6608, 7045}, {8551, 36838}, {18026, 22079}, {18087, 46148}, {23344, 53240}, {28291, 41570}, {40606, 43190}, {41573, 53888}
X(58322) = X(i)-vertex conjugate of X(j) for these {i, j}: {2149, 7045}
X(58322) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 35338}, {11, 4847}, {141, 35335}, {223, 35312}, {244, 3925}, {513, 48151}, {661, 21104}, {1015, 142}, {1084, 21808}, {1086, 20880}, {1146, 1229}, {5452, 35341}, {6615, 6362}, {8054, 354}, {14714, 3059}, {17115, 6608}, {32664, 35326}, {34467, 22053}, {35508, 51972}, {38979, 51463}, {38980, 51384}, {38981, 51416}, {38986, 52020}, {38991, 1212}, {39025, 2293}, {40586, 35310}, {40608, 21039}, {40617, 10481}, {40619, 1233}, {40620, 16708}, {50330, 55282}, {55053, 1475}, {55067, 16713}
X(58322) = X(i)-cross conjugate of X(j) for these {i, j}: {1086, 1}, {14936, 57}, {38365, 6}, {43050, 35348}
X(58322)= pole of line {3779, 7289} with respect to the Bevan circle
X(58322)= pole of line {57, 13476} with respect to the circumcircle
X(58322)= pole of line {35892, 38454} with respect to the Conway circle
X(58322)= pole of line {5173, 5572} with respect to the incircle
X(58322)= pole of line {497, 24220} with respect to the excentral-hexyl ellipse
X(58322)= pole of line {35335, 35338} with respect to the Stammler hyperbola
X(58322)= pole of line {9, 25237} with respect to the Steiner circumellipse
X(58322)= pole of line {6666, 16601} with respect to the Steiner inellipse
X(58322)= pole of line {693, 21390} with respect to the Yff parabola
X(58322)= pole of line {5728, 38454} with respect to the Suppa-Cucoanes circle
X(58322) = perspector of cevian triangle of X(56322) and inverse-of-ABC in bicevian conic of X(7) and X(56322)
X(58322) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(840)}}, {{A, B, C, X(43), X(17266)}}, {{A, B, C, X(57), X(6185)}}, {{A, B, C, X(84), X(2723)}}, {{A, B, C, X(87), X(9325)}}, {{A, B, C, X(100), X(7192)}}, {{A, B, C, X(103), X(36124)}}, {{A, B, C, X(108), X(17926)}}, {{A, B, C, X(109), X(7252)}}, {{A, B, C, X(190), X(53284)}}, {{A, B, C, X(294), X(15728)}}, {{A, B, C, X(512), X(29051)}}, {{A, B, C, X(513), X(522)}}, {{A, B, C, X(514), X(2736)}}, {{A, B, C, X(518), X(43948)}}, {{A, B, C, X(525), X(830)}}, {{A, B, C, X(649), X(1027)}}, {{A, B, C, X(661), X(2254)}}, {{A, B, C, X(663), X(4105)}}, {{A, B, C, X(693), X(35355)}}, {{A, B, C, X(846), X(16366)}}, {{A, B, C, X(885), X(1021)}}, {{A, B, C, X(1019), X(4040)}}, {{A, B, C, X(1086), X(21104)}}, {{A, B, C, X(1096), X(7213)}}, {{A, B, C, X(1174), X(21453)}}, {{A, B, C, X(1422), X(8917)}}, {{A, B, C, X(1459), X(48340)}}, {{A, B, C, X(1477), X(14942)}}, {{A, B, C, X(1734), X(16751)}}, {{A, B, C, X(2006), X(9442)}}, {{A, B, C, X(2149), X(12032)}}, {{A, B, C, X(2191), X(52429)}}, {{A, B, C, X(2291), X(56783)}}, {{A, B, C, X(2488), X(14936)}}, {{A, B, C, X(2605), X(48306)}}, {{A, B, C, X(3062), X(44425)}}, {{A, B, C, X(3065), X(19628)}}, {{A, B, C, X(3223), X(18795)}}, {{A, B, C, X(3362), X(45818)}}, {{A, B, C, X(3423), X(56144)}}, {{A, B, C, X(3900), X(8713)}}, {{A, B, C, X(3911), X(43946)}}, {{A, B, C, X(4367), X(48336)}}, {{A, B, C, X(4813), X(47828)}}, {{A, B, C, X(4822), X(50523)}}, {{A, B, C, X(4979), X(47811)}}, {{A, B, C, X(4983), X(23954)}}, {{A, B, C, X(6004), X(23877)}}, {{A, B, C, X(6005), X(23882)}}, {{A, B, C, X(7045), X(53181)}}, {{A, B, C, X(15731), X(34051)}}, {{A, B, C, X(23696), X(57055)}}, {{A, B, C, X(29352), X(34234)}}, {{A, B, C, X(34496), X(56323)}}, {{A, B, C, X(36127), X(53299)}}, {{A, B, C, X(48131), X(48150)}}, {{A, B, C, X(48136), X(48329)}}, {{A, B, C, X(48144), X(48367)}}, {{A, B, C, X(50508), X(50517)}}
X(58322) = barycentric product X(i)*X(j) for these (i, j): {1, 56322}, {1019, 56157}, {1170, 522}, {1174, 693}, {1803, 44426}, {2170, 6606}, {2346, 514}, {3064, 40443}, {3125, 55281}, {3669, 56118}, {3676, 6605}, {3733, 56127}, {4564, 56284}, {4858, 53243}, {10482, 24002}, {10509, 3900}, {17924, 47487}, {21453, 650}, {31618, 663}, {32008, 513}, {42310, 4724}, {42311, 657}, {56255, 7192}, {57815, 649}
X(58322) = barycentric quotient X(i)/X(j) for these (i, j): {6, 35338}, {31, 35326}, {39, 35335}, {42, 35310}, {55, 35341}, {57, 35312}, {244, 21104}, {512, 21808}, {513, 142}, {514, 20880}, {522, 1229}, {649, 354}, {650, 4847}, {657, 3059}, {661, 3925}, {663, 1212}, {667, 1475}, {693, 1233}, {798, 52020}, {830, 17672}, {876, 53239}, {1015, 48151}, {1019, 17169}, {1022, 53240}, {1027, 53241}, {1170, 664}, {1174, 100}, {1358, 23599}, {1635, 51463}, {1803, 6516}, {2170, 6362}, {2254, 51384}, {2346, 190}, {3063, 2293}, {3125, 55282}, {3271, 21127}, {3669, 10481}, {3709, 21039}, {3733, 18164}, {3737, 16713}, {3900, 51972}, {4017, 52023}, {4105, 45791}, {6605, 3699}, {7192, 16708}, {7199, 53236}, {7252, 17194}, {8641, 8012}, {10482, 644}, {10509, 4569}, {14936, 6608}, {18108, 18087}, {18344, 1855}, {21007, 55340}, {21127, 6067}, {21453, 4554}, {22383, 22053}, {31618, 4572}, {32008, 668}, {42311, 46406}, {43924, 1418}, {46393, 51416}, {47487, 1332}, {53243, 4564}, {55281, 4601}, {56118, 646}, {56127, 27808}, {56157, 4033}, {56255, 3952}, {56284, 4858}, {56322, 75}, {57200, 53238}, {57815, 1978}
X(58322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 8641, 58324}


X(58323) = X(9)X(31605)∩X(513)X(2078)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a*(a-b)^3-(a-b)^2*(3*a+b)*c+(3*a^2-a*b+2*b^2)*c^2-(a+b)*c^3) : :

X(58323) lies on these lines: {9, 31605}, {513, 2078}, {657, 3676}, {1419, 43924}, {3669, 20980}, {20981, 53544}, {21127, 43050}, {21390, 43042}, {28878, 30719}

X(58323) = X(i)-Dao conjugate of X(j) for these {i, j}: {24002, 3261}
X(58323) = X(i)-Ceva conjugate of X(j) for these {i, j}: {101, 57}
X(58323)= pole of line {2389, 5173} with respect to the incircle
X(58323) = perspector of cevian triangle of X(57090) and inverse-of-ABC in bicevian conic of X(7) and X(57090)
X(58323) = barycentric product X(i)*X(j) for these (i, j): {1, 57090}
X(58323) = barycentric quotient X(i)/X(j) for these (i, j): {57090, 75}
X(58323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43049, 57140, 58324}


X(58324) = X(9)X(4468)∩X(57)X(649)

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*(a^2-b*c-a*(b+c)) : :

X(58324) lies on these lines: {7, 26853}, {9, 4468}, {55, 44319}, {57, 649}, {63, 47676}, {226, 20295}, {513, 2078}, {514, 652}, {654, 21104}, {661, 43050}, {812, 4077}, {905, 14300}, {1014, 57112}, {1019, 1429}, {1021, 4762}, {1697, 28292}, {1708, 47663}, {2149, 36146}, {3340, 29350}, {3500, 47444}, {3737, 28374}, {3835, 5219}, {3911, 27013}, {4017, 18108}, {4040, 22160}, {4063, 7178}, {4380, 24002}, {4521, 7308}, {4654, 4785}, {4784, 53539}, {4905, 40910}, {4979, 53544}, {5226, 26798}, {6005, 51652}, {6358, 20952}, {6588, 23792}, {7216, 47935}, {10436, 26652}, {15599, 35445}, {17282, 26571}, {17494, 57167}, {21385, 43052}, {21390, 47890}, {30719, 48144}, {30723, 48064}, {30725, 48320}, {31231, 31286}, {31603, 47652}, {31605, 48060}, {37736, 37998}, {43924, 50520}, {47123, 53395}, {48151, 57175}, {48281, 53550}, {50354, 57179}

X(58324) = reflection of X(i) in X(j) for these {i,j}: {4040, 22160}, {58322, 8641}
X(58324) = perspector of circumconic {{A, B, C, X(1014), X(1170)}}
X(58324) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 54118}, {644, 13476}, {1334, 53649}, {2321, 43076}, {2350, 3699}, {3939, 17758}, {4069, 39950}
X(58324) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 54118}, {693, 35519}, {1015, 55076}, {17761, 2321}, {40615, 40216}, {40617, 17758}
X(58324) = X(i)-Ceva conjugate of X(j) for these {i, j}: {109, 57}, {57167, 4040}
X(58324) = X(i)-cross conjugate of X(j) for these {i, j}: {21007, 4040}, {38346, 55086}
X(58324)= pole of line {19, 672} with respect to the Bevan circle
X(58324)= pole of line {57, 3941} with respect to the circumcircle
X(58324)= pole of line {674, 5173} with respect to the incircle
X(58324)= pole of line {34772, 41246} with respect to the Steiner circumellipse
X(58324)= pole of line {6003, 13258} with respect to the Yff parabola
X(58324)= pole of line {674, 24476} with respect to the Suppa-Cucoanes circle
X(58324) = perspector of cevian triangle of X(57167) and inverse-of-ABC in bicevian conic of X(7) and X(57167)
X(58324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(33765)}}, {{A, B, C, X(649), X(38346)}}, {{A, B, C, X(1019), X(4040)}}, {{A, B, C, X(1024), X(7252)}}, {{A, B, C, X(1621), X(52210)}}, {{A, B, C, X(3294), X(16784)}}, {{A, B, C, X(3500), X(4251)}}, {{A, B, C, X(7203), X(43930)}}, {{A, B, C, X(7254), X(22160)}}, {{A, B, C, X(23726), X(50354)}}
X(58324) = barycentric product X(i)*X(j) for these (i, j): {1, 57167}, {109, 40619}, {226, 57148}, {513, 55082}, {1014, 4151}, {1412, 58361}, {1414, 2486}, {1621, 3676}, {3996, 43932}, {4040, 7}, {4651, 7203}, {17096, 3294}, {17143, 43924}, {17277, 3669}, {17494, 57}, {17761, 651}, {18152, 57181}, {20954, 56}, {21007, 85}, {21727, 552}, {22160, 273}, {24002, 4251}, {33765, 650}, {38346, 4554}, {38347, 658}, {38365, 4569}, {38859, 522}, {42454, 7045}, {55086, 693}, {57247, 6}
X(58324) = barycentric quotient X(i)/X(j) for these (i, j): {57, 54118}, {513, 55076}, {1014, 53649}, {1408, 43076}, {1621, 3699}, {2486, 4086}, {3294, 30730}, {3669, 17758}, {3676, 40216}, {4040, 8}, {4151, 3701}, {4251, 644}, {7203, 39734}, {17096, 40004}, {17277, 646}, {17494, 312}, {17761, 4391}, {20616, 4103}, {20954, 3596}, {21007, 9}, {21727, 6057}, {22160, 78}, {33765, 4554}, {38346, 650}, {38347, 3239}, {38365, 3900}, {38859, 664}, {40619, 35519}, {42454, 24026}, {43924, 13476}, {55082, 668}, {55086, 100}, {57148, 333}, {57167, 75}, {57181, 2350}, {57247, 76}, {58361, 30713}
X(58324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 8641, 58322}, {649, 3676, 57}, {3669, 57181, 7203}, {43049, 57140, 58323}


X(58325) = X(1)X(6)∩X(8)X(1802)

Barycentrics    a*(-a+b+c)^2*(a^4-b*(b-c)^2*c-a^2*(b^2-b*c+c^2)) : :

X(58325) lies on these lines: {1, 6}, {8, 1802}, {41, 3486}, {48, 5731}, {78, 7079}, {101, 515}, {243, 2202}, {281, 2289}, {388, 9310}, {517, 51376}, {519, 31896}, {758, 8558}, {908, 4564}, {1021, 3900}, {1043, 2322}, {1055, 52888}, {1105, 1826}, {1146, 3684}, {1630, 8804}, {1729, 37625}, {1783, 22350}, {1855, 57287}, {1936, 1951}, {1944, 5088}, {2272, 6909}, {2301, 4304}, {4251, 41006}, {4390, 6602}, {4511, 34591}, {4513, 7368}, {4587, 6735}, {5307, 27413}, {5794, 46835}, {6559, 51565}, {7359, 10609}, {7719, 37531}, {9028, 40880}, {9367, 21008}, {18162, 26130}, {20769, 37774}, {20818, 30283}, {22356, 38669}, {25935, 54357}, {27384, 27471}, {27410, 57501}, {44664, 58320}

X(58325) = perspector of circumconic {{A, B, C, X(100), X(2287)}}
X(58325) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1945}, {34, 40843}, {56, 1952}, {57, 1937}, {273, 1949}, {278, 296}, {608, 57801}, {649, 53211}, {1042, 35145}, {1427, 37142}, {2249, 3668}, {4017, 41206}, {36118, 52222}
X(58325) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1952}, {5375, 53211}, {5452, 1937}, {11517, 40843}, {34961, 41206}, {35075, 1446}, {39032, 7}, {39033, 273}, {39035, 85}, {39036, 331}, {39037, 57}
X(58325) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1944, 1936}
X(58325)= pole of line {610, 667} with respect to the circumcircle
X(58325)= pole of line {17924, 42462} with respect to the polar circle
X(58325)= pole of line {81, 934} with respect to the Stammler hyperbola
X(58325)= pole of line {100, 57108} with respect to the Hutson-Moses hyperbola
X(58325)= pole of line {274, 4569} with respect to the Wallace hyperbola
X(58325) = perspector of cevian triangle of X(1944) and inverse-of-ABC in bicevian conic of X(8) and X(1944)
X(58325) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(243)}}, {{A, B, C, X(6), X(1951)}}, {{A, B, C, X(9), X(1944)}}, {{A, B, C, X(37), X(2322)}}, {{A, B, C, X(72), X(1043)}}, {{A, B, C, X(80), X(1736)}}, {{A, B, C, X(213), X(2332)}}, {{A, B, C, X(219), X(4564)}}, {{A, B, C, X(405), X(15146)}}, {{A, B, C, X(518), X(51565)}}, {{A, B, C, X(1104), X(1430)}}, {{A, B, C, X(1191), X(26884)}}, {{A, B, C, X(1948), X(40937)}}, {{A, B, C, X(1984), X(26003)}}, {{A, B, C, X(5236), X(17435)}}, {{A, B, C, X(23693), X(45393)}}
X(58325) = barycentric product X(i)*X(j) for these (i, j): {1, 7360}, {200, 5088}, {212, 57812}, {243, 78}, {281, 6518}, {1043, 851}, {1265, 1430}, {1936, 8}, {1944, 9}, {1948, 219}, {1951, 312}, {1981, 57055}, {2202, 345}, {2287, 8680}, {2328, 44150}, {3718, 51726}, {15146, 72}, {15418, 657}, {26884, 341}
X(58325) = barycentric quotient X(i)/X(j) for these (i, j): {9, 1952}, {41, 1945}, {55, 1937}, {78, 57801}, {100, 53211}, {212, 296}, {219, 40843}, {243, 273}, {851, 3668}, {1043, 57980}, {1430, 1119}, {1936, 7}, {1944, 85}, {1948, 331}, {1951, 57}, {1981, 13149}, {2202, 278}, {2287, 35145}, {2328, 37142}, {5088, 1088}, {5546, 41206}, {6518, 348}, {7360, 75}, {8680, 1446}, {15146, 286}, {15418, 46406}, {23353, 36118}, {26884, 269}, {42669, 1427}, {44112, 1042}, {51726, 34}, {52425, 1949}, {57812, 57787}
X(58325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {281, 2289, 54316}


X(58326) = X(1)X(3)∩X(33)X(169)

Barycentrics    a^2*(-a+b+c)^2*(a^4-a^2*b*c-(b-c)^2*(b^2+b*c+c^2)) : :

X(58326) lies on these lines: {1, 3}, {9, 7071}, {33, 169}, {100, 26006}, {200, 56857}, {212, 3730}, {390, 50861}, {497, 30809}, {516, 5236}, {610, 18621}, {728, 1260}, {1021, 3900}, {1419, 42460}, {1621, 25935}, {1633, 45275}, {1731, 2310}, {1827, 16547}, {2323, 3270}, {2328, 2332}, {2338, 2340}, {3100, 3220}, {3208, 56315}, {4907, 7083}, {5011, 52427}, {5432, 31186}, {5514, 33306}, {5853, 28071}, {6056, 11189}, {6060, 9799}, {7074, 22131}, {7411, 56382}, {8153, 15326}, {23058, 28044}

X(58326) = perspector of circumconic {{A, B, C, X(651), X(2287)}}
X(58326) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1427, 37202}, {1446, 57735}, {3668, 26702}
X(58326)= pole of line {513, 610} with respect to the circumcircle
X(58326)= pole of line {1, 22144} with respect to the Feuerbach hyperbola
X(58326)= pole of line {21, 934} with respect to the Stammler hyperbola
X(58326)= pole of line {314, 4569} with respect to the Wallace hyperbola
X(58326) = perspector of cevian triangle of X(3100) and inverse-of-ABC in bicevian conic of X(8) and X(3100)
X(58326) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3100)}}, {{A, B, C, X(40), X(728)}}, {{A, B, C, X(56), X(3220)}}, {{A, B, C, X(57), X(1021)}}, {{A, B, C, X(65), X(2332)}}, {{A, B, C, X(200), X(8270)}}, {{A, B, C, X(241), X(2338)}}, {{A, B, C, X(354), X(4872)}}, {{A, B, C, X(1214), X(2328)}}, {{A, B, C, X(1253), X(37586)}}, {{A, B, C, X(1260), X(2149)}}, {{A, B, C, X(1402), X(8641)}}, {{A, B, C, X(2342), X(8758)}}, {{A, B, C, X(7071), X(37580)}}, {{A, B, C, X(28071), X(40910)}}
X(58326) = barycentric product X(i)*X(j) for these (i, j): {200, 7291}, {220, 4872}, {1043, 39690}, {1253, 7112}, {2287, 44661}, {2328, 857}, {3100, 9}, {3220, 346}, {37774, 55}
X(58326) = barycentric quotient X(i)/X(j) for these (i, j): {2328, 37202}, {3100, 85}, {3220, 279}, {4872, 57792}, {7291, 1088}, {37774, 6063}, {39690, 3668}, {44661, 1446}
X(58326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 41339, 40910}, {55, 7070, 5285}


X(58327) = X(1)X(25083)∩X(31)X(145)

Barycentrics    a*(-a+b+c)^2*(a^2-b*c) : :

X(58327) lies on these lines: {1, 25083}, {9, 11997}, {31, 145}, {55, 2053}, {100, 56714}, {171, 17316}, {200, 220}, {238, 239}, {291, 56111}, {346, 1253}, {644, 2340}, {748, 24599}, {750, 29621}, {958, 1697}, {968, 19860}, {1018, 40910}, {1021, 3900}, {1043, 1098}, {1429, 8299}, {1731, 24394}, {1936, 3712}, {1975, 9312}, {2115, 3693}, {2195, 3717}, {2223, 56530}, {2325, 3939}, {2975, 35270}, {3169, 7083}, {3501, 37580}, {3573, 20769}, {3683, 4875}, {3684, 4433}, {3692, 4073}, {3729, 9440}, {3912, 9441}, {3943, 19624}, {4336, 27396}, {5247, 49495}, {5255, 49476}, {5687, 35273}, {5919, 36476}, {15733, 52978}, {17122, 17244}, {17314, 21059}, {20367, 45765}, {25082, 28125}, {25237, 32936}, {28043, 55337}, {28124, 56937}, {28850, 40863}, {28982, 35293}, {39775, 56413}

X(58327) = perspector of circumconic {{A, B, C, X(2287), X(3570)}}
X(58327) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 7233}, {269, 291}, {279, 292}, {295, 1119}, {334, 1106}, {335, 1407}, {337, 1398}, {479, 7077}, {658, 3572}, {660, 43932}, {738, 4876}, {741, 3668}, {875, 4569}, {876, 934}, {1042, 18827}, {1088, 1911}, {1426, 57738}, {1427, 37128}, {1446, 18268}, {1461, 4444}, {1847, 2196}, {1922, 57792}, {4518, 7023}, {4584, 7216}, {4589, 7250}, {18265, 57880}, {18895, 52410}, {23062, 51858}, {34855, 52030}
X(58327) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7233}, {6552, 334}, {6600, 291}, {6651, 1088}, {8299, 3668}, {14714, 876}, {19557, 279}, {24771, 335}, {35068, 1446}, {35508, 4444}, {39028, 57792}, {39029, 269}
X(58327) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3685, 3684}, {28071, 200}, {56111, 9}
X(58327)= pole of line {3061, 37658} with respect to the Feuerbach hyperbola
X(58327)= pole of line {741, 934} with respect to the Stammler hyperbola
X(58327)= pole of line {3668, 4569} with respect to the Wallace hyperbola
X(58327) = perspector of cevian triangle of X(3685) and inverse-of-ABC in bicevian conic of X(8) and X(3685)
X(58327) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(200), X(239)}}, {{A, B, C, X(220), X(238)}}, {{A, B, C, X(346), X(3797)}}, {{A, B, C, X(350), X(45791)}}, {{A, B, C, X(728), X(3685)}}, {{A, B, C, X(740), X(1043)}}, {{A, B, C, X(2287), X(20142)}}, {{A, B, C, X(2328), X(3747)}}, {{A, B, C, X(3975), X(4148)}}, {{A, B, C, X(3985), X(57055)}}, {{A, B, C, X(4087), X(7046)}}, {{A, B, C, X(4366), X(28071)}}, {{A, B, C, X(30706), X(57654)}}
X(58327) = barycentric product X(i)*X(j) for these (i, j): {21, 3985}, {100, 4148}, {200, 239}, {220, 350}, {238, 346}, {242, 3692}, {333, 4433}, {657, 874}, {1043, 2238}, {1098, 4037}, {1253, 1921}, {1265, 2201}, {1428, 30693}, {1429, 5423}, {1447, 728}, {1802, 40717}, {1914, 341}, {2287, 740}, {2328, 3948}, {3239, 3573}, {3570, 3900}, {3684, 8}, {3685, 9}, {3699, 4435}, {3716, 644}, {3975, 55}, {4010, 7259}, {4087, 41}, {4455, 7258}, {4578, 812}, {6558, 659}, {6559, 8299}, {7101, 7193}, {10030, 480}, {14024, 3694}, {14827, 18891}, {16609, 56182}, {17755, 28071}, {18033, 6602}, {20769, 7046}, {21832, 7256}, {27853, 8641}, {33295, 4515}, {52406, 57654}
X(58327) = barycentric quotient X(i)/X(j) for these (i, j): {9, 7233}, {200, 335}, {220, 291}, {238, 279}, {239, 1088}, {242, 1847}, {341, 18895}, {346, 334}, {350, 57792}, {480, 4876}, {657, 876}, {728, 4518}, {740, 1446}, {874, 46406}, {1043, 40017}, {1253, 292}, {1428, 738}, {1429, 479}, {1447, 23062}, {1802, 295}, {1914, 269}, {2201, 1119}, {2210, 1407}, {2238, 3668}, {2287, 18827}, {2327, 57738}, {2328, 37128}, {3059, 53239}, {3570, 4569}, {3573, 658}, {3684, 7}, {3685, 85}, {3692, 337}, {3716, 24002}, {3747, 1427}, {3900, 4444}, {3975, 6063}, {3985, 1441}, {4087, 20567}, {4148, 693}, {4171, 35352}, {4433, 226}, {4435, 3676}, {4455, 7216}, {4515, 43534}, {4578, 4562}, {6558, 4583}, {6602, 7077}, {7193, 7177}, {7256, 4639}, {7259, 4589}, {8632, 43932}, {8641, 3572}, {10030, 57880}, {14599, 1106}, {14827, 1911}, {16514, 7204}, {18892, 52410}, {20769, 7056}, {28071, 52209}, {41333, 1042}, {56182, 36800}, {57654, 1435}
X(58327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3692, 4319, 4073}, {3912, 54440, 9441}


X(58328) = X(1)X(1259)∩X(9)X(55)

Barycentrics    a^2*(-a+b+c)^2*(a^2-b^2+b*c-c^2) : :

X(58328) lies on these lines: {1, 1259}, {3, 12526}, {8, 3746}, {9, 55}, {21, 6737}, {31, 3190}, {35, 78}, {36, 214}, {40, 11517}, {63, 15931}, {72, 10902}, {80, 6735}, {100, 516}, {109, 1818}, {224, 15071}, {228, 21078}, {404, 3671}, {518, 2078}, {519, 51506}, {528, 51416}, {765, 43978}, {902, 1110}, {936, 11507}, {956, 34486}, {1001, 5231}, {1004, 4312}, {1005, 51090}, {1021, 3900}, {1283, 44694}, {1320, 56117}, {1376, 3256}, {1621, 4847}, {1631, 3185}, {1936, 53388}, {1998, 15299}, {2077, 2932}, {2136, 26358}, {2177, 23659}, {2323, 2361}, {2327, 2328}, {2911, 3052}, {2968, 3712}, {3072, 3191}, {3220, 53280}, {3243, 33925}, {3295, 4853}, {3339, 37282}, {3553, 5269}, {3680, 10965}, {3685, 7360}, {3717, 4571}, {3811, 18397}, {3841, 27529}, {3870, 18412}, {3871, 4314}, {3913, 5727}, {3928, 37578}, {3935, 14740}, {3940, 32613}, {4294, 7080}, {4295, 25440}, {4421, 31142}, {4551, 23693}, {4652, 35202}, {4855, 12520}, {4936, 7368}, {5253, 12563}, {5259, 6734}, {5438, 11509}, {5531, 17615}, {5552, 6871}, {5563, 12559}, {5587, 5687}, {5720, 11248}, {5730, 11012}, {5744, 52769}, {5842, 17757}, {5904, 14798}, {6181, 28047}, {6762, 11510}, {6765, 11508}, {7085, 10434}, {7411, 43182}, {7742, 54422}, {10267, 57279}, {10306, 12651}, {10310, 12565}, {10522, 37719}, {11019, 54348}, {11491, 21075}, {11502, 30827}, {11523, 37579}, {11529, 37249}, {11681, 52850}, {12331, 51362}, {12558, 52367}, {12560, 37541}, {12609, 27385}, {12617, 57287}, {12635, 37583}, {12709, 17612}, {12711, 56176}, {14882, 18251}, {15829, 26357}, {17860, 32929}, {20236, 32932}, {25893, 31249}, {25968, 51366}, {27525, 50689}, {31146, 42884}, {32760, 51379}, {32845, 44311}, {34179, 40910}, {34790, 37621}, {37309, 53056}, {41853, 44447}

X(58328) = perspector of circumconic {{A, B, C, X(644), X(2287)}}
X(58328) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1411}, {34, 52392}, {56, 18815}, {57, 2006}, {80, 269}, {279, 2161}, {479, 52371}, {655, 3669}, {738, 36910}, {759, 3668}, {1014, 52383}, {1042, 14616}, {1088, 6187}, {1106, 20566}, {1119, 1807}, {1358, 52377}, {1407, 18359}, {1426, 57985}, {1427, 24624}, {1435, 52351}, {1446, 34079}, {1847, 52431}, {2222, 3676}, {4637, 55238}, {6046, 52380}, {6614, 52356}, {7023, 52409}, {7216, 47318}, {14584, 56049}, {23592, 53546}, {24002, 32675}, {34051, 52212}, {35174, 43924}, {43932, 51562}, {46405, 57181}, {52440, 57645}
X(58328) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 18815}, {3738, 4089}, {5452, 2006}, {6149, 1443}, {6552, 20566}, {6600, 80}, {11517, 52392}, {24771, 18359}, {34586, 3668}, {35069, 1446}, {35128, 24002}, {35204, 7}, {36909, 57645}, {38984, 3676}, {40584, 279}, {40612, 1088}, {57434, 693}
X(58328) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4511, 2323}, {45393, 9}, {52409, 52405}
X(58328)= pole of line {610, 4394} with respect to the circumcircle
X(58328)= pole of line {9, 6596} with respect to the Feuerbach hyperbola
X(58328)= pole of line {759, 934} with respect to the Stammler hyperbola
X(58328)= pole of line {4569, 14616} with respect to the Wallace hyperbola
X(58328) = perspector of cevian triangle of X(4511) and inverse-of-ABC in bicevian conic of X(8) and X(4511)
X(58328) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(1021)}}, {{A, B, C, X(36), X(55)}}, {{A, B, C, X(80), X(2342)}}, {{A, B, C, X(200), X(2750)}}, {{A, B, C, X(210), X(758)}}, {{A, B, C, X(214), X(3689)}}, {{A, B, C, X(220), X(3711)}}, {{A, B, C, X(320), X(3059)}}, {{A, B, C, X(654), X(2348)}}, {{A, B, C, X(1443), X(4326)}}, {{A, B, C, X(1864), X(51476)}}, {{A, B, C, X(1870), X(10382)}}, {{A, B, C, X(2259), X(2264)}}, {{A, B, C, X(3158), X(4881)}}, {{A, B, C, X(3683), X(4973)}}, {{A, B, C, X(3684), X(27950)}}, {{A, B, C, X(3693), X(32851)}}, {{A, B, C, X(3694), X(57055)}}, {{A, B, C, X(3715), X(4880)}}, {{A, B, C, X(3724), X(8641)}}, {{A, B, C, X(3738), X(15733)}}, {{A, B, C, X(4183), X(27086)}}, {{A, B, C, X(4254), X(4282)}}, {{A, B, C, X(4996), X(45393)}}, {{A, B, C, X(6596), X(39778)}}, {{A, B, C, X(7082), X(51803)}}, {{A, B, C, X(7083), X(34446)}}, {{A, B, C, X(7367), X(39166)}}, {{A, B, C, X(13615), X(17515)}}, {{A, B, C, X(20967), X(52426)}}, {{A, B, C, X(22128), X(51376)}}
X(58328) = barycentric product X(i)*X(j) for these (i, j): {190, 53285}, {200, 3218}, {219, 5081}, {220, 320}, {341, 7113}, {345, 52427}, {346, 36}, {646, 8648}, {1043, 2245}, {1098, 4053}, {1253, 20924}, {1260, 17923}, {1265, 52413}, {1443, 728}, {1870, 3692}, {1983, 4397}, {2287, 758}, {2323, 8}, {2327, 860}, {2328, 3936}, {2361, 312}, {3596, 52426}, {3699, 654}, {3701, 4282}, {3738, 644}, {3900, 4585}, {3904, 3939}, {3960, 4578}, {4242, 57055}, {4511, 9}, {4524, 55237}, {14827, 40075}, {17078, 480}, {17515, 3694}, {18593, 56182}, {21828, 7256}, {22128, 7046}, {30693, 52440}, {32851, 55}, {34544, 52409}, {36910, 4996}, {44428, 4587}, {46384, 57731}, {52407, 7101}, {53314, 6558}, {53527, 7259}, {53562, 645}
X(58328) = barycentric quotient X(i)/X(j) for these (i, j): {9, 18815}, {36, 279}, {41, 1411}, {55, 2006}, {200, 18359}, {219, 52392}, {220, 80}, {320, 57792}, {346, 20566}, {480, 36910}, {644, 35174}, {654, 3676}, {728, 52409}, {758, 1446}, {1253, 2161}, {1260, 52351}, {1334, 52383}, {1443, 23062}, {1802, 1807}, {1870, 1847}, {1983, 934}, {2245, 3668}, {2287, 14616}, {2323, 7}, {2327, 57985}, {2328, 24624}, {2361, 57}, {3218, 1088}, {3689, 14628}, {3699, 46405}, {3724, 1427}, {3738, 24002}, {3904, 52621}, {3939, 655}, {4130, 52356}, {4242, 13149}, {4282, 1014}, {4511, 85}, {4515, 15065}, {4524, 55238}, {4578, 36804}, {4585, 4569}, {4996, 17078}, {5081, 331}, {6602, 52371}, {7113, 269}, {8648, 3669}, {14827, 6187}, {17078, 57880}, {21758, 43932}, {22128, 7056}, {32851, 6063}, {34544, 1443}, {35128, 4089}, {36910, 57645}, {52370, 52391}, {52371, 34535}, {52407, 7177}, {52413, 1119}, {52426, 56}, {52427, 278}, {52434, 1407}, {52440, 738}, {53285, 514}, {53562, 7178}
X(58328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 908, 44425}, {200, 4512, 42012}, {1376, 42843, 5219}, {3685, 7360, 24026}, {3689, 51380, 200}, {4867, 35204, 36}, {5440, 41389, 6326}


X(58329) = X(1)X(525)∩X(522)X(663)

Barycentrics    a*(a+b)*(a-b-c)^3*(b-c)*(a+c) : :

X(58329) lies on these lines: {1, 525}, {55, 57121}, {78, 57066}, {522, 663}, {643, 4567}, {667, 23864}, {759, 2750}, {926, 21388}, {1019, 3309}, {1021, 3900}, {1577, 36027}, {2328, 57134}, {3239, 17926}, {4040, 23882}, {4041, 57067}, {4069, 6065}, {4086, 57198}, {4105, 4163}, {4130, 57180}, {4151, 56320}, {4162, 7252}, {4551, 36797}, {4990, 53285}, {7192, 8713}, {7203, 23829}, {8062, 17898}, {18155, 29051}, {21831, 42662}, {24026, 55068}, {34496, 51641}, {48303, 57200}

X(58329) = reflection of X(i) in X(j) for these {i,j}: {1021, 21789}, {17898, 8062}, {58333, 57055}
X(58329) = perspector of circumconic {{A, B, C, X(333), X(2287)}}
X(58329) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 53321}, {10, 6614}, {37, 4617}, {42, 4626}, {56, 4566}, {57, 1020}, {65, 934}, {73, 36118}, {99, 7143}, {108, 1439}, {109, 3668}, {110, 6046}, {112, 20618}, {181, 4616}, {213, 36838}, {222, 52607}, {226, 1461}, {269, 4551}, {278, 52610}, {279, 4559}, {479, 4557}, {523, 7339}, {651, 1427}, {653, 52373}, {658, 1400}, {662, 7147}, {664, 1042}, {738, 1018}, {1119, 23067}, {1214, 32714}, {1254, 1414}, {1262, 7178}, {1275, 7180}, {1310, 10376}, {1402, 4569}, {1407, 4552}, {1409, 13149}, {1410, 18026}, {1412, 4605}, {1415, 1446}, {1426, 6516}, {1918, 52937}, {2171, 4637}, {3700, 23971}, {3709, 23586}, {3952, 7023}, {4017, 7045}, {4033, 7366}, {4041, 24013}, {4077, 24027}, {4564, 7216}, {4565, 6354}, {4619, 53545}, {4998, 7250}, {5930, 36079}, {7128, 51664}, {8269, 40961}, {24032, 51640}, {32651, 55010}, {32674, 56382}, {41003, 52928}
X(58329) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 4566}, {11, 3668}, {244, 6046}, {522, 4077}, {656, 17094}, {1084, 7147}, {1146, 1446}, {2968, 1441}, {3119, 52023}, {3900, 4041}, {5452, 1020}, {6600, 4551}, {6608, 523}, {6626, 36838}, {7358, 307}, {14714, 65}, {17115, 4017}, {24771, 4552}, {34021, 52937}, {34591, 20618}, {34961, 7045}, {35072, 56382}, {35508, 226}, {38966, 225}, {38983, 1439}, {38986, 7143}, {38991, 1427}, {39025, 1042}, {40582, 658}, {40589, 4617}, {40592, 4626}, {40599, 4605}, {40602, 934}, {40605, 4569}, {40608, 1254}, {40620, 23062}, {40625, 1088}, {55064, 6354}, {55067, 279}, {55068, 7}, {57434, 41804}
X(58329) = X(i)-Ceva conjugate of X(j) for these {i, j}: {643, 2287}, {4625, 333}, {7253, 1021}, {36797, 9}
X(58329) = X(i)-cross conjugate of X(j) for these {i, j}: {3022, 728}, {4081, 200}, {57108, 58338}
X(58329)= pole of line {610, 23361} with respect to the circumcircle
X(58329)= pole of line {1503, 10454} with respect to the Conway circle
X(58329)= pole of line {950, 1503} with respect to the incircle
X(58329)= pole of line {225, 3668} with respect to the polar circle
X(58329)= pole of line {18191, 55067} with respect to the Feuerbach hyperbola
X(58329)= pole of line {7253, 50333} with respect to the Kiepert parabola
X(58329)= pole of line {109, 934} with respect to the Stammler hyperbola
X(58329)= pole of line {63, 14953} with respect to the Steiner circumellipse
X(58329)= pole of line {1375, 5745} with respect to the Steiner inellipse
X(58329)= pole of line {664, 4569} with respect to the Wallace hyperbola
X(58329)= pole of line {1503, 10572} with respect to the Suppa-Cucoanes circle
X(58329) = perspector of cevian triangle of X(7253) and inverse-of-ABC in bicevian conic of X(8) and X(7253)
X(58329) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3100)}}, {{A, B, C, X(9), X(1944)}}, {{A, B, C, X(33), X(45272)}}, {{A, B, C, X(200), X(2750)}}, {{A, B, C, X(522), X(3900)}}, {{A, B, C, X(657), X(17418)}}, {{A, B, C, X(663), X(4105)}}, {{A, B, C, X(728), X(3685)}}, {{A, B, C, X(1021), X(4560)}}, {{A, B, C, X(2287), X(4567)}}, {{A, B, C, X(2328), X(56107)}}, {{A, B, C, X(3119), X(14432)}}, {{A, B, C, X(3239), X(6332)}}, {{A, B, C, X(3737), X(21789)}}, {{A, B, C, X(4069), X(4081)}}, {{A, B, C, X(4397), X(20294)}}, {{A, B, C, X(6607), X(29051)}}, {{A, B, C, X(7367), X(10570)}}, {{A, B, C, X(17924), X(23893)}}, {{A, B, C, X(57108), X(57241)}}
X(58329) = barycentric product X(i)*X(j) for these (i, j): {11, 7259}, {21, 3239}, {29, 57055}, {200, 4560}, {261, 4171}, {274, 4105}, {281, 57081}, {284, 4397}, {285, 57049}, {310, 57180}, {314, 657}, {333, 3900}, {341, 7252}, {346, 3737}, {480, 7199}, {514, 56182}, {1019, 5423}, {1021, 8}, {1043, 650}, {1098, 3700}, {1146, 643}, {1260, 57215}, {1414, 23970}, {1577, 6061}, {1792, 3064}, {1896, 57057}, {2170, 7256}, {2194, 52622}, {2287, 522}, {2310, 645}, {2322, 521}, {2326, 52355}, {2327, 44426}, {2328, 4391}, {2332, 35518}, {3022, 799}, {3119, 99}, {3271, 7258}, {3965, 57161}, {4041, 7058}, {4081, 662}, {4086, 7054}, {4130, 86}, {4148, 56154}, {4163, 81}, {4183, 6332}, {4524, 52379}, {4612, 52335}, {7192, 728}, {7253, 9}, {14936, 7257}, {15411, 33}, {15416, 2299}, {17197, 4578}, {17926, 78}, {18155, 220}, {18191, 6558}, {21789, 312}, {23090, 318}, {23189, 7101}, {23609, 52623}, {23615, 4567}, {24010, 4573}, {24026, 5546}, {26856, 4069}, {28660, 8641}, {30681, 57200}, {30693, 3733}, {31623, 57108}, {34591, 36797}, {35508, 4625}, {40213, 6065}, {46880, 58339}, {52619, 6602}, {57134, 7017}, {57213, 57492}, {58338, 92}
X(58329) = barycentric quotient X(i)/X(j) for these (i, j): {9, 4566}, {21, 658}, {29, 13149}, {33, 52607}, {41, 53321}, {55, 1020}, {58, 4617}, {60, 4637}, {81, 4626}, {86, 36838}, {163, 7339}, {200, 4552}, {210, 4605}, {212, 52610}, {220, 4551}, {261, 4635}, {274, 52937}, {284, 934}, {314, 46406}, {333, 4569}, {480, 1018}, {512, 7147}, {521, 56382}, {522, 1446}, {643, 1275}, {650, 3668}, {652, 1439}, {656, 20618}, {657, 65}, {661, 6046}, {663, 1427}, {728, 3952}, {798, 7143}, {1019, 479}, {1021, 7}, {1043, 4554}, {1098, 4573}, {1146, 4077}, {1172, 36118}, {1253, 4559}, {1333, 6614}, {1414, 23586}, {1802, 23067}, {1946, 52373}, {2185, 4616}, {2194, 1461}, {2287, 664}, {2299, 32714}, {2310, 7178}, {2322, 18026}, {2327, 6516}, {2328, 651}, {2332, 108}, {2484, 10376}, {3022, 661}, {3063, 1042}, {3119, 523}, {3239, 1441}, {3270, 51664}, {3271, 7216}, {3709, 1254}, {3733, 738}, {3737, 279}, {3900, 226}, {4041, 6354}, {4081, 1577}, {4105, 37}, {4130, 10}, {4163, 321}, {4171, 12}, {4183, 653}, {4397, 349}, {4477, 4032}, {4524, 2171}, {4560, 1088}, {4565, 24013}, {4573, 24011}, {4625, 57581}, {4827, 3671}, {5423, 4033}, {5546, 7045}, {6061, 662}, {6602, 4557}, {6607, 21808}, {6608, 52023}, {7054, 1414}, {7058, 4625}, {7192, 23062}, {7199, 57880}, {7252, 269}, {7253, 85}, {7259, 4998}, {8042, 41292}, {8611, 6356}, {8641, 1400}, {14427, 40663}, {14936, 4017}, {15411, 7182}, {17926, 273}, {18155, 57792}, {21789, 57}, {23090, 77}, {23189, 7177}, {23609, 4556}, {23615, 16732}, {23970, 4086}, {24010, 3700}, {24012, 3709}, {30693, 27808}, {34591, 17094}, {35508, 4041}, {39687, 51640}, {52064, 4524}, {53285, 18593}, {56182, 190}, {57049, 57810}, {57055, 307}, {57057, 52385}, {57081, 348}, {57108, 1214}, {57129, 7023}, {57134, 222}, {57158, 45196}, {57180, 42}, {57213, 57479}, {58333, 56559}, {58334, 28387}, {58338, 63}, {58339, 52358}, {58340, 40152}
X(58329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 21789, 1021}, {3900, 57055, 58333}, {7253, 57081, 3737}


X(58330) = X(40)X(956)∩X(200)X(219)

Barycentrics    a*(-a+b+c)^2*(a^6+a^4*(-2*b^2+3*b*c-2*c^2)-b*c*(b^2-c^2)^2+a^2*(b-c)^2*(b^2+c^2)) : :

X(58330) lies on these lines: {8, 7538}, {40, 956}, {55, 56315}, {200, 219}, {212, 7046}, {238, 24026}, {255, 280}, {318, 3074}, {519, 1795}, {1021, 3900}, {1936, 2968}, {2322, 2328}, {2361, 4081}, {3100, 24031}, {5285, 15621}, {7358, 33305}, {24410, 37790}, {42012, 44670}, {51380, 52978}

X(58330) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1410, 57983}, {1439, 57734}, {3668, 26701}
X(58330) = X(i)-Dao conjugate of X(j) for these {i, j}: {856, 22464}
X(58330) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1809, 9}
X(58330)= pole of line {934, 26701} with respect to the Stammler hyperbola
X(58330) = perspector of cevian triangle of X(10538) and inverse-of-ABC in bicevian conic of X(8) and X(10538)
X(58330) = intersection, other than A, B, C, of circumconics {{A, B, C, X(282), X(1021)}}, {{A, B, C, X(2192), X(10535)}}, {{A, B, C, X(2322), X(57055)}}, {{A, B, C, X(3900), X(53013)}}
X(58330) = barycentric product X(i)*X(j) for these (i, j): {1043, 3330}, {2322, 856}, {10535, 312}, {10538, 9}
X(58330) = barycentric quotient X(i)/X(j) for these (i, j): {856, 56382}, {2322, 57983}, {2332, 57734}, {3330, 3668}, {10535, 57}, {10538, 85}


X(58331) = X(351)X(690)∩X(1021)X(3900)

Barycentrics    a*(b-c)*(-a+b+c)^2*(-2*a^2+b^2+c^2) : :
X(58331) = -4*X[28984]+X[58321]

X(58331) lies on these lines: {351, 690}, {926, 14418}, {1021, 3900}, {1639, 11124}, {1962, 14399}, {2310, 3119}, {5075, 24290}, {28984, 58321}

X(58331) = perspector of circumconic {{A, B, C, X(524), X(2287)}}
X(58331) = X(i)-isoconjugate-of-X(j) for these {i, j}: {111, 658}, {269, 5380}, {664, 7316}, {671, 1461}, {691, 3668}, {892, 1042}, {895, 36118}, {897, 934}, {923, 4569}, {1427, 36085}, {1446, 36142}, {4626, 5547}, {13149, 36060}, {32740, 46406}
X(58331) = X(i)-Dao conjugate of X(j) for these {i, j}: {1560, 13149}, {2482, 4569}, {2968, 46277}, {6593, 934}, {6600, 5380}, {7358, 30786}, {14714, 897}, {23992, 1446}, {35508, 671}, {38966, 17983}, {38988, 1427}, {39025, 7316}
X(58331)= pole of line {610, 2930} with respect to the circumcircle
X(58331)= pole of line {13149, 17983} with respect to the polar circle
X(58331)= pole of line {691, 934} with respect to the Stammler hyperbola
X(58331)= pole of line {2482, 35508} with respect to the Steiner inellipse
X(58331)= pole of line {892, 4569} with respect to the Wallace hyperbola
X(58331) = perspector of cevian triangle of X(14432) and inverse-of-ABC in bicevian conic of X(8) and X(14432)
X(58331) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(351), X(8641)}}, {{A, B, C, X(690), X(3900)}}, {{A, B, C, X(896), X(46392)}}, {{A, B, C, X(1021), X(2310)}}, {{A, B, C, X(1641), X(2287)}}, {{A, B, C, X(3119), X(14432)}}, {{A, B, C, X(3712), X(52614)}}, {{A, B, C, X(4183), X(45662)}}, {{A, B, C, X(7367), X(14357)}}, {{A, B, C, X(14417), X(57055)}}, {{A, B, C, X(14419), X(14936)}}
X(58331) = barycentric product X(i)*X(j) for these (i, j): {187, 4397}, {200, 4750}, {468, 57055}, {1021, 4062}, {1043, 2642}, {2287, 690}, {3239, 896}, {3266, 8641}, {3712, 650}, {3900, 524}, {4130, 7181}, {4163, 51653}, {4171, 6629}, {14210, 657}, {14273, 1792}, {14417, 4183}, {14419, 346}, {14427, 52759}, {14432, 9}, {14936, 42721}, {15416, 44102}, {16741, 4524}, {21789, 42713}, {21839, 7253}, {23889, 52335}, {36197, 5468}, {37778, 58340}, {52622, 922}, {52898, 58335}
X(58331) = barycentric quotient X(i)/X(j) for these (i, j): {187, 934}, {220, 5380}, {351, 1427}, {468, 13149}, {524, 4569}, {657, 897}, {690, 1446}, {896, 658}, {922, 1461}, {2287, 892}, {2328, 36085}, {2642, 3668}, {3063, 7316}, {3239, 46277}, {3712, 4554}, {3900, 671}, {4397, 18023}, {4750, 1088}, {6629, 4635}, {7181, 36838}, {8641, 111}, {14210, 46406}, {14392, 52764}, {14419, 279}, {14427, 52747}, {14432, 85}, {16702, 4616}, {21839, 4566}, {36197, 5466}, {44102, 32714}, {51653, 4626}, {52622, 57999}, {57055, 30786}, {57180, 5547}, {58335, 31125}
X(58331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8641, 57055, 58335}


X(58332) = X(512)X(652)∩X(650)X(667)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2+2*b*c+a*(b+c)) : :

X(58332) lies on these lines: {512, 652}, {650, 667}, {654, 4834}, {657, 663}, {693, 25901}, {832, 17420}, {905, 53551}, {958, 23880}, {1021, 3900}, {1946, 4041}, {2812, 14838}, {4083, 53400}, {4163, 4477}, {4524, 57108}, {4775, 9404}, {4983, 46389}, {8043, 34948}, {8639, 8672}, {8642, 48322}, {11124, 33969}, {14077, 22160}, {14298, 48099}, {14300, 50515}, {20980, 51641}, {21120, 29240}, {21127, 50523}, {21260, 28834}, {22091, 47828}, {24561, 26049}, {27417, 47820}, {40137, 53286}, {46393, 50507}

X(58332) = midpoint of X(i) and X(j) for these {i,j}: {1021, 58339}
X(58332) = reflection of X(i) in X(j) for these {i,j}: {53551, 905}, {58334, 8641}, {8641, 21789}
X(58332) = perspector of circumconic {{A, B, C, X(55), X(940)}}
X(58332) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 32038}, {85, 32693}, {86, 52931}, {109, 58008}, {651, 44733}, {658, 941}, {664, 959}, {931, 3668}, {934, 31359}, {1020, 37870}, {1461, 34258}, {2258, 4569}, {4566, 5331}, {34259, 36118}
X(58332) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 58008}, {5452, 32038}, {14714, 31359}, {17417, 85}, {34261, 4554}, {35508, 34258}, {38991, 44733}, {39025, 959}, {40600, 52931}
X(58332) = X(i)-Ceva conjugate of X(j) for these {i, j}: {958, 53561}
X(58332)= pole of line {37, 610} with respect to the circumcircle
X(58332)= pole of line {44841, 52013} with respect to the mixtilinear incircles radical circle
X(58332)= pole of line {331, 54314} with respect to the polar circle
X(58332)= pole of line {41, 52159} with respect to the Brocard inellipse
X(58332)= pole of line {931, 934} with respect to the Stammler hyperbola
X(58332) = perspector of cevian triangle of X(17418) and inverse-of-ABC in bicevian conic of X(8) and X(17418)
X(58332) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(657), X(17418)}}, {{A, B, C, X(663), X(1021)}}, {{A, B, C, X(853), X(44734)}}, {{A, B, C, X(926), X(23880)}}, {{A, B, C, X(3063), X(21789)}}, {{A, B, C, X(3709), X(3900)}}, {{A, B, C, X(4397), X(4705)}}, {{A, B, C, X(8639), X(8641)}}, {{A, B, C, X(10581), X(43067)}}
X(58332) = barycentric product X(i)*X(j) for these (i, j): {100, 53561}, {200, 48144}, {220, 43067}, {650, 958}, {1468, 3239}, {1867, 23090}, {2268, 522}, {2287, 8672}, {2328, 50457}, {3700, 54417}, {3713, 513}, {3714, 7252}, {3900, 940}, {3939, 53526}, {4185, 57055}, {4397, 5019}, {4578, 53543}, {5307, 57108}, {10436, 657}, {11679, 663}, {17418, 9}, {21789, 31993}, {23880, 55}, {34284, 8641}, {54396, 652}
X(58332) = barycentric quotient X(i)/X(j) for these (i, j): {55, 32038}, {213, 52931}, {650, 58008}, {657, 31359}, {663, 44733}, {940, 4569}, {958, 4554}, {1468, 658}, {2175, 32693}, {2268, 664}, {3063, 959}, {3713, 668}, {3900, 34258}, {4185, 13149}, {4397, 40828}, {5019, 934}, {8639, 1427}, {8641, 941}, {8672, 1446}, {10436, 46406}, {11679, 4572}, {17418, 85}, {21789, 37870}, {23880, 6063}, {43067, 57792}, {48144, 1088}, {53526, 52621}, {53561, 693}, {54396, 46404}, {54417, 4573}
X(58332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1021, 58339, 3900}, {3900, 21789, 8641}, {3900, 8641, 58334}


X(58333) = X(9)X(18344)∩X(40)X(3309)

Barycentrics    a*(b-c)*(-a+b+c)^2*(-b^3+a*b*c-c^3+a^2*(b+c)) : :
X(58333) = -3*X[1699]+4*X[44930], -3*X[5587]+2*X[39536]

X(58333) lies on these lines: {9, 18344}, {10, 17924}, {40, 3309}, {522, 3717}, {525, 1734}, {667, 5285}, {1021, 3900}, {1699, 44930}, {2804, 14308}, {3690, 21645}, {4077, 17072}, {4162, 7070}, {5587, 39536}, {8713, 48060}, {20294, 23800}, {21301, 50861}, {29066, 56320}, {57043, 57092}

X(58333) = midpoint of X(i) and X(j) for these {i,j}: {44448, 57245}
X(58333) = reflection of X(i) in X(j) for these {i,j}: {17924, 10}, {4077, 17072}, {58329, 57055}
X(58333) = perspector of circumconic {{A, B, C, X(312), X(2287)}}
X(58333) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 1305}, {272, 53321}, {934, 2218}, {1106, 51566}, {1461, 1751}, {6614, 56146}, {7339, 23289}, {32660, 58074}, {40574, 52610}
X(58333) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1305}, {2968, 2997}, {6552, 51566}, {6608, 23289}, {14714, 2218}, {35508, 1751}, {40624, 15467}, {55068, 272}
X(58333) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4571, 9}
X(58333)= pole of line {518, 9924} with respect to the Bevan circle
X(58333)= pole of line {610, 2933} with respect to the circumcircle
X(58333)= pole of line {34, 4341} with respect to the polar circle
X(58333)= pole of line {329, 31015} with respect to the Steiner circumellipse
X(58333)= pole of line {3452, 30810} with respect to the Steiner inellipse
X(58333)= pole of line {1414, 4569} with respect to the Wallace hyperbola
X(58333)= pole of line {1479, 41004} with respect to the Suppa-Cucoanes circle
X(58333) = perspector of cevian triangle of X(20294) and inverse-of-ABC in bicevian conic of X(8) and X(20294)
X(58333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(522), X(8676)}}, {{A, B, C, X(579), X(40880)}}, {{A, B, C, X(1021), X(4391)}}, {{A, B, C, X(2352), X(45269)}}, {{A, B, C, X(3190), X(6735)}}, {{A, B, C, X(3868), X(44692)}}, {{A, B, C, X(3900), X(4086)}}, {{A, B, C, X(4041), X(8641)}}, {{A, B, C, X(4397), X(20294)}}
X(58333) = barycentric product X(i)*X(j) for these (i, j): {312, 8676}, {341, 43060}, {345, 57092}, {1021, 57808}, {1265, 57173}, {2352, 52622}, {3190, 4391}, {3239, 3868}, {3694, 57072}, {4086, 56000}, {4397, 579}, {4571, 5190}, {5125, 57055}, {17878, 3939}, {18134, 3900}, {20294, 9}, {22021, 7253}, {23800, 346}, {24026, 57217}, {27396, 522}, {35518, 41320}, {56559, 58329}, {57043, 78}
X(58333) = barycentric quotient X(i)/X(j) for these (i, j): {9, 1305}, {209, 1020}, {346, 51566}, {579, 934}, {657, 2218}, {1021, 272}, {2198, 53321}, {2352, 1461}, {3119, 23289}, {3190, 651}, {3239, 2997}, {3868, 658}, {3900, 1751}, {4130, 56146}, {4171, 41506}, {4306, 4617}, {4391, 15467}, {4397, 40011}, {5125, 13149}, {8611, 28786}, {8676, 57}, {17878, 52621}, {18134, 4569}, {20294, 85}, {22021, 4566}, {23800, 279}, {27396, 664}, {40572, 36048}, {41320, 108}, {43060, 269}, {44426, 58074}, {56000, 1414}, {57043, 273}, {57092, 278}, {57173, 1119}, {57217, 7045}, {57501, 36059}
X(58333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 57055, 58329}, {44448, 57245, 522}


X(58334) = X(11)X(31251)∩X(55)X(667)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2-2*b*c+a*(b+c)) : :

X(58334) lies on these lines: {11, 31251}, {55, 667}, {390, 21301}, {497, 21260}, {764, 10965}, {1021, 3900}, {1621, 25901}, {1697, 4083}, {1946, 4895}, {3057, 48333}, {3058, 31149}, {3295, 3309}, {3303, 3669}, {3601, 48330}, {3913, 20317}, {4063, 53053}, {4139, 4498}, {4705, 11934}, {4729, 8642}, {5218, 31288}, {6161, 26358}, {7071, 18344}, {9010, 10387}, {9511, 52596}, {12053, 47841}, {45269, 48302}, {58155, 58369}

X(58334) = reflection of X(i) in X(j) for these {i,j}: {58332, 8641}, {8641, 58336}
X(58334) = perspector of circumconic {{A, B, C, X(2287), X(3217)}}
X(58334) = X(i)-isoconjugate-of-X(j) for these {i, j}: {651, 42304}, {658, 39956}, {664, 56155}, {934, 34860}, {1461, 40012}, {3668, 8690}, {4616, 56192}, {4637, 56123}
X(58334) = X(i)-Dao conjugate of X(j) for these {i, j}: {14714, 34860}, {35508, 40012}, {38991, 42304}, {39025, 56155}
X(58334) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7252, 657}
X(58334)= pole of line {44, 610} with respect to the circumcircle
X(58334)= pole of line {1420, 3246} with respect to the mixtilinear incircles radical circle
X(58334)= pole of line {934, 8690} with respect to the Stammler hyperbola
X(58334) = perspector of cevian triangle of X(42312) and inverse-of-ABC in bicevian conic of X(8) and X(42312)
X(58334) = intersection, other than A, B, C, of circumconics {{A, B, C, X(667), X(4578)}}, {{A, B, C, X(1021), X(4498)}}, {{A, B, C, X(3900), X(4139)}}
X(58334) = barycentric product X(i)*X(j) for these (i, j): {200, 4498}, {220, 4106}, {1021, 3214}, {2287, 4139}, {3217, 522}, {3239, 3915}, {3875, 657}, {3900, 4383}, {3913, 650}, {4186, 57055}, {16946, 4397}, {17477, 6558}, {18135, 8641}, {20317, 55}, {21789, 3175}, {21963, 7259}, {28387, 58329}, {30568, 663}, {42312, 9}
X(58334) = barycentric quotient X(i)/X(j) for these (i, j): {657, 34860}, {663, 42304}, {3063, 56155}, {3217, 664}, {3875, 46406}, {3900, 40012}, {3913, 4554}, {3915, 658}, {4106, 57792}, {4139, 1446}, {4186, 13149}, {4383, 4569}, {4498, 1088}, {4524, 56123}, {8641, 39956}, {16946, 934}, {20317, 6063}, {30568, 4572}, {42312, 85}
X(58334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 4162, 667}, {3900, 58336, 8641}, {3900, 8641, 58332}


X(58335) = X(826)X(2474)∩X(1021)X(3900)

Barycentrics    a*(b-c)*(-a+b+c)^2*(b^2+c^2) : :

X(58335) lies on these lines: {826, 2474}, {918, 58321}, {926, 8611}, {1021, 3900}, {1734, 25098}, {2512, 50345}, {3126, 4025}, {3239, 4082}, {4041, 52326}, {4130, 17115}, {4171, 6608}, {4474, 47926}, {4705, 45745}, {4730, 8640}, {8662, 50501}, {23742, 23887}

X(58335) = reflection of X(i) in X(j) for these {i,j}: {8641, 57055}
X(58335) = perspector of circumconic {{A, B, C, X(141), X(2287)}}
X(58335) = X(i)-isoconjugate-of-X(j) for these {i, j}: {82, 934}, {83, 1461}, {251, 658}, {279, 4628}, {827, 3668}, {1020, 52376}, {1042, 4577}, {1176, 36118}, {1262, 10566}, {1427, 4599}, {1446, 34072}, {4565, 18097}, {4569, 46289}, {4617, 56245}, {4637, 18098}, {7045, 18108}, {32714, 34055}, {41284, 46153}, {42396, 52373}, {46288, 46406}, {52394, 53321}
X(58335) = X(i)-Dao conjugate of X(j) for these {i, j}: {39, 4569}, {141, 934}, {2968, 3112}, {3119, 18087}, {3124, 1427}, {7358, 1799}, {14714, 82}, {15449, 1446}, {17115, 18108}, {35508, 83}, {38966, 32085}, {40585, 658}, {40938, 13149}, {55043, 3668}, {55064, 18097}, {55068, 52394}
X(58335) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4553, 33299}
X(58335)= pole of line {610, 2916} with respect to the circumcircle
X(58335)= pole of line {827, 934} with respect to the Stammler hyperbola
X(58335)= pole of line {4569, 4577} with respect to the Wallace hyperbola
X(58335) = perspector of cevian triangle of X(48278) and inverse-of-ABC in bicevian conic of X(8) and X(48278)
X(58335) = intersection, other than A, B, C, of circumconics {{A, B, C, X(826), X(3900)}}, {{A, B, C, X(1021), X(16892)}}, {{A, B, C, X(2287), X(52906)}}, {{A, B, C, X(2525), X(57055)}}, {{A, B, C, X(2530), X(21789)}}, {{A, B, C, X(3005), X(4397)}}, {{A, B, C, X(4183), X(46539)}}, {{A, B, C, X(7367), X(14378)}}
X(58335) = barycentric product X(i)*X(j) for these (i, j): {39, 4397}, {141, 3900}, {220, 48084}, {427, 57055}, {1021, 15523}, {1043, 8061}, {1146, 4553}, {1930, 657}, {1964, 52622}, {2287, 826}, {2310, 4568}, {2525, 4183}, {2530, 346}, {3239, 38}, {3665, 4130}, {3688, 4391}, {3703, 650}, {3954, 7253}, {8024, 8641}, {15416, 1843}, {16703, 4524}, {16887, 4171}, {16892, 200}, {20883, 57108}, {21016, 57081}, {21108, 3692}, {21123, 341}, {24026, 46148}, {31125, 58331}, {33299, 522}, {35519, 40972}, {36197, 4576}, {48278, 9}
X(58335) = barycentric quotient X(i)/X(j) for these (i, j): {38, 658}, {39, 934}, {141, 4569}, {427, 13149}, {657, 82}, {826, 1446}, {1021, 52394}, {1043, 4593}, {1253, 4628}, {1401, 4617}, {1843, 32714}, {1930, 46406}, {1964, 1461}, {2084, 1042}, {2287, 4577}, {2310, 10566}, {2328, 4599}, {2530, 279}, {3005, 1427}, {3239, 3112}, {3665, 36838}, {3688, 651}, {3703, 4554}, {3900, 83}, {3954, 4566}, {4041, 18097}, {4105, 56245}, {4171, 18082}, {4183, 42396}, {4397, 308}, {4524, 18098}, {4553, 1275}, {6608, 18087}, {8061, 3668}, {8641, 251}, {14936, 18108}, {16696, 4616}, {16887, 4635}, {16892, 1088}, {17187, 4637}, {17442, 36118}, {21035, 1020}, {21108, 1847}, {21123, 269}, {21789, 52376}, {21814, 53321}, {33299, 664}, {40972, 109}, {46148, 7045}, {48084, 57792}, {48278, 85}, {50521, 1407}, {52335, 18070}, {52622, 18833}, {57055, 1799}, {57108, 34055}, {58331, 52898}, {58340, 28724}
X(58335) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 57055, 8641}, {8641, 57055, 58331}


X(58336) = X(1)X(44408)∩X(55)X(663)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^2-b*c+a*(b+c)) : :

X(58336) lies on these lines: {1, 44408}, {3, 48294}, {55, 663}, {512, 23865}, {514, 3295}, {595, 22154}, {905, 53278}, {999, 39476}, {1001, 17072}, {1021, 3900}, {1191, 22090}, {1260, 4546}, {1334, 57053}, {1621, 21302}, {1946, 4162}, {3303, 4449}, {3309, 53308}, {3746, 4040}, {3871, 47793}, {3887, 22160}, {3913, 4147}, {4057, 4063}, {4421, 45316}, {4477, 4990}, {4729, 8645}, {5687, 47794}, {6767, 48287}, {8642, 50499}, {9709, 48196}, {15599, 52596}, {32195, 44824}, {39199, 48302}, {39541, 53300}, {50355, 53309}, {50501, 53287}

X(58336) = midpoint of X(i) and X(j) for these {i,j}: {8641, 58334}
X(58336) = reflection of X(i) in X(j) for these {i,j}: {21789, 8641}
X(58336) = perspector of circumconic {{A, B, C, X(2287), X(2316)}}
X(58336) = X(i)-isoconjugate-of-X(j) for these {i, j}: {269, 8050}, {596, 934}, {658, 39798}, {664, 20615}, {1020, 39747}, {1088, 40519}, {1427, 37205}, {1461, 40013}, {3668, 34594}, {4566, 39949}, {4569, 40148}, {4637, 40085}, {7045, 40086}
X(58336) = X(i)-Dao conjugate of X(j) for these {i, j}: {2968, 57915}, {6600, 8050}, {14714, 596}, {17115, 40086}, {35508, 40013}, {39025, 20615}, {48303, 17894}
X(58336) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6558, 220}
X(58336)= pole of line {579, 610} with respect to the circumcircle
X(58336)= pole of line {516, 3881} with respect to the DeLongchamps ellipse
X(58336)= pole of line {934, 34594} with respect to the Stammler hyperbola
X(58336) = perspector of cevian triangle of X(48307) and inverse-of-ABC in bicevian conic of X(8) and X(48307)
X(58336) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1021), X(4063)}}, {{A, B, C, X(2332), X(3293)}}, {{A, B, C, X(3900), X(4132)}}, {{A, B, C, X(3939), X(48387)}}, {{A, B, C, X(4057), X(21789)}}
X(58336) = barycentric product X(i)*X(j) for these (i, j): {200, 4063}, {341, 57096}, {346, 4057}, {1021, 3293}, {1043, 58288}, {1253, 20949}, {1260, 17922}, {2220, 4397}, {2287, 4132}, {2328, 4129}, {3239, 595}, {3871, 650}, {4082, 57080}, {4222, 57055}, {4360, 657}, {5423, 57238}, {6558, 8054}, {18140, 8641}, {20295, 220}, {21789, 3995}, {22154, 7046}, {32911, 3900}, {47793, 55}, {48307, 9}
X(58336) = barycentric quotient X(i)/X(j) for these (i, j): {220, 8050}, {595, 658}, {657, 596}, {2220, 934}, {2328, 37205}, {3063, 20615}, {3239, 57915}, {3871, 4554}, {3900, 40013}, {4057, 279}, {4063, 1088}, {4132, 1446}, {4222, 13149}, {4360, 46406}, {4524, 40085}, {8641, 39798}, {14827, 40519}, {14936, 40086}, {20295, 57792}, {21789, 39747}, {22154, 7056}, {32911, 4569}, {47793, 6063}, {48307, 85}, {57096, 269}, {57238, 479}, {58288, 3668}
X(58336) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 663, 48387}, {3900, 8641, 21789}, {8641, 58334, 3900}


X(58337) = X(21)X(942)∩X(30)X(113)

Barycentrics    a*(a+b)*(a+c)*(-a+b+c)^2*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(58337) lies on these lines: {2, 54508}, {21, 942}, {30, 113}, {72, 11107}, {110, 971}, {517, 2074}, {1021, 3900}, {2287, 2326}, {2328, 2361}, {3615, 3824}, {3838, 17188}, {5057, 17923}, {5440, 15776}, {6062, 7359}, {16418, 45923}, {17613, 54442}, {31445, 35193}

X(58337) = perspector of circumconic {{A, B, C, X(2287), X(2407)}}
X(58337) = X(i)-isoconjugate-of-X(j) for these {i, j}: {74, 3668}, {658, 2433}, {1042, 1494}, {1427, 2349}, {1439, 36119}, {1446, 2159}, {1461, 2394}, {8749, 56382}, {14380, 36118}, {16080, 52373}
X(58337) = X(i)-Dao conjugate of X(j) for these {i, j}: {1511, 1439}, {3163, 1446}, {6739, 1441}, {7358, 34767}, {35508, 2394}, {38966, 18808}
X(58337) = X(i)-Ceva conjugate of X(j) for these {i, j}: {51382, 52949}
X(58337)= pole of line {284, 33857} with respect to the Feuerbach hyperbola
X(58337)= pole of line {74, 934} with respect to the Stammler hyperbola
X(58337)= pole of line {1494, 4569} with respect to the Wallace hyperbola
X(58337) = perspector of cevian triangle of X(51382) and inverse-of-ABC in bicevian conic of X(8) and X(51382)
X(58337) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(3900)}}, {{A, B, C, X(33), X(1558)}}, {{A, B, C, X(1021), X(2326)}}, {{A, B, C, X(1495), X(8641)}}, {{A, B, C, X(1511), X(2361)}}, {{A, B, C, X(1544), X(7079)}}, {{A, B, C, X(2287), X(7359)}}, {{A, B, C, X(2685), X(51418)}}, {{A, B, C, X(6062), X(16163)}}, {{A, B, C, X(7367), X(15454)}}, {{A, B, C, X(21789), X(51420)}}
X(58337) = barycentric product X(i)*X(j) for these (i, j): {21, 7359}, {346, 51420}, {1043, 2173}, {1265, 52955}, {1784, 2327}, {1792, 1990}, {2287, 30}, {2407, 3900}, {2420, 4397}, {3692, 52954}, {4240, 57055}, {11064, 4183}, {11125, 7259}, {14206, 2328}, {14395, 36797}, {14399, 7256}, {14400, 643}, {15416, 23347}, {18653, 200}, {21789, 42716}, {24001, 57108}, {51382, 9}, {52949, 8}, {52956, 78}, {56182, 6357}
X(58337) = barycentric quotient X(i)/X(j) for these (i, j): {30, 1446}, {1043, 33805}, {1495, 1427}, {2173, 3668}, {2287, 1494}, {2328, 2349}, {2332, 36119}, {2407, 4569}, {2420, 934}, {3284, 1439}, {3900, 2394}, {4183, 16080}, {4240, 13149}, {7359, 1441}, {8641, 2433}, {9406, 1042}, {14395, 17094}, {14400, 4077}, {14581, 1426}, {18653, 1088}, {23347, 32714}, {36197, 12079}, {51382, 85}, {51420, 279}, {52948, 36908}, {52949, 7}, {52954, 1847}, {52955, 1119}, {52956, 273}, {56829, 36118}, {57055, 34767}


X(58338) = X(3)X(24018)∩X(521)X(1946)

Barycentrics    a^2*(a+b)*(a-b-c)^3*(b-c)*(a+c)*(a^2-b^2-c^2) : :

X(58338) lies on these lines: {3, 24018}, {521, 1946}, {643, 4564}, {906, 57084}, {1021, 3900}, {1792, 15411}, {3737, 57101}, {7234, 23864}, {7253, 15776}, {8674, 57109}, {23090, 57057}

X(58338) = perspector of circumconic {{A, B, C, X(1812), X(2287)}}
X(58338) = X(i)-isoconjugate-of-X(j) for these {i, j}: {34, 4566}, {57, 52607}, {65, 36118}, {108, 3668}, {162, 6046}, {225, 934}, {226, 32714}, {273, 53321}, {278, 1020}, {648, 7147}, {653, 1427}, {658, 1880}, {664, 1426}, {811, 7143}, {1042, 18026}, {1119, 4551}, {1275, 55208}, {1396, 4605}, {1400, 13149}, {1410, 52938}, {1435, 4552}, {1439, 36127}, {1446, 32674}, {1461, 40149}, {1824, 4626}, {1826, 4617}, {1847, 4559}, {2333, 36838}, {4017, 55346}, {4569, 57652}, {4637, 8736}, {6614, 41013}, {7128, 7178}, {7216, 46102}, {7339, 24006}, {17094, 24033}, {20618, 24019}, {23586, 55206}, {23984, 51664}, {52373, 54240}
X(58338) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 6046}, {521, 17094}, {656, 4077}, {2968, 57809}, {5452, 52607}, {6608, 24006}, {7358, 1441}, {11517, 4566}, {14714, 225}, {17423, 7143}, {34961, 55346}, {35071, 20618}, {35072, 1446}, {35508, 40149}, {38983, 3668}, {39025, 1426}, {40582, 13149}, {40602, 36118}, {55066, 7147}, {55067, 1847}, {55068, 273}
X(58338) = X(i)-Ceva conjugate of X(j) for these {i, j}: {643, 219}, {36797, 2287}, {57081, 23090}
X(58338) = X(i)-cross conjugate of X(j) for these {i, j}: {57108, 58329}
X(58338)= pole of line {610, 1761} with respect to the circumcircle
X(58338)= pole of line {6046, 57285} with respect to the polar circle
X(58338)= pole of line {108, 934} with respect to the Stammler hyperbola
X(58338)= pole of line {4569, 18026} with respect to the Wallace hyperbola
X(58338) = perspector of cevian triangle of X(57081) and inverse-of-ABC in bicevian conic of X(8) and X(57081)
X(58338) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(219), X(4564)}}, {{A, B, C, X(521), X(3900)}}, {{A, B, C, X(1021), X(23090)}}, {{A, B, C, X(1946), X(8641)}}, {{A, B, C, X(7367), X(39167)}}, {{A, B, C, X(8021), X(15776)}}, {{A, B, C, X(21789), X(23189)}}
X(58338) = barycentric product X(i)*X(j) for these (i, j): {21, 57055}, {29, 57057}, {219, 7253}, {283, 3239}, {312, 57134}, {332, 657}, {333, 57108}, {525, 6061}, {1021, 78}, {1043, 652}, {1098, 8611}, {1259, 17926}, {1260, 4560}, {1265, 7252}, {1444, 4130}, {1790, 4163}, {1792, 650}, {1802, 18155}, {1808, 4148}, {1812, 3900}, {2193, 4397}, {2287, 521}, {2322, 57241}, {2327, 522}, {2328, 6332}, {2332, 52616}, {2968, 5546}, {3022, 4563}, {3119, 4592}, {3270, 645}, {3692, 3737}, {4081, 4558}, {5423, 7254}, {7004, 7259}, {7117, 7256}, {15411, 55}, {15416, 2194}, {15419, 480}, {16731, 56183}, {17206, 4105}, {21789, 345}, {23090, 8}, {23189, 346}, {24012, 55205}, {30681, 3733}, {31623, 58340}, {34591, 643}, {35072, 36797}, {52158, 57045}, {52355, 7054}, {56182, 905}, {57081, 9}, {58329, 63}
X(58338) = barycentric quotient X(i)/X(j) for these (i, j): {21, 13149}, {55, 52607}, {212, 1020}, {219, 4566}, {283, 658}, {284, 36118}, {332, 46406}, {520, 20618}, {521, 1446}, {647, 6046}, {652, 3668}, {657, 225}, {810, 7147}, {1021, 273}, {1043, 46404}, {1260, 4552}, {1437, 4617}, {1444, 36838}, {1790, 4626}, {1792, 4554}, {1802, 4551}, {1812, 4569}, {1946, 1427}, {2193, 934}, {2194, 32714}, {2287, 18026}, {2318, 4605}, {2322, 52938}, {2327, 664}, {2328, 653}, {2332, 36127}, {2638, 51664}, {3022, 2501}, {3049, 7143}, {3063, 1426}, {3119, 24006}, {3239, 57809}, {3270, 7178}, {3737, 1847}, {3900, 40149}, {4081, 14618}, {4105, 1826}, {4130, 41013}, {4171, 56285}, {4183, 54240}, {4397, 52575}, {4524, 8736}, {5546, 55346}, {6056, 52610}, {6061, 648}, {7252, 1119}, {7253, 331}, {7254, 479}, {8641, 1880}, {15411, 6063}, {15419, 57880}, {17206, 52937}, {21789, 278}, {23090, 7}, {23189, 279}, {24012, 55206}, {30681, 27808}, {32661, 7339}, {34591, 4077}, {35072, 17094}, {36054, 1439}, {36797, 57538}, {52425, 53321}, {56182, 6335}, {57055, 1441}, {57057, 307}, {57081, 85}, {57108, 226}, {57134, 57}, {57180, 1824}, {57241, 56382}, {58329, 92}, {58340, 1214}
X(58338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57108, 57134, 23090}


X(58339) = X(1)X(6332)∩X(200)X(4163)

Barycentrics    a*(b-c)*(-a+b+c)^2*(a^3-b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(58339) lies on these lines: {1, 6332}, {200, 4163}, {644, 57084}, {650, 57159}, {663, 3239}, {1021, 3900}, {1946, 57121}, {2812, 24018}, {3063, 4130}, {3904, 48282}, {4040, 4391}, {4105, 4546}, {4397, 57081}, {4936, 38379}, {10582, 52596}, {17496, 21173}, {20517, 54318}, {48307, 57158}, {56112, 56194}

X(58339) = reflection of X(i) in X(j) for these {i,j}: {1021, 58332}
X(58339) = perspector of circumconic {{A, B, C, X(1261), X(2287)}}
X(58339) = X(i)-isoconjugate-of-X(j) for these {i, j}: {269, 56194}, {934, 34434}, {1020, 53083}, {1106, 56252}, {1407, 56188}, {1461, 2051}, {4566, 52150}, {20028, 53321}
X(58339) = X(i)-Dao conjugate of X(j) for these {i, j}: {2968, 54121}, {4391, 52621}, {6552, 56252}, {6600, 56194}, {14714, 34434}, {24771, 56188}, {34589, 3668}, {35508, 2051}, {55068, 20028}
X(58339) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3939, 200}, {56112, 9}
X(58339)= pole of line {1764, 7291} with respect to the Steiner circumellipse
X(58339) = perspector of cevian triangle of X(57091) and inverse-of-ABC in bicevian conic of X(8) and X(57091)
X(58339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1021), X(17496)}}, {{A, B, C, X(2328), X(52139)}}, {{A, B, C, X(21173), X(21789)}}
X(58339) = barycentric product X(i)*X(j) for these (i, j): {220, 57244}, {1021, 17751}, {2321, 57125}, {2975, 3239}, {3939, 40624}, {4397, 572}, {11109, 57055}, {11998, 3699}, {14829, 3900}, {17074, 4163}, {17496, 200}, {20986, 52622}, {21061, 7253}, {21173, 346}, {23187, 7101}, {24237, 4578}, {34589, 644}, {52358, 58329}, {53566, 7259}, {57091, 9}
X(58339) = barycentric quotient X(i)/X(j) for these (i, j): {200, 56188}, {220, 56194}, {346, 56252}, {572, 934}, {657, 34434}, {1021, 20028}, {2975, 658}, {3239, 54121}, {3900, 2051}, {4171, 51870}, {4397, 57905}, {11109, 13149}, {11998, 3676}, {14829, 4569}, {14973, 4605}, {17074, 4626}, {17496, 1088}, {20986, 1461}, {21061, 4566}, {21173, 279}, {21789, 53083}, {23187, 7177}, {34589, 24002}, {40624, 52621}, {52139, 1020}, {57091, 85}, {57125, 1434}, {57244, 57792}, {58329, 46880}
X(58339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3900, 58332, 1021}, {4163, 57108, 200}


X(58340) = X(513)X(2077)∩X(906)X(1110)

Barycentrics    a^3*(b-c)*(-a+b+c)^2*(-a^2+b^2+c^2)^2 : :

X(58340) lies on these lines: {100, 46102}, {513, 2077}, {520, 4091}, {521, 22160}, {652, 1946}, {663, 52307}, {667, 8676}, {906, 1110}, {1021, 3900}, {1792, 15416}, {3126, 11517}, {6056, 23614}, {14414, 22091}, {22383, 57103}, {34975, 52408}

X(58340) = midpoint of X(i) and X(j) for these {i,j}: {652, 57108}
X(58340) = trilinear pole of line {2638, 39687}
X(58340) = perspector of circumconic {{A, B, C, X(219), X(394)}}
X(58340) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 36118}, {7, 36127}, {19, 13149}, {27, 52607}, {34, 18026}, {56, 52938}, {57, 54240}, {92, 32714}, {107, 3668}, {108, 273}, {158, 934}, {278, 653}, {331, 32674}, {393, 658}, {513, 24032}, {514, 23984}, {608, 46404}, {649, 57538}, {664, 1118}, {693, 24033}, {811, 1426}, {823, 1427}, {1042, 6528}, {1096, 4569}, {1119, 1897}, {1435, 6335}, {1439, 36126}, {1446, 24019}, {1461, 2052}, {1783, 1847}, {1857, 4626}, {2207, 46406}, {3261, 23985}, {3924, 54948}, {4566, 8747}, {4572, 7337}, {4605, 36419}, {6046, 52921}, {6059, 52937}, {6354, 52919}, {6529, 56382}, {7128, 17924}, {7649, 55346}, {14249, 36079}, {15352, 52373}, {17861, 52775}, {26934, 42381}
X(58340) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 52938}, {6, 13149}, {521, 693}, {656, 46107}, {1147, 934}, {2968, 57806}, {3270, 37372}, {5375, 57538}, {5452, 54240}, {6503, 4569}, {7358, 264}, {11517, 18026}, {14714, 158}, {17423, 1426}, {22391, 32714}, {34467, 1119}, {35071, 1446}, {35072, 331}, {35508, 2052}, {36033, 36118}, {38966, 1093}, {38983, 273}, {38985, 3668}, {39006, 1847}, {39025, 1118}, {39026, 24032}, {40626, 57787}, {46093, 1439}, {55063, 40701}
X(58340) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 219}, {906, 1802}, {1259, 35072}, {1331, 3990}, {57241, 36054}, {58338, 57108}
X(58340)= pole of line {40, 219} with respect to the circumcircle
X(58340)= pole of line {3990, 15905} with respect to the MacBeath circumconic
X(58340)= pole of line {107, 934} with respect to the Stammler hyperbola
X(58340)= pole of line {6509, 25091} with respect to the Steiner inellipse
X(58340)= pole of line {4569, 6528} with respect to the Wallace hyperbola
X(58340) = perspector of cevian triangle of X(57241) and inverse-of-ABC in bicevian conic of X(8) and X(57241)
X(58340) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(219), X(46102)}}, {{A, B, C, X(255), X(1110)}}, {{A, B, C, X(520), X(3900)}}, {{A, B, C, X(652), X(1021)}}, {{A, B, C, X(1260), X(6056)}}, {{A, B, C, X(1946), X(21789)}}, {{A, B, C, X(7367), X(14379)}}, {{A, B, C, X(8641), X(39201)}}, {{A, B, C, X(52613), X(57055)}}, {{A, B, C, X(57108), X(57241)}}
X(58340) = barycentric product X(i)*X(j) for these (i, j): {1, 57057}, {3, 57055}, {41, 52616}, {100, 35072}, {101, 24031}, {190, 2638}, {200, 4091}, {212, 6332}, {219, 521}, {220, 4131}, {255, 3239}, {268, 57101}, {283, 8611}, {306, 57134}, {326, 657}, {652, 78}, {1021, 3682}, {1043, 822}, {1214, 58338}, {1253, 30805}, {1259, 650}, {1260, 905}, {1264, 3063}, {1265, 22383}, {1331, 34591}, {1332, 3270}, {1364, 644}, {1459, 3692}, {1792, 647}, {1802, 4025}, {1804, 4130}, {1809, 52307}, {1946, 345}, {2188, 57245}, {2193, 52355}, {2287, 520}, {2289, 522}, {2327, 656}, {2328, 24018}, {2968, 906}, {3119, 6517}, {3719, 663}, {3900, 394}, {3926, 8641}, {3990, 7253}, {4041, 6514}, {4105, 7183}, {4163, 7125}, {4183, 52613}, {4391, 6056}, {4397, 577}, {4571, 7117}, {4587, 7004}, {10397, 271}, {15411, 228}, {15416, 184}, {16731, 4557}, {19614, 57045}, {21789, 3998}, {23090, 72}, {23189, 3694}, {23224, 346}, {23614, 46102}, {23983, 692}, {28724, 58335}, {35518, 52425}, {36054, 8}, {39687, 668}, {40152, 58329}, {52430, 52622}, {57081, 71}, {57108, 63}, {57109, 7054}, {57180, 7055}, {57241, 9}, {58253, 7115}
X(58340) = barycentric quotient X(i)/X(j) for these (i, j): {3, 13149}, {9, 52938}, {41, 36127}, {48, 36118}, {55, 54240}, {78, 46404}, {100, 57538}, {101, 24032}, {184, 32714}, {212, 653}, {219, 18026}, {228, 52607}, {255, 658}, {326, 46406}, {394, 4569}, {520, 1446}, {521, 331}, {577, 934}, {652, 273}, {657, 158}, {692, 23984}, {822, 3668}, {906, 55346}, {1043, 57973}, {1259, 4554}, {1260, 6335}, {1364, 24002}, {1459, 1847}, {1792, 6331}, {1802, 1897}, {1804, 36838}, {1946, 278}, {2287, 6528}, {2289, 664}, {2327, 811}, {2328, 823}, {2332, 36126}, {2638, 514}, {3049, 1426}, {3063, 1118}, {3239, 57806}, {3270, 17924}, {3719, 4572}, {3900, 2052}, {3990, 4566}, {4055, 1020}, {4091, 1088}, {4131, 57792}, {4183, 15352}, {4397, 18027}, {6056, 651}, {6332, 57787}, {6514, 4625}, {7125, 4626}, {7183, 52937}, {7335, 4617}, {8611, 57809}, {8641, 393}, {10397, 342}, {15411, 57796}, {15416, 18022}, {16731, 52619}, {18604, 4616}, {22383, 1119}, {23090, 286}, {23224, 279}, {23614, 26932}, {23983, 40495}, {24031, 3261}, {32320, 1439}, {32656, 7128}, {32739, 24033}, {34591, 46107}, {35072, 693}, {36054, 7}, {39201, 1427}, {39687, 513}, {52355, 52575}, {52425, 108}, {52430, 1461}, {52616, 20567}, {56003, 54948}, {56305, 42381}, {57055, 264}, {57057, 75}, {57081, 44129}, {57101, 40701}, {57108, 92}, {57134, 27}, {57180, 1857}, {57241, 85}, {58331, 37778}, {58338, 31623}


X(58341) = X(133)X(1515)∩X(154)X(1249)

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2))^2*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+4*b^2*c^2-3*c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(58341) lies on these lines: {20, 41372}, {107, 15312}, {133, 1515}, {154, 1249}, {1294, 27089}, {5656, 6616}, {13155, 14249}, {23590, 58311}

X(58341) = perspector of circumconic {{A, B, C, X(2404), X(57219)}}
X(58341) = X(i)-Dao conjugate of X(j) for these {i, j}: {50937, 52559}
X(58341)= pole of line {43701, 52559} with respect to the polar circle
X(58341) = perspector of cevian triangle of X(1559) and inverse-of-ABC in bicevian conic of X(20) and X(1559)
X(58341) = intersection, other than A, B, C, of circumconics {{A, B, C, X(154), X(6000)}}, {{A, B, C, X(1249), X(23590)}}, {{A, B, C, X(1559), X(3079)}}, {{A, B, C, X(6525), X(51385)}}
X(58341) = barycentric product X(i)*X(j) for these (i, j): {1249, 1559}, {2404, 58342}, {3079, 51358}, {36413, 51385}, {55127, 57219}
X(58341) = barycentric quotient X(i)/X(j) for these (i, j): {1559, 34403}, {2442, 53886}, {55127, 14638}, {58342, 2416}


X(58342) = X(20)X(14343)∩X(30)X(511)

Barycentrics    (b-c)*(b+c)*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2))^2 : :

X(58342) lies on these lines: {20, 14343}, {30, 511}, {154, 58352}, {1576, 32646}, {3265, 20298}, {5489, 33893}, {6130, 42399}, {6587, 42658}, {9409, 46005}, {39197, 40596}, {39228, 52737}

X(58342) = isogonal conjugate of X(53886)
X(58342) = perspector of circumconic {{A, B, C, X(2), X(1249)}}
X(58342) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 53886}, {162, 52559}, {822, 57574}, {1301, 19611}, {2155, 44326}, {2184, 46639}, {4592, 31942}, {19614, 53639}
X(58342) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 15312}
X(58342) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 53886}, {4, 53639}, {122, 253}, {125, 52559}, {5139, 31942}, {6587, 14638}, {8057, 3265}, {39020, 34403}, {45245, 44326}, {55058, 5931}
X(58342) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 13613}, {20, 39020}, {107, 1249}, {8057, 6587}, {33893, 1562}, {53639, 46829}
X(58342) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 13613}, {19611, 35968}, {19614, 39020}, {46639, 36908}, {52158, 55063}, {52559, 34846}, {53639, 20308}, {53886, 10}
X(58342) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53886, 8}
X(58342)= pole of line {4, 253} with respect to the anticomplementary circle
X(58342)= pole of line {40, 15312} with respect to the Bevan circle
X(58342)= pole of line {182, 15312} with respect to the 1st Brocard circle
X(58342)= pole of line {3, 1033} with respect to the 2nd Brocard circle
X(58342)= pole of line {3, 1033} with respect to the circumcircle
X(58342)= pole of line {1, 15312} with respect to the Conway circle
X(58342)= pole of line {6, 15312} with respect to the cosine circle
X(58342)= pole of line {20, 15312} with respect to the DeLongchamps circle
X(58342)= pole of line {4, 253} with respect to the 1st DrozFarny circle
X(58342)= pole of line {3, 1033} with respect to the 2nd DrozFarny circle
X(58342)= pole of line {10, 15312} with respect to the excircles-radical circle
X(58342)= pole of line {182, 15312} with respect to the 1st Lemoine circle
X(58342)= pole of line {355, 15312} with respect to the Fuhrmann circle
X(58342)= pole of line {39, 15312} with respect to the Gallatly circle
X(58342)= pole of line {5893, 15312} with respect to the half-altitude circle
X(58342)= pole of line {39, 15312} with respect to the half Moses circle
X(58342)= pole of line {1, 15312} with respect to the incircle
X(58342)= pole of line {4, 253} with respect to the circumcircle of the Johnson triangle
X(58342)= pole of line {1478, 15312} with respect to the 1st Johnson-Yff circle
X(58342)= pole of line {1479, 15312} with respect to the 2nd Johnson-Yff circle
X(58342)= pole of line {962, 15312} with respect to the Longuet-Higgins circle
X(58342)= pole of line {999, 15312} with respect to the mixtilinear incircles radical circle
X(58342)= pole of line {39, 15312} with respect to the Moses circle
X(58342)= pole of line {8148, 15312} with respect to the Moses-Longuet-Higgins circle
X(58342)= pole of line {5, 6523} with respect to the nine-point circle
X(58342)= pole of line {381, 15312} with respect to the orthocentroidal circle
X(58342)= pole of line {2, 15312} with respect to the orthoptic circle of the Steiner Inellipse
X(58342)= pole of line {351, 15312} with respect to the Parry circle
X(58342)= pole of line {4, 253} with respect to the polar circle
X(58342)= pole of line {10, 15312} with respect to the Spieker circle
X(58342)= pole of line {3, 1033} with respect to the Stammler circle
X(58342)= pole of line {5, 6523} with respect to the Steiner circle
X(58342)= pole of line {8152, 15312} with respect to the symmedial circle
X(58342)= pole of line {26, 15312} with respect to the tangential circle
X(58342)= pole of line {11, 13613} with respect to the Feuerbach hyperbola
X(58342)= pole of line {125, 13613} with respect to the Jerabek hyperbola
X(58342)= pole of line {5, 5910} with respect to the Johnson circumconic
X(58342)= pole of line {115, 13613} with respect to the Kiepert hyperbola
X(58342)= pole of line {6, 20313} with respect to the MacBeath circumconic
X(58342)= pole of line {6, 6525} with respect to the Orthic inconic
X(58342)= pole of line {110, 53886} with respect to the Stammler hyperbola
X(58342)= pole of line {2, 34403} with respect to the Steiner circumellipse
X(58342)= pole of line {2, 34403} with respect to the Steiner inellipse
X(58342)= pole of line {99, 53886} with respect to the Wallace hyperbola
X(58342)= pole of line {1, 15312} with respect to the Suppa-Cucoanes circle
X(58342)= pole of line {7610, 15312} with respect to the Artzt circle
X(58342)= pole of line {599, 15312} with respect to the anti-Artzt circle
X(58342) = perspector of cevian triangle of X(8057) and inverse-of-ABC in bicevian conic of X(20) and X(8057)
X(58342) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(15312)}}, {{A, B, C, X(20), X(1503)}}, {{A, B, C, X(30), X(3079)}}, {{A, B, C, X(154), X(6000)}}, {{A, B, C, X(511), X(52578)}}, {{A, B, C, X(520), X(42658)}}, {{A, B, C, X(523), X(44705)}}, {{A, B, C, X(524), X(36413)}}, {{A, B, C, X(525), X(6587)}}, {{A, B, C, X(740), X(1097)}}, {{A, B, C, X(3172), X(34146)}}, {{A, B, C, X(3198), X(6001)}}, {{A, B, C, X(3564), X(53050)}}, {{A, B, C, X(6060), X(44669)}}, {{A, B, C, X(6525), X(15311)}}, {{A, B, C, X(7338), X(17768)}}, {{A, B, C, X(8058), X(14308)}}, {{A, B, C, X(9530), X(10152)}}, {{A, B, C, X(20580), X(39020)}}, {{A, B, C, X(32713), X(46063)}}
X(58342) = barycentric product X(i)*X(j) for these (i, j): {4, 57201}, {20, 6587}, {107, 39020}, {122, 57219}, {1097, 661}, {1249, 8057}, {1562, 52913}, {2416, 58341}, {2501, 53050}, {3079, 525}, {3700, 7338}, {6060, 7178}, {10152, 14345}, {14308, 18623}, {14331, 5930}, {15466, 42658}, {17898, 610}, {20580, 6525}, {21172, 8804}, {36413, 523}, {37669, 44705}, {52578, 647}
X(58342) = barycentric quotient X(i)/X(j) for these (i, j): {6, 53886}, {20, 44326}, {107, 57574}, {122, 14638}, {154, 46639}, {647, 52559}, {1097, 799}, {1249, 53639}, {2489, 31942}, {3079, 648}, {3172, 1301}, {3198, 56235}, {6060, 645}, {6587, 253}, {7338, 4573}, {8057, 34403}, {14331, 5931}, {17898, 57921}, {23608, 36841}, {36413, 99}, {39020, 3265}, {42658, 1073}, {44705, 459}, {52578, 6331}, {53050, 4563}, {57201, 69}, {57219, 44181}, {58341, 2404}
X(58342) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6086, 9007, 523}


X(58343) = X(3)X(373)∩X(511)X(4230)

Barycentrics    (-b^4-c^4+a^2*(b^2+c^2))*(-2*a^5+a*(b^2-c^2)^2+a^3*(b^2+c^2))^2 : :

X(58343) lies on these lines: {3, 373}, {237, 44114}, {511, 4230}, {1495, 2420}, {3081, 14401}, {3098, 48871}, {5640, 37918}, {5650, 56961}, {16163, 16240}, {21460, 52238}, {35268, 37921}, {35922, 51538}

X(58343) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1821, 40384}, {1910, 31621}, {40353, 46273}
X(58343) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 290}, {11672, 31621}, {40601, 40384}
X(58343)= pole of line {3524, 31621} with respect to the Stammler hyperbola
X(58343) = perspector of cevian triangle of X(511) and inverse-of-ABC in bicevian conic of X(30) and X(511)
X(58343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(511), X(23097)}}, {{A, B, C, X(3081), X(4230)}}, {{A, B, C, X(3531), X(9408)}}, {{A, B, C, X(14401), X(35910)}}
X(58343) = barycentric product X(i)*X(j) for these (i, j): {110, 58351}, {237, 36789}, {325, 9408}, {1099, 1755}, {1495, 51389}, {1959, 42074}, {2396, 58344}, {2421, 58346}, {3081, 35910}, {3163, 511}, {3233, 3569}, {3289, 34334}, {5968, 58347}, {14401, 4230}, {14966, 58263}, {16163, 232}, {16240, 36212}, {43034, 6062}, {46787, 58348}, {48453, 57431}
X(58343) = barycentric quotient X(i)/X(j) for these (i, j): {237, 40384}, {511, 31621}, {1099, 46273}, {3163, 290}, {3233, 43187}, {9408, 98}, {9418, 40353}, {16163, 57799}, {16240, 16081}, {36789, 18024}, {42074, 1821}, {58344, 2395}, {58345, 53173}, {58346, 43665}, {58347, 52145}, {58348, 46786}, {58351, 850}
X(58343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3081, 58347, 58348}


X(58344) = X(23)X(41167)∩X(25)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2))^2 : :

X(58344) lies on these lines: {23, 41167}, {25, 512}, {669, 6041}, {879, 52301}, {1495, 52743}, {1974, 58310}, {3081, 14401}, {4232, 22264}, {9171, 44127}, {30476, 48884}, {32237, 33752}, {41424, 42654}, {44114, 54274}

X(58344) = perspector of circumconic {{A, B, C, X(3163), X(8749)}}
X(58344) = X(i)-isoconjugate-of-X(j) for these {i, j}: {304, 34568}, {662, 31621}, {799, 40384}, {4602, 40353}, {24018, 57570}, {33805, 44769}
X(58344) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 670}, {1084, 31621}, {1650, 305}, {9033, 52617}, {38996, 40384}
X(58344) = X(i)-Ceva conjugate of X(j) for these {i, j}: {512, 14398}, {32713, 14581}
X(58344) = perspector of cevian triangle of X(512) and inverse-of-ABC in bicevian conic of X(30) and X(512)
X(58344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(3081)}}, {{A, B, C, X(2433), X(14398)}}, {{A, B, C, X(6041), X(52743)}}
X(58344) = barycentric product X(i)*X(j) for these (i, j): {6, 58346}, {32, 58263}, {111, 58349}, {393, 58345}, {523, 9408}, {1099, 798}, {1354, 3709}, {1495, 1637}, {1974, 52624}, {1976, 58351}, {1990, 9409}, {2395, 58343}, {2433, 3081}, {3049, 34334}, {3124, 3233}, {3163, 512}, {6062, 7180}, {11070, 42656}, {14398, 30}, {14401, 25}, {14581, 9033}, {14583, 52743}, {14998, 58348}, {16163, 2489}, {16240, 647}, {32713, 39008}, {36035, 9406}, {36789, 669}, {41079, 9407}, {41489, 58352}, {41995, 6137}, {41996, 6138}, {42074, 661}, {58347, 9178}
X(58344) = barycentric quotient X(i)/X(j) for these (i, j): {512, 31621}, {669, 40384}, {1099, 4602}, {1974, 34568}, {3163, 670}, {3233, 34537}, {9407, 44769}, {9408, 99}, {9426, 40353}, {14398, 1494}, {14401, 305}, {14581, 16077}, {16163, 52608}, {16240, 6331}, {32713, 57570}, {36789, 4609}, {39008, 52617}, {42074, 799}, {52624, 40050}, {58263, 1502}, {58343, 2396}, {58345, 3926}, {58346, 76}, {58349, 3266}


X(58345) = X(3)X(520)∩X(154)X(512)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+c^2)^2*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58345) lies on these lines: {3, 520}, {154, 512}, {184, 2430}, {418, 34983}, {525, 8703}, {1511, 9517}, {1636, 9409}, {2420, 23347}, {3081, 14401}, {3165, 57122}, {3166, 57123}, {5664, 9033}, {6368, 18556}, {8717, 30209}, {9007, 51737}, {9411, 14396}, {15774, 57128}, {16163, 52624}, {23208, 42660}, {23613, 32078}, {39469, 47405}, {41089, 57142}, {41090, 57143}

X(58345) = midpoint of X(i) and X(j) for these {i,j}: {1636, 9409}, {58346, 58352}
X(58345) = perspector of circumconic {{A, B, C, X(1636), X(3163)}}
X(58345) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 34568}, {661, 57570}, {823, 40384}, {2349, 15459}, {16077, 36119}, {24019, 31621}, {32695, 33805}, {40353, 57973}
X(58345) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 6528}, {1511, 16077}, {1650, 264}, {9033, 850}, {22391, 34568}, {35071, 31621}, {36830, 57570}, {38999, 1494}
X(58345) = X(i)-Ceva conjugate of X(j) for these {i, j}: {110, 3284}, {520, 1636}, {16163, 39008}
X(58345)= pole of line {3284, 5668} with respect to the circumcircle
X(58345)= pole of line {4240, 16077} with respect to the Stammler hyperbola
X(58345)= pole of line {44436, 44578} with respect to the Steiner inellipse
X(58345) = perspector of cevian triangle of X(520) and inverse-of-ABC in bicevian conic of X(30) and X(520)
X(58345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(3081)}}, {{A, B, C, X(184), X(16240)}}, {{A, B, C, X(1636), X(2420)}}, {{A, B, C, X(5664), X(18558)}}, {{A, B, C, X(9409), X(14380)}}, {{A, B, C, X(39008), X(52624)}}
X(58345) = barycentric product X(i)*X(j) for these (i, j): {110, 39008}, {184, 52624}, {394, 58346}, {577, 58263}, {1073, 58352}, {1099, 822}, {1495, 41077}, {1511, 18558}, {1636, 30}, {1637, 51394}, {1650, 2420}, {3163, 520}, {3233, 3269}, {3265, 9408}, {3284, 9033}, {3926, 58344}, {11064, 9409}, {11589, 14345}, {14401, 3}, {16163, 647}, {16240, 52613}, {17974, 58351}, {24018, 42074}, {32320, 34334}, {35911, 58348}, {36789, 39201}, {51254, 52743}, {53173, 58343}
X(58345) = barycentric quotient X(i)/X(j) for these (i, j): {110, 57570}, {184, 34568}, {520, 31621}, {1099, 57973}, {1495, 15459}, {1636, 1494}, {2420, 42308}, {3163, 6528}, {3284, 16077}, {9407, 32695}, {9408, 107}, {9409, 16080}, {14401, 264}, {16163, 6331}, {16240, 15352}, {39008, 850}, {39201, 40384}, {42074, 823}, {52624, 18022}, {58263, 18027}, {58310, 40353}, {58344, 393}, {58346, 2052}, {58349, 37778}, {58352, 15466}
X(58345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14401, 58352, 58346}


X(58346) = X(4)X(523)∩X(132)X(133)

Barycentrics    (b-c)*(b+c)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :
X(58346) = -2*X[74]+3*X[42739], -3*X[381]+2*X[14566], -3*X[3839]+X[53383], X[10722]+X[14223], -3*X[14269]+2*X[39491]

X(58346) lies on these lines: {4, 523}, {5, 18556}, {25, 9209}, {30, 5664}, {51, 512}, {74, 42739}, {132, 133}, {381, 14566}, {525, 3830}, {647, 33842}, {690, 13202}, {868, 1649}, {879, 3531}, {1316, 8371}, {1553, 23097}, {1576, 32650}, {1637, 9409}, {2682, 57464}, {2794, 42738}, {2881, 20410}, {3081, 14401}, {3265, 32827}, {3534, 45681}, {3839, 53383}, {9007, 54132}, {9178, 52187}, {10722, 14223}, {14269, 39491}, {14443, 55122}, {14847, 42736}, {15000, 47255}, {15451, 53386}, {30474, 31133}, {33885, 47233}, {34291, 47076}, {38368, 58262}, {42656, 52743}

X(58346) = midpoint of X(i) and X(j) for these {i,j}: {10722, 14223}
X(58346) = reflection of X(i) in X(j) for these {i,j}: {18556, 5}, {3534, 45681}, {42733, 4}, {5489, 42733}, {58352, 58345}, {9409, 1637}
X(58346) = inverse of X(17986) in polar circle
X(58346) = perspector of circumconic {{A, B, C, X(1637), X(1989)}}
X(58346) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 34568}, {163, 31621}, {662, 40384}, {799, 40353}, {822, 57570}, {1494, 36034}, {2349, 44769}, {16077, 35200}, {32640, 33805}
X(58346) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 99}, {115, 31621}, {133, 16077}, {1084, 40384}, {1650, 69}, {3162, 34568}, {3258, 1494}, {9033, 3265}, {38996, 40353}, {57295, 34767}
X(58346) = X(i)-Ceva conjugate of X(j) for these {i, j}: {107, 1990}, {523, 1637}, {3233, 3163}, {38956, 39008}, {58263, 14401}
X(58346)= pole of line {186, 1138} with respect to the circumcircle
X(58346)= pole of line {403, 52464} with respect to the nine-point circle
X(58346)= pole of line {4, 2453} with respect to the orthocentroidal circle
X(58346)= pole of line {107, 468} with respect to the orthoptic circle of the Steiner Inellipse
X(58346)= pole of line {30, 340} with respect to the polar circle
X(58346)= pole of line {3003, 47414} with respect to the Brocard inellipse
X(58346)= pole of line {1495, 1990} with respect to the Orthic inconic
X(58346)= pole of line {10411, 51262} with respect to the Stammler hyperbola
X(58346)= pole of line {3580, 19570} with respect to the Steiner circumellipse
X(58346)= pole of line {4, 15356} with respect to the Yff hyperbola
X(58346) = perspector of cevian triangle of X(523) and inverse-of-ABC in bicevian conic of X(30) and X(523)
X(58346) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3081)}}, {{A, B, C, X(25), X(52646)}}, {{A, B, C, X(30), X(17986)}}, {{A, B, C, X(107), X(42733)}}, {{A, B, C, X(1495), X(1553)}}, {{A, B, C, X(1637), X(2394)}}, {{A, B, C, X(1640), X(5664)}}, {{A, B, C, X(2682), X(3233)}}, {{A, B, C, X(3163), X(35906)}}, {{A, B, C, X(3531), X(9408)}}, {{A, B, C, X(9409), X(14380)}}, {{A, B, C, X(15475), X(18808)}}, {{A, B, C, X(16163), X(36875)}}, {{A, B, C, X(36435), X(52464)}}
X(58346) = barycentric product X(i)*X(j) for these (i, j): {25, 52624}, {107, 39008}, {115, 3233}, {459, 58352}, {850, 9408}, {1099, 661}, {1354, 3700}, {1495, 41079}, {1577, 42074}, {1636, 52661}, {1637, 30}, {1784, 2631}, {1990, 9033}, {2052, 58345}, {2173, 36035}, {2394, 3081}, {2420, 58261}, {3163, 523}, {3258, 41392}, {5466, 58347}, {6062, 7178}, {14223, 58348}, {14254, 52743}, {14398, 3260}, {14401, 4}, {14583, 5664}, {15454, 55265}, {16163, 2501}, {16240, 525}, {23097, 2433}, {23870, 41995}, {23871, 41996}, {34334, 647}, {36789, 512}, {38956, 6587}, {43665, 58343}, {46106, 9409}, {53789, 55276}, {58263, 6}, {58344, 76}, {58349, 671}, {58351, 98}
X(58346) = barycentric quotient X(i)/X(j) for these (i, j): {25, 34568}, {107, 57570}, {512, 40384}, {523, 31621}, {669, 40353}, {1099, 799}, {1354, 4573}, {1495, 44769}, {1637, 1494}, {1990, 16077}, {3081, 2407}, {3163, 99}, {3233, 4590}, {6062, 645}, {9406, 36034}, {9407, 32640}, {9408, 110}, {9409, 14919}, {14398, 74}, {14401, 69}, {14581, 1304}, {14583, 39290}, {15454, 55264}, {16163, 4563}, {16240, 648}, {34334, 6331}, {36035, 33805}, {36435, 3233}, {36789, 670}, {38956, 44326}, {39008, 3265}, {41995, 23895}, {41996, 23896}, {42074, 662}, {52624, 305}, {58263, 76}, {58343, 2421}, {58344, 6}, {58345, 394}, {58347, 5468}, {58348, 14999}, {58349, 524}, {58351, 325}, {58352, 37669}
X(58346) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 523, 42733}, {25, 53330, 39201}, {523, 42733, 5489}, {14401, 58352, 58345}, {46988, 52464, 52219}


X(58347) = X(6)X(376)∩X(30)X(2420)

Barycentrics    (2*a^2-b^2-c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58347) lies on these lines: {6, 376}, {30, 2420}, {187, 1648}, {524, 4235}, {1501, 32761}, {3081, 14401}, {3163, 9408}, {3284, 12113}, {5477, 14444}, {5655, 32661}, {6794, 11001}, {7737, 36194}, {9412, 12383}, {15544, 21969}, {23334, 52283}

X(58347) = perspector of circumconic {{A, B, C, X(3163), X(3233)}}
X(58347) = X(i)-isoconjugate-of-X(j) for these {i, j}: {897, 40384}, {923, 31621}, {2349, 9139}, {40353, 46277}
X(58347) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 671}, {1650, 14977}, {2482, 31621}, {6593, 40384}
X(58347) = X(i)-Ceva conjugate of X(j) for these {i, j}: {524, 5642}
X(58347)= pole of line {35910, 40384} with respect to the Stammler hyperbola
X(58347)= pole of line {31621, 32836} with respect to the Wallace hyperbola
X(58347) = perspector of cevian triangle of X(524) and inverse-of-ABC in bicevian conic of X(30) and X(524)
X(58347) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3081), X(4235)}}, {{A, B, C, X(3163), X(35906)}}, {{A, B, C, X(5642), X(14401)}}
X(58347) = barycentric product X(i)*X(j) for these (i, j): {30, 5642}, {187, 36789}, {1099, 896}, {1354, 3712}, {3081, 36890}, {3163, 524}, {3233, 690}, {3266, 9408}, {3292, 34334}, {5467, 58263}, {5468, 58346}, {6062, 7181}, {14210, 42074}, {14401, 4235}, {16163, 468}, {16240, 6390}, {23097, 9717}, {52094, 58348}, {52145, 58343}, {58349, 99}
X(58347) = barycentric quotient X(i)/X(j) for these (i, j): {187, 40384}, {524, 31621}, {1099, 46277}, {1495, 9139}, {2682, 12079}, {3081, 9214}, {3163, 671}, {3233, 892}, {5642, 1494}, {9408, 111}, {14401, 14977}, {14567, 40353}, {16163, 30786}, {16240, 17983}, {34334, 46111}, {36789, 18023}, {41995, 36307}, {41996, 36310}, {42074, 897}, {58263, 52632}, {58343, 5968}, {58344, 9178}, {58346, 5466}, {58348, 16092}, {58349, 523}
X(58347) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58343, 58348, 3081}


X(58348) = X(30)X(113)∩X(542)X(7473)

Barycentrics    (-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(2*a^6-2*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+c^4)) : :

X(58348) lies on these lines: {30, 113}, {542, 7473}, {1640, 46048}, {3081, 14401}, {5191, 23967}, {6148, 19571}, {9408, 36435}, {11645, 15595}, {15448, 46988}

X(58348) = reflection of X(i) in X(j) for these {i,j}: {51428, 23967}, {58351, 58349}
X(58348) = perspector of circumconic {{A, B, C, X(2407), X(3163)}}
X(58348) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 5641}, {23967, 31621}
X(58348) = perspector of cevian triangle of X(542) and inverse-of-ABC in bicevian conic of X(30) and X(542)
X(58348) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(17986)}}, {{A, B, C, X(542), X(16163)}}, {{A, B, C, X(1511), X(5191)}}, {{A, B, C, X(3081), X(3233)}}, {{A, B, C, X(3163), X(51389)}}, {{A, B, C, X(3258), X(14583)}}, {{A, B, C, X(5642), X(16240)}}, {{A, B, C, X(11064), X(14401)}}
X(58348) = barycentric product X(i)*X(j) for these (i, j): {1099, 2247}, {1640, 3233}, {3081, 51227}, {3163, 542}, {14401, 7473}, {14999, 58346}, {16092, 58347}, {16163, 6103}, {23097, 48451}, {34761, 58351}, {35906, 57431}, {36789, 5191}, {46786, 58343}, {50941, 58349}
X(58348) = barycentric quotient X(i)/X(j) for these (i, j): {542, 31621}, {3081, 51228}, {3163, 5641}, {3233, 6035}, {5191, 40384}, {9408, 842}, {58343, 46787}, {58344, 14998}, {58345, 35911}, {58346, 14223}, {58347, 52094}, {58349, 50942}, {58351, 34765}
X(58348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1495, 51431, 2682}, {3081, 58347, 58343}


X(58349) = X(468)X(690)∩X(1495)X(1637)

Barycentrics    (b-c)*(b+c)*(-2*a^2+b^2+c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :

X(58349) lies on these lines: {351, 33919}, {468, 690}, {512, 9209}, {523, 15448}, {1495, 1637}, {1499, 22264}, {1503, 42736}, {1513, 9189}, {3081, 14401}, {7426, 14697}, {9033, 35266}, {11645, 44564}, {19596, 53318}, {32225, 39474}, {32267, 55142}, {33915, 51429}

X(58349) = midpoint of X(i) and X(j) for these {i,j}: {1495, 1637}, {58348, 58351}, {7426, 14697}
X(58349) = perspector of circumconic {{A, B, C, X(3163), X(35906)}}
X(58349) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31621, 36142}, {36085, 40384}
X(58349) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 892}, {1650, 30786}, {23992, 31621}, {38988, 40384}
X(58349)= pole of line {9214, 52710} with respect to the polar circle
X(58349) = perspector of cevian triangle of X(690) and inverse-of-ABC in bicevian conic of X(30) and X(690)
X(58349) = intersection, other than A, B, C, of circumconics {{A, B, C, X(468), X(3081)}}, {{A, B, C, X(2682), X(3233)}}, {{A, B, C, X(5642), X(16240)}}
X(58349) = barycentric product X(i)*X(j) for these (i, j): {187, 58263}, {351, 36789}, {523, 58347}, {524, 58346}, {1099, 2642}, {1637, 5642}, {1648, 3233}, {2407, 2682}, {3163, 690}, {3266, 58344}, {5967, 58351}, {14273, 16163}, {14401, 468}, {14417, 16240}, {35522, 9408}, {37778, 58345}, {41995, 9204}, {41996, 9205}, {44102, 52624}, {50942, 58348}
X(58349) = barycentric quotient X(i)/X(j) for these (i, j): {351, 40384}, {690, 31621}, {2682, 2394}, {3163, 892}, {3233, 52940}, {9408, 691}, {14398, 9139}, {14401, 30786}, {36789, 53080}, {42074, 36085}, {44102, 34568}, {58263, 18023}, {58344, 111}, {58346, 671}, {58347, 99}, {58348, 50941}


X(58350) = X(1495)X(1990)∩X(1552)X(2777)

Barycentrics    (-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(2*a^10-2*a^8*(b^2+c^2)+7*a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(-5*b^4+12*b^2*c^2-5*c^4)-a^2*(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)) : :

X(58350) lies on these lines: {468, 13202}, {1495, 1990}, {1503, 14847}, {1552, 2777}, {3079, 57655}, {3081, 14401}, {3258, 47351}, {14583, 44082}, {15448, 52464}

X(58350) = reflection of X(i) in X(j) for these {i,j}: {57424, 14847}
X(58350)= pole of line {34767, 53159} with respect to the polar circle
X(58350) = perspector of cevian triangle of X(2777) and inverse-of-ABC in bicevian conic of X(30) and X(2777)
X(58350) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1990), X(14401)}}, {{A, B, C, X(2777), X(16240)}}, {{A, B, C, X(3081), X(31510)}}
X(58350) = barycentric product X(i)*X(j) for these (i, j): {2777, 3163}, {12113, 1990}, {14401, 31510}
X(58350) = barycentric quotient X(i)/X(j) for these (i, j): {2777, 31621}, {9408, 2693}
X(58350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 14847, 57424}


X(58351) = X(30)X(1637)∩X(297)X(2799)

Barycentrics    (b-c)*(b+c)*(b^4+c^4-a^2*(b^2+c^2))*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2 : :
X(58351) = -X[3268]+3*X[44579]

X(58351) lies on these lines: {30, 1637}, {297, 2799}, {3081, 14401}, {3268, 44579}, {9033, 18487}, {9209, 37904}, {9979, 40885}, {14417, 44216}, {40884, 44564}, {52945, 55141}

X(58351) = midpoint of X(i) and X(j) for these {i,j}: {9979, 40885}
X(58351) = reflection of X(i) in X(j) for these {i,j}: {14417, 44216}, {40884, 44564}, {58348, 58349}
X(58351) = perspector of circumconic {{A, B, C, X(3163), X(9214)}}
X(58351) = X(i)-isoconjugate-of-X(j) for these {i, j}: {293, 34568}, {36036, 40353}, {36084, 40384}
X(58351) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 2966}, {132, 34568}, {1650, 287}, {2679, 40353}, {9033, 53173}, {35088, 31621}, {38987, 40384}
X(58351)= pole of line {34568, 35906} with respect to the polar circle
X(58351) = perspector of cevian triangle of X(2799) and inverse-of-ABC in bicevian conic of X(30) and X(2799)
X(58351) = intersection, other than A, B, C, of circumconics {{A, B, C, X(297), X(3081)}}, {{A, B, C, X(3163), X(51389)}}, {{A, B, C, X(3233), X(14401)}}, {{A, B, C, X(39008), X(52624)}}
X(58351) = barycentric product X(i)*X(j) for these (i, j): {232, 52624}, {325, 58346}, {511, 58263}, {1637, 51389}, {2799, 3163}, {3233, 868}, {3569, 36789}, {14401, 297}, {16163, 16230}, {16240, 6333}, {23097, 32112}, {34334, 684}, {34765, 58348}, {58343, 850}
X(58351) = barycentric quotient X(i)/X(j) for these (i, j): {232, 34568}, {1099, 36036}, {2491, 40353}, {2799, 31621}, {3163, 2966}, {3233, 57991}, {3569, 40384}, {9408, 2715}, {14401, 287}, {16163, 17932}, {16240, 685}, {34334, 22456}, {36789, 43187}, {39008, 53173}, {42074, 36084}, {52624, 57799}, {58263, 290}, {58343, 110}, {58344, 1976}, {58345, 17974}, {58346, 98}, {58348, 34761}, {58349, 5967}


X(58352) = X(20)X(8057)∩X(525)X(11001)

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))^2*(-3*a^4+(b^2-c^2)^2+2*a^2*(b^2+c^2)) : :

X(58352) lies on these lines: {20, 8057}, {154, 58342}, {512, 34750}, {525, 11001}, {3079, 44705}, {3081, 14401}, {9409, 14391}, {46472, 57290}

X(58352) = reflection of X(i) in X(j) for these {i,j}: {14391, 9409}, {58346, 58345}
X(58352) = perspector of circumconic {{A, B, C, X(3163), X(14345)}}
X(58352) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2184, 34568}
X(58352) = X(i)-Dao conjugate of X(j) for these {i, j}: {30, 53639}, {1650, 253}, {39020, 31621}, {52874, 16077}
X(58352) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8057, 14345}
X(58352) = perspector of cevian triangle of X(8057) and inverse-of-ABC in bicevian conic of X(30) and X(8057)
X(58352) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(3081)}}, {{A, B, C, X(14345), X(14401)}}
X(58352) = barycentric product X(i)*X(j) for these (i, j): {154, 52624}, {1562, 3233}, {3163, 8057}, {14345, 30}, {14401, 20}, {15466, 58345}, {15905, 58263}, {16163, 6587}, {16240, 20580}, {36789, 42658}, {37669, 58346}, {38956, 57201}, {39008, 52913}
X(58352) = barycentric quotient X(i)/X(j) for these (i, j): {154, 34568}, {3163, 53639}, {8057, 31621}, {9408, 1301}, {14345, 1494}, {14401, 253}, {16163, 44326}, {42658, 40384}, {52624, 41530}, {52913, 57570}, {58263, 52581}, {58344, 41489}, {58345, 1073}, {58346, 459}


X(58353) = X(3)X(2525)∩X(23)X(385)

Barycentrics    a^2*(a^2+b^2)*(b-c)*(b+c)*(a^2+c^2)*(-a^2+b^2+c^2)^2 : :

X(58353) lies on these lines: {3, 2525}, {23, 385}, {251, 16040}, {520, 58310}, {525, 54060}, {647, 8673}, {684, 23286}, {827, 1304}, {850, 53265}, {878, 1799}, {1176, 14380}, {1624, 4630}, {1634, 23357}, {2697, 9076}, {3005, 56917}, {3265, 39201}, {5489, 51252}, {9420, 52618}, {23181, 43754}, {46967, 58113}

X(58353) = isogonal conjugate of X(46151)
X(58353) = trilinear pole of line {3269, 47413}
X(58353) = perspector of circumconic {{A, B, C, X(83), X(1176)}}
X(58353) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46151}, {19, 41676}, {29, 46152}, {38, 107}, {39, 823}, {92, 35325}, {112, 20883}, {141, 24019}, {158, 1634}, {162, 427}, {648, 17442}, {662, 27376}, {811, 1843}, {826, 24000}, {1096, 4576}, {1235, 32676}, {1783, 17171}, {1896, 46153}, {1930, 32713}, {1964, 6528}, {2207, 55239}, {2586, 46167}, {2587, 46166}, {2617, 19174}, {3005, 23999}, {3051, 57973}, {3917, 36126}, {3954, 52919}, {4020, 15352}, {4553, 8747}, {4568, 5317}, {5379, 21108}, {8061, 23582}, {8750, 16747}, {15523, 52920}, {24024, 46164}, {27369, 57968}, {34856, 52922}, {35309, 36419}
X(58353) = X(i)-vertex conjugate of X(j) for these {i, j}: {2, 21458}, {23590, 44181}
X(58353) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46151}, {6, 41676}, {125, 427}, {127, 41375}, {525, 23285}, {1084, 27376}, {1147, 1634}, {6503, 4576}, {15450, 27371}, {15526, 1235}, {17423, 1843}, {17434, 2525}, {22391, 35325}, {26932, 16747}, {34591, 20883}, {35071, 141}, {38985, 38}, {38999, 51360}, {39006, 17171}, {41884, 6528}, {46093, 3917}, {55066, 17442}
X(58353) = X(i)-Ceva conjugate of X(j) for these {i, j}: {827, 1176}, {53657, 6}
X(58353) = X(i)-cross conjugate of X(j) for these {i, j}: {15526, 3}, {55047, 52041}
X(58353)= pole of line {2, 66} with respect to the circumcircle
X(58353)= pole of line {427, 41375} with respect to the polar circle
X(58353)= pole of line {3830, 34775} with respect to the Stammler circle
X(58353)= pole of line {20965, 21637} with respect to the Brocard inellipse
X(58353)= pole of line {512, 58359} with respect to the Kiepert parabola
X(58353)= pole of line {184, 4173} with respect to the MacBeath circumconic
X(58353)= pole of line {1634, 41676} with respect to the Stammler hyperbola
X(58353)= pole of line {6, 10548} with respect to the Steiner circumellipse
X(58353)= pole of line {4576, 46151} with respect to the Wallace hyperbola
X(58353) = perspector of cevian triangle of X(4580) and inverse-of-ABC in bicevian conic of X(69) and X(4580)
X(58353) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(44894)}}, {{A, B, C, X(3), X(23)}}, {{A, B, C, X(6), X(46243)}}, {{A, B, C, X(69), X(46603)}}, {{A, B, C, X(110), X(53345)}}, {{A, B, C, X(228), X(20875)}}, {{A, B, C, X(251), X(21458)}}, {{A, B, C, X(385), X(394)}}, {{A, B, C, X(520), X(523)}}, {{A, B, C, X(525), X(8673)}}, {{A, B, C, X(577), X(5201)}}, {{A, B, C, X(659), X(822)}}, {{A, B, C, X(669), X(878)}}, {{A, B, C, X(684), X(17434)}}, {{A, B, C, X(850), X(2435)}}, {{A, B, C, X(879), X(2623)}}, {{A, B, C, X(1634), X(2525)}}, {{A, B, C, X(1799), X(51862)}}, {{A, B, C, X(3269), X(14420)}}, {{A, B, C, X(3682), X(20045)}}, {{A, B, C, X(4055), X(20475)}}, {{A, B, C, X(4057), X(23224)}}, {{A, B, C, X(4091), X(17494)}}, {{A, B, C, X(4131), X(47694)}}, {{A, B, C, X(6394), X(9149)}}, {{A, B, C, X(6753), X(47194)}}, {{A, B, C, X(11064), X(11595)}}, {{A, B, C, X(15329), X(37987)}}, {{A, B, C, X(15394), X(22263)}}, {{A, B, C, X(15407), X(23964)}}, {{A, B, C, X(21225), X(23093)}}, {{A, B, C, X(23067), X(47695)}}, {{A, B, C, X(24018), X(47660)}}, {{A, B, C, X(28724), X(52898)}}, {{A, B, C, X(31296), X(53173)}}, {{A, B, C, X(46088), X(53263)}}, {{A, B, C, X(50353), X(51640)}}
X(58353) = barycentric product X(i)*X(j) for these (i, j): {3, 4580}, {251, 3265}, {308, 39201}, {326, 55240}, {520, 83}, {1176, 525}, {1799, 647}, {2632, 4599}, {2972, 42396}, {3112, 822}, {3269, 4577}, {10547, 3267}, {10566, 3682}, {14638, 51508}, {15526, 827}, {16277, 58359}, {17216, 4628}, {17434, 39287}, {17879, 34072}, {18070, 255}, {18082, 4091}, {18097, 57241}, {18098, 4131}, {18105, 3926}, {18108, 3998}, {23224, 56186}, {24018, 82}, {28724, 523}, {32085, 52613}, {32320, 46104}, {34055, 656}, {36793, 4630}, {39179, 52387}, {39182, 5562}, {40016, 58310}, {40404, 8673}, {41488, 42293}, {46288, 52617}, {46765, 57069}, {47413, 53657}, {51862, 53173}, {52376, 57109}, {52618, 577}
X(58353) = barycentric quotient X(i)/X(j) for these (i, j): {3, 41676}, {6, 46151}, {82, 823}, {83, 6528}, {184, 35325}, {251, 107}, {326, 55239}, {394, 4576}, {418, 35319}, {512, 27376}, {520, 141}, {525, 1235}, {577, 1634}, {647, 427}, {656, 20883}, {810, 17442}, {822, 38}, {827, 23582}, {905, 16747}, {1176, 648}, {1409, 46152}, {1459, 17171}, {1636, 51360}, {1799, 6331}, {2485, 41375}, {2623, 19174}, {2972, 2525}, {3049, 1843}, {3112, 57973}, {3265, 8024}, {3269, 826}, {3682, 4568}, {3990, 4553}, {4055, 46148}, {4091, 16887}, {4131, 16703}, {4580, 264}, {4599, 23999}, {4630, 23964}, {10547, 112}, {15451, 27371}, {15526, 23285}, {18070, 57806}, {18097, 52938}, {18105, 393}, {22105, 37778}, {23224, 16696}, {24018, 1930}, {28724, 99}, {32085, 15352}, {32320, 3917}, {34055, 811}, {34072, 24000}, {39182, 8795}, {39201, 39}, {39287, 42405}, {46088, 16030}, {46288, 32713}, {46289, 24019}, {46765, 1289}, {47413, 23881}, {50433, 46155}, {51508, 57219}, {52613, 3933}, {52617, 52568}, {52618, 18027}, {55230, 21016}, {55240, 158}, {58310, 3051}


X(58354) = X(2)X(53500)∩X(394)X(577)

Barycentrics    a^2*(-a^2+b^2+c^2)^2*(a^4-b^2*c^2) : :

X(58354) lies on these lines: {2, 53500}, {110, 56437}, {184, 3504}, {193, 1501}, {325, 1971}, {385, 732}, {394, 577}, {511, 39803}, {520, 58310}, {538, 58312}, {1915, 7774}, {1970, 1975}, {3289, 4558}, {3796, 8681}, {3926, 14585}, {6390, 32661}, {6393, 14600}, {6461, 35602}, {7758, 52436}, {7813, 19627}, {8779, 36212}, {36213, 44089}, {40888, 57275}, {46888, 51343}

X(58354) = perspector of circumconic {{A, B, C, X(17941), X(28724)}}
X(58354) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 17980}, {158, 694}, {393, 1581}, {823, 882}, {881, 57973}, {1096, 1916}, {1927, 18027}, {1934, 2207}, {1967, 2052}, {6520, 36214}, {6521, 17970}, {9468, 57806}, {27376, 43763}
X(58354) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 694}, {6338, 18896}, {6503, 1916}, {8290, 2052}, {8623, 6530}, {19576, 393}, {22391, 17980}, {36213, 27376}, {37867, 36214}, {39031, 1096}, {39043, 158}, {39044, 57806}
X(58354) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17974, 394}
X(58354)= pole of line {22138, 50666} with respect to the Jerabek hyperbola
X(58354)= pole of line {10316, 52584} with respect to the MacBeath circumconic
X(58354)= pole of line {393, 694} with respect to the Stammler hyperbola
X(58354)= pole of line {1916, 2052} with respect to the Wallace hyperbola
X(58354) = perspector of cevian triangle of X(12215) and inverse-of-ABC in bicevian conic of X(69) and X(12215)
X(58354) = intersection, other than A, B, C, of circumconics {{A, B, C, X(385), X(394)}}, {{A, B, C, X(520), X(732)}}, {{A, B, C, X(577), X(1691)}}, {{A, B, C, X(3926), X(9865)}}, {{A, B, C, X(3964), X(12215)}}, {{A, B, C, X(4027), X(17974)}}, {{A, B, C, X(5976), X(6394)}}, {{A, B, C, X(56915), X(58310)}}
X(58354) = barycentric product X(i)*X(j) for these (i, j): {385, 394}, {1092, 17984}, {1102, 56828}, {1580, 326}, {1691, 3926}, {1926, 52430}, {1966, 255}, {3265, 56980}, {3964, 419}, {3978, 577}, {4176, 44089}, {12215, 3}, {14585, 14603}, {17941, 520}, {17974, 5976}, {24018, 56982}, {24284, 4558}, {28724, 732}, {36213, 6394}, {39201, 880}, {40820, 51386}
X(58354) = barycentric quotient X(i)/X(j) for these (i, j): {184, 17980}, {255, 1581}, {326, 1934}, {385, 2052}, {394, 1916}, {419, 1093}, {577, 694}, {1092, 36214}, {1580, 158}, {1691, 393}, {1933, 1096}, {1966, 57806}, {3265, 56981}, {3926, 18896}, {3964, 40708}, {3978, 18027}, {5026, 37778}, {8623, 27376}, {12215, 264}, {14585, 9468}, {14602, 2207}, {17941, 6528}, {17974, 36897}, {18902, 36417}, {23606, 17970}, {24284, 14618}, {28724, 14970}, {36213, 6530}, {39201, 882}, {44089, 6524}, {46888, 36426}, {51430, 52661}, {52430, 1967}, {56828, 6520}, {56980, 107}, {56982, 823}, {58310, 881}


X(58355) = X(3)X(3203)∩X(184)X(418)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(-(b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)-a^2*(b^6+c^6)) : :

X(58355) lies on these lines: {3, 3203}, {184, 418}, {520, 58310}, {524, 19126}, {3202, 23115}, {3284, 9418}, {10316, 40643}, {14917, 14961}

X(58355) = perspector of circumconic {{A, B, C, X(28724), X(32661)}}
X(58355) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 55033}
X(58355) = X(i)-Dao conjugate of X(j) for these {i, j}: {237, 6530}, {1147, 55033}
X(58355) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6394, 577}
X(58355)= pole of line {264, 46151} with respect to the Stammler hyperbola
X(58355) = perspector of cevian triangle of X(14965) and inverse-of-ABC in bicevian conic of X(69) and X(14965)
X(58355) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(418), X(14957)}}, {{A, B, C, X(520), X(20775)}}, {{A, B, C, X(577), X(14965)}}
X(58355) = barycentric product X(i)*X(j) for these (i, j): {14957, 577}, {14965, 3}, {16564, 255}, {40601, 6394}
X(58355) = barycentric quotient X(i)/X(j) for these (i, j): {577, 55033}, {14957, 18027}, {14965, 264}, {16564, 57806}, {40601, 6530}


X(58356) = X(3)X(6)∩X(250)X(858)

Barycentrics    a^2*(-a^2+b^2+c^2)^2*(a^8-b^2*c^2*(b^2-c^2)^2-a^4*(b^4-b^2*c^2+c^4)) : :

X(58356) lies on these lines: {3, 6}, {250, 858}, {340, 7495}, {441, 1576}, {520, 58310}, {852, 9407}, {6389, 14575}, {6394, 43754}, {12225, 41375}, {13160, 51031}, {18374, 44894}, {20968, 28696}, {22151, 47413}, {23583, 44096}, {23606, 43653}, {41168, 46442}, {44888, 51458}, {54080, 56565}

X(58356) = inverse of X(10316) in MacBeath circumconic
X(58356) = perspector of circumconic {{A, B, C, X(110), X(28724)}}
X(58356) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 46239}
X(58356) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 46239}, {39086, 4}
X(58356) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15013, 46243}
X(58356)= pole of line {14618, 55273} with respect to the polar circle
X(58356)= pole of line {520, 10316} with respect to the MacBeath circumconic
X(58356)= pole of line {2, 46151} with respect to the Stammler hyperbola
X(58356) = perspector of cevian triangle of X(15013) and inverse-of-ABC in bicevian conic of X(69) and X(15013)
X(58356) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(15013)}}, {{A, B, C, X(6), X(46243)}}, {{A, B, C, X(39), X(520)}}, {{A, B, C, X(250), X(10316)}}, {{A, B, C, X(3003), X(47205)}}, {{A, B, C, X(6394), X(14961)}}, {{A, B, C, X(41331), X(58310)}}
X(58356) = barycentric product X(i)*X(j) for these (i, j): {4558, 47205}, {10316, 16097}, {15013, 3}, {46243, 69}
X(58356) = barycentric quotient X(i)/X(j) for these (i, j): {3, 46239}, {15013, 264}, {46243, 4}, {47205, 14618}


X(58357) = X(3)X(49)∩X(110)X(858)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(a^4-b^4+b^2*c^2-c^4) : :

X(58357) lies on these lines: {3, 49}, {22, 34117}, {23, 6593}, {25, 44469}, {50, 3289}, {69, 11003}, {110, 858}, {154, 26283}, {156, 14791}, {182, 26869}, {323, 37978}, {343, 5012}, {450, 36789}, {468, 15462}, {511, 19504}, {520, 58310}, {524, 32245}, {548, 47360}, {566, 9604}, {1495, 37972}, {1531, 38789}, {1568, 7574}, {1594, 43598}, {1993, 37473}, {2071, 15138}, {2072, 15133}, {2781, 37929}, {2883, 12225}, {3410, 23330}, {3564, 13198}, {3581, 22109}, {5094, 9306}, {6800, 20806}, {7387, 34116}, {8681, 32251}, {9544, 16063}, {9909, 44078}, {10274, 15644}, {10295, 43574}, {11206, 37444}, {11245, 43810}, {11402, 44480}, {11440, 40928}, {11597, 16163}, {12215, 36793}, {12233, 34148}, {12241, 13160}, {13346, 37196}, {13353, 43573}, {13366, 32284}, {14826, 37119}, {14965, 46243}, {15080, 41716}, {15122, 15132}, {15134, 43817}, {15135, 34986}, {17974, 44888}, {18569, 31383}, {19128, 32269}, {25711, 45171}, {26883, 34725}, {30552, 46374}, {33586, 44077}, {34002, 40441}, {35259, 44080}, {37498, 52432}, {37777, 41670}, {37928, 45016}, {44704, 52917}, {44791, 47308}

X(58357) = perspector of circumconic {{A, B, C, X(4558), X(28724)}}
X(58357) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 46105}, {67, 158}, {92, 8791}, {935, 24006}, {1096, 18019}, {2052, 2157}, {3455, 57806}, {6520, 34897}, {27376, 37221}, {36128, 57496}
X(58357) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 46105}, {187, 37778}, {1147, 67}, {5181, 39269}, {6503, 18019}, {22391, 8791}, {37867, 34897}, {39169, 17983}, {40583, 2052}, {55048, 14618}
X(58357) = X(i)-Ceva conjugate of X(j) for these {i, j}: {22151, 10317}
X(58357)= pole of line {7473, 23181} with respect to the Kiepert parabola
X(58357)= pole of line {647, 10316} with respect to the MacBeath circumconic
X(58357)= pole of line {4, 67} with respect to the Stammler hyperbola
X(58357)= pole of line {264, 5169} with respect to the Wallace hyperbola
X(58357) = perspector of cevian triangle of X(22151) and inverse-of-ABC in bicevian conic of X(69) and X(22151)
X(58357) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(23)}}, {{A, B, C, X(50), X(16186)}}, {{A, B, C, X(67), X(40949)}}, {{A, B, C, X(184), X(18374)}}, {{A, B, C, X(316), X(5562)}}, {{A, B, C, X(394), X(22151)}}, {{A, B, C, X(520), X(3917)}}, {{A, B, C, X(577), X(10510)}}, {{A, B, C, X(1176), X(27085)}}, {{A, B, C, X(1181), X(8744)}}, {{A, B, C, X(2492), X(47195)}}, {{A, B, C, X(3292), X(6593)}}, {{A, B, C, X(5504), X(15136)}}, {{A, B, C, X(9517), X(12824)}}, {{A, B, C, X(16165), X(51394)}}, {{A, B, C, X(17974), X(22115)}}, {{A, B, C, X(23039), X(54032)}}, {{A, B, C, X(34783), X(52449)}}, {{A, B, C, X(36212), X(37804)}}, {{A, B, C, X(37765), X(46832)}}, {{A, B, C, X(42659), X(52144)}}
X(58357) = barycentric product X(i)*X(j) for these (i, j): {23, 394}, {184, 37804}, {316, 577}, {520, 52630}, {1092, 37765}, {3292, 57481}, {3964, 8744}, {4558, 9517}, {10317, 69}, {14585, 40074}, {14919, 16165}, {16568, 255}, {17088, 6056}, {18374, 3926}, {20806, 54060}, {20944, 52430}, {22151, 3}, {28724, 9019}, {39201, 55226}, {42659, 4563}, {52613, 52916}
X(58357) = barycentric quotient X(i)/X(j) for these (i, j): {3, 46105}, {23, 2052}, {184, 8791}, {316, 18027}, {394, 18019}, {577, 67}, {1092, 34897}, {3292, 57496}, {6593, 37778}, {8744, 1093}, {9517, 14618}, {10316, 11605}, {10317, 4}, {14585, 3455}, {14961, 39269}, {16165, 46106}, {16568, 57806}, {18374, 393}, {22151, 264}, {32661, 935}, {37804, 18022}, {42659, 2501}, {52430, 2157}, {52630, 6528}, {52916, 15352}, {52951, 52661}, {54060, 43678}, {57481, 46111}
X(58357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 22115, 15136}, {110, 858, 15139}, {184, 3292, 41615}, {15122, 40111, 15132}, {22115, 41615, 3292}


X(58358) = X(6)X(25)∩X(49)X(23172)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*(a^8-b^8-a^4*b^2*c^2+b^6*c^2+b^2*c^6-c^8) : :

X(58358) lies on these lines: {6, 25}, {49, 23172}, {160, 22075}, {520, 58310}, {1154, 38624}, {1899, 30794}, {3564, 17974}, {33582, 40146}, {34137, 38652}, {41375, 56297}

X(58358) = perspector of circumconic {{A, B, C, X(112), X(28724)}}
X(58358) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 34129}
X(58358) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 34129}
X(58358)= pole of line {8673, 10316} with respect to the MacBeath circumconic
X(58358)= pole of line {69, 41766} with respect to the Stammler hyperbola
X(58358) = perspector of cevian triangle of X(34137) and inverse-of-ABC in bicevian conic of X(69) and X(34137)
X(58358) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(34137)}}, {{A, B, C, X(159), X(3964)}}, {{A, B, C, X(232), X(38652)}}, {{A, B, C, X(520), X(1843)}}, {{A, B, C, X(9969), X(34237)}}
X(58358) = barycentric product X(i)*X(j) for these (i, j): {3, 34137}, {10316, 34237}, {17974, 38652}
X(58358) = barycentric quotient X(i)/X(j) for these (i, j): {184, 34129}, {34137, 264}


X(58359) = X(3)X(30213)∩X(441)X(525)

Barycentrics    a^2*(b-c)*(b+c)*(-a^2+b^2+c^2)^2*(a^4-b^4-c^4) : :

X(58359) lies on these lines: {3, 30213}, {22, 57126}, {110, 46967}, {441, 525}, {520, 58310}, {669, 684}, {2485, 16757}, {2799, 6753}, {3005, 22089}, {3267, 31296}, {4558, 23357}, {7630, 30476}, {7631, 12075}, {8651, 57075}, {52350, 53173}

X(58359) = perspector of circumconic {{A, B, C, X(69), X(315)}}
X(58359) = center of circumconic {{A, B, C, X(52617), X(57069)}}
X(58359) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1289}, {66, 24019}, {107, 2156}, {162, 13854}, {823, 2353}, {1096, 44766}, {15388, 24006}, {32676, 43678}, {40146, 57973}
X(58359) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 1289}, {32, 32713}, {125, 13854}, {127, 393}, {2485, 14618}, {3265, 850}, {6503, 44766}, {8673, 2485}, {15526, 43678}, {35071, 66}, {38985, 2156}, {47413, 27376}, {55047, 4}
X(58359) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 3313}, {110, 394}, {4558, 10316}, {4611, 20806}, {52617, 520}, {57069, 8673}
X(58359) = X(i)-complementary conjugate of X(j) for these {i, j}: {34207, 21253}, {39417, 20305}, {56008, 2887}
X(58359) = X(i)-cross conjugate of X(j) for these {i, j}: {55047, 10316}
X(58359)= pole of line {159, 394} with respect to the circumcircle
X(58359)= pole of line {253, 7378} with respect to the DeLongchamps circle
X(58359)= pole of line {6643, 7710} with respect to the orthoptic circle of the Steiner Inellipse
X(58359)= pole of line {393, 13854} with respect to the polar circle
X(58359)= pole of line {3265, 39201} with respect to the Kiepert parabola
X(58359)= pole of line {394, 10316} with respect to the MacBeath circumconic
X(58359)= pole of line {112, 1289} with respect to the Stammler hyperbola
X(58359)= pole of line {20, 3313} with respect to the Steiner circumellipse
X(58359)= pole of line {3, 206} with respect to the Steiner inellipse
X(58359)= pole of line {648, 44766} with respect to the Wallace hyperbola
X(58359) = perspector of cevian triangle of X(57069) and inverse-of-ABC in bicevian conic of X(69) and X(57069)
X(58359) = intersection, other than A, B, C, of circumconics {{A, B, C, X(22), X(394)}}, {{A, B, C, X(127), X(6334)}}, {{A, B, C, X(520), X(2525)}}, {{A, B, C, X(525), X(8673)}}, {{A, B, C, X(647), X(2485)}}, {{A, B, C, X(905), X(16757)}}, {{A, B, C, X(1073), X(40358)}}, {{A, B, C, X(3926), X(10316)}}, {{A, B, C, X(4025), X(21178)}}, {{A, B, C, X(4611), X(41077)}}, {{A, B, C, X(8743), X(15341)}}, {{A, B, C, X(11064), X(20806)}}, {{A, B, C, X(14376), X(39172)}}, {{A, B, C, X(14417), X(47413)}}, {{A, B, C, X(14919), X(52513)}}, {{A, B, C, X(17409), X(51336)}}, {{A, B, C, X(17907), X(44436)}}, {{A, B, C, X(34254), X(36212)}}, {{A, B, C, X(52584), X(53173)}}
X(58359) = barycentric product X(i)*X(j) for these (i, j): {3, 57069}, {22, 3265}, {69, 8673}, {127, 4558}, {206, 52617}, {315, 520}, {1332, 18187}, {1760, 24018}, {2485, 3926}, {3269, 55225}, {4091, 4150}, {4131, 4463}, {4143, 8743}, {10316, 3267}, {15526, 4611}, {16757, 3998}, {17907, 52613}, {20641, 822}, {20806, 525}, {21178, 3682}, {23881, 28724}, {30805, 4456}, {33294, 394}, {34254, 647}, {38356, 4563}, {39201, 40073}, {47413, 99}
X(58359) = barycentric quotient X(i)/X(j) for these (i, j): {3, 1289}, {22, 107}, {127, 14618}, {206, 32713}, {315, 6528}, {394, 44766}, {520, 66}, {525, 43678}, {647, 13854}, {822, 2156}, {1760, 823}, {2172, 24019}, {2485, 393}, {3265, 18018}, {3313, 46151}, {4558, 44183}, {4611, 23582}, {8673, 4}, {8743, 6529}, {10316, 112}, {11610, 20031}, {14396, 1990}, {17907, 15352}, {18187, 17924}, {20641, 57973}, {20806, 648}, {28724, 53657}, {32661, 15388}, {33294, 2052}, {34254, 6331}, {38356, 2501}, {39172, 39417}, {39201, 2353}, {47413, 523}, {52613, 14376}, {52617, 40421}, {52915, 32230}, {55047, 2485}, {55273, 2970}, {57069, 264}, {57202, 8743}, {58305, 27372}, {58310, 40146}, {58353, 16277}
X(58359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {647, 52613, 3265}


X(58360) = X(37)X(669)∩X(192)X(25299)

Barycentrics    a*(b-c)*(b+c)*(-(b*c*(b+c))+a*(b^2+b*c+c^2)) : :

X(58360) lies on these lines: {37, 669}, {192, 25299}, {312, 31003}, {321, 23301}, {512, 20703}, {523, 58289}, {647, 17989}, {756, 50491}, {764, 48112}, {876, 44449}, {984, 50524}, {1491, 47665}, {3005, 3700}, {3175, 31176}, {3773, 21726}, {3777, 49272}, {3835, 21350}, {3995, 44445}, {4132, 58290}, {4139, 58303}, {4155, 58286}, {4359, 25126}, {4490, 47655}, {4705, 4838}, {5311, 56242}, {8034, 14321}, {17458, 20983}, {20295, 21349}, {20711, 21834}, {20909, 21260}, {21441, 33931}, {23768, 47769}, {23886, 25627}, {24533, 28606}, {25686, 33157}, {26148, 41839}, {31279, 31993}, {42661, 48395}

X(58360) = perspector of circumconic {{A, B, C, X(27810), X(30473)}}
X(58360) = X(i)-Dao conjugate of X(j) for these {i, j}: {21260, 3733}
X(58360) = X(i)-Ceva conjugate of X(j) for these {i, j}: {21260, 21055}
X(58360) = perspector of cevian triangle of X(17458) and inverse-of-ABC in bicevian conic of X(75) and X(17458)
X(58360) = intersection, other than A, B, C, of circumconics {{A, B, C, X(669), X(27808)}}, {{A, B, C, X(17458), X(20909)}}, {{A, B, C, X(20983), X(21260)}}
X(58360) = barycentric product X(i)*X(j) for these (i, j): {1, 21055}, {10, 17458}, {1018, 21142}, {4705, 56023}, {20909, 42}, {20983, 321}, {21260, 37}, {22095, 41013}, {30473, 512}, {32925, 661}
X(58360) = barycentric quotient X(i)/X(j) for these (i, j): {17458, 86}, {20909, 310}, {20983, 81}, {21055, 75}, {21142, 7199}, {21260, 274}, {22095, 1444}, {30473, 670}, {32925, 799}, {56023, 4623}


X(58361) = X(2)X(16751)∩X(321)X(850)

Barycentrics    b*(b-c)*c*(b+c)*(-a^2+b*c+a*(b+c)) : :

X(58361) lies on these lines: {2, 16751}, {37, 31296}, {321, 850}, {514, 661}, {522, 25627}, {523, 58289}, {650, 27045}, {656, 4811}, {798, 4380}, {812, 29512}, {1021, 5278}, {1491, 31946}, {2254, 4985}, {2517, 48080}, {2533, 50497}, {3261, 25259}, {4010, 4036}, {4086, 4804}, {4151, 21727}, {4170, 50483}, {4359, 4467}, {4374, 44449}, {4408, 20953}, {4444, 40013}, {4560, 24948}, {4815, 47934}, {4824, 27575}, {4841, 50557}, {4885, 21894}, {7192, 18154}, {7199, 31290}, {7650, 47842}, {8061, 27710}, {17069, 24589}, {17494, 20954}, {17496, 27193}, {18071, 21297}, {18160, 51384}, {20906, 47665}, {20949, 47659}, {20950, 49273}, {20952, 47870}, {21960, 27731}, {23655, 47832}, {23880, 27674}, {24900, 27527}, {26985, 57244}, {27469, 42327}, {27610, 48152}, {29404, 47776}, {29771, 47775}, {29808, 47780}, {30024, 47762}, {31072, 31993}, {35519, 47790}, {48024, 50334}, {48273, 50493}

X(58361) = reflection of X(i) in X(j) for these {i,j}: {58288, 29512}
X(58361) = perspector of circumconic {{A, B, C, X(75), X(4043)}}
X(58361) = center of circumconic {{A, B, C, X(20954), X(52619)}}
X(58361) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43076}, {32, 53649}, {110, 2350}, {163, 13476}, {692, 39950}, {1576, 17758}, {2206, 54118}, {32739, 39734}
X(58361) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 43076}, {115, 13476}, {244, 2350}, {693, 7192}, {1086, 39950}, {1500, 4557}, {2486, 20963}, {3925, 35326}, {4858, 17758}, {6376, 53649}, {17761, 6}, {36901, 40216}, {40603, 54118}, {40619, 39734}
X(58361) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3952, 321}, {18152, 40619}, {20954, 4151}, {52619, 523}
X(58361) = X(i)-complementary conjugate of X(j) for these {i, j}: {6577, 3739}, {34444, 17761}, {39797, 53564}, {40147, 11}, {40504, 116}, {40515, 21252}, {53651, 21240}
X(58361)= pole of line {4972, 27042} with respect to the nine-point circle
X(58361)= pole of line {19, 13476} with respect to the polar circle
X(58361)= pole of line {1086, 16727} with respect to the Kiepert hyperbola
X(58361)= pole of line {8, 3770} with respect to the Steiner circumellipse
X(58361)= pole of line {10, 15281} with respect to the Steiner inellipse
X(58361) = perspector of cevian triangle of X(20954) and inverse-of-ABC in bicevian conic of X(75) and X(20954)
X(58361) = intersection, other than A, B, C, of circumconics {{A, B, C, X(321), X(3912)}}, {{A, B, C, X(514), X(4151)}}, {{A, B, C, X(523), X(47672)}}, {{A, B, C, X(661), X(21727)}}, {{A, B, C, X(693), X(18070)}}, {{A, B, C, X(857), X(14004)}}, {{A, B, C, X(908), X(30588)}}, {{A, B, C, X(1621), X(1959)}}, {{A, B, C, X(2084), X(50487)}}, {{A, B, C, X(2486), X(4728)}}, {{A, B, C, X(3250), X(58294)}}, {{A, B, C, X(3294), X(57015)}}, {{A, B, C, X(3766), X(40619)}}, {{A, B, C, X(3835), X(35353)}}, {{A, B, C, X(3936), X(17277)}}, {{A, B, C, X(3948), X(18152)}}, {{A, B, C, X(4040), X(14349)}}, {{A, B, C, X(4043), X(4358)}}, {{A, B, C, X(4129), X(4444)}}, {{A, B, C, X(4251), X(14963)}}, {{A, B, C, X(4551), X(16751)}}, {{A, B, C, X(7178), X(47918)}}, {{A, B, C, X(14210), X(17143)}}, {{A, B, C, X(24002), X(47675)}}, {{A, B, C, X(40094), X(43685)}}
X(58361) = barycentric product X(i)*X(j) for these (i, j): {10, 20954}, {313, 4040}, {1577, 17277}, {1621, 850}, {2321, 57247}, {2486, 668}, {3261, 3294}, {3701, 57167}, {3952, 40619}, {3996, 4077}, {4043, 514}, {4086, 55082}, {4151, 75}, {4651, 693}, {14004, 14208}, {17143, 523}, {17494, 321}, {17761, 4033}, {18152, 661}, {20948, 4251}, {21007, 27801}, {21727, 310}, {28654, 57148}, {30713, 58324}, {40088, 512}, {40094, 4010}, {40607, 52619}, {52618, 56537}
X(58361) = barycentric quotient X(i)/X(j) for these (i, j): {1, 43076}, {75, 53649}, {321, 54118}, {514, 39950}, {523, 13476}, {661, 2350}, {693, 39734}, {850, 40216}, {1577, 17758}, {1621, 110}, {2486, 513}, {3261, 40004}, {3294, 101}, {3996, 643}, {4040, 58}, {4043, 190}, {4086, 55076}, {4151, 1}, {4251, 163}, {4651, 100}, {14004, 162}, {17143, 99}, {17277, 662}, {17494, 81}, {17761, 1019}, {18152, 799}, {20616, 4559}, {20954, 86}, {21007, 1333}, {21727, 42}, {22160, 1437}, {26846, 57148}, {33765, 4637}, {38346, 57129}, {38347, 7252}, {40088, 670}, {40094, 4589}, {40607, 4557}, {40619, 7192}, {42454, 18191}, {55082, 1414}, {56537, 1634}, {57148, 593}, {57167, 1014}, {57247, 1434}, {58324, 1412}
X(58361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 1577, 693}, {693, 4462, 47675}, {812, 29512, 58288}, {850, 3700, 321}, {4467, 24622, 4359}, {4885, 21894, 26983}, {23794, 30061, 4380}


X(58362) = X(756)X(3700)∩X(1213)X(23954)

Barycentrics    (b-c)*(b+c)^2*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(58362) lies on these lines: {523, 58289}, {756, 3700}, {1213, 23954}, {2490, 17989}, {3842, 17069}, {4524, 40607}, {4843, 58304}, {17056, 23949}, {22042, 57232}

X(58362) = midpoint of X(i) and X(j) for these {i,j}: {3700, 58286}, {58289, 58364}
X(58362) = X(i)-Dao conjugate of X(j) for these {i, j}: {4041, 3737}
X(58362) = perspector of cevian triangle of X(22042) and inverse-of-ABC in bicevian conic of X(75) and X(22042)
X(58362) = barycentric product X(i)*X(j) for these (i, j): {10, 22042}, {313, 57176}, {321, 57232}, {23821, 4103}, {57067, 6358}
X(58362) = barycentric quotient X(i)/X(j) for these (i, j): {22042, 86}, {55064, 3737}, {57067, 2185}, {57176, 58}, {57232, 81}
X(58362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58289, 58364, 523}


X(58363) = X(756)X(4010)∩X(918)X(3837)

Barycentrics    (b-c)*(b+c)^2*(-(b^2*c^2)+a^3*(b+c)-2*a*b*c*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58363) lies on these lines: {523, 58289}, {756, 4010}, {918, 3837}, {1089, 14431}, {3842, 9508}, {4096, 45342}, {4122, 31946}, {4132, 29512}, {21051, 23879}, {25259, 44316}, {40086, 48082}

X(58363) = perspector of circumconic {{A, B, C, X(6538), X(40098)}}
X(58363) = X(i)-Dao conjugate of X(j) for these {i, j}: {21832, 50456}
X(58363) = perspector of cevian triangle of X(22043) and inverse-of-ABC in bicevian conic of X(75) and X(22043)
X(58363) = barycentric product X(i)*X(j) for these (i, j): {10, 22043}, {23822, 4103}
X(58363) = barycentric quotient X(i)/X(j) for these (i, j): {22043, 86}


X(58364) = X(512)X(3700)∩X(756)X(4024)

Barycentrics    (b-c)*(b+c)^2*(a^3+b*c*(b+c)+a*(b^2+3*b*c+c^2)) : :

X(58364) lies on circumconic {{A, B, C, X(512), X(16874)}} and these lines: {512, 3700}, {523, 58289}, {756, 4024}, {3766, 48274}, {3842, 21196}, {4075, 4500}, {4096, 45343}, {4151, 29512}, {4155, 58291}, {4976, 17990}, {4977, 18004}, {22044, 57077}, {40607, 57232}

X(58364) = midpoint of X(i) and X(j) for these {i,j}: {4024, 21727}
X(58364) = reflection of X(i) in X(j) for these {i,j}: {58289, 58362}
X(58364) = X(i)-isoconjugate-of-X(j) for these {i, j}: {849, 42363}
X(58364) = X(i)-Dao conjugate of X(j) for these {i, j}: {4075, 42363}, {4705, 513}
X(58364) = X(i)-Ceva conjugate of X(j) for these {i, j}: {668, 594}
X(58364) = perspector of cevian triangle of X(22044) and inverse-of-ABC in bicevian conic of X(75) and X(22044)
X(58364) = barycentric product X(i)*X(j) for these (i, j): {10, 22044}, {321, 57077}, {16874, 28654}, {17166, 594}, {18154, 756}, {23823, 4103}
X(58364) = barycentric quotient X(i)/X(j) for these (i, j): {594, 42363}, {16874, 593}, {17166, 1509}, {18154, 873}, {22044, 86}, {57077, 81}
X(58364) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 58362, 58289}


X(58365) = X(12)X(313)∩X(190)X(20715)

Barycentrics    (b+c)*(-(b^2*c^2)+a^2*(b^2+b*c+c^2)-a*(b^3+c^3)) : :

X(58365) lies on circumconic {{A, B, C, X(349), X(49753)}} and these lines: {12, 313}, {190, 20715}, {523, 58289}, {714, 20703}, {3952, 4053}, {4043, 21804}, {4075, 6541}, {4358, 35552}, {16817, 32922}

X(58365) = perspector of cevian triangle of X(49753) and inverse-of-ABC in bicevian conic of X(75) and X(49753)
X(58365) = barycentric product X(i)*X(j) for these (i, j): {10, 49753}
X(58365) = barycentric quotient X(i)/X(j) for these (i, j): {49753, 86}


X(58366) = X(75)X(29569)∩X(321)X(3943)

Barycentrics    b*c*(b+c)*(-3*a^2+b^2-b*c+c^2+a*(b+c)) : :

X(58366) lies on circumconic {{A, B, C, X(20072), X(30588)}} and these lines: {75, 29569}, {192, 33930}, {320, 21864}, {321, 3943}, {523, 58289}, {594, 27705}, {740, 56222}, {1089, 3178}, {1441, 22016}, {3262, 4358}, {3685, 29073}, {3762, 24109}, {3932, 21031}, {3936, 21801}, {3950, 20234}, {4033, 42713}, {4359, 17021}, {4395, 24589}, {4480, 49780}, {17452, 29964}, {20072, 49779}, {20715, 21295}, {20895, 29982}

X(58366) = X(i)-Dao conjugate of X(j) for these {i, j}: {45674, 2087}
X(58366) = X(i)-Ceva conjugate of X(j) for these {i, j}: {15065, 321}
X(58366)= pole of line {21951, 26580} with respect to the Kiepert hyperbola
X(58366) = perspector of cevian triangle of X(49779) and inverse-of-ABC in bicevian conic of X(75) and X(49779)
X(58366) = barycentric product X(i)*X(j) for these (i, j): {10, 49779}, {4033, 45674}, {20072, 321}
X(58366) = barycentric quotient X(i)/X(j) for these (i, j): {20072, 81}, {23166, 1437}, {45674, 1019}, {49779, 86}
X(58366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3943, 35550, 321}


X(58367) = X(76)X(762)∩X(313)X(321)

Barycentrics    b*c*(b+c)*(-(b^2*c^2)-a*b*c*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(58367) lies on these lines: {76, 762}, {313, 321}, {334, 3263}, {350, 20693}, {523, 58289}, {668, 8682}, {756, 3963}, {3701, 22028}, {3930, 3948}, {4033, 4037}, {4103, 6381}, {6376, 21021}, {17759, 21897}, {18133, 24326}, {21101, 56253}, {30473, 33931}, {35543, 44169}, {43534, 43685}

X(58367) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 51333}, {593, 2107}, {849, 54980}, {1333, 2665}, {2206, 39925}, {18268, 40769}, {53624, 57129}
X(58367) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 51333}, {37, 2665}, {350, 33295}, {4075, 54980}, {35068, 40769}, {39056, 58}, {39057, 757}, {40603, 39925}
X(58367) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43534, 321}
X(58367) = perspector of cevian triangle of X(52049) and inverse-of-ABC in bicevian conic of X(75) and X(52049)
X(58367) = intersection, other than A, B, C, of circumconics {{A, B, C, X(313), X(52049)}}, {{A, B, C, X(321), X(17759)}}, {{A, B, C, X(334), X(35544)}}, {{A, B, C, X(594), X(21897)}}, {{A, B, C, X(1211), X(2106)}}, {{A, B, C, X(1230), X(40874)}}
X(58367) = barycentric product X(i)*X(j) for these (i, j): {10, 52049}, {1089, 2669}, {2106, 28654}, {2664, 313}, {17759, 321}, {21788, 27801}, {21897, 76}, {35544, 40796}, {39028, 43534}, {40874, 594}, {41535, 756}
X(58367) = barycentric quotient X(i)/X(j) for these (i, j): {10, 2665}, {37, 51333}, {321, 39925}, {594, 54980}, {740, 40769}, {756, 2107}, {2106, 593}, {2664, 58}, {2669, 757}, {3952, 53624}, {17759, 81}, {20796, 1437}, {21085, 8937}, {21788, 1333}, {21897, 6}, {27808, 53216}, {27854, 50456}, {28654, 43685}, {39028, 33295}, {40796, 741}, {40874, 1509}, {41535, 873}, {52049, 86}, {56837, 849}


X(58368) = X(6)X(292)∩X(9)X(4516)

Barycentrics    a^2*(a-b-c)*(a^2-b^2+3*b*c-c^2-a*(b+c)) : :

X(58368) lies on these lines: {6, 292}, {9, 4516}, {31, 23858}, {44, 21889}, {55, 2316}, {56, 2810}, {101, 20958}, {109, 3030}, {573, 20670}, {765, 24820}, {926, 58369}, {1054, 14122}, {1155, 53394}, {1376, 3888}, {1757, 37510}, {2183, 17798}, {2330, 2347}, {2340, 8540}, {2835, 37567}, {3196, 35327}, {4440, 6163}, {4579, 8301}, {5091, 21362}, {5204, 53298}, {5856, 24837}, {16569, 22161}, {16686, 23344}, {24715, 36280}

X(58368) = perspector of circumconic {{A, B, C, X(813), X(5548)}}
X(58368) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 9282}, {57, 6630}, {651, 42555}, {664, 6164}, {4554, 9262}
X(58368) = X(i)-Dao conjugate of X(j) for these {i, j}: {190, 4572}, {5452, 6630}, {38991, 42555}, {39025, 6164}, {39065, 4554}
X(58368) = X(i)-Ceva conjugate of X(j) for these {i, j}: {663, 55}, {1054, 9259}
X(58368) = perspector of cevian triangle of X(6163) and inverse-of-ABC in bicevian conic of X(100) and X(6163)
X(58368) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(55), X(14122)}}, {{A, B, C, X(292), X(2316)}}, {{A, B, C, X(1054), X(7077)}}, {{A, B, C, X(3252), X(4440)}}
X(58368) = barycentric product X(i)*X(j) for these (i, j): {1, 4919}, {8, 9259}, {21, 21888}, {663, 6631}, {1054, 9}, {3271, 6634}, {4440, 55}, {6163, 650}, {17089, 220}, {18159, 41}, {21093, 284}, {21204, 3939}, {22148, 281}, {27912, 7077}, {41405, 522}, {54270, 9268}
X(58368) = barycentric quotient X(i)/X(j) for these (i, j): {41, 9282}, {55, 6630}, {663, 42555}, {1054, 85}, {3063, 6164}, {4440, 6063}, {4919, 75}, {6163, 4554}, {6631, 4572}, {9259, 7}, {17089, 57792}, {18159, 20567}, {21093, 349}, {21204, 52621}, {21888, 1441}, {22148, 348}, {27912, 18033}, {41405, 664}
X(58368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {765, 25048, 24820}, {2316, 3939, 3271}, {3271, 3939, 55}


X(58369) = X(1)X(2826)∩X(55)X(1960)

Barycentrics    a^2*(a-b-c)*(b-c)*(a^3-a^2*(b+c)-a*(b^2-5*b*c+c^2)+(b+c)*(b^2-3*b*c+c^2)) : :

X(58369) lies on these lines: {1, 2826}, {33, 58313}, {55, 1960}, {56, 2821}, {650, 663}, {654, 2342}, {659, 3057}, {891, 2098}, {900, 12740}, {926, 58368}, {2310, 3248}, {2605, 4926}, {2646, 25569}, {2827, 41554}, {3304, 53539}, {3837, 11376}, {4449, 23745}, {4925, 19861}, {5048, 21343}, {5119, 44805}, {7962, 21385}, {11934, 48327}, {12758, 19916}, {14284, 21173}, {15558, 41191}, {58155, 58334}

X(58369) = perspector of circumconic {{A, B, C, X(9), X(37789)}}
X(58369) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 2743}, {934, 12641}
X(58369) = X(i)-Dao conjugate of X(j) for these {i, j}: {14714, 12641}
X(58369) = X(i)-Ceva conjugate of X(j) for these {i, j}: {900, 654}
X(58369)= pole of line {198, 909} with respect to the circumcircle
X(58369)= pole of line {528, 12743} with respect to the incircle
X(58369)= pole of line {649, 2170} with respect to the Feuerbach hyperbola
X(58369) = perspector of cevian triangle of X(38460) and inverse-of-ABC in bicevian conic of X(100) and X(38460)
X(58369) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2340), X(38460)}}, {{A, B, C, X(2342), X(3689)}}, {{A, B, C, X(2827), X(3900)}}, {{A, B, C, X(3939), X(4162)}}, {{A, B, C, X(5193), X(41339)}}, {{A, B, C, X(5548), X(30725)}}, {{A, B, C, X(37789), X(52888)}}
X(58369) = barycentric product X(i)*X(j) for these (i, j): {1635, 56938}, {2827, 9}, {3239, 5193}, {37758, 663}, {37789, 3900}, {38460, 650}
X(58369) = barycentric quotient X(i)/X(j) for these (i, j): {41, 2743}, {657, 12641}, {2827, 85}, {5193, 658}, {37758, 4572}, {37789, 4569}, {38460, 4554}
X(58369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {663, 4895, 53285}, {53286, 53549, 654}


X(58370) = X(6)X(663)∩X(56)X(513)

Barycentrics    a^2*(b-c)*(-a+b+c)^2*(a^4+3*b*(b-c)^2*c-a^3*(b+c)+a*(b-c)^2*(b+c)-a^2*(b^2-3*b*c+c^2)) : :

X(58370) lies on these lines: {6, 663}, {55, 650}, {56, 513}, {220, 657}, {480, 3900}, {514, 42884}, {885, 1001}, {926, 58368}, {4413, 10006}, {8648, 16686}, {9000, 12595}, {22108, 53549}, {35348, 37541}, {52873, 53055}

X(58370) = perspector of circumconic {{A, B, C, X(294), X(2291)}}
X(58370)= pole of line {910, 1055} with respect to the circumcircle
X(58370) = perspector of cevian triangle of X(53055) and inverse-of-ABC in bicevian conic of X(100) and X(53055)
X(58370) = intersection, other than A, B, C, of circumconics {{A, B, C, X(55), X(53055)}}, {{A, B, C, X(926), X(11124)}}
X(58370) = barycentric product X(i)*X(j) for these (i, j): {53055, 650}
X(58370) = barycentric quotient X(i)/X(j) for these (i, j): {53055, 4554}


X(58371) = X(2)X(1280)∩X(8)X(244)

Barycentrics    a^3-b^3-c^3-2*a^2*(b+c)+a*(4*b^2-3*b*c+4*c^2) : :

X(58371) lies on these lines: {1, 8258}, {2, 1280}, {8, 244}, {11, 24841}, {38, 9791}, {56, 100}, {88, 3621}, {105, 37652}, {106, 6790}, {149, 900}, {192, 25266}, {291, 10453}, {345, 46178}, {518, 5211}, {519, 1054}, {522, 24126}, {537, 17777}, {899, 49707}, {952, 20098}, {1155, 49695}, {1281, 50635}, {1283, 8666}, {1450, 34772}, {1469, 3873}, {1999, 9451}, {2108, 42057}, {3210, 36845}, {3218, 49704}, {3227, 30225}, {3241, 3722}, {3434, 24836}, {3616, 33115}, {3617, 24988}, {3622, 24542}, {3623, 51583}, {3667, 34548}, {3685, 49989}, {3952, 26139}, {3999, 32850}, {4388, 29844}, {4514, 21342}, {4578, 25919}, {4645, 17449}, {4679, 49501}, {4694, 16086}, {4712, 10580}, {4864, 32851}, {4906, 33118}, {5205, 24216}, {5347, 37639}, {6164, 6630}, {6788, 21290}, {9263, 39351}, {9507, 26044}, {12649, 17480}, {14594, 41556}, {14839, 38478}, {16610, 49698}, {17145, 32842}, {17146, 33112}, {17232, 31091}, {17300, 29832}, {17302, 29835}, {17314, 20331}, {17721, 49499}, {17722, 49491}, {17723, 51055}, {17765, 18201}, {19993, 37683}, {20020, 31073}, {20036, 27628}, {20090, 24311}, {20999, 37311}, {21222, 38325}, {21963, 24397}, {24627, 49466}, {25979, 44720}, {26015, 37759}, {28393, 52923}, {30861, 53661}, {31146, 49446}, {32919, 50015}, {32922, 51463}, {36926, 53619}, {40868, 41794}, {43055, 43290}

X(58371) = reflection of X(i) in X(j) for these {i,j}: {145, 1120}, {21290, 6788}, {3699, 3756}, {36926, 53619}, {5205, 24216}, {6790, 106}, {8, 26727}
X(58371) = anticomplement of X(3699)
X(58371) = X(i)-Dao conjugate of X(j) for these {i, j}: {3699, 3699}
X(58371) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3676, 2}
X(58371) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {6, 4462}, {7, 21301}, {31, 4468}, {34, 20293}, {56, 513}, {57, 20295}, {85, 21304}, {109, 3952}, {244, 33650}, {269, 21302}, {513, 3436}, {514, 21286}, {603, 20294}, {604, 514}, {608, 4391}, {649, 329}, {650, 54113}, {651, 668}, {667, 144}, {738, 46402}, {875, 56555}, {934, 3888}, {961, 6371}, {1014, 512}, {1015, 37781}, {1019, 20245}, {1106, 522}, {1357, 149}, {1358, 21293}, {1395, 25259}, {1396, 850}, {1397, 17494}, {1398, 521}, {1402, 31290}, {1407, 693}, {1408, 523}, {1412, 7192}, {1413, 4397}, {1414, 53338}, {1415, 190}, {1416, 53343}, {1417, 900}, {1434, 17217}, {1435, 46400}, {1436, 20296}, {1459, 52366}, {1461, 21272}, {1462, 3766}, {1476, 6363}, {1919, 3177}, {1980, 21218}, {3063, 30695}, {3248, 39351}, {3572, 56883}, {3669, 69}, {3676, 6327}, {3733, 3869}, {3937, 34188}, {4017, 1330}, {4565, 53332}, {4573, 53363}, {4637, 53355}, {6611, 20297}, {6612, 4131}, {7023, 3900}, {7178, 21287}, {7180, 2895}, {7203, 17135}, {7216, 2893}, {7250, 2475}, {7252, 18750}, {7316, 30709}, {7341, 17166}, {7366, 4025}, {8027, 17036}, {8686, 6085}, {16945, 3667}, {16947, 4560}, {17096, 17137}, {20615, 44444}, {22383, 56943}, {23345, 5176}, {23979, 43991}, {24002, 315}, {31615, 54099}, {32735, 53358}, {34080, 27834}, {40151, 4106}, {43041, 20554}, {43923, 4}, {43924, 8}, {43925, 92}, {43929, 30807}, {43930, 20556}, {43931, 20557}, {43932, 3434}, {51641, 1654}, {51656, 42020}, {52013, 47685}, {52410, 17496}, {52621, 21275}, {53321, 3909}, {53528, 21290}, {53538, 150}, {53539, 20344}, {53540, 3448}, {53544, 20552}, {53545, 21294}, {56496, 6005}, {57129, 63}, {57181, 2}, {57238, 18133}, {57663, 48079}, {57785, 44445}, {58324, 40007}
X(58371)= pole of line {23831, 50351} with respect to the Kiepert parabola
X(58371)= pole of line {1086, 1358} with respect to the Steiner circumellipse
X(58371)= pole of line {6084, 40480} with respect to the Steiner inellipse
X(58371) = perspector of cevian triangle of X(30721) and inverse-of-ABC in bicevian conic of X(190) and X(30721)
X(58371) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1280), X(8686)}}, {{A, B, C, X(6164), X(7241)}}, {{A, B, C, X(6553), X(56642)}}, {{A, B, C, X(30721), X(44184)}}
X(58371) = barycentric product X(i)*X(j) for these (i, j): {30721, 514}
X(58371) = barycentric quotient X(i)/X(j) for these (i, j): {30721, 190}
X(58371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 244, 26073}, {149, 17154, 4440}, {1120, 5854, 145}, {3699, 3756, 2}, {3756, 9041, 3699}, {3873, 29840, 17778}, {4514, 21342, 26840}, {17154, 20042, 149}


X(58372) = X(149)X(900)∩X(514)X(659)

Barycentrics    (b-c)*(a^3+3*a*b*c-2*(b^3+c^3)) : :
X(58372) = -4*X[676]+X[48083], -4*X[3776]+X[50328], -2*X[3837]+3*X[6548], -4*X[4025]+X[50339], -X[4088]+3*X[14475], 2*X[4707]+X[21343], X[4784]+2*X[47691], -3*X[6544]+2*X[48056], 2*X[21104]+X[50340], 2*X[47131]+X[50359], X[47692]+3*X[52620], -3*X[47827]+4*X[47882] and many others

X(58372) lies on these lines: {149, 900}, {513, 21115}, {514, 659}, {523, 4453}, {676, 48083}, {693, 29370}, {826, 47889}, {918, 4800}, {1491, 47754}, {1635, 4802}, {2254, 4777}, {3776, 50328}, {3837, 6548}, {4025, 50339}, {4088, 14475}, {4379, 29204}, {4448, 28890}, {4707, 21343}, {4784, 47691}, {4874, 48557}, {4893, 48212}, {4948, 47886}, {4951, 45320}, {4977, 44433}, {6006, 49295}, {6544, 48056}, {6545, 48167}, {9508, 28151}, {10196, 45668}, {14421, 23884}, {21104, 50340}, {25569, 29102}, {25574, 53356}, {28147, 45674}, {28175, 47892}, {28179, 46915}, {28209, 47944}, {28220, 47961}, {28851, 48177}, {28910, 48024}, {29174, 48570}, {29354, 47872}, {30519, 48189}, {30520, 48234}, {47131, 50359}, {47692, 52620}, {47767, 48103}, {47772, 48183}, {47779, 48188}, {47797, 48162}, {47827, 47882}, {47833, 47874}, {48171, 48206}, {48208, 48233}, {48248, 49302}, {49299, 50358}

X(58372) = midpoint of X(i) and X(j) for these {i,j}: {4809, 48326}, {47691, 47755}
X(58372) = reflection of X(i) in X(j) for these {i,j}: {10196, 45668}, {1491, 47754}, {4784, 47755}, {4809, 4458}, {4893, 48212}, {4948, 47886}, {4951, 45320}, {47772, 48183}, {47827, 48227}, {47833, 47887}, {48103, 47767}, {48162, 47797}, {48167, 6545}, {48171, 48206}, {48188, 47779}, {48208, 48233}, {48244, 4453}, {48557, 4874}, {659, 4809}
X(58372) = perspector of circumconic {{A, B, C, X(14621), X(31151)}}
X(58372)= pole of line {17724, 50307} with respect to the incircle
X(58372)= pole of line {4784, 50351} with respect to the Kiepert parabola
X(58372)= pole of line {1086, 4393} with respect to the Steiner circumellipse
X(58372)= pole of line {17023, 40480} with respect to the Steiner inellipse
X(58372) = perspector of cevian triangle of X(31151) and inverse-of-ABC in bicevian conic of X(190) and X(31151)
X(58372) = barycentric product X(i)*X(j) for these (i, j): {31151, 514}
X(58372) = barycentric quotient X(i)/X(j) for these (i, j): {31151, 190}
X(58372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 4458, 4809}, {523, 4453, 48244}, {4458, 48326, 659}, {4809, 48326, 514}, {23770, 50342, 4810}, {47695, 58374, 58376}, {47695, 58375, 58374}


X(58373) = X(100)X(764)∩X(149)X(900)

Barycentrics    a*(b-c)*(a^2-2*a*b+2*b^2-2*b*c+c^2)*(a^2+b^2-2*(a+b)*c+2*c^2) : :

X(58373) lies on these lines: {88, 6164}, {100, 764}, {149, 900}, {513, 3315}, {1022, 3722}, {1054, 1635}, {1421, 53528}, {2254, 53411}, {23814, 33115}

X(58373) = isogonal conjugate of X(46973)
X(58373) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46973}, {6, 32094}, {100, 3722}, {101, 4422}, {692, 4986}, {765, 6161}, {1252, 6546}, {1331, 1862}, {9268, 33905}
X(58373) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46973}, {9, 32094}, {513, 6161}, {661, 6546}, {1015, 4422}, {1086, 4986}, {5521, 1862}, {8054, 3722}
X(58373) = X(i)-cross conjugate of X(j) for these {i, j}: {44, 1022}, {3999, 43928}
X(58373) = perspector of cevian triangle of X(46972) and inverse-of-ABC in bicevian conic of X(190) and X(46972)
X(58373) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3315)}}, {{A, B, C, X(44), X(3722)}}, {{A, B, C, X(80), X(105)}}, {{A, B, C, X(88), X(1054)}}, {{A, B, C, X(100), X(244)}}, {{A, B, C, X(108), X(3676)}}, {{A, B, C, X(291), X(17154)}}, {{A, B, C, X(514), X(2832)}}, {{A, B, C, X(649), X(8697)}}, {{A, B, C, X(659), X(4756)}}, {{A, B, C, X(693), X(2969)}}, {{A, B, C, X(1019), X(48571)}}, {{A, B, C, X(1027), X(6548)}}, {{A, B, C, X(1280), X(8686)}}, {{A, B, C, X(1358), X(43974)}}, {{A, B, C, X(1929), X(44006)}}, {{A, B, C, X(2254), X(4790)}}, {{A, B, C, X(7192), X(8050)}}, {{A, B, C, X(35355), X(43928)}}, {{A, B, C, X(48151), X(51642)}}
X(58373) = barycentric product X(i)*X(j) for these (i, j): {46972, 514}
X(58373) = barycentric quotient X(i)/X(j) for these (i, j): {1, 32094}, {6, 46973}, {244, 6546}, {513, 4422}, {514, 4986}, {649, 3722}, {764, 6547}, {1015, 6161}, {2087, 33905}, {6591, 1862}, {46972, 190}


X(58374) = X(44)X(513)∩X(149)X(900)

Barycentrics    a*(b-c)*(a^2+2*b^2-b*c+2*c^2-2*a*(b+c)) : :
X(58374) = -3*X[1022]+2*X[48296], -4*X[2505]+3*X[48182], -2*X[2976]+3*X[26275], -4*X[3716]+5*X[30795], -4*X[3837]+3*X[4800], -2*X[4010]+3*X[48167], -2*X[4040]+3*X[47893], -4*X[4369]+3*X[48251], -3*X[4448]+4*X[25380], -2*X[4806]+3*X[48164], -2*X[4925]+X[48055], -3*X[4948]+4*X[48017] and many others

X(58374) lies on these lines: {44, 513}, {100, 8697}, {149, 900}, {244, 38390}, {522, 48326}, {523, 49301}, {667, 48075}, {764, 3887}, {876, 4876}, {1022, 48296}, {2505, 48182}, {2530, 42325}, {2785, 53533}, {2786, 24721}, {2827, 13252}, {2832, 4730}, {2976, 26275}, {3309, 3777}, {3667, 4458}, {3716, 30795}, {3837, 4800}, {3900, 23765}, {3960, 6161}, {4010, 48167}, {4040, 47893}, {4367, 4905}, {4369, 48251}, {4382, 4926}, {4448, 25380}, {4453, 4897}, {4491, 27666}, {4777, 47705}, {4778, 4963}, {4806, 48164}, {4809, 6006}, {4922, 28521}, {4925, 48055}, {4948, 48017}, {4977, 48408}, {6366, 24097}, {8689, 48575}, {13246, 48555}, {13259, 50355}, {18004, 31131}, {20983, 50513}, {21143, 23656}, {21146, 49292}, {23789, 47889}, {23828, 50556}, {24720, 47833}, {26824, 28183}, {28209, 47945}, {28220, 47909}, {28393, 28396}, {29144, 47973}, {29246, 48410}, {29328, 47685}, {29362, 50339}, {31290, 47892}, {36280, 46409}, {45328, 53580}, {45674, 48041}, {47694, 48253}, {47823, 48063}, {47824, 48248}, {47872, 50337}, {47877, 48006}, {47885, 48061}, {47888, 48065}, {47977, 50504}, {48002, 48157}, {48009, 48176}, {48066, 48351}, {48083, 50333}, {48100, 48367}, {48137, 48338}, {48151, 48323}, {50340, 50348}

X(58374) = reflection of X(i) in X(j) for these {i,j}: {21343, 764}, {4367, 4905}, {4724, 50335}, {4784, 50359}, {4810, 46403}, {4879, 3777}, {47695, 58375}, {47977, 50504}, {48024, 2526}, {48032, 9508}, {48055, 4925}, {48083, 50333}, {48305, 23789}, {48323, 48151}, {48336, 2530}, {48338, 48137}, {48351, 48066}, {48367, 48100}, {50339, 50356}, {50340, 50348}, {50342, 50357}, {50358, 50336}, {53343, 3837}, {659, 2254}, {667, 48075}, {6161, 3960}, {58376, 47695}
X(58374) = perspector of circumconic {{A, B, C, X(1), X(17266)}}
X(58374) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 28891}
X(58374) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 28891}
X(58374)= pole of line {149, 20012} with respect to the anticomplementary circle
X(58374)= pole of line {55, 4392} with respect to the circumcircle
X(58374)= pole of line {354, 17724} with respect to the incircle
X(58374)= pole of line {5901, 44430} with respect to the orthoptic circle of the Steiner Inellipse
X(58374)= pole of line {92, 1862} with respect to the polar circle
X(58374)= pole of line {4367, 8666} with respect to the Kiepert parabola
X(58374)= pole of line {192, 1086} with respect to the Steiner circumellipse
X(58374)= pole of line {37, 40480} with respect to the Steiner inellipse
X(58374)= pole of line {6163, 16885} with respect to the Hutson-Moses hyperbola
X(58374)= pole of line {5902, 24222} with respect to the Suppa-Cucoanes circle
X(58374) = perspector of cevian triangle of X(49675) and inverse-of-ABC in bicevian conic of X(190) and X(49675)
X(58374) = intersection, other than A, B, C, of circumconics {{A, B, C, X(44), X(49675)}}, {{A, B, C, X(513), X(28890)}}, {{A, B, C, X(649), X(8697)}}, {{A, B, C, X(659), X(35355)}}, {{A, B, C, X(851), X(31921)}}, {{A, B, C, X(876), X(48032)}}, {{A, B, C, X(899), X(17266)}}, {{A, B, C, X(2348), X(4876)}}
X(58374) = barycentric product X(i)*X(j) for these (i, j): {1, 28890}, {17266, 513}, {31921, 656}, {49675, 514}
X(58374) = barycentric quotient X(i)/X(j) for these (i, j): {31, 28891}, {17266, 668}, {28890, 75}, {31921, 811}, {49675, 190}
X(58374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {513, 2254, 659}, {513, 2526, 48024}, {513, 50335, 4724}, {513, 50336, 50358}, {513, 50359, 4784}, {513, 9508, 48032}, {659, 2254, 48244}, {764, 3887, 21343}, {900, 46403, 4810}, {900, 47695, 58376}, {900, 50357, 50342}, {2254, 48032, 9508}, {2530, 42325, 48336}, {3309, 3777, 4879}, {3716, 36848, 30795}, {3960, 6161, 25569}, {4724, 50335, 47827}, {4905, 6004, 4367}, {23789, 48305, 47889}, {29362, 50356, 50339}, {47695, 58375, 58372}, {58372, 58376, 47695}


X(58375) = X(2)X(48083)∩X(149)X(900)

Barycentrics    (b-c)*(b^3+a*(b-c)^2+c^3-a^2*(b+c)) : :
X(58375) = -3*X[2]+X[48083], -3*X[1638]+X[48055], -2*X[2977]+3*X[48229], -2*X[3239]+3*X[48198], -X[4010]+3*X[6545], -X[4088]+3*X[36848], -X[4122]+3*X[47812], -X[4724]+3*X[48227], -3*X[4927]+X[50326], -4*X[7658]+3*X[48214], -X[21132]+3*X[21145], -3*X[21183]+X[49286] and many others

X(58375) lies on these lines: {2, 48083}, {149, 900}, {513, 3776}, {514, 9508}, {523, 2254}, {525, 48406}, {659, 3004}, {764, 4707}, {824, 48098}, {826, 23789}, {918, 3837}, {1491, 47676}, {1635, 4841}, {1638, 48055}, {2977, 48229}, {3239, 48198}, {3669, 29082}, {3676, 4874}, {3766, 18014}, {3801, 48151}, {3904, 24099}, {3913, 6366}, {3960, 29102}, {4010, 6545}, {4025, 29362}, {4088, 36848}, {4122, 47812}, {4367, 23866}, {4724, 48227}, {4778, 13246}, {4784, 47652}, {4802, 4818}, {4809, 28209}, {4927, 50326}, {6362, 13256}, {7658, 48214}, {10015, 24093}, {18006, 30725}, {19882, 49276}, {19945, 24136}, {21132, 21145}, {21183, 49286}, {23815, 23875}, {24126, 53527}, {24719, 47971}, {24924, 48113}, {25259, 48184}, {25380, 28602}, {25666, 48048}, {28175, 47653}, {28195, 45674}, {28840, 47999}, {28851, 48030}, {28859, 48621}, {29078, 48089}, {29144, 48073}, {29328, 48398}, {29354, 50337}, {29370, 49285}, {30520, 48405}, {30565, 30795}, {30724, 48299}, {31148, 47931}, {44435, 48024}, {45746, 48143}, {47660, 48253}, {47666, 47877}, {47686, 47755}, {47691, 50359}, {47701, 48425}, {47720, 50355}, {47754, 48029}, {47757, 48040}, {47761, 48096}, {47771, 48604}, {47781, 47910}, {47802, 48087}, {47822, 48078}, {47823, 48094}, {47824, 48103}, {47833, 49275}, {47880, 47963}, {47890, 48245}, {47923, 48579}, {47925, 49282}, {47944, 48156}, {47972, 48224}, {48007, 49296}, {48021, 48552}, {48036, 48555}, {48046, 48178}, {48080, 48421}, {48090, 48415}, {48108, 48422}, {48117, 48185}, {48118, 48235}, {48124, 48219}, {48174, 48432}, {48216, 48614}, {48241, 50340}, {48577, 48598}, {49299, 50336}, {53300, 53578}

X(58375) = midpoint of X(i) and X(j) for these {i,j}: {1491, 47676}, {16892, 21146}, {2254, 48326}, {21104, 50348}, {23770, 50357}, {24719, 47971}, {3801, 48151}, {4122, 47930}, {4784, 47652}, {45746, 48143}, {46403, 50342}, {47691, 50359}, {47695, 58374}, {47704, 50341}, {47720, 50355}, {47925, 49282}, {48007, 49296}, {48103, 49302}, {49299, 50336}, {659, 49301}, {764, 4707}, {7192, 47968}
X(58375) = reflection of X(i) in X(j) for these {i,j}: {18004, 3837}, {24093, 10015}, {3904, 24099}, {4874, 3676}, {48048, 25666}, {48056, 25380}, {48090, 48415}
X(58375) = complement of X(48083)
X(58375) = perspector of circumconic {{A, B, C, X(1509), X(17758)}}
X(58375) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18827, 1086}
X(58375)= pole of line {1621, 16064} with respect to the circumcircle
X(58375)= pole of line {171, 17724} with respect to the incircle
X(58375)= pole of line {1862, 7140} with respect to the polar circle
X(58375)= pole of line {1019, 6763} with respect to the Kiepert parabola
X(58375)= pole of line {1086, 4360} with respect to the Steiner circumellipse
X(58375)= pole of line {16706, 16826} with respect to the Steiner inellipse
X(58375)= pole of line {26853, 48082} with respect to the Yff parabola
X(58375) = perspector of cevian triangle of X(49676) and inverse-of-ABC in bicevian conic of X(190) and X(49676)
X(58375) = intersection, other than A, B, C, of circumconics {{A, B, C, X(659), X(18014)}}, {{A, B, C, X(3766), X(18004)}}, {{A, B, C, X(18032), X(33295)}}
X(58375) = barycentric product X(i)*X(j) for these (i, j): {49676, 514}
X(58375) = barycentric quotient X(i)/X(j) for these (i, j): {21718, 4103}, {49676, 190}
X(58375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {659, 49301, 4977}, {918, 3837, 18004}, {2254, 21115, 48326}, {4453, 49301, 659}, {16892, 21146, 523}, {23770, 50357, 900}, {25380, 28890, 48056}, {25380, 48056, 28602}, {46403, 48571, 50342}, {47812, 47930, 4122}, {47824, 49302, 48103}, {58372, 58374, 47695}


X(58376) = X(149)X(900)∩X(522)X(659)

Barycentrics    (b-c)*(3*a^3-4*a^2*(b+c)+a*(4*b^2+b*c+4*c^2)-2*(b^3+c^3)) : :
X(58376) = -2*X[3837]+3*X[53361], -3*X[4800]+4*X[53523]

X(58376) lies on these lines: {149, 900}, {513, 47705}, {522, 659}, {1635, 4820}, {2254, 4926}, {3667, 48326}, {3837, 53361}, {4458, 4962}, {4777, 48032}, {4800, 53523}, {28183, 48408}, {28217, 49301}, {28221, 48172}

X(58376) = reflection of X(i) in X(j) for these {i,j}: {58374, 47695}
X(58376) = perspector of circumconic {{A, B, C, X(17743), X(49677)}}
X(58376)= pole of line {17605, 17724} with respect to the incircle
X(58376)= pole of line {4879, 50351} with respect to the Kiepert parabola
X(58376)= pole of line {1086, 17350} with respect to the Steiner circumellipse
X(58376)= pole of line {7228, 17353} with respect to the Steiner inellipse
X(58376) = perspector of cevian triangle of X(49677) and inverse-of-ABC in bicevian conic of X(190) and X(49677)
X(58376) = barycentric product X(i)*X(j) for these (i, j): {49677, 514}
X(58376) = barycentric quotient X(i)/X(j) for these (i, j): {49677, 190}
X(58376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {900, 47695, 58374}, {47695, 58374, 58372}


X(58377) = X(75)X(25128)∩X(325)X(523)

Barycentrics    b^2*(b-c)*c^2*(b*c-a*(b+c))^2 : :

X(58377) lies on these lines: {75, 25128}, {325, 523}, {561, 20909}, {649, 40087}, {1978, 30835}, {3835, 6382}, {6384, 21197}, {10009, 31286}, {20451, 20952}, {21438, 23756}, {24749, 41318}

X(58377) = X(i)-isoconjugate-of-X(j) for these {i, j}: {560, 32039}, {692, 53146}, {7121, 34071}, {32739, 53678}
X(58377) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 932}, {1086, 53146}, {4083, 1919}, {6374, 32039}, {6377, 2162}, {23886, 57050}, {40598, 34071}, {40610, 7121}, {40619, 53678}, {55062, 57264}
X(58377) = perspector of cevian triangle of X(20906) and inverse-of-ABC in bicevian conic of X(192) and X(20906)
X(58377) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(21128)}}, {{A, B, C, X(523), X(23886)}}, {{A, B, C, X(1491), X(25142)}}, {{A, B, C, X(3005), X(57050)}}, {{A, B, C, X(3006), X(53675)}}, {{A, B, C, X(3263), X(8026)}}, {{A, B, C, X(3835), X(3837)}}, {{A, B, C, X(6382), X(35538)}}, {{A, B, C, X(21051), X(23301)}}, {{A, B, C, X(35552), X(53676)}}
X(58377) = barycentric product X(i)*X(j) for these (i, j): {693, 8026}, {1502, 57050}, {3261, 53675}, {3835, 6382}, {20906, 6376}, {20979, 40367}, {23886, 76}, {25142, 561}, {40495, 53676}
X(58377) = barycentric quotient X(i)/X(j) for these (i, j): {76, 32039}, {192, 34071}, {514, 53146}, {693, 53678}, {3261, 53677}, {3835, 2162}, {4083, 7121}, {4147, 2053}, {6376, 932}, {6382, 4598}, {8026, 100}, {20906, 87}, {21051, 23493}, {21834, 21759}, {23886, 6}, {25098, 15373}, {25142, 31}, {40495, 53679}, {40610, 1919}, {53145, 32739}, {53675, 101}, {53676, 692}, {57050, 32}
X(58377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 20906, 21128}


X(58378) = X(2)X(185)∩X(20)X(125)

Barycentrics    (a^2-b^2-c^2)*(3*a^8-8*a^4*(b^2-c^2)^2-3*(b^2-c^2)^4-2*a^6*(b^2+c^2)+10*a^2*(b^2-c^2)^2*(b^2+c^2)) : :
X(58378) = -X[12383]+4*X[39084], -5*X[17538]+2*X[44788]

X(58378) lies on these lines: {2, 185}, {3, 15077}, {4, 1192}, {5, 18931}, {20, 125}, {64, 6622}, {68, 6699}, {69, 16196}, {140, 11487}, {141, 631}, {182, 43617}, {184, 10303}, {254, 18808}, {287, 32989}, {378, 45045}, {389, 16879}, {403, 12250}, {468, 12324}, {549, 18925}, {550, 18918}, {1092, 5622}, {1181, 3525}, {1204, 3091}, {1216, 3546}, {1368, 11821}, {1498, 38282}, {1503, 32603}, {1593, 37643}, {1620, 41362}, {1656, 45073}, {1899, 2888}, {2917, 21844}, {3088, 10110}, {3089, 13474}, {3090, 10605}, {3146, 21663}, {3147, 34781}, {3357, 6623}, {3515, 32064}, {3524, 6146}, {3528, 18396}, {3541, 3567}, {3542, 12290}, {3548, 12358}, {3740, 6889}, {3832, 7703}, {5054, 18914}, {5059, 13851}, {5218, 26955}, {5432, 18915}, {5433, 18922}, {5656, 7505}, {5878, 20417}, {5890, 43841}, {5893, 32601}, {6247, 6353}, {6530, 41425}, {6643, 22661}, {7288, 26956}, {7396, 46730}, {7486, 43831}, {7487, 20299}, {7689, 20397}, {8889, 9786}, {10257, 11411}, {10263, 44441}, {10304, 21659}, {10360, 13411}, {10519, 11574}, {10996, 37638}, {11270, 15081}, {11425, 18950}, {11457, 35486}, {12174, 52297}, {12233, 52299}, {12383, 39084}, {12429, 16976}, {13093, 37942}, {14216, 44673}, {14927, 16195}, {15526, 31377}, {15717, 19467}, {15720, 31804}, {15739, 37119}, {15751, 38791}, {16252, 52290}, {17538, 44788}, {17821, 39874}, {18381, 37460}, {18533, 23294}, {18916, 37118}, {18951, 23336}, {19457, 22549}, {20376, 32334}, {22533, 22581}, {25563, 39571}, {34780, 37935}, {35450, 44960}, {37197, 43903}, {43905, 49671}

X(58378) = midpoint of X(i) and X(j) for these {i,j}: {15077, 27082}
X(58378) = reflection of X(i) in X(j) for these {i,j}: {16879, 389}, {27082, 3}
X(58378) = inverse of X(20) in Jerabek hyperbola
X(58378) = complement of X(32605)
X(58378)= pole of line {20, 45187} with respect to the Jerabek hyperbola
X(58378)= pole of line {3515, 13346} with respect to the Stammler hyperbola
X(58378)= pole of line {6622, 32001} with respect to the Wallace hyperbola
X(58378) = orthologic center of inverse-of-ABC in bicevian conic of X(2) and X(3146) and ABC
X(58378) = intersection, other than A, B, C, of circumconics {{A, B, C, X(13380), X(15077)}}, {{A, B, C, X(27082), X(34286)}}
X(58378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 26937, 18913}, {3, 23291, 18945}, {64, 47296, 6622}, {549, 26944, 18925}, {1192, 23332, 4}, {12429, 16976, 53050}, {37197, 43903, 54050}


X(58379) = X(10)X(141)∩X(37)X(899)

Barycentrics    a*(a^2*(b+c)^2-a*(b+c)^3-b*c*(b^2+6*b*c+c^2)) : :
X(58379) = -3*X[3921]+X[51034], 5*X[25917]+X[49468]

X(58379) is the centroid of the tangential triangle of this circumcubic.X(58379) lies on these lines: {2, 44671}, {10, 141}, {37, 899}, {75, 3952}, {210, 4688}, {392, 3696}, {513, 17330}, {536, 3740}, {537, 3956}, {2802, 4732}, {3216, 31318}, {3697, 28611}, {3880, 51036}, {3921, 51034}, {3983, 24443}, {4111, 17245}, {4665, 40521}, {4967, 21865}, {5044, 42031}, {5692, 20718}, {6007, 49731}, {10176, 50096}, {10179, 28581}, {14973, 26037}, {15624, 46917}, {16482, 17277}, {16815, 57024}, {25917, 49468}, {30970, 31238}, {34434, 46772}

X(58379) = midpoint of X(i) and X(j) for these {i,j}: {10176, 50096}, {210, 4688}, {392, 3696}
X(58379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3739, 22271, 13476}


X(58380) = X(1)X(21)∩X(3)X(4068)

Barycentrics    a*(b+c)*(3*a^2+b^2+3*b*c+c^2+4*a*(b+c)) : :
X(58380) = -X[8]+9*X[27811], 3*X[551]+X[4065], -5*X[1698]+9*X[53034], -5*X[3616]+X[4647], -7*X[3624]+3*X[21020], -11*X[5550]+3*X[17163], -X[17164]+9*X[38314], -5*X[19862]+3*X[27798]

X(58380) lies on these lines: {1, 21}, {3, 4068}, {8, 27811}, {10, 4046}, {30, 32167}, {35, 17019}, {37, 3678}, {42, 4015}, {79, 37635}, {187, 3723}, {386, 2667}, {513, 10108}, {515, 58383}, {516, 58385}, {517, 58382}, {518, 58384}, {519, 49730}, {540, 12579}, {551, 4065}, {581, 31871}, {714, 3159}, {726, 58400}, {740, 1125}, {756, 4547}, {952, 58388}, {986, 48855}, {1089, 29822}, {1698, 53034}, {1961, 33771}, {2294, 16553}, {2771, 10618}, {2802, 37548}, {2901, 43223}, {3247, 3811}, {3293, 4540}, {3616, 4647}, {3624, 21020}, {3648, 41819}, {3666, 24167}, {3724, 3746}, {3754, 3931}, {3833, 17592}, {3896, 16828}, {3918, 3987}, {3956, 50587}, {3960, 53563}, {3968, 4646}, {3985, 24051}, {3993, 25124}, {4132, 58139}, {4205, 21081}, {4356, 12609}, {4418, 28619}, {4854, 11263}, {4890, 10974}, {5044, 44671}, {5045, 20718}, {5160, 44913}, {5259, 17011}, {5283, 25426}, {5287, 25440}, {5297, 25431}, {5453, 8143}, {5530, 6702}, {5550, 17163}, {5625, 24850}, {5703, 23555}, {5847, 58394}, {5850, 58398}, {6155, 16611}, {6701, 17056}, {8614, 41546}, {8715, 37553}, {9327, 42669}, {10149, 20129}, {10176, 19767}, {11553, 18593}, {11809, 13407}, {12432, 16577}, {15934, 53035}, {16429, 19765}, {16672, 53037}, {16673, 40977}, {16777, 18755}, {16844, 49486}, {17012, 25542}, {17164, 38314}, {19858, 49470}, {19862, 27798}, {24342, 28620}, {24394, 56176}, {37565, 58626}, {39595, 58404}, {40952, 56894}, {41813, 54335}, {42031, 49462}, {42443, 44661}, {49560, 52782}

X(58380) = midpoint of X(i) and X(j) for these {i,j}: {1, 3743}, {12579, 49564}, {3960, 53563}, {3993, 25124}, {4065, 49598}, {5453, 8143}, {58386, 58399}
X(58380) = reflection of X(i) in X(j) for these {i,j}: {58386, 58387}, {58392, 58382}
X(58380)= pole of line {3733, 15309} with respect to the circumcircle
X(58380)= pole of line {4132, 4840} with respect to the DeLongchamps ellipse
X(58380)= pole of line {3841, 4047} with respect to the Kiepert hyperbola
X(58380)= pole of line {1, 33774} with respect to the Stammler hyperbola
X(58380)= pole of line {7192, 14838} with respect to the Steiner inellipse
X(58380)= pole of line {75, 33770} with respect to the Wallace hyperbola
X(58380) = center of the nine-point conic of quadrilateral XYZX(1) where XYZ is the cevian triangle of X(1)
X(58380) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(37), X(4658)}}, {{A, B, C, X(58), X(28625)}}, {{A, B, C, X(81), X(56221)}}, {{A, B, C, X(3678), X(27789)}}
X(58380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1962, 3743}, {1, 28606, 3874}, {1, 3743, 758}, {1, 846, 4658}, {517, 58382, 58392}, {519, 58387, 58386}, {551, 4065, 49598}, {4046, 17514, 10}, {12579, 49564, 540}, {58381, 58386, 58387}, {58386, 58399, 519}


X(58381) = X(1)X(41629)∩X(2)X(740)

Barycentrics    (b+c)*(7*a^2+b*c+4*a*(b+c)) : :
X(58381) = X[2292]+3*X[38314], X[4065]+3*X[19883], -3*X[25055]+X[49598]

X(58381) lies on these lines: {1, 41629}, {2, 740}, {30, 58382}, {37, 4090}, {519, 49730}, {524, 58384}, {527, 58385}, {528, 58388}, {536, 58396}, {537, 58391}, {551, 3743}, {752, 58390}, {758, 5049}, {846, 5625}, {968, 50293}, {1255, 4434}, {2292, 38314}, {2667, 42043}, {3175, 43223}, {3247, 26244}, {3679, 51597}, {3723, 50252}, {3725, 42042}, {3747, 29580}, {3842, 4685}, {4065, 19883}, {4068, 4421}, {4428, 37590}, {4664, 25124}, {4672, 19722}, {4697, 42025}, {6682, 15569}, {11194, 12567}, {16672, 29670}, {19723, 49489}, {20718, 58560}, {23812, 28546}, {25055, 49598}, {28194, 58392}, {28558, 37631}, {28606, 42055}, {32090, 51296}, {39926, 41143}, {44663, 58393}, {44671, 58629}, {45328, 53563}

X(58381) = midpoint of X(i) and X(j) for these {i,j}: {1962, 10180}, {27798, 27804}, {39926, 41143}, {4664, 25124}, {45328, 53563}, {551, 3743}
X(58381)= pole of line {28840, 48580} with respect to the Steiner inellipse
X(58381)= pole of line {25590, 51356} with respect to the Wallace hyperbola
X(58381) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(1)
X(58381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1962, 10180, 740}, {1962, 27811, 10180}, {1962, 53034, 27804}, {10180, 27798, 53034}, {27804, 53034, 27798}, {58380, 58386, 58399}, {58380, 58387, 58386}, {58382, 58383, 58389}


X(58382) = X(3)X(1962)∩X(5)X(10180)

Barycentrics    a*(b+c)*(3*a^5+2*a^4*(b+c)+(b-c)^2*(b+c)^3+a^3*(-5*b^2+b*c-5*c^2)-3*a^2*(b+c)*(b^2+c^2)+a*(2*b^4-b^3*c-4*b^2*c^2-b*c^3+2*c^4)) : :
X(58382) = X[3]+3*X[1962], -X[4]+9*X[27811], -X[5]+3*X[10180], 5*X[631]+3*X[27804], -5*X[632]+3*X[27798], -5*X[1656]+9*X[53034], X[2292]+3*X[10246], -X[2650]+5*X[37624], -11*X[3525]+3*X[17163], -7*X[3526]+3*X[21020], -17*X[3533]+9*X[27812], X[4065]+3*X[10165] and many others

X(58382) lies on these lines: {3, 1962}, {4, 27811}, {5, 10180}, {30, 58381}, {140, 740}, {511, 32167}, {515, 58387}, {517, 58380}, {631, 27804}, {632, 27798}, {758, 12104}, {912, 58395}, {952, 58386}, {1385, 3743}, {1656, 53034}, {2292, 10246}, {2650, 37624}, {3525, 17163}, {3526, 21020}, {3533, 27812}, {3564, 58394}, {3724, 37621}, {3725, 37698}, {4065, 10165}, {4068, 11248}, {5453, 9959}, {5762, 58385}, {5840, 58388}, {5843, 58398}, {5844, 58399}, {8143, 48893}, {11203, 48907}, {12567, 32153}, {13373, 20718}, {25124, 51046}, {29010, 58396}, {37528, 58401}, {38028, 49598}, {44671, 58630}, {53039, 55859}

X(58382) = midpoint of X(i) and X(j) for these {i,j}: {1385, 3743}, {25124, 51046}, {5453, 9959}, {58380, 58392}, {58383, 58389}, {8143, 48893}
X(58382)= pole of line {3897, 37029} with respect to the Stammler hyperbola
X(58382) = center of the nine-point conic of quadrilateral XYZX(3) where XYZ is the cevian triangle of X(1)
X(58382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58380, 58392, 517}, {58381, 58389, 58383}, {58383, 58389, 30}


X(58383) = X(4)X(1962)∩X(5)X(740)

Barycentrics    (b+c)*(a^6+2*a*(b-c)^2*(b+c)^3+3*a^2*(b^2-c^2)^2+b*c*(b^2-c^2)^2-2*a^3*(b+c)*(b^2+c^2)-a^4*(4*b^2+b*c+4*c^2)) : :
X(58383) = -X[3]+3*X[10180], X[4]+3*X[1962], -X[20]+9*X[27811], -5*X[631]+9*X[53034], X[946]+X[3743], -5*X[1656]+3*X[27798], X[2292]+3*X[5603], -X[2650]+5*X[10595], -7*X[3090]+3*X[21020], 5*X[3091]+3*X[27804], 3*X[3817]+X[4065], -X[4647]+5*X[8227] and many others

X(58383) lies on these lines: {3, 10180}, {4, 1962}, {5, 740}, {20, 27811}, {30, 58381}, {511, 58394}, {515, 58380}, {516, 58387}, {517, 50418}, {631, 53034}, {758, 13464}, {812, 11615}, {946, 3743}, {952, 58399}, {971, 58385}, {1503, 58384}, {1656, 27798}, {2292, 5603}, {2650, 10595}, {2667, 37699}, {2784, 9958}, {2829, 58388}, {3072, 3747}, {3090, 21020}, {3091, 27804}, {3178, 30444}, {3579, 48932}, {3725, 37529}, {3817, 4065}, {4068, 11500}, {4647, 8227}, {5056, 17163}, {5070, 53039}, {5762, 58398}, {5840, 58397}, {5886, 49598}, {6001, 58393}, {7486, 27812}, {8143, 29057}, {11203, 48941}, {11249, 12567}, {13374, 20718}, {20430, 25124}, {29010, 58400}, {44671, 58631}

X(58383) = midpoint of X(i) and X(j) for these {i,j}: {20430, 25124}, {8143, 48931}, {946, 3743}
X(58383) = reflection of X(i) in X(j) for these {i,j}: {58389, 58382}, {58392, 58387}
X(58383) = center of the nine-point conic of quadrilateral XYZX(4) where XYZ is the cevian triangle of X(1)
X(58383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 58382, 58389}, {516, 58387, 58392}, {8143, 48931, 29057}


X(58384) = X(6)X(1962)∩X(141)X(10180)

Barycentrics    a*(b+c)*(3*a^3+2*a^2*(b+c)+(b+c)*(b^2+c^2)+a*(2*b^2+b*c+2*c^2)) : :
X(58384) = X[6]+3*X[1962], -X[69]+9*X[27811], -X[141]+3*X[10180], X[2292]+3*X[38315], 5*X[3618]+3*X[27804], -5*X[3763]+9*X[53034], X[4065]+3*X[38049], -3*X[21020]+7*X[47355], -3*X[27798]+5*X[51126]

X(58384) lies on these lines: {6, 1962}, {69, 27811}, {141, 10180}, {511, 32167}, {518, 58380}, {524, 58381}, {674, 58390}, {740, 3589}, {742, 58396}, {1386, 3743}, {1495, 3745}, {1503, 58383}, {2292, 38315}, {3618, 27804}, {3690, 22277}, {3763, 53034}, {3827, 58393}, {4065, 38049}, {4068, 12329}, {5845, 58385}, {5846, 58386}, {5847, 58387}, {5848, 58388}, {9020, 58391}, {9024, 58397}, {9053, 58399}, {9055, 58400}, {18675, 20991}, {20718, 58562}, {21020, 47355}, {27798, 51126}, {29181, 58389}, {37553, 41454}, {44671, 58633}

X(58384) = midpoint of X(i) and X(j) for these {i,j}: {1386, 3743}
X(58384) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(1)


X(58385) = X(7)X(1962)∩X(9)X(10180)

Barycentrics    (b+c)*(a^4+b*(b-c)^2*c-4*a^3*(b+c)+2*a*(b-c)^2*(b+c)+a^2*(b^2-11*b*c+c^2)) : :
X(58385) = X[7]+3*X[1962], -X[9]+3*X[10180], -X[144]+9*X[27811], X[2292]+3*X[11038], X[2667]+3*X[27475], X[3743]+X[5542], X[4065]+3*X[38054], -5*X[18230]+9*X[53034], -5*X[20195]+3*X[27798], -3*X[38053]+X[49598]

X(58385) lies on these lines: {7, 1962}, {9, 10180}, {142, 740}, {144, 27811}, {516, 58380}, {518, 58386}, {527, 58381}, {971, 58383}, {2292, 11038}, {2346, 3724}, {2667, 27475}, {3743, 5542}, {3842, 22312}, {4065, 38054}, {4068, 11495}, {5762, 58382}, {5845, 58384}, {5850, 58387}, {5851, 58388}, {5853, 58399}, {5856, 58397}, {18230, 53034}, {20195, 27798}, {20718, 58563}, {25124, 51058}, {38053, 49598}, {44671, 58634}

X(58385) = midpoint of X(i) and X(j) for these {i,j}: {25124, 51058}, {3743, 5542}
X(58385) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(1)
X(58385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58394, 58396, 58386}


X(58386) = X(1)X(333)∩X(10)X(37)

Barycentrics    (b+c)*(a^3+3*a^2*(b+c)+b*c*(b+c)+a*(2*b^2+3*b*c+2*c^2)) : :
X(58386) = X[8]+3*X[1962], -X[145]+9*X[27811], -X[2650]+5*X[3616], 5*X[3617]+3*X[27804], 3*X[3989]+X[4968], -7*X[9780]+3*X[21020], 3*X[11203]+X[15971], -3*X[17163]+11*X[46933], -9*X[27812]+17*X[46932], -X[46895]+3*X[53039]

X(58386) lies on these lines: {1, 333}, {2, 986}, {3, 12567}, {8, 1962}, {9, 40978}, {10, 37}, {21, 3724}, {30, 12579}, {40, 6998}, {72, 43223}, {86, 1046}, {145, 27811}, {191, 4697}, {312, 1698}, {442, 4425}, {498, 28811}, {515, 58389}, {516, 58398}, {517, 50418}, {518, 58385}, {519, 49730}, {523, 32212}, {524, 49564}, {690, 25380}, {756, 26115}, {758, 942}, {846, 1010}, {952, 58382}, {975, 32916}, {984, 25124}, {1126, 4753}, {1211, 3178}, {1330, 24697}, {1403, 19518}, {1513, 39605}, {1761, 5327}, {2049, 3923}, {2176, 5711}, {2650, 3616}, {2667, 50581}, {3185, 5248}, {3295, 36480}, {3617, 27804}, {3634, 17070}, {3670, 25512}, {3673, 18698}, {3702, 30970}, {3716, 42666}, {3741, 6051}, {3747, 5255}, {3754, 22299}, {3812, 4698}, {3821, 8728}, {3828, 35652}, {3831, 44307}, {3884, 34434}, {3907, 42653}, {3913, 4068}, {3936, 27577}, {3980, 16458}, {3985, 21816}, {3987, 19870}, {3989, 4968}, {4015, 14973}, {4016, 20271}, {4197, 32776}, {4364, 8680}, {4414, 16454}, {4418, 14005}, {4424, 16828}, {4427, 17589}, {4642, 19874}, {4658, 5625}, {4662, 44671}, {4672, 43531}, {4683, 26131}, {4771, 6155}, {5044, 6685}, {5051, 6536}, {5235, 27368}, {5277, 28631}, {5283, 40986}, {5296, 40977}, {5333, 11684}, {5439, 25501}, {5496, 30147}, {5530, 49652}, {5737, 17733}, {5743, 17748}, {5791, 29635}, {5846, 58384}, {5854, 58388}, {6042, 17322}, {7413, 8235}, {8040, 27714}, {9534, 17592}, {9780, 21020}, {9791, 24851}, {9959, 15973}, {10479, 27785}, {10887, 54035}, {11203, 15971}, {13161, 47286}, {14007, 24342}, {14210, 17210}, {15569, 35633}, {15852, 45305}, {16466, 29644}, {16609, 52567}, {17056, 56949}, {17163, 46933}, {17527, 20545}, {17529, 24169}, {17596, 56766}, {17770, 49743}, {19853, 37598}, {19859, 50314}, {19865, 32780}, {19878, 58467}, {20653, 41809}, {24248, 37153}, {24295, 50318}, {25446, 33135}, {25524, 53042}, {27081, 27558}, {27509, 56839}, {27784, 50605}, {27812, 46932}, {28558, 50226}, {28606, 31339}, {28850, 37528}, {33944, 35550}, {35016, 54399}, {37164, 49512}, {37425, 45705}, {37607, 38000}, {38456, 49728}, {46895, 53039}, {50252, 50775}

X(58386) = midpoint of X(i) and X(j) for these {i,j}: {10, 3743}, {2292, 49598}, {3716, 42666}, {984, 25124}, {9959, 15973}
X(58386) = reflection of X(i) in X(j) for these {i,j}: {58380, 58387}, {58389, 58392}, {58399, 58380}
X(58386) = complement of X(49598)
X(58386) = perspector of circumconic {{A, B, C, X(3952), X(54986)}}
X(58386) = X(i)-complementary conjugate of X(j) for these {i, j}: {43070, 442}, {43071, 17052}, {43072, 21530}, {43073, 3454}, {43074, 34829}
X(58386)= pole of line {661, 50643} with respect to the orthoptic circle of the Steiner Inellipse
X(58386)= pole of line {10, 34528} with respect to the Kiepert hyperbola
X(58386)= pole of line {593, 1468} with respect to the Stammler hyperbola
X(58386)= pole of line {6002, 31290} with respect to the Steiner circumellipse
X(58386)= pole of line {661, 4560} with respect to the Steiner inellipse
X(58386)= pole of line {1509, 10436} with respect to the Wallace hyperbola
X(58386) = center of the nine-point conic of quadrilateral XYZX(8) where XYZ is the cevian triangle of X(1)
X(58386) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(37870)}}, {{A, B, C, X(37), X(5331)}}, {{A, B, C, X(333), X(3714)}}, {{A, B, C, X(594), X(31359)}}, {{A, B, C, X(1400), X(4281)}}, {{A, B, C, X(1500), X(2258)}}, {{A, B, C, X(2321), X(55091)}}, {{A, B, C, X(5295), X(40718)}}
X(58386) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2292, 49598}, {10, 25354, 4205}, {10, 3743, 740}, {10, 3993, 5295}, {191, 25526, 4697}, {515, 58392, 58389}, {519, 58380, 58399}, {519, 58387, 58380}, {846, 1010, 24850}, {1125, 58449, 6693}, {1125, 8258, 6703}, {1213, 3704, 10}, {1698, 4647, 27798}, {2650, 53034, 3616}, {5257, 38408, 1213}, {6536, 21674, 5051}, {6703, 18253, 8258}, {9791, 26051, 24851}, {9959, 15973, 29057}, {58380, 58387, 58381}, {58394, 58396, 58385}


X(58387) = X(1)X(16704)∩X(2)X(4065)

Barycentrics    (b+c)*(4*a^3+7*a^2*(b+c)+b*c*(b+c)+3*a*(b+c)^2) : :
X(58387) = 3*X[2]+X[4065], X[10]+3*X[1962], 3*X[551]+X[2292], 5*X[1698]+3*X[27804], -X[4647]+5*X[19862], -11*X[5550]+3*X[46895], -X[17164]+9*X[25055], -17*X[19872]+9*X[27812], -3*X[21020]+7*X[51073], -3*X[27798]+5*X[31253]

X(58387) lies on these lines: {1, 16704}, {2, 4065}, {10, 1962}, {37, 4075}, {515, 58382}, {516, 58383}, {519, 49730}, {551, 2292}, {596, 28606}, {726, 58396}, {740, 3634}, {758, 3636}, {896, 41815}, {1125, 3666}, {1698, 27804}, {2238, 55343}, {2667, 50587}, {2802, 58388}, {3159, 43223}, {3943, 6538}, {4015, 44671}, {4066, 22016}, {4068, 8715}, {4151, 42653}, {4647, 19862}, {5550, 46895}, {5847, 58384}, {5850, 58385}, {17164, 25055}, {17768, 43972}, {19872, 27812}, {20108, 27784}, {20718, 58565}, {21020, 51073}, {21081, 25354}, {24051, 52538}, {25591, 27785}, {27798, 31253}, {28164, 58389}, {28522, 58400}, {31320, 32771}, {34379, 58394}

X(58387) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3743}, {58380, 58386}, {58383, 58392}, {58393, 58395}
X(58387)= pole of line {1019, 31290} with respect to the Steiner inellipse
X(58387) = center of the nine-point conic of quadrilateral XYZX(10) where XYZ is the cevian triangle of X(1)
X(58387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1125, 3666, 6532}, {3743, 10180, 1125}, {4647, 53034, 19862}, {58380, 58386, 519}, {58381, 58386, 58380}, {58383, 58392, 516}, {58393, 58395, 758}


X(58388) = X(11)X(1962)∩X(100)X(4068)

Barycentrics    (b+c)*(4*a^5-2*a^4*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(-7*b^2+10*b*c-7*c^2)+a*(b-c)^2*(3*b^2+5*b*c+3*c^2)+2*a^2*(b^3+c^3)) : :
X(58388) = X[11]+3*X[1962], X[1387]+X[3743], -X[3035]+3*X[10180], X[4065]+3*X[32557], X[8143]+X[10035], 3*X[27804]+5*X[31272], -5*X[31235]+9*X[53034]

X(58388) lies on these lines: {11, 1962}, {100, 4068}, {528, 58381}, {740, 6667}, {900, 58401}, {952, 58380}, {1387, 3743}, {2800, 58393}, {2802, 58387}, {2829, 58383}, {3035, 10180}, {4065, 32557}, {5840, 58382}, {5848, 58384}, {5851, 58385}, {5854, 58386}, {8143, 10035}, {15368, 28217}, {18240, 20718}, {27804, 31272}, {31235, 53034}, {38055, 53035}, {44671, 46694}

X(58388) = midpoint of X(i) and X(j) for these {i,j}: {1387, 3743}, {8143, 10035}
X(58388) = center of the nine-point conic of quadrilateral XYZX(11) where XYZ is the cevian triangle of X(1)


X(58389) = X(1)X(7415)∩X(3)X(740)

Barycentrics    -((b+c)*(-5*a^6-4*a^5*(b+c)+b*c*(b^2-c^2)^2+4*a^3*(b+c)*(b^2+c^2)+a^4*(6*b^2-3*b*c+6*c^2)-a^2*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4))) : :
X(58389) = -X[4]+3*X[10180], X[20]+3*X[1962], -5*X[631]+3*X[27798], X[2292]+3*X[5731], -5*X[3091]+9*X[53034], -X[3146]+9*X[27811], 5*X[3522]+3*X[27804], -7*X[3523]+3*X[21020], -11*X[3525]+9*X[53039], -3*X[3576]+X[49598], -X[4647]+5*X[7987], 3*X[11203]+X[48923] and many others

X(58389) lies on these lines: {1, 7415}, {3, 740}, {4, 10180}, {20, 1962}, {30, 58381}, {515, 58386}, {516, 58380}, {517, 58399}, {631, 27798}, {758, 12675}, {971, 58395}, {1503, 58394}, {2292, 5731}, {2829, 58397}, {3091, 53034}, {3146, 27811}, {3522, 27804}, {3523, 21020}, {3525, 53039}, {3576, 49598}, {3743, 4297}, {4647, 7987}, {8680, 42443}, {11203, 48923}, {12114, 12567}, {15717, 17163}, {18444, 31880}, {20718, 58567}, {25124, 30273}, {28164, 58387}, {29057, 48893}, {29181, 58384}, {37528, 58391}, {44671, 58637}

X(58389) = midpoint of X(i) and X(j) for these {i,j}: {25124, 30273}, {3743, 4297}
X(58389) = reflection of X(i) in X(j) for these {i,j}: {58383, 58382}, {58386, 58392}
X(58389) = center of the nine-point conic of quadrilateral XYZX(20) where XYZ is the cevian triangle of X(1)
X(58389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 58382, 58383}, {515, 58392, 58386}, {58382, 58383, 58381}


X(58390) = X(1)X(21)∩X(37)X(40984)

Barycentrics    a*(b+c)*(3*a^4+b^4+a^2*b*c+b^3*c+b*c^3+c^4+2*a^3*(b+c)+2*a*(b^3+c^3)) : :
X(58390) = -X[2887]+3*X[10180], -X[6327]+9*X[27811], -5*X[31237]+9*X[53034]

X(58390) lies on these lines: {1, 21}, {37, 40984}, {42, 58697}, {200, 40977}, {209, 37593}, {228, 16600}, {612, 25081}, {674, 58384}, {740, 6679}, {744, 58396}, {752, 58381}, {2294, 5269}, {2835, 58401}, {2887, 10180}, {3052, 4016}, {3190, 3725}, {3666, 58624}, {3724, 5310}, {3744, 44661}, {4418, 17189}, {5266, 42671}, {6327, 27811}, {24394, 56178}, {25078, 54426}, {29634, 49512}, {31237, 53034}, {37528, 58392}

X(58390) = midpoint of X(i) and X(j) for these {i,j}: {3743, 49480}
X(58390)= pole of line {3733, 16612} with respect to the circumcircle
X(58390) = center of the nine-point conic of quadrilateral XYZX(31) where XYZ is the cevian triangle of X(1)
X(58390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {968, 1962, 3743}, {3743, 49480, 758}


X(58391) = X(1)X(21)∩X(37)X(714)

Barycentrics    a*(b+c)*(a*b*(a+b)^2+(a^3+a^2*b+2*a*b^2+b^3)*c+(2*a^2+2*a*b+b^2)*c^2+(a+b)*c^3) : :
X(58391) = -X[17165]+9*X[27811], -5*X[31264]+9*X[53034]

X(58391) lies on these lines: {1, 21}, {37, 714}, {43, 3728}, {537, 58381}, {740, 3666}, {893, 4362}, {980, 3980}, {984, 3725}, {1402, 16577}, {2092, 21085}, {2667, 17592}, {3210, 4647}, {3724, 3920}, {3752, 27798}, {3896, 4868}, {4065, 50608}, {4359, 19863}, {4697, 16696}, {4850, 21020}, {5283, 30646}, {9020, 58384}, {10453, 27804}, {10479, 32860}, {16602, 53039}, {17165, 27811}, {19582, 27785}, {21061, 21840}, {21814, 28594}, {22275, 37593}, {24165, 37592}, {24896, 33135}, {25081, 26242}, {25591, 27784}, {29110, 42653}, {31264, 53034}, {37528, 58389}, {37548, 58399}, {44671, 58642}

X(58391)= pole of line {17921, 24006} with respect to the polar circle
X(58391)= pole of line {2887, 5949} with respect to the Kiepert hyperbola
X(58391)= pole of line {798, 4481} with respect to the Steiner inellipse
X(58391)= pole of line {75, 7304} with respect to the Wallace hyperbola
X(58391) = center of the nine-point conic of quadrilateral XYZX(38) where XYZ is the cevian triangle of X(1)
X(58391) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(6378)}}, {{A, B, C, X(37), X(38832)}}, {{A, B, C, X(58), X(16606)}}, {{A, B, C, X(81), X(42027)}}
X(58391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 846, 38832}, {1962, 28606, 3743}, {10180, 25124, 43223}, {22024, 43223, 1215}


X(58392) = X(3)X(3743)∩X(40)X(1962)

Barycentrics    a*(b+c)*(3*a^5+3*a^4*(b+c)+a^3*(-4*b^2+b*c-4*c^2)+a*(b+c)^2*(b^2-3*b*c+c^2)+(b-c)^2*(b+c)*(b^2+b*c+c^2)-a^2*(b+c)*(4*b^2-b*c+4*c^2)) : :
X(58392) = X[40]+3*X[1962], -3*X[351]+X[38324], -5*X[631]+X[4647], -X[946]+3*X[10180], -X[962]+9*X[27811], X[2292]+3*X[3576], X[4065]+3*X[10164], -5*X[8227]+9*X[53034], -3*X[10165]+X[49598], 3*X[11203]+X[48897], -X[17164]+9*X[54445], -3*X[21020]+7*X[31423]

X(58392) lies on these lines: {3, 3743}, {40, 1962}, {351, 38324}, {515, 58386}, {516, 58383}, {517, 58380}, {581, 3725}, {631, 4647}, {740, 6684}, {758, 1385}, {946, 10180}, {962, 27811}, {2292, 3576}, {2294, 10268}, {2800, 58397}, {2820, 11615}, {3724, 10902}, {4065, 10164}, {4068, 10306}, {4155, 38327}, {5450, 12567}, {6001, 58395}, {6176, 31870}, {8227, 53034}, {8715, 24394}, {9940, 20718}, {9959, 48893}, {10158, 11499}, {10165, 49598}, {10267, 39475}, {11203, 48897}, {11221, 11491}, {11500, 25081}, {17164, 54445}, {19543, 27784}, {21020, 31423}, {28194, 58381}, {28234, 58399}, {29054, 58396}, {37528, 58390}, {44671, 58643}

X(58392) = midpoint of X(i) and X(j) for these {i,j}: {3, 3743}, {58386, 58389}, {9959, 48893}
X(58392) = reflection of X(i) in X(j) for these {i,j}: {58380, 58382}, {58383, 58387}
X(58392) = center of the nine-point conic of quadrilateral XYZX(40) where XYZ is the cevian triangle of X(1)
X(58392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 58387, 58383}, {517, 58382, 58380}, {58386, 58389, 515}


X(58393) = X(1)X(859)∩X(65)X(1962)

Barycentrics    a*(b+c)*(a^4*(b+c)-b*(b-c)^2*c*(b+c)-a^2*(b+c)*(b^2-9*b*c+c^2)-a*(b+c)^2*(b^2-4*b*c+c^2)+a^3*(b^2+6*b*c+c^2)) : :
X(58393) = X[65]+3*X[1962], 3*X[354]+X[2292], -X[960]+3*X[10180], -X[2650]+5*X[17609], -3*X[3742]+X[49598], -X[3869]+9*X[27811], X[4065]+3*X[5883], -X[4647]+5*X[5439], -5*X[25917]+9*X[53034]

X(58393) lies on these lines: {1, 859}, {10, 44671}, {37, 40978}, {40, 4068}, {65, 1962}, {341, 25295}, {354, 2292}, {513, 49743}, {517, 58380}, {518, 58385}, {740, 3812}, {758, 3636}, {942, 3743}, {960, 10180}, {1125, 58572}, {1834, 4890}, {2294, 42440}, {2392, 10108}, {2650, 17609}, {2667, 4646}, {2800, 58388}, {3695, 22279}, {3724, 37080}, {3742, 49598}, {3827, 58384}, {3869, 27811}, {3880, 58399}, {3931, 43220}, {4065, 5883}, {4647, 5439}, {6001, 58383}, {12564, 40636}, {16201, 44661}, {22300, 37593}, {25917, 53034}, {31880, 44840}, {44663, 58381}

X(58393) = midpoint of X(i) and X(j) for these {i,j}: {942, 3743}
X(58393) = reflection of X(i) in X(j) for these {i,j}: {58395, 58387}
X(58393)= pole of line {523, 1019} with respect to the DeLongchamps ellipse
X(58393) = center of the nine-point conic of quadrilateral XYZX(65) where XYZ is the cevian triangle of X(1)
X(58393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 58387, 58395}, {942, 3743, 20718}


X(58394) = X(6)X(10180)∩X(141)X(740)

Barycentrics    (b+c)*(a^4+b*c*(b^2+c^2)+2*a*(b+c)*(b^2+c^2)+a^2*(3*b^2-b*c+3*c^2)) : :
X(58394) = -X[6]+3*X[10180], X[69]+3*X[1962], -X[193]+9*X[27811], -5*X[3618]+9*X[53034], -7*X[3619]+3*X[21020], 5*X[3620]+3*X[27804], X[3743]+X[49511], -5*X[3763]+3*X[27798], X[25124]+X[49509]

X(58394) lies on these lines: {6, 10180}, {69, 1962}, {141, 740}, {193, 27811}, {511, 58383}, {518, 58385}, {524, 58381}, {742, 58400}, {1503, 58389}, {3564, 58382}, {3618, 53034}, {3619, 21020}, {3620, 27804}, {3743, 49511}, {3763, 27798}, {3842, 22277}, {5845, 58398}, {5846, 58399}, {5847, 58380}, {5848, 58397}, {9791, 26731}, {12567, 22769}, {20718, 58581}, {25124, 49509}, {34379, 58387}, {34381, 58395}, {44671, 58653}

X(58394) = midpoint of X(i) and X(j) for these {i,j}: {25124, 49509}, {3743, 49511}
X(58394) = center of the nine-point conic of quadrilateral XYZX(69) where XYZ is the cevian triangle of X(1)
X(58394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58385, 58386, 58396}


X(58395) = X(1)X(23114)∩X(72)X(1962)

Barycentrics    a*(b+c)*(a^3*(b-c)^2+a^4*(b+c)-a*(b+c)^4-b*c*(b+c)*(b^2+c^2)-a^2*(b+c)*(b^2+5*b*c+c^2)) : :
X(58395) = X[72]+3*X[1962], -X[942]+3*X[10180], X[960]+X[3743], -X[3868]+9*X[27811], 5*X[3876]+3*X[27804], X[4065]+3*X[10176], -X[4647]+5*X[25917], -5*X[5439]+9*X[53034]

X(58395) lies on these lines: {1, 23114}, {72, 1962}, {392, 1201}, {500, 45705}, {517, 50418}, {518, 58380}, {740, 5044}, {758, 3636}, {912, 58382}, {942, 10180}, {960, 3743}, {971, 58389}, {1125, 20718}, {1385, 12567}, {2771, 58397}, {3678, 44671}, {3725, 3931}, {3747, 5266}, {3811, 4068}, {3868, 27811}, {3876, 27804}, {4065, 10176}, {4075, 58644}, {4205, 40966}, {4647, 25917}, {5248, 42443}, {5439, 53034}, {6001, 58392}, {10108, 17770}, {34381, 58394}

X(58395) = midpoint of X(i) and X(j) for these {i,j}: {960, 3743}
X(58395) = reflection of X(i) in X(j) for these {i,j}: {58393, 58387}
X(58395) = center of the nine-point conic of quadrilateral XYZX(72) where XYZ is the cevian triangle of X(1)
X(58395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 58387, 58393}


X(58396) = X(2)X(2667)∩X(37)X(714)

Barycentrics    (b+c)*(a^2*b*(2*a+b)+a*(2*a+b)*(a+2*b)*c+(a+b)^2*c^2) : :
X(58396) = 3*X[2]+X[2667], X[75]+3*X[1962], -X[192]+9*X[27811], -X[3728]+5*X[4687], X[3743]+X[24325], -X[4647]+5*X[40328], 5*X[4699]+3*X[27804], -7*X[4751]+3*X[21020], X[25295]+7*X[27268]

X(58396) lies on these lines: {1, 27164}, {2, 2667}, {37, 714}, {75, 1962}, {86, 3747}, {192, 27811}, {518, 58385}, {536, 58381}, {726, 58387}, {740, 1125}, {742, 58384}, {744, 58390}, {758, 13476}, {872, 29822}, {1045, 25508}, {3728, 4687}, {3743, 24325}, {3842, 4015}, {4068, 15668}, {4647, 40328}, {4698, 6685}, {4699, 27804}, {4709, 46772}, {4751, 21020}, {6682, 58571}, {20718, 58583}, {22316, 37593}, {25295, 27268}, {25501, 27798}, {25660, 30571}, {28581, 58399}, {29010, 58382}, {29054, 58392}

X(58396) = midpoint of X(i) and X(j) for these {i,j}: {37, 25124}, {3743, 24325}
X(58396)= pole of line {2887, 6537} with respect to the Kiepert hyperbola
X(58396)= pole of line {798, 7192} with respect to the Steiner inellipse
X(58396)= pole of line {7304, 33770} with respect to the Wallace hyperbola
X(58396) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(1)
X(58396) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6378), X(39737)}}, {{A, B, C, X(16606), X(34585)}}
X(58396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 25124, 714}, {3728, 53034, 4687}, {10180, 25124, 37}, {58385, 58386, 58394}


X(58397) = X(11)X(10180)∩X(100)X(1255)

Barycentrics    a*(b+c)*(3*a^4+b^4-b^2*c^2+c^4-a^3*(b+c)-4*a^2*(b^2-b*c+c^2)+a*(b^3+c^3)) : :
X(58397) = -X[11]+3*X[10180], -X[149]+9*X[27811], X[214]+X[3743], X[19922]+X[48893], X[25124]+X[51062], -3*X[27798]+5*X[31235], -5*X[31272]+9*X[53034], -3*X[34123]+X[49598]

X(58397) lies on these lines: {11, 10180}, {100, 1255}, {104, 12567}, {149, 27811}, {214, 3743}, {512, 38018}, {528, 58381}, {740, 3035}, {758, 1319}, {952, 58382}, {2771, 58395}, {2800, 58392}, {2802, 37548}, {2829, 58389}, {4068, 13205}, {5840, 58383}, {5848, 58394}, {5851, 58398}, {5854, 58399}, {5856, 58385}, {9024, 58384}, {9978, 47625}, {19922, 48893}, {20718, 58591}, {25124, 51062}, {27798, 31235}, {31272, 53034}, {34123, 49598}, {44671, 58663}

X(58397) = midpoint of X(i) and X(j) for these {i,j}: {19922, 48893}, {214, 3743}, {25124, 51062}
X(58397) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(1)


X(58398) = X(7)X(10180)∩X(9)X(740)

Barycentrics    -((b+c)*(-5*a^4+b*(b-c)^2*c+2*a^3*(b+c)+2*a*b*c*(b+c)+a^2*(3*b^2+7*b*c+3*c^2))) : :
X(58398) = -X[7]+3*X[10180], X[144]+3*X[1962], X[2292]+3*X[52653], X[3743]+X[51090], -5*X[18230]+3*X[27798], -X[20059]+9*X[27811], X[25124]+X[51052]

X(58398) lies on these lines: {7, 10180}, {9, 740}, {144, 1962}, {516, 58386}, {518, 58399}, {527, 58381}, {758, 5572}, {971, 58389}, {1001, 12567}, {2292, 52653}, {3725, 4335}, {3743, 51090}, {5762, 58383}, {5843, 58382}, {5845, 58394}, {5850, 58380}, {5851, 58397}, {12579, 29181}, {18230, 27798}, {20059, 27811}, {20718, 58608}, {25124, 51052}, {44671, 58678}

X(58398) = midpoint of X(i) and X(j) for these {i,j}: {25124, 51052}, {3743, 51090}
X(58398) = center of the nine-point conic of quadrilateral XYZX(144) where XYZ is the cevian triangle of X(1)


X(58399) = X(1)X(75)∩X(8)X(10180)

Barycentrics    (b+c)*(5*a^3+3*a*b*c+5*a^2*(b+c)-b*c*(b+c)) : :
X(58399) = -X[8]+3*X[10180], X[145]+3*X[1962], X[2292]+3*X[3241], -X[2650]+5*X[3623], -5*X[3616]+3*X[27798], -5*X[3617]+9*X[53034], -X[3621]+9*X[27811], -7*X[3622]+3*X[21020], X[4065]+3*X[51071], -11*X[5550]+9*X[53039]

X(58399) lies on these lines: {1, 75}, {8, 10180}, {30, 49564}, {42, 52353}, {145, 1962}, {405, 49489}, {517, 58389}, {518, 58398}, {519, 49730}, {524, 12579}, {758, 3635}, {952, 58383}, {986, 48858}, {1125, 4891}, {2292, 3241}, {2650, 3623}, {3244, 3743}, {3616, 27798}, {3617, 53034}, {3621, 27811}, {3622, 21020}, {3880, 58393}, {3957, 31880}, {3983, 4946}, {4065, 51071}, {4068, 12513}, {4457, 19874}, {4658, 24850}, {5302, 49685}, {5550, 53039}, {5844, 58382}, {5846, 58394}, {5853, 58385}, {5854, 58397}, {6682, 35633}, {9053, 58384}, {17480, 20057}, {17751, 21806}, {19767, 25591}, {20718, 58609}, {27784, 50588}, {28234, 58392}, {28581, 58396}, {37548, 58391}, {44671, 58679}, {49477, 51715}

X(58399) = midpoint of X(i) and X(j) for these {i,j}: {25124, 49470}, {3244, 3743}
X(58399) = reflection of X(i) in X(j) for these {i,j}: {58386, 58380}
X(58399) = center of the nine-point conic of quadrilateral XYZX(145) where XYZ is the cevian triangle of X(1)
X(58399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1010, 5625}, {519, 58380, 58386}, {3623, 27804, 2650}, {4068, 12513, 12567}, {25124, 49470, 740}, {58380, 58386, 58381}


X(58400) = X(10)X(37)∩X(192)X(1962)

Barycentrics    (b+c)*(-(b^2*c^2)+3*a^3*(b+c)+a*b*c*(b+c)+a^2*(2*b+c)*(b+2*c)) : :
X(58400) = -X[75]+3*X[10180], X[192]+3*X[1962], -X[1278]+9*X[27811], X[2667]+3*X[4664], -X[3728]+5*X[4704], -5*X[4687]+3*X[27798], -5*X[4699]+9*X[53034], -3*X[21020]+7*X[27268]

X(58400) lies on circumconic {{A, B, C, X(2998), X(3842)}} and these lines: {10, 37}, {75, 10180}, {192, 1962}, {518, 58398}, {536, 58381}, {714, 4681}, {726, 58380}, {742, 58394}, {1278, 27811}, {2663, 32026}, {2667, 4664}, {3728, 4704}, {3747, 17319}, {4687, 27798}, {4699, 53034}, {9055, 58384}, {20718, 58620}, {21020, 27268}, {21080, 37593}, {25106, 46904}, {25123, 41839}, {28522, 58387}, {29010, 58383}, {44671, 58693}, {48855, 50111}

X(58400) = midpoint of X(i) and X(j) for these {i,j}: {192, 25124}, {3743, 3993}
X(58400) = center of the nine-point conic of quadrilateral XYZX(192) where XYZ is the cevian triangle of X(1)
X(58400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 22316, 3842}, {192, 1962, 25124}, {3743, 3993, 740}, {4704, 27804, 3728}


X(58401) = X(1)X(18174)∩X(37)X(3121)

Barycentrics    a*(b+c)*(a*b*(a+b)^2+(a^3-6*a^2*b-2*a*b^2+b^3)*c+2*a*(a-b)*c^2+(a+b)*c^3) : :
X(58401) = X[244]+3*X[1962]

X(58401) lies on these lines: {1, 18174}, {37, 3121}, {244, 1962}, {351, 4145}, {537, 58381}, {665, 4773}, {740, 4706}, {900, 58388}, {940, 53389}, {2292, 10179}, {2802, 37548}, {2835, 58390}, {3636, 3743}, {3716, 17724}, {3723, 5163}, {3752, 27804}, {3922, 3931}, {3999, 20718}, {4068, 4689}, {4427, 16726}, {6051, 34587}, {6685, 10180}, {16602, 17163}, {16728, 17154}, {22045, 43223}, {22313, 37593}, {27812, 31197}, {33148, 57023}, {37528, 58382}

X(58401) = midpoint of X(i) and X(j) for these {i,j}: {244, 14752}
X(58401)= pole of line {4145, 17154} with respect to the DeLongchamps ellipse
X(58401) = center of the nine-point conic of quadrilateral XYZX(244) where XYZ is the cevian triangle of X(1)
X(58401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {244, 1962, 14752}


X(58402) = X(2)X(33)∩X(5)X(515)

Barycentrics    2*a^6-a^4*(b-c)^2-a^5*(b+c)-2*a^3*b*c*(b+c)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b-c)^2*(b^2+3*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+4*b*c+c^2) : :
X(58402) = 3*X[2]+X[33], -5*X[631]+X[36984], -5*X[3091]+X[52848], 7*X[3624]+X[36985]

X(58402) lies on these lines: {2, 33}, {5, 515}, {10, 37696}, {197, 1001}, {406, 34823}, {519, 37729}, {551, 37697}, {631, 36984}, {971, 58460}, {1038, 4194}, {1848, 33849}, {1997, 27385}, {2635, 18652}, {2823, 6692}, {3091, 52848}, {3616, 19372}, {3624, 36985}, {3812, 6696}, {4698, 6677}, {5248, 6642}, {6668, 58465}, {6681, 52262}, {6700, 52260}, {6708, 13405}, {7392, 26105}, {7404, 10200}, {7532, 13411}, {9816, 40132}, {10157, 36949}, {11479, 25524}, {14767, 20530}, {16238, 58404}, {17073, 19541}, {18589, 19544}, {24983, 40950}, {27504, 54346}, {37034, 39579}, {58451, 58458}

X(58402) = midpoint of X(i) and X(j) for these {i,j}: {33, 34822}
X(58402) = complement of X(34822)
X(58402) = X(i)-complementary conjugate of X(j) for these {i, j}: {57393, 10}
X(58402) = center of the nine-point conic of quadrilateral XYZX(33) where XYZ is the cevian triangle of X(2)
X(58402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33, 34822}, {5, 1125, 58403}


X(58403) = X(2)X(34)∩X(5)X(515)

Barycentrics    2*a^7+a^6*(b+c)+2*a*(b-c)^4*(b+c)^2-a^2*(b-c)^2*(b+c)^3-2*a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+(b-c)^2*(b+c)^3*(b^2+c^2)-2*a^3*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4) : :
X(58403) = 3*X[2]+X[34], -5*X[631]+X[36986], -5*X[3091]+X[52849]

X(58403) lies on these lines: {2, 34}, {5, 515}, {10, 37697}, {142, 7535}, {475, 34822}, {551, 37696}, {631, 36986}, {942, 36949}, {1001, 11479}, {1040, 4200}, {1465, 34851}, {1877, 24984}, {2840, 6715}, {3091, 52849}, {3445, 44675}, {3589, 3812}, {3616, 9817}, {3636, 37729}, {5020, 22654}, {5084, 17917}, {5248, 9818}, {6667, 58465}, {6677, 6691}, {6681, 16238}, {6692, 6693}, {6706, 6707}, {6718, 58405}, {7404, 10198}, {9816, 28629}, {11108, 17073}, {18589, 37415}, {37800, 54396}, {52262, 58404}

X(58403) = midpoint of X(i) and X(j) for these {i,j}: {34, 34823}
X(58403) = complement of X(34823)
X(58403) = X(i)-complementary conjugate of X(j) for these {i, j}: {57394, 10}
X(58403) = center of the nine-point conic of quadrilateral XYZX(34) where XYZ is the cevian triangle of X(2)
X(58403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34, 34823}, {5, 1125, 58402}, {1125, 20201, 58411}


X(58404) = X(2)X(35)∩X(12)X(535)

Barycentrics    2*a^4-a*b*c*(b+c)+(b^2-c^2)^2-a^2*(3*b^2+2*b*c+3*c^2) : :
X(58404) = 3*X[2]+X[35], X[20]+3*X[52850], X[2975]+3*X[3584], X[3585]+3*X[17549], -5*X[3616]+X[11009], 7*X[3624]+X[11010], X[4324]+3*X[17577], 3*X[4995]+X[24390], X[6831]+3*X[21155], -X[11280]+9*X[25055], -X[12047]+3*X[38062], X[15338]+3*X[17530] and many others

X(58404) lies on circumconic {{A, B, C, X(20565), X(31262)}} and these lines: {2, 35}, {3, 3822}, {5, 20104}, {10, 2646}, {12, 535}, {20, 52850}, {21, 3814}, {30, 6668}, {36, 37291}, {37, 7749}, {55, 24387}, {56, 10197}, {140, 517}, {214, 24987}, {230, 25092}, {404, 14794}, {405, 31246}, {442, 52793}, {468, 1900}, {498, 993}, {515, 31659}, {516, 52265}, {518, 58569}, {519, 4999}, {549, 25466}, {551, 4848}, {631, 10198}, {632, 3816}, {758, 13411}, {908, 3647}, {1001, 3526}, {1155, 11263}, {1698, 4855}, {1737, 35016}, {2077, 6853}, {2320, 37706}, {2476, 5010}, {2779, 6699}, {2975, 3584}, {3035, 3634}, {3085, 8666}, {3149, 12558}, {3218, 37731}, {3525, 10200}, {3533, 26105}, {3555, 52638}, {3583, 7504}, {3585, 17549}, {3589, 9047}, {3614, 57002}, {3616, 11009}, {3624, 11010}, {3636, 15325}, {3678, 5745}, {3828, 47742}, {3829, 10386}, {3838, 31663}, {3847, 55856}, {3881, 13405}, {3911, 12432}, {4015, 6745}, {4187, 5326}, {4189, 7951}, {4299, 10585}, {4302, 6933}, {4324, 17577}, {4421, 31493}, {4426, 31501}, {4973, 13407}, {4995, 24390}, {5044, 58449}, {5054, 25524}, {5082, 5218}, {5251, 27529}, {5270, 5303}, {5437, 24468}, {5442, 27003}, {5450, 26487}, {6666, 58415}, {6667, 16239}, {6679, 20108}, {6685, 6693}, {6701, 58463}, {6796, 6862}, {6831, 21155}, {6857, 26364}, {6888, 44425}, {6891, 52769}, {6952, 10902}, {6972, 15931}, {6988, 12511}, {7080, 31458}, {7907, 27255}, {10039, 51111}, {10164, 12609}, {10176, 27385}, {10265, 24299}, {10483, 17548}, {10527, 25439}, {10895, 19535}, {11280, 25055}, {11281, 33815}, {12047, 38062}, {13747, 19862}, {15175, 45392}, {15296, 37612}, {15338, 17530}, {15865, 22766}, {16238, 58402}, {17575, 31235}, {17596, 24160}, {19547, 49553}, {19847, 24542}, {19878, 52264}, {22836, 26066}, {24914, 30143}, {25645, 32918}, {25669, 32781}, {26446, 30147}, {27065, 52126}, {29678, 37522}, {30478, 45701}, {31019, 37524}, {31253, 50205}, {31263, 37162}, {31423, 54318}, {31757, 34466}, {33140, 33771}, {33281, 38028}, {35258, 37692}, {37354, 39583}, {37573, 45939}, {37701, 56288}, {37816, 52244}, {38472, 58474}, {39595, 58380}, {41684, 51683}, {52262, 58403}, {58578, 58630}

X(58404) = midpoint of X(i) and X(j) for these {i,j}: {10, 2646}, {12, 5267}, {10039, 51111}, {35, 25639}, {3647, 14526}, {5, 33862}, {58569, 58640}
X(58404) = reflection of X(i) in X(j) for these {i,j}: {3881, 16193}
X(58404) = complement of X(25639)
X(58404) = X(i)-complementary conjugate of X(j) for these {i, j}: {57395, 10}
X(58404)= pole of line {3878, 37734} with respect to the Feuerbach hyperbola
X(58404)= pole of line {4278, 14792} with respect to the Stammler hyperbola
X(58404)= pole of line {17496, 23875} with respect to the Steiner inellipse
X(58404) = center of the nine-point conic of quadrilateral XYZX(35) where XYZ is the cevian triangle of X(2)
X(58404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25440, 3841}, {2, 35, 25639}, {2, 52367, 31262}, {12, 37298, 5267}, {12, 5267, 535}, {35, 31159, 20066}, {35, 31262, 52367}, {140, 1125, 6681}, {140, 6690, 1125}, {498, 6910, 993}, {632, 3816, 20107}, {1125, 58405, 3833}, {1125, 58441, 58405}, {1125, 6684, 3754}, {3035, 6675, 3634}, {5218, 26363, 8715}, {5432, 7483, 10}, {10527, 31452, 25439}, {22836, 26066, 54288}, {58569, 58640, 518}


X(58405) = X(2)X(46)∩X(10)X(56)

Barycentrics    2*a^4+a^3*(b+c)+a^2*(-3*b^2+2*b*c-3*c^2)+(b^2-c^2)^2-a*(b+c)*(b^2-4*b*c+c^2) : :
X(58405) = 3*X[2]+X[46], -3*X[551]+X[2098], -5*X[1698]+X[3436], X[1837]+3*X[16371], -5*X[3091]+X[52860], -5*X[3616]+X[30323], 3*X[3679]+X[36977], -3*X[4669]+X[36972], -3*X[4745]+2*X[33559], 3*X[5587]+X[37002], X[5687]+3*X[17728], 7*X[9780]+X[20076] and many others

X(58405) lies on these lines: {1, 6921}, {2, 46}, {5, 58415}, {10, 56}, {36, 24982}, {40, 6967}, {57, 21077}, {65, 13747}, {79, 31263}, {140, 517}, {142, 15296}, {404, 1737}, {442, 18977}, {484, 41012}, {498, 3306}, {499, 31224}, {515, 6924}, {516, 3825}, {518, 34753}, {519, 8256}, {529, 3828}, {551, 2098}, {595, 5121}, {631, 54318}, {758, 6700}, {908, 3336}, {942, 3035}, {946, 6958}, {960, 52264}, {993, 8582}, {997, 1788}, {998, 1722}, {999, 10915}, {1001, 35448}, {1054, 23537}, {1145, 20323}, {1155, 4187}, {1158, 6944}, {1210, 8069}, {1329, 3634}, {1376, 10916}, {1512, 37561}, {1656, 5880}, {1698, 3436}, {1706, 45700}, {1709, 6953}, {1738, 45939}, {1770, 4193}, {1837, 16371}, {2829, 6702}, {3086, 26062}, {3091, 52860}, {3304, 49626}, {3333, 45701}, {3338, 5552}, {3525, 28629}, {3526, 28628}, {3579, 3816}, {3616, 30323}, {3626, 38455}, {3628, 3838}, {3635, 5854}, {3649, 31235}, {3678, 20103}, {3679, 36977}, {3683, 17575}, {3687, 41822}, {3753, 5433}, {3814, 4292}, {3824, 6668}, {3831, 37255}, {3847, 22793}, {3874, 6745}, {3881, 58576}, {4004, 15950}, {4188, 10572}, {4190, 10826}, {4640, 17527}, {4666, 31452}, {4669, 36972}, {4745, 33559}, {4848, 30144}, {4973, 12527}, {5122, 57288}, {5123, 18990}, {5128, 25522}, {5248, 9843}, {5251, 5442}, {5253, 10039}, {5267, 19524}, {5432, 5439}, {5435, 5815}, {5437, 10198}, {5438, 49168}, {5445, 24987}, {5482, 58493}, {5554, 37618}, {5563, 6735}, {5587, 37002}, {5687, 17728}, {5794, 16417}, {5836, 15325}, {5883, 13411}, {5902, 27385}, {6261, 6970}, {6666, 6701}, {6667, 9955}, {6686, 8258}, {6718, 58403}, {6825, 8257}, {6911, 12616}, {6918, 12617}, {6925, 16209}, {6927, 12520}, {6959, 12608}, {6964, 54370}, {7354, 17619}, {8715, 11019}, {9780, 20076}, {10165, 30147}, {10175, 37821}, {10199, 12053}, {10528, 51816}, {10573, 35262}, {10680, 25524}, {11011, 34123}, {11024, 31188}, {11112, 17606}, {11231, 25466}, {11263, 16140}, {11573, 38472}, {12447, 54288}, {12559, 27383}, {13405, 50196}, {13407, 27003}, {15254, 51559}, {16408, 26066}, {17614, 40663}, {17700, 41540}, {17734, 24178}, {17757, 32636}, {19862, 37567}, {20104, 58463}, {20196, 54290}, {24881, 25451}, {24907, 25441}, {25005, 45287}, {25681, 36279}, {26363, 31231}, {28018, 37610}, {31141, 57005}, {31246, 51073}, {31286, 44314}, {31792, 32157}, {31896, 46830}, {32554, 38133}, {33596, 38760}, {35059, 42450}, {37762, 56318}, {58623, 58643}

X(58405) = midpoint of X(i) and X(j) for these {i,j}: {10, 56}, {1210, 25440}, {1329, 37582}, {34753, 47742}, {46, 21616}, {4848, 30144}, {5687, 49627}, {58573, 58645}, {8256, 24928}
X(58405) = reflection of X(i) in X(j) for these {i,j}: {1125, 6691}, {1329, 3634}, {3678, 58649}, {3881, 58576}, {50196, 58565}
X(58405) = complement of X(21616)
X(58405) = X(i)-complementary conjugate of X(j) for these {i, j}: {57403, 10}
X(58405) = center of the nine-point conic of quadrilateral XYZX(46) where XYZ is the cevian triangle of X(2)
X(58405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 46, 21616}, {40, 31190, 10200}, {57, 26364, 21077}, {140, 3812, 1125}, {404, 1737, 17647}, {474, 24914, 10}, {498, 3306, 51706}, {999, 37828, 10915}, {1125, 43174, 3884}, {1125, 58441, 58404}, {3086, 26062, 54286}, {3634, 12436, 3822}, {4193, 9352, 1770}, {5437, 31423, 10198}, {5687, 17728, 49627}, {8256, 24928, 519}, {9843, 10164, 5248}, {27003, 27529, 13407}, {31253, 58449, 6666}, {34753, 47742, 518}


X(58406) = X(2)X(48)∩X(140)X(916)

Barycentrics    2*a^5-2*a^3*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+b*c+c^2)-a^2*(b^3+c^3) : :
X(58406) = 3*X[2]+X[48], X[1826]+3*X[35290], -5*X[3091]+X[52862]

X(58406) lies on circumconic {{A, B, C, X(1969), X(31265)}} and these lines: {2, 48}, {36, 25651}, {71, 24581}, {140, 916}, {610, 24682}, {857, 22054}, {1125, 9895}, {1375, 34830}, {1826, 35290}, {2174, 26012}, {2317, 25000}, {2801, 6666}, {3091, 52862}, {3589, 6691}, {3634, 29219}, {3739, 40539}, {6690, 58434}, {8680, 40942}, {16608, 31186}, {17073, 24315}, {17438, 48381}, {18589, 24684}, {18671, 26208}, {20769, 28755}, {21231, 26006}, {22273, 43223}, {22356, 40999}, {22390, 37050}, {23305, 48932}, {25582, 30885}, {28845, 44412}

X(58406) = midpoint of X(i) and X(j) for these {i,j}: {48, 20305}
X(58406) = complement of X(20305)
X(58406) = X(i)-complementary conjugate of X(j) for these {i, j}: {57405, 10}
X(58406) = center of the nine-point conic of quadrilateral XYZX(48) where XYZ is the cevian triangle of X(2)
X(58406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21270, 31265}, {2, 48, 20305}, {48, 31163, 20074}, {48, 31265, 21270}, {140, 58457, 58410}


X(58407) = X(2)X(49)∩X(5)X(13367)

Barycentrics    2*a^10-6*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+a^6*(5*b^4+6*b^2*c^2+5*c^4)+a^4*(b^6+c^6)-3*a^2*(b^8-b^6*c^2-b^2*c^6+c^8) : :
X(58407) = 3*X[2]+X[49], 5*X[632]+X[43844], -5*X[3091]+X[52863], 3*X[7552]+X[37495]

X(58407) lies on these lines: {2, 49}, {3, 34798}, {5, 13367}, {30, 44516}, {140, 9729}, {143, 10020}, {184, 13561}, {389, 10125}, {403, 15807}, {468, 10095}, {511, 34577}, {567, 14940}, {632, 43844}, {1154, 7542}, {1209, 40111}, {1493, 3580}, {1495, 33332}, {1511, 13160}, {1594, 5944}, {2072, 10610}, {3091, 52863}, {3292, 21230}, {3530, 14156}, {3574, 7575}, {3628, 5972}, {5446, 18282}, {5447, 34004}, {5449, 11264}, {5462, 8254}, {5498, 40647}, {5946, 10018}, {6288, 54000}, {6676, 10627}, {6699, 34421}, {7552, 37495}, {7564, 17821}, {7568, 11064}, {9704, 23293}, {9707, 34514}, {9827, 32205}, {10024, 43394}, {10096, 10110}, {10224, 13470}, {10282, 39504}, {11430, 13406}, {12006, 44452}, {12038, 46029}, {12043, 40685}, {12233, 34477}, {12242, 16881}, {13363, 16238}, {13364, 44232}, {13413, 45286}, {13491, 37118}, {14389, 15026}, {14643, 35500}, {14865, 51548}, {15331, 18388}, {16197, 54044}, {16252, 32137}, {16625, 22051}, {16982, 32269}, {18403, 51033}, {18580, 32138}, {18583, 58450}, {18914, 20379}, {26883, 44287}, {34513, 37444}, {35487, 43865}, {37484, 52300}, {43598, 48411}, {44900, 58531}, {45958, 51425}, {45959, 52262}, {46172, 58455}, {55704, 55862}

X(58407) = midpoint of X(i) and X(j) for these {i,j}: {10024, 43394}, {140, 15806}, {1594, 5944}, {49, 34826}, {5, 13367}
X(58407) = complement of X(34826)
X(58407) = X(i)-complementary conjugate of X(j) for these {i, j}: {57406, 10}
X(58407)= pole of line {6102, 15332} with respect to the Jerabek hyperbola
X(58407)= pole of line {6243, 18570} with respect to the Stammler hyperbola
X(58407) = center of the nine-point conic of quadrilateral XYZX(49) where XYZ is the cevian triangle of X(2)
X(58407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 49, 34826}, {5, 13367, 30522}, {140, 15806, 13754}, {140, 9820, 11591}, {184, 13561, 45732}, {5972, 6689, 3628}, {7568, 11064, 32142}, {8254, 44234, 5462}, {10020, 23292, 143}, {10224, 18475, 13470}, {16252, 44236, 32137}, {34004, 46114, 5447}, {43839, 58447, 140}


X(58408) = X(2)X(53)∩X(5)X(182)

Barycentrics    2*a^8-3*a^6*(b^2+c^2)-5*a^2*(b^2-c^2)^2*(b^2+c^2)+3*a^4*(b^2+c^2)^2+(b^2-c^2)^2*(3*b^4-2*b^2*c^2+3*c^4) : :
X(58408) = 3*X[2]+X[53], -9*X[373]+X[6751], -5*X[631]+X[36988], -5*X[1656]+X[42353], 7*X[3090]+X[33971], 5*X[3091]+3*X[20792], -9*X[5055]+X[18437]

X(58408) lies on circumconic {{A, B, C, X(2980), X(8796)}} and these lines: {2, 53}, {5, 182}, {95, 297}, {141, 52251}, {157, 5020}, {373, 6751}, {441, 36412}, {631, 36988}, {1656, 42353}, {1990, 45198}, {2165, 13567}, {2790, 6722}, {2871, 9822}, {3090, 33971}, {3091, 20792}, {3628, 32428}, {4993, 37649}, {5055, 18437}, {6329, 23583}, {6642, 37813}, {6677, 44381}, {6720, 10127}, {6748, 52247}, {7392, 41761}, {11737, 40477}, {14767, 34573}, {17825, 17849}, {18380, 18420}, {18928, 18953}, {19188, 19212}, {33228, 53490}, {36748, 37174}, {45871, 55887}, {45872, 55892}

X(58408) = midpoint of X(i) and X(j) for these {i,j}: {53, 34828}
X(58408) = complement of X(34828)
X(58408) = X(i)-complementary conjugate of X(j) for these {i, j}: {57409, 10}
X(58408)= pole of line {32, 11433} with respect to the Kiepert hyperbola
X(58408)= pole of line {2979, 36748} with respect to the Stammler hyperbola
X(58408)= pole of line {33294, 57211} with respect to the Steiner inellipse
X(58408) = center of the nine-point conic of quadrilateral XYZX(53) where XYZ is the cevian triangle of X(2)
X(58408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53, 34828}, {14767, 44334, 34573}


X(58409) = X(2)X(70)∩X(125)X(1147)

Barycentrics    (a^2-b^2-c^2)*((b^2-c^2)^6*(b^2+c^2)-3*a^2*(b^2-c^2)^4*(b^2+c^2)^2+2*a^4*(b^2-c^2)^2*(b^2+c^2)^3+a^10*(b^4+c^4)+2*a^6*(b^4+c^4)*(b^4-b^2*c^2+c^4)-a^8*(3*b^6+b^4*c^2+b^2*c^4+3*c^6)) : :
X(58409) = 3*X[2]+X[70], X[3]+X[51757], X[5]+X[34115], -5*X[15059]+X[38534]

X(58409) lies on these lines: {2, 70}, {3, 51757}, {5, 34115}, {125, 1147}, {140, 13561}, {141, 15074}, {143, 10224}, {343, 1216}, {394, 3519}, {1209, 7509}, {2904, 5422}, {6642, 34438}, {6644, 49108}, {6689, 14076}, {6696, 31833}, {6699, 20299}, {7399, 40647}, {12585, 15118}, {13368, 32351}, {14788, 23330}, {14852, 22808}, {15059, 38534}, {22962, 23329}, {24206, 44516}, {26917, 37644}

X(58409) = midpoint of X(i) and X(j) for these {i,j}: {3, 51757}, {5, 34115}, {70, 34116}
X(58409) = complement of X(34116)
X(58409) = X(i)-complementary conjugate of X(j) for these {i, j}: {91, 34116}, {2158, 52032}, {57415, 10}
X(58409) = center of the nine-point conic of quadrilateral XYZX(70) where XYZ is the cevian triangle of X(2)
X(58409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 70, 34116}


X(58410) = X(2)X(71)∩X(5)X(516)

Barycentrics    2*a^4*(b+c)+b*(b-c)^2*c*(b+c)+a*(b^2-c^2)^2-a^3*(b^2+c^2)-a^2*(b+c)*(2*b^2+b*c+2*c^2) : :
X(58410) = 3*X[2]+X[71], X[3]+X[51758], -7*X[3526]+X[43165], -5*X[15059]+X[38535], X[21231]+X[40937], 7*X[31423]+X[33536]

X(58410) lies on these lines: {2, 71}, {3, 51758}, {5, 516}, {9, 15669}, {10, 15624}, {140, 916}, {141, 5745}, {219, 25523}, {440, 910}, {469, 1839}, {674, 3589}, {899, 2293}, {1269, 3977}, {1376, 8053}, {1788, 42289}, {2772, 6699}, {3011, 21035}, {3526, 43165}, {3812, 4698}, {3831, 17279}, {3911, 17245}, {5224, 18650}, {5294, 27042}, {6696, 58458}, {6818, 26040}, {13405, 22277}, {14021, 26063}, {15059, 38535}, {17260, 50198}, {17277, 54316}, {17348, 56176}, {18589, 24317}, {20305, 30810}, {20992, 25613}, {21012, 48381}, {21231, 40937}, {22054, 31016}, {25341, 40942}, {25362, 41010}, {31423, 33536}, {37111, 40999}, {40940, 56926}

X(58410) = midpoint of X(i) and X(j) for these {i,j}: {21231, 40937}, {3, 51758}, {71, 34830}
X(58410) = complement of X(34830)
X(58410) = X(i)-complementary conjugate of X(j) for these {i, j}: {57416, 10}
X(58410)= pole of line {20970, 40940} with respect to the Kiepert hyperbola
X(58410)= pole of line {4064, 20294} with respect to the Steiner inellipse
X(58410) = center of the nine-point conic of quadrilateral XYZX(71) where XYZ is the cevian triangle of X(2)
X(58410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 71, 34830}, {140, 58457, 58406}, {6666, 6684, 40530}


X(58411) = X(2)X(73)∩X(5)X(515)

Barycentrics    2*a^6*(b+c)+b*(b-c)^2*c*(b+c)^3+a^5*(b^2+c^2)+2*a^2*(b-c)^2*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-a^4*(b+c)*(4*b^2-3*b*c+4*c^2)-2*a^3*(b^4+c^4) : :
X(58411) = 3*X[2]+X[73]

X(58411) lies on these lines: {2, 73}, {3, 51759}, {5, 515}, {140, 58460}, {141, 6700}, {142, 16415}, {960, 20617}, {1001, 15622}, {1745, 25490}, {2594, 26013}, {2779, 6699}, {3589, 6691}, {3812, 6685}, {3911, 56412}, {4300, 26095}, {5125, 40950}, {6675, 36949}, {6681, 6689}, {6690, 6696}, {6692, 20108}, {11374, 17073}, {13411, 17056}, {18134, 27385}, {22053, 27506}, {22350, 37154}, {23361, 25524}, {25517, 54411}, {25525, 37093}, {28628, 43223}

X(58411) = midpoint of X(i) and X(j) for these {i,j}: {3, 51759}, {73, 34831}, {960, 20617}
X(58411) = complement of X(34831)
X(58411) = X(i)-complementary conjugate of X(j) for these {i, j}: {57417, 10}
X(58411)= pole of line {56560, 57243} with respect to the Steiner inellipse
X(58411) = center of the nine-point conic of quadrilateral XYZX(73) where XYZ is the cevian triangle of X(2)
X(58411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 73, 34831}, {1125, 20201, 58403}


X(58412) = X(2)X(77)∩X(3)X(142)

Barycentrics    2*a^5+a^4*(b+c)-2*a^2*(b-c)^2*(b+c)+(b-c)^2*(b+c)^3-4*a^3*(b^2+c^2)+2*a*(b-c)^2*(b^2+c^2) : :
X(58412) = 3*X[2]+X[77]

X(58412) lies on these lines: {2, 77}, {3, 142}, {10, 53996}, {37, 44356}, {141, 6700}, {241, 40942}, {348, 27384}, {515, 21239}, {1442, 26001}, {1445, 24553}, {3589, 58466}, {3686, 6510}, {3739, 17044}, {3946, 17043}, {4000, 44675}, {4648, 13411}, {4682, 13405}, {4869, 27385}, {5437, 54420}, {5745, 53415}, {5908, 6684}, {6666, 36949}, {6692, 6703}, {6706, 6707}, {6711, 40555}, {6745, 17296}, {8074, 18161}, {9120, 37407}, {11108, 47441}, {14743, 20328}, {16578, 17355}, {17077, 26006}, {17758, 56227}, {17917, 37276}, {21258, 28639}, {26660, 27170}, {31435, 34498}

X(58412) = midpoint of X(i) and X(j) for these {i,j}: {77, 20262}
X(58412) = complement of X(20262)
X(58412) = perspector of circumconic {{A, B, C, X(43190), X(53642)}}
X(58412) = X(i)-complementary conjugate of X(j) for these {i, j}: {947, 3452}, {40396, 41883}, {40417, 21244}, {55987, 1329}, {57418, 10}
X(58412)= pole of line {4025, 8058} with respect to the Steiner inellipse
X(58412)= pole of line {27398, 33297} with respect to the Wallace hyperbola
X(58412) = center of the nine-point conic of quadrilateral XYZX(77) where XYZ is the cevian triangle of X(2)
X(58412) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1440), X(14377)}}, {{A, B, C, X(8808), X(15320)}}
X(58412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 77, 20262}, {31534, 31535, 946}


X(58413) = X(2)X(45)∩X(8)X(1120)

Barycentrics    2*a^3-4*a^2*(b+c)-5*a*(b^2-4*b*c+c^2)+(b+c)*(b^2-4*b*c+c^2) : :

X(58413) lies on these lines: {2, 45}, {8, 1120}, {320, 51415}, {528, 25377}, {1125, 1387}, {1698, 24222}, {3589, 58414}, {3623, 43290}, {3911, 6687}, {3960, 21198}, {4013, 58423}, {4152, 9041}, {4395, 8610}, {4763, 6009}, {5437, 21362}, {6692, 36949}, {6703, 40539}, {6714, 22102}, {12035, 24841}, {14951, 16604}, {17337, 30608}, {17367, 31233}, {23808, 25380}, {24216, 49702}, {25351, 45310}, {31190, 40537}, {36812, 40546}, {40532, 52259}, {40533, 40538}

X(58413) = midpoint of X(i) and X(j) for these {i,j}: {88, 16594}
X(58413) = complement of X(16594)
X(58413) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2415, 514}
X(58413) = X(i)-complementary conjugate of X(j) for these {i, j}: {9456, 52871}, {40400, 121}
X(58413)= pole of line {900, 1120} with respect to the Steiner inellipse
X(58413) = center of the nine-point conic of quadrilateral XYZX(88) where XYZ is the cevian triangle of X(2)
X(58413) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1120), X(31227)}}, {{A, B, C, X(3445), X(52206)}}, {{A, B, C, X(4358), X(31271)}}
X(58413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24183, 37691}, {2, 30578, 31271}, {2, 43055, 4422}, {2, 88, 16594}, {88, 16594, 545}, {88, 31171, 20092}, {88, 31271, 30578}


X(58414) = X(2)X(44)∩X(65)X(392)

Barycentrics    4*a^3+a^2*(b+c)-a*(b^2-10*b*c+c^2)+2*(b^3+c^3) : :

X(58414) lies on circumconic {{A, B, C, X(30608), X(42285)}} and these lines: {2, 44}, {37, 51583}, {65, 392}, {88, 17382}, {354, 58443}, {894, 4997}, {996, 36919}, {1698, 37607}, {3306, 17290}, {3589, 58413}, {3707, 5241}, {3742, 29638}, {3752, 26747}, {4049, 4369}, {4152, 49529}, {5437, 9816}, {6692, 14557}, {14475, 47761}, {16594, 50115}, {16604, 16610}, {17023, 32043}, {17122, 29861}, {17320, 30577}, {17351, 30578}, {17360, 37684}, {17369, 30818}, {17720, 42697}, {19701, 31231}, {25378, 28534}, {27757, 37633}, {28600, 50362}, {29569, 32851}, {29848, 58560}, {31187, 31244}, {31202, 47352}, {31285, 54357}, {31993, 37634}, {35466, 36812}, {37691, 50116}, {39595, 42051}

X(58414) = inverse of X(29908) in Steiner inellipse
X(58414) = perspector of circumconic {{A, B, C, X(4597), X(46480)}}
X(58414) = X(i)-complementary conjugate of X(j) for these {i, j}: {40401, 21251}, {40426, 2887}
X(58414)= pole of line {4777, 29908} with respect to the Steiner inellipse
X(58414) = center of the nine-point conic of quadrilateral XYZX(89) where XYZ is the cevian triangle of X(2)
X(58414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24593, 17237}, {2, 39704, 27751}, {2, 4675, 30823}, {89, 31172, 20093}


X(58415) = X(2)X(90)∩X(10)X(55)

Barycentrics    2*a^7-a^6*(b+c)+(b-c)^4*(b+c)^3-2*a*(b-c)^2*(b+c)^4-6*a^5*(b^2+c^2)+2*a^3*(b+c)^2*(3*b^2-4*b*c+3*c^2)-a^2*(b+c)*(b^2+c^2)*(3*b^2-4*b*c+3*c^2)+a^4*(b+c)*(3*b^2-2*b*c+3*c^2) : :
X(58415) = 3*X[2]+X[90], -5*X[1656]+X[41688]

X(58415) lies on these lines: {2, 90}, {5, 58405}, {10, 55}, {63, 499}, {142, 6861}, {912, 1125}, {960, 1387}, {1656, 41688}, {1728, 21077}, {3825, 5745}, {3874, 44675}, {3911, 7702}, {5840, 6684}, {6666, 58404}, {6675, 58461}, {6681, 6705}, {6692, 6701}, {6713, 13369}, {6734, 45393}, {6832, 12609}, {6928, 24042}, {10052, 37692}, {10198, 45632}, {43740, 54357}

X(58415) = midpoint of X(i) and X(j) for these {i,j}: {90, 41540}
X(58415) = complement of X(41540)
X(58415) = center of the nine-point conic of quadrilateral XYZX(90) where XYZ is the cevian triangle of X(2)
X(58415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 90, 41540}


X(58416) = X(2)X(94)∩X(5)X(113)

Barycentrics    2*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)-4*a^8*(b^4+c^4)+a^6*(b^2+c^2)*(6*b^4-7*b^2*c^2+6*c^4)+a^2*(b^2-c^2)^2*(b^6+c^6)-4*a^4*(b^8-b^4*c^4+c^8) : :
X(58416) = 3*X[2]+X[94]

X(58416) lies on these lines: {2, 94}, {3, 46260}, {5, 113}, {468, 6036}, {1637, 6334}, {1995, 9756}, {2023, 47298}, {2986, 40879}, {3124, 13881}, {3258, 51847}, {3580, 34827}, {5461, 44569}, {6699, 18780}, {7542, 15366}, {11062, 46106}, {11064, 16310}, {13567, 34989}, {14061, 16080}, {15928, 40352}, {23292, 41665}, {23583, 37649}, {34981, 36190}, {37643, 39143}, {41673, 53577}

X(58416) = midpoint of X(i) and X(j) for these {i,j}: {94, 34834}
X(58416) = complement of X(34834)
X(58416) = X(i)-complementary conjugate of X(j) for these {i, j}: {12028, 18589}, {40427, 2887}
X(58416)= pole of line {3003, 3580} with respect to the Kiepert hyperbola
X(58416)= pole of line {50, 43574} with respect to the Stammler hyperbola
X(58416)= pole of line {265, 526} with respect to the Steiner inellipse
X(58416) = center of the nine-point conic of quadrilateral XYZX(94) where XYZ is the cevian triangle of X(2)
X(58416) = intersection, other than A, B, C, of circumconics {{A, B, C, X(94), X(43917)}}, {{A, B, C, X(34834), X(40427)}}
X(58416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 94, 34834}, {5, 47208, 41670}


X(58417) = X(2)X(95)∩X(3)X(6750)

Barycentrics    2*a^12-8*a^10*(b^2+c^2)-4*a^2*(b^2-c^2)^4*(b^2+c^2)+(b^2-c^2)^4*(b^4+c^4)-12*a^6*(b^2+c^2)*(b^4+c^4)+a^8*(13*b^4+20*b^2*c^2+13*c^4)+8*a^4*(b^8-b^6*c^2-b^2*c^6+c^8) : :

X(58417) lies on circumconic {{A, B, C, X(275), X(35717)}} and these lines: {2, 95}, {3, 6750}, {140, 389}, {216, 56297}, {372, 8955}, {465, 6116}, {466, 6117}, {631, 3183}, {3078, 35884}, {3533, 56346}, {3788, 17811}, {5972, 32438}, {6761, 40448}, {7499, 34841}, {8613, 36412}, {10600, 19179}, {10979, 11547}, {11064, 50671}, {14165, 36422}, {15066, 56347}, {22052, 52280}, {26897, 31881}, {31626, 37766}, {37649, 58454}

X(58417) = midpoint of X(i) and X(j) for these {i,j}: {97, 34836}
X(58417) = complement of X(34836)
X(58417)= pole of line {233, 23292} with respect to the Kiepert hyperbola
X(58417)= pole of line {216, 13434} with respect to the Stammler hyperbola
X(58417)= pole of line {3484, 6368} with respect to the Steiner inellipse
X(58417) = center of the nine-point conic of quadrilateral XYZX(97) where XYZ is the cevian triangle of X(2)
X(58417) = barycentric product X(i)*X(j) for these (i, j): {35717, 69}
X(58417) = barycentric quotient X(i)/X(j) for these (i, j): {35717, 4}
X(58417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 275, 233}, {2, 97, 34836}


X(58418) = X(2)X(101)∩X(5)X(6712)

Barycentrics    2*a^4+2*a^2*b*c-2*a^3*(b+c)-3*a*(b-c)^2*(b+c)+3*(b-c)^2*(b^2+b*c+c^2) : :
X(58418) = -9*X[2]+X[101], X[103]+7*X[3090], -X[118]+5*X[1656], -X[152]+17*X[7486], 3*X[381]+X[38773], -5*X[632]+X[38599], -X[1282]+17*X[19872], 5*X[3091]+3*X[38692], 7*X[3523]+X[10725], -11*X[3525]+3*X[38690], 7*X[3526]+X[10739], -9*X[3545]+X[10727] and many others

X(58418) lies on these lines: {2, 101}, {4, 38771}, {5, 6712}, {10, 11726}, {103, 3090}, {118, 1656}, {152, 7486}, {381, 38773}, {511, 58519}, {514, 40483}, {632, 38599}, {928, 58426}, {1282, 19872}, {2772, 12900}, {2774, 6723}, {2784, 6721}, {2786, 6722}, {2801, 58421}, {2807, 58419}, {2808, 3628}, {2809, 3634}, {2810, 34573}, {2811, 58424}, {2812, 58425}, {2813, 58427}, {2822, 58431}, {2825, 58430}, {3091, 38692}, {3523, 10725}, {3525, 38690}, {3526, 10739}, {3545, 10727}, {3619, 10756}, {3624, 50896}, {3843, 38766}, {3848, 58592}, {3851, 38765}, {3887, 6667}, {5055, 10741}, {5056, 33521}, {5067, 38770}, {5070, 38764}, {6688, 58505}, {8363, 38644}, {9518, 58428}, {9780, 10695}, {10175, 11714}, {11230, 11728}, {11712, 19862}, {11793, 58507}, {13374, 58665}, {17675, 42316}, {19876, 50898}, {23513, 53741}, {23514, 53732}, {23515, 53751}, {28346, 31253}, {31235, 53739}, {31274, 53730}, {33520, 38774}, {36518, 53714}, {38572, 38775}, {38668, 46936}, {43651, 58057}, {50903, 54447}, {51526, 55861}, {58451, 58612}, {58594, 58631}

X(58418) = midpoint of X(i) and X(j) for these {i,j}: {10, 11726}, {103, 38769}, {116, 6710}, {11793, 58507}, {13374, 58665}, {4, 38771}, {5, 6712}, {58592, 58684}, {58594, 58631}, {58612, 58664}
X(58418) = reflection of X(i) in X(j) for these {i,j}: {20401, 58420}, {35024, 6710}, {58420, 3628}
X(58418) = complement of X(6710)
X(58418)= pole of line {23887, 44006} with respect to the Steiner inellipse
X(58418) = center of the nine-point conic of quadrilateral XYZX(116) where XYZ is the cevian triangle of X(2)
X(58418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 116, 6710}, {2, 31273, 116}, {116, 6710, 544}, {544, 6710, 35024}, {1656, 57297, 118}, {2808, 3628, 58420}, {2808, 58420, 20401}, {3848, 58684, 58592}


X(58419) = X(2)X(102)∩X(5)X(6718)

Barycentrics    2*a^10-2*a^9*(b+c)-3*a*(b-c)^6*(b+c)^3+a^8*(-8*b^2+6*b*c-8*c^2)+3*(b^2-c^2)^4*(b^2-b*c+c^2)+a^4*(b-c)^2*(b^2+b*c+c^2)*(b^2+22*b*c+c^2)+3*a^7*(b+c)*(3*b^2-2*b*c+3*c^2)-3*a^5*(b-c)^2*(b+c)*(5*b^2+2*b*c+5*c^2)+a^3*(b-c)^4*(b+c)*(11*b^2+14*b*c+11*c^2)+3*a^6*(3*b^4-7*b^3*c+4*b^2*c^2-7*b*c^3+3*c^4)-a^2*(b^2-c^2)^2*(7*b^4+3*b^3*c-12*b^2*c^2+3*b*c^3+7*c^4) : :
X(58419) = -9*X[2]+X[102], X[109]+7*X[3090], -X[124]+5*X[1656], 3*X[381]+X[38785], -5*X[632]+X[38600], 5*X[3091]+3*X[38697], 7*X[3523]+X[10726], -11*X[3525]+3*X[38691], 7*X[3526]+X[10740], -9*X[3545]+X[10732], 7*X[3619]+X[10757], 7*X[3624]+X[50899] and many others

X(58419) lies on these lines: {2, 102}, {4, 38783}, {5, 6718}, {10, 11727}, {109, 3090}, {124, 1656}, {381, 38785}, {511, 58520}, {632, 38600}, {928, 58420}, {2773, 12900}, {2779, 6723}, {2785, 6721}, {2792, 6722}, {2800, 3812}, {2807, 58418}, {2814, 58422}, {2815, 58423}, {2816, 58424}, {2817, 3634}, {2818, 3628}, {2819, 58427}, {2846, 58431}, {2853, 58430}, {3091, 38697}, {3523, 10726}, {3525, 38691}, {3526, 10740}, {3545, 10732}, {3619, 10757}, {3624, 50899}, {3738, 58421}, {3817, 14690}, {3843, 38778}, {3848, 58593}, {3851, 38777}, {5055, 10747}, {5067, 38782}, {5070, 38776}, {6688, 58506}, {7486, 33650}, {9532, 58428}, {9780, 10696}, {10175, 11700}, {11230, 11734}, {11713, 19862}, {11793, 58513}, {13374, 58670}, {13532, 54447}, {19876, 50901}, {23513, 53742}, {23514, 53734}, {23515, 53758}, {31235, 53740}, {31274, 53731}, {36518, 53717}, {36519, 53724}, {38573, 38787}, {38674, 46936}, {38786, 46219}, {43651, 58051}, {51527, 55861}, {58600, 58631}

X(58419) = midpoint of X(i) and X(j) for these {i,j}: {10, 11727}, {109, 38781}, {117, 6711}, {11793, 58513}, {13374, 58670}, {4, 38783}, {5, 6718}, {58593, 58685}, {58600, 58631}
X(58419) = reflection of X(i) in X(j) for these {i,j}: {58426, 3628}
X(58419) = complement of X(6711)
X(58419) = center of the nine-point conic of quadrilateral XYZX(117) where XYZ is the cevian triangle of X(2)
X(58419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 117, 6711}, {3526, 10740, 38784}, {3848, 58685, 58593}


X(58420) = X(2)X(103)∩X(5)X(6710)

Barycentrics    2*a^8-2*a^7*(b+c)-8*a^3*b*(b-c)^2*c*(b+c)-3*a*(b-c)^4*(b+c)^3+a^6*(-6*b^2+2*b*c-6*c^2)+3*(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^5*(b+c)*(5*b^2+2*b*c+5*c^2)-4*a^2*(b-c)^2*(b^4+c^4)+a^4*(5*b^4-7*b^3*c-8*b^2*c^2-7*b*c^3+5*c^4) : :
X(58420) = -9*X[2]+X[103], X[4]+3*X[38772], X[101]+7*X[3090], -X[116]+5*X[1656], -X[150]+17*X[7486], 3*X[381]+5*X[38774], -3*X[549]+X[38771], -5*X[631]+X[38773], -5*X[632]+X[38601], 5*X[3091]+3*X[38690], 7*X[3523]+X[10727], -11*X[3525]+3*X[38692] and many others

X(58420) lies on these lines: {2, 103}, {4, 38772}, {5, 6710}, {10, 11728}, {101, 3090}, {116, 1656}, {150, 7486}, {381, 38774}, {511, 58521}, {544, 547}, {549, 38771}, {631, 38773}, {632, 38601}, {928, 58419}, {2772, 6723}, {2774, 12900}, {2784, 6722}, {2786, 6721}, {2801, 3848}, {2807, 58426}, {2808, 3628}, {2811, 58431}, {2820, 58422}, {2821, 58423}, {2822, 58424}, {2823, 58425}, {2824, 58427}, {2825, 58428}, {3046, 43651}, {3091, 38690}, {3523, 10727}, {3525, 38692}, {3526, 10741}, {3545, 10725}, {3619, 10758}, {3624, 50903}, {3887, 58421}, {5054, 38765}, {5055, 10739}, {5056, 33520}, {5067, 31273}, {5070, 57297}, {6688, 58507}, {8363, 38645}, {9518, 58430}, {9780, 10697}, {10171, 28346}, {10175, 11712}, {11230, 11726}, {11714, 19862}, {11793, 58505}, {13374, 58664}, {15694, 38768}, {15720, 38766}, {19872, 39156}, {19876, 50905}, {23513, 53739}, {23514, 53730}, {23515, 53747}, {31235, 53741}, {31274, 53732}, {33521, 38767}, {35018, 35024}, {36518, 53712}, {36519, 53721}, {38574, 55857}, {38666, 46936}, {38770, 55856}, {50896, 54447}, {51528, 55861}, {58451, 58665}, {58592, 58631}

X(58420) = midpoint of X(i) and X(j) for these {i,j}: {10, 11728}, {118, 6712}, {11793, 58505}, {13374, 58664}, {20401, 58418}, {38601, 38769}, {5, 6710}, {58592, 58631}, {58594, 58686}
X(58420) = reflection of X(i) in X(j) for these {i,j}: {58418, 3628}
X(58420) = complement of X(6712)
X(58420) = center of the nine-point conic of quadrilateral XYZX(118) where XYZ is the cevian triangle of X(2)
X(58420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 118, 6712}, {3848, 58686, 58594}, {20401, 58418, 2808}, {58594, 58686, 2801}


X(58421) = X(2)X(104)∩X(11)X(498)

Barycentrics    2*a^7-2*a^6*(b+c)-a*(b-3*c)*(b-c)^2*(3*b-c)*(b+c)^2+3*(b-c)^4*(b+c)^3+a^5*(-7*b^2+4*b*c-7*c^2)-8*a^2*(b-c)^2*(b+c)*(b^2+b*c+c^2)+a^4*(b+c)*(7*b^2-2*b*c+7*c^2)+2*a^3*(4*b^4-7*b^3*c-7*b*c^3+4*c^4) : :
X(58421) = -9*X[2]+X[104], -X[3]+5*X[31235], X[4]+3*X[38760], X[100]+7*X[3090], -X[149]+17*X[7486], X[214]+3*X[10175], X[355]+3*X[34123], 3*X[381]+X[24466], 3*X[549]+X[22799], -5*X[631]+X[38761], -5*X[632]+X[38602], X[1145]+3*X[5886] and many others

X(58421) lies on these lines: {2, 104}, {3, 31235}, {4, 38760}, {5, 3035}, {10, 11729}, {11, 498}, {80, 13384}, {100, 3090}, {140, 2829}, {149, 7486}, {214, 10175}, {355, 34123}, {381, 24466}, {485, 13991}, {486, 13922}, {499, 10956}, {511, 58522}, {515, 58453}, {518, 58604}, {528, 547}, {549, 22799}, {631, 38761}, {632, 38602}, {952, 1125}, {1145, 5886}, {1317, 5790}, {1387, 11230}, {1484, 10197}, {1537, 26446}, {1698, 13253}, {1768, 19872}, {2771, 6723}, {2783, 6722}, {2787, 6721}, {2800, 3634}, {2801, 58418}, {2803, 58431}, {2806, 58430}, {2826, 58422}, {2827, 58423}, {2828, 58424}, {2830, 58427}, {2831, 58428}, {3036, 19907}, {3045, 43651}, {3091, 34474}, {3523, 10728}, {3525, 38693}, {3526, 10742}, {3533, 12248}, {3545, 10724}, {3614, 45976}, {3619, 10759}, {3624, 12751}, {3738, 58419}, {3814, 5841}, {3847, 32141}, {3848, 58595}, {3887, 58420}, {4187, 31659}, {4996, 6946}, {5054, 38753}, {5055, 6174}, {5056, 10993}, {5067, 31272}, {5070, 37725}, {5071, 13199}, {5316, 11231}, {5326, 7489}, {5848, 24206}, {5854, 5901}, {6068, 38107}, {6154, 51517}, {6265, 19860}, {6688, 58508}, {6842, 55297}, {6863, 31246}, {6881, 8068}, {6882, 31263}, {6911, 51506}, {6920, 17100}, {6931, 11499}, {6959, 22753}, {6961, 45631}, {6969, 35238}, {6978, 18491}, {6981, 11248}, {7393, 54065}, {7988, 14217}, {7989, 12119}, {8252, 13977}, {8253, 13913}, {8363, 38646}, {8582, 9952}, {8674, 12900}, {9780, 10698}, {9897, 30315}, {9913, 16419}, {10171, 16174}, {10199, 32213}, {10202, 12665}, {10427, 38108}, {11484, 13222}, {11698, 20418}, {11715, 19862}, {11793, 58504}, {12019, 22935}, {12767, 15017}, {12773, 55857}, {13374, 58663}, {14503, 57341}, {14504, 57340}, {14561, 51007}, {15694, 38756}, {15720, 38754}, {15863, 31399}, {17531, 18861}, {19081, 32786}, {19082, 32785}, {19876, 50908}, {21635, 38133}, {23514, 53729}, {23515, 53743}, {26492, 30283}, {31274, 53733}, {31423, 34789}, {32789, 48700}, {32790, 48701}, {35018, 35023}, {36518, 53711}, {36519, 53720}, {38119, 47355}, {38665, 46936}, {38755, 46219}, {42582, 48715}, {42583, 48714}, {51529, 55861}, {58451, 58613}, {58591, 58631}

X(58421) = midpoint of X(i) and X(j) for these {i,j}: {10, 11729}, {119, 6713}, {11698, 20418}, {11793, 58504}, {12019, 22935}, {13374, 58663}, {22799, 38759}, {3036, 19907}, {34126, 38758}, {38319, 38752}, {38602, 38757}, {5, 3035}, {6667, 20400}, {58591, 58631}, {58595, 58687}, {58604, 58674}, {58613, 58666}
X(58421) = reflection of X(i) in X(j) for these {i,j}: {6667, 3628}
X(58421) = complement of X(6713)
X(58421) = center of the nine-point conic of quadrilateral XYZX(119) where XYZ is the cevian triangle of X(2)
X(58421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10711, 38069}, {2, 119, 6713}, {5, 3035, 5840}, {11, 1656, 38319}, {100, 3090, 23513}, {381, 38762, 24466}, {549, 22799, 38759}, {952, 3628, 6667}, {1656, 38752, 11}, {3526, 10742, 21154}, {3624, 12751, 38032}, {3848, 58687, 58595}, {6667, 20400, 952}, {9780, 10698, 38128}, {11698, 34126, 20418}, {11698, 55856, 34126}, {20418, 38758, 11698}, {21635, 51073, 38133}, {22935, 38182, 12019}, {58451, 58613, 58666}, {58604, 58674, 518}


X(58422) = X(2)X(11)∩X(10)X(11730)

Barycentrics    2*a^5-2*a^4*(b+c)+3*(b-c)^2*(b+c)*(b^2+c^2)-a^3*(b^2+8*b*c+c^2)+a^2*(b+c)*(b^2+10*b*c+c^2)-a*(b^2+4*b*c+c^2)*(3*b^2-4*b*c+3*c^2) : :
X(58422) = 3*X[5]+X[38619], -5*X[632]+X[38603], X[1292]+7*X[3090], -5*X[1656]+X[5511], 5*X[3091]+3*X[38712], 7*X[3523]+X[10729], -11*X[3525]+3*X[38694], 7*X[3526]+X[10743], -9*X[3545]+X[44983], 7*X[3619]+X[10760], 7*X[3624]+X[50911], -3*X[3848]+X[58596] and many others

X(58422) lies on these lines: {2, 11}, {5, 38619}, {10, 11730}, {632, 38603}, {1292, 3090}, {1358, 52422}, {1656, 5511}, {2775, 12900}, {2788, 6721}, {2795, 6722}, {2809, 3634}, {2814, 58419}, {2820, 58420}, {2826, 58421}, {2832, 58423}, {2833, 58424}, {2834, 58425}, {2835, 58426}, {2836, 6723}, {2837, 58427}, {2838, 58428}, {3039, 46835}, {3091, 38712}, {3523, 10729}, {3525, 38694}, {3526, 10743}, {3545, 44983}, {3619, 10760}, {3624, 50911}, {3628, 28915}, {3848, 58596}, {5055, 15521}, {5070, 57299}, {5540, 19872}, {5852, 51400}, {6668, 6706}, {6688, 58509}, {7486, 34547}, {8363, 38647}, {9520, 58431}, {9523, 58430}, {9780, 10699}, {11716, 19862}, {19876, 50913}, {30742, 56796}, {38575, 55857}, {38684, 46936}, {43651, 58055}, {51530, 55861}, {53573, 55133}

X(58422) = midpoint of X(i) and X(j) for these {i,j}: {10, 11730}, {120, 6714}
X(58422) = inverse of X(20095) in orthoptic circle of the Steiner Inellipse
X(58422) = complement of X(6714)
X(58422)= pole of line {3837, 55137} with respect to the nine-point circle
X(58422)= pole of line {2826, 20095} with respect to the orthoptic circle of the Steiner Inellipse
X(58422) = center of the nine-point conic of quadrilateral XYZX(120) where XYZ is the cevian triangle of X(2)
X(58422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 120, 6714}, {120, 6714, 528}, {1656, 57327, 5511}


X(58423) = X(2)X(106)∩X(10)X(11731)

Barycentrics    2*a^4-2*a^3*(b+c)-3*a*(b+c)*(b^2-6*b*c+c^2)+3*(b+c)^2*(b^2-3*b*c+c^2)-10*a^2*(b^2-b*c+c^2) : :
X(58423) = -9*X[2]+X[106], 3*X[5]+X[38620], -5*X[632]+X[38604], -X[1054]+17*X[19872], X[1293]+7*X[3090], -5*X[1656]+X[5510], 15*X[1698]+X[13541], 5*X[3091]+3*X[38713], 7*X[3523]+X[10730], -11*X[3525]+3*X[38695], 7*X[3526]+X[10744], -9*X[3545]+X[44984] and many others

X(58423) lies on these lines: {2, 106}, {5, 38620}, {10, 11731}, {511, 58523}, {632, 38604}, {1054, 19872}, {1293, 3090}, {1656, 5510}, {1698, 13541}, {2776, 12900}, {2789, 6721}, {2796, 6722}, {2802, 3634}, {2810, 34573}, {2815, 58419}, {2821, 58420}, {2827, 58421}, {2832, 58422}, {2839, 58424}, {2840, 58425}, {2841, 58426}, {2842, 6723}, {2843, 58427}, {2844, 58428}, {3091, 38713}, {3523, 10730}, {3525, 38695}, {3526, 10744}, {3545, 44984}, {3619, 10761}, {3624, 50914}, {3628, 53790}, {3848, 58597}, {4013, 58413}, {5055, 15522}, {5070, 57300}, {6688, 58510}, {7486, 34548}, {8363, 38648}, {9524, 58431}, {9527, 58430}, {9780, 10700}, {11717, 19862}, {11814, 51073}, {19876, 50915}, {38576, 55857}, {38685, 46936}, {43651, 58054}, {51531, 55861}, {58451, 58667}

X(58423) = midpoint of X(i) and X(j) for these {i,j}: {10, 11731}, {121, 6715}
X(58423) = complement of X(6715)
X(58423) = center of the nine-point conic of quadrilateral XYZX(121) where XYZ is the cevian triangle of X(2)
X(58423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 121, 6715}, {1656, 57328, 5510}


X(58424) = X(2)X(107)∩X(3)X(33892)

Barycentrics    2*a^12-2*a^10*(b^2+c^2)+28*a^6*(b^2-c^2)^2*(b^2+c^2)+a^8*(-13*b^4+28*b^2*c^2-13*c^4)-8*a^4*(b^2-c^2)^2*(2*b^4+7*b^2*c^2+2*c^4)+(b^2-c^2)^4*(3*b^4+8*b^2*c^2+3*c^4)-2*a^2*(b^2-c^2)^2*(b^6-13*b^4*c^2-13*b^2*c^4+c^6) : :
X(58424) = -9*X[2]+X[107], -X[133]+5*X[1656], 3*X[549]+X[49117], -5*X[631]+X[3184], -5*X[632]+X[38605], X[1294]+7*X[3090], 5*X[3091]+3*X[38714], 7*X[3523]+X[10152], -11*X[3525]+3*X[23239], 7*X[3526]+X[10745], -17*X[3533]+X[5667], -9*X[3545]+X[44985] and many others

X(58424) lies on these lines: {2, 107}, {3, 33892}, {5, 34842}, {10, 11732}, {133, 1656}, {140, 2777}, {511, 58524}, {549, 49117}, {631, 3184}, {632, 38605}, {1294, 3090}, {2790, 6721}, {2797, 6722}, {2803, 6667}, {2811, 58418}, {2816, 58419}, {2822, 58420}, {2828, 58421}, {2833, 58422}, {2839, 58423}, {2845, 58425}, {2846, 58426}, {2847, 58427}, {2848, 58428}, {3091, 38714}, {3523, 10152}, {3525, 23239}, {3526, 10745}, {3533, 5667}, {3545, 44985}, {3619, 10762}, {3624, 50916}, {3628, 53803}, {3848, 58598}, {5054, 23240}, {5055, 22337}, {5070, 57301}, {6688, 58511}, {6723, 9033}, {7393, 14703}, {7486, 34549}, {7503, 40082}, {8363, 38649}, {9780, 10701}, {11718, 19862}, {14673, 16419}, {38577, 55857}, {38686, 46936}, {43651, 58067}, {46219, 52057}, {51532, 55861}, {58451, 58668}

X(58424) = midpoint of X(i) and X(j) for these {i,j}: {10, 11732}, {122, 6716}, {5, 34842}
X(58424) = reflection of X(i) in X(j) for these {i,j}: {58431, 3628}
X(58424) = complement of X(6716)
X(58424)= pole of line {39352, 39473} with respect to the Steiner inellipse
X(58424) = center of the nine-point conic of quadrilateral XYZX(122) where XYZ is the cevian triangle of X(2)
X(58424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 122, 6716}, {122, 6716, 9530}, {1656, 57329, 133}, {3091, 38714, 38956}, {3628, 53803, 58431}


X(58425) = X(2)X(108)∩X(10)X(11733)

Barycentrics    2*a^9-2*a^8*(b+c)+5*a^6*(b-c)^2*(b+c)+a^7*(-5*b^2+12*b*c-5*c^2)+3*(b-c)^4*(b+c)^3*(b^2+c^2)-a^4*(b-c)^2*(b+c)*(b^2-16*b*c+c^2)+a^5*(b-c)^2*(b^2-12*b*c+c^2)-a*(b^2-c^2)^2*(3*b^4-14*b^3*c+10*b^2*c^2-14*b*c^3+3*c^4)+a^3*(b-c)^2*(5*b^4-2*b^3*c-26*b^2*c^2-2*b*c^3+5*c^4)-a^2*(b-c)^2*(b+c)*(5*b^4+12*b^3*c-10*b^2*c^2+12*b*c^3+5*c^4) : :
X(58425) = -9*X[2]+X[108], 3*X[5]+X[38622], -5*X[632]+X[38606], X[1295]+7*X[3090], -5*X[1656]+X[25640], 5*X[3091]+3*X[38715], 7*X[3523]+X[10731], -11*X[3525]+3*X[38696], 7*X[3526]+X[10746], -9*X[3545]+X[44986], 7*X[3619]+X[10763], 7*X[3624]+X[50917] and many others

X(58425) lies on these lines: {2, 108}, {5, 38622}, {10, 11733}, {140, 2829}, {511, 58525}, {632, 38606}, {1295, 3090}, {1656, 25640}, {2778, 12900}, {2791, 6721}, {2798, 6722}, {2804, 6667}, {2812, 58418}, {2817, 3634}, {2823, 58420}, {2834, 58422}, {2840, 58423}, {2845, 58424}, {2849, 58426}, {2850, 6723}, {2851, 58427}, {3091, 38715}, {3523, 10731}, {3525, 38696}, {3526, 10746}, {3545, 44986}, {3619, 10763}, {3624, 50917}, {3848, 58599}, {5055, 33566}, {5070, 57302}, {6688, 58512}, {7393, 54064}, {7486, 34550}, {9528, 58431}, {9780, 10702}, {11719, 19862}, {38578, 55857}, {38687, 46936}, {43651, 58063}, {51533, 55861}, {58451, 58669}

X(58425) = midpoint of X(i) and X(j) for these {i,j}: {10, 11733}, {123, 6717}
X(58425) = complement of X(6717)
X(58425) = center of the nine-point conic of quadrilateral XYZX(123) where XYZ is the cevian triangle of X(2)
X(58425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 123, 6717}, {1656, 57330, 25640}


X(58426) = X(2)X(109)∩X(5)X(6711)

Barycentrics    2*a^6-2*a^5*(b+c)+5*a^3*(b-c)^2*(b+c)-3*a*(b-c)^4*(b+c)-2*a^4*(b^2-3*b*c+c^2)+3*(b^2-c^2)^2*(b^2-b*c+c^2)-a^2*(b-c)^2*(3*b^2+11*b*c+3*c^2) : :
X(58426) = -9*X[2]+X[109], X[4]+3*X[38784], X[102]+7*X[3090], -X[117]+5*X[1656], -X[151]+17*X[7486], 3*X[381]+5*X[38786], -3*X[549]+X[38783], -5*X[631]+X[38785], -5*X[632]+X[38607], -3*X[1125]+X[47115], 5*X[3091]+3*X[38691], 7*X[3523]+X[10732] and many others

X(58426) lies on these lines: {2, 109}, {4, 38784}, {5, 6711}, {10, 11734}, {102, 3090}, {117, 1656}, {151, 7486}, {381, 38786}, {511, 58526}, {549, 38783}, {631, 38785}, {632, 38607}, {928, 58418}, {1125, 47115}, {2773, 6723}, {2779, 12900}, {2785, 6722}, {2792, 6721}, {2800, 3634}, {2807, 58420}, {2816, 58431}, {2818, 3628}, {2835, 58422}, {2841, 58423}, {2846, 58424}, {2849, 58425}, {2852, 58427}, {2853, 58428}, {3091, 38691}, {3523, 10732}, {3525, 38697}, {3526, 10747}, {3545, 10726}, {3619, 10764}, {3624, 13532}, {3738, 6667}, {3848, 58600}, {5054, 38777}, {5055, 10740}, {5070, 57303}, {6688, 58513}, {9532, 58430}, {9780, 10703}, {10175, 11713}, {11230, 11727}, {11700, 19862}, {11793, 58506}, {15694, 38780}, {15720, 38778}, {19876, 50918}, {23513, 53740}, {23514, 53731}, {23515, 53749}, {31235, 53742}, {31274, 53734}, {36518, 53713}, {38579, 55857}, {38667, 46936}, {38779, 46219}, {38782, 55856}, {43651, 58060}, {50899, 54447}, {51534, 55861}, {58451, 58670}, {58593, 58631}

X(58426) = midpoint of X(i) and X(j) for these {i,j}: {10, 11734}, {124, 6718}, {11793, 58506}, {38607, 38781}, {5, 6711}, {58593, 58631}
X(58426) = reflection of X(i) in X(j) for these {i,j}: {58419, 3628}
X(58426) = complement of X(6718)
X(58426) = center of the nine-point conic of quadrilateral XYZX(124) where XYZ is the cevian triangle of X(2)
X(58426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 124, 6718}, {1656, 38776, 117}, {2818, 3628, 58419}


X(58427) = X(2)X(99)∩X(4)X(38803)

Barycentrics    2*a^6-8*a^4*(b^2+c^2)+a^2*(-7*b^4+40*b^2*c^2-7*c^4)+3*(b^2+c^2)*(b^4-4*b^2*c^2+c^4) : :
X(58427) = 3*X[5]+X[38623], 3*X[381]+X[38805], -5*X[632]+X[14650], X[1296]+7*X[3090], -5*X[1656]+X[5512], 5*X[3091]+3*X[38716], 7*X[3523]+X[10734], -11*X[3525]+3*X[38698], 7*X[3526]+X[10748], -17*X[3533]+X[14654], -9*X[3545]+X[44987], 7*X[3619]+X[10765] and many others

X(58427) lies on these lines: {2, 99}, {4, 38803}, {5, 38623}, {6, 52881}, {140, 23699}, {381, 38805}, {511, 58527}, {632, 14650}, {1296, 3090}, {1656, 5512}, {2780, 12900}, {2793, 6721}, {2805, 6667}, {2813, 58418}, {2819, 58419}, {2824, 58420}, {2830, 58421}, {2837, 58422}, {2843, 58423}, {2847, 58424}, {2851, 58425}, {2852, 58426}, {2854, 6723}, {3091, 38716}, {3523, 10734}, {3525, 38698}, {3526, 10748}, {3533, 14654}, {3545, 44987}, {3619, 10765}, {3624, 50924}, {3628, 33962}, {3843, 38798}, {3848, 58602}, {3851, 38797}, {5055, 22338}, {5067, 38802}, {5070, 38796}, {6688, 58514}, {7393, 14657}, {8363, 38651}, {9529, 58431}, {9780, 10704}, {10124, 32424}, {10162, 44574}, {11258, 38807}, {11721, 19862}, {11835, 42274}, {11836, 42277}, {14645, 32525}, {19876, 50926}, {28662, 51126}, {31235, 53744}, {36883, 47355}, {38688, 46936}, {38806, 46219}, {40486, 44377}, {43651, 58059}, {51535, 55861}, {52698, 55858}, {58451, 58672}

X(58427) = midpoint of X(i) and X(j) for these {i,j}: {126, 6719}, {140, 40340}, {1296, 38801}, {4, 38803}, {5, 40556}
X(58427) = inverse of X(20094) in orthoptic circle of the Steiner Inellipse
X(58427) = complement of X(6719)
X(58427)= pole of line {2793, 20094} with respect to the orthoptic circle of the Steiner Inellipse
X(58427)= pole of line {690, 57087} with respect to the Steiner inellipse
X(58427) = center of the nine-point conic of quadrilateral XYZX(126) where XYZ is the cevian triangle of X(2)
X(58427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 126, 6719}, {126, 6719, 543}, {126, 9172, 14360}, {140, 40340, 23699}, {1656, 57331, 5512}, {3526, 10748, 38804}


X(58428) = X(2)X(112)∩X(5)X(19160)

Barycentrics    2*a^10-2*a^8*(b^2+c^2)-a^4*(b^2-c^2)^2*(b^2+c^2)+a^6*(b^4+c^4)-a^2*(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)+3*(b^10-b^8*c^2-b^2*c^8+c^10) : :
X(58428) = -9*X[2]+X[112], -5*X[5]+X[19160], -X[132]+5*X[1656], 3*X[549]+X[19163], -5*X[631]+X[14689], -5*X[632]+X[38608], X[1297]+7*X[3090], 5*X[3091]+3*X[38717], 7*X[3523]+X[10735], -11*X[3525]+3*X[38699], 7*X[3526]+X[10749], -17*X[3533]+X[13200] and many others

X(58428) lies on these lines: {2, 112}, {5, 19160}, {132, 1656}, {140, 2794}, {485, 13985}, {486, 13918}, {511, 58528}, {547, 9530}, {549, 19163}, {625, 44337}, {631, 14689}, {632, 38608}, {1297, 3090}, {2781, 12900}, {2799, 6722}, {2806, 6667}, {2825, 58420}, {2831, 58421}, {2838, 58422}, {2844, 58423}, {2848, 58424}, {2853, 58426}, {3091, 38717}, {3523, 10735}, {3525, 38699}, {3526, 10749}, {3533, 13200}, {3545, 44988}, {3619, 10766}, {3624, 13280}, {3628, 53795}, {3848, 58603}, {5055, 12918}, {5070, 57304}, {5071, 12253}, {6688, 58515}, {6723, 9517}, {7393, 19165}, {7486, 12384}, {7514, 34217}, {7866, 51454}, {8252, 13992}, {8253, 13923}, {8363, 38652}, {9518, 58418}, {9532, 58419}, {9780, 10705}, {10175, 12265}, {11484, 12413}, {11641, 16419}, {11722, 19862}, {12784, 54447}, {13154, 15562}, {13221, 19872}, {13310, 55857}, {14900, 46219}, {15694, 48681}, {19114, 32786}, {19115, 32785}, {28343, 51126}, {31235, 53745}, {31274, 53737}, {32789, 49270}, {32790, 49271}, {38689, 46936}, {42582, 49219}, {42583, 49218}, {43651, 58064}, {51536, 55861}, {58451, 58673}

X(58428) = midpoint of X(i) and X(j) for these {i,j}: {127, 6720}, {5, 34841}
X(58428) = reflection of X(i) in X(j) for these {i,j}: {58430, 3628}
X(58428) = complement of X(6720)
X(58428) = center of the nine-point conic of quadrilateral XYZX(127) where XYZ is the cevian triangle of X(2)
X(58428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 127, 6720}, {1656, 57332, 132}, {3628, 53795, 58430}


X(58429) = X(2)X(128)∩X(5)X(13372)

Barycentrics    2*a^16-14*a^14*(b^2+c^2)+(b^2-c^2)^6*(3*b^4+b^2*c^2+3*c^4)+14*a^12*(3*b^4+4*b^2*c^2+3*c^4)-a^10*(b^2+c^2)*(73*b^4+10*b^2*c^2+73*c^4)-a^2*(b^2-c^2)^4*(17*b^6+8*b^4*c^2+8*b^2*c^4+17*c^6)-3*a^6*(b^2+c^2)*(24*b^8-35*b^6*c^2+40*b^4*c^4-35*b^2*c^6+24*c^8)+a^4*(b^2-c^2)^2*(44*b^8+9*b^6*c^2+18*b^4*c^4+9*b^2*c^6+44*c^8)+a^8*(85*b^8+44*b^6*c^2+48*b^4*c^4+44*b^2*c^6+85*c^8) : :
X(58429) = 3*X[2]+X[128], -X[137]+5*X[1656], 3*X[547]+X[6592], 5*X[632]+3*X[23237], X[930]+7*X[3090], 3*X[1209]+X[27423], -X[1263]+9*X[15699], 5*X[3091]+3*X[38706], 7*X[3523]+X[44981], -11*X[3525]+3*X[38710], 7*X[3526]+X[31656], -9*X[3545]+X[44976] and many others

X(58429) lies on these lines: {2, 128}, {5, 13372}, {137, 1656}, {547, 6592}, {632, 23237}, {930, 3090}, {1209, 27423}, {1263, 15699}, {3091, 38706}, {3523, 44981}, {3525, 38710}, {3526, 31656}, {3545, 44976}, {3628, 25150}, {5070, 57324}, {6723, 16239}, {7393, 15959}, {7486, 11671}, {7514, 23320}, {12026, 48154}, {12900, 45147}, {14072, 55856}, {15960, 16419}, {38587, 55857}, {38681, 46936}, {43651, 58062}

X(58429) = midpoint of X(i) and X(j) for these {i,j}: {128, 34837}, {5, 13372}
X(58429) = reflection of X(i) in X(j) for these {i,j}: {58432, 3628}
X(58429) = complement of X(34837)
X(58429) = center of the nine-point conic of quadrilateral XYZX(128) where XYZ is the cevian triangle of X(2)
X(58429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 128, 34837}, {632, 23237, 38618}, {930, 3090, 23516}, {1656, 57316, 137}, {3628, 25150, 58432}


X(58430) = X(2)X(107)∩X(5)X(2794)

Barycentrics    2*a^14-8*a^12*(b^2+c^2)-4*a^6*(b^2-c^2)^2*(b^4+c^4)+3*(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)-a^8*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)+2*a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)+a^10*(9*b^4+8*b^2*c^2+9*c^4)-a^2*(7*b^12-8*b^10*c^2+b^8*c^4+b^4*c^8-8*b^2*c^10+7*c^12) : :
X(58430) = X[112]+7*X[3090], -X[127]+5*X[1656], 3*X[381]+X[14689], 3*X[549]+X[19160], -5*X[632]+X[38624], 5*X[3091]+3*X[38699], 7*X[3523]+X[44988], -11*X[3525]+3*X[38717], 7*X[3526]+X[12918], -17*X[3533]+X[12253], -9*X[3545]+X[10735], 7*X[3624]+X[12784] and many others

X(58430) lies on these lines: {2, 107}, {5, 2794}, {112, 3090}, {114, 23583}, {127, 1656}, {381, 14689}, {485, 13992}, {486, 13923}, {511, 58529}, {549, 19160}, {632, 38624}, {2781, 6688}, {2799, 6721}, {2806, 58421}, {2825, 58418}, {2831, 6667}, {2848, 58431}, {2853, 58419}, {3091, 38699}, {3523, 44988}, {3525, 38717}, {3526, 12918}, {3533, 12253}, {3545, 10735}, {3624, 12784}, {3628, 53795}, {5020, 19165}, {5055, 10749}, {5056, 14900}, {5070, 57332}, {5071, 13200}, {5562, 16224}, {6642, 34217}, {7486, 13219}, {8252, 13985}, {8253, 13918}, {8889, 13611}, {9517, 12900}, {9518, 58420}, {9523, 58422}, {9527, 58423}, {9532, 58426}, {9780, 13099}, {10011, 58464}, {10128, 58432}, {10175, 11722}, {10314, 11610}, {11484, 11641}, {11793, 58515}, {12265, 19862}, {12408, 19872}, {12413, 16419}, {13115, 55857}, {13280, 54447}, {13374, 58673}, {14489, 51454}, {15694, 48658}, {19093, 32786}, {19094, 32785}, {23513, 53745}, {23514, 53737}, {23515, 53760}, {32789, 49218}, {32790, 49219}, {36518, 53719}, {38676, 46936}, {42582, 49271}, {42583, 49270}, {43651, 58049}, {58603, 58631}

X(58430) = midpoint of X(i) and X(j) for these {i,j}: {132, 34841}, {11793, 58515}, {13374, 58673}, {5, 6720}, {58603, 58631}
X(58430) = reflection of X(i) in X(j) for these {i,j}: {58428, 3628}
X(58430) = complement of X(34841)
X(58430)= pole of line {39473, 40867} with respect to the Steiner inellipse
X(58430) = center of the nine-point conic of quadrilateral XYZX(132) where XYZ is the cevian triangle of X(2)
X(58430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 132, 34841}, {5, 6720, 2794}, {132, 34841, 9530}, {3628, 53795, 58428}


X(58431) = X(2)X(133)∩X(5)X(1539)

Barycentrics    2*a^16-8*a^14*(b^2+c^2)+(b-c)^6*(b+c)^6*(3*b^2+c^2)*(b^2+3*c^2)+a^12*(3*b^4+20*b^2*c^2+3*c^4)+12*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(4*b^4+3*b^2*c^2+4*c^4)+2*a^10*(b^2+c^2)*(16*b^4-35*b^2*c^2+16*c^4)-a^8*(b^2-c^2)^2*(65*b^4+74*b^2*c^2+65*c^4)-2*a^2*(b^2-c^2)^4*(4*b^6-5*b^4*c^2-5*b^2*c^4+4*c^6)-a^4*(b^2-c^2)^2*(7*b^8+66*b^6*c^2-18*b^4*c^4+66*b^2*c^6+7*c^8) : :
X(58431) = 3*X[2]+X[133], 3*X[3]+X[38956], X[107]+7*X[3090], -X[122]+5*X[1656], 3*X[381]+X[3184], -5*X[632]+X[38621], 5*X[3091]+3*X[23239], 7*X[3523]+X[44985], -11*X[3525]+3*X[38714], 7*X[3526]+X[22337], -9*X[3545]+X[10152], 7*X[3851]+X[23240] and many others

X(58431) lies on these lines: {2, 133}, {3, 38956}, {5, 1539}, {107, 3090}, {122, 1656}, {381, 3184}, {402, 48378}, {511, 58530}, {547, 9530}, {632, 38621}, {2790, 6722}, {2797, 6721}, {2803, 58421}, {2811, 58420}, {2816, 58426}, {2822, 58418}, {2828, 6667}, {2846, 58419}, {2848, 58430}, {3091, 23239}, {3523, 44985}, {3525, 38714}, {3526, 22337}, {3545, 10152}, {3628, 53803}, {3851, 23240}, {5020, 14703}, {5055, 10745}, {5056, 52057}, {5070, 57329}, {5071, 5667}, {7486, 34186}, {9033, 12900}, {9520, 58422}, {9524, 58423}, {9528, 58425}, {9529, 58427}, {10175, 11718}, {11230, 11732}, {11484, 14673}, {11793, 58511}, {13374, 58668}, {14356, 41768}, {15183, 47087}, {23515, 53757}, {36518, 53716}, {36519, 53723}, {38591, 55857}, {38672, 46936}, {43651, 58048}, {50916, 54447}, {58598, 58631}

X(58431) = midpoint of X(i) and X(j) for these {i,j}: {133, 34842}, {11793, 58511}, {13374, 58668}, {5, 6716}, {58598, 58631}
X(58431) = reflection of X(i) in X(j) for these {i,j}: {58424, 3628}
X(58431) = complement of X(34842)
X(58431) = center of the nine-point conic of quadrilateral XYZX(133) where XYZ is the cevian triangle of X(2)
X(58431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 133, 34842}, {5, 6716, 2777}, {107, 3090, 36520}


X(58432) = X(2)X(137)∩X(5)X(11701)

Barycentrics    2*a^12-8*a^10*(b^2+c^2)+(b^2-c^2)^4*(3*b^4-b^2*c^2+3*c^4)+2*a^8*(7*b^4+8*b^2*c^2+7*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(11*b^4-13*b^2*c^2+11*c^4)-a^6*(17*b^6+7*b^4*c^2+7*b^2*c^4+17*c^6)+a^4*(17*b^8-12*b^6*c^2+8*b^4*c^4-12*b^2*c^6+17*c^8) : :
X(58432) = 3*X[2]+X[137], X[3]+3*X[23516], -X[128]+5*X[1656], 3*X[547]+X[12026], 5*X[632]+3*X[25147], X[1141]+7*X[3090], X[1263]+7*X[55856], 5*X[3091]+3*X[38710], 7*X[3523]+X[44976], -11*X[3525]+3*X[38706], -9*X[3545]+X[44981], -9*X[5055]+X[31656] and many others

X(58432) lies on these lines: {2, 137}, {3, 23516}, {5, 11701}, {30, 25339}, {128, 1656}, {468, 15366}, {547, 12026}, {632, 25147}, {1141, 3090}, {1263, 55856}, {3091, 38710}, {3523, 44976}, {3525, 38706}, {3545, 44981}, {3628, 25150}, {5020, 15959}, {5055, 31656}, {5067, 47065}, {5070, 57316}, {5972, 45258}, {6592, 48154}, {6642, 23320}, {6721, 11548}, {6722, 40490}, {6723, 45147}, {7570, 7711}, {8254, 23281}, {10128, 58430}, {11451, 13504}, {11465, 13505}, {11484, 15960}, {12900, 15088}, {13512, 55857}, {14072, 15699}, {14769, 37990}, {15367, 50143}, {16336, 44674}, {34128, 43966}, {35311, 45943}, {38683, 46936}, {43651, 58068}, {45259, 55132}

X(58432) = midpoint of X(i) and X(j) for these {i,j}: {137, 13372}, {16336, 44674}, {5, 34837}, {5972, 45258}
X(58432) = reflection of X(i) in X(j) for these {i,j}: {58429, 3628}
X(58432) = complement of X(13372)
X(58432) = center of the nine-point conic of quadrilateral XYZX(137) where XYZ is the cevian triangle of X(2)
X(58432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 137, 13372}, {632, 25147, 38615}, {3628, 25150, 58429}


X(58433) = X(2)X(7)∩X(140)X(516)

Barycentrics    2*a^2+3*(b-c)^2-5*a*(b+c) : :
X(58433) = 15*X[2]+X[7], 3*X[549]+X[18482], 5*X[631]+3*X[38150], -5*X[632]+X[31658], 5*X[1656]+3*X[38122], -5*X[1698]+X[24393], X[2550]+7*X[3624], 7*X[3090]+X[5732], X[3174]+3*X[24386], X[3243]+7*X[9780], 7*X[3523]+X[52835], -11*X[3525]+3*X[21153] and many others

X(58433) lies on these lines: {2, 7}, {10, 17265}, {11, 15006}, {37, 17067}, {140, 516}, {141, 31211}, {518, 3634}, {528, 33709}, {549, 18482}, {594, 41141}, {631, 38150}, {632, 31658}, {954, 16864}, {971, 3628}, {1001, 16408}, {1086, 25072}, {1100, 3008}, {1125, 3813}, {1210, 50207}, {1213, 31243}, {1656, 38122}, {1698, 24393}, {2325, 17263}, {2346, 9342}, {2391, 20328}, {2550, 3624}, {2801, 58418}, {3090, 5732}, {3174, 24386}, {3243, 9780}, {3523, 52835}, {3525, 21153}, {3526, 5805}, {3533, 5759}, {3589, 4758}, {3616, 38200}, {3619, 51194}, {3626, 15570}, {3663, 16675}, {3664, 16669}, {3686, 17234}, {3707, 17298}, {3711, 41573}, {3742, 40659}, {3763, 38186}, {3817, 11495}, {3848, 58564}, {3879, 29628}, {3912, 4060}, {3946, 16777}, {3986, 17290}, {4000, 16673}, {4292, 17590}, {4304, 57005}, {4321, 10588}, {4326, 10589}, {4361, 29600}, {4464, 29575}, {4545, 17295}, {4648, 16667}, {4667, 37650}, {4698, 40480}, {4700, 17300}, {4751, 29596}, {4852, 29606}, {4887, 16814}, {4896, 16885}, {4967, 17266}, {4982, 17391}, {5055, 31672}, {5067, 21151}, {5070, 38108}, {5199, 6706}, {5220, 38054}, {5223, 19872}, {5326, 15837}, {5433, 12573}, {5542, 51073}, {5550, 38316}, {5762, 16239}, {5779, 55857}, {5845, 51127}, {5880, 38059}, {6067, 6745}, {6594, 31235}, {6667, 58608}, {6688, 58473}, {6707, 40539}, {6887, 7171}, {6911, 52769}, {7263, 28301}, {7486, 36991}, {7679, 10106}, {7717, 52290}, {8167, 16411}, {8730, 16863}, {9843, 50726}, {10171, 37364}, {10175, 18528}, {11038, 19877}, {11231, 20330}, {12045, 58534}, {12436, 50205}, {15481, 43180}, {15668, 31191}, {15694, 31671}, {15723, 38067}, {16593, 17384}, {16832, 53665}, {17049, 25108}, {17133, 17243}, {17235, 31285}, {17241, 50095}, {17259, 21255}, {17283, 24603}, {17285, 55955}, {17303, 31244}, {17317, 41140}, {17355, 34824}, {17366, 46845}, {17529, 57284}, {17567, 34595}, {19855, 51723}, {19876, 51099}, {19883, 30331}, {25557, 31253}, {25558, 38216}, {27475, 28650}, {29604, 31238}, {31260, 38206}, {31618, 52980}, {31657, 38318}, {38107, 46219}, {38111, 55861}, {38113, 55859}, {38123, 54370}, {41313, 53594}, {47355, 47595}, {51128, 51150}, {58451, 58563}, {58619, 58658}

X(58433) = midpoint of X(i) and X(j) for these {i,j}: {142, 6666}, {1125, 3826}, {15481, 43180}, {3626, 15570}, {42356, 43151}, {6706, 10012}, {58563, 58635}, {58564, 58634}, {58607, 58677}
X(58433) = inverse of X(40868) in Steiner inellipse
X(58433) = complement of X(6666)
X(58433) = X(i)-complementary conjugate of X(j) for these {i, j}: {32015, 2887}, {58104, 4885}
X(58433)= pole of line {522, 26824} with respect to the Steiner inellipse
X(58433) = center of the nine-point conic of quadrilateral XYZX(142) where XYZ is the cevian triangle of X(2)
X(58433) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(673), X(3982)}}, {{A, B, C, X(6666), X(32015)}}, {{A, B, C, X(10025), X(40510)}}, {{A, B, C, X(18230), X(43971)}}, {{A, B, C, X(28650), X(40719)}}, {{A, B, C, X(36956), X(40868)}}
X(58433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 142, 6666}, {2, 17282, 5257}, {2, 20195, 142}, {2, 27147, 17353}, {2, 41867, 3452}, {9, 6173, 20059}, {142, 6666, 527}, {632, 38171, 31658}, {1125, 3826, 5853}, {3848, 58634, 58564}, {5242, 5243, 40869}, {5550, 40333, 38316}, {10171, 43151, 42356}, {17278, 29571, 3946}, {18230, 20059, 9}, {19862, 38204, 1001}, {31657, 55856, 38318}, {58607, 58677, 518}


X(58434) = X(2)X(154)∩X(3)X(5893)

Barycentrics    6*a^6-4*a^2*(b^2-c^2)^2-5*a^4*(b^2+c^2)+3*(b^2-c^2)^2*(b^2+c^2) : :
X(58434) = 3*X[2]+X[154], 2*X[3]+X[5893], X[5]+X[11202], -X[64]+13*X[10303], -X[66]+7*X[51128], X[141]+X[19153], X[159]+5*X[51126], X[206]+2*X[34573], -3*X[549]+X[11204], 5*X[631]+X[2883], 5*X[632]+X[6759], X[1498]+11*X[3525] and many others

X(58434) lies on these lines: {2, 154}, {3, 5893}, {5, 11202}, {6, 38282}, {25, 35228}, {30, 10182}, {51, 468}, {64, 10303}, {66, 51128}, {125, 44108}, {140, 6000}, {141, 19153}, {159, 51126}, {160, 38283}, {184, 47296}, {206, 34573}, {376, 50709}, {420, 7745}, {427, 15448}, {436, 53506}, {459, 15576}, {511, 58544}, {547, 18400}, {549, 11204}, {590, 11242}, {597, 5644}, {615, 11241}, {631, 2883}, {632, 6759}, {1154, 9820}, {1498, 3525}, {1514, 35473}, {1585, 14239}, {1586, 14235}, {1619, 15579}, {1656, 34782}, {1899, 52292}, {1971, 3055}, {2390, 6679}, {2393, 3589}, {2777, 12100}, {2781, 3819}, {2979, 11064}, {3054, 53496}, {3079, 42854}, {3090, 17821}, {3147, 12233}, {3357, 14869}, {3523, 5894}, {3526, 6247}, {3533, 40686}, {3535, 14233}, {3536, 14230}, {3541, 16656}, {3566, 45693}, {3618, 17813}, {3619, 19132}, {3628, 10282}, {3631, 41593}, {3763, 34774}, {3827, 3848}, {5020, 15577}, {5050, 21974}, {5054, 23328}, {5055, 23324}, {5056, 17845}, {5070, 9833}, {5071, 18405}, {5326, 10535}, {5432, 11189}, {5433, 32065}, {5480, 6353}, {5650, 41580}, {5656, 15702}, {5799, 7521}, {5878, 15720}, {5890, 10018}, {5891, 7542}, {5892, 16238}, {5895, 15717}, {5925, 10299}, {5943, 44668}, {6001, 10156}, {6143, 16655}, {6146, 14940}, {6690, 58406}, {7294, 26888}, {7378, 41424}, {7392, 18382}, {7484, 15578}, {7495, 41715}, {7505, 12241}, {8550, 18950}, {8888, 34286}, {10117, 15246}, {10125, 44158}, {10154, 29181}, {10193, 11812}, {10250, 38110}, {10257, 14855}, {10274, 21357}, {10533, 32790}, {10534, 32789}, {10565, 48881}, {11243, 23303}, {11244, 23302}, {11284, 15582}, {11402, 12007}, {11430, 37942}, {11433, 53857}, {11451, 34751}, {11455, 37118}, {11539, 23329}, {11550, 52293}, {11793, 41589}, {13154, 32321}, {13364, 44232}, {13383, 43839}, {14156, 16618}, {14216, 46219}, {14530, 55858}, {15011, 21851}, {15583, 47355}, {15647, 22352}, {15699, 23325}, {15708, 54050}, {15712, 22802}, {16239, 20299}, {16419, 44883}, {16621, 37119}, {16657, 37943}, {17809, 37643}, {17811, 34117}, {17819, 32786}, {17820, 32785}, {18381, 55856}, {18383, 35018}, {18388, 37935}, {18435, 51425}, {18475, 44911}, {19862, 40660}, {20391, 43598}, {20725, 35493}, {20791, 40928}, {20850, 51163}, {21358, 41719}, {23048, 38079}, {23195, 44889}, {23300, 51127}, {23326, 47352}, {23327, 48310}, {25337, 54044}, {30771, 44882}, {31383, 52298}, {32767, 48154}, {34577, 44324}, {34780, 55866}, {36990, 52299}, {37808, 54075}, {44569, 45968}, {44914, 58436}, {45760, 52102}, {50414, 55862}, {51877, 56297}

X(58434) = midpoint of X(i) and X(j) for these {i,j}: {141, 19153}, {154, 23332}, {10274, 21357}, {2, 10192}, {2883, 10606}, {3819, 45979}, {5, 11202}, {6247, 32063}
X(58434) = reflection of X(i) in X(j) for these {i,j}: {10193, 11812}, {12100, 46265}
X(58434) = complement of X(23332)
X(58434)= pole of line {7735, 52299} with respect to the Kiepert hyperbola
X(58434)= pole of line {1350, 11443} with respect to the Stammler hyperbola
X(58434) = center of the nine-point conic of quadrilateral XYZX(154) where XYZ is the cevian triangle of X(2)
X(58434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 154, 23332}, {2, 35260, 1853}, {2, 35264, 45303}, {140, 16252, 6696}, {154, 23332, 1503}, {184, 52297, 47296}, {2777, 46265, 12100}, {3090, 17821, 41362}, {3589, 58437, 15585}, {3819, 45979, 2781}, {5972, 6676, 53415}, {6677, 58437, 58439}, {10020, 58435, 9820}, {10192, 23332, 154}, {58437, 58450, 3589}


X(58435) = X(2)X(156)∩X(5)X(13367)

Barycentrics    2*a^10-6*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-a^2*(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)+a^6*(5*b^4+6*b^2*c^2+5*c^4)+a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58435) = 3*X[2]+X[156], X[141]+X[19155], 3*X[154]+5*X[31283], -3*X[549]+X[32210], -3*X[597]+X[32155], -5*X[631]+X[32138], 7*X[3526]+X[32139], X[5448]+3*X[10182], -X[5449]+3*X[34330], 3*X[10192]+X[13371], X[10224]+X[10282], 3*X[11202]+X[18377] and many others

X(58435) lies on these lines: {2, 156}, {5, 13367}, {30, 32903}, {49, 11264}, {110, 34826}, {125, 45732}, {140, 5663}, {141, 19155}, {143, 468}, {154, 31283}, {389, 15806}, {403, 43394}, {511, 18282}, {547, 6689}, {548, 14156}, {549, 32210}, {550, 1531}, {590, 32170}, {597, 32155}, {615, 32169}, {631, 32138}, {1154, 9820}, {1209, 5642}, {1216, 34577}, {1511, 10024}, {1539, 35491}, {1656, 41171}, {2072, 5944}, {3521, 37941}, {3526, 32139}, {3564, 58450}, {3628, 58447}, {3819, 34004}, {5432, 32168}, {5433, 32143}, {5446, 10096}, {5448, 10182}, {5449, 34330}, {5498, 6000}, {5893, 34584}, {5943, 6153}, {6102, 10018}, {6143, 10540}, {6146, 20304}, {6676, 32142}, {6677, 32205}, {6723, 18128}, {7488, 51391}, {7542, 11591}, {9704, 26917}, {10095, 23292}, {10113, 35487}, {10125, 13754}, {10192, 13371}, {10224, 10282}, {10254, 11449}, {10255, 11464}, {10619, 23515}, {10627, 11064}, {11202, 18377}, {11424, 44270}, {11430, 15807}, {11592, 16197}, {12006, 16238}, {12038, 13406}, {12161, 37453}, {12897, 44961}, {13346, 44278}, {13383, 13391}, {13403, 46031}, {13421, 32269}, {13567, 32136}, {13568, 16531}, {13598, 25338}, {13630, 44452}, {14118, 14643}, {14449, 32223}, {15350, 43575}, {15644, 46114}, {15646, 43831}, {15800, 37940}, {16252, 23336}, {16881, 44900}, {18475, 49673}, {18951, 52290}, {19154, 31267}, {20299, 34331}, {21844, 34798}, {22660, 34477}, {23302, 32208}, {23303, 32207}, {25563, 34421}, {30551, 44106}, {32137, 46817}, {34149, 37636}, {34514, 52296}, {37126, 51521}, {37472, 37943}, {37968, 43577}, {43588, 47296}, {43614, 48411}, {43652, 44262}, {45958, 52262}, {45959, 51425}, {55286, 55295}, {55700, 58445}

X(58435) = midpoint of X(i) and X(j) for these {i,j}: {141, 19155}, {156, 13561}, {10224, 10282}, {12038, 13406}, {16252, 23336}, {5, 32171}, {5448, 15331}, {9820, 10020}
X(58435) = reflection of X(i) in X(j) for these {i,j}: {25563, 34421}
X(58435) = complement of X(13561)
X(58435)= pole of line {11250, 37484} with respect to the Stammler hyperbola
X(58435) = center of the nine-point conic of quadrilateral XYZX(156) where XYZ is the cevian triangle of X(2)
X(58435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 156, 13561}, {5, 32171, 30522}, {140, 10272, 5907}, {2072, 5944, 13470}, {5448, 10182, 15331}, {5972, 44516, 140}, {9820, 58434, 10020}, {11430, 44235, 15807}, {23292, 44232, 10095}


X(58436) = X(2)X(157)∩X(53)X(468)

Barycentrics    2*a^8-3*a^6*(b^2+c^2)-3*a^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^2*(b^4+c^4)+a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58436) = 3*X[2]+X[157], -3*X[5]+X[18380], X[141]+X[19156]

X(58436) lies on these lines: {2, 157}, {5, 18380}, {53, 468}, {140, 1503}, {141, 19156}, {233, 35282}, {441, 34845}, {570, 47200}, {1576, 45198}, {2871, 3589}, {2980, 7499}, {6676, 34828}, {6677, 44381}, {7542, 42353}, {10018, 33971}, {10020, 32428}, {14913, 46184}, {15366, 35283}, {20576, 58532}, {44914, 58434}, {56308, 57529}, {58450, 58454}

X(58436) = midpoint of X(i) and X(j) for these {i,j}: {141, 19156}, {157, 23333}, {5, 37813}
X(58436) = complement of X(23333)
X(58436)= pole of line {7755, 42295} with respect to the Kiepert hyperbola
X(58436) = center of the nine-point conic of quadrilateral XYZX(157) where XYZ is the cevian triangle of X(2)
X(58436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 157, 23333}, {140, 58437, 58438}


X(58437) = X(2)X(159)∩X(6)X(468)

Barycentrics    2*a^8+a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+(b^4-c^4)^2-a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58437) = 3*X[2]+X[159], X[5]+X[15577], X[66]+3*X[154], X[69]+3*X[19153], X[141]+X[206], -3*X[549]+X[44883], 3*X[599]+5*X[19132], 5*X[632]+X[15581], X[2883]+3*X[21167], 7*X[3523]+X[41735], 7*X[3526]+X[39879], -2*X[3530]+X[15578] and many others

X(58437) lies on these lines: {2, 159}, {5, 15577}, {6, 468}, {22, 28408}, {30, 35228}, {66, 154}, {69, 19153}, {140, 1503}, {141, 206}, {160, 441}, {161, 37439}, {182, 16238}, {419, 53477}, {427, 20987}, {511, 9820}, {524, 41593}, {549, 44883}, {599, 19132}, {632, 15581}, {1125, 3827}, {1176, 26156}, {1352, 7542}, {1576, 41008}, {1843, 51744}, {1974, 54347}, {2393, 3589}, {2777, 55653}, {2781, 10272}, {2883, 21167}, {2916, 7667}, {3098, 16618}, {3313, 11064}, {3523, 41735}, {3526, 39879}, {3530, 15578}, {3556, 19836}, {3564, 10020}, {3618, 10169}, {3619, 5596}, {3620, 41719}, {3628, 15582}, {3631, 40342}, {3818, 11202}, {5157, 13394}, {5159, 35707}, {5480, 21841}, {5895, 55651}, {5925, 55654}, {5972, 11574}, {6329, 39125}, {6776, 10018}, {7485, 35219}, {7493, 28419}, {7494, 34207}, {7568, 34118}, {7767, 15257}, {7819, 15270}, {8254, 18583}, {8788, 56430}, {9924, 23327}, {9969, 23292}, {10257, 46264}, {10300, 23315}, {10516, 17821}, {11178, 34776}, {11216, 51171}, {11331, 41761}, {11793, 16197}, {12108, 15579}, {14561, 34787}, {15116, 15647}, {15580, 16239}, {15583, 51126}, {16196, 44882}, {16789, 20806}, {18282, 34380}, {18589, 40560}, {18935, 52290}, {19130, 44233}, {19149, 34002}, {19459, 37453}, {20775, 44887}, {21358, 31166}, {22052, 35282}, {22802, 55649}, {23042, 34507}, {23325, 42786}, {23332, 51128}, {23333, 44334}, {25564, 34200}, {31670, 37971}, {32125, 43957}, {32621, 38282}, {34117, 48876}, {34779, 50977}, {34782, 51756}, {36201, 48378}, {44452, 48906}, {47090, 48905}, {47093, 48910}, {47200, 53414}, {50649, 51734}

X(58437) = midpoint of X(i) and X(j) for these {i,j}: {141, 206}, {159, 23300}, {10282, 24206}, {15116, 15647}, {15582, 20300}, {3589, 15585}, {34117, 48876}, {34507, 41729}, {34782, 51756}, {5, 15577}
X(58437) = reflection of X(i) in X(j) for these {i,j}: {15578, 3530}, {20300, 3628}, {3589, 58450}, {39125, 6329}, {6697, 34573}
X(58437) = complement of X(23300)
X(58437) = perspector of circumconic {{A, B, C, X(30247), X(54705)}}
X(58437)= pole of line {1184, 5094} with respect to the Kiepert hyperbola
X(58437)= pole of line {12220, 34777} with respect to the Stammler hyperbola
X(58437)= pole of line {52058, 57069} with respect to the Steiner inellipse
X(58437)= pole of line {7917, 40123} with respect to the Wallace hyperbola
X(58437) = center of the nine-point conic of quadrilateral XYZX(159) where XYZ is the cevian triangle of X(2)
X(58437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 159, 23300}, {141, 10192, 206}, {154, 3763, 66}, {1503, 34573, 6697}, {3589, 15585, 2393}, {3589, 58434, 58450}, {3619, 35260, 5596}, {7493, 28419, 37485}, {9924, 47355, 23327}, {10282, 24206, 1503}, {15585, 58434, 3589}, {23042, 34507, 41729}, {58434, 58439, 6677}, {58436, 58438, 140}


X(58438) = X(2)X(160)∩X(216)X(523)

Barycentrics    b^2*c^2*(b^2-c^2)^2+2*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)-a^4*(3*b^4+2*b^2*c^2+3*c^4) : :
X(58438) = 3*X[2]+X[160]

X(58438) lies on these lines: {2, 160}, {51, 45108}, {95, 1576}, {140, 1503}, {141, 36213}, {157, 37067}, {184, 45838}, {216, 523}, {237, 3613}, {468, 3055}, {1316, 15109}, {1485, 6641}, {2393, 58454}, {3589, 34236}, {6676, 14725}, {7483, 19864}, {7668, 20775}, {8589, 36157}, {10003, 44668}, {11272, 58532}, {16264, 37118}, {30259, 45848}, {34577, 34804}, {35282, 36422}, {35345, 37647}, {39231, 53485}, {40559, 58450}, {44088, 53576}

X(58438) = midpoint of X(i) and X(j) for these {i,j}: {160, 34845}
X(58438) = complement of X(34845)
X(58438) = X(i)-complementary conjugate of X(j) for these {i, j}: {36198, 8287}
X(58438)= pole of line {3051, 7755} with respect to the Kiepert hyperbola
X(58438)= pole of line {3289, 36198} with respect to the Steiner inellipse
X(58438) = center of the nine-point conic of quadrilateral XYZX(160) where XYZ is the cevian triangle of X(2)
X(58438) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 160, 34845}, {140, 58437, 58436}


X(58439) = X(2)X(161)∩X(184)X(468)

Barycentrics    2*a^12-4*a^4*b^2*c^2*(b^2-c^2)^2-3*a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2+a^8*(-3*b^4+2*b^2*c^2-3*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+6*a^6*(b^6+c^6) : :
X(58439) = 3*X[2]+X[161], 3*X[154]+X[11442], X[12827]+X[15647], X[41602]+3*X[44210]

X(58439) lies on these lines: {2, 161}, {140, 13470}, {154, 11442}, {184, 468}, {1368, 35228}, {1503, 6676}, {1594, 2917}, {1853, 7495}, {2393, 3589}, {5133, 56924}, {5449, 10020}, {5462, 44232}, {6000, 25337}, {6030, 41738}, {6146, 32391}, {6247, 34002}, {6636, 32125}, {6696, 16197}, {7494, 44883}, {7499, 23332}, {7542, 18474}, {7568, 18381}, {7667, 23315}, {10018, 17821}, {10274, 32358}, {11202, 44452}, {11206, 52300}, {11262, 58489}, {11745, 18388}, {12827, 15647}, {13383, 13754}, {14389, 34751}, {15139, 37636}, {15311, 16618}, {16238, 18475}, {18935, 38282}, {21852, 58544}, {22352, 41603}, {23041, 26958}, {23292, 44668}, {26906, 37813}, {32191, 58550}, {32223, 45979}, {41602, 44210}

X(58439) = midpoint of X(i) and X(j) for these {i,j}: {12827, 15647}, {18474, 34782}
X(58439) = center of the nine-point conic of quadrilateral XYZX(161) where XYZ is the cevian triangle of X(2)
X(58439) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6677, 58437, 58434}, {58450, 58494, 3589}


X(58440) = X(2)X(164)∩X(10)X(12523)

Barycentrics    c*(-sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3))-b*(sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3))-2*a*(-sqrt(a*(a+b-c)*(a-b+c))+sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3)) : :
Barycentrics    (-2*a + b + c)*Sin[A/2] + (2*a - b + c)*Sin[B/2] + (2*a + b - c)*Sin[C/2] : : (Peter Moses, September 22, 2023)

X(58440) lies on these lines: {2, 164}, {8, 55175}, {10, 12523}, {140, 53810}, {177, 3911}, {178, 52797}, {516, 12614}, {518, 58614}, {519, 55172}, {551, 55173}, {631, 12844}, {1125, 55174}, {1698, 55168}, {3244, 55176}, {3616, 12656}, {3624, 55169}, {3634, 12622}, {5432, 17641}, {5571, 13405}, {5745, 12443}, {6692, 58444}, {8074, 16016}, {10164, 12518}, {12539, 54357}, {12813, 34753}, {19862, 55170}, {20103, 58689}, {31734, 51782}, {35644, 43223}

X(58440) = midpoint of X(i) and X(j) for these {i,j}: {10, 12523}, {164, 21633}, {12622, 55171}
X(58440) = reflection of X(i) in X(j) for these {i,j}: {12622, 3634}
X(58440) = complement of X(21633)
X(58440) = center of the nine-point conic of quadrilateral XYZX(164) where XYZ is the cevian triangle of X(2)
X(58440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 164, 21633}


X(58441) = X(2)X(165)∩X(10)X(631)

Barycentrics    6*a^3-4*a*(b-c)^2-5*a^2*(b+c)+3*(b-c)^2*(b+c) : :
X(58441) = -X[1]+13*X[10303], 3*X[2]+X[165], X[3]+2*X[3634], -X[4]+7*X[51073], 2*X[5]+X[12512], X[8]+3*X[30392], X[10]+5*X[631], X[40]+11*X[3525], X[355]+11*X[15720], X[376]+3*X[54447], X[551]+X[5657], 5*X[632]+X[3579] and many others

X(58441) lies on circumconic {{A, B, C, X(10171), X(18025)}} and these lines: {1, 10303}, {2, 165}, {3, 3634}, {4, 51073}, {5, 12512}, {8, 30392}, {10, 631}, {30, 10172}, {36, 51782}, {40, 3525}, {57, 43180}, {140, 517}, {354, 3911}, {355, 15720}, {371, 49619}, {372, 49618}, {376, 54447}, {381, 28158}, {498, 4298}, {499, 12575}, {511, 58548}, {515, 549}, {518, 10156}, {519, 3653}, {547, 28146}, {551, 5657}, {632, 3579}, {726, 15819}, {946, 3526}, {950, 52793}, {952, 4745}, {962, 34595}, {971, 58451}, {991, 16569}, {1064, 49992}, {1155, 5326}, {1376, 52769}, {1385, 3626}, {1656, 12571}, {1698, 3523}, {1754, 17124}, {1768, 27065}, {2784, 38737}, {2801, 3035}, {2820, 45675}, {3008, 54474}, {3054, 31443}, {3085, 12577}, {3090, 35242}, {3091, 16192}, {3522, 7989}, {3524, 5587}, {3528, 18492}, {3530, 9956}, {3533, 5493}, {3534, 50803}, {3616, 9588}, {3617, 30389}, {3624, 4301}, {3628, 18483}, {3635, 5690}, {3636, 10247}, {3654, 51108}, {3667, 45666}, {3678, 9940}, {3679, 15721}, {3681, 6745}, {3683, 31235}, {3826, 37364}, {3830, 50816}, {3841, 6922}, {3881, 58643}, {3918, 31786}, {3947, 15803}, {4015, 12675}, {4067, 15016}, {4292, 5131}, {4315, 31434}, {4353, 17591}, {4421, 24386}, {4669, 7967}, {4691, 5882}, {4701, 13607}, {5066, 28154}, {5067, 41869}, {5071, 34638}, {5199, 41795}, {5218, 10389}, {5226, 30424}, {5265, 51784}, {5267, 6940}, {5273, 43177}, {5274, 31508}, {5281, 30331}, {5284, 5537}, {5418, 13975}, {5420, 13912}, {5433, 5919}, {5435, 5542}, {5442, 13407}, {5447, 31760}, {5550, 7991}, {5584, 16862}, {5603, 15709}, {5691, 15717}, {5731, 15708}, {5744, 21060}, {5790, 15701}, {5850, 38122}, {5886, 15694}, {5902, 12563}, {5927, 43181}, {6036, 51578}, {6244, 8167}, {6361, 31425}, {6666, 15726}, {6685, 10440}, {6686, 29353}, {6700, 10176}, {6714, 9519}, {6718, 20201}, {6738, 24914}, {6889, 12572}, {6910, 8582}, {6918, 12511}, {6927, 21628}, {6943, 41859}, {6946, 7688}, {6988, 12617}, {6989, 12436}, {7294, 37568}, {7982, 15808}, {7987, 9780}, {8258, 54208}, {8703, 28172}, {9342, 44425}, {9540, 49547}, {9590, 15246}, {9616, 32786}, {9729, 31752}, {9955, 16239}, {10109, 28182}, {10124, 28174}, {10157, 10178}, {10167, 15064}, {10265, 38762}, {10304, 38076}, {10439, 43223}, {10589, 35445}, {10791, 52770}, {11220, 54357}, {11230, 11539}, {11235, 38121}, {11531, 46934}, {11540, 28212}, {11695, 31757}, {12005, 58630}, {12100, 28160}, {12108, 13624}, {12447, 26066}, {12527, 27529}, {12699, 46219}, {13329, 17122}, {13935, 49548}, {14891, 28190}, {15528, 58698}, {15644, 58474}, {15685, 50870}, {15692, 19876}, {15693, 50796}, {15712, 18480}, {15713, 28234}, {15722, 51080}, {16836, 52796}, {17504, 38083}, {17525, 38161}, {17529, 50031}, {17592, 39595}, {17715, 51615}, {18230, 43182}, {18250, 21164}, {18481, 31399}, {19540, 41430}, {19708, 50862}, {19711, 50868}, {20117, 40296}, {21843, 31441}, {22791, 31447}, {22793, 55856}, {24982, 37291}, {26201, 58632}, {28168, 34200}, {28198, 47598}, {28202, 47599}, {28208, 41983}, {28463, 38182}, {28465, 38133}, {28600, 29311}, {28909, 41141}, {30315, 46930}, {30827, 51090}, {31658, 58463}, {31666, 37705}, {31806, 33815}, {31884, 38146}, {33574, 47742}, {33697, 46853}, {34379, 38118}, {34628, 54448}, {35271, 38058}, {37714, 46932}, {40273, 55862}, {41106, 50812}, {41150, 51077}, {48661, 55866}, {50799, 51081}, {50810, 51109}, {50814, 50825}, {50817, 51104}, {50818, 51067}, {50827, 51091}, {51066, 51082}, {51780, 54370}

X(58441) = midpoint of X(i) and X(j) for these {i,j}: {10, 3576}, {165, 3817}, {10157, 10178}, {10165, 26446}, {10167, 15064}, {10246, 38127}, {10247, 11362}, {10304, 38076}, {1385, 38112}, {10440, 37521}, {1699, 50808}, {16836, 52796}, {17502, 38042}, {17504, 38083}, {2, 10164}, {21153, 38204}, {3, 10175}, {3579, 38034}, {3740, 11227}, {31884, 38146}, {38028, 50821}, {38122, 38130}, {38133, 38760}, {4421, 24386}, {4669, 7967}, {549, 11231}, {551, 5657}, {5054, 38068}, {5731, 38155}, {5790, 51705}, {58615, 58688}, {8703, 38140}
X(58441) = reflection of X(i) in X(j) for these {i,j}: {10164, 50829}, {10171, 2}, {10175, 3634}, {10247, 3636}, {19925, 10175}, {3626, 38112}, {3828, 11231}, {5790, 51069}, {50801, 5790}, {50802, 10171}, {51103, 38028}, {7967, 51085}
X(58441) = complement of X(3817)
X(58441)= pole of line {4962, 48043} with respect to the excircles-radical circle
X(58441)= pole of line {514, 48169} with respect to the orthoptic circle of the Steiner Inellipse
X(58441)= pole of line {3716, 4962} with respect to the Spieker circle
X(58441)= pole of line {30331, 37734} with respect to the Feuerbach hyperbola
X(58441) = center of the nine-point conic of quadrilateral XYZX(165) where XYZ is the cevian triangle of X(2)
X(58441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 165, 3817}, {2, 516, 10171}, {2, 9778, 7988}, {3, 10175, 28164}, {10, 3576, 28236}, {40, 3525, 19862}, {140, 6684, 1125}, {165, 3817, 516}, {515, 11231, 3828}, {516, 10171, 50802}, {516, 50829, 10164}, {549, 38042, 17502}, {631, 31423, 10}, {946, 3526, 19878}, {1125, 6684, 43174}, {1656, 31730, 12571}, {1698, 3523, 4297}, {3035, 5745, 20103}, {3090, 35242, 51118}, {3579, 38034, 28232}, {3628, 31663, 18483}, {3634, 28164, 10175}, {3740, 11227, 2801}, {3817, 10164, 165}, {3911, 5432, 13405}, {5054, 26446, 10165}, {5218, 31231, 11019}, {5226, 53056, 30424}, {5731, 19875, 38155}, {8703, 38140, 28172}, {10156, 58688, 58615}, {10165, 26446, 519}, {10165, 38068, 26446}, {10165, 38127, 10246}, {10175, 28164, 19925}, {10246, 26446, 38127}, {10589, 35445, 51783}, {11231, 17502, 38042}, {12512, 31253, 5}, {15692, 19876, 34648}, {15701, 51705, 51086}, {15717, 19877, 5691}, {16192, 19872, 3091}, {17502, 38042, 515}, {28234, 38028, 51103}, {38028, 50821, 28234}, {38122, 38130, 5850}, {51069, 51086, 51705}, {51069, 51705, 50801}, {58615, 58688, 518}


X(58442) = X(2)X(169)∩X(5)X(516)

Barycentrics    2*a^4-3*a^3*(b+c)-3*a*(b-c)^2*(b+c)+(b-c)^2*(b^2+c^2)+a^2*(3*b^2+2*b*c+3*c^2) : :
X(58442) = 3*X[2]+X[169], X[10]+X[52015]

X(58442) lies on these lines: {2, 169}, {5, 516}, {10, 52015}, {517, 58458}, {1125, 2809}, {1212, 51775}, {2140, 40869}, {3589, 34381}, {3812, 58456}, {3911, 10481}, {5179, 17682}, {5745, 31211}, {5791, 17259}, {5836, 40534}, {9709, 17279}, {9956, 40483}, {13374, 58457}, {16601, 26007}, {17050, 24455}, {17683, 27132}, {20269, 31203}, {21073, 24596}, {24784, 31192}

X(58442) = midpoint of X(i) and X(j) for these {i,j}: {10, 52015}, {169, 34847}
X(58442) = complement of X(34847)
X(58442) = perspector of circumconic {{A, B, C, X(43191), X(53643)}}
X(58442) = center of the nine-point conic of quadrilateral XYZX(169) where XYZ is the cevian triangle of X(2)


X(58443) = X(2)X(31)∩X(140)X(517)

Barycentrics    2*a^3+b^3+4*a*b*c+c^3 : :

X(58443) lies on these lines: {2, 31}, {10, 37646}, {100, 29845}, {140, 517}, {230, 5750}, {354, 58414}, {740, 39595}, {908, 4697}, {1054, 19786}, {1155, 4425}, {1376, 4085}, {1961, 32851}, {2792, 6036}, {3035, 6685}, {3306, 26128}, {3452, 4672}, {3589, 6686}, {3634, 6693}, {3687, 17772}, {3705, 50288}, {3741, 37634}, {3742, 29656}, {3752, 29645}, {3771, 37674}, {3773, 29649}, {3775, 14829}, {3816, 49482}, {3842, 5745}, {3911, 6682}, {3980, 17720}, {3989, 51583}, {4359, 29683}, {4413, 25453}, {4415, 17767}, {4417, 37604}, {4438, 5268}, {4439, 33167}, {4457, 50758}, {4682, 29671}, {4850, 29847}, {4883, 50748}, {5044, 8258}, {5205, 32780}, {5294, 24003}, {5297, 33119}, {5432, 21334}, {5880, 48649}, {5955, 17733}, {9342, 29850}, {9347, 29849}, {9352, 32776}, {10164, 50290}, {11019, 49473}, {11679, 50312}, {16610, 29654}, {17063, 29634}, {17064, 24693}, {17239, 44379}, {17602, 24165}, {17698, 46827}, {17728, 29652}, {17748, 37594}, {17764, 24210}, {17765, 29655}, {18193, 50285}, {19284, 21935}, {19721, 43531}, {19804, 29658}, {21242, 29662}, {24988, 29867}, {26627, 33127}, {27003, 32775}, {29826, 31224}, {29846, 37633}, {30832, 33085}, {30867, 33096}, {32773, 56010}, {33064, 37520}, {33084, 37684}, {33121, 49693}, {33163, 53673}, {33170, 53660}, {33682, 37662}, {37603, 52258}, {38049, 45204}

X(58443) = midpoint of X(i) and X(j) for these {i,j}: {171, 3846}
X(58443) = complement of X(3846)
X(58443)= pole of line {37734, 49471} with respect to the Feuerbach hyperbola
X(58443)= pole of line {824, 17496} with respect to the Steiner inellipse
X(58443) = center of the nine-point conic of quadrilateral XYZX(171) where XYZ is the cevian triangle of X(2)
X(58443) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 171, 3846}, {2, 17122, 3836}, {2, 17126, 25960}, {2, 32916, 50298}, {2, 6679, 31289}, {2, 750, 2887}, {171, 3846, 752}, {1376, 29635, 4085}, {3035, 6703, 6685}


X(58444) = X(1)X(236)∩X(2)X(177)

Barycentrics    2*sqrt(a)*(b-c)*(sqrt(b*(a+b-c))-sqrt(c*(a-b+c)))-2*a^(3/2)*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c)))+a*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+b*sqrt(c)*(-sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))-c^(3/2)*(sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))+a*sqrt(b)*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c)))+sqrt(b)*c*(-sqrt(a*(a+b-c))+sqrt(c*(-a+b+c)))-b^(3/2)*(sqrt(a*(a+b-c))+sqrt(c*(-a+b+c))) : :
Barycentrics    Cos[C/2]*(1 + Sin[A/2] + Sin[B/2]) + Cos[B/2]*(1 + Sin[A/2] + Sin[C/2]) : : (Peter Moses, September 22, 2023)

X(58444) lies on these lines: {1, 236}, {2, 177}, {8, 11191}, {10, 178}, {142, 12443}, {164, 5437}, {518, 58616}, {551, 32183}, {946, 31790}, {960, 31768}, {1001, 12518}, {3616, 8422}, {3622, 11234}, {3742, 5571}, {3812, 55174}, {3816, 12614}, {4301, 31800}, {5044, 12813}, {5836, 31766}, {6692, 58440}, {7028, 13092}, {10164, 31801}, {10165, 31791}, {10179, 31767}, {12523, 25524}, {12622, 25466}, {12694, 25525}, {31735, 57288}, {31770, 49736}, {58614, 58623}

X(58444) = midpoint of X(i) and X(j) for these {i,j}: {10, 12908}, {12443, 21633}, {31735, 57288}, {4301, 31800}, {5044, 12813}, {5836, 31766}, {58616, 58689}, {946, 31790}, {960, 31768}
X(58444) = complement of X(18258)
X(58444) = center of the nine-point conic of quadrilateral XYZX(177) where XYZ is the cevian triangle of X(2)
X(58444) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 177, 18258}, {58616, 58689, 518}


X(58445) = X(2)X(98)∩X(140)X(143)

Barycentrics    2*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+8*b^2*c^2+c^4) : :
X(58445) = X[4]+3*X[17508], X[5]+X[5092], -X[20]+5*X[55672], X[66]+3*X[23042], -X[69]+17*X[3533], X[141]+X[575], -X[193]+5*X[22234], X[206]+X[20299], 3*X[376]+X[48904], 3*X[381]+X[48898], X[382]+7*X[55676], -X[548]+2*X[55668] and many others

X(58445) lies on these lines: {2, 98}, {3, 7889}, {4, 17508}, {5, 5092}, {6, 3411}, {20, 55672}, {24, 52990}, {30, 25565}, {66, 23042}, {69, 3533}, {115, 5116}, {140, 143}, {141, 575}, {187, 53484}, {193, 22234}, {206, 20299}, {343, 32068}, {373, 7495}, {376, 48904}, {381, 48898}, {382, 55676}, {524, 10124}, {546, 29323}, {547, 11645}, {548, 55668}, {549, 5480}, {550, 48895}, {576, 3525}, {597, 5097}, {599, 53091}, {620, 24256}, {623, 20416}, {624, 20415}, {626, 39750}, {631, 3098}, {1176, 43811}, {1350, 5054}, {1351, 15694}, {1386, 11231}, {1503, 3628}, {1506, 1691}, {1511, 20301}, {1656, 3818}, {1657, 55673}, {1698, 38029}, {1843, 10018}, {1974, 37119}, {2030, 3055}, {2548, 41412}, {2777, 15578}, {2783, 24295}, {2888, 46865}, {2916, 13621}, {2918, 6642}, {3068, 42832}, {3069, 42833}, {3090, 46264}, {3091, 48884}, {3096, 10359}, {3146, 55675}, {3329, 35426}, {3398, 6292}, {3406, 10292}, {3518, 46026}, {3522, 48879}, {3523, 31670}, {3524, 48873}, {3528, 43621}, {3530, 29181}, {3534, 55671}, {3545, 55683}, {3548, 19126}, {3564, 16239}, {3616, 38116}, {3619, 55710}, {3620, 55712}, {3627, 48891}, {3629, 55713}, {3763, 5050}, {3819, 37649}, {3821, 53792}, {3832, 33750}, {3843, 55678}, {3845, 48942}, {3850, 55680}, {3851, 48905}, {3934, 50652}, {3955, 56451}, {4045, 23698}, {4048, 20398}, {5026, 34127}, {5055, 36990}, {5056, 55685}, {5067, 25406}, {5070, 10516}, {5071, 14927}, {5079, 55684}, {5103, 7830}, {5150, 24251}, {5181, 45973}, {5650, 14389}, {5655, 14926}, {5898, 12584}, {5943, 7499}, {6034, 36782}, {6143, 19128}, {6249, 7470}, {6329, 22330}, {6593, 34128}, {6640, 19131}, {6656, 13449}, {6676, 6688}, {6677, 10219}, {6719, 10160}, {6722, 51848}, {6759, 31267}, {7193, 56454}, {7404, 13347}, {7486, 55689}, {7496, 51360}, {7505, 19124}, {7514, 7706}, {7542, 11574}, {7568, 9969}, {7571, 11550}, {7605, 15107}, {7606, 7619}, {7697, 32429}, {7746, 50659}, {7755, 13331}, {7764, 8177}, {7765, 12055}, {7769, 51371}, {7786, 52997}, {7790, 38734}, {7792, 15819}, {7810, 11842}, {7819, 13334}, {7820, 11171}, {7824, 35375}, {7828, 43157}, {7829, 44423}, {7844, 51520}, {7859, 52995}, {7875, 22712}, {7876, 32152}, {7907, 52996}, {7913, 37348}, {7919, 23514}, {7943, 37446}, {8252, 19145}, {8253, 19146}, {8359, 47113}, {8362, 13335}, {8550, 43150}, {8703, 48920}, {8981, 13972}, {9053, 51700}, {9751, 40236}, {9822, 16238}, {10112, 43651}, {10182, 15577}, {10257, 47581}, {10282, 23300}, {10299, 51538}, {10303, 14853}, {10519, 37517}, {10541, 18440}, {10545, 44300}, {11064, 15082}, {11174, 35431}, {11225, 37636}, {11257, 16895}, {11285, 35424}, {11289, 20428}, {11290, 20429}, {11291, 12974}, {11292, 12975}, {11307, 49105}, {11308, 49106}, {11309, 44514}, {11310, 44513}, {11427, 44833}, {11585, 32396}, {11649, 44452}, {11812, 55612}, {11898, 15723}, {12007, 20582}, {12100, 55659}, {12108, 55631}, {12294, 37118}, {13349, 37340}, {13350, 37341}, {13373, 58633}, {13910, 13966}, {14643, 32305}, {14786, 37515}, {14788, 44829}, {14848, 55722}, {14869, 21167}, {14891, 51139}, {14893, 50971}, {14912, 55708}, {14994, 37688}, {15018, 41586}, {15035, 32273}, {15061, 19140}, {15069, 55705}, {15520, 51171}, {15559, 44091}, {15683, 50964}, {15687, 50988}, {15692, 55662}, {15693, 38072}, {15699, 25561}, {15700, 51024}, {15701, 54131}, {15702, 20423}, {15703, 43273}, {15704, 48943}, {15707, 55648}, {15708, 55633}, {15709, 54173}, {15712, 38136}, {15713, 38079}, {15717, 55658}, {15718, 50963}, {15720, 31884}, {15721, 51141}, {16419, 37488}, {16987, 37455}, {17004, 32451}, {17712, 50136}, {18230, 38115}, {18358, 48154}, {18374, 48411}, {18381, 23041}, {18400, 20300}, {18442, 32600}, {18553, 44516}, {19149, 23329}, {19161, 44673}, {19862, 38118}, {19872, 39885}, {20113, 37283}, {20195, 38117}, {20417, 40280}, {20806, 44494}, {21356, 51140}, {21531, 39506}, {22352, 37990}, {22687, 42673}, {22689, 42672}, {23325, 36989}, {24250, 24253}, {24273, 38224}, {25338, 32416}, {25556, 49116}, {25563, 34146}, {26889, 55903}, {26890, 55901}, {29646, 31395}, {30259, 34990}, {31235, 38119}, {31260, 38120}, {31489, 40825}, {32205, 58532}, {32218, 40670}, {32271, 38727}, {32467, 46226}, {33237, 52771}, {33554, 53845}, {33878, 55863}, {33923, 55664}, {34126, 51157}, {34200, 50959}, {35018, 55686}, {35404, 51129}, {35422, 37334}, {35925, 38736}, {36201, 50140}, {36757, 42937}, {36758, 42936}, {37124, 39569}, {37646, 50595}, {38028, 49524}, {38111, 51144}, {38112, 51147}, {38113, 51150}, {38751, 43456}, {39530, 52289}, {39870, 51073}, {39899, 55703}, {40341, 53092}, {41716, 52989}, {42785, 55646}, {44682, 55661}, {45760, 55715}, {50984, 55592}, {51179, 55714}, {53093, 55858}, {54132, 55581}, {54170, 55605}, {55697, 55860}, {55698, 55861}, {55700, 58435}, {55704, 55862}, {58562, 58630}

X(58445) = midpoint of X(i) and X(j) for these {i,j}: {140, 3589}, {141, 575}, {182, 24206}, {10282, 23300}, {1511, 20301}, {13373, 58633}, {14893, 50971}, {15704, 48943}, {15819, 51829}, {18553, 48906}, {2, 10168}, {206, 20299}, {20113, 37283}, {21850, 55606}, {25556, 49116}, {25561, 51737}, {3, 19130}, {3627, 48891}, {3934, 50652}, {32149, 40108}, {34200, 50959}, {38136, 55657}, {4, 48892}, {44423, 49111}, {44882, 48889}, {48885, 48901}, {48920, 51163}, {5, 5092}, {547, 50983}, {550, 48895}, {5097, 48876}, {5447, 58471}, {5480, 14810}, {6, 40107}, {626, 39750}, {58562, 58630}, {7606, 7619}, {7764, 8177}, {8550, 43150}
X(58445) = reflection of X(i) in X(j) for these {i,j}: {12007, 55709}, {14891, 51139}, {15516, 51732}, {22330, 6329}, {25555, 3589}, {3628, 51127}, {33749, 50664}, {33751, 55674}, {34573, 16239}, {548, 55668}, {55653, 3530}, {58532, 32205}
X(58445) = inverse of X(40870) in Steiner inellipse
X(58445) = complement of X(24206)
X(58445) = perspector of circumconic {{A, B, C, X(2966), X(20189)}}
X(58445)= pole of line {7927, 53263} with respect to the circumcircle
X(58445)= pole of line {826, 39512} with respect to the nine-point circle
X(58445)= pole of line {230, 1506} with respect to the Kiepert hyperbola
X(58445)= pole of line {511, 15246} with respect to the Stammler hyperbola
X(58445)= pole of line {2799, 31296} with respect to the Steiner inellipse
X(58445)= pole of line {325, 3628} with respect to the Wallace hyperbola
X(58445) = center of the nine-point conic of quadrilateral XYZX(182) where XYZ is the cevian triangle of X(2)
X(58445) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(45108)}}, {{A, B, C, X(287), X(34483)}}, {{A, B, C, X(1976), X(34567)}}
X(58445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 182, 24206}, {2, 38064, 11178}, {2, 43650, 21243}, {3, 19130, 29317}, {3, 38317, 19130}, {3, 47355, 38317}, {3, 48901, 48885}, {3, 53023, 48880}, {4, 17508, 48892}, {5, 44882, 48889}, {30, 55674, 33751}, {140, 3589, 511}, {141, 38110, 575}, {141, 575, 5965}, {182, 11178, 6776}, {182, 24206, 542}, {373, 7495, 32223}, {381, 53094, 48898}, {511, 3589, 25555}, {524, 51732, 15516}, {547, 50983, 11645}, {549, 5480, 14810}, {597, 48876, 5097}, {631, 14561, 3098}, {632, 38110, 141}, {1503, 51127, 3628}, {1656, 5085, 3818}, {3523, 31670, 55649}, {3524, 48873, 55655}, {3530, 29181, 55653}, {3564, 16239, 34573}, {3564, 50664, 33749}, {3763, 5050, 34507}, {3851, 55682, 48905}, {5050, 46219, 3763}, {5070, 10516, 42786}, {5070, 12017, 10516}, {5092, 48889, 44882}, {5480, 14810, 19924}, {6329, 34380, 22330}, {8703, 51163, 48920}, {10168, 24206, 182}, {14869, 21850, 21167}, {15516, 46267, 51732}, {15694, 47352, 50977}, {15699, 51737, 25561}, {15712, 38136, 48881}, {15712, 48881, 55657}, {15713, 38079, 54169}, {18553, 55695, 48906}, {19130, 48885, 48901}, {21167, 21850, 55606}, {21358, 55711, 11898}, {43150, 55706, 8550}, {44882, 48889, 29012}, {47365, 47366, 5984}, {47369, 47370, 98}, {48879, 55667, 3522}, {48895, 55670, 550}, {48904, 51137, 55669}, {48904, 55669, 376}, {48920, 55666, 8703}


X(58446) = X(2)X(6)∩X(5)X(5171)

Barycentrics    2*a^4+b^4-6*b^2*c^2+c^4-5*a^2*(b^2+c^2) : :
X(58446) = X[14907]+3*X[44543]

X(58446) lies on these lines: {2, 6}, {5, 5171}, {115, 8359}, {140, 620}, {148, 7824}, {468, 10163}, {546, 7830}, {547, 625}, {549, 3734}, {623, 52263}, {624, 52266}, {626, 3628}, {632, 3788}, {1078, 7745}, {1368, 34845}, {1447, 7228}, {1503, 37451}, {1506, 7767}, {1656, 7800}, {1975, 33001}, {2896, 16922}, {3035, 21264}, {3053, 32968}, {3090, 7784}, {3096, 33249}, {3526, 7795}, {3530, 7816}, {3533, 53033}, {3705, 4478}, {3785, 32975}, {3793, 7753}, {3850, 7842}, {3933, 31455}, {4045, 43291}, {4399, 7081}, {5013, 32828}, {5023, 32971}, {5026, 6055}, {5066, 40344}, {5077, 20112}, {5103, 38227}, {5116, 46318}, {5210, 14033}, {5254, 11285}, {5305, 6683}, {5585, 35927}, {6054, 50958}, {6292, 8361}, {6390, 9466}, {6392, 22332}, {6656, 14061}, {6676, 34828}, {6677, 14767}, {6690, 20530}, {6722, 8360}, {7179, 7238}, {7603, 7810}, {7746, 7913}, {7749, 7819}, {7750, 16921}, {7751, 31406}, {7754, 9606}, {7758, 31467}, {7771, 8370}, {7773, 32999}, {7775, 14929}, {7804, 8367}, {7831, 33228}, {7841, 53127}, {7849, 48154}, {7862, 55856}, {7865, 15699}, {7869, 55859}, {7880, 10124}, {7886, 8364}, {7904, 33002}, {7914, 33186}, {8356, 53419}, {8357, 39565}, {8368, 50370}, {8716, 52713}, {9172, 34227}, {9756, 44882}, {9769, 25329}, {9993, 50959}, {10011, 24206}, {10185, 56064}, {10256, 49793}, {11286, 21843}, {11287, 43620}, {11632, 15483}, {12100, 32456}, {13860, 29181}, {13881, 16043}, {14001, 44535}, {14064, 32867}, {14907, 44543}, {15031, 19695}, {15048, 15482}, {15810, 37350}, {15819, 24256}, {16923, 46226}, {17372, 49554}, {17390, 24239}, {18584, 32827}, {18840, 53103}, {19687, 43459}, {20190, 35021}, {26235, 53474}, {31276, 33015}, {32815, 53095}, {32819, 33004}, {32883, 32969}, {32897, 33202}, {32960, 52718}, {32990, 44518}, {33021, 44536}, {33215, 44526}, {34827, 37454}, {40248, 47354}, {41579, 51412}, {47239, 57588}, {49484, 49631}

X(58446) = midpoint of X(i) and X(j) for these {i,j}: {183, 3815}, {14907, 53418}, {2, 11168}
X(58446) = inverse of X(39099) in Steiner inellipse
X(58446) = complement of X(3815)
X(58446) = X(i)-complementary conjugate of X(j) for these {i, j}: {30535, 10}
X(58446)= pole of line {2, 5034} with respect to the Kiepert hyperbola
X(58446)= pole of line {523, 39099} with respect to the Steiner inellipse
X(58446) = center of the nine-point conic of quadrilateral XYZX(183) where XYZ is the cevian triangle of X(2)
X(58446) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(31489)}}, {{A, B, C, X(83), X(15491)}}, {{A, B, C, X(3055), X(8781)}}, {{A, B, C, X(3618), X(53103)}}, {{A, B, C, X(3620), X(43458)}}, {{A, B, C, X(7607), X(11174)}}, {{A, B, C, X(7792), X(53104)}}, {{A, B, C, X(9771), X(10302)}}, {{A, B, C, X(10159), X(44377)}}, {{A, B, C, X(15993), X(40511)}}, {{A, B, C, X(17005), X(42006)}}, {{A, B, C, X(18840), X(34803)}}, {{A, B, C, X(36953), X(39099)}}
X(58446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 141, 44377}, {2, 15271, 141}, {2, 15597, 44401}, {2, 17004, 7792}, {2, 17008, 11174}, {2, 183, 3815}, {2, 230, 3589}, {2, 23055, 47352}, {2, 3054, 44381}, {2, 325, 3055}, {2, 3314, 37647}, {2, 3620, 34803}, {2, 37688, 230}, {2, 42850, 11184}, {2, 599, 9771}, {2, 6, 15491}, {2, 69, 31489}, {2, 7610, 597}, {6, 34229, 13468}, {69, 8556, 15598}, {140, 3934, 7789}, {183, 3815, 524}, {385, 9300, 32455}, {549, 3734, 32459}, {1078, 32992, 7745}, {3314, 37647, 22110}, {3815, 11168, 183}, {5306, 11174, 6329}, {7736, 8667, 3629}, {7749, 31239, 7819}, {7777, 37671, 50771}, {7778, 7792, 44380}, {7792, 37688, 17004}, {8556, 31489, 69}, {9766, 15589, 3630}, {11174, 17008, 5306}, {11184, 42850, 22165}, {11285, 32832, 5254}, {13468, 15491, 6}, {14907, 44543, 53418}, {15491, 34229, 50774}, {16043, 32838, 13881}, {32828, 32978, 5013}, {34573, 44381, 2}, {39022, 39023, 39099}, {44382, 44383, 20582}, {45472, 45473, 3619}


X(58447) = X(2)X(98)∩X(5)X(5944)

Barycentrics    2*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4) : :
X(58447) = X[3]+X[18388], X[427]+3*X[13394], -5*X[1656]+X[18474], 7*X[3526]+X[18445], -5*X[3618]+X[8541], 3*X[6800]+X[11550], X[7391]+3*X[35268], X[11430]+X[15760], 3*X[34513]+X[44288]

X(58447) lies on these lines: {2, 98}, {3, 18388}, {5, 5944}, {22, 29317}, {25, 19130}, {49, 1209}, {51, 14389}, {52, 12242}, {54, 10112}, {83, 420}, {140, 9729}, {141, 53022}, {143, 8254}, {154, 3818}, {161, 5020}, {275, 41203}, {343, 5965}, {389, 7542}, {394, 15135}, {427, 13394}, {428, 32237}, {436, 39569}, {441, 13334}, {465, 13349}, {466, 13350}, {468, 5943}, {511, 6676}, {549, 14156}, {569, 6639}, {575, 13567}, {576, 11427}, {578, 3549}, {858, 22352}, {970, 7561}, {1092, 7558}, {1216, 7568}, {1368, 5092}, {1370, 48892}, {1495, 5133}, {1506, 19627}, {1533, 13596}, {1568, 35921}, {1589, 12975}, {1590, 12974}, {1594, 44829}, {1656, 18474}, {1994, 41586}, {2072, 37513}, {2387, 6680}, {2393, 3589}, {2595, 41279}, {2777, 18570}, {2875, 6690}, {2888, 9706}, {3060, 52300}, {3098, 7494}, {3167, 34507}, {3292, 37636}, {3521, 18364}, {3526, 18445}, {3546, 13347}, {3547, 13346}, {3548, 37515}, {3574, 7488}, {3580, 11225}, {3618, 8541}, {3628, 58435}, {3796, 5094}, {3819, 7499}, {3917, 7495}, {4846, 11204}, {5050, 26958}, {5054, 37475}, {5085, 30771}, {5097, 41588}, {5159, 20190}, {5169, 26881}, {5189, 6030}, {5449, 32046}, {5462, 10020}, {5476, 17810}, {5480, 10154}, {5562, 32348}, {5576, 13419}, {5892, 44452}, {6000, 52262}, {6053, 18435}, {6353, 14561}, {6636, 32598}, {6640, 13336}, {6644, 10182}, {6683, 14917}, {6750, 37127}, {6800, 11550}, {7378, 48884}, {7386, 17508}, {7391, 35268}, {7394, 44082}, {7426, 44106}, {7527, 51403}, {7536, 48886}, {7539, 35259}, {7552, 15033}, {7569, 9707}, {7664, 33798}, {7667, 33751}, {7687, 10254}, {7706, 18324}, {7749, 21001}, {7907, 35294}, {8041, 41939}, {8718, 35482}, {8780, 10516}, {8889, 46264}, {8964, 43144}, {9730, 44673}, {9909, 48901}, {10024, 13403}, {10095, 18282}, {10096, 13364}, {10110, 13383}, {10116, 34826}, {10125, 12006}, {10193, 18580}, {10257, 16836}, {10274, 40441}, {10300, 55679}, {10540, 48411}, {10565, 31670}, {10601, 37453}, {10615, 30481}, {10627, 34004}, {10691, 55674}, {10984, 37119}, {11202, 18420}, {11245, 33749}, {11272, 44347}, {11402, 37638}, {11430, 15760}, {11433, 39561}, {11585, 44862}, {11695, 16238}, {11745, 44277}, {12038, 20302}, {12900, 50140}, {13160, 13367}, {13348, 16197}, {13353, 43817}, {13363, 44234}, {13561, 18128}, {14118, 43831}, {14133, 37125}, {14915, 44236}, {14940, 43651}, {15060, 16534}, {15080, 31074}, {15115, 50008}, {15118, 32299}, {15644, 34002}, {16030, 23181}, {16051, 55687}, {16196, 17704}, {16252, 44870}, {16511, 32300}, {17702, 46029}, {17825, 44503}, {18020, 39287}, {18114, 44891}, {18390, 37506}, {18392, 21659}, {18583, 58470}, {18928, 52290}, {19137, 31267}, {19481, 46085}, {19924, 44210}, {20268, 24332}, {20850, 53023}, {21849, 32269}, {23332, 48906}, {25406, 52299}, {25563, 40647}, {25739, 54000}, {26884, 56462}, {26885, 56464}, {31860, 42785}, {32154, 32283}, {32225, 34565}, {32340, 41482}, {33522, 55587}, {34007, 51033}, {34218, 56308}, {34513, 44288}, {34608, 48904}, {34609, 48898}, {35473, 37853}, {35926, 38736}, {37347, 51393}, {37505, 41587}, {37643, 55710}, {37645, 43653}, {37648, 52297}, {37779, 55038}, {37894, 51371}, {39504, 44407}, {43120, 55890}, {43121, 55885}, {44108, 46818}, {44109, 45968}, {44442, 48896}, {44888, 46832}, {45298, 47296}, {46728, 47525}, {50433, 51269}

X(58447) = midpoint of X(i) and X(j) for these {i,j}: {184, 21243}, {11430, 15760}, {3, 18388}, {343, 34986}, {389, 45118}, {5, 18475}, {6676, 23292}
X(58447) = complement of X(21243)
X(58447)= pole of line {6368, 53567} with respect to the nine-point circle
X(58447)= pole of line {511, 7691} with respect to the Stammler hyperbola
X(58447)= pole of line {2799, 39652} with respect to the Steiner inellipse
X(58447) = center of the nine-point conic of quadrilateral XYZX(184) where XYZ is the cevian triangle of X(2)
X(58447) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(15619)}}, {{A, B, C, X(125), X(39287)}}
X(58447) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11003, 23293}, {2, 184, 21243}, {2, 5012, 125}, {2, 9306, 24206}, {5, 18475, 18400}, {5, 5944, 45286}, {140, 13630, 20191}, {140, 15806, 11591}, {140, 58407, 43839}, {140, 9820, 11793}, {184, 21243, 542}, {468, 37649, 5943}, {575, 13567, 32068}, {3580, 13366, 11225}, {3589, 58434, 6677}, {3589, 58437, 9822}, {3589, 6677, 6688}, {5943, 37649, 25555}, {6676, 23292, 511}, {6689, 44516, 5}, {6800, 31236, 11550}, {7499, 11064, 3819}, {8254, 34577, 143}


X(58448) = X(2)X(187)∩X(140)X(143)

Barycentrics    4*a^4-3*a^2*(b^2+c^2)+2*(b^4-b^2*c^2+c^4) : :
X(58448) = 3*X[2]+X[187], X[5]+X[47113], X[69]+3*X[1692], X[99]+X[32457], X[115]+X[32456], X[141]+X[2030], -X[325]+5*X[31274], 5*X[632]+3*X[38230], X[1513]+3*X[38737], -5*X[1656]+X[13449], 3*X[1691]+5*X[3763], 5*X[1698]+3*X[38221] and many others

X(58448) lies on these lines: {2, 187}, {3, 7844}, {5, 47113}, {30, 6722}, {32, 33233}, {39, 7806}, {69, 1692}, {83, 10631}, {99, 32457}, {115, 32456}, {140, 143}, {141, 2030}, {183, 7880}, {230, 538}, {325, 31274}, {468, 5140}, {512, 31286}, {524, 22244}, {540, 44399}, {543, 32459}, {549, 4045}, {574, 7817}, {597, 7619}, {631, 7834}, {632, 38230}, {754, 44377}, {1078, 7849}, {1384, 7775}, {1506, 53489}, {1513, 38737}, {1570, 31401}, {1656, 13449}, {1691, 3763}, {1698, 38221}, {2021, 3934}, {2031, 3815}, {2080, 3526}, {2459, 10576}, {2460, 10577}, {2482, 15301}, {2548, 32977}, {2549, 33216}, {2794, 10011}, {3053, 7843}, {3054, 8369}, {3111, 5167}, {3291, 7664}, {3552, 39565}, {3564, 20399}, {3618, 5107}, {3624, 5184}, {3629, 7764}, {3734, 11288}, {3767, 32989}, {3793, 22110}, {3818, 37466}, {5007, 7769}, {5008, 7777}, {5023, 7825}, {5024, 7622}, {5025, 15513}, {5031, 33185}, {5054, 15482}, {5077, 5585}, {5104, 47355}, {5148, 5432}, {5162, 11285}, {5170, 30834}, {5194, 5433}, {5206, 7842}, {5210, 11318}, {5461, 27088}, {6036, 37459}, {6642, 32762}, {6681, 40479}, {6720, 16760}, {6781, 33228}, {7746, 7816}, {7747, 33249}, {7748, 32964}, {7752, 35007}, {7753, 37647}, {7755, 32450}, {7763, 7805}, {7778, 7848}, {7790, 8589}, {7792, 44562}, {7793, 7821}, {7795, 33203}, {7797, 31652}, {7800, 33189}, {7801, 17008}, {7803, 33206}, {7813, 9167}, {7824, 7852}, {7828, 33259}, {7830, 8361}, {7835, 9466}, {7841, 8588}, {7845, 7925}, {7846, 33015}, {7851, 15515}, {7869, 35006}, {7873, 7899}, {7882, 7888}, {7892, 31239}, {7901, 43459}, {7902, 15815}, {7908, 8667}, {7918, 33022}, {7919, 33273}, {7935, 33218}, {7942, 33004}, {8365, 34573}, {8368, 50370}, {8586, 47352}, {8598, 14971}, {8859, 39785}, {9301, 15694}, {10104, 43150}, {10160, 35060}, {10257, 47584}, {11064, 50387}, {11149, 32480}, {11184, 21309}, {11361, 39601}, {11539, 15491}, {12150, 17005}, {12506, 37811}, {13586, 14061}, {14928, 53475}, {14962, 47638}, {15602, 52691}, {16188, 44214}, {16385, 39603}, {17694, 36812}, {18424, 33007}, {31455, 33000}, {31481, 50375}, {32807, 50374}, {32829, 51170}, {32967, 39590}, {32984, 43618}, {32985, 43620}, {33255, 53127}, {34504, 43448}, {34511, 37689}, {35287, 43619}, {35605, 46818}, {38611, 44282}, {38738, 39663}, {39554, 40335}, {39555, 40334}, {42215, 45872}, {42216, 45871}, {45879, 48314}, {45880, 48313}, {47618, 55863}, {50253, 51371}, {51848, 55674}, {52021, 53458}, {52022, 53469}

X(58448) = midpoint of X(i) and X(j) for these {i,j}: {115, 32456}, {140, 14693}, {141, 2030}, {187, 625}, {10150, 26613}, {15301, 47286}, {2021, 3934}, {230, 620}, {32459, 43291}, {468, 40544}, {5, 47113}, {5461, 27088}, {6036, 37459}, {6671, 6672}, {99, 32457}
X(58448) = reflection of X(i) in X(j) for these {i,j}: {6722, 44381}
X(58448) = inverse of X(40871) in Steiner inellipse
X(58448) = complement of X(625)
X(58448) = perspector of circumconic {{A, B, C, X(35138), X(38262)}}
X(58448) = X(i)-complementary conjugate of X(j) for these {i, j}: {57729, 10}, {57926, 2887}
X(58448)= pole of line {8704, 44434} with respect to the orthoptic circle of the Steiner Inellipse
X(58448)= pole of line {597, 1506} with respect to the Kiepert hyperbola
X(58448)= pole of line {3906, 20105} with respect to the Steiner circumellipse
X(58448)= pole of line {194, 3906} with respect to the Steiner inellipse
X(58448)= pole of line {599, 7887} with respect to the Wallace hyperbola
X(58448) = center of the nine-point conic of quadrilateral XYZX(187) where XYZ is the cevian triangle of X(2)
X(58448) = intersection, other than A, B, C, of circumconics {{A, B, C, X(598), X(45108)}}, {{A, B, C, X(625), X(57926)}}, {{A, B, C, X(7934), X(30542)}}, {{A, B, C, X(18023), X(31275)}}
X(58448) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 187, 625}, {2, 21843, 7761}, {2, 26613, 31173}, {2, 31173, 10150}, {2, 316, 31275}, {2, 37809, 8176}, {2, 3972, 7603}, {2, 7771, 7853}, {3, 7886, 7861}, {30, 44381, 6722}, {115, 35297, 32456}, {140, 14693, 511}, {140, 6680, 6683}, {187, 31173, 14712}, {187, 31275, 316}, {230, 620, 538}, {631, 38227, 18860}, {1078, 33245, 7874}, {1078, 7874, 7849}, {3053, 7862, 7843}, {3788, 7780, 7895}, {5206, 7887, 7842}, {5461, 27088, 32479}, {6720, 44452, 58464}, {7746, 16925, 7816}, {7749, 7807, 3934}, {7749, 7820, 37688}, {7761, 21843, 46893}, {7771, 7853, 40344}, {7790, 33274, 8589}, {7807, 37688, 7820}, {7815, 32954, 7915}, {7835, 17004, 9466}, {10150, 26613, 3849}, {11288, 37637, 3734}, {14712, 26613, 187}, {27088, 41139, 5461}, {32459, 43291, 543}, {32459, 44401, 43291}, {32954, 44535, 7815}


X(58449) = X(2)X(191)∩X(10)X(21)

Barycentrics    2*a^4+a^3*(b+c)+(b^2-c^2)^2-a*(b+c)*(b^2+3*b*c+c^2)-a^2*(3*b^2+4*b*c+3*c^2) : :
X(58449) = -X[1]+5*X[15674], 3*X[2]+X[191], X[5]+X[22937], X[8]+3*X[5426], X[10]+X[21], X[72]+X[47319], -X[79]+5*X[31254], 3*X[165]+X[37433], X[355]+3*X[28443], -X[551]+3*X[15671], -5*X[631]+X[16132], -5*X[632]+X[33668] and many others

X(58449) lies on these lines: {1, 15674}, {2, 191}, {5, 22937}, {8, 5426}, {10, 21}, {12, 41542}, {30, 3828}, {72, 47319}, {79, 31254}, {140, 2771}, {165, 37433}, {226, 41697}, {333, 21081}, {355, 28443}, {442, 1155}, {515, 5428}, {516, 6841}, {517, 10021}, {518, 58619}, {519, 15670}, {551, 15671}, {631, 16132}, {632, 33668}, {758, 942}, {846, 24880}, {944, 31669}, {946, 16139}, {952, 44254}, {993, 37308}, {1213, 15586}, {1376, 37292}, {1385, 31650}, {1656, 16159}, {1698, 2475}, {1749, 14526}, {2292, 50757}, {2795, 51578}, {3120, 24902}, {3452, 20104}, {3526, 13465}, {3579, 16160}, {3616, 16126}, {3626, 44669}, {3628, 31756}, {3649, 3911}, {3651, 10164}, {3678, 6690}, {3679, 15672}, {3683, 25639}, {3743, 35466}, {3811, 31446}, {3817, 49177}, {3822, 31445}, {3825, 15254}, {3833, 50205}, {3841, 4640}, {3878, 24953}, {3881, 58568}, {4065, 50755}, {4066, 56078}, {4127, 5719}, {4193, 41872}, {4297, 21161}, {4298, 41547}, {4533, 52638}, {4669, 15675}, {4691, 10543}, {4701, 15174}, {4745, 15673}, {5044, 58404}, {5047, 41557}, {5141, 56203}, {5248, 5791}, {5267, 27086}, {5273, 10198}, {5325, 21077}, {5427, 10106}, {5432, 17637}, {5442, 17535}, {5499, 11231}, {5847, 51729}, {6533, 51583}, {6666, 6701}, {6745, 31938}, {6853, 21635}, {6857, 22836}, {7483, 10176}, {7701, 31423}, {9780, 15680}, {10122, 13405}, {10165, 33858}, {10175, 37230}, {10197, 41229}, {10916, 51724}, {11041, 30147}, {11277, 58451}, {11604, 37162}, {11684, 19862}, {13089, 51569}, {13743, 26446}, {13995, 51573}, {15677, 19875}, {16117, 31672}, {16118, 19877}, {16138, 38068}, {16617, 43174}, {16858, 37702}, {17525, 51069}, {17558, 49168}, {18180, 56894}, {18483, 46028}, {19919, 49107}, {21674, 52680}, {22837, 31458}, {25440, 37286}, {27529, 52126}, {27784, 37646}, {28150, 44258}, {28164, 44238}, {28194, 44257}, {28460, 50796}, {31157, 51714}, {31757, 58479}, {33812, 51111}, {34600, 37291}, {34753, 58586}, {35637, 43223}, {37298, 50844}, {40937, 45927}, {43151, 51489}, {47742, 58658}, {51118, 52269}, {54335, 56313}

X(58449) = midpoint of X(i) and X(j) for these {i,j}: {10, 21}, {191, 11263}, {18180, 56894}, {19919, 49107}, {21677, 35016}, {28460, 50796}, {3579, 16160}, {442, 3647}, {5, 22937}, {5499, 22936}, {6675, 18253}, {58619, 58692}, {72, 47319}, {946, 16139}
X(58449) = reflection of X(i) in X(j) for these {i,j}: {1125, 6675}, {18483, 46028}, {3678, 58638}, {3881, 58568}, {31757, 58479}, {442, 3634}
X(58449) = complement of X(11263)
X(58449) = perspector of circumconic {{A, B, C, X(42362), X(47318)}}
X(58449) = X(i)-complementary conjugate of X(j) for these {i, j}: {7161, 3454}, {7372, 21252}
X(58449)= pole of line {1100, 31488} with respect to the Kiepert hyperbola
X(58449)= pole of line {36, 15792} with respect to the Stammler hyperbola
X(58449)= pole of line {4560, 7265} with respect to the Steiner inellipse
X(58449) = center of the nine-point conic of quadrilateral XYZX(191) where XYZ is the cevian triangle of X(2)
X(58449) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(758), X(5260)}}, {{A, B, C, X(6740), X(55091)}}, {{A, B, C, X(24624), X(55090)}}
X(58449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 191, 11263}, {8, 15676, 5426}, {846, 24880, 36250}, {6666, 58405, 31253}, {6675, 18253, 758}, {6693, 58386, 1125}, {11231, 22936, 5499}, {15670, 21677, 35016}, {21677, 35016, 519}, {58619, 58692, 518}


X(58450) = X(2)X(66)∩X(6)X(13622)

Barycentrics    2*a^8+(b^4-c^4)^2-3*a^4*(b^4+c^4) : :
X(58450) = -9*X[2]+X[66], -3*X[597]+X[39125], X[626]+X[42826], 5*X[1656]+3*X[23041], 7*X[3090]+X[36989], 11*X[3525]+X[9968], 7*X[3526]+X[19149], 5*X[3763]+3*X[19153], -9*X[5054]+X[34778], -9*X[5055]+X[34775], 3*X[10192]+X[23300], X[10282]+X[20300] and many others

X(58450) lies on circumconic {{A, B, C, X(13622), X(40404)}} and these lines: {2, 66}, {6, 13622}, {140, 34146}, {141, 5972}, {159, 11284}, {182, 44516}, {420, 53485}, {468, 9969}, {511, 10020}, {542, 34330}, {570, 44887}, {597, 39125}, {626, 42826}, {1503, 3628}, {1560, 46242}, {1656, 23041}, {2393, 3589}, {3090, 36989}, {3098, 14156}, {3525, 9968}, {3526, 19149}, {3564, 58435}, {3618, 5643}, {3763, 19153}, {3852, 6680}, {5054, 34778}, {5055, 34775}, {5092, 12900}, {6292, 15257}, {6467, 15118}, {6676, 58547}, {6689, 15577}, {7499, 45979}, {7889, 15270}, {10018, 19161}, {10182, 12106}, {10192, 23300}, {10224, 29012}, {10282, 20300}, {11202, 18382}, {12107, 29317}, {13365, 25555}, {13623, 35450}, {14076, 24206}, {15583, 48310}, {16419, 34207}, {18583, 58407}, {19125, 52292}, {23042, 34118}, {23292, 58471}, {29181, 44277}, {32191, 58489}, {32344, 43811}, {34774, 51128}, {34776, 42786}, {34777, 47352}, {40559, 58438}, {46265, 55653}, {53023, 55578}, {58436, 58454}

X(58450) = midpoint of X(i) and X(j) for these {i,j}: {141, 41593}, {10282, 20300}, {19130, 35228}, {206, 6697}, {3589, 58437}, {626, 42826}
X(58450) = complement of X(6697)
X(58450)= pole of line {3313, 11416} with respect to the Stammler hyperbola
X(58450) = center of the nine-point conic of quadrilateral XYZX(206) where XYZ is the cevian triangle of X(2)
X(58450) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 206, 6697}, {2, 31267, 206}, {3589, 58434, 58437}, {3589, 58437, 2393}, {3589, 58439, 58494}, {10192, 51126, 23300}


X(58451) = X(2)X(210)∩X(10)X(496)

Barycentrics    a*(-b^2-8*b*c-c^2+a*(b+c)) : :
X(58451) = 3*X[2]+X[210], 2*X[5]+X[58637], -X[65]+13*X[19877], -4*X[140]+X[58567], 2*X[141]+X[58694], 2*X[142]+X[58678], X[375]+X[3819], X[392]+3*X[19875], 2*X[620]+X[58682], X[942]+X[4134], X[960]+5*X[1698], X[1125]+X[3956] and many others

X(58451) lies on these lines: {2, 210}, {5, 58637}, {9, 8169}, {10, 496}, {37, 16569}, {43, 15569}, {44, 17122}, {57, 15481}, {65, 19877}, {75, 4903}, {140, 58567}, {141, 58694}, {142, 58678}, {200, 8167}, {375, 3819}, {392, 19875}, {474, 5302}, {517, 547}, {620, 58682}, {674, 6688}, {756, 16610}, {758, 3634}, {899, 1962}, {936, 56177}, {942, 4134}, {960, 1698}, {971, 58441}, {982, 31197}, {984, 16602}, {1001, 3158}, {1125, 3956}, {1155, 9342}, {1212, 41796}, {1213, 25144}, {1376, 4512}, {1386, 5268}, {2801, 10156}, {2802, 51069}, {2810, 58646}, {2836, 45311}, {2886, 5316}, {3035, 58683}, {3057, 46933}, {3246, 17123}, {3305, 4413}, {3306, 3715}, {3338, 16864}, {3452, 3826}, {3525, 14872}, {3526, 12675}, {3555, 34595}, {3589, 58621}, {3616, 3983}, {3624, 3697}, {3628, 13374}, {3636, 4540}, {3646, 3913}, {3678, 31253}, {3679, 10179}, {3683, 35595}, {3689, 5284}, {3696, 18743}, {3698, 46932}, {3711, 4666}, {3739, 24182}, {3744, 17125}, {3745, 37680}, {3751, 37682}, {3811, 16853}, {3823, 3846}, {3833, 4532}, {3842, 6686}, {3844, 5743}, {3869, 46931}, {3877, 4731}, {3892, 19862}, {3894, 4539}, {3919, 10176}, {3925, 5087}, {3934, 58695}, {3967, 19804}, {3971, 28555}, {3995, 4706}, {4009, 4359}, {4015, 5045}, {4059, 25585}, {4096, 28582}, {4113, 29824}, {4135, 4726}, {4358, 17163}, {4383, 4682}, {4420, 17534}, {4428, 46917}, {4519, 46938}, {4525, 5883}, {4533, 18398}, {4641, 17124}, {4650, 15492}, {4663, 37674}, {4685, 4891}, {4689, 9350}, {4698, 6685}, {4708, 25353}, {4719, 17749}, {4849, 26102}, {4881, 5260}, {4883, 21805}, {5049, 19883}, {5056, 7957}, {5094, 41611}, {5123, 38058}, {5159, 58639}, {5220, 5437}, {5224, 25108}, {5272, 49465}, {5281, 17604}, {5297, 37687}, {5426, 5440}, {5692, 19876}, {5745, 10855}, {5880, 18228}, {5919, 53620}, {5927, 10178}, {5943, 9047}, {6001, 11231}, {6036, 58681}, {6666, 6690}, {6667, 58611}, {6679, 6687}, {6683, 58622}, {6699, 58680}, {6710, 58684}, {6711, 58685}, {6712, 58686}, {6713, 58687}, {6721, 58661}, {6722, 58610}, {6723, 58671}, {7322, 54390}, {8583, 11260}, {9004, 20582}, {9025, 49731}, {9049, 12045}, {9052, 10219}, {9943, 31423}, {10157, 10164}, {10303, 12680}, {10582, 15570}, {10916, 51559}, {11108, 56176}, {11227, 15064}, {11235, 38200}, {11277, 58449}, {11997, 17358}, {12900, 58654}, {13373, 16239}, {15587, 18230}, {16616, 46028}, {16669, 37604}, {16814, 17596}, {16842, 51715}, {16862, 41229}, {16863, 51572}, {17063, 49515}, {17308, 30825}, {17348, 29649}, {17490, 49523}, {17535, 32636}, {17536, 37080}, {17616, 54357}, {18247, 30478}, {19855, 25681}, {21031, 24564}, {21060, 25557}, {21677, 25011}, {21870, 29814}, {23155, 33879}, {24003, 27798}, {24165, 42056}, {24703, 26040}, {24987, 50038}, {25068, 46196}, {25502, 49478}, {26037, 30818}, {26103, 49450}, {27538, 49483}, {27778, 31235}, {28164, 33575}, {28484, 35652}, {31287, 54271}, {31399, 31786}, {33160, 41310}, {34573, 58581}, {40480, 58691}, {40607, 58583}, {40998, 46916}, {41836, 49514}, {46694, 58591}, {51127, 58562}, {58402, 58458}, {58418, 58612}, {58420, 58665}, {58421, 58613}, {58423, 58667}, {58424, 58668}, {58425, 58669}, {58426, 58670}, {58427, 58672}, {58428, 58673}, {58433, 58563}, {58453, 58659}, {58561, 58675}, {58564, 58677}, {58578, 58699}, {58587, 58698}, {58595, 58674}

X(58451) = midpoint of X(i) and X(j) for these {i,j}: {1, 4711}, {1125, 3956}, {10157, 10164}, {11227, 15064}, {2, 3740}, {210, 3742}, {375, 3819}, {3679, 10179}, {3848, 58629}, {3877, 5836}, {3892, 34790}, {4685, 4891}, {40998, 49732}, {5927, 10178}, {942, 4134}, {960, 3753}
X(58451) = reflection of X(i) in X(j) for these {i,j}: {10107, 3753}, {3848, 2}, {4662, 3956}, {58560, 3848}, {58629, 3740}
X(58451) = complement of X(3742)
X(58451)= pole of line {390, 20014} with respect to the Feuerbach hyperbola
X(58451)= pole of line {4140, 4462} with respect to the Steiner inellipse
X(58451) = center of the nine-point conic of quadrilateral XYZX(210) where XYZ is the cevian triangle of X(2)
X(58451) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2481), X(3848)}}, {{A, B, C, X(27475), X(31507)}}
X(58451) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3921, 4711}, {2, 210, 3742}, {2, 3740, 518}, {2, 518, 3848}, {2, 58629, 58560}, {140, 58631, 58567}, {200, 8167, 42819}, {210, 354, 4661}, {375, 3819, 9037}, {518, 3740, 58629}, {1125, 4662, 58609}, {1376, 7308, 15254}, {3305, 4413, 4640}, {3452, 3826, 3838}, {3589, 58653, 58621}, {3624, 3697, 34791}, {3628, 58630, 13374}, {3634, 5044, 3812}, {3740, 3742, 210}, {3877, 4731, 5836}, {3877, 9780, 4731}, {4015, 19878, 5045}, {4539, 5439, 3894}, {4698, 58655, 58620}, {5268, 37679, 1386}, {6666, 20103, 6690}, {6666, 58634, 58608}, {6667, 58663, 58611}, {6683, 58656, 58622}, {6722, 58662, 58610}, {8580, 36835, 51780}, {8580, 51780, 1001}, {9342, 27065, 1155}, {10157, 10164, 15726}, {16239, 58632, 13373}, {18743, 26038, 3696}, {34573, 58633, 58581}, {40998, 46916, 49732}, {51127, 58676, 58562}, {58418, 58664, 58612}, {58421, 58666, 58613}, {58433, 58635, 58563}


X(58452) = X(2)X(213)∩X(6)X(30110)

Barycentrics    2*a^3*(b+c)+b*c*(b^2+c^2)+a*(b^3+c^3) : :
X(58452) = 3*X[2]+X[213], X[1930]+3*X[46907], X[3721]+3*X[46899]

X(58452) lies on these lines: {2, 213}, {6, 30110}, {39, 17353}, {41, 25497}, {44, 16887}, {386, 17279}, {518, 1125}, {712, 16600}, {766, 6679}, {1107, 30106}, {1912, 31288}, {1930, 46907}, {2140, 17356}, {2176, 30107}, {2388, 6685}, {3008, 6704}, {3230, 26965}, {3263, 21802}, {3721, 46899}, {3912, 20970}, {3997, 20255}, {4357, 27637}, {4358, 17367}, {4422, 25092}, {4721, 26978}, {4805, 26099}, {5432, 42397}, {5750, 36812}, {6693, 6710}, {16519, 30126}, {16583, 24254}, {16886, 30915}, {16974, 30108}, {17023, 44307}, {17030, 17352}, {17259, 19858}, {17277, 27274}, {20963, 27097}, {21904, 40006}, {24330, 24790}, {25345, 40690}, {25610, 29400}, {41310, 46913}

X(58452) = midpoint of X(i) and X(j) for these {i,j}: {213, 21240}
X(58452) = complement of X(21240)
X(58452)= pole of line {784, 8640} with respect to the Steiner inellipse
X(58452) = center of the nine-point conic of quadrilateral XYZX(213) where XYZ is the cevian triangle of X(2)
X(58452) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 213, 21240}, {6679, 31284, 6680}


X(58453) = X(2)X(80)∩X(10)X(1317)

Barycentrics    4*a^4-a^3*(b+c)+a^2*(-6*b^2+4*b*c-6*c^2)+2*(b^2-c^2)^2+a*(b+c)*(b^2+b*c+c^2) : :
X(58453) = -9*X[2]+X[80], 3*X[10]+X[1317], X[100]+7*X[3624], X[119]+3*X[10165], 3*X[549]+X[12611], 3*X[551]+X[1145], -5*X[631]+X[46684], -5*X[632]+X[12619], X[946]+3*X[38760], -3*X[1125]+X[1387], -X[1320]+9*X[25055], X[1537]+3*X[10164] and many others

X(58453) lies on these lines: {2, 80}, {10, 1317}, {11, 3841}, {100, 3624}, {119, 10165}, {140, 2800}, {515, 58421}, {518, 58625}, {528, 33709}, {549, 12611}, {551, 1145}, {631, 46684}, {632, 12619}, {758, 3911}, {946, 38760}, {952, 3634}, {1125, 1387}, {1320, 25055}, {1484, 3826}, {1537, 10164}, {1656, 6246}, {1698, 15863}, {2801, 6666}, {2932, 4423}, {3036, 3828}, {3065, 15671}, {3090, 12119}, {3523, 34789}, {3526, 6265}, {3533, 12247}, {3626, 12735}, {3636, 5854}, {3678, 5083}, {3754, 13747}, {3814, 21578}, {3817, 24466}, {3825, 4304}, {3833, 12736}, {3848, 58587}, {3878, 17566}, {3881, 14740}, {3898, 39776}, {3919, 39782}, {4015, 6700}, {4432, 19636}, {4881, 31263}, {4973, 17484}, {4996, 38062}, {4999, 46694}, {5044, 58591}, {5045, 58663}, {5054, 12515}, {5219, 51506}, {5259, 17100}, {5432, 15558}, {5550, 9802}, {5719, 6691}, {5775, 31188}, {5886, 38762}, {6068, 38054}, {6174, 12732}, {6667, 19878}, {6684, 11729}, {6688, 58501}, {7972, 9780}, {7988, 10724}, {8227, 34474}, {8252, 13976}, {8253, 8988}, {8715, 37704}, {8983, 13991}, {9897, 19872}, {9912, 16419}, {9945, 45310}, {9963, 15015}, {10031, 19876}, {10176, 11570}, {10427, 38059}, {10698, 31423}, {11230, 16174}, {11231, 19907}, {11274, 12531}, {11715, 38752}, {12747, 55857}, {12832, 54288}, {13411, 18240}, {13922, 13971}, {15017, 38693}, {15325, 46681}, {15670, 51569}, {15694, 48667}, {15702, 50908}, {17460, 24871}, {17502, 22799}, {18254, 54357}, {19077, 32786}, {19078, 32785}, {21154, 21635}, {22935, 34126}, {23708, 25440}, {25485, 26446}, {26726, 38314}, {27529, 51714}, {32789, 49240}, {32790, 49241}, {33337, 34122}, {38032, 38763}, {38049, 51007}, {38182, 55856}, {38197, 47355}, {58451, 58659}

X(58453) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3035}, {16174, 33814}, {214, 6702}, {3036, 33812}, {3626, 12735}, {3678, 5083}, {3881, 14740}, {45310, 50844}, {5044, 58591}, {5045, 58663}, {6684, 11729}, {58625, 58698}
X(58453) = reflection of X(i) in X(j) for these {i,j}: {6667, 19878}
X(58453) = complement of X(6702)
X(58453)= pole of line {21222, 23884} with respect to the Steiner inellipse
X(58453) = center of the nine-point conic of quadrilateral XYZX(214) where XYZ is the cevian triangle of X(2)
X(58453) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 214, 6702}, {100, 3624, 32557}, {1125, 3035, 2802}, {3090, 12119, 38161}, {3526, 6265, 38133}, {11230, 33814, 16174}, {15015, 34595, 31272}, {31235, 34123, 10}, {58625, 58698, 518}


X(58454) = X(2)X(216)∩X(140)X(143)

Barycentrics    2*b^2*c^2*(b^2-c^2)^2+3*a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)-2*a^4*(3*b^4+b^2*c^2+3*c^4) : :
X(58454) = 3*X[2]+X[216], X[3]+X[44924], -3*X[547]+X[42862], -5*X[1656]+X[39530], 7*X[3090]+X[42329], 7*X[3526]+X[30258], -3*X[3819]+X[42487], -6*X[10219]+X[45873], -5*X[19862]+X[57289], -5*X[40329]+13*X[46219]

X(58454) lies on these lines: {2, 216}, {3, 44924}, {95, 3284}, {140, 143}, {187, 53485}, {233, 297}, {458, 10979}, {547, 42862}, {577, 37067}, {632, 20204}, {852, 42556}, {1232, 36212}, {1656, 39530}, {2393, 58438}, {3090, 42329}, {3526, 30258}, {3618, 36948}, {3628, 32428}, {3819, 42487}, {6666, 40482}, {6688, 44914}, {6709, 23583}, {7393, 7808}, {7514, 7804}, {7824, 53490}, {7886, 50648}, {9822, 52261}, {10124, 40477}, {10219, 45873}, {11793, 58455}, {14786, 22270}, {15860, 52712}, {19862, 57289}, {22052, 36794}, {34573, 40484}, {37649, 58417}, {40329, 46219}, {40885, 54105}, {44335, 51127}, {58436, 58450}

X(58454) = midpoint of X(i) and X(j) for these {i,j}: {140, 10003}, {216, 14767}, {3, 44924}
X(58454) = complement of X(14767)
X(58454)= pole of line {1506, 13567} with respect to the Kiepert hyperbola
X(58454)= pole of line {520, 31296} with respect to the Steiner inellipse
X(58454) = center of the nine-point conic of quadrilateral XYZX(216) where XYZ is the cevian triangle of X(2)
X(58454) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34003)}}, {{A, B, C, X(2052), X(45108)}}
X(58454) = barycentric product X(i)*X(j) for these (i, j): {264, 34003}
X(58454) = barycentric quotient X(i)/X(j) for these (i, j): {34003, 3}
X(58454) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 216, 14767}, {140, 10003, 511}


X(58455) = X(2)X(217)∩X(5)X(182)

Barycentrics    2*a^8*(b^2+c^2)-3*a^4*b^2*c^2*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-c^4)^2-3*a^6*(b^4+c^4) : :
X(58455) = 3*X[2]+X[217], -3*X[5943]+X[27370]

X(58455) lies on circumconic {{A, B, C, X(275), X(27366)}} and these lines: {2, 217}, {5, 182}, {32, 23292}, {83, 275}, {441, 46394}, {511, 40645}, {524, 36952}, {1078, 11064}, {1990, 42368}, {2387, 6680}, {5943, 27370}, {6683, 9729}, {6689, 6720}, {7787, 14389}, {7815, 53415}, {7819, 11672}, {9820, 10104}, {11328, 23208}, {11695, 58464}, {11793, 58454}, {12054, 44231}, {46172, 58407}

X(58455) = midpoint of X(i) and X(j) for these {i,j}: {217, 34850}, {40645, 45112}
X(58455) = complement of X(34850)
X(58455)= pole of line {32, 53485} with respect to the Kiepert hyperbola
X(58455)= pole of line {2979, 26216} with respect to the Stammler hyperbola
X(58455) = center of the nine-point conic of quadrilateral XYZX(217) where XYZ is the cevian triangle of X(2)
X(58455) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40645, 45112, 511}


X(58456) = X(1)X(40534)∩X(2)X(218)

Barycentrics    2*a^4-4*a^3*(b+c)+3*a^2*(b^2+c^2)+(b-c)^2*(b^2+c^2)-2*a*(b^3+c^3) : :
X(58456) = 3*X[2]+X[218]

X(58456) lies on these lines: {1, 40534}, {2, 218}, {5, 40561}, {140, 31284}, {474, 3423}, {518, 1125}, {936, 17698}, {3452, 30618}, {3811, 17279}, {3812, 58442}, {4251, 16593}, {5219, 30617}, {5748, 30616}, {6686, 43158}, {6691, 6710}, {7308, 17742}, {7819, 17353}, {8257, 36949}, {16549, 26007}, {17745, 51384}, {19843, 37650}, {24781, 27064}, {58460, 58466}

X(58456) = center of the nine-point conic of quadrilateral XYZX(218) where XYZ is the cevian triangle of X(2)
X(58456) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3589, 58458, 1125}


X(58457) = X(2)X(219)∩X(9)X(1020)

Barycentrics    2*a^5-2*a^4*(b+c)+a^2*(b+c)^3-a*(b^2-c^2)^2-a^3*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+c^2) : :
X(58457) = 3*X[2]+X[219], X[11677]+3*X[35273], -5*X[31261]+X[41004]

X(58457) lies on these lines: {2, 219}, {9, 1020}, {10, 51699}, {12, 25651}, {44, 53596}, {48, 30810}, {71, 1375}, {140, 916}, {307, 18644}, {517, 40530}, {518, 1125}, {857, 20289}, {997, 1807}, {1441, 7359}, {2287, 28757}, {2323, 25964}, {2807, 6710}, {3086, 37650}, {3820, 20204}, {3925, 17188}, {4422, 25078}, {5231, 30620}, {5745, 53415}, {6684, 16252}, {8271, 10582}, {9119, 23292}, {10916, 17348}, {11019, 30621}, {11064, 52385}, {11677, 35273}, {13374, 58442}, {17043, 26006}, {17243, 22836}, {17259, 26363}, {17278, 24179}, {17917, 18228}, {18249, 58459}, {20103, 20202}, {20818, 26130}, {23151, 28753}, {25878, 56445}, {26063, 30808}, {26668, 55432}, {26932, 37659}, {31261, 41004}, {41007, 54324}

X(58457) = midpoint of X(i) and X(j) for these {i,j}: {219, 16608}
X(58457) = complement of X(16608)
X(58457) = center of the nine-point conic of quadrilateral XYZX(219) where XYZ is the cevian triangle of X(2)
X(58457) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 219, 16608}, {3589, 58458, 6666}, {5745, 53415, 58460}, {26006, 40937, 17043}, {58406, 58410, 140}


X(58458) = X(2)X(220)∩X(140)X(2808)

Barycentrics    2*a^4-4*a^3*(b+c)-2*a*(b-c)^2*(b+c)+(b-c)^2*(b^2+c^2)+a^2*(3*b^2+4*b*c+3*c^2) : :
X(58458) = 3*X[2]+X[220], X[17732]+3*X[57521]

X(58458) lies on these lines: {2, 220}, {10, 40483}, {44, 53597}, {140, 2808}, {277, 24352}, {517, 58442}, {518, 1125}, {936, 17279}, {1212, 17044}, {1334, 26007}, {2389, 6690}, {3305, 7131}, {3634, 28849}, {3811, 17243}, {3826, 48900}, {4357, 25891}, {4415, 24781}, {4422, 7789}, {5745, 58466}, {5845, 34847}, {6554, 31994}, {6696, 58410}, {6706, 40869}, {7288, 52013}, {14986, 37650}, {17259, 19843}, {17675, 56746}, {17682, 17747}, {17732, 57521}, {26036, 30825}, {26658, 34522}, {28740, 37658}, {29598, 51780}, {40530, 58637}, {58402, 58451}

X(58458) = midpoint of X(i) and X(j) for these {i,j}: {220, 21258}
X(58458) = complement of X(21258)
X(58458)= pole of line {6362, 17494} with respect to the Steiner inellipse
X(58458) = center of the nine-point conic of quadrilateral XYZX(220) where XYZ is the cevian triangle of X(2)
X(58458) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 220, 21258}, {2, 43984, 33298}, {1125, 58456, 3589}


X(58459) = X(2)X(221)∩X(10)X(36949)

Barycentrics    2*a^7+2*a^6*(b+c)-4*a^2*b*(b-c)^2*c*(b+c)-3*a^5*(b^2+c^2)+(b-c)^2*(b+c)^3*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-a^4*(b+c)*(3*b^2-4*b*c+3*c^2) : :
X(58459) = 3*X[2]+X[221], X[1329]+X[47380], -X[1854]+5*X[3616], -X[3556]+3*X[10192]

X(58459) lies on these lines: {2, 221}, {10, 36949}, {65, 23292}, {73, 25968}, {140, 2818}, {142, 40660}, {468, 42448}, {960, 53415}, {1001, 2883}, {1125, 6001}, {1329, 47380}, {1456, 46878}, {1503, 14529}, {1854, 3616}, {2390, 6679}, {2778, 3884}, {3085, 20307}, {3556, 10192}, {3589, 3812}, {3743, 17043}, {3838, 58462}, {3869, 11064}, {4295, 17917}, {5248, 15311}, {5436, 12779}, {6247, 10198}, {6684, 20201}, {6690, 6696}, {6703, 28628}, {7789, 17044}, {9820, 14988}, {11109, 51421}, {12514, 17073}, {16466, 20266}, {17398, 21767}, {17911, 45929}, {18249, 58457}, {24565, 56821}, {24953, 32065}, {26932, 34043}, {40266, 51425}

X(58459) = midpoint of X(i) and X(j) for these {i,j}: {1329, 47380}, {221, 20306}
X(58459) = complement of X(20306)
X(58459) = center of the nine-point conic of quadrilateral XYZX(221) where XYZ is the cevian triangle of X(2)


X(58460) = X(2)X(222)∩X(142)X(6678)

Barycentrics    2*a^6-4*a^2*b*(b-c)^2*c-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+a^4*(-3*b^2+4*b*c-3*c^2)+(b^2-c^2)^2*(b^2+c^2) : :
X(58460) = 3*X[2]+X[222], -X[1905]+5*X[5439]

X(58460) lies on these lines: {2, 222}, {57, 17073}, {140, 58411}, {142, 6678}, {940, 16608}, {971, 58402}, {1125, 6001}, {1465, 18652}, {1763, 5437}, {1905, 5439}, {2003, 26005}, {2807, 6690}, {3075, 18641}, {3589, 6692}, {3666, 17043}, {3687, 6510}, {3812, 44662}, {3824, 58462}, {3911, 23292}, {4657, 42467}, {5739, 23140}, {5745, 53415}, {5928, 25525}, {6691, 6693}, {6708, 34050}, {9776, 17917}, {13478, 21239}, {14058, 52260}, {16578, 44416}, {17044, 24254}, {18644, 37520}, {20268, 40688}, {22053, 33305}, {23304, 29207}, {25934, 56366}, {39595, 44356}, {58456, 58466}

X(58460) = midpoint of X(i) and X(j) for these {i,j}: {222, 41883}
X(58460) = complement of X(41883)
X(58460) = center of the nine-point conic of quadrilateral XYZX(222) where XYZ is the cevian triangle of X(2)
X(58460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17074, 26932}, {2, 222, 41883}, {940, 20266, 16608}, {5745, 53415, 58457}


X(58461) = X(2)X(224)∩X(3)X(12608)

Barycentrics    2*a^7-3*a^6*(b+c)+(b-c)^4*(b+c)^3-2*a*b*c*(b^2-c^2)^2-4*a^5*(b^2+b*c+c^2)-a^2*(b+c)*(b^2+c^2)*(5*b^2-6*b*c+5*c^2)+a^4*(b+c)*(7*b^2-4*b*c+7*c^2)+2*a^3*(b^4+3*b^3*c+3*b*c^3+c^4) : :
X(58461) = 3*X[2]+X[224], X[78]+X[41565], 7*X[3624]+X[56583]

X(58461) lies on these lines: {2, 224}, {3, 12608}, {10, 37615}, {57, 6921}, {78, 41565}, {90, 6857}, {140, 912}, {142, 474}, {226, 37282}, {496, 1125}, {631, 55869}, {942, 3035}, {950, 25962}, {997, 6989}, {1376, 12260}, {3523, 52457}, {3624, 56583}, {3812, 13405}, {4423, 19520}, {5433, 41537}, {5438, 37462}, {5552, 34489}, {5553, 21164}, {5703, 56278}, {5794, 50726}, {5840, 9955}, {6245, 6958}, {6675, 58415}, {6691, 11018}, {6745, 24391}, {6881, 17647}, {6967, 8726}, {10052, 15803}, {11375, 37270}, {12437, 44675}, {15934, 37828}, {18443, 26364}, {25440, 55108}, {28628, 37271}

X(58461) = midpoint of X(i) and X(j) for these {i,j}: {224, 10395}, {78, 41565}
X(58461) = complement of X(10395)
X(58461) = center of the nine-point conic of quadrilateral XYZX(224) where XYZ is the cevian triangle of X(2)
X(58461) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 224, 10395}


X(58462) = X(2)X(225)∩X(5)X(515)

Barycentrics    2*a^7+a^6*(b+c)-4*a^5*(b^2+c^2)+a^4*(b+c)*(b^2+c^2)+2*a^3*(b^2+c^2)^2+(b-c)^2*(b+c)^3*(3*b^2-4*b*c+3*c^2)-a^2*(b-c)^2*(b+c)*(5*b^2+6*b*c+5*c^2) : :
X(58462) = 3*X[2]+X[225]

X(58462) lies on these lines: {2, 225}, {5, 515}, {1210, 3772}, {2217, 25524}, {2385, 40530}, {3739, 14767}, {3824, 58460}, {3838, 58459}, {4698, 6668}, {5020, 23843}, {6642, 37812}, {6717, 52259}, {6718, 34840}, {6738, 15252}, {6856, 17917}, {7392, 29855}, {9817, 54392}, {19372, 19861}, {30143, 37696}, {30144, 37697}

X(58462) = midpoint of X(i) and X(j) for these {i,j}: {225, 34851}
X(58462) = complement of X(34851)
X(58462) = center of the nine-point conic of quadrilateral XYZX(225) where XYZ is the cevian triangle of X(2)
X(58462) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 225, 34851}


X(58463) = X(2)X(7)∩X(5)X(515)

Barycentrics    2*a^3-3*a^2*(b+c)+3*(b-c)^2*(b+c)-2*a*(b^2+c^2) : :
X(58463) = X[1478]+7*X[3624], 7*X[3090]+X[18446], -11*X[3525]+3*X[21165], 7*X[3526]+X[37826], -3*X[3828]+X[54288], X[4304]+3*X[17532], X[4847]+3*X[17718], -5*X[5439]+X[18389], -3*X[6688]+X[58491], -X[11608]+5*X[14061]

X(58463) lies on these lines: {1, 6856}, {2, 7}, {5, 515}, {10, 3940}, {12, 5795}, {140, 3824}, {306, 30834}, {442, 5440}, {511, 58558}, {516, 3838}, {518, 58626}, {519, 5719}, {551, 5722}, {758, 3634}, {912, 3628}, {940, 23140}, {946, 6825}, {950, 2476}, {958, 3947}, {993, 11108}, {1001, 3817}, {1211, 30823}, {1215, 50752}, {1465, 16579}, {1478, 3624}, {1490, 6855}, {1656, 9843}, {1698, 28629}, {1737, 26725}, {2051, 34830}, {2325, 33116}, {2635, 17194}, {2792, 6036}, {2801, 3848}, {2886, 5853}, {3008, 17062}, {3011, 17469}, {3086, 51723}, {3090, 18446}, {3091, 5436}, {3173, 17825}, {3475, 5231}, {3485, 5837}, {3487, 5705}, {3525, 21165}, {3526, 37826}, {3576, 6844}, {3589, 9028}, {3601, 5177}, {3616, 9581}, {3622, 37723}, {3636, 12433}, {3664, 37646}, {3671, 26066}, {3686, 4417}, {3706, 50753}, {3752, 17067}, {3754, 31837}, {3755, 17064}, {3772, 3946}, {3826, 20103}, {3828, 54288}, {3829, 42819}, {3912, 41878}, {3914, 29678}, {3925, 6745}, {3934, 6706}, {4035, 11679}, {4052, 17262}, {4054, 33113}, {4060, 55095}, {4138, 32916}, {4197, 27385}, {4208, 5438}, {4292, 7483}, {4298, 4999}, {4304, 17532}, {4428, 51783}, {4641, 17775}, {4667, 37642}, {4698, 8680}, {4758, 6703}, {4847, 17718}, {5248, 6985}, {5274, 38316}, {5290, 30478}, {5307, 17917}, {5333, 17168}, {5439, 18389}, {5461, 17044}, {5530, 24161}, {5550, 6919}, {5703, 12437}, {5714, 31424}, {5715, 6988}, {5718, 40940}, {5720, 6858}, {5743, 16608}, {5761, 11362}, {5763, 43174}, {5804, 9624}, {5806, 58679}, {5880, 10164}, {5886, 7682}, {6260, 6824}, {6510, 17052}, {6675, 12572}, {6683, 46179}, {6684, 12609}, {6688, 58491}, {6691, 19878}, {6700, 8728}, {6701, 58404}, {6705, 6862}, {6738, 11281}, {6827, 10165}, {6843, 52026}, {6846, 9842}, {6848, 8227}, {6857, 9612}, {6859, 18443}, {6860, 10884}, {6863, 55108}, {6866, 31673}, {6887, 10200}, {6933, 54392}, {6956, 8726}, {7319, 46934}, {7988, 26105}, {8164, 9623}, {9669, 51724}, {9756, 50302}, {10106, 24541}, {10172, 37713}, {10177, 17604}, {10578, 24392}, {10582, 10589}, {10585, 19860}, {11235, 30331}, {11608, 14061}, {12527, 24953}, {12640, 51784}, {13478, 15668}, {13881, 29571}, {15935, 51103}, {16578, 25080}, {16831, 24268}, {16853, 22667}, {17022, 53996}, {17049, 25135}, {17097, 24987}, {17278, 45204}, {17552, 34595}, {17605, 40998}, {18482, 50802}, {18592, 44360}, {19544, 51687}, {19786, 25529}, {19854, 21075}, {20104, 58405}, {20106, 44417}, {21258, 31211}, {21620, 26363}, {24160, 34937}, {24210, 29640}, {24239, 33130}, {24387, 40270}, {24393, 25568}, {28557, 48643}, {29639, 33127}, {29857, 53663}, {30147, 37700}, {30686, 37799}, {30768, 31264}, {31260, 32636}, {31280, 32781}, {31281, 32774}, {31623, 52982}, {31658, 58441}, {32015, 42339}, {33709, 51108}, {34377, 34573}, {34612, 52638}, {37229, 54430}, {38255, 56054}

X(58463) = midpoint of X(i) and X(j) for these {i,j}: {1125, 3822}, {226, 5745}, {2886, 13405}, {3838, 6690}, {58626, 58699}
X(58463) = inverse of X(17950) in Steiner inellipse
X(58463) = complement of X(5745)
X(58463) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17136, 523}
X(58463) = X(i)-complementary conjugate of X(j) for these {i, j}: {17097, 141}, {40430, 21246}, {40442, 18589}
X(58463)= pole of line {28292, 48239} with respect to the orthoptic circle of the Steiner Inellipse
X(58463)= pole of line {3664, 5745} with respect to the Kiepert hyperbola
X(58463)= pole of line {522, 17950} with respect to the Steiner inellipse
X(58463) = center of the nine-point conic of quadrilateral XYZX(226) where XYZ is the cevian triangle of X(2)
X(58463) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1944), X(40510)}}, {{A, B, C, X(5226), X(13478)}}, {{A, B, C, X(6666), X(42339)}}, {{A, B, C, X(6692), X(32015)}}, {{A, B, C, X(17950), X(36956)}}, {{A, B, C, X(18230), X(38255)}}, {{A, B, C, X(30275), X(45098)}}
X(58463) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 142, 6692}, {2, 226, 5745}, {2, 25525, 142}, {2, 30852, 5316}, {2, 31053, 54357}, {2, 31266, 226}, {2, 3452, 6666}, {2, 46873, 18230}, {2, 5219, 3452}, {2, 5226, 9}, {2, 5249, 3911}, {2, 5328, 51780}, {2, 5748, 7308}, {2, 5905, 55867}, {2, 9776, 31231}, {140, 3824, 12436}, {226, 5745, 527}, {442, 13411, 57284}, {1125, 10171, 3816}, {1125, 3822, 515}, {3487, 5705, 24391}, {3812, 6668, 3634}, {3838, 6690, 516}, {5219, 7308, 5748}, {5437, 7308, 8257}, {5720, 6858, 10175}, {11679, 30828, 4035}, {17718, 31245, 4847}, {58626, 58699, 518}


X(58464) = X(2)X(216)∩X(5)X(4045)

Barycentrics    3*a^8*(b^2+c^2)+2*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^4+c^4)-a^6*(3*b^4+4*b^2*c^2+3*c^4)+a^4*(-3*b^6+5*b^4*c^2+5*b^2*c^4-3*c^6) : :
X(58464) = X[30476]+X[47233]

X(58464) lies on these lines: {2, 216}, {5, 4045}, {230, 23583}, {468, 51412}, {523, 14341}, {620, 44340}, {2393, 3589}, {3199, 28407}, {6642, 7808}, {6644, 7804}, {6680, 16238}, {6719, 40557}, {6720, 16760}, {6722, 44911}, {9818, 15482}, {10011, 58430}, {10314, 11174}, {11695, 58455}, {15014, 40349}, {30476, 47233}, {31489, 52251}, {32456, 40856}, {44334, 44377}

X(58464) = midpoint of X(i) and X(j) for these {i,j}: {30476, 47233}
X(58464) = perspector of circumconic {{A, B, C, X(6528), X(38259)}}
X(58464)= pole of line {20850, 41300} with respect to the circumcircle
X(58464)= pole of line {3146, 31296} with respect to the orthoptic circle of the Steiner Inellipse
X(58464)= pole of line {647, 38282} with respect to the polar circle
X(58464)= pole of line {5052, 13567} with respect to the Kiepert hyperbola
X(58464)= pole of line {193, 520} with respect to the Steiner inellipse
X(58464) = center of the nine-point conic of quadrilateral XYZX(232) where XYZ is the cevian triangle of X(2)
X(58464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6720, 44452, 58448}


X(58465) = X(2)X(3)∩X(10)X(51702)

Barycentrics    2*a^10-7*a^8*(b^2+c^2)+3*(b^2-c^2)^4*(b^2+c^2)+4*a^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-4*a^2*(b^2-c^2)^2*(2*b^4-b^2*c^2+2*c^4)+a^6*(6*b^4+8*b^2*c^2+6*c^4) : :
X(58465) = X[10]+X[51702], X[141]+X[51734], 3*X[10175]+X[51694], X[11793]+X[58482], X[20771]+3*X[23515]

X(58465) lies on these lines: {2, 3}, {10, 51702}, {141, 51734}, {511, 58559}, {5462, 12900}, {5907, 47296}, {5972, 12241}, {6667, 58403}, {6668, 58402}, {6723, 44870}, {7746, 46432}, {9603, 9721}, {9729, 22967}, {9822, 32396}, {10175, 51694}, {10272, 43588}, {10961, 42583}, {10963, 42582}, {11064, 13142}, {11793, 58482}, {12164, 37643}, {15448, 44829}, {18418, 51491}, {18914, 43817}, {19137, 51730}, {20771, 23515}, {23326, 38317}, {34380, 41587}, {39884, 52028}, {44877, 45300}, {45195, 45199}

X(58465) = midpoint of X(i) and X(j) for these {i,j}: {10, 51702}, {141, 51734}, {11793, 58482}, {235, 16196}, {5, 16238}, {5907, 52003}
X(58465) = complement of X(16196)
X(58465) = center of the nine-point conic of quadrilateral XYZX(235) where XYZ is the cevian triangle of X(2)
X(58465) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6353), X(45195)}}, {{A, B, C, X(10151), X(45300)}}, {{A, B, C, X(13380), X(44438)}}, {{A, B, C, X(40448), X(44920)}}
X(58465) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 235, 16196}, {2, 6622, 3}, {2, 6823, 140}, {5, 632, 9818}, {5, 6644, 546}, {5, 6677, 9825}, {140, 546, 11250}, {235, 16196, 30}, {3090, 5020, 5}, {13487, 16976, 1885}, {43817, 51425, 18914}


X(58466) = X(2)X(85)∩X(140)X(517)

Barycentrics    3*a^4*(b+c)+2*b*(b-c)^2*c*(b+c)+3*a*(b-c)^2*(b^2+c^2)-a^2*(b+c)*(3*b^2-8*b*c+3*c^2)-a^3*(3*b^2+4*b*c+3*c^2) : :

X(58466) lies on these lines: {2, 85}, {140, 517}, {142, 3986}, {514, 2490}, {536, 16578}, {3008, 17044}, {3589, 58412}, {4422, 44356}, {4646, 14986}, {4670, 8257}, {5437, 20367}, {5745, 58458}, {6687, 36949}, {17073, 17356}, {17077, 25067}, {17265, 18634}, {17348, 53996}, {19512, 51775}, {21258, 29571}, {25524, 39586}, {29598, 31190}, {31186, 31191}, {37662, 53597}, {58456, 58460}

X(58466) = midpoint of X(i) and X(j) for these {i,j}: {241, 34852}
X(58466) = inverse of X(44351) in Steiner inellipse
X(58466) = complement of X(34852)
X(58466) = perspector of circumconic {{A, B, C, X(4569), X(36606)}}
X(58466)= pole of line {3900, 20014} with respect to the Steiner circumellipse
X(58466)= pole of line {145, 3900} with respect to the Steiner inellipse
X(58466) = center of the nine-point conic of quadrilateral XYZX(241) where XYZ is the cevian triangle of X(2)
X(58466) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 241, 34852}, {2, 31225, 1212}, {241, 34852, 44664}


X(58467) = X(1)X(31233)∩X(2)X(38)

Barycentrics    a^2*(b+c)+b*c*(b+c)+2*a*(b^2-4*b*c+c^2) : :
X(58467) = -5*X[1698]+X[4738], -5*X[3616]+X[17460], 7*X[3624]+X[4674], -5*X[4687]+X[42083], 7*X[4751]+X[41683], -3*X[10180]+X[14752], -5*X[19862]+X[34587], -5*X[31253]+X[52872], X[39697]+7*X[51073]

X(58467) lies on circumconic {{A, B, C, X(24003), X(32016)}} and these lines: {1, 31233}, {2, 38}, {8, 31228}, {10, 3756}, {11, 25351}, {37, 24182}, {474, 28083}, {740, 4706}, {891, 40479}, {900, 6667}, {1001, 8683}, {1054, 4432}, {1086, 11814}, {1125, 1387}, {1647, 24988}, {1698, 4738}, {2835, 6679}, {3120, 24183}, {3306, 4672}, {3315, 9458}, {3616, 17460}, {3624, 4674}, {3696, 3840}, {3739, 40562}, {3742, 6686}, {3752, 3993}, {3836, 5121}, {3848, 6685}, {3911, 31289}, {4358, 28516}, {4413, 49473}, {4434, 7292}, {4687, 42083}, {4732, 30942}, {4751, 41683}, {5437, 51435}, {6085, 53580}, {10180, 14752}, {16569, 49450}, {16594, 21093}, {17123, 27002}, {18743, 49445}, {19804, 31242}, {19847, 49598}, {19862, 34587}, {19878, 58386}, {22045, 31993}, {22313, 43223}, {24175, 48643}, {24216, 49693}, {24715, 26139}, {25524, 53303}, {27130, 33103}, {29650, 37682}, {30829, 49456}, {30861, 49493}, {30947, 49471}, {30948, 49459}, {31253, 52872}, {39697, 51073}, {40487, 45663}, {49676, 51415}

X(58467) = midpoint of X(i) and X(j) for these {i,j}: {244, 24003}, {4871, 16610}
X(58467) = complement of X(24003)
X(58467) = X(i)-complementary conjugate of X(j) for these {i, j}: {32016, 2887}
X(58467)= pole of line {812, 4440} with respect to the Steiner inellipse
X(58467) = center of the nine-point conic of quadrilateral XYZX(244) where XYZ is the cevian triangle of X(2)
X(58467) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 244, 24003}, {244, 24003, 537}, {1054, 25531, 4432}, {4871, 16610, 740}


X(58468) = X(3)X(54)∩X(143)X(216)

Barycentrics    a^2*(a^2-b^2-c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(3*a^8-10*a^6*(b^2+c^2)-6*a^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)+3*a^4*(4*b^4+3*b^2*c^2+4*c^4)) : :
X(58468) = -3*X[2]+X[35719], -X[5]+3*X[12012], X[550]+X[45997], -5*X[631]+X[14978], -5*X[632]+3*X[10184], -7*X[3526]+3*X[11197], -X[3627]+3*X[14635], -2*X[3628]+3*X[44914]

X(58468) lies on these lines: {2, 35719}, {3, 54}, {5, 12012}, {26, 36751}, {140, 6709}, {143, 216}, {156, 26898}, {381, 26896}, {418, 10095}, {550, 45997}, {631, 14978}, {632, 10184}, {1656, 26895}, {3526, 11197}, {3627, 14635}, {3628, 44914}, {5946, 26876}, {7514, 23709}, {7542, 13467}, {10263, 26874}, {10600, 13565}, {13363, 42556}, {13421, 30258}, {13561, 26905}, {13861, 26909}, {14627, 39243}, {25043, 47525}, {25150, 34002}, {26870, 32140}, {32142, 46832}

X(58468) = midpoint of X(i) and X(j) for these {i,j}: {3, 46025}, {550, 45997}
X(58468) = complement of X(35719)
X(58468)= pole of line {5, 39243} with respect to the Stammler hyperbola
X(58468) = center of the nine-point conic of quadrilateral XYZX(3) where XYZ is the cevian triangle of X(3)
X(58468) = intersection, other than A, B, C, of circumconics {{A, B, C, X(54), X(30102)}}, {{A, B, C, X(97), X(40207)}}, {{A, B, C, X(11273), X(16266)}}, {{A, B, C, X(19210), X(55074)}}
X(58468) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 32078, 46025}, {3, 34833, 12363}, {3, 46025, 1154}


X(58469) = X(1)X(51)∩X(8)X(5640)

Barycentrics    a^2*(-((b-c)^2*(b+c)^3)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2)-a*(b^4-4*b^2*c^2+c^4)) : :
X(58469) = X[1]+3*X[51], -X[8]+9*X[5640], -X[10]+3*X[5943], X[52]+3*X[5886], X[143]+X[5901], X[185]+3*X[1699], -9*X[373]+5*X[1698], -3*X[375]+X[34790], X[389]+X[946], X[551]+X[21849], 3*X[568]+5*X[18493], X[942]+X[42450] and many others

X(58469) lies on these lines: {1, 51}, {6, 11365}, {8, 5640}, {10, 5943}, {11, 18180}, {52, 5886}, {58, 3271}, {65, 2841}, {72, 41002}, {79, 38389}, {143, 5901}, {181, 595}, {182, 49553}, {184, 16472}, {185, 1699}, {238, 10974}, {373, 1698}, {375, 34790}, {386, 21746}, {389, 946}, {500, 20470}, {511, 1125}, {513, 24470}, {515, 10110}, {516, 9729}, {517, 5462}, {518, 58471}, {519, 23841}, {537, 58553}, {551, 21849}, {568, 18493}, {613, 27802}, {674, 5044}, {692, 37509}, {726, 58554}, {730, 58500}, {740, 58499}, {758, 12109}, {912, 58545}, {942, 42450}, {944, 9781}, {952, 10095}, {962, 15043}, {970, 5248}, {971, 58617}, {975, 3056}, {978, 50597}, {1001, 5752}, {1112, 11735}, {1193, 20961}, {1203, 40952}, {1216, 11230}, {1385, 5446}, {1386, 9969}, {1486, 36754}, {1656, 52796}, {1682, 4653}, {1829, 44084}, {1843, 16475}, {2360, 37993}, {2390, 31794}, {2392, 58565}, {2784, 58537}, {2800, 58508}, {2801, 44865}, {2802, 58504}, {2808, 31871}, {2809, 58505}, {2810, 3881}, {2817, 58506}, {2818, 31870}, {2979, 5550}, {3002, 40955}, {3060, 3616}, {3159, 14839}, {3337, 3937}, {3338, 26892}, {3567, 5603}, {3576, 45186}, {3579, 5892}, {3622, 11002}, {3624, 3917}, {3634, 6688}, {3649, 56884}, {3678, 9052}, {3742, 11573}, {3746, 51377}, {3816, 37536}, {3817, 5907}, {3819, 19862}, {3827, 58547}, {3874, 15049}, {3884, 45955}, {4260, 52018}, {4297, 13598}, {5045, 8679}, {5259, 22076}, {5396, 23383}, {5399, 18613}, {5482, 6691}, {5562, 8227}, {5650, 34595}, {5657, 15024}, {5690, 15026}, {5844, 58531}, {5846, 58532}, {5847, 9822}, {5850, 58534}, {5902, 42448}, {5946, 22791}, {6000, 18483}, {6102, 38034}, {6361, 15045}, {6684, 11695}, {6690, 34466}, {7713, 44079}, {7989, 27355}, {8185, 34417}, {8193, 10601}, {9565, 48863}, {9587, 44109}, {9591, 22352}, {9730, 12699}, {9779, 12111}, {9780, 11451}, {9798, 17810}, {9812, 10574}, {9911, 37514}, {9955, 13754}, {10165, 15644}, {10171, 31752}, {10200, 37521}, {10219, 31253}, {10248, 12279}, {10263, 38028}, {11363, 47328}, {11557, 12261}, {11574, 38049}, {11709, 11807}, {11720, 11800}, {11723, 12236}, {11724, 39806}, {11725, 39835}, {11808, 12266}, {12006, 28174}, {12436, 29353}, {12512, 17704}, {12571, 44870}, {13364, 18357}, {13464, 31760}, {13630, 40273}, {14054, 41581}, {14831, 38021}, {14913, 51196}, {15004, 16473}, {15171, 22300}, {16226, 31162}, {16569, 50585}, {16836, 31730}, {17104, 20959}, {18398, 23154}, {19161, 38035}, {19366, 34036}, {21969, 25055}, {22793, 40647}, {23850, 55086}, {25524, 37482}, {30116, 50621}, {32411, 51713}, {34379, 58555}, {34434, 37730}, {37557, 43650}, {38220, 39846}, {40660, 45979}, {41014, 57024}, {44547, 58550}, {44659, 58477}, {44660, 58478}, {44662, 58483}, {46850, 51118}, {50192, 58574}, {54081, 55101}

X(58469) = midpoint of X(i) and X(j) for these {i,j}: {143, 5901}, {1112, 11735}, {1125, 31757}, {1385, 5446}, {1386, 9969}, {11557, 12261}, {11709, 11807}, {11720, 11800}, {11723, 12236}, {11724, 39806}, {11725, 39835}, {11808, 12266}, {13464, 31760}, {13630, 40273}, {14913, 51196}, {15171, 22300}, {22793, 40647}, {23841, 58535}, {389, 946}, {3874, 29958}, {32411, 51713}, {34434, 37730}, {4297, 13598}, {46850, 51118}, {551, 21849}, {5907, 31732}, {942, 42450}
X(58469) = reflection of X(i) in X(j) for these {i,j}: {12512, 17704}, {23841, 58474}, {44870, 12571}, {6684, 11695}, {58487, 5462}, {58501, 58475}
X(58469) = center of the nine-point conic of quadrilateral XYZX(1) where XYZ is the cevian triangle of X(4)
X(58469) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 946, 2807}, {517, 5462, 58487}, {519, 58474, 23841}, {952, 58475, 58501}, {1125, 31757, 511}, {3817, 31732, 5907}, {3874, 15049, 29958}, {5462, 58487, 58548}, {12109, 58479, 58491}, {23841, 58470, 58474}, {58471, 58485, 58473}, {58475, 58476, 10095}


X(58470) = X(2)X(51)∩X(25)X(575)

Barycentrics    a^2*(-3*b^4+8*b^2*c^2-3*c^4+3*a^2*(b^2+c^2)) : :
X(58470) = X[2]+3*X[51], X[52]+3*X[5055], X[143]+X[547], X[185]+3*X[3839], X[376]+7*X[9781], X[381]+X[389], 2*X[546]+X[13382], X[548]+2*X[12002], X[549]+X[5446], X[568]+3*X[14845], X[597]+X[9969], X[1112]+X[45311] and many others

X(58470) lies on these lines: {2, 51}, {4, 15010}, {5, 16254}, {6, 8780}, {22, 20190}, {23, 12834}, {25, 575}, {30, 5462}, {52, 5055}, {110, 34565}, {143, 547}, {154, 39561}, {182, 9909}, {184, 15516}, {185, 3839}, {375, 9052}, {376, 9781}, {381, 389}, {394, 55716}, {428, 11645}, {450, 55084}, {516, 58548}, {519, 23841}, {524, 9822}, {527, 58472}, {528, 58475}, {529, 58476}, {530, 58478}, {531, 58477}, {536, 58485}, {538, 58486}, {539, 23410}, {541, 58498}, {542, 11746}, {543, 58503}, {544, 58505}, {545, 58553}, {546, 13382}, {548, 12002}, {549, 5446}, {568, 14845}, {569, 51519}, {576, 5020}, {597, 9969}, {598, 5140}, {674, 58629}, {970, 16418}, {1112, 45311}, {1154, 10109}, {1173, 43572}, {1194, 13410}, {1196, 44500}, {1216, 15699}, {1495, 34545}, {1503, 32068}, {1899, 48889}, {1992, 14913}, {1993, 55715}, {1994, 10545}, {1995, 15004}, {2807, 50802}, {3066, 5097}, {3098, 17825}, {3131, 21402}, {3132, 21401}, {3167, 15520}, {3168, 39530}, {3292, 53863}, {3448, 13402}, {3524, 15024}, {3527, 13346}, {3534, 16836}, {3543, 15043}, {3545, 3567}, {3628, 15606}, {3796, 55706}, {3818, 11433}, {3828, 31757}, {3830, 9730}, {3845, 5946}, {3849, 58552}, {3860, 5663}, {5012, 32237}, {5054, 15644}, {5056, 14531}, {5066, 13364}, {5068, 45187}, {5071, 5562}, {5085, 5644}, {5092, 10601}, {5422, 34417}, {5447, 10124}, {5461, 39835}, {5544, 55587}, {5642, 11800}, {5643, 15246}, {5646, 55581}, {5752, 16857}, {5889, 27355}, {5890, 41099}, {5891, 13321}, {5892, 8703}, {6102, 38071}, {6243, 15703}, {6310, 32983}, {6515, 43150}, {6636, 55679}, {6676, 25555}, {6997, 18553}, {7392, 34507}, {7484, 55606}, {7485, 55631}, {7496, 55617}, {7506, 37505}, {7714, 11179}, {8550, 15011}, {8584, 8681}, {8679, 58560}, {8705, 41153}, {8854, 44501}, {8855, 44502}, {9027, 41149}, {9166, 39846}, {9530, 58511}, {9544, 44111}, {9971, 51185}, {10245, 37476}, {10263, 11539}, {10551, 42037}, {10574, 50687}, {10575, 38335}, {10625, 15694}, {10627, 47598}, {10691, 19924}, {11001, 15045}, {11163, 51426}, {11284, 55718}, {11402, 55713}, {11424, 15078}, {11465, 15709}, {11554, 57598}, {11574, 47352}, {11591, 47478}, {11592, 14890}, {11737, 16881}, {11812, 13391}, {12046, 45757}, {12100, 13363}, {12101, 14915}, {12109, 58497}, {12237, 55040}, {12238, 55041}, {13192, 38862}, {13330, 36650}, {13353, 37956}, {13365, 58557}, {13366, 13595}, {13421, 48154}, {13434, 37940}, {13474, 14269}, {13482, 51394}, {13490, 43573}, {13567, 19130}, {13630, 14893}, {14002, 44110}, {14153, 40350}, {14449, 47599}, {14537, 50387}, {14641, 35404}, {14810, 33586}, {14891, 55320}, {15018, 22352}, {15028, 15692}, {15030, 41106}, {15038, 51393}, {15107, 55668}, {15431, 23291}, {15489, 16370}, {15534, 29959}, {15685, 40280}, {15687, 40647}, {15698, 36987}, {16187, 55719}, {16239, 16982}, {16419, 52987}, {16861, 22076}, {16980, 38314}, {17533, 18180}, {17809, 22234}, {17811, 37517}, {18583, 58447}, {18928, 31670}, {19161, 38072}, {20192, 47328}, {20583, 41579}, {20850, 53093}, {21659, 38320}, {21746, 42043}, {21851, 26958}, {21971, 37669}, {22112, 55612}, {23234, 39817}, {23332, 38136}, {23638, 39543}, {24206, 41588}, {24473, 29958}, {26863, 43600}, {27375, 44562}, {28194, 58487}, {29012, 45298}, {31732, 38076}, {31833, 40240}, {31860, 55710}, {32137, 41987}, {32223, 37649}, {34146, 50959}, {34854, 52281}, {36769, 53048}, {37643, 42785}, {37939, 38848}, {37990, 41586}, {40284, 45759}, {40670, 50991}, {40916, 55597}, {41278, 50370}, {41424, 55712}, {43650, 55674}, {44210, 46267}, {44212, 44495}, {44442, 48901}, {44663, 58493}, {45979, 50979}, {47867, 53049}, {48850, 50623}, {48855, 50594}, {52520, 54131}, {58506, 58520}, {58507, 58521}, {58508, 58522}, {58510, 58523}, {58512, 58525}, {58513, 58526}, {58515, 58528}

X(58470) = midpoint of X(i) and X(j) for these {i,j}: {143, 547}, {1112, 45311}, {1992, 14913}, {11737, 16881}, {12237, 55040}, {12238, 55041}, {13363, 13451}, {13490, 43573}, {13630, 14893}, {14641, 35404}, {15687, 40647}, {2, 21849}, {20583, 41579}, {24473, 29958}, {27375, 44562}, {3060, 3819}, {376, 13598}, {381, 389}, {3543, 46850}, {3828, 31757}, {51, 5943}, {549, 5446}, {597, 9969}, {5461, 39835}, {5642, 11800}, {5890, 46847}, {5907, 14831}, {52520, 54131}
X(58470) = reflection of X(i) in X(j) for these {i,j}: {10124, 32205}, {11737, 18874}, {11793, 547}, {13348, 549}, {14893, 44863}, {376, 17704}, {3819, 10219}, {44870, 381}, {549, 11695}, {5447, 10124}, {6688, 5943}
X(58470)= pole of line {6776, 15520} with respect to the Jerabek hyperbola
X(58470)= pole of line {3815, 42459} with respect to the Kiepert hyperbola
X(58470)= pole of line {182, 20080} with respect to the Stammler hyperbola
X(58470) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(4)
X(58470) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(36616)}}, {{A, B, C, X(31371), X(54032)}}, {{A, B, C, X(38263), X(42313)}}
X(58470) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21849, 511}, {2, 51, 21849}, {51, 373, 3060}, {51, 3917, 11002}, {51, 5640, 5943}, {373, 10219, 6688}, {373, 3060, 3819}, {3060, 11451, 33879}, {3060, 5943, 10219}, {3066, 9777, 9306}, {3545, 14831, 5907}, {3819, 5943, 373}, {5012, 44106, 32237}, {5446, 11695, 13348}, {5446, 15026, 11695}, {5462, 10095, 10110}, {5462, 10110, 9729}, {5462, 58483, 58480}, {5943, 21849, 2}, {9306, 9777, 5097}, {9822, 58471, 58555}, {10095, 58531, 5462}, {11002, 11451, 3917}, {15004, 34986, 22330}, {23841, 58469, 58535}, {58469, 58474, 23841}, {58471, 58532, 9822}, {58472, 58473, 58534}, {58475, 58504, 58539}, {58480, 58483, 58481}, {58485, 58499, 58554}, {58486, 58500, 58556}, {58498, 58516, 58536}, {58502, 58517, 58537}, {58503, 58518, 58538}, {58505, 58519, 58540}, {58506, 58520, 58541}, {58507, 58521, 58542}, {58508, 58522, 58543}


X(58471) = X(6)X(25)∩X(140)X(143)

Barycentrics    6*a^4*b^2*c^2+a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2) : :
X(58471) = X[52]+3*X[14561], -X[69]+9*X[5640], -X[141]+3*X[5943], X[182]+X[5446], X[185]+3*X[53023], X[193]+3*X[29959], -9*X[373]+5*X[3763], -3*X[597]+X[11574], X[1112]+X[15118], -X[1216]+3*X[38317], X[1353]+X[43130], 3*X[3060]+X[3313] and many others

X(58471) lies on these lines: {4, 43726}, {6, 25}, {52, 14561}, {66, 11433}, {69, 5640}, {140, 143}, {141, 5943}, {182, 5446}, {185, 53023}, {193, 29959}, {237, 5421}, {373, 3763}, {389, 1595}, {518, 58469}, {524, 9822}, {538, 6664}, {542, 58516}, {570, 40981}, {575, 17714}, {576, 19137}, {597, 11574}, {674, 58490}, {698, 58556}, {732, 58500}, {742, 58499}, {924, 54273}, {1112, 15118}, {1173, 19128}, {1176, 34545}, {1216, 38317}, {1350, 31521}, {1353, 43130}, {1503, 10110}, {1692, 46288}, {2781, 58498}, {2810, 58505}, {2854, 41671}, {3060, 3313}, {3098, 5892}, {3147, 50649}, {3148, 13345}, {3527, 34207}, {3541, 3567}, {3564, 10095}, {3619, 11451}, {3629, 9027}, {3631, 40670}, {3819, 51126}, {3827, 58493}, {3917, 47355}, {5052, 16285}, {5085, 45186}, {5097, 34382}, {5140, 7745}, {5157, 5422}, {5356, 42067}, {5845, 58472}, {5846, 23841}, {5847, 58474}, {5848, 58475}, {5849, 58476}, {5946, 21850}, {5965, 58557}, {5969, 58503}, {6034, 39846}, {6102, 38136}, {6153, 19150}, {6329, 9019}, {6375, 46313}, {6593, 11800}, {6688, 34573}, {6697, 13567}, {6748, 34854}, {6776, 9781}, {7668, 52878}, {8265, 46305}, {8679, 58562}, {8681, 32455}, {8705, 47460}, {9021, 12109}, {9024, 58504}, {9028, 58558}, {9053, 58535}, {9055, 58553}, {9119, 14717}, {9300, 51412}, {9729, 29181}, {9730, 31670}, {9967, 47525}, {10263, 38110}, {10519, 15024}, {10574, 51538}, {10601, 37485}, {11002, 51171}, {11188, 51170}, {11426, 23041}, {11427, 31267}, {11432, 19149}, {11746, 58495}, {11806, 32271}, {12235, 19139}, {12329, 55432}, {13364, 18358}, {13392, 14984}, {13470, 29323}, {13598, 44882}, {13754, 19130}, {14641, 48904}, {14831, 38072}, {14848, 18438}, {14855, 43621}, {14915, 48895}, {15019, 19121}, {15026, 48876}, {15043, 51212}, {15321, 22336}, {15520, 32284}, {15544, 52471}, {16226, 54131}, {16836, 48881}, {16980, 38315}, {17500, 51481}, {19510, 26156}, {20423, 37511}, {20977, 23642}, {21969, 47352}, {22330, 58488}, {23292, 58450}, {27367, 56891}, {27374, 53484}, {29012, 40240}, {31732, 38146}, {32411, 51742}, {33872, 40947}, {34377, 58491}, {34380, 58531}, {34437, 34468}, {34828, 50675}, {35222, 36212}, {36851, 41580}, {36987, 55676}, {39571, 51756}, {39871, 43823}, {40647, 48901}, {41724, 46448}, {44495, 44668}, {44863, 48889}, {45237, 56565}, {46737, 58494}, {46850, 51163}, {47454, 58551}, {52144, 52433}, {58484, 58533}

X(58471) = midpoint of X(i) and X(j) for these {i,j}: {143, 18583}, {182, 5446}, {1112, 15118}, {1353, 43130}, {1843, 32366}, {11806, 32271}, {12235, 19139}, {13598, 44882}, {14641, 48904}, {389, 5480}, {3629, 14913}, {32284, 41714}, {32411, 51742}, {32455, 41579}, {40647, 48901}, {46850, 51163}, {597, 21849}, {6, 9969}, {6153, 19150}, {6593, 11800}, {9822, 58555}
X(58471) = reflection of X(i) in X(j) for these {i,j}: {22829, 6}, {48889, 44863}, {5447, 58445}, {5462, 58549}, {58495, 11746}, {9822, 58532}
X(58471) = inverse of X(19596) in the orthic inconic
X(58471)= pole of line {6, 52789} with respect to the Jerabek hyperbola
X(58471)= pole of line {427, 1506} with respect to the Kiepert hyperbola
X(58471)= pole of line {512, 2076} with respect to the Orthic inconic
X(58471)= pole of line {2485, 31296} with respect to the Steiner inellipse
X(58471)= pole of line {305, 40916} with respect to the Wallace hyperbola
X(58471) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(4)
X(58471) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(37990)}}, {{A, B, C, X(159), X(3527)}}, {{A, B, C, X(184), X(43726)}}, {{A, B, C, X(895), X(22829)}}, {{A, B, C, X(1173), X(9969)}}, {{A, B, C, X(1974), X(38005)}}, {{A, B, C, X(11402), X(34207)}}
X(58471) = barycentric product X(i)*X(j) for these (i, j): {37990, 6}
X(58471) = barycentric quotient X(i)/X(j) for these (i, j): {37990, 76}
X(58471) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 17810, 159}, {6, 1843, 32366}, {6, 19136, 41593}, {6, 2393, 22829}, {6, 51, 9969}, {6, 56918, 21637}, {6, 7716, 32621}, {6, 9971, 6467}, {6, 9973, 40673}, {51, 15004, 47328}, {51, 58550, 58483}, {143, 18583, 511}, {389, 5480, 34146}, {511, 58445, 5447}, {511, 58549, 5462}, {524, 58532, 9822}, {1843, 32366, 2393}, {1974, 15004, 6}, {3060, 3618, 3313}, {3629, 16776, 14913}, {9822, 58470, 58532}, {9822, 58555, 524}, {9969, 32366, 1843}, {9969, 58550, 58547}, {15520, 41714, 32284}, {44125, 44126, 19596}, {58469, 58473, 58485}, {58483, 58550, 58544}


X(58472) = X(7)X(51)∩X(9)X(5943)

Barycentrics    a^2*(2*a*(b-c)^2*(b+c)^3+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-2*a^2*b*c*(b^2-b*c+c^2)-(b-c)^2*(b^4-4*b^2*c^2+c^4)) : :
X(58472) = X[7]+3*X[51], -X[9]+3*X[5943], X[52]+3*X[38107], -X[144]+9*X[5640], -9*X[373]+5*X[18230], X[389]+X[5805], -X[1216]+3*X[38171], X[2262]+X[29957], -3*X[3819]+5*X[20195], X[5446]+X[31657], X[5732]+X[13598], -X[5907]+3*X[38150] and many others

X(58472) lies on these lines: {7, 51}, {9, 5943}, {52, 38107}, {142, 511}, {144, 5640}, {373, 18230}, {389, 5805}, {516, 9729}, {518, 9822}, {527, 58470}, {673, 40954}, {674, 58634}, {970, 1001}, {971, 10110}, {1216, 38171}, {2262, 29957}, {2346, 51377}, {2801, 58501}, {3819, 20195}, {5446, 31657}, {5462, 5762}, {5732, 13598}, {5843, 10095}, {5845, 58471}, {5850, 58474}, {5851, 58475}, {5852, 58476}, {5853, 58535}, {5856, 58504}, {5907, 38150}, {6000, 18482}, {6102, 38137}, {6173, 21849}, {6666, 6688}, {7717, 44079}, {8679, 58563}, {9052, 40659}, {9730, 31671}, {9781, 36996}, {9969, 51150}, {10263, 38111}, {11038, 16980}, {11574, 38186}, {11695, 31658}, {14831, 38073}, {14913, 51194}, {15024, 21168}, {15644, 38122}, {17768, 58479}, {19161, 38143}, {21151, 45186}, {31732, 38151}, {37502, 39543}, {38454, 58490}, {46850, 52835}

X(58472) = midpoint of X(i) and X(j) for these {i,j}: {14913, 51194}, {2262, 29957}, {389, 5805}, {46850, 52835}, {5446, 31657}, {5732, 13598}, {6173, 21849}, {9969, 51150}
X(58472) = reflection of X(i) in X(j) for these {i,j}: {31658, 11695}, {58534, 58473}
X(58472) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(4)
X(58472) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {527, 58473, 58534}, {9822, 58499, 23841}, {58470, 58534, 58473}


X(58473) = X(7)X(5640)∩X(9)X(51)

Barycentrics    a^2*(-((b-c)^4*(b+c)^2)+2*a*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-2*a^2*b*c*(b^2-3*b*c+c^2)) : :
X(58473) = -X[7]+9*X[5640], X[9]+3*X[51], X[52]+3*X[38108], -X[142]+3*X[5943], -9*X[373]+5*X[20195], -3*X[375]+X[40659], -X[1216]+3*X[38318], 3*X[3060]+5*X[18230], 5*X[3567]+3*X[5817], X[5446]+X[31658], X[5759]+7*X[9781], X[6102]+3*X[38139] and many others

X(58473) lies on these lines: {7, 5640}, {9, 51}, {52, 38108}, {142, 5943}, {373, 20195}, {375, 40659}, {511, 6666}, {516, 10110}, {518, 58469}, {527, 58470}, {528, 58501}, {674, 58635}, {971, 5462}, {1216, 38318}, {2801, 58505}, {2807, 42356}, {3060, 18230}, {3567, 5817}, {4343, 20962}, {5446, 31658}, {5759, 9781}, {5762, 10095}, {5843, 58531}, {5845, 58532}, {5853, 23841}, {5856, 58475}, {5857, 58476}, {6102, 38139}, {6688, 58433}, {8679, 58564}, {9730, 31672}, {10263, 38113}, {14831, 38075}, {15024, 21151}, {15026, 31657}, {15043, 36991}, {15049, 30329}, {15726, 58548}, {15733, 58490}, {16980, 38316}, {19161, 38145}, {21153, 45186}, {31732, 38158}, {58499, 58553}

X(58473) = midpoint of X(i) and X(j) for these {i,j}: {5446, 31658}, {58472, 58534}
X(58473) = center of the nine-point conic of quadrilateral XYZX(9) where XYZ is the cevian triangle of X(4)
X(58473) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58470, 58534, 58472}, {58471, 58485, 58469}, {58472, 58534, 527}


X(58474) = X(1)X(5640)∩X(10)X(51)

Barycentrics    a^2*(-(a*(b^2-c^2)^2)-(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2)) : :
X(58474) = -X[1]+9*X[5640], -3*X[5]+X[31751], X[10]+3*X[51], X[40]+7*X[9781], X[52]+3*X[10175], X[65]+3*X[15049], X[143]+X[9956], -9*X[373]+5*X[19862], -3*X[375]+X[3678], 3*X[381]+X[31728], X[389]+X[19925], 3*X[551]+X[16980] and many others

X(58474) lies on these lines: {1, 5640}, {5, 31751}, {10, 51}, {40, 9781}, {52, 10175}, {65, 15049}, {143, 9956}, {373, 19862}, {375, 3678}, {381, 31728}, {389, 19925}, {511, 3634}, {515, 5462}, {516, 10110}, {517, 10095}, {518, 58532}, {519, 23841}, {551, 16980}, {674, 4015}, {726, 58499}, {730, 58486}, {740, 58485}, {758, 58476}, {952, 58531}, {1125, 5943}, {1216, 10172}, {1385, 15026}, {1656, 31738}, {1698, 3060}, {1902, 43823}, {1995, 16473}, {2392, 3812}, {2784, 58502}, {2796, 58553}, {2800, 58522}, {2802, 58475}, {2807, 12571}, {2809, 58519}, {2817, 58520}, {2842, 31794}, {3293, 20961}, {3567, 5587}, {3576, 15024}, {3624, 11451}, {3742, 23157}, {3754, 42450}, {3814, 18180}, {3819, 31253}, {3828, 21849}, {3833, 11573}, {3917, 51073}, {3919, 42448}, {4547, 58646}, {4663, 16776}, {5259, 56878}, {5422, 8185}, {5439, 23156}, {5446, 6684}, {5691, 15043}, {5847, 58471}, {5850, 58472}, {5889, 7989}, {5890, 18492}, {5946, 18480}, {6102, 38140}, {6688, 19878}, {7987, 15028}, {7998, 19872}, {8679, 58565}, {9590, 13434}, {9625, 38848}, {9626, 43651}, {9729, 28164}, {9730, 31673}, {9780, 11002}, {9822, 34379}, {9955, 13364}, {10164, 45186}, {10263, 11231}, {11412, 54447}, {11746, 44547}, {12006, 28160}, {12512, 13598}, {13363, 13624}, {14831, 38076}, {15644, 58441}, {16226, 34648}, {16569, 50599}, {16981, 46931}, {17810, 49553}, {19161, 38146}, {21746, 50587}, {28522, 58554}, {37162, 38474}, {38472, 58404}, {44084, 49542}, {46827, 50610}, {58479, 58501}

X(58474) = midpoint of X(i) and X(j) for these {i,j}: {10, 31757}, {143, 9956}, {10110, 58487}, {12512, 13598}, {23841, 58469}, {389, 19925}, {3754, 42450}, {3828, 21849}, {5, 31760}, {52, 31752}, {5446, 6684}, {58493, 58497}, {58501, 58504}
X(58474) = center of the nine-point conic of quadrilateral XYZX(10) where XYZ is the cevian triangle of X(4)
X(58474) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 51, 31757}, {52, 10175, 31752}, {1698, 3060, 31737}, {10110, 58487, 516}, {23841, 58470, 58469}, {58476, 58493, 58558}


X(58475) = X(11)X(51)∩X(100)X(5640)

Barycentrics    a^2*((a-b)^3*b^2*(a+b)^2+b^2*(-a+b)*(a+b)*(a^2-3*a*b+b^2)*c+(a-b)*(a^4-2*a*b^3-4*b^4)*c^2-(a^4-3*a^3*b+2*a^2*b^2-8*a*b^3+4*b^4)*c^3-2*(a^3+a*b^2+2*b^3)*c^4+(2*a^2-3*a*b+4*b^2)*c^5+(a+b)*c^6-c^7) : :
X(58475) = X[11]+3*X[51], X[52]+3*X[23513], -X[100]+9*X[5640], X[104]+7*X[9781], -9*X[373]+5*X[31235], -3*X[375]+X[14740], -X[1216]+3*X[38319], -X[3035]+3*X[5943], 3*X[3060]+5*X[31272], X[5446]+X[6713], 3*X[5946]+X[22938], X[6102]+3*X[38141] and many others

X(58475) lies on these lines: {11, 51}, {52, 23513}, {100, 5640}, {104, 9781}, {373, 31235}, {375, 14740}, {511, 6667}, {513, 24465}, {528, 58470}, {674, 46694}, {952, 10095}, {1216, 38319}, {2771, 58516}, {2783, 58517}, {2787, 58518}, {2800, 58493}, {2801, 58521}, {2802, 58474}, {2803, 58524}, {2804, 58525}, {2805, 58527}, {2806, 58528}, {2828, 58530}, {2829, 10110}, {2831, 58529}, {3035, 5943}, {3045, 13595}, {3060, 31272}, {3738, 58526}, {3887, 58519}, {5446, 6713}, {5462, 5840}, {5848, 58471}, {5851, 58472}, {5854, 23841}, {5856, 58473}, {5946, 22938}, {6102, 38141}, {6702, 31757}, {8674, 11746}, {8679, 18240}, {9024, 58532}, {10263, 34126}, {10724, 15043}, {12138, 43823}, {12736, 42450}, {13598, 38759}, {14831, 38077}, {15024, 34474}, {15026, 33814}, {16174, 31760}, {17810, 54065}, {18180, 39692}, {19161, 38147}, {21154, 45186}, {21849, 45310}, {31732, 38161}

X(58475) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58508}, {12736, 42450}, {13598, 38759}, {16174, 31760}, {21849, 45310}, {5446, 6713}, {6702, 31757}, {58469, 58501}, {58504, 58539}
X(58475) = reflection of X(i) in X(j) for these {i,j}: {58522, 10095}
X(58475) = center of the nine-point conic of quadrilateral XYZX(11) where XYZ is the cevian triangle of X(4)
X(58475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 10095, 58522}, {10095, 58469, 58476}, {10110, 58508, 2829}, {58469, 58501, 952}, {58470, 58539, 58504}, {58504, 58539, 528}


X(58476) = X(12)X(51)∩X(52)X(38109)

Barycentrics    a^2*(a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)-a^3*b*c*(b+c)*(b^2+c^2)-a^4*(b^2-b*c+c^2)*(3*b^2+4*b*c+3*c^2)-(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)+a^2*(b+c)^2*(3*b^4-5*b^3*c+3*b^2*c^2-5*b*c^3+3*c^4)) : :
X(58476) = X[12]+3*X[51], X[52]+3*X[38109], -9*X[373]+5*X[31260], -X[2975]+9*X[5640], -X[4999]+3*X[5943], X[5446]+X[31659], X[6102]+3*X[38142], 7*X[9781]+X[11491], X[10263]+3*X[38114], X[14831]+3*X[38078], X[19161]+3*X[38148], 3*X[21155]+X[45186] and many others

X(58476) lies on these lines: {12, 51}, {52, 38109}, {373, 31260}, {511, 6668}, {529, 58470}, {674, 58636}, {758, 58474}, {952, 10095}, {2975, 5640}, {4999, 5943}, {5446, 31659}, {5462, 5841}, {5842, 10110}, {5849, 58471}, {5852, 58472}, {5855, 23841}, {5857, 58473}, {6102, 38142}, {8068, 18180}, {8679, 58566}, {9781, 11491}, {10263, 38114}, {14831, 38078}, {19161, 38148}, {20962, 31880}, {21155, 45186}, {31732, 38162}, {33961, 58479}

X(58476) = midpoint of X(i) and X(j) for these {i,j}: {5446, 31659}
X(58476) = center of the nine-point conic of quadrilateral XYZX(12) where XYZ is the cevian triangle of X(4)
X(58476) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 58469, 58475}, {58474, 58558, 58493}


X(58477) = X(15)X(51)∩X(140)X(143)

Barycentrics    -(a^2*(-(sqrt(3)*a^6*(b^2+c^2))+a^4*(b^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+3*sqrt(3)*(b^4+c^4))+a^2*(6*b^2*c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+sqrt(3)*(-3*b^6+5*b^4*c^2+5*b^2*c^4-3*c^6))+(b-c)^2*(b+c)^2*(sqrt(3)*b^4+sqrt(3)*c^4-c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))-b^2*(2*sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))))) : :
Barycentrics    a^2*(2*(a^4*b^2 - b^6 + a^4*c^2 + 6*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6)*S - Sqrt[3]*(a^2*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) - 16*S^4)) : : (Peter Moses, September 22, 2023)

X(58477) lies on these lines: {15, 51}, {140, 143}, {185, 41036}, {187, 51547}, {373, 40334}, {389, 7684}, {463, 6110}, {531, 58470}, {621, 5640}, {623, 5943}, {1843, 36757}, {2913, 36759}, {5446, 13350}, {5892, 36755}, {9781, 36993}, {10110, 44666}, {10617, 36978}, {21158, 45186}, {21849, 45879}, {22510, 39846}, {44659, 58469}

X(58477) = midpoint of X(i) and X(j) for these {i,j}: {21849, 45879}, {389, 7684}, {5446, 13350}
X(58477) = reflection of X(i) in X(j) for these {i,j}: {58478, 58552}
X(58477) = center of the nine-point conic of quadrilateral XYZX(15) where XYZ is the cevian triangle of X(4)
X(58477) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 58552, 58478}


X(58478) = X(16)X(51)∩X(140)X(143)

Barycentrics    sqrt(3)*a^8*(b^2+c^2)+a^6*(b^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))-3*sqrt(3)*(b^4+c^4))+a^4*(6*b^2*c^2*sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)))+sqrt(3)*(b^2+c^2)*(3*b^4-8*b^2*c^2+3*c^4))-a^2*(b-c)^2*(b+c)^2*(sqrt(3)*b^4+b^2*(-2*sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))+c^2*(sqrt(3)*c^2+sqrt(-((a-b-c)*(a+b-c)*(a-b+c)*(a+b+c))))) : :
Barycentrics    a^2*(2*(a^4*b^2 - b^6 + a^4*c^2 + 6*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6)*S + Sqrt[3]*(a^2*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) - 16*S^4)) : : (Peter Moses, September 22, 2023)

X(58478) lies on these lines: {16, 51}, {140, 143}, {185, 41037}, {187, 51546}, {373, 40335}, {389, 7685}, {462, 6111}, {530, 58470}, {622, 5640}, {624, 5943}, {1843, 36758}, {2912, 36760}, {5446, 13349}, {5892, 36756}, {9781, 36995}, {10110, 44667}, {10616, 36980}, {21159, 45186}, {21849, 45880}, {22511, 39846}, {44660, 58469}

X(58478) = midpoint of X(i) and X(j) for these {i,j}: {21849, 45880}, {389, 7685}, {5446, 13349}
X(58478) = reflection of X(i) in X(j) for these {i,j}: {58477, 58552}
X(58478) = center of the nine-point conic of quadrilateral XYZX(16) where XYZ is the cevian triangle of X(4)
X(58478) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 58552, 58477}


X(58479) = X(21)X(51)∩X(30)X(5462)

Barycentrics    a^2*(-(b^2-c^2)^4+a^6*(b^2+c^2)-3*a^3*b*c*(b+c)*(b^2+c^2)-3*a^4*(b^4+b^3*c+b*c^3+c^4)+a*b*c*(b+c)*(3*b^4-8*b^2*c^2+3*c^4)+a^2*(b^2+b*c+c^2)*(3*b^4-8*b^2*c^2+3*c^4)) : :
X(58479) = X[21]+3*X[51], X[143]+X[10021], X[185]+3*X[52269], -9*X[373]+5*X[31254], X[389]+X[6841], -X[442]+3*X[5943], -X[2475]+9*X[5640], 3*X[3060]+5*X[15674], X[5428]+X[5446], -X[5499]+5*X[15026], 3*X[5946]+X[16160], X[8261]+X[42450] and many others

X(58479) lies on these lines: {21, 51}, {30, 5462}, {143, 10021}, {185, 52269}, {373, 31254}, {389, 6841}, {442, 5943}, {511, 6675}, {674, 58638}, {758, 12109}, {2475, 5640}, {2771, 41671}, {2795, 58503}, {3060, 15674}, {5428, 5446}, {5499, 15026}, {5946, 16160}, {8261, 42450}, {8679, 58568}, {9528, 58511}, {9969, 51729}, {10263, 31650}, {11002, 15676}, {11277, 13363}, {11800, 16164}, {13598, 44238}, {13754, 46028}, {15043, 37433}, {15049, 47319}, {15644, 28465}, {15670, 21849}, {15671, 21969}, {17768, 58472}, {21161, 45186}, {23841, 44669}, {29958, 39772}, {31757, 58449}, {33961, 58476}, {40647, 44258}, {58474, 58501}

X(58479) = midpoint of X(i) and X(j) for these {i,j}: {143, 10021}, {11800, 16164}, {13598, 44238}, {15670, 21849}, {29958, 39772}, {389, 6841}, {31757, 58449}, {40647, 44258}, {5428, 5446}, {8261, 42450}, {9969, 51729}
X(58479) = center of the nine-point conic of quadrilateral XYZX(21) where XYZ is the cevian triangle of X(4)
X(58479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58491, 12109}


X(58480) = X(2)X(54384)∩X(22)X(51)

Barycentrics    a^2*(a^8*(b^2+c^2)-2*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+2*a^2*(b^8-2*b^6*c^2-2*b^2*c^6+c^8)) : :
X(58480) = 3*X[2]+X[54384], X[22]+3*X[51], X[143]+X[25337], 3*X[184]+X[27365], -9*X[373]+5*X[31236], X[389]+X[15760], -X[427]+3*X[5943], X[5446]+X[7502], -9*X[5640]+X[7391], -3*X[5892]+X[18570], 7*X[9781]+X[44831], X[9969]+X[19127] and many others

X(58480) lies on these lines: {2, 54384}, {5, 34115}, {22, 51}, {25, 44480}, {30, 5462}, {143, 25337}, {154, 41714}, {184, 27365}, {373, 31236}, {378, 15010}, {389, 15760}, {427, 5943}, {511, 6676}, {569, 44259}, {575, 44260}, {1112, 37649}, {2781, 6688}, {3628, 58546}, {3818, 41580}, {5446, 7502}, {5447, 58488}, {5640, 7391}, {5892, 18570}, {6329, 9019}, {9730, 18390}, {9781, 44831}, {9822, 58547}, {9969, 19127}, {9971, 20850}, {11695, 52262}, {11746, 45298}, {11793, 58545}, {11800, 16165}, {12083, 37514}, {12824, 37990}, {13363, 44236}, {13598, 44239}, {13754, 46029}, {15043, 44440}, {15045, 35481}, {15818, 44491}, {16776, 53022}, {16836, 44249}, {16950, 41255}, {18383, 40647}, {21849, 44210}, {21969, 47596}, {41578, 46818}, {44837, 45186}

X(58480) = midpoint of X(i) and X(j) for these {i,j}: {143, 25337}, {11800, 16165}, {13598, 44239}, {21849, 44210}, {389, 15760}, {40647, 44263}, {5446, 7502}, {9969, 19127}
X(58480) = reflection of X(i) in X(j) for these {i,j}: {52262, 11695}
X(58480) = center of the nine-point conic of quadrilateral XYZX(22) where XYZ is the cevian triangle of X(4)
X(58480) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5462, 58483, 58470}, {5462, 58484, 58482}, {58470, 58481, 58483}


X(58481) = X(23)X(51)∩X(30)X(5462)

Barycentrics    a^2*(a^8*(b^2+c^2)+a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+a^2*(2*b^8-7*b^6*c^2+8*b^4*c^4-7*b^2*c^6+2*c^8)) : :
X(58481) = X[23]+3*X[51], X[143]+X[25338], -9*X[373]+5*X[30745], X[389]+X[11799], -3*X[403]+X[5907], -X[858]+3*X[5943], -X[1216]+3*X[44282], X[1533]+3*X[46430], X[1843]+3*X[52238], 3*X[3060]+5*X[37760], -X[3313]+5*X[47453], -2*X[5159]+3*X[6688] and many others

X(58481) lies on these lines: {6, 37973}, {23, 51}, {30, 5462}, {143, 25338}, {182, 37928}, {186, 15010}, {373, 30745}, {389, 11799}, {403, 5907}, {468, 511}, {578, 2070}, {674, 58639}, {858, 5943}, {1173, 43579}, {1216, 44282}, {1495, 3047}, {1533, 46430}, {1843, 52238}, {3060, 37760}, {3313, 47453}, {5092, 37929}, {5159, 6688}, {5189, 5640}, {5446, 7575}, {5892, 37950}, {5899, 36752}, {6000, 36253}, {6102, 11563}, {7426, 21849}, {8681, 47549}, {8705, 47460}, {9019, 32300}, {9730, 18325}, {9820, 10096}, {9969, 32217}, {10295, 13598}, {10574, 52403}, {10575, 31726}, {10627, 44234}, {11412, 37943}, {11574, 47455}, {11649, 37897}, {11692, 37936}, {11695, 15122}, {11746, 29012}, {11806, 51548}, {11807, 32110}, {12105, 58489}, {12824, 41586}, {13346, 37933}, {13391, 22249}, {13565, 46031}, {13754, 44961}, {14913, 32220}, {14915, 58498}, {15012, 16227}, {15644, 44214}, {17810, 37972}, {21969, 37907}, {32284, 45979}, {32411, 37971}, {33586, 37920}, {37777, 44079}, {37910, 58549}, {37940, 48914}, {37984, 44870}, {40647, 44267}, {44264, 58488}, {47153, 58502}, {47316, 58544}, {58514, 58552}, {58547, 58555}

X(58481) = midpoint of X(i) and X(j) for these {i,j}: {143, 25338}, {1112, 32223}, {10295, 13598}, {1495, 11800}, {11692, 37936}, {11806, 51548}, {11807, 32110}, {14913, 32220}, {389, 11799}, {32411, 37971}, {40647, 44267}, {5446, 7575}, {7426, 21849}, {9969, 32217}
X(58481) = reflection of X(i) in X(j) for these {i,j}: {15122, 11695}, {41671, 44084}, {44870, 37984}
X(58481)= pole of line {32271, 33749} with respect to the Jerabek hyperbola
X(58481)= pole of line {5622, 40107} with respect to the Stammler hyperbola
X(58481) = center of the nine-point conic of quadrilateral XYZX(23) where XYZ is the cevian triangle of X(4)
X(58481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 44084, 41671}, {1112, 32223, 511}, {58480, 58483, 58470}


X(58482) = X(24)X(51)∩X(235)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-6*a^6*b^2*c^2*(b^4+c^4)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-12*b^2*c^2+5*c^4)+a^8*(5*b^6+b^4*c^2+b^2*c^4+5*c^6)+4*a^2*(b^2-c^2)^2*(b^8-2*b^6*c^2+b^4*c^4-2*b^2*c^6+c^8)) : :
X(58482) = X[24]+3*X[51], X[235]+X[389], -9*X[373]+5*X[31282], X[5446]+X[37814], -9*X[5640]+X[37444], -3*X[5943]+X[11585], 3*X[9730]+X[31725], 7*X[9781]+X[35471], -2*X[11695]+X[16196], -X[11793]+2*X[58465], X[11800]+X[20771], X[13598]+X[44240] and many others

X(58482) lies on these lines: {24, 51}, {30, 5462}, {143, 9820}, {235, 389}, {373, 31282}, {511, 16238}, {575, 9969}, {576, 44752}, {5446, 37814}, {5480, 15026}, {5640, 37444}, {5943, 11585}, {5946, 15873}, {6000, 44226}, {6756, 11746}, {6759, 44079}, {7517, 17810}, {9730, 31725}, {9781, 35471}, {10274, 44102}, {11695, 16196}, {11793, 58465}, {11800, 20771}, {13598, 44240}, {13754, 15887}, {15078, 45186}, {15465, 58492}, {16625, 41671}, {16881, 58546}, {21841, 46363}, {21849, 44211}, {22833, 44267}, {40647, 44271}, {44495, 44668}, {44803, 46430}, {44872, 46849}

X(58482) = midpoint of X(i) and X(j) for these {i,j}: {143, 44232}, {11800, 20771}, {13598, 44240}, {235, 389}, {21849, 44211}, {40647, 44271}, {44226, 52003}, {5446, 37814}, {9969, 51730}
X(58482) = reflection of X(i) in X(j) for these {i,j}: {10110, 58559}, {11793, 58465}, {16196, 11695}
X(58482)= pole of line {7592, 22802} with respect to the Jerabek hyperbola
X(58482) = center of the nine-point conic of quadrilateral XYZX(24) where XYZ is the cevian triangle of X(4)
X(58482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {143, 44232, 45780}, {5462, 58484, 58480}, {10095, 11745, 10110}, {10110, 58551, 5462}, {16625, 41671, 58545}, {44226, 52003, 6000}


X(58483) = X(4)X(31978)∩X(6)X(25)

Barycentrics    a^2*(a^8*(b^2+c^2)+4*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+2*a^2*(b^2-c^2)^2*(b^4-3*b^2*c^2+c^4)-2*a^6*(b^4-b^2*c^2+c^4)) : :
X(58483) = X[143]+X[44233], -9*X[373]+5*X[31255], X[389]+X[1596], -X[1370]+9*X[5640], X[5446]+X[6644], 7*X[9781]+X[18533], X[11800]+X[20772], X[13598]+X[44241], X[21849]+X[44212], X[21969]+3*X[47597], 3*X[37917]+X[48914], X[40647]+X[44276]

X(58483) lies on these lines: {4, 31978}, {6, 25}, {30, 5462}, {143, 44233}, {263, 40323}, {373, 31255}, {389, 1596}, {511, 6677}, {576, 34966}, {1368, 5480}, {1370, 5640}, {2790, 58502}, {2834, 58509}, {3060, 37669}, {3148, 40320}, {5446, 6644}, {6353, 50649}, {7398, 29959}, {9781, 18533}, {9786, 46373}, {10154, 44479}, {11433, 41580}, {11746, 36201}, {11800, 20772}, {12099, 52285}, {12235, 13861}, {12294, 26958}, {13567, 34146}, {13598, 44241}, {13754, 46030}, {14984, 41671}, {15043, 15740}, {16252, 46363}, {21849, 44212}, {21969, 47597}, {22967, 52003}, {23292, 51734}, {37917, 48914}, {37951, 38848}, {40647, 44276}, {42450, 46017}, {44662, 58469}, {44670, 58485}, {44802, 57648}, {58514, 58515}, {58533, 58546}

X(58483) = midpoint of X(i) and X(j) for these {i,j}: {143, 44233}, {11800, 20772}, {13598, 44241}, {21849, 44212}, {389, 1596}, {40647, 44276}, {5446, 6644}, {9969, 19136}
X(58483)= pole of line {850, 30211} with respect to the polar circle
X(58483) = center of the nine-point conic of quadrilateral XYZX(25) where XYZ is the cevian triangle of X(4)
X(58483) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1660)}}, {{A, B, C, X(184), X(43695)}}, {{A, B, C, X(10311), X(40323)}}
X(58483) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 25, 1660}, {6, 44079, 45979}, {51, 17810, 9969}, {51, 34417, 47328}, {51, 44079, 6}, {51, 44084, 58550}, {51, 58550, 58471}, {9969, 19136, 2393}, {10095, 58484, 5462}, {11745, 58559, 10110}, {44084, 58550, 58544}, {58470, 58481, 58480}


X(58484) = X(26)X(51)∩X(30)X(5462)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(b^2+c^2)*(5*b^4-6*b^2*c^2+5*c^4)+2*a^2*(b^2-c^2)^2*(2*b^8-3*b^6*c^2-3*b^2*c^6+2*c^8)-a^4*(b^2+c^2)*(5*b^8-16*b^6*c^2+18*b^4*c^4-16*b^2*c^6+5*c^8)) : :
X(58484) = X[26]+3*X[51], X[52]+3*X[10201], X[143]+X[13383], X[156]+X[12235], -9*X[373]+5*X[31283], X[389]+X[15761], X[1658]+X[5446], -X[5447]+2*X[10125], -9*X[5640]+X[14790], -3*X[5892]+X[11250], -3*X[5943]+X[13371], X[9969]+X[19154] and many others

X(58484) lies on these lines: {5, 44084}, {26, 51}, {30, 5462}, {52, 10201}, {143, 13383}, {156, 12235}, {373, 31283}, {389, 15761}, {511, 10020}, {1112, 7542}, {1154, 58544}, {1658, 5446}, {2393, 32155}, {3564, 58547}, {5447, 10125}, {5640, 14790}, {5892, 11250}, {5943, 13371}, {6152, 7426}, {6746, 37971}, {7514, 15010}, {9826, 31829}, {9969, 19154}, {10024, 52000}, {10263, 34351}, {11695, 23336}, {11793, 12900}, {11800, 20773}, {12084, 37470}, {12605, 43823}, {13406, 13754}, {13434, 45171}, {13561, 34146}, {13598, 44242}, {13861, 44079}, {15024, 44441}, {15026, 23335}, {15047, 37928}, {15644, 34477}, {18282, 58488}, {18324, 45186}, {18567, 44863}, {19155, 34382}, {21849, 44213}, {32140, 41580}, {32144, 32205}, {37440, 47328}, {40647, 44279}, {50664, 58549}, {52073, 58516}, {58471, 58533}

X(58484) = midpoint of X(i) and X(j) for these {i,j}: {143, 13383}, {156, 12235}, {1658, 5446}, {11800, 20773}, {13598, 44242}, {21849, 44213}, {389, 15761}, {40647, 44279}, {9969, 19154}
X(58484) = reflection of X(i) in X(j) for these {i,j}: {18567, 44863}, {23336, 11695}, {32144, 32205}, {5447, 10125}, {58545, 58546}
X(58484) = center of the nine-point conic of quadrilateral XYZX(26) where XYZ is the cevian triangle of X(4)
X(58484) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1154, 58546, 58545}, {5462, 58483, 10095}, {12235, 45979, 156}, {58480, 58482, 5462}, {58544, 58545, 58546}


X(58485) = X(37)X(51)∩X(75)X(5640)

Barycentrics    a^2*(-(b*c*(b^2-c^2)^2)-a*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^2*b*c*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)) : :
X(58485) = X[37]+3*X[51], -X[75]+9*X[5640], -9*X[373]+5*X[31238], -3*X[375]+X[22271], 3*X[3060]+5*X[4687], -X[3739]+3*X[5943], X[3842]+X[31757], -7*X[4751]+15*X[11451], X[4755]+X[21849], 7*X[9781]+X[30273], 9*X[11002]+7*X[27268], 7*X[15043]+X[51063]

X(58485) lies on these lines: {37, 51}, {44, 40954}, {75, 5640}, {373, 31238}, {375, 22271}, {511, 4698}, {516, 40504}, {518, 58469}, {536, 58470}, {674, 40607}, {726, 58486}, {740, 58474}, {742, 58532}, {872, 20961}, {2183, 2293}, {2667, 20962}, {2805, 58504}, {3060, 4687}, {3739, 5943}, {3842, 31757}, {4751, 11451}, {4755, 21849}, {8679, 58571}, {8680, 58558}, {9781, 30273}, {10095, 29010}, {11002, 27268}, {12572, 20718}, {15043, 51063}, {23841, 28581}, {44670, 58483}

X(58485) = midpoint of X(i) and X(j) for these {i,j}: {3842, 31757}, {4755, 21849}, {58499, 58554}
X(58485) = center of the nine-point conic of quadrilateral XYZX(37) where XYZ is the cevian triangle of X(4)
X(58485) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58473, 58471}, {58470, 58554, 58499}


X(58486) = X(6)X(3202)∩X(39)X(51)

Barycentrics    -(a^2*b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)^2-a^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4) : :
X(58486) = X[39]+3*X[51], -X[76]+9*X[5640], X[185]+3*X[22682], 3*X[262]+5*X[3567], -9*X[373]+5*X[31239], X[2023]+X[39835], 3*X[3060]+5*X[7786], -X[3934]+3*X[5943], X[5446]+X[13334], 3*X[5946]+X[14881], 3*X[7753]+X[40951], 7*X[9781]+X[11257] and many others

X(58486) lies on these lines: {6, 3202}, {39, 51}, {76, 5640}, {83, 14962}, {140, 143}, {185, 22682}, {211, 3815}, {232, 27370}, {262, 3567}, {263, 31401}, {373, 31239}, {389, 40645}, {427, 15897}, {512, 7745}, {538, 58470}, {726, 58485}, {730, 58474}, {732, 58532}, {1506, 27374}, {2023, 39835}, {2393, 46337}, {2782, 10095}, {3060, 7786}, {3124, 42548}, {3159, 14839}, {3934, 5943}, {5368, 6784}, {5446, 13334}, {5946, 14881}, {7753, 40951}, {7859, 33873}, {7915, 34236}, {9781, 11257}, {10263, 40108}, {11174, 41262}, {13451, 32516}, {14917, 58550}, {14990, 46305}, {15024, 22712}, {15026, 49111}, {21163, 45186}, {21849, 44562}, {31869, 53570}, {32515, 58531}, {40643, 43843}, {46179, 58558}

X(58486) = midpoint of X(i) and X(j) for these {i,j}: {143, 11272}, {2023, 39835}, {21849, 44562}, {39, 27375}, {5446, 13334}, {58500, 58556}
X(58486) = reflection of X(i) in X(j) for these {i,j}: {52042, 6683}
X(58486) = X(i)-complementary conjugate of X(j) for these {i, j}: {82, 34452}, {55028, 21249}
X(58486)= pole of line {1506, 3613} with respect to the Kiepert hyperbola
X(58486)= pole of line {31296, 52618} with respect to the Steiner inellipse
X(58486) = center of the nine-point conic of quadrilateral XYZX(39) where XYZ is the cevian triangle of X(4)
X(58486) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3203), X(30505)}}, {{A, B, C, X(27375), X(45108)}}, {{A, B, C, X(43679), X(55075)}}
X(58486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 51, 27375}, {143, 11272, 511}, {511, 6683, 52042}, {58470, 58556, 58500}


X(58487) = X(10)X(389)∩X(40)X(51)

Barycentrics    a^2*(2*a^3*b^2*c^2*(b+c)-2*a*b^2*(b-c)^2*c^2*(b+c)-(b^2-c^2)^4+a^6*(b^2+c^2)-3*a^4*(b^4+c^4)+a^2*(3*b^6-5*b^4*c^2-4*b^3*c^3-5*b^2*c^4+3*c^6)) : :
X(58487) = X[8]+7*X[15043], X[10]+X[389], X[40]+3*X[51], X[52]+3*X[26446], 3*X[165]+X[45186], X[185]+3*X[5587], X[355]+3*X[9730], -9*X[373]+5*X[8227], -3*X[375]+X[5777], -X[944]+9*X[15045], -X[946]+3*X[5943], -X[962]+9*X[5640] and many others

X(58487) lies on these lines: {5, 2807}, {8, 15043}, {10, 389}, {40, 51}, {52, 26446}, {165, 45186}, {181, 580}, {185, 5587}, {355, 9730}, {373, 8227}, {375, 5777}, {511, 6684}, {515, 9729}, {516, 10110}, {517, 5462}, {581, 23638}, {674, 58643}, {912, 58647}, {916, 58631}, {944, 15045}, {946, 5943}, {952, 12006}, {962, 5640}, {1092, 16473}, {1125, 11695}, {1216, 11231}, {1385, 5892}, {1698, 5562}, {1902, 44084}, {2800, 58504}, {2802, 58508}, {2809, 58507}, {2810, 12005}, {2816, 58541}, {2817, 58513}, {2818, 3754}, {2841, 35004}, {3567, 5657}, {3576, 16980}, {3579, 5446}, {3616, 15028}, {3634, 11793}, {3679, 16226}, {3819, 31738}, {3828, 31752}, {3917, 31423}, {4297, 16836}, {4300, 20962}, {5603, 15024}, {5690, 5946}, {5790, 37481}, {5818, 5890}, {5840, 58501}, {5884, 29958}, {5889, 9780}, {5901, 13363}, {5907, 10175}, {6000, 19925}, {6001, 58492}, {6102, 38042}, {6361, 9781}, {6986, 56878}, {7989, 15030}, {8185, 10984}, {8679, 9940}, {9622, 44109}, {9626, 22352}, {9798, 37514}, {9911, 17810}, {9956, 13754}, {10095, 28174}, {10164, 15644}, {10172, 31751}, {10902, 51377}, {11381, 18492}, {11444, 19877}, {11574, 38118}, {12239, 13973}, {12240, 13911}, {13211, 16223}, {13280, 16225}, {13364, 40273}, {13598, 31730}, {13630, 18357}, {14641, 33697}, {14831, 19875}, {15016, 23154}, {15026, 22791}, {16192, 36987}, {18480, 40647}, {19161, 38047}, {22300, 31789}, {24025, 34956}, {28194, 58470}, {28212, 58531}, {28234, 58535}, {29054, 58499}, {31673, 46850}, {31757, 43174}, {31788, 42450}, {38472, 52265}, {40658, 45979}

X(58487) = midpoint of X(i) and X(j) for these {i,j}: {10, 389}, {13598, 31730}, {13630, 18357}, {14641, 33697}, {18480, 40647}, {22300, 31789}, {3579, 5446}, {31673, 46850}, {31757, 43174}, {31788, 42450}, {5884, 29958}, {5907, 31728}, {6684, 31760}, {58493, 58690}, {9729, 23841}
X(58487) = reflection of X(i) in X(j) for these {i,j}: {10110, 58474}, {1125, 11695}, {11793, 3634}, {58469, 5462}
X(58487) = center of the nine-point conic of quadrilateral XYZX(40) where XYZ is the cevian triangle of X(4)
X(58487) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 58474, 10110}, {517, 5462, 58469}, {1698, 5562, 52796}, {6684, 31760, 511}, {9729, 23841, 515}, {10175, 31728, 5907}, {58469, 58548, 5462}, {58493, 58690, 517}


X(58488) = X(5)X(389)∩X(49)X(51)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^2*(b^2-c^2)^4*(4*b^4+5*b^2*c^2+4*c^4)+a^8*(b^2+c^2)*(5*b^4-9*b^2*c^2+5*c^4)+a^6*(9*b^6*c^2+8*b^4*c^4+9*b^2*c^6)+a^4*(-5*b^10+2*b^8*c^2+b^6*c^4+b^4*c^6+2*b^2*c^8-5*c^10)) : :
X(58488) = X[49]+3*X[51]

X(58488) lies on these lines: {5, 389}, {49, 51}, {54, 11692}, {110, 6153}, {143, 10096}, {511, 34577}, {1493, 11800}, {1568, 11802}, {2070, 5446}, {3153, 40647}, {3518, 44084}, {3567, 21451}, {3574, 11557}, {5447, 58480}, {5892, 34864}, {7471, 36842}, {10095, 13163}, {10110, 30522}, {12010, 16625}, {13376, 43575}, {14915, 31724}, {16881, 58551}, {18282, 58484}, {18369, 43844}, {22330, 58471}, {23409, 58531}, {38789, 54007}, {40240, 58516}, {44264, 58481}

X(58488) = midpoint of X(i) and X(j) for these {i,j}: {143, 15806}, {5446, 13367}
X(58488)= pole of line {21659, 43845} with respect to the Jerabek hyperbola
X(58488)= pole of line {12325, 34148} with respect to the Stammler hyperbola
X(58488) = center of the nine-point conic of quadrilateral XYZX(49) where XYZ is the cevian triangle of X(4)
X(58488) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {41671, 58489, 10095}


X(58489) = X(51)X(54)∩X(125)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4+9*b^2*c^2+5*c^4)+3*a^6*(5*b^6*c^2+4*b^4*c^4+5*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-b^6*c^2-8*b^4*c^4-b^2*c^6+4*c^8)) : :
X(58489) = X[5]+X[10115], 3*X[51]+X[54], X[140]+X[44056], X[143]+X[8254], -X[1209]+3*X[5943], X[1493]+X[6153], -X[2888]+9*X[5640], X[5446]+X[10610], -3*X[5946]+X[11802], X[6152]+X[40632], 3*X[7730]+X[21660], 3*X[9730]+X[15800] and many others

X(58489) lies on these lines: {5, 10115}, {6, 10274}, {30, 16106}, {51, 54}, {125, 389}, {140, 44056}, {143, 8254}, {195, 9306}, {468, 973}, {511, 6689}, {539, 23410}, {1154, 3628}, {1209, 5943}, {1493, 6153}, {2888, 5640}, {3567, 14940}, {5446, 10610}, {5946, 11802}, {5965, 9822}, {6152, 40632}, {6756, 10110}, {7730, 21660}, {9730, 15800}, {9781, 12254}, {9820, 22051}, {9920, 17810}, {10095, 13163}, {11262, 58439}, {11432, 17824}, {11557, 11804}, {11576, 44084}, {11597, 11800}, {11695, 32348}, {11805, 11806}, {12105, 58481}, {12233, 43392}, {13365, 50708}, {13382, 58492}, {13567, 14076}, {14831, 41726}, {15012, 47341}, {15026, 21230}, {15801, 16042}, {16223, 36853}, {18874, 20584}, {32191, 58450}, {34565, 52417}, {40645, 58515}, {43582, 43823}, {44264, 58533}, {44495, 44668}, {58497, 58575}

X(58489) = midpoint of X(i) and X(j) for these {i,j}: {140, 44056}, {143, 8254}, {1493, 6153}, {11557, 11804}, {11597, 11800}, {11802, 20424}, {11805, 11806}, {389, 3574}, {5, 10115}, {54, 11808}, {5446, 10610}, {5462, 58557}, {6152, 40632}, {973, 12242}
X(58489) = reflection of X(i) in X(j) for these {i,j}: {11793, 32396}, {13365, 58531}, {20584, 18874}, {32348, 11695}
X(58489)= pole of line {1199, 18400} with respect to the Jerabek hyperbola
X(58489) = center of the nine-point conic of quadrilateral XYZX(54) where XYZ is the cevian triangle of X(4)
X(58489) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 54, 11808}, {389, 3574, 10628}, {1154, 32396, 11793}, {5462, 58557, 1154}, {10095, 58488, 41671}, {50708, 58531, 13365}


X(58490) = X(51)X(55)∩X(517)X(5462)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-2*a^3*(b^4-b^2*c^2+c^4)+2*a^2*(b^5-2*b^3*c^2-2*b^2*c^3+c^5)) : :
X(58490) = 3*X[51]+X[55], -9*X[373]+5*X[31245], X[389]+X[7680], -X[2886]+3*X[5943], -X[3434]+9*X[5640], X[5446]+X[32613], 7*X[9781]+X[37000], X[9969]+X[47373], -X[10537]+3*X[45979], X[42450]+X[50195]

X(58490) lies on these lines: {51, 55}, {373, 31245}, {389, 7680}, {511, 6690}, {516, 58558}, {517, 5462}, {518, 58491}, {528, 58470}, {674, 58471}, {692, 40952}, {1824, 44084}, {2807, 58507}, {2875, 14717}, {2886, 5943}, {3434, 5640}, {5446, 32613}, {5842, 10110}, {5855, 58535}, {8679, 11018}, {9781, 37000}, {9969, 47373}, {10537, 45979}, {15733, 58473}, {23841, 44669}, {38454, 58472}, {42450, 50195}, {44670, 58483}

X(58490) = midpoint of X(i) and X(j) for these {i,j}: {389, 7680}, {42450, 50195}, {5446, 32613}, {9969, 47373}
X(58490) = center of the nine-point conic of quadrilateral XYZX(55) where XYZ is the cevian triangle of X(4)
X(58490) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58469, 58487, 58493}


X(58491) = X(51)X(63)∩X(970)X(993)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+2*a^2*(b-c)^2*(b+c)*(b^2+b*c+c^2)+a*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-2*a^3*(b^4-b^2*c^2+c^4)) : :
X(58491) = 3*X[51]+X[63], -X[226]+3*X[5943], -9*X[373]+5*X[31266], X[389]+X[51755], 3*X[3060]+5*X[55868], -3*X[3917]+7*X[55867], -9*X[5640]+X[5905], -3*X[6688]+2*X[58463], X[18389]+X[29958], 3*X[21165]+X[45186]

X(58491) lies on these lines: {51, 63}, {226, 5943}, {373, 31266}, {389, 51755}, {511, 5745}, {515, 9729}, {518, 58490}, {527, 58470}, {674, 58651}, {758, 12109}, {912, 5462}, {970, 993}, {2792, 58537}, {2801, 58504}, {3060, 55868}, {3173, 5020}, {3917, 55867}, {5640, 5905}, {6688, 58463}, {7193, 40952}, {8679, 58578}, {8680, 58499}, {9028, 9822}, {18389, 29958}, {21165, 45186}, {23638, 37502}, {34377, 58471}, {39796, 47522}, {46179, 58500}, {46180, 58556}

X(58491) = midpoint of X(i) and X(j) for these {i,j}: {18389, 29958}, {389, 51755}
X(58491) = center of the nine-point conic of quadrilateral XYZX(63) where XYZ is the cevian triangle of X(4)
X(58491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12109, 58479, 58469}


X(58492) = X(3)X(2393)∩X(51)X(64)

Barycentrics    a^2*(-12*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-18*b^2*c^2+5*c^4)+a^8*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-5*b^6*c^2-10*b^4*c^4-5*b^2*c^6+2*c^8)) : :
X(58492) = X[4]+X[31978], 3*X[51]+X[64], X[185]+3*X[1853], -X[1216]+3*X[23329], -X[1498]+3*X[45979], -X[2883]+3*X[5943], -5*X[3091]+X[36982], X[3357]+X[5446], -9*X[3839]+X[36983], -X[5447]+2*X[25563], -X[5562]+5*X[40686], -9*X[5640]+X[6225] and many others

X(58492) lies on these lines: {3, 2393}, {4, 31978}, {30, 58496}, {51, 64}, {66, 18909}, {185, 1853}, {206, 37514}, {389, 1595}, {511, 6696}, {546, 5462}, {578, 22829}, {674, 58652}, {974, 32393}, {1192, 1843}, {1204, 47328}, {1216, 23329}, {1498, 45979}, {1503, 9729}, {1594, 15126}, {1620, 9973}, {2781, 16625}, {2883, 5943}, {3088, 23327}, {3091, 36982}, {3357, 5446}, {3574, 32125}, {3827, 58690}, {3839, 36983}, {5447, 25563}, {5562, 40686}, {5640, 6225}, {5656, 15024}, {5663, 58545}, {5890, 32392}, {5892, 6759}, {5894, 13598}, {5907, 23332}, {6001, 58487}, {6756, 16270}, {7528, 9730}, {7729, 11381}, {8567, 34751}, {8679, 58579}, {9781, 12250}, {9786, 9969}, {9914, 17810}, {10110, 15311}, {10250, 32284}, {10574, 32064}, {10606, 45186}, {11425, 32366}, {11598, 11800}, {11695, 16252}, {11743, 13568}, {11745, 58494}, {12006, 23411}, {12084, 12235}, {12272, 53050}, {12324, 15043}, {13160, 41603}, {13347, 15577}, {13348, 44668}, {13371, 13754}, {13382, 58489}, {13474, 23324}, {14641, 34786}, {14915, 18383}, {15045, 34781}, {15465, 58482}, {15583, 52520}, {15644, 23328}, {15811, 44079}, {16836, 34782}, {18381, 40647}, {18913, 19161}, {18919, 50649}, {21651, 37497}, {21663, 32345}, {32767, 49673}, {36747, 39125}, {36752, 41593}, {41362, 46850}, {44883, 46730}

X(58492) = midpoint of X(i) and X(j) for these {i,j}: {11598, 11800}, {12084, 12235}, {14641, 34786}, {15583, 52520}, {18381, 40647}, {389, 6247}, {3357, 5446}, {4, 31978}, {41362, 46850}, {5894, 13598}
X(58492) = reflection of X(i) in X(j) for these {i,j}: {16252, 11695}, {41589, 15012}, {5447, 25563}, {9729, 32184}
X(58492)= pole of line {30211, 57120} with respect to the 1st DrozFarny circle
X(58492)= pole of line {12173, 15811} with respect to the Jerabek hyperbola
X(58492) = center of the nine-point conic of quadrilateral XYZX(64) where XYZ is the cevian triangle of X(4)
X(58492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 6247, 34146}, {1503, 32184, 9729}, {6000, 15012, 41589}, {12324, 15043, 41580}


X(58493) = X(10)X(674)∩X(51)X(65)

Barycentrics    a^2*(-(a*(b^2-c^2)^2)+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+b*c+c^2)-(b-c)^2*(b+c)*(b^2+3*b*c+c^2)) : :
X(58493) = 3*X[51]+X[65], -X[72]+3*X[375], 3*X[354]+X[16980], -9*X[373]+5*X[25917], X[389]+X[7686], X[950]+X[22300], -X[960]+3*X[5943], -2*X[3678]+3*X[58646], X[3754]+X[31757], -X[3869]+9*X[5640], X[4084]+3*X[15049], -2*X[5045]+3*X[58574] and many others

X(58493) lies on these lines: {1, 25579}, {4, 15320}, {6, 2333}, {10, 674}, {42, 23383}, {51, 65}, {72, 375}, {181, 1104}, {354, 16980}, {373, 25917}, {389, 7686}, {405, 22276}, {511, 3812}, {515, 58617}, {517, 5462}, {518, 9822}, {758, 58474}, {912, 58496}, {916, 19925}, {942, 8679}, {950, 22300}, {952, 58575}, {960, 5943}, {1125, 34466}, {1451, 23843}, {1469, 17054}, {1722, 4259}, {1736, 42440}, {1737, 18180}, {1834, 40954}, {2392, 33815}, {2650, 20962}, {2771, 58501}, {2778, 58498}, {2800, 58475}, {2807, 5806}, {3338, 41682}, {3556, 17810}, {3678, 58646}, {3696, 50623}, {3754, 31757}, {3816, 35631}, {3827, 58471}, {3869, 5640}, {3874, 9026}, {3880, 58535}, {4084, 15049}, {4642, 20961}, {4646, 21746}, {4662, 9052}, {5045, 58574}, {5221, 26892}, {5396, 37836}, {5446, 34339}, {5482, 58405}, {5530, 18165}, {5728, 52359}, {5752, 54318}, {5883, 11573}, {6000, 16616}, {6001, 10110}, {8608, 40955}, {9049, 34790}, {9786, 34935}, {9943, 13598}, {10095, 14988}, {11365, 44414}, {12572, 20718}, {13411, 38472}, {15229, 28208}, {17063, 50630}, {21896, 50583}, {22654, 52424}, {25048, 41261}, {31760, 31870}, {37080, 51377}, {43073, 45223}, {44545, 44547}, {44663, 58470}, {45955, 58679}, {49478, 50580}, {50626, 52541}

X(58493) = midpoint of X(i) and X(j) for these {i,j}: {12109, 23841}, {389, 7686}, {3754, 31757}, {31760, 31870}, {44545, 44547}, {5446, 34339}, {65, 42450}, {950, 22300}, {9943, 13598}
X(58493) = reflection of X(i) in X(j) for these {i,j}: {58497, 58474}, {58690, 58487}
X(58493)= pole of line {1867, 10955} with respect to the Feuerbach hyperbola
X(58493)= pole of line {1834, 41011} with respect to the Jerabek hyperbola
X(58493)= pole of line {649, 4057} with respect to the Orthic inconic
X(58493) = center of the nine-point conic of quadrilateral XYZX(65) where XYZ is the cevian triangle of X(4)
X(58493) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 65, 42450}, {65, 42450, 2390}, {65, 57666, 41011}, {517, 58487, 58690}, {758, 58474, 58497}, {12109, 23841, 518}, {58469, 58487, 58490}, {58474, 58558, 58476}


X(58494) = X(6)X(14580)∩X(51)X(66)

Barycentrics    a^2*(a^10*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)^3-a^8*(b^4+c^4)+2*a^4*(b^2-c^2)^2*(b^4+c^4)-2*a^6*(b^2+c^2)*(b^4+c^4)-(b^4-c^4)^2*(b^4-4*b^2*c^2+c^4)) : :
X(58494) = 3*X[51]+X[66], -X[206]+3*X[5943], -9*X[373]+5*X[31267], X[389]+X[51756], X[1843]+3*X[23327], 5*X[3763]+3*X[34751], -X[5596]+9*X[5640], 3*X[9730]+X[34775], -3*X[10169]+X[32366], X[11800]+X[15116], X[15583]+3*X[16776], 3*X[23049]+X[37511] and many others

X(58494) lies on these lines: {6, 14580}, {51, 66}, {159, 10601}, {206, 5943}, {373, 31267}, {389, 51756}, {511, 5449}, {1503, 5462}, {1843, 23327}, {2393, 3589}, {2781, 21852}, {3313, 37638}, {3763, 34751}, {3827, 58497}, {3867, 9969}, {5596, 5640}, {8681, 39125}, {9730, 34775}, {10110, 16198}, {10169, 32366}, {11745, 58492}, {11800, 15116}, {15580, 50664}, {15583, 16776}, {17810, 34207}, {23049, 37511}, {27365, 28408}, {29959, 34777}, {34573, 44668}, {36201, 58498}, {46737, 58471}

X(58494) = midpoint of X(i) and X(j) for these {i,j}: {11800, 15116}, {389, 51756}, {9969, 23300}
X(58494) = reflection of X(i) in X(j) for these {i,j}: {58547, 58532}
X(58494) = center of the nine-point conic of quadrilateral XYZX(66) where XYZ is the cevian triangle of X(4)
X(58494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 58532, 58547}, {3589, 58439, 58450}


X(58495) = X(6)X(32226)∩X(51)X(67)

Barycentrics    a^2*(a^10*(b^2+c^2)-a^8*(b^4+c^4)-(b^4-c^4)^2*(b^4-4*b^2*c^2+c^4)+2*a^4*(b^4-b^2*c^2+c^4)^2+a^6*(-2*b^6+b^4*c^2+b^2*c^4-2*c^6)+a^2*(b^2-c^2)^2*(b^6+c^6)) : :
X(58495) = 3*X[51]+X[67], X[125]+X[9969], X[141]+X[11800], X[389]+X[32274], 3*X[597]+X[32299], X[1205]+3*X[9971], -X[3313]+5*X[15059], X[3818]+X[11806], X[5181]+3*X[45237], X[5446]+X[49116], -9*X[5640]+X[11061], -3*X[5943]+X[6593] and many others

X(58495) lies on these lines: {6, 32226}, {51, 67}, {125, 9969}, {141, 11800}, {373, 32227}, {389, 32274}, {468, 2393}, {511, 6698}, {542, 5462}, {597, 32299}, {895, 16042}, {1205, 9971}, {1503, 58498}, {1594, 15116}, {2781, 10110}, {2836, 58497}, {2854, 6329}, {3313, 15059}, {3518, 5622}, {3628, 14984}, {3818, 11806}, {5181, 45237}, {5446, 49116}, {5640, 11061}, {5943, 6593}, {6756, 16270}, {7687, 34146}, {8254, 25555}, {9781, 32247}, {10516, 21649}, {10628, 32191}, {11746, 58471}, {11808, 32351}, {13358, 18358}, {14644, 19161}, {14940, 15073}, {16776, 25328}, {17810, 32262}, {19136, 32251}, {32239, 44084}, {41671, 58532}, {44321, 47629}

X(58495) = midpoint of X(i) and X(j) for these {i,j}: {125, 9969}, {141, 11800}, {13358, 18358}, {15118, 32246}, {389, 32274}, {3818, 11806}, {5446, 49116}
X(58495) = reflection of X(i) in X(j) for these {i,j}: {41671, 58532}, {58471, 11746}
X(58495)= pole of line {5095, 47466} with respect to the Jerabek hyperbola
X(58495)= pole of line {10097, 34437} with respect to the Orthic inconic
X(58495) = center of the nine-point conic of quadrilateral XYZX(67) where XYZ is the cevian triangle of X(4)
X(58495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12099, 32246, 15118}, {15118, 32246, 2393}


X(58496) = X(5)X(12235)∩X(51)X(68)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10*(b^2+c^2)+2*a^6*(b^2+c^2)*(b^4+c^4)+(b^2-c^2)^4*(b^4-4*b^2*c^2+c^4)-a^8*(3*b^4+4*b^2*c^2+3*c^4)-a^2*(b^2-c^2)^2*(3*b^6-7*b^4*c^2-7*b^2*c^4+3*c^6)+2*a^4*(b^8-2*b^6*c^2-2*b^4*c^4-2*b^2*c^6+c^8)) : :
X(58496) = X[5]+X[12235], 3*X[51]+X[68], -X[1147]+3*X[5943], -9*X[5640]+X[6193], 3*X[5654]+X[21651], -3*X[6688]+2*X[43839], X[7689]+X[13598], 3*X[9730]+X[12293], 7*X[9781]+X[11411], -2*X[11695]+X[12038], X[11800]+X[46085], -3*X[12099]+X[15115] and many others

X(58496) lies on these lines: {5, 12235}, {30, 58492}, {51, 68}, {52, 7507}, {143, 546}, {155, 9777}, {156, 41593}, {182, 32048}, {389, 7706}, {511, 5449}, {539, 23410}, {542, 32166}, {912, 58493}, {1147, 5943}, {1594, 15123}, {1595, 5446}, {2393, 13383}, {3564, 10095}, {3628, 14984}, {5020, 15316}, {5462, 9825}, {5640, 6193}, {5651, 44752}, {5654, 21651}, {6000, 44279}, {6688, 43839}, {7505, 27365}, {7529, 19458}, {7689, 13598}, {8548, 13861}, {8679, 58580}, {8681, 22330}, {9729, 17702}, {9730, 12293}, {9781, 11411}, {9820, 9822}, {9908, 17810}, {11403, 12163}, {11695, 12038}, {11793, 45780}, {11800, 46085}, {12099, 15115}, {12134, 44084}, {12310, 13353}, {13160, 45237}, {13292, 58550}, {13348, 20191}, {18369, 41615}, {21243, 33563}, {41587, 47328}

X(58496) = midpoint of X(i) and X(j) for these {i,j}: {11800, 46085}, {389, 9927}, {5, 12235}, {5446, 12359}, {7689, 13598}, {8548, 43130}
X(58496) = reflection of X(i) in X(j) for these {i,j}: {12038, 11695}, {13348, 20191}, {58545, 10095}
X(58496) = center of the nine-point conic of quadrilateral XYZX(68) where XYZ is the cevian triangle of X(4)
X(58496) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3564, 10095, 58545}


X(58497) = X(10)X(375)∩X(51)X(72)

Barycentrics    a^2*((a-b)*b^2*(a+b)^2+(a^3+2*a*b^2+3*b^3)*c^2+(a^2+3*b^2)*c^3-a*c^4-c^5) : :
X(58497) = -3*X[2]+X[11573], -X[10]+3*X[375], 3*X[51]+X[72], X[143]+X[31835], X[185]+3*X[5927], -9*X[373]+5*X[5439], 3*X[392]+X[16980], -X[942]+3*X[5943], 3*X[3060]+5*X[3876], 3*X[3753]+X[42448], -X[3868]+9*X[5640], -2*X[4015]+3*X[58646] and many others

X(58497) lies on these lines: {2, 11573}, {3, 2183}, {5, 34831}, {6, 27802}, {9, 5752}, {10, 375}, {37, 50594}, {44, 10974}, {51, 72}, {73, 4245}, {143, 31835}, {185, 5927}, {226, 56885}, {373, 5439}, {389, 916}, {392, 16980}, {474, 26892}, {511, 5044}, {516, 58690}, {517, 5795}, {518, 58469}, {674, 3678}, {758, 58474}, {908, 18180}, {912, 5462}, {936, 37482}, {942, 5943}, {970, 31445}, {971, 9729}, {975, 37516}, {1125, 8679}, {1437, 54444}, {1745, 16415}, {1818, 48907}, {2292, 20962}, {2390, 3754}, {2392, 3634}, {2551, 31778}, {2771, 58498}, {2801, 58617}, {2808, 15012}, {2810, 5045}, {2836, 58495}, {2841, 10107}, {2842, 33815}, {2915, 26890}, {3060, 3876}, {3074, 36011}, {3157, 5020}, {3271, 5266}, {3452, 37536}, {3753, 42448}, {3784, 16408}, {3827, 58494}, {3868, 5640}, {3881, 9026}, {3931, 23638}, {4015, 58646}, {4303, 16414}, {5446, 31837}, {5482, 6700}, {5550, 23155}, {5745, 34466}, {5892, 13369}, {5907, 10157}, {6001, 58487}, {6642, 47371}, {7193, 37509}, {7535, 19366}, {9021, 58532}, {9730, 40263}, {9822, 34381}, {9940, 11695}, {10175, 31825}, {11365, 45729}, {12109, 58470}, {12241, 31832}, {12528, 15043}, {12664, 23840}, {13598, 31793}, {14557, 41340}, {15026, 24475}, {15064, 31732}, {16286, 22097}, {17362, 50602}, {17704, 31805}, {17810, 37547}, {18743, 50633}, {19862, 23156}, {20117, 31760}, {20122, 37694}, {23619, 24511}, {24320, 36754}, {36949, 52259}, {37034, 55400}, {41609, 47328}, {49457, 50603}, {58489, 58575}

X(58497) = midpoint of X(i) and X(j) for these {i,j}: {10, 42450}, {143, 31835}, {12241, 31832}, {13598, 31793}, {20117, 31760}, {375, 15049}, {389, 5777}, {3678, 31757}, {5446, 31837}, {942, 29958}, {9729, 44865}
X(58497) = reflection of X(i) in X(j) for these {i,j}: {31805, 17704}, {58493, 58474}, {9940, 11695}
X(58497) = complement of X(11573)
X(58497) = X(i)-complementary conjugate of X(j) for these {i, j}: {3453, 37565}, {40394, 18589}
X(58497)= pole of line {834, 4129} with respect to the Spieker circle
X(58497)= pole of line {17922, 37770} with respect to the Steiner inellipse
X(58497) = center of the nine-point conic of quadrilateral XYZX(72) where XYZ is the cevian triangle of X(4)
X(58497) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 15049, 42450}, {373, 23154, 5439}, {389, 5777, 916}, {758, 58474, 58493}, {3678, 31757, 674}, {5943, 29958, 942}, {9729, 44865, 971}


X(58498) = X(2)X(12273)∩X(51)X(74)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-5*a^4*(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)-3*a^6*(3*b^6*c^2-4*b^4*c^4+3*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-9*b^6*c^2-8*b^4*c^4-9*b^2*c^6+4*c^8)) : :
X(58498) = -9*X[2]+X[12273], X[3]+X[11800], X[4]+X[17855], X[5]+X[11806], 3*X[51]+X[74], X[52]+3*X[15061], -X[113]+3*X[5943], X[125]+X[389], X[140]+X[13358], -X[146]+9*X[5640], X[185]+3*X[14644], X[265]+3*X[9730] and many others

X(58498) lies on these lines: {2, 12273}, {3, 11800}, {4, 17855}, {5, 11806}, {51, 74}, {52, 15061}, {54, 17701}, {113, 5943}, {125, 389}, {140, 13358}, {146, 5640}, {182, 2931}, {185, 14644}, {186, 10821}, {265, 9730}, {511, 6699}, {541, 58470}, {542, 9822}, {575, 12228}, {674, 58654}, {690, 58502}, {974, 1514}, {1112, 20417}, {1154, 40685}, {1173, 43391}, {1199, 32226}, {1216, 34128}, {1352, 18932}, {1503, 58495}, {1511, 5892}, {1843, 5622}, {2771, 58497}, {2772, 58505}, {2773, 58506}, {2774, 58507}, {2775, 58509}, {2776, 58510}, {2777, 10110}, {2778, 58493}, {2779, 58513}, {2780, 58514}, {2781, 58471}, {2929, 19361}, {3043, 13366}, {3090, 12284}, {3448, 15043}, {3567, 13417}, {3850, 5462}, {5020, 17838}, {5446, 12041}, {5562, 15059}, {5621, 19348}, {5890, 15081}, {5907, 23515}, {5946, 10264}, {5972, 11695}, {6053, 41670}, {6688, 12900}, {6723, 11793}, {7393, 15085}, {8674, 58508}, {8679, 58582}, {9140, 16226}, {9306, 19456}, {9729, 17702}, {9781, 12244}, {9919, 17810}, {10113, 40647}, {10114, 11245}, {10272, 13363}, {10282, 13198}, {10601, 12168}, {10625, 38728}, {11432, 17847}, {11438, 19457}, {11562, 37481}, {11597, 15037}, {11801, 13630}, {11802, 11804}, {12006, 32423}, {12052, 32417}, {12219, 14831}, {12295, 46850}, {12310, 37514}, {12358, 45311}, {12383, 15045}, {13416, 15606}, {13474, 17854}, {13598, 16111}, {13754, 20304}, {14528, 38638}, {14708, 15012}, {14912, 32260}, {14915, 58481}, {14984, 48378}, {15055, 45186}, {15089, 43809}, {15463, 37505}, {15465, 58482}, {15644, 38727}, {16003, 16222}, {16163, 16836}, {16625, 20397}, {17704, 38726}, {17812, 18535}, {17853, 46431}, {19481, 44665}, {32248, 33748}, {33565, 38006}, {36201, 58494}

X(58498) = midpoint of X(i) and X(j) for these {i,j}: {125, 389}, {140, 13358}, {1112, 20417}, {10113, 40647}, {10264, 11557}, {11746, 16270}, {11801, 13630}, {11802, 11804}, {12295, 46850}, {13474, 17854}, {13598, 16111}, {14708, 36253}, {16836, 45237}, {3, 11800}, {4, 17855}, {5, 11806}, {5446, 12041}, {6699, 12236}, {74, 11807}, {974, 7687}
X(58498) = reflection of X(i) in X(j) for these {i,j}: {10110, 11746}, {11793, 6723}, {14708, 15012}, {15606, 13416}, {38726, 17704}, {41671, 5462}, {5972, 11695}, {58536, 58516}
X(58498)= pole of line {2914, 12112} with respect to the Jerabek hyperbola
X(58498)= pole of line {2081, 2433} with respect to the Orthic inconic
X(58498) = center of the nine-point conic of quadrilateral XYZX(74) where XYZ is the cevian triangle of X(4)
X(58498) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 74, 11807}, {125, 389, 10628}, {125, 46430, 389}, {541, 58516, 58536}, {974, 12099, 7687}, {974, 7687, 6000}, {2777, 11746, 10110}, {3448, 15043, 16223}, {5462, 5663, 41671}, {5890, 15081, 21650}, {5946, 10264, 11557}, {6699, 12236, 511}, {11746, 16270, 2777}, {37481, 38724, 11562}, {58470, 58536, 58516}


X(58499) = X(37)X(5943)∩X(51)X(75)

Barycentrics    a^2*(-(a*(b-c)^2*(b+c)^3)+a^2*b*c*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-b*c*(b^4-4*b^2*c^2+c^4)) : :
X(58499) = -X[37]+3*X[5943], 3*X[51]+X[75], -X[192]+9*X[5640], -9*X[373]+5*X[4687], 3*X[3060]+5*X[4699], -3*X[3819]+5*X[31238], -3*X[3917]+7*X[4751], X[4688]+X[21849], -2*X[4698]+3*X[6688], 7*X[4772]+9*X[11002], X[9969]+X[49481], -15*X[11451]+7*X[27268] and many others

X(58499) lies on these lines: {37, 5943}, {51, 75}, {192, 5640}, {239, 40954}, {373, 4687}, {511, 3739}, {518, 9822}, {536, 58470}, {674, 58655}, {726, 58474}, {740, 58469}, {742, 58471}, {2805, 58539}, {2810, 13476}, {3060, 4699}, {3819, 31238}, {3917, 4751}, {4688, 21849}, {4698, 6688}, {4772, 11002}, {5462, 29010}, {8679, 58583}, {8680, 58491}, {9052, 22271}, {9055, 58532}, {9969, 49481}, {11451, 27268}, {13598, 30271}, {15026, 51046}, {28581, 58535}, {29054, 58487}, {46850, 52852}, {58473, 58553}

X(58499) = midpoint of X(i) and X(j) for these {i,j}: {13598, 30271}, {4688, 21849}, {46850, 52852}, {9969, 49481}
X(58499) = reflection of X(i) in X(j) for these {i,j}: {58554, 58485}
X(58499) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(4)
X(58499) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {536, 58485, 58554}, {23841, 58472, 9822}, {58470, 58554, 58485}


X(58500) = X(5)X(141)∩X(51)X(76)

Barycentrics    a^6*(b^2+c^2)^2-a^2*b^2*c^2*(b^4-4*b^2*c^2+c^4)-a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(58500) = 3*X[51]+X[76], X[52]+3*X[7697], -X[194]+9*X[5640], -9*X[373]+5*X[7786], X[389]+X[6248], 3*X[3060]+5*X[31276], -X[3313]+5*X[40332], -3*X[3819]+5*X[31239], X[5052]+X[14913], X[5188]+X[13598], -2*X[6683]+3*X[6688], -3*X[7709]+11*X[15024] and many others

X(58500) lies on these lines: {5, 141}, {39, 3981}, {51, 76}, {52, 7697}, {194, 5640}, {263, 32828}, {373, 7786}, {384, 35060}, {389, 6248}, {538, 58470}, {674, 58656}, {698, 58532}, {726, 58474}, {730, 58469}, {732, 58471}, {1506, 51427}, {2782, 5462}, {3060, 31276}, {3313, 40332}, {3491, 5475}, {3819, 31239}, {5052, 14913}, {5167, 16044}, {5188, 13598}, {6683, 6688}, {7709, 15024}, {7834, 34236}, {8370, 40951}, {8679, 58584}, {8681, 44500}, {9466, 21849}, {9781, 12251}, {9917, 17810}, {10095, 32515}, {11695, 13334}, {12143, 44084}, {13330, 29959}, {13363, 32516}, {14839, 23841}, {15026, 32448}, {15028, 32522}, {15644, 15819}, {18027, 34854}, {19573, 47846}, {22655, 37476}, {22712, 45186}, {33873, 46226}, {37481, 48663}, {46179, 58491}, {46180, 58558}, {46850, 52854}

X(58500) = midpoint of X(i) and X(j) for these {i,j}: {389, 6248}, {3934, 27375}, {46850, 52854}, {5052, 14913}, {5188, 13598}, {5446, 49111}, {9466, 21849}, {9969, 24256}
X(58500) = reflection of X(i) in X(j) for these {i,j}: {13334, 11695}, {58556, 58486}
X(58500)= pole of line {5012, 7793} with respect to the Stammler hyperbola
X(58500) = center of the nine-point conic of quadrilateral XYZX(76) where XYZ is the cevian triangle of X(4)
X(58500) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {538, 58486, 58556}, {3934, 27375, 511}, {58470, 58556, 58486}


X(58501) = X(51)X(80)∩X(214)X(5943)

Barycentrics    a^2*(a^3*b*c*(b+c)^3+a^6*(b^2+c^2)-a*b*(b-c)^2*c*(b+c)*(b^2+4*b*c+c^2)-a^4*(b^2-b*c+c^2)*(3*b^2+2*b*c+3*c^2)-(b^2-c^2)^2*(b^4-4*b^2*c^2+c^4)+a^2*(3*b^6-b^5*c-3*b^4*c^2-3*b^2*c^4-b*c^5+3*c^6)) : :
X(58501) = 3*X[51]+X[80], -X[214]+3*X[5943], X[389]+X[6246], -X[1216]+3*X[38182], X[5446]+X[12619], -9*X[5640]+X[6224], -X[5907]+3*X[38161], -3*X[6688]+2*X[58453], X[6797]+X[42450], 7*X[9781]+X[12247], -X[11574]+3*X[38197], X[13598]+X[46684] and many others

X(58501) lies on these lines: {51, 80}, {214, 5943}, {389, 6246}, {511, 6702}, {515, 58508}, {528, 58473}, {674, 58659}, {952, 10095}, {1216, 38182}, {2771, 58493}, {2800, 10110}, {2801, 58472}, {2802, 23841}, {5446, 12619}, {5640, 6224}, {5840, 58487}, {5907, 38161}, {6688, 58453}, {6797, 42450}, {8679, 58587}, {9781, 12247}, {9912, 17810}, {11574, 38197}, {12137, 44084}, {13598, 46684}, {15644, 38133}, {16173, 16980}, {58474, 58479}

X(58501) = midpoint of X(i) and X(j) for these {i,j}: {13598, 46684}, {23841, 58539}, {389, 6246}, {5446, 12619}, {6797, 42450}
X(58501) = reflection of X(i) in X(j) for these {i,j}: {58469, 58475}, {58504, 58474}
X(58501) = center of the nine-point conic of quadrilateral XYZX(80) where XYZ is the cevian triangle of X(4)
X(58501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 58475, 58469}, {23841, 58539, 2802}


X(58502) = X(51)X(98)∩X(115)X(129)

Barycentrics    a^2*(a^10*(b^2+c^2)-2*a^8*(2*b^4+b^2*c^2+2*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(4*b^4-7*b^2*c^2+4*c^4)+7*a^6*(b^6+c^6)+a^4*(-7*b^8+7*b^6*c^2-6*b^4*c^4+7*b^2*c^6-7*c^8)-(b^2-c^2)^2*(b^8-3*b^6*c^2+6*b^4*c^4-3*b^2*c^6+c^8)) : :
X(58502) = -9*X[2]+X[39807], 3*X[51]+X[98], X[52]+3*X[38224], -X[114]+3*X[5943], -X[147]+9*X[5640], X[148]+7*X[15043], X[185]+3*X[14639], -X[620]+2*X[11695], X[671]+3*X[16226], -X[1216]+3*X[34127], 7*X[3090]+X[39808], 5*X[3567]+3*X[14651] and many others

X(58502) lies on these lines: {2, 39807}, {6, 57011}, {51, 98}, {52, 38224}, {114, 5943}, {115, 129}, {147, 5640}, {148, 15043}, {182, 3981}, {185, 14639}, {230, 511}, {542, 11746}, {575, 39805}, {620, 11695}, {671, 16226}, {674, 58661}, {690, 58498}, {1216, 34127}, {1352, 39804}, {2782, 5462}, {2783, 58504}, {2784, 58474}, {2785, 58506}, {2786, 58507}, {2787, 58508}, {2788, 58509}, {2789, 58510}, {2790, 58483}, {2791, 58512}, {2792, 58513}, {2793, 58514}, {2794, 10110}, {3090, 39808}, {3124, 52128}, {3567, 14651}, {5020, 39820}, {5446, 12042}, {5562, 14061}, {5892, 33813}, {5907, 23514}, {6034, 19161}, {6055, 21849}, {6102, 38229}, {6321, 9730}, {6688, 6721}, {6722, 11793}, {8679, 58589}, {9166, 14831}, {9306, 39810}, {9729, 23698}, {9781, 9862}, {9861, 17810}, {10282, 39834}, {10601, 39803}, {10625, 38739}, {10628, 15359}, {11432, 39849}, {11557, 15535}, {11623, 39835}, {11800, 53725}, {11807, 53709}, {12131, 44084}, {12236, 33511}, {13172, 15045}, {13175, 37514}, {13366, 58058}, {13598, 38749}, {15012, 38734}, {15026, 51872}, {15644, 38737}, {16278, 46430}, {16625, 20398}, {16836, 38738}, {17704, 38736}, {17974, 39024}, {22515, 40647}, {34473, 45186}, {37481, 38732}, {39809, 46850}, {47153, 58481}

X(58502) = midpoint of X(i) and X(j) for these {i,j}: {115, 389}, {11557, 15535}, {11623, 39835}, {11800, 53725}, {11807, 53709}, {12236, 33511}, {13598, 38749}, {22515, 40647}, {39809, 46850}, {5446, 12042}, {6036, 39806}, {6055, 21849}, {9729, 58538}
X(58502) = reflection of X(i) in X(j) for these {i,j}: {10110, 58518}, {11793, 6722}, {38736, 17704}, {620, 11695}, {58503, 5462}, {58537, 58517}
X(58502)= pole of line {114, 32428} with respect to the Kiepert hyperbola
X(58502) = center of the nine-point conic of quadrilateral XYZX(98) where XYZ is the cevian triangle of X(4)
X(58502) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {542, 58517, 58537}, {2782, 5462, 58503}, {2794, 58518, 10110}, {3567, 14651, 39846}, {6036, 39806, 511}, {9729, 58538, 23698}, {58470, 58537, 58517}


X(58503) = X(51)X(99)∩X(114)X(389)

Barycentrics    a^2*(-b^8+3*b^6*c^2-2*b^4*c^4+3*b^2*c^6-c^8+a^6*(b^2+c^2)-2*a^4*(b^4-b^2*c^2+c^4)+a^2*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6)) : :
X(58503) = -9*X[2]+X[39836], 3*X[51]+X[99], X[52]+3*X[15561], X[114]+X[389], -X[115]+3*X[5943], X[147]+7*X[15043], -X[148]+9*X[5640], -9*X[373]+5*X[14061], X[1843]+3*X[5182], X[2482]+X[21849], 7*X[3090]+X[39837], -5*X[3567]+X[39817] and many others

X(58503) lies on these lines: {2, 39836}, {51, 99}, {52, 15561}, {114, 389}, {115, 5943}, {147, 15043}, {148, 5640}, {182, 39857}, {373, 14061}, {511, 620}, {538, 58552}, {542, 9822}, {543, 58470}, {575, 39834}, {674, 58662}, {690, 41671}, {1352, 39833}, {1843, 5182}, {2482, 21849}, {2782, 5462}, {2783, 58508}, {2784, 58507}, {2785, 58513}, {2786, 58505}, {2787, 58504}, {2792, 58506}, {2794, 9729}, {2795, 58479}, {2796, 58510}, {2797, 58511}, {2798, 58512}, {2799, 58515}, {3044, 13366}, {3090, 39837}, {3567, 39817}, {3819, 31274}, {5020, 39849}, {5026, 9969}, {5186, 44084}, {5446, 33813}, {5477, 14913}, {5892, 12042}, {5907, 36519}, {5946, 51872}, {5969, 58471}, {6033, 9730}, {6036, 11695}, {6054, 16226}, {6642, 57011}, {6688, 6722}, {6721, 11793}, {8679, 58590}, {8681, 41672}, {9306, 39839}, {9781, 13172}, {9861, 37514}, {9862, 15045}, {10110, 23698}, {10282, 39805}, {10601, 39832}, {10625, 38750}, {11005, 16223}, {11432, 39820}, {11800, 53735}, {11807, 53710}, {12236, 33512}, {13175, 17810}, {13598, 38738}, {14645, 58555}, {14651, 15024}, {14831, 23234}, {15012, 38745}, {15644, 38748}, {16625, 20399}, {16836, 38749}, {17704, 38747}, {21166, 45186}, {21969, 41134}, {22505, 40647}, {28438, 46124}, {31757, 51578}, {36213, 47421}, {37481, 38743}, {39838, 46850}

X(58503) = midpoint of X(i) and X(j) for these {i,j}: {114, 389}, {11800, 53735}, {11807, 53710}, {12236, 33512}, {13598, 38738}, {2482, 21849}, {22505, 40647}, {31757, 51578}, {39838, 46850}, {5026, 9969}, {5446, 33813}, {5477, 14913}, {620, 39835}, {9729, 58537}
X(58503) = reflection of X(i) in X(j) for these {i,j}: {10110, 58517}, {11793, 6721}, {38747, 17704}, {6036, 11695}, {58502, 5462}, {58538, 58518}
X(58503) = center of the nine-point conic of quadrilateral XYZX(99) where XYZ is the cevian triangle of X(4)
X(58503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {543, 58518, 58538}, {620, 39835, 511}, {9729, 58537, 2794}, {23698, 58517, 10110}, {58470, 58538, 58518}


X(58504) = X(51)X(100)∩X(119)X(389)

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+a^3*(-2*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3-2*c^4)+2*a^2*(b^5-2*b^3*c^2-2*b^2*c^3+c^5)+a*(b^6-3*b^5*c-b^4*c^2+8*b^3*c^3-b^2*c^4-3*b*c^5+c^6)) : :
X(58504) = -X[11]+3*X[5943], 3*X[51]+X[100], X[52]+3*X[38752], X[119]+X[389], -X[149]+9*X[5640], X[153]+7*X[15043], -9*X[373]+5*X[31272], -X[1484]+5*X[15026], -3*X[3819]+5*X[31235], X[5446]+X[33814], -3*X[5892]+X[38602], 3*X[5946]+X[11698] and many others

X(58504) lies on these lines: {11, 5943}, {51, 100}, {52, 38752}, {119, 389}, {149, 5640}, {153, 15043}, {182, 54065}, {373, 31272}, {511, 3035}, {528, 58470}, {674, 58663}, {900, 58553}, {952, 5462}, {970, 51506}, {1484, 15026}, {1862, 44084}, {2771, 58497}, {2783, 58502}, {2787, 58503}, {2800, 58487}, {2801, 58491}, {2802, 58469}, {2803, 58511}, {2804, 58512}, {2805, 58485}, {2806, 58515}, {2810, 5083}, {2829, 9729}, {3045, 13366}, {3738, 58513}, {3819, 31235}, {3887, 58505}, {5446, 33814}, {5840, 10110}, {5848, 9822}, {5851, 58534}, {5854, 58535}, {5856, 58472}, {5892, 38602}, {5946, 11698}, {6174, 21849}, {6667, 6688}, {6713, 11695}, {8674, 41671}, {8679, 58591}, {9024, 58471}, {9052, 14740}, {9730, 10742}, {9781, 13199}, {9913, 37514}, {9969, 51157}, {10625, 38762}, {10711, 16226}, {11570, 29958}, {11793, 58421}, {11800, 53743}, {11807, 53711}, {12248, 15045}, {13222, 17810}, {13598, 24466}, {14913, 51198}, {15012, 38757}, {15644, 38760}, {16625, 20400}, {16836, 38761}, {17704, 38759}, {22799, 40647}, {34474, 45186}, {37481, 38755}, {46850, 52836}, {58474, 58479}

X(58504) = midpoint of X(i) and X(j) for these {i,j}: {119, 389}, {11570, 29958}, {11800, 53743}, {11807, 53711}, {13598, 24466}, {14913, 51198}, {22799, 40647}, {46850, 52836}, {5446, 33814}, {6174, 21849}, {9729, 58543}, {9969, 51157}
X(58504) = reflection of X(i) in X(j) for these {i,j}: {10110, 58522}, {11793, 58421}, {38759, 17704}, {6713, 11695}, {58501, 58474}, {58508, 5462}, {58539, 58475}
X(58504) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(4)
X(58504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {528, 58475, 58539}, {5840, 58522, 10110}, {9729, 58543, 2829}, {58470, 58539, 58475}


X(58505) = X(51)X(101)∩X(118)X(389)

Barycentrics    a^2*(a*(b-c)^4*(b+c)^3+a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)+2*a^3*b*c*(b+c)*(b^2-3*b*c+c^2)-a^4*(b+c)^2*(b^2-3*b*c+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^2*(b^6-2*b^5*c+b^4*c^2+2*b^3*c^3+b^2*c^4-2*b*c^5+c^6)) : :
X(58505) = 3*X[51]+X[101], X[52]+3*X[38764], -X[116]+3*X[5943], X[118]+X[389], -X[150]+9*X[5640], X[152]+7*X[15043], -9*X[373]+5*X[31273], X[5446]+X[38599], -3*X[5892]+X[38601], -3*X[6688]+2*X[58418], -X[6712]+2*X[11695], X[9729]+X[58542] and many others

X(58505) lies on these lines: {51, 101}, {52, 38764}, {116, 5943}, {118, 389}, {150, 5640}, {152, 15043}, {373, 31273}, {511, 6710}, {544, 58470}, {674, 58664}, {928, 58513}, {2772, 58498}, {2774, 41671}, {2784, 58474}, {2786, 58503}, {2801, 58473}, {2807, 58506}, {2808, 5462}, {2809, 58469}, {2810, 58471}, {2811, 58511}, {2812, 58512}, {2813, 58514}, {3046, 13366}, {3887, 58504}, {5185, 44084}, {5446, 38599}, {5892, 38601}, {6688, 58418}, {6712, 11695}, {8679, 58592}, {9518, 58515}, {9729, 58542}, {9730, 10741}, {10110, 58521}, {10625, 38774}, {10710, 16226}, {11793, 58420}, {11800, 53747}, {11807, 53712}, {15012, 38769}, {15644, 38772}, {16625, 20401}, {16836, 38773}, {17704, 38771}, {28346, 31757}, {37481, 38767}, {38690, 45186}

X(58505) = midpoint of X(i) and X(j) for these {i,j}: {118, 389}, {11800, 53747}, {11807, 53712}, {28346, 31757}, {5446, 38599}, {9729, 58542}
X(58505) = reflection of X(i) in X(j) for these {i,j}: {10110, 58521}, {11793, 58420}, {38771, 17704}, {6712, 11695}, {58507, 5462}, {58540, 58519}
X(58505) = center of the nine-point conic of quadrilateral XYZX(101) where XYZ is the cevian triangle of X(4)
X(58505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {544, 58519, 58540}, {58470, 58540, 58519}


X(58506) = X(51)X(102)∩X(124)X(389)

Barycentrics    a^2*(a*(b-c)^8*(b+c)^5+a^12*(b^2+c^2)-a^11*(b+c)*(b^2+c^2)-(b^2-c^2)^6*(b^2-b*c+c^2)-2*a^7*(b-c)^2*(b+c)*(b^2-b*c+c^2)*(5*b^2+7*b*c+5*c^2)+a^10*(-4*b^4+3*b^3*c-2*b^2*c^2+3*b*c^3-4*c^4)+2*a^5*(b-c)^4*(b+c)*(5*b^4+8*b^3*c+7*b^2*c^2+8*b*c^3+5*c^4)-a^3*(b-c)^6*(b+c)*(5*b^4+14*b^3*c+16*b^2*c^2+14*b*c^3+5*c^4)+2*a^6*b*(b-c)^2*c*(7*b^4+5*b^3*c+b^2*c^2+5*b*c^3+7*c^4)+a^9*(5*b^5+b^4*c+b*c^4+5*c^5)+a^8*(5*b^6-11*b^5*c+5*b^4*c^2-4*b^3*c^3+5*b^2*c^4-11*b*c^5+5*c^6)+a^2*(b^2-c^2)^2*(4*b^8-b^7*c-12*b^6*c^2+7*b^5*c^3-4*b^4*c^4+7*b^3*c^5-12*b^2*c^6-b*c^7+4*c^8)-a^4*(b-c)^2*(5*b^8+16*b^7*c-2*b^6*c^2-22*b^5*c^3-10*b^4*c^4-22*b^3*c^5-2*b^2*c^6+16*b*c^7+5*c^8)) : :
X(58506) = 3*X[51]+X[102], X[52]+3*X[38776], -X[117]+3*X[5943], X[124]+X[389], -X[151]+9*X[5640], X[5446]+X[38600], -3*X[5892]+X[38607], -3*X[6688]+2*X[58419], -X[6718]+2*X[11695], 3*X[9730]+X[10747], -X[10110]+2*X[58526], -X[10625]+5*X[38786] and many others

X(58506) lies on these lines: {51, 102}, {52, 38776}, {117, 5943}, {124, 389}, {151, 5640}, {511, 6711}, {928, 58507}, {2773, 58498}, {2779, 41671}, {2785, 58502}, {2792, 58503}, {2800, 58487}, {2807, 58505}, {2814, 58509}, {2815, 58510}, {2816, 58511}, {2817, 58469}, {2818, 5462}, {2819, 58514}, {3738, 58508}, {5446, 38600}, {5892, 38607}, {6688, 58419}, {6718, 11695}, {8679, 58593}, {9532, 58515}, {9730, 10747}, {10110, 58526}, {10625, 38786}, {10716, 16226}, {11793, 58426}, {11800, 53749}, {11807, 53713}, {13366, 58060}, {15012, 38781}, {15043, 33650}, {15644, 38784}, {16836, 38785}, {17704, 38783}, {37481, 38779}, {38691, 45186}, {58470, 58520}

X(58506) = midpoint of X(i) and X(j) for these {i,j}: {124, 389}, {11800, 53749}, {11807, 53713}, {5446, 38600}
X(58506) = reflection of X(i) in X(j) for these {i,j}: {10110, 58526}, {11793, 58426}, {38783, 17704}, {6718, 11695}, {58513, 5462}, {58541, 58520}
X(58506) = center of the nine-point conic of quadrilateral XYZX(102) where XYZ is the cevian triangle of X(4)
X(58506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2818, 5462, 58513}, {58470, 58541, 58520}


X(58507) = X(51)X(103)∩X(116)X(389)

Barycentrics    a^2*(a*(b-c)^6*(b+c)^5+a^10*(b^2+c^2)-a^9*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^4*(b^2+b*c+c^2)-2*a^5*b*(b-c)^2*c*(b+c)*(3*b^2+4*b*c+3*c^2)+a^8*(-3*b^4+b^3*c+b*c^3-3*c^4)+2*a^7*(b^5+2*b^4*c+2*b*c^4+c^5)-2*a^3*(b-c)^2*(b+c)*(b^6-b^5*c-4*b^4*c^2-4*b^2*c^4-b*c^5+c^6)-2*a^4*(b-c)^2*(2*b^6+b^5*c-2*b^4*c^2-4*b^3*c^3-2*b^2*c^4+b*c^5+2*c^6)+a^6*(4*b^6-4*b^5*c-2*b^4*c^2-2*b^3*c^3-2*b^2*c^4-4*b*c^5+4*c^6)+a^2*(b-c)^2*(3*b^8+2*b^7*c-6*b^6*c^2-8*b^5*c^3-14*b^4*c^4-8*b^3*c^5-6*b^2*c^6+2*b*c^7+3*c^8)) : :
X(58507) = 3*X[51]+X[103], X[52]+3*X[57297], X[116]+X[389], -X[118]+3*X[5943], X[150]+7*X[15043], -X[152]+9*X[5640], X[5446]+X[38601], -X[5562]+5*X[31273], -3*X[5892]+X[38599], -3*X[6688]+2*X[58420], -X[6710]+2*X[11695], X[9729]+X[58540] and many others

X(58507) lies on these lines: {51, 103}, {52, 57297}, {116, 389}, {118, 5943}, {150, 15043}, {152, 5640}, {511, 6712}, {674, 58665}, {928, 58506}, {2772, 41671}, {2774, 58498}, {2784, 58503}, {2786, 58502}, {2801, 58491}, {2807, 58490}, {2808, 5462}, {2809, 58487}, {2820, 58509}, {2821, 58510}, {2822, 58511}, {2823, 58512}, {2824, 58514}, {2825, 58515}, {3887, 58508}, {5446, 38601}, {5562, 31273}, {5892, 38599}, {6688, 58420}, {6710, 11695}, {8679, 58594}, {9729, 58540}, {9730, 10739}, {10110, 58519}, {10708, 16226}, {11793, 58418}, {11800, 53751}, {11807, 53714}, {13366, 58057}, {13598, 38773}, {38692, 45186}, {58470, 58521}

X(58507) = midpoint of X(i) and X(j) for these {i,j}: {116, 389}, {11800, 53751}, {11807, 53714}, {13598, 38773}, {5446, 38601}, {9729, 58540}
X(58507) = reflection of X(i) in X(j) for these {i,j}: {10110, 58519}, {11793, 58418}, {6710, 11695}, {58505, 5462}, {58542, 58521}
X(58507) = center of the nine-point conic of quadrilateral XYZX(103) where XYZ is the cevian triangle of X(4)
X(58507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 5462, 58505}, {58470, 58542, 58521}


X(58508) = X(11)X(389)∩X(51)X(104)

Barycentrics    a^2*(-((b-c)^6*(b+c)^5)+a^9*(b^2+c^2)-a^8*(b+c)*(b^2+c^2)+a^7*(-4*b^4+3*b^3*c-2*b^2*c^2+3*b*c^3-4*c^4)+2*a^2*(b-c)^4*(b+c)*(2*b^4+5*b^3*c+5*b^2*c^2+5*b*c^3+2*c^4)-2*a^4*(b-c)^2*(b+c)*(3*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3+3*c^4)+2*a^6*(2*b^5+b^4*c+b*c^4+2*c^5)+a*(b^2-c^2)^2*(b^6-3*b^5*c-b^4*c^2+4*b^3*c^3-b^2*c^4-3*b*c^5+c^6)-a^3*(b-c)^2*(4*b^6-b^5*c-12*b^4*c^2-6*b^3*c^3-12*b^2*c^4-b*c^5+4*c^6)+a^5*(6*b^6-9*b^5*c-2*b^4*c^2+4*b^3*c^3-2*b^2*c^4-9*b*c^5+6*c^6)) : :
X(58508) = X[11]+X[389], 3*X[51]+X[104], X[52]+3*X[57298], -X[119]+3*X[5943], X[149]+7*X[15043], -X[153]+9*X[5640], -X[1216]+3*X[34126], X[1484]+3*X[5946], -X[3035]+2*X[11695], X[5446]+X[38602], -X[5562]+5*X[31272], -3*X[5892]+X[33814] and many others

X(58508) lies on these lines: {11, 389}, {51, 104}, {52, 57298}, {119, 5943}, {149, 15043}, {153, 5640}, {511, 6713}, {515, 58501}, {674, 58666}, {952, 5462}, {1216, 34126}, {1484, 5946}, {2771, 41671}, {2783, 58503}, {2787, 58502}, {2800, 58469}, {2801, 58473}, {2802, 58487}, {2807, 16174}, {2818, 12736}, {2826, 58509}, {2827, 58510}, {2828, 58511}, {2829, 10110}, {2830, 58514}, {2831, 58515}, {3035, 11695}, {3271, 38607}, {3738, 58506}, {3887, 58507}, {5446, 38602}, {5562, 31272}, {5840, 9729}, {5892, 33814}, {5907, 23513}, {6667, 11793}, {6688, 58421}, {8674, 58498}, {8679, 58595}, {9730, 10738}, {9781, 12248}, {9913, 17810}, {10707, 16226}, {10778, 16223}, {10780, 16225}, {11574, 38119}, {11698, 15026}, {11800, 53753}, {11807, 53715}, {12138, 44084}, {13199, 15045}, {13222, 37514}, {13366, 58056}, {13598, 38761}, {15644, 21154}, {16836, 24466}, {22938, 40647}, {37481, 51517}, {38693, 45186}, {58470, 58522}

X(58508) = midpoint of X(i) and X(j) for these {i,j}: {11, 389}, {11800, 53753}, {11807, 53715}, {13598, 38761}, {22938, 40647}, {5446, 38602}, {9729, 58539}
X(58508) = reflection of X(i) in X(j) for these {i,j}: {10110, 58475}, {11793, 6667}, {3035, 11695}, {58504, 5462}, {58543, 58522}
X(58508) = center of the nine-point conic of quadrilateral XYZX(104) where XYZ is the cevian triangle of X(4)
X(58508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 5462, 58504}, {2829, 58475, 10110}, {9729, 58539, 5840}, {58470, 58543, 58522}


X(58509) = X(51)X(105)∩X(120)X(5943)

Barycentrics    a^2*(a^7*(b^2+c^2)-a^6*(b+c)*(b^2+c^2)-(b-c)^4*(b+c)^3*(b^2+c^2)+a^2*(b-c)^2*(b+c)*(b^4-4*b^3*c-8*b^2*c^2-4*b*c^3+c^4)-a^5*(b^4+3*b^3*c-4*b^2*c^2+3*b*c^3+c^4)+a^4*(b^5+5*b^4*c+5*b*c^4+c^5)-a^3*(b^6-5*b^4*c^2+14*b^3*c^3-5*b^2*c^4+c^6)+a*(b-c)^2*(b^6+5*b^5*c+3*b^4*c^2-4*b^3*c^3+3*b^2*c^4+5*b*c^5+c^6)) : :
X(58509) = 3*X[51]+X[105], X[52]+3*X[57299], -X[120]+3*X[5943], X[389]+X[5511], X[5446]+X[38603], -9*X[5640]+X[20344], -3*X[5892]+X[38619], -3*X[6688]+2*X[58422], 3*X[9730]+X[15521], X[11800]+X[53756], 7*X[15043]+X[34547], 3*X[38694]+X[45186]

X(58509) lies on these lines: {51, 105}, {52, 57299}, {120, 5943}, {389, 5511}, {511, 6714}, {528, 58470}, {2775, 58498}, {2788, 58502}, {2795, 58479}, {2809, 58469}, {2814, 58506}, {2820, 58507}, {2826, 58508}, {2832, 58510}, {2833, 58511}, {2834, 58483}, {2835, 58513}, {2836, 41671}, {2837, 58514}, {2838, 58515}, {5446, 38603}, {5462, 28915}, {5640, 20344}, {5892, 38619}, {6688, 58422}, {8679, 58596}, {9519, 58548}, {9730, 15521}, {11800, 53756}, {13366, 58053}, {15043, 34547}, {38694, 45186}

X(58509) = midpoint of X(i) and X(j) for these {i,j}: {11800, 53756}, {389, 5511}, {5446, 38603}
X(58509) = center of the nine-point conic of quadrilateral XYZX(105) where XYZ is the cevian triangle of X(4)


X(58510) = X(51)X(106)∩X(121)X(5943)

Barycentrics    a^2*(a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)+a*(b-c)^2*(b+c)^3*(b^2-6*b*c+c^2)-(b-c)^2*(b+c)^4*(b^2-3*b*c+c^2)+6*a^3*b*c*(b^3+c^3)+a^4*(-5*b^4+5*b^3*c-4*b^2*c^2+5*b*c^3-5*c^4)+a^2*(5*b^6-6*b^5*c-11*b^4*c^2+18*b^3*c^3-11*b^2*c^4-6*b*c^5+5*c^6)) : :
X(58510) = 3*X[51]+X[106], X[52]+3*X[57300], -X[121]+3*X[5943], X[389]+X[5510], X[5446]+X[38604], -9*X[5640]+X[21290], -3*X[5892]+X[38620], -3*X[6688]+2*X[58423], 3*X[9730]+X[15522], 7*X[15043]+X[34548], 3*X[38695]+X[45186], -3*X[58470]+2*X[58523]

X(58510) lies on these lines: {51, 106}, {52, 57300}, {121, 5943}, {389, 5510}, {511, 6715}, {674, 58667}, {2776, 58498}, {2789, 58502}, {2796, 58503}, {2802, 58469}, {2810, 58471}, {2815, 58506}, {2821, 58507}, {2827, 58508}, {2832, 58509}, {2839, 58511}, {2840, 58512}, {2841, 58513}, {2842, 41671}, {2843, 58514}, {2844, 58515}, {5446, 38604}, {5462, 53790}, {5640, 21290}, {5892, 38620}, {6688, 58423}, {8679, 58597}, {9730, 15522}, {13366, 58052}, {15043, 34548}, {37999, 44084}, {38695, 45186}, {58470, 58523}

X(58510) = midpoint of X(i) and X(j) for these {i,j}: {389, 5510}, {5446, 38604}
X(58510) = center of the nine-point conic of quadrilateral XYZX(106) where XYZ is the cevian triangle of X(4)


X(58511) = X(51)X(107)∩X(133)X(389)

Barycentrics    a^2*(a^14*(b^2+c^2)-2*a^12*(b^4-b^2*c^2+c^4)+a^2*(b-c)^4*(b+c)^4*(b^2+c^2)*(2*b^4-9*b^2*c^2+2*c^4)-a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(15*b^4-4*b^2*c^2+15*c^4)+a^10*(-4*b^6+3*b^4*c^2+3*b^2*c^4-4*c^6)-(b^2-c^2)^4*(b^8+b^6*c^2-6*b^4*c^4+b^2*c^6+c^8)+4*a^4*(b^2-c^2)^2*(b^8+5*b^6*c^2-5*b^4*c^4+5*b^2*c^6+c^8)+a^8*(15*b^8-25*b^6*c^2+22*b^4*c^4-25*b^2*c^6+15*c^8)) : :
X(58511) = 3*X[51]+X[107], X[52]+3*X[57301], -X[122]+3*X[5943], X[133]+X[389], X[1112]+X[24930], X[3184]+X[13598], X[5446]+X[38605], -9*X[5640]+X[34186], X[5667]+7*X[9781], -3*X[5892]+X[38621], -3*X[6688]+2*X[58424], 3*X[9730]+X[22337] and many others

X(58511) lies on these lines: {51, 107}, {52, 57301}, {122, 5943}, {133, 389}, {511, 6716}, {674, 58668}, {1112, 24930}, {2777, 10110}, {2790, 58483}, {2797, 58503}, {2803, 58504}, {2811, 58505}, {2816, 58506}, {2822, 58507}, {2828, 58508}, {2833, 58509}, {2839, 58510}, {2845, 58512}, {2846, 58513}, {2847, 58514}, {2848, 58515}, {3184, 13598}, {5446, 38605}, {5462, 53803}, {5640, 34186}, {5667, 9781}, {5892, 38621}, {6688, 58424}, {8679, 58598}, {9033, 41671}, {9528, 58479}, {9530, 58470}, {9730, 22337}, {11695, 34842}, {11793, 58431}, {11800, 53757}, {11807, 53716}, {13366, 58048}, {14673, 17810}, {15043, 34549}, {23239, 45186}, {38956, 46850}

X(58511) = midpoint of X(i) and X(j) for these {i,j}: {133, 389}, {1112, 24930}, {11800, 53757}, {11807, 53716}, {3184, 13598}, {38956, 46850}, {5446, 38605}
X(58511) = reflection of X(i) in X(j) for these {i,j}: {10110, 58530}, {11793, 58431}, {34842, 11695}
X(58511)= pole of line {41204, 51892} with respect to the Jerabek hyperbola
X(58511) = center of the nine-point conic of quadrilateral XYZX(107) where XYZ is the cevian triangle of X(4)
X(58511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2777, 58530, 10110}


X(58512) = X(51)X(108)∩X(123)X(5943)

Barycentrics    a^2*(a^11*(b^2+c^2)-a^10*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^5*(b^2+c^2)+a^9*(-3*b^4+5*b^3*c+5*b*c^3-3*c^4)-2*a^6*(b-c)^2*(b+c)*(b^4-3*b^3*c-3*b^2*c^2-3*b*c^3+c^4)+a^8*(b+c)*(3*b^4-4*b^3*c-4*b*c^3+3*c^4)+a^2*(b-c)^4*(b+c)^3*(3*b^4+4*b^3*c-4*b^2*c^2+4*b*c^3+3*c^4)+2*a^7*(b^6-5*b^5*c+3*b^4*c^2+3*b^3*c^3+3*b^2*c^4-5*b*c^5+c^6)+a*(b-c)^4*(b+c)^2*(b^6-3*b^5*c-5*b^4*c^2-5*b^2*c^4-3*b*c^5+c^6)-2*a^4*(b-c)^2*(b+c)*(b^6+5*b^5*c-2*b^4*c^2-4*b^3*c^3-2*b^2*c^4+5*b*c^5+c^6)-a^3*(b^2-c^2)^2*(3*b^6-10*b^5*c-3*b^4*c^2+14*b^3*c^3-3*b^2*c^4-10*b*c^5+3*c^6)+2*a^5*(b^8-8*b^6*c^2+3*b^5*c^3+8*b^4*c^4+3*b^3*c^5-8*b^2*c^6+c^8)) : :
X(58512) = 3*X[51]+X[108], X[52]+3*X[57302], -X[123]+3*X[5943], X[389]+X[25640], X[5446]+X[38606], -9*X[5640]+X[34188], -3*X[5892]+X[38622], -3*X[6688]+2*X[58425], 3*X[9730]+X[33566], 7*X[15043]+X[34550], 3*X[38696]+X[45186], -3*X[58470]+2*X[58525]

X(58512) lies on these lines: {51, 108}, {52, 57302}, {123, 5943}, {389, 25640}, {511, 6717}, {674, 58669}, {2778, 58493}, {2791, 58502}, {2798, 58503}, {2804, 58504}, {2812, 58505}, {2817, 58469}, {2823, 58507}, {2829, 10110}, {2834, 58483}, {2840, 58510}, {2845, 58511}, {2849, 58513}, {2850, 41671}, {2851, 58514}, {5446, 38606}, {5640, 34188}, {5892, 38622}, {6688, 58425}, {8679, 58599}, {9730, 33566}, {13366, 58050}, {15043, 34550}, {38696, 45186}, {58470, 58525}

X(58512) = midpoint of X(i) and X(j) for these {i,j}: {389, 25640}, {5446, 38606}
X(58512) = center of the nine-point conic of quadrilateral XYZX(108) where XYZ is the cevian triangle of X(4)


X(58513) = X(51)X(109)∩X(117)X(389)

Barycentrics    a^2*(a*(b-c)^6*(b+c)^3+a^8*(b^2+c^2)-a^7*(b+c)*(b^2+c^2)-(b^2-c^2)^4*(b^2-b*c+c^2)+a^4*b*c*(-5*b^4+2*b^3*c+8*b^2*c^2+2*b*c^3-5*c^4)+a^6*(-2*b^4+3*b^3*c+2*b^2*c^2+3*b*c^3-2*c^4)+a^5*(b+c)*(3*b^4-4*b^3*c-4*b*c^3+3*c^4)-a^3*(b-c)^2*(b+c)*(3*b^4-2*b^3*c-4*b^2*c^2-2*b*c^3+3*c^4)+a^2*(b-c)^2*(2*b^6+5*b^5*c-8*b^3*c^3+5*b*c^5+2*c^6)) : :
X(58513) = 3*X[51]+X[109], X[52]+3*X[57303], X[117]+X[389], -X[124]+3*X[5943], X[151]+7*X[15043], X[5446]+X[38607], -9*X[5640]+X[33650], -3*X[5892]+X[38600], -3*X[6688]+2*X[58426], -X[6711]+2*X[11695], X[9729]+X[58541], 3*X[9730]+X[10740] and many others

X(58513) lies on these lines: {51, 109}, {52, 57303}, {117, 389}, {124, 5943}, {151, 15043}, {511, 6718}, {674, 58670}, {928, 58505}, {2773, 41671}, {2779, 58498}, {2785, 58503}, {2792, 58502}, {2800, 58469}, {2807, 58490}, {2817, 58487}, {2818, 5462}, {2835, 58509}, {2841, 58510}, {2846, 58511}, {2849, 58512}, {2852, 58514}, {2853, 58515}, {3738, 58504}, {5446, 38607}, {5640, 33650}, {5892, 38600}, {6688, 58426}, {6711, 11695}, {8679, 58600}, {9729, 58541}, {9730, 10740}, {10110, 58520}, {10709, 16226}, {11793, 58419}, {11800, 53758}, {11807, 53717}, {13366, 58051}, {13598, 38785}, {38697, 45186}, {58470, 58526}

X(58513) = midpoint of X(i) and X(j) for these {i,j}: {117, 389}, {11800, 53758}, {11807, 53717}, {13598, 38785}, {5446, 38607}, {9729, 58541}
X(58513) = reflection of X(i) in X(j) for these {i,j}: {10110, 58520}, {11793, 58419}, {6711, 11695}, {58506, 5462}
X(58513) = center of the nine-point conic of quadrilateral XYZX(109) where XYZ is the cevian triangle of X(4)


X(58514) = X(51)X(111)∩X(126)X(5943)

Barycentrics    a^2*(a^8*(b^2+c^2)+7*a^4*b^2*c^2*(b^2+c^2)-(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-2*a^6*(2*b^4+b^2*c^2+2*c^4)+a^2*(4*b^8-27*b^6*c^2+40*b^4*c^4-27*b^2*c^6+4*c^8)) : :
X(58514) = 3*X[51]+X[111], X[52]+3*X[38796], -X[126]+3*X[5943], X[389]+X[5512], X[1843]+3*X[36696], X[5446]+X[14650], -9*X[5640]+X[14360], -3*X[5892]+X[38623], -3*X[6688]+2*X[58427], X[9129]+X[11800], X[9172]+X[21849], 3*X[9730]+X[22338] and many others

X(58514) lies on these lines: {51, 111}, {52, 38796}, {126, 5943}, {389, 5512}, {511, 6719}, {543, 58470}, {674, 58672}, {1843, 36696}, {2780, 58498}, {2793, 58502}, {2805, 58485}, {2813, 58505}, {2819, 58506}, {2824, 58507}, {2830, 58508}, {2837, 58509}, {2843, 58510}, {2847, 58511}, {2851, 58512}, {2852, 58513}, {2854, 41671}, {3048, 13366}, {5446, 14650}, {5462, 33962}, {5640, 14360}, {5892, 38623}, {6688, 58427}, {8679, 58602}, {9129, 11800}, {9172, 21849}, {9730, 22338}, {9781, 14654}, {9969, 28662}, {10110, 23699}, {10625, 38806}, {11695, 40556}, {11807, 53718}, {15012, 38801}, {15644, 38804}, {16836, 38805}, {17704, 38803}, {37481, 38799}, {38698, 45186}, {58481, 58552}, {58483, 58515}

X(58514) = midpoint of X(i) and X(j) for these {i,j}: {11807, 53718}, {389, 5512}, {5446, 14650}, {9129, 11800}, {9172, 21849}, {9969, 28662}
X(58514) = reflection of X(i) in X(j) for these {i,j}: {38803, 17704}, {40556, 11695}
X(58514) = center of the nine-point conic of quadrilateral XYZX(111) where XYZ is the cevian triangle of X(4)


X(58515) = X(51)X(112)∩X(132)X(389)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)-2*a^10*(b^4-b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(b^6+c^6)+a^8*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^6*(-3*b^6*c^2+8*b^4*c^4-3*b^2*c^6)+a^2*(b^2-c^2)^2*(2*b^8+b^6*c^2+b^2*c^6+2*c^8)) : :
X(58515) = X[4]+3*X[16225], 3*X[51]+X[112], X[52]+3*X[57304], -X[127]+3*X[5943], X[132]+X[389], X[5446]+X[38608], -9*X[5640]+X[13219], -3*X[5892]+X[38624], -3*X[6688]+2*X[58428], 3*X[9730]+X[12918], 7*X[9781]+X[13200], X[9969]+X[28343] and many others

X(58515) lies on these lines: {4, 16225}, {51, 112}, {52, 57304}, {127, 5943}, {132, 389}, {511, 6720}, {674, 58673}, {2781, 58471}, {2794, 10110}, {2799, 58503}, {2806, 58504}, {2825, 58507}, {2831, 58508}, {2838, 58509}, {2844, 58510}, {2848, 58511}, {2853, 58513}, {5446, 38608}, {5462, 53795}, {5640, 13219}, {5892, 38624}, {6688, 58428}, {8679, 58603}, {9517, 41671}, {9518, 58505}, {9532, 58506}, {9730, 12918}, {9781, 13200}, {9969, 28343}, {11437, 20299}, {11641, 17810}, {11695, 34841}, {11793, 58430}, {11800, 53760}, {11807, 53719}, {12253, 15045}, {12384, 15043}, {12413, 37514}, {13166, 44084}, {13366, 58049}, {13598, 14689}, {19160, 40647}, {38699, 45186}, {40645, 58489}, {58470, 58528}, {58483, 58514}, {58551, 58552}

X(58515) = midpoint of X(i) and X(j) for these {i,j}: {132, 389}, {11800, 53760}, {11807, 53719}, {13598, 14689}, {19160, 40647}, {5446, 38608}, {9969, 28343}
X(58515) = reflection of X(i) in X(j) for these {i,j}: {10110, 58529}, {11793, 58430}, {34841, 11695}
X(58515) = center of the nine-point conic of quadrilateral XYZX(112) where XYZ is the cevian triangle of X(4)
X(58515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2794, 58529, 10110}


X(58516) = X(5)X(1112)∩X(51)X(113)

Barycentrics    a^2*(2*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-4*a^10*(b^4+b^2*c^2+c^4)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-3*b^6*c^2+3*b^4*c^4-3*b^2*c^6+2*c^8)-a^4*(5*b^10-7*b^8*c^2+4*b^6*c^4+4*b^4*c^6-7*b^2*c^8+5*c^10)) : :
X(58516) = X[4]+X[14708], X[5]+X[1112], 3*X[51]+X[113], X[52]+3*X[36518], -X[74]+9*X[5640], X[110]+7*X[9781], 3*X[381]+X[1986], X[399]+3*X[45237], 3*X[568]+X[12825], X[974]+X[1539], -5*X[3091]+X[7723], -9*X[3545]+X[12219] and many others

X(58516) lies on these lines: {4, 14708}, {5, 1112}, {25, 12228}, {30, 9826}, {51, 113}, {52, 36518}, {74, 5640}, {110, 9781}, {143, 5448}, {265, 11818}, {381, 1986}, {389, 546}, {399, 45237}, {511, 12900}, {541, 58470}, {542, 58471}, {568, 12825}, {690, 58517}, {974, 1539}, {1154, 46031}, {1511, 12106}, {2771, 58475}, {2772, 58519}, {2773, 58520}, {2774, 58521}, {2776, 58523}, {2777, 5462}, {2778, 58525}, {2779, 58526}, {2780, 58527}, {2781, 6697}, {2854, 5097}, {2931, 17810}, {3043, 13595}, {3091, 7723}, {3545, 12219}, {3627, 44573}, {3628, 13416}, {3832, 7722}, {3843, 12292}, {3845, 12133}, {3858, 13148}, {5446, 5972}, {5480, 23306}, {5504, 39522}, {5892, 37853}, {5943, 6699}, {6644, 15472}, {7506, 15463}, {7529, 19504}, {7564, 14644}, {7728, 46430}, {8674, 58522}, {9033, 58530}, {9517, 58529}, {9730, 13202}, {9777, 19456}, {9827, 12811}, {9969, 10272}, {10110, 17702}, {10113, 25711}, {10201, 18438}, {10223, 53802}, {10263, 41673}, {10264, 12099}, {10721, 15043}, {11060, 52951}, {11574, 25337}, {11800, 16534}, {12006, 34584}, {12041, 15026}, {12140, 13490}, {12227, 46261}, {12241, 58546}, {12295, 16223}, {12897, 45971}, {13376, 44407}, {13391, 14156}, {13417, 23515}, {13598, 38726}, {14561, 40949}, {15024, 15055}, {15044, 15102}, {15088, 18874}, {15647, 32046}, {15738, 38898}, {16270, 58531}, {16531, 48378}, {17854, 37481}, {18369, 54073}, {23323, 52000}, {38793, 45186}, {40240, 58488}, {52073, 58484}

X(58516) = midpoint of X(i) and X(j) for these {i,j}: {113, 12236}, {10110, 41671}, {10113, 25711}, {10263, 41673}, {11800, 16534}, {11806, 38791}, {12041, 16105}, {13598, 38726}, {15738, 38898}, {23323, 52000}, {389, 46686}, {3627, 44573}, {4, 14708}, {5, 1112}, {5446, 5972}, {6699, 11807}, {58498, 58536}, {7687, 11557}, {974, 1539}
X(58516) = reflection of X(i) in X(j) for these {i,j}: {11746, 10095}, {11801, 15465}, {13416, 3628}, {15088, 18874}
X(58516) = center of the nine-point conic of quadrilateral XYZX(113) where XYZ is the cevian triangle of X(4)
X(58516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 12228, 20773}, {51, 113, 12236}, {1539, 5946, 974}, {5663, 10095, 11746}, {5663, 15465, 11801}, {5943, 11807, 6699}, {6644, 15472, 25487}, {10110, 41671, 17702}, {11806, 38791, 5663}, {58498, 58536, 541}


X(58517) = X(5)X(39835)∩X(51)X(114)

Barycentrics    a^2*(a^10*(b^2+c^2)-4*a^8*(b^4+b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(7*b^4+6*b^2*c^2+7*c^4)+7*a^6*(b^6+c^6)-(b^2-c^2)^2*(b^8-4*b^6*c^2+4*b^4*c^4-4*b^2*c^6+c^8)+a^2*(b^2+c^2)*(4*b^8-15*b^6*c^2+20*b^4*c^4-15*b^2*c^6+4*c^8)) : :
X(58517) = X[5]+X[39835], 3*X[51]+X[114], X[52]+3*X[36519], -X[98]+9*X[5640], X[99]+7*X[9781], X[620]+X[5446], -3*X[5892]+X[38747], -3*X[5943]+X[6036], 3*X[5946]+X[22505], 3*X[9730]+X[39838], -X[10625]+5*X[31274], X[10722]+7*X[15043] and many others

X(58517) lies on these lines: {5, 39835}, {25, 39805}, {51, 114}, {52, 36519}, {98, 5640}, {99, 9781}, {511, 6721}, {542, 11746}, {620, 5446}, {690, 58516}, {2782, 10095}, {2783, 58475}, {2784, 58519}, {2785, 58520}, {2786, 58521}, {2787, 58522}, {2789, 58523}, {2790, 58524}, {2791, 58525}, {2792, 58526}, {2793, 58527}, {2794, 5462}, {2797, 58530}, {2799, 58529}, {5186, 43823}, {5480, 39816}, {5892, 38747}, {5943, 6036}, {5946, 22505}, {7529, 39839}, {9730, 39838}, {9777, 39810}, {10110, 23698}, {10625, 31274}, {10722, 15043}, {12042, 15026}, {13595, 58058}, {13598, 38736}, {15024, 34473}, {15092, 18874}, {17810, 39828}, {23234, 39807}, {23514, 39846}, {38748, 45186}, {41672, 43130}

X(58517) = midpoint of X(i) and X(j) for these {i,j}: {114, 39806}, {10110, 58503}, {13598, 38736}, {41672, 43130}, {5, 39835}, {620, 5446}, {58502, 58537}
X(58517) = reflection of X(i) in X(j) for these {i,j}: {15092, 18874}, {58518, 10095}
X(58517) = center of the nine-point conic of quadrilateral XYZX(114) where XYZ is the cevian triangle of X(4)
X(58517) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 114, 39806}, {2782, 10095, 58518}, {58502, 58537, 542}


X(58518) = X(5)X(39806)∩X(51)X(115)

Barycentrics    -(a^2*(b^2-c^2)^4)+a^8*(b^2+c^2)-2*a^6*(b^4+c^4)+a^4*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4) : :
X(58518) = X[5]+X[39806], 3*X[51]+X[115], X[52]+3*X[23514], X[98]+7*X[9781], -X[99]+9*X[5640], -9*X[373]+5*X[31274], -X[620]+3*X[5943], X[1112]+X[15359], X[2023]+X[27375], 3*X[3060]+5*X[14061], 5*X[3567]+3*X[14639], X[5446]+X[6036] and many others

X(58518) lies on these lines: {5, 39806}, {25, 39834}, {30, 58552}, {51, 115}, {52, 23514}, {98, 9781}, {99, 5640}, {373, 31274}, {511, 6722}, {542, 58471}, {543, 58470}, {620, 5943}, {690, 11746}, {1112, 15359}, {1154, 15092}, {2023, 27375}, {2782, 10095}, {2783, 58522}, {2784, 58521}, {2785, 58526}, {2786, 58519}, {2787, 58475}, {2790, 58530}, {2792, 58520}, {2794, 10110}, {2796, 58523}, {2797, 58524}, {2798, 58525}, {2799, 58528}, {3044, 13595}, {3060, 14061}, {3567, 14639}, {5446, 6036}, {5461, 21849}, {5462, 23698}, {5480, 39845}, {5892, 38736}, {5946, 22515}, {5969, 6665}, {7529, 39810}, {9166, 39836}, {9730, 39809}, {9777, 39839}, {9822, 14645}, {10263, 34127}, {10723, 15043}, {11623, 52878}, {12131, 43823}, {13598, 38747}, {14971, 21969}, {15024, 21166}, {15026, 33813}, {17810, 39857}, {32552, 53049}, {32553, 53048}, {36519, 39817}, {38737, 45186}, {41671, 50711}

X(58518) = midpoint of X(i) and X(j) for these {i,j}: {115, 39835}, {10110, 58502}, {1112, 15359}, {13598, 38747}, {2023, 27375}, {5, 39806}, {5446, 6036}, {5461, 21849}, {58503, 58538}
X(58518) = reflection of X(i) in X(j) for these {i,j}: {58517, 10095}
X(58518) = center of the nine-point conic of quadrilateral XYZX(115) where XYZ is the cevian triangle of X(4)
X(58518) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 115, 39835}, {2782, 10095, 58517}, {10110, 58502, 2794}, {58470, 58538, 58503}, {58503, 58538, 543}


X(58519) = X(51)X(116)∩X(101)X(5640)

Barycentrics    a^2*(2*a^3*b*(b-c)^2*c*(b+c)+a*(b-c)^2*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)-(b-c)^2*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+b*c+c^2)+a^4*(-b^4+b^3*c+2*b^2*c^2+b*c^3-c^4)+a^2*(b-c)^2*(b^4+c^4)) : :
X(58519) = 3*X[51]+X[116], -X[101]+9*X[5640], X[103]+7*X[9781], 3*X[3060]+5*X[31273], X[5446]+X[6712], -3*X[5943]+X[6710], X[10110]+X[58507], X[10725]+7*X[15043], X[13598]+X[38771], -11*X[15024]+3*X[38690], -5*X[15026]+X[38599]

X(58519) lies on these lines: {51, 116}, {101, 5640}, {103, 9781}, {511, 58418}, {544, 58470}, {928, 58526}, {2772, 58516}, {2774, 11746}, {2784, 58517}, {2786, 58518}, {2801, 58522}, {2807, 58520}, {2808, 10095}, {2809, 58474}, {2810, 58523}, {2811, 58524}, {2812, 58525}, {2813, 58527}, {2822, 58530}, {2825, 58529}, {3046, 13595}, {3060, 31273}, {3887, 58475}, {5446, 6712}, {5943, 6710}, {9518, 58528}, {10110, 58507}, {10725, 15043}, {13598, 38771}, {15024, 38690}, {15026, 38599}

X(58519) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58507}, {13598, 38771}, {5446, 6712}, {58505, 58540}
X(58519) = reflection of X(i) in X(j) for these {i,j}: {58521, 10095}
X(58519) = center of the nine-point conic of quadrilateral XYZX(116) where XYZ is the cevian triangle of X(4)
X(58519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 10095, 58521}, {58470, 58540, 58505}, {58505, 58540, 544}


X(58520) = X(51)X(117)∩X(102)X(5640)

Barycentrics    a^2*(a^12*(b^2+c^2)-a^11*(b+c)*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2-b*c+c^2)-a^3*(b-c)^4*(b+c)^3*(b^2+b*c+c^2)*(5*b^2-11*b*c+5*c^2)+a^10*(-4*b^4+3*b^3*c-4*b^2*c^2+3*b*c^3-4*c^4)+a*(b-c)^6*(b+c)^3*(b^4-3*b^2*c^2+c^4)+a^9*(b+c)*(5*b^4-4*b^3*c+6*b^2*c^2-4*b*c^3+5*c^4)+a^2*(b-c)^4*(b+c)^2*(4*b^6+7*b^5*c+b^4*c^2-7*b^3*c^3+b^2*c^4+7*b*c^5+4*c^6)+a^8*(5*b^6-11*b^5*c+5*b^4*c^2-10*b^3*c^3+5*b^2*c^4-11*b*c^5+5*c^6)+a^5*(b-c)^2*(b+c)*(10*b^6-4*b^5*c-5*b^4*c^2-14*b^3*c^3-5*b^2*c^4-4*b*c^5+10*c^6)+a^6*b*c*(14*b^6-7*b^5*c-3*b^4*c^2-12*b^3*c^3-3*b^2*c^4-7*b*c^5+14*c^6)+a^7*(-10*b^7+6*b^6*c+3*b^5*c^2+5*b^4*c^3+5*b^3*c^4+3*b^2*c^5+6*b*c^6-10*c^7)-a^4*(b-c)^2*(5*b^8+16*b^7*c+11*b^6*c^2-11*b^5*c^3-18*b^4*c^4-11*b^3*c^5+11*b^2*c^6+16*b*c^7+5*c^8)) : :
X(58520) = 3*X[51]+X[117], -X[102]+9*X[5640], X[109]+7*X[9781], X[5446]+X[6718], -3*X[5943]+X[6711], X[10110]+X[58513], X[10726]+7*X[15043], X[13598]+X[38783], -11*X[15024]+3*X[38691], -5*X[15026]+X[38600], -3*X[58470]+X[58506]

X(58520) lies on these lines: {51, 117}, {102, 5640}, {109, 9781}, {511, 58419}, {928, 58521}, {2773, 58516}, {2779, 11746}, {2785, 58517}, {2792, 58518}, {2800, 58475}, {2807, 58519}, {2815, 58523}, {2816, 58524}, {2817, 58474}, {2818, 10095}, {2819, 58527}, {2846, 58530}, {2853, 58529}, {3738, 58522}, {5446, 6718}, {5943, 6711}, {9532, 58528}, {10110, 58513}, {10726, 15043}, {13595, 58060}, {13598, 38783}, {15024, 38691}, {15026, 38600}, {58470, 58506}

X(58520) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58513}, {13598, 38783}, {5446, 6718}, {58506, 58541}
X(58520) = reflection of X(i) in X(j) for these {i,j}: {58526, 10095}
X(58520) = center of the nine-point conic of quadrilateral XYZX(117) where XYZ is the cevian triangle of X(4)
X(58520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2818, 10095, 58526}


X(58521) = X(51)X(118)∩X(103)X(5640)

Barycentrics    a^2*((a-b)^5*b^2*(a+b)^3*(a^2+a*b+b^2)-(a-b)^5*b^2*(a+b)^4*c+(a-b)^3*(a+b)*(a^2+a*b+b^2)*(a^4-a^2*b^2+a*b^3-5*b^4)*c^2-(a-b)^3*(a+b)^2*(a^4+2*a*b^3-4*b^4)*c^3+(-3*a^8+4*a^7*b-4*a^6*b^2+5*a^5*b^3-16*a^4*b^4+10*a^3*b^5+13*a*b^7-9*b^8)*c^4+(a-b)*(2*a^6-2*a^5*b+3*a^4*b^2+4*a^3*b^3+14*a^2*b^4+10*a*b^5-3*b^6)*c^5+(4*a^6-6*a^5*b+3*a^4*b^2-12*a^3*b^3-13*a*b^5+10*b^6)*c^6+b*(6*a^4+6*a^2*b^2+13*a*b^3+3*b^4)*c^7+(-4*a^4+4*a^3*b-3*a^2*b^2+6*a*b^3-9*b^4)*c^8-2*(a+b)*(a^2+a*b+2*b^2)*c^9+(3*a^2-a*b+5*b^2)*c^10+(a+b)*c^11-c^12) : :
X(58521) = 3*X[51]+X[118], X[101]+7*X[9781], -X[103]+9*X[5640], X[5446]+X[6710], -3*X[5892]+X[38771], -3*X[5943]+X[6712], X[10110]+X[58505], X[10727]+7*X[15043], -11*X[15024]+3*X[38692], -5*X[15026]+X[38601], 3*X[38772]+X[45186], -3*X[58470]+X[58507]

X(58521) lies on these lines: {51, 118}, {101, 9781}, {103, 5640}, {511, 58420}, {928, 58520}, {2772, 11746}, {2774, 58516}, {2784, 58518}, {2786, 58517}, {2801, 58475}, {2807, 58526}, {2808, 10095}, {2811, 58530}, {2821, 58523}, {2822, 58524}, {2823, 58525}, {2824, 58527}, {2825, 58528}, {3887, 58522}, {5185, 43823}, {5446, 6710}, {5892, 38771}, {5943, 6712}, {9518, 58529}, {10110, 58505}, {10727, 15043}, {13595, 58057}, {15024, 38692}, {15026, 38601}, {38772, 45186}, {58470, 58507}

X(58521) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58505}, {5446, 6710}, {58507, 58542}
X(58521) = reflection of X(i) in X(j) for these {i,j}: {58519, 10095}
X(58521) = center of the nine-point conic of quadrilateral XYZX(118) where XYZ is the cevian triangle of X(4)
X(58521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 10095, 58519}


X(58522) = X(51)X(119)∩X(104)X(5640)

Barycentrics    a^2*((a-b)^5*b^2*(a+b)^4+b^2*(-a^2+b^2)^3*(a^2-3*a*b+b^2)*c+(a-b)^3*(a+b)^2*(a^4-2*a^2*b^2-2*a*b^3-6*b^4)*c^2-(a-b)*(a+b)*(a^6-3*a^5*b-a^4*b^2+5*a^3*b^3-6*a^2*b^4+16*a*b^5-6*b^6)*c^3-(a-b)*(4*a^6+2*a^5*b+a^4*b^2-4*a^3*b^3-10*a*b^5-13*b^6)*c^4+(4*a^6-9*a^5*b+5*a^4*b^2-11*a^3*b^3+10*a^2*b^4-26*a*b^5+13*b^6)*c^5+(6*a^5+6*a^3*b^2+3*a*b^4+13*b^5)*c^6+(-6*a^4+9*a^3*b-12*a^2*b^2+16*a*b^3-13*b^4)*c^7-2*(a+b)*(2*a^2-a*b+3*b^2)*c^8+(4*a^2-3*a*b+6*b^2)*c^9+(a+b)*c^10-c^11) : :
X(58522) = 3*X[51]+X[119], X[100]+7*X[9781], -X[104]+9*X[5640], X[3035]+X[5446], -3*X[5892]+X[38759], -3*X[5943]+X[6713], 3*X[5946]+X[22799], 3*X[9730]+X[52836], -X[10625]+5*X[31235], X[10728]+7*X[15043], -11*X[15024]+3*X[38693], -5*X[15026]+X[38602] and many others

X(58522) lies on these lines: {51, 119}, {100, 9781}, {104, 5640}, {511, 58421}, {674, 58674}, {952, 10095}, {1862, 43823}, {2771, 11746}, {2783, 58518}, {2787, 58517}, {2800, 58474}, {2801, 58519}, {2803, 58530}, {2806, 58529}, {2827, 58523}, {2828, 58524}, {2829, 5462}, {2830, 58527}, {2831, 58528}, {3035, 5446}, {3738, 58520}, {3887, 58521}, {5840, 10110}, {5892, 38759}, {5943, 6713}, {5946, 22799}, {8674, 58516}, {8679, 58604}, {9730, 52836}, {10625, 31235}, {10728, 15043}, {13595, 58056}, {15024, 38693}, {15026, 38602}, {38760, 45186}, {58470, 58508}

X(58522) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58504}, {3035, 5446}, {58508, 58543}
X(58522) = reflection of X(i) in X(j) for these {i,j}: {58475, 10095}
X(58522) = center of the nine-point conic of quadrilateral XYZX(119) where XYZ is the cevian triangle of X(4)
X(58522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 10095, 58475}


X(58523) = X(51)X(121)∩X(106)X(5640)

Barycentrics    a^2*(a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)+a*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2-6*b*c+c^2)-(b+c)^2*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2-3*b*c+c^2)+2*a^3*b*c*(b+c)*(3*b^2-2*b*c+3*c^2)+a^4*(-5*b^4+5*b^3*c-6*b^2*c^2+5*b*c^3-5*c^4)+a^2*(5*b^6-6*b^5*c-9*b^4*c^2+8*b^3*c^3-9*b^2*c^4-6*b*c^5+5*c^6)) : :
X(58523) = 3*X[51]+X[121], -X[106]+9*X[5640], X[1293]+7*X[9781], -3*X[5943]+X[6715], X[10730]+7*X[15043], -11*X[15024]+3*X[38695], -5*X[15026]+X[38604], -3*X[58470]+X[58510]

X(58523) lies on these lines: {51, 121}, {106, 5640}, {511, 58423}, {1293, 9781}, {2776, 58516}, {2789, 58517}, {2796, 58518}, {2802, 58474}, {2810, 58519}, {2815, 58520}, {2821, 58521}, {2827, 58522}, {2839, 58524}, {2840, 58525}, {2841, 58526}, {2842, 11746}, {2843, 58527}, {2844, 58528}, {5943, 6715}, {9524, 58530}, {9527, 58529}, {10095, 53790}, {10730, 15043}, {13595, 58052}, {15024, 38695}, {15026, 38604}, {58470, 58510}

X(58523) = center of the nine-point conic of quadrilateral XYZX(121) where XYZ is the cevian triangle of X(4)


X(58524) = X(51)X(122)∩X(107)X(5640)

Barycentrics    a^2*(a^14*(b^2+c^2)-2*a^12*(b^4+c^4)+3*a^8*(b^2-c^2)^2*(5*b^4+2*b^2*c^2+5*c^4)+a^10*(-4*b^6+5*b^4*c^2+5*b^2*c^4-4*c^6)-a^6*(b^2-c^2)^2*(15*b^6+7*b^4*c^2+7*b^2*c^4+15*c^6)-(b^2-c^2)^4*(b^8-6*b^4*c^4+c^8)+4*a^4*(b^2-c^2)^2*(b^8+3*b^6*c^2-7*b^4*c^4+3*b^2*c^6+c^8)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(2*b^8-11*b^6*c^2+26*b^4*c^4-11*b^2*c^6+2*c^8)) : :
X(58524) = 3*X[51]+X[122], X[52]+3*X[36520], -X[107]+9*X[5640], X[1294]+7*X[9781], X[5446]+X[34842], -3*X[5943]+X[6716], 3*X[5946]+X[49117], X[10152]+7*X[15043], -11*X[15024]+3*X[23239], -5*X[15026]+X[38605]

X(58524) lies on these lines: {51, 122}, {52, 36520}, {107, 5640}, {511, 58424}, {1294, 9781}, {2777, 5462}, {2790, 58517}, {2797, 58518}, {2803, 58475}, {2811, 58519}, {2816, 58520}, {2822, 58521}, {2828, 58522}, {2839, 58523}, {2845, 58525}, {2846, 58526}, {2847, 58527}, {2848, 58528}, {5446, 34842}, {5943, 6716}, {5946, 49117}, {9033, 11746}, {9530, 58470}, {10095, 53803}, {10152, 15043}, {11424, 40082}, {13595, 58048}, {15024, 23239}, {15026, 38605}

X(58524) = midpoint of X(i) and X(j) for these {i,j}: {5446, 34842}
X(58524) = reflection of X(i) in X(j) for these {i,j}: {58530, 10095}
X(58524) = center of the nine-point conic of quadrilateral XYZX(122) where XYZ is the cevian triangle of X(4)
X(58524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 53803, 58530}


X(58525) = X(51)X(123)∩X(108)X(5640)

Barycentrics    a^2*((a-b)^5*b^2*(a+b)^4*(a^2+b^2)+b^2*(-a^2+b^2)^3*(a^4-5*a^3*b+4*a^2*b^2-5*a*b^3+b^4)*c+(a-b)^3*(a+b)^2*(a^6-4*a^3*b^3+2*a^2*b^4-4*a*b^5-5*b^6)*c^2-(a-b)^2*(a+b)*(a^7-4*a^6*b-a^5*b^2-8*a^4*b^3+2*a^3*b^4-9*a^2*b^5-14*a*b^6+5*b^7)*c^3-(a-b)^2*(a+b)*(3*a^6+4*a^5*b+8*a^3*b^3-10*a^2*b^4+16*a*b^5+7*b^6)*c^4+(a-b)*(3*a^7-7*a^6*b-6*a^5*b^2-2*a^4*b^3-20*a^3*b^4+28*a^2*b^5+7*a*b^6-7*b^7)*c^5+a*(a-b)*(2*a^5+10*a^4*b-3*a^3*b^2+12*a^2*b^3+3*a*b^4-18*b^5)*c^6+a*(-2*a^5+13*a^3*b^2-30*a^2*b^3+33*a*b^4-14*b^5)*c^7+(2*a^5-8*a^4*b+8*a^3*b^2-9*a*b^4+7*b^5)*c^8+(-2*a^4+10*a^3*b-16*a^2*b^2+19*a*b^3-7*b^4)*c^9-(a+b)*(3*a^2-4*a*b+5*b^2)*c^10+(3*a^2-5*a*b+5*b^2)*c^11+(a+b)*c^12-c^13) : :
X(58525) = 3*X[51]+X[123], -X[108]+9*X[5640], X[1295]+7*X[9781], -3*X[5943]+X[6717], X[10731]+7*X[15043], -11*X[15024]+3*X[38696], -5*X[15026]+X[38606], -3*X[58470]+X[58512]

X(58525) lies on these lines: {51, 123}, {108, 5640}, {511, 58425}, {1295, 9781}, {2778, 58516}, {2791, 58517}, {2798, 58518}, {2804, 58475}, {2812, 58519}, {2817, 58474}, {2823, 58521}, {2829, 5462}, {2840, 58523}, {2845, 58524}, {2849, 58526}, {2850, 11746}, {2851, 58527}, {5943, 6717}, {9528, 58530}, {10731, 15043}, {13595, 58050}, {15024, 38696}, {15026, 38606}, {58470, 58512}

X(58525) = center of the nine-point conic of quadrilateral XYZX(123) where XYZ is the cevian triangle of X(4)


X(58526) = X(51)X(124)∩X(109)X(5640)

Barycentrics    a^2*(a*(b-c)^4*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)+a^8*(b^2+c^2)-a^7*(b+c)*(b^2+c^2)-(b-c)^2*(b+c)^2*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2-b*c+c^2)+a^5*(b-c)^2*(b+c)*(3*b^2+2*b*c+3*c^2)-a^4*b*(b-c)^2*c*(5*b^2+6*b*c+5*c^2)+a^6*(-2*b^4+3*b^3*c+3*b*c^3-2*c^4)-a^3*(b-c)^2*(b+c)*(3*b^4-2*b^3*c-3*b^2*c^2-2*b*c^3+3*c^4)+a^2*(b-c)^2*(2*b^6+5*b^5*c-b^4*c^2-9*b^3*c^3-b^2*c^4+5*b*c^5+2*c^6)) : :
X(58526) = 3*X[51]+X[124], X[102]+7*X[9781], -X[109]+9*X[5640], X[5446]+X[6711], -3*X[5892]+X[38783], -3*X[5943]+X[6718], X[10110]+X[58506], X[10732]+7*X[15043], -11*X[15024]+3*X[38697], -5*X[15026]+X[38607], 3*X[38784]+X[45186], -3*X[58470]+X[58513]

X(58526) lies on these lines: {51, 124}, {102, 9781}, {109, 5640}, {511, 58426}, {928, 58519}, {2773, 11746}, {2779, 58516}, {2785, 58518}, {2792, 58517}, {2800, 58474}, {2807, 58521}, {2816, 58530}, {2818, 10095}, {2841, 58523}, {2846, 58524}, {2849, 58525}, {2852, 58527}, {2853, 58528}, {3738, 58475}, {5446, 6711}, {5892, 38783}, {5943, 6718}, {9532, 58529}, {10110, 58506}, {10732, 15043}, {13595, 58051}, {15024, 38697}, {15026, 38607}, {38784, 45186}, {58470, 58513}

X(58526) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58506}, {5446, 6711}
X(58526) = reflection of X(i) in X(j) for these {i,j}: {58520, 10095}
X(58526) = center of the nine-point conic of quadrilateral XYZX(124) where XYZ is the cevian triangle of X(4)
X(58526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2818, 10095, 58520}


X(58527) = X(6)X(110)∩X(51)X(126)

Barycentrics    a^2*(-b^10+6*b^8*c^2-7*b^6*c^4-7*b^4*c^6+6*b^2*c^8-c^10+a^8*(b^2+c^2)+7*a^4*b^2*c^2*(b^2+c^2)+4*a^2*(b^2-c^2)^2*(b^4-4*b^2*c^2+c^4)-4*a^6*(b^4+b^2*c^2+c^4)) : :
X(58527) = 3*X[51]+X[126], X[143]+X[40340], X[1296]+7*X[9781], X[5446]+X[40556], -3*X[5943]+X[6719], X[10734]+7*X[15043], X[13598]+X[38803], -X[14650]+5*X[15026], -11*X[15024]+3*X[38698]

X(58527) lies on these lines: {6, 110}, {51, 126}, {143, 40340}, {511, 58427}, {543, 58470}, {1296, 9781}, {2780, 58516}, {2793, 58517}, {2805, 58475}, {2813, 58519}, {2819, 58520}, {2824, 58521}, {2830, 58522}, {2843, 58523}, {2847, 58524}, {2851, 58525}, {2852, 58526}, {3048, 13595}, {5446, 40556}, {5462, 23699}, {5943, 6719}, {9529, 58530}, {10095, 33962}, {10734, 15043}, {13598, 38803}, {14650, 15026}, {15024, 38698}

X(58527) = midpoint of X(i) and X(j) for these {i,j}: {143, 40340}, {13598, 38803}, {5446, 40556}
X(58527) = center of the nine-point conic of quadrilateral XYZX(126) where XYZ is the cevian triangle of X(4)


X(58528) = X(51)X(127)∩X(112)X(5640)

Barycentrics    a^2*(a^12*(b^2+c^2)-a^4*(b^2-c^2)^2*(b^2+c^2)^3-2*a^10*(b^4+c^4)-(b-c)^2*(b+c)^2*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+c^2)*(b^4+c^4)+a^8*(b^6+c^6)+2*a^2*(b^2-c^2)^2*(b^8+b^4*c^4+c^8)) : :
X(58528) = 3*X[51]+X[127], -X[112]+9*X[5640], X[1297]+7*X[9781], X[5446]+X[34841], -3*X[5943]+X[6720], 3*X[5946]+X[19163], X[10735]+7*X[15043], X[10749]+3*X[16224], -11*X[15024]+3*X[38699], -5*X[15026]+X[38608], -3*X[58470]+X[58515]

X(58528) lies on these lines: {51, 127}, {112, 5640}, {511, 58428}, {1297, 9781}, {2781, 6697}, {2794, 5462}, {2799, 58518}, {2806, 58475}, {2825, 58521}, {2831, 58522}, {2844, 58523}, {2848, 58524}, {2853, 58526}, {5446, 34841}, {5943, 6720}, {5946, 19163}, {9517, 11746}, {9518, 58519}, {9530, 58530}, {9532, 58520}, {10095, 53795}, {10735, 15043}, {10749, 16224}, {12145, 43823}, {13595, 58049}, {15024, 38699}, {15026, 38608}, {58470, 58515}

X(58528) = midpoint of X(i) and X(j) for these {i,j}: {5446, 34841}
X(58528) = reflection of X(i) in X(j) for these {i,j}: {58529, 10095}
X(58528) = center of the nine-point conic of quadrilateral XYZX(127) where XYZ is the cevian triangle of X(4)
X(58528) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 53795, 58529}


X(58529) = X(4)X(16224)∩X(51)X(125)

Barycentrics    a^2*(a^16*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+c^2)*(b^4+c^4)+a^8*b^2*c^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-4*a^14*(b^4+b^2*c^2+c^4)+a^12*(6*b^6+b^4*c^2+b^2*c^4+6*c^6)-4*a^10*(b^8-b^6*c^2-b^2*c^6+c^8)+4*a^2*(b^2-c^2)^4*(b^8+b^6*c^2+b^4*c^4+b^2*c^6+c^8)+4*a^6*(b^2-c^2)^2*(b^8+b^6*c^2+3*b^4*c^4+b^2*c^6+c^8)-a^4*(6*b^14-7*b^12*c^2+b^10*c^4+b^4*c^10-7*b^2*c^12+6*c^14)) : :
X(58529) = X[4]+3*X[16224], X[112]+7*X[9781], -X[1297]+9*X[5640], X[5446]+X[6720], -3*X[5943]+X[34841], 3*X[5946]+X[19160], -11*X[15024]+3*X[38717], -5*X[15026]+X[38624], 7*X[15043]+X[44988]

X(58529) lies on these lines: {4, 16224}, {51, 125}, {112, 9781}, {511, 58430}, {1297, 5640}, {2794, 10110}, {2799, 58517}, {2806, 58522}, {2825, 58519}, {2831, 58475}, {2848, 58530}, {2853, 58520}, {5446, 6720}, {5943, 34841}, {5946, 19160}, {9517, 58516}, {9518, 58521}, {9527, 58523}, {9530, 58470}, {9532, 58526}, {10095, 53795}, {11610, 14495}, {13166, 43823}, {13595, 58064}, {15024, 38717}, {15026, 38624}, {15043, 44988}, {17810, 19165}

X(58529) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58515}, {5446, 6720}
X(58529) = reflection of X(i) in X(j) for these {i,j}: {58528, 10095}
X(58529) = center of the nine-point conic of quadrilateral XYZX(132) where XYZ is the cevian triangle of X(4)
X(58529) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 53795, 58528}, {10110, 58515, 2794}


X(58530) = X(51)X(133)∩X(107)X(9781)

Barycentrics    a^2*(a^18*(b^2+c^2)-4*a^16*(b^4+b^2*c^2+c^4)+a^14*(b^2+c^2)*(b^4+5*b^2*c^2+c^4)+3*a^12*(b^2-c^2)^2*(7*b^4+10*b^2*c^2+7*c^4)-(b^2-c^2)^6*(b^8-8*b^4*c^4+c^8)-a^4*(b^2-c^2)^4*(b^8-20*b^6*c^2+10*b^4*c^4-20*b^2*c^6+c^8)-a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(21*b^8+7*b^6*c^2+12*b^4*c^4+7*b^2*c^6+21*c^8)-a^10*(b^2+c^2)*(49*b^8-83*b^6*c^2+70*b^4*c^4-83*b^2*c^6+49*c^8)+a^8*(b^2-c^2)^2*(49*b^8+52*b^6*c^2+84*b^4*c^4+52*b^2*c^6+49*c^8)+a^2*(b^2-c^2)^4*(4*b^10-7*b^8*c^2+9*b^6*c^4+9*b^4*c^6-7*b^2*c^8+4*c^10)) : :
X(58530) = 3*X[51]+X[133], X[107]+7*X[9781], -X[1294]+9*X[5640], X[5446]+X[6716], -3*X[5943]+X[34842], 3*X[9730]+X[38956], -11*X[15024]+3*X[38714], -5*X[15026]+X[38621], 7*X[15043]+X[44985]

X(58530) lies on these lines: {51, 133}, {107, 9781}, {511, 58431}, {1294, 5640}, {2777, 10110}, {2790, 58518}, {2797, 58517}, {2803, 58522}, {2811, 58521}, {2816, 58526}, {2822, 58519}, {2828, 58475}, {2846, 58520}, {2848, 58529}, {5446, 6716}, {5943, 34842}, {9033, 58516}, {9524, 58523}, {9528, 58525}, {9529, 58527}, {9530, 58528}, {9730, 38956}, {10095, 53803}, {13595, 58067}, {14703, 17810}, {15024, 38714}, {15026, 38621}, {15043, 44985}

X(58530) = midpoint of X(i) and X(j) for these {i,j}: {10110, 58511}, {5446, 6716}
X(58530) = reflection of X(i) in X(j) for these {i,j}: {58524, 10095}
X(58530) = center of the nine-point conic of quadrilateral XYZX(133) where XYZ is the cevian triangle of X(4)
X(58530) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10095, 53803, 58524}, {10110, 58511, 2777}


X(58531) = X(5)X(568)∩X(51)X(140)

Barycentrics    2*a^8*(b^2+c^2)-a^2*(b^2-c^2)^2*(2*b^4-5*b^2*c^2+2*c^4)-2*a^6*(3*b^4+b^2*c^2+3*c^4)+a^4*(6*b^6-9*b^4*c^2-9*b^2*c^4+6*c^6) : :
X(58531) = 3*X[2]+X[14449], X[3]+3*X[13451], 5*X[5]+3*X[568], 3*X[51]+X[140], X[52]+3*X[547], 3*X[143]+X[1216], X[185]+3*X[546], -9*X[373]+X[6101], X[389]+X[3850], -3*X[549]+11*X[15024], X[550]+7*X[9781], 5*X[632]+3*X[3060] and many others

X(58531) lies on these lines: {2, 14449}, {3, 13451}, {5, 568}, {23, 15047}, {30, 5462}, {49, 15019}, {51, 140}, {52, 547}, {143, 1216}, {185, 546}, {323, 22462}, {373, 6101}, {389, 3850}, {468, 6152}, {511, 16239}, {549, 15024}, {550, 9781}, {632, 3060}, {674, 58675}, {952, 58474}, {1112, 40685}, {1154, 12046}, {1173, 22115}, {1199, 18369}, {1493, 34565}, {1495, 36153}, {1503, 50476}, {2937, 15018}, {2979, 55859}, {3066, 12161}, {3090, 13321}, {3526, 11002}, {3530, 5446}, {3564, 58532}, {3627, 15043}, {3819, 13421}, {3832, 45957}, {3843, 45956}, {3845, 12290}, {3853, 9730}, {3856, 5663}, {3857, 34783}, {3858, 5890}, {3859, 12162}, {3861, 13474}, {3917, 55862}, {5066, 6102}, {5422, 37440}, {5447, 16982}, {5476, 34331}, {5562, 12812}, {5843, 58473}, {5844, 58469}, {5876, 14845}, {5891, 44904}, {5892, 33923}, {5907, 11737}, {6000, 44871}, {6243, 11451}, {6688, 32142}, {6746, 37942}, {7525, 10601}, {7575, 13434}, {8679, 58605}, {9827, 10128}, {9969, 51732}, {10020, 18583}, {10109, 11591}, {10124, 10627}, {10545, 18350}, {10574, 15687}, {10575, 12101}, {11017, 12811}, {11412, 15699}, {11424, 43615}, {11433, 18356}, {11465, 11539}, {11663, 51185}, {11695, 12108}, {11746, 32423}, {11800, 13392}, {11801, 16222}, {11812, 15644}, {12002, 17704}, {12052, 14896}, {12100, 45186}, {12102, 40647}, {12106, 19357}, {12111, 38071}, {12134, 45969}, {12316, 54434}, {12834, 13353}, {13292, 23410}, {13365, 50708}, {13488, 43823}, {13491, 14893}, {13561, 19130}, {13567, 50138}, {13598, 44245}, {13621, 34545}, {13861, 19347}, {14128, 16625}, {14627, 40111}, {14831, 14892}, {15012, 44863}, {15028, 15712}, {15037, 34484}, {15038, 44802}, {15045, 15704}, {15060, 27355}, {15305, 41991}, {15350, 32411}, {16270, 58516}, {17714, 17810}, {18439, 23046}, {20424, 50143}, {21230, 37990}, {21969, 47598}, {23409, 58488}, {23411, 58550}, {28212, 58487}, {28216, 58548}, {31830, 43575}, {32269, 34004}, {32515, 58486}, {33884, 55866}, {34380, 58471}, {34577, 37649}, {37950, 43597}, {44900, 58407}, {45089, 49673}, {45731, 45967}

X(58531) = midpoint of X(i) and X(j) for these {i,j}: {143, 3628}, {10110, 12006}, {1112, 40685}, {10124, 21849}, {11800, 13392}, {12002, 17704}, {12102, 40647}, {13365, 58489}, {13598, 44245}, {14128, 16625}, {15012, 44863}, {15350, 32411}, {389, 3850}, {3530, 5446}, {3861, 13630}, {31830, 43575}, {32205, 58533}, {5, 16881}, {5447, 16982}, {5462, 10095}, {58532, 58549}, {9969, 51732}
X(58531) = reflection of X(i) in X(j) for these {i,j}: {12108, 11695}, {12811, 18874}, {16239, 32205}, {41981, 17704}
X(58531) = center of the nine-point conic of quadrilateral XYZX(140) where XYZ is the cevian triangle of X(4)
X(58531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 568, 31834}, {143, 5943, 3628}, {373, 6101, 48154}, {389, 13364, 3850}, {511, 32205, 16239}, {3567, 15056, 568}, {5446, 13363, 3530}, {5462, 58470, 10095}, {6243, 11451, 55856}, {10095, 12006, 10110}, {10110, 12006, 30}, {11695, 13391, 12108}, {13353, 38848, 37936}, {13754, 18874, 12811}, {32205, 58533, 511}, {58532, 58549, 3564}


X(58532) = X(6)X(110)∩X(51)X(141)

Barycentrics    a^2*(-b^6+4*a^2*b^2*c^2+2*b^4*c^2+2*b^2*c^4-c^6+a^4*(b^2+c^2)) : :
X(58532) = X[5]+X[32191], 3*X[51]+X[141], X[143]+X[24206], -X[182]+5*X[15026], -9*X[373]+X[3313], 3*X[597]+X[1843], X[1112]+X[6698], X[1350]+7*X[9781], 3*X[3060]+5*X[3763], 5*X[3567]+3*X[10516], -X[3589]+3*X[5943], 5*X[3618]+3*X[9971] and many others

X(58532) lies on these lines: {5, 32191}, {6, 110}, {51, 141}, {143, 24206}, {182, 15026}, {338, 17500}, {373, 3313}, {511, 3628}, {518, 58474}, {524, 9822}, {597, 1843}, {674, 58676}, {698, 58500}, {732, 58486}, {742, 58485}, {1112, 6698}, {1350, 9781}, {1503, 5462}, {1974, 51994}, {2393, 6329}, {2781, 6697}, {2810, 58519}, {2965, 37335}, {3060, 3763}, {3564, 58531}, {3567, 10516}, {3589, 5943}, {3618, 9971}, {3619, 11002}, {3629, 29959}, {3818, 5946}, {3844, 31757}, {3917, 51128}, {5085, 15024}, {5092, 7555}, {5157, 34417}, {5422, 20987}, {5480, 11585}, {5643, 41464}, {5845, 58473}, {5846, 58469}, {5965, 13365}, {5969, 6665}, {6639, 14561}, {6688, 51127}, {7693, 12824}, {8254, 18583}, {8679, 58606}, {8705, 47316}, {9021, 58497}, {9024, 58475}, {9053, 23841}, {9055, 58499}, {9973, 51171}, {10007, 27375}, {10110, 29181}, {11272, 58438}, {11451, 47355}, {12006, 29012}, {12007, 43130}, {12220, 47352}, {12294, 43823}, {12834, 19596}, {13351, 37465}, {13566, 13630}, {14913, 32455}, {15028, 53094}, {15043, 36990}, {15045, 48905}, {15067, 42786}, {15321, 37349}, {15812, 43726}, {16222, 32274}, {18282, 25555}, {19126, 32154}, {20576, 58436}, {20582, 21849}, {21167, 45186}, {32205, 58445}, {34377, 58558}, {34990, 35222}, {41589, 51756}, {41671, 58495}, {44259, 51739}

X(58532) = midpoint of X(i) and X(j) for these {i,j}: {10007, 27375}, {143, 24206}, {1112, 6698}, {12007, 43130}, {13630, 48889}, {14913, 32455}, {20582, 21849}, {3589, 9969}, {3844, 31757}, {41589, 51756}, {41671, 58495}, {5, 32191}, {51, 40670}, {6, 41579}, {58494, 58547}, {9822, 58471}
X(58532) = reflection of X(i) in X(j) for these {i,j}: {58445, 32205}, {58549, 58531}
X(58532) = X(i)-complementary conjugate of X(j) for these {i, j}: {3456, 16587}, {15321, 21249}
X(58532)= pole of line {858, 9698} with respect to the Kiepert hyperbola
X(58532)= pole of line {2492, 4580} with respect to the Steiner inellipse
X(58532) = center of the nine-point conic of quadrilateral XYZX(141) where XYZ is the cevian triangle of X(4)
X(58532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 16776, 41579}, {6, 41579, 2854}, {373, 3313, 51126}, {3564, 58531, 58549}, {3589, 9969, 9019}, {3618, 9971, 17710}, {5943, 9969, 3589}, {9822, 58470, 58471}, {58494, 58547, 1503}


X(58533) = X(2)X(13421)∩X(5)X(51)

Barycentrics    a^2*(3*(a^2-b^2)^2-(6*a^2+5*b^2)*c^2+3*c^4)*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(58533) = 3*X[2]+X[13421], -X[5]+9*X[51], -X[20]+9*X[5946], X[140]+X[16982], X[382]+15*X[3567], 3*X[389]+X[3853], 3*X[428]+X[45732], X[548]+3*X[5446], 9*X[568]+7*X[3832], 5*X[631]+3*X[10263], 5*X[632]+3*X[21969], -9*X[2979]+25*X[55866] and many others

X(58533) lies on these lines: {2, 13421}, {3, 12834}, {4, 17505}, {5, 51}, {20, 5946}, {23, 36153}, {25, 32136}, {30, 12002}, {140, 16982}, {156, 17810}, {382, 3567}, {389, 3853}, {428, 45732}, {511, 16239}, {539, 13163}, {548, 5446}, {568, 3832}, {631, 10263}, {632, 21969}, {1112, 15559}, {1173, 2070}, {1493, 9705}, {2937, 15019}, {2979, 55866}, {3060, 3526}, {3411, 36978}, {3412, 36980}, {3530, 5462}, {3628, 15606}, {3843, 6102}, {3850, 16625}, {3855, 5876}, {3856, 13754}, {3858, 14831}, {3859, 45958}, {3861, 5663}, {5067, 6243}, {5070, 5640}, {5447, 45760}, {5480, 13561}, {5943, 14449}, {7486, 15067}, {7693, 12325}, {8254, 32223}, {9706, 14627}, {9714, 9777}, {10096, 12242}, {10574, 49134}, {10610, 15038}, {11264, 13490}, {11565, 11819}, {11592, 11695}, {11745, 30522}, {11746, 20396}, {11793, 12046}, {12102, 13382}, {13353, 46084}, {13358, 15063}, {13419, 45969}, {13491, 17578}, {13568, 34584}, {14483, 15062}, {15004, 37440}, {15024, 54042}, {15043, 15696}, {15047, 15107}, {15704, 16226}, {15801, 21308}, {20193, 22051}, {22249, 58551}, {22462, 23061}, {23060, 37947}, {29012, 50476}, {32411, 44961}, {33703, 37481}, {35001, 43603}, {35360, 35719}, {37484, 55864}, {37924, 43600}, {38071, 45187}, {41671, 58557}, {43823, 44958}, {44264, 58489}, {45186, 46853}, {58471, 58484}, {58483, 58546}

X(58533) = midpoint of X(i) and X(j) for these {i,j}: {140, 16982}, {143, 10095}, {10110, 16881}, {11565, 11819}, {12002, 15012}, {12102, 13382}, {14449, 32142}, {3850, 16625}, {52, 14128}, {5446, 12006}
X(58533) = reflection of X(i) in X(j) for these {i,j}: {11592, 11695}, {11793, 12046}, {18874, 10095}, {32205, 58531}
X(58533)= pole of line {6146, 14893} with respect to the Jerabek hyperbola
X(58533)= pole of line {54, 14869} with respect to the Stammler hyperbola
X(58533) = center of the nine-point conic of quadrilateral XYZX(143) where XYZ is the cevian triangle of X(4)
X(58533) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5562), X(17505)}}, {{A, B, C, X(21357), X(30536)}}
X(58533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 14531, 11591}, {51, 143, 10095}, {52, 13364, 14128}, {140, 21849, 16982}, {143, 10095, 1154}, {143, 13364, 52}, {511, 58531, 32205}, {1154, 10095, 18874}, {3060, 15026, 10627}, {10095, 14128, 13364}, {10110, 16881, 5663}, {12002, 15012, 30}


X(58534) = X(9)X(511)∩X(51)X(144)

Barycentrics    a^2*(a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-2*a^2*b*c*(b^2-5*b*c+c^2)-(b-c)^2*(b^4+c^4)+2*a*(b+c)*(b^4-4*b^2*c^2+c^4)) : :
X(58534) = -X[7]+3*X[5943], 3*X[51]+X[144], X[52]+3*X[51516], -2*X[142]+3*X[6688], -3*X[375]+X[15587], X[389]+X[5779], -3*X[3819]+5*X[18230], -9*X[5640]+X[20059], X[5728]+X[29958], -X[5732]+2*X[17704], X[5759]+X[13598], -3*X[5817]+X[5907] and many others

X(58534) lies on these lines: {7, 5943}, {9, 511}, {51, 144}, {52, 51516}, {142, 6688}, {375, 15587}, {389, 5779}, {516, 23841}, {518, 58535}, {527, 58470}, {674, 58678}, {971, 9729}, {2810, 5572}, {3819, 18230}, {4335, 23638}, {5462, 5843}, {5640, 20059}, {5728, 29958}, {5732, 17704}, {5759, 13598}, {5762, 10110}, {5817, 5907}, {5845, 9822}, {5850, 58469}, {5851, 58504}, {5856, 58539}, {6172, 21849}, {8679, 58608}, {9969, 51144}, {10219, 20195}, {11695, 31657}, {12045, 58433}, {13348, 31658}, {13570, 18482}, {14913, 51190}, {16980, 52653}, {21168, 45186}, {36991, 46850}

X(58534) = midpoint of X(i) and X(j) for these {i,j}: {14913, 51190}, {389, 5779}, {36991, 46850}, {5728, 29958}, {5759, 13598}, {6172, 21849}, {9969, 51144}
X(58534) = reflection of X(i) in X(j) for these {i,j}: {13348, 31658}, {31657, 11695}, {5732, 17704}, {58472, 58473}
X(58534) = center of the nine-point conic of quadrilateral XYZX(144) where XYZ is the cevian triangle of X(4)
X(58534) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {527, 58473, 58472}, {58472, 58473, 58470}, {58554, 58555, 58535}


X(58535) = X(1)X(256)∩X(51)X(145)

Barycentrics    a^2*(a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2)-(b+c)*(b^4+c^4)-a*(b^4-8*b^2*c^2+c^4)) : :
X(58535) = -X[8]+3*X[5943], -2*X[10]+3*X[6688], -X[40]+2*X[17704], 3*X[51]+X[145], X[52]+3*X[10247], -9*X[373]+5*X[3617], X[389]+X[1482], X[944]+X[13598], -2*X[946]+X[44870], X[962]+X[46850], -X[1216]+3*X[10283], -2*X[1385]+X[13348] and many others

X(58535) lies on these lines: {1, 256}, {8, 5943}, {10, 6688}, {40, 17704}, {51, 145}, {52, 10247}, {55, 15489}, {72, 22048}, {181, 37588}, {182, 12410}, {373, 3617}, {389, 1482}, {497, 15488}, {517, 6738}, {518, 58534}, {519, 23841}, {674, 58679}, {938, 31785}, {944, 13598}, {946, 44870}, {952, 10110}, {960, 9052}, {962, 46850}, {970, 3295}, {978, 50583}, {1058, 10441}, {1191, 4260}, {1216, 10283}, {1385, 13348}, {1483, 5446}, {1616, 4259}, {1682, 3750}, {1698, 10219}, {2808, 9856}, {2810, 34791}, {3060, 3623}, {3241, 16980}, {3555, 29958}, {3556, 43149}, {3616, 3819}, {3621, 5640}, {3622, 3917}, {3634, 12045}, {3873, 42448}, {3880, 58493}, {3889, 23154}, {4090, 52527}, {4292, 29349}, {4298, 15310}, {4678, 11451}, {5049, 11573}, {5092, 8193}, {5447, 51700}, {5462, 5844}, {5550, 15082}, {5562, 10595}, {5603, 5907}, {5650, 46934}, {5690, 11695}, {5752, 6767}, {5846, 9822}, {5853, 58472}, {5854, 58504}, {5855, 58490}, {5901, 11793}, {6000, 22791}, {7373, 37482}, {7967, 45186}, {7980, 12237}, {7981, 12238}, {7982, 15012}, {8148, 9730}, {8679, 58609}, {9041, 58553}, {9053, 58471}, {9565, 32941}, {9957, 45955}, {9969, 51147}, {10222, 16625}, {10246, 15644}, {10624, 29309}, {10625, 37624}, {10974, 40091}, {11574, 38315}, {12577, 29353}, {12702, 16836}, {13464, 31751}, {13570, 18480}, {14839, 58556}, {14913, 51192}, {14986, 37521}, {15516, 16472}, {16226, 34631}, {16473, 22330}, {19782, 42884}, {20190, 37546}, {22299, 49736}, {28234, 58487}, {28581, 58499}, {31793, 55289}, {37557, 55674}, {37582, 53002}, {40649, 52541}

X(58535) = midpoint of X(i) and X(j) for these {i,j}: {1483, 5446}, {14913, 51192}, {389, 1482}, {3241, 21849}, {3555, 29958}, {3635, 31757}, {34791, 42450}, {7980, 12237}, {7981, 12238}, {944, 13598}, {962, 46850}, {9969, 51147}
X(58535) = reflection of X(i) in X(j) for these {i,j}: {11793, 5901}, {13348, 1385}, {23841, 58469}, {31793, 55289}, {40, 17704}, {44870, 946}, {5447, 51700}, {5690, 11695}
X(58535)= pole of line {512, 57155} with respect to the incircle
X(58535)= pole of line {3666, 15888} with respect to the Feuerbach hyperbola
X(58535) = center of the nine-point conic of quadrilateral XYZX(145) where XYZ is the cevian triangle of X(4)
X(58535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {519, 58469, 23841}, {23841, 58469, 58470}, {34791, 42450, 2810}, {58554, 58555, 58534}


X(58536) = X(51)X(146)∩X(113)X(511)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-2*a^10*(2*b^4+3*b^2*c^2+2*c^4)-a^4*(b^2+c^2)^3*(5*b^4-9*b^2*c^2+5*c^4)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)+a^6*(13*b^6*c^2-20*b^4*c^4+13*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-3*b^6*c^2+20*b^4*c^4-3*b^2*c^6+4*c^8)) : :
X(58536) = 7*X[4]+X[15102], 3*X[51]+X[146], X[52]+3*X[38789], -X[74]+3*X[5943], X[110]+X[13598], X[389]+X[7728], -2*X[1112]+X[16625], -9*X[3839]+X[15100], -5*X[3858]+X[15101], -3*X[5892]+X[14677], -3*X[5907]+X[12219], -2*X[5972]+X[13348] and many others

X(58536) lies on these lines: {4, 15102}, {51, 146}, {52, 38789}, {74, 5943}, {110, 13598}, {113, 511}, {182, 9919}, {389, 7728}, {399, 55716}, {541, 58470}, {542, 58538}, {576, 17838}, {674, 58680}, {690, 58537}, {1112, 16625}, {1511, 37947}, {1539, 6000}, {2771, 12109}, {2772, 58540}, {2773, 58541}, {2774, 58542}, {2777, 9729}, {2781, 9822}, {3839, 15100}, {3858, 15101}, {3861, 5663}, {5097, 19456}, {5892, 14677}, {5907, 12219}, {5972, 13348}, {6688, 6699}, {7687, 13570}, {7731, 15030}, {8674, 58543}, {9730, 38790}, {9934, 34155}, {10628, 44870}, {10706, 21649}, {10721, 16223}, {10752, 14913}, {11561, 14915}, {11562, 13474}, {11695, 12041}, {11800, 15063}, {11801, 44863}, {12270, 32062}, {12273, 21969}, {12295, 13402}, {12319, 48901}, {12824, 13202}, {13446, 13754}, {14049, 46818}, {14643, 15644}, {15012, 16222}, {16111, 17704}, {16836, 20127}, {18114, 43919}, {21650, 46847}, {37853, 41670}, {38792, 41673}

X(58536) = midpoint of X(i) and X(j) for these {i,j}: {110, 13598}, {113, 11807}, {1112, 38791}, {1539, 11557}, {10706, 21849}, {10721, 46850}, {10752, 14913}, {11562, 13474}, {11800, 15063}, {389, 7728}, {5907, 13417}, {5972, 16105}
X(58536) = reflection of X(i) in X(j) for these {i,j}: {11801, 44863}, {12041, 11695}, {13348, 5972}, {16111, 17704}, {16625, 1112}, {17855, 15012}, {44870, 46686}, {58498, 58516}, {9729, 41671}
X(58536) = center of the nine-point conic of quadrilateral XYZX(146) where XYZ is the cevian triangle of X(4)
X(58536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {113, 11807, 511}, {1539, 11557, 6000}, {2777, 41671, 9729}, {10628, 46686, 44870}, {10721, 16223, 46850}, {58498, 58516, 58470}


X(58537) = X(51)X(147)∩X(114)X(325)

Barycentrics    a^2*(-b^4-c^4+a^2*(b^2+c^2))*(a^8-3*a^6*(b^2+c^2)+(b^2-c^2)^2*(b^4-5*b^2*c^2+c^4)+a^4*(4*b^4-7*b^2*c^2+4*c^4)+a^2*(-3*b^6+5*b^4*c^2+5*b^2*c^4-3*c^6)) : :
X(58537) = 3*X[51]+X[147], X[52]+3*X[38743], -X[98]+3*X[5943], X[99]+X[13598], X[389]+X[6033], -2*X[620]+X[13348], X[5446]+X[51872], -9*X[5640]+X[5984], X[5907]+X[39846], -2*X[6036]+3*X[6688], X[6054]+X[21849], 3*X[9730]+X[38744] and many others

X(58537) lies on these lines: {51, 147}, {52, 38743}, {98, 5943}, {99, 13598}, {114, 325}, {182, 9861}, {389, 6033}, {542, 11746}, {576, 39820}, {620, 13348}, {674, 58681}, {690, 58536}, {2782, 10110}, {2783, 58539}, {2784, 58469}, {2785, 58541}, {2786, 58542}, {2787, 58543}, {2792, 58491}, {2794, 9729}, {5097, 39810}, {5446, 51872}, {5640, 5984}, {5907, 39846}, {6000, 22505}, {6036, 6688}, {6054, 21849}, {9730, 38744}, {10722, 46850}, {10753, 14913}, {11695, 12042}, {15030, 39837}, {15561, 15644}, {16625, 38745}, {16836, 38741}, {17704, 38749}, {21969, 39807}, {39813, 48901}

X(58537) = midpoint of X(i) and X(j) for these {i,j}: {10722, 46850}, {10753, 14913}, {389, 6033}, {38745, 39835}, {5446, 51872}, {5907, 39846}, {6054, 21849}, {99, 13598}
X(58537) = reflection of X(i) in X(j) for these {i,j}: {12042, 11695}, {13348, 620}, {16625, 39835}, {38749, 17704}, {58502, 58517}, {58538, 10110}, {9729, 58503}
X(58537) = center of the nine-point conic of quadrilateral XYZX(147) where XYZ is the cevian triangle of X(4)
X(58537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2782, 10110, 58538}, {58502, 58517, 58470}


X(58538) = X(51)X(148)∩X(115)X(511)

Barycentrics    a^2*(-b^8+5*b^6*c^2-10*b^4*c^4+5*b^2*c^6-c^8+a^6*(b^2+c^2)-2*a^4*(b^4+b^2*c^2+c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)) : :
X(58538) = 3*X[51]+X[148], X[52]+3*X[38732], X[98]+X[13598], -X[99]+3*X[5943], X[389]+X[6321], -2*X[620]+3*X[6688], X[671]+X[21849], -X[1216]+3*X[38229], -3*X[3819]+5*X[14061], -9*X[5640]+X[20094], -X[5907]+3*X[14639], -3*X[6034]+X[11574] and many others

X(58538) lies on these lines: {51, 148}, {52, 38732}, {98, 13598}, {99, 5943}, {115, 511}, {182, 13175}, {389, 6321}, {542, 58536}, {543, 58470}, {576, 39849}, {620, 6688}, {671, 21849}, {674, 58682}, {1216, 38229}, {2782, 10110}, {2783, 58543}, {2784, 58542}, {2786, 58540}, {2787, 58539}, {2792, 58541}, {3819, 14061}, {5097, 39839}, {5640, 20094}, {5907, 14639}, {5969, 9822}, {6000, 22515}, {6034, 11574}, {6036, 13348}, {8679, 58610}, {9729, 23698}, {9730, 38733}, {10219, 31274}, {10723, 46850}, {10754, 14913}, {11695, 33813}, {11800, 16278}, {14651, 45186}, {15030, 39808}, {15644, 38224}, {16625, 38734}, {16836, 38730}, {17704, 38738}, {21969, 39836}, {39842, 48901}

X(58538) = midpoint of X(i) and X(j) for these {i,j}: {10723, 46850}, {10754, 14913}, {11800, 16278}, {389, 6321}, {38734, 39806}, {5907, 39817}, {671, 21849}, {98, 13598}
X(58538) = reflection of X(i) in X(j) for these {i,j}: {13348, 6036}, {16625, 39806}, {33813, 11695}, {38738, 17704}, {58503, 58518}, {58537, 10110}, {9729, 58502}
X(58538) = center of the nine-point conic of quadrilateral XYZX(148) where XYZ is the cevian triangle of X(4)
X(58538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {543, 58518, 58503}, {2782, 10110, 58537}, {14639, 39817, 5907}, {58503, 58518, 58470}


X(58539) = X(11)X(511)∩X(51)X(149)

Barycentrics    a^2*(a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)-a^3*(b-c)^2*(2*b^2+b*c+2*c^2)-(b-c)^2*(b+c)*(b^4-4*b^2*c^2+c^4)+2*a^2*(b^5+c^5)+a*(b^6-3*b^5*c-3*b^4*c^2+8*b^3*c^3-3*b^2*c^4-3*b*c^5+c^6)) : :
X(58539) = 3*X[51]+X[149], X[52]+3*X[51517], -X[100]+3*X[5943], X[104]+X[13598], X[389]+X[10738], X[1484]+X[5446], -2*X[3035]+3*X[6688], -3*X[3819]+5*X[31272], -9*X[5640]+X[20095], -2*X[6713]+X[13348], 3*X[9730]+X[48680], -6*X[10219]+5*X[31235] and many others

X(58539) lies on these lines: {11, 511}, {51, 149}, {52, 51517}, {100, 5943}, {104, 13598}, {182, 13222}, {389, 10738}, {528, 58470}, {674, 58683}, {952, 10110}, {1484, 5446}, {2771, 12109}, {2783, 58537}, {2787, 58538}, {2800, 58541}, {2801, 58542}, {2802, 23841}, {2805, 58499}, {3035, 6688}, {3819, 31272}, {3887, 58540}, {5640, 20095}, {5840, 9729}, {5848, 58555}, {5856, 58534}, {6000, 22938}, {6713, 13348}, {8679, 58611}, {9024, 9822}, {9730, 48680}, {10058, 15489}, {10219, 31235}, {10707, 21849}, {10724, 46850}, {10755, 14913}, {11695, 33814}, {15644, 57298}, {17704, 24466}

X(58539) = midpoint of X(i) and X(j) for these {i,j}: {104, 13598}, {1484, 5446}, {10707, 21849}, {10724, 46850}, {10755, 14913}, {389, 10738}
X(58539) = reflection of X(i) in X(j) for these {i,j}: {13348, 6713}, {23841, 58501}, {24466, 17704}, {33814, 11695}, {58504, 58475}, {58543, 10110}, {9729, 58508}
X(58539) = center of the nine-point conic of quadrilateral XYZX(149) where XYZ is the cevian triangle of X(4)
X(58539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {528, 58475, 58504}, {952, 10110, 58543}, {2802, 58501, 23841}, {58475, 58504, 58470}


X(58540) = X(51)X(150)∩X(116)X(511)

Barycentrics    a^2*(a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)-a^4*(b-c)^2*(b^2+b*c+c^2)+2*a^3*b*c*(b^3+c^3)+a*(b-c)^2*(b+c)*(b^4-4*b^2*c^2+c^4)-(b-c)^2*(b^2+b*c+c^2)*(b^4-4*b^2*c^2+c^4)+a^2*(b^6-2*b^5*c+b^4*c^2-2*b^3*c^3+b^2*c^4-2*b*c^5+c^6)) : :
X(58540) = 3*X[51]+X[150], -X[101]+3*X[5943], X[103]+X[13598], X[389]+X[10739], -3*X[3819]+5*X[31273], -9*X[5640]+X[20096], -3*X[6688]+2*X[6710], -2*X[6712]+X[13348], -X[9729]+2*X[58507], X[10708]+X[21849], X[10725]+X[46850], X[10756]+X[14913] and many others

X(58540) lies on these lines: {51, 150}, {101, 5943}, {103, 13598}, {116, 511}, {389, 10739}, {544, 58470}, {674, 58684}, {2772, 58536}, {2784, 58469}, {2786, 58538}, {2801, 58472}, {2807, 58541}, {2808, 10110}, {2809, 23841}, {2810, 9822}, {3819, 31273}, {3887, 58539}, {5640, 20096}, {6688, 6710}, {6712, 13348}, {8679, 58612}, {9729, 58507}, {10708, 21849}, {10725, 46850}, {10756, 14913}, {11695, 38599}, {15644, 57297}

X(58540) = midpoint of X(i) and X(j) for these {i,j}: {103, 13598}, {10708, 21849}, {10725, 46850}, {10756, 14913}, {389, 10739}
X(58540) = reflection of X(i) in X(j) for these {i,j}: {13348, 6712}, {38599, 11695}, {58505, 58519}, {58542, 10110}, {9729, 58507}
X(58540) = center of the nine-point conic of quadrilateral XYZX(150) where XYZ is the cevian triangle of X(4)
X(58540) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {544, 58519, 58505}, {2808, 10110, 58542}, {58505, 58519, 58470}


X(58541) = X(51)X(151)∩X(117)X(511)

Barycentrics    a^2*(a^12*(b^2+c^2)-a^11*(b+c)*(b^2+c^2)+a^10*(-4*b^4+3*b^3*c-6*b^2*c^2+3*b*c^3-4*c^4)+a*(b-c)^6*(b+c)^3*(b^4-4*b^2*c^2+c^4)-(b-c)^4*(b+c)^4*(b^2-b*c+c^2)*(b^4-4*b^2*c^2+c^4)+a^8*(b^2+b*c+c^2)*(5*b^4-16*b^3*c+16*b^2*c^2-16*b*c^3+5*c^4)-2*a^7*(b+c)*(b^2+c^2)*(5*b^4-8*b^3*c+4*b^2*c^2-8*b*c^3+5*c^4)+a^9*(b+c)*(5*b^4-4*b^3*c+8*b^2*c^2-4*b*c^3+5*c^4)+2*a^5*(b-c)^2*(b+c)*(5*b^6-2*b^5*c-b^4*c^2-16*b^3*c^3-b^2*c^4-2*b*c^5+5*c^6)-a^3*(b-c)^4*(b+c)*(5*b^6+4*b^5*c-9*b^4*c^2-24*b^3*c^3-9*b^2*c^4+4*b*c^5+5*c^6)-a^4*(b^2-c^2)^2*(5*b^6+6*b^5*c+7*b^4*c^2-20*b^3*c^3+7*b^2*c^4+6*b*c^5+5*c^6)+2*a^6*b*c*(7*b^6+2*b^5*c-b^4*c^2-20*b^3*c^3-b^2*c^4+2*b*c^5+7*c^6)+a^2*(b^2-c^2)^2*(4*b^8-b^7*c-6*b^6*c^2-11*b^5*c^3+36*b^4*c^4-11*b^3*c^5-6*b^2*c^6-b*c^7+4*c^8)) : :
X(58541) = 3*X[51]+X[151], -X[102]+3*X[5943], X[109]+X[13598], X[389]+X[10740], -3*X[6688]+2*X[6711], -2*X[6718]+X[13348], -X[9729]+2*X[58513], X[10709]+X[21849], X[10726]+X[46850], X[10757]+X[14913], -2*X[11695]+X[38600], -X[15644]+3*X[57303] and many others

X(58541) lies on these lines: {51, 151}, {102, 5943}, {109, 13598}, {117, 511}, {389, 10740}, {674, 58685}, {928, 58542}, {2773, 58536}, {2785, 58537}, {2792, 58538}, {2800, 58539}, {2807, 58540}, {2816, 58487}, {2817, 23841}, {2818, 7686}, {3738, 58543}, {6688, 6711}, {6718, 13348}, {9729, 58513}, {10709, 21849}, {10726, 46850}, {10757, 14913}, {11695, 38600}, {15644, 57303}, {58470, 58506}

X(58541) = midpoint of X(i) and X(j) for these {i,j}: {109, 13598}, {10709, 21849}, {10726, 46850}, {10757, 14913}, {389, 10740}
X(58541) = reflection of X(i) in X(j) for these {i,j}: {13348, 6718}, {38600, 11695}, {58506, 58520}, {9729, 58513}
X(58541) = center of the nine-point conic of quadrilateral XYZX(151) where XYZ is the cevian triangle of X(4)
X(58541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58506, 58520, 58470}


X(58542) = X(51)X(152)∩X(118)X(511)

Barycentrics    a^2*(a^10*(b^2+c^2)-a^9*(b+c)*(b^2+c^2)-a^8*(b^2-b*c+c^2)*(3*b^2+2*b*c+3*c^2)+a*(b-c)^4*(b+c)^3*(b^4-4*b^2*c^2+c^4)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)*(b^4-4*b^2*c^2+c^4)+2*a^7*(b+c)*(b^4+b^3*c+b^2*c^2+b*c^3+c^4)-2*a^5*b*c*(b+c)*(3*b^4-9*b^3*c+8*b^2*c^2-9*b*c^3+3*c^4)+a^6*(4*b^6-4*b^5*c-6*b^4*c^2-6*b^3*c^3-6*b^2*c^4-4*b*c^5+4*c^6)-2*a^3*(b-c)^2*(b^7+3*b^5*c^2+12*b^4*c^3+12*b^3*c^4+3*b^2*c^5+c^7)+2*a^4*(-2*b^8+3*b^7*c+b^6*c^2+2*b^5*c^3-12*b^4*c^4+2*b^3*c^5+b^2*c^6+3*b*c^7-2*c^8)+a^2*(b-c)^2*(3*b^8+2*b^7*c+2*b^6*c^2+8*b^5*c^3+18*b^4*c^4+8*b^3*c^5+2*b^2*c^6+2*b*c^7+3*c^8)) : :
X(58542) = 3*X[51]+X[152], X[52]+3*X[38767], X[101]+X[13598], -X[103]+3*X[5943], X[389]+X[10741], -3*X[6688]+2*X[6712], -2*X[6710]+X[13348], -X[9729]+2*X[58505], 3*X[9730]+X[38768], X[10710]+X[21849], X[10727]+X[46850], X[10758]+X[14913] and many others

X(58542) lies on these lines: {51, 152}, {52, 38767}, {101, 13598}, {103, 5943}, {118, 511}, {389, 10741}, {674, 58686}, {928, 58541}, {2774, 58536}, {2784, 58538}, {2786, 58537}, {2801, 58539}, {2808, 10110}, {3887, 58543}, {6688, 6712}, {6710, 13348}, {9729, 58505}, {9730, 38768}, {10710, 21849}, {10727, 46850}, {10758, 14913}, {11695, 38601}, {15644, 38764}, {16625, 38769}, {16836, 38765}, {17704, 38773}, {58470, 58507}

X(58542) = midpoint of X(i) and X(j) for these {i,j}: {101, 13598}, {10710, 21849}, {10727, 46850}, {10758, 14913}, {389, 10741}
X(58542) = reflection of X(i) in X(j) for these {i,j}: {13348, 6710}, {38601, 11695}, {38773, 17704}, {58507, 58521}, {58540, 10110}, {9729, 58505}
X(58542) = center of the nine-point conic of quadrilateral XYZX(152) where XYZ is the cevian triangle of X(4)
X(58542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 10110, 58540}, {58507, 58521, 58470}


X(58543) = X(51)X(153)∩X(119)X(511)

Barycentrics    a^2*((a-b)^5*b^2*(a+b)^4+b^2*(-a^2+b^2)^3*(a^2-3*a*b+b^2)*c+(a-b)^3*(a+b)^2*(a^4-4*a^2*b^2-2*a*b^3-7*b^4)*c^2-(a-b)*(a+b)*(a^6-3*a^5*b-3*a^4*b^2+17*a^3*b^3-15*a^2*b^4+22*a*b^5-7*b^6)*c^3-2*(a-b)*(2*a^6+a^5*b-a^4*b^2-7*a^3*b^3+3*a^2*b^4-6*a*b^5-8*b^6)*c^4+(4*a^6-9*a^5*b+2*a^4*b^2-5*a^3*b^3+18*a^2*b^4-38*a*b^5+16*b^6)*c^5+2*(3*a^5+3*a^3*b^2-4*a^2*b^3+2*a*b^4+8*b^5)*c^6+(-6*a^4+9*a^3*b-12*a^2*b^2+22*a*b^3-16*b^4)*c^7-(a+b)*(4*a^2-2*a*b+7*b^2)*c^8+(4*a^2-3*a*b+7*b^2)*c^9+(a+b)*c^10-c^11) : :
X(58543) = 3*X[51]+X[153], X[52]+3*X[38755], X[100]+X[13598], -X[104]+3*X[5943], X[389]+X[10742], -2*X[3035]+X[13348], X[5446]+X[11698], -3*X[6688]+2*X[6713], 3*X[9730]+X[38756], X[10711]+X[21849], X[10728]+X[46850], X[10759]+X[14913] and many others

X(58543) lies on these lines: {51, 153}, {52, 38755}, {100, 13598}, {104, 5943}, {119, 511}, {182, 9913}, {389, 10742}, {674, 58687}, {952, 10110}, {2771, 44865}, {2783, 58538}, {2787, 58537}, {2800, 23841}, {2801, 58472}, {2829, 9729}, {3035, 13348}, {3738, 58541}, {3887, 58542}, {5446, 11698}, {6000, 22799}, {6688, 6713}, {8674, 58536}, {8679, 58613}, {9730, 38756}, {10711, 21849}, {10728, 46850}, {10759, 14913}, {11695, 38602}, {15644, 38752}, {16625, 38757}, {16836, 38753}, {17704, 38761}, {58470, 58508}

X(58543) = midpoint of X(i) and X(j) for these {i,j}: {100, 13598}, {10711, 21849}, {10728, 46850}, {10759, 14913}, {389, 10742}, {5446, 11698}
X(58543) = reflection of X(i) in X(j) for these {i,j}: {13348, 3035}, {38602, 11695}, {38761, 17704}, {58508, 58522}, {58539, 10110}, {9729, 58504}
X(58543) = center of the nine-point conic of quadrilateral XYZX(153) where XYZ is the cevian triangle of X(4)
X(58543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {952, 10110, 58539}, {58508, 58522, 58470}


X(58544) = X(6)X(25)∩X(546)X(5462)

Barycentrics    a^2*(3*a^8*(b^2+c^2)-4*a^4*b^2*c^2*(b^2+c^2)-3*(b^2-c^2)^4*(b^2+c^2)-6*a^6*(b^4-b^2*c^2+c^4)+2*a^2*(b^2-c^2)^2*(3*b^4-b^2*c^2+3*c^4)) : :
X(58544) = 5*X[3091]+X[32392], X[5446]+X[11202], -9*X[5640]+X[32064], -3*X[5943]+X[23332], X[6293]+11*X[27355], X[10192]+X[21849], -7*X[15043]+X[31978]

X(58544) lies on these lines: {6, 25}, {389, 44960}, {511, 58434}, {546, 5462}, {1154, 58484}, {1503, 32068}, {2781, 6688}, {3091, 32392}, {5446, 11202}, {5640, 32064}, {5644, 10249}, {5892, 7526}, {5907, 16254}, {5943, 23332}, {6293, 27355}, {10192, 21849}, {10574, 31371}, {12233, 15887}, {14915, 18566}, {15043, 31978}, {15431, 41715}, {21852, 58439}, {36201, 45298}, {36987, 41427}, {47316, 58481}

X(58544) = midpoint of X(i) and X(j) for these {i,j}: {10192, 21849}, {51, 45979}, {5446, 11202}, {9969, 19153}
X(58544) = center of the nine-point conic of quadrilateral XYZX(154) where XYZ is the cevian triangle of X(4)
X(58544) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 44082, 47328}, {51, 45979, 2393}, {1660, 9777, 39125}, {5893, 15012, 22967}, {44084, 58550, 58483}, {58483, 58550, 58471}, {58484, 58546, 58545}


X(58545) = X(5)X(389)∩X(51)X(155)

Barycentrics    a^2*(a^2-b^2-c^2)*((b^2-c^2)^6+a^10*(b^2+c^2)-3*a^8*(b^4+c^4)+2*a^6*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+2*a^4*(b^8+3*b^6*c^2-4*b^4*c^4+3*b^2*c^6+c^8)) : :
X(58545) = 3*X[51]+X[155], -9*X[5640]+X[11411], X[6193]+7*X[9781], -2*X[11695]+X[44158], X[14790]+3*X[41580]

X(58545) lies on these lines: {5, 389}, {25, 1147}, {26, 11202}, {51, 155}, {52, 3542}, {68, 6997}, {143, 44233}, {156, 2393}, {206, 44469}, {454, 15827}, {511, 9820}, {539, 58557}, {576, 9925}, {912, 58469}, {1154, 58484}, {1216, 3549}, {3564, 10095}, {3574, 32123}, {5447, 6676}, {5480, 23307}, {5640, 11411}, {5663, 58492}, {5892, 7395}, {6193, 9781}, {6756, 17702}, {6816, 9730}, {7493, 10625}, {7514, 15011}, {7528, 9927}, {7564, 46852}, {7715, 12002}, {9714, 45186}, {9777, 19458}, {9937, 17810}, {10110, 44665}, {10539, 47328}, {11695, 44158}, {11793, 58480}, {11818, 44863}, {12118, 37122}, {13347, 52019}, {13371, 34146}, {14627, 41615}, {14790, 41580}, {14915, 18569}, {16625, 41671}, {18531, 40647}, {21841, 45780}, {22829, 32136}, {30744, 43896}, {34757, 39116}, {52989, 53999}

X(58545) = midpoint of X(i) and X(j) for these {i,j}: {155, 12235}, {1147, 5446}, {389, 22660}, {9969, 19139}
X(58545) = reflection of X(i) in X(j) for these {i,j}: {44158, 11695}, {5447, 43839}, {58484, 58546}, {58496, 10095}
X(58545)= pole of line {11411, 34148} with respect to the Stammler hyperbola
X(58545) = center of the nine-point conic of quadrilateral XYZX(155) where XYZ is the cevian triangle of X(4)
X(58545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 58550, 5462}, {51, 155, 12235}, {389, 22660, 13754}, {1154, 58546, 58484}, {3564, 10095, 58496}, {9969, 19139, 34382}, {16625, 41671, 58482}, {58484, 58546, 58544}


X(58546) = X(51)X(156)∩X(143)X(21841)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(b^2+c^2)*(5*b^4-8*b^2*c^2+5*c^4)+a^6*(6*b^6*c^2+4*b^4*c^4+6*b^2*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-2*b^6*c^2+b^4*c^4-2*b^2*c^6+2*c^8)-a^4*(5*b^10-5*b^8*c^2+2*b^6*c^4+2*b^4*c^6-5*b^2*c^8+5*c^10)) : :
X(58546) = 3*X[51]+X[156], X[5446]+X[32171], -9*X[5640]+X[32140], -3*X[5892]+X[32210], -3*X[5943]+X[13561], X[9969]+X[19155]

X(58546) lies on these lines: {51, 156}, {143, 21841}, {389, 44235}, {511, 18282}, {1154, 58484}, {3628, 58480}, {3850, 5462}, {5446, 32171}, {5576, 12824}, {5640, 32140}, {5892, 32210}, {5943, 13561}, {6746, 46817}, {9969, 19155}, {10095, 58550}, {10110, 30522}, {11746, 43588}, {12241, 58516}, {12370, 43823}, {13391, 44277}, {16881, 58482}, {16982, 47316}, {58483, 58533}

X(58546) = midpoint of X(i) and X(j) for these {i,j}: {5446, 32171}, {58484, 58545}, {9969, 19155}
X(58546) = center of the nine-point conic of quadrilateral XYZX(156) where XYZ is the cevian triangle of X(4)
X(58546) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58544, 58545, 58484}


X(58547) = X(5)X(6697)∩X(6)X(25)

Barycentrics    a^2*(a^10*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)^2-a^8*(b^4-4*b^2*c^2+c^4)-2*a^6*(b^6+c^6)+2*a^4*(b^8-3*b^6*c^2-3*b^2*c^6+c^8)+a^2*(b^10-b^8*c^2-b^2*c^8+c^10)) : :
X(58547) = X[5446]+X[15577], -9*X[5640]+X[36851], -3*X[5892]+X[44883], -3*X[5943]+X[23300], 7*X[15043]+X[41735], X[16252]+X[32191], 3*X[16776]+X[34774], X[41729]+X[43130]

X(58547) lies on these lines: {5, 6697}, {6, 25}, {66, 6997}, {511, 9820}, {1503, 5462}, {2781, 12900}, {3313, 7493}, {3542, 19161}, {3549, 37511}, {3564, 58484}, {3827, 58469}, {5422, 35219}, {5446, 15577}, {5640, 36851}, {5892, 44883}, {5943, 23300}, {6676, 58450}, {7528, 9730}, {7529, 19149}, {9714, 23041}, {9822, 58480}, {9826, 36201}, {15043, 41735}, {16252, 32191}, {16776, 34774}, {27373, 41370}, {32300, 41671}, {33749, 58549}, {36989, 37122}, {41729, 43130}, {44668, 58557}, {58481, 58555}

X(58547) = midpoint of X(i) and X(j) for these {i,j}: {16252, 32191}, {206, 9969}, {41729, 43130}, {5446, 15577}
X(58547) = reflection of X(i) in X(j) for these {i,j}: {58494, 58532}
X(58547) = center of the nine-point conic of quadrilateral XYZX(159) where XYZ is the cevian triangle of X(4)
X(58547) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {206, 9969, 2393}, {1503, 58532, 58494}, {9969, 45979, 206}, {9969, 58550, 58471}


X(58548) = X(51)X(165)∩X(517)X(5462)

Barycentrics    a^2*(-3*(b-c)^4*(b+c)^3+3*a^5*(b^2+c^2)-3*a^4*(b+c)*(b^2+c^2)+6*a^3*(-b^4+b^3*c+b^2*c^2+b*c^3-c^4)+a*(b-c)^2*(3*b^4-8*b^2*c^2+3*c^4)+2*a^2*(3*b^5-5*b^3*c^2-5*b^2*c^3+3*c^5)) : :
X(58548) = 3*X[51]+X[165], X[389]+X[10175], X[568]+X[52796], 2*X[3634]+X[16625], X[5587]+3*X[16226], -9*X[5640]+X[9812], -3*X[5892]+X[17502], 3*X[5946]+X[38042], X[10164]+X[21849], 2*X[11695]+X[31760], X[14831]+3*X[54447], 2*X[15012]+X[19925] and many others

X(58548) lies on these lines: {51, 165}, {389, 10175}, {511, 58441}, {516, 58470}, {517, 5462}, {568, 52796}, {674, 58688}, {2801, 58491}, {2807, 3817}, {2841, 10273}, {3634, 16625}, {5587, 16226}, {5640, 9812}, {5892, 17502}, {5946, 38042}, {8679, 58615}, {9519, 58509}, {9586, 44111}, {9729, 28164}, {10095, 28178}, {10110, 28150}, {10164, 21849}, {11695, 31760}, {12006, 28186}, {14831, 54447}, {15012, 19925}, {15026, 38034}, {15726, 58473}, {16980, 30392}, {23841, 28236}, {28216, 58531}

X(58548) = midpoint of X(i) and X(j) for these {i,j}: {10164, 21849}, {389, 10175}, {568, 52796}
X(58548) = center of the nine-point conic of quadrilateral XYZX(165) where XYZ is the cevian triangle of X(4)
X(58548) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5462, 58487, 58469}


X(58549) = X(6)X(49)∩X(22)X(51)

Barycentrics    a^2*(a^8*(b^2+c^2)-10*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+2*a^2*(b^8+2*b^6*c^2-8*b^4*c^4+2*b^2*c^6+c^8)) : :
X(58549) = X[52]+3*X[38317], -X[141]+5*X[15026], X[575]+X[9969], -X[1352]+9*X[5640], X[1353]+3*X[16776], X[1843]+3*X[39561], 5*X[3567]+3*X[14561], X[5092]+X[5446], 3*X[5476]+X[19161], X[5480]+3*X[5946], -3*X[5892]+X[14810], -X[6101]+5*X[51126] and many others

X(58549) lies on circumconic {{A, B, C, X(14495), X(45108)}} and these lines: {6, 49}, {22, 51}, {52, 38317}, {140, 143}, {141, 15026}, {343, 5943}, {389, 7403}, {542, 11746}, {575, 9969}, {576, 20806}, {1352, 5640}, {1353, 16776}, {1503, 10095}, {1843, 39561}, {1974, 44494}, {2393, 15516}, {3564, 58531}, {3567, 14561}, {3818, 25738}, {5092, 5446}, {5476, 19161}, {5480, 5946}, {5892, 14810}, {5965, 9822}, {6101, 51126}, {6243, 47355}, {6467, 22234}, {8550, 43129}, {9019, 51732}, {9729, 29317}, {9730, 48901}, {9781, 46264}, {9971, 53091}, {9973, 53092}, {10110, 29012}, {10168, 21849}, {10301, 44084}, {11557, 20301}, {11649, 47457}, {12006, 29181}, {12294, 52989}, {13598, 48892}, {14641, 48943}, {14848, 44439}, {15043, 31670}, {15045, 48873}, {16223, 32273}, {16836, 48885}, {17508, 45186}, {22330, 34382}, {27375, 50652}, {32142, 51127}, {32205, 34573}, {32271, 46430}, {32366, 55713}, {33749, 58547}, {34514, 48889}, {36987, 55669}, {37481, 53023}, {37910, 58481}, {40280, 48872}, {40647, 48895}, {50664, 58484}

X(58549) = midpoint of X(i) and X(j) for these {i,j}: {143, 3589}, {10168, 21849}, {11557, 20301}, {13598, 48892}, {14641, 48943}, {18583, 32191}, {27375, 50652}, {389, 19130}, {40647, 48895}, {575, 9969}, {5092, 5446}, {5462, 58471}, {8550, 43129}
X(58549) = reflection of X(i) in X(j) for these {i,j}: {32142, 51127}, {34573, 32205}, {58532, 58531}
X(58549)= pole of line {1506, 13371} with respect to the Kiepert hyperbola
X(58549)= pole of line {31296, 55204} with respect to the Steiner inellipse
X(58549) = center of the nine-point conic of quadrilateral XYZX(182) where XYZ is the cevian triangle of X(4)
X(58549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {143, 3589, 511}, {3564, 58531, 58532}


X(58550) = X(5)X(389)∩X(6)X(25)

Barycentrics    a^2*(a^8*(b^2+c^2)-4*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+2*a^2*(b^8-b^6*c^2-b^2*c^6+c^8)) : :

X(58550) lies on these lines: {2, 19161}, {4, 14542}, {5, 389}, {6, 25}, {26, 578}, {52, 3549}, {143, 13383}, {182, 15818}, {185, 1853}, {373, 7539}, {418, 570}, {427, 34146}, {511, 6676}, {542, 11746}, {566, 26907}, {571, 6641}, {1899, 51756}, {2387, 40645}, {2875, 14717}, {3060, 7493}, {3313, 7494}, {3542, 3567}, {3819, 21851}, {3917, 37473}, {5447, 7568}, {5480, 15809}, {5640, 6997}, {5890, 23291}, {5892, 7514}, {6153, 12234}, {6525, 27373}, {6688, 11548}, {6756, 10110}, {6816, 15043}, {7378, 41715}, {7395, 9786}, {7502, 11430}, {7528, 18474}, {7529, 11432}, {7745, 27359}, {9306, 19139}, {9714, 11426}, {9715, 11425}, {9729, 12362}, {9730, 18531}, {9781, 37122}, {9822, 13562}, {9827, 31831}, {10095, 58546}, {10154, 21849}, {10547, 10551}, {10625, 47525}, {11412, 43841}, {11451, 37643}, {11649, 37897}, {11818, 18390}, {11819, 13403}, {12161, 12235}, {12242, 58557}, {13292, 58496}, {14826, 29959}, {14915, 44288}, {14917, 58486}, {15012, 52003}, {16072, 16226}, {17834, 45015}, {18569, 40647}, {21841, 46363}, {21852, 32223}, {21969, 44439}, {23047, 32393}, {23411, 58531}, {31978, 34944}, {32191, 58439}, {34382, 34986}, {37440, 37505}, {37942, 58551}, {44547, 58469}, {52144, 56308}, {53386, 53416}

X(58550) = midpoint of X(i) and X(j) for these {i,j}: {184, 47328}, {389, 18388}, {52, 45118}, {5446, 18475}
X(58550) = inverse of X(56924) in the orthic inconic
X(58550)= pole of line {850, 57120} with respect to the polar circle
X(58550)= pole of line {6, 12173} with respect to the Jerabek hyperbola
X(58550)= pole of line {216, 427} with respect to the Kiepert hyperbola
X(58550)= pole of line {512, 34983} with respect to the Orthic inconic
X(58550)= pole of line {69, 34148} with respect to the Stammler hyperbola
X(58550)= pole of line {2485, 14618} with respect to the Steiner inellipse
X(58550) = center of the nine-point conic of quadrilateral XYZX(184) where XYZ is the cevian triangle of X(4)
X(58550) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(13160)}}, {{A, B, C, X(184), X(14542)}}
X(58550) = barycentric product X(i)*X(j) for these (i, j): {13160, 6}
X(58550) = barycentric quotient X(i)/X(j) for these (i, j): {13160, 76}
X(58550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 19125, 154}, {25, 51, 9969}, {51, 184, 47328}, {51, 44079, 17810}, {51, 44084, 58483}, {184, 47328, 2393}, {389, 18388, 13754}, {389, 5943, 13567}, {3060, 11427, 50649}, {5462, 58545, 5}, {9969, 15011, 45979}, {9969, 45979, 25}, {17809, 34751, 6467}, {44125, 44126, 56924}, {58471, 58483, 51}, {58483, 58544, 44084}


X(58551) = X(51)X(186)∩X(389)X(403)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-9*b^2*c^2+5*c^4)+5*a^8*(b^6+c^6)+a^6*(-3*b^6*c^2+4*b^4*c^4-3*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-7*b^6*c^2-7*b^2*c^6+4*c^8)) : :
X(58551) = 3*X[51]+X[186], X[389]+X[403], X[1112]+X[44673], -X[2072]+3*X[5943], -X[3153]+9*X[5640], 5*X[3567]+3*X[37943], X[5446]+X[15646], -3*X[5892]+X[34152], 3*X[5946]+X[11563], X[7575]+X[11692], 3*X[9730]+X[31726], 7*X[9781]+X[13619] and many others

X(58551) lies on these lines: {30, 5462}, {51, 186}, {143, 43839}, {389, 403}, {468, 973}, {511, 14156}, {569, 2070}, {578, 37917}, {974, 1514}, {1112, 44673}, {1154, 12900}, {2072, 5943}, {3153, 5640}, {3567, 37943}, {5446, 15646}, {5892, 34152}, {5899, 17810}, {5946, 11563}, {7575, 11692}, {9730, 31726}, {9781, 13619}, {9969, 37936}, {10257, 11695}, {10282, 37951}, {10628, 52000}, {11649, 47457}, {11746, 18400}, {11793, 44911}, {11800, 51393}, {11807, 21663}, {12241, 43393}, {13382, 37984}, {13598, 44246}, {13754, 41671}, {15012, 22968}, {15026, 37938}, {15043, 52403}, {15606, 37911}, {15873, 43893}, {16223, 50435}, {16386, 16836}, {16881, 58488}, {18859, 37470}, {21849, 44214}, {22249, 58533}, {32767, 57582}, {36518, 53781}, {37941, 45186}, {37942, 58550}, {40647, 43865}, {46430, 51403}, {47454, 58471}, {58515, 58552}

X(58551) = midpoint of X(i) and X(j) for these {i,j}: {143, 44234}, {1112, 44673}, {11800, 51393}, {11807, 21663}, {13598, 44246}, {21849, 44214}, {389, 403}, {468, 32411}, {40647, 44283}, {5446, 15646}, {7575, 11692}, {9729, 13446}, {9969, 51733}
X(58551) = reflection of X(i) in X(j) for these {i,j}: {10257, 11695}, {11793, 44911}
X(58551)= pole of line {13202, 13403} with respect to the Jerabek hyperbola
X(58551) = center of the nine-point conic of quadrilateral XYZX(186) where XYZ is the cevian triangle of X(4)
X(58551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5462, 58482, 10110}, {5462, 58484, 9729}, {9729, 13446, 30}


X(58552) = X(51)X(187)∩X(140)X(143)

Barycentrics    a^8*(b^2+c^2)+2*a^4*(b^2-c^2)^2*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(b^4-b^2*c^2+c^4) : :
X(58552) = 3*X[51]+X[187], X[230]+X[39835], -X[316]+9*X[5640], -9*X[373]+5*X[31275], -X[625]+3*X[5943], 3*X[1692]+X[1843], X[2021]+X[27375], X[2030]+X[9969], 5*X[3567]+3*X[38227], X[5167]+3*X[15544], 3*X[5215]+X[21969], X[5446]+X[47113] and many others

X(58552) lies on circumconic {{A, B, C, X(34154), X(45108)}} and these lines: {30, 58518}, {51, 187}, {140, 143}, {230, 39835}, {316, 5640}, {373, 31275}, {460, 512}, {538, 58503}, {625, 5943}, {1692, 1843}, {2021, 27375}, {2030, 9969}, {3567, 38227}, {3849, 58470}, {5167, 15544}, {5215, 21969}, {5446, 47113}, {37459, 39806}, {58481, 58514}, {58515, 58551}

X(58552) = midpoint of X(i) and X(j) for these {i,j}: {143, 14693}, {2021, 27375}, {2030, 9969}, {230, 39835}, {37459, 39806}, {5446, 47113}, {58477, 58478}
X(58552)= pole of line {1506, 53569} with respect to the Kiepert hyperbola
X(58552)= pole of line {3767, 31296} with respect to the Steiner inellipse
X(58552) = center of the nine-point conic of quadrilateral XYZX(187) where XYZ is the cevian triangle of X(4)
X(58552) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {143, 14693, 511}


X(58553) = X(51)X(190)∩X(511)X(4422)

Barycentrics    a^2*(-b^6+b^5*c+b^4*c^2+b^2*c^4+b*c^5-c^6+a^4*(b^2+c^2)-a^3*(b+c)*(b^2+c^2)-a^2*b*c*(b^2-6*b*c+c^2)+a*(b+c)*(b^4-4*b^2*c^2+c^4)) : :
X(58553) = 3*X[51]+X[190], -9*X[373]+5*X[27191], X[389]+X[24828], -X[1086]+3*X[5943], 3*X[3060]+5*X[4473], X[4370]+X[21849], -X[4440]+9*X[5640], -3*X[6688]+2*X[40480], 7*X[9781]+X[24817], X[21969]+3*X[41138]

X(58553) lies on these lines: {51, 190}, {373, 27191}, {389, 24828}, {511, 4422}, {528, 23841}, {537, 58469}, {545, 58470}, {674, 58691}, {900, 58504}, {1086, 5943}, {2786, 58503}, {2796, 58474}, {3060, 4473}, {4370, 21849}, {4440, 5640}, {5845, 9822}, {6688, 40480}, {8679, 58618}, {9041, 58535}, {9055, 58471}, {9781, 24817}, {10110, 29243}, {17810, 24822}, {21969, 41138}, {24814, 44084}, {58473, 58499}

X(58553) = midpoint of X(i) and X(j) for these {i,j}: {389, 24828}, {4370, 21849}
X(58553) = center of the nine-point conic of quadrilateral XYZX(190) where XYZ is the cevian triangle of X(4)


X(58554) = X(37)X(511)∩X(51)X(192)

Barycentrics    a^2*(a^2*b*c*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-b*c*(b^4+c^4)-a*(b+c)*(b^4-4*b^2*c^2+c^4)) : :
X(58554) = 3*X[51]+X[192], -X[75]+3*X[5943], -9*X[373]+5*X[4699], X[389]+X[20430], -X[1278]+9*X[5640], 3*X[3060]+5*X[4704], -2*X[3739]+3*X[6688], -3*X[3819]+5*X[4687], -3*X[3917]+7*X[27268], X[4664]+X[21849], -7*X[4772]+15*X[11451], X[5446]+X[51046] and many others

X(58554) lies on these lines: {37, 511}, {51, 192}, {75, 5943}, {190, 40954}, {373, 4699}, {389, 20430}, {518, 58534}, {536, 58470}, {674, 58693}, {726, 58469}, {740, 23841}, {742, 9822}, {1278, 5640}, {3060, 4704}, {3739, 6688}, {3819, 4687}, {3917, 27268}, {4664, 21849}, {4772, 11451}, {5446, 51046}, {8679, 58620}, {9055, 58471}, {10110, 29010}, {10219, 31238}, {12109, 12572}, {13598, 30273}, {14913, 49496}, {17704, 30271}, {28522, 58474}, {46850, 51063}

X(58554) = midpoint of X(i) and X(j) for these {i,j}: {13598, 30273}, {14913, 49496}, {389, 20430}, {4664, 21849}, {46850, 51063}, {5446, 51046}
X(58554) = reflection of X(i) in X(j) for these {i,j}: {30271, 17704}, {58499, 58485}
X(58554) = center of the nine-point conic of quadrilateral XYZX(192) where XYZ is the cevian triangle of X(4)
X(58554) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {536, 58485, 58499}, {58485, 58499, 58470}, {58534, 58535, 58555}


X(58555) = X(3)X(6)∩X(51)X(193)

Barycentrics    10*a^4*b^2*c^2+a^6*(b^2+c^2)-a^2*(b^2+c^2)*(b^4+c^4) : :
X(58555) = 3*X[51]+X[193], -X[69]+3*X[5943], -2*X[141]+3*X[6688], -9*X[373]+5*X[3620], X[1353]+X[5446], X[1843]+3*X[1992], 3*X[3060]+X[6467], -5*X[3618]+3*X[3819], -5*X[3763]+6*X[10219], -2*X[3818]+3*X[13570], -3*X[3917]+7*X[51171], -9*X[5032]+X[12220] and many others

X(58555) lies on circumconic {{A, B, C, X(182), X(6339)}} and these lines: {3, 6}, {51, 193}, {69, 5943}, {141, 6688}, {143, 34382}, {263, 6339}, {373, 3620}, {518, 58534}, {524, 9822}, {542, 58536}, {674, 58694}, {1353, 5446}, {1843, 1992}, {1974, 34986}, {1994, 21637}, {2393, 21847}, {3060, 6467}, {3564, 10110}, {3618, 3819}, {3629, 8681}, {3763, 10219}, {3787, 56428}, {3818, 13570}, {3917, 51171}, {5032, 12220}, {5095, 11800}, {5140, 7812}, {5447, 51732}, {5462, 34380}, {5480, 44870}, {5640, 20080}, {5847, 23841}, {5848, 58539}, {5878, 36851}, {5907, 14853}, {5965, 13562}, {6000, 15583}, {6102, 23326}, {6144, 29959}, {6776, 13598}, {7716, 53019}, {7774, 51426}, {8584, 32366}, {8679, 58621}, {9019, 22829}, {9027, 41579}, {11002, 12272}, {11004, 19122}, {11225, 26926}, {11695, 48876}, {11793, 18583}, {12045, 34573}, {12109, 34381}, {13366, 19121}, {14645, 58503}, {14912, 45186}, {14984, 21852}, {17810, 19588}, {18935, 31670}, {19136, 34966}, {20088, 48445}, {27377, 34854}, {32451, 46712}, {34379, 58469}, {41624, 51412}, {46444, 47328}, {46850, 51212}, {58481, 58547}

X(58555) = midpoint of X(i) and X(j) for these {i,j}: {193, 14913}, {1353, 5446}, {1992, 21849}, {11477, 52520}, {389, 1351}, {3629, 9969}, {46850, 51212}, {5095, 11800}, {6776, 13598}
X(58555) = reflection of X(i) in X(j) for these {i,j}: {1350, 17704}, {11793, 18583}, {13348, 182}, {44495, 5097}, {44870, 5480}, {48876, 11695}, {5447, 51732}, {52520, 15012}, {9822, 58471}
X(58555)= pole of line {184, 7398} with respect to the Jerabek hyperbola
X(58555)= pole of line {76, 16419} with respect to the Wallace hyperbola
X(58555) = center of the nine-point conic of quadrilateral XYZX(193) where XYZ is the cevian triangle of X(4)
X(58555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 19126, 575}, {6, 37491, 182}, {51, 193, 14913}, {182, 511, 13348}, {511, 15012, 52520}, {511, 17704, 1350}, {511, 5097, 44495}, {524, 58471, 9822}, {9822, 58471, 58470}, {11477, 52520, 511}, {58534, 58535, 58554}


X(58556) = X(3)X(6)∩X(51)X(194)

Barycentrics    a^6*(b^2+c^2)^2-a^2*b^2*c^2*(b^4+c^4)-a^4*(b^2+c^2)*(b^4-5*b^2*c^2+c^4) : :
X(58556) = 3*X[51]+X[194], -X[76]+3*X[5943], -3*X[262]+X[5907], -9*X[373]+5*X[31276], -3*X[3819]+5*X[7786], -2*X[3934]+3*X[6688], X[5446]+X[32448], -9*X[5640]+X[20081], -3*X[5892]+X[32521], 3*X[7709]+X[45186], X[7757]+X[21849], X[9969]+X[32449] and many others

X(58556) lies on these lines: {3, 6}, {51, 194}, {76, 5943}, {262, 5907}, {373, 31276}, {538, 58470}, {674, 58695}, {698, 58471}, {726, 58469}, {730, 23841}, {732, 9822}, {2548, 6310}, {2782, 10110}, {3331, 31989}, {3491, 7774}, {3819, 7786}, {3934, 6688}, {5167, 7858}, {5446, 32448}, {5462, 32515}, {5640, 20081}, {5892, 32521}, {6000, 14881}, {7709, 45186}, {7737, 14135}, {7757, 21849}, {7795, 34236}, {8679, 58622}, {9969, 32449}, {10219, 31239}, {10574, 44434}, {10575, 22728}, {11257, 13598}, {11272, 11793}, {11695, 49111}, {14839, 58535}, {14913, 32451}, {27374, 51427}, {27375, 32450}, {40951, 41624}, {46180, 58491}

X(58556) = midpoint of X(i) and X(j) for these {i,j}: {11257, 13598}, {14913, 32451}, {27375, 32450}, {389, 3095}, {5446, 32448}, {7757, 21849}, {9969, 32449}
X(58556) = reflection of X(i) in X(j) for these {i,j}: {11793, 11272}, {13348, 13334}, {49111, 11695}, {5188, 17704}, {58500, 58486}
X(58556)= pole of line {184, 7787} with respect to the Jerabek hyperbola
X(58556) = center of the nine-point conic of quadrilateral XYZX(194) where XYZ is the cevian triangle of X(4)
X(58556) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 3095, 511}, {511, 13334, 13348}, {511, 17704, 5188}, {538, 58486, 58500}, {58486, 58500, 58470}


X(58557) = X(23)X(54)∩X(51)X(195)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^2*(b^4-c^4)^2*(4*b^4-7*b^2*c^2+4*c^4)+a^8*(b^2+c^2)*(5*b^4-13*b^2*c^2+5*c^4)+a^6*(21*b^6*c^2+16*b^4*c^4+21*b^2*c^6)-a^4*(b^2+c^2)*(5*b^8+5*b^6*c^2-14*b^4*c^4+5*b^2*c^6+5*c^8)) : :
X(58557) = 3*X[51]+X[195], 3*X[52]+X[32338], X[389]+X[20424], 3*X[568]+X[43581], X[1493]+X[11808], -X[5447]+2*X[6689], -9*X[5640]+X[12325], -3*X[5892]+X[7691], -3*X[5943]+X[21230], 3*X[5946]+X[54157], X[9969]+X[19150], X[10619]+2*X[12002] and many others

X(58557) lies on these lines: {23, 54}, {51, 195}, {52, 32338}, {143, 10096}, {389, 20424}, {511, 8254}, {539, 58545}, {568, 43581}, {973, 41670}, {1154, 3628}, {1209, 37990}, {1493, 11808}, {3574, 5576}, {5447, 6689}, {5640, 12325}, {5892, 7691}, {5943, 21230}, {5946, 54157}, {5965, 58471}, {6152, 44084}, {9969, 19150}, {10095, 23409}, {10110, 32423}, {10203, 34545}, {10619, 12002}, {10628, 20379}, {11002, 13423}, {11692, 14627}, {11702, 11800}, {12242, 58550}, {13363, 54201}, {13365, 58470}, {13431, 41578}, {13433, 15532}, {15800, 40647}, {21849, 32196}, {22804, 44863}, {38791, 46849}, {41671, 58533}, {44082, 55039}, {44668, 58547}

X(58557) = midpoint of X(i) and X(j) for these {i,j}: {143, 22051}, {195, 6153}, {1493, 11808}, {11702, 11800}, {13433, 15532}, {15800, 40647}, {389, 20424}, {3574, 10115}, {32196, 40632}, {54, 5446}, {8254, 44056}, {9969, 19150}
X(58557) = reflection of X(i) in X(j) for these {i,j}: {22804, 44863}, {5447, 6689}, {5462, 58489}
X(58557) = center of the nine-point conic of quadrilateral XYZX(195) where XYZ is the cevian triangle of X(4)
X(58557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 195, 6153}, {1154, 58489, 5462}, {3574, 10115, 13754}, {8254, 44056, 511}, {21849, 40632, 32196}


X(58558) = X(51)X(226)∩X(63)X(5640)

Barycentrics    a^2*(-((b-c)^2*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2))+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+c^2)-2*a^3*(b^4+c^4)+a^2*(2*b^5-3*b^3*c^2-3*b^2*c^3+2*c^5)) : :
X(58558) = 3*X[51]+X[226], -X[63]+9*X[5640], 3*X[3060]+5*X[31266], X[3822]+X[31757], -X[5745]+3*X[5943], 7*X[9781]+X[18446], -15*X[11451]+7*X[55867], -11*X[15024]+3*X[21165]

X(58558) lies on these lines: {51, 226}, {63, 5640}, {511, 58463}, {515, 10110}, {516, 58490}, {527, 58470}, {674, 58699}, {758, 58474}, {912, 10095}, {2792, 58502}, {2801, 58475}, {3060, 31266}, {3822, 31757}, {5745, 5943}, {8679, 58626}, {8680, 58485}, {9028, 58471}, {9781, 18446}, {11451, 55867}, {15024, 21165}, {34377, 58532}, {46179, 58486}, {46180, 58500}

X(58558) = midpoint of X(i) and X(j) for these {i,j}: {3822, 31757}
X(58558) = center of the nine-point conic of quadrilateral XYZX(226) where XYZ is the cevian triangle of X(4)
X(58558) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58476, 58493, 58474}


X(58559) = X(4)X(974)∩X(51)X(235)

Barycentrics    a^2*(a^12*(b^2+c^2)-4*a^6*b^2*c^2*(b^2+c^2)^2+4*a^2*(b^2-c^2)^4*(b^4+c^4)-4*a^10*(b^4+b^2*c^2+c^4)-a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4-8*b^2*c^2+5*c^4)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+4*b^4*c^2+4*b^2*c^4+5*c^6)) : :
X(58559) = X[24]+7*X[9781], 3*X[51]+X[235], -9*X[5640]+X[11413], -3*X[5943]+X[16196], 3*X[5946]+X[44271], -17*X[11465]+9*X[49672], -3*X[13364]+X[49673], X[13598]+X[44247]

X(58559) lies on these lines: {4, 974}, {24, 9781}, {30, 5462}, {51, 235}, {143, 5448}, {389, 5893}, {511, 58465}, {2854, 10539}, {5050, 7517}, {5446, 14156}, {5480, 11585}, {5640, 11413}, {5943, 16196}, {5946, 44271}, {6000, 15887}, {7529, 41579}, {9826, 12897}, {9969, 11808}, {11465, 49672}, {11576, 44106}, {12241, 44084}, {13364, 49673}, {13451, 20193}, {13488, 32184}, {13598, 44247}, {13621, 20771}, {15739, 35487}, {18390, 41589}, {22833, 31726}, {34148, 41670}, {34782, 44079}, {40240, 43393}

X(58559) = midpoint of X(i) and X(j) for these {i,j}: {143, 44235}, {10110, 58482}, {13598, 44247}, {389, 44226}, {4, 52003}, {5446, 16238}, {9969, 51734}
X(58559) = center of the nine-point conic of quadrilateral XYZX(235) where XYZ is the cevian triangle of X(4)
X(58559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9969, 51734, 44668}, {10110, 58482, 30}, {10110, 58483, 11745}


X(58560) = X(1)X(4004)∩X(2)X(210)

Barycentrics    a*(-3*b^2+8*b*c-3*c^2+3*a*(b+c)) : :
X(58560) = 7*X[1]+5*X[4004], -7*X[2]+3*X[210], X[10]+5*X[50191], X[65]+3*X[38314], X[381]+X[12675], -3*X[392]+7*X[51110], -2*X[547]+X[58631], -2*X[549]+X[58637], X[551]+X[942], -2*X[597]+X[58694], 5*X[960]+X[3901], X[1071]+3*X[38021] and many others

X(58560) lies on circumconic {{A, B, C, X(27475), X(36603)}} and these lines: {1, 4004}, {2, 210}, {10, 50191}, {30, 13373}, {57, 4428}, {65, 38314}, {226, 17051}, {244, 4883}, {381, 12675}, {392, 51110}, {511, 58574}, {516, 58615}, {517, 12100}, {519, 3812}, {524, 58562}, {527, 58563}, {528, 11018}, {529, 58566}, {535, 58570}, {536, 42053}, {538, 58584}, {539, 58580}, {541, 58582}, {542, 58589}, {543, 58590}, {544, 58592}, {545, 58618}, {547, 58631}, {549, 58637}, {551, 942}, {553, 3660}, {597, 58694}, {752, 58627}, {758, 51108}, {940, 4906}, {960, 3901}, {971, 50802}, {982, 15569}, {1001, 3928}, {1071, 38021}, {1125, 4127}, {1155, 29817}, {1376, 15570}, {2802, 51107}, {3241, 5836}, {3246, 29820}, {3315, 3745}, {3333, 11194}, {3338, 16370}, {3555, 19875}, {3582, 44547}, {3616, 31165}, {3623, 3922}, {3636, 31794}, {3653, 24474}, {3655, 7686}, {3656, 10202}, {3664, 57033}, {3666, 17450}, {3679, 5439}, {3698, 31145}, {3720, 3999}, {3748, 27003}, {3752, 42042}, {3753, 51093}, {3816, 5542}, {3827, 51006}, {3828, 3881}, {3829, 3838}, {3833, 4745}, {3834, 29655}, {3839, 12680}, {3874, 4537}, {3880, 5049}, {3889, 53620}, {3892, 4669}, {3898, 51106}, {3919, 51104}, {3929, 10582}, {3962, 46934}, {3967, 30947}, {4003, 29814}, {4038, 8301}, {4113, 17145}, {4640, 4666}, {4663, 5272}, {4670, 29668}, {4682, 17597}, {4711, 51066}, {4731, 51072}, {4755, 13476}, {4864, 17122}, {4870, 13751}, {4891, 24165}, {4980, 29824}, {4995, 18839}, {5071, 14872}, {5083, 45310}, {5302, 17542}, {5437, 30350}, {5461, 58682}, {5572, 6173}, {5728, 38024}, {5880, 10580}, {5902, 10179}, {6001, 51709}, {6688, 9026}, {6797, 11274}, {7290, 39980}, {7957, 15692}, {8167, 15481}, {8679, 58470}, {9037, 21849}, {9530, 58598}, {9940, 28194}, {9943, 31162}, {10124, 58630}, {10156, 50829}, {10167, 50865}, {10385, 17603}, {10391, 11238}, {11025, 15587}, {11227, 50808}, {11570, 38026}, {12513, 19521}, {13407, 17533}, {13587, 37080}, {15185, 38093}, {16417, 56176}, {16496, 37682}, {16602, 36634}, {16616, 28208}, {17056, 24216}, {17063, 42043}, {17449, 42039}, {17490, 49475}, {17549, 32636}, {17624, 34717}, {18165, 42028}, {19536, 41229}, {20358, 29580}, {20582, 58653}, {20718, 58381}, {20942, 24349}, {21342, 26102}, {22247, 58662}, {24386, 38054}, {24475, 38022}, {24476, 38023}, {25502, 49515}, {26103, 49499}, {29848, 58414}, {30950, 42041}, {31792, 33815}, {33575, 51086}, {33895, 52804}, {35652, 42055}, {37592, 48855}, {42034, 49483}, {44562, 58695}, {58587, 58625}, {58595, 58604}

X(58560) = midpoint of X(i) and X(j) for these {i,j}: {354, 3742}, {381, 12675}, {3241, 5836}, {3655, 7686}, {3679, 34791}, {3740, 3873}, {3828, 3881}, {35652, 42055}, {4755, 13476}, {4891, 24165}, {5049, 5883}, {551, 942}, {553, 49736}, {5083, 45310}, {5572, 6173}, {5902, 10179}, {6797, 11274}, {960, 24473}, {9943, 31162}
X(58560) = reflection of X(i) in X(j) for these {i,j}: {3848, 3742}, {4662, 3828}, {58451, 3848}, {58629, 2}, {58630, 10124}, {58631, 547}, {58637, 549}, {58646, 10219}, {58653, 20582}, {58662, 22247}, {58679, 551}, {58682, 5461}, {58683, 45310}, {58693, 4755}, {58694, 597}, {58695, 44562}
X(58560) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(7)
X(58560) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 518, 58629}, {2, 58629, 58451}, {354, 3742, 518}, {518, 3742, 3848}, {551, 44663, 58679}, {551, 942, 44663}, {553, 49736, 28534}, {1376, 44841, 15570}, {3812, 5045, 58609}, {3848, 58629, 2}, {4891, 24165, 28484}, {5045, 58565, 3812}, {5437, 30350, 42871}, {5439, 50190, 34791}, {11019, 25557, 3838}, {13373, 13374, 58567}, {13373, 58561, 13374}, {18240, 58591, 58611}, {18398, 25055, 24473}, {58561, 58605, 13373}, {58562, 58581, 58621}, {58562, 58606, 58581}, {58563, 58564, 58608}, {58564, 58577, 58578}, {58564, 58607, 58563}, {58571, 58583, 58620}, {58595, 58604, 58613}


X(58561) = X(1)X(6924)∩X(5)X(354)

Barycentrics    a*(-(a^4*(b-c)^2)+a^5*(b+c)+a*(b-c)^2*(b+c)^3+a^2*(b-2*c)*(2*b-c)*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)-(b^2-c^2)^2*(b^2-3*b*c+c^2)) : :
X(58561) = X[5]+3*X[354], X[65]+3*X[10283], -X[140]+3*X[3742], -3*X[210]+7*X[55856], X[355]+7*X[50190], X[546]+X[12675], X[942]+X[5901], X[1071]+3*X[38034], X[1125]+X[6583], -X[1483]+5*X[17609], 5*X[1656]+3*X[3873], X[3555]+3*X[38042] and many others

X(58561) lies on these lines: {1, 6924}, {5, 354}, {30, 13373}, {65, 10283}, {140, 3742}, {210, 55856}, {355, 50190}, {511, 58606}, {515, 26089}, {517, 3530}, {518, 3628}, {546, 12675}, {674, 32142}, {912, 50192}, {942, 5901}, {952, 5045}, {971, 58607}, {1071, 38034}, {1125, 6583}, {1154, 58574}, {1387, 13750}, {1483, 17609}, {1519, 33668}, {1656, 3873}, {3296, 6893}, {3333, 32153}, {3338, 6914}, {3475, 6959}, {3555, 38042}, {3564, 58562}, {3656, 15016}, {3660, 24470}, {3681, 5070}, {3740, 48154}, {3754, 33179}, {3812, 5844}, {3845, 12680}, {3848, 16239}, {3874, 11230}, {3881, 9956}, {3889, 5790}, {3919, 10284}, {4298, 58570}, {4430, 5067}, {4666, 37532}, {5173, 34753}, {5439, 5690}, {5534, 30350}, {5570, 37737}, {5663, 58617}, {5693, 5886}, {5719, 50196}, {5728, 38041}, {5762, 58564}, {5806, 28186}, {5843, 58563}, {5883, 10222}, {5884, 51709}, {5885, 13464}, {6944, 11038}, {6966, 10595}, {7191, 45931}, {7292, 37509}, {7508, 51715}, {7957, 15712}, {8679, 10095}, {9940, 28174}, {9955, 12005}, {10171, 56762}, {10202, 22791}, {10386, 17603}, {10582, 26921}, {10943, 17626}, {10980, 24467}, {11025, 38107}, {11373, 30274}, {11570, 38044}, {11729, 16137}, {11849, 27003}, {12047, 13751}, {12108, 58637}, {12329, 13154}, {12433, 16193}, {12586, 18952}, {13369, 40273}, {13861, 22769}, {15178, 31870}, {15185, 38171}, {18357, 50191}, {18483, 26201}, {20330, 37356}, {24473, 38022}, {24474, 38028}, {24476, 38040}, {28178, 58615}, {28182, 31805}, {28212, 40296}, {29010, 58571}, {29817, 37621}, {32205, 58647}, {32423, 58601}, {32515, 58584}, {34380, 58581}, {35018, 58631}, {58451, 58675}

X(58561) = midpoint of X(i) and X(j) for these {i,j}: {1125, 6583}, {13369, 40273}, {13373, 13374}, {15178, 31870}, {18240, 58604}, {18483, 26201}, {3754, 33179}, {3874, 31835}, {3881, 9956}, {546, 12675}, {5885, 13464}, {942, 5901}, {9955, 12005}
X(58561) = reflection of X(i) in X(j) for these {i,j}: {13373, 58605}, {58630, 16239}, {58631, 35018}, {58632, 3628}, {58637, 12108}, {58647, 32205}
X(58561) = center of the nine-point conic of quadrilateral XYZX(5) where XYZ is the cevian triangle of X(7)
X(58561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3628, 58632}, {942, 5901, 14988}, {3848, 58630, 16239}, {5045, 58587, 6738}, {13373, 13374, 30}, {13373, 58560, 58605}, {13374, 58560, 13373}, {18240, 58566, 5045}, {18240, 58604, 952}


X(58562) = X(1)X(12329)∩X(6)X(354)

Barycentrics    a*(a^3*(b+c)-(b-c)^2*(b^2+c^2)+a*(b+c)*(b^2+c^2)-a^2*(b^2-4*b*c+c^2)) : :
X(58562) = X[6]+3*X[354], X[65]+3*X[38315], -X[141]+3*X[3742], -3*X[210]+7*X[47355], X[1071]+3*X[38035], -X[3242]+5*X[17609], -X[3416]+5*X[5439], 5*X[3618]+3*X[3873], -3*X[3740]+5*X[51126], X[3751]+7*X[50190], 3*X[3753]+X[49681], -3*X[3848]+2*X[34573] and many others

X(58562) lies on these lines: {1, 12329}, {6, 354}, {65, 38315}, {141, 3742}, {206, 942}, {210, 47355}, {241, 16679}, {511, 13373}, {517, 5092}, {518, 1125}, {524, 58560}, {674, 11018}, {698, 58622}, {732, 58584}, {742, 58583}, {1071, 38035}, {1503, 13374}, {2330, 18839}, {2393, 58574}, {2781, 58582}, {2810, 58592}, {2854, 58601}, {3242, 17609}, {3333, 22769}, {3338, 36740}, {3416, 5439}, {3555, 19836}, {3564, 58561}, {3618, 3873}, {3660, 24471}, {3666, 8053}, {3740, 51126}, {3751, 50190}, {3753, 49681}, {3812, 5846}, {3848, 34573}, {3874, 38049}, {3892, 49529}, {3941, 37597}, {3946, 44670}, {3999, 18183}, {4265, 32636}, {4663, 50191}, {5049, 49465}, {5096, 37080}, {5173, 47373}, {5222, 21867}, {5227, 10582}, {5262, 44545}, {5480, 12675}, {5572, 18589}, {5728, 38046}, {5836, 51147}, {5845, 58563}, {5847, 58565}, {5848, 18240}, {5849, 58566}, {5883, 49684}, {5902, 16491}, {5969, 58590}, {6329, 58694}, {7289, 10980}, {7957, 53094}, {8679, 58471}, {9024, 58591}, {9028, 58626}, {9037, 58570}, {9047, 58569}, {9051, 17427}, {9052, 16216}, {9053, 58609}, {9055, 58618}, {10387, 17603}, {10859, 11019}, {11570, 38050}, {11997, 17395}, {12586, 17626}, {12680, 53023}, {12723, 17301}, {15185, 38186}, {16475, 18398}, {17017, 40959}, {17382, 18252}, {17599, 54322}, {19137, 43149}, {19762, 37592}, {20718, 58384}, {24473, 38023}, {24474, 38029}, {24475, 38040}, {29181, 58567}, {34146, 58579}, {34371, 58577}, {34377, 58578}, {34380, 58605}, {34381, 50192}, {34791, 49524}, {44663, 51006}, {51127, 58451}, {58445, 58630}

X(58562) = midpoint of X(i) and X(j) for these {i,j}: {34791, 49524}, {5173, 47373}, {5480, 12675}, {5572, 51150}, {5836, 51147}, {58581, 58621}, {942, 1386}
X(58562) = reflection of X(i) in X(j) for these {i,j}: {58581, 58606}, {58630, 58445}, {58633, 3589}, {58653, 34573}, {58676, 51127}, {58694, 6329}
X(58562) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32736, 513}
X(58562)= pole of line {3803, 8642} with respect to the circumcircle
X(58562)= pole of line {905, 4063} with respect to the DeLongchamps ellipse
X(58562)= pole of line {16757, 17494} with respect to the Steiner inellipse
X(58562) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(7)
X(58562) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3589, 58633}, {524, 58606, 58581}, {942, 1386, 3827}, {3848, 58653, 34573}, {5045, 58564, 58571}, {16475, 18398, 24476}, {51127, 58676, 58451}, {58560, 58581, 58606}, {58581, 58621, 524}


X(58563) = X(1)X(1418)∩X(10)X(141)

Barycentrics    a*(a^3*(b+c)+3*a*(b-c)^2*(b+c)-(b-c)^2*(b^2-4*b*c+c^2)-a^2*(3*b^2+4*b*c+3*c^2)) : :
X(58563) = X[7]+3*X[354], -X[9]+3*X[3742], X[65]+3*X[11038], -X[390]+5*X[17609], X[1071]+3*X[38036], X[3059]+3*X[3873], X[3243]+X[5836], X[3555]+3*X[38052], -3*X[3740]+5*X[20195], -3*X[3848]+2*X[6666], X[4312]+7*X[50190], -3*X[5049]+X[30331] and many others

X(58563) lies on these lines: {1, 1418}, {7, 354}, {9, 3742}, {10, 141}, {11, 41857}, {65, 11038}, {390, 17609}, {480, 3306}, {516, 5045}, {517, 43151}, {527, 58560}, {528, 46681}, {954, 3338}, {960, 11036}, {971, 12005}, {999, 3941}, {1001, 3333}, {1071, 38036}, {1155, 2346}, {1445, 4860}, {2550, 6764}, {2801, 58587}, {2886, 41573}, {2951, 30350}, {3059, 3873}, {3174, 3880}, {3243, 5836}, {3296, 5880}, {3475, 8732}, {3555, 38052}, {3660, 52819}, {3740, 20195}, {3748, 7676}, {3848, 6666}, {4312, 50190}, {4321, 11518}, {4326, 44841}, {4343, 4883}, {4355, 52835}, {4888, 14523}, {5049, 30331}, {5173, 8255}, {5223, 5439}, {5228, 30621}, {5249, 6067}, {5728, 9612}, {5762, 13373}, {5805, 12675}, {5843, 58561}, {5845, 58562}, {5850, 58565}, {5851, 18240}, {5852, 58566}, {5853, 12577}, {5856, 58591}, {6001, 20330}, {6173, 10569}, {7274, 18216}, {8083, 45707}, {8388, 10502}, {8389, 10501}, {8581, 30340}, {8679, 58472}, {10177, 11034}, {10178, 21454}, {10456, 11021}, {11018, 38454}, {11019, 42356}, {11033, 45708}, {11570, 38055}, {12512, 20790}, {12563, 58679}, {14151, 17636}, {15008, 58586}, {15733, 33558}, {16112, 17626}, {16133, 16141}, {17768, 58568}, {20718, 58385}, {24473, 38024}, {24474, 38030}, {24475, 38041}, {24476, 38046}, {30284, 44840}, {30424, 50191}, {30947, 56085}, {42884, 51816}, {58433, 58451}, {58621, 58628}

X(58563) = midpoint of X(i) and X(j) for these {i,j}: {15185, 15587}, {20116, 43180}, {2550, 34791}, {3243, 5836}, {5173, 8255}, {5805, 12675}, {7, 5572}, {942, 5542}
X(58563) = reflection of X(i) in X(j) for these {i,j}: {20116, 50192}, {4662, 3826}, {58564, 58607}, {58608, 58564}, {58634, 142}, {58635, 58433}, {58678, 6666}
X(58563) = perspector of circumconic {{A, B, C, X(36838), X(54118)}}
X(58563)= pole of line {650, 4905} with respect to the incircle
X(58563)= pole of line {7, 3058} with respect to the Feuerbach hyperbola
X(58563) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(7)
X(58563) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(479), X(13476)}}, {{A, B, C, X(1088), X(10390)}}, {{A, B, C, X(17758), X(23062)}}
X(58563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 11025, 14100}, {7, 5572, 15726}, {7, 7671, 31391}, {142, 518, 58634}, {354, 14100, 11025}, {518, 3826, 4662}, {527, 58564, 58608}, {527, 58607, 58564}, {942, 5542, 518}, {971, 50192, 20116}, {3848, 58678, 6666}, {5542, 15841, 142}, {6173, 15185, 15587}, {11025, 14100, 5572}, {20116, 43180, 971}, {58433, 58635, 58451}, {58564, 58607, 58560}, {58581, 58583, 3812}


X(58564) = X(1)X(6600)∩X(9)X(354)

Barycentrics    a*(-(b-c)^4+a^3*(b+c)-3*a^2*(b^2+c^2)+a*(b+c)*(3*b^2-8*b*c+3*c^2)) : :
X(58564) = 3*X[2]+5*X[11025], X[9]+3*X[354], X[65]+3*X[38316], 3*X[551]+X[30329], X[942]+X[1001], X[1071]+3*X[38037], -X[2550]+5*X[5439], X[3555]+3*X[38057], 7*X[3622]+X[7672], X[3754]+X[43179], -3*X[3848]+2*X[58433], 3*X[3873]+5*X[18230] and many others

X(58564) lies on these lines: {1, 6600}, {2, 11025}, {7, 3660}, {9, 354}, {65, 38316}, {142, 2886}, {241, 55340}, {244, 4343}, {516, 9940}, {517, 42819}, {518, 1125}, {527, 58560}, {528, 58587}, {551, 30329}, {614, 54358}, {942, 1001}, {954, 50196}, {971, 9955}, {997, 5049}, {1071, 38037}, {1445, 4666}, {2346, 29817}, {2550, 5439}, {2801, 33709}, {3059, 5231}, {3086, 5728}, {3174, 5437}, {3243, 8583}, {3555, 38057}, {3622, 7672}, {3754, 43179}, {3812, 5853}, {3826, 10916}, {3848, 58433}, {3873, 18230}, {3874, 38059}, {3889, 5686}, {4326, 17603}, {4648, 14523}, {5220, 50191}, {5223, 50190}, {5542, 21616}, {5762, 58561}, {5784, 41861}, {5843, 58605}, {5845, 58606}, {5856, 18240}, {5857, 58566}, {5883, 30331}, {6173, 11238}, {6601, 10580}, {7671, 17668}, {7676, 27003}, {7677, 17097}, {7678, 31019}, {7686, 43175}, {8232, 17625}, {8257, 12915}, {8679, 58473}, {11227, 11495}, {11570, 38060}, {12447, 58609}, {12560, 37566}, {15008, 58569}, {15254, 50192}, {15570, 22836}, {15726, 58615}, {15837, 18839}, {17768, 58573}, {18544, 38107}, {20790, 56176}, {21258, 24388}, {21346, 40937}, {24393, 34791}, {24473, 38025}, {24474, 38031}, {24475, 38043}, {24476, 38048}, {25368, 29668}, {37544, 51715}, {37703, 51380}, {42449, 52888}, {42884, 50195}, {58451, 58677}, {58568, 58585}, {58583, 58618}, {58620, 58628}

X(58564) = midpoint of X(i) and X(j) for these {i,j}: {142, 5572}, {1125, 20116}, {15185, 40659}, {24393, 34791}, {3754, 43179}, {58563, 58608}, {7686, 43175}, {8257, 12915}, {942, 1001}
X(58564) = reflection of X(i) in X(j) for these {i,j}: {58563, 58607}, {58634, 58433}, {58635, 6666}
X(58564) = complement of X(40659)
X(58564)= pole of line {17494, 24002} with respect to the Steiner inellipse
X(58564) = center of the nine-point conic of quadrilateral XYZX(9) where XYZ is the cevian triangle of X(7)
X(58564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11025, 15185}, {2, 15185, 40659}, {142, 5572, 15733}, {518, 6666, 58635}, {527, 58607, 58563}, {1125, 20116, 518}, {3742, 11018, 58623}, {3742, 5572, 142}, {3848, 58634, 58433}, {58560, 58563, 58607}, {58560, 58578, 58577}, {58562, 58571, 5045}, {58563, 58608, 527}


X(58565) = X(1)X(88)∩X(10)X(354)

Barycentrics    a*(4*a*b*c+a^2*(b+c)-(b+c)*(b^2-3*b*c+c^2)) : :
X(58565) = -3*X[2]+X[3678], X[8]+3*X[3892], X[10]+3*X[354], 3*X[51]+X[23156], X[65]+3*X[551], -X[72]+5*X[19862], X[140]+X[6583], -3*X[210]+7*X[51073], 3*X[392]+X[4084], X[546]+X[26201], -3*X[547]+X[56762], -X[596]+3*X[42053] and many others

X(58565) lies on these lines: {1, 88}, {2, 3678}, {5, 2801}, {8, 3892}, {10, 354}, {11, 11263}, {12, 5083}, {21, 3337}, {35, 27003}, {36, 35016}, {46, 4666}, {51, 23156}, {56, 30143}, {57, 5248}, {65, 551}, {72, 19862}, {79, 26842}, {140, 6583}, {142, 3841}, {149, 9782}, {191, 5284}, {210, 51073}, {226, 3825}, {386, 17063}, {392, 4084}, {405, 4860}, {496, 17051}, {499, 18389}, {513, 43972}, {515, 13373}, {516, 9940}, {517, 3530}, {518, 3634}, {519, 3812}, {535, 3660}, {537, 4075}, {546, 26201}, {547, 56762}, {595, 29820}, {596, 42053}, {726, 58583}, {740, 24176}, {758, 942}, {946, 10202}, {952, 58605}, {971, 12571}, {993, 3338}, {997, 11518}, {999, 30147}, {1001, 5708}, {1071, 3817}, {1086, 36250}, {1089, 17140}, {1111, 17169}, {1203, 7292}, {1210, 3822}, {1385, 31870}, {1621, 3336}, {1698, 3873}, {1844, 17923}, {2185, 52375}, {2260, 25081}, {2392, 58469}, {2551, 3296}, {2594, 43048}, {2650, 49997}, {2771, 12009}, {2784, 58589}, {2796, 58618}, {2800, 5885}, {2901, 24165}, {3057, 3919}, {3086, 30274}, {3090, 15064}, {3218, 3647}, {3219, 25542}, {3244, 3753}, {3333, 8666}, {3454, 49676}, {3475, 26364}, {3487, 10200}, {3579, 42819}, {3589, 34378}, {3614, 17660}, {3616, 3878}, {3622, 3898}, {3624, 3868}, {3625, 3698}, {3626, 34791}, {3635, 5049}, {3649, 11813}, {3666, 24167}, {3670, 3720}, {3671, 37566}, {3679, 3889}, {3715, 16854}, {3726, 28594}, {3740, 4547}, {3746, 29817}, {3811, 5437}, {3814, 13407}, {3816, 6147}, {3828, 4540}, {3834, 7849}, {3840, 43220}, {3842, 13476}, {3848, 3988}, {3869, 25055}, {3876, 3894}, {3897, 37587}, {3911, 12432}, {3927, 8167}, {3947, 17625}, {3954, 25089}, {3976, 30116}, {4002, 4669}, {4004, 5919}, {4066, 49483}, {4067, 19883}, {4314, 17603}, {4340, 28080}, {4430, 19877}, {4647, 29824}, {4658, 29821}, {4694, 10459}, {4758, 34377}, {4857, 20292}, {4858, 6757}, {4861, 37602}, {4883, 24168}, {4966, 21081}, {4968, 49999}, {4975, 17164}, {5047, 6763}, {5220, 16853}, {5234, 10980}, {5249, 6701}, {5267, 5427}, {5303, 5426}, {5333, 35637}, {5433, 15556}, {5443, 11570}, {5536, 6986}, {5542, 9843}, {5550, 5692}, {5557, 37162}, {5563, 51111}, {5570, 6681}, {5603, 15016}, {5663, 15229}, {5697, 38314}, {5704, 18412}, {5709, 52769}, {5711, 30148}, {5719, 6691}, {5728, 38054}, {5777, 10171}, {5806, 28164}, {5847, 58562}, {5850, 58563}, {5853, 16216}, {5884, 5886}, {6173, 41865}, {6245, 12558}, {6690, 34753}, {6738, 16193}, {6744, 11018}, {6765, 30350}, {6797, 33812}, {6888, 11219}, {6901, 49176}, {6909, 35010}, {7191, 37559}, {7373, 22837}, {7677, 15932}, {7741, 31019}, {7988, 12528}, {8227, 31803}, {8583, 12559}, {8679, 58474}, {8726, 12511}, {9335, 19767}, {9519, 53002}, {9709, 42871}, {9946, 26470}, {9957, 51103}, {10107, 31792}, {10156, 58637}, {10165, 24474}, {10167, 51118}, {10177, 30424}, {10179, 50193}, {10197, 24914}, {10198, 30329}, {10199, 11375}, {10283, 35004}, {10453, 28612}, {10473, 43070}, {10582, 12514}, {10914, 51071}, {11019, 12446}, {11025, 38052}, {11113, 52783}, {11227, 12512}, {11230, 20117}, {11407, 12651}, {11551, 41012}, {11573, 31757}, {12059, 30852}, {12433, 58568}, {12577, 58576}, {12611, 33668}, {12629, 30343}, {12675, 19925}, {13369, 18483}, {13405, 50196}, {13464, 34339}, {13750, 44675}, {13995, 51569}, {14740, 27529}, {15049, 23154}, {15185, 38204}, {15934, 22836}, {16600, 24512}, {16611, 20963}, {16828, 46909}, {16971, 21951}, {17048, 17758}, {17135, 28611}, {17234, 30172}, {17392, 50610}, {17483, 26127}, {17546, 51573}, {17597, 30145}, {17614, 44840}, {17626, 21625}, {17766, 58627}, {18139, 30171}, {18254, 37701}, {19860, 51816}, {20718, 58387}, {21808, 24036}, {21921, 45751}, {24068, 42055}, {24325, 50605}, {24470, 58619}, {24476, 38049}, {25441, 33123}, {26102, 27784}, {26109, 41329}, {26725, 47319}, {28082, 37522}, {28096, 37693}, {28158, 31805}, {28194, 40296}, {28228, 31787}, {28522, 58620}, {28629, 45700}, {30117, 37607}, {30142, 37674}, {30436, 46660}, {30690, 56677}, {30827, 41870}, {30962, 33945}, {31165, 51109}, {31272, 47320}, {31418, 41861}, {31794, 58679}, {33130, 45939}, {34379, 58581}, {34545, 35197}, {36946, 48696}, {37294, 50378}, {37536, 50293}, {37582, 51715}, {44663, 51108}, {46827, 49479}, {49478, 50587}, {50604, 52541}, {58573, 58578}

X(58565) = midpoint of X(i) and X(j) for these {i,j}: {1, 3754}, {10, 3881}, {140, 6583}, {142, 20116}, {1071, 31871}, {10107, 31792}, {1385, 31870}, {11573, 31757}, {12564, 12609}, {12675, 19925}, {13369, 18483}, {13464, 34339}, {20117, 24475}, {354, 3833}, {3626, 34791}, {3635, 5836}, {3636, 33815}, {3678, 3874}, {3812, 5045}, {3842, 13476}, {3868, 4127}, {3873, 3956}, {3878, 4757}, {3892, 3968}, {3894, 4532}, {31794, 58679}, {5, 12005}, {546, 26201}, {5083, 6702}, {50196, 58405}, {5570, 6681}, {5806, 58567}, {5885, 5901}, {65, 3884}, {6701, 10122}, {6744, 12436}, {6797, 33812}, {58587, 58591}, {942, 1125}, {9940, 13374}
X(58565) = reflection of X(i) in X(j) for these {i,j}: {3918, 3812}, {3988, 5044}, {34790, 4540}, {4015, 3634}, {5044, 19878}
X(58565) = complement of X(3678)
X(58565) = X(i)-complementary conjugate of X(j) for these {i, j}: {58, 3647}, {79, 3454}, {476, 53574}, {1333, 16585}, {1789, 34823}, {2160, 1211}, {3615, 1329}, {3733, 6741}, {6186, 1213}, {6742, 31946}, {7100, 21530}, {13486, 513}, {14158, 51569}, {14560, 1639}, {30690, 21245}, {35049, 21232}, {52372, 442}, {52374, 17052}, {52375, 10}, {52382, 34829}, {52393, 141}, {53314, 3258}, {55209, 21262}, {56844, 31845}
X(58565)= pole of line {5048, 10543} with respect to the Feuerbach hyperbola
X(58565)= pole of line {3960, 4560} with respect to the Steiner inellipse
X(58565) = center of the nine-point conic of quadrilateral XYZX(10) where XYZ is the cevian triangle of X(7)
X(58565) = intersection, other than A, B, C, of circumconics {{A, B, C, X(88), X(55090)}}, {{A, B, C, X(100), X(43972)}}, {{A, B, C, X(513), X(33771)}}, {{A, B, C, X(1320), X(55091)}}, {{A, B, C, X(4256), X(20615)}}, {{A, B, C, X(25440), X(39704)}}
X(58565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1054, 33771}, {1, 24443, 4868}, {1, 3306, 25440}, {1, 3754, 2802}, {1, 5253, 214}, {1, 5883, 3754}, {2, 18398, 3874}, {5, 12005, 2801}, {8, 50190, 3892}, {10, 354, 3881}, {10, 5439, 3833}, {12, 13751, 5083}, {21, 3337, 4973}, {65, 551, 3884}, {142, 10916, 3841}, {354, 5439, 10}, {518, 3634, 4015}, {519, 3812, 3918}, {942, 1125, 758}, {942, 58566, 58626}, {1071, 3817, 31871}, {1210, 51706, 3822}, {3333, 54318, 8666}, {3622, 5903, 3898}, {3624, 3868, 10176}, {3636, 33815, 517}, {3670, 3720, 3743}, {3753, 17609, 3244}, {3812, 5045, 519}, {3812, 58560, 5045}, {3828, 34790, 4540}, {3848, 5044, 19878}, {3868, 10176, 4127}, {3878, 5902, 4757}, {3894, 34595, 3876}, {4067, 19883, 25917}, {4084, 15808, 392}, {5249, 25639, 6701}, {5542, 9843, 21077}, {5806, 58567, 28164}, {5806, 58615, 58567}, {5885, 5901, 2800}, {9940, 13374, 516}, {11230, 24475, 20117}, {11281, 15325, 1125}, {15934, 25524, 22836}, {17450, 24443, 1}, {24473, 25917, 4067}, {28082, 37522, 49480}, {58568, 58591, 58569}, {58569, 58587, 12433}


X(58566) = X(1)X(1389)∩X(12)X(354)

Barycentrics    a*(-(a^4*(b-c)^2)+a^5*(b+c)-(b^2-c^2)^2*(b^2-3*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+3*b*c+c^2)-a^3*(b+c)*(2*b^2+b*c+2*c^2)+a^2*(2*b^4-5*b^3*c-2*b^2*c^2-5*b*c^3+2*c^4)) : :
X(58566) = X[12]+3*X[354], X[1071]+3*X[38039], X[3555]+3*X[38058], X[5083]+X[8068], X[5728]+3*X[38056], X[11570]+3*X[38063], X[15185]+3*X[38206], -5*X[17609]+X[37734], X[24473]+3*X[38027], X[24474]+3*X[38033], X[24475]+3*X[38045], X[24476]+3*X[38051]

X(58566) lies on circumconic {{A, B, C, X(1389), X(55091)}} and these lines: {1, 1389}, {11, 10122}, {12, 354}, {30, 58569}, {65, 10165}, {79, 13128}, {140, 12432}, {226, 12005}, {244, 31880}, {495, 3881}, {496, 12564}, {499, 3487}, {515, 16193}, {518, 6668}, {529, 58560}, {758, 942}, {943, 5536}, {946, 12711}, {952, 5045}, {999, 30143}, {1056, 37710}, {1071, 38039}, {2800, 13750}, {2975, 3333}, {3085, 38134}, {3090, 18412}, {3337, 41547}, {3485, 5884}, {3555, 38058}, {3671, 10202}, {3754, 50194}, {3812, 5855}, {3874, 11374}, {3947, 38109}, {4038, 8555}, {4298, 5841}, {5083, 8068}, {5173, 6684}, {5542, 58607}, {5719, 6583}, {5728, 38056}, {5842, 11018}, {5849, 58562}, {5852, 58563}, {5857, 58564}, {5883, 25524}, {5902, 7288}, {6763, 10980}, {7672, 31423}, {8679, 58476}, {9654, 38162}, {10391, 18483}, {10399, 10589}, {10954, 40260}, {11019, 26470}, {11037, 20060}, {11375, 18389}, {11529, 19861}, {11553, 53525}, {11570, 38063}, {11700, 37607}, {12572, 58578}, {13405, 31659}, {13464, 50195}, {15185, 38206}, {15934, 37733}, {17603, 31730}, {17605, 41562}, {17609, 37734}, {24473, 38027}, {24474, 38033}, {24475, 38045}, {24476, 38051}, {31794, 31838}, {32396, 50192}, {33961, 58568}, {58570, 58605}

X(58566) = midpoint of X(i) and X(j) for these {i,j}: {5083, 8068}, {942, 37737}
X(58566) = reflection of X(i) in X(j) for these {i,j}: {58636, 6668}
X(58566)= pole of line {10543, 10624} with respect to the Feuerbach hyperbola
X(58566) = center of the nine-point conic of quadrilateral XYZX(12) where XYZ is the cevian triangle of X(7)
X(58566) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6668, 58636}, {942, 37737, 758}, {5045, 58561, 18240}, {58565, 58626, 942}


X(58567) = X(1)X(1407)∩X(3)X(518)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-2*a^3*(b+c)*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)-a^4*(b^2-8*b*c+c^2)+2*a^2*(b^2+c^2)*(b^2-4*b*c+c^2)) : :
X(58567) = 3*X[2]+X[12680], -X[4]+3*X[3742], -2*X[5]+3*X[3848], X[20]+3*X[354], -X[40]+3*X[10178], X[65]+3*X[5731], -X[72]+5*X[7987], -4*X[140]+3*X[58451], 3*X[165]+X[3555], -2*X[182]+X[58694], -3*X[210]+7*X[3523], 3*X[392]+X[15071] and many others

X(58567) lies on these lines: {1, 1407}, {2, 12680}, {3, 518}, {4, 3742}, {5, 3848}, {10, 9858}, {20, 354}, {30, 13373}, {36, 44547}, {40, 10178}, {56, 10391}, {63, 8273}, {65, 5731}, {72, 7987}, {84, 1001}, {140, 58451}, {165, 3555}, {182, 58694}, {210, 3523}, {388, 17603}, {389, 9037}, {392, 15071}, {405, 10085}, {411, 32636}, {511, 58617}, {515, 3812}, {516, 5045}, {517, 548}, {519, 31787}, {549, 58629}, {551, 9856}, {581, 4719}, {620, 58681}, {631, 3740}, {674, 13348}, {912, 12038}, {942, 4297}, {944, 5836}, {946, 15726}, {950, 3660}, {952, 40296}, {958, 8726}, {960, 1071}, {962, 5918}, {971, 1125}, {982, 15852}, {991, 37592}, {999, 12520}, {1012, 51715}, {1040, 34046}, {1208, 22097}, {1376, 37526}, {1385, 5248}, {1386, 36746}, {1420, 12711}, {1490, 25524}, {1503, 58579}, {1742, 3976}, {1858, 37605}, {1864, 7288}, {2478, 12678}, {2646, 18444}, {2771, 12104}, {2777, 58601}, {2794, 58590}, {2801, 5044}, {2810, 17704}, {2829, 58591}, {3035, 58687}, {3073, 3246}, {3244, 31798}, {3333, 5572}, {3338, 7580}, {3361, 5728}, {3486, 37566}, {3515, 41611}, {3522, 3873}, {3530, 58630}, {3601, 17625}, {3616, 11220}, {3622, 9961}, {3624, 5927}, {3634, 9947}, {3655, 37562}, {3681, 15717}, {3746, 17613}, {3816, 6260}, {3874, 31793}, {3880, 5882}, {3889, 9778}, {3892, 5493}, {3913, 37560}, {3916, 15931}, {4002, 37712}, {4292, 16193}, {4298, 11018}, {4301, 5049}, {4304, 50196}, {4311, 50195}, {4314, 12915}, {4421, 10270}, {4430, 21734}, {4662, 6684}, {4663, 36745}, {5083, 38759}, {5126, 51717}, {5265, 10394}, {5439, 5691}, {5694, 31666}, {5703, 8581}, {5768, 5794}, {5777, 10165}, {5784, 30478}, {5806, 28164}, {5840, 58595}, {5884, 31786}, {5904, 58221}, {5972, 58680}, {6036, 58682}, {6223, 26105}, {6245, 25466}, {6261, 18238}, {6690, 6705}, {6700, 18227}, {6710, 58686}, {6712, 58684}, {6713, 58683}, {6718, 58685}, {6744, 58577}, {6763, 35202}, {6769, 42871}, {6836, 10404}, {6838, 17728}, {6890, 17718}, {6909, 37080}, {7171, 11496}, {7330, 15254}, {7686, 10202}, {8679, 9729}, {8727, 51706}, {9047, 15644}, {9623, 9845}, {9942, 12114}, {10107, 34339}, {10157, 19862}, {10164, 34790}, {10179, 12672}, {10246, 45776}, {10269, 37837}, {10476, 30271}, {10574, 23155}, {10785, 41871}, {10857, 57279}, {10916, 37424}, {11500, 37534}, {12108, 58632}, {12125, 27525}, {12433, 58573}, {12513, 30503}, {12528, 25917}, {12575, 16215}, {12577, 16201}, {12609, 31657}, {12651, 44841}, {12669, 17558}, {12671, 28628}, {12684, 54370}, {12704, 37426}, {12709, 13384}, {12722, 24728}, {13334, 58695}, {13359, 32556}, {13360, 32555}, {13407, 37374}, {13750, 21578}, {14100, 14986}, {15016, 50811}, {15178, 26200}, {15338, 18839}, {15587, 19843}, {16616, 28160}, {17502, 31837}, {17616, 24541}, {17624, 31393}, {17660, 38693}, {17702, 58580}, {18450, 57283}, {18908, 31423}, {20117, 50828}, {20718, 58389}, {21077, 37364}, {21625, 43182}, {21628, 51723}, {22753, 41854}, {23698, 58589}, {24477, 37108}, {28172, 31822}, {29181, 58562}, {30304, 31435}, {31445, 52769}, {31658, 58678}, {31730, 43175}, {31776, 58569}, {31795, 58570}, {31937, 38028}, {33597, 37561}, {35010, 44425}, {37434, 38053}, {40266, 58230}, {48378, 58671}, {58594, 58612}

X(58567) = midpoint of X(i) and X(j) for these {i,j}: {1, 9943}, {1385, 13369}, {12520, 12710}, {12722, 24728}, {13624, 26201}, {3, 12675}, {3244, 31798}, {3874, 31793}, {3881, 12512}, {34339, 34773}, {40, 34791}, {5045, 31805}, {5083, 38759}, {5572, 5732}, {5882, 31788}, {5884, 31786}, {6261, 18238}, {7686, 18481}, {942, 4297}, {944, 5836}, {960, 1071}, {9942, 12114}
X(58567) = reflection of X(i) in X(j) for these {i,j}: {10107, 34339}, {13374, 13373}, {3812, 9940}, {4662, 6684}, {5806, 58565}, {58610, 58589}, {58611, 58595}, {58612, 58594}, {58613, 58591}, {58629, 549}, {58630, 3530}, {58631, 140}, {58632, 12108}, {58637, 3}, {58671, 48378}, {58678, 31658}, {58679, 1385}, {58680, 5972}, {58681, 620}, {58682, 6036}, {58683, 6713}, {58684, 6712}, {58685, 6718}, {58686, 6710}, {58687, 3035}, {58690, 17704}, {58694, 182}, {58695, 13334}, {9947, 3634}
X(58567)= pole of line {3309, 23187} with respect to the circumcircle
X(58567)= pole of line {3304, 11036} with respect to the Feuerbach hyperbola
X(58567)= pole of line {4228, 7957} with respect to the Stammler hyperbola
X(58567) = center of the nine-point conic of quadrilateral XYZX(20) where XYZ is the cevian triangle of X(7)
X(58567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10167, 9943}, {3, 12675, 518}, {3, 518, 58637}, {30, 13373, 13374}, {140, 58631, 58451}, {515, 9940, 3812}, {1071, 3576, 960}, {1385, 13369, 6001}, {1385, 34862, 5248}, {1385, 6001, 58679}, {2810, 17704, 58690}, {2829, 58591, 58613}, {3522, 3873, 7957}, {3616, 11220, 12688}, {3881, 12512, 517}, {5045, 31805, 516}, {5806, 58615, 58565}, {5840, 58595, 58611}, {5884, 31786, 44663}, {5884, 51705, 31786}, {5918, 17609, 962}, {9940, 58588, 58578}, {9947, 10156, 3634}, {10178, 34791, 40}, {10202, 18481, 7686}, {13373, 13374, 58560}, {13624, 26201, 912}, {23698, 58589, 58610}, {28164, 58565, 5806}


X(58568) = X(1)X(6596)∩X(21)X(354)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2-4*b*c+c^2)-a^3*(b+c)*(2*b^2+3*b*c+2*c^2)+2*a^2*(b^4-3*b^3*c-5*b^2*c^2-3*b*c^3+c^4)+a*(b+c)*(b^4+3*b^3*c-10*b^2*c^2+3*b*c^3+c^4)) : :
X(58568) = X[21]+3*X[354], X[191]+7*X[50190], -X[442]+3*X[3742], 3*X[551]+X[47319], X[960]+X[39772], -5*X[3616]+X[44782], X[3647]+5*X[50191], 3*X[3873]+5*X[15674], X[3881]+X[58449], 3*X[5426]+5*X[18398], -5*X[5439]+X[47033], X[6841]+X[12675] and many others

X(58568) lies on these lines: {1, 6596}, {21, 354}, {30, 13373}, {191, 50190}, {442, 3742}, {496, 2486}, {518, 6675}, {551, 47319}, {758, 3636}, {942, 4973}, {960, 39772}, {1001, 54302}, {2771, 5901}, {2795, 58590}, {3338, 37286}, {3616, 44782}, {3647, 50191}, {3748, 31660}, {3812, 6738}, {3873, 15674}, {3881, 58449}, {5173, 41547}, {5426, 18398}, {5439, 47033}, {5883, 17563}, {5902, 19535}, {6841, 12675}, {8679, 58479}, {9528, 58598}, {10122, 11281}, {11020, 28628}, {11376, 17637}, {12433, 58565}, {12680, 52269}, {12917, 33593}, {16216, 58609}, {17609, 34195}, {17768, 58563}, {21677, 34791}, {27086, 37080}, {29817, 41542}, {33961, 58566}, {58564, 58585}, {58570, 58586}

X(58568) = midpoint of X(i) and X(j) for these {i,j}: {1, 8261}, {10122, 11281}, {21677, 34791}, {3881, 58449}, {5045, 58619}, {6841, 12675}, {942, 35016}, {960, 39772}
X(58568) = reflection of X(i) in X(j) for these {i,j}: {58638, 6675}
X(58568) = center of the nine-point conic of quadrilateral XYZX(21) where XYZ is the cevian triangle of X(7)
X(58568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {496, 11263, 20288}, {518, 6675, 58638}, {5045, 58619, 758}, {58565, 58569, 58591}


X(58569) = X(1)X(3)∩X(11)X(13852)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2-4*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+3*b*c+c^2)-a^3*(b+c)*(2*b^2+b*c+2*c^2)+2*a^2*(b^4-3*b^3*c-b^2*c^2-3*b*c^3+c^4)) : :
X(58569) = -X[5086]+5*X[5439], X[12680]+3*X[52850]

X(58569) lies on circumconic {{A, B, C, X(60), X(41345)}} and these lines: {1, 3}, {11, 13852}, {30, 58566}, {214, 8261}, {226, 26201}, {501, 18165}, {518, 58404}, {1125, 58619}, {1154, 10108}, {2771, 37737}, {2779, 58582}, {3526, 18412}, {3530, 12432}, {3742, 3824}, {5044, 58578}, {5057, 10266}, {5086, 5439}, {5253, 33598}, {5284, 52126}, {5443, 17637}, {5719, 12005}, {5745, 58692}, {7004, 8143}, {9047, 58562}, {9955, 10391}, {10122, 15325}, {11263, 12917}, {11813, 12267}, {12433, 58565}, {12680, 52850}, {12711, 51709}, {13369, 33668}, {13374, 31795}, {15008, 58564}, {17660, 37731}, {18240, 58605}, {24470, 58586}, {26089, 45287}, {31776, 58567}

X(58569) = midpoint of X(i) and X(j) for these {i,j}: {942, 2646}
X(58569) = reflection of X(i) in X(j) for these {i,j}: {5045, 16193}, {58640, 58404}
X(58569) = center of the nine-point conic of quadrilateral XYZX(35) where XYZ is the cevian triangle of X(7)
X(58569) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {354, 3337, 942}, {518, 58404, 58640}, {942, 2646, 517}, {2646, 32636, 14794}, {3337, 37616, 5131}, {5045, 13373, 58570}, {5045, 58615, 58573}, {5045, 9940, 31794}, {11018, 13373, 5045}, {11018, 58576, 16216}, {13373, 16216, 58576}, {24470, 58626, 58586}, {58568, 58591, 58565}


X(58570) = X(1)X(3)∩X(30)X(18240)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2-4*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+b*c+c^2)-a^3*(b+c)*(2*b^2-b*c+2*c^2)+2*a^2*(b^4-3*b^3*c+5*b^2*c^2-3*b*c^3+c^4)) : :
X(58570) = 3*X[3582]+X[17660], -3*X[3742]+X[3814], X[5083]+X[15325], -X[5176]+5*X[5439]

X(58570) lies on circumconic {{A, B, C, X(3336), X(43947)}} and these lines: {1, 3}, {30, 18240}, {496, 26201}, {499, 56762}, {513, 58627}, {515, 58587}, {518, 6681}, {519, 58591}, {535, 58560}, {758, 58625}, {971, 22835}, {2771, 44675}, {3582, 17660}, {3742, 3814}, {3880, 33812}, {3881, 34753}, {4298, 58561}, {5044, 58585}, {5083, 15325}, {5176, 5439}, {5844, 46681}, {6147, 11813}, {7743, 33593}, {9037, 58562}, {10105, 13391}, {11230, 17625}, {13374, 31776}, {17626, 18527}, {31795, 58567}, {31828, 50443}, {58566, 58605}, {58568, 58586}

X(58570) = midpoint of X(i) and X(j) for these {i,j}: {18838, 25405}, {5083, 15325}, {5122, 18839}, {5126, 5570}, {942, 1319}
X(58570) = reflection of X(i) in X(j) for these {i,j}: {31787, 18856}, {5570, 50192}, {58641, 6681}
X(58570) = inverse of X(3336) in incircle
X(58570) = inverse of X(3336) in DeLongchamps ellipse
X(58570)= pole of line {513, 3336} with respect to the incircle
X(58570)= pole of line {513, 3336} with respect to the DeLongchamps ellipse
X(58570) = center of the nine-point conic of quadrilateral XYZX(36) where XYZ is the cevian triangle of X(7)
X(58570) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 18856, 31787}, {517, 50192, 5570}, {518, 6681, 58641}, {942, 5049, 5425}, {2446, 2447, 3336}, {3660, 16193, 5126}, {5045, 13373, 58569}, {5045, 58573, 31794}, {5045, 9940, 31792}, {5563, 13751, 942}, {13373, 58576, 5045}, {18838, 25405, 517}


X(58571) = X(1)X(5132)∩X(37)X(38)

Barycentrics    a*(-(b*(b-c)^2*c)+a^2*(b+c)^2-a*(b+c)*(b^2-4*b*c+c^2)) : :
X(58571) = -3*X[2]+X[22271], -X[3696]+5*X[5439], 3*X[3753]+X[49475], -3*X[3833]+X[4732], -3*X[3848]+X[58655], 3*X[3873]+5*X[4687], 3*X[3892]+X[49457], 3*X[5883]+X[49471], 5*X[11025]+3*X[27475], X[17049]+X[17390], 3*X[17392]+X[21746], X[22316]+3*X[42057]

X(58571) lies on these lines: {1, 5132}, {2, 22271}, {37, 38}, {75, 29824}, {86, 57024}, {241, 43915}, {244, 2667}, {513, 3664}, {518, 1125}, {536, 42053}, {740, 24176}, {742, 58606}, {940, 1486}, {942, 3743}, {984, 31318}, {1086, 4890}, {1193, 17609}, {1269, 57034}, {2294, 17463}, {2309, 16726}, {2805, 58591}, {3555, 25512}, {3696, 5439}, {3723, 20358}, {3739, 3741}, {3753, 49475}, {3812, 28581}, {3833, 4732}, {3848, 58655}, {3873, 4687}, {3892, 49457}, {3912, 22279}, {4038, 18165}, {4043, 17140}, {4068, 20367}, {4553, 17317}, {4849, 28247}, {5049, 52877}, {5572, 34830}, {5711, 45061}, {5883, 49471}, {6682, 58396}, {8679, 58485}, {8680, 58626}, {9345, 52086}, {10108, 31757}, {11018, 40646}, {11025, 27475}, {14520, 42356}, {15668, 35892}, {16482, 17120}, {16507, 23532}, {16679, 55340}, {16696, 45223}, {16826, 56537}, {17018, 22278}, {17049, 17390}, {17243, 21865}, {17245, 52020}, {17385, 28600}, {17392, 21746}, {18398, 31320}, {18635, 21252}, {22277, 29571}, {22293, 27255}, {22316, 42057}, {22769, 27802}, {27473, 30329}, {29010, 58561}, {30970, 31238}, {37787, 55102}, {43223, 58642}, {49490, 49997}

X(58571) = midpoint of X(i) and X(j) for these {i,j}: {17049, 17390}, {37, 13476}, {3842, 3881}, {58583, 58620}, {942, 15569}
X(58571) = reflection of X(i) in X(j) for these {i,j}: {40607, 4698}
X(58571) = complement of X(22271)
X(58571) = X(i)-Dao conjugate of X(j) for these {i, j}: {16727, 52619}
X(58571) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4557, 513}
X(58571) = X(i)-complementary conjugate of X(j) for these {i, j}: {58, 40586}, {6577, 661}, {8049, 3454}, {34444, 1213}, {39735, 21245}, {39797, 1211}, {40147, 6537}, {53651, 31946}
X(58571)= pole of line {20367, 44319} with respect to the incircle
X(58571)= pole of line {239, 514} with respect to the DeLongchamps ellipse
X(58571)= pole of line {7199, 16751} with respect to the Steiner inellipse
X(58571) = center of the nine-point conic of quadrilateral XYZX(37) where XYZ is the cevian triangle of X(7)
X(58571) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2350), X(34444)}}, {{A, B, C, X(13476), X(39797)}}, {{A, B, C, X(39734), X(40586)}}
X(58571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 354, 13476}, {518, 4698, 40607}, {942, 15569, 20718}, {3720, 4022, 37}, {3842, 3881, 518}, {5045, 58564, 58562}, {58560, 58620, 58583}, {58583, 58620, 536}


X(58572) = X(1)X(15621)∩X(42)X(244)

Barycentrics    a*(4*a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)+a^3*(b+c)^2-a*(b^4-3*b^3*c-3*b*c^3+c^4)) : :
X(58572) = -3*X[2]+X[14973]

X(58572) lies on these lines: {1, 15621}, {2, 14973}, {42, 244}, {518, 6682}, {519, 3812}, {674, 11018}, {942, 4719}, {982, 13476}, {1125, 58393}, {2813, 58592}, {3666, 20718}, {3739, 3741}, {5439, 6533}, {11019, 53564}, {17011, 50362}, {17135, 19804}, {18165, 29821}, {20011, 24620}, {24174, 50190}, {30986, 50063}, {33107, 38390}

X(58572) = reflection of X(i) in X(j) for these {i,j}: {58644, 6685}
X(58572) = complement of X(14973)
X(58572) = X(i)-complementary conjugate of X(j) for these {i, j}: {58, 52087}, {849, 56325}, {20028, 3454}, {52150, 1213}, {53083, 1211}
X(58572)= pole of line {659, 3737} with respect to the DeLongchamps ellipse
X(58572)= pole of line {7199, 16754} with respect to the Steiner inellipse
X(58572) = center of the nine-point conic of quadrilateral XYZX(42) where XYZ is the cevian triangle of X(7)
X(58572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6685, 58644}


X(58573) = X(1)X(3)∩X(971)X(7681)

Barycentrics    a*(a^5*(b+c)-2*a^3*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2-4*b*c+c^2)+2*a^2*(b^4-3*b^3*c+6*b^2*c^2-3*b*c^3+c^4)) : :
X(58573) = -X[3436]+5*X[5439], 3*X[3753]+X[36977], -X[5044]+2*X[6691]

X(58573) lies on these lines: {1, 3}, {518, 34753}, {758, 58585}, {971, 7681}, {998, 17054}, {1329, 51706}, {1656, 8581}, {1836, 18223}, {2829, 5806}, {3086, 31937}, {3436, 5439}, {3742, 6147}, {3753, 36977}, {3911, 58630}, {5044, 6691}, {5790, 9850}, {7956, 18238}, {9856, 10785}, {10178, 10386}, {11019, 13369}, {12433, 58567}, {12699, 17626}, {12813, 58614}, {13374, 18260}, {17768, 58564}, {18541, 52860}, {31795, 31805}, {58565, 58578}

X(58573) = midpoint of X(i) and X(j) for these {i,j}: {37582, 50196}, {56, 942}
X(58573) = reflection of X(i) in X(j) for these {i,j}: {5044, 6691}, {5045, 58576}, {50196, 50192}, {58645, 58405}
X(58573) = center of the nine-point conic of quadrilateral XYZX(46) where XYZ is the cevian triangle of X(7)
X(58573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56, 17437, 37582}, {56, 4860, 17437}, {517, 50192, 50196}, {518, 58405, 58645}, {942, 3660, 13373}, {999, 37566, 34339}, {3660, 4860, 11018}, {5045, 31787, 31792}, {5045, 58615, 58569}, {11018, 50192, 5045}, {24928, 37582, 8069}, {31776, 58587, 5806}, {37582, 50196, 517}


X(58574) = X(2)X(9049)∩X(51)X(354)

Barycentrics    a^2*(3*a*b*c*(b+c)+a^2*(b^2+c^2)-(b-c)^2*(b^2+5*b*c+c^2)) : :
X(58574) = X[51]+3*X[354], X[375]+X[3873], 2*X[5045]+X[58493], -2*X[5892]+X[58690], -2*X[10219]+X[58629], 5*X[18398]+X[42450], 2*X[50192]+X[58469]

X(58574) lies on these lines: {2, 9049}, {51, 354}, {375, 3873}, {511, 58560}, {518, 6688}, {674, 3742}, {942, 2390}, {1154, 58561}, {2389, 24386}, {2393, 58562}, {3848, 9052}, {3982, 38390}, {4666, 22276}, {5045, 58493}, {5272, 22277}, {5644, 45729}, {5892, 58690}, {5943, 9026}, {6000, 13374}, {10219, 58629}, {12586, 18950}, {16419, 41454}, {18165, 24216}, {18398, 42450}, {50192, 58469}

X(58574) = midpoint of X(i) and X(j) for these {i,j}: {375, 3873}
X(58574) = reflection of X(i) in X(j) for these {i,j}: {58629, 10219}, {58646, 6688}, {58690, 5892}
X(58574) = center of the nine-point conic of quadrilateral XYZX(51) where XYZ is the cevian triangle of X(7)
X(58574) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {375, 3873, 9039}, {518, 6688, 58646}


X(58575) = X(52)X(354)∩X(140)X(674)

Barycentrics    a^2*(a^5*b*c*(b+c)+a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)-2*a^3*b*c*(b+c)*(b^2+c^2)-(b^2-c^2)^2*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)-a^4*(3*b^4+b^3*c+b*c^3+3*c^4)+a^2*(b^2+c^2)*(3*b^4+2*b^3*c-8*b^2*c^2+2*b*c^3+3*c^4)) : :
X(58575) = X[52]+3*X[354], -3*X[375]+5*X[15026], -X[1216]+3*X[3742], 5*X[3567]+3*X[3873], -3*X[3681]+11*X[15024], X[3881]+X[31760], X[5446]+X[12675], X[12005]+X[31757], -2*X[12006]+X[58690], X[24475]+X[42450], -2*X[32205]+X[58632]

X(58575) lies on these lines: {30, 58617}, {52, 354}, {140, 674}, {143, 8679}, {375, 15026}, {511, 13373}, {517, 6738}, {518, 5462}, {912, 58469}, {916, 9955}, {952, 58493}, {1154, 58561}, {1216, 3742}, {3567, 3873}, {3681, 15024}, {3881, 31760}, {5446, 12675}, {5447, 9047}, {6642, 45728}, {9049, 13363}, {9052, 11695}, {12005, 31757}, {12006, 58690}, {12329, 15805}, {12586, 18951}, {13374, 13754}, {15229, 28146}, {24475, 42450}, {32205, 58632}, {34382, 58621}, {58489, 58497}

X(58575) = midpoint of X(i) and X(j) for these {i,j}: {12005, 31757}, {24475, 42450}, {3881, 31760}, {5446, 12675}
X(58575) = reflection of X(i) in X(j) for these {i,j}: {58630, 11695}, {58632, 32205}, {58647, 5462}, {58690, 12006}
X(58575) = center of the nine-point conic of quadrilateral XYZX(52) where XYZ is the cevian triangle of X(7)
X(58575) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5462, 58647}


X(58576) = X(1)X(3)∩X(4)X(17626)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2+a*(b-c)^2*(b+c)*(b^2+c^2)-a^4*(b^2-4*b*c+c^2)-2*a^3*(b^3+c^3)+2*a^2*(b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+c^4)) : :
X(58576) = -X[1329]+3*X[3742], -5*X[3698]+X[36972], X[3881]+X[58405], X[8256]+X[34791]

X(58576) lies on these lines: {1, 3}, {4, 17626}, {7, 10305}, {8, 17624}, {10, 58623}, {495, 8582}, {496, 971}, {518, 6691}, {529, 58560}, {946, 18238}, {1056, 5439}, {1058, 10167}, {1071, 14986}, {1329, 3742}, {1413, 34036}, {2829, 4298}, {2841, 58597}, {3086, 5777}, {3436, 11037}, {3487, 10569}, {3555, 7080}, {3698, 36972}, {3812, 38455}, {3868, 24558}, {3873, 27383}, {3881, 58405}, {3911, 58643}, {4315, 7686}, {4355, 52860}, {5044, 15325}, {5082, 17612}, {5083, 44547}, {5542, 21616}, {5572, 43177}, {5587, 9850}, {5704, 18908}, {5722, 12667}, {5806, 18990}, {5854, 46681}, {5927, 47743}, {6260, 7681}, {6745, 58645}, {7290, 23072}, {7354, 31822}, {8227, 8581}, {8256, 34791}, {8679, 58471}, {9856, 11373}, {10855, 31419}, {11374, 38053}, {12577, 58565}, {12688, 37704}, {12710, 21625}, {12908, 58614}, {13464, 18260}, {13747, 51380}, {14760, 58594}, {15171, 31805}, {15733, 49627}, {16137, 58619}, {17567, 17658}, {17768, 58563}, {18251, 45700}, {24477, 34790}, {42019, 52424}, {52264, 58650}, {54385, 55432}

X(58576) = midpoint of X(i) and X(j) for these {i,j}: {3881, 58405}, {56, 50196}, {5045, 58573}, {5173, 8069}, {7681, 12675}, {8256, 34791}, {942, 24928}
X(58576) = reflection of X(i) in X(j) for these {i,j}: {16215, 5045}, {58649, 6691}
X(58576) = center of the nine-point conic of quadrilateral XYZX(56) where XYZ is the cevian triangle of X(7)
X(58576) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(10306)}}, {{A, B, C, X(55), X(10305)}}, {{A, B, C, X(7994), X(42464)}}, {{A, B, C, X(13600), X(17097)}}
X(58576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 13370, 50371}, {1, 3338, 1466}, {1, 3660, 9940}, {1, 37560, 3295}, {1, 37566, 31788}, {1, 41426, 1385}, {1, 57, 10306}, {1, 65, 13600}, {56, 12704, 37582}, {56, 354, 50196}, {354, 16193, 5045}, {354, 3333, 942}, {517, 5045, 16215}, {518, 6691, 58649}, {3086, 17625, 5777}, {4298, 18240, 13374}, {5045, 16201, 5049}, {5045, 58569, 16216}, {5045, 58570, 13373}, {5045, 58573, 517}, {5045, 58615, 16201}, {5045, 9940, 1}, {13373, 16216, 58569}, {16216, 58569, 11018}


X(58577) = X(1)X(3)∩X(2)X(9954)

Barycentrics    a*(a^4*(b+c)-(b-c)^4*(b+c)+4*a^2*b*c*(b+c)+2*a*(b-c)^2*(b^2-3*b*c+c^2)-2*a^3*(b^2-b*c+c^2)) : :
X(58577) = -3*X[2]+X[9954], -X[3421]+5*X[5439], -X[3452]+3*X[3742], 3*X[3873]+X[17658], X[7682]+X[12675], 3*X[17612]+X[36845]

X(58577) lies on these lines: {1, 3}, {2, 9954}, {7, 10307}, {8, 12128}, {10, 11035}, {518, 6692}, {527, 58560}, {971, 7956}, {1210, 9947}, {2823, 58594}, {2835, 58596}, {3421, 5439}, {3452, 3742}, {3812, 12577}, {3820, 21620}, {3873, 17658}, {4298, 5806}, {4310, 56218}, {4321, 19541}, {4847, 10855}, {5572, 15841}, {5658, 5728}, {6744, 58567}, {7682, 12675}, {7743, 7965}, {8083, 8102}, {8581, 10157}, {9856, 14986}, {9943, 21625}, {10156, 13405}, {10167, 10580}, {10178, 30331}, {10391, 15008}, {10520, 34855}, {11033, 13098}, {11373, 17650}, {13374, 58588}, {17612, 36845}, {20116, 43176}, {31776, 31822}, {34371, 58562}, {34753, 58643}, {35023, 58591}, {38471, 53005}, {58614, 58616}

X(58577) = midpoint of X(i) and X(j) for these {i,j}: {57, 12915}, {7682, 12675}, {942, 999}
X(58577) = reflection of X(i) in X(j) for these {i,j}: {10241, 7956}, {58650, 6692}
X(58577) = complement of X(9954)
X(58577) = center of the nine-point conic of quadrilateral XYZX(57) where XYZ is the cevian triangle of X(7)
X(58577) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(6244)}}, {{A, B, C, X(55), X(10307)}}, {{A, B, C, X(105), X(13601)}}, {{A, B, C, X(1002), X(41426)}}
X(58577) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 57, 6244}, {57, 12915, 517}, {57, 354, 12915}, {57, 44841, 10388}, {354, 10980, 942}, {354, 17603, 44841}, {354, 3660, 11018}, {354, 4860, 5173}, {518, 6692, 58650}, {942, 5049, 11529}, {971, 7956, 10241}, {3338, 50196, 37544}, {3513, 3514, 13601}, {3660, 11018, 58615}, {5045, 31787, 1}, {5045, 58573, 9940}, {5045, 9940, 16201}, {13373, 50192, 5045}, {13601, 20323, 20789}, {58560, 58563, 58626}, {58560, 58578, 58564}


X(58578) = X(2)X(40269)∩X(63)X(354)

Barycentrics    a*(a^4*(b+c)-(b-c)^4*(b+c)-2*a^2*b*c*(b+c)-2*a^3*(b^2-b*c+c^2)+2*a*(b^4-2*b^3*c-2*b*c^3+c^4)) : :
X(58578) = X[63]+3*X[354], -3*X[210]+7*X[55867], X[942]+X[993], -X[1478]+5*X[5439], X[2886]+X[10391], 3*X[3873]+5*X[55868], X[4640]+X[5173], 3*X[10202]+X[22758], -3*X[58451]+2*X[58699]

X(58578) lies on these lines: {2, 40269}, {63, 354}, {65, 4652}, {210, 55867}, {226, 3660}, {515, 3812}, {517, 7508}, {518, 5745}, {527, 58560}, {758, 3636}, {912, 1125}, {942, 993}, {960, 16193}, {971, 3838}, {1071, 28628}, {1376, 17603}, {1385, 52272}, {1478, 5439}, {1621, 18839}, {1858, 24541}, {2801, 3848}, {2886, 10391}, {3754, 40296}, {3813, 12710}, {3824, 26201}, {3873, 55868}, {3881, 16216}, {4423, 15297}, {4428, 17642}, {4640, 5173}, {4995, 51378}, {4999, 44547}, {5044, 58569}, {5436, 18398}, {5450, 30147}, {5572, 41573}, {5880, 10167}, {5905, 26105}, {6668, 58631}, {6910, 41538}, {8261, 41547}, {8679, 58491}, {8680, 58583}, {9028, 58581}, {10107, 31787}, {10177, 17626}, {10202, 22758}, {11020, 24477}, {11235, 14100}, {12572, 58566}, {12609, 13369}, {12675, 25466}, {12915, 42819}, {15726, 33558}, {16201, 58609}, {18446, 25524}, {24433, 44307}, {34377, 58562}, {46179, 58584}, {46180, 58622}, {50196, 51715}, {51108, 58625}, {58404, 58630}, {58451, 58699}, {58565, 58573}

X(58578) = midpoint of X(i) and X(j) for these {i,j}: {12675, 51755}, {2886, 10391}, {4640, 5173}, {942, 993}, {960, 18389}
X(58578) = reflection of X(i) in X(j) for these {i,j}: {58651, 5745}
X(58578) = center of the nine-point conic of quadrilateral XYZX(63) where XYZ is the cevian triangle of X(7)
X(58578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5745, 58651}, {1125, 13373, 58585}, {3848, 58591, 58623}, {9940, 58588, 58567}, {58564, 58577, 58560}, {58615, 58623, 58591}


X(58579) = X(1)X(12335)∩X(3)X(3827)

Barycentrics    a*(a^11*(b+c)+3*a^8*(b-c)^2*(b^2+c^2)-3*a^9*(b+c)*(b^2+c^2)+2*a^5*(b-c)^2*(b+c)^3*(b^2+c^2)-(b-c)^6*(b+c)^4*(b^2+c^2)+a*(b-c)^4*(b+c)^5*(b^2+c^2)+2*a^7*(b+c)*(b^2+c^2)^2-2*a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^2-10*b*c+c^2)-a^10*(b^2-4*b*c+c^2)-2*a^6*(b-c)^2*(b^4+6*b^3*c+14*b^2*c^2+6*b*c^3+c^4)-a^3*(b-c)^2*(b+c)^3*(3*b^4+2*b^2*c^2+3*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-12*b^3*c+2*b^2*c^2-12*b*c^3+3*c^4)) : :
X(58579) = X[64]+3*X[354], X[942]+X[12262], 3*X[1853]+X[12680], -X[2883]+3*X[3742], -5*X[5439]+X[12779], X[6247]+X[12675], -X[7957]+5*X[8567], -X[7973]+5*X[17609], X[9899]+7*X[50190], -3*X[11227]+X[40660], -X[14872]+5*X[40686], -2*X[25563]+X[58630]

X(58579) lies on these lines: {1, 12335}, {3, 3827}, {30, 58580}, {64, 354}, {221, 17603}, {518, 6696}, {942, 12262}, {1125, 6001}, {1503, 58567}, {1853, 12680}, {1854, 37566}, {2883, 3742}, {3333, 22778}, {3556, 8726}, {5439, 12779}, {6000, 13373}, {6247, 12675}, {7957, 8567}, {7973, 17609}, {8679, 58492}, {9899, 50190}, {11227, 40660}, {12920, 17626}, {13374, 15311}, {14872, 40686}, {25563, 58630}, {34146, 58562}

X(58579) = midpoint of X(i) and X(j) for these {i,j}: {6247, 12675}, {942, 12262}
X(58579) = reflection of X(i) in X(j) for these {i,j}: {58630, 25563}, {58652, 6696}
X(58579) = center of the nine-point conic of quadrilateral XYZX(64) where XYZ is the cevian triangle of X(7)
X(58579) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6696, 58652}


X(58580) = X(1)X(12328)∩X(5)X(226)

Barycentrics    a*(a^2-b^2-c^2)*(a^9*(b+c)-a*(b-c)^4*(b+c)^5-a^8*(b^2+c^2)-2*a^7*(b+c)*(b^2+c^2)+2*a^3*(b-c)^2*(b+c)^3*(b^2+c^2)+2*a^6*(b^2+c^2)^2+(b^2-c^2)^4*(b^2-4*b*c+c^2)-2*a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^2-4*b*c+c^2)-4*a^4*b*c*(b^4+c^4)) : :
X(58580) = X[68]+3*X[354], -X[1147]+3*X[3742], -3*X[3848]+2*X[43839], -5*X[5439]+X[9928], X[9896]+7*X[50190], X[9927]+X[12675], -X[9933]+5*X[17609], -2*X[20191]+X[58637]

X(58580) lies on these lines: {1, 12328}, {5, 226}, {30, 58579}, {68, 354}, {517, 44158}, {518, 5449}, {539, 58560}, {1147, 3742}, {3333, 22659}, {3564, 58561}, {3827, 13383}, {3848, 43839}, {5439, 9928}, {8679, 58496}, {9820, 34381}, {9896, 50190}, {9927, 12675}, {9933, 17609}, {11735, 31838}, {12422, 17626}, {13373, 44665}, {13374, 13754}, {17702, 58567}, {20191, 58637}, {34382, 58581}

X(58580) = midpoint of X(i) and X(j) for these {i,j}: {942, 12259}, {9927, 12675}
X(58580) = reflection of X(i) in X(j) for these {i,j}: {58637, 20191}
X(58580) = center of the nine-point conic of quadrilateral XYZX(68) where XYZ is the cevian triangle of X(7)
X(58580) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {942, 12259, 912}


X(58581) = X(1)X(15882)∩X(10)X(141)

Barycentrics    a*(a^3*(b+c)-a^2*(b^2+c^2)+a*(b+c)*(b^2+c^2)-(b^2+c^2)*(b^2-4*b*c+c^2)) : :
X(58581) = -X[6]+3*X[3742], X[69]+3*X[354], -3*X[210]+7*X[3619], X[960]+X[24476], X[1352]+X[12675], X[3242]+X[5836], X[3416]+X[34791], -2*X[3589]+3*X[3848], 5*X[3620]+3*X[3873], -3*X[3740]+5*X[3763], -X[3751]+5*X[5439], 3*X[3753]+X[16496] and many others

X(58581) lies on these lines: {1, 15882}, {6, 3742}, {10, 141}, {69, 354}, {210, 3619}, {511, 13374}, {524, 58560}, {542, 58582}, {732, 58622}, {742, 58620}, {960, 24476}, {1001, 7289}, {1125, 34381}, {1352, 12675}, {1503, 58567}, {2810, 58612}, {2836, 11730}, {3242, 5836}, {3416, 34791}, {3564, 13373}, {3589, 3848}, {3620, 3873}, {3740, 3763}, {3751, 5439}, {3753, 16496}, {3827, 15585}, {3880, 49465}, {4389, 11997}, {4413, 56179}, {4655, 12722}, {5044, 34378}, {5045, 5847}, {5049, 49684}, {5572, 47595}, {5845, 58608}, {5846, 58609}, {5848, 58591}, {5969, 58610}, {7716, 54397}, {8679, 9822}, {9024, 58611}, {9025, 57033}, {9028, 58578}, {9037, 9969}, {10007, 58695}, {10391, 12589}, {10473, 24471}, {12586, 15812}, {12723, 17274}, {14872, 40330}, {17235, 44670}, {17290, 21867}, {17304, 40965}, {17609, 51192}, {18252, 50092}, {18443, 39883}, {20582, 58629}, {20718, 58394}, {21320, 25099}, {24206, 58631}, {26538, 57031}, {28087, 36574}, {29668, 34371}, {31637, 46149}, {34379, 58565}, {34380, 58561}, {34382, 58580}, {34573, 58451}, {35631, 48900}, {36740, 51715}, {37534, 39877}, {44663, 48803}

X(58581) = midpoint of X(i) and X(j) for these {i,j}: {1352, 12675}, {3242, 5836}, {3416, 34791}, {4655, 12722}, {5572, 47595}, {942, 49511}, {960, 24476}
X(58581) = reflection of X(i) in X(j) for these {i,j}: {4662, 3844}, {58562, 58606}, {58621, 58562}, {58629, 20582}, {58631, 24206}, {58633, 34573}, {58653, 141}, {58694, 3589}, {58695, 10007}
X(58581)= pole of line {3058, 50101} with respect to the Feuerbach hyperbola
X(58581) = center of the nine-point conic of quadrilateral XYZX(69) where XYZ is the cevian triangle of X(7)
X(58581) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 518, 58653}, {518, 3844, 4662}, {524, 58562, 58621}, {524, 58606, 58562}, {942, 49511, 518}, {3589, 9004, 58694}, {3812, 58563, 58583}, {3848, 58694, 3589}, {34573, 58633, 58451}, {58562, 58606, 58560}


X(58582) = X(1)X(12327)∩X(74)X(354)

Barycentrics    a*(a^11*(b+c)-3*a^9*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^4*(b^2+c^2)+a*(b-c)^4*(b+c)^5*(b^2+c^2)+2*a^5*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+c^2)-a^10*(b^2-4*b*c+c^2)+a^7*(b+c)*(2*b^2+c^2)*(b^2+2*c^2)+a^8*(b^2+c^2)*(3*b^2-8*b*c+3*c^2)-2*a^4*(b-c)^2*(b^2+c^2)*(b^4-5*b^3*c-13*b^2*c^2-5*b*c^3+c^4)-a^3*(b-c)^2*(b+c)^3*(3*b^4+b^2*c^2+3*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+b*c+c^2)*(3*b^4-13*b^3*c+14*b^2*c^2-13*b*c^3+3*c^4)-a^6*(2*b^6+2*b^5*c+7*b^4*c^2-24*b^3*c^3+7*b^2*c^4+2*b*c^5+2*c^6)) : :
X(58582) = X[74]+3*X[354], -X[113]+3*X[3742], X[125]+X[12675], -2*X[140]+X[58671], -3*X[3848]+2*X[12900], -5*X[5439]+X[12368], -2*X[6723]+X[58631], -X[7978]+5*X[17609], X[9904]+7*X[50190], X[12261]+X[13369], X[12680]+3*X[14644], -X[14872]+5*X[15059]

X(58582) lies on these lines: {1, 12327}, {74, 354}, {113, 3742}, {125, 12675}, {140, 58671}, {518, 6699}, {541, 58560}, {542, 58581}, {690, 58589}, {942, 2778}, {1125, 2771}, {1511, 2836}, {2772, 58592}, {2773, 58593}, {2774, 58594}, {2775, 58596}, {2776, 58597}, {2777, 13374}, {2779, 58569}, {2780, 58602}, {2781, 58562}, {3333, 22583}, {3848, 12900}, {5439, 12368}, {5663, 13373}, {6001, 11735}, {6723, 58631}, {7978, 17609}, {8674, 58595}, {8679, 58498}, {9037, 12236}, {9904, 50190}, {10628, 58617}, {12261, 13369}, {12371, 17626}, {12680, 14644}, {13204, 37534}, {14872, 15059}, {15904, 32636}, {17702, 58567}, {18443, 22586}, {35010, 54078}

X(58582) = midpoint of X(i) and X(j) for these {i,j}: {125, 12675}, {12261, 13369}, {942, 11709}
X(58582) = reflection of X(i) in X(j) for these {i,j}: {58601, 13373}, {58631, 6723}, {58654, 6699}, {58671, 140}, {58680, 12900}
X(58582) = center of the nine-point conic of quadrilateral XYZX(74) where XYZ is the cevian triangle of X(7)
X(58582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6699, 58654}, {942, 11709, 2778}, {3848, 58680, 12900}, {5663, 13373, 58601}


X(58583) = X(10)X(141)∩X(75)X(354)

Barycentrics    a*(a^2*(b+c)^2-b*c*(b^2-4*b*c+c^2)-a*(b+c)*(b^2-3*b*c+c^2)) : :
X(58583) = -X[72]+5*X[40328], X[75]+3*X[354], -3*X[210]+7*X[4751], -X[984]+5*X[5439], X[3696]+X[34791], -5*X[3698]+X[49450], -3*X[3740]+5*X[31238], 3*X[3753]+X[49490], -3*X[3848]+2*X[4698], 3*X[3873]+5*X[4699], 3*X[3892]+X[4709], -3*X[5049]+X[49471] and many others

X(58583) lies on these lines: {10, 141}, {37, 982}, {65, 24678}, {72, 40328}, {75, 354}, {86, 20358}, {210, 4751}, {536, 42053}, {726, 58565}, {740, 5045}, {742, 58562}, {872, 16610}, {984, 5439}, {1266, 4890}, {2667, 4883}, {2805, 58611}, {3306, 34247}, {3338, 54410}, {3660, 4032}, {3664, 9025}, {3696, 34791}, {3698, 49450}, {3701, 20923}, {3728, 17449}, {3740, 31238}, {3753, 49490}, {3838, 20256}, {3848, 4698}, {3873, 4699}, {3892, 4709}, {3999, 4022}, {4657, 28600}, {4675, 17792}, {4739, 44671}, {5049, 49471}, {5572, 44735}, {5836, 49478}, {8679, 58499}, {8680, 58578}, {9055, 58606}, {9436, 39793}, {9940, 29054}, {13373, 29010}, {15569, 37592}, {17140, 20891}, {17146, 25277}, {17165, 29982}, {17169, 20435}, {17609, 49470}, {20718, 58396}, {21080, 42055}, {21746, 50116}, {21926, 26015}, {24199, 52020}, {24231, 53476}, {25371, 58608}, {25590, 35892}, {27311, 46897}, {28581, 58609}, {34855, 57792}, {40607, 58451}, {44663, 51061}, {49474, 50190}, {58564, 58618}

X(58583) = midpoint of X(i) and X(j) for these {i,j}: {3664, 17049}, {3696, 34791}, {3739, 13476}, {5836, 49478}, {942, 24325}
X(58583) = reflection of X(i) in X(j) for these {i,j}: {58620, 58571}, {58655, 3739}, {58693, 4698}
X(58583)= pole of line {4905, 57185} with respect to the incircle
X(58583)= pole of line {667, 43931} with respect to the DeLongchamps ellipse
X(58583)= pole of line {3058, 17378} with respect to the Feuerbach hyperbola
X(58583) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(7)
X(58583) = intersection, other than A, B, C, of circumconics {{A, B, C, X(13476), X(39966)}}, {{A, B, C, X(17758), X(39742)}}
X(58583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3739, 58655}, {536, 58571, 58620}, {3739, 13476, 518}, {3812, 58563, 58581}, {3834, 22279, 25144}, {3848, 58693, 4698}, {58560, 58620, 58571}


X(58584) = X(1)X(12338)∩X(76)X(354)

Barycentrics    a*(a*b^2*c^2*(b+c)-a^2*(b-c)^2*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-b^2*c^2*(b^2-4*b*c+c^2)) : :
X(58584) = -X[39]+3*X[3742], X[76]+3*X[354], X[942]+X[12263], -3*X[3740]+5*X[31239], -3*X[3848]+2*X[6683], 3*X[3873]+5*X[31276], -5*X[5439]+X[12782], X[6248]+X[12675], -X[7976]+5*X[17609], X[9902]+7*X[50190]

X(58584) lies on these lines: {1, 12338}, {39, 3742}, {76, 354}, {511, 13374}, {518, 3934}, {538, 58560}, {698, 58606}, {726, 58565}, {730, 5045}, {732, 58562}, {942, 12263}, {2782, 13373}, {3333, 22779}, {3740, 31239}, {3812, 14839}, {3848, 6683}, {3873, 31276}, {5439, 12782}, {6248, 12675}, {7976, 17609}, {8679, 58500}, {9037, 27375}, {9902, 50190}, {12923, 17626}, {32515, 58561}, {46179, 58578}, {46180, 58626}

X(58584) = midpoint of X(i) and X(j) for these {i,j}: {6248, 12675}, {942, 12263}
X(58584) = reflection of X(i) in X(j) for these {i,j}: {58656, 3934}, {58695, 6683}
X(58584) = center of the nine-point conic of quadrilateral XYZX(76) where XYZ is the cevian triangle of X(7)
X(58584) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3934, 58656}, {3848, 58695, 6683}


X(58585) = X(1)X(8668)∩X(78)X(354)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-2*a^3*(b+c)*(b^2+c^2)+a*(b+c)*(b^2+c^2)^2-a^4*(b^2-4*b*c+c^2)+2*a^2*(b^4-3*b^3*c+6*b^2*c^2-3*b*c^3+c^4)) : :
X(58585) = X[78]+3*X[354], X[942]+X[30144], -X[1210]+3*X[3742], -5*X[5439]+X[10573], X[6736]+X[34791], -5*X[8227]+X[41560], -5*X[17609]+X[36846]

X(58585) lies on these lines: {1, 8668}, {65, 40726}, {78, 354}, {142, 49627}, {404, 18839}, {518, 6691}, {519, 3812}, {758, 58573}, {912, 1125}, {942, 30144}, {960, 3660}, {1210, 3742}, {2800, 9940}, {3634, 58625}, {3816, 12675}, {3848, 6668}, {3880, 16215}, {3881, 6692}, {3884, 40296}, {5044, 58570}, {5289, 37566}, {5437, 50190}, {5439, 10573}, {5570, 17614}, {6667, 58595}, {6681, 58630}, {6736, 34791}, {8227, 41560}, {9850, 11236}, {10072, 28628}, {11240, 28629}, {12832, 24987}, {12915, 56176}, {13405, 16218}, {15934, 22754}, {17609, 36846}, {17624, 32049}, {17625, 25681}, {18240, 57284}, {58564, 58568}

X(58585) = midpoint of X(i) and X(j) for these {i,j}: {6736, 34791}, {942, 30144}
X(58585) = reflection of X(i) in X(j) for these {i,j}: {58657, 6700}
X(58585) = center of the nine-point conic of quadrilateral XYZX(78) where XYZ is the cevian triangle of X(7)
X(58585) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6700, 58657}, {1125, 13373, 58578}, {5045, 58623, 3812}, {58591, 58679, 9940}


X(58586) = X(1)X(16117)∩X(11)X(113)

Barycentrics    a*(a^5*(b+c)-a^3*(b+c)*(2*b+c)*(b+2*c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2-4*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+7*b*c+c^2)+2*a^2*(b^4-2*b^3*c-5*b^2*c^2-2*b*c^3+c^4)) : :
X(58586) = X[79]+3*X[354], 3*X[2475]+5*X[3889], X[3555]+3*X[6175], -X[3647]+3*X[3742], X[3901]+3*X[44782], -3*X[5049]+X[10543], -5*X[5439]+X[11684], -X[5441]+5*X[17609], X[5572]+X[13159], X[10122]+X[11544], X[10123]+X[15171], X[10914]+3*X[34195] and many others

X(58586) lies on these lines: {1, 16117}, {7, 16159}, {11, 113}, {30, 4298}, {57, 22937}, {65, 3584}, {79, 354}, {191, 4423}, {226, 56762}, {442, 25006}, {517, 16137}, {518, 6701}, {758, 3634}, {1159, 16126}, {1656, 5694}, {2475, 3889}, {2886, 3874}, {3333, 13743}, {3337, 41542}, {3361, 28443}, {3555, 6175}, {3647, 3742}, {3652, 16133}, {3901, 44782}, {3957, 35982}, {4314, 31651}, {5049, 10543}, {5439, 11684}, {5441, 17609}, {5499, 21620}, {5572, 13159}, {5883, 51559}, {5885, 6922}, {7701, 10980}, {8100, 16151}, {8261, 21616}, {9668, 16118}, {10122, 11544}, {10123, 15171}, {10404, 18407}, {10914, 34195}, {11019, 16160}, {11238, 17637}, {11277, 13405}, {12491, 16147}, {12675, 16125}, {15008, 58563}, {15934, 16132}, {16138, 17626}, {17097, 33858}, {17768, 58564}, {18593, 32167}, {18990, 26089}, {24470, 58569}, {25917, 26725}, {34753, 58449}, {58568, 58570}

X(58586) = midpoint of X(i) and X(j) for these {i,j}: {10122, 11544}, {10123, 15171}, {12675, 16125}, {5572, 13159}, {942, 3649}
X(58586) = reflection of X(i) in X(j) for these {i,j}: {10122, 50192}, {58658, 6701}
X(58586)= pole of line {8043, 50346} with respect to the incircle
X(58586) = center of the nine-point conic of quadrilateral XYZX(79) where XYZ is the cevian triangle of X(7)
X(58586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6701, 58658}, {942, 3649, 2771}


X(58587) = X(1)X(6797)∩X(11)X(113)

Barycentrics    a*(a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2-4*b*c+c^2)+2*a^2*(b^2-b*c+c^2)^2-a^3*(b+c)*(2*b^2-3*b*c+2*c^2)+a*(b-c)^2*(b^3+c^3)) : :
X(58587) = X[1]+X[6797], X[65]+3*X[16173], -X[72]+5*X[31272], X[80]+3*X[354], -X[100]+5*X[5439], -X[214]+3*X[3742], -X[960]+3*X[32557], -X[1317]+3*X[5049], X[1320]+3*X[3753], -5*X[3091]+X[17661], -2*X[3634]+X[58663], -3*X[3848]+2*X[58453] and many others

X(58587) lies on these lines: {1, 6797}, {7, 16128}, {11, 113}, {65, 16173}, {72, 31272}, {80, 354}, {100, 5439}, {104, 55924}, {119, 21617}, {214, 3742}, {496, 5885}, {515, 58570}, {517, 1387}, {518, 6702}, {528, 58564}, {758, 33709}, {952, 5045}, {960, 32557}, {971, 15528}, {1159, 13253}, {1210, 6583}, {1317, 5049}, {1320, 3753}, {1484, 11019}, {1768, 5708}, {2800, 13374}, {2801, 58563}, {2802, 3636}, {2829, 5806}, {2932, 3306}, {3091, 17661}, {3333, 12773}, {3337, 46816}, {3634, 58663}, {3660, 28160}, {3848, 58453}, {3869, 32558}, {5044, 6667}, {5083, 12019}, {5173, 12832}, {5290, 38755}, {5533, 13750}, {5541, 6767}, {5570, 8068}, {5603, 17654}, {5777, 23513}, {5840, 9940}, {5883, 17051}, {5902, 17638}, {6001, 16174}, {6147, 21635}, {6246, 12675}, {6264, 7373}, {6326, 15934}, {7680, 10265}, {7686, 11715}, {7743, 18838}, {7972, 17609}, {8100, 13267}, {8104, 12491}, {8679, 58501}, {9856, 38038}, {9897, 50190}, {9956, 50196}, {10058, 37582}, {10090, 24929}, {10157, 12665}, {10167, 10724}, {10202, 10738}, {10525, 11023}, {10569, 10711}, {10591, 31828}, {10895, 17660}, {11025, 45043}, {11227, 24466}, {11373, 35004}, {11529, 48667}, {11698, 21620}, {12053, 13145}, {12433, 58565}, {12515, 53055}, {12532, 24473}, {12737, 17626}, {12740, 50194}, {12758, 50193}, {13273, 26201}, {13369, 22938}, {13751, 37702}, {15587, 38207}, {15863, 34791}, {17625, 38140}, {17642, 50821}, {18254, 45310}, {21154, 31793}, {22560, 54318}, {22793, 37566}, {24474, 57298}, {31786, 38032}, {31837, 34126}, {34122, 34790}, {40266, 50444}, {58451, 58698}, {58560, 58625}

X(58587) = midpoint of X(i) and X(j) for these {i,j}: {1, 6797}, {11, 942}, {1387, 12736}, {12758, 50193}, {13369, 22938}, {15863, 34791}, {3812, 58611}, {5083, 12019}, {6246, 12675}, {7686, 11715}, {7743, 18838}
X(58587) = reflection of X(i) in X(j) for these {i,j}: {5044, 6667}, {5045, 18240}, {5083, 50192}, {58591, 58565}, {58659, 6702}, {58663, 3634}
X(58587)= pole of line {3065, 23838} with respect to the incircle
X(58587)= pole of line {30, 1317} with respect to the Feuerbach hyperbola
X(58587)= pole of line {2401, 21907} with respect to the Steiner inellipse
X(58587) = center of the nine-point conic of quadrilateral XYZX(80) where XYZ is the cevian triangle of X(7)
X(58587) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 942, 2771}, {518, 6702, 58659}, {1387, 12736, 517}, {3812, 58611, 2802}, {5806, 58573, 31776}, {6738, 58561, 5045}, {12433, 58565, 58569}, {18398, 37718, 17660}


X(58588) = X(1)X(12330)∩X(4)X(3660)

Barycentrics    a*(a^8*(b+c)+4*a^4*b*(b-c)^2*c*(b+c)-(b-c)^6*(b+c)^3-2*a^6*(b+c)*(b^2+c^2)+2*a^2*(b-c)^4*(b+c)*(b^2+c^2)-2*a^7*(b^2-b*c+c^2)-2*a^3*(b-c)^2*(b^2-b*c+c^2)*(3*b^2+2*b*c+3*c^2)+2*a*(b^2-c^2)^2*(b^4-3*b^3*c-3*b*c^3+c^4)+2*a^5*(3*b^4-5*b^3*c+12*b^2*c^2-5*b*c^3+3*c^4)) : :
X(58588) = X[84]+3*X[354], X[942]+X[12114], X[946]+X[18238], X[3555]+3*X[14647], -3*X[3742]+X[6260], -5*X[5439]+X[12667], 3*X[5603]+X[17649], -X[7971]+5*X[17609], X[7992]+7*X[50190], -5*X[8227]+X[18239], -3*X[11227]+X[11500]

X(58588) lies on these lines: {1, 12330}, {4, 3660}, {5, 58623}, {40, 22777}, {84, 354}, {515, 3812}, {517, 5450}, {518, 6705}, {942, 12114}, {946, 18238}, {971, 9955}, {1012, 50196}, {1071, 3485}, {1876, 38870}, {2829, 5806}, {3333, 18237}, {3555, 14647}, {3742, 6260}, {5045, 6001}, {5439, 12667}, {5603, 17649}, {5777, 25681}, {5842, 31805}, {6245, 7680}, {6847, 17625}, {6972, 17615}, {7971, 17609}, {7992, 50190}, {8227, 18239}, {10167, 45084}, {10895, 12680}, {11227, 11500}, {11496, 12915}, {12607, 12616}, {12671, 41865}, {12676, 17626}, {13374, 58577}, {16215, 45776}

X(58588) = midpoint of X(i) and X(j) for these {i,j}: {6245, 12675}, {942, 12114}, {946, 18238}
X(58588) = reflection of X(i) in X(j) for these {i,j}: {58660, 6705}, {9940, 18260}
X(58588) = center of the nine-point conic of quadrilateral XYZX(84) where XYZ is the cevian triangle of X(7)
X(58588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {515, 18260, 9940}, {518, 6705, 58660}


X(58589) = X(1)X(12178)∩X(98)X(354)

Barycentrics    a*(a^9*(b+c)-3*a^7*(b+c)*(b^2+c^2)-a^8*(b^2-4*b*c+c^2)+a^6*(b^2+c^2)*(3*b^2-8*b*c+3*c^2)+a*(b-c)^2*(b+c)^3*(b^4-b^2*c^2+c^4)-a^3*(b+c)*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+a^2*(b-c)^2*(b^2+c^2)*(3*b^4-2*b^3*c-8*b^2*c^2-2*b*c^3+3*c^4)+a^5*(b+c)*(4*b^4+b^2*c^2+4*c^4)-(b^2-c^2)^2*(b^6-2*b^5*c+4*b^3*c^3-2*b*c^5+c^6)-a^4*(4*b^6-10*b^5*c+5*b^4*c^2+5*b^2*c^4-10*b*c^5+4*c^6)) : :
X(58589) = X[98]+3*X[354], -X[114]+3*X[3742], X[115]+X[12675], -2*X[140]+X[58662], X[942]+X[11710], X[1071]+3*X[38220], -3*X[3848]+2*X[6721], -5*X[5439]+X[9864], -2*X[6722]+X[58631], -X[7970]+5*X[17609], X[9860]+7*X[50190], X[12680]+3*X[14639] and many others

X(58589) lies on these lines: {1, 12178}, {98, 354}, {114, 3742}, {115, 12675}, {140, 58662}, {518, 6036}, {542, 58560}, {690, 58582}, {942, 11710}, {1071, 38220}, {2782, 13373}, {2783, 58591}, {2784, 58565}, {2785, 58593}, {2786, 58594}, {2787, 58595}, {2788, 58596}, {2789, 58597}, {2790, 58598}, {2791, 58599}, {2792, 58600}, {2793, 58602}, {2794, 13374}, {3333, 22504}, {3660, 24472}, {3848, 6721}, {5439, 9864}, {6001, 11725}, {6722, 58631}, {7970, 17609}, {8679, 58502}, {9037, 39806}, {9860, 50190}, {10980, 24469}, {12182, 17626}, {12680, 14639}, {13173, 37534}, {14061, 14872}, {18443, 22514}, {20398, 58682}, {23698, 58567}

X(58589) = midpoint of X(i) and X(j) for these {i,j}: {115, 12675}, {58567, 58610}, {942, 11710}
X(58589) = reflection of X(i) in X(j) for these {i,j}: {58590, 13373}, {58631, 6722}, {58661, 6036}, {58662, 140}, {58681, 6721}, {58682, 20398}
X(58589) = center of the nine-point conic of quadrilateral XYZX(98) where XYZ is the cevian triangle of X(7)
X(58589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6036, 58661}, {2782, 13373, 58590}, {3848, 58681, 6721}, {58567, 58610, 23698}


X(58590) = X(1)X(13173)∩X(99)X(354)

Barycentrics    a*(-b^6+2*b^5*c+2*b*c^5-c^6+a^5*(b+c)-a^3*(b+c)*(b^2+c^2)-a^4*(b^2-4*b*c+c^2)+a^2*(b^2+c^2)*(b^2-4*b*c+c^2)+a*(b+c)*(b^4-b^2*c^2+c^4)) : :
X(58590) = X[99]+3*X[354], X[114]+X[12675], -X[115]+3*X[3742], -2*X[140]+X[58661], X[942]+X[11711], -3*X[3740]+5*X[31274], -3*X[3848]+2*X[6722], X[3881]+X[51578], -5*X[5439]+X[13178], -2*X[6721]+X[58631], -X[7983]+5*X[17609], X[13174]+7*X[50190] and many others

X(58590) lies on these lines: {1, 13173}, {99, 354}, {114, 12675}, {115, 3742}, {140, 58661}, {518, 620}, {542, 58581}, {543, 58560}, {690, 58601}, {942, 11711}, {2782, 13373}, {2783, 58595}, {2784, 58594}, {2785, 58600}, {2786, 58592}, {2787, 58591}, {2792, 58593}, {2794, 58567}, {2795, 58568}, {2796, 58597}, {2797, 58598}, {2798, 58599}, {2799, 58603}, {3333, 22514}, {3740, 31274}, {3848, 6722}, {3881, 51578}, {5439, 13178}, {5969, 58562}, {6001, 11724}, {6721, 58631}, {7983, 17609}, {8679, 58503}, {9037, 39835}, {12178, 37534}, {13174, 50190}, {13180, 17626}, {13374, 23698}, {14645, 58621}, {15452, 18839}, {16193, 24472}, {18443, 22504}, {20399, 58681}, {22247, 58629}

X(58590) = midpoint of X(i) and X(j) for these {i,j}: {114, 12675}, {3881, 51578}, {942, 11711}
X(58590) = reflection of X(i) in X(j) for these {i,j}: {58589, 13373}, {58629, 22247}, {58631, 6721}, {58661, 140}, {58662, 620}, {58681, 20399}, {58682, 6722}
X(58590) = center of the nine-point conic of quadrilateral XYZX(99) where XYZ is the cevian triangle of X(7)
X(58590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 620, 58662}, {2782, 13373, 58589}, {3848, 58682, 6722}


X(58591) = X(1)X(2932)∩X(2)X(17660)

Barycentrics    a*(a^4*(b+c)-(b-c)^4*(b+c)-a^2*b*c*(b+c)-2*a^3*(b^2-b*c+c^2)+a*(2*b^4-5*b^3*c+8*b^2*c^2-5*b*c^3+2*c^4)) : :
X(58591) = 3*X[2]+X[17660], -X[11]+3*X[3742], -X[80]+5*X[5439], X[100]+3*X[354], X[119]+X[12675], -2*X[140]+X[58666], X[214]+X[942], 3*X[392]+X[11571], X[960]+X[11570], X[1145]+X[34791], X[1317]+X[5836], -X[1320]+5*X[17609] and many others

X(58591) lies on these lines: {1, 2932}, {2, 17660}, {11, 3742}, {80, 5439}, {100, 354}, {119, 12675}, {140, 58666}, {149, 5880}, {214, 942}, {392, 11571}, {404, 13751}, {518, 3035}, {519, 58570}, {528, 11018}, {900, 58618}, {952, 3812}, {960, 11570}, {1001, 1768}, {1125, 2771}, {1145, 34791}, {1317, 5836}, {1320, 17609}, {1376, 37736}, {1484, 12609}, {1537, 9943}, {2783, 58589}, {2787, 58590}, {2800, 9940}, {2801, 3848}, {2802, 5045}, {2803, 58598}, {2804, 58599}, {2805, 58571}, {2806, 58603}, {2829, 58567}, {3333, 22560}, {3337, 35204}, {3616, 17638}, {3634, 58659}, {3698, 12531}, {3738, 58600}, {3740, 31235}, {3753, 7972}, {3754, 33812}, {3816, 21635}, {3825, 26201}, {3880, 12735}, {3887, 58592}, {4996, 32636}, {5044, 58453}, {5253, 8261}, {5437, 5531}, {5541, 50190}, {5572, 10427}, {5840, 13374}, {5848, 58581}, {5851, 58608}, {5854, 46681}, {5856, 58563}, {5883, 6797}, {6001, 11729}, {6224, 37724}, {6265, 10202}, {6326, 25524}, {6691, 12005}, {8674, 58601}, {8679, 58504}, {9024, 58562}, {9809, 26105}, {9946, 20418}, {10058, 51715}, {10167, 34789}, {10179, 12758}, {10265, 25466}, {11227, 46684}, {12332, 37534}, {12433, 58565}, {12532, 25917}, {12611, 13369}, {12736, 16193}, {12773, 54318}, {13257, 25558}, {13271, 17626}, {15015, 18398}, {15016, 17654}, {15017, 17661}, {17100, 37080}, {17191, 18191}, {17603, 42819}, {18443, 22775}, {19862, 47320}, {19907, 34339}, {20107, 56762}, {20400, 58687}, {20718, 58397}, {25485, 31788}, {30274, 40726}, {33709, 58619}, {34977, 53525}, {35023, 58577}, {46694, 58451}, {58421, 58631}

X(58591) = midpoint of X(i) and X(j) for these {i,j}: {119, 12675}, {1145, 34791}, {1317, 5836}, {1537, 9943}, {12611, 13369}, {19907, 34339}, {214, 942}, {25485, 31788}, {3035, 5083}, {3754, 33812}, {5572, 10427}, {6797, 33337}, {58567, 58613}, {8261, 39778}, {960, 11570}, {9946, 20418}
X(58591) = reflection of X(i) in X(j) for these {i,j}: {13374, 58604}, {5044, 58453}, {5045, 58625}, {58587, 58565}, {58595, 13373}, {58609, 46681}, {58611, 18240}, {58631, 58421}, {58659, 3634}, {58663, 3035}, {58666, 140}, {58683, 6667}, {58687, 20400}
X(58591)= pole of line {14812, 53392} with respect to the DeLongchamps ellipse
X(58591) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(7)
X(58591) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3035, 58663}, {528, 18240, 58611}, {952, 13373, 58595}, {2801, 6667, 58683}, {2802, 58625, 5045}, {3035, 5083, 518}, {3848, 58683, 6667}, {5840, 58604, 13374}, {5854, 46681, 58609}, {5883, 33337, 6797}, {9940, 58585, 58679}, {31235, 46685, 3740}, {58560, 58611, 18240}, {58565, 58569, 58568}, {58567, 58613, 2829}, {58578, 58623, 3848}, {58615, 58623, 58578}


X(58592) = X(101)X(354)∩X(116)X(3742)

Barycentrics    a*(a^5*(b+c)+a^3*(b+c)*(b^2-3*b*c+c^2)-2*a^4*(b^2-b*c+c^2)-(b-c)^4*(b^2+b*c+c^2)+a*(b-c)^2*(b+c)*(2*b^2-b*c+2*c^2)-a^2*(b^4+b^3*c-6*b^2*c^2+b*c^3+c^4)) : :
X(58592) = X[101]+3*X[354], -X[116]+3*X[3742], X[118]+X[12675], -2*X[140]+X[58665], X[942]+X[11712], X[1282]+7*X[50190], -3*X[3848]+2*X[58418], X[3881]+X[28346], -5*X[5439]+X[50896], -X[10695]+5*X[17609], -2*X[20401]+X[58686], -2*X[58420]+X[58631]

X(58592) lies on these lines: {101, 354}, {116, 3742}, {118, 12675}, {140, 58665}, {513, 38019}, {518, 6710}, {544, 58560}, {928, 58600}, {942, 11712}, {1282, 50190}, {2772, 58582}, {2774, 58601}, {2784, 58565}, {2786, 58590}, {2801, 33709}, {2807, 58593}, {2808, 13373}, {2809, 5045}, {2810, 58562}, {2811, 58598}, {2812, 58599}, {2813, 58572}, {3848, 58418}, {3881, 28346}, {3887, 58591}, {5439, 50896}, {6001, 11728}, {8679, 58505}, {9518, 58603}, {10695, 17609}, {11018, 14760}, {11028, 16193}, {20401, 58686}, {58420, 58631}

X(58592) = midpoint of X(i) and X(j) for these {i,j}: {118, 12675}, {3881, 28346}, {942, 11712}
X(58592) = reflection of X(i) in X(j) for these {i,j}: {58594, 13373}, {58631, 58420}, {58664, 6710}, {58665, 140}, {58684, 58418}, {58686, 20401}
X(58592) = center of the nine-point conic of quadrilateral XYZX(101) where XYZ is the cevian triangle of X(7)
X(58592) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6710, 58664}, {2808, 13373, 58594}, {3848, 58684, 58418}


X(58593) = X(102)X(354)∩X(117)X(3742)

Barycentrics    a*(a^11*(b+c)-2*a^10*(b^2-b*c+c^2)-(b-c)^6*(b+c)^4*(b^2-b*c+c^2)+a*(b-c)^4*(b+c)^3*(2*b^2-b*c+c^2)*(b^2-b*c+2*c^2)-a^9*(b+c)*(2*b^2+b*c+2*c^2)-2*a^7*(b+c)*(b^4-5*b^3*c+10*b^2*c^2-5*b*c^3+c^4)+2*a^2*(b-c)^2*(b+c)^2*(b^2-b*c+c^2)*(b^4-3*b^3*c-3*b*c^3+c^4)-2*a^6*(b-c)^2*(4*b^4+5*b^3*c+19*b^2*c^2+5*b*c^3+4*c^4)+a^8*(7*b^4-7*b^3*c+18*b^2*c^2-7*b*c^3+7*c^4)+8*a^5*(b-c)^2*(b^5+3*b^3*c^2+3*b^2*c^3+c^5)+2*a^4*(b-c)^2*(b^6+4*b^5*c+10*b^4*c^2-6*b^3*c^3+10*b^2*c^4+4*b*c^5+c^6)-a^3*(b-c)^2*(b+c)*(7*b^6-8*b^5*c+21*b^4*c^2-24*b^3*c^3+21*b^2*c^4-8*b*c^5+7*c^6)) : :
X(58593) = X[102]+3*X[354], -X[117]+3*X[3742], X[124]+X[12675], -2*X[140]+X[58670], X[942]+X[11713], -3*X[3848]+2*X[58419], -5*X[5439]+X[50899], -X[10696]+5*X[17609], -3*X[11227]+X[14690], -2*X[58426]+X[58631]

X(58593) lies on these lines: {102, 354}, {117, 3742}, {124, 12675}, {140, 58670}, {518, 6711}, {928, 58594}, {942, 11713}, {2773, 58582}, {2779, 58601}, {2785, 58589}, {2792, 58590}, {2800, 9940}, {2807, 58592}, {2814, 58596}, {2815, 58597}, {2816, 58598}, {2817, 5045}, {2818, 13373}, {2819, 58602}, {3660, 12016}, {3738, 58595}, {3848, 58419}, {5439, 50899}, {6001, 11734}, {8679, 58506}, {9532, 58603}, {10696, 17609}, {11227, 14690}, {18443, 54081}, {58426, 58631}

X(58593) = midpoint of X(i) and X(j) for these {i,j}: {124, 12675}, {942, 11713}
X(58593) = reflection of X(i) in X(j) for these {i,j}: {58600, 13373}, {58631, 58426}, {58670, 140}, {58685, 58419}
X(58593) = center of the nine-point conic of quadrilateral XYZX(102) where XYZ is the cevian triangle of X(7)
X(58593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2818, 13373, 58600}, {3848, 58685, 58419}


X(58594) = X(103)X(354)∩X(118)X(3742)

Barycentrics    a*(a^9*(b+c)-2*a^8*(b^2-b*c+c^2)+a^5*(b+c)*(b^2-6*b*c+c^2)*(b^2-b*c+c^2)-(b-c)^6*(b+c)^2*(b^2+b*c+c^2)-a^7*(b+c)*(b^2+3*b*c+c^2)+a*(b-c)^4*(b+c)^3*(2*b^2-b*c+2*c^2)-a^4*(b-c)^2*(b^4-5*b^3*c-5*b*c^3+c^4)-a^3*(b-c)^2*(b+c)*(3*b^4-9*b^3*c+4*b^2*c^2-9*b*c^3+3*c^4)+a^6*(3*b^4-b^3*c+14*b^2*c^2-b*c^3+3*c^4)+a^2*(b-c)^2*(b^6-9*b^5*c-3*b^4*c^2-10*b^3*c^3-3*b^2*c^4-9*b*c^5+c^6)) : :
X(58594) = X[103]+3*X[354], X[116]+X[12675], -X[118]+3*X[3742], -2*X[140]+X[58664], X[942]+X[11714], -5*X[5439]+X[50903], -X[10697]+5*X[17609], -X[14872]+5*X[31273], X[39156]+7*X[50190], -2*X[58418]+X[58631], X[58567]+X[58612]

X(58594) lies on these lines: {103, 354}, {116, 12675}, {118, 3742}, {140, 58664}, {518, 6712}, {928, 58593}, {942, 11714}, {2772, 58601}, {2774, 58582}, {2784, 58590}, {2786, 58589}, {2801, 3848}, {2807, 11018}, {2808, 13373}, {2809, 9940}, {2820, 58596}, {2821, 58597}, {2822, 58598}, {2823, 58577}, {2824, 58602}, {2825, 58603}, {3660, 11028}, {3887, 58595}, {5439, 50903}, {6001, 11726}, {8679, 58507}, {10697, 17609}, {14760, 58576}, {14872, 31273}, {39156, 50190}, {58418, 58631}, {58567, 58612}

X(58594) = midpoint of X(i) and X(j) for these {i,j}: {116, 12675}, {58567, 58612}, {942, 11714}
X(58594) = reflection of X(i) in X(j) for these {i,j}: {58592, 13373}, {58631, 58418}, {58664, 140}, {58665, 6712}, {58686, 58420}
X(58594) = center of the nine-point conic of quadrilateral XYZX(103) where XYZ is the cevian triangle of X(7)
X(58594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6712, 58665}, {2801, 58420, 58686}, {2808, 13373, 58592}, {3848, 58686, 58420}


X(58595) = X(1)X(12332)∩X(104)X(354)

Barycentrics    a*(a^8*(b+c)-(b-c)^6*(b+c)^3+a*(b-2*c)*(b-c)^2*(2*b-c)*(b+c)^2*(b^2+c^2)-2*a^7*(b^2-b*c+c^2)-a^6*(b+c)*(2*b^2+b*c+2*c^2)+2*a^4*b*c*(b+c)*(3*b^2-8*b*c+3*c^2)+a^2*(b-c)^2*(b+c)*(2*b^4-5*b^3*c+10*b^2*c^2-5*b*c^3+2*c^4)+3*a^5*(2*b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+2*c^4)-2*a^3*(b-c)^2*(3*b^4+8*b^2*c^2+3*c^4)) : :
X(58595) = X[11]+X[12675], X[104]+3*X[354], -X[119]+3*X[3742], -2*X[140]+X[58663], X[942]+X[11715], -X[960]+3*X[38032], X[1071]+3*X[16173], X[1768]+7*X[50190], -3*X[3848]+2*X[58421], -3*X[5049]+X[25485], -5*X[5439]+X[12751], -X[5777]+3*X[32557] and many others

X(58595) lies on these lines: {1, 12332}, {11, 12675}, {104, 354}, {119, 3742}, {140, 58663}, {495, 10265}, {515, 58570}, {517, 46174}, {518, 6713}, {942, 11715}, {952, 3812}, {960, 38032}, {971, 16174}, {1071, 16173}, {1387, 6001}, {1537, 11551}, {1768, 50190}, {2771, 5901}, {2783, 58590}, {2787, 58589}, {2800, 5045}, {2801, 33709}, {2802, 9940}, {2826, 58596}, {2827, 58597}, {2828, 58598}, {2829, 4298}, {2830, 58602}, {2831, 58603}, {3333, 22775}, {3660, 12736}, {3738, 58593}, {3848, 58421}, {3887, 58594}, {5049, 25485}, {5083, 16193}, {5439, 12751}, {5777, 32557}, {5840, 58567}, {5882, 6797}, {6667, 58585}, {7967, 17636}, {8227, 17661}, {8674, 58582}, {8679, 58508}, {10167, 14217}, {10202, 12737}, {10698, 17609}, {11018, 46681}, {11375, 17660}, {12528, 32558}, {12761, 17626}, {13205, 37534}, {14872, 31272}, {15587, 38124}, {18443, 22560}, {18861, 37080}, {31937, 38044}, {34790, 38133}, {41554, 50195}, {58451, 58674}, {58560, 58604}

X(58595) = midpoint of X(i) and X(j) for these {i,j}: {11, 12675}, {1387, 15528}, {5083, 20418}, {5882, 6797}, {58567, 58611}, {942, 11715}
X(58595) = reflection of X(i) in X(j) for these {i,j}: {13374, 18240}, {58591, 13373}, {58613, 58604}, {58631, 6667}, {58663, 140}, {58666, 6713}, {58687, 58421}
X(58595) = center of the nine-point conic of quadrilateral XYZX(104) where XYZ is the cevian triangle of X(7)
X(58595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6713, 58666}, {952, 13373, 58591}, {1387, 15528, 6001}, {2829, 18240, 13374}, {3848, 58687, 58421}, {58560, 58613, 58604}, {58567, 58611, 5840}


X(58596) = X(81)X(105)∩X(120)X(3742)

Barycentrics    a*(a^6*(b+c)+9*a^3*b*c*(b^2+c^2)-(b-c)^4*(b+c)*(b^2+c^2)+a^4*(b+c)*(b^2-7*b*c+c^2)-2*a^5*(b^2-b*c+c^2)-a^2*(b+c)*(b^4+9*b^3*c-16*b^2*c^2+9*b*c^3+c^4)+a*(b-c)^2*(2*b^4+5*b^3*c-4*b^2*c^2+5*b*c^3+2*c^4)) : :
X(58596) = -X[120]+3*X[3742], X[942]+X[11716], -3*X[3848]+2*X[58422], X[5083]+X[33970], -5*X[5439]+X[50911], X[5511]+X[12675], X[5540]+7*X[50190], -X[10699]+5*X[17609]

X(58596) lies on circumconic {{A, B, C, X(110), X(43944)}} and these lines: {81, 105}, {120, 3742}, {518, 6714}, {528, 11018}, {942, 11716}, {2775, 58582}, {2788, 58589}, {2795, 58568}, {2809, 5045}, {2814, 58593}, {2820, 58594}, {2826, 58595}, {2832, 58597}, {2833, 58598}, {2834, 58599}, {2835, 58577}, {2837, 58602}, {2838, 58603}, {3660, 24201}, {3848, 58422}, {5083, 33970}, {5439, 50911}, {5511, 12675}, {5536, 51627}, {5540, 50190}, {8679, 58509}, {9519, 58615}, {10699, 17609}, {13373, 28915}, {32195, 38019}

X(58596) = midpoint of X(i) and X(j) for these {i,j}: {5083, 33970}, {5511, 12675}, {942, 11716}
X(58596)= pole of line {9508, 53396} with respect to the DeLongchamps ellipse
X(58596) = center of the nine-point conic of quadrilateral XYZX(105) where XYZ is the cevian triangle of X(7)


X(58597) = X(106)X(354)∩X(121)X(3742)

Barycentrics    a*(a^5*(b+c)-(b^2-c^2)^2*(b^2-3*b*c+c^2)-2*a^4*(b^2-b*c+c^2)-a^3*(b+c)*(3*b^2-b*c+3*c^2)+a*(b+c)*(2*b^4-9*b^3*c+10*b^2*c^2-9*b*c^3+2*c^4)+a^2*(3*b^4-13*b^3*c+38*b^2*c^2-13*b*c^3+3*c^4)) : :
X(58597) = X[106]+3*X[354], -X[121]+3*X[3742], X[942]+X[11717], X[1054]+7*X[50190], -3*X[3848]+2*X[58423], -5*X[5439]+X[50914], X[5510]+X[12675], -X[10700]+5*X[17609]

X(58597) lies on these lines: {106, 354}, {121, 3742}, {518, 6715}, {942, 11717}, {1054, 50190}, {2776, 58582}, {2789, 58589}, {2796, 58590}, {2802, 5045}, {2810, 58562}, {2815, 58593}, {2821, 58594}, {2827, 58595}, {2832, 58596}, {2839, 58598}, {2840, 58599}, {2841, 58576}, {2842, 58601}, {2843, 58602}, {2844, 58603}, {3333, 34139}, {3848, 58423}, {5439, 50914}, {5510, 12675}, {8679, 58510}, {10700, 17609}, {13373, 53790}

X(58597) = midpoint of X(i) and X(j) for these {i,j}: {5510, 12675}, {942, 11717}
X(58597) = reflection of X(i) in X(j) for these {i,j}: {58667, 6715}
X(58597) = center of the nine-point conic of quadrilateral XYZX(106) where XYZ is the cevian triangle of X(7)
X(58597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6715, 58667}


X(58598) = X(107)X(354)∩X(122)X(3742)

Barycentrics    a*(a^13*(b+c)-a^11*(b+c)*(b^2+c^2)+10*a^7*(b-c)^2*(b+c)^3*(b^2+c^2)-a^12*(b^2-4*b*c+c^2)+a^10*(b^2+c^2)*(b^2-4*b*c+c^2)-2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^2-12*b*c+5*c^2)-a^3*(b-c)^2*(b+c)^3*(b^2+c^2)*(b^4-10*b^2*c^2+c^4)+a*(b-c)^4*(b+c)^5*(b^4+3*b^2*c^2+c^4)-5*a^5*(b-c)^2*(b+c)^3*(b^4+4*b^2*c^2+c^4)+a^2*(b-c)^4*(b+c)^2*(b^2+c^2)*(b^4-2*b^3*c-14*b^2*c^2-2*b*c^3+c^4)-a^9*(b+c)*(5*b^4-11*b^2*c^2+5*c^4)-(b^2-c^2)^4*(b^6-2*b^5*c+4*b^4*c^2-8*b^3*c^3+4*b^2*c^4-2*b*c^5+c^6)+a^8*(5*b^6-14*b^5*c-6*b^4*c^2+32*b^3*c^3-6*b^2*c^4-14*b*c^5+5*c^6)+a^4*(b^2-c^2)^2*(5*b^6-8*b^5*c+25*b^4*c^2-48*b^3*c^3+25*b^2*c^4-8*b*c^5+5*c^6)) : :
X(58598) = X[107]+3*X[354], -X[122]+3*X[3742], X[133]+X[12675], X[942]+X[11718], -3*X[3848]+2*X[58424], -5*X[5439]+X[50916], -X[10701]+5*X[17609], -2*X[58431]+X[58631]

X(58598) lies on these lines: {107, 354}, {122, 3742}, {133, 12675}, {518, 6716}, {942, 11718}, {2777, 13374}, {2790, 58589}, {2797, 58590}, {2803, 58591}, {2811, 58592}, {2816, 58593}, {2822, 58594}, {2828, 58595}, {2833, 58596}, {2839, 58597}, {2845, 58599}, {2846, 58600}, {2847, 58602}, {2848, 58603}, {3848, 58424}, {5439, 50916}, {8679, 58511}, {9033, 58601}, {9528, 58568}, {9530, 58560}, {10701, 17609}, {13373, 53803}, {58431, 58631}

X(58598) = midpoint of X(i) and X(j) for these {i,j}: {133, 12675}, {942, 11718}
X(58598) = reflection of X(i) in X(j) for these {i,j}: {58631, 58431}, {58668, 6716}
X(58598) = center of the nine-point conic of quadrilateral XYZX(107) where XYZ is the cevian triangle of X(7)
X(58598) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6716, 58668}


X(58599) = X(108)X(354)∩X(123)X(3742)

Barycentrics    a*(a^10*(b+c)-(b-c)^6*(b+c)^3*(b^2+c^2)-2*a^9*(b^2-b*c+c^2)-a^6*(b-c)^2*(b+c)*(2*b^2-b*c+2*c^2)+a^4*(b-c)^4*(b+c)*(2*b^2-b*c+2*c^2)+a^5*b*(b-c)^2*c*(9*b^2-4*b*c+9*c^2)-a^8*(b^3+c^3)+a*(b-c)^4*(b+c)^2*(2*b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+2*c^4)+a^7*(4*b^4-11*b^3*c+16*b^2*c^2-11*b*c^3+4*c^4)+a^2*(b-c)^2*(b+c)*(b^6+b^5*c-5*b^4*c^2+22*b^3*c^3-5*b^2*c^4+b*c^5+c^6)-a^3*(b-c)^2*(4*b^6+b^5*c+2*b^4*c^2+26*b^3*c^3+2*b^2*c^4+b*c^5+4*c^6)) : :
X(58599) = X[108]+3*X[354], -X[123]+3*X[3742], -3*X[3848]+2*X[58425], X[5083]+X[56890], -5*X[5439]+X[50917], -X[10702]+5*X[17609], X[12675]+X[25640]

X(58599) lies on these lines: {108, 354}, {123, 3742}, {518, 6717}, {942, 2778}, {2791, 58589}, {2798, 58590}, {2804, 58591}, {2812, 58592}, {2817, 5045}, {2823, 58577}, {2829, 4298}, {2834, 58596}, {2840, 58597}, {2845, 58598}, {2849, 58600}, {2850, 58601}, {2851, 58602}, {3660, 10271}, {3848, 58425}, {5083, 56890}, {5439, 50917}, {8679, 58512}, {10702, 17609}, {12675, 25640}

X(58599) = midpoint of X(i) and X(j) for these {i,j}: {12675, 25640}, {5083, 56890}, {942, 11719}
X(58599) = reflection of X(i) in X(j) for these {i,j}: {58669, 6717}
X(58599) = center of the nine-point conic of quadrilateral XYZX(108) where XYZ is the cevian triangle of X(7)
X(58599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6717, 58669}, {942, 11719, 2778}


X(58600) = X(109)X(354)∩X(124)X(3742)

Barycentrics    a*(a^7*(b+c)-a^5*b*c*(b+c)+2*a^2*b*(b-c)^2*c*(b^2-3*b*c+c^2)-2*a^6*(b^2-b*c+c^2)-(b-c)^4*(b+c)^2*(b^2-b*c+c^2)+a*(b-c)^2*(b+c)*(2*b^2-b*c+c^2)*(b^2-b*c+2*c^2)+a^4*(b^2-b*c+c^2)*(3*b^2-4*b*c+3*c^2)-a^3*(b-c)^2*(b+c)*(3*b^2-2*b*c+3*c^2)) : :
X(58600) = X[109]+3*X[354], X[117]+X[12675], -X[124]+3*X[3742], X[942]+X[11700], -3*X[3848]+2*X[58426], -5*X[5439]+X[13532], -X[10703]+5*X[17609], -2*X[58419]+X[58631]

X(58600) lies on these lines: {109, 354}, {117, 12675}, {124, 3742}, {517, 47115}, {518, 6718}, {928, 58592}, {942, 11700}, {2771, 29008}, {2773, 58601}, {2779, 58569}, {2785, 58590}, {2792, 58589}, {2800, 5045}, {2807, 11018}, {2817, 9940}, {2818, 13373}, {2835, 58577}, {2841, 58576}, {2846, 58598}, {2849, 58599}, {2852, 58602}, {2853, 58603}, {3333, 54081}, {3660, 33647}, {3738, 58591}, {3848, 58426}, {5439, 13532}, {6001, 11727}, {8679, 58513}, {10703, 17609}, {12016, 16193}, {58419, 58631}

X(58600) = midpoint of X(i) and X(j) for these {i,j}: {117, 12675}, {942, 11700}
X(58600) = reflection of X(i) in X(j) for these {i,j}: {58593, 13373}, {58631, 58419}, {58670, 6718}
X(58600) = center of the nine-point conic of quadrilateral XYZX(109) where XYZ is the cevian triangle of X(7)
X(58600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6718, 58670}, {2818, 13373, 58593}


X(58601) = X(1)X(13204)∩X(81)X(105)

Barycentrics    a*(a^7*(b+c)-a^3*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)-a^5*(b+c)*(b^2+c^2)-(b-c)^4*(b+c)^2*(b^2+c^2)+a*(b-c)^2*(b+c)^3*(b^2+c^2)-a^6*(b^2-4*b*c+c^2)+a^4*(b^2+c^2)*(b^2-4*b*c+c^2)+a^2*(b^6-2*b^5*c-2*b^4*c^2+8*b^3*c^3-2*b^2*c^4-2*b*c^5+c^6)) : :
X(58601) = X[113]+X[12675], -X[125]+3*X[3742], -2*X[140]+X[58654], X[942]+X[11720], X[2948]+7*X[50190], -5*X[3616]+X[10693], -3*X[3848]+2*X[6723], -5*X[5439]+X[13211], -X[7957]+5*X[15051], -X[7984]+5*X[17609], -2*X[12900]+X[58631], -2*X[32300]+X[58694] and many others

X(58601) lies on these lines: {1, 13204}, {81, 105}, {113, 12675}, {125, 3742}, {140, 58654}, {518, 5972}, {542, 58560}, {690, 58590}, {942, 11720}, {1112, 9037}, {1385, 2778}, {2771, 5901}, {2772, 58594}, {2773, 58600}, {2774, 58592}, {2777, 58567}, {2779, 58593}, {2842, 58597}, {2850, 58599}, {2854, 58562}, {2948, 50190}, {3333, 22586}, {3616, 10693}, {3848, 6723}, {5439, 13211}, {5663, 13373}, {6001, 11723}, {7957, 15051}, {7984, 17609}, {8674, 58591}, {8679, 41671}, {9033, 58598}, {9047, 41673}, {9517, 58603}, {12327, 37534}, {12900, 58631}, {13213, 17626}, {13374, 17702}, {18443, 22583}, {32300, 58694}, {32423, 58561}, {48378, 58637}

X(58601) = midpoint of X(i) and X(j) for these {i,j}: {113, 12675}, {942, 11720}
X(58601) = reflection of X(i) in X(j) for these {i,j}: {58582, 13373}, {58631, 12900}, {58637, 48378}, {58654, 140}, {58671, 5972}, {58694, 32300}
X(58601) = center of the nine-point conic of quadrilateral XYZX(110) where XYZ is the cevian triangle of X(7)
X(58601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5972, 58671}, {5663, 13373, 58582}


X(58602) = X(111)X(354)∩X(126)X(3742)

Barycentrics    a*(a^7*(b+c)-3*a^5*(b+c)*(b^2+c^2)-a^6*(b^2-4*b*c+c^2)+a^4*(b^2+c^2)*(3*b^2-8*b*c+3*c^2)-3*a^3*(b+c)*(b^4-5*b^2*c^2+c^4)-(b-c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+a*(b+c)*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+a^2*(3*b^6-10*b^5*c-12*b^4*c^2+40*b^3*c^3-12*b^2*c^4-10*b*c^5+3*c^6)) : :
X(58602) = X[111]+3*X[354], -X[126]+3*X[3742], X[942]+X[11721], -3*X[3848]+2*X[58427], -5*X[5439]+X[50924], X[5512]+X[12675], -X[10704]+5*X[17609]

X(58602) lies on these lines: {111, 354}, {126, 3742}, {518, 6719}, {543, 58560}, {942, 11721}, {2780, 58582}, {2793, 58589}, {2805, 58571}, {2813, 58572}, {2819, 58593}, {2824, 58594}, {2830, 58595}, {2837, 58596}, {2843, 58597}, {2847, 58598}, {2851, 58599}, {2852, 58600}, {2854, 58562}, {3848, 58427}, {5439, 50924}, {5512, 12675}, {8679, 58514}, {10704, 17609}, {13373, 33962}, {13374, 23699}

X(58602) = midpoint of X(i) and X(j) for these {i,j}: {5512, 12675}, {942, 11721}
X(58602) = reflection of X(i) in X(j) for these {i,j}: {58672, 6719}
X(58602) = center of the nine-point conic of quadrilateral XYZX(111) where XYZ is the cevian triangle of X(7)
X(58602) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6719, 58672}


X(58603) = X(1)X(13206)∩X(112)X(354)

Barycentrics    a*(a^11*(b+c)+a^7*b^2*c^2*(b+c)-a^9*(b+c)*(b^2+c^2)+2*a^4*b*c*(b^2-c^2)^2*(b^2+c^2)-a^10*(b^2-4*b*c+c^2)+a^8*(b^2+c^2)*(b^2-4*b*c+c^2)-(b-c)^4*(b+c)^2*(b^2+c^2)*(b^4+c^4)+a*(b-c)^2*(b+c)^3*(b^2+c^2)*(b^4+c^4)-a^3*(b-c)^2*(b+c)^3*(b^4+b^2*c^2+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-2*b^3*c+b^2*c^2-2*b*c^3+c^4)-a^6*b*c*(2*b^4+b^3*c-8*b^2*c^2+b*c^3+2*c^4)) : :
X(58603) = X[112]+3*X[354], -X[127]+3*X[3742], X[132]+X[12675], X[942]+X[11722], -3*X[3848]+2*X[58428], -5*X[5439]+X[13280], -X[10705]+5*X[17609], X[13221]+7*X[50190], -2*X[58430]+X[58631]

X(58603) lies on these lines: {1, 13206}, {112, 354}, {127, 3742}, {132, 12675}, {518, 6720}, {942, 11722}, {2781, 58562}, {2794, 13374}, {2799, 58590}, {2806, 58591}, {2825, 58594}, {2831, 58595}, {2838, 58596}, {2844, 58597}, {2848, 58598}, {2853, 58600}, {3333, 19162}, {3848, 58428}, {5439, 13280}, {8679, 58515}, {9517, 58601}, {9518, 58592}, {9532, 58593}, {10705, 17609}, {12340, 37534}, {13221, 50190}, {13294, 17626}, {13373, 53795}, {18443, 19159}, {58430, 58631}

X(58603) = midpoint of X(i) and X(j) for these {i,j}: {132, 12675}, {942, 11722}
X(58603) = reflection of X(i) in X(j) for these {i,j}: {58631, 58430}, {58673, 6720}
X(58603) = center of the nine-point conic of quadrilateral XYZX(112) where XYZ is the cevian triangle of X(7)
X(58603) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6720, 58673}


X(58604) = X(5)X(5083)∩X(119)X(354)

Barycentrics    a*(a^8*(b+c)+3*a^4*b*(b-c)^2*c*(b+c)-2*a^7*(b^2+c^2)-(b-c)^4*(b+c)^3*(b^2-3*b*c+c^2)+6*a^5*(b^2+c^2)*(b^2-b*c+c^2)-a^6*(b+c)*(2*b^2-b*c+2*c^2)+2*a*(b^2-c^2)^2*(b^4-3*b^3*c+5*b^2*c^2-3*b*c^3+c^4)-2*a^3*(b^2-b*c+c^2)*(3*b^4-3*b^3*c+2*b^2*c^2-3*b*c^3+3*c^4)+a^2*(2*b^7-7*b^6*c+5*b^5*c^2+5*b^2*c^5-7*b*c^6+2*c^7)) : :
X(58604) = X[5]+X[5083], X[119]+3*X[354], X[942]+X[11729], X[1484]+X[9946], X[1537]+3*X[10202], -5*X[1656]+X[46685], -2*X[3628]+X[46694], -3*X[3742]+X[6713], -3*X[3848]+X[58666], 3*X[5883]+X[25485], 3*X[5886]+X[11570], 7*X[9624]+X[11571] and many others

X(58604) lies on these lines: {5, 5083}, {119, 354}, {515, 58625}, {518, 58421}, {942, 11729}, {952, 5045}, {1387, 50195}, {1484, 9946}, {1537, 10202}, {1656, 46685}, {2800, 5885}, {2801, 58607}, {2802, 33179}, {2829, 13373}, {2835, 46174}, {3628, 46694}, {3742, 6713}, {3848, 58666}, {5840, 13374}, {5883, 25485}, {5886, 11570}, {8679, 58522}, {9624, 11571}, {10247, 39776}, {10283, 15558}, {11230, 18254}, {11567, 31870}, {12611, 15528}, {12736, 19907}, {12751, 50190}, {12775, 37612}, {17660, 23513}, {24474, 34123}, {58560, 58595}

X(58604) = midpoint of X(i) and X(j) for these {i,j}: {1484, 9946}, {12611, 15528}, {12736, 19907}, {13374, 58591}, {5, 5083}, {58595, 58613}, {942, 11729}
X(58604) = reflection of X(i) in X(j) for these {i,j}: {18240, 58561}, {46694, 3628}, {58674, 58421}
X(58604) = center of the nine-point conic of quadrilateral XYZX(119) where XYZ is the cevian triangle of X(7)
X(58604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58421, 58674}, {952, 58561, 18240}, {13374, 58591, 5840}


X(58605) = X(1)X(24302)∩X(140)X(354)

Barycentrics    a*(2*a^5*(b+c)-(b-2*c)*(b-c)^2*(2*b-c)*(b+c)^2+2*a*(b-c)^2*(b+c)^3-4*a^3*(b+c)*(b^2+c^2)-2*a^4*(b^2-3*b*c+c^2)+a^2*(b^2+c^2)*(4*b^2-11*b*c+4*c^2)) : :
X(58605) = X[140]+3*X[354], -3*X[210]+7*X[55862], 3*X[546]+X[12680], 5*X[632]+3*X[3873], X[942]+X[51700], -X[3628]+3*X[3742], -3*X[3681]+11*X[55859], -3*X[3848]+X[58632], X[3850]+X[12675], 5*X[3889]+3*X[38112], 3*X[4430]+13*X[46219], -3*X[4661]+19*X[55858] and many others

X(58605) lies on these lines: {1, 24302}, {30, 13373}, {140, 354}, {210, 55862}, {518, 16239}, {546, 12680}, {632, 3873}, {942, 51700}, {952, 58565}, {2800, 12009}, {2810, 32205}, {3338, 7508}, {3564, 58606}, {3628, 3742}, {3681, 55859}, {3848, 58632}, {3850, 12675}, {3889, 38112}, {4430, 46219}, {4661, 55858}, {5045, 5844}, {5690, 50190}, {5693, 38022}, {5762, 58607}, {5843, 58564}, {5848, 50476}, {5884, 5901}, {8679, 58531}, {9940, 28212}, {11025, 38111}, {12812, 14872}, {13751, 37737}, {18240, 58569}, {18398, 38028}, {28216, 58615}, {34126, 37731}, {34380, 58562}, {58566, 58570}

X(58605) = midpoint of X(i) and X(j) for these {i,j}: {13373, 58561}, {3850, 12675}, {942, 51700}
X(58605) = reflection of X(i) in X(j) for these {i,j}: {58675, 16239}
X(58605) = center of the nine-point conic of quadrilateral XYZX(140) where XYZ is the cevian triangle of X(7)
X(58605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 16239, 58675}, {13373, 58560, 58561}, {13373, 58561, 30}


X(58606) = X(6)X(7292)∩X(141)X(354)

Barycentrics    a*(-(a^2*(b-c)^2)+a^3*(b+c)+a*(b+c)*(b^2+c^2)-(b^2+c^2)*(b^2-3*b*c+c^2)) : :
X(58606) = X[141]+3*X[354], -3*X[210]+7*X[51128], X[3416]+7*X[50190], -X[3589]+3*X[3742], 5*X[3763]+3*X[3873], X[3844]+X[3881], -3*X[3848]+2*X[51127], -5*X[5439]+X[49524], 3*X[5883]+X[49465], X[12723]+3*X[49741], -5*X[17609]+X[51147]

X(58606) lies on these lines: {6, 7292}, {141, 354}, {210, 51128}, {511, 58561}, {518, 3634}, {524, 58560}, {698, 58584}, {742, 58571}, {1125, 9021}, {1503, 13373}, {3416, 50190}, {3564, 58605}, {3589, 3742}, {3720, 18183}, {3763, 3873}, {3812, 9053}, {3844, 3881}, {3848, 51127}, {5045, 5846}, {5439, 49524}, {5845, 58564}, {5883, 49465}, {6329, 9004}, {8679, 58532}, {9024, 18240}, {9055, 58583}, {12723, 49741}, {13374, 29181}, {17609, 51147}, {25365, 25557}, {34377, 58626}, {44663, 51154}

X(58606) = midpoint of X(i) and X(j) for these {i,j}: {3844, 3881}, {58562, 58581}
X(58606) = reflection of X(i) in X(j) for these {i,j}: {58633, 51127}, {58676, 34573}
X(58606) = center of the nine-point conic of quadrilateral XYZX(141) where XYZ is the cevian triangle of X(7)
X(58606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 34573, 58676}, {3848, 58633, 51127}, {58560, 58581, 58562}, {58562, 58581, 524}


X(58607) = X(7)X(3255)∩X(142)X(354)

Barycentrics    a*(a^2+b^2-3*b*c+c^2-2*a*(b+c))*(-(b-c)^2+a*(b+c)) : :
X(58607) = X[142]+3*X[354], X[2550]+7*X[50190], -3*X[3742]+X[6666], X[3754]+X[15570], X[3826]+X[3881], -3*X[3848]+X[58635], 3*X[3873]+5*X[20195], 5*X[3889]+3*X[38200], -5*X[5439]+X[24393], 3*X[5883]+X[42871], 3*X[6173]+5*X[11025], 5*X[18398]+3*X[38053] and many others

X(58607) lies on these lines: {7, 3255}, {142, 354}, {516, 13373}, {518, 3634}, {527, 58560}, {528, 58625}, {971, 58561}, {1001, 3647}, {2550, 50190}, {2801, 58604}, {3174, 30350}, {3742, 6666}, {3754, 15570}, {3826, 3881}, {3848, 58635}, {3873, 20195}, {3889, 38200}, {4652, 38316}, {5045, 5853}, {5049, 9945}, {5083, 21617}, {5439, 24393}, {5542, 58566}, {5552, 11038}, {5572, 18240}, {5762, 58605}, {5883, 42871}, {6173, 11025}, {6701, 20116}, {7677, 41547}, {8730, 15934}, {10197, 30329}, {18398, 38053}, {34784, 38093}

X(58607) = midpoint of X(i) and X(j) for these {i,j}: {20116, 25557}, {3754, 15570}, {3826, 3881}, {58563, 58564}
X(58607) = reflection of X(i) in X(j) for these {i,j}: {58677, 58433}
X(58607) = center of the nine-point conic of quadrilateral XYZX(142) where XYZ is the cevian triangle of X(7)
X(58607) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3059), X(3255)}}, {{A, B, C, X(4847), X(29817)}}
X(58607) = barycentric product X(i)*X(j) for these (i, j): {142, 29817}
X(58607) = barycentric quotient X(i)/X(j) for these (i, j): {29817, 32008}
X(58607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58433, 58677}, {58560, 58563, 58564}, {58563, 58564, 527}


X(58608) = X(1)X(6)∩X(7)X(3742)

Barycentrics    a*(a^3*(b+c)+a*(b-3*c)*(3*b-c)*(b+c)+a^2*(-3*b^2+4*b*c-3*c^2)-(b-c)^2*(b^2+c^2)) : :
X(58608) = 3*X[2]+X[14100], -X[7]+3*X[3742], X[65]+3*X[52653], X[144]+3*X[354], 3*X[210]+X[30628], X[390]+X[5836], X[942]+X[51090], X[946]+X[51489], -X[3059]+3*X[3740], X[3062]+3*X[10167], -5*X[3616]+X[8581], -X[4312]+5*X[5439] and many others

X(58608) lies on circumconic {{A, B, C, X(2346), X(40133)}} and these lines: {1, 6}, {2, 14100}, {7, 3742}, {65, 52653}, {142, 1538}, {144, 354}, {210, 30628}, {390, 5836}, {516, 3812}, {527, 58560}, {528, 15006}, {942, 51090}, {946, 51489}, {971, 1125}, {1376, 4326}, {1418, 24708}, {1445, 4640}, {1621, 15837}, {2293, 25067}, {2951, 5437}, {3059, 3740}, {3062, 10167}, {3616, 8581}, {3646, 5785}, {3739, 25375}, {3752, 4335}, {3880, 30331}, {3967, 56085}, {4312, 5439}, {4423, 10391}, {5044, 15008}, {5045, 5850}, {5087, 21617}, {5248, 31658}, {5250, 41712}, {5550, 10861}, {5732, 25524}, {5762, 13374}, {5779, 12675}, {5794, 5809}, {5843, 13373}, {5845, 58581}, {5851, 58591}, {5856, 58611}, {5880, 6836}, {6172, 11025}, {6244, 8257}, {6666, 6690}, {6667, 58433}, {6692, 43151}, {6706, 45305}, {8679, 58534}, {9943, 11372}, {10107, 31798}, {10198, 38108}, {10200, 38122}, {10307, 34919}, {11108, 12710}, {12573, 57288}, {12608, 31657}, {13405, 18227}, {16201, 18250}, {16593, 25144}, {17668, 20195}, {20718, 58398}, {21258, 21629}, {24669, 27475}, {25371, 58583}, {25917, 41228}, {28628, 38037}, {30329, 44663}, {40659, 58629}, {40998, 52819}

X(58608) = midpoint of X(i) and X(j) for these {i,j}: {12573, 57288}, {14100, 15587}, {390, 5836}, {3740, 7671}, {5044, 15008}, {5223, 34791}, {5779, 12675}, {9, 5572}, {942, 51090}, {946, 51489}, {960, 5728}, {9943, 11372}
X(58608) = reflection of X(i) in X(j) for these {i,j}: {58563, 58564}, {58634, 6666}, {58637, 31658}, {58678, 9}, {58679, 1001}
X(58608) = complement of X(15587)
X(58608)= pole of line {55, 144} with respect to the Feuerbach hyperbola
X(58608) = center of the nine-point conic of quadrilateral XYZX(144) where XYZ is the cevian triangle of X(7)
X(58608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14100, 15587}, {9, 10177, 5572}, {9, 518, 58678}, {142, 42356, 3838}, {518, 1001, 58679}, {527, 58564, 58563}, {3059, 18230, 3740}, {5223, 34791, 518}, {6666, 15733, 58634}, {6666, 58634, 58451}, {15254, 42819, 42843}, {58563, 58564, 58560}, {58620, 58621, 58609}


X(58609) = X(1)X(6)∩X(8)X(3742)

Barycentrics    a*(10*a*b*c+a^2*(b+c)-(b+c)*(b^2+c^2)) : :
X(58609) = -X[8]+3*X[3742], -2*X[10]+3*X[3848], X[65]+3*X[3241], X[145]+3*X[354], -3*X[210]+7*X[3622], -3*X[551]+X[34790], X[942]+X[3244], X[1071]+3*X[16200], -5*X[1125]+3*X[3956], -2*X[1387]+X[58683], X[1482]+X[12675], -5*X[1698]+3*X[4711] and many others

X(58609) lies on these lines: {1, 6}, {8, 3742}, {10, 3848}, {65, 3241}, {145, 354}, {210, 3622}, {495, 49627}, {515, 31822}, {517, 548}, {519, 3812}, {528, 4298}, {535, 31795}, {551, 34790}, {758, 31792}, {912, 33179}, {938, 32049}, {942, 3244}, {952, 13374}, {999, 56176}, {1002, 6553}, {1071, 16200}, {1125, 3956}, {1385, 49110}, {1387, 58683}, {1482, 12675}, {1698, 4711}, {1858, 33176}, {2098, 10391}, {2136, 10980}, {2550, 9797}, {2646, 3957}, {2802, 31794}, {2975, 3748}, {3057, 3623}, {3303, 4640}, {3304, 3870}, {3333, 3913}, {3361, 4421}, {3616, 3740}, {3621, 3698}, {3632, 5439}, {3633, 3753}, {3636, 4547}, {3671, 13463}, {3678, 51103}, {3689, 5253}, {3693, 17474}, {3697, 25055}, {3754, 50192}, {3811, 7373}, {3813, 3838}, {3816, 21625}, {3826, 51723}, {3829, 3947}, {3833, 4701}, {3868, 5919}, {3871, 32636}, {3874, 9957}, {3890, 3962}, {3895, 5221}, {3921, 34595}, {3976, 4646}, {3983, 5550}, {3999, 4642}, {4002, 4677}, {4301, 15726}, {4323, 8581}, {4345, 9848}, {4360, 7176}, {4673, 49483}, {4849, 21214}, {4853, 44841}, {4861, 44840}, {4883, 10459}, {4906, 54418}, {4966, 25144}, {5048, 17637}, {5083, 13601}, {5087, 37722}, {5228, 6167}, {5250, 8162}, {5274, 17632}, {5290, 11235}, {5437, 30343}, {5542, 12128}, {5687, 51816}, {5697, 24473}, {5734, 12688}, {5794, 36845}, {5806, 28236}, {5844, 13373}, {5846, 58581}, {5853, 12577}, {5854, 46681}, {5855, 11018}, {5880, 11037}, {5883, 50191}, {5884, 13600}, {5901, 58631}, {6001, 10222}, {6049, 7672}, {6147, 49600}, {6738, 16215}, {6765, 25524}, {6766, 11495}, {7686, 37727}, {7982, 9943}, {7991, 10178}, {8083, 12644}, {8582, 17051}, {8679, 58535}, {9041, 58618}, {9053, 58562}, {9578, 31146}, {9624, 18908}, {9845, 43166}, {9850, 34640}, {9940, 28234}, {10167, 11531}, {10247, 40266}, {10394, 10866}, {10528, 17728}, {10529, 17718}, {10569, 12448}, {10595, 14872}, {10624, 28534}, {10912, 11529}, {10914, 18398}, {11019, 12607}, {11021, 35634}, {11033, 12646}, {11035, 12446}, {11038, 15587}, {11239, 24914}, {11240, 11375}, {11278, 13369}, {11519, 30350}, {11723, 58680}, {11724, 58681}, {11725, 58682}, {11726, 58684}, {11727, 58685}, {11728, 58686}, {11729, 58687}, {12439, 22667}, {12447, 58564}, {12526, 51779}, {12527, 49736}, {12559, 12710}, {12575, 17768}, {12722, 49455}, {14839, 58622}, {15888, 26015}, {16201, 58578}, {16216, 58568}, {16610, 46190}, {16616, 28204}, {17063, 21896}, {17393, 54344}, {17480, 49470}, {17604, 18220}, {17614, 37602}, {18231, 24477}, {18391, 32537}, {18839, 37734}, {19861, 41711}, {20323, 34772}, {20718, 58399}, {21342, 37598}, {22836, 51788}, {24541, 37703}, {24987, 51463}, {25439, 37582}, {25917, 38314}, {26089, 28198}, {26201, 58240}, {28228, 31805}, {28581, 58583}, {28628, 34625}, {30947, 44720}, {32095, 49514}, {32157, 51774}, {34699, 52783}, {36977, 37724}, {37080, 54391}, {50581, 52541}, {51700, 58630}, {51725, 58639}

X(58609) = midpoint of X(i) and X(j) for these {i,j}: {1, 34791}, {145, 5836}, {1482, 12675}, {11278, 13369}, {12559, 12710}, {12722, 49455}, {26201, 58240}, {3243, 5572}, {3635, 3881}, {3874, 9957}, {5884, 13600}, {7686, 37727}, {7982, 9943}, {942, 3244}, {960, 3555}
X(58609) = reflection of X(i) in X(j) for these {i,j}: {10107, 942}, {3754, 50192}, {3812, 5045}, {3848, 5049}, {4662, 1125}, {5044, 3636}, {58591, 46681}, {58629, 551}, {58630, 51700}, {58631, 5901}, {58637, 1385}, {58639, 51725}, {58678, 1001}, {58679, 1}, {58680, 11723}, {58681, 11724}, {58682, 11725}, {58683, 1387}, {58684, 11726}, {58685, 11727}, {58686, 11728}, {58687, 11729}, {58693, 15569}, {58694, 1386}
X(58609)= pole of line {4083, 48307} with respect to the DeLongchamps ellipse
X(58609)= pole of line {55, 3622} with respect to the Feuerbach hyperbola
X(58609) = center of the nine-point conic of quadrilateral XYZX(145) where XYZ is the cevian triangle of X(7)
X(58609) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(39702)}}, {{A, B, C, X(959), X(16486)}}, {{A, B, C, X(1001), X(6553)}}, {{A, B, C, X(1002), X(1616)}}, {{A, B, C, X(1257), X(10179)}}, {{A, B, C, X(5259), X(24858)}}, {{A, B, C, X(12513), X(35577)}}
X(58609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3243, 12635}, {1, 34791, 518}, {1, 3555, 960}, {1, 3751, 1616}, {1, 41863, 5289}, {1, 518, 58679}, {1, 54386, 16486}, {1, 6762, 1001}, {1, 72, 10179}, {1, 956, 51715}, {1, 958, 42819}, {8, 17609, 3742}, {145, 354, 5836}, {518, 1001, 58678}, {518, 1386, 58694}, {518, 15569, 58693}, {519, 5045, 3812}, {942, 3880, 10107}, {960, 34791, 3555}, {1125, 4662, 58451}, {3241, 3889, 65}, {3244, 3892, 942}, {3633, 50190, 3753}, {3635, 3881, 517}, {3812, 5045, 58560}, {3813, 21620, 3838}, {3868, 20057, 5919}, {3874, 51071, 9957}, {3874, 9957, 44663}, {3890, 4430, 3962}, {5854, 46681, 58591}, {11260, 15570, 1}, {58620, 58621, 58608}


X(58610) = X(115)X(518)∩X(148)X(354)

Barycentrics    a*(-b^6+4*b^5*c-8*b^3*c^3+4*b*c^5-c^6+a^5*(b+c)-a^4*(b^2+c^2)-a^3*(b+c)*(b^2+c^2)+a^2*(b^2+c^2)^2+a*(b+c)*(b^4-b^2*c^2+c^4)) : :
X(58610) = -2*X[5]+X[58681], -X[99]+3*X[3742], X[148]+3*X[354], -2*X[620]+3*X[3848], X[942]+X[11599], -X[960]+3*X[38220], -2*X[2023]+X[58695], -3*X[3740]+5*X[14061], -5*X[5439]+X[13174], -2*X[5461]+X[58629], X[5836]+X[7983], -2*X[6036]+X[58637] and many others

X(58610) lies on these lines: {5, 58681}, {99, 3742}, {115, 518}, {148, 354}, {542, 58621}, {543, 58560}, {620, 3848}, {942, 11599}, {960, 38220}, {2023, 58695}, {2782, 13374}, {2783, 58613}, {2784, 5806}, {2786, 58612}, {2787, 58611}, {3740, 14061}, {5439, 13174}, {5461, 58629}, {5836, 7983}, {5969, 58581}, {6036, 58637}, {6321, 12675}, {6722, 58451}, {8679, 58538}, {10391, 13183}, {11725, 58679}, {12258, 44663}, {13178, 34791}, {20398, 58661}, {23698, 58567}

X(58610) = midpoint of X(i) and X(j) for these {i,j}: {13178, 34791}, {5836, 7983}, {6321, 12675}, {942, 11599}
X(58610) = reflection of X(i) in X(j) for these {i,j}: {58567, 58589}, {58629, 5461}, {58637, 6036}, {58661, 20398}, {58662, 6722}, {58679, 11725}, {58681, 5}, {58682, 115}, {58695, 2023}
X(58610) = center of the nine-point conic of quadrilateral XYZX(148) where XYZ is the cevian triangle of X(7)
X(58610) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 518, 58682}, {6722, 58662, 58451}


X(58611) = X(1)X(33598)∩X(11)X(518)

Barycentrics    a*(a^4*(b+c)+3*a^2*b*c*(b+c)-(b-c)^2*(b+c)*(b^2-4*b*c+c^2)-2*a^3*(b^2+b*c+c^2)+a*(2*b^4-7*b^3*c+8*b^2*c^2-7*b*c^3+2*c^4)) : :
X(58611) = -2*X[5]+X[58687], X[80]+X[34791], -X[100]+3*X[3742], X[149]+3*X[354], X[942]+X[21630], -X[960]+3*X[16173], X[1320]+X[5836], -2*X[3035]+3*X[3848], X[3254]+X[5572], X[3555]+3*X[37718], -3*X[3740]+5*X[31272], 3*X[3753]+X[12653] and many others

X(58611) lies on these lines: {1, 33598}, {5, 58687}, {11, 518}, {80, 34791}, {100, 3742}, {149, 354}, {528, 11018}, {546, 3881}, {942, 21630}, {952, 13374}, {960, 16173}, {1320, 5836}, {1387, 6675}, {2787, 58610}, {2802, 3636}, {2805, 58583}, {3035, 3848}, {3057, 37291}, {3254, 5572}, {3555, 37718}, {3740, 31272}, {3753, 12653}, {3838, 12915}, {3880, 6797}, {3887, 58612}, {3982, 5083}, {4662, 6702}, {5044, 33709}, {5049, 33337}, {5439, 5541}, {5531, 42871}, {5533, 44547}, {5840, 58567}, {5848, 58621}, {5856, 58608}, {6224, 17609}, {6667, 58451}, {6713, 58637}, {7686, 12737}, {8679, 58539}, {9024, 58581}, {9943, 14217}, {10107, 12736}, {10391, 13274}, {10707, 17660}, {10738, 12675}, {10957, 20288}, {13205, 17626}, {14740, 45310}, {15570, 37736}, {25917, 32558}, {50190, 50239}

X(58611) = midpoint of X(i) and X(j) for these {i,j}: {1320, 5836}, {10738, 12675}, {3254, 5572}, {7686, 12737}, {80, 34791}, {942, 21630}, {9943, 14217}
X(58611) = reflection of X(i) in X(j) for these {i,j}: {10107, 12736}, {3812, 58587}, {4662, 6702}, {5044, 33709}, {58567, 58595}, {58591, 18240}, {58613, 13374}, {58629, 45310}, {58637, 6713}, {58663, 6667}, {58679, 1387}, {58683, 11}, {58687, 5}
X(58611) = center of the nine-point conic of quadrilateral XYZX(149) where XYZ is the cevian triangle of X(7)
X(58611) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 518, 58683}, {528, 18240, 58591}, {952, 13374, 58613}, {2802, 58587, 3812}, {6667, 58663, 58451}, {18240, 58591, 58560}


X(58612) = X(116)X(518)∩X(150)X(354)

Barycentrics    a*(a^5*(b+c)-2*a^4*(b^2+b*c+c^2)+a^3*(b+c)*(b^2+b*c+c^2)-(b-c)^2*(b^2-4*b*c+c^2)*(b^2+b*c+c^2)+a*(b-c)^2*(b+c)*(2*b^2-3*b*c+2*c^2)-a^2*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)) : :
X(58612) = -2*X[5]+X[58686], -X[101]+3*X[3742], X[150]+3*X[354], -X[1282]+5*X[5439], -3*X[3740]+5*X[31273], -3*X[3848]+2*X[6710], X[5836]+X[10695], -2*X[6712]+X[58637], X[10739]+X[12675], -2*X[11726]+X[58679], X[34791]+X[50896], -4*X[58418]+3*X[58451] and many others

X(58612) lies on these lines: {5, 58686}, {101, 3742}, {116, 518}, {150, 354}, {544, 58560}, {1282, 5439}, {2784, 5045}, {2786, 58610}, {2801, 58563}, {2808, 13374}, {2809, 3812}, {2810, 58581}, {3740, 31273}, {3848, 6710}, {3887, 58611}, {5836, 10695}, {6712, 58637}, {8679, 58540}, {10739, 12675}, {11726, 58679}, {34791, 50896}, {58418, 58451}, {58567, 58594}

X(58612) = midpoint of X(i) and X(j) for these {i,j}: {10739, 12675}, {34791, 50896}, {5836, 10695}
X(58612) = reflection of X(i) in X(j) for these {i,j}: {58567, 58594}, {58637, 6712}, {58664, 58418}, {58679, 11726}, {58684, 116}, {58686, 5}
X(58612)= pole of line {5195, 43038} with respect to the Feuerbach hyperbola
X(58612) = center of the nine-point conic of quadrilateral XYZX(150) where XYZ is the cevian triangle of X(7)
X(58612) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {116, 518, 58684}, {58418, 58664, 58451}


X(58613) = X(119)X(518)∩X(153)X(354)

Barycentrics    a*(a^8*(b+c)+4*a^4*b^2*c^2*(b+c)-(b-c)^4*(b+c)^3*(b^2-4*b*c+c^2)-2*a^7*(b^2+b*c+c^2)-a^6*(b+c)*(2*b^2-3*b*c+2*c^2)+a*(b^2-c^2)^2*(2*b^4-7*b^3*c+16*b^2*c^2-7*b*c^3+2*c^4)+a^2*(b-c)^2*(b+c)*(2*b^4-5*b^3*c-6*b^2*c^2-5*b*c^3+2*c^4)+a^5*(6*b^4-3*b^3*c-3*b*c^3+6*c^4)-2*a^3*(3*b^6-6*b^5*c+5*b^4*c^2+5*b^2*c^4-6*b*c^5+3*c^6)) : :
X(58613) = -2*X[5]+X[58683], -X[72]+5*X[15017], -X[104]+3*X[3742], X[153]+3*X[354], X[942]+X[21635], -X[1768]+5*X[5439], -2*X[3035]+X[58637], 3*X[3753]+X[13253], -3*X[3848]+2*X[6713], X[5083]+X[38757], X[5836]+X[10698], X[6265]+X[7686] and many others

X(58613) lies on these lines: {5, 58683}, {72, 15017}, {104, 3742}, {119, 518}, {153, 354}, {942, 21635}, {952, 13374}, {1768, 5439}, {2771, 46028}, {2783, 58610}, {2800, 3812}, {2801, 58563}, {2829, 58567}, {3035, 58637}, {3753, 13253}, {3848, 6713}, {3880, 25485}, {5083, 38757}, {5836, 10698}, {6001, 12611}, {6265, 7686}, {8679, 58543}, {9943, 34789}, {10157, 47320}, {10202, 16128}, {10391, 12764}, {10742, 12675}, {11729, 58679}, {12751, 34791}, {14740, 38758}, {17654, 50908}, {20400, 58663}, {39692, 44547}, {58421, 58451}, {58560, 58595}

X(58613) = midpoint of X(i) and X(j) for these {i,j}: {10742, 12675}, {12751, 34791}, {5083, 38757}, {5836, 10698}, {6265, 7686}, {942, 21635}, {9943, 34789}
X(58613) = reflection of X(i) in X(j) for these {i,j}: {58567, 58591}, {58595, 58604}, {58611, 13374}, {58637, 3035}, {58663, 20400}, {58666, 58421}, {58679, 11729}, {58683, 5}, {58687, 119}
X(58613) = center of the nine-point conic of quadrilateral XYZX(153) where XYZ is the cevian triangle of X(7)
X(58613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 518, 58687}, {2829, 58591, 58567}, {58421, 58666, 58451}, {58595, 58604, 58560}


X(58614) = X(164)X(354)∩X(177)X(3660)

Barycentrics    -(a*(a^2*(b+c)*(-sqrt(a*(a+b-c)*(a-b+c))+sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3))-(b-c)^2*(c*(sqrt(a*(a+b-c)*(a-b+c))+sqrt(b*(a+b-c)*(-a+b+c))-sqrt(-((a-b)^2*c)+c^3))+b*(sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c))+sqrt(-((a-b)^2*c)+c^3)))+2*a*(b^2*(sqrt(a*(a+b-c)*(a-b+c))-sqrt(b*(a+b-c)*(-a+b+c)))+c^2*(sqrt(a*(a+b-c)*(a-b+c))-sqrt(-((a-b)^2*c)+c^3))+b*c*(-sqrt(a*(a+b-c)*(a-b+c))+2*sqrt(b*(a+b-c)*(-a+b+c))+2*sqrt(-((a-b)^2*c)+c^3))))) : :
Barycentrics    a*((a^2*b - 2*a*b^2 + b^3 + a^2*c + 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3)*Sin[A/2] - (a^2*b - 2*a*b^2 + b^3 + a^2*c + 4*a*b*c - 3*b^2*c + 3*b*c^2 - c^3)*Sin[B/2] - (a^2*b - b^3 + a^2*c + 4*a*b*c + 3*b^2*c - 2*a*c^2 - 3*b*c^2 + c^3)*Sin[C/2]) : : (Peter Moses, September 22, 2023)

X(58614) lies on these lines: {65, 55175}, {164, 354}, {177, 3660}, {517, 55172}, {518, 58440}, {942, 12523}, {971, 12614}, {3742, 21633}, {5045, 55174}, {5049, 55173}, {5571, 11018}, {9957, 55176}, {11227, 12518}, {12656, 17609}, {12813, 58573}, {12908, 58576}, {13373, 53810}, {16215, 31766}, {18398, 55168}, {50190, 55169}, {50191, 55170}, {50192, 55171}, {58444, 58623}, {58577, 58616}

X(58614) = midpoint of X(i) and X(j) for these {i,j}: {5571, 12443}, {942, 12523}
X(58614) = center of the nine-point conic of quadrilateral XYZX(164) where XYZ is the cevian triangle of X(7)


X(58615) = X(1)X(3)∩X(2)X(38030)

Barycentrics    a*(3*a^4*(b+c)-3*(b-c)^4*(b+c)-4*a^2*b*c*(b+c)-6*a^3*(b^2-b*c+c^2)+2*a*(b-c)^2*(3*b^2-b*c+3*c^2)) : :
X(58615) = -4*X[1125]+X[31821], -7*X[4533]+19*X[55864], X[5044]+2*X[12005], X[9812]+3*X[10167], -X[9947]+2*X[10175], X[13369]+X[38034], X[24473]+3*X[54445]

X(58615) lies on these lines: {1, 3}, {2, 38030}, {516, 58560}, {518, 10156}, {971, 3742}, {1125, 31821}, {2801, 3848}, {3812, 28236}, {3928, 38031}, {4533, 55864}, {5044, 12005}, {5542, 37364}, {5806, 28164}, {5927, 10584}, {7956, 43177}, {8679, 58548}, {9519, 58596}, {9812, 10167}, {9947, 10175}, {11019, 15008}, {13369, 38034}, {13374, 28150}, {15726, 58564}, {17613, 29817}, {18260, 58619}, {24473, 54445}, {24477, 38122}, {27525, 34790}, {28178, 58561}, {28216, 58605}, {33899, 51723}

X(58615) = midpoint of X(i) and X(j) for these {i,j}: {10175, 12675}, {10247, 31788}, {11224, 31798}, {13369, 38034}, {354, 11227}, {942, 3576}
X(58615) = reflection of X(i) in X(j) for these {i,j}: {58688, 58441}, {9947, 10175}
X(58615) = center of the nine-point conic of quadrilateral XYZX(165) where XYZ is the cevian triangle of X(7)
X(58615) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {354, 10389, 12915}, {354, 17603, 10389}, {3660, 11018, 58577}, {6244, 44841, 10222}, {10156, 58688, 58441}, {10247, 31788, 517}, {11018, 58577, 5045}, {11407, 44841, 6244}, {31797, 40296, 31787}, {58565, 58567, 5806}, {58578, 58591, 58623}


X(58616) = X(1)X(168)∩X(177)X(354)

Barycentrics    -(a^(3/2)*(b-c)*(b^2-4*b*c+c^2)*(sqrt(b*(a+b-c))-sqrt(c*(a-b+c))))-a^(7/2)*(b+c)*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c)))+2*a^(5/2)*(b^2*sqrt(b*(a+b-c))+c^2*sqrt(c*(a-b+c))-2*b*c*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c))))+a^3*(b+c)*(sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+sqrt(b)*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c))))-2*a^2*(b^(5/2)*sqrt(a*(a+b-c))+c^(5/2)*sqrt(a*(a-b+c))+b*c^(3/2)*sqrt(b*(-a+b+c))+b^(3/2)*c*sqrt(c*(-a+b+c))+b^2*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+sqrt(b)*c^2*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c))))+a*(b-c)^2*(b*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+c^(3/2)*(sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))+sqrt(b)*c*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c)))+b^(3/2)*(sqrt(a*(a+b-c))+sqrt(c*(-a+b+c)))) : :
Barycentrics    a*((a - b - c)*(a*b - b^2 + a*c + 2*b*c - c^2)*Sin[A/2] - (a - b + c)*(a*b - b^2 + 2*a*c + 3*b*c - 2*c^2)*Sin[B/2] - (a + b - c)*(2*a*b - 2*b^2 + a*c + 3*b*c - c^2)*Sin[C/2]) : : (Peter Moses, September 22, 2023)

X(58616) lies on these lines: {1, 168}, {65, 11191}, {164, 10980}, {167, 30350}, {177, 354}, {518, 58444}, {942, 12443}, {950, 31735}, {999, 55172}, {3333, 12523}, {4292, 31769}, {5045, 12813}, {5049, 32183}, {5542, 21633}, {8422, 17609}, {10569, 12450}, {11019, 12614}, {11021, 35644}, {11033, 13092}, {11227, 31801}, {11529, 55173}, {12622, 21620}, {12814, 46695}, {50192, 53810}, {58577, 58614}

X(58616) = midpoint of X(i) and X(j) for these {i,j}: {1, 31768}, {4292, 31769}, {5045, 12813}, {65, 31766}, {942, 12908}, {950, 31735}
X(58616) = reflection of X(i) in X(j) for these {i,j}: {58689, 58444}
X(58616) = center of the nine-point conic of quadrilateral XYZX(177) where XYZ is the cevian triangle of X(7)
X(58616) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {177, 354, 5571}, {518, 58444, 58689}, {942, 12908, 55174}


X(58617) = X(3)X(674)∩X(185)X(354)

Barycentrics    a^2*(a^5*b*c*(b+c)+a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)-2*a^3*b*c*(b+c)*(b^2+c^2)-(b-c)^2*(b+c)^4*(b^2-b*c+c^2)-a^4*(b+c)^2*(3*b^2-5*b*c+3*c^2)+a^2*(b-c)^2*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)) : :
X(58617) = 3*X[51]+X[12680], X[185]+3*X[354], -3*X[375]+X[14872], X[1071]+X[42450], -3*X[3742]+X[5907], 3*X[3873]+5*X[10574], -2*X[5892]+X[58646], X[11573]+X[31732], -2*X[11695]+X[58631], -2*X[12006]+X[58647]

X(58617) lies on these lines: {3, 674}, {30, 58575}, {51, 12680}, {185, 354}, {375, 14872}, {389, 8679}, {511, 58567}, {515, 58493}, {517, 15229}, {518, 9729}, {916, 1125}, {971, 58469}, {1071, 42450}, {1208, 14547}, {2390, 5884}, {2801, 58497}, {2807, 5045}, {2810, 15012}, {3056, 37501}, {3742, 5907}, {3873, 10574}, {5663, 58561}, {5892, 58646}, {6000, 13374}, {6803, 12587}, {8273, 26893}, {9026, 9730}, {9037, 16625}, {9047, 13348}, {9049, 16836}, {9052, 17704}, {9786, 22769}, {10628, 58582}, {11436, 34046}, {11573, 31732}, {11695, 58631}, {12006, 58647}, {12586, 18909}, {13373, 13754}, {13407, 34462}, {20470, 44546}, {22277, 36745}, {34146, 58562}

X(58617) = midpoint of X(i) and X(j) for these {i,j}: {1071, 42450}, {11573, 31732}, {389, 12675}
X(58617) = reflection of X(i) in X(j) for these {i,j}: {58631, 11695}, {58637, 17704}, {58646, 5892}, {58647, 12006}, {58690, 9729}
X(58617) = center of the nine-point conic of quadrilateral XYZX(185) where XYZ is the cevian triangle of X(7)
X(58617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 12675, 8679}, {518, 9729, 58690}, {9052, 17704, 58637}


X(58618) = X(1)X(24820)∩X(190)X(354)

Barycentrics    a*(a^3*(b+c)+a*(b-2*c)*(2*b-c)*(b+c)-(b^2+c^2)*(b^2-3*b*c+c^2)-2*a^2*(b^2-b*c+c^2)) : :
X(58618) = X[190]+3*X[354], X[942]+X[4432], -X[1086]+3*X[3742], -3*X[3848]+2*X[40480], 3*X[3873]+5*X[4473], -5*X[5439]+X[24715], X[5572]+X[16593], X[5836]+X[53534], X[12675]+X[24828], -5*X[17609]+X[24841], X[24821]+7*X[50190]

X(58618) lies on these lines: {1, 24820}, {190, 354}, {518, 4422}, {528, 3812}, {536, 58628}, {537, 5045}, {545, 58560}, {726, 58627}, {900, 58591}, {942, 4432}, {1001, 16560}, {1086, 3742}, {2786, 58590}, {2796, 58565}, {3333, 24826}, {3848, 40480}, {3873, 4473}, {5439, 24715}, {5572, 16593}, {5836, 53534}, {5845, 58581}, {7202, 16494}, {8679, 58553}, {9041, 58609}, {9055, 58562}, {11730, 36949}, {12675, 24828}, {13374, 29243}, {17609, 24841}, {17626, 24834}, {24821, 50190}, {58564, 58583}

X(58618) = midpoint of X(i) and X(j) for these {i,j}: {12675, 24828}, {5572, 16593}, {5836, 53534}, {942, 4432}
X(58618) = reflection of X(i) in X(j) for these {i,j}: {58691, 4422}
X(58618) = center of the nine-point conic of quadrilateral XYZX(190) where XYZ is the cevian triangle of X(7)
X(58618) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 4422, 58691}


X(58619) = X(21)X(942)∩X(191)X(354)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2-4*b*c+c^2)-a^3*(b+c)*(2*b^2+b*c+2*c^2)+2*a^2*(b^4-3*b^3*c-5*b^2*c^2-3*b*c^3+c^4)+a*(b+c)*(b^4+b^3*c-8*b^2*c^2+b*c^3+c^4)) : :
X(58619) = X[21]+X[942], X[65]+3*X[5426], -X[72]+5*X[15674], X[191]+3*X[354], X[960]+X[47319], -X[2475]+5*X[5439], 3*X[3576]+X[54145], X[3647]+2*X[50192], -X[3651]+3*X[11227], X[3868]+7*X[15676], -X[5044]+2*X[6675], -3*X[5049]+X[34195] and many others

X(58619) lies on these lines: {21, 942}, {30, 5806}, {57, 37292}, {65, 5426}, {72, 15674}, {191, 354}, {442, 10855}, {517, 5428}, {518, 58449}, {550, 5883}, {551, 24475}, {758, 3636}, {912, 10021}, {960, 47319}, {971, 6841}, {1125, 58569}, {2475, 5439}, {2771, 11281}, {3255, 16005}, {3576, 54145}, {3647, 50192}, {3649, 3660}, {3651, 11227}, {3742, 9955}, {3824, 10391}, {3833, 50238}, {3868, 15676}, {4187, 41550}, {5044, 6675}, {5049, 34195}, {5173, 41697}, {5284, 18259}, {5791, 11020}, {5885, 6914}, {5902, 17571}, {6583, 51715}, {6690, 58640}, {7681, 31657}, {10167, 37433}, {10177, 16159}, {10202, 13743}, {11684, 50191}, {13751, 45065}, {15670, 39772}, {15672, 24473}, {16126, 17609}, {16137, 58576}, {16216, 18253}, {17637, 26725}, {17768, 58564}, {18260, 58615}, {21161, 31793}, {22936, 24467}, {24470, 58565}, {24474, 28443}, {24929, 37308}, {26201, 51706}, {31445, 54302}, {31650, 31837}, {32167, 34977}, {33709, 58591}, {34381, 51729}, {35204, 37080}, {37286, 37582}, {37544, 41547}, {58433, 58658}

X(58619) = midpoint of X(i) and X(j) for these {i,j}: {13369, 16160}, {21, 942}, {6675, 10122}, {8261, 35016}, {960, 47319}
X(58619) = reflection of X(i) in X(j) for these {i,j}: {5044, 6675}, {5045, 58568}, {58692, 58449}
X(58619)= pole of line {13080, 33857} with respect to the Feuerbach hyperbola
X(58619) = center of the nine-point conic of quadrilateral XYZX(191) where XYZ is the cevian triangle of X(7)
X(58619) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58449, 58692}, {758, 58568, 5045}, {8261, 35016, 517}


X(58620) = X(1)X(6)∩X(192)X(354)

Barycentrics    a*(a^2*(b+c)^2-b*c*(b^2+c^2)-a*(b+c)*(b^2-5*b*c+c^2)) : :
X(58620) = -X[75]+3*X[3742], X[192]+3*X[354], -3*X[210]+7*X[27268], X[942]+X[3993], 3*X[3175]+X[17157], -3*X[3740]+5*X[4687], 3*X[3753]+X[49469], -2*X[3842]+X[4662], 3*X[3873]+5*X[4704], 3*X[3892]+X[49520], X[4681]+X[13476], -3*X[4755]+X[22271] and many others

X(58620) lies on these lines: {1, 6}, {75, 3742}, {192, 354}, {210, 27268}, {536, 42053}, {726, 5045}, {740, 3812}, {742, 58581}, {942, 3993}, {2345, 28600}, {3056, 29585}, {3175, 17157}, {3666, 21330}, {3720, 22167}, {3728, 44307}, {3739, 3840}, {3740, 4687}, {3753, 49469}, {3842, 4662}, {3873, 4704}, {3880, 49471}, {3892, 49520}, {3912, 4890}, {4343, 4447}, {4358, 25295}, {4681, 13476}, {4698, 6685}, {4699, 30948}, {4755, 22271}, {5049, 49479}, {5249, 21927}, {5439, 49474}, {5836, 49470}, {8679, 58554}, {9025, 17390}, {9055, 58562}, {11997, 20359}, {12675, 20430}, {12722, 49519}, {13374, 29010}, {15587, 27475}, {17065, 20691}, {17244, 25108}, {17316, 17792}, {17319, 20358}, {17391, 49537}, {17609, 24349}, {20718, 58400}, {21080, 35652}, {21257, 25102}, {21746, 29574}, {25124, 44417}, {25384, 29668}, {28522, 58565}, {30090, 30947}, {44663, 50111}, {49445, 50190}, {58564, 58628}

X(58620) = midpoint of X(i) and X(j) for these {i,j}: {12675, 20430}, {12722, 49519}, {4681, 13476}, {5572, 51058}, {5836, 49470}, {942, 3993}, {984, 34791}
X(58620) = reflection of X(i) in X(j) for these {i,j}: {4662, 3842}, {58583, 58571}, {58629, 4755}, {58655, 4698}, {58679, 15569}, {58693, 37}
X(58620)= pole of line {4083, 23394} with respect to the DeLongchamps ellipse
X(58620)= pole of line {55, 17379} with respect to the Feuerbach hyperbola
X(58620) = center of the nine-point conic of quadrilateral XYZX(192) where XYZ is the cevian triangle of X(7)
X(58620) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30063)}}, {{A, B, C, X(13476), X(16969)}}
X(58620) = barycentric product X(i)*X(j) for these (i, j): {1, 30063}
X(58620) = barycentric quotient X(i)/X(j) for these (i, j): {30063, 75}
X(58620) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 518, 58693}, {518, 15569, 58679}, {536, 58571, 58583}, {4698, 44671, 58655}, {4698, 58655, 58451}, {5572, 51058, 518}, {58571, 58583, 58560}, {58608, 58609, 58621}


X(58621) = X(1)X(6)∩X(193)X(354)

Barycentrics    a*(a^3*(b+c)+a*(b+c)*(b^2+c^2)-(b^2+c^2)^2-a^2*(b^2-8*b*c+c^2)) : :
X(58621) = -X[69]+3*X[3742], -2*X[141]+3*X[3848], -2*X[182]+X[58637], X[193]+3*X[354], -3*X[210]+7*X[51171], -2*X[597]+X[58629], X[942]+X[51196], X[1351]+X[12675], -4*X[3589]+3*X[58451], -5*X[3618]+3*X[3740], 3*X[3873]+5*X[51170], -3*X[5049]+X[49505] and many others

X(58621) lies on these lines: {1, 6}, {69, 3742}, {141, 3848}, {182, 58637}, {193, 354}, {210, 51171}, {511, 58567}, {524, 58560}, {542, 58610}, {597, 58629}, {942, 51196}, {1351, 12675}, {3564, 13374}, {3589, 58451}, {3618, 3740}, {3812, 5847}, {3873, 51170}, {3880, 49684}, {4393, 11997}, {5045, 34379}, {5049, 49505}, {5836, 51192}, {5848, 58611}, {6001, 34779}, {6329, 58633}, {7248, 24471}, {8679, 58555}, {9004, 32455}, {9025, 40649}, {9047, 11574}, {12722, 49488}, {12723, 16834}, {13373, 34380}, {14645, 58590}, {18252, 50114}, {18583, 58631}, {19118, 41611}, {32300, 58671}, {34381, 41591}, {34382, 58575}, {44663, 51005}, {47457, 58639}, {51732, 58630}, {58563, 58628}

X(58621) = midpoint of X(i) and X(j) for these {i,j}: {1351, 12675}, {12722, 49488}, {3751, 34791}, {5572, 51194}, {5836, 51192}, {942, 51196}
X(58621) = reflection of X(i) in X(j) for these {i,j}: {58581, 58562}, {58629, 597}, {58630, 51732}, {58631, 18583}, {58633, 6329}, {58637, 182}, {58639, 47457}, {58653, 3589}, {58671, 32300}, {58679, 1386}, {58694, 6}
X(58621) = center of the nine-point conic of quadrilateral XYZX(193) where XYZ is the cevian triangle of X(7)
X(58621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 518, 58694}, {518, 1386, 58679}, {524, 58562, 58581}, {3589, 58653, 58451}, {3751, 34791, 518}, {58562, 58581, 58560}, {58608, 58609, 58620}


X(58622) = X(39)X(518)∩X(194)X(354)

Barycentrics    a*(a*b^2*c^2*(b+c)-b^2*c^2*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-a^2*(b^2+c^2)*(b^2-4*b*c+c^2)) : :
X(58622) = -X[76]+3*X[3742], X[194]+3*X[354], -2*X[2023]+X[58682], X[3095]+X[12675], 3*X[3097]+X[3555], -3*X[3740]+5*X[7786], -3*X[3848]+2*X[3934], -5*X[5439]+X[9902], X[5836]+X[7976], -4*X[6683]+3*X[58451], -X[7957]+5*X[32522], -2*X[10007]+X[58653] and many others

X(58622) lies on these lines: {39, 518}, {76, 3742}, {194, 354}, {511, 58567}, {517, 32516}, {538, 58560}, {698, 58562}, {726, 5045}, {730, 3812}, {732, 58581}, {2023, 58682}, {2782, 13374}, {3095, 12675}, {3097, 3555}, {3740, 7786}, {3848, 3934}, {5145, 37592}, {5439, 9902}, {5836, 7976}, {6683, 58451}, {7957, 32522}, {8679, 58556}, {10007, 58653}, {10391, 12836}, {11272, 58631}, {12782, 34791}, {13334, 58637}, {13373, 32515}, {14839, 58609}, {44562, 58629}, {46180, 58578}

X(58622) = midpoint of X(i) and X(j) for these {i,j}: {12782, 34791}, {3095, 12675}, {5836, 7976}
X(58622) = reflection of X(i) in X(j) for these {i,j}: {58629, 44562}, {58631, 11272}, {58637, 13334}, {58653, 10007}, {58656, 6683}, {58682, 2023}, {58695, 39}
X(58622) = center of the nine-point conic of quadrilateral XYZX(194) where XYZ is the cevian triangle of X(7)
X(58622) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 518, 58695}, {6683, 58656, 58451}


X(58623) = X(1)X(11505)∩X(2)X(3660)

Barycentrics    a*(a^4*(b+c)-(b-c)^4*(b+c)-2*a^3*(b^2-b*c+c^2)+2*a*(b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+c^4)) : :
X(58623) = X[200]+3*X[354], X[497]+3*X[17612], X[942]+X[997], X[1376]+X[12915]

X(58623) lies on these lines: {1, 11505}, {2, 3660}, {5, 58588}, {10, 58576}, {142, 2886}, {200, 354}, {210, 31190}, {474, 50196}, {497, 17612}, {518, 6692}, {519, 3812}, {942, 997}, {971, 3816}, {1001, 11227}, {1125, 6001}, {1279, 51476}, {1376, 12915}, {1864, 25525}, {2550, 17626}, {2801, 3848}, {3086, 18251}, {3306, 5173}, {3825, 16007}, {3911, 58648}, {4421, 9957}, {4640, 11575}, {5044, 6691}, {5274, 17668}, {5439, 16193}, {5777, 10200}, {5836, 16215}, {6510, 29821}, {6690, 10156}, {8581, 30827}, {8583, 37566}, {9843, 12675}, {9956, 10942}, {10167, 26105}, {10569, 25568}, {10582, 17603}, {11035, 12607}, {12128, 32049}, {12436, 13374}, {24477, 40659}, {31787, 58679}, {52264, 58649}, {58405, 58643}, {58444, 58614}

X(58623) = midpoint of X(i) and X(j) for these {i,j}: {1376, 12915}, {942, 997}
X(58623) = reflection of X(i) in X(j) for these {i,j}: {58696, 20103}
X(58623) = center of the nine-point conic of quadrilateral XYZX(200) where XYZ is the cevian triangle of X(7)
X(58623) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 20103, 58696}, {3742, 11018, 58564}, {3812, 58585, 5045}, {3848, 58591, 58578}, {58578, 58591, 58615}


X(58624) = X(1)X(7523)∩X(31)X(57)

Barycentrics    4*a^4*b*c+a^5*(b+c)+a^3*b*c*(b+c)-a*(b-c)^2*(b^3+c^3) : :
X(58624) = X[209]+3*X[354], X[40940]+X[40959]

X(58624) lies on these lines: {1, 7523}, {3, 49480}, {31, 57}, {142, 2887}, {209, 354}, {226, 37315}, {284, 29821}, {443, 4680}, {518, 20106}, {579, 982}, {674, 11018}, {758, 942}, {1104, 35650}, {3666, 58390}, {3772, 32118}, {3868, 56519}, {3874, 4438}, {3911, 7499}, {4260, 29671}, {5272, 54405}, {5285, 7191}, {5883, 32916}, {6327, 9776}, {6532, 12436}, {8726, 30269}, {10980, 54385}, {11019, 18589}, {11518, 49454}, {17599, 21483}, {18398, 51223}, {18593, 40956}, {23304, 53564}, {27388, 30885}, {29644, 35612}, {30148, 37547}, {31237, 41867}, {40940, 40959}

X(58624) = midpoint of X(i) and X(j) for these {i,j}: {40940, 40959}
X(58624) = X(i)-complementary conjugate of X(j) for these {i, j}: {8615, 1213}, {15314, 3454}
X(58624)= pole of line {4509, 4560} with respect to the Steiner inellipse
X(58624) = center of the nine-point conic of quadrilateral XYZX(209) where XYZ is the cevian triangle of X(7)
X(58624) = intersection, other than A, B, C, of circumconics {{A, B, C, X(105), X(55091)}}, {{A, B, C, X(1462), X(55090)}}
X(58624) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 614, 51687}, {942, 40656, 5745}, {40940, 40959, 44661}


X(58625) = X(1)X(17100)∩X(214)X(354)

Barycentrics    a*(a^5*(b+c)-(b-c)^4*(b+c)^2-2*a^3*(b+c)*(b^2+c^2)-a^4*(b^2-4*b*c+c^2)+a*(b+c)*(b^4-b^2*c^2+c^4)+2*a^2*(b^4-3*b^3*c+5*b^2*c^2-3*b*c^3+c^4)) : :
X(58625) = X[100]+7*X[50190], X[214]+3*X[354], 3*X[551]+X[11570], X[1125]+X[5083], X[1145]+3*X[3892], X[1317]+3*X[5883], X[3035]+X[3881], -X[3036]+3*X[3833], 7*X[3622]+X[11571], -3*X[3742]+X[6702], X[3754]+X[12735], -3*X[3848]+X[58659] and many others

X(58625) lies on these lines: {1, 17100}, {100, 50190}, {214, 354}, {515, 58604}, {518, 58453}, {519, 46681}, {528, 58607}, {551, 11570}, {758, 58570}, {952, 58565}, {1125, 5083}, {1145, 3892}, {1317, 5883}, {1484, 25557}, {2800, 3636}, {2801, 33709}, {2802, 5045}, {3035, 3881}, {3036, 3833}, {3622, 11571}, {3634, 58585}, {3742, 6702}, {3754, 12735}, {3848, 58659}, {3874, 34123}, {5439, 15863}, {5533, 11263}, {6744, 16193}, {10074, 30143}, {10202, 25485}, {11274, 17636}, {11729, 12005}, {12532, 25055}, {12736, 33812}, {13751, 51714}, {15558, 51103}, {17660, 32557}, {19862, 46685}, {19878, 46694}, {39776, 51071}, {51108, 58578}, {58560, 58587}

X(58625) = midpoint of X(i) and X(j) for these {i,j}: {1125, 5083}, {11729, 12005}, {12736, 33812}, {3035, 3881}, {3754, 12735}, {5045, 58591}
X(58625) = reflection of X(i) in X(j) for these {i,j}: {46694, 19878}, {58698, 58453}
X(58625) = center of the nine-point conic of quadrilateral XYZX(214) where XYZ is the cevian triangle of X(7)
X(58625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58453, 58698}, {5045, 58591, 2802}


X(58626) = X(1)X(411)∩X(11)X(118)

Barycentrics    a*(a^4*(b+c)-3*a^2*b*c*(b+c)-2*a^3*(b^2+c^2)-(b-c)^2*(b+c)*(b^2-3*b*c+c^2)+2*a*(b-c)^2*(b^2+b*c+c^2)) : :
X(58626) = X[3822]+X[3881], -3*X[3833]+X[54288], -3*X[3848]+X[58651], X[5173]+X[13405]

X(58626) lies on circumconic {{A, B, C, X(17097), X(43672)}} and these lines: {1, 411}, {2, 30329}, {11, 118}, {57, 52769}, {63, 5284}, {65, 10164}, {214, 6596}, {515, 5045}, {516, 11018}, {518, 58463}, {527, 58560}, {758, 942}, {912, 50192}, {946, 12564}, {993, 3333}, {997, 5437}, {1056, 3892}, {1376, 3754}, {1478, 11037}, {1699, 11020}, {2792, 58589}, {2802, 50194}, {3086, 5443}, {3487, 3874}, {3678, 11374}, {3720, 25080}, {3812, 12447}, {3822, 3881}, {3833, 54288}, {3848, 58651}, {3873, 5231}, {3956, 31479}, {4298, 16193}, {5173, 13405}, {5226, 15064}, {5274, 41861}, {5281, 5903}, {5425, 12736}, {5435, 5444}, {6147, 12005}, {8679, 58558}, {8680, 58571}, {9028, 58562}, {10122, 12047}, {10156, 31794}, {10167, 30424}, {12432, 13411}, {15934, 22753}, {16216, 40270}, {17754, 25078}, {18165, 51435}, {24333, 29668}, {24470, 58569}, {31870, 37837}, {34377, 58606}, {37565, 58380}, {39779, 51071}, {46180, 58584}, {50752, 58697}

X(58626) = midpoint of X(i) and X(j) for these {i,j}: {3822, 3881}, {5173, 13405}
X(58626) = reflection of X(i) in X(j) for these {i,j}: {58699, 58463}
X(58626) = X(i)-complementary conjugate of X(j) for these {i, j}: {15909, 3454}
X(58626)= pole of line {516, 10543} with respect to the Feuerbach hyperbola
X(58626) = center of the nine-point conic of quadrilateral XYZX(226) where XYZ is the cevian triangle of X(7)
X(58626) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {354, 11019, 20116}, {518, 58463, 58699}, {942, 58566, 58565}, {5045, 13374, 6744}, {5226, 18412, 15064}, {58560, 58563, 58577}, {58569, 58586, 24470}


X(58627) = X(1)X(16422)∩X(238)X(354)

Barycentrics    a*(a^4*(b+c)-3*a^2*b*c*(b+c)-a^3*(b^2-4*b*c+c^2)-(b-c)^2*(b^3+c^3)+a*(b^4+4*b^3*c-8*b^2*c^2+4*b*c^3+c^4)) : :
X(58627) = X[44]+5*X[50191], X[238]+3*X[354], X[1757]+7*X[50190], X[3246]+2*X[50192], -5*X[3698]+X[49677], -3*X[3742]+X[3836], 3*X[3753]+X[49695], 3*X[3892]+X[49697], -X[4864]+3*X[5049], -5*X[5439]+X[32850], X[5836]+X[49691], 3*X[5883]+X[49696] and many others

X(58627) lies on these lines: {1, 16422}, {44, 50191}, {238, 354}, {513, 58570}, {518, 1125}, {595, 942}, {726, 58618}, {740, 58628}, {752, 58560}, {1357, 3322}, {1757, 50190}, {3246, 50192}, {3698, 49677}, {3742, 3836}, {3753, 49695}, {3812, 17765}, {3892, 49697}, {4864, 5049}, {5439, 32850}, {5836, 49691}, {5883, 49696}, {9940, 53002}, {11018, 40649}, {13373, 15310}, {17609, 49675}, {17766, 58565}, {29861, 31252}, {34791, 49693}

X(58627) = midpoint of X(i) and X(j) for these {i,j}: {34791, 49693}, {5836, 49691}, {942, 1279}
X(58627)= pole of line {764, 3336} with respect to the DeLongchamps ellipse
X(58627) = center of the nine-point conic of quadrilateral XYZX(238) where XYZ is the cevian triangle of X(7)


X(58628) = X(1)X(36528)∩X(239)X(354)

Barycentrics    a*(-b^4+3*b^3*c-6*b^2*c^2+3*b*c^3-c^4+a^3*(b+c)-2*a^2*(b^2-b*c+c^2)+a*(b+c)*(2*b^2-3*b*c+2*c^2)) : :
X(58628) = -3*X[210]+7*X[29607], X[239]+3*X[354], X[942]+X[50023], -3*X[3742]+X[3912], 3*X[3873]+5*X[29590], -5*X[5439]+X[32847], X[5836]+X[49771], -2*X[6687]+X[58691], X[34791]+X[49772], X[50016]+7*X[50190], X[50018]+5*X[50191]

X(58628) lies on these lines: {1, 36528}, {210, 29607}, {239, 354}, {244, 4447}, {518, 3008}, {519, 3812}, {536, 58618}, {740, 58627}, {742, 58562}, {942, 50023}, {3507, 17063}, {3660, 43040}, {3742, 3912}, {3873, 29590}, {3976, 12513}, {3999, 49760}, {5439, 32847}, {5836, 49771}, {6687, 58691}, {13373, 29331}, {20271, 50014}, {24325, 50609}, {30117, 37592}, {34791, 49772}, {46180, 58578}, {50016, 50190}, {50018, 50191}, {58563, 58621}, {58564, 58620}

X(58628) = midpoint of X(i) and X(j) for these {i,j}: {34791, 49772}, {5836, 49771}, {942, 50023}
X(58628) = reflection of X(i) in X(j) for these {i,j}: {58691, 6687}
X(58628) = X(i)-complementary conjugate of X(j) for these {i, j}: {7194, 120}, {39724, 20540}
X(58628)= pole of line {26964, 39724} with respect to the Steiner inellipse
X(58628) = center of the nine-point conic of quadrilateral XYZX(239) where XYZ is the cevian triangle of X(7)


X(58629) = X(1)X(19536)∩X(2)X(210)

Barycentrics    a*(-3*b^2-8*b*c-3*c^2+3*a*(b+c)) : :
X(58629) = X[2]+3*X[210], X[72]+3*X[19875], 3*X[392]+X[4677], -2*X[547]+X[13374], -2*X[549]+X[58567], X[551]+X[34790], -2*X[597]+X[58621], X[960]+X[3679], 5*X[1698]+7*X[4533], -X[3241]+5*X[25917], 3*X[3524]+X[14872], X[3634]+2*X[4547] and many others

X(58629) lies on these lines: {1, 19536}, {2, 210}, {8, 20942}, {9, 4421}, {10, 3838}, {30, 58630}, {37, 42043}, {72, 19875}, {200, 4428}, {375, 9047}, {392, 4677}, {511, 58646}, {516, 58688}, {517, 3956}, {519, 4015}, {524, 58633}, {527, 58634}, {528, 18227}, {529, 58636}, {535, 58641}, {536, 4096}, {537, 58642}, {538, 58656}, {541, 58654}, {542, 58661}, {543, 58662}, {544, 58664}, {545, 58691}, {547, 13374}, {549, 58567}, {551, 34790}, {597, 58621}, {674, 58470}, {758, 51069}, {899, 42039}, {936, 11194}, {960, 3679}, {984, 36634}, {1001, 30393}, {1376, 3929}, {1698, 4533}, {2801, 50829}, {2802, 51070}, {3241, 25917}, {3246, 3961}, {3305, 3711}, {3452, 3829}, {3524, 14872}, {3550, 15492}, {3584, 44547}, {3634, 4547}, {3666, 42041}, {3678, 3812}, {3689, 27065}, {3696, 27538}, {3714, 48850}, {3715, 4640}, {3739, 4090}, {3748, 35595}, {3811, 16857}, {3816, 24393}, {3826, 21060}, {3839, 7957}, {3844, 4104}, {3876, 3983}, {3877, 51072}, {3878, 38098}, {3880, 4669}, {3921, 5692}, {3928, 5220}, {3952, 4980}, {3962, 46933}, {3967, 42029}, {3971, 28484}, {3988, 31794}, {4005, 9780}, {4009, 4651}, {4113, 4358}, {4420, 16858}, {4538, 17133}, {4539, 5902}, {4663, 5268}, {4685, 35652}, {4755, 22271}, {4849, 15569}, {4866, 12513}, {5049, 51109}, {5054, 12675}, {5064, 41611}, {5087, 25006}, {5251, 33595}, {5302, 16370}, {5461, 58610}, {5887, 38066}, {5904, 19876}, {6001, 50821}, {6172, 15587}, {6687, 29656}, {6688, 9049}, {6734, 44847}, {7308, 42819}, {8167, 15570}, {9004, 50991}, {9330, 37593}, {9530, 58668}, {9957, 34641}, {10124, 13373}, {10179, 51093}, {10219, 58574}, {12680, 15692}, {13587, 32635}, {14110, 38074}, {14740, 45310}, {15064, 15726}, {15104, 30308}, {16371, 41229}, {16418, 56176}, {16569, 49515}, {16602, 49448}, {16610, 42038}, {16861, 37080}, {17490, 49513}, {17532, 45120}, {17542, 51715}, {18252, 50118}, {18908, 50811}, {19767, 56237}, {20582, 58581}, {21805, 44307}, {22247, 58590}, {22295, 22325}, {24386, 38210}, {25055, 34791}, {26038, 49483}, {28194, 58643}, {28534, 49732}, {30568, 49485}, {31253, 50192}, {31793, 34648}, {32049, 45085}, {33574, 51086}, {33761, 54309}, {34718, 45776}, {37679, 49465}, {40659, 58608}, {40726, 57279}, {41002, 49991}, {42871, 51780}, {44562, 58622}, {44671, 58381}, {45343, 57232}, {49736, 51380}, {58659, 58698}, {58665, 58686}, {58666, 58674}

X(58629) = midpoint of X(i) and X(j) for these {i,j}: {14740, 45310}, {18252, 50118}, {210, 3740}, {392, 4711}, {3678, 3828}, {3681, 3742}, {31793, 34648}, {34718, 45776}, {4685, 35652}, {4755, 22271}, {45343, 57232}, {551, 34790}, {5836, 31165}, {6172, 15587}, {960, 3679}, {9957, 34641}
X(58629) = reflection of X(i) in X(j) for these {i,j}: {13373, 10124}, {13374, 547}, {3812, 3828}, {3848, 58451}, {58451, 3740}, {58560, 2}, {58567, 549}, {58574, 10219}, {58581, 20582}, {58590, 22247}, {58609, 551}, {58610, 5461}, {58611, 45310}, {58620, 4755}, {58621, 597}, {58622, 44562}
X(58629)= pole of line {390, 20052} with respect to the Feuerbach hyperbola
X(58629) = center of the nine-point conic of quadrilateral XYZX(2) where XYZ is the cevian triangle of X(8)
X(58629) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 518, 58560}, {2, 58560, 3848}, {210, 3740, 518}, {518, 3740, 58451}, {3876, 53620, 31165}, {3983, 31165, 53620}, {4015, 5044, 4662}, {4662, 5044, 58679}, {4685, 42056, 35652}, {31165, 53620, 5836}, {40607, 58655, 58693}, {46694, 58648, 18227}, {46694, 58663, 58683}, {58451, 58560, 2}, {58630, 58631, 58637}, {58630, 58632, 58631}, {58632, 58675, 58630}, {58633, 58653, 58694}, {58633, 58676, 58653}, {58634, 58635, 58678}, {58635, 58677, 58634}, {58666, 58674, 58687}


X(58630) = X(3)X(210)∩X(5)X(10)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-(b-c)^2*(b+c)^4-2*a^3*(b+c)*(b^2+c^2)+2*a^2*(b^2+c^2)*(b^2+3*b*c+c^2)-a^4*(b^2+4*b*c+c^2)) : :
X(58630) = X[3]+3*X[210], 3*X[165]+X[40263], -3*X[354]+7*X[3526], -X[355]+5*X[3697], -3*X[375]+X[5446], 3*X[381]+X[7957], -3*X[549]+X[12675], 5*X[631]+3*X[3681], -5*X[632]+3*X[3742], X[1071]+7*X[4533], -X[1482]+5*X[25917], -5*X[1698]+X[24474] and many others

X(58630) lies on circumconic {{A, B, C, X(34434), X(34447)}} and these lines: {3, 210}, {5, 10}, {8, 6947}, {9, 11248}, {30, 58629}, {40, 18491}, {65, 31479}, {72, 5552}, {78, 956}, {100, 26878}, {140, 518}, {143, 9047}, {165, 40263}, {200, 10267}, {354, 3526}, {355, 3697}, {375, 5446}, {381, 7957}, {392, 5554}, {498, 942}, {511, 58633}, {515, 4015}, {516, 58677}, {519, 31838}, {549, 12675}, {612, 36754}, {631, 3681}, {632, 3742}, {674, 5462}, {912, 3678}, {936, 11249}, {952, 4662}, {971, 6796}, {975, 44414}, {1006, 4420}, {1071, 4533}, {1376, 26921}, {1482, 25917}, {1503, 58676}, {1595, 41611}, {1698, 24474}, {2771, 20417}, {2782, 58656}, {2800, 58698}, {2801, 4547}, {2808, 58664}, {2818, 58670}, {2829, 58674}, {2836, 20379}, {2975, 18857}, {3525, 3873}, {3530, 58567}, {3564, 58653}, {3579, 5777}, {3628, 13374}, {3652, 17613}, {3654, 12672}, {3683, 11849}, {3689, 37621}, {3715, 10310}, {3745, 37509}, {3811, 6883}, {3827, 20299}, {3828, 31870}, {3848, 16239}, {3876, 5657}, {3911, 58573}, {3916, 17615}, {3983, 5790}, {4134, 5884}, {4413, 37532}, {4430, 55864}, {4640, 18232}, {4661, 10303}, {4849, 37698}, {5045, 13411}, {5178, 6902}, {5220, 24467}, {5223, 37534}, {5251, 33596}, {5268, 5707}, {5288, 24927}, {5302, 6914}, {5445, 18838}, {5447, 8679}, {5572, 38113}, {5587, 37585}, {5663, 58654}, {5686, 6926}, {5692, 37562}, {5693, 9588}, {5694, 31788}, {5709, 8580}, {5720, 35239}, {5761, 19855}, {5762, 58634}, {5771, 47742}, {5818, 6870}, {5840, 12572}, {5841, 57284}, {5843, 58678}, {5844, 58679}, {5904, 10202}, {6000, 58652}, {6001, 31835}, {6282, 18761}, {6642, 12329}, {6681, 58585}, {6713, 14740}, {6745, 9940}, {6769, 30393}, {6824, 38057}, {6877, 9780}, {6907, 45120}, {6909, 32635}, {6913, 51572}, {6989, 25568}, {7074, 37696}, {7330, 35238}, {8227, 15104}, {8581, 37545}, {9004, 40107}, {9037, 10627}, {9052, 11695}, {9371, 35194}, {9947, 28160}, {9957, 10573}, {10124, 58560}, {10157, 22793}, {10164, 13369}, {10222, 16842}, {10269, 57279}, {10320, 50196}, {10525, 18236}, {11230, 19854}, {11260, 15178}, {11374, 41539}, {11517, 32613}, {12005, 58441}, {12359, 34381}, {13405, 16216}, {13624, 32153}, {13754, 58690}, {15064, 31730}, {15556, 31794}, {15805, 45728}, {17658, 26492}, {17660, 38762}, {18480, 31793}, {18481, 18908}, {18528, 37551}, {19875, 37625}, {20117, 43174}, {21077, 37438}, {24390, 51378}, {25006, 26470}, {25413, 31165}, {25563, 58579}, {26285, 31445}, {28146, 31777}, {29010, 58655}, {29828, 37536}, {30147, 33179}, {31435, 37622}, {31658, 40659}, {31728, 31836}, {32515, 58695}, {33575, 38602}, {33962, 58672}, {34380, 58694}, {34791, 38028}, {37594, 39523}, {38760, 46685}, {44671, 58382}, {51700, 58609}, {51732, 58621}, {53790, 58667}, {53795, 58673}, {53803, 58668}, {58404, 58578}, {58445, 58562}

X(58630) = midpoint of X(i) and X(j) for these {i,j}: {10, 31837}, {1385, 34790}, {18480, 31793}, {20117, 43174}, {3579, 5777}, {3678, 6684}, {31658, 40659}, {31663, 56762}, {31728, 31836}, {40, 31937}, {5044, 58643}, {5694, 31788}, {6713, 14740}, {58631, 58637}, {58654, 58671}, {58661, 58662}, {58663, 58666}, {58664, 58665}, {72, 34339}, {960, 5690}
X(58630) = reflection of X(i) in X(j) for these {i,j}: {13373, 140}, {13374, 3628}, {40296, 6684}, {58560, 10124}, {58561, 16239}, {58562, 58445}, {58567, 3530}, {58575, 11695}, {58579, 25563}, {58609, 51700}, {58621, 51732}, {58631, 58632}, {58632, 58675}
X(58630) = center of the nine-point conic of quadrilateral XYZX(3) where XYZ is the cevian triangle of X(8)
X(58630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 31837, 517}, {30, 58632, 58631}, {30, 58675, 58632}, {72, 26446, 34339}, {140, 518, 13373}, {498, 41538, 942}, {912, 6684, 40296}, {3678, 6684, 912}, {3876, 5657, 5887}, {3983, 14110, 5790}, {5044, 58640, 58648}, {5044, 58641, 58649}, {5044, 58645, 10}, {5044, 58688, 58643}, {5694, 50821, 31788}, {5904, 31423, 10202}, {9052, 11695, 58575}, {11499, 55104, 3579}, {13374, 58451, 3628}, {16239, 58561, 3848}, {31663, 56762, 971}, {58631, 58637, 30}, {58632, 58675, 58629}, {58640, 58641, 5044}, {58651, 58657, 3678}, {58654, 58671, 5663}, {58661, 58662, 2782}, {58663, 58666, 952}, {58664, 58665, 2808}


X(58631) = X(4)X(210)∩X(5)X(518)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)+2*a^2*(b+c)^2*(b^2+c^2)-(b^2-c^2)^2*(b^2+4*b*c+c^2)) : :
X(58631) = X[1]+3*X[18908], -3*X[2]+X[12675], -X[3]+3*X[3740], X[4]+3*X[210], X[10]+X[5777], -X[40]+5*X[3697], X[72]+3*X[5587], -2*X[140]+3*X[58451], -3*X[354]+7*X[3090], X[355]+X[960], -3*X[375]+X[389], 3*X[392]+X[5881] and many others

X(58631) lies on these lines: {1, 18908}, {2, 12675}, {3, 3740}, {4, 210}, {5, 518}, {8, 6957}, {9, 10268}, {10, 5777}, {12, 44547}, {30, 58629}, {37, 37699}, {40, 3697}, {44, 3072}, {65, 5714}, {72, 5587}, {84, 8580}, {140, 58451}, {200, 11496}, {354, 3090}, {355, 960}, {375, 389}, {392, 5881}, {405, 17857}, {498, 10391}, {511, 58653}, {515, 5044}, {516, 4015}, {517, 546}, {547, 58560}, {631, 12680}, {674, 10110}, {756, 37528}, {912, 3812}, {916, 58487}, {936, 12114}, {942, 3947}, {944, 25917}, {946, 10157}, {952, 58679}, {958, 5720}, {971, 6684}, {997, 5780}, {1000, 10866}, {1001, 5534}, {1058, 17604}, {1071, 1698}, {1158, 5779}, {1216, 9037}, {1329, 51755}, {1376, 7330}, {1503, 58633}, {1512, 21677}, {1598, 12329}, {1656, 3742}, {1864, 3085}, {1872, 21867}, {1900, 51377}, {2550, 5811}, {2771, 20379}, {2777, 58654}, {2782, 58681}, {2794, 58661}, {2800, 31821}, {2801, 3634}, {2808, 58684}, {2818, 58685}, {2829, 46694}, {2836, 36253}, {3059, 5817}, {3074, 51361}, {3091, 3681}, {3149, 41229}, {3555, 8227}, {3560, 56176}, {3564, 58694}, {3579, 15726}, {3625, 13600}, {3628, 3848}, {3679, 12672}, {3683, 11491}, {3715, 55104}, {3753, 5693}, {3789, 36670}, {3811, 6913}, {3820, 12616}, {3873, 5056}, {3876, 14110}, {3878, 38155}, {3880, 10284}, {3881, 10171}, {3956, 31871}, {3983, 5657}, {4075, 29016}, {4420, 6912}, {4430, 15022}, {4533, 18492}, {4547, 31822}, {4640, 11499}, {4661, 5068}, {4663, 5707}, {4679, 12116}, {4682, 36742}, {4847, 7681}, {4849, 37529}, {4863, 10531}, {4866, 30291}, {5082, 46677}, {5086, 51379}, {5087, 26470}, {5178, 13729}, {5220, 5709}, {5234, 52026}, {5251, 33597}, {5259, 5531}, {5268, 36746}, {5273, 12671}, {5439, 54447}, {5446, 9047}, {5572, 38108}, {5663, 58680}, {5690, 31937}, {5692, 37714}, {5694, 44663}, {5762, 58678}, {5784, 18238}, {5790, 5836}, {5791, 9942}, {5840, 58663}, {5842, 12572}, {5884, 31399}, {5886, 34791}, {5901, 58609}, {5904, 7989}, {6000, 58646}, {6261, 9708}, {6667, 58585}, {6668, 58578}, {6705, 20103}, {6721, 58590}, {6722, 58589}, {6723, 58582}, {6734, 17615}, {6796, 31445}, {6832, 17718}, {6846, 25568}, {6854, 10404}, {6897, 12678}, {6908, 38057}, {6920, 37080}, {6946, 32636}, {6964, 24477}, {6983, 17728}, {7069, 56198}, {7082, 11501}, {7173, 18839}, {7680, 21075}, {7682, 9954}, {7701, 17613}, {8679, 11793}, {9119, 26063}, {9612, 41539}, {9780, 12528}, {9842, 24393}, {9856, 11362}, {9943, 26446}, {9946, 38758}, {9957, 47745}, {10107, 14988}, {10167, 31423}, {10172, 12005}, {10176, 31786}, {10179, 37727}, {10267, 15254}, {10306, 54370}, {10591, 17642}, {10785, 24954}, {10893, 17658}, {10895, 41538}, {11231, 13369}, {11272, 58622}, {11573, 52796}, {11678, 54398}, {11695, 58617}, {12587, 39571}, {12608, 31419}, {12665, 34122}, {12705, 30326}, {12711, 31434}, {12738, 24299}, {12900, 58601}, {13754, 58647}, {14647, 18239}, {15071, 19875}, {15311, 58652}, {15481, 18491}, {15569, 37698}, {15908, 25006}, {15932, 41700}, {17702, 58671}, {17814, 45729}, {18480, 31837}, {18583, 58621}, {22753, 57279}, {22835, 24390}, {23698, 58662}, {23699, 58672}, {24206, 58581}, {24987, 37725}, {25068, 58036}, {28150, 58688}, {28204, 31838}, {29010, 58693}, {29181, 58676}, {29243, 58691}, {31165, 38074}, {31673, 31793}, {31787, 58658}, {31798, 38127}, {31806, 50796}, {31828, 50821}, {32635, 36002}, {34339, 38042}, {35018, 58561}, {44671, 58383}, {51378, 52367}, {58418, 58594}, {58419, 58600}, {58420, 58592}, {58421, 58591}, {58426, 58593}, {58430, 58603}, {58431, 58598}, {58650, 58660}

X(58631) = midpoint of X(i) and X(j) for these {i,j}: {10, 5777}, {12616, 32159}, {12675, 14872}, {18357, 31835}, {18480, 31837}, {355, 960}, {3625, 13600}, {3678, 19925}, {31673, 31793}, {31788, 31803}, {31871, 43174}, {5044, 9947}, {5690, 31937}, {5779, 15587}, {5836, 5887}, {58681, 58682}, {58683, 58687}, {58684, 58686}, {72, 7686}, {7682, 9954}, {8, 45776}, {946, 34790}, {9856, 11362}, {9943, 40263}, {9956, 56762}, {9957, 47745}
X(58631) = reflection of X(i) in X(j) for these {i,j}: {13373, 3628}, {13374, 5}, {16616, 19925}, {3812, 9956}, {58560, 547}, {58561, 35018}, {58567, 140}, {58581, 24206}, {58582, 6723}, {58589, 6722}, {58590, 6721}, {58591, 58421}, {58592, 58420}, {58593, 58426}, {58594, 58418}, {58595, 6667}, {58598, 58431}, {58600, 58419}, {58601, 12900}, {58603, 58430}, {58609, 5901}, {58617, 11695}, {58621, 18583}, {58622, 11272}, {58630, 58632}, {58637, 58630}, {58643, 4015}, {58663, 58674}, {58666, 46694}, {9940, 3634}
X(58631) = complement of X(12675)
X(58631) = center of the nine-point conic of quadrilateral XYZX(4) where XYZ is the cevian triangle of X(8)
X(58631) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14872, 12675}, {5, 518, 13374}, {10, 15064, 5777}, {10, 31803, 31788}, {10, 5777, 6001}, {30, 58630, 58637}, {30, 58632, 58630}, {72, 5587, 7686}, {516, 4015, 58643}, {517, 19925, 16616}, {912, 9956, 3812}, {958, 5720, 37837}, {1864, 3085, 12710}, {2801, 3634, 9940}, {2829, 46694, 58666}, {3628, 13373, 3848}, {3697, 5927, 40}, {3956, 31871, 43174}, {3983, 12688, 5657}, {5044, 9947, 515}, {5777, 31788, 31803}, {5779, 9709, 1158}, {5790, 5887, 5836}, {5840, 58674, 58663}, {9956, 56762, 912}, {10157, 34790, 946}, {18250, 58699, 5044}, {18357, 31835, 517}, {26446, 40263, 9943}, {46694, 57284, 58649}, {58451, 58567, 140}, {58630, 58632, 58629}, {58681, 58682, 2782}, {58683, 58687, 952}, {58684, 58686, 2808}


X(58632) = X(5)X(210)∩X(143)X(375)

Barycentrics    a*(a^5*(b+c)-a^4*(b+c)^2+a*(b-c)^2*(b+c)^3-2*a^3*(b+c)*(b^2+c^2)+a^2*(2*b+c)*(b+2*c)*(b^2+c^2)-(b^2-c^2)^2*(b^2+3*b*c+c^2)) : :
X(58632) = X[5]+3*X[210], 3*X[10]+X[5694], X[72]+3*X[38042], -X[140]+3*X[3740], -X[143]+3*X[375], -3*X[354]+7*X[55856], 3*X[549]+X[14872], -X[1483]+5*X[25917], 5*X[1656]+3*X[3681], -5*X[1698]+X[24475], X[3579]+3*X[15064], -5*X[3634]+2*X[12009] and many others

X(58632) lies on these lines: {5, 210}, {9, 32141}, {10, 5694}, {30, 58629}, {72, 38042}, {140, 3740}, {143, 375}, {354, 55856}, {511, 58676}, {517, 3850}, {518, 3628}, {549, 14872}, {674, 10095}, {912, 58699}, {936, 32153}, {952, 5044}, {971, 58677}, {1154, 58646}, {1483, 25917}, {1512, 3697}, {1656, 3681}, {1698, 24475}, {2800, 4540}, {3564, 58633}, {3579, 15064}, {3617, 6968}, {3634, 12009}, {3678, 9956}, {3715, 11499}, {3742, 48154}, {3828, 5885}, {3845, 7957}, {3848, 58605}, {3873, 5070}, {3876, 5790}, {3878, 38176}, {3890, 51515}, {3921, 37562}, {3956, 20117}, {3983, 5887}, {4134, 31399}, {4420, 7489}, {4533, 24474}, {4661, 5067}, {4662, 5844}, {4669, 10284}, {5297, 36750}, {5302, 7508}, {5534, 30393}, {5663, 58690}, {5686, 6944}, {5762, 58635}, {5843, 58634}, {5901, 34790}, {6583, 10172}, {6684, 56762}, {6883, 51572}, {6905, 32635}, {6924, 41229}, {8580, 24467}, {8679, 32142}, {9947, 28186}, {10157, 40273}, {10592, 41538}, {10943, 18236}, {12108, 58567}, {12329, 13861}, {12572, 58640}, {12587, 18952}, {12680, 15712}, {13154, 22769}, {13373, 16239}, {13374, 35018}, {14110, 38138}, {15071, 26446}, {16198, 41611}, {18357, 31837}, {18524, 26878}, {18908, 34773}, {25413, 53620}, {26201, 58441}, {27065, 37621}, {28174, 58643}, {28178, 58688}, {29010, 40607}, {31165, 38081}, {31803, 50821}, {32205, 58575}, {32423, 58671}, {32515, 58656}, {34380, 58653}, {57284, 58641}

X(58632) = midpoint of X(i) and X(j) for these {i,j}: {10, 31835}, {18357, 31837}, {3678, 9956}, {46694, 58674}, {5901, 34790}, {6684, 56762}, {58630, 58631}
X(58632) = reflection of X(i) in X(j) for these {i,j}: {13373, 16239}, {13374, 35018}, {58561, 3628}, {58567, 12108}, {58575, 32205}, {58630, 58675}
X(58632) = center of the nine-point conic of quadrilateral XYZX(5) where XYZ is the cevian triangle of X(8)
X(58632) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 31835, 14988}, {30, 58675, 58630}, {518, 3628, 58561}, {3983, 5887, 38112}, {5044, 58659, 5795}, {13373, 58451, 16239}, {46694, 58636, 5044}, {46694, 58674, 952}, {58629, 58630, 58675}, {58630, 58631, 30}


X(58633) = X(6)X(210)∩X(9)X(1486)

Barycentrics    a*(a^3*(b+c)+a*(b+c)*(b^2+c^2)-(b+c)^2*(b^2+c^2)-a^2*(b^2+4*b*c+c^2)) : :
X(58633) = X[6]+3*X[210], -X[141]+3*X[3740], -3*X[354]+7*X[47355], -3*X[375]+X[9969], 3*X[392]+X[49688], X[960]+X[49524], -5*X[1698]+X[24476], -X[3242]+5*X[25917], -X[3416]+5*X[3697], 5*X[3618]+3*X[3681], -3*X[3742]+5*X[51126], -3*X[3848]+4*X[51127] and many others

X(58633) lies on these lines: {6, 210}, {9, 1486}, {10, 3827}, {72, 19784}, {141, 3740}, {354, 47355}, {375, 9969}, {392, 49688}, {511, 58630}, {517, 19130}, {518, 1125}, {519, 4538}, {524, 58629}, {674, 58471}, {698, 58695}, {732, 58656}, {742, 58655}, {936, 22769}, {960, 49524}, {1215, 34830}, {1386, 30145}, {1503, 58631}, {1698, 24476}, {2345, 21867}, {2393, 58646}, {2781, 58654}, {2810, 58664}, {2854, 58671}, {3242, 25917}, {3305, 56179}, {3416, 3697}, {3564, 58632}, {3618, 3681}, {3634, 34378}, {3742, 51126}, {3812, 9021}, {3844, 34381}, {3848, 51127}, {3867, 41611}, {3878, 38191}, {4015, 5847}, {4662, 5846}, {4878, 33299}, {5085, 14872}, {5235, 41582}, {5452, 40181}, {5845, 58634}, {5848, 46694}, {5849, 58636}, {5887, 38116}, {5919, 49690}, {5969, 58662}, {6329, 58621}, {7289, 8580}, {7957, 53023}, {8679, 58649}, {8705, 58639}, {9020, 58642}, {9024, 58663}, {9028, 58699}, {9037, 58641}, {9047, 58640}, {9053, 58679}, {9055, 58691}, {10176, 49529}, {11997, 17340}, {12586, 18236}, {12680, 53094}, {13373, 58445}, {14110, 38144}, {15587, 51144}, {15624, 25066}, {16610, 18183}, {17239, 20540}, {17281, 40965}, {17351, 18252}, {17355, 44670}, {17635, 49721}, {19137, 43146}, {25099, 35552}, {25353, 34377}, {26061, 40959}, {29181, 58637}, {29667, 41581}, {31165, 38087}, {34146, 58652}, {34371, 58650}, {34380, 58675}, {34573, 58451}, {36741, 41229}, {40635, 53663}, {44671, 58384}

X(58633) = midpoint of X(i) and X(j) for these {i,j}: {1386, 34790}, {15587, 51144}, {17351, 18252}, {58653, 58694}, {960, 49524}
X(58633) = reflection of X(i) in X(j) for these {i,j}: {13373, 58445}, {58562, 3589}, {58581, 34573}, {58606, 51127}, {58621, 6329}, {58653, 58676}
X(58633) = center of the nine-point conic of quadrilateral XYZX(6) where XYZ is the cevian triangle of X(8)
X(58633) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3589, 58562}, {524, 58676, 58653}, {5044, 58635, 40607}, {51127, 58606, 3848}, {58451, 58581, 34573}, {58629, 58653, 58676}, {58653, 58694, 524}


X(58634) = X(7)X(210)∩X(10)X(141)

Barycentrics    a*((a-b)^3*b+(a-2*b)*(a-b)^2*c+(-3*a^2+5*a*b+6*b^2)*c^2+(3*a-2*b)*c^3-c^4) : :
X(58634) = 3*X[2]+X[3059], X[7]+3*X[210], -X[65]+5*X[40333], X[72]+3*X[38052], 3*X[354]+X[34784], -X[390]+5*X[25917], -5*X[1698]+X[5728], -5*X[3697]+X[5223], -5*X[3698]+X[7672], -3*X[3742]+X[15185], -3*X[3848]+4*X[58433], X[3878]+3*X[38201] and many others

X(58634) lies on these lines: {2, 3059}, {7, 210}, {9, 165}, {10, 141}, {65, 40333}, {72, 38052}, {241, 21039}, {354, 34784}, {390, 25917}, {516, 5044}, {527, 58629}, {674, 58472}, {936, 1001}, {960, 962}, {971, 6684}, {997, 42819}, {1000, 3880}, {1125, 20790}, {1445, 4413}, {1698, 5728}, {1788, 3983}, {2346, 3689}, {2801, 58659}, {3452, 42356}, {3683, 7676}, {3697, 5223}, {3698, 7672}, {3742, 15185}, {3816, 24389}, {3848, 58433}, {3878, 38201}, {3925, 21617}, {4015, 5850}, {4326, 7308}, {4343, 44307}, {4682, 54358}, {5218, 14100}, {5220, 5785}, {5273, 10178}, {5435, 10865}, {5762, 58630}, {5784, 12669}, {5836, 38200}, {5843, 58632}, {5845, 58633}, {5851, 46694}, {5852, 58636}, {5853, 12447}, {5856, 58663}, {5880, 28645}, {5887, 38121}, {6067, 25006}, {6172, 31391}, {6666, 6690}, {6796, 31658}, {9623, 42871}, {9780, 41228}, {10861, 26062}, {12675, 38122}, {14110, 38149}, {14523, 31183}, {14872, 21151}, {15064, 43182}, {15569, 56809}, {16216, 50394}, {17768, 58638}, {18229, 35892}, {18412, 19875}, {25878, 28043}, {31165, 38092}, {34791, 38053}, {35023, 58683}, {38130, 51489}, {38454, 58648}, {43178, 51572}, {44671, 58385}, {46916, 52819}

X(58634) = midpoint of X(i) and X(j) for these {i,j}: {142, 40659}, {3059, 5572}, {5542, 34790}, {9, 15587}, {960, 2550}
X(58634) = reflection of X(i) in X(j) for these {i,j}: {3812, 3826}, {58563, 142}, {58564, 58433}, {58608, 6666}, {58635, 58677}, {58678, 58635}
X(58634) = complement of X(5572)
X(58634) = X(i)-complementary conjugate of X(j) for these {i, j}: {1223, 141}
X(58634)= pole of line {3309, 4885} with respect to the Spieker circle
X(58634)= pole of line {3058, 6172} with respect to the Feuerbach hyperbola
X(58634)= pole of line {693, 4130} with respect to the Steiner inellipse
X(58634) = center of the nine-point conic of quadrilateral XYZX(7) where XYZ is the cevian triangle of X(8)
X(58634) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3062), X(17758)}}, {{A, B, C, X(11051), X(13476)}}, {{A, B, C, X(19605), X(55076)}}
X(58634) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3059, 5572}, {9, 15587, 15726}, {142, 40659, 518}, {142, 518, 58563}, {518, 3826, 3812}, {527, 58635, 58678}, {527, 58677, 58635}, {2951, 30393, 9}, {3983, 8581, 5686}, {6666, 15733, 58608}, {15185, 20195, 3742}, {25878, 28043, 30621}, {58433, 58564, 3848}, {58451, 58608, 6666}, {58635, 58677, 58629}, {58653, 58655, 4662}


X(58635) = X(9)X(55)∩X(142)X(3740)

Barycentrics    a*(a-b-c)*(a^2*(b+c)+(b-c)^2*(b+c)-2*a*(b^2+3*b*c+c^2)) : :
X(58635) = -X[142]+3*X[3740], X[1001]+X[34790], -X[2550]+5*X[3697], -X[3243]+5*X[25917], 3*X[3681]+X[15185], -3*X[3848]+2*X[58607], 5*X[3876]+3*X[5686], X[3878]+3*X[38210], -7*X[3983]+3*X[38200], 3*X[4134]+X[30329], 7*X[4533]+X[5728], 3*X[4661]+5*X[11025] and many others

X(58635) lies on these lines: {9, 55}, {72, 19855}, {142, 3740}, {516, 4015}, {517, 42356}, {518, 1125}, {527, 58629}, {528, 58659}, {674, 58473}, {960, 4342}, {971, 6796}, {1001, 34790}, {2346, 27065}, {2550, 3697}, {2801, 58664}, {3243, 25917}, {3338, 5223}, {3681, 15185}, {3824, 3826}, {3848, 58607}, {3876, 5686}, {3878, 38210}, {3921, 10590}, {3983, 38200}, {4134, 30329}, {4343, 21805}, {4533, 5728}, {4538, 4662}, {4661, 11025}, {4678, 7673}, {4691, 16616}, {4866, 42470}, {4878, 16601}, {5220, 37582}, {5316, 41573}, {5762, 58632}, {5843, 58675}, {5845, 58676}, {5856, 46694}, {5857, 58636}, {5887, 38126}, {6172, 17668}, {6601, 18228}, {8232, 41539}, {8257, 9954}, {10177, 34784}, {14110, 38154}, {14872, 21153}, {15726, 58688}, {17768, 58645}, {18908, 43161}, {30807, 56157}, {31165, 38097}, {34852, 55076}, {43971, 44664}, {58433, 58451}, {58638, 58657}, {58655, 58691}

X(58635) = midpoint of X(i) and X(j) for these {i,j}: {1001, 34790}, {58634, 58678}, {8257, 9954}, {9, 40659}, {960, 24393}
X(58635) = reflection of X(i) in X(j) for these {i,j}: {58563, 58433}, {58564, 6666}, {58634, 58677}
X(58635) = center of the nine-point conic of quadrilateral XYZX(9) where XYZ is the cevian triangle of X(8)
X(58635) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(41857)}}, {{A, B, C, X(3174), X(4866)}}, {{A, B, C, X(4512), X(42470)}}, {{A, B, C, X(32635), X(40659)}}
X(58635) = barycentric product X(i)*X(j) for these (i, j): {200, 41857}
X(58635) = barycentric quotient X(i)/X(j) for these (i, j): {41857, 1088}
X(58635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 210, 40659}, {9, 40659, 15733}, {210, 58648, 58696}, {480, 3715, 9}, {518, 6666, 58564}, {527, 58677, 58634}, {3681, 18230, 15185}, {40607, 58633, 5044}, {58451, 58563, 58433}, {58629, 58634, 58677}, {58629, 58651, 58650}, {58634, 58678, 527}


X(58636) = X(9)X(11491)∩X(10)X(12)

Barycentrics    a*(b+c)*((a-b)^3*(a+b)^2-(a-b)^2*(a+b)*(a+2*b)*c+(-2*a^3+3*a^2*b+3*b^3)*c^2+(2*a^2+a*b+3*b^2)*c^3+(a-2*b)*c^4-c^5) : :
X(58636) = -3*X[3740]+X[4999], X[5887]+3*X[38129], X[8068]+X[14740], X[14110]+3*X[38157], X[14872]+3*X[21155], -5*X[25917]+X[37734], X[31165]+3*X[38100], X[34790]+X[37737]

X(58636) lies on these lines: {9, 11491}, {10, 12}, {30, 58640}, {191, 13101}, {484, 16120}, {518, 6668}, {529, 58629}, {674, 58476}, {936, 2975}, {952, 5044}, {993, 17857}, {997, 51111}, {1837, 3884}, {2551, 6902}, {3452, 26470}, {3681, 5705}, {3740, 4999}, {3878, 5587}, {3881, 17718}, {3984, 9623}, {4662, 5855}, {5745, 31659}, {5841, 57284}, {5842, 12572}, {5849, 58633}, {5852, 58634}, {5857, 58635}, {5887, 38129}, {6763, 8580}, {8068, 14740}, {9708, 37733}, {10197, 12564}, {12514, 15064}, {14110, 38157}, {14872, 21155}, {15104, 31418}, {19843, 37701}, {21165, 25440}, {21805, 31880}, {25568, 26363}, {25917, 37734}, {26066, 38134}, {26364, 38057}, {31165, 38100}, {33961, 58638}, {34790, 37737}, {58641, 58675}

X(58636) = midpoint of X(i) and X(j) for these {i,j}: {34790, 37737}, {8068, 14740}
X(58636) = reflection of X(i) in X(j) for these {i,j}: {58566, 6668}
X(58636) = center of the nine-point conic of quadrilateral XYZX(12) where XYZ is the cevian triangle of X(8)
X(58636) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {210, 21075, 3678}, {518, 6668, 58566}, {4015, 58699, 10}, {5044, 58632, 46694}, {58631, 58648, 12572}


X(58637) = X(3)X(518)∩X(20)X(210)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-2*a^3*(b+c)*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+2*a^2*(b^2+c^2)*(b^2+4*b*c+c^2)-a^4*(b^2+8*b*c+c^2)) : :
X(58637) = 3*X[2]+X[7957], -X[4]+3*X[3740], -2*X[5]+3*X[58451], X[20]+3*X[210], X[72]+3*X[165], -2*X[182]+X[58621], -3*X[354]+7*X[3523], -3*X[375]+X[13598], 3*X[376]+X[14872], 3*X[392]+X[7991], -2*X[549]+X[58560], -5*X[631]+3*X[3742] and many others

X(58637) lies on circumconic {{A, B, C, X(3433), X(3532)}} and these lines: {2, 7957}, {3, 518}, {4, 3740}, {5, 58451}, {10, 8727}, {20, 210}, {30, 58629}, {35, 44547}, {40, 936}, {43, 15852}, {65, 5218}, {72, 165}, {78, 5584}, {84, 5220}, {140, 517}, {182, 58621}, {191, 17613}, {200, 37551}, {201, 9371}, {354, 3523}, {375, 13598}, {376, 14872}, {389, 9047}, {392, 7991}, {411, 7964}, {474, 41338}, {511, 58690}, {515, 4662}, {516, 5044}, {549, 58560}, {573, 25066}, {612, 37537}, {631, 3742}, {674, 9729}, {758, 31787}, {912, 31663}, {938, 13867}, {942, 10164}, {946, 3826}, {958, 6282}, {962, 25917}, {971, 3678}, {1001, 6769}, {1012, 5302}, {1038, 7074}, {1071, 10178}, {1103, 15832}, {1385, 49110}, {1386, 36745}, {1490, 11495}, {1503, 58652}, {1593, 41611}, {1743, 35658}, {1788, 3057}, {2777, 58671}, {2794, 58662}, {2800, 35023}, {2801, 31805}, {2829, 58663}, {2836, 20417}, {2975, 51378}, {3035, 58613}, {3189, 37423}, {3357, 3579}, {3522, 3681}, {3530, 13373}, {3555, 7987}, {3576, 34791}, {3587, 11500}, {3601, 41539}, {3634, 5806}, {3646, 43166}, {3654, 45700}, {3697, 5691}, {3751, 37501}, {3753, 9588}, {3827, 6696}, {3870, 8273}, {3873, 15717}, {3874, 11227}, {3876, 9778}, {3877, 26062}, {3878, 31798}, {3880, 11362}, {3921, 37714}, {3940, 12520}, {4005, 5918}, {4015, 9947}, {4297, 34790}, {4420, 7411}, {4421, 10268}, {4640, 10310}, {4661, 21734}, {4663, 36746}, {4682, 5706}, {4711, 5881}, {5045, 33575}, {5087, 15908}, {5128, 12709}, {5217, 10391}, {5223, 9841}, {5248, 31658}, {5266, 13329}, {5293, 9441}, {5493, 9856}, {5572, 21153}, {5657, 5836}, {5690, 12616}, {5758, 5880}, {5759, 15587}, {5763, 12609}, {5777, 15726}, {5840, 58666}, {5904, 10167}, {6036, 58610}, {6244, 12514}, {6712, 58612}, {6713, 58611}, {6734, 50031}, {6861, 7686}, {6986, 37080}, {7288, 17642}, {7308, 12651}, {7330, 15481}, {7580, 45120}, {7688, 33597}, {7982, 10179}, {7994, 31435}, {8170, 9623}, {8679, 13348}, {9037, 15644}, {9052, 17704}, {9956, 16616}, {9957, 21625}, {10156, 58565}, {10157, 51118}, {10857, 41863}, {10916, 37364}, {11018, 12432}, {11260, 37611}, {11496, 15254}, {12108, 58561}, {12527, 51380}, {12572, 18227}, {12635, 30503}, {12679, 31018}, {12702, 45776}, {12711, 35445}, {13334, 58622}, {13359, 32555}, {13360, 32556}, {13405, 37544}, {14740, 38759}, {15016, 31425}, {15569, 37529}, {17609, 54445}, {17647, 31799}, {17702, 58654}, {17706, 31792}, {17718, 37112}, {17857, 37426}, {18250, 58650}, {20116, 20790}, {20191, 58580}, {21077, 37424}, {22581, 37613}, {23698, 58661}, {25557, 54205}, {25568, 37108}, {25973, 41012}, {26921, 35238}, {26935, 37577}, {29181, 58633}, {31788, 31806}, {31803, 50808}, {35239, 37837}, {37022, 41229}, {37434, 38057}, {37569, 51715}, {40530, 58458}, {44671, 58389}, {48378, 58601}, {51379, 56288}, {57284, 58648}, {58664, 58686}, {58665, 58684}, {58670, 58685}

X(58637) = midpoint of X(i) and X(j) for these {i,j}: {10, 31793}, {11362, 31786}, {12702, 45776}, {14740, 38759}, {17647, 31799}, {3579, 31837}, {3678, 12512}, {3878, 31798}, {31788, 31806}, {40, 960}, {4297, 34790}, {5493, 9856}, {5759, 15587}, {5777, 31730}, {5836, 14110}, {72, 9943}, {7686, 37585}
X(58637) = reflection of X(i) in X(j) for these {i,j}: {13373, 3530}, {13374, 140}, {16616, 9956}, {3812, 6684}, {4662, 58643}, {5806, 3634}, {58560, 549}, {58561, 12108}, {58567, 3}, {58580, 20191}, {58601, 48378}, {58608, 31658}, {58609, 1385}, {58610, 6036}, {58611, 6713}, {58612, 6712}, {58613, 3035}, {58617, 17704}, {58621, 182}, {58622, 13334}, {58631, 58630}, {58680, 58671}, {58681, 58662}, {58682, 58661}, {58683, 58666}, {58684, 58665}, {58685, 58670}, {58686, 58664}, {58687, 58663}, {9947, 4015}
X(58637)= pole of line {17496, 24562} with respect to the Steiner inellipse
X(58637) = center of the nine-point conic of quadrilateral XYZX(20) where XYZ is the cevian triangle of X(8)
X(58637) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 518, 58567}, {30, 58630, 58631}, {72, 165, 9943}, {140, 13374, 3848}, {140, 517, 13374}, {517, 6684, 3812}, {1071, 35242, 10178}, {2777, 58671, 58680}, {2794, 58662, 58681}, {2829, 58663, 58687}, {3522, 3681, 12680}, {3579, 31837, 6001}, {3678, 12512, 971}, {3876, 9778, 12688}, {4005, 5918, 12528}, {4015, 28164, 9947}, {5217, 41538, 10391}, {5493, 10176, 9856}, {5657, 14110, 5836}, {5777, 31730, 15726}, {5904, 16192, 10167}, {7987, 15104, 3555}, {9052, 17704, 58617}, {23698, 58661, 58682}, {26446, 37585, 7686}, {31788, 31806, 44663}, {58630, 58631, 58629}, {58643, 58660, 58651}


X(58638) = X(11)X(960)∩X(21)X(210)

Barycentrics    a*(a-b-c)*(-2*a^3*b*c+a^4*(b+c)+(b-c)^2*(b+c)^3-a^2*(b+c)*(2*b+c)*(b+2*c)-a*b*c*(3*b^2+8*b*c+3*c^2)) : :
X(58638) = X[21]+3*X[210], X[72]+X[8261], -X[442]+3*X[3740], 3*X[3681]+5*X[15674], -5*X[3697]+X[47033], 3*X[4134]+X[47319], X[7957]+3*X[52269], -X[12675]+3*X[28465], X[14872]+3*X[21161], -5*X[25917]+X[34195], X[34790]+X[35016]

X(58638) lies on these lines: {9, 15910}, {11, 960}, {21, 210}, {30, 58629}, {72, 8261}, {191, 1376}, {442, 3740}, {517, 46028}, {518, 6675}, {547, 31870}, {674, 58479}, {758, 3634}, {2771, 6684}, {2795, 58662}, {3647, 6594}, {3678, 6690}, {3681, 15674}, {3683, 31660}, {3697, 47033}, {3826, 11263}, {3876, 26066}, {3956, 18357}, {4015, 58640}, {4134, 47319}, {4662, 5795}, {5218, 17637}, {5220, 54302}, {6745, 14454}, {6796, 22937}, {7957, 52269}, {9528, 58668}, {10176, 17527}, {12675, 28465}, {14450, 26040}, {14872, 21161}, {16126, 16854}, {17768, 58634}, {20288, 21616}, {25917, 34195}, {33961, 58636}, {34790, 35016}, {34871, 35204}, {35023, 58698}, {37308, 41229}, {58635, 58657}, {58641, 58658}

X(58638) = midpoint of X(i) and X(j) for these {i,j}: {18253, 40661}, {3678, 58449}, {34790, 35016}, {5044, 58692}, {72, 8261}, {960, 21677}
X(58638) = reflection of X(i) in X(j) for these {i,j}: {58568, 6675}
X(58638) = center of the nine-point conic of quadrilateral XYZX(21) where XYZ is the cevian triangle of X(8)
X(58638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6675, 58568}, {4015, 58640, 58663}, {5044, 58651, 3812}, {5044, 58692, 758}


X(58639) = X(23)X(210)∩X(468)X(518)

Barycentrics    a*(a^7*(b+c)-a^3*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)-a^5*(b+c)*(b^2+c^2)+a^4*(b+c)^2*(b^2+c^2)+a*(b-c)^2*(b+c)^3*(b^2+c^2)-(b-c)^2*(b+c)^4*(b^2+c^2)-a^6*(b^2+4*b*c+c^2)+a^2*(b^6+4*b^5*c-2*b^4*c^2-8*b^3*c^3-2*b^2*c^4+4*b*c^5+c^6)) : :
X(58639) = X[23]+3*X[210], 3*X[186]+X[14872], -X[858]+3*X[3740], X[960]+X[47321], 3*X[3681]+5*X[37760], -3*X[3848]+4*X[37911], -2*X[5159]+3*X[58451], -X[12675]+3*X[44214], -X[12680]+5*X[37952], X[34790]+X[51693], -2*X[47457]+X[58621], -2*X[51725]+X[58609]

X(58639) lies on these lines: {23, 210}, {30, 58629}, {186, 14872}, {468, 518}, {511, 58671}, {517, 44961}, {674, 58481}, {858, 3740}, {960, 47321}, {3681, 37760}, {3848, 37911}, {3880, 47492}, {5159, 58451}, {8705, 58633}, {12329, 37973}, {12675, 44214}, {12680, 37952}, {14915, 58654}, {34790, 51693}, {37981, 41611}, {44663, 47496}, {47457, 58621}, {51725, 58609}

X(58639) = midpoint of X(i) and X(j) for these {i,j}: {34790, 51693}, {960, 47321}
X(58639) = reflection of X(i) in X(j) for these {i,j}: {58609, 51725}, {58621, 47457}
X(58639) = center of the nine-point conic of quadrilateral XYZX(23) where XYZ is the cevian triangle of X(8)


X(58640) = X(5)X(10)∩X(35)X(210)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4+a*(b+c)^3*(b^2-b*c+c^2)-a^4*(b^2+4*b*c+c^2)-a^3*(b+c)*(2*b^2+b*c+2*c^2)+2*a^2*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)) : :
X(58640) = X[35]+3*X[210], -5*X[3697]+X[5086], X[7957]+3*X[52850], -X[11009]+5*X[25917]

X(58640) lies on these lines: {5, 10}, {9, 11849}, {30, 58636}, {35, 210}, {100, 18259}, {518, 58404}, {2646, 5258}, {2779, 58654}, {3584, 13750}, {3678, 58692}, {3697, 5086}, {4015, 58638}, {4420, 51380}, {4640, 56762}, {5777, 18524}, {6690, 58619}, {7957, 52850}, {8580, 24468}, {9047, 58633}, {11009, 25917}, {12572, 58632}, {15104, 31493}, {18782, 52367}, {31805, 58660}, {46694, 58675}, {58658, 58699}

X(58640) = midpoint of X(i) and X(j) for these {i,j}: {2646, 34790}
X(58640) = reflection of X(i) in X(j) for these {i,j}: {58569, 58404}
X(58640) = center of the nine-point conic of quadrilateral XYZX(35) where XYZ is the cevian triangle of X(8)
X(58640) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58404, 58569}, {5044, 58630, 58641}, {5044, 58688, 58645}, {58630, 58648, 5044}, {58638, 58663, 4015}


X(58641) = X(5)X(10)∩X(36)X(210)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4+a*(b+c)^3*(b^2-3*b*c+c^2)-a^4*(b^2+4*b*c+c^2)-a^3*(b+c)*(2*b^2-b*c+2*c^2)+2*a^2*(b^4+3*b^3*c+b^2*c^2+3*b*c^3+c^4)) : :
X(58641) = X[36]+3*X[210], -5*X[3697]+X[5176], X[5122]+X[17615], X[7743]+X[51378], X[14740]+X[15325]

X(58641) lies on circumconic {{A, B, C, X(1391), X(34434)}} and these lines: {5, 10}, {9, 35000}, {30, 46694}, {36, 210}, {484, 9709}, {515, 58659}, {518, 6681}, {519, 58663}, {535, 58629}, {758, 58698}, {936, 22765}, {942, 27529}, {971, 56941}, {1319, 5288}, {1376, 10225}, {1391, 4511}, {2077, 31445}, {3678, 47742}, {3697, 5176}, {5122, 17615}, {5535, 8580}, {5694, 37828}, {7743, 51378}, {9037, 58633}, {14740, 15325}, {18857, 22935}, {25440, 56762}, {41557, 51379}, {41684, 44784}, {57284, 58632}, {58636, 58675}, {58638, 58658}

X(58641) = midpoint of X(i) and X(j) for these {i,j}: {1319, 34790}, {14740, 15325}, {5122, 17615}, {7743, 51378}
X(58641) = reflection of X(i) in X(j) for these {i,j}: {58570, 6681}
X(58641) = inverse of X(25639) in Spieker circle
X(58641)= pole of line {513, 25639} with respect to the Spieker circle
X(58641) = center of the nine-point conic of quadrilateral XYZX(36) where XYZ is the cevian triangle of X(8)
X(58641) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6681, 58570}, {5044, 58630, 58640}, {58630, 58649, 5044}


X(58642) = X(2)X(22275)∩X(38)X(210)

Barycentrics    a*(-2*a^2*b*c*(b+c)+a^3*(b+c)^2-b*c*(b+c)^3-a*(b^4+3*b^3*c+3*b*c^3+c^4)) : :
X(58642) = 3*X[2]+X[22275], X[38]+3*X[210], X[3666]+X[14973], -5*X[3697]+X[4692], X[3741]+X[22325]

X(58642) lies on these lines: {2, 22275}, {38, 210}, {43, 22271}, {141, 9564}, {392, 49999}, {518, 6682}, {537, 58629}, {714, 58655}, {758, 3634}, {960, 3831}, {1211, 38472}, {1215, 3739}, {3666, 14973}, {3697, 4692}, {3741, 22325}, {4719, 34790}, {7081, 56537}, {9020, 58633}, {10176, 49993}, {10479, 22300}, {17165, 19804}, {20068, 24620}, {20106, 58648}, {20718, 44417}, {22278, 31330}, {43223, 58571}, {44671, 58391}, {46183, 58656}

X(58642) = midpoint of X(i) and X(j) for these {i,j}: {3666, 14973}, {3741, 22325}
X(58642) = center of the nine-point conic of quadrilateral XYZX(38) where XYZ is the cevian triangle of X(8)


X(58643) = X(3)X(200)∩X(5)X(10)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4-2*a^3*(b+c)*(b^2+b*c+c^2)+2*a^2*(b+c)^2*(b^2+b*c+c^2)-a^4*(b^2+4*b*c+c^2)+a*(b-c)^2*(b+c)*(b^2+4*b*c+c^2)) : :
X(58643) = -X[4]+5*X[3697], X[20]+3*X[18908], X[40]+3*X[210], X[72]+3*X[5657], -2*X[140]+X[5045], 3*X[165]+X[14872], -3*X[354]+7*X[31423], 3*X[392]+X[12245], -5*X[631]+X[3555], X[1071]+3*X[3681], 5*X[1698]+3*X[15104], -4*X[3530]+3*X[33574] and many others

X(58643) lies on circumconic {{A, B, C, X(963), X(34434)}} and these lines: {3, 200}, {4, 3697}, {5, 10}, {8, 6865}, {9, 10306}, {20, 18908}, {30, 9947}, {40, 210}, {55, 1728}, {65, 31434}, {72, 5657}, {140, 5045}, {165, 14872}, {191, 13528}, {281, 1872}, {354, 31423}, {355, 6851}, {392, 12245}, {495, 37544}, {498, 5173}, {515, 4662}, {516, 4015}, {518, 5771}, {581, 4849}, {631, 3555}, {674, 58487}, {912, 31787}, {936, 22770}, {942, 1788}, {952, 6743}, {971, 1158}, {1071, 3681}, {1376, 37623}, {1385, 3811}, {1482, 16853}, {1598, 7719}, {1698, 15104}, {2550, 5812}, {2800, 58657}, {2802, 58666}, {2809, 58665}, {2816, 58685}, {2817, 58670}, {3059, 10268}, {3293, 37528}, {3359, 3927}, {3530, 33574}, {3634, 13374}, {3654, 5887}, {3678, 6001}, {3679, 14110}, {3689, 10902}, {3690, 37160}, {3698, 37625}, {3711, 5584}, {3781, 5908}, {3876, 12672}, {3881, 58441}, {3889, 10303}, {3911, 58576}, {3921, 5818}, {3935, 6986}, {3956, 19925}, {3983, 5587}, {4005, 5693}, {4300, 21805}, {4413, 12704}, {4420, 33597}, {4540, 16616}, {4711, 47745}, {4847, 6922}, {5223, 37560}, {5258, 50371}, {5265, 17624}, {5432, 16193}, {5445, 5570}, {5493, 15064}, {5572, 38130}, {5687, 55104}, {5709, 9709}, {5715, 38200}, {5790, 37585}, {5791, 38126}, {5811, 35514}, {5815, 6916}, {5840, 58659}, {5844, 6738}, {5886, 19855}, {5904, 9588}, {5927, 6361}, {6244, 7330}, {6245, 24393}, {6583, 10197}, {6600, 10267}, {6734, 51378}, {6745, 52265}, {6769, 6913}, {6797, 38128}, {6831, 25006}, {6907, 21075}, {6911, 12516}, {6918, 8580}, {7982, 25917}, {8715, 15733}, {9047, 31760}, {9708, 37531}, {9856, 12702}, {9957, 18391}, {10105, 34380}, {10156, 13373}, {10157, 12699}, {10164, 12675}, {10165, 34791}, {10198, 11231}, {10222, 54318}, {10310, 41229}, {10855, 37532}, {11248, 31445}, {12432, 31794}, {12527, 31775}, {12680, 35242}, {12700, 18236}, {13624, 33575}, {15325, 16215}, {17615, 56288}, {18237, 35239}, {18251, 54286}, {22935, 48694}, {23340, 34718}, {24474, 50726}, {24914, 50196}, {28174, 58632}, {28194, 58629}, {28212, 58675}, {28234, 58679}, {29054, 58655}, {30143, 33179}, {30329, 50192}, {31663, 31805}, {31797, 31821}, {32159, 40256}, {34339, 45701}, {34753, 58577}, {34862, 35238}, {37594, 44414}, {38066, 50740}, {41538, 50195}, {43146, 47371}, {44671, 58392}, {58405, 58623}

X(58643) = midpoint of X(i) and X(j) for these {i,j}: {12245, 13600}, {12527, 31775}, {3, 34790}, {355, 31793}, {3059, 51489}, {3359, 9954}, {3678, 43174}, {31797, 31821}, {32159, 40256}, {40, 5777}, {4662, 58637}, {5690, 31837}, {5836, 31806}, {5887, 31798}, {72, 31788}, {8, 31786}, {960, 11362}, {9856, 12702}
X(58643) = reflection of X(i) in X(j) for these {i,j}: {13374, 3634}, {31792, 31838}, {31805, 31663}, {31821, 31835}, {31822, 19925}, {5044, 58630}, {5045, 140}, {5806, 9956}, {58631, 4015}, {9940, 6684}
X(58643)= pole of line {10950, 31393} with respect to the Feuerbach hyperbola
X(58643) = center of the nine-point conic of quadrilateral XYZX(40) where XYZ is the cevian triangle of X(8)
X(58643) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 58648, 5044}, {10, 7680, 9956}, {40, 210, 5777}, {72, 5657, 31788}, {392, 12245, 13600}, {516, 4015, 58631}, {517, 9956, 5806}, {518, 6684, 9940}, {3085, 41539, 942}, {3654, 5887, 31798}, {3678, 43174, 6001}, {3711, 5584, 17857}, {3983, 7957, 5587}, {4662, 58637, 515}, {5044, 58645, 58650}, {5044, 58688, 58630}, {5690, 31837, 517}, {5844, 31838, 31792}, {31806, 38127, 5836}, {46677, 57279, 34790}, {58637, 58651, 58660}


X(58644) = X(9)X(15621)∩X(37)X(42)

Barycentrics    a*(b+c)*(-4*a^2*b*c+a^3*(b+c)-b*c*(b+c)^2-a*(b^3+c^3)) : :
X(58644) = -3*X[3740]+X[3741], X[22275]+3*X[46897]

X(58644) lies on these lines: {9, 15621}, {37, 42}, {181, 22279}, {392, 3992}, {513, 44419}, {518, 6682}, {519, 4015}, {674, 58471}, {1215, 20718}, {2813, 58664}, {3294, 55372}, {3739, 25111}, {3740, 3741}, {3890, 20942}, {4075, 58395}, {9564, 49524}, {17135, 18743}, {21020, 22313}, {21865, 22276}, {22275, 46897}, {22278, 31993}, {25917, 45219}, {32947, 38390}, {40521, 40966}, {42039, 49981}

X(58644) = midpoint of X(i) and X(j) for these {i,j}: {1215, 22325}, {42, 14973}
X(58644) = reflection of X(i) in X(j) for these {i,j}: {58572, 6685}
X(58644) = X(i)-Dao conjugate of X(j) for these {i, j}: {10459, 10455}
X(58644)= pole of line {2269, 3943} with respect to the Feuerbach hyperbola
X(58644)= pole of line {3925, 21796} with respect to the Kiepert hyperbola
X(58644) = center of the nine-point conic of quadrilateral XYZX(42) where XYZ is the cevian triangle of X(8)
X(58644) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 14973, 44671}, {42, 210, 14973}, {210, 4849, 22271}, {518, 6685, 58572}, {1215, 22325, 20718}, {22276, 53663, 21865}


X(58645) = X(5)X(10)∩X(46)X(210)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4-2*a^3*(b+c)*(b^2+c^2)+2*a^2*(b^2+c^2)*(b^2+3*b*c+c^2)-a^4*(b^2+4*b*c+c^2)+a*(b+c)*(b^4-10*b^2*c^2+c^4)) : :
X(58645) = X[46]+3*X[210], -X[3436]+5*X[3697], -X[5045]+2*X[6691], 3*X[18908]+X[37002], -5*X[25917]+X[30323]

X(58645) lies on these lines: {5, 10}, {9, 35448}, {46, 210}, {56, 3711}, {78, 24928}, {498, 50196}, {518, 34753}, {758, 58657}, {936, 10680}, {942, 5552}, {971, 11499}, {999, 46677}, {1376, 24467}, {2829, 9947}, {3035, 13373}, {3436, 3697}, {3753, 10585}, {3812, 58663}, {4015, 58651}, {4187, 51378}, {4413, 17437}, {5045, 6691}, {5554, 9957}, {5854, 31792}, {6745, 58576}, {6796, 31805}, {8580, 12704}, {10156, 31659}, {10310, 31445}, {12699, 18236}, {13411, 16215}, {15867, 50195}, {17768, 58635}, {18908, 37002}, {25917, 30323}, {31937, 54286}, {34339, 37828}, {37270, 37582}

X(58645) = midpoint of X(i) and X(j) for these {i,j}: {56, 34790}
X(58645) = reflection of X(i) in X(j) for these {i,j}: {5044, 58649}, {5045, 6691}, {58573, 58405}
X(58645) = center of the nine-point conic of quadrilateral XYZX(46) where XYZ is the cevian triangle of X(8)
X(58645) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 58630, 5044}, {518, 58405, 58573}, {5044, 58688, 58640}


X(58646) = X(2)X(9026)∩X(51)X(210)

Barycentrics    a^2*(-3*a*b*c*(b+c)+a^2*(b^2+c^2)-(b+c)^2*(b^2-5*b*c+c^2)) : :
X(58646) = X[51]+3*X[210], 2*X[3678]+X[58493], 3*X[3681]+5*X[11451], 5*X[3697]+X[42450], -3*X[3740]+X[3819], 2*X[4015]+X[58497], 2*X[4547]+X[58474], -2*X[5892]+X[58617]

X(58646) lies on these lines: {2, 9026}, {10, 2390}, {51, 210}, {511, 58629}, {518, 6688}, {1154, 58632}, {2393, 58633}, {2810, 58451}, {2842, 51069}, {3678, 58493}, {3681, 11451}, {3697, 42450}, {3715, 22276}, {3740, 3819}, {3742, 9039}, {4015, 58497}, {4547, 58474}, {5644, 45728}, {5892, 58617}, {5943, 9049}, {6000, 58631}, {12587, 18950}, {17810, 41454}

X(58646) = midpoint of X(i) and X(j) for these {i,j}: {210, 375}
X(58646) = reflection of X(i) in X(j) for these {i,j}: {58560, 10219}, {58574, 6688}, {58617, 5892}
X(58646) = center of the nine-point conic of quadrilateral XYZX(51) where XYZ is the cevian triangle of X(8)
X(58646) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {210, 375, 674}, {518, 6688, 58574}


X(58647) = X(5)X(375)∩X(52)X(210)

Barycentrics    a^2*(-(a^5*b*c*(b+c))-a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)+2*a^3*b*c*(b+c)*(b^2+c^2)+a^4*(-3*b^4+b^3*c+b*c^3-3*c^4)-(b^2-c^2)^2*(b^4-b^3*c-2*b^2*c^2-b*c^3+c^4)+a^2*(b^2+c^2)*(3*b^4-2*b^3*c-8*b^2*c^2-2*b*c^3+3*c^4)) : :
X(58647) = -X[5]+3*X[375], 3*X[10]+X[31825], X[52]+3*X[210], -X[1216]+3*X[3740], -11*X[3525]+3*X[23155], 5*X[3567]+3*X[3681], X[3678]+X[31760], -3*X[3873]+11*X[15024], X[5690]+X[42450], -3*X[5892]+X[12675], 3*X[9730]+X[14872], -3*X[11231]+X[11573] and many others

X(58647) lies on these lines: {5, 375}, {10, 31825}, {30, 58690}, {52, 210}, {140, 8679}, {143, 674}, {511, 58630}, {517, 5795}, {518, 5462}, {912, 58487}, {916, 56762}, {1154, 58632}, {1216, 3740}, {2810, 11695}, {3525, 23155}, {3567, 3681}, {3678, 31760}, {3873, 15024}, {5447, 9037}, {5690, 42450}, {5892, 12675}, {6642, 45729}, {9026, 13363}, {9730, 14872}, {11231, 11573}, {11362, 15049}, {12006, 58617}, {12587, 18951}, {13754, 58631}, {15064, 31728}, {15805, 22769}, {26878, 56878}, {29958, 34339}, {32205, 58561}, {34382, 58694}

X(58647) = midpoint of X(i) and X(j) for these {i,j}: {29958, 34339}, {3678, 31760}, {5690, 42450}
X(58647) = reflection of X(i) in X(j) for these {i,j}: {13373, 11695}, {58561, 32205}, {58575, 5462}, {58617, 12006}
X(58647) = center of the nine-point conic of quadrilateral XYZX(52) where XYZ is the cevian triangle of X(8)
X(58647) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5462, 58575}, {2810, 11695, 13373}


X(58648) = X(5)X(10)∩X(9)X(55)

Barycentrics    a*(a-b-c)*(a^3*(b+c)+(b^2-c^2)^2-a*(b+c)*(b^2+c^2)-a^2*(b^2+4*b*c+c^2)) : :
X(58648) = -3*X[2]+X[5173]

X(58648) lies on these lines: {2, 5173}, {3, 49170}, {5, 10}, {9, 55}, {35, 15823}, {40, 18251}, {42, 40937}, {65, 25525}, {72, 3085}, {165, 5784}, {219, 612}, {220, 20310}, {281, 1824}, {392, 18391}, {516, 58699}, {518, 5745}, {528, 18227}, {674, 58471}, {936, 3428}, {942, 10198}, {958, 3811}, {971, 4640}, {1212, 4849}, {1253, 56178}, {1376, 55869}, {2099, 15829}, {2323, 3745}, {2324, 7322}, {2328, 51361}, {2551, 3419}, {2807, 58665}, {3057, 24392}, {3198, 15830}, {3219, 17615}, {3434, 18228}, {3555, 30478}, {3678, 18249}, {3681, 5273}, {3742, 30329}, {3774, 16588}, {3812, 12432}, {3868, 18231}, {3869, 5226}, {3876, 7080}, {3877, 5274}, {3911, 58623}, {3928, 8581}, {4015, 18250}, {4104, 41883}, {4662, 5795}, {4999, 5045}, {5220, 9954}, {5231, 17642}, {5281, 41228}, {5289, 8167}, {5692, 31434}, {5696, 31508}, {5698, 5927}, {5744, 17625}, {5777, 11500}, {5794, 31793}, {5842, 12572}, {5855, 6738}, {6172, 11678}, {6684, 40249}, {7483, 16193}, {8069, 41229}, {8580, 41338}, {9708, 37533}, {9709, 37584}, {9778, 17668}, {9947, 57288}, {9957, 49168}, {10157, 24703}, {10268, 12664}, {10578, 15185}, {12260, 18255}, {14872, 31424}, {15064, 51090}, {18253, 58692}, {20106, 58642}, {20335, 21233}, {21075, 45120}, {25006, 51378}, {25466, 37544}, {26040, 52457}, {30827, 31245}, {31445, 32613}, {38454, 58634}, {40607, 44670}, {41339, 56317}, {41581, 51413}, {57284, 58637}

X(58648) = midpoint of X(i) and X(j) for these {i,j}: {22276, 40635}, {24929, 34790}, {72, 50195}
X(58648) = reflection of X(i) in X(j) for these {i,j}: {11018, 6690}
X(58648) = complement of X(5173)
X(58648) = perspector of circumconic {{A, B, C, X(644), X(56188)}}
X(58648)= pole of line {9, 10950} with respect to the Feuerbach hyperbola
X(58648) = center of the nine-point conic of quadrilateral XYZX(55) where XYZ is the cevian triangle of X(8)
X(58648) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(2051)}}, {{A, B, C, X(55), X(34434)}}, {{A, B, C, X(200), X(24987)}}, {{A, B, C, X(210), X(51870)}}, {{A, B, C, X(281), X(3713)}}
X(58648) = barycentric product X(i)*X(j) for these (i, j): {24987, 9}, {46022, 7080}
X(58648) = barycentric quotient X(i)/X(j) for these (i, j): {24987, 85}, {46022, 1440}
X(58648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 3878, 7686}, {200, 210, 40659}, {210, 51380, 58696}, {518, 6690, 11018}, {960, 3740, 3452}, {5044, 58630, 58649}, {5044, 58640, 58630}, {5044, 58643, 10}, {5044, 58650, 3740}, {5044, 58688, 58650}, {12572, 58636, 58631}, {18227, 58629, 46694}, {22276, 40635, 517}, {58635, 58696, 210}


X(58649) = X(5)X(10)∩X(56)X(210)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4+a*(b+c)^3*(b^2-4*b*c+c^2)-a^4*(b^2+4*b*c+c^2)-2*a^3*(b^3+c^3)+2*a^2*(b^4+3*b^3*c+3*b*c^3+c^4)) : :
X(58649) = -3*X[2]+X[50196], X[56]+3*X[210], -2*X[1125]+X[16215]

X(58649) lies on these lines: {1, 46677}, {2, 50196}, {4, 18236}, {5, 10}, {9, 10310}, {46, 8580}, {56, 210}, {72, 1788}, {404, 17615}, {518, 6691}, {519, 20789}, {529, 58629}, {912, 47742}, {942, 26364}, {971, 25440}, {997, 12513}, {1125, 16215}, {1158, 1376}, {1728, 8069}, {2098, 9623}, {2829, 46694}, {2841, 58667}, {3035, 9940}, {3086, 17658}, {3634, 58698}, {3660, 13747}, {3678, 20103}, {3753, 10588}, {3967, 20320}, {4015, 12447}, {4662, 38455}, {5220, 37582}, {5267, 33575}, {5438, 14872}, {5552, 50195}, {5705, 31246}, {5720, 18237}, {5854, 58663}, {6745, 44547}, {8679, 58633}, {9709, 18251}, {9856, 54286}, {9947, 17647}, {10200, 12915}, {10270, 18239}, {10914, 54361}, {12572, 18227}, {13601, 41389}, {15297, 15733}, {16193, 27385}, {17567, 17625}, {17642, 25522}, {17768, 58634}, {18254, 31821}, {21077, 37544}, {24982, 51379}, {24987, 55016}, {31788, 37828}, {40293, 41229}, {41012, 51378}, {52264, 58623}

X(58649) = midpoint of X(i) and X(j) for these {i,j}: {24928, 34790}, {3678, 58405}, {5044, 58645}, {960, 8256}
X(58649) = reflection of X(i) in X(j) for these {i,j}: {16215, 1125}, {58576, 6691}
X(58649) = complement of X(50196)
X(58649) = center of the nine-point conic of quadrilateral XYZX(56) where XYZ is the cevian triangle of X(8)
X(58649) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6691, 58576}, {5044, 58630, 58648}, {5044, 58641, 58630}, {5044, 58643, 960}, {5044, 58645, 517}, {5044, 58650, 10}, {18227, 58637, 12572}, {46694, 57284, 58631}


X(58650) = X(5)X(10)∩X(57)X(210)

Barycentrics    a*(a^4*(b+c)+8*a^2*b*c*(b+c)-(b-c)^2*(b+c)^3-2*a^3*(b^2+3*b*c+c^2)+2*a*(b^4-b^3*c-8*b^2*c^2-b*c^3+c^4)) : :
X(58650) = -3*X[2]+X[12915], X[57]+3*X[210], X[1864]+3*X[46917], X[3359]+X[5777], -X[3421]+5*X[3697], -X[7962]+5*X[25917], X[8257]+X[40659], -X[17642]+5*X[20196]

X(58650) lies on these lines: {2, 12915}, {5, 10}, {9, 6244}, {57, 210}, {329, 20292}, {516, 10241}, {518, 6692}, {527, 58629}, {936, 999}, {942, 25568}, {971, 1376}, {993, 33575}, {997, 51788}, {1706, 9856}, {1864, 46917}, {2057, 37244}, {2550, 10157}, {2551, 31793}, {2823, 58665}, {2835, 58670}, {3035, 10156}, {3359, 5777}, {3421, 3697}, {3753, 5226}, {3812, 58657}, {4297, 18247}, {4662, 12447}, {4849, 56809}, {5045, 6700}, {5274, 10914}, {5920, 18220}, {6667, 58451}, {6745, 11018}, {7308, 10388}, {7962, 25917}, {7994, 24644}, {8257, 40659}, {8583, 46677}, {9623, 51780}, {9708, 37611}, {9858, 14872}, {9940, 47742}, {9947, 57284}, {9957, 17648}, {11035, 25524}, {15064, 15587}, {17642, 20196}, {18229, 35645}, {18250, 58637}, {21075, 37544}, {25440, 31805}, {25525, 31479}, {31445, 35238}, {34371, 58633}, {51069, 58698}, {52264, 58576}, {58631, 58660}

X(58650) = midpoint of X(i) and X(j) for these {i,j}: {12915, 17658}, {3359, 5777}, {57, 9954}, {8257, 40659}, {999, 34790}
X(58650) = reflection of X(i) in X(j) for these {i,j}: {58577, 6692}
X(58650) = complement of X(12915)
X(58650)= pole of line {513, 15280} with respect to the Spieker circle
X(58650)= pole of line {10384, 10950} with respect to the Feuerbach hyperbola
X(58650) = center of the nine-point conic of quadrilateral XYZX(57) where XYZ is the cevian triangle of X(8)
X(58650) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17658, 12915}, {10, 58649, 5044}, {57, 210, 9954}, {518, 6692, 58577}, {2550, 18236, 10157}, {5044, 58645, 58643}, {5044, 58688, 58648}, {58629, 58634, 58699}, {58629, 58651, 58635}


X(58651) = X(63)X(210)∩X(72)X(498)

Barycentrics    a*(a^4*(b+c)+2*a^2*b*c*(b+c)-(b-c)^2*(b+c)^3-2*a^3*(b^2+3*b*c+c^2)+2*a*(b^4+2*b^3*c+2*b*c^3+c^4)) : :
X(58651) = X[63]+3*X[210], -X[226]+3*X[3740], -3*X[354]+7*X[55867], X[993]+X[34790], -X[1478]+5*X[3697], -3*X[3848]+2*X[58626], X[14872]+3*X[21165]

X(58651) lies on these lines: {9, 41566}, {63, 210}, {72, 498}, {226, 3740}, {354, 55867}, {515, 4662}, {517, 54288}, {518, 5745}, {527, 58629}, {674, 58491}, {758, 3634}, {912, 3678}, {960, 1210}, {993, 34790}, {1329, 45120}, {1478, 3697}, {1788, 3876}, {2792, 58681}, {2801, 35023}, {3059, 4421}, {3681, 5218}, {3848, 58626}, {3878, 24386}, {4015, 58645}, {5692, 30827}, {5905, 26040}, {6744, 58679}, {8680, 58655}, {9028, 58653}, {10171, 31870}, {12616, 31837}, {14872, 21165}, {18253, 44547}, {25353, 34377}, {46179, 58656}, {46180, 58695}

X(58651) = midpoint of X(i) and X(j) for these {i,j}: {993, 34790}
X(58651) = reflection of X(i) in X(j) for these {i,j}: {58578, 5745}
X(58651) = center of the nine-point conic of quadrilateral XYZX(63) where XYZ is the cevian triangle of X(8)
X(58651) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5745, 58578}, {3678, 58630, 58657}, {3812, 58638, 5044}, {58635, 58650, 58629}, {58643, 58660, 58637}, {58688, 58696, 58663}


X(58652) = X(9)X(12335)∩X(64)X(210)

Barycentrics    a*(a^11*(b+c)-3*a^9*(b+c)*(b^2+c^2)+3*a^8*(b+c)^2*(b^2+c^2)+2*a^5*(b-c)^2*(b+c)^3*(b^2+c^2)+a*(b-c)^4*(b+c)^5*(b^2+c^2)-(b-c)^4*(b+c)^6*(b^2+c^2)+2*a^7*(b+c)*(b^2+c^2)^2-a^10*(b^2+4*b*c+c^2)-2*a^4*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^2+10*b*c+c^2)-2*a^6*(b+c)^2*(b^4-6*b^3*c+14*b^2*c^2-6*b*c^3+c^4)-a^3*(b-c)^2*(b+c)^3*(3*b^4+2*b^2*c^2+3*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4+12*b^3*c+2*b^2*c^2+12*b*c^3+3*c^4)) : :
X(58652) = X[64]+3*X[210], 3*X[1853]+X[7957], -X[2883]+3*X[3740], -5*X[3697]+X[12779], -X[7973]+5*X[25917], -5*X[8567]+X[12680], 3*X[10606]+X[14872], X[12262]+X[34790], -X[12675]+3*X[23328], -X[13373]+2*X[25563]

X(58652) lies on these lines: {9, 12335}, {64, 210}, {517, 20299}, {518, 6696}, {674, 58492}, {936, 22778}, {960, 20307}, {1503, 58637}, {1853, 7957}, {2883, 3740}, {3678, 6001}, {3697, 12779}, {3827, 6247}, {6000, 58630}, {7686, 43592}, {7973, 25917}, {8567, 12680}, {10606, 14872}, {12262, 34790}, {12675, 23328}, {12920, 18236}, {13373, 25563}, {15311, 58631}, {34146, 58633}

X(58652) = midpoint of X(i) and X(j) for these {i,j}: {12262, 34790}
X(58652) = reflection of X(i) in X(j) for these {i,j}: {13373, 25563}, {58579, 6696}
X(58652) = center of the nine-point conic of quadrilateral XYZX(64) where XYZ is the cevian triangle of X(8)
X(58652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6696, 58579}


X(58653) = X(10)X(141)∩X(69)X(210)

Barycentrics    a*(a^3*(b+c)-a^2*(b^2+c^2)+a*(b+c)*(b^2+c^2)-(b^2+c^2)*(b^2+4*b*c+c^2)) : :
X(58653) = -X[6]+3*X[3740], X[69]+3*X[210], -3*X[354]+7*X[3619], X[960]+X[3416], X[2321]+X[18252], -2*X[3589]+3*X[58451], 5*X[3620]+3*X[3681], -5*X[3697]+X[3751], -3*X[3742]+5*X[3763], -3*X[3848]+4*X[34573], -3*X[4711]+X[49688], -2*X[10007]+X[58622] and many others

X(58653) lies on these lines: {6, 3740}, {10, 141}, {37, 1716}, {69, 210}, {354, 3619}, {511, 58631}, {517, 18358}, {524, 58629}, {527, 4538}, {542, 58654}, {674, 9822}, {732, 58695}, {742, 58693}, {960, 3416}, {975, 1386}, {1376, 5227}, {1503, 58637}, {1766, 15726}, {2321, 18252}, {2781, 58680}, {2810, 58684}, {3564, 58630}, {3589, 58451}, {3620, 3681}, {3631, 9004}, {3678, 34381}, {3697, 3751}, {3711, 56179}, {3742, 3763}, {3848, 34573}, {4015, 34379}, {4445, 21867}, {4711, 49688}, {5044, 5847}, {5220, 7289}, {5302, 36740}, {5845, 58678}, {5846, 58679}, {5848, 58663}, {5969, 58682}, {9024, 58683}, {9025, 18227}, {9028, 58651}, {9047, 9969}, {10007, 58622}, {10179, 49681}, {10519, 14872}, {11997, 17233}, {12587, 15812}, {12723, 17286}, {13374, 24206}, {15587, 50995}, {17229, 44670}, {17294, 40965}, {17635, 50107}, {19764, 56176}, {20582, 58560}, {21033, 56714}, {25917, 51192}, {34380, 58632}, {44671, 58394}, {48831, 51003}

X(58653) = midpoint of X(i) and X(j) for these {i,j}: {15587, 50995}, {2321, 18252}, {34790, 49511}, {960, 3416}
X(58653) = reflection of X(i) in X(j) for these {i,j}: {13374, 24206}, {3812, 3844}, {58560, 20582}, {58562, 34573}, {58581, 141}, {58621, 3589}, {58622, 10007}, {58633, 58676}, {58694, 58633}
X(58653)= pole of line {3058, 50107} with respect to the Feuerbach hyperbola
X(58653) = center of the nine-point conic of quadrilateral XYZX(69) where XYZ is the cevian triangle of X(8)
X(58653) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 518, 58581}, {518, 3844, 3812}, {524, 58633, 58694}, {524, 58676, 58633}, {4662, 58634, 58655}, {34573, 58562, 3848}, {34790, 49511, 518}, {58451, 58621, 3589}, {58633, 58676, 58629}


X(58654) = X(10)X(2778)∩X(74)X(210)

Barycentrics    a*(a^11*(b+c)-3*a^9*(b+c)*(b^2+c^2)+a*(b-c)^4*(b+c)^5*(b^2+c^2)-(b-c)^4*(b+c)^6*(b^2+c^2)+2*a^5*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+c^2)-a^10*(b^2+4*b*c+c^2)+a^7*(b+c)*(2*b^2+c^2)*(b^2+2*c^2)+a^8*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)-2*a^4*(b+c)^2*(b^2+c^2)*(b^4+5*b^3*c-13*b^2*c^2+5*b*c^3+c^4)-a^3*(b-c)^2*(b+c)^3*(3*b^4+b^2*c^2+3*c^4)+a^2*(b-c)^2*(b+c)^2*(b^2-b*c+c^2)*(3*b^4+13*b^3*c+14*b^2*c^2+13*b*c^3+3*c^4)-a^6*(2*b^6-2*b^5*c+7*b^4*c^2+24*b^3*c^3+7*b^2*c^4-2*b*c^5+2*c^6)) : :
X(58654) = X[74]+3*X[210], -X[113]+3*X[3740], -2*X[140]+X[58601], -3*X[375]+X[11807], -5*X[3697]+X[12368], 3*X[5657]+X[10693], -2*X[6723]+X[13374], X[7957]+3*X[14644], -X[7978]+5*X[25917], X[11709]+X[34790], -X[12675]+3*X[38727], -2*X[12900]+3*X[58451] and many others

X(58654) lies on these lines: {9, 12327}, {10, 2778}, {74, 210}, {113, 3740}, {140, 58601}, {375, 11807}, {517, 20304}, {518, 6699}, {541, 58629}, {542, 58653}, {674, 58498}, {690, 58661}, {936, 22583}, {2771, 3678}, {2772, 58664}, {2774, 58665}, {2776, 58667}, {2777, 58631}, {2779, 58640}, {2780, 58672}, {2781, 58633}, {2836, 10264}, {3697, 12368}, {5657, 10693}, {5663, 58630}, {6723, 13374}, {7957, 14644}, {7978, 25917}, {8674, 58666}, {9047, 12236}, {10628, 58690}, {11709, 34790}, {12371, 18236}, {12675, 38727}, {12900, 58451}, {14872, 15055}, {14915, 58639}, {17702, 58637}

X(58654) = midpoint of X(i) and X(j) for these {i,j}: {11709, 34790}
X(58654) = reflection of X(i) in X(j) for these {i,j}: {13374, 6723}, {58582, 6699}, {58601, 140}, {58671, 58630}
X(58654) = center of the nine-point conic of quadrilateral XYZX(74) where XYZ is the cevian triangle of X(8)
X(58654) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6699, 58582}, {5663, 58630, 58671}


X(58655) = X(10)X(141)∩X(37)X(43)

Barycentrics    a*(a^2*(b+c)^2-a*(b+c)*(b^2+b*c+c^2)-b*c*(b^2+4*b*c+c^2)) : :
X(58655) = X[75]+3*X[210], -3*X[354]+7*X[4751], 3*X[392]+X[49459], X[960]+X[3696], -X[984]+5*X[3697], -X[3555]+5*X[40328], 3*X[3681]+5*X[4699], X[3688]+3*X[50095], -3*X[3742]+5*X[31238], -3*X[3848]+2*X[58571], X[4709]+3*X[10176], -3*X[10179]+X[49475] and many others

X(58655) lies on these lines: {8, 20923}, {10, 141}, {37, 43}, {75, 210}, {354, 4751}, {386, 15569}, {391, 9309}, {392, 49459}, {517, 4732}, {536, 4096}, {573, 15726}, {674, 58499}, {714, 58642}, {726, 4015}, {740, 5044}, {742, 58633}, {899, 3728}, {908, 21926}, {960, 3696}, {984, 3697}, {994, 44663}, {1376, 37500}, {1738, 53476}, {1739, 49448}, {1901, 50033}, {2667, 44307}, {2805, 58683}, {3555, 40328}, {3681, 4699}, {3686, 9025}, {3688, 50095}, {3706, 18137}, {3741, 25106}, {3742, 31238}, {3789, 4000}, {3848, 58571}, {3912, 4111}, {4009, 4043}, {4022, 16610}, {4431, 7064}, {4443, 21892}, {4517, 42696}, {4538, 58677}, {4651, 20891}, {4698, 6685}, {4709, 10176}, {4967, 20683}, {8680, 58651}, {9055, 58676}, {9548, 30271}, {9564, 18227}, {10179, 49475}, {15254, 37502}, {16832, 35892}, {17135, 29982}, {17231, 25108}, {17275, 17792}, {17346, 49537}, {19853, 34791}, {21238, 25125}, {24575, 28244}, {24603, 52020}, {25123, 44417}, {25917, 49470}, {27311, 46909}, {27474, 40965}, {28581, 58679}, {29010, 58630}, {29054, 58643}, {37593, 39737}, {58635, 58691}

X(58655) = midpoint of X(i) and X(j) for these {i,j}: {24325, 34790}, {3739, 22271}, {960, 3696}
X(58655) = reflection of X(i) in X(j) for these {i,j}: {58583, 3739}, {58620, 4698}, {58693, 40607}
X(58655)= pole of line {3058, 17346} with respect to the Feuerbach hyperbola
X(58655)= pole of line {16589, 24210} with respect to the Kiepert hyperbola
X(58655)= pole of line {23794, 26824} with respect to the Steiner circumellipse
X(58655)= pole of line {693, 21960} with respect to the Steiner inellipse
X(58655) = center of the nine-point conic of quadrilateral XYZX(75) where XYZ is the cevian triangle of X(8)
X(58655) = intersection, other than A, B, C, of circumconics {{A, B, C, X(13476), X(39741)}}, {{A, B, C, X(17038), X(17758)}}
X(58655) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3739, 58583}, {536, 40607, 58693}, {4662, 58634, 58653}, {4698, 44671, 58620}, {24325, 34790, 518}, {58451, 58620, 4698}, {58629, 58693, 40607}


X(58656) = X(9)X(12338)∩X(76)X(210)

Barycentrics    a*(a*b^2*c^2*(b+c)+a^3*(b+c)*(b^2+c^2)-a^2*(b+c)^2*(b^2+c^2)-b^2*c^2*(b^2+4*b*c+c^2)) : :
X(58656) = -X[39]+3*X[3740], X[76]+3*X[210], 3*X[3681]+5*X[31276], -5*X[3697]+X[12782], -3*X[3742]+5*X[31239], -2*X[6683]+3*X[58451], -X[7976]+5*X[25917], X[12263]+X[34790], X[12672]+3*X[22697], -X[12675]+3*X[15819], X[14872]+3*X[22712]

X(58656) lies on these lines: {9, 12338}, {39, 3740}, {76, 210}, {511, 58631}, {518, 3934}, {538, 58629}, {674, 58500}, {698, 58676}, {726, 4015}, {730, 5044}, {732, 58633}, {936, 22779}, {2782, 58630}, {3681, 31276}, {3697, 12782}, {3742, 31239}, {4662, 14839}, {6683, 58451}, {7976, 25917}, {9047, 27375}, {12263, 34790}, {12672, 22697}, {12675, 15819}, {12923, 18236}, {14872, 22712}, {32515, 58632}, {46179, 58651}, {46180, 58699}, {46183, 58642}

X(58656) = midpoint of X(i) and X(j) for these {i,j}: {12263, 34790}
X(58656) = reflection of X(i) in X(j) for these {i,j}: {58584, 3934}, {58622, 6683}
X(58656) = center of the nine-point conic of quadrilateral XYZX(76) where XYZ is the cevian triangle of X(8)
X(58656) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3934, 58584}, {58451, 58622, 6683}


X(58657) = X(78)X(210)∩X(200)X(8668)

Barycentrics    a*(a-b-c)*(-2*a^3*b*c+a^4*(b+c)+(b-c)^2*(b+c)^3+4*a*b*c*(b^2+b*c+c^2)-2*a^2*(b^3+c^3)) : :
X(58657) = X[78]+3*X[210], X[960]+X[6736], -X[1210]+3*X[3740], -5*X[3697]+X[10573], -5*X[25917]+X[36846]

X(58657) lies on these lines: {72, 37828}, {78, 210}, {200, 8668}, {518, 6691}, {519, 4015}, {758, 58645}, {912, 3678}, {960, 6736}, {1210, 3740}, {2800, 58643}, {3681, 7288}, {3697, 10573}, {3812, 58650}, {3880, 33559}, {3913, 9848}, {5289, 46677}, {6743, 46694}, {11260, 25405}, {15254, 18233}, {17658, 25681}, {21031, 51379}, {24393, 49627}, {25917, 36846}, {58635, 58638}

X(58657) = midpoint of X(i) and X(j) for these {i,j}: {30144, 34790}, {960, 6736}
X(58657) = reflection of X(i) in X(j) for these {i,j}: {58585, 6700}
X(58657) = center of the nine-point conic of quadrilateral XYZX(78) where XYZ is the cevian triangle of X(8)
X(58657) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6700, 58585}, {3678, 58630, 58651}, {5044, 58696, 4662}


X(58658) = X(10)X(2771)∩X(79)X(210)

Barycentrics    a*(2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(a^3-a^2*(b+c)-a*(b^2+b*c+c^2)+(b+c)*(b^2+4*b*c+c^2)) : :
X(58658) = X[72]+3*X[6175], X[79]+3*X[210], -3*X[442]+X[942], -5*X[1698]+X[17637], 3*X[2475]+5*X[3876], X[3057]+3*X[47033], -X[3647]+3*X[3740], X[3649]+X[34790], -5*X[3697]+X[11684], -X[5441]+5*X[25917], X[5777]+X[37401], X[5903]+3*X[44782] and many others

X(58658) lies on circumconic {{A, B, C, X(5249), X(51748)}} and these lines: {9, 16117}, {10, 2771}, {21, 35595}, {30, 5044}, {72, 6175}, {79, 210}, {191, 3715}, {442, 942}, {518, 6701}, {758, 4662}, {936, 13743}, {1376, 22937}, {1698, 17637}, {2475, 3876}, {2550, 16159}, {3057, 47033}, {3219, 35982}, {3452, 16160}, {3627, 10176}, {3647, 3740}, {3649, 34790}, {3651, 31445}, {3697, 11684}, {3925, 14526}, {5438, 28443}, {5441, 25917}, {5745, 11277}, {5777, 37401}, {5794, 18407}, {5903, 44782}, {5927, 33557}, {6700, 10021}, {7701, 8580}, {9708, 16132}, {9858, 28465}, {10157, 37447}, {11263, 31419}, {16126, 40587}, {16138, 18236}, {17609, 26725}, {17768, 58635}, {22792, 47032}, {31493, 50190}, {31787, 58631}, {31792, 44669}, {37230, 37585}, {37545, 54302}, {47742, 58449}, {58433, 58619}, {58638, 58641}, {58640, 58699}

X(58658) = midpoint of X(i) and X(j) for these {i,j}: {3649, 34790}, {5777, 37401}, {942, 31938}
X(58658) = reflection of X(i) in X(j) for these {i,j}: {58586, 6701}
X(58658)= pole of line {1175, 5122} with respect to the Stammler hyperbola
X(58658) = center of the nine-point conic of quadrilateral XYZX(79) where XYZ is the cevian triangle of X(8)
X(58658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {442, 31938, 942}, {518, 6701, 58586}


X(58659) = X(10)X(2771)∩X(80)X(210)

Barycentrics    a*(a^5*(b+c)-a^4*(b^2+c^2)+2*a^2*(b^2+b*c+c^2)^2-(b^2-c^2)^2*(b^2+4*b*c+c^2)-a^3*(b+c)*(2*b^2+b*c+2*c^2)+a*(b+c)*(b^4+b^3*c-8*b^2*c^2+b*c^3+c^4)) : :
X(58659) = 3*X[8]+X[17652], X[11]+X[34790], X[72]+X[6797], X[80]+3*X[210], -X[100]+5*X[3697], X[104]+3*X[18908], -X[214]+3*X[3740], 3*X[392]+X[12531], -X[942]+3*X[34122], -X[1537]+3*X[10157], -5*X[1698]+X[17660], -X[3555]+5*X[31272] and many others

X(58659) lies on these lines: {8, 17652}, {9, 12331}, {10, 2771}, {11, 34790}, {72, 6797}, {80, 210}, {100, 3697}, {104, 18908}, {119, 38211}, {214, 3740}, {392, 12531}, {515, 58641}, {517, 3036}, {518, 6702}, {528, 58635}, {674, 58501}, {936, 12773}, {942, 34122}, {952, 5044}, {958, 22935}, {960, 15862}, {1484, 3452}, {1537, 10157}, {1698, 17660}, {1768, 9709}, {2550, 16128}, {2800, 31821}, {2801, 58634}, {2802, 4547}, {2829, 9947}, {2950, 5779}, {3555, 31272}, {3634, 58591}, {3679, 17638}, {3698, 11571}, {3753, 12532}, {3820, 10265}, {3848, 58625}, {4015, 58638}, {5045, 6667}, {5251, 41541}, {5572, 38216}, {5692, 17636}, {5777, 45080}, {5836, 38213}, {5840, 58643}, {6326, 9708}, {7972, 25917}, {9623, 48667}, {11108, 37736}, {12019, 14740}, {12515, 17668}, {12675, 38133}, {12737, 18236}, {13253, 40587}, {15017, 31493}, {21635, 31419}, {31788, 38128}, {32557, 34791}, {58451, 58453}, {58629, 58698}

X(58659) = midpoint of X(i) and X(j) for these {i,j}: {11, 34790}, {12019, 14740}, {3036, 18254}, {4662, 58683}, {72, 6797}, {942, 46685}, {960, 15863}
X(58659) = reflection of X(i) in X(j) for these {i,j}: {5044, 46694}, {5045, 6667}, {58587, 6702}, {58591, 3634}, {58663, 4015}
X(58659) = center of the nine-point conic of quadrilateral XYZX(80) where XYZ is the cevian triangle of X(8)
X(58659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6702, 58587}, {3036, 18254, 517}, {4662, 58683, 2802}, {5795, 58632, 5044}, {34122, 46685, 942}


X(58660) = X(9)X(12330)∩X(84)X(210)

Barycentrics    a*(a^8*(b+c)-2*a^6*(b-c)^2*(b+c)+2*a^2*(b-c)^2*(b+c)^5-(b-c)^4*(b+c)^5-8*a^4*b*c*(b+c)*(b^2+c^2)+2*a*(b-c)^2*(b+c)^4*(b^2-b*c+c^2)+2*a^5*(3*b+c)*(b+3*c)*(b^2-b*c+c^2)-2*a^7*(b^2+3*b*c+c^2)-2*a^3*(b-c)^2*(b^2+3*b*c+c^2)*(3*b^2+2*b*c+3*c^2)) : :
X(58660) = X[72]+3*X[14647], X[84]+3*X[210], 3*X[165]+X[12664], X[3358]+X[40659], -5*X[3697]+X[12667], -3*X[3740]+X[6260], -X[7971]+5*X[25917], -X[9942]+3*X[10164], X[12114]+X[34790], -X[12671]+5*X[35242], X[31837]+X[33899]

X(58660) lies on these lines: {3, 49170}, {9, 12330}, {71, 46022}, {72, 14647}, {84, 210}, {165, 12664}, {515, 4662}, {517, 3813}, {518, 6705}, {936, 18237}, {971, 6796}, {1071, 5218}, {1158, 1376}, {1788, 12672}, {2800, 3812}, {2829, 9947}, {3358, 40659}, {3359, 18251}, {3697, 12667}, {3740, 6260}, {3826, 12608}, {5044, 6001}, {5173, 6833}, {5450, 56176}, {5779, 49171}, {5784, 10270}, {5811, 12676}, {6690, 9940}, {6847, 41539}, {6916, 12677}, {7680, 37544}, {7971, 25917}, {9942, 10164}, {11248, 15733}, {12114, 34790}, {12671, 35242}, {14872, 51380}, {16215, 20418}, {26066, 31788}, {31493, 37562}, {31805, 58640}, {31837, 33899}, {34862, 58696}, {58631, 58650}

X(58660) = midpoint of X(i) and X(j) for these {i,j}: {1158, 5777}, {12114, 34790}, {3358, 40659}, {31837, 33899}
X(58660) = reflection of X(i) in X(j) for these {i,j}: {58588, 6705}
X(58660) = center of the nine-point conic of quadrilateral XYZX(84) where XYZ is the cevian triangle of X(8)
X(58660) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6705, 58588}, {58637, 58651, 58643}


X(58661) = X(9)X(12178)∩X(98)X(210)

Barycentrics    a*(a^9*(b+c)-3*a^7*(b+c)*(b^2+c^2)-a^8*(b^2+4*b*c+c^2)+a^6*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)+a*(b-c)^2*(b+c)^3*(b^4-b^2*c^2+c^4)-a^3*(b+c)*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+a^2*(b+c)^2*(b^2+c^2)*(3*b^4+2*b^3*c-8*b^2*c^2+2*b*c^3+3*c^4)+a^5*(b+c)*(4*b^4+b^2*c^2+4*c^4)-(b^2-c^2)^2*(b^6+2*b^5*c-4*b^3*c^3+2*b*c^5+c^6)-a^4*(4*b^6+10*b^5*c+5*b^4*c^2+5*b^2*c^4+10*b*c^5+4*c^6)) : :
X(58661) = X[98]+3*X[210], -X[114]+3*X[3740], -2*X[140]+X[58590], -5*X[3697]+X[9864], -2*X[6721]+3*X[58451], -2*X[6722]+X[13374], X[7957]+3*X[14639], -X[7970]+5*X[25917], X[11710]+X[34790], -X[12675]+3*X[38737], X[14872]+3*X[34473], -2*X[20398]+X[58610]

X(58661) lies on these lines: {9, 12178}, {98, 210}, {114, 3740}, {140, 58590}, {518, 6036}, {542, 58629}, {674, 58502}, {690, 58654}, {936, 22504}, {2782, 58630}, {2783, 58663}, {2784, 4015}, {2786, 58665}, {2787, 58666}, {2789, 58667}, {2790, 58668}, {2791, 58669}, {2792, 58670}, {2793, 58672}, {2794, 58631}, {3697, 9864}, {6721, 58451}, {6722, 13374}, {7957, 14639}, {7970, 25917}, {8580, 24469}, {9047, 39806}, {11710, 34790}, {12182, 18236}, {12675, 38737}, {14872, 34473}, {20398, 58610}, {23698, 58637}

X(58661) = midpoint of X(i) and X(j) for these {i,j}: {11710, 34790}, {58637, 58682}
X(58661) = reflection of X(i) in X(j) for these {i,j}: {13374, 6722}, {58589, 6036}, {58590, 140}, {58610, 20398}, {58662, 58630}
X(58661) = center of the nine-point conic of quadrilateral XYZX(98) where XYZ is the cevian triangle of X(8)
X(58661) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6036, 58589}, {2782, 58630, 58662}, {58637, 58682, 23698}


X(58662) = X(9)X(13173)∩X(99)X(210)

Barycentrics    a*(-b^6-2*b^5*c-2*b*c^5-c^6+a^5*(b+c)-a^3*(b+c)*(b^2+c^2)-a^4*(b^2+4*b*c+c^2)+a^2*(b^2+c^2)*(b^2+4*b*c+c^2)+a*(b+c)*(b^4-b^2*c^2+c^4)) : :
X(58662) = X[99]+3*X[210], -X[115]+3*X[3740], -2*X[140]+X[58589], X[3678]+X[51578], -5*X[3697]+X[13178], -3*X[3742]+5*X[31274], -2*X[6721]+X[13374], -2*X[6722]+3*X[58451], -X[7983]+5*X[25917], X[11711]+X[34790], -X[12675]+3*X[38748], X[14872]+3*X[21166] and many others

X(58662) lies on these lines: {9, 13173}, {99, 210}, {115, 3740}, {140, 58589}, {518, 620}, {542, 58653}, {543, 58629}, {674, 58503}, {690, 58671}, {936, 22514}, {2782, 58630}, {2783, 58666}, {2784, 58665}, {2785, 58670}, {2786, 58664}, {2787, 58663}, {2794, 58637}, {2795, 58638}, {2796, 58667}, {2797, 58668}, {2798, 58669}, {2799, 58673}, {3678, 51578}, {3697, 13178}, {3742, 31274}, {5969, 58633}, {6721, 13374}, {6722, 58451}, {7983, 25917}, {9047, 39835}, {11711, 34790}, {12675, 38748}, {13180, 18236}, {14645, 58694}, {14872, 21166}, {22247, 58560}, {23698, 58631}

X(58662) = midpoint of X(i) and X(j) for these {i,j}: {11711, 34790}, {3678, 51578}, {58637, 58681}
X(58662) = reflection of X(i) in X(j) for these {i,j}: {13374, 6721}, {58560, 22247}, {58589, 140}, {58590, 620}, {58610, 6722}, {58661, 58630}
X(58662) = center of the nine-point conic of quadrilateral XYZX(99) where XYZ is the cevian triangle of X(8)
X(58662) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 620, 58590}, {2782, 58630, 58661}, {58451, 58610, 6722}, {58637, 58681, 2794}


X(58663) = X(11)X(3740)∩X(100)X(210)

Barycentrics    a*(a^4*(b+c)+7*a^2*b*c*(b+c)-(b-c)^2*(b+c)^3-2*a^3*(b^2+3*b*c+c^2)+a*(2*b^4-b^3*c-8*b^2*c^2-b*c^3+2*c^4)) : :
X(58663) = -3*X[10]+X[6797], -X[11]+3*X[3740], 3*X[72]+X[11571], -X[80]+5*X[3697], X[100]+3*X[210], -2*X[140]+X[58595], 3*X[165]+X[17661], X[214]+X[34790], X[960]+X[1145], -X[1320]+5*X[25917], -5*X[3617]+X[17636], -2*X[3634]+X[58587] and many others

X(58663) lies on these lines: {9, 13205}, {10, 6797}, {11, 3740}, {72, 11571}, {80, 3697}, {100, 210}, {140, 58595}, {149, 4679}, {165, 17661}, {214, 34790}, {518, 3035}, {519, 58641}, {528, 18227}, {674, 58504}, {900, 58691}, {936, 22560}, {952, 4662}, {960, 1145}, {1320, 25917}, {1768, 5220}, {2771, 3678}, {2783, 58661}, {2787, 58662}, {2800, 58643}, {2801, 35023}, {2802, 4540}, {2803, 58668}, {2804, 58669}, {2805, 40607}, {2806, 58673}, {2829, 58637}, {2932, 41229}, {3617, 17636}, {3634, 58587}, {3681, 17660}, {3738, 58670}, {3742, 31235}, {3812, 58645}, {3848, 18240}, {3876, 17638}, {3880, 11545}, {3887, 58664}, {4005, 12532}, {4015, 58638}, {4420, 41541}, {4547, 58692}, {5045, 58453}, {5087, 51378}, {5302, 10058}, {5837, 32198}, {5840, 58631}, {5848, 58653}, {5851, 58678}, {5854, 58649}, {5856, 58634}, {6068, 15587}, {6174, 27778}, {6594, 40659}, {6667, 58451}, {8674, 58671}, {9024, 58633}, {9943, 12665}, {10179, 25416}, {11260, 46677}, {12119, 18908}, {12675, 38760}, {13271, 18236}, {13374, 58421}, {14872, 34474}, {15017, 15104}, {20400, 58613}, {34123, 34791}, {44671, 58397}, {51506, 56176}

X(58663) = midpoint of X(i) and X(j) for these {i,j}: {214, 34790}, {3035, 14740}, {5087, 51378}, {6068, 15587}, {6594, 40659}, {58637, 58687}, {960, 1145}, {9943, 12665}
X(58663) = reflection of X(i) in X(j) for these {i,j}: {13374, 58421}, {5044, 58698}, {5045, 58453}, {58587, 3634}, {58591, 3035}, {58595, 140}, {58611, 6667}, {58613, 20400}, {58631, 58674}, {58659, 4015}, {58666, 58630}, {58683, 46694}
X(58663) = center of the nine-point conic of quadrilateral XYZX(100) where XYZ is the cevian triangle of X(8)
X(58663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 3035, 58591}, {528, 46694, 58683}, {952, 58630, 58666}, {2802, 58698, 5044}, {3035, 14740, 518}, {4015, 58640, 58638}, {5840, 58674, 58631}, {58451, 58611, 6667}, {58629, 58683, 46694}, {58637, 58687, 2829}, {58688, 58696, 58651}


X(58664) = X(101)X(210)∩X(116)X(3740)

Barycentrics    a*(a^5*(b+c)-(b^2-c^2)^2*(b^2+b*c+c^2)-a^2*(b^2+c^2)*(b^2+b*c+c^2)-2*a^4*(b^2+3*b*c+c^2)+a^3*(b+c)*(b^2+5*b*c+c^2)+a*(b-c)^2*(b+c)*(2*b^2+3*b*c+2*c^2)) : :
X(58664) = X[101]+3*X[210], -X[116]+3*X[3740], -2*X[140]+X[58594], X[3678]+X[28346], -5*X[3697]+X[50896], -X[10695]+5*X[25917], X[11712]+X[34790], -X[12675]+3*X[38772], -X[13374]+2*X[58420], X[14872]+3*X[38690], X[28345]+X[40659], -2*X[58418]+3*X[58451] and many others

X(58664) lies on these lines: {101, 210}, {116, 3740}, {140, 58594}, {518, 6710}, {544, 58629}, {674, 58505}, {928, 58670}, {2772, 58654}, {2774, 58671}, {2784, 4015}, {2786, 58662}, {2801, 58635}, {2808, 58630}, {2809, 5044}, {2810, 58633}, {2811, 58668}, {2812, 58669}, {2813, 58644}, {3678, 28346}, {3697, 50896}, {3887, 58663}, {9518, 58673}, {10695, 25917}, {11712, 34790}, {12675, 38772}, {13374, 58420}, {14872, 38690}, {28345, 40659}, {58418, 58451}, {58637, 58686}

X(58664) = midpoint of X(i) and X(j) for these {i,j}: {11712, 34790}, {28345, 40659}, {3678, 28346}, {58637, 58686}
X(58664) = reflection of X(i) in X(j) for these {i,j}: {13374, 58420}, {58592, 6710}, {58594, 140}, {58612, 58418}, {58665, 58630}
X(58664) = center of the nine-point conic of quadrilateral XYZX(101) where XYZ is the cevian triangle of X(8)
X(58664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6710, 58592}, {2808, 58630, 58665}, {58451, 58612, 58418}


X(58665) = X(103)X(210)∩X(118)X(3740)

Barycentrics    a*(a^9*(b+c)-a^7*(b+c)*(b^2-5*b*c+c^2)-(b^2-c^2)^4*(b^2+b*c+c^2)-2*a^8*(b^2+3*b*c+c^2)+a^5*(b+c)*(b^2-6*b*c+c^2)*(b^2+3*b*c+c^2)+a*(b-c)^4*(b+c)^3*(2*b^2+3*b*c+2*c^2)+a^6*(b^2+c^2)*(3*b^2+7*b*c+3*c^2)-a^3*(b-c)^2*(b+c)*(3*b^4+7*b^3*c+4*b^2*c^2+7*b*c^3+3*c^4)-a^4*(b^6+5*b^5*c-9*b^4*c^2-10*b^3*c^3-9*b^2*c^4+5*b*c^5+c^6)+a^2*(b^8+5*b^7*c+3*b^5*c^3-18*b^4*c^4+3*b^3*c^5+5*b*c^7+c^8)) : :
X(58665) = X[103]+3*X[210], -X[118]+3*X[3740], -2*X[140]+X[58592], -5*X[3697]+X[50903], -X[10697]+5*X[25917], X[11714]+X[34790], -X[13374]+2*X[58418], X[14872]+3*X[38692], -2*X[58420]+3*X[58451], -3*X[58629]+X[58686], X[58637]+X[58684]

X(58665) lies on these lines: {103, 210}, {118, 3740}, {140, 58592}, {518, 6712}, {674, 58507}, {2772, 58671}, {2774, 58654}, {2784, 58662}, {2786, 58661}, {2801, 35023}, {2807, 58648}, {2808, 58630}, {2809, 58643}, {2821, 58667}, {2822, 58668}, {2823, 58650}, {2824, 58672}, {2825, 58673}, {3041, 50366}, {3697, 50903}, {3887, 58666}, {10697, 25917}, {11714, 34790}, {13374, 58418}, {14872, 38692}, {58420, 58451}, {58629, 58686}, {58637, 58684}

X(58665) = midpoint of X(i) and X(j) for these {i,j}: {11714, 34790}, {58637, 58684}
X(58665) = reflection of X(i) in X(j) for these {i,j}: {13374, 58418}, {58592, 140}, {58594, 6712}, {58664, 58630}
X(58665) = center of the nine-point conic of quadrilateral XYZX(103) where XYZ is the cevian triangle of X(8)
X(58665) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6712, 58594}, {2808, 58630, 58664}


X(58666) = X(9)X(12332)∩X(104)X(210)

Barycentrics    a*(a^8*(b+c)-(b-c)^4*(b+c)^5-2*a^7*(b^2+3*b*c+c^2)-a^6*(b+c)*(2*b^2-7*b*c+2*c^2)-2*a^4*b*c*(b+c)*(7*b^2-4*b*c+7*c^2)+a*(b^2-c^2)^2*(2*b^4-b^3*c-4*b^2*c^2-b*c^3+2*c^4)+a^2*(b-c)^2*(b+c)*(2*b^4+11*b^3*c+10*b^2*c^2+11*b*c^3+2*c^4)+a^5*(6*b^4+11*b^3*c-8*b^2*c^2+11*b*c^3+6*c^4)-2*a^3*(3*b^6+2*b^5*c-9*b^4*c^2-9*b^2*c^4+2*b*c^5+3*c^6)) : :
X(58666) = X[104]+3*X[210], -X[119]+3*X[3740], -2*X[140]+X[58591], -5*X[631]+X[17660], -X[942]+3*X[38133], -3*X[3035]+X[9946], -5*X[3697]+X[12751], -3*X[3848]+2*X[58604], -X[5572]+3*X[38131], 3*X[5657]+X[17638], 3*X[5692]+X[17654], X[5777]+X[46684] and many others

X(58666) lies on these lines: {9, 12332}, {104, 210}, {119, 3740}, {140, 58591}, {515, 58641}, {517, 6702}, {518, 6713}, {631, 17660}, {674, 58508}, {936, 22775}, {942, 38133}, {952, 4662}, {1006, 41541}, {2771, 6684}, {2783, 58662}, {2787, 58661}, {2800, 5044}, {2801, 58635}, {2802, 58643}, {2827, 58667}, {2828, 58668}, {2829, 46694}, {2830, 58672}, {2831, 58673}, {3035, 9946}, {3697, 12751}, {3848, 58604}, {3887, 58665}, {5572, 38131}, {5657, 17638}, {5692, 17654}, {5777, 46684}, {5836, 38128}, {5840, 58637}, {6001, 18254}, {6174, 12691}, {6246, 31793}, {6667, 13374}, {6797, 31806}, {7686, 34122}, {8674, 58654}, {10164, 47320}, {10698, 25917}, {11715, 34790}, {12619, 31837}, {12675, 21154}, {12761, 18236}, {14740, 20418}, {14872, 38693}, {15863, 31786}, {22937, 23016}, {34791, 38032}, {58421, 58451}, {58629, 58674}

X(58666) = midpoint of X(i) and X(j) for these {i,j}: {11715, 34790}, {12619, 31837}, {12675, 46685}, {14740, 20418}, {15863, 31786}, {5777, 46684}, {6246, 31793}, {6797, 31806}, {58637, 58683}
X(58666) = reflection of X(i) in X(j) for these {i,j}: {13374, 6667}, {58591, 140}, {58595, 6713}, {58613, 58421}, {58631, 46694}, {58663, 58630}, {58687, 58674}
X(58666) = center of the nine-point conic of quadrilateral XYZX(104) where XYZ is the cevian triangle of X(8)
X(58666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6713, 58595}, {952, 58630, 58663}, {2829, 46694, 58631}, {21154, 46685, 12675}, {58451, 58613, 58421}, {58629, 58687, 58674}, {58637, 58683, 5840}


X(58667) = X(106)X(210)∩X(121)X(3740)

Barycentrics    a*(a^5*(b+c)-3*a^3*(b+c)*(b^2-3*b*c+c^2)-(b+c)^4*(b^2-3*b*c+c^2)-2*a^4*(b^2+3*b*c+c^2)+a*(b+c)^3*(2*b^2-9*b*c+2*c^2)+a^2*(3*b^4+11*b^3*c-2*b^2*c^2+11*b*c^3+3*c^4)) : :
X(58667) = X[106]+3*X[210], -X[121]+3*X[3740], -5*X[3697]+X[50914], X[5777]+X[14664], -X[10700]+5*X[25917], X[11717]+X[34790], X[14872]+3*X[38695], -2*X[58423]+3*X[58451]

X(58667) lies on these lines: {106, 210}, {121, 3740}, {518, 6715}, {674, 58510}, {936, 34139}, {2776, 58654}, {2789, 58661}, {2796, 58662}, {2802, 4540}, {2810, 58633}, {2821, 58665}, {2827, 58666}, {2839, 58668}, {2840, 58669}, {2841, 58649}, {2842, 58671}, {2843, 58672}, {2844, 58673}, {3697, 50914}, {5777, 14664}, {10700, 25917}, {11717, 34790}, {14872, 38695}, {53790, 58630}, {58423, 58451}

X(58667) = midpoint of X(i) and X(j) for these {i,j}: {11717, 34790}, {5777, 14664}
X(58667) = reflection of X(i) in X(j) for these {i,j}: {58597, 6715}
X(58667) = center of the nine-point conic of quadrilateral XYZX(106) where XYZ is the cevian triangle of X(8)
X(58667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6715, 58597}


X(58668) = X(107)X(210)∩X(122)X(3740)

Barycentrics    a*(a^13*(b+c)-a^11*(b+c)*(b^2+c^2)+10*a^7*(b-c)^2*(b+c)^3*(b^2+c^2)-a^12*(b^2+4*b*c+c^2)+a^10*(b^2+c^2)*(b^2+4*b*c+c^2)-2*a^6*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^2+12*b*c+5*c^2)-a^3*(b-c)^2*(b+c)^3*(b^2+c^2)*(b^4-10*b^2*c^2+c^4)+a*(b-c)^4*(b+c)^5*(b^4+3*b^2*c^2+c^4)-5*a^5*(b-c)^2*(b+c)^3*(b^4+4*b^2*c^2+c^4)+a^2*(b-c)^2*(b+c)^4*(b^2+c^2)*(b^4+2*b^3*c-14*b^2*c^2+2*b*c^3+c^4)-a^9*(b+c)*(5*b^4-11*b^2*c^2+5*c^4)-(b^2-c^2)^4*(b^6+2*b^5*c+4*b^4*c^2+8*b^3*c^3+4*b^2*c^4+2*b*c^5+c^6)+a^4*(b^2-c^2)^2*(5*b^6+8*b^5*c+25*b^4*c^2+48*b^3*c^3+25*b^2*c^4+8*b*c^5+5*c^6)+a^8*(5*b^6+14*b^5*c-6*b^4*c^2-32*b^3*c^3-6*b^2*c^4+14*b*c^5+5*c^6)) : :
X(58668) = X[107]+3*X[210], -X[122]+3*X[3740], -5*X[3697]+X[50916], -X[10701]+5*X[25917], X[11718]+X[34790], -X[13374]+2*X[58431], X[14872]+3*X[23239], -2*X[58424]+3*X[58451]

X(58668) lies on these lines: {107, 210}, {122, 3740}, {518, 6716}, {674, 58511}, {2777, 58631}, {2790, 58661}, {2797, 58662}, {2803, 58663}, {2811, 58664}, {2822, 58665}, {2828, 58666}, {2839, 58667}, {2845, 58669}, {2846, 58670}, {2847, 58672}, {2848, 58673}, {3697, 50916}, {9033, 58671}, {9528, 58638}, {9530, 58629}, {10701, 25917}, {11718, 34790}, {13374, 58431}, {14872, 23239}, {53803, 58630}, {58424, 58451}

X(58668) = midpoint of X(i) and X(j) for these {i,j}: {11718, 34790}
X(58668) = reflection of X(i) in X(j) for these {i,j}: {13374, 58431}, {58598, 6716}
X(58668) = center of the nine-point conic of quadrilateral XYZX(107) where XYZ is the cevian triangle of X(8)
X(58668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6716, 58598}


X(58669) = X(10)X(2778)∩X(108)X(210)

Barycentrics    a*(a^10*(b+c)-(b-c)^4*(b+c)^5*(b^2+c^2)-a^8*(b+c)*(b^2-9*b*c+c^2)-2*a^9*(b^2+3*b*c+c^2)-a^6*(b-c)^2*(b+c)*(2*b^2+11*b*c+2*c^2)+a^5*b*(b-c)^2*c*(13*b^2+28*b*c+13*c^2)+a^2*(b-c)^2*(b+c)^3*(b^4+11*b^3*c-12*b^2*c^2+11*b*c^3+c^4)+a^4*(b-c)^2*(b+c)*(2*b^4-9*b^3*c-26*b^2*c^2-9*b*c^3+2*c^4)+a^7*(4*b^4+b^3*c-16*b^2*c^2+b*c^3+4*c^4)-a^3*(b^2-c^2)^2*(4*b^4+5*b^3*c-20*b^2*c^2+5*b*c^3+4*c^4)+a*(b^2-c^2)^2*(2*b^6-3*b^5*c-8*b^4*c^2+2*b^3*c^3-8*b^2*c^4-3*b*c^5+2*c^6)) : :
X(58669) = X[108]+3*X[210], -X[123]+3*X[3740], -5*X[3697]+X[50917], -X[10702]+5*X[25917], X[11719]+X[34790], X[14740]+X[56890], X[14872]+3*X[38696], -2*X[58425]+3*X[58451]

X(58669) lies on these lines: {10, 2778}, {108, 210}, {123, 3740}, {518, 6717}, {674, 58512}, {2791, 58661}, {2798, 58662}, {2804, 58663}, {2812, 58664}, {2817, 5044}, {2823, 58650}, {2829, 46694}, {2840, 58667}, {2845, 58668}, {2849, 58670}, {2850, 58671}, {2851, 58672}, {3697, 50917}, {10271, 51380}, {10702, 25917}, {11719, 34790}, {14740, 56890}, {14872, 38696}, {58425, 58451}

X(58669) = midpoint of X(i) and X(j) for these {i,j}: {11719, 34790}, {14740, 56890}
X(58669) = reflection of X(i) in X(j) for these {i,j}: {58599, 6717}
X(58669) = center of the nine-point conic of quadrilateral XYZX(108) where XYZ is the cevian triangle of X(8)
X(58669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6717, 58599}


X(58670) = X(109)X(210)∩X(124)X(3740)

Barycentrics    a*(a^7*(b+c)+7*a^5*b*c*(b+c)-a^3*(b-c)^2*(b+c)*(3*b+c)*(b+3*c)-(b-c)^2*(b+c)^4*(b^2-b*c+c^2)-2*a^6*(b^2+3*b*c+c^2)+a*(b-c)^2*(b+c)^3*(2*b^2-3*b*c+2*c^2)+2*a^2*b*(b-c)^2*c*(3*b^2+7*b*c+3*c^2)+a^4*(3*b^4+b^3*c-14*b^2*c^2+b*c^3+3*c^4)) : :
X(58670) = X[109]+3*X[210], -X[124]+3*X[3740], -2*X[140]+X[58593], -5*X[3697]+X[13532], -5*X[3698]+X[34242], X[5777]+X[14690], -X[10703]+5*X[25917], X[11700]+X[34790], -X[13374]+2*X[58419], X[14872]+3*X[38697], -2*X[58426]+3*X[58451], X[58637]+X[58685]

X(58670) lies on these lines: {109, 210}, {124, 3740}, {140, 58593}, {518, 6718}, {674, 58513}, {928, 58664}, {936, 54081}, {2773, 58671}, {2779, 58640}, {2785, 58662}, {2792, 58661}, {2800, 5044}, {2807, 58648}, {2817, 58643}, {2818, 58630}, {2835, 58650}, {2841, 58649}, {2846, 58668}, {2849, 58669}, {2852, 58672}, {2853, 58673}, {3697, 13532}, {3698, 34242}, {3738, 58663}, {3900, 43940}, {5777, 14690}, {10703, 25917}, {11700, 34790}, {13374, 58419}, {14872, 38697}, {58426, 58451}, {58637, 58685}

X(58670) = midpoint of X(i) and X(j) for these {i,j}: {11700, 34790}, {5777, 14690}, {58637, 58685}
X(58670) = reflection of X(i) in X(j) for these {i,j}: {13374, 58419}, {58593, 140}, {58600, 6718}
X(58670) = center of the nine-point conic of quadrilateral XYZX(109) where XYZ is the cevian triangle of X(8)
X(58670) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6718, 58600}


X(58671) = X(110)X(210)∩X(120)X(125)

Barycentrics    a*(a^7*(b+c)-a^3*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)-a^5*(b+c)*(b^2+c^2)+a*(b-c)^2*(b+c)^3*(b^2+c^2)-(b-c)^2*(b+c)^4*(b^2+c^2)-a^6*(b^2+4*b*c+c^2)+a^4*(b^2+c^2)*(b^2+4*b*c+c^2)+a^2*(b^6+2*b^5*c-2*b^4*c^2-8*b^3*c^3-2*b^2*c^4+2*b*c^5+c^6)) : :
X(58671) = X[110]+3*X[210], -2*X[140]+X[58582], -3*X[375]+X[11800], -5*X[3697]+X[13211], -5*X[3876]+X[10693], -2*X[6723]+3*X[58451], -X[7984]+5*X[25917], X[11720]+X[34790], -X[12675]+3*X[38793], -X[12680]+5*X[15051], -2*X[12900]+X[13374], X[14872]+3*X[15035] and many others

X(58671) lies on these lines: {9, 13204}, {110, 210}, {120, 125}, {140, 58582}, {375, 11800}, {511, 58639}, {518, 5972}, {542, 58629}, {674, 41671}, {690, 58662}, {936, 22586}, {1112, 9047}, {2771, 6684}, {2772, 58665}, {2773, 58670}, {2774, 58664}, {2777, 58637}, {2778, 31837}, {2842, 58667}, {2850, 58669}, {2854, 58633}, {3697, 13211}, {3876, 10693}, {5663, 58630}, {6723, 58451}, {7984, 25917}, {8674, 58663}, {9033, 58668}, {9037, 41673}, {9517, 58673}, {9956, 33547}, {11720, 34790}, {12675, 38793}, {12680, 15051}, {12900, 13374}, {13213, 18236}, {14872, 15035}, {17702, 58631}, {32300, 58621}, {32423, 58632}, {48378, 58567}

X(58671) = midpoint of X(i) and X(j) for these {i,j}: {11720, 34790}, {58637, 58680}
X(58671) = reflection of X(i) in X(j) for these {i,j}: {13374, 12900}, {58567, 48378}, {58582, 140}, {58601, 5972}, {58621, 32300}, {58654, 58630}
X(58671) = center of the nine-point conic of quadrilateral XYZX(110) where XYZ is the cevian triangle of X(8)
X(58671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 5972, 58601}, {5663, 58630, 58654}, {58637, 58680, 2777}


X(58672) = X(111)X(210)∩X(126)X(3740)

Barycentrics    a*(a^7*(b+c)-3*a^5*(b+c)*(b^2+c^2)-a^6*(b^2+4*b*c+c^2)+a^4*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)-3*a^3*(b+c)*(b^4-5*b^2*c^2+c^4)+a*(b+c)*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-(b+c)^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+a^2*(3*b^6+10*b^5*c-12*b^4*c^2-40*b^3*c^3-12*b^2*c^4+10*b*c^5+3*c^6)) : :
X(58672) = X[111]+3*X[210], -X[126]+3*X[3740], -5*X[3697]+X[50924], -X[10704]+5*X[25917], X[11721]+X[34790], -X[12675]+3*X[38804], X[14872]+3*X[38698], -2*X[58427]+3*X[58451]

X(58672) lies on these lines: {111, 210}, {126, 3740}, {518, 6719}, {543, 58629}, {674, 58514}, {2780, 58654}, {2793, 58661}, {2805, 40607}, {2813, 58644}, {2824, 58665}, {2830, 58666}, {2843, 58667}, {2847, 58668}, {2851, 58669}, {2852, 58670}, {2854, 58633}, {3697, 50924}, {10704, 25917}, {11721, 34790}, {12675, 38804}, {14872, 38698}, {23699, 58631}, {33962, 58630}, {58427, 58451}

X(58672) = midpoint of X(i) and X(j) for these {i,j}: {11721, 34790}
X(58672) = reflection of X(i) in X(j) for these {i,j}: {58602, 6719}
X(58672) = center of the nine-point conic of quadrilateral XYZX(111) where XYZ is the cevian triangle of X(8)
X(58672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6719, 58602}


X(58673) = X(9)X(13206)∩X(112)X(210)

Barycentrics    a*(a^11*(b+c)+a^7*b^2*c^2*(b+c)-a^9*(b+c)*(b^2+c^2)-2*a^4*b*c*(b^2-c^2)^2*(b^2+c^2)-a^10*(b^2+4*b*c+c^2)+a^8*(b^2+c^2)*(b^2+4*b*c+c^2)+a*(b-c)^2*(b+c)^3*(b^2+c^2)*(b^4+c^4)-(b-c)^2*(b+c)^4*(b^2+c^2)*(b^4+c^4)-a^3*(b-c)^2*(b+c)^3*(b^4+b^2*c^2+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+2*b^3*c+b^2*c^2+2*b*c^3+c^4)+a^6*b*c*(2*b^4-b^3*c-8*b^2*c^2-b*c^3+2*c^4)) : :
X(58673) = X[112]+3*X[210], -X[127]+3*X[3740], -5*X[3697]+X[13280], -X[10705]+5*X[25917], X[11722]+X[34790], -X[13374]+2*X[58430], X[14872]+3*X[38699], -2*X[58428]+3*X[58451]

X(58673) lies on these lines: {9, 13206}, {112, 210}, {127, 3740}, {518, 6720}, {674, 58515}, {936, 19162}, {2781, 58633}, {2794, 58631}, {2799, 58662}, {2806, 58663}, {2825, 58665}, {2831, 58666}, {2844, 58667}, {2848, 58668}, {2853, 58670}, {3697, 13280}, {9517, 58671}, {9518, 58664}, {10705, 25917}, {11722, 34790}, {13294, 18236}, {13374, 58430}, {14872, 38699}, {53795, 58630}, {58428, 58451}

X(58673) = midpoint of X(i) and X(j) for these {i,j}: {11722, 34790}
X(58673) = reflection of X(i) in X(j) for these {i,j}: {13374, 58430}, {58603, 6720}
X(58673) = center of the nine-point conic of quadrilateral XYZX(112) where XYZ is the cevian triangle of X(8)
X(58673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 6720, 58603}


X(58674) = X(5)X(14740)∩X(119)X(210)

Barycentrics    a*(a^8*(b+c)-a^6*(b-2*c)*(2*b-c)*(b+c)-2*a^7*(b+c)^2-(b-c)^4*(b+c)^3*(b^2+3*b*c+c^2)+a^2*(b-c)^2*(b+c)^3*(2*b^2+7*b*c+2*c^2)+2*a^5*(b+c)^2*(3*b^2-2*b*c+3*c^2)-a^4*b*c*(b+c)*(11*b^2+2*b*c+11*c^2)+2*a*(b^2-c^2)^2*(b^4-5*b^2*c^2+c^4)-2*a^3*(3*b^6+2*b^5*c-6*b^4*c^2-8*b^3*c^3-6*b^2*c^4+2*b*c^5+3*c^6)) : :
X(58674) = X[5]+X[14740], X[119]+3*X[210], -2*X[3628]+X[18240], -3*X[3740]+X[6713], -9*X[3921]+X[17654], -7*X[3983]+3*X[38128], -3*X[11231]+X[15528], X[11729]+X[34790], X[12665]+3*X[26446], -X[12736]+3*X[38042], X[14872]+3*X[38760], -X[17660]+5*X[38763] and many others

X(58674) lies on these lines: {5, 14740}, {119, 210}, {515, 58698}, {518, 58421}, {674, 58522}, {952, 5044}, {2800, 4015}, {2801, 58677}, {2829, 58630}, {3628, 18240}, {3740, 6713}, {3921, 17654}, {3983, 38128}, {5840, 58631}, {9711, 12619}, {11231, 15528}, {11729, 34790}, {12665, 26446}, {12736, 38042}, {14872, 38760}, {17660, 38763}, {38752, 46685}, {58451, 58595}, {58629, 58666}

X(58674) = midpoint of X(i) and X(j) for these {i,j}: {11729, 34790}, {5, 14740}, {58631, 58663}, {58666, 58687}
X(58674) = reflection of X(i) in X(j) for these {i,j}: {18240, 3628}, {46694, 58632}, {58604, 58421}
X(58674) = center of the nine-point conic of quadrilateral XYZX(119) where XYZ is the cevian triangle of X(8)
X(58674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58421, 58604}, {952, 58632, 46694}, {58629, 58687, 58666}, {58631, 58663, 5840}


X(58675) = X(3)X(32635)∩X(140)X(210)

Barycentrics    a*(2*a^5*(b+c)+2*a*(b-c)^2*(b+c)^3-(b-c)^2*(b+c)^2*(2*b+c)*(b+2*c)-4*a^3*(b+c)*(b^2+c^2)-2*a^4*(b^2+3*b*c+c^2)+a^2*(b^2+c^2)*(4*b^2+11*b*c+4*c^2)) : :
X(58675) = X[140]+3*X[210], -3*X[354]+7*X[55862], 3*X[546]+X[7957], 5*X[632]+3*X[3681], -X[3628]+3*X[3740], 3*X[3678]+X[5885], -3*X[3873]+11*X[55859], 15*X[3876]+X[25413], -3*X[4430]+19*X[55858], 7*X[4533]+X[24475], 3*X[4661]+13*X[46219], -9*X[10176]+X[10284] and many others

X(58675) lies on these lines: {3, 32635}, {10, 38183}, {30, 58629}, {140, 210}, {354, 55862}, {517, 4540}, {518, 16239}, {546, 7957}, {632, 3681}, {674, 58531}, {952, 4015}, {3564, 58676}, {3628, 3740}, {3678, 5885}, {3873, 55859}, {3876, 25413}, {4430, 55858}, {4533, 24475}, {4661, 46219}, {5044, 5844}, {5762, 58677}, {5843, 58635}, {5849, 50476}, {9052, 32205}, {10176, 10284}, {11812, 12675}, {12100, 14872}, {28212, 58643}, {28216, 58688}, {31788, 31835}, {34380, 58633}, {34790, 51700}, {37625, 38042}, {46694, 58640}, {58451, 58561}, {58636, 58641}

X(58675) = midpoint of X(i) and X(j) for these {i,j}: {34790, 51700}, {58630, 58632}
X(58675) = reflection of X(i) in X(j) for these {i,j}: {58605, 16239}
X(58675) = center of the nine-point conic of quadrilateral XYZX(140) where XYZ is the cevian triangle of X(8)
X(58675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 16239, 58605}, {58629, 58630, 58632}, {58630, 58632, 30}


X(58676) = X(6)X(5297)∩X(141)X(210)

Barycentrics    a*(a^3*(b+c)-a^2*(b+c)^2+a*(b+c)*(b^2+c^2)-(b^2+c^2)*(b^2+3*b*c+c^2)) : :
X(58676) = X[141]+3*X[210], -3*X[354]+7*X[51128], -X[3589]+3*X[3740], X[3678]+X[3844], 3*X[3681]+5*X[3763], -5*X[3697]+X[49524], 7*X[4533]+X[24476], X[14872]+3*X[21167], -5*X[25917]+X[51147], X[40965]+3*X[50097], -2*X[51127]+3*X[58451]

X(58676) lies on these lines: {6, 5297}, {141, 210}, {354, 51128}, {511, 58632}, {518, 3634}, {524, 58629}, {536, 4538}, {674, 58532}, {698, 58656}, {742, 40607}, {1503, 58630}, {3564, 58675}, {3589, 3740}, {3678, 3844}, {3681, 3763}, {3697, 49524}, {4533, 24476}, {4547, 34378}, {4662, 9053}, {5044, 5846}, {5845, 58635}, {9020, 25144}, {9024, 46694}, {9055, 58655}, {14872, 21167}, {21867, 48636}, {25917, 51147}, {29181, 58631}, {34377, 58699}, {40965, 50097}, {51127, 58451}

X(58676) = midpoint of X(i) and X(j) for these {i,j}: {3678, 3844}, {58633, 58653}
X(58676) = reflection of X(i) in X(j) for these {i,j}: {58562, 51127}, {58606, 34573}
X(58676) = center of the nine-point conic of quadrilateral XYZX(141) where XYZ is the cevian triangle of X(8)
X(58676) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 34573, 58606}, {3678, 3844, 9021}, {58451, 58562, 51127}, {58629, 58653, 58633}, {58633, 58653, 524}


X(58677) = X(9)X(100)∩X(142)X(210)

Barycentrics    a*(a^3*(b+c)-3*a^2*(b+c)^2+3*a*(b+c)*(b^2+b*c+c^2)-(b-c)^2*(b^2+3*b*c+c^2)) : :
X(58677) = X[142]+3*X[210], X[3678]+X[3826], 3*X[3681]+5*X[20195], -9*X[3740]+X[5572], 5*X[3876]+3*X[38200], X[11495]+3*X[15064], -3*X[58451]+X[58564]

X(58677) lies on these lines: {9, 100}, {10, 31936}, {142, 210}, {498, 18412}, {516, 58630}, {518, 3634}, {527, 58629}, {528, 58698}, {971, 58632}, {1210, 3697}, {2801, 58674}, {3174, 30393}, {3678, 3826}, {3681, 20195}, {3740, 5572}, {3820, 3956}, {3876, 38200}, {4538, 58655}, {4540, 9956}, {4662, 6744}, {4858, 56157}, {5044, 5853}, {5762, 58675}, {6067, 14740}, {7679, 15556}, {11495, 15064}, {16578, 21039}, {30329, 31479}, {58451, 58564}

X(58677) = midpoint of X(i) and X(j) for these {i,j}: {3678, 3826}, {6666, 40659}, {58634, 58635}
X(58677) = reflection of X(i) in X(j) for these {i,j}: {58607, 58433}
X(58677)= pole of line {26824, 56322} with respect to the Steiner inellipse
X(58677) = center of the nine-point conic of quadrilateral XYZX(142) where XYZ is the cevian triangle of X(8)
X(58677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58433, 58607}, {3740, 40659, 6666}, {58629, 58634, 58635}, {58634, 58635, 527}


X(58678) = X(1)X(6)∩X(7)X(3740)

Barycentrics    a*(a^3*(b+c)+3*a*(b+c)^3-(b-c)^2*(b^2+c^2)-3*a^2*(b^2+4*b*c+c^2)) : :
X(58678) = -X[7]+3*X[3740], -2*X[142]+3*X[58451], X[144]+3*X[210], X[3059]+3*X[6172], 3*X[3681]+X[14100], -5*X[3697]+X[4312], -3*X[3742]+5*X[18230], -3*X[3848]+4*X[6666], -5*X[3876]+X[8581], -5*X[4005]+X[41228], -3*X[5686]+X[5836], X[14872]+3*X[21168] and many others

X(58678) lies on circumconic {{A, B, C, X(1001), X(42483)}} and these lines: {1, 6}, {7, 3740}, {142, 58451}, {144, 210}, {390, 17632}, {480, 4640}, {516, 4662}, {527, 58629}, {674, 58534}, {971, 3678}, {3059, 6172}, {3219, 15837}, {3681, 14100}, {3697, 4312}, {3742, 18230}, {3826, 3947}, {3848, 6666}, {3876, 8581}, {3951, 41712}, {4005, 41228}, {4335, 4849}, {5044, 5850}, {5087, 6067}, {5686, 5836}, {5762, 58631}, {5843, 58630}, {5845, 58653}, {5851, 58663}, {5856, 58683}, {14872, 21168}, {15726, 40659}, {31658, 58567}, {34646, 50834}, {34790, 51090}, {44671, 58398}

X(58678) = midpoint of X(i) and X(j) for these {i,j}: {144, 15587}, {34790, 51090}, {960, 5223}
X(58678) = reflection of X(i) in X(j) for these {i,j}: {58563, 6666}, {58567, 31658}, {58608, 9}, {58609, 1001}, {58634, 58635}
X(58678) = center of the nine-point conic of quadrilateral XYZX(144) where XYZ is the cevian triangle of X(8)
X(58678) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 518, 58608}, {144, 210, 15587}, {518, 1001, 58609}, {527, 58635, 58634}, {960, 5223, 518}, {6666, 58563, 3848}, {58634, 58635, 58629}, {58693, 58694, 58679}


X(58679) = X(1)X(6)∩X(10)X(496)

Barycentrics    a*(-6*a*b*c+a^2*(b+c)-(b+c)*(b^2+c^2)) : :
X(58679) = 3*X[2]+X[3057], -X[8]+3*X[3740], -X[65]+5*X[3616], X[145]+3*X[210], -3*X[354]+7*X[3622], -3*X[551]+X[942], -X[950]+3*X[49736], -5*X[1698]+X[10914], X[3035]+X[15558], 3*X[3058]+X[57287], X[3059]+3*X[8236], 3*X[3241]+5*X[3876] and many others

X(58679) lies on these lines: {1, 6}, {2, 3057}, {3, 22754}, {8, 3740}, {10, 496}, {11, 24987}, {12, 5087}, {21, 1319}, {35, 17614}, {40, 25524}, {55, 4855}, {56, 4640}, {63, 3304}, {65, 3616}, {78, 3303}, {85, 36638}, {140, 517}, {142, 4301}, {145, 210}, {200, 37556}, {330, 49514}, {354, 3622}, {377, 12701}, {388, 24703}, {390, 10866}, {404, 37568}, {442, 20288}, {443, 30305}, {452, 3476}, {474, 5119}, {495, 21616}, {497, 5175}, {513, 12579}, {519, 4015}, {527, 12577}, {528, 12575}, {529, 12572}, {536, 25371}, {540, 10108}, {551, 942}, {612, 37542}, {614, 37614}, {672, 4520}, {674, 58535}, {758, 3636}, {908, 15888}, {912, 15178}, {936, 3913}, {944, 6976}, {946, 3838}, {950, 49736}, {952, 58631}, {962, 5880}, {978, 4646}, {986, 52541}, {993, 24928}, {995, 3931}, {997, 3295}, {999, 12514}, {1000, 17559}, {1018, 25068}, {1043, 4702}, {1145, 17575}, {1149, 2292}, {1155, 5253}, {1193, 37548}, {1201, 3666}, {1265, 49688}, {1320, 17536}, {1329, 31397}, {1376, 1697}, {1385, 5248}, {1387, 6675}, {1420, 4512}, {1458, 45705}, {1463, 9791}, {1482, 54318}, {1621, 2646}, {1698, 10914}, {1706, 9819}, {1888, 17923}, {2098, 4423}, {2099, 54392}, {2136, 8580}, {2478, 5252}, {2550, 9785}, {2551, 32049}, {2650, 4883}, {2778, 11723}, {2800, 9940}, {2801, 31821}, {2802, 3634}, {2886, 12053}, {2975, 3683}, {3035, 15558}, {3058, 57287}, {3059, 8236}, {3085, 25681}, {3086, 26066}, {3208, 44798}, {3241, 3876}, {3244, 10176}, {3290, 3727}, {3305, 36846}, {3306, 37567}, {3340, 10582}, {3436, 4679}, {3452, 12607}, {3487, 34647}, {3576, 9943}, {3600, 5698}, {3601, 4428}, {3617, 3893}, {3623, 3681}, {3624, 3753}, {3632, 3697}, {3635, 3678}, {3646, 9623}, {3649, 51423}, {3655, 40263}, {3656, 37585}, {3671, 25557}, {3680, 45830}, {3693, 39244}, {3696, 4673}, {3720, 30979}, {3739, 20257}, {3746, 5440}, {3748, 34772}, {3752, 21214}, {3782, 23675}, {3811, 6767}, {3820, 10915}, {3822, 9955}, {3825, 9956}, {3826, 4342}, {3827, 15585}, {3847, 10175}, {3868, 17609}, {3873, 3962}, {3874, 5049}, {3881, 51103}, {3885, 9780}, {3892, 4067}, {3899, 4018}, {3911, 13601}, {3915, 37539}, {3916, 5563}, {3918, 19878}, {3921, 4668}, {3925, 24564}, {3956, 4701}, {3967, 19582}, {3968, 31253}, {3984, 41711}, {3999, 46190}, {4005, 20057}, {4009, 4696}, {4026, 25144}, {4187, 5123}, {4189, 37605}, {4292, 28534}, {4297, 9856}, {4298, 17768}, {4308, 8581}, {4313, 5784}, {4314, 18251}, {4364, 34371}, {4389, 7185}, {4414, 32577}, {4421, 5438}, {4429, 25108}, {4511, 37080}, {4540, 4746}, {4642, 16610}, {4666, 11682}, {4682, 5710}, {4695, 28257}, {4708, 25369}, {4731, 19877}, {4850, 28370}, {4853, 7308}, {4861, 5047}, {4866, 12127}, {4906, 28011}, {4955, 17169}, {4999, 44675}, {5048, 5284}, {5084, 32537}, {5126, 5267}, {5129, 18247}, {5176, 37162}, {5204, 35258}, {5217, 35262}, {5260, 38460}, {5266, 40091}, {5316, 6736}, {5330, 11011}, {5426, 24926}, {5437, 7991}, {5439, 5903}, {5552, 24954}, {5603, 6889}, {5705, 37704}, {5731, 12688}, {5777, 5882}, {5791, 45700}, {5795, 18227}, {5806, 58463}, {5837, 11019}, {5844, 58630}, {5846, 58653}, {5853, 12447}, {5854, 58649}, {5855, 6738}, {5883, 15808}, {5886, 6863}, {5887, 10246}, {6265, 24299}, {6734, 37722}, {6735, 45081}, {6744, 58651}, {6763, 37602}, {6797, 32557}, {6842, 22835}, {6878, 10595}, {6940, 13528}, {7743, 25639}, {7957, 28629}, {7962, 8167}, {7967, 14872}, {7987, 10178}, {7990, 30291}, {8256, 8582}, {8299, 17419}, {8666, 31445}, {9037, 42450}, {9041, 58691}, {9053, 58633}, {9311, 27288}, {9366, 31287}, {9588, 31190}, {9843, 11362}, {9850, 11106}, {9947, 28236}, {10106, 40998}, {10164, 31798}, {10165, 31788}, {10167, 30389}, {10200, 23340}, {10222, 30147}, {10267, 37837}, {10284, 11231}, {10391, 34471}, {10404, 11415}, {10459, 44307}, {10475, 17185}, {10586, 17728}, {10587, 17718}, {10588, 26129}, {10827, 17556}, {10864, 16112}, {10966, 37248}, {11108, 33895}, {11110, 18178}, {11113, 45287}, {11194, 31424}, {11235, 51785}, {11278, 14150}, {11344, 11510}, {11373, 26363}, {11396, 41611}, {11496, 37611}, {11519, 30393}, {11522, 25525}, {11533, 17598}, {11725, 58610}, {11726, 58612}, {11729, 58613}, {12436, 28194}, {12437, 30331}, {12563, 58563}, {12609, 22791}, {12711, 13384}, {12735, 18254}, {12758, 34123}, {13373, 14988}, {13407, 51409}, {13607, 20117}, {13736, 37516}, {14020, 57666}, {14839, 58695}, {15071, 30392}, {15104, 16189}, {15171, 17647}, {15803, 40726}, {16202, 45770}, {16370, 37618}, {16408, 54286}, {16569, 21896}, {16602, 24440}, {16853, 40587}, {17321, 24471}, {17357, 19879}, {17394, 54344}, {17480, 49447}, {17588, 18191}, {17594, 56630}, {17636, 31272}, {17668, 30294}, {17754, 21872}, {18185, 46877}, {18229, 35634}, {18258, 31766}, {19524, 32760}, {20009, 49681}, {20018, 49475}, {20036, 49470}, {20041, 31035}, {20718, 58396}, {20719, 28600}, {21254, 49598}, {21578, 57002}, {21625, 24391}, {21677, 26015}, {22299, 43223}, {23383, 37620}, {24473, 50190}, {24929, 30144}, {25011, 51433}, {25137, 32773}, {25405, 51111}, {25522, 31434}, {26088, 28198}, {26200, 31663}, {27340, 51052}, {27819, 33963}, {28234, 58643}, {28581, 58655}, {29817, 34195}, {30143, 50194}, {30827, 51784}, {31197, 56174}, {31235, 39776}, {31419, 49600}, {31787, 58623}, {31794, 58565}, {31797, 33575}, {31937, 34773}, {32636, 56288}, {32900, 56762}, {33597, 34486}, {33771, 45763}, {33815, 51108}, {34339, 38028}, {34620, 50836}, {35682, 46943}, {36500, 42378}, {39542, 51706}, {41591, 44662}, {41772, 41774}, {44671, 58399}, {45955, 58493}, {48846, 50623}, {49740, 50621}

X(58679) = midpoint of X(i) and X(j) for these {i,j}: {1, 960}, {10, 9957}, {10106, 57288}, {1125, 3884}, {10222, 31837}, {11362, 13600}, {12575, 57284}, {12735, 18254}, {13607, 20117}, {15171, 17647}, {2136, 12448}, {26200, 31663}, {3, 45776}, {3035, 15558}, {3057, 5836}, {390, 15587}, {392, 10179}, {3244, 34790}, {3635, 3678}, {3740, 5919}, {3742, 3877}, {31937, 34773}, {32900, 56762}, {4297, 9856}, {4301, 31793}, {4314, 18251}, {5044, 31792}, {5777, 5882}, {5887, 12675}, {72, 34791}, {942, 3878}, {946, 31786}, {9943, 12672}
X(58679) = reflection of X(i) in X(j) for these {i,j}: {10107, 3812}, {13373, 51700}, {13374, 5901}, {16616, 9955}, {3812, 1125}, {3918, 19878}, {31794, 58565}, {4662, 5044}, {4746, 4540}, {5045, 3636}, {58560, 551}, {58567, 1385}, {58608, 1001}, {58609, 1}, {58610, 11725}, {58611, 1387}, {58612, 11726}, {58613, 11729}, {58620, 15569}, {58621, 1386}
X(58679) = complement of X(5836)
X(58679)= pole of line {667, 23187} with respect to the circumcircle
X(58679)= pole of line {20317, 30198} with respect to the Spieker circle
X(58679)= pole of line {4083, 48281} with respect to the DeLongchamps ellipse
X(58679)= pole of line {55, 145} with respect to the Feuerbach hyperbola
X(58679)= pole of line {81, 3057} with respect to the Stammler hyperbola
X(58679)= pole of line {650, 4462} with respect to the Steiner inellipse
X(58679)= pole of line {274, 20895} with respect to the Wallace hyperbola
X(58679) = center of the nine-point conic of quadrilateral XYZX(145) where XYZ is the cevian triangle of X(8)
X(58679) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(12513)}}, {{A, B, C, X(6), X(7320)}}, {{A, B, C, X(37), X(1476)}}, {{A, B, C, X(1257), X(34791)}}, {{A, B, C, X(1408), X(20228)}}, {{A, B, C, X(1743), X(45830)}}, {{A, B, C, X(5220), X(42485)}}, {{A, B, C, X(55432), X(56089)}}
X(58679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11523, 42871}, {1, 1191, 1386}, {1, 15829, 12635}, {1, 31435, 958}, {1, 392, 960}, {1, 518, 58609}, {1, 5692, 3555}, {1, 72, 34791}, {1, 9, 12513}, {1, 958, 11260}, {1, 960, 518}, {2, 14923, 3698}, {2, 3057, 5836}, {2, 3890, 3057}, {8, 25917, 3740}, {10, 3898, 9957}, {10, 9957, 3880}, {12, 41012, 5087}, {37, 45219, 1}, {65, 3616, 3742}, {517, 3812, 10107}, {517, 5901, 13374}, {518, 1001, 58608}, {518, 1386, 58621}, {518, 15569, 58620}, {519, 5044, 4662}, {551, 3878, 942}, {551, 44663, 58560}, {758, 3636, 5045}, {936, 31393, 3913}, {942, 3878, 44663}, {946, 25466, 3838}, {958, 31435, 15254}, {960, 34791, 72}, {995, 3931, 4719}, {997, 3295, 56176}, {1125, 3812, 3848}, {1125, 3884, 517}, {1125, 43174, 6692}, {1125, 6684, 6691}, {1385, 6001, 58567}, {1697, 8583, 1376}, {2098, 4423, 19860}, {3057, 3698, 14923}, {3576, 12672, 9943}, {3616, 3877, 65}, {3622, 3869, 354}, {3624, 5697, 3753}, {3632, 3697, 4711}, {3671, 51723, 25557}, {3848, 10107, 3812}, {3868, 38314, 17609}, {3899, 18398, 4018}, {4297, 9856, 15726}, {4642, 28352, 16610}, {4662, 5044, 58629}, {5044, 31792, 519}, {5267, 51714, 5126}, {5316, 6736, 9711}, {5438, 53053, 4421}, {5887, 10246, 12675}, {5903, 25055, 5439}, {5919, 25917, 8}, {8580, 30337, 2136}, {9940, 58585, 58591}, {10106, 40998, 57288}, {12575, 57284, 528}, {14988, 51700, 13373}, {15254, 42819, 42842}, {17609, 31165, 3868}, {21214, 37598, 3752}, {28011, 37549, 4906}, {31445, 51788, 8666}, {58693, 58694, 58678}


X(58680) = X(113)X(518)∩X(146)X(210)

Barycentrics    a*(a^11*(b+c)-a^10*(b^2+c^2)-3*a^9*(b+c)*(b^2+c^2)+a*(b-c)^4*(b+c)^5*(b^2+c^2)+2*a^5*(b+c)*(b^2-b*c-c^2)*(b^2+b*c-c^2)*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2+c^2)*(b^2+4*b*c+c^2)+a^7*(b+c)*(2*b^2+c^2)*(b^2+2*c^2)+a^8*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)-a^3*(b-c)^2*(b+c)^3*(3*b^4+b^2*c^2+3*c^4)-2*a^4*(b^2+c^2)*(b^6-6*b^5*c-2*b^4*c^2+8*b^3*c^3-2*b^2*c^4-6*b*c^5+c^6)-a^6*(2*b^6+20*b^5*c+7*b^4*c^2-8*b^3*c^3+7*b^2*c^4+20*b*c^5+2*c^6)+a^2*(b^2-c^2)^2*(3*b^6+4*b^5*c+4*b^4*c^2-16*b^3*c^3+4*b^2*c^4+4*b*c^5+3*c^6)) : :
X(58680) = -X[74]+3*X[3740], X[146]+3*X[210], X[960]+X[12368], X[2948]+3*X[5927], -5*X[3697]+X[9904], -3*X[3848]+4*X[12900], -2*X[5972]+X[58567], -2*X[6699]+3*X[58451], -3*X[10157]+X[13605], -2*X[11723]+X[58609], -X[12675]+3*X[14643]

X(58680) lies on these lines: {74, 3740}, {113, 518}, {146, 210}, {541, 58629}, {542, 58682}, {674, 58536}, {690, 58681}, {960, 12368}, {2771, 3812}, {2772, 58684}, {2773, 58685}, {2774, 58686}, {2777, 58637}, {2781, 58653}, {2836, 7687}, {2948, 5927}, {3697, 9904}, {3848, 12900}, {5663, 58631}, {5972, 58567}, {6699, 58451}, {8674, 58687}, {9047, 11807}, {10157, 13605}, {11723, 58609}, {12675, 14643}

X(58680) = midpoint of X(i) and X(j) for these {i,j}: {960, 12368}
X(58680) = reflection of X(i) in X(j) for these {i,j}: {58567, 5972}, {58582, 12900}, {58609, 11723}, {58637, 58671}
X(58680) = center of the nine-point conic of quadrilateral XYZX(146) where XYZ is the cevian triangle of X(8)
X(58680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2777, 58671, 58637}, {12900, 58582, 3848}


X(58681) = X(114)X(518)∩X(147)X(210)

Barycentrics    a*(a^9*(b+c)-a^8*(b^2+c^2)-3*a^7*(b+c)*(b^2+c^2)+a^6*(b^2+c^2)*(3*b^2+8*b*c+3*c^2)+a*(b-c)^2*(b+c)^3*(b^4-b^2*c^2+c^4)-a^3*(b+c)*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)+a^5*(b+c)*(4*b^4+b^2*c^2+4*c^4)-(b^2-c^2)^2*(b^6+4*b^5*c+4*b*c^5+c^6)-a^4*(4*b^6+12*b^5*c+5*b^4*c^2+8*b^3*c^3+5*b^2*c^4+12*b*c^5+4*c^6)+a^2*(3*b^8+8*b^7*c+2*b^6*c^2-2*b^4*c^4+2*b^2*c^6+8*b*c^7+3*c^8)) : :
X(58681) = -2*X[5]+X[58610], -X[98]+3*X[3740], X[147]+3*X[210], -2*X[620]+X[58567], X[960]+X[9864], -5*X[3697]+X[9860], -3*X[3848]+4*X[6721], 3*X[5927]+X[13174], -2*X[6036]+3*X[58451], -3*X[10157]+X[11599], -2*X[11724]+X[58609], -X[12675]+3*X[15561] and many others

X(58681) lies on these lines: {5, 58610}, {98, 3740}, {114, 518}, {147, 210}, {542, 58629}, {620, 58567}, {674, 58537}, {690, 58680}, {960, 9864}, {971, 51578}, {2782, 58631}, {2783, 58683}, {2784, 5044}, {2785, 58685}, {2786, 58686}, {2787, 58687}, {2792, 58651}, {2794, 58637}, {3697, 9860}, {3848, 6721}, {5220, 24469}, {5927, 13174}, {6036, 58451}, {10157, 11599}, {11724, 58609}, {12675, 15561}, {20399, 58590}, {21636, 34790}

X(58681) = midpoint of X(i) and X(j) for these {i,j}: {21636, 34790}, {960, 9864}
X(58681) = reflection of X(i) in X(j) for these {i,j}: {58567, 620}, {58589, 6721}, {58590, 20399}, {58609, 11724}, {58610, 5}, {58637, 58662}, {58682, 58631}
X(58681) = center of the nine-point conic of quadrilateral XYZX(147) where XYZ is the cevian triangle of X(8)
X(58681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2782, 58631, 58682}, {2794, 58662, 58637}, {6721, 58589, 3848}


X(58682) = X(115)X(518)∩X(148)X(210)

Barycentrics    a*(-b^6-4*b^5*c+8*b^3*c^3-4*b*c^5-c^6+a^5*(b+c)-a^4*(b^2+c^2)-a^3*(b+c)*(b^2+c^2)+a^2*(b^2+c^2)^2+a*(b+c)*(b^4-b^2*c^2+c^4)) : :
X(58682) = -X[99]+3*X[3740], X[148]+3*X[210], -2*X[620]+3*X[58451], X[960]+X[13178], -2*X[2023]+X[58622], -5*X[3697]+X[13174], -3*X[3742]+5*X[14061], -3*X[3848]+4*X[6722], -2*X[5461]+X[58560], 3*X[5927]+X[9860], -2*X[6036]+X[58567], -3*X[10157]+X[21636] and many others

X(58682) lies on these lines: {99, 3740}, {115, 518}, {148, 210}, {542, 58680}, {543, 58629}, {620, 58451}, {674, 58538}, {960, 13178}, {2023, 58622}, {2782, 58631}, {2783, 58687}, {2784, 9947}, {2786, 58684}, {2787, 58683}, {2792, 58685}, {3697, 13174}, {3742, 14061}, {3848, 6722}, {5461, 58560}, {5927, 9860}, {5969, 58653}, {6036, 58567}, {10157, 21636}, {11599, 34790}, {11725, 58609}, {12675, 38224}, {14651, 14872}, {20398, 58589}, {23698, 58637}, {34791, 38220}

X(58682) = midpoint of X(i) and X(j) for these {i,j}: {11599, 34790}, {960, 13178}
X(58682) = reflection of X(i) in X(j) for these {i,j}: {58560, 5461}, {58567, 6036}, {58589, 20398}, {58590, 6722}, {58609, 11725}, {58610, 115}, {58622, 2023}, {58637, 58661}, {58681, 58631}
X(58682) = center of the nine-point conic of quadrilateral XYZX(148) where XYZ is the cevian triangle of X(8)
X(58682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 518, 58610}, {2782, 58631, 58681}, {6722, 58590, 3848}, {23698, 58661, 58637}


X(58683) = X(11)X(518)∩X(149)X(210)

Barycentrics    a*(a^4*(b+c)+3*a^2*b*c*(b+c)-2*a^3*(b^2+b*c+c^2)-(b-c)^2*(b+c)*(b^2+4*b*c+c^2)+a*(2*b^4+b^3*c-8*b^2*c^2+b*c^3+2*c^4)) : :
X(58683) = -2*X[5]+X[58613], X[72]+3*X[37718], X[80]+X[960], X[149]+3*X[210], 3*X[392]+X[9897], X[942]+X[47320], X[1156]+X[15587], -2*X[1387]+X[58609], X[1768]+3*X[5927], -2*X[3035]+3*X[58451], -5*X[3697]+X[5541], -3*X[3742]+X[17660] and many others

X(58683) lies on these lines: {5, 58613}, {11, 518}, {72, 37718}, {80, 960}, {100, 3683}, {149, 210}, {392, 9897}, {528, 18227}, {674, 58539}, {942, 47320}, {952, 58631}, {1001, 5531}, {1156, 15587}, {1387, 58609}, {1768, 5927}, {2771, 3812}, {2783, 58681}, {2787, 58682}, {2800, 10107}, {2801, 3848}, {2802, 4547}, {2805, 58655}, {3035, 58451}, {3614, 8261}, {3697, 5541}, {3742, 17660}, {3816, 15064}, {3825, 56762}, {3838, 10157}, {3880, 15863}, {3887, 58684}, {5045, 33709}, {5083, 45310}, {5251, 33598}, {5400, 24433}, {5440, 46816}, {5777, 10265}, {5836, 17638}, {5840, 58637}, {5848, 58694}, {5856, 58678}, {5880, 9809}, {6001, 12619}, {6224, 25917}, {6264, 18908}, {6713, 58567}, {6797, 44663}, {7972, 10179}, {8068, 44547}, {9024, 58653}, {11219, 17661}, {12019, 18254}, {12448, 12641}, {12675, 57298}, {13205, 18236}, {15726, 46684}, {16173, 34791}, {17609, 32558}, {19914, 45776}, {20107, 26201}, {21630, 34790}, {31235, 33519}, {34977, 45885}, {35023, 58634}, {37736, 42819}

X(58683) = midpoint of X(i) and X(j) for these {i,j}: {1156, 15587}, {12019, 18254}, {12448, 12641}, {19914, 45776}, {21630, 34790}, {5777, 10265}, {5836, 17638}, {80, 960}, {942, 47320}
X(58683) = reflection of X(i) in X(j) for these {i,j}: {3812, 6702}, {4662, 58659}, {5045, 33709}, {58560, 45310}, {58567, 6713}, {58591, 6667}, {58609, 1387}, {58611, 11}, {58613, 5}, {58637, 58666}, {58663, 46694}, {58687, 58631}
X(58683) = center of the nine-point conic of quadrilateral XYZX(149) where XYZ is the cevian triangle of X(8)
X(58683) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 518, 58611}, {952, 58631, 58687}, {2771, 6702, 3812}, {2801, 6667, 58591}, {2802, 58659, 4662}, {5840, 58666, 58637}, {6667, 58591, 3848}, {17660, 31272, 3742}, {46694, 58663, 58629}


X(58684) = X(116)X(518)∩X(150)X(210)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)*(2*b+c)*(b+2*c)-2*a^4*(b^2+b*c+c^2)+a^3*(b+c)*(b^2+b*c+c^2)-(b-c)^2*(b^2+b*c+c^2)*(b^2+4*b*c+c^2)-a^2*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)) : :
X(58684) = -X[101]+3*X[3740], X[150]+3*X[210], X[960]+X[50896], -X[1282]+5*X[3697], -3*X[3742]+5*X[31273], -3*X[3848]+4*X[58418], 3*X[5927]+X[39156], -2*X[6710]+3*X[58451], -2*X[6712]+X[58567], -2*X[11726]+X[58609], -X[12675]+3*X[57297], -X[58637]+2*X[58665]

X(58684) lies on these lines: {101, 3740}, {116, 518}, {150, 210}, {544, 58629}, {674, 58540}, {960, 50896}, {1282, 3697}, {2772, 58680}, {2784, 5044}, {2786, 58682}, {2801, 58634}, {2807, 58685}, {2808, 58631}, {2809, 4662}, {2810, 58653}, {3742, 31273}, {3848, 58418}, {3887, 58683}, {5927, 39156}, {6710, 58451}, {6712, 58567}, {11726, 58609}, {12675, 57297}, {58637, 58665}

X(58684) = midpoint of X(i) and X(j) for these {i,j}: {960, 50896}
X(58684) = reflection of X(i) in X(j) for these {i,j}: {58567, 6712}, {58592, 58418}, {58609, 11726}, {58612, 116}, {58637, 58665}, {58686, 58631}
X(58684) = center of the nine-point conic of quadrilateral XYZX(150) where XYZ is the cevian triangle of X(8)
X(58684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {116, 518, 58612}, {2808, 58631, 58686}, {58418, 58592, 3848}


X(58685) = X(117)X(518)∩X(151)X(210)

Barycentrics    a*(a^11*(b+c)-2*a^10*(b^2+b*c+c^2)-(b-c)^4*(b+c)^4*(b^2-b*c+c^2)*(b^2+4*b*c+c^2)-a^9*(b+c)*(2*b^2-3*b*c+2*c^2)+2*a^4*(b^2-c^2)^2*(b^4+b^3*c-16*b^2*c^2+b*c^3+c^4)-2*a^7*(b+c)*(b^4+4*b^3*c+4*b^2*c^2+4*b*c^3+c^4)+a*(b-c)^4*(b+c)^3*(2*b^4+3*b^3*c-6*b^2*c^2+3*b*c^3+2*c^4)+2*a^5*(b-c)^2*(b+c)*(4*b^4+11*b^3*c+22*b^2*c^2+11*b*c^3+4*c^4)+a^8*(7*b^4+9*b^3*c+6*b^2*c^2+9*b*c^3+7*c^4)+2*a^2*(b^2-c^2)^2*(b^6+3*b^5*c+7*b^4*c^2-18*b^3*c^3+7*b^2*c^4+3*b*c^5+c^6)-4*a^6*(2*b^6+3*b^5*c-4*b^4*c^2-8*b^3*c^3-4*b^2*c^4+3*b*c^5+2*c^6)-a^3*(b-c)^2*(b+c)*(7*b^6+14*b^5*c+5*b^4*c^2-36*b^3*c^3+5*b^2*c^4+14*b*c^5+7*c^6)) : :
X(58685) = -X[102]+3*X[3740], X[151]+3*X[210], X[960]+X[50899], -3*X[3848]+4*X[58419], -2*X[6711]+3*X[58451], -2*X[6718]+X[58567], -2*X[11727]+X[58609], -X[12675]+3*X[57303], -X[58637]+2*X[58670]

X(58685) lies on these lines: {102, 3740}, {117, 518}, {151, 210}, {674, 58541}, {928, 58686}, {960, 50899}, {2773, 58680}, {2785, 58681}, {2792, 58682}, {2800, 10107}, {2807, 58684}, {2816, 58643}, {2817, 4662}, {2818, 58631}, {3738, 58687}, {3848, 58419}, {6711, 58451}, {6718, 58567}, {11727, 58609}, {12675, 57303}, {14690, 15726}, {58637, 58670}

X(58685) = midpoint of X(i) and X(j) for these {i,j}: {960, 50899}
X(58685) = reflection of X(i) in X(j) for these {i,j}: {58567, 6718}, {58593, 58419}, {58609, 11727}, {58637, 58670}
X(58685) = center of the nine-point conic of quadrilateral XYZX(151) where XYZ is the cevian triangle of X(8)
X(58685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58419, 58593, 3848}


X(58686) = X(118)X(518)∩X(152)X(210)

Barycentrics    a*(a^9*(b+c)+a*(b-c)^4*(b+c)^3*(2*b+c)*(b+2*c)-2*a^8*(b^2+b*c+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)*(b^2+4*b*c+c^2)-a^7*(b^3+c^3)+a^5*(b+c)*(b^4-17*b^3*c+4*b^2*c^2-17*b*c^3+c^4)-3*a^3*(b-c)^2*(b+c)*(b^4-3*b^3*c-4*b^2*c^2-3*b*c^3+c^4)+a^6*(3*b^4+11*b^3*c+10*b^2*c^2+11*b*c^3+3*c^4)-a^4*(b^6+3*b^5*c-3*b^4*c^2-26*b^3*c^3-3*b^2*c^4+3*b*c^5+c^6)+a^2*(b^8-3*b^7*c-5*b^5*c^3+14*b^4*c^4-5*b^3*c^5-3*b*c^7+c^8)) : :
X(58686) = -2*X[5]+X[58612], -X[103]+3*X[3740], X[152]+3*X[210], X[960]+X[50903], X[1282]+3*X[5927], -5*X[3697]+X[39156], -2*X[6710]+X[58567], -2*X[6712]+3*X[58451], -2*X[11728]+X[58609], -X[12675]+3*X[38764], -2*X[20401]+X[58592], -3*X[58629]+2*X[58665] and many others

X(58686) lies on these lines: {5, 58612}, {103, 3740}, {118, 518}, {152, 210}, {674, 58542}, {928, 58685}, {960, 50903}, {971, 28346}, {1282, 5927}, {2774, 58680}, {2784, 9947}, {2786, 58681}, {2801, 3848}, {2808, 58631}, {3697, 39156}, {3887, 58687}, {6710, 58567}, {6712, 58451}, {11728, 58609}, {12675, 38764}, {20401, 58592}, {58629, 58665}, {58637, 58664}

X(58686) = midpoint of X(i) and X(j) for these {i,j}: {960, 50903}
X(58686) = reflection of X(i) in X(j) for these {i,j}: {58567, 6710}, {58592, 20401}, {58594, 58420}, {58609, 11728}, {58612, 5}, {58637, 58664}, {58684, 58631}
X(58686) = center of the nine-point conic of quadrilateral XYZX(152) where XYZ is the cevian triangle of X(8)
X(58686) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2801, 58420, 58594}, {58420, 58594, 3848}


X(58687) = X(119)X(518)∩X(153)X(210)

Barycentrics    a*(a^8*(b+c)-2*a^7*(b^2+b*c+c^2)-(b-c)^4*(b+c)^3*(b^2+4*b*c+c^2)-a^6*(b+c)*(2*b^2-3*b*c+2*c^2)-4*a^4*b*c*(b+c)*(2*b^2+3*b*c+2*c^2)+a*(b^2-c^2)^2*(2*b^4+b^3*c-16*b^2*c^2+b*c^3+2*c^4)+a^2*(b-c)^2*(b+c)*(2*b^4+11*b^3*c+26*b^2*c^2+11*b*c^3+2*c^4)+a^5*(6*b^4+5*b^3*c+16*b^2*c^2+5*b*c^3+6*c^4)+a^3*(-6*b^6-4*b^5*c+6*b^4*c^2+32*b^3*c^3+6*b^2*c^4-4*b*c^5-6*c^6)) : :
X(58687) = -2*X[5]+X[58611], -X[104]+3*X[3740], X[153]+3*X[210], X[960]+X[12751], -X[1768]+5*X[3697], -2*X[3035]+X[58567], -X[3555]+5*X[15017], -3*X[3848]+4*X[58421], -X[5083]+3*X[38758], X[5541]+3*X[5927], X[6326]+3*X[18908], -2*X[6713]+3*X[58451] and many others

X(58687) lies on these lines: {5, 58611}, {104, 3740}, {119, 518}, {153, 210}, {405, 5531}, {674, 58543}, {952, 58631}, {960, 12751}, {1768, 3697}, {2783, 58682}, {2787, 58681}, {2800, 4662}, {2801, 58634}, {2829, 58637}, {3035, 58567}, {3555, 15017}, {3738, 58685}, {3848, 58421}, {3887, 58686}, {5083, 38758}, {5541, 5927}, {5777, 32198}, {6326, 18908}, {6713, 58451}, {8674, 58680}, {9943, 17661}, {10157, 21630}, {11729, 58609}, {12675, 38752}, {12691, 37725}, {14740, 38757}, {20400, 58591}, {21635, 34790}, {58629, 58666}

X(58687) = midpoint of X(i) and X(j) for these {i,j}: {14740, 38757}, {21635, 34790}, {960, 12751}, {9943, 17661}
X(58687) = reflection of X(i) in X(j) for these {i,j}: {58567, 3035}, {58591, 20400}, {58595, 58421}, {58609, 11729}, {58611, 5}, {58613, 119}, {58637, 58663}, {58666, 58674}, {58683, 58631}
X(58687) = center of the nine-point conic of quadrilateral XYZX(153) where XYZ is the cevian triangle of X(8)
X(58687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {119, 518, 58613}, {952, 58631, 58683}, {2829, 58663, 58637}, {58421, 58595, 3848}


X(58688) = X(5)X(10)∩X(165)X(210)

Barycentrics    a*(3*a^4*(b+c)+16*a^2*b*c*(b+c)-3*(b-c)^2*(b+c)^3-6*a^3*(b^2+3*b*c+c^2)+2*a*(b-c)^2*(3*b^2+7*b*c+3*c^2)) : :
X(58688) = X[165]+3*X[210], -11*X[3525]+5*X[50191], X[3576]+X[34790], 2*X[3678]+X[31787], 5*X[3697]+X[31793], 5*X[3876]+X[31798], 5*X[4005]+7*X[9588], -4*X[4015]+X[9947], -X[9812]+3*X[10157], -X[11224]+5*X[25917], -2*X[17502]+3*X[33575], 2*X[20117]+X[31797] and many others

X(58688) lies on these lines: {2, 38126}, {5, 10}, {72, 27525}, {165, 210}, {200, 31658}, {354, 31231}, {516, 58629}, {518, 10156}, {674, 58548}, {1482, 51780}, {2801, 35023}, {3525, 50191}, {3576, 34790}, {3678, 31787}, {3681, 5744}, {3697, 31793}, {3876, 31798}, {4005, 9588}, {4015, 9947}, {4662, 28236}, {5049, 5703}, {5226, 50193}, {5759, 5927}, {6769, 51572}, {8167, 10222}, {9812, 10157}, {11224, 25917}, {15726, 58635}, {17502, 33575}, {20117, 31797}, {24393, 37364}, {25568, 26446}, {28150, 58631}, {28178, 58632}, {28216, 58675}, {28609, 38121}, {31821, 43174}

X(58688) = midpoint of X(i) and X(j) for these {i,j}: {3576, 34790}, {3681, 11227}, {31837, 38112}
X(58688) = reflection of X(i) in X(j) for these {i,j}: {5806, 10175}, {58615, 58441}
X(58688) = center of the nine-point conic of quadrilateral XYZX(165) where XYZ is the cevian triangle of X(8)
X(58688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 10175, 5806}, {518, 58441, 58615}, {4015, 58637, 9947}, {31837, 38112, 517}, {58441, 58615, 10156}, {58630, 58643, 5044}, {58651, 58663, 58696}


X(58689) = X(2)X(5571)∩X(177)X(210)

Barycentrics    -(a^(3/2)*(b-c)*(b^2+4*b*c+c^2)*(sqrt(b*(a+b-c))-sqrt(c*(a-b+c))))-a^(7/2)*(b+c)*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c)))+2*a^(5/2)*(b^2*sqrt(b*(a+b-c))+c^2*sqrt(c*(a-b+c))+2*b*c*(sqrt(b*(a+b-c))+sqrt(c*(a-b+c))))+a^3*(b+c)*(sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+sqrt(b)*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c))))-2*a^2*(b+c)*(b^(3/2)*sqrt(a*(a+b-c))+c^(3/2)*sqrt(a*(a-b+c))+b*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+sqrt(b)*c*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c))))+a*(b+c)^2*(b*sqrt(c)*(sqrt(a*(a-b+c))-sqrt(b*(-a+b+c)))+c^(3/2)*(sqrt(a*(a-b+c))+sqrt(b*(-a+b+c)))+sqrt(b)*c*(sqrt(a*(a+b-c))-sqrt(c*(-a+b+c)))+b^(3/2)*(sqrt(a*(a+b-c))+sqrt(c*(-a+b+c)))) : :
Barycentrics    a*((a - b - c)^2*(b + c)*Sin[A/2] - b*(a - b - 3*c)*(a - b + c)*Sin[B/2] - (a - 3*b - c)*(a + b - c)*c*Sin[C/2]) : : (Peter Moses, September 22, 2023)

X(58689) lies on these lines: {2, 5571}, {8, 31766}, {9, 12518}, {10, 12622}, {72, 31768}, {164, 8580}, {167, 30393}, {177, 210}, {392, 31767}, {518, 58444}, {936, 12523}, {997, 55172}, {3452, 12614}, {3740, 18258}, {5777, 31790}, {8422, 25917}, {9623, 55173}, {9856, 31800}, {12527, 31735}, {12908, 34790}, {18229, 35644}, {20103, 58440}, {31770, 40998}

X(58689) = midpoint of X(i) and X(j) for these {i,j}: {12527, 31735}, {12908, 34790}, {5777, 31790}, {72, 31768}, {8, 31766}, {9856, 31800}
X(58689) = reflection of X(i) in X(j) for these {i,j}: {58616, 58444}
X(58689) = complement of X(5571)
X(58689) = center of the nine-point conic of quadrilateral XYZX(177) where XYZ is the cevian triangle of X(8)
X(58689) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58444, 58616}


X(58690) = X(3)X(8679)∩X(4)X(375)

Barycentrics    a^2*(-(a^5*b*c*(b+c))-a*b*(b-c)^2*c*(b+c)^3+a^6*(b^2+c^2)+2*a^3*b*c*(b+c)*(b^2+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^2*(b+c)^2*(b^2+c^2)*(3*b^2-8*b*c+3*c^2)-a^4*(b-c)^2*(3*b^2+5*b*c+3*c^2)) : :
X(58690) = -X[4]+3*X[375], X[40]+X[42450], 3*X[51]+X[7957], X[185]+3*X[210], 3*X[3681]+5*X[10574], -3*X[3740]+X[5907], X[5493]+3*X[15049], -2*X[5892]+X[58574], X[9943]+X[29958], -3*X[10164]+X[11573], -2*X[11695]+X[13374], -2*X[12006]+X[58575] and many others

X(58690) lies on these lines: {3, 8679}, {4, 375}, {30, 58647}, {40, 42450}, {51, 7957}, {185, 210}, {389, 674}, {511, 58637}, {516, 58497}, {517, 5462}, {518, 9729}, {916, 3678}, {2390, 31788}, {2807, 5044}, {2810, 17704}, {3681, 10574}, {3740, 5907}, {3827, 58492}, {5493, 15049}, {5663, 58632}, {5892, 58574}, {6000, 58631}, {6803, 12586}, {7074, 19366}, {9026, 12675}, {9037, 13348}, {9047, 16625}, {9049, 9730}, {9052, 15012}, {9786, 12329}, {9943, 29958}, {10164, 11573}, {10628, 58654}, {11695, 13374}, {12006, 58575}, {12587, 18909}, {12664, 21867}, {13754, 58630}, {15717, 23155}, {15726, 44865}, {15852, 23638}, {22276, 55104}, {34146, 58633}, {44548, 52139}

X(58690) = midpoint of X(i) and X(j) for these {i,j}: {40, 42450}, {9943, 29958}
X(58690) = reflection of X(i) in X(j) for these {i,j}: {13374, 11695}, {58493, 58487}, {58567, 17704}, {58574, 5892}, {58575, 12006}, {58617, 9729}
X(58690) = center of the nine-point conic of quadrilateral XYZX(185) where XYZ is the cevian triangle of X(8)
X(58690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 58487, 58493}, {518, 9729, 58617}, {2810, 17704, 58567}


X(58691) = X(9)X(24820)∩X(190)X(210)

Barycentrics    a*(a^3*(b+c)-(b^2+c^2)*(b^2+b*c+c^2)-2*a^2*(b^2+3*b*c+c^2)+a*(b+c)*(2*b^2+3*b*c+2*c^2)) : :
X(58691) = X[190]+3*X[210], -X[1086]+3*X[3740], 3*X[3681]+5*X[4473], -5*X[3697]+X[24715], X[4432]+X[34790], -2*X[6687]+X[58628], -X[24841]+5*X[25917], -2*X[40480]+3*X[58451]

X(58691) lies on these lines: {9, 24820}, {190, 210}, {518, 4422}, {528, 4662}, {537, 5044}, {545, 58629}, {674, 58553}, {900, 58663}, {936, 24826}, {1086, 3740}, {2786, 58662}, {2796, 4015}, {3681, 4473}, {3697, 24715}, {4096, 25371}, {4432, 34790}, {5220, 16560}, {5845, 58653}, {6687, 58628}, {9041, 58679}, {9055, 58633}, {18236, 24834}, {24841, 25917}, {29243, 58631}, {40480, 58451}, {58635, 58655}

X(58691) = midpoint of X(i) and X(j) for these {i,j}: {4432, 34790}
X(58691) = reflection of X(i) in X(j) for these {i,j}: {58618, 4422}, {58628, 6687}
X(58691) = center of the nine-point conic of quadrilateral XYZX(190) where XYZ is the cevian triangle of X(8)
X(58691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 4422, 58618}


X(58692) = X(21)X(3935)∩X(191)X(210)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4-a^3*(b+c)*(2*b+c)*(b+2*c)-a^4*(b^2+4*b*c+c^2)+2*a^2*(b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+c^4)+a*(b+c)*(b^4+5*b^3*c+4*b^2*c^2+5*b*c^3+c^4)) : :
X(58692) = X[191]+3*X[210], -X[2475]+5*X[3697], -X[3555]+5*X[15674], -3*X[3740]+X[11263], -X[5045]+2*X[6675], X[5777]+X[16139], -3*X[10157]+X[49177], -X[16126]+5*X[25917]

X(58692) lies on these lines: {21, 3935}, {30, 9947}, {191, 210}, {200, 37292}, {517, 6841}, {518, 58449}, {758, 3634}, {1656, 5692}, {2475, 3697}, {2771, 20417}, {3256, 45065}, {3359, 13465}, {3555, 15674}, {3678, 58640}, {3740, 11263}, {3899, 26088}, {4547, 58663}, {5045, 6675}, {5694, 6825}, {5745, 58569}, {5777, 16139}, {6244, 7701}, {8143, 40967}, {9956, 45120}, {10157, 49177}, {10176, 51559}, {11248, 22936}, {16126, 25917}, {17768, 58635}, {18253, 58648}, {31938, 51380}, {32613, 41229}, {34339, 44782}, {41389, 41574}

X(58692) = midpoint of X(i) and X(j) for these {i,j}: {21, 34790}, {5777, 16139}
X(58692) = reflection of X(i) in X(j) for these {i,j}: {5044, 58638}, {5045, 6675}, {58619, 58449}
X(58692) = center of the nine-point conic of quadrilateral XYZX(191) where XYZ is the cevian triangle of X(8)
X(58692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58449, 58619}, {758, 58638, 5044}


X(58693) = X(1)X(6)∩X(192)X(210)

Barycentrics    a*(a^2*(b+c)^2-b*c*(b^2+c^2)-a*(b+c)*(b^2+3*b*c+c^2)) : :
X(58693) = -X[75]+3*X[3740], X[192]+3*X[210], -3*X[354]+7*X[27268], 3*X[3681]+5*X[4704], X[3688]+3*X[50093], -5*X[3697]+X[49474], -3*X[3742]+5*X[4687], -X[3812]+2*X[3842], -3*X[3848]+4*X[4698], 3*X[3898]+X[49504], X[3993]+X[34790], X[4681]+X[22271] and many others

X(58693) lies on circumconic {{A, B, C, X(1212), X(4451)}} and these lines: {1, 6}, {38, 28361}, {75, 3740}, {192, 210}, {341, 3696}, {346, 3789}, {354, 27268}, {536, 4096}, {674, 58554}, {726, 5044}, {740, 4662}, {742, 58653}, {2340, 45705}, {3662, 25108}, {3681, 4704}, {3688, 50093}, {3697, 49474}, {3706, 22016}, {3739, 24182}, {3742, 4687}, {3799, 17252}, {3812, 3842}, {3848, 4698}, {3880, 49457}, {3898, 49504}, {3993, 34790}, {4009, 20891}, {4015, 28522}, {4357, 7064}, {4451, 56118}, {4517, 17257}, {4640, 34247}, {4681, 22271}, {4708, 21865}, {4711, 49459}, {4755, 13476}, {5836, 24752}, {9025, 17332}, {9055, 58633}, {9957, 49510}, {10107, 20718}, {10176, 49520}, {12782, 21892}, {15587, 51052}, {17239, 40521}, {17260, 20358}, {17333, 49537}, {19586, 43216}, {21927, 25006}, {22316, 28484}, {24349, 25917}, {25137, 27184}, {29010, 58631}, {42027, 42054}, {44663, 50094}, {44671, 58400}

X(58693) = midpoint of X(i) and X(j) for these {i,j}: {15587, 51052}, {3993, 34790}, {4681, 22271}, {960, 984}, {9957, 49510}
X(58693) = reflection of X(i) in X(j) for these {i,j}: {3812, 3842}, {58560, 4755}, {58583, 4698}, {58609, 15569}, {58620, 37}, {58655, 40607}
X(58693)= pole of line {55, 17349} with respect to the Feuerbach hyperbola
X(58693)= pole of line {650, 23794} with respect to the Steiner inellipse
X(58693) = center of the nine-point conic of quadrilateral XYZX(192) where XYZ is the cevian triangle of X(8)
X(58693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 518, 58620}, {518, 15569, 58609}, {536, 40607, 58655}, {960, 984, 518}, {984, 53676, 37}, {4517, 17257, 17792}, {4698, 58583, 3848}, {40607, 58655, 58629}, {58678, 58679, 58694}


X(58694) = X(1)X(6)∩X(193)X(210)

Barycentrics    a*(a^3*(b+c)+a*(b+c)*(b^2+c^2)-(b^2+c^2)^2-a^2*(b^2+8*b*c+c^2)) : :
X(58694) = -X[69]+3*X[3740], -2*X[141]+3*X[58451], -2*X[182]+X[58567], X[193]+3*X[210], -3*X[354]+7*X[51171], -3*X[375]+X[14913], -2*X[597]+X[58560], -4*X[3589]+3*X[3848], -5*X[3618]+3*X[3742], 3*X[3681]+5*X[51170], -3*X[5050]+X[12675], 3*X[5927]+X[39878] and many others

X(58694) lies on circumconic {{A, B, C, X(22131), X(38263)}} and these lines: {1, 6}, {69, 3740}, {141, 58451}, {182, 58567}, {193, 210}, {354, 51171}, {375, 14913}, {511, 58637}, {524, 58629}, {542, 58680}, {597, 58560}, {674, 58555}, {3564, 58631}, {3589, 3848}, {3618, 3742}, {3681, 51170}, {3812, 34381}, {3827, 10107}, {3880, 49529}, {4662, 5847}, {5044, 34379}, {5050, 12675}, {5848, 58683}, {5927, 39878}, {6329, 58562}, {9037, 11574}, {9957, 49536}, {11997, 17350}, {12167, 41611}, {13373, 51732}, {13374, 18583}, {14645, 58662}, {14872, 14912}, {15587, 51190}, {15592, 37491}, {32300, 58601}, {34380, 58630}, {34382, 58647}, {34790, 51196}, {37492, 56176}, {40965, 50127}

X(58694) = midpoint of X(i) and X(j) for these {i,j}: {15587, 51190}, {34790, 51196}, {960, 3751}, {9957, 49536}
X(58694) = reflection of X(i) in X(j) for these {i,j}: {13373, 51732}, {13374, 18583}, {58560, 597}, {58562, 6329}, {58567, 182}, {58581, 3589}, {58601, 32300}, {58609, 1386}, {58621, 6}, {58653, 58633}
X(58694) = center of the nine-point conic of quadrilateral XYZX(193) where XYZ is the cevian triangle of X(8)
X(58694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 518, 58621}, {518, 1386, 58609}, {524, 58633, 58653}, {960, 3751, 518}, {3589, 58581, 3848}, {3589, 9004, 58581}, {58633, 58653, 58629}, {58678, 58679, 58693}


X(58695) = X(39)X(518)∩X(194)X(210)

Barycentrics    a*(a*b^2*c^2*(b+c)-b^2*c^2*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)-a^2*(b^2+c^2)*(b^2+4*b*c+c^2)) : :
X(58695) = X[72]+3*X[3097], -X[76]+3*X[3740], X[194]+3*X[210], X[960]+X[12782], -2*X[2023]+X[58610], -5*X[3697]+X[9902], -3*X[3742]+5*X[7786], -3*X[3848]+4*X[6683], -2*X[3934]+3*X[58451], 3*X[7709]+X[14872], -2*X[10007]+X[58581], -3*X[11171]+X[12675] and many others

X(58695) lies on these lines: {39, 518}, {72, 3097}, {76, 3740}, {194, 210}, {511, 58637}, {538, 58629}, {674, 58556}, {698, 58633}, {726, 5044}, {730, 4662}, {732, 58653}, {960, 12782}, {2023, 58610}, {2782, 58631}, {3697, 9902}, {3742, 7786}, {3848, 6683}, {3934, 58451}, {7709, 14872}, {10007, 58581}, {11171, 12675}, {11272, 13374}, {12680, 32522}, {13334, 58567}, {14839, 58679}, {32515, 58630}, {44562, 58560}, {46180, 58651}

X(58695) = midpoint of X(i) and X(j) for these {i,j}: {960, 12782}
X(58695) = reflection of X(i) in X(j) for these {i,j}: {13374, 11272}, {58560, 44562}, {58567, 13334}, {58581, 10007}, {58584, 6683}, {58610, 2023}, {58622, 39}
X(58695) = center of the nine-point conic of quadrilateral XYZX(194) where XYZ is the cevian triangle of X(8)
X(58695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 518, 58622}, {6683, 58584, 3848}


X(58696) = X(8)X(17622)∩X(9)X(55)

Barycentrics    a*(a-b-c)*(a^3*(b+c)+(b^2-c^2)^2-a*(b+c)*(b^2-8*b*c+c^2)-a^2*(b^2+4*b*c+c^2)) : :
X(58696) = X[1376]+X[9954], -5*X[3697]+X[18391], -3*X[3740]+X[11019]

X(58696) lies on these lines: {8, 17622}, {9, 55}, {44, 51476}, {72, 34744}, {518, 6692}, {519, 4015}, {936, 22754}, {960, 12640}, {997, 12513}, {1376, 9954}, {2801, 35023}, {3678, 6001}, {3681, 5435}, {3697, 18391}, {3740, 11019}, {5853, 18227}, {11678, 17668}, {12437, 18247}, {13624, 32153}, {34862, 58660}, {40133, 41276}

X(58696) = midpoint of X(i) and X(j) for these {i,j}: {1376, 9954}, {997, 34790}
X(58696) = reflection of X(i) in X(j) for these {i,j}: {58623, 20103}
X(58696) = center of the nine-point conic of quadrilateral XYZX(200) where XYZ is the cevian triangle of X(8)
X(58696) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(52804)}}, {{A, B, C, X(55), X(13601)}}
X(58696) = barycentric product X(i)*X(j) for these (i, j): {13601, 346}
X(58696) = barycentric quotient X(i)/X(j) for these (i, j): {13601, 279}
X(58696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 200, 52804}, {210, 51380, 58648}, {210, 58648, 58635}, {518, 20103, 58623}, {4662, 58657, 5044}, {58651, 58663, 58688}


X(58697) = X(10)X(12)∩X(31)X(200)

Barycentrics    a*(b+c)*((a-b)^3*(a+b)-(2*a^3+a^2*b+b^3)*c+(2*a-b)*c^3-c^4) : :

X(58697) lies on these lines: {10, 12}, {31, 200}, {42, 58390}, {518, 20106}, {674, 58471}, {756, 25081}, {1453, 3811}, {2835, 3042}, {3190, 25078}, {3293, 52387}, {3694, 4849}, {3974, 49168}, {3992, 5423}, {4538, 14973}, {5044, 6688}, {6679, 13405}, {6708, 46694}, {7322, 54318}, {14547, 24036}, {17861, 32937}, {20116, 29642}, {39589, 44547}, {50752, 58626}

X(58697) = center of the nine-point conic of quadrilateral XYZX(209) where XYZ is the cevian triangle of X(8)
X(58697) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(1261)}}, {{A, B, C, X(65), X(51476)}}, {{A, B, C, X(200), X(21031)}}, {{A, B, C, X(226), X(23617)}}


X(58698) = X(10)X(8068)∩X(210)X(214)

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4-a^4*(b^2+4*b*c+c^2)-2*a^3*(b^3+c^3)+a*(b+c)*(b^4-2*b^3*c-3*b^2*c^2-2*b*c^3+c^4)+2*a^2*(b^4+3*b^3*c+b^2*c^2+3*b*c^3+c^4)) : :
X(58698) = 3*X[210]+X[214], X[1125]+X[14740], X[1145]+3*X[10176], X[3035]+X[3678], -X[3036]+3*X[3956], -5*X[3697]+X[15863], -3*X[3740]+X[6702], -3*X[3828]+X[12736], -X[3874]+5*X[31235], -9*X[3921]+X[17636], -7*X[3983]+3*X[38213], 3*X[4134]+X[11570] and many others

X(58698) lies on these lines: {10, 8068}, {210, 214}, {515, 58674}, {518, 58453}, {519, 51380}, {528, 58677}, {758, 58641}, {952, 4015}, {1125, 14740}, {1145, 10176}, {2800, 58630}, {2801, 58635}, {2802, 4540}, {2932, 3715}, {3035, 3678}, {3036, 3956}, {3634, 58649}, {3697, 15863}, {3740, 6702}, {3828, 12736}, {3874, 31235}, {3921, 17636}, {3983, 38213}, {4134, 11570}, {4533, 17660}, {6174, 47320}, {10164, 12665}, {15064, 24466}, {15528, 58441}, {17638, 50841}, {18240, 19878}, {18250, 46694}, {35023, 58638}, {51069, 58650}, {58451, 58587}, {58629, 58659}

X(58698) = midpoint of X(i) and X(j) for these {i,j}: {1125, 14740}, {3035, 3678}, {5044, 58663}
X(58698) = reflection of X(i) in X(j) for these {i,j}: {18240, 19878}, {58625, 58453}
X(58698) = center of the nine-point conic of quadrilateral XYZX(214) where XYZ is the cevian triangle of X(8)
X(58698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {518, 58453, 58625}, {5044, 58663, 2802}


X(58699) = X(2)X(18412)∩X(10)X(12)

Barycentrics    a*(b+c)*(a^4+3*a^2*b*c-2*a^3*(b+c)-(b-c)^2*(b^2+3*b*c+c^2)+2*a*(b^3+c^3)) : :
X(58699) = -5*X[1698]+X[18389], 3*X[3681]+5*X[31266], -3*X[58451]+X[58578]

X(58699) lies on these lines: {2, 18412}, {9, 15064}, {10, 12}, {40, 12446}, {63, 5785}, {392, 17604}, {497, 3884}, {515, 5044}, {516, 58648}, {518, 58463}, {527, 58629}, {674, 58558}, {756, 25080}, {912, 58632}, {936, 993}, {960, 10157}, {997, 7308}, {1698, 18389}, {1699, 3878}, {1750, 12514}, {2792, 58661}, {2801, 3035}, {3475, 3881}, {3681, 31266}, {3833, 41867}, {3874, 5705}, {4423, 30144}, {4551, 40967}, {5248, 10382}, {5281, 5696}, {5658, 31803}, {5692, 10590}, {5777, 18249}, {5784, 10164}, {5927, 51090}, {6840, 10176}, {8680, 40607}, {9028, 58633}, {9778, 41866}, {10198, 12564}, {10894, 31806}, {14740, 25006}, {15071, 18231}, {16120, 56288}, {17632, 25917}, {17668, 50808}, {18242, 20117}, {18251, 43174}, {25525, 30329}, {25722, 31508}, {34377, 58676}, {46180, 58656}, {58451, 58578}, {58640, 58658}

X(58699) = midpoint of X(i) and X(j) for these {i,j}: {3678, 3822}
X(58699) = reflection of X(i) in X(j) for these {i,j}: {58626, 58463}
X(58699)= pole of line {3716, 6003} with respect to the Spieker circle
X(58699) = center of the nine-point conic of quadrilateral XYZX(226) where XYZ is the cevian triangle of X(8)
X(58699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 58636, 4015}, {210, 21060, 3678}, {518, 58463, 58626}, {3678, 3822, 758}, {5044, 58631, 18250}, {58629, 58634, 58650}


X(58700) = X(3)X(34428)∩X(4)X(39117)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6)*(a^16 - 6*a^14*b^2 + 14*a^12*b^4 - 14*a^10*b^6 + 14*a^6*b^10 - 14*a^4*b^12 + 6*a^2*b^14 - b^16 - 6*a^14*c^2 + 24*a^12*b^2*c^2 - 34*a^10*b^4*c^2 + 20*a^8*b^6*c^2 - 10*a^6*b^8*c^2 + 16*a^4*b^10*c^2 - 14*a^2*b^12*c^2 + 4*b^14*c^2 + 14*a^12*c^4 - 34*a^10*b^2*c^4 + 16*a^8*b^4*c^4 + 12*a^6*b^6*c^4 - 18*a^4*b^8*c^4 + 22*a^2*b^10*c^4 - 12*b^12*c^4 - 14*a^10*c^6 + 20*a^8*b^2*c^6 + 12*a^6*b^4*c^6 - 14*a^2*b^8*c^6 + 28*b^10*c^6 - 10*a^6*b^2*c^8 - 18*a^4*b^4*c^8 - 14*a^2*b^6*c^8 - 38*b^8*c^8 + 14*a^6*c^10 + 16*a^4*b^2*c^10 + 22*a^2*b^4*c^10 + 28*b^6*c^10 - 14*a^4*c^12 - 14*a^2*b^2*c^12 - 12*b^4*c^12 + 6*a^2*c^14 + 4*b^2*c^14 - c^16) : :

X(58700) lies on the cubic K044 and these lines: {3, 34428}, {4, 39117}, {5, 47732}, {5562, 8800}

X(58700) = orthic-isogonal conjugate of X(8800)
X(58700) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 8800}, {39117, 40678}


X(58701) = X(3)X(39110)∩X(4)X(8906)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^12 - 2*a^10*b^2 - a^8*b^4 + 4*a^6*b^6 - a^4*b^8 - 2*a^2*b^10 + b^12 - 6*a^10*c^2 + 10*a^8*b^2*c^2 - 8*a^6*b^4*c^2 + 8*a^4*b^6*c^2 - 2*a^2*b^8*c^2 - 2*b^10*c^2 + 15*a^8*c^4 - 8*a^6*b^2*c^4 + 2*a^4*b^4*c^4 + 8*a^2*b^6*c^4 - b^8*c^4 - 20*a^6*c^6 - 8*a^4*b^2*c^6 - 8*a^2*b^4*c^6 + 4*b^6*c^6 + 15*a^4*c^8 + 10*a^2*b^2*c^8 - b^4*c^8 - 6*a^2*c^10 - 2*b^2*c^10 + c^12)*(a^12 - 6*a^10*b^2 + 15*a^8*b^4 - 20*a^6*b^6 + 15*a^4*b^8 - 6*a^2*b^10 + b^12 - 2*a^10*c^2 + 10*a^8*b^2*c^2 - 8*a^6*b^4*c^2 - 8*a^4*b^6*c^2 + 10*a^2*b^8*c^2 - 2*b^10*c^2 - a^8*c^4 - 8*a^6*b^2*c^4 + 2*a^4*b^4*c^4 - 8*a^2*b^6*c^4 - b^8*c^4 + 4*a^6*c^6 + 8*a^4*b^2*c^6 + 8*a^2*b^4*c^6 + 4*b^6*c^6 - a^4*c^8 - 2*a^2*b^2*c^8 - b^4*c^8 - 2*a^2*c^10 - 2*b^2*c^10 + c^12) : :

X(58701) lies on the cubic K044 and these lines: {3, 39110}, {4, 8906}, {5, 47732}, {52, 8905}, {155, 571}, {14517, 52432}

X(58701) = X(i)-isoconjugate of X(j) for these (i,j): {2167, 41524}, {2190, 8906}
X(58701) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 8906}, {40588, 41524}
X(58701) = barycentric product X(343)*X(14517)
X(58701) = barycentric quotient X(i)/X(j) for these {i,j}: {51, 41524}, {216, 8906}, {14517, 275}


X(58702) = X(3)X(2165)∩X(4)X(14517)

Barycentrics    a^2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6)*(a^12 - 2*a^10*b^2 - a^8*b^4 + 4*a^6*b^6 - a^4*b^8 - 2*a^2*b^10 + b^12 - 2*a^10*c^2 - 2*a^8*b^2*c^2 + 8*a^6*b^4*c^2 - 8*a^4*b^6*c^2 + 10*a^2*b^8*c^2 - 6*b^10*c^2 - a^8*c^4 + 8*a^6*b^2*c^4 + 2*a^4*b^4*c^4 - 8*a^2*b^6*c^4 + 15*b^8*c^4 + 4*a^6*c^6 - 8*a^4*b^2*c^6 - 8*a^2*b^4*c^6 - 20*b^6*c^6 - a^4*c^8 + 10*a^2*b^2*c^8 + 15*b^4*c^8 - 2*a^2*c^10 - 6*b^2*c^10 + c^12) : :

X(58702) lies on the cubic K176 and these lines: {3, 2165}, {4, 14517}, {6, 39110}, {184, 39109}, {9937, 41524}, {44180, 57484}

X(58702) = orthic-isogonal conjugate of X(39109)
X(58702) = X(4)-Ceva conjugate of X(39109)
X(58702) = X(75)-isoconjugate of X(39112)
X(58702) = X(206)-Dao conjugate of X(39112)
X(58702) = barycentric product X(i)*X(j) for these {i,j}: {254, 9937}, {8906, 34756}, {41524, 57484}
X(58702) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 39112}, {9937, 40697}, {41524, 39116}


X(58703) = X(4)X(8906)∩X(324)X(39117)

Barycentrics    b^2*c^2*(-(a^2*b^2) + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4)*(3*a^8 - 6*a^6*b^2 + 4*a^4*b^4 - 2*a^2*b^6 + b^8 - 6*a^6*c^2 + 2*a^2*b^4*c^2 - 4*b^6*c^2 + 4*a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 2*a^2*c^6 - 4*b^2*c^6 + c^8)*(a^12 - 2*a^10*b^2 - a^8*b^4 + 4*a^6*b^6 - a^4*b^8 - 2*a^2*b^10 + b^12 - 6*a^10*c^2 + 10*a^8*b^2*c^2 - 8*a^6*b^4*c^2 + 8*a^4*b^6*c^2 - 2*a^2*b^8*c^2 - 2*b^10*c^2 + 15*a^8*c^4 - 8*a^6*b^2*c^4 + 2*a^4*b^4*c^4 + 8*a^2*b^6*c^4 - b^8*c^4 - 20*a^6*c^6 - 8*a^4*b^2*c^6 - 8*a^2*b^4*c^6 + 4*b^6*c^6 + 15*a^4*c^8 + 10*a^2*b^2*c^8 - b^4*c^8 - 6*a^2*c^10 - 2*b^2*c^10 + c^12)*(a^12 - 6*a^10*b^2 + 15*a^8*b^4 - 20*a^6*b^6 + 15*a^4*b^8 - 6*a^2*b^10 + b^12 - 2*a^10*c^2 + 10*a^8*b^2*c^2 - 8*a^6*b^4*c^2 - 8*a^4*b^6*c^2 + 10*a^2*b^8*c^2 - 2*b^10*c^2 - a^8*c^4 - 8*a^6*b^2*c^4 + 2*a^4*b^4*c^4 - 8*a^2*b^6*c^4 - b^8*c^4 + 4*a^6*c^6 + 8*a^4*b^2*c^6 + 8*a^2*b^4*c^6 + 4*b^6*c^6 - a^4*c^8 - 2*a^2*b^2*c^8 - b^4*c^8 - 2*a^2*c^10 - 2*b^2*c^10 + c^12) : :

X(58703) lies on the cubic K674 and these lines: {4, 8906}, {324, 39117}

X(58703) = barycentric quotient X(41523)/X(9937)


X(58704) = X(5)X(523)∩X(52)X(265)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-2*a^10 + 4*a^8*b^2 - a^6*b^4 - a^4*b^6 - a^2*b^8 + b^10 + 4*a^8*c^2 - 4*a^6*b^2*c^2 + a^4*b^4*c^2 + 2*a^2*b^6*c^2 - 3*b^8*c^2 - a^6*c^4 + a^4*b^2*c^4 - 2*a^2*b^4*c^4 + 2*b^6*c^4 - a^4*c^6 + 2*a^2*b^2*c^6 + 2*b^4*c^6 - a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(58704) lies on these lines: {5, 523}, {52, 265}, {107, 1141}, {476, 7488}, {1989, 3199}, {2070, 53319}, {5961, 18284}, {7576, 14583}, {12225, 51254}, {15319, 18478}, {15392, 48374}, {34864, 56400}, {44239, 57482}

X(58704) = X(6149)-isoconjugate of X(18401)
X(58704) = X(14993)-Dao conjugate of X(18401)
X(58704) = barycentric product X(94)*X(18400)
X(58704) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 18401}, {18400, 323}
X(58704) = {X(14254),X(38896)}-harmonic conjugate of X(5)


X(58705) = X(2)X(164)∩X(177)X(4031)

Barycentrics    (4*a + b + c)*Sin[A/2] + (-4*a - b + c)*Sin[B/2] + (-4*a + b - c)*Sin[C/2] : :
X(58705) = 3 X[2] - 5 X[164], 9 X[2] - 5 X[9807], 6 X[2] - 5 X[21633], 9 X[2] - 10 X[58440], 3 X[164] - X[9807], 3 X[164] - 2 X[58440], 2 X[9807] - 3 X[21633], 3 X[21633] - 4 X[58440], 7 X[3528] - 5 X[12844], 2 X[3626] - 5 X[55170], X[3632] - 5 X[55169], 4 X[3636] - 5 X[12523], 5 X[12656] - 7 X[20057], 7 X[15808] - 10 X[55171]

X(58705) lies on these lines: {2, 164}, {177, 4031}, {550, 53810}, {3244, 55174}, {3528, 12844}, {3626, 55170}, {3632, 55169}, {3636, 12523}, {12656, 20057}, {15808, 55171}

X(58705) = reflection of X(i) in X(j) for these {i,j}: {9807, 58440}, {21633, 164}
X(58705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {164, 9807, 58440}, {9807, 58440, 21633}


X(58706) = X(2)X(164)∩X(177)X(21454)

Barycentrics    (3*a + b + c)*Sin[A/2] + (-3*a - b + c)*Sin[B/2] + (-3*a + b - c)*Sin[C/2] : :
X(58706) = 3 X[2] - 4 X[164], 9 X[2] - 8 X[21633], 15 X[2] - 16 X[58440], 3 X[164] - 2 X[21633], 5 X[164] - 4 X[58440], 3 X[9807] - 4 X[21633], 5 X[9807] - 8 X[58440], 5 X[21633] - 6 X[58440], 2 X[167] - 3 X[9778], 5 X[3522] - 4 X[12844], 5 X[3616] - 6 X[55168], 5 X[3617] - 8 X[55170], 7 X[3622] - 8 X[12523], 5 X[3623] - 4 X[12656], 16 X[12622] - 17 X[46932], 13 X[46934] - 16 X[55171]

X(58706) lies on these lines: {2, 164}, {8, 55169}, {20, 53810}, {144, 11691}, {145, 55174}, {167, 9778}, {177, 21454}, {258, 9793}, {390, 17641}, {3522, 12844}, {3616, 55168}, {3617, 55170}, {3622, 12523}, {3623, 12656}, {8078, 9795}, {9805, 20070}, {9965, 12539}, {12622, 46932}, {46934, 55171}

X(58706) = reflection of X(i) in X(j) for these {i,j}: {8, 55169}, {9807, 164}
X(58706) = anticomplement of X(9807)
X(58706) = {X(164),X(9807)}-harmonic conjugate of X(2)


X(58707) = X(2)X(164)∩X(177)X(553)

Barycentrics    (2*a + b + c)*Sin[A/2] + (-2*a - b + c)*Sin[B/2] + (-2*a + b - c)*Sin[C/2] : :

X(58707) lies on these lines: {2, 164}, {10, 55170}, {30, 511}, {177, 553}, {376, 12844}, {551, 12523}, {1125, 55171}, {3058, 17641}, {3241, 12656}, {3679, 55169}, {3828, 12622}, {11528, 50872}, {11691, 17781}, {12518, 50808}, {12614, 50802}, {17657, 34612}, {25055, 55168}, {35644, 42057}, {38314, 55175}, {51071, 55173}, {51103, 55172}, {58560, 58614}

X(58707) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {164, 9807, 21633}, {164, 21633, 58440}


X(58708) = X(2)X(164)∩X(177)X(5435)

Barycentrics    (3*a - b - c)*Sin[A/2] + (-3*a + b - c)*Sin[B/2] + (-3*a - b + c)*Sin[C/2] : :
X(58708) = 3 X[2] + 2 X[164], 6 X[2] - X[9807], 9 X[2] - 4 X[21633], 3 X[2] - 8 X[58440], 4 X[164] + X[9807], 3 X[164] + 2 X[21633], X[164] + 4 X[58440], 3 X[9807] - 8 X[21633], X[9807] - 16 X[58440], X[21633] - 6 X[58440], X[8] + 4 X[12523], 2 X[10] + 3 X[55168], X[145] - 6 X[55175], X[167] - 6 X[10164], 4 X[1125] + X[55169], and many others

X(58708) lies on these lines: {2, 164}, {8, 12523}, {10, 55168}, {145, 55175}, {167, 10164}, {177, 5435}, {631, 53810}, {1125, 55169}, {3241, 55172}, {3523, 12844}, {3616, 55174}, {3622, 12656}, {3873, 58614}, {5218, 17641}, {5273, 12539}, {5550, 55170}, {5571, 10578}, {5744, 11691}, {7057, 52797}, {9780, 55171}, {9812, 12614}, {12622, 19877}, {20057, 55176}, {38314, 55173}

X(58708) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 164, 9807}, {164, 58440, 2}


X(58709) = X(2)X(164)∩X(10)X(55171)

Barycentrics    (4*a - b - c)*Sin[A/2] + (-4*a + b - c)*Sin[B/2] + (-4*a - b + c)*Sin[C/2] : :
X(58709) = 5 X[2] - X[9807], 5 X[164] + X[9807], 2 X[164] + X[21633], X[164] + 2 X[58440], 2 X[9807] - 5 X[21633], X[9807] - 10 X[58440], X[21633] - 4 X[58440], X[10] + 2 X[55171], 2 X[1125] + X[55170], X[3241] - 3 X[55175], 3 X[3524] - X[12844], X[3679] + 3 X[55168], X[12656] - 3 X[38314], 3 X[25055] + X[55169]

X(58709) lies on these lines: {2, 164}, {10, 55171}, {519, 12523}, {549, 53810}, {551, 55174}, {1125, 55170}, {3241, 55175}, {3524, 12844}, {3679, 55168}, {4995, 17641}, {5325, 18258}, {12656, 38314}, {25055, 55169}, {51071, 55172}, {51103, 55173}

X(58709) = midpoint of X(2) and X(164)
X(58709) = reflection of X(i) in X(j) for these {i,j}: {2, 58440}, {21633, 2}, {51071, 55172}, {55173, 51103}
X(58709) = {X(164),X(58440)}-harmonic conjugate of X(21633)


X(58710) = X(2)X(164)∩X(382)X(53810)

Barycentrics    (3*a + 2*b + 2*c)*Sin[A/2] + (-3*a - 2*b + 2*c)*Sin[B/2] + (-3*a + 2*b - 2*c)*Sin[C/2] : :
X(58710) = 6 X[2] - 5 X[164], 3 X[2] - 5 X[9807], 9 X[2] - 10 X[21633], 21 X[2] - 20 X[58440], 3 X[164] - 4 X[21633], 7 X[164] - 8 X[58440], 3 X[9807] - 2 X[21633], 7 X[9807] - 4 X[58440], 7 X[21633] - 6 X[58440], 4 X[550] - 5 X[12844], 4 X[3244] - 5 X[12656], 16 X[3636] - 15 X[55175]

X(58710) lies on these lines: {2, 164}, {382, 53810}, {550, 12844}, {3244, 12656}, {3632, 55174}, {3636, 55175}, {11034, 58616}

X(58710) = reflection of X(164) in X(9807)


X(58711) = X(2)X(164)∩X(381)X(53810)

Barycentrics    (a + 2*b + 2*c)*Sin[A/2] + (-a - 2*b + 2*c)*Sin[B/2] + (-a + 2*b - 2*c)*Sin[C/2] : :
X(58711) = 5 X[2] - 4 X[58440], X[164] + 2 X[9807], X[164] - 4 X[21633], 5 X[164] - 8 X[58440], X[9807] + 2 X[21633], 5 X[9807] + 4 X[58440], 5 X[21633] - 2 X[58440], 4 X[551] - 3 X[55175], 5 X[1698] - 2 X[55170], 7 X[3624] - 4 X[55171], 2 X[12523] - 3 X[25055], 4 X[12614] - 5 X[30308], 4 X[12622] - 3 X[19875], 4 X[12622] - X[55169], 3 X[19875] - X[55169], 5 X[51105] - 4 X[55172]

X(58711) lies on these lines: {2, 164}, {30, 12844}, {167, 50865}, {177, 4654}, {381, 53810}, {519, 12656}, {551, 55175}, {1698, 55170}, {3624, 55171}, {3679, 55174}, {11235, 17657}, {11238, 17641}, {12523, 25055}, {12614, 30308}, {12622, 19875}, {12694, 28609}, {51093, 55173}, {51105, 55172}

X(58711) = midpoint of X(i) and X(j) for these {i,j}: {2, 9807}, {167, 50865}
X(58711) = reflection of X(i) in X(j) for these {i,j}: {2, 21633}, {164, 2}, {51093, 55173}
X(58711) = {X(9807),X(21633)}-harmonic conjugate of X(164)


X(58712) = X(2)X(164)∩X(177)X(5219)

Barycentrics    (a - 2*b - 2*c)*Sin[A/2] + (-a + 2*b - 2*c)*Sin[B/2] + (-a - 2*b + 2*c)*Sin[C/2] : :
X(58712) = X[1] + 4 X[12622], 6 X[2] - X[164], 9 X[2] + X[9807], 3 X[2] + 2 X[21633], 9 X[2] - 4 X[58440], 3 X[164] + 2 X[9807], X[164] + 4 X[21633], 3 X[164] - 8 X[58440], X[9807] - 6 X[21633], X[9807] + 4 X[58440], 3 X[21633] + 2 X[58440], 4 X[5] + X[12844], 4 X[10] + X[12656], X[167] + 9 X[7988], X[167] + 4 X[12614], 9 X[7988] - 4 X[12614], 4 X[178] + X[12879], 8 X[1125] - 3 X[55175], 3 X[1699] + 2 X[12518], 7 X[3624] - 2 X[12523], 3 X[3679] + 2 X[55173], 6 X[5603] - X[11528], X[12694] + 4 X[58444], 17 X[19872] - 2 X[55170], 9 X[25055] - 4 X[55172], 13 X[34595] - 3 X[55168]

X(58712) lies on these lines: {1, 8087}, {2, 164}, {5, 12844}, {10, 12656}, {167, 7988}, {177, 5219}, {178, 12879}, {1125, 55175}, {1656, 53810}, {1698, 55174}, {1699, 12518}, {3624, 12523}, {3679, 55173}, {5603, 11528}, {8422, 50443}, {11691, 30852}, {12443, 41867}, {12694, 25525}, {13462, 31734}, {18258, 30827}, {19872, 55170}, {25055, 55172}, {31766, 51784}, {32183, 37704}, {34595, 55168}

X(58712) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9807, 58440}, {2, 21633, 164}, {167, 7988, 12614}, {9807, 58440, 164}, {21633, 58440, 9807}


X(58713) = X(2)X(164)∩X(177)X(31231)

Barycentrics    (3*a - 2*b - 2*c)*Sin[A/2] + (-3*a + 2*b - 2*c)*Sin[B/2] + (-3*a - 2*b + 2*c)*Sin[C/2] : :
X(58713) = 6 X[2] + X[164], 15 X[2] - X[9807], 9 X[2] - 2 X[21633], 3 X[2] + 4 X[58440], 5 X[164] + 2 X[9807], 3 X[164] + 4 X[21633], X[164] - 8 X[58440], 3 X[9807] - 10 X[21633], X[9807] + 20 X[58440], X[21633] + 6 X[58440], 4 X[10] + 3 X[55175], 8 X[140] - X[12844], 3 X[165] + 4 X[12614], 3 X[210] + 4 X[58614], 8 X[1125] - X[12656], 5 X[1698] + 2 X[12523], X[3632] + 6 X[55176], 3 X[3679] + 4 X[55172], 6 X[5657] + X[11528], 4 X[12622] + 3 X[55168], 17 X[19872] + 4 X[55171], 9 X[25055] - 2 X[55173], 13 X[34595] + X[55169]

X(58713) lies on these lines: {2, 164}, {10, 55175}, {140, 12844}, {165, 12614}, {177, 31231}, {210, 58614}, {1125, 12656}, {1698, 12523}, {3526, 53810}, {3624, 55174}, {3632, 55176}, {3679, 55172}, {5657, 11528}, {5726, 31734}, {12622, 55168}, {19872, 55171}, {25055, 55173}, {31190, 58444}, {31508, 31770}, {34595, 55169}

X(58713) = {X(2),X(58440)}-harmonic conjugate of X(164)


X(58714) = X(2)X(164)∩X(177)X(4114)

Barycentrics    (4*a + 3*b + 3*c)*Sin[A/2] + (-4*a - 3*b + 3*c)*Sin[B/2] + (-4*a + 3*b - 3*c)*Sin[C/2] : :
X(58714) = 9 X[2] - 7 X[164], 3 X[2] - 7 X[9807], 6 X[2] - 7 X[21633], 15 X[2] - 14 X[58440], X[164] - 3 X[9807], 2 X[164] - 3 X[21633], 5 X[164] - 6 X[58440], 5 X[9807] - 2 X[58440], 5 X[21633] - 4 X[58440], 6 X[3635] - 7 X[55173], 7 X[12844] - 5 X[17538]

X(58714) lies on these lines: {2, 164}, {177, 4114}, {3625, 55174}, {3627, 53810}, {3635, 55173}, {12844, 17538}

X(58714) = reflection of X(21633) in X(9807)


X(58715) = X(2)X(164)∩X(177)X(3982)

Barycentrics    (2*a + 3*b + 3*c)*Sin[A/2] + (-2*a - 3*b + 3*c)*Sin[B/2] + (-2*a + 3*b - 3*c)*Sin[C/2] : :
X(58715) = 9 X[2] - 5 X[164], 3 X[2] + 5 X[9807], 3 X[2] - 5 X[21633], 6 X[2] - 5 X[58440], X[164] + 3 X[9807], X[164] - 3 X[21633], 2 X[164] - 3 X[58440], 2 X[9807] + X[58440], 3 X[3244] - 5 X[55173], X[3529] - 5 X[12844], 6 X[3636] - 5 X[55172], 5 X[12523] - 7 X[15808], 5 X[12656] - X[20050]

X(58715) lies on these lines: {2, 164}, {177, 3982}, {546, 53810}, {3244, 55173}, {3529, 12844}, {3626, 55174}, {3636, 55172}, {12523, 15808}, {12656, 20050}

X(58715) = midpoint of X(9807) and X(21633)
X(58715) = reflection of X(58440) in X(21633)


X(58716) = X(2)X(164)∩X(145)X(55173)

Barycentrics    (a + 3*b + 3*c)*Sin[A/2] + (-a - 3*b + 3*c)*Sin[B/2] + (-a + 3*b - 3*c)*Sin[C/2] : :
X(58716) = 9 X[2] - 4 X[164], 3 X[2] + 2 X[9807], 3 X[2] - 8 X[21633], 21 X[2] - 16 X[58440], 2 X[164] + 3 X[9807], X[164] - 6 X[21633], 7 X[164] - 12 X[58440], X[9807] + 4 X[21633], 7 X[9807] + 8 X[58440], 7 X[21633] - 2 X[58440], 3 X[145] - 8 X[55173], 2 X[167] + 3 X[9812], X[3146] + 4 X[12844], X[3621] + 4 X[12656], 21 X[3622] - 16 X[55172], 11 X[5550] - 6 X[55168], 7 X[9780] - 2 X[55169], 8 X[12523] - 13 X[46934], 16 X[12622] - 11 X[46933], 23 X[46931] - 8 X[55170]

X(58716) lies on these lines: {2, 164}, {145, 55173}, {167, 9812}, {3091, 53810}, {3146, 12844}, {3617, 55174}, {3621, 12656}, {3622, 55172}, {5274, 17641}, {5550, 55168}, {9780, 55169}, {9793, 21623}, {9795, 21622}, {12523, 46934}, {12622, 46933}, {46931, 55170}

X(58716) = {X(9807),X(21633)}-harmonic conjugate of X(2)


X(58717) = X(2)X(164)∩X(177)X(5226)

Barycentrics    (a - 3*b - 3*c)*Sin[A/2] + (-a + 3*b - 3*c)*Sin[B/2] + (-a - 3*b + 3*c)*Sin[C/2] : :
X(58717) = 9 X[2] - 2 X[164], 6 X[2] + X[9807], 3 X[2] + 4 X[21633], 15 X[2] - 8 X[58440], 4 X[164] + 3 X[9807], X[164] + 6 X[21633], 5 X[164] - 12 X[58440], X[9807] - 8 X[21633], 5 X[9807] + 16 X[58440], 5 X[21633] + 2 X[58440], X[8] - 8 X[12622], 3 X[8] + 4 X[55173], 6 X[12622] + X[55173], X[167] + 6 X[3817], 5 X[3091] + 2 X[12844], 15 X[3616] - 8 X[55172], 5 X[3617] + 2 X[12656], 8 X[3634] - X[55169], 11 X[5550] - 4 X[12523], 3 X[9812] + 4 X[12518], X[12539] - 8 X[58444], 10 X[19862] - 3 X[55168], 13 X[46934] - 6 X[55175]

X(58717) lies on these lines: {2, 164}, {8, 12622}, {167, 3817}, {177, 5226}, {3090, 53810}, {3091, 12844}, {3616, 55172}, {3617, 12656}, {3634, 55169}, {5328, 18258}, {5550, 12523}, {5748, 11691}, {9780, 55174}, {9812, 12518}, {10584, 17657}, {10589, 17641}, {12539, 58444}, {19862, 55168}, {46934, 55175}

X(58717) = {X(2),X(21633)}-harmonic conjugate of X(9807)


X(58718) = X(2)X(164)∩X(10)X(55173)

Barycentrics    (2*a - 3*b - 3*c)*Sin[A/2] + (-2*a + 3*b - 3*c)*Sin[B/2] + (-2*a - 3*b + 3*c)*Sin[C/2] : :
X(58718) = 9 X[2] - X[164], 15 X[2] + X[9807], 3 X[2] + X[21633], 5 X[164] + 3 X[9807], X[164] + 3 X[21633], X[164] - 3 X[58440], X[9807] - 5 X[21633], X[9807] + 5 X[58440], 3 X[10] + X[55173], 3 X[1125] - X[55172], 3 X[12622] + X[55172], 7 X[3090] + X[12844], 3 X[3817] + X[12518], 3 X[3848] - X[58614], 11 X[5550] - 3 X[55175], 7 X[9780] + X[12656], 3 X[10171] - X[12614], X[12523] - 5 X[19862], 7 X[15808] - 3 X[55176], 17 X[19872] - X[55169]

X(58718) lies on these lines: {2, 164}, {10, 55173}, {1125, 12622}, {3090, 12844}, {3628, 53810}, {3634, 55174}, {3817, 12518}, {3848, 58614}, {5550, 55175}, {9780, 12656}, {10171, 12614}, {12523, 19862}, {15808, 55176}, {19872, 55169}, {58444, 58463}

X(58718) = midpoint of X(i) and X(j) for these {i,j}: {1125, 12622}, {21633, 58440}
X(58718) = complement of X(58440)
X(58718) = {X(2),X(21633)}-harmonic conjugate of X(58440)


X(58719) = X(2)X(164)∩X(10)X(55172)

Barycentrics    (4*a - 3*b - 3*c)*Sin[A/2] + (-4*a + 3*b - 3*c)*Sin[B/2] + (-4*a - 3*b + 3*c)*Sin[C/2] : :
X(58719) = 9 X[2] + X[164], 21 X[2] - X[9807], 6 X[2] - X[21633], 3 X[2] + 2 X[58440], 7 X[164] + 3 X[9807], 2 X[164] + 3 X[21633], X[164] - 6 X[58440], 2 X[9807] - 7 X[21633], X[9807] + 14 X[58440], X[21633] + 4 X[58440], 3 X[10] + 2 X[55172], 6 X[1125] - X[55173], 11 X[3525] - X[12844], 2 X[3626] + 3 X[55176], 4 X[3634] + X[12523], 3 X[3740] + 2 X[58614], 11 X[5550] - X[12656], 7 X[9780] + 3 X[55175], 3 X[10164] + 2 X[12614], X[12518] - 6 X[58441], 2 X[12622] - 7 X[51073], 17 X[19872] + 3 X[55168]

X(58719) lies on these lines: {2, 164}, {10, 55172}, {632, 53810}, {1125, 55173}, {3525, 12844}, {3626, 55176}, {3634, 12523}, {3740, 58614}, {5326, 17641}, {5550, 12656}, {9780, 55175}, {10164, 12614}, {12518, 58441}, {12622, 51073}, {19862, 55174}, {19872, 55168}

X(58719) = {X(2),X(58440)}-harmonic conjugate of X(21633)


X(58720) = X(2)X(164)∩X(1657)X(12844)

Barycentrics    (3*a + 4*b + 4*c)*Sin[A/2] + (-3*a - 4*b + 4*c)*Sin[B/2] + (-3*a + 4*b - 4*c)*Sin[C/2] : :
X(58720) = 12 X[2] - 7 X[164], 3 X[2] + 7 X[9807], 9 X[2] - 14 X[21633], 33 X[2] - 28 X[58440], X[164] + 4 X[9807], 3 X[164] - 8 X[21633], 11 X[164] - 16 X[58440], 3 X[9807] + 2 X[21633], 11 X[9807] + 4 X[58440], 11 X[21633] - 6 X[58440], 2 X[1657] - 7 X[12844], 2 X[3633] - 7 X[12656]

X(58720) lies on these lines: {2, 164}, {1657, 12844}, {3633, 12656}, {3843, 53810}, {4668, 55174}


X(58721) = X(2)X(164)∩X(382)X(12844)

Barycentrics    (a + 4*b + 4*c)*Sin[A/2] + (-a - 4*b + 4*c)*Sin[B/2] + (-a + 4*b - 4*c)*Sin[C/2] : :
X(58721) = 12 X[2] - 5 X[164], 9 X[2] + 5 X[9807], 3 X[2] - 10 X[21633], 27 X[2] - 20 X[58440], 3 X[164] + 4 X[9807], X[164] - 8 X[21633], 9 X[164] - 16 X[58440], X[9807] + 6 X[21633], 3 X[9807] + 4 X[58440], 9 X[21633] - 2 X[58440], 2 X[382] + 5 X[12844], 2 X[3632] + 5 X[12656], 3 X[34747] - 10 X[55173]

X(58721) lies on these lines: {2, 164}, {382, 12844}, {3632, 12656}, {3851, 53810}, {34747, 55173}


X(58722) = X(2)X(164)∩X(381)X(12844)

Barycentrics    (a - 4*b - 4*c)*Sin[A/2] + (-a + 4*b - 4*c)*Sin[B/2] + (-a - 4*b + 4*c)*Sin[C/2] : :
X(58722) = 4 X[2] - X[164], 5 X[2] + X[9807], X[2] + 2 X[21633], 7 X[2] - 4 X[58440], 5 X[164] + 4 X[9807], X[164] + 8 X[21633], 7 X[164] - 16 X[58440], X[9807] - 10 X[21633], 7 X[9807] + 20 X[58440], 7 X[21633] + 2 X[58440], X[167] + 5 X[30308], 2 X[381] + X[12844], 4 X[3656] - X[11528], X[3679] - 4 X[12622], 2 X[3679] + X[12656], 8 X[12622] + X[12656], X[4677] + 2 X[55173], 2 X[12518] + X[50865], 7 X[19876] - X[55169], 13 X[34595] - 4 X[55171], 7 X[51110] - 4 X[55172]

X(58722) lies on these lines: {2, 164}, {167, 30308}, {381, 12844}, {3656, 11528}, {3679, 12622}, {4677, 55173}, {5055, 53810}, {12518, 50865}, {19875, 55174}, {19876, 55169}, {25055, 55175}, {34595, 55171}, {51110, 55172}

X(58722) = reflection of X(55175) in X(25055)


X(58723) = X(3)X(12028)∩X(4)X(94)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-a^2 + b^2 + c^2)*(a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 - a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58723) lies on the cubic K1337 and these lines: {3, 12028}, {4, 94}, {5, 57486}, {26, 476}, {1656, 43084}, {2072, 53168}, {5489, 14592}, {5576, 14356}, {7488, 38896}, {7517, 10688}, {7540, 14583}, {10024, 39170}, {10412, 56272}, {10539, 56397}, {11585, 51847}, {15761, 34209}, {18563, 51254}, {39235, 58261}, {43707, 45788}, {44076, 53169}, {45735, 56407}

X(58723) = isogonal conjugate of X(53170)
X(58723) = X(94)-Ceva conjugate of X(53416)
X(58723) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53170}, {6149, 38534}
X(58723) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 53170}, {2072, 3043}, {14993, 38534}, {46085, 22115}
X(58723) = barycentric product X(i)*X(j) for these {i,j}: {94, 2072}, {328, 53416}, {5392, 53168}, {40427, 46085}
X(58723) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53170}, {1989, 38534}, {2072, 323}, {46085, 34834}, {53168, 1993}, {53329, 14591}, {53416, 186}


X(58724) = X(2)X(57415)∩X(4)X(15241)

Barycentrics    (a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6) : :

X(58724) lies on the cubic K1337 and these lines: {2, 57415}, {4, 15241}, {26, 2165}, {68, 2072}, {96, 13579}, {847, 7505}

X(58724) = isogonal conjugate of X(2904)
X(58724) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2904}, {47, 7505}, {1748, 8553}
X(58724) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2904}, {34853, 7505}
X(58724) = cevapoint of X(3) and X(15317)
X(58724) = barycentric product X(i)*X(j) for these {i,j}: {68, 13579}, {5392, 15317}, {6504, 15242}, {27361, 57875}
X(58724) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 2904}, {68, 45794}, {2165, 7505}, {2351, 8553}, {13579, 317}, {15242, 6515}, {15317, 1993}, {27361, 467}, {34433, 8823}, {46963, 41679}


X(58725) = X(5)X(523)∩X(20)X(523)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-a^2 + b^2 + c^2)*(2*a^8 - 3*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58725) lies on the cubic K1337 and these lines: {3, 12028}, {4, 54415}, {5, 523}, {20, 94}, {24, 476}, {68, 265}, {254, 6344}, {1093, 46456}, {1658, 5961}, {2937, 56407}, {2970, 39375}, {6759, 56397}, {7387, 53768}, {7544, 52449}, {12605, 16934}, {14790, 53771}, {25711, 41512}, {44665, 53169}

X(58725) = X(1299)-isoconjugate of X(6149)
X(58725) = X(i)-Dao conjugate of X(j) for these (i,j): {131, 186}, {12095, 3043}, {14993, 1299}, {15454, 38936}, {16310, 34834}
X(58725) = barycentric product X(i)*X(j) for these {i,j}: {94, 44665}, {131, 40427}, {328, 16310}, {5392, 53169}, {14592, 30512}, {53788, 57486}, {56686, 57482}
X(58725) = barycentric quotient X(i)/X(j) for these {i,j}: {131, 34834}, {265, 43756}, {1989, 1299}, {2314, 6149}, {14582, 43709}, {16310, 186}, {30512, 14590}, {40427, 57760}, {44665, 323}, {53169, 1993}, {56686, 57487}
X(58725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 51847, 53168}, {14356, 58704, 14254}, {39170, 53168, 5}


X(58726) = X(3)X(974)∩X(4)X(155)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^12 - 4*a^10*b^2 + 5*a^8*b^4 - 5*a^4*b^8 + 4*a^2*b^10 - b^12 - 4*a^10*c^2 + 10*a^8*b^2*c^2 - 10*a^6*b^4*c^2 + 10*a^4*b^6*c^2 - 10*a^2*b^8*c^2 + 4*b^10*c^2 + 5*a^8*c^4 - 10*a^6*b^2*c^4 - 2*a^4*b^4*c^4 + 6*a^2*b^6*c^4 - 7*b^8*c^4 + 10*a^4*b^2*c^6 + 6*a^2*b^4*c^6 + 8*b^6*c^6 - 5*a^4*c^8 - 10*a^2*b^2*c^8 - 7*b^4*c^8 + 4*a^2*c^10 + 4*b^2*c^10 - c^12) : :
X(58726) = 3 X[3167] - X[9937], X[17836] + 3 X[37672]

X(58726) lies on the cubic K1337 and these lines: {3, 974}, {4, 155}, {6, 9820}, {26, 45780}, {30, 46372}, {68, 2072}, {110, 2904}, {140, 43593}, {156, 14984}, {195, 973}, {323, 11411}, {389, 1147}, {394, 3548}, {523, 46200}, {539, 32393}, {576, 9925}, {1154, 19908}, {2071, 12163}, {2888, 14852}, {3292, 21651}, {3357, 9938}, {3564, 13371}, {5448, 18418}, {5449, 8548}, {5654, 36749}, {5895, 17838}, {5925, 37498}, {6243, 41615}, {6642, 22530}, {7592, 9545}, {7666, 15087}, {7687, 9927}, {8681, 9926}, {9306, 12235}, {9716, 44802}, {10539, 43587}, {10665, 44634}, {10666, 44633}, {10821, 15066}, {11585, 12421}, {11799, 54148}, {12118, 18445}, {12164, 12301}, {12319, 34799}, {12420, 14790}, {12429, 50461}, {14913, 58496}, {15133, 52124}, {15644, 52019}, {17702, 22802}, {17822, 17836}, {17834, 45171}, {18281, 19509}, {18388, 18433}, {18934, 37669}, {18952, 32166}, {19504, 45010}, {30552, 37483}, {35488, 54163}, {35603, 37951}, {37489, 45172}

X(58726) = midpoint of X(i) and X(j) for these {i,j}: {155, 15316}, {12164, 12301}, {12420, 14790}
X(58726) = reflection of X(i) in X(j) for these {i,j}: {68, 20302}, {9932, 1147}, {32048, 156}
X(58726) = isogonal conjugate of X(53172)
X(58726) = 1st-Droz-Farney-circle-inverse of X(16172)
X(58726) = X(847)-Ceva conjugate of X(3)
X(58726) = X(1)-isoconjugate of X(53172)
X(58726) = X(3)-Dao conjugate of X(53172)
X(58726) = barycentric product X(5392)*X(53171)
X(58726) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53172}, {53171, 1993}
X(58726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {155, 12293, 11441}, {155, 36747, 22660}, {394, 19458, 12359}, {6193, 56292, 155}, {12161, 34966, 1147}


X(58727) = X(3)X(57636)∩X(4)X(131)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^8 - a^6*b^2 + a^4*b^4 - 3*a^2*b^6 + 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 + b^4*c^4 - 4*a^2*c^6 - b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + b^4*c^4 - 3*a^2*c^6 - 3*b^2*c^6 + 2*c^8) : :

X(58727) lies on the cubic K1337 and these lines: {3, 57636}, {4, 131}, {68, 54415}, {250, 35603}, {1147, 43756}, {12163, 32710}

X(58727) = isogonal conjugate of X(53169)
X(58727) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53169}, {2166, 12095}, {2314, 18883}, {36061, 55136}
X(58727) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 53169}, {11597, 12095}, {16221, 55136}
X(58727) = barycentric product X(i)*X(j) for these {i,j}: {1299, 37802}, {5962, 43756}, {44427, 46969}
X(58727) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 53169}, {50, 12095}, {1299, 18883}, {47230, 55136}


X(58728) = X(2)X(32545)∩X(3)X(76)

Barycentrics    (a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(a^8 - 3*a^6*b^2 + 4*a^4*b^4 - 3*a^2*b^6 + b^8 - 3*a^6*c^2 + 5*a^4*b^2*c^2 - a^2*b^4*c^2 - b^6*c^2 + 4*a^4*c^4 - a^2*b^2*c^4 - 3*a^2*c^6 - b^2*c^6 + c^8) : :

X(58728) lies on the cubic K1338 and these lines: {2, 32545}, {3, 76}, {5, 2966}, {69, 47741}, {141, 47388}, {287, 34507}, {631, 34156}, {1147, 14355}, {2888, 53174}, {3090, 35906}, {3519, 57742}, {3523, 35912}, {6531, 7746}, {7607, 11331}, {7836, 17974}, {9291, 22456}, {24206, 52081}, {37450, 47382}, {40330, 51963}, {40448, 43665}

X(58728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53783, 32545}, {10104, 14382, 98}


X(58729) = X(5)X(523)∩X(94)X(96)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-a^2 + b^2 + c^2)*(2*a^8 - 4*a^6*b^2 + 3*a^4*b^4 - 2*a^2*b^6 + b^8 - 4*a^6*c^2 + 2*a^2*b^4*c^2 - 4*b^6*c^2 + 3*a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(58719) lies on the cubic K1338 and these lines: {5, 523}, {94, 96}, {265, 3519}, {328, 28706}, {476, 3518}, {7576, 57486}, {12028, 35921}, {14889, 19553}, {14980, 31724}, {40631, 45083}, {43965, 56292}

X(58729) = X(14859)-Ceva conjugate of X(265)
X(58729) = X(2383)-isoconjugate of X(6149)
X(58729) = X(i)-Dao conjugate of X(j) for these (i,j): {128, 186}, {14993, 2383}
X(58729) = barycentric product X(i)*X(j) for these {i,j}: {94, 539}, {231, 328}, {35139, 52742}, {43084, 52760}
X(58729) = barycentric quotient X(i)/X(j) for these {i,j}: {94, 57890}, {231, 186}, {265, 57647}, {328, 57798}, {539, 323}, {1989, 2383}, {52742, 526}
X(58729) = {X(5),X(38896)}-harmonic conjugate of X(58704)


X(58730) = X(3)X(539)∩X(76)X(95)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^12 - 5*a^10*b^2 + 11*a^8*b^4 - 14*a^6*b^6 + 11*a^4*b^8 - 5*a^2*b^10 + b^12 - 5*a^10*c^2 + 15*a^8*b^2*c^2 - 14*a^6*b^4*c^2 + 7*a^2*b^8*c^2 - 3*b^10*c^2 + 11*a^8*c^4 - 14*a^6*b^2*c^4 + 2*a^4*b^4*c^4 - 2*a^2*b^6*c^4 + 3*b^8*c^4 - 14*a^6*c^6 - 2*a^2*b^4*c^6 - 2*b^6*c^6 + 11*a^4*c^8 + 7*a^2*b^2*c^8 + 3*b^4*c^8 - 5*a^2*c^10 - 3*b^2*c^10 + c^12) : :

X(58730) lies on the cubic K1338 and these lines: {3, 539}, {76, 95}, {1609, 41627}, {6503, 6642}, {7395, 34505}, {11414, 45918}, {13621, 23181}

X(58730) = X(311)-Ceva conjugate of X(394)
X(58730) = X(19210)-Dao conjugate of X(54)


X(58731) = X(4)X(110)∩X(22)X(14911)

Barycentrics    (a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + a^6*b^2*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 + 4*a^2*b^4*c^4 - 2*b^6*c^4 + 2*a^4*c^6 - 3*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(58731) lies on cubic K1338 and these lines: {4, 110}, {22, 14911}, {7512, 39986}, {10419, 15760}, {10420, 12225}, {12028, 35921}, {12088, 38678}

X(58731) = X(i)-Dao conjugate of X(j) for these (i,j): {186, 1986}, {46664, 55121}
X(58731) = barycentric product X(i)*X(j) for these {i,j}: {2986, 3153}, {40832, 56924}
X(58731) = barycentric quotient X(i)/X(j) for these {i,j}: {3153, 3580}, {32708, 53962}, {56924, 3003}


X(58732) = X(3)X(95)∩X(4)X(39837)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-a^8 + a^6*b^2 + 2*a^4*b^4 - 3*a^2*b^6 + b^8 + a^6*c^2 - a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 3*b^6*c^2 + 2*a^4*c^4 + 3*a^2*b^2*c^4 + 4*b^4*c^4 - 3*a^2*c^6 - 3*b^2*c^6 + c^8) : :

X(58732) lies on the cubic K1339 and these lines: {3, 95}, {4, 39837}, {52, 32002}, {324, 9291}, {2052, 9290}, {12252, 44142}, {16089, 44732}, {34505, 52282}, {34511, 41677}, {35701, 39931}

X(58732) = polar conjugate of the isogonal conjugate of X(17035)
X(58732) = X(324)-Ceva conjugate of X(264)
X(58732) = X(95)-Dao conjugate of X(97)
X(58732) = barycentric product X(264)*X(17035)
X(58732) = barycentric quotient X(17035)/X(3)
X(58732) = {X(276),X(14978)}-harmonic conjugate of X(264)


X(58733) = X(4)X(94)∩X(4)X(476)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 - a^2*b^2*c^4 - 2*b^4*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8) : :

X(58733) lies on the cubic K1339 and these lines: {2, 51345}, {3, 3447}, {4, 94}, {5, 476}, {30, 47053}, {32, 1989}, {83, 54554}, {381, 14583}, {382, 51254}, {546, 34209}, {567, 14560}, {1117, 11071}, {1624, 3432}, {3521, 43707}, {3581, 39235}, {3832, 53137}, {3845, 5627}, {5961, 45735}, {7506, 53168}, {7540, 53768}, {7545, 52153}, {7747, 56396}, {10412, 20188}, {10688, 31724}, {11557, 50471}, {11818, 57486}, {12028, 38321}, {12106, 18883}, {14559, 23236}, {14731, 47055}, {18355, 37814}, {18817, 54100}, {31723, 57482}, {36749, 53169}, {38791, 41390}, {43083, 53320}

X(58733) = isogonal conjugate of X(51256)
X(58733) = X(i)-Ceva conjugate of X(j) for these (i,j): {11538, 56404}, {23582, 41392}
X(58733) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51256}, {6149, 33565}
X(58733) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51256}, {14993, 33565}, {15295, 34448}, {18558, 15526}, {46439, 526}
X(58733) = barycentric product X(i)*X(j) for these {i,j}: {94, 2070}, {265, 37766}, {476, 24978}, {9380, 18817}, {11557, 40427}, {19552, 30529}
X(58733) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51256}, {1989, 33565}, {2070, 323}, {6344, 9381}, {9380, 22115}, {11060, 34448}, {11557, 34834}, {24978, 3268}, {37766, 340}, {56404, 38542}
X(58733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14254, 265}, {4, 52449, 14254}, {381, 14583, 14993}, {382, 56400, 51254}, {11581, 11582, 56404}


X(58734) = X(4)X(32)∩X(5)X(32696)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4)*(a^10 - 3*a^8*b^2 + 4*a^6*b^4 - 4*a^4*b^6 + 3*a^2*b^8 - b^10 - 3*a^8*c^2 + 5*a^6*b^2*c^2 - 4*a^4*b^4*c^2 + a^2*b^6*c^2 + b^8*c^2 + 4*a^6*c^4 - 4*a^4*b^2*c^4 - 4*a^4*c^6 + a^2*b^2*c^6 + 3*a^2*c^8 + b^2*c^8 - c^10) : :

X(58734) lies on the cubic K1339 and these lines: {4, 32}, {5, 32696}, {287, 34118}, {6145, 57742}, {14216, 35912}, {14355, 37119}, {17974, 20299}, {36176, 52641}


X(58735) = X(3)X(161)∩X(24)X(96)

Barycentrics    a^2*(a^14 - 4*a^12*b^2 + 6*a^10*b^4 - 5*a^8*b^6 + 5*a^6*b^8 - 6*a^4*b^10 + 4*a^2*b^12 - b^14 - 4*a^12*c^2 + 9*a^10*b^2*c^2 - 6*a^8*b^4*c^2 + 6*a^4*b^8*c^2 - 9*a^2*b^10*c^2 + 4*b^12*c^2 + 6*a^10*c^4 - 6*a^8*b^2*c^4 + 2*a^6*b^4*c^4 + 4*a^2*b^8*c^4 - 6*b^10*c^4 - 5*a^8*c^6 + 2*a^2*b^6*c^6 + 3*b^8*c^6 + 5*a^6*c^8 + 6*a^4*b^2*c^8 + 4*a^2*b^4*c^8 + 3*b^6*c^8 - 6*a^4*c^10 - 9*a^2*b^2*c^10 - 6*b^4*c^10 + 4*a^2*c^12 + 4*b^2*c^12 - c^14) : :

X(58735) lies on the cubic K1139 and these lines: {3, 161}, {4, 11587}, {24, 96}, {25, 6750}, {26, 157}, {32, 39045}, {143, 1576}, {216, 3463}, {231, 1609}, {973, 54034}, {1601, 2070}, {1624, 3432}, {2393, 37081}, {3133, 32762}, {5248, 37812}, {5961, 45286}, {6240, 54077}, {6242, 8154}, {6642, 6680}, {6644, 37846}, {7730, 25044}, {12280, 52603}, {14674, 14703}, {15781, 18383}, {16030, 19468}, {19210, 44668}, {32379, 42441}

X(58735) = circumcircle-inverse of X(52122)
X(58735) = tangential-isogonal conjugate of X(6759)
X(58735) = X(324)-Ceva conjugate of X(6)
X(58735) = X(14533)-Dao conjugate of X(97)
X(58735) = barycentric product X(5)*X(45832)
X(58735) = barycentric quotient X(45832)/X(95)
X(58735) = {X(2917),X(56308)}-harmonic conjugate of X(3)


X(58736) = X(4)X(973)∩X(32)X(393)

Barycentrics    (a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^14 - 3*a^12*b^2 + a^10*b^4 + 5*a^8*b^6 - 5*a^6*b^8 - a^4*b^10 + 3*a^2*b^12 - b^14 - 3*a^12*c^2 + 3*a^10*b^2*c^2 + 5*a^8*b^4*c^2 - 6*a^6*b^6*c^2 + 3*a^4*b^8*c^2 - 5*a^2*b^10*c^2 + 3*b^12*c^2 + a^10*c^4 + 5*a^8*b^2*c^4 - 2*a^6*b^4*c^4 - 2*a^4*b^6*c^4 + a^2*b^8*c^4 - 3*b^10*c^4 + 5*a^8*c^6 - 6*a^6*b^2*c^6 - 2*a^4*b^4*c^6 + 2*a^2*b^6*c^6 + b^8*c^6 - 5*a^6*c^8 + 3*a^4*b^2*c^8 + a^2*b^4*c^8 + b^6*c^8 - a^4*c^10 - 5*a^2*b^2*c^10 - 3*b^4*c^10 + 3*a^2*c^12 + 3*b^2*c^12 - c^14) : :

X(58736) lies on the cubic K1339 and these lines: {4, 973}, {32, 393}, {3091, 6523}, {3432, 3518}, {3542, 6525}, {7404, 10002}, {7528, 14978}, {51385, 54001}

X(58736) = X(324)-Ceva conjugate of X(393)
X(58736) = X(8882)-Dao conjugate of X(97)
X(58736) = barycentric product X(2052)*X(2917)
X(58736) = barycentric quotient X(2917)/X(394)


X(58737) = X(1)X(265)∩X(3)X(6149)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(b + c)*(a^4 - 2*a^2*b^2 + b^4 - a*b*c^2 - c^4)*(a^4 - b^4 - a*b^2*c - 2*a^2*c^2 + c^4) : :

X(58737) lies on the Jerabek circumhyperbola, the cubic K1340, and these lines: {1, 265}, {3, 6149}, {4, 38336}, {56, 57695}, {68, 37733}, {69, 41808}, {1464, 52390}, {2151, 36297}, {2152, 36296}, {2594, 52391}, {17104, 57736}, {36130, 43707}

X(58737) = isogonal conjugate of X(13746)
X(58737) = X(i)-isoconjugate of X(j) for these (i,j): {1, 13746}, {21, 3585}, {29, 18447}, {333, 5341}
X(58737) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 13746}, {40611, 3585}
X(58737) = trilinear pole of line {647, 2624}
X(58737) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 13746}, {1400, 3585}, {1402, 5341}, {1409, 18447}


X(58738) = X(35)X(255)∩X(36)X(47)

Barycentrics    a^3*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c - b^3*c - 2*a^2*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(58738) lies on the cubic K1340 and these lines: {1, 1399}, {3, 6149}, {31, 5563}, {35, 255}, {36, 47}, {46, 1394}, {56, 2964}, {58, 3924}, {79, 37530}, {80, 1771}, {109, 5903}, {171, 37719}, {222, 36152}, {580, 37524}, {582, 5131}, {601, 3746}, {1497, 37602}, {1718, 3336}, {1935, 7951}, {2077, 56535}, {2361, 7280}, {3073, 37720}, {3075, 7741}, {3215, 54301}, {3216, 14812}, {3338, 7290}, {3562, 10058}, {3585, 5348}, {4257, 6126}, {4337, 22361}, {4351, 7098}, {5010, 52408}, {5119, 35658}, {5172, 23070}, {6127, 6924}, {7428, 53324}, {8069, 23072}, {10964, 11508}, {11509, 16473}, {37469, 37571}, {37522, 37701}, {37707, 54350}

X(58738) = X(80)-isoconjugate of X(33599)
X(58738) = barycentric product X(i)*X(j) for these {i,j}: {57, 45392}, {3218, 10260}
X(58738) = barycentric quotient X(i)/X(j) for these {i,j}: {7113, 33599}, {10260, 18359}, {45392, 312}
X(58738) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {47, 603, 36}, {1399, 52407, 1}


X(58739) = X(3)X(80)∩X(65)X(513)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(2*a^4 - 2*a^3*b - a^2*b^2 + 2*a*b^3 - b^4 - 2*a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(58739) lies on the cubic K1340 and these lines: {3, 80}, {65, 513}, {655, 41687}, {944, 14204}, {1388, 2006}, {1411, 10571}, {1837, 3417}, {2646, 56416}, {10944, 14628}, {11011, 52212}, {21842, 56419}


X(58740) = X(1)X(265)∩X(5)X(523)

Barycentrics    (a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^4*b^2 - 2*a^2*b^4 + b^6 - a^3*b^2*c + a*b^4*c + a^4*c^2 - a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 - a*b^2*c^3 - 2*a^2*c^4 + a*b*c^4 - b^2*c^4 + c^6) : :

X(58740) lies on the cubic K1340 and these lines: {1, 265}, {3, 51883}, {5, 523}, {56, 79}, {355, 6742}, {381, 41496}, {476, 13746}, {517, 27685}, {946, 56845}, {1789, 26286}, {2166, 7741}, {3417, 3615}, {7100, 10571}, {8609, 8818}, {9955, 52382}, {11680, 52344}, {14643, 57263}, {18480, 56847}, {37819, 56843}, {44229, 52002}, {51709, 56402}

X(58740) = {X(5),X(52200)}-harmonic conjugate of X(6757)


X(58741) = X(3)X(102)∩X(34)X(2716)

Barycentrics    a^3*(a^2 - b^2 + b*c - c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a^2*c^2 - 2*a*b*c^2 + b^2*c^2 + a*c^3 + b*c^3 - 2*c^4)*(a^4 - a^3*b + a^2*b^2 + a*b^3 - 2*b^4 + a^2*b*c - 2*a*b^2*c + b^3*c - 2*a^2*c^2 + a*b*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(58741) lies on the cubic K1340 and these lines: {3, 102}, {34, 2716}, {47, 36040}, {58, 23189}, {215, 7335}, {1789, 13486}, {2975, 36100}, {4291, 32677}, {11700, 56757}, {15446, 36121}

X(58741) = X(i)-isoconjugate of X(j) for these (i,j): {80, 515}, {1455, 52409}, {2182, 18359}, {2222, 14304}, {6187, 35516}, {6740, 51421}, {8755, 52351}, {18815, 51361}, {34050, 36910}, {36590, 51422}, {46649, 57446}, {51562, 53522}, {56416, 56638}
X(58741) = X(i)-Dao conjugate of X(j) for these (i,j): {38984, 14304}, {40612, 35516}
X(58741) = barycentric product X(i)*X(j) for these {i,j}: {36, 36100}, {102, 3218}, {320, 32677}, {1443, 15629}, {3904, 36040}, {7113, 34393}, {17923, 36055}, {22128, 36121}, {52407, 52780}
X(58741) = barycentric quotient X(i)/X(j) for these {i,j}: {102, 18359}, {654, 14304}, {2432, 52356}, {3218, 35516}, {7113, 515}, {15629, 52409}, {21758, 53522}, {32643, 2222}, {32677, 80}, {36040, 655}, {36055, 52351}, {36100, 20566}, {52059, 11700}, {52426, 51361}, {52434, 2182}, {52440, 34050}


X(58742) = X(3)X(1854)∩X(4)X(36)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^6 - a^5*b - a^4*b^2 + 2*a^3*b^3 - a^2*b^4 - a*b^5 + b^6 - a^5*c + a^4*b*c - a^2*b^3*c + a*b^4*c - a^4*c^2 + 3*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 - a^2*b*c^3 - a*b^2*c^3 - a^2*c^4 + a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :

X(58742) lies on the cubic K1340 and these lines: {1, 3417}, {3, 1854}, {4, 36}, {56, 11334}, {355, 2222}, {2217, 38945}, {4331, 37583}, {5886, 37806}, {10571, 14529}, {11375, 37816}, {11376, 37815}, {17104, 57736}, {45963, 53298}


X(58743) = X(4)X(11)∩X(21)X(7253)

Barycentrics    a*(a - b - c)*(a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^5 - a^3*b^2 + a^2*b^3 - b^5 + a^3*b*c - a^2*b^2*c - a*b^3*c + b^4*c - a^3*c^2 - a^2*b*c^2 + 2*a*b^2*c^2 + a^2*c^3 - a*b*c^3 + b*c^4 - c^5) : :

X(58743) lies on the cubic K1340 and these lines: {4, 11}, {21, 7253}, {595, 2342}, {1809, 39167}, {1837, 3417}, {2720, 2733}, {3486, 36944}, {3869, 36037}, {10393, 36819}, {10702, 36100}, {12047, 52640}

X(58743) = barycentric product X(34234)*X(45272)
X(58743) = barycentric quotient X(45272)/X(908)


X(58744) = X(1)X(2476)∩X(3)X(3417)

Barycentrics    a*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 3*a^4*b*c - a^3*b^2*c - 2*a^2*b^3*c + 3*a*b^4*c - b^5*c - a^4*c^2 - a^3*b*c^2 + 5*a^2*b^2*c^2 - 2*a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 - 2*a^2*b*c^3 - 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + 3*a*b*c^4 - b^2*c^4 - 2*a*c^5 - b*c^5 + c^6) : :

X(58744) lies on the cubic K1340 and these lines: {1, 2476}, {3, 3417}, {4, 6224}, {8, 6853}, {21, 15446}, {56, 39778}, {78, 36922}, {100, 5903}, {145, 12739}, {224, 17579}, {411, 40257}, {484, 4855}, {1001, 10394}, {2099, 3913}, {2475, 3485}, {3873, 26437}, {3899, 34871}, {4881, 7098}, {5057, 6261}, {5176, 37700}, {5253, 30274}, {5289, 20846}, {5440, 35004}, {5552, 12247}, {5887, 26287}, {6326, 11681}, {6830, 45770}, {6985, 35457}, {7704, 18493}, {12514, 37616}, {12740, 18220}, {14882, 38901}, {16118, 34600}, {17057, 30147}, {31937, 35597}

X(58744) = {X(4511),X(21740)}-harmonic conjugate of X(3869)


X(58745) = X(4)X(38336)∩X(24)X(56)

Barycentrics    a*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 + a^6*b*c - a^5*b^2*c - a^4*b^3*c + 2*a^3*b^4*c - a^2*b^5*c - a*b^6*c + b^7*c - 2*a^6*c^2 - a^5*b*c^2 + 5*a^4*b^2*c^2 - a^3*b^3*c^2 - 3*a^2*b^4*c^2 + 2*a*b^5*c^2 - a^4*b*c^3 - a^3*b^2*c^3 + 4*a^2*b^3*c^3 - a*b^4*c^3 - b^5*c^3 + 2*a^3*b*c^4 - 3*a^2*b^2*c^4 - a*b^3*c^4 + 2*b^4*c^4 - a^2*b*c^5 + 2*a*b^2*c^5 - b^3*c^5 + 2*a^2*c^6 - a*b*c^6 + b*c^7 - c^8) : :

X(58745) lies on the cubic K1340 and these lines: {4, 38336}, {24, 56}, {34, 990}, {2074, 3194}, {2906, 17104}, {3616, 43742}, {7952, 37821}, {15446, 36121}


X(58746) = X(4)X(137)∩X(5)X(523)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^12*b^2 - 4*a^10*b^4 + 5*a^8*b^6 - 5*a^4*b^10 + 4*a^2*b^12 - b^14 + a^12*c^2 - 6*a^10*b^2*c^2 + 10*a^8*b^4*c^2 - 7*a^6*b^6*c^2 + 6*a^4*b^8*c^2 - 7*a^2*b^10*c^2 + 3*b^12*c^2 - 4*a^10*c^4 + 10*a^8*b^2*c^4 - 4*a^6*b^4*c^4 - a^4*b^6*c^4 + 2*a^2*b^8*c^4 - 3*b^10*c^4 + 5*a^8*c^6 - 7*a^6*b^2*c^6 - a^4*b^4*c^6 + 2*a^2*b^6*c^6 + b^8*c^6 + 6*a^4*b^2*c^8 + 2*a^2*b^4*c^8 + b^6*c^8 - 5*a^4*c^10 - 7*a^2*b^2*c^10 - 3*b^4*c^10 + 4*a^2*c^12 + 3*b^2*c^12 - c^14) : :

X(58746) lies on cubic K1341 and these lines: {3, 14980}, {4, 137}, {5, 523}, {195, 265}, {381, 15392}, {1624, 3432}, {1989, 27371}, {2888, 43965}, {3153, 51254}, {14583, 37943}, {21451, 52449}, {44057, 46591}
on K1341

X(58746) = X(6149)-isoconjugate of X(39431)
X(58746) = X(14993)-Dao conjugate of X(39431)
X(58746) = barycentric product X(14592)*X(46591)
X(58746) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 39431}, {44057, 14918}, {46591, 14590}
X(58746) = {X(5),X(38896)}-harmonic conjugate of X(39170)




leftri  Tripolar triangles: X(58747) - X(58909)  rightri

This preamble and centers X(58747)-X(58909) were contributed by César Eliud Lozada, September 24, 2023.

Let T' = A'B'C', T" = A"B"C" be two perspective triangles, neither inscribed in the other. Denote their perspector Q and their axis of perspectivity r.

Let A1, B1, C1 be the tripoles of B'C', C'A', A'B' with respect to T", in the same order. The triangle A1B1C1 is named here the tripolar triangle of T' with respect to T" and denoted as TPT(T', T").

Let A2B2C2 be the tripolar triangle of T" with respect to T', i.e, T2=TPT(T", T')

Then:

A list of related centers for triangles ABC and orthic can be seen here.

Note: For definitions of triangles used in this section, check the Index of triangles referenced in ETC.



Note added by César Lozada on November 7, 2024:

The following construction by Chris van Tienhoven is published in Perspective-Fields-Part2.pdf:

Let T' = A'B'C' and T" = A"B"C" be two perspective triangles, neither inscribed in the other, with perspector O and perspectrix r.

 - Let β be the perpendicular line to B'C' through B', A'r = B'C' ∩ r, γ the perpendicular line to B'C' through A'r.
 - Let X be a variable point on β and Y = XC' ∩ γ.
 - Let M be the midpoint of B'X and A'o = MY ∩ B'C'.

Then, as X moves on the line β, A'o remains unchanged and, if B'o and C'o are built cyclically, triangles T'=A'B'C' and A'oB'oC'o are perspective with a perspector Q'.

By swapping T' and T" in the previous construction, another triangle A"oB"oC"o is found and also similarly perspective to T"=A"B"C" with a perspector Q".

Chris van Tienhoven calls Q' and Q" the perspective centroids of T" wrt T' and T' wrt T", respectively. Also, he mentions that A'r is the vanising point of B'C' in the perspective of T' and T".

It results that the perspective centroids Q' and Q" coincide with the tripolar perspectors T' to T" and T" to T'.

underbar

X(58747) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANDROMEDA TO ABC

Barycentrics    a*(a^2-2*b*a+b^2+3*c^2)*(a^2-2*c*a+3*b^2+c^2)*(7*a^2-10*b*c+5*c^2+5*b^2) : :

X(58747) lies on these lines: {1, 1462}, {4021, 56264}, {7274, 45834}, {17598, 39959}, {29598, 39749}, {30350, 52013}


X(58748) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANDROMEDA

Barycentrics    a*(b-c)*(a+b-c)*(a-b+c)*((b+c)*a-b^2-c^2)*(a^2-2*b*a+b^2+3*c^2)*(a^2-2*c*a+3*b^2+c^2) : :

X(58748) lies on these lines: {644, 934}, {1146, 1358}, {2254, 3669}, {2820, 35355}, {3126, 42341}, {21446, 52228}, {43042, 53583}

X(58748) = X(i)-Dao conjugate of-X(j) for these (i, j): (3126, 14330), (35094, 30854), (38980, 390)
X(58748) = X(i)-isoconjugate of-X(j) for these {i, j}: {294, 35280}, {390, 919}, {5222, 52927}, {30854, 32666}
X(58748) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (918, 30854), (1458, 35280), (2254, 390), (14347, 497), (17435, 14330), (21446, 666), (39959, 36802), (52013, 36086), (53539, 7290), (53544, 5222), (53551, 3755), (56264, 51560)
X(58748) = barycentric product X(i)*X(j) for these {i, j}: {918, 21446}, {2254, 56264}, {8817, 14347}, {39749, 53544}, {39959, 43042}
X(58748) = trilinear product X(i)*X(j) for these {i, j}: {665, 56264}, {918, 52013}, {2254, 21446}, {7131, 14347}, {35505, 41075}, {39749, 53539}, {39959, 53544}
X(58748) = trilinear quotient X(i)/X(j) for these (i, j): (241, 35280), (918, 390), (14347, 2082), (21446, 36086), (39749, 36802), (41075, 57536), (43042, 5222), (52013, 919), (53544, 7290), (56264, 666)


X(58749) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANTI-ARTZT

Barycentrics    (b^2-c^2)*(a^2-2*b^2-2*c^2)*(4*a^4-(b^2+c^2)*a^2+b^4-4*b^2*c^2+c^4)*(a^4+5*(b^2+c^2)*a^2-2*b^4+2*b^2*c^2-2*c^4)^2 : :

X(58749) lies on these lines: {99, 6233}, {8704, 11186}

X(58749) = pole of the line {99, 598} with respect to the anti-Artzt circle
X(58749) = pole of the line {6233, 11186} with respect to the Stammler hyperbola


X(58750) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-ATIK TO ABC

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(3*a^6-9*(b^2+c^2)*a^4+3*(3*b^4+2*b^2*c^2+3*c^4)*a^2-(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)) : :

X(58750) lies on these lines: {4, 66}, {69, 21447}, {393, 524}, {1249, 53477}, {2052, 54785}, {6820, 44128}, {8745, 52283}, {37174, 56017}


X(58751) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANTI-ATIK

Barycentrics    (b^2-c^2)*(a^8-2*(b^2+c^2)*a^6+12*b^2*c^2*a^4+2*(b^4-c^4)*(b^2-c^2)*a^2-(-4*b^2*c^2+(b^2-c^2)^2)*(b^2-c^2)^2)*(3*a^2-b^2-c^2)^2*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2/a^2 : :

X(58751) lies on these lines: {}


X(58752) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st ANTI-BROCARD

Barycentrics    a^4*(b^6-c^6)*(a^4-b^2*c^2) : :

X(58752) lies on these lines: {187, 237}, {804, 5976}, {881, 2491}, {9006, 17415}

X(58752) = reflection of X(881) in X(2491)
X(58752) = isogonal conjugate of X(41073)
X(58752) = cross-difference of every pair of points on the line X(2)X(3114)
X(58752) = crosssum of X(804) and X(24256)
X(58752) = X(i)-Dao conjugate of-X(j) for these (i, j): (6784, 8842), (8290, 9063), (52658, 18829)
X(58752) = X(9006)-hirst inverse of-X(17415)
X(58752) = X(i)-isoconjugate of-X(j) for these {i, j}: {805, 46281}, {1934, 33514}, {1967, 9063}, {3113, 18829}, {3114, 37134}, {37207, 40835}
X(58752) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (385, 9063), (3117, 18829), (5027, 3114), (9006, 694), (9865, 4609), (14602, 33514), (17415, 1916), (18899, 805), (18902, 58111), (43977, 41209), (50549, 18896), (58779, 3978), (58862, 40834), (58864, 40835)
X(58752) = perspector of the circumconic through X(6) and X(3117)
X(58752) = pole of the line {1975, 44453} with respect to the 2nd Brocard circle
X(58752) = pole of the line {6, 1916} with respect to the circumcircle
X(58752) = pole of the line {44423, 51511} with respect to the Gallatly circle
X(58752) = pole of the line {262, 6234} with respect to the orthoptic circle of Steiner inellipse
X(58752) = pole of the line {264, 17980} with respect to the polar circle
X(58752) = pole of the line {6, 1916} with respect to the Brocard inellipse
X(58752) = pole of the line {99, 17938} with respect to the Stammler hyperbola
X(58752) = pole of the line {194, 25332} with respect to the Steiner circumellipse
X(58752) = pole of the line {39, 10161} with respect to the Steiner inellipse
X(58752) = pole of the line {670, 805} with respect to the Steiner-Wallace hyperbola
X(58752) = barycentric product X(i)*X(j) for these {i, j}: {385, 17415}, {669, 9865}, {694, 58779}, {804, 3117}, {1691, 50549}, {3094, 5027}, {3778, 30654}, {3978, 9006}, {14295, 18899}, {18904, 58862}, {18905, 58864}, {21751, 30639}
X(58752) = trilinear product X(i)*X(j) for these {i, j}: {1580, 17415}, {1924, 9865}, {1933, 50549}, {1966, 9006}, {1967, 58779}, {3116, 5027}, {8022, 30639}, {16584, 30654}
X(58752) = trilinear quotient X(i)/X(j) for these (i, j): (804, 46281), (1933, 33514), (1966, 9063), (3116, 18829), (3117, 37134), (5027, 3113), (9006, 1967), (9865, 4602), (17415, 1581), (30654, 38810), (45882, 40834), (50549, 1934)


X(58753) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 4th ANTI-BROCARD TO ABC

Barycentrics    a^2*(a^2-5*b^2+c^2)*(a^2-5*c^2+b^2)*(4*a^6-3*(b^2+c^2)*a^4-6*(b^2-c^2)^2*a^2+b^6+c^6) : :

X(58753) lies on these lines: {3, 111}, {2434, 2502}, {2854, 57467}, {5512, 12506}, {6088, 8644}, {8546, 28662}, {9172, 15304}, {9872, 34015}, {13468, 47074}, {14688, 22111}, {32424, 38951}, {33979, 37751}

X(58753) = isogonal conjugate of the antigonal conjugate of X(1992)
X(58753) = cross-difference of every pair of points on the line X(9125)X(11165)
X(58753) = crosssum of X(1499) and X(14858)
X(58753) = X(32648)-reciprocal conjugate of-X(53613)
X(58753) = X(6088)-vertex conjugate of-X(21448)
X(58753) = inverse of X(21448) in circumcircle
X(58753) = pole of the line {6088, 21448} with respect to the circumcircle
X(58753) = barycentric product X(13492)*X(57508)
X(58753) = trilinear quotient X(36045)/X(53613)


X(58754) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 4th ANTI-BROCARD

Barycentrics    a^2*(b^2-c^2)*(2*a^2-b^2-c^2)*(a^2-5*b^2+c^2)*(a^2-5*c^2+b^2) : :

X(58754) lies on these lines: {110, 1296}, {351, 21905}, {512, 5107}, {526, 55977}, {690, 55271}, {1499, 8352}, {3569, 21448}, {8644, 20186}, {9212, 52496}, {11186, 30230}, {14398, 39238}

X(58754) = reflection of X(351) in X(21905)
X(58754) = cross-difference of every pair of points on the line X(1992)X(6791)
X(58754) = crosspoint of X(2434) and X(57467)
X(58754) = crosssum of X(i) and X(j) for these {i, j}: {1499, 27088}, {1992, 9125}, {2408, 52141}
X(58754) = X(2434)-Ceva conjugate of-X(57467)
X(58754) = X(i)-Dao conjugate of-X(j) for these (i, j): (512, 2444), (1084, 52141), (3005, 2408), (21905, 1499), (23992, 11059), (38988, 1992), (48317, 58782)
X(58754) = X(i)-isoconjugate of-X(j) for these {i, j}: {662, 52141}, {892, 36277}, {1992, 36085}, {2408, 24041}, {2444, 24037}, {11059, 36142}
X(58754) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (351, 1992), (512, 52141), (690, 11059), (1084, 2444), (1296, 52940), (2418, 34537), (2434, 4590), (3124, 2408), (5485, 53080), (14273, 58782), (14444, 58284), (21448, 892), (21906, 1499), (32648, 34539), (39238, 691), (52477, 6331), (54274, 27088), (57467, 99)
X(58754) = perspector of the circumconic through X(21448) and X(57467)
X(58754) = pole of the line {5210, 9145} with respect to the circumcircle
X(58754) = pole of the line {5050, 38698} with respect to the 2nd Lemoine (or cosine) circle
X(58754) = barycentric product X(i)*X(j) for these {i, j}: {115, 2434}, {351, 5485}, {523, 57467}, {647, 52477}, {690, 21448}, {1296, 1648}, {2418, 3124}, {2642, 55923}, {14273, 55977}, {18012, 51927}, {21906, 35179}, {35522, 39238}
X(58754) = trilinear product X(i)*X(j) for these {i, j}: {351, 55923}, {661, 57467}, {810, 52477}, {2434, 2643}, {2642, 21448}, {21906, 37216}, {23992, 36045}
X(58754) = trilinear quotient X(i)/X(j) for these (i, j): (351, 36277), (661, 52141), (1648, 14207), (2418, 24037), (2434, 24041), (2642, 1992), (2643, 2408), (21448, 36085), (36045, 34539), (37216, 52940), (39238, 36142), (52477, 811), (55923, 892), (57467, 662)


X(58755) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-CONWAY TO ABC

Barycentrics    a^2*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)*(a^4-3*(b^2+c^2)*a^2+2*(b^2-c^2)^2) : :

X(58755) lies on these lines: {6, 24}, {53, 275}, {95, 524}, {97, 36751}, {195, 42445}, {216, 19210}, {233, 539}, {570, 8603}, {590, 16037}, {615, 16032}, {1609, 16030}, {4994, 43842}, {6748, 8884}, {6749, 38808}, {8553, 51255}, {9220, 9378}, {13345, 41270}, {14576, 37505}, {37649, 57875}, {43908, 57703}, {45800, 53038}, {46090, 51544}

X(58755) = isogonal conjugate of the polar conjugate of X(4994)
X(58755) = cross-difference of every pair of points on the line X(6368)X(20577)
X(58755) = X(288)-Ceva conjugate of-X(43842)
X(58755) = X(15004)-cross conjugate of-X(4994)
X(58755) = X(13472)-isoconjugate of-X(14213)
X(58755) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1656, 311), (4994, 264), (10979, 343), (14533, 56338), (15004, 5), (54034, 13472)
X(58755) = pole of the line {18314, 35441} with respect to the polar circle
X(58755) = pole of the line {15451, 58903} with respect to the Brocard inellipse
X(58755) = pole of the line {13366, 14533} with respect to the Jerabek circumhyperbola
X(58755) = pole of the line {343, 57805} with respect to the Stammler hyperbola
X(58755) = barycentric product X(i)*X(j) for these {i, j}: {3, 4994}, {54, 1656}, {95, 15004}, {275, 10979}, {22268, 43842}
X(58755) = trilinear product X(i)*X(j) for these {i, j}: {48, 4994}, {1656, 2148}, {2167, 15004}, {2190, 10979}
X(58755) = trilinear quotient X(i)/X(j) for these (i, j): (1656, 14213), (2148, 13472), (2169, 56338), (4994, 92), (10979, 44706), (15004, 1953)


X(58756) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANTI-CONWAY

Barycentrics    a^2*(b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(58756) lies on these lines: {25, 15475}, {54, 35364}, {186, 523}, {512, 2623}, {669, 15422}, {691, 933}, {876, 2190}, {878, 8884}, {1141, 40118}, {1593, 32478}, {2501, 34952}, {3515, 39481}, {5094, 39512}, {8882, 9178}, {9420, 52618}, {14560, 52604}, {14586, 53273}, {14618, 53263}, {15451, 16040}, {17994, 18105}, {18829, 18831}, {34983, 42651}, {42658, 46088}, {52631, 57204}

X(58756) = reflection of X(15451) in X(16040)
X(58756) = polar conjugate of the isotomic conjugate of X(2623)
X(58756) = isogonal conjugate of the polar conjugate of X(15422)
X(58756) = isogonal conjugate of the anticomplement of X(47421)
X(58756) = cevapoint of X(i) and X(j) for these {i, j}: {512, 34952}, {669, 2489}
X(58756) = cross-difference of every pair of points on the line X(216)X(343)
X(58756) = crosspoint of X(i) and X(j) for these {i, j}: {54, 32692}, {112, 1179}, {925, 41891}, {933, 8882}
X(58756) = crosssum of X(i) and X(j) for these {i, j}: {343, 6368}, {525, 1216}, {924, 23292}
X(58756) = X(933)-Ceva conjugate of-X(8882)
X(58756) = X(i)-cross conjugate of-X(j) for these (i, j): (2489, 15422), (6754, 39109), (8754, 25)
X(58756) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 28706), (125, 52347), (135, 39113), (136, 311), (206, 23181), (244, 18695), (512, 15451), (1084, 343), (2679, 44716), (3005, 6368), (3162, 14570), (5139, 5), (8901, 1238), (15259, 35360), (16221, 1273), (17423, 5562), (38986, 44706), (38996, 216), (53986, 57805), (55053, 16697)
X(58756) = X(i)-isoconjugate of-X(j) for these {i, j}: {5, 4592}, {51, 55202}, {63, 14570}, {69, 2617}, {75, 23181}, {99, 44706}, {110, 18695}, {162, 52347}, {163, 28706}, {190, 16697}, {216, 799}, {217, 4602}, {304, 1625}, {311, 4575}, {326, 35360}, {343, 662}, {418, 57968}, {645, 44708}, {668, 44709}, {811, 5562}, {1273, 36061}, {1332, 17167}, {1820, 55252}, {1953, 4563}, {2179, 52608}, {4556, 42698}, {4558, 14213}, {4561, 18180}, {4625, 44707}, {6368, 24041}, {7257, 30493}, {15451, 24037}, {17434, 46254}, {18155, 44710}, {36036, 44716}
X(58756) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (24, 55252), (25, 14570), (32, 23181), (54, 4563), (95, 52608), (275, 670), (276, 4609), (512, 343), (523, 28706), (647, 52347), (661, 18695), (667, 16697), (669, 216), (798, 44706), (933, 4590), (1084, 15451), (1919, 44709), (1973, 2617), (1974, 1625), (2148, 4592), (2167, 55202), (2190, 799), (2207, 35360), (2422, 53174), (2489, 5), (2491, 44716), (2501, 311), (2616, 304), (2623, 69), (2970, 15415), (2971, 12077), (3049, 5562), (3124, 6368), (4705, 42698), (6753, 39113), (8754, 18314), (8882, 99), (8884, 6331), (8901, 3267), (9426, 217), (14398, 1568), (14573, 32661), (15412, 305), (15422, 264), (18315, 47389), (18831, 34537), (19189, 2396), (23216, 42293), (23286, 3926), (27369, 35319)
X(58756) = perspector of the circumconic through X(275) and X(8882)
X(58756) = pole of the line {4, 96} with respect to the circumcircle
X(58756) = pole of the line {5, 311} with respect to the polar circle
X(58756) = pole of the line {6748, 47328} with respect to the orthic inconic
X(58756) = barycentric product X(i)*X(j) for these {i, j}: {3, 15422}, {4, 2623}, {19, 2616}, {24, 55253}, {25, 15412}, {54, 2501}, {95, 2489}, {96, 6753}, {97, 58757}, {112, 8901}, {115, 933}, {136, 32692}, {275, 512}, {276, 669}, {393, 23286}, {523, 8882}, {647, 8884}, {661, 2190}, {798, 40440}, {1093, 46088}
X(58756) = trilinear product X(i)*X(j) for these {i, j}: {19, 2623}, {25, 2616}, {48, 15422}, {158, 58308}, {275, 798}, {276, 1924}, {512, 2190}, {661, 8882}, {669, 40440}, {810, 8884}, {933, 2643}, {1096, 23286}, {1973, 15412}, {2148, 2501}, {2167, 2489}, {2168, 6753}, {2169, 58757}, {6520, 46088}, {8754, 36134}, {8901, 32676}
X(58756) = trilinear quotient X(i)/X(j) for these (i, j): (19, 14570), (25, 2617), (31, 23181), (54, 4592), (95, 55202), (275, 799), (276, 4602), (512, 44706), (523, 18695), (649, 16697), (656, 52347), (661, 343), (667, 44709), (798, 216), (810, 5562), (933, 24041), (1096, 35360), (1577, 28706), (1748, 55252), (1924, 217)


X(58757) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd ANTI-CONWAY

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2 : :
X(58757) = 3*X(381)-2*X(44932) = 3*X(1637)-X(42658)

X(58757) lies on these lines: {4, 3566}, {19, 57124}, {24, 44680}, {25, 34952}, {107, 691}, {158, 876}, {381, 44932}, {393, 9178}, {403, 523}, {460, 512}, {525, 16229}, {669, 15422}, {882, 27376}, {924, 12004}, {1637, 42658}, {2207, 2422}, {2489, 2508}, {2797, 20580}, {3064, 48099}, {4079, 55206}, {5489, 6526}, {6132, 15423}, {6524, 8029}, {6525, 58346}, {6528, 18829}, {6529, 20031}, {6562, 6753}, {6587, 39201}, {9409, 46005}, {14165, 47217}, {14249, 58262}, {14560, 32713}, {14569, 15475}, {17924, 48400}, {41762, 55278}, {47194, 52585}, {55122, 57071}

X(58757) = reflection of X(i) in X(j) for these (i, j): (39201, 6587), (47194, 52585)
X(58757) = polar conjugate of X(4563)
X(58757) = cevapoint of X(i) and X(j) for these {i, j}: {523, 58882}, {2501, 57071}, {8029, 8754}
X(58757) = cross-difference of every pair of points on the line X(394)X(577)
X(58757) = crosspoint of X(i) and X(j) for these {i, j}: {107, 393}, {847, 39416}, {1093, 6529}, {13398, 41890}
X(58757) = crosssum of X(i) and X(j) for these {i, j}: {3, 52584}, {394, 520}, {525, 12359}, {577, 58310}, {1092, 52613}, {3265, 52347}
X(58757) = X(i)-Ceva conjugate of-X(j) for these (i, j): (107, 393), (6524, 8754), (6526, 115), (6528, 27376), (6529, 2207), (15422, 2489), (32713, 14569)
X(58757) = X(i)-cross conjugate of-X(j) for these (i, j): (2489, 2501), (2971, 2207), (5139, 4), (8029, 8754), (8754, 6524)
X(58757) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 3926), (125, 3964), (135, 9723), (136, 69), (137, 52347), (244, 326), (512, 39201), (523, 3265), (647, 4143), (1084, 394), (1249, 4563), (3005, 520), (3162, 4558), (4988, 30805), (5139, 3), (5190, 17206), (5521, 1444), (6523, 99), (6741, 1264), (15259, 110), (15526, 4176), (16221, 52437), (17423, 1092), (18314, 52617), (20620, 332), (34591, 1102), (36103, 4592), (38966, 1792), (38970, 6393), (38986, 255), (38987, 51386), (38991, 6514), (38996, 577), (39062, 47389), (40608, 1259), (40611, 6517), (40622, 7055), (40627, 4091), (48317, 6390), (50330, 4131), (50497, 23224), (53983, 3933), (53986, 44180), (55053, 18604), (55060, 1804), (55064, 3719), (55065, 52396), (55066, 6507), (56788, 53783)
X(58757) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 4592}, {21, 6517}, {48, 4563}, {63, 4558}, {69, 4575}, {99, 255}, {110, 326}, {112, 1102}, {162, 3964}, {163, 3926}, {184, 55202}, {190, 18604}, {249, 24018}, {283, 6516}, {304, 32661}, {332, 36059}, {394, 662}, {520, 24041}, {577, 799}, {643, 1804}, {645, 7125}, {648, 6507}, {651, 6514}, {670, 52430}, {810, 47389}, {811, 1092}, {822, 4590}, {906, 17206}, {1101, 3265}, {1259, 1414}, {1331, 1444}, {1332, 1790}, {1437, 4561}, {1812, 1813}, {2289, 4573}, {3682, 52935}, {3719, 4565}, {3990, 4610}, {3998, 4556}, {4055, 4623}, {4091, 4567}, {4100, 6331}, {4131, 4570}, {4176, 32676}, {4600, 23224}, {4602, 14585}, {4612, 40152}, {4619, 16731}, {4620, 36054}, {4625, 6056}
X(58757) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 4563), (19, 4592), (25, 4558), (92, 55202), (107, 4590), (115, 3265), (125, 4143), (158, 799), (264, 52608), (273, 55205), (318, 55207), (338, 52617), (393, 99), (512, 394), (523, 3926), (525, 4176), (647, 3964), (648, 47389), (656, 1102), (661, 326), (663, 6514), (667, 18604), (669, 577), (798, 255), (810, 6507), (823, 24037), (1084, 39201), (1093, 6331), (1096, 662), (1118, 4573), (1400, 6517), (1824, 1332), (1826, 4561), (1857, 645), (1880, 6516), (1896, 4631), (1924, 52430), (1973, 4575), (1974, 32661), (2052, 670), (2207, 110), (2333, 1331), (2395, 6394), (2422, 17974), (2489, 3), (2501, 69), (2643, 24018), (2969, 15419), (2970, 3267), (2971, 647)
X(58757) = X(21383)-zayin conjugate of-X(822)
X(58757) = trilinear pole of the line {3124, 8754} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58757) = orthoassociate of X(18347)
X(58757) = perspector of the circumconic through X(393) and X(2052)
X(58757) = inverse of X(18347) in polar circle
X(58757) = pole of the line {3564, 12320} with respect to the anticomplementary circle
X(58757) = pole of the line {24, 254} with respect to the circumcircle
X(58757) = pole of the line {3564, 12084} with respect to the 1st Droz-Farny circle
X(58757) = pole of the line {52, 1843} with respect to the incircle-of-orthic triangle
X(58757) = pole of the line {3564, 18569} with respect to the Johnson triangle circumcircle
X(58757) = pole of the line {4, 157} with respect to the nine-point circle
X(58757) = pole of the line {25, 9752} with respect to the orthoptic circle of Steiner inellipse
X(58757) = pole of the line {3, 69} with respect to the polar circle
X(58757) = pole of the line {27376, 41523} with respect to the Johnson circumconic
X(58757) = pole of the line {3269, 53569} with respect to the Kiepert circumhyperbola
X(58757) = pole of the line {6562, 57154} with respect to the Kiepert parabola
X(58757) = pole of the line {52077, 55415} with respect to the MacBeath circumconic
X(58757) = pole of the line {4, 193} with respect to the MacBeath inconic
X(58757) = pole of the line {25, 53} with respect to the orthic inconic
X(58757) = pole of the line {6392, 6464} with respect to the Steiner circumellipse
X(58757) = pole of the line {3767, 13567} with respect to the Steiner inellipse
X(58757) = barycentric product X(i)*X(j) for these {i, j}: {4, 2501}, {5, 15422}, {19, 24006}, {25, 14618}, {107, 115}, {112, 2970}, {125, 6529}, {135, 39416}, {158, 661}, {225, 3064}, {264, 2489}, {273, 55206}, {275, 51513}, {297, 53149}, {318, 55208}, {324, 58756}, {338, 32713}, {393, 523}, {459, 44705}, {512, 2052}
X(58757) = trilinear product X(i)*X(j) for these {i, j}: {19, 2501}, {25, 24006}, {92, 2489}, {107, 2643}, {115, 24019}, {158, 512}, {162, 8754}, {225, 18344}, {240, 53149}, {278, 55206}, {281, 55208}, {393, 661}, {523, 1096}, {647, 6520}, {656, 6524}, {669, 57806}, {798, 2052}, {810, 1093}, {811, 2971}, {823, 3124}
X(58757) = trilinear quotient X(i)/X(j) for these (i, j): (4, 4592), (19, 4558), (25, 4575), (65, 6517), (92, 4563), (107, 24041), (115, 24018), (158, 99), (225, 6516), (264, 55202), (331, 55205), (393, 662), (512, 255), (523, 326), (525, 1102), (647, 6507), (649, 18604), (650, 6514), (656, 3964), (661, 394)


X(58758) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-EXCENTERS-REFLECTIONS TO ABC

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(5*a^4-4*(b^2+c^2)*a^2-(b^2-c^2)^2)*(a^4+2*(b^2-c^2)*a^2-(3*b^2+c^2)*(b^2-c^2))*(a^4-2*(b^2-c^2)*a^2+(b^2-c^2)*(b^2+3*c^2)) : :

X(58758) lies on these lines: {2, 11589}, {4, 64}, {20, 14379}, {30, 1073}, {253, 317}, {376, 1515}, {393, 1562}, {1301, 18533}, {1559, 54050}, {1593, 1661}, {3087, 15433}, {3146, 8798}, {3575, 41085}, {3830, 13157}, {3839, 14572}, {5894, 6616}, {6225, 56296}, {6284, 41088}, {6621, 8567}, {6624, 10606}, {12173, 31942}, {14249, 54211}, {18451, 18850}, {32006, 34403}, {38323, 57483}, {39020, 46346}, {41869, 44692}, {42733, 58759}

X(58758) = cevapoint of X(18451) and X(54992)
X(58758) = X(i)-Dao conjugate of-X(j) for these (i, j): (6523, 52452), (16253, 20), (40839, 36889), (53832, 8057)
X(58758) = X(i)-isoconjugate of-X(j) for these {i, j}: {255, 52452}, {18750, 51990}
X(58758) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (376, 37669), (393, 52452), (459, 36889), (6526, 56270), (9007, 20580), (9209, 8057), (26864, 15905), (33581, 51990), (40138, 20), (41489, 3426), (47392, 15466), (52147, 14615)
X(58758) = pole of the line {6526, 11381} with respect to the Jerabek circumhyperbola
X(58758) = barycentric product X(i)*X(j) for these {i, j}: {64, 52147}, {253, 40138}, {376, 459}, {1073, 47392}, {9209, 53639}, {26864, 52581}, {41489, 44133}
X(58758) = trilinear product X(i)*X(j) for these {i, j}: {2155, 52147}, {2184, 40138}, {19614, 47392}
X(58758) = trilinear quotient X(i)/X(j) for these (i, j): (158, 52452), (2155, 51990), (40138, 610), (47392, 1895), (52147, 18750)


X(58759) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANTI-EXCENTERS-REFLECTIONS

Barycentrics    (b^2-c^2)*(a^4+2*(b^2-c^2)*a^2-(3*b^2+c^2)*(b^2-c^2))*(a^4-2*(b^2-c^2)*a^2+(b^2-c^2)*(b^2+3*c^2)) : :

X(58759) lies on these lines: {64, 879}, {253, 14977}, {459, 2394}, {523, 10151}, {525, 3239}, {935, 1301}, {1073, 15421}, {2966, 39062}, {3265, 52514}, {3267, 14638}, {3700, 57243}, {4064, 21050}, {5489, 6526}, {8057, 57145}, {13157, 14592}, {34403, 39143}, {42733, 58758}, {46425, 52613}

X(58759) = isotomic conjugate of X(36841)
X(58759) = polar conjugate of X(52913)
X(58759) = cevapoint of X(i) and X(j) for these {i, j}: {115, 5489}, {125, 55269}, {1637, 57295}
X(58759) = cross-difference of every pair of points on the line X(154)X(15905)
X(58759) = crosspoint of X(i) and X(j) for these {i, j}: {253, 44326}, {52581, 53639}
X(58759) = crosssum of X(i) and X(j) for these {i, j}: {6587, 42459}, {15905, 58796}
X(58759) = X(33585)-anticomplementary conjugate of-X(21221)
X(58759) = X(i)-Ceva conjugate of-X(j) for these (i, j): (44326, 253), (46639, 13157), (53639, 64)
X(58759) = X(44060)-complementary conjugate of-X(18589)
X(58759) = X(i)-cross conjugate of-X(j) for these (i, j): (115, 6526), (2501, 523), (23616, 338), (55269, 125)
X(58759) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 36841), (115, 20), (122, 36413), (125, 15905), (136, 1249), (137, 42459), (244, 610), (523, 6587), (525, 20580), (647, 8057), (1084, 154), (1249, 52913), (3162, 57153), (3258, 52948), (3343, 4558), (4858, 18750), (4988, 21172), (5139, 3172), (5190, 44698), (6374, 55224), (6523, 57219), (6741, 27382), (14092, 110), (15526, 37669), (35071, 35602), (36901, 14615), (38970, 44704), (39020, 53050), (40622, 18623), (40839, 648), (47898, 44700), (47899, 44701), (55064, 7070), (55065, 8804), (57295, 14345)
X(58759) = X(i)-isoconjugate of-X(j) for these {i, j}: {20, 163}, {31, 36841}, {48, 52913}, {63, 57153}, {110, 610}, {154, 662}, {162, 15905}, {204, 4558}, {255, 57219}, {283, 57193}, {560, 55224}, {906, 44698}, {1101, 6587}, {1249, 4575}, {1394, 5546}, {1576, 18750}, {1895, 32661}, {2617, 33629}, {3172, 4592}, {3198, 4556}, {4565, 7070}, {4636, 30456}, {17898, 23357}, {24000, 58796}, {24019, 35602}, {32676, 37669}, {36034, 52948}, {36134, 42459}
X(58759) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 36841), (4, 52913), (25, 57153), (64, 110), (76, 55224), (115, 6587), (125, 8057), (253, 99), (393, 57219), (459, 648), (512, 154), (520, 35602), (523, 20), (525, 37669), (647, 15905), (661, 610), (850, 14615), (1073, 4558), (1109, 17898), (1301, 250), (1562, 57201), (1577, 18750), (1637, 52948), (1880, 57193), (2155, 163), (2184, 662), (2433, 15291), (2489, 3172), (2501, 1249), (2623, 33629), (3120, 21172), (3269, 58796), (3700, 27382), (4017, 1394), (4024, 8804), (4036, 52345), (4041, 7070), (4077, 33673), (4086, 52346), (4092, 14308), (4705, 3198), (5489, 122), (6526, 107), (6587, 36413), (7178, 18623), (7649, 44698), (8057, 53050), (8754, 44705), (8798, 23181), (8809, 1414)
X(58759) = trilinear pole of the line {125, 52335} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58759) = Gibert-Simson transform of X(64)
X(58759) = perspector of the circumconic through X(253) and X(459)
X(58759) = pole of the line {3515, 33582} with respect to the circumcircle
X(58759) = pole of the line {393, 37197} with respect to the 2nd Droz-Farny circle
X(58759) = pole of the line {235, 23300} with respect to the nine-point circle
X(58759) = pole of the line {3424, 6353} with respect to the orthoptic circle of Steiner inellipse
X(58759) = pole of the line {20, 1249} with respect to the polar circle
X(58759) = pole of the line {1562, 15526} with respect to the Kiepert circumhyperbola
X(58759) = pole of the line {13157, 37672} with respect to the MacBeath circumconic
X(58759) = pole of the line {393, 1853} with respect to the orthic inconic
X(58759) = pole of the line {64, 3146} with respect to the Steiner circumellipse
X(58759) = pole of the line {4, 1192} with respect to the Steiner inellipse
X(58759) = barycentric product X(i)*X(j) for these {i, j}: {64, 850}, {115, 44326}, {125, 53639}, {253, 523}, {338, 46639}, {339, 1301}, {393, 14638}, {459, 525}, {512, 41530}, {647, 52581}, {661, 57921}, {1073, 14618}, {1577, 2184}, {2155, 20948}, {2501, 34403}, {3265, 6526}, {3267, 41489}, {4077, 44692}, {4086, 8809}, {5489, 44181}
X(58759) = trilinear product X(i)*X(j) for these {i, j}: {64, 1577}, {253, 661}, {459, 656}, {512, 57921}, {523, 2184}, {798, 41530}, {810, 52581}, {850, 2155}, {1073, 24006}, {1096, 14638}, {1109, 46639}, {1301, 20902}, {2489, 57780}, {2501, 19611}, {2616, 13157}, {2643, 44326}, {3120, 56235}, {3700, 8809}, {3708, 53639}, {4077, 30457}
X(58759) = trilinear quotient X(i)/X(j) for these (i, j): (19, 57153), (64, 163), (75, 36841), (92, 52913), (158, 57219), (225, 57193), (253, 662), (338, 17898), (459, 162), (523, 610), (561, 55224), (656, 15905), (661, 154), (850, 18750), (1073, 4575), (1109, 6587), (1577, 20), (2155, 1576), (2184, 110), (2501, 204)


X(58760) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd ANTI-EXTOUCH

Barycentrics    a^4*(b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-2*(b^2+c^2)*a^2+b^4+c^4)^2 : :

X(58760) lies on these lines: {421, 2501}, {525, 44328}, {924, 6753}, {2451, 57195}, {2904, 58780}, {3569, 57202}, {32320, 47230}, {57071, 58812}

X(58760) = isogonal conjugate of the isotomic conjugate of X(15423)
X(58760) = cross-difference of every pair of points on the line X(68)X(5562)
X(58760) = crosspoint of X(24) and X(648)
X(58760) = crosssum of X(68) and X(647)
X(58760) = X(i)-Ceva conjugate of-X(j) for these (i, j): (648, 24), (36416, 39013), (41679, 3133), (52432, 6754)
X(58760) = X(i)-cross conjugate of-X(j) for these (i, j): (6754, 52432), (39013, 36416)
X(58760) = X(i)-Dao conjugate of-X(j) for these (i, j): (134, 343), (135, 5392), (924, 525), (39013, 20563)
X(58760) = X(i)-isoconjugate of-X(j) for these {i, j}: {1820, 46134}, {2351, 55215}, {14213, 52932}, {20563, 36145}, {55250, 57763}
X(58760) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (24, 46134), (924, 20563), (1748, 55215), (6753, 5392), (6754, 523), (8745, 30450), (15423, 76), (30451, 52350), (34338, 850), (34952, 68), (36416, 648), (39013, 525), (41213, 6368), (44077, 925), (52432, 99), (54034, 52932), (55551, 670), (57065, 57904)
X(58760) = trilinear pole of the line {6754, 39013} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58760) = perspector of the circumconic through X(24) and X(8884)
X(58760) = pole of the line {343, 5392} with respect to the polar circle
X(58760) = pole of the line {24, 6193} with respect to the MacBeath circumconic
X(58760) = pole of the line {52, 3575} with respect to the orthic inconic
X(58760) = pole of the line {24, 56017} with respect to the Steiner circumellipse
X(58760) = pole of the line {16238, 40939} with respect to the Steiner inellipse
X(58760) = barycentric product X(i)*X(j) for these {i, j}: {6, 15423}, {24, 924}, {99, 6754}, {110, 34338}, {317, 34952}, {512, 55551}, {523, 52432}, {525, 36416}, {571, 57065}, {648, 39013}, {933, 55072}, {1748, 55216}, {1993, 6753}, {6563, 44077}, {8745, 52584}, {11547, 30451}, {18831, 41213}, {41679, 47421}, {43088, 52416}, {44808, 52415}
X(58760) = trilinear product X(i)*X(j) for these {i, j}: {24, 55216}, {31, 15423}, {47, 6753}, {162, 39013}, {163, 34338}, {656, 36416}, {661, 52432}, {662, 6754}, {798, 55551}, {1748, 34952}
X(58760) = trilinear quotient X(i)/X(j) for these (i, j): (317, 55215), (1748, 46134), (2148, 52932), (6753, 91), (6754, 661), (15423, 75), (34338, 1577), (34952, 1820), (36416, 162), (39013, 656), (44077, 36145), (52432, 662), (55216, 68), (55551, 799), (57065, 20571)


X(58761) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-HONSBERGER TO ABC

Barycentrics    a^2*(a^2+b^2)*(a^2+c^2)*(a^2-2*b^2-2*c^2) : :

X(58761) lies on these lines: {6, 22}, {39, 1576}, {83, 597}, {141, 2056}, {182, 30495}, {511, 37083}, {524, 1799}, {575, 39811}, {599, 10130}, {827, 6323}, {1992, 52898}, {2393, 10551}, {2548, 31166}, {2549, 58852}, {4580, 53374}, {5013, 28724}, {5034, 19136}, {5111, 20251}, {5116, 52696}, {5157, 16285}, {6593, 14885}, {6748, 32085}, {7736, 21458}, {7738, 10548}, {9188, 17997}, {9225, 20582}, {14906, 19153}, {16890, 44380}, {18105, 30534}, {18374, 20965}, {19125, 39951}, {19145, 19148}, {19146, 19147}, {20998, 40670}, {30541, 50659}, {38834, 39560}, {39668, 47352}, {51906, 52239}

X(58761) = isogonal conjugate of X(23297)
X(58761) = cross-difference of every pair of points on the line X(826)X(41583)
X(58761) = crosspoint of X(10130) and X(32581)
X(58761) = crosssum of X(39) and X(29959)
X(58761) = X(i)-cross conjugate of-X(j) for these (i, j): (574, 10130), (10510, 42007)
X(58761) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 30489), (8542, 141), (11165, 8024), (17413, 826), (17416, 23285), (41884, 40826)
X(58761) = X(i)-isoconjugate of-X(j) for these {i, j}: {38, 598}, {75, 30489}, {141, 55927}, {1383, 1930}, {1964, 40826}, {8061, 35138}, {10511, 18715}, {20883, 43697}, {46001, 55239}
X(58761) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (32, 30489), (83, 40826), (251, 598), (574, 141), (599, 8024), (827, 35138), (3906, 23285), (4630, 11636), (5094, 1235), (8541, 427), (9076, 10512), (9145, 4576), (9464, 52568), (10130, 76), (10547, 43697), (17414, 826), (18105, 8599), (32581, 264), (36263, 1930), (42007, 31125), (46288, 1383), (46289, 55927)
X(58761) = pole of the line {21637, 46288} with respect to the Jerabek circumhyperbola
X(58761) = pole of the line {316, 1799} with respect to the Kiepert circumhyperbola
X(58761) = pole of the line {141, 23297} with respect to the Stammler hyperbola
X(58761) = pole of the line {7813, 8024} with respect to the Steiner-Wallace hyperbola
X(58761) = barycentric product X(i)*X(j) for these {i, j}: {3, 32581}, {6, 10130}, {82, 36263}, {83, 574}, {251, 599}, {827, 3906}, {1176, 5094}, {1799, 8541}, {3908, 18108}, {4577, 17414}, {9076, 10510}, {9145, 58784}, {9146, 18105}, {9464, 46288}, {22105, 32583}, {42007, 52898}
X(58761) = trilinear product X(i)*X(j) for these {i, j}: {31, 10130}, {48, 32581}, {82, 574}, {251, 36263}, {599, 46289}, {3906, 34072}, {4599, 17414}, {8541, 34055}, {9145, 55240}
X(58761) = trilinear quotient X(i)/X(j) for these (i, j): (31, 30489), (82, 598), (251, 55927), (574, 38), (599, 1930), (3112, 40826), (3908, 4568), (4599, 35138), (5094, 20883), (8541, 17442), (9146, 55239), (10130, 75), (10510, 18715), (17414, 8061), (32581, 92), (34072, 11636), (36263, 141), (37221, 10512), (46289, 1383), (55240, 8599)


X(58762) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-HUTSON INTOUCH TO ABC

Barycentrics    a^2*(5*a^8-8*(b^2+c^2)*a^6-2*(3*b^4-26*b^2*c^2+3*c^4)*a^4+16*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^2-(7*b^4+26*b^2*c^2+7*c^4)*(b^2-c^2)^2) : :
X(58762) = 2*X(18418)-3*X(30771)

X(58762) lies on these lines: {3, 13474}, {6, 54992}, {20, 1853}, {30, 26958}, {64, 394}, {74, 55582}, {141, 376}, {154, 2071}, {378, 5085}, {1350, 2393}, {1498, 41427}, {1593, 17825}, {1620, 39568}, {2935, 56568}, {3357, 15606}, {3516, 22352}, {3529, 58378}, {3532, 46730}, {3534, 18474}, {3543, 31860}, {5422, 12086}, {5446, 9786}, {6617, 11589}, {7464, 10605}, {7729, 12058}, {9924, 11598}, {11202, 11820}, {11425, 12084}, {11438, 58764}, {14070, 33534}, {15053, 17810}, {15072, 17809}, {15078, 41424}, {15681, 58789}, {15683, 41467}, {16836, 35501}, {17845, 30552}, {18418, 30771}, {18445, 18859}, {23328, 35513}, {33586, 37944}, {35450, 37480}, {35452, 37489}, {35602, 58795}, {35921, 55671}, {36990, 44241}, {37475, 58480}, {37950, 47391}, {41614, 52028}, {44762, 53050}, {44903, 55158}, {54994, 55676}

X(58762) = pole of the line {2883, 3522} with respect to the Stammler hyperbola


X(58763) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND ANTI-HUTSON INTOUCH

Barycentrics    a^2*(b^2-c^2)*(-a^2+b^2+c^2)^4*(3*a^4-2*(b^2+c^2)*a^2-(b^2-c^2)^2)*((b^2+c^2)*a^4-2*(b^2-c^2)^2*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58763) lies on these lines: {520, 4091}, {6587, 20580}

X(58763) = cross-difference of every pair of points on the line X(393)X(33581)
X(58763) = X(i)-Dao conjugate of-X(j) for these (i, j): (3269, 6526), (39020, 57677)
X(58763) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (417, 1301), (8057, 57677), (45200, 15352)
X(58763) = perspector of the circumconic through X(394) and X(14615)
X(58763) = pole of the line {1093, 41489} with respect to the polar circle
X(58763) = pole of the line {6225, 46717} with respect to the Steiner circumellipse
X(58763) = pole of the line {2883, 6509} with respect to the Steiner inellipse
X(58763) = pole of the line {6528, 46639} with respect to the Steiner-Wallace hyperbola
X(58763) = barycentric product X(i)*X(j) for these {i, j}: {6509, 20580}, {45200, 52613}
X(58763) = trilinear product X(820)*X(20580)
X(58763) = trilinear quotient X(i)/X(j) for these (i, j): (20580, 821), (45200, 36126)


X(58764) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-INCIRCLE-CIRCLES TO ABC

Barycentrics    a^2*(a^8+2*(b^2+c^2)*a^6-4*(3*b^4+7*b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*(7*b^4-6*b^2*c^2+7*c^4)*a^2-(5*b^4-14*b^2*c^2+5*c^4)*(b^2-c^2)^2) : :

X(58764) lies on these lines: {3, 5943}, {4, 18854}, {25, 43574}, {30, 11433}, {52, 12315}, {141, 381}, {382, 13093}, {394, 1598}, {511, 18535}, {568, 44454}, {1351, 2393}, {1596, 51212}, {1597, 33586}, {1994, 19347}, {3066, 36987}, {3098, 3531}, {3167, 7530}, {3426, 3543}, {3517, 51394}, {3527, 5422}, {3830, 18474}, {5050, 12083}, {5446, 11432}, {5544, 13364}, {5890, 11820}, {5891, 55584}, {6090, 52294}, {7387, 11426}, {9777, 12082}, {9781, 37198}, {9909, 18475}, {9919, 39562}, {10244, 11425}, {10245, 11430}, {10263, 12164}, {10982, 22352}, {11402, 37925}, {11438, 58762}, {11482, 15826}, {11484, 15644}, {11807, 56568}, {13352, 20850}, {13451, 33532}, {13570, 52987}, {14530, 36747}, {15053, 21312}, {15078, 48912}, {15107, 54994}, {15684, 58789}, {15694, 32223}, {18388, 54131}, {18390, 48910}, {18451, 44456}, {18533, 44935}, {18536, 29181}, {21970, 44441}, {23039, 55580}, {35450, 37489}, {54006, 55643}, {54992, 58871}, {55724, 58891}, {56292, 56516}


X(58765) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-MCCAY TO ABC

Barycentrics    3*a^8-2*(b^2+c^2)*a^6+2*(b^2-c^2)^2*a^4-2*(b^4-c^4)*(b^2-c^2)*a^2-b^2*c^2*(2*b^2-c^2)*(b^2-2*c^2) : :

X(58765) lies on these lines: {2, 98}, {3, 10810}, {32, 671}, {83, 5461}, {99, 8588}, {115, 12150}, {148, 33193}, {183, 8289}, {187, 33689}, {194, 9888}, {384, 51523}, {385, 5104}, {538, 5152}, {543, 19570}, {599, 19120}, {1003, 12188}, {1078, 2482}, {1691, 8859}, {1916, 14614}, {2080, 9855}, {2782, 13586}, {3398, 33013}, {3407, 43535}, {3552, 38664}, {5033, 45018}, {5038, 8787}, {5106, 47646}, {5171, 12117}, {5465, 13193}, {5989, 8667}, {6655, 10991}, {7610, 8592}, {7751, 51932}, {7793, 8591}, {7806, 11646}, {7833, 14830}, {7907, 52090}, {8178, 41748}, {8360, 10333}, {8587, 8860}, {8724, 10104}, {9734, 32469}, {9862, 33017}, {9880, 12110}, {10054, 10802}, {10070, 10801}, {10131, 48657}, {10631, 32479}, {10788, 52942}, {11317, 11842}, {11361, 11632}, {11606, 54906}, {11623, 16044}, {12042, 33273}, {12194, 12258}, {12243, 33007}, {13196, 41133}, {14002, 48983}, {14061, 32994}, {14645, 44367}, {14651, 33016}, {14981, 33259}, {17004, 35705}, {18993, 19058}, {18994, 19057}, {20398, 33024}, {23235, 33014}, {32836, 52695}, {32980, 47586}, {33276, 51524}, {39097, 58849}, {44586, 49215}, {44587, 49214}


X(58766) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 6th ANTI-MIXTILINEAR

Barycentrics    (b^2-c^2)*(3*a^2-b^2-c^2)^2 : :
X(58766) = 3*X(2)+X(6562)

X(58766) lies on the cubic Kiepert parabola and these lines: {2, 6562}, {230, 231}, {351, 3265}, {669, 5940}, {1649, 51579}, {3566, 3798}, {14341, 55122}

X(58766) = complement of X(58882)
X(58766) = cross-difference of every pair of points on the line X(3)X(8770)
X(58766) = crosspoint of X(i) and X(j) for these {i, j}: {99, 193}, {6353, 57216}
X(58766) = crosssum of X(512) and X(8770)
X(58766) = X(i)-Ceva conjugate of-X(j) for these (i, j): (99, 193), (439, 15525), (43188, 40326), (57071, 3566)
X(58766) = X(i)-complementary conjugate of-X(j) for these (i, j): (163, 6338), (6339, 21253), (40322, 8287), (54956, 21235)
X(58766) = X(15525)-cross conjugate of-X(439)
X(58766) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 57857), (1084, 57688), (3566, 523), (6388, 6340), (15525, 2996), (51579, 35136)
X(58766) = X(i)-isoconjugate of-X(j) for these {i, j}: {163, 57857}, {662, 57688}, {3565, 8769}, {35136, 38252}
X(58766) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (193, 35136), (439, 99), (512, 57688), (523, 57857), (3053, 3565), (3566, 2996), (8651, 8770), (15525, 523), (57071, 34208)
X(58766) = Gibert-Simson transform of X(3053)
X(58766) = perspector of the circumconic through X(4) and X(193)
X(58766) = antipode of X(523) in Kiepert parabola
X(58766) = touchpoint of Kiepert parabola and line {3566, 3798}
X(58766) = pole of the line {25, 193} with respect to the circumcircle
X(58766) = pole of the line {5921, 44438} with respect to the 2nd Droz-Farny circle
X(58766) = pole of the line {30, 2519} with respect to the Moses circles radical circle
X(58766) = pole of the line {427, 1007} with respect to the nine-point circle
X(58766) = pole of the line {4, 9742} with respect to the orthoptic circle of Steiner inellipse
X(58766) = pole of the line {2, 34208} with respect to the polar circle
X(58766) = pole of the line {125, 51613} with respect to the Kiepert circumhyperbola
X(58766) = pole of the line {155, 55511} with respect to the MacBeath circumconic
X(58766) = pole of the line {4, 57688} with respect to the orthic inconic
X(58766) = pole of the line {3565, 4558} with respect to the Stammler hyperbola
X(58766) = pole of the line {6, 6337} with respect to the Steiner inellipse
X(58766) = pole of the line {4563, 9134} with respect to the Steiner-Wallace hyperbola
X(58766) = barycentric product X(i)*X(j) for these {i, j}: {99, 15525}, {193, 3566}, {439, 523}, {3798, 4028}, {6337, 57071}, {6388, 57216}, {8651, 57518}
X(58766) = trilinear product X(i)*X(j) for these {i, j}: {439, 661}, {662, 15525}, {1707, 3566}, {3798, 21874}, {8651, 18156}
X(58766) = trilinear quotient X(i)/X(j) for these (i, j): (439, 662), (661, 57688), (1577, 57857), (1707, 3565), (3566, 8769), (8651, 38252), (15525, 661), (18156, 35136)


X(58767) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st ANTI-ORTHOSYMMEDIAL TO ABC

Barycentrics    a^2*(a^2+b^2)*(a^2+c^2)*(2*a^14-5*(b^2+c^2)*a^12+(b^4+4*b^2*c^2+c^4)*a^10+(b^2+c^2)*(2*b^4+b^2*c^2+2*c^4)*a^8+4*(b^8-4*b^4*c^4+c^8)*a^6-(b^8-c^8)*a^4*(b^2-c^2)-(b^4-c^4)^2*(7*b^4+4*b^2*c^2+7*c^4)*a^2+(b^4-c^4)*(b^2-c^2)*(4*b^8+4*c^8+b^2*c^2*(5*b^4+14*b^2*c^2+5*c^4))) : :

X(58767) lies on these lines: {1176, 1297}, {9530, 21458}, {10547, 38689}, {10718, 58852}, {28724, 38676}


X(58768) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st ANTI-PARRY TO ABC

Barycentrics    (a^2-b^2)*(a^2-c^2)*(a^6-(b^2+c^2)*a^4+(9*b^4-26*b^2*c^2+9*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :
X(58768) = 3*X(5182)-2*X(57594) = 3*X(34473)-2*X(45723)

X(58768) lies on these lines: {3, 35279}, {20, 541}, {30, 8593}, {99, 1499}, {110, 30256}, {376, 58854}, {523, 48960}, {690, 48539}, {1296, 5468}, {2780, 15342}, {5182, 57594}, {5999, 14915}, {10553, 38805}, {10754, 33962}, {11161, 57620}, {11820, 14532}, {15098, 45672}, {28541, 47747}, {30209, 53379}, {34473, 45723}, {35237, 54993}

X(58768) = reflection of X(11161) in X(57620)
X(58768) = pole of the line {22329, 26255} with respect to the Kiepert parabola
X(58768) = pole of the line {9135, 30230} with respect to the Stammler hyperbola


X(58769) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd ANTI-PARRY TO ABC

Barycentrics    (a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(2*a^12-3*(b^2+c^2)*a^10-2*(2*b^4-7*b^2*c^2+2*c^4)*a^8+(b^2+c^2)*(10*b^4-21*b^2*c^2+10*c^4)*a^6-(b^2-c^2)^2*(6*b^4+17*b^2*c^2+6*c^4)*a^4+(b^4-c^4)*(b^2-c^2)*(b^4+5*b^2*c^2+c^4)*a^2+(b^2-c^2)^4*b^2*c^2) : :

X(58769) lies on these lines: {30, 98}, {74, 5466}, {111, 7422}, {376, 58856}, {477, 9213}, {541, 9214}, {690, 48540}, {5663, 52035}, {9161, 39450}, {10555, 12244}, {10556, 16111}, {18007, 53709}, {30786, 57603}, {31125, 57611}, {41254, 56967}


X(58770) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: AAOA TO ABC

Barycentrics    a^2*(a^12-2*(b^2+c^2)*a^10-(b^2-c^2)^2*a^8+4*(b^6+c^6)*a^6-(b^8+c^8+3*b^2*c^2*(b^4-b^2*c^2+c^4))*a^4-2*(b^8-c^8)*a^2*(b^2-c^2)+(b^4+b^2*c^2+c^4)*(b^4-c^4)^2) : :

X(58770) lies on these lines: {3, 19140}, {6, 67}, {74, 15578}, {110, 35707}, {186, 2781}, {187, 39659}, {323, 2854}, {394, 5648}, {399, 32233}, {541, 56568}, {542, 50461}, {574, 19382}, {690, 3050}, {858, 52171}, {3311, 19392}, {3312, 19393}, {5054, 45016}, {5092, 11562}, {6199, 19394}, {6221, 19384}, {6395, 19395}, {6398, 19385}, {6468, 19386}, {6469, 19387}, {6593, 7496}, {9976, 25330}, {10752, 37473}, {11004, 25320}, {12367, 15139}, {13860, 15182}, {14931, 19375}, {14982, 15068}, {19400, 58861}, {19401, 58863}, {25556, 49116}, {34155, 47352}, {37972, 40291}

X(58770) = cross-difference of every pair of points on the line X(9517)X(16776)
X(58770) = pole of the line {10989, 19379} with respect to the Stammler hyperbola


X(58771) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTLIA TO ABC

Barycentrics    a*(5*a^2-(b-c)^2)*(a^2-2*a*b+b^2+3*c^2)*(a^2-2*a*c+3*b^2+c^2) : :

X(58771) lies on these lines: {1, 1462}, {165, 52013}, {171, 39959}, {3664, 56264}, {4307, 29573}, {7271, 18788}, {8580, 32560}

X(58771) = X(5281)-reciprocal conjugate of-X(30854)
X(58771) = barycentric product X(5281)*X(21446)
X(58771) = trilinear product X(5281)*X(52013)
X(58771) = trilinear quotient X(5281)/X(390)


X(58772) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: APOLLONIUS TO ABC

Barycentrics    a^2*(3*(b+c)^2*a^3+(b+c)*(3*b^2+2*b*c+3*c^2)*a^2-(3*b^4+3*c^4+2*b*c*(2*b^2-b*c+2*c^2))*a-(b+c)*(3*b^4-2*b^2*c^2+3*c^4)) : :

X(58772) lies on these lines: {1, 181}, {10, 3614}, {11, 9569}, {12, 9568}, {43, 5128}, {44, 50033}, {65, 10440}, {386, 5204}, {573, 5217}, {1155, 2392}, {2051, 7173}, {2841, 3030}, {3214, 50032}, {3617, 9565}, {4018, 49636}, {5225, 9535}, {5229, 9534}, {5530, 31794}, {5975, 11989}, {9564, 9780}, {10824, 35445}, {10895, 48852}, {32005, 41832}, {44663, 58822}, {49654, 58823}


X(58773) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND APOLLONIUS

Barycentrics    a*(b-c)*(-a+b+c)*(a^3+(b+c)*a^2+3*b*c*a+b*c*(b+c)) : :

X(58773) lies on these lines: {44, 513}, {81, 47661}, {514, 57079}, {693, 26640}, {940, 48274}, {3063, 4765}, {3700, 57091}, {3737, 52326}, {3904, 3910}, {4581, 21786}, {4988, 21106}, {6589, 55969}, {7180, 21173}, {21119, 50522}, {22383, 45745}, {27345, 28834}, {28938, 28960}, {47136, 49293}

X(58773) = isogonal conjugate of X(43069)
X(58773) = cross-difference of every pair of points on the line X(1)X(181)
X(58773) = crosspoint of X(i) and X(j) for these {i, j}: {1, 43069}, {4560, 4581}
X(58773) = crosssum of X(i) and X(j) for these {i, j}: {650, 37548}, {4559, 53280}
X(58773) = X(i)-Ceva conjugate of-X(j) for these (i, j): (14534, 11), (17185, 18191), (43069, 1)
X(58773) = X(i)-Dao conjugate of-X(j) for these (i, j): (1084, 43074), (8054, 43071), (38991, 43073), (55053, 43070)
X(58773) = X(i)-isoconjugate of-X(j) for these {i, j}: {100, 43071}, {190, 43070}, {651, 43073}, {653, 43072}, {660, 43075}, {662, 43074}
X(58773) = X(44)-line conjugate of-X(45881)
X(58773) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (512, 43074), (649, 43071), (663, 43073), (667, 43070), (1946, 43072), (8632, 43075), (37607, 664), (41299, 76)
X(58773) = X(i)-zayin conjugate of-X(j) for these (i, j): (513, 43071), (649, 43070), (650, 43073), (652, 43072), (659, 43075), (661, 43074), (2092, 4551), (17185, 4559), (37425, 1020)
X(58773) = pole of the line {57, 2277} with respect to the Bevan circle
X(58773) = pole of the line {55, 16872} with respect to the circumcircle
X(58773) = pole of the line {92, 8736} with respect to the polar circle
X(58773) = pole of the line {4367, 18155} with respect to the Kiepert parabola
X(58773) = pole of the line {3157, 37737} with respect to the MacBeath circumconic
X(58773) = pole of the line {3057, 41002} with respect to the Mandart inellipse
X(58773) = pole of the line {662, 4559} with respect to the Stammler hyperbola
X(58773) = pole of the line {192, 2975} with respect to the Steiner circumellipse
X(58773) = pole of the line {37, 4999} with respect to the Steiner inellipse
X(58773) = pole of the line {799, 4552} with respect to the Steiner-Wallace hyperbola
X(58773) = barycentric product X(i)*X(j) for these {i, j}: {6, 41299}, {522, 37607}, {3737, 49598}
X(58773) = trilinear product X(i)*X(j) for these {i, j}: {31, 41299}, {650, 37607}, {7252, 49598}
X(58773) = trilinear quotient X(i)/X(j) for these (i, j): (513, 43071), (649, 43070), (650, 43073), (652, 43072), (659, 43075), (661, 43074), (37607, 651), (41299, 75), (49598, 4552)


X(58774) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ATIK TO ABC

Barycentrics    2*a^5+3*(b+c)*a^4-20*(b^2-b*c+c^2)*a^3+2*(b+c)*(11*b^2-12*b*c+11*c^2)*a^2-2*(3*b^4+3*c^4+10*b*c*(b^2-b*c+c^2))*a-(b^2-c^2)^2*(b+c) : :

X(58774) lies on these lines: {8, 4312}, {346, 3062}, {3686, 15587}, {5927, 29353}, {10859, 58775}, {11019, 17298}


X(58775) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: AYME TO ABC

Barycentrics    2*a^5+(b+c)*a^4+2*(b+c)*b*c*a^2-2*(b^2-c^2)^2*a-(b^2+c^2)*(b+c)^3 : :

X(58775) lies on these lines: {6, 10}, {8, 54385}, {19, 346}, {306, 40530}, {519, 40941}, {534, 20336}, {612, 40934}, {1761, 3717}, {1826, 5300}, {1839, 3701}, {3949, 49991}, {5271, 18141}, {10859, 58774}, {11221, 44671}, {17356, 40940}

X(58775) = pole of the line {47659, 48070} with respect to the Steiner circumellipse


X(58776) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND AYME

Barycentrics    (b-c)*(-a+b+c)^4*(a^2+(b-c)^2)*(-a^2+b^2+c^2) : :

X(58776) lies on these lines: {656, 4025}, {3239, 3900}

X(58776) = cross-difference of every pair of points on the line X(1407)X(1973)
X(58776) = X(i)-complementary conjugate of-X(j) for these (i, j): (1633, 2883), (2155, 1565), (7083, 55063), (17441, 35968), (22363, 39020), (33581, 14936)
X(58776) = X(i)-Dao conjugate of-X(j) for these (i, j): (4000, 36118), (7358, 56359), (14936, 1435)
X(58776) = X(i)-isoconjugate of-X(j) for these {i, j}: {1041, 6614}, {1398, 8269}, {14827, 42383}
X(58776) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1040, 4617), (1088, 42383), (3692, 8269), (4012, 653), (4130, 1041), (4319, 32714), (6554, 36118), (7124, 6614), (17115, 1435), (27509, 4626), (28070, 108), (57055, 56359)
X(58776) = perspector of the circumconic through X(304) and X(346)
X(58776) = pole of the line {1096, 1119} with respect to the polar circle
X(58776) = pole of the line {4329, 30695} with respect to the Steiner circumellipse
X(58776) = pole of the line {6554, 18589} with respect to the Steiner inellipse
X(58776) = pole of the line {162, 4616} with respect to the Steiner-Wallace hyperbola
X(58776) = barycentric product X(i)*X(j) for these {i, j}: {4012, 6332}, {4163, 27509}, {4319, 15416}, {17115, 52406}, {28070, 35518}
X(58776) = trilinear product X(i)*X(j) for these {i, j}: {521, 4012}, {1040, 4163}, {1265, 17115}, {4130, 27509}, {6332, 28070}, {6554, 57055}, {15416, 30706}
X(58776) = trilinear quotient X(i)/X(j) for these (i, j): (1040, 6614), (1265, 8269), (4012, 108), (4163, 1041), (6554, 32714), (15416, 30705), (17115, 1398), (27509, 4617), (28070, 32674), (57792, 42383)


X(58777) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ABC TO BCE

Barycentrics    a*(b*sin(C/2)+c*sin(B/2)-a) : :

X(58777) lies on these lines: {1, 188}, {6, 16016}, {57, 2089}, {145, 5430}, {164, 8091}, {177, 266}, {236, 1743}, {258, 8241}, {363, 11044}, {1130, 12908}, {3659, 8077}, {6728, 10492}, {8092, 12879}, {8422, 53119}, {10215, 10231}, {11191, 53118}, {20114, 30370}

X(58777) = midpoint of X(10215) and X(10231)
X(58777) = X(13385)-zayin conjugate of-X(8078)
X(58777) = perspector of the circumconic through X(174) and X(55331)
X(58777) = pole of the line {10492, 16015} with respect to the Steiner inellipse
X(58777) = trilinear quotient X(10505)/X(58777)


X(58778) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: BCE TO ABC

Barycentrics    a*(-2*b*c*(2*a^2+(b+c)*a-4*(b+c)^2)*sin(A/2)+2*c*(2*a^3-(4*b-3*c)*a^2-(3*b^2+5*b*c+c^2)*a+2*(b^2-c^2)*c)*sin(B/2)+2*b*(2*a^3+(3*b-4*c)*a^2-(b^2+5*b*c+3*c^2)*a-2*(b^2-c^2)*b)*sin(C/2)+a*(a^3-2*(b+c)*a^2-3*(b^2-b*c+c^2)*a+(b+c)*(2*b^2+b*c+2*c^2))+2*(b^2-c^2)^2) : :

X(58778) lies on these lines: {6724, 30374}, {6732, 30370}, {10215, 10231}

X(58778) = reflection of X(10231) in X(10215)


X(58779) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st BROCARD

Barycentrics    a^2*(b^6-c^6)*(a^4-b^2*c^2)^2 : :

X(58779) lies on these lines: {39, 512}, {804, 4107}, {3094, 9006}, {3117, 50549}, {8723, 57082}, {10131, 40643}, {14133, 39501}

X(58779) = cross-difference of every pair of points on the line X(385)X(694)
X(58779) = crosssum of X(694) and X(17415)
X(58779) = X(8290)-Dao conjugate of-X(41073)
X(58779) = X(1967)-isoconjugate of-X(41073)
X(58779) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (385, 41073), (17415, 41517), (51318, 33514), (58752, 694)
X(58779) = PK-transform of X(i) for these i: {385, 694}
X(58779) = perspector of the circumconic through X(385) and X(694)
X(58779) = pole of the line {32, 76} with respect to the 1st Brocard circle
X(58779) = pole of the line {2076, 3511} with respect to the circumcircle
X(58779) = pole of the line {511, 51322} with respect to the Gallatly circle
X(58779) = pole of the line {736, 2458} with respect to the 1st Lemoine circle
X(58779) = pole of the line {511, 51322} with respect to the Brocard inellipse
X(58779) = pole of the line {805, 17941} with respect to the Stammler hyperbola
X(58779) = pole of the line {8782, 40858} with respect to the Steiner circumellipse
X(58779) = pole of the line {3229, 5976} with respect to the Steiner inellipse
X(58779) = pole of the line {880, 18829} with respect to the Steiner-Wallace hyperbola
X(58779) = barycentric product X(i)*X(j) for these {i, j}: {3978, 58752}, {4027, 50549}, {5027, 9865}, {19563, 45882}
X(58779) = trilinear product X(i)*X(j) for these {i, j}: {1966, 58752}, {19563, 58862}, {50549, 51903}
X(58779) = trilinear quotient X(i)/X(j) for these (i, j): (1966, 41073), (51903, 33514)


X(58780) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 4th BROCARD

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^2-b^2-c^2)^2 : :

X(58780) lies on the Hatzipolakis-Lozada hyperbola and these lines: {4, 1499}, {6, 3566}, {30, 55267}, {52, 30209}, {112, 20404}, {113, 1560}, {155, 32320}, {185, 20186}, {193, 525}, {468, 34763}, {512, 1843}, {690, 5095}, {1648, 2682}, {1986, 2780}, {2489, 33843}, {2904, 58760}, {2905, 17925}, {2906, 43925}, {2907, 17926}, {3574, 52317}, {4235, 5468}, {5652, 47217}, {6563, 33007}, {8673, 40337}, {10294, 11215}, {13202, 55265}, {14341, 32984}, {14824, 27369}, {19128, 39501}, {23616, 51823}, {32478, 46026}, {32605, 57201}, {36472, 48317}, {39931, 44427}, {42733, 47229}, {44915, 55271}, {52038, 52475}

X(58780) = polar conjugate of the isotomic conjugate of X(1649)
X(58780) = polar conjugate of the isogonal conjugate of X(54274)
X(58780) = cross-difference of every pair of points on the line X(895)X(3292)
X(58780) = crosspoint of X(i) and X(j) for these {i, j}: {4, 4235}, {468, 648}, {2501, 14273}
X(58780) = crosssum of X(i) and X(j) for these {i, j}: {3, 10097}, {647, 895}
X(58780) = X(i)-Ceva conjugate of-X(j) for these (i, j): (648, 468), (1560, 47415), (2501, 14273)
X(58780) = X(54274)-cross conjugate of-X(1649)
X(58780) = X(4)-daleth conjugate of-X(52467)
X(58780) = X(i)-Dao conjugate of-X(j) for these (i, j): (136, 57539), (524, 4563), (690, 525), (1084, 15398), (1560, 892), (1648, 69), (1649, 14977), (3162, 34574), (5139, 10630), (21905, 10097), (23992, 30786), (35582, 51405), (38988, 895), (39062, 57552), (40596, 34539), (48317, 671)
X(58780) = X(i)-isoconjugate of-X(j) for these {i, j}: {63, 34574}, {656, 34539}, {662, 15398}, {810, 57552}, {892, 36060}, {895, 36085}, {4575, 57539}, {4592, 10630}, {30786, 36142}, {41936, 55202}
X(58780) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (25, 34574), (112, 34539), (351, 895), (468, 892), (512, 15398), (648, 57552), (690, 30786), (1648, 14977), (1649, 69), (2482, 4563), (2489, 10630), (2501, 57539), (4235, 52940), (5095, 99), (14273, 671), (14443, 125), (14444, 14417), (21906, 10097), (23992, 525), (24038, 55202), (33915, 6390), (33919, 51258), (34336, 670), (36792, 52608), (39689, 4558), (42081, 4592), (44102, 691), (44146, 53080), (52068, 4561), (52629, 305), (54274, 3), (57204, 41936)
X(58780) = orthoassociate of X(34169)
X(58780) = Zosma transform of X(23894)
X(58780) = perspector of the circumconic through X(468) and X(2374)
X(58780) = inverse of X(34169) in polar circle
X(58780) = pole of the line {524, 5140} with respect to the incircle-of-orthic triangle
X(58780) = pole of the line {403, 3564} with respect to the 2nd Lemoine (or cosine) circle
X(58780) = pole of the line {230, 15471} with respect to the orthoptic circle of Steiner inellipse
X(58780) = pole of the line {316, 524} with respect to the polar circle
X(58780) = pole of the line {6131, 7664} with respect to the Kiepert parabola
X(58780) = pole of the line {468, 37784} with respect to the MacBeath circumconic
X(58780) = pole of the line {468, 524} with respect to the orthic inconic
X(58780) = pole of the line {468, 7665} with respect to the Steiner circumellipse
X(58780) = pole of the line {37911, 43291} with respect to the Steiner inellipse
X(58780) = barycentric product X(i)*X(j) for these {i, j}: {4, 1649}, {25, 52629}, {264, 54274}, {351, 44146}, {468, 690}, {512, 34336}, {523, 5095}, {524, 14273}, {648, 23992}, {1648, 4235}, {2482, 2501}, {2489, 36792}, {5642, 52475}, {7649, 52068}, {9125, 52477}, {14443, 18020}, {14618, 39689}, {17983, 33915}, {24006, 42081}, {35522, 44102}
X(58780) = trilinear product X(i)*X(j) for these {i, j}: {19, 1649}, {92, 54274}, {162, 23992}, {468, 2642}, {661, 5095}, {798, 34336}, {896, 14273}, {1366, 55206}, {1973, 52629}, {2489, 24038}, {2501, 42081}, {6591, 52068}, {7067, 55208}, {24006, 39689}, {33915, 36128}
X(58780) = trilinear quotient X(i)/X(j) for these (i, j): (19, 34574), (162, 34539), (351, 36060), (468, 36085), (661, 15398), (811, 57552), (1649, 63), (2482, 4592), (2642, 895), (5095, 662), (14273, 897), (14443, 3708), (23992, 656), (24006, 57539), (24038, 4563), (34336, 799), (36792, 55202), (39689, 4575), (42081, 4558), (44102, 36142)


X(58781) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 7th BROCARD

Barycentrics    (b^2-c^2)*(2*a^4-(b^2+c^2)*a^2+(b^2-c^2)^2)^2*(a^6-3*(b^2+c^2)*a^4+3*(b^4+c^4)*a^2-(b^2+c^2)*(b^4+c^4)) : :

X(58781) lies on these lines: {155, 525}, {512, 40325}, {5477, 42663}

X(58781) = crosssum of X(2987) and X(46953)
X(58781) = perspector of the circumconic through X(230) and X(39645)


X(58782) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 9th BROCARD TO ABC

Barycentrics    (5*a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)/a^2 : :

X(58782) lies on these lines: {2, 33843}, {4, 69}, {24, 7782}, {25, 99}, {53, 47286}, {183, 1597}, {194, 3199}, {230, 35920}, {232, 7757}, {235, 7752}, {274, 4194}, {290, 3426}, {297, 7790}, {305, 6995}, {324, 7620}, {325, 1596}, {339, 3830}, {378, 7771}, {382, 41009}, {458, 57817}, {538, 33842}, {598, 37855}, {671, 2052}, {843, 22456}, {1078, 1593}, {1598, 1975}, {1885, 7802}, {1906, 7796}, {1968, 6179}, {2207, 7760}, {3088, 32832}, {3089, 7763}, {3266, 52301}, {3516, 43459}, {3542, 7769}, {3543, 30737}, {3832, 26166}, {3972, 10311}, {4200, 18140}, {4232, 11059}, {4235, 10986}, {6748, 8370}, {6749, 53489}, {6756, 32819}, {7378, 40022}, {7408, 8024}, {7409, 39998}, {7507, 15031}, {7750, 13488}, {7766, 14581}, {7770, 53490}, {7812, 21447}, {7827, 17907}, {7871, 44803}, {7894, 8743}, {8889, 53127}, {10314, 35928}, {11055, 33885}, {12082, 46724}, {17503, 46105}, {17814, 34386}, {26164, 32982}, {26179, 32996}, {26214, 32979}, {28706, 32826}, {30022, 37384}, {33971, 38664}, {34621, 40680}, {37174, 40814}, {37186, 58454}, {37647, 37942}, {38552, 44969}, {41530, 46140}, {41585, 51438}, {41760, 53419}, {43678, 53105}, {45088, 54124}

X(58782) = polar conjugate of X(21448)
X(58782) = isotomic conjugate of X(55977)
X(58782) = cevapoint of X(1992) and X(4232)
X(58782) = X(10604)-Ceva conjugate of-X(76)
X(58782) = X(i)-cross conjugate of-X(j) for these (i, j): (1992, 11059), (41585, 4232)
X(58782) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 55977), (1249, 21448), (1560, 57467), (3162, 39238), (11147, 3), (16051, 10602), (35133, 647), (39062, 1296), (48317, 58754), (53992, 512)
X(58782) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 55977}, {48, 21448}, {63, 39238}, {184, 55923}, {810, 1296}, {3049, 37216}, {5485, 9247}, {36060, 57467}
X(58782) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 55977), (4, 21448), (25, 39238), (92, 55923), (264, 5485), (468, 57467), (648, 1296), (811, 37216), (1384, 184), (1499, 647), (1992, 3), (2408, 10097), (4232, 6), (4235, 2434), (4786, 1459), (6331, 35179), (6791, 20975), (8644, 3049), (11059, 69), (14207, 656), (14273, 58754), (15471, 187), (22329, 17979), (27088, 3292), (30234, 22383), (35266, 3284), (36277, 48), (37778, 52477), (41370, 38532), (41585, 39), (42724, 72), (51438, 36212), (52141, 895), (52454, 8770), (53778, 40349)
X(58782) = pole of the line {512, 5107} with respect to the polar circle
X(58782) = pole of the line {3, 8681} with respect to the Steiner-Wallace hyperbola
X(58782) = barycentric product X(i)*X(j) for these {i, j}: {4, 11059}, {76, 4232}, {264, 1992}, {286, 42724}, {308, 41585}, {811, 14207}, {1384, 18022}, {1499, 6331}, {1969, 36277}, {15471, 18023}, {16081, 51438}, {27088, 46111}, {44146, 52141}, {52454, 57518}
X(58782) = trilinear product X(i)*X(j) for these {i, j}: {19, 11059}, {27, 42724}, {75, 4232}, {92, 1992}, {264, 36277}, {648, 14207}, {811, 1499}, {1384, 1969}, {3112, 41585}, {4786, 6335}, {6791, 46254}, {8644, 57968}, {15471, 46277}, {18156, 52454}, {36120, 51438}
X(58782) = trilinear quotient X(i)/X(j) for these (i, j): (19, 39238), (75, 55977), (92, 21448), (264, 55923), (811, 1296), (1384, 9247), (1499, 810), (1969, 5485), (1992, 48), (4232, 31), (4786, 22383), (6331, 37216), (11059, 63), (14207, 647), (15471, 922), (36277, 184), (41585, 1964), (42724, 71), (52141, 36060), (52454, 38252)


X(58783) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st BROCARD-REFLECTED

Barycentrics    (b^4-c^4)*(a^4-b^2*c^2)*(a^4+2*(b^2+c^2)*a^2+b^2*c^2)^2 : :

X(58783) lies on these lines: {99, 43357}, {826, 9494}

X(58783) = crosspoint of X(3329) and X(41209)
X(58783) = X(41209)-Ceva conjugate of-X(3329)
X(58783) = perspector of the circumconic through X(3329) and X(14617)
X(58783) = pole of the line {14318, 43357} with respect to the Stammler hyperbola


X(58784) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND CIRCUMMEDIAL

Barycentrics    (a^2+b^2)*(a^2+c^2)*(b^2-c^2) : :
X(58784) = 3*X(17414)-4*X(44451) = 2*X(25666)-3*X(27799)

X(58784) lies on these lines: {2, 881}, {23, 385}, {38, 29402}, {69, 9012}, {83, 5466}, {244, 4369}, {251, 2395}, {308, 53347}, {316, 512}, {419, 2501}, {476, 827}, {514, 23805}, {647, 4108}, {661, 1215}, {685, 4630}, {689, 805}, {733, 53704}, {756, 29512}, {804, 8664}, {826, 14318}, {842, 9076}, {875, 3112}, {876, 26822}, {879, 42299}, {886, 42371}, {892, 4577}, {1176, 15328}, {1799, 41298}, {2525, 32473}, {2528, 9479}, {2533, 27712}, {3569, 20026}, {3754, 4761}, {3804, 23878}, {4010, 4036}, {4024, 4039}, {4129, 58295}, {4139, 48172}, {4581, 53353}, {4608, 17166}, {5027, 7927}, {5113, 13309}, {5996, 30476}, {7693, 10412}, {8644, 41300}, {8651, 36900}, {8665, 23301}, {9131, 55280}, {9168, 10130}, {9191, 55188}, {9213, 47173}, {10551, 30505}, {10561, 34294}, {12079, 36189}, {13307, 42663}, {13308, 32193}, {13636, 39068}, {13722, 39067}, {14606, 38278}, {14970, 35146}, {15630, 52076}, {16230, 39182}, {16277, 43673}, {17159, 50520}, {17414, 44451}, {18110, 46571}, {18808, 32085}, {23964, 46151}, {25666, 27799}, {31148, 42053}, {33798, 38830}, {39179, 47844}, {46104, 53149}, {47701, 51650}

X(58784) = reflection of X(8665) in X(23301)
X(58784) = isogonal conjugate of X(1634)
X(58784) = anticomplement of X(3005)
X(58784) = isotomic conjugate of X(4576)
X(58784) = cyclocevian conjugate of the isogonal conjugate of X(33704)
X(58784) = anticomplementary conjugate of X(39346)
X(58784) = polar conjugate of X(41676)
X(58784) = antigonal conjugate of the isogonal conjugate of X(53735)
X(58784) = cyclocevian conjugate of the isotomic conjugate of X(54104)
X(58784) = cevapoint of X(i) and X(j) for these {i, j}: {2, 25047}, {512, 523}, {513, 52601}, {514, 52602}, {525, 52598}, {688, 52591}, {5099, 33919}, {40608, 55195}
X(58784) = cross-difference of every pair of points on the line X(39)X(3051)
X(58784) = crosspoint of X(i) and X(j) for these {i, j}: {83, 4577}, {99, 39968}, {308, 42371}, {670, 10159}, {3952, 27807}, {36897, 53701}, {42396, 46104}
X(58784) = crosssum of X(i) and X(j) for these {i, j}: {39, 3005}, {512, 20965}, {669, 5007}, {887, 38998}, {2525, 7794}, {3051, 9494}, {3733, 16679}
X(58784) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (1, 39346), (82, 148), (83, 21221), (99, 21289), (110, 21217), (162, 8878), (163, 52637), (251, 21220), (308, 21294), (662, 2896), (689, 6327), (799, 1369), (827, 192), (3112, 3448), (3405, 39359), (4577, 8), (4593, 69), (4599, 2), (4628, 1655), (4630, 17486), (32676, 10340), (34055, 39352), (34072, 194), (37204, 315), (39179, 54102), (42371, 21275), (42396, 5905), (46289, 25054), (52376, 4440), (52394, 149), (52936, 17165), (53657, 17481), (55240, 54104)
X(58784) = X(i)-Ceva conjugate of-X(j) for these (i, j): (82, 18101), (83, 34294), (99, 18092), (308, 51906), (648, 52580), (670, 52570), (689, 2), (827, 17500), (4577, 83), (6573, 16890), (10566, 55240), (40163, 39691), (42371, 308), (42396, 251), (52395, 115), (52618, 4580)
X(58784) = X(i)-complementary conjugate of-X(j) for these (i, j): (19609, 21249), (55075, 8287)
X(58784) = X(i)-cross conjugate of-X(j) for these (i, j): (115, 52395), (338, 4), (512, 18105), (523, 52618), (2679, 56975), (3124, 2), (5027, 2395), (7927, 523), (9427, 2998), (9979, 5466), (34294, 83), (35078, 56979), (35119, 740), (36901, 55028), (47126, 850), (51906, 308)
X(58784) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 4576), (10, 4553), (37, 4568), (115, 141), (125, 3917), (127, 3313), (136, 427), (244, 38), (512, 688), (523, 826), (647, 2525), (1015, 16696), (1084, 39), (1086, 16887), (1249, 41676), (1312, 46166), (1313, 46167), (1649, 14424), (3005, 3005), (3124, 8041), (3162, 35325), (3258, 51360), (4858, 1930), (4988, 16892), (5099, 9019), (5139, 1843), (5190, 17171), (5511, 41582), (5512, 29959), (6376, 55239), (6523, 46151), (6741, 3703), (7668, 52042), (8054, 17187), (14672, 16789), (14993, 46155), (15449, 7794), (15526, 3933), (15527, 6292), (15899, 36827), (17423, 20775), (17761, 56537), (18314, 23285), (23992, 7813), (34294, 3934), (35078, 732), (35088, 51371), (35971, 4074), (36901, 8024), (38978, 4093)
X(58784) = X(523)-hirst inverse of-X(18010)
X(58784) = X(i)-isoconjugate of-X(j) for these {i, j}: {21, 46153}, {31, 4576}, {32, 55239}, {38, 110}, {39, 662}, {48, 41676}, {58, 4553}, {63, 35325}, {81, 46148}, {99, 1964}, {100, 17187}, {101, 16696}, {141, 163}, {162, 3917}, {249, 8061}, {255, 46151}, {283, 46152}, {427, 4575}, {593, 35309}, {643, 1401}, {648, 4020}, {670, 1923}, {688, 24037}, {692, 16887}, {799, 3051}, {805, 2236}, {811, 20775}, {826, 1101}, {896, 36827}, {906, 17171}, {1333, 4568}, {1414, 3688}, {1576, 1930}, {1580, 46161}, {1822, 46167}, {1823, 46166}, {1843, 4592}, {2084, 4590}, {2167, 35319}, {2421, 3404}, {2530, 4570}, {2617, 16030}, {3005, 24041}, {3286, 35333}, {3573, 46159}, {3933, 32676}, {3954, 4556}, {4093, 36066}, {4558, 17442}, {4565, 33299}
X(58784) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 4576), (4, 41676), (10, 4568), (25, 35325), (37, 4553), (42, 46148), (51, 35319), (75, 55239), (82, 662), (83, 99), (111, 36827), (115, 826), (125, 2525), (251, 110), (308, 670), (338, 23285), (393, 46151), (512, 39), (513, 16696), (514, 16887), (523, 141), (525, 3933), (647, 3917), (649, 17187), (661, 38), (669, 3051), (689, 34537), (690, 7813), (693, 16703), (694, 46161), (733, 805), (756, 35309), (798, 1964), (804, 732), (810, 4020), (826, 7794), (827, 249), (850, 8024), (882, 56978), (888, 52961), (1084, 688), (1176, 4558), (1400, 46153), (1577, 1930), (1637, 51360), (1645, 14406), (1648, 14424), (1799, 4563), (1880, 46152), (1924, 1923)
X(58784) = X(i)-vertex conjugate of-X(j) for these {i, j}: {2, 51862}, {18020, 23357}, {27867, 27867}, {40083, 54631}
X(58784) = X(39182)-waw conjugate of-X(15412)
X(58784) = trilinear pole of the line {115, 804} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58784) = perspector of the circumconic through X(83) and X(308)
X(58784) = perspector of the inconic with center X(3124)
X(58784) = inverse of X(31296) in Kiepert parabola
X(58784) = pole of the line {69, 1369} with respect to the anticomplementary circle
X(58784) = pole of the line {2, 3613} with respect to the circumcircle
X(58784) = pole of the line {9019, 41714} with respect to the 1st Droz-Farny circle
X(58784) = pole of the line {3818, 9019} with respect to the Johnson triangle circumcircle
X(58784) = pole of the line {22694, 22715} with respect to the inner-Napoleon circle
X(58784) = pole of the line {22693, 22714} with respect to the outer-Napoleon circle
X(58784) = pole of the line {5169, 16986} with respect to the orthocentroidal circle
X(58784) = pole of the line {5, 5188} with respect to the orthoptic circle of Steiner inellipse
X(58784) = pole of the line {141, 427} with respect to the polar circle
X(58784) = pole of the line {1370, 3164} with respect to the power circles radical circle
X(58784) = pole of the line {20965, 45210} with respect to the Brocard inellipse
X(58784) = pole of the line {18010, 34294} with respect to the Kiepert circumhyperbola
X(58784) = pole of the line {512, 14712} with respect to the Kiepert parabola
X(58784) = pole of the line {428, 1194} with respect to the orthic inconic
X(58784) = pole of the line {6, 76} with respect to the Steiner circumellipse
X(58784) = pole of the line {732, 3589} with respect to the Steiner inellipse
X(58784) = pole of the line {1634, 4576} with respect to the Steiner-Wallace hyperbola
X(58784) = pole of the line {4079, 20295} with respect to the Yff parabola
X(58784) = barycentric product X(i)*X(j) for these {i, j}: {1, 18070}, {4, 4580}, {5, 39182}, {6, 52618}, {10, 10566}, {75, 55240}, {76, 18105}, {82, 1577}, {83, 523}, {99, 34294}, {115, 4577}, {125, 42396}, {251, 850}, {308, 512}, {321, 18108}, {338, 827}, {513, 56186}, {514, 18082}, {522, 18097}, {525, 32085}
X(58784) = trilinear product X(i)*X(j) for these {i, j}: {2, 55240}, {6, 18070}, {10, 18108}, {19, 4580}, {31, 52618}, {37, 10566}, {75, 18105}, {82, 523}, {83, 661}, {115, 4599}, {158, 58353}, {251, 1577}, {308, 798}, {338, 34072}, {512, 3112}, {513, 18082}, {514, 18098}, {594, 39179}, {649, 56186}, {650, 18097}
X(58784) = trilinear quotient X(i)/X(j) for these (i, j): (10, 4553), (19, 35325), (37, 46148), (65, 46153), (75, 4576), (76, 55239), (82, 110), (83, 662), (92, 41676), (115, 8061), (158, 46151), (225, 46152), (251, 163), (308, 799), (321, 4568), (512, 1964), (513, 17187), (514, 16696), (523, 38), (594, 35309)


X(58785) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: CIRCUMORTHIC TO ABC

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+(b^2+c^2)*a^2-2*(b^2-c^2)^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(58785) lies on these lines: {3, 11197}, {4, 54}, {20, 19179}, {24, 19172}, {30, 97}, {53, 112}, {74, 8795}, {95, 376}, {96, 7487}, {186, 19192}, {276, 35474}, {378, 8719}, {381, 4993}, {382, 19210}, {403, 19651}, {467, 41171}, {933, 13530}, {1157, 18559}, {1173, 56298}, {1593, 19173}, {1594, 53506}, {1596, 8901}, {1597, 16030}, {1598, 16035}, {1870, 19182}, {2190, 42379}, {3518, 8887}, {3520, 19185}, {3543, 43768}, {3545, 19188}, {3567, 56296}, {3575, 8883}, {5890, 9792}, {6000, 21638}, {6198, 19175}, {6755, 12022}, {7691, 14978}, {8146, 32330}, {8794, 52661}, {9781, 41365}, {10594, 51887}, {10721, 19208}, {10722, 39843}, {10723, 39814}, {10733, 19193}, {11455, 19209}, {11456, 19170}, {11815, 44803}, {12111, 19194}, {12290, 19168}, {13450, 38848}, {15305, 19167}, {16032, 55573}, {16037, 55569}, {16263, 46091}, {18494, 54034}, {18560, 19205}, {23286, 53330}, {25042, 52295}, {25739, 52280}, {32006, 34386}, {35887, 36966}, {35921, 39530}, {40664, 44732}, {41244, 44837}

X(58785) = polar conjugate of the isotomic conjugate of X(4993)
X(58785) = X(16265)-cross conjugate of-X(4)
X(58785) = X(4550)-Dao conjugate of-X(5562)
X(58785) = X(i)-isoconjugate of-X(j) for these {i, j}: {1087, 46091}, {1953, 56266}, {3431, 44706}
X(58785) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (54, 56266), (275, 57822), (381, 343), (4993, 69), (5158, 5562), (8882, 3431), (8884, 43530), (18487, 1568), (34416, 217), (34417, 216), (37638, 52347), (44135, 28706), (51544, 44715)
X(58785) = pole of the line {6368, 41078} with respect to the polar circle
X(58785) = pole of the line {389, 4994} with respect to the Jerabek circumhyperbola
X(58785) = pole of the line {6748, 25739} with respect to the Kiepert circumhyperbola
X(58785) = barycentric product X(i)*X(j) for these {i, j}: {4, 4993}, {275, 381}, {276, 34417}, {5158, 8795}, {8882, 44135}, {8884, 37638}, {34416, 57790}, {43752, 51544}
X(58785) = trilinear product X(i)*X(j) for these {i, j}: {19, 4993}, {381, 2190}, {8884, 18477}, {34417, 40440}
X(58785) = trilinear quotient X(i)/X(j) for these (i, j): (381, 44706), (2167, 56266), (2190, 3431), (4993, 63), (18477, 5562), (18486, 1568), (40440, 57822), (44135, 18695)


X(58786) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: CONWAY TO ABC

Barycentrics    (a+b)*(a+c)*(a^3+2*(b+c)*a^2-(b+c)^2*a-2*(b^2-c^2)*(b-c)) : :

X(58786) lies on these lines: {7, 21}, {20, 31774}, {27, 4373}, {58, 4862}, {63, 1781}, {69, 4720}, {81, 3663}, {144, 16054}, {272, 39707}, {333, 28610}, {377, 5232}, {379, 17349}, {527, 2287}, {1043, 21296}, {1086, 1778}, {1119, 3559}, {1816, 52673}, {1817, 5905}, {1901, 30839}, {2303, 17276}, {3193, 22464}, {3474, 56182}, {3786, 10861}, {3868, 3875}, {3879, 11015}, {4292, 53598}, {4328, 54356}, {4357, 14005}, {4440, 56019}, {4452, 56018}, {4653, 4888}, {4877, 6173}, {4887, 16948}, {4902, 52680}, {5057, 53596}, {5208, 9962}, {5279, 17351}, {5736, 17549}, {5738, 11114}, {5740, 37375}, {6646, 26643}, {6740, 52392}, {7274, 17194}, {10436, 17557}, {11115, 45789}, {11684, 18698}, {13588, 20347}, {14953, 20059}, {15678, 15936}, {17220, 54391}, {17274, 51669}, {17483, 27174}, {17539, 33800}, {17553, 50116}, {17950, 28942}, {19645, 37684}, {20245, 37442}, {21997, 31300}, {24470, 47512}, {27404, 56559}, {53665, 57286}

X(58786) = cevapoint of X(28609) and X(37567)
X(58786) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (28609, 10), (37567, 37)
X(58786) = pole of the line {662, 14089} with respect to the Kiepert parabola
X(58786) = pole of the line {55, 20818} with respect to the Stammler hyperbola
X(58786) = pole of the line {4467, 44409} with respect to the Steiner circumellipse
X(58786) = pole of the line {8, 4640} with respect to the Steiner-Wallace hyperbola
X(58786) = barycentric product X(i)*X(j) for these {i, j}: {86, 28609}, {274, 37567}
X(58786) = trilinear product X(i)*X(j) for these {i, j}: {81, 28609}, {86, 37567}
X(58786) = trilinear quotient X(i)/X(j) for these (i, j): (28609, 37), (37567, 42)


X(58787) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 4th CONWAY TO ABC

Barycentrics    (3*a^3+(b+c)*a^2-2*(b^2+b*c+c^2)*a-2*b*c*(b+c))/a : :

X(58787) lies on these lines: {1, 75}, {48, 4483}, {69, 1479}, {193, 4044}, {239, 41418}, {312, 1743}, {350, 17272}, {1999, 4671}, {2995, 11682}, {3305, 4358}, {3596, 3632}, {3664, 4441}, {3761, 3879}, {3902, 24993}, {3945, 20888}, {3963, 29605}, {4007, 17790}, {4043, 50127}, {4359, 41930}, {4384, 29982}, {4494, 17299}, {4742, 24547}, {5208, 10466}, {6381, 10449}, {8715, 55094}, {9812, 10439}, {10437, 10476}, {10444, 10450}, {10468, 50608}, {10472, 31238}, {10478, 32067}, {16833, 20923}, {16834, 20891}, {17135, 17183}, {17270, 18147}, {17295, 18065}, {17863, 33936}, {18229, 30829}, {18421, 31643}, {19804, 31312}, {21061, 22016}, {27626, 29742}, {31963, 35632}, {34790, 56083}, {56343, 58021}

X(58787) = pole of the line {649, 4391} with respect to the Conway circle
X(58787) = pole of the line {10447, 21334} with respect to the Feuerbach circumhyperbola
X(58787) = pole of the line {7192, 20907} with respect to the Steiner circumellipse
X(58787) = pole of the line {1, 37288} with respect to the Steiner-Wallace hyperbola


X(58788) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 5th CONWAY TO ABC

Barycentrics    (a+b)*(a+c)*((b+c)*a^2+(b^2+4*b*c+c^2)*a-2*b*c*(b+c)) : :

X(58788) lies on these lines: {1, 75}, {81, 3729}, {145, 17183}, {192, 18206}, {333, 3731}, {536, 18166}, {1764, 37684}, {1999, 3219}, {2092, 29456}, {2303, 4483}, {3146, 10446}, {3247, 27164}, {3286, 49462}, {3663, 30941}, {3672, 16887}, {3760, 44154}, {3786, 49495}, {3879, 10572}, {3945, 48858}, {4021, 16705}, {4373, 39734}, {4452, 17169}, {4664, 29767}, {4852, 52897}, {5208, 9962}, {5223, 56018}, {5232, 10449}, {5235, 11679}, {6542, 17202}, {6629, 10461}, {7274, 57785}, {8025, 17116}, {10394, 10889}, {10437, 10441}, {10452, 31964}, {10453, 10468}, {10888, 32067}, {14616, 56422}, {16696, 17318}, {16711, 50108}, {16738, 17319}, {16834, 27644}, {17179, 50101}, {17210, 17321}, {17272, 33297}, {17304, 30965}, {18164, 56023}, {18229, 37870}, {25059, 30567}, {26860, 58820}, {27633, 29750}, {33771, 55094}, {35623, 39594}, {35628, 49680}, {35637, 39773}, {39703, 53083}

X(58788) = X(35652)-reciprocal conjugate of-X(10)
X(58788) = pole of the line {661, 4560} with respect to the Conway circle
X(58788) = pole of the line {10455, 21334} with respect to the Feuerbach circumhyperbola
X(58788) = pole of the line {31, 41418} with respect to the Stammler hyperbola
X(58788) = pole of the line {7192, 50346} with respect to the Steiner circumellipse
X(58788) = pole of the line {1, 42053} with respect to the Steiner-Wallace hyperbola
X(58788) = barycentric product X(86)*X(35652)
X(58788) = trilinear product X(81)*X(35652)
X(58788) = trilinear quotient X(35652)/X(37)


X(58789) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: EHRMANN-SIDE TO ABC

Barycentrics    3*a^10-5*(b^2+c^2)*a^8-(b^2+3*b*c+c^2)*(b^2-3*b*c+c^2)*a^6+(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^4+2*(b^2-c^2)^2*(b^4-b^2*c^2+c^4)*a^2-2*(b^4-c^4)*(b^2-c^2)^3 : :
X(58789) = 3*X(186)-4*X(20304) = 2*X(1533)-3*X(31726) = 6*X(2072)-5*X(38794) = 2*X(10295)-3*X(15061) = 4*X(10297)-3*X(14643) = 4*X(12105)-7*X(15044) = 5*X(15059)-4*X(18571) = 4*X(15122)-3*X(38723) = 9*X(15362)-8*X(32223) = 3*X(18374)-4*X(19130) = X(23236)-4*X(47339) = 2*X(32110)-3*X(38724) = 6*X(34128)-5*X(37952) = 5*X(38728)-4*X(47335) = 3*X(44265)-4*X(47296)

X(58789) lies on these lines: {3, 18383}, {4, 567}, {6, 3830}, {20, 13561}, {23, 10113}, {30, 74}, {49, 12289}, {50, 56408}, {110, 18572}, {113, 10540}, {185, 382}, {186, 20304}, {381, 1495}, {399, 1531}, {511, 12902}, {512, 18322}, {858, 12121}, {1503, 7728}, {1533, 31726}, {1539, 12112}, {1614, 18567}, {1657, 14852}, {1658, 18394}, {2070, 13851}, {2072, 38794}, {2393, 18435}, {2931, 18859}, {3146, 34798}, {3153, 12383}, {3534, 37638}, {3575, 43821}, {3627, 12022}, {3818, 12367}, {3843, 37506}, {3845, 14389}, {5073, 18555}, {5655, 46818}, {5663, 10296}, {5907, 48675}, {5944, 54001}, {6000, 38790}, {6288, 12605}, {7488, 18379}, {7502, 18392}, {7574, 15136}, {7575, 14644}, {7579, 39242}, {7703, 18570}, {7723, 44668}, {10024, 32351}, {10110, 43835}, {10254, 18376}, {10255, 34785}, {10295, 15061}, {10297, 14643}, {10574, 50006}, {10750, 13414}, {10751, 13415}, {11250, 40242}, {11572, 14130}, {12041, 56369}, {12105, 15044}, {12173, 37481}, {12228, 14157}, {12293, 37484}, {12295, 18325}, {12370, 15800}, {13406, 41482}, {13470, 34007}, {15059, 18571}, {15122, 38723}, {15139, 19506}, {15332, 43608}, {15362, 32223}, {15681, 58762}, {15682, 37644}, {15684, 58764}, {18350, 18404}, {18374, 19130}, {18381, 18562}, {18382, 19127}, {18474, 18564}, {18494, 44084}, {18563, 41362}, {18569, 37495}, {21659, 31724}, {22804, 35500}, {23236, 47339}, {32110, 38724}, {32534, 45622}, {34128, 37952}, {34484, 43865}, {34783, 52843}, {34801, 37494}, {37648, 38321}, {38728, 47335}, {44265, 47296}

X(58789) = reflection of X(i) in X(j) for these (i, j): (23, 10113), (110, 18572), (399, 1531), (2070, 13851), (12112, 1539), (12121, 858), (12367, 3818), (15139, 19506), (18325, 12295), (56369, 12041)
X(58789) = pole of the line {8675, 48884} with respect to the Hatzipolakis-Suppa circle
X(58789) = pole of the line {11539, 14836} with respect to the Evans conic
X(58789) = pole of the line {381, 11557} with respect to the Jerabek circumhyperbola
X(58789) = pole of the line {1989, 3845} with respect to the Kiepert circumhyperbola
X(58789) = pole of the line {1511, 10298} with respect to the Stammler hyperbola


X(58790) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND EHRMANN-SIDE

Barycentrics    (b^2-c^2)*((-a^2+b^2+c^2)^2-b^2*c^2)*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*((b^2+c^2)*a^4-2*(b^4-b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2))^2 : :

X(58790) lies on these lines: {113, 131}, {3268, 5664}, {41077, 52743}

X(58790) = cross-difference of every pair of points on the line X(14910)X(52153)
X(58790) = crosspoint of X(3580) and X(39290)
X(58790) = crosssum of X(14910) and X(52743)
X(58790) = X(39290)-Ceva conjugate of-X(3580)
X(58790) = X(i)-Dao conjugate of-X(j) for these (i, j): (2088, 10419), (18334, 39379)
X(58790) = X(32678)-isoconjugate of-X(39379)
X(58790) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (526, 39379), (34104, 476)
X(58790) = perspector of the circumconic through X(340) and X(3580)
X(58790) = pole of the line {1300, 1989} with respect to the polar circle
X(58790) = pole of the line {10420, 32662} with respect to the Stammler hyperbola
X(58790) = barycentric product X(i)*X(j) for these {i, j}: {3268, 34104}, {57486, 58872}
X(58790) = trilinear product X(32679)*X(34104)
X(58790) = trilinear quotient X(i)/X(j) for these (i, j): (32679, 39379), (34104, 32678)


X(58791) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd EHRMANN TO ABC

Barycentrics    a^2*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(5*a^2-4*b^2-4*c^2) : :

X(58791) lies on these lines: {6, 110}, {524, 30786}, {574, 14908}, {671, 8584}, {691, 8586}, {1570, 52233}, {1992, 31125}, {5104, 32901}, {5111, 52198}, {6748, 17983}, {8541, 41911}, {9139, 18877}, {9976, 45723}, {10415, 47466}, {14075, 19626}, {15534, 42008}, {17964, 44496}, {21639, 57467}, {47464, 51258}

X(58791) = X(15899)-Dao conjugate of-X(17503)
X(58791) = X(896)-isoconjugate of-X(17503)
X(58791) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (111, 17503), (8588, 524), (15533, 3266), (52292, 44146)
X(58791) = pole of the line {21639, 42007} with respect to the Jerabek circumhyperbola
X(58791) = pole of the line {858, 52141} with respect to the Kiepert circumhyperbola
X(58791) = barycentric product X(i)*X(j) for these {i, j}: {111, 15533}, {671, 8588}, {895, 52292}
X(58791) = trilinear product X(i)*X(j) for these {i, j}: {897, 8588}, {923, 15533}, {36060, 52292}
X(58791) = trilinear quotient X(i)/X(j) for these (i, j): (897, 17503), (8588, 896), (15533, 14210)


X(58792) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd EULER

Barycentrics    a^2*(b^2-c^2)*(-a^2+b^2+c^2)*(a^4-2*(b^2+c^2)*a^2+b^4+c^4)*(a^6-3*(b^2+c^2)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2))^2 : :

X(58792) lies on these lines: {5, 58892}, {6563, 6753}, {27087, 44816}

X(58792) = reflection of X(58892) in X(5)
X(58792) = crosspoint of X(6515) and X(30450)
X(58792) = X(30450)-Ceva conjugate of-X(6515)
X(58792) = X(39013)-Dao conjugate of-X(57697)
X(58792) = X(i)-isoconjugate of-X(j) for these {i, j}: {921, 39416}, {36145, 57697}
X(58792) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (454, 925), (924, 57697), (1609, 39416), (6563, 57868)
X(58792) = perspector of the circumconic through X(317) and X(6515)
X(58792) = pole of the line {254, 2165} with respect to the polar circle
X(58792) = pole of the line {13398, 39416} with respect to the Stammler hyperbola
X(58792) = pole of the line {1147, 6503} with respect to the Steiner inellipse
X(58792) = barycentric product X(i)*X(j) for these {i, j}: {454, 6563}, {6503, 57070}
X(58792) = trilinear quotient X(i)/X(j) for these (i, j): (454, 36145), (920, 39416)


X(58793) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: EXCENTERS-REFLECTIONS TO ABC

Barycentrics    a*(a+b-3*c)*(a-3*b+c)*(7*a-5*b-5*c) : :

X(58793) lies on these lines: {1, 474}, {519, 6557}, {644, 3973}, {2099, 19604}, {3241, 4373}, {3632, 6556}, {4052, 51093}, {5289, 24151}, {10700, 46943}, {18421, 40151}, {27818, 58816}

X(58793) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (31145, 18743), (31188, 39126)
X(58793) = pole of the line {2098, 10563} with respect to the Feuerbach circumhyperbola
X(58793) = barycentric product X(i)*X(j) for these {i, j}: {3680, 31188}, {8056, 31145}
X(58793) = trilinear product X(3445)*X(31145)
X(58793) = trilinear quotient X(i)/X(j) for these (i, j): (31145, 145), (31188, 5435)


X(58794) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND EXCENTERS-REFLECTIONS

Barycentrics    a*(b-c)*(a+b-3*c)*(a-3*b+c) : :
X(58794) = X(47915)-3*X(48131) = 3*X(47947)-5*X(48091) = 3*X(48128)-X(48582) = 3*X(48332)-X(48351)

X(58794) lies on these lines: {513, 4162}, {514, 4521}, {650, 27837}, {764, 3680}, {876, 29226}, {905, 1022}, {1019, 8712}, {1027, 3445}, {1293, 1308}, {1332, 3257}, {1734, 10563}, {2505, 4546}, {3669, 4394}, {4373, 17496}, {4391, 6557}, {4562, 53647}, {4801, 29739}, {4802, 7628}, {6084, 30719}, {30520, 48070}, {34080, 36146}, {47915, 48131}, {47947, 48091}, {48128, 48582}, {48332, 48351}

X(58794) = reflection of X(i) in X(j) for these (i, j): (4394, 3669), (4546, 2505)
X(58794) = isogonal conjugate of X(57192)
X(58794) = cevapoint of X(i) and X(j) for these {i, j}: {513, 2516}, {764, 2170}
X(58794) = cross-difference of every pair of points on the line X(1743)X(3052)
X(58794) = crosspoint of X(8056) and X(27834)
X(58794) = crosssum of X(i) and X(j) for these {i, j}: {9, 2516}, {1743, 4394}, {3950, 4521}
X(58794) = X(39975)-anticomplementary conjugate of-X(34548)
X(58794) = X(4560)-beth conjugate of-X(20317)
X(58794) = X(i)-Ceva conjugate of-X(j) for these (i, j): (6557, 1086), (27834, 8056), (53647, 56174)
X(58794) = X(i)-cross conjugate of-X(j) for these (i, j): (650, 513), (2170, 3680), (6615, 3676), (23777, 16726)
X(58794) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 30720), (9, 43290), (11, 3161), (115, 52353), (244, 3950), (513, 4394), (514, 4462), (661, 3667), (1015, 145), (1084, 4849), (1086, 18743), (1146, 44720), (2170, 12640), (3125, 4918), (4988, 4404), (5375, 44724), (6615, 4521), (8054, 1743), (14714, 4936), (24151, 190), (34467, 20818), (34591, 52354), (35072, 44722), (35092, 4487), (35508, 6555), (38980, 4899), (38991, 3158), (39006, 4855), (40615, 39126), (40617, 5435), (40624, 44723), (40627, 4729), (50330, 14321), (55053, 3052), (55067, 52352)
X(58794) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 43290}, {56, 30720}, {59, 4521}, {100, 1743}, {101, 145}, {109, 3161}, {110, 3950}, {112, 52354}, {163, 52353}, {190, 3052}, {644, 1420}, {649, 44724}, {651, 3158}, {662, 4849}, {677, 53579}, {692, 18743}, {765, 4394}, {919, 4899}, {934, 4936}, {1016, 8643}, {1018, 16948}, {1110, 4462}, {1252, 3667}, {1262, 4546}, {1415, 44720}, {1461, 6555}, {1783, 4855}, {1897, 20818}, {3939, 5435}, {3952, 33628}, {4162, 4564}, {4248, 4574}, {4487, 32665}, {4557, 41629}, {4559, 52352}, {4567, 4729}, {4570, 14321}, {4619, 4953}, {4628, 4884}, {4848, 5546}, {4856, 8701}, {4898, 8652}, {4929, 30555}, {6065, 30719}, {9268, 14425}, {15519, 38828}, {23344, 31227}, {32641, 51433}, {32660, 44721}, {32674, 44722}
X(58794) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 43290), (9, 30720), (100, 44724), (244, 3667), (512, 4849), (513, 145), (514, 18743), (521, 44722), (522, 44720), (523, 52353), (649, 1743), (650, 3161), (656, 52354), (657, 4936), (661, 3950), (663, 3158), (667, 3052), (764, 3756), (900, 4487), (1015, 4394), (1019, 41629), (1022, 31227), (1086, 4462), (1293, 765), (1357, 51656), (1459, 4855), (1769, 51433), (2087, 14425), (2170, 4521), (2254, 4899), (2310, 4546), (2530, 4884), (3120, 4404), (3122, 4729), (3125, 14321), (3248, 8643), (3271, 4162), (3445, 100), (3669, 5435), (3675, 4925), (3676, 39126), (3680, 3699), (3733, 16948), (3737, 52352), (3900, 6555), (4017, 4848), (4052, 4033), (4162, 15519), (4373, 668), (4391, 44723)
X(58794) = X(100)-zayin conjugate of-X(4394)
X(58794) = trilinear pole of the line {244, 4014} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58794) = perspector of the circumconic through X(4373) and X(8056)
X(58794) = pole of the line {5204, 16688} with respect to the circumcircle
X(58794) = pole of the line {3057, 4862} with respect to the incircle
X(58794) = pole of the line {3161, 52353} with respect to the polar circle
X(58794) = pole of the line {244, 36639} with respect to the Feuerbach circumhyperbola
X(58794) = pole of the line {17058, 36637} with respect to the Kiepert circumhyperbola
X(58794) = pole of the line {3621, 3999} with respect to the Steiner circumellipse
X(58794) = pole of the line {8, 16602} with respect to the Steiner inellipse
X(58794) = barycentric product X(i)*X(j) for these {i, j}: {244, 53647}, {513, 4373}, {514, 8056}, {522, 19604}, {649, 40014}, {650, 27818}, {693, 3445}, {1019, 4052}, {1024, 10029}, {1086, 27834}, {1111, 1293}, {1358, 31343}, {1432, 27831}, {2161, 27836}, {3064, 27832}, {3261, 38266}, {3669, 6557}, {3676, 3680}, {4162, 16078}, {4391, 40151}
X(58794) = trilinear product X(i)*X(j) for these {i, j}: {11, 38828}, {244, 27834}, {513, 8056}, {514, 3445}, {522, 40151}, {649, 4373}, {650, 19604}, {663, 27818}, {667, 40014}, {693, 38266}, {764, 5382}, {884, 10029}, {1015, 53647}, {1019, 56174}, {1086, 1293}, {1111, 34080}, {1431, 27831}, {2415, 43922}, {2429, 6549}, {3669, 3680}
X(58794) = trilinear quotient X(i)/X(j) for these (i, j): (2, 43290), (8, 30720), (11, 4521), (190, 44724), (244, 4394), (513, 1743), (514, 145), (522, 3161), (523, 3950), (525, 52354), (649, 3052), (650, 3158), (661, 4849), (676, 53579), (693, 18743), (905, 4855), (918, 4899), (1015, 8643), (1019, 16948), (1086, 3667)


X(58795) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st EXCOSINE TO ABC

Barycentrics    a^2*(a^8-8*(b^2+c^2)*a^6+2*(9*b^4-10*b^2*c^2+9*c^4)*a^4-16*(b^4-c^4)*(b^2-c^2)*a^2+(5*b^4+22*b^2*c^2+5*c^4)*(b^2-c^2)^2) : :
X(58795) = 4*X(3)-3*X(64) = 3*X(6)-4*X(9968) = 6*X(159)-5*X(55614) = 8*X(1493)-9*X(17824) = 5*X(1656)-4*X(52102) = 3*X(1853)-4*X(2883) = 3*X(2935)-4*X(5609) = 7*X(3090)-9*X(5656) = 3*X(3534)-4*X(45185) = 2*X(3627)-3*X(5878) = 3*X(10117)-2*X(15054) = 5*X(11482)-6*X(34779) = 6*X(11598)-7*X(15020) = 3*X(12085)-4*X(41597) = 4*X(12103)-3*X(20427) = 3*X(12163)-4*X(17714) = 3*X(12250)-5*X(17538) = 6*X(12262)-7*X(30389) = 6*X(13293)-7*X(15039) = 4*X(14094)-3*X(17847) = 8*X(15012)-9*X(41580) = 5*X(15021)-6*X(15647) = 4*X(19149)-3*X(52028) = 4*X(32139)-3*X(37497) = 3*X(39879)-2*X(52987) = 6*X(41362)-7*X(50688) = X(49140)+3*X(54211)

X(58795) lies on these lines: {3, 64}, {4, 11431}, {6, 9968}, {20, 44762}, {30, 9936}, {110, 41427}, {159, 55614}, {161, 9914}, {185, 5198}, {193, 1503}, {206, 55684}, {221, 2293}, {376, 15105}, {378, 14528}, {382, 10112}, {394, 12279}, {546, 14216}, {578, 3426}, {1173, 14490}, {1181, 11423}, {1192, 26883}, {1249, 35711}, {1350, 12111}, {1493, 17824}, {1495, 1620}, {1515, 51342}, {1593, 17809}, {1597, 37505}, {1656, 52102}, {1853, 2883}, {1995, 45042}, {2071, 45248}, {2192, 3304}, {2777, 49137}, {2935, 5609}, {3079, 58797}, {3090, 5656}, {3292, 46373}, {3518, 10605}, {3525, 16252}, {3526, 14862}, {3529, 15311}, {3532, 15750}, {3534, 45185}, {3555, 6001}, {3592, 12964}, {3594, 12970}, {3627, 5878}, {3628, 40686}, {3843, 14864}, {3917, 16936}, {5076, 18405}, {5079, 20299}, {5085, 15579}, {5663, 15085}, {5876, 35237}, {5893, 32064}, {5894, 11206}, {5925, 9833}, {6241, 9786}, {6266, 17840}, {6267, 17843}, {6425, 17819}, {6426, 17820}, {6453, 35864}, {6454, 35865}, {6696, 10303}, {8549, 53858}, {9899, 40660}, {9924, 34146}, {9934, 51522}, {10117, 15054}, {10541, 19132}, {10601, 11439}, {10625, 33534}, {10675, 22236}, {10676, 22238}, {10982, 11455}, {11284, 31978}, {11425, 11456}, {11469, 25406}, {11472, 37476}, {11482, 34779}, {11598, 15020}, {11820, 15644}, {12085, 41597}, {12086, 46372}, {12103, 20427}, {12112, 37487}, {12163, 17714}, {12173, 34563}, {12250, 17538}, {12262, 30389}, {13154, 45959}, {13293, 15039}, {13382, 18535}, {13452, 43713}, {13491, 37475}, {14094, 17847}, {14157, 35479}, {14915, 15083}, {15012, 41580}, {15021, 15647}, {15022, 23332}, {15069, 37201}, {15305, 33537}, {15577, 55641}, {15582, 16661}, {16042, 40928}, {17823, 32137}, {17825, 44870}, {17826, 36836}, {17827, 36843}, {18400, 48672}, {19149, 52028}, {19357, 35475}, {20079, 31371}, {23329, 55858}, {26926, 36990}, {32139, 37497}, {34152, 51933}, {35602, 58762}, {39879, 52987}, {41362, 50688}, {41373, 52703}, {43695, 55977}, {44882, 45816}, {49140, 54211}

X(58795) = reflection of X(i) in X(j) for these (i, j): (20, 44762), (5925, 9833), (9899, 40660)
X(58795) = isogonal conjugate of X(51348)
X(58795) = crosspoint of X(15384) and X(44060)
X(58795) = X(36609)-Ceva conjugate of-X(6)
X(58795) = pole of the the tripolar of X(36609) with respect to the circumcircle
X(58795) = pole of the line {8779, 33636} with respect to the Moses circles radical circle
X(58795) = pole of the line {1204, 11403} with respect to the Jerabek circumhyperbola
X(58795) = pole of the line {20, 51261} with respect to the Stammler hyperbola
X(58795) = pole of the line {14615, 51348} with respect to the Steiner-Wallace hyperbola


X(58796) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st EXCOSINE

Barycentrics    a^2*(b^2-c^2)*(-a^2+b^2+c^2)^2*(3*a^4-2*(b^2+c^2)*a^2-(b^2-c^2)^2) : :
X(58796) = 5*X(31277)-3*X(52744)

X(58796) lies on these lines: {6, 58895}, {110, 23964}, {112, 46968}, {394, 58359}, {520, 647}, {525, 41300}, {577, 2430}, {1147, 30213}, {2501, 9033}, {3265, 39473}, {6368, 47122}, {6587, 8057}, {8651, 39469}, {8673, 16040}, {8677, 43060}, {23723, 39470}, {30211, 46425}, {31277, 52744}, {52613, 57057}, {52743, 55204}

X(58796) = isogonal conjugate of the polar conjugate of X(8057)
X(58796) = isogonal conjugate of the isotomic conjugate of X(20580)
X(58796) = isotomic conjugate of the polar conjugate of X(42658)
X(58796) = cross-difference of every pair of points on the line X(4)X(64)
X(58796) = crosspoint of X(i) and X(j) for these {i, j}: {3, 46639}, {110, 394}, {112, 1249}, {3682, 52610}, {8057, 20580}
X(58796) = crosssum of X(i) and X(j) for these {i, j}: {4, 6587}, {393, 523}, {459, 58759}, {525, 1073}, {647, 11381}, {2501, 37197}, {6530, 55275}, {8747, 17926}
X(58796) = X(i)-Ceva conjugate of-X(j) for these (i, j): (110, 154), (112, 577), (1249, 39020), (8057, 42658), (15905, 47409), (36609, 2972), (37669, 122), (46639, 3), (52613, 520), (54812, 13611), (57057, 822)
X(58796) = X(i)-complementary conjugate of-X(j) for these (i, j): (32319, 34846), (32676, 14363)
X(58796) = X(i)-cross conjugate of-X(j) for these (i, j): (42658, 520), (47409, 15905)
X(58796) = X(i)-Dao conjugate of-X(j) for these (i, j): (4, 15352), (6, 53639), (122, 2052), (125, 459), (1084, 6526), (1147, 46639), (2972, 13157), (6503, 44326), (6587, 850), (14390, 53886), (15526, 52581), (17423, 41489), (22391, 1301), (35071, 253), (36830, 44181), (38985, 2184), (39020, 264), (45245, 6528), (45248, 648), (46093, 1073), (52613, 3267)
X(58796) = X(i)-isoconjugate of-X(j) for these {i, j}: {19, 53639}, {64, 823}, {92, 1301}, {107, 2184}, {158, 46639}, {162, 459}, {253, 24019}, {661, 44181}, {662, 6526}, {811, 41489}, {1073, 36126}, {1096, 44326}, {1577, 15384}, {2155, 6528}, {2643, 55268}, {6529, 19611}, {8747, 56235}, {14638, 24022}, {15352, 19614}, {24000, 58759}, {32676, 52581}, {32713, 57921}, {33581, 57973}, {52158, 54240}
X(58796) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (3, 53639), (20, 6528), (110, 44181), (122, 850), (154, 107), (184, 1301), (204, 36126), (249, 55268), (394, 44326), (512, 6526), (520, 253), (525, 52581), (577, 46639), (610, 823), (647, 459), (822, 2184), (1249, 15352), (1562, 14618), (1576, 15384), (3049, 41489), (3172, 6529), (3265, 41530), (3269, 58759), (3990, 56235), (5930, 52938), (6587, 2052), (8057, 264), (14345, 46106), (14379, 53886), (15291, 15459), (15905, 648), (17434, 13157), (17898, 57806), (18750, 57973), (20580, 76), (24018, 57921), (30456, 54240), (32320, 1073), (33629, 16813), (35602, 99), (37669, 6331), (38808, 52779), (39201, 64), (42658, 4), (44705, 1093), (46639, 57574), (47409, 525), (51640, 8809), (52613, 34403), (55269, 338)
X(58796) = perspector of the circumconic through X(3) and X(20)
X(58796) = pole of the line {154, 577} with respect to the circumcircle
X(58796) = pole of the line {6000, 42658} with respect to the Moses circles radical circle
X(58796) = pole of the line {459, 2052} with respect to the polar circle
X(58796) = pole of the line {154, 160} with respect to the Johnson circumconic
X(58796) = pole of the line {13611, 53577} with respect to the Kiepert circumhyperbola
X(58796) = pole of the line {3, 64} with respect to the MacBeath circumconic
X(58796) = pole of the line {185, 5895} with respect to the orthic inconic
X(58796) = pole of the line {648, 2404} with respect to the Stammler hyperbola
X(58796) = pole of the line {3164, 3522} with respect to the Steiner circumellipse
X(58796) = pole of the line {216, 631} with respect to the Steiner inellipse
X(58796) = pole of the line {6331, 44326} with respect to the Steiner-Wallace hyperbola
X(58796) = barycentric product X(i)*X(j) for these {i, j}: {3, 8057}, {6, 20580}, {20, 520}, {69, 42658}, {110, 122}, {154, 3265}, {249, 55269}, {255, 17898}, {394, 6587}, {523, 35602}, {525, 15905}, {610, 24018}, {647, 37669}, {648, 47409}, {822, 18750}, {1073, 57201}, {1249, 52613}, {1562, 4558}, {1804, 14308}, {2972, 52913}
X(58796) = trilinear product X(i)*X(j) for these {i, j}: {20, 822}, {31, 20580}, {48, 8057}, {63, 42658}, {122, 163}, {154, 24018}, {162, 47409}, {204, 52613}, {255, 6587}, {520, 610}, {577, 17898}, {656, 15905}, {661, 35602}, {810, 37669}, {1101, 55269}, {1410, 57045}, {1562, 4575}, {1895, 32320}, {3198, 4091}, {3990, 21172}
X(58796) = trilinear quotient X(i)/X(j) for these (i, j): (20, 823), (48, 1301), (63, 53639), (122, 1577), (154, 24019), (163, 15384), (204, 6529), (255, 46639), (326, 44326), (520, 2184), (610, 107), (656, 459), (661, 6526), (662, 44181), (810, 41489), (822, 64), (1249, 36126), (1562, 24006), (1895, 15352), (2632, 58759)


X(58797) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd EXCOSINE TO ABC

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(7*a^12-12*(b^2+c^2)*a^10-(3*b^2-7*c^2)*(7*b^2-3*c^2)*a^8+64*(b^4-c^4)*(b^2-c^2)*a^6-(b^2-c^2)^2*(51*b^4+106*b^2*c^2+51*c^4)*a^4+4*(b^4-c^4)*(b^2-c^2)*(b^2+3*c^2)*(3*b^2+c^2)*a^2+(b^2-c^2)^6) : :

X(58797) lies on these lines: {4, 64}, {140, 40675}, {207, 4336}, {393, 1204}, {1033, 3516}, {1249, 8567}, {1990, 3532}, {2060, 34147}, {3079, 58795}, {3164, 3522}, {3346, 11589}, {3523, 31377}, {4232, 18288}, {5059, 51939}, {5094, 17830}, {5894, 14361}, {6524, 34469}, {8960, 22838}, {12324, 34286}, {22839, 58866}, {34549, 45037}


X(58798) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd EXTOUCH TO ABC

Barycentrics    a^4+(b+c)*a^3-(b+c)*(b^2+c^2)*a-(b^2-c^2)^2 : :
X(58798) = 3*X(11238)-2*X(49627)

X(58798) lies on these lines: {1, 529}, {2, 3824}, {3, 908}, {4, 8}, {5, 63}, {7, 5084}, {9, 46}, {10, 1836}, {12, 12514}, {20, 5440}, {21, 11374}, {30, 78}, {36, 25681}, {40, 17757}, {43, 24851}, {44, 1714}, {55, 21077}, {56, 226}, {57, 4187}, {58, 17720}, {84, 37374}, {100, 16128}, {140, 4652}, {142, 16842}, {144, 3091}, {198, 37063}, {200, 41869}, {219, 1838}, {225, 34048}, {307, 7532}, {312, 1330}, {320, 18147}, {376, 27383}, {377, 5044}, {381, 3927}, {382, 3940}, {386, 50065}, {388, 392}, {394, 8757}, {404, 27131}, {406, 1892}, {443, 18228}, {452, 3487}, {474, 3452}, {475, 27540}, {480, 516}, {484, 37828}, {495, 5250}, {497, 3555}, {498, 4640}, {499, 5087}, {515, 5730}, {518, 1479}, {519, 12701}, {527, 1210}, {535, 30144}, {546, 3951}, {550, 4855}, {553, 9843}, {631, 5748}, {672, 52257}, {758, 1837}, {860, 28950}, {894, 52258}, {912, 6928}, {920, 10523}, {936, 9579}, {938, 24473}, {942, 2478}, {943, 1005}, {946, 956}, {950, 2098}, {952, 11682}, {958, 12047}, {960, 1478}, {964, 26580}, {971, 6836}, {975, 49745}, {986, 33099}, {997, 7354}, {999, 41012}, {1001, 13407}, {1006, 5303}, {1009, 30961}, {1071, 6827}, {1089, 3416}, {1145, 7991}, {1155, 26364}, {1193, 56964}, {1259, 6985}, {1260, 18524}, {1352, 43216}, {1376, 1770}, {1385, 6936}, {1445, 50206}, {1482, 51423}, {1490, 2829}, {1519, 22770}, {1532, 5709}, {1699, 24390}, {1708, 57285}, {1717, 9640}, {1724, 3772}, {1728, 3847}, {1750, 52860}, {1785, 7078}, {1788, 17619}, {1858, 10953}, {1864, 14054}, {2096, 6926}, {2287, 31902}, {2292, 5725}, {2325, 8804}, {2475, 3876}, {2476, 3219}, {2550, 3697}, {2551, 3753}, {2635, 3682}, {2886, 41229}, {2893, 17360}, {2975, 5886}, {3035, 58887}, {3085, 5698}, {3090, 5744}, {3214, 33094}, {3218, 4193}, {3254, 38271}, {3296, 58576}, {3305, 8728}, {3306, 17527}, {3338, 3816}, {3361, 25522}, {3428, 12608}, {3454, 32777}, {3488, 3623}, {3523, 46873}, {3543, 20007}, {3579, 5552}, {3583, 5904}, {3585, 5692}, {3586, 3633}, {3601, 57002}, {3627, 3984}, {3648, 22937}, {3649, 54318}, {3651, 45392}, {3656, 4861}, {3662, 13741}, {3670, 17276}, {3683, 10198}, {3687, 50044}, {3693, 17732}, {3695, 56082}, {3701, 6327}, {3811, 6284}, {3814, 7702}, {3825, 17728}, {3831, 4655}, {3832, 54398}, {3838, 5302}, {3868, 5046}, {3870, 15171}, {3872, 22791}, {3877, 20060}, {3878, 5252}, {3899, 37710}, {3901, 37702}, {3912, 24701}, {3928, 17533}, {3929, 5705}, {3944, 5247}, {3947, 51090}, {3952, 5300}, {3962, 49168}, {4018, 18391}, {4047, 26063}, {4056, 47595}, {4186, 37547}, {4197, 27065}, {4293, 17614}, {4294, 25568}, {4297, 12678}, {4302, 56176}, {4304, 50242}, {4338, 9711}, {4383, 23537}, {4416, 48902}, {4417, 7283}, {4418, 5955}, {4511, 18481}, {4641, 5292}, {4643, 4721}, {4645, 46937}, {4656, 5717}, {4847, 18483}, {4853, 31162}, {4880, 28646}, {4882, 50865}, {4894, 49688}, {4911, 30946}, {4997, 36058}, {4999, 37692}, {5047, 31019}, {5051, 26223}, {5119, 12607}, {5122, 6921}, {5142, 5279}, {5177, 46933}, {5187, 20078}, {5192, 17184}, {5195, 16284}, {5219, 7483}, {5226, 6857}, {5231, 5715}, {5248, 17718}, {5249, 11108}, {5251, 28628}, {5254, 54406}, {5256, 50067}, {5258, 18393}, {5262, 33151}, {5273, 6856}, {5287, 49743}, {5289, 45287}, {5290, 31435}, {5316, 12436}, {5328, 17567}, {5437, 17575}, {5554, 50193}, {5560, 6598}, {5587, 12526}, {5697, 32049}, {5703, 11111}, {5704, 28610}, {5707, 55400}, {5711, 41011}, {5719, 50241}, {5720, 37468}, {5728, 50196}, {5735, 36973}, {5759, 27525}, {5761, 6930}, {5787, 6840}, {5806, 6957}, {5841, 45770}, {5842, 17857}, {5850, 10392}, {5854, 9897}, {5855, 37711}, {5928, 10381}, {6048, 24715}, {6147, 31164}, {6256, 14110}, {6260, 6745}, {6261, 11827}, {6361, 7080}, {6666, 50207}, {6675, 31266}, {6691, 25525}, {6700, 16371}, {6735, 12702}, {6736, 28194}, {6737, 31673}, {6762, 9614}, {6763, 7741}, {6765, 9580}, {6831, 7330}, {6834, 37623}, {6835, 10157}, {6842, 26921}, {6865, 10167}, {6868, 33597}, {6872, 24929}, {6882, 24467}, {6890, 34862}, {6907, 55104}, {6913, 10680}, {6919, 9965}, {6923, 31837}, {6925, 22792}, {6929, 24474}, {6933, 55868}, {6937, 11681}, {6947, 9940}, {6963, 26877}, {6984, 9956}, {6987, 37002}, {6991, 38108}, {7069, 56839}, {7308, 17529}, {7385, 56555}, {7491, 37700}, {7700, 40661}, {7705, 31888}, {7743, 10529}, {8069, 37284}, {8233, 31561}, {8666, 11376}, {8679, 10477}, {9581, 54422}, {9613, 15829}, {9654, 24987}, {9669, 26015}, {9670, 41711}, {9776, 17559}, {9780, 20292}, {9809, 9961}, {9945, 15704}, {9955, 10527}, {10025, 36652}, {10039, 11236}, {10200, 32636}, {10382, 41864}, {10393, 10543}, {10449, 33066}, {10461, 37357}, {10572, 12635}, {10573, 44663}, {10591, 24477}, {10738, 46685}, {10896, 10916}, {11105, 28997}, {11114, 34772}, {11238, 49627}, {11373, 54391}, {11435, 45038}, {11520, 12433}, {11679, 48899}, {11684, 16159}, {11698, 55016}, {12115, 31786}, {12513, 30384}, {12676, 17613}, {12764, 47320}, {12943, 17647}, {13161, 16466}, {13273, 18254}, {13411, 16370}, {13740, 27184}, {13742, 26132}, {13747, 15803}, {14872, 48482}, {15488, 29958}, {16062, 27064}, {16091, 40702}, {16408, 18541}, {16478, 33152}, {16870, 54010}, {17056, 54287}, {17139, 18180}, {17248, 19280}, {17292, 37445}, {17353, 56780}, {17367, 19834}, {17483, 37162}, {17536, 27186}, {17590, 41867}, {17605, 26363}, {17674, 26688}, {17719, 54354}, {17742, 17747}, {17748, 32934}, {18243, 50528}, {18395, 31160}, {18446, 31789}, {18492, 49177}, {18513, 47033}, {18540, 37447}, {18641, 27413}, {18990, 19861}, {19513, 23206}, {19540, 20805}, {19543, 22345}, {19549, 23085}, {19550, 22344}, {19648, 22458}, {19860, 39542}, {20245, 51558}, {20769, 49129}, {20836, 27388}, {21031, 54286}, {21060, 51118}, {21073, 50995}, {21165, 52265}, {21620, 40998}, {22000, 56538}, {24174, 32857}, {24443, 33098}, {24514, 52256}, {24719, 48265}, {24936, 26738}, {24982, 36279}, {25083, 36674}, {26030, 32950}, {26265, 37050}, {26892, 37536}, {26942, 39585}, {27412, 52012}, {28082, 32856}, {28645, 44547}, {30578, 52364}, {31246, 51073}, {31442, 37661}, {31658, 37112}, {31672, 37433}, {31778, 42448}, {32938, 36568}, {33095, 50581}, {35242, 49178}, {37249, 40293}, {37286, 54430}, {37290, 37533}, {37292, 41550}, {37406, 37584}, {37428, 41543}, {37568, 45701}, {37585, 51379}, {37696, 54289}, {37715, 54421}, {37729, 52362}, {38357, 54295}, {39591, 58822}, {41883, 54396}, {50239, 57284}, {50623, 50625}, {52385, 58799}, {54433, 56084}

X(58798) = anticomplement of X(37582)
X(58798) = cross-difference of every pair of points on the line X(2605)X(22383)
X(58798) = X(8)-beth conjugate of-X(37567)
X(58798) = X(37582)-Dao conjugate of-X(37582)
X(58798) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (27412, 333), (52012, 81)
X(58798) = perspector of the circumconic through X(6335) and X(6742)
X(58798) = pole of the line {940, 3946} with respect to the circumhyperbola dual of Yff parabola
X(58798) = pole of the line {1837, 3753} with respect to the Feuerbach circumhyperbola
X(58798) = pole of the line {1, 53417} with respect to the Kiepert circumhyperbola
X(58798) = pole of the line {56092, 57055} with respect to the Mandart inellipse
X(58798) = pole of the line {1437, 40214} with respect to the Stammler hyperbola
X(58798) = pole of the line {1444, 34016} with respect to the Steiner-Wallace hyperbola
X(58798) = pole of the line {4552, 35342} with respect to the Yff parabola
X(58798) = barycentric product X(i)*X(j) for these {i, j}: {226, 27412}, {321, 52012}
X(58798) = trilinear product X(i)*X(j) for these {i, j}: {10, 52012}, {65, 27412}
X(58798) = trilinear quotient X(i)/X(j) for these (i, j): (27412, 21), (52012, 58)


X(58799) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 3rd EXTOUCH TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(a^6-(b+c)*a^5-(b+c)^2*a^4+2*(b^3+c^3)*a^3-(b^2-c^2)^2*a^2-(b^4-c^4)*(b-c)*a+(b^2-c^2)^2*(b+c)^2) : :

X(58799) lies on these lines: {4, 7}, {5, 77}, {11, 4341}, {30, 7013}, {80, 8809}, {223, 5219}, {269, 9581}, {307, 3419}, {319, 16090}, {347, 355}, {1214, 26063}, {1323, 32594}, {1371, 10904}, {1372, 10905}, {1436, 1751}, {1440, 6848}, {1442, 11374}, {1804, 6985}, {1837, 3668}, {2270, 16560}, {2893, 40702}, {3188, 5740}, {4304, 37046}, {4328, 37723}, {5252, 5930}, {5929, 10361}, {6356, 34059}, {6666, 20262}, {7053, 19541}, {7190, 12433}, {10365, 43213}, {10373, 30305}, {10903, 58836}, {11212, 14557}, {30809, 54425}, {31528, 31539}, {31529, 31538}, {43035, 54008}, {52385, 58798}

X(58799) = pole of the line {57, 53422} with respect to the Kiepert circumhyperbola


X(58800) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 4th EXTOUCH TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(a^3-2*(b+c)*a^2-2*(b^2+b*c+c^2)*a+(b+c)*(b^2+c^2)) : :

X(58800) lies on these lines: {7, 8}, {12, 17270}, {56, 3879}, {77, 2594}, {80, 10435}, {86, 24914}, {524, 2285}, {940, 3911}, {1038, 7181}, {1211, 5219}, {1317, 39773}, {1371, 10907}, {1372, 10908}, {1400, 4851}, {1405, 17279}, {1449, 43053}, {1788, 3945}, {1837, 10446}, {2099, 4357}, {2171, 4643}, {3340, 17272}, {3485, 5232}, {3629, 54377}, {3664, 4848}, {3966, 10473}, {4021, 37614}, {5224, 11375}, {5722, 10441}, {5727, 10442}, {5928, 10403}, {5929, 10361}, {10436, 40663}, {10444, 10950}, {10906, 58836}, {11011, 17321}, {15556, 41004}, {17363, 41245}, {17368, 25898}, {17377, 37738}, {24986, 25681}, {31530, 31539}, {31531, 31538}, {37653, 44733}

X(58800) = pole of the line {3669, 48013} with respect to the incircle
X(58800) = pole of the line {3663, 11375} with respect to the circumhyperbola dual of Yff parabola


X(58801) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INNER-FERMAT

Barycentrics    (b^2-c^2)*(4*S^2-4*(-a^2+b^2+c^2)*sqrt(3)*S+3*(-a^2+b^2+c^2)^2)*(3*a^4-4*S*sqrt(3)*a^2+4*S^2) : :

X(58801) lies on these lines: {523, 16529}, {619, 5664}, {9117, 13305}

X(58801) = cross-difference of every pair of points on the line X(6151)X(11086)
X(58801) = crosspoint of X(395) and X(36840)
X(58801) = crosssum of X(6151) and X(57123)
X(58801) = X(36840)-Ceva conjugate of-X(395)
X(58801) = X(30468)-Dao conjugate of-X(11120)
X(58801) = X(35444)-reciprocal conjugate of-X(11120)
X(58801) = perspector of the circumconic through X(395) and X(11078)
X(58801) = pole of the line {22848, 41888} with respect to the Steiner inellipse
X(58801) = barycentric product X(619)*X(35444)


X(58802) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND OUTER-FERMAT

Barycentrics    (b^2-c^2)*(4*S^2+4*(-a^2+b^2+c^2)*sqrt(3)*S+3*(-a^2+b^2+c^2)^2)*(3*a^4+4*S*sqrt(3)*a^2+4*S^2) : :

X(58802) lies on these lines: {523, 16530}, {618, 5664}, {9115, 13304}

X(58802) = cross-difference of every pair of points on the line X(2981)X(11081)
X(58802) = crosspoint of X(396) and X(36839)
X(58802) = crosssum of X(2981) and X(57122)
X(58802) = X(36839)-Ceva conjugate of-X(396)
X(58802) = X(30465)-Dao conjugate of-X(11119)
X(58802) = X(35443)-reciprocal conjugate of-X(11119)
X(58802) = perspector of the circumconic through X(396) and X(11092)
X(58802) = pole of the line {22892, 41887} with respect to the Steiner inellipse
X(58802) = barycentric product X(618)*X(35443)


X(58803) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st HALF-SQUARES TO ABC

Barycentrics    2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2-S*(-a^2+b^2+c^2) : :
X(58803) = 3*X(1992)-4*X(42215) = 5*X(3618)-4*X(42216) = 7*X(3619)-4*X(42226) = 5*X(3620)-2*X(42276) = X(11008)-4*X(42225)

X(58803) lies on these lines: {2, 1327}, {3, 12323}, {4, 488}, {5, 32812}, {20, 487}, {30, 69}, {76, 54888}, {141, 42264}, {148, 22601}, {193, 6561}, {302, 36445}, {303, 36463}, {371, 12222}, {376, 491}, {381, 32805}, {382, 12322}, {486, 38259}, {489, 3529}, {524, 42263}, {549, 32813}, {590, 5210}, {591, 42283}, {621, 52399}, {622, 52400}, {637, 3146}, {639, 22644}, {640, 42261}, {641, 42269}, {1007, 26438}, {1152, 45872}, {1270, 3543}, {1300, 1307}, {1587, 7787}, {1588, 43133}, {1770, 57266}, {1992, 42215}, {3068, 35949}, {3069, 43448}, {3070, 11292}, {3091, 45508}, {3522, 45509}, {3534, 32811}, {3545, 32807}, {3587, 55422}, {3593, 3839}, {3595, 10304}, {3618, 42216}, {3619, 42226}, {3620, 42276}, {3830, 32810}, {3832, 51953}, {5171, 21736}, {5406, 55882}, {5408, 55569}, {5590, 52667}, {5591, 35948}, {5860, 33457}, {6200, 26617}, {6337, 48659}, {6410, 23312}, {6450, 32490}, {6459, 26339}, {6460, 7388}, {7171, 55453}, {7793, 54127}, {8982, 12203}, {9541, 14712}, {10572, 57267}, {11001, 13798}, {11008, 42225}, {11090, 55573}, {11291, 42259}, {11293, 43407}, {12124, 48467}, {12221, 35821}, {12257, 49087}, {12305, 14230}, {13637, 26615}, {13935, 32488}, {15682, 32808}, {18509, 36714}, {18540, 55423}, {20080, 32419}, {23253, 32489}, {23267, 26619}, {23273, 45421}, {31412, 39387}, {32459, 45473}, {35945, 45511}, {37172, 53432}, {37173, 53444}, {39388, 42637}, {41490, 42274}, {42284, 45472}, {43134, 43408}

X(58803) = reflection of X(i) in X(j) for these (i, j): (193, 6561), (42264, 141)
X(58803) = anticomplement of X(6560)
X(58803) = cevapoint of X(488) and X(13798)
X(58803) = X(18847)-Ceva conjugate of-X(58804)
X(58803) = X(6560)-Dao conjugate of-X(6560)
X(58803) = pole of the line {37637, 42216} with respect to the Evans conic
X(58803) = pole of the line {6200, 10132} with respect to the Stammler hyperbola
X(58803) = pole of the line {376, 488} with respect to the Steiner-Wallace hyperbola


X(58804) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd HALF-SQUARES TO ABC

Barycentrics    2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2+S*(-a^2+b^2+c^2) : :
X(58804) = 3*X(1992)-4*X(42216) = 5*X(3618)-4*X(42215) = 7*X(3619)-4*X(42225) = 5*X(3620)-2*X(42275) = X(11008)-4*X(42226)

X(58804) lies on these lines: {2, 1328}, {3, 12322}, {4, 487}, {5, 32813}, {20, 488}, {30, 69}, {76, 54887}, {141, 42263}, {148, 22630}, {193, 6560}, {302, 36463}, {303, 36445}, {372, 12221}, {376, 492}, {381, 32806}, {382, 12323}, {485, 38259}, {490, 3529}, {524, 42264}, {549, 32812}, {615, 5210}, {621, 52400}, {622, 52399}, {638, 3146}, {639, 42260}, {640, 22615}, {642, 42268}, {1007, 18539}, {1151, 45871}, {1271, 3543}, {1300, 1306}, {1587, 43134}, {1588, 7787}, {1770, 57267}, {1991, 42284}, {1992, 42216}, {3068, 43448}, {3069, 35948}, {3071, 11291}, {3091, 45509}, {3522, 45508}, {3524, 32807}, {3534, 32810}, {3587, 55423}, {3593, 10304}, {3595, 3839}, {3618, 42215}, {3619, 42225}, {3620, 42275}, {3830, 32811}, {3832, 51952}, {5407, 55881}, {5409, 55573}, {5590, 35949}, {5591, 52666}, {5861, 33456}, {6118, 9680}, {6337, 48660}, {6396, 26618}, {6409, 23311}, {6449, 32491}, {6459, 7389}, {6460, 26340}, {7171, 55452}, {7793, 54126}, {9540, 32489}, {10572, 57266}, {11001, 13678}, {11008, 42226}, {11091, 55569}, {11292, 42258}, {11294, 43408}, {12123, 48466}, {12203, 21737}, {12222, 35820}, {12256, 49086}, {12306, 14233}, {13757, 26616}, {15682, 32809}, {15683, 32814}, {18511, 36709}, {18540, 55422}, {20080, 32421}, {23263, 32488}, {23267, 45420}, {23273, 26620}, {32459, 45472}, {35944, 45510}, {37172, 53433}, {37173, 53445}, {39387, 42638}, {39388, 42561}, {41491, 42277}, {42283, 45473}, {43133, 43407}

X(58804) = reflection of X(i) in X(j) for these (i, j): (193, 6560), (42263, 141)
X(58804) = anticomplement of X(6561)
X(58804) = cevapoint of X(487) and X(13678)
X(58804) = X(18847)-Ceva conjugate of-X(58803)
X(58804) = X(6561)-Dao conjugate of-X(6561)
X(58804) = pole of the line {9602, 37637} with respect to the Evans conic
X(58804) = pole of the line {6396, 10133} with respect to the Stammler hyperbola
X(58804) = pole of the line {376, 487} with respect to the Steiner-Wallace hyperbola


X(58805) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ABC TO HATZIPOLAKIS-MOSES

Barycentrics    a^10-3*(b^2+c^2)*a^8+(2*b^4+b^2*c^2+2*c^4)*a^6+2*(b^6+c^6)*a^4-(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

X(58805) lies on these lines: {2, 3}, {52, 58488}, {54, 44516}, {68, 9544}, {74, 20191}, {110, 2888}, {125, 52525}, {146, 11440}, {156, 14683}, {195, 13418}, {265, 5944}, {323, 9820}, {498, 9538}, {499, 38458}, {539, 9705}, {925, 33643}, {1078, 13219}, {1141, 39170}, {1209, 10203}, {1506, 10313}, {1568, 7691}, {1614, 3448}, {1994, 41587}, {3047, 46085}, {3410, 10539}, {3459, 30529}, {3462, 35360}, {3574, 32223}, {3620, 44493}, {5012, 43816}, {5188, 28436}, {5502, 38919}, {5966, 53949}, {6527, 32897}, {6759, 23293}, {7746, 22240}, {8157, 14097}, {8254, 15038}, {8837, 44714}, {8839, 44713}, {9706, 10112}, {9707, 14852}, {9927, 11464}, {10095, 12226}, {10192, 14516}, {10272, 21230}, {10540, 34826}, {10575, 43608}, {10576, 11418}, {10577, 11417}, {10610, 43821}, {10984, 26913}, {11003, 18912}, {11202, 12278}, {11416, 25555}, {11420, 16967}, {11421, 16966}, {11441, 37638}, {11454, 22802}, {11462, 13970}, {11463, 13909}, {11591, 12219}, {11635, 53935}, {11800, 21660}, {12134, 35265}, {12220, 38317}, {12242, 53863}, {12244, 32210}, {12279, 23329}, {12325, 50461}, {12359, 43605}, {12383, 32171}, {13198, 22533}, {13367, 50435}, {13403, 51033}, {13434, 58447}, {13445, 25563}, {13450, 37766}, {15062, 51403}, {15801, 41586}, {16166, 18279}, {16625, 32225}, {18381, 26881}, {18383, 41482}, {18392, 34785}, {18401, 53957}, {18474, 26882}, {19121, 24206}, {20396, 23060}, {22115, 58435}, {22550, 32333}, {25043, 38542}, {32046, 43838}, {32346, 56924}, {34229, 51884}, {37472, 58407}, {37779, 56292}, {41724, 43844}, {43574, 43839}, {43601, 44673}

X(58805) = anticomplement of X(6143)
X(58805) = isogonal conjugate of X(42059)
X(58805) = X(11538)-anticomplementary conjugate of-X(21270)
X(58805) = X(i)-Dao conjugate of-X(j) for these (i, j): (6143, 6143), (40596, 6799)
X(58805) = X(656)-isoconjugate of-X(6799)
X(58805) = X(112)-reciprocal conjugate of-X(6799)
X(58805) = pole of the line {110, 30248} with respect to the Kiepert parabola
X(58805) = pole of the line {3, 42059} with respect to the Stammler hyperbola
X(58805) = pole of the line {69, 42059} with respect to the Steiner-Wallace hyperbola
X(58805) = trilinear quotient X(162)/X(6799)


X(58806) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: HATZIPOLAKIS-MOSES TO ABC

Barycentrics    2*a^10-6*(b^2+c^2)*a^8+(7*b^4+8*b^2*c^2+7*c^4)*a^6-(b^2+c^2)*(5*b^4-8*b^2*c^2+5*c^4)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*(b^2-c^2)^2*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(58806) = 3*X(5462)-2*X(9825) = 3*X(10095)-2*X(13163) = 3*X(11245)-X(40647) = X(11819)-3*X(21849) = 2*X(12006)-3*X(32068) = X(12162)+3*X(45968) = 2*X(13142)+X(17712) = 3*X(14831)+X(18563) = X(16659)+3*X(45730)

X(58806) lies on these lines: {3, 41586}, {4, 10116}, {5, 539}, {6, 9927}, {30, 11565}, {51, 44076}, {52, 12022}, {54, 44516}, {68, 7404}, {125, 37472}, {143, 11262}, {185, 12897}, {195, 1568}, {265, 3574}, {382, 34563}, {389, 11800}, {541, 1885}, {542, 546}, {567, 6689}, {568, 21659}, {569, 7558}, {576, 18569}, {578, 5449}, {1147, 22529}, {1154, 43575}, {1199, 50435}, {1209, 13434}, {1353, 22660}, {1594, 36253}, {2070, 10619}, {3060, 11750}, {3292, 50143}, {3448, 18488}, {3564, 44495}, {3853, 45732}, {4550, 11411}, {5032, 32533}, {5097, 18383}, {5446, 6146}, {5448, 12161}, {5462, 9825}, {5663, 19481}, {5890, 43577}, {5907, 32358}, {5944, 32223}, {5965, 11591}, {6000, 43588}, {6102, 11225}, {6288, 15038}, {6699, 26879}, {7526, 52104}, {7566, 18474}, {7689, 18951}, {7706, 11432}, {9140, 35482}, {9705, 21451}, {9706, 37943}, {9781, 34799}, {9820, 12900}, {9936, 18537}, {10024, 13366}, {10095, 13163}, {10111, 46686}, {10113, 10114}, {10115, 11692}, {10263, 44829}, {10272, 47117}, {10627, 44862}, {10628, 32376}, {11232, 16657}, {11245, 40647}, {11403, 52101}, {11422, 16868}, {11424, 25738}, {11426, 14852}, {11430, 20191}, {11433, 12118}, {11801, 22051}, {11819, 21849}, {12006, 32068}, {12038, 13567}, {12162, 45968}, {12241, 13292}, {12585, 50649}, {13142, 17712}, {13346, 18952}, {13352, 18912}, {13406, 32136}, {13419, 45731}, {13470, 14449}, {13630, 31985}, {14128, 50708}, {14156, 34148}, {14831, 18563}, {14865, 16003}, {14915, 18914}, {15068, 45184}, {15087, 43831}, {16534, 43844}, {16659, 45730}, {16881, 30522}, {18369, 23236}, {18381, 39522}, {18396, 37493}, {18475, 41587}, {18916, 30552}, {20299, 46374}, {20397, 23336}, {30551, 36966}, {30714, 44802}, {31724, 32377}, {32365, 32412}, {32608, 35240}, {35500, 41724}, {43394, 44673}, {43574, 43816}, {43602, 52403}

X(58806) = midpoint of X(i) and X(j) for these {i, j}: {4, 10116}, {185, 12897}, {3853, 45732}, {5446, 6146}, {5907, 32358}, {10111, 46686}, {10113, 10114}, {10263, 44829}, {11232, 16657}, {12241, 13292}, {12585, 50649}, {13419, 45731}, {13470, 14449}, {32365, 32412}
X(58806) = reflection of X(10627) in X(44862)
X(58806) = pole of the line {12605, 22052} with respect to the Kiepert circumhyperbola
X(58806) = pole of the line {10115, 15801} with respect to the Stammler hyperbola


X(58807) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 3rd HATZIPOLAKIS TO ABC

Barycentrics    2*a^10-6*(b^2+c^2)*a^8+(7*b^4+8*b^2*c^2+7*c^4)*a^6-(b^2+c^2)*(5*b^4-12*b^2*c^2+5*c^4)*a^4+3*(b^2-c^2)^4*a^2-(b^4-c^4)*(b^2-c^2)^3 : :
X(58807) = X(185)-9*X(45967) = 3*X(389)+X(52070) = 3*X(12022)+X(45286) = 3*X(13364)+X(45970) = 3*X(13451)+X(13470) = X(13630)-3*X(32068) = X(14516)-9*X(14845) = 3*X(16657)+X(40647) = 3*X(18874)-2*X(23409) = X(31830)-3*X(58470) = 5*X(37481)-X(43577) = X(45959)+3*X(45969)

X(58807) lies on these lines: {4, 15019}, {5, 539}, {6, 5448}, {30, 12002}, {54, 21451}, {113, 1199}, {185, 45967}, {381, 10116}, {389, 52070}, {541, 13382}, {542, 3850}, {546, 45732}, {567, 44516}, {575, 15761}, {578, 43839}, {973, 11692}, {1173, 3153}, {1503, 44863}, {1568, 14627}, {2777, 15807}, {3292, 50139}, {3574, 15038}, {4550, 18951}, {5066, 11264}, {5447, 13142}, {5449, 39571}, {5462, 9826}, {5476, 7564}, {5576, 36253}, {5876, 11225}, {5943, 12370}, {5946, 13403}, {5965, 14128}, {6689, 13434}, {7689, 11433}, {9730, 12897}, {9781, 11750}, {9818, 52104}, {9820, 22973}, {10095, 18400}, {10110, 44407}, {10113, 46084}, {10610, 32223}, {10619, 13621}, {11563, 36153}, {12006, 32050}, {12022, 45286}, {13364, 45970}, {13376, 58489}, {13391, 44862}, {13451, 13470}, {13567, 20191}, {13598, 17712}, {13630, 32068}, {13754, 46363}, {14156, 37472}, {14157, 43838}, {14516, 14845}, {14862, 33749}, {15004, 18404}, {15033, 43817}, {15063, 34564}, {15083, 18537}, {16625, 52073}, {16657, 40647}, {17814, 45184}, {18488, 43808}, {18874, 23409}, {18914, 46849}, {22530, 22952}, {30522, 58531}, {31830, 58470}, {32165, 45958}, {32377, 54007}, {34864, 41586}, {37481, 43577}, {43586, 43595}, {43588, 44870}, {43600, 52403}, {43845, 51403}, {45959, 45969}

X(58807) = midpoint of X(i) and X(j) for these {i, j}: {5447, 13142}, {13598, 17712}, {16625, 52073}, {18914, 46849}, {32165, 45958}, {43588, 44870}
X(58807) = pole of the line {11802, 15801} with respect to the Stammler hyperbola


X(58808) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: HEXYL TO ABC

Barycentrics    a*(a^6-3*(b^2-6*b*c+c^2)*a^4+(3*b^4+3*c^4-2*b*c*(6*b^2-b*c+6*c^2))*a^2-(b^2+6*b*c+c^2)*(b^2-c^2)^2) : :
X(58808) = 2*X(19541)-3*X(21164)

X(58808) lies on these lines: {1, 17634}, {3, 1750}, {4, 5437}, {7, 31162}, {8, 20}, {9, 376}, {21, 3646}, {30, 57}, {36, 41860}, {377, 18492}, {382, 37534}, {497, 3333}, {516, 2096}, {517, 30304}, {550, 7330}, {971, 3940}, {993, 43178}, {999, 10384}, {1001, 1012}, {1058, 7091}, {1071, 7982}, {1376, 5302}, {1490, 5440}, {1498, 23140}, {1657, 5709}, {1697, 18481}, {2951, 3428}, {3146, 27003}, {3218, 15683}, {3220, 21312}, {3305, 10304}, {3306, 3543}, {3359, 28160}, {3476, 4304}, {3522, 27065}, {3524, 51780}, {3534, 3587}, {3601, 41854}, {3612, 16143}, {3655, 51779}, {3656, 58813}, {3816, 37447}, {3880, 54422}, {3928, 11001}, {4297, 12705}, {4413, 18529}, {4652, 33557}, {4863, 34630}, {5059, 23958}, {5073, 37612}, {5119, 34628}, {5128, 54432}, {5227, 48881}, {5249, 38021}, {5436, 21669}, {5438, 37403}, {5587, 6916}, {5603, 43177}, {5691, 31775}, {5745, 37427}, {5748, 6260}, {5918, 30503}, {6361, 6762}, {6705, 37421}, {6769, 12680}, {6847, 58463}, {6851, 9579}, {6909, 52026}, {6913, 10857}, {7289, 48905}, {7580, 52027}, {7701, 44238}, {7971, 9961}, {7992, 14110}, {7995, 31786}, {8227, 37434}, {8257, 50701}, {8726, 31805}, {9965, 28194}, {10391, 11529}, {10431, 26333}, {10437, 10450}, {10463, 10476}, {11220, 16200}, {11518, 13369}, {12103, 26921}, {12114, 12565}, {12650, 18238}, {12651, 12675}, {12684, 31793}, {13462, 58834}, {15326, 30223}, {15681, 37584}, {15704, 24467}, {15803, 37411}, {15979, 48897}, {16528, 16561}, {17538, 55104}, {17576, 31435}, {17800, 37532}, {18528, 35238}, {19541, 21164}, {20266, 34621}, {26877, 49138}, {31423, 37108}, {31673, 37435}, {34627, 51781}, {34773, 37556}, {37252, 37561}, {37429, 49732}, {50865, 51816}

X(58808) = reflection of X(i) in X(j) for these (i, j): (1750, 3), (18528, 35238)
X(58808) = pole of the line {2360, 35242} with respect to the Stammler hyperbola


X(58809) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: HONSBERGER TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(a^2+(b+c)*a-2*(b-c)^2)*(a^2-(2*b+c)*a+b*(b-c))*(a^2-(b+2*c)*a-c*(b-c)) : :

X(58809) lies on these lines: {7, 55}, {527, 6605}, {651, 1170}, {1156, 42311}, {6172, 32008}, {6173, 32578}, {7671, 42309}, {8545, 52511}, {11025, 56309}, {21296, 56118}, {40154, 56348}

X(58809) = cevapoint of X(4860) and X(21314)
X(58809) = X(i)-Dao conjugate of-X(j) for these (i, j): (15346, 3059), (40617, 46003)
X(58809) = X(i)-isoconjugate of-X(j) for these {i, j}: {2293, 55920}, {3939, 46003}, {6608, 58105}, {20229, 55954}
X(58809) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1170, 55920), (3669, 46003), (4860, 1212), (5231, 51972), (6173, 4847), (17425, 6607), (21314, 142), (21453, 55954), (34522, 3059), (42014, 45791)
X(58809) = barycentric product X(i)*X(j) for these {i, j}: {4860, 31618}, {5231, 10509}, {6173, 21453}, {21314, 32008}, {34522, 42311}
X(58809) = trilinear product X(i)*X(j) for these {i, j}: {1170, 6173}, {2346, 21314}, {4860, 21453}, {10509, 34522}
X(58809) = trilinear quotient X(i)/X(j) for these (i, j): (3676, 46003), (4860, 2293), (5231, 3059), (6173, 1212), (21314, 354), (21453, 55920), (31618, 55954), (32578, 8551), (34522, 8012)


X(58810) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND HUTSON EXTOUCH

Barycentrics    (b-c)*(-a+b+c)^2*((b+c)*a-(b-c)^2)*(3*a^3-5*(b+c)*a^2+(b-c)^2*a+(b^2-c^2)*(b-c))^2 : :

X(58810) lies on these lines: {4130, 10581}, {8713, 14280}, {21104, 31605}

X(58810) = crosssum of X(10579) and X(10581)


X(58811) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND HUTSON INTOUCH

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(3*a-b-c)^2*((b+c)*a+(b-c)^2) : :

X(58811) lies on these lines: {663, 2976}, {3667, 4162}, {6332, 30725}, {30726, 57238}

X(58811) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (6049, 8706), (6363, 33963), (14284, 6556), (31182, 52549), (45219, 31343), (58858, 1222)
X(58811) = barycentric product X(i)*X(j) for these {i, j}: {3663, 58858}, {30719, 45204}, {31182, 52563}
X(58811) = trilinear product X(i)*X(j) for these {i, j}: {1122, 31182}, {3752, 58858}, {6049, 48334}, {30719, 45219}, {45204, 51656}
X(58811) = trilinear quotient X(i)/X(j) for these (i, j): (31182, 1261), (45204, 31343), (48334, 33963)


X(58812) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd HYACINTH

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-3*(b^2+c^2)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2))^2 : :

X(58812) lies on these lines: {770, 2501}, {47230, 57201}, {57071, 58760}

X(58812) = cross-difference of every pair of points on the line X(1092)X(15316)
X(58812) = crosspoint of X(648) and X(3542)
X(58812) = crosssum of X(647) and X(15316)
X(58812) = X(648)-Ceva conjugate of-X(3542)
X(58812) = X(58757)-reciprocal conjugate of-X(57697)
X(58812) = perspector of the circumconic through X(1093) and X(3542)
X(58812) = pole of the line {394, 6504} with respect to the polar circle
X(58812) = pole of the line {155, 235} with respect to the orthic inconic
X(58812) = barycentric product X(47731)*X(57070)


X(58813) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: INCIRCLE-CIRCLES TO ABC

Barycentrics    4*(b+c)*a^3+(b^2+20*b*c+c^2)*a^2-4*(b^2-c^2)*(b-c)*a-(b^2-c^2)^2 : :

X(58813) lies on these lines: {1, 550}, {5, 50190}, {7, 15170}, {226, 496}, {354, 495}, {549, 37703}, {942, 11362}, {954, 999}, {1058, 11544}, {1387, 50908}, {1728, 37737}, {3295, 3296}, {3475, 15325}, {3476, 15934}, {3487, 5558}, {3488, 11037}, {3586, 44841}, {3600, 15174}, {3656, 58808}, {3881, 8728}, {3889, 27186}, {3892, 25557}, {3940, 51099}, {4031, 51787}, {4114, 28198}, {5049, 5542}, {5434, 15935}, {5719, 51816}, {5722, 30350}, {5886, 30326}, {6147, 17609}, {6284, 36946}, {7373, 13743}, {8162, 28212}, {10283, 37602}, {10592, 21620}, {10593, 13407}, {11373, 30343}, {15171, 18541}, {15686, 54342}, {17598, 48823}, {18398, 40663}, {31162, 58834}, {37595, 48820}


X(58814) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: INVERSE-IN-CONWAY TO ABC

Barycentrics    (a+b)*(a+c)*(2*(b+c)*a^2-(b^2+b*c+c^2)*a-(b+c)*b*c)/a : :

X(58814) lies on these lines: {1, 75}, {239, 27643}, {310, 42057}, {333, 3294}, {350, 33297}, {519, 28660}, {536, 18172}, {4653, 52379}, {5208, 16741}, {10449, 18135}, {17297, 29757}, {17753, 30941}, {18171, 56023}, {34282, 50618}, {34284, 48858}, {38477, 38479}

X(58814) = inverse of X(14195) in Conway circle
X(58814) = pole of the line {798, 6002} with respect to the Conway circle
X(58814) = pole of the line {10471, 21334} with respect to the Feuerbach circumhyperbola


X(58815) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INVERSE-IN-EXCIRCLES

Barycentrics    (b-c)*(-a+b+c)^2*(a^2+2*(b+c)*a+(b-c)^2)^2 : :

X(58815) lies on these lines: {514, 27417}, {657, 4063}, {3239, 15416}, {8712, 40137}, {14330, 20317}, {14837, 58817}

X(58815) = crosspoint of X(658) and X(3672)
X(58815) = crosssum of X(657) and X(7050)
X(58815) = X(658)-Ceva conjugate of-X(3672)
X(58815) = X(40137)-reciprocal conjugate of-X(2297)
X(58815) = trilinear product X(3672)*X(40137)
X(58815) = trilinear quotient X(40137)/X(7050)


X(58816) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: INVERSE-IN-INCIRCLE TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(2*a^2-3*(b+c)*a+(b-c)^2) : :
X(58816) = 3*X(354)-X(39789)

X(58816) lies on these lines: {1, 7}, {2, 32098}, {10, 6604}, {35, 38859}, {57, 3730}, {65, 10521}, {75, 6743}, {85, 519}, {142, 220}, {145, 32086}, {150, 19925}, {218, 226}, {241, 553}, {348, 551}, {354, 39789}, {479, 30350}, {527, 1212}, {555, 58832}, {664, 3635}, {942, 2808}, {948, 4654}, {1086, 15730}, {1122, 50626}, {1125, 9436}, {1126, 7247}, {1170, 5526}, {1358, 11011}, {1434, 4653}, {1439, 11022}, {1445, 25072}, {1446, 7264}, {1462, 5280}, {1565, 13464}, {1996, 11019}, {2099, 24796}, {3022, 39790}, {3241, 43983}, {3244, 9312}, {3339, 3598}, {3340, 7195}, {3361, 52155}, {3616, 51351}, {3621, 52715}, {3632, 31994}, {3634, 33298}, {3673, 6738}, {3679, 32003}, {3879, 17158}, {3946, 52023}, {3982, 14756}, {4059, 10106}, {4416, 27304}, {5045, 34855}, {5199, 26531}, {5222, 23681}, {5226, 31183}, {5308, 21454}, {5557, 43736}, {5697, 23839}, {6737, 20880}, {7177, 51816}, {9052, 24471}, {9441, 10482}, {9533, 11029}, {10134, 10135}, {10980, 41680}, {12436, 56809}, {12447, 39126}, {12527, 20347}, {14548, 21625}, {14794, 32624}, {15950, 24798}, {16601, 45227}, {17078, 25723}, {17079, 25716}, {17355, 41246}, {17365, 40133}, {17745, 41857}, {18250, 30946}, {20007, 31995}, {20015, 41918}, {20059, 52705}, {21258, 40869}, {21609, 33937}, {24203, 53597}, {24805, 40663}, {25718, 51093}, {26728, 33949}, {27340, 50128}, {27818, 58793}, {38461, 40950}, {49772, 51782}

X(58816) = crosspoint of X(7) and X(21453)
X(58816) = crosssum of X(55) and X(2293)
X(58816) = X(3748)-cross conjugate of-X(6666)
X(58816) = X(7)-daleth conjugate of-X(14189)
X(58816) = X(i)-Dao conjugate of-X(j) for these (i, j): (3160, 32015), (6666, 4847)
X(58816) = X(i)-isoconjugate of-X(j) for these {i, j}: {41, 32015}, {3900, 58104}
X(58816) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 32015), (1461, 58104), (3748, 9), (6666, 8), (17201, 333), (42438, 3059)
X(58816) = inverse of X(14189) in incircle
X(58816) = pole of the line {514, 657} with respect to the incircle
X(58816) = pole of the line {7, 55} with respect to the circumhyperbola dual of Yff parabola
X(58816) = pole of the line {354, 10481} with respect to the Feuerbach circumhyperbola
X(58816) = pole of the line {7658, 21185} with respect to the Steiner inellipse
X(58816) = barycentric product X(i)*X(j) for these {i, j}: {7, 6666}, {85, 3748}, {226, 17201}, {42311, 42438}
X(58816) = trilinear product X(i)*X(j) for these {i, j}: {7, 3748}, {57, 6666}, {65, 17201}, {10509, 42438}
X(58816) = trilinear quotient X(i)/X(j) for these (i, j): (85, 32015), (934, 58104), (3748, 55), (6666, 9), (17201, 21), (42438, 8012)


X(58817) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INVERSE-IN-INCIRCLE

Barycentrics    (b-c)*(a+b-c)^2*(a-b+c)^2 : :

X(58817) lies on these lines: {7, 3667}, {57, 58323}, {269, 1027}, {273, 16231}, {279, 1022}, {479, 6545}, {513, 676}, {514, 7216}, {522, 43042}, {657, 7658}, {658, 1275}, {876, 3668}, {934, 1308}, {1019, 17096}, {1119, 7649}, {1358, 7336}, {1461, 4626}, {1847, 23100}, {3239, 15413}, {3598, 47801}, {3669, 17410}, {4025, 46402}, {4328, 42312}, {4562, 4569}, {4786, 21454}, {6084, 30719}, {6356, 20315}, {7178, 28878}, {7203, 57200}, {14837, 58815}, {17113, 23730}, {28161, 30181}, {28225, 57167}, {40617, 41292}

X(58817) = midpoint of X(4025) and X(46402)
X(58817) = reflection of X(657) in X(7658)
X(58817) = isotomic conjugate of X(6558)
X(58817) = cevapoint of X(i) and X(j) for these {i, j}: {649, 51652}, {1358, 6545}, {3669, 43932}, {3676, 30719}
X(58817) = cross-difference of every pair of points on the line X(220)X(480)
X(58817) = crosspoint of X(i) and X(j) for these {i, j}: {279, 658}, {1088, 46406}, {4626, 23062}
X(58817) = crosssum of X(i) and X(j) for these {i, j}: {220, 657}, {3059, 3900}, {4105, 6602}, {4130, 4515}
X(58817) = X(i)-beth conjugate of-X(j) for these (i, j): (86, 31605), (1014, 43924), (24002, 24002)
X(58817) = X(i)-Ceva conjugate of-X(j) for these (i, j): (479, 1358), (658, 279), (4569, 3668), (4626, 269), (46406, 1088)
X(58817) = X(i)-cross conjugate of-X(j) for these (i, j): (1086, 1119), (1358, 479), (3669, 3676), (6545, 1358), (7216, 43932), (29162, 7192), (40617, 7), (48398, 514), (53538, 269)
X(58817) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 6558), (9, 4578), (11, 728), (115, 4082), (223, 644), (244, 4515), (478, 3939), (513, 657), (514, 3239), (649, 58336), (650, 4163), (661, 3900), (1015, 200), (1086, 346), (1146, 5423), (1214, 30730), (1358, 24392), (3160, 3699), (3669, 4521), (3676, 44448), (4521, 4546), (5190, 7046), (5521, 7079), (6544, 4528), (6609, 101), (6615, 4130), (6626, 7256), (8054, 220), (10001, 4076), (17113, 190), (26932, 3692), (34021, 7258), (34467, 1802), (36908, 1018), (38991, 480), (39006, 1260), (39025, 6602), (40590, 4069), (40592, 7259), (40593, 646), (40615, 8), (40617, 9), (40618, 1265), (40619, 341), (40620, 1043), (40621, 6555), (40622, 2321), (40623, 58327), (40624, 30693), (40626, 30681)
X(58817) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 4578}, {9, 3939}, {31, 6558}, {33, 4587}, {41, 3699}, {42, 7259}, {55, 644}, {59, 4130}, {100, 220}, {101, 200}, {109, 728}, {110, 4515}, {163, 4082}, {190, 1253}, {210, 5546}, {213, 7256}, {219, 56183}, {284, 4069}, {341, 32739}, {346, 692}, {480, 651}, {607, 4571}, {643, 1334}, {646, 2175}, {650, 6065}, {657, 765}, {664, 6602}, {668, 14827}, {677, 51418}, {813, 58327}, {906, 7046}, {1016, 8641}, {1018, 2328}, {1110, 3239}, {1252, 3900}, {1260, 1783}, {1293, 4936}, {1331, 7079}, {1332, 7071}, {1415, 5423}, {1802, 1897}, {1918, 7258}, {2149, 4163}, {2194, 30730}, {2284, 28071}, {2287, 4557}, {3022, 31615}, {3063, 4076}, {3689, 5548}, {3692, 8750}
X(58817) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 4578), (2, 6558), (7, 3699), (11, 4163), (34, 56183), (56, 3939), (57, 644), (65, 4069), (77, 4571), (81, 7259), (85, 646), (86, 7256), (109, 6065), (222, 4587), (226, 30730), (244, 3900), (269, 100), (274, 7258), (279, 190), (479, 664), (513, 200), (514, 346), (522, 5423), (523, 4082), (553, 30729), (649, 220), (650, 728), (658, 1016), (659, 58327), (661, 4515), (663, 480), (664, 4076), (667, 1253), (693, 341), (738, 651), (764, 2310), (905, 3692), (934, 765), (1014, 643), (1015, 657), (1019, 2287), (1027, 28071), (1042, 4557), (1086, 3239), (1088, 668), (1106, 692), (1111, 4397), (1119, 1897), (1254, 40521), (1275, 6632)
X(58817) = X(100)-zayin conjugate of-X(657)
X(58817) = trilinear pole of the line {244, 1358} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58817) = pole of the line {12848, 42309} with respect to the Adams circle
X(58817) = pole of the line {57, 169} with respect to the incircle
X(58817) = pole of the line {728, 4082} with respect to the polar circle
X(58817) = pole of the line {1565, 2310} with respect to the circumhyperbola dual of Yff parabola
X(58817) = pole of the line {7674, 12630} with respect to the Lozada-Soddy conic
X(58817) = pole of the line {3668, 4452} with respect to the Steiner circumellipse
X(58817) = pole of the line {4000, 5573} with respect to the Steiner inellipse
X(58817) = pole of the line {6558, 7256} with respect to the Steiner-Wallace hyperbola
X(58817) = barycentric product X(i)*X(j) for these {i, j}: {7, 3676}, {11, 4626}, {56, 52621}, {57, 24002}, {75, 43932}, {85, 3669}, {226, 17096}, {244, 4569}, {269, 693}, {274, 7216}, {279, 514}, {310, 7250}, {479, 522}, {513, 1088}, {649, 57792}, {650, 23062}, {658, 1086}, {663, 57880}, {664, 1358}, {738, 4391}
X(58817) = trilinear product X(i)*X(j) for these {i, j}: {2, 43932}, {7, 3669}, {11, 4617}, {56, 24002}, {57, 3676}, {65, 17096}, {85, 43924}, {86, 7216}, {226, 7203}, {241, 43930}, {244, 658}, {269, 514}, {274, 7250}, {279, 513}, {348, 43923}, {479, 650}, {522, 738}, {552, 57185}, {604, 52621}, {644, 41292}
X(58817) = trilinear quotient X(i)/X(j) for these (i, j): (2, 4578), (7, 644), (11, 4130), (57, 3939), (75, 6558), (77, 4587), (85, 3699), (86, 7259), (226, 4069), (244, 657), (269, 101), (274, 7256), (278, 56183), (279, 100), (310, 7258), (348, 4571), (479, 651), (513, 220), (514, 200), (522, 728)


X(58818) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: JENKINS-CONTACT TO ABC

Barycentrics    (b+c)^2*a^4-(b^4-4*b^2*c^2+c^4)*a^2-2*b^2*c^2*(b+c)^2 : :

X(58818) lies on these lines: {10, 3666}, {181, 3596}, {3687, 3816}, {4009, 10440}, {17790, 23638}


X(58819) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: JENKINS-TANGENTIAL TO ABC

Barycentrics    (2*(b+c)^3*a^7+(4*b^2-b*c+4*c^2)*(b+c)^2*a^6-2*(b+c)*(3*b^2-4*b*c+3*c^2)*b*c*a^5-(4*b^6+4*c^6+3*b*c*(4*b^4-5*b^2*c^2+4*c^4))*a^4-2*(b+c)*(b^6+c^6+(3*b^4+3*c^4+b*c*(b^2-5*b*c+c^2))*b*c)*a^3-(3*b^4+2*b^2*c^2+3*c^4)*(b+c)^2*b*c*a^2+2*(b+c)^3*b^3*c^3*a+b^3*c^3*(b+c)^4)/a : :

X(58819) lies on these lines: {312, 37865}, {3662, 4359}


X(58820) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ABC TO 1st JENKINS

Barycentrics    2*a^3+3*(b+c)*a^2+(b^2+3*b*c+c^2)*a-(b+c)*b*c : :

X(58820) lies on these lines: {1, 2}, {6, 34064}, {37, 37652}, {63, 17319}, {75, 37595}, {81, 192}, {171, 50281}, {312, 1100}, {314, 8025}, {320, 50068}, {321, 17379}, {330, 19714}, {333, 16777}, {750, 4734}, {940, 3210}, {1211, 17377}, {1255, 5278}, {1449, 27064}, {1482, 23512}, {1764, 23958}, {1943, 26125}, {2050, 10247}, {2300, 31035}, {3175, 3758}, {3219, 4704}, {3305, 17121}, {3597, 58821}, {3666, 17393}, {3672, 26840}, {3745, 49470}, {3759, 44307}, {3769, 37593}, {3782, 17378}, {3873, 21334}, {3879, 27184}, {3889, 35631}, {3896, 9347}, {3945, 30699}, {3995, 17350}, {4001, 17247}, {4038, 32921}, {4080, 54549}, {4363, 42028}, {4388, 50284}, {4430, 35614}, {4440, 50071}, {4641, 4664}, {4649, 32937}, {4661, 35628}, {4670, 42029}, {4671, 19717}, {4675, 19796}, {4697, 49452}, {4727, 50052}, {4812, 20929}, {4851, 19786}, {4852, 19804}, {4970, 37604}, {5249, 17391}, {5294, 17242}, {5711, 41813}, {5712, 37759}, {5905, 20090}, {6703, 17388}, {6994, 7009}, {7560, 20243}, {9345, 32924}, {10446, 17483}, {10889, 20059}, {11011, 44733}, {11340, 23853}, {14829, 20182}, {14996, 17147}, {15934, 37092}, {16666, 35652}, {16667, 30568}, {16704, 25058}, {17074, 51355}, {17120, 56082}, {17126, 27804}, {17184, 17375}, {17232, 32774}, {17236, 32863}, {17299, 19808}, {17300, 19785}, {17315, 32777}, {17317, 24789}, {17318, 32939}, {17321, 37653}, {17373, 32782}, {17374, 50063}, {17383, 33172}, {17386, 19812}, {17390, 18134}, {17394, 31993}, {17396, 54311}, {17490, 37633}, {17716, 49471}, {17778, 21287}, {19701, 55095}, {19715, 34063}, {19738, 41242}, {19789, 26806}, {21769, 32911}, {24349, 32928}, {24620, 37674}, {26223, 37677}, {26860, 58788}, {27494, 51449}, {27789, 37870}, {28606, 37683}, {31308, 54410}, {32859, 50133}, {33151, 42045}, {39547, 47792}, {44416, 50113}

X(58820) = pole of the line {3667, 45746} with respect to the Conway circle
X(58820) = pole of the line {20294, 47945} with respect to the power circles radical circle
X(58820) = pole of the line {4427, 7257} with respect to the Kiepert parabola
X(58820) = pole of the line {58, 21769} with respect to the Stammler hyperbola
X(58820) = pole of the line {86, 3210} with respect to the Steiner-Wallace hyperbola


X(58821) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st JENKINS TO ABC

Barycentrics    2*(b+c)*a^9+(5*b^2+8*b*c+5*c^2)*a^8+8*(b+c)*b*c*a^7-(3*b^4+3*c^4-8*b*c*(b+c)^2)*a^6+2*(b+c)*(b^2+c^2)*(3*b^2+b*c+3*c^2)*a^5+(3*b^6+3*c^6-(4*b^4+4*c^4-b*c*(b^2+12*b*c+c^2))*b*c)*a^4-4*(b+c)*(2*b^6+2*c^6+(b^4+c^4-b*c*(b+c)^2)*b*c)*a^3-(5*b^6+5*c^6+(2*b^4+2*c^4-3*b*c*(b^2+4*b*c+c^2))*b*c)*(b+c)^2*a^2-2*(b^2-c^2)^2*(b+c)*(3*b^2+2*b*c+3*c^2)*b*c*a-4*(b^2-c^2)^2*(b+c)^2*b^2*c^2 : :

X(58821) lies on these lines: {10, 30}, {970, 11679}, {3597, 58820}


X(58822) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd JENKINS TO ABC

Barycentrics    (-a+b+c)*((b+c)*a^2-2*(b^2+b*c+c^2)*a-(b+c)*(3*b^2-4*b*c+3*c^2)) : :

X(58822) lies on these lines: {1, 2}, {2325, 38408}, {2551, 56078}, {3701, 20237}, {3704, 5123}, {3707, 38409}, {3717, 21031}, {3869, 10440}, {3886, 54361}, {4388, 43174}, {4417, 4848}, {4873, 38406}, {5233, 5837}, {5295, 38042}, {5741, 9568}, {5795, 32851}, {5827, 26446}, {6381, 21422}, {8165, 30568}, {9548, 54290}, {9569, 51423}, {17760, 49642}, {18250, 56313}, {18253, 49652}, {19925, 32932}, {20895, 52353}, {39591, 58798}, {44663, 58772}

X(58822) = inverse of X(47624) in excircles radical circle
X(58822) = pole of the line {3667, 31291} with respect to the excircles radical circle


X(58823) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 3rd JENKINS TO ABC

Barycentrics    2*(b+c)*b*c*a^7+(3*b^4+3*c^4+b*c*(19*b^2+30*b*c+19*c^2))*a^6+(b+c)*(9*b^4+9*c^4+b*c*(31*b^2+41*b*c+31*c^2))*a^5+(9*b^6+9*c^6+b*c*(b^2+b*c+c^2)*(43*b^2+71*b*c+43*c^2))*a^4+(b+c)*(3*b^6+3*c^6+(29*b^4+29*c^4+2*b*c*(38*b^2+43*b*c+38*c^2))*b*c)*a^3+(12*b^4+12*c^4+b*c*(23*b^2+54*b*c+23*c^2))*(b+c)^2*b*c*a^2+6*(2*b^2+b*c+2*c^2)*(b+c)^3*b^2*c^2*a+3*b^3*c^3*(b+c)^4 : :

X(58823) lies on these lines: {1, 37868}, {10, 4650}, {3614, 49658}, {5128, 44850}, {5217, 49655}, {35445, 49661}, {37567, 49657}, {49654, 58772}, {49662, 58841}


X(58824) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st KENMOTU DIAGONALS TO ABC

Barycentrics    a^2*(a^2+b^2-c^2+2*S)*(a^2-b^2+c^2+2*S)*(3*a^2-3*b^2-3*c^2-2*S) : :

X(58824) lies on these lines: {6, 3156}, {371, 10665}, {381, 485}, {524, 11090}, {2351, 11402}, {4558, 55566}, {5410, 6748}, {11241, 12962}, {13439, 45420}, {44193, 55549}

X(58824) = X(1327)-isoconjugate of-X(55398)
X(58824) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (6200, 492), (8577, 1327), (32808, 45805)
X(58824) = pole of the line {21640, 44192} with respect to the Jerabek circumhyperbola
X(58824) = barycentric product X(i)*X(j) for these {i, j}: {485, 6200}, {8577, 32808}
X(58824) = trilinear quotient X(6200)/X(55398)


X(58825) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st KENMOTU DIAGONALS

Barycentrics    a^2*(b^2-c^2)*(a^2+b^2-c^2+2*S)*(a^2-b^2+c^2+2*S) : :

X(58825) lies on these lines: {512, 50374}, {523, 17431}, {669, 55219}, {691, 39383}, {6413, 35364}, {8577, 9178}, {18829, 54031}

X(58825) = cross-difference of every pair of points on the line X(371)X(492)
X(58825) = crosspoint of X(8577) and X(39383)
X(58825) = crosssum of X(492) and X(54029)
X(58825) = X(39383)-Ceva conjugate of-X(8577)
X(58825) = X(3049)-cross conjugate of-X(58827)
X(58825) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 45805), (1084, 492), (3005, 54029), (5139, 1585), (17423, 5408), (24246, 670), (37864, 54030), (38986, 55398), (38996, 371)
X(58825) = X(i)-isoconjugate of-X(j) for these {i, j}: {99, 55398}, {163, 45805}, {371, 799}, {486, 55249}, {492, 662}, {811, 5408}, {1585, 4592}, {5413, 55202}, {8911, 57968}, {24041, 54029}, {44179, 54030}
X(58825) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (485, 670), (512, 492), (523, 45805), (669, 371), (798, 55398), (2489, 1585), (2971, 58865), (3049, 5408), (3124, 54029), (5412, 55227), (6413, 4563), (8577, 99), (11090, 52608), (13455, 7257), (16032, 55218), (34391, 4609), (39383, 4590), (41515, 6331), (54031, 34537), (57204, 5413), (58827, 13428)
X(58825) = perspector of the circumconic through X(485) and X(8577)
X(58825) = pole of the line {3155, 8577} with respect to the circumcircle
X(58825) = pole of the line {1585, 45805} with respect to the polar circle
X(58825) = barycentric product X(i)*X(j) for these {i, j}: {115, 39383}, {485, 512}, {523, 8577}, {647, 41515}, {669, 34391}, {2351, 58867}, {2489, 11090}, {2501, 6413}, {3124, 54031}, {4017, 13455}, {13439, 58827}, {16032, 55219}
X(58825) = trilinear product X(i)*X(j) for these {i, j}: {485, 798}, {661, 8577}, {810, 41515}, {1924, 34391}, {2643, 39383}, {3377, 58827}, {7180, 13455}
X(58825) = trilinear quotient X(i)/X(j) for these (i, j): (372, 55249), (485, 799), (512, 55398), (661, 492), (798, 371), (810, 5408), (1577, 45805), (2643, 54029), (6413, 4592), (8577, 662), (11090, 55202), (13455, 645), (34391, 4602), (39383, 24041), (41515, 811), (54031, 24037), (55250, 34392)


X(58826) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd KENMOTU DIAGONALS TO ABC

Barycentrics    a^2*(a^2+b^2-c^2-2*S)*(a^2-b^2+c^2-2*S)*(3*a^2-3*b^2-3*c^2+2*S) : :

X(58826) lies on these lines: {6, 3155}, {372, 10666}, {381, 486}, {524, 11091}, {1152, 26922}, {2351, 11402}, {4558, 55567}, {5411, 6748}, {11242, 12969}, {13428, 45421}, {44192, 55549}

X(58826) = X(1328)-isoconjugate of-X(55397)
X(58826) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (6396, 491), (8576, 1328), (32809, 45806)
X(58826) = pole of the line {21641, 44193} with respect to the Jerabek circumhyperbola
X(58826) = barycentric product X(i)*X(j) for these {i, j}: {486, 6396}, {8576, 32809}
X(58826) = trilinear quotient X(6396)/X(55397)


X(58827) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd KENMOTU DIAGONALS

Barycentrics    a^2*(b^2-c^2)*(a^2+b^2-c^2-2*S)*(a^2-b^2+c^2-2*S) : :

X(58827) lies on these lines: {512, 50375}, {523, 17432}, {669, 55219}, {691, 39384}, {6414, 35364}, {8576, 9178}, {18829, 54030}

X(58827) = cross-difference of every pair of points on the line X(372)X(491)
X(58827) = crosspoint of X(8576) and X(39384)
X(58827) = crosssum of X(491) and X(54028)
X(58827) = X(39384)-Ceva conjugate of-X(8576)
X(58827) = X(3049)-cross conjugate of-X(58825)
X(58827) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 45806), (1084, 491), (3005, 54028), (5139, 1586), (17423, 5409), (24245, 670), (37864, 54031), (38986, 55397), (38996, 372), (40608, 13461)
X(58827) = X(i)-isoconjugate of-X(j) for these {i, j}: {99, 55397}, {163, 45806}, {372, 799}, {485, 55249}, {491, 662}, {811, 5409}, {1414, 13461}, {1586, 4592}, {5412, 55202}, {24041, 54028}, {26920, 57968}, {44179, 54031}
X(58827) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (486, 670), (512, 491), (523, 45806), (669, 372), (798, 55397), (2489, 1586), (2971, 58867), (3049, 5409), (3124, 54028), (3709, 13461), (5413, 55227), (6414, 4563), (8576, 99), (11091, 52608), (16037, 55218), (34392, 4609), (39384, 4590), (41516, 6331), (54030, 34537), (57204, 5412), (58825, 13439)
X(58827) = perspector of the circumconic through X(486) and X(8576)
X(58827) = pole of the line {3156, 8576} with respect to the circumcircle
X(58827) = pole of the line {1586, 45806} with respect to the polar circle
X(58827) = barycentric product X(i)*X(j) for these {i, j}: {115, 39384}, {486, 512}, {523, 8576}, {647, 41516}, {669, 34392}, {2351, 58865}, {2489, 11091}, {2501, 6414}, {3124, 54030}, {13428, 58825}, {16037, 55219}, {26922, 58757}
X(58827) = trilinear product X(i)*X(j) for these {i, j}: {486, 798}, {661, 8576}, {810, 41516}, {1924, 34392}, {2643, 39384}, {3378, 58825}
X(58827) = trilinear quotient X(i)/X(j) for these (i, j): (371, 55249), (486, 799), (512, 55397), (661, 491), (798, 372), (810, 5409), (1577, 45806), (2643, 54028), (4041, 13461), (6414, 4592), (8576, 662), (11091, 55202), (34392, 4602), (39384, 24041), (41516, 811), (54030, 24037), (55250, 34391)


X(58828) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND KOSNITA

Barycentrics    a^2*(b^2-c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^4-2*(b^2+c^2)*a^2+b^4-b^2*c^2+c^4)^2*((b^2+c^2)*a^4-2*(b^4+b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58828) lies on these lines: {1510, 6150}, {12077, 18314}

X(58828) = cross-difference of every pair of points on the line X(2963)X(54034)
X(58828) = perspector of the circumconic through X(311) and X(1994)
X(58828) = pole of the line {195, 2934} with respect to the circumcircle
X(58828) = pole of the line {93, 8882} with respect to the polar circle
X(58828) = pole of the line {930, 14586} with respect to the Stammler hyperbola
X(58828) = pole of the line {18315, 46139} with respect to the Steiner-Wallace hyperbola


X(58829) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ABC TO OUTER-MALFATTI

Barycentrics    a*(cos(B/2)-1)*(cos(C/2)-1)*(cos(B/2)*cos(C/2)-cos(B/2)-cos(C/2)+cos(A/2)) : :

X(58829) lies on these lines: {1, 400}, {557, 1274}

X(58829) = crosspoint of X(46892) and X(53979)
X(58829) = X(i)-Ceva conjugate of-X(j) for these (i, j): (46892, 53077), (53979, 53079)


X(58830) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: OUTER-MALFATTI TO ABC

Barycentrics    a*(cos(B/2)-1)*(cos(C/2)-1)*(2*cos(B/2)*cos(C/2)-2*cos(B/2)-2*cos(C/2)-cos(A/2)+3) : :

X(58830) lies on these lines: {1, 400}, {3082, 8092}


X(58831) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MCCAY TO ABC

Barycentrics    7*a^8-18*(b^2+c^2)*a^6+5*(5*b^4+2*b^2*c^2+5*c^4)*a^4-2*(b^2+c^2)*(9*b^4-17*b^2*c^2+9*c^4)*a^2+2*(b^2-c^2)^2*(2*b^2-c^2)*(b^2-2*c^2) : :

X(58831) lies on these lines: {2, 98}, {3, 1153}, {5, 41139}, {30, 3054}, {381, 38225}, {511, 8860}, {574, 49102}, {576, 7607}, {631, 11147}, {671, 9734}, {1656, 14762}, {3055, 50979}, {3098, 17006}, {3529, 33698}, {3734, 5054}, {5055, 7804}, {5104, 37637}, {5215, 35930}, {5569, 15980}, {7608, 22234}, {7619, 11623}, {7620, 10992}, {7622, 11632}, {7697, 15694}, {7777, 51140}, {7835, 15709}, {9880, 43620}, {9996, 15699}, {11317, 47113}, {13860, 32414}, {14061, 57633}, {14971, 37242}, {15069, 15850}, {15597, 54169}, {16942, 36970}, {16943, 36969}, {23053, 54170}, {32152, 32984}, {34507, 41133}, {37688, 50977}, {38749, 57634}, {40248, 58849}, {53104, 54737}

X(58831) = pole of the line {868, 7622} with respect to the Hutson-Parry circle
X(58831) = pole of the line {7617, 9155} with respect to the Parry circle


X(58832) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MIDARC TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(-4*b*c*sin(A/2)+2*a^2-3*(b+c)*a+(b-c)^2) : :

X(58832) lies on these lines: {1, 10489}, {7, 10491}, {177, 354}, {234, 13385}, {555, 58816}, {1128, 2089}, {7022, 13092}, {7057, 10234}

X(58832) = pole of the line {10499, 17641} with respect to the Feuerbach circumhyperbola


X(58833) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd MIDARC TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(4*b*c*sin(A/2)+2*a^2-3*(b+c)*a+(b-c)^2) : :

X(58833) lies on these lines: {1, 10491}, {7, 10489}, {65, 2091}, {555, 58816}, {1128, 1488}, {7048, 10233}


X(58834) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 6th MIXTILINEAR TO ABC

Barycentrics    a*(a^4-8*(b+c)*a^3+2*(9*b^2-10*b*c+9*c^2)*a^2-16*(b^2-c^2)*(b-c)*a+(5*b^2+22*b*c+5*c^2)*(b-c)^2) : :
X(58834) = 4*X(40)-3*X(52665) = 3*X(1699)-4*X(43182) = 4*X(35514)-3*X(37712) = 4*X(36991)-5*X(37714)

X(58834) lies on these lines: {1, 31391}, {7, 30350}, {9, 165}, {30, 18421}, {40, 52665}, {142, 30308}, {145, 516}, {170, 52705}, {515, 4900}, {950, 4312}, {971, 7991}, {1699, 43182}, {1721, 16667}, {1742, 16673}, {3361, 7171}, {3476, 34628}, {4189, 43178}, {4326, 9814}, {5223, 11684}, {5732, 24644}, {5850, 12632}, {6603, 8835}, {7987, 11372}, {8581, 30337}, {9589, 36996}, {10980, 14100}, {13462, 58808}, {15299, 53057}, {16189, 42871}, {30330, 30353}, {31162, 58813}, {35514, 37712}, {36991, 37714}, {50528, 53054}

X(58834) = reflection of X(9589) in X(36996)
X(58834) = X(36627)-Ceva conjugate of-X(1)


X(58835) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 6th MIXTILINEAR

Barycentrics    a*(b-c)*(-a+b+c)^2*(3*a^2-2*(b+c)*a-(b-c)^2) : :

X(58835) lies on these lines: {1, 17427}, {55, 14298}, {100, 677}, {200, 57055}, {513, 5537}, {650, 663}, {676, 8058}, {926, 4394}, {2254, 51656}, {2516, 11124}, {3676, 6366}, {3939, 14589}, {4130, 46392}, {7074, 36054}, {7658, 55285}, {8641, 40137}, {9051, 12329}, {9511, 43932}, {57101, 57198}

X(58835) = midpoint of X(57101) and X(57198)
X(58835) = cross-difference of every pair of points on the line X(57)X(7955)
X(58835) = crosspoint of X(i) and X(j) for these {i, j}: {100, 200}, {651, 3160}
X(58835) = crosssum of X(269) and X(513)
X(58835) = X(i)-Ceva conjugate of-X(j) for these (i, j): (100, 165), (651, 220), (3939, 45228), (4130, 3900), (36627, 3119), (42301, 1212)
X(58835) = X(i)-complementary conjugate of-X(j) for these (i, j): (42301, 1329), (42303, 21244)
X(58835) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 53640), (7, 36838), (11, 36620), (2968, 44186), (4130, 4391), (7658, 693), (13609, 1088), (14714, 3062), (35508, 10405)
X(58835) = X(i)-isoconjugate of-X(j) for these {i, j}: {7, 53622}, {56, 53640}, {109, 36620}, {658, 11051}, {934, 3062}, {1042, 55284}, {1461, 10405}, {4617, 19605}, {37141, 42872}
X(58835) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (9, 53640), (41, 53622), (144, 4569), (165, 658), (650, 36620), (657, 3062), (1419, 4626), (2287, 55284), (3160, 36838), (3207, 934), (3239, 44186), (3900, 10405), (4105, 19605), (7658, 1088), (8641, 11051), (13609, 693), (16284, 46406), (21872, 4566), (31627, 52937), (52614, 56718), (55285, 1446), (57064, 75), (58877, 31627)
X(58835) = X(934)-zayin conjugate of-X(513)
X(58835) = perspector of the circumconic through X(9) and X(144)
X(58835) = pole of the line {165, 198} with respect to the circumcircle
X(58835) = pole of the line {12915, 14100} with respect to the incircle
X(58835) = pole of the line {273, 36620} with respect to the polar circle
X(58835) = pole of the line {220, 56294} with respect to the MacBeath circumconic
X(58835) = pole of the line {3177, 25243} with respect to the Steiner circumellipse
X(58835) = pole of the line {1212, 3160} with respect to the Steiner inellipse
X(58835) = pole of the line {4625, 55284} with respect to the Steiner-Wallace hyperbola
X(58835) = barycentric product X(i)*X(j) for these {i, j}: {1, 57064}, {100, 13609}, {144, 3900}, {165, 3239}, {200, 7658}, {657, 16284}, {1021, 21060}, {1419, 4163}, {2287, 55285}, {3160, 4130}, {3207, 4397}, {4105, 31627}, {7253, 21872}, {19605, 58877}, {50560, 57180}
X(58835) = trilinear product X(i)*X(j) for these {i, j}: {6, 57064}, {101, 13609}, {144, 657}, {165, 3900}, {220, 7658}, {1021, 21872}, {1419, 4130}, {2328, 55285}, {3160, 4105}, {3207, 3239}, {8641, 16284}, {21060, 21789}, {31627, 57180}
X(58835) = trilinear quotient X(i)/X(j) for these (i, j): (8, 53640), (55, 53622), (144, 658), (165, 934), (522, 36620), (657, 11051), (1043, 55284), (1419, 4617), (3160, 4626), (3207, 1461), (3239, 10405), (3900, 3062), (4130, 19605), (4397, 44186), (7658, 279), (13609, 514), (14298, 42872), (16284, 4569), (21060, 4566), (21872, 1020)


X(58836) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 7th MIXTILINEAR TO ABC

Barycentrics    (a+b-c)*(a-b+c)*(7*a^6-12*(b+c)*a^5-(7*b-3*c)*(3*b-7*c)*a^4+64*(b^2-c^2)*(b-c)*a^3-(51*b^2+106*b*c+51*c^2)*(b-c)^2*a^2+4*(b^2-c^2)*(b-c)*(3*b+c)*(b+3*c)*a+(b-c)^6) : :

X(58836) lies on these lines: {7, 1699}, {1323, 56275}, {1371, 10972}, {1372, 10973}, {3177, 25243}, {5252, 10909}, {10903, 58799}, {10906, 58800}, {31536, 31539}, {31537, 31538}


X(58837) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st MIYAMOTO-MOSES-APOLLONIUS TO ABC

Barycentrics    (-2*S+(a+b+c)*(a+b-c))*(-2*S+(a+b+c)*(a-b+c))*(2*a^2-2*S-(b+c)*a-(b-c)^2) : :

X(58837) lies on these lines: {7, 13389}, {33, 11246}, {482, 16232}, {1373, 6212}, {1781, 6204}, {5902, 30426}


X(58838) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st MIYAMOTO-MOSES-APOLLONIUS

Barycentrics    (b-c)*(-a+b+c)*(-2*S+(a+b+c)*(a+b-c))*(-2*S+(a+b+c)*(a-b+c)) : :

X(58838) lies on these lines: {230, 231}, {514, 52815}, {885, 42013}, {929, 54016}, {2401, 16232}, {4391, 54017}, {4560, 54019}

X(58838) = polar conjugate of the isotomic conjugate of X(54019)
X(58838) = cross-difference of every pair of points on the line X(3)X(1335)
X(58838) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1336, 11), (44426, 58840)
X(58838) = X(i)-cross conjugate of-X(j) for these (i, j): (11, 1336), (513, 58840)
X(58838) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 30557), (650, 54017), (1015, 13388), (1146, 56386), (3162, 54018), (5190, 1659), (5521, 2362), (8054, 2067), (13388, 6516), (20620, 7090), (38991, 5414), (39025, 53066), (55053, 53063)
X(58838) = X(i)-isoconjugate of-X(j) for these {i, j}: {63, 54018}, {100, 2067}, {101, 13388}, {109, 30557}, {190, 53063}, {651, 5414}, {664, 53066}, {906, 1659}, {1331, 2362}, {1415, 56386}, {1805, 4551}, {1813, 7133}, {2149, 54017}, {3084, 54016}, {7090, 36059}
X(58838) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (11, 54017), (25, 54018), (513, 13388), (522, 56386), (649, 2067), (650, 30557), (663, 5414), (667, 53063), (1806, 4558), (2066, 1331), (3063, 53066), (3064, 7090), (6502, 1813), (6591, 2362), (7252, 1805), (7649, 1659), (8735, 58840), (13389, 6516), (13390, 664), (14121, 190), (16232, 651), (18344, 7133), (30556, 1332), (42013, 100), (53064, 36059), (53065, 906), (54016, 59), (54017, 5391), (54019, 69), (56385, 4561), (58840, 13387)
X(58838) = perspector of the circumconic through X(4) and X(1336)
X(58838) = pole of the line {481, 1836} with respect to the incircle
X(58838) = pole of the line {2, 176} with respect to the polar circle
X(58838) = pole of the line {4, 1123} with respect to the orthic inconic
X(58838) = pole of the line {193, 13386} with respect to the Steiner circumellipse
X(58838) = pole of the line {6, 5405} with respect to the Steiner inellipse
X(58838) = barycentric product X(i)*X(j) for these {i, j}: {4, 54019}, {514, 14121}, {522, 13390}, {693, 42013}, {1336, 54017}, {1806, 14618}, {2066, 46107}, {4391, 16232}, {6502, 46110}, {7649, 56385}, {13386, 58840}, {13389, 44426}, {17924, 30556}, {34387, 54016}
X(58838) = trilinear product X(i)*X(j) for these {i, j}: {19, 54019}, {513, 14121}, {514, 42013}, {522, 16232}, {650, 13390}, {1806, 24006}, {2066, 17924}, {3064, 13389}, {4858, 54016}, {6212, 58840}, {6502, 44426}, {6591, 56385}, {7649, 30556}, {46107, 53065}, {46110, 53064}
X(58838) = trilinear quotient X(i)/X(j) for these (i, j): (19, 54018), (513, 2067), (514, 13388), (522, 30557), (649, 53063), (650, 5414), (663, 53066), (1806, 4575), (2066, 906), (3064, 7133), (3737, 1805), (4391, 56386), (4858, 54017), (6502, 36059), (7649, 2362), (13389, 1813), (13390, 651), (14121, 100), (16232, 109), (17924, 1659)


X(58839) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd MIYAMOTO-MOSES-APOLLONIUS TO ABC

Barycentrics    (2*S+(a+b+c)*(a+b-c))*(2*S+(a+b+c)*(a-b+c))*(2*a^2+2*S-(b+c)*a-(b-c)^2) : :

X(58839) lies on these lines: {7, 1659}, {33, 11246}, {481, 2362}, {1374, 6213}, {1781, 6203}, {5902, 30425}


X(58840) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd MIYAMOTO-MOSES-APOLLONIUS

Barycentrics    (b-c)*(-a+b+c)*(2*S+(a+b+c)*(a+b-c))*(2*S+(a+b+c)*(a-b+c)) : :

X(58840) lies on these lines: {230, 231}, {514, 52816}, {885, 7133}, {929, 54018}, {2362, 2401}, {4391, 54019}, {4560, 54017}

X(58840) = polar conjugate of the isotomic conjugate of X(54017)
X(58840) = cross-difference of every pair of points on the line X(3)X(1124)
X(58840) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1123, 11), (44426, 58838)
X(58840) = X(i)-cross conjugate of-X(j) for these (i, j): (11, 1123), (513, 58838)
X(58840) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 30556), (650, 54019), (1015, 13389), (1146, 56385), (3162, 54016), (5190, 13390), (5521, 16232), (8054, 6502), (13389, 6516), (20620, 14121), (38991, 2066), (39025, 53065), (55053, 53064)
X(58840) = X(i)-isoconjugate of-X(j) for these {i, j}: {63, 54016}, {100, 6502}, {101, 13389}, {109, 30556}, {190, 53064}, {651, 2066}, {664, 53065}, {906, 13390}, {1331, 16232}, {1415, 56385}, {1806, 4551}, {1813, 42013}, {2149, 54019}, {3083, 54018}, {14121, 36059}
X(58840) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (11, 54019), (25, 54016), (513, 13389), (522, 56385), (649, 6502), (650, 30556), (663, 2066), (667, 53064), (1659, 664), (1805, 4558), (2067, 1813), (2362, 651), (3063, 53065), (3064, 14121), (5414, 1331), (6591, 16232), (7090, 190), (7133, 100), (7252, 1806), (7649, 13390), (8735, 58838), (13388, 6516), (18344, 42013), (30557, 1332), (53063, 36059), (53066, 906), (54017, 69), (54018, 59), (54019, 1267), (56386, 4561), (58838, 13386)
X(58840) = perspector of the circumconic through X(4) and X(1123)
X(58840) = pole of the line {482, 1836} with respect to the incircle
X(58840) = pole of the line {2, 175} with respect to the polar circle
X(58840) = pole of the line {116, 44320} with respect to the circumhyperbola dual of Yff parabola
X(58840) = pole of the line {4, 1336} with respect to the orthic inconic
X(58840) = pole of the line {193, 7133} with respect to the Steiner circumellipse
X(58840) = pole of the line {6, 5393} with respect to the Steiner inellipse
X(58840) = barycentric product X(i)*X(j) for these {i, j}: {4, 54017}, {514, 7090}, {522, 1659}, {693, 7133}, {1123, 54019}, {1805, 14618}, {2067, 46110}, {2362, 4391}, {5414, 46107}, {7649, 56386}, {13387, 58838}, {13388, 44426}, {17924, 30557}, {34387, 54018}
X(58840) = trilinear product X(i)*X(j) for these {i, j}: {19, 54017}, {513, 7090}, {514, 7133}, {522, 2362}, {650, 1659}, {1805, 24006}, {2067, 44426}, {3064, 13388}, {4858, 54018}, {5414, 17924}, {6213, 58838}, {6591, 56386}, {7649, 30557}, {46107, 53066}, {46110, 53063}
X(58840) = trilinear quotient X(i)/X(j) for these (i, j): (19, 54016), (513, 6502), (514, 13389), (522, 30556), (649, 53064), (650, 2066), (663, 53065), (1659, 651), (1805, 4575), (2067, 36059), (2362, 109), (3064, 42013), (3737, 1806), (4391, 56385), (4858, 54019), (5414, 906), (7090, 100), (7133, 101), (7649, 16232), (13388, 1813)


X(58841) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MONTESDEOCA-HUNG TO ABC

Barycentrics    a*(2*a^6+4*(b+c)*a^5+4*(b^2+3*b*c+c^2)*a^4+4*(b+c)*(b^2+3*b*c+c^2)*a^3+(b^4+c^4+4*b*c*(b+c)^2)*a^2-2*(b^2+c^2)*(b+c)^3*a-(b^4+4*b^2*c^2+c^4)*(b+c)^2) : :

X(58841) lies on these lines: {1, 5974}, {896, 37568}, {3614, 11992}, {5128, 44852}, {5217, 11990}, {5975, 11989}, {11991, 37567}, {11995, 35445}, {49662, 58823}


X(58842) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND MONTESDEOCA-HUNG

Barycentrics    a*(b^2-c^2)*(2*a^3+2*(b+c)*a^2+(b^2+4*b*c+c^2)*a+(b+c)*(b^2+c^2)) : :

X(58842) lies on these lines: {44, 513}, {1213, 2527}, {3239, 57514}, {3936, 49297}, {4826, 8611}, {4983, 42666}, {4988, 6370}, {27574, 31209}, {27710, 47762}

X(58842) = cross-difference of every pair of points on the line X(1)X(5974)
X(58842) = crosssum of X(662) and X(3882)
X(58842) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2292, 3122), (2363, 2643)
X(58842) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (6703, 799), (27714, 668)
X(58842) = X(i)-zayin conjugate of-X(j) for these (i, j): (2292, 662), (2363, 3882)
X(58842) = perspector of the circumconic through X(1) and X(27714)
X(58842) = pole of the line {5224, 13478} with respect to the excentral-hexyl ellipse
X(58842) = barycentric product X(i)*X(j) for these {i, j}: {513, 27714}, {661, 6703}
X(58842) = trilinear product X(i)*X(j) for these {i, j}: {512, 6703}, {649, 27714}
X(58842) = trilinear quotient X(i)/X(j) for these (i, j): (6703, 99), (27714, 190)


X(58843) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st MORLEY TO ABC

Barycentrics    a*(4*cos(B/3)*cos(C/3)+cos(A/3)) : :

X(58843) lies on these lines: {356, 357}, {3275, 3604}, {6120, 8002}


X(58844) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd MORLEY TO ABC

Barycentrics    a*(4*cos((B-2*Pi)/3)*cos((C-2*Pi)/3)+cos((A-2*Pi)/3)) : :

X(58844) lies on these lines: {1136, 1137}, {3273, 3602}, {6122, 8003}


X(58845) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 3rd MORLEY TO ABC

Barycentrics    a*(4*cos((B-4*Pi)/3)*cos((C-4*Pi)/3)+cos((A-4*Pi)/3)) : :

X(58845) lies on these lines: {356, 1134}, {3274, 3603}, {6121, 8004}


X(58846) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MOSES-STEINER OSCULATORY TO ABC

Barycentrics    (5*a^6-5*(b^2+c^2)*a^4+(b^4+6*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2))/a^2 : :

X(58846) lies on these lines: {3, 76}, {4, 3266}, {5, 11059}, {20, 9464}, {30, 305}, {264, 6390}, {376, 8024}, {381, 57518}, {549, 40022}, {631, 26235}, {1272, 57819}, {2071, 18018}, {3088, 32831}, {3260, 3926}, {3524, 39998}, {3785, 44148}, {3933, 44133}, {4563, 15068}, {4576, 11459}, {5866, 18354}, {6337, 44135}, {6644, 16276}, {7404, 32829}, {7769, 14787}, {8369, 40814}, {9730, 18906}, {10330, 11464}, {12083, 33651}, {12215, 13352}, {15045, 33798}, {15069, 36792}, {15073, 25052}, {18281, 37804}, {18537, 19583}, {20477, 22241}, {30737, 32817}, {32006, 34938}, {32985, 51481}, {34254, 44441}, {35002, 40073}, {37172, 41000}, {37173, 41001}, {37458, 54412}, {37460, 44146}, {42554, 55646}, {46261, 56430}

X(58846) = pole of the line {511, 11456} with respect to the Steiner-Wallace hyperbola


X(58847) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INNER-NAPOLEON

Barycentrics    (b^2-c^2)*(3*a^4-4*S*sqrt(3)*a^2+4*S^2)*(-a^2+b^2+c^2-2*sqrt(3)*S)*(2*S+(-a^2+b^2+c^2)*sqrt(3)) : :

X(58847) lies on these lines: {13, 15543}, {15, 30216}, {690, 34602}, {9117, 13305}, {20577, 23873}

X(58847) = cross-difference of every pair of points on the line X(6151)X(8604)
X(58847) = X(30459)-reciprocal conjugate of-X(32037)
X(58847) = perspector of the circumconic through X(395) and X(8836)
X(58847) = pole of the line {395, 15778} with respect to the 1st Simmons inconic
X(58847) = barycentric product X(i)*X(j) for these {i, j}: {6672, 14447}, {23873, 30459}


X(58848) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND OUTER-NAPOLEON

Barycentrics    (b^2-c^2)*(3*a^4+4*S*sqrt(3)*a^2+4*S^2)*(b^2+c^2-a^2+2*sqrt(3)*S)*(-2*S+(-a^2+b^2+c^2)*sqrt(3)) : :

X(58848) lies on these lines: {14, 15543}, {16, 30215}, {9115, 13304}, {20577, 23872}

X(58848) = cross-difference of every pair of points on the line X(2981)X(8603)
X(58848) = X(30462)-reciprocal conjugate of-X(32036)
X(58848) = perspector of the circumconic through X(396) and X(8838)
X(58848) = pole of the line {396, 15802} with respect to the 2nd Simmons inconic
X(58848) = barycentric product X(i)*X(j) for these {i, j}: {6671, 14446}, {23872, 30462}


X(58849) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st NEUBERG TO ABC

Barycentrics    2*a^8-(b^2+c^2)*a^6+2*(b^4+c^4)*a^4-(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)*a^2-2*(b^2-c^2)^2*b^2*c^2 : :
X(58849) = 3*X(6054)-5*X(7925) = 6*X(10256)-5*X(38751) = X(10722)-3*X(14041) = 3*X(11632)-2*X(32457) = X(11676)-3*X(34473) = 3*X(14568)-X(43453) = 4*X(20398)-3*X(39663) = 2*X(37459)-3*X(38737) = 5*X(38739)-4*X(58448)

X(58849) lies on these lines: {2, 1495}, {3, 3734}, {4, 3972}, {5, 7852}, {6, 44422}, {30, 115}, {39, 14880}, {98, 385}, {114, 1503}, {182, 9418}, {183, 3098}, {232, 5661}, {262, 575}, {316, 9862}, {325, 542}, {376, 7771}, {381, 7804}, {538, 8178}, {549, 7820}, {576, 9755}, {623, 41022}, {624, 41023}, {625, 6033}, {669, 9148}, {858, 47200}, {1007, 39874}, {1078, 7470}, {1352, 53015}, {1513, 6036}, {1570, 12829}, {1691, 44531}, {1692, 2023}, {2030, 39095}, {2393, 40879}, {2782, 18860}, {2794, 13449}, {3003, 32224}, {3111, 14915}, {3146, 9752}, {3233, 47097}, {3314, 43150}, {3329, 50664}, {3529, 7612}, {3534, 7610}, {3564, 50771}, {3628, 49112}, {3815, 48906}, {3849, 14830}, {4045, 37345}, {5007, 14881}, {5025, 9873}, {5148, 10069}, {5152, 39266}, {5188, 10104}, {5191, 51372}, {5194, 10053}, {5304, 20423}, {5306, 21850}, {5476, 16989}, {5980, 31711}, {5981, 31712}, {5988, 29097}, {5989, 51373}, {6000, 35060}, {6038, 36213}, {6054, 7925}, {6194, 55606}, {6670, 44219}, {6680, 44230}, {6683, 12054}, {6721, 40336}, {7422, 47044}, {7426, 22104}, {7467, 15822}, {7710, 15850}, {7735, 31670}, {7736, 11179}, {7766, 55716}, {7778, 18440}, {7779, 11177}, {7780, 9821}, {7790, 55008}, {7792, 19130}, {7805, 48673}, {7806, 9993}, {7850, 34623}, {7853, 9996}, {7861, 37243}, {7866, 10356}, {7868, 11178}, {7873, 32151}, {8556, 55646}, {8667, 33878}, {8703, 11168}, {8779, 35912}, {8841, 52006}, {9732, 10845}, {9733, 10846}, {9737, 31859}, {9751, 55679}, {9753, 48901}, {9766, 39899}, {9828, 36166}, {10256, 38751}, {10613, 22691}, {10614, 22692}, {10722, 14041}, {10796, 22682}, {11001, 23055}, {11632, 32457}, {11676, 34473}, {12177, 22664}, {12203, 13334}, {13468, 48881}, {13754, 14962}, {13862, 48889}, {14046, 34681}, {14568, 43453}, {14614, 37517}, {14810, 22712}, {14927, 58883}, {14957, 52144}, {15491, 51737}, {15589, 54173}, {15598, 54169}, {16990, 50977}, {17004, 48891}, {17008, 48880}, {17131, 30270}, {17538, 55824}, {19924, 22329}, {20398, 39663}, {21444, 47620}, {21531, 42671}, {23698, 54996}, {24206, 37450}, {29317, 35021}, {29323, 38227}, {30737, 52145}, {31489, 43273}, {31652, 32516}, {32515, 51523}, {33706, 55594}, {33971, 40887}, {36990, 37071}, {37182, 48898}, {37348, 40842}, {37451, 44882}, {37455, 55674}, {37459, 38737}, {37637, 48905}, {37688, 48892}, {37689, 43621}, {38739, 58448}, {39097, 58765}, {39565, 40279}, {39590, 51851}, {40135, 47579}, {40248, 58831}, {40428, 54086}, {44434, 55718}, {46840, 47079}, {50706, 54395}, {55178, 55636}

X(58849) = midpoint of X(316) and X(9862)
X(58849) = reflection of X(i) in X(j) for these (i, j): (1513, 6036), (6033, 625)
X(58849) = complement of X(43460)
X(58849) = cross-difference of every pair of points on the line X(9210)X(34291)
X(58849) = pole of the line {8667, 23878} with respect to the circumcircle
X(58849) = pole of the line {39, 1316} with respect to the Moses circles radical circle
X(58849) = pole of the line {76, 850} with respect to the orthoptic circle of Steiner inellipse
X(58849) = pole of the line {141, 538} with respect to the Evans conic
X(58849) = pole of the line {542, 5306} with respect to the Kiepert circumhyperbola
X(58849) = pole of the line {3098, 36213} with respect to the Stammler hyperbola
X(58849) = pole of the line {5976, 6054} with respect to the Steiner-Wallace hyperbola


X(58850) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st NEUBERG

Barycentrics    (b^2-c^2)*(a^4-b^2*c^2)^3*((b^2+c^2)*a^2-b^4-c^4) : :

X(58850) lies on these lines: {512, 5149}, {620, 52728}, {804, 4107}, {5182, 23878}, {42652, 46840}

X(58850) = crosspoint of X(385) and X(39291)
X(58850) = X(39291)-Ceva conjugate of-X(385)
X(58850) = X(4027)-reciprocal conjugate of-X(39291)
X(58850) = perspector of the circumconic through X(385) and X(8840)
X(58850) = trilinear product X(2679)*X(46295)


X(58851) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd NEUBERG TO ABC

Barycentrics    a^8+3*(b^2+c^2)^2*a^4-2*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^2-2*(b^2-c^2)^2*b^2*c^2 : :

X(58851) lies on these lines: {2, 3098}, {3, 6683}, {4, 99}, {5, 7822}, {6, 44422}, {30, 574}, {32, 2023}, {98, 576}, {182, 262}, {183, 511}, {230, 21850}, {316, 55008}, {325, 3818}, {381, 625}, {385, 37517}, {542, 7774}, {626, 10356}, {805, 6785}, {1350, 15819}, {1351, 9756}, {1352, 37668}, {1513, 37647}, {2080, 22728}, {2407, 8541}, {3095, 7798}, {3148, 51372}, {3314, 11178}, {3523, 12122}, {3529, 14494}, {3534, 42849}, {3788, 44230}, {3830, 11184}, {3845, 22110}, {5028, 42535}, {5092, 11174}, {5097, 9755}, {5104, 37637}, {5158, 47579}, {5171, 7771}, {5476, 7792}, {5480, 35387}, {5939, 38383}, {5980, 47066}, {5981, 47068}, {5987, 52098}, {6033, 7775}, {6036, 9753}, {6054, 14931}, {6055, 7735}, {6194, 55587}, {7470, 7786}, {7697, 47618}, {7736, 46264}, {7737, 38749}, {7751, 48673}, {7761, 37345}, {7772, 14880}, {7777, 43460}, {7785, 9873}, {7788, 43150}, {7812, 9862}, {7815, 9821}, {7818, 9996}, {7825, 37243}, {7840, 10033}, {8556, 55582}, {8667, 44456}, {8860, 32414}, {9300, 48906}, {9734, 11676}, {9744, 29012}, {9751, 55669}, {9766, 18440}, {10311, 14966}, {10788, 34473}, {11163, 11645}, {11177, 51140}, {11179, 37665}, {11272, 37479}, {12055, 48905}, {13330, 44531}, {14532, 52771}, {14538, 22694}, {14539, 22693}, {14614, 55716}, {14712, 34733}, {15271, 33878}, {15491, 48881}, {15928, 56920}, {17538, 55793}, {18860, 22682}, {22566, 51932}, {22712, 52987}, {29181, 37451}, {29317, 37182}, {30789, 31857}, {31274, 37466}, {31489, 48910}, {33007, 38736}, {33706, 55585}, {37053, 48939}, {37071, 53023}, {37450, 38317}, {37455, 55649}, {37667, 54132}, {38227, 52993}, {39095, 41412}, {39530, 40801}, {39656, 47113}, {40236, 43461}, {40248, 51024}, {44434, 55720}, {51538, 58883}

X(58851) = pole of the line {12073, 45687} with respect to the orthoptic circle of Steiner inellipse
X(58851) = pole of the line {3589, 7761} with respect to the Evans conic
X(58851) = pole of the line {5476, 9300} with respect to the Kiepert circumhyperbola
X(58851) = pole of the line {5092, 52144} with respect to the Stammler hyperbola
X(58851) = pole of the line {3564, 22712} with respect to the Steiner-Wallace hyperbola


X(58852) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st ORTHOSYMMEDIAL TO ABC

Barycentrics    (a^2+b^2)*(a^2+c^2)*(a^6-2*(b^2+c^2)*a^4+(b^4-c^4)*(b^2-c^2)) : :

X(58852) lies on these lines: {3, 83}, {4, 10547}, {5, 28724}, {30, 1176}, {112, 251}, {308, 16095}, {428, 8793}, {2549, 58761}, {3313, 7804}, {5064, 16277}, {7399, 26224}, {7499, 39668}, {7526, 51252}, {7737, 46288}, {9969, 46544}, {10130, 37454}, {10718, 58767}, {16263, 18494}, {17500, 18420}, {21177, 53485}, {34609, 42037}

X(58852) = pole of the line {1976, 14316} with respect to the orthosymmedial circle
X(58852) = pole of the line {18374, 53484} with respect to the Kiepert circumhyperbola


X(58853) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd ORTHOSYMMEDIAL TO ABC

Barycentrics    (a^2+b^2)*(a^2+c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*(b^2+c^2)*a^4-(3*b^4+4*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58853) lies on these lines: {4, 30505}, {6, 10549}, {83, 275}, {112, 251}, {308, 27377}, {317, 18092}, {458, 20022}, {1987, 42299}, {1992, 50406}, {3087, 17500}, {6748, 32085}, {6749, 34294}, {16890, 36794}, {46104, 52281}

X(58853) = X(40107)-reciprocal conjugate of-X(3933)
X(58853) = pole of the line {18374, 32085} with respect to the Kiepert circumhyperbola
X(58853) = barycentric product X(32085)*X(40107)


X(58854) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st PARRY TO ABC

Barycentrics    8*a^6-9*(b^2+c^2)*a^4+12*b^2*c^2*a^2-b^6-c^6 : :

X(58854) lies on these lines: {2, 98}, {99, 14916}, {111, 1992}, {352, 51224}, {376, 58768}, {524, 2502}, {541, 46069}, {543, 5468}, {597, 39689}, {599, 7664}, {1499, 8598}, {1641, 9830}, {2482, 35356}, {3124, 8584}, {4576, 15300}, {5077, 6090}, {5108, 51798}, {5191, 27088}, {5477, 9172}, {5969, 8030}, {6792, 52141}, {7426, 47559}, {7665, 11160}, {8352, 40112}, {8591, 9146}, {9127, 53499}, {9129, 34319}, {10330, 36521}, {10836, 31166}, {11162, 23699}, {12036, 14928}, {14932, 14977}, {14999, 17948}, {15066, 35955}, {15303, 46131}, {15534, 20998}, {15993, 51541}, {38940, 50639}, {47061, 54439}, {48991, 53142}

X(58854) = cross-difference of every pair of points on the line X(3569)X(22111)
X(58854) = pole of the line {690, 11184} with respect to the orthoptic circle of Steiner inellipse
X(58854) = pole of the line {9155, 27088} with respect to the Parry circle
X(58854) = pole of the line {511, 9966} with respect to the Stammler hyperbola
X(58854) = pole of the line {2799, 9741} with respect to the Steiner circumellipse
X(58854) = pole of the line {2799, 12040} with respect to the Steiner inellipse
X(58854) = pole of the line {325, 10717} with respect to the Steiner-Wallace hyperbola


X(58855) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st PARRY

Barycentrics    (b^2-c^2)*(2*a^2-b^2-c^2)*(5*a^2-b^2-c^2)^2*(a^4+2*(b^2+c^2)*a^2+b^4-16*b^2*c^2+c^4) : :

X(58855) lies on these lines: {1499, 4786}, {5466, 47139}


X(58856) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd PARRY TO ABC

Barycentrics    (a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(4*a^8-6*(b^2+c^2)*a^6+(b^4+10*b^2*c^2+c^4)*a^4-2*(b^2+c^2)*b^2*c^2*a^2+(b^4-b^2*c^2+c^4)*(b^2-c^2)^2) : :

X(58856) lies on these lines: {2, 99}, {30, 9185}, {110, 9214}, {376, 58769}, {524, 9141}, {530, 9200}, {531, 9201}, {542, 5466}, {648, 10554}, {1551, 52232}, {3849, 22734}, {7471, 16092}, {9143, 52035}, {9216, 12117}, {11645, 13307}, {13309, 19924}, {13719, 32421}, {13842, 32419}, {14223, 54607}, {14999, 17948}, {18776, 52748}, {18777, 52749}, {22566, 41102}, {34320, 36173}, {34539, 57539}, {40915, 52756}

X(58856) = X(2642)-isoconjugate of-X(53872)
X(58856) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (691, 53872), (45331, 524), (52748, 43092), (52749, 43091)
X(58856) = perspector of the circumconic through X(892) and X(52748)
X(58856) = pole of the line {9185, 14694} with respect to the Hutson-Parry circle
X(58856) = pole of the line {2793, 14995} with respect to the orthoptic circle of Steiner inellipse
X(58856) = pole of the line {690, 9214} with respect to the Steiner circumellipse
X(58856) = barycentric product X(i)*X(j) for these {i, j}: {530, 52749}, {531, 52748}, {671, 45331}
X(58856) = trilinear product X(897)*X(45331)
X(58856) = trilinear quotient X(i)/X(j) for these (i, j): (36085, 53872), (45331, 896)


X(58857) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd PARRY

Barycentrics    (b^2-c^2)*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)^2*((b^2+c^2)*a^8-(5*b^4-4*b^2*c^2+5*c^4)*a^6+3*(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^4-(7*b^8-12*b^4*c^4+7*c^8)*a^2+(b^4-c^4)*(b^2-c^2)*(2*b^4+3*b^2*c^2+2*c^4)) : :

X(58857) lies on these lines: {30, 1637}, {1648, 47138}, {14977, 46808}


X(58858) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st SAVIN

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(3*a-b-c)^2 : :

X(58858) lies on these lines: {109, 765}, {513, 676}, {514, 40500}, {522, 53528}, {2254, 58877}, {3667, 4162}, {4962, 30725}, {6006, 43924}, {8710, 56323}

X(58858) = cross-difference of every pair of points on the line X(220)X(8163)
X(58858) = crosspoint of X(664) and X(5435)
X(58858) = X(39123)-anticomplementary conjugate of-X(33650)
X(58858) = X(i)-Ceva conjugate of-X(j) for these (i, j): (664, 5435), (43290, 1420)
X(58858) = X(31182)-cross conjugate of-X(30719)
X(58858) = X(i)-Dao conjugate of-X(j) for these (i, j): (3667, 522), (3756, 6556), (8054, 33963), (10001, 57578), (40621, 6557), (45036, 31343)
X(58858) = X(i)-isoconjugate of-X(j) for these {i, j}: {100, 33963}, {1293, 3680}, {3063, 57578}, {3445, 31343}, {4578, 16079}, {6557, 34080}
X(58858) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (649, 33963), (664, 57578), (1420, 27834), (1743, 31343), (3667, 6557), (4394, 3680), (4521, 6556), (4943, 346), (5435, 53647), (6049, 190), (15519, 6558), (30719, 4373), (31182, 8), (40621, 522), (51656, 8056), (58811, 3663), (58817, 16078)
X(58858) = perspector of the circumconic through X(279) and X(5435)
X(58858) = pole of the line {12546, 12555} with respect to the Conway circle
X(58858) = pole of the line {57, 145} with respect to the incircle
X(58858) = pole of the line {4452, 5435} with respect to the Steiner circumellipse
X(58858) = barycentric product X(i)*X(j) for these {i, j}: {7, 31182}, {145, 30719}, {279, 4943}, {514, 6049}, {664, 40621}, {1222, 58811}, {1420, 4462}, {3667, 5435}, {4394, 39126}, {15519, 58817}, {18743, 51656}, {40617, 43290}
X(58858) = trilinear product X(i)*X(j) for these {i, j}: {57, 31182}, {145, 51656}, {269, 4943}, {513, 6049}, {651, 40621}, {1420, 3667}, {1743, 30719}, {4394, 5435}, {8643, 39126}, {15519, 43932}, {15637, 23703}, {23617, 58811}, {40617, 57192}
X(58858) = trilinear quotient X(i)/X(j) for these (i, j): (145, 31343), (513, 33963), (1420, 1293), (3667, 3680), (4462, 6557), (4554, 57578), (4943, 200), (5435, 27834), (6049, 100), (15519, 4578), (15637, 23838), (30719, 8056), (31182, 9), (39126, 53647), (40617, 58794), (40621, 650), (43932, 16079), (51656, 3445), (58282, 4768)


X(58859) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd SAVIN TO ABC

Barycentrics    (4*a+b+c)*(a+3*b+c)*(a+b+3*c) : :

X(58859) lies on these lines: {1, 44305}, {2, 2321}, {226, 57663}, {1125, 2334}, {3452, 56204}, {3624, 4866}, {3707, 26860}, {4633, 4997}, {5219, 57826}, {5235, 56048}, {19862, 24003}, {29571, 44572}, {30829, 40023}, {45684, 58860}

X(58859) = X(i)-Dao conjugate of-X(j) for these (i, j): (16590, 3616), (51570, 1449)
X(58859) = X(i)-isoconjugate of-X(j) for these {i, j}: {1449, 41434}, {4790, 28210}
X(58859) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (551, 3616), (2334, 41434), (3707, 391), (3902, 4673), (4031, 21454), (4866, 56115), (5936, 55955), (8694, 28210), (14435, 4773), (16666, 1449), (21806, 37593), (24589, 19804), (25430, 40434), (26860, 42028), (28209, 4778), (30722, 30723), (30727, 30728), (53658, 58128), (56237, 56134), (58139, 58140)
X(58859) = pole of the line {1698, 2334} with respect to the circumhyperbola dual of Yff parabola
X(58859) = pole of the line {4700, 42028} with respect to the Steiner-Wallace hyperbola
X(58859) = barycentric product X(i)*X(j) for these {i, j}: {551, 5936}, {3707, 57826}, {4031, 56086}, {4714, 56048}, {4781, 58860}, {16666, 40023}, {24589, 25430}, {28209, 53658}
X(58859) = trilinear product X(i)*X(j) for these {i, j}: {551, 25430}, {2334, 24589}, {3902, 57663}, {4031, 4866}, {4606, 28209}, {4781, 47915}, {5936, 16666}, {21747, 40023}, {26860, 56237}
X(58859) = trilinear quotient X(i)/X(j) for these (i, j): (551, 1449), (3707, 4512), (3902, 391), (4031, 3361), (4606, 28210), (4714, 5257), (5936, 40434), (24589, 3616), (25430, 41434), (28209, 4790), (40023, 55955), (56086, 56115)


X(58860) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd SAVIN

Barycentrics    (b-c)*(a+3*b+c)*(a+b+3*c) : :
X(58860) = 2*X(4521)-3*X(4789) = 3*X(6546)-5*X(6590) = 3*X(21183)-X(47657) = 5*X(24924)-3*X(45745) = 3*X(45670)-2*X(47962) = X(47661)-3*X(47789) = X(47667)-3*X(47787) = X(47668)-3*X(47783) = X(47669)-3*X(47757) = 3*X(47758)-X(50482) = 3*X(47786)-5*X(48424) = X(47903)-3*X(48269) = X(48038)-3*X(48423) = X(48145)-5*X(48275) = 5*X(48418)-3*X(48554)

X(58860) lies on these lines: {514, 3700}, {522, 7192}, {523, 3676}, {693, 4086}, {927, 4624}, {2689, 5545}, {3004, 28155}, {3064, 17925}, {4024, 28878}, {4025, 28169}, {4444, 48399}, {4468, 47674}, {4521, 4789}, {4555, 33948}, {4606, 37143}, {4608, 28191}, {4633, 17930}, {4778, 48079}, {4817, 48008}, {4838, 49296}, {5936, 6548}, {6545, 53585}, {6546, 6590}, {20295, 28229}, {21183, 47657}, {23813, 28175}, {24924, 45745}, {28161, 43067}, {35519, 52619}, {45670, 47962}, {45684, 58859}, {47659, 56086}, {47661, 47789}, {47667, 47787}, {47668, 47783}, {47669, 47757}, {47758, 50482}, {47786, 48424}, {47903, 48269}, {47981, 48113}, {48038, 48423}, {48145, 48275}, {48418, 48554}

X(58860) = midpoint of X(i) and X(j) for these {i, j}: {4468, 47674}, {4838, 49296}
X(58860) = cevapoint of X(i) and X(j) for these {i, j}: {514, 28161}, {523, 50457}
X(58860) = crosspoint of X(i) and X(j) for these {i, j}: {5936, 53658}, {30598, 58132}
X(58860) = X(28162)-anticomplementary conjugate of-X(41915)
X(58860) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4624, 25430), (53658, 5936)
X(58860) = X(4802)-cross conjugate of-X(514)
X(58860) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 4512), (115, 5257), (244, 37593), (513, 58140), (514, 4778), (650, 4765), (661, 4790), (1015, 1449), (1086, 3616), (1146, 391), (1577, 4811), (3161, 30728), (5521, 5338), (6377, 4734), (6544, 4773), (6741, 4061), (15526, 4101), (20620, 461), (26932, 4652), (34591, 4047), (35092, 4700), (35094, 4684), (38991, 4258), (40615, 21454), (40617, 3361), (40619, 19804), (40620, 42028), (40622, 3671), (40624, 4673), (40627, 4832), (46398, 51423), (50330, 4822)
X(58860) = X(i)-isoconjugate of-X(j) for these {i, j}: {101, 1449}, {109, 4512}, {110, 37593}, {112, 4047}, {163, 5257}, {391, 1415}, {461, 36059}, {604, 30728}, {651, 4258}, {692, 3616}, {765, 58140}, {1110, 4778}, {1252, 4790}, {1262, 4827}, {1331, 5338}, {2149, 4765}, {3361, 3939}, {4101, 32676}, {4567, 4832}, {4570, 4822}, {4652, 8750}, {4684, 32666}, {4700, 32665}, {4706, 32718}, {4719, 32736}, {4742, 32719}, {4801, 23990}, {5342, 32656}, {6516, 44100}, {19804, 32739}
X(58860) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (8, 30728), (11, 4765), (244, 4790), (513, 1449), (514, 3616), (522, 391), (523, 5257), (525, 4101), (650, 4512), (656, 4047), (661, 37593), (663, 4258), (693, 19804), (900, 4700), (905, 4652), (918, 4684), (1015, 58140), (1086, 4778), (1111, 4801), (1358, 30723), (1647, 4773), (2310, 4827), (2334, 101), (3064, 461), (3120, 4841), (3122, 4832), (3125, 4822), (3669, 3361), (3676, 21454), (3700, 4061), (3762, 4742), (3835, 4734), (4010, 4771), (4086, 42712), (4120, 4819), (4391, 4673), (4606, 765), (4614, 4567), (4624, 4998), (4627, 4570), (4633, 4600), (4728, 4706), (4750, 4831), (4858, 4811), (4866, 644), (5545, 52378), (5936, 190), (6591, 5338), (7178, 3671), (7192, 42028)
X(58860) = X(35338)-zayin conjugate of-X(4790)
X(58860) = trilinear pole of the line {1086, 21044} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(58860) = perspector of the circumconic through X(5936) and X(40023)
X(58860) = pole of the line {10478, 44736} with respect to the Conway circle
X(58860) = pole of the line {3672, 4654} with respect to the incircle
X(58860) = pole of the line {461, 4512} with respect to the polar circle
X(58860) = pole of the line {3617, 5936} with respect to the Steiner circumellipse
X(58860) = pole of the line {1698, 4648} with respect to the Steiner inellipse
X(58860) = pole of the line {28161, 47666} with respect to the Yff parabola
X(58860) = barycentric product X(i)*X(j) for these {i, j}: {11, 4624}, {75, 47915}, {513, 40023}, {514, 5936}, {522, 57826}, {693, 25430}, {1086, 53658}, {1111, 4606}, {1577, 56048}, {2334, 3261}, {3064, 57873}, {3120, 4633}, {3676, 56086}, {4077, 56204}, {4614, 16732}, {4627, 21207}, {4866, 24002}, {7199, 56237}, {8694, 23989}, {34820, 52621}
X(58860) = trilinear product X(i)*X(j) for these {i, j}: {2, 47915}, {244, 53658}, {513, 5936}, {514, 25430}, {523, 56048}, {649, 40023}, {650, 57826}, {693, 2334}, {1086, 4606}, {1111, 8694}, {2170, 4624}, {3120, 4614}, {3125, 4633}, {3669, 56086}, {3676, 4866}, {4391, 57663}, {4627, 16732}, {7178, 56204}, {7192, 56237}, {18344, 57873}
X(58860) = trilinear quotient X(i)/X(j) for these (i, j): (244, 58140), (312, 30728), (514, 1449), (522, 4512), (523, 37593), (525, 4047), (650, 4258), (693, 3616), (1086, 4790), (1111, 4778), (1146, 4827), (1577, 5257), (2334, 692), (3004, 4719), (3120, 4822), (3125, 4832), (3261, 19804), (3676, 3361), (3762, 4700), (4025, 4652)


X(58861) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st SHARYGIN TO ABC

Barycentrics    a*(a^4-2*b*c*a^2-2*(b^3+c^3)*a-3*b^2*c^2) : :

X(58861) lies on these lines: {6, 256}, {21, 3551}, {165, 846}, {187, 39650}, {574, 8318}, {1281, 14931}, {1284, 16484}, {2177, 11688}, {3311, 8326}, {3312, 8327}, {5106, 45705}, {6199, 8328}, {6221, 8320}, {6395, 8329}, {6398, 8321}, {6468, 8322}, {6469, 8323}, {8297, 8852}, {10853, 13860}, {16474, 50618}, {16499, 30366}, {18235, 56009}, {19400, 58770}, {23868, 24463}, {50613, 52134}

X(58861) = isogonal conjugate of the isotomic conjugate of X(43271)
X(58861) = X(43271)-reciprocal conjugate of-X(76)
X(58861) = pole of the line {3550, 56441} with respect to the Stammler hyperbola
X(58861) = barycentric product X(6)*X(43271)
X(58861) = trilinear product X(31)*X(43271)
X(58861) = trilinear quotient X(43271)/X(75)


X(58862) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st SHARYGIN

Barycentrics    a^3*(a^2+b*c)*(b^3-c^3) : :

X(58862) lies on these lines: {187, 237}, {798, 1964}, {983, 3733}, {2530, 27469}, {2533, 3907}, {4486, 6002}, {20964, 20981}, {24534, 45902}, {29298, 40886}, {30654, 45882}

X(58862) = isogonal conjugate of the isotomic conjugate of X(3805)
X(58862) = Gibert-circumtangential conjugate of X(30670)
X(58862) = cross-difference of every pair of points on the line X(2)X(893)
X(58862) = crosspoint of X(6) and X(30670)
X(58862) = crosssum of X(i) and X(j) for these {i, j}: {2, 3805}, {824, 3846}, {30665, 39044}
X(58862) = X(i)-Ceva conjugate of-X(j) for these (i, j): (30664, 1580), (30670, 6)
X(58862) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 30670), (3789, 56241), (16592, 871), (38995, 7018), (40597, 37133), (55049, 257), (55053, 40738)
X(58862) = X(30654)-hirst inverse of-X(45882)
X(58862) = X(i)-isoconjugate of-X(j) for these {i, j}: {75, 30670}, {190, 40738}, {256, 789}, {257, 4586}, {668, 40763}, {825, 44187}, {870, 3903}, {893, 37133}, {904, 46132}, {985, 56241}, {1492, 7018}, {4594, 40718}, {4613, 32010}, {7104, 52611}, {7260, 40747}, {14621, 27805}, {17493, 37207}, {18786, 41072}, {37137, 52652}
X(58862) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (32, 30670), (171, 37133), (172, 789), (667, 40738), (788, 257), (869, 27805), (894, 46132), (1491, 44187), (1909, 52611), (1919, 40763), (2276, 56241), (3250, 7018), (3736, 7260), (3805, 76), (4369, 871), (4579, 5388), (7122, 4586), (8630, 893), (20981, 870), (30639, 44169), (30641, 35533), (30654, 350), (30656, 35548), (30671, 1934), (40728, 3903), (40731, 799), (40790, 1978), (45882, 75), (46386, 256), (56242, 14621), (56441, 670), (56696, 4602), (58752, 18904), (58864, 17493)
X(58862) = perspector of the circumconic through X(6) and X(894)
X(58862) = pole of the line {6, 256} with respect to the circumcircle
X(58862) = pole of the line {6, 256} with respect to the Brocard inellipse
X(58862) = pole of the line {99, 7260} with respect to the Stammler hyperbola
X(58862) = pole of the line {194, 24282} with respect to the Steiner circumellipse
X(58862) = pole of the line {39, 24254} with respect to the Steiner inellipse
X(58862) = pole of the line {670, 4594} with respect to the Steiner-Wallace hyperbola
X(58862) = barycentric product X(i)*X(j) for these {i, j}: {1, 45882}, {6, 3805}, {171, 3250}, {172, 1491}, {291, 30654}, {512, 56441}, {649, 40790}, {661, 40731}, {717, 30641}, {753, 30656}, {788, 894}, {798, 56696}, {824, 7122}, {869, 4369}, {984, 20981}, {1469, 3287}, {1580, 30671}, {1909, 46386}, {1920, 8630}, {1922, 30639}
X(58862) = trilinear product X(i)*X(j) for these {i, j}: {6, 45882}, {31, 3805}, {171, 788}, {172, 3250}, {292, 30654}, {512, 40731}, {667, 40790}, {669, 56696}, {798, 56441}, {869, 4367}, {894, 46386}, {984, 56242}, {1491, 7122}, {1691, 30671}, {1909, 8630}, {2276, 20981}, {3287, 56556}, {3736, 7234}, {3774, 18200}, {4369, 40728}
X(58862) = trilinear quotient X(i)/X(j) for these (i, j): (31, 30670), (171, 789), (172, 4586), (649, 40738), (667, 40763), (788, 256), (824, 44187), (869, 3903), (894, 37133), (984, 56241), (1491, 7018), (1909, 46132), (1920, 52611), (2276, 27805), (3250, 257), (3287, 52652), (3736, 4594), (3774, 56257), (3805, 75), (4367, 870)


X(58863) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd SHARYGIN TO ABC

Barycentrics    a*(a^4-2*(b^3+c^3)*a+3*b^2*c^2) : :

X(58863) lies on these lines: {1, 88}, {6, 291}, {10, 33826}, {75, 753}, {105, 2108}, {187, 39651}, {238, 20331}, {537, 3570}, {574, 8334}, {902, 16801}, {1281, 14931}, {1390, 1929}, {1580, 8626}, {1635, 4160}, {1757, 2246}, {3230, 27245}, {3311, 8342}, {3312, 8343}, {3507, 11349}, {3679, 4482}, {3723, 9507}, {3783, 56009}, {6199, 8344}, {6221, 8336}, {6395, 8345}, {6398, 8337}, {6468, 8338}, {6469, 8339}, {8296, 8852}, {8299, 16484}, {8649, 14839}, {9451, 16496}, {10854, 13860}, {16997, 49455}, {17117, 17797}, {17155, 26232}, {19401, 58770}, {19856, 24988}, {24427, 26273}, {24602, 32847}, {28317, 29351}, {32917, 51583}

X(58863) = isogonal conjugate of the isotomic conjugate of X(43270)
X(58863) = cross-difference of every pair of points on the line X(1635)X(14402)
X(58863) = X(1)-hirst inverse of-X(750)
X(58863) = X(i)-line conjugate of-X(j) for these (i, j): (1, 46904), (4160, 1635)
X(58863) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (27931, 350), (43270, 76)
X(58863) = perspector of the circumconic through X(3257) and X(30664)
X(58863) = pole of the line {4491, 58864} with respect to the circumcircle
X(58863) = pole of the line {23650, 58864} with respect to the Brocard inellipse
X(58863) = barycentric product X(i)*X(j) for these {i, j}: {6, 43270}, {291, 27931}
X(58863) = trilinear product X(i)*X(j) for these {i, j}: {31, 43270}, {292, 27931}
X(58863) = trilinear quotient X(i)/X(j) for these (i, j): (27931, 239), (43270, 75)


X(58864) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 2nd SHARYGIN

Barycentrics    a^3*(a^2-b*c)*(b^3-c^3) : :

X(58864) lies on these lines: {187, 237}, {659, 812}, {788, 14436}, {810, 23503}, {3573, 35009}, {3802, 30665}, {4782, 9400}, {6373, 23466}, {21003, 23401}, {24354, 24425}, {25098, 50516}

X(58864) = Gibert-circumtangential conjugate of X(30664)
X(58864) = isogonal conjugate of X(41072)
X(58864) = cross-difference of every pair of points on the line X(2)X(292)
X(58864) = crosspoint of X(i) and X(j) for these {i, j}: {6, 30664}, {1967, 30670}
X(58864) = crosssum of X(i) and X(j) for these {i, j}: {2, 30665}, {812, 24325}, {824, 3836}, {1966, 3805}
X(58864) = X(i)-Ceva conjugate of-X(j) for these (i, j): (789, 20457), (30664, 6), (30670, 8300)
X(58864) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 30664), (3789, 4583), (6651, 46132), (19557, 37133), (32664, 37207), (35119, 871), (38995, 334), (39028, 52611), (39029, 789), (55049, 335)
X(58864) = X(788)-hirst inverse of-X(46386)
X(58864) = X(i)-isoconjugate of-X(j) for these {i, j}: {2, 37207}, {75, 30664}, {291, 789}, {292, 37133}, {334, 1492}, {335, 4586}, {660, 870}, {825, 18895}, {871, 34067}, {985, 4583}, {1911, 46132}, {1922, 52611}, {3572, 5388}, {4562, 14621}, {4589, 40718}, {4613, 18827}, {4639, 40747}, {23597, 57566}, {34069, 44172}, {35148, 40740}, {40772, 53216}
X(58864) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (31, 37207), (32, 30664), (238, 37133), (239, 46132), (350, 52611), (788, 335), (812, 871), (824, 44172), (869, 4562), (1491, 18895), (1914, 789), (2210, 4586), (2276, 4583), (3250, 334), (3573, 5388), (3736, 4639), (3783, 1978), (3797, 6386), (3802, 27853), (4486, 561), (8630, 292), (8632, 870), (14599, 1492), (16514, 668), (17569, 6331), (18892, 825), (18894, 34069), (18900, 813), (30640, 35533), (30654, 1909), (30655, 35548), (30665, 76), (40728, 660), (41333, 4613), (46386, 291), (56854, 36803), (58752, 18905), (58862, 30669)
X(58864) = perspector of the circumconic through X(6) and X(239)
X(58864) = pole of the line {6, 291} with respect to the circumcircle
X(58864) = pole of the line {6, 291} with respect to the Brocard inellipse
X(58864) = pole of the line {669, 38348} with respect to the Kiepert parabola
X(58864) = pole of the line {99, 4613} with respect to the Stammler hyperbola
X(58864) = pole of the line {194, 33888} with respect to the Steiner circumellipse
X(58864) = pole of the line {39, 17755} with respect to the Steiner inellipse
X(58864) = pole of the line {670, 4589} with respect to the Steiner-Wallace hyperbola
X(58864) = pole of the line {4375, 20979} with respect to the Yff parabola
X(58864) = barycentric product X(i)*X(j) for these {i, j}: {6, 30665}, {31, 4486}, {238, 3250}, {239, 788}, {256, 30654}, {350, 46386}, {513, 16514}, {647, 17569}, {649, 3783}, {659, 2276}, {665, 56854}, {667, 3797}, {717, 30640}, {753, 30655}, {812, 869}, {824, 2210}, {984, 8632}, {1469, 4435}, {1491, 1914}, {1921, 8630}
X(58864) = trilinear product X(i)*X(j) for these {i, j}: {31, 30665}, {32, 4486}, {238, 788}, {239, 46386}, {350, 8630}, {649, 16514}, {659, 869}, {667, 3783}, {810, 17569}, {812, 40728}, {824, 14599}, {875, 3802}, {893, 30654}, {1491, 2210}, {1914, 3250}, {1919, 3797}, {2276, 8632}, {3736, 4455}, {3766, 18900}, {3774, 50456}
X(58864) = trilinear quotient X(i)/X(j) for these (i, j): (6, 37207), (31, 30664), (238, 789), (239, 37133), (350, 46132), (659, 870), (788, 291), (824, 18895), (869, 660), (984, 4583), (1491, 334), (1914, 4586), (1921, 52611), (2210, 1492), (2276, 4562), (3250, 335), (3570, 5388), (3736, 4589), (3747, 4613), (3766, 871)


X(58865) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INNER-SQUARES

Barycentrics    (a^2+2*S)*(b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-a^2+b^2+c^2+2*S)*(a^4+b^4-3*b^2*c^2+c^4-2*(b^2+c^2)*a^2-2*(b^2+c^2)*S) : :

X(58865) lies on these lines: {230, 231}, {14618, 54028}, {38359, 44638}, {54029, 57065}

X(58865) = polar conjugate of X(54031)
X(58865) = cross-difference of every pair of points on the line X(3)X(6413)
X(58865) = crosspoint of X(492) and X(54030)
X(58865) = X(i)-Ceva conjugate of-X(j) for these (i, j): (648, 44637), (13429, 136), (54030, 41516)
X(58865) = X(i)-cross conjugate of-X(j) for these (i, j): (136, 13429), (924, 58867)
X(58865) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 11090), (135, 372), (136, 485), (1084, 6413), (1249, 54031), (2501, 54028), (3162, 39383), (5139, 8577), (10962, 4558), (39013, 5409)
X(58865) = X(47236)-hirst inverse of-X(58867)
X(58865) = X(i)-isoconjugate of-X(j) for these {i, j}: {48, 54031}, {63, 39383}, {163, 11090}, {485, 4575}, {662, 6413}, {4592, 8577}, {5409, 36145}
X(58865) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 54031), (25, 39383), (136, 54028), (371, 4558), (492, 4563), (512, 6413), (523, 11090), (924, 5409), (1585, 99), (2489, 8577), (2501, 485), (2971, 58825), (5413, 110), (6753, 372), (13429, 54030), (14325, 488), (14618, 34391), (34952, 26920), (39384, 44174), (41516, 925), (45805, 52608), (54028, 13441), (54029, 69), (54030, 57763), (55206, 13455), (55398, 4592), (57065, 491), (57071, 8944), (58757, 41515), (58827, 2351), (58867, 13439)
X(58865) = perspector of the circumconic through X(4) and X(1585)
X(58865) = pole of the line {12321, 32421} with respect to the anticomplementary circle
X(58865) = pole of the line {32421, 44441} with respect to the 1st Droz-Farny circle
X(58865) = pole of the line {428, 12148} with respect to the incircle-of-orthic triangle
X(58865) = pole of the line {22818, 32421} with respect to the Johnson triangle circumcircle
X(58865) = pole of the line {2, 372} with respect to the polar circle
X(58865) = pole of the line {155, 3092} with respect to the MacBeath circumconic
X(58865) = pole of the line {4, 371} with respect to the orthic inconic
X(58865) = pole of the line {193, 13428} with respect to the Steiner circumellipse
X(58865) = pole of the line {6, 8966} with respect to the Steiner inellipse
X(58865) = barycentric product X(i)*X(j) for these {i, j}: {4, 54029}, {136, 54030}, {371, 14618}, {486, 57065}, {492, 2501}, {523, 1585}, {850, 5413}, {2489, 45805}, {6563, 41516}, {6753, 34392}, {13428, 58867}, {13429, 54028}, {14325, 24244}, {24006, 55398}
X(58865) = trilinear product X(i)*X(j) for these {i, j}: {19, 54029}, {371, 24006}, {661, 1585}, {1577, 5413}, {2501, 55398}, {3378, 58867}, {14325, 19218}
X(58865) = trilinear quotient X(i)/X(j) for these (i, j): (19, 39383), (92, 54031), (371, 4575), (492, 4592), (661, 6413), (1577, 11090), (1585, 662), (5413, 163), (14325, 19215), (24006, 485), (41516, 36145), (45805, 55202), (54029, 63), (55216, 26920), (55398, 4558), (57065, 55397)


X(58866) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: OUTER-SQUARES TO ABC

Barycentrics    (b^2-2*S)*(c^2-2*S)*((4*a^4-9*(b^2+c^2)*a^2+5*(b^2-c^2)^2)*a^2+2*(2*a^4+3*(b^2+c^2)*a^2-2*(b^2-c^2)^2)*S) : :

X(58866) lies on these lines: {2, 6419}, {3, 13847}, {4, 372}, {5, 6420}, {6, 17}, {13, 42279}, {14, 42278}, {20, 43377}, {30, 6454}, {39, 22721}, {115, 12969}, {140, 371}, {230, 44648}, {381, 3594}, {382, 6426}, {395, 14814}, {396, 14813}, {397, 53468}, {398, 53457}, {468, 8855}, {485, 3591}, {491, 6119}, {524, 32490}, {547, 43879}, {548, 52046}, {550, 3071}, {590, 19116}, {591, 7751}, {597, 32491}, {631, 6453}, {632, 31454}, {1124, 13954}, {1132, 22615}, {1151, 15720}, {1152, 1657}, {1327, 3855}, {1328, 3146}, {1335, 13955}, {1587, 5068}, {1588, 3523}, {2043, 41113}, {2044, 41112}, {2045, 40694}, {2046, 40693}, {2460, 13934}, {2548, 45515}, {3068, 3317}, {3070, 3850}, {3090, 19053}, {3102, 13983}, {3311, 8252}, {3312, 3851}, {3365, 42232}, {3390, 42234}, {3515, 8277}, {3517, 13943}, {3522, 6561}, {3524, 9681}, {3526, 3592}, {3529, 42537}, {3530, 41945}, {3533, 5418}, {3543, 43884}, {3544, 31414}, {3590, 7486}, {3627, 41946}, {3628, 32787}, {3642, 22882}, {3643, 22927}, {3830, 6448}, {3845, 41951}, {3853, 52048}, {3854, 42269}, {3858, 35786}, {4232, 18290}, {4857, 5414}, {5054, 6425}, {5055, 6428}, {5059, 6481}, {5067, 19054}, {5070, 6427}, {5073, 6398}, {5094, 8281}, {5270, 6502}, {5339, 42236}, {5340, 42235}, {5493, 13975}, {5882, 13971}, {6395, 23251}, {6408, 49139}, {6417, 8253}, {6418, 42265}, {6430, 49133}, {6432, 13665}, {6435, 32789}, {6436, 7581}, {6447, 55863}, {6450, 42263}, {6452, 42569}, {6459, 10299}, {6477, 42571}, {6479, 53519}, {6482, 15708}, {6487, 43510}, {6515, 55477}, {6519, 15701}, {6522, 17800}, {7388, 13757}, {7583, 35018}, {7585, 46935}, {7736, 19102}, {7869, 45472}, {7968, 35789}, {7980, 26370}, {8375, 44535}, {8550, 13972}, {8981, 32790}, {9680, 10303}, {9821, 35839}, {10534, 45185}, {10619, 13986}, {10666, 13970}, {10820, 35835}, {10990, 13969}, {10991, 13967}, {10992, 13989}, {10993, 13991}, {11242, 18381}, {11265, 18282}, {11294, 41490}, {11316, 13783}, {11513, 34002}, {11522, 35774}, {11542, 42194}, {11543, 42193}, {11623, 35824}, {12103, 42573}, {12108, 52047}, {12123, 26521}, {12268, 26301}, {12375, 16534}, {12962, 31455}, {12964, 14862}, {13464, 13936}, {13758, 13880}, {13925, 42558}, {13947, 35775}, {13960, 32589}, {13962, 35769}, {13963, 35809}, {13973, 35642}, {13979, 49269}, {13980, 15105}, {13990, 30714}, {13992, 14900}, {14226, 33703}, {14869, 52045}, {14893, 42418}, {15681, 42524}, {15709, 43802}, {15712, 42215}, {15717, 53130}, {16267, 18586}, {16268, 18587}, {16964, 51924}, {17504, 42417}, {17852, 49137}, {18538, 44904}, {18992, 35788}, {18995, 35800}, {19003, 30315}, {19027, 35768}, {19029, 35808}, {19037, 35802}, {19065, 35810}, {19104, 44596}, {19105, 44597}, {19117, 42582}, {19130, 45377}, {20417, 35826}, {20418, 35856}, {21734, 43257}, {21735, 23273}, {22839, 58797}, {23249, 42523}, {23263, 42276}, {23275, 42275}, {31487, 55857}, {32209, 49791}, {32419, 39388}, {32421, 32488}, {33923, 35256}, {35610, 43174}, {35698, 38734}, {35811, 49233}, {35825, 52090}, {35843, 44636}, {36491, 36555}, {40275, 53498}, {41947, 43409}, {41952, 47478}, {41981, 43317}, {42060, 44364}, {42149, 42255}, {42152, 42254}, {42259, 43790}, {42563, 42998}, {42565, 42999}, {43210, 44245}, {43211, 55862}, {43256, 50688}, {43315, 43890}, {43338, 43439}, {43341, 43785}, {43343, 50693}, {43407, 50690}, {43525, 50692}, {43559, 43565}, {45499, 49029}, {45513, 49221}, {45565, 53488}, {49111, 49231}, {49215, 51524}, {52215, 52401}, {52216, 52402}

X(58866) = pole of the line {550, 10577} with respect to the Evans conic
X(58866) = pole of the line {140, 3071} with respect to the Kiepert circumhyperbola
X(58866) = pole of the line {20184, 58867} with respect to the orthic inconic
X(58866) = pole of the line {1994, 5409} with respect to the Stammler hyperbola
X(58866) = pole of the line {12077, 14333} with respect to the Steiner inellipse


X(58867) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND OUTER-SQUARES

Barycentrics    (a^2-2*S)*(b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-a^2+b^2+c^2-2*S)*(a^4+b^4-3*b^2*c^2+c^4-2*(b^2+c^2)*a^2+2*(b^2+c^2)*S) : :

X(58867) lies on these lines: {230, 231}, {14618, 54029}, {38359, 44637}, {54028, 57065}

X(58867) = polar conjugate of X(54030)
X(58867) = cross-difference of every pair of points on the line X(3)X(6414)
X(58867) = crosspoint of X(491) and X(54031)
X(58867) = X(i)-Ceva conjugate of-X(j) for these (i, j): (648, 44638), (13440, 136), (54031, 41515)
X(58867) = X(i)-cross conjugate of-X(j) for these (i, j): (136, 13440), (924, 58865)
X(58867) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 11091), (125, 26922), (135, 371), (136, 486), (1084, 6414), (1249, 54030), (2501, 54029), (3162, 39384), (5139, 8576), (10960, 4558), (39013, 5408)
X(58867) = X(47236)-hirst inverse of-X(58865)
X(58867) = X(i)-isoconjugate of-X(j) for these {i, j}: {48, 54030}, {63, 39384}, {162, 26922}, {163, 11091}, {486, 4575}, {662, 6414}, {4592, 8576}, {5408, 36145}
X(58867) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 54030), (25, 39384), (136, 54029), (372, 4558), (491, 4563), (512, 6414), (523, 11091), (647, 26922), (924, 5408), (1586, 99), (2489, 8576), (2501, 486), (2971, 58827), (5412, 110), (6753, 371), (13440, 54031), (14326, 487), (14618, 34392), (34952, 8911), (39383, 44174), (41515, 925), (45806, 52608), (54028, 69), (54029, 13430), (54031, 57763), (55397, 4592), (57065, 492), (57071, 8940), (58757, 41516), (58825, 2351), (58865, 13428)
X(58867) = perspector of the circumconic through X(4) and X(1586)
X(58867) = pole of the line {12320, 32419} with respect to the anticomplementary circle
X(58867) = pole of the line {32419, 44441} with respect to the 1st Droz-Farny circle
X(58867) = pole of the line {428, 12147} with respect to the incircle-of-orthic triangle
X(58867) = pole of the line {22817, 32419} with respect to the Johnson triangle circumcircle
X(58867) = pole of the line {2, 371} with respect to the polar circle
X(58867) = pole of the line {155, 3093} with respect to the MacBeath circumconic
X(58867) = pole of the line {4, 372} with respect to the orthic inconic
X(58867) = pole of the line {193, 13439} with respect to the Steiner circumellipse
X(58867) = pole of the line {6, 8969} with respect to the Steiner inellipse
X(58867) = barycentric product X(i)*X(j) for these {i, j}: {4, 54028}, {136, 54031}, {372, 14618}, {485, 57065}, {491, 2501}, {523, 1586}, {850, 5412}, {2489, 45806}, {6563, 41515}, {6753, 34391}, {13439, 58865}, {13440, 54029}, {14326, 24243}, {24006, 55397}
X(58867) = trilinear product X(i)*X(j) for these {i, j}: {19, 54028}, {372, 24006}, {661, 1586}, {1577, 5412}, {2501, 55397}, {3377, 58865}, {13461, 55208}, {14326, 19217}
X(58867) = trilinear quotient X(i)/X(j) for these (i, j): (19, 39384), (92, 54030), (372, 4575), (491, 4592), (656, 26922), (661, 6414), (1577, 11091), (1586, 662), (5412, 163), (14326, 19216), (24006, 486), (41515, 36145), (45806, 55202), (54028, 63), (55216, 8911), (55397, 4558), (57065, 55398)


X(58868) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: TANGENTIAL-MIDARC TO ABC

Barycentrics    a*(a+b-c)*(a-b+c)*(-a+b+c-4*c*sin(B/2)-4*b*sin(C/2)) : :

X(58868) lies on these lines: {1, 167}, {7, 10491}, {10, 7057}, {173, 10215}, {188, 58444}, {363, 8078}, {5571, 10967}, {5902, 12814}, {7022, 10489}, {7670, 30405}, {8083, 11192}, {8093, 31768}, {8099, 12813}, {8387, 30404}, {10231, 11923}, {11032, 58616}, {13559, 46695}, {43192, 52802}

X(58868) = pole of the line {10500, 13092} with respect to the Feuerbach circumhyperbola


X(58869) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INNER TRI-EQUILATERAL

Barycentrics    a^2*(2*sqrt(3)*S+a^2-b^2+c^2)*(2*sqrt(3)*S+a^2+b^2-c^2)*(b^2-c^2) : :

X(58869) lies on these lines: {523, 14446}, {669, 58870}, {691, 16806}, {6138, 51890}, {9178, 21461}, {18829, 32036}, {32585, 35364}, {55220, 57993}

X(58869) = isogonal conjugate of X(55198)
X(58869) = cross-difference of every pair of points on the line X(61)X(302)
X(58869) = crosspoint of X(i) and X(j) for these {i, j}: {17, 55220}, {16806, 21461}
X(58869) = crosssum of X(302) and X(23872)
X(58869) = X(i)-Ceva conjugate of-X(j) for these (i, j): (16806, 21461), (55220, 17)
X(58869) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 52605), (512, 55221), (1084, 302), (3005, 23872), (5139, 473), (17423, 52348), (21975, 55222), (38994, 11132), (38996, 61), (46604, 32037)
X(58869) = X(i)-isoconjugate of-X(j) for these {i, j}: {61, 799}, {75, 52605}, {302, 662}, {473, 4592}, {811, 52348}, {2964, 55222}, {10642, 55202}, {23872, 24041}, {24037, 55221}
X(58869) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (17, 670), (32, 52605), (512, 302), (669, 61), (1084, 55221), (2489, 473), (2963, 55222), (3049, 52348), (3124, 23872), (6138, 11132), (8741, 6331), (16806, 4590), (21461, 99), (32036, 34537), (32585, 4563), (34389, 4609), (40712, 52608), (51547, 55200), (55199, 76), (55220, 44168), (55223, 7769), (57204, 10642), (58870, 11143)
X(58869) = perspector of the circumconic through X(17) and X(21461)
X(58869) = pole of the line {3131, 21461} with respect to the circumcircle
X(58869) = pole of the line {52605, 55198} with respect to the Stammler hyperbola
X(58869) = barycentric product X(i)*X(j) for these {i, j}: {6, 55199}, {17, 512}, {115, 16806}, {523, 21461}, {647, 8741}, {669, 34389}, {1084, 55220}, {2489, 40712}, {2501, 32585}, {2623, 36300}, {2963, 55223}, {3124, 32036}, {6137, 11139}, {6138, 11087}, {8603, 20578}, {11144, 58870}, {20579, 51890}, {51547, 55201}
X(58869) = trilinear product X(i)*X(j) for these {i, j}: {17, 798}, {31, 55199}, {661, 21461}, {810, 8741}, {1924, 34389}, {2643, 16806}, {4117, 55220}
X(58869) = trilinear quotient X(i)/X(j) for these (i, j): (17, 799), (31, 52605), (661, 302), (798, 61), (810, 52348), (2643, 23872), (2962, 55222), (8741, 811), (16806, 24041), (21461, 662), (32036, 24037), (32585, 4592), (34389, 4602), (40712, 55202), (55199, 75)


X(58870) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND OUTER TRI-EQUILATERAL

Barycentrics    a^2*(-2*sqrt(3)*S+a^2-b^2+c^2)*(-2*sqrt(3)*S+a^2+b^2-c^2)*(b^2-c^2) : :

X(58870) lies on these lines: {523, 14447}, {669, 58869}, {691, 16807}, {6137, 51891}, {9178, 21462}, {18829, 32037}, {32586, 35364}, {55222, 57993}

X(58870) = isogonal conjugate of X(55200)
X(58870) = cross-difference of every pair of points on the line X(62)X(303)
X(58870) = crosspoint of X(i) and X(j) for these {i, j}: {18, 55222}, {16807, 21462}
X(58870) = crosssum of X(303) and X(23873)
X(58870) = X(i)-Ceva conjugate of-X(j) for these (i, j): (16807, 21462), (55222, 18)
X(58870) = X(i)-Dao conjugate of-X(j) for these (i, j): (206, 52606), (512, 55223), (1084, 303), (3005, 23873), (5139, 472), (17423, 52349), (21975, 55220), (38993, 11133), (38996, 62), (46604, 32036)
X(58870) = X(i)-isoconjugate of-X(j) for these {i, j}: {62, 799}, {75, 52606}, {303, 662}, {472, 4592}, {811, 52349}, {2964, 55220}, {10641, 55202}, {23873, 24041}, {24037, 55223}
X(58870) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (18, 670), (32, 52606), (512, 303), (669, 62), (1084, 55223), (2489, 472), (2963, 55220), (3049, 52349), (3124, 23873), (6137, 11133), (8742, 6331), (16807, 4590), (21462, 99), (32037, 34537), (32586, 4563), (34390, 4609), (40711, 52608), (51546, 55198), (55201, 76), (55221, 7769), (55222, 44168), (57204, 10641), (58869, 11144)
X(58870) = perspector of the circumconic through X(18) and X(21462)
X(58870) = pole of the line {3132, 21462} with respect to the circumcircle
X(58870) = pole of the line {52606, 55200} with respect to the Stammler hyperbola
X(58870) = barycentric product X(i)*X(j) for these {i, j}: {6, 55201}, {18, 512}, {115, 16807}, {523, 21462}, {647, 8742}, {669, 34390}, {1084, 55222}, {2489, 40711}, {2501, 32586}, {2623, 36301}, {2963, 55221}, {3124, 32037}, {6137, 11082}, {6138, 11138}, {8604, 20579}, {11143, 58869}, {20578, 51891}, {51546, 55199}
X(58870) = trilinear product X(i)*X(j) for these {i, j}: {18, 798}, {31, 55201}, {661, 21462}, {810, 8742}, {1924, 34390}, {2643, 16807}, {4117, 55222}
X(58870) = trilinear quotient X(i)/X(j) for these (i, j): (18, 799), (31, 52606), (661, 303), (798, 62), (810, 52349), (2643, 23873), (2962, 55220), (8742, 811), (16807, 24041), (21462, 662), (32037, 24037), (32586, 4592), (34390, 4602), (40711, 55202), (55201, 75)


X(58871) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: TRINH TO ABC

Barycentrics    a^2*(4*a^8-7*(b^2+c^2)*a^6-(3*b^4-28*b^2*c^2+3*c^4)*a^4+(b^2+c^2)*(11*b^4-28*b^2*c^2+11*c^4)*a^2-(5*b^4+14*b^2*c^2+5*c^4)*(b^2-c^2)^2) : :
X(58871) = X(399)-3*X(51394) = X(1533)-3*X(44214) = X(3580)+3*X(54995) = X(10721)-5*X(30745) = X(11799)-3*X(38727) = 5*X(12017)-3*X(44102) = X(12112)+3*X(13445) = X(12367)-5*X(55646) = 7*X(15036)-3*X(35265) = 3*X(15041)+X(37477) = X(18325)-5*X(38728) = 3*X(18374)-7*X(55676) = 3*X(19596)-11*X(55656) = 3*X(21639)-X(44456) = X(32111)-3*X(38793) = 3*X(34128)-X(44267)

X(58871) lies on these lines: {3, 1495}, {20, 18394}, {30, 6699}, {74, 323}, {113, 50434}, {141, 8703}, {376, 18474}, {378, 5892}, {399, 51394}, {511, 11806}, {512, 8552}, {541, 11064}, {549, 51548}, {550, 20299}, {858, 16111}, {1154, 15151}, {1216, 31978}, {1503, 38726}, {1511, 6000}, {1514, 10257}, {1531, 20127}, {1533, 44214}, {2072, 13202}, {2393, 3098}, {2777, 15122}, {3284, 51544}, {3292, 10620}, {3357, 15068}, {3431, 15072}, {3520, 37513}, {3534, 37638}, {3580, 54995}, {3581, 18859}, {5092, 18570}, {5159, 46686}, {5446, 11438}, {6723, 47336}, {7464, 15055}, {7574, 38788}, {7689, 19458}, {7712, 35493}, {9027, 32305}, {9412, 52950}, {9927, 30552}, {10226, 46850}, {10297, 20725}, {10545, 13596}, {10546, 16194}, {10575, 11464}, {10625, 11468}, {10721, 30745}, {11001, 20421}, {11003, 35499}, {11250, 11430}, {11410, 34397}, {11413, 12235}, {11456, 12038}, {11799, 38727}, {12017, 44102}, {12085, 37487}, {12112, 13445}, {12290, 43898}, {12302, 34382}, {12367, 55646}, {12893, 37929}, {13293, 19140}, {13474, 43615}, {14070, 33534}, {14156, 15311}, {14677, 51391}, {14855, 15080}, {14865, 43584}, {15036, 35265}, {15041, 37477}, {15062, 54434}, {15083, 34469}, {15644, 32210}, {15827, 15874}, {16386, 46085}, {18325, 38728}, {18374, 55676}, {18435, 52055}, {18571, 32237}, {19596, 55656}, {21639, 44456}, {21847, 44413}, {22467, 46849}, {23040, 52093}, {29012, 47335}, {32111, 38793}, {33878, 55158}, {34128, 44267}, {35243, 56924}, {43809, 46852}, {43903, 52104}, {44247, 45286}, {46817, 48378}, {54992, 58764}

X(58871) = midpoint of X(i) and X(j) for these {i, j}: {113, 50434}, {858, 16111}, {1531, 20127}, {3292, 10620}, {10297, 20725}, {14677, 51391}
X(58871) = reflection of X(i) in X(j) for these (i, j): (32237, 18571), (46686, 5159), (46817, 48378), (47336, 6723)
X(58871) = cross-difference of every pair of points on the line X(9209)X(55265)
X(58871) = pole of the line {8675, 33878} with respect to the circumcircle
X(58871) = pole of the line {399, 10605} with respect to the Jerabek circumhyperbola
X(58871) = pole of the line {113, 376} with respect to the Stammler hyperbola


X(58872) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND TRINH

Barycentrics    a^2*(b^2-c^2)*((-a^2+b^2+c^2)^2-b^2*c^2)^2*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*((b^2+c^2)*a^4-2*(b^4-b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58872) lies on these lines: {526, 1511}, {1637, 5664}

X(58872) = cross-difference of every pair of points on the line X(1989)X(40352)
X(58872) = crosssum of X(1989) and X(55265)
X(58872) = X(18781)-complementary conjugate of-X(21253)
X(58872) = X(i)-Dao conjugate of-X(j) for these (i, j): (2088, 5627), (3580, 39290)
X(58872) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (5664, 40427), (34834, 39290), (58790, 57486)
X(58872) = perspector of the circumconic through X(323) and X(3260)
X(58872) = pole of the line {6344, 8749} with respect to the polar circle
X(58872) = pole of the line {476, 32640} with respect to the Stammler hyperbola
X(58872) = pole of the line {146, 18301} with respect to the Steiner circumellipse
X(58872) = pole of the line {113, 18781} with respect to the Steiner inellipse
X(58872) = pole of the line {35139, 44769} with respect to the Steiner-Wallace hyperbola
X(58872) = barycentric product X(5664)*X(34834)


X(58873) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND INNER-VECTEN

Barycentrics    (a^2-2*S)*(b^2-c^2)*(a^2-S)^2*(-a^2+b^2+c^2)*(-a^2+b^2+c^2-2*S)*(a^4+b^4-3*b^2*c^2+c^4-2*(b^2+c^2)*a^2+2*(b^2+c^2)*S) : :

X(58873) lies on these lines: {6562, 14326}, {54028, 57065}

X(58873) = cross-difference of every pair of points on the line X(494)X(6414)
X(58873) = X(14326)-reciprocal conjugate of-X(24243)
X(58873) = perspector of the circumconic through X(1586) and X(3069)
X(58873) = pole of the line {486, 24243} with respect to the polar circle
X(58873) = barycentric product X(i)*X(j) for these {i, j}: {487, 14326}, {17432, 39388}
X(58873) = trilinear product X(14326)*X(19216)
X(58873) = trilinear quotient X(14326)/X(19217)


X(58874) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND OUTER-VECTEN

Barycentrics    (a^2+2*S)*(b^2-c^2)*(a^2+S)^2*(-a^2+b^2+c^2)*(-a^2+b^2+c^2+2*S)*(a^4+b^4-3*b^2*c^2+c^4-2*(b^2+c^2)*a^2-2*(b^2+c^2)*S) : :

X(58874) lies on these lines: {6562, 14325}, {54029, 57065}

X(58874) = cross-difference of every pair of points on the line X(493)X(6413)
X(58874) = X(14325)-reciprocal conjugate of-X(24244)
X(58874) = perspector of the circumconic through X(1585) and X(3068)
X(58874) = pole of the line {485, 24244} with respect to the polar circle
X(58874) = pole of the line {8968, 13882} with respect to the Steiner inellipse
X(58874) = barycentric product X(i)*X(j) for these {i, j}: {488, 14325}, {17431, 39387}
X(58874) = trilinear product X(14325)*X(19215)
X(58874) = trilinear quotient X(14325)/X(19218)


X(58875) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ABC TO WALSMITH

Barycentrics    (a^4+(b^2-2*c^2)*a^2-(b^2-c^2)*(2*b^2+c^2))*(a^4-(2*b^2-c^2)*a^2+(b^2-c^2)*(b^2+2*c^2))*(4*a^6-(b^2+c^2)*a^4-2*(2*b^4-3*b^2*c^2+2*c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58875) lies on these lines: {2, 648}, {6, 51227}, {30, 16237}, {74, 11179}, {381, 17986}, {524, 35910}, {598, 2394}, {1304, 26255}, {1992, 36890}, {2407, 7799}, {3545, 5627}, {5641, 34288}, {9717, 47597}, {16076, 40856}, {16279, 34150}, {31621, 34568}, {46751, 51170}

X(58875) = X(36896)-Dao conjugate of-X(5505)
X(58875) = X(i)-isoconjugate of-X(j) for these {i, j}: {2173, 5505}, {2631, 10098}
X(58875) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (74, 5505), (1304, 10098), (7426, 30), (15303, 5642), (41583, 51360), (52483, 9214)
X(58875) = pole of the line {9033, 15360} with respect to the Steiner circumellipse
X(58875) = barycentric product X(i)*X(j) for these {i, j}: {1494, 7426}, {36890, 52483}
X(58875) = trilinear product X(2349)*X(7426)
X(58875) = trilinear quotient X(i)/X(j) for these (i, j): (2349, 5505), (7426, 2173)


X(58876) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND YIU

Barycentrics    a^4*(b^2-c^2)*(a^4-2*(b^2+c^2)*a^2+b^4-b^2*c^2+c^4)^2*(a^8-4*(b^2+c^2)*a^6+(6*b^4+5*b^2*c^2+6*c^4)*a^4-(b^2+c^2)*(4*b^4-5*b^2*c^2+4*c^4)*a^2+(b^4+c^4)*(b^2-c^2)^2) : :

X(58876) lies on these lines: {1510, 6150}, {15412, 20577}

X(58876) = crosssum of X(2963) and X(58903)
X(58876) = X(99)-Ceva conjugate of-X(195)
X(58876) = X(i)-Dao conjugate of-X(j) for these (i, j): (58828, 18314), (58903, 523)
X(58876) = X(2962)-isoconjugate of-X(39419)
X(58876) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2965, 39419), (15787, 930)
X(58876) = pole of the line {930, 39419} with respect to the Stammler hyperbola
X(58876) = barycentric product X(15787)*X(41298)
X(58876) = trilinear quotient X(i)/X(j) for these (i, j): (2964, 39419), (15787, 36148)


X(58877) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ABC AND 1st ZANIAH

Barycentrics    (b-c)*(-a+b+c)*(3*a^2-2*(b+c)*a-(b-c)^2)^2 : :
X(58877) = X(4105)+3*X(46919)

X(58877) lies on these lines: {522, 650}, {2254, 58858}, {3676, 14392}, {3939, 7045}, {4105, 46919}, {5218, 14331}, {7658, 55285}, {52740, 58340}

X(58877) = cross-difference of every pair of points on the line X(56)X(11051)
X(58877) = crosspoint of X(144) and X(664)
X(58877) = crosssum of X(663) and X(11051)
X(58877) = X(i)-Ceva conjugate of-X(j) for these (i, j): (664, 144), (30610, 45203)
X(58877) = X(i)-complementary conjugate of-X(j) for these (i, j): (1415, 17113), (8917, 124), (56275, 21252)
X(58877) = X(13609)-Dao conjugate of-X(36620)
X(58877) = X(3062)-isoconjugate of-X(53622)
X(58877) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (144, 53640), (3207, 53622), (7658, 36620), (58835, 19605)
X(58877) = perspector of the circumconic through X(8) and X(144)
X(58877) = pole of the line {144, 25718} with respect to the Steiner circumellipse
X(58877) = pole of the line {9, 2124} with respect to the Steiner inellipse
X(58877) = pole of the line {4573, 55284} with respect to the Steiner-Wallace hyperbola
X(58877) = barycentric product X(i)*X(j) for these {i, j}: {3160, 57064}, {31627, 58835}
X(58877) = trilinear product X(i)*X(j) for these {i, j}: {1419, 57064}, {3160, 58835}
X(58877) = trilinear quotient X(i)/X(j) for these (i, j): (165, 53622), (16284, 53640), (57064, 19605)


X(58878) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO ANTI-EULER

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4-4*(b^2+c^2)*a^2+(b^2-c^2)^2)*(a^4-3*(b^2+c^2)*a^2+2*(b^2-c^2)^2) : :

X(58878) lies on these lines: {2, 45105}, {4, 3527}, {6, 53386}, {25, 160}, {132, 5064}, {427, 9752}, {1593, 52014}, {1656, 4994}, {3087, 6755}, {6353, 10155}, {7507, 58886}, {16240, 17810}, {40325, 47328}, {58346, 58880}

X(58878) = crosspoint of X(4) and X(3087)
X(58878) = X(107)-Ceva conjugate of-X(47122)
X(58878) = X(1656)-Dao conjugate of-X(69)
X(58878) = X(56033)-isoconjugate of-X(56338)
X(58878) = X(11402)-reciprocal conjugate of-X(56338)
X(58878) = Zosma transform of X(56033)
X(58878) = pole of the line {47122, 58880} with respect to the orthic inconic
X(58878) = barycentric product X(1656)*X(3087)


X(58879) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-EULER TO ORTHIC

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*((-a^2+b^2+c^2)^2-16*b^2*c^2)*(3*a^4-4*(b^2+c^2)*a^2+(b^2-c^2)^2) : :

X(58879) lies on these lines: {4, 3527}, {376, 33971}, {393, 14482}, {631, 26907}, {3529, 17401}, {6525, 17829}, {8884, 21735}, {18909, 53386}, {31683, 31687}, {31684, 31688}


X(58880) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND ANTI-EULER

Barycentrics    (b^2-c^2)*(3*a^4-4*(b^2+c^2)*a^2+(b^2-c^2)^2)*(a^4+2*(b^2+c^2)*a^2-3*(b^2-c^2)^2) : :

X(58880) lies on these lines: {512, 50644}, {523, 37931}, {2501, 15451}, {5099, 5522}, {12077, 44705}, {58346, 58878}

X(58880) = reflection of X(44705) in X(12077)
X(58880) = X(523)-Ceva conjugate of-X(47122)
X(58880) = X(631)-Dao conjugate of-X(99)
X(58880) = perspector of the circumconic through X(3087) and X(19188)
X(58880) = pole of the line {8889, 35710} with respect to the orthoptic circle of Steiner inellipse
X(58880) = pole of the line {3091, 8797} with respect to the polar circle
X(58880) = pole of the line {3087, 6755} with respect to the orthic inconic
X(58880) = barycentric product X(3091)*X(47122)


X(58881) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ANTI-ORTHOCENTROIDAL TO ORTHIC

Barycentrics    a^2*(a^14-4*(b^2+c^2)*a^12+(5*b^4+12*b^2*c^2+5*c^4)*a^10-12*(b^2+c^2)*b^2*c^2*a^8-(5*b^8+5*c^8-(3*b^4+13*b^2*c^2+3*c^4)*b^2*c^2)*a^6+(b^4-c^4)*(b^2-c^2)*(2*b^2-b*c+2*c^2)*(2*b^2+b*c+2*c^2)*a^4-(b^2-c^2)^2*(b^8+c^8+5*(b^4+b^2*c^2+c^4)*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)^3*b^2*c^2) : :

X(58881) lies on these lines: {3, 74}, {6, 32249}, {24, 7731}, {26, 13201}, {49, 5498}, {54, 125}, {113, 34007}, {140, 11597}, {146, 10539}, {155, 12284}, {186, 10628}, {195, 13358}, {206, 32247}, {265, 10224}, {389, 2914}, {526, 23286}, {542, 43572}, {578, 15081}, {974, 43602}, {1092, 12289}, {1112, 38848}, {1141, 53577}, {1147, 3448}, {1173, 11746}, {1176, 49116}, {1199, 32226}, {1986, 2929}, {2777, 13619}, {2781, 37932}, {2930, 12283}, {2931, 11412}, {2935, 12290}, {3047, 9705}, {3153, 17702}, {3518, 13417}, {3520, 21650}, {3567, 19504}, {5012, 15061}, {5504, 16000}, {5898, 12291}, {6403, 15141}, {6759, 12244}, {7547, 15472}, {7577, 14644}, {8718, 16111}, {9706, 20379}, {9934, 40276}, {10117, 26882}, {10721, 34797}, {10733, 18377}, {10752, 38851}, {11457, 14683}, {11557, 44802}, {11559, 35498}, {11561, 43809}, {11562, 22467}, {11702, 12006}, {11801, 37472}, {11807, 34484}, {12219, 12893}, {12228, 15059}, {12902, 18394}, {13353, 40685}, {13392, 34004}, {13434, 20304}, {14643, 46029}, {14708, 43597}, {15063, 22955}, {15131, 44795}, {15332, 20127}, {15357, 58058}, {16176, 51730}, {17835, 32534}, {18331, 57011}, {19123, 52697}, {19138, 32244}, {21649, 56292}, {22115, 25739}, {25556, 43811}, {29012, 43579}, {36153, 47117}, {38898, 45735}, {43586, 51882}, {44673, 52417}

X(58881) = isogonal conjugate of the antigonal conjugate of X(6662)
X(58881) = circumperp conjugate of X(11440)
X(58881) = cross-difference of every pair of points on the line X(1637)X(36412)
X(58881) = X(526)-vertex conjugate of-X(1614)
X(58881) = inverse of X(1614) in circumcircle
X(58881) = pole of the line {526, 1614} with respect to the circumcircle
X(58881) = pole of the line {21663, 34468} with respect to the Jerabek circumhyperbola
X(58881) = pole of the line {30, 11562} with respect to the Stammler hyperbola


X(58882) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND ANTICOMPLEMENTARY

Barycentrics    (b^2-c^2)*(a^4+2*(b^2+c^2)*a^2-4*b^2*c^2+(b^2-c^2)^2) : :
X(58882) = X(33294)+3*X(53365)

X(58882) lies on these lines: {2, 6562}, {325, 523}, {525, 12075}, {804, 6587}, {2501, 3566}, {5466, 38259}, {6753, 7663}, {8651, 14341}, {20186, 39533}, {33294, 53365}

X(58882) = reflection of X(8651) in X(14341)
X(58882) = polar conjugate of the isogonal conjugate of X(2519)
X(58882) = complement of X(6562)
X(58882) = anticomplement of X(58766)
X(58882) = cross-difference of every pair of points on the line X(32)X(3167)
X(58882) = crosspoint of X(i) and X(j) for these {i, j}: {4, 35136}, {99, 56360}, {2052, 4609}
X(58882) = crosssum of X(i) and X(j) for these {i, j}: {3, 8651}, {577, 9426}
X(58882) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (57688, 21221), (57857, 21294)
X(58882) = X(58757)-Ceva conjugate of-X(523)
X(58882) = X(i)-complementary conjugate of-X(j) for these (i, j): (6464, 8287), (10318, 16592)
X(58882) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 6339), (136, 55023), (1084, 40322), (5139, 15369), (6374, 54956), (15525, 30558), (58766, 58766)
X(58882) = X(i)-isoconjugate of-X(j) for these {i, j}: {163, 6339}, {560, 54956}, {662, 40322}, {2129, 4558}, {4575, 55023}, {4592, 15369}
X(58882) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (76, 54956), (512, 40322), (523, 6339), (1611, 110), (2128, 4592), (2489, 15369), (2501, 55023), (2519, 3), (3566, 30558), (6392, 99), (8651, 53067), (19583, 4563), (19588, 4558), (33781, 662), (33787, 799), (51426, 2421)
X(58882) = perspector of the circumconic through X(76) and X(6392)
X(58882) = pole of the line {1370, 20080} with respect to the anticomplementary circle
X(58882) = pole of the line {22, 33974} with respect to the circumcircle
X(58882) = pole of the line {3564, 57071} with respect to the Dou circles radical circle
X(58882) = pole of the line {1353, 6644} with respect to the 1st Droz-Farny circle
X(58882) = pole of the line {12272, 40316} with respect to the incircle-of-orthic triangle
X(58882) = pole of the line {2, 6503} with respect to the nine-point circle
X(58882) = pole of the line {3, 2996} with respect to the orthoptic circle of Steiner inellipse
X(58882) = pole of the line {25, 193} with respect to the polar circle
X(58882) = pole of the line {2, 34208} with respect to the power circles radical circle
X(58882) = pole of the line {3124, 8754} with respect to the Kiepert circumhyperbola
X(58882) = pole of the the tripolar of X(56360) with respect to the Kiepert parabola
X(58882) = pole of the line {2, 34208} with respect to the MacBeath inconic
X(58882) = pole of the line {2, 1975} with respect to the orthic inconic
X(58882) = pole of the line {69, 2996} with respect to the Steiner circumellipse
X(58882) = pole of the line {141, 5490} with respect to the Steiner inellipse
X(58882) = barycentric product X(i)*X(j) for these {i, j}: {264, 2519}, {523, 6392}, {661, 33787}, {850, 1611}, {1577, 33781}, {2128, 24006}, {2501, 19583}, {6338, 58757}, {14618, 19588}, {43665, 51426}
X(58882) = trilinear product X(i)*X(j) for these {i, j}: {92, 2519}, {512, 33787}, {523, 33781}, {661, 6392}, {1577, 1611}, {2128, 2501}, {19588, 24006}
X(58882) = trilinear quotient X(i)/X(j) for these (i, j): (561, 54956), (661, 40322), (1577, 6339), (1611, 163), (2128, 4558), (2501, 2129), (2519, 48), (6392, 662), (19583, 4592), (19588, 4575), (24006, 55023), (33781, 110), (33787, 99), (51426, 23997)


X(58883) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ARTZT TO ORTHIC

Barycentrics    a^8-10*(b^2+c^2)*a^6+4*(3*b^4+b^2*c^2+3*c^4)*a^4-6*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^2*(3*b^4-2*b^2*c^2+3*c^4) : :

X(58883) lies on these lines: {2, 3}, {6, 9752}, {69, 114}, {98, 5033}, {147, 17008}, {187, 7694}, {230, 6776}, {262, 14494}, {325, 10008}, {511, 1007}, {542, 23055}, {1181, 1611}, {1184, 7592}, {1199, 5359}, {1350, 44377}, {1352, 34229}, {1503, 37637}, {1692, 7735}, {2794, 21843}, {3054, 9756}, {3098, 6721}, {3164, 34208}, {3424, 53103}, {3564, 37667}, {3619, 15819}, {3815, 14853}, {5028, 7736}, {5171, 32006}, {5480, 31489}, {5485, 9877}, {5596, 53414}, {5976, 40824}, {6036, 46264}, {6194, 38383}, {6200, 9757}, {6396, 9758}, {6403, 51412}, {7610, 11180}, {7709, 9743}, {7746, 8721}, {7778, 10519}, {7840, 51179}, {7908, 38746}, {8588, 39838}, {8719, 53419}, {8722, 36519}, {9742, 20080}, {9755, 37689}, {9771, 54131}, {10155, 14484}, {10516, 58446}, {11184, 54132}, {11669, 52519}, {12112, 20481}, {12251, 32818}, {13468, 15069}, {14492, 53098}, {14927, 58849}, {15271, 40330}, {15597, 47353}, {22110, 50967}, {22329, 50974}, {23053, 51023}, {34803, 51212}, {35260, 47200}, {39663, 43448}, {41719, 46262}, {43273, 44401}, {43460, 53015}, {44381, 44882}, {51538, 58851}, {53099, 54523}, {53104, 54845}, {53859, 54612}

X(58883) = pole of the line {6103, 37174} with respect to the Dao-Moses-Telv circle
X(58883) = pole of the line {230, 37174} with respect to the Dou circles radical circle
X(58883) = pole of the line {10414, 32974} with respect to the Lester circle
X(58883) = pole of the line {232, 37174} with respect to the Moses circles radical circle
X(58883) = pole of the line {37174, 44467} with respect to the Moses-Parry circle
X(58883) = pole of the line {523, 47277} with respect to the orthoptic circle of Steiner inellipse
X(58883) = pole of the line {5089, 37174} with respect to the Stevanovic circle
X(58883) = pole of the line {69, 56370} with respect to the Steiner-Wallace hyperbola


X(58884) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: BEVAN ANTIPODAL TO ORTHIC

Barycentrics    a*(a+b-c)*(a-b+c)*(3*a^5-(b+c)*a^4-2*(3*b^2-5*b*c+3*c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+3*(b^2+c^2)*(b-c)^2*a-(b^2-c^2)^2*(b+c)) : :

X(58884) lies on these lines: {57, 1422}, {1020, 1419}, {1420, 1456}, {1461, 2261}

X(58884) = X(20082)-beth conjugate of-X(20082)
X(58884) = X(20082)-reciprocal conjugate of-X(312)
X(58884) = barycentric product X(57)*X(20082)
X(58884) = trilinear product X(56)*X(20082)
X(58884) = trilinear quotient X(20082)/X(8)


X(58885) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: EHRMANN-MID TO ORTHIC

Barycentrics    (2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*(a^6+(b^2+c^2)*a^4-(5*b^4-4*b^2*c^2+5*c^4)*a^2+3*(b^4-c^4)*(b^2-c^2)) : :
X(58885) = X(10295)-3*X(14643) = 3*X(11799)-X(15107) = X(12244)-5*X(30745) = 4*X(12900)-3*X(44452) = 5*X(15051)-3*X(44246) = 3*X(31726)+X(37496) = X(32110)-3*X(36518) = 2*X(32223)-3*X(47334) = 5*X(38794)-3*X(44280) = 5*X(41099)-X(44555) = 3*X(47332)-X(47582) = 5*X(51537)-X(54162)

X(58885) lies on these lines: {4, 323}, {5, 4550}, {30, 113}, {52, 546}, {74, 2072}, {110, 18323}, {381, 3580}, {399, 18403}, {403, 3581}, {511, 46686}, {524, 3818}, {550, 5893}, {858, 7728}, {1154, 10151}, {1503, 18572}, {1990, 45821}, {2777, 15122}, {3016, 53419}, {3091, 37490}, {3153, 12112}, {3292, 12295}, {3564, 10113}, {3627, 13346}, {3830, 40112}, {3839, 37779}, {3850, 34826}, {3861, 31831}, {5066, 44569}, {5159, 12041}, {5448, 11430}, {5655, 46818}, {5663, 10297}, {5946, 44920}, {5972, 47335}, {7574, 32111}, {7687, 12236}, {10263, 44226}, {10295, 14643}, {10546, 38321}, {11456, 18404}, {11464, 18563}, {11472, 44791}, {11723, 47476}, {11799, 15107}, {12134, 18567}, {12140, 13473}, {12244, 30745}, {12289, 45014}, {12370, 22660}, {12900, 44452}, {13289, 34152}, {13292, 43865}, {14791, 35237}, {14805, 52069}, {14915, 38791}, {15051, 44246}, {15060, 18358}, {15311, 37938}, {15760, 33533}, {15761, 37478}, {15800, 44803}, {16238, 34798}, {18451, 18568}, {19479, 44665}, {20987, 43621}, {22115, 57584}, {23047, 45959}, {25489, 32271}, {31726, 37496}, {31860, 40909}, {32110, 36518}, {32125, 45019}, {32223, 47334}, {32269, 44961}, {34007, 54434}, {34417, 46030}, {35254, 44262}, {36990, 54215}, {37513, 43831}, {38790, 50434}, {38794, 44280}, {41099, 44555}, {43584, 50143}, {47332, 47582}, {51537, 54162}

X(58885) = midpoint of X(i) and X(j) for these {i, j}: {110, 18323}, {858, 7728}, {3292, 12295}, {3830, 40112}, {7574, 32111}, {11472, 44791}, {22115, 57584}, {36990, 54215}, {38790, 50434}
X(58885) = reflection of X(i) in X(j) for these (i, j): (12041, 5159), (32269, 44961), (44569, 5066), (47335, 5972), (47476, 11723)
X(58885) = pole of the line {41761, 44445} with respect to the Johnson triangle circumcircle
X(58885) = pole of the line {577, 10257} with respect to the Evans conic
X(58885) = pole of the line {1596, 12140} with respect to the Hatzipolakis-Lozada hyperbola
X(58885) = pole of the line {5158, 6128} with respect to the Kiepert circumhyperbola
X(58885) = pole of the line {74, 18445} with respect to the Stammler hyperbola
X(58885) = pole of the line {5664, 11331} with respect to the Steiner inellipse


X(58886) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: EULER TO ORTHIC

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2)*(4*a^8-11*(b^2+c^2)*a^6+3*(3*b^4+4*b^2*c^2+3*c^4)*a^4-(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(58886) lies on these lines: {4, 54}, {5, 8799}, {115, 6748}, {130, 133}, {233, 14635}, {381, 42350}, {546, 35887}, {1568, 30506}, {1596, 22682}, {3854, 11282}, {6249, 44228}, {6761, 55084}, {7507, 58878}, {7547, 14111}, {8887, 14569}, {10110, 51385}, {10600, 45997}, {13450, 36809}, {15451, 42733}, {20424, 35719}, {21268, 23047}, {34785, 45062}

X(58886) = X(4)-Ceva conjugate of-X(16265)
X(58886) = X(16265)-reciprocal conjugate of-X(4993)
X(58886) = inverse of X(6748) in Kiepert circumhyperbola
X(58886) = pole of the line {6750, 23047} with respect to the Hatzipolakis-Lozada hyperbola
X(58886) = pole of the line {389, 16265} with respect to the Jerabek circumhyperbola
X(58886) = pole of the line {6748, 16265} with respect to the Kiepert circumhyperbola


X(58887) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: EXCENTRAL TO ORTHIC

Barycentrics    a*(3*a^3+(b+c)*a^2-3*(b^2+c^2)*a-(b^2-c^2)*(b-c)) : :

X(58887) lies on these lines: {1, 3}, {2, 1770}, {4, 4333}, {8, 21578}, {9, 41694}, {10, 4190}, {12, 44222}, {20, 1737}, {21, 9352}, {30, 10826}, {43, 35980}, {47, 13329}, {63, 3678}, {78, 4067}, {79, 5219}, {80, 38761}, {84, 44425}, {90, 6985}, {140, 1836}, {172, 1571}, {191, 936}, {200, 6763}, {214, 11682}, {222, 56535}, {223, 3215}, {224, 54422}, {243, 8762}, {255, 1079}, {283, 453}, {296, 36600}, {355, 15326}, {376, 1788}, {377, 1698}, {378, 1452}, {382, 17606}, {386, 4337}, {404, 12514}, {411, 920}, {442, 16118}, {474, 4640}, {498, 3947}, {499, 516}, {548, 37721}, {549, 11375}, {550, 1837}, {573, 54377}, {574, 54382}, {582, 1399}, {609, 9593}, {610, 2252}, {631, 3474}, {758, 4855}, {851, 16569}, {908, 41540}, {946, 6977}, {958, 4002}, {960, 16371}, {975, 4414}, {990, 54401}, {993, 3918}, {997, 4188}, {1004, 8580}, {1012, 16616}, {1054, 37231}, {1071, 41686}, {1125, 35258}, {1158, 6905}, {1210, 4302}, {1376, 3697}, {1478, 6684}, {1479, 3911}, {1490, 1768}, {1512, 4316}, {1532, 52860}, {1615, 35599}, {1699, 6833}, {1706, 5258}, {1707, 3216}, {1708, 3651}, {1709, 3149}, {1717, 37696}, {1722, 5358}, {1723, 37500}, {1724, 37063}, {1727, 50528}, {1728, 7580}, {1743, 2245}, {1749, 16143}, {1774, 11337}, {1780, 1817}, {1796, 5268}, {1842, 14018}, {1845, 38697}, {1905, 3516}, {1940, 51282}, {2082, 5030}, {2164, 36743}, {2182, 3973}, {2217, 56135}, {2276, 31422}, {2278, 16667}, {2285, 37508}, {2362, 6200}, {2478, 58405}, {2655, 3362}, {2956, 6127}, {2961, 10046}, {2975, 54286}, {3035, 58798}, {3062, 3467}, {3065, 38271}, {3086, 9778}, {3218, 3811}, {3299, 9616}, {3305, 3647}, {3306, 5248}, {3485, 3524}, {3486, 3528}, {3522, 18391}, {3523, 4295}, {3526, 17605}, {3529, 54361}, {3530, 39542}, {3555, 4421}, {3582, 9614}, {3583, 6836}, {3584, 5290}, {3586, 4324}, {3624, 4512}, {3632, 51433}, {3648, 27131}, {3654, 10944}, {3679, 17647}, {3683, 16408}, {3812, 16370}, {3825, 31224}, {3841, 55867}, {3869, 13587}, {3878, 35262}, {3928, 5904}, {3951, 4537}, {3984, 4536}, {4018, 56177}, {4185, 54397}, {4189, 54318}, {4256, 54421}, {4257, 54418}, {4293, 10039}, {4294, 5435}, {4297, 10573}, {4298, 10056}, {4305, 10304}, {4309, 11019}, {4311, 12647}, {4312, 21153}, {4317, 31397}, {4325, 6955}, {4413, 31445}, {4511, 37307}, {4654, 37731}, {4677, 34716}, {4679, 52264}, {4870, 15693}, {4880, 11523}, {4917, 4973}, {4995, 52783}, {5057, 17566}, {5088, 17090}, {5218, 13407}, {5234, 11112}, {5259, 5437}, {5265, 30305}, {5267, 19860}, {5270, 31434}, {5272, 37449}, {5280, 9574}, {5287, 56221}, {5298, 11373}, {5300, 51583}, {5432, 57282}, {5433, 12699}, {5438, 5692}, {5442, 7741}, {5445, 5587}, {5493, 44675}, {5541, 12629}, {5657, 45287}, {5690, 37708}, {5698, 17567}, {5703, 11551}, {5722, 15338}, {5732, 54432}, {5784, 58635}, {5880, 7483}, {5881, 36975}, {6261, 6942}, {6361, 7288}, {6396, 16232}, {6762, 48696}, {6862, 7988}, {6876, 7098}, {6880, 12608}, {6889, 9612}, {6915, 30295}, {6917, 7989}, {6921, 21616}, {6966, 9589}, {7284, 11501}, {7293, 39582}, {7354, 10827}, {7951, 9579}, {8703, 37730}, {9580, 37720}, {9582, 51842}, {9647, 13973}, {9657, 31447}, {9956, 12943}, {10072, 10624}, {10073, 24466}, {10076, 40660}, {10085, 11500}, {10090, 46684}, {10178, 44547}, {10523, 50031}, {10593, 28178}, {10895, 11231}, {10896, 28146}, {10914, 11194}, {10915, 20076}, {10940, 11415}, {10993, 12750}, {11237, 31776}, {11246, 11374}, {11376, 28174}, {11495, 15299}, {11570, 34474}, {11571, 15015}, {11670, 32609}, {12019, 15704}, {12701, 15325}, {12767, 45764}, {13089, 13101}, {13369, 41538}, {13747, 24703}, {15071, 52026}, {15171, 17728}, {15254, 16862}, {15447, 48882}, {15654, 23205}, {15712, 37737}, {16117, 41542}, {16417, 25917}, {16570, 56824}, {16785, 31426}, {16832, 37233}, {17122, 54287}, {17528, 19876}, {17564, 24954}, {17718, 24470}, {17857, 24467}, {18413, 38692}, {18481, 37711}, {18526, 36920}, {18995, 31439}, {19705, 44663}, {20075, 49627}, {21620, 31452}, {24047, 40131}, {24443, 37817}, {24644, 52682}, {25502, 30944}, {28081, 32857}, {28628, 37298}, {31162, 37735}, {31266, 58404}, {31425, 37719}, {31443, 54416}, {34773, 41687}, {35991, 51290}, {35997, 54323}, {36643, 57015}, {37294, 56840}, {37706, 50811}, {37710, 38129}, {37724, 46853}, {37787, 43178}, {41872, 51780}, {42043, 50578}, {48111, 50336}, {52408, 56848}, {54396, 56860}

X(58887) = isogonal conjugate of X(36599)
X(58887) = cross-difference of every pair of points on the line X(650)X(48292)
X(58887) = crosssum of X(2310) and X(46389)
X(58887) = X(90)-Ceva conjugate of-X(1)
X(58887) = X(i)-Dao conjugate of-X(j) for these (i, j): (5905, 20930), (36033, 38248), (36103, 36610)
X(58887) = X(i)-he conjugate of-X(j) for these (i, j): (1, 1936), (296, 3362), (8759, 1)
X(58887) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 36610}, {4, 38248}
X(58887) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19, 36610), (48, 38248), (20078, 75), (38295, 92)
X(58887) = X(i)-zayin conjugate of-X(j) for these (i, j): (3, 1), (650, 58888), (1898, 46), (7072, 41860), (7082, 165), (19354, 1750)
X(58887) = Mimosa transform of X(1069)
X(58887) = pole of the line {1449, 7741} with respect to the Kiepert circumhyperbola
X(58887) = pole of the line {21, 36599} with respect to the Stammler hyperbola
X(58887) = pole of the line {314, 36599} with respect to the Steiner-Wallace hyperbola
X(58887) = barycentric product X(i)*X(j) for these {i, j}: {1, 20078}, {63, 38295}
X(58887) = trilinear product X(i)*X(j) for these {i, j}: {3, 38295}, {6, 20078}
X(58887) = trilinear quotient X(i)/X(j) for these (i, j): (3, 38248), (4, 36610), (20078, 2), (38295, 4)


X(58888) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND EXCENTRAL

Barycentrics    a*(b-c)*(-a+b+c)*(a^6-3*(b^2+c^2)*a^4+(3*b^4-2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(58888) lies on these lines: {6, 57094}, {521, 650}, {3064, 15313}, {8674, 14298}, {9001, 13401}, {23893, 36599}

X(58888) = cross-difference of every pair of points on the line X(65)X(921)
X(58888) = crosspoint of X(1896) and X(4612)
X(58888) = crosssum of X(i) and X(j) for these {i, j}: {3, 46389}, {22341, 57185}
X(58888) = X(90)-aleph conjugate of-X(9355)
X(58888) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 6504), (1146, 57998), (38991, 921)
X(58888) = X(i)-isoconjugate of-X(j) for these {i, j}: {109, 6504}, {226, 13398}, {254, 1813}, {651, 921}, {653, 15316}, {1415, 57998}, {32660, 46746}
X(58888) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (155, 6516), (522, 57998), (650, 6504), (663, 921), (920, 664), (1609, 651), (1946, 15316), (2194, 13398), (3542, 18026), (6515, 4554), (18344, 254), (33808, 4572), (44426, 46746)
X(58888) = X(650)-zayin conjugate of-X(58887)
X(58888) = perspector of the circumconic through X(21) and X(920)
X(58888) = pole of the line {5905, 6504} with respect to the polar circle
X(58888) = pole of the line {4516, 42069} with respect to the Feuerbach circumhyperbola
X(58888) = pole of the line {1, 90} with respect to the orthic inconic
X(58888) = barycentric product X(i)*X(j) for these {i, j}: {155, 44426}, {521, 3542}, {522, 920}, {650, 6515}, {663, 33808}, {1609, 4391}, {18344, 40697}
X(58888) = trilinear product X(i)*X(j) for these {i, j}: {155, 3064}, {522, 1609}, {650, 920}, {652, 3542}, {663, 6515}, {3063, 33808}
X(58888) = trilinear quotient X(i)/X(j) for these (i, j): (155, 1813), (284, 13398), (522, 6504), (650, 921), (652, 15316), (920, 651), (1609, 109), (3064, 254), (3542, 653), (4391, 57998), (6503, 6517), (6515, 664), (33808, 4554), (46110, 46746)


X(58889) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO 2nd EXTOUCH

Barycentrics    a*(b+c)*((b+c)*a^4+(b^2+c^2)*a^3-(b^2-c^2)*(b-c)*a^2-(b^2-c^2)^2*a-2*(b^2-c^2)*(b-c)*b*c) : :

X(58889) lies on these lines: {1, 851}, {2, 15488}, {4, 51}, {6, 4214}, {7, 5929}, {8, 10381}, {10, 3136}, {12, 22300}, {19, 44093}, {21, 46623}, {28, 1495}, {30, 18180}, {40, 22080}, {65, 225}, {72, 4054}, {125, 429}, {149, 58535}, {181, 21935}, {184, 4185}, {201, 21807}, {264, 1246}, {373, 2478}, {377, 3917}, {387, 4196}, {408, 2654}, {427, 5799}, {430, 40953}, {431, 44092}, {440, 25935}, {442, 517}, {443, 5650}, {511, 2475}, {656, 42757}, {855, 52524}, {857, 26531}, {859, 48903}, {867, 7683}, {946, 3142}, {970, 2476}, {1004, 19782}, {1204, 37194}, {1211, 5836}, {1213, 3698}, {1334, 16589}, {1437, 45923}, {1478, 16980}, {1503, 41601}, {1682, 33105}, {1715, 13734}, {1730, 13724}, {1754, 13733}, {1764, 47521}, {1828, 1901}, {1836, 42448}, {1837, 40954}, {1865, 1888}, {1889, 5786}, {1900, 44547}, {1904, 13567}, {1953, 18591}, {2092, 2171}, {2099, 52544}, {2245, 37567}, {2650, 39793}, {2779, 16125}, {3057, 17056}, {3125, 53387}, {3193, 3292}, {3270, 40950}, {3583, 58469}, {3614, 38472}, {3753, 4205}, {3924, 40984}, {3925, 22299}, {3936, 14923}, {3937, 4292}, {4184, 48919}, {4186, 34417}, {4190, 37521}, {4198, 31383}, {4199, 19860}, {4222, 44106}, {4225, 48894}, {4295, 52082}, {5046, 5943}, {5080, 23841}, {5178, 9052}, {5229, 44151}, {5562, 6917}, {5603, 37154}, {5707, 37241}, {5752, 17532}, {5800, 6467}, {5806, 26001}, {5903, 10974}, {5907, 6839}, {6176, 16451}, {6688, 37162}, {6817, 10449}, {6840, 9729}, {6893, 27355}, {6894, 44870}, {6895, 46850}, {6901, 11793}, {6902, 11695}, {6903, 16836}, {6923, 45186}, {6951, 15644}, {7414, 21663}, {7497, 26883}, {8677, 36035}, {9565, 25760}, {9579, 26892}, {10914, 41014}, {11112, 37536}, {12432, 22321}, {13348, 37163}, {13367, 37117}, {13598, 37437}, {13754, 37230}, {15030, 44229}, {15232, 15320}, {15443, 40663}, {15763, 51403}, {15973, 17167}, {16049, 37527}, {17441, 43213}, {17516, 17810}, {17523, 44082}, {17524, 48915}, {17530, 34466}, {17753, 44150}, {17924, 21645}, {18178, 49745}, {20718, 21677}, {21031, 22278}, {21674, 40966}, {22352, 37231}, {23154, 57282}, {30436, 51557}, {31870, 36195}, {33104, 50621}, {37191, 48902}, {37237, 52144}, {37368, 43831}, {37397, 37530}, {37415, 43650}, {37425, 54356}, {37482, 50239}, {38389, 42450}, {44113, 56818}

X(58889) = polar conjugate of the isotomic conjugate of X(18592)
X(58889) = cross-difference of every pair of points on the line X(416)X(23090)
X(58889) = crosspoint of X(i) and X(j) for these {i, j}: {4, 65}, {2051, 3668}, {2654, 42385}
X(58889) = crosssum of X(i) and X(j) for these {i, j}: {3, 21}, {572, 2328}
X(58889) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 42385), (2654, 2658), (54240, 647)
X(58889) = X(i)-Dao conjugate of-X(j) for these (i, j): (6523, 57669), (6708, 69), (18592, 314), (36103, 53044)
X(58889) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 53044}, {255, 57669}, {52430, 57834}
X(58889) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (19, 53044), (393, 57669), (408, 394), (2052, 57834), (2654, 333), (2658, 63), (6708, 314), (18592, 69), (40946, 1812), (42385, 31623), (53036, 75), (53317, 648)
X(58889) = X(65)-waw conjugate of-X(2650)
X(58889) = Zosma transform of X(29)
X(58889) = perspector of the circumconic through X(15352) and X(52607)
X(58889) = inverse of X(7686) in Jerabek circumhyperbola
X(58889) = pole of the line {18591, 46841} with respect to the Moses circles radical circle
X(58889) = pole of the line {520, 7253} with respect to the polar circle
X(58889) = pole of the line {40950, 42385} with respect to the Feuerbach circumhyperbola
X(58889) = pole of the line {4, 65} with respect to the Jerabek circumhyperbola
X(58889) = pole of the line {53, 1826} with respect to the Kiepert circumhyperbola
X(58889) = pole of the line {647, 661} with respect to the orthic inconic
X(58889) = pole of the line {1092, 6875} with respect to the Stammler hyperbola
X(58889) = barycentric product X(i)*X(j) for these {i, j}: {1, 53036}, {4, 18592}, {65, 6708}, {92, 2658}, {226, 2654}, {408, 2052}, {525, 53317}, {1214, 42385}, {40149, 40946}
X(58889) = trilinear product X(i)*X(j) for these {i, j}: {4, 2658}, {6, 53036}, {19, 18592}, {65, 2654}, {73, 42385}, {158, 408}, {225, 40946}, {656, 53317}, {1400, 6708}
X(58889) = trilinear quotient X(i)/X(j) for these (i, j): (4, 53044), (158, 57669), (408, 255), (2654, 21), (2658, 3), (6708, 333), (18592, 63), (40946, 283), (42385, 29), (53036, 2), (53317, 162), (57806, 57834)


X(58890) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 2nd EXTOUCH TO ORTHIC

Barycentrics    a*(b+c)*((b+c)*a^7+4*b*c*a^6-3*(b^2-c^2)*(b-c)*a^5-2*(b^2-b*c+c^2)*b*c*a^4+(b^2-c^2)*(b-c)*(3*b^2+2*b*c+3*c^2)*a^3-(b^2-c^2)^2*(b+c)^3*a-2*(b+c)*(b^2-c^2)*b*c*(b^3-c^3)) : :

X(58890) lies on these lines: {1, 3330}, {4, 51}, {9, 2939}, {72, 1903}, {84, 856}, {226, 39791}, {405, 572}, {440, 5777}, {442, 5927}, {857, 12528}, {971, 18641}, {1745, 18592}, {1844, 1901}, {3730, 39690}, {5658, 37154}, {5728, 11022}, {5928, 10381}, {6001, 39574}, {6254, 39531}, {18446, 37324}, {21530, 40263}, {22080, 26878}

X(58890) = crosssum of X(3) and X(52012)
X(58890) = pole of the line {53, 1108} with respect to the Kiepert circumhyperbola
X(58890) = pole of the line {647, 57099} with respect to the orthic inconic


X(58891) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: JOHNSON TO ORTHIC

Barycentrics    a^2*(-a^2+b^2+c^2)*(a^6-5*(b^2+c^2)*a^4+(7*b^4-2*b^2*c^2+7*c^4)*a^2-3*(b^4-c^4)*(b^2-c^2)) : :
X(58891) = 7*X(3526)-8*X(53415) = 3*X(6090)-2*X(6644) = 2*X(12828)-3*X(14643)

X(58891) lies on these lines: {3, 49}, {4, 31831}, {5, 6515}, {6, 5891}, {25, 1154}, {52, 7529}, {68, 38260}, {69, 15760}, {110, 14070}, {113, 40341}, {154, 37478}, {156, 9715}, {159, 399}, {193, 18537}, {195, 11426}, {265, 6391}, {323, 378}, {343, 5654}, {381, 524}, {382, 12134}, {403, 45794}, {511, 18451}, {539, 18396}, {541, 11820}, {550, 12174}, {568, 5020}, {1368, 18917}, {1498, 10625}, {1511, 12165}, {1568, 14852}, {1593, 5876}, {1596, 34380}, {1597, 18435}, {1598, 6243}, {1620, 43898}, {1656, 11432}, {1657, 9833}, {1843, 18535}, {1853, 51392}, {1993, 9818}, {2070, 8780}, {2888, 7547}, {2937, 14530}, {2979, 11456}, {3426, 37496}, {3448, 31180}, {3517, 18350}, {3519, 3527}, {3526, 53415}, {3564, 10602}, {3581, 55572}, {3964, 34333}, {5050, 15087}, {5079, 16254}, {5198, 10263}, {5544, 15703}, {5622, 12358}, {5648, 51941}, {5651, 14831}, {5663, 21312}, {5889, 6642}, {5890, 15066}, {5907, 36747}, {5946, 11284}, {5965, 18390}, {6000, 37483}, {6090, 6644}, {6101, 11414}, {6146, 9936}, {6193, 12605}, {6623, 20080}, {6759, 37486}, {6816, 13292}, {7387, 11412}, {7393, 7592}, {7395, 11591}, {7405, 11487}, {7484, 15067}, {7485, 15032}, {7502, 26864}, {7503, 56292}, {7514, 11402}, {7526, 31834}, {7528, 31802}, {7691, 9707}, {8603, 11485}, {8604, 11486}, {9306, 37489}, {9544, 44837}, {9714, 10539}, {9730, 17811}, {9781, 41578}, {9909, 10540}, {10127, 54013}, {10170, 10601}, {10257, 37669}, {10323, 43605}, {10564, 10606}, {10627, 37198}, {11403, 45959}, {11411, 11585}, {11477, 43130}, {11479, 36749}, {11482, 15038}, {11793, 36752}, {11799, 47552}, {12017, 54006}, {12085, 12111}, {12162, 37498}, {12219, 12412}, {12301, 44752}, {12307, 32379}, {12325, 16868}, {12429, 18404}, {12828, 14643}, {13352, 37672}, {13570, 55718}, {14531, 44106}, {15030, 44413}, {15056, 15801}, {15060, 39522}, {15069, 18474}, {15091, 55039}, {15305, 23061}, {15694, 40113}, {15905, 18877}, {17809, 37513}, {18324, 40111}, {18374, 37488}, {18388, 34507}, {18438, 19588}, {18440, 31723}, {18536, 39899}, {18859, 35450}, {26944, 37452}, {33586, 46261}, {34780, 34944}, {34986, 37506}, {35237, 36987}, {37477, 54992}, {37484, 39568}, {37495, 55571}, {37645, 52262}, {37924, 55580}, {41612, 45016}, {44524, 45769}, {44831, 46818}, {46928, 53863}, {47332, 50992}, {55724, 58764}

X(58891) = reflection of X(i) in X(j) for these (i, j): (6515, 5), (18917, 1368), (33586, 46261), (34780, 34944), (37489, 9306)
X(58891) = X(34801)-Ceva conjugate of-X(3)
X(58891) = pole of the line {924, 5926} with respect to the circumcircle
X(58891) = pole of the line {2549, 9722} with respect to the Kiepert circumhyperbola
X(58891) = pole of the line {23181, 53329} with respect to the Kiepert parabola
X(58891) = pole of the line {647, 14396} with respect to the MacBeath circumconic
X(58891) = pole of the line {4, 43595} with respect to the Stammler hyperbola


X(58892) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND JOHNSON

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^16-7*(b^2+c^2)*a^14+7*(3*b^4+4*b^2*c^2+3*c^4)*a^12-5*(b^2+c^2)*(7*b^4+2*b^2*c^2+7*c^4)*a^10+(35*b^8+35*c^8+2*(17*b^4+15*b^2*c^2+17*c^4)*b^2*c^2)*a^8-(b^2+c^2)*(21*b^8+21*c^8-2*(6*b^4-7*b^2*c^2+6*c^4)*b^2*c^2)*a^6+7*(b^4-c^4)^2*(b^4+c^4)*a^4-(b^4-c^4)*(b^2-c^2)^3*(b^4+6*b^2*c^2+c^4)*a^2+2*(b^2-c^2)^6*b^2*c^2) : :

X(58892) lies on these lines: {5, 58792}, {16229, 44921}

X(58892) = reflection of X(58792) in X(5)


X(58893) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MANDART-EXCIRCLES TO ORTHIC

Barycentrics    a*(b-c)^2*(2*a^3-(2*b^2+b*c+2*c^2)*a+(b+c)*b*c) : :
X(58893) = 3*X(5298)-2*X(56884) = 3*X(21154)-2*X(31847) = 3*X(23513)-4*X(46174) = 5*X(31235)-6*X(34583)

X(58893) lies on these lines: {11, 513}, {65, 2840}, {1086, 53542}, {1317, 2841}, {1364, 2849}, {2810, 6154}, {2835, 17660}, {2842, 10609}, {3816, 26910}, {3942, 53524}, {4014, 18191}, {4778, 44311}, {4790, 14936}, {4966, 50003}, {4979, 20974}, {5298, 56884}, {5854, 38512}, {7681, 26914}, {11246, 26892}, {15310, 51463}, {15338, 23154}, {21154, 31847}, {23513, 46174}, {23989, 48107}, {31235, 34583}, {31849, 52836}, {44312, 48071}, {45885, 53389}

X(58893) = reflection of X(52836) in X(31849)
X(58893) = crosssum of X(55) and X(35349)
X(58893) = X(3737)-beth conjugate of-X(38389)
X(58893) = pole of the line {53525, 53557} with respect to the incircle
X(58893) = pole of the line {3960, 29270} with respect to the circumhyperbola dual of Yff parabola
X(58893) = pole of the line {900, 21172} with respect to the Feuerbach circumhyperbola


X(58894) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND MANDART-EXCIRCLES

Barycentrics    a*(a^4-2*(b-c)^2*a^2+(b^2-c^2)^2)*((b+c)*a^2-2*b*c*a-(b^2-c^2)*(b-c)) : :

X(58894) lies on these lines: {6, 19}, {48, 50196}, {198, 2098}, {513, 52316}, {517, 2183}, {909, 18838}, {910, 18839}, {2252, 43065}, {2267, 31788}, {2270, 7982}, {3310, 4394}, {3333, 32625}, {11434, 22768}, {12679, 54008}, {17869, 18909}, {21871, 34524}, {37562, 55432}

X(58894) = cross-difference of every pair of points on the line X(521)X(5687)
X(58894) = crosspoint of X(i) and X(j) for these {i, j}: {4, 34051}, {57, 46435}
X(58894) = crosssum of X(9) and X(2077)
X(58894) = X(i)-Dao conjugate of-X(j) for these (i, j): (38015, 18816), (40613, 56354), (49171, 34234)
X(58894) = X(i)-isoconjugate of-X(j) for these {i, j}: {104, 56354}, {2342, 34401}, {34234, 42019}, {51565, 53995}, {52663, 56287}
X(58894) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1457, 56287), (1465, 34401), (1519, 75), (2183, 56354), (3086, 18816), (3554, 34234), (17869, 57984), (19354, 1809), (30223, 51565), (53994, 36795)
X(58894) = perspector of the circumconic through X(108) and X(3086)
X(58894) = pole of the line {614, 40134} with respect to the de Longchamps ellipse
X(58894) = pole of the line {56, 513} with respect to the orthic inconic
X(58894) = barycentric product X(i)*X(j) for these {i, j}: {1, 1519}, {517, 3086}, {859, 17869}, {908, 3554}, {1465, 53994}, {2183, 54284}, {14571, 26871}, {22464, 30223}
X(58894) = trilinear product X(i)*X(j) for these {i, j}: {6, 1519}, {517, 3554}, {859, 24005}, {1457, 53994}, {1465, 30223}, {2183, 3086}
X(58894) = trilinear quotient X(i)/X(j) for these (i, j): (517, 56354), (1457, 53995), (1465, 56287), (1519, 2), (2183, 42019), (3086, 34234), (3554, 104), (22464, 34401), (24005, 38955), (30223, 52663), (53994, 51565), (54284, 18816)


X(58895) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND MIDHEIGHT

Barycentrics    a^2*(b^2-c^2)*(a^8-4*(b^2+c^2)*a^6+2*(3*b^4-2*b^2*c^2+3*c^4)*a^4-4*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)) : :

X(58895) lies on these lines: {6, 58796}, {115, 35579}, {460, 512}, {520, 6587}, {647, 657}, {661, 55242}, {2519, 3569}, {5462, 30213}, {8673, 50642}, {10601, 58359}, {17434, 52588}, {30211, 57201}, {38999, 47421}

X(58895) = cross-difference of every pair of points on the line X(20)X(394)
X(58895) = crosssum of X(i) and X(j) for these {i, j}: {2, 20580}, {3, 57201}
X(58895) = X(i)-Ceva conjugate of-X(j) for these (i, j): (520, 512), (6587, 647), (14298, 661), (14346, 58903)
X(58895) = X(i)-complementary conjugate of-X(j) for these (i, j): (158, 55069), (1096, 122), (2207, 16595), (6520, 127), (6524, 34846), (6529, 18589), (23590, 4369), (23975, 14838), (24019, 6389), (24021, 512), (24022, 523), (34538, 42327), (36126, 1368), (36434, 8287), (52439, 16573), (57556, 21263)
X(58895) = X(i)-Dao conjugate of-X(j) for these (i, j): (122, 47633), (125, 1032), (393, 6528), (1073, 44326), (1084, 3346), (13613, 69), (17423, 28783), (40608, 8805), (55060, 8810), (55066, 47849)
X(58895) = X(i)-isoconjugate of-X(j) for these {i, j}: {162, 1032}, {643, 8810}, {648, 47849}, {662, 3346}, {811, 28783}, {1414, 8805}
X(58895) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (512, 3346), (647, 1032), (810, 47849), (1033, 648), (1498, 99), (1712, 811), (3049, 28783), (3343, 44326), (3709, 8805), (6523, 6528), (6527, 670), (6587, 47633), (6617, 4563), (7180, 8810), (8803, 664), (8807, 4554), (14361, 6331), (41085, 53639), (44705, 46353), (47437, 46639)
X(58895) = PK-transform of X(i) for these i: {1498, 3346}
X(58895) = perspector of the circumconic through X(64) and X(393)
X(58895) = pole of the line {1609, 17833} with respect to the circumcircle
X(58895) = pole of the line {25, 800} with respect to the 1st Lozada circle
X(58895) = pole of the line {69, 1032} with respect to the polar circle
X(58895) = pole of the line {25, 800} with respect to the Brocard inellipse
X(58895) = pole of the line {1562, 57296} with respect to the Jerabek circumhyperbola
X(58895) = pole of the line {122, 6086} with respect to the Kiepert circumhyperbola
X(58895) = pole of the line {6000, 12164} with respect to the MacBeath circumconic
X(58895) = pole of the line {25, 64} with respect to the orthic inconic
X(58895) = pole of the line {393, 800} with respect to the Steiner inellipse
X(58895) = barycentric product X(i)*X(j) for these {i, j}: {512, 6527}, {520, 6523}, {522, 8803}, {523, 1498}, {525, 1033}, {647, 14361}, {650, 8807}, {656, 1712}, {2501, 6617}, {3343, 6587}, {8057, 41085}, {44705, 46351}
X(58895) = trilinear product X(i)*X(j) for these {i, j}: {647, 1712}, {650, 8803}, {656, 1033}, {661, 1498}, {663, 8807}, {798, 6527}, {810, 14361}, {822, 6523}, {8886, 55212}, {17898, 47437}
X(58895) = trilinear quotient X(i)/X(j) for these (i, j): (647, 47849), (656, 1032), (661, 3346), (810, 28783), (1033, 162), (1498, 662), (1712, 648), (4017, 8810), (4041, 8805), (6523, 823), (6527, 799), (6617, 4592), (8803, 651), (8807, 664), (14361, 811), (17898, 47633)


X(58896) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO 1st MIYAMOTO-MOSES-APOLLONIUS

Barycentrics    a*(((b+c)*a^5-(b^2+c^2)*a^4-2*(b+c)*(b^2+c^2)*a^3+2*(b^2-c^2)^2*a^2+(b^2-c^2)^2*(b+c)*a-(b^4-c^4)*(b^2-c^2))*S+a*(-a+b+c)*((b^2+b*c+c^2)*a^4+2*(b+c)*b*c*a^3-2*(b^2-c^2)^2*a^2-2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)*(b-c)*(b^3+c^3))) : :

X(58896) lies on these lines: {4, 65}, {6, 9043}, {33, 16232}, {55, 6212}, {210, 14121}, {354, 13390}, {518, 13386}, {971, 54462}, {1824, 1850}, {1827, 30375}, {9817, 13388}

X(58896) = cross-difference of every pair of points on the line X(6365)X(36054)
X(58896) = crosspoint of X(4) and X(42013)
X(58896) = crosssum of X(3) and X(13388)
X(58896) = X(39794)-reciprocal conjugate of-X(348)
X(58896) = Zosma transform of X(1659)
X(58896) = perspector of the circumconic through X(6136) and X(54240)
X(58896) = pole of the line {4, 1336} with respect to the Feuerbach circumhyperbola
X(58896) = pole of the the tripolar of X(42013) with respect to the orthic inconic
X(58896) = barycentric product X(281)*X(39794)
X(58896) = trilinear product X(33)*X(39794)
X(58896) = trilinear quotient X(39794)/X(77)


X(58897) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO 2nd MIYAMOTO-MOSES-APOLLONIUS

Barycentrics    a*(-((b+c)*a^5-(b^2+c^2)*a^4-2*(b+c)*(b^2+c^2)*a^3+2*(b^2-c^2)^2*a^2+(b^2-c^2)^2*(b+c)*a-(b^4-c^4)*(b^2-c^2))*S+a*(-a+b+c)*((b^2+b*c+c^2)*a^4+2*(b+c)*b*c*a^3-2*(b^2-c^2)^2*a^2-2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)*(b-c)*(b^3+c^3))) : :

X(58897) lies on these lines: {4, 65}, {6, 7133}, {33, 2362}, {55, 6213}, {210, 7090}, {354, 1659}, {518, 13387}, {1824, 1849}, {1827, 30376}, {9817, 13389}

X(58897) = cross-difference of every pair of points on the line X(6364)X(36054)
X(58897) = crosspoint of X(4) and X(7133)
X(58897) = crosssum of X(3) and X(13389)
X(58897) = X(39795)-reciprocal conjugate of-X(348)
X(58897) = Zosma transform of X(13390)
X(58897) = perspector of the circumconic through X(6135) and X(54240)
X(58897) = pole of the line {4, 1123} with respect to the Feuerbach circumhyperbola
X(58897) = pole of the the tripolar of X(7133) with respect to the orthic inconic
X(58897) = barycentric product X(281)*X(39795)
X(58897) = trilinear product X(33)*X(39795)
X(58897) = trilinear quotient X(39795)/X(77)


X(58898) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: MOSES-SODDY TO ORTHIC

Barycentrics    (b-c)^2*(a^2+(b+c)*a-2*b^2-b*c-2*c^2) : :
X(58898) = X(31852)-3*X(57297)

X(58898) lies on these lines: {103, 31851}, {116, 514}, {516, 38601}, {544, 17044}, {664, 10708}, {1015, 23816}, {1086, 35076}, {2140, 17181}, {3732, 31273}, {3960, 11998}, {4089, 21044}, {4466, 24237}, {4823, 34387}, {4872, 17729}, {5074, 9436}, {5845, 6710}, {12611, 33709}, {17198, 44312}, {21212, 51402}, {23646, 48066}, {26847, 47796}, {27010, 47795}, {31852, 57297}

X(58898) = midpoint of X(i) and X(j) for these {i, j}: {103, 31851}, {4872, 17729}, {5074, 9436}
X(58898) = X(14377)-Ceva conjugate of-X(514)
X(58898) = X(41431)-complementary conjugate of-X(4885)
X(58898) = X(i)-Dao conjugate of-X(j) for these (i, j): (1086, 43191), (25259, 17233)
X(58898) = X(692)-isoconjugate of-X(43191)
X(58898) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (514, 43191), (17295, 1016), (24047, 1252)
X(58898) = pole of the line {676, 1459} with respect to the circumhyperbola dual of Yff parabola
X(58898) = barycentric product X(i)*X(j) for these {i, j}: {1086, 17295}, {23989, 24047}
X(58898) = trilinear product X(i)*X(j) for these {i, j}: {244, 17295}, {1111, 24047}
X(58898) = trilinear quotient X(i)/X(j) for these (i, j): (693, 43191), (17295, 765), (24047, 1110)


X(58899) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND MOSES-SODDY

Barycentrics    (2*a^3-(b+c)*a^2-(b^2-c^2)*(b-c))*(a^4-2*(b^2-c^2)*(b-c)*a+(b^2+c^2)*(b-c)^2) : :

X(58899) lies on these lines: {6, 1836}, {513, 676}

X(58899) = perspector of the circumconic through X(279) and X(26705)
X(58899) = pole of the line {1617, 22388} with respect to the circumcircle
X(58899) = pole of the line {7046, 25259} with respect to the polar circle
X(58899) = pole of the line {22388, 23653} with respect to the Brocard inellipse
X(58899) = pole of the line {1565, 14377} with respect to the circumhyperbola dual of Yff parabola
X(58899) = pole of the line {514, 14377} with respect to the orthic inconic


X(58900) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND ORTHOCENTROIDAL

Barycentrics    a^2*(b^2-c^2)*(a^8-4*(b^2+c^2)*a^6+(6*b^4+b^2*c^2+6*c^4)*a^4-(b^2+c^2)*(4*b^4-5*b^2*c^2+4*c^4)*a^2+(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(58900) lies on these lines: {6, 647}, {51, 512}, {115, 35581}, {373, 520}, {526, 1637}, {686, 14398}, {879, 47254}, {974, 2780}, {1648, 55071}, {2501, 6748}, {3531, 10097}, {6785, 6792}, {9209, 9300}, {9210, 20965}, {11003, 47442}, {12077, 45801}, {14998, 39024}, {18312, 37644}, {34417, 58344}, {40550, 41586}, {42654, 44109}

X(58900) = isogonal conjugate of the isotomic conjugate of X(14566)
X(58900) = cross-difference of every pair of points on the line X(30)X(146)
X(58900) = crosspoint of X(4) and X(34568)
X(58900) = crosssum of X(i) and X(j) for these {i, j}: {2, 5664}, {3, 14401}
X(58900) = X(i)-Ceva conjugate of-X(j) for these (i, j): (526, 512), (1637, 647)
X(58900) = X(i)-complementary conjugate of-X(j) for these (i, j): (14595, 34846), (23588, 4369), (23966, 14838), (57546, 21263)
X(58900) = X(6)-daleth conjugate of-X(48451)
X(58900) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 40705), (1084, 1138), (1989, 35139)
X(58900) = X(57122)-hirst inverse of-X(57123)
X(58900) = X(i)-isoconjugate of-X(j) for these {i, j}: {163, 40705}, {662, 1138}
X(58900) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (399, 99), (512, 1138), (523, 40705), (1272, 670), (2433, 54837), (6140, 14451), (9409, 20123), (11074, 39290), (14398, 11070), (14566, 76), (14993, 35139), (19303, 662), (21731, 18781), (42656, 30), (52166, 648)
X(58900) = PK-transform of X(i) for these i: {399, 1138}
X(58900) = perspector of the circumconic through X(74) and X(399)
X(58900) = pole of the line {1495, 11063} with respect to the circumcircle
X(58900) = pole of the line {1495, 3003} with respect to the 2nd Lozada circle
X(58900) = pole of the line {340, 37779} with respect to the polar circle
X(58900) = pole of the line {1495, 3003} with respect to the Brocard inellipse
X(58900) = pole of the line {2682, 57464} with respect to the Jerabek circumhyperbola
X(58900) = pole of the line {3134, 3258} with respect to the Kiepert circumhyperbola
X(58900) = pole of the line {13754, 35452} with respect to the MacBeath circumconic
X(58900) = pole of the line {74, 186} with respect to the orthic inconic
X(58900) = pole of the line {2407, 10411} with respect to the Stammler hyperbola
X(58900) = pole of the line {1989, 3003} with respect to the Steiner inellipse
X(58900) = pole of the line {15356, 16186} with respect to the Yff hyperbola
X(58900) = barycentric product X(i)*X(j) for these {i, j}: {6, 14566}, {399, 523}, {512, 1272}, {525, 52166}, {526, 14993}, {1117, 8562}, {1494, 42656}, {1577, 19303}, {5664, 11074}, {14401, 40391}
X(58900) = trilinear product X(i)*X(j) for these {i, j}: {31, 14566}, {399, 661}, {523, 19303}, {656, 52166}, {798, 1272}, {2349, 42656}, {2624, 14993}
X(58900) = trilinear quotient X(i)/X(j) for these (i, j): (399, 662), (661, 1138), (1272, 799), (1577, 40705), (2631, 20123), (14566, 75), (14993, 32680), (19303, 110), (42656, 2173), (52166, 162)


X(58901) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO 1st ORTHOSYMMEDIAL

Barycentrics    a^4*((b^4+c^4)*a^8-(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^6-(b^2-c^2)^2*b^2*c^2*a^4+(b^4-c^4)*(b^2-c^2)*(2*b^4+b^2*c^2+2*c^4)*a^2-(b^2-c^2)^2*(b^8+c^8+(b^4+4*b^2*c^2+c^4)*b^2*c^2)) : :

X(58901) lies on these lines: {4, 58902}, {51, 6748}, {924, 16230}, {1843, 54384}, {2387, 3331}, {5167, 51403}, {11381, 40951}

X(58901) = crosssum of X(3) and X(30737)
X(58901) = pole of the line {53, 23300} with respect to the Jerabek circumhyperbola
X(58901) = pole of the line {32, 39201} with respect to the orthic inconic


X(58902) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: 1st ORTHOSYMMEDIAL TO ORTHIC

Barycentrics    a^4*((b^4+c^4)*a^8-(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^6-(b^4+4*b^2*c^2+c^4)*b^2*c^2*a^4+(b^4-c^4)*(b^2-c^2)*(2*b^4+b^2*c^2+2*c^4)*a^2-(b^2-c^2)^2*(b^8+c^8+(b^2-c^2)^2*b^2*c^2)) : :

X(58902) lies on these lines: {4, 58901}, {6, 2387}, {51, 20410}, {211, 1970}, {389, 40951}, {1843, 18400}, {2794, 19161}, {5167, 18388}, {6000, 6752}, {10551, 13567}


X(58903) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND REFLECTION

Barycentrics    a^2*(b^2-c^2)*(a^8-4*(b^2+c^2)*a^6+(6*b^4+5*b^2*c^2+6*c^4)*a^4-(b^2+c^2)*(4*b^4-5*b^2*c^2+4*c^4)*a^2+(b^2-c^2)^2*(b^4+c^4)) : :

X(58903) lies on these lines: {6, 57137}, {50, 647}, {115, 35591}, {512, 55199}, {520, 35441}, {526, 55280}, {669, 23195}, {1499, 6146}, {1510, 12077}, {2501, 6748}, {30210, 57195}

X(58903) = cross-difference of every pair of points on the line X(5)X(195)
X(58903) = crosspoint of X(i) and X(j) for these {i, j}: {110, 11538}, {275, 30248}
X(58903) = crosssum of X(i) and X(j) for these {i, j}: {2, 20577}, {3, 57195}, {216, 30210}, {523, 15109}, {930, 39419}, {1994, 58876}
X(58903) = X(i)-Ceva conjugate of-X(j) for these (i, j): (1510, 512), (12077, 647), (14346, 58895)
X(58903) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 57776), (137, 53028), (1084, 3459), (2963, 46139), (17423, 34433), (46604, 39419)
X(58903) = X(i)-isoconjugate of-X(j) for these {i, j}: {163, 57776}, {662, 3459}, {811, 34433}, {36134, 53028}
X(58903) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (195, 99), (512, 3459), (523, 57776), (3049, 34433), (6140, 11584), (12077, 53028), (21975, 46139), (42650, 5), (45799, 670)
X(58903) = PK-transform of X(i) for these i: {195, 3459}
X(58903) = center of the circumconic through X(1510) and X(58876)
X(58903) = perspector of the circumconic through X(54) and X(195)
X(58903) = pole of the line {324, 32002} with respect to the polar circle
X(58903) = pole of the line {570, 8603} with respect to the Brocard inellipse
X(58903) = pole of the line {24862, 41221} with respect to the Jerabek circumhyperbola
X(58903) = pole of the line {137, 8901} with respect to the Kiepert circumhyperbola
X(58903) = pole of the line {1147, 55039} with respect to the MacBeath circumconic
X(58903) = pole of the line {54, 186} with respect to the orthic inconic
X(58903) = pole of the line {570, 2963} with respect to the Steiner inellipse
X(58903) = barycentric product X(i)*X(j) for these {i, j}: {95, 42650}, {195, 523}, {512, 45799}, {1510, 21975}, {8562, 34302}, {14367, 45147}
X(58903) = trilinear product X(i)*X(j) for these {i, j}: {195, 661}, {798, 45799}, {2167, 42650}
X(58903) = trilinear quotient X(i)/X(j) for these (i, j): (195, 662), (661, 3459), (810, 34433), (1577, 57776), (2618, 53028), (42650, 1953), (45799, 799)


X(58904) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: SODDY TO ORTHIC

Barycentrics    (a+b-c)*(a-b+c)*(a^4+2*(b+c)*a^3-6*(b^2-b*c+c^2)*a^2+2*(b^2-c^2)*(b-c)*a+(b^2-4*b*c+c^2)*(b-c)^2) : :

X(58904) lies on these lines: {7, 354}, {614, 1443}, {5222, 43066}, {9533, 14189}, {38250, 56275}

X(58904) = X(17113)-Dao conjugate of-X(38261)
X(58904) = X(1253)-isoconjugate of-X(38261)
X(58904) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (279, 38261), (38287, 220)
X(58904) = pole of the line {650, 48435} with respect to the incircle
X(58904) = pole of the line {10481, 50802} with respect to the circumhyperbola dual of Yff parabola
X(58904) = barycentric product X(38287)*X(57792)
X(58904) = trilinear product X(1088)*X(38287)
X(58904) = trilinear quotient X(i)/X(j) for these (i, j): (1088, 38261), (38287, 1253)


X(58905) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO URSA MINOR

Barycentrics    a*(-a+b+c)*((b+c)*a^5-(b^2-c^2)*(b-c)*a^3-(b^2+c^2)*(b-c)^2*a^2-2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)^2*(b-c)^2) : :

X(58905) lies on these lines: {33, 34417}, {51, 1859}, {1824, 55120}, {1827, 2262}

X(58905) = pole of the line {53, 1886} with respect to the Feuerbach circumhyperbola
X(58905) = pole of the line {1946, 21127} with respect to the orthic inconic


X(58906) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: URSA MINOR TO ORTHIC

Barycentrics    a*(-a+b+c)*((b+c)*a^5-3*(b-c)^2*a^4+2*(b^2-c^2)*(b-c)*a^3+2*(b^2+c^2)*(b-c)^2*a^2-(b^2-c^2)*(b-c)*(3*b^2+2*b*c+3*c^2)*a+(b^2-c^2)^2*(b-c)^2) : :

X(58906) lies on these lines: {1, 971}, {4, 38268}, {6, 33}, {55, 610}, {65, 3332}, {210, 7070}, {219, 3059}, {347, 15726}, {354, 1439}, {1040, 25878}, {1108, 2310}, {1214, 5918}, {1253, 51361}, {1359, 2823}, {1418, 7004}, {1709, 38288}, {1827, 2262}, {1854, 2263}, {1859, 11189}, {1863, 54008}, {1898, 32378}, {1962, 2293}, {2182, 7071}, {2256, 4319}, {3056, 17642}, {3057, 44661}, {3100, 5784}, {3668, 31391}, {3945, 10391}, {4349, 12711}, {4648, 17603}, {6198, 12664}, {9642, 40263}, {10859, 17604}, {11028, 14524}, {12671, 15836}, {12888, 13529}, {17668, 45275}

X(58906) = crosspoint of X(i) and X(j) for these {i, j}: {4, 19605}, {7, 282}
X(58906) = crosssum of X(i) and X(j) for these {i, j}: {3, 1419}, {55, 223}
X(58906) = X(36118)-Ceva conjugate of-X(650)
X(58906) = pole of the line {652, 3900} with respect to the incircle
X(58906) = pole of the line {19, 57} with respect to the Feuerbach circumhyperbola
X(58906) = pole of the line {3900, 54255} with respect to the orthic inconic


X(58907) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: ORTHIC TO X-PARABOLA-TANGENTIAL

Barycentrics    (b^2-c^2)^2*(2*a^6-2*(b^2+c^2)*a^4-(b^4-4*b^2*c^2+c^4)*a^2+(b^4-c^4)*(b^2-c^2)) : :

X(58907) lies on these lines: {4, 23582}, {25, 58350}, {115, 512}, {125, 3566}, {247, 36189}, {460, 1495}, {525, 14120}, {826, 5099}, {1499, 34953}, {1503, 10151}, {3800, 51258}, {5139, 33504}, {8754, 44705}, {9218, 36174}, {15359, 32478}, {23991, 33919}, {57598, 58348}

X(58907) = midpoint of X(9218) and X(36174)
X(58907) = crosspoint of X(4) and X(115)
X(58907) = crosssum of X(3) and X(249)
X(58907) = X(115)-daleth conjugate of-X(47229)
X(58907) = X(i)-Dao conjugate of-X(j) for these (i, j): (3005, 46426), (5972, 69), (47628, 18020)
X(58907) = X(24041)-isoconjugate of-X(46426)
X(58907) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (3124, 46426), (5972, 4590), (17468, 24041), (17882, 24037), (46371, 6331)
X(58907) = orthopole of tripolar of X(47443)
X(58907) = pole of the line {877, 53351} with respect to the polar circle
X(58907) = pole of the line {1112, 47236} with respect to the Jerabek circumhyperbola
X(58907) = pole of the line {804, 5186} with respect to the Kiepert circumhyperbola
X(58907) = pole of the line {1648, 8029} with respect to the orthic inconic
X(58907) = barycentric product X(i)*X(j) for these {i, j}: {115, 5972}, {647, 46371}, {1109, 17468}, {2643, 17882}
X(58907) = trilinear product X(i)*X(j) for these {i, j}: {115, 17468}, {810, 46371}, {2643, 5972}, {3124, 17882}
X(58907) = trilinear quotient X(i)/X(j) for these (i, j): (2643, 46426), (5972, 24041), (17468, 249), (17882, 4590), (46371, 811)


X(58908) = TRIPOLAR-PERSPECTOR OF THESE TRIANGLES: X-PARABOLA-TANGENTIAL TO ORTHIC

Barycentrics    (b^2-c^2)^2*(a^6-(b^2+c^2)*a^4+(b^4-b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(58908) lies on these lines: {115, 512}, {125, 826}, {249, 50711}, {523, 34953}, {525, 15357}, {3566, 51258}, {3800, 5099}, {5965, 51392}, {6103, 57655}, {6328, 23105}, {7755, 44127}, {7927, 15359}, {7950, 51429}, {8754, 43967}, {10413, 44114}, {16278, 32478}

X(58908) = cross-difference of every pair of points on the line X(2421)X(40173)
X(58908) = crosspoint of X(i) and X(j) for these {i, j}: {850, 40429}, {3448, 45801}
X(58908) = crosssum of X(i) and X(j) for these {i, j}: {110, 34990}, {1576, 20976}, {3447, 40173}, {4558, 41673}
X(58908) = X(i)-Ceva conjugate of-X(j) for these (i, j): (3448, 45801), (23105, 115)
X(58908) = X(8574)-cross conjugate of-X(115)
X(58908) = X(i)-Dao conjugate of-X(j) for these (i, j): (523, 13485), (1084, 40173), (3005, 3447), (8574, 620), (34349, 32458)
X(58908) = X(i)-isoconjugate of-X(j) for these {i, j}: {662, 40173}, {1101, 13485}, {3447, 24041}
X(58908) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (115, 13485), (512, 40173), (3124, 3447), (3448, 4590), (7669, 249), (8574, 110), (16562, 24041), (20941, 24037), (21092, 4600), (21203, 4610), (30716, 55270), (45801, 99)
X(58908) = perspector of the circumconic through X(2395) and X(45801)
X(58908) = pole of the line {877, 10411} with respect to the polar circle
X(58908) = barycentric product X(i)*X(j) for these {i, j}: {115, 3448}, {338, 7669}, {523, 45801}, {850, 8574}, {1109, 16562}, {2643, 20941}, {2970, 22146}, {3120, 21092}, {4024, 21203}, {23105, 36830}
X(58908) = trilinear product X(i)*X(j) for these {i, j}: {115, 16562}, {661, 45801}, {1109, 7669}, {1577, 8574}, {2643, 3448}, {3124, 20941}, {3125, 21092}, {4705, 21203}
X(58908) = trilinear quotient X(i)/X(j) for these (i, j): (661, 40173), (1109, 13485), (2643, 3447), (3448, 24041), (7669, 1101), (8574, 163), (16562, 249), (20941, 4590), (21092, 4567), (21203, 52935), (45801, 662)


X(58909) = TRIPOLAR-TRIAXIAL POINT OF THESE TRIANGLES: ORTHIC AND X-PARABOLA-TANGENTIAL

Barycentrics    (b^2-c^2)^2*((b^2+c^2)*a^2-b^4-c^4)*(a^8-(b^2+c^2)*a^6-(b^4-3*b^2*c^2+c^4)*a^4+(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^2*b^2*c^2) : :

X(58909) lies on these lines: {115, 2491}, {125, 136}, {232, 37981}, {684, 868}, {23217, 46184}, {38393, 53567}

X(58909) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (21525, 249), (34978, 287), (34982, 248)
X(58909) = pole of the line {1112, 2501} with respect to the Kiepert circumhyperbola
X(58909) = pole of the line {115, 23105} with respect to the orthic inconic
X(58909) = barycentric product X(i)*X(j) for these {i, j}: {297, 34978}, {338, 21525}, {34982, 44132}
X(58909) = trilinear product X(i)*X(j) for these {i, j}: {240, 34978}, {1109, 21525}, {34982, 40703}
X(58909) = trilinear quotient X(i)/X(j) for these (i, j): (21525, 1101), (34978, 293)


X(58910) = ISOGONAL CONJUGATE OF X(32460)

Barycentrics    a^2/(Sqrt[3]*(2*a^2 - b^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*S) : :

X(589) lies on the Jerabek circumhyperbola and these lines:{3, 17403}, {4, 49977}, {17, 46059}, {61, 46061}, {110, 36297}, {125, 2993}, {265, 23895}, {4846, 6770}, {36840, 51277}

X(58910) = reflection of X(i) in X(j) for these {i,j}: {110, 40581}, {2993, 125}
X(58910) = isogonal conjugate of X(32460)
X(58910) = antigonal image of X(2993)
X(58910) = symgonal image of X(40581)
X(58910) = isogonal conjugate of the complement of X(36185)
X(58910) = X(1)-isoconjugate of X(32460)
X(58910) = X(3)-Dao conjugate of X(32460)
X(58910) = trilinear pole of line {16, 647}
X(58910) = barycentric quotient X(6)/X(32460)


X(58911) = ISOGONAL CONJUGATE OF X(32461)

Barycentrics    a^2/(Sqrt[3]*(2*a^2 - b^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*S) : :

X(58911) lies on the Jerabek circumhyperbola and these lines:{3, 17402}, {4, 49976}, {18, 46058}, {62, 46060}, {110, 36296}, {125, 2992}, {265, 23896}, {4846, 6773}, {36839, 51270}

X(58911) = reflection of X(i) in X(j) for these {i,j}: {110, 40580}, {2992, 125}
X(58911) = isogonal conjugate of X(32461)
X(58911) = antigonal image of X(2992)
X(58911) = symgonal image of X(40580)
X(58911) = isogonal conjugate of the complement of X(36186)
X(58911) = X(1)-isoconjugate of X(32461)
X(58911) = X(3)-Dao conjugate of X(32461)
X(58911) = trilinear pole of line {15, 647}
X(58911) = barycentric quotient X(6)/X(32461)


X(58912) = X(5)X(523)∩X(13)X(15)

Barycentrics    a^10*b^2 + a^8*b^4 - 8*a^6*b^6 + 8*a^4*b^8 - a^2*b^10 - b^12 + a^10*c^2 - 2*a^8*b^2*c^2 + 5*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + 4*b^10*c^2 + a^8*c^4 + 5*a^6*b^2*c^4 + 8*a^4*b^4*c^4 - a^2*b^6*c^4 - 7*b^8*c^4 - 8*a^6*c^6 - 10*a^4*b^2*c^6 - a^2*b^4*c^6 + 8*b^6*c^6 + 8*a^4*c^8 + 2*a^2*b^2*c^8 - 7*b^4*c^8 - a^2*c^10 + 4*b^2*c^10 - c^12 + 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S : :

X(58912) lies on these lines:{5, 523}, {13, 15}, {265, 23895}, {476, 8838}, {6115, 16188}, {11119, 14993}, {14389, 32461}, {16179, 20252}, {16770, 20425}, {20304, 43961}, {37341, 46634}, {41035, 46633}

X(58912) = midpoint of X(i) and X(j) for these {i,j}: {265, 23895}, {20425, 36185}
X(58912) = reflection of X(i) in X(j) for these {i,j}: {16179, 20252}, {43961, 20304}
X(58912) = crossdifference of every pair of points on line {50, 57122}
X(58912) = {X(476),X(8838)}-harmonic conjugate of X(32460)


X(58913) = X(5)X(523)∩X(14)X(16)

Barycentrics    a^10*b^2 + a^8*b^4 - 8*a^6*b^6 + 8*a^4*b^8 - a^2*b^10 - b^12 + a^10*c^2 - 2*a^8*b^2*c^2 + 5*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + 4*b^10*c^2 + a^8*c^4 + 5*a^6*b^2*c^4 + 8*a^4*b^4*c^4 - a^2*b^6*c^4 - 7*b^8*c^4 - 8*a^6*c^6 - 10*a^4*b^2*c^6 - a^2*b^4*c^6 + 8*b^6*c^6 + 8*a^4*c^8 + 2*a^2*b^2*c^8 - 7*b^4*c^8 - a^2*c^10 + 4*b^2*c^10 - c^12 - 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S : :

X(58913) lies on these lines:{5, 523}, {14, 16}, {265, 23896}, {476, 8836}, {6114, 16188}, {11120, 14993}, {14389, 32460}, {16092, 44219}, {16180, 20253}, {16771, 20426}, {20304, 43962}, {37340, 46634}, {41034, 46633}

X(58913) = midpoint of X(i) and X(j) for these {i,j}: {265, 23896}, {20426, 36186}
X(58913) = reflection of X(i) in X(j) for these {i,j}: {16180, 20253}, {43962, 20304}
X(58913) = crossdifference of every pair of points on line {50, 57123}
X(58913) = {X(476),X(8836)}-harmonic conjugate of X(32461)


X(58914) = X(3)X(36514)∩X(4)X(3180)

Barycentrics    (a^2*(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(-a^2 + b^2 + c^2)*S))/(4*a^8 - 4*a^6*b^2 - 6*a^4*b^4 + 8*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 - 5*a^2*b^4*c^2 + 2*b^6*c^2 - 6*a^4*c^4 - 5*a^2*b^2*c^4 + 8*a^2*c^6 + 2*b^2*c^6 - 2*c^8 - 2*Sqrt[3]*a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4)*S) : :

X(58914) lies on the cubics K028 and K1145a and these lines: {3, 36514}, {4, 3180}, {13, 14373}, {15, 3441}, {62, 3489}, {3105, 8460}, {3457, 20998}, {8015, 36304}

X(58914) = X(16)-Dao conjugate of X(30472)
X(58914) = barycentric product X(i)*X(j) for these {i,j}: {3130, 11122}, {40581, 53030}, {51277, 53032}
X(58914) = barycentric quotient X(i)/X(j) for these {i,j}: {3130, 3181}, {40581, 30472}


X(58915) = X(3)X(36515)∩X(4)X(3181)

Barycentrics    (a^2*(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(-a^2 + b^2 + c^2)*S))/(4*a^8 - 4*a^6*b^2 - 6*a^4*b^4 + 8*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 - 5*a^2*b^4*c^2 + 2*b^6*c^2 - 6*a^4*c^4 - 5*a^2*b^2*c^4 + 8*a^2*c^6 + 2*b^2*c^6 - 2*c^8 + 2*Sqrt[3]*a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4)*S) : :

X(58915) lies on the cubics K028 and K1145b and these lines: {3, 36515}, {4, 3181}, {14, 14372}, {16, 3440}, {61, 3490}, {3104, 8450}, {3458, 20998}, {8014, 36305}

X(58915) = X(15)-Dao conjugate of X(30471)
X(58915) = barycentric product X(i)*X(j) for these {i,j}: {3129, 11121}, {40580, 53029}, {51270, 53031}
X(58915) = barycentric quotient X(i)/X(j) for these {i,j}: {3129, 3180}, {40580, 30471}


X(58916) = X(3)X(298)∩X(4)X(46667)

Barycentrics    (4*a^8 - 4*a^6*b^2 - 6*a^4*b^4 + 8*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 - 5*a^2*b^4*c^2 + 2*b^6*c^2 - 6*a^4*c^4 - 5*a^2*b^2*c^4 + 8*a^2*c^6 + 2*b^2*c^6 - 2*c^8 - 2*Sqrt[3]*a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4)*S)/(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) + 2*(a^2 - b^2 - c^2)*S) : :

X(58916) lies on the cubics K009 and K341a and these lines: {3, 298}, {4, 46667}, {13, 19777}, {15, 46059}, {11127, 40157}

X(58916) = barycentric product X(2993)*X(3181)
X(58916) = barycentric quotient X(i)/X(j) for these {i,j}: {2993, 11122}, {3171, 40581}, {3181, 622}, {19781, 3130}, {40157, 53032}


X(58917) = X(3)X(299)∩X(4)X(46666)

Barycentrics    (4*a^8 - 4*a^6*b^2 - 6*a^4*b^4 + 8*a^2*b^6 - 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 - 5*a^2*b^4*c^2 + 2*b^6*c^2 - 6*a^4*c^4 - 5*a^2*b^2*c^4 + 8*a^2*c^6 + 2*b^2*c^6 - 2*c^8 + 2*Sqrt[3]*a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4)*S)/(Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(a^2 - b^2 - c^2)*S) : :

X(58917) lies on the cubics K009 and K341b and these lines: {3, 299}, {4, 46666}, {14, 19776}, {16, 46058}, {11126, 40156}

X(58917) = barycentric product X(2992)*X(3180)
X(58917) = barycentric quotient X(i)/X(j) for these {i,j}: {2992, 11121}, {3170, 40580}, {3180, 621}, {19780, 3129}, {40156, 53031}


X(58918) = X(15)X(47397)∩X(110)X(11092)

Barycentrics    a^2/(a^10*b^2 + a^8*b^4 - 8*a^6*b^6 + 8*a^4*b^8 - a^2*b^10 - b^12 + a^10*c^2 - 2*a^8*b^2*c^2 + 5*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + 4*b^10*c^2 + a^8*c^4 + 5*a^6*b^2*c^4 + 8*a^4*b^4*c^4 - a^2*b^6*c^4 - 7*b^8*c^4 - 8*a^6*c^6 - 10*a^4*b^2*c^6 - a^2*b^4*c^6 + 8*b^6*c^6 + 8*a^4*c^8 + 2*a^2*b^2*c^8 - 7*b^4*c^8 - a^2*c^10 + 4*b^2*c^10 - c^12 + 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S) : :

X(58918) lies on these lines:{15, 47397}, {110, 11092}, {10411, 11129}, {11131, 52603}, {14591, 56514}

X(58918) = trilinear pole of line {50, 57122}


X(58919) = X(16)X(47398)∩X(110)X(11078)

Barycentrics    a^2/(a^10*b^2 + a^8*b^4 - 8*a^6*b^6 + 8*a^4*b^8 - a^2*b^10 - b^12 + a^10*c^2 - 2*a^8*b^2*c^2 + 5*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + 4*b^10*c^2 + a^8*c^4 + 5*a^6*b^2*c^4 + 8*a^4*b^4*c^4 - a^2*b^6*c^4 - 7*b^8*c^4 - 8*a^6*c^6 - 10*a^4*b^2*c^6 - a^2*b^4*c^6 + 8*b^6*c^6 + 8*a^4*c^8 + 2*a^2*b^2*c^8 - 7*b^4*c^8 - a^2*c^10 + 4*b^2*c^10 - c^12 - 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*S) : :

X(58919) lies on these lines: {16, 47398}, {110, 11078}, {10411, 11128}, {11130, 52603}, {14591, 56515}

X(58919) = trilinear pole of line {50, 57123}


X(58920) = X(3)X(36514)∩X(4)X(46667)

Barycentrics    a^2*(a^12 - 3*a^10*b^2 + 6*a^8*b^4 - 8*a^6*b^6 + 3*a^4*b^8 + 3*a^2*b^10 - 2*b^12 - 3*a^10*c^2 + 3*a^8*b^2*c^2 - 9*a^2*b^8*c^2 + 9*b^10*c^2 + 6*a^8*c^4 + 6*a^2*b^6*c^4 - 24*b^8*c^4 - 8*a^6*c^6 + 6*a^2*b^4*c^6 + 34*b^6*c^6 + 3*a^4*c^8 - 9*a^2*b^2*c^8 - 24*b^4*c^8 + 3*a^2*c^10 + 9*b^2*c^10 - 2*c^12 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^8 - a^6*b^2 + a^4*b^4 - 3*a^2*b^6 + 2*b^8 - a^6*c^2 - a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 5*b^6*c^2 + a^4*c^4 + 3*a^2*b^2*c^4 + 6*b^4*c^4 - 3*a^2*c^6 - 5*b^2*c^6 + 2*c^8)*S) : :

X(58920) lies on the circumcircle, the cubic K1132a, and these lines: {3, 36514}, {4, 46667}, {16, 16806}, {61, 5994}, {99, 622}, {110, 3130}, {112, 10632}, {476, 8838}, {511, 1337}, {691, 13350}, {925, 19773}, {1291, 41472}, {5995, 6104}, {9202, 33957}, {10410, 39261}, {10678, 16807}, {14539, 39636}, {18863, 39637}, {36756, 53884}

X(58920) = reflection of X(i) in X(j) for these {i,j}: {4, 46667}, {36514, 3}
X(58920) = Collings transform of X(46667)


X(58921) = X(3)X(36515)∩X(4)X(46666)

Barycentrics    a^2*(a^12 - 3*a^10*b^2 + 6*a^8*b^4 - 8*a^6*b^6 + 3*a^4*b^8 + 3*a^2*b^10 - 2*b^12 - 3*a^10*c^2 + 3*a^8*b^2*c^2 - 9*a^2*b^8*c^2 + 9*b^10*c^2 + 6*a^8*c^4 + 6*a^2*b^6*c^4 - 24*b^8*c^4 - 8*a^6*c^6 + 6*a^2*b^4*c^6 + 34*b^6*c^6 + 3*a^4*c^8 - 9*a^2*b^2*c^8 - 24*b^4*c^8 + 3*a^2*c^10 + 9*b^2*c^10 - 2*c^12 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*(a^8 - a^6*b^2 + a^4*b^4 - 3*a^2*b^6 + 2*b^8 - a^6*c^2 - a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 5*b^6*c^2 + a^4*c^4 + 3*a^2*b^2*c^4 + 6*b^4*c^4 - 3*a^2*c^6 - 5*b^2*c^6 + 2*c^8)*S) : :

X(58921) lies on the circumcircle, the cubic K1132b, and these lines: {3, 36515}, {4, 46666}, {15, 16807}, {62, 5995}, {99, 621}, {110, 3129}, {112, 10633}, {476, 8836}, {511, 1338}, {691, 13349}, {925, 19772}, {1291, 41473}, {5994, 6105}, {9203, 33958}, {10409, 39262}, {10677, 16806}, {14538, 39637}, {18864, 39636}, {36755, 53884}

X(58921) = reflection of X(i) in X(j) for these {i,j}: {4, 46666}, {36515, 3}
X(58921) = Collings transform of X(46666)


X(58922) = X(4)X(525)∩X(5)X(49)

Barycentrics    a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 3*a^6*b^2*c^2 - a^4*b^4*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 - a^4*b^2*c^4 + 2*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 3*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(58922) = 3 X[5] - 2 X[15806], 3 X[49] - 4 X[15806], 5 X[1656] - 4 X[58407], 5 X[3091] - 2 X[43844]

X(589) lies on these lines: {2, 11449}, {3, 12278}, {4, 52}, {5, 49}, {20, 11454}, {24, 14852}, {30, 11440}, {64, 41738}, {67, 40929}, {69, 38443}, {93, 22823}, {113, 52675}, {125, 22467}, {143, 22804}, {155, 7547}, {156, 10254}, {184, 34799}, {185, 3448}, {186, 5449}, {195, 54007}, {275, 14860}, {331, 21270}, {343, 6145}, {376, 43907}, {378, 9932}, {381, 11441}, {382, 34514}, {403, 12134}, {418, 36245}, {485, 11447}, {486, 11448}, {511, 11572}, {539, 56292}, {542, 43605}, {546, 32358}, {575, 43838}, {631, 43898}, {895, 15044}, {1092, 23325}, {1147, 7577}, {1154, 31724}, {1209, 35921}, {1352, 12272}, {1478, 19367}, {1479, 11446}, {1503, 19121}, {1594, 34148}, {1614, 10024}, {1656, 58407}, {1853, 11413}, {1899, 10574}, {1906, 39884}, {1993, 7507}, {1994, 3574}, {2070, 48675}, {2071, 20299}, {2888, 3153}, {2979, 37444}, {3090, 58266}, {3091, 11422}, {3146, 11550}, {3193, 7559}, {3410, 5907}, {3518, 45286}, {3520, 17702}, {3521, 11564}, {3533, 25712}, {3541, 7703}, {3547, 15080}, {3564, 8537}, {3575, 3580}, {3818, 3832}, {3854, 32605}, {5012, 6146}, {5133, 12241}, {5169, 11424}, {5448, 54001}, {5480, 46442}, {5486, 15749}, {5498, 34153}, {5576, 12370}, {5640, 7544}, {5663, 43895}, {5876, 18379}, {5890, 25738}, {6000, 50009}, {6101, 7574}, {6143, 12038}, {6240, 12359}, {6241, 32140}, {6243, 44288}, {6247, 13445}, {6636, 44829}, {6639, 11464}, {6643, 7998}, {6644, 26917}, {6696, 16386}, {6815, 18911}, {6816, 18918}, {7017, 54457}, {7401, 11451}, {7488, 18400}, {7496, 44862}, {7503, 18396}, {7512, 11750}, {7514, 8907}, {7527, 12827}, {7564, 36749}, {7566, 10982}, {7569, 37506}, {7576, 41587}, {7687, 15052}, {7689, 34797}, {8548, 18440}, {8837, 44713}, {8839, 44714}, {9140, 38323}, {9730, 43808}, {9781, 11818}, {9833, 26881}, {10113, 12825}, {10116, 15032}, {10151, 22663}, {10201, 26882}, {10224, 22115}, {10226, 12121}, {10282, 58805}, {10295, 44158}, {10297, 31831}, {10298, 34785}, {10539, 16868}, {10540, 13406}, {10619, 58447}, {10625, 46450}, {10733, 15062}, {11264, 15087}, {11271, 15432}, {11381, 52403}, {11412, 18569}, {11425, 31236}, {11433, 14542}, {11444, 18531}, {11452, 18582}, {11453, 18581}, {11455, 31725}, {11457, 15072}, {11459, 18394}, {11591, 12606}, {12087, 29012}, {12088, 44407}, {12118, 37119}, {12163, 35480}, {12164, 18386}, {12219, 19506}, {12233, 45968}, {12254, 18475}, {12279, 14216}, {12362, 37636}, {12824, 43823}, {12897, 13596}, {12902, 14130}, {13346, 31074}, {13352, 52295}, {13371, 43574}, {14118, 21243}, {14157, 15761}, {14531, 37779}, {14561, 19122}, {14940, 51393}, {15021, 43903}, {15043, 18420}, {15045, 18952}, {15053, 26879}, {15055, 43607}, {15061, 43615}, {15069, 23049}, {15081, 43586}, {15133, 37118}, {15321, 51163}, {15472, 43894}, {15760, 34224}, {15958, 52677}, {16003, 43577}, {16044, 40867}, {16163, 25563}, {16252, 46818}, {16655, 47096}, {17506, 20191}, {17834, 52842}, {17845, 37638}, {17928, 26913}, {18356, 34783}, {18377, 18430}, {18382, 41716}, {18439, 44279}, {18451, 35488}, {18553, 32248}, {18565, 32138}, {18572, 31834}, {19167, 43995}, {22109, 32401}, {30714, 43839}, {30744, 35602}, {31101, 43652}, {31802, 41628}, {32064, 37201}, {32340, 41586}, {32365, 41726}, {32767, 51394}, {35487, 51425}, {36253, 43817}, {36853, 43581}, {37347, 43651}, {37472, 39504}, {38724, 43809}, {43865, 45958}, {43904, 44573}, {44958, 46261}, {45089, 53863}, {45731, 46029}, {47391, 52296}, {52000, 58496}

X(58922) = reflection of X(i) in X(j) for these {i,j}: {3, 34826}, {49, 5}, {1614, 10024}, {34148, 1594}, {41482, 7488}, {43605, 43831}
X(58922) = anticomplement of X(13367)
X(58922) = anticomplement of the isogonal conjugate of X(14860)
X(58922) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {14860, 8}, {41891, 6360}
X(58922) = crossdifference of every pair of points on line {2081, 30451}
X(58922) = barycentric quotient X(31976)/X(23292)
X(58922) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13561, 43608}, {4, 68, 5889}, {4, 9927, 50435}, {4, 11442, 12111}, {5, 6288, 41171}, {5, 12022, 13434}, {5, 14516, 110}, {5, 44076, 54}, {5, 45256, 8838}, {5, 45257, 8836}, {5, 45970, 567}, {68, 5889, 41724}, {265, 6288, 5}, {343, 12225, 7691}, {343, 41362, 12225}, {2888, 3153, 5562}, {3448, 34007, 185}, {3574, 10112, 1994}, {5562, 18383, 3153}, {5576, 12370, 15033}, {5876, 18379, 18403}, {6143, 12383, 12038}, {6146, 13160, 5012}, {6247, 52071, 13445}, {7507, 12429, 1993}, {7544, 39571, 5640}, {9927, 18474, 4}, {10733, 15062, 18560}, {11459, 18394, 18404}, {12111, 18392, 4}, {12278, 23293, 3}, {12289, 16000, 25739}, {12897, 18488, 13596}, {14216, 44440, 12279}, {14644, 43598, 5}, {15760, 34224, 52525}, {16163, 25563, 35497}, {17845, 37638, 38444}, {18356, 44263, 34783}, {18420, 18912, 15043}, {18430, 18436, 18377}, {21243, 21659, 14118}, {26879, 31833, 15053}, {43607, 44240, 15055}


X(58923) = X(2)X(54)∩X(5)X(1601)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + 5*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 4*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(58923) lies on the cubic K1343 and these lines: {2, 54}, {3, 15366}, {4, 5963}, {5, 1601}, {233, 57703}, {566, 2165}, {847, 14940}, {925, 33643}, {1656, 2351}, {3459, 53028}, {3526, 16391}, {3549, 8906}, {5392, 43666}, {5962, 6143}, {6639, 34833}, {7505, 14593}, {10024, 54061}, {22268, 52350}

X(58923) = X(56272)-Ceva conjugate of X(68)
X(58923) = X(i)-isoconjugate of X(j) for these (i,j): {47, 3459}, {1748, 34433}
X(58923) = X(34853)-Dao conjugate of X(3459)
X(58923) = barycentric product X(i)*X(j) for these {i,j}: {195, 5392}, {2165, 45799}, {46134, 58903}
X(58923) = barycentric quotient X(i)/X(j) for these {i,j}: {195, 1993}, {2165, 3459}, {2351, 34433}, {5392, 57776}, {8553, 8823}, {42650, 52317}, {45799, 7763}, {56272, 53028}, {58903, 924}
X(58923) = {X(1209),X(41271)}-harmonic conjugate of X(68)


X(58924) = X(3)X(35372)∩X(4)X(110)

Barycentrics    a^2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 - a^2*b^2*c^4 - 2*b^4*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - c^8) : :

X(58924) lies on the cubic K1343 and these lines: {3, 35372}, {4, 110}, {5, 12028}, {23, 15786}, {26, 3447}, {54, 14859}, {140, 51456}, {3470, 7527}, {3471, 11071}, {3549, 53788}, {7488, 10420}, {7526, 14670}, {9730, 40392}, {11250, 50529}, {11597, 58733}, {12106, 14910}, {12228, 14254}, {14118, 39986}, {15328, 40441}, {18563, 20957}, {18867, 43572}, {22115, 39235}, {34802, 39372}, {57136, 58263}

X(58924) = X(40427)-Ceva conjugate of X(14910)
X(58924) = X(i)-isoconjugate of X(j) for these (i,j): {1725, 33565}, {2315, 9381}
X(58924) = X(i)-Dao conjugate of X(j) for these (i,j): {50, 34834}, {46439, 55121}
X(58924) = cevapoint of X(2070) and X(11597)
X(58924) = barycentric product X(i)*X(j) for these {i,j}: {2070, 2986}, {5504, 37766}, {10420, 24978}, {11597, 40427}
X(58924) = barycentric quotient X(i)/X(j) for these {i,j}: {1300, 9381}, {2070, 3580}, {9380, 13754}, {11597, 34834}, {14910, 33565}, {32708, 52998}, {37766, 44138}, {52557, 51256}, {58733, 57486}
X(58924) = {X(15454),X(38936)}-harmonic conjugate of X(5504)


X(58925) = X(3)X(125)∩X(52)X(476)

Barycentrics    (a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^12 - 4*a^10*b^2 + 6*a^8*b^4 - 4*a^6*b^6 + a^4*b^8 - 4*a^10*c^2 + 7*a^8*b^2*c^2 - 3*a^6*b^4*c^2 + a^2*b^8*c^2 - b^10*c^2 + 6*a^8*c^4 - 3*a^6*b^2*c^4 - a^2*b^6*c^4 + 4*b^8*c^4 - 4*a^6*c^6 - a^2*b^4*c^6 - 6*b^6*c^6 + a^4*c^8 + a^2*b^2*c^8 + 4*b^4*c^8 - b^2*c^10) : :

X(58925) lies on the cubic K1343 and these lines: {3, 125}, {52, 476}, {54, 14859}, {94, 1614}, {156, 56397}, {184, 58723}, {578, 14254}, {1147, 58725}, {3574, 58733}, {9820, 51847}, {10539, 57486}, {11536, 43088}, {12028, 12038}, {12370, 34209}

X(58925) = barycentric product X(i)*X(j) for these {i,j}: {94, 14889}, {12028, 41665}
X(58925) = barycentric quotient X(14889)/X(323)
X(58925) = {X(39170),X(53169)}-harmonic conjugate of X(9927)


X(58926) = X(3)X(252)∩X(5)X(523)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-2*a^10 + 7*a^8*b^2 - 10*a^6*b^4 + 8*a^4*b^6 - 4*a^2*b^8 + b^10 + 7*a^8*c^2 - 10*a^6*b^2*c^2 + a^4*b^4*c^2 + 5*a^2*b^6*c^2 - 3*b^8*c^2 - 10*a^6*c^4 + a^4*b^2*c^4 - 2*a^2*b^4*c^4 + 2*b^6*c^4 + 8*a^4*c^6 + 5*a^2*b^2*c^6 + 2*b^4*c^6 - 4*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(589) lies on the cubic K1342 these lines: {2, 15392}, {3, 252}, {4, 14980}, {5, 523}, {195, 43965}, {265, 2888}, {476, 13621}, {2070, 57486}, {3459, 30529}, {19553, 52603}, {43970, 51254}

X(58926) = X(19306)-anticomplementary conjugate of X(18301)
X(58926) = X(6149)-isoconjugate of X(33643)
X(58926) = X(i)-Dao conjugate of X(j) for these (i,j): {6150, 11597}, {6592, 1154}, {14993, 33643}
X(58926) = cevapoint of X(6592) and X(50708)
X(58926) = barycentric product X(94)*X(50708)
X(58926) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 33643}, {6592, 40604}, {50708, 323}
X(58926) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 38896, 14254}, {5, 58729, 38896}


X(58927) = X(2)X(3459)∩X(3)X(12325)

Barycentrics    a^16 - 8*a^14*b^2 + 28*a^12*b^4 - 56*a^10*b^6 + 70*a^8*b^8 - 56*a^6*b^10 + 28*a^4*b^12 - 8*a^2*b^14 + b^16 - 8*a^14*c^2 + 38*a^12*b^2*c^2 - 70*a^10*b^4*c^2 + 52*a^8*b^6*c^2 + 8*a^6*b^8*c^2 - 38*a^4*b^10*c^2 + 22*a^2*b^12*c^2 - 4*b^14*c^2 + 28*a^12*c^4 - 70*a^10*b^2*c^4 + 53*a^8*b^4*c^4 - 6*a^6*b^6*c^4 + 9*a^4*b^8*c^4 - 18*a^2*b^10*c^4 + 4*b^12*c^4 - 56*a^10*c^6 + 52*a^8*b^2*c^6 - 6*a^6*b^4*c^6 + 2*a^4*b^6*c^6 + 4*a^2*b^8*c^6 + 4*b^10*c^6 + 70*a^8*c^8 + 8*a^6*b^2*c^8 + 9*a^4*b^4*c^8 + 4*a^2*b^6*c^8 - 10*b^8*c^8 - 56*a^6*c^10 - 38*a^4*b^2*c^10 - 18*a^2*b^4*c^10 + 4*b^6*c^10 + 28*a^4*c^12 + 22*a^2*b^2*c^12 + 4*b^4*c^12 - 8*a^2*c^14 - 4*b^2*c^14 + c^16 : :
X(58927) = 3 X[2] - 4 X[21975], 5 X[1656] - 4 X[20413]

X(58927) lies on the cubic K1342 and these lines: {2, 3459}, {3, 12325}, {4, 13512}, {195, 6592}, {1656, 20413}, {3523, 25042}, {6150, 11271}, {11671, 25148}, {13432, 24305}, {25044, 32637}

X(58927) = reflection of X(i) in X(j) for these {i,j}: {3459, 21975}, {11671, 25148}
X(58927) = anticomplement of X(3459)
X(58927) = anticomplement of the isogonal conjugate of X(195)
X(58927) = anticomplement of the isotomic conjugate of X(45799)
X(58927) = anticomplementary isogonal conjugate of X(12325)
X(58927) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 12325}, {163, 20577}, {195, 8}, {2964, 3459}, {45799, 6327}, {58903, 21221}
X(58927) = X(45799)-Ceva conjugate of X(2)
X(58927) = {X(3459),X(21975)}-harmonic conjugate of X(2)


X(58928) = X(1)X(75)∩X(2)X(647)

Barycentrics    b*c*(b + c)*(a^6 - 2*a^4*b^2 + a^2*b^4 + 2*a^4*b*c - 2*a^4*c^2 - a^2*b^2*c^2 + b^4*c^2 - 2*b^3*c^3 + a^2*c^4 + b^2*c^4) : :

X(58928) lies on these lines: {1, 75}, {2, 647}, {4554, 16598}, {6758, 23989}.

X(58928) = crossdifference of every pair of points on line {237, 798}.


X(58929) = X(1)X(6)∩X(2)X(647)

Barycentrics    a*(a^5*b^3 - a^4*b^4 - a^3*b^5 + a^2*b^6 - a*b^5*c^2 + b^6*c^2 + a^5*c^3 + a*b^4*c^3 - a^4*c^4 + a*b^3*c^4 - 2*b^4*c^4 - a^3*c^5 - a*b^2*c^5 + a^2*c^6 + b^2*c^6) : :

X(58929) lies on these lines: {1, 6}, {2, 647}, {21, 14966}, {34359, 35044}.

X(58929) = crossdifference of every pair of points on line {237, 513}.


X(58930) = X(1)X(3)∩X(2)X(647)

Barycentrics    a*(a^6*b^3 - 2*a^4*b^5 + a^2*b^7 - a^5*b^3*c + a^4*b^4*c + a^3*b^5*c - a^2*b^6*c - a^2*b^5*c^2 + b^7*c^2 + a^6*c^3 - a^5*b*c^3 + a^2*b^4*c^3 - b^6*c^3 + a^4*b*c^4 + a^2*b^3*c^4 - 2*a^4*c^5 + a^3*b*c^5 - a^2*b^2*c^5 - a^2*b*c^6 - b^3*c^6 + a^2*c^7 + b^2*c^7) : :

X(58930) lies on these lines: {1, 3}, {2, 647}, {81, 14966}, {17861, 27918}.

X(58930) = crossdifference of every pair of points on line {237, 650}.


X(58931) = X(1)X(4)∩X(2)X(647)

Barycentrics    a^8*b^2 - a^6*b^4 - a^4*b^6 + a^2*b^8 - a^7*b^2*c + a^6*b^3*c + a^3*b^6*c - a^2*b^7*c + a^8*c^2 - a^7*b*c^2 - 2*a^6*b^2*c^2 + a^5*b^3*c^2 + 2*a^4*b^4*c^2 - a^3*b^5*c^2 - 2*a^2*b^6*c^2 + a*b^7*c^2 + b^8*c^2 + a^6*b*c^3 + a^5*b^2*c^3 - 2*a^4*b^3*c^3 + a^2*b^5*c^3 + a*b^6*c^3 - 2*b^7*c^3 - a^6*c^4 + 2*a^4*b^2*c^4 + 2*a^2*b^4*c^4 - 2*a*b^5*c^4 - b^6*c^4 - a^3*b^2*c^5 + a^2*b^3*c^5 - 2*a*b^4*c^5 + 4*b^5*c^5 - a^4*c^6 + a^3*b*c^6 - 2*a^2*b^2*c^6 + a*b^3*c^6 - b^4*c^6 - a^2*b*c^7 + a*b^2*c^7 - 2*b^3*c^7 + a^2*c^8 + b^2*c^8 : :

X(58931) = X(58931) lies on these lines: {1, 4}, {2, 647}, {10097, 52764}, {41083, 58070}.

crossdifference of every pair of points on line {237, 652}.


X(58932) = X(1)X(514)∩X(2)X(647)

Barycentrics    (b - c)*(-(a^6*b) + a^2*b^5 - a^6*c + a^5*b*c + a^4*b^2*c - a^3*b^3*c + a^4*b*c^2 - a^3*b^2*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 - a^3*b*c^3 + 2*a^2*b^2*c^3 - 2*a*b^3*c^3 - b^4*c^3 - a*b^2*c^4 - b^3*c^4 + a^2*c^5 + b^2*c^5) : :

X(58932) lies on these lines: {1, 514}, {2, 647}, {92, 6591}, {693, 25098}, {4017, 4444}.

X(58932) = crossdifference of every pair of points on line {237, 672}.


X(58933) = X(1)X(513)∩X(2)X(647)

Barycentrics    a*(b - c)*(a^5*b^2 + a^4*b^3 - a^3*b^4 - a^2*b^5 + a^5*b*c - a^4*b^2*c - a^3*b^3*c + a^2*b^4*c + a^5*c^2 - a^4*b*c^2 - a^3*b^2*c^2 + a^2*b^3*c^2 - a*b^4*c^2 - b^5*c^2 + a^4*c^3 - a^3*b*c^3 + a^2*b^2*c^3 - 2*a*b^3*c^3 + 3*b^4*c^3 - a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 + 3*b^3*c^4 - a^2*c^5 - b^2*c^5) : :

X(58933) lies on these lines: {1, 513}, {2, 647}, {905, 25590}.

X(58933) = crossdifference of every pair of points on line {44, 237}.


X(58934) = X(1)X(21)∩X(2)X(647)

Barycentrics    a*(b + c)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - a^6*b*c + 2*a^4*b^3*c - a^2*b^5*c + a^6*c^2 - 2*a^4*b^2*c^2 + b^6*c^2 + 2*a^4*b*c^3 + a^2*b^3*c^3 - b^5*c^3 - 2*a^4*c^4 - a^2*b*c^5 - b^3*c^5 + a^2*c^6 + b^2*c^6) : :

X(58934) lies on these lines: {1, 21}, {2, 647}, {523, 24499}, {4154, 16598}, {17886, 23993}, {24403, 25255}.

X(58934) = crossdifference of every pair of points on line {237, 661}.


X(58935) = X(1)X(649)∩X(2)X(647)

Barycentrics    a*(b - c)*(2*a^5*b^3 - 2*a^3*b^5 + a^5*b^2*c - a^4*b^3*c - a^3*b^4*c + a^2*b^5*c + a^5*b*c^2 - a^4*b^2*c^2 - a^3*b^3*c^2 + a^2*b^4*c^2 - 2*a*b^5*c^2 + 2*a^5*c^3 - a^4*b*c^3 - a^3*b^2*c^3 + a^2*b^3*c^3 + b^5*c^3 - a^3*b*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 2*a^3*c^5 + a^2*b*c^5 - 2*a*b^2*c^5 + b^3*c^5) : :

X(58935) lies on these lines: {1, 649}, {2, 647}.

X(58935) = crossdifference of every pair of points on line {237, 899}.


X(58936) = X(1)X(312)∩X(2)X(647)

Barycentrics    b*c*(a^7*b - a^6*b^2 - a^3*b^5 + a^2*b^6 + a^7*c + 2*a^6*b*c - 2*a^4*b^3*c + a^3*b^4*c + 2*a^2*b^5*c - a^6*c^2 - a^3*b^3*c^2 - a*b^5*c^2 + b^6*c^2 - 2*a^4*b*c^3 - a^3*b^2*c^3 - 2*a^2*b^3*c^3 + a*b^4*c^3 + a^3*b*c^4 + a*b^3*c^4 - 2*b^4*c^4 - a^3*c^5 + 2*a^2*b*c^5 - a*b^2*c^5 + a^2*c^6 + b^2*c^6) : :

X(58936) lies on these lines: {1, 312}, {2, 647}.


X(58937) = X(1)X(190)∩X(2)X(647)

Barycentrics    2*a^6*b^3 - 2*a^5*b^4 - 2*a^4*b^5 + 2*a^3*b^6 - a^6*b^2*c + 2*a^4*b^4*c - a^2*b^6*c - a^6*b*c^2 - 3*a^2*b^5*c^2 + 2*a*b^6*c^2 + 2*a^6*c^3 + 3*a^2*b^4*c^3 - b^6*c^3 - 2*a^5*c^4 + 2*a^4*b*c^4 + 3*a^2*b^3*c^4 - 4*a*b^4*c^4 + b^5*c^4 - 2*a^4*c^5 - 3*a^2*b^2*c^5 + b^4*c^5 + 2*a^3*c^6 - a^2*b*c^6 + 2*a*b^2*c^6 - b^3*c^6 : :

X(58937) lies on these lines: {1, 190}, {2, 647}, {35044, 53194}.

X(58937) = crossdifference of every pair of points on line {237, 3768}.


X(58938) = X(1)X(88)∩X(2)X(647)

Barycentrics    a*(a^6*b^3 - 2*a^4*b^5 + a^2*b^7 - 2*a^5*b^3*c + 2*a^4*b^4*c + 2*a^3*b^5*c - 2*a^2*b^6*c - a^2*b^5*c^2 + b^7*c^2 + a^6*c^3 - 2*a^5*b*c^3 + a^2*b^4*c^3 - 2*b^6*c^3 + 2*a^4*b*c^4 + a^2*b^3*c^4 + b^5*c^4 - 2*a^4*c^5 + 2*a^3*b*c^5 - a^2*b^2*c^5 + b^4*c^5 - 2*a^2*b*c^6 - 2*b^3*c^6 + a^2*c^7 + b^2*c^7) : :

X(58938) lies on these lines: {1, 88}, {2, 647}.

X(58938) = crossdifference of every pair of points on line {237, 1635}.


X(58939) = X(1)X(87)∩X(2)X(647)

Barycentrics    a^6*b^3 - a^5*b^4 - a^4*b^5 + a^3*b^6 - a^6*b^2*c + 2*a^4*b^4*c - a^2*b^6*c - a^6*b*c^2 - 2*a^2*b^5*c^2 + a*b^6*c^2 + a^6*c^3 + 2*a^2*b^4*c^3 - b^6*c^3 - a^5*c^4 + 2*a^4*b*c^4 + 2*a^2*b^3*c^4 - 2*a*b^4*c^4 + b^5*c^4 - a^4*c^5 - 2*a^2*b^2*c^5 + b^4*c^5 + a^3*c^6 - a^2*b*c^6 + a*b^2*c^6 - b^3*c^6 : :

X(58939) lies on these lines: {1, 87}, {2, 647}, {7763, 27514}.

X(58939) = crossdifference of every pair of points on line {237, 20979}.


X(58940) = X(30)X(94)∩X(50)X(74)

Barycentrics    a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - a^2*c^2 - b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(58940) lies on these lines: {3, 323}, {30, 94}, {50, 74}, {186, 35372}, {523, 9409}, {566, 5890}, {847, 6240}, {1986, 3003}, {3580, 39170}, {7811, 44133}, {10419, 22455}, {13754, 34834}, {18365, 19457}, {19902, 32231}, {32710, 51458}, {37118, 43530}, {51456, 54959}.

X(58940) = X(22455)-Ceva conjugate of X(3431). X(58940) = X(i)-isoconjugate of X(j) for these (i,j): {381, 36053}, {1300, 18477}, {10419, 18486}. X(58940) = X(i)-Dao conjugate of X(j) for these (i,j): {113, 381}, {3580, 52149}, {34834, 44135}. X(58940) = barycentric product X(i)*X(j) for these {i,j}: {403, 56266}, {3003, 57822}, {3431, 3580}, {13754, 43530}, {14264, 46809}, {18316, 34834}. X(58940) = barycentric quotient X(i)/X(j) for these {i,j}: {2315, 18477}, {3003, 381}, {3431, 2986}, {3580, 44135}, {13754, 37638}, {14264, 46808}, {18316, 40427}, {34834, 52149}, {46809, 52552}, {47405, 1531}, {51545, 15454}, {51821, 51544}, {56266, 57829}, {57822, 40832}.


X(58941) = X(3)X(323)∩X(50)X(184)

Barycentrics    a^4*(2*a^4 - 4*a^2*b^2 + 2*b^4 - a^2*c^2 - b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 - 4*a^2*c^2 - b^2*c^2 + 2*c^4) : :

X(58941) lies on the cubic K503 and these lines: {3, 323}, {6, 52153}, {25, 9407}, {32, 34397}, {50, 184}, {98, 5094}, {381, 7578}, {566, 44109}, {878, 17414}, {1799, 7788}, {2351, 11402}, {3425, 21284}, {7507, 34449}, {8884, 12173}, {14575, 40352}, {14908, 34396}, {17809, 51477}, {26864, 51545}, {31152, 46809}, {34448, 40947}, {41907, 42974}, {41908, 42975}, {57136, 58310}.

X(58941) = isogonal conjugate of X(44135). X(58941) = isogonal conjugate of the anticomplement of X(566). X(58941) = isogonal conjugate of the isotomic conjugate of X(3431). X(58941) = X(i)-isoconjugate of X(j) for these (i,j): {1, 44135}, {75, 381}, {92, 37638}, {264, 18477}, {561, 34417}, {1494, 18486}, {1928, 34416}, {1969, 5158}, {2166, 52149}, {4993, 14213}, {14206, 46808}, {18487, 33805}, {18695, 58785}, {32225, 46277}, {46234, 51544}. X(58941) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 44135}, {206, 381}, {11597, 52149}, {22391, 37638}, {40368, 34417}, {40369, 34416}. X(58941) = cevapoint of X(i) and X(j) for these (i,j): {14575, 52438}, {18117, 20975}. X(58941) = trilinear pole of line {3049, 14270}. X(58941) = barycentric product X(i)*X(j) for these {i,j}: {6, 3431}, {25, 56266}, {32, 57822}, {50, 18316}, {53, 46091}, {74, 51545}, {184, 43530}, {577, 16263}, {3284, 22455}, {14270, 54959}, {40352, 46809}. X(58941) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 44135}, {32, 381}, {50, 52149}, {184, 37638}, {1501, 34417}, {3431, 76}, {9233, 34416}, {9247, 18477}, {9406, 18486}, {9407, 18487}, {14567, 32225}, {14575, 5158}, {16263, 18027}, {18316, 20573}, {19627, 3581}, {34416, 36430}, {40352, 46808}, {43530, 18022}, {46091, 34386}, {51545, 3260}, {52438, 4550}, {54034, 4993}, {56266, 305}, {57822, 1502}.


X(58942) = X(4)X(110)∩X(30)X(50)

Barycentrics    (a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :
X(58942) = 3 X[12028] - 2 X[51456].

X(58942) lies on these lines: {3, 46260}, {4, 110}, {23, 39986}, {30, 50}, {74, 94}, {265, 18780}, {690, 15328}, {4550, 44135}, {7527, 40604}, {7530, 51895}, {7578, 15033}, {10296, 10420}, {10419, 57471}, {14674, 15478}, {15107, 40427}, {16077, 40423}, {18300, 18867}, {18575, 31861}, {21268, 57636}, {21269, 47336}, {23698, 49669}, {43689, 56272}.

X(58942) = X(i)-isoconjugate of X(j) for these (i,j): {1725, 3431}, {2315, 43530}. X(58942) = X(4550)-Dao conjugate of X(13754). X(58942) = cevapoint of X(i) and X(j) for these (i,j): {381, 3581}, {18487, 34417}. X(58942) = barycentric product X(i)*X(j) for these {i,j}: {381, 2986}, {1300, 37638}, {3581, 40427}, {14910, 44135}, {15454, 46808}, {18487, 40423}, {34417, 40832}, {51544, 52552}. X(58942) = barycentric quotient X(i)/X(j) for these {i,j}: {381, 3580}, {1300, 43530}, {2986, 57822}, {3581, 34834}, {5158, 13754}, {5504, 56266}, {14910, 3431}, {15454, 46809}, {18487, 113}, {34417, 3003}, {40388, 22455}, {51544, 14264}. X(58942) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1300, 2986, 15454}, {2986, 15454, 5504}.


X(58943) = X(4)X(74)∩X(94)X(110)

Barycentrics    a^12 - 2*a^10*b^2 + 2*a^6*b^6 - a^4*b^8 - 2*a^10*c^2 + 5*a^8*b^2*c^2 - 3*a^6*b^4*c^2 - a^4*b^6*c^2 - a^2*b^8*c^2 + 2*b^10*c^2 - 3*a^6*b^2*c^4 + 4*a^4*b^4*c^4 + a^2*b^6*c^4 - 8*b^8*c^4 + 2*a^6*c^6 - a^4*b^2*c^6 + a^2*b^4*c^6 + 12*b^6*c^6 - a^4*c^8 - a^2*b^2*c^8 - 8*b^4*c^8 + 2*b^2*c^10 : :

X(58943) lies on these lines: {3, 46260}, {4, 74}, {23, 58849}, {94, 110}, {421, 9418}, {450, 44138}, {468, 44529}, {523, 11079}, {1316, 47208}, {2970, 13198}, {3549, 34844}, {5169, 30789}, {5622, 58261}, {5651, 44135}, {5966, 53693}, {6036, 7493}, {7471, 53768}, {7578, 15019}, {9970, 46124}, {11799, 57305}, {11801, 18576}, {15061, 39235}, {15366, 57324}, {18121, 18384}, {21315, 47336}, {32227, 53495}, {41221, 44891}, {58723, 58924}.


X(58944) = X(19)X(105)∩X(102)X(949)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)-(a+b)^2*c+(a+b)*c^2-c^3)*(a^3-a^2*(b+c)+a*(b^2-2*b*c-c^2)-(b-c)*(b^2+c^2)) : :

X(58944) lies on the circumcircle and these lines: {4, 38959}, {19, 105}, {102, 949}, {103, 3423}, {284, 26702}, {607, 28848}, {653, 927}, {919, 8750}, {934, 32674}, {1292, 1783}, {1415, 59128}, {2202, 2724}, {2291, 11383}, {4587, 52778}, {26703, 56098}, {28844, 45974}, {39273, 43363}, {43079, 52427}, {53290, 58945}

X(58944) = inverse of X(38959) in polar circle
X(58944) = trilinear pole of line {6, 2212}
X(58944) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 47123}, {348, 6182}, {521, 948}, {656, 16054}, {905, 2550}, {2263, 6332}, {3900, 23603}, {4025, 40131}, {15413, 37580}
X(58944) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 47123}, {40596, 16054}
X(58944) = X(i)-cross conjugate of X(j) for these {i, j}: {50336, 57386}
X(58944) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(653)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(284), X(1461)}}, {{A, B, C, X(1415), X(4587)}}, {{A, B, C, X(1813), X(32652)}}
X(58944) = barycentric product X(i)*X(j) for these (i, j): {33, 6183}, {108, 56098}, {653, 949}, {1783, 39273}, {1861, 58989}, {1897, 3423}, {32674, 58004}
X(58944) = barycentric quotient X(i)/X(j) for these (i, j): {25, 47123}, {112, 16054}, {949, 6332}, {1461, 23603}, {2212, 6182}, {3423, 4025}, {6183, 7182}, {8750, 2550}, {32674, 948}, {39273, 15413}, {56098, 35518}, {58989, 31637}


X(58945) = X(100)X(32674)∩X(1310)X(1813)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)+(a+b)^2*c+(a+b)*c^2+c^3)*(a^3+a^2*(b-c)+a*(b^2+2*b*c-c^2)+(b+c)*(b^2+c^2)) : :

X(58945) lies on the circumcircle and these lines: {100, 32674}, {1310, 1813}, {1415, 32691}, {8687, 8750}, {53290, 58944}

X(58945) = trilinear pole of line {6, 1395}
X(58945) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 47136}, {513, 23600}, {522, 10319}, {905, 2551}, {4025, 54359}, {6332, 54418}
X(58945) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 47136}, {39026, 23600}
X(58945) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1415), X(1813)}}, {{A, B, C, X(4587), X(32652)}}, {{A, B, C, X(36049), X(46640)}}
X(58945) = barycentric quotient X(i)/X(j) for these (i, j): {25, 47136}, {101, 23600}, {1415, 10319}, {8750, 2551}


X(58946) = X(6)X(28193)∩X(103)X(386)

Barycentrics    a^2*(a-b)*(a-c)*((a+b)^3+(a-b)^2*c-(a+b)*c^2-c^3)*((a-b)*(a+b)^2+(a-b)*(3*a+b)*c+(3*a+b)*c^2+c^3) : :

X(58946) lies on the circumcircle and these lines: {6, 28193}, {102, 36744}, {103, 386}, {104, 4264}, {163, 59069}, {835, 2398}, {1384, 17223}, {1415, 8059}, {2700, 51619}, {2708, 50361}, {8750, 40117}, {9105, 34244}, {26715, 53290}, {53325, 58957}

X(58946) = trilinear pole of line {6, 2187}
X(58946) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 34255}, {514, 57279}, {693, 54322}, {4391, 34046}
X(58946) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 34255}
X(58946) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(3939)}}, {{A, B, C, X(386), X(2398)}}, {{A, B, C, X(644), X(4565)}}, {{A, B, C, X(1415), X(8750)}}, {{A, B, C, X(1461), X(1783)}}
X(58946) = barycentric product X(i)*X(j) for these (i, j): {40, 58990}, {14550, 58991}, {34244, 8694}
X(58946) = barycentric quotient X(i)/X(j) for these (i, j): {101, 34255}, {692, 57279}, {32739, 54322}, {58990, 309}


X(58947) = X(741)X(1437)∩X(813)X(906)

Barycentrics    a^2*(a-b)*(a-c)*(a^3+b^3-(a^2+a*b+b^2)*c)*(a^3-a^2*b-a*b*c+c^2*(-b+c)) : :

X(58947) lies on the circumcircle and these lines: {105, 28082}, {601, 29326}, {675, 29681}, {692, 29052}, {741, 1437}, {813, 906}, {927, 32666}, {2726, 53619}, {6012, 35338}, {29241, 40499}

X(58947) = isogonal conjugate of X(23877)
X(58947) = trilinear pole of line {6, 1626}
X(58947) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23877}, {513, 29641}, {523, 5208}, {693, 3779}, {3261, 5364}
X(58947) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23877}, {39026, 29641}
X(58947) = X(i)-cross conjugate of X(j) for these {i, j}: {15509, 15386}, {20845, 250}
X(58947) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(906), X(1437)}}, {{A, B, C, X(1026), X(28082)}}, {{A, B, C, X(1414), X(32653)}}, {{A, B, C, X(5546), X(32735)}}
X(58947) = barycentric product X(i)*X(j) for these (i, j): {34083, 41}
X(58947) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23877}, {101, 29641}, {163, 5208}, {32739, 3779}, {34083, 20567}


X(58948) = X(2)X(43658)∩X(74)X(5012)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-b^2*c^2-c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2-a^2*(b^4+b^2*c^2-c^4)) : :

X(58948) lies on the circumcircle and these lines: {2, 43658}, {74, 5012}, {98, 5169}, {99, 52603}, {476, 1576}, {648, 52998}, {935, 14480}, {1141, 50471}, {1287, 35278}, {1300, 18559}, {1625, 59002}, {2367, 57899}, {2715, 36828}, {9060, 38861}, {11422, 39837}, {32661, 59003}, {36829, 58975}

X(58948) = anticomplement of X(46661)
X(58948) = trilinear pole of line {6, 2070}
X(58948) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 18117}, {566, 1577}, {656, 7577}, {1109, 36829}, {23039, 24006}, {32679, 56408}
X(58948) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 18117}, {40596, 7577}, {46661, 46661}
X(58948) = X(i)-cross conjugate of X(j) for these {i, j}: {381, 250}, {18117, 6}
X(58948)= pole of line {18117, 51391} with respect to the Stammler hyperbola
X(58948) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(40173)}}, {{A, B, C, X(1576), X(52603)}}, {{A, B, C, X(2420), X(14805)}}, {{A, B, C, X(4230), X(5169)}}, {{A, B, C, X(4240), X(18570)}}, {{A, B, C, X(15329), X(18559)}}, {{A, B, C, X(18316), X(36829)}}, {{A, B, C, X(32697), X(36886)}}
X(58948) = barycentric product X(i)*X(j) for these (i, j): {110, 7578}, {1576, 57899}
X(58948) = barycentric quotient X(i)/X(j) for these (i, j): {32, 18117}, {112, 7577}, {1576, 566}, {2420, 51391}, {2715, 52190}, {7578, 850}, {14560, 56408}, {23357, 36829}, {32661, 23039}, {57899, 44173}


X(58949) = X(74)X(14806)∩X(98)X(7592)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(c^2*(b^2-c^2)^3+a^2*(b-c)*(b+c)*(2*b^2-3*c^2)*(b^2+c^2)+a^6*(2*b^2+c^2)-a^4*(4*b^4+3*b^2*c^2+3*c^4))*(-(b^2*(b^2-c^2)^3)+a^2*(b-c)*(b+c)*(3*b^2-2*c^2)*(b^2+c^2)+a^6*(b^2+2*c^2)-a^4*(3*b^4+3*b^2*c^2+4*c^4)) : :

X(58949) lies on the circumcircle and these lines: {74, 14806}, {98, 7592}, {648, 39418}, {925, 1625}, {1576, 32692}, {2367, 57902}, {32661, 59004}

X(58949) = trilinear pole of line {6, 3135}
X(58949) = X(i)-isoconjugate-of-X(j) for these {i, j}: {569, 1577}, {656, 52253}
X(58949) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 52253}
X(58949) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(14586)}}, {{A, B, C, X(1576), X(1625)}}, {{A, B, C, X(2420), X(14806)}}, {{A, B, C, X(7592), X(58070)}}
X(58949) = barycentric product X(i)*X(j) for these (i, j): {110, 57718}, {1576, 57902}
X(58949) = barycentric quotient X(i)/X(j) for these (i, j): {112, 52253}, {1576, 569}, {57718, 850}, {57902, 44173}


X(58950) = X(4)X(5522)∩X(74)X(1112)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-4*(a^2+b^2)*c^2+3*c^4)*(a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(2*b^2+c^2)) : :
X(58950) = -3*X[2]+2*X[46662]

X(58950) lies on the circumcircle and these lines: {2, 46662}, {4, 5522}, {25, 43662}, {74, 1112}, {98, 6995}, {99, 35360}, {104, 1871}, {110, 52604}, {111, 34818}, {477, 37931}, {842, 37977}, {907, 4230}, {933, 32713}, {1141, 18384}, {1294, 3522}, {1297, 7485}, {1624, 9064}, {2373, 8797}, {2693, 37944}, {2697, 37900}, {4240, 59038}, {26702, 56033}, {35325, 59115}, {50947, 58116}, {52917, 58994}

X(58950) = inverse of X(5522) in polar circle
X(58950) = anticomplement of X(46662)
X(58950) = trilinear pole of line {6, 1598}
X(58950) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 47122}, {631, 656}, {810, 44149}, {1577, 36748}, {3087, 24018}, {11402, 14208}
X(58950) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 47122}, {39062, 44149}, {40596, 631}, {46662, 46662}
X(58950) = X(i)-cross conjugate of X(j) for these {i, j}: {578, 32230}, {3517, 250}, {17810, 23964}, {17821, 15384}
X(58950)= pole of line {5522, 46662} with respect to the polar circle
X(58950) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1593), X(4240)}}, {{A, B, C, X(1871), X(53151)}}, {{A, B, C, X(2409), X(7485)}}, {{A, B, C, X(3522), X(46587)}}, {{A, B, C, X(3567), X(58071)}}, {{A, B, C, X(4230), X(6995)}}, {{A, B, C, X(7473), X(37977)}}, {{A, B, C, X(7480), X(37931)}}, {{A, B, C, X(11794), X(15352)}}, {{A, B, C, X(16813), X(46639)}}, {{A, B, C, X(18384), X(32713)}}, {{A, B, C, X(31510), X(37944)}}, {{A, B, C, X(37900), X(37937)}}
X(58950) = barycentric product X(i)*X(j) for these (i, j): {110, 8796}, {112, 8797}, {162, 56033}, {3527, 648}, {34818, 99}
X(58950) = barycentric quotient X(i)/X(j) for these (i, j): {25, 47122}, {112, 631}, {648, 44149}, {1576, 36748}, {3527, 525}, {8796, 850}, {8797, 3267}, {32713, 3087}, {34818, 523}, {56033, 14208}


X(58951) = X(100)X(163)∩X(101)X(1576)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+a*(b+c)+b*(b+c))*(a^2+a*(b+c)+c*(b+c)) : :

X(58951) lies on the circumcircle and these lines: {6, 52327}, {58, 28476}, {74, 57704}, {98, 7380}, {99, 4556}, {100, 163}, {101, 1576}, {110, 57062}, {675, 56047}, {692, 29014}, {759, 2214}, {839, 37218}, {1625, 59005}, {2328, 38883}, {2367, 57824}, {2373, 57876}, {2690, 43927}, {4565, 29279}, {4570, 29341}, {5546, 8701}, {32661, 59006}, {39435, 53081}

X(58951) = isogonal conjugate of X(23879)
X(58951) = trilinear pole of line {6, 199}
X(58951) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23879}, {2, 47842}, {10, 14349}, {37, 45746}, {75, 42664}, {76, 50488}, {81, 23282}, {321, 834}, {386, 1577}, {469, 656}, {512, 33935}, {513, 56810}, {523, 28606}, {649, 42714}, {661, 5224}, {693, 56926}, {1089, 52615}, {3125, 33948}, {3876, 7178}, {4041, 33949}, {8637, 27801}, {14208, 44103}
X(58951) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23879}, {206, 42664}, {5375, 42714}, {32664, 47842}, {36830, 5224}, {39026, 56810}, {39054, 33935}, {40586, 23282}, {40589, 45746}, {40596, 469}
X(58951) = X(i)-cross conjugate of X(j) for these {i, j}: {1011, 250}, {5248, 15378}, {8637, 3453}, {42664, 6}
X(58951)= pole of line {14349, 23879} with respect to the Stammler hyperbola
X(58951) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(1576)}}, {{A, B, C, X(648), X(34076)}}, {{A, B, C, X(4230), X(7380)}}, {{A, B, C, X(4568), X(35325)}}, {{A, B, C, X(42664), X(52327)}}
X(58951) = barycentric product X(i)*X(j) for these (i, j): {58, 835}, {101, 56047}, {110, 43531}, {112, 57876}, {1333, 37218}, {1576, 57824}, {2206, 57977}, {2214, 662}, {43927, 4570}, {57704, 648}
X(58951) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23879}, {31, 47842}, {32, 42664}, {42, 23282}, {58, 45746}, {100, 42714}, {101, 56810}, {110, 5224}, {112, 469}, {163, 28606}, {560, 50488}, {662, 33935}, {835, 313}, {1333, 14349}, {1576, 386}, {2206, 834}, {2214, 1577}, {4565, 33949}, {4570, 33948}, {32739, 56926}, {37218, 27801}, {43531, 850}, {43927, 21207}, {56047, 3261}, {57704, 525}, {57824, 44173}, {57876, 3267}


X(58952) = X(64)X(29180)∩X(1192)X(1297)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*(a^4+6*a^2*b^2+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c))*(a^4-2*a^2*(b^2-3*c^2)+(b^2-c^2)^2) : :

X(58952) lies on the circumcircle and these lines: {64, 29180}, {99, 46639}, {1192, 1297}, {1294, 52223}, {13526, 15740}, {32713, 59087}

X(58952) = trilinear pole of line {6, 1661}
X(58952) = X(i)-isoconjugate-of-X(j) for these {i, j}: {17811, 17898}
X(58952) = barycentric product X(i)*X(j) for these (i, j): {1301, 15740}, {40174, 53886}, {46639, 52223}, {59038, 64}
X(58952) = barycentric quotient X(i)/X(j) for these (i, j): {1301, 32000}, {46639, 32830}, {59038, 14615}


X(58953) = X(6)X(53938)∩X(67)X(6325)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^2+b^2)-c^2)*(2*a^2-b^2+2*c^2)*(a^4-a^2*b^2+b^4-c^4)*(a^4-b^4-a^2*c^2+c^4) : :

X(58953) lies on the circumcircle and these lines: {6, 53938}, {67, 6325}, {98, 10511}, {99, 17708}, {107, 8599}, {111, 18374}, {112, 30491}, {842, 1383}, {2367, 10512}, {2373, 51541}, {2697, 43273}, {2770, 20382}, {3455, 6323}, {10415, 14567}, {11636, 36828}, {30489, 53945}, {32729, 39413}, {43697, 53929}

X(58953) = trilinear pole of line {6, 3455}
X(58953) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1577, 10510}, {3906, 16568}, {9979, 36263}, {17414, 20944}
X(58953) = X(i)-cross conjugate of X(j) for these {i, j}: {17414, 10415}, {21419, 250}, {23288, 57729}
X(58953) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(8599), X(30491)}}, {{A, B, C, X(18374), X(32729)}}
X(58953) = barycentric product X(i)*X(j) for these (i, j): {1383, 17708}, {3455, 35138}, {10511, 110}, {10512, 1576}, {11636, 67}, {20380, 39413}, {43697, 935}
X(58953) = barycentric quotient X(i)/X(j) for these (i, j): {1383, 9979}, {1576, 10510}, {3455, 3906}, {10511, 850}, {10512, 44173}, {11636, 316}, {17708, 9464}, {35138, 40074}


X(58954) = X(79)X(9103)∩X(759)X(34819)

Barycentrics    a^2*(a-b)*(a-c)*(2*(a+b)+c)*(2*a+b+2*c)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2) : :

X(58954) lies on these lines: {79, 9103}, {759, 34819}, {6186, 28326}, {13486, 43356}, {15168, 56221}, {21793, 52375}, {26700, 36075}, {28471, 56343}

X(58954) = isogonal conjugate of X(23883)
X(58954) = trilinear pole of line {6, 6186}
X(58954) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23883}, {35, 4823}, {319, 4813}, {1442, 4820}, {1698, 14838}, {2605, 28605}, {3219, 4802}, {3678, 4960}, {3969, 4840}, {4467, 16777}, {4654, 35057}, {4658, 7265}, {4756, 7202}, {4834, 33939}, {4838, 56934}, {5221, 57066}, {5333, 57099}, {34016, 48005}
X(58954) = X(i)-cross conjugate of X(j) for these {i, j}: {4834, 57419}
X(58954) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(36075)}}
X(58954) = barycentric product X(i)*X(j) for these (i, j): {79, 8652}, {2160, 37211}, {13486, 56221}, {15455, 34819}, {26700, 56203}, {32042, 6186}, {56343, 6742}
X(58954) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23883}, {2160, 4823}, {6186, 4802}, {6742, 30596}, {8652, 319}, {25417, 18160}, {28625, 7265}, {34819, 14838}, {37211, 33939}, {56193, 4066}, {56343, 4467}


X(58955) = X(99)X(5385)∩X(100)X(5549)

Barycentrics    a^2*(a-b)*(a-c)*(2*(a+b)-c)*(2*a-b+2*c)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2) : :

X(58955) lies on the circumcircle and these lines: {80, 9093}, {99, 5385}, {100, 5549}, {106, 7113}, {109, 32675}, {759, 3285}, {840, 2163}, {901, 1983}, {953, 2364}, {991, 28876}, {1023, 43361}, {1168, 2251}, {2718, 28607}, {4604, 13396}, {5170, 53970}, {6187, 28317}, {28159, 52431}, {52924, 59096}

X(58955) = isogonal conjugate of X(23884)
X(58955) = trilinear pole of line {6, 6187}
X(58955) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23884}, {36, 4791}, {45, 4453}, {214, 23598}, {320, 4893}, {513, 27757}, {514, 4867}, {650, 36589}, {758, 47683}, {1022, 36923}, {1443, 4944}, {1870, 49280}, {2099, 3904}, {3218, 4777}, {3679, 3960}, {3738, 5219}, {3936, 4833}, {4089, 4752}, {4511, 43052}, {4653, 4707}, {4671, 53314}, {4767, 53546}, {4775, 20924}, {4814, 17078}, {4945, 53535}, {5235, 53527}, {23352, 51583}, {23838, 36913}
X(58955) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23884}, {15898, 4791}, {39026, 27757}
X(58955) = X(i)-cross conjugate of X(j) for these {i, j}: {4775, 1168}, {23352, 57401}
X(58955) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1983), X(3285)}}, {{A, B, C, X(5549), X(34073)}}, {{A, B, C, X(32675), X(47318)}}
X(58955) = barycentric product X(i)*X(j) for these (i, j): {36, 52934}, {1168, 52924}, {2006, 5549}, {2161, 4604}, {2163, 51562}, {2222, 2320}, {2364, 655}, {4588, 80}, {4597, 6187}, {18359, 34073}, {28607, 36804}, {28658, 47318}, {30608, 32675}
X(58955) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23884}, {101, 27757}, {109, 36589}, {692, 4867}, {2161, 4791}, {2163, 4453}, {2364, 3904}, {4588, 320}, {4597, 40075}, {4604, 20924}, {5549, 32851}, {6187, 4777}, {23344, 36923}, {28607, 3960}, {28658, 4707}, {32675, 5219}, {34073, 3218}, {34079, 47683}, {52431, 49280}, {52924, 1227}, {52934, 20566}


X(58956) = X(99)X(4599)∩X(100)X(4628)

Barycentrics    a^2*(a-b)*(a^2+b^2)*(a-c)*(a^2+c^2)*(a^2+a*b+b^2+c^2)*(a^2+b^2+a*c+c^2) : :

X(58956) lies on the circumcircle and these lines: {82, 9077}, {99, 4599}, {100, 4628}, {110, 34072}, {251, 28479}

X(58956) = isogonal conjugate of X(23885)
X(58956) = trilinear pole of line {6, 20969}
X(58956) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23885}, {38, 47660}, {141, 830}, {1930, 2483}, {2530, 17289}, {3920, 16892}, {5280, 48084}, {8024, 8635}, {16696, 47711}, {16703, 50496}, {21123, 33941}
X(58956) = X(i)-cross conjugate of X(j) for these {i, j}: {8635, 57420}
X(58956) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4599), X(4628)}}, {{A, B, C, X(35309), X(46163)}}
X(58956) = barycentric product X(i)*X(j) for these (i, j): {82, 831}, {46289, 57975}
X(58956) = barycentric quotient X(i)/X(j) for these (i, j): {6, 23885}, {251, 47660}, {831, 1930}, {4628, 17289}, {46288, 2483}, {46289, 830}


X(58957) = X(102)X(2255)∩X(937)X(972)

Barycentrics    a^2*(a-b)*(a-c)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*((a+b)^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3-a^2*(b-3*c)-a*(b-3*c)*(b+c)+(b-c)^2*(b+c))*(a^3+a^2*(b-c)-a*(b-c)^2-(b-c)*(b+c)^2) : :

X(58957) lies on the circumcircle and these lines: {100, 36049}, {101, 32652}, {102, 2255}, {937, 972}, {32674, 58984}, {53325, 58946}

X(58957) = trilinear pole of line {6, 2208}
X(58957) = X(i)-isoconjugate-of-X(j) for these {i, j}: {936, 14837}, {2256, 17896}
X(58957) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32652), X(36049)}}
X(58957) = barycentric product X(i)*X(j) for these (i, j): {2255, 44327}, {13138, 937}, {14551, 58990}, {32652, 58001}, {58991, 84}
X(58957) = barycentric quotient X(i)/X(j) for these (i, j): {937, 17896}, {2255, 14837}, {32652, 936}, {58991, 322}


X(58958) = X(87)X(9082)∩X(727)X(2162)

Barycentrics    (a-b)*(a-c)*(a^3*(b-c)^2-a*b^2*c^2)^2 : :

X(58958) lies on the circumcircle and these lines: {87, 9082}, {99, 32039}, {100, 34071}, {105, 53678}, {106, 53146}, {190, 35572}, {675, 53677}, {727, 2162}, {767, 53679}, {3222, 56053}, {4598, 8709}, {15323, 15373}, {23086, 59019}, {23493, 35105}

X(58958) = isogonal conjugate of X(23886)
X(58958) = isotomic conjugate of X(58377)
X(58958) = trilinear pole of line {6, 7121}
X(58958) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23886}, {2, 25142}, {31, 58377}, {43, 3835}, {75, 57050}, {192, 4083}, {513, 53675}, {514, 53676}, {649, 8026}, {668, 40610}, {693, 53145}, {1423, 4147}, {2176, 20906}, {3123, 4595}, {3971, 18197}, {6376, 20979}, {6377, 36863}, {6382, 8640}, {17217, 20691}, {21051, 27644}, {21138, 52923}, {21834, 33296}, {27538, 43051}, {31008, 50491}
X(58958) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58377}, {3, 23886}, {206, 57050}, {5375, 8026}, {32664, 25142}, {39026, 53675}
X(58958) = X(i)-cross conjugate of X(j) for these {i, j}: {932, 34071}, {1919, 7121}, {35223, 15378}, {41396, 5383}, {41397, 1252}, {57050, 6}
X(58958)= pole of line {23886, 57050} with respect to the Stammler hyperbola
X(58958)= pole of line {17105, 53676} with respect to the Hutson-Moses hyperbola
X(58958)= pole of line {23886, 58377} with respect to the Wallace hyperbola
X(58958) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(649), X(31286)}}, {{A, B, C, X(1978), X(40148)}}, {{A, B, C, X(2162), X(4598)}}
X(58958) = barycentric product X(i)*X(j) for these (i, j): {87, 932}, {100, 53678}, {101, 53677}, {190, 53146}, {330, 34071}, {1919, 57577}, {2162, 4598}, {18830, 7121}, {23493, 56053}, {32039, 6}, {53679, 692}
X(58958) = barycentric quotient X(i)/X(j) for these (i, j): {2, 58377}, {6, 23886}, {31, 25142}, {32, 57050}, {87, 20906}, {100, 8026}, {101, 53675}, {692, 53676}, {932, 6376}, {1919, 40610}, {2053, 4147}, {2162, 3835}, {4598, 6382}, {7121, 4083}, {15373, 25098}, {21759, 21834}, {23493, 21051}, {32039, 76}, {32739, 53145}, {34071, 192}, {53146, 514}, {53677, 3261}, {53678, 693}, {53679, 40495}


X(58959) = X(74)X(40388)∩X(99)X(687)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2*(a^2+b^2)+(a^2+b^2)^2*c^2-5*(a^2+b^2)*c^4+3*c^6)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+2*b^2*c^2-c^4))*(a^6+a^4*(b-c)*(b+c)+(b^2-c^2)^2*(3*b^2+c^2)-a^2*(5*b^4-2*b^2*c^2+c^4))*(a^6-a^4*(b^2+2*c^2)+(b^3-b*c^2)^2+a^2*(-b^4+2*b^2*c^2+c^4)) : :

X(58959) lies on the circumcircle and these lines: {74, 40388}, {99, 687}, {110, 32708}, {1299, 3003}, {1300, 16310}, {40118, 52487}, {51965, 56710}

X(58959) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(687), X(32708)}}, {{A, B, C, X(3003), X(16310)}}, {{A, B, C, X(32695), X(46456)}}
X(58959) = barycentric product X(i)*X(j) for these (i, j): {1300, 53958}, {10420, 52487}
X(58959) = barycentric quotient X(i)/X(j) for these (i, j): {32708, 37645}


X(58960) = X(1294)X(1990)∩X(1304)X(2442)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+4*(a^2+b^2)*c^2-5*c^4)*(a^4-5*b^4+4*b^2*c^2+c^4+a^2*(4*b^2-2*c^2))*(a^8+a^6*(2*b^2-3*c^2)+b^2*(b^2-c^2)^3+3*a^4*(-2*b^4+b^2*c^2+c^4)+a^2*(b-c)*(b+c)*(2*b^4+5*b^2*c^2+c^4))*(a^8+c^2*(-b^2+c^2)^3+a^6*(-3*b^2+2*c^2)+3*a^4*(b^4+b^2*c^2-2*c^4)-a^2*(b-c)*(b+c)*(b^4+5*b^2*c^2+2*c^4)) : :

X(58960) lies on the circumcircle and these lines: {107, 32646}, {1294, 1990}, {1304, 2442}, {3426, 53914}, {14581, 15404}, {44874, 51990}

X(58960) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1515, 24018}
X(58960) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1990), X(2442)}}
X(58960) = barycentric product X(i)*X(j) for these (i, j): {1294, 9064}, {46968, 52452}
X(58960) = barycentric quotient X(i)/X(j) for these (i, j): {32646, 52147}, {32713, 1515}


X(58961) = X(110)X(6753)∩X(925)X(2501)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*((a^2-b^2)^2-(a^2+b^2)*c^2+2*c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4+2*b^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(58961) lies on the circumcircle and these lines: {99, 32697}, {110, 6753}, {230, 40120}, {925, 2501}, {1300, 32654}, {2165, 40118}, {2383, 38463}, {2489, 44174}, {18347, 56891}, {32692, 58756}

X(58961) = trilinear pole of line {6, 32734}
X(58961) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 57154}, {1733, 52584}, {17881, 56389}
X(58961) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 57154}
X(58961) = X(i)-cross conjugate of X(j) for these {i, j}: {17994, 847}, {52144, 44174}
X(58961) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2501), X(6753)}}
X(58961) = barycentric product X(i)*X(j) for these (i, j): {2165, 32697}, {3563, 925}, {10425, 14593}, {30450, 32654}, {32734, 35142}
X(58961) = barycentric quotient X(i)/X(j) for these (i, j): {25, 57154}, {3563, 6563}, {32654, 52584}, {32697, 7763}, {32734, 3564}


X(58962) = X(99)X(20577)∩X(110)X(57137)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^2+b^2)-3*(a^4+b^4)*c^2+4*(a^2+b^2)*c^4-2*c^6)*(a^4+(b^2-c^2)^2-a^2*(2*b^2+c^2))*(a^4+(b^2-c^2)^2-a^2*(b^2+2*c^2))*(a^6-2*b^6+4*b^4*c^2-3*b^2*c^4+c^6-a^4*(3*b^2+c^2)+a^2*(4*b^4-c^4)) : :

X(58962) lies on the circumcircle and these lines: {99, 20577}, {110, 57137}, {930, 12077}, {2963, 53935}, {55219, 57639}

X(58962) = trilinear pole of line {6, 32737}
X(58962) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(12077), X(20577)}}
X(58962) = barycentric product X(i)*X(j) for these (i, j): {5966, 930}
X(58962) = barycentric quotient X(i)/X(j) for these (i, j): {5966, 41298}, {32737, 5965}


X(58963) = X(6)X(1297)∩X(74)X(1384)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(3*a^4+2*a^2*b^2+3*b^4-2*(a^2+b^2)*c^2-c^4)*(3*a^4-2*a^2*b^2-b^4+2*(a-b)*(a+b)*c^2+3*c^4) : :

X(58963) lies on the circumcircle and these lines: {6, 1297}, {74, 1384}, {98, 3424}, {99, 34211}, {103, 33628}, {107, 23977}, {111, 41424}, {112, 2445}, {187, 2710}, {352, 2763}, {733, 33632}, {842, 2030}, {907, 32661}, {1296, 2420}, {1576, 59114}, {1625, 58102}, {2373, 37643}, {3563, 57262}, {3565, 56980}, {9463, 26717}, {14966, 39639}, {29011, 41413}, {32687, 32713}

X(58963) = trilinear pole of line {6, 33582}
X(58963) = X(i)-isoconjugate-of-X(j) for these {i, j}: {162, 12037}, {525, 23052}, {656, 52283}, {661, 37668}, {1350, 1577}, {2184, 14343}, {10002, 24018}, {14208, 45141}, {17898, 40813}
X(58963) = X(i)-Dao conjugate of X(j) for these {i, j}: {125, 12037}, {36830, 37668}, {40596, 52283}
X(58963) = X(i)-cross conjugate of X(j) for these {i, j}: {41266, 250}
X(58963) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(2445)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1384), X(2420)}}, {{A, B, C, X(2421), X(37689)}}, {{A, B, C, X(2492), X(15453)}}, {{A, B, C, X(4630), X(32661)}}, {{A, B, C, X(6529), X(44766)}}, {{A, B, C, X(14966), X(41412)}}, {{A, B, C, X(15352), X(51316)}}, {{A, B, C, X(33632), X(56980)}}
X(58963) = barycentric product X(i)*X(j) for these (i, j): {110, 3424}, {112, 42287}, {154, 35571}
X(58963) = barycentric quotient X(i)/X(j) for these (i, j): {110, 37668}, {112, 52283}, {154, 14343}, {163, 51304}, {647, 12037}, {1576, 1350}, {2445, 1529}, {3424, 850}, {32676, 23052}, {32696, 45031}, {32713, 10002}, {35571, 41530}, {42287, 3267}


X(58964) = X(1297)X(37486)∩X(3563)X(3567)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^8+(b^2-c^2)^4-4*a^6*(b^2+c^2)+6*a^4*(b^4+c^4)-4*a^2*(b^6-2*b^4*c^2+c^6))*(a^8+(b^2-c^2)^4-4*a^6*(b^2+c^2)+6*a^4*(b^4+c^4)-4*a^2*(b^6-2*b^2*c^4+c^6)) : :

X(58964) lies on the circumcircle and these lines: {1297, 37486}, {1614, 43662}, {3563, 3567}, {13398, 32661}, {32734, 39416}

X(58964) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 37192}, {1577, 36747}
X(58964) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 37192}
X(58964) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6529), X(18315)}}, {{A, B, C, X(14586), X(32713)}}, {{A, B, C, X(32661), X(32734)}}
X(58964) = barycentric quotient X(i)/X(j) for these (i, j): {112, 37192}, {1576, 36747}


X(58965) = X(4)X(31653)∩X(99)X(823)

Barycentrics    a*(a-b)*(a-c)*((a^2-b^2)^2-2*(a+b)^2*c^2+c^4)*(a^4-(b^2-c^2)^2)^2*(a^4-4*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(58965) lies on the circumcircle and these lines: {4, 31653}, {99, 823}, {103, 55105}, {110, 24019}, {675, 55107}, {1783, 15439}, {54240, 58993}

X(58965) = inverse of X(31653) in polar circle
X(58965) = trilinear pole of line {6, 1096}
X(58965) = X(i)-isoconjugate-of-X(j) for these {i, j}: {905, 55104}, {1459, 26872}, {1813, 26956}, {3085, 4091}, {3553, 4131}, {6332, 19349}, {37383, 52613}
X(58965) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(823), X(24019)}}, {{A, B, C, X(1783), X(54240)}}
X(58965) = barycentric product X(i)*X(j) for these (i, j): {101, 55107}, {158, 58992}, {1897, 55105}, {55106, 8750}
X(58965) = barycentric quotient X(i)/X(j) for these (i, j): {1783, 26872}, {8750, 55104}, {18344, 26956}, {55105, 4025}, {55107, 3261}, {58992, 326}


X(58966) = X(98)X(1627)∩X(99)X(46726)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2*b^2*(a^2+b^2)+(a^4+b^4)*c^2-(a^2+b^2)*c^4)*(-(b^4*c^2)+b^2*c^4+a^4*(b^2+c^2)+a^2*(-b^4+c^4)) : :

X(58966) lies on the circumcircle and these lines: {98, 1627}, {99, 46726}, {1297, 38862}, {2373, 53485}, {38834, 39427}

X(58966) = trilinear pole of line {6, 3202}
X(58966) = X(i)-isoconjugate-of-X(j) for these {i, j}: {512, 18051}, {1577, 8266}, {20948, 40643}
X(58966) = X(i)-Dao conjugate of X(j) for these {i, j}: {39054, 18051}
X(58966) = X(i)-cross conjugate of X(j) for these {i, j}: {31296, 251}
X(58966) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2966), X(4630)}}, {{A, B, C, X(3108), X(44766)}}, {{A, B, C, X(4609), X(36827)}}, {{A, B, C, X(11794), X(35325)}}, {{A, B, C, X(16081), X(46726)}}, {{A, B, C, X(32729), X(42396)}}
X(58966) = barycentric product X(i)*X(j) for these (i, j): {110, 55028}
X(58966) = barycentric quotient X(i)/X(j) for these (i, j): {662, 18051}, {1576, 8266}, {14574, 40643}, {55028, 850}


X(58967) = X(1)X(26703)∩X(103)X(595)

Barycentrics    a^2*(a-b)*(a-c)*(a^3+a*(b-c)^2+a^2*(-b+c)-(b-c)*(b^2+c^2))*(a^3+a^2*(b-c)+a*(b-c)^2+(b-c)*(b^2+c^2)) : :

X(58967) lies on the circumcircle and these lines: {1, 26703}, {31, 43363}, {58, 26702}, {98, 36907}, {99, 53643}, {100, 57250}, {102, 995}, {103, 595}, {104, 37817}, {105, 40188}, {675, 39732}, {767, 46740}, {1311, 3086}, {1332, 52778}, {1461, 59128}, {1477, 4306}, {2249, 38832}, {2751, 40091}, {2756, 45763}, {6078, 57217}, {8750, 26706}, {9083, 28016}, {32666, 35185}, {32674, 32688}, {32676, 39417}, {41904, 43161}

X(58967) = trilinear pole of line {6, 1473}
X(58967) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 2509}, {37, 17498}, {522, 8270}, {525, 56832}, {649, 46738}, {650, 28739}, {693, 12329}, {1801, 24006}, {1826, 57144}, {4025, 23050}, {6332, 20613}, {15487, 48070}
X(58967) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 46738}, {32664, 2509}, {39026, 10327}, {40589, 17498}
X(58967) = X(i)-cross conjugate of X(j) for these {i, j}: {905, 58}, {10829, 15386}
X(58967) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32674)}}, {{A, B, C, X(56), X(32653)}}, {{A, B, C, X(58), X(6614)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1332), X(1461)}}, {{A, B, C, X(1783), X(32735)}}, {{A, B, C, X(4306), X(57217)}}, {{A, B, C, X(8750), X(32666)}}
X(58967) = barycentric product X(i)*X(j) for these (i, j): {100, 40188}, {101, 39732}, {109, 41791}, {110, 36907}, {1310, 40184}, {46740, 692}, {53643, 6}
X(58967) = barycentric quotient X(i)/X(j) for these (i, j): {31, 2509}, {58, 17498}, {100, 46738}, {101, 10327}, {109, 28739}, {692, 17742}, {1415, 8270}, {1437, 57144}, {32661, 1801}, {32676, 56832}, {32739, 12329}, {36907, 850}, {39732, 3261}, {40184, 2517}, {40188, 693}, {41791, 35519}, {46740, 40495}, {53643, 76}


X(58968) = X(1)X(10497)∩X(234)X(675)

Barycentrics    a^2*(-a*sa+sqrt(a*b*sa*sb)+sqrt(a*c*sa*sc)-sqrt(b*c*sb*sc)) : :
Barycentrics: a^2*(2*b*c*sin(A/2)-2*a*c*sin(B/2)-2*a*b*sin(C/2)+a*(-a+b+c)) : : (César Lozada, September 29, 2023)

X(58968) lies on the circumcircle and these lines: {1, 10497}, {99, 55341}, {100, 43192}, {104, 7707}, {105, 10490}, {178, 1311}, {234, 675}, {259, 7597}, {927, 55329}

X(58968) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 10495}, {188, 10492}, {6732, 55331}, {7048, 45877}, {10501, 55341}, {21623, 55363}
X(58968) = X(i)-Dao conjugate of X(j) for these {i, j}: {10493, 4391}, {16016, 35519}, {32664, 10495}
X(58968) = X(i)-cross conjugate of X(j) for these {i, j}: {45878, 266}
X(58968) = barycentric product X(i)*X(j) for these (i, j): {1, 43192}, {55, 55329}, {100, 10490}, {101, 234}, {109, 178}, {173, 45875}, {177, 6733}, {259, 55328}, {266, 55342}, {651, 7707}, {2089, 3659}, {13444, 188}, {42622, 45876}, {45874, 7057}, {55341, 6}
X(58968) = barycentric quotient X(i)/X(j) for these (i, j): {31, 10495}, {178, 35519}, {234, 3261}, {3659, 53123}, {7707, 4391}, {10490, 693}, {13444, 4146}, {43192, 75}, {45874, 7048}, {55329, 6063}, {55341, 76}


X(58969) = X(99)X(4559)∩X(105)X(2300)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*a^2*b^2+2*a*b*(a+b)*c+(a+b)^2*c^2+(a+b)*c^3)*(b^2*c*(b+c)+a^2*(b^2+2*b*c+2*c^2)+a*b*(b^2+2*b*c+2*c^2)) : :

X(58969) lies on the circumcircle and these lines: {99, 4559}, {105, 2300}, {692, 59122}, {785, 1415}, {789, 14612}, {2284, 8707}, {4573, 59093}

X(58969) = trilinear pole of line {6, 16872}
X(58969) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(645), X(692)}}, {{A, B, C, X(1415), X(4573)}}, {{A, B, C, X(2284), X(2300)}}


X(58970) = X(101)X(21784)∩X(103)X(500)

Barycentrics    a^2*(a-b)*(a-c)*((a+b)^3+(a^2+a*b+b^2)*c-(a+b)*c^2-c^3)*((a-b)*(a+b)^2+(3*a^2+a*b-b^2)*c+(3*a+b)*c^2+c^3) : :

X(58970) lies on the circumcircle and these lines: {101, 21784}, {103, 500}, {106, 41417}, {163, 59075}, {595, 53688}, {1983, 39630}, {34921, 36075}

X(58970) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 8043}, {1577, 15792}
X(58970) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 8043}
X(58970) = X(i)-cross conjugate of X(j) for these {i, j}: {4983, 58}
X(58970) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(36075)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1018), X(4556)}}, {{A, B, C, X(4559), X(21784)}}, {{A, B, C, X(4629), X(35342)}}
X(58970) = barycentric quotient X(i)/X(j) for these (i, j): {31, 8043}, {1576, 15792}


X(58971) = X(6)X(43657)∩X(98)X(43666)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^8+(b^2-c^2)^4-4*a^6*(b^2+c^2)+3*a^4*(2*b^4+b^2*c^2+2*c^4)+a^2*(-4*b^6+5*b^4*c^2+3*b^2*c^4-4*c^6))*(a^8+(b^2-c^2)^4-4*a^6*(b^2+c^2)+3*a^4*(2*b^4+b^2*c^2+2*c^4)+a^2*(-4*b^6+3*b^4*c^2+5*b^2*c^4-4*c^6)) : :

X(58971) lies on the circumcircle and these lines: {6, 43657}, {98, 43666}, {1291, 35324}, {3563, 6152}, {5966, 22101}, {32737, 39419}, {39431, 46445}

X(58971) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1577, 14627}
X(58971) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(35324)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(14586), X(32737)}}
X(58971) = barycentric product X(i)*X(j) for these (i, j): {110, 43666}, {22101, 930}
X(58971) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 14627}, {22101, 41298}, {43666, 850}


X(58972) = X(31)X(29053)∩X(102)X(1193)

Barycentrics    a^2*(a-b)*(a-c)*((a+b)^2*(a^2+b^2)+(a-b)^2*(a+b)*c-(a^2+b^2)*c^2-(a+b)*c^3)*(a^4-(b-c)*c*(b+c)^2+a^3*(b+2*c)-a^2*(b-c)*(b+2*c)-a*(b^3+b*c^2-2*c^3)) : :

X(58972) lies on the circumcircle and these lines: {31, 29053}, {102, 1193}, {2425, 8687}, {2756, 5529}, {3920, 26703}

X(58972) = trilinear pole of line {6, 22654}
X(58972) = X(i)-isoconjugate-of-X(j) for these {i, j}: {523, 10461}, {3239, 46330}
X(58972) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(162), X(32735)}}, {{A, B, C, X(1193), X(2425)}}, {{A, B, C, X(13138), X(32674)}}, {{A, B, C, X(32651), X(36087)}}, {{A, B, C, X(32714), X(44765)}}, {{A, B, C, X(36037), X(52928)}}
X(58972) = barycentric quotient X(i)/X(j) for these (i, j): {163, 10461}


X(58973) = X(98)X(6759)∩X(933)X(14574)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2*b^2*(a^2-b^2)^2+(a^2+b^2)*(a^4+b^4)*c^2-(2*a^4+3*a^2*b^2+2*b^4)*c^4+(a^2+b^2)*c^6)*(b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)+a^4*(-2*b^4+b^2*c^2-2*c^4)+a^2*(b^6-3*b^4*c^2+b^2*c^4+c^6)) : :

X(58973) lies on the circumcircle and these lines: {98, 6759}, {933, 14574}, {2706, 6760}, {15033, 20480}, {32713, 52779}, {38808, 39452}

X(58973) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(685), X(32661)}}, {{A, B, C, X(14574), X(32713)}}, {{A, B, C, X(32640), X(44828)}}


X(58974) = X(105)X(942)∩X(692)X(1292)

Barycentrics    a^2*(a-b)*(a-c)*((a-b)^2*(a+b)-2*(a^2+a*b+b^2)*c+(a+b)*c^2)*(a^3+(b-c)^2*c-a^2*(2*b+c)+a*(b^2-2*b*c-c^2)) : :

X(58974) lies on the circumcircle and these lines: {103, 10902}, {105, 942}, {692, 1292}, {840, 41345}, {906, 8693}, {1308, 1618}, {2283, 15439}, {2717, 5535}, {13397, 35280}, {35326, 53244}

X(58974) = trilinear pole of line {6, 37578}
X(58974) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 16601}, {522, 5173}, {650, 21617}, {3676, 40659}
X(58974) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 25006}
X(58974) = X(i)-cross conjugate of X(j) for these {i, j}: {354, 59}
X(58974) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(32735)}}, {{A, B, C, X(942), X(2283)}}, {{A, B, C, X(1414), X(32641)}}, {{A, B, C, X(4556), X(32651)}}
X(58974) = barycentric quotient X(i)/X(j) for these (i, j): {101, 25006}, {109, 21617}, {692, 16601}, {1415, 5173}


X(58975) = X(2)X(128)∩X(25)X(2383)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^2+b^2)-2*a^2*b^2*c^2-3*(a^2+b^2)*c^4+2*c^6)*(a^6+2*b^6-a^4*c^2-3*b^4*c^2+c^6-a^2*(3*b^4+2*b^2*c^2+c^4)) : :

X(58975) lies on the circumcircle and these lines: {2, 128}, {22, 18401}, {23, 14979}, {25, 2383}, {74, 6636}, {98, 7495}, {111, 47226}, {427, 1300}, {468, 53930}, {476, 14570}, {477, 5189}, {550, 43660}, {827, 15329}, {841, 18859}, {858, 53959}, {933, 14590}, {1287, 7471}, {1294, 52397}, {1634, 10420}, {1995, 5966}, {2380, 54362}, {2381, 54363}, {3658, 26712}, {4226, 44061}, {4228, 26707}, {4232, 53963}, {6114, 39425}, {6115, 39424}, {6676, 34900}, {7426, 53935}, {7474, 26708}, {11635, 40049}, {13595, 33643}, {18315, 43969}, {21284, 32710}, {23096, 37962}, {23181, 59004}, {30512, 53949}, {32692, 35324}, {36829, 58948}, {46590, 53884}, {53957, 57627}

X(58975) = inverse of X(128) in orthoptic circle of the Steiner Inellipse
X(58975) = trilinear pole of line {6, 7514}
X(58975) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7576}, {661, 14389}, {18475, 24006}
X(58975) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 14389}, {40596, 7576}
X(58975) = X(i)-cross conjugate of X(j) for these {i, j}: {566, 249}, {7502, 250}, {47331, 4}
X(58975)= pole of line {14389, 35254} with respect to the Kiepert parabola
X(58975) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14570)}}, {{A, B, C, X(25), X(32737)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(128), X(43969)}}, {{A, B, C, X(232), X(47201)}}, {{A, B, C, X(427), X(1634)}}, {{A, B, C, X(468), X(47226)}}, {{A, B, C, X(3520), X(57627)}}, {{A, B, C, X(4230), X(7495)}}, {{A, B, C, X(4240), X(6636)}}, {{A, B, C, X(5189), X(7480)}}, {{A, B, C, X(7471), X(21284)}}, {{A, B, C, X(23181), X(34900)}}, {{A, B, C, X(46587), X(52397)}}
X(58975) = barycentric quotient X(i)/X(j) for these (i, j): {110, 14389}, {112, 7576}, {32661, 18475}


X(58976) = X(19)X(98)∩X(2741)X(5011)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a*b*(a^2-b^2)^2-(a+b)^2*(a^2+b^2)*c^2+a*b*c^4+c^6)*(-(a^4*b^2)+b^6+a^5*c-2*a^2*b^2*c^2-b^2*c^4+a*c*(b^2-c^2)^2-2*a^3*c*(b^2+c^2)) : :

X(58976) lies on the circumcircle and these lines: {19, 98}, {823, 22456}, {2249, 11383}, {2715, 32676}, {2741, 5011}

X(58976) = trilinear pole of line {6, 57653}
X(58976) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 37089}
X(58976) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 37089}
X(58976) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(823)}}, {{A, B, C, X(74), X(98)}}
X(58976) = barycentric quotient X(i)/X(j) for these (i, j): {112, 37089}


X(58977) = X(741)X(1474)∩X(813)X(8750)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+a^2*b+a*b^2+b^3-(a+b)^2*c+(a+b)*c^2+c^3)*(a^3+b^3+a*(b-c)^2+b^2*c-b*c^2+c^3+a^2*(-b+c)) : :

X(58977) lies on the circumcircle and these lines: {741, 1474}, {813, 8750}, {1783, 52778}, {2862, 17923}, {8685, 32674}

X(58977) = trilinear pole of line {6, 57654}
X(58977) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 48062}, {656, 16050}
X(58977) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 48062}, {40596, 16050}
X(58977) = X(i)-cross conjugate of X(j) for these {i, j}: {9313, 4}
X(58977) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1461), X(2983)}}, {{A, B, C, X(1474), X(8750)}}
X(58977) = barycentric quotient X(i)/X(j) for these (i, j): {25, 48062}, {112, 16050}


X(58978) = X(98)X(2450)∩X(685)X(1289)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*((a^2-b^2)^2*(a^2+b^2)-(a^2+b^2)^2*c^2+(a^2+b^2)*c^4-c^6)*(a^6-a^4*(b^2+c^2)+a^2*(b^4-2*b^2*c^2-c^4)-(b-c)*(b+c)*(b^4+c^4)) : :

X(58978) lies on the circumcircle and these lines: {98, 2450}, {99, 43754}, {107, 32696}, {685, 1289}, {842, 3425}, {925, 2966}, {2857, 54124}, {22456, 41173}, {38861, 53937}

X(58978) = trilinear pole of line {6, 3425}
X(58978) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2799, 16567}
X(58978) = X(i)-cross conjugate of X(j) for these {i, j}: {1513, 250}
X(58978) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2396), X(32697)}}, {{A, B, C, X(2450), X(4230)}}, {{A, B, C, X(4611), X(52917)}}, {{A, B, C, X(20022), X(44770)}}, {{A, B, C, X(32696), X(41173)}}
X(58978) = barycentric product X(i)*X(j) for these (i, j): {2715, 54124}, {2966, 3425}
X(58978) = barycentric quotient X(i)/X(j) for these (i, j): {2715, 1352}, {3425, 2799}


X(58979) = X(98)X(265)∩X(249)X(842)

Barycentrics    a^2*(a-b)^3*(a+b)^3*(a-c)^3*(a+c)^3*(a^2-a*b+b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^2-b^2+a*c+c^2) : :

X(58979) lies on these lines: {74, 15395}, {98, 265}, {99, 14559}, {110, 39138}, {111, 11060}, {249, 842}, {250, 1986}, {477, 16163}, {690, 39139}, {691, 14560}, {759, 9274}, {925, 14884}, {1287, 46155}, {1300, 52415}, {1304, 42742}, {1576, 9160}, {2378, 36209}, {2379, 36208}, {2420, 23969}, {2698, 13193}, {2715, 32662}, {3563, 39374}, {4558, 53187}, {4590, 35568}, {5467, 53872}, {5663, 14366}, {6593, 50712}, {9273, 28471}, {11720, 12030}, {14734, 15475}, {15329, 35189}, {16170, 52603}, {20404, 56980}, {22456, 35139}, {23357, 32730}, {25556, 53954}, {32678, 59088}, {40118, 57655}, {43654, 56397}, {47443, 58994}, {52630, 53691}, {53692, 53760}

X(58979) = midpoint of X(i) and X(j) for these {i,j}: {110, 39138}
X(58979) = trilinear pole of line {6, 23357}
X(58979) = X(i)-isoconjugate-of-X(j) for these {i, j}: {115, 32679}, {338, 2624}, {526, 1109}, {656, 35235}, {1577, 2088}, {2610, 8287}, {2611, 6370}, {2643, 3268}, {3708, 44427}, {4053, 21141}, {4707, 21824}, {6149, 23105}, {6741, 51663}, {14270, 23994}, {16186, 24006}, {17886, 42666}, {20902, 47230}, {21054, 53527}, {21131, 42701}, {36035, 56792}
X(58979) = X(i)-Dao conjugate of X(j) for these {i, j}: {14993, 23105}, {15295, 8029}, {40596, 35235}
X(58979) = X(i)-cross conjugate of X(j) for these {i, j}: {110, 15395}, {2420, 249}, {15329, 250}, {32640, 18879}, {32662, 39295}
X(58979)= pole of line {3258, 53132} with respect to the Stammler hyperbola
X(58979) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(265), X(32662)}}, {{A, B, C, X(1511), X(2420)}}, {{A, B, C, X(1986), X(15329)}}, {{A, B, C, X(2421), X(52630)}}, {{A, B, C, X(4230), X(57603)}}, {{A, B, C, X(5504), X(43754)}}, {{A, B, C, X(6328), X(10412)}}, {{A, B, C, X(6333), X(9517)}}, {{A, B, C, X(6344), X(32711)}}, {{A, B, C, X(9274), X(57742)}}, {{A, B, C, X(11060), X(14559)}}, {{A, B, C, X(16163), X(42742)}}, {{A, B, C, X(32640), X(51478)}}, {{A, B, C, X(32708), X(38534)}}, {{A, B, C, X(41512), X(52415)}}, {{A, B, C, X(46301), X(56398)}}
X(58979) = barycentric product X(i)*X(j) for these (i, j): {110, 39295}, {249, 476}, {265, 47443}, {1101, 32680}, {6742, 9273}, {10411, 23588}, {11060, 31614}, {14560, 4590}, {15395, 2407}, {15455, 9274}, {18020, 32662}, {18879, 41512}, {23357, 35139}, {24041, 32678}, {45773, 56395}, {46456, 47390}, {52153, 55270}
X(58979) = barycentric quotient X(i)/X(j) for these (i, j): {112, 35235}, {249, 3268}, {250, 44427}, {476, 338}, {1101, 32679}, {1576, 2088}, {1989, 23105}, {2420, 3258}, {2437, 6070}, {5994, 30465}, {5995, 30468}, {9273, 4467}, {9274, 14838}, {10411, 23965}, {11060, 8029}, {14559, 52628}, {14560, 115}, {15395, 2394}, {23357, 526}, {23588, 10412}, {23963, 14270}, {23966, 15475}, {23995, 2624}, {32640, 56792}, {32661, 16186}, {32662, 125}, {32671, 2611}, {32678, 1109}, {32680, 23994}, {35139, 23962}, {36061, 20902}, {36069, 8287}, {37140, 17886}, {39295, 850}, {41392, 58261}, {47390, 8552}, {47443, 340}, {50433, 5489}, {57655, 47230}


X(58980) = X(98)X(8791)∩X(99)X(47443)

Barycentrics    a^2*(a-b)^3*(a+b)^3*(a-c)^3*(a+c)^3*(a^4-a^2*b^2+b^4-c^4)*(a^4-b^4-a^2*c^2+c^4)*(a^4-(b^2-c^2)^2)^2 : :

X(58980) lies on these lines: {98, 8791}, {99, 47443}, {250, 53929}, {842, 23964}, {2697, 23357}, {2770, 41937}, {2867, 17708}, {4230, 53883}, {23969, 58070}, {46592, 59059}, {53176, 53691}

X(58980) = trilinear pole of line {6, 57655}
X(58980) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2492, 17879}, {2632, 9979}, {5489, 16568}, {9517, 20902}
X(58980) = X(i)-cross conjugate of X(j) for these {i, j}: {46592, 250}
X(58980) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4230), X(57632)}}, {{A, B, C, X(46592), X(52630)}}, {{A, B, C, X(53176), X(58070)}}
X(58980) = barycentric product X(i)*X(j) for these (i, j): {250, 935}, {17708, 23964}, {47443, 8791}
X(58980) = barycentric quotient X(i)/X(j) for these (i, j): {935, 339}, {2445, 57426}, {3455, 5489}, {17708, 36793}, {23964, 9979}, {34897, 23107}, {41937, 2492}, {46592, 38971}, {47443, 37804}, {57655, 9517}


X(58981) = X(31)X(699)∩X(98)X(2319)

Barycentrics    a^2*(a-b)*(a-c)*(b^2+a*c)*(a*(b-c)+b*c)*(a*b-(a+b)*c)*(a*b+c^2) : :

X(58981) lies on the circumcircle and these lines: {31, 699}, {87, 6015}, {98, 2319}, {99, 4603}, {105, 8848}, {106, 51974}, {109, 34071}, {256, 9082}, {675, 27447}, {715, 1178}, {727, 893}, {741, 2162}, {789, 4598}, {932, 3903}, {1979, 9468}, {3222, 4594}, {7015, 59019}, {7116, 15323}, {7121, 35105}, {8709, 27805}, {25577, 37137}, {51321, 53967}, {53625, 56257}, {53631, 56053}

X(58981) = trilinear pole of line {6, 904}
X(58981) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 24533}, {43, 4369}, {57, 30584}, {171, 3835}, {172, 20906}, {192, 4367}, {513, 17752}, {514, 51902}, {649, 41318}, {693, 51319}, {798, 27891}, {894, 4083}, {1215, 18197}, {1237, 57074}, {1423, 3907}, {1909, 20979}, {1920, 8640}, {2176, 4374}, {2295, 17217}, {2533, 27644}, {3123, 18047}, {3212, 3287}, {3805, 52136}, {3963, 16695}, {3971, 18200}, {4107, 41531}, {4128, 36860}, {4147, 7175}, {4164, 40848}, {4579, 21138}, {4595, 53541}, {6376, 20981}, {6382, 56242}, {7009, 25098}, {7081, 43051}, {7200, 52923}, {7234, 31008}, {8033, 50491}, {14296, 51973}, {17103, 21834}, {17212, 20691}, {22370, 54229}, {33296, 57234}
X(58981) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 41318}, {5452, 30584}, {31998, 27891}, {32664, 24533}, {39026, 17752}
X(58981) = X(i)-cross conjugate of X(j) for these {i, j}: {798, 7121}
X(58981)= pole of line {20667, 53129} with respect to the Yff parabola
X(58981) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(799)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(893), X(27805)}}, {{A, B, C, X(3952), X(30650)}}, {{A, B, C, X(32739), X(35009)}}
X(58981) = barycentric product X(i)*X(j) for these (i, j): {101, 27447}, {190, 51974}, {256, 932}, {257, 34071}, {2162, 27805}, {2319, 37137}, {3903, 87}, {4598, 893}, {16606, 4603}, {18830, 904}, {21759, 7260}, {23493, 4594}, {29055, 7155}, {30670, 45782}, {56241, 7121}
X(58981) = barycentric quotient X(i)/X(j) for these (i, j): {31, 24533}, {55, 30584}, {87, 4374}, {99, 27891}, {100, 41318}, {101, 17752}, {256, 20906}, {692, 51902}, {893, 3835}, {904, 4083}, {932, 1909}, {1178, 17217}, {2053, 3907}, {2162, 4369}, {3903, 6376}, {4598, 1920}, {4603, 31008}, {7104, 20979}, {7116, 25098}, {7121, 4367}, {21759, 57234}, {23493, 2533}, {27447, 3261}, {27805, 6382}, {29055, 3212}, {32739, 51319}, {34071, 894}, {34252, 14296}, {37137, 30545}, {40729, 21834}, {40736, 45882}, {51321, 4107}, {51974, 514}, {57264, 3287}


X(58982) = X(74)X(1798)∩X(111)X(1169)

Barycentrics    a^2*(a-b)*(a+b)^2*(a-c)*(a+c)^2*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(58982) lies on the circumcircle and these lines: {58, 38453}, {60, 38882}, {74, 1798}, {98, 14534}, {99, 55196}, {100, 4612}, {101, 4636}, {109, 4556}, {111, 1169}, {163, 6010}, {249, 2703}, {250, 2766}, {261, 26259}, {476, 4581}, {593, 28479}, {759, 2363}, {931, 1576}, {935, 15420}, {1220, 2372}, {1310, 52935}, {1333, 53689}, {1415, 39412}, {1791, 43659}, {2185, 53892}, {2222, 36098}, {2298, 53686}, {2367, 40827}, {2373, 57853}, {2689, 57161}, {6083, 53324}, {8701, 32736}, {8707, 17944}, {29119, 54353}, {32661, 59066}, {36147, 59085}, {39435, 40452}, {40097, 52914}

X(58982) = trilinear pole of line {6, 60}
X(58982) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 50330}, {12, 17420}, {37, 21124}, {75, 42661}, {115, 3882}, {429, 656}, {512, 18697}, {514, 21810}, {522, 52567}, {594, 48131}, {661, 1211}, {756, 3004}, {798, 1228}, {850, 3725}, {1089, 6371}, {1109, 53280}, {1193, 4036}, {1254, 57158}, {1500, 4509}, {1577, 2092}, {1829, 4064}, {1848, 55232}, {2171, 3910}, {2300, 52623}, {2643, 53332}, {3666, 4024}, {3687, 57185}, {3704, 4017}, {3709, 45196}, {4041, 41003}, {4077, 40966}, {4079, 20911}, {4357, 4705}, {4581, 6042}, {6358, 52326}, {7178, 21033}, {8061, 27067}, {14208, 44092}, {16739, 58289}, {17185, 55197}, {21051, 45197}, {22076, 24006}, {50457, 56914}, {54314, 55230}
X(58982) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 42661}, {31998, 1228}, {34961, 3704}, {36830, 1211}, {39026, 20653}, {39054, 18697}, {40589, 21124}, {40596, 429}
X(58982) = X(i)-cross conjugate of X(j) for these {i, j}: {21, 250}, {1333, 249}, {38858, 4567}, {42661, 6}, {50353, 57411}, {52143, 23964}
X(58982)= pole of line {21124, 42661} with respect to the Stammler hyperbola
X(58982) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1333), X(17944)}}, {{A, B, C, X(2363), X(36098)}}, {{A, B, C, X(4230), X(37360)}}, {{A, B, C, X(4556), X(4612)}}, {{A, B, C, X(36059), X(43754)}}
X(58982) = barycentric product X(i)*X(j) for these (i, j): {60, 6648}, {110, 14534}, {112, 57853}, {249, 4581}, {261, 8687}, {593, 8707}, {1169, 99}, {1220, 4556}, {1415, 52550}, {1509, 32736}, {1576, 40827}, {1798, 648}, {2185, 36098}, {2298, 52935}, {2363, 662}, {4612, 961}, {15420, 250}, {36147, 757}, {52378, 57161}, {52928, 7058}
X(58982) = barycentric quotient X(i)/X(j) for these (i, j): {32, 42661}, {58, 21124}, {60, 3910}, {99, 1228}, {101, 20653}, {110, 1211}, {112, 429}, {163, 2292}, {249, 53332}, {593, 3004}, {662, 18697}, {692, 21810}, {757, 4509}, {827, 27067}, {849, 48131}, {1101, 3882}, {1169, 523}, {1220, 52623}, {1333, 50330}, {1414, 45196}, {1415, 52567}, {1576, 2092}, {1798, 525}, {2150, 17420}, {2298, 4036}, {2359, 4064}, {2363, 1577}, {4556, 4357}, {4565, 41003}, {4581, 338}, {4636, 3687}, {5546, 3704}, {6648, 34388}, {7054, 57158}, {8687, 12}, {8707, 28654}, {14534, 850}, {15420, 339}, {23357, 53280}, {32661, 22076}, {32736, 594}, {36098, 6358}, {36147, 1089}, {40827, 44173}, {52928, 6354}, {52935, 20911}, {57853, 3267}


X(58983) = X(6)X(53954)∩X(50)X(74)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2-a*b+b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^2-b^2+a*c+c^2)*(2*(a^2-b^2)^2-(a^2+b^2)*c^2-c^4)*(2*a^4-b^4-b^2*c^2+2*c^4-a^2*(b^2+4*c^2)) : :

X(58983) lies on the circumcircle and these lines: {6, 53954}, {50, 74}, {98, 18316}, {99, 54959}, {110, 32662}, {112, 14560}, {476, 2420}, {842, 3431}, {1297, 37477}, {1304, 14591}, {1989, 13530}, {6236, 14559}, {11060, 43656}, {15538, 40118}, {23968, 53950}, {35568, 57822}

X(58983) = trilinear pole of line {6, 52153}
X(58983) = X(i)-isoconjugate-of-X(j) for these {i, j}: {92, 14314}, {381, 32679}, {661, 52149}, {1577, 3581}, {2624, 44135}, {18477, 44427}
X(58983) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 14314}, {36830, 52149}
X(58983) = X(i)-cross conjugate of X(j) for these {i, j}: {26864, 15395}
X(58983) = intersection, other than A, B, C, of circumconics {{A, B, C, X(50), X(2420)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(10412), X(30491)}}, {{A, B, C, X(11079), X(14560)}}, {{A, B, C, X(32708), X(44769)}}
X(58983) = barycentric product X(i)*X(j) for these (i, j): {110, 18316}, {265, 58994}, {3431, 476}, {14560, 57822}, {32662, 43530}, {39290, 51545}, {54959, 6}
X(58983) = barycentric quotient X(i)/X(j) for these (i, j): {110, 52149}, {184, 14314}, {476, 44135}, {1576, 3581}, {3431, 3268}, {14560, 381}, {18316, 850}, {32662, 37638}, {51545, 5664}, {54959, 76}, {56266, 45792}, {58994, 340}


X(58984) = X(104)X(52384)∩X(108)X(32652)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*((a^2-b^2)^2-(a-b)^2*(a+b)*c-(a-b)^2*c^2+(a+b)*c^3)*(a^3+a^2*(b-c)-a*(b-c)^2-(b-c)*(b+c)^2)*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b+c)^2-a^2*(b^2-b*c+2*c^2)) : :

X(58984) lies on the circumcircle and these lines: {102, 57422}, {104, 52384}, {108, 32652}, {972, 40397}, {1167, 53915}, {13138, 43347}, {30239, 32714}, {32674, 58957}

X(58984) = X(i)-isoconjugate-of-X(j) for these {i, j}: {329, 40628}, {521, 6260}, {1071, 8058}, {1108, 57245}, {1210, 57101}, {10397, 17862}, {21933, 57213}
X(58984) = barycentric product X(i)*X(j) for these (i, j): {13138, 40397}, {40444, 8059}, {57422, 653}
X(58984) = barycentric quotient X(i)/X(j) for these (i, j): {1167, 57245}, {2208, 40628}, {32674, 6260}, {40397, 17896}, {57422, 6332}


X(58985) = X(99)X(4637)∩X(100)X(1461)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*(a^2+2*a*(b-c)+(b+c)^2)*(a^2+2*a*(-b+c)+(b+c)^2) : :

X(58985) lies on the circumcircle and these lines: {99, 4637}, {100, 1461}, {103, 7050}, {104, 7091}, {972, 24025}, {1020, 58991}, {1219, 2370}, {1293, 53321}, {2283, 59031}, {2717, 11575}, {11546, 32706}

X(58985) = trilinear pole of line {6, 1106}
X(58985) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 40137}, {346, 8712}, {522, 1697}, {650, 18228}, {1021, 4656}, {1191, 4397}, {2297, 58815}, {2999, 3239}, {3672, 3900}, {4646, 7253}
X(58985) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 40137}
X(58985) = X(i)-cross conjugate of X(j) for these {i, j}: {51773, 59}
X(58985) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1461), X(4637)}}, {{A, B, C, X(6614), X(52928)}}
X(58985) = barycentric product X(i)*X(j) for these (i, j): {269, 6574}, {651, 7091}, {658, 7050}, {1219, 1461}, {2297, 934}, {11546, 1813}
X(58985) = barycentric quotient X(i)/X(j) for these (i, j): {31, 40137}, {109, 18228}, {1106, 8712}, {1191, 58815}, {1219, 52622}, {1415, 1697}, {1461, 3672}, {2297, 4397}, {6574, 341}, {7050, 3239}, {7091, 4391}, {11546, 46110}, {53321, 4656}


X(58986) = X(1)X(39439)∩X(98)X(1751)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3-b^2*c+c^3-a*b*(b+c))*(b^3+(a+c)*(a^2-(a+b)*c)) : :

X(58986) lies on the circumcircle and these lines: {1, 39439}, {98, 1751}, {99, 4636}, {106, 2360}, {108, 32676}, {109, 1576}, {110, 57251}, {163, 36080}, {272, 675}, {284, 9085}, {662, 833}, {663, 53925}, {759, 2218}, {839, 51566}, {906, 29014}, {917, 40574}, {1625, 58987}, {2194, 29015}, {2367, 40011}, {2372, 41506}, {2689, 23289}, {4575, 13397}, {5546, 29163}, {7252, 35182}, {32661, 59010}, {35338, 43348}

X(58986) = trilinear pole of line {6, 3145}
X(58986) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 51658}, {10, 23800}, {65, 20294}, {201, 57072}, {209, 693}, {306, 57173}, {307, 57092}, {321, 43060}, {513, 57808}, {514, 22021}, {523, 3868}, {579, 1577}, {650, 56559}, {656, 5125}, {661, 18134}, {850, 2352}, {1214, 57043}, {1441, 8676}, {2198, 3261}, {3190, 4077}, {3668, 58333}, {4086, 4306}, {4559, 17878}, {7178, 27396}, {16732, 57217}, {17924, 51574}
X(58986) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 18134}, {39026, 57808}, {40596, 5125}, {40602, 20294}, {55067, 17878}
X(58986) = X(i)-cross conjugate of X(j) for these {i, j}: {7252, 40574}, {13738, 250}, {32656, 163}
X(58986)= pole of line {20294, 23800} with respect to the Stammler hyperbola
X(58986) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(57251)}}, {{A, B, C, X(1576), X(4636)}}, {{A, B, C, X(3939), X(32713)}}, {{A, B, C, X(15386), X(24000)}}, {{A, B, C, X(38828), X(46639)}}
X(58986) = barycentric product X(i)*X(j) for these (i, j): {101, 272}, {110, 1751}, {163, 2997}, {1305, 284}, {1331, 40574}, {1333, 51566}, {1576, 40011}, {2218, 662}, {4565, 56146}, {23289, 52378}, {32739, 57784}, {41506, 4556}
X(58986) = barycentric quotient X(i)/X(j) for these (i, j): {101, 57808}, {109, 56559}, {110, 18134}, {112, 5125}, {163, 3868}, {272, 3261}, {284, 20294}, {604, 51658}, {692, 22021}, {1305, 349}, {1333, 23800}, {1576, 579}, {1751, 850}, {2189, 57072}, {2203, 57173}, {2204, 57092}, {2206, 43060}, {2218, 1577}, {2299, 57043}, {2997, 20948}, {3737, 17878}, {32656, 51574}, {32739, 209}, {40011, 44173}, {40574, 46107}, {41506, 52623}, {51566, 27801}, {57657, 8676}


X(58987) = X(102)X(4288)∩X(108)X(163)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^5+a*b*(b-c)*(b+c)^2-a^2*c*(b+c)^2+c*(b^2-c^2)^2-a^3*(2*b^2+b*c+c^2))*(a^5-a^2*b*(b+c)^2-a*(b-c)*c*(b+c)^2+b*(b^2-c^2)^2-a^3*(b^2+b*c+2*c^2)) : :

X(58987) lies on the circumcircle and these lines: {98, 54972}, {102, 4288}, {103, 54323}, {108, 163}, {109, 32661}, {759, 2219}, {1576, 59010}, {1625, 58986}, {2367, 57911}

X(58987) = X(i)-isoconjugate-of-X(j) for these {i, j}: {581, 1577}, {4077, 15830}
X(58987) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(32661)}}, {{A, B, C, X(4558), X(36049)}}, {{A, B, C, X(32662), X(53206)}}, {{A, B, C, X(32674), X(32734)}}
X(58987) = barycentric product X(i)*X(j) for these (i, j): {110, 54972}, {1576, 57911}, {2219, 662}
X(58987) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 581}, {2219, 1577}, {54972, 850}, {57911, 44173}


X(58988) = X(288)X(5966)∩X(1141)X(1487)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2-(a^2+b^2)*c^2)*((a^2-b^2)^2-3*(a^2+b^2)*c^2+2*c^4)*(a^4+(b^2-c^2)^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+(b^2-c^2)^2-a^2*(b^2+2*c^2))*(a^4+2*b^4-3*b^2*c^2+c^4-a^2*(3*b^2+2*c^2)) : :

X(58988) lies on the circumcircle and these lines: {54, 43657}, {252, 13597}, {288, 5966}, {933, 32737}, {1141, 1487}, {1173, 33643}, {1291, 57639}, {2383, 6152}, {18315, 20185}, {23236, 39431}, {39180, 46966}

X(58988) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1493, 2618}, {17438, 20577}, {20879, 57137}
X(58988) = X(i)-cross conjugate of X(j) for these {i, j}: {54, 57639}, {39180, 1487}
X(58988) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6152), X(50947)}}, {{A, B, C, X(10619), X(53176)}}
X(58988) = barycentric product X(i)*X(j) for these (i, j): {288, 930}, {1487, 18315}, {20574, 38342}, {31617, 32737}, {39183, 57639}
X(58988) = barycentric quotient X(i)/X(j) for these (i, j): {288, 41298}, {930, 57811}, {1173, 20577}, {1487, 18314}, {14586, 1493}, {32737, 233}, {33631, 57211}, {51477, 35441}


X(58989) = X(105)X(7291)∩X(840)X(3423)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-(a+b)*c)*((a-b)^2*(a+b)-(a+b)^2*c+(a+b)*c^2-c^3)*(a^2-a*b+c*(-b+c))*(a^3-a^2*(b+c)+a*(b^2-2*b*c-c^2)-(b-c)*(b^2+c^2)) : :

X(58989) lies on the circumcircle and these lines: {100, 52927}, {105, 7291}, {108, 36146}, {109, 32666}, {840, 3423}, {934, 32735}, {949, 43079}, {1292, 36086}, {2195, 28848}, {2283, 59133}, {2725, 39273}, {2751, 56098}, {18206, 26702}

X(58989) = trilinear pole of line {6, 3423}
X(58989) = X(i)-isoconjugate-of-X(j) for these {i, j}: {518, 47123}, {918, 40131}, {2254, 2550}, {2263, 50333}, {6182, 9436}, {16054, 24290}, {28043, 43042}
X(58989) = X(i)-cross conjugate of X(j) for these {i, j}: {50336, 15382}
X(58989) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(7291), X(18206)}}, {{A, B, C, X(32666), X(32735)}}
X(58989) = barycentric product X(i)*X(j) for these (i, j): {294, 6183}, {927, 949}, {3423, 666}, {31637, 58944}, {32735, 58004}, {36086, 39273}, {36146, 56098}
X(58989) = barycentric quotient X(i)/X(j) for these (i, j): {919, 2550}, {949, 50333}, {1438, 47123}, {3423, 918}, {6183, 40704}, {32666, 40131}, {32735, 948}, {58944, 1861}


X(58990) = X(84)X(28193)∩X(101)X(13138)

Barycentrics    a*(a-b)*(a-c)*((a+b)^3+(a-b)^2*c-(a+b)*c^2-c^3)*((a-b)^2*(a+b)+(a+b)^2*c-(a+b)*c^2-c^3)*((a-b)*(a+b)^2+(a-b)*(3*a+b)*c+(3*a+b)*c^2+c^3)*(a^3+a^2*(b-c)-a*(b-c)^2-(b-c)*(b+c)^2) : :

X(58990) lies on the circumcircle and these lines: {84, 28193}, {99, 55211}, {100, 44327}, {101, 13138}, {104, 37260}, {109, 37141}, {1295, 11496}, {14544, 58991}, {22753, 34244}

X(58990) = trilinear pole of line {6, 84}
X(58990) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6129, 57279}, {8058, 34046}, {14837, 54322}
X(58990) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4246), X(37260)}}, {{A, B, C, X(7435), X(24565)}}, {{A, B, C, X(13138), X(37141)}}
X(58990) = barycentric product X(i)*X(j) for these (i, j): {309, 58946}
X(58990) = barycentric quotient X(i)/X(j) for these (i, j): {13138, 34255}, {32652, 54322}, {36049, 57279}, {58946, 40}, {58957, 14551}


X(58991) = X(104)X(405)∩X(106)X(937)

Barycentrics    a*(a-b)*(a-c)*((a+b)^3-(a-b)^2*c-(a+b)*c^2+c^3)*(a^3-a^2*(b-3*c)-a*(b-3*c)*(b+c)+(b-c)^2*(b+c)) : :
X(58991) = -3*X[2]+2*X[53836]

X(58991) lies on the circumcircle and these lines: {2, 53836}, {4, 50932}, {99, 55241}, {100, 53288}, {102, 15836}, {103, 10857}, {104, 405}, {106, 937}, {651, 8059}, {675, 58001}, {739, 2255}, {915, 17562}, {1020, 58985}, {1295, 7520}, {1897, 40117}, {2291, 3247}, {2427, 36080}, {2687, 51635}, {3658, 43356}, {3952, 6574}, {4246, 36077}, {8686, 28393}, {14544, 58990}, {14551, 28193}, {29163, 57192}, {35260, 38869}, {35280, 53888}, {52923, 53629}

X(58991) = reflection of X(i) in X(j) for these {i,j}: {4, 50932}
X(58991) = anticomplement of X(53836)
X(58991) = trilinear pole of line {6, 40}
X(58991) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 936}, {514, 2256}, {522, 1466}, {4025, 11406}
X(58991) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 936}, {53836, 53836}
X(58991)= pole of line {5250, 37402} with respect to the Kiepert parabola
X(58991)= pole of line {2255, 2256} with respect to the Hutson-Moses hyperbola
X(58991) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(162), X(644)}}, {{A, B, C, X(405), X(2427)}}, {{A, B, C, X(651), X(1897)}}, {{A, B, C, X(692), X(53288)}}, {{A, B, C, X(1020), X(3952)}}, {{A, B, C, X(1414), X(3699)}}, {{A, B, C, X(3658), X(17562)}}, {{A, B, C, X(5811), X(53151)}}, {{A, B, C, X(7435), X(7520)}}, {{A, B, C, X(13138), X(36098)}}, {{A, B, C, X(15836), X(23987)}}, {{A, B, C, X(34080), X(53321)}}, {{A, B, C, X(37966), X(51635)}}
X(58991) = barycentric product X(i)*X(j) for these (i, j): {101, 58001}, {190, 937}, {322, 58957}, {2255, 668}
X(58991) = barycentric quotient X(i)/X(j) for these (i, j): {101, 936}, {692, 2256}, {937, 514}, {1415, 1466}, {2255, 513}, {58001, 3261}, {58946, 14550}, {58957, 84}


X(58992) = X(107)X(662)∩X(108)X(1813)

Barycentrics    a^2*(a-b)*(a-c)*((a^2-b^2)^2-2*(a+b)^2*c^2+c^4)*(a^4-4*a*b^2*c+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(58992) lies on the circumcircle and these lines: {104, 10884}, {107, 662}, {108, 1813}, {112, 4575}, {664, 58993}, {759, 54323}, {915, 55105}, {1305, 17136}, {1331, 15439}, {2249, 4288}, {6507, 30265}

X(58992) = trilinear pole of line {6, 255}
X(58992) = X(i)-isoconjugate-of-X(j) for these {i, j}: {108, 26956}, {513, 3085}, {514, 3553}, {522, 37550}, {656, 37383}, {6591, 26872}, {7649, 55104}, {19349, 44426}, {40575, 47124}
X(58992) = X(i)-Dao conjugate of X(j) for these {i, j}: {38983, 26956}, {39026, 3085}, {40596, 37383}
X(58992) = X(i)-cross conjugate of X(j) for these {i, j}: {1497, 765}
X(58992) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(662), X(1813)}}, {{A, B, C, X(664), X(1331)}}, {{A, B, C, X(1983), X(54323)}}, {{A, B, C, X(5546), X(13138)}}
X(58992) = barycentric product X(i)*X(j) for these (i, j): {326, 58965}, {1332, 55105}, {55106, 906}
X(58992) = barycentric quotient X(i)/X(j) for these (i, j): {101, 3085}, {112, 37383}, {652, 26956}, {692, 3553}, {906, 55104}, {1331, 26872}, {1415, 37550}, {32660, 19349}, {55105, 17924}, {58965, 158}


X(58993) = X(4)X(15607)∩X(101)X(653)

Barycentrics    (a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(58993) lies on the circumcircle and these lines: {4, 15607}, {74, 52560}, {100, 18026}, {101, 653}, {103, 4292}, {109, 36048}, {110, 4566}, {112, 32651}, {664, 58992}, {943, 972}, {1290, 55346}, {1783, 59064}, {2249, 40395}, {2291, 40573}, {2982, 32726}, {7128, 59067}, {13149, 13397}, {14733, 14775}, {32714, 36080}, {36077, 53321}, {39435, 40412}, {40116, 56320}, {54240, 58965}

X(58993) = inverse of X(15607) in polar circle
X(58993) = trilinear pole of line {6, 278}
X(58993) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 52306}, {63, 33525}, {442, 57134}, {521, 14547}, {522, 23207}, {652, 40937}, {656, 8021}, {657, 18607}, {810, 51978}, {942, 57108}, {1021, 18591}, {1260, 50354}, {1838, 58340}, {1841, 57057}, {1859, 57241}, {1946, 6734}, {2260, 57055}, {2294, 23090}, {3239, 14597}, {3900, 4303}, {8611, 46882}, {15411, 40978}, {21789, 56839}, {23189, 40967}, {24031, 53323}, {39791, 58329}, {40952, 57081}
X(58993) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 52306}, {3162, 33525}, {39053, 6734}, {39062, 51978}, {40596, 8021}
X(58993) = X(i)-cross conjugate of X(j) for these {i, j}: {28, 7128}, {65, 23984}, {14775, 40573}
X(58993) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(653), X(18026)}}, {{A, B, C, X(664), X(54240)}}, {{A, B, C, X(4292), X(23973)}}, {{A, B, C, X(4566), X(4605)}}, {{A, B, C, X(36048), X(54952)}}
X(58993) = barycentric product X(i)*X(j) for these (i, j): {264, 32651}, {278, 54952}, {1275, 14775}, {13149, 943}, {15439, 331}, {18026, 2982}, {32714, 40422}, {36048, 92}, {36118, 40435}, {40395, 4566}, {40412, 52607}, {40447, 934}, {40573, 664}, {52560, 648}, {55346, 56320}
X(58993) = barycentric quotient X(i)/X(j) for these (i, j): {25, 33525}, {56, 52306}, {108, 40937}, {112, 8021}, {648, 51978}, {653, 6734}, {934, 18607}, {943, 57055}, {1020, 56839}, {1175, 23090}, {1415, 23207}, {1435, 50354}, {1461, 4303}, {1794, 57057}, {2259, 57108}, {2982, 521}, {14775, 1146}, {15439, 219}, {23985, 53323}, {32651, 3}, {32674, 14547}, {32714, 942}, {36048, 63}, {36118, 5249}, {40395, 7253}, {40412, 15411}, {40422, 15416}, {40447, 4397}, {40570, 21789}, {40573, 522}, {52560, 525}, {52607, 442}, {53321, 18591}, {54952, 345}, {56320, 2968}


X(58994) = X(4)X(13530)∩X(74)X(184)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*(a^2-b^2)^2-(a^2+b^2)*c^2-c^4)*(2*a^4-b^4-b^2*c^2+2*c^4-a^2*(b^2+4*c^2)) : :

X(58994) lies on the circumcircle and these lines: {4, 13530}, {25, 43656}, {74, 184}, {98, 5094}, {107, 23347}, {110, 14590}, {111, 10311}, {112, 53176}, {186, 53954}, {250, 9060}, {275, 1141}, {476, 648}, {477, 56369}, {842, 37969}, {935, 35278}, {1294, 3534}, {1297, 7492}, {1300, 1629}, {1304, 1576}, {1624, 33640}, {1632, 52998}, {1971, 51545}, {2373, 47596}, {2693, 37950}, {2697, 10989}, {4230, 11636}, {4235, 6236}, {6570, 35324}, {7473, 53950}, {7482, 32229}, {26887, 46091}, {32710, 51458}, {35325, 59136}, {47443, 58979}, {52913, 53957}, {52917, 58950}

X(58994) = trilinear pole of line {6, 186}
X(58994) = X(i)-isoconjugate-of-X(j) for these {i, j}: {381, 656}, {523, 18477}, {661, 37638}, {810, 44135}, {1577, 5158}, {2166, 14314}, {2631, 46808}, {14208, 34417}, {14380, 18486}
X(58994) = X(i)-Dao conjugate of X(j) for these {i, j}: {11597, 14314}, {36830, 37638}, {39062, 44135}, {40596, 381}
X(58994) = X(i)-cross conjugate of X(j) for these {i, j}: {378, 250}, {26864, 23964}, {32063, 15384}
X(58994)= pole of line {10298, 18387} with respect to the Kiepert parabola
X(58994)= pole of line {1531, 14314} with respect to the Stammler hyperbola
X(58994) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(184), X(1576)}}, {{A, B, C, X(275), X(648)}}, {{A, B, C, X(1988), X(11058)}}, {{A, B, C, X(2409), X(7492)}}, {{A, B, C, X(3534), X(46587)}}, {{A, B, C, X(4230), X(5094)}}, {{A, B, C, X(4240), X(35473)}}, {{A, B, C, X(7473), X(37969)}}, {{A, B, C, X(7480), X(56369)}}, {{A, B, C, X(9180), X(14696)}}, {{A, B, C, X(10989), X(37937)}}, {{A, B, C, X(15329), X(35480)}}, {{A, B, C, X(23956), X(35360)}}, {{A, B, C, X(31510), X(37950)}}, {{A, B, C, X(46592), X(47596)}}
X(58994) = barycentric product X(i)*X(j) for these (i, j): {107, 56266}, {110, 43530}, {112, 57822}, {186, 54959}, {340, 58983}, {1304, 46809}, {3431, 648}, {14590, 18316}, {16077, 51545}, {16263, 4558}, {22455, 2407}
X(58994) = barycentric quotient X(i)/X(j) for these (i, j): {50, 14314}, {110, 37638}, {112, 381}, {163, 18477}, {648, 44135}, {933, 4993}, {1304, 46808}, {1576, 5158}, {2420, 1531}, {3431, 525}, {14590, 52149}, {14591, 3581}, {16263, 14618}, {18316, 14592}, {22455, 2394}, {23347, 18487}, {32662, 18478}, {32715, 51544}, {43530, 850}, {51545, 9033}, {54959, 328}, {56266, 3265}, {56829, 18486}, {57822, 3267}, {58983, 265}


X(58995) = X(4)X(13612)∩X(34)X(3342)

Barycentrics    a*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)^4-2*(a-b)^2*(a+b)*(a^2+b^2)*c-(a^2-b^2)^2*c^2+4*(a^3+b^3)*c^3-(a+b)^2*c^4-2*(a+b)*c^5+c^6)*(a^6-a^4*(b-c)^2+2*a^5*(-b+c)+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2-2*a*(b-c)*(b+c)^2*(b^2+c^2)+4*a^3*(b^3-c^3)) : :

X(58995) lies on the circumcircle and these lines: {4, 13612}, {34, 3342}, {74, 8811}, {100, 57117}, {101, 57193}, {102, 3345}, {103, 7007}, {104, 7149}, {278, 55058}, {972, 7037}, {1295, 41227}, {2733, 51616}, {7152, 32726}, {8059, 32714}, {14544, 43347}, {26703, 41514}, {36127, 40117}, {38860, 57454}, {39426, 57643}

X(58995) = inverse of X(13612) in polar circle
X(58995) = trilinear pole of line {6, 208}
X(58995) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 14302}, {268, 8063}, {521, 1490}, {652, 56943}, {656, 13614}, {1946, 33672}, {3176, 57241}, {3197, 6332}, {3341, 57101}, {5932, 57108}, {8058, 46881}, {24031, 57117}, {40837, 57057}, {47848, 57055}
X(58995) = X(i)-Dao conjugate of X(j) for these {i, j}: {3351, 57245}, {36103, 14302}, {39053, 33672}, {40596, 13614}
X(58995) = X(i)-cross conjugate of X(j) for these {i, j}: {6129, 3342}, {10397, 40397}
X(58995) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32714), X(36127)}}, {{A, B, C, X(36044), X(57193)}}
X(58995) = barycentric product X(i)*X(j) for these (i, j): {108, 41514}, {342, 8064}, {648, 8811}, {651, 7149}, {658, 7007}, {1034, 32714}, {3345, 653}, {13149, 7037}, {18026, 7152}, {32674, 56596}, {36118, 47850}, {40117, 46352}, {40838, 934}
X(58995) = barycentric quotient X(i)/X(j) for these (i, j): {19, 14302}, {108, 56943}, {112, 13614}, {208, 8063}, {653, 33672}, {1034, 15416}, {3342, 57245}, {3345, 6332}, {7007, 3239}, {7037, 57055}, {7149, 4391}, {7152, 521}, {8064, 271}, {8811, 525}, {23985, 57117}, {32674, 1490}, {32714, 5932}, {40117, 46350}, {40838, 4397}, {41514, 35518}, {57454, 57101}


X(58996) = X(103)X(20751)∩X(105)X(367)

Barycentrics    a^2*(sqrt(a)-sqrt(b))*(sqrt(a)-sqrt(c)) : :

X(58996) lies on the circumcircle and these lines: {99, 55322}, {100, 55325}, {103, 20751}, {105, 367}, {106, 20664}, {675, 20527}, {739, 52865}, {759, 20682}, {1311, 4181}, {8707, 55373}

X(58996) = trilinear pole of line {6, 18753}
X(58996) = X(i)-Dao conjugate of X(j) for these {i, j}: {40378, 3261}
X(58996) = barycentric product X(i)*X(j) for these (i, j): {1, 55325}, {100, 367}, {101, 20527}, {109, 4181}, {190, 20664}, {365, 55321}, {366, 55326}, {1897, 20751}, {20682, 662}, {52865, 668}, {55322, 6}, {55373, 56}
X(58996) = barycentric quotient X(i)/X(j) for these (i, j): {367, 693}, {4181, 35519}, {20527, 3261}, {20664, 514}, {20682, 1577}, {20751, 4025}, {52865, 513}, {55322, 76}, {55325, 75}, {55326, 18297}, {55373, 3596}


X(58997) = X(104)X(40454)∩X(961)X(1295)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a^2-b^2)^2+2*a*b*(a+b)*c-2*a*b*c^2-c^4)*(a^4-b^4+2*a^2*(b-c)*c+c^4+2*a*b*c*(-b+c))*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(58997) lies on the circumcircle and these lines: {100, 46640}, {104, 40454}, {108, 52928}, {961, 1295}, {1397, 34277}, {2766, 15385}, {3435, 38882}, {9058, 36098}, {42467, 53892}

X(58997) = trilinear pole of line {6, 3435}
X(58997) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 41600}, {960, 21186}, {1766, 3910}, {3436, 17420}, {3687, 6588}, {6332, 56905}, {20928, 52326}, {21147, 57158}
X(58997) = X(i)-cross conjugate of X(j) for these {i, j}: {43703, 15385}, {52326, 34277}, {57158, 3450}
X(58997) = barycentric product X(i)*X(j) for these (i, j): {3435, 6648}, {8048, 8687}, {15385, 15420}, {34277, 52928}, {36098, 42467}, {40454, 651}, {46640, 961}
X(58997) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 41600}, {3435, 3910}, {8687, 3436}, {36098, 20928}, {40454, 4391}, {52928, 57477}


X(58998) = X(100)X(4617)∩X(105)X(269)

Barycentrics    a^2*(a-b)*(3*b^2+(a-c)^2)*(a-c)*(a+b-c)^3*(a-b+c)^3*((a-b)^2+3*c^2) : :

X(58998) lies on these lines: {100, 4617}, {101, 6614}, {103, 52013}, {105, 269}, {347, 41905}, {919, 1461}, {927, 4626}, {1323, 2724}, {2370, 56264}

X(58998) = trilinear pole of line {6, 7023}
X(58998) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 14330}, {390, 3900}, {480, 30804}, {513, 28057}, {657, 30854}, {3755, 58329}, {4081, 35280}, {4130, 5222}, {4163, 7290}
X(58998) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 14330}, {39026, 28057}
X(58998) = X(i)-cross conjugate of X(j) for these {i, j}: {42314, 1262}
X(58998) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(269), X(1461)}}, {{A, B, C, X(653), X(8829)}}, {{A, B, C, X(4617), X(6614)}}
X(58998) = barycentric product X(i)*X(j) for these (i, j): {1461, 56264}, {21446, 934}, {37223, 738}, {39749, 6614}, {39959, 4617}, {52013, 658}
X(58998) = barycentric quotient X(i)/X(j) for these (i, j): {56, 14330}, {101, 28057}, {738, 30804}, {934, 30854}, {1461, 390}, {6614, 5222}, {21446, 4397}, {37223, 30693}, {52013, 3239}, {56264, 52622}


X(58999) = X(37)X(104)∩X(99)X(2397)

Barycentrics    a^2*(a-b)*(a-c)*(a^3+a^2*b+a*b^2+b^3+4*a*b*c-(a+b)*c^2)*(a^3+a^2*c-b^2*c+c^3+a*(-b^2+4*b*c+c^2)) : :

X(58999) lies on the circumcircle and these lines: {37, 104}, {99, 2397}, {105, 57664}, {110, 2427}, {692, 32722}, {767, 57827}, {1252, 59096}, {1783, 9107}, {2284, 29127}, {2291, 16785}, {2720, 4559}, {2726, 5291}, {2751, 5525}, {32719, 59068}, {38858, 59072}, {53290, 59000}

X(58999) = trilinear pole of line {6, 51377}
X(58999) = X(i)-isoconjugate-of-X(j) for these {i, j}: {392, 514}, {1450, 4391}
X(58999) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(37), X(2397)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(1169)}}, {{A, B, C, X(646), X(5548)}}, {{A, B, C, X(692), X(32641)}}, {{A, B, C, X(1415), X(32719)}}, {{A, B, C, X(1783), X(13136)}}, {{A, B, C, X(4565), X(32665)}}, {{A, B, C, X(32653), X(34074)}}
X(58999) = barycentric product X(i)*X(j) for these (i, j): {100, 57664}, {57827, 692}
X(58999) = barycentric quotient X(i)/X(j) for these (i, j): {692, 392}, {57664, 693}, {57827, 40495}


X(59000) = X(73)X(1477)∩X(98)X(56172)

Barycentrics    a^2*(a-b)*(a-c)*(a^3+a^2*b+a*b^2+b^3-4*a*b*c-(a+b)*c^2)*(a^3+a^2*c-b^2*c+c^3+a*(-b^2-4*b*c+c^2)) : :

X(59000) lies on the circumcircle and these lines: {73, 1477}, {98, 56172}, {2751, 3465}, {4574, 6078}, {5546, 34594}, {6198, 15344}, {53290, 58999}

X(59000) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 3555}
X(59000) = intersection, other than A, B, C, of circumconics {{A, B, C, X(73), X(4574)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(5546), X(32665)}}, {{A, B, C, X(32641), X(34080)}}
X(59000) = barycentric product X(i)*X(j) for these (i, j): {110, 56172}
X(59000) = barycentric quotient X(i)/X(j) for these (i, j): {692, 3555}, {56172, 850}


X(59001) = X(31)X(747)∩X(32)X(735)

Barycentrics    a^2*(a^5-b^5)*(a^5-c^5) : :

X(59001) lies on the circumcircle and these lines: {31, 747}, {32, 735}, {560, 721}, {689, 34072}, {705, 1501}, {767, 14623}, {33516, 57966}

X(59001) = trilinear pole of line {6, 1917}
X(59001) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 30149}, {656, 46506}, {1502, 9008}, {3261, 14620}
X(59001) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 30149}, {40596, 46506}
X(59001) = barycentric product X(i)*X(j) for these (i, j): {560, 9065}, {14623, 692}, {23626, 33516}
X(59001) = barycentric quotient X(i)/X(j) for these (i, j): {101, 30149}, {112, 46506}, {1917, 9008}, {9065, 1928}, {14623, 40495}


X(59002) = X(98)X(54969)∩X(107)X(14591)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^8+c^2*(-b^2+c^2)^3-a^6*(3*b^2+2*c^2)-a^2*(b-c)*(b+c)*(b^4-2*c^4)+a^4*(3*b^4+2*b^2*c^2+2*c^4))*(a^8+b^2*(b^2-c^2)^3-a^6*(2*b^2+3*c^2)-a^2*(b-c)*(b+c)*(2*b^4-c^4)+a^4*(2*b^4+2*b^2*c^2+3*c^4)) : :

X(59002) lies on the circumcircle and these lines: {98, 54969}, {107, 14591}, {476, 32661}, {1141, 14533}, {1297, 13340}, {1300, 52557}, {1576, 59003}, {1625, 58948}, {2367, 57901}

X(59002) = X(i)-isoconjugate-of-X(j) for these {i, j}: {568, 1577}
X(59002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(647), X(44427)}}, {{A, B, C, X(1625), X(56408)}}, {{A, B, C, X(14533), X(14591)}}, {{A, B, C, X(18315), X(32708)}}, {{A, B, C, X(32662), X(32737)}}
X(59002) = barycentric product X(i)*X(j) for these (i, j): {110, 54969}, {1576, 57901}
X(59002) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 568}, {54969, 850}, {57901, 44173}


X(59003) = X(6)X(1141)∩X(476)X(1625)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(c^2*(b^2-c^2)^3+a^6*(2*b^2+c^2)+a^2*(b-c)*(b+c)*(2*b^4-3*c^4)-a^4*(4*b^4+2*b^2*c^2+3*c^4))*(-(b^2*(b^2-c^2)^3)+a^6*(b^2+2*c^2)+a^2*(b-c)*(b+c)*(3*b^4-2*c^4)-a^4*(3*b^4+2*b^2*c^2+4*c^4)) : :

X(59003) lies on the circumcircle and these lines: {6, 1141}, {98, 9221}, {476, 1625}, {930, 2439}, {933, 14591}, {1298, 11464}, {1576, 59002}, {2367, 57900}, {2380, 41420}, {3016, 39430}, {3331, 32439}, {14586, 46966}, {32661, 58948}, {40118, 45769}

X(59003) = X(i)-isoconjugate-of-X(j) for these {i, j}: {567, 1577}, {32679, 56407}
X(59003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(1625)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3431), X(18831)}}, {{A, B, C, X(15032), X(58070)}}
X(59003) = barycentric product X(i)*X(j) for these (i, j): {110, 9221}, {1576, 57900}
X(59003) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 567}, {9221, 850}, {14560, 56407}, {57900, 44173}


X(59004) = X(2)X(53830)∩X(98)X(5133)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^2+b^2)-2*(a^4+a^2*b^2+b^4)*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-2*b^2*c^2-c^4)) : :
X(59004) = -3*X[2]+2*X[53830]

X(59004) lies on the circumcircle and these lines: {2, 53830}, {74, 11562}, {98, 5133}, {112, 52918}, {250, 52998}, {476, 38861}, {648, 1288}, {759, 2216}, {925, 1576}, {930, 14570}, {935, 35311}, {1141, 1166}, {1179, 1300}, {1286, 35278}, {1625, 32692}, {2367, 57903}, {4558, 59100}, {20189, 52603}, {20626, 35360}, {23181, 58975}, {32661, 58949}, {32710, 37954}, {43754, 53701}

X(59004) = anticomplement of X(53830)
X(59004) = trilinear pole of line {6, 26}
X(59004) = X(i)-isoconjugate-of-X(j) for these {i, j}: {570, 1577}, {656, 1594}, {661, 37636}, {1109, 50947}, {1209, 2616}, {1216, 24006}, {2618, 51255}, {3708, 41677}, {4024, 16698}, {14208, 47328}
X(59004) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 37636}, {40596, 1594}, {53830, 53830}
X(59004) = X(i)-cross conjugate of X(j) for these {i, j}: {5, 250}, {2965, 249}, {32379, 32230}, {50946, 1166}, {54034, 23357}
X(59004)= pole of line {2918, 7512} with respect to the Kiepert parabola
X(59004) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(52918)}}, {{A, B, C, X(2420), X(37513)}}, {{A, B, C, X(4230), X(5133)}}, {{A, B, C, X(4240), X(14118)}}, {{A, B, C, X(4630), X(32696)}}, {{A, B, C, X(7471), X(37954)}}, {{A, B, C, X(11794), X(32697)}}, {{A, B, C, X(14570), X(30529)}}, {{A, B, C, X(15958), X(43754)}}, {{A, B, C, X(23181), X(32662)}}, {{A, B, C, X(35311), X(52916)}}, {{A, B, C, X(43188), X(55203)}}, {{A, B, C, X(51263), X(51882)}}
X(59004) = barycentric product X(i)*X(j) for these (i, j): {110, 40393}, {249, 50946}, {1166, 14570}, {1179, 4558}, {1576, 57903}, {2216, 662}, {18315, 40449}, {40441, 648}
X(59004) = barycentric quotient X(i)/X(j) for these (i, j): {110, 37636}, {112, 1594}, {250, 41677}, {1166, 15412}, {1179, 14618}, {1576, 570}, {1625, 1209}, {2216, 1577}, {2420, 51392}, {4558, 1238}, {14570, 1225}, {14586, 51255}, {23357, 50947}, {32661, 1216}, {40393, 850}, {40441, 525}, {40449, 18314}, {50946, 338}, {57903, 44173}


X(59005) = X(1)X(39435)∩X(58)X(102)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3+b^3+a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3+a*b*(-b+c)) : :

X(59005) lies on the circumcircle and these lines: {1, 39435}, {58, 102}, {74, 4257}, {98, 13478}, {99, 54951}, {100, 4575}, {101, 32653}, {163, 32693}, {759, 2217}, {835, 44765}, {931, 4636}, {991, 1297}, {1311, 2206}, {1326, 2708}, {1333, 29068}, {1459, 53965}, {1576, 59006}, {1625, 58951}, {1983, 6010}, {2222, 15386}, {2291, 33628}, {2328, 2365}, {2367, 57906}, {2372, 15232}, {2717, 5009}, {3736, 29045}, {4297, 41904}, {7252, 32689}, {9059, 56112}, {17104, 26701}, {23189, 35183}, {32676, 40097}, {38832, 59016}

X(59005) = trilinear pole of line {6, 37259}
X(59005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 21189}, {92, 52310}, {124, 4551}, {225, 57111}, {321, 6589}, {514, 21078}, {521, 56827}, {523, 3869}, {573, 1577}, {594, 16754}, {656, 17555}, {661, 4417}, {693, 22276}, {850, 3185}, {1824, 57242}, {1826, 57184}, {3192, 14208}, {3700, 17080}, {4036, 4225}, {4086, 10571}, {4391, 40590}, {4552, 38345}, {14618, 22134}, {23879, 53081}
X(59005) = X(i)-Dao conjugate of X(j) for these {i, j}: {22391, 52310}, {36830, 4417}, {40596, 17555}
X(59005) = X(i)-cross conjugate of X(j) for these {i, j}: {522, 3453}, {2217, 15386}, {7252, 19607}, {23189, 58}, {28348, 250}
X(59005)= pole of line {21189, 57111} with respect to the Stammler hyperbola
X(59005) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(4636)}}, {{A, B, C, X(1461), X(4558)}}, {{A, B, C, X(2420), X(4257)}}, {{A, B, C, X(4575), X(32661)}}, {{A, B, C, X(8750), X(32734)}}, {{A, B, C, X(9132), X(46143)}}, {{A, B, C, X(32641), X(52928)}}, {{A, B, C, X(32653), X(36050)}}, {{A, B, C, X(32662), X(35169)}}, {{A, B, C, X(32675), X(56194)}}
X(59005) = barycentric product X(i)*X(j) for these (i, j): {109, 19607}, {110, 13478}, {163, 2995}, {1412, 56112}, {1576, 57906}, {1790, 26704}, {2217, 662}, {10570, 4565}, {15232, 4556}, {15386, 4560}, {32653, 86}, {36050, 81}, {40160, 4636}, {44765, 58}, {54951, 6}, {57757, 7252}
X(59005) = barycentric quotient X(i)/X(j) for these (i, j): {110, 4417}, {112, 17555}, {163, 3869}, {184, 52310}, {692, 21078}, {849, 16754}, {1333, 21189}, {1437, 57184}, {1576, 573}, {1790, 57242}, {2193, 57111}, {2206, 6589}, {2217, 1577}, {2995, 20948}, {4558, 51612}, {7252, 124}, {13478, 850}, {15232, 52623}, {15386, 4552}, {19607, 35519}, {23189, 40626}, {32653, 10}, {32674, 56827}, {32739, 22276}, {36050, 321}, {44765, 313}, {54951, 76}, {56112, 30713}, {57906, 44173}


X(59006) = X(58)X(104)∩X(101)X(1625)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a*b*(a+b)+(a^2-a*b+b^2)*c-c^3)*(-b^3+b*c^2+a*c*(-b+c)+a^2*(b+c)) : :

X(59006) lies on the circumcircle and these lines: {31, 53707}, {58, 104}, {74, 4256}, {98, 2051}, {100, 2617}, {101, 1625}, {102, 4276}, {103, 3736}, {105, 38832}, {106, 52150}, {162, 1309}, {163, 8687}, {284, 29068}, {595, 759}, {643, 8707}, {645, 8706}, {675, 17189}, {739, 33628}, {835, 1331}, {839, 56252}, {932, 54353}, {1311, 17188}, {1326, 2699}, {1576, 59005}, {2328, 26703}, {2367, 57905}, {2372, 51870}, {3737, 53702}, {4565, 59123}, {4575, 43345}, {8750, 26704}, {32661, 58951}, {43076, 53324}, {53321, 59073}

X(59006) = trilinear pole of line {6, 10457}
X(59006) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 51662}, {10, 21173}, {12, 57125}, {37, 17496}, {42, 57244}, {65, 57091}, {100, 53566}, {513, 17751}, {514, 21061}, {522, 37558}, {523, 2975}, {572, 1577}, {650, 52358}, {656, 11109}, {661, 14829}, {693, 52139}, {850, 20986}, {1018, 24237}, {1111, 57165}, {2167, 52322}, {3668, 58339}, {3700, 17074}, {3737, 52357}, {4391, 55323}, {4551, 34589}, {4552, 11998}, {4559, 40624}, {4560, 56325}, {7192, 14973}, {7253, 20617}, {14618, 22118}, {16606, 27346}, {23187, 41013}
X(59006) = X(i)-Dao conjugate of X(j) for these {i, j}: {8054, 53566}, {36830, 14829}, {39026, 17751}, {40588, 52322}, {40589, 17496}, {40592, 57244}, {40596, 11109}, {40602, 57091}, {55067, 40624}
X(59006) = X(i)-cross conjugate of X(j) for these {i, j}: {3737, 58}, {37259, 250}
X(59006)= pole of line {17496, 21173} with respect to the Stammler hyperbola
X(59006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(53321)}}, {{A, B, C, X(58), X(162)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(643)}}, {{A, B, C, X(645), X(4565)}}, {{A, B, C, X(648), X(1461)}}, {{A, B, C, X(1018), X(53280)}}, {{A, B, C, X(1331), X(32661)}}, {{A, B, C, X(1415), X(36050)}}, {{A, B, C, X(1576), X(8750)}}, {{A, B, C, X(1625), X(2617)}}, {{A, B, C, X(2420), X(4256)}}, {{A, B, C, X(4279), X(14966)}}, {{A, B, C, X(4630), X(40150)}}, {{A, B, C, X(32665), X(36098)}}, {{A, B, C, X(38832), X(54353)}}, {{A, B, C, X(41434), X(55185)}}
X(59006) = barycentric product X(i)*X(j) for these (i, j): {100, 53083}, {101, 20028}, {109, 46880}, {110, 2051}, {163, 54121}, {190, 52150}, {1333, 56252}, {1576, 57905}, {3882, 40453}, {4556, 51870}, {34434, 662}, {56188, 58}, {56194, 81}
X(59006) = barycentric quotient X(i)/X(j) for these (i, j): {51, 52322}, {58, 17496}, {81, 57244}, {101, 17751}, {109, 52358}, {110, 14829}, {112, 11109}, {163, 2975}, {284, 57091}, {604, 51662}, {649, 53566}, {692, 21061}, {1333, 21173}, {1415, 37558}, {1576, 572}, {2051, 850}, {2150, 57125}, {3733, 24237}, {3737, 40624}, {4559, 52357}, {7252, 34589}, {20028, 3261}, {23990, 57165}, {32739, 52139}, {34434, 1577}, {38832, 27346}, {46880, 35519}, {51870, 52623}, {52150, 514}, {53083, 693}, {54121, 20948}, {56188, 313}, {56194, 321}, {56252, 27801}, {57905, 44173}


X(59007) = X(6)X(43656)∩X(111)X(184)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^4-a^2*b^2+b^4)-3*(a^2+b^2)*c^2+c^4)*(2*a^4+b^4-3*b^2*c^2+2*c^4-a^2*(3*b^2+2*c^2)) : :

X(59007) lies on the circumcircle and these lines: {6, 43656}, {74, 8588}, {98, 7607}, {99, 35178}, {111, 184}, {115, 13530}, {691, 32661}, {842, 1971}, {1297, 52987}, {1576, 59008}, {1625, 11636}, {2367, 57908}, {2698, 10631}, {3563, 8537}, {5467, 8600}

X(59007) = trilinear pole of line {6, 23200}
X(59007) = X(i)-isoconjugate-of-X(j) for these {i, j}: {576, 1577}, {656, 52282}
X(59007) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 52282}
X(59007) = X(i)-cross conjugate of X(j) for these {i, j}: {15581, 15388}, {41275, 250}
X(59007) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(184), X(32661)}}, {{A, B, C, X(647), X(14223)}}, {{A, B, C, X(648), X(32737)}}, {{A, B, C, X(690), X(30491)}}, {{A, B, C, X(2420), X(8588)}}, {{A, B, C, X(2421), X(37637)}}, {{A, B, C, X(8537), X(52035)}}, {{A, B, C, X(9132), X(35179)}}, {{A, B, C, X(14586), X(32729)}}, {{A, B, C, X(14966), X(39560)}}, {{A, B, C, X(18315), X(32734)}}, {{A, B, C, X(43952), X(54638)}}
X(59007) = barycentric product X(i)*X(j) for these (i, j): {110, 7607}, {1576, 57908}, {35178, 6}
X(59007) = barycentric quotient X(i)/X(j) for these (i, j): {112, 52282}, {1576, 576}, {7607, 850}, {35178, 76}, {57908, 44173}


X(59008) = X(51)X(111)∩X(98)X(3815)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4-4*a^2*b^2+b^4-3*(a^2+b^2)*c^2+2*c^4)*(a^4+2*b^4-3*b^2*c^2+c^4-a^2*(3*b^2+4*c^2)) : :

X(59008) lies on the circumcircle and these lines: {51, 111}, {74, 8589}, {98, 3815}, {691, 1625}, {827, 35324}, {1141, 56395}, {1297, 55606}, {1576, 59007}, {2367, 57907}, {11636, 32661}

X(59008) = trilinear pole of line {6, 30534}
X(59008) = X(i)-isoconjugate-of-X(j) for these {i, j}: {575, 1577}, {656, 52281}, {661, 37688}, {10985, 14208}
X(59008) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 37688}, {40596, 52281}
X(59008) = X(i)-cross conjugate of X(j) for these {i, j}: {13330, 249}, {15582, 15388}, {37457, 250}
X(59008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(51), X(1625)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(288), X(10558)}}, {{A, B, C, X(2420), X(8589)}}, {{A, B, C, X(2421), X(3815)}}, {{A, B, C, X(5038), X(14966)}}, {{A, B, C, X(8550), X(58070)}}, {{A, B, C, X(18315), X(53199)}}, {{A, B, C, X(35324), X(35325)}}
X(59008) = barycentric product X(i)*X(j) for these (i, j): {110, 7608}, {1576, 57907}
X(59008) = barycentric quotient X(i)/X(j) for these (i, j): {110, 37688}, {112, 52281}, {1576, 575}, {7608, 850}, {57907, 44173}


X(59009) = X(98)X(6146)∩X(933)X(1625)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^4+b^4)-3*(a^2-b^2)^2*(a^2+b^2)*c^2+3*(a^4+b^4)*c^4-(a^2+b^2)*c^6)*(a^8+c^2*(-b^2+c^2)^3-a^6*(3*b^2+2*c^2)+a^4*(3*b^4+3*b^2*c^2+2*c^4)-a^2*(b^6-3*b^2*c^4+2*c^6)) : :

X(59009) lies on these lines: {74, 22052}, {98, 6146}, {107, 32661}, {933, 1625}, {1297, 15644}, {1300, 40402}, {1304, 35324}, {1576, 6570}, {2367, 42333}, {4558, 43352}, {18315, 52779}, {32662, 46966}

X(59009) = trilinear pole of line {6, 6641}
X(59009) = X(i)-isoconjugate-of-X(j) for these {i, j}: {389, 1577}, {525, 45225}, {656, 52280}, {661, 45198}, {2616, 34836}, {2618, 19170}, {24006, 46832}
X(59009) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 45198}, {40596, 52280}
X(59009) = X(i)-cross conjugate of X(j) for these {i, j}: {418, 250}, {1970, 249}, {14533, 23357}, {34782, 15388}
X(59009) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1625), X(32662)}}, {{A, B, C, X(2420), X(22052)}}, {{A, B, C, X(6146), X(58070)}}, {{A, B, C, X(6529), X(32734)}}, {{A, B, C, X(14586), X(32708)}}, {{A, B, C, X(18315), X(32661)}}, {{A, B, C, X(18831), X(43754)}}, {{A, B, C, X(32695), X(32737)}}
X(59009) = barycentric product X(i)*X(j) for these (i, j): {110, 40448}, {1576, 42333}, {40402, 4558}
X(59009) = barycentric quotient X(i)/X(j) for these (i, j): {110, 45198}, {112, 52280}, {163, 45224}, {1576, 389}, {1625, 34836}, {14586, 19170}, {32661, 46832}, {32676, 45225}, {40402, 14618}, {40448, 850}, {42333, 44173}, {52604, 6750}


X(59010) = X(105)X(2360)∩X(109)X(1625)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3*(b-c)*c+a^4*(b+c)-a*(b-c)*c*(b+c)^2+b*(b^2-c^2)^2-a^2*(2*b^3+b^2*c+c^3))*(a^3*b*(-b+c)+a^4*(b+c)+a*b*(b-c)*(b+c)^2+c*(b^2-c^2)^2-a^2*(b^3+b*c^2+2*c^3)) : :

X(59010) lies on the circumcircle and these lines: {58, 29015}, {98, 57719}, {102, 4269}, {103, 4278}, {104, 43729}, {105, 2360}, {109, 1625}, {163, 15439}, {284, 915}, {759, 1630}, {1305, 1813}, {1576, 58987}, {2367, 57910}, {32661, 58986}

X(59010) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 41342}, {525, 41227}, {580, 1577}, {650, 52673}, {656, 37279}, {1214, 57089}, {1231, 58318}, {4560, 15443}, {45038, 56320}
X(59010) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 37279}
X(59010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4574)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(284), X(36145)}}, {{A, B, C, X(648), X(36049)}}, {{A, B, C, X(1576), X(32674)}}, {{A, B, C, X(1813), X(32661)}}, {{A, B, C, X(3939), X(6529)}}
X(59010) = barycentric product X(i)*X(j) for these (i, j): {110, 57719}, {1414, 41509}, {1576, 57910}, {43729, 651}
X(59010) = barycentric quotient X(i)/X(j) for these (i, j): {109, 52673}, {112, 37279}, {692, 3191}, {1415, 41342}, {1576, 580}, {2299, 57089}, {32676, 41227}, {41509, 4086}, {43729, 4391}, {57719, 850}, {57910, 44173}


X(59011) = X(74)X(17454)∩X(103)X(15792)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(59011) lies on these lines: {74, 17454}, {98, 57710}, {103, 15792}, {163, 26700}, {943, 15168}, {1175, 28471}, {1297, 48882}, {1625, 59013}, {2222, 32678}, {2367, 57885}, {2373, 57860}, {6742, 59097}, {8818, 51760}, {13397, 13486}, {14560, 53290}, {32640, 36064}, {32661, 59012}, {32662, 36069}

X(59011) = trilinear pole of line {6, 57691}
X(59011) = X(i)-isoconjugate-of-X(j) for these {i, j}: {442, 14838}, {445, 656}, {500, 1577}, {523, 16585}, {525, 1844}, {942, 7265}, {2294, 4467}, {3219, 23752}, {3969, 50354}, {5249, 57099}, {7178, 31938}, {14208, 44095}, {18160, 40952}, {32679, 45926}, {35057, 55010}
X(59011) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 445}
X(59011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(32640)}}, {{A, B, C, X(2420), X(17454)}}, {{A, B, C, X(4565), X(32708)}}
X(59011) = barycentric product X(i)*X(j) for these (i, j): {110, 57710}, {112, 57860}, {1175, 6742}, {1576, 57885}, {13486, 943}, {15439, 3615}, {57691, 648}
X(59011) = barycentric quotient X(i)/X(j) for these (i, j): {112, 445}, {163, 16585}, {1175, 4467}, {1576, 500}, {2259, 7265}, {6186, 23752}, {6742, 1234}, {14560, 45926}, {15439, 40999}, {32676, 1844}, {57691, 525}, {57710, 850}, {57860, 3267}, {57885, 44173}


X(59012) = X(759)X(1468)∩X(799)X(839)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a*b*(a+b)+(a+b)^2*c-c^3)*(-b^3+b*c^2+a^2*(b+c)+a*c*(2*b+c)) : :

X(59012) lies on the circumcircle and these lines: {98, 57722}, {105, 39673}, {162, 26705}, {163, 29041}, {643, 46961}, {759, 1468}, {799, 839}, {1305, 1414}, {1576, 59013}, {2367, 57914}, {4556, 59112}, {4565, 15439}, {6013, 54353}, {28523, 38832}, {32661, 59011}

X(59012) = trilinear pole of line {6, 16453}
X(59012) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 48297}, {523, 5248}, {584, 1577}, {661, 5278}
X(59012) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 5278}
X(59012) = X(i)-cross conjugate of X(j) for these {i, j}: {4840, 58}
X(59012)= pole of line {5278, 16451} with respect to the Kiepert parabola
X(59012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(13486)}}, {{A, B, C, X(647), X(4467)}}, {{A, B, C, X(799), X(4556)}}, {{A, B, C, X(4559), X(6742)}}, {{A, B, C, X(39673), X(54353)}}
X(59012) = barycentric product X(i)*X(j) for these (i, j): {110, 57722}, {1414, 56232}, {1576, 57914}
X(59012) = barycentric quotient X(i)/X(j) for these (i, j): {110, 5278}, {163, 5248}, {1333, 48297}, {1576, 584}, {56232, 4086}, {57722, 850}, {57914, 44173}


X(59013) = X(98)X(57721)∩X(1308)X(4575)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3+b^3-2*a*b*c-(a+b)*c^2)*(a^3-b^2*c+c^3-a*b*(b+2*c)) : :

X(59013) lies on the circumcircle and these lines: {98, 57721}, {270, 39439}, {662, 43348}, {1141, 45926}, {1308, 4575}, {1576, 59012}, {1625, 59011}, {2367, 57913}, {2372, 56132}, {4636, 34594}

X(59013) = X(i)-isoconjugate-of-X(j) for these {i, j}: {523, 3874}, {583, 1577}, {661, 18139}, {8061, 29568}
X(59013) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 18139}
X(59013) = X(i)-cross conjugate of X(j) for these {i, j}: {16453, 250}
X(59013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(270), X(643)}}, {{A, B, C, X(1625), X(45926)}}, {{A, B, C, X(4630), X(32666)}}, {{A, B, C, X(36087), X(42396)}}
X(59013) = barycentric product X(i)*X(j) for these (i, j): {110, 57721}, {1576, 57913}, {4556, 56132}
X(59013) = barycentric quotient X(i)/X(j) for these (i, j): {110, 18139}, {163, 3874}, {827, 29568}, {1576, 583}, {56132, 52623}, {57721, 850}, {57913, 44173}


X(59014) = X(675)X(1796)∩X(727)X(1126)

Barycentrics    a^2*(a-b)*(a-c)*(a+2*b+c)*(a+b+2*c)*(a*(b-c)+b*(b+c))*(a*(b-c)-c*(b+c)) : :

X(59014) lies on the circumcircle and these lines: {99, 37205}, {101, 40519}, {106, 33635}, {596, 9108}, {675, 1796}, {689, 4632}, {727, 1126}, {1018, 34594}, {6540, 8709}, {8050, 46961}, {8700, 40148}, {38836, 39441}, {52555, 59072}

X(59014) = trilinear pole of line {6, 40148}
X(59014) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 45222}, {553, 48307}, {595, 4978}, {1019, 4065}, {1100, 20295}, {1125, 4063}, {1269, 57096}, {2308, 20949}, {3702, 57238}, {3871, 30724}, {3916, 17922}, {4057, 4359}, {4132, 8025}, {4360, 4979}, {4647, 57080}, {4977, 32911}, {16709, 58288}, {18140, 50512}, {21208, 35342}, {22154, 56875}, {32636, 47793}
X(59014) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 45222}
X(59014) = X(i)-cross conjugate of X(j) for these {i, j}: {46148, 4629}
X(59014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(42), X(4115)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1126), X(6540)}}, {{A, B, C, X(37205), X(40519)}}
X(59014) = barycentric product X(i)*X(j) for these (i, j): {596, 8701}, {1126, 8050}, {1268, 40519}, {37205, 52555}, {37212, 39798}, {40085, 4629}, {40148, 6540}
X(59014) = barycentric quotient X(i)/X(j) for these (i, j): {101, 45222}, {1126, 20295}, {1255, 20949}, {4557, 4065}, {6540, 40087}, {8050, 1269}, {8701, 4360}, {28615, 4063}, {33635, 47793}, {34594, 16709}, {37205, 52572}, {37212, 18140}, {39798, 4978}, {40148, 4977}, {40519, 1125}, {50344, 21208}, {52555, 4129}


X(59015) = X(104)X(987)∩X(1415)X(6010)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^3+b^3+(a^2+a*b+b^2)*c)*(a^3+a^2*b+a*b*c+c^2*(b+c)) : :

X(59015) lies on the circumcircle and these lines: {104, 987}, {163, 59066}, {651, 38470}, {1311, 56046}, {1415, 6010}, {2370, 56202}, {29055, 36059}

X(59015) = trilinear pole of line {6, 2933}
X(59015) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 986}, {650, 27184}, {2277, 4391}
X(59015) = X(i)-cross conjugate of X(j) for these {i, j}: {958, 15386}
X(59015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(643), X(32653)}}, {{A, B, C, X(692), X(4636)}}
X(59015) = barycentric product X(i)*X(j) for these (i, j): {109, 56046}, {651, 987}, {1415, 58021}, {1461, 56202}
X(59015) = barycentric quotient X(i)/X(j) for these (i, j): {109, 27184}, {987, 4391}, {1415, 986}, {56046, 35519}, {56202, 52622}


X(59016) = X(31)X(108)∩X(109)X(184)

Barycentrics    a^2*(a^5*(b-c)+a^4*c^2+a*b^3*(b-c)*(b+c)-b^2*(b-c)^2*c*(b+c)+a^2*c*(b^3-c^3)+a^3*(-2*b^3+b^2*c-b*c^2+c^3))*(-(a^4*b^2)+a^5*(b-c)+b*(b-c)^2*c^2*(b+c)+a*(b-c)*c^3*(b+c)-a^3*(b^3-b^2*c+b*c^2-2*c^3)+a^2*(b^4-b*c^3)) : :

X(59016) lies on the circumcircle and these lines: {31, 108}, {99, 283}, {100, 212}, {101, 4291}, {107, 2299}, {109, 184}, {112, 57657}, {603, 934}, {654, 59131}, {927, 36057}, {932, 3869}, {1309, 2342}, {2254, 15323}, {7118, 40117}, {38832, 59005}

X(59016) = trilinear pole of line {6, 39199}
X(59016) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 45932}
X(59016) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 45932}
X(59016) = X(i)-cross conjugate of X(j) for these {i, j}: {45932, 6}
X(59016) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(184)}}, {{A, B, C, X(58), X(4291)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(275)}}, {{A, B, C, X(654), X(5081)}}, {{A, B, C, X(1437), X(2190)}}, {{A, B, C, X(1459), X(1937)}}, {{A, B, C, X(1988), X(2162)}}, {{A, B, C, X(3869), X(20287)}}, {{A, B, C, X(7012), X(32677)}}, {{A, B, C, X(7252), X(36124)}}, {{A, B, C, X(25308), X(54457)}}, {{A, B, C, X(36614), X(36617)}}
X(59016) = barycentric quotient X(i)/X(j) for these (i, j): {32, 45932}


X(59017) = X(31)X(2222)∩X(100)X(2361)

Barycentrics    a^2*(a^5*(b-c)+a^4*c^2-b^2*(b-c)^2*c*(b+c)-a^3*(2*b-c)*(b^2+c^2)+a^2*c*(b^3+b*c^2-c^3)+a*b^2*(b^3-2*b*c^2+c^3))*(-(a^4*b^2)+a^5*(b-c)+b*(b-c)^2*c^2*(b+c)-a^3*(b-2*c)*(b^2+c^2)-a*c^2*(b^3-2*b^2*c+c^3)+a^2*(b^4-b^3*c-b*c^3)) : :

X(59017) lies on the circumcircle and these lines: {31, 2222}, {100, 2361}, {101, 52426}, {109, 52434}, {901, 5012}, {934, 52440}, {36078, 54034}

X(59017) = trilinear pole of line {6, 39200}
X(59017) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 45937}
X(59017) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 45937}
X(59017) = X(i)-cross conjugate of X(j) for these {i, j}: {45937, 6}
X(59017) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(2361)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(40393)}}
X(59017) = barycentric quotient X(i)/X(j) for these (i, j): {32, 45937}


X(59018) = X(104)X(1411)∩X(1769)X(2222)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*((a^2-b^2)^2-2*(a-b)^2*(a+b)*c+(a^2-4*a*b+b^2)*c^2+2*(a+b)*c^3-2*c^4)*(a^4-2*a^3*b+2*a*b*(b-c)^2+a^2*(b^2+2*b*c-2*c^2)-(b-c)*(b+c)*(2*b^2-2*b*c+c^2)) : :

X(59018) lies on the circumcircle and these lines: {80, 53877}, {100, 46041}, {101, 53046}, {104, 1411}, {1309, 44428}, {1769, 2222}, {1772, 2716}, {2006, 53878}, {2720, 53314}, {14584, 18341}, {32675, 59062}, {43655, 52383}

X(59018) = trilinear pole of line {6, 32675}
X(59018) = X(i)-isoconjugate-of-X(j) for these {i, j}: {952, 3738}, {2265, 3904}, {35013, 56757}, {36037, 45950}
X(59018) = X(i)-Dao conjugate of X(j) for these {i, j}: {3259, 45950}
X(59018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1769), X(23981)}}, {{A, B, C, X(52383), X(53321)}}
X(59018) = barycentric product X(i)*X(j) for these (i, j): {655, 953}, {32675, 46136}, {35011, 52212}
X(59018) = barycentric quotient X(i)/X(j) for these (i, j): {953, 3904}, {3310, 45950}, {32675, 952}


X(59019) = X(31)X(934)∩X(63)X(932)

Barycentrics    a^2*(a*(a-b)^2*b*(a+b)-(a^2-b^2)^2*c+(a+b)*(2*a^2-3*a*b+2*b^2)*c^2-(a^2+b^2)*c^3)*(a^4*(b-c)+b*(b-c)^2*c^2+a*(b-c)*c^2*(b+c)+a^3*(-2*b^2+c^2)+a^2*(b^3+b^2*c-2*b*c^2+c^3)) : :

X(59019) lies on the circumcircle and these lines: {31, 934}, {63, 932}, {81, 53683}, {99, 2328}, {100, 1253}, {101, 9306}, {108, 1423}, {109, 2175}, {112, 38832}, {665, 59020}, {927, 2195}, {7015, 58981}, {23086, 58958}, {33581, 36079}, {53326, 59131}

X(59019) = trilinear pole of line {6, 22090}
X(59019) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 3010}
X(59019) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 3010}
X(59019) = X(i)-cross conjugate of X(j) for these {i, j}: {3010, 6}
X(59019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1945)}}, {{A, B, C, X(31), X(1253)}}, {{A, B, C, X(56), X(17963)}}, {{A, B, C, X(63), X(1423)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(801)}}, {{A, B, C, X(665), X(9436)}}, {{A, B, C, X(911), X(7045)}}, {{A, B, C, X(1958), X(9306)}}, {{A, B, C, X(2162), X(2191)}}, {{A, B, C, X(7252), X(56783)}}, {{A, B, C, X(13577), X(25279)}}
X(59019) = barycentric quotient X(i)/X(j) for these (i, j): {32, 3010}


X(59020) = X(32)X(109)∩X(41)X(100)

Barycentrics    a^2*(a*(a-b)^2*b-(a^3+b^3)*c+(a^2+b^2)*c^2)*(a^3*(b-c)-a*c^3+b*c^2*(-b+c)-a^2*(b^2-2*c^2)) : :

X(59020) lies on the circumcircle and these lines: {32, 109}, {41, 100}, {99, 284}, {101, 2175}, {108, 1973}, {110, 57657}, {182, 28291}, {573, 28469}, {604, 934}, {665, 59019}, {789, 2344}, {805, 5060}, {813, 18265}, {919, 3010}, {927, 1438}, {932, 57264}, {1292, 1742}, {1691, 2701}, {2301, 28847}, {2860, 30928}, {4262, 43077}, {4279, 29067}, {4350, 53632}, {6011, 54388}, {7104, 29055}, {8632, 9082}, {20459, 43362}, {26715, 41412}, {34083, 34084}, {38835, 53244}

X(59020) = isogonal conjugate of X(46180)
X(59020) = trilinear pole of line {6, 23655}
X(59020) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(292)}}, {{A, B, C, X(32), X(41)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(83), X(1170)}}, {{A, B, C, X(512), X(11608)}}, {{A, B, C, X(663), X(14943)}}, {{A, B, C, X(665), X(3010)}}, {{A, B, C, X(1110), X(2224)}}, {{A, B, C, X(1411), X(9319)}}, {{A, B, C, X(1691), X(5060)}}, {{A, B, C, X(1742), X(4350)}}, {{A, B, C, X(2053), X(3500)}}, {{A, B, C, X(2164), X(17962)}}, {{A, B, C, X(2311), X(8751)}}, {{A, B, C, X(4262), X(34476)}}, {{A, B, C, X(6169), X(21789)}}, {{A, B, C, X(7084), X(7132)}}
X(59020) = barycentric product X(i)*X(j) for these (i, j): {30627, 57}, {34084, 41}
X(59020) = barycentric quotient X(i)/X(j) for these (i, j): {6, 46180}, {30627, 312}, {34084, 20567}


X(59021) = X(100)X(3126)∩X(106)X(2195)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-(a+b)*c)*((a-b)^2*(a+b)-(a^2+b^2)*c+2*(a+b)*c^2-2*c^3)*(a^2-a*b+c*(-b+c))*(a^3-a^2*(b+c)+a*(2*b^2-c^2)-(b-c)*(2*b^2+c^2)) : :

X(59021) lies on the circumcircle and these lines: {100, 3126}, {105, 3675}, {106, 2195}, {665, 919}, {901, 6139}, {927, 43042}, {1308, 3960}, {1438, 2291}, {1960, 14733}, {2222, 36146}, {2283, 59101}, {2725, 37131}, {2862, 18821}, {14191, 53608}, {53180, 56853}

X(59021) = trilinear pole of line {6, 840}
X(59021) = X(i)-isoconjugate-of-X(j) for these {i, j}: {85, 14411}, {514, 1642}, {528, 2254}, {918, 2246}, {1025, 52946}, {1643, 3912}, {4564, 14393}, {35094, 52227}, {35113, 52228}, {36819, 42763}, {51922, 53583}
X(59021) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(665), X(876)}}, {{A, B, C, X(884), X(1960)}}, {{A, B, C, X(1438), X(32735)}}, {{A, B, C, X(2195), X(52927)}}, {{A, B, C, X(3960), X(43050)}}
X(59021) = barycentric product X(i)*X(j) for these (i, j): {666, 840}, {18821, 919}, {36086, 37131}
X(59021) = barycentric quotient X(i)/X(j) for these (i, j): {692, 1642}, {840, 918}, {884, 52946}, {919, 528}, {2175, 14411}, {2440, 57443}, {3271, 14393}, {5377, 42722}, {32666, 2246}, {32735, 5723}, {51987, 42763}


X(59022) = X(6)X(675)∩X(352)X(2729)

Barycentrics    a^2*(a-b)*(a-c)*(2*a^2*b^2+(a^2+a*b+b^2)*c^2-(a+b)*c^3)*(a*b^2*(-b+c)+b^2*c*(-b+c)+a^2*(b^2+2*c^2)) : :

X(59022) lies on the circumcircle and these lines: {6, 675}, {106, 9463}, {352, 2729}, {739, 3941}, {2438, 44876}, {32682, 32739}

X(59022) = trilinear pole of line {6, 8618}
X(59022) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(2438)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(32718)}}, {{A, B, C, X(1462), X(32724)}}, {{A, B, C, X(32040), X(39961)}}


X(59023) = X(22)X(805)∩X(107)X(232)

Barycentrics    a^2*(a^2*b^2*(a^2-b^2)^2*(a^2+b^2)-(a^6+b^6)*c^4+2*(a^4+b^4)*c^6-(a^2+b^2)*c^8)*(a^8*c^2-b^4*c^2*(b^2-c^2)^2-a^6*(b^4+c^4)+a^4*(2*b^6-c^6)+a^2*(-b^8+c^8)) : :

X(59023) lies on the circumcircle and these lines: {2, 22456}, {22, 805}, {23, 53699}, {25, 53708}, {74, 3288}, {98, 647}, {99, 401}, {100, 42702}, {107, 232}, {110, 1971}, {111, 47233}, {112, 237}, {184, 2715}, {419, 1289}, {476, 22240}, {691, 37918}, {858, 53603}, {933, 41270}, {935, 1316}, {1298, 2623}, {1304, 10311}, {1495, 26714}, {2770, 47214}, {6037, 35906}, {10098, 37991}, {10423, 54094}, {11676, 30247}, {15391, 18858}, {32687, 51822}, {46967, 51343}, {47213, 53692}, {56975, 58113}

X(59023) = inverse of X(38974) in orthoptic circle of the Steiner Inellipse
X(59023) = trilinear pole of line {6, 2507}
X(59023) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 47202}, {1755, 16083}
X(59023) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 47202}, {36899, 16083}
X(59023) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(184)}}, {{A, B, C, X(22), X(419)}}, {{A, B, C, X(23), X(1316)}}, {{A, B, C, X(25), X(401)}}, {{A, B, C, X(30), X(30491)}}, {{A, B, C, X(32), X(54114)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(251), X(275)}}, {{A, B, C, X(276), X(10547)}}, {{A, B, C, X(325), X(46603)}}, {{A, B, C, X(468), X(37918)}}, {{A, B, C, X(512), X(15351)}}, {{A, B, C, X(694), X(1972)}}, {{A, B, C, X(858), X(54094)}}, {{A, B, C, X(1383), X(1495)}}, {{A, B, C, X(1995), X(11676)}}, {{A, B, C, X(2211), X(46271)}}, {{A, B, C, X(2492), X(47223)}}, {{A, B, C, X(3424), X(43952)}}, {{A, B, C, X(5481), X(51444)}}, {{A, B, C, X(7426), X(37991)}}, {{A, B, C, X(8770), X(36617)}}, {{A, B, C, X(10097), X(53201)}}, {{A, B, C, X(10318), X(35061)}}, {{A, B, C, X(13575), X(41520)}}, {{A, B, C, X(14165), X(22240)}}, {{A, B, C, X(14908), X(54973)}}, {{A, B, C, X(15412), X(57655)}}, {{A, B, C, X(18020), X(51862)}}, {{A, B, C, X(19189), X(47388)}}, {{A, B, C, X(34235), X(36900)}}, {{A, B, C, X(38256), X(40319)}}, {{A, B, C, X(39389), X(40384)}}, {{A, B, C, X(44467), X(47214)}}, {{A, B, C, X(57761), X(58353)}}
X(59023) = barycentric product X(i)*X(j) for these (i, j): {53200, 6}
X(59023) = barycentric quotient X(i)/X(j) for these (i, j): {25, 47202}, {98, 16083}, {53200, 76}


X(59024) = X(4)X(46413)∩X(99)X(52459)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*((a^2-b^2)^2*(a^4+b^4)-(a^4+b^4)*c^4+2*(a^2+b^2)*c^6-2*c^8)*(a^8-2*b^8-2*a^6*c^2+2*b^6*c^2-b^4*c^4+c^8-a^4*(b^4-2*c^4)+2*a^2*(b^6-c^6)) : :

X(59024) lies on the circumcircle and these lines: {4, 46413}, {99, 52459}, {107, 55275}, {1297, 41172}, {6531, 53931}, {17994, 32687}

X(59024) = inverse of X(46413) in polar circle
X(59024) = trilinear pole of line {6, 32696}
X(59024) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(878), X(17994)}}
X(59024) = barycentric product X(i)*X(j) for these (i, j): {2710, 685}, {32696, 46145}
X(59024) = barycentric quotient X(i)/X(j) for these (i, j): {2445, 57432}, {2710, 6333}, {32696, 2794}


X(59025) = X(98)X(924)∩X(107)X(421)

Barycentrics    a^2*(a^2*b^2*(a^2-b^2)^4-a^2*b^2*(a^2-b^2)^2*(a^2+b^2)*c^2+(a^8+a^6*b^2+a^2*b^6+b^8)*c^4-(3*a^6+2*a^4*b^2+2*a^2*b^4+3*b^6)*c^6+(3*a^4+2*a^2*b^2+3*b^4)*c^8-(a^2+b^2)*c^10)*(a^10*c^2-b^4*c^2*(b^2-c^2)^3+a^8*(b^4-b^2*c^2-4*c^4)+a^6*(-3*b^6+b^4*c^2+b^2*c^4+6*c^6)+a^4*(3*b^8-2*b^6*c^2+b^2*c^6-4*c^8)-a^2*(b-c)*(b+c)*(b^8-b^6*c^2+b^4*c^4+c^8)) : :

X(59025) lies on the circumcircle and these lines: {98, 924}, {99, 13754}, {107, 421}, {110, 51458}, {112, 58312}, {184, 10420}, {317, 22456}, {476, 3060}, {511, 925}, {512, 1300}, {571, 2715}, {691, 13352}, {1303, 54077}, {1304, 51821}, {15072, 53895}, {32692, 41270}

X(59025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(421)}}, {{A, B, C, X(4), X(23357)}}, {{A, B, C, X(66), X(317)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(184), X(512)}}, {{A, B, C, X(187), X(13352)}}, {{A, B, C, X(249), X(275)}}, {{A, B, C, X(1176), X(2065)}}, {{A, B, C, X(1988), X(9217)}}, {{A, B, C, X(3060), X(5962)}}, {{A, B, C, X(3425), X(41932)}}, {{A, B, C, X(7689), X(50384)}}, {{A, B, C, X(34130), X(34436)}}


X(59026) = X(83)X(53968)∩X(783)X(881)

Barycentrics    (a-b)*(a+b)*(a^2+b^2)^2*(a-c)*(a+c)*(-b^2+a*c)*(b^2+a*c)*(a*b-c^2)*(a^2+c^2)^2*(a*b+c^2) : :

X(59026) lies on the circumcircle and these lines: {83, 53968}, {110, 41209}, {745, 43763}, {755, 14970}, {783, 881}, {827, 57545}, {4577, 43357}, {5970, 52395}, {7953, 18829}, {17938, 58118}, {18105, 59047}, {56976, 59048}

X(59026) = trilinear pole of line {6, 4577}
X(59026) = X(i)-isoconjugate-of-X(j) for these {i, j}: {732, 2084}, {1580, 57132}, {1933, 2528}, {1966, 2531}, {2236, 3005}, {8061, 8623}, {16587, 46387}
X(59026) = X(i)-Dao conjugate of X(j) for these {i, j}: {9467, 2531}, {39092, 57132}
X(59026) = X(i)-cross conjugate of X(j) for these {i, j}: {17941, 4577}, {17997, 83}
X(59026) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(804), X(17997)}}, {{A, B, C, X(892), X(40425)}}, {{A, B, C, X(9477), X(18829)}}
X(59026) = barycentric product X(i)*X(j) for these (i, j): {689, 733}, {1916, 52936}, {14970, 4577}, {18829, 52395}, {41209, 83}, {43763, 4593}
X(59026) = barycentric quotient X(i)/X(j) for these (i, j): {689, 35540}, {694, 57132}, {733, 3005}, {805, 8041}, {827, 8623}, {1916, 2528}, {4577, 732}, {4599, 2236}, {4630, 56915}, {9468, 2531}, {14970, 826}, {17997, 39079}, {18105, 41178}, {18829, 7794}, {36081, 16587}, {41209, 141}, {43763, 8061}, {52395, 804}, {52936, 385}, {57545, 17941}


X(59027) = X(99)X(18311)∩X(691)X(2492)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-2*c^2)*(a^2-2*b^2+c^2)*(a^6-2*a^4*b^2+b^6-b^2*c^4-a^2*(2*b^4-4*b^2*c^2+c^4))*(a^6-2*a^4*c^2-b^4*c^2+c^6-a^2*(b^4-4*b^2*c^2+2*c^4)) : :

X(59027) lies on the circumcircle and these lines: {98, 57604}, {99, 18311}, {187, 53882}, {691, 2492}, {843, 32741}, {935, 14273}, {2770, 10418}, {5968, 50381}, {9178, 39413}, {19626, 53604}, {23348, 53613}, {40119, 44467}, {45773, 52630}

X(59027) = trilinear pole of line {6, 32729}
X(59027) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1577, 9177}
X(59027) = X(i)-cross conjugate of X(j) for these {i, j}: {46589, 250}
X(59027) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2492), X(9178)}}, {{A, B, C, X(4230), X(57604)}}, {{A, B, C, X(10418), X(44467)}}
X(59027) = barycentric product X(i)*X(j) for these (i, j): {2770, 691}, {32741, 892}, {36085, 36150}
X(59027) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 9177}, {2444, 57425}, {2770, 35522}, {32729, 2854}, {32741, 690}


X(59028) = X(98)X(6310)∩X(695)X(699)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(b^4+a^2*c^2)*(a^2*b^2-(a^2+b^2)*c^2)*(a^2*b^2+c^4)*(b^2*c^2+a^2*(b-c)*(b+c)) : :

X(59028) lies on the circumcircle and these lines: {98, 6310}, {695, 699}, {733, 3224}, {2998, 53889}, {6380, 51948}, {9063, 53654}

X(59028) = trilinear pole of line {6, 3504}
X(59028) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1582, 23301}, {1915, 20910}, {1925, 9491}, {1965, 3221}, {9230, 23503}
X(59028) = X(i)-cross conjugate of X(j) for these {i, j}: {688, 51951}, {9429, 14946}
X(59028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(42371)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(877), X(6310)}}
X(59028) = barycentric product X(i)*X(j) for these (i, j): {3222, 695}, {51948, 53654}
X(59028) = barycentric quotient X(i)/X(j) for these (i, j): {695, 23301}, {3222, 9230}, {9236, 23503}, {9285, 20910}, {51948, 3221}


X(59029) = X(6)X(713)∩X(104)X(3098)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)-(a^2+a*b+b^2)*c-2*c^3)*(a^2*(b-c)+a*(b-c)*c+b*(2*b^2+c^2)) : :

X(59029) lies on the circumcircle and these lines: {6, 713}, {104, 3098}, {574, 739}, {692, 29167}, {727, 4256}, {898, 3908}, {901, 8671}, {2699, 35002}, {5104, 35107}, {14665, 33844}

X(59029) = trilinear pole of line {6, 8620}
X(59029) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(668)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(574), X(3908)}}, {{A, B, C, X(644), X(41432)}}, {{A, B, C, X(4555), X(34071)}}, {{A, B, C, X(4597), X(40519)}}, {{A, B, C, X(6516), X(41435)}}, {{A, B, C, X(8671), X(55243)}}


X(59030) = X(6)X(715)∩X(729)X(2177)

Barycentrics    a^2*(a-b)*(a-c)*(a^2*b^2-(a^2+a*b+b^2)*c^2-2*(a+b)*c^3)*(a^2*(b-c)*(b+c)+a*b^2*(2*b+c)+b^2*c*(2*b+c)) : :

X(59030) lies on the circumcircle and these lines: {6, 715}, {729, 2177}, {6015, 41423}, {9082, 37675}, {29352, 37508}

X(59030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(799)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4607), X(40519)}}, {{A, B, C, X(34071), X(37209)}}


X(59031) = X(105)X(1697)∩X(934)X(3939)

Barycentrics    a^2*(a-b)*(a-c)*((a-b)^2*(a+b)-3*(a-b)^2*c+3*(a+b)*c^2-c^3)*((a-b)^3+(-a^2+6*a*b+3*b^2)*c-(a+3*b)*c^2+c^3) : :

X(59031) lies on the circumcircle and these lines: {105, 1697}, {934, 3939}, {1292, 21362}, {1331, 59125}, {2283, 58985}, {4557, 6575}

X(59031) = trilinear pole of line {6, 6602}
X(59031) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 17410}, {513, 10580}, {1190, 24002}, {3676, 4326}
X(59031) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 17410}, {39026, 10580}
X(59031) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1697), X(2283)}}, {{A, B, C, X(6614), X(34080)}}
X(59031) = barycentric quotient X(i)/X(j) for these (i, j): {31, 17410}, {101, 10580}


X(59032) = X(6)X(731)∩X(574)X(753)

Barycentrics    a^2*(a-b)*(a-c)*(a^2*b^2+2*(a^2+a*b+b^2)*c^2+(a+b)*c^3)*(a*b^2*(b+2*c)+b^2*c*(b+2*c)+a^2*(2*b^2+c^2)) : :

X(59032) lies on the circumcircle and these lines: {6, 731}, {105, 16497}, {572, 53900}, {574, 753}, {717, 54981}, {2382, 8624}, {3098, 28844}, {8632, 59033}

X(59032) = trilinear pole of line {6, 8622}
X(59032) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(4586)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2284), X(16497)}}


X(59033) = X(6)X(743)∩X(753)X(2177)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)+2*(a^2+a*b+b^2)*c+c^3)*(b^3+2*b*c^2+a^2*(2*b+c)+a*c*(2*b+c)) : :

X(59033) lies on the circumcircle and these lines: {6, 743}, {105, 37633}, {692, 29145}, {717, 9463}, {753, 2177}, {840, 8628}, {2382, 8622}, {2702, 35281}, {3570, 9059}, {8632, 59032}, {23845, 29329}, {29363, 53280}

X(59033) = trilinear pole of line {6, 8624}
X(59033) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 36480}
X(59033) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(1492)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(86), X(37138)}}, {{A, B, C, X(660), X(35008)}}, {{A, B, C, X(35009), X(37207)}}
X(59033) = barycentric quotient X(i)/X(j) for these (i, j): {101, 36480}


X(59034) = X(6)X(759)∩X(110)X(1983)

Barycentrics    a^2*(a-b)*(a-c)*(2*a*b*(a+b)+(a^2+a*b+b^2)*c-c^3)*(-b^3+b*c^2+a^2*(b+2*c)+a*c*(b+2*c)) : :

X(59034) lies on the circumcircle and these lines: {6, 759}, {98, 44430}, {99, 4585}, {102, 37508}, {105, 5315}, {110, 1983}, {111, 5202}, {163, 36069}, {187, 53970}, {692, 29044}, {741, 4257}, {991, 28842}, {2222, 4559}, {2249, 4262}, {2752, 5526}, {4574, 59085}, {9093, 37675}, {16785, 53686}, {43659, 52405}, {53636, 57192}

X(59034) = trilinear pole of line {6, 3724}
X(59034) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 50349}, {514, 5251}, {1577, 9275}
X(59034) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 50349}
X(59034) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(163)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(5202)}}, {{A, B, C, X(651), X(34073)}}, {{A, B, C, X(1414), X(2163)}}, {{A, B, C, X(2284), X(5315)}}, {{A, B, C, X(4574), X(4575)}}
X(59034) = barycentric quotient X(i)/X(j) for these (i, j): {31, 50349}, {692, 5251}, {1576, 9275}


X(59035) = X(100)X(1015)∩X(101)X(3248)

Barycentrics    a^2*(a*b*(a^2+b^2)-3*a*b*(a+b)*c+6*a*b*c^2-(a+b)*c^3)*(a^3*c-3*a^2*b*c-b^3*c+a*(-b^3+6*b^2*c-3*b*c^2+c^3)) : :

X(59035) lies on the circumcircle and these lines: {99, 16726}, {100, 1015}, {101, 3248}, {789, 43266}, {6551, 9456}

X(59035) = trilinear pole of line {6, 8027}
X(59035) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(292), X(1015)}}, {{A, B, C, X(1438), X(40400)}}, {{A, B, C, X(5376), X(43929)}}


X(59036) = X(6)X(783)∩X(703)X(3005)

Barycentrics    a^2*(a^4*b^4*(a^4+b^4)-2*(a^8+b^8)*c^4+(a^4+b^4)*c^8)*(-(b^8*c^4)+2*b^4*c^8+a^8*(2*b^4-c^4)-a^4*(b^8+c^8)) : :

X(59036) lies on the circumcircle and these lines: {6, 783}, {689, 8627}, {703, 3005}, {755, 9494}, {827, 51320}, {1501, 58112}

X(59036) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(51320)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(76), X(3005)}}, {{A, B, C, X(1501), X(8627)}}


X(59037) = X(6)X(795)∩X(717)X(3250)

Barycentrics    a^2*(a^3*b^3*(a^3+b^3)-2*(a^6+b^6)*c^3+(a^3+b^3)*c^6)*(-(b^6*c^3)+2*b^3*c^6+a^6*(2*b^3-c^3)-a^3*(b^6+c^6)) : :

X(59037) lies on the circumcircle and these lines: {6, 795}, {717, 3250}, {753, 8630}, {789, 8626}, {825, 8621}

X(59037) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(75), X(3250)}}, {{A, B, C, X(560), X(8626)}}


X(59038) = X(2)X(15613)∩X(74)X(631)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^4+6*a^2*b^2+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*(b^2-3*c^2)+(b^2-c^2)^2) : :
X(59038) = -3*X[2]+2*X[15613]

X(59038) lies on the circumcircle and these lines: {2, 15613}, {4, 50927}, {74, 631}, {98, 5020}, {99, 1624}, {104, 17560}, {110, 36841}, {111, 23591}, {112, 52913}, {162, 59128}, {477, 37925}, {648, 1301}, {658, 36079}, {842, 37897}, {1294, 11414}, {1297, 10565}, {1300, 10594}, {1576, 59039}, {2373, 40032}, {2693, 47090}, {3565, 35278}, {4226, 58093}, {4240, 58950}, {5896, 44877}, {7256, 52778}, {9064, 35360}, {15329, 43351}, {35575, 57216}, {37669, 40219}, {44326, 53886}, {53757, 53972}, {57219, 59087}

X(59038) = reflection of X(i) in X(j) for these {i,j}: {4, 50927}
X(59038) = inverse of X(44955) in orthoptic circle of the Steiner Inellipse
X(59038) = anticomplement of X(15613)
X(59038) = trilinear pole of line {6, 20}
X(59038) = X(i)-isoconjugate-of-X(j) for these {i, j}: {523, 1496}, {656, 1593}, {661, 17811}, {798, 32830}, {810, 32000}, {1577, 5065}, {8061, 26224}, {24006, 43652}, {24018, 55415}
X(59038) = X(i)-Dao conjugate of X(j) for these {i, j}: {15613, 15613}, {31998, 32830}, {36830, 17811}, {39062, 32000}, {40192, 6587}, {40596, 1593}
X(59038) = X(i)-cross conjugate of X(j) for these {i, j}: {8573, 249}, {17928, 250}
X(59038)= pole of line {44955, 50927} with respect to the orthoptic circle of the Steiner Inellipse
X(59038)= pole of line {3522, 11469} with respect to the Kiepert parabola
X(59038) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(162), X(4616)}}, {{A, B, C, X(631), X(4240)}}, {{A, B, C, X(648), X(658)}}, {{A, B, C, X(1414), X(36797)}}, {{A, B, C, X(1576), X(1624)}}, {{A, B, C, X(2409), X(10565)}}, {{A, B, C, X(4230), X(5020)}}, {{A, B, C, X(4246), X(17560)}}, {{A, B, C, X(4563), X(42396)}}, {{A, B, C, X(7473), X(37897)}}, {{A, B, C, X(7480), X(37925)}}, {{A, B, C, X(10594), X(15329)}}, {{A, B, C, X(11414), X(46587)}}, {{A, B, C, X(31510), X(47090)}}, {{A, B, C, X(35278), X(57216)}}, {{A, B, C, X(37880), X(41173)}}
X(59038) = barycentric product X(i)*X(j) for these (i, j): {110, 37874}, {112, 40032}, {14615, 58952}, {15740, 648}, {40174, 44326}, {40190, 54971}, {52223, 99}
X(59038) = barycentric quotient X(i)/X(j) for these (i, j): {99, 32830}, {110, 17811}, {112, 1593}, {163, 1496}, {648, 32000}, {827, 26224}, {907, 40187}, {1576, 5065}, {15740, 525}, {32661, 43652}, {32713, 55415}, {37874, 850}, {40032, 3267}, {40174, 6587}, {40190, 3800}, {52223, 523}, {58952, 64}


X(59039) = X(2)X(46658)∩X(98)X(801)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :
X(59039) = -3*X[2]+2*X[46658]

X(59039) lies on the circumcircle and these lines: {2, 46658}, {74, 5562}, {98, 801}, {107, 36841}, {111, 41890}, {249, 2713}, {250, 22239}, {643, 2765}, {759, 775}, {842, 37928}, {1105, 1300}, {1141, 51254}, {1299, 45172}, {1301, 4558}, {1304, 23181}, {1576, 59038}, {2367, 40830}, {2373, 57800}, {2867, 4576}, {5896, 57414}, {14611, 53960}, {30249, 52913}, {39437, 43995}, {52603, 53957}

X(59039) = anticomplement of X(46658)
X(59039) = trilinear pole of line {6, 2929}
X(59039) = X(i)-isoconjugate-of-X(j) for these {i, j}: {185, 24006}, {235, 656}, {512, 17858}, {523, 774}, {661, 13567}, {800, 1577}, {810, 44131}, {1109, 1624}, {2501, 6508}, {2618, 16035}, {3708, 41678}, {4024, 18603}, {9258, 17773}, {14208, 44079}, {17898, 52566}
X(59039) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 13567}, {39054, 17858}, {39062, 44131}, {40596, 235}, {46658, 46658}
X(59039) = X(i)-cross conjugate of X(j) for these {i, j}: {20, 250}, {577, 249}, {1660, 23964}, {14329, 3}
X(59039)= pole of line {2929, 13567} with respect to the Kiepert parabola
X(59039) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(670), X(44770)}}, {{A, B, C, X(687), X(18315)}}, {{A, B, C, X(1368), X(4230)}}, {{A, B, C, X(4558), X(36841)}}, {{A, B, C, X(5562), X(23181)}}, {{A, B, C, X(7473), X(37928)}}, {{A, B, C, X(15329), X(18560)}}, {{A, B, C, X(30512), X(45172)}}, {{A, B, C, X(32697), X(43188)}}
X(59039) = barycentric product X(i)*X(j) for these (i, j): {110, 801}, {112, 57800}, {163, 57955}, {662, 775}, {1105, 4558}, {1576, 40830}, {32661, 57775}, {36841, 57414}, {41890, 99}, {57648, 648}
X(59039) = barycentric quotient X(i)/X(j) for these (i, j): {110, 13567}, {112, 235}, {163, 774}, {250, 41678}, {648, 44131}, {662, 17858}, {775, 1577}, {801, 850}, {1105, 14618}, {1576, 800}, {2420, 51403}, {4558, 41005}, {4575, 6508}, {9306, 17773}, {14586, 16035}, {15958, 19180}, {18315, 19166}, {23357, 1624}, {32661, 185}, {40830, 44173}, {41890, 523}, {57414, 58759}, {57648, 525}, {57800, 3267}, {57955, 20948}, {59087, 6526}


X(59040) = X(48)X(99)∩X(112)X(560)

Barycentrics    a^2*(a+b)*(a+c)*(a^2*(a-b)^2*b^2-(a^4-a^3*b+a^2*b^2-a*b^3+b^4)*c^2+(a^2-a*b+b^2)*c^4)*(-(b^4*c^2)+b^2*c^4+a^4*(b-c)*(b+c)+a*b^2*(b-c)*c*(b+c)+a^3*(-(b^2*c)+2*c^3)-a^2*(b^4-b^2*c^2+c^4)) : :

X(59040) lies on the circumcircle and these lines: {48, 99}, {100, 2200}, {107, 1973}, {110, 9247}, {112, 560}, {689, 34055}, {1910, 22456}

X(59040) = trilinear pole of line {6, 23654}
X(59040) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 44151}, {76, 863}
X(59040) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 44151}
X(59040) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(48), X(560)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(663), X(35145)}}, {{A, B, C, X(1172), X(2311)}}
X(59040) = barycentric quotient X(i)/X(j) for these (i, j): {31, 44151}, {560, 863}


X(59041) = X(101)X(5379)∩X(112)X(24000)

Barycentrics    a*(a-b)*(a+b)^2*(a-c)*(a+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a*(a-b)^2*b+(a^2-a*b+b^2)*c^2-c^4)*(-b^4+a^3*c+b^2*c^2+a^2*(b^2-2*c^2)+a*(-(b^2*c)+c^3)) : :

X(59041) lies on the circumcircle and these lines: {74, 37142}, {99, 46254}, {101, 5379}, {108, 41207}, {109, 41206}, {112, 24000}, {662, 36516}, {2373, 57980}, {21789, 23582}, {26702, 35145}

X(59041) = isogonal conjugate of X(9391)
X(59041) = trilinear pole of line {6, 162}
X(59041) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 9391}, {525, 42669}, {647, 8680}, {656, 851}, {810, 44150}, {1430, 57109}, {1944, 55234}, {1951, 57243}, {1981, 3269}, {2632, 23353}, {4064, 26884}, {5088, 55230}, {6518, 57185}, {8611, 51645}, {14208, 44112}, {35075, 52222}
X(59041) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 9391}, {39052, 8680}, {39062, 44150}, {40596, 851}
X(59041) = X(i)-cross conjugate of X(j) for these {i, j}: {23353, 162}
X(59041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(5379), X(24000)}}, {{A, B, C, X(16077), X(40431)}}, {{A, B, C, X(41206), X(41207)}}, {{A, B, C, X(52914), X(52921)}}, {{A, B, C, X(53317), X(53324)}}
X(59041) = barycentric product X(i)*X(j) for these (i, j): {21, 41207}, {29, 41206}, {112, 57980}, {162, 35145}, {1952, 52914}, {2249, 811}, {2326, 53211}, {23353, 57557}, {23999, 52222}, {37142, 648}, {40843, 52921}
X(59041) = barycentric quotient X(i)/X(j) for these (i, j): {6, 9391}, {112, 851}, {162, 8680}, {648, 44150}, {1937, 57243}, {2249, 656}, {4636, 6518}, {18020, 15418}, {23353, 35075}, {23964, 23353}, {24000, 1981}, {32676, 42669}, {35145, 14208}, {37142, 525}, {41206, 307}, {41207, 1441}, {52222, 2632}, {52914, 1944}, {52921, 1948}, {57980, 3267}


X(59042) = X(31)X(107)∩X(99)X(255)

Barycentrics    a^2*(a+b)*(a+c)*(a^2*b^2*(a^2-b^2)^2-(a-b)^2*(a^2+b^2)*(a^2+a*b+b^2)*c^2+(2*a^4-2*a^3*b+a^2*b^2-2*a*b^3+2*b^4)*c^4-(a^2-a*b+b^2)*c^6)*(-(a^5*b^2*c)+a^6*(b-c)*(b+c)+2*a^3*b^2*(b-c)*c*(b+c)+b^2*c^2*(b^2-c^2)^2-a*c*(b^3-b*c^2)^2+a^2*(b-c)*(b+c)*(b^4+c^4)+a^4*(-2*b^4+b^2*c^2+2*c^4)) : :

X(59042) lies on the circumcircle and these lines: {31, 107}, {99, 255}, {100, 4055}, {110, 52430}, {112, 9247}, {293, 22456}, {2190, 52779}, {8059, 38832}

X(59042) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(255)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(829)}}


X(59043) = X(99)X(659)∩X(100)X(4455)

Barycentrics    a*(a-b)*(a-c)*(a*b*(a^2+b^2)-2*a*b*(a+b)*c+(a^2+b^2)*c^2)*(a^2*b*(b-2*c)+a^3*c+b^2*c^2+a*c^2*(-2*b+c)) : :

X(59043) lies on the circumcircle and these lines: {99, 659}, {100, 4455}, {106, 8297}, {662, 741}, {765, 798}, {3733, 4590}, {9073, 26280}, {12031, 52680}, {18105, 36081}, {46409, 53180}

X(59043) = trilinear pole of line {6, 3573}
X(59043) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(291), X(3903)}}, {{A, B, C, X(659), X(798)}}, {{A, B, C, X(662), X(765)}}, {{A, B, C, X(985), X(3573)}}, {{A, B, C, X(1018), X(1929)}}, {{A, B, C, X(3227), X(35009)}}, {{A, B, C, X(4615), X(5380)}}, {{A, B, C, X(5546), X(8851)}}
X(59043) = barycentric product X(i)*X(j) for these (i, j): {59045, 874}
X(59043) = barycentric quotient X(i)/X(j) for these (i, j): {59045, 876}


X(59044) = X(100)X(1922)∩X(101)X(14598)

Barycentrics    a^2*(-b^2+a*c)*(a*b-c^2)*(-2*a^3*b^3+a*b*(a+b)*(a^2+b^2)*c-(a^4+b^4)*c^2)*(a^4*b*(b-c)-a^2*b*c^3-a*b*c^4+b^2*c^4+a^3*c^2*(-b+2*c)) : :

X(59044) lies on the circumcircle and these lines: {99, 17475}, {100, 1922}, {101, 14598}, {689, 39276}, {813, 18267}, {2238, 8709}, {9111, 56242}

X(59044) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(875), X(2162)}}, {{A, B, C, X(1922), X(14598)}}, {{A, B, C, X(2238), X(17475)}}


X(59045) = X(99)X(1015)∩X(100)X(292)

Barycentrics    a^2*(-b^2+a*c)*(a*b-c^2)*(a*b*(a^2+b^2)-2*a*b*(a+b)*c+(a^2+b^2)*c^2)*(a^2*b*(b-2*c)+a^3*c+b^2*c^2+a*c^2*(-2*b+c)) : :

X(59045) lies on the circumcircle and these lines: {99, 1015}, {100, 292}, {101, 1911}, {110, 1977}, {741, 8632}, {813, 3747}, {898, 9264}

X(59045) = trilinear pole of line {6, 875}
X(59045) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(292), X(1911)}}, {{A, B, C, X(875), X(30650)}}, {{A, B, C, X(890), X(9264)}}, {{A, B, C, X(1015), X(1977)}}, {{A, B, C, X(1438), X(20332)}}, {{A, B, C, X(3747), X(4366)}}
X(59045) = barycentric product X(i)*X(j) for these (i, j): {59043, 876}
X(59045) = barycentric quotient X(i)/X(j) for these (i, j): {59043, 874}


X(59046) = X(99)X(248)∩X(110)X(14600)

Barycentrics    a^2*(a^4+b^4-(a^2+b^2)*c^2)*(a^4-a^2*b^2-b^2*c^2+c^4)*(a^2*b^2*(a^2-b^2)^2*(a^2+b^2)-(a^2-b^2)^2*(a^4+b^4)*c^2+(a^6+b^6)*c^4-(a^2+b^2)^2*c^6+(a^2+b^2)*c^8)*(a^8*(b-c)*(b+c)-b^2*(b-c)*c^2*(b+c)*(b^4+c^4)+a^6*(-b^4-2*b^2*c^2+c^4)+a^4*(b^6+2*b^2*c^4+c^6)-a^2*(b^8-2*b^6*c^2+2*b^2*c^6+c^8)) : :

X(59046) lies on the circumcircle and these lines: {99, 248}, {107, 57260}, {110, 14600}, {112, 14601}, {11610, 53692}, {22456, 41932}

X(59046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(248), X(14600)}}, {{A, B, C, X(878), X(51336)}}, {{A, B, C, X(1976), X(57562)}}, {{A, B, C, X(2623), X(17980)}}, {{A, B, C, X(3569), X(32458)}}


X(59047) = X(688)X(805)∩X(689)X(804)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^2*b^2*(a^4+b^4)-2*a^2*b^2*(a^2+b^2)*c^2+(a^4+b^4)*c^4)*(a^6*c^2+b^4*c^4+a^4*(b^4-2*b^2*c^2)+a^2*(-2*b^2*c^4+c^6)) : :

X(59047) lies on the circumcircle and these lines: {111, 8289}, {688, 805}, {689, 804}, {733, 1084}, {755, 5152}, {2698, 55005}, {2782, 53889}, {18105, 59026}, {39427, 52034}

X(59047) = trilinear pole of line {6, 17941}
X(59047) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 45914}
X(59047) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 45914}
X(59047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(688), X(804)}}, {{A, B, C, X(2782), X(55005)}}, {{A, B, C, X(3407), X(17941)}}, {{A, B, C, X(4576), X(11606)}}, {{A, B, C, X(4577), X(4590)}}, {{A, B, C, X(4609), X(53230)}}
X(59047) = barycentric product X(i)*X(j) for these (i, j): {59048, 880}
X(59047) = barycentric quotient X(i)/X(j) for these (i, j): {110, 45914}, {59048, 882}


X(59048) = X(99)X(694)∩X(110)X(9468)

Barycentrics    a^2*(-b^2+a*c)*(b^2+a*c)*(a*b-c^2)*(a*b+c^2)*(a^2*b^2*(a^4+b^4)-2*a^2*b^2*(a^2+b^2)*c^2+(a^4+b^4)*c^4)*(a^6*c^2+b^4*c^4+a^4*(b^4-2*b^2*c^2)+a^2*(-2*b^2*c^4+c^6)) : :

X(59048) lies on the circumcircle and these lines: {99, 694}, {110, 9468}, {689, 3124}, {733, 5027}, {805, 8623}, {827, 9427}, {5106, 43357}, {5970, 14318}, {56976, 59026}

X(59048) = trilinear pole of line {6, 881}
X(59048) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1966, 45914}
X(59048) = X(i)-Dao conjugate of X(j) for these {i, j}: {9467, 45914}
X(59048) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(694), X(9468)}}, {{A, B, C, X(881), X(44557)}}, {{A, B, C, X(1976), X(3225)}}, {{A, B, C, X(3124), X(9427)}}, {{A, B, C, X(5027), X(8623)}}, {{A, B, C, X(5106), X(14318)}}
X(59048) = barycentric product X(i)*X(j) for these (i, j): {59047, 882}
X(59048) = barycentric quotient X(i)/X(j) for these (i, j): {9468, 45914}, {59047, 880}


X(59049) = X(100)X(294)∩X(105)X(665)

Barycentrics    a^2*(a^2+b^2-(a+b)*c)*(a*(a-b)^2*b+a*b*c^2-(a+b)*c^3+c^4)*(a^2-a*b+c*(-b+c))*(b^3*(b-c)+a^3*c-2*a^2*c^2+a*(-b^3+b^2*c+c^3)) : :

X(59049) lies on the circumcircle and these lines: {99, 16728}, {100, 294}, {101, 2195}, {103, 34905}, {105, 665}, {108, 8751}, {109, 1438}, {241, 927}, {813, 40910}, {919, 2223}, {934, 1015}, {2736, 9441}, {9321, 36086}, {51682, 53607}

X(59049) = trilinear pole of line {6, 884}
X(59049) = X(i)-isoconjugate-of-X(j) for these {i, j}: {518, 9318}, {2254, 40865}, {3126, 34906}, {3912, 5091}, {4712, 56896}
X(59049) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(36258)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(241), X(292)}}, {{A, B, C, X(294), X(1438)}}, {{A, B, C, X(1015), X(14936)}}, {{A, B, C, X(1429), X(40910)}}, {{A, B, C, X(1945), X(23988)}}, {{A, B, C, X(2111), X(3512)}}, {{A, B, C, X(5091), X(51682)}}, {{A, B, C, X(9319), X(14947)}}, {{A, B, C, X(56851), X(56853)}}
X(59049) = barycentric product X(i)*X(j) for these (i, j): {105, 14947}, {673, 9319}, {53214, 6}, {53607, 885}
X(59049) = barycentric quotient X(i)/X(j) for these (i, j): {919, 40865}, {1438, 9318}, {9319, 3912}, {14947, 3263}, {34905, 53583}, {41934, 56896}, {53214, 76}, {53607, 883}


X(59050) = X(32)X(9150)∩X(99)X(33875)

Barycentrics    a^2*(a^4*b^4*(a^2+b^2)-4*a^4*b^4*c^2-(a^6-2*a^4*b^2-2*a^2*b^4+b^6)*c^4)*(-2*a^2*b^4*c^4+b^4*c^6+a^6*(b^4-c^4)-a^4*(2*b^4*c^2-4*b^2*c^4+c^6)) : :

X(59050) lies on the circumcircle and these lines: {32, 9150}, {99, 33875}, {691, 41294}, {729, 9426}, {805, 36881}, {1691, 39442}, {6579, 18105}, {9102, 52898}

X(59050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(4590)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3224), X(9462)}}, {{A, B, C, X(3407), X(41936)}}


X(59051) = X(6)X(9150)∩X(99)X(3231)

Barycentrics    a^2*(2*a^4*b^4-2*a^2*b^2*(a^2+b^2)*c^2-(a^4-4*a^2*b^2+b^4)*c^4)*(b^4*c^4+2*a^2*b^2*c^2*(-2*b^2+c^2)+a^4*(b^4+2*b^2*c^2-2*c^4)) : :

X(59051) lies on the circumcircle and these lines: {6, 9150}, {99, 3231}, {110, 33875}, {187, 39442}, {385, 9066}, {669, 729}, {805, 9463}, {843, 42652}, {14898, 53704}, {34537, 52067}

X(59051) = trilinear pole of line {6, 887}
X(59051) = X(i)-isoconjugate-of-X(j) for these {i, j}: {799, 52721}
X(59051) = X(i)-Dao conjugate of X(j) for these {i, j}: {38996, 52721}
X(59051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(41143)}}, {{A, B, C, X(6), X(669)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(385), X(1383)}}, {{A, B, C, X(2502), X(42652)}}, {{A, B, C, X(9427), X(52067)}}, {{A, B, C, X(39389), X(51992)}}
X(59051) = barycentric quotient X(i)/X(j) for these (i, j): {669, 52721}


X(59052) = X(32)X(898)∩X(739)X(1980)

Barycentrics    a^2*(a^2*b^2*(a^2+b^2)-2*a^2*b^2*(a+b)*c-(a^4-2*a^3*b-2*a*b^3+b^4)*c^2)*(-2*a*b^2*c^3+a^2*(2*b-c)*c^3+b^2*c^4+2*a^3*b*c*(-b+c)+a^4*(b-c)*(b+c)) : :

X(59052) lies on the circumcircle and these lines: {32, 898}, {739, 1980}, {741, 57074}, {813, 2209}, {932, 1914}

X(59052) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(32), X(1252)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(330), X(649)}}, {{A, B, C, X(604), X(1914)}}, {{A, B, C, X(2226), X(54413)}}, {{A, B, C, X(3407), X(41934)}}, {{A, B, C, X(23617), X(51866)}}


X(59053) = X(6)X(898)∩X(100)X(3230)

Barycentrics    a^2*(2*a^2*b^2-2*a*b*(a+b)*c-(a^2-4*a*b+b^2)*c^2)*(b^2*c^2+2*a*b*c*(-2*b+c)+a^2*(b^2+2*b*c-2*c^2)) : :

X(59053) lies on the circumcircle and these lines: {6, 898}, {99, 52897}, {100, 3230}, {111, 42655}, {238, 29351}, {667, 739}, {813, 54981}, {9067, 46801}, {9265, 53638}, {14665, 16501}, {16971, 53624}, {21788, 58115}

X(59053) = isogonal conjugate of X(33908)
X(59053) = trilinear pole of line {6, 890}
X(59053) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33908}, {190, 14474}, {899, 46796}, {36847, 37129}
X(59053) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 33908}, {55053, 14474}
X(59053) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(667)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(42655)}}, {{A, B, C, X(238), X(2163)}}, {{A, B, C, X(1914), X(5385)}}, {{A, B, C, X(3572), X(35168)}}, {{A, B, C, X(16971), X(21788)}}, {{A, B, C, X(54413), X(57535)}}
X(59053) = barycentric product X(i)*X(j) for these (i, j): {46801, 739}
X(59053) = barycentric quotient X(i)/X(j) for these (i, j): {6, 33908}, {667, 14474}, {739, 46796}, {3230, 36847}, {46801, 35543}


X(59054) = X(31)X(111)∩X(163)X(691)

Barycentrics    a^2*(a-b)*(a-c)*(2*a^2+3*a*b+2*b^2-c^2)*(2*a^2-b^2+3*a*c+2*c^2) : :

X(59054) lies on the circumcircle and these lines: {6, 28559}, {31, 111}, {99, 23889}, {163, 691}, {741, 21793}, {1914, 2712}, {2280, 28471}, {8685, 36074}, {21747, 28317}, {29055, 36075}

X(59054) = trilinear pole of line {6, 922}
X(59054) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 47827}, {513, 29615}, {1019, 4535}, {4391, 19369}
X(59054) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 47827}, {39026, 29615}
X(59054) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(163)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(985), X(1414)}}, {{A, B, C, X(2162), X(4559)}}
X(59054) = barycentric product X(i)*X(j) for these (i, j): {35180, 6}
X(59054) = barycentric quotient X(i)/X(j) for these (i, j): {31, 47827}, {101, 29615}, {4557, 4535}, {35180, 76}


X(59055) = X(11)X(9093)∩X(31)X(103)

Barycentrics    a^2*(a-b)*(a-c)*(2*(a+b)*(a^2+b^2)-(a+b)^2*c-c^3)*(2*a^3-b^3-a^2*(b-2*c)-b*c^2+2*c^3+2*a*c*(-b+c)) : :

X(59055) lies on the circumcircle and these lines: {11, 9093}, {31, 103}, {81, 26702}, {100, 2426}, {739, 38904}, {1621, 26703}, {1914, 43079}, {28895, 35326}, {38832, 59074}

X(59055) = trilinear pole of line {6, 3220}
X(59055) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 50995}
X(59055) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(2426)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(81), X(4617)}}, {{A, B, C, X(677), X(1461)}}, {{A, B, C, X(985), X(36050)}}, {{A, B, C, X(8750), X(32735)}}
X(59055) = barycentric quotient X(i)/X(j) for these (i, j): {692, 50995}


X(59056) = X(6)X(925)∩X(110)X(571)

Barycentrics    a^2*(2*a^2*b^2*(a^2-b^2)^2-(a^2+b^2)*(a^4+b^4)*c^2+2*(a^4+a^2*b^2+b^4)*c^4-(a^2+b^2)*c^6)*(a^6*(b^2-2*c^2)+b^2*c^2*(b^2-c^2)^2+a^2*(b^2-2*c^2)*(b^4+c^4)+a^4*(-2*b^4+b^2*c^2+4*c^4)) : :

X(59056) lies on the circumcircle and these lines: {6, 925}, {99, 1993}, {107, 8745}, {110, 571}, {112, 44077}, {691, 58312}, {1007, 9066}, {1296, 13352}, {3565, 5012}, {32692, 54034}, {39109, 39416}

X(59056) = trilinear pole of line {6, 34952}
X(59056) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 45938}
X(59056) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 45938}
X(59056) = X(i)-cross conjugate of X(j) for these {i, j}: {45938, 6}
X(59056) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(571)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(58312)}}, {{A, B, C, X(1007), X(9463)}}, {{A, B, C, X(1384), X(13352)}}, {{A, B, C, X(2623), X(2986)}}, {{A, B, C, X(5012), X(33632)}}, {{A, B, C, X(6531), X(23357)}}, {{A, B, C, X(11060), X(39839)}}, {{A, B, C, X(38463), X(45769)}}
X(59056) = barycentric quotient X(i)/X(j) for these (i, j): {32, 45938}


X(59057) = X(6)X(927)∩X(105)X(3063)

Barycentrics    a^2*(2*a^2*(a-b)^2*b^2-(a^4+b^4)*c^2+2*(a^3+b^3)*c^3-(a^2+b^2)*c^4)*(b^2*(b-c)^2*c^2+a^4*(b^2-2*c^2)-2*a^3*(b^3-2*c^3)+a^2*(b^4-2*c^4)) : :

X(59057) lies on the circumcircle and these lines: {6, 927}, {105, 3063}, {109, 9454}, {919, 2175}, {934, 52635}, {5526, 39634}, {23990, 59101}

X(59057) = trilinear pole of line {6, 8638}
X(59057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(2175)}}, {{A, B, C, X(74), X(98)}}


X(59058) = X(1)X(2739)∩X(100)X(1262)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*((a-b)^2*(a^2+b^2)+(a-b)^2*(a+b)*c-(a^2-4*a*b+b^2)*c^2-(a+b)*c^3)*(a^4+a^3*(b-2*c)-(b-c)*c*(b+c)^2-a^2*(b-c)*(b+2*c)-a*(b^3-4*b^2*c+b*c^2+2*c^3)) : :

X(59058) lies on the circumcircle and these lines: {1, 2739}, {56, 53703}, {100, 1262}, {101, 24027}, {102, 1458}, {103, 32668}, {104, 9372}, {105, 1455}, {663, 8059}, {919, 2425}, {934, 6129}, {2723, 4293}, {38459, 43363}

X(59058) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 9371}, {650, 40880}, {3239, 34371}, {8058, 52007}
X(59058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(56), X(32702)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(663), X(6129)}}, {{A, B, C, X(1262), X(23971)}}, {{A, B, C, X(1458), X(2425)}}
X(59058) = barycentric product X(i)*X(j) for these (i, j): {651, 9372}
X(59058) = barycentric quotient X(i)/X(j) for these (i, j): {109, 40880}, {1415, 9371}, {9372, 4391}


X(59059) = X(2373)X(8791)∩X(2492)X(10423)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-a^2*b^2+b^4-c^4)*(a^4-b^4-a^2*c^2+c^4)*((a^4-b^4)^2-2*(a^2-b^2)^2*(a^2+b^2)*c^2+(a^4-4*a^2*b^2+b^4)*c^4+2*(a^2+b^2)*c^6-2*c^8)*(a^8-2*a^6*b^2-2*b^8+2*b^6*c^2+b^4*c^4-2*b^2*c^6+c^8+2*a^2*(b^3-b*c^2)^2+a^4*(b^4+2*b^2*c^2-2*c^4)) : :

X(59059) lies on the circumcircle and these lines: {935, 47138}, {2373, 8791}, {2492, 10423}, {44467, 53929}, {46592, 58980}

X(59059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2492), X(10097)}}
X(59059) = barycentric product X(i)*X(j) for these (i, j): {53929, 935}


X(59060) = X(906)X(13397)∩X(943)X(15344)

Barycentrics    a^2*(a-b)*(a-c)*((a-b)^2*(a+b)-2*a*b*c-(a+b)*c^2)*(a^3+a^2*b+a*b^2+b^3-(a+b)^2*c-(a+b)*c^2+c^3)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2)*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)+a*(-b^2-2*b*c+c^2)) : :

X(59060) lies on the circumcircle and these lines: {906, 13397}, {934, 32651}, {943, 15344}, {5310, 9085}, {5546, 59097}, {39267, 52425}, {41508, 51760}

X(59060) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 14054}, {523, 46885}, {5249, 15313}, {11517, 23595}, {17776, 50354}, {18607, 57044}, {23752, 40571}, {56839, 57073}
X(59060) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(906), X(32698)}}
X(59060) = barycentric product X(i)*X(j) for these (i, j): {13397, 943}, {15439, 43740}
X(59060) = barycentric quotient X(i)/X(j) for these (i, j): {163, 46885}, {692, 14054}, {15439, 56927}, {40570, 57073}, {46886, 23595}


X(59061) = X(102)X(22144)∩X(906)X(1293)

Barycentrics    a^2*(a-b)*(a-c)*(3*a^3+a^2*b+a*b^2+3*b^3-(a+b)^2*c-3*(a+b)*c^2+c^3)*(3*a^3+a^2*(-b+c)+(b-3*c)*(b-c)*(b+c)-a*(3*b-c)*(b+c)) : :

X(59061) lies on the circumcircle and these lines: {100, 35349}, {102, 22144}, {109, 53290}, {906, 1293}, {3939, 29163}, {32674, 59090}

X(59061) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 7655}, {514, 11523}
X(59061) = X(i)-Dao conjugate of X(j) for these {i, j}: {32664, 7655}
X(59061) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(32714)}}, {{A, B, C, X(906), X(32665)}}, {{A, B, C, X(1461), X(5546)}}, {{A, B, C, X(3939), X(32674)}}, {{A, B, C, X(5549), X(32651)}}, {{A, B, C, X(7259), X(36146)}}, {{A, B, C, X(32652), X(34080)}}, {{A, B, C, X(32675), X(35349)}}, {{A, B, C, X(36049), X(38828)}}
X(59061) = barycentric quotient X(i)/X(j) for these (i, j): {31, 7655}, {692, 11523}


X(59062) = X(6)X(953)∩X(1384)X(2384)

Barycentrics    a^2*(a-b)*(a-c)*(3*a^3-a*(b-3*c)*(b-c)+(3*b-2*c)*(b-c)*(b+c)-a^2*(b+2*c))*(3*a^3+(2*b-3*c)*(b-c)*(b+c)-a^2*(2*b+c)-a*(3*b^2-4*b*c+c^2)) : :

X(59062) lies on the circumcircle and these lines: {6, 953}, {187, 53873}, {1384, 2384}, {32641, 35011}, {32675, 59018}

X(59062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(32641)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(677), X(41434)}}, {{A, B, C, X(2163), X(32735)}}


X(59063) = X(71)X(103)∩X(112)X(2426)

Barycentrics    a^2*(a-b)*(a-c)*(a*(a-b)^3*(a+b)-(a^2-b^2)^2*c+2*b*(2*a^2+a*b+b^2)*c^2-(a+2*b)*c^4+c^5)*(a^5+b*(b-c)^3*(b+c)-a^4*(b+2*c)-a*(b^2-c^2)^2+2*a^2*c*(2*b^2+b*c+c^2)) : :

X(59063) lies on the circumcircle and these lines: {71, 103}, {107, 41321}, {112, 2426}, {692, 59064}, {906, 934}, {1305, 3732}, {2690, 34805}, {2736, 35338}, {4557, 40116}, {5546, 53683}, {15439, 35326}, {24016, 52610}

X(59063) = trilinear pole of line {6, 10934}
X(59063) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 25935}, {514, 5728}
X(59063) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 25935}
X(59063) = intersection, other than A, B, C, of circumconics {{A, B, C, X(71), X(2426)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(662), X(57390)}}, {{A, B, C, X(692), X(32651)}}, {{A, B, C, X(5546), X(36039)}}, {{A, B, C, X(34805), X(56747)}}
X(59063) = barycentric quotient X(i)/X(j) for these (i, j): {101, 25935}, {692, 5728}, {2426, 1536}


X(59064) = X(105)X(955)∩X(108)X(35326)

Barycentrics    a^2*(a-b)*(a-c)*(2*a*(a-b)^2*b*(a+b)+(a^2-b^2)^2*c-2*(a+b)*(a^2+a*b+b^2)*c^2+2*(a+b)*c^4-c^5)*(-(b*(b-c)^3*(b+c))+a^4*(b+2*c)+2*a*(b^2-c^2)^2-2*a^3*(b^2+c^2)-2*a^2*c*(2*b^2+b*c+c^2)) : :

X(59064) lies on the circumcircle and these lines: {105, 955}, {108, 35326}, {692, 59063}, {767, 58006}, {906, 53243}, {1783, 58993}

X(59064) = trilinear pole of line {6, 22079}
X(59064) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 954}
X(59064) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(4617)}}, {{A, B, C, X(651), X(36039)}}, {{A, B, C, X(692), X(32714)}}, {{A, B, C, X(906), X(35326)}}
X(59064) = barycentric product X(i)*X(j) for these (i, j): {100, 955}, {58006, 692}
X(59064) = barycentric quotient X(i)/X(j) for these (i, j): {692, 954}, {955, 693}, {32739, 2266}, {58006, 40495}


X(59065) = X(108)X(1414)∩X(111)X(967)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a+b)^2+2*(a+b)*c-c^2)*(a^2-b^2+2*b*c+c^2+2*a*(b+c)) : :

X(59065) lies on the circumcircle and these lines: {98, 58012}, {100, 4592}, {101, 4558}, {108, 1414}, {111, 967}, {112, 4556}, {163, 28847}, {759, 969}, {931, 52935}, {3882, 15322}, {4565, 32693}, {24074, 39415}, {26704, 54951}

X(59065) = trilinear pole of line {6, 967}
X(59065) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 48099}, {37, 45745}, {42, 7650}, {523, 968}, {656, 4207}, {661, 966}, {1577, 2271}, {3485, 4041}, {4705, 11110}
X(59065) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 966}, {40589, 45745}, {40592, 7650}, {40596, 4207}
X(59065) = X(i)-cross conjugate of X(j) for these {i, j}: {4252, 249}, {20835, 250}
X(59065)= pole of line {966, 11340} with respect to the Kiepert parabola
X(59065)= pole of line {45745, 48099} with respect to the Stammler hyperbola
X(59065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1414), X(4556)}}, {{A, B, C, X(4565), X(52935)}}, {{A, B, C, X(4596), X(4627)}}, {{A, B, C, X(4614), X(4629)}}
X(59065) = barycentric product X(i)*X(j) for these (i, j): {110, 58012}, {163, 58013}, {662, 969}, {967, 99}
X(59065) = barycentric quotient X(i)/X(j) for these (i, j): {58, 45745}, {81, 7650}, {110, 966}, {112, 4207}, {163, 968}, {967, 523}, {969, 1577}, {1333, 48099}, {1576, 2271}, {4556, 11110}, {4565, 3485}, {58012, 850}, {58013, 20948}


X(59066) = X(98)X(3597)∩X(931)X(1625)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((b-c)*c^2*(b+c)^2+a*(b-c)*c*(b+c)*(2*b+c)+a^2*(b+c)*(2*b^2+c^2)+a^3*(2*b^2+2*b*c+c^2))*(-(b^2*(b-c)*(b+c)^2)-a*b*(b-c)*(b+c)*(b+2*c)+a^2*(b+c)*(b^2+2*c^2)+a^3*(b^2+2*b*c+2*c^2)) : :

X(59066) lies on the circumcircle and these lines: {98, 3597}, {163, 59015}, {931, 1625}, {4574, 8707}, {32661, 58982}

X(59066) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1577, 13323}
X(59066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(645)}}, {{A, B, C, X(648), X(1415)}}, {{A, B, C, X(4574), X(32661)}}, {{A, B, C, X(5706), X(58070)}}
X(59066) = barycentric product X(i)*X(j) for these (i, j): {110, 3597}
X(59066) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 13323}, {3597, 850}


X(59067) = X(100)X(1021)∩X(103)X(3286)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a-b)^2*b*(a+b)+(a-b)*(a+b)^2*c-(2*a^2-a*b+b^2)*c^2+(a+b)*c^3)*(a^3*(b+c)+(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^2-a^2*(2*b^2-b*c+c^2)) : :

X(59067) lies on the circumcircle and these lines: {58, 12032}, {74, 5030}, {98, 43672}, {100, 1021}, {101, 21789}, {102, 14964}, {103, 3286}, {109, 7252}, {163, 53243}, {284, 2717}, {934, 1019}, {1625, 43076}, {2149, 15439}, {2382, 33628}, {2700, 3110}, {7128, 58993}

X(59067) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 53357}, {321, 53308}, {656, 26003}, {1577, 13329}
X(59067) = X(i)-Dao conjugate of X(j) for these {i, j}: {40589, 53357}, {40596, 26003}
X(59067) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(4637)}}, {{A, B, C, X(1019), X(1021)}}, {{A, B, C, X(1461), X(1576)}}, {{A, B, C, X(2149), X(7128)}}, {{A, B, C, X(2420), X(5030)}}, {{A, B, C, X(36039), X(36146)}}
X(59067) = barycentric product X(i)*X(j) for these (i, j): {110, 43672}
X(59067) = barycentric quotient X(i)/X(j) for these (i, j): {58, 53357}, {112, 26003}, {1576, 13329}, {2206, 53308}, {43672, 850}


X(59068) = X(44)X(104)∩X(106)X(2183)

Barycentrics    a^2*(a-b)*(a+b-2*c)*(a-c)*(a-2*b+c)*(a^2-4*a*b+b^2-c^2)*(a^2-b^2-4*a*c+c^2) : :

X(59068) lies on the circumcircle and these lines: {44, 104}, {100, 5548}, {106, 2183}, {109, 32665}, {901, 2427}, {1000, 2726}, {1311, 36596}, {2316, 28233}, {2384, 34446}, {2757, 36916}, {3257, 46962}, {4574, 59095}, {5376, 9089}, {9059, 51564}, {32719, 58999}

X(59068) = trilinear pole of line {6, 34446}
X(59068) = X(i)-isoconjugate-of-X(j) for these {i, j}: {44, 21183}, {900, 3306}, {999, 3762}, {1635, 42697}, {1960, 20925}, {3872, 30725}, {4895, 17079}, {28808, 53528}
X(59068) = X(i)-Dao conjugate of X(j) for these {i, j}: {40595, 21183}
X(59068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(44), X(2183)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(5548), X(32665)}}
X(59068) = barycentric product X(i)*X(j) for these (i, j): {106, 51564}, {109, 36596}, {1000, 901}, {32719, 58029}, {34446, 4555}
X(59068) = barycentric quotient X(i)/X(j) for these (i, j): {106, 21183}, {901, 42697}, {3257, 20925}, {5548, 28808}, {32665, 3306}, {32719, 999}, {34446, 900}, {36596, 35519}, {51564, 3264}, {52429, 4768}


X(59069) = X(100)X(4565)∩X(162)X(9107)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+b-c)*(a+c)*(a-b+c)*(a^2+2*a*b+(b+c)^2)*(a^2+2*a*c+(b+c)^2) : :

X(59069) lies on the circumcircle and these lines: {100, 4565}, {162, 9107}, {163, 58946}, {931, 4558}, {1310, 1414}, {32693, 36059}

X(59069) = trilinear pole of line {6, 1408}
X(59069) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 50332}, {9, 48402}, {210, 47995}, {312, 50492}, {521, 39579}, {522, 3931}, {523, 5250}, {656, 4194}, {661, 14555}, {1577, 4254}, {3700, 5256}, {4041, 17321}, {4086, 16466}, {7713, 52355}
X(59069) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 48402}, {36830, 14555}, {40596, 4194}
X(59069) = X(i)-cross conjugate of X(j) for these {i, j}: {968, 7115}, {50517, 1169}
X(59069) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4558), X(36059)}}
X(59069) = barycentric quotient X(i)/X(j) for these (i, j): {56, 48402}, {110, 14555}, {112, 4194}, {163, 5250}, {604, 50332}, {1397, 50492}, {1412, 47995}, {1415, 3931}, {1576, 4254}, {4565, 17321}, {32674, 39579}


X(59070) = X(106)X(9459)∩X(932)X(5385)

Barycentrics    a^2*(a-b)*(a-c)*(2*(a+b)-c)*(2*a-b+2*c)*(2*(a^2-a*b+b^2)-(a+b)*c)*(2*a^2+c*(-b+2*c)-a*(b+2*c)) : :

X(59070) lies on the circumcircle and these lines: {106, 9459}, {932, 5385}, {9093, 32012}, {28317, 57401}, {32719, 39414}, {43361, 52924}

X(59070) = trilinear pole of line {6, 1623}
X(59070) = X(i)-isoconjugate-of-X(j) for these {i, j}: {45, 21115}, {3834, 4893}, {4770, 17179}, {4775, 20893}, {4777, 17449}, {4833, 21026}, {4931, 18198}
X(59070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(9459), X(32719)}}
X(59070) = barycentric product X(i)*X(j) for these (i, j): {4597, 57401}, {32012, 4588}
X(59070) = barycentric quotient X(i)/X(j) for these (i, j): {2163, 21115}, {4588, 3834}, {4604, 20893}, {34073, 17449}, {57401, 4777}


X(59071) = X(99)X(765)∩X(110)X(1110)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)+(a-b)^2*c-(a+b)*c^2)*(b*c*(-b+c)+a^2*(b+c)+a*(-b^2-2*b*c+c^2)) : :

X(59071) lies on the circumcircle and these lines: {99, 765}, {100, 4040}, {101, 21007}, {104, 13329}, {105, 40091}, {106, 20470}, {110, 1110}, {595, 2382}, {741, 34067}, {840, 4256}, {932, 57084}, {3573, 53685}, {3733, 43076}, {3939, 29351}, {4279, 14665}, {5009, 59072}, {9059, 54440}, {52680, 53707}

X(59071) = trilinear pole of line {6, 23404}
X(59071) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 29824}, {514, 45751}, {7192, 44671}
X(59071) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 29824}
X(59071) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(32665)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(765), X(1110)}}, {{A, B, C, X(1027), X(3733)}}, {{A, B, C, X(3573), X(5009)}}, {{A, B, C, X(20470), X(52680)}}, {{A, B, C, X(40091), X(54353)}}
X(59071) = barycentric quotient X(i)/X(j) for these (i, j): {101, 29824}, {692, 45751}


X(59072) = X(1)X(34594)∩X(58)X(100)

Barycentrics    a^2*(a+b)*(a+c)*(a*b*(a+b)-(a-b)^2*c-(a+b)*c^2)*(a^2*(b-c)+b*c*(b+c)+a*(b^2-2*b*c-c^2)) : :

X(59072) lies on the circumcircle and these lines: {1, 34594}, {21, 53627}, {58, 100}, {81, 53637}, {99, 757}, {101, 1333}, {109, 1408}, {110, 595}, {284, 29149}, {572, 6010}, {813, 18268}, {835, 39698}, {839, 40039}, {932, 4653}, {1326, 2703}, {2363, 8707}, {2702, 5006}, {4264, 15322}, {4588, 38832}, {4658, 43350}, {5009, 59071}, {6011, 37469}, {28210, 33774}, {30576, 40091}, {32722, 33628}, {37817, 53683}, {38858, 58999}, {52555, 59014}, {52680, 53685}

X(59072) = trilinear pole of line {6, 57129}
X(59072) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 49997}, {37, 17495}, {42, 39995}, {4674, 34587}, {23169, 41013}
X(59072) = X(i)-Dao conjugate of X(j) for these {i, j}: {40589, 17495}, {40592, 39995}
X(59072) = X(i)-cross conjugate of X(j) for these {i, j}: {52680, 58}
X(59072)= pole of line {17495, 34587} with respect to the Stammler hyperbola
X(59072) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(595)}}, {{A, B, C, X(21), X(15376)}}, {{A, B, C, X(28), X(35978)}}, {{A, B, C, X(58), X(757)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1126), X(2298)}}, {{A, B, C, X(1326), X(5006)}}, {{A, B, C, X(3065), X(17954)}}, {{A, B, C, X(4653), X(38832)}}, {{A, B, C, X(4674), X(50344)}}, {{A, B, C, X(11115), X(52564)}}, {{A, B, C, X(39697), X(52784)}}, {{A, B, C, X(39768), X(50520)}}, {{A, B, C, X(40438), X(41434)}}
X(59072) = barycentric product X(i)*X(j) for these (i, j): {1019, 53685}, {1333, 40039}, {39698, 58}
X(59072) = barycentric quotient X(i)/X(j) for these (i, j): {58, 17495}, {81, 39995}, {1333, 49997}, {3285, 34587}, {39698, 313}, {40039, 27801}, {53685, 4033}


X(59073) = X(99)X(7045)∩X(107)X(24033)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*(a*(a-b)^2*b*(a+b)+(a-b)^2*(a^2+b^2)*c+(a^3+b^3)*c^2-(a-b)^2*c^3-(a+b)*c^4)*(a*(a-b)*b*(a+b)^2+(a-b)^3*(a+b)*c-(a^3-2*a^2*b+b^3)*c^2+(-a^2-2*a*b+b^2)*c^3+(a+b)*c^4) : :

X(59073) lies on the circumcircle and these lines: {99, 7045}, {107, 24033}, {110, 24027}, {2716, 31849}, {53321, 59006}

X(59073) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21, 14310}, {2968, 7461}
X(59073) = X(i)-Dao conjugate of X(j) for these {i, j}: {40611, 14310}
X(59073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(36040)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(7045), X(24027)}}
X(59073) = barycentric quotient X(i)/X(j) for these (i, j): {1400, 14310}


X(59074) = X(1)X(53683)∩X(58)X(934)

Barycentrics    a^2*(a+b)*(a+c)*(a*(a-b)^2*b*(a+b)-(a-b)^2*(a^2+b^2)*c+(a^3+b^3)*c^2+(a-b)^2*c^3-(a+b)*c^4)*(a^4*(b-c)+b*(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^3+a^3*(-b^2-2*b*c+c^2)+a^2*(-b^3+2*b*c^2+c^3)) : :

X(59074) lies on the circumcircle and these lines: {1, 53683}, {58, 934}, {63, 34594}, {99, 1098}, {100, 2328}, {108, 2299}, {109, 2194}, {112, 595}, {17104, 43076}, {26700, 55086}, {38832, 59055}, {38850, 53243}

X(59074) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(28), X(15393)}}, {{A, B, C, X(58), X(1098)}}, {{A, B, C, X(63), X(595)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1126), X(2982)}}, {{A, B, C, X(17104), X(55086)}}


X(59075) = X(98)X(1029)∩X(267)X(759)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a-b)*(a+b)^2+(a^2+a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+b*c-c^2)) : :

X(59075) lies on the circumcircle and these lines: {21, 43659}, {74, 51340}, {98, 1029}, {99, 6758}, {100, 21891}, {101, 57194}, {105, 40143}, {110, 21784}, {111, 3444}, {162, 2766}, {163, 58970}, {267, 759}, {476, 37140}, {502, 2372}, {593, 2611}, {1333, 21353}, {2373, 57865}, {2703, 9218}, {4558, 43356}, {4565, 26700}, {4575, 39630}, {5546, 15322}, {9090, 36830}, {12030, 39149}, {17943, 29151}, {17944, 53627}, {28471, 33774}, {41493, 51760}, {57062, 59085}

X(59075) = trilinear pole of line {6, 3444}
X(59075) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 31947}, {37, 21192}, {75, 42653}, {191, 523}, {451, 656}, {501, 4036}, {512, 20932}, {513, 21081}, {514, 21873}, {649, 42710}, {661, 2895}, {1030, 1577}, {1109, 57119}, {2906, 4064}, {3700, 47057}, {4024, 40592}, {4041, 41808}, {4086, 8614}, {6370, 56405}, {14208, 44097}, {21723, 52935}, {22136, 24006}
X(59075) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 42653}, {5375, 42710}, {36830, 2895}, {39026, 21081}, {39054, 20932}, {40589, 21192}, {40596, 451}
X(59075) = X(i)-cross conjugate of X(j) for these {i, j}: {512, 21353}, {4705, 1169}, {20831, 250}, {42653, 6}, {55210, 1171}
X(59075)= pole of line {2895, 2915} with respect to the Kiepert parabola
X(59075)= pole of line {21192, 31947} with respect to the Stammler hyperbola
X(59075) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(162), X(2363)}}, {{A, B, C, X(512), X(21833)}}, {{A, B, C, X(2420), X(51340)}}, {{A, B, C, X(4230), X(37456)}}, {{A, B, C, X(4565), X(37140)}}, {{A, B, C, X(6758), X(21784)}}, {{A, B, C, X(13486), X(57194)}}, {{A, B, C, X(22311), X(42363)}}, {{A, B, C, X(32662), X(36059)}}, {{A, B, C, X(40438), X(55185)}}
X(59075) = barycentric product X(i)*X(j) for these (i, j): {100, 40143}, {112, 57865}, {163, 44188}, {267, 662}, {1029, 110}, {3444, 99}, {4556, 502}, {21353, 52935}, {37140, 39149}, {57695, 648}
X(59075) = barycentric quotient X(i)/X(j) for these (i, j): {32, 42653}, {58, 21192}, {100, 42710}, {101, 21081}, {110, 2895}, {112, 451}, {163, 191}, {267, 1577}, {502, 52623}, {662, 20932}, {692, 21873}, {1029, 850}, {1333, 31947}, {1576, 1030}, {3444, 523}, {4079, 21723}, {4565, 41808}, {21353, 4036}, {23357, 57119}, {32661, 22136}, {32671, 56405}, {40143, 693}, {44188, 20948}, {57695, 525}, {57865, 3267}


X(59076) = X(98)X(40163)∩X(251)X(21355)

Barycentrics    a^2*(a-b)*(a+b)*(a^2+b^2)*(a-c)*(a+c)*(a^2+c^2)*(a^4+b^4+b^2*c^2-c^4+a^2*(b^2+c^2))*(a^4-b^4+b^2*c^2+c^4+a^2*(b^2+c^2)) : :

X(59076) lies on circumconic {{A, B, C, X(74), X(98)}} and these lines: {98, 40163}, {251, 21355}, {755, 14370}, {1031, 9076}, {4630, 46970}

X(59076) = trilinear pole of line {6, 14370}
X(59076) = X(i)-isoconjugate-of-X(j) for these {i, j}: {798, 28677}, {826, 16556}, {2084, 40035}, {2530, 21083}, {2896, 8061}, {3005, 20934}, {3954, 21194}, {16892, 21880}
X(59076) = X(i)-Dao conjugate of X(j) for these {i, j}: {31998, 28677}
X(59076) = X(i)-cross conjugate of X(j) for these {i, j}: {3005, 21355}, {57132, 57421}
X(59076) = barycentric product X(i)*X(j) for these (i, j): {110, 40163}, {1031, 827}, {14370, 4577}, {18834, 34072}, {21355, 52936}, {39725, 4599}
X(59076) = barycentric quotient X(i)/X(j) for these (i, j): {99, 28677}, {827, 2896}, {1031, 23285}, {4577, 40035}, {4599, 20934}, {4628, 21083}, {4630, 10329}, {14370, 826}, {21355, 2528}, {34072, 16556}, {40163, 850}


X(59077) = X(64)X(5897)∩X(1294)X(3346)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c))*(a^8+(b^2-c^2)^4+4*a^6*(-b^2+c^2)-4*a^2*(b-c)*(b+c)*(b^2+c^2)^2+2*a^4*(3*b^4+2*b^2*c^2-5*c^4))*(a^8+4*a^6*(b-c)*(b+c)+(b^2-c^2)^4+4*a^2*(b-c)*(b+c)*(b^2+c^2)^2+a^4*(-10*b^4+4*b^2*c^2+6*c^4)) : :

X(59077) lies on the circumcircle and these lines: {64, 5897}, {107, 46639}, {1032, 34168}, {1073, 15324}, {1294, 3346}, {3344, 14642}, {39434, 54050}

X(59077) = trilinear pole of line {6, 14092}
X(59077) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 6616}, {1498, 17898}, {1712, 8057}, {8807, 14331}, {18750, 58895}
X(59077) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 6616}
X(59077) = X(i)-cross conjugate of X(j) for these {i, j}: {42658, 3344}, {58796, 1073}
X(59077) = barycentric product X(i)*X(j) for these (i, j): {1032, 1301}, {3344, 53886}, {3346, 46639}, {28783, 53639}
X(59077) = barycentric quotient X(i)/X(j) for these (i, j): {112, 6616}, {1301, 14361}, {28783, 8057}, {33581, 58895}, {42658, 13613}, {46639, 6527}, {47439, 58342}, {53886, 47435}


X(59078) = X(1593)X(5897)∩X(3522)X(39434)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4*(a^2+b^2)-(a-b)^2*(a+b)^2*(3*a^2+b^2)*(a^2+3*b^2)*c^2+2*(a^2+b^2)*(a^4-10*a^2*b^2+b^4)*c^4+2*(a^4+14*a^2*b^2+b^4)*c^6-3*(a^2+b^2)*c^8+c^10)*(a^10+2*a^6*(b^2-c^2)^2-3*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+2*a^4*(b^6-9*b^4*c^2+7*b^2*c^4+c^6)-a^2*(3*b^8-28*b^6*c^2+18*b^4*c^4+4*b^2*c^6+3*c^8)) : :

X(59078) lies on the circumcircle and these lines: {1593, 5897}, {3522, 39434}, {3542, 45138}, {6995, 34168}, {37931, 53934}

X(59078) = trilinear pole of line {6, 9914}


X(59079) = X(109)X(5546)∩X(662)X(934)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2-2*a*(b+c)+(b-3*c)*(b+c))*(a^2-2*a*(b+c)-(3*b-c)*(b+c)) : :

X(59079) lies on the circumcircle and these lines: {98, 7390}, {99, 14543}, {100, 7259}, {105, 51715}, {109, 5546}, {110, 53290}, {163, 28162}, {662, 934}, {4557, 29163}, {4558, 5545}, {4587, 8694}, {6011, 35342}, {36079, 46639}, {57194, 59130}

X(59079) = trilinear pole of line {6, 2328}
X(59079) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 7490}, {661, 3945}, {905, 1869}, {1577, 4252}, {3601, 7178}, {4017, 5273}, {7216, 20007}, {45784, 50457}
X(59079) = X(i)-Dao conjugate of X(j) for these {i, j}: {34961, 5273}, {36830, 3945}, {40596, 7490}
X(59079)= pole of line {3945, 20835} with respect to the Kiepert parabola
X(59079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(648)}}, {{A, B, C, X(662), X(5546)}}, {{A, B, C, X(1576), X(34080)}}, {{A, B, C, X(2284), X(51715)}}, {{A, B, C, X(3903), X(4566)}}, {{A, B, C, X(4230), X(7390)}}, {{A, B, C, X(4557), X(14543)}}, {{A, B, C, X(4558), X(4587)}}, {{A, B, C, X(4603), X(4635)}}
X(59079) = barycentric product X(i)*X(j) for these (i, j): {110, 43533}, {5665, 643}
X(59079) = barycentric quotient X(i)/X(j) for these (i, j): {110, 3945}, {112, 7490}, {1576, 4252}, {5546, 5273}, {5665, 4077}, {8750, 1869}, {43533, 850}


X(59080) = X(6)X(53688)∩X(727)X(41417)

Barycentrics    a^2*(a-b)*(a-c)*(3*a^2+7*a*b+3*b^2+5*(a+b)*c+c^2)*(3*a^2+5*a*b+b^2+7*a*c+5*b*c+3*c^2) : :

X(59080) lies on the circumcircle and these lines: {6, 53688}, {727, 41417}, {2702, 35327}, {8700, 21747}, {28856, 28860}

X(59080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(4629)}}, {{A, B, C, X(74), X(98)}}


X(59081) = X(32)X(2291)∩X(102)X(182)

Barycentrics    a^2*(a-b)*(a-c)*(2*a^3+a^2*(b-c)+b*(b-c)*(2*b+c)+a*(b^2+b*c-c^2))*(2*a^3+a^2*(-b+c)-(b-c)*c*(b+2*c)+a*(-b^2+b*c+c^2)) : :

X(59081) lies on the circumcircle and these lines: {32, 2291}, {102, 182}, {759, 34476}, {1691, 53179}, {1983, 43077}, {2080, 2708}, {4257, 28563}, {4279, 57711}

X(59081) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(83), X(44765)}}, {{A, B, C, X(1983), X(34476)}}


X(59082) = X(759)X(1474)∩X(1783)X(9058)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+2*a*b*(a+b)*c-c^4)*(a^4-b^4+2*a^2*(b-c)*c+2*a*b*c^2+c^4) : :

X(59082) lies on the circumcircle and these lines: {759, 1474}, {1415, 36076}, {1783, 9058}, {2222, 32674}, {2861, 17923}, {6099, 57217}, {8750, 29044}, {14776, 32685}

X(59082) = trilinear pole of line {6, 11383}
X(59082) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6332, 57277}
X(59082) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1332), X(32641)}}, {{A, B, C, X(1474), X(32674)}}, {{A, B, C, X(1783), X(14776)}}, {{A, B, C, X(2983), X(36049)}}


X(59083) = X(4)X(5517)∩X(110)X(1783)

Barycentrics    a*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)*(a+b)^2+(a^2+2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+2*b*c-c^2)) : :

X(59083) lies on these lines: {4, 5517}, {99, 6335}, {102, 56225}, {104, 46010}, {110, 1783}, {653, 13395}, {934, 52607}, {1295, 19262}, {2291, 5338}, {19310, 26703}, {24019, 59092}, {32674, 36082}

X(59083) = inverse of X(5517) in polar circle
X(59083) = trilinear pole of line {6, 1824}
X(59083) = X(i)-isoconjugate-of-X(j) for these {i, j}: {406, 4091}, {521, 45126}, {656, 27174}, {905, 12514}, {1459, 5739}, {4025, 36744}, {30805, 44086}
X(59083) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 27174}, {55046, 17421}
X(59083) = X(i)-cross conjugate of X(j) for these {i, j}: {8678, 4}
X(59083) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(36145)}}, {{A, B, C, X(653), X(24019)}}, {{A, B, C, X(1783), X(6335)}}, {{A, B, C, X(4244), X(19310)}}, {{A, B, C, X(5517), X(8678)}}, {{A, B, C, X(7435), X(19262)}}
X(59083) = barycentric product X(i)*X(j) for these (i, j): {41013, 59130}, {46010, 6335}, {56225, 653}
X(59083) = barycentric quotient X(i)/X(j) for these (i, j): {112, 27174}, {1783, 5739}, {8678, 17421}, {8750, 12514}, {32674, 45126}, {36099, 14258}, {46010, 905}, {56225, 6332}, {57667, 4131}, {59130, 1444}


X(59084) = X(19)X(104)∩X(105)X(54368)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-2*(a-b)^2*(a+b)*c-2*(a+b)^2*c^2+2*(a+b)*c^3+c^4)*(a^4-2*a^3*b+2*a*b*(b-c)^2+(b-c)*(b+c)*(b^2+2*b*c-c^2)-2*a^2*(b^2-b*c+c^2)) : :

X(59084) lies on the circumcircle and these lines: {19, 104}, {105, 54368}, {284, 26701}, {573, 53915}, {2301, 52774}, {2720, 32674}, {2739, 5011}, {8750, 32722}, {14074, 23353}

X(59084) = trilinear pole of line {6, 10535}
X(59084) = X(i)-isoconjugate-of-X(j) for these {i, j}: {905, 5657}, {6332, 54400}
X(59084) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(32674)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(284), X(36049)}}, {{A, B, C, X(1461), X(32647)}}, {{A, B, C, X(2164), X(32653)}}, {{A, B, C, X(35321), X(52604)}}
X(59084) = barycentric quotient X(i)/X(j) for these (i, j): {8750, 5657}


X(59085) = X(105)X(1224)∩X(110)X(1018)

Barycentrics    a*(a-b)*(a-c)*(a^2+(b+c)^2+a*(2*b+c))*(a^2+(b+c)^2+a*(b+2*c)) : :

X(59085) lies on the circumcircle and these lines: {99, 4033}, {100, 4103}, {101, 40521}, {103, 31805}, {105, 1224}, {106, 3723}, {109, 21859}, {110, 1018}, {644, 8652}, {831, 4436}, {934, 4605}, {1023, 28176}, {1310, 4568}, {3882, 29233}, {3888, 29277}, {4557, 15322}, {4562, 36066}, {4574, 59034}, {4752, 28148}, {6578, 37212}, {8701, 35342}, {28200, 57192}, {36147, 58982}, {57062, 59075}

X(59085) = trilinear pole of line {6, 756}
X(59085) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 47679}, {513, 17011}, {514, 1203}, {649, 17322}, {1019, 3743}, {3733, 41809}, {4272, 7192}, {4886, 43924}, {41820, 50344}, {45221, 58294}
X(59085) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 47679}, {5375, 17322}, {39026, 17011}
X(59085) = X(i)-cross conjugate of X(j) for these {i, j}: {1962, 765}, {50523, 1}
X(59085) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(40519)}}, {{A, B, C, X(660), X(4596)}}, {{A, B, C, X(1018), X(4033)}}, {{A, B, C, X(1023), X(3723)}}, {{A, B, C, X(1492), X(32042)}}, {{A, B, C, X(1783), X(4606)}}, {{A, B, C, X(2284), X(5259)}}, {{A, B, C, X(4568), X(35334)}}
X(59085) = barycentric product X(i)*X(j) for these (i, j): {100, 1224}
X(59085) = barycentric quotient X(i)/X(j) for these (i, j): {37, 47679}, {100, 17322}, {101, 17011}, {644, 4886}, {692, 1203}, {1018, 41809}, {1224, 693}, {4557, 3743}, {35342, 41820}


X(59086) = X(99)X(15352)∩X(110)X(6529)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^3+(-a^4+6*a^2*b^2+3*b^4)*c^2-(a^2+3*b^2)*c^4+c^6)*(a^4-(b^2-c^2)^2)^3*(a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)+a^2*(-b^4+6*b^2*c^2+3*c^4)) : :

X(59086) lies on the circumcircle and these lines: {98, 41365}, {99, 15352}, {110, 6529}, {648, 43352}, {933, 57219}, {1217, 1297}, {6570, 58070}

X(59086) = trilinear pole of line {6, 6524}
X(59086) = X(i)-isoconjugate-of-X(j) for these {i, j}: {822, 40680}, {1181, 24018}
X(59086) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(6529), X(15352)}}, {{A, B, C, X(32646), X(53205)}}, {{A, B, C, X(41365), X(58070)}}
X(59086) = barycentric product X(i)*X(j) for these (i, j): {107, 1217}
X(59086) = barycentric quotient X(i)/X(j) for these (i, j): {107, 40680}, {1217, 3265}, {6529, 11433}, {32713, 1181}, {36434, 13400}, {46680, 32320}


X(59087) = X(1105)X(34168)∩X(2713)X(15384)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*((a^2-b^2)^2*(a^2+b^2)-2*(a^2-b^2)^2*c^2+(a^2+b^2)*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c))*(a^4-(b^2-c^2)^2)^2*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4+4*b^2*c^2-c^4)) : :

X(59087) lies on the circumcircle and these lines: {1105, 34168}, {1297, 52543}, {2713, 15384}, {5897, 41890}, {6529, 30249}, {32713, 58952}, {57219, 59038}

X(59087) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 58763}, {656, 45200}, {774, 20580}, {2883, 24018}, {6508, 8057}, {6509, 17898}, {17858, 58796}
X(59087) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 58763}, {40596, 45200}
X(59087) = X(i)-cross conjugate of X(j) for these {i, j}: {14329, 56364}, {33581, 15384}
X(59087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32713), X(57219)}}
X(59087) = barycentric product X(i)*X(j) for these (i, j): {107, 57414}, {1105, 1301}, {59039, 6526}
X(59087) = barycentric quotient X(i)/X(j) for these (i, j): {112, 45200}, {577, 58763}, {1301, 41005}, {32713, 2883}, {41890, 20580}, {57414, 3265}


X(59088) = X(99)X(1577)∩X(110)X(661)

Barycentrics    a*(a-b)*(a-c)*(a^4+a^3*b+a^2*b^2+a*b^3+b^4-2*(a^2+a*b+b^2)*c^2+c^4)*(a^4+a^3*c+(b^2-c^2)^2+a^2*(-2*b^2+c^2)+a*(-2*b^2*c+c^3)) : :

X(59088) lies on the circumcircle and these lines: {99, 1577}, {100, 4024}, {101, 4705}, {109, 57185}, {110, 661}, {691, 23894}, {759, 46548}, {827, 55240}, {925, 55250}, {1018, 29137}, {4444, 36066}, {6083, 35354}, {6578, 47947}, {32678, 58979}, {36085, 45773}

X(59088) = trilinear pole of line {6, 2643}
X(59088) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(37), X(37140)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(661), X(1577)}}, {{A, B, C, X(3444), X(36142)}}, {{A, B, C, X(4242), X(46548)}}, {{A, B, C, X(9505), X(36086)}}
X(59088) = barycentric product X(i)*X(j) for these (i, j): {14734, 16598}


X(59089) = X(6)X(39448)∩X(187)X(1291)

Barycentrics    a^2*((a^2-b^2)^4*(a^2+b^2)+(-3*a^8+5*a^6*b^2-10*a^4*b^4+5*a^2*b^6-3*b^8)*c^2+5*(a^2+b^2)*(a^4+b^4)*c^4-(7*a^4+10*a^2*b^2+7*b^4)*c^6+6*(a^2+b^2)*c^8-2*c^10)*(a^10-3*a^8*(b^2+c^2)-(b^2-c^2)^3*(2*b^4+c^4)+a^6*(5*b^4+5*b^2*c^2+2*c^4)+a^4*(-7*b^6+5*b^4*c^2-10*b^2*c^4+2*c^6)+a^2*(6*b^8-10*b^6*c^2+5*b^4*c^4+5*b^2*c^6-3*c^8)) : :

X(59089) lies on the circumcircle and these lines: {6, 39448}, {99, 18122}, {110, 15544}, {111, 6140}, {187, 1291}, {691, 11063}, {34866, 53884}

X(59089) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 42737}
X(59089) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 42737}
X(59089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(15475)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(6140)}}, {{A, B, C, X(249), X(1989)}}, {{A, B, C, X(512), X(14579)}}, {{A, B, C, X(10630), X(11071)}}, {{A, B, C, X(14910), X(57728)}}
X(59089) = barycentric quotient X(i)/X(j) for these (i, j): {512, 42737}


X(59090) = X(100)X(32714)∩X(102)X(951)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)+(a+b)*c^2+2*c^3)*(a^3+2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c)) : :

X(59090) lies on these lines: {100, 32714}, {102, 951}, {107, 52607}, {110, 52610}, {112, 53321}, {162, 53683}, {759, 46883}, {934, 35350}, {1262, 53925}, {1305, 36118}, {2249, 57390}, {2370, 40445}, {32674, 59061}

X(59090) = trilinear pole of line {6, 1398}
X(59090) = X(i)-isoconjugate-of-X(j) for these {i, j}: {440, 1021}, {521, 950}, {1834, 57081}, {2264, 6332}, {3692, 29162}, {3900, 18650}, {7253, 18673}, {14543, 34591}, {15411, 40977}, {17863, 57108}, {40940, 57055}
X(59090) = X(i)-cross conjugate of X(j) for these {i, j}: {1474, 7128}
X(59090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(32651), X(52607)}}, {{A, B, C, X(32652), X(35350)}}
X(59090) = barycentric product X(i)*X(j) for these (i, j): {653, 951}, {1020, 40431}, {1119, 29163}, {1257, 32714}, {1461, 40445}, {2983, 36118}, {4566, 57390}, {32674, 58005}, {40414, 53321}
X(59090) = barycentric quotient X(i)/X(j) for these (i, j): {951, 6332}, {1257, 15416}, {1398, 29162}, {1461, 18650}, {29163, 1265}, {32674, 950}, {32714, 17863}, {40445, 52622}, {53321, 440}, {57390, 7253}


X(59091) = X(74)X(1989)∩X(842)X(1138)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^2-a*b+b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^2-b^2+a*c+c^2)*(a^8+2*a^6*(b^2-2*c^2)+(b^2-c^2)^4+a^4*(-6*b^4+b^2*c^2+6*c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4-4*c^6))*(a^8+(b^2-c^2)^4+2*a^6*(-2*b^2+c^2)+a^4*(6*b^4+b^2*c^2-6*c^4)+a^2*(-4*b^6+b^4*c^2+b^2*c^4+2*c^6)) : :

X(59091) lies on the circumcircle and these lines: {74, 1989}, {110, 41392}, {842, 1138}, {1291, 32662}, {32678, 34921}, {35568, 40705}, {40356, 56396}

X(59091) = trilinear pole of line {6, 14583}
X(59091) = X(i)-isoconjugate-of-X(j) for these {i, j}: {399, 32679}, {1272, 2624}, {3268, 19303}, {6149, 14566}
X(59091) = X(i)-Dao conjugate of X(j) for these {i, j}: {14993, 14566}, {15295, 58900}
X(59091) = X(i)-cross conjugate of X(j) for these {i, j}: {1637, 11070}, {58346, 5627}
X(59091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1637), X(44427)}}, {{A, B, C, X(1989), X(32650)}}, {{A, B, C, X(3233), X(18780)}}, {{A, B, C, X(14579), X(32640)}}, {{A, B, C, X(39290), X(40389)}}
X(59091) = barycentric product X(i)*X(j) for these (i, j): {1138, 476}, {11070, 39290}, {14560, 40705}, {41392, 54837}
X(59091) = barycentric quotient X(i)/X(j) for these (i, j): {476, 1272}, {1138, 3268}, {1989, 14566}, {11060, 58900}, {11070, 5664}, {14451, 45790}, {14560, 399}, {40356, 52743}


X(59092) = X(108)X(32713)∩X(162)X(13397)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-c^4-2*a^2*b*(b+c)-2*a*b*c*(b+c))*(a^4-b^4+c^4-2*a^2*c*(b+c)-2*a*b*c*(b+c)) : :

X(59092) lies on the circumcircle and these lines: {74, 57659}, {99, 52914}, {108, 32713}, {109, 32676}, {162, 13397}, {1297, 45127}, {2194, 40575}, {2373, 26256}, {24019, 59083}

X(59092) = trilinear pole of line {6, 2204}
X(59092) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 47124}, {377, 656}, {523, 54289}, {525, 54405}, {1448, 52355}, {4025, 43214}, {14208, 37538}
X(59092) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 47124}, {40596, 377}
X(59092) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(23067), X(43723)}}, {{A, B, C, X(26256), X(46592)}}, {{A, B, C, X(32676), X(32713)}}
X(59092) = barycentric product X(i)*X(j) for these (i, j): {107, 45127}, {112, 57818}, {1172, 13395}, {57659, 648}
X(59092) = barycentric quotient X(i)/X(j) for these (i, j): {25, 47124}, {112, 377}, {163, 54289}, {13395, 1231}, {32676, 54405}, {45127, 3265}, {57659, 525}, {57818, 3267}


X(59093) = X(100)X(670)∩X(101)X(799)

Barycentrics    (a-b)*b*(a+b)*(a-c)*c*(a+c)*(b^2*c+a^2*(b+c)+a*b*(b+c))*(b*c^2+a^2*(b+c)+a*c*(b+c)) : :

X(59093) lies on the circumcircle and these lines: {100, 670}, {101, 799}, {109, 4625}, {110, 4623}, {111, 1218}, {112, 55231}, {741, 2296}, {813, 4639}, {901, 4634}, {4554, 59122}, {4573, 58969}

X(59093) = trilinear pole of line {6, 274}
X(59093) = X(i)-isoconjugate-of-X(j) for these {i, j}: {42, 2978}, {661, 1185}, {669, 31330}, {784, 1918}, {798, 5283}, {10458, 50487}, {27164, 53581}
X(59093) = X(i)-Dao conjugate of X(j) for these {i, j}: {31998, 5283}, {34021, 784}, {36830, 1185}, {40592, 2978}
X(59093) = X(i)-cross conjugate of X(j) for these {i, j}: {940, 34537}
X(59093)= pole of line {1185, 16915} with respect to the Kiepert parabola
X(59093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(670), X(799)}}, {{A, B, C, X(4554), X(4609)}}, {{A, B, C, X(4598), X(53649)}}, {{A, B, C, X(54118), X(55034)}}
X(59093) = barycentric product X(i)*X(j) for these (i, j): {274, 57959}, {1218, 99}, {2296, 799}, {6385, 785}
X(59093) = barycentric quotient X(i)/X(j) for these (i, j): {81, 2978}, {99, 5283}, {110, 1185}, {274, 784}, {785, 213}, {799, 31330}, {1218, 523}, {2296, 661}, {4573, 10473}, {4610, 10458}, {4623, 27164}, {6385, 35559}, {52612, 10471}, {57959, 37}, {57992, 23594}


X(59094) = X(100)X(18830)∩X(101)X(4598)

Barycentrics    (a-b)*(a-c)*(a*(b-c)+b*c)*(a*b-(a+b)*c)*(a*b*(a+b)+(a^2+b^2)*c)*(a*c^2+b*c^2+a^2*(b+c)) : :

X(59094) lies on the circumcircle and these lines: {100, 18830}, {101, 4598}, {110, 56053}, {715, 40409}, {727, 33682}, {1221, 9082}, {6649, 29055}

X(59094) = trilinear pole of line {6, 330}
X(59094) = X(i)-isoconjugate-of-X(j) for these {i, j}: {43, 50510}, {513, 45216}, {1107, 20979}, {1197, 3835}, {2309, 4083}, {3123, 53268}, {3728, 16695}, {3741, 8640}, {18169, 50491}, {18197, 21838}, {21024, 57074}, {27644, 40627}, {38986, 53338}
X(59094) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 45216}
X(59094) = X(i)-cross conjugate of X(j) for these {i, j}: {23493, 5383}
X(59094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4598), X(18830)}}, {{A, B, C, X(6648), X(6649)}}
X(59094) = barycentric product X(i)*X(j) for these (i, j): {1221, 932}, {1258, 18830}, {40418, 4598}, {59102, 6383}
X(59094) = barycentric quotient X(i)/X(j) for these (i, j): {101, 45216}, {932, 1107}, {1221, 20906}, {1258, 4083}, {2162, 50510}, {4598, 3741}, {5383, 53338}, {18830, 20891}, {23493, 40627}, {34071, 2309}, {40409, 17217}, {40418, 3835}, {56053, 16738}, {57399, 20979}, {59102, 2176}


X(59095) = X(99)X(2415)∩X(110)X(2429)

Barycentrics    a^2*(a-b)*(a+b-3*c)*(a-c)*(a-3*b+c)*((a-b)^2+(a+b)*c)*(a^2+a*(b-2*c)+c*(b+c)) : :

X(59095) lies on the circumcircle and these lines: {99, 2415}, {100, 34080}, {105, 11260}, {110, 2429}, {644, 30236}, {901, 32645}, {934, 27834}, {1222, 9083}, {1476, 53623}, {2737, 56323}, {3445, 9109}, {4574, 59068}, {5548, 35186}, {6571, 38828}, {6613, 53337}, {8686, 23617}, {9086, 53647}, {9097, 17967}

X(59095) = trilinear pole of line {6, 51476}
X(59095) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 14284}, {145, 48334}, {513, 45204}, {514, 45219}, {1122, 4521}, {1201, 4462}, {1420, 21120}, {3057, 30719}, {3452, 51656}, {3663, 4394}, {3667, 3752}, {3669, 12640}, {3680, 58811}, {3756, 21362}, {4162, 52563}, {4729, 18600}, {4943, 45205}, {5435, 6615}, {6363, 18743}, {8643, 26563}, {42336, 44723}
X(59095) = X(i)-Dao conjugate of X(j) for these {i, j}: {5452, 14284}, {39026, 45204}
X(59095) = X(i)-cross conjugate of X(j) for these {i, j}: {15621, 15403}
X(59095)= pole of line {1476, 45219} with respect to the Hutson-Moses hyperbola
X(59095) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(644), X(55996)}}, {{A, B, C, X(2284), X(11260)}}, {{A, B, C, X(2415), X(2429)}}, {{A, B, C, X(3939), X(57192)}}, {{A, B, C, X(32645), X(34080)}}
X(59095) = barycentric product X(i)*X(j) for these (i, j): {1222, 1293}, {1476, 31343}, {3445, 8706}, {23617, 27834}, {32017, 34080}, {38828, 52549}, {51476, 53647}, {59123, 6556}
X(59095) = barycentric quotient X(i)/X(j) for these (i, j): {55, 14284}, {101, 45204}, {692, 45219}, {1293, 3663}, {2429, 51415}, {3451, 30719}, {3939, 12640}, {5382, 21580}, {23617, 4462}, {27834, 26563}, {31343, 20895}, {34080, 3752}, {38266, 48334}, {38828, 52563}, {51476, 3667}, {56190, 4404}


X(59096) = X(106)X(3218)∩X(901)X(4585)

Barycentrics    a*(a-b)*(a-c)*(a^3+b^3-3*a^2*c+3*a*(b-c)*c+c^3)*(a^3-3*a^2*b+b^3+c^3+3*a*b*(-b+c)) : :

X(59096) lies on the circumcircle and these lines: {106, 3218}, {649, 29149}, {759, 16704}, {901, 4585}, {1023, 32686}, {1252, 58999}, {46962, 47755}, {52924, 58955}

X(59096) = trilinear pole of line {6, 214}
X(59096) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3218), X(3257)}}, {{A, B, C, X(3418), X(36042)}}, {{A, B, C, X(9271), X(52925)}}, {{A, B, C, X(23703), X(36091)}}


X(59097) = X(100)X(1632)∩X(111)X(26256)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^4-2*a^2*b*(b+c)-2*a*b*c*(b+c)+(b^2-c^2)^2)*(a^4-2*a^2*c*(b+c)-2*a*b*c*(b+c)+(b^2-c^2)^2) : :

X(59097) lies on the circumcircle and these lines: {100, 1632}, {111, 26256}, {4552, 15439}, {4623, 42297}, {5546, 59060}, {6742, 59011}

X(59097) = trilinear pole of line {6, 442}
X(59097) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 14017}
X(59097) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 14017}
X(59097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(648), X(4552)}}, {{A, B, C, X(4235), X(26256)}}, {{A, B, C, X(4554), X(44766)}}
X(59097) = barycentric quotient X(i)/X(j) for these (i, j): {112, 14017}


X(59098) = X(74)X(1352)∩X(76)X(2373)

Barycentrics    (a-b)*(a+b)*(a-c)*(a+c)*(a^6+a^4*b^2+a^2*b^4+b^6-(a^2-b^2)^2*c^2-(a^2+b^2)*c^4+c^6)*(a^6+a^4*(-b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^2*(-b^4+2*b^2*c^2+c^4)) : :

X(59098) lies on the circumcircle and these lines: {74, 1352}, {76, 2373}, {98, 6644}, {111, 3767}, {648, 10423}, {691, 1632}, {842, 11799}, {1297, 44440}, {1300, 43976}, {1304, 47288}, {9076, 26179}, {10098, 30716}, {10420, 35278}, {14568, 40119}, {33802, 39436}

X(59098) = trilinear pole of line {6, 858}
X(59098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(76), X(648)}}, {{A, B, C, X(1576), X(2353)}}, {{A, B, C, X(2409), X(44440)}}, {{A, B, C, X(4230), X(6644)}}, {{A, B, C, X(7473), X(11799)}}, {{A, B, C, X(35278), X(43976)}}, {{A, B, C, X(52608), X(53657)}}


X(59099) = X(110)X(18047)∩X(190)X(815)

Barycentrics    (a-b)*(a-c)*(a^3*c+a*b*c*(b+c)+b^2*c*(b+c)+a^2*(b^2+b*c+c^2))*(a^3*b+a*b*c*(b+c)+b*c^2*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(59099) lies on the circumcircle and these lines: {110, 18047}, {190, 815}, {741, 30669}, {805, 4562}, {2703, 39185}, {4552, 29055}, {4568, 29067}, {29052, 53338}

X(59099) = trilinear pole of line {6, 1215}
X(59099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4552), X(4562)}}, {{A, B, C, X(4593), X(57960)}}, {{A, B, C, X(4613), X(36147)}}, {{A, B, C, X(7257), X(36801)}}


X(59100) = X(107)X(41677)∩X(1300)X(3088)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a^2-b^2)^2*(a^2+b^2)+(a^4-6*a^2*b^2+b^4)*c^2-5*(a^2+b^2)*c^4+3*c^6)*(a^6+a^4*(b-c)*(b+c)+(b^2-c^2)^2*(3*b^2+c^2)-a^2*(b^2+c^2)*(5*b^2+c^2)) : :

X(59100) lies on the circumcircle and these lines: {107, 41677}, {112, 50947}, {1300, 3088}, {1634, 13398}, {4558, 59004}

X(59100) = trilinear pole of line {6, 1216}
X(59100) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 37122}
X(59100) = X(i)-Dao conjugate of X(j) for these {i, j}: {40596, 37122}
X(59100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(3088), X(15329)}}, {{A, B, C, X(4558), X(11794)}}
X(59100) = barycentric quotient X(i)/X(j) for these (i, j): {112, 37122}


X(59101) = X(2)X(35967)∩X(59)X(840)

Barycentrics    a^2*(a-b)^3*(a-c)^3*(a+b-c)*(a-b+c)*(a^2+b^2-(a+b)*c)*(a^2-a*b+c*(-b+c)) : :
X(59101) = -3*X[2]+2*X[35967]

X(59101) lies on the circumcircle and these lines: {2, 35967}, {59, 840}, {99, 55194}, {100, 11124}, {101, 14825}, {104, 5377}, {106, 1416}, {109, 4619}, {666, 929}, {675, 39293}, {692, 53607}, {765, 2751}, {901, 32735}, {927, 53578}, {953, 38599}, {1110, 12032}, {1252, 43079}, {1305, 14888}, {1308, 36146}, {1309, 36802}, {2222, 36086}, {2283, 59021}, {2725, 4564}, {2726, 43979}, {2808, 14887}, {2860, 34085}, {2862, 4998}, {2866, 7035}, {4557, 53880}, {4559, 53971}, {6066, 39421}, {12835, 14665}, {13576, 19628}, {14733, 52927}, {14942, 53878}, {20958, 38809}, {23990, 59057}, {28838, 44717}, {35313, 43353}, {52778, 57731}

X(59101) = midpoint of X(i) and X(j) for these {i,j}: {101, 54231}
X(59101) = isogonal conjugate of X(52305)
X(59101) = anticomplement of X(35967)
X(59101) = trilinear pole of line {6, 59}
X(59101) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52305}, {11, 2254}, {241, 42462}, {244, 50333}, {514, 17435}, {518, 21132}, {522, 3675}, {665, 4858}, {672, 40166}, {764, 3717}, {918, 2170}, {926, 1111}, {1024, 35094}, {1026, 7336}, {1090, 2283}, {1146, 53544}, {1458, 42455}, {2310, 43042}, {3693, 6545}, {4088, 18191}, {4516, 23829}, {5532, 41353}, {14393, 37131}, {17197, 24290}, {18206, 55195}, {23615, 34855}, {23989, 46388}, {24026, 53539}, {35015, 57468}, {36086, 52304}, {52228, 52946}
X(59101) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52305}, {35967, 35967}, {38989, 52304}
X(59101) = X(i)-cross conjugate of X(j) for these {i, j}: {659, 57410}, {665, 38809}, {2283, 59}, {2426, 1252}, {7437, 250}
X(59101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(884), X(11124)}}, {{A, B, C, X(926), X(53578)}}, {{A, B, C, X(1362), X(2283)}}, {{A, B, C, X(1416), X(32735)}}, {{A, B, C, X(2426), X(56785)}}, {{A, B, C, X(4619), X(31615)}}, {{A, B, C, X(14825), X(35365)}}, {{A, B, C, X(23344), X(23346)}}
X(59101) = barycentric product X(i)*X(j) for these (i, j): {59, 666}, {101, 39293}, {105, 31615}, {1016, 32735}, {1110, 34085}, {1252, 927}, {1262, 36802}, {1275, 52927}, {1416, 6632}, {1462, 57731}, {2149, 51560}, {2283, 57536}, {4998, 919}, {5377, 651}, {14942, 4619}, {23990, 46135}, {35313, 38809}, {36086, 4564}, {36146, 765}, {55194, 56853}
X(59101) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52305}, {59, 918}, {105, 40166}, {294, 42455}, {665, 52304}, {666, 34387}, {692, 17435}, {919, 11}, {927, 23989}, {1024, 1090}, {1252, 50333}, {1262, 43042}, {1415, 3675}, {1416, 6545}, {1438, 21132}, {2149, 2254}, {2195, 42462}, {2283, 35094}, {2426, 1566}, {4619, 9436}, {5377, 4391}, {6066, 52614}, {6559, 23104}, {23979, 53539}, {23981, 42770}, {23990, 926}, {24027, 53544}, {31615, 3263}, {32642, 56787}, {32666, 2170}, {32735, 1086}, {36086, 4858}, {36146, 1111}, {36802, 23978}, {39293, 3261}, {43929, 7336}, {52378, 23829}, {52927, 1146}, {56783, 23100}, {56786, 58259}, {56853, 55195}


X(59102) = X(99)X(4579)∩X(105)X(1258)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)+(a^2+b^2)*c)*(a*c^2+b*c^2+a^2*(b+c)) : :

X(59102) lies on the circumcircle and these lines: {99, 4579}, {105, 1258}, {106, 57399}, {675, 40418}, {692, 932}, {767, 1221}, {805, 34067}, {2368, 40409}, {3573, 8707}, {4557, 43359}

X(59102) = trilinear pole of line {6, 22199}
X(59102) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 50510}, {244, 53338}, {274, 40627}, {513, 3741}, {514, 1107}, {523, 18169}, {649, 20891}, {650, 30097}, {661, 16738}, {693, 2309}, {1019, 21024}, {1111, 53268}, {1197, 3261}, {2530, 18091}, {3728, 7192}, {4560, 45208}, {7199, 21838}, {17924, 22065}, {18155, 39780}, {22389, 46107}, {48131, 56901}
X(59102) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 50510}, {5375, 20891}, {36830, 16738}, {39026, 3741}
X(59102) = X(i)-cross conjugate of X(j) for these {i, j}: {171, 59}, {1918, 1252}, {20855, 250}, {38832, 765}, {50510, 6}
X(59102) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(4559)}}, {{A, B, C, X(1415), X(1492)}}, {{A, B, C, X(4565), X(4586)}}, {{A, B, C, X(4579), X(32736)}}, {{A, B, C, X(5548), X(7257)}}, {{A, B, C, X(32665), X(52935)}}
X(59102) = barycentric product X(i)*X(j) for these (i, j): {100, 1258}, {101, 40418}, {190, 57399}, {1221, 692}, {2176, 59094}, {40409, 4557}
X(59102) = barycentric quotient X(i)/X(j) for these (i, j): {32, 50510}, {100, 20891}, {101, 3741}, {109, 30097}, {110, 16738}, {163, 18169}, {692, 1107}, {1221, 40495}, {1252, 53338}, {1258, 693}, {1918, 40627}, {2427, 51411}, {4557, 21024}, {4628, 18091}, {23990, 53268}, {32656, 22065}, {32736, 56901}, {32739, 2309}, {40409, 52619}, {40418, 3261}, {57399, 514}, {59094, 6383}


X(59103) = X(59)X(2745)∩X(103)X(1795)

Barycentrics    a^2*(a-b)^3*(a-c)^3*(a+b-c)^2*(a-b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a-b)^2*(a+b)+2*a*b*c-(a+b)*c^2)*(a^3-a*(b-c)^2-a^2*c-b^2*c+c^3) : :

X(59103) lies on these lines: {59, 2745}, {102, 34913}, {103, 1795}, {919, 32702}, {1262, 53703}, {1311, 39294}, {1845, 2717}, {2222, 36110}, {2716, 7012}, {2728, 37136}, {2734, 38554}, {2765, 36037}, {2861, 55346}, {14733, 14776}, {32641, 40116}, {36123, 53878}, {38607, 53911}, {53321, 53612}

X(59103) = trilinear pole of line {6, 7115}
X(59103) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 52316}, {521, 35015}, {522, 35014}, {656, 14010}, {1021, 42761}, {1769, 2968}, {2804, 7004}, {3270, 36038}, {3326, 37628}, {4858, 52307}, {8677, 24026}, {10015, 34591}, {17880, 53549}, {21132, 51379}, {22350, 42455}, {24031, 39534}, {26932, 46393}, {42754, 57055}, {42759, 57081}
X(59103) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 52316}, {40596, 14010}
X(59103) = X(i)-cross conjugate of X(j) for these {i, j}: {2425, 1262}, {7461, 250}, {53304, 57410}
X(59103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1795), X(32641)}}, {{A, B, C, X(2425), X(56973)}}, {{A, B, C, X(11700), X(23987)}}
X(59103) = barycentric product X(i)*X(j) for these (i, j): {109, 39294}, {1262, 1309}, {1275, 14776}, {2720, 46102}, {32641, 55346}, {32702, 4998}, {36037, 7128}, {36110, 4564}, {36123, 4619}, {37136, 7012}, {54953, 7115}
X(59103) = barycentric quotient X(i)/X(j) for these (i, j): {25, 52316}, {112, 14010}, {1309, 23978}, {1415, 35014}, {2425, 10017}, {2443, 57445}, {2720, 26932}, {7115, 2804}, {7128, 36038}, {14776, 1146}, {23979, 8677}, {23985, 39534}, {32641, 2968}, {32669, 7004}, {32674, 35015}, {32702, 11}, {36110, 4858}, {37136, 17880}, {39294, 35519}, {53321, 42761}


X(59104) = X(107)X(645)∩X(108)X(1332)

Barycentrics    a^2*(a-b)*(a-c)*(a^4+2*a*b^3+b^4+2*b^3*c-2*a^2*c^2+c^4)*((a^2-b^2)^2+2*(a+b)*c^3+c^4) : :

X(59104) lies on the circumcircle and these lines: {107, 645}, {108, 1332}, {1305, 53332}, {1331, 15440}, {3888, 13397}, {8687, 57217}

X(59104) = trilinear pole of line {6, 1259}
X(59104) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 5230}, {514, 5336}
X(59104) = X(i)-Dao conjugate of X(j) for these {i, j}: {39026, 5230}
X(59104) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(4636)}}, {{A, B, C, X(645), X(1332)}}, {{A, B, C, X(668), X(1331)}}, {{A, B, C, X(4598), X(41206)}}, {{A, B, C, X(53332), X(57217)}}
X(59104) = barycentric quotient X(i)/X(j) for these (i, j): {101, 5230}, {692, 5336}


X(59105) = X(59)X(43080)∩X(101)X(4619)

Barycentrics    a^2*(a-b)^3*(a-c)^3*(a+b-c)^3*(a-b+c)^3*((a-b)^2+(a+b)*c-2*c^2)*(a^2-2*b^2+a*(b-2*c)+b*c+c^2) : :

X(59105) lies on circumconic {{A, B, C, X(74), X(98)}} and these lines: {59, 43080}, {101, 4619}, {840, 7339}, {1309, 35157}, {2717, 7045}

X(59105) = trilinear pole of line {6, 1262}
X(59105) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 52334}, {11, 14392}, {650, 33573}, {1155, 23615}, {1638, 3119}, {2310, 6366}, {4081, 14413}, {6139, 24026}, {6603, 42462}, {14414, 42069}, {23893, 35091}
X(59105) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 52334}
X(59105) = X(i)-cross conjugate of X(j) for these {i, j}: {23346, 1262}
X(59105) = barycentric product X(i)*X(j) for these (i, j): {1262, 35157}, {1275, 14733}, {23346, 57563}, {37139, 7045}
X(59105) = barycentric quotient X(i)/X(j) for these (i, j): {56, 52334}, {109, 33573}, {1121, 23104}, {1262, 6366}, {2149, 14392}, {2291, 23615}, {4619, 6745}, {7339, 1638}, {14733, 1146}, {23346, 35091}, {23979, 6139}, {32728, 14936}, {34056, 42455}, {35157, 23978}, {36141, 2310}, {37139, 24026}


X(59106) = X(99)X(44183)∩X(110)X(15388)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-c^4)*(a^4-b^4+c^4)*((a^4-b^4)^2-(a^2-b^2)^2*(a^2+b^2)*c^2+(a^2-b^2)^2*c^4+(a^2+b^2)*c^6-2*c^8)*(a^8-a^6*b^2-2*b^8+b^6*c^2+b^4*c^4-b^2*c^6+c^8+a^2*(b^3-b*c^2)^2+a^4*(b^4+b^2*c^2-2*c^4)) : :

X(59106) lies on the circumcircle and these lines: {99, 44183}, {110, 15388}, {1289, 47125}, {2366, 34138}, {2373, 37801}, {2485, 39417}, {5523, 39436}, {13854, 38971}, {14580, 54060}

X(59106) = X(i)-cross conjugate of X(j) for these {i, j}: {54060, 15388}
X(59106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(525), X(2485)}}, {{A, B, C, X(2492), X(38971)}}, {{A, B, C, X(15388), X(44183)}}


X(59107) = X(919)X(2492)∩X(1290)X(47227)

Barycentrics    a^2*(a-b)*(a-c)*((a-b)^2*(a+b)*(a^2+b^2)-a*b*(a^2+b^2)*c+a*b*(a+b)*c^2+2*a*b*c^3-(a+b)*c^4)*(a^3+a^2*(b-c)+(b-c)^2*(b+c)+a*(b^2-b*c-c^2))*(a^3+a^2*(-b+c)+(b-c)^2*(b+c)-a*(b^2+b*c-c^2))*(a^5-a^4*c-a^3*b*c+a^2*b^2*c-b^4*c+c^5-a*(b^4-2*b^3*c-b^2*c^2+b*c^3+c^4)) : :

X(59107) lies on the circumcircle and these lines: {919, 2492}, {1290, 47227}, {2752, 47231}, {2766, 47235}, {47232, 53956}

X(59107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(47227), X(47235)}}, {{A, B, C, X(47231), X(47232)}}
X(59107) = barycentric product X(i)*X(j) for these (i, j): {1290, 2752}


X(59108) = X(477)X(32712)∩X(1297)X(8749)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2+(a^2+b^2)*c^2-2*c^4)*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))*(a^10-2*a^8*c^2+b^2*(b^2-c^2)^3*(b^2+c^2)-a^6*(b^4-2*b^2*c^2)-a^4*(b^6+b^2*c^4-2*c^6)-a^2*c^2*(-2*b^6+b^4*c^2+c^6))*(a^10-2*a^8*b^2+c^2*(-b^2+c^2)^3*(b^2+c^2)+a^6*(2*b^2*c^2-c^4)+a^4*(2*b^6-b^4*c^2-c^6)-a^2*(b^8+b^4*c^4-2*b^2*c^6)) : :

X(59108) lies on the circumcircle and these lines: {477, 32712}, {935, 32640}, {1297, 8749}, {1304, 46425}, {1637, 22239}, {2373, 16080}, {2492, 32687}, {2697, 6103}, {10423, 32695}, {47110, 53931}

X(59108) = trilinear pole of line {6, 32715}
X(59108) = X(i)-cross conjugate of X(j) for these {i, j}: {46615, 10419}
X(59108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1637), X(46425)}}, {{A, B, C, X(2492), X(14380)}}, {{A, B, C, X(16080), X(32695)}}
X(59108) = barycentric product X(i)*X(j) for these (i, j): {1304, 2697}
X(59108) = barycentric quotient X(i)/X(j) for these (i, j): {2445, 1554}, {32695, 50188}, {32715, 2781}


X(59109) = X(106)X(604)∩X(901)X(1415)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*a^2+a*(b-2*c)-(b-2*c)*(b+c))*(2*a^2+a*(-2*b+c)+(2*b-c)*(b+c)) : :

X(59109) lies on the circumcircle and these lines: {106, 604}, {651, 13396}, {901, 1415}, {4559, 4588}, {9088, 32674}

X(59109) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 47754}, {514, 5289}, {522, 17595}, {650, 17274}
X(59109) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 47754}
X(59109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(604), X(1415)}}, {{A, B, C, X(644), X(32653)}}, {{A, B, C, X(651), X(32675)}}, {{A, B, C, X(692), X(5549)}}, {{A, B, C, X(1783), X(23617)}}, {{A, B, C, X(5548), X(8750)}}
X(59109) = barycentric quotient X(i)/X(j) for these (i, j): {56, 47754}, {109, 17274}, {692, 5289}, {1415, 17595}


X(59110) = X(74)X(371)∩X(98)X(1327)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(4*a^4-5*(b^2-c^2)^2+a^2*(b^2+c^2+6*S)) : :

X(59110) lies on the circumcircle and these lines: {74, 371}, {98, 1327}, {111, 41411}, {842, 2459}, {1297, 45498}, {1576, 59111}, {2420, 39383}, {3053, 32420}, {6423, 32422}

X(59110) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 32808}, {1577, 6200}
X(59110) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 32808}
X(59110) = X(i)-cross conjugate of X(j) for these {i, j}: {11241, 23964}
X(59110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(371), X(2420)}}, {{A, B, C, X(5467), X(41411)}}
X(59110) = barycentric product X(i)*X(j) for these (i, j): {110, 1327}
X(59110) = barycentric quotient X(i)/X(j) for these (i, j): {110, 32808}, {1327, 850}, {1576, 6200}


X(59111) = X(74)X(372)∩X(98)X(1328)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(4*a^4-5*(b^2-c^2)^2+a^2*(b^2+c^2-6*S)) : :

X(59111) lies on the circumcircle and these lines: {74, 372}, {98, 1328}, {111, 41410}, {842, 2460}, {1297, 45499}, {1576, 59110}, {2420, 39384}, {3053, 32422}, {6424, 32420}

X(59111) = trilinear pole of line {6, 26886}
X(59111) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 32809}, {1577, 6396}
X(59111) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 32809}
X(59111) = X(i)-cross conjugate of X(j) for these {i, j}: {11242, 23964}
X(59111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(372), X(2420)}}, {{A, B, C, X(5467), X(41410)}}
X(59111) = barycentric product X(i)*X(j) for these (i, j): {110, 1328}
X(59111) = barycentric quotient X(i)/X(j) for these (i, j): {110, 32809}, {1328, 850}, {1576, 6396}


X(59112) = X(100)X(1576)∩X(163)X(29014)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^3+a^2*(b+c)+a*b*(b+c)+b^2*(b+c))*(a^3+a^2*(b+c)+a*c*(b+c)+c^2*(b+c)) : :

X(59112) lies on the circumcircle and these lines: {100, 1576}, {163, 29014}, {759, 54336}, {1333, 9079}, {4556, 59012}, {4575, 29067}, {29159, 54353}

X(59112) = trilinear pole of line {6, 2915}
X(59112) = X(i)-isoconjugate-of-X(j) for these {i, j}: {313, 838}, {514, 56541}, {649, 56564}, {656, 5142}, {661, 32782}, {1577, 4261}
X(59112) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 56564}, {36830, 32782}, {40596, 5142}
X(59112) = X(i)-cross conjugate of X(j) for these {i, j}: {405, 250}
X(59112) = barycentric product X(i)*X(j) for these (i, j): {1333, 839}, {54336, 662}
X(59112) = barycentric quotient X(i)/X(j) for these (i, j): {100, 56564}, {110, 32782}, {112, 5142}, {692, 56541}, {839, 27801}, {1576, 4261}, {54336, 1577}


X(59113) = X(99)X(3939)∩X(105)X(3915)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)+(a^2-a*b+b^2)*c-(a+b)*c^2)*(b*c*(-b+c)+a^2*(b+c)-a*(b^2+b*c-c^2)) : :

X(59113) lies on the circumcircle and these lines: {99, 3939}, {105, 3915}, {106, 34445}, {675, 39741}, {692, 59135}, {741, 18265}, {767, 40025}, {1331, 43350}, {3573, 53625}, {8690, 54353}, {8707, 54440}, {9082, 40171}, {16948, 53707}, {29351, 57084}

X(59113) = trilinear pole of line {6, 18613}
X(59113) = X(i)-isoconjugate-of-X(j) for these {i, j}: {99, 22210}, {513, 10453}, {514, 21384}, {649, 20923}, {668, 23456}, {693, 20992}, {905, 17920}, {1019, 21071}, {3669, 27523}, {17924, 22127}
X(59113) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 20923}, {38986, 22210}, {39026, 10453}
X(59113) = X(i)-cross conjugate of X(j) for these {i, j}: {43931, 57400}, {48331, 58}
X(59113) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(666), X(1461)}}, {{A, B, C, X(1414), X(34080)}}, {{A, B, C, X(1415), X(36086)}}, {{A, B, C, X(3699), X(53321)}}, {{A, B, C, X(3915), X(54353)}}, {{A, B, C, X(3939), X(18265)}}, {{A, B, C, X(4559), X(37138)}}, {{A, B, C, X(6614), X(16945)}}, {{A, B, C, X(8750), X(34067)}}
X(59113) = barycentric product X(i)*X(j) for these (i, j): {100, 39970}, {101, 39741}, {190, 34445}, {40025, 692}, {40171, 932}
X(59113) = barycentric quotient X(i)/X(j) for these (i, j): {100, 20923}, {101, 10453}, {692, 21384}, {798, 22210}, {1919, 23456}, {3939, 27523}, {4557, 21071}, {8750, 17920}, {32656, 22127}, {32739, 20992}, {34445, 514}, {39741, 3261}, {39970, 693}, {40025, 40495}, {40171, 20906}


X(59114) = X(74)X(5024)∩X(98)X(5039)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4+6*a^2*b^2+b^4+2*(a^2+b^2)*c^2-3*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b^2+3*c^2)) : :

X(59114) lies on the circumcircle and these lines: {74, 5024}, {98, 5039}, {111, 31860}, {689, 55224}, {907, 1625}, {1297, 31884}, {1301, 35325}, {1576, 58963}, {2420, 58101}, {32661, 58102}, {35571, 46639}, {36828, 53958}

X(59114) = trilinear pole of line {6, 33578}
X(59114) = X(i)-isoconjugate-of-X(j) for these {i, j}: {656, 52288}, {661, 15589}, {1577, 5085}
X(59114) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 15589}, {40596, 52288}
X(59114) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1576), X(46639)}}, {{A, B, C, X(2420), X(5024)}}, {{A, B, C, X(2421), X(5304)}}, {{A, B, C, X(5039), X(14966)}}, {{A, B, C, X(6793), X(9475)}}, {{A, B, C, X(14853), X(58070)}}, {{A, B, C, X(35325), X(55224)}}
X(59114) = barycentric product X(i)*X(j) for these (i, j): {110, 14484}
X(59114) = barycentric quotient X(i)/X(j) for these (i, j): {110, 15589}, {112, 52288}, {1576, 5085}, {14484, 850}


X(59115) = X(74)X(53095)∩X(98)X(5034)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(a^4-6*a^2*b^2+b^4-4*(a^2+b^2)*c^2+3*c^4)*(a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(2*b^2+3*c^2)) : :

X(59115) lies on the circumcircle and these lines: {74, 53095}, {98, 5034}, {111, 51335}, {1297, 55610}, {1625, 3565}, {32661, 58100}, {35325, 58950}

X(59115) = trilinear pole of line {6, 52277}
X(59115) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 34229}, {1577, 5050}
X(59115) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 34229}
X(59115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(53095)}}, {{A, B, C, X(2421), X(7736)}}, {{A, B, C, X(5034), X(14966)}}, {{A, B, C, X(5477), X(51335)}}, {{A, B, C, X(14912), X(58070)}}
X(59115) = barycentric product X(i)*X(j) for these (i, j): {110, 14494}
X(59115) = barycentric quotient X(i)/X(j) for these (i, j): {110, 34229}, {1576, 5050}, {14494, 850}


X(59116) = X(74)X(5585)∩X(98)X(53103)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(5*a^4-6*a^2*b^2+5*b^4-8*(a^2+b^2)*c^2+3*c^4)*(5*a^4+3*b^4-8*b^2*c^2+5*c^4-2*a^2*(4*b^2+3*c^2)) : :

X(59116) lies on the circumcircle and these lines: {74, 5585}, {98, 53103}, {1297, 55593}, {32661, 58097}, {35324, 58093}

X(59116) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 34803}, {1577, 5093}
X(59116) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 34803}
X(59116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(2420), X(5585)}}, {{A, B, C, X(4558), X(32737)}}
X(59116) = barycentric product X(i)*X(j) for these (i, j): {110, 53103}
X(59116) = barycentric quotient X(i)/X(j) for these (i, j): {110, 34803}, {1576, 5093}, {53103, 850}


X(59117) = X(56)X(9097)∩X(100)X(3669)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2-3*a*b+4*b^2-3*b*c+c^2)*(a^2+b^2-3*(a+b)*c+4*c^2) : :

X(59117) lies on the circumcircle and these lines: {56, 9097}, {99, 17096}, {100, 3669}, {101, 43924}, {840, 16486}, {1149, 1477}, {1279, 8686}, {2726, 16020}, {2757, 34625}, {4565, 11636}, {7292, 9061}, {16784, 17222}

X(59117) = trilinear pole of line {6, 1357}
X(59117) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 47884}
X(59117) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 47884}
X(59117) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(660), X(56155)}}, {{A, B, C, X(1149), X(1279)}}, {{A, B, C, X(3445), X(5548)}}, {{A, B, C, X(3669), X(17096)}}, {{A, B, C, X(16486), X(52985)}}
X(59117) = barycentric quotient X(i)/X(j) for these (i, j): {56, 47884}


X(59118) = X(74)X(1340)∩X(1380)X(1576)

Barycentrics    a^2/((b^2-c^2)*(a^4-a^2*b^2-a^2*c^2-2*b^2*c^2+(-a^2+b^2+c^2)*sqrt(a^4-a^2*b^2+b^4-a^2*c^2-b^2*c^2+c^4))) : :

X(59118) lies on the circumcircle and these lines: {74, 1340}, {98, 31862}, {1380, 1576}, {2420, 35357}, {14574, 41880}

X(59118) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1341, 1577}
X(59118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1340), X(2420)}}
X(59118) = barycentric product X(i)*X(j) for these (i, j): {110, 46024}
X(59118) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 1341}, {46024, 850}


X(59119) = X(74)X(1341)∩X(1379)X(1576)

Barycentrics    a^2/((b^2-c^2)*(a^4-a^2*b^2-a^2*c^2-2*b^2*c^2-(-a^2+b^2+c^2)*sqrt(a^4-a^2*b^2+b^4-a^2*c^2-b^2*c^2+c^4))) : :

X(59119) lies on the circumcircle and these lines: {74, 1341}, {98, 31863}, {1379, 1576}, {2420, 35357}, {14574, 41881}

X(59119) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1340, 1577}
X(59119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1341), X(2420)}}
X(59119) = barycentric product X(i)*X(j) for these (i, j): {110, 46023}
X(59119) = barycentric quotient X(i)/X(j) for these (i, j): {1576, 1340}, {46023, 850}


X(59120) = X(37)X(105)∩X(110)X(2284)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+a*b+2*b^2+b*c+c^2)*(a^2+b^2+(a+b)*c+2*c^2) : :

X(59120) lies on the circumcircle and these lines: {37, 105}, {99, 42720}, {100, 54328}, {106, 16785}, {109, 46148}, {110, 2284}, {644, 1310}, {675, 32779}, {692, 28895}, {741, 3252}, {789, 4505}, {827, 5546}, {831, 1018}, {919, 4557}, {927, 4552}, {1023, 8691}, {2725, 5525}, {2862, 32849}, {4559, 29279}, {5291, 14665}, {9070, 42723}, {9081, 41317}, {20989, 43079}, {53622, 57061}

X(59120) = trilinear pole of line {6, 3688}
X(59120) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 50347}, {81, 47701}, {513, 17023}, {514, 1386}, {649, 26234}, {656, 31906}, {693, 21764}, {905, 1890}, {1019, 4026}, {3669, 3883}, {3737, 5244}, {6548, 39251}, {7192, 21840}, {17924, 22390}, {25417, 47902}
X(59120) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 26234}, {5452, 50347}, {39026, 17023}, {40586, 47701}, {40596, 31906}
X(59120) = X(i)-cross conjugate of X(j) for these {i, j}: {2276, 1252}, {37586, 59}
X(59120) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(37), X(2284)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(190), X(32736)}}, {{A, B, C, X(662), X(1169)}}, {{A, B, C, X(1023), X(16785)}}, {{A, B, C, X(4565), X(40519)}}, {{A, B, C, X(4606), X(8750)}}, {{A, B, C, X(4628), X(37212)}}, {{A, B, C, X(5546), X(46148)}}, {{A, B, C, X(32779), X(42723)}}
X(59120) = barycentric product X(i)*X(j) for these (i, j): {100, 1390}
X(59120) = barycentric quotient X(i)/X(j) for these (i, j): {42, 47701}, {55, 50347}, {100, 26234}, {101, 17023}, {112, 31906}, {692, 1386}, {1390, 693}, {3939, 3883}, {4557, 4026}, {4559, 5244}, {8750, 1890}, {32656, 22390}, {32739, 21764}


X(59121) = X(689)X(4573)∩X(739)X(1402)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a*c^3+b*c^2*(b+c)+a^2*(2*b^2+c^2))*(a*b^3+b^2*c*(b+c)+a^2*(b^2+2*c^2)) : :

X(59121) lies on the circumcircle and these lines: {171, 29352}, {651, 9067}, {689, 4573}, {739, 1402}, {898, 4559}, {5061, 9081}

X(59121) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 54282}
X(59121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(163), X(14534)}}, {{A, B, C, X(1402), X(4559)}}
X(59121) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 54282}


X(59122) = X(99)X(1415)∩X(104)X(981)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^3*(b+c)+a^2*c*(b+c)+b^2*c*(b+c)+a*b*(b^2+b*c+c^2))*(a^3*(b+c)+a^2*b*(b+c)+b*c^2*(b+c)+a*c*(b^2+b*c+c^2)) : :

X(59122) lies on the circumcircle and these lines: {99, 1415}, {104, 981}, {692, 58969}, {785, 4559}, {4554, 59093}

X(59122) = trilinear pole of line {6, 23381}
X(59122) = X(i)-isoconjugate-of-X(j) for these {i, j}: {514, 35628}, {522, 980}, {661, 52196}, {2274, 4391}
X(59122) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 52196}
X(59122) = X(i)-cross conjugate of X(j) for these {i, j}: {5275, 7115}
X(59122) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(645), X(8750)}}, {{A, B, C, X(651), X(14612)}}, {{A, B, C, X(692), X(4612)}}, {{A, B, C, X(4554), X(4559)}}, {{A, B, C, X(4573), X(32674)}}
X(59122) = barycentric product X(i)*X(j) for these (i, j): {651, 981}, {1415, 58020}
X(59122) = barycentric quotient X(i)/X(j) for these (i, j): {110, 52196}, {692, 35628}, {981, 4391}, {1415, 980}


X(59123) = X(104)X(1476)∩X(106)X(1042)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*((a-b)^2+(a+b)*c)*(a^2+a*(b-2*c)+c*(b+c)) : :

X(59123) lies on the circumcircle and these lines: {56, 38452}, {59, 2743}, {99, 6613}, {102, 37561}, {103, 51476}, {104, 1476}, {106, 1042}, {658, 9086}, {901, 53321}, {1222, 2370}, {1293, 1461}, {1295, 4296}, {1309, 56323}, {1311, 40420}, {1407, 9109}, {2291, 3451}, {2717, 5018}, {4565, 59006}, {6571, 6614}, {8707, 52928}, {32706, 40446}, {37136, 53702}, {40451, 53878}, {53243, 53324}

X(59123) = isogonal conjugate of X(42337)
X(59123) = trilinear pole of line {6, 1604}
X(59123) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42337}, {8, 6615}, {9, 21120}, {341, 6363}, {346, 48334}, {513, 6736}, {522, 3057}, {650, 3452}, {657, 26563}, {663, 20895}, {1021, 4415}, {1122, 4163}, {1146, 21362}, {1201, 4397}, {2170, 25268}, {2310, 21272}, {2347, 4391}, {3239, 3752}, {3663, 3900}, {3680, 14284}, {3700, 18163}, {3737, 21031}, {4041, 17183}, {4130, 52563}, {4147, 52195}, {4171, 18600}, {4560, 21809}, {4642, 7253}, {14936, 21580}, {17906, 34591}, {20228, 52622}, {22072, 44426}, {23845, 24026}, {35518, 40982}, {42549, 57049}
X(59123) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42337}, {478, 21120}, {39026, 6736}
X(59123) = X(i)-cross conjugate of X(j) for these {i, j}: {604, 1262}, {1420, 59}, {38855, 4564}
X(59123) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1042), X(53321)}}, {{A, B, C, X(4565), X(37136)}}, {{A, B, C, X(4619), X(4637)}}, {{A, B, C, X(12672), X(53151)}}, {{A, B, C, X(23981), X(24928)}}
X(59123) = barycentric product X(i)*X(j) for these (i, j): {6, 6613}, {109, 40420}, {1222, 1461}, {1261, 4617}, {1262, 56323}, {1407, 8706}, {1476, 651}, {1813, 40446}, {3451, 664}, {4565, 56173}, {4637, 56190}, {23617, 934}, {40451, 4619}, {51476, 658}, {52549, 6614}
X(59123) = barycentric quotient X(i)/X(j) for these (i, j): {6, 42337}, {56, 21120}, {59, 25268}, {101, 6736}, {109, 3452}, {604, 6615}, {651, 20895}, {934, 26563}, {1106, 48334}, {1222, 52622}, {1262, 21272}, {1415, 3057}, {1461, 3663}, {1476, 4391}, {3451, 522}, {4559, 21031}, {4565, 17183}, {6613, 76}, {6614, 52563}, {7045, 21580}, {23617, 4397}, {23979, 23845}, {24027, 21362}, {32660, 22072}, {40420, 35519}, {40446, 46110}, {51476, 3239}, {52410, 6363}, {53321, 4415}, {56323, 23978}, {59095, 6556}


X(59124) = X(1)X(53903)∩X(106)X(1412)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+b-c)*(a+c)*(a-b+c)*(a^2+a*(-b+c)+b*(b+c))*(a^2+a*(b-c)+c*(b+c)) : :

X(59124) lies on the circumcircle and these lines: {1, 53903}, {106, 1412}, {163, 32722}, {901, 4565}, {1311, 55942}, {1414, 13396}, {1415, 29149}, {43924, 53942}

X(59124) = trilinear pole of line {6, 16947}
X(59124) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 48350}, {9, 50453}, {210, 44435}, {522, 4424}, {523, 3877}, {650, 26580}, {661, 5233}, {995, 4086}, {1577, 4266}, {2321, 48335}, {3700, 4850}, {3701, 9002}, {3709, 33934}, {4041, 4389}
X(59124) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 50453}, {36830, 5233}
X(59124) = X(i)-cross conjugate of X(j) for these {i, j}: {993, 15386}
X(59124) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1412), X(4565)}}
X(59124) = barycentric product X(i)*X(j) for these (i, j): {109, 55942}, {1412, 9059}, {1414, 40401}, {4565, 996}
X(59124) = barycentric quotient X(i)/X(j) for these (i, j): {56, 50453}, {109, 26580}, {110, 5233}, {163, 3877}, {604, 48350}, {1408, 48335}, {1412, 44435}, {1414, 33934}, {1415, 4424}, {1576, 4266}, {4565, 4389}, {9059, 30713}, {16947, 9002}, {40401, 4086}, {55942, 35519}


X(59125) = X(1)X(28227)∩X(104)X(5558)

Barycentrics    a*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^2+6*a*b+b^2-c^2)*(a^2-b^2+6*a*c+c^2) : :

X(59125) lies on the circumcircle and these lines: {1, 28227}, {104, 5558}, {651, 8694}, {1331, 59031}, {4551, 58110}, {4637, 5545}, {35280, 58103}

X(59125) = trilinear pole of line {6, 3361}
X(59125) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 47921}, {513, 4882}, {522, 3303}, {650, 7308}, {663, 32087}, {3737, 3983}, {3900, 4328}
X(59125) = X(i)-Dao conjugate of X(j) for these {i, j}: {478, 47921}, {39026, 4882}
X(59125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(651), X(4637)}}, {{A, B, C, X(7373), X(23981)}}
X(59125) = barycentric product X(i)*X(j) for these (i, j): {5558, 651}
X(59125) = barycentric quotient X(i)/X(j) for these (i, j): {56, 47921}, {101, 4882}, {109, 7308}, {651, 32087}, {1415, 3303}, {1461, 4328}, {4559, 3983}, {5558, 4391}


X(59126) = X(56)X(28235)∩X(104)X(7992)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(3*(a-b)^2*(a+b)+(a^2+6*a*b+b^2)*c-3*(a+b)*c^2-c^3)*(3*a^3+a^2*(b-3*c)-3*a*(b-c)^2-(b-c)*(b+c)*(b+3*c)) : :

X(59126) lies on the circumcircle and these lines: {56, 28235}, {104, 7992}, {972, 53056}, {1295, 7982}, {2716, 25405}, {6014, 57118}, {8694, 36059}, {23981, 58124}

X(59126) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 7991}, {3239, 36636}, {3900, 36640}
X(59126) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 7991}, {1461, 36640}


X(59127) = X(741)X(16947)∩X(815)X(1415)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*(a^4+a^3*c-a*b*c^2+b^3*(b+c))*(a^4+a^3*b-a*b^2*c+c^3*(b+c)) : :

X(59127) lies on the circumcircle and these lines: {741, 16947}, {815, 1415}, {4559, 29018}, {29249, 36074}, {29277, 36075}


X(59128) = X(34)X(105)∩X(102)X(1037)

Barycentrics    a^2*(a-b)*(b^2+(a-c)^2)*(a-c)*(a+b-c)^2*(a-b+c)^2*(a^2+b^2-c^2)*((a-b)^2+c^2)*(a^2-b^2+c^2) : :

X(59128) lies on these lines: {34, 105}, {102, 1037}, {103, 26927}, {104, 1041}, {162, 59038}, {917, 1068}, {919, 32674}, {927, 36118}, {934, 8750}, {972, 7084}, {1292, 32714}, {1310, 8269}, {1415, 58944}, {1461, 58967}, {1785, 2723}, {2249, 57386}, {2724, 56909}, {2737, 7012}, {7131, 26703}, {26705, 52607}, {32691, 53321}, {43363, 56359}

X(59128) = X(i)-isoconjugate-of-X(j) for these {i, j}: {69, 17115}, {269, 58776}, {497, 521}, {522, 1040}, {650, 27509}, {905, 6554}, {918, 23601}, {1021, 18589}, {1473, 4397}, {1633, 2968}, {1792, 48403}, {1863, 4131}, {2082, 6332}, {2287, 21107}, {3239, 7289}, {3673, 57108}, {3692, 48398}, {3732, 34591}, {3900, 17170}, {3914, 57081}, {4000, 57055}, {4025, 4319}, {4391, 7124}, {5324, 52355}, {7083, 35518}, {7253, 17441}, {15411, 16583}, {15413, 30706}, {15416, 16502}, {20235, 21789}, {23090, 53510}, {40987, 52616}
X(59128) = X(i)-Dao conjugate of X(j) for these {i, j}: {6600, 58776}
X(59128) = X(i)-cross conjugate of X(j) for these {i, j}: {1973, 7128}, {48329, 57394}, {53321, 8269}
X(59128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(34), X(32674)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1167), X(36049)}}, {{A, B, C, X(32653), X(34430)}}
X(59128) = barycentric product X(i)*X(j) for these (i, j): {19, 8269}, {108, 7131}, {1037, 653}, {1041, 651}, {1106, 42384}, {1435, 52778}, {1783, 56359}, {4566, 57386}, {5236, 59133}, {13149, 7084}, {30705, 8750}, {32674, 8817}, {32691, 8816}, {32714, 56179}, {36118, 7123}, {40411, 53321}
X(59128) = barycentric quotient X(i)/X(j) for these (i, j): {109, 27509}, {220, 58776}, {1020, 20235}, {1037, 6332}, {1041, 4391}, {1042, 21107}, {1398, 48398}, {1415, 1040}, {1461, 17170}, {1973, 17115}, {7084, 57055}, {7131, 35518}, {8269, 304}, {8750, 6554}, {32666, 23601}, {32674, 497}, {32714, 3673}, {52778, 52406}, {53321, 18589}, {56179, 15416}, {56359, 15413}, {57386, 7253}


X(59129) = X(1)X(53907)∩X(104)X(1709)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)*(a-b+c)*((a-b)^2*(a+b)+(a^2+4*a*b+b^2)*c-(a+b)*c^2-c^3)*(a^3+a^2*(b-c)-(b-c)*(b+c)^2-a*(b^2-4*b*c+c^2)) : :

X(59129) lies on these lines: {1, 53907}, {102, 10269}, {103, 33925}, {104, 1709}, {759, 1412}, {1461, 2222}, {1481, 28233}, {2758, 16309}, {6580, 28193}, {10385, 53908}

X(59129) = trilinear pole of line {6, 52440}
X(59129) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 5119}, {650, 31018}, {3239, 56418}
X(59129) = X(i)-cross conjugate of X(j) for these {i, j}: {48327, 3451}
X(59129) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(1412), X(1461)}}
X(59129) = barycentric product X(i)*X(j) for these (i, j): {651, 7284}
X(59129) = barycentric quotient X(i)/X(j) for these (i, j): {109, 31018}, {1415, 5119}, {7284, 4391}


X(59130) = X(100)X(4558)∩X(101)X(4575)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*((a-b)*(a+b)^2+(a^2+2*a*b-b^2)*c+(a+b)*c^2+c^3)*(a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2+2*b*c-c^2)) : :

X(59130) lies on these lines: {74, 57667}, {81, 45137}, {98, 26118}, {100, 4558}, {101, 4575}, {108, 4565}, {111, 46010}, {162, 40097}, {1414, 13395}, {1983, 15322}, {2373, 57832}, {4257, 57712}, {5322, 28476}, {17943, 29171}, {18604, 30271}, {53686, 57682}, {57194, 59079}

X(59130) = trilinear pole of line {6, 1437}
X(59130) = X(i)-isoconjugate-of-X(j) for these {i, j}: {406, 656}, {523, 12514}, {661, 5739}, {1452, 52355}, {1577, 36744}, {3700, 45126}, {4024, 27174}, {14208, 44086}
X(59130) = X(i)-Dao conjugate of X(j) for these {i, j}: {5375, 42707}, {36830, 5739}, {40596, 406}
X(59130) = X(i)-cross conjugate of X(j) for these {i, j}: {8678, 1169}, {13730, 250}
X(59130)= pole of line {5739, 11337} with respect to the Kiepert parabola
X(59130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(162), X(54951)}}, {{A, B, C, X(4230), X(26118)}}, {{A, B, C, X(4558), X(4565)}}
X(59130) = barycentric product X(i)*X(j) for these (i, j): {112, 57832}, {1414, 56225}, {1444, 59083}, {46010, 99}, {57667, 648}
X(59130) = barycentric quotient X(i)/X(j) for these (i, j): {100, 42707}, {110, 5739}, {112, 406}, {163, 12514}, {1576, 36744}, {46010, 523}, {56225, 4086}, {57667, 525}, {57832, 3267}, {59083, 41013}


X(59131) = X(48)X(100)∩X(101)X(184)

Barycentrics    a^2*(a*(a-b)^2*b*(a+b)-(a^2-b^2)^2*c-a*b*(a+b)*c^2+(a^2+b^2)*c^3)*(a^4*(b-c)+a^3*c^2-b^3*c^2+b*c^4+a*(b-c)*c^2*(b+c)+a^2*(-b^3+b^2*c-2*b*c^2+c^3)) : :

X(59131) lies on the circumcircle and these lines: {48, 100}, {99, 1790}, {101, 184}, {107, 1474}, {108, 604}, {109, 52411}, {112, 2206}, {654, 59016}, {835, 57704}, {901, 32659}, {909, 1309}, {932, 15373}, {934, 7099}, {1305, 6360}, {2208, 40117}, {2359, 8707}, {9088, 10311}, {38869, 53627}, {53326, 59019}, {53708, 56919}

X(59131) = trilinear pole of line {6, 48387}
X(59131) = X(i)-isoconjugate-of-X(j) for these {i, j}: {321, 46513}
X(59131) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(35096)}}, {{A, B, C, X(48), X(184)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(275), X(1172)}}, {{A, B, C, X(654), X(17923)}}, {{A, B, C, X(1910), X(34858)}}, {{A, B, C, X(1971), X(56919)}}, {{A, B, C, X(1988), X(2161)}}, {{A, B, C, X(2167), X(2194)}}, {{A, B, C, X(2311), X(2990)}}, {{A, B, C, X(7252), X(34234)}}, {{A, B, C, X(19302), X(36617)}}
X(59131) = barycentric quotient X(i)/X(j) for these (i, j): {2206, 46513}


X(59132) = X(100)X(24027)∩X(101)X(23979)

Barycentrics    a^2*(a-b)*(a-c)*(a+b-c)^2*(a-b+c)^2*((a-b)^2*(a^3+b^3)+(a^2-b^2)^2*c-(a+b)*(a^2-3*a*b+b^2)*c^2-(a^2+b^2)*c^3)*(a^5+a^4*(b-2*c)+2*a*(b-c)*c^2*(b+c)-(b-c)*c^2*(b+c)^2+a^3*(-b^2+c^2)-a^2*(b-c)*(b^2-b*c+c^2)) : :

X(59132) lies on these lines: {100, 24027}, {101, 23979}, {953, 4306}, {1042, 53928}, {1461, 9088}, {21578, 41904}

X(59132) = X(i)-isoconjugate-of-X(j) for these {i, j}: {522, 45269}, {2390, 4397}, {3007, 3900}
X(59132) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(23979), X(24027)}}
X(59132) = barycentric product X(i)*X(j) for these (i, j): {1461, 2370}
X(59132) = barycentric quotient X(i)/X(j) for these (i, j): {1415, 45269}, {1461, 3007}, {2370, 52622}


X(59133) = X(105)X(4318)∩X(840)X(1037)

Barycentrics    a^2*(a-b)*(b^2+(a-c)^2)*(a-c)*(a+b-c)*(a-b+c)*(a^2+b^2-(a+b)*c)*((a-b)^2+c^2)*(a^2-a*b+c*(-b+c)) : :

X(59133) lies on the circumcircle and these lines: {100, 30626}, {105, 4318}, {108, 36086}, {692, 6183}, {840, 1037}, {934, 52927}, {1025, 2736}, {1292, 36146}, {1618, 53607}, {2283, 58989}, {2725, 7131}, {2737, 5377}, {2751, 56179}, {2862, 8817}, {2866, 57925}, {7084, 12032}, {7123, 43079}

X(59133) = trilinear pole of line {6, 1037}
X(59133) = X(i)-isoconjugate-of-X(j) for these {i, j}: {390, 14347}, {497, 2254}, {614, 50333}, {650, 51400}, {918, 2082}, {926, 3673}, {1024, 17060}, {3693, 48398}, {3732, 17435}, {4088, 5324}, {4319, 43042}, {6554, 53544}, {9436, 17115}, {23829, 40965}
X(59133) = X(i)-cross conjugate of X(j) for these {i, j}: {241, 59}, {2283, 8269}, {48329, 15382}
X(59133) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(4318), X(41353)}}
X(59133) = barycentric product X(i)*X(j) for these (i, j): {294, 8269}, {1037, 666}, {1462, 52778}, {7123, 927}, {8817, 919}, {30701, 32735}, {30705, 52927}, {34085, 7084}, {36086, 7131}, {36146, 56179}
X(59133) = barycentric quotient X(i)/X(j) for these (i, j): {109, 51400}, {919, 497}, {1037, 918}, {1416, 48398}, {2283, 17060}, {7123, 50333}, {8269, 40704}, {32666, 2082}, {32735, 4000}, {36146, 3673}, {52927, 6554}, {59128, 5236}


X(59134) = X(100)X(2522)∩X(905)X(1310)

Barycentrics    a^2*(a-b)*(a-c)*((a+b)*(a^2+b^2)^2-2*a*b*(a+b)^2*c+2*a*b*c^3-(a+b)*c^4)*(a^5+a^4*c-b^4*c+c^5+2*a^2*c^2*(-2*b+c)+2*a^3*c*(-b+c)-a*(b-c)^3*(b+c)) : :

X(59134) lies on the circumcircle and these lines: {100, 2522}, {649, 32691}, {902, 38883}, {905, 1310}, {906, 52778}, {1914, 45137}, {3220, 28476}

X(59134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(74), X(98)}}, {{A, B, C, X(649), X(905)}}


X(59135) = X(105)X(1468)∩X(595)X(28523)

Barycentrics    a^2*(a-b)*(a-c)*(a*b*(a+b)+(a^2+3*a*b+b^2)*c-(a+b)*c^2)*(b*c*(-b+c)+a^2*(b+c)+a*(-b^2+3*b*c+c^2)) : :

X(59135) lies on the circumcircle and these lines: {105, 1468}, {595, 28523}, {692, 59113}, {931, 54353}, {3573, 43350}, {3939, 8708}

X(59135) = X(i)-isoconjugate-of-X(j) for these {i, j}: {650, 26125}
X(59135) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(692), X(1414)}}, {{A, B, C, X(1468), X(54353)}}, {{A, B, C, X(4556), X(32039)}}, {{A, B, C, X(4557), X(58135)}}, {{A, B, C, X(34071), X(52935)}}, {{A, B, C, X(34074), X(36086)}}
X(59135) = barycentric quotient X(i)/X(j) for these (i, j): {109, 26125}


X(59136) = X(6)X(14388)∩X(32)X(74)

Barycentrics    a^2*(a-b)*(a+b)*(a-c)*(a+c)*(2*(a^4+a^2*b^2+b^4)-(a^2+b^2)*c^2-c^4)*(2*a^4-b^4-b^2*c^2+2*c^4-a^2*(b^2-2*c^2)) : :

X(59136) lies on the circumcircle and these lines: {6, 14388}, {32, 74}, {98, 14458}, {99, 2420}, {103, 34476}, {111, 41412}, {125, 6325}, {182, 1297}, {187, 53973}, {689, 9211}, {729, 38905}, {842, 1691}, {1384, 6323}, {1625, 7954}, {2030, 9831}, {2080, 2710}, {2367, 14387}, {2770, 11647}, {5118, 30254}, {5467, 39639}, {5970, 16385}, {6793, 48892}, {7953, 32661}, {9181, 53893}, {9408, 38528}, {12212, 29011}, {14966, 25424}, {28563, 33628}, {32124, 53929}, {35325, 58994}

X(59136) = trilinear pole of line {6, 9407}
X(59136) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 9210}, {656, 11331}, {661, 7788}, {1577, 3098}, {9411, 33805}
X(59136) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 9210}, {36830, 7788}, {40596, 11331}
X(59136) = X(i)-cross conjugate of X(j) for these {i, j}: {9210, 6}, {20897, 250}, {44883, 15388}
X(59136) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(2420)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(83), X(44766)}}, {{A, B, C, X(125), X(30491)}}, {{A, B, C, X(511), X(54638)}}, {{A, B, C, X(512), X(14223)}}, {{A, B, C, X(648), X(14560)}}, {{A, B, C, X(4563), X(32662)}}, {{A, B, C, X(4630), X(32640)}}, {{A, B, C, X(5118), X(38905)}}, {{A, B, C, X(5467), X(41412)}}, {{A, B, C, X(6103), X(16308)}}, {{A, B, C, X(32738), X(44769)}}, {{A, B, C, X(36990), X(58070)}}
X(59136) = barycentric product X(i)*X(j) for these (i, j): {32, 9211}, {110, 14458}, {14387, 1576}, {43706, 648}
X(59136) = barycentric quotient X(i)/X(j) for these (i, j): {32, 9210}, {110, 7788}, {112, 11331}, {1576, 3098}, {9211, 1502}, {9407, 9411}, {14387, 44173}, {14458, 850}, {43706, 525}



leftri

Polelogic and polarologic centers involving circumcevian triangles: X(59137)-X(59273)

rightri

This preamble and centers X(59137)-X(59273) were contributed by Ivan Pavlov on September 26, 2023.

The polelogic and polarologic centers of two triangles T' and T'' are defined in the preamble just before X(42287). It can be shown that T' = ABC and the circumcevian triangle (denoted T'' below) of any point P = u : v : w are polelogic.

T'-to-T''-polarologic center = a^2 c^2 u v - a^4 v w + b^2 u (2 c^2 u + a^2 w) : :

> T'-to-T''-polelogic center = u (b^2 u + a^2 v)(c^2 u + a^2 w)(-c^4 u v + c^2 (b^2 u + a^2 v) w + 2 a^2 b^2 w^2)(-2 a^2 c^2 v^2 + b^4 u w - b^2 v (c^2 u + a^2 w)) : :

T''-to-T' polarologic center = X(6),
T''-to-T' polelogic center = b^2 c^2 u (b^2 u + a^2 v)(c^2 u + a^2 w) : : .

These centers can be generalized by reference to circumconcevian triangles instead of circumcevian triangles. See Euclid 5406 for details.


X(59137) = X(24)X(264)∩X(52)X(311)

Barycentrics    b^2*c^2*((a^2-b^2)^2*(a^2+b^2)-2*(a^4+a^2*b^2+b^4)*c^2+(a^2+b^2)*c^4)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^6-a^4*(2*b^2+c^2)+(-(b^2*c)+c^3)^2+a^2*(b^4-2*b^2*c^2-c^4)) : :

X(59137) lies on these lines: {6, 5392}, {24, 264}, {52, 311}, {324, 14576}, {570, 14570}, {1166, 41205}, {3432, 59220}, {20563, 57718}

X(59137) = isogonal conjugate of X(59172)
X(59137) = isotomic conjugate of X(51255)
X(59137) = trilinear pole of line {18314, 52317}
X(59137) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59172}, {31, 51255}, {570, 2148}, {2169, 47328}, {2190, 23195}
X(59137) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 51255}, {3, 59172}, {5, 23195}, {216, 570}, {14363, 47328}, {52032, 1216}
X(59137) = X(i)-cross conjugate of X(j) for these {i, j}: {5, 40393}, {523, 14570}, {973, 2052}, {52526, 2}
X(59137)= pole of line {23195, 59172} with respect to the Stammler hyperbola
X(59137)= pole of line {1216, 51255} with respect to the Wallace hyperbola
X(59137) = polelogic center of the circumcevian triangle of X(5) and ABC
X(59137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(6)}}, {{A, B, C, X(69), X(1078)}}, {{A, B, C, X(264), X(311)}}, {{A, B, C, X(343), X(20563)}}, {{A, B, C, X(393), X(17500)}}, {{A, B, C, X(523), X(570)}}, {{A, B, C, X(1179), X(40449)}}, {{A, B, C, X(20577), X(44376)}}, {{A, B, C, X(51255), X(52526)}}, {{A, B, C, X(52347), X(57819)}}
X(59137) = barycentric product X(i)*X(j) for these (i, j): {5, 57903}, {311, 40393}, {1179, 28706}, {40449, 76}
X(59137) = barycentric quotient X(i)/X(j) for these (i, j): {2, 51255}, {5, 570}, {6, 59172}, {53, 47328}, {216, 23195}, {311, 37636}, {324, 1594}, {343, 1216}, {1179, 8882}, {2216, 2148}, {11538, 30490}, {14129, 6152}, {14570, 50947}, {28706, 1238}, {40393, 54}, {40441, 14533}, {40449, 6}, {45793, 1209}, {50946, 2623}, {57903, 95}


X(59138) = X(6)X(28654)∩X(386)X(3596)

Barycentrics    b^2*c^2*(b+c)*(a^3+a^2*c+b^2*(b+c))*(a^3+a^2*b+c^2*(b+c)) : :

X(59138) lies on these lines: {6, 28654}, {313, 56318}, {386, 3596}, {3437, 59222}, {3995, 26772}, {5224, 40087}, {7017, 29395}, {26963, 35058}

X(59138) = isotomic conjugate of X(52564)
X(59138) = trilinear pole of line {4129, 24083}
X(59138) = X(i)-isoconjugate-of-X(j) for these {i, j}: {28, 23197}, {31, 52564}, {32, 18601}, {593, 40986}, {849, 20966}, {2203, 11573}, {2206, 3670}
X(59138) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52564}, {4075, 20966}, {6376, 18601}, {40591, 23197}, {40603, 3670}
X(59138) = X(i)-cross conjugate of X(j) for these {i, j}: {10, 40394}, {522, 4033}, {52529, 2}, {57068, 1978}
X(59138) = polelogic center of the circumcevian triangle of X(10) and ABC
X(59138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(10)}}, {{A, B, C, X(69), X(29395)}}, {{A, B, C, X(75), X(3995)}}, {{A, B, C, X(86), X(26772)}}, {{A, B, C, X(313), X(3596)}}, {{A, B, C, X(318), X(56318)}}, {{A, B, C, X(321), X(18147)}}, {{A, B, C, X(1246), X(56197)}}, {{A, B, C, X(1441), X(40018)}}, {{A, B, C, X(4080), X(40010)}}, {{A, B, C, X(20654), X(23282)}}, {{A, B, C, X(25688), X(43534)}}, {{A, B, C, X(52529), X(52564)}}
X(59138) = barycentric product X(i)*X(j) for these (i, j): {313, 40394}
X(59138) = barycentric quotient X(i)/X(j) for these (i, j): {2, 52564}, {71, 23197}, {75, 18601}, {306, 11573}, {313, 17184}, {321, 3670}, {594, 20966}, {756, 40986}, {1089, 4016}, {3695, 22073}, {4033, 3909}, {28654, 3454}, {40394, 58}, {52623, 21121}


X(59139) = X(5)X(264)∩X(6)X(275)

Barycentrics    b^2*c^2*(a^4-(b^2-c^2)^2)^3*(a^4+b^4+c^4-2*a^2*(b^2+c^2)) : :

X(59139) lies on these lines: {4, 6751}, {5, 264}, {6, 275}, {52, 317}, {69, 6524}, {2383, 52779}, {9969, 52448}, {11547, 14576}, {13450, 41371}, {15352, 21447}, {34428, 59228}, {44131, 52661}, {44180, 52634}, {55227, 59155}, {57819, 57843}

X(59139) = isogonal conjugate of X(59176)
X(59139) = isotomic conjugate of X(16391)
X(59139) = trilinear pole of line {52317, 57065}
X(59139) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59176}, {31, 16391}, {48, 55549}, {68, 52430}, {91, 23606}, {255, 2351}, {577, 1820}, {2165, 4100}, {9247, 52350}, {32320, 36145}, {36433, 57716}
X(59139) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 16391}, {3, 59176}, {135, 39201}, {139, 17434}, {1249, 55549}, {2501, 3269}, {6523, 2351}, {34116, 23606}, {39013, 32320}, {52584, 2972}
X(59139) = X(i)-cross conjugate of X(j) for these {i, j}: {24, 2052}, {27362, 4}, {52534, 2}, {57070, 55227}
X(59139)= pole of line {17434, 39201} with respect to the polar circle
X(59139)= pole of line {23606, 59176} with respect to the Stammler hyperbola
X(59139)= pole of line {426, 1092} with respect to the Wallace hyperbola
X(59139) = polelogic center of the circumcevian triangle of X(24) and ABC
X(59139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(42376)}}, {{A, B, C, X(5), X(6)}}, {{A, B, C, X(69), X(31635)}}, {{A, B, C, X(264), X(275)}}, {{A, B, C, X(308), X(40822)}}, {{A, B, C, X(571), X(30258)}}, {{A, B, C, X(1093), X(57684)}}, {{A, B, C, X(1147), X(57686)}}, {{A, B, C, X(1300), X(44207)}}, {{A, B, C, X(1993), X(19170)}}, {{A, B, C, X(2351), X(6751)}}, {{A, B, C, X(6530), X(8745)}}, {{A, B, C, X(7763), X(40405)}}, {{A, B, C, X(8794), X(57851)}}, {{A, B, C, X(8795), X(18027)}}, {{A, B, C, X(9723), X(19180)}}, {{A, B, C, X(16391), X(52534)}}
X(59139) = barycentric product X(i)*X(j) for these (i, j): {467, 8795}, {1093, 7763}, {1748, 57806}, {2052, 317}, {11547, 264}, {14576, 57844}, {15352, 6563}, {18022, 8745}, {18027, 24}, {39113, 8794}, {41770, 57851}, {44179, 6521}, {52317, 54950}, {57065, 6528}
X(59139) = barycentric quotient X(i)/X(j) for these (i, j): {2, 16391}, {4, 55549}, {6, 59176}, {24, 577}, {47, 4100}, {136, 3269}, {158, 1820}, {264, 52350}, {317, 394}, {393, 2351}, {467, 5562}, {571, 23606}, {924, 32320}, {1093, 2165}, {1585, 26922}, {1748, 255}, {1993, 1092}, {2052, 68}, {6521, 91}, {6529, 32734}, {6563, 52613}, {6753, 39201}, {7763, 3964}, {8745, 184}, {8794, 96}, {8795, 57875}, {8884, 57703}, {11547, 3}, {14576, 418}, {15352, 925}, {18027, 20563}, {23582, 44174}, {36126, 36145}, {36416, 52435}, {41770, 426}, {44077, 14585}, {44179, 6507}, {47421, 34980}, {52317, 58305}, {52415, 50433}, {52435, 36433}, {52917, 32661}, {57065, 520}


X(59140) = X(6)X(1255)∩X(7)X(12)

Barycentrics    a*(a+2*b+c)*(a+b+2*c)*(a^2-b^2-b*c-c^2) : :

X(59140) lies on these lines: {6, 1255}, {7, 12}, {319, 7206}, {984, 1126}, {1029, 1654}, {1757, 40438}, {2994, 4102}, {3678, 56934}, {6540, 14616}, {8701, 57685}, {11684, 32101}, {17251, 43260}, {33670, 59233}, {39977, 52558}, {40776, 52555}

X(59140) = isogonal conjugate of X(59179)
X(59140) = isotomic conjugate of X(52569)
X(59140) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59179}, {31, 52569}, {79, 2308}, {1100, 2160}, {1125, 6186}, {1962, 52375}, {2355, 7100}, {3683, 52372}, {4983, 13486}, {6742, 50512}, {7073, 32636}, {20970, 52393}
X(59140) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52569}, {3, 59179}, {8287, 4977}, {40604, 4973}
X(59140) = X(i)-cross conjugate of X(j) for these {i, j}: {35, 1255}
X(59140)= pole of line {4973, 6533} with respect to the Wallace hyperbola
X(59140) = polelogic center of the circumcevian triangle of X(35) and ABC
X(59140) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(35)}}, {{A, B, C, X(7), X(319)}}, {{A, B, C, X(9), X(3826)}}, {{A, B, C, X(12), X(3678)}}, {{A, B, C, X(1757), X(57099)}}, {{A, B, C, X(3647), X(9277)}}, {{A, B, C, X(4197), X(11107)}}, {{A, B, C, X(4420), X(9780)}}, {{A, B, C, X(5220), X(52405)}}, {{A, B, C, X(5224), X(56440)}}, {{A, B, C, X(5852), X(35057)}}, {{A, B, C, X(17095), X(30705)}}
X(59140) = barycentric product X(i)*X(j) for these (i, j): {1126, 33939}, {1255, 319}, {1268, 3219}, {1442, 4102}, {3969, 40438}, {4596, 7265}, {4632, 57099}, {14838, 6540}, {17095, 32635}, {17190, 30594}, {18160, 8701}, {32014, 3678}, {32018, 35}, {33635, 52421}, {37212, 4467}, {56934, 6539}
X(59140) = barycentric quotient X(i)/X(j) for these (i, j): {2, 52569}, {6, 59179}, {35, 1100}, {319, 4359}, {323, 4973}, {1126, 2160}, {1171, 52375}, {1255, 79}, {1268, 30690}, {1442, 553}, {1796, 7100}, {2003, 32636}, {2174, 2308}, {2605, 4979}, {3219, 1125}, {3578, 6533}, {3678, 1213}, {3969, 4647}, {4102, 52344}, {4420, 3686}, {4467, 4978}, {4629, 13486}, {6198, 1839}, {6539, 6757}, {6540, 15455}, {7265, 30591}, {14838, 4977}, {16577, 3649}, {28615, 6186}, {32018, 20565}, {32635, 7110}, {33635, 7073}, {33939, 1269}, {34016, 16709}, {35057, 4976}, {37212, 6742}, {40438, 52393}, {42033, 3702}, {52405, 3683}, {52408, 22054}, {52412, 56875}, {55210, 4983}, {56934, 8025}, {57066, 4985}, {57099, 4988}


X(59141) = X(6)X(1174)∩X(37)X(294)

Barycentrics    a^3*(a-b-c)*((a-b)^2-(a+b)*c)*(a^2+c*(-b+c)-a*(b+2*c)) : :

X(59141) lies on these lines: {6, 1174}, {37, 294}, {41, 15624}, {220, 6600}, {911, 2174}, {949, 2911}, {1170, 38459}, {2287, 3693}, {15728, 53244}, {17279, 32008}

X(59141) = isogonal conjugate of X(59181)
X(59141) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59181}, {2, 10481}, {7, 142}, {9, 53242}, {56, 1233}, {57, 20880}, {63, 53237}, {65, 16708}, {75, 1418}, {85, 354}, {86, 52023}, {100, 23599}, {226, 17169}, {269, 1229}, {279, 4847}, {307, 53238}, {331, 22053}, {347, 13156}, {479, 51972}, {514, 35312}, {658, 6362}, {664, 21104}, {1088, 1212}, {1400, 53236}, {1434, 3925}, {1441, 18164}, {1446, 17194}, {1447, 53239}, {1475, 6063}, {1855, 7056}, {2293, 57792}, {2488, 46406}, {3059, 23062}, {3665, 18087}, {3668, 16713}, {3911, 53240}, {4554, 48151}, {4569, 21127}, {4573, 55282}, {6067, 10509}, {6608, 36838}, {8012, 57880}, {9436, 53241}, {10581, 52937}, {21808, 57785}, {24002, 35338}, {35326, 52621}, {40004, 43915}, {40983, 57918}, {41555, 43762}, {42290, 59202}, {51384, 56783}
X(59141) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1233}, {3, 59181}, {206, 1418}, {478, 53242}, {3162, 53237}, {5452, 20880}, {6600, 1229}, {8054, 23599}, {32664, 10481}, {39025, 21104}, {40582, 53236}, {40600, 52023}, {40602, 16708}
X(59141) = X(i)-cross conjugate of X(j) for these {i, j}: {41, 1174}, {19624, 18889}
X(59141)= pole of line {1418, 16708} with respect to the Stammler hyperbola
X(59141) = polelogic center of the circumcevian triangle of X(41) and ABC
X(59141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(41)}}, {{A, B, C, X(33), X(15624)}}, {{A, B, C, X(37), X(3693)}}, {{A, B, C, X(55), X(1617)}}, {{A, B, C, X(269), X(34068)}}, {{A, B, C, X(663), X(2293)}}, {{A, B, C, X(1333), X(2175)}}, {{A, B, C, X(1418), X(45227)}}, {{A, B, C, X(2191), X(9439)}}, {{A, B, C, X(2194), X(2195)}}, {{A, B, C, X(2212), X(28615)}}, {{A, B, C, X(13476), X(52001)}}
X(59141) = barycentric product X(i)*X(j) for these (i, j): {1, 10482}, {6, 6605}, {31, 56118}, {33, 47487}, {284, 56255}, {1170, 220}, {1174, 9}, {1253, 21453}, {1803, 7079}, {2175, 57815}, {2194, 56157}, {2346, 55}, {3900, 53243}, {3939, 58322}, {6606, 8641}, {10509, 6602}, {14827, 31618}, {19605, 33634}, {32008, 41}, {40443, 7071}, {56127, 57657}
X(59141) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59181}, {9, 1233}, {21, 53236}, {25, 53237}, {31, 10481}, {32, 1418}, {41, 142}, {55, 20880}, {56, 53242}, {213, 52023}, {220, 1229}, {284, 16708}, {649, 23599}, {692, 35312}, {1170, 57792}, {1174, 85}, {1253, 4847}, {2175, 354}, {2194, 17169}, {2204, 53238}, {2346, 6063}, {3063, 21104}, {6602, 51972}, {6605, 76}, {7118, 13156}, {8641, 6362}, {9447, 1475}, {10482, 75}, {14827, 1212}, {32008, 20567}, {33634, 31627}, {38835, 40593}, {47487, 7182}, {51858, 53239}, {53243, 4569}, {55281, 55213}, {56118, 561}, {56255, 349}, {57657, 18164}, {57815, 41283}, {58322, 52621}


X(59142) = X(6)X(1173)∩X(343)X(31610)

Barycentrics    a^2*((a^2-b^2)^2-3*(a^2+b^2)*c^2+2*c^4)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^4+2*b^4-3*b^2*c^2+c^4-a^2*(3*b^2+2*c^2)) : :

X(59142) lies on these lines: {6, 1173}, {343, 31610}, {2052, 39284}, {2351, 17810}, {3763, 40410}, {5421, 10110}, {14582, 56404}, {17825, 31626}

X(59142) = isogonal conjugate of X(59183)
X(59142) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59183}, {54, 20879}, {95, 17438}, {140, 2167}, {1232, 2148}, {2169, 40684}, {17168, 56254}, {22052, 40440}
X(59142) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59183}, {216, 1232}, {6663, 57811}, {14363, 40684}, {40588, 140}
X(59142) = X(i)-cross conjugate of X(j) for these {i, j}: {51, 1173}, {57137, 1625}
X(59142) = polelogic center of the circumcevian triangle of X(51) and ABC
X(59142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(11423)}}, {{A, B, C, X(4), X(1614)}}, {{A, B, C, X(5), X(10594)}}, {{A, B, C, X(6), X(51)}}, {{A, B, C, X(647), X(6748)}}, {{A, B, C, X(1625), X(56404)}}, {{A, B, C, X(3527), X(9781)}}, {{A, B, C, X(5562), X(22334)}}, {{A, B, C, X(6755), X(36748)}}, {{A, B, C, X(10095), X(11817)}}, {{A, B, C, X(11063), X(57137)}}, {{A, B, C, X(13351), X(41334)}}, {{A, B, C, X(14486), X(27352)}}, {{A, B, C, X(14569), X(34818)}}, {{A, B, C, X(14576), X(17810)}}, {{A, B, C, X(14577), X(36412)}}, {{A, B, C, X(15321), X(53174)}}, {{A, B, C, X(15581), X(41168)}}, {{A, B, C, X(17500), X(40803)}}, {{A, B, C, X(31504), X(43691)}}, {{A, B, C, X(31610), X(33631)}}, {{A, B, C, X(39180), X(39286)}}
X(59142) = barycentric product X(i)*X(j) for these (i, j): {143, 1487}, {216, 39284}, {288, 36412}, {1173, 5}, {1625, 39183}, {10095, 34110}, {15451, 33513}, {18874, 26862}, {23607, 59143}, {31610, 6}, {31626, 53}, {33631, 343}, {35360, 39180}, {40410, 51}, {55219, 55279}
X(59142) = barycentric quotient X(i)/X(j) for these (i, j): {5, 1232}, {6, 59183}, {51, 140}, {53, 40684}, {217, 22052}, {1173, 95}, {1487, 57765}, {1953, 20879}, {2179, 17438}, {3199, 6748}, {14569, 44732}, {23607, 59164}, {31610, 76}, {31626, 34386}, {33631, 275}, {36412, 57811}, {39284, 276}, {39289, 41488}, {40410, 34384}, {40981, 13366}, {52604, 35311}, {55219, 55280}, {55279, 55218}


X(59143) = X(4)X(20574)∩X(6)X(288)

Barycentrics    a^2*((a^2-b^2)^2-(a^2+b^2)*c^2)^2*((a^2-b^2)^2-3*(a^2+b^2)*c^2+2*c^4)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))^2*(a^4+2*b^4-3*b^2*c^2+c^4-a^2*(3*b^2+2*c^2)) : :

X(59143) lies on the Jerabek hyperbola and these lines: {4, 20574}, {6, 288}, {68, 31617}, {95, 3519}, {265, 40410}, {13418, 19166}, {13472, 46089}, {34567, 39667}

X(59143) = isogonal conjugate of X(3078)
X(59143) = isotomic conjugate of X(59164)
X(59143) = trilinear pole of line {647, 39181}
X(59143) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3078}, {31, 59164}, {233, 1953}, {1087, 13366}, {2179, 57811}, {17438, 36412}, {44706, 53386}
X(59143) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59164}, {3, 3078}
X(59143) = X(i)-cross conjugate of X(j) for these {i, j}: {54, 288}, {1199, 275}, {52540, 2}, {57138, 18315}
X(59143)= pole of line {3078, 59164} with respect to the Wallace hyperbola
X(59143) = polelogic center of the circumcevian triangle of X(54) and ABC
X(59143) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(95), X(57489)}}, {{A, B, C, X(288), X(39278)}}, {{A, B, C, X(1199), X(44732)}}
X(59143) = barycentric product X(i)*X(j) for these (i, j): {288, 95}, {18831, 39181}, {20574, 276}, {31617, 54}, {39180, 52939}, {39286, 97}
X(59143) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59164}, {6, 3078}, {54, 233}, {95, 57811}, {275, 14978}, {288, 5}, {933, 35318}, {1173, 36412}, {8882, 53386}, {14533, 32078}, {20574, 216}, {23286, 35441}, {31617, 311}, {39180, 57195}, {39181, 6368}, {39286, 324}, {40410, 45793}, {46089, 22052}, {59142, 23607}


X(59144) = X(4)X(347)∩X(6)X(7011)

Barycentrics    a^2*(a+b-c)^2*(a-b+c)^2*(b+c)*(a^2-b^2-c^2)*((a^2-b^2)^2+(a-b)^2*(a+b)*c+(a-b)^2*c^2-(a+b)*c^3-2*c^4)*(a^4+a^3*b+a^2*(b-2*c)*(b+c)-a*b*(b+c)^2-(b-c)*(b+c)*(2*b^2+b*c+c^2)) : :

X(59144) lies on the Jerabek hyperbola and these lines: {4, 347}, {6, 7011}, {77, 43724}, {269, 1242}, {307, 28788}, {1214, 1903}, {7053, 57667}, {43694, 52610}

X(59144) = isogonal conjugate of X(59187)
X(59144) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59187}, {1172, 40942}, {1901, 2326}, {2299, 23661}, {4183, 4292}, {18675, 36421}
X(59144) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59187}, {226, 23661}
X(59144) = X(i)-cross conjugate of X(j) for these {i, j}: {73, 40407}
X(59144) = polelogic center of the circumcevian triangle of X(73) and ABC
X(59144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(10), X(7078)}}, {{A, B, C, X(222), X(3668)}}, {{A, B, C, X(307), X(56549)}}, {{A, B, C, X(347), X(1214)}}, {{A, B, C, X(1427), X(7053)}}, {{A, B, C, X(1441), X(1804)}}, {{A, B, C, X(41007), X(57984)}}
X(59144) = barycentric product X(i)*X(j) for these (i, j): {307, 40407}
X(59144) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59187}, {73, 40942}, {1214, 23661}, {1425, 1901}, {7138, 18675}, {40407, 29}, {52373, 4292}, {52610, 14544}, {57392, 36421}


X(59145) = X(6)X(34568)∩X(265)X(1494)

Barycentrics    a^2*((a^2-b^2)^2+(a^2+b^2)*c^2-2*c^4)^3*(a^4-2*b^4+b^2*c^2+c^4+a^2*(b^2-2*c^2))^3 : :

X(59145) lies on the Jerabek hyperbola and these lines: {6, 34568}, {265, 1494}, {3531, 35908}, {4846, 31621}, {13623, 46751}, {34767, 43701}, {40353, 43706}

X(59145) = isogonal conjugate of X(3081)
X(59145) = isotomic conjugate of X(23097)
X(59145) = trilinear pole of line {647, 40384}
X(59145) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3081}, {30, 42074}, {31, 23097}, {1099, 1495}, {2173, 3163}, {2349, 36435}, {6062, 51654}, {9406, 36789}, {9408, 14206}, {14401, 56829}, {38956, 52948}
X(59145) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23097}, {3, 3081}, {9410, 36789}, {36896, 3163}
X(59145) = X(i)-cross conjugate of X(j) for these {i, j}: {74, 40384}, {14380, 34568}, {34329, 14919}, {52546, 2}, {57147, 44769}
X(59145)= pole of line {3081, 23097} with respect to the Wallace hyperbola
X(59145) = polelogic center of the circumcevian triangle of X(74) and ABC
X(59145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(1494), X(54837)}}, {{A, B, C, X(12112), X(52661)}}, {{A, B, C, X(23097), X(52546)}}, {{A, B, C, X(34329), X(51394)}}, {{A, B, C, X(34767), X(57488)}}
X(59145) = barycentric product X(i)*X(j) for these (i, j): {1494, 40384}, {31621, 74}, {34568, 34767}
X(59145) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23097}, {6, 3081}, {74, 3163}, {1494, 36789}, {1495, 36435}, {2159, 42074}, {2349, 1099}, {2394, 58263}, {2433, 58346}, {8749, 16240}, {9717, 58347}, {14380, 14401}, {14919, 16163}, {15627, 6062}, {16080, 34334}, {23616, 58257}, {31621, 3260}, {32112, 58351}, {34568, 4240}, {34767, 52624}, {40352, 9408}, {40353, 1495}, {40384, 30}, {44769, 3233}, {46788, 1553}, {48451, 58348}


X(59146) = X(6)X(706)∩X(75)X(18271)

Barycentrics    b^4*(a^3+b^3)*c^4*(a^3+c^3) : :

X(59146) lies on these lines: {6, 706}, {75, 18271}, {256, 18891}, {310, 45782}, {753, 9063}, {984, 7034}, {2276, 31008}, {3862, 6385}, {7087, 38840}, {20234, 52611}, {38831, 39671}

X(59146) = isogonal conjugate of X(8022)
X(59146) = isotomic conjugate of X(40935)
X(59146) = trilinear pole of line {3250, 20651}
X(59146) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8022}, {6, 21751}, {25, 22364}, {31, 40935}, {32, 16584}, {560, 3778}, {1333, 21815}, {1397, 4531}, {1492, 9006}, {1501, 3721}, {1917, 2887}, {1918, 7032}, {2205, 2275}, {3888, 9426}, {9233, 20234}, {17415, 34069}, {18897, 18904}, {18899, 40747}
X(59146) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 40935}, {3, 8022}, {9, 21751}, {37, 21815}, {6374, 3778}, {6376, 16584}, {6505, 22364}, {34021, 7032}, {38995, 9006}
X(59146) = X(i)-cross conjugate of X(j) for these {i, j}: {75, 38810}, {18155, 4602}, {52547, 2}, {57110, 1978}
X(59146)= pole of line {8022, 18899} with respect to the Stammler hyperbola
X(59146)= pole of line {3117, 8022} with respect to the Wallace hyperbola
X(59146) = polelogic center of the circumcevian triangle of X(75) and ABC
X(59146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(75)}}, {{A, B, C, X(310), X(31008)}}, {{A, B, C, X(706), X(824)}}, {{A, B, C, X(1333), X(57938)}}, {{A, B, C, X(3114), X(7034)}}, {{A, B, C, X(3978), X(18891)}}, {{A, B, C, X(9230), X(18895)}}, {{A, B, C, X(11338), X(31909)}}, {{A, B, C, X(14617), X(40415)}}, {{A, B, C, X(18271), X(24576)}}, {{A, B, C, X(18299), X(18833)}}, {{A, B, C, X(38845), X(57933)}}, {{A, B, C, X(40935), X(52547)}}
X(59146) = barycentric product X(i)*X(j) for these (i, j): {274, 7034}, {313, 7307}, {824, 9063}, {1502, 40415}, {6385, 7033}, {14124, 20234}, {18891, 40834}, {38810, 561}, {38813, 40362}
X(59146) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21751}, {2, 40935}, {6, 8022}, {10, 21815}, {63, 22364}, {75, 16584}, {76, 3778}, {274, 7032}, {305, 20727}, {310, 2275}, {312, 4531}, {314, 20665}, {561, 3721}, {824, 17415}, {983, 2205}, {1502, 2887}, {1928, 20234}, {3250, 9006}, {3596, 20684}, {3736, 18899}, {4602, 3888}, {4609, 33946}, {6385, 982}, {6386, 7239}, {7033, 213}, {7034, 37}, {7199, 50514}, {7255, 1919}, {7307, 58}, {9063, 4586}, {17743, 1918}, {18891, 18904}, {27801, 7237}, {28660, 3056}, {30966, 3117}, {31008, 56806}, {38810, 31}, {38813, 1501}, {38840, 32664}, {40016, 16889}, {40072, 3061}, {40363, 4136}, {40415, 32}, {40834, 1911}, {40835, 904}, {41283, 16888}, {46281, 40747}, {56196, 7109}


X(59147) = X(6)X(1509)∩X(31)X(757)

Barycentrics    (a+b)^2*(a+c)^2*(2*a*b+(a+b)*c)*(b*c+a*(b+2*c)) : :

X(59147) lies on these lines: {6, 1509}, {31, 757}, {81, 57949}, {239, 59194}, {763, 1333}, {873, 3759}, {1911, 30593}, {2106, 57397}, {4623, 18166}, {16369, 28615}

X(59147) = isogonal conjugate of X(21820)
X(59147) = isotomic conjugate of X(52579)
X(59147) = trilinear pole of line {667, 48107}
X(59147) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21820}, {6, 21699}, {10, 21753}, {31, 52579}, {37, 2667}, {42, 16589}, {101, 50538}, {181, 3691}, {213, 21020}, {756, 20963}, {872, 3739}, {1018, 50497}, {1334, 39793}, {1400, 4111}, {1500, 3720}, {1826, 22369}, {1918, 53478}, {3690, 40975}, {4079, 4436}, {7109, 20888}, {53363, 53581}
X(59147) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52579}, {3, 21820}, {9, 21699}, {1015, 50538}, {6626, 21020}, {34021, 53478}, {40582, 4111}, {40589, 2667}, {40592, 16589}, {40620, 48393}
X(59147) = X(i)-cross conjugate of X(j) for these {i, j}: {81, 40408}, {1206, 58}, {3733, 4623}, {52548, 2}, {57112, 99}, {57148, 52935}
X(59147)= pole of line {2667, 21753} with respect to the Stammler hyperbola
X(59147)= pole of line {16589, 21020} with respect to the Wallace hyperbola
X(59147) = polelogic center of the circumcevian triangle of X(81) and ABC
X(59147) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(25457)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(28), X(33035)}}, {{A, B, C, X(86), X(51314)}}, {{A, B, C, X(239), X(1100)}}, {{A, B, C, X(274), X(17394)}}, {{A, B, C, X(649), X(9403)}}, {{A, B, C, X(757), X(763)}}, {{A, B, C, X(894), X(55925)}}, {{A, B, C, X(2106), X(3733)}}, {{A, B, C, X(4601), X(40409)}}, {{A, B, C, X(52548), X(52579)}}
X(59147) = barycentric product X(i)*X(j) for these (i, j): {274, 40408}, {1509, 32009}, {4623, 50520}, {40433, 873}, {40439, 86}
X(59147) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21699}, {2, 52579}, {6, 21820}, {21, 4111}, {58, 2667}, {81, 16589}, {86, 21020}, {261, 3706}, {274, 53478}, {513, 50538}, {552, 4059}, {593, 20963}, {757, 3720}, {763, 18166}, {873, 20888}, {1014, 39793}, {1333, 21753}, {1437, 22369}, {1509, 3739}, {2185, 3691}, {3733, 50497}, {4623, 53363}, {6628, 17175}, {7192, 48393}, {8708, 40521}, {32009, 594}, {40408, 37}, {40433, 756}, {40439, 10}, {50520, 4705}, {51356, 59219}, {52935, 4436}, {57397, 1500}, {57949, 16748}


X(59148) = X(1)X(57992)∩X(6)X(7304)

Barycentrics    b^2*(a+b)^2*c^2*(a+c)^2*(a*b*(a+b)+(a^2+b^2)*c)*(a*c^2+b*c^2+a^2*(b+c)) : :

X(59148) lies on these lines: {1, 57992}, {6, 7304}, {87, 873}, {292, 1221}, {1431, 57785}, {16738, 52612}, {40418, 40433}, {56431, 57399}

X(59148) = isotomic conjugate of X(21700)
X(59148) = trilinear pole of line {649, 16737}
X(59148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 21700}, {32, 22206}, {213, 21838}, {560, 21713}, {872, 2309}, {1107, 7109}, {1197, 1500}, {1824, 23212}, {1918, 3728}, {2205, 21024}, {20691, 45217}, {50487, 53268}
X(59148) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 21700}, {6374, 21713}, {6376, 22206}, {6626, 21838}, {34021, 3728}, {40620, 40627}
X(59148) = X(i)-cross conjugate of X(j) for these {i, j}: {86, 40409}, {7192, 52612}, {57113, 799}, {57149, 4610}
X(59148)= pole of line {21700, 21838} with respect to the Wallace hyperbola
X(59148) = polelogic center of the circumcevian triangle of X(86) and ABC
X(59148) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(310), X(6383)}}, {{A, B, C, X(873), X(7304)}}, {{A, B, C, X(7192), X(16738)}}, {{A, B, C, X(8033), X(57785)}}
X(59148) = barycentric product X(i)*X(j) for these (i, j): {310, 40409}, {1221, 873}, {1258, 57992}
X(59148) = barycentric quotient X(i)/X(j) for these (i, j): {2, 21700}, {75, 22206}, {76, 21713}, {86, 21838}, {274, 3728}, {310, 21024}, {757, 1197}, {873, 1107}, {1221, 756}, {1258, 872}, {1434, 39780}, {1509, 2309}, {1790, 23212}, {4610, 53268}, {7192, 40627}, {7304, 45216}, {8033, 27880}, {40409, 42}, {40418, 1500}, {52612, 53338}, {57399, 7109}, {57785, 45208}, {57949, 18169}, {57992, 20891}


X(59149) = X(6)X(1252)∩X(9)X(765)

Barycentrics    a^2*(a-b)^3*(a-c)^3 : :

X(59149) lies on these lines: {6, 1252}, {9, 765}, {101, 6551}, {480, 6065}, {560, 1110}, {1016, 17233}, {1023, 57731}, {1025, 4585}, {1333, 4570}, {1445, 4564}, {4600, 29767}, {4998, 17234}, {14887, 56528}, {17300, 43986}, {21143, 41405}, {52561, 57741}

X(59149) = isogonal conjugate of X(6545)
X(59149) = isotomic conjugate of X(23100)
X(59149) = trilinear pole of line {902, 1110}
X(59149) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6545}, {2, 764}, {10, 8042}, {11, 3669}, {31, 23100}, {56, 40166}, {57, 21132}, {75, 21143}, {76, 8027}, {88, 6550}, {244, 514}, {269, 42462}, {274, 8034}, {512, 16727}, {513, 1086}, {522, 53538}, {523, 16726}, {561, 3249}, {649, 1111}, {650, 1358}, {651, 7336}, {661, 17205}, {667, 23989}, {679, 14442}, {693, 1015}, {738, 23615}, {757, 21131}, {763, 8029}, {876, 27918}, {905, 2969}, {918, 43921}, {1014, 55195}, {1019, 3120}, {1022, 1647}, {1042, 40213}, {1090, 1461}, {1146, 43932}, {1357, 4391}, {1407, 42455}, {1418, 56284}, {1427, 56283}, {1462, 52305}, {1491, 43266}, {1565, 6591}, {1635, 6549}, {1977, 40495}, {2087, 6548}, {2170, 3676}, {2191, 23760}, {2310, 58817}, {2401, 42753}, {2973, 22383}, {3121, 52619}, {3122, 7199}, {3125, 7192}, {3248, 3261}, {3257, 24188}, {3271, 24002}, {3733, 16732}, {3737, 53545}, {3756, 58794}, {3762, 43922}, {3937, 17924}, {3942, 7649}, {4017, 17197}, {4130, 41292}, {4444, 27846}, {4466, 57200}, {4475, 4817}, {4516, 17096}, {4560, 53540}, {4562, 24193}, {4617, 5532}, {4858, 43924}, {6547, 58373}, {7178, 18191}, {7203, 21044}, {7366, 23104}, {8056, 23764}, {8661, 20568}, {10015, 15635}, {15413, 42067}, {17219, 55208}, {17435, 43930}, {17925, 18210}, {21138, 43931}, {21141, 52375}, {21207, 57129}, {22260, 57949}, {23777, 34860}, {26932, 43923}, {34387, 57181}, {40451, 48334}, {43928, 52626}, {52338, 56049}
X(59149) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40166}, {2, 23100}, {3, 6545}, {206, 21143}, {5375, 1111}, {5452, 21132}, {6600, 42462}, {6631, 23989}, {24771, 42455}, {32664, 764}, {34961, 17197}, {35508, 1090}, {36830, 17205}, {38991, 7336}, {39026, 1086}, {39054, 16727}, {40368, 3249}, {40607, 21131}, {55055, 24188}
X(59149) = X(i)-cross conjugate of X(j) for these {i, j}: {101, 1252}, {692, 4570}, {3939, 765}, {23344, 9268}, {32739, 1110}, {57084, 4600}
X(59149)= pole of line {6545, 8042} with respect to the Stammler hyperbola
X(59149)= pole of line {6545, 23100} with respect to the Wallace hyperbola
X(59149) = polelogic center of the circumcevian triangle of X(101) and ABC
X(59149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(101)}}, {{A, B, C, X(9), X(190)}}, {{A, B, C, X(100), X(2346)}}, {{A, B, C, X(560), X(32739)}}, {{A, B, C, X(644), X(2287)}}, {{A, B, C, X(658), X(1445)}}, {{A, B, C, X(692), X(825)}}, {{A, B, C, X(919), X(4591)}}, {{A, B, C, X(1026), X(56179)}}, {{A, B, C, X(1978), X(17233)}}, {{A, B, C, X(3257), X(6078)}}, {{A, B, C, X(3692), X(4587)}}, {{A, B, C, X(4557), X(52555)}}, {{A, B, C, X(4574), X(52561)}}, {{A, B, C, X(4629), X(32736)}}, {{A, B, C, X(5377), X(6551)}}, {{A, B, C, X(9262), X(21143)}}, {{A, B, C, X(17234), X(46406)}}, {{A, B, C, X(29767), X(52612)}}
X(59149) = barycentric product X(i)*X(j) for these (i, j): {1, 57731}, {6, 6632}, {31, 57950}, {100, 765}, {101, 1016}, {109, 4076}, {249, 4103}, {346, 4619}, {519, 6551}, {692, 7035}, {1018, 4567}, {1023, 5376}, {1026, 5377}, {1110, 668}, {1252, 190}, {1262, 6558}, {1293, 44724}, {1331, 15742}, {1334, 55194}, {1960, 42372}, {1978, 23990}, {2149, 646}, {3573, 5378}, {3699, 59}, {3799, 5384}, {3939, 4998}, {3952, 4570}, {4557, 4600}, {4564, 644}, {4571, 7012}, {4572, 6066}, {4578, 7045}, {4587, 46102}, {4752, 5385}, {5382, 57192}, {5423, 59151}, {6065, 664}, {6635, 902}, {17233, 31616}, {17780, 9268}, {24041, 40521}, {30730, 52378}, {31615, 9}, {31625, 32739}, {59152, 6535}
X(59149) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23100}, {6, 6545}, {9, 40166}, {31, 764}, {32, 21143}, {55, 21132}, {59, 3676}, {100, 1111}, {101, 1086}, {109, 1358}, {110, 17205}, {163, 16726}, {190, 23989}, {200, 42455}, {218, 23760}, {220, 42462}, {480, 23615}, {560, 8027}, {644, 4858}, {662, 16727}, {663, 7336}, {677, 15634}, {692, 244}, {765, 693}, {825, 43266}, {901, 6549}, {902, 6550}, {906, 3942}, {1016, 3261}, {1017, 14442}, {1018, 16732}, {1110, 513}, {1252, 514}, {1262, 58817}, {1331, 1565}, {1333, 8042}, {1334, 55195}, {1415, 53538}, {1500, 21131}, {1501, 3249}, {1897, 2973}, {1918, 8034}, {1960, 24188}, {1983, 53546}, {2149, 3669}, {2287, 40213}, {2328, 56283}, {2340, 52305}, {2398, 58259}, {2427, 42754}, {3052, 23764}, {3690, 21134}, {3699, 34387}, {3730, 21133}, {3900, 1090}, {3939, 11}, {3952, 21207}, {4076, 35519}, {4103, 338}, {4105, 5532}, {4557, 3120}, {4559, 53545}, {4564, 24002}, {4567, 7199}, {4570, 7192}, {4571, 17880}, {4574, 4466}, {4578, 24026}, {4587, 26932}, {4600, 52619}, {4619, 279}, {4752, 4957}, {4998, 52621}, {5423, 23104}, {5546, 17197}, {6065, 522}, {6066, 663}, {6535, 23105}, {6551, 903}, {6558, 23978}, {6614, 41292}, {6632, 76}, {6635, 57995}, {7035, 40495}, {8750, 2969}, {9268, 6548}, {9459, 8661}, {10482, 56284}, {14887, 21202}, {15742, 46107}, {16946, 23777}, {23344, 1647}, {23990, 649}, {24027, 43932}, {31615, 85}, {31616, 14377}, {32656, 3937}, {32666, 43921}, {32719, 43922}, {32739, 1015}, {40521, 1109}, {52378, 17096}, {54325, 3675}, {57084, 53564}, {57118, 38374}, {57165, 53566}, {57731, 75}, {57950, 561}, {59151, 479}, {59152, 6628}


X(59150) = X(1)X(679)∩X(6)X(2226)

Barycentrics    a^2*(a+b-2*c)^3*(a-2*b+c)^3 : :

X(59150) lies on these lines: {1, 679}, {6, 2226}, {106, 39414}, {903, 1120}, {996, 54974}, {1318, 41436}, {1411, 56049}

X(59150) = isogonal conjugate of X(8028)
X(59150) = isotomic conjugate of X(58254)
X(59150) = trilinear pole of line {649, 2226}
X(59150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8028}, {31, 58254}, {44, 4370}, {100, 33922}, {519, 678}, {902, 4738}, {1017, 4358}, {1023, 6544}, {1317, 3689}, {1319, 4152}, {1635, 53582}, {2251, 36791}, {3251, 17780}, {4543, 23703}, {5440, 42070}, {14637, 57950}, {16704, 21821}, {16729, 52963}, {22371, 38462}, {46050, 57731}
X(59150) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58254}, {3, 8028}, {8054, 33922}, {9460, 36791}, {40594, 4738}, {40595, 4370}
X(59150) = X(i)-cross conjugate of X(j) for these {i, j}: {106, 2226}, {23345, 4638}
X(59150)= pole of line {8028, 58254} with respect to the Wallace hyperbola
X(59150) = polelogic center of the circumcevian triangle of X(106) and ABC
X(59150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(519), X(16489)}}, {{A, B, C, X(679), X(2226)}}, {{A, B, C, X(903), X(52206)}}, {{A, B, C, X(4618), X(4638)}}, {{A, B, C, X(21143), X(43922)}}, {{A, B, C, X(40215), X(52553)}}
X(59150) = barycentric product X(i)*X(j) for these (i, j): {106, 54974}, {679, 88}, {1022, 4618}, {2226, 903}, {4638, 6548}, {39414, 514}, {41935, 57995}, {43922, 57564}, {57929, 9456}
X(59150) = barycentric quotient X(i)/X(j) for these (i, j): {2, 58254}, {6, 8028}, {88, 4738}, {106, 4370}, {649, 33922}, {679, 4358}, {901, 53582}, {903, 36791}, {1318, 2325}, {2226, 519}, {2316, 4152}, {3249, 14637}, {4618, 24004}, {4638, 17780}, {6548, 52627}, {8752, 42070}, {9456, 678}, {21143, 46050}, {23345, 6544}, {30575, 3992}, {32659, 22371}, {39414, 190}, {41935, 902}, {43922, 35092}, {54974, 3264}


X(59151) = X(6)X(1262)∩X(59)X(1804)

Barycentrics    a^2*(a-b)^3*(a-c)^3*(a+b-c)^3*(a-b+c)^3 : :

X(59151) lies on these lines: {6, 1262}, {59, 1804}, {77, 7045}, {269, 24027}, {2193, 52378}, {2324, 4564}, {7023, 7339}, {7128, 52033}

X(59151) = isogonal conjugate of X(23615)
X(59151) = isotomic conjugate of X(23104)
X(59151) = trilinear pole of line {1055, 1262}
X(59151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23615}, {9, 42462}, {11, 3900}, {31, 23104}, {55, 42455}, {100, 5532}, {200, 21132}, {210, 56283}, {220, 40166}, {244, 4163}, {513, 4081}, {514, 3119}, {521, 42069}, {522, 2310}, {650, 1146}, {657, 4858}, {663, 24026}, {693, 3022}, {728, 6545}, {764, 5423}, {1021, 21044}, {1086, 4130}, {1090, 3939}, {1093, 23614}, {1111, 4105}, {1334, 40213}, {1946, 21666}, {2170, 3239}, {2287, 55195}, {2968, 18344}, {3059, 56284}, {3063, 23978}, {3064, 34591}, {3120, 58329}, {3270, 44426}, {3271, 4397}, {3669, 23970}, {3676, 24010}, {3737, 52335}, {4171, 17197}, {4391, 14936}, {4516, 7253}, {4560, 36197}, {4578, 7336}, {6524, 58253}, {6602, 23100}, {8641, 34387}, {8735, 57055}, {11193, 34896}, {17435, 28132}, {17926, 53560}, {18101, 58335}, {21143, 30693}, {23105, 23609}, {23893, 33573}, {23989, 57180}, {24002, 35508}, {24012, 52621}, {28071, 52305}, {36910, 46384}, {40528, 42337}, {41798, 52334}, {52316, 52663}
X(59151) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23104}, {3, 23615}, {223, 42455}, {478, 42462}, {6609, 21132}, {8054, 5532}, {10001, 23978}, {39026, 4081}, {39053, 21666}, {40617, 1090}
X(59151) = X(i)-cross conjugate of X(j) for these {i, j}: {109, 1262}, {6614, 7339}, {36059, 52378}, {57118, 4564}
X(59151)= pole of line {23104, 23615} with respect to the Wallace hyperbola
X(59151) = polelogic center of the circumcevian triangle of X(109) and ABC
X(59151) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(109)}}, {{A, B, C, X(77), X(664)}}, {{A, B, C, X(269), X(1461)}}, {{A, B, C, X(662), X(57685)}}, {{A, B, C, X(692), X(59141)}}, {{A, B, C, X(927), X(4591)}}, {{A, B, C, X(934), X(1014)}}, {{A, B, C, X(1804), X(1813)}}, {{A, B, C, X(2193), X(4636)}}, {{A, B, C, X(2324), X(3699)}}, {{A, B, C, X(2426), X(3939)}}, {{A, B, C, X(6614), X(7023)}}, {{A, B, C, X(24029), X(56287)}}, {{A, B, C, X(36127), X(52033)}}, {{A, B, C, X(52610), X(59144)}}
X(59151) = barycentric product X(i)*X(j) for these (i, j): {59, 658}, {109, 1275}, {190, 7339}, {269, 31615}, {479, 59149}, {651, 7045}, {1016, 6614}, {1042, 55194}, {1110, 36838}, {1252, 4626}, {1262, 664}, {1461, 4998}, {1813, 55346}, {2149, 4569}, {4564, 934}, {4566, 52378}, {4617, 765}, {4619, 7}, {4620, 53321}, {6516, 7128}, {6632, 7023}, {23586, 3939}, {23971, 3699}, {23979, 4572}, {23984, 6517}, {23990, 52937}, {24013, 644}, {24027, 4554}, {36118, 44717}, {57731, 738}, {57950, 7366}
X(59151) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23104}, {6, 23615}, {56, 42462}, {57, 42455}, {59, 3239}, {101, 4081}, {109, 1146}, {269, 40166}, {479, 23100}, {649, 5532}, {651, 24026}, {653, 21666}, {658, 34387}, {664, 23978}, {692, 3119}, {934, 4858}, {1014, 40213}, {1042, 55195}, {1110, 4130}, {1252, 4163}, {1262, 522}, {1275, 35519}, {1407, 21132}, {1412, 56283}, {1415, 2310}, {1457, 52316}, {1461, 11}, {1813, 2968}, {2149, 3900}, {3669, 1090}, {3939, 23970}, {4100, 23614}, {4559, 52335}, {4564, 4397}, {4617, 1111}, {4619, 8}, {4626, 23989}, {4998, 52622}, {6507, 58253}, {6517, 23983}, {6614, 1086}, {7023, 6545}, {7045, 4391}, {7128, 44426}, {7143, 21131}, {7339, 514}, {7366, 764}, {23346, 33573}, {23586, 52621}, {23971, 3676}, {23979, 663}, {23990, 4105}, {24013, 24002}, {24027, 650}, {31615, 341}, {32660, 3270}, {32674, 42069}, {32739, 3022}, {36059, 34591}, {52378, 7253}, {52440, 46384}, {53321, 21044}, {55346, 46110}, {57118, 5514}, {57731, 30693}, {59149, 5423}


X(59152) = X(6)X(249)∩X(69)X(4590)

Barycentrics    a^2*(a^2-b^2)^3*(a^2-c^2)^3 : :

X(59152) lies on these lines: {6, 249}, {69, 4590}, {99, 14559}, {110, 45773}, {250, 19118}, {317, 18020}, {877, 55226}, {2421, 14590}, {3964, 9717}, {4567, 21873}, {5467, 10411}, {5468, 31614}, {9181, 34574}, {9218, 22260}, {9233, 23357}, {9274, 24041}, {18879, 52557}, {31632, 44127}, {31998, 34968}, {36892, 57655}, {39295, 56404}

X(59152) = isogonal conjugate of X(8029)
X(59152) = isotomic conjugate of X(23105)
X(59152) = trilinear pole of line {187, 249}
X(59152) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8029}, {31, 23105}, {37, 21131}, {75, 22260}, {115, 661}, {338, 798}, {512, 1109}, {513, 21043}, {514, 21833}, {523, 2643}, {561, 23099}, {656, 8754}, {669, 23994}, {762, 6545}, {764, 6535}, {810, 2970}, {892, 45775}, {897, 33919}, {1084, 20948}, {1089, 8034}, {1096, 5489}, {1111, 58289}, {1365, 4041}, {1577, 3124}, {1648, 23894}, {1820, 55278}, {1824, 21134}, {1924, 23962}, {1928, 23610}, {2170, 55197}, {2171, 55195}, {2489, 20902}, {2501, 3708}, {2616, 41221}, {2632, 58757}, {2971, 14208}, {3120, 4705}, {3121, 52623}, {3122, 4036}, {3125, 4024}, {4017, 4092}, {4079, 16732}, {4117, 44173}, {6591, 21046}, {8061, 34294}, {20975, 24006}, {21044, 57185}, {21207, 50487}, {21824, 55236}, {36085, 42344}, {39691, 55240}, {47421, 55250}
X(59152) = X(i)-vertex conjugate of X(j) for these {i, j}: {892, 14560}, {9132, 32717}
X(59152) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23105}, {3, 8029}, {110, 58908}, {206, 22260}, {6503, 5489}, {6593, 33919}, {9428, 23962}, {31998, 338}, {34961, 4092}, {36830, 115}, {38988, 42344}, {39026, 21043}, {39054, 1109}, {39062, 2970}, {40368, 23099}, {40369, 23610}, {40589, 21131}, {40596, 8754}
X(59152) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55270, 47443}
X(59152) = X(i)-cross conjugate of X(j) for these {i, j}: {110, 249}, {4558, 4590}, {14574, 23357}, {47053, 39295}, {52603, 18879}, {56980, 57742}, {57119, 4567}
X(59152)= pole of line {1648, 8029} with respect to the Stammler hyperbola
X(59152)= pole of line {33799, 54108} with respect to the Steiner circumellipse
X(59152)= pole of line {868, 5489} with respect to the Wallace hyperbola
X(59152) = polelogic center of the circumcevian triangle of X(110) and ABC
X(59152) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(110)}}, {{A, B, C, X(25), X(46495)}}, {{A, B, C, X(69), X(670)}}, {{A, B, C, X(95), X(99)}}, {{A, B, C, X(264), X(53192)}}, {{A, B, C, X(317), X(6528)}}, {{A, B, C, X(351), X(19610)}}, {{A, B, C, X(512), X(33906)}}, {{A, B, C, X(892), X(10425)}}, {{A, B, C, X(1296), X(20421)}}, {{A, B, C, X(1576), X(46288)}}, {{A, B, C, X(1634), X(52554)}}, {{A, B, C, X(2396), X(42407)}}, {{A, B, C, X(2715), X(32717)}}, {{A, B, C, X(3952), X(21873)}}, {{A, B, C, X(4226), X(54096)}}, {{A, B, C, X(4556), X(52558)}}, {{A, B, C, X(4563), X(55226)}}, {{A, B, C, X(4577), X(18315)}}, {{A, B, C, X(9217), X(33704)}}, {{A, B, C, X(9233), X(14574)}}, {{A, B, C, X(9274), X(57742)}}, {{A, B, C, X(17932), X(43755)}}, {{A, B, C, X(19118), X(32713)}}, {{A, B, C, X(31614), X(45773)}}, {{A, B, C, X(39291), X(39968)}}, {{A, B, C, X(41679), X(55551)}}, {{A, B, C, X(45838), X(53603)}}, {{A, B, C, X(46606), X(46952)}}, {{A, B, C, X(47053), X(56404)}}, {{A, B, C, X(52557), X(52603)}}, {{A, B, C, X(55270), X(55277)}}
X(59152) = barycentric product X(i)*X(j) for these (i, j): {3, 55270}, {24, 55277}, {110, 4590}, {112, 47389}, {163, 24037}, {249, 99}, {250, 4563}, {351, 42370}, {1101, 799}, {1576, 34537}, {2396, 57742}, {2421, 57991}, {4176, 59153}, {4556, 4600}, {4565, 6064}, {4567, 52935}, {4570, 4610}, {4575, 46254}, {4620, 4636}, {5546, 7340}, {10411, 39295}, {14574, 44168}, {15631, 57562}, {18020, 4558}, {20806, 55272}, {23357, 670}, {23963, 4609}, {23995, 4602}, {24041, 662}, {31614, 6}, {35602, 55268}, {39292, 56980}, {41679, 57763}, {44174, 55227}, {45773, 524}, {47390, 6331}, {47443, 69}, {52608, 57655}, {52940, 5467}, {55194, 60}, {55196, 59}, {57731, 763}, {59149, 6628}
X(59152) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23105}, {6, 8029}, {24, 55278}, {32, 22260}, {58, 21131}, {59, 55197}, {60, 55195}, {99, 338}, {101, 21043}, {110, 115}, {112, 8754}, {163, 2643}, {187, 33919}, {249, 523}, {250, 2501}, {351, 42344}, {394, 5489}, {648, 2970}, {662, 1109}, {670, 23962}, {692, 21833}, {799, 23994}, {827, 34294}, {1101, 661}, {1331, 21046}, {1501, 23099}, {1576, 3124}, {1625, 41221}, {1634, 39691}, {1790, 21134}, {2407, 58261}, {2421, 868}, {2715, 51441}, {3964, 23616}, {4176, 23107}, {4556, 3120}, {4558, 125}, {4563, 339}, {4565, 1365}, {4567, 4036}, {4570, 4024}, {4575, 3708}, {4590, 850}, {4592, 20902}, {4600, 52623}, {4610, 21207}, {4611, 53569}, {4630, 51906}, {4636, 21044}, {5467, 1648}, {5468, 52628}, {5546, 4092}, {5994, 30453}, {5995, 30452}, {6628, 23100}, {9145, 8288}, {9233, 23610}, {14366, 45801}, {14574, 1084}, {14587, 2623}, {14590, 35235}, {14966, 44114}, {15631, 35088}, {17402, 30465}, {17403, 30468}, {18020, 14618}, {18315, 8901}, {18879, 15328}, {20806, 55273}, {20976, 42553}, {23357, 512}, {23963, 669}, {23964, 58757}, {23990, 58289}, {23995, 798}, {24037, 20948}, {24041, 1577}, {31614, 76}, {32661, 20975}, {33803, 31644}, {34537, 44173}, {35602, 55269}, {36830, 58908}, {39292, 56981}, {39295, 10412}, {39298, 39241}, {39299, 39240}, {39689, 14443}, {40173, 6328}, {41679, 136}, {42370, 53080}, {43754, 51404}, {44769, 12079}, {45773, 671}, {47053, 10413}, {47389, 3267}, {47390, 647}, {47443, 4}, {52603, 2088}, {52935, 16732}, {52940, 52632}, {55194, 34388}, {55196, 34387}, {55249, 17881}, {55270, 264}, {55272, 43678}, {55277, 20563}, {57655, 2489}, {57742, 2395}, {57991, 43665}, {59149, 6535}, {59153, 6524}


X(59153) = X(6)X(23964)∩X(250)X(15905)

Barycentrics    a^2*(a-b)^3*(a+b)^3*(a-c)^3*(a+c)^3*(a^2+b^2-c^2)^3*(a^2-b^2+c^2)^3 : :

X(59153) lies on these lines: {6, 23964}, {250, 15905}, {393, 32230}, {2407, 47443}, {2420, 52916}, {6529, 41392}, {17907, 23582}, {18020, 28419}, {23357, 36413}, {23590, 51965}

X(59153) = isogonal conjugate of X(23616)
X(59153) = isotomic conjugate of X(23107)
X(59153) = trilinear pole of line {1495, 8744}
X(59153) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23616}, {31, 23107}, {63, 5489}, {125, 24018}, {339, 822}, {520, 20902}, {525, 2632}, {647, 17879}, {656, 15526}, {810, 36793}, {850, 37754}, {1102, 8029}, {1109, 52613}, {1367, 8611}, {1577, 2972}, {2501, 24020}, {2643, 4143}, {3265, 3708}, {3269, 14208}, {3998, 21134}, {4131, 21046}, {4466, 57109}, {6507, 23105}, {6521, 23103}, {7068, 51664}, {17216, 55232}, {19611, 55269}, {20948, 34980}, {23994, 32320}
X(59153) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 23107}, {3, 23616}, {3162, 5489}, {39052, 17879}, {39062, 36793}, {40596, 15526}
X(59153) = X(i)-cross conjugate of X(j) for these {i, j}: {112, 23964}, {32713, 32230}, {57086, 18020}, {57153, 250}
X(59153)= pole of line {23107, 23616} with respect to the Wallace hyperbola
X(59153) = polelogic center of the circumcevian triangle of X(112) and ABC
X(59153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(112)}}, {{A, B, C, X(107), X(32085)}}, {{A, B, C, X(110), X(56306)}}, {{A, B, C, X(393), X(15352)}}, {{A, B, C, X(1576), X(14533)}}, {{A, B, C, X(1974), X(34859)}}, {{A, B, C, X(2409), X(37921)}}, {{A, B, C, X(4558), X(15905)}}, {{A, B, C, X(6331), X(17907)}}, {{A, B, C, X(14560), X(53708)}}, {{A, B, C, X(15459), X(32687)}}, {{A, B, C, X(28419), X(52608)}}, {{A, B, C, X(32646), X(32708)}}, {{A, B, C, X(35923), X(46592)}}, {{A, B, C, X(52604), X(59142)}}
X(59153) = barycentric product X(i)*X(j) for these (i, j): {107, 250}, {110, 32230}, {112, 23582}, {162, 24000}, {249, 6529}, {393, 47443}, {1101, 36126}, {2207, 55270}, {3172, 55268}, {15352, 23357}, {15384, 52913}, {18020, 32713}, {23347, 42308}, {23590, 4558}, {23964, 648}, {23975, 4563}, {23999, 32676}, {24021, 4575}, {24022, 4592}, {31614, 52439}, {32661, 34538}, {34859, 41174}, {41937, 6331}, {44181, 57153}, {52920, 5379}, {57655, 6528}, {59152, 6524}
X(59153) = barycentric quotient X(i)/X(j) for these (i, j): {2, 23107}, {6, 23616}, {25, 5489}, {107, 339}, {112, 15526}, {162, 17879}, {249, 4143}, {250, 3265}, {648, 36793}, {1576, 2972}, {2409, 58258}, {3081, 58257}, {3172, 55269}, {4558, 23974}, {4575, 24020}, {6524, 23105}, {6529, 338}, {14574, 34980}, {15352, 23962}, {18020, 52617}, {23347, 1650}, {23357, 52613}, {23582, 3267}, {23590, 14618}, {23606, 23103}, {23609, 58253}, {23963, 32320}, {23964, 525}, {23975, 2501}, {24000, 14208}, {24019, 20902}, {24022, 24006}, {32230, 850}, {32676, 2632}, {32713, 125}, {34859, 41172}, {36126, 23994}, {41937, 647}, {47443, 3926}, {52439, 8029}, {52604, 35442}, {57086, 55069}, {57153, 122}, {57655, 520}, {59152, 4176}


X(59154) = X(6)X(305)∩X(39)X(14125)

Barycentrics    b^2*c^2*(b^2+c^2)*(a^4+b^4+(a^2+b^2)*c^2)*(a^4+a^2*b^2+b^2*c^2+c^4) : :

X(59154) lies on these lines: {6, 305}, {39, 14125}, {76, 40360}, {755, 35567}, {1843, 8024}, {3619, 41440}, {3981, 6664}, {4576, 11574}, {6665, 42286}, {8041, 31360}, {10007, 17042}, {18906, 27375}, {42554, 46154}, {51982, 56977}

X(59154) = isogonal conjugate of X(59188)
X(59154) = isotomic conjugate of X(52580)
X(59154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59188}, {31, 52580}, {1194, 46289}, {2514, 34072}, {17446, 46288}
X(59154) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52580}, {3, 59188}, {39, 1194}, {339, 47126}, {6665, 23642}, {15449, 2514}
X(59154) = X(i)-cross conjugate of X(j) for these {i, j}: {525, 4576}
X(59154)= pole of line {1194, 52580} with respect to the Wallace hyperbola
X(59154) = polelogic center of the circumcevian triangle of X(141) and ABC
X(59154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(39)}}, {{A, B, C, X(305), X(8024)}}, {{A, B, C, X(427), X(11324)}}, {{A, B, C, X(525), X(11574)}}, {{A, B, C, X(4074), X(56977)}}, {{A, B, C, X(14617), X(40162)}}, {{A, B, C, X(20021), X(40016)}}, {{A, B, C, X(40405), X(46165)}}
X(59154) = barycentric product X(i)*X(j) for these (i, j): {1241, 141}, {35567, 826}
X(59154) = barycentric quotient X(i)/X(j) for these (i, j): {2, 52580}, {6, 59188}, {141, 1194}, {826, 2514}, {1241, 83}, {1930, 17446}, {3933, 11574}, {4175, 22424}, {7794, 23642}, {8024, 6656}, {16703, 16735}, {23285, 47126}, {35567, 4577}


X(59155) = X(2)X(6)∩X(24)X(39110)

Barycentrics    a^2*(a^2-b^2-c^2)*((a^2-b^2)^3+(-3*a^4-2*a^2*b^2+b^4)*c^2+(3*a^2+b^2)*c^4-c^6)*(a^4+b^4+c^4-2*a^2*(b^2+c^2)) : :

X(59155) lies on these lines: {2, 6}, {24, 39110}, {155, 40697}, {317, 34756}, {1147, 9723}, {19357, 44180}, {37192, 39114}, {55227, 59139}

X(59155) = isogonal conjugate of X(59189)
X(59155) = isotomic conjugate of X(52582)
X(59155) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59189}, {31, 52582}, {91, 39109}, {661, 39416}, {921, 14593}, {1096, 32132}, {2168, 41536}
X(59155) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 52582}, {3, 59189}, {343, 8800}, {394, 68}, {6503, 32132}, {34116, 39109}, {36830, 39416}
X(59155) = X(i)-Ceva conjugate of X(j) for these {i, j}: {317, 9723}, {55227, 57070}
X(59155) = X(i)-cross conjugate of X(j) for these {i, j}: {155, 1993}
X(59155)= pole of line {99, 30450} with respect to the Kiepert parabola
X(59155)= pole of line {6, 14593} with respect to the Stammler hyperbola
X(59155)= pole of line {2, 254} with respect to the Wallace hyperbola
X(59155) = polelogic center of the circumcevian triangle of X(155) and ABC
X(59155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(9723)}}, {{A, B, C, X(3), X(53414)}}, {{A, B, C, X(6), X(155)}}, {{A, B, C, X(24), X(8883)}}, {{A, B, C, X(230), X(1609)}}, {{A, B, C, X(317), X(6515)}}, {{A, B, C, X(343), X(6503)}}, {{A, B, C, X(8745), X(47390)}}, {{A, B, C, X(15478), X(46262)}}, {{A, B, C, X(31631), X(44179)}}, {{A, B, C, X(44389), X(52584)}}
X(59155) = barycentric product X(i)*X(j) for these (i, j): {155, 7763}, {317, 6503}, {1993, 40697}, {6515, 9723}, {35603, 3926}
X(59155) = barycentric quotient X(i)/X(j) for these (i, j): {2, 52582}, {6, 59189}, {52, 41536}, {110, 39416}, {155, 2165}, {394, 32132}, {454, 47731}, {571, 39109}, {1609, 14593}, {1993, 254}, {3133, 47732}, {6503, 68}, {6515, 847}, {7763, 46746}, {9723, 6504}, {33808, 57716}, {35603, 393}, {40697, 5392}, {52032, 8800}, {57484, 57697}


X(59156) = X(2)X(20564)∩X(6)X(264)

Barycentrics    b^2*c^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+c^4)) : :

X(59156) lies on these lines: {2, 20564}, {4, 18124}, {6, 264}, {53, 53474}, {76, 5523}, {311, 17907}, {317, 51481}, {324, 37644}, {393, 44138}, {467, 2052}, {1093, 14852}, {1235, 7803}, {1236, 28419}, {1249, 44135}, {9381, 34289}, {15466, 37638}, {18405, 52578}, {30716, 41764}, {44136, 56013}, {45793, 56296}

X(59156) = isogonal conjugate of X(59190)
X(59156) = isotomic conjugate of X(59169)
X(59156) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59190}, {31, 59169}, {48, 1485}, {9247, 44175}
X(59156) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59169}, {3, 59190}, {184, 14585}, {1249, 1485}
X(59156) = X(i)-cross conjugate of X(j) for these {i, j}: {157, 264}
X(59156)= pole of line {3569, 30451} with respect to the polar circle
X(59156)= pole of line {3289, 22075} with respect to the Stammler hyperbola
X(59156)= pole of line {10316, 36212} with respect to the Wallace hyperbola
X(59156) = polelogic center of the circumcevian triangle of X(157) and ABC
X(59156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(157)}}, {{A, B, C, X(76), X(31636)}}, {{A, B, C, X(262), X(53485)}}, {{A, B, C, X(287), X(5392)}}, {{A, B, C, X(290), X(20564)}}, {{A, B, C, X(6531), X(43678)}}
X(59156) = barycentric product X(i)*X(j) for these (i, j): {157, 18022}, {1969, 21374}, {2909, 44161}, {11442, 264}, {18027, 23128}, {21593, 92}
X(59156) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59169}, {4, 1485}, {6, 59190}, {157, 184}, {264, 44175}, {2909, 14575}, {11442, 3}, {18022, 57771}, {21374, 48}, {21593, 63}, {22391, 14585}, {23128, 577}
X(59156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 40814, 36794}, {338, 9308, 264}


X(59157) = X(6)X(95)∩X(97)X(323)

Barycentrics    a^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(-b^4-b^2*c^2-c^4+a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(59157) lies on these lines: {6, 95}, {54, 5092}, {97, 323}, {275, 15066}, {3630, 53576}, {4994, 54434}, {8884, 37483}, {9792, 37517}, {10564, 19192}, {11004, 59183}, {11008, 19166}, {18315, 33629}, {19176, 37496}, {19185, 37478}, {19189, 33878}

X(59157) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1953, 2980}, {2179, 44176}
X(59157) = X(i)-Dao conjugate of X(j) for these {i, j}: {53575, 55219}
X(59157) = X(i)-cross conjugate of X(j) for these {i, j}: {160, 95}
X(59157)= pole of line {36412, 51363} with respect to the Stammler hyperbola
X(59157)= pole of line {45793, 59197} with respect to the Wallace hyperbola
X(59157) = polelogic center of the circumcevian triangle of X(160) and ABC
X(59157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(160)}}, {{A, B, C, X(97), X(2979)}}, {{A, B, C, X(22052), X(41480)}}
X(59157) = barycentric product X(i)*X(j) for these (i, j): {54, 7796}, {160, 34384}, {2979, 95}, {34386, 39575}, {52590, 55218}
X(59157) = barycentric quotient X(i)/X(j) for these (i, j): {54, 2980}, {95, 44176}, {160, 51}, {2979, 5}, {3202, 40981}, {7796, 311}, {16030, 27366}, {34384, 44185}, {39575, 53}, {41480, 36412}, {52590, 55219}


X(59158) = X(6)X(330)∩X(7)X(1403)

Barycentrics    (a^2+b*c)*(a*b*(a+b)+(a^2+b^2)*c)*(a*c^2+b*c^2+a^2*(b+c)) : :

X(59158) lies on these lines: {6, 330}, {7, 1403}, {870, 1221}, {894, 51319}, {1909, 51902}, {2663, 18787}, {6625, 26110}, {28369, 30669}

X(59158) = isotomic conjugate of X(59171)
X(59158) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59171}, {256, 2309}, {257, 1197}, {893, 1107}, {904, 3741}, {1178, 3728}, {3903, 50510}, {4603, 40627}, {7104, 20891}, {7303, 21700}, {16738, 40729}, {21838, 40432}
X(59158) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59171}, {16587, 21024}, {40597, 1107}
X(59158) = X(i)-cross conjugate of X(j) for these {i, j}: {171, 1258}, {7234, 18047}
X(59158) = polelogic center of the circumcevian triangle of X(171) and ABC
X(59158) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(171)}}, {{A, B, C, X(7), X(330)}}, {{A, B, C, X(1218), X(1920)}}, {{A, B, C, X(1966), X(28369)}}, {{A, B, C, X(7196), X(30705)}}, {{A, B, C, X(14006), X(37467)}}, {{A, B, C, X(18099), X(20964)}}, {{A, B, C, X(27958), X(37632)}}
X(59158) = barycentric product X(i)*X(j) for these (i, j): {1215, 40409}, {1221, 171}, {1258, 1909}, {1920, 57399}, {40418, 894}
X(59158) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59171}, {171, 1107}, {172, 2309}, {894, 3741}, {1215, 21024}, {1221, 7018}, {1258, 256}, {1909, 20891}, {2295, 3728}, {3955, 22065}, {6645, 51575}, {7122, 1197}, {7176, 30097}, {7234, 40627}, {17103, 16738}, {18047, 53338}, {20964, 21838}, {20981, 50510}, {21021, 21713}, {21803, 22206}, {40409, 32010}, {40418, 257}, {51319, 45216}, {57399, 893}


X(59159) = X(6)X(181)∩X(984)X(1791)

Barycentrics    a^2*(a^2+b*c)*(a^2+a*c+b*(b+c))*(a^2+a*b+c*(b+c)) : :

X(59159) lies on these lines: {6, 181}, {961, 7132}, {984, 1791}, {1169, 2311}, {1215, 27958}, {2053, 6378}, {2298, 2344}, {2329, 7122}, {2363, 5009}

X(59159) = isogonal conjugate of X(59191)
X(59159) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59191}, {256, 4357}, {257, 3666}, {893, 20911}, {960, 7249}, {1178, 18697}, {1193, 7018}, {1211, 40432}, {1432, 3687}, {1829, 7019}, {2292, 32010}, {2300, 44187}, {3004, 3903}, {3910, 37137}, {4451, 24471}, {4594, 50330}, {4603, 21124}, {6371, 56241}, {7015, 54314}, {7303, 20653}, {16705, 52651}, {27805, 48131}, {28369, 40099}
X(59159) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59191}, {16587, 1228}, {40597, 20911}
X(59159) = polelogic center of the circumcevian triangle of X(172) and ABC
X(59159) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(172)}}, {{A, B, C, X(171), X(1460)}}, {{A, B, C, X(181), X(1215)}}, {{A, B, C, X(1397), X(7122)}}, {{A, B, C, X(1933), X(5009)}}, {{A, B, C, X(14006), X(37079)}}
X(59159) = barycentric product X(i)*X(j) for these (i, j): {171, 2298}, {1169, 1215}, {1220, 172}, {1791, 7119}, {1798, 1840}, {2295, 2363}, {2329, 961}, {2359, 7009}, {3287, 36098}, {3907, 8687}, {4529, 52928}, {14534, 20964}, {20981, 8707}, {30710, 7122}, {32736, 4369}, {36147, 4367}
X(59159) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59191}, {171, 20911}, {172, 4357}, {1169, 32010}, {1215, 1228}, {1220, 44187}, {2295, 18697}, {2298, 7018}, {2330, 3687}, {2359, 7019}, {4367, 4509}, {7119, 54314}, {7122, 3666}, {7234, 21124}, {20964, 1211}, {20981, 3004}, {32736, 27805}, {36147, 56241}, {56242, 48131}


X(59160) = X(14)X(76)∩X(61)X(323)

Barycentrics    a^2*(a^8*(b^2+c^2)-a^6*(b^2+c^2)^2+a^2*(5*b^8+3*b^6*c^2+14*b^4*c^4+3*b^2*c^6+5*c^8)-2*(b^10-b^6*c^4-b^4*c^6+c^10)-a^4*(3*b^6+3*c^6+2*b^2*c^2*(b^2+c^2))-2*sqrt(3)*(a^6*(b^2+c^2)-2*a^4*(b^4+c^4)-2*b^2*c^2*(b^4+b^2*c^2+c^4)+a^2*(b^6+c^6))*S) : :

X(59160) lies on these lines: {14, 76}, {15, 10411}, {61, 323}, {4550, 47066}, {11131, 36209}, {15067, 18114}, {15107, 39262}

X(59160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2153, 41907}
X(59160) = X(i)-Dao conjugate of X(j) for these {i, j}: {623, 13}, {40580, 41907}, {52342, 23283}
X(59160)= pole of line {8014, 34395} with respect to the Stammler hyperbola
X(59160)= pole of line {16, 43085} with respect to the Wallace hyperbola
X(59160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(11131)}}, {{A, B, C, X(301), X(36209)}}
X(59160) = barycentric product X(i)*X(j) for these (i, j): {76, 8016}, {298, 40695}, {11131, 623}
X(59160) = barycentric quotient X(i)/X(j) for these (i, j): {15, 41907}, {8016, 6}, {40695, 13}


X(59161) = X(13)X(76)∩X(62)X(323)

Barycentrics    a^2*(a^8*(b^2+c^2)-a^6*(b^2+c^2)^2-a^4*(3*b^6+2*b^4*c^2+2*b^2*c^4+3*c^6)+a^2*(5*b^8+3*b^6*c^2+14*b^4*c^4+3*b^2*c^6+5*c^8)-2*(b^10-b^6*c^4-b^4*c^6+c^10)-2*sqrt(3)*(a^6*(b^2+c^2)-2*a^4*(b^4+c^4)-2*b^2*c^2*(b^4+b^2*c^2+c^4)+a^2*(b^6+c^6))*(-S)) : :

X(59161) lies on these lines: {13, 76}, {16, 10411}, {62, 323}, {4550, 47068}, {11130, 36208}, {15067, 18114}, {15107, 39261}

X(59161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2154, 41908}
X(59161) = X(i)-Dao conjugate of X(j) for these {i, j}: {624, 14}, {40581, 41908}, {52343, 23284}
X(59161)= pole of line {8015, 34394} with respect to the Stammler hyperbola
X(59161)= pole of line {15, 43086} with respect to the Wallace hyperbola
X(59161) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(11130)}}, {{A, B, C, X(300), X(36208)}}
X(59161) = barycentric product X(i)*X(j) for these (i, j): {76, 8017}, {299, 40696}, {11130, 624}
X(59161) = barycentric quotient X(i)/X(j) for these (i, j): {16, 41908}, {8017, 6}, {40696, 14}


X(59162) = X(3)X(70)∩X(4)X(1485)

Barycentrics    a^2*((a^2-b^2)^2*(a^4+b^4)-2*(a^6+b^6)*c^2+2*(a^2+b^2)*c^6-c^8)*((a^2-b^2)^3*(a^2+b^2)+2*(-a^6+b^6)*c^2+2*a^4*c^4-2*(a^2+b^2)*c^6+c^8)*(a^4+b^4+c^4-2*a^2*(b^2+c^2)) : :

X(59162) lies on cubic K1065 and these lines: {3, 70}, {4, 1485}, {24, 27362}, {76, 20564}, {96, 19185}, {1288, 1300}, {14533, 39643}

X(59162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {26, 91}, {20571, 44078}
X(59162) = X(i)-Dao conjugate of X(j) for these {i, j}: {34116, 26}
X(59162) = X(i)-Ceva conjugate of X(j) for these {i, j}: {20564, 1993}
X(59162) = X(i)-cross conjugate of X(j) for these {i, j}: {3269, 57065}
X(59162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(24)}}, {{A, B, C, X(4), X(11442)}}, {{A, B, C, X(6), X(14111)}}, {{A, B, C, X(52), X(27353)}}, {{A, B, C, X(54), X(317)}}, {{A, B, C, X(64), X(32140)}}, {{A, B, C, X(74), X(11457)}}, {{A, B, C, X(76), X(1993)}}, {{A, B, C, X(97), X(11547)}}, {{A, B, C, X(371), X(55531)}}, {{A, B, C, X(372), X(55532)}}, {{A, B, C, X(467), X(56347)}}, {{A, B, C, X(924), X(34438)}}, {{A, B, C, X(3926), X(51776)}}, {{A, B, C, X(5523), X(35603)}}, {{A, B, C, X(5562), X(27362)}}, {{A, B, C, X(8745), X(34224)}}, {{A, B, C, X(8907), X(52432)}}, {{A, B, C, X(14264), X(14366)}}, {{A, B, C, X(14516), X(18532)}}, {{A, B, C, X(15317), X(43973)}}, {{A, B, C, X(19185), X(55551)}}
X(59162) = barycentric product X(i)*X(j) for these (i, j): {1288, 52584}, {1993, 70}, {2158, 44179}, {20564, 571}, {34952, 55203}
X(59162) = barycentric quotient X(i)/X(j) for these (i, j): {70, 5392}, {571, 26}, {1288, 30450}, {1993, 44128}, {2158, 91}, {20564, 57904}, {34952, 55204}, {44077, 8746}, {52436, 44078}


X(59163) = X(3)X(63)∩X(4)X(25252)

Barycentrics    a*(b+c)^2*(-a^2+b^2+c^2)^2*(2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(59163) lies on cubic K1065 and these lines: {3, 63}, {4, 25252}, {39, 42702}, {76, 20336}, {345, 3487}, {3501, 22021}, {3695, 6356}, {3990, 39643}, {4158, 7066}, {5489, 57109}, {14054, 40956}, {18591, 56839}, {50747, 57285}

X(59163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {27, 40570}, {1175, 8747}, {1474, 40395}, {2189, 40573}, {2259, 36419}, {36420, 40435}
X(59163) = X(i)-Dao conjugate of X(j) for these {i, j}: {942, 28}, {18591, 36419}, {51574, 40395}
X(59163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(442)}}, {{A, B, C, X(63), X(56839)}}, {{A, B, C, X(78), X(52387)}}, {{A, B, C, X(201), X(21675)}}, {{A, B, C, X(1259), X(4158)}}, {{A, B, C, X(1260), X(3695)}}, {{A, B, C, X(11517), X(52386)}}
X(59163) = barycentric product X(i)*X(j) for these (i, j): {306, 56839}, {345, 41393}, {1234, 3990}, {2294, 52396}, {3998, 442}, {4303, 52369}, {18591, 20336}, {18607, 3695}, {21675, 326}, {40967, 52565}, {52387, 5249}, {59177, 76}
X(59163) = barycentric quotient X(i)/X(j) for these (i, j): {72, 40395}, {201, 40573}, {228, 40570}, {942, 36419}, {2294, 8747}, {3695, 40447}, {3990, 1175}, {3998, 40412}, {7066, 2982}, {18591, 28}, {21675, 158}, {23207, 2189}, {39791, 1396}, {40952, 5317}, {40956, 36420}, {40967, 8748}, {41393, 278}, {52386, 943}, {52387, 40435}, {55232, 14775}, {56839, 27}, {57109, 56320}, {59177, 6}


X(59164) = X(2)X(52540)∩X(4)X(69)

Barycentrics    b^2*c^2*(2*a^4+(b^2-c^2)^2-3*a^2*(b^2+c^2))*((b^2-c^2)^2-a^2*(b^2+c^2))^2 : :
X(59164) = -3*X[2]+2*X[52540]

X(59164) lies on these lines: {2, 52540}, {4, 69}, {5, 25043}, {11140, 15801}, {14978, 53386}, {26907, 47525}, {34826, 58261}, {34864, 38587}

X(59164) = isotomic conjugate of X(59143)
X(59164) = anticomplement of X(52540)
X(59164) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59143}, {288, 2148}, {2190, 20574}
X(59164) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59143}, {5, 20574}, {140, 54}, {216, 288}, {1493, 46089}, {6663, 1173}, {8902, 57138}, {35442, 23286}, {39019, 39181}, {46025, 1199}, {52540, 52540}
X(59164) = X(i)-Ceva conjugate of X(j) for these {i, j}: {311, 57811}
X(59164)= pole of line {184, 20574} with respect to the Stammler hyperbola
X(59164)= pole of line {3, 59143} with respect to the Wallace hyperbola
X(59164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3078)}}, {{A, B, C, X(5), X(32002)}}, {{A, B, C, X(76), X(45793)}}, {{A, B, C, X(140), X(340)}}, {{A, B, C, X(233), X(317)}}, {{A, B, C, X(264), X(14978)}}, {{A, B, C, X(11412), X(32078)}}
X(59164) = barycentric product X(i)*X(j) for these (i, j): {5, 57811}, {140, 45793}, {233, 311}, {1087, 20879}, {1232, 36412}, {3078, 76}, {14978, 343}, {28706, 53386}
X(59164) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59143}, {5, 288}, {216, 20574}, {233, 54}, {311, 31617}, {324, 39286}, {3078, 6}, {6368, 39181}, {14978, 275}, {22052, 46089}, {23607, 59142}, {32078, 14533}, {35318, 933}, {35441, 23286}, {36412, 1173}, {45793, 40410}, {53386, 8882}, {57195, 39180}, {57811, 95}


X(59165) = X(4)X(69)∩X(22)X(8743)

Barycentrics    a^2*(b^2+c^2)*(-a^4+b^4+c^4)^2*(-a^4+(b^2-c^2)^2) : :

X(59165) lies on these lines: {4, 69}, {22, 8743}, {2393, 56015}, {3313, 27373}, {7767, 11397}, {9019, 27376}, {12220, 41361}, {12225, 53772}, {19613, 20806}

X(59165) = perspector of circumconic {{A, B, C, X(6331), X(52915)}}
X(59165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2156, 40404}
X(59165) = X(i)-Dao conjugate of X(j) for these {i, j}: {32, 46765}, {427, 66}
X(59165)= pole of line {184, 14376} with respect to the Stammler hyperbola
X(59165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17409)}}, {{A, B, C, X(22), X(76)}}, {{A, B, C, X(69), X(3313)}}, {{A, B, C, X(264), X(8743)}}, {{A, B, C, X(315), X(36414)}}, {{A, B, C, X(1235), X(40938)}}, {{A, B, C, X(1352), X(23208)}}, {{A, B, C, X(3260), X(52950)}}
X(59165) = barycentric product X(i)*X(j) for these (i, j): {315, 40938}, {1235, 36414}, {16715, 4463}, {17907, 3313}, {20806, 41375}, {23881, 52915}, {27373, 34254}, {59185, 76}
X(59165) = barycentric quotient X(i)/X(j) for these (i, j): {22, 40404}, {206, 46765}, {3313, 14376}, {8743, 16277}, {27373, 13854}, {36414, 1176}, {40938, 66}, {41375, 43678}, {52915, 53657}, {57202, 58353}, {59185, 6}


X(59166) = X(4)X(69)∩X(28)X(1851)

Barycentrics    (a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3*(b+c)+a*(b-c)^2*(b+c)+(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(59166) lies on these lines: {4, 69}, {28, 1851}, {764, 17925}, {1118, 1396}, {1842, 46883}, {1884, 49743}, {4227, 31387}, {17171, 39585}, {18180, 26892}, {31902, 52082}, {36419, 59186}, {50067, 52890}

X(59166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {71, 40406}, {52387, 57391}
X(59166) = X(i)-Dao conjugate of X(j) for these {i, j}: {18210, 57109}, {21530, 72}
X(59166)= pole of line {184, 4158} with respect to the Stammler hyperbola
X(59166) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(18732)}}, {{A, B, C, X(76), X(15474)}}, {{A, B, C, X(264), X(39267)}}, {{A, B, C, X(1119), X(40941)}}
X(59166) = barycentric product X(i)*X(j) for these (i, j): {286, 40941}, {17925, 53349}, {18651, 8747}, {21530, 36419}, {23537, 27}
X(59166) = barycentric quotient X(i)/X(j) for these (i, j): {28, 40406}, {18651, 52396}, {18674, 52387}, {18732, 3998}, {23537, 306}, {36420, 57391}, {40941, 72}, {40973, 3949}, {53282, 4574}, {53349, 52609}, {53387, 3690}, {53417, 3695}


X(59167) = X(39)X(59262)∩X(76)X(141)

Barycentrics    a^2*(b^2+c^2)^2*(2*b^2*c^2+a^2*(b^2+c^2)) : :

X(59167) lies on these lines: {39, 59262}, {76, 141}, {694, 10159}, {695, 31168}, {3051, 7772}, {4175, 7794}, {7764, 52906}, {28674, 51371}

X(59167) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31622, 46289}
X(59167) = X(i)-Dao conjugate of X(j) for these {i, j}: {39, 31622}, {3934, 83}, {6665, 31630}, {20965, 41296}, {52042, 42346}
X(59167)= pole of line {1501, 7878} with respect to the Stammler hyperbola
X(59167)= pole of line {32, 26192} with respect to the Wallace hyperbola
X(59167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(8041)}}, {{A, B, C, X(1502), X(7794)}}, {{A, B, C, X(3934), X(14603)}}, {{A, B, C, X(4175), X(40050)}}
X(59167) = barycentric product X(i)*X(j) for these (i, j): {1235, 23210}, {3934, 8041}, {20965, 7794}, {42548, 8024}
X(59167) = barycentric quotient X(i)/X(j) for these (i, j): {141, 31622}, {7794, 31630}, {8041, 39968}, {20965, 52395}, {23210, 1176}, {42548, 251}


X(59168) = X(10)X(75)∩X(519)X(14823)

Barycentrics    (b*c-a*(b+c))^2*(a*(b-c)^2+b*c*(b+c)) : :

X(59168) lies on these lines: {10, 75}, {519, 14823}, {3244, 38986}, {3840, 17448}, {3971, 21337}, {6682, 25614}, {8715, 57505}, {20528, 25102}, {20691, 40610}, {27137, 52895}, {27538, 40598}, {53675, 53676}

X(59168) = center of circumconic {{A, B, C, X(25312), X(36863)}}
X(59168) = X(i)-isoconjugate-of-X(j) for these {i, j}: {53678, 57400}
X(59168) = X(i)-Dao conjugate of X(j) for these {i, j}: {3123, 43931}, {3840, 87}
X(59168) = X(i)-Ceva conjugate of X(j) for these {i, j}: {36863, 23886}
X(59168) = X(i)-complementary conjugate of X(j) for these {i, j}: {2176, 40598}, {29227, 4083}, {36598, 3840}, {36614, 75}, {36630, 20258}, {38247, 20255}
X(59168) = intersection, other than A, B, C, of circumconics {{A, B, C, X(75), X(17448)}}, {{A, B, C, X(76), X(3840)}}, {{A, B, C, X(313), X(21025)}}, {{A, B, C, X(3971), X(56250)}}, {{A, B, C, X(8026), X(20943)}}, {{A, B, C, X(10009), X(16722)}}, {{A, B, C, X(22343), X(34832)}}
X(59168) = barycentric product X(i)*X(j) for these (i, j): {3840, 53675}, {16722, 3971}, {17448, 8026}, {20892, 53676}, {25312, 3835}
X(59168) = barycentric quotient X(i)/X(j) for these (i, j): {3840, 53677}, {17448, 53678}, {20892, 53679}, {22343, 53146}, {23213, 15373}, {25312, 4598}, {53145, 57400}, {53675, 32011}
X(59168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 6376, 34832}


X(59169) = X(6)X(34138)∩X(26)X(206)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6-a^4*(b^2+c^2)+a^2*(b^4-c^4)-(b-c)*(b+c)*(b^4+c^4))*(a^6-a^4*(b^2+c^2)+a^2*(-b^4+c^4)+(b-c)*(b+c)*(b^4+c^4)) : :

X(59169) lies on these lines: {6, 34138}, {26, 206}, {76, 23128}, {297, 1993}, {525, 39643}, {3788, 46184}, {6393, 20806}, {10316, 36212}, {32661, 56004}, {42065, 44752}, {46098, 58726}

X(59169) = isotomic conjugate of X(59156)
X(59169) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 21374}, {19, 11442}, {25, 21593}, {31, 59156}, {92, 157}, {158, 23128}, {1969, 2909}, {22391, 57806}
X(59169) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59156}, {6, 11442}, {1147, 23128}, {6505, 21593}, {22391, 157}, {36033, 21374}
X(59169) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44175, 1485}, {57771, 3}
X(59169) = X(i)-cross conjugate of X(j) for these {i, j}: {14585, 3}, {59190, 1485}
X(59169)= pole of line {11442, 23128} with respect to the Stammler hyperbola
X(59169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(26)}}, {{A, B, C, X(3), X(76)}}, {{A, B, C, X(4), X(18876)}}, {{A, B, C, X(6), X(206)}}, {{A, B, C, X(22), X(34129)}}, {{A, B, C, X(25), X(28697)}}, {{A, B, C, X(54), X(14376)}}, {{A, B, C, X(68), X(2987)}}, {{A, B, C, X(97), X(16266)}}, {{A, B, C, X(263), X(46765)}}, {{A, B, C, X(287), X(15317)}}, {{A, B, C, X(288), X(1073)}}, {{A, B, C, X(394), X(1147)}}, {{A, B, C, X(671), X(45788)}}, {{A, B, C, X(1177), X(52583)}}, {{A, B, C, X(2996), X(43689)}}, {{A, B, C, X(3425), X(51454)}}, {{A, B, C, X(3431), X(34403)}}, {{A, B, C, X(3788), X(37804)}}, {{A, B, C, X(3926), X(5504)}}, {{A, B, C, X(4580), X(43679)}}, {{A, B, C, X(6391), X(7762)}}, {{A, B, C, X(6464), X(34801)}}, {{A, B, C, X(7592), X(15274)}}, {{A, B, C, X(8552), X(38936)}}, {{A, B, C, X(13472), X(42287)}}, {{A, B, C, X(14248), X(30491)}}, {{A, B, C, X(14585), X(23128)}}, {{A, B, C, X(14919), X(55980)}}, {{A, B, C, X(16867), X(34897)}}, {{A, B, C, X(18401), X(52581)}}, {{A, B, C, X(18841), X(43697)}}, {{A, B, C, X(20968), X(57202)}}, {{A, B, C, X(21399), X(21400)}}, {{A, B, C, X(32661), X(39643)}}, {{A, B, C, X(34438), X(43678)}}, {{A, B, C, X(34802), X(38259)}}, {{A, B, C, X(52350), X(56002)}}
X(59169) = barycentric product X(i)*X(j) for these (i, j): {3, 44175}, {184, 57771}, {1485, 69}, {59190, 76}
X(59169) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59156}, {3, 11442}, {48, 21374}, {63, 21593}, {184, 157}, {577, 23128}, {1485, 4}, {14575, 2909}, {14585, 22391}, {44175, 264}, {57771, 18022}, {59190, 6}


X(59170) = X(8)X(144)∩X(85)X(3817)

Barycentrics    ((a-b)^2+2*(a+b)*c-3*c^2)*(a^2+2*a*b-3*b^2-2*a*c+2*b*c+c^2)*(-2*a*(b-c)^2+a^2*(b+c)+(b-c)^2*(b+c)) : :

X(59170) lies on cubic K1066 and these lines: {8, 144}, {10, 56718}, {76, 44186}, {85, 3817}, {279, 36620}, {6554, 19605}, {41006, 43182}, {57880, 58259}

X(59170) = X(i)-isoconjugate-of-X(j) for these {i, j}: {14493, 22117}
X(59170) = X(i)-Dao conjugate of X(j) for these {i, j}: {2310, 58835}, {43182, 165}
X(59170) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44186, 20905}
X(59170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(45202)}}, {{A, B, C, X(8), X(11019)}}, {{A, B, C, X(76), X(4461)}}, {{A, B, C, X(85), X(3729)}}, {{A, B, C, X(144), X(279)}}, {{A, B, C, X(3951), X(10167)}}, {{A, B, C, X(5223), X(40133)}}
X(59170) = barycentric product X(i)*X(j) for these (i, j): {10405, 11019}, {20905, 3062}, {36620, 41006}, {40133, 44186}
X(59170) = barycentric quotient X(i)/X(j) for these (i, j): {10405, 56026}, {11019, 144}, {20905, 16284}, {20978, 3207}, {21049, 21060}, {22088, 22117}, {36620, 23618}, {40133, 165}


X(59171) = X(8)X(192)∩X(76)X(3865)

Barycentrics    (b^2+a*c)*(a*b+c^2)*(b*c*(b+c)+a*(b^2+c^2)) : :

X(59171) lies on cubic K1066 and these lines: {8, 192}, {76, 3865}, {85, 30953}, {893, 5283}, {960, 4368}, {1431, 10477}, {1432, 3485}, {1581, 43534}, {3507, 49753}, {6682, 16705}, {18786, 46877}, {27040, 33299}, {45208, 51575}

X(59171) = isotomic conjugate of X(59158)
X(59171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59158}, {171, 57399}, {172, 1258}, {7122, 40418}
X(59171) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59158}, {1107, 6645}, {3122, 7234}, {3741, 20964}, {21024, 17752}, {21838, 894}, {51575, 171}
X(59171) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7018, 20891}
X(59171)= pole of line {17103, 59158} with respect to the Wallace hyperbola
X(59171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(3741)}}, {{A, B, C, X(76), X(192)}}, {{A, B, C, X(85), X(49516)}}, {{A, B, C, X(740), X(21024)}}, {{A, B, C, X(984), X(1107)}}, {{A, B, C, X(1654), X(16738)}}, {{A, B, C, X(2292), X(18169)}}, {{A, B, C, X(17257), X(30097)}}, {{A, B, C, X(18091), X(33076)}}, {{A, B, C, X(21713), X(23928)}}
X(59171) = barycentric product X(i)*X(j) for these (i, j): {257, 3741}, {1107, 7018}, {2309, 44187}, {20891, 256}, {21024, 32010}, {30097, 4451}, {40099, 51575}, {56901, 59191}
X(59171) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59158}, {256, 1258}, {257, 40418}, {893, 57399}, {1107, 171}, {1197, 7122}, {2309, 172}, {3728, 2295}, {3741, 894}, {7018, 1221}, {16738, 17103}, {20891, 1909}, {21024, 1215}, {21713, 21021}, {21838, 20964}, {22065, 3955}, {22206, 21803}, {30097, 7176}, {32010, 40409}, {40627, 7234}, {45216, 51319}, {50510, 20981}, {51575, 6645}, {53338, 18047}


X(59172) = X(2)X(54)∩X(160)X(184)

Barycentrics    a^4*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4+b^2*c^2+c^4)) : :

X(59172) lies on these lines: {2, 54}, {25, 3202}, {110, 40393}, {160, 184}, {394, 16030}, {1216, 51255}, {8882, 44077}, {8901, 23292}, {16035, 19357}, {57136, 58308}

X(59172) = isogonal conjugate of X(59137)
X(59172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59137}, {75, 40449}, {311, 2216}, {1179, 18695}, {1953, 57903}, {14213, 40393}
X(59172) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59137}, {206, 40449}, {1209, 311}, {8901, 850}
X(59172) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54, 570}, {110, 2623}, {57746, 577}
X(59172)= pole of line {41270, 53414} with respect to the Kiepert hyperbola
X(59172)= pole of line {52, 311} with respect to the Stammler hyperbola
X(59172)= pole of line {39113, 59137} with respect to the Wallace hyperbola
X(59172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(570)}}, {{A, B, C, X(68), X(184)}}, {{A, B, C, X(96), X(51255)}}, {{A, B, C, X(569), X(44077)}}, {{A, B, C, X(1594), X(3135)}}, {{A, B, C, X(2623), X(40393)}}, {{A, B, C, X(14533), X(57875)}}, {{A, B, C, X(14573), X(41271)}}
X(59172) = barycentric product X(i)*X(j) for these (i, j): {54, 570}, {1216, 8882}, {2623, 50947}, {14533, 1594}, {15109, 30490}, {23195, 275}, {37636, 54034}, {41677, 58308}, {47328, 97}, {51255, 6}
X(59172) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59137}, {32, 40449}, {54, 57903}, {570, 311}, {1216, 28706}, {23195, 343}, {47328, 324}, {51255, 76}, {54034, 40393}
X(59172) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {54, 96, 569}


X(59173) = X(2)X(7)∩X(42)X(1401)

Barycentrics    a^2*(a+b-c)*(a-b+c)*((b-c)^2+a*(b+c)) : :

X(59173) lies on these lines: {2, 7}, {31, 26866}, {42, 1401}, {56, 1149}, {65, 21342}, {109, 9109}, {222, 1404}, {244, 40961}, {604, 1407}, {855, 37566}, {940, 7225}, {942, 37331}, {1042, 17114}, {1122, 2347}, {1201, 22344}, {1357, 1402}, {1403, 1458}, {1412, 4565}, {1422, 59263}, {1427, 53538}, {1429, 17074}, {2275, 20674}, {3217, 23089}, {3503, 10027}, {3937, 40958}, {4310, 20368}, {8027, 43924}, {9315, 17106}, {17080, 41777}, {17205, 53083}, {17595, 22097}, {18163, 18600}, {19335, 37582}, {20367, 24215}, {21362, 45204}, {40420, 42338}

X(59173) = isogonal conjugate of X(52549)
X(59173) = trilinear pole of line {6363, 42336}
X(59173) = perspector of circumconic {{A, B, C, X(664), X(6571)}}
X(59173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52549}, {2, 1261}, {8, 23617}, {9, 1222}, {21, 56258}, {55, 32017}, {200, 40420}, {312, 51476}, {333, 56190}, {341, 3451}, {346, 1476}, {644, 56323}, {650, 8706}, {1016, 40528}, {2287, 56173}, {3692, 40446}, {4130, 6613}
X(59173) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52549}, {223, 32017}, {478, 1222}, {2170, 4397}, {3452, 312}, {6609, 40420}, {12640, 30693}, {32664, 1261}, {40611, 56258}
X(59173) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57, 3752}, {934, 43924}, {1122, 1201}, {42338, 57}
X(59173) = X(i)-cross conjugate of X(j) for these {i, j}: {1201, 46367}, {20228, 1201}
X(59173)= pole of line {23865, 43924} with respect to the circumcircle
X(59173)= pole of line {14100, 51655} with respect to the Feuerbach hyperbola
X(59173)= pole of line {284, 2325} with respect to the Stammler hyperbola
X(59173)= pole of line {333, 52549} with respect to the Wallace hyperbola
X(59173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1201)}}, {{A, B, C, X(7), X(1122)}}, {{A, B, C, X(9), X(604)}}, {{A, B, C, X(56), X(5435)}}, {{A, B, C, X(57), X(7366)}}, {{A, B, C, X(63), X(7099)}}, {{A, B, C, X(81), X(27064)}}, {{A, B, C, X(88), X(27002)}}, {{A, B, C, X(226), X(52563)}}, {{A, B, C, X(329), X(1828)}}, {{A, B, C, X(527), X(6363)}}, {{A, B, C, X(608), X(5749)}}, {{A, B, C, X(738), X(5437)}}, {{A, B, C, X(894), X(1462)}}, {{A, B, C, X(908), X(48334)}}, {{A, B, C, X(1042), X(52358)}}, {{A, B, C, X(1149), X(45204)}}, {{A, B, C, X(1397), X(56546)}}, {{A, B, C, X(1412), X(3911)}}, {{A, B, C, X(1435), X(3306)}}, {{A, B, C, X(1616), X(45219)}}, {{A, B, C, X(2221), X(26065)}}, {{A, B, C, X(3057), X(18228)}}, {{A, B, C, X(3663), X(4357)}}, {{A, B, C, X(4415), X(26580)}}, {{A, B, C, X(5226), X(45205)}}, {{A, B, C, X(5257), X(21796)}}, {{A, B, C, X(6615), X(40880)}}, {{A, B, C, X(23845), X(53337)}}, {{A, B, C, X(26563), X(27184)}}, {{A, B, C, X(39980), X(50127)}}, {{A, B, C, X(40862), X(43924)}}, {{A, B, C, X(40869), X(40982)}}, {{A, B, C, X(42336), X(52896)}}
X(59173) = barycentric product X(i)*X(j) for these (i, j): {1, 1122}, {145, 46367}, {223, 42549}, {269, 3057}, {1014, 4642}, {1042, 17183}, {1106, 20895}, {1119, 22072}, {1201, 7}, {1400, 18600}, {1407, 3452}, {1412, 4415}, {1423, 27499}, {1427, 18163}, {1434, 21796}, {1461, 21120}, {1743, 45205}, {1828, 77}, {2347, 279}, {3663, 56}, {3752, 57}, {6363, 664}, {6615, 934}, {6736, 7023}, {19604, 45219}, {20228, 85}, {21272, 43924}, {21362, 3669}, {21580, 57181}, {22344, 273}, {23845, 3676}, {26563, 604}, {40151, 45204}, {40982, 7056}, {42336, 668}, {42337, 6614}, {48334, 651}, {52563, 6}
X(59173) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52549}, {31, 1261}, {56, 1222}, {57, 32017}, {109, 8706}, {604, 23617}, {1042, 56173}, {1106, 1476}, {1122, 75}, {1201, 8}, {1357, 40451}, {1397, 51476}, {1398, 40446}, {1400, 56258}, {1402, 56190}, {1407, 40420}, {1828, 318}, {2347, 346}, {3057, 341}, {3248, 40528}, {3663, 3596}, {3752, 312}, {4415, 30713}, {4642, 3701}, {6363, 522}, {6614, 6613}, {6615, 4397}, {18600, 28660}, {20228, 9}, {21120, 52622}, {21362, 646}, {21796, 2321}, {22072, 1265}, {22344, 78}, {23845, 3699}, {26563, 28659}, {27499, 27424}, {40982, 7046}, {42336, 513}, {42549, 34404}, {43924, 56323}, {45204, 44723}, {45205, 40014}, {45219, 44720}, {46367, 4373}, {48334, 4391}, {52410, 3451}, {52563, 76}
X(59173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 1423, 5435}, {57, 28017, 36570}, {57, 28039, 3306}, {672, 41264, 1400}, {1403, 7248, 1458}, {1407, 6611, 7366}, {3306, 31231, 3929}


X(59174) = X(2)X(65)∩X(31)X(184)

Barycentrics    a^3*(a+b-c)*(a-b+c)*(b+c)^2*(b^2+c^2+a*(b+c)) : :

X(59174) lies on these lines: {2, 65}, {31, 184}, {42, 4531}, {181, 756}, {321, 7235}, {961, 43070}, {1431, 11688}, {1469, 28606}, {1962, 39780}, {2292, 22076}, {3056, 37593}, {3190, 5369}, {3896, 25306}

X(59174) = isogonal conjugate of X(52550)
X(59174) = perspector of circumconic {{A, B, C, X(1415), X(21859)}}
X(59174) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52550}, {29, 57853}, {60, 1240}, {99, 57161}, {261, 1220}, {284, 40827}, {314, 2363}, {333, 14534}, {1098, 31643}, {1169, 28660}, {1791, 57779}, {1798, 44130}, {2185, 30710}, {2298, 52379}
X(59174) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52550}, {960, 314}, {1211, 18021}, {3666, 40072}, {15267, 31643}, {38986, 57161}, {40590, 40827}, {52087, 52379}
X(59174) = X(i)-Ceva conjugate of X(j) for these {i, j}: {65, 2092}, {43070, 1400}
X(59174)= pole of line {314, 52550} with respect to the Stammler hyperbola
X(59174)= pole of line {40072, 52550} with respect to the Wallace hyperbola
X(59174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2092)}}, {{A, B, C, X(31), X(756)}}, {{A, B, C, X(42), X(7122)}}, {{A, B, C, X(181), X(959)}}, {{A, B, C, X(184), X(3690)}}, {{A, B, C, X(604), X(2171)}}, {{A, B, C, X(1402), X(52567)}}, {{A, B, C, X(2175), X(7064)}}, {{A, B, C, X(2300), X(21810)}}, {{A, B, C, X(3869), X(42550)}}, {{A, B, C, X(7032), X(7237)}}, {{A, B, C, X(18262), X(50487)}}
X(59174) = barycentric product X(i)*X(j) for these (i, j): {12, 2300}, {181, 3666}, {201, 2354}, {213, 41003}, {226, 3725}, {1042, 21033}, {1193, 2171}, {1211, 1402}, {1214, 44092}, {1254, 2269}, {1400, 2292}, {1409, 429}, {1427, 40966}, {1500, 24471}, {1829, 2197}, {1880, 22076}, {1918, 45196}, {2092, 65}, {3674, 872}, {3965, 7143}, {4559, 50330}, {20653, 604}, {20967, 6354}, {21810, 56}, {21859, 6371}, {22345, 8736}, {37755, 40976}, {40590, 42550}, {42661, 651}, {52567, 6}, {53280, 57185}
X(59174) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52550}, {65, 40827}, {181, 30710}, {798, 57161}, {1193, 52379}, {1211, 40072}, {1402, 14534}, {1409, 57853}, {2092, 314}, {2171, 1240}, {2292, 28660}, {2300, 261}, {2354, 57779}, {3666, 18021}, {3674, 57992}, {3725, 333}, {20653, 28659}, {20967, 7058}, {21810, 3596}, {41003, 6385}, {42661, 4391}, {44092, 31623}, {52567, 76}, {53280, 4631}


X(59175) = X(2)X(67)∩X(6)X(10558)

Barycentrics    a^2*(2*a^2-b^2-c^2)*(a^4-a^2*b^2+b^4-c^4)*(a^4-b^4-a^2*c^2+c^4) : :

X(59175) lies on these lines: {2, 67}, {6, 10558}, {184, 574}, {394, 33927}, {1648, 44102}, {3049, 3051}, {3292, 8030}, {5967, 57496}, {10415, 11422}, {17708, 36820}

X(59175) = isogonal conjugate of X(52551)
X(59175) = perspector of circumconic {{A, B, C, X(3455), X(39413)}}
X(59175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52551}, {23, 46277}, {75, 14246}, {92, 57481}, {111, 20944}, {316, 897}, {561, 52142}, {671, 16568}, {799, 10561}, {923, 40074}, {5380, 21205}, {9979, 36085}, {10555, 24041}, {18374, 57999}, {23894, 55226}, {36128, 37804}
X(59175) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52551}, {206, 14246}, {2482, 40074}, {3005, 10555}, {6593, 316}, {15900, 18023}, {22391, 57481}, {38988, 9979}, {38996, 10561}, {40368, 52142}
X(59175) = X(i)-Ceva conjugate of X(j) for these {i, j}: {67, 187}
X(59175)= pole of line {316, 10510} with respect to the Stammler hyperbola
X(59175)= pole of line {40074, 52551} with respect to the Wallace hyperbola
X(59175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(187)}}, {{A, B, C, X(6), X(8030)}}, {{A, B, C, X(25), X(351)}}, {{A, B, C, X(184), X(3049)}}, {{A, B, C, X(251), X(48450)}}, {{A, B, C, X(394), X(1648)}}, {{A, B, C, X(468), X(37457)}}, {{A, B, C, X(1649), X(47426)}}, {{A, B, C, X(2482), X(9515)}}, {{A, B, C, X(3051), X(5468)}}, {{A, B, C, X(3108), X(18872)}}, {{A, B, C, X(3455), X(10511)}}, {{A, B, C, X(8029), X(33927)}}, {{A, B, C, X(8041), X(57132)}}, {{A, B, C, X(8541), X(10417)}}, {{A, B, C, X(39951), X(51927)}}, {{A, B, C, X(39955), X(41309)}}, {{A, B, C, X(54663), X(56395)}}
X(59175) = barycentric product X(i)*X(j) for these (i, j): {184, 57496}, {187, 67}, {2157, 896}, {3292, 8791}, {3455, 524}, {10415, 39689}, {10417, 15900}, {14357, 6}, {14567, 18019}, {17708, 351}, {18872, 36820}, {23200, 46105}, {33915, 39413}, {34897, 44102}
X(59175) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52551}, {32, 14246}, {67, 18023}, {184, 57481}, {187, 316}, {351, 9979}, {524, 40074}, {669, 10561}, {896, 20944}, {922, 16568}, {1501, 52142}, {2157, 46277}, {3124, 10555}, {3292, 37804}, {3455, 671}, {5467, 55226}, {8791, 46111}, {14357, 76}, {14567, 23}, {17708, 53080}, {23200, 22151}, {39689, 7664}, {44102, 37765}, {54274, 18311}, {57496, 18022}


X(59176) = X(2)X(54)∩X(184)X(216)

Barycentrics    a^4*(a^2-b^2-c^2)^3*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2) : :

X(59176) lies on these lines: {2, 54}, {184, 216}, {418, 14585}, {426, 1092}, {436, 847}, {578, 34965}, {1196, 46680}, {1660, 32734}, {3051, 40823}, {3135, 32661}, {5962, 52249}, {9306, 57529}, {13754, 44208}, {14593, 44080}, {17974, 52350}

X(59176) = isogonal conjugate of X(59139)
X(59176) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59139}, {24, 57806}, {92, 11547}, {136, 23999}, {158, 317}, {823, 57065}, {1093, 44179}, {1748, 2052}, {1969, 8745}, {1993, 6521}, {6520, 7763}, {6563, 36126}, {6753, 57973}, {17881, 32230}, {36416, 57898}
X(59176) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59139}, {1147, 317}, {22391, 11547}, {37864, 1093}, {37867, 7763}, {46093, 6563}
X(59176) = X(i)-Ceva conjugate of X(j) for these {i, j}: {68, 577}
X(59176) = X(i)-cross conjugate of X(j) for these {i, j}: {36433, 577}
X(59176)= pole of line {52, 317} with respect to the Stammler hyperbola
X(59176)= pole of line {39113, 59139} with respect to the Wallace hyperbola
X(59176) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(216)}}, {{A, B, C, X(3), X(6641)}}, {{A, B, C, X(25), X(426)}}, {{A, B, C, X(51), X(18912)}}, {{A, B, C, X(54), X(184)}}, {{A, B, C, X(96), X(2351)}}, {{A, B, C, X(539), X(58305)}}, {{A, B, C, X(1147), X(36433)}}, {{A, B, C, X(3135), X(44888)}}, {{A, B, C, X(14941), X(57851)}}, {{A, B, C, X(15316), X(19196)}}, {{A, B, C, X(34980), X(51821)}}, {{A, B, C, X(55549), X(57875)}}
X(59176) = barycentric product X(i)*X(j) for these (i, j): {3, 55549}, {184, 52350}, {418, 57875}, {577, 68}, {1092, 2165}, {1820, 255}, {2351, 394}, {3269, 44174}, {4100, 91}, {5562, 57703}, {14585, 20563}, {16391, 6}, {23606, 5392}, {26922, 6413}, {32320, 925}, {32734, 52613}, {36433, 55553}
X(59176) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59139}, {68, 18027}, {184, 11547}, {418, 467}, {577, 317}, {1092, 7763}, {1820, 57806}, {2351, 2052}, {4100, 44179}, {14575, 8745}, {14585, 24}, {16391, 76}, {23606, 1993}, {32320, 6563}, {32692, 52779}, {32734, 15352}, {36433, 1147}, {37754, 17881}, {39201, 57065}, {41271, 8794}, {44088, 14576}, {52350, 18022}, {52430, 1748}, {55549, 264}, {57703, 8795}, {57875, 57844}, {58310, 6753}


X(59177) = X(2)X(72)∩X(48)X(184)

Barycentrics    a^3*(b+c)^2*(-a^2+b^2+c^2)^2*(2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(59177) lies on these lines: {2, 72}, {25, 5360}, {37, 11435}, {48, 184}, {201, 1425}, {2198, 51949}, {2294, 40952}, {26885, 41503}

X(59177) = perspector of circumconic {{A, B, C, X(906), X(54970)}}
X(59177) = X(i)-isoconjugate-of-X(j) for these {i, j}: {27, 40395}, {8747, 40412}, {36419, 40435}, {40570, 44129}, {40573, 46103}, {52919, 56320}
X(59177) = X(i)-Dao conjugate of X(j) for these {i, j}: {942, 286}
X(59177) = X(i)-Ceva conjugate of X(j) for these {i, j}: {72, 18591}
X(59177)= pole of line {18591, 18673} with respect to the Jerabek hyperbola
X(59177) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18591)}}, {{A, B, C, X(48), X(2294)}}, {{A, B, C, X(184), X(1425)}}, {{A, B, C, X(201), X(212)}}, {{A, B, C, X(6056), X(7066)}}, {{A, B, C, X(23207), X(41393)}}
X(59177) = barycentric product X(i)*X(j) for these (i, j): {6, 59163}, {219, 41393}, {1841, 4158}, {2260, 52387}, {2294, 3682}, {3694, 39791}, {3949, 4303}, {3990, 442}, {3998, 40952}, {14597, 3695}, {18591, 72}, {18607, 3690}, {21675, 255}, {23207, 26942}, {40152, 40967}, {40937, 7066}, {40978, 52396}, {52386, 942}, {56839, 71}
X(59177) = barycentric quotient X(i)/X(j) for these (i, j): {228, 40395}, {3690, 40447}, {3990, 40412}, {18591, 286}, {21675, 57806}, {23207, 46103}, {40956, 36419}, {40978, 8747}, {41393, 331}, {52386, 40422}, {56839, 44129}, {59163, 76}


X(59178) = X(2)X(77)∩X(48)X(222)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(-a^2+b^2+c^2)^2*(a^2*(b-c)^2+a^3*(b+c)-a*(b-c)^2*(b+c)-(b^2-c^2)^2) : :

X(59178) lies on these lines: {2, 77}, {28, 44709}, {48, 222}, {73, 33597}, {651, 55987}, {1012, 1457}, {1394, 3576}, {1465, 44708}, {1790, 4565}

X(59178) = X(i)-isoconjugate-of-X(j) for these {i, j}: {281, 40396}, {1857, 55987}, {8748, 56195}
X(59178) = X(i)-Dao conjugate of X(j) for these {i, j}: {20262, 318}
X(59178) = X(i)-Ceva conjugate of X(j) for these {i, j}: {77, 17102}, {651, 4091}
X(59178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7011)}}, {{A, B, C, X(48), X(282)}}, {{A, B, C, X(189), X(222)}}, {{A, B, C, X(1422), X(7099)}}, {{A, B, C, X(1440), X(7053)}}, {{A, B, C, X(4091), X(55987)}}, {{A, B, C, X(7125), X(41081)}}, {{A, B, C, X(8808), X(52373)}}, {{A, B, C, X(38015), X(40943)}}
X(59178) = barycentric product X(i)*X(j) for these (i, j): {1804, 946}, {2262, 7183}, {17102, 77}, {22063, 348}, {40945, 7056}, {52097, 56972}
X(59178) = barycentric quotient X(i)/X(j) for these (i, j): {603, 40396}, {1804, 40417}, {7125, 55987}, {7335, 947}, {17102, 318}, {22063, 281}, {22341, 56195}, {40945, 7046}


X(59179) = X(2)X(79)∩X(55)X(199)

Barycentrics    a*(2*a+b+c)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2) : :

X(59179) lies on these lines: {2, 79}, {55, 199}, {60, 3337}, {1929, 13486}, {1961, 57419}, {3683, 8040}, {4973, 6533}, {7100, 17017}, {29682, 56402}

X(59179) = isogonal conjugate of X(59140)
X(59179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59140}, {35, 1268}, {319, 1126}, {1171, 3969}, {1255, 3219}, {1442, 32635}, {1796, 52412}, {2003, 4102}, {2174, 32018}, {2605, 6540}, {3678, 40438}, {4467, 8701}, {4596, 57099}, {4629, 7265}, {4632, 55210}, {6539, 40214}, {7206, 52558}, {14838, 37212}, {17095, 33635}, {17190, 30582}, {28615, 33939}, {34016, 52555}, {55235, 58294}
X(59179) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59140}, {1213, 33939}, {3647, 319}, {35076, 18160}, {56846, 52421}
X(59179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {79, 1100}
X(59179)= pole of line {3678, 56934} with respect to the Stammler hyperbola
X(59179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1100)}}, {{A, B, C, X(42), X(4068)}}, {{A, B, C, X(55), X(60)}}, {{A, B, C, X(199), X(31900)}}, {{A, B, C, X(430), X(4977)}}, {{A, B, C, X(985), X(1125)}}, {{A, B, C, X(1030), X(2248)}}, {{A, B, C, X(1929), X(1962)}}, {{A, B, C, X(3724), X(4973)}}, {{A, B, C, X(4359), X(41269)}}, {{A, B, C, X(8013), X(23928)}}, {{A, B, C, X(8025), X(40750)}}, {{A, B, C, X(52375), X(52569)}}
X(59179) = barycentric product X(i)*X(j) for these (i, j): {553, 7073}, {1100, 79}, {1125, 2160}, {1213, 52375}, {1839, 7100}, {1962, 52393}, {1989, 4973}, {2308, 30690}, {2355, 52381}, {3683, 52374}, {3686, 52372}, {4359, 6186}, {4979, 6742}, {13486, 4988}, {15455, 50512}, {26700, 4976}, {32636, 7110}, {52569, 6}
X(59179) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59140}, {79, 32018}, {553, 52421}, {1100, 319}, {1125, 33939}, {1962, 3969}, {2160, 1268}, {2308, 3219}, {2355, 52412}, {3683, 42033}, {4973, 7799}, {4977, 18160}, {4979, 4467}, {4983, 7265}, {6186, 1255}, {7073, 4102}, {13486, 4632}, {20970, 3678}, {21816, 7206}, {32636, 17095}, {50512, 14838}, {52375, 32014}, {52569, 76}


X(59180) = X(2)X(32)∩X(6)X(6664)

Barycentrics    (a^2+b^2)*(a^2+c^2)*(2*a^2+b^2+c^2) : :

X(59180) lies on these lines: {2, 32}, {6, 6664}, {22, 41917}, {39, 35929}, {82, 17280}, {99, 3108}, {194, 16952}, {308, 7766}, {385, 18092}, {733, 31613}, {1031, 41513}, {1176, 7500}, {1180, 7878}, {1194, 51906}, {1370, 58852}, {1383, 37876}, {2980, 7394}, {3329, 6636}, {3407, 30505}, {3618, 46288}, {3995, 4366}, {4580, 18311}, {5007, 39998}, {5133, 53489}, {5395, 16277}, {5640, 10551}, {6997, 10547}, {7378, 32581}, {7408, 32085}, {7797, 37349}, {7804, 8024}, {7875, 16890}, {8029, 58784}, {8627, 10191}, {9147, 17997}, {10159, 39676}, {10330, 11205}, {11606, 52936}, {16949, 31088}, {16950, 34482}, {16951, 31128}, {17302, 39723}, {18099, 20045}, {20063, 51860}, {20965, 42421}, {31610, 39289}, {33090, 39722}, {38862, 55085}, {39287, 43768}, {39724, 39728}, {40000, 40002}, {40163, 59266}, {41295, 41296}, {46226, 57421}, {52395, 56975}

X(59180) = isogonal conjugate of X(52554)
X(59180) = perspector of circumconic {{A, B, C, X(4577), X(6573)}}
X(59180) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52554}, {38, 3108}, {163, 31067}, {1964, 10159}, {2084, 35137}, {7953, 8061}, {17442, 41435}
X(59180) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52554}, {115, 31067}, {3589, 7794}, {6292, 141}, {15527, 826}, {39691, 2528}, {41884, 10159}, {51906, 523}
X(59180) = X(i)-Ceva conjugate of X(j) for these {i, j}: {83, 3589}, {99, 18105}, {38278, 52898}, {52936, 58784}
X(59180) = X(i)-cross conjugate of X(j) for these {i, j}: {3589, 52570}, {8664, 10330}
X(59180)= pole of line {39, 52554} with respect to the Stammler hyperbola
X(59180)= pole of line {826, 18105} with respect to the Steiner circumellipse
X(59180)= pole of line {141, 52554} with respect to the Wallace hyperbola
X(59180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(428)}}, {{A, B, C, X(4), X(3096)}}, {{A, B, C, X(6), X(1627)}}, {{A, B, C, X(32), X(5007)}}, {{A, B, C, X(83), X(52570)}}, {{A, B, C, X(262), X(7899)}}, {{A, B, C, X(308), X(39668)}}, {{A, B, C, X(315), X(5395)}}, {{A, B, C, X(598), X(7883)}}, {{A, B, C, X(754), X(7927)}}, {{A, B, C, X(1078), X(3407)}}, {{A, B, C, X(1383), X(44091)}}, {{A, B, C, X(1916), X(7944)}}, {{A, B, C, X(2896), X(41513)}}, {{A, B, C, X(3108), X(18105)}}, {{A, B, C, X(3785), X(7767)}}, {{A, B, C, X(6292), X(11606)}}, {{A, B, C, X(7809), X(52618)}}, {{A, B, C, X(7812), X(18842)}}, {{A, B, C, X(7889), X(14381)}}, {{A, B, C, X(7914), X(43688)}}, {{A, B, C, X(8024), X(31124)}}, {{A, B, C, X(8623), X(8664)}}, {{A, B, C, X(10130), X(37876)}}, {{A, B, C, X(10330), X(17941)}}, {{A, B, C, X(16707), X(39747)}}, {{A, B, C, X(17280), X(39728)}}, {{A, B, C, X(17302), X(33090)}}, {{A, B, C, X(20022), X(39289)}}, {{A, B, C, X(21248), X(31125)}}, {{A, B, C, X(22352), X(56338)}}, {{A, B, C, X(31168), X(54539)}}, {{A, B, C, X(31268), X(42006)}}, {{A, B, C, X(33091), X(39724)}}, {{A, B, C, X(39722), X(39723)}}, {{A, B, C, X(40002), X(51860)}}, {{A, B, C, X(40850), X(58784)}}, {{A, B, C, X(42052), X(54459)}}
X(59180) = barycentric product X(i)*X(j) for these (i, j): {251, 39998}, {308, 5007}, {689, 8664}, {1176, 44142}, {1799, 428}, {3589, 83}, {4577, 7927}, {10330, 58784}, {16707, 18098}, {17200, 18082}, {17469, 3112}, {18062, 55240}, {22352, 46104}, {32085, 7767}, {52395, 6292}, {52570, 6}
X(59180) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52554}, {83, 10159}, {251, 3108}, {428, 427}, {523, 31067}, {827, 7953}, {1176, 41435}, {1799, 57852}, {3589, 141}, {4030, 3703}, {4577, 35137}, {5007, 39}, {6292, 7794}, {7198, 3665}, {7767, 3933}, {7927, 826}, {8664, 3005}, {10330, 4576}, {11205, 8041}, {16707, 16703}, {17200, 16887}, {17469, 38}, {18062, 55239}, {21802, 3954}, {22352, 3917}, {39998, 8024}, {40003, 46748}, {41650, 41651}, {44091, 1843}, {44142, 1235}, {48101, 16892}, {48152, 48084}, {52395, 40425}, {52570, 76}, {52898, 31068}, {58784, 31065}
X(59180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1369, 31124}, {2, 20088, 1369}, {2, 251, 52898}, {6, 16932, 8267}, {83, 1799, 39668}, {83, 42037, 251}, {83, 52376, 27005}, {251, 39668, 1799}, {1799, 39668, 2}


X(59181) = X(2)X(85)∩X(7)X(3434)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(-(b-c)^2+a*(b+c)) : :

X(59181) lies on these lines: {2, 85}, {7, 3434}, {57, 24596}, {63, 42309}, {65, 24800}, {75, 51351}, {77, 4666}, {81, 1462}, {100, 9446}, {142, 42449}, {200, 30806}, {321, 6063}, {354, 35312}, {479, 9776}, {658, 27003}, {664, 3957}, {693, 23615}, {1111, 11019}, {1229, 1233}, {1418, 16708}, {1441, 4967}, {1565, 8226}, {1621, 14189}, {3188, 20835}, {3218, 33765}, {3668, 24547}, {3673, 10580}, {3870, 9312}, {3945, 4883}, {4358, 21609}, {4359, 7182}, {4847, 10481}, {5088, 7411}, {5880, 30623}, {6605, 42311}, {7191, 56783}, {7205, 20892}, {7243, 36595}, {8551, 10025}, {10431, 17170}, {14548, 17863}, {17169, 53237}, {17862, 23989}, {20905, 57792}, {28605, 59200}, {29817, 55082}, {30051, 30097}, {30690, 52156}, {31019, 50562}, {31527, 41918}, {34028, 41246}, {56074, 56274}

X(59181) = isogonal conjugate of X(59141)
X(59181) = isotomic conjugate of X(6605)
X(59181) = complement of X(43989)
X(59181) = trilinear pole of line {6362, 23599}
X(59181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59141}, {6, 10482}, {31, 6605}, {32, 56118}, {41, 2346}, {55, 1174}, {607, 47487}, {657, 53243}, {1170, 1253}, {1803, 7071}, {2175, 32008}, {2194, 56255}, {9447, 57815}, {14827, 21453}, {56157, 57657}
X(59181) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6605}, {3, 59141}, {9, 10482}, {142, 220}, {223, 1174}, {1111, 522}, {1212, 9}, {1214, 56255}, {3119, 4105}, {3160, 2346}, {6376, 56118}, {10481, 11495}, {16601, 40659}, {17113, 1170}, {40593, 32008}, {40606, 55}, {40615, 58322}
X(59181) = X(i)-Ceva conjugate of X(j) for these {i, j}: {85, 142}, {664, 24002}, {52937, 693}
X(59181) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1223, 3436}
X(59181) = X(i)-cross conjugate of X(j) for these {i, j}: {142, 20880}, {1418, 53237}, {10481, 53242}, {21104, 35312}, {45226, 2}, {52023, 10481}
X(59181)= pole of line {3900, 24002} with respect to the Steiner circumellipse
X(59181)= pole of line {2287, 3693} with respect to the Wallace hyperbola
X(59181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(142)}}, {{A, B, C, X(7), X(17093)}}, {{A, B, C, X(81), X(241)}}, {{A, B, C, X(85), X(1233)}}, {{A, B, C, X(92), X(30854)}}, {{A, B, C, X(279), X(10481)}}, {{A, B, C, X(321), X(3925)}}, {{A, B, C, X(331), X(52422)}}, {{A, B, C, X(348), X(17169)}}, {{A, B, C, X(693), X(40864)}}, {{A, B, C, X(948), X(15474)}}, {{A, B, C, X(1088), X(53242)}}, {{A, B, C, X(1170), X(5173)}}, {{A, B, C, X(1212), X(42064)}}, {{A, B, C, X(1418), X(1427)}}, {{A, B, C, X(1855), X(6554)}}, {{A, B, C, X(3059), X(6605)}}, {{A, B, C, X(3870), X(30628)}}, {{A, B, C, X(3873), X(7131)}}, {{A, B, C, X(4573), X(35312)}}, {{A, B, C, X(6362), X(44664)}}, {{A, B, C, X(10405), X(51972)}}, {{A, B, C, X(17079), X(53240)}}, {{A, B, C, X(17095), X(52156)}}, {{A, B, C, X(17194), X(24635)}}, {{A, B, C, X(20905), X(41798)}}, {{A, B, C, X(21453), X(24002)}}, {{A, B, C, X(30690), X(30807)}}, {{A, B, C, X(34018), X(53237)}}, {{A, B, C, X(43971), X(43989)}}
X(59181) = barycentric product X(i)*X(j) for these (i, j): {142, 85}, {190, 23599}, {274, 52023}, {354, 6063}, {1088, 4847}, {1212, 57792}, {1229, 279}, {1231, 53238}, {1233, 57}, {1418, 76}, {1441, 17169}, {1446, 16713}, {1475, 20567}, {3059, 57880}, {3925, 57785}, {4569, 6362}, {4572, 48151}, {4625, 55282}, {10030, 53239}, {10481, 75}, {13156, 40702}, {16708, 226}, {18164, 349}, {20880, 7}, {21104, 4554}, {21127, 46406}, {22053, 57787}, {23062, 51972}, {34018, 51384}, {35312, 693}, {35338, 52621}, {40704, 53241}, {42311, 6067}, {52937, 6608}, {53236, 65}, {53237, 69}, {53242, 8}
X(59181) = barycentric quotient X(i)/X(j) for these (i, j): {1, 10482}, {2, 6605}, {6, 59141}, {7, 2346}, {57, 1174}, {75, 56118}, {77, 47487}, {85, 32008}, {142, 9}, {226, 56255}, {279, 1170}, {349, 56127}, {354, 55}, {934, 53243}, {1088, 21453}, {1212, 220}, {1229, 346}, {1233, 312}, {1418, 6}, {1419, 33634}, {1441, 56157}, {1475, 41}, {1827, 7071}, {1855, 7079}, {2293, 1253}, {2488, 8641}, {3059, 480}, {3676, 58322}, {3925, 210}, {4569, 6606}, {4625, 55281}, {4847, 200}, {6063, 57815}, {6067, 3059}, {6362, 3900}, {6608, 4105}, {7056, 40443}, {7177, 1803}, {8012, 6602}, {10481, 1}, {10581, 57180}, {13156, 282}, {15185, 6600}, {16708, 333}, {16713, 2287}, {17169, 21}, {17194, 2328}, {18087, 56245}, {18164, 284}, {20229, 14827}, {20880, 8}, {21104, 650}, {21127, 657}, {21808, 1334}, {22053, 212}, {23062, 10509}, {23599, 514}, {24002, 56322}, {34497, 38835}, {35312, 100}, {35338, 3939}, {40983, 2212}, {41555, 15733}, {41570, 47375}, {41573, 3174}, {48151, 663}, {51384, 3693}, {51416, 51380}, {51424, 51361}, {51463, 3689}, {51972, 728}, {52023, 37}, {53236, 314}, {53237, 4}, {53238, 1172}, {53239, 4876}, {53240, 1320}, {53241, 294}, {53242, 7}, {55282, 4041}, {57252, 6608}, {57792, 31618}, {57880, 42311}, {59202, 3886}
X(59181) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1088, 37780}, {85, 1088, 2}, {85, 1446, 26563}, {664, 21453, 3957}, {40719, 56309, 4666}


X(59182) = X(2)X(87)∩X(42)X(2162)

Barycentrics    a^2*(a*(b-c)+b*c)*(a*b-(a+b)*c)*(a*(b-c)^2-b*c*(b+c)) : :

X(59182) lies on these lines: {2, 87}, {42, 2162}, {330, 17155}, {899, 33784}, {2308, 7121}, {3051, 51864}, {3720, 40720}, {17105, 17127}, {20971, 21757}, {23493, 40148}, {23538, 53146}, {37685, 40753}

X(59182) = X(i)-isoconjugate-of-X(j) for these {i, j}: {43, 55997}, {192, 56011}, {25142, 35572}
X(59182) = X(i)-Dao conjugate of X(j) for these {i, j}: {3248, 4083}, {34832, 6376}
X(59182) = X(i)-Ceva conjugate of X(j) for these {i, j}: {87, 16604}
X(59182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(16604)}}, {{A, B, C, X(42), X(21827)}}, {{A, B, C, X(87), X(21757)}}, {{A, B, C, X(310), X(24165)}}, {{A, B, C, X(9309), X(26069)}}, {{A, B, C, X(31270), X(40780)}}
X(59182) = barycentric product X(i)*X(j) for these (i, j): {2162, 24165}, {16604, 87}, {16710, 23493}, {17459, 53678}, {20971, 53677}, {21757, 6384}, {34071, 48406}, {34832, 53146}, {52573, 6}
X(59182) = barycentric quotient X(i)/X(j) for these (i, j): {2162, 55997}, {7121, 56011}, {16604, 6376}, {17459, 8026}, {20971, 53675}, {21128, 58377}, {21757, 43}, {21827, 3971}, {22378, 22370}, {24165, 6382}, {52573, 76}
X(59182) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 53678, 52899}, {87, 53678, 2}


X(59183) = X(2)X(95)∩X(3)X(6662)

Barycentrics    ((a^2-b^2)^2-(a^2+b^2)*c^2)*(2*a^4+(b^2-c^2)^2-3*a^2*(b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2)) : :

X(59183) lies on these lines: {2, 95}, {3, 6662}, {20, 19179}, {54, 3523}, {140, 22269}, {276, 51350}, {323, 19170}, {324, 43752}, {376, 19176}, {401, 40207}, {631, 19210}, {648, 31626}, {1216, 19168}, {1994, 41334}, {2979, 21638}, {3522, 8884}, {3917, 19167}, {4994, 5056}, {5059, 19169}, {5664, 15412}, {6636, 19189}, {7485, 9755}, {7495, 40634}, {9464, 34384}, {11004, 59157}, {13147, 31389}, {15066, 19180}, {15694, 46452}, {16063, 19174}, {19166, 45794}, {22052, 40684}, {23295, 31101}, {26874, 43975}, {32078, 35311}, {32831, 34386}, {37068, 56296}, {37126, 40631}, {37636, 53576}, {37872, 56266}, {39287, 52898}, {39955, 42300}, {43998, 57528}, {56290, 56302}

X(59183) = isogonal conjugate of X(59142)
X(59183) = isotomic conjugate of X(31610)
X(59183) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59142}, {31, 31610}, {1173, 1953}, {2179, 40410}, {2181, 31626}, {33631, 44706}
X(59183) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 31610}, {3, 59142}, {140, 36412}, {233, 5}, {1493, 216}, {11792, 12077}, {22052, 143}, {33549, 53}, {35442, 57195}
X(59183) = X(i)-Ceva conjugate of X(j) for these {i, j}: {95, 140}
X(59183) = X(i)-cross conjugate of X(j) for these {i, j}: {36422, 140}
X(59183)= pole of line {216, 59142} with respect to the Stammler hyperbola
X(59183)= pole of line {6368, 46114} with respect to the Steiner inellipse
X(59183)= pole of line {343, 31610} with respect to the Wallace hyperbola
X(59183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(140)}}, {{A, B, C, X(233), X(36422)}}, {{A, B, C, X(317), X(1232)}}, {{A, B, C, X(459), X(43462)}}, {{A, B, C, X(577), X(22052)}}, {{A, B, C, X(3087), X(6748)}}, {{A, B, C, X(4993), X(37872)}}, {{A, B, C, X(8796), X(44732)}}, {{A, B, C, X(10311), X(13366)}}, {{A, B, C, X(14918), X(57811)}}, {{A, B, C, X(14978), X(31610)}}, {{A, B, C, X(19188), X(57875)}}
X(59183) = barycentric product X(i)*X(j) for these (i, j): {140, 95}, {1232, 54}, {1493, 57765}, {13366, 34384}, {17168, 56246}, {20879, 2167}, {22052, 276}, {31617, 36422}, {34386, 6748}, {35441, 52939}, {40684, 97}
X(59183) = barycentric quotient X(i)/X(j) for these (i, j): {2, 31610}, {6, 59142}, {54, 1173}, {95, 40410}, {97, 31626}, {140, 5}, {233, 36412}, {252, 1487}, {275, 39284}, {1232, 311}, {1493, 143}, {3078, 23607}, {6748, 53}, {8882, 33631}, {13366, 51}, {15412, 39183}, {17168, 17167}, {17438, 1953}, {18831, 33513}, {20879, 14213}, {21012, 21011}, {21103, 21102}, {22052, 216}, {23286, 39180}, {35311, 35360}, {35324, 1625}, {35441, 57195}, {36153, 10095}, {36422, 233}, {39287, 39289}, {40684, 324}, {44732, 13450}, {46089, 20574}, {55280, 12077}, {57811, 45793}
X(59183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 97, 43768}, {14918, 58417, 2}


X(59184) = X(2)X(95)∩X(3)X(21638)

Barycentrics    a^4*(-a^2+b^2+c^2)^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)-3*a^4*(b^4+c^4)-(b^2-c^2)^2*(b^4+c^4)) : :

X(59184) lies on these lines: {2, 95}, {3, 21638}, {184, 43975}, {1092, 19210}, {4558, 43767}, {8613, 43752}, {19170, 46832}

X(59184) = X(i)-Dao conjugate of X(j) for these {i, j}: {389, 36412}, {34836, 324}, {53576, 14618}
X(59184) = X(i)-Ceva conjugate of X(j) for these {i, j}: {97, 46832}
X(59184)= pole of line {216, 13450} with respect to the Stammler hyperbola
X(59184) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1092)}}, {{A, B, C, X(3), X(46760)}}, {{A, B, C, X(275), X(19170)}}, {{A, B, C, X(3087), X(14642)}}, {{A, B, C, X(43462), X(52280)}}
X(59184) = barycentric product X(i)*X(j) for these (i, j): {3964, 51887}, {19170, 394}, {19210, 45198}, {46832, 97}
X(59184) = barycentric quotient X(i)/X(j) for these (i, j): {389, 13450}, {14533, 40402}, {19170, 2052}, {19210, 40448}, {46832, 324}, {51887, 1093}


X(59185) = X(2)X(3)∩X(112)X(8793)

Barycentrics    a^4*(b^2+c^2)*(-a^4+b^4+c^4)^2*(-a^4+(b^2-c^2)^2) : :

X(59185) lies on these lines: {2, 3}, {112, 8793}, {159, 19595}, {206, 17409}, {3162, 15270}, {10316, 19615}, {23208, 27373}, {33652, 54080}, {40052, 56921}

X(59185) = X(i)-isoconjugate-of-X(j) for these {i, j}: {46244, 46765}
X(59185) = X(i)-Dao conjugate of X(j) for these {i, j}: {32, 40404}, {427, 18018}
X(59185) = X(i)-Ceva conjugate of X(j) for these {i, j}: {22, 40938}, {52915, 57202}
X(59185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(206)}}, {{A, B, C, X(3), X(22075)}}, {{A, B, C, X(4), X(17409)}}, {{A, B, C, X(141), X(26159)}}, {{A, B, C, X(1370), X(3313)}}, {{A, B, C, X(3051), X(14003)}}, {{A, B, C, X(5133), X(41375)}}, {{A, B, C, X(10316), X(28696)}}, {{A, B, C, X(15013), X(57202)}}, {{A, B, C, X(20806), X(28701)}}, {{A, B, C, X(26209), X(40358)}}
X(59185) = barycentric product X(i)*X(j) for these (i, j): {6, 59165}, {22, 40938}, {3313, 8743}, {10316, 41375}, {17907, 23208}, {20806, 27373}, {36414, 427}, {46151, 57202}
X(59185) = barycentric quotient X(i)/X(j) for these (i, j): {206, 40404}, {17409, 16277}, {20968, 46765}, {23208, 14376}, {27373, 43678}, {36414, 1799}, {40938, 18018}, {59165, 76}


X(59186) = X(2)X(3)∩X(278)X(1474)

Barycentrics    (a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^3+a^2*(b+c)+(b-c)^2*(b+c)) : :

X(59186) lies on these lines: {2, 3}, {278, 1474}, {1119, 1396}, {1842, 40940}, {1851, 2203}, {6545, 17925}, {16099, 52919}, {19787, 38457}, {30117, 46883}, {36419, 59166}

X(59186) = isogonal conjugate of X(52561)
X(59186) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52561}, {71, 1257}, {72, 2983}, {656, 29163}, {951, 3694}, {3990, 40445}, {40431, 52386}, {52370, 58005}, {52387, 57390}
X(59186) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 52561}, {440, 306}, {40596, 29163}
X(59186) = X(i)-Ceva conjugate of X(j) for these {i, j}: {27, 40940}, {36118, 57200}, {52919, 17925}
X(59186)= pole of line {3, 4158} with respect to the Stammler hyperbola
X(59186)= pole of line {69, 52561} with respect to the Wallace hyperbola
X(59186) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1119)}}, {{A, B, C, X(3), X(1407)}}, {{A, B, C, X(4), X(1842)}}, {{A, B, C, X(21), X(1396)}}, {{A, B, C, X(29), X(40574)}}, {{A, B, C, X(30), X(29162)}}, {{A, B, C, X(57), X(404)}}, {{A, B, C, X(277), X(33833)}}, {{A, B, C, X(278), X(5125)}}, {{A, B, C, X(377), X(55110)}}, {{A, B, C, X(405), X(1104)}}, {{A, B, C, X(440), X(16099)}}, {{A, B, C, X(447), X(17925)}}, {{A, B, C, X(452), X(950)}}, {{A, B, C, X(464), X(18650)}}, {{A, B, C, X(867), X(6545)}}, {{A, B, C, X(1019), X(6909)}}, {{A, B, C, X(1435), X(4219)}}, {{A, B, C, X(1532), X(51410)}}, {{A, B, C, X(2224), X(6986)}}, {{A, B, C, X(2264), X(13615)}}, {{A, B, C, X(4183), X(5317)}}, {{A, B, C, X(4190), X(52393)}}, {{A, B, C, X(4193), X(6557)}}, {{A, B, C, X(4204), X(40977)}}, {{A, B, C, X(5142), X(39267)}}, {{A, B, C, X(8021), X(34079)}}, {{A, B, C, X(13589), X(14543)}}, {{A, B, C, X(46595), X(53290)}}
X(59186) = barycentric product X(i)*X(j) for these (i, j): {27, 40940}, {1104, 286}, {1842, 86}, {14543, 17925}, {17863, 28}, {18650, 8747}, {29162, 648}, {36419, 440}
X(59186) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52561}, {28, 1257}, {112, 29163}, {950, 3710}, {1104, 72}, {1474, 2983}, {1834, 3695}, {1842, 10}, {2264, 3694}, {8747, 40445}, {14543, 52609}, {17863, 20336}, {18650, 52396}, {18673, 52387}, {29162, 525}, {36419, 40414}, {36420, 57390}, {40940, 306}, {40977, 3949}, {40984, 3690}, {44093, 52386}, {51410, 51367}, {53290, 4574}
X(59186) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {27, 28, 7490}


X(59187) = X(2)X(3)∩X(281)X(2328)

Barycentrics    (a+b)*(a+c)*(-a+b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^4-a^2*(b-c)^2+a^3*(b+c)-a*(b-c)^2*(b+c)-(b^2-c^2)^2) : :

X(59187) lies on these lines: {2, 3}, {58, 40836}, {154, 46011}, {196, 5327}, {278, 17188}, {281, 2328}, {284, 44695}, {1172, 2192}, {1857, 2194}, {2287, 7046}, {6525, 46019}, {7008, 40979}, {8558, 46884}, {17926, 23615}

X(59187) = isogonal conjugate of X(59144)
X(59187) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59144}, {1214, 40407}
X(59187) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59144}, {18641, 307}
X(59187) = X(i)-Ceva conjugate of X(j) for these {i, j}: {29, 40942}, {52921, 17926}
X(59187)= pole of line {3, 59144} with respect to the Stammler hyperbola
X(59187)= pole of line {69, 59144} with respect to the Wallace hyperbola
X(59187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7003)}}, {{A, B, C, X(3), X(2192)}}, {{A, B, C, X(20), X(4292)}}, {{A, B, C, X(33), X(7412)}}, {{A, B, C, X(200), X(1005)}}, {{A, B, C, X(377), X(23661)}}, {{A, B, C, X(406), X(7046)}}, {{A, B, C, X(440), X(1901)}}, {{A, B, C, X(1172), X(1817)}}, {{A, B, C, X(2287), X(27174)}}, {{A, B, C, X(10883), X(36620)}}, {{A, B, C, X(14544), X(53160)}}, {{A, B, C, X(14953), X(40395)}}, {{A, B, C, X(17926), X(44331)}}, {{A, B, C, X(19607), X(28946)}}, {{A, B, C, X(37279), X(53817)}}, {{A, B, C, X(40836), X(52248)}}
X(59187) = barycentric product X(i)*X(j) for these (i, j): {29, 40942}, {1172, 23661}, {2322, 4292}, {14544, 17926}, {18641, 36421}
X(59187) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59144}, {1901, 6356}, {2299, 40407}, {4292, 56382}, {23661, 1231}, {40942, 307}, {53325, 52610}
X(59187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 29, 7498}


X(59188) = X(2)X(32)∩X(184)X(43977)

Barycentrics    a^4*(a^2+b^2)*(a^2+c^2)*(b^4+c^4+a^2*(b^2+c^2)) : :

X(59188) lies on these lines: {2, 32}, {184, 43977}, {428, 34294}, {1184, 15652}, {1194, 52580}, {1974, 17409}, {10551, 42295}, {16950, 52570}, {41331, 51862}

X(59188) = isogonal conjugate of X(59154)
X(59188) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59154}, {38, 1241}, {8061, 35567}
X(59188) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59154}, {11574, 7794}, {21248, 8024}, {37891, 52568}
X(59188) = X(i)-Ceva conjugate of X(j) for these {i, j}: {112, 18105}, {251, 1194}
X(59188)= pole of line {39, 14125} with respect to the Stammler hyperbola
X(59188)= pole of line {141, 59154} with respect to the Wallace hyperbola
X(59188) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1194)}}, {{A, B, C, X(25), X(33651)}}, {{A, B, C, X(83), X(52580)}}, {{A, B, C, X(315), X(17409)}}, {{A, B, C, X(1078), X(47643)}}, {{A, B, C, X(1799), X(46288)}}, {{A, B, C, X(3096), X(6656)}}, {{A, B, C, X(3785), X(40319)}}, {{A, B, C, X(6292), X(41272)}}, {{A, B, C, X(16985), X(56975)}}, {{A, B, C, X(36417), X(52395)}}, {{A, B, C, X(40876), X(47126)}}
X(59188) = barycentric product X(i)*X(j) for these (i, j): {1194, 251}, {2514, 827}, {4630, 47126}, {17446, 46289}, {46288, 6656}, {52580, 6}
X(59188) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59154}, {251, 1241}, {827, 35567}, {1194, 8024}, {2514, 23285}, {6656, 52568}, {52580, 76}
X(59188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {251, 1627, 52898}, {251, 38834, 1799}


X(59189) = X(2)X(254)∩X(6)X(14593)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-2*(a^2+b^2)*c^2+c^4)*((a^2-b^2)^3-(a^2-3*b^2)*(a^2+b^2)*c^2-(a^2+3*b^2)*c^4+c^6)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^6+(b^2-c^2)^3-a^2*(b^2-3*c^2)*(b^2+c^2)-a^4*(b^2+3*c^2)) : :

X(59189) lies on these lines: {2, 254}, {6, 14593}, {68, 8800}, {111, 39416}, {2970, 52350}, {2987, 6504}, {42407, 46746}, {47328, 47732}

X(59189) = isogonal conjugate of X(59155)
X(59189) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59155}, {47, 40697}, {155, 44179}, {326, 35603}, {920, 9723}, {1147, 33808}, {1748, 6503}
X(59189) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59155}, {15259, 35603}, {34853, 40697}, {37864, 155}
X(59189) = X(i)-Ceva conjugate of X(j) for these {i, j}: {254, 2165}
X(59189) = X(i)-cross conjugate of X(j) for these {i, j}: {2351, 14593}
X(59189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(68), X(39111)}}, {{A, B, C, X(254), X(39109)}}, {{A, B, C, X(847), X(14593)}}, {{A, B, C, X(2351), X(34853)}}, {{A, B, C, X(6524), X(36612)}}, {{A, B, C, X(8800), X(39117)}}, {{A, B, C, X(14569), X(56272)}}, {{A, B, C, X(52350), X(55253)}}
X(59189) = barycentric product X(i)*X(j) for these (i, j): {2165, 254}, {14593, 6504}, {32132, 393}, {39109, 5392}, {39416, 523}, {41536, 96}, {47731, 57697}, {52582, 6}
X(59189) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59155}, {254, 7763}, {2165, 40697}, {2207, 35603}, {2351, 6503}, {14593, 6515}, {32132, 3926}, {39109, 1993}, {39416, 99}, {41536, 39113}, {52582, 76}, {58757, 57070}
X(59189) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {254, 52582, 32132}


X(59190) = X(2)X(11610)∩X(232)X(571)

Barycentrics    a^4*(a^2-b^2-c^2)*(a^6-a^4*(b^2+c^2)+a^2*(b^4-c^4)-(b-c)*(b+c)*(b^4+c^4))*(a^6-a^4*(b^2+c^2)+a^2*(-b^4+c^4)+(b-c)*(b+c)*(b^4+c^4)) : :

X(59190) lies on these lines: {2, 11610}, {232, 571}, {237, 20968}, {3289, 22075}, {10316, 36212}, {41765, 44375}, {46262, 57703}

X(59190) = isogonal conjugate of X(59156)
X(59190) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59156}, {4, 21593}, {92, 11442}, {157, 1969}, {264, 21374}, {23128, 57806}
X(59190) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59156}, {22391, 11442}, {36033, 21593}
X(59190) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44175, 184}
X(59190) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(184)}}, {{A, B, C, X(3), X(21213)}}, {{A, B, C, X(6), X(8746)}}, {{A, B, C, X(32), X(10316)}}, {{A, B, C, X(571), X(577)}}, {{A, B, C, X(2351), X(32654)}}, {{A, B, C, X(5063), X(9380)}}
X(59190) = barycentric product X(i)*X(j) for these (i, j): {6, 59169}, {184, 44175}, {1485, 3}, {14575, 57771}
X(59190) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59156}, {48, 21593}, {184, 11442}, {1485, 264}, {9247, 21374}, {14575, 157}, {14585, 23128}, {40373, 2909}, {44175, 18022}, {57771, 44161}, {59169, 76}


X(59191) = X(2)X(257)∩X(261)X(1178)

Barycentrics    (b^2+a*c)*(a*b+c^2)*(b^2+c^2+a*(b+c)) : :

X(59191) lies on these lines: {2, 257}, {256, 7019}, {261, 1178}, {904, 17017}, {1934, 43534}, {3596, 6382}, {20627, 25760}

X(59191) = isogonal conjugate of X(59159)
X(59191) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59159}, {172, 2298}, {961, 2330}, {1169, 2295}, {1220, 7122}, {2359, 7119}, {2363, 20964}, {3287, 8687}, {4367, 32736}, {4477, 52928}, {8707, 56242}, {20981, 36147}
X(59191) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59159}, {960, 20964}, {1211, 171}, {2092, 2329}, {3125, 57234}, {3666, 1215}, {4357, 6645}, {17419, 3287}, {39015, 20981}, {52087, 172}, {56905, 1840}
X(59191) = X(i)-Ceva conjugate of X(j) for these {i, j}: {257, 4357}
X(59191)= pole of line {20964, 59159} with respect to the Stammler hyperbola
X(59191)= pole of line {1215, 27958} with respect to the Wallace hyperbola
X(59191) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(261)}}, {{A, B, C, X(960), X(3061)}}, {{A, B, C, X(985), X(1829)}}, {{A, B, C, X(1193), X(32778)}}, {{A, B, C, X(1211), X(3004)}}, {{A, B, C, X(1432), X(7018)}}, {{A, B, C, X(1959), X(17185)}}, {{A, B, C, X(2292), X(18169)}}, {{A, B, C, X(3212), X(6382)}}, {{A, B, C, X(3666), X(7146)}}, {{A, B, C, X(7249), X(44187)}}, {{A, B, C, X(16705), X(17084)}}, {{A, B, C, X(18697), X(54308)}}, {{A, B, C, X(20653), X(29821)}}, {{A, B, C, X(21033), X(22230)}}
X(59191) = barycentric product X(i)*X(j) for these (i, j): {257, 4357}, {1178, 1228}, {1193, 44187}, {1211, 32010}, {1848, 7019}, {3666, 7018}, {3674, 4451}, {3687, 7249}, {3903, 4509}, {16739, 52651}, {18697, 40432}, {20911, 256}, {21124, 4594}, {27805, 3004}, {48131, 56241}, {50330, 7260}
X(59191) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59159}, {256, 2298}, {257, 1220}, {429, 1840}, {960, 2329}, {1178, 1169}, {1193, 172}, {1211, 1215}, {1228, 1237}, {1432, 961}, {1829, 7119}, {1848, 7009}, {2092, 20964}, {2269, 2330}, {2292, 2295}, {2300, 7122}, {3004, 4369}, {3666, 171}, {3674, 7176}, {3687, 7081}, {3704, 4095}, {3882, 4579}, {3903, 36147}, {3910, 3907}, {4357, 894}, {4509, 4374}, {6371, 20981}, {7015, 2359}, {7018, 30710}, {16705, 17103}, {16739, 8033}, {17420, 3287}, {18697, 3963}, {20653, 21021}, {20911, 1909}, {21124, 2533}, {21810, 21803}, {22076, 22061}, {22097, 3955}, {24471, 7175}, {27067, 18099}, {27805, 8707}, {29055, 8687}, {32010, 14534}, {37137, 36098}, {40432, 2363}, {41003, 4032}, {44187, 1240}, {48131, 4367}, {50330, 57234}, {53332, 18047}, {57158, 4529}, {59171, 56901}


X(59192) = X(58)X(2176)∩X(81)X(17459)

Barycentrics    a^3*(a+b)*(a+c)*(a*b-(a+b)*c-2*c^2)*(a*(b-c)+b*(2*b+c)) : :

X(59192) lies on these lines: {58, 2176}, {81, 17459}, {757, 27644}, {1333, 2209}, {1408, 41526}, {1575, 56011}, {21757, 34077}, {51311, 52136}

X(59192) = isogonal conjugate of X(59212)
X(59192) = trilinear pole of line {8640, 57129}
X(59192) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59212}, {2, 3993}, {10, 4393}, {37, 30963}, {42, 10009}, {75, 21904}, {190, 4806}, {313, 21793}, {321, 16468}, {3695, 31912}, {3952, 4785}, {3971, 40720}, {4033, 4782}, {4080, 4759}, {4991, 6539}, {27481, 40718}, {28654, 34476}
X(59192) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59212}, {206, 21904}, {32664, 3993}, {40589, 30963}, {40592, 10009}, {55053, 4806}
X(59192) = X(i)-cross conjugate of X(j) for these {i, j}: {40735, 51449}
X(59192)= pole of line {4393, 21904} with respect to the Stammler hyperbola
X(59192)= pole of line {10009, 27481} with respect to the Wallace hyperbola
X(59192) = polelogic center of ABC and the circumcevian triangle of X(31)
X(59192) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(904)}}, {{A, B, C, X(32), X(28615)}}, {{A, B, C, X(37), X(28244)}}, {{A, B, C, X(42), X(27646)}}, {{A, B, C, X(58), X(757)}}, {{A, B, C, X(81), X(57129)}}, {{A, B, C, X(667), X(25426)}}, {{A, B, C, X(1171), X(2206)}}, {{A, B, C, X(1575), X(17459)}}, {{A, B, C, X(2242), X(9456)}}, {{A, B, C, X(25429), X(42302)}}, {{A, B, C, X(40735), X(55971)}}
X(59192) = barycentric product X(i)*X(j) for these (i, j): {1, 51449}, {31, 55947}, {1019, 43077}, {1333, 27494}, {34475, 849}, {40735, 86}, {52654, 58}, {53648, 57129}, {55971, 6}
X(59192) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59212}, {31, 3993}, {32, 21904}, {58, 30963}, {81, 10009}, {667, 4806}, {1333, 4393}, {2206, 16468}, {27494, 27801}, {40735, 10}, {43077, 4033}, {51449, 75}, {52654, 313}, {55947, 561}, {55971, 76}, {57129, 4785}


X(59193) = X(1)X(31269)∩X(6)X(2346)

Barycentrics    a*((a-b)^2-(a+b)*c)*((b-c)*c+a*(2*b+c))*(a^2+c*(-b+c)-a*(b+2*c))*(b*(-b+c)+a*(b+2*c)) : :

X(59193) lies on these lines: {1, 31269}, {6, 2346}, {42, 21453}, {56, 1002}, {58, 10482}, {86, 2340}, {269, 10509}, {1027, 58322}, {1174, 1438}, {2191, 27475}, {5308, 10013}, {6605, 17018}, {9440, 13404}, {10579, 59269}, {14828, 59255}, {34821, 42290}, {40746, 40757}

X(59193) = isogonal conjugate of X(59217)
X(59193) = isotomic conjugate of X(59202)
X(59193) = trilinear pole of line {649, 58322}
X(59193) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59217}, {31, 59202}, {142, 2280}, {354, 1001}, {1212, 5228}, {1418, 37658}, {1471, 4847}, {1475, 4384}, {2293, 40719}, {3059, 59242}, {4724, 35338}, {4762, 35326}, {8012, 42309}, {17194, 42289}, {18164, 59207}, {48151, 54440}
X(59193) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59202}, {3, 59217}
X(59193)= pole of line {59202, 59217} with respect to the Wallace hyperbola
X(59193) = polelogic center of ABC and the circumcevian triangle of X(57)
X(59193) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(42), X(2340)}}, {{A, B, C, X(277), X(749)}}, {{A, B, C, X(279), X(31269)}}, {{A, B, C, X(949), X(14942)}}, {{A, B, C, X(1002), X(40757)}}, {{A, B, C, X(1170), X(2346)}}, {{A, B, C, X(1174), X(21453)}}, {{A, B, C, X(5308), X(17018)}}, {{A, B, C, X(9442), X(13476)}}, {{A, B, C, X(10482), X(56118)}}, {{A, B, C, X(17743), X(56314)}}, {{A, B, C, X(19767), X(39587)}}, {{A, B, C, X(39737), X(56217)}}
X(59193) = barycentric product X(i)*X(j) for these (i, j): {1, 42310}, {1002, 32008}, {1174, 59255}, {2279, 57815}, {2346, 27475}, {10509, 59269}, {21453, 40779}, {32041, 58322}, {37138, 56322}, {42290, 56118}, {42302, 56157}, {51443, 56127}
X(59193) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59202}, {6, 59217}, {1002, 142}, {1170, 40719}, {1174, 1001}, {2279, 354}, {2346, 4384}, {6605, 3886}, {8693, 35338}, {10482, 37658}, {27475, 20880}, {32008, 4441}, {40779, 4847}, {42290, 10481}, {42302, 17169}, {42310, 75}, {47487, 23151}, {51443, 18164}, {56118, 28809}, {56157, 4044}, {56255, 3696}, {57815, 21615}, {58322, 4762}, {59255, 1233}, {59269, 51972}


X(59194) = X(6)X(24944)∩X(31)X(1171)

Barycentrics    a^2*(a+b)*(a+c)*(a+2*b+c)*(a+b+2*c)*(a*b+2*(a+b)*c+c^2)*(a*(2*b+c)+b*(b+2*c)) : :

X(59194) lies on these lines: {6, 24944}, {31, 1171}, {81, 27483}, {239, 59147}, {1126, 1911}, {1255, 57397}, {1333, 25426}

X(59194) = isogonal conjugate of X(59218)
X(59194) = isotomic conjugate of X(59203)
X(59194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59218}, {31, 59203}, {37, 5625}, {1100, 3842}, {1213, 4649}, {1962, 16826}, {4115, 4784}, {4824, 35342}, {8013, 51311}, {21816, 51356}
X(59194) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59203}, {3, 59218}, {40589, 5625}
X(59194)= pole of line {5625, 59218} with respect to the Stammler hyperbola
X(59194)= pole of line {59203, 59218} with respect to the Wallace hyperbola
X(59194) = polelogic center of ABC and the circumcevian triangle of X(58)
X(59194) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(24944)}}, {{A, B, C, X(6), X(31)}}, {{A, B, C, X(239), X(20963)}}, {{A, B, C, X(274), X(42358)}}, {{A, B, C, X(1171), X(40438)}}, {{A, B, C, X(25426), X(27483)}}, {{A, B, C, X(51449), X(59243)}}
X(59194) = barycentric product X(i)*X(j) for these (i, j): {1171, 27483}, {25426, 32014}, {30571, 40438}, {52558, 59261}
X(59194) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59203}, {6, 59218}, {58, 5625}, {1126, 3842}, {1171, 16826}, {25426, 1213}, {27483, 1230}, {28841, 4115}, {30571, 4647}, {50344, 4824}, {52558, 51356}, {59261, 52576}, {59272, 8013}


X(59195) = X(2)X(56668)∩X(677)X(1815)

Barycentrics    a^2*((a-b)^2*(a+b)+(a+b)*c^2-2*c^3)^2*(a^3-2*b^3-a^2*c+b^2*c+c^3+a*(b-c)*(b+c))^2 : :

X(59195) lies on these lines: {2, 56668}, {241, 36101}, {650, 9503}, {672, 2338}, {677, 1815}, {5089, 43044}, {18025, 48381}, {43079, 56787}

X(59195) = isogonal conjugate of X(23972)
X(59195) = isotomic conjugate of X(59206)
X(59195) = trilinear pole of line {103, 46596}
X(59195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23972}, {2, 42077}, {6, 24014}, {9, 1360}, {31, 59206}, {48, 21665}, {63, 42073}, {513, 3234}, {516, 910}, {604, 55019}, {692, 58280}, {1456, 40869}, {9502, 56639}, {23973, 46392}, {41339, 43035}, {53547, 56900}
X(59195) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59206}, {3, 23972}, {9, 24014}, {478, 1360}, {1086, 58280}, {1249, 21665}, {3161, 55019}, {3162, 42073}, {32664, 42077}, {39026, 3234}, {45250, 50441}
X(59195) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 103}, {1459, 24016}, {6586, 40116}, {52213, 36101}, {54232, 18025}, {56640, 43736}
X(59195)= pole of line {23972, 59206} with respect to the Wallace hyperbola
X(59195) = polelogic center of ABC and the circumcevian triangle of X(103)
X(59195) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1262)}}, {{A, B, C, X(2), X(55)}}, {{A, B, C, X(76), X(48381)}}, {{A, B, C, X(81), X(23586)}}, {{A, B, C, X(249), X(2700)}}, {{A, B, C, X(279), X(905)}}, {{A, B, C, X(593), X(41081)}}, {{A, B, C, X(677), X(9503)}}, {{A, B, C, X(1016), X(40403)}}, {{A, B, C, X(1170), X(23984)}}, {{A, B, C, X(1171), X(23964)}}, {{A, B, C, X(1459), X(23971)}}, {{A, B, C, X(1815), X(43736)}}, {{A, B, C, X(2052), X(25259)}}, {{A, B, C, X(2338), X(36101)}}, {{A, B, C, X(7054), X(24635)}}, {{A, B, C, X(25930), X(56179)}}, {{A, B, C, X(30457), X(42483)}}, {{A, B, C, X(40802), X(56355)}}, {{A, B, C, X(44357), X(57581)}}
X(59195) = barycentric product X(i)*X(j) for these (i, j): {103, 18025}, {1815, 52781}, {2338, 52156}, {2400, 677}, {2424, 57928}, {36101, 36101}, {54232, 57752}, {57548, 6}, {57996, 911}
X(59195) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24014}, {2, 59206}, {4, 21665}, {6, 23972}, {8, 55019}, {25, 42073}, {31, 42077}, {56, 1360}, {101, 3234}, {103, 516}, {514, 58280}, {677, 2398}, {911, 910}, {1815, 26006}, {2338, 40869}, {2424, 676}, {2808, 6074}, {15380, 54233}, {15634, 58259}, {18025, 35517}, {24016, 23973}, {32642, 2426}, {36101, 30807}, {40116, 41321}, {45144, 51406}, {52213, 39063}, {54232, 118}, {56787, 1566}, {57548, 76}


X(59196) = X(519)X(1795)∩X(3911)X(5053)

Barycentrics    ((a-b)^2*(a+b)+2*a*b*c-(a+b)*c^2)^2*(a^3-a*(b-c)^2-a^2*c-b^2*c+c^3)^2 : :

X(59196) lies on these lines: {519, 1795}, {1000, 36944}, {2401, 50943}, {2726, 56761}, {3218, 54953}, {3911, 5053}, {4358, 13136}, {14628, 53811}, {16082, 34051}, {16704, 41933}, {18816, 48380}, {40218, 57495}

X(59196) = isogonal conjugate of X(23980)
X(59196) = isotomic conjugate of X(26611)
X(59196) = trilinear pole of line {104, 14127}
X(59196) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23980}, {2, 42078}, {6, 24028}, {9, 1361}, {31, 26611}, {48, 21664}, {63, 42072}, {101, 42757}, {517, 2183}, {604, 55016}, {649, 15632}, {859, 21801}, {909, 23101}, {1769, 2427}, {2149, 3326}, {7128, 41215}, {14571, 22350}, {23706, 52307}, {23981, 46393}, {24027, 55153}, {24029, 53549}
X(59196) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 26611}, {3, 23980}, {9, 24028}, {478, 1361}, {522, 55153}, {650, 3326}, {1015, 42757}, {1249, 21664}, {3161, 55016}, {3162, 42072}, {5375, 15632}, {23980, 23101}, {32664, 42078}, {39175, 47408}
X(59196) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 104}, {650, 1309}, {1146, 43728}, {14266, 18816}, {40218, 34234}, {53406, 99}, {57495, 16082}
X(59196)= pole of line {23980, 26611} with respect to the Wallace hyperbola
X(59196) = polelogic center of ABC and the circumcevian triangle of X(104)
X(59196) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(514)}}, {{A, B, C, X(57), X(275)}}, {{A, B, C, X(76), X(14266)}}, {{A, B, C, X(81), X(1262)}}, {{A, B, C, X(85), X(32851)}}, {{A, B, C, X(88), X(2988)}}, {{A, B, C, X(89), X(23586)}}, {{A, B, C, X(189), X(2052)}}, {{A, B, C, X(249), X(2699)}}, {{A, B, C, X(279), X(34050)}}, {{A, B, C, X(282), X(1021)}}, {{A, B, C, X(284), X(1252)}}, {{A, B, C, X(1169), X(23964)}}, {{A, B, C, X(1275), X(3218)}}, {{A, B, C, X(1795), X(34051)}}, {{A, B, C, X(6185), X(36087)}}, {{A, B, C, X(13136), X(36037)}}, {{A, B, C, X(16082), X(34234)}}, {{A, B, C, X(20905), X(32849)}}, {{A, B, C, X(34404), X(54284)}}, {{A, B, C, X(34538), X(40395)}}, {{A, B, C, X(39177), X(46103)}}, {{A, B, C, X(46638), X(56234)}}
X(59196) = barycentric product X(i)*X(j) for these (i, j): {104, 18816}, {13136, 2401}, {14266, 57753}, {34051, 36795}, {34234, 34234}, {41933, 76}, {43728, 54953}, {55943, 56753}, {57550, 6}
X(59196) = barycentric quotient X(i)/X(j) for these (i, j): {1, 24028}, {2, 26611}, {4, 21664}, {6, 23980}, {8, 55016}, {11, 3326}, {25, 42072}, {31, 42078}, {56, 1361}, {100, 15632}, {104, 517}, {513, 42757}, {517, 23101}, {909, 2183}, {952, 6073}, {1146, 55153}, {1309, 53151}, {1795, 22350}, {1809, 51379}, {2250, 21801}, {2401, 10015}, {2423, 3310}, {2720, 23981}, {3270, 41215}, {3937, 35012}, {5532, 52315}, {10428, 14260}, {13136, 2397}, {14266, 119}, {15381, 39173}, {15635, 42753}, {18816, 3262}, {32641, 2427}, {34051, 1465}, {34234, 908}, {36110, 23706}, {36123, 1785}, {36921, 51362}, {36944, 1145}, {37136, 24029}, {38955, 17757}, {40218, 52659}, {40437, 56416}, {41933, 6}, {43728, 2804}, {43933, 39534}, {51565, 6735}, {52178, 1537}, {56753, 51390}, {56761, 3259}, {57468, 42758}, {57550, 76}


X(59197) = X(2)X(39)∩X(5)X(51)

Barycentrics    (a^4-2*b^2*c^2-a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(59197) lies on these lines: {2, 39}, {5, 51}, {32, 41231}, {69, 14767}, {115, 41237}, {125, 13517}, {141, 9722}, {183, 458}, {216, 311}, {233, 39113}, {237, 6248}, {308, 16081}, {324, 3199}, {401, 1078}, {467, 27371}, {511, 37988}, {626, 37636}, {1007, 59257}, {1235, 44893}, {1273, 52704}, {1598, 41244}, {1975, 37067}, {1993, 7751}, {1994, 7805}, {2450, 21243}, {2548, 6515}, {3313, 34845}, {3734, 52275}, {3917, 21531}, {3981, 13881}, {5188, 14957}, {5305, 37649}, {5422, 7808}, {6503, 7393}, {7495, 11623}, {7516, 37871}, {7697, 11328}, {7750, 52281}, {7759, 45794}, {7771, 51350}, {7816, 35296}, {7838, 41628}, {8963, 34391}, {10104, 52144}, {10601, 43843}, {11433, 32968}, {13334, 39906}, {13354, 20021}, {14096, 15819}, {14880, 22352}, {14881, 21969}, {15030, 44227}, {16509, 58416}, {18906, 42313}, {21163, 53346}, {22270, 52350}, {22712, 37190}, {32819, 35937}, {34229, 37188}, {35933, 46893}, {36841, 56290}, {37638, 52251}, {41009, 46832}, {41716, 44924}, {46518, 52854}, {46546, 58849}, {52032, 57811}

X(59197) = isotomic conjugate of X(42300)
X(59197) = perspector of circumconic {{A, B, C, X(670), X(14570)}}
X(59197) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 51444}, {31, 42300}, {54, 2186}, {95, 3402}, {262, 2148}, {263, 2167}, {1964, 39283}, {2190, 43718}, {2616, 26714}
X(59197) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42300}, {5, 43718}, {6, 51444}, {216, 262}, {38997, 2623}, {40588, 263}, {41884, 39283}, {42353, 7735}, {51580, 95}, {52032, 42313}
X(59197) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40824, 52347}
X(59197) = X(i)-complementary conjugate of X(j) for these {i, j}: {42354, 2887}
X(59197) = X(i)-cross conjugate of X(j) for these {i, j}: {59208, 39530}
X(59197)= pole of line {141, 570} with respect to the Kiepert hyperbola
X(59197)= pole of line {32, 54} with respect to the Stammler hyperbola
X(59197)= pole of line {512, 13449} with respect to the Steiner inellipse
X(59197)= pole of line {6, 95} with respect to the Wallace hyperbola
X(59197) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(51)}}, {{A, B, C, X(5), X(76)}}, {{A, B, C, X(39), X(3199)}}, {{A, B, C, X(52), X(182)}}, {{A, B, C, X(53), X(34816)}}, {{A, B, C, X(143), X(7769)}}, {{A, B, C, X(183), X(305)}}, {{A, B, C, X(216), X(308)}}, {{A, B, C, X(274), X(18180)}}, {{A, B, C, X(310), X(17167)}}, {{A, B, C, X(324), X(8024)}}, {{A, B, C, X(1154), X(7799)}}, {{A, B, C, X(1568), X(51372)}}, {{A, B, C, X(2396), X(14570)}}, {{A, B, C, X(3266), X(41586)}}, {{A, B, C, X(3574), X(9290)}}, {{A, B, C, X(3926), X(5562)}}, {{A, B, C, X(5891), X(32833)}}, {{A, B, C, X(13599), X(33971)}}, {{A, B, C, X(14531), X(32831)}}, {{A, B, C, X(24861), X(59142)}}, {{A, B, C, X(27355), X(32834)}}, {{A, B, C, X(34396), X(42354)}}, {{A, B, C, X(39683), X(57903)}}, {{A, B, C, X(41588), X(57518)}}
X(59197) = barycentric product X(i)*X(j) for these (i, j): {182, 311}, {183, 5}, {216, 44144}, {343, 458}, {1273, 56401}, {1953, 3403}, {10311, 28706}, {14213, 52134}, {14570, 23878}, {14994, 17500}, {18180, 42711}, {20023, 51}, {33971, 52347}, {39530, 69}, {59208, 76}
X(59197) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42300}, {3, 51444}, {5, 262}, {51, 263}, {83, 39283}, {182, 54}, {183, 95}, {216, 43718}, {311, 327}, {343, 42313}, {458, 275}, {1154, 57268}, {1625, 26714}, {1953, 2186}, {2179, 3402}, {3288, 2623}, {5562, 54032}, {10311, 8882}, {14096, 16030}, {17500, 42299}, {20023, 34384}, {23878, 15412}, {32428, 39682}, {33971, 8884}, {34396, 54034}, {39530, 4}, {39683, 1298}, {40981, 46319}, {42711, 56189}, {44144, 276}, {51372, 43768}, {52134, 2167}, {52347, 59257}, {55219, 52631}, {56401, 1141}, {59208, 6}
X(59197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51481, 39}, {2, 76, 36212}, {21531, 49111, 3917}


X(59198) = X(76)X(40158)∩X(343)X(525)

Barycentrics    b^2*c^2*(-a^2+b^2+c^2)*(3*sqrt(3)*a^2*((b^2-c^2)^2-a^2*(b^2+c^2))+(-8*a^4+4*(b^2-c^2)^2-2*a^2*(b^2+c^2))*S) : :

X(59198) lies on these lines: {76, 40158}, {300, 44133}, {305, 40709}, {328, 40712}, {343, 525}, {532, 8014}, {33459, 43084}

X(59198) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1973, 38403}, {2151, 51446}
X(59198) = X(i)-Dao conjugate of X(j) for these {i, j}: {396, 56514}, {618, 8739}, {6337, 38403}, {40578, 51446}
X(59198) = X(i)-cross conjugate of X(j) for these {i, j}: {59209, 43085}
X(59198)= pole of line {8739, 14590} with respect to the Wallace hyperbola
X(59198) = intersection, other than A, B, C, of circumconics {{A, B, C, X(525), X(532)}}, {{A, B, C, X(8014), X(14582)}}
X(59198) = barycentric product X(i)*X(j) for these (i, j): {300, 52194}, {305, 8014}, {328, 532}, {40709, 41000}, {43085, 69}, {59209, 76}
X(59198) = barycentric quotient X(i)/X(j) for these (i, j): {13, 51446}, {69, 38403}, {265, 2380}, {300, 38428}, {328, 11117}, {396, 8739}, {532, 186}, {618, 56514}, {8014, 25}, {10217, 16459}, {14446, 47230}, {16536, 16538}, {23714, 52418}, {40709, 2981}, {41000, 470}, {43085, 4}, {52194, 15}, {59209, 6}


X(59199) = X(76)X(40159)∩X(343)X(525)

Barycentrics    b^2*c^2*(-a^2+b^2+c^2)*(3*sqrt(3)*a^2*((b^2-c^2)^2-a^2*(b^2+c^2))+(8*a^4-4*(b^2-c^2)^2+2*a^2*(b^2+c^2))*S) : :

X(59199) lies on these lines: {76, 40159}, {301, 44133}, {305, 40710}, {328, 40711}, {343, 525}, {533, 8015}, {33458, 43084}

X(59199) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1973, 38404}, {2152, 51447}
X(59199) = X(i)-Dao conjugate of X(j) for these {i, j}: {395, 56515}, {619, 8740}, {6337, 38404}, {40579, 51447}
X(59199) = X(i)-cross conjugate of X(j) for these {i, j}: {59210, 43086}
X(59199)= pole of line {8740, 14590} with respect to the Wallace hyperbola
X(59199) = intersection, other than A, B, C, of circumconics {{A, B, C, X(525), X(533)}}, {{A, B, C, X(8015), X(14582)}}
X(59199) = barycentric product X(i)*X(j) for these (i, j): {301, 52193}, {305, 8015}, {328, 533}, {40710, 41001}, {43086, 69}, {59210, 76}
X(59199) = barycentric quotient X(i)/X(j) for these (i, j): {14, 51447}, {69, 38404}, {265, 2381}, {301, 38427}, {328, 11118}, {395, 8740}, {533, 186}, {619, 56515}, {8015, 25}, {10218, 16460}, {14447, 47230}, {16537, 16539}, {23715, 52418}, {40710, 6151}, {41001, 471}, {43086, 4}, {52193, 16}, {59210, 6}


X(59200) = X(7)X(8)∩X(346)X(348)

Barycentrics    b*(a+b-c)*c*(a-b+c)*(a^2-3*b^2-2*b*c-3*c^2+2*a*(b+c)) : :

X(59200) lies on these lines: {7, 8}, {76, 50560}, {279, 4461}, {312, 4554}, {321, 1088}, {344, 17095}, {346, 348}, {349, 40023}, {664, 3886}, {1229, 40702}, {3717, 33298}, {4572, 21615}, {4659, 42309}, {4671, 37780}, {5695, 14189}, {6063, 42029}, {7056, 34255}, {10004, 29616}, {17078, 50107}, {17740, 37757}, {19804, 21609}, {28605, 59181}, {28974, 28981}, {37655, 50559}

X(59200) = isotomic conjugate of X(42317)
X(59200) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42317}, {663, 26716}, {2175, 55937}, {9447, 55983}, {9448, 59259}, {54668, 57657}
X(59200) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42317}, {40593, 55937}
X(59200)= pole of line {21, 42317} with respect to the Wallace hyperbola
X(59200) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(10004)}}, {{A, B, C, X(8), X(29616)}}, {{A, B, C, X(75), X(57996)}}, {{A, B, C, X(76), X(16284)}}, {{A, B, C, X(518), X(5223)}}, {{A, B, C, X(3779), X(42316)}}, {{A, B, C, X(30806), X(40029)}}
X(59200) = barycentric product X(i)*X(j) for these (i, j): {5223, 6063}, {10004, 312}, {20567, 42316}, {29616, 85}, {59215, 76}
X(59200) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42317}, {85, 55937}, {651, 26716}, {1441, 54668}, {4554, 32040}, {5223, 55}, {6063, 55983}, {10004, 57}, {20567, 59259}, {29616, 9}, {42316, 41}, {59215, 6}
X(59200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 40704, 85}, {312, 7182, 31627}, {21609, 52421, 19804}


X(59201) = X(8)X(210)∩X(75)X(646)

Barycentrics    b*c*(-a+b+c)*(a^2+3*b^2-2*b*c+3*c^2-4*a*(b+c)) : :

X(59201) lies on these lines: {8, 210}, {75, 646}, {76, 4052}, {1229, 30693}, {3008, 17158}, {4358, 24599}, {4384, 6558}, {16833, 17144}, {26592, 36791}, {30829, 31189}, {31225, 42720}

X(59201) = isotomic conjugate of X(42315)
X(59201) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42315}, {1397, 42318}, {52410, 56088}
X(59201)= pole of line {1014, 33628} with respect to the Wallace hyperbola
X(59201) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(10005)}}, {{A, B, C, X(76), X(44720)}}, {{A, B, C, X(210), X(4052)}}, {{A, B, C, X(960), X(3243)}}, {{A, B, C, X(3008), X(4859)}}, {{A, B, C, X(3057), X(51302)}}, {{A, B, C, X(12541), X(56335)}}, {{A, B, C, X(18228), X(42361)}}
X(59201) = barycentric product X(i)*X(j) for these (i, j): {341, 51351}, {3243, 3596}, {10005, 75}, {29627, 312}, {59216, 76}
X(59201) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42315}, {312, 42318}, {341, 56088}, {3243, 56}, {10005, 1}, {29627, 57}, {42314, 1106}, {51302, 1407}, {51351, 269}, {59216, 6}


X(59202) = X(10)X(75)∩X(142)X(1229)

Barycentrics    b*c*((b-c)^2-a*(b+c))*(-a^2+2*b*c+a*(b+c)) : :

X(59202) lies on these lines: {10, 75}, {85, 4684}, {142, 1229}, {310, 55213}, {344, 3760}, {346, 25521}, {1111, 49511}, {1233, 4847}, {2321, 20435}, {2481, 3883}, {3886, 4441}, {4461, 27096}, {5257, 27390}, {7264, 50290}, {10481, 53236}, {17143, 33677}, {18142, 21060}, {20894, 37788}, {20905, 21418}

X(59202) = isotomic conjugate of X(59193)
X(59202) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59193}, {32, 42310}, {1174, 2279}, {42290, 59141}
X(59202) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59193}, {1212, 1002}, {6376, 42310}, {40606, 2279}
X(59202)= pole of line {58, 10482} with respect to the Wallace hyperbola
X(59202) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(10481)}}, {{A, B, C, X(75), X(142)}}, {{A, B, C, X(76), X(20880)}}, {{A, B, C, X(310), X(3717)}}, {{A, B, C, X(341), X(3886)}}, {{A, B, C, X(1229), X(3596)}}, {{A, B, C, X(17672), X(31926)}}
X(59202) = barycentric product X(i)*X(j) for these (i, j): {142, 4441}, {1001, 1233}, {1229, 40719}, {3886, 59181}, {10481, 28809}, {16708, 3696}, {17169, 4044}, {20880, 4384}, {21615, 354}, {53236, 59207}, {59217, 76}
X(59202) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59193}, {75, 42310}, {142, 1002}, {354, 2279}, {1001, 1174}, {1233, 59255}, {3696, 56255}, {3886, 6605}, {4044, 56157}, {4384, 2346}, {4441, 32008}, {4762, 58322}, {4847, 40779}, {10481, 42290}, {17169, 42302}, {18164, 51443}, {20880, 27475}, {21615, 57815}, {23151, 47487}, {28809, 56118}, {35338, 8693}, {37658, 10482}, {40719, 1170}, {51972, 59269}, {59217, 6}
X(59202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 76, 3717}


X(59203) = X(76)X(321)∩X(1230)X(4647)

Barycentrics    b^2*c^2*(b+c)*(2*a+b+c)*(a^2+b*c+2*a*(b+c)) : :

X(59203) lies on these lines: {76, 321}, {1230, 4647}, {4037, 20913}, {4359, 21816}, {16826, 51314}, {26037, 28612}, {33933, 42710}

X(59203) = isotomic conjugate of X(59194)
X(59203) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59194}, {1125, 25426}
X(59203)= pole of line {1333, 25426} with respect to the Wallace hyperbola
X(59203) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(4647)}}, {{A, B, C, X(321), X(8013)}}, {{A, B, C, X(335), X(21816)}}, {{A, B, C, X(561), X(1230)}}, {{A, B, C, X(1269), X(18891)}}, {{A, B, C, X(5625), X(33935)}}, {{A, B, C, X(27801), X(52576)}}
X(59203) = barycentric product X(i)*X(j) for these (i, j): {313, 5625}, {1230, 16826}, {1269, 3842}, {51356, 52576}, {59218, 76}
X(59203) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59194}, {1213, 25426}, {1230, 27483}, {3842, 1126}, {4115, 28841}, {4647, 30571}, {4824, 50344}, {5625, 58}, {8013, 59272}, {16826, 1171}, {51356, 52558}, {52576, 59261}, {59218, 6}
X(59203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {321, 52043, 52579}


X(59204) = X(22)X(76)∩X(237)X(7816)

Barycentrics    a^2*(b^4+c^4)*(a^8-2*b^4*c^4-a^4*(b^4+c^4)) : :

X(59204) lies on these lines: {22, 76}, {237, 7816}, {3229, 7467}, {3734, 46505}, {3934, 51950}, {20859, 44164}, {21444, 46546}

X(59204) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2353), X(44164)}}, {{A, B, C, X(18018), X(20859)}}
X(59204) = barycentric product X(i)*X(j) for these (i, j): {42826, 44166}, {59248, 8265}
X(59204) = barycentric quotient X(i)/X(j) for these (i, j): {42826, 38826}, {59248, 44165}


X(59205) = X(2)X(6335)∩X(6)X(2988)

Barycentrics    b^2*c^2*(-2*a^4+a^2*(b-c)^2+a^3*(b+c)-a*(b-c)^2*(b+c)+(b^2-c^2)^2)^2 : :

X(59205) lies on these lines: {2, 6335}, {6, 2988}, {85, 18359}, {321, 23983}, {338, 17056}, {394, 44765}, {1086, 17862}, {15252, 21666}, {23970, 26591}

X(59205) = X(i)-isoconjugate-of-X(j) for these {i, j}: {102, 32677}, {560, 57551}, {2432, 36040}
X(59205) = X(i)-Dao conjugate of X(j) for these {i, j}: {515, 6}, {6374, 57551}, {8607, 54242}, {10017, 2432}, {23986, 102}, {39471, 35072}, {57291, 652}
X(59205) = X(i)-Ceva conjugate of X(j) for these {i, j}: {76, 35516}
X(59205)= pole of line {2432, 3310} with respect to the polar circle
X(59205)= pole of line {151, 8677} with respect to the Steiner circumellipse
X(59205)= pole of line {117, 8677} with respect to the Steiner inellipse
X(59205) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(515), X(2988)}}, {{A, B, C, X(16082), X(24034)}}, {{A, B, C, X(38554), X(51368)}}
X(59205) = barycentric product X(i)*X(j) for these (i, j): {264, 38554}, {1359, 3596}, {23986, 76}, {24034, 75}, {35516, 515}, {42076, 561}
X(59205) = barycentric quotient X(i)/X(j) for these (i, j): {76, 57551}, {117, 54242}, {515, 102}, {1359, 56}, {2182, 32677}, {2425, 32643}, {11700, 58741}, {23986, 6}, {23987, 36067}, {24034, 1}, {35516, 34393}, {38554, 3}, {42076, 31}, {46974, 36055}, {52109, 2818}, {54243, 15379}


X(59206) = X(2)X(4554)∩X(6)X(2989)

Barycentrics    b^2*c^2*(-2*a^3+a^2*(b+c)+(b-c)^2*(b+c))^2 : :

X(59206) lies on these lines: {2, 4554}, {6, 2989}, {75, 23978}, {321, 23970}, {331, 27541}, {338, 1213}, {346, 6335}, {394, 43190}, {1020, 45738}, {1086, 20905}, {1229, 23983}, {1230, 36793}, {21665, 42073}, {24014, 55019}, {30807, 39063}

X(59206) = isotomic conjugate of X(59195)
X(59206) = trilinear pole of line {6074, 58280}
X(59206) = perspector of circumconic {{A, B, C, X(35517), X(46135)}}
X(59206) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59195}, {103, 911}, {560, 57548}, {2424, 36039}, {32657, 36122}
X(59206) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59195}, {241, 52213}, {516, 6}, {676, 56787}, {1566, 2424}, {6374, 57548}, {8608, 54232}, {23972, 103}, {46095, 32657}, {50441, 2338}, {57292, 1459}
X(59206) = X(i)-Ceva conjugate of X(j) for these {i, j}: {76, 35517}
X(59206) = X(i)-cross conjugate of X(j) for these {i, j}: {23972, 21665}
X(59206)= pole of line {35517, 48381} with respect to the Kiepert hyperbola
X(59206)= pole of line {152, 926} with respect to the Steiner circumellipse
X(59206)= pole of line {118, 926} with respect to the Steiner inellipse
X(59206) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(39063)}}, {{A, B, C, X(516), X(2989)}}, {{A, B, C, X(18031), X(55019)}}, {{A, B, C, X(23972), X(42073)}}, {{A, B, C, X(24014), X(34018)}}, {{A, B, C, X(30807), X(36796)}}
X(59206) = barycentric product X(i)*X(j) for these (i, j): {190, 58280}, {305, 42073}, {1360, 3596}, {3234, 3261}, {21665, 69}, {23972, 76}, {24014, 75}, {30807, 30807}, {35517, 516}, {42077, 561}, {53228, 6074}, {55019, 7}
X(59206) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59195}, {76, 57548}, {118, 54232}, {516, 103}, {676, 2424}, {910, 911}, {1360, 56}, {1566, 56787}, {2398, 677}, {2426, 32642}, {3234, 101}, {6074, 2808}, {21665, 4}, {23972, 6}, {23973, 24016}, {24014, 1}, {26006, 1815}, {30807, 36101}, {35517, 18025}, {39063, 52213}, {40869, 2338}, {41321, 40116}, {42073, 25}, {42077, 31}, {51406, 45144}, {54233, 15380}, {55019, 8}, {58259, 15634}, {58280, 514}


X(59207) = X(2)X(7)∩X(37)X(42)

Barycentrics    a*(b+c)*(a^2-2*b*c-a*(b+c)) : :

X(59207) lies on these lines: {1, 3691}, {2, 7}, {6, 748}, {8, 21071}, {10, 1018}, {12, 38930}, {19, 4207}, {31, 5275}, {37, 42}, {38, 3290}, {39, 27627}, {40, 36695}, {41, 405}, {43, 3731}, {44, 24512}, {45, 899}, {65, 21921}, {71, 1213}, {72, 21808}, {73, 1212}, {101, 5251}, {141, 30821}, {171, 37675}, {198, 1011}, {213, 16589}, {218, 11108}, {225, 7079}, {238, 5276}, {261, 56432}, {274, 56024}, {321, 3985}, {349, 6559}, {350, 17277}, {391, 10453}, {392, 2170}, {429, 2333}, {497, 966}, {551, 45751}, {573, 1699}, {612, 16970}, {614, 16517}, {649, 4448}, {657, 21960}, {902, 4386}, {910, 3683}, {942, 25086}, {958, 9310}, {960, 17451}, {965, 2268}, {984, 26242}, {993, 1055}, {1001, 2280}, {1002, 5223}, {1107, 1201}, {1125, 1475}, {1149, 16975}, {1193, 5283}, {1253, 28053}, {1376, 41423}, {1449, 29814}, {1500, 3214}, {1541, 33536}, {1573, 3230}, {1575, 16814}, {1621, 3684}, {1654, 31027}, {1655, 16827}, {1698, 3730}, {1731, 33175}, {1743, 26102}, {1750, 37400}, {1985, 2183}, {2082, 31435}, {2092, 21813}, {2107, 23493}, {2171, 41539}, {2176, 10459}, {2182, 30944}, {2225, 24511}, {2245, 52706}, {2246, 8299}, {2275, 28352}, {2277, 28247}, {2292, 16583}, {2321, 4651}, {2329, 5260}, {2345, 25623}, {2347, 3741}, {2350, 17398}, {2478, 26036}, {2533, 57176}, {2650, 21874}, {2899, 55337}, {3161, 26038}, {3208, 3617}, {3216, 25092}, {3240, 16676}, {3247, 17018}, {3263, 49516}, {3501, 9780}, {3616, 17474}, {3624, 4253}, {3634, 16549}, {3646, 16572}, {3678, 3970}, {3681, 51058}, {3686, 17135}, {3688, 20863}, {3693, 3740}, {3697, 3991}, {3698, 21872}, {3707, 29824}, {3715, 50995}, {3721, 21879}, {3739, 24330}, {3842, 40718}, {3846, 30751}, {3874, 17746}, {3890, 4051}, {3896, 4771}, {3950, 4685}, {3952, 21101}, {3973, 25502}, {3983, 4515}, {3986, 21060}, {3989, 41269}, {3997, 52708}, {4006, 4015}, {4029, 19998}, {4037, 4365}, {4044, 4384}, {4050, 4678}, {4095, 52353}, {4109, 57808}, {4184, 4877}, {4191, 54322}, {4192, 10157}, {4199, 21811}, {4251, 5259}, {4390, 9708}, {4413, 42316}, {4416, 30941}, {4424, 16611}, {4465, 21264}, {4520, 5836}, {4642, 16605}, {4643, 30945}, {4649, 30571}, {4666, 51194}, {4687, 37632}, {4713, 17259}, {4724, 33570}, {4766, 37664}, {4800, 22108}, {4863, 17275}, {4875, 58679}, {5044, 16601}, {5047, 41239}, {5089, 57652}, {5284, 16503}, {5285, 7453}, {5288, 9327}, {5311, 16972}, {5506, 16550}, {6210, 44431}, {7175, 24557}, {7719, 39579}, {10165, 58036}, {10176, 57015}, {12572, 52245}, {14439, 44798}, {15481, 28600}, {16369, 40747}, {16514, 21352}, {16569, 17756}, {16590, 40614}, {16604, 23649}, {16673, 42042}, {16777, 41711}, {16815, 24578}, {16823, 17794}, {16826, 25427}, {17027, 17349}, {17028, 30998}, {17032, 27268}, {17033, 27269}, {17053, 23632}, {17123, 33854}, {17137, 29968}, {17152, 30030}, {17256, 24712}, {17261, 17759}, {17272, 30822}, {17330, 31136}, {17331, 31028}, {17332, 24690}, {17335, 30963}, {17337, 31199}, {17355, 24259}, {17442, 41609}, {17499, 31996}, {17675, 31240}, {17737, 33138}, {17744, 29633}, {17745, 25542}, {17755, 26234}, {20681, 22232}, {21014, 24005}, {21049, 21677}, {21078, 25081}, {21373, 50311}, {21390, 47821}, {21796, 21838}, {21809, 22173}, {21877, 21892}, {22327, 40521}, {24491, 52908}, {25425, 59212}, {25499, 58452}, {25941, 40937}, {26040, 41325}, {26244, 32917}, {27109, 29991}, {28639, 49749}, {30116, 54981}, {30962, 54280}, {32014, 46194}, {36672, 55104}, {37508, 41853}, {37676, 44307}, {38379, 40551}, {40774, 51294}, {42302, 42335}, {45322, 45755}, {54318, 54330}

X(59207) = isogonal conjugate of X(42302)
X(59207) = perspector of circumconic {{A, B, C, X(664), X(1018)}}
X(59207) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42302}, {2, 51443}, {21, 42290}, {58, 27475}, {81, 1002}, {86, 2279}, {649, 51563}, {1014, 40779}, {1019, 37138}, {1333, 59255}, {3733, 32041}, {7192, 8693}, {18164, 59193}, {23829, 36138}
X(59207) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42302}, {10, 27475}, {37, 59255}, {1001, 16054}, {2276, 30966}, {3696, 30830}, {3755, 30854}, {5375, 51563}, {15569, 24603}, {32664, 51443}, {39012, 23829}, {40586, 1002}, {40600, 2279}, {40611, 42290}, {55059, 514}
X(59207) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4384, 3696}, {21446, 65}, {40718, 42}, {42335, 1}
X(59207)= pole of line {8655, 23865} with respect to the circumcircle
X(59207)= pole of line {8655, 23655} with respect to the Brocard inellipse
X(59207)= pole of line {2269, 14100} with respect to the Feuerbach hyperbola
X(59207)= pole of line {42, 3925} with respect to the Kiepert hyperbola
X(59207)= pole of line {284, 757} with respect to the Stammler hyperbola
X(59207)= pole of line {100, 24052} with respect to the Yff parabola
X(59207)= pole of line {333, 873} with respect to the Wallace hyperbola
X(59207) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(210)}}, {{A, B, C, X(7), X(37)}}, {{A, B, C, X(10), X(3930)}}, {{A, B, C, X(42), X(57)}}, {{A, B, C, X(63), X(2318)}}, {{A, B, C, X(142), X(2321)}}, {{A, B, C, X(226), X(756)}}, {{A, B, C, X(307), X(3949)}}, {{A, B, C, X(346), X(26059)}}, {{A, B, C, X(553), X(1962)}}, {{A, B, C, X(672), X(1334)}}, {{A, B, C, X(872), X(1400)}}, {{A, B, C, X(1018), X(1025)}}, {{A, B, C, X(1423), X(2107)}}, {{A, B, C, X(1445), X(4878)}}, {{A, B, C, X(1447), X(2238)}}, {{A, B, C, X(1826), X(21617)}}, {{A, B, C, X(1903), X(8232)}}, {{A, B, C, X(3218), X(45755)}}, {{A, B, C, X(3728), X(30097)}}, {{A, B, C, X(3789), X(7179)}}, {{A, B, C, X(3886), X(10436)}}, {{A, B, C, X(3911), X(21805)}}, {{A, B, C, X(4031), X(21806)}}, {{A, B, C, X(4204), X(31926)}}, {{A, B, C, X(4357), X(21033)}}, {{A, B, C, X(4651), X(59217)}}, {{A, B, C, X(4762), X(44671)}}, {{A, B, C, X(4849), X(5435)}}, {{A, B, C, X(5228), X(14625)}}, {{A, B, C, X(5249), X(40967)}}, {{A, B, C, X(6559), X(8012)}}, {{A, B, C, X(14973), X(52358)}}, {{A, B, C, X(17077), X(22271)}}, {{A, B, C, X(17260), X(23617)}}, {{A, B, C, X(20156), X(37657)}}, {{A, B, C, X(21840), X(56131)}}, {{A, B, C, X(28017), X(40934)}}, {{A, B, C, X(30571), X(54668)}}, {{A, B, C, X(40161), X(56367)}}, {{A, B, C, X(40718), X(40719)}}, {{A, B, C, X(56196), X(56705)}}
X(59207) = barycentric product X(i)*X(j) for these (i, j): {1, 3696}, {10, 1001}, {37, 4384}, {42, 4441}, {100, 4804}, {210, 40719}, {213, 21615}, {226, 37658}, {523, 54440}, {1018, 4762}, {1400, 28809}, {1471, 3701}, {1826, 23151}, {1893, 78}, {2280, 321}, {2321, 5228}, {3789, 40718}, {3886, 65}, {3952, 4724}, {4044, 6}, {4082, 59242}, {4552, 45755}, {4674, 4702}, {27474, 40747}, {28044, 307}, {31926, 3949}, {42289, 8}, {42309, 4515}, {56157, 59217}
X(59207) = barycentric quotient X(i)/X(j) for these (i, j): {6, 42302}, {10, 59255}, {31, 51443}, {37, 27475}, {42, 1002}, {100, 51563}, {213, 2279}, {1001, 86}, {1018, 32041}, {1334, 40779}, {1400, 42290}, {1471, 1014}, {1893, 273}, {2280, 81}, {3696, 75}, {3789, 30966}, {3886, 314}, {4044, 76}, {4082, 59260}, {4384, 274}, {4441, 310}, {4557, 37138}, {4702, 30939}, {4724, 7192}, {4762, 7199}, {4804, 693}, {5228, 1434}, {21615, 6385}, {23151, 17206}, {28044, 29}, {28809, 28660}, {37658, 333}, {40719, 57785}, {40732, 3736}, {42289, 7}, {45755, 4560}, {54440, 99}, {56255, 42310}, {59202, 53236}, {59217, 17169}
X(59207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20347, 142}, {2, 30946, 30949}, {2, 9, 672}, {9, 3509, 3219}, {9, 40131, 5282}, {9, 40869, 8012}, {9, 5257, 1400}, {10, 3294, 1334}, {37, 210, 3930}, {37, 2238, 42}, {45, 37673, 2276}, {238, 5276, 21764}, {350, 17277, 24592}, {1001, 37658, 2280}, {1125, 16552, 1475}, {1212, 25917, 39244}, {1213, 17747, 3925}, {2276, 37673, 899}, {3294, 46196, 10}, {3616, 21384, 17474}, {3997, 52708, 56191}, {6666, 20335, 2}, {25427, 39252, 16826}, {30412, 30413, 26059}


X(59208) = X(2)X(6)∩X(5)X(217)

Barycentrics    a^2*(a^4-2*b^2*c^2-a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(59208) lies on these lines: {2, 6}, {5, 217}, {30, 50678}, {32, 54004}, {39, 46094}, {51, 216}, {53, 17500}, {83, 6531}, {143, 41480}, {182, 10311}, {184, 10314}, {232, 5943}, {248, 3398}, {381, 3331}, {389, 22416}, {566, 20977}, {567, 32661}, {569, 14585}, {570, 20859}, {575, 52128}, {577, 43650}, {852, 5158}, {1351, 54032}, {1899, 57528}, {1970, 13434}, {1971, 5012}, {2211, 14561}, {3003, 13410}, {3016, 39601}, {3066, 59229}, {3091, 32445}, {3269, 9730}, {3288, 45321}, {3832, 38297}, {3855, 41367}, {5038, 43815}, {5305, 43843}, {5640, 22240}, {5644, 15851}, {5892, 14961}, {6103, 25555}, {10312, 43651}, {10979, 34003}, {11328, 43718}, {11451, 15355}, {11672, 37338}, {14153, 53500}, {14965, 38110}, {15024, 39575}, {15032, 39849}, {15037, 22146}, {15043, 26216}, {15805, 23115}, {16089, 36794}, {23128, 36753}, {26874, 33586}, {32064, 41373}, {35921, 54082}, {36412, 51363}, {36752, 39643}, {37335, 57261}, {47620, 54991}

X(59208) = isogonal conjugate of X(42300)
X(59208) = perspector of circumconic {{A, B, C, X(99), X(1625)}}
X(59208) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42300}, {38, 39283}, {92, 51444}, {95, 2186}, {262, 2167}, {327, 2148}, {2190, 42313}, {3402, 34384}, {40440, 43718}
X(59208) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42300}, {5, 42313}, {216, 327}, {22391, 51444}, {38997, 15412}, {40588, 262}, {42353, 40814}, {51580, 34384}, {52878, 51543}
X(59208) = X(i)-Ceva conjugate of X(j) for these {i, j}: {458, 39530}, {3114, 311}, {40802, 5562}, {42351, 3}
X(59208) = X(i)-complementary conjugate of X(j) for these {i, j}: {54832, 2887}
X(59208)= pole of line {669, 12077} with respect to the Brocard inellipse
X(59208)= pole of line {2, 54832} with respect to the Kiepert hyperbola
X(59208)= pole of line {99, 55218} with respect to the Kiepert parabola
X(59208)= pole of line {6, 95} with respect to the Stammler hyperbola
X(59208)= pole of line {2, 34384} with respect to the Wallace hyperbola
X(59208) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(51)}}, {{A, B, C, X(5), X(325)}}, {{A, B, C, X(6), X(40981)}}, {{A, B, C, X(53), X(141)}}, {{A, B, C, X(69), X(182)}}, {{A, B, C, X(83), X(217)}}, {{A, B, C, X(323), X(3288)}}, {{A, B, C, X(394), X(418)}}, {{A, B, C, X(1625), X(2421)}}, {{A, B, C, X(1993), X(34396)}}, {{A, B, C, X(3051), X(6531)}}, {{A, B, C, X(3199), X(7736)}}, {{A, B, C, X(3763), X(59142)}}, {{A, B, C, X(14096), X(30506)}}, {{A, B, C, X(15993), X(55219)}}, {{A, B, C, X(41891), X(56290)}}
X(59208) = barycentric product X(i)*X(j) for these (i, j): {3, 39530}, {6, 59197}, {182, 5}, {183, 51}, {216, 458}, {217, 44144}, {311, 34396}, {1154, 56401}, {1625, 23878}, {1953, 52134}, {2179, 3403}, {10311, 343}, {14096, 17500}, {14570, 3288}, {20023, 40981}, {32428, 39683}, {33971, 5562}
X(59208) = barycentric quotient X(i)/X(j) for these (i, j): {5, 327}, {6, 42300}, {51, 262}, {182, 95}, {183, 34384}, {184, 51444}, {216, 42313}, {217, 43718}, {251, 39283}, {418, 54032}, {458, 276}, {2179, 2186}, {3288, 15412}, {5562, 59257}, {6784, 8901}, {10311, 275}, {33971, 8795}, {34396, 54}, {39530, 264}, {40981, 263}, {44144, 57790}, {52967, 51543}, {56401, 46138}, {59197, 76}
X(59208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 3289}, {5, 41334, 217}, {6, 230, 3051}


X(59209) = X(3)X(10217)∩X(13)X(376)

Barycentrics    (-a^2+b^2+c^2)*(3*sqrt(3)*a^2*(-(b^2-c^2)^2+a^2*(b^2+c^2))+(8*a^4-4*(b^2-c^2)^2+2*a^2*(b^2+c^2))*S) : :

X(59209) lies on these lines: {2, 19776}, {3, 10217}, {4, 45778}, {6, 52039}, {13, 376}, {17, 11581}, {61, 51267}, {69, 36296}, {216, 647}, {265, 10663}, {302, 23895}, {396, 8014}, {476, 51277}, {631, 8919}, {6671, 23714}, {8837, 41171}, {8838, 19712}, {11080, 16644}, {11537, 23302}, {11586, 16808}, {15441, 18582}, {16241, 36211}, {18777, 23303}, {34540, 41889}, {37832, 46078}, {40710, 47481}, {52040, 56403}

X(59209) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 38403}, {2151, 38428}, {2380, 52414}
X(59209) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 38403}, {618, 470}, {11542, 46833}, {40578, 38428}
X(59209) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40709, 52194}, {43085, 8014}
X(59209)= pole of line {8739, 14590} with respect to the Stammler hyperbola
X(59209) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(396)}}, {{A, B, C, X(647), X(32585)}}, {{A, B, C, X(8014), X(14582)}}
X(59209) = barycentric product X(i)*X(j) for these (i, j): {3, 43085}, {6, 59198}, {13, 52194}, {69, 8014}, {265, 532}, {396, 40709}, {10217, 618}, {36296, 41000}
X(59209) = barycentric quotient X(i)/X(j) for these (i, j): {3, 38403}, {13, 38428}, {265, 11117}, {396, 470}, {532, 340}, {3457, 51446}, {8014, 4}, {10217, 11119}, {14446, 44427}, {23714, 14165}, {36296, 2981}, {38414, 10409}, {40709, 40707}, {43085, 264}, {52153, 2380}, {52194, 298}, {59198, 76}
X(59209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 40578, 36299}


X(59210) = X(3)X(10218)∩X(14)X(376)

Barycentrics    (-a^2+b^2+c^2)*(3*sqrt(3)*a^2*(-(b^2-c^2)^2+a^2*(b^2+c^2))+(-8*a^4+4*(b^2-c^2)^2-2*a^2*(b^2+c^2))*S) : :

X(59210) lies on these lines: {2, 19777}, {3, 10218}, {4, 45779}, {6, 52040}, {14, 376}, {18, 11582}, {62, 51274}, {69, 36297}, {216, 647}, {265, 10664}, {303, 23896}, {395, 8015}, {476, 51270}, {631, 8918}, {6672, 23715}, {8836, 19713}, {8839, 41171}, {11085, 16645}, {11549, 23303}, {15442, 18581}, {15743, 16809}, {16242, 36210}, {18776, 23302}, {37835, 46074}, {40709, 47482}, {52039, 56403}

X(59210) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 38404}, {2152, 38427}, {2381, 52414}
X(59210) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 38404}, {619, 471}, {11543, 46834}, {40579, 38427}
X(59210) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40710, 52193}, {43086, 8015}
X(59210)= pole of line {8740, 14590} with respect to the Stammler hyperbola
X(59210) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(395)}}, {{A, B, C, X(647), X(32586)}}, {{A, B, C, X(8015), X(14582)}}
X(59210) = barycentric product X(i)*X(j) for these (i, j): {3, 43086}, {6, 59199}, {14, 52193}, {69, 8015}, {265, 533}, {395, 40710}, {10218, 619}, {36297, 41001}
X(59210) = barycentric quotient X(i)/X(j) for these (i, j): {3, 38404}, {14, 38427}, {265, 11118}, {395, 471}, {533, 340}, {3458, 51447}, {8015, 4}, {10218, 11120}, {14447, 44427}, {23715, 14165}, {36297, 6151}, {38413, 10410}, {40710, 40706}, {43086, 264}, {52153, 2381}, {52193, 299}, {59199, 76}
X(59210) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 40579, 36298}


X(59211) = X(2)X(1975)∩X(3)X(49)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^4+3*b^4-2*b^2*c^2+3*c^4-4*a^2*(b^2+c^2)) : :

X(59211) lies on these lines: {2, 1975}, {3, 49}, {6, 2987}, {25, 9737}, {32, 35302}, {39, 493}, {51, 10983}, {69, 36751}, {76, 37067}, {99, 458}, {114, 57533}, {141, 40697}, {154, 37183}, {182, 40802}, {216, 3964}, {237, 33586}, {297, 7763}, {315, 35937}, {323, 5210}, {343, 3926}, {353, 5866}, {371, 19461}, {372, 19462}, {511, 52277}, {1007, 37174}, {1350, 37184}, {1583, 8855}, {1584, 8854}, {1993, 3053}, {3066, 11328}, {3148, 9155}, {3620, 50572}, {5023, 37672}, {5024, 22111}, {5228, 6516}, {6090, 9734}, {6390, 37638}, {6511, 55437}, {6512, 55438}, {7484, 13334}, {7752, 52282}, {7773, 40853}, {7778, 41237}, {7782, 35941}, {7795, 52350}, {8576, 32568}, {8577, 32575}, {10329, 15815}, {11064, 37188}, {11402, 13335}, {11427, 32973}, {11477, 35298}, {13430, 45472}, {13441, 45473}, {14001, 37649}, {14096, 52771}, {14253, 57493}, {17810, 37465}, {17825, 22332}, {17834, 37114}, {20806, 36748}, {28419, 34828}, {31859, 40814}, {32459, 37645}, {34396, 39907}, {36747, 52278}, {37486, 52274}, {37489, 44221}, {37497, 52279}, {37498, 52276}, {41614, 52437}, {42406, 53477}, {44200, 52016}, {47113, 58307}, {50684, 57258}, {51389, 52251}, {52247, 57009}

X(59211) = isogonal conjugate of X(47735)
X(59211) = isotomic conjugate of X(42298)
X(59211) = perspector of circumconic {{A, B, C, X(4558), X(10425)}}
X(59211) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 47735}, {19, 7612}, {31, 42298}, {1096, 56267}
X(59211) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42298}, {3, 47735}, {6, 7612}, {6503, 56267}, {37188, 40814}, {48876, 3815}
X(59211) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1007, 1351}, {40802, 394}, {42351, 343}
X(59211)= pole of line {8651, 35259} with respect to the 1st Brocard circle
X(59211)= pole of line {924, 42663} with respect to the circumcircle
X(59211)= pole of line {69, 9722} with respect to the Kiepert hyperbola
X(59211)= pole of line {4563, 23181} with respect to the Kiepert parabola
X(59211)= pole of line {4, 230} with respect to the Stammler hyperbola
X(59211)= pole of line {3566, 6132} with respect to the Steiner inellipse
X(59211)= pole of line {193, 264} with respect to the Wallace hyperbola
X(59211) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3167)}}, {{A, B, C, X(3), X(1351)}}, {{A, B, C, X(6), X(52144)}}, {{A, B, C, X(155), X(56892)}}, {{A, B, C, X(184), X(8770)}}, {{A, B, C, X(343), X(26907)}}, {{A, B, C, X(394), X(1007)}}, {{A, B, C, X(493), X(10133)}}, {{A, B, C, X(494), X(10132)}}, {{A, B, C, X(3053), X(13881)}}, {{A, B, C, X(10011), X(52275)}}, {{A, B, C, X(36212), X(52091)}}, {{A, B, C, X(40801), X(40812)}}, {{A, B, C, X(47406), X(57493)}}, {{A, B, C, X(55159), X(56002)}}
X(59211) = barycentric product X(i)*X(j) for these (i, j): {326, 51288}, {1007, 3}, {1351, 69}, {3926, 59229}, {10008, 6}, {10011, 43705}, {37174, 394}, {40809, 6337}, {56892, 9723}
X(59211) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42298}, {3, 7612}, {6, 47735}, {394, 56267}, {1007, 264}, {1351, 4}, {3167, 40819}, {9752, 43976}, {10008, 76}, {10011, 44145}, {37174, 2052}, {40809, 34208}, {51288, 158}, {56892, 847}, {59229, 393}
X(59211) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3167, 52144}, {3, 36212, 394}, {6, 9723, 10607}, {39, 37344, 10601}, {1993, 35296, 3053}, {5406, 5407, 3796}, {5408, 5409, 3167}, {20806, 44180, 36748}


X(59212) = X(2)X(330)∩X(10)X(321)

Barycentrics    b*c*(b+c)*(2*a^2-b*c+a*(b+c)) : :

X(59212) lies on these lines: {1, 25298}, {2, 330}, {10, 321}, {37, 4033}, {38, 20340}, {75, 4708}, {76, 4359}, {141, 29982}, {192, 21857}, {239, 18140}, {306, 22230}, {312, 29593}, {313, 1213}, {319, 25660}, {594, 22016}, {668, 16826}, {693, 14433}, {1211, 21025}, {1441, 27691}, {1573, 30819}, {1575, 31036}, {1655, 26048}, {1921, 31323}, {2238, 41233}, {2309, 25120}, {3175, 21868}, {3263, 16991}, {3264, 4364}, {3294, 29511}, {3570, 40744}, {3596, 17248}, {3661, 4358}, {3662, 30044}, {3666, 25125}, {3728, 21257}, {3739, 18133}, {3770, 28653}, {3912, 5741}, {3963, 5257}, {3969, 21071}, {3995, 20691}, {4103, 22048}, {4110, 4704}, {4357, 20892}, {4377, 52706}, {4386, 11320}, {4393, 21904}, {4687, 30473}, {4688, 39995}, {4690, 30939}, {4698, 18040}, {4710, 25354}, {4723, 29659}, {4751, 18144}, {5224, 20891}, {5249, 30063}, {5260, 26243}, {6381, 20913}, {6542, 25280}, {10009, 27481}, {11681, 30807}, {16589, 21827}, {16605, 19791}, {16814, 29423}, {17148, 28244}, {17184, 20255}, {17230, 18743}, {17236, 30090}, {17238, 20923}, {17239, 18137}, {17244, 27130}, {17256, 17790}, {17259, 18044}, {17275, 18147}, {17348, 18046}, {17351, 29388}, {17448, 27166}, {17786, 27268}, {17793, 21352}, {18139, 29968}, {18143, 31238}, {19804, 20943}, {19810, 26044}, {20146, 58019}, {20332, 21759}, {20905, 24986}, {21024, 56810}, {21246, 30034}, {21264, 31026}, {21615, 31322}, {21884, 25614}, {21892, 56185}, {22174, 42027}, {24524, 29570}, {25102, 44307}, {25107, 27044}, {25278, 29585}, {25303, 29592}, {25425, 59207}, {27269, 28606}, {27299, 32774}, {27321, 33133}, {27646, 34063}, {29572, 30829}, {29586, 52151}, {29626, 30866}, {29967, 30056}, {30045, 54311}, {32911, 41240}, {32925, 46032}, {41839, 53675}, {42724, 58366}

X(59212) = isogonal conjugate of X(59192)
X(59212) = isotomic conjugate of X(55971)
X(59212) = perspector of circumconic {{A, B, C, X(4033), X(18830)}}
X(59212) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59192}, {6, 51449}, {31, 55971}, {32, 55947}, {81, 40735}, {1333, 52654}, {2206, 27494}, {3733, 43077}
X(59212) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 55971}, {3, 59192}, {9, 51449}, {37, 52654}, {3661, 40773}, {3993, 37673}, {6376, 55947}, {40586, 40735}, {40603, 27494}
X(59212) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30963, 3993}
X(59212)= pole of line {849, 59192} with respect to the Stammler hyperbola
X(59212)= pole of line {4083, 4129} with respect to the Steiner inellipse
X(59212)= pole of line {757, 27644} with respect to the Wallace hyperbola
X(59212) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3971)}}, {{A, B, C, X(10), X(330)}}, {{A, B, C, X(37), X(40881)}}, {{A, B, C, X(76), X(4066)}}, {{A, B, C, X(226), X(4135)}}, {{A, B, C, X(321), X(6384)}}, {{A, B, C, X(756), X(16606)}}, {{A, B, C, X(2292), X(27455)}}, {{A, B, C, X(3701), X(27424)}}, {{A, B, C, X(3710), X(57848)}}, {{A, B, C, X(3994), X(4806)}}, {{A, B, C, X(4642), X(27499)}}, {{A, B, C, X(5051), X(31912)}}, {{A, B, C, X(16604), X(20332)}}, {{A, B, C, X(27481), X(40733)}}, {{A, B, C, X(27496), X(52353)}}, {{A, B, C, X(31060), X(40031)}}
X(59212) = barycentric product X(i)*X(j) for these (i, j): {10, 30963}, {321, 4393}, {3993, 75}, {4033, 4785}, {4806, 668}, {10009, 37}, {16468, 313}, {21101, 56664}, {21793, 27801}, {21904, 76}, {27808, 4782}, {31912, 52369}
X(59212) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51449}, {2, 55971}, {6, 59192}, {10, 52654}, {42, 40735}, {75, 55947}, {321, 27494}, {1018, 43077}, {1089, 34475}, {3795, 3736}, {3971, 40780}, {3993, 1}, {4033, 53648}, {4393, 81}, {4759, 52680}, {4782, 3733}, {4785, 1019}, {4806, 513}, {10009, 274}, {16468, 58}, {21793, 1333}, {21904, 6}, {23095, 1437}, {25376, 16744}, {27481, 40773}, {30963, 86}, {34476, 849}
X(59212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6376, 52043}, {10, 3948, 321}, {76, 29576, 4359}, {5257, 56253, 3963}, {6381, 24603, 20913}, {20913, 24603, 24589}


X(59213) = X(2)X(2998)∩X(141)X(6665)

Barycentrics    b^2*c^2*(b^2+c^2)*(2*a^4-b^2*c^2+a^2*(b^2+c^2)) : :

X(59213) lies on these lines: {2, 2998}, {141, 6665}, {308, 16988}, {670, 3329}, {1502, 16986}, {3266, 3314}, {6292, 52568}, {7766, 41259}, {7876, 40050}, {7897, 57518}, {10010, 10335}, {11059, 39602}, {26234, 35538}, {26235, 30736}, {31276, 47846}, {33889, 34086}

X(59213) = isotomic conjugate of X(51450)
X(59213) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 51450}, {46288, 51844}, {46289, 52660}
X(59213) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 51450}, {39, 52660}
X(59213) = X(i)-Ceva conjugate of X(j) for these {i, j}: {41259, 32449}
X(59213)= pole of line {251, 1613} with respect to the Wallace hyperbola
X(59213) = intersection, other than A, B, C, of circumconics {{A, B, C, X(141), X(2998)}}, {{A, B, C, X(699), X(6375)}}, {{A, B, C, X(8024), X(40162)}}
X(59213) = barycentric product X(i)*X(j) for these (i, j): {141, 41259}, {1930, 52138}, {7766, 8024}, {10010, 39}, {32449, 76}, {52568, 59232}
X(59213) = barycentric quotient X(i)/X(j) for these (i, j): {2, 51450}, {141, 52660}, {1930, 51844}, {4576, 25424}, {7766, 251}, {8024, 43688}, {10010, 308}, {25423, 18105}, {32449, 6}, {41259, 83}, {51291, 46289}, {52138, 82}, {52568, 59258}, {59232, 46288}
X(59213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6374, 35524}, {141, 35540, 8024}, {1502, 16986, 39998}


X(59214) = X(2)X(1931)∩X(1125)X(2308)

Barycentrics    (a+b)*(a+c)*(2*a+b+c)*(a^2-3*b^2-5*b*c-3*c^2-a*(b+c)) : :

X(59214) lies on these lines: {2, 1931}, {1125, 2308}, {6629, 31029}, {11115, 19856}, {16704, 29586}, {16709, 27605}, {29592, 34016}, {29610, 31059}, {51353, 59238}

X(59214)= pole of line {1126, 9341} with respect to the Stammler hyperbola
X(59214)= pole of line {1268, 1654} with respect to the Wallace hyperbola
X(59214) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1125), X(6625)}}, {{A, B, C, X(2248), X(2308)}}, {{A, B, C, X(8025), X(40164)}}
X(59214) = barycentric product X(i)*X(j) for these (i, j): {16709, 51294}, {51353, 8025}, {52572, 59238}
X(59214) = barycentric quotient X(i)/X(j) for these (i, j): {8025, 59267}, {51353, 6539}, {59238, 52555}


X(59215) = X(1)X(3)∩X(9)X(77)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2-3*b^2-2*b*c-3*c^2+2*a*(b+c)) : :

X(59215) lies on these lines: {1, 3}, {2, 3160}, {7, 3247}, {9, 77}, {37, 269}, {45, 6610}, {63, 55986}, {73, 56809}, {85, 16831}, {142, 347}, {198, 18725}, {218, 2003}, {220, 222}, {223, 1212}, {226, 279}, {239, 25716}, {278, 1855}, {281, 58412}, {307, 17296}, {348, 3912}, {664, 4384}, {728, 25083}, {927, 56895}, {1001, 21446}, {1170, 39948}, {1362, 4517}, {1418, 4328}, {1422, 7367}, {1427, 17022}, {1442, 1445}, {1443, 8545}, {1458, 7174}, {1461, 2267}, {1462, 35227}, {1465, 34522}, {1742, 4907}, {2002, 16548}, {2006, 43057}, {2270, 18161}, {2293, 18216}, {2999, 40133}, {3008, 31231}, {3661, 52160}, {3668, 4648}, {3683, 34033}, {3686, 53997}, {3731, 6180}, {3911, 5222}, {3928, 17074}, {3945, 52819}, {3946, 8732}, {4296, 5436}, {4318, 38316}, {4334, 40784}, {4350, 16577}, {4552, 4659}, {4554, 20917}, {4654, 10481}, {4667, 12848}, {5236, 34847}, {5435, 17014}, {5437, 17080}, {5543, 21454}, {5723, 31183}, {5918, 10939}, {6167, 56518}, {6173, 22464}, {6358, 21413}, {6604, 29574}, {6666, 54425}, {7053, 54322}, {7190, 17092}, {7271, 16673}, {8809, 51969}, {9436, 17316}, {10106, 39587}, {12560, 15569}, {14021, 56382}, {15829, 56509}, {16496, 34253}, {16572, 47057}, {16601, 56848}, {16670, 37787}, {16816, 25726}, {16826, 40719}, {17086, 17282}, {17095, 17308}, {17294, 33298}, {20195, 37800}, {23144, 52405}, {24460, 36538}, {25067, 34488}, {25525, 57477}, {25723, 26626}, {27475, 42309}, {28043, 35293}, {28982, 55337}, {29597, 55082}, {31142, 42050}, {34056, 39963}, {35110, 43043}, {36816, 56783}, {40212, 44708}, {42289, 42290}, {43058, 56859}, {43064, 52705}, {43065, 56418}, {50836, 53529}, {51653, 54377}

X(59215) = isogonal conjugate of X(42317)
X(59215) = perspector of circumconic {{A, B, C, X(651), X(53640)}}
X(59215) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42317}, {41, 55983}, {55, 55937}, {284, 54668}, {522, 26716}, {663, 32040}, {2175, 59259}
X(59215) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 42317}, {223, 55937}, {3160, 55983}, {5222, 30854}, {40590, 54668}, {40593, 59259}
X(59215) = X(i)-Ceva conjugate of X(j) for these {i, j}: {21446, 57}, {42335, 226}
X(59215) = X(i)-cross conjugate of X(j) for these {i, j}: {42316, 5223}
X(59215)= pole of line {14282, 44426} with respect to the polar circle
X(59215)= pole of line {21, 42317} with respect to the Stammler hyperbola
X(59215)= pole of line {1025, 57192} with respect to the Hutson-Moses hyperbola
X(59215)= pole of line {314, 42317} with respect to the Wallace hyperbola
X(59215) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5223)}}, {{A, B, C, X(2), X(165)}}, {{A, B, C, X(3), X(1815)}}, {{A, B, C, X(9), X(41339)}}, {{A, B, C, X(55), X(2338)}}, {{A, B, C, X(57), X(36620)}}, {{A, B, C, X(81), X(10980)}}, {{A, B, C, X(226), X(37593)}}, {{A, B, C, X(277), X(15803)}}, {{A, B, C, X(279), X(3361)}}, {{A, B, C, X(354), X(39948)}}, {{A, B, C, X(1155), X(39963)}}, {{A, B, C, X(1419), X(43035)}}, {{A, B, C, X(1429), X(19604)}}, {{A, B, C, X(7994), X(56230)}}, {{A, B, C, X(8056), X(53056)}}, {{A, B, C, X(11531), X(56355)}}, {{A, B, C, X(13462), X(34056)}}, {{A, B, C, X(25417), X(30350)}}, {{A, B, C, X(25930), X(56139)}}, {{A, B, C, X(41006), X(45228)}}, {{A, B, C, X(42326), X(58887)}}
X(59215) = barycentric product X(i)*X(j) for these (i, j): {6, 59200}, {5223, 7}, {10004, 9}, {29616, 57}, {42316, 85}
X(59215) = barycentric quotient X(i)/X(j) for these (i, j): {6, 42317}, {7, 55983}, {57, 55937}, {65, 54668}, {85, 59259}, {651, 32040}, {1415, 26716}, {5223, 8}, {10004, 85}, {29616, 312}, {42316, 9}, {59200, 76}
X(59215) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 165, 41339}, {1, 241, 57}, {1, 51302, 5228}, {2, 3160, 43035}, {9, 77, 1419}, {223, 43044, 2124}, {241, 5228, 51302}, {279, 5308, 226}, {1418, 16777, 4328}, {1442, 1445, 1449}, {13388, 13389, 165}, {24635, 25930, 9}


X(59216) = X(1)X(644)∩X(9)X(55)

Barycentrics    a*(a-b-c)*(a^2+3*b^2-2*b*c+3*c^2-4*a*(b+c)) : :

X(59216) lies on these lines: {1, 644}, {2, 2415}, {9, 55}, {10, 56937}, {37, 3677}, {40, 56536}, {45, 44798}, {78, 56244}, {190, 40719}, {192, 24600}, {344, 9436}, {346, 4847}, {728, 1212}, {846, 8580}, {1001, 39959}, {1743, 3870}, {2325, 5231}, {3145, 35342}, {3576, 41391}, {3601, 30618}, {3691, 7323}, {3730, 12526}, {3872, 52705}, {3950, 36845}, {3957, 16667}, {3973, 8616}, {3991, 16572}, {4003, 16676}, {4666, 16673}, {5223, 52155}, {8568, 31249}, {8583, 25066}, {10025, 25728}, {14439, 40131}, {14828, 50127}, {17298, 40868}, {17742, 37246}, {17744, 31424}, {17754, 35341}, {25096, 26242}, {29627, 51302}, {33950, 53053}

X(59216) = isogonal conjugate of X(42315)
X(59216) = perspector of circumconic {{A, B, C, X(644), X(53647)}}
X(59216) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 42315}, {56, 42318}, {1407, 56088}
X(59216) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 42318}, {3, 42315}, {24393, 29571}, {24771, 56088}
X(59216) = X(i)-Ceva conjugate of X(j) for these {i, j}: {29627, 3243}, {39959, 200}
X(59216)= pole of line {1014, 33628} with respect to the Stammler hyperbola
X(59216)= pole of line {3699, 35341} with respect to the Yff parabola
X(59216)= pole of line {41629, 42315} with respect to the Wallace hyperbola
X(59216) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2348)}}, {{A, B, C, X(2), X(3158)}}, {{A, B, C, X(9), X(1280)}}, {{A, B, C, X(55), X(8056)}}, {{A, B, C, X(200), X(6557)}}, {{A, B, C, X(210), X(4052)}}, {{A, B, C, X(1743), X(4859)}}, {{A, B, C, X(2297), X(3174)}}, {{A, B, C, X(4936), X(56081)}}, {{A, B, C, X(6600), X(27819)}}, {{A, B, C, X(15733), X(55993)}}
X(59216) = barycentric product X(i)*X(j) for these (i, j): {1, 10005}, {6, 59201}, {200, 51351}, {341, 42314}, {346, 51302}, {3243, 8}, {29627, 9}
X(59216) = barycentric quotient X(i)/X(j) for these (i, j): {6, 42315}, {9, 42318}, {200, 56088}, {3243, 7}, {10005, 75}, {29627, 85}, {42314, 269}, {51302, 279}, {51351, 1088}, {59201, 76}
X(59216) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 55337, 4936}, {9, 3158, 2348}, {9, 3693, 200}, {344, 9436, 30813}, {728, 1212, 4853}, {24152, 24153, 3158}, {25082, 55337, 1}


X(59217) = X(1)X(2)∩X(218)X(748)

Barycentrics    a*(a^2-2*b*c-a*(b+c))*(-(b-c)^2+a*(b+c)) : :

X(59217) lies on these lines: {1, 2}, {7, 24708}, {38, 16601}, {86, 4625}, {142, 2293}, {170, 9812}, {218, 748}, {220, 4423}, {241, 3742}, {244, 37597}, {294, 16503}, {354, 1212}, {497, 26101}, {948, 1458}, {1001, 1471}, {1064, 15251}, {1334, 20358}, {1621, 9441}, {2310, 10177}, {3000, 6173}, {3243, 59269}, {3664, 20978}, {3914, 24181}, {4000, 4343}, {4322, 51723}, {4724, 45322}, {4878, 17337}, {7671, 24341}, {10481, 17169}, {14549, 17398}, {15185, 21039}, {17450, 43065}, {17754, 40779}, {20367, 35270}, {21332, 40133}, {21346, 40937}, {21746, 28351}, {21931, 24388}, {22063, 23972}, {33570, 45755}, {34522, 43046}, {36219, 46792}, {40864, 55082}, {40998, 58816}, {42819, 56715}

X(59217) = isogonal conjugate of X(59193)
X(59217) = perspector of circumconic {{A, B, C, X(190), X(35338)}}
X(59217) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59193}, {6, 42310}, {1002, 2346}, {1170, 40779}, {1174, 27475}, {2279, 32008}, {6605, 42290}, {8693, 56322}, {37138, 58322}, {42302, 56255}, {51443, 56157}
X(59217) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59193}, {9, 42310}, {1212, 59255}, {40606, 27475}
X(59217) = X(i)-Ceva conjugate of X(j) for these {i, j}: {870, 20880}, {39959, 3059}
X(59217)= pole of line {58, 10482} with respect to the Stammler hyperbola
X(59217)= pole of line {86, 2340} with respect to the Wallace hyperbola
X(59217) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1471)}}, {{A, B, C, X(2), X(354)}}, {{A, B, C, X(8), X(1001)}}, {{A, B, C, X(10), X(10481)}}, {{A, B, C, X(42), X(56783)}}, {{A, B, C, X(86), X(2293)}}, {{A, B, C, X(142), X(3912)}}, {{A, B, C, X(200), X(8012)}}, {{A, B, C, X(279), X(27253)}}, {{A, B, C, X(1026), X(4625)}}, {{A, B, C, X(1418), X(5308)}}, {{A, B, C, X(2280), X(3870)}}, {{A, B, C, X(3661), X(40784)}}, {{A, B, C, X(3886), X(4882)}}, {{A, B, C, X(3935), X(4724)}}, {{A, B, C, X(9445), X(13405)}}, {{A, B, C, X(10578), X(59242)}}, {{A, B, C, X(16831), X(18164)}}, {{A, B, C, X(18087), X(24592)}}, {{A, B, C, X(22053), X(56813)}}, {{A, B, C, X(24600), X(25430)}}, {{A, B, C, X(28044), X(28057)}}, {{A, B, C, X(28058), X(45755)}}, {{A, B, C, X(40983), X(41265)}}, {{A, B, C, X(48151), X(49772)}}
X(59217) = barycentric product X(i)*X(j) for these (i, j): {6, 59202}, {354, 4384}, {1001, 142}, {1212, 40719}, {1229, 1471}, {1418, 3886}, {1475, 4441}, {3059, 42309}, {4847, 5228}, {10481, 37658}, {16713, 42289}, {17169, 59207}, {18164, 3696}, {20880, 2280}, {21104, 54440}, {35312, 45755}, {35338, 4762}, {51972, 59242}
X(59217) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42310}, {6, 59193}, {142, 59255}, {354, 27475}, {1001, 32008}, {1471, 1170}, {1475, 1002}, {2280, 2346}, {2293, 40779}, {3696, 56127}, {4384, 57815}, {4724, 56322}, {5228, 21453}, {8012, 59269}, {35326, 37138}, {35338, 32041}, {37658, 56118}, {40719, 31618}, {42309, 42311}, {51972, 59260}, {59202, 76}, {59207, 56157}, {59242, 10509}
X(59217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16020, 1193}, {1, 2, 2340}, {1, 26102, 5308}, {1, 3008, 42}, {1, 3624, 56809}, {17014, 29814, 1}, {40937, 58564, 21346}


X(59218) = X(2)X(37)∩X(1213)X(1962)

Barycentrics    (b+c)*(2*a+b+c)*(a^2+b*c+2*a*(b+c)) : :

X(59218) lies on these lines: {2, 37}, {292, 32009}, {551, 21839}, {1125, 4115}, {1213, 1962}, {2238, 10180}, {3294, 6763}, {3616, 21879}, {3634, 24051}, {3723, 4981}, {3726, 21810}, {3807, 31350}, {3873, 21873}, {3986, 46907}, {3993, 59261}, {4024, 28602}, {4042, 16777}, {4062, 21840}, {4771, 58381}, {5257, 21085}, {6155, 58387}, {7200, 50179}, {14210, 50174}, {16369, 16826}, {21674, 23905}, {24044, 51073}, {24067, 24165}, {29460, 52548}

X(59218) = isogonal conjugate of X(59194)
X(59218) = perspector of circumconic {{A, B, C, X(668), X(4115)}}
X(59218) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59194}, {1171, 30571}, {25426, 40438}
X(59218) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59194}, {1125, 27483}, {3775, 40773}
X(59218) = X(i)-Ceva conjugate of X(j) for these {i, j}: {16826, 5625}
X(59218)= pole of line {1333, 25426} with respect to the Stammler hyperbola
X(59218)= pole of line {81, 27483} with respect to the Wallace hyperbola
X(59218) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1962)}}, {{A, B, C, X(6), X(24944)}}, {{A, B, C, X(75), X(1213)}}, {{A, B, C, X(292), X(21820)}}, {{A, B, C, X(312), X(4046)}}, {{A, B, C, X(321), X(8013)}}, {{A, B, C, X(350), X(1125)}}, {{A, B, C, X(1100), X(3739)}}, {{A, B, C, X(4037), X(16369)}}, {{A, B, C, X(4359), X(8040)}}, {{A, B, C, X(4649), X(28653)}}, {{A, B, C, X(4824), X(20947)}}, {{A, B, C, X(4980), X(42439)}}, {{A, B, C, X(9281), X(44307)}}, {{A, B, C, X(24530), X(39983)}}, {{A, B, C, X(25660), X(51314)}}
X(59218) = barycentric product X(i)*X(j) for these (i, j): {6, 59203}, {10, 5625}, {1125, 3842}, {1213, 16826}, {4427, 4824}, {4647, 4649}, {21816, 51314}, {28840, 4115}, {51356, 8013}, {52576, 59243}
X(59218) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59194}, {1213, 27483}, {1962, 30571}, {3842, 1268}, {4649, 40438}, {4824, 4608}, {5625, 86}, {8013, 59261}, {16826, 32014}, {20970, 25426}, {59203, 76}, {59243, 52558}
X(59218) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37, 4037}, {37, 1575, 21820}, {1125, 55343, 21816}


X(59219) = X(1)X(2)∩X(334)X(1268)

Barycentrics    (b+c)*(2*b*c+a*(b+c))*(a^2+b*c+2*a*(b+c)) : :

X(59219) lies on these lines: {1, 2}, {334, 1268}, {1213, 2486}, {3696, 59272}, {3739, 21699}, {3948, 27798}, {4365, 24049}, {4824, 45657}, {4967, 21713}, {16589, 21020}, {21810, 23913}, {25611, 56902}

X(59219) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25426, 40408}
X(59219) = X(i)-Dao conjugate of X(j) for these {i, j}: {3739, 30571}
X(59219) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40718, 2667}
X(59219)= pole of line {1213, 2667} with respect to the Kiepert hyperbola
X(59219)= pole of line {86, 59147} with respect to the Wallace hyperbola
X(59219) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3842)}}, {{A, B, C, X(2), X(21020)}}, {{A, B, C, X(10), X(52579)}}, {{A, B, C, X(42), X(21820)}}, {{A, B, C, X(239), X(3739)}}, {{A, B, C, X(334), X(8013)}}, {{A, B, C, X(1125), X(20888)}}, {{A, B, C, X(1268), X(21699)}}, {{A, B, C, X(4824), X(19998)}}, {{A, B, C, X(26102), X(39793)}}, {{A, B, C, X(29576), X(53478)}}, {{A, B, C, X(48393), X(49764)}}
X(59219) = barycentric product X(i)*X(j) for these (i, j): {3739, 3842}, {4649, 53478}, {16826, 21020}, {21699, 51314}, {51356, 52579}
X(59219) = barycentric quotient X(i)/X(j) for these (i, j): {2667, 25426}, {3842, 32009}, {4649, 40408}, {16589, 30571}, {16826, 40439}, {21020, 27483}, {21820, 59272}, {51356, 59147}, {52579, 59261}
X(59219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 3912, 8013}


X(59220) = X(5)X(6)∩X(2070)X(2453)

Barycentrics    a^12-2*b^2*c^2*(b^2-c^2)^4-3*a^10*(b^2+c^2)+a^8*(4*b^4+5*b^2*c^2+4*c^4)-a^2*(b^2-c^2)^2*(b^6-5*b^4*c^2-5*b^2*c^4+c^6)-2*a^6*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)+a^4*(3*b^8-5*b^6*c^2-4*b^4*c^4-5*b^2*c^6+3*c^8) : :

X(59220) lies on these lines: {5, 6}, {925, 45793}, {1141, 43084}, {2070, 2453}, {3432, 59137}, {7488, 20477}, {9756, 59226}, {26708, 26713}, {39910, 50660}

X(59220) = polarologic center of ABC and the circumcevian triangle of X(5)
X(59220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 41205, 6}


X(59221) = X(1)X(6)∩X(3)X(2325)

Barycentrics    a*(a^4+a^3*(b+c)-2*b*c*(b+c)^2-a*(b+c)*(b^2-6*b*c+c^2)-a^2*(b^2+4*b*c+c^2)) : :

X(59221) lies on these lines: {1, 6}, {3, 2325}, {56, 54389}, {100, 198}, {190, 27472}, {312, 15509}, {344, 5744}, {374, 3872}, {573, 4752}, {999, 50115}, {1376, 17281}, {1436, 52549}, {1604, 2933}, {1696, 2345}, {2178, 17340}, {2183, 4513}, {2321, 8074}, {3161, 54322}, {3196, 8168}, {3295, 4029}, {3911, 17279}, {3912, 24328}, {3913, 3943}, {3932, 5657}, {3950, 4254}, {3974, 20991}, {4370, 11194}, {4421, 4908}, {4657, 5316}, {4659, 37272}, {4873, 5687}, {5782, 9310}, {6057, 15494}, {11683, 29001}, {16370, 36911}, {17321, 28616}, {17357, 31190}, {17369, 25524}, {27382, 56859}, {28420, 28829}, {37679, 57037}

X(59221) = isogonal conjugate of X(59263)
X(59221)= pole of line {667, 4163} with respect to the circumcircle
X(59221)= pole of line {81, 59263} with respect to the Stammler hyperbola
X(59221)= pole of line {274, 59263} with respect to the Wallace hyperbola
X(59221) = polarologic center of ABC and the circumcevian triangle of X(9)
X(59221) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(51284)}}, {{A, B, C, X(6), X(57658)}}, {{A, B, C, X(104), X(16483)}}, {{A, B, C, X(1436), X(20228)}}, {{A, B, C, X(2324), X(52549)}}, {{A, B, C, X(45219), X(56940)}}
X(59221) = barycentric product X(i)*X(j) for these (i, j): {1, 51284}
X(59221) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59263}, {51284, 75}
X(59221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 56530, 6}, {346, 38869, 198}, {956, 33845, 1001}


X(59222) = X(3)X(3596)∩X(6)X(10)

Barycentrics    a^6+a^4*b*c+a^5*(b+c)-2*b^2*c^2*(b+c)^2-a^3*(b+c)*(b^2+c^2)-a^2*(b^4+b^3*c+b*c^3+c^4) : :

X(59222) lies on these lines: {3, 3596}, {6, 10}, {58, 44418}, {98, 8706}, {183, 10009}, {199, 835}, {3437, 59138}, {3963, 19329}, {3993, 59238}, {4710, 17798}, {16086, 30882}, {25446, 29453}, {29327, 46738}

X(59222) = polarologic center of ABC and the circumcevian triangle of X(10)


X(59223) = X(6)X(19)∩X(53)X(198)

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^5*(b+c)+2*b*c*(b^2-c^2)^2+a*(b-c)^2*(b+c)*(b^2+c^2)+a^2*(b^2+c^2)^2-2*a^4*(b^2+b*c+c^2)-2*a^3*(b^3+c^3)) : :

X(59223) lies on these lines: {6, 19}, {53, 198}, {56, 1990}, {108, 393}, {281, 54285}, {2164, 7040}, {36744, 46835}, {37503, 56814}, {54368, 57278}

X(59223)= pole of line {1812, 6511} with respect to the Stammler hyperbola
X(59223) = polarologic center of ABC and the circumcevian triangle of X(19)
X(59223) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(20624)}}, {{A, B, C, X(34), X(51282)}}, {{A, B, C, X(65), X(7040)}}, {{A, B, C, X(1409), X(2164)}}, {{A, B, C, X(8748), X(52033)}}
X(59223) = barycentric product X(i)*X(j) for these (i, j): {1, 51282}
X(59223) = barycentric quotient X(i)/X(j) for these (i, j): {51282, 75}
X(59223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19, 2202, 6}, {393, 38860, 2178}


X(59224) = X(3)X(43976)∩X(6)X(20)

Barycentrics    a^12-2*b^2*c^2*(b^2-c^2)^4+3*a^10*(b^2+c^2)+2*a^8*(-7*b^4+b^2*c^2-7*c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+6*b^2*c^2+c^4)-a^4*(b^2+c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)+2*a^6*(7*b^6+5*b^4*c^2+5*b^2*c^4+7*c^6) : :

X(59224) lies on these lines: {3, 43976}, {6, 20}, {98, 33974}, {925, 34168}, {1294, 20187}, {2071, 2453}, {3260, 9723}, {5999, 59229}, {21312, 42329}, {33971, 47620}, {34808, 40888}, {35474, 59228}, {36990, 56376}, {53094, 56377}

X(59224) = X(i)-isoconjugate-of-X(j) for these {i, j}: {774, 51448}
X(59224)= pole of line {12111, 32830} with respect to the Wallace hyperbola
X(59224) = polarologic center of ABC and the circumcevian triangle of X(20)
X(59224) = barycentric quotient X(i)/X(j) for these (i, j): {41890, 51448}


X(59225) = X(6)X(21)∩X(931)X(3185)

Barycentrics    a*(a+b)*(a+c)*(-(b^2*c^2*(b+c)^2)-a*b*c*(b+c)*(b^2+c^2)+a^4*(b^2+b*c+c^2)-a^2*(b^4-b^2*c^2+c^4)) : :

X(59225) lies on these lines: {6, 21}, {759, 56128}, {931, 3185}, {1325, 2453}, {2217, 40452}, {2975, 4360}, {3286, 11104}, {3736, 4443}, {11101, 27958}, {11688, 56439}, {16049, 20477}, {17512, 19623}, {26703, 53684}, {34594, 53707}

X(59225)= pole of line {17164, 24282} with respect to the Wallace hyperbola
X(59225) = polarologic center of ABC and the circumcevian triangle of X(21)


X(59226) = X(6)X(22)∩X(20)X(7774)

Barycentrics    a^2*(a^8-3*b^8-2*b^4*c^4-3*c^8+2*a^4*(b^4+c^4)) : :

X(59226) lies on these lines: {3, 56920}, {6, 22}, {20, 7774}, {25, 50666}, {325, 1370}, {394, 56923}, {827, 20993}, {858, 2453}, {1297, 3565}, {3001, 26283}, {3095, 11414}, {3313, 15574}, {3314, 56376}, {3329, 56377}, {3398, 9715}, {5999, 33971}, {7493, 7792}, {9756, 59220}, {9766, 52397}, {9909, 44089}, {10565, 16989}, {18018, 44166}, {21312, 35002}, {23115, 38652}, {34427, 40073}

X(59226) = polarologic center of ABC and the circumcevian triangle of X(22)
X(59226) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1297), X(33632)}}, {{A, B, C, X(1501), X(34427)}}, {{A, B, C, X(41768), X(46288)}}


X(59227) = X(3)X(691)∩X(6)X(23)

Barycentrics    a^2*(a^8-3*b^8+4*b^6*c^2-4*b^4*c^4+4*b^2*c^6-3*c^8-2*a^6*(b^2+c^2)+a^2*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)+a^4*(2*b^4-b^2*c^2+2*c^4)) : :

X(59227) lies on circumconic {{A, B, C, X(14567), X(22258)}} and these lines: {2, 2453}, {3, 691}, {6, 23}, {22, 5467}, {25, 52916}, {30, 9744}, {39, 37915}, {110, 2871}, {115, 14662}, {141, 47245}, {182, 37930}, {183, 523}, {232, 36176}, {250, 45141}, {325, 36163}, {468, 17907}, {671, 11258}, {858, 20477}, {1003, 47326}, {1316, 11174}, {1350, 2421}, {1975, 36165}, {1995, 46127}, {2070, 11842}, {2452, 14614}, {2970, 36898}, {5013, 36182}, {5099, 7841}, {5189, 7777}, {5651, 47213}, {5999, 59231}, {6041, 47442}, {6795, 36166}, {7418, 14687}, {7426, 16324}, {7736, 36181}, {7771, 47290}, {7773, 36187}, {7806, 37760}, {7868, 11007}, {8860, 16092}, {9060, 53929}, {9142, 44420}, {10296, 53017}, {10416, 22258}, {10989, 11184}, {11636, 51240}, {12093, 54439}, {14995, 47596}, {15066, 33928}, {15107, 52693}, {15268, 38651}, {15271, 47284}, {15398, 21448}, {16329, 37906}, {17008, 47242}, {20481, 46783}, {32237, 44127}, {32447, 37924}, {34574, 57481}, {36174, 44526}, {36194, 53136}, {37053, 47270}, {37991, 52771}, {46992, 50147}, {53190, 53942}

X(59227) = reflection of X(i) in X(j) for these {i,j}: {183, 9832}
X(59227) = isogonal conjugate of X(59264)
X(59227)= pole of line {11631, 17414} with respect to the circumcircle
X(59227)= pole of line {5169, 6792} with respect to the Kiepert hyperbola
X(59227)= pole of line {599, 45662} with respect to the Stammler hyperbola
X(59227)= pole of line {39099, 55974} with respect to the Steiner circumellipse
X(59227)= pole of line {9464, 38940} with respect to the Wallace hyperbola
X(59227) = polarologic center of ABC and the circumcevian triangle of X(23)
X(59227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {523, 9832, 183}, {11629, 11630, 3}


X(59228) = X(4)X(20477)∩X(6)X(24)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^4*(a^4+3*b^4)-2*(a^2-b^2)^2*(2*a^6-a^4*b^2+3*b^6)*c^2+(9*a^8-8*a^6*b^2-6*a^4*b^4+5*b^8)*c^4-4*(4*a^6+a^4*b^2+b^6)*c^6+(19*a^4+12*a^2*b^2+5*b^4)*c^8-6*(2*a^2+b^2)*c^10+3*c^12) : :

X(59228) lies on these lines: {4, 20477}, {6, 24}, {25, 30258}, {183, 40801}, {403, 2453}, {1299, 39382}, {1301, 3563}, {2207, 10608}, {3542, 6530}, {6353, 41371}, {34428, 59139}, {35474, 59224}, {44492, 56307}

X(59228) = polarologic center of ABC and the circumcevian triangle of X(24)
X(59228) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3563), X(33629)}}, {{A, B, C, X(14533), X(41768)}}, {{A, B, C, X(14585), X(34428)}}


X(59229) = X(2)X(53)∩X(6)X(25)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+3*b^4-2*b^2*c^2+3*c^4-4*a^2*(b^2+c^2)) : :

X(59229) lies on these lines: {2, 53}, {3, 3199}, {4, 3815}, {6, 25}, {22, 14577}, {24, 112}, {32, 3517}, {33, 31477}, {39, 1598}, {64, 1987}, {111, 9064}, {141, 37187}, {186, 5210}, {187, 55572}, {216, 5020}, {230, 393}, {235, 44518}, {264, 15271}, {297, 7778}, {317, 9766}, {378, 33885}, {403, 47169}, {427, 31489}, {468, 2453}, {571, 36417}, {574, 1597}, {577, 9909}, {800, 34481}, {1007, 37174}, {1196, 8573}, {1249, 5306}, {1350, 40801}, {1384, 14581}, {1593, 15815}, {1595, 31401}, {1596, 2549}, {1609, 1611}, {1625, 37489}, {1656, 27371}, {1885, 44519}, {1907, 31492}, {1968, 3515}, {1970, 17821}, {1990, 4232}, {1995, 11062}, {2548, 6756}, {2965, 17409}, {2967, 11477}, {3054, 38282}, {3055, 8889}, {3066, 59208}, {3087, 7714}, {3089, 5254}, {3147, 44535}, {3172, 22331}, {3289, 33586}, {3331, 10605}, {3518, 8743}, {3542, 13881}, {3767, 21841}, {3839, 42391}, {5024, 18535}, {5198, 15433}, {5206, 55570}, {5275, 35973}, {5475, 18494}, {5585, 55576}, {5999, 59224}, {6421, 35764}, {6422, 35765}, {6623, 53419}, {6677, 42459}, {6748, 6995}, {6749, 37665}, {7426, 47144}, {7487, 7745}, {7517, 23115}, {7737, 37458}, {8667, 9308}, {8744, 47485}, {9085, 9088}, {9475, 20897}, {9609, 45299}, {9714, 10316}, {9753, 15274}, {9755, 15576}, {9756, 33971}, {9786, 32445}, {10011, 56892}, {10317, 51519}, {10594, 39575}, {10979, 16419}, {11184, 52282}, {11398, 16781}, {12131, 44531}, {14961, 18534}, {15480, 56013}, {15513, 55574}, {15515, 55575}, {15905, 20850}, {16308, 37777}, {16320, 36191}, {16328, 37962}, {18378, 22120}, {21313, 40350}, {21843, 37935}, {22401, 39568}, {31490, 46878}, {31859, 58782}, {32001, 50771}, {32063, 39913}, {32459, 35940}, {34096, 52771}, {34229, 43981}, {36616, 41489}, {37071, 39569}, {37512, 55571}, {37817, 52947}, {37942, 43620}, {40349, 54992}, {42849, 52281}, {44467, 52166}, {54416, 54428}

X(59229) = isogonal conjugate of X(56267)
X(59229) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 56267}, {63, 7612}, {255, 42298}, {326, 47735}
X(59229) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 56267}, {3162, 7612}, {6523, 42298}, {15259, 47735}
X(59229) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37174, 1351}
X(59229)= pole of line {647, 17994} with respect to the circumcircle
X(59229)= pole of line {850, 47122} with respect to the polar circle
X(59229)= pole of line {427, 9777} with respect to the Kiepert hyperbola
X(59229)= pole of line {512, 39533} with respect to the Orthic inconic
X(59229)= pole of line {69, 10607} with respect to the Stammler hyperbola
X(59229)= pole of line {305, 56267} with respect to the Wallace hyperbola
X(59229) = polarologic center of ABC and the circumcevian triangle of X(25)
X(59229) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11402)}}, {{A, B, C, X(6), X(1007)}}, {{A, B, C, X(24), X(10011)}}, {{A, B, C, X(25), X(8796)}}, {{A, B, C, X(64), X(1971)}}, {{A, B, C, X(111), X(26864)}}, {{A, B, C, X(154), X(1987)}}, {{A, B, C, X(184), X(8770)}}, {{A, B, C, X(230), X(3053)}}, {{A, B, C, X(251), X(9777)}}, {{A, B, C, X(393), X(19118)}}, {{A, B, C, X(1350), X(51542)}}, {{A, B, C, X(1474), X(51288)}}, {{A, B, C, X(1974), X(34818)}}, {{A, B, C, X(1989), X(19153)}}, {{A, B, C, X(2165), X(19125)}}, {{A, B, C, X(2207), X(44099)}}, {{A, B, C, X(2374), X(44116)}}, {{A, B, C, X(3815), X(42298)}}, {{A, B, C, X(8779), X(57253)}}, {{A, B, C, X(8882), X(12167)}}, {{A, B, C, X(9752), X(54032)}}, {{A, B, C, X(10008), X(19459)}}, {{A, B, C, X(10311), X(40801)}}, {{A, B, C, X(10602), X(14910)}}, {{A, B, C, X(10985), X(14486)}}, {{A, B, C, X(34828), X(36748)}}
X(59229) = barycentric product X(i)*X(j) for these (i, j): {1, 51288}, {24, 56892}, {393, 59211}, {458, 51338}, {1007, 25}, {1351, 4}, {10008, 2207}, {10011, 3563}, {37174, 6}, {40801, 9752}, {40809, 6353}
X(59229) = barycentric quotient X(i)/X(j) for these (i, j): {6, 56267}, {25, 7612}, {393, 42298}, {1007, 305}, {1351, 69}, {2207, 47735}, {19118, 40819}, {37174, 76}, {40809, 6340}, {51288, 75}, {51338, 42313}, {56892, 20563}, {59211, 3926}
X(59229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {24, 2207, 3053}, {25, 19118, 44099}, {25, 45141, 10311}, {232, 10311, 45141}, {393, 6353, 230}, {574, 33842, 1597}, {800, 34481, 34809}, {1968, 3515, 5023}, {5024, 18535, 33843}, {5412, 5413, 19118}, {10311, 45141, 6}, {10311, 56922, 44524}, {34818, 36751, 53}, {38867, 51334, 57261}


X(59230) = X(6)X(28)∩X(21)X(20477)

Barycentrics    a*(a+b)*(a+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a*b*(b-c)^2*c*(b+c)^3+b^2*c^2*(b^2-c^2)^2-a^3*b*c*(b+c)*(b^2+c^2)+a^6*(b^2+b*c+c^2)+a^2*(b+c)^2*(b^4+c^4)-a^4*(2*b^4+3*b^3*c+3*b^2*c^2+3*b*c^3+2*c^4)) : :

X(59230) lies on these lines: {6, 28}, {21, 20477}, {100, 51354}, {1001, 1982}, {2074, 2453}, {2352, 36077}, {13739, 40980}

X(59230) = polarologic center of ABC and the circumcevian triangle of X(28)


X(59231) = X(3)X(2453)∩X(6)X(30)

Barycentrics    a^12-2*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)^3+a^8*(-8*b^4+b^2*c^2-8*c^4)+2*a^6*(4*b^6+b^4*c^2+b^2*c^4+4*c^6)-a^4*(b^8+b^6*c^2+4*b^4*c^4+b^2*c^6+c^8) : :
X(59231) = -2*X[3]+X[2453], -2*X[1316]+3*X[5085], -2*X[2452]+X[11477], -3*X[10516]+4*X[11007], -3*X[25406]+X[36181], -3*X[31884]+X[47284], -4*X[36177]+5*X[53094], -3*X[38072]+4*X[50147], -2*X[47283]+7*X[55626], -2*X[47285]+5*X[55646]

X(59231) lies on these lines: {3, 2453}, {6, 30}, {20, 2407}, {22, 476}, {98, 33900}, {99, 53931}, {154, 3233}, {183, 15915}, {376, 40879}, {394, 14611}, {477, 2696}, {523, 1350}, {691, 54993}, {1302, 36789}, {1316, 5085}, {1503, 36163}, {1853, 36190}, {1995, 9159}, {2070, 33801}, {2071, 20477}, {2079, 12042}, {2452, 11477}, {2688, 2692}, {2782, 16010}, {2794, 32233}, {3258, 31152}, {3534, 15919}, {5210, 46981}, {5941, 44524}, {5999, 59227}, {6800, 36188}, {7464, 11594}, {7472, 8719}, {9756, 9832}, {10223, 15805}, {10516, 11007}, {12188, 53246}, {12203, 37915}, {14911, 34178}, {14982, 51389}, {16063, 47324}, {16168, 33532}, {17811, 47509}, {17825, 34093}, {18122, 47076}, {22676, 47290}, {25406, 36181}, {31884, 47284}, {36160, 37514}, {36177, 53094}, {36194, 47353}, {38072, 50147}, {47283, 55626}, {47285, 55646}

X(59231) = reflection of X(i) in X(j) for these {i,j}: {11477, 2452}, {14982, 51389}, {2453, 3}, {47353, 36194}, {51024, 16279}, {54131, 50149}, {6, 6795}
X(59231)= pole of line {42660, 47620} with respect to the circumcircle
X(59231) = polarologic center of ABC and the circumcevian triangle of X(30)
X(59231) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 16279, 51024}, {30, 50149, 54131}, {30, 6795, 6}, {3534, 34810, 15919}


X(59232) = X(3)X(6)∩X(110)X(699)

Barycentrics    2*a^6-a^2*b^2*c^2+a^4*(b^2+c^2) : :

X(59232) lies on these lines: {2, 42421}, {3, 6}, {25, 46286}, {69, 33225}, {83, 7784}, {98, 14458}, {110, 699}, {141, 7793}, {183, 3407}, {193, 13196}, {230, 13862}, {384, 8177}, {385, 4048}, {524, 33246}, {560, 2053}, {599, 33220}, {691, 36821}, {694, 41278}, {698, 3552}, {727, 30554}, {729, 11636}, {732, 6179}, {1078, 3763}, {1196, 32237}, {1386, 10789}, {1915, 5651}, {1974, 36615}, {2176, 14599}, {3051, 11003}, {3224, 38834}, {3242, 11364}, {3297, 12838}, {3298, 12839}, {3589, 7750}, {3618, 33021}, {3629, 51374}, {3972, 24256}, {4027, 14614}, {5026, 32451}, {5031, 7857}, {5103, 7823}, {5182, 15534}, {5306, 44882}, {5309, 48898}, {5359, 10329}, {5480, 10788}, {5621, 12192}, {5970, 32694}, {6034, 38741}, {7492, 46906}, {7735, 14927}, {7737, 40250}, {7753, 58445}, {7755, 29012}, {7765, 48892}, {7766, 10335}, {7771, 10007}, {7788, 10334}, {7804, 40332}, {7805, 41747}, {7806, 51848}, {7831, 10348}, {7837, 10353}, {7904, 10346}, {8627, 9465}, {8789, 11654}, {9225, 44116}, {9306, 36650}, {9463, 14567}, {9766, 10352}, {10104, 10516}, {11328, 18898}, {11338, 56976}, {11648, 48896}, {11898, 56434}, {12110, 53023}, {12150, 47352}, {12176, 39656}, {12194, 38315}, {13193, 52697}, {13195, 19165}, {13881, 22803}, {14561, 32134}, {14880, 48905}, {15993, 20194}, {18374, 41277}, {18501, 19130}, {18907, 53484}, {19120, 39652}, {32115, 49486}, {32217, 37896}, {32954, 39603}, {37637, 42535}, {38047, 49545}, {39563, 48942}, {39884, 53475}, {42826, 47643}, {43977, 44557}

X(59232) = isogonal conjugate of X(43688)
X(59232) = isotomic conjugate of X(59258)
X(59232) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 43688}, {2, 51844}, {31, 59258}, {75, 52660}, {1577, 25424}, {1930, 51450}
X(59232) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59258}, {3, 43688}, {206, 52660}, {32664, 51844}
X(59232) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18898, 6}
X(59232)= pole of line {5, 7875} with respect to the Kiepert hyperbola
X(59232)= pole of line {1634, 46598} with respect to the Kiepert parabola
X(59232)= pole of line {2, 698} with respect to the Stammler hyperbola
X(59232)= pole of line {76, 7849} with respect to the Wallace hyperbola
X(59232) = polarologic center of ABC and the circumcevian triangle of X(32)
X(59232) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(36615)}}, {{A, B, C, X(4), X(48673)}}, {{A, B, C, X(6), X(699)}}, {{A, B, C, X(25), X(2076)}}, {{A, B, C, X(39), X(3224)}}, {{A, B, C, X(58), X(51291)}}, {{A, B, C, X(83), X(7772)}}, {{A, B, C, X(98), X(3098)}}, {{A, B, C, X(110), X(41337)}}, {{A, B, C, X(187), X(53966)}}, {{A, B, C, X(511), X(14458)}}, {{A, B, C, X(574), X(729)}}, {{A, B, C, X(694), X(44453)}}, {{A, B, C, X(1403), X(51921)}}, {{A, B, C, X(1976), X(39560)}}, {{A, B, C, X(2698), X(35002)}}, {{A, B, C, X(3094), X(10010)}}, {{A, B, C, X(3286), X(36614)}}, {{A, B, C, X(3406), X(12054)}}, {{A, B, C, X(3407), X(12212)}}, {{A, B, C, X(3736), X(52138)}}, {{A, B, C, X(5104), X(5970)}}, {{A, B, C, X(5111), X(34238)}}, {{A, B, C, X(5118), X(11636)}}, {{A, B, C, X(5162), X(9217)}}, {{A, B, C, X(9177), X(45680)}}, {{A, B, C, X(9292), X(46284)}}, {{A, B, C, X(30496), X(32452)}}, {{A, B, C, X(31884), X(36616)}}, {{A, B, C, X(34130), X(52995)}}
X(59232) = barycentric product X(i)*X(j) for these (i, j): {1, 51291}, {6, 7766}, {31, 52138}, {32, 41259}, {110, 25423}, {251, 32449}, {10010, 1501}, {10335, 18898}, {45680, 691}, {46288, 59213}
X(59232) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59258}, {6, 43688}, {31, 51844}, {32, 52660}, {1576, 25424}, {7766, 76}, {10010, 40362}, {25423, 850}, {32449, 8024}, {41259, 1502}, {45680, 35522}, {46288, 51450}, {51291, 75}, {52138, 561}, {59213, 52568}
X(59232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 42421, 44000}, {6, 1691, 39560}, {6, 2076, 44453}, {6, 3053, 2076}, {6, 55673, 22332}, {32, 182, 12212}, {32, 41412, 1691}, {32, 5033, 5039}, {182, 2080, 1350}, {371, 372, 48673}, {1078, 42534, 3763}, {1342, 1343, 7772}, {1384, 40825, 5017}, {1501, 1627, 1613}, {1687, 1688, 3098}, {1691, 12212, 182}, {1691, 5038, 5033}, {1692, 13330, 6}, {1692, 41413, 13330}, {5007, 5092, 13331}, {5033, 5039, 5038}, {7772, 17508, 12055}, {16385, 41412, 38905}, {36759, 36760, 3}, {44586, 44587, 13356}


X(59233) = X(6)X(35)∩X(65)X(7190)

Barycentrics    a^2*(a^4-3*b^4-4*b^3*c-4*b^2*c^2-4*b*c^3-3*c^4+2*a^3*(b+c)-a*(b+c)*(2*b^2-b*c+2*c^2)+a^2*(2*b^2+3*b*c+2*c^2)) : :

X(59233) lies on these lines: {6, 35}, {65, 7190}, {71, 20872}, {74, 20219}, {484, 984}, {971, 1158}, {3841, 17327}, {6210, 38531}, {28218, 28471}, {33670, 59140}, {35000, 48875}

X(59233) = polarologic center of ABC and the circumcevian triangle of X(35)


X(59234) = X(1)X(38530)∩X(6)X(36)

Barycentrics    a^2*(a^4-3*b^4+4*b^3*c-4*b^2*c^2+4*b*c^3-3*c^4-2*a^3*(b+c)+a*(b+c)*(2*b^2-3*b*c+2*c^2)+a^2*(2*b^2-b*c+2*c^2)) : :

X(59234) lies on these lines: {1, 38530}, {3, 23157}, {6, 36}, {55, 840}, {77, 1122}, {101, 24484}, {484, 49490}, {513, 1001}, {517, 11495}, {535, 17313}, {953, 53887}, {1318, 41436}, {1376, 15635}, {1458, 20872}, {1623, 4588}, {2284, 22163}, {2320, 34431}, {3303, 38512}, {3304, 38568}, {3446, 4265}, {3814, 17265}, {4334, 59247}, {4413, 14513}, {5080, 17234}, {5440, 16504}, {7295, 38863}, {10167, 56411}, {10246, 38586}, {10269, 38617}, {12702, 13752}, {16500, 25524}, {17300, 20067}, {22765, 48908}, {38574, 53296}, {38601, 53291}, {41353, 59242}

X(59234) = polarologic center of ABC and the circumcevian triangle of X(36)
X(59234) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2251), X(34431)}}, {{A, B, C, X(38530), X(53608)}}


X(59235) = X(1)X(6)∩X(100)X(594)

Barycentrics    a*(a^4+a^3*(b+c)-2*b*c*(b+c)^2-a*(b+c)*(b^2+c^2)-a^2*(b^2+b*c+c^2)) : :

X(59235) lies on these lines: {1, 6}, {3, 29061}, {8, 54409}, {10, 19297}, {21, 3943}, {55, 50087}, {100, 594}, {191, 21864}, {572, 12773}, {993, 17281}, {1150, 17233}, {1444, 7227}, {1621, 50113}, {1631, 20989}, {2178, 4413}, {2345, 5124}, {2975, 17369}, {3196, 17330}, {3444, 14624}, {3746, 4727}, {3949, 46823}, {4395, 21516}, {4665, 21511}, {11343, 17119}, {16367, 17269}, {17293, 21488}, {17299, 25439}, {17303, 21773}, {18524, 21943}, {35212, 38903}, {53664, 54285}

X(59235) = isogonal conjugate of X(59265)
X(59235)= pole of line {667, 17989} with respect to the circumcircle
X(59235)= pole of line {81, 59265} with respect to the Stammler hyperbola
X(59235)= pole of line {274, 59265} with respect to the Wallace hyperbola
X(59235) = polarologic center of ABC and the circumcevian triangle of X(37)
X(59235) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(51285)}}, {{A, B, C, X(6), X(53686)}}, {{A, B, C, X(759), X(5315)}}, {{A, B, C, X(2300), X(3444)}}, {{A, B, C, X(14624), X(21873)}}
X(59235) = barycentric product X(i)*X(j) for these (i, j): {1, 51285}
X(59235) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59265}, {51285, 75}
X(59235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 5291, 6}, {594, 38871, 1030}


X(59236) = X(2)X(39091)∩X(3)X(6)

Barycentrics    a^2*(a^4-3*b^4-5*b^2*c^2-3*c^4-a^2*(b^2+c^2)) : :

X(59236) lies on these lines: {2, 39091}, {3, 6}, {99, 10007}, {110, 8041}, {141, 7783}, {183, 10335}, {383, 53455}, {384, 49789}, {698, 7824}, {755, 12074}, {1003, 44000}, {1080, 53466}, {1613, 21766}, {1975, 3763}, {2916, 14370}, {3589, 33225}, {3815, 40236}, {3981, 22112}, {5031, 7847}, {6034, 36782}, {6772, 42673}, {6775, 42672}, {7496, 46906}, {7753, 48885}, {7782, 42534}, {7892, 47355}, {8177, 33004}, {8716, 21358}, {9606, 48881}, {9607, 21167}, {9698, 29317}, {11289, 53428}, {11290, 53440}, {13188, 24206}, {13586, 42421}, {13862, 31489}, {14537, 48920}, {15482, 40332}, {17128, 34573}, {31450, 31670}, {31457, 38317}, {31492, 53023}, {33246, 47352}, {36990, 55008}, {40250, 44526}, {48876, 56434}

X(59236) = reflection of X(i) in X(j) for these {i,j}: {12055, 31652}
X(59236) = isogonal conjugate of X(59266)
X(59236)= pole of line {5, 7779} with respect to the Kiepert hyperbola
X(59236)= pole of line {2, 59266} with respect to the Stammler hyperbola
X(59236)= pole of line {76, 20088} with respect to the Wallace hyperbola
X(59236) = polarologic center of ABC and the circumcevian triangle of X(39)
X(59236) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(755), X(5008)}}, {{A, B, C, X(5007), X(14370)}}, {{A, B, C, X(5092), X(29011)}}, {{A, B, C, X(9301), X(53894)}}, {{A, B, C, X(14528), X(48673)}}, {{A, B, C, X(17042), X(46283)}}
X(59236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 14810, 12212}, {511, 31652, 12055}, {574, 3094, 5116}, {1340, 1341, 7772}, {1668, 1669, 55712}, {3098, 53096, 13331}, {8041, 38862, 10329}, {12212, 14810, 2076}, {12212, 34873, 53094}, {14810, 47618, 1350}, {22332, 31884, 6}


X(59237) = X(3)X(3663)∩X(6)X(40)

Barycentrics    a*(a^8+a^7*(b+c)-2*b*(b-c)^4*c*(b+c)^2-a*(b-c)^2*(b+c)^5+a^6*(-3*b^2+8*b*c-3*c^2)-a^2*(b+c)^4*(b^2+c^2)+a^3*(b+c)^3*(3*b^2-2*b*c+3*c^2)+a^4*(b^2+c^2)*(3*b^2-2*b*c+3*c^2)-a^5*(b+c)*(3*b^2+2*b*c+3*c^2)) : :

X(59237) lies on these lines: {3, 3663}, {6, 40}, {972, 30236}, {1295, 30237}, {2077, 38530}, {3651, 5759}, {3913, 6776}, {6210, 42316}, {6282, 30271}, {23693, 34813}, {41374, 56183}

X(59237) = polarologic center of ABC and the circumcevian triangle of X(40)


X(59238) = X(1)X(21888)∩X(6)X(31)

Barycentrics    a^2*(a^2-3*b^2-5*b*c-3*c^2-a*(b+c)) : :

X(59238) lies on these lines: {1, 21888}, {6, 31}, {45, 5524}, {100, 40750}, {101, 1500}, {111, 28210}, {183, 17318}, {846, 20693}, {1001, 3795}, {1030, 2248}, {1376, 1961}, {1575, 3750}, {2594, 36074}, {3252, 9506}, {3723, 17122}, {3943, 26244}, {3993, 59222}, {4068, 46195}, {4255, 16969}, {4256, 9259}, {4436, 59254}, {4653, 52959}, {4850, 17019}, {5013, 37590}, {5297, 16672}, {6157, 56934}, {9346, 31451}, {14829, 17388}, {14882, 36075}, {16369, 51296}, {16884, 17716}, {17299, 32916}, {17594, 49509}, {20691, 37573}, {31443, 49478}, {31456, 50575}, {35212, 35216}, {36475, 41269}, {51353, 59214}

X(59238) = isogonal conjugate of X(59267)
X(59238)= pole of line {649, 17990} with respect to the circumcircle
X(59238)= pole of line {86, 7238} with respect to the Stammler hyperbola
X(59238)= pole of line {310, 59267} with respect to the Wallace hyperbola
X(59238) = polarologic center of ABC and the circumcevian triangle of X(42)
X(59238) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(28482)}}, {{A, B, C, X(42), X(51353)}}, {{A, B, C, X(111), X(21747)}}, {{A, B, C, X(2248), X(2308)}}
X(59238) = barycentric product X(i)*X(j) for these (i, j): {1, 51294}, {51353, 6}, {52555, 59214}
X(59238) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59267}, {51294, 75}, {51353, 76}, {59214, 52572}
X(59238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 17735, 6}, {1500, 33771, 18755}


X(59239) = X(1)X(6)∩X(100)X(3196)

Barycentrics    a*(a^4+a^3*(b+c)-2*b*c*(b+c)^2-a*(b+c)*(b^2-12*b*c+c^2)-a^2*(b^2+13*b*c+c^2)) : :

X(59239) lies on circumconic {{A, B, C, X(2718), X(16489)}} and these lines: {1, 6}, {55, 8028}, {100, 3196}, {4413, 38530}, {4530, 50087}, {12034, 12773}, {19297, 34877}

X(59239)= pole of line {667, 33922} with respect to the circumcircle
X(59239) = polarologic center of ABC and the circumcevian triangle of X(44)


X(59240) = X(6)X(41)∩X(109)X(577)

Barycentrics    a^2*(2*a^6-a^5*(b+c)+b*c*(b^2-c^2)^2-a*(b-c)^2*(b+c)*(b^2+c^2)+2*a^2*(b^2+c^2)^2-a^4*(4*b^2+b*c+4*c^2)+2*a^3*(b^3+c^3)) : :

X(59240) lies on these lines: {3, 56911}, {6, 41}, {44, 37837}, {109, 577}, {573, 38600}, {1172, 56027}, {2164, 17963}, {2193, 8761}, {3197, 36748}, {3284, 10571}, {3285, 40980}

X(59240) = isogonal conjugate of X(59268)
X(59240)= pole of line {333, 6360} with respect to the Stammler hyperbola
X(59240)= pole of line {28660, 59268} with respect to the Wallace hyperbola
X(59240) = polarologic center of ABC and the circumcevian triangle of X(48)
X(59240) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(52774)}}, {{A, B, C, X(56), X(51281)}}, {{A, B, C, X(73), X(56027)}}, {{A, B, C, X(1400), X(8761)}}, {{A, B, C, X(2164), X(17966)}}, {{A, B, C, X(2178), X(17963)}}
X(59240) = barycentric product X(i)*X(j) for these (i, j): {1, 51281}
X(59240) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59268}, {51281, 75}
X(59240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {48, 1951, 6}, {577, 1630, 21767}


X(59241) = X(4)X(20574)∩X(6)X(24)

Barycentrics    a^2*((a^2-b^2)^2-(a^2+b^2)*c^2)*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^8-b^2*c^2*(b^2-c^2)^2-4*a^6*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(5*b^4+3*b^2*c^2+5*c^4)) : :

X(59241) lies on these lines: {4, 20574}, {6, 24}, {95, 34507}, {97, 26895}, {182, 18315}, {184, 933}, {252, 45838}, {288, 15004}, {1173, 43842}, {11003, 15958}, {13366, 57489}, {15080, 54062}, {21449, 41204}, {34986, 57474}

X(59241) = X(i)-Dao conjugate of X(j) for these {i, j}: {53827, 18314}
X(59241) = polarologic center of ABC and the circumcevian triangle of X(54)
X(59241) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(1298)}}, {{A, B, C, X(1141), X(10986)}}, {{A, B, C, X(9792), X(51444)}}, {{A, B, C, X(10003), X(11062)}}, {{A, B, C, X(14585), X(20574)}}
X(59241) = barycentric quotient X(i)/X(j) for these (i, j): {10003, 45793}


X(59242) = X(6)X(57)∩X(7)X(55)

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(a^2-2*b*c-a*(b+c)) : :

X(59242) lies on these lines: {3, 10481}, {6, 57}, {7, 55}, {21, 32086}, {36, 21314}, {56, 105}, {65, 4350}, {77, 354}, {85, 958}, {100, 51351}, {142, 15288}, {165, 7271}, {241, 40131}, {348, 25524}, {479, 1014}, {672, 6180}, {738, 3361}, {954, 52511}, {999, 1323}, {1001, 40719}, {1088, 1447}, {1111, 57278}, {1350, 4334}, {1362, 4259}, {1376, 9436}, {1434, 4267}, {1443, 4860}, {1445, 2348}, {1486, 1617}, {1565, 22753}, {1847, 54394}, {2078, 38530}, {2082, 45227}, {2099, 23839}, {2280, 5228}, {2975, 43983}, {3160, 3304}, {3295, 58816}, {3748, 7190}, {3871, 32098}, {3913, 6604}, {4328, 10389}, {4341, 5173}, {5010, 20121}, {5172, 38900}, {7177, 32636}, {7179, 37757}, {8012, 25878}, {9312, 12513}, {11194, 17079}, {17078, 40726}, {17728, 51364}, {22464, 33925}, {24796, 37579}, {26229, 37780}, {36740, 38046}, {37272, 51302}, {41353, 59234}

X(59242) = isogonal conjugate of X(59269)
X(59242) = isotomic conjugate of X(59260)
X(59242) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59269}, {9, 40779}, {31, 59260}, {200, 1002}, {220, 27475}, {346, 2279}, {657, 32041}, {728, 42290}, {1253, 59255}, {3059, 59193}, {3239, 8693}, {3900, 37138}, {4082, 51443}, {4515, 42302}, {4517, 40739}, {4524, 51563}, {8012, 42310}
X(59242) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59260}, {3, 59269}, {478, 40779}, {6609, 1002}, {17113, 59255}
X(59242) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42309, 5228}
X(59242) = X(i)-cross conjugate of X(j) for these {i, j}: {1471, 5228}
X(59242)= pole of line {3676, 8641} with respect to the circumcircle
X(59242)= pole of line {13401, 21104} with respect to the incircle
X(59242)= pole of line {5572, 7190} with respect to the Feuerbach hyperbola
X(59242)= pole of line {480, 2287} with respect to the Stammler hyperbola
X(59242)= pole of line {5423, 59260} with respect to the Wallace hyperbola
X(59242) = polarologic center of ABC and the circumcevian triangle of X(57)
X(59242) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(105)}}, {{A, B, C, X(7), X(1418)}}, {{A, B, C, X(55), X(20229)}}, {{A, B, C, X(56), X(52635)}}, {{A, B, C, X(57), X(5228)}}, {{A, B, C, X(222), X(40443)}}, {{A, B, C, X(269), X(10509)}}, {{A, B, C, X(279), X(34855)}}, {{A, B, C, X(354), X(3475)}}, {{A, B, C, X(479), X(1427)}}, {{A, B, C, X(910), X(4724)}}, {{A, B, C, X(1439), X(30682)}}, {{A, B, C, X(2999), X(4384)}}, {{A, B, C, X(3598), X(42290)}}, {{A, B, C, X(3752), X(4441)}}, {{A, B, C, X(4762), X(34371)}}, {{A, B, C, X(5324), X(30706)}}, {{A, B, C, X(7220), X(37658)}}, {{A, B, C, X(10578), X(59217)}}, {{A, B, C, X(11051), X(20995)}}, {{A, B, C, X(11347), X(31926)}}
X(59242) = barycentric product X(i)*X(j) for these (i, j): {1, 42309}, {269, 4384}, {1001, 279}, {1088, 2280}, {1106, 21615}, {1119, 23151}, {1407, 4441}, {1434, 42289}, {1439, 31926}, {1471, 85}, {3886, 738}, {4637, 4804}, {4724, 658}, {4762, 934}, {5228, 7}, {10509, 59217}, {28044, 30682}, {28809, 7023}, {37658, 479}, {40719, 57}, {45755, 4626}, {54440, 58817}
X(59242) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59260}, {6, 59269}, {56, 40779}, {269, 27475}, {279, 59255}, {934, 32041}, {1001, 346}, {1106, 2279}, {1407, 1002}, {1461, 37138}, {1471, 9}, {2280, 200}, {3886, 30693}, {4384, 341}, {4637, 51563}, {4724, 3239}, {4762, 4397}, {5228, 8}, {7023, 42290}, {23151, 1265}, {37658, 5423}, {40719, 312}, {40784, 3790}, {42289, 2321}, {42309, 75}, {45755, 4163}, {54440, 6558}, {59207, 4082}, {59217, 51972}
X(59242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 269, 34855}, {57, 58320, 6}, {279, 38859, 56}, {910, 1418, 57}


X(59243) = X(1)X(757)∩X(3)X(6)

Barycentrics    a^2*(a+b)*(a+c)*(a^2+b*c+2*a*(b+c)) : :

X(59243) lies on these lines: {1, 757}, {3, 6}, {21, 1963}, {31, 110}, {81, 4414}, {86, 4655}, {99, 32921}, {112, 28842}, {261, 50302}, {560, 849}, {595, 16679}, {662, 16468}, {691, 12031}, {740, 11104}, {984, 1931}, {985, 40759}, {1386, 16702}, {1414, 4334}, {1471, 4565}, {1621, 30581}, {2054, 24436}, {2206, 39673}, {2308, 40214}, {2363, 17038}, {3550, 6043}, {3775, 34016}, {3923, 19623}, {4649, 51311}, {4672, 27958}, {5196, 33128}, {5429, 17512}, {5625, 51356}, {6629, 49511}, {14534, 32916}, {17017, 40592}, {17103, 24325}, {18268, 40728}, {25526, 37039}

X(59243) = isogonal conjugate of X(59261)
X(59243) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59261}, {10, 30571}, {37, 27483}, {75, 59272}, {321, 25426}, {1577, 28841}, {3773, 40748}
X(59243) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59261}, {206, 59272}, {40589, 27483}
X(59243)= pole of line {1634, 46597} with respect to the Kiepert parabola
X(59243)= pole of line {2, 740} with respect to the Stammler hyperbola
X(59243)= pole of line {76, 4647} with respect to the Wallace hyperbola
X(59243) = polarologic center of ABC and the circumcevian triangle of X(58)
X(59243) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5625)}}, {{A, B, C, X(3), X(28842)}}, {{A, B, C, X(6), X(741)}}, {{A, B, C, X(31), X(41333)}}, {{A, B, C, X(39), X(46159)}}, {{A, B, C, X(56), X(18755)}}, {{A, B, C, X(58), X(51311)}}, {{A, B, C, X(84), X(35203)}}, {{A, B, C, X(103), X(37508)}}, {{A, B, C, X(187), X(2163)}}, {{A, B, C, X(251), X(33774)}}, {{A, B, C, X(386), X(16826)}}, {{A, B, C, X(511), X(28840)}}, {{A, B, C, X(593), X(5009)}}, {{A, B, C, X(759), X(4262)}}, {{A, B, C, X(1333), X(52558)}}, {{A, B, C, X(2053), X(4258)}}, {{A, B, C, X(2092), X(3842)}}, {{A, B, C, X(2245), X(4784)}}, {{A, B, C, X(2248), X(20675)}}, {{A, B, C, X(3736), X(40734)}}, {{A, B, C, X(17454), X(56934)}}, {{A, B, C, X(51449), X(59194)}}, {{A, B, C, X(53900), X(54388)}}
X(59243) = barycentric product X(i)*X(j) for these (i, j): {1, 51311}, {3, 31904}, {31, 51314}, {110, 28840}, {1171, 5625}, {3842, 593}, {4556, 4824}, {4565, 4913}, {4649, 81}, {4784, 662}, {14621, 40734}, {16826, 58}, {20142, 741}, {51356, 6}, {52558, 59218}
X(59243) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59261}, {32, 59272}, {58, 27483}, {1333, 30571}, {1576, 28841}, {2206, 25426}, {3842, 28654}, {4649, 321}, {4784, 1577}, {4824, 52623}, {5625, 1230}, {16826, 313}, {20142, 35544}, {28840, 850}, {31904, 264}, {40734, 3661}, {51311, 75}, {51314, 561}, {51356, 76}, {59218, 52576}
X(59243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 1326, 6}, {58, 1333, 5009}, {593, 33774, 31}, {1333, 56388, 32}


X(59244) = X(2)X(49960)∩X(3)X(6)

Barycentrics    a^2*(5*a^4+3*b^4-10*b^2*c^2+3*c^4-8*a^2*(b^2+c^2)-6*sqrt(3)*(-a^2+b^2+c^2)*S) : :

X(59244) lies on these lines: {2, 49960}, {3, 6}, {1353, 35304}, {3131, 11003}, {3412, 16629}, {3830, 5478}, {5464, 58445}, {5469, 6771}, {5473, 42532}, {6772, 47855}, {9115, 51208}, {13083, 15694}, {13103, 49947}, {19107, 20415}, {20416, 33417}, {22112, 52349}, {23013, 38224}, {25560, 25608}, {33464, 55863}, {35303, 51732}, {37333, 39884}, {40330, 47517}, {42975, 53466}, {42988, 53428}, {42991, 49106}, {43021, 54141}

X(59244) = isogonal conjugate of X(59270)
X(59244)= pole of line {2, 59270} with respect to the Stammler hyperbola
X(59244)= pole of line {76, 33462} with respect to the Wallace hyperbola
X(59244) = polarologic center of ABC and the circumcevian triangle of X(61)
X(59244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {61, 13350, 5615}, {61, 39554, 6}, {1350, 11842, 59245}, {5050, 42116, 3}, {6771, 41101, 13102}


X(59245) = X(2)X(49959)∩X(3)X(6)

Barycentrics    a^2*(5*a^4+3*b^4-10*b^2*c^2+3*c^4-8*a^2*(b^2+c^2)+6*sqrt(3)*(-a^2+b^2+c^2)*S) : :

X(59245) lies on these lines: {2, 49959}, {3, 6}, {1353, 35303}, {3132, 11003}, {3411, 16628}, {3830, 5479}, {5463, 58445}, {5470, 6774}, {5474, 42533}, {6775, 47856}, {9117, 51209}, {13084, 15694}, {13102, 49948}, {19106, 20416}, {20415, 33416}, {22112, 52348}, {23006, 38224}, {25559, 25609}, {33465, 55863}, {35304, 51732}, {37332, 39884}, {40330, 47519}, {42634, 44250}, {42974, 53455}, {42989, 53440}, {42990, 49105}, {43020, 54140}

X(59245) = isogonal conjugate of X(59271)
X(59245)= pole of line {2, 59271} with respect to the Stammler hyperbola
X(59245)= pole of line {76, 33463} with respect to the Wallace hyperbola
X(59245) = polarologic center of ABC and the circumcevian triangle of X(62)
X(59245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {62, 13349, 5611}, {62, 39555, 6}, {1350, 11842, 59244}, {5050, 42115, 3}, {6774, 41100, 13103}


X(59246) = X(6)X(64)∩X(3532)X(15400)

Barycentrics    a^2*((a^2-b^2)^2+2*(a^2+b^2)*c^2-3*c^4)*(a^4-3*b^4+2*b^2*c^2+c^4+2*a^2*(b-c)*(b+c))*(13*a^8-16*a^6*(b^2+c^2)-8*a^2*(b^2-c^2)^2*(b^2+c^2)+2*a^4*(b^4+6*b^2*c^2+c^4)+(b^2-c^2)^2*(9*b^4+14*b^2*c^2+9*c^4)) : :

X(59246) lies on these lines: {6, 64}, {3532, 15400}, {15394, 31884}, {22334, 39268}, {34403, 44882}, {40813, 53094}, {46639, 55722}

X(59246) = polarologic center of ABC and the circumcevian triangle of X(64)
X(59246) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(15400)}}, {{A, B, C, X(3172), X(3532)}}


X(59247) = X(6)X(19)∩X(7)X(4265)

Barycentrics    a*(a+b-c)*(a-b+c)*(a^6+a^4*b*c-a^5*(b+c)+a*(b-c)^2*(b+c)^3+2*b*c*(b^2-c^2)^2-a^2*(b+c)^2*(b^2+b*c+c^2)) : :

X(59247) lies on these lines: {6, 19}, {7, 4265}, {35, 954}, {108, 6354}, {990, 24929}, {4334, 59234}, {5172, 38530}, {34435, 52560}

X(59247) = polarologic center of ABC and the circumcevian triangle of X(65)
X(59247) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 56910, 6}


X(59248) = X(6)X(76)∩X(22)X(689)

Barycentrics    b^2*c^2*(-a^8+2*b^4*c^4+a^4*(b^4+c^4)) : :

X(59248) lies on these lines: {3, 14603}, {6, 76}, {22, 689}, {183, 10010}, {670, 1350}, {1502, 1975}, {2353, 38842}, {17129, 39927}, {36207, 40074}, {44173, 44823}

X(59248)= pole of line {9494, 35558} with respect to the circumcircle
X(59248) = polarologic center of ABC and the circumcevian triangle of X(76)
X(59248) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2353), X(44164)}}, {{A, B, C, X(40073), X(44163)}}, {{A, B, C, X(42826), X(43977)}}
X(59248) = barycentric product X(i)*X(j) for these (i, j): {40362, 42826}, {44165, 59204}
X(59248) = barycentric quotient X(i)/X(j) for these (i, j): {42826, 1501}, {59204, 8265}


X(59249) = X(2)X(689)∩X(6)X(76)

Barycentrics    b^2*(a^2+b^2)*c^2*(a^2+c^2)*(a^4+b^2*c^2+2*a^2*(b^2+c^2)) : :

X(59249) lies on cubic K281 and these lines: {2, 689}, {6, 76}, {32, 26192}, {182, 4577}, {1078, 35222}, {1502, 7808}, {3094, 14970}, {3112, 7033}, {3114, 40332}, {7771, 39557}, {7782, 34888}, {10010, 42371}, {10796, 16095}, {11325, 32085}, {39668, 40016}, {42396, 52905}

X(59249) = isogonal conjugate of X(59273)
X(59249) = isotomic conjugate of X(59262)
X(59249) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59273}, {31, 59262}, {1923, 42006}, {2084, 43357}, {3404, 39684}
X(59249) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59262}, {3, 59273}
X(59249)= pole of line {3051, 59273} with respect to the Stammler hyperbola
X(59249)= pole of line {39, 59167} with respect to the Wallace hyperbola
X(59249) = polarologic center of ABC and the circumcevian triangle of X(83)
X(59249) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(732)}}, {{A, B, C, X(6), X(733)}}, {{A, B, C, X(32), X(42548)}}, {{A, B, C, X(76), X(31622)}}, {{A, B, C, X(262), X(45804)}}, {{A, B, C, X(264), X(40035)}}, {{A, B, C, X(689), X(880)}}, {{A, B, C, X(1502), X(42554)}}, {{A, B, C, X(3224), X(3499)}}, {{A, B, C, X(3407), X(24273)}}, {{A, B, C, X(7033), X(30940)}}, {{A, B, C, X(14318), X(54413)}}, {{A, B, C, X(18092), X(52395)}}, {{A, B, C, X(35549), X(40826)}}, {{A, B, C, X(43977), X(51450)}}
X(59249) = barycentric product X(i)*X(j) for these (i, j): {308, 3329}, {1502, 41295}, {12212, 40016}, {14318, 42371}, {20022, 39685}, {51312, 561}
X(59249) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59262}, {6, 59273}, {308, 42006}, {3329, 39}, {4577, 43357}, {10007, 8041}, {12212, 3051}, {14318, 688}, {39685, 20021}, {41295, 32}, {51312, 31}, {51862, 39684}
X(59249) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {83, 308, 56979}, {83, 40000, 42534}


X(59250) = X(6)X(88)∩X(100)X(903)

Barycentrics    a*(a+b-2*c)*(a-2*b+c)*(2*a^4+b*(b-2*c)*(2*b-c)*c-a^3*(b+c)+a^2*(-2*b^2+b*c-2*c^2)+a*(b+c)*(b^2+c^2)) : :

X(59250) lies on these lines: {6, 88}, {36, 54974}, {100, 903}, {106, 4618}, {659, 6548}, {672, 3257}, {1001, 27922}, {9460, 54391}

X(59250) = polarologic center of ABC and the circumcevian triangle of X(88)


X(59251) = X(6)X(13)∩X(99)X(338)

Barycentrics    a^12-2*b^2*c^2*(b^2-c^2)^4-2*a^10*(b^2+c^2)-a^6*(b^2+c^2)*(b^4+c^4)+a^8*(b^4+4*b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(b^6+c^6)+a^4*(2*b^8-4*b^6*c^2+5*b^4*c^4-4*b^2*c^6+2*c^8) : :

X(59251) lies on circumconic {{A, B, C, X(1989), X(12067)}} and these lines: {6, 13}, {98, 44533}, {99, 338}, {148, 40879}, {2079, 12042}, {2407, 12067}, {2493, 44531}, {11623, 15546}, {15535, 15538}, {15919, 38733}

X(59251) = polarologic center of ABC and the circumcevian triangle of X(115)


X(59252) = X(6)X(25)∩X(112)X(1498)

Barycentrics    a^2*(11*a^8-20*a^6*(b^2+c^2)-4*a^2*(b^2-c^2)^2*(b^2+c^2)+(b-c)^2*(b+c)^2*(3*b^2+c^2)*(b^2+3*c^2)+2*a^4*(5*b^4+6*b^2*c^2+5*c^4)) : :

X(59252) lies on these lines: {6, 25}, {112, 1498}, {248, 3532}, {577, 1073}, {1192, 39643}, {1297, 53097}, {3087, 53506}, {5481, 53094}, {8778, 58795}, {10313, 37672}, {10606, 13509}, {23115, 35324}, {34782, 46829}, {36748, 53852}

X(59252)= pole of line {69, 17037} with respect to the Stammler hyperbola
X(59252) = polarologic center of ABC and the circumcevian triangle of X(154)
X(59252) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(15324)}}, {{A, B, C, X(232), X(3532)}}, {{A, B, C, X(1073), X(17810)}}, {{A, B, C, X(5481), X(45141)}}, {{A, B, C, X(17809), X(56363)}}
X(59252) = barycentric product X(i)*X(j) for these (i, j): {3, 41374}
X(59252) = barycentric quotient X(i)/X(j) for these (i, j): {41374, 264}
X(59252) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 8779, 6}


X(59253) = X(6)X(165)∩X(55)X(3598)

Barycentrics    a*(a^6-2*b*(b-c)^4*c+3*a^5*(b+c)+2*a^4*(-7*b^2+b*c-7*c^2)-a*(b-c)^2*(b+c)*(b^2+6*b*c+c^2)-a^2*(b+c)^2*(3*b^2+2*b*c+3*c^2)+2*a^3*(b+c)*(7*b^2-2*b*c+7*c^2)) : :

X(59253) lies on these lines: {6, 165}, {55, 3598}, {527, 4421}, {972, 1292}, {1001, 9746}, {1376, 5819}, {5537, 38530}, {12513, 53297}, {24708, 42316}

X(59253) = polarologic center of ABC and the circumcevian triangle of X(165)


X(59254) = X(6)X(43)∩X(183)X(870)

Barycentrics    a*(2*b^3*c^3-a^3*(b-c)^2*(b+c)+a*b^2*c^2*(b+c)+a^4*(b^2+b*c+c^2)+a^2*b*c*(b^2+3*b*c+c^2)) : :

X(59254) lies on these lines: {6, 43}, {55, 37632}, {100, 40721}, {183, 870}, {474, 16476}, {894, 51928}, {932, 6645}, {958, 19311}, {1001, 40718}, {1350, 8924}, {1402, 40719}, {2110, 37678}, {4436, 59238}, {4447, 26244}, {5143, 38530}, {5711, 12338}, {6013, 33771}, {6706, 16852}, {11495, 37619}, {16999, 30667}, {18900, 37540}, {20140, 20992}, {40750, 40772}

X(59254)= pole of line {4817, 8640} with respect to the circumcircle
X(59254) = polarologic center of ABC and the circumcevian triangle of X(171)
X(59254) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {171, 3510, 6}


X(59255) = X(8)X(274)∩X(10)X(85)

Barycentrics    b*c*((b-c)*c+a*(2*b+c))*(b*(-b+c)+a*(b+2*c)) : :

X(59255) lies on these lines: {1, 55946}, {2, 2481}, {7, 20683}, {8, 274}, {10, 85}, {75, 142}, {76, 3263}, {277, 42310}, {281, 286}, {331, 41013}, {334, 40217}, {443, 6604}, {693, 3126}, {767, 8693}, {870, 2279}, {1010, 56146}, {1376, 40419}, {1441, 53242}, {1500, 27253}, {2886, 32023}, {3475, 57815}, {3596, 6385}, {3730, 14377}, {3925, 6063}, {4357, 40025}, {4413, 4998}, {4429, 39712}, {4441, 29627}, {5224, 39735}, {6376, 40014}, {6381, 40029}, {6740, 51563}, {8049, 26911}, {8817, 26040}, {8926, 24342}, {10030, 38052}, {14624, 31643}, {14828, 59193}, {17670, 24190}, {18032, 25353}, {18821, 53227}, {20568, 53240}, {20569, 30806}, {20888, 40023}, {20913, 31130}, {22116, 56667}, {24603, 30854}, {25590, 56196}, {27496, 53679}, {29576, 30807}, {29767, 42302}, {29968, 51972}, {30758, 30830}, {31994, 56173}, {31997, 49466}, {33677, 38200}, {34159, 57754}, {34284, 39570}, {37130, 37138}, {39741, 40966}, {40004, 55076}, {40333, 56264}, {55082, 56809}

X(59255) = isotomic conjugate of X(1001)
X(59255) = trilinear pole of line {693, 3700}
X(59255) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2280}, {31, 1001}, {32, 4384}, {41, 5228}, {55, 1471}, {560, 4441}, {603, 28044}, {604, 37658}, {667, 54440}, {692, 4724}, {985, 40732}, {1253, 59242}, {1333, 59207}, {1397, 3886}, {1415, 45755}, {1501, 21615}, {1576, 4804}, {1973, 23151}, {2175, 40719}, {2194, 42289}, {2200, 31926}, {2206, 3696}, {4762, 32739}, {14827, 42309}
X(59255) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1001}, {9, 2280}, {37, 59207}, {223, 1471}, {1086, 4724}, {1146, 45755}, {1212, 59217}, {1214, 42289}, {3160, 5228}, {3161, 37658}, {3789, 40732}, {4858, 4804}, {6337, 23151}, {6374, 4441}, {6376, 4384}, {6631, 54440}, {7952, 28044}, {17113, 59242}, {17435, 33570}, {27475, 52155}, {27481, 3789}, {40593, 40719}, {40603, 3696}, {40619, 4762}
X(59255) = X(i)-cross conjugate of X(j) for these {i, j}: {3661, 76}, {3826, 2}, {4733, 321}
X(59255)= pole of line {24720, 54264} with respect to the Steiner inellipse
X(59255)= pole of line {1001, 23151} with respect to the Wallace hyperbola
X(59255) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(7233)}}, {{A, B, C, X(2), X(693)}}, {{A, B, C, X(7), X(142)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(11), X(4413)}}, {{A, B, C, X(27), X(37097)}}, {{A, B, C, X(28), X(4197)}}, {{A, B, C, X(55), X(3925)}}, {{A, B, C, X(75), X(76)}}, {{A, B, C, X(86), X(17234)}}, {{A, B, C, X(92), X(57815)}}, {{A, B, C, X(100), X(33108)}}, {{A, B, C, X(226), X(39741)}}, {{A, B, C, X(257), X(49507)}}, {{A, B, C, X(262), X(3864)}}, {{A, B, C, X(264), X(1268)}}, {{A, B, C, X(273), X(42311)}}, {{A, B, C, X(310), X(40012)}}, {{A, B, C, X(321), X(30636)}}, {{A, B, C, X(327), X(40495)}}, {{A, B, C, X(330), X(39714)}}, {{A, B, C, X(335), X(55945)}}, {{A, B, C, X(390), X(40333)}}, {{A, B, C, X(497), X(26040)}}, {{A, B, C, X(514), X(41527)}}, {{A, B, C, X(561), X(34258)}}, {{A, B, C, X(596), X(56124)}}, {{A, B, C, X(984), X(39252)}}, {{A, B, C, X(1001), X(3826)}}, {{A, B, C, X(1010), X(5125)}}, {{A, B, C, X(1088), X(32021)}}, {{A, B, C, X(1121), X(55955)}}, {{A, B, C, X(1224), X(18836)}}, {{A, B, C, X(1376), X(2886)}}, {{A, B, C, X(1751), X(7224)}}, {{A, B, C, X(3126), X(6184)}}, {{A, B, C, X(3661), X(4384)}}, {{A, B, C, X(4373), X(24199)}}, {{A, B, C, X(4429), X(5263)}}, {{A, B, C, X(4431), X(10405)}}, {{A, B, C, X(4791), X(30806)}}, {{A, B, C, X(5224), X(29767)}}, {{A, B, C, X(5432), X(31245)}}, {{A, B, C, X(6376), X(27496)}}, {{A, B, C, X(7018), X(56212)}}, {{A, B, C, X(7033), X(51865)}}, {{A, B, C, X(7249), X(8056)}}, {{A, B, C, X(7357), X(57721)}}, {{A, B, C, X(8049), X(57722)}}, {{A, B, C, X(9307), X(17038)}}, {{A, B, C, X(14554), X(56163)}}, {{A, B, C, X(16054), X(37448)}}, {{A, B, C, X(16823), X(29674)}}, {{A, B, C, X(17240), X(20565)}}, {{A, B, C, X(17241), X(30598)}}, {{A, B, C, X(17294), X(29576)}}, {{A, B, C, X(18785), X(56147)}}, {{A, B, C, X(18810), X(18815)}}, {{A, B, C, X(20172), X(26582)}}, {{A, B, C, X(20566), X(55954)}}, {{A, B, C, X(20895), X(31994)}}, {{A, B, C, X(24603), X(29616)}}, {{A, B, C, X(26234), X(31130)}}, {{A, B, C, X(27253), X(29968)}}, {{A, B, C, X(27255), X(29966)}}, {{A, B, C, X(27478), X(27494)}}, {{A, B, C, X(27487), X(52619)}}, {{A, B, C, X(29571), X(29627)}}, {{A, B, C, X(29593), X(50095)}}, {{A, B, C, X(30479), X(57866)}}, {{A, B, C, X(30710), X(57925)}}, {{A, B, C, X(34409), X(40435)}}, {{A, B, C, X(35167), X(39717)}}, {{A, B, C, X(35177), X(56241)}}, {{A, B, C, X(36494), X(55947)}}, {{A, B, C, X(37887), X(56358)}}, {{A, B, C, X(38468), X(42697)}}, {{A, B, C, X(42326), X(55967)}}, {{A, B, C, X(48829), X(49725)}}, {{A, B, C, X(56169), X(57948)}}
X(59255) = barycentric product X(i)*X(j) for these (i, j): {279, 59260}, {313, 42302}, {1002, 76}, {1233, 59193}, {1577, 51563}, {2279, 561}, {3261, 37138}, {3596, 42290}, {20880, 42310}, {27475, 75}, {27801, 51443}, {32041, 693}, {40495, 8693}, {40779, 6063}, {53227, 918}, {57792, 59269}
X(59255) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2280}, {2, 1001}, {7, 5228}, {8, 37658}, {10, 59207}, {57, 1471}, {69, 23151}, {75, 4384}, {76, 4441}, {85, 40719}, {142, 59217}, {190, 54440}, {226, 42289}, {279, 59242}, {281, 28044}, {286, 31926}, {312, 3886}, {313, 4044}, {321, 3696}, {514, 4724}, {522, 45755}, {561, 21615}, {693, 4762}, {1002, 6}, {1088, 42309}, {1233, 59202}, {1577, 4804}, {2276, 40732}, {2279, 31}, {3126, 33570}, {3596, 28809}, {3661, 3789}, {4358, 4702}, {7179, 40784}, {8693, 692}, {27475, 1}, {32041, 100}, {33931, 27474}, {36138, 32666}, {37138, 101}, {40149, 1893}, {40739, 2344}, {40779, 55}, {42290, 56}, {42302, 58}, {42310, 2346}, {51443, 1333}, {51563, 662}, {53227, 666}, {56662, 20142}, {59193, 1174}, {59260, 346}, {59269, 220}


X(59256) = X(4)X(52581)∩X(20)X(76)

Barycentrics    b^2*c^2*(3*a^4+2*a^2*b^2+3*b^4-2*(a^2+b^2)*c^2-c^4)*(-3*a^4+b^4+2*b^2*c^2-3*c^4+2*a^2*(b-c)*(b+c)) : :

X(59256) lies on these lines: {4, 52581}, {20, 76}, {264, 1249}, {276, 38808}, {290, 14614}, {313, 8804}, {349, 5930}, {1294, 35571}, {1502, 14615}, {1853, 35140}, {10152, 58782}, {14249, 18027}, {18896, 57518}, {27801, 52345}, {33702, 44146}, {33893, 54412}

X(59256) = isotomic conjugate of X(1350)
X(59256) = trilinear pole of line {850, 6587}
X(59256) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 1350}, {32, 51304}, {48, 45141}, {184, 23052}, {560, 37668}, {9247, 52283}, {10002, 52430}, {42075, 47382}
X(59256) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1350}, {1249, 45141}, {6374, 37668}, {6376, 51304}, {23285, 12037}
X(59256) = X(i)-cross conjugate of X(j) for these {i, j}: {5480, 2}, {40814, 76}
X(59256) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(15589)}}, {{A, B, C, X(4), X(20)}}, {{A, B, C, X(6), X(5188)}}, {{A, B, C, X(66), X(6531)}}, {{A, B, C, X(69), X(83)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(95), X(43527)}}, {{A, B, C, X(262), X(6194)}}, {{A, B, C, X(273), X(26735)}}, {{A, B, C, X(275), X(13575)}}, {{A, B, C, X(305), X(37874)}}, {{A, B, C, X(309), X(2481)}}, {{A, B, C, X(325), X(14614)}}, {{A, B, C, X(458), X(42313)}}, {{A, B, C, X(598), X(1494)}}, {{A, B, C, X(671), X(32815)}}, {{A, B, C, X(850), X(2052)}}, {{A, B, C, X(1350), X(5480)}}, {{A, B, C, X(2207), X(15583)}}, {{A, B, C, X(2373), X(43530)}}, {{A, B, C, X(2986), X(41896)}}, {{A, B, C, X(3978), X(57518)}}, {{A, B, C, X(5395), X(35510)}}, {{A, B, C, X(5641), X(17503)}}, {{A, B, C, X(7578), X(54459)}}, {{A, B, C, X(8795), X(40009)}}, {{A, B, C, X(8797), X(10159)}}, {{A, B, C, X(9154), X(46145)}}, {{A, B, C, X(9473), X(14458)}}, {{A, B, C, X(10302), X(54171)}}, {{A, B, C, X(10603), X(44877)}}, {{A, B, C, X(13485), X(54913)}}, {{A, B, C, X(18019), X(34289)}}, {{A, B, C, X(18299), X(58008)}}, {{A, B, C, X(18816), X(58023)}}, {{A, B, C, X(18845), X(52443)}}, {{A, B, C, X(20565), X(57922)}}, {{A, B, C, X(20566), X(57924)}}, {{A, B, C, X(22676), X(42299)}}, {{A, B, C, X(34288), X(54716)}}, {{A, B, C, X(34405), X(54496)}}, {{A, B, C, X(34407), X(47633)}}, {{A, B, C, X(35142), X(53105)}}, {{A, B, C, X(35517), X(53218)}}, {{A, B, C, X(37668), X(43951)}}, {{A, B, C, X(38072), X(54169)}}, {{A, B, C, X(38830), X(40831)}}, {{A, B, C, X(40028), X(44186)}}, {{A, B, C, X(40036), X(46746)}}, {{A, B, C, X(40045), X(57765)}}, {{A, B, C, X(42377), X(54488)}}, {{A, B, C, X(46137), X(57642)}}, {{A, B, C, X(52641), X(58256)}}, {{A, B, C, X(53102), X(57823)}}, {{A, B, C, X(54910), X(57852)}}
X(59256) = barycentric product X(i)*X(j) for these (i, j): {264, 42287}, {3424, 76}
X(59256) = barycentric quotient X(i)/X(j) for these (i, j): {2, 1350}, {4, 45141}, {75, 51304}, {76, 37668}, {92, 23052}, {253, 40813}, {264, 52283}, {339, 12037}, {2052, 10002}, {3424, 6}, {16081, 45031}, {34536, 47382}, {35571, 46639}, {40814, 7710}, {42287, 3}


X(59257) = X(5)X(76)∩X(69)X(216)

Barycentrics    (-a^2+b^2+c^2)^2*(2*a^2*b^2+(a^2+b^2)*c^2-c^4)*(-b^4+b^2*c^2+a^2*(b^2+2*c^2)) : :

X(59257) lies on these lines: {3, 34386}, {5, 76}, {69, 216}, {264, 57790}, {315, 39682}, {394, 6394}, {1007, 59197}, {1238, 41168}, {2366, 26714}, {3926, 5562}, {6337, 31504}, {7788, 35140}, {8798, 34403}, {30270, 57275}, {37174, 37668}, {40405, 46319}, {57009, 57273}

X(59257) = isotomic conjugate of X(33971)
X(59257) = trilinear pole of line {3265, 17434}
X(59257) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 10311}, {31, 33971}, {32, 51315}, {158, 34396}, {182, 1096}, {458, 1973}, {2207, 52134}, {3288, 24019}, {3403, 36417}, {6784, 24000}
X(59257) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 33971}, {6, 10311}, {1147, 34396}, {6337, 458}, {6338, 183}, {6376, 51315}, {6503, 182}, {35071, 3288}, {52032, 39530}
X(59257) = X(i)-cross conjugate of X(j) for these {i, j}: {42353, 2}, {54032, 42313}
X(59257)= pole of line {10311, 34396} with respect to the Stammler hyperbola
X(59257)= pole of line {182, 458} with respect to the Wallace hyperbola
X(59257) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(5)}}, {{A, B, C, X(68), X(35142)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(95), X(14376)}}, {{A, B, C, X(97), X(18018)}}, {{A, B, C, X(248), X(9307)}}, {{A, B, C, X(253), X(9290)}}, {{A, B, C, X(262), X(43718)}}, {{A, B, C, X(287), X(54124)}}, {{A, B, C, X(290), X(9289)}}, {{A, B, C, X(305), X(325)}}, {{A, B, C, X(327), X(42313)}}, {{A, B, C, X(337), X(7183)}}, {{A, B, C, X(520), X(32515)}}, {{A, B, C, X(523), X(39663)}}, {{A, B, C, X(577), X(3095)}}, {{A, B, C, X(1799), X(52350)}}, {{A, B, C, X(2351), X(47847)}}, {{A, B, C, X(3719), X(7019)}}, {{A, B, C, X(3933), X(3964)}}, {{A, B, C, X(7752), X(20563)}}, {{A, B, C, X(14615), X(57008)}}, {{A, B, C, X(14941), X(40799)}}, {{A, B, C, X(18019), X(56266)}}, {{A, B, C, X(33971), X(42353)}}, {{A, B, C, X(34897), X(57822)}}, {{A, B, C, X(37174), X(37188)}}, {{A, B, C, X(41530), X(57855)}}, {{A, B, C, X(43722), X(50433)}}, {{A, B, C, X(44175), X(57875)}}
X(59257) = barycentric product X(i)*X(j) for these (i, j): {262, 3926}, {305, 43718}, {327, 394}, {26714, 52617}, {28706, 51444}, {42300, 52347}, {42313, 69}, {46807, 6394}, {54032, 76}
X(59257) = barycentric quotient X(i)/X(j) for these (i, j): {2, 33971}, {3, 10311}, {69, 458}, {75, 51315}, {262, 393}, {263, 2207}, {305, 44144}, {326, 52134}, {327, 2052}, {343, 39530}, {394, 182}, {520, 3288}, {577, 34396}, {2186, 1096}, {3265, 23878}, {3269, 6784}, {3926, 183}, {5562, 59208}, {6037, 20031}, {6394, 46806}, {17974, 51542}, {26714, 32713}, {36885, 35907}, {37188, 9755}, {42300, 8884}, {42313, 4}, {43718, 25}, {46319, 36417}, {46807, 6530}, {51444, 8882}, {51543, 34854}, {52347, 59197}, {54032, 6}, {57268, 52418}


X(59258) = X(76)X(7849)∩X(308)X(3763)

Barycentrics    b^2*c^2*(-(a^2*b^2)+(a^2+b^2)*c^2+2*c^4)*(a^2*(b-c)*(b+c)+b^2*(2*b^2+c^2)) : :

X(59258) lies on these lines: {76, 7849}, {290, 7788}, {308, 3763}, {325, 14387}, {2367, 25424}, {3114, 3329}, {30736, 40826}

X(59258) = isotomic conjugate of X(59232)
X(59258) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59232}, {32, 51291}, {560, 7766}, {1501, 52138}, {1917, 41259}
X(59258) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59232}, {6374, 7766}, {6376, 51291}, {36901, 25423}
X(59258) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7933)}}, {{A, B, C, X(76), X(264)}}, {{A, B, C, X(83), X(7938)}}, {{A, B, C, X(141), X(3763)}}, {{A, B, C, X(262), X(3314)}}, {{A, B, C, X(325), X(7788)}}, {{A, B, C, X(598), X(7853)}}, {{A, B, C, X(850), X(35524)}}, {{A, B, C, X(3613), X(7849)}}, {{A, B, C, X(6374), X(52568)}}, {{A, B, C, X(6383), X(44170)}}, {{A, B, C, X(7861), X(53105)}}, {{A, B, C, X(10290), X(19222)}}, {{A, B, C, X(54124), X(54841)}}
X(59258) = barycentric product X(i)*X(j) for these (i, j): {1502, 52660}, {25424, 44173}, {43688, 76}, {51450, 52568}, {51844, 561}
X(59258) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59232}, {75, 51291}, {76, 7766}, {561, 52138}, {850, 25423}, {1502, 41259}, {8024, 32449}, {25424, 1576}, {35522, 45680}, {40362, 10010}, {43688, 6}, {51450, 46288}, {51844, 31}, {52568, 59213}, {52660, 32}


X(59259) = X(76)X(4301)∩X(264)X(21665)

Barycentrics    b^2*c^2*(3*a^2+2*a*(b-c)+(b-c)*(3*b+c))*(-3*a^2+2*a*(b-c)+(b-c)*(b+3*c)) : :

X(59259) lies on these lines: {76, 4301}, {264, 21665}, {310, 55937}, {3261, 58280}, {3817, 44186}, {6063, 19804}, {11059, 57995}, {32040, 43093}

X(59259) = isotomic conjugate of X(42316)
X(59259) = trilinear pole of line {3261, 4811}
X(59259) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 42316}, {32, 5223}, {560, 29616}, {2175, 59215}, {9448, 59200}
X(59259) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 42316}, {6374, 29616}, {6376, 5223}, {40593, 59215}
X(59259) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(76), X(310)}}, {{A, B, C, X(85), X(16284)}}, {{A, B, C, X(92), X(34018)}}, {{A, B, C, X(262), X(514)}}, {{A, B, C, X(264), X(3261)}}, {{A, B, C, X(274), X(312)}}, {{A, B, C, X(279), X(2051)}}, {{A, B, C, X(309), X(31618)}}, {{A, B, C, X(1233), X(57914)}}, {{A, B, C, X(6383), X(56067)}}, {{A, B, C, X(7199), X(58007)}}, {{A, B, C, X(10405), X(43672)}}, {{A, B, C, X(14377), X(17982)}}, {{A, B, C, X(20565), X(57791)}}, {{A, B, C, X(40004), X(57877)}}, {{A, B, C, X(54668), X(55937)}}
X(59259) = barycentric product X(i)*X(j) for these (i, j): {310, 54668}, {20567, 42317}, {32040, 3261}, {55937, 76}, {55983, 75}
X(59259) = barycentric quotient X(i)/X(j) for these (i, j): {2, 42316}, {75, 5223}, {76, 29616}, {85, 59215}, {20567, 59200}, {26716, 32739}, {32040, 101}, {42317, 41}, {54668, 42}, {55937, 6}, {55983, 1}, {57792, 10004}


X(59260) = X(76)X(3263)∩X(312)X(3717)

Barycentrics    b*c*(-a+b+c)^2*((b-c)*c+a*(2*b+c))*(b*(-b+c)+a*(b+2*c)) : :

X(59260) lies on these lines: {76, 3263}, {312, 3717}, {341, 51972}, {344, 42310}, {1002, 32017}, {3932, 6063}, {5423, 59269}, {27523, 40779}, {38057, 57815}

X(59260) = isotomic conjugate of X(59242)
X(59260) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 59242}, {32, 42309}, {56, 1471}, {604, 5228}, {1001, 1106}, {1397, 40719}, {1407, 2280}, {1408, 42289}, {4384, 52410}, {7366, 37658}
X(59260) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1471}, {2, 59242}, {2968, 4724}, {3161, 5228}, {6376, 42309}, {6552, 1001}, {24771, 2280}
X(59260) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(4847)}}, {{A, B, C, X(9), X(58008)}}, {{A, B, C, X(76), X(312)}}, {{A, B, C, X(200), X(4518)}}, {{A, B, C, X(262), X(7220)}}, {{A, B, C, X(264), X(56118)}}, {{A, B, C, X(318), X(57815)}}, {{A, B, C, X(346), X(3263)}}, {{A, B, C, X(390), X(43951)}}, {{A, B, C, X(480), X(3932)}}, {{A, B, C, X(693), X(56088)}}, {{A, B, C, X(1043), X(33933)}}, {{A, B, C, X(3701), X(4082)}}, {{A, B, C, X(4183), X(4197)}}, {{A, B, C, X(7218), X(7249)}}, {{A, B, C, X(14942), X(32023)}}, {{A, B, C, X(20336), X(30681)}}, {{A, B, C, X(54121), X(56200)}}
X(59260) = barycentric product X(i)*X(j) for these (i, j): {346, 59255}, {3596, 40779}, {27475, 341}, {32041, 4397}, {37138, 52622}, {59269, 76}
X(59260) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59242}, {8, 5228}, {9, 1471}, {75, 42309}, {200, 2280}, {312, 40719}, {341, 4384}, {346, 1001}, {1002, 1407}, {1265, 23151}, {2279, 1106}, {2321, 42289}, {3239, 4724}, {3790, 40784}, {4082, 59207}, {4163, 45755}, {4397, 4762}, {5423, 37658}, {6558, 54440}, {27475, 269}, {30693, 3886}, {32041, 934}, {37138, 1461}, {40779, 56}, {42290, 7023}, {51563, 4637}, {51972, 59217}, {59255, 279}, {59269, 6}


X(59261) = X(1)X(32014)∩X(2)X(740)

Barycentrics    (b+c)*(a*b+2*(a+b)*c+c^2)*(a*(2*b+c)+b*(b+2*c)) : :

X(59261) lies on the Kiepert hyperbola and these lines: {1, 32014}, {2, 740}, {8, 6625}, {10, 4037}, {75, 40017}, {76, 4647}, {98, 9746}, {226, 7235}, {321, 8013}, {517, 54563}, {519, 55949}, {523, 4444}, {594, 23944}, {671, 3679}, {756, 6539}, {984, 30570}, {1029, 33110}, {1503, 54609}, {1916, 48628}, {2292, 56210}, {2784, 55003}, {3212, 57826}, {3696, 21904}, {3993, 59218}, {3994, 27797}, {4062, 30588}, {4732, 13576}, {4931, 5466}, {5587, 54510}, {5657, 54677}, {6382, 43684}, {14534, 50314}, {17758, 49560}, {24342, 51356}, {24624, 36815}, {25426, 43531}, {25458, 28612}, {27570, 42437}, {28845, 54533}, {28849, 54526}, {28850, 54497}, {28877, 54564}, {28889, 54530}, {29016, 54700}, {37159, 43677}, {48900, 57710}, {49459, 56703}, {49598, 58012}, {50295, 54119}

X(59261) = isogonal conjugate of X(59243)
X(59261) = isotomic conjugate of X(51356)
X(59261) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59243}, {6, 51311}, {31, 51356}, {32, 51314}, {48, 31904}, {58, 4649}, {110, 4784}, {163, 28840}, {849, 3842}, {985, 40734}, {1333, 16826}, {18268, 20142}
X(59261) = X(i)-vertex conjugate of X(j) for these {i, j}: {3, 54609}
X(59261) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 51356}, {3, 59243}, {9, 51311}, {10, 4649}, {37, 16826}, {115, 28840}, {244, 4784}, {1125, 5625}, {1249, 31904}, {3789, 40734}, {4075, 3842}, {6376, 51314}, {6741, 4913}, {35068, 20142}, {52872, 4753}, {55065, 4824}
X(59261) = X(i)-cross conjugate of X(j) for these {i, j}: {3826, 6757}, {4733, 10}
X(59261)= pole of line {4733, 59261} with respect to the Kiepert hyperbola
X(59261)= pole of line {28840, 54256} with respect to the Steiner circumellipse
X(59261)= pole of line {5625, 51356} with respect to the Wallace hyperbola
X(59261) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(756)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(8), X(21085)}}, {{A, B, C, X(12), X(27798)}}, {{A, B, C, X(37), X(50312)}}, {{A, B, C, X(65), X(9281)}}, {{A, B, C, X(75), X(523)}}, {{A, B, C, X(291), X(52651)}}, {{A, B, C, X(313), X(46772)}}, {{A, B, C, X(561), X(1089)}}, {{A, B, C, X(596), X(27804)}}, {{A, B, C, X(661), X(52654)}}, {{A, B, C, X(984), X(40786)}}, {{A, B, C, X(985), X(9278)}}, {{A, B, C, X(996), X(46918)}}, {{A, B, C, X(1213), X(30598)}}, {{A, B, C, X(1268), X(8818)}}, {{A, B, C, X(1269), X(34585)}}, {{A, B, C, X(1654), X(20536)}}, {{A, B, C, X(2171), X(17038)}}, {{A, B, C, X(2321), X(56205)}}, {{A, B, C, X(3212), X(3971)}}, {{A, B, C, X(3678), X(3681)}}, {{A, B, C, X(3679), X(4062)}}, {{A, B, C, X(3696), X(3773)}}, {{A, B, C, X(3795), X(21904)}}, {{A, B, C, X(3842), X(4733)}}, {{A, B, C, X(3932), X(4732)}}, {{A, B, C, X(3963), X(48628)}}, {{A, B, C, X(3994), X(4714)}}, {{A, B, C, X(4013), X(27812)}}, {{A, B, C, X(4033), X(4665)}}, {{A, B, C, X(4041), X(7220)}}, {{A, B, C, X(4651), X(49560)}}, {{A, B, C, X(4674), X(46904)}}, {{A, B, C, X(6538), X(6757)}}, {{A, B, C, X(10180), X(31359)}}, {{A, B, C, X(18697), X(50314)}}, {{A, B, C, X(23903), X(33135)}}, {{A, B, C, X(27494), X(31308)}}, {{A, B, C, X(27811), X(42285)}}, {{A, B, C, X(30570), X(30571)}}, {{A, B, C, X(41683), X(50111)}}, {{A, B, C, X(49488), X(56810)}}
X(59261) = barycentric product X(i)*X(j) for these (i, j): {10, 27483}, {25426, 313}, {28841, 850}, {30571, 321}, {52576, 59194}, {59272, 76}
X(59261) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51311}, {2, 51356}, {4, 31904}, {6, 59243}, {10, 16826}, {37, 4649}, {75, 51314}, {523, 28840}, {594, 3842}, {661, 4784}, {740, 20142}, {1213, 5625}, {2276, 40734}, {3700, 4913}, {3773, 27495}, {3943, 4753}, {4024, 4824}, {4733, 31336}, {4838, 4963}, {4931, 4948}, {8013, 59218}, {25426, 58}, {27483, 86}, {28841, 110}, {30571, 81}, {52576, 59203}, {52579, 59219}, {59194, 52558}, {59272, 6}


X(59262) = X(2)X(14970)∩X(3)X(14370)

Barycentrics    a^2*(b^2+c^2)*(a^2*b^2+2*(a^2+b^2)*c^2+c^4)*(b^4+2*b^2*c^2+a^2*(2*b^2+c^2)) : :

X(59262) lies on cubic K1012 and these lines: {2, 14970}, {3, 14370}, {6, 8623}, {32, 57421}, {39, 59167}, {76, 4045}, {574, 755}, {882, 3005}, {982, 16587}, {7777, 15573}, {8041, 56978}, {8362, 42551}, {19602, 51982}, {27375, 39684}

X(59262) = isotomic conjugate of X(59249)
X(59262) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 51312}, {31, 59249}, {75, 41295}, {82, 3329}, {3112, 12212}, {4593, 14318}
X(59262) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 59249}, {141, 3329}, {206, 41295}, {32664, 51312}, {34452, 12212}, {55050, 14318}
X(59262)= pole of line {3329, 41295} with respect to the Stammler hyperbola
X(59262)= pole of line {12212, 59249} with respect to the Wallace hyperbola
X(59262) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3005)}}, {{A, B, C, X(3), X(22138)}}, {{A, B, C, X(6), X(39)}}, {{A, B, C, X(32), X(6292)}}, {{A, B, C, X(38), X(982)}}, {{A, B, C, X(327), X(826)}}, {{A, B, C, X(732), X(3114)}}, {{A, B, C, X(1502), X(7794)}}, {{A, B, C, X(3051), X(16986)}}, {{A, B, C, X(3094), X(10007)}}, {{A, B, C, X(3613), X(14378)}}, {{A, B, C, X(4045), X(41272)}}, {{A, B, C, X(5117), X(14096)}}, {{A, B, C, X(7795), X(28674)}}, {{A, B, C, X(7876), X(27369)}}, {{A, B, C, X(8362), X(11325)}}, {{A, B, C, X(9468), X(32476)}}, {{A, B, C, X(11205), X(39955)}}, {{A, B, C, X(14609), X(52961)}}, {{A, B, C, X(21355), X(39951)}}, {{A, B, C, X(41328), X(46283)}}, {{A, B, C, X(42006), X(59273)}}
X(59262) = barycentric product X(i)*X(j) for these (i, j): {39, 42006}, {43357, 826}, {59273, 76}
X(59262) = barycentric quotient X(i)/X(j) for these (i, j): {2, 59249}, {31, 51312}, {32, 41295}, {39, 3329}, {688, 14318}, {3051, 12212}, {8041, 10007}, {20021, 39685}, {39684, 51862}, {42006, 308}, {43357, 4577}, {59273, 6}


X(59263) = X(2)X(374)∩X(2094)X(3227)

Barycentrics    a*(a^2*(b-4*c)*(b-c)-a*(b-2*c)*(b-c)^2-b*(b-c)*(b+c)^2+a^3*(b+2*c))*(a*(b-c)^2*(2*b-c)+(b-c)*c*(b+c)^2+a^3*(2*b+c)+a^2*(4*b^2-5*b*c+c^2)) : :

X(59263) lies on these lines: {2, 374}, {329, 32017}, {527, 55952}, {1219, 14923}, {1422, 59173}, {1828, 40836}, {2094, 3227}, {9965, 39694}

X(59263) = isogonal conjugate of X(59221)
X(59263) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59221}, {6, 51284}
X(59263) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59221}, {9, 51284}
X(59263) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(189), X(513)}}, {{A, B, C, X(312), X(42338)}}, {{A, B, C, X(329), X(1828)}}, {{A, B, C, X(374), X(57656)}}, {{A, B, C, X(2094), X(52896)}}, {{A, B, C, X(2226), X(41446)}}, {{A, B, C, X(17107), X(55938)}}
X(59263) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51284}, {6, 59221}


X(59264) = X(542)X(10554)∩X(599)X(45662)

Barycentrics    (3*a^8-2*a^6*(b^2+2*c^2)-(b-c)*(b+c)*(b^2+c^2)*(b^4-2*b^2*c^2+3*c^4)+a^4*(-2*b^4+b^2*c^2+4*c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4-4*c^6))*(3*a^8-2*a^6*(2*b^2+c^2)+a^4*(4*b^4+b^2*c^2-2*c^4)+(b-c)*(b+c)*(b^2+c^2)*(3*b^4-2*b^2*c^2+c^4)+a^2*(-4*b^6+b^4*c^2+b^2*c^4+2*c^6)) : :

X(59264) lies on these lines: {542, 10554}, {599, 45662}, {1640, 23288}, {5094, 41939}, {6593, 56057}, {7737, 34246}, {9464, 38940}, {11061, 18023}

X(59264) = isogonal conjugate of X(59227)
X(59264) = trilinear pole of line {2021, 3906}
X(59264) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(67)}}, {{A, B, C, X(4), X(542)}}, {{A, B, C, X(6), X(9184)}}, {{A, B, C, X(66), X(5466)}}, {{A, B, C, X(69), X(41939)}}, {{A, B, C, X(74), X(11166)}}, {{A, B, C, X(110), X(263)}}, {{A, B, C, X(125), X(42287)}}, {{A, B, C, X(262), X(57991)}}, {{A, B, C, X(523), X(2857)}}, {{A, B, C, X(598), X(39446)}}, {{A, B, C, X(1177), X(32319)}}, {{A, B, C, X(1992), X(5095)}}, {{A, B, C, X(2395), X(3424)}}, {{A, B, C, X(3906), X(14364)}}, {{A, B, C, X(5652), X(9292)}}, {{A, B, C, X(6236), X(7737)}}, {{A, B, C, X(8541), X(10417)}}, {{A, B, C, X(9513), X(11175)}}, {{A, B, C, X(11744), X(54894)}}, {{A, B, C, X(14712), X(40871)}}, {{A, B, C, X(20423), X(32234)}}, {{A, B, C, X(32250), X(51023)}}, {{A, B, C, X(46124), X(54032)}}


X(59265) = X(1)X(46923)∩X(1224)X(3754)

Barycentrics    a*(2*a*b*(a+b)^2+(a+b)*(a^2+b^2)*c+(a^2+a*b+b^2)*c^2-(a+b)*c^3-c^4)*(-(b*(b-c)*(b+c)^2)+a^3*(b+2*c)-a*(b-2*c)*(b^2+b*c+c^2)+a^2*(b^2+b*c+4*c^2)) : :

X(59265) lies on these lines: {1, 46923}, {524, 55953}, {961, 8614}, {1211, 56058}, {1224, 3754}, {2895, 30710}, {20086, 35058}, {40143, 40153}

X(59265) = isogonal conjugate of X(59235)
X(59265) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59235}, {6, 51285}
X(59265) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59235}, {9, 51285}
X(59265) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(29060)}}, {{A, B, C, X(58), X(21739)}}, {{A, B, C, X(513), X(593)}}, {{A, B, C, X(758), X(40215)}}, {{A, B, C, X(2221), X(55027)}}, {{A, B, C, X(2895), X(8614)}}, {{A, B, C, X(7357), X(55022)}}
X(59265) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51285}, {6, 59235}


X(59266) = X(76)X(20088)∩X(754)X(10302)

Barycentrics    (3*a^4+5*a^2*b^2+3*b^4+(a^2+b^2)*c^2-c^4)*(3*a^4-b^4+b^2*c^2+3*c^4+a^2*(b^2+5*c^2)) : :

X(59266) lies on the Kiepert hyperbola and these lines: {76, 20088}, {262, 48898}, {754, 10302}, {2896, 10159}, {3839, 54614}, {5475, 43527}, {5476, 54582}, {6249, 54846}, {6292, 56059}, {7608, 9751}, {7933, 18841}, {8290, 35005}, {14492, 29012}, {33251, 54616}, {40163, 59180}, {43450, 43529}

X(59266) = isogonal conjugate of X(59236)
X(59266) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(50248)}}, {{A, B, C, X(251), X(8601)}}, {{A, B, C, X(523), X(1031)}}, {{A, B, C, X(732), X(51510)}}, {{A, B, C, X(754), X(12073)}}, {{A, B, C, X(2896), X(41513)}}, {{A, B, C, X(2998), X(21765)}}, {{A, B, C, X(7378), X(7933)}}, {{A, B, C, X(7408), X(16898)}}, {{A, B, C, X(8290), X(40820)}}, {{A, B, C, X(9292), X(39955)}}, {{A, B, C, X(31068), X(56395)}}, {{A, B, C, X(42349), X(45108)}}, {{A, B, C, X(43098), X(44571)}}


X(59267) = X(2)X(17770)∩X(86)X(7238)

Barycentrics    (3*a^2+5*a*b+3*b^2+(a+b)*c-c^2)*(3*a^2-b^2+b*c+3*c^2+a*(b+5*c)) : :

X(59267) lies on these lines: {2, 17770}, {75, 20016}, {86, 7238}, {335, 31308}, {524, 55955}, {1213, 56061}, {1268, 1654}, {3758, 28650}, {4675, 30598}, {8025, 40164}, {17236, 28626}, {24342, 51353}, {27494, 29588}, {29589, 39749}

X(59267) = isogonal conjugate of X(59238)
X(59267) = isotomic conjugate of X(51353)
X(59267) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59238}, {6, 51294}, {31, 51353}
X(59267) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 51353}, {3, 59238}, {9, 51294}
X(59267)= pole of line {51353, 59214} with respect to the Wallace hyperbola
X(59267) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(20016)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(81), X(20090)}}, {{A, B, C, X(89), X(7312)}}, {{A, B, C, X(513), X(40776)}}, {{A, B, C, X(514), X(1509)}}, {{A, B, C, X(524), X(26860)}}, {{A, B, C, X(671), X(44572)}}, {{A, B, C, X(1002), X(31314)}}, {{A, B, C, X(1029), X(1654)}}, {{A, B, C, X(4393), X(29588)}}, {{A, B, C, X(4675), X(30589)}}, {{A, B, C, X(5222), X(29589)}}, {{A, B, C, X(5557), X(39722)}}, {{A, B, C, X(6651), X(6654)}}, {{A, B, C, X(9277), X(9309)}}, {{A, B, C, X(29586), X(51353)}}, {{A, B, C, X(31300), X(36538)}}, {{A, B, C, X(42285), X(54795)}}, {{A, B, C, X(43733), X(56210)}}, {{A, B, C, X(54120), X(56042)}}
X(59267) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51294}, {2, 51353}, {6, 59238}, {8025, 59214}


X(59268) = X(8)X(42456)∩X(29)X(1148)

Barycentrics    (a^5*(b-c)+4*a^2*b^2*(b-c)*(b+c)-a^4*b*(2*b+c)-b*(2*b-c)*(b^2-c^2)^2+a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(-b^3+c^3))*(a^5*(b-c)+4*a^2*(b-c)*c^2*(b+c)+a^4*c*(b+2*c)-(b-2*c)*c*(b^2-c^2)^2+a*(b-c)*(b+c)^2*(b^2+c^2)+2*a^3*(-b^3+c^3)) : :

X(59268) lies on these lines: {8, 42456}, {29, 1148}, {333, 6360}, {1214, 56062}, {2994, 17950}, {5905, 17947}, {40149, 40165}

X(59268) = isogonal conjugate of X(59240)
X(59268) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59240}, {6, 51281}
X(59268) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59240}, {9, 51281}
X(59268) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8)}}, {{A, B, C, X(280), X(56270)}}, {{A, B, C, X(522), X(2052)}}, {{A, B, C, X(1148), X(6360)}}, {{A, B, C, X(5905), X(17950)}}, {{A, B, C, X(8796), X(41514)}}, {{A, B, C, X(10570), X(16080)}}
X(59268) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51281}, {6, 59240}


X(59269) = X(2)X(210)∩X(9)X(2293)

Barycentrics    a*(-a+b+c)^2*((b-c)*c+a*(2*b+c))*(b*(-b+c)+a*(b+2*c)) : :

X(59269) lies on these lines: {2, 210}, {7, 20683}, {8, 36796}, {9, 2293}, {55, 6605}, {144, 56265}, {200, 8012}, {220, 28071}, {281, 1827}, {346, 3059}, {390, 4517}, {480, 2287}, {2279, 2297}, {2346, 3477}, {3243, 59217}, {3683, 56350}, {3688, 5838}, {3711, 41798}, {3900, 28132}, {4334, 5223}, {5220, 36101}, {5423, 59260}, {6172, 32041}, {10578, 42310}, {10579, 59193}, {14100, 56200}, {15733, 36916}, {21039, 51058}, {23617, 36635}, {27549, 41228}, {39790, 56054}, {42483, 58678}

X(59269) = isogonal conjugate of X(59242)
X(59269) = trilinear pole of line {10581, 3900}
X(59269) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59242}, {6, 42309}, {7, 1471}, {56, 40719}, {57, 5228}, {269, 1001}, {279, 2280}, {738, 37658}, {934, 4724}, {1014, 42289}, {1106, 4441}, {1407, 4384}, {1435, 23151}, {1461, 4762}, {3886, 7023}, {4617, 45755}, {7366, 28809}, {21615, 52410}, {31926, 52373}, {43932, 54440}
X(59269) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40719}, {3, 59242}, {9, 42309}, {5452, 5228}, {6552, 4441}, {6600, 1001}, {14714, 4724}, {24771, 4384}, {35508, 4762}
X(59269)= pole of line {390, 56088} with respect to the Feuerbach hyperbola
X(59269)= pole of line {4762, 54266} with respect to the Steiner circumellipse
X(59269) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(11038)}}, {{A, B, C, X(2), X(9)}}, {{A, B, C, X(4), X(10482)}}, {{A, B, C, X(7), X(55)}}, {{A, B, C, X(8), X(220)}}, {{A, B, C, X(21), X(38053)}}, {{A, B, C, X(33), X(2346)}}, {{A, B, C, X(41), X(959)}}, {{A, B, C, X(210), X(480)}}, {{A, B, C, X(294), X(39273)}}, {{A, B, C, X(390), X(3424)}}, {{A, B, C, X(650), X(42318)}}, {{A, B, C, X(728), X(4866)}}, {{A, B, C, X(1000), X(4845)}}, {{A, B, C, X(1110), X(51497)}}, {{A, B, C, X(1156), X(52429)}}, {{A, B, C, X(1212), X(56054)}}, {{A, B, C, X(1253), X(7077)}}, {{A, B, C, X(1260), X(40659)}}, {{A, B, C, X(1261), X(24477)}}, {{A, B, C, X(1320), X(51099)}}, {{A, B, C, X(2195), X(9309)}}, {{A, B, C, X(2320), X(42064)}}, {{A, B, C, X(2328), X(3873)}}, {{A, B, C, X(2550), X(41228)}}, {{A, B, C, X(3062), X(9445)}}, {{A, B, C, X(3474), X(7676)}}, {{A, B, C, X(3681), X(7046)}}, {{A, B, C, X(3689), X(42014)}}, {{A, B, C, X(3693), X(39749)}}, {{A, B, C, X(3786), X(3789)}}, {{A, B, C, X(4517), X(19586)}}, {{A, B, C, X(5220), X(51418)}}, {{A, B, C, X(6172), X(52888)}}, {{A, B, C, X(7073), X(56028)}}, {{A, B, C, X(7079), X(32635)}}, {{A, B, C, X(9778), X(11495)}}, {{A, B, C, X(17718), X(52371)}}, {{A, B, C, X(17758), X(51972)}}, {{A, B, C, X(27475), X(40779)}}, {{A, B, C, X(36635), X(52195)}}, {{A, B, C, X(51055), X(56094)}}
X(59269) = barycentric product X(i)*X(j) for these (i, j): {6, 59260}, {200, 27475}, {220, 59255}, {1002, 346}, {2279, 341}, {3059, 42310}, {3239, 37138}, {3790, 40757}, {4082, 42302}, {4171, 51563}, {4397, 8693}, {32041, 3900}, {40779, 8}, {42290, 5423}, {51972, 59193}, {52614, 53227}
X(59269) = barycentric quotient X(i)/X(j) for these (i, j): {1, 42309}, {6, 59242}, {9, 40719}, {41, 1471}, {55, 5228}, {200, 4384}, {220, 1001}, {341, 21615}, {346, 4441}, {480, 37658}, {657, 4724}, {728, 3886}, {1002, 279}, {1253, 2280}, {1260, 23151}, {1334, 42289}, {2279, 269}, {3900, 4762}, {4082, 4044}, {4105, 45755}, {4171, 4804}, {4183, 31926}, {4515, 3696}, {4517, 40784}, {5423, 28809}, {8012, 59217}, {8693, 934}, {27475, 1088}, {32041, 4569}, {37138, 658}, {40779, 7}, {42290, 479}, {42310, 42311}, {51563, 4635}, {51972, 59202}, {59193, 10509}, {59255, 57792}, {59260, 76}


X(59270) = X(76)X(33462)∩X(532)X(55950)

Barycentrics    -9*a^8-(b-c)^2*(b+c)^2*(64*a^2*b^2-21*b^4+64*a^2*c^2+44*b^2*c^2-21*c^4)+2*a^4*(26*b^4+29*b^2*c^2+26*c^4)-6*sqrt(3)*(3*a^6-9*a^4*(b^2+c^2)+(b-c)^2*(b+c)^2*(5*a^2+b^2+c^2))*S : :

X(59270) lies on the Kiepert hyperbola and these lines: {76, 33462}, {532, 55950}, {671, 51486}, {8018, 40167}, {11603, 22907}, {12816, 44666}, {22113, 54115}, {22532, 43546}, {22832, 43551}, {44029, 54116}

X(59270) = isogonal conjugate of X(59244)
X(59270) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(18575), X(41898)}}, {{A, B, C, X(41897), X(44658)}}


X(59271) = X(76)X(33463)∩X(533)X(55951)

Barycentrics    -9*a^8-(b-c)^2*(b+c)^2*(64*a^2*b^2-21*b^4+64*a^2*c^2+44*b^2*c^2-21*c^4)+2*a^4*(26*b^4+29*b^2*c^2+26*c^4)+6*sqrt(3)*(3*a^6-9*a^4*(b^2+c^2)+(b-c)^2*(b+c)^2*(5*a^2+b^2+c^2))*S : :

X(59271) lies on the Kiepert hyperbola and these lines: {76, 33463}, {533, 55951}, {671, 51487}, {8019, 40168}, {11602, 22861}, {12817, 44667}, {22114, 54116}, {22531, 43547}, {22831, 43550}, {44031, 54115}

X(59271) = isogonal conjugate of X(59245)
X(59271) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(18575), X(41897)}}, {{A, B, C, X(41898), X(44658)}}


X(59272) = X(1)X(4094)∩X(2)X(740)

Barycentrics    a^2*(b+c)*(a*b+2*(a+b)*c+c^2)*(a*(2*b+c)+b*(b+2*c)) : :

X(59272) lies on cubic K1017 and these lines: {1, 4094}, {2, 740}, {6, 2667}, {31, 1171}, {37, 21699}, {42, 21820}, {55, 2248}, {111, 2177}, {192, 39926}, {512, 3572}, {694, 19586}, {872, 52555}, {941, 3728}, {984, 40776}, {1403, 57663}, {2998, 58400}, {3228, 4664}, {3696, 59219}, {3725, 28637}, {3993, 4044}, {7146, 42290}, {16606, 21883}, {20681, 54980}, {21805, 56156}, {23928, 51058}, {24357, 57040}, {39974, 44671}, {52893, 56158}

X(59272) = isogonal conjugate of X(51356)
X(59272) = trilinear pole of line {46390, 512}
X(59272) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 51356}, {2, 51311}, {6, 51314}, {63, 31904}, {75, 59243}, {81, 16826}, {86, 4649}, {99, 4784}, {662, 28840}, {757, 3842}, {870, 40734}, {1414, 4913}, {4824, 52935}, {5625, 40438}, {20142, 37128}
X(59272) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 51356}, {9, 51314}, {206, 59243}, {1084, 28840}, {3162, 31904}, {32664, 51311}, {38986, 4784}, {40586, 16826}, {40600, 4649}, {40607, 3842}, {40608, 4913}, {52877, 4753}
X(59272)= pole of line {5625, 51356} with respect to the Stammler hyperbola
X(59272)= pole of line {28840, 54258} with respect to the Steiner circumellipse
X(59272) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(512)}}, {{A, B, C, X(2), X(6)}}, {{A, B, C, X(31), X(872)}}, {{A, B, C, X(75), X(756)}}, {{A, B, C, X(181), X(17038)}}, {{A, B, C, X(192), X(21883)}}, {{A, B, C, X(210), X(7155)}}, {{A, B, C, X(213), X(56221)}}, {{A, B, C, X(335), X(52651)}}, {{A, B, C, X(351), X(5147)}}, {{A, B, C, X(661), X(27475)}}, {{A, B, C, X(798), X(40735)}}, {{A, B, C, X(1402), X(17592)}}, {{A, B, C, X(1403), X(4734)}}, {{A, B, C, X(1911), X(40729)}}, {{A, B, C, X(2177), X(4933)}}, {{A, B, C, X(2238), X(14621)}}, {{A, B, C, X(2258), X(6378)}}, {{A, B, C, X(2279), X(31336)}}, {{A, B, C, X(2295), X(56353)}}, {{A, B, C, X(3774), X(3795)}}, {{A, B, C, X(3842), X(52654)}}, {{A, B, C, X(4044), X(7146)}}, {{A, B, C, X(4068), X(13476)}}, {{A, B, C, X(4094), X(9421)}}, {{A, B, C, X(4664), X(52893)}}, {{A, B, C, X(4674), X(50096)}}, {{A, B, C, X(6186), X(52558)}}, {{A, B, C, X(7148), X(31359)}}, {{A, B, C, X(11107), X(46536)}}, {{A, B, C, X(16589), X(56051)}}, {{A, B, C, X(18755), X(20675)}}, {{A, B, C, X(20681), X(40155)}}, {{A, B, C, X(20970), X(56343)}}, {{A, B, C, X(21805), X(36872)}}, {{A, B, C, X(25426), X(27483)}}, {{A, B, C, X(27804), X(40148)}}, {{A, B, C, X(40780), X(50491)}}, {{A, B, C, X(50086), X(53114)}}
X(59272) = barycentric product X(i)*X(j) for these (i, j): {6, 59261}, {10, 25426}, {27483, 42}, {28841, 523}, {30571, 37}, {59194, 8013}
X(59272) = barycentric quotient X(i)/X(j) for these (i, j): {1, 51314}, {6, 51356}, {25, 31904}, {31, 51311}, {32, 59243}, {42, 16826}, {213, 4649}, {512, 28840}, {798, 4784}, {1500, 3842}, {3709, 4913}, {3747, 20142}, {3774, 40774}, {4079, 4824}, {4826, 4963}, {8013, 59203}, {20970, 5625}, {21820, 59219}, {25426, 86}, {27483, 310}, {28841, 99}, {30571, 274}, {40728, 40734}, {52963, 4753}, {59261, 76}


X(59273) = X(2)X(732)∩X(6)X(733)

Barycentrics    a^4*(b^2+c^2)*(a^2*b^2+2*(a^2+b^2)*c^2+c^4)*(b^4+2*b^2*c^2+a^2*(2*b^2+c^2)) : :

X(59273) lies on cubic K280 and these lines: {2, 732}, {6, 733}, {32, 39684}, {39, 59167}, {76, 31622}, {194, 39953}, {688, 881}, {7032, 19587}, {7757, 43094}, {8041, 31613}, {9482, 13330}

X(59273) = isogonal conjugate of X(59249)
X(59273) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 59249}, {76, 51312}, {561, 41295}, {3112, 3329}, {3405, 39685}, {12212, 18833}, {14318, 37204}
X(59273) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 59249}, {34452, 3329}, {40368, 41295}, {52042, 10007}
X(59273)= pole of line {12212, 59249} with respect to the Stammler hyperbola
X(59273)= pole of line {3329, 59249} with respect to the Wallace hyperbola
X(59273) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(32)}}, {{A, B, C, X(6), X(688)}}, {{A, B, C, X(76), X(8041)}}, {{A, B, C, X(262), X(3005)}}, {{A, B, C, X(1002), X(50521)}}, {{A, B, C, X(1501), X(11205)}}, {{A, B, C, X(1964), X(7032)}}, {{A, B, C, X(3407), X(8623)}}, {{A, B, C, X(3917), X(43714)}}, {{A, B, C, X(8789), X(57503)}}, {{A, B, C, X(10007), X(52660)}}, {{A, B, C, X(13331), X(41331)}}, {{A, B, C, X(27375), X(42444)}}
X(59273) = barycentric product X(i)*X(j) for these (i, j): {6, 59262}, {3005, 43357}, {3051, 42006}, {20021, 39684}
X(59273) = barycentric quotient X(i)/X(j) for these (i, j): {6, 59249}, {560, 51312}, {1501, 41295}, {3051, 3329}, {9494, 14318}, {39684, 20022}, {41331, 12212}, {42006, 40016}, {43357, 689}, {51869, 39685}, {59262, 76}


X(59274) = X(5)X(523)∩X(24)X(6344)

Barycentrics    b^2*c^2*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2)*(-2*a^10 + 4*a^8*b^2 - a^6*b^4 - a^4*b^6 - a^2*b^8 + b^10 + 4*a^8*c^2 - 6*a^6*b^2*c^2 + 2*a^4*b^4*c^2 + 3*a^2*b^6*c^2 - 3*b^8*c^2 - a^6*c^4 + 2*a^4*b^2*c^4 - 4*a^2*b^4*c^4 + 2*b^6*c^4 - a^4*c^6 + 3*a^2*b^2*c^6 + 2*b^4*c^6 - a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(59274) lies on the cubic K1344 and these lines: {5, 523}, {24, 6344}, {30, 58723}, {94, 382}, {265, 5889}, {476, 1658}, {546, 57486}, {550, 57482}, {7503, 56400}, {12028, 37814}, {14583, 38322}, {14859, 25044}, {18378, 56407}

X(59274) = X(6149)-isoconjugate of X(22751)
X(59274) = X(14993)-Dao conjugate of X(22751)
X(59274) = pole of line {2070, 46008} with respect to the circumcircle
X(59274) = barycentric product X(94)*X(30522)
X(59274) = barycentric quotient X(i)/X(j) for these {i,j}: {1989, 22751}, {30522, 323}
X(59274) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14254, 38896, 39170}, {14254, 58725, 5}


X(59275) = X(4)X(137)∩X(24)X(96)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 3*a^6*b^2*c^2 - a^4*b^4*c^2 - 3*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 - a^4*b^2*c^4 + 2*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 3*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(59275) lies on the cubic K1344 and these lines: {3, 52677}, {4, 137}, {5, 58079}, {24, 96}, {54, 7577}, {252, 21844}, {275, 7507}, {1157, 34797}, {1656, 19176}, {3463, 13599}, {3484, 18381}, {3575, 57489}, {6240, 40631}, {7514, 19179}, {7752, 18831}, {10619, 59241}, {12225, 57474}, {12278, 15958}, {12289, 46089}, {18494, 19169}, {41362, 46064}, {44057, 52681}

X(59275) = X(13367)-Dao conjugate of X(31388)
X(59275) = barycentric product X(275)*X(58922)
X(59275) = barycentric quotient X(58922)/X(343)


X(59276) = X(4)X(53169)∩X(24)X(110)

Barycentrics    a^4*(a^2 + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + c^2)*(a^8 - a^6*b^2 + a^4*b^4 - 3*a^2*b^6 + 2*b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 3*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 + b^4*c^4 - 4*a^2*c^6 - b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + b^4*c^4 - 3*a^2*c^6 - 3*b^2*c^6 + 2*c^8) : :

X(59276) lies on the cubics K1318 and K1344, and on these lines: {4, 53169}, {24, 110}, {54, 43709}, {68, 16221}, {186, 58727}, {7722, 39373}, {52416, 52603}, {53170, 53171}

X(59276) = isogonal conjugate of X(58725)
X(59276) = X(57636)-Ceva conjugate of X(1299)
X(59276) = X(i)-isoconjugate of X(j) for these (i,j): {1, 58725}, {91, 53169}, {94, 2314}, {2166, 44665}
X(59276) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 58725}, {11597, 44665}, {34116, 53169}
X(59276) = pole of line {44665, 53169} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(59276) = barycentric product X(i)*X(j) for these {i,j}: {186, 43756}, {323, 1299}, {1993, 58727}, {14590, 43709}, {34834, 57636}
X(59276) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 58725}, {50, 44665}, {571, 53169}, {1299, 94}, {14591, 30512}, {34397, 16310}, {43709, 14592}, {43756, 328}, {52557, 53788}, {57636, 40427}, {58727, 5392}


X(59277) = X(3)X(12278)∩X(4)X(5961)

Barycentrics    a^2*(a^14 - 4*a^12*b^2 + 6*a^10*b^4 - 5*a^8*b^6 + 5*a^6*b^8 - 6*a^4*b^10 + 4*a^2*b^12 - b^14 - 4*a^12*c^2 + 11*a^10*b^2*c^2 - 10*a^8*b^4*c^2 + a^6*b^6*c^2 + 7*a^4*b^8*c^2 - 8*a^2*b^10*c^2 + 3*b^12*c^2 + 6*a^10*c^4 - 10*a^8*b^2*c^4 + 7*a^6*b^4*c^4 - 3*a^4*b^6*c^4 + 3*a^2*b^8*c^4 - 3*b^10*c^4 - 5*a^8*c^6 + a^6*b^2*c^6 - 3*a^4*b^4*c^6 + 2*a^2*b^6*c^6 + b^8*c^6 + 5*a^6*c^8 + 7*a^4*b^2*c^8 + 3*a^2*b^4*c^8 + b^6*c^8 - 6*a^4*c^10 - 8*a^2*b^2*c^10 - 3*b^4*c^10 + 4*a^2*c^12 + 3*b^2*c^12 - c^14) : :

X(59277) lies on the cubic K1344 and these lines: {3, 12278}, {4, 5961}, {186, 847}, {568, 25044}, {7488, 42329}, {18381, 34197}, {32171, 34833}


X(59278) = X(3)X(93)∩X(4)X(49)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(59278) lies on the cubic K1344 and these lines: {3, 93}, {4, 49}, {24, 6344}, {25, 15424}, {186, 847}, {254, 35471}, {264, 3520}, {393, 2965}, {648, 16880}, {1093, 3518}, {1217, 35481}, {1300, 12092}, {7505, 52487}, {7577, 14860}, {8741, 16965}, {8742, 16964}, {8884, 18559}, {16868, 30510}, {18808, 57120}, {18855, 37119}

X(59278) = isogonal conjugate of X(18436)
X(59278) = isogonal conjugate of the anticomplement of X(6102)
X(59278) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18436}, {255, 16868}
X(59278) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18436}, {6523, 16868}
X(59278) = cevapoint of X(4) and X(44879)
X(59278) = barycentric product X(i)*X(j) for these {i,j}: {2052, 16867}, {12092, 14618}
X(59278) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 18436}, {393, 16868}, {12092, 4558}, {16867, 394}


X(59279) = X(3)X(3043)∩X(4)X(49)

Barycentrics    a^4*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c - b^3*c - 2*a^2*c^2 + b^2*c^2 - b*c^3 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*b*c + b^3*c - 2*a^2*c^2 + b^2*c^2 + b*c^3 + c^4) : :
Sec[A] Sin[5 A] : :

X(59279) lies on the cubic K1344 and these lines: {2, 24572}, {3, 3043}, {4, 49}, {24, 195}, {54, 7577}, {110, 9927}, {184, 3357}, {186, 1147}, {378, 9704}, {576, 1974}, {578, 7699}, {1092, 17506}, {1594, 18432}, {1614, 9934}, {1986, 32171}, {2888, 11597}, {2914, 10274}, {2931, 58726}, {3047, 32139}, {3205, 56514}, {3206, 56515}, {6143, 32046}, {6193, 7505}, {6240, 18882}, {6759, 40242}, {6776, 34118}, {7666, 32534}, {8154, 15653}, {9696, 39575}, {9705, 22750}, {9706, 52295}, {9707, 34117}, {9716, 34397}, {10018, 40111}, {10539, 18392}, {11387, 34484}, {11935, 12173}, {12244, 46374}, {12902, 35488}, {13346, 56369}, {15219, 55540}, {15220, 55539}, {15462, 32234}, {17824, 19357}, {21844, 22115}, {26863, 44080}, {34148, 34797}, {40985, 41722}, {44077, 47486}, {57120, 57210}

X(59279) = anticomplement of X(24572)
X(59279) = X(91)-isoconjugate of X(5964)
X(59279) = X(34116)-Dao conjugate of X(5964)
X(59279) = pole of line {5964, 9927} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(59279) = barycentric product X(1993)*X(5963)
X(59279) = barycentric quotient X(i)/X(j) for these {i,j}: {571, 5964}, {5963, 5392}
X(59279) = {X(49),X(52416)}-harmonic conjugate of X(4)


X(59280) = X(3)X(3043)∩X(4)X(59274)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a*b*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 + a*b*c^2 - c^4)*(a^4 - b^4 - a*b^2*c - 2*a^2*c^2 + c^4)*(a^4 - b^4 + a*b^2*c - 2*a^2*c^2 + c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(59280) lies on the cubic K1344 and these lines: {3, 3043}, {4, 59274}, {24, 35372}, {523, 6240}, {1986, 39170}, {11079, 52130}, {34783, 53170}, {59276, 59277}

X(59280) = X(18403)-isoconjugate of X(36053)
X(59280) = X(i)-Dao conjugate of X(j) for these (i,j): {113, 18403}, {16178, 46008}
X(59280) = pole of line {18403, 46008} with respect to the polar circle
X(59280) = barycentric quotient X(i)/X(j) for these {i,j}: {3003, 18403}, {47236, 46008}


X(59281) = X(3)X(5962)∩X(4)X(5961)

Barycentrics    a^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8 - a^6*b^2 - a^2*b^6 + b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + 2*a^2*b^4*c^2 - b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 4*a^2*c^6 - b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - b^6*c^2 + 2*a^2*b^2*c^4 - a^2*c^6 - b^2*c^6 + c^8) : :

X(59281) lies on the cubic K1344 and these lines: {3, 5962}, {4, 5961}, {186, 1147}, {340, 9723}, {562, 21844}, {571, 41758}, {847, 22261}, {32710, 34783}, {37814, 38936}

X(59281) = isogonal conjugate of X(9927)
X(59281) = isogonal conjugate of the anticomplement of X(12038)
X(59281) = isogonal conjugate of the complement of X(12118)
X(59281) = X(1)-isoconjugate of X(9927)
X(59281) = X(3)-Dao conjugate of X(9927)
X(59281) = cevapoint of X(3) and X(9932)
X(59281) = trilinear pole of line {30451, 47230}
X(59281) = barycentric quotient X(6)/X(9927)


X(59282) = X(1)X(57736)∩X(3)X(758)

Barycentrics    a*(b + c)*(a^4 - 2*a^2*b^2 + b^4 - a^3*c - b^3*c - a*b*c^2 + a*c^3 + b*c^3 - c^4)*(a^4 - a^3*b + a*b^3 - b^4 - a*b^2*c + b^3*c - 2*a^2*c^2 - b*c^3 + c^4) : :

X(59282) lies on the Jerabek circumhyperbola, the cubic K1345, and these lines: {1, 57736}, {3, 758}, {8, 18123}, {12, 52391}, {69, 35550}, {71, 4053}, {74, 30250}, {265, 355}, {517, 34800}, {523, 10950}, {1798, 3868}, {3869, 56946}, {5504, 47371}, {5902, 24881}, {7686, 44835}, {12030, 17104}, {21677, 27687}, {34259, 56313}, {36195, 52390}, {39149, 57695}

X(59282) =isogonal conjugate of X(11101)
X(59282) =isogonal conjugate of the anticomplement of X(27687)
X(59282) =X(i)-isoconjugate of X(j) for these (i,j): {1, 11101}, {58, 5086}, {162, 30212}, {34243, 56840}, {36069, 55149}
X(59282) =X(i)-Dao conjugate of X(j) for these (i,j): {3, 11101}, {10, 5086}, {125, 30212}, {38982, 55149}
X(59282) =trilinear pole of line {647, 2610}
X(59282) =barycentric product X(525)*X(30250)
X(59282) =barycentric quotient X(i)/X(j) for these {i,j}: {6, 11101}, {37, 5086}, {647, 30212}, {2610, 55149}, {30250, 648}


X(59283) = X(1)X(14628)∩X(4)X(80)

Barycentrics    b*c*(a^2 - a*b + b^2 - c^2)*(-a^2 + b^2 + a*c - c^2)*(-2*a^4 + a^3*b + a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + a*b^2*c + a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :

X(59283) lies on the cubic K1345 and these lines: {1, 14628}, {4, 80}, {10, 522}, {40, 655}, {56, 14204}, {78, 51562}, {145, 18359}, {280, 5552}, {341, 36804}, {946, 52212}, {1393, 56419}, {1807, 10570}, {2006, 3086}, {2222, 2734}, {3336, 51310}, {5727, 34535}, {10320, 56417}, {10950, 58739}, {11700, 24034}, {34619, 36910}, {37009, 40172}

X(59283) = isogonal conjugate of X(58741)
X(59283) = X(i)-isoconjugate of X(j) for these (i,j): {1, 58741}, {36, 102}, {1870, 36055}, {3218, 32677}, {3738, 36040}, {3904, 32643}, {7113, 36100}, {34393, 52434}, {36121, 52407}
X(59283) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 58741}, {515, 11700}, {10017, 3738}, {15898, 102}, {23986, 3218}, {36944, 56757}, {46974, 4996}, {51221, 1870}
X(59283) = barycentric product X(i)*X(j) for these {i,j}: {515, 18359}, {655, 14304}, {2161, 35516}, {2182, 20566}, {2406, 52356}, {34050, 52409}, {36804, 53522}
X(59283) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 58741}, {80, 36100}, {515, 3218}, {2161, 102}, {2182, 36}, {6187, 32677}, {8755, 1870}, {14304, 3904}, {18359, 34393}, {23986, 11700}, {32675, 36040}, {34050, 1443}, {35516, 20924}, {46974, 22128}, {51361, 2323}, {51421, 18593}, {52356, 2399}, {52371, 15629}, {52431, 36055}, {53522, 3960}


X(59284) = X(1)X(14628)∩X(3)X(8)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^4 - 2*a^3*b + 2*a*b^3 - b^4 - 2*a^3*c + 3*a^2*b*c - 2*a*b^2*c - 2*a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(59284) lies on the cubic K1345 and these lines: {1, 14628}, {3, 8}, {4, 34431}, {355, 14513}, {523, 1389}, {6326, 51975}, {9706, 37727}, {10950, 58743}, {12699, 38682}, {12737, 18359}

X(59284) = X(i)-isoconjugate of X(j) for these (i,j): {1457, 56105}, {1769, 43355}
X(59284) = barycentric product X(34234)*X(41684)
X(59284) = barycentric quotient X(i)/X(j) for these {i,j}: {32641, 43355}, {41684, 908}, {52663, 56105}
X(59284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14266, 36944, 104}, {36944, 38955, 56757}


X(59285) = X(1)X(4)∩X(3)X(2817)

Barycentrics    a*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + 2*a^4*b*c - a^3*b^2*c - a^2*b^3*c + a*b^4*c - b^5*c - a^4*c^2 - a^3*b*c^2 + 4*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 - a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 + a*b*c^4 - b^2*c^4 - b*c^5 + c^6) : :

X(59285) lies on the cubic K1345 and these lines: {1, 4}, {3, 2817}, {8, 14544}, {10, 1060}, {40, 4296}, {46, 4351}, {65, 7335}, {77, 56148}, {108, 58745}, {109, 40256}, {221, 2800}, {222, 5884}, {227, 6796}, {355, 18447}, {495, 30142}, {499, 1718}, {517, 4347}, {603, 1735}, {651, 5693}, {758, 3157}, {942, 44545}, {993, 37565}, {999, 9798}, {1038, 6684}, {1062, 4297}, {1125, 37697}, {1158, 1394}, {1210, 57277}, {1254, 37530}, {1388, 8283}, {1455, 5450}, {1456, 12672}, {1777, 51654}, {2646, 11214}, {2975, 36100}, {3333, 5262}, {3562, 37625}, {3872, 56942}, {4293, 33178}, {4318, 7982}, {4336, 52524}, {6757, 7100}, {7078, 31806}, {8144, 28160}, {8270, 11362}, {8757, 31803}, {9957, 30621}, {11012, 17080}, {11529, 17016}, {12005, 34046}, {12432, 44414}, {12616, 34050}, {12943, 38336}, {13532, 17555}, {15016, 17074}, {15252, 18242}, {17860, 37157}, {18303, 57446}, {18455, 18481}, {18480, 37729}, {19366, 31760}, {19860, 39130}, {19925, 37696}, {20117, 34048}, {24928, 30148}, {28082, 47043}, {30144, 34586}, {31730, 54295}, {31870, 41344}, {32141, 33649}, {34033, 54156}, {34042, 40249}, {34491, 51660}, {39149, 57695}, {40942, 52033}, {53314, 55124}

X(59285) = midpoint of X(1) and X(21147)
X(59285) = reflection of X(4347) in X(32047)
X(59285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 34, 946}, {1, 223, 6261}, {1, 1745, 45272}, {1, 3468, 10571}, {1, 5691, 6198}, {1, 10571, 40257}, {1, 34036, 13464}, {227, 46974, 6796}, {1455, 17102, 5450}, {6256, 7952, 51889}


X(59286) = X(1)X(57736)∩X(4)X(5127)

Barycentrics    a^2*(a + b)*(a - b - c)*(a + c)*(a^8 - a^7*b - 2*a^6*b^2 + 3*a^5*b^3 - 3*a^3*b^5 + 2*a^2*b^6 + a*b^7 - b^8 - a^7*c + a^6*b*c - 2*a^4*b^3*c + 2*a^3*b^4*c - a*b^6*c + b^7*c - 2*a^6*c^2 + 4*a^4*b^2*c^2 - a^3*b^3*c^2 - 3*a^2*b^4*c^2 + a*b^5*c^2 + b^6*c^2 + 3*a^5*c^3 - 2*a^4*b*c^3 - a^3*b^2*c^3 + 2*a^2*b^3*c^3 - a*b^4*c^3 - b^5*c^3 + 2*a^3*b*c^4 - 3*a^2*b^2*c^4 - a*b^3*c^4 - 3*a^3*c^5 + a*b^2*c^5 - b^3*c^5 + 2*a^2*c^6 - a*b*c^6 + b^2*c^6 + a*c^7 + b*c^7 - c^8) : :

X(59286) lies on the cubic K1345 and these lines: {1, 57736}, {4, 5127}, {8, 283}, {110, 58742}, {5903, 37227}, {11101, 34242}, {17104, 37116}, {35193, 45272}


X(59287) = X(2)X(54)∩X(3)X(252)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 + b^8 - 2*a^6*c^2 + a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 4*b^6*c^2 + 2*a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(59287) lies on the cubic K1346 and these lines: {2, 54}, {3, 252}, {4, 1157}, {5, 23338}, {24, 1601}, {137, 30484}, {186, 59275}, {230, 40633}, {631, 25042}, {933, 16868}, {1658, 59277}, {3484, 23294}, {5055, 7604}, {7746, 14586}, {8884, 44879}, {9927, 15958}, {10412, 23286}, {12026, 14143}, {12060, 22804}, {14859, 58725}, {14940, 58079}, {19173, 37920}, {19651, 37922}, {21230, 27196}, {23237, 27423}, {24385, 27868}, {28237, 35729}, {46089, 54969}

X(59287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 40631, 25044}, {5, 46454, 36842}, {252, 1141, 3}, {16337, 52681, 4}, {36842, 40631, 46454}, {36842, 46454, 25044}


X(59288) = X(3)X(12028)∩X(4)X(110)

Barycentrics    (a^2 - b^2 - c^2)*(a^4 - b^4 - a^2*b*c + 2*b^2*c^2 - c^4)*(a^4 - b^4 + a^2*b*c + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6) : :

X(59288) lies on the cubic K1346 and these lines: {3, 12028}, {4, 110}, {26, 16168}, {68, 35373}, {94, 12901}, {550, 51456}, {2931, 14254}, {6368, 15328}, {7488, 39986}, {7556, 14911}, {10296, 39371}, {12893, 39375}, {34350, 50529}, {39235, 44665}

X(59288) = isogonal conjugate of X(59280)
X(59288) = barycentric product X(i)*X(j) for these {i,j}: {2986, 18403}, {43755, 46008}
X(59288) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 59280}, {18403, 3580}
X(59288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15454, 58924}, {1300, 58731, 15454}, {58924, 58942, 4}


X(59289) = X(3)X(68)∩X(4)X(14769)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^12 - 4*a^10*b^2 + 7*a^8*b^4 - 8*a^6*b^6 + 7*a^4*b^8 - 4*a^2*b^10 + b^12 - 4*a^10*c^2 + 10*a^8*b^2*c^2 - 7*a^6*b^4*c^2 - 3*a^4*b^6*c^2 + 7*a^2*b^8*c^2 - 3*b^10*c^2 + 7*a^8*c^4 - 7*a^6*b^2*c^4 + 4*a^4*b^4*c^4 - 3*a^2*b^6*c^4 + 3*b^8*c^4 - 8*a^6*c^6 - 3*a^4*b^2*c^6 - 3*a^2*b^4*c^6 - 2*b^6*c^6 + 7*a^4*c^8 + 7*a^2*b^2*c^8 + 3*b^4*c^8 - 4*a^2*c^10 - 3*b^2*c^10 + c^12) : :

X(59289) lies on the cubic K1346 and these lines: {3, 68}, {4, 14769}, {578, 15827}, {7503, 8800}, {11250, 13496}, {13061, 13062}, {22261, 25043}, {23702, 37814}, {34148, 43756}, {36829, 59277}

X(59289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6503, 9932}, {3, 16391, 12359}


X(59290) = X(3)X(512)∩X(4)X(32)

Barycentrics    a^2*(a^12*b^2 - 4*a^10*b^4 + 6*a^8*b^6 - 4*a^6*b^8 + a^4*b^10 + a^12*c^2 - 2*a^10*b^2*c^2 + 3*a^8*b^4*c^2 + a^6*b^6*c^2 - 2*a^4*b^8*c^2 + a^2*b^10*c^2 - 2*b^12*c^2 - 4*a^10*c^4 + 3*a^8*b^2*c^4 - 8*a^6*b^4*c^4 + 3*a^4*b^6*c^4 + 2*a^2*b^8*c^4 + 4*b^10*c^4 + 6*a^8*c^6 + a^6*b^2*c^6 + 3*a^4*b^4*c^6 - 6*a^2*b^6*c^6 - 2*b^8*c^6 - 4*a^6*c^8 - 2*a^4*b^2*c^8 + 2*a^2*b^4*c^8 - 2*b^6*c^8 + a^4*c^10 + a^2*b^2*c^10 + 4*b^4*c^10 - 2*b^2*c^12) : :

X(59290) lies on the cubic K1347 and these lines: {3, 512}, {4, 32}, {805, 2710}, {1503, 14966}, {3095, 34783}, {3357, 9737}, {4230, 42671}, {23098, 47620}, {51980, 53246}, {52630, 57611}

X(59290) = crossdifference of every pair of points on line {230, 684}
X(59290) = {X(3),X(52006)}-harmonic conjugate of X(52773)


X(59291) = X(3)X(523)∩X(4)X(74)

Barycentrics    2*a^16 - 5*a^14*b^2 - 2*a^12*b^4 + 15*a^10*b^6 - 10*a^8*b^8 - 7*a^6*b^10 + 10*a^4*b^12 - 3*a^2*b^14 - 5*a^14*c^2 + 22*a^12*b^2*c^2 - 22*a^10*b^4*c^2 - 21*a^8*b^6*c^2 + 49*a^6*b^8*c^2 - 26*a^4*b^10*c^2 + 2*a^2*b^12*c^2 + b^14*c^2 - 2*a^12*c^4 - 22*a^10*b^2*c^4 + 66*a^8*b^4*c^4 - 42*a^6*b^6*c^4 - 6*a^4*b^8*c^4 + 12*a^2*b^10*c^4 - 6*b^12*c^4 + 15*a^10*c^6 - 21*a^8*b^2*c^6 - 42*a^6*b^4*c^6 + 44*a^4*b^6*c^6 - 11*a^2*b^8*c^6 + 15*b^10*c^6 - 10*a^8*c^8 + 49*a^6*b^2*c^8 - 6*a^4*b^4*c^8 - 11*a^2*b^6*c^8 - 20*b^8*c^8 - 7*a^6*c^10 - 26*a^4*b^2*c^10 + 12*a^2*b^4*c^10 + 15*b^6*c^10 + 10*a^4*c^12 + 2*a^2*b^2*c^12 - 6*b^4*c^12 - 3*a^2*c^14 + b^2*c^14 : :
X(59291) = 2 X[7740] - 3 X[11845]

X(59291) lies on the cubic K1347 and these lines: {2, 32417}, {3, 523}, {4, 74}, {20, 476}, {30, 53319}, {3146, 14508}, {3548, 42424}, {4240, 6000}, {5502, 32162}, {6070, 56686}, {7422, 47207}, {7740, 11845}, {11251, 15311}, {11270, 43707}, {11598, 34334}, {12041, 14254}, {13198, 38936}, {13293, 35360}, {16934, 44240}, {18121, 23328}, {21663, 58261}, {31510, 52646}, {39375, 58723}, {52472, 55319}, {53159, 55127}

X(59291) = reflection of X(i) in X(j) for these {i,j}: {4, 18279}, {5502, 32162}
X(59291) = crossdifference of every pair of points on line {1636, 3003}
X(59291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 52010, 52772}, {107, 38937, 4}


X(59292) = X(3)X(924)∩X(4)X(110)

Barycentrics     a^2*(a^18*b^2 - 7*a^16*b^4 + 21*a^14*b^6 - 35*a^12*b^8 + 35*a^10*b^10 - 21*a^8*b^12 + 7*a^6*b^14 - a^4*b^16 + a^18*c^2 - 4*a^16*b^2*c^2 + 12*a^14*b^4*c^2 - 30*a^12*b^6*c^2 + 42*a^10*b^8*c^2 - 26*a^8*b^10*c^2 + 4*a^6*b^12*c^2 - 2*a^4*b^14*c^2 + 5*a^2*b^16*c^2 - 2*b^18*c^2 - 7*a^16*c^4 + 12*a^14*b^2*c^4 + 4*a^12*b^4*c^4 - 11*a^10*b^6*c^4 - 13*a^8*b^8*c^4 + 22*a^6*b^10*c^4 + 6*a^4*b^12*c^4 - 23*a^2*b^14*c^4 + 10*b^16*c^4 + 21*a^14*c^6 - 30*a^12*b^2*c^6 - 11*a^10*b^4*c^6 + 48*a^8*b^6*c^6 - 25*a^6*b^8*c^6 - 22*a^4*b^10*c^6 + 39*a^2*b^12*c^6 - 20*b^14*c^6 - 35*a^12*c^8 + 42*a^10*b^2*c^8 - 13*a^8*b^4*c^8 - 25*a^6*b^6*c^8 + 38*a^4*b^8*c^8 - 21*a^2*b^10*c^8 + 22*b^12*c^8 + 35*a^10*c^10 - 26*a^8*b^2*c^10 + 22*a^6*b^4*c^10 - 22*a^4*b^6*c^10 - 21*a^2*b^8*c^10 - 20*b^10*c^10 - 21*a^8*c^12 + 4*a^6*b^2*c^12 + 6*a^4*b^4*c^12 + 39*a^2*b^6*c^12 + 22*b^8*c^12 + 7*a^6*c^14 - 2*a^4*b^2*c^14 - 23*a^2*b^4*c^14 - 20*b^6*c^14 - a^4*c^16 + 5*a^2*b^2*c^16 + 10*b^4*c^16 - 2*b^2*c^18) : :

X(59292) lies on the cubic K1347 and these lines: {3, 924}, {4, 110}, {578, 14356}, {1092, 3258}, {1553, 26883}, {7689, 32710}, {12162, 14264}, {15329, 51393}, {15469, 58072}

X(59292) = crossdifference of every pair of points on line {686, 16310}
X(59292) = {X(110),X(38936)}-harmonic conjugate of X(1147)


X(59293) = X(3)X(513)∩X(4)X(11)

Barycentrics   a^2*(a^10*b - a^9*b^2 - 4*a^8*b^3 + 4*a^7*b^4 + 6*a^6*b^5 - 6*a^5*b^6 - 4*a^4*b^7 + 4*a^3*b^8 + a^2*b^9 - a*b^10 + a^10*c - 4*a^9*b*c + 5*a^8*b^2*c + 6*a^7*b^3*c - 20*a^6*b^4*c + 6*a^5*b^5*c + 20*a^4*b^6*c - 14*a^3*b^7*c - 5*a^2*b^8*c + 6*a*b^9*c - b^10*c - a^9*c^2 + 5*a^8*b*c^2 - 10*a^7*b^2*c^2 + 8*a^6*b^3*c^2 + 14*a^5*b^4*c^2 - 32*a^4*b^5*c^2 + 6*a^3*b^6*c^2 + 20*a^2*b^7*c^2 - 9*a*b^8*c^2 - b^9*c^2 - 4*a^8*c^3 + 6*a^7*b*c^3 + 8*a^6*b^2*c^3 - 24*a^5*b^3*c^3 + 16*a^4*b^4*c^3 + 22*a^3*b^5*c^3 - 24*a^2*b^6*c^3 - 4*a*b^7*c^3 + 4*b^8*c^3 + 4*a^7*c^4 - 20*a^6*b*c^4 + 14*a^5*b^2*c^4 + 16*a^4*b^3*c^4 - 36*a^3*b^4*c^4 + 8*a^2*b^5*c^4 + 10*a*b^6*c^4 + 4*b^7*c^4 + 6*a^6*c^5 + 6*a^5*b*c^5 - 32*a^4*b^2*c^5 + 22*a^3*b^3*c^5 + 8*a^2*b^4*c^5 - 4*a*b^5*c^5 - 6*b^6*c^5 - 6*a^5*c^6 + 20*a^4*b*c^6 + 6*a^3*b^2*c^6 - 24*a^2*b^3*c^6 + 10*a*b^4*c^6 - 6*b^5*c^6 - 4*a^4*c^7 - 14*a^3*b*c^7 + 20*a^2*b^2*c^7 - 4*a*b^3*c^7 + 4*b^4*c^7 + 4*a^3*c^8 - 5*a^2*b*c^8 - 9*a*b^2*c^8 + 4*b^3*c^8 + a^2*c^9 + 6*a*b*c^9 - b^2*c^9 - a*c^10 - b*c^10) : :

X(59293) lies on the cubic K1347 and these lines: {3, 513}, {4, 11}, {901, 2745}, {2818, 3357}, {6001, 23981}, {11499, 56756}, {11508, 34040}, {14260, 15626}

X(59293) = crossdifference of every pair of points on line {8609, 52307}





leftri  Harmonic means: X(59294) - X(59359)  rightri

This preamble and centers X(59294)-X(59359) were contributed by César Eliud Lozada, September 30, 2023.

The harmonic mean x of two numbers p, q is that satisfying x-1 = (p-1 + q-1)/2. Similarly, in geometry, given three collinear points O, P, Q, their harmonic mean is the point X, on its same line, and such that OX is the harmonic mean of OP and OQ (signed distances all).

If O, P, Q are given and X is their harmonic mean, then X is the point for which (O, X) and (P, Q) are in harmonic range. X is denoted here as the O-harmonic mean of (P, Q).

A very simple geometrical construction of X = O-harmonic mean of (P, Q) follows, when O, P, Q are given:

  1. Take any point E outside the line OPQ and join OE and QE.
  2. Through P, draw a parallel line to QE, cutting OE at F.
  3. Let F* be the reflection of F in P.
  4. The line EF* cuts the line OPQ in X, the O-harmonic mean of (P, Q).

Algebraically, if λ = OQ/OP, then OX = (2*λ/(1+λ))*OP.

In this section, only some few centers on lines {1,2}, {1,3} and {2,3} were considered for calculating new centers.

underbar

X(59294) = X(1)-HARMONIC MEAN OF (X(8), X(43))

Barycentrics    a*((b+c)*a^2+(b^2+3*b*c+c^2)*a-3*b*c*(b+c)) : :

X(59294) lies on these lines: {1, 2}, {6, 21868}, {9, 20691}, {12, 32865}, {40, 1757}, {56, 56009}, {76, 17151}, {210, 37598}, {238, 3913}, {256, 4866}, {341, 740}, {518, 21896}, {581, 38127}, {602, 38665}, {942, 49498}, {958, 37574}, {979, 36598}, {984, 4646}, {986, 34790}, {1046, 54286}, {1191, 8168}, {1329, 33141}, {1376, 37608}, {1468, 56010}, {1469, 3339}, {1500, 3731}, {1706, 3751}, {1716, 3717}, {1724, 48696}, {1742, 43174}, {1743, 3501}, {2176, 4050}, {2177, 5260}, {2238, 3208}, {2334, 4038}, {2347, 3730}, {3295, 15485}, {3303, 17123}, {3550, 5247}, {3555, 24174}, {3681, 4642}, {3684, 54329}, {3704, 33165}, {3711, 37614}, {3714, 49459}, {3780, 17754}, {3812, 49490}, {3868, 4695}, {3869, 21805}, {3871, 8616}, {3875, 6376}, {3901, 4674}, {3902, 25591}, {3921, 6051}, {3944, 21075}, {3959, 20693}, {3983, 37548}, {3987, 5904}, {4007, 21024}, {4126, 4918}, {4335, 5686}, {4361, 25102}, {4383, 37588}, {4385, 49474}, {4551, 24849}, {4649, 25528}, {4696, 32860}, {4770, 50346}, {4849, 5836}, {5082, 33106}, {5223, 12782}, {5234, 18235}, {5253, 9350}, {5255, 16468}, {5400, 11531}, {5690, 37699}, {5790, 37529}, {5815, 24248}, {7262, 37568}, {7991, 20683}, {8572, 12513}, {8715, 54354}, {8951, 9819}, {9331, 46196}, {9575, 19584}, {9708, 37573}, {9709, 37607}, {9710, 33111}, {10371, 33079}, {11681, 33136}, {16589, 16673}, {16602, 58609}, {16605, 51058}, {16667, 17750}, {16777, 25614}, {17054, 49675}, {17063, 34791}, {17160, 20943}, {17296, 20255}, {17299, 21025}, {17596, 57279}, {17759, 56025}, {18792, 56018}, {23579, 36646}, {23638, 50617}, {23841, 50583}, {25994, 49507}, {31929, 46883}, {32915, 52353}, {37683, 39969}, {37694, 41687}, {37698, 38112}, {48919, 48936}, {49609, 49697}

X(59294) = X(39969)-Ceva conjugate of-X(1)
X(59294) = X(27430)-reciprocal conjugate of-X(6384)
X(59294) = X(145)-zayin conjugate of-X(1)
X(59294) = pole of the line {4083, 48307} with respect to the Bevan circle
X(59294) = barycentric product X(43)*X(27430)
X(59294) = trilinear product X(2176)*X(27430)
X(59294) = trilinear quotient X(27430)/X(330)
X(59294) = X(978)-of-Aquila triangle


X(59295) = X(2)-HARMONIC MEAN OF (X(8), X(43))

Barycentrics    3*(b+c)*a^2-(b^2+3*b*c+c^2)*a-b*c*(b+c) : :

X(59295) lies on these lines: {1, 2}, {55, 17349}, {75, 4849}, {100, 37652}, {144, 17759}, {149, 6818}, {192, 210}, {193, 17792}, {346, 2238}, {350, 6555}, {391, 2276}, {518, 17490}, {740, 27538}, {756, 4704}, {984, 4734}, {1011, 19742}, {1278, 21805}, {1376, 37683}, {1469, 21454}, {1575, 5839}, {2345, 21904}, {3160, 25721}, {3210, 3681}, {3474, 20072}, {3711, 32926}, {3740, 49470}, {3752, 49450}, {3868, 37110}, {3871, 16058}, {3873, 24620}, {3896, 41839}, {3996, 4383}, {4023, 32773}, {4090, 49474}, {4096, 49452}, {4203, 5687}, {4371, 21264}, {4373, 20347}, {4402, 20335}, {4452, 30946}, {4461, 24514}, {4650, 4753}, {4661, 17495}, {4699, 21870}, {4741, 33068}, {4771, 22230}, {4772, 32771}, {4788, 32925}, {5269, 17121}, {6817, 20060}, {7322, 17319}, {9330, 27804}, {9335, 17145}, {9350, 32919}, {9709, 56018}, {9965, 37109}, {12245, 19540}, {13576, 20557}, {13588, 16704}, {16059, 54391}, {17122, 49497}, {17149, 25278}, {17260, 37553}, {17300, 26040}, {17314, 37673}, {17343, 26034}, {17346, 44419}, {17350, 32932}, {17591, 49510}, {17784, 25306}, {18743, 28581}, {20105, 43225}, {23841, 50586}, {27268, 37593}, {29349, 48918}, {32853, 56009}, {32855, 49693}, {37467, 54398}, {37604, 49685}, {37678, 42696}, {42034, 49468}, {42056, 51054}, {48628, 53663}, {49462, 58629}, {49475, 58451}

X(59295) = X(27439)-reciprocal conjugate of-X(6384)
X(59295) = pole of the line {3057, 58693} with respect to the Feuerbach circumhyperbola
X(59295) = pole of the line {514, 23744} with respect to the Steiner circumellipse
X(59295) = barycentric product X(43)*X(27439)
X(59295) = trilinear product X(2176)*X(27439)
X(59295) = trilinear quotient X(27439)/X(330)


X(59296) = X(2)-HARMONIC MEAN OF (X(10), X(43))

Barycentrics    (b+c)*a^2-(b^2+3*b*c+c^2)*a-b*c*(b+c) : :

X(59296) lies on these lines: {1, 2}, {7, 181}, {9, 32932}, {20, 9548}, {31, 17349}, {38, 17490}, {55, 17277}, {63, 37109}, {69, 26040}, {75, 210}, {100, 1011}, {165, 48878}, {171, 37652}, {190, 3715}, {192, 756}, {274, 36854}, {291, 26073}, {312, 3696}, {319, 30962}, {321, 27538}, {333, 1376}, {341, 3983}, {345, 38057}, {346, 59207}, {350, 3974}, {354, 4113}, {391, 672}, {518, 19804}, {573, 9778}, {594, 37673}, {668, 41829}, {740, 41839}, {748, 32945}, {750, 32864}, {956, 16059}, {962, 970}, {966, 2276}, {968, 17260}, {982, 24620}, {984, 3210}, {1001, 3996}, {1002, 53005}, {1211, 4429}, {1278, 32925}, {1468, 56768}, {1575, 5069}, {1621, 37502}, {1654, 2227}, {1682, 9785}, {1695, 20070}, {1738, 4104}, {1757, 3980}, {1837, 30977}, {1909, 25287}, {1962, 27268}, {2051, 9779}, {2092, 5296}, {2238, 2345}, {2239, 33163}, {2296, 5936}, {2550, 4388}, {2551, 37193}, {2886, 5233}, {2975, 4191}, {3030, 3038}, {3032, 9802}, {3136, 11681}, {3305, 3685}, {3416, 4886}, {3421, 6821}, {3434, 6818}, {3436, 6817}, {3474, 54280}, {3596, 4441}, {3678, 28612}, {3681, 4359}, {3683, 17335}, {3686, 17754}, {3697, 4385}, {3706, 18743}, {3739, 4849}, {3745, 3759}, {3775, 33174}, {3826, 18134}, {3836, 33084}, {3842, 17592}, {3846, 32865}, {3873, 24589}, {3875, 7322}, {3886, 7308}, {3925, 4023}, {3952, 28605}, {3966, 32850}, {3967, 42029}, {3971, 49474}, {3995, 9330}, {4009, 42034}, {4038, 49497}, {4042, 4413}, {4046, 17233}, {4082, 4431}, {4192, 5657}, {4199, 56313}, {4204, 17776}, {4213, 56876}, {4260, 9776}, {4279, 17127}, {4361, 32926}, {4383, 5263}, {4418, 17350}, {4443, 21936}, {4457, 49459}, {4519, 20942}, {4524, 24622}, {4551, 27339}, {4643, 33068}, {4645, 5739}, {4646, 31359}, {4661, 17140}, {4665, 4713}, {4671, 4903}, {4673, 25917}, {4687, 37593}, {4690, 24691}, {4699, 21805}, {4703, 24715}, {4704, 17038}, {4714, 5692}, {4734, 28606}, {4741, 33067}, {4751, 21870}, {4850, 4981}, {4893, 21302}, {4967, 53663}, {4974, 17716}, {5044, 19582}, {5082, 6822}, {5086, 30943}, {5220, 32939}, {5273, 37175}, {5295, 46937}, {5564, 30963}, {5603, 9567}, {5686, 56509}, {5687, 16058}, {5690, 19540}, {5741, 33108}, {5743, 32773}, {5744, 37262}, {5749, 37657}, {5790, 37365}, {5839, 24512}, {5880, 33066}, {5904, 28611}, {6172, 44446}, {6327, 37656}, {6361, 9566}, {6384, 56163}, {7155, 27438}, {7226, 17495}, {8165, 37865}, {8167, 49460}, {9350, 32918}, {9535, 9812}, {9709, 11358}, {9801, 10445}, {9809, 34458}, {11246, 17347}, {11680, 47513}, {17122, 32853}, {17123, 32941}, {17124, 32919}, {17125, 32943}, {17126, 19742}, {17149, 25280}, {17155, 31302}, {17232, 25961}, {17236, 33125}, {17238, 32781}, {17251, 25349}, {17256, 24717}, {17257, 17759}, {17278, 33124}, {17303, 21904}, {17330, 44419}, {17343, 26135}, {17740, 37329}, {17757, 47514}, {17794, 41915}, {18154, 57232}, {19314, 54312}, {19340, 52139}, {19723, 37540}, {19808, 38047}, {20293, 47828}, {20320, 58636}, {20347, 31995}, {20456, 27318}, {21020, 25123}, {21025, 25612}, {21264, 25115}, {22173, 33299}, {23407, 54327}, {23944, 42066}, {24165, 49448}, {24390, 37355}, {24552, 37680}, {24693, 33097}, {24789, 33126}, {24988, 33172}, {25299, 50491}, {25301, 31286}, {25311, 41836}, {25627, 27293}, {25959, 31037}, {25960, 33136}, {26580, 33131}, {26724, 33122}, {27064, 50314}, {27065, 32929}, {28597, 30998}, {30393, 30568}, {30829, 58451}, {30941, 32099}, {31997, 56212}, {32916, 56009}, {32942, 37679}, {33079, 50308}, {33169, 49693}, {34064, 49486}, {34612, 41002}, {35652, 49468}, {37110, 54398}, {41828, 51377}, {42051, 49447}, {42053, 49449}, {42054, 49493}, {42055, 49503}, {42056, 50086}, {43984, 58327}, {44307, 49470}, {45039, 49652}, {47775, 48012}, {58379, 58644}

X(59296) = anticomplement of X(26102)
X(59296) = anticomplementary conjugate of the anticomplement of X(39972)
X(59296) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (31, 41912), (29199, 513), (39738, 69), (39972, 8), (56212, 6327)
X(59296) = X(i)-Ceva conjugate of-X(j) for these (i, j): (31997, 4704), (56212, 2)
X(59296) = X(i)-Dao conjugate of-X(j) for these (i, j): (26102, 26102), (39026, 59135)
X(59296) = X(513)-isoconjugate of-X(59135)
X(59296) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (101, 59135), (26125, 7)
X(59296) = pole of the line {693, 3667} with respect to the excircles radical circle
X(59296) = pole of the line {3057, 49450} with respect to the Feuerbach circumhyperbola
X(59296) = pole of the line {1213, 23918} with respect to the Kiepert circumhyperbola
X(59296) = pole of the line {514, 4502} with respect to the Steiner circumellipse
X(59296) = pole of the line {86, 4423} with respect to the Steiner-Wallace hyperbola
X(59296) = pole of the line {190, 35326} with respect to the Yff parabola
X(59296) = (anticomplementary triangle)-isotomic conjugate-of-X(41912)
X(59296) = barycentric product X(8)*X(26125)
X(59296) = trilinear product X(9)*X(26125)
X(59296) = trilinear quotient X(i)/X(j) for these (i, j): (100, 59135), (26125, 57)


X(59297) = X(8)-HARMONIC MEAN OF (X(2), X(42))

Barycentrics    3*(b+c)*a^2+(b^2+b*c+c^2)*a+b*c*(b+c) : :

X(59297) lies on these lines: {1, 2}, {7, 1403}, {37, 27538}, {55, 4203}, {75, 4734}, {86, 1376}, {100, 11358}, {171, 2209}, {192, 1215}, {312, 37593}, {329, 4199}, {846, 17350}, {894, 17594}, {941, 2276}, {944, 37365}, {962, 4192}, {966, 21904}, {968, 27064}, {1100, 3769}, {1107, 24528}, {1220, 19765}, {1278, 4970}, {1468, 19278}, {1621, 16058}, {1655, 41840}, {1707, 17120}, {1740, 20146}, {1962, 4903}, {2177, 32772}, {2238, 5296}, {2269, 5281}, {2295, 53145}, {2296, 39741}, {3160, 7196}, {3161, 21838}, {3210, 32771}, {3550, 33682}, {3618, 3779}, {3666, 24349}, {3685, 37553}, {3728, 10180}, {3740, 4687}, {3750, 25496}, {3751, 38000}, {3758, 4640}, {3786, 37870}, {3790, 53663}, {3848, 31233}, {3967, 4664}, {3971, 4704}, {4026, 4417}, {4085, 33111}, {4104, 17248}, {4195, 37573}, {4213, 7102}, {4429, 17056}, {4514, 17723}, {4644, 25349}, {4645, 5712}, {4649, 32916}, {4657, 33126}, {4671, 27804}, {4682, 17394}, {4697, 17601}, {5080, 37193}, {5180, 40109}, {5218, 20359}, {5247, 56769}, {5249, 37110}, {5253, 16059}, {5260, 16345}, {5273, 54383}, {5603, 19540}, {5718, 32773}, {5815, 16850}, {6384, 25303}, {6682, 49490}, {6822, 36855}, {7229, 17759}, {9535, 10434}, {9564, 52020}, {9776, 16056}, {9778, 37400}, {13478, 46822}, {14624, 39967}, {15569, 18743}, {16705, 36854}, {17061, 17380}, {17126, 19717}, {17232, 33174}, {17236, 33064}, {17238, 33084}, {17257, 51902}, {17302, 33144}, {17321, 25568}, {17358, 33158}, {17375, 33085}, {17383, 26128}, {17490, 24325}, {17591, 49479}, {17600, 32920}, {17718, 19786}, {17778, 26034}, {19722, 37540}, {20182, 32926}, {21342, 51055}, {21785, 24512}, {21806, 31264}, {24675, 27345}, {25074, 26690}, {25294, 27811}, {25295, 58391}, {26083, 32777}, {26150, 33124}, {26738, 48646}, {27013, 50481}, {28606, 32937}, {28626, 56212}, {30571, 39703}, {30966, 32099}, {31034, 33083}, {32917, 37652}, {32918, 37684}, {33116, 38047}, {33771, 43531}, {38514, 47403}, {41829, 41849}, {42034, 49462}, {44417, 49470}, {46880, 56164}, {49486, 55095}

X(59297) = pole of the line {58, 36635} with respect to the Stammler hyperbola


X(59298) = X(8)-HARMONIC MEAN OF (X(2), X(43))

Barycentrics    3*(b+c)*a^2+(b^2-3*b*c+c^2)*a+b*c*(b+c) : :

X(59298) lies on these lines: {1, 2}, {7, 32011}, {192, 4903}, {256, 26685}, {312, 4734}, {341, 4719}, {962, 19540}, {1100, 24672}, {1215, 17490}, {1469, 5435}, {1575, 5749}, {2276, 3161}, {2296, 56163}, {2347, 17754}, {3210, 32931}, {3618, 17792}, {3666, 27538}, {3699, 17599}, {3742, 31233}, {3752, 24349}, {4090, 17591}, {4135, 4788}, {4192, 9778}, {4402, 21264}, {4429, 37662}, {4488, 24514}, {4644, 25350}, {4687, 58451}, {4706, 42029}, {4850, 32937}, {4972, 37651}, {5253, 16409}, {5296, 37673}, {5748, 20557}, {6690, 17352}, {9342, 19684}, {9350, 32772}, {9791, 18228}, {17122, 17379}, {17349, 32916}, {17350, 17596}, {17358, 33160}, {17592, 24003}, {20942, 49462}, {24620, 32771}, {25075, 26690}, {25496, 56009}, {26150, 33126}, {27162, 36854}, {27804, 46938}, {30829, 37593}, {32773, 37663}, {32918, 37652}, {37574, 56989}, {37604, 37677}, {38514, 47404}, {39741, 56166}, {41839, 46904}

X(59298) = pole of the line {86, 26103} with respect to the Steiner-Wallace hyperbola


X(59299) = X(8)-HARMONIC MEAN OF (X(10), X(43))

Barycentrics    (b+c)*a^3+(2*b^2+3*b*c+2*c^2)*a^2+(b^2-c^2)*(b-c)*a+b*c*(b+c)^2 : :

X(59299) lies on these lines: {1, 2}, {12, 4429}, {37, 25610}, {40, 27064}, {55, 17697}, {100, 4195}, {192, 3701}, {256, 56276}, {312, 4646}, {341, 3666}, {346, 2092}, {443, 26073}, {495, 33833}, {894, 26050}, {958, 19278}, {986, 32937}, {988, 9369}, {1010, 9709}, {1215, 24440}, {1220, 1376}, {1329, 32773}, {1469, 1788}, {1837, 26123}, {2276, 27523}, {2292, 25123}, {2345, 21857}, {2347, 5749}, {2551, 18235}, {3030, 9565}, {3097, 43225}, {3146, 50037}, {3210, 4385}, {3295, 13741}, {3333, 27002}, {3421, 5484}, {3436, 4201}, {3596, 3672}, {3740, 31359}, {3820, 52258}, {3832, 27058}, {3871, 5192}, {3913, 32942}, {3931, 41839}, {3983, 58655}, {4026, 9711}, {4276, 17539}, {4642, 32931}, {4657, 25107}, {4673, 30818}, {4676, 37568}, {4696, 4850}, {4737, 37592}, {4968, 17490}, {4972, 11681}, {5051, 26772}, {5128, 50127}, {5218, 8240}, {5260, 56769}, {5687, 13740}, {9535, 20070}, {9548, 26065}, {9564, 50032}, {9567, 12245}, {9654, 17678}, {9708, 19270}, {11319, 19763}, {14077, 27139}, {16062, 17757}, {17350, 56288}, {17594, 56311}, {17792, 26042}, {18231, 26059}, {18743, 37548}, {19582, 37598}, {19839, 31085}, {20060, 56782}, {20606, 33950}, {21075, 27184}, {21281, 37678}, {21868, 25629}, {21896, 44417}, {24325, 27343}, {24349, 24443}, {24627, 57279}, {24914, 33121}, {26041, 38057}, {26066, 33118}, {26446, 37482}, {28606, 52353}, {37421, 39591}, {44434, 49642}, {47793, 48063}

X(59299) = pole of the line {3667, 48131} with respect to the excircles radical circle
X(59299) = pole of the line {86, 26093} with respect to the Steiner-Wallace hyperbola


X(59300) = X(8)-HARMONIC MEAN OF (X(42), X(43))

Barycentrics    a*(2*(b+c)^2*a^3+(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^2+3*b*c+c^2)*b*c*a-b^2*c^2*(b+c)) : :

X(59300) lies on these lines: {1, 2}, {3725, 27538}, {34284, 40418}, {40153, 56181}


X(59301) = X(10)-HARMONIC MEAN OF (X(1), X(42))

Barycentrics    a*(b+c)*(2*a^2+2*(b+c)*a+b*c) : :

X(59301) lies on these lines: {1, 2}, {3, 4497}, {6, 5248}, {11, 39583}, {35, 81}, {37, 3678}, {39, 1100}, {55, 19762}, {58, 1918}, {65, 4868}, {71, 1449}, {72, 3743}, {73, 3671}, {100, 37559}, {171, 4658}, {209, 37080}, {226, 2594}, {313, 17393}, {496, 44411}, {500, 4667}, {502, 1826}, {515, 37698}, {516, 581}, {595, 3750}, {596, 49479}, {740, 42031}, {758, 3931}, {810, 4151}, {940, 25440}, {942, 22300}, {946, 5396}, {956, 2334}, {991, 12512}, {993, 19765}, {1001, 22312}, {1064, 4301}, {1066, 5542}, {1089, 46897}, {1126, 4653}, {1203, 1621}, {1214, 12432}, {1215, 2901}, {1385, 15489}, {1386, 9052}, {1468, 5267}, {1500, 3997}, {1834, 3822}, {1869, 1870}, {1962, 4134}, {2140, 3946}, {2177, 5264}, {2200, 4251}, {2292, 4067}, {2533, 48287}, {2650, 4084}, {2667, 3159}, {2975, 16474}, {3191, 21060}, {3295, 52139}, {3555, 22275}, {3579, 5453}, {3647, 4641}, {3666, 3874}, {3670, 46904}, {3697, 21870}, {3707, 4285}, {3721, 6155}, {3725, 58387}, {3746, 57280}, {3752, 58565}, {3754, 4646}, {3755, 12609}, {3775, 52782}, {3817, 37732}, {3825, 37662}, {3841, 17056}, {3876, 27785}, {3878, 22307}, {3879, 16887}, {3881, 37592}, {3896, 4647}, {3914, 11263}, {3919, 4642}, {3947, 4551}, {3968, 21896}, {3970, 21840}, {4015, 4849}, {4026, 41014}, {4042, 16343}, {4075, 4090}, {4097, 35104}, {4125, 58399}, {4256, 37607}, {4257, 37574}, {4272, 5257}, {4281, 49685}, {4300, 5493}, {4314, 14547}, {4343, 51090}, {4347, 45126}, {4663, 31445}, {4705, 48294}, {4719, 5045}, {4794, 4824}, {4850, 18398}, {4857, 33107}, {4894, 33070}, {4966, 56734}, {5044, 15569}, {5049, 22278}, {5259, 32911}, {5399, 21620}, {5496, 21077}, {5707, 6796}, {5710, 25439}, {5711, 8715}, {5718, 25639}, {5904, 28606}, {6051, 10176}, {6684, 50317}, {7234, 29350}, {9957, 22299}, {10440, 13731}, {10974, 52020}, {12514, 37553}, {15232, 37739}, {16577, 41538}, {16589, 21904}, {16604, 21858}, {16948, 55103}, {17243, 58452}, {17377, 41849}, {17718, 41506}, {19925, 37699}, {20888, 37632}, {21257, 52529}, {21746, 31757}, {22037, 53563}, {22276, 24929}, {22279, 52495}, {22316, 24325}, {22320, 48328}, {22325, 34791}, {23638, 58474}, {24160, 33135}, {25060, 35637}, {25264, 40721}, {25466, 48847}, {25542, 37680}, {25599, 30941}, {27804, 56318}, {28639, 36812}, {31673, 48903}, {32923, 43993}, {33133, 37731}, {35468, 59337}, {36745, 52769}, {37538, 39582}, {37580, 49553}, {37619, 48909}, {37646, 58404}, {37728, 51870}, {39543, 58469}, {39579, 44113}, {40600, 50189}, {41430, 48893}, {45128, 54336}, {54305, 57748}

X(59301) = cross-difference of every pair of points on the line X(649)X(4840)
X(59301) = crosspoint of X(17394) and X(37685)
X(59301) = X(643)-beth conjugate of-X(37559)
X(59301) = X(27789)-Ceva conjugate of-X(37)
X(59301) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 39708), (39026, 43356), (40586, 39983)
X(59301) = X(i)-isoconjugate of-X(j) for these {i, j}: {58, 39708}, {81, 39983}, {513, 43356}
X(59301) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (37, 39708), (42, 39983), (101, 43356), (17394, 274), (17562, 27), (37685, 86), (48064, 7192), (48107, 7199), (50449, 693), (50557, 3261)
X(59301) = pole of the line {4057, 6005} with respect to the circumcircle
X(59301) = pole of the line {3667, 51659} with respect to the incircle
X(59301) = pole of the line {7649, 21192} with respect to the polar circle
X(59301) = pole of the line {1213, 3841} with respect to the Kiepert circumhyperbola
X(59301) = pole of the line {58, 3720} with respect to the Stammler hyperbola
X(59301) = pole of the line {514, 27648} with respect to the Steiner inellipse
X(59301) = pole of the line {86, 20888} with respect to the Steiner-Wallace hyperbola
X(59301) = barycentric product X(i)*X(j) for these {i, j}: {10, 37685}, {37, 17394}, {100, 50449}, {101, 50557}, {306, 17562}, {1018, 48107}, {3952, 48064}
X(59301) = trilinear product X(i)*X(j) for these {i, j}: {37, 37685}, {42, 17394}, {72, 17562}, {101, 50449}, {692, 50557}, {1018, 48064}, {4557, 48107}
X(59301) = trilinear quotient X(i)/X(j) for these (i, j): (10, 39708), (37, 39983), (100, 43356), (17394, 86), (17562, 28), (37685, 81), (48064, 1019), (48107, 7192), (50449, 514), (50557, 693)


X(59302) = X(10)-HARMONIC MEAN OF (X(8), X(42))

Barycentrics    (b+c)*(2*a^3+(b+c)*a^2-(b^2+b*c+c^2)*a-b*c*(b+c)) : :
X(59302) = 2*X(3159)-3*X(4134) = 3*X(3175)-5*X(4005) = X(4018)-3*X(50083) = 6*X(4096)-7*X(4533)

X(59302) lies on these lines: {1, 2}, {3, 32853}, {21, 32864}, {35, 56181}, {69, 24214}, {71, 3169}, {72, 740}, {171, 56018}, {194, 17363}, {213, 2321}, {274, 3879}, {313, 17144}, {319, 33296}, {333, 37573}, {404, 32919}, {518, 22300}, {726, 5904}, {960, 22271}, {1010, 4649}, {1043, 1918}, {1046, 32932}, {1089, 4090}, {1107, 17362}, {1191, 49460}, {1203, 49482}, {1215, 5295}, {1724, 2209}, {1757, 7283}, {1770, 17770}, {1826, 36934}, {2176, 17299}, {2200, 3684}, {2238, 21071}, {2269, 4314}, {2292, 3896}, {2333, 7718}, {2887, 41014}, {2901, 3678}, {3159, 4134}, {3175, 4005}, {3294, 3950}, {3664, 32092}, {3686, 5283}, {3696, 49598}, {3701, 21805}, {3710, 3747}, {3714, 4849}, {3728, 3993}, {3759, 16478}, {3775, 13728}, {3779, 5847}, {3791, 5266}, {3813, 44411}, {3842, 58399}, {3868, 32860}, {3874, 24165}, {3876, 32915}, {3880, 22299}, {3886, 54386}, {3913, 52139}, {3914, 4101}, {3927, 32934}, {3930, 22197}, {3996, 5255}, {4018, 50083}, {4038, 56766}, {4042, 19765}, {4058, 14624}, {4096, 4533}, {4097, 12437}, {4202, 33081}, {4292, 34379}, {4352, 32099}, {4361, 17050}, {4365, 25294}, {4416, 25264}, {4641, 24850}, {4647, 4709}, {4663, 50054}, {4684, 24178}, {4720, 54331}, {4771, 16583}, {4819, 21677}, {4889, 25130}, {5015, 32861}, {5300, 23682}, {5846, 22277}, {5853, 22301}, {6007, 29958}, {6051, 49471}, {6763, 8720}, {7957, 28850}, {8896, 24268}, {12545, 29311}, {13745, 50309}, {16062, 33084}, {16394, 50283}, {16466, 32941}, {17151, 17753}, {17348, 51715}, {17377, 31997}, {17448, 21858}, {17788, 49459}, {21024, 21904}, {21255, 24790}, {21727, 47729}, {21877, 23447}, {22276, 44669}, {23537, 33064}, {23638, 50623}, {24387, 39583}, {24851, 33066}, {31730, 48917}, {32026, 50093}, {32107, 50074}, {32843, 52367}, {32935, 50044}, {32945, 57280}, {33087, 33833}, {37593, 58386}, {37603, 37683}, {37652, 54354}, {38456, 57287}, {43993, 49464}, {48325, 57099}, {51669, 55103}

X(59302) = reflection of X(2901) in X(3678)
X(59302) = anticomplement of X(35633)
X(59302) = crosssum of X(3122) and X(43060)
X(59302) = X(i)-Ceva conjugate of-X(j) for these (i, j): (39694, 37), (41506, 10)
X(59302) = X(i)-Dao conjugate of-X(j) for these (i, j): (21857, 3210), (35633, 35633), (40586, 45988)
X(59302) = X(2)-hirst inverse of-X(27272)
X(59302) = X(81)-isoconjugate of-X(45988)
X(59302) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (42, 45988), (30022, 310), (37055, 27), (37652, 86), (54354, 81)
X(59302) = inverse of X(27272) in Steiner circumellipse
X(59302) = pole of the line {514, 26854} with respect to the Steiner circumellipse
X(59302) = pole of the line {514, 25511} with respect to the Steiner inellipse
X(59302) = pole of the line {86, 24214} with respect to the Steiner-Wallace hyperbola
X(59302) = barycentric product X(i)*X(j) for these {i, j}: {10, 37652}, {42, 30022}, {306, 37055}, {321, 54354}, {979, 38407}
X(59302) = trilinear product X(i)*X(j) for these {i, j}: {10, 54354}, {37, 37652}, {72, 37055}, {213, 30022}
X(59302) = trilinear quotient X(i)/X(j) for these (i, j): (37, 45988), (30022, 274), (37055, 28), (37652, 81), (38407, 3210), (54354, 58)
X(59302) = X(59303)-of-Aquila triangle
X(59302) = X(38484)-of-inner-Garcia triangle


X(59303) = X(10)-HARMONIC MEAN OF (X(8), X(43))

Barycentrics    2*(b+c)*a^3+(b^2+c^2)*a^2-(b+c)*(b^2+b*c+c^2)*a-b*c*(b+c)^2 : :
X(59303) = 5*X(3876)-3*X(3971) = X(3962)+3*X(42051) = 5*X(4005)-3*X(42054)

X(59303) lies on these lines: {1, 2}, {4, 9549}, {20, 1695}, {56, 32853}, {58, 7058}, {63, 8720}, {69, 24215}, {72, 726}, {181, 10106}, {194, 4416}, {213, 17355}, {226, 9552}, {238, 1043}, {256, 12579}, {274, 3664}, {319, 34063}, {330, 17363}, {355, 9567}, {377, 32946}, {515, 970}, {573, 4297}, {740, 960}, {944, 9548}, {950, 1682}, {958, 37502}, {993, 19763}, {994, 4084}, {1010, 33682}, {1100, 56953}, {1104, 4974}, {1107, 2092}, {1191, 32941}, {1326, 56974}, {1469, 4298}, {1616, 49460}, {1770, 28508}, {1834, 3846}, {2051, 19925}, {2176, 2321}, {2260, 5839}, {2292, 4970}, {2308, 11115}, {2347, 16552}, {2475, 32843}, {2650, 4359}, {2784, 3033}, {2901, 10176}, {2975, 32864}, {3032, 6044}, {3596, 17144}, {3684, 54388}, {3706, 25123}, {3791, 37539}, {3868, 24165}, {3869, 32860}, {3876, 3971}, {3879, 31997}, {3923, 54386}, {3962, 42051}, {3980, 54421}, {3996, 37588}, {4005, 42054}, {4022, 49450}, {4090, 4385}, {4101, 23536}, {4134, 24068}, {4195, 16468}, {4201, 33082}, {4255, 32916}, {4260, 5847}, {4274, 4700}, {4276, 5267}, {4279, 5247}, {4292, 17770}, {4352, 17272}, {4357, 33296}, {4361, 12635}, {4365, 25253}, {4647, 21442}, {4672, 50054}, {4673, 49459}, {4696, 21805}, {4703, 50065}, {4719, 6682}, {4771, 41015}, {4856, 20963}, {4921, 5303}, {5178, 32844}, {5253, 32919}, {5278, 10448}, {5691, 9535}, {5692, 28522}, {5741, 21935}, {5745, 49599}, {5795, 9564}, {7270, 32861}, {9555, 12053}, {9557, 13912}, {9566, 18481}, {10408, 51782}, {10440, 28236}, {10571, 24849}, {10822, 17766}, {10974, 17647}, {11684, 32845}, {12513, 20470}, {12563, 17050}, {12567, 18235}, {15569, 58399}, {16466, 49482}, {16969, 17299}, {17314, 45085}, {17333, 32107}, {17362, 17448}, {17390, 25130}, {17592, 31359}, {17690, 20290}, {17753, 53594}, {22197, 57015}, {23537, 56949}, {23659, 50618}, {24178, 49676}, {24214, 53598}, {25306, 57287}, {28581, 58655}, {28850, 31793}, {29311, 43164}, {32005, 50074}, {32911, 54331}, {33080, 56782}, {36647, 50087}, {37604, 56768}, {37607, 56018}, {37608, 37683}, {43997, 56988}, {58571, 58609}

X(59303) = pole of the line {3667, 14431} with respect to the excircles radical circle
X(59303) = pole of the line {3667, 27345} with respect to the orthoptic circle of Steiner inellipse
X(59303) = pole of the line {514, 26114} with respect to the Steiner inellipse
X(59303) = pole of the line {86, 24215} with respect to the Steiner-Wallace hyperbola
X(59303) = X(59302)-of-anti-Aquila triangle


X(59304) = X(10)-HARMONIC MEAN OF (X(42), X(43))

Barycentrics    a*(b+c)*(2*(b+c)*a^3+2*(b^2+b*c+c^2)*a^2+(b+c)*b*c*a-b^2*c^2) : :

X(59304) lies on these lines: {1, 2}, {872, 4090}, {1203, 4203}, {2092, 21904}, {2258, 3923}, {3725, 3993}, {3997, 21877}, {5247, 37303}, {16606, 20970}, {20691, 28622}, {37502, 52139}


X(59305) = X(42)-HARMONIC MEAN OF (X(1), X(10))

Barycentrics    a*(b+c)*(a^2+(b+c)*a+2*b*c) : :

X(59305) lies on these lines: {1, 2}, {3, 750}, {4, 4300}, {5, 1064}, {6, 3691}, {9, 54421}, {12, 73}, {21, 171}, {31, 405}, {33, 1869}, {34, 1826}, {35, 4225}, {37, 65}, {38, 942}, {40, 968}, {41, 5275}, {46, 4414}, {55, 2654}, {56, 37674}, {58, 5251}, {72, 756}, {81, 5247}, {86, 313}, {100, 37442}, {106, 56032}, {142, 23536}, {172, 40750}, {181, 10474}, {209, 4517}, {213, 16589}, {226, 1042}, {238, 5047}, {244, 5439}, {291, 56066}, {321, 49598}, {344, 41248}, {354, 28265}, {355, 50317}, {377, 49530}, {388, 1458}, {404, 17122}, {429, 57652}, {442, 21935}, {444, 11363}, {452, 4307}, {474, 17124}, {495, 1066}, {500, 18480}, {514, 58302}, {517, 6051}, {518, 27637}, {573, 12435}, {581, 5587}, {595, 5259}, {601, 3560}, {602, 6883}, {608, 37318}, {663, 2533}, {672, 5283}, {740, 56222}, {748, 11108}, {752, 14020}, {758, 20703}, {774, 50195}, {810, 21052}, {846, 56288}, {891, 27675}, {894, 1655}, {896, 31445}, {902, 5248}, {940, 958}, {946, 51558}, {950, 2293}, {956, 9345}, {959, 3340}, {960, 22275}, {964, 2309}, {984, 3868}, {986, 28606}, {988, 3306}, {991, 5691}, {992, 1100}, {993, 37522}, {1001, 1918}, {1006, 3072}, {1010, 10458}, {1036, 5020}, {1046, 3219}, {1072, 55108}, {1104, 3745}, {1107, 1475}, {1126, 27643}, {1191, 4423}, {1214, 1254}, {1215, 3701}, {1245, 4205}, {1258, 30571}, {1279, 28256}, {1319, 28268}, {1329, 5718}, {1330, 32949}, {1376, 19765}, {1385, 19513}, {1450, 5433}, {1457, 11375}, {1459, 4036}, {1460, 37246}, {1467, 4327}, {1478, 4303}, {1479, 33104}, {1496, 41344}, {1573, 20963}, {1621, 5255}, {1706, 37553}, {1724, 2308}, {1742, 3146}, {1745, 10590}, {1818, 5794}, {1829, 2333}, {1834, 3925}, {1837, 14547}, {1858, 7069}, {1891, 54407}, {1953, 28266}, {1962, 3753}, {2099, 22276}, {2136, 4097}, {2177, 5687}, {2200, 9310}, {2239, 16850}, {2263, 8804}, {2268, 4185}, {2269, 10480}, {2274, 5793}, {2277, 8610}, {2310, 12711}, {2318, 21677}, {2334, 10013}, {2356, 5090}, {2476, 33111}, {2478, 26098}, {2550, 4343}, {2551, 5712}, {2594, 56198}, {2605, 4774}, {2635, 10895}, {2646, 27622}, {2647, 4296}, {2667, 3696}, {2887, 5051}, {2901, 4365}, {2975, 37607}, {3000, 9579}, {3057, 21321}, {3073, 6920}, {3120, 12609}, {3144, 6198}, {3194, 7076}, {3208, 3247}, {3242, 22277}, {3243, 22312}, {3294, 3997}, {3305, 54386}, {3485, 24806}, {3579, 14636}, {3585, 4337}, {3589, 25992}, {3601, 27621}, {3649, 4415}, {3664, 12527}, {3666, 3812}, {3670, 5883}, {3671, 4656}, {3697, 21805}, {3698, 4433}, {3710, 4078}, {3714, 31993}, {3722, 27628}, {3723, 21858}, {3731, 12526}, {3736, 14005}, {3743, 3754}, {3744, 50717}, {3746, 35206}, {3748, 28250}, {3750, 3871}, {3765, 19684}, {3814, 37693}, {3836, 4202}, {3878, 27784}, {3890, 22294}, {3918, 3987}, {3945, 36854}, {3952, 43222}, {3953, 58565}, {3970, 28594}, {3971, 56318}, {3983, 4849}, {3989, 5902}, {3993, 56185}, {3995, 17164}, {4002, 21806}, {4005, 31503}, {4026, 40934}, {4041, 17478}, {4067, 53114}, {4101, 4104}, {4128, 20716}, {4160, 27647}, {4189, 37603}, {4193, 17717}, {4255, 4413}, {4281, 5235}, {4297, 50702}, {4306, 5290}, {4322, 10106}, {4332, 8270}, {4336, 54295}, {4349, 20978}, {4357, 17137}, {4385, 32771}, {4418, 7283}, {4447, 4682}, {4449, 4705}, {4503, 23154}, {4641, 5302}, {4645, 26117}, {4649, 27644}, {4670, 4754}, {4674, 14752}, {4675, 10404}, {4687, 31359}, {4719, 16610}, {4731, 21896}, {4814, 48303}, {4850, 24174}, {4851, 10371}, {4879, 22320}, {4883, 34791}, {4968, 20891}, {4999, 37634}, {5015, 33072}, {5045, 17450}, {5046, 33112}, {5080, 26131}, {5145, 9902}, {5192, 25496}, {5219, 10571}, {5249, 13161}, {5250, 21371}, {5253, 37617}, {5263, 45223}, {5269, 5436}, {5276, 41239}, {5295, 21020}, {5315, 25542}, {5348, 22361}, {5396, 9956}, {5432, 22072}, {5453, 18357}, {5657, 37529}, {5665, 40779}, {5716, 24669}, {5717, 40958}, {5724, 41877}, {5736, 27410}, {5749, 27523}, {5750, 26035}, {5774, 16844}, {5790, 37698}, {5795, 21246}, {5814, 32852}, {5818, 37699}, {5835, 17243}, {5836, 15569}, {5880, 50065}, {5903, 27785}, {5919, 22278}, {6147, 32856}, {6376, 37632}, {6767, 27639}, {6986, 37570}, {7174, 11518}, {7234, 24666}, {7270, 24678}, {7273, 59215}, {7322, 11523}, {7354, 22053}, {7449, 57281}, {7686, 37528}, {7951, 39583}, {8143, 13145}, {8240, 20359}, {8258, 56520}, {9708, 19282}, {9791, 25421}, {10175, 37732}, {10246, 19549}, {10436, 34284}, {10457, 19259}, {10478, 50037}, {10588, 37694}, {10822, 40952}, {11110, 32917}, {11114, 50301}, {11358, 19757}, {11521, 21363}, {11529, 27659}, {11684, 33761}, {12081, 40663}, {12514, 54287}, {12572, 41011}, {13725, 26034}, {13728, 32781}, {13740, 32772}, {13741, 32944}, {13750, 44706}, {14077, 21727}, {14450, 33099}, {14549, 41506}, {14621, 16916}, {15950, 51870}, {16060, 24602}, {16062, 25957}, {16342, 32916}, {16454, 49492}, {16484, 37588}, {16549, 25092}, {16583, 21840}, {16604, 28245}, {16842, 17125}, {16859, 17127}, {16865, 17126}, {16975, 17474}, {17054, 17599}, {17123, 17536}, {17141, 49521}, {17169, 24215}, {17187, 25526}, {17321, 21281}, {17379, 23579}, {17392, 34606}, {17394, 24524}, {17445, 27633}, {17449, 18398}, {17460, 22313}, {17469, 28242}, {17544, 30653}, {17592, 24440}, {17720, 28628}, {17760, 25263}, {18641, 22057}, {18673, 43214}, {18743, 25591}, {19270, 32918}, {19678, 51710}, {20271, 41269}, {20277, 21686}, {20292, 24851}, {20323, 28271}, {20335, 26100}, {20617, 52373}, {20962, 50594}, {20989, 54371}, {21011, 57277}, {21035, 27638}, {21080, 24349}, {21098, 52368}, {21219, 27663}, {21240, 25499}, {21422, 24993}, {21699, 27623}, {21888, 28282}, {21904, 25614}, {22271, 49478}, {22279, 28288}, {22308, 53552}, {22316, 49470}, {22325, 58679}, {22343, 33682}, {23493, 40718}, {23682, 52245}, {24159, 33143}, {24160, 26725}, {24161, 33133}, {24170, 25599}, {24220, 44039}, {24473, 42039}, {24514, 27269}, {24656, 28639}, {24725, 58798}, {24928, 27657}, {24929, 28258}, {24953, 37646}, {24984, 25970}, {24995, 37664}, {25253, 31035}, {25431, 27664}, {25760, 52258}, {25961, 33833}, {26064, 33082}, {26109, 36926}, {26580, 56949}, {27655, 59337}, {27673, 29350}, {28255, 48330}, {28267, 37080}, {28273, 37594}, {28279, 50293}, {28598, 49528}, {29967, 54356}, {30024, 47729}, {30574, 53556}, {30963, 56250}, {30969, 52256}, {31134, 54367}, {31394, 31785}, {31419, 33136}, {31673, 48897}, {31730, 52524}, {32864, 56018}, {32912, 41229}, {32931, 46937}, {33107, 37162}, {33109, 52367}, {33145, 50067}, {33697, 48916}, {34612, 48846}, {35991, 38814}, {37314, 50295}, {37398, 40983}, {37574, 56010}, {37619, 48894}, {37701, 45095}, {42031, 46895}, {46196, 52708}, {46897, 52353}, {48131, 57162}, {49732, 49739}, {49745, 57288}, {50171, 50299}

X(59305) = isogonal conjugate of X(5331)
X(59305) = cross-difference of every pair of points on the line X(649)X(3737)
X(59305) = crosspoint of X(i) and X(j) for these {i, j}: {1, 43531}, {940, 10436}, {958, 54396}
X(59305) = crosssum of X(i) and X(j) for these {i, j}: {1, 386}, {284, 44119}, {941, 2258}
X(59305) = X(i)-beth conjugate of-X(j) for these (i, j): (21, 50604), (643, 37573), (3714, 3714)
X(59305) = X(i)-Ceva conjugate of-X(j) for these (i, j): (10436, 31993), (25430, 37), (37218, 649), (54396, 1867), (58021, 321)
X(59305) = X(56214)-complementary conjugate of-X(21245)
X(59305) = X(1)-daleth conjugate of-X(50756)
X(59305) = X(i)-Dao conjugate of-X(j) for these (i, j): (9, 37870), (10, 31359), (37, 34258), (958, 1010), (1214, 58008), (5257, 19804), (5283, 10471), (17417, 4560), (31993, 5224), (34261, 333), (34281, 4225), (39026, 931), (40586, 941), (40590, 44733), (40591, 34259), (40600, 2258), (40611, 959)
X(59305) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 37870}, {21, 959}, {28, 34259}, {58, 31359}, {81, 941}, {86, 2258}, {284, 44733}, {513, 931}, {1333, 34258}, {2194, 58008}, {2303, 34260}, {4560, 32693}, {7252, 32038}, {50040, 54417}
X(59305) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 37870), (10, 34258), (37, 31359), (42, 941), (65, 44733), (71, 34259), (101, 931), (213, 2258), (226, 58008), (313, 40828), (940, 86), (958, 333), (1245, 34260), (1400, 959), (1468, 81), (1867, 92), (2268, 21), (3713, 1043), (3714, 312), (4185, 27), (4551, 32038), (5019, 58), (5307, 286), (8639, 649), (8672, 514), (10436, 274), (10472, 10471), (11679, 314), (17418, 4560), (23880, 18155), (31993, 75), (34261, 1010), (34284, 310), (43067, 7199), (44734, 57779), (48144, 7192), (50457, 693), (53543, 17205), (54396, 31623), (54417, 2185), (58332, 1021)
X(59305) = perspector of the circumconic through X(190) and X(4551)
X(59305) = pole of the line {4057, 46385} with respect to the circumcircle
X(59305) = pole of the line {656, 14288} with respect to the nine-point circle
X(59305) = pole of the line {7649, 57215} with respect to the polar circle
X(59305) = pole of the line {4192, 10157} with respect to the Stevanovic circle
X(59305) = pole of the line {2, 10468} with respect to the circumhyperbola dual of Yff parabola
X(59305) = pole of the line {3057, 14547} with respect to the Feuerbach circumhyperbola
X(59305) = pole of the line {12, 1213} with respect to the Kiepert circumhyperbola
X(59305) = pole of the line {58, 2185} with respect to the Stammler hyperbola
X(59305) = pole of the line {514, 29807} with respect to the Steiner circumellipse
X(59305) = pole of the line {86, 1193} with respect to the Steiner-Wallace hyperbola
X(59305) = pole of the line {190, 7257} with respect to the Yff parabola
X(59305) = barycentric product X(i)*X(j) for these {i, j}: {1, 31993}, {10, 940}, {37, 10436}, {42, 34284}, {57, 3714}, {63, 1867}, {65, 11679}, {72, 5307}, {100, 50457}, {190, 8672}, {201, 44734}, {226, 958}, {306, 4185}, {313, 5019}, {321, 1468}, {1018, 43067}, {1214, 54396}, {1441, 2268}, {1978, 8639}, {3668, 3713}
X(59305) = trilinear product X(i)*X(j) for these {i, j}: {3, 1867}, {6, 31993}, {10, 1468}, {12, 54417}, {37, 940}, {42, 10436}, {56, 3714}, {65, 958}, {71, 5307}, {72, 4185}, {73, 54396}, {100, 8672}, {101, 50457}, {213, 34284}, {226, 2268}, {321, 5019}, {668, 8639}, {1018, 48144}, {1400, 11679}, {1427, 3713}
X(59305) = trilinear quotient X(i)/X(j) for these (i, j): (2, 37870), (10, 31359), (37, 941), (42, 2258), (65, 959), (72, 34259), (100, 931), (226, 44733), (321, 34258), (940, 81), (958, 21), (1441, 58008), (1468, 58), (1867, 4), (2268, 284), (3713, 2287), (3714, 8), (4185, 28), (4552, 32038), (4559, 32693)


X(59306) = X(42)-HARMONIC MEAN OF (X(2), X(10))

Barycentrics    (b+c)*(a^2+2*(b+c)*a+2*b*c) : :

X(59306) lies on these lines: {1, 2}, {31, 19732}, {37, 4365}, {38, 3739}, {55, 19744}, {71, 1213}, {75, 3989}, {86, 32864}, {171, 5235}, {209, 31237}, {310, 313}, {321, 3842}, {354, 22271}, {427, 2333}, {649, 25637}, {672, 17303}, {748, 1918}, {750, 5737}, {756, 3967}, {1468, 16458}, {1573, 23632}, {1654, 32949}, {1826, 4196}, {1860, 17911}, {1869, 4207}, {1962, 3696}, {2183, 25621}, {2229, 25614}, {2238, 21026}, {2239, 3823}, {2308, 5278}, {2533, 4893}, {2887, 41809}, {3219, 24342}, {3698, 22299}, {3706, 4698}, {3740, 22275}, {3763, 22277}, {3775, 18139}, {3826, 32781}, {3844, 37676}, {3873, 40328}, {3896, 4732}, {3914, 5257}, {3969, 50312}, {3971, 31025}, {3993, 17163}, {3995, 27812}, {4036, 47828}, {4042, 15668}, {4078, 6535}, {4097, 24392}, {4184, 5251}, {4191, 4413}, {4192, 9956}, {4359, 46901}, {4364, 33145}, {4379, 4705}, {4472, 24690}, {4524, 31277}, {4645, 26044}, {4649, 5333}, {4656, 48642}, {4667, 50278}, {4670, 4722}, {4683, 17256}, {4687, 22316}, {4690, 49749}, {4699, 17155}, {4708, 24330}, {4709, 27804}, {4751, 17449}, {4824, 45323}, {4885, 21727}, {4972, 50298}, {4980, 49456}, {4981, 24325}, {5123, 40109}, {5224, 25957}, {5247, 14005}, {5260, 13588}, {5361, 37604}, {5587, 37400}, {5743, 33105}, {6682, 24589}, {6817, 26040}, {7234, 31207}, {8040, 50290}, {9148, 17990}, {9709, 16345}, {10436, 32912}, {16606, 56158}, {16748, 17210}, {17072, 58302}, {17124, 37660}, {17149, 56249}, {17157, 43224}, {17187, 27164}, {17248, 32776}, {17257, 33098}, {17260, 32930}, {17275, 32852}, {17277, 32772}, {17327, 21035}, {17557, 37573}, {17605, 45881}, {19742, 33682}, {19808, 33115}, {19822, 33161}, {19925, 50694}, {20195, 22312}, {20292, 24697}, {20486, 25620}, {21714, 48229}, {21949, 52706}, {22273, 31265}, {22276, 31245}, {22300, 25917}, {22325, 58451}, {23301, 58288}, {23682, 26035}, {24060, 55343}, {24693, 32950}, {24924, 57077}, {25623, 33163}, {27045, 58300}, {28595, 40718}, {28653, 30966}, {30476, 58286}, {30835, 50487}, {30968, 47835}, {31250, 57232}, {31279, 50491}, {33104, 41248}, {37593, 53034}, {37685, 43997}, {41002, 49731}, {42039, 49483}, {42439, 48650}, {46897, 53039}, {47832, 57099}

X(59306) = cross-difference of every pair of points on the line X(649)X(5216)
X(59306) = crosspoint of X(15668) and X(32092)
X(59306) = X(i)-Dao conjugate of-X(j) for these (i, j): (10, 39737), (15668, 11110), (40586, 39961)
X(59306) = X(i)-isoconjugate of-X(j) for these {i, j}: {58, 39737}, {81, 39961}
X(59306) = X(25637)-line conjugate of-X(649)
X(59306) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (37, 39737), (42, 39961), (1889, 27), (4042, 333), (15668, 86), (32092, 274), (48141, 7192)
X(59306) = pole of the line {661, 44316} with respect to the nine-point circle
X(59306) = pole of the line {2, 21070} with respect to the circumhyperbola dual of Yff parabola
X(59306) = pole of the line {42, 1213} with respect to the Kiepert circumhyperbola
X(59306) = pole of the line {86, 2308} with respect to the Steiner-Wallace hyperbola
X(59306) = barycentric product X(i)*X(j) for these {i, j}: {10, 15668}, {37, 32092}, {226, 4042}, {306, 1889}, {3952, 48141}
X(59306) = trilinear product X(i)*X(j) for these {i, j}: {37, 15668}, {42, 32092}, {65, 4042}, {72, 1889}, {1018, 48141}
X(59306) = trilinear quotient X(i)/X(j) for these (i, j): (10, 39737), (37, 39961), (1889, 28), (4042, 21), (15668, 81), (32092, 86), (48141, 1019)


X(59307) = X(42)-HARMONIC MEAN OF (X(8), X(10))

Barycentrics    (b+c)*(a^3-(b+c)*a^2-2*(b^2+b*c+c^2)*a-2*b*c*(b+c)) : :

X(59307) lies on these lines: {1, 2}, {65, 21020}, {71, 594}, {210, 22299}, {313, 25280}, {333, 54331}, {377, 33080}, {756, 3714}, {896, 50054}, {964, 2308}, {1043, 32917}, {1211, 21935}, {1220, 32864}, {1837, 2269}, {1869, 7102}, {2200, 4390}, {2292, 4365}, {2475, 33082}, {2533, 48142}, {2650, 31993}, {3696, 3728}, {3710, 6535}, {4042, 5793}, {4084, 46895}, {4147, 58302}, {4696, 49457}, {4720, 37573}, {4803, 33771}, {5016, 50308}, {5178, 33076}, {5260, 56181}, {5372, 37608}, {5737, 10448}, {5836, 22275}, {18480, 48917}, {20961, 50623}, {21024, 59207}, {21031, 44411}, {24514, 56210}, {25466, 33081}, {26051, 32949}, {31359, 32915}, {49724, 57288}, {56125, 56174}

X(59307) = crosspoint of X(5737) and X(10447)
X(59307) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (5737, 86), (10447, 274), (10448, 81), (10474, 57), (57527, 27)
X(59307) = pole of the line {1213, 21935} with respect to the Kiepert circumhyperbola
X(59307) = barycentric product X(i)*X(j) for these {i, j}: {10, 5737}, {37, 10447}, {306, 57527}, {312, 10474}, {321, 10448}
X(59307) = trilinear product X(i)*X(j) for these {i, j}: {8, 10474}, {10, 10448}, {37, 5737}, {42, 10447}, {72, 57527}
X(59307) = trilinear quotient X(i)/X(j) for these (i, j): (5737, 81), (10447, 86), (10448, 58), (10474, 56), (57527, 28)


X(59308) = X(42)-HARMONIC MEAN OF (X(8), X(43))

Barycentrics    a*((b+c)^2*a^3+(b+c)*(b^2+b*c+c^2)*a^2-(b^2+c^2)*b*c*a-2*b^2*c^2*(b+c)) : :

X(59308) lies on these lines: {1, 2}, {238, 56181}, {333, 2309}, {672, 3588}, {872, 44417}, {1042, 24849}, {1045, 38000}, {1468, 11358}, {1575, 2260}, {1740, 37683}, {2209, 4383}, {2238, 2269}, {3666, 3728}, {3691, 21838}, {3706, 3725}, {3752, 4022}, {3780, 16606}, {4203, 5247}, {4352, 41829}, {16602, 58571}, {17495, 25294}, {17792, 37676}, {20891, 25123}, {22230, 41015}, {22343, 37652}

X(59308) = crosssum of X(1) and X(28248)
X(59308) = pole of the line {3057, 3728} with respect to the Feuerbach circumhyperbola


X(59309) = X(42)-HARMONIC MEAN OF (X(10), X(43))

Barycentrics    a*(b+c)*((b+c)*a^3+(b^2+b*c+c^2)*a^2-(b+c)*b*c*a-2*b^2*c^2) : :

X(59309) lies on these lines: {1, 2}, {71, 2238}, {312, 22316}, {321, 25123}, {583, 1575}, {748, 37502}, {872, 31993}, {1740, 37652}, {1918, 4383}, {2092, 21813}, {2234, 4641}, {2274, 4042}, {2309, 5278}, {3210, 21080}, {3666, 58655}, {3696, 3725}, {3752, 22271}, {5247, 13588}, {9548, 37400}, {13576, 37865}, {19742, 22343}, {21025, 25620}, {21751, 21753}, {21896, 22299}, {24749, 50487}, {25294, 42027}, {37673, 56926}

X(59309) = X(39970)-Ceva conjugate of-X(37)
X(59309) = X(21071)-Dao conjugate of-X(20923)
X(59309) = X(27623)-reciprocal conjugate of-X(86)
X(59309) = barycentric product X(10)*X(27623)
X(59309) = trilinear product X(37)*X(27623)
X(59309) = trilinear quotient X(27623)/X(81)


X(59310) = X(43)-HARMONIC MEAN OF (X(1), X(8))

Barycentrics    a*((b+c)*a^2+(b^2-3*b*c+c^2)*a+3*b*c*(b+c)) : :

X(59310) lies on these lines: {1, 2}, {35, 16499}, {37, 4051}, {38, 14923}, {56, 56010}, {87, 1222}, {171, 12513}, {238, 37542}, {256, 3680}, {388, 33109}, {756, 3890}, {846, 1697}, {956, 5255}, {958, 8616}, {962, 33099}, {979, 996}, {982, 5836}, {984, 3057}, {986, 10914}, {1043, 18169}, {1044, 45287}, {1054, 1706}, {1107, 3208}, {1220, 39969}, {1376, 8572}, {1469, 3340}, {1616, 17123}, {1709, 2943}, {1745, 37708}, {2136, 17594}, {2276, 4050}, {2292, 3885}, {2347, 3731}, {2650, 49498}, {2975, 3550}, {3242, 17792}, {3304, 17122}, {3436, 33106}, {3501, 16975}, {3666, 3893}, {3698, 17063}, {3729, 21226}, {3740, 45219}, {3749, 18235}, {3753, 3976}, {3869, 49448}, {3871, 37574}, {3880, 37598}, {3901, 53115}, {3922, 3999}, {3923, 9369}, {3962, 49503}, {4060, 5105}, {4255, 8168}, {4307, 25572}, {4334, 10106}, {4335, 5853}, {4343, 12630}, {4390, 54329}, {4415, 13463}, {4642, 17591}, {4657, 24759}, {4660, 5484}, {4723, 25591}, {4862, 20244}, {5258, 37610}, {5260, 15485}, {5264, 5288}, {5573, 11530}, {5687, 37617}, {5835, 33169}, {5844, 37529}, {6762, 32913}, {7982, 45955}, {8666, 37603}, {10107, 21342}, {10436, 25303}, {10944, 24806}, {11115, 18192}, {11531, 29311}, {12607, 17717}, {12645, 37699}, {15888, 33111}, {16980, 50617}, {17152, 17272}, {17164, 49532}, {17448, 17754}, {17480, 24165}, {20060, 33104}, {21627, 24210}, {24390, 37716}, {27499, 45782}, {34749, 50301}, {37523, 37738}, {37608, 54391}, {39972, 49680}, {43531, 56150}, {48936, 52524}

X(59310) = pole of the line {43, 3057} with respect to the Feuerbach circumhyperbola


X(59311) = X(43)-HARMONIC MEAN OF (X(1), X(10))

Barycentrics    a*((b+c)*a^2+(b^2+b*c+c^2)*a+3*b*c*(b+c)) : :

X(59311) lies on these lines: {1, 2}, {3, 56010}, {4, 33109}, {5, 50034}, {9, 2295}, {12, 24806}, {21, 3550}, {31, 5260}, {34, 39977}, {35, 28348}, {37, 3208}, {40, 846}, {46, 47521}, {51, 50617}, {55, 28383}, {56, 17122}, {57, 28386}, {65, 984}, {86, 24524}, {87, 1220}, {100, 10448}, {171, 958}, {181, 3340}, {238, 5710}, {341, 1215}, {355, 500}, {388, 4334}, {405, 5255}, {442, 37716}, {474, 37617}, {484, 28377}, {517, 1695}, {518, 28362}, {573, 1334}, {750, 2975}, {756, 3869}, {891, 28399}, {894, 41838}, {902, 16865}, {956, 19519}, {970, 7982}, {979, 43531}, {982, 3812}, {986, 3753}, {988, 1054}, {993, 37603}, {1001, 37588}, {1010, 18169}, {1042, 5261}, {1044, 1478}, {1046, 41229}, {1064, 5818}, {1104, 17716}, {1107, 17754}, {1191, 17123}, {1329, 17717}, {1420, 28385}, {1449, 3780}, {1457, 10588}, {1468, 37604}, {1482, 9549}, {1573, 17750}, {1616, 8167}, {1655, 3729}, {1682, 7962}, {1699, 50037}, {1706, 17594}, {1707, 5234}, {1724, 19735}, {1740, 5793}, {1742, 5691}, {1743, 3691}, {1745, 10827}, {1757, 28375}, {1834, 9710}, {1909, 3596}, {2051, 11522}, {2092, 3247}, {2099, 28389}, {2329, 5275}, {2478, 33106}, {2550, 4335}, {2551, 26098}, {2647, 8270}, {2650, 3681}, {2802, 27784}, {3030, 13541}, {3032, 12653}, {3057, 44307}, {3169, 35634}, {3303, 16484}, {3416, 15985}, {3436, 30076}, {3501, 5283}, {3576, 19514}, {3589, 24735}, {3612, 28349}, {3649, 33101}, {3654, 48903}, {3664, 36854}, {3666, 3698}, {3704, 33092}, {3737, 4774}, {3746, 19763}, {3749, 5436}, {3750, 3913}, {3751, 28369}, {3813, 24217}, {3819, 50626}, {3842, 31359}, {3868, 49448}, {3915, 4279}, {3917, 50630}, {3923, 56080}, {3932, 5835}, {3976, 5439}, {4063, 28373}, {4160, 28372}, {4255, 56009}, {4260, 11518}, {4276, 7419}, {4285, 17275}, {4295, 33099}, {4301, 9535}, {4306, 51782}, {4357, 21281}, {4385, 49598}, {4423, 37542}, {4433, 37553}, {4474, 21173}, {4642, 28606}, {4646, 17592}, {4649, 28365}, {4653, 8715}, {4660, 26117}, {4696, 32771}, {4859, 26978}, {4968, 20892}, {5016, 33072}, {5018, 49653}, {5046, 33104}, {5109, 17303}, {5119, 13724}, {5145, 36646}, {5247, 5711}, {5251, 5264}, {5252, 37523}, {5253, 17124}, {5258, 37522}, {5259, 37610}, {5276, 54329}, {5295, 31327}, {5300, 30056}, {5302, 7262}, {5563, 16499}, {5687, 37573}, {5690, 37529}, {5718, 21031}, {5727, 9555}, {5790, 37699}, {5795, 20258}, {5903, 22014}, {5943, 50621}, {6051, 10914}, {6210, 31785}, {7174, 28363}, {7275, 27455}, {8274, 28388}, {9310, 37675}, {9433, 29738}, {9552, 37709}, {9564, 15829}, {9567, 10222}, {9578, 37558}, {9711, 37662}, {9819, 44843}, {9902, 24342}, {10371, 32846}, {10440, 11224}, {10445, 12652}, {10455, 28660}, {10822, 11529}, {11681, 33105}, {12513, 37674}, {12527, 20348}, {12607, 17056}, {13161, 17889}, {13253, 34458}, {14005, 18792}, {15668, 24656}, {16468, 57280}, {16483, 16842}, {16777, 21857}, {17054, 17598}, {17116, 20081}, {17137, 17272}, {17164, 32925}, {17187, 17589}, {17299, 56953}, {17355, 27523}, {17451, 20707}, {17591, 24443}, {17676, 32948}, {17697, 49482}, {17715, 51715}, {17719, 28628}, {17787, 50314}, {18170, 24662}, {18421, 28387}, {19684, 25298}, {20436, 24993}, {20606, 40131}, {21921, 26242}, {21935, 33108}, {21951, 41269}, {23493, 27430}, {24174, 37592}, {24325, 30090}, {24708, 57288}, {24715, 50065}, {25123, 44720}, {25280, 37632}, {25590, 34284}, {25614, 37673}, {26131, 56880}, {28364, 31393}, {28398, 29350}, {28629, 33144}, {29066, 30061}, {30055, 36974}, {30503, 50425}, {31165, 56237}, {31178, 50078}, {31419, 37715}, {31778, 48928}, {32913, 57279}, {32931, 52353}, {32937, 43222}, {34606, 49745}, {34860, 42053}, {37663, 50038}, {44841, 53005}, {46196, 54981}, {48012, 48282}, {48812, 50156}, {48897, 50415}, {49478, 58655}, {49725, 49734}

X(59311) = X(i)-beth conjugate of-X(j) for these (i, j): (8, 9534), (643, 37574)
X(59311) = pole of the line {3667, 4041} with respect to the excircles radical circle
X(59311) = pole of the line {1213, 9711} with respect to the Kiepert circumhyperbola
X(59311) = pole of the line {86, 21214} with respect to the Steiner-Wallace hyperbola
X(59311) = X(9534)-of-outer-Garcia triangle


X(59312) = X(43)-HARMONIC MEAN OF (X(2), X(10))

Barycentrics    (b+c)*a^2+(2*b^2+3*b*c+2*c^2)*a+2*b*c*(b+c) : :

X(59312) lies on these lines: {1, 2}, {5, 9548}, {9, 56902}, {31, 5235}, {55, 16345}, {63, 24342}, {75, 17038}, {81, 43997}, {86, 32853}, {171, 5737}, {181, 5219}, {238, 19732}, {274, 17149}, {310, 17210}, {312, 3842}, {333, 50302}, {354, 40328}, {484, 30981}, {573, 1699}, {583, 17303}, {594, 33092}, {748, 4279}, {846, 45048}, {946, 1695}, {958, 11358}, {966, 26098}, {970, 8227}, {982, 3739}, {984, 31993}, {993, 13588}, {994, 3899}, {1001, 19744}, {1011, 5251}, {1150, 37604}, {1211, 33111}, {1213, 2886}, {1268, 6384}, {1420, 9552}, {1468, 14005}, {1654, 32946}, {1682, 50443}, {1697, 31496}, {1740, 18169}, {1757, 30969}, {1836, 24697}, {1962, 49469}, {2049, 5247}, {2051, 7988}, {2108, 33115}, {2345, 33164}, {2887, 5224}, {3223, 36873}, {3550, 32917}, {3601, 9555}, {3696, 17592}, {3742, 31238}, {3746, 16355}, {3775, 18134}, {3789, 25525}, {3817, 9535}, {3826, 33174}, {3835, 25637}, {3925, 24310}, {3931, 31327}, {3980, 38000}, {3989, 28605}, {4011, 17260}, {4026, 32865}, {4038, 15668}, {4042, 4649}, {4063, 30968}, {4191, 39578}, {4192, 5587}, {4203, 5260}, {4212, 5307}, {4260, 41867}, {4334, 27339}, {4357, 17889}, {4359, 17591}, {4361, 17600}, {4364, 33154}, {4379, 48012}, {4388, 26044}, {4413, 16059}, {4423, 37502}, {4425, 17248}, {4429, 25999}, {4438, 19808}, {4472, 24691}, {4643, 33097}, {4657, 33132}, {4699, 17157}, {4703, 17256}, {4708, 4713}, {4716, 20182}, {4981, 32771}, {5223, 22020}, {5234, 52245}, {5250, 37373}, {5257, 24210}, {5259, 19763}, {5263, 8616}, {5278, 16468}, {5283, 21877}, {5691, 37400}, {5743, 17717}, {5886, 9549}, {6536, 33134}, {6682, 19804}, {6821, 26040}, {7226, 49532}, {7989, 50037}, {9564, 30827}, {9566, 9955}, {9567, 11230}, {9956, 19540}, {10180, 49470}, {10436, 30966}, {10886, 21363}, {12514, 14009}, {15017, 34458}, {15485, 24552}, {16342, 37574}, {16343, 37573}, {16352, 37576}, {16454, 37608}, {16458, 37607}, {16474, 19726}, {16477, 19723}, {16690, 17123}, {16738, 25528}, {16878, 31231}, {17056, 33084}, {17122, 37660}, {17147, 27812}, {17148, 41836}, {17166, 47779}, {17257, 33099}, {17270, 37632}, {17275, 32861}, {17277, 25496}, {17307, 30982}, {17327, 21264}, {17364, 23812}, {18197, 23301}, {19684, 32864}, {19822, 33167}, {21020, 28606}, {21027, 33131}, {24061, 55343}, {24220, 35621}, {24325, 25123}, {24693, 33068}, {25074, 44798}, {25619, 40418}, {25760, 41809}, {26061, 56507}, {26446, 37365}, {28653, 33121}, {30959, 51780}, {30984, 41812}, {31025, 32925}, {31279, 50524}, {32773, 50298}, {32781, 56508}, {32916, 56010}, {32938, 51297}, {33073, 50308}, {33109, 50295}, {33682, 37652}, {35203, 41869}, {36670, 39573}, {37593, 49459}, {37714, 44039}, {38052, 56509}, {42029, 49456}, {44419, 49725}, {51294, 56082}, {58379, 58572}

X(59312) = pole of the line {3667, 47975} with respect to the excircles radical circle
X(59312) = pole of the line {2, 21071} with respect to the circumhyperbola dual of Yff parabola
X(59312) = pole of the line {3057, 49678} with respect to the Feuerbach circumhyperbola
X(59312) = pole of the line {43, 1213} with respect to the Kiepert circumhyperbola


X(59313) = X(43)-HARMONIC MEAN OF (X(8), X(10))

Barycentrics    (b+c)*a^3-(b^2+3*b*c+c^2)*a^2-(b+c)*(2*b^2-b*c+2*c^2)*a-2*b*c*(b+c)^2 : :

X(59313) lies on these lines: {1, 2}, {165, 44039}, {171, 5793}, {388, 33085}, {594, 8256}, {1469, 9578}, {1695, 11362}, {1837, 33076}, {2051, 11531}, {2092, 4007}, {3208, 21024}, {3436, 33082}, {3550, 54331}, {3596, 17270}, {3714, 37598}, {4390, 54388}, {4642, 49474}, {4696, 49448}, {5086, 33074}, {5247, 5774}, {5690, 9548}, {5727, 8240}, {5790, 31778}, {5794, 33079}, {7991, 50037}, {10408, 18421}, {10469, 16667}, {12607, 33084}, {15888, 33087}, {19763, 48696}, {20060, 33080}, {21677, 33165}, {37536, 38176}, {37574, 49492}, {44720, 49457}, {48812, 54290}


X(59314) = X(43)-HARMONIC MEAN OF (X(8), X(42))

Barycentrics    a*((b+c)^2*a^3+(b^2-c^2)*(b-c)*a^2+(2*b^2+3*b*c+2*c^2)*b*c*a+b^2*c^2*(b+c)) : :

X(59314) lies on these lines: {1, 2}, {256, 13097}, {1107, 53145}, {2209, 8616}, {2276, 3169}, {2295, 24528}, {2594, 24849}, {3208, 21838}, {3510, 40875}, {3728, 53676}, {16058, 37588}, {17716, 18194}, {17754, 22199}, {18169, 56181}, {22173, 26242}, {23638, 50616}, {24214, 39741}, {24524, 40418}, {33106, 36855}


X(59315) = X(43)-HARMONIC MEAN OF (X(10), X(42))

Barycentrics    a*(b+c)*((b+c)*a^3+(b^2+b*c+c^2)*a^2+2*(b+c)*b*c*a+b^2*c^2) : :

X(59315) lies on these lines: {1, 2}, {37, 22171}, {55, 19731}, {100, 10458}, {171, 3286}, {181, 1284}, {859, 37573}, {984, 22275}, {1011, 5264}, {1621, 4279}, {1918, 8616}, {1962, 22220}, {2295, 21838}, {3294, 7109}, {3510, 17790}, {3596, 37632}, {3725, 3842}, {3750, 45223}, {4216, 37574}, {4424, 18202}, {4481, 57077}, {4649, 40153}, {5069, 17754}, {5247, 19259}, {5266, 19263}, {5710, 16058}, {9548, 37529}, {13576, 56214}, {16374, 37607}, {17592, 22278}, {17717, 44411}, {21840, 22173}, {22199, 24512}, {22294, 28606}, {22300, 37598}, {22313, 37593}, {31008, 40418}, {37678, 56249}

X(59315) = X(56066)-Ceva conjugate of-X(37)


X(59316) = X(1)-HARMONIC MEAN OF (X(35), X(40))

Barycentrics    a*(3*a^3+(b+c)*a^2-(3*b^2+4*b*c+3*c^2)*a-(b^2-c^2)*(b-c)) : :

X(59316) lies on these lines: {1, 3}, {9, 36599}, {10, 4302}, {20, 10039}, {21, 54286}, {30, 10827}, {63, 8715}, {72, 4421}, {80, 10993}, {100, 3876}, {140, 12701}, {169, 41423}, {172, 31433}, {191, 200}, {226, 4338}, {355, 15338}, {376, 45287}, {498, 516}, {499, 10164}, {519, 4652}, {549, 11376}, {550, 5252}, {631, 30384}, {846, 2960}, {920, 7676}, {946, 6880}, {1000, 21735}, {1079, 1253}, {1145, 4668}, {1158, 11491}, {1210, 4309}, {1387, 15712}, {1478, 4333}, {1479, 6684}, {1571, 1914}, {1698, 2478}, {1699, 6834}, {1706, 5251}, {1707, 3293}, {1709, 11500}, {1727, 26921}, {1728, 9844}, {1737, 4294}, {1743, 4271}, {1770, 3085}, {1898, 58630}, {2082, 24047}, {2136, 5288}, {2160, 16673}, {2275, 31422}, {2355, 4186}, {3062, 7161}, {3065, 4866}, {3158, 5904}, {3301, 9616}, {3467, 38271}, {3474, 13407}, {3476, 3528}, {3522, 21578}, {3523, 18220}, {3582, 51785}, {3584, 9612}, {3585, 6925}, {3586, 4330}, {3624, 6921}, {3654, 10950}, {3679, 31424}, {3683, 9709}, {3689, 3927}, {3698, 16418}, {3731, 16548}, {3735, 39255}, {3811, 56288}, {3826, 4187}, {3872, 5267}, {3878, 4855}, {3884, 35262}, {3885, 5303}, {3890, 13587}, {3895, 8666}, {3901, 20612}, {3913, 3916}, {3970, 36643}, {4268, 16667}, {4292, 10056}, {4295, 5281}, {4297, 12647}, {4299, 12512}, {4304, 10573}, {4312, 41857}, {4316, 9613}, {4324, 5691}, {4325, 31436}, {4428, 5439}, {4640, 4662}, {4642, 37817}, {4677, 34701}, {4679, 47742}, {4853, 5541}, {4857, 21153}, {4861, 17548}, {4880, 41863}, {4995, 11374}, {5218, 6361}, {5234, 18253}, {5250, 25440}, {5268, 35996}, {5270, 51784}, {5280, 31426}, {5299, 9574}, {5432, 12699}, {5441, 5727}, {5443, 31162}, {5444, 9624}, {5445, 9581}, {5493, 13411}, {5587, 37290}, {5657, 10572}, {5690, 37711}, {5696, 40659}, {5791, 34612}, {5836, 16370}, {5886, 52793}, {6127, 8915}, {6284, 10826}, {6763, 6765}, {6929, 7989}, {6959, 7988}, {6962, 9589}, {6967, 9614}, {6988, 39599}, {7031, 9593}, {7074, 56535}, {7162, 11501}, {7701, 18528}, {7741, 9580}, {7951, 37406}, {9578, 10483}, {9579, 15228}, {9660, 13973}, {9668, 17606}, {9670, 31447}, {9956, 12953}, {10051, 54342}, {10057, 24466}, {10060, 40660}, {10072, 12575}, {10087, 46684}, {10591, 30332}, {10592, 28178}, {10895, 28146}, {10896, 11231}, {10916, 20075}, {11113, 19875}, {11362, 21165}, {11375, 28174}, {11471, 54368}, {11495, 15298}, {12616, 37000}, {12705, 44425}, {12749, 38761}, {12758, 34474}, {12767, 41689}, {13747, 34595}, {14923, 17549}, {15171, 24914}, {15172, 17728}, {16371, 58679}, {16502, 31443}, {17605, 48661}, {17857, 32141}, {18242, 52860}, {18360, 56848}, {18446, 40256}, {18481, 37708}, {18482, 24644}, {18541, 31480}, {18782, 30315}, {19037, 31439}, {20076, 49626}, {21077, 44447}, {22277, 37516}, {27299, 35292}, {31231, 31425}, {31451, 54382}, {32159, 41704}, {33771, 54421}, {36975, 37709}, {37508, 54359}, {37707, 50811}, {37721, 40663}, {42043, 50585}, {48696, 57279}, {54285, 54420}

X(59316) = crosssum of X(2310) and X(13401)
X(59316) = X(7162)-Ceva conjugate of-X(1)
X(59316) = X(37119)-of-excentral triangle, when ABC is acute
X(59316) = X(6639)-of-6th mixtilinear triangle, when ABC is acute
X(59316) = X(3612)-of-Aquila triangle
X(59316) = X(3295)-zayin conjugate of-X(1)


X(59317) = X(3)-HARMONIC MEAN OF (X(36), X(46))

Barycentrics    a^2*(a^5-(b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^2-c^2)*(b-c)*a^2+(b^2+c^2)^2*a-(b^2-c^2)*(b-c)^3) : :

X(59317) lies on these lines: {1, 3}, {8, 35979}, {10, 37229}, {21, 4295}, {30, 22760}, {47, 221}, {90, 12688}, {104, 6934}, {108, 37414}, {158, 37258}, {219, 2178}, {255, 1042}, {278, 37117}, {377, 2975}, {388, 6889}, {405, 12047}, {407, 26377}, {411, 18391}, {442, 958}, {474, 26066}, {499, 6831}, {579, 1630}, {580, 10571}, {581, 55101}, {582, 34586}, {602, 1457}, {607, 3002}, {758, 1259}, {851, 33137}, {859, 1780}, {920, 6001}, {921, 52384}, {956, 5794}, {960, 37249}, {993, 4292}, {997, 37282}, {1004, 4311}, {1006, 3485}, {1012, 1770}, {1064, 1451}, {1406, 52407}, {1464, 3157}, {1468, 4303}, {1473, 15654}, {1479, 57278}, {1610, 37264}, {1708, 6261}, {1709, 37252}, {1714, 54300}, {1723, 2182}, {1725, 1854}, {1728, 12664}, {1737, 3149}, {1745, 5247}, {1752, 43065}, {1756, 24320}, {1772, 51236}, {1777, 52680}, {1779, 10076}, {1788, 6905}, {1794, 26935}, {1804, 3668}, {1836, 3560}, {1837, 6985}, {1838, 4185}, {1845, 11398}, {2217, 23604}, {2256, 21773}, {2278, 54358}, {2594, 44414}, {3085, 57283}, {3086, 6836}, {3173, 7352}, {3286, 37227}, {3474, 6906}, {3486, 3651}, {3600, 37112}, {3811, 51378}, {3869, 37300}, {3911, 12616}, {3913, 39783}, {3927, 44782}, {4190, 33110}, {4259, 22769}, {4299, 12114}, {4302, 44238}, {4304, 12511}, {4305, 7411}, {4337, 36746}, {4413, 5445}, {4423, 5443}, {4511, 37301}, {4848, 6796}, {5229, 6984}, {5251, 9612}, {5253, 6910}, {5258, 9613}, {5260, 10590}, {5265, 6890}, {5433, 6862}, {5690, 11501}, {5841, 18961}, {6737, 25440}, {6833, 7288}, {6883, 11375}, {6911, 24914}, {6917, 7354}, {7082, 31937}, {7085, 34868}, {7098, 52270}, {7483, 25524}, {7580, 10572}, {8573, 54420}, {9708, 10827}, {10069, 22514}, {10072, 37428}, {10074, 10609}, {10081, 22586}, {10085, 12671}, {10089, 22504}, {10090, 22775}, {10091, 22583}, {10573, 11500}, {10629, 54366}, {10826, 19541}, {11108, 37692}, {11112, 11194}, {11344, 54318}, {11350, 54369}, {11399, 37194}, {11499, 40663}, {11517, 12635}, {11827, 57285}, {12514, 37248}, {12943, 18761}, {13117, 19162}, {13312, 19159}, {13737, 15498}, {13738, 16471}, {14257, 37305}, {14988, 52272}, {15071, 54432}, {15325, 37356}, {15446, 15909}, {16049, 54313}, {17528, 34740}, {18990, 22759}, {21616, 25875}, {23059, 38850}, {25917, 50204}, {27802, 37225}, {28386, 50426}, {28629, 37306}, {33138, 47522}, {33597, 41539}, {34625, 49719}, {35976, 54391}, {36003, 36845}, {36743, 40937}, {36745, 54427}, {37298, 40726}, {37700, 41538}, {38235, 44590}

X(59317) = X(21)-beth conjugate of-X(7742)
X(59317) = X(1)-gimel conjugate of-X(3)
X(59317) = pole of the line {1, 18451} with respect to the Feuerbach circumhyperbola
X(59317) = pole of the line {10523, 50036} with respect to the Kiepert circumhyperbola
X(59317) = pole of the line {21, 4305} with respect to the Stammler hyperbola
X(59317) = X(37579)-of-2nd circumperp tangential triangle


X(59318) = X(3)-HARMONIC MEAN OF (X(40), X(46))

Barycentrics    a*(a^6-(3*b^2+2*b*c+3*c^2)*a^4+2*(b+c)*b*c*a^3+(3*b^4-2*b^2*c^2+3*c^4)*a^2-2*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59318) lies on these lines: {1, 3}, {4, 1748}, {5, 12514}, {8, 6934}, {9, 9956}, {10, 6917}, {12, 37826}, {19, 5755}, {30, 1158}, {47, 57277}, {63, 355}, {72, 11499}, {84, 28160}, {119, 58798}, {140, 28628}, {191, 5587}, {226, 15865}, {227, 3157}, {377, 5657}, {382, 1709}, {442, 5812}, {515, 24467}, {516, 10525}, {546, 54370}, {602, 24443}, {758, 6796}, {912, 11500}, {920, 1837}, {921, 8800}, {944, 3218}, {946, 6862}, {960, 6911}, {962, 6833}, {970, 2818}, {997, 6924}, {1046, 37699}, {1376, 31837}, {1389, 3897}, {1490, 2771}, {1512, 37821}, {1708, 31789}, {1737, 6928}, {1750, 31828}, {1766, 2245}, {1768, 38753}, {1770, 6923}, {1788, 6827}, {1836, 6842}, {1872, 37194}, {2182, 54420}, {3149, 5887}, {3219, 5818}, {3474, 6850}, {3485, 6954}, {3560, 4640}, {3654, 11112}, {3656, 37298}, {3753, 37228}, {3811, 32141}, {3812, 6883}, {3824, 49183}, {3868, 11491}, {3869, 6905}, {3890, 45977}, {3911, 26492}, {3916, 22758}, {3928, 28204}, {4018, 33597}, {4047, 5778}, {4295, 6825}, {4511, 6942}, {4646, 44414}, {4848, 35250}, {5057, 6941}, {5218, 5761}, {5248, 31870}, {5250, 5886}, {5396, 54421}, {5398, 54418}, {5534, 54422}, {5603, 6910}, {5687, 51378}, {5690, 5794}, {5693, 44425}, {5694, 5720}, {5698, 6893}, {5727, 54432}, {5731, 26877}, {5758, 6889}, {5762, 5880}, {5771, 31419}, {5777, 18491}, {5790, 41229}, {5840, 12515}, {5881, 6763}, {5905, 10786}, {6001, 6985}, {6197, 14018}, {6261, 14988}, {6265, 11682}, {6361, 6836}, {6684, 12609}, {6734, 37820}, {6831, 12699}, {6834, 11415}, {6843, 18231}, {6851, 14647}, {6863, 12047}, {6868, 7098}, {6882, 24914}, {6890, 20070}, {6937, 20292}, {6940, 9352}, {6959, 21616}, {6984, 9780}, {7082, 10826}, {7330, 18480}, {7966, 32900}, {7992, 13101}, {9708, 15823}, {9709, 58630}, {10044, 10056}, {10864, 28208}, {10950, 30264}, {11230, 31435}, {11362, 17647}, {11374, 31659}, {11827, 40663}, {12649, 37000}, {12664, 37411}, {12700, 37374}, {12705, 22793}, {14872, 18518}, {17528, 50821}, {17757, 41688}, {17768, 18242}, {17857, 18524}, {18517, 51755}, {19541, 31937}, {19549, 28275}, {19860, 21165}, {21147, 52407}, {23059, 37405}, {25440, 31806}, {25524, 31838}, {28174, 37356}, {28388, 50426}, {34460, 39248}, {35979, 54212}, {37281, 55869}, {37732, 49500}, {37837, 44663}, {39542, 52265}

X(59318) = midpoint of X(5534) and X(54422)
X(59318) = reflection of X(3811) in X(32141)
X(59318) = X(8)-beth conjugate of-X(10526)
X(59318) = Cundy-Parry-Phi-transform of X(1454)
X(59318) = pole of the line {513, 53295} with respect to the Bevan circle
X(59318) = pole of the line {672, 16567} with respect to the Gheorghe circle
X(59318) = pole of the line {355, 50036} with respect to the Kiepert circumhyperbola
X(59318) = pole of the line {21, 45770} with respect to the Stammler hyperbola
X(59318) = X(37826)-of-outer-Johnson triangle
X(59318) = X(37532)-of-anti-outer-Yff triangle
X(59318) = X(26286)-of-Aquila triangle
X(59318) = X(24474)-of-anti-Mandart-incircle triangle
X(59318) = X(18569)-of-1st circumperp triangle, when ABC is acute
X(59318) = X(18377)-of-hexyl triangle, when ABC is acute
X(59318) = X(10526)-of-outer-Garcia triangle
X(59318) = X(10224)-of-6th mixtilinear triangle, when ABC is acute
X(59318) = X(1658)-of-excentral triangle, when ABC is acute


X(59319) = X(35)-HARMONIC MEAN OF (X(3), X(36))

Barycentrics    a^2*(3*a^2-3*b^2+b*c-3*c^2) : :

X(59319) lies on these lines: {1, 3}, {2, 5370}, {5, 4316}, {10, 5303}, {11, 548}, {12, 3530}, {20, 7741}, {21, 19862}, {30, 7173}, {33, 35477}, {34, 32534}, {44, 5124}, {58, 55088}, {72, 15015}, {73, 57713}, {79, 21161}, {80, 4297}, {88, 1283}, {90, 7285}, {100, 3625}, {109, 28223}, {140, 3585}, {172, 37512}, {187, 5299}, {214, 56288}, {376, 499}, {378, 54428}, {388, 10299}, {390, 58188}, {404, 3634}, {474, 19872}, {495, 44682}, {496, 4330}, {497, 21735}, {498, 3524}, {515, 5445}, {516, 37735}, {535, 27529}, {546, 7294}, {549, 7354}, {550, 3583}, {574, 5280}, {609, 5013}, {611, 55676}, {613, 55646}, {631, 4299}, {759, 37294}, {849, 34882}, {896, 7293}, {899, 4210}, {946, 15228}, {958, 19537}, {960, 35271}, {993, 4188}, {1030, 16666}, {1055, 24047}, {1124, 6411}, {1125, 17549}, {1203, 4257}, {1210, 5441}, {1335, 6412}, {1428, 14810}, {1469, 17508}, {1478, 3523}, {1479, 3522}, {1656, 18513}, {1657, 18514}, {1698, 16371}, {1737, 5442}, {1768, 37837}, {1770, 5443}, {1870, 17506}, {1909, 43459}, {1914, 15513}, {2178, 16676}, {2275, 5206}, {2276, 15515}, {2307, 5237}, {2330, 55674}, {2475, 31262}, {2635, 37115}, {2975, 3626}, {3056, 55649}, {3058, 45759}, {3085, 15692}, {3086, 10304}, {3100, 35497}, {3218, 41696}, {3286, 9343}, {3299, 6200}, {3301, 6396}, {3526, 12943}, {3528, 4302}, {3534, 10896}, {3582, 6284}, {3584, 12100}, {3600, 31452}, {3617, 5258}, {3621, 8666}, {3624, 3838}, {3632, 11194}, {3633, 4421}, {3647, 27086}, {3651, 10090}, {3679, 19705}, {3822, 37291}, {3825, 15680}, {3826, 17583}, {3878, 4881}, {3901, 56177}, {3911, 37702}, {3919, 51683}, {4184, 30950}, {4189, 5259}, {4225, 27627}, {4234, 19864}, {4252, 5313}, {4278, 16948}, {4292, 37701}, {4293, 15717}, {4294, 21734}, {4296, 38448}, {4317, 5218}, {4333, 8227}, {4420, 4996}, {4652, 5692}, {4663, 5096}, {4724, 39476}, {4816, 5687}, {4855, 5904}, {4857, 15325}, {4880, 22836}, {4973, 34772}, {4995, 14891}, {5023, 7031}, {5030, 17745}, {5046, 6681}, {5054, 10895}, {5160, 34152}, {5210, 16502}, {5248, 17548}, {5253, 15808}, {5270, 5432}, {5297, 5322}, {5298, 15171}, {5302, 18236}, {5314, 36263}, {5326, 12108}, {5345, 7484}, {5351, 7127}, {5353, 10646}, {5357, 10645}, {5426, 5439}, {5434, 17504}, {5440, 6763}, {5444, 12047}, {5450, 6942}, {5541, 11260}, {5585, 16781}, {5657, 37707}, {5731, 37706}, {6126, 10081}, {6285, 11204}, {6449, 18995}, {6450, 18996}, {6455, 19038}, {6456, 19037}, {6636, 7292}, {6684, 21578}, {6691, 57002}, {6904, 41859}, {6905, 31673}, {6906, 18483}, {6941, 52851}, {6952, 52850}, {7286, 15646}, {7296, 53096}, {7319, 15446}, {7355, 11202}, {7691, 51803}, {7727, 15055}, {7793, 32005}, {7972, 11362}, {8070, 37401}, {8299, 51585}, {8356, 30103}, {8540, 55606}, {8588, 16784}, {8589, 16785}, {8715, 20050}, {9324, 20999}, {9341, 31652}, {9342, 22266}, {9352, 30147}, {9541, 13962}, {9579, 28466}, {9588, 37708}, {9597, 21843}, {9638, 11468}, {9654, 15693}, {9663, 19117}, {9669, 15688}, {10056, 15698}, {10072, 19708}, {10076, 17821}, {10088, 15036}, {10164, 45287}, {10260, 56426}, {10528, 34690}, {10543, 34753}, {10589, 17538}, {10591, 50693}, {10610, 35197}, {11237, 15700}, {11238, 14093}, {11263, 37005}, {11350, 54390}, {11398, 55576}, {11399, 11410}, {11480, 54402}, {11481, 54403}, {11552, 37737}, {11684, 35204}, {12512, 30384}, {12691, 18861}, {12953, 15696}, {13586, 26959}, {13735, 19847}, {15035, 19470}, {15079, 31231}, {15170, 58187}, {15172, 15759}, {15175, 43733}, {15254, 37308}, {16118, 17605}, {16133, 30424}, {16395, 29827}, {16418, 34595}, {16431, 17284}, {16436, 29598}, {16451, 17749}, {16489, 32577}, {16670, 36743}, {16815, 19308}, {16818, 21937}, {16858, 19878}, {17023, 35276}, {17563, 24953}, {17566, 31263}, {17616, 31424}, {18395, 18481}, {18968, 38727}, {19254, 49997}, {19325, 39586}, {19336, 19858}, {19346, 26102}, {19369, 20190}, {19535, 25524}, {19704, 25055}, {20107, 37375}, {21154, 31789}, {21495, 29596}, {21497, 29573}, {21537, 29579}, {21844, 52427}, {22053, 54427}, {23153, 38705}, {25639, 37256}, {27003, 35016}, {27020, 33273}, {30104, 35297}, {31159, 36004}, {31425, 37709}, {33771, 41434}, {34773, 41684}, {36006, 51073}, {37289, 56814}, {37300, 41872}, {37403, 41853}, {37722, 58190}, {38697, 52129}, {38759, 39692}, {45036, 54290}, {48384, 50349}, {53095, 54416}

X(59319) = isogonal conjugate of X(17501)
X(59319) = crosspoint of X(59) and X(8698)
X(59319) = crosssum of X(11) and X(39386)
X(59319) = X(643)-beth conjugate of-X(3625)
X(59319) = X(4127)-reciprocal conjugate of-X(321)
X(59319) = X(28221)-zayin conjugate of-X(513)
X(59319) = pole of the line {513, 58167} with respect to the circumcircle
X(59319) = pole of the line {20980, 58167} with respect to the Brocard inellipse
X(59319) = pole of the line {21, 3634} with respect to the Stammler hyperbola
X(59319) = pole of the line {314, 17501} with respect to the Steiner-Wallace hyperbola
X(59319) = barycentric product X(81)*X(4127)
X(59319) = trilinear product X(58)*X(4127)
X(59319) = trilinear quotient X(4127)/X(10)
X(59319) = X(35497)-of-1st circumperp triangle, when ABC is acute
X(59319) = X(35487)-of-excentral triangle, when ABC is acute
X(59319) = X(17506)-of-2nd circumperp triangle, when ABC is acute


X(59320) = X(35)-HARMONIC MEAN OF (X(3), X(40))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2+b*c+2*c^2)*a^3+(b+c)*(2*b^2-3*b*c+2*c^2)*a^2+(b^4+c^4+b*c*(b^2+4*b*c+c^2))*a-(b^3+c^3)*(b-c)^2) : :

X(59320) lies on these lines: {1, 3}, {4, 5251}, {10, 411}, {12, 31799}, {20, 993}, {21, 516}, {41, 573}, {58, 4300}, {63, 12520}, {71, 1630}, {74, 39630}, {100, 6737}, {102, 1794}, {103, 43344}, {109, 22361}, {140, 50031}, {191, 6001}, {201, 45272}, {212, 10571}, {219, 3207}, {255, 34043}, {283, 23059}, {376, 5450}, {378, 57276}, {404, 10164}, {405, 1699}, {498, 6988}, {499, 6865}, {515, 3651}, {572, 1475}, {580, 1064}, {602, 5315}, {692, 37836}, {912, 16132}, {944, 5288}, {946, 1006}, {958, 5691}, {962, 5248}, {971, 16143}, {991, 1468}, {1001, 11522}, {1055, 37508}, {1071, 6763}, {1108, 5124}, {1125, 6986}, {1158, 21165}, {1193, 13329}, {1259, 12526}, {1376, 9588}, {1478, 6908}, {1479, 6987}, {1490, 32159}, {1496, 4306}, {1621, 4301}, {1695, 19763}, {1698, 3149}, {1709, 12565}, {1750, 5234}, {1768, 3916}, {1804, 17106}, {1838, 37305}, {1869, 4219}, {2257, 36743}, {2328, 4225}, {2476, 52850}, {2800, 35204}, {2801, 31938}, {2807, 22076}, {2915, 9590}, {2944, 2954}, {2947, 57281}, {2975, 4297}, {3086, 37423}, {3218, 20612}, {3219, 31803}, {3220, 23361}, {3485, 5759}, {3522, 43161}, {3560, 41869}, {3583, 15908}, {3585, 6907}, {3616, 52769}, {3624, 22753}, {3634, 6915}, {3646, 50204}, {3649, 5762}, {3654, 32141}, {3679, 11500}, {3682, 56894}, {3683, 9856}, {3811, 15104}, {3814, 6960}, {3817, 5047}, {3841, 6839}, {3869, 58328}, {3874, 18444}, {3925, 20420}, {3955, 43610}, {4189, 9778}, {4192, 33138}, {4210, 25941}, {4221, 50759}, {4278, 37402}, {4293, 37108}, {4299, 6916}, {4302, 59345}, {4316, 30264}, {4324, 11826}, {4511, 51717}, {4512, 37248}, {4867, 21740}, {4880, 5884}, {4996, 46684}, {4999, 37374}, {5127, 38850}, {5247, 6045}, {5250, 37300}, {5260, 19925}, {5267, 6909}, {5302, 5927}, {5313, 36745}, {5428, 28174}, {5433, 37364}, {5440, 58637}, {5531, 34790}, {5587, 6985}, {5657, 6796}, {5692, 6261}, {5693, 26921}, {5696, 5732}, {5731, 8666}, {5840, 46816}, {5841, 37401}, {5842, 44238}, {5855, 39783}, {5904, 18446}, {5918, 34862}, {6253, 31419}, {6326, 31837}, {6361, 6875}, {6684, 6905}, {6825, 7951}, {6826, 41859}, {6827, 7741}, {6830, 31262}, {6836, 26363}, {6840, 25639}, {6846, 41858}, {6850, 10483}, {6883, 8227}, {6884, 12558}, {6889, 26332}, {6906, 31730}, {6911, 31423}, {6912, 51118}, {6920, 18483}, {6923, 35250}, {6936, 26333}, {6949, 31263}, {6962, 26364}, {7330, 50528}, {7354, 37424}, {7412, 54428}, {7436, 56831}, {7489, 22793}, {7958, 50205}, {7988, 11108}, {7989, 19541}, {8583, 21153}, {8656, 39225}, {8727, 24953}, {9589, 11496}, {9615, 44606}, {9708, 37714}, {9746, 19310}, {9779, 16859}, {9812, 16865}, {10171, 17536}, {10304, 34625}, {10393, 18412}, {10537, 34935}, {10805, 34690}, {10993, 33923}, {11194, 34701}, {11219, 48713}, {11231, 37251}, {11281, 38454}, {11362, 11491}, {11413, 30265}, {11471, 14017}, {11495, 37022}, {12104, 28216}, {12114, 37426}, {12573, 43151}, {12617, 54357}, {12688, 31445}, {12705, 37302}, {13405, 57283}, {13743, 28146}, {14547, 55101}, {14988, 16139}, {15015, 22775}, {15338, 31777}, {15556, 45230}, {15696, 18515}, {15823, 18251}, {16117, 28160}, {16418, 50865}, {16548, 40937}, {16857, 30308}, {16861, 50802}, {17531, 58441}, {17549, 50808}, {19520, 38052}, {19759, 37078}, {19855, 50700}, {19860, 20846}, {19861, 37301}, {20117, 26878}, {21161, 28194}, {21669, 28150}, {24987, 35979}, {25917, 31658}, {26013, 35981}, {26885, 43609}, {27368, 29016}, {28164, 33557}, {28178, 31649}, {28198, 28443}, {28202, 28453}, {28466, 31162}, {31435, 37249}, {31657, 52783}, {33108, 59355}, {33137, 37400}, {34789, 51506}, {34928, 38668}, {35203, 51624}, {36006, 50829}, {37258, 39585}, {37425, 53794}, {37437, 52851}, {39558, 52384}, {41698, 57288}

X(59320) = circumperp conjugate of X(5535)
X(59320) = X(643)-beth conjugate of-X(6737)
X(59320) = X(513)-vertex conjugate of-X(5538)
X(59320) = inverse of X(5538) in circumcircle
X(59320) = pole of the line {513, 5538} with respect to the circumcircle
X(59320) = pole of the line {910, 1781} with respect to the Stevanovic circle
X(59320) = pole of the line {21, 4297} with respect to the Stammler hyperbola
X(59320) = X(37080)-of-2nd circumperp tangential triangle
X(59320) = X(14118)-of-1st circumperp triangle, when ABC is acute
X(59320) = X(13160)-of-excentral triangle, when ABC is acute
X(59320) = X(10902)-of-ABC-X3 reflections triangle
X(59320) = X(7512)-of-2nd circumperp triangle, when ABC is acute
X(59320) = X(5576)-of-hexyl triangle, when ABC is acute


X(59321) = X(35)-HARMONIC MEAN OF (X(3), X(46))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2+3*b*c+2*c^2)*a^3+(b+c)*(2*b^2-3*b*c+2*c^2)*a^2+(b^2+c^2)*(b^2+3*b*c+c^2)*a-(b^3+c^3)*(b-c)^2) : :

X(59321) lies on these lines: {1, 3}, {10, 35976}, {224, 5904}, {377, 5251}, {499, 6899}, {580, 4337}, {943, 11551}, {993, 4190}, {1006, 1770}, {1478, 37112}, {1479, 12511}, {1727, 9943}, {1737, 3651}, {3215, 34043}, {3560, 4333}, {3585, 37438}, {3812, 37286}, {4299, 6897}, {5124, 7297}, {5258, 17647}, {5259, 12609}, {5445, 12616}, {6836, 7741}, {6889, 7951}, {6942, 14647}, {6986, 12047}, {7354, 44222}, {7411, 10572}, {7414, 54428}, {7580, 10826}, {10058, 12512}, {12514, 37301}, {18391, 37105}, {22060, 34868}, {37285, 54318}, {44238, 46816}


X(59322) = X(35)-HARMONIC MEAN OF (X(36), X(40))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2+b*c+2*c^2)*a^3+(2*b-c)*(b-2*c)*(b+c)*a^2+(b^4+c^4+b*c*(b^2+6*b*c+c^2))*a-(b^2-c^2)*(b-c)*(b^2-3*b*c+c^2)) : :

X(59322) lies on these lines: {1, 3}, {4333, 22758}, {5258, 10483}, {5288, 36975}, {5493, 10058}, {6762, 56583}, {7580, 37711}, {20013, 48696}, {25542, 41012}


X(59323) = X(35)-HARMONIC MEAN OF (X(36), X(46))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2+3*b*c+2*c^2)*a^3+(2*b-c)*(b-2*c)*(b+c)*a^2+(b^4+c^4+3*b*c*(b^2+c^2))*a-(b^2-c^2)*(b-c)*(b^2-3*b*c+c^2)) : :

X(59323) lies on these lines: {1, 3}, {9, 30290}, {404, 12447}, {405, 4312}, {580, 34043}, {938, 12511}, {950, 41853}, {958, 38052}, {1042, 13329}, {1044, 1724}, {1212, 1781}, {1445, 12520}, {1478, 4208}, {1708, 15071}, {1788, 44425}, {1864, 16143}, {2347, 17745}, {3671, 6986}, {4292, 5251}, {4293, 5258}, {4295, 5259}, {4301, 7677}, {4311, 5288}, {5120, 18594}, {5785, 41229}, {6737, 35977}, {6738, 7411}, {7959, 10076}, {10164, 57283}, {10884, 18412}, {12047, 25542}, {12432, 18444}, {12526, 37282}, {12528, 41700}, {12565, 15299}, {20007, 25440}, {20780, 41401}, {22053, 55101}, {31803, 37787}, {36003, 41575}, {37249, 54290}, {37301, 58328}

X(59323) = X(1)-gimel conjugate of-X(35)
X(59323) = pole of the line {1756, 7957} with respect to the 1st Evans circle
X(59323) = pole of the line {910, 46675} with respect to the Stevanovic circle
X(59323) = pole of the line {21, 12447} with respect to the Stammler hyperbola


X(59324) = X(35)-HARMONIC MEAN OF (X(40), X(46))

Barycentrics    a*(a^6-(3*b^2+4*b*c+3*c^2)*a^4+(3*b^4+3*c^4+2*b*c*(b^2+c^2))*a^2-(b^2-c^2)^2*(b-c)^2) : :

X(59324) lies on these lines: {1, 3}, {63, 10483}, {1158, 15228}, {1708, 37702}, {1836, 16139}, {3585, 26921}, {4302, 7098}, {4316, 24467}, {7082, 18514}, {7951, 55104}


X(59325) = X(36)-HARMONIC MEAN OF (X(3), X(35))

Barycentrics    a^2*(3*a^2-3*b^2-b*c-3*c^2) : :

X(59325) lies on these lines: {1, 3}, {2, 7302}, {5, 4324}, {10, 17549}, {11, 3530}, {12, 548}, {20, 7951}, {21, 3634}, {30, 3614}, {33, 32534}, {34, 35477}, {43, 19346}, {44, 1030}, {79, 13411}, {80, 6684}, {100, 3626}, {109, 28185}, {140, 3583}, {172, 15513}, {186, 54428}, {187, 5280}, {191, 5440}, {212, 58738}, {350, 43459}, {376, 498}, {388, 21735}, {404, 5259}, {405, 19872}, {474, 25542}, {495, 4325}, {496, 44682}, {497, 10299}, {499, 3524}, {516, 5443}, {519, 5303}, {546, 5326}, {549, 6284}, {550, 3585}, {574, 5299}, {609, 5023}, {611, 55646}, {613, 55676}, {631, 4302}, {896, 5314}, {899, 4184}, {946, 5444}, {956, 4816}, {960, 15015}, {993, 3617}, {1001, 19537}, {1124, 6412}, {1125, 13587}, {1203, 4256}, {1210, 5442}, {1335, 6411}, {1376, 19535}, {1428, 55674}, {1443, 7279}, {1469, 55649}, {1478, 3522}, {1479, 3523}, {1621, 15808}, {1656, 18514}, {1657, 18513}, {1698, 16370}, {1737, 5441}, {1768, 33597}, {1770, 37701}, {1785, 37289}, {1914, 37512}, {2275, 15515}, {2276, 5206}, {2307, 5352}, {2330, 14810}, {2475, 58404}, {2635, 7421}, {2975, 3625}, {3035, 57002}, {3056, 17508}, {3058, 17504}, {3085, 10304}, {3086, 15692}, {3100, 38448}, {3299, 6396}, {3301, 6200}, {3520, 52427}, {3526, 12953}, {3528, 4299}, {3534, 10895}, {3582, 12100}, {3584, 7354}, {3586, 15079}, {3600, 58188}, {3621, 5288}, {3624, 16371}, {3632, 4421}, {3633, 11194}, {3647, 17100}, {3679, 19704}, {3812, 5426}, {3814, 15680}, {3822, 37256}, {3884, 4881}, {3912, 35276}, {4188, 5248}, {4189, 5251}, {4210, 30950}, {4252, 5312}, {4262, 17745}, {4265, 4663}, {4276, 16948}, {4292, 37731}, {4293, 21734}, {4294, 15717}, {4296, 35497}, {4297, 37710}, {4304, 37702}, {4309, 7288}, {4333, 5219}, {4337, 22072}, {4413, 17571}, {4423, 17573}, {4512, 17646}, {4652, 5904}, {4724, 48386}, {4784, 39577}, {4855, 5692}, {4857, 5433}, {4867, 56288}, {4880, 34772}, {4995, 18990}, {5013, 7031}, {5046, 31263}, {5054, 10896}, {5124, 16666}, {5132, 16477}, {5160, 15646}, {5210, 54416}, {5238, 7127}, {5270, 15326}, {5297, 5370}, {5298, 14891}, {5310, 7292}, {5332, 53096}, {5353, 10645}, {5357, 10646}, {5428, 12019}, {5434, 45759}, {5445, 10164}, {5526, 24047}, {5556, 15175}, {5657, 37706}, {5714, 54430}, {5727, 31425}, {5731, 37707}, {6097, 45885}, {6198, 17506}, {6285, 11202}, {6449, 19037}, {6450, 19038}, {6455, 18996}, {6456, 18995}, {6497, 31474}, {6763, 56176}, {6796, 6950}, {6857, 41859}, {6876, 41853}, {6905, 18483}, {6906, 31673}, {6986, 10058}, {7286, 34152}, {7293, 36263}, {7294, 12108}, {7295, 15601}, {7298, 7484}, {7343, 10065}, {7355, 11204}, {7691, 35197}, {7727, 15035}, {7793, 32107}, {7972, 38693}, {8068, 37401}, {8356, 30104}, {8540, 20190}, {8588, 16785}, {8589, 16784}, {8666, 20050}, {9324, 34868}, {9341, 46846}, {9352, 30143}, {9541, 13963}, {9580, 45035}, {9588, 37711}, {9598, 21843}, {9648, 19117}, {9654, 15688}, {9669, 15693}, {9945, 21677}, {10039, 36975}, {10056, 19708}, {10060, 17821}, {10072, 15698}, {10091, 15036}, {10165, 37735}, {10260, 52371}, {10308, 55928}, {10385, 15715}, {10387, 55671}, {10529, 34719}, {10588, 17538}, {10590, 50693}, {10610, 51803}, {10624, 16173}, {11237, 14093}, {11238, 15700}, {11277, 56790}, {11398, 11410}, {11399, 55576}, {11480, 54403}, {11481, 54402}, {12047, 12512}, {12738, 38722}, {12896, 38727}, {12943, 15696}, {13586, 27020}, {14986, 15705}, {15055, 19470}, {15254, 17668}, {15446, 43734}, {15624, 49503}, {15655, 31461}, {15888, 58190}, {16395, 29825}, {16397, 26115}, {16417, 34595}, {16431, 29598}, {16436, 17284}, {16452, 17749}, {16474, 33771}, {16502, 53095}, {16670, 36744}, {16676, 54285}, {16858, 51073}, {16861, 31253}, {17577, 20104}, {18492, 28444}, {19254, 56191}, {19308, 29578}, {19326, 39586}, {19369, 55606}, {19705, 25055}, {19878, 36006}, {20066, 24387}, {20846, 41866}, {21155, 31775}, {21498, 29573}, {21508, 29579}, {21511, 29596}, {21773, 39260}, {23153, 38707}, {24466, 52265}, {25639, 37291}, {26959, 33273}, {27529, 31160}, {27627, 35206}, {30103, 35297}, {30332, 52769}, {31016, 53591}, {31499, 42259}, {32635, 55929}, {33814, 38128}, {35203, 58772}, {35205, 58841}, {35271, 58679}, {37294, 37816}, {37307, 46934}, {38691, 52129}, {41451, 54310}, {44837, 54401}, {45392, 58328}, {48389, 50349}, {49999, 52352}

X(59325) = X(643)-beth conjugate of-X(3626)
X(59325) = X(3988)-reciprocal conjugate of-X(321)
X(59325) = X(28183)-zayin conjugate of-X(513)
X(59325) = pole of the line {513, 53411} with respect to the circumcircle
X(59325) = pole of the line {1756, 50193} with respect to the 1st Evans circle
X(59325) = pole of the line {20980, 58171} with respect to the Brocard inellipse
X(59325) = pole of the line {21, 19862} with respect to the Stammler hyperbola
X(59325) = barycentric product X(81)*X(3988)
X(59325) = trilinear product X(58)*X(3988)
X(59325) = trilinear quotient X(3988)/X(10)
X(59325) = X(38448)-of-1st circumperp triangle, when ABC is acute
X(59325) = X(5303)-of-anti-inner-Garcia triangle


X(59326) = X(36)-HARMONIC MEAN OF (X(3), X(40))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b-c)*(b-2*c)*a^3+(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^4+c^4-5*b*c*(b^2+c^2))*a-(b^2-c^2)*(b^3-c^3)) : :

X(59326) lies on these lines: {1, 3}, {10, 6909}, {11, 31777}, {20, 8165}, {21, 8582}, {30, 44847}, {63, 38901}, {72, 1768}, {74, 54078}, {78, 15071}, {100, 4297}, {104, 5288}, {109, 22072}, {140, 25542}, {191, 17649}, {200, 10085}, {210, 34862}, {220, 32625}, {376, 6796}, {404, 516}, {411, 6700}, {474, 1699}, {498, 6916}, {515, 37403}, {548, 33814}, {573, 23637}, {601, 1203}, {631, 5259}, {936, 1709}, {944, 48696}, {946, 6940}, {958, 9588}, {960, 17613}, {1012, 1698}, {1158, 5692}, {1212, 34867}, {1259, 5732}, {1293, 38452}, {1329, 41698}, {1376, 5691}, {1413, 39558}, {1479, 6926}, {1512, 5251}, {1593, 54397}, {1615, 46678}, {1728, 10050}, {1753, 54428}, {1794, 57422}, {1842, 4219}, {2475, 52850}, {2801, 4420}, {2842, 15055}, {2933, 3220}, {2943, 47623}, {2975, 43174}, {3522, 7080}, {3523, 5248}, {3560, 31423}, {3583, 6922}, {3585, 31775}, {3624, 11496}, {3625, 38669}, {3634, 6912}, {3651, 5660}, {3654, 32153}, {3679, 12114}, {3814, 37437}, {3817, 17531}, {3822, 37163}, {3841, 6888}, {3893, 7993}, {3916, 58637}, {4188, 9778}, {4256, 4300}, {4276, 37402}, {4296, 24025}, {4301, 5253}, {4302, 6865}, {4316, 11827}, {4324, 24466}, {4413, 7989}, {4421, 34716}, {4855, 12520}, {5047, 58441}, {5121, 19649}, {5258, 5450}, {5312, 36746}, {5432, 37424}, {5438, 10860}, {5440, 9943}, {5531, 12680}, {5731, 8715}, {5763, 11246}, {5884, 41696}, {5918, 16143}, {6284, 37364}, {6745, 7411}, {6824, 41859}, {6850, 7951}, {6864, 41858}, {6891, 7741}, {6905, 31730}, {6911, 41869}, {6915, 51118}, {6925, 26364}, {6928, 35249}, {6935, 19854}, {6941, 31263}, {6946, 18483}, {6948, 10483}, {6952, 31262}, {6955, 26332}, {6966, 26363}, {6967, 26333}, {6972, 25639}, {6986, 9843}, {7171, 17857}, {7288, 35514}, {7580, 8169}, {7988, 16408}, {9589, 22753}, {9590, 20833}, {9615, 44590}, {9709, 37714}, {9746, 19314}, {9812, 17572}, {10167, 56176}, {10171, 17535}, {10175, 21669}, {10304, 34619}, {10806, 34719}, {10864, 46917}, {10916, 11219}, {11218, 51706}, {11231, 13743}, {11260, 13205}, {11344, 21153}, {11522, 25524}, {12332, 15015}, {12616, 47033}, {13257, 41690}, {13329, 20978}, {13587, 50808}, {14414, 52740}, {15326, 31799}, {15717, 52769}, {16004, 37735}, {16139, 38722}, {16417, 50865}, {16858, 50829}, {17100, 46684}, {17564, 34630}, {18242, 37429}, {19513, 28239}, {19760, 37078}, {20999, 22376}, {21616, 34789}, {21740, 54192}, {22350, 34043}, {22793, 45976}, {24558, 37307}, {27383, 45392}, {28146, 37251}, {28461, 38068}, {31141, 40267}, {31160, 37430}, {35203, 44845}, {35205, 44852}, {35206, 44849}, {35207, 44853}, {35208, 44854}, {35209, 44855}, {35210, 44856}, {37234, 54447}, {37417, 54368}, {37499, 55432}, {41229, 52027}, {45386, 45388}, {45390, 45397}, {52026, 52050}

X(59326) = X(643)-beth conjugate of-X(6736)
X(59326) = X(42337)-zayin conjugate of-X(513)
X(59326) = X(37561)-of-ABC-X3 reflections triangle
X(59326) = X(22467)-of-1st circumperp triangle, when ABC is acute
X(59326) = X(20323)-of-anti-Mandart-incircle triangle


X(59327) = X(36)-HARMONIC MEAN OF (X(3), X(46))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2-3*b*c+2*c^2)*a^3+(b+c)*(2*b^2-b*c+2*c^2)*a^2+(b^2+c^2)*(b^2-3*b*c+c^2)*a-(b^2-c^2)*(b^3-c^3)) : :

X(59327) lies on these lines: {1, 3}, {30, 10958}, {79, 27385}, {80, 12616}, {100, 10915}, {109, 54427}, {119, 3585}, {377, 7951}, {404, 12047}, {474, 3838}, {498, 6897}, {499, 6977}, {946, 10090}, {993, 5554}, {1012, 10826}, {1210, 10058}, {1259, 17616}, {1324, 22344}, {1376, 10827}, {1478, 4190}, {1479, 6890}, {1737, 6906}, {1770, 6905}, {1788, 6950}, {1836, 6924}, {1877, 37117}, {1950, 50650}, {2067, 45642}, {2932, 56176}, {2933, 23206}, {3215, 54301}, {3244, 10074}, {3474, 6942}, {3583, 26476}, {3651, 16154}, {3811, 38901}, {3812, 19525}, {4188, 4295}, {4292, 35976}, {4293, 10528}, {4299, 6796}, {4302, 6899}, {4311, 49626}, {4312, 42843}, {4333, 6985}, {4640, 19524}, {5251, 5445}, {5259, 6910}, {5270, 26482}, {5399, 52440}, {5432, 44222}, {5443, 12609}, {5450, 10573}, {5555, 15175}, {5687, 32537}, {6256, 6934}, {6502, 45643}, {6735, 17647}, {6831, 39692}, {6833, 7741}, {6909, 10572}, {6914, 24914}, {6955, 37719}, {6966, 37720}, {7288, 10596}, {7354, 10942}, {7356, 49192}, {7483, 25542}, {7727, 49152}, {7972, 25438}, {8068, 55297}, {8715, 12648}, {10069, 13189}, {10081, 13217}, {10089, 12189}, {10091, 12381}, {10955, 15326}, {10956, 18990}, {11491, 21578}, {11496, 23708}, {11570, 17100}, {12114, 37711}, {12332, 12672}, {12943, 18542}, {13117, 13313}, {13118, 13312}, {13743, 17606}, {15528, 26877}, {17605, 45976}, {17636, 35451}, {18360, 34586}, {18395, 54304}, {18513, 45631}, {19470, 49204}, {23205, 23850}, {24467, 41686}, {24475, 38722}, {28349, 28393}, {32153, 41687}, {37293, 56288}, {37468, 41698}, {37707, 48696}, {41854, 45633}, {52407, 56535}

X(59327) = X(643)-beth conjugate of-X(10915)
X(59327) = pole of the line {1756, 37562} with respect to the 1st Evans circle
X(59327) = pole of the line {8070, 50036} with respect to the Kiepert circumhyperbola
X(59327) = pole of the line {21, 14803} with respect to the Stammler hyperbola


X(59328) = X(36)-HARMONIC MEAN OF (X(35), X(40))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b-c)*(b-2*c)*a^3+(b+c)*(2*b^2+b*c+2*c^2)*a^2+(b^4+c^4-(5*b^2+6*b*c+5*c^2)*b*c)*a-(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)) : :

X(59328) lies on these lines: {1, 3}, {1709, 32159}, {3916, 13205}, {4333, 11501}, {5258, 51433}, {10058, 43174}, {37006, 57287}, {37022, 37708}


X(59329) = X(36)-HARMONIC MEAN OF (X(35), X(46))

Barycentrics    a^2*(a^5-(b+c)*a^4-(2*b^2-3*b*c+2*c^2)*a^3+(b+c)*(2*b^2+b*c+2*c^2)*a^2+(b^4+c^4-3*b*c*(b^2+c^2))*a-(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)) : :

X(59329) lies on these lines: {1, 3}, {43, 1777}, {79, 6745}, {100, 4292}, {109, 54301}, {1158, 18397}, {1376, 9612}, {1478, 7080}, {1750, 12330}, {1768, 18238}, {1770, 6260}, {3474, 6796}, {3651, 41551}, {3871, 4311}, {4004, 19525}, {4293, 8715}, {4295, 25440}, {4303, 33771}, {4848, 6906}, {5177, 7951}, {5259, 9843}, {5445, 8582}, {5687, 9613}, {6700, 12047}, {6736, 37710}, {6856, 41859}, {6956, 7741}, {7686, 12332}, {9579, 11499}, {10483, 12667}, {10573, 14647}, {11502, 41869}, {12432, 46684}, {13205, 34791}, {17613, 44547}, {35599, 55163}, {37692, 38052}, {41539, 54432}, {45287, 48696}

X(59329) = X(44861)-Ceva conjugate of-X(1)
X(59329) = pole of the line {1756, 31788} with respect to the 1st Evans circle


X(59330) = X(36)-HARMONIC MEAN OF (X(40), X(46))

Barycentrics    a*(a^6-3*(b^2+c^2)*a^4+4*(b+c)*b*c*a^3+(3*b^4+3*c^4-2*b*c*(b+c)^2)*a^2-4*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59330) lies on these lines: {1, 3}, {80, 1158}, {84, 37006}, {1512, 1770}, {1737, 40256}, {1768, 37711}, {1837, 12515}, {2950, 52860}, {3885, 10074}, {4295, 27529}, {4299, 48363}, {5445, 12514}, {8715, 11570}, {10052, 45701}, {10950, 38761}, {11571, 37700}, {15866, 30384}, {24467, 41684}, {25005, 56288}, {37710, 54286}, {45287, 51433}

X(59330) = X(34880)-of-Aquila triangle


X(59331) = X(40)-HARMONIC MEAN OF (X(3), X(35))

Barycentrics    a^2*(2*a^5-2*(b+c)*a^4-(4*b^2-b*c+4*c^2)*a^3+(b+c)*(4*b^2-3*b*c+4*c^2)*a^2+(2*b^4+2*c^4-b*c*(b-c)^2)*a+(b^2-c^2)*(b-c)*(-2*b^2-b*c-2*c^2)) : :

X(59331) lies on these lines: {1, 3}, {5, 21155}, {10, 6875}, {21, 5587}, {63, 45392}, {84, 37285}, {191, 37700}, {355, 7508}, {376, 10197}, {405, 54447}, {411, 10129}, {495, 30264}, {498, 6868}, {515, 4189}, {516, 6876}, {602, 4256}, {944, 5267}, {993, 5881}, {1006, 25440}, {1125, 6942}, {1158, 16132}, {1437, 9621}, {1479, 6954}, {1484, 10993}, {1490, 7701}, {1621, 9624}, {1819, 53815}, {1869, 7501}, {3486, 17010}, {3560, 18492}, {3583, 6863}, {3584, 10526}, {3585, 26487}, {3624, 6924}, {3679, 32141}, {3811, 21165}, {4188, 10165}, {4276, 9548}, {4297, 6950}, {4302, 6825}, {4324, 6923}, {4330, 10525}, {4640, 5693}, {4668, 12331}, {4996, 6264}, {5218, 15865}, {5248, 6905}, {5251, 11499}, {5259, 6911}, {5312, 5398}, {5428, 26446}, {5432, 31789}, {5450, 17549}, {5691, 6914}, {5696, 31658}, {5731, 17548}, {5732, 15296}, {5812, 16113}, {5841, 37719}, {5842, 7483}, {6261, 35258}, {6284, 52265}, {6326, 12514}, {6684, 37106}, {6690, 37468}, {6824, 18406}, {6830, 58404}, {6907, 15338}, {6910, 48482}, {6922, 52793}, {6934, 10198}, {6936, 26364}, {6940, 52769}, {6962, 26333}, {6980, 18514}, {7298, 19544}, {7489, 7989}, {7491, 7951}, {7719, 32756}, {7988, 37251}, {8235, 37311}, {8583, 19524}, {9625, 11337}, {9626, 39582}, {10172, 16859}, {10175, 16865}, {11230, 11661}, {11500, 16370}, {12104, 38042}, {12114, 19535}, {12845, 16761}, {15015, 38722}, {17573, 38031}, {17734, 19262}, {17857, 31424}, {18242, 57002}, {18524, 37714}, {19875, 28443}, {20612, 31806}, {20846, 52026}, {21161, 34701}, {24466, 37424}, {26363, 37000}, {29678, 37400}, {30147, 48363}, {34595, 45976}, {35262, 37293}, {37287, 58808}, {37307, 54445}, {37699, 52680}, {37731, 37826}, {37732, 54354}, {57288, 59347}

X(59331) = pole of the line {21, 8227} with respect to the Stammler hyperbola


X(59332) = X(40)-HARMONIC MEAN OF (X(3), X(36))

Barycentrics    a^2*(2*a^5-2*(b+c)*a^4-(4*b^2-7*b*c+4*c^2)*a^3+(b+c)*(4*b^2-5*b*c+4*c^2)*a^2+(2*b^4+2*c^4-b*c*(7*b^2-6*b*c+7*c^2))*a+(b^2-c^2)*(b-c)*(-2*b^2+b*c-2*c^2)) : :

X(59332) lies on these lines: {1, 3}, {5, 21154}, {21, 25522}, {24, 54397}, {63, 34758}, {84, 37300}, {104, 5881}, {355, 38177}, {376, 10199}, {404, 5450}, {474, 54447}, {496, 24466}, {499, 6948}, {515, 4188}, {631, 5267}, {993, 6940}, {1054, 51626}, {1125, 6950}, {1158, 35262}, {1478, 6961}, {1512, 4297}, {1768, 45770}, {1837, 12119}, {1842, 7501}, {2475, 17009}, {2829, 13747}, {3523, 27529}, {3582, 10525}, {3583, 26492}, {3585, 6958}, {3624, 6914}, {3679, 32153}, {3868, 54192}, {4189, 10165}, {4299, 6891}, {4316, 6928}, {4325, 10526}, {4855, 4996}, {4881, 40257}, {5253, 9624}, {5345, 16434}, {5433, 31775}, {5531, 35451}, {5691, 6924}, {5731, 37307}, {5732, 15297}, {5840, 37720}, {5882, 51433}, {6256, 6921}, {6260, 37313}, {6264, 17100}, {6326, 18861}, {6681, 6941}, {6691, 38759}, {6713, 7741}, {6796, 13587}, {6882, 10483}, {6885, 18406}, {6906, 8227}, {6909, 41869}, {6911, 18492}, {6922, 15326}, {6938, 10200}, {6955, 26363}, {6959, 41698}, {6966, 26332}, {6971, 18513}, {7171, 52272}, {7288, 15866}, {7489, 34595}, {7701, 17653}, {7704, 32557}, {7988, 13743}, {7989, 45976}, {8583, 19525}, {8715, 34474}, {9581, 10090}, {9841, 52270}, {9956, 18515}, {10058, 50443}, {10175, 17572}, {10942, 38760}, {10993, 32214}, {11373, 14217}, {11500, 19537}, {11715, 14923}, {11826, 15325}, {12114, 16371}, {12751, 37828}, {15015, 37700}, {15712, 21155}, {16132, 27086}, {17548, 54445}, {22775, 54156}, {22836, 26877}, {26321, 37714}, {26364, 37002}, {28096, 36510}, {30264, 37364}, {33814, 37727}, {35271, 37837}, {37301, 52026}, {37302, 58808}, {38697, 44759}, {39227, 48111}, {45391, 45392}, {46636, 47273}, {48384, 53406}, {49176, 51636}

X(59332) = pole of the line {21, 31423} with respect to the Stammler hyperbola


X(59333) = X(40)-HARMONIC MEAN OF (X(3), X(46))

Barycentrics    a*(a^6-(3*b^2-4*b*c+3*c^2)*a^4+2*(b+c)*b*c*a^3+(3*b^4+3*c^4-2*b*c*(3*b^2+b*c+3*c^2))*a^2-2*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59333) lies on these lines: {1, 3}, {2, 1158}, {5, 1709}, {9, 2252}, {10, 6897}, {63, 5552}, {78, 5884}, {84, 377}, {90, 6842}, {100, 15528}, {119, 1698}, {140, 24954}, {169, 2272}, {191, 37713}, {355, 10085}, {404, 6261}, {411, 9352}, {442, 7701}, {443, 14647}, {453, 1790}, {474, 6001}, {515, 4190}, {516, 6899}, {572, 54420}, {631, 12514}, {920, 6825}, {936, 5693}, {944, 54286}, {946, 3306}, {962, 10586}, {997, 6940}, {1012, 3812}, {1071, 1376}, {1074, 34030}, {1125, 6977}, {1452, 37305}, {1473, 10834}, {1519, 5437}, {1699, 37356}, {1702, 19047}, {1703, 19048}, {1706, 5881}, {1708, 6908}, {1727, 6863}, {1728, 6907}, {1730, 37063}, {1737, 6850}, {1770, 6827}, {1777, 19372}, {1788, 6916}, {1836, 6922}, {1837, 31775}, {2096, 2551}, {2800, 19861}, {2910, 25091}, {2950, 3646}, {3036, 5794}, {3090, 54370}, {3149, 9943}, {3218, 10528}, {3220, 26309}, {3358, 38052}, {3474, 6865}, {3523, 56288}, {3654, 34749}, {3753, 12114}, {3847, 5880}, {3870, 12005}, {3895, 13607}, {3897, 38693}, {3928, 45701}, {4295, 6926}, {4333, 7491}, {4413, 5777}, {4654, 10044}, {5248, 12775}, {5250, 10165}, {5438, 6326}, {5439, 11496}, {5450, 19860}, {5657, 10805}, {5687, 12675}, {5691, 7171}, {5720, 15071}, {5722, 11826}, {5761, 11551}, {5812, 11246}, {5918, 37411}, {6264, 39776}, {6361, 10596}, {6734, 11919}, {6735, 56879}, {6762, 49169}, {6763, 9588}, {6796, 10884}, {6834, 58405}, {6836, 10860}, {6838, 55871}, {6848, 8257}, {6854, 12617}, {6891, 12047}, {6905, 12520}, {6906, 54318}, {6910, 31435}, {6915, 9961}, {6917, 18492}, {6918, 12688}, {6923, 10826}, {6929, 52860}, {6934, 9841}, {6935, 28629}, {6943, 20292}, {6948, 10572}, {6958, 37692}, {6966, 9624}, {6967, 21616}, {6988, 7098}, {7289, 45729}, {7686, 37022}, {7713, 37117}, {7989, 18540}, {8583, 54156}, {9709, 14872}, {9711, 26066}, {9942, 37270}, {9956, 18542}, {10164, 55104}, {10167, 11500}, {10178, 37426}, {10864, 11112}, {10942, 21031}, {11362, 12648}, {11499, 13369}, {11729, 12515}, {12330, 16410}, {12526, 41389}, {12664, 37240}, {12672, 25524}, {12700, 37722}, {13226, 31419}, {14217, 51785}, {14646, 17559}, {14986, 37789}, {15298, 31657}, {15299, 15908}, {16132, 35979}, {16154, 37401}, {16371, 37837}, {18163, 54323}, {18446, 25440}, {21153, 42843}, {23708, 26492}, {24469, 49148}, {26476, 30223}, {26482, 31434}, {26892, 58487}, {27385, 54290}, {31249, 37374}, {35262, 40257}, {37407, 55869}, {37468, 58808}, {37469, 54418}, {37514, 56418}, {41854, 44425}, {43174, 49626}, {44643, 49227}, {44644, 49226}

X(59333) = X(2478)-zayin conjugate of-X(40)
X(59333) = pole of the line {513, 39212} with respect to the Bevan circle
X(59333) = pole of the line {3554, 8227} with respect to the Kiepert circumhyperbola
X(59333) = X(47528)-of-1st circumperp triangle, when ABC is acute
X(59333) = X(16203)-of-Aquila triangle
X(59333) = X(7506)-of-excentral triangle, when ABC is acute
X(59333) = X(3338)-of-anti-outer-Yff triangle


X(59334) = X(40)-HARMONIC MEAN OF (X(35), X(36))

Barycentrics    a^2*(a^5-(b+c)*a^4-2*(b^2-b*c+c^2)*a^3+2*(b^3+c^3)*a^2+(b^4+c^4-2*b*c*(b^2+c^2))*a-(b^4-c^4)*(b-c)) : :

X(59334) lies on these lines: {1, 3}, {2, 8070}, {4, 8068}, {9, 1609}, {10, 17010}, {11, 6924}, {12, 6914}, {20, 10321}, {21, 498}, {24, 1785}, {30, 10523}, {31, 54427}, {32, 13006}, {37, 8553}, {45, 11063}, {47, 22350}, {58, 16473}, {78, 920}, {80, 11499}, {90, 5720}, {100, 10573}, {145, 4996}, {149, 3086}, {186, 7952}, {376, 10629}, {378, 56814}, {386, 16472}, {388, 6950}, {404, 499}, {411, 4302}, {497, 6942}, {516, 39599}, {611, 4265}, {613, 5096}, {859, 2933}, {958, 19525}, {993, 10039}, {1001, 19524}, {1012, 3585}, {1079, 1394}, {1210, 37301}, {1259, 41686}, {1324, 8185}, {1376, 17665}, {1478, 6906}, {1479, 6905}, {1490, 41704}, {1512, 6796}, {1599, 5393}, {1600, 5405}, {1698, 37248}, {1727, 5693}, {1737, 25440}, {1743, 8573}, {1749, 3940}, {1772, 3924}, {1780, 1819}, {1795, 7163}, {1837, 52272}, {1842, 14017}, {2164, 16547}, {2178, 16548}, {2932, 10073}, {2975, 12647}, {3085, 4189}, {3149, 3583}, {3157, 58738}, {3216, 16294}, {3467, 5780}, {3520, 34231}, {3560, 7951}, {3582, 11235}, {3584, 11236}, {3616, 37293}, {3731, 15817}, {3879, 9723}, {3912, 52275}, {3945, 7279}, {4216, 39582}, {4299, 6909}, {4316, 37022}, {4324, 7580}, {4339, 37126}, {5218, 6875}, {5248, 41012}, {5259, 25522}, {5267, 31397}, {5450, 45287}, {5530, 59359}, {5552, 51506}, {5687, 41684}, {5703, 14450}, {5732, 15518}, {6097, 49745}, {6149, 7078}, {6911, 7741}, {6959, 39692}, {7354, 38761}, {7428, 23843}, {7485, 24239}, {7508, 10954}, {8715, 51433}, {10046, 37257}, {10050, 52014}, {10056, 17549}, {10057, 12114}, {10072, 13587}, {10074, 18861}, {10093, 34772}, {10260, 54064}, {10323, 13161}, {10592, 31649}, {10895, 13743}, {10896, 37251}, {10944, 32153}, {10948, 15325}, {10950, 32141}, {11340, 39595}, {11496, 18393}, {11501, 15446}, {11502, 37702}, {11517, 18397}, {11571, 12332}, {12163, 56293}, {13411, 20846}, {14986, 37307}, {15109, 16884}, {15252, 37814}, {16152, 37286}, {16761, 18244}, {17284, 37344}, {17316, 35296}, {18391, 27086}, {18491, 46816}, {18514, 19541}, {18518, 37006}, {20612, 22836}, {20842, 23383}, {20843, 20999}, {21185, 48386}, {24466, 57285}, {29573, 35302}, {33849, 51623}, {34040, 51236}, {37002, 48695}, {37302, 44425}, {44409, 48389}, {54301, 54431}

X(59334) = crosssum of X(6) and X(9673)
X(59334) = X(643)-beth conjugate of-X(10573)
X(59334) = Cundy-Parry-Phi-transform of X(53615)
X(59334) = pole of the line {513, 21112} with respect to the circumcircle
X(59334) = pole of the line {226, 5422} with respect to the circumhyperbola dual of Yff parabola
X(59334) = pole of the line {21, 499} with respect to the Stammler hyperbola
X(59334) = X(45177)-of-excentral triangle, when ABC is acute


X(59335) = X(40)-HARMONIC MEAN OF (X(35), X(46))

Barycentrics    a*(a^6-(3*b^2-2*b*c+3*c^2)*a^4+(3*b^4+3*c^4-2*b*c*(2*b^2+3*b*c+2*c^2))*a^2-(b^2-c^2)^2*(b-c)^2) : :

X(59335) lies on these lines: {1, 3}, {5, 30223}, {9, 498}, {12, 7330}, {34, 601}, {63, 3085}, {78, 20612}, {84, 1478}, {90, 7951}, {158, 55478}, {226, 1158}, {227, 36746}, {388, 14647}, {495, 24467}, {499, 5437}, {611, 7289}, {612, 44706}, {614, 1497}, {750, 774}, {1056, 26877}, {1074, 5230}, {1076, 4331}, {1079, 1419}, {1376, 44547}, {1393, 52428}, {1698, 1728}, {1706, 10573}, {1707, 3074}, {1708, 6684}, {1709, 9612}, {1710, 1720}, {1725, 54401}, {1737, 10396}, {1768, 5290}, {1770, 10860}, {1776, 10588}, {1785, 37384}, {1858, 5720}, {3073, 19372}, {3086, 3306}, {3149, 12711}, {3220, 10037}, {3584, 3929}, {3664, 56544}, {3811, 18389}, {3812, 57278}, {3928, 10056}, {4292, 10629}, {4299, 9841}, {4857, 10384}, {5218, 7098}, {5219, 10320}, {5534, 11501}, {5696, 10398}, {5703, 56288}, {5705, 42012}, {6762, 12647}, {6763, 51784}, {6796, 10393}, {7171, 7354}, {7701, 16152}, {7713, 54368}, {9613, 10085}, {10039, 57279}, {10050, 11919}, {10053, 24469}, {10391, 11500}, {10399, 56583}, {10483, 58808}, {10895, 18540}, {10954, 31434}, {12047, 12705}, {12514, 13411}, {14986, 27003}, {15299, 38052}, {18391, 57287}, {21077, 56545}, {21147, 37469}, {22350, 54421}, {36540, 36541}, {36572, 36573}, {43856, 43857}


X(59336) = X(40)-HARMONIC MEAN OF (X(36), X(46))

Barycentrics    a*(a^6-3*(b-c)^2*a^4+4*(b+c)*b*c*a^3+(3*b^4+3*c^4-2*b*c*(4*b^2-b*c+4*c^2))*a^2-4*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59336) lies on these lines: {1, 3}, {80, 10864}, {84, 1737}, {499, 12705}, {962, 37789}, {1044, 1054}, {1158, 3911}, {1465, 2122}, {1479, 10860}, {1512, 1788}, {1532, 49171}, {1706, 45287}, {1708, 6260}, {1728, 1768}, {1837, 7171}, {2956, 23511}, {3149, 17649}, {3218, 7080}, {3306, 4295}, {3679, 45080}, {4292, 8582}, {4311, 54286}, {5437, 12047}, {5812, 24465}, {6848, 10309}, {7284, 37710}, {7330, 24914}, {7741, 11372}, {9841, 10572}, {9845, 37706}, {10050, 10396}, {10052, 28609}, {11502, 41854}, {11523, 11570}, {17606, 18540}, {26364, 56545}

X(59336) = X(10309)-Ceva conjugate of-X(1)
X(59336) = X(1)-gimel conjugate of-X(40)
X(59336) = X(i)-zayin conjugate of-X(j) for these (i, j): (1436, 1723), (3554, 9), (5514, 5540), (12679, 46), (37566, 1), (55120, 1743)
X(59336) = X(41426)-of-Aquila triangle


X(59337) = X(46)-HARMONIC MEAN OF (X(1), X(35))

Barycentrics    a*(3*a^3-(b+c)*a^2-(3*b^2+4*b*c+3*c^2)*a+(b^2-c^2)*(b-c)) : :
X(59337) = 2*X(226)+X(4302) = 4*X(1125)-X(3434) = X(1478)+2*X(4304) = 5*X(1698)-2*X(3419) = X(1709)+2*X(18446) = X(1836)-4*X(5719) = 4*X(2886)-7*X(3624) = X(4312)-4*X(8255)

X(59337) lies on these lines: {1, 3}, {9, 584}, {10, 31452}, {20, 13407}, {21, 3681}, {30, 17718}, {33, 36009}, {42, 37817}, {43, 37319}, {78, 5248}, {80, 31434}, {90, 943}, {100, 54318}, {191, 11523}, {200, 5251}, {210, 16418}, {214, 9951}, {226, 4302}, {355, 10543}, {374, 4254}, {376, 3475}, {390, 30384}, {392, 4428}, {405, 2900}, {474, 3848}, {495, 28186}, {497, 6854}, {498, 950}, {515, 10056}, {518, 16370}, {528, 15015}, {549, 17728}, {550, 10404}, {551, 35262}, {583, 1449}, {612, 4228}, {614, 4256}, {674, 16475}, {758, 35258}, {859, 15624}, {936, 5259}, {946, 4309}, {954, 15726}, {968, 30115}, {976, 3989}, {993, 3870}, {997, 1621}, {1001, 5440}, {1051, 26893}, {1056, 21578}, {1125, 3434}, {1210, 58441}, {1453, 5312}, {1478, 4304}, {1479, 3817}, {1572, 10987}, {1698, 3419}, {1699, 5842}, {1709, 18446}, {1728, 54430}, {1737, 3488}, {1770, 3487}, {1781, 3247}, {1824, 17523}, {1836, 5719}, {1837, 38042}, {1962, 35267}, {2074, 41502}, {2161, 16676}, {2293, 22350}, {2320, 38460}, {2346, 6909}, {2801, 7675}, {2886, 3624}, {2999, 16439}, {3011, 48837}, {3058, 5886}, {3085, 4313}, {3158, 3679}, {3189, 6857}, {3296, 21735}, {3465, 15430}, {3474, 11551}, {3486, 10039}, {3560, 17857}, {3577, 5424}, {3583, 5219}, {3584, 5587}, {3586, 7951}, {3616, 20075}, {3625, 4917}, {3632, 31436}, {3633, 5559}, {3647, 3951}, {3649, 4338}, {3683, 3940}, {3689, 9708}, {3742, 16371}, {3751, 33538}, {3753, 4421}, {3833, 25440}, {3872, 25439}, {3873, 17549}, {3874, 4652}, {3884, 56387}, {3885, 51683}, {3889, 5303}, {3894, 3928}, {3901, 54290}, {4189, 4430}, {4190, 51706}, {4258, 16601}, {4262, 40131}, {4293, 10578}, {4294, 5703}, {4299, 21620}, {4305, 45287}, {4312, 8255}, {4324, 9579}, {4330, 41869}, {4333, 15338}, {4385, 52352}, {4420, 16865}, {4512, 5692}, {4857, 8227}, {4881, 38314}, {4995, 26446}, {5234, 58648}, {5250, 22836}, {5252, 28224}, {5256, 49480}, {5258, 6765}, {5281, 18391}, {5290, 10483}, {5293, 54287}, {5302, 19526}, {5313, 7290}, {5429, 42042}, {5432, 5722}, {5441, 5691}, {5443, 9614}, {5529, 15485}, {5531, 46816}, {5542, 36976}, {5603, 10385}, {5690, 15174}, {5855, 51093}, {5904, 16465}, {6284, 11374}, {6734, 41709}, {6763, 41863}, {6872, 21077}, {6906, 10085}, {6910, 10916}, {6974, 28236}, {7160, 15446}, {7671, 15299}, {7967, 14647}, {8236, 54445}, {8715, 19860}, {9004, 36740}, {9580, 18393}, {9592, 16784}, {9612, 37731}, {9623, 48696}, {9643, 20243}, {9656, 33697}, {9668, 17605}, {9670, 9955}, {10044, 55109}, {10072, 10165}, {10198, 57287}, {10304, 11038}, {10386, 12701}, {10573, 38127}, {10896, 31795}, {11111, 25568}, {11230, 11238}, {11237, 28160}, {11375, 15171}, {11376, 15172}, {11496, 33597}, {12433, 24914}, {12514, 34772}, {12521, 12756}, {12526, 41696}, {12559, 56288}, {12738, 33519}, {13199, 33593}, {15170, 38028}, {15326, 37703}, {15888, 18481}, {16152, 37826}, {16438, 17022}, {16673, 18594}, {17542, 58451}, {17561, 38057}, {17583, 45036}, {17726, 48824}, {17750, 39255}, {18525, 31480}, {19705, 58560}, {19875, 46917}, {21153, 41861}, {21160, 38690}, {27655, 59305}, {28216, 39542}, {29828, 48863}, {29855, 48843}, {30331, 44675}, {31245, 34595}, {31423, 37723}, {31479, 52638}, {33126, 37038}, {33152, 50066}, {33771, 54418}, {35271, 40726}, {35468, 59301}, {36742, 56535}, {36846, 51111}, {37710, 51784}, {37718, 38182}, {37727, 45081}, {37730, 38112}, {37735, 51785}, {41548, 51409}, {42843, 52050}, {48835, 50750}, {50624, 56313}, {56027, 56152}

X(59337) = X(i)-beth conjugate of-X(j) for these (i, j): (21, 51816), (643, 54318)
X(59337) = pole of the line {1756, 11529} with respect to the 1st Evans circle
X(59337) = pole of the line {21, 3338} with respect to the Stammler hyperbola
X(59337) = X(3576)-of-inner-Yff triangle


X(59338) = X(46)-HARMONIC MEAN OF (X(3), X(35))

Barycentrics    a^2*(2*a^5-2*(b+c)*a^4-(4*b^2+3*b*c+4*c^2)*a^3+(b+c)*(4*b^2-3*b*c+4*c^2)*a^2+(2*b^2+3*b*c+2*c^2)*(b^2+c^2)*a+(b^2-c^2)*(b-c)*(-2*b^2-b*c-2*c^2)) : :

X(59338) lies on these lines: {1, 3}, {411, 37692}, {1006, 10826}, {1800, 35193}, {4189, 17647}, {4302, 6889}, {4324, 6917}, {5248, 35979}, {5259, 37229}, {7414, 54368}, {7483, 41859}, {9612, 15175}, {10483, 44238}, {10572, 37106}, {12559, 31660}, {15338, 37438}, {16455, 24902}, {29661, 35980}, {31424, 35204}, {37356, 52793}, {54323, 56840}


X(59339) = X(46)-HARMONIC MEAN OF (X(3), X(36))

Barycentrics    a^2*(2*a^5-2*(b+c)*a^4-(4*b^2-3*b*c+4*c^2)*a^3+(b+c)*(4*b^2-5*b*c+4*c^2)*a^2+(2*b^2-3*b*c+2*c^2)*(b^2+c^2)*a+(b^2-c^2)*(b-c)*(-2*b^2+b*c-2*c^2)) : :

X(59339) lies on these lines: {1, 3}, {21, 37692}, {90, 52270}, {499, 6934}, {993, 10827}, {1478, 5267}, {1479, 17010}, {1727, 6261}, {1737, 6942}, {1770, 6950}, {2975, 37708}, {3585, 6862}, {4188, 17647}, {4189, 12047}, {4190, 31418}, {4295, 17548}, {4299, 6833}, {5445, 5794}, {5691, 15446}, {6668, 7483}, {6796, 37711}, {6831, 10483}, {6905, 10826}, {7508, 11375}, {7741, 37468}, {8553, 54420}, {10523, 30264}, {10954, 21155}, {12616, 21578}, {15326, 37356}, {23708, 40259}, {26066, 37710}, {29662, 35980}

X(59339) = pole of the line {21, 10826} with respect to the Stammler hyperbola


X(59340) = X(46)-HARMONIC MEAN OF (X(3), X(40))

Barycentrics    a*(a^6-(3*b^2+8*b*c+3*c^2)*a^4+2*(b+c)*b*c*a^3+(3*b^4+3*c^4+2*b*c*(3*b^2-b*c+3*c^2))*a^2-2*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59340) lies on these lines: {1, 3}, {8, 43161}, {9, 5691}, {10, 6836}, {20, 1709}, {63, 4297}, {84, 191}, {90, 6868}, {212, 21147}, {219, 21872}, {224, 3869}, {376, 1158}, {377, 516}, {388, 5759}, {411, 997}, {442, 1699}, {515, 41229}, {573, 1723}, {758, 10884}, {920, 59345}, {936, 44425}, {946, 6889}, {950, 15299}, {960, 7580}, {962, 12609}, {990, 2292}, {991, 54421}, {1334, 1766}, {1445, 6738}, {1452, 37441}, {1490, 5692}, {1695, 10974}, {1698, 6831}, {1706, 9588}, {1708, 3486}, {1728, 6987}, {1737, 6865}, {1768, 9841}, {1770, 6916}, {1780, 4221}, {1794, 56148}, {1836, 37424}, {1838, 37414}, {2245, 2257}, {2328, 16049}, {2801, 3951}, {2944, 2947}, {2951, 5784}, {2954, 13734}, {3146, 54370}, {3305, 19925}, {3522, 56288}, {3633, 7966}, {3634, 6860}, {3646, 7988}, {3651, 6261}, {3654, 34720}, {3679, 37428}, {3715, 9947}, {3877, 35976}, {3878, 12511}, {3895, 43175}, {3899, 7971}, {3927, 12680}, {3928, 39783}, {3929, 10864}, {4190, 9778}, {4295, 37108}, {4333, 31775}, {4423, 5806}, {4512, 37228}, {4640, 37022}, {4847, 43174}, {5252, 31799}, {5258, 12650}, {5450, 21165}, {5657, 6899}, {5687, 58637}, {5693, 41854}, {5732, 12526}, {5758, 13407}, {5762, 10404}, {5763, 17718}, {5787, 21677}, {5887, 50528}, {6001, 37426}, {6284, 54304}, {6361, 6897}, {6684, 6833}, {6765, 15104}, {6825, 37692}, {6827, 10826}, {6838, 21616}, {6862, 31423}, {6890, 19843}, {6908, 12047}, {6910, 10164}, {6917, 41869}, {6925, 52860}, {6934, 31730}, {6977, 48363}, {6984, 18483}, {6986, 54318}, {7308, 7989}, {7414, 57276}, {7713, 37194}, {7992, 12671}, {8583, 37229}, {9121, 50530}, {9798, 26935}, {9961, 43178}, {10431, 12617}, {10444, 18698}, {11220, 11684}, {11471, 14018}, {11522, 28628}, {12559, 18444}, {12565, 41853}, {12686, 37429}, {12688, 41860}, {12699, 37438}, {12705, 37468}, {13329, 54418}, {13727, 31359}, {14257, 40971}, {15852, 16466}, {15909, 38052}, {16132, 54212}, {16139, 24467}, {16143, 44782}, {16471, 37062}, {17528, 50865}, {17857, 31837}, {18391, 37423}, {18446, 31806}, {18481, 26921}, {18518, 58630}, {19541, 25917}, {19861, 35979}, {21160, 37277}, {24914, 37364}, {25941, 35980}, {26446, 37356}, {28174, 44222}, {30308, 50740}, {37402, 54323}, {37499, 40937}, {42012, 57287}, {44025, 51955}, {51706, 55109}, {51717, 56387}, {52769, 54392}

X(59340) = reflection of X(55109) in X(51706)
X(59340) = X(968)-zayin conjugate of-X(1709)
X(59340) = pole of the line {7989, 50036} with respect to the Kiepert circumhyperbola
X(59340) = pole of the line {21, 1709} with respect to the Stammler hyperbola
X(59340) = X(7503)-of-excentral triangle, when ABC is acute
X(59340) = X(7399)-of-6th mixtilinear triangle, when ABC is acute


X(59341) = X(46)-HARMONIC MEAN OF (X(35), X(40))

Barycentrics    a*(a^6-(b+3*c)*(3*b+c)*a^4+(b^2+c^2)*(3*b^2+8*b*c+3*c^2)*a^2-(b^2-c^2)^2*(b-c)^2) : :

X(59341) lies on these lines: {1, 3}, {72, 56583}, {90, 4302}, {1478, 7162}, {1698, 37359}, {2961, 47487}, {4324, 7330}, {4330, 30223}, {15296, 50239}, {15338, 26921}, {20013, 56288}, {31435, 41859}, {41229, 57287}


X(59342) = X(46)-HARMONIC MEAN OF (X(36), X(40))

Barycentrics    a*(a^6-3*(b+c)^2*a^4+4*(b+c)*b*c*a^3+(3*b^4+3*c^4+2*b*c*(2*b-c)*(b-2*c))*a^2-4*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59342) lies on these lines: {1, 3}, {9, 37710}, {84, 36975}, {90, 515}, {225, 31387}, {518, 41685}, {920, 944}, {952, 45632}, {960, 52050}, {1158, 21578}, {1478, 5250}, {1512, 10826}, {1706, 5445}, {1727, 10085}, {1728, 37711}, {1737, 12116}, {1768, 12687}, {1770, 10532}, {1788, 10806}, {3474, 10597}, {4295, 10587}, {4311, 7284}, {5541, 12750}, {6762, 7972}, {7082, 18525}, {7098, 7967}, {7162, 31397}, {7288, 48363}, {7951, 31435}, {8609, 54420}, {10198, 37692}, {10483, 12705}, {10527, 54286}, {10827, 24987}, {10941, 11239}, {10943, 24914}, {10944, 26921}, {10957, 26446}, {12514, 45287}, {12647, 55104}, {15299, 37721}, {17606, 18544}, {37707, 57279}, {37708, 41229}, {49168, 51433}

X(59342) = pole of the line {1756, 12704} with respect to the 1st Evans circle
X(59342) = X(11510)-of-Aquila triangle


X(59343) = X(2)-HARMONIC MEAN OF (X(20), X(22))

Barycentrics    7*a^6+(b^2+c^2)*a^4-(7*b^4+2*b^2*c^2+7*c^4)*a^2-(b^4-c^4)*(b^2-c^2) : :

X(59343) lies on these lines: {2, 3}, {154, 48881}, {343, 14927}, {1350, 11206}, {1384, 40179}, {1503, 33522}, {1799, 32815}, {3098, 14826}, {3100, 29815}, {3101, 20020}, {3164, 8267}, {3167, 48874}, {3313, 41715}, {3785, 16276}, {3796, 51212}, {4293, 5310}, {4294, 5322}, {4296, 17024}, {4299, 7298}, {4302, 5345}, {5986, 20094}, {6000, 33523}, {6527, 40002}, {7172, 10538}, {8280, 42276}, {8281, 42275}, {10519, 31383}, {11427, 29181}, {11433, 44882}, {11821, 26883}, {12058, 33884}, {12220, 40673}, {13366, 54132}, {14853, 22352}, {14930, 22240}, {15589, 20477}, {17811, 40911}, {18289, 42267}, {18290, 42266}, {18950, 47582}, {19137, 45816}, {20080, 41464}, {23292, 48872}, {25406, 33586}, {32064, 48905}, {33090, 52366}, {33091, 52365}, {33750, 43650}, {34515, 41946}, {34516, 41945}, {34781, 46728}, {36413, 36414}, {37649, 51538}, {39955, 52187}, {46717, 46944}, {47586, 54636}, {48879, 58447}

X(59343) = anticomplement of X(7378)
X(59343) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (18841, 21270), (58102, 7253)
X(59343) = X(7378)-Dao conjugate of-X(7378)
X(59343) = pole of the line {523, 47650} with respect to the power circles radical circle


X(59344) = X(2)-HARMONIC MEAN OF (X(21), X(22))

Barycentrics    a*(2*a^5-b*c*a^3-(b+c)*b*c*a^2-(2*b^4+2*c^4+b*c*(b+c)^2)*a-b*c*(b+c)*(b^2+c^2)) : :

X(59344) lies on these lines: {2, 3}, {35, 10327}, {55, 20020}, {154, 26637}, {345, 33091}, {614, 5267}, {993, 5310}, {2975, 19993}, {3744, 28606}, {5248, 5322}, {7054, 36414}, {7191, 37817}, {8267, 17002}, {17024, 18607}, {19789, 41230}, {39955, 39974}, {45962, 56934}, {52680, 54426}


X(59345) = X(4)-HARMONIC MEAN OF (X(20), X(21))

Barycentrics    5*a^7-5*(b+c)*a^6-(9*b^2-2*b*c+9*c^2)*a^5+(b+c)*(9*b^2-10*b*c+9*c^2)*a^4+(3*b^2+c^2)*(b^2+3*c^2)*a^3-(b^2-c^2)*(b-c)*(3*b^2-2*b*c+3*c^2)*a^2+(b^2-c^2)^2*(b-c)^2*a-(b^2-c^2)^3*(b-c) : :

X(59345) lies on these lines: {1, 45636}, {2, 3}, {7, 1385}, {40, 3486}, {63, 944}, {84, 4297}, {90, 55964}, {165, 10572}, {329, 33597}, {355, 5273}, {388, 10902}, {390, 22770}, {497, 11012}, {515, 10268}, {517, 4313}, {572, 57286}, {573, 40979}, {920, 59340}, {938, 37623}, {952, 54398}, {960, 12671}, {1056, 10267}, {1058, 11249}, {1071, 3869}, {1249, 2193}, {1259, 3421}, {2096, 10884}, {2551, 6796}, {3085, 11827}, {3428, 4294}, {3485, 3576}, {3488, 5709}, {3655, 28610}, {3868, 7967}, {3916, 5768}, {4293, 30264}, {4299, 15931}, {4302, 59320}, {4305, 10391}, {5082, 37000}, {5218, 15865}, {5584, 15338}, {5657, 57287}, {5698, 5732}, {5703, 5812}, {5735, 13464}, {5758, 24929}, {5759, 7675}, {5777, 54051}, {5818, 54357}, {5842, 19843}, {5882, 34610}, {5887, 9960}, {6282, 10393}, {7982, 10385}, {7987, 12047}, {8158, 10386}, {8164, 10526}, {8273, 15326}, {9778, 31788}, {9799, 18481}, {10122, 37625}, {10246, 11036}, {10305, 56100}, {10319, 36986}, {10394, 51489}, {10595, 55109}, {10629, 36152}, {11020, 24474}, {11220, 25712}, {11362, 34607}, {12114, 43161}, {12246, 41854}, {12512, 37560}, {12572, 52026}, {12700, 30332}, {14912, 54383}, {16208, 45287}, {21168, 31837}, {21228, 22097}, {24953, 36999}, {30478, 48482}, {30503, 31730}, {31245, 52837}, {32613, 35250}, {34231, 54320}, {35239, 35514}

X(59345) = pole of the line {185, 6988} with respect to the Jerabek circumhyperbola
X(59345) = pole of the line {69, 37468} with respect to the Steiner-Wallace hyperbola
X(59345) = X(6908)-of-ABC-X3 reflections triangle
X(59345) = X(6824)-of-anti-Euler triangle


X(59346) = X(4)-HARMONIC MEAN OF (X(20), X(22))

Barycentrics    5*a^10-9*(b^2+c^2)*a^8-2*(b^2+c^2)^2*a^6+2*(b^2+c^2)*(5*b^4-2*b^2*c^2+5*c^4)*a^4-(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

X(59346) lies on these lines: {2, 3}, {52, 12220}, {69, 9833}, {193, 31804}, {389, 25406}, {511, 18925}, {569, 19121}, {578, 1176}, {1249, 10316}, {1350, 5596}, {3785, 20477}, {5085, 11745}, {5092, 9815}, {5562, 11206}, {6193, 37486}, {6247, 48905}, {6337, 44128}, {6527, 7767}, {6696, 34775}, {6776, 17834}, {7581, 11417}, {7582, 11418}, {9643, 10385}, {9786, 44882}, {10282, 37669}, {11179, 16625}, {11411, 37478}, {11425, 29181}, {11442, 40241}, {11821, 17814}, {12283, 21651}, {13203, 22109}, {13346, 48873}, {13394, 43841}, {14216, 14927}, {14853, 37476}, {15644, 25712}, {18909, 46264}, {18919, 44470}, {18931, 48898}, {18935, 37488}, {19149, 48881}, {34780, 44683}, {36987, 41715}, {37480, 53050}

X(59346) = X(3088)-of-ABC-X3 reflections triangle
X(59346) = X(3547)-of-anti-Euler triangle


X(59347) = X(5)-HARMONIC MEAN OF (X(20), X(21))

Barycentrics    6*a^7-6*(b+c)*a^6-(11*b^2-6*b*c+11*c^2)*a^5+(b+c)*(11*b^2-12*b*c+11*c^2)*a^4+2*(2*b^4+2*c^4-b*c*(b^2-6*b*c+c^2))*a^3-2*(b^2-c^2)*(b-c)*(2*b^2-b*c+2*c^2)*a^2+(b^2-4*b*c+c^2)*(b^2-c^2)^2*a-(b^2-c^2)^3*(b-c) : :

X(59347) lies on these lines: {2, 3}, {63, 37727}, {80, 9588}, {1071, 3878}, {1385, 51423}, {3057, 18389}, {4271, 40979}, {4292, 15950}, {4304, 10950}, {4313, 37728}, {5119, 54432}, {5248, 30264}, {5690, 11015}, {5734, 51683}, {5881, 31424}, {6265, 10884}, {9670, 26475}, {9859, 9945}, {10954, 31452}, {11220, 40266}, {17616, 31838}, {17637, 31806}, {52860, 58221}, {57288, 59331}


X(59348) = X(5)-HARMONIC MEAN OF (X(20), X(22))

Barycentrics    6*a^10-11*(b^2+c^2)*a^8-2*(b^4+6*b^2*c^2+c^4)*a^6+12*(b^2+c^2)*(b^4+c^4)*a^4-4*(b^2-c^2)^2*(b^4+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3 : :

X(59348) lies on these lines: {2, 3}, {511, 11577}, {1092, 48881}, {2980, 36988}, {3564, 41464}, {7796, 38434}, {9936, 37486}, {10938, 52093}, {11271, 34380}, {11431, 25406}, {19357, 48873}, {29323, 32348}


X(59349) = X(20)-HARMONIC MEAN OF (X(4), X(22))

Barycentrics    a^10-3*(b^2+c^2)*a^8+2*(b^4-4*b^2*c^2+c^4)*a^6+2*(b^2+c^2)^3*a^4-(b^2-c^2)^2*(3*b^4-2*b^2*c^2+3*c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

X(59349) lies on these lines: {2, 3}, {40, 56456}, {69, 11441}, {84, 56457}, {193, 44492}, {311, 6527}, {317, 51031}, {343, 1498}, {394, 16252}, {914, 15836}, {1176, 14457}, {1181, 6515}, {1350, 28419}, {1352, 26883}, {1587, 11418}, {1588, 11417}, {1614, 6193}, {2888, 5596}, {3085, 3100}, {3086, 4296}, {3574, 31670}, {3580, 18909}, {3620, 15052}, {3796, 12241}, {5286, 22240}, {5334, 11420}, {5335, 11421}, {5552, 52365}, {5654, 10625}, {5656, 12111}, {5709, 56448}, {5907, 43653}, {6247, 37638}, {6776, 19121}, {6800, 18925}, {7330, 56449}, {8549, 54184}, {8718, 11457}, {9643, 10056}, {9786, 32269}, {9815, 34417}, {9820, 37483}, {9914, 41602}, {10192, 35602}, {10316, 41370}, {10519, 11444}, {10527, 52366}, {10601, 15873}, {10984, 39571}, {11206, 14516}, {11402, 13142}, {11411, 11456}, {11425, 13394}, {11440, 12250}, {11442, 34781}, {11793, 12058}, {12220, 14853}, {12233, 33586}, {13219, 19164}, {13347, 54012}, {14249, 17907}, {14927, 34775}, {15072, 18913}, {15589, 51884}, {16657, 37476}, {18916, 41587}, {18945, 50435}, {21659, 35268}, {22660, 37486}, {23328, 46349}, {26937, 46850}, {30737, 32828}, {32605, 41716}, {34207, 41735}, {35260, 54040}, {37498, 37645}, {40241, 58922}, {43537, 54777}, {43605, 45794}, {43695, 54211}, {44503, 51171}, {52093, 58378}

X(59349) = anticomplement of X(3541)
X(59349) = X(3541)-Dao conjugate of-X(3541)
X(59349) = pole of the line {69, 8549} with respect to the Steiner-Wallace hyperbola


X(59350) = X(20)-HARMONIC MEAN OF (X(5), X(21))

Barycentrics    3*a^7-3*(b+c)*a^6-(7*b^2-3*b*c+7*c^2)*a^5+(b+c)*(7*b^2-6*b*c+7*c^2)*a^4+(5*b^4+5*c^4+2*b*c*(b^2+3*b*c+c^2))*a^3-(b^2-c^2)*(b-c)*(5*b^2+2*b*c+5*c^2)*a^2-(b^2-c^2)^2*(b^2+5*b*c+c^2)*a+(b^2-c^2)^3*(b-c) : :

X(59350) lies on these lines: {2, 3}, {7, 5443}, {63, 9624}, {80, 4313}, {153, 10198}, {3616, 5693}, {3878, 5273}, {5550, 9809}, {9956, 11015}, {11036, 15950}, {11220, 31828}, {11362, 54357}, {11813, 31424}, {18389, 50190}, {31399, 57287}


X(59351) = X(20)-HARMONIC MEAN OF (X(5), X(22))

Barycentrics    3*a^10-7*(b^2+c^2)*a^8+2*(b^4-3*b^2*c^2+c^4)*a^6+6*(b^2+c^2)*(b^4+c^4)*a^4-5*(b^2-c^2)^2*(b^4+c^4)*a^2+(b^4-c^4)*(b^2-c^2)^3 : :

X(59351) lies on these lines: {2, 3}, {1614, 9936}, {2888, 11206}, {2916, 41257}, {3100, 31452}, {5218, 9628}, {5319, 22240}, {6293, 51261}, {7689, 44866}, {11420, 40694}, {11421, 40693}, {14561, 41464}, {15080, 39571}, {17821, 54040}, {25406, 43816}, {35237, 43607}

X(59351) = anticomplement of the polar conjugate of X(54907)
X(59351) = X(54907)-anticomplementary conjugate of-X(21270)


X(59352) = X(20)-HARMONIC MEAN OF (X(21), X(22))

Barycentrics    a*(2*a^9-(4*b^2+5*b*c+4*c^2)*a^7-5*(b+c)*b*c*a^6+(b+c)^2*b*c*a^5+(b+c)*(b^2+c^2)*b*c*a^4+(4*b^4+4*c^4-b*c*(3*b^2-2*b*c+3*c^2))*(b+c)^2*a^3+(b+c)*(5*b^4-2*b^2*c^2+5*c^4)*b*c*a^2-(b^2-c^2)^2*(2*b^4+2*c^4+b*c*(b+c)^2)*a-(b^4-c^4)*(b^2-c^2)*b*c*(b+c)) : :

X(59352) lies on these lines: {2, 3}, {347, 1612}, {4296, 37817}, {4329, 5248}, {9538, 28606}, {19121, 54383}


X(59353) = X(21)-HARMONIC MEAN OF (X(2), X(22))

Barycentrics    a*(a^5+b*c*a^3+(b+c)*b*c*a^2-(b^4+c^4-b*c*(b+c)^2)*a+b*c*(b^2+c^2)*(b+c)) : :

X(59353) lies on these lines: {1, 8897}, {2, 3}, {31, 1716}, {42, 20769}, {55, 17321}, {69, 37538}, {81, 54426}, {100, 612}, {105, 833}, {184, 15988}, {193, 44094}, {274, 33651}, {345, 1376}, {614, 5253}, {993, 5345}, {1014, 45962}, {1194, 2092}, {1196, 5277}, {1211, 5347}, {1245, 57280}, {1402, 1441}, {1460, 30479}, {1621, 5310}, {1812, 4259}, {1824, 27059}, {2203, 19121}, {2355, 26998}, {2975, 5322}, {2979, 26637}, {3415, 51630}, {3871, 3920}, {4265, 6703}, {4357, 5285}, {5019, 33854}, {5096, 5743}, {5248, 7298}, {5268, 25440}, {5272, 37817}, {5329, 50295}, {5337, 40984}, {5358, 20083}, {5362, 54363}, {5367, 54362}, {5955, 29679}, {7081, 23661}, {7085, 17257}, {8185, 19784}, {9058, 45136}, {11574, 44092}, {14555, 36741}, {19724, 19769}, {19786, 41230}, {19798, 19850}, {22390, 41243}, {24320, 26065}, {25527, 51687}, {26206, 44086}, {27396, 40131}, {27644, 44118}, {27802, 54433}, {40582, 40938}

X(59353) = pole of the line {37325, 44420} with respect to the Parry circle
X(59353) = pole of the line {24211, 40940} with respect to the circumhyperbola dual of Yff parabola


X(59354) = X(21)-HARMONIC MEAN OF (X(3), X(22))

Barycentrics    a^2*(a^5+(b+c)*a^4+b*c*a^3-(b^4+c^4+b*c*(b^2+b*c+c^2))*a-(b^3+c^3)*(b^2+b*c+c^2)) : :

X(59354) lies on these lines: {2, 3}, {35, 28606}, {60, 4259}, {100, 37557}, {970, 22352}, {1437, 2979}, {1621, 49553}, {2933, 7087}, {3220, 54337}, {3579, 45839}, {3701, 51630}, {3868, 5285}, {3871, 8193}, {3876, 5314}, {4278, 24598}, {5012, 5752}, {5248, 9591}, {5260, 8185}, {5329, 57280}, {5347, 19767}, {7280, 37817}, {9544, 22136}, {9780, 20989}, {17321, 20872}, {19850, 41230}, {25440, 32779}

X(59354) = pole of the line {523, 21301} with respect to the circumcircle
X(59354) = pole of the line {110, 59112} with respect to the Kiepert parabola


X(59355) = X(21)-HARMONIC MEAN OF (X(4), X(20))

Barycentrics    2*a^7-2*(b+c)*a^6-(3*b^2+b*c+3*c^2)*a^5+(b+c)*(3*b^2-4*b*c+3*c^2)*a^4+4*b^2*c^2*a^3+2*(b^2-c^2)*(b-c)*b*c*a^2+(b+c)*(b^2-c^2)*(b^3-c^3)*a-(b^2-c^2)^3*(b-c) : :
X(59355) = 3*X(34617)-2*X(37727)

X(59355) lies on these lines: {2, 3}, {7, 3486}, {8, 6253}, {63, 5086}, {84, 5535}, {515, 3868}, {516, 3869}, {517, 12111}, {528, 12536}, {535, 54422}, {920, 4333}, {944, 55109}, {950, 11020}, {956, 2894}, {962, 5842}, {1071, 28160}, {1259, 5080}, {1503, 54383}, {1754, 56840}, {1770, 9961}, {1836, 45230}, {1858, 15726}, {2829, 9799}, {3188, 4872}, {3218, 5787}, {3485, 4313}, {3617, 31799}, {4292, 5902}, {4297, 5249}, {4301, 34611}, {4304, 12047}, {5057, 5538}, {5178, 41338}, {5208, 10454}, {5221, 10430}, {5273, 57288}, {5706, 46441}, {5735, 11520}, {5840, 9963}, {5885, 28168}, {5887, 28146}, {6261, 11015}, {7675, 52835}, {7965, 31936}, {7991, 49719}, {8680, 43708}, {9579, 10393}, {9800, 11826}, {10394, 52819}, {10441, 38480}, {10444, 10464}, {11036, 18990}, {11449, 51420}, {11681, 44425}, {12447, 28158}, {12520, 20292}, {12699, 21740}, {13478, 34243}, {15016, 28172}, {17080, 40950}, {18444, 18481}, {19925, 54357}, {28154, 31937}, {33108, 59320}, {34035, 56819}, {34617, 37727}, {36999, 52367}, {43740, 54391}

X(59355) = reflection of X(i) in X(j) for these (i, j): (8, 6253), (9961, 1770)
X(59355) = inverse of X(27086) in excentral-hexyl ellipse
X(59355) = pole of the line {6003, 27086} with respect to the excentral-hexyl ellipse
X(59355) = pole of the line {1858, 10883} with respect to the Feuerbach circumhyperbola
X(59355) = pole of the line {185, 6828} with respect to the Jerabek circumhyperbola
X(59355) = X(15096)-of-inner-Garcia triangle
X(59355) = X(5889)-of-Conway triangle, when ABC is acute


X(59356) = X(21)-HARMONIC MEAN OF (X(5), X(20))

Barycentrics    3*a^7-3*(b+c)*a^6-(4*b^2-3*b*c+4*c^2)*a^5+2*(b+c)*(2*b^2-3*b*c+2*c^2)*a^4-(b^4+c^4+2*b*c*(2*b^2-3*b*c+2*c^2))*a^3+(b^2-c^2)*(b-c)*(b^2+4*b*c+c^2)*a^2+(2*b^2+b*c+2*c^2)*(b^2-c^2)^2*a-2*(b^2-c^2)^3*(b-c) : :

X(59356) lies on these lines: {2, 3}, {7, 9657}, {63, 37714}, {80, 4292}, {946, 11015}, {1389, 37727}, {1788, 12943}, {3616, 36999}, {3868, 5881}, {3871, 26332}, {3878, 9589}, {4301, 57287}, {4304, 5443}, {4313, 9670}, {4324, 12558}, {5249, 51683}, {5425, 45287}, {5691, 11220}, {5735, 14923}, {6265, 9963}, {6326, 16125}, {9779, 12953}, {10595, 18499}, {10609, 15911}, {10724, 18483}, {10954, 31410}, {11020, 37723}, {11036, 37728}, {15069, 54383}, {16118, 31871}


X(59357) = X(21)-HARMONIC MEAN OF (X(20), X(22))

Barycentrics    a*(a^9-(2*b^2+7*b*c+2*c^2)*a^7-7*(b+c)*b*c*a^6-(b^2+8*b*c+c^2)*b*c*a^5-(b+c)*(b^2+c^2)*b*c*a^4+(2*b^4+2*c^4+b*c*(3*b^2-2*b*c+3*c^2))*(b+c)^2*a^3+(b+c)*(7*b^4+2*b^2*c^2+7*c^4)*b*c*a^2-(b^2-c^2)^2*(b^4+c^4-b*c*(b+c)^2)*a+(b^4-c^4)*(b^2-c^2)*b*c*(b+c)) : :

X(59357) lies on these lines: {2, 3}, {1612, 23536}, {3101, 3871}, {3868, 7289}


X(59358) = X(22)-HARMONIC MEAN OF (X(2), X(21))

Barycentrics    a*(a^5-2*b*c*a^3-2*(b+c)*b*c*a^2-(b^4+c^4+2*b*c*(b+c)^2)*a-2*b*c*(b+c)*(b^2+c^2)) : :

X(59358) lies on these lines: {2, 3}, {55, 29667}, {56, 29648}, {345, 1621}, {612, 5251}, {614, 5259}, {956, 29815}, {958, 3920}, {1001, 7191}, {1627, 5275}, {2895, 37492}, {3295, 33090}, {4423, 29666}, {4653, 54426}, {5260, 10327}, {5283, 5359}, {5284, 17321}, {7293, 17306}, {8024, 16992}, {9708, 33091}, {11442, 26543}, {18018, 40412}, {19765, 54341}, {19822, 41230}, {20242, 24552}, {24686, 25359}, {29647, 37576}, {32782, 36740}, {33175, 54312}


X(59359) = X(22)-HARMONIC MEAN OF (X(3), X(21))

Barycentrics    a^2*(a^5+(b+c)*a^4+4*b*c*a^3-(b^4+c^4+4*b*c*(b^2+b*c+c^2))*a-(b+c)*(b^4+4*b^2*c^2+c^4)) : :

X(59359) lies on these lines: {1, 54337}, {2, 3}, {6, 38858}, {35, 37817}, {36, 27785}, {55, 17016}, {56, 28606}, {60, 16471}, {197, 5260}, {345, 2975}, {958, 32779}, {961, 37579}, {970, 5422}, {1036, 17127}, {1612, 40292}, {1722, 5010}, {1791, 17776}, {1993, 13323}, {2285, 37583}, {2979, 36746}, {3601, 5314}, {5251, 39582}, {5253, 17321}, {5329, 10448}, {5530, 59334}, {7085, 34772}, {9609, 44520}, {15489, 43650}, {16824, 34868}, {16948, 36740}, {27396, 54322}, {34872, 54416}

X(59359) = pole of the line {3, 5799} with respect to the Stammler hyperbola
X(59359) = pole of the line {69, 41723} with respect to the Steiner-Wallace hyperbola


X(59360) = X(3)X(206)∩X(4)X(122)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^16 - a^14*b^2 - a^12*b^4 - a^10*b^6 + a^8*b^8 + 5*a^6*b^10 - 3*a^4*b^12 - 3*a^2*b^14 + 2*b^16 - a^14*c^2 + 2*a^12*b^2*c^2 + 3*a^10*b^4*c^2 - 6*a^8*b^6*c^2 - 3*a^6*b^8*c^2 + 6*a^4*b^10*c^2 + a^2*b^12*c^2 - 2*b^14*c^2 - a^12*c^4 + 3*a^10*b^2*c^4 + 10*a^8*b^4*c^4 - 2*a^6*b^6*c^4 - 5*a^4*b^8*c^4 - a^2*b^10*c^4 - 4*b^12*c^4 - a^10*c^6 - 6*a^8*b^2*c^6 - 2*a^6*b^4*c^6 + 4*a^4*b^6*c^6 + 3*a^2*b^8*c^6 + 2*b^10*c^6 + a^8*c^8 - 3*a^6*b^2*c^8 - 5*a^4*b^4*c^8 + 3*a^2*b^6*c^8 + 4*b^8*c^8 + 5*a^6*c^10 + 6*a^4*b^2*c^10 - a^2*b^4*c^10 + 2*b^6*c^10 - 3*a^4*c^12 + a^2*b^2*c^12 - 4*b^4*c^12 - 3*a^2*c^14 - 2*b^2*c^14 + 2*c^16) : :

X(59360) lies on the cubic K1347 and these lines: {3, 206}, {4, 127}, {7404, 10002}, {7503, 8743}, {10316, 34137}, {12225, 51940}, {12605, 54393}, {30270, 54075}


X(59361) = X(3)X(1661)∩X(4)X(122)

Barycentrics    (a^2 - b^2 - c^2)^2*(a^12 - 9*a^8*b^4 + 16*a^6*b^6 - 9*a^4*b^8 + b^12 + 18*a^8*b^2*c^2 - 16*a^6*b^4*c^2 + 4*a^4*b^6*c^2 - 6*b^10*c^2 - 9*a^8*c^4 - 16*a^6*b^2*c^4 + 10*a^4*b^4*c^4 + 15*b^8*c^4 + 16*a^6*c^6 + 4*a^4*b^2*c^6 - 20*b^6*c^6 - 9*a^4*c^8 + 15*b^4*c^8 - 6*b^2*c^10 + c^12) : :
X(59361) = 3 X[2] + X[3346], 2 X[20329] + X[51342], 4 X[140] - X[42457], 5 X[631] - X[3183], 5 X[3091] + 3 X[54053], 9 X[3524] - X[36965], 11 X[3525] - 3 X[42452]

X(59361) lies on the cubic K1347 and these lines: {2, 3346}, {3, 1661}, {4, 122}, {5, 20203}, {20, 12096}, {30, 33531}, {140, 15274}, {216, 42458}, {631, 3183}, {1073, 6247}, {1217, 42468}, {2972, 26937}, {3086, 55044}, {3088, 46831}, {3089, 52543}, {3091, 54053}, {3357, 34842}, {3524, 36965}, {3525, 42452}, {3538, 26880}, {3546, 3788}, {3767, 35071}, {5925, 27089}, {6760, 9833}, {11589, 12250}, {12241, 37072}, {14059, 57329}, {20207, 55304}, {20265, 28783}, {20299, 55069}, {23328, 40675}, {34147, 34781}

X(59361) = midpoint of X(i) and X(j) for these {i,j}: {3, 33546}, {5, 20329}, {3346, 6523}
X(59361) = reflection of X(51342) in X(5)
X(59361) = complement of X(6523)
X(59361) = isotomic conjugate of the polar conjugate of X(54011)
X(59361) = X(i)-complementary conjugate of X(j) for these (i,j): {48, 3343}, {255, 6523}, {1032, 20305}, {28783, 226}, {47849, 5}
X(59361) = barycentric product X(69)*X(54011)
X(59361) = barycentric quotient X(54011)/X(4)
X(59361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3346, 6523}, {122, 14379, 4}


X(59362) = X(3)X(142)∩X(4)X(101)

Barycentrics    a^8 - 2*a^7*b + a^5*b^3 + a^4*b^4 - 2*a^2*b^6 + a*b^7 - 2*a^7*c + 2*a^6*b*c + 3*a^5*b^2*c - 3*a^4*b^3*c - a*b^6*c + b^7*c + 3*a^5*b*c^2 + 2*a^2*b^4*c^2 - 3*a*b^5*c^2 - 2*b^6*c^2 + a^5*c^3 - 3*a^4*b*c^3 + 3*a*b^4*c^3 - b^5*c^3 + a^4*c^4 + 2*a^2*b^2*c^4 + 3*a*b^3*c^4 + 4*b^4*c^4 - 3*a*b^2*c^5 - b^3*c^5 - 2*a^2*c^6 - a*b*c^6 - 2*b^2*c^6 + a*c^7 + b*c^7 : :

X(59362) lies on the cubic K1347 and these lines: {1, 1446}, {3, 142}, {4, 101}, {5, 58458}, {85, 47621}, {103, 17753}, {218, 43672}, {379, 1699}, {1503, 43149}, {1721, 24179}, {3332, 14986}, {3357, 22791}, {3576, 51708}, {3811, 29016}, {4209, 38690}, {5228, 11019}, {7513, 56146}, {9737, 29243}, {9778, 31016}, {9812, 14953}, {9895, 58637}, {10916, 28849}, {22836, 28850}, {42356, 58457}, {57108, 58280}


X(59363) = X(3)X(66)∩X(4)X(32)

Barycentrics    3*a^8 - 2*a^6*b^2 + 2*a^4*b^4 - 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 2*a^2*b^4*c^2 + 2*a^4*c^4 + 2*a^2*b^2*c^4 + 2*b^4*c^4 - 2*a^2*c^6 - c^8 : :
X(59363) = X[4] - 3 X[53015], 4 X[5] - 3 X[7694], 2 X[5] - 3 X[9756], X[20] + 3 X[3424], 4 X[9737] - 3 X[34511], 4 X[546] - 3 X[53017], 4 X[548] - 3 X[8719], 5 X[631] - 3 X[7710], X[3146] - 3 X[46034], 7 X[3528] - 3 X[15428], 7 X[3832] - 3 X[53016]

X(59363) lies on the cubic K1347 and these lines: {2, 42671}, {3, 66}, {4, 32}, {5, 7694}, {20, 76}, {30, 8667}, {39, 6776}, {64, 16096}, {69, 30270}, {140, 30794}, {147, 5152}, {187, 39647}, {194, 5984}, {216, 5596}, {237, 31383}, {315, 5999}, {376, 7810}, {382, 50774}, {441, 1853}, {485, 6222}, {486, 6399}, {511, 14023}, {512, 53173}, {516, 8669}, {542, 9737}, {546, 53017}, {548, 8719}, {574, 39874}, {577, 36851}, {631, 6292}, {1033, 46700}, {1078, 37182}, {1297, 51884}, {1350, 7767}, {1576, 23327}, {1899, 3148}, {1916, 40253}, {1975, 54996}, {2548, 13860}, {2549, 39646}, {2710, 2867}, {2782, 18768}, {2784, 49609}, {2909, 17974}, {3053, 36990}, {3090, 7889}, {3091, 7828}, {3146, 14712}, {3398, 14561}, {3523, 7832}, {3528, 15428}, {3543, 14568}, {3545, 34681}, {3564, 7758}, {3793, 48910}, {3818, 13335}, {3832, 53016}, {3926, 5921}, {3933, 15069}, {5007, 14853}, {5056, 7942}, {5065, 18935}, {5085, 8362}, {5158, 41719}, {5171, 6308}, {5191, 14003}, {5319, 9755}, {5337, 26118}, {5480, 30435}, {5868, 41034}, {5869, 41035}, {5870, 13935}, {5871, 9540}, {6287, 26316}, {6295, 34509}, {6314, 49039}, {6318, 49038}, {6337, 14981}, {6582, 34508}, {7487, 34285}, {7488, 33802}, {7612, 54846}, {7739, 55008}, {7749, 58883}, {7752, 22664}, {7772, 14912}, {7791, 12203}, {7793, 40236}, {7801, 11180}, {7803, 37336}, {7819, 10516}, {7822, 40330}, {7854, 10519}, {7862, 38745}, {7930, 10303}, {8182, 11645}, {8359, 43273}, {8369, 47353}, {8549, 23115}, {8550, 9605}, {8651, 11182}, {8722, 14927}, {9301, 43621}, {9744, 31401}, {9821, 48873}, {9924, 41008}, {10317, 18382}, {10606, 44248}, {10983, 39899}, {11155, 33215}, {11179, 37345}, {11261, 13334}, {11442, 37183}, {11550, 52144}, {11676, 46311}, {12042, 37466}, {12256, 39887}, {12257, 39888}, {13086, 40278}, {13442, 19761}, {13708, 41490}, {13828, 41491}, {14230, 36711}, {14233, 36712}, {14649, 53568}, {14830, 37809}, {14880, 37242}, {15583, 15905}, {16043, 25406}, {16083, 52641}, {16659, 52276}, {16925, 34473}, {18312, 32472}, {18911, 37335}, {19467, 54003}, {19659, 52052}, {19660, 52051}, {20079, 40680}, {20792, 26155}, {21163, 32990}, {21843, 43460}, {22869, 44667}, {22914, 44666}, {28724, 37444}, {30217, 34952}, {31411, 45407}, {31982, 35701}, {32064, 37188}, {32969, 36519}, {32970, 38737}, {32985, 51023}, {33008, 34624}, {33237, 47354}, {37342, 48466}, {37343, 48467}, {41038, 42159}, {41039, 42162}, {43653, 46546}, {54393, 58849}

X(59363) = reflection of X(i) in X(j) for these {i,j}: {7694, 9756}, {8721, 3}
X(59363) = crossdifference of every pair of points on line {684, 2485}
X(59363) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1352, 7795}, {4, 98, 3767}, {4, 9862, 36998}, {4, 36998, 7737}, {20, 3785, 5188}, {66, 157, 6389}, {98, 9873, 4}, {115, 36997, 4}, {141, 33582, 15594}, {5999, 9863, 315}, {9744, 37334, 31401}, {16043, 25406, 37479}


X(59364) = X(3)X(8)∩X(4)X(901)

Barycentrics    2*a^10 - 3*a^9*b - 6*a^8*b^2 + 10*a^7*b^3 + 6*a^6*b^4 - 12*a^5*b^5 - 2*a^4*b^6 + 6*a^3*b^7 - a*b^9 - 3*a^9*c + 10*a^8*b*c + 5*a^7*b^2*c - 31*a^6*b^3*c + 5*a^5*b^4*c + 31*a^4*b^5*c - 13*a^3*b^6*c - 9*a^2*b^7*c + 6*a*b^8*c - b^9*c - 6*a^8*c^2 + 5*a^7*b*c^2 + 2*a^6*b^2*c^2 + 23*a^5*b^3*c^2 - 18*a^4*b^4*c^2 - 25*a^3*b^5*c^2 + 22*a^2*b^6*c^2 - 3*a*b^7*c^2 + 10*a^7*c^3 - 31*a^6*b*c^3 + 23*a^5*b^2*c^3 - 30*a^4*b^3*c^3 + 32*a^3*b^4*c^3 + 9*a^2*b^5*c^3 - 17*a*b^6*c^3 + 4*b^7*c^3 + 6*a^6*c^4 + 5*a^5*b*c^4 - 18*a^4*b^2*c^4 + 32*a^3*b^3*c^4 - 44*a^2*b^4*c^4 + 15*a*b^5*c^4 - 12*a^5*c^5 + 31*a^4*b*c^5 - 25*a^3*b^2*c^5 + 9*a^2*b^3*c^5 + 15*a*b^4*c^5 - 6*b^5*c^5 - 2*a^4*c^6 - 13*a^3*b*c^6 + 22*a^2*b^2*c^6 - 17*a*b^3*c^6 + 6*a^3*c^7 - 9*a^2*b*c^7 - 3*a*b^2*c^7 + 4*b^3*c^7 + 6*a*b*c^8 - a*c^9 - b*c^9 : :

X(59364) lies on the cubic K1347 and these lines: {3, 8}, {4, 901}, {124, 26364}, {912, 17780}, {1158, 3667}, {1737, 23703}, {12245, 14511}, {25005, 37043}, {38614, 56420}, {46684, 51975}


X(59365) = X(3)X(10)∩X(4)X(109)

Barycentrics    a^10 - 3*a^8*b^2 + a^7*b^3 + 3*a^6*b^4 - 3*a^5*b^5 - a^4*b^6 + 3*a^3*b^7 - a*b^9 + 3*a^7*b^2*c - 5*a^6*b^3*c - 3*a^5*b^4*c + 9*a^4*b^5*c - 3*a^3*b^6*c - 3*a^2*b^7*c + 3*a*b^8*c - b^9*c - 3*a^8*c^2 + 3*a^7*b*c^2 + 6*a^5*b^3*c^2 - 3*a^4*b^4*c^2 - 9*a^3*b^5*c^2 + 6*a^2*b^6*c^2 + a^7*c^3 - 5*a^6*b*c^3 + 6*a^5*b^2*c^3 - 10*a^4*b^3*c^3 + 9*a^3*b^4*c^3 + 3*a^2*b^5*c^3 - 8*a*b^6*c^3 + 4*b^7*c^3 + 3*a^6*c^4 - 3*a^5*b*c^4 - 3*a^4*b^2*c^4 + 9*a^3*b^3*c^4 - 12*a^2*b^4*c^4 + 6*a*b^5*c^4 - 3*a^5*c^5 + 9*a^4*b*c^5 - 9*a^3*b^2*c^5 + 3*a^2*b^3*c^5 + 6*a*b^4*c^5 - 6*b^5*c^5 - a^4*c^6 - 3*a^3*b*c^6 + 6*a^2*b^2*c^6 - 8*a*b^3*c^6 + 3*a^3*c^7 - 3*a^2*b*c^7 + 4*b^3*c^7 + 3*a*b*c^8 - a*c^9 - b*c^9 : :

X(59365) lies on the cubic K1347 and these lines: {3, 10}, {4, 109}, {5, 58459}, {40, 23528}, {946, 34040}, {1158, 1726}, {1309, 18339}, {1854, 31866}, {3357, 33899}, {5587, 24537}, {5928, 6260}, {6261, 37558}, {34234, 44075}

X(59365) = {X(4),X(34030)}-harmonic conjugate of X(117)


X(59366) = X(3)X(96)∩X(4)X(11)

Barycentrics    a^2*(a^8 - 2*a^7*b - 2*a^6*b^2 + 6*a^5*b^3 - 6*a^3*b^5 + 2*a^2*b^6 + 2*a*b^7 - b^8 - 2*a^7*c + 6*a^6*b*c - 4*a^5*b^2*c - 8*a^4*b^3*c + 14*a^3*b^4*c - 2*a^2*b^5*c - 8*a*b^6*c + 4*b^7*c - 2*a^6*c^2 - 4*a^5*b*c^2 + 12*a^4*b^2*c^2 - 8*a^3*b^3*c^2 - 10*a^2*b^4*c^2 + 12*a*b^5*c^2 + 6*a^5*c^3 - 8*a^4*b*c^3 - 8*a^3*b^2*c^3 + 20*a^2*b^3*c^3 - 6*a*b^4*c^3 - 4*b^5*c^3 + 14*a^3*b*c^4 - 10*a^2*b^2*c^4 - 6*a*b^3*c^4 + 2*b^4*c^4 - 6*a^3*c^5 - 2*a^2*b*c^5 + 12*a*b^2*c^5 - 4*b^3*c^5 + 2*a^2*c^6 - 8*a*b*c^6 + 2*a*c^7 + 4*b*c^7 - c^8) : :
X(59366) = 3 X[3] - X[12330], X[12330] + 3 X[18237], X[10309] + 3 X[54052], X[49171] - 3 X[52027]

X(59366) lies on the cubic K1347 and these lines: {3, 960}, {4, 11}, {8, 411}, {21, 10309}, {35, 7971}, {36, 84}, {55, 21740}, {378, 3417}, {404, 14647}, {515, 6985}, {517, 8668}, {920, 17649}, {944, 10966}, {945, 53294}, {952, 40255}, {958, 6825}, {963, 15617}, {971, 26286}, {993, 6260}, {999, 13374}, {1012, 12047}, {1071, 8071}, {1125, 3560}, {1470, 1858}, {1490, 11012}, {1737, 3149}, {1854, 51236}, {1898, 34880}, {2077, 54156}, {2745, 6081}, {2800, 11248}, {2808, 9737}, {2975, 6838}, {3357, 38600}, {3485, 11496}, {3576, 37284}, {3612, 37287}, {3869, 10310}, {3884, 10267}, {5204, 52270}, {5253, 6837}, {5267, 54227}, {5584, 6876}, {5842, 6869}, {6256, 6842}, {6326, 11517}, {6705, 12617}, {6796, 35239}, {6824, 25524}, {6906, 22768}, {6909, 11415}, {6911, 12616}, {6924, 33899}, {7280, 7992}, {7680, 10321}, {8069, 12672}, {8583, 37561}, {9960, 12666}, {10393, 12675}, {10529, 50695}, {10572, 22767}, {10698, 10965}, {11508, 12758}, {12115, 22759}, {12332, 17100}, {12528, 48697}, {12686, 14803}, {14793, 15071}, {14988, 40245}, {18446, 26357}, {18515, 48664}, {18549, 22765}, {23843, 53292}, {26321, 40267}, {26927, 53252}, {30198, 34948}, {31937, 32612}, {32153, 37406}, {33597, 40292}, {35238, 40256}, {37234, 37535}

X(59366) = midpoint of X(i) and X(j) for these {i,j}: {3, 18237}, {1490, 49170}, {12114, 56889}
X(59366) = crossdifference of every pair of points on line {6588, 52307}
X(59366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 104, 22760}, {1158, 6261, 5887}, {5450, 12608, 3560}, {12114, 22775, 56}


X(59367) = X(3)X(76)∩X(4)X(805)

Barycentrics    b^2*c^2*(-a^16 + a^14*b^2 - 4*a^10*b^6 + 7*a^8*b^8 - 5*a^6*b^10 + 2*a^4*b^12 + a^14*c^2 + 4*a^12*b^2*c^2 - 7*a^10*b^4*c^2 + 8*a^8*b^6*c^2 + a^6*b^8*c^2 - 4*a^4*b^10*c^2 + a^2*b^12*c^2 - 7*a^10*b^2*c^4 + 7*a^8*b^4*c^4 - 10*a^6*b^6*c^4 + 8*a^4*b^8*c^4 - 5*a^2*b^10*c^4 + b^12*c^4 - 4*a^10*c^6 + 8*a^8*b^2*c^6 - 10*a^6*b^4*c^6 - 4*a^4*b^6*c^6 + 4*a^2*b^8*c^6 - 4*b^10*c^6 + 7*a^8*c^8 + a^6*b^2*c^8 + 8*a^4*b^4*c^8 + 4*a^2*b^6*c^8 + 6*b^8*c^8 - 5*a^6*c^10 - 4*a^4*b^2*c^10 - 5*a^2*b^4*c^10 - 4*b^6*c^10 + 2*a^4*c^12 + a^2*b^2*c^12 + b^4*c^12) : :

X(59367) lies on the cubic K1347 and these lines: {3, 76}, {4, 805}, {880, 3564}, {12251, 14510}, {17984, 35383}, {35387, 44155}, {47736, 51455}


X(59368) = X(3)X(74)∩X(4)X(476)

Barycentrics    a^2*(a^14 - 3*a^12*b^2 + 2*a^10*b^4 + 5*a^6*b^8 - 11*a^4*b^10 + 8*a^2*b^12 - 2*b^14 - 3*a^12*c^2 + 12*a^10*b^2*c^2 - 11*a^8*b^4*c^2 - 11*a^6*b^6*c^2 + 24*a^4*b^8*c^2 - 13*a^2*b^10*c^2 + 2*b^12*c^2 + 2*a^10*c^4 - 11*a^8*b^2*c^4 + 27*a^6*b^4*c^4 - 15*a^4*b^6*c^4 - 9*a^2*b^8*c^4 + 6*b^10*c^4 - 11*a^6*b^2*c^6 - 15*a^4*b^4*c^6 + 28*a^2*b^6*c^6 - 6*b^8*c^6 + 5*a^6*c^8 + 24*a^4*b^2*c^8 - 9*a^2*b^4*c^8 - 6*b^6*c^8 - 11*a^4*c^10 - 13*a^2*b^2*c^10 + 6*b^4*c^10 + 8*a^2*c^12 + 2*b^2*c^12 - 2*c^14) : :
X(59368) = 2 X[3] + X[52130]

X(59368) lies on the cubic K1347 and these lines: {2, 32417}, {3, 74}, {4, 476}, {5, 46045}, {20, 14508}, {186, 30510}, {631, 47050}, {1510, 15062}, {2071, 16186}, {3448, 51254}, {3520, 38936}, {5889, 39138}, {7527, 18114}, {7740, 37941}, {10287, 14709}, {10288, 14710}, {13445, 46585}, {13754, 52603}, {14480, 15454}, {15053, 44889}, {18439, 59277}, {23108, 44826}, {53234, 55121}
on K1347

X(59368) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14264, 110}, {3, 14670, 14385}, {12041, 47055, 3}


X(59369) = X(3)X(49)∩X(4)X(131)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^12 - 3*a^10*b^2 + 4*a^8*b^4 - 6*a^6*b^6 + 9*a^4*b^8 - 7*a^2*b^10 + 2*b^12 - 3*a^10*c^2 + 8*a^8*b^2*c^2 - 4*a^6*b^4*c^2 - 10*a^4*b^6*c^2 + 15*a^2*b^8*c^2 - 6*b^10*c^2 + 4*a^8*c^4 - 4*a^6*b^2*c^4 + 10*a^4*b^4*c^4 - 8*a^2*b^6*c^4 + 6*b^8*c^4 - 6*a^6*c^6 - 10*a^4*b^2*c^6 - 8*a^2*b^4*c^6 - 4*b^6*c^6 + 9*a^4*c^8 + 15*a^2*b^2*c^8 + 6*b^4*c^8 - 7*a^2*c^10 - 6*b^2*c^10 + 2*c^12) : :

X(59369) lies on the cubic K1347 and these lines: {3, 49}, {4, 131}, {378, 34756}, {454, 37489}, {5448, 34844}, {7488, 59281}, {10539, 34333}, {12111, 54061}, {22660, 27087}

X(59369) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 155, 12095}, {4, 34853, 131}


X(59370) = X(3)X(113)∩X(4)X(477)

Barycentrics    a^14*b^2 - 2*a^12*b^4 - 4*a^10*b^6 + 15*a^8*b^8 - 15*a^6*b^10 + 4*a^4*b^12 + 2*a^2*b^14 - b^16 + a^14*c^2 - 2*a^12*b^2*c^2 + 7*a^10*b^4*c^2 - 19*a^8*b^6*c^2 + 16*a^6*b^8*c^2 + 5*a^4*b^10*c^2 - 12*a^2*b^12*c^2 + 4*b^14*c^2 - 2*a^12*c^4 + 7*a^10*b^2*c^4 + 6*a^8*b^4*c^4 - a^6*b^6*c^4 - 30*a^4*b^8*c^4 + 24*a^2*b^10*c^4 - 4*b^12*c^4 - 4*a^10*c^6 - 19*a^8*b^2*c^6 - a^6*b^4*c^6 + 42*a^4*b^6*c^6 - 14*a^2*b^8*c^6 - 4*b^10*c^6 + 15*a^8*c^8 + 16*a^6*b^2*c^8 - 30*a^4*b^4*c^8 - 14*a^2*b^6*c^8 + 10*b^8*c^8 - 15*a^6*c^10 + 5*a^4*b^2*c^10 + 24*a^2*b^4*c^10 - 4*b^6*c^10 + 4*a^4*c^12 - 12*a^2*b^2*c^12 - 4*b^4*c^12 + 2*a^2*c^14 + 4*b^2*c^14 - c^16 : :
X(59370) = 3 X[11911] - X[53319]

X(59370) lies on the cubic K1347 and these lines: {2, 32417}, {3, 113}, {4, 477}, {5, 523}, {20, 1553}, {30, 7740}, {110, 51254}, {125, 14264}, {403, 16186}, {511, 34104}, {526, 53235}, {684, 58257}, {1568, 15329}, {1650, 6000}, {3153, 30510}, {3470, 14644}, {5489, 32112}, {5502, 18400}, {7687, 9717}, {11911, 53319}, {14249, 16868}, {15081, 39239}, {15454, 55308}, {18388, 44889}, {18401, 53957}, {23108, 39509}, {23236, 41390}, {23329, 57526}, {33927, 36518}, {46585, 51403}, {52488, 55319}

X(59370) = reflection of X(18279) in X(5)
X(59370) = reflection of X(18279) in the Euler line
X(59370) = crossdifference of every pair of points on line {50, 46425}
X(59370) = {X(5),X(14670)}-harmonic conjugate of X(39170)


X(59371) = X(3)X(161)∩X(4)X(137)

Barycentrics    2*a^16 - 7*a^14*b^2 + 8*a^12*b^4 - 4*a^10*b^6 + 5*a^8*b^8 - 7*a^6*b^10 + 2*a^4*b^12 + 2*a^2*b^14 - b^16 - 7*a^14*c^2 + 16*a^12*b^2*c^2 - 11*a^10*b^4*c^2 - a^8*b^6*c^2 + 10*a^6*b^8*c^2 - 7*a^4*b^10*c^2 - 4*a^2*b^12*c^2 + 4*b^14*c^2 + 8*a^12*c^4 - 11*a^10*b^2*c^4 + 10*a^8*b^4*c^4 - 3*a^6*b^6*c^4 - 4*b^12*c^4 - 4*a^10*c^6 - a^8*b^2*c^6 - 3*a^6*b^4*c^6 + 10*a^4*b^6*c^6 + 2*a^2*b^8*c^6 - 4*b^10*c^6 + 5*a^8*c^8 + 10*a^6*b^2*c^8 + 2*a^2*b^6*c^8 + 10*b^8*c^8 - 7*a^6*c^10 - 7*a^4*b^2*c^10 - 4*b^6*c^10 + 2*a^4*c^12 - 4*a^2*b^2*c^12 - 4*b^4*c^12 + 2*a^2*c^14 + 4*b^2*c^14 - c^16 : :
X(59371) = 5 X[4] - 4 X[32536], 5 X[3091] - 4 X[33545], 7 X[3526] - 8 X[32904], 9 X[3545] - 8 X[34598], 5 X[3843] - 4 X[20414], 2 X[12103] - 3 X[35885]

X(59371) lies on the cubic K1347 and these lines: {3, 161}, {4, 137}, {20, 30484}, {30, 15619}, {548, 35721}, {1510, 43083}, {3091, 33545}, {3432, 15960}, {3526, 32904}, {3545, 34598}, {3843, 20414}, {12103, 35885}, {14072, 39171}, {31867, 39504}

X(59371) = midpoint of X(15619) and X(35728)
X(59371) = reflection of X(i) in X(j) for these {i,j}: {3, 52681}, {20, 30484}, {35721, 548}


X(59372) = 2ND TRISECTOR OF SEGMENT X(1)X(7)

Barycentrics    a^3 + 4*a^2*b - 3*a*b^2 - 2*b^3 + 4*a^2*c + 6*a*b*c + 2*b^2*c - 3*a*c^2 + 2*b*c^2 - 2*c^3 : :
X(59372) = X[1] + 2 X[7], 5 X[1] - 2 X[390], 2 X[1] + X[4312], X[1] - 4 X[5542], 3 X[1] - 2 X[8236], 7 X[1] - 4 X[30331], 11 X[1] - 2 X[30332], X[1] - 10 X[30340], 5 X[1] + 4 X[30424], 11 X[1] - 8 X[43179], X[1] + 8 X[43180], 5 X[7] + X[390], 4 X[7] - X[4312], X[7] + 2 X[5542], 3 X[7] + X[8236], 7 X[7] + 2 X[30331], 11 X[7] + X[30332], and many others

X(59372) lies on these lines: {1, 7}, {2, 5850}, {3, 41870}, {4, 45834}, {8, 38201}, {9, 583}, {11, 11034}, {36, 954}, {40, 5586}, {56, 38031}, {57, 5432}, {79, 10390}, {142, 1698}, {144, 1125}, {165, 553}, {226, 5817}, {354, 971}, {388, 37712}, {497, 3982}, {498, 8732}, {499, 8232}, {518, 599}, {527, 17561}, {551, 52653}, {726, 29573}, {942, 5290}, {946, 3062}, {952, 11529}, {1001, 5563}, {1056, 18421}, {1159, 16236}, {1210, 15841}, {1445, 3337}, {1737, 30275}, {1757, 31183}, {1836, 44841}, {2550, 3632}, {2801, 37718}, {3174, 10044}, {3243, 3633}, {3254, 25558}, {3333, 5843}, {3339, 5657}, {3361, 3487}, {3419, 33558}, {3474, 4114}, {3488, 28172}, {3555, 15587}, {3576, 5762}, {3601, 52783}, {3616, 20059}, {3649, 10085}, {3677, 17726}, {3742, 28609}, {3746, 11495}, {3751, 4859}, {3826, 37719}, {3868, 5833}, {3870, 26842}, {3873, 10861}, {3874, 41228}, {3881, 30628}, {3886, 7321}, {3889, 25722}, {4031, 5218}, {4644, 16469}, {4659, 4966}, {4666, 17483}, {4675, 7174}, {4677, 51100}, {4684, 42697}, {4851, 28472}, {4860, 5219}, {5045, 14100}, {5049, 31162}, {5119, 8255}, {5220, 19872}, {5221, 9588}, {5231, 31019}, {5249, 5785}, {5426, 17525}, {5541, 10427}, {5558, 31507}, {5572, 9614}, {5603, 24644}, {5660, 33995}, {5686, 19875}, {5691, 5805}, {5696, 15185}, {5708, 11231}, {5714, 10392}, {5715, 12005}, {5728, 9612}, {5729, 37692}, {5759, 7987}, {5779, 8227}, {5790, 38172}, {5819, 16667}, {5845, 16475}, {5851, 16173}, {5853, 51093}, {5856, 15015}, {5905, 10582}, {6172, 38059}, {7284, 34917}, {7290, 17365}, {7677, 37587}, {7994, 54178}, {8580, 9776}, {9624, 41705}, {9779, 11019}, {9814, 30384}, {10072, 38037}, {10122, 12669}, {10246, 51514}, {10384, 39542}, {10389, 11246}, {10394, 20116}, {10578, 31508}, {11230, 51516}, {11374, 38113}, {11531, 35514}, {12047, 30330}, {12053, 30343}, {13159, 16118}, {13405, 21454}, {15008, 50191}, {15430, 18216}, {15837, 37582}, {15933, 28164}, {15934, 28160}, {16113, 16137}, {16593, 24821}, {16673, 41325}, {16833, 34379}, {17272, 24325}, {17284, 49676}, {17296, 49483}, {17298, 24349}, {17300, 49446}, {17311, 49525}, {17313, 28582}, {17609, 31391}, {17728, 38108}, {18230, 34595}, {18482, 37723}, {18541, 28154}, {20533, 29602}, {23681, 33128}, {24929, 36971}, {25509, 27064}, {25590, 49511}, {26446, 38111}, {28212, 31393}, {29181, 49744}, {30286, 51782}, {30379, 31434}, {30408, 45707}, {30420, 45708}, {31053, 31249}, {31658, 32636}, {35445, 37703}, {37720, 42356}, {38094, 53620}, {38171, 54447}, {38210, 50835}, {38454, 59337}, {39581, 53598}, {41694, 50443}, {47359, 51195}, {48627, 49495}, {49445, 51058}, {50837, 51109}, {50839, 51097}, {50950, 51151}, {50952, 51002}, {51035, 51057}, {51706, 54422}

X(59372) = midpoint of X(i) and X(j) for these {i,j}: {7, 11038}, {3873, 10861}, {10246, 51514}
X(59372) = reflection of X(i) in X(j) for these {i,j}: {1, 11038}, {2, 38054}, {8, 38201}, {165, 21151}, {1699, 38036}, {3576, 38030}, {3679, 38052}, {5223, 38057}, {5587, 38107}, {5657, 38123}, {5686, 38204}, {5790, 38172}, {5886, 38041}, {6172, 38059}, {11038, 5542}, {15298, 17718}, {16173, 38055}, {16475, 38046}, {21168, 10165}, {24644, 5603}, {25055, 38024}, {26446, 38111}, {37701, 38056}, {37712, 38149}, {38052, 6173}, {38054, 51098}, {38057, 142}, {41861, 354}, {50835, 38210}, {50836, 38316}, {51516, 11230}, {51768, 16173}, {52653, 551}, {52665, 5817}, {53620, 38094}
X(59372) = crossdifference of every pair of points on line {657, 48306}
X(59372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7, 4312}, {1, 1373, 51764}, {1, 1374, 51763}, {1, 4902, 24248}, {1, 20121, 53617}, {7, 390, 30424}, {7, 5542, 1}, {7, 10004, 10481}, {7, 30340, 5542}, {142, 5223, 1698}, {175, 31570, 1}, {176, 31569, 1}, {354, 4654, 1699}, {481, 30341, 1}, {482, 30342, 1}, {553, 3475, 165}, {942, 8581, 18412}, {946, 36996, 3062}, {3339, 21620, 51784}, {3600, 12563, 1}, {3616, 20059, 51090}, {3638, 30345, 1}, {3639, 30344, 1}, {3664, 4310, 1}, {3671, 11037, 1}, {3945, 4353, 1}, {4298, 11036, 1}, {5542, 43180, 7}, {5686, 38204, 19875}, {5728, 58563, 18398}, {7988, 52665, 5817}, {10404, 11518, 5691}, {11372, 20330, 11522}, {11552, 30353, 4312}, {13405, 21454, 53056}, {30340, 43180, 1}


X(59373) = 2ND TRISECTOR OF SEGMENT X(2)X(6)

Barycentrics    7*a^2 + b^2 + c^2 : :
X(59373) = 5 X[1] - 2 X[51089], X[2] + 2 X[6], 4 X[2] - X[69], 7 X[2] - 4 X[141], 5 X[2] + X[193], X[2] - 4 X[597], 5 X[2] - 2 X[599], 2 X[2] + X[1992], 5 X[2] - 8 X[3589], 2 X[2] - 5 X[3618], 10 X[2] - 7 X[3619], 11 X[2] - 5 X[3620], 11 X[2] + 4 X[3629], 25 X[2] - 4 X[3630], 23 X[2] - 8 X[3631], 13 X[2] - 10 X[3763], 19 X[2] + 2 X[6144],and many others

X(59373) lies on these lines: {1, 51089}, {2, 6}, {3, 19661}, {4, 575}, {5, 11180}, {8, 47356}, {10, 50786}, {13, 54617}, {14, 54618}, {20, 51737}, {23, 47458}, {30, 5050}, {32, 8182}, {39, 7618}, {44, 26626}, {61, 37173}, {62, 37172}, {76, 54616}, {83, 5485}, {99, 14482}, {115, 8593}, {125, 41720}, {140, 11482}, {144, 17380}, {145, 17354}, {148, 51798}, {154, 23326}, {182, 376}, {184, 18919}, {187, 47061}, {190, 17014}, {192, 50779}, {238, 48830}, {275, 54771}, {287, 3163}, {315, 33230}, {344, 1449}, {346, 50121}, {373, 8681}, {381, 6776}, {393, 52281}, {399, 18489}, {427, 52719}, {428, 19118}, {439, 22332}, {458, 40138}, {468, 11405}, {487, 6417}, {488, 6418}, {511, 3524}, {518, 38023}, {519, 16475}, {530, 36758}, {531, 36757}, {536, 27480}, {541, 5622}, {542, 3545}, {543, 5034}, {547, 1353}, {549, 1351}, {550, 55701}, {551, 3751}, {574, 37809}, {576, 631}, {578, 43815}, {616, 22580}, {617, 22579}, {620, 50639}, {637, 44482}, {638, 44481}, {648, 5702}, {671, 18800}, {858, 47460}, {895, 5642}, {1003, 53142}, {1043, 51675}, {1078, 55783}, {1100, 26685}, {1176, 34608}, {1249, 36794}, {1285, 2030}, {1327, 54626}, {1328, 54625}, {1350, 15692}, {1352, 5071}, {1386, 3241}, {1444, 21509}, {1503, 3839}, {1570, 5215}, {1651, 51741}, {1691, 33008}, {1692, 3849}, {1698, 50781}, {1724, 50430}, {1743, 17321}, {1843, 58470}, {1885, 31371}, {1974, 7714}, {1975, 11148}, {1995, 32621}, {2330, 10385}, {2345, 17121}, {2393, 5640}, {2452, 34094}, {2482, 10754}, {2548, 7817}, {2549, 32479}, {2996, 54639}, {3066, 35266}, {3087, 52282}, {3090, 7856}, {3091, 8550}, {3098, 15698}, {3147, 8537}, {3161, 17393}, {3228, 11175}, {3242, 51006}, {3416, 51001}, {3448, 34319}, {3522, 10541}, {3523, 11477}, {3525, 22330}, {3528, 20190}, {3529, 55708}, {3530, 55724}, {3533, 40107}, {3534, 21850}, {3543, 5480}, {3544, 18553}, {3564, 5055}, {3567, 44479}, {3616, 4663}, {3617, 50783}, {3623, 50790}, {3672, 49748}, {3679, 51005}, {3707, 29603}, {3729, 50109}, {3758, 5222}, {3759, 5749}, {3767, 7617}, {3785, 43136}, {3818, 41106}, {3828, 50950}, {3830, 48906}, {3844, 51155}, {3855, 33749}, {3875, 50118}, {3926, 33237}, {4000, 17120}, {4232, 20192}, {4253, 46913}, {4254, 16431}, {4370, 32029}, {4393, 54389}, {4422, 29585}, {4470, 16816}, {4558, 33871}, {4644, 17367}, {4657, 16671}, {4677, 49684}, {4687, 51050}, {4688, 49496}, {4699, 51051}, {4700, 17308}, {4740, 49481}, {4741, 26104}, {4748, 29614}, {4856, 17286}, {4912, 17301}, {4916, 17268}, {4982, 29605}, {5007, 15810}, {5012, 19136}, {5013, 35287}, {5017, 33273}, {5021, 21937}, {5024, 27088}, {5026, 8591}, {5028, 7622}, {5038, 7738}, {5041, 7801}, {5052, 5569}, {5054, 5093}, {5056, 15069}, {5066, 18440}, {5067, 34507}, {5077, 18907}, {5085, 10304}, {5092, 19708}, {5095, 13169}, {5097, 15702}, {5102, 15708}, {5120, 16436}, {5158, 37188}, {5159, 47541}, {5207, 7884}, {5218, 8540}, {5286, 7620}, {5305, 16509}, {5309, 7615}, {5319, 14762}, {5395, 41895}, {5459, 18581}, {5460, 18582}, {5461, 5477}, {5462, 15073}, {5475, 53845}, {5503, 46236}, {5643, 8542}, {5645, 5648}, {5652, 9171}, {5839, 17368}, {5845, 38086}, {5846, 38087}, {5847, 19875}, {5848, 38090}, {5849, 38091}, {5921, 12007}, {5943, 11188}, {5965, 38223}, {5967, 9154}, {5969, 13331}, {6034, 9830}, {6036, 14494}, {6055, 10753}, {6118, 43431}, {6119, 43430}, {6172, 17320}, {6173, 51190}, {6174, 10755}, {6175, 51747}, {6179, 32960}, {6337, 8369}, {6353, 8541}, {6390, 22246}, {6419, 11291}, {6420, 11292}, {6421, 35305}, {6422, 35306}, {6593, 9143}, {6749, 37174}, {6803, 37505}, {7288, 19369}, {7392, 13366}, {7398, 17809}, {7426, 47457}, {7492, 37827}, {7493, 11416}, {7494, 11511}, {7581, 12323}, {7582, 12322}, {7619, 31401}, {7753, 16041}, {7755, 32975}, {7757, 9741}, {7758, 41940}, {7759, 33221}, {7760, 16045}, {7763, 33197}, {7772, 7863}, {7775, 7829}, {7786, 44500}, {7791, 9731}, {7797, 33006}, {7803, 7812}, {7809, 33196}, {7814, 32953}, {7841, 23334}, {7846, 32818}, {7858, 32951}, {7860, 33232}, {7864, 33192}, {7870, 14069}, {7883, 32956}, {7920, 33013}, {8356, 40825}, {8359, 30435}, {8360, 32816}, {8367, 32828}, {8368, 32837}, {8546, 14002}, {8597, 53499}, {8703, 12017}, {8705, 37909}, {8787, 11646}, {9019, 11002}, {9041, 38315}, {9140, 11061}, {9147, 9188}, {9167, 14645}, {9172, 10765}, {9466, 32451}, {9540, 9975}, {9606, 32989}, {9607, 32981}, {9698, 32977}, {9752, 40248}, {9760, 14137}, {9762, 14136}, {9777, 44210}, {9855, 53505}, {9974, 13935}, {9976, 20125}, {10124, 50978}, {10169, 11206}, {10192, 17813}, {10249, 54050}, {10299, 52987}, {10302, 18841}, {10303, 53858}, {10554, 40915}, {10602, 44212}, {10707, 51008}, {10982, 34621}, {11001, 31670}, {11003, 18374}, {11054, 52713}, {11159, 15048}, {11164, 53141}, {11172, 54509}, {11284, 53019}, {11286, 12215}, {11288, 12040}, {11303, 42999}, {11304, 42998}, {11317, 43448}, {11354, 48861}, {11411, 14787}, {11424, 15740}, {11451, 15531}, {11485, 35303}, {11486, 35304}, {11539, 34380}, {11574, 21969}, {11842, 23200}, {11898, 15703}, {12100, 33878}, {12151, 19570}, {12177, 12243}, {12220, 58471}, {12272, 22829}, {12317, 25556}, {12324, 34117}, {13337, 34990}, {13586, 50659}, {13587, 36740}, {13745, 19766}, {13857, 54012}, {14061, 41672}, {14093, 48874}, {14226, 54507}, {14241, 54503}, {14269, 38136}, {14688, 37749}, {14810, 15715}, {14831, 41716}, {14891, 55629}, {14977, 45327}, {15043, 50649}, {15471, 52284}, {15484, 37350}, {15520, 15709}, {15640, 48905}, {15677, 51729}, {15681, 50975}, {15682, 46264}, {15683, 44882}, {15684, 51173}, {15686, 51181}, {15687, 50963}, {15688, 33750}, {15693, 44456}, {15694, 48876}, {15700, 51172}, {15705, 31884}, {15706, 55593}, {15710, 17508}, {15711, 55639}, {15712, 55580}, {15716, 55604}, {15717, 53097}, {15718, 50988}, {15719, 37517}, {15721, 51132}, {15759, 55678}, {15826, 37760}, {15851, 40680}, {16044, 33683}, {16092, 47550}, {16267, 22490}, {16268, 22489}, {16371, 37492}, {16477, 50296}, {16491, 51071}, {16496, 51103}, {16508, 50640}, {16666, 17316}, {16667, 17353}, {16668, 17279}, {16669, 17257}, {16670, 17023}, {16834, 17133}, {16885, 49737}, {16924, 50570}, {16972, 29584}, {16973, 29580}, {17132, 50101}, {17281, 28329}, {17289, 50077}, {17310, 49775}, {17338, 29620}, {17355, 49543}, {17359, 50079}, {17370, 21296}, {17371, 32099}, {17394, 18230}, {17395, 20073}, {17504, 55610}, {17538, 55704}, {17549, 36741}, {17907, 40065}, {18310, 53378}, {18311, 53374}, {18775, 39296}, {18843, 33698}, {18844, 54646}, {18845, 54476}, {18909, 36753}, {18916, 44494}, {18931, 44218}, {18935, 21637}, {19130, 39874}, {19133, 34607}, {19145, 35948}, {19146, 35949}, {19686, 42421}, {19697, 32824}, {19709, 39899}, {19862, 50787}, {19883, 34379}, {20049, 51147}, {21309, 44839}, {21466, 22826}, {21467, 22827}, {21495, 37503}, {21537, 54409}, {21734, 55684}, {21735, 55687}, {22087, 32447}, {22491, 37170}, {22492, 37171}, {23327, 32064}, {24206, 51140}, {24530, 39956}, {25055, 38049}, {26617, 41946}, {26618, 41945}, {26853, 50780}, {26871, 55915}, {26872, 55916}, {26985, 50766}, {28538, 38047}, {28562, 50287}, {28662, 35356}, {29181, 55703}, {29317, 46333}, {29597, 50996}, {30308, 39878}, {30535, 34288}, {30745, 47549}, {31133, 51744}, {31145, 49524}, {31156, 51743}, {31166, 36851}, {31253, 50788}, {31267, 39125}, {31407, 33249}, {31693, 42975}, {31694, 42974}, {31859, 35954}, {31886, 36889}, {32022, 55949}, {32217, 37901}, {32220, 47097}, {32248, 58495}, {32825, 33185}, {32971, 34505}, {32978, 34506}, {33191, 41134}, {33239, 34504}, {33706, 35439}, {34118, 43816}, {34200, 50987}, {34290, 45690}, {34603, 51745}, {34641, 50953}, {34747, 51146}, {35179, 37863}, {35276, 36743}, {35302, 44180}, {35822, 39875}, {35823, 39876}, {36163, 50147}, {36990, 50959}, {37344, 52437}, {37472, 45073}, {37907, 47455}, {37911, 47462}, {38186, 39704}, {38317, 55713}, {39080, 39361}, {39284, 54772}, {39898, 51709}, {40334, 42897}, {40335, 42896}, {40393, 54778}, {40802, 52188}, {40814, 44135}, {40884, 51746}, {40885, 51736}, {41121, 41129}, {41122, 41128}, {41141, 49783}, {41254, 50187}, {41256, 44442}, {41259, 44152}, {41490, 49786}, {41491, 49787}, {42062, 43543}, {42063, 43542}, {43536, 54504}, {43651, 44470}, {44275, 54149}, {44473, 45509}, {44474, 45508}, {44651, 51740}, {44682, 55595}, {45310, 51198}, {45759, 55682}, {45879, 51206}, {45880, 51207}, {46023, 52051}, {46024, 52052}, {46336, 53777}, {46927, 56346}, {47280, 47556}, {47464, 47473}, {47571, 54995}, {48813, 48870}, {48817, 48857}, {48872, 50971}, {48880, 55702}, {48881, 55699}, {48889, 50964}, {48898, 51177}, {48901, 51029}, {49505, 51108}, {49511, 50952}, {49529, 51093}, {49531, 51054}, {49536, 51153}, {49721, 50112}, {49726, 50120}, {49806, 49809}, {49951, 49954}, {50282, 50300}, {50283, 50316}, {50595, 50636}, {50687, 53023}, {50965, 53094}, {50997, 51150}, {51012, 51482}, {51015, 51483}, {51017, 51484}, {51019, 51485}, {51130, 51163}, {51137, 55720}, {51179, 55714}, {54444, 55906}, {54505, 54597}, {54531, 54629}, {54549, 54759}, {54622, 54623}, {54724, 54752}, {54753, 54872}, {54761, 54907}, {54765, 54914}, {54784, 54926}, {54785, 54798}, {54792, 54864}, {55399, 55913}, {55400, 55908}, {55726, 55778}, {55730, 55774}, {55732, 55771}, {55734, 55768}, {55737, 55767}, {55740, 55762}, {55741, 55761}, {55744, 55756}, {55788, 55819}, {55797, 55812}, {58761, 59180}

X(59373) = midpoint of X(i) and X(j) for these {i,j}: {2, 5032}, {6, 47352}, {1570, 5215}, {1992, 21356}, {3545, 14912}, {5050, 14848}, {5054, 5093}
X(59373) = reflection of X(i) in X(j) for these {i,j}: {2, 47352}, {69, 21356}, {1992, 5032}, {3524, 38064}, {3545, 14561}, {3839, 38072}, {5032, 6}, {5054, 38110}, {5055, 38079}, {10304, 5085}, {10519, 5054}, {14269, 38136}, {14853, 14848}, {19875, 38089}, {21356, 2}, {21358, 48310}, {25055, 38049}, {33750, 55697}, {37907, 47455}, {38314, 38023}, {41135, 6034}, {47352, 597}, {50687, 53023}, {53620, 38047}, {55610, 17504}
X(59373) = anticomplement of X(21358)
X(59373) = complement of the isotomic conjugate of X(53101)
X(59373) = isotomic conjugate of the anticomplement of X(51588)
X(59373) = isotomic conjugate of the isogonal conjugate of X(21309)
X(59373) = isotomic conjugate of the polar conjugate of X(52301)
X(59373) = X(53101)-complementary conjugate of X(2887)
X(59373) = X(661)-isoconjugate of X(58090)
X(59373) = X(36830)-Dao conjugate of X(58090)
X(59373) = barycentric product X(i)*X(j) for these {i,j}: {69, 52301}, {76, 21309}
X(59373) = barycentric quotient X(i)/X(j) for these {i,j}: {110, 58090}, {21309, 6}, {44839, 7736}, {51588, 21358}, {52301, 4}
X(59373) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 1992}, {2, 193, 599}, {2, 230, 23053}, {2, 385, 42850}, {2, 391, 31144}, {2, 597, 3618}, {2, 599, 3619}, {2, 1992, 69}, {2, 3620, 20582}, {2, 5304, 22329}, {2, 7585, 13637}, {2, 7586, 13757}, {2, 7735, 23055}, {2, 8584, 50992}, {2, 11160, 141}, {2, 11163, 1007}, {2, 13637, 32806}, {2, 13639, 491}, {2, 13757, 32805}, {2, 13759, 492}, {2, 15534, 50990}, {2, 20583, 11008}, {2, 22329, 34229}, {2, 31179, 30828}, {2, 37665, 11163}, {2, 37667, 11168}, {2, 37689, 8860}, {2, 44367, 16990}, {2, 45420, 32811}, {2, 45421, 32810}, {2, 51170, 11160}, {2, 51171, 597}, {3, 54132, 54170}, {6, 141, 51170}, {6, 597, 2}, {6, 599, 8584}, {6, 3589, 193}, {6, 3618, 69}, {6, 3763, 32455}, {6, 6329, 51171}, {6, 7875, 50249}, {6, 10601, 41614}, {6, 11174, 39099}, {6, 15534, 20583}, {6, 41939, 48945}, {6, 47355, 3629}, {6, 51171, 3618}, {6, 51185, 597}, {141, 11008, 69}, {141, 11160, 50990}, {141, 15534, 11160}, {141, 20583, 15534}, {141, 51170, 11008}, {182, 20423, 376}, {193, 599, 50992}, {193, 3589, 3619}, {193, 3619, 69}, {193, 8584, 1992}, {230, 42849, 2}, {298, 299, 10513}, {376, 20423, 51212}, {381, 6776, 51023}, {381, 50979, 6776}, {381, 51023, 51537}, {381, 53091, 50979}, {395, 396, 31489}, {547, 1353, 50955}, {547, 50955, 40330}, {549, 1351, 50967}, {551, 3751, 50999}, {575, 5476, 11179}, {576, 10168, 54173}, {590, 13783, 2}, {597, 6329, 51185}, {597, 8584, 3589}, {597, 51185, 51171}, {599, 3589, 2}, {599, 8584, 193}, {599, 50992, 69}, {599, 51187, 3630}, {615, 13663, 2}, {648, 52288, 52710}, {1350, 50983, 15692}, {1386, 47359, 3241}, {1992, 3618, 2}, {1992, 3619, 50992}, {1992, 11008, 15534}, {1992, 50990, 11008}, {1992, 50992, 193}, {2548, 7817, 32984}, {3523, 54174, 54169}, {3543, 43273, 14927}, {3589, 8584, 599}, {3589, 41153, 597}, {3618, 3619, 3589}, {3619, 50992, 599}, {3629, 20582, 15533}, {3629, 47355, 3620}, {3630, 51143, 599}, {3679, 51005, 51192}, {3758, 5222, 42697}, {3758, 37756, 35578}, {3759, 5749, 42696}, {3763, 32455, 20080}, {3828, 51196, 50950}, {5032, 47352, 21356}, {5038, 42536, 32480}, {5050, 14853, 25406}, {5071, 50974, 1352}, {5093, 38110, 10519}, {5095, 45311, 13169}, {5097, 15702, 51214}, {5097, 46267, 50977}, {5222, 35578, 37756}, {5304, 11174, 34229}, {5422, 11427, 18928}, {5461, 5477, 11161}, {5476, 11179, 4}, {5480, 43273, 3543}, {5702, 52288, 648}, {5943, 40673, 11188}, {7618, 32985, 11147}, {7792, 11163, 2}, {7792, 37665, 1007}, {7803, 7812, 33190}, {7812, 33190, 32006}, {7840, 7875, 2}, {8584, 51143, 51187}, {9140, 15303, 11061}, {9169, 41939, 2}, {10168, 54173, 631}, {11008, 50990, 11160}, {11160, 15534, 11008}, {11160, 20583, 1992}, {11160, 50990, 69}, {11160, 51170, 15534}, {11174, 22329, 2}, {11451, 15531, 29959}, {11477, 54169, 54174}, {14093, 48874, 50969}, {14561, 39561, 14912}, {14853, 25406, 51538}, {15118, 15303, 9140}, {15533, 20582, 3620}, {15533, 47355, 20582}, {15534, 20583, 51170}, {15534, 51170, 1992}, {15692, 51028, 1350}, {15694, 50962, 48876}, {15700, 51172, 55584}, {15715, 50966, 14810}, {16670, 17023, 54280}, {16834, 50115, 50107}, {17281, 50124, 50129}, {17355, 49543, 50089}, {17359, 50131, 50079}, {17381, 31144, 2}, {18583, 50979, 381}, {18583, 53091, 6776}, {20582, 47355, 2}, {21358, 47352, 48310}, {21358, 48310, 2}, {23327, 41719, 32064}, {31489, 44401, 2}, {32810, 32811, 7788}, {34229, 39099, 69}, {35578, 37756, 42697}, {37640, 37641, 7736}, {37669, 41614, 69}, {38423, 38424, 15484}, {44882, 51024, 15683}, {45690, 54274, 34290}, {48857, 48867, 48817}, {49524, 51000, 31145}, {50114, 50127, 50101}, {51737, 54131, 20}, {53093, 54131, 51737}


X(59374) = 1ST TRISECTOR OF SEGMENT X(2)X(7)

Barycentrics    a^2 + 4*a*b - 5*b^2 + 4*a*c + 10*b*c - 5*c^2 : :
X(59374) = 4 X[1] - X[50839], X[1] + 2 X[51100], X[50839] + 8 X[51100], 2 X[2] + X[7], 5 X[2] - 2 X[9], X[2] - 4 X[142], 7 X[2] - X[144], 4 X[2] - X[6172], X[2] + 2 X[6173], 11 X[2] - 8 X[6666], 8 X[2] - 5 X[18230], 11 X[2] + X[20059], 7 X[2] - 10 X[20195], 13 X[2] - 16 X[58433], 5 X[7] + 4 X[9], X[7] + 8 X[142], 7 X[7] + 2 X[144], and many others

X(59374) lies on these lines: {1, 50839}, {2, 7}, {6, 51151}, {8, 17297}, {10, 30340}, {30, 21151}, {69, 51002}, {75, 51057}, {85, 55948}, {141, 5936}, {145, 51102}, {193, 51152}, {236, 30405}, {344, 49722}, {346, 50119}, {376, 5805}, {381, 31657}, {390, 551}, {516, 10304}, {518, 4731}, {519, 11038}, {524, 38086}, {528, 8236}, {529, 38096}, {536, 27475}, {542, 38115}, {547, 5779}, {549, 5759}, {597, 51190}, {599, 51150}, {903, 16593}, {938, 17528}, {954, 16417}, {971, 3545}, {1001, 17549}, {1086, 5308}, {1121, 52715}, {1125, 50836}, {1156, 45310}, {1266, 29621}, {1698, 43180}, {1992, 47595}, {2345, 49733}, {2346, 4421}, {2550, 3241}, {3091, 43177}, {3161, 7321}, {3243, 31145}, {3523, 5735}, {3524, 38122}, {3543, 5732}, {3589, 50997}, {3616, 5880}, {3624, 30424}, {3626, 50838}, {3632, 51101}, {3634, 50834}, {3656, 35514}, {3679, 5542}, {3723, 4648}, {3739, 51053}, {3742, 7671}, {3758, 31189}, {3816, 30311}, {3824, 5704}, {3828, 5223}, {3834, 29611}, {3836, 5772}, {3839, 38150}, {3912, 52709}, {3945, 4859}, {4000, 16884}, {4308, 28629}, {4310, 50291}, {4313, 11112}, {4344, 50301}, {4346, 29571}, {4402, 17300}, {4428, 7676}, {4452, 50110}, {4460, 17389}, {4488, 17263}, {4657, 28626}, {4675, 5222}, {4740, 51058}, {4755, 51052}, {4869, 17294}, {4881, 38316}, {4888, 37681}, {4896, 31183}, {4902, 25072}, {4971, 17313}, {5054, 5762}, {5055, 5817}, {5071, 36996}, {5220, 19877}, {5436, 50738}, {5439, 10394}, {5550, 5698}, {5686, 19875}, {5696, 58565}, {5728, 50741}, {5809, 17532}, {5843, 15699}, {5845, 47352}, {6604, 55954}, {6932, 54179}, {7028, 30404}, {7222, 17265}, {7229, 17359}, {7232, 49731}, {7613, 50080}, {7677, 40726}, {7958, 54228}, {8255, 10580}, {8543, 25524}, {8703, 31671}, {9041, 38185}, {9779, 15726}, {9780, 17227}, {10129, 34919}, {10427, 10707}, {11024, 34619}, {11025, 15587}, {11160, 51194}, {14151, 38202}, {15671, 17768}, {15682, 18482}, {15683, 52835}, {15702, 31658}, {15708, 21153}, {15709, 21168}, {16020, 50303}, {16671, 17278}, {16677, 17245}, {17014, 17067}, {17234, 31995}, {17251, 34824}, {17264, 29627}, {17298, 32099}, {17346, 21296}, {17387, 20050}, {18450, 54318}, {19862, 50840}, {19878, 50837}, {20073, 29626}, {20119, 50843}, {20582, 50995}, {21969, 58472}, {25466, 30312}, {25722, 58564}, {28194, 38036}, {28204, 38030}, {28313, 29573}, {28322, 41313}, {28534, 38025}, {28538, 38046}, {29575, 48627}, {30331, 51105}, {31151, 48849}, {31672, 41099}, {31721, 35110}, {33108, 41555}, {33558, 36976}, {34573, 51191}, {34648, 43176}, {34701, 56999}, {34784, 58563}, {38026, 51636}, {38041, 38121}, {38082, 51516}, {38113, 51514}, {38186, 39704}, {38207, 45043}, {43182, 50802}, {48802, 49676}

X(59374) = midpoint of X(i) and X(j) for these {i,j}: {6173, 38093}, {11038, 38092}, {21151, 38073}, {38024, 38052}, {38054, 38094}, {38065, 38107}, {38080, 38111}
X(59374) = reflection of X(i) in X(j) for these {i,j}: {2, 38093}, {3524, 38122}, {3839, 38150}, {5055, 38171}, {5686, 19875}, {5817, 5055}, {8236, 38314}, {11038, 38024}, {19875, 38204}, {21151, 38065}, {21168, 38067}, {38024, 38054}, {38052, 38094}, {38065, 38111}, {38073, 38107}, {38092, 38052}, {38093, 142}, {38107, 38080}, {38314, 38053}, {51516, 38082}, {52653, 38025}, {53055, 38026}
X(59374) = barycentric product X(85)*X(52705)
X(59374) = barycentric quotient X(52705)/X(9)
X(59374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7, 6172}, {2, 2094, 5273}, {2, 6172, 18230}, {2, 6173, 7}, {2, 17254, 5296}, {2, 31164, 18228}, {142, 6173, 2}, {3616, 5880, 30332}, {4869, 24199, 32087}, {15709, 21168, 38067}, {17254, 27147, 2}, {30275, 30379, 7}, {38024, 38094, 38092}, {38030, 38172, 38149}, {38052, 38054, 11038}, {38065, 38080, 38073}, {38107, 38111, 21151}


X(59375) = 2ND TRISECTOR OF SEGMENT X(2)X(7)

Barycentrics    5*a^2 + 2*a*b - 7*b^2 + 2*a*c + 14*b*c - 7*c^2 : :
X(593754) = X[1] - 4 X[51098], X[2] + 2 X[7], 7 X[2] - 4 X[9], 5 X[2] - 8 X[142], 4 X[2] - X[144], 5 X[2] - 2 X[6172], X[2] - 4 X[6173], 19 X[2] - 16 X[6666], 13 X[2] - 10 X[18230], 5 X[2] + X[20059], 17 X[2] - 20 X[20195], 3 X[2] - 4 X[38093], 29 X[2] - 32 X[58433], 7 X[7] + 2 X[9], 5 X[7] + 4 X[142], 8 X[7] + X[144], 5 X[7] + X[6172], and many others

X(59375) lies on these lines: {1, 51098}, {2, 7}, {6, 51195}, {8, 43180}, {69, 51151}, {145, 5880}, {192, 51057}, {193, 51002}, {346, 49722}, {376, 31657}, {381, 36996}, {516, 30392}, {518, 38092}, {528, 11038}, {551, 4312}, {903, 20533}, {942, 50736}, {954, 13587}, {971, 3839}, {1086, 17014}, {1698, 50834}, {1992, 51150}, {2550, 31145}, {2801, 54448}, {3062, 50802}, {3146, 43177}, {3241, 5542}, {3243, 20049}, {3522, 5735}, {3524, 5762}, {3543, 5805}, {3545, 38107}, {3616, 30424}, {3617, 50835}, {3618, 50997}, {3620, 50996}, {3621, 51102}, {3622, 25557}, {3623, 50839}, {3672, 17392}, {3763, 51191}, {3945, 17301}, {4000, 16668}, {4292, 50738}, {4310, 50301}, {4346, 4675}, {4373, 17300}, {4440, 29621}, {4452, 17389}, {4454, 17264}, {4461, 17298}, {4648, 16674}, {4666, 30353}, {4699, 51053}, {4869, 7321}, {4887, 5308}, {4888, 50114}, {4896, 5222}, {5054, 21168}, {5055, 5843}, {5071, 5779}, {5173, 30287}, {5220, 46932}, {5232, 28633}, {5698, 46934}, {5732, 15683}, {5759, 15692}, {5845, 38086}, {5850, 19875}, {5851, 38095}, {5852, 38096}, {7222, 17359}, {7232, 49733}, {7238, 17251}, {7613, 50282}, {8581, 18419}, {10004, 17079}, {10304, 21151}, {10405, 32086}, {10590, 38207}, {11001, 31671}, {11036, 11112}, {11160, 47595}, {11237, 38099}, {11518, 50725}, {14100, 58560}, {14269, 38137}, {14848, 38164}, {15254, 50840}, {15672, 17768}, {15699, 51516}, {15708, 38122}, {15721, 31658}, {16593, 17487}, {17133, 36588}, {17294, 31995}, {17297, 29616}, {17302, 30712}, {17313, 28297}, {19862, 50837}, {20050, 51101}, {20080, 51152}, {20085, 25558}, {21296, 50095}, {24231, 48856}, {24470, 50739}, {24473, 41228}, {25055, 38054}, {25722, 58563}, {28534, 38053}, {31140, 33558}, {32007, 55954}, {32093, 50133}, {34628, 43176}, {35514, 50872}, {38041, 38754}, {38052, 38210}, {39704, 55937}, {42871, 51092}, {43182, 50865}, {47374, 59181}, {48627, 50129}, {49726, 53665}

X(59375) = midpoint of X(5054) and X(51514)
X(59375) = reflection of X(i) in X(j) for these {i,j}: {3524, 38065}, {3545, 38107}, {3839, 38073}, {5054, 38111}, {5055, 38080}, {10304, 21151}, {14269, 38137}, {14848, 38164}, {19875, 38094}, {21168, 5054}, {25055, 38054}, {38314, 38024}, {51516, 15699}, {52653, 25055}, {53620, 38052}
X(59375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20059, 6172}, {2, 45789, 17254}, {7, 142, 20059}, {7, 6173, 2}, {7, 52457, 17483}, {142, 6172, 2}, {2094, 5249, 2}, {4346, 4675, 29624}, {5880, 30340, 145}, {9776, 31164, 2}, {29621, 52714, 4440}, {38111, 51514, 21168}


X(59376) = 1ST TRISECTOR OF SEGMENT X(2)X(11)

Barycentrics    4*a^3 - 4*a^2*b - 7*a*b^2 + 7*b^3 - 4*a^2*c + 18*a*b*c - 7*b^2*c - 7*a*c^2 - 7*b*c^2 + 7*c^3 : :
X(593756) = 4 X[1] - X[50846], 5 X[1] + X[50893], 5 X[50846] + 4 X[50893], 2 X[2] + X[11], 7 X[2] - X[100], 11 X[2] + X[149], 5 X[2] - 2 X[3035], 16 X[2] - X[6154], 4 X[2] - X[6174], X[2] - 4 X[6667], 5 X[2] + X[10707], 25 X[2] - X[20095], 8 X[2] - 5 X[31235], X[2] + 5 X[31272], 19 X[2] - 4 X[35023], X[2] + 2 X[45310], and many others

X(59376) lies on these lines: {1, 50846}, {2, 11}, {10, 50842}, {12, 10199}, {30, 21154}, {104, 5071}, {119, 547}, {381, 6713}, {499, 34606}, {519, 32557}, {524, 38090}, {527, 38095}, {529, 38106}, {535, 5298}, {542, 38119}, {549, 24466}, {551, 1317}, {597, 51198}, {632, 10993}, {952, 15699}, {1125, 50843}, {1145, 3828}, {1387, 3679}, {1656, 37725}, {1698, 13996}, {2787, 14971}, {2802, 4731}, {2829, 3545}, {3036, 3241}, {3086, 34749}, {3090, 10711}, {3543, 38759}, {3589, 51008}, {3616, 50890}, {3617, 50894}, {3624, 12019}, {3628, 37726}, {3634, 50841}, {3825, 7294}, {3839, 38693}, {3845, 38761}, {3847, 11114}, {3848, 33519}, {3911, 38207}, {4669, 25416}, {4755, 51062}, {4870, 12832}, {4996, 16861}, {5054, 5840}, {5055, 38319}, {5056, 38757}, {5066, 38602}, {5067, 20400}, {5187, 34620}, {5219, 38024}, {5231, 38097}, {5316, 38101}, {5433, 17556}, {5848, 47352}, {5854, 32558}, {6246, 50828}, {6691, 17577}, {6891, 34630}, {6921, 34706}, {6931, 11236}, {6959, 34746}, {7173, 11112}, {7486, 38669}, {7741, 17564}, {7972, 51110}, {8068, 31157}, {9041, 38192}, {10006, 45320}, {10058, 16417}, {10090, 16418}, {10124, 33814}, {10582, 41701}, {10609, 19862}, {10715, 56890}, {10724, 15692}, {10728, 41106}, {10738, 15694}, {11219, 38124}, {11274, 51108}, {11539, 38760}, {11737, 22799}, {12100, 22938}, {12690, 58453}, {12735, 51105}, {12736, 31165}, {13913, 35823}, {13977, 35822}, {15325, 31160}, {15673, 56790}, {15703, 58421}, {15709, 34474}, {15723, 38762}, {15863, 51103}, {16173, 19875}, {16509, 36871}, {16842, 48713}, {17542, 51506}, {17728, 38218}, {18254, 24473}, {19878, 50844}, {19883, 34123}, {20107, 52793}, {20582, 51007}, {21031, 45700}, {21969, 58475}, {22247, 53729}, {26364, 34720}, {27778, 58683}, {28194, 38038}, {28204, 38032}, {28538, 38050}, {31253, 50892}, {34573, 51158}, {35018, 51529}, {38044, 38128}, {38055, 38216}, {38131, 38152}, {38211, 51463}, {38335, 38754}, {38763, 55856}, {46684, 50802}, {48154, 51525}, {51127, 51199}

X(59376) = midpoint of X(i) and X(j) for these {i,j}: {3839, 38693}, {5055, 57298}, {16173, 19875}, {21154, 38077}, {23513, 38069}, {32557, 38104}, {34122, 38026}, {34126, 38084}, {38092, 53055}, {38102, 38205}, {38335, 38754}
X(59376) = reflection of X(i) in X(j) for these {i,j}: {5055, 38319}, {21154, 38069}, {23513, 38084}, {34122, 38104}, {34123, 19883}, {38026, 32557}, {38069, 34126}, {38077, 23513}, {38095, 38205}, {38099, 34122}, {38760, 11539}
X(59376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11, 6174}, {2, 6174, 31235}, {2, 10589, 31140}, {2, 10707, 3035}, {2, 31272, 45310}, {2, 45310, 11}, {11, 31235, 6154}, {6667, 31272, 11}, {6667, 45310, 2}, {23513, 34126, 21154}, {38026, 38104, 38099}, {38032, 38182, 38156}, {38069, 38084, 38077}


X(59377) = 2ND TRISECTOR OF SEGMENT X(2)X(11)

Barycentrics    a^3 - a^2*b - 4*a*b^2 + 4*b^3 - a^2*c + 9*a*b*c - 4*b^2*c - 4*a*c^2 - 4*b*c^2 + 4*c^3 : :
X(593757) = 2 X[1] + X[50890], X[2] + 2 X[11], 4 X[2] - X[100], 5 X[2] + X[149], 7 X[2] - 4 X[3035], 17 X[2] - 2 X[6154], 5 X[2] - 2 X[6174], 5 X[2] - 8 X[6667], 2 X[2] + X[10707], 13 X[2] - X[20095], 13 X[2] - 10 X[31235], 2 X[2] - 5 X[31272], 23 X[2] - 8 X[35023], X[2] - 4 X[45310], 8 X[11] + X[100], 10 X[11] - X[149], 7 X[11] + 2 X[3035], 17 X[11] + X[6154], and many others

X(59377) lies on these lines: {1, 50890}, {2, 11}, {5, 10711}, {8, 50894}, {10, 30855}, {30, 38693}, {80, 551}, {86, 27762}, {104, 381}, {119, 5071}, {376, 6713}, {499, 5303}, {519, 16173}, {535, 3582}, {537, 4945}, {547, 1484}, {549, 10738}, {599, 10755}, {903, 36237}, {952, 5055}, {1125, 50889}, {1156, 6173}, {1320, 3679}, {1387, 3241}, {1623, 52242}, {1656, 38665}, {1698, 50841}, {1768, 30308}, {2482, 10769}, {2783, 23234}, {2787, 9166}, {2800, 38021}, {2801, 7988}, {2802, 19875}, {2829, 3839}, {2975, 17556}, {3036, 31145}, {3086, 34605}, {3090, 37726}, {3091, 20418}, {3244, 50893}, {3306, 38207}, {3524, 5840}, {3525, 10993}, {3534, 22938}, {3545, 23513}, {3583, 36005}, {3616, 12019}, {3617, 50842}, {3618, 51008}, {3623, 50846}, {3634, 50892}, {3656, 12619}, {3763, 51158}, {3817, 11219}, {3825, 5260}, {3828, 21630}, {3830, 38602}, {3845, 10728}, {3847, 34606}, {3851, 51529}, {4188, 34706}, {4193, 45700}, {4767, 4997}, {4996, 16418}, {5047, 48713}, {5054, 34126}, {5056, 37725}, {5066, 10742}, {5068, 38757}, {5070, 51525}, {5154, 11236}, {5187, 34610}, {5219, 14151}, {5226, 41556}, {5231, 38216}, {5253, 7741}, {5298, 13273}, {5328, 38211}, {5330, 15079}, {5433, 37299}, {5476, 10759}, {5533, 10056}, {5541, 19876}, {5550, 10609}, {5642, 10778}, {5660, 10171}, {5848, 38090}, {5851, 38095}, {5854, 38099}, {5856, 38102}, {6055, 10768}, {6246, 50811}, {6931, 34619}, {6958, 34629}, {6979, 34746}, {7486, 20400}, {7972, 51103}, {8068, 10072}, {9024, 21358}, {9172, 10779}, {9352, 41166}, {9466, 32454}, {9671, 37307}, {9779, 38073}, {9897, 11274}, {10006, 31150}, {10058, 13587}, {10090, 17549}, {10109, 11698}, {10124, 38762}, {10265, 50908}, {10304, 21154}, {10593, 11112}, {10698, 51709}, {11049, 13268}, {11240, 11681}, {11318, 38521}, {11604, 15670}, {12119, 50828}, {12248, 41099}, {12331, 15703}, {12532, 24473}, {12653, 51066}, {12737, 50907}, {12773, 19709}, {13199, 15702}, {13266, 48167}, {13272, 37162}, {13277, 45342}, {13846, 19113}, {13847, 19112}, {13996, 46933}, {14269, 38141}, {14831, 58508}, {14848, 38168}, {14923, 50444}, {15678, 56790}, {15679, 46816}, {15682, 38761}, {15683, 38759}, {15687, 38753}, {15692, 24466}, {15693, 48680}, {15694, 33814}, {15699, 38752}, {15709, 38760}, {15863, 51093}, {16174, 31162}, {16417, 17100}, {16484, 27742}, {16861, 51506}, {17564, 52367}, {17660, 58560}, {18861, 28444}, {19081, 35822}, {19082, 35823}, {19862, 50844}, {19914, 50910}, {20107, 34649}, {25005, 34640}, {25055, 32557}, {26492, 37430}, {26726, 34641}, {27756, 49460}, {29817, 41701}, {30852, 31146}, {31159, 36006}, {31160, 54391}, {31253, 50845}, {31523, 50920}, {33337, 51108}, {34122, 53620}, {34789, 50802}, {36240, 46790}, {37651, 50282}, {46684, 50865}, {51126, 51199}

X(59377) = midpoint of X(i) and X(j) for these {i,j}: {5054, 51517}, {25055, 37718}
X(59377) = reflection of X(i) in X(j) for these {i,j}: {3524, 38069}, {3545, 23513}, {3839, 38077}, {5054, 34126}, {5055, 38084}, {10304, 21154}, {14269, 38141}, {14848, 38168}, {19875, 38104}, {25055, 32557}, {34474, 5054}, {38314, 38026}, {38752, 15699}, {53620, 34122}
X(59377) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11, 10707}, {2, 149, 6174}, {2, 10707, 100}, {2, 31126, 10712}, {2, 45310, 31272}, {11, 6667, 149}, {11, 31272, 100}, {11, 45310, 2}, {80, 551, 10031}, {6174, 6667, 2}, {7741, 10199, 17577}, {9897, 51105, 11274}, {10199, 17577, 5253}, {10707, 31272, 2}, {32558, 38314, 38026}, {34126, 51517, 34474}, {38026, 38084, 38106}


X(59378) = 2ND TRISECTOR OF SEGMENT X(2)X(13)

Barycentrics    Sqrt[3]*(a^4 + 4*a^2*b^2 - 5*b^4 + 4*a^2*c^2 + 10*b^2*c^2 - 5*c^4) + 2*(7*a^2 + b^2 + c^2)*S : :
X(59378) = X[2] + 2 X[13], 4 X[2] - X[616], 7 X[2] - 4 X[618], X[2] - 4 X[5459], 5 X[2] - 2 X[5463], 5 X[2] - 8 X[6669], X[2] - 16 X[35019], 8 X[2] + X[35749], 10 X[2] - X[35750], 11 X[2] - 2 X[35751], 7 X[2] + 2 X[35752], 19 X[2] - 10 X[36767], 17 X[2] - 8 X[36768], 13 X[2] - 4 X[36769], 13 X[2] - 10 X[36770], 5 X[2] + 4 X[47865], and many others

X(59378) lies on these lines: {2, 13}, {4, 20415}, {17, 13083}, {69, 22580}, {98, 54618}, {99, 31695}, {115, 37640}, {148, 5464}, {302, 42815}, {376, 6771}, {381, 6770}, {396, 51484}, {397, 33474}, {531, 5470}, {542, 3545}, {549, 13103}, {551, 9901}, {617, 671}, {619, 8591}, {621, 11542}, {623, 22495}, {628, 9763}, {631, 16001}, {633, 22235}, {634, 11305}, {1698, 50847}, {3091, 41042}, {3180, 33560}, {3241, 11705}, {3543, 5478}, {3616, 50849}, {3617, 50848}, {3618, 51012}, {3620, 51011}, {3763, 51202}, {3830, 47610}, {3832, 41020}, {3839, 41022}, {5032, 47855}, {5066, 36318}, {5071, 5617}, {5318, 35931}, {5460, 6778}, {5472, 31415}, {5473, 15692}, {5613, 12243}, {5978, 22573}, {6772, 11488}, {6773, 49102}, {7775, 33413}, {8594, 31709}, {8596, 9114}, {9875, 51115}, {9885, 37173}, {10304, 21156}, {10611, 37170}, {11121, 33607}, {11177, 41043}, {11295, 42128}, {11300, 33475}, {11302, 14145}, {11304, 42166}, {11489, 41745}, {15682, 49809}, {16630, 22491}, {16644, 35932}, {19053, 49208}, {19054, 49209}, {19709, 36344}, {20094, 22577}, {20377, 22113}, {22493, 43010}, {22507, 42063}, {22571, 22688}, {22576, 36251}, {22578, 47867}, {22602, 25159}, {22631, 25160}, {22796, 36383}, {22846, 51487}, {22847, 49948}, {22998, 42910}, {25164, 25559}, {30471, 33620}, {31696, 36327}, {33458, 42502}, {33604, 33626}, {33611, 49905}, {33625, 41101}, {33627, 49945}, {34508, 42992}, {35304, 43416}, {36329, 43004}, {36331, 36523}, {36366, 49911}, {36969, 45879}, {37785, 42974}, {43404, 51200}, {43543, 54524}, {51170, 51201}

X(59378) = midpoint of X(13) and X(22489)
X(59378) = reflection of X(i) in X(j) for these {i,j}: {2, 22489}, {10304, 21156}, {22489, 5459}, {41135, 5470}
X(59378) = circumcircle-of-inner-Napoleon-triangle-inverse of X(47865)
X(59378) = psi-transform of X(47866)
X(59378) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13, 51482}, {2, 5335, 51485}, {2, 47865, 35750}, {2, 51482, 616}, {13, 5459, 2}, {13, 5463, 47865}, {13, 6108, 5335}, {13, 46054, 10653}, {616, 51482, 35749}, {5459, 47865, 6669}, {5463, 6669, 2}, {5463, 35750, 616}, {6669, 47865, 5463}, {6771, 25154, 376}, {11542, 31693, 37786}, {14904, 49825, 51482}, {16966, 45880, 2}, {31693, 37786, 621}


X(59379) = 2ND TRISECTOR OF SEGMENT X(2)X(14)

Barycentrics    Sqrt[3]*(a^4 + 4*a^2*b^2 - 5*b^4 + 4*a^2*c^2 + 10*b^2*c^2 - 5*c^4) - 2*(7*a^2 + b^2 + c^2)*S : :
X(59379) = X[2] + 2 X[14], 4 X[2] - X[617], 7 X[2] - 4 X[619], X[2] - 4 X[5460], 5 X[2] - 2 X[5464], 5 X[2] - 8 X[6670], X[2] - 16 X[35020], 8 X[2] + X[36327], 11 X[2] - 2 X[36329], 7 X[2] + 2 X[36330], 10 X[2] - X[36331], 5 X[2] + 4 X[47866], 13 X[2] - 4 X[47867], 3 X[2] - 4 X[48312], 2 X[2] + X[51483], 8 X[14] + X[617], and many others

X(59379) lies on these lines: {2, 14}, {4, 20416}, {18, 13084}, {69, 22579}, {98, 54617}, {99, 31696}, {115, 37641}, {148, 5463}, {303, 42816}, {376, 6774}, {381, 6773}, {395, 51485}, {398, 33475}, {530, 5469}, {542, 3545}, {549, 13102}, {551, 9900}, {616, 671}, {618, 8591}, {622, 11543}, {624, 22496}, {627, 9761}, {631, 16002}, {633, 11306}, {634, 22237}, {1698, 50850}, {3091, 41043}, {3181, 33561}, {3241, 11706}, {3543, 5479}, {3616, 50852}, {3617, 50851}, {3618, 51015}, {3620, 51014}, {3763, 51205}, {3830, 47611}, {3832, 41021}, {3839, 41023}, {5032, 47856}, {5066, 36320}, {5071, 5613}, {5321, 35932}, {5459, 6777}, {5471, 31415}, {5474, 15692}, {5617, 12243}, {5979, 22574}, {6770, 49102}, {6775, 11489}, {7775, 33412}, {8595, 31710}, {8596, 9116}, {9875, 51114}, {9886, 37172}, {10304, 21157}, {10612, 37171}, {11122, 33606}, {11177, 41042}, {11296, 42125}, {11299, 33474}, {11301, 14144}, {11303, 42163}, {11488, 41746}, {15682, 49806}, {16631, 22492}, {16645, 35931}, {19053, 49210}, {19054, 49211}, {19709, 36319}, {20094, 22578}, {20378, 22114}, {22494, 43011}, {22509, 42062}, {22572, 22690}, {22575, 36252}, {22577, 36769}, {22604, 25169}, {22633, 25170}, {22797, 36382}, {22891, 51486}, {22893, 49947}, {22997, 42911}, {25154, 25560}, {30472, 33621}, {31695, 35749}, {33459, 42503}, {33605, 33627}, {33610, 49906}, {33623, 41100}, {33626, 49946}, {34509, 42993}, {35303, 43417}, {35750, 36523}, {35751, 43005}, {36368, 49914}, {36970, 45880}, {37786, 42975}, {43403, 51203}, {43542, 54525}, {51170, 51204}

X(59379) = midpoint of X(14) and X(22490)
X(59379) = reflection of X(i) in X(j) for these {i,j}: {2, 22490}, {10304, 21157}, {22490, 5460}, {41135, 5469}
X(59379) = circumcircle-of-outer-Napoleon-triangle-inverse of X(47866)
X(59379) = psi-transform of X(47865)
X(59379) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14, 51483}, {2, 5334, 51484}, {2, 47866, 36331}, {2, 51483, 617}, {14, 5460, 2}, {14, 5464, 47866}, {14, 6109, 5334}, {14, 46053, 10654}, {617, 51483, 36327}, {5460, 47866, 6670}, {5464, 6670, 2}, {5464, 36331, 617}, {6670, 47866, 5464}, {6774, 25164, 376}, {11543, 31694, 37785}, {14905, 49824, 51483}, {16967, 45879, 2}, {31694, 37785, 622}


X(59380) = 2ND TRISECTOR OF SEGMENT X(2)X(7)

Barycentrics    a^6 + 2*a^5*b - 6*a^4*b^2 - 2*a^3*b^3 + 7*a^2*b^4 - 2*b^6 + 2*a^5*c + 6*a^4*b*c - 2*a^3*b^2*c - 10*a^2*b^3*c + 4*b^5*c - 6*a^4*c^2 - 2*a^3*b*c^2 + 6*a^2*b^2*c^2 + 2*b^4*c^2 - 2*a^3*c^3 - 10*a^2*b*c^3 - 8*b^3*c^3 + 7*a^2*c^4 + 2*b^2*c^4 + 4*b*c^5 - 2*c^6 : :
X(59380) = 4 X[38111] - X[51516], X[3] + 2 X[7], 5 X[3] - 2 X[5759], X[3] - 4 X[31657], 5 X[7] + X[5759], X[7] + 2 X[31657], X[5759] - 5 X[21151], X[5759] - 10 X[31657], 2 X[5759] + 5 X[51514], 2 X[21151] + X[51514], 4 X[31657] + X[51514], 2 X[5] + X[36996], 4 X[9] - 7 X[3526], 4 X[140] - X[144], 8 X[142] - 5 X[1656], and many others

X(59380) lies on these lines: {2, 5843}, {3, 7}, {4, 38137}, {5, 36996}, {9, 3526}, {140, 144}, {142, 1656}, {381, 971}, {382, 5805}, {390, 37624}, {516, 3534}, {518, 38121}, {527, 5054}, {549, 21168}, {631, 20059}, {1001, 37535}, {1351, 51150}, {1385, 4312}, {1482, 5542}, {1657, 5732}, {1699, 58615}, {2550, 12645}, {2951, 48661}, {3062, 9955}, {3545, 38080}, {3624, 41705}, {3824, 5789}, {3843, 36991}, {4654, 11227}, {5050, 5845}, {5055, 5817}, {5076, 18482}, {5587, 38172}, {5603, 38041}, {5735, 15696}, {5770, 50740}, {5790, 38052}, {5850, 26446}, {5851, 38124}, {5852, 38125}, {5880, 18526}, {5885, 18412}, {5886, 38054}, {6068, 38762}, {6172, 15694}, {6666, 55858}, {6863, 8732}, {6882, 30275}, {6958, 8232}, {7580, 26842}, {8148, 30340}, {8255, 10679}, {8581, 34339}, {9654, 15016}, {10156, 28609}, {10247, 11038}, {10427, 12331}, {10861, 17528}, {11372, 18493}, {11495, 37621}, {11898, 47595}, {12684, 55108}, {12699, 43182}, {12702, 43180}, {13159, 16150}, {13373, 14100}, {14269, 38073}, {14848, 38086}, {14853, 38164}, {15693, 21153}, {15720, 31658}, {16203, 25557}, {16593, 24844}, {17768, 28443}, {18230, 46219}, {18443, 18541}, {18481, 43176}, {19709, 38139}, {20195, 55857}, {20423, 51195}, {24475, 41228}, {24644, 51709}, {28444, 38032}, {32613, 36971}, {33558, 37820}, {37545, 52819}, {38028, 52653}, {38093, 38318}, {38170, 50396}, {49136, 52835}, {50798, 51100}, {50805, 51099}, {50955, 51151}, {50962, 51002}, {51039, 51057}, {51152, 51175}, {51190, 53091}, {52665, 54447}

X(59380) = midpoint of X(i) and X(j) for these {i,j}: {3, 51514}, {7, 21151}
X(59380) = reflection of X(i) in X(j) for these {i,j}: {2, 38111}, {3, 21151}, {4, 38137}, {381, 38107}, {3545, 38080}, {5050, 38115}, {5054, 38065}, {5587, 38172}, {5603, 38041}, {5779, 38108}, {5790, 38052}, {5817, 38171}, {5886, 38054}, {6172, 38113}, {10246, 38030}, {10247, 11038}, {14269, 38073}, {14848, 38086}, {14853, 38164}, {21151, 31657}, {21168, 549}, {24644, 51709}, {26446, 38123}, {38107, 6173}, {38108, 142}, {51514, 7}, {51516, 2}, {52653, 38028}, {57298, 38124}
X(59380) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 31657, 3}, {142, 5779, 1656}, {5732, 31671, 1657}, {5817, 38171, 5055}


X(59381) = 2ND TRISECTOR OF SEGMENT X(3)X(9)

Barycentrics    a*(3*a^5 - 4*a^4*b - 4*a^3*b^2 + 6*a^2*b^3 + a*b^4 - 2*b^5 - 4*a^4*c - 2*a^3*b*c + 6*a^2*b^2*c + 2*a*b^3*c - 2*b^4*c - 4*a^3*c^2 + 6*a^2*b*c^2 - 6*a*b^2*c^2 + 4*b^3*c^2 + 6*a^2*c^3 + 2*a*b*c^3 + 4*b^2*c^3 + a*c^4 - 2*b*c^4 - 2*c^5) : :
X(59381) = 2 X[21168] + X[38107], X[21168] + 2 X[38113], 3 X[21168] + 2 X[38171], X[38107] - 4 X[38113], 3 X[38107] - 4 X[38171], 3 X[38113] - X[38171], X[3] + 2 X[9], 5 X[3] - 2 X[5732], 2 X[3] + X[5779], X[3] - 4 X[31658], 5 X[9] + X[5732], 4 X[9] - X[5779], X[9] + 2 X[31658], 4 X[3358] - X[12684], 2 X[5044] + X[51489], and many others

X(59381) lies on these lines: {1, 38293}, {2, 5762}, {3, 9}, {4, 38139}, {5, 5759}, {7, 140}, {30, 5817}, {40, 24644}, {45, 13329}, {142, 3526}, {144, 631}, {165, 10157}, {182, 50995}, {381, 516}, {390, 5690}, {480, 10267}, {517, 16857}, {518, 5050}, {527, 5054}, {528, 38066}, {547, 38137}, {549, 5843}, {550, 36991}, {952, 5686}, {954, 6883}, {990, 16814}, {991, 16885}, {999, 15298}, {1001, 1482}, {1006, 3940}, {1156, 33814}, {1385, 5223}, {1445, 5708}, {1595, 7717}, {1656, 5805}, {1657, 31672}, {2095, 8257}, {2550, 6928}, {2951, 31663}, {3059, 58630}, {3062, 35242}, {3158, 58688}, {3243, 37624}, {3295, 15299}, {3305, 19541}, {3523, 36996}, {3545, 38082}, {3579, 11372}, {3683, 6244}, {3715, 15931}, {3826, 52682}, {3843, 52835}, {3851, 18482}, {3927, 26878}, {3928, 10156}, {3929, 11227}, {3983, 16208}, {4312, 31423}, {5055, 38150}, {5070, 5735}, {5220, 52769}, {5273, 37364}, {5587, 38179}, {5603, 38043}, {5657, 34629}, {5659, 11238}, {5698, 6842}, {5709, 16853}, {5728, 31837}, {5758, 50205}, {5763, 16845}, {5789, 6865}, {5790, 28459}, {5812, 50726}, {5844, 8236}, {5850, 10165}, {5851, 38760}, {5853, 38126}, {5856, 38131}, {5857, 38132}, {5886, 38059}, {6068, 6713}, {6173, 15694}, {6594, 12331}, {6600, 37621}, {6684, 51090}, {6690, 54175}, {6867, 40333}, {6893, 35514}, {6989, 8232}, {7580, 27065}, {7686, 12702}, {8158, 31435}, {10172, 38151}, {10247, 38316}, {10303, 20059}, {10398, 24929}, {10427, 38762}, {10679, 54203}, {10861, 16371}, {11038, 38028}, {11108, 55104}, {11230, 38036}, {11231, 38052}, {11374, 52819}, {11500, 51572}, {11849, 15297}, {12645, 24393}, {12675, 58678}, {14269, 38075}, {14848, 38088}, {14853, 38166}, {15296, 22765}, {15644, 58534}, {15699, 38073}, {16417, 21165}, {16863, 37623}, {16866, 37531}, {17590, 55109}, {18525, 43161}, {18526, 43175}, {20195, 46219}, {28345, 38572}, {31391, 58887}, {32613, 42014}, {34718, 47357}, {37509, 54358}, {37606, 41700}, {38042, 38149}, {38080, 47598}, {38123, 58441}, {38143, 38317}, {38152, 38319}, {38752, 57321}, {48876, 51190}, {50821, 50836}, {50823, 50839}, {50824, 50835}, {50825, 50840}, {50828, 50834}, {50829, 50837}, {50838, 51087}, {50977, 50997}, {50979, 50996}, {50983, 51191}, {51045, 51053}, {51194, 53091}, {52665, 58221}, {55858, 58433}

X(59381) = midpoint of X(i) and X(j) for these {i,j}: {2, 21168}, {3, 51516}, {9, 21153}, {40, 24644}, {5657, 52653}, {6172, 21151}
X(59381) = reflection of X(i) in X(j) for these {i,j}: {2, 38113}, {3, 21153}, {4, 38139}, {7, 38111}, {381, 38108}, {3545, 38082}, {5050, 38117}, {5054, 38067}, {5587, 38179}, {5603, 38043}, {5779, 51516}, {5790, 38057}, {5886, 38059}, {10246, 38031}, {10247, 38316}, {11038, 38028}, {14269, 38075}, {14848, 38088}, {14853, 38166}, {21151, 549}, {21153, 31658}, {26446, 38130}, {38030, 10165}, {38036, 11230}, {38052, 11231}, {38065, 5054}, {38073, 15699}, {38080, 47598}, {38107, 2}, {38111, 140}, {38121, 26446}, {38123, 58441}, {38137, 547}, {38143, 38317}, {38149, 38042}, {38150, 38318}, {38151, 10172}, {38152, 38319}, {51514, 6173}, {51516, 9}, {57298, 38131}
X(59381) = anticomplement of X(38171)
X(59381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 9, 5779}, {5, 5759, 31671}, {9, 31658, 3}, {144, 631, 31657}, {5759, 18230, 5}, {5805, 6666, 1656}, {15299, 15837, 3295}, {21168, 38113, 38107}, {31445, 33575, 52027}, {33575, 52027, 3}, {38150, 38318, 5055}


X(59382) = 2ND TRISECTOR OF SEGMENT X(3)X(12)

Barycentrics    a^7 - a^6*b - 3*a^5*b^2 + 3*a^4*b^3 + 3*a^3*b^4 - 3*a^2*b^5 - a*b^6 + b^7 - a^6*c - a^5*b*c + 3*a^4*b^2*c - a^3*b^3*c - a^2*b^4*c + 2*a*b^5*c - b^6*c - 3*a^5*c^2 + 3*a^4*b*c^2 - 2*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + a*b^4*c^2 - 3*b^5*c^2 + 3*a^4*c^3 - a^3*b*c^3 + 4*a^2*b^2*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + 3*a^3*c^4 - a^2*b*c^4 + a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 + 2*a*b*c^5 - 3*b^2*c^5 - a*c^6 - b*c^6 + c^7 : :
X(59382) = X[3] + 2 X[12], 5 X[3] - 2 X[30264], X[3] - 4 X[31659], 5 X[12] + X[30264], X[12] + 2 X[31659], 5 X[21155] - X[30264], 2 X[21155] + X[51518], X[30264] - 10 X[31659], 2 X[30264] + 5 X[51518], 4 X[31659] + X[51518], 2 X[5] + X[11491], 2 X[10] + X[37733], 4 X[8068] - X[10738], 4 X[140] - X[2975], 5 X[37624] - 2 X[37734], and many others

X(59382) lies on these lines: {2, 952}, {3, 12}, {4, 38142}, {5, 1621}, {10, 37733}, {55, 6980}, {119, 6690}, {140, 2975}, {210, 10202}, {381, 5842}, {495, 22765}, {499, 37624}, {517, 3584}, {529, 5054}, {631, 20060}, {758, 26446}, {1385, 5444}, {1482, 3085}, {1656, 3816}, {1698, 37615}, {2476, 32141}, {2886, 12331}, {3058, 51517}, {3526, 4999}, {3545, 38085}, {3585, 33862}, {3843, 52837}, {3898, 5886}, {3940, 5552}, {4995, 5840}, {4996, 38762}, {5050, 5849}, {5080, 7508}, {5218, 6923}, {5281, 6982}, {5326, 6713}, {5330, 34352}, {5396, 17734}, {5426, 5587}, {5445, 5885}, {5603, 38045}, {5690, 6853}, {5763, 6825}, {5791, 58636}, {5817, 38181}, {5852, 38125}, {5855, 38129}, {5857, 38132}, {5882, 20104}, {5901, 6949}, {6763, 31423}, {6796, 37230}, {6834, 18493}, {6838, 48661}, {6842, 11849}, {6852, 18357}, {6862, 10786}, {6907, 35000}, {6914, 10742}, {6917, 10585}, {6928, 10588}, {6950, 38753}, {6951, 33814}, {6952, 34773}, {6954, 8164}, {6960, 22791}, {6971, 10267}, {7483, 10942}, {7491, 10592}, {7510, 37799}, {7951, 32613}, {9956, 24299}, {10056, 10247}, {10273, 50821}, {10525, 31452}, {10680, 55296}, {11374, 15865}, {12000, 31480}, {12115, 18515}, {12619, 41689}, {12645, 26363}, {13743, 18242}, {14269, 38078}, {14848, 38091}, {14853, 38169}, {15694, 31157}, {23513, 49736}, {25466, 45976}, {26285, 47032}, {26286, 37719}, {28443, 33961}, {28453, 38755}, {31260, 46219}, {33110, 51525}, {34583, 57313}, {35016, 40260}, {38107, 38206}

X(59382) = midpoint of X(i) and X(j) for these {i,j}: {3, 51518}, {12, 21155}
X(59382) = reflection of X(i) in X(j) for these {i,j}: {2, 38114}, {3, 21155}, {4, 38142}, {381, 38109}, {3545, 38085}, {5050, 38120}, {5054, 38070}, {5587, 38183}, {5603, 38045}, {5790, 38058}, {5817, 38181}, {5886, 38062}, {10246, 38033}, {14269, 38078}, {14848, 38091}, {14853, 38169}, {21155, 31659}, {26446, 38134}, {38107, 38206}, {51518, 12}, {57298, 38135}
X(59382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10246, 57298}, {12, 31659, 3}, {55, 6980, 10738}, {119, 6690, 7489}, {498, 26487, 3}, {3085, 6863, 1482}, {6668, 26470, 1656}, {6862, 10786, 18525}, {38033, 38114, 38135}


X(59383) = 2ND TRISECTOR OF SEGMENT X(3)X(13)

Barycentrics    Sqrt[3]*a^2*(3*a^4 - 4*a^2*b^2 + b^4 - 4*a^2*c^2 - 6*b^2*c^2 + c^4) + 2*(a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 8*b^2*c^2 + 4*c^4)*S : :
X(59383) = X[3] + 2 X[13], 5 X[3] - 2 X[5473], X[3] - 4 X[6771], 2 X[3] + X[13103], 5 X[3] + 4 X[16001], X[3] + 8 X[20415], 5 X[13] + X[5473], X[13] + 2 X[6771], 4 X[13] - X[13103], 5 X[13] - 2 X[16001], X[13] - 4 X[20415], X[5473] - 10 X[6771], 4 X[5473] + 5 X[13103], X[5473] + 2 X[16001], X[5473] + 20 X[20415], X[5473] - 5 X[21156], and many others

X(59383) lies on these lines: {3, 13}, {4, 20252}, {5, 6770}, {6, 22511}, {14, 25559}, {61, 16628}, {98, 48656}, {115, 11485}, {140, 616}, {182, 37832}, {262, 42062}, {381, 5459}, {382, 5478}, {396, 5611}, {511, 16267}, {530, 5054}, {542, 5050}, {549, 51482}, {575, 37835}, {618, 3526}, {619, 13188}, {999, 10062}, {1151, 35754}, {1152, 35753}, {1385, 9901}, {1482, 11705}, {1656, 5617}, {2782, 11298}, {3295, 10078}, {3311, 49209}, {3312, 49208}, {3517, 12142}, {3534, 25154}, {3843, 36961}, {3851, 22796}, {5463, 15694}, {5470, 16962}, {5472, 11486}, {5474, 38733}, {5613, 12188}, {5615, 6108}, {5965, 21359}, {6055, 9750}, {6115, 42132}, {6417, 19073}, {6418, 19074}, {6670, 22507}, {6694, 16627}, {6774, 6778}, {6777, 42095}, {6782, 42129}, {7506, 9916}, {7975, 37624}, {9735, 41943}, {9736, 41107}, {9763, 22715}, {10109, 36318}, {10653, 53455}, {11171, 33479}, {11480, 23005}, {11481, 47859}, {11488, 44461}, {11542, 20425}, {11812, 35749}, {12017, 36771}, {12337, 37621}, {12942, 31479}, {13350, 36969}, {14136, 42988}, {14269, 41025}, {14830, 54570}, {15693, 47865}, {15701, 35752}, {15713, 35750}, {16202, 49143}, {16203, 49144}, {16242, 59245}, {16268, 39561}, {16530, 16645}, {18582, 53430}, {19709, 41042}, {20426, 37640}, {20428, 33560}, {21158, 42973}, {22236, 46855}, {22513, 42128}, {22773, 37535}, {22797, 38744}, {22847, 40694}, {23006, 42115}, {25235, 33416}, {33388, 41039}, {36755, 54138}, {36766, 43029}, {36770, 46219}, {37333, 59363}, {38741, 41061}, {42124, 44250}, {42154, 59244}, {42816, 47863}, {42914, 55710}, {42915, 50664}, {42992, 47066}, {43403, 44465}, {45410, 48722}, {45411, 48723}, {51200, 53091}

X(59383) = midpoint of X(i) and X(j) for these {i,j}: {13, 21156}, {21158, 42973}
X(59383) = reflection of X(i) in X(j) for these {i,j}: {3, 21156}, {5055, 22489}, {21156, 6771}, {38732, 5470}
X(59383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 13, 13103}, {5, 6770, 48655}, {13, 5473, 16001}, {13, 6771, 3}, {13, 15929, 21310}, {5617, 6669, 1656}, {6771, 20415, 13}, {20252, 47610, 4}, {42158, 49106, 3}


X(59384) = 2ND TRISECTOR OF SEGMENT X(3)X(14)

Barycentrics    Sqrt[3]*a^2*(3*a^4 - 4*a^2*b^2 + b^4 - 4*a^2*c^2 - 6*b^2*c^2 + c^4) - 2*(a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 8*b^2*c^2 + 4*c^4)*S : :
X(59384) = X[3] + 2 X[14], 5 X[3] - 2 X[5474], and many others

X(59384) lies on these lines: {3, 14}, {4, 20253}, {5, 6773}, {6, 22510}, {13, 25560}, {62, 16629}, {98, 48655}, {115, 11486}, {140, 617}, {182, 37835}, {262, 42063}, {381, 5460}, {382, 5479}, {395, 5615}, {511, 16268}, {531, 5054}, {542, 5050}, {549, 51483}, {575, 37832}, {618, 13188}, {619, 3526}, {999, 10061}, {1151, 35851}, {1152, 35850}, {1385, 9900}, {1482, 11706}, {1656, 5613}, {2782, 11297}, {3295, 10077}, {3311, 49211}, {3312, 49210}, {3517, 12141}, {3534, 25164}, {3843, 36962}, {3851, 22797}, {5464, 15694}, {5469, 16963}, {5471, 11485}, {5473, 38733}, {5611, 6109}, {5617, 12188}, {5965, 21360}, {6055, 9749}, {6114, 42129}, {6417, 19075}, {6418, 19076}, {6669, 22509}, {6695, 16626}, {6771, 6777}, {6778, 42098}, {6783, 42132}, {7506, 9915}, {7974, 37624}, {9735, 41108}, {9736, 41944}, {9761, 22714}, {10109, 36320}, {10654, 53466}, {11171, 33478}, {11480, 47860}, {11481, 23004}, {11489, 44465}, {11543, 20426}, {11812, 36327}, {12336, 37621}, {12941, 31479}, {13349, 36970}, {14137, 42989}, {14269, 41024}, {14830, 54569}, {15693, 47866}, {15701, 36330}, {15713, 36331}, {16202, 49145}, {16203, 49146}, {16241, 59244}, {16267, 39561}, {16529, 16644}, {18581, 53442}, {19709, 41043}, {20425, 37641}, {20429, 33561}, {21159, 42972}, {22238, 46854}, {22512, 42125}, {22774, 37535}, {22796, 38744}, {22893, 40693}, {23013, 42116}, {25236, 33417}, {33389, 41038}, {36756, 54139}, {37332, 59363}, {38741, 41060}, {42155, 59245}, {42815, 47864}, {42914, 50664}, {42915, 55710}, {42993, 47068}, {43404, 44461}, {43417, 44250}, {45410, 48724}, {45411, 48725}, {51203, 53091}

X(59384) = midpoint of X(i) and X(j) for these {i,j}: {14, 21157}, {21159, 42972}
X(59384) = reflection of X(i) in X(j) for these {i,j}: {3, 21157}, {5055, 22490}, {21157, 6774}, {38732, 5469}, {38743, 36765}
X(59384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14, 13102}, {5, 6773, 48656}, {14, 5474, 16002}, {14, 6774, 3}, {14, 15930, 21311}, {5613, 6670, 1656}, {6774, 20416, 14}, {20253, 47611, 4}, {36765, 38317, 5055}, {42157, 49105, 3}


X(59385) = 1ST TRISECTOR OF SEGMENT X(4)X(7)

Barycentrics    3*a^6 - 4*a^5*b - a^4*b^2 + a^2*b^4 + 4*a*b^5 - 3*b^6 - 4*a^5*c - 2*a^4*b*c - 4*a^2*b^3*c + 4*a*b^4*c + 6*b^5*c - a^4*c^2 + 6*a^2*b^2*c^2 - 8*a*b^3*c^2 + 3*b^4*c^2 - 4*a^2*b*c^3 - 8*a*b^2*c^3 - 12*b^3*c^3 + a^2*c^4 + 4*a*b*c^4 + 3*b^2*c^4 + 4*a*c^5 + 6*b*c^5 - 3*c^6 : :
X(59385) = 3 X[1699] - X[24644], 3 X[7988] - 2 X[38059], 3 X[9779] - 2 X[38037], 3 X[9779] - X[52653], X[21153] - 3 X[38150], 4 X[50802] - X[50836], X[50865] + 2 X[51100], 2 X[4] + X[7], X[4] + 2 X[5805], X[4] - 4 X[18482], 5 X[4] - 2 X[31672], 4 X[4] - X[36991], 5 X[4] + X[36996], X[7] - 4 X[5805], X[7] + 8 X[18482], 5 X[7] + 4 X[31672], and many others

X(59385) lies on these lines: {2, 165}, {3, 38171}, {4, 7}, {5, 5759}, {8, 6894}, {9, 3091}, {20, 142}, {30, 21151}, {40, 40333}, {78, 43166}, {144, 3832}, {153, 3254}, {185, 58472}, {235, 7717}, {376, 38122}, {381, 5762}, {382, 31657}, {390, 946}, {411, 1001}, {515, 11038}, {517, 38149}, {527, 3839}, {546, 5779}, {944, 20330}, {954, 5226}, {960, 962}, {1058, 20790}, {1156, 38306}, {1158, 1445}, {1210, 4312}, {1482, 12630}, {1503, 38143}, {1537, 20119}, {1721, 7613}, {1836, 17604}, {2346, 11500}, {2800, 45043}, {2829, 38152}, {2951, 51118}, {3062, 5556}, {3090, 31658}, {3146, 5732}, {3149, 15911}, {3332, 5222}, {3474, 7965}, {3523, 20195}, {3543, 6173}, {3545, 21168}, {3577, 11526}, {3616, 43161}, {3622, 43175}, {3656, 50839}, {3826, 6991}, {3845, 5843}, {4301, 20007}, {4313, 20420}, {4355, 15841}, {5055, 38113}, {5056, 6666}, {5071, 38318}, {5175, 41228}, {5223, 19925}, {5225, 14100}, {5229, 8581}, {5249, 50696}, {5273, 8226}, {5296, 36660}, {5435, 8727}, {5480, 51190}, {5542, 5691}, {5550, 52769}, {5561, 56263}, {5587, 5686}, {5603, 8236}, {5698, 6828}, {5705, 12571}, {5715, 8232}, {5731, 38053}, {5744, 10883}, {5749, 36652}, {5758, 6849}, {5766, 6848}, {5819, 27382}, {5825, 41563}, {5832, 6957}, {5833, 12572}, {5842, 38153}, {5845, 53023}, {5880, 6836}, {5921, 51194}, {5924, 7682}, {6260, 41857}, {6601, 6764}, {6831, 52682}, {6839, 52457}, {6844, 37787}, {6864, 12699}, {6865, 22793}, {6870, 54370}, {6895, 9782}, {6918, 40273}, {6986, 11495}, {6988, 9955}, {7229, 12618}, {7672, 7686}, {7673, 45776}, {7675, 30275}, {7676, 11496}, {7677, 22753}, {7678, 7681}, {7679, 7680}, {8255, 36999}, {8732, 37434}, {9581, 52819}, {9776, 10431}, {10004, 34059}, {10303, 58433}, {10304, 38093}, {10427, 10724}, {10580, 58626}, {10588, 15837}, {10590, 15298}, {10591, 15299}, {11024, 50399}, {11025, 13374}, {11522, 30331}, {12573, 14986}, {12680, 58563}, {14269, 51514}, {17578, 43177}, {17582, 33575}, {17768, 52269}, {20059, 50689}, {21296, 48878}, {25406, 38186}, {26129, 37229}, {27413, 45100}, {28146, 38172}, {28150, 38123}, {28160, 38030}, {28164, 38054}, {28174, 38121}, {28186, 38041}, {28194, 38092}, {28212, 38170}, {28228, 38201}, {28344, 44978}, {29012, 38115}, {30340, 31673}, {34028, 41344}, {36990, 51150}, {37423, 41869}, {37820, 54158}, {38038, 53055}, {38057, 38454}, {38130, 54447}, {38154, 54448}, {38205, 38693}, {41712, 54361}, {42447, 44864}, {42884, 57283}, {47354, 50996}, {47595, 51212}, {50796, 50835}, {50801, 50838}, {50803, 50834}, {50837, 51076}, {50840, 51074}, {50862, 51098}, {50864, 51099}, {50871, 51101}, {50872, 51102}, {50959, 50997}, {50960, 51191}, {51002, 51023}, {51022, 51195}, {51024, 51151}, {51028, 51152}, {51041, 51053}, {51057, 51065}

X(59385) = reflection of X(i) in X(j) for these {i,j}: {2, 38150}, {3, 38171}, {165, 38204}, {376, 38122}, {5686, 5587}, {5731, 38053}, {5817, 381}, {6172, 5817}, {8236, 5603}, {10304, 38093}, {11038, 38036}, {21151, 38107}, {21168, 38108}, {25406, 38186}, {38052, 38151}, {38107, 38137}, {38693, 38205}, {51516, 38139}, {52653, 38037}, {53055, 38038}
X(59385) = anticomplement of X(21153)
X(59385) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 7, 36991}, {4, 5805, 7}, {4, 36996, 31672}, {5, 5759, 18230}, {5, 31671, 5759}, {142, 52835, 20}, {381, 51516, 38139}, {390, 21617, 5703}, {946, 50700, 5703}, {3332, 53599, 5222}, {3545, 21168, 38108}, {5805, 18482, 4}, {9779, 52653, 38037}, {10400, 56873, 7}, {21151, 38073, 38107}, {38107, 38137, 38073}, {38139, 51516, 5817}


X(59386) = 2ND TRISECTOR OF SEGMENT X(4)X(7)

Barycentrics    3*a^6 - 2*a^5*b - 5*a^4*b^2 + 5*a^2*b^4 + 2*a*b^5 - 3*b^6 - 2*a^5*c + 2*a^4*b*c - 8*a^2*b^3*c + 2*a*b^4*c + 6*b^5*c - 5*a^4*c^2 + 6*a^2*b^2*c^2 - 4*a*b^3*c^2 + 3*b^4*c^2 - 8*a^2*b*c^3 - 4*a*b^2*c^3 - 12*b^3*c^3 + 5*a^2*c^4 + 2*a*b*c^4 + 3*b^2*c^4 + 2*a*c^5 + 6*b*c^5 - 3*c^6 : :
X(59386) = 5 X[2] - 4 X[38113], 3 X[2] - 4 X[38171], X[21168] - 4 X[38107], 5 X[21168] - 8 X[38113], 3 X[21168] - 8 X[38171], 5 X[38107] - 2 X[38113], 3 X[38107] - 2 X[38171], 3 X[38113] - 5 X[38171], X[4] + 2 X[7], X[4] - 4 X[5805], 5 X[4] - 8 X[18482], 7 X[4] - 4 X[31672], 5 X[4] - 2 X[36991], 2 X[4] + X[36996], X[7] + 2 X[5805], 5 X[7] + 4 X[18482], 7 X[7] + 2 X[31672], 5 X[7] + X[36991], 4 X[7] - X[36996], 5 X[5805] - 2 X[18482], 7 X[5805] - X[31672], 10 X[5805] - X[36991], 8 X[5805] + X[36996], 14 X[18482] - 5 X[31672], 4 X[18482] - X[36991], 16 X[18482] + 5 X[36996], 10 X[31672] - 7 X[36991], and many others

X(59386) lies on these lines: {2, 5762}, {3, 38111}, {4, 7}, {5, 144}, {9, 3090}, {20, 31657}, {79, 10307}, {142, 631}, {165, 38123}, {376, 516}, {381, 5843}, {390, 6934}, {443, 55109}, {518, 38149}, {527, 3545}, {553, 1699}, {894, 36682}, {944, 5542}, {946, 3361}, {954, 6905}, {1001, 6875}, {1086, 3332}, {1389, 42871}, {1445, 6956}, {1750, 3982}, {2094, 9779}, {2095, 6843}, {2550, 6901}, {2886, 54133}, {3062, 18483}, {3091, 5779}, {3296, 15909}, {3358, 26877}, {3428, 33558}, {3487, 52026}, {3524, 38122}, {3525, 31658}, {3529, 5732}, {3533, 20195}, {3567, 58472}, {3817, 3928}, {4114, 30304}, {4644, 53599}, {4654, 5658}, {5050, 38164}, {5054, 38080}, {5067, 18230}, {5071, 6172}, {5220, 10599}, {5223, 5818}, {5439, 51489}, {5586, 9948}, {5587, 5850}, {5657, 38052}, {5715, 52819}, {5731, 38030}, {5758, 17582}, {5763, 17580}, {5812, 17559}, {5832, 6854}, {5845, 14853}, {5851, 38152}, {5852, 38153}, {5880, 6897}, {5886, 50739}, {6147, 50700}, {6646, 36660}, {6776, 51150}, {6830, 12848}, {6833, 8732}, {6834, 8232}, {6855, 37532}, {6879, 37787}, {6906, 7677}, {6927, 21617}, {6935, 30379}, {6939, 37826}, {6969, 8545}, {7222, 12618}, {7680, 36971}, {7686, 8581}, {7967, 11038}, {8164, 15298}, {8226, 9965}, {8227, 51090}, {8255, 37000}, {8543, 52270}, {8727, 21454}, {9812, 10167}, {10246, 38041}, {10304, 38065}, {10427, 13199}, {10431, 26842}, {10598, 16112}, {11036, 20420}, {11246, 14646}, {11372, 30424}, {13159, 16116}, {13374, 14100}, {15299, 47743}, {15670, 38043}, {15709, 38093}, {16593, 24817}, {16845, 55108}, {17768, 38037}, {18412, 31870}, {20533, 24833}, {21161, 38031}, {24470, 37434}, {24474, 41228}, {25406, 38115}, {25557, 43161}, {26446, 38172}, {26806, 36706}, {31245, 54175}, {31669, 38025}, {33703, 43177}, {38121, 44217}, {38124, 38693}, {38173, 57298}, {40330, 50995}, {41869, 43182}, {42884, 45977}, {43273, 51195}, {50810, 51100}, {50811, 51098}, {50818, 51099}, {50967, 51151}, {50974, 51002}, {51043, 51057}, {51152, 51179}

X(59386) = midpoint of X(i) and X(j) for these {i,j}: {381, 51514}, {4312, 24644}, {5735, 21153}
X(59386) = reflection of X(i) in X(j) for these {i,j}: {2, 38107}, {3, 38111}, {144, 51516}, {165, 38123}, {376, 21151}, {381, 38137}, {3545, 38073}, {3576, 38054}, {5050, 38164}, {5054, 38080}, {5587, 38151}, {5603, 38036}, {5657, 38052}, {5731, 38030}, {5759, 21153}, {5779, 38139}, {5817, 38150}, {6172, 38108}, {7967, 11038}, {10246, 38041}, {10304, 38065}, {14853, 38143}, {21151, 6173}, {21153, 142}, {21168, 2}, {24644, 946}, {25406, 38115}, {26446, 38172}, {38693, 38124}, {51516, 5}, {52653, 5886}, {57298, 38173}
X(59386) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 7, 36996}, {7, 5805, 4}, {142, 5735, 5759}, {142, 5759, 631}, {390, 20330, 10595}, {3091, 20059, 5779}, {5817, 38073, 38150}, {5817, 38150, 3545}, {18482, 36991, 4}, {20330, 52682, 390}, {31657, 31671, 20}


X(59387) = 1ST TRISECTOR OF SEGMENT X(4)X(8)

Barycentrics    3*a^4 - 2*a^3*b + 2*a*b^3 - 3*b^4 - 2*a^3*c + 4*a^2*b*c - 2*a*b^2*c - 2*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 - 3*c^4 : :
X(59387) = 2 X[1] - 5 X[3091], X[1] - 4 X[19925], 5 X[3091] - 4 X[3817], 5 X[3091] - 8 X[19925], 5 X[2] - 4 X[10165], 7 X[2] - 8 X[10172], 3 X[2] - 4 X[10175], X[2] - 4 X[50796], 5 X[2] - 2 X[50811], 11 X[2] - 8 X[50828], 2 X[2] + X[50864], 7 X[2] - 4 X[51705], 4 X[2] - 3 X[54445], 5 X[2] - 6 X[54447], X[2] - 3 X[54448], X[3576] - 3 X[5587], and many others

X(59387) lies on these lines: {1, 3091}, {2, 515}, {3, 5260}, {4, 8}, {5, 944}, {7, 80}, {10, 20}, {11, 3476}, {12, 3486}, {21, 11500}, {23, 15177}, {30, 5657}, {40, 3146}, {55, 6912}, {56, 5704}, {63, 5775}, {65, 5229}, {84, 37435}, {100, 1012}, {104, 6911}, {118, 15735}, {119, 6224}, {145, 946}, {146, 13211}, {147, 13178}, {148, 9864}, {149, 6246}, {151, 5942}, {152, 50896}, {185, 23841}, {193, 39885}, {226, 5727}, {235, 7718}, {278, 7541}, {354, 388}, {374, 54008}, {376, 26446}, {377, 9799}, {381, 952}, {382, 5690}, {390, 3586}, {391, 10445}, {392, 10157}, {404, 12114}, {411, 958}, {443, 5787}, {452, 24987}, {495, 3488}, {497, 5252}, {498, 4305}, {499, 6979}, {516, 3543}, {519, 1699}, {529, 24477}, {546, 1482}, {551, 7988}, {631, 9956}, {726, 22650}, {936, 8165}, {950, 9578}, {956, 19541}, {971, 3753}, {991, 56191}, {993, 44425}, {995, 5400}, {997, 5328}, {999, 12019}, {1056, 5049}, {1125, 5056}, {1145, 10724}, {1146, 5819}, {1158, 31295}, {1210, 3600}, {1220, 5786}, {1319, 10589}, {1320, 38307}, {1329, 6943}, {1330, 54136}, {1376, 6909}, {1385, 3090}, {1388, 7173}, {1479, 9785}, {1483, 3850}, {1490, 5177}, {1503, 38144}, {1512, 5744}, {1532, 11680}, {1537, 12531}, {1587, 49602}, {1588, 49601}, {1621, 6913}, {1656, 34773}, {1698, 3523}, {1709, 54286}, {1737, 4293}, {1750, 9623}, {1788, 7354}, {1826, 27382}, {1861, 52848}, {2099, 38757}, {2320, 6859}, {2475, 5554}, {2476, 18242}, {2550, 6925}, {2551, 3740}, {2635, 24806}, {2646, 6860}, {2784, 50282}, {2807, 15305}, {2814, 53364}, {2818, 30438}, {2829, 14647}, {2886, 6932}, {2975, 3149}, {3036, 16112}, {3057, 5225}, {3070, 19065}, {3071, 19066}, {3085, 4313}, {3086, 4308}, {3100, 36985}, {3160, 17181}, {3189, 12607}, {3244, 11522}, {3416, 51212}, {3427, 30513}, {3428, 36002}, {3448, 12368}, {3454, 54181}, {3474, 12943}, {3475, 11237}, {3485, 7548}, {3487, 9654}, {3522, 6684}, {3524, 11231}, {3525, 13624}, {3529, 3579}, {3534, 28190}, {3544, 15178}, {3545, 5886}, {3555, 5806}, {3560, 11491}, {3562, 9370}, {3583, 12647}, {3585, 4295}, {3614, 34471}, {3621, 7982}, {3622, 5068}, {3623, 3854}, {3624, 7486}, {3625, 11531}, {3626, 7991}, {3627, 12702}, {3632, 4301}, {3633, 16191}, {3634, 7987}, {3649, 9656}, {3654, 15682}, {3655, 5071}, {3656, 41099}, {3661, 7406}, {3696, 51063}, {3697, 31793}, {3698, 9943}, {3751, 5921}, {3754, 15071}, {3811, 12536}, {3812, 12680}, {3818, 39898}, {3820, 37374}, {3828, 15692}, {3830, 28174}, {3843, 12645}, {3845, 5844}, {3851, 5901}, {3853, 48661}, {3855, 9955}, {3860, 50806}, {3868, 7686}, {3871, 11496}, {3872, 18529}, {3876, 14110}, {3885, 45776}, {3889, 13374}, {3897, 6933}, {3935, 37569}, {3983, 58637}, {4002, 31787}, {4187, 52683}, {4188, 5450}, {4189, 6796}, {4190, 12616}, {4208, 10884}, {4245, 15626}, {4294, 10039}, {4299, 5131}, {4300, 59311}, {4304, 5281}, {4311, 5265}, {4312, 30286}, {4314, 51784}, {4323, 12047}, {4329, 20289}, {4345, 30384}, {4402, 12610}, {4420, 37531}, {4430, 6894}, {4511, 5720}, {4662, 7957}, {4668, 9589}, {4669, 28228}, {4677, 50801}, {4678, 11362}, {4691, 5493}, {4731, 5918}, {4745, 15640}, {4816, 58245}, {4848, 9579}, {4857, 5560}, {4882, 12651}, {5046, 48482}, {5055, 38028}, {5059, 31730}, {5066, 10283}, {5067, 31662}, {5072, 37624}, {5119, 30332}, {5123, 6966}, {5187, 26129}, {5198, 12410}, {5218, 6974}, {5222, 7377}, {5232, 10444}, {5235, 7415}, {5251, 37106}, {5253, 6918}, {5278, 56959}, {5290, 6738}, {5296, 5816}, {5308, 36662}, {5423, 16086}, {5439, 58615}, {5441, 31452}, {5448, 9933}, {5480, 51192}, {5552, 6847}, {5556, 43734}, {5584, 33557}, {5658, 17532}, {5692, 15064}, {5698, 36999}, {5715, 41575}, {5726, 13405}, {5732, 40333}, {5761, 11929}, {5768, 6826}, {5770, 28452}, {5795, 37421}, {5804, 6849}, {5809, 7671}, {5817, 11113}, {5828, 7080}, {5836, 12688}, {5842, 11114}, {5845, 42048}, {5846, 53023}, {5854, 34717}, {5855, 34700}, {5880, 12678}, {5893, 7973}, {5903, 31803}, {5905, 18406}, {5907, 16980}, {6001, 32064}, {6049, 7741}, {6245, 6904}, {6253, 57288}, {6259, 54228}, {6261, 6871}, {6326, 20085}, {6459, 13911}, {6460, 13973}, {6560, 35789}, {6561, 35788}, {6622, 11363}, {6705, 37267}, {6734, 50700}, {6735, 17784}, {6736, 21628}, {6797, 17661}, {6824, 10786}, {6831, 11681}, {6833, 27529}, {6838, 19843}, {6840, 10176}, {6841, 10942}, {6843, 18446}, {6848, 10527}, {6852, 26487}, {6855, 10585}, {6866, 10599}, {6867, 21740}, {6870, 17857}, {6884, 10198}, {6885, 37002}, {6890, 17647}, {6893, 12116}, {6896, 10805}, {6897, 26060}, {6898, 26127}, {6905, 18491}, {6906, 11499}, {6907, 33108}, {6914, 18524}, {6916, 10430}, {6919, 12650}, {6920, 10267}, {6921, 7705}, {6924, 26321}, {6930, 37000}, {6941, 26470}, {6944, 10785}, {6946, 10269}, {6960, 26363}, {6962, 30478}, {6972, 26364}, {6991, 25466}, {6992, 18230}, {6993, 18444}, {6996, 29611}, {7282, 55015}, {7288, 17606}, {7330, 56288}, {7379, 54474}, {7384, 17316}, {7385, 39581}, {7407, 16830}, {7488, 8185}, {7503, 9798}, {7513, 27410}, {7518, 39574}, {7580, 9708}, {7680, 10883}, {7681, 36977}, {7682, 26015}, {7687, 7984}, {7688, 35986}, {7701, 40256}, {7743, 17618}, {7951, 37006}, {7962, 51792}, {7968, 42561}, {7969, 31412}, {7978, 46686}, {7998, 52796}, {8126, 9837}, {8148, 40273}, {8164, 24929}, {8192, 11479}, {8200, 18497}, {8207, 18495}, {8236, 38037}, {8256, 37001}, {8582, 17580}, {8726, 37436}, {8727, 17757}, {8972, 9583}, {9519, 21290}, {9534, 10440}, {9581, 10106}, {9590, 10298}, {9619, 31404}, {9620, 43448}, {9624, 13607}, {9670, 45081}, {9709, 37022}, {9711, 50031}, {9802, 10738}, {9809, 10742}, {9819, 51783}, {9842, 12053}, {9875, 50879}, {9880, 50880}, {9897, 18393}, {9899, 54211}, {9948, 50725}, {9961, 31788}, {10072, 37718}, {10164, 10304}, {10171, 25055}, {10273, 40263}, {10296, 47321}, {10327, 37456}, {10394, 50195}, {10439, 10449}, {10446, 32099}, {10453, 39550}, {10465, 10479}, {10574, 58487}, {10679, 38665}, {10744, 17777}, {10864, 56999}, {10896, 10944}, {10902, 16865}, {11001, 28168}, {11038, 38150}, {11041, 13257}, {11200, 50291}, {11203, 26117}, {11235, 38455}, {11236, 25568}, {11248, 21669}, {11396, 23047}, {11545, 36279}, {11698, 12747}, {11752, 30415}, {11789, 30414}, {11827, 59355}, {11897, 16212}, {12100, 50819}, {12101, 50823}, {12135, 37197}, {12246, 33899}, {12248, 12619}, {12296, 12787}, {12297, 12788}, {12324, 12779}, {12384, 13280}, {12407, 14683}, {12527, 54398}, {12684, 50240}, {12784, 13219}, {13407, 31410}, {13576, 54821}, {13743, 32141}, {13902, 42265}, {13912, 43512}, {13959, 42262}, {13975, 43511}, {14266, 56420}, {14269, 51515}, {14450, 37230}, {15017, 33337}, {15022, 46934}, {15043, 58548}, {15486, 56768}, {15683, 28172}, {15684, 28182}, {15687, 28212}, {15697, 51083}, {15705, 38068}, {15709, 38083}, {15717, 31399}, {15721, 19876}, {15863, 34789}, {15942, 37104}, {15971, 48937}, {15973, 48923}, {16173, 38161}, {16215, 17644}, {16370, 38058}, {16371, 34122}, {16475, 38146}, {17170, 31994}, {17538, 31663}, {17542, 38031}, {17567, 17619}, {17572, 37561}, {17582, 33574}, {17605, 37740}, {17753, 32003}, {17768, 34739}, {18513, 41684}, {18623, 51421}, {19647, 37620}, {19709, 50824}, {19710, 50813}, {19767, 37699}, {19853, 44039}, {19855, 37112}, {19862, 30389}, {19914, 22799}, {20007, 21075}, {20008, 41863}, {20321, 37437}, {20423, 51001}, {21044, 40127}, {21151, 44217}, {21578, 31188}, {21677, 52841}, {22615, 35610}, {22644, 35611}, {22753, 54391}, {23249, 35774}, {23251, 49233}, {23259, 35775}, {23261, 49232}, {23513, 32558}, {23675, 28080}, {24393, 52835}, {24928, 47743}, {25006, 50696}, {25406, 38047}, {26118, 36926}, {28194, 50687}, {28234, 31145}, {28292, 47769}, {28850, 44431}, {29012, 38116}, {29349, 48938}, {29353, 48878}, {29667, 50698}, {29679, 50699}, {30308, 50803}, {30315, 51073}, {30413, 44038}, {31672, 35514}, {32153, 37251}, {33650, 50899}, {33697, 33703}, {33956, 34640}, {34231, 54425}, {34548, 50914}, {34549, 50916}, {34550, 50917}, {34595, 46935}, {34664, 34668}, {34681, 34686}, {34706, 34711}, {34725, 34730}, {34733, 34738}, {34862, 57000}, {35242, 50693}, {35641, 42269}, {35642, 42268}, {35762, 42274}, {35763, 42277}, {35786, 35843}, {35787, 35842}, {36990, 49524}, {37028, 52412}, {37256, 40264}, {37291, 40260}, {37365, 59298}, {37433, 47033}, {37701, 38162}, {38159, 53055}, {39870, 51171}, {41106, 50799}, {42270, 44636}, {42273, 44635}, {42448, 44865}, {43174, 49135}, {44841, 51789}, {45305, 52856}, {46704, 48877}, {46878, 52849}, {47354, 50999}, {47359, 51023}, {48893, 50417}, {49168, 55109}, {50086, 51064}, {50781, 54174}, {50802, 51093}, {50808, 50863}, {50814, 50866}, {50839, 50906}, {50868, 51069}, {50869, 51070}, {50949, 51024}, {50950, 51028}, {50951, 51022}, {50952, 51215}, {50953, 51216}, {50956, 51193}, {50959, 51000}, {50960, 50998}, {51027, 51124}, {51029, 51125}, {51034, 51065}, {51038, 51054}, {51040, 51056}, {51041, 51055}, {51074, 51092}, {51075, 51096}, {51076, 51091}, {51082, 51105}, {51129, 51146}, {51130, 51148}, {51131, 51145}, {51168, 51211}, {51169, 51213}, {52031, 56424}

X(59387) = midpoint of X(i) and X(j) for these {i,j}: {8, 9812}, {165, 5691}, {1699, 37712}, {5603, 34627}, {5731, 50864}, {5881, 16200}, {10246, 18525}, {10273, 40263}, {31673, 38127}, {34648, 38155}
X(59387) = reflection of X(i) in X(j) for these {i,j}: {1, 3817}, {2, 5587}, {3, 38042}, {20, 165}, {40, 38127}, {145, 16200}, {165, 10}, {376, 26446}, {392, 10157}, {944, 10246}, {962, 9812}, {3241, 5603}, {3576, 10175}, {3654, 38176}, {3655, 11230}, {3679, 38155}, {3681, 18908}, {3817, 19925}, {4297, 58441}, {5587, 50796}, {5603, 381}, {5657, 5790}, {5686, 38154}, {5692, 15064}, {5731, 2}, {5790, 38138}, {5886, 38140}, {7967, 5886}, {8236, 38037}, {9778, 5657}, {9812, 4}, {10246, 5}, {10247, 38034}, {10283, 5066}, {10304, 19875}, {11038, 38150}, {15735, 118}, {16173, 38161}, {16200, 946}, {16212, 11897}, {16475, 38146}, {17502, 9956}, {18481, 17502}, {25055, 38076}, {25406, 38047}, {25568, 11236}, {31793, 58688}, {37701, 38162}, {38042, 18357}, {38314, 3545}, {38693, 34122}, {50811, 10165}, {51705, 10172}, {52653, 5817}, {53055, 38159}, {53620, 38074}, {54052, 14647}
X(59387) = anticomplement of X(3576)
X(59387) = Fuhrmann-circle-inverse of X(962)
X(59387) = anticomplement of the isogonal conjugate of X(3577)
X(59387) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3577, 8}, {36925, 21290}, {44730, 2891}, {50442, 69}, {55938, 75}
X(59387) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10590, 5226}, {1, 19925, 3091}, {2, 5731, 54445}, {2, 54448, 5587}, {3, 5818, 9780}, {3, 18357, 5818}, {4, 8, 962}, {4, 355, 8}, {4, 12245, 12699}, {4, 12699, 10248}, {5, 944, 3616}, {5, 18525, 944}, {8, 3436, 5815}, {8, 5080, 329}, {10, 5691, 20}, {10, 12512, 9588}, {10, 31424, 18231}, {12, 3486, 5703}, {40, 31673, 3146}, {56, 54361, 5704}, {80, 153, 9803}, {80, 1478, 18391}, {145, 946, 5734}, {145, 3832, 946}, {153, 6839, 1478}, {355, 18480, 4}, {381, 5603, 9779}, {381, 10247, 38034}, {381, 34627, 3241}, {382, 5690, 6361}, {388, 938, 11037}, {388, 1837, 938}, {495, 3488, 10578}, {546, 37705, 1482}, {631, 9956, 19877}, {946, 5881, 145}, {946, 18492, 3832}, {1056, 5722, 10580}, {1125, 7989, 5056}, {1210, 9613, 3600}, {1385, 3090, 5550}, {1478, 18391, 7}, {1483, 3850, 18493}, {1698, 4297, 3523}, {1698, 58221, 58441}, {1737, 4293, 5435}, {3085, 10572, 4313}, {3086, 45287, 4308}, {3146, 3617, 40}, {3241, 9779, 5603}, {3244, 12571, 11522}, {3419, 3421, 8}, {3434, 5176, 8}, {3436, 5086, 8}, {3522, 46933, 6684}, {3543, 3679, 34632}, {3545, 7967, 5886}, {3560, 18518, 11491}, {3576, 5587, 10175}, {3576, 10175, 2}, {3583, 12647, 30305}, {3585, 10573, 4295}, {3586, 31397, 390}, {3622, 5068, 8227}, {3626, 51118, 7991}, {3634, 7987, 10303}, {3679, 34648, 3543}, {3828, 34628, 15692}, {3832, 5881, 5734}, {3843, 12645, 22791}, {3851, 18526, 5901}, {3855, 10595, 9955}, {4190, 25005, 26062}, {4297, 58441, 58221}, {4304, 31434, 5281}, {4678, 17578, 20070}, {4678, 20070, 11362}, {5178, 56879, 8}, {5290, 6738, 11036}, {5587, 50796, 54448}, {5587, 50811, 54447}, {5587, 50864, 54445}, {5657, 5790, 53620}, {5657, 38074, 5790}, {5691, 37714, 10}, {5720, 6844, 5748}, {5768, 6826, 9776}, {5790, 38138, 38074}, {5881, 18492, 946}, {5882, 8227, 3622}, {5886, 7967, 38314}, {5886, 38140, 3545}, {6246, 12751, 149}, {6894, 20060, 26332}, {6911, 18519, 104}, {7686, 14872, 3868}, {7982, 47745, 3621}, {9581, 10106, 14986}, {9654, 37730, 3487}, {9778, 53620, 5657}, {9955, 37727, 10595}, {9956, 18481, 631}, {10165, 54447, 2}, {10247, 38034, 5603}, {10248, 12245, 962}, {10572, 10827, 3085}, {10595, 37727, 20057}, {10742, 12247, 9809}, {10826, 45287, 3086}, {10895, 10950, 3485}, {11362, 41869, 20070}, {11499, 18761, 6906}, {12751, 26333, 12648}, {12943, 40663, 3474}, {14110, 58631, 3876}, {15717, 46932, 31423}, {17578, 20070, 41869}, {18483, 47745, 7982}, {18491, 22758, 6905}, {18516, 37820, 4}, {18517, 37821, 4}, {30308, 50871, 51071}, {31399, 31423, 46932}, {33899, 40267, 12246}, {41106, 50818, 51709}, {50701, 51755, 5744}, {50799, 51709, 41106}, {50803, 51071, 30308}, {50811, 54447, 10165}, {58221, 58441, 3523}


X(59388) = 2ND TRISECTOR OF SEGMENT X(4)X(8)

Barycentrics    3*a^4 - 4*a^3*b + 4*a*b^3 - 3*b^4 - 4*a^3*c + 8*a^2*b*c - 4*a*b^2*c - 4*a*b*c^2 + 6*b^2*c^2 + 4*a*c^3 - 3*c^4 : :
X(59388) = 4 X[1] - 7 X[3090], 2 X[1] - 5 X[5818], X[1] + 2 X[47745], 7 X[3090] - 10 X[5818], 7 X[3090] - 8 X[10175], 7 X[3090] + 8 X[47745], 5 X[5818] - 4 X[10175], 5 X[5818] + 4 X[47745], 5 X[2] - 4 X[38028], 3 X[2] - 4 X[38042], X[2] + 2 X[50798], 4 X[2] - X[50818], 7 X[2] - 4 X[50824], 4 X[5790] - X[7967], 3 X[5790] - X[10246], and many others

X(59388) lies on these lines: {1, 3090}, {2, 952}, {3, 3617}, {4, 8}, {5, 145}, {10, 631}, {12, 6874}, {20, 4678}, {40, 3529}, {55, 38665}, {63, 48363}, {78, 6956}, {80, 497}, {100, 6950}, {104, 1376}, {119, 11680}, {140, 18526}, {149, 6929}, {153, 6923}, {165, 376}, {226, 11041}, {239, 7402}, {354, 1056}, {374, 53994}, {381, 5844}, {382, 20070}, {388, 5902}, {390, 6976}, {411, 18518}, {443, 5554}, {485, 35843}, {486, 35842}, {495, 6829}, {496, 6975}, {498, 37706}, {499, 37707}, {516, 4669}, {518, 38149}, {519, 3545}, {546, 8148}, {547, 34748}, {551, 54447}, {632, 46931}, {758, 53041}, {912, 10273}, {938, 5049}, {946, 3632}, {956, 6905}, {958, 6875}, {999, 6946}, {1006, 9708}, {1058, 1837}, {1145, 6938}, {1210, 37709}, {1320, 6973}, {1329, 54134}, {1385, 3525}, {1389, 10599}, {1478, 11552}, {1482, 3091}, {1483, 1656}, {1512, 4847}, {1587, 49233}, {1588, 49232}, {1698, 3533}, {1699, 4677}, {1737, 3476}, {1788, 45287}, {1836, 36920}, {2098, 10591}, {2099, 10590}, {2476, 10942}, {2550, 2801}, {2551, 6902}, {2802, 15064}, {2829, 14646}, {2886, 37725}, {2975, 6942}, {3057, 58631}, {3068, 35788}, {3069, 35789}, {3085, 6852}, {3086, 10944}, {3089, 12135}, {3146, 12702}, {3189, 10915}, {3241, 5071}, {3242, 40330}, {3244, 8227}, {3295, 6920}, {3296, 43731}, {3316, 13902}, {3317, 13959}, {3340, 5714}, {3485, 10827}, {3486, 10039}, {3487, 9578}, {3488, 5727}, {3523, 34773}, {3524, 5731}, {3526, 46932}, {3528, 18481}, {3543, 28174}, {3544, 10222}, {3560, 3871}, {3567, 23841}, {3579, 17538}, {3616, 5067}, {3623, 5056}, {3624, 13607}, {3625, 7982}, {3628, 37624}, {3633, 7989}, {3635, 9624}, {3649, 31410}, {3654, 9778}, {3655, 11231}, {3656, 9779}, {3661, 7397}, {3697, 31786}, {3698, 12675}, {3740, 6947}, {3820, 6963}, {3830, 28212}, {3832, 20052}, {3845, 50797}, {3851, 20054}, {3872, 5720}, {3893, 45776}, {3918, 15016}, {3935, 37533}, {3940, 6844}, {4002, 9940}, {4034, 10445}, {4188, 32153}, {4189, 32141}, {4193, 10943}, {4293, 40663}, {4295, 41687}, {4297, 4691}, {4301, 4701}, {4302, 37006}, {4345, 7743}, {4371, 12610}, {4430, 6826}, {4511, 6879}, {4662, 14110}, {4668, 5691}, {4745, 10164}, {4746, 41869}, {4816, 11531}, {4848, 9613}, {4861, 45770}, {4900, 30291}, {4930, 38039}, {5047, 16202}, {5050, 38165}, {5054, 38081}, {5055, 10283}, {5066, 50805}, {5068, 18493}, {5070, 51700}, {5084, 10806}, {5187, 5330}, {5218, 9897}, {5225, 5697}, {5226, 50194}, {5229, 5903}, {5258, 6796}, {5260, 10267}, {5261, 6984}, {5274, 12019}, {5453, 50417}, {5534, 19860}, {5550, 15178}, {5552, 6952}, {5599, 11844}, {5600, 11843}, {5601, 8207}, {5602, 8200}, {5686, 21168}, {5687, 6906}, {5703, 37739}, {5704, 24928}, {5734, 9955}, {5759, 24393}, {5768, 11227}, {5780, 6919}, {5794, 6897}, {5804, 6764}, {5816, 17314}, {5817, 5853}, {5836, 14872}, {5840, 49719}, {5842, 34606}, {5846, 14853}, {5854, 11235}, {5855, 11236}, {6542, 36662}, {6684, 10299}, {6734, 6927}, {6735, 6935}, {6776, 49524}, {6824, 10528}, {6828, 20013}, {6830, 17757}, {6831, 20007}, {6832, 37730}, {6833, 7080}, {6853, 10786}, {6855, 34772}, {6856, 37700}, {6864, 10597}, {6873, 12607}, {6876, 11500}, {6881, 32213}, {6885, 20076}, {6887, 10587}, {6896, 32049}, {6900, 10532}, {6909, 18519}, {6911, 54391}, {6912, 10679}, {6914, 12331}, {6915, 10680}, {6916, 11220}, {6917, 20060}, {6918, 45977}, {6930, 20075}, {6937, 31419}, {6939, 10596}, {6940, 9709}, {6941, 24390}, {6944, 10529}, {6948, 12248}, {6949, 10527}, {6968, 10698}, {6980, 11698}, {6983, 14986}, {7288, 18395}, {7308, 7966}, {7317, 7319}, {7380, 39587}, {7384, 20055}, {7509, 8192}, {7512, 9798}, {7548, 11929}, {7556, 15177}, {7581, 19065}, {7582, 19066}, {7681, 36972}, {7968, 13939}, {7969, 13886}, {7984, 15081}, {7988, 51093}, {7991, 28232}, {8193, 12088}, {8226, 20015}, {8236, 38108}, {8256, 37002}, {8760, 30613}, {9053, 10516}, {9519, 50914}, {9623, 18446}, {9906, 26300}, {9907, 26301}, {10109, 50831}, {10165, 15709}, {10171, 51071}, {10172, 25055}, {10269, 38669}, {10304, 38066}, {10306, 21669}, {10310, 33559}, {10449, 39550}, {10459, 37699}, {10531, 49169}, {10584, 12737}, {10585, 37733}, {10593, 18220}, {10594, 12410}, {10598, 10912}, {10711, 31140}, {11230, 38314}, {11412, 16980}, {11522, 16191}, {11529, 51782}, {11681, 26470}, {11845, 16210}, {12034, 54389}, {12243, 50880}, {12317, 13211}, {12325, 12785}, {12509, 12787}, {12510, 12788}, {12528, 37562}, {12667, 47033}, {12703, 54370}, {12710, 17632}, {12747, 20095}, {14266, 34583}, {15174, 31480}, {15640, 28182}, {15683, 28190}, {15690, 50822}, {15710, 38098}, {15716, 50826}, {15719, 50871}, {15726, 35514}, {16174, 26726}, {16203, 17531}, {16554, 54283}, {16845, 24987}, {16865, 37621}, {17567, 25005}, {17572, 37535}, {17578, 48661}, {17606, 37738}, {17644, 58576}, {17857, 21740}, {18515, 33814}, {19708, 50821}, {20035, 36495}, {21060, 36922}, {21151, 38200}, {21164, 57284}, {21554, 39570}, {22792, 54199}, {23267, 35774}, {23273, 35775}, {24028, 24430}, {24467, 57000}, {25406, 38116}, {26105, 49176}, {26118, 33091}, {28146, 34632}, {28172, 50827}, {28228, 34648}, {29349, 48878}, {30308, 51077}, {31162, 34641}, {31246, 54176}, {31412, 35641}, {31479, 37728}, {32558, 38182}, {32785, 35763}, {32786, 35762}, {33899, 52683}, {34613, 34656}, {34615, 34673}, {34617, 34689}, {34619, 34700}, {34621, 34713}, {34623, 34715}, {34625, 34717}, {34629, 34720}, {35642, 42561}, {35810, 42277}, {35811, 42274}, {36543, 54474}, {36653, 50015}, {37365, 59295}, {37416, 51353}, {37468, 54398}, {38128, 38693}, {38170, 50396}, {39885, 49529}, {39898, 49688}, {40273, 50689}, {43273, 50951}, {46219, 46930}, {47359, 50974}, {48877, 56799}, {50783, 54132}, {50800, 50830}, {50804, 51709}, {50808, 51070}, {50819, 51067}, {50949, 50967}, {50950, 51179}, {50953, 51176}, {50966, 51125}, {51034, 51043}, {51036, 51044}, {51069, 51082}, {51124, 51178}

X(59388) = midpoint of X(i) and X(j) for these {i,j}: {381, 51515}, {1699, 4677}, {3576, 5881}, {3632, 11224}, {3679, 37712}, {5657, 34627}, {5790, 50798}, {9778, 50864}, {10175, 47745}, {10247, 12645}, {37705, 38112}
X(59388) = reflection of X(i) in X(j) for these {i,j}: {1, 10175}, {2, 5790}, {3, 38112}, {145, 10247}, {165, 38127}, {376, 5657}, {381, 38138}, {944, 3576}, {1482, 38034}, {1699, 50796}, {3241, 5886}, {3524, 53620}, {3545, 38074}, {3576, 10}, {3655, 11231}, {3656, 38140}, {5050, 38165}, {5054, 38081}, {5587, 38155}, {5603, 5587}, {5657, 3679}, {5731, 26446}, {5817, 38154}, {7967, 2}, {8236, 38108}, {9778, 3654}, {10164, 4745}, {10246, 38042}, {10247, 5}, {10304, 38066}, {11001, 9778}, {11224, 946}, {11845, 16210}, {14853, 38144}, {16200, 3817}, {21151, 38200}, {21168, 5686}, {25406, 38116}, {26446, 38176}, {31145, 51515}, {34627, 37712}, {38034, 18357}, {38693, 38128}, {50811, 10164}, {50818, 7967}, {51071, 10171}, {57298, 38177}
X(59388) = anticomplement of X(10246)
X(59388) = Fuhrmann-circle-inverse of X(12245)
X(59388) = anticomplement of the isogonal conjugate of X(14497)
X(59388) = X(14497)-anticomplementary conjugate of X(8)
X(59388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 5818, 3090}, {1, 54361, 47743}, {4, 8, 12245}, {5, 145, 10595}, {5, 12645, 145}, {8, 355, 4}, {8, 5086, 5082}, {8, 5175, 10914}, {8, 5176, 3421}, {10, 944, 631}, {10, 5881, 944}, {20, 4678, 5690}, {80, 12647, 497}, {100, 22758, 6950}, {153, 33110, 6923}, {165, 3679, 38127}, {165, 38127, 5657}, {381, 31145, 34631}, {381, 38138, 54448}, {497, 12647, 1000}, {958, 11491, 6875}, {962, 18480, 4}, {1385, 9780, 3525}, {1482, 18357, 3091}, {1483, 1656, 3622}, {1737, 37708, 3476}, {2550, 12115, 6951}, {2551, 12116, 6902}, {2975, 11499, 6942}, {3091, 3621, 1482}, {3616, 9956, 5067}, {3623, 5056, 5901}, {3625, 19925, 7982}, {3628, 37624, 46934}, {3632, 37714, 946}, {3633, 7989, 13464}, {3654, 11001, 50809}, {3654, 50864, 11001}, {3655, 11231, 54445}, {3656, 38140, 9779}, {3679, 34627, 376}, {3817, 16200, 5603}, {4668, 5691, 11362}, {5080, 37820, 4}, {5175, 5777, 4}, {5252, 18391, 1056}, {5587, 5603, 3545}, {5587, 16200, 3817}, {5587, 38155, 38074}, {5603, 38074, 5587}, {5690, 18525, 20}, {5691, 6361, 33703}, {5691, 11362, 6361}, {5727, 31397, 3488}, {5731, 26446, 3524}, {5731, 53620, 26446}, {5790, 10246, 38042}, {6938, 17784, 13199}, {9779, 38140, 41106}, {9956, 37727, 3616}, {10039, 37711, 3486}, {10246, 38042, 2}, {10573, 37710, 388}, {10786, 19843, 6853}, {11231, 54445, 15702}, {12751, 15863, 12247}, {13607, 31399, 3624}, {19065, 49601, 7581}, {19066, 49602, 7582}, {26446, 38176, 53620}, {37821, 52367, 4}, {50864, 51072, 3654}, {50871, 51066, 51705}, {51515, 54448, 34631}


X(59389) = 1ST TRISECTOR OF SEGMENT X(4)X(9)

Barycentrics    a^6 - 3*a^5*b + 4*a^4*b^2 - 2*a^3*b^3 - 3*a^2*b^4 + 5*a*b^5 - 2*b^6 - 3*a^5*c - 4*a^4*b*c - 2*a^3*b^2*c + 5*a*b^4*c + 4*b^5*c + 4*a^4*c^2 - 2*a^3*b*c^2 + 6*a^2*b^2*c^2 - 10*a*b^3*c^2 + 2*b^4*c^2 - 2*a^3*c^3 - 10*a*b^2*c^3 - 8*b^3*c^3 - 3*a^2*c^4 + 5*a*b*c^4 + 2*b^2*c^4 + 5*a*c^5 + 4*b*c^5 - 2*c^6 : :
X(59389) = X[1] - 4 X[42356], 2 X[4] + X[9], 5 X[4] + X[5759], 3 X[4] + X[21168], 4 X[4] - X[52835], 5 X[9] - 2 X[5759], 3 X[9] - 2 X[21168], 2 X[9] + X[52835], X[2550] - 4 X[19925], X[5759] - 5 X[5817], 3 X[5759] - 5 X[21168], 4 X[5759] + 5 X[52835], 3 X[5817] - X[21168], 4 X[5817] + X[52835], X[11372] + 5 X[18492], 4 X[21168] + 3 X[52835], and many others

X(59389) lies on these lines: {1, 42356}, {3, 38318}, {4, 9}, {5, 5732}, {7, 3832}, {11, 4321}, {12, 4326}, {20, 6666}, {30, 21153}, {84, 6849}, {119, 5528}, {142, 3091}, {144, 50689}, {185, 58473}, {200, 7965}, {226, 5274}, {355, 43166}, {381, 971}, {382, 31658}, {390, 9578}, {405, 35202}, {515, 38037}, {517, 38154}, {518, 1699}, {527, 3839}, {528, 24644}, {546, 5805}, {946, 3243}, {950, 8232}, {954, 3586}, {962, 24393}, {1001, 5691}, {1445, 6894}, {1490, 5886}, {1503, 38145}, {1698, 11495}, {1750, 3816}, {1837, 12560}, {2346, 41864}, {2801, 38036}, {2829, 38159}, {2951, 3826}, {3062, 5880}, {3146, 18230}, {3254, 38308}, {3332, 16670}, {3358, 44229}, {3545, 21151}, {3583, 15298}, {3585, 15299}, {3817, 5658}, {3843, 5735}, {3845, 5762}, {3850, 31657}, {3855, 43177}, {4312, 5729}, {5056, 58433}, {5066, 38171}, {5219, 7675}, {5223, 58798}, {5229, 12573}, {5290, 5572}, {5436, 5731}, {5438, 37434}, {5480, 51194}, {5542, 5714}, {5686, 9812}, {5715, 45630}, {5727, 30311}, {5728, 9612}, {5811, 18483}, {5842, 38160}, {5851, 9814}, {5852, 7997}, {6594, 10724}, {6762, 24389}, {6764, 11523}, {6839, 8257}, {6843, 38123}, {6846, 10165}, {6854, 58808}, {6864, 9841}, {6870, 21617}, {6896, 37526}, {6908, 10172}, {6913, 28160}, {6920, 52769}, {6937, 43178}, {6987, 28172}, {7308, 10431}, {7678, 50443}, {7680, 18529}, {7957, 58635}, {8545, 51792}, {8581, 10896}, {8727, 30827}, {9613, 42884}, {10382, 17718}, {10725, 28345}, {10827, 31436}, {10861, 37375}, {10895, 14100}, {11231, 37411}, {11518, 41857}, {11522, 42871}, {12607, 18222}, {12625, 32049}, {12680, 58564}, {12953, 15837}, {14269, 51516}, {15726, 17532}, {17296, 48878}, {17306, 36652}, {18480, 37622}, {23046, 38137}, {28146, 38179}, {28150, 38130}, {28164, 38059}, {28174, 38126}, {28186, 38043}, {28194, 38097}, {28212, 38175}, {28228, 38210}, {29012, 38117}, {30329, 31871}, {31673, 43161}, {31822, 38176}, {34648, 47357}, {36946, 45035}, {37787, 51790}, {37822, 54159}, {38071, 38111}, {38204, 50741}, {47354, 51152}, {50796, 51102}, {50802, 51099}, {50803, 51100}, {50959, 51002}, {50960, 51151}, {51075, 51101}, {51076, 51098}, {51131, 51195}, {51190, 51537}

X(59389) = midpoint of X(i) and X(j) for these {i,j}: {4, 5817}, {5686, 9812}, {31672, 38122}
X(59389) = reflection of X(i) in X(j) for these {i,j}: {3, 38318}, {9, 5817}, {5732, 38122}, {6173, 38150}, {21153, 38108}, {38053, 3817}, {38057, 38158}, {38093, 3545}, {38108, 38139}, {38122, 5}, {38150, 381}, {38171, 5066}, {38200, 5587}, {38316, 38037}
X(59389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 9, 52835}, {5, 5732, 20195}, {5, 31672, 5732}, {1699, 5927, 28609}, {1750, 8226, 25525}, {2951, 7989, 3826}, {3091, 36991, 142}, {3843, 5779, 18482}, {5779, 18482, 5735}, {21153, 38075, 38108}, {38108, 38139, 38075}


X(59390) = 1ST TRISECTOR OF SEGMENT X(4)X(11)

Barycentrics    4*a^7 - 4*a^6*b - 3*a^5*b^2 + 3*a^4*b^3 - 6*a^3*b^4 + 6*a^2*b^5 + 5*a*b^6 - 5*b^7 - 4*a^6*c + 10*a^5*b*c - 3*a^4*b^2*c + 4*a^3*b^3*c + 2*a^2*b^4*c - 14*a*b^5*c + 5*b^6*c - 3*a^5*c^2 - 3*a^4*b*c^2 + 4*a^3*b^2*c^2 - 8*a^2*b^3*c^2 - 5*a*b^4*c^2 + 15*b^5*c^2 + 3*a^4*c^3 + 4*a^3*b*c^3 - 8*a^2*b^2*c^3 + 28*a*b^3*c^3 - 15*b^4*c^3 - 6*a^3*c^4 + 2*a^2*b*c^4 - 5*a*b^2*c^4 - 15*b^3*c^4 + 6*a^2*c^5 - 14*a*b*c^5 + 15*b^2*c^5 + 5*a*c^6 + 5*b*c^6 - 5*c^7 : :
X(59390) = 2 X[4] + X[11], 5 X[4] + X[104], 7 X[4] - X[10728], 11 X[4] + X[12248], 7 X[4] + 2 X[20418], 4 X[4] - X[52836], 5 X[11] - 2 X[104], 7 X[11] + 2 X[10728], 11 X[11] - 2 X[12248], 7 X[11] - 4 X[20418], 2 X[11] + X[52836], 7 X[104] + 5 X[10728], 11 X[104] - 5 X[12248], 7 X[104] - 10 X[20418], 4 X[104] + 5 X[52836], and many others

X(59390) lies on these lines: {3, 38319}, {4, 11}, {5, 24466}, {20, 6667}, {30, 21154}, {100, 3832}, {119, 546}, {149, 38757}, {185, 58475}, {214, 12571}, {381, 5840}, {382, 6713}, {515, 38038}, {516, 34122}, {517, 38156}, {528, 3839}, {946, 1317}, {952, 1699}, {962, 3036}, {971, 38152}, {1145, 19925}, {1387, 5691}, {1484, 38631}, {1503, 38147}, {1532, 24042}, {1537, 6246}, {3035, 3091}, {3146, 31272}, {3543, 38693}, {3545, 34474}, {3627, 38761}, {3817, 34123}, {3830, 38637}, {3843, 10738}, {3850, 33814}, {3851, 58421}, {3853, 38602}, {3857, 38763}, {3858, 10993}, {3861, 22799}, {3925, 6929}, {5072, 38762}, {5076, 38753}, {5198, 54065}, {5432, 6968}, {5480, 51198}, {5533, 7956}, {5806, 11570}, {5842, 38163}, {5848, 53023}, {5854, 34717}, {6702, 51118}, {6941, 15338}, {7682, 20118}, {7957, 46694}, {8068, 18514}, {8727, 39692}, {9581, 24465}, {9671, 12667}, {9945, 15017}, {10058, 19541}, {10525, 21031}, {10729, 33970}, {10755, 51537}, {10956, 26333}, {11522, 12735}, {12019, 34789}, {12616, 52116}, {12680, 18240}, {12688, 12736}, {12690, 21635}, {13199, 20400}, {13474, 58508}, {13913, 35821}, {13922, 42273}, {13977, 35820}, {13991, 42270}, {13996, 14217}, {14269, 51517}, {15325, 52851}, {16174, 31673}, {19081, 23253}, {19082, 23263}, {28146, 38182}, {28150, 38133}, {28160, 38032}, {28164, 32557}, {28174, 38128}, {28186, 38044}, {28194, 38099}, {28212, 38177}, {28228, 38213}, {29012, 38119}, {50796, 50842}, {50802, 50843}, {50803, 50841}, {50844, 51076}, {50959, 51008}, {50960, 51158}, {51131, 51199}, {52367, 55016}

X(59390) = midpoint of X(i) and X(j) for these {i,j}: {382, 38754}, {3543, 38693}, {3830, 57298}, {10738, 38755}
X(59390) = reflection of X(i) in X(j) for these {i,j}: {3, 38319}, {100, 38758}, {21154, 23513}, {23513, 38141}, {24466, 38760}, {34122, 38161}, {34123, 3817}, {37725, 38755}, {38693, 45310}, {38754, 6713}, {38760, 5}
X(59390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 11, 52836}, {4, 10591, 37001}, {4, 10893, 7354}, {5, 24466, 31235}, {546, 22938, 119}, {3091, 10724, 3035}, {3146, 31272, 38759}, {6246, 18483, 1537}, {21154, 38077, 23513}, {23513, 38141, 38077}


X(59391) = 2ND TRISECTOR OF SEGMENT X(4)X(11)

Barycentrics    a^7 - a^6*b - 3*a^3*b^4 + 3*a^2*b^5 + 2*a*b^6 - 2*b^7 - a^6*c + a^5*b*c + 4*a^3*b^3*c - a^2*b^4*c - 5*a*b^5*c + 2*b^6*c - 2*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - 2*a*b^4*c^2 + 6*b^5*c^2 + 4*a^3*b*c^3 - 2*a^2*b^2*c^3 + 10*a*b^3*c^3 - 6*b^4*c^3 - 3*a^3*c^4 - a^2*b*c^4 - 2*a*b^2*c^4 - 6*b^3*c^4 + 3*a^2*c^5 - 5*a*b*c^5 + 6*b^2*c^5 + 2*a*c^6 + 2*b*c^6 - 2*c^7 : :
X(59391) = X[1] + 2 X[6246], X[1] - 4 X[16174], X[6246] + 2 X[16174], 2 X[7704] + X[23959], 3 X[2] - 4 X[38319], 4 X[23513] - X[34474], 3 X[23513] - 2 X[38319], 3 X[23513] - X[38760], 3 X[34474] - 8 X[38319], 3 X[34474] - 4 X[38760], 2 X[3] + X[10724], X[3] + 2 X[22938], 2 X[3] - 5 X[31272], X[10724] - 4 X[22938], X[10724] + 5 X[31272], and many otheers

X(59391) lies on these lines: {1, 6246}, {2, 5840}, {3, 10724}, {4, 11}, {5, 100}, {8, 11928}, {10, 14217}, {12, 13274}, {20, 6713}, {30, 38693}, {36, 24042}, {40, 6702}, {80, 946}, {113, 10778}, {114, 10769}, {115, 10768}, {116, 10772}, {117, 10777}, {118, 10770}, {119, 149}, {124, 10771}, {125, 10767}, {132, 10780}, {133, 10775}, {153, 3832}, {165, 38133}, {185, 58508}, {214, 8227}, {355, 1320}, {376, 21154}, {381, 952}, {382, 38602}, {485, 19113}, {486, 19112}, {497, 6968}, {515, 16173}, {517, 37375}, {528, 3545}, {546, 1484}, {578, 58056}, {631, 6667}, {944, 1387}, {1012, 18861}, {1071, 58587}, {1125, 12119}, {1145, 5818}, {1156, 5805}, {1312, 10781}, {1313, 10782}, {1317, 10595}, {1352, 10755}, {1478, 5533}, {1479, 6941}, {1482, 12531}, {1532, 53055}, {1537, 12019}, {1621, 6980}, {1656, 33814}, {1699, 2800}, {1702, 8988}, {1703, 13976}, {1836, 20118}, {1862, 7507}, {2687, 47399}, {2771, 52269}, {2787, 14639}, {2801, 38036}, {2802, 5587}, {2886, 6965}, {2932, 6918}, {3035, 3090}, {3036, 12245}, {3045, 10539}, {3065, 16125}, {3070, 19081}, {3071, 19082}, {3146, 38761}, {3434, 6973}, {3529, 38759}, {3544, 6154}, {3560, 4996}, {3567, 58475}, {3576, 32557}, {3583, 6905}, {3585, 10074}, {3627, 38753}, {3628, 38762}, {3656, 50890}, {3816, 6951}, {3825, 6940}, {3843, 12773}, {3847, 11826}, {3850, 11698}, {3851, 12331}, {3855, 10599}, {4193, 10525}, {4295, 12832}, {4297, 33709}, {5050, 38168}, {5054, 38084}, {5056, 10993}, {5067, 31235}, {5068, 20095}, {5071, 6174}, {5072, 51525}, {5082, 55016}, {5083, 9612}, {5154, 11248}, {5198, 9913}, {5225, 6834}, {5274, 12115}, {5290, 46681}, {5480, 10759}, {5510, 10774}, {5511, 10773}, {5512, 10779}, {5541, 7989}, {5553, 11023}, {5657, 17556}, {5691, 11715}, {5731, 32558}, {5734, 11929}, {5804, 9803}, {5809, 38055}, {5817, 5856}, {5848, 14853}, {5851, 38152}, {5854, 11235}, {5886, 17577}, {5907, 58539}, {6175, 11230}, {6224, 11729}, {6245, 10308}, {6248, 32454}, {6264, 18492}, {6265, 7548}, {6284, 6949}, {6459, 13913}, {6460, 13977}, {6595, 12600}, {6797, 12672}, {6830, 12775}, {6841, 11604}, {6844, 45043}, {6898, 31418}, {6902, 15908}, {6906, 7741}, {6911, 17100}, {6920, 25639}, {6929, 11680}, {6938, 10589}, {6942, 12953}, {6945, 37820}, {6948, 10584}, {6952, 7173}, {6969, 37000}, {6978, 55297}, {7395, 13222}, {7559, 14679}, {7686, 17638}, {7951, 10087}, {7957, 58666}, {7967, 11238}, {7972, 13464}, {7982, 15863}, {7988, 15015}, {8674, 14644}, {9024, 10516}, {9581, 12736}, {9613, 41554}, {9614, 15558}, {9654, 12735}, {9671, 11500}, {9856, 17654}, {9897, 11522}, {9963, 22935}, {10031, 51709}, {10035, 48923}, {10057, 30384}, {10073, 12047}, {10175, 31159}, {10246, 38044}, {10265, 18483}, {10304, 38069}, {10356, 13235}, {10358, 13194}, {10514, 13269}, {10515, 13270}, {10590, 10596}, {10594, 54065}, {10721, 53715}, {10722, 53722}, {10723, 53733}, {10725, 53746}, {10726, 53748}, {10727, 53750}, {10732, 53752}, {10733, 53753}, {10734, 53754}, {10735, 53755}, {11375, 12743}, {11376, 18976}, {11571, 31870}, {11813, 54154}, {12138, 37197}, {12515, 22793}, {12532, 24474}, {12571, 21635}, {12608, 33593}, {12619, 12699}, {12653, 37714}, {12676, 34256}, {12680, 58595}, {12737, 18480}, {12739, 17605}, {12747, 18493}, {12751, 19925}, {12776, 26332}, {13243, 16128}, {13279, 13729}, {13374, 17660}, {14061, 53720}, {15022, 38763}, {15059, 53711}, {15079, 40256}, {15684, 38637}, {15703, 38636}, {16141, 26877}, {17532, 34123}, {17636, 45776}, {18393, 53616}, {19914, 22791}, {21151, 38205}, {21669, 48695}, {23251, 48701}, {23261, 48700}, {24298, 44861}, {24833, 36237}, {25406, 38119}, {26127, 37438}, {26446, 38182}, {26726, 47745}, {28234, 31160}, {31273, 53741}, {31512, 31841}, {31849, 38390}, {35786, 35857}, {35787, 35856}, {36175, 42422}, {37251, 38722}, {37563, 40260}, {38113, 38121}, {38756, 51529}, {40330, 51007}, {41869, 46684}, {42262, 48715}, {42265, 48714}, {44982, 46636}, {46100, 54137}, {50796, 50891}, {50798, 50894}, {50802, 50889}, {50803, 50892}, {50893, 51077}, {50909, 51076}

X(59391) = midpoint of X(i) and X(j) for these {i,j}: {381, 51517}, {1699, 37718}, {10738, 38752}, {22938, 34126}
X(59391) = reflection of X(i) in X(j) for these {i,j}: {2, 23513}, {3, 34126}, {100, 38752}, {165, 38133}, {376, 21154}, {381, 38141}, {3545, 38077}, {3576, 32557}, {5050, 38168}, {5054, 38084}, {5587, 38161}, {5603, 38038}, {5657, 34122}, {5731, 38032}, {5817, 38159}, {10246, 38044}, {10304, 38069}, {10707, 51517}, {14853, 38147}, {21151, 38205}, {21154, 45310}, {25406, 38119}, {26446, 38182}, {34474, 2}, {38693, 57298}, {38752, 5}, {38760, 38319}
X(59391) = anticomplement of X(38760)
X(59391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 22938, 10724}, {4, 11, 104}, {4, 104, 10728}, {4, 12248, 52836}, {4, 47743, 37002}, {5, 10738, 100}, {11, 52836, 20418}, {80, 946, 10698}, {119, 149, 38665}, {149, 3091, 119}, {381, 10707, 10711}, {546, 1484, 10742}, {1479, 6941, 11491}, {1484, 10742, 38669}, {1537, 12019, 12247}, {1656, 48680, 33814}, {3090, 13199, 3035}, {3656, 50890, 50910}, {3843, 12773, 22799}, {5731, 32558, 38032}, {6246, 16174, 1}, {6667, 24466, 631}, {9897, 11522, 25485}, {10265, 18483, 34789}, {10724, 31272, 3}, {10893, 10896, 4}, {12248, 20418, 104}, {12747, 18493, 19907}, {19925, 21630, 12751}, {20418, 52836, 12248}, {23513, 38760, 38319}, {26333, 39692, 12775}, {38038, 38141, 38163}, {38319, 38760, 2}, {50796, 50891, 50907}, {50802, 50889, 50908}, {50803, 50892, 50906}


X(59392) = 2ND TRISECTOR OF SEGMENT X(4)X(12)

Barycentrics    a^7 - a^6*b - 3*a^3*b^4 + 3*a^2*b^5 + 2*a*b^6 - 2*b^7 - a^6*c + 3*a^5*b*c - 4*a^4*b^2*c + 3*a^2*b^4*c - 3*a*b^5*c + 2*b^6*c - 4*a^4*b*c^2 + 6*a^3*b^2*c^2 - 6*a^2*b^3*c^2 - 2*a*b^4*c^2 + 6*b^5*c^2 - 6*a^2*b^2*c^3 + 6*a*b^3*c^3 - 6*b^4*c^3 - 3*a^3*c^4 + 3*a^2*b*c^4 - 2*a*b^2*c^4 - 6*b^3*c^4 + 3*a^2*c^5 - 3*a*b*c^5 + 6*b^2*c^5 + 2*a*c^6 + 2*b*c^6 - 2*c^7 : :
X(59392) = X[4] + 2 X[12], 2 X[4] + X[11491], 5 X[4] - 2 X[52837], 4 X[12] - X[11491], 5 X[12] + X[52837], 5 X[11491] + 4 X[52837], 4 X[5] - X[2975], X[20] - 4 X[31659], X[104] - 4 X[8068], 2 X[38142] + X[51518], 5 X[631] - 8 X[6668], 5 X[631] - 2 X[30264], 4 X[6668] - X[30264], X[944] - 4 X[37737], 2 X[946] + X[37710], and many others

X(59392) lies on these lines: {1, 40259}, {2, 5841}, {3, 38114}, {4, 12}, {5, 2975}, {8, 11929}, {20, 31659}, {104, 1478}, {119, 6839}, {165, 38134}, {329, 5818}, {355, 1389}, {376, 21155}, {381, 952}, {515, 37701}, {517, 17577}, {529, 3545}, {631, 6668}, {758, 5587}, {944, 5226}, {946, 37710}, {958, 6874}, {1006, 3822}, {1012, 10728}, {1329, 6901}, {2476, 10526}, {2551, 6984}, {3090, 4999}, {3091, 10529}, {3219, 9956}, {3436, 6867}, {3567, 58476}, {3576, 38062}, {3585, 6906}, {3614, 6949}, {3814, 6946}, {3832, 10531}, {3855, 10598}, {4293, 6879}, {4539, 38176}, {4996, 6911}, {5050, 38169}, {5054, 38085}, {5067, 31260}, {5071, 31157}, {5141, 11249}, {5229, 6833}, {5253, 6971}, {5261, 12116}, {5290, 58566}, {5657, 17532}, {5731, 38033}, {5734, 11928}, {5812, 46870}, {5817, 5857}, {5849, 14853}, {5852, 38153}, {5855, 11236}, {5886, 37375}, {6175, 26446}, {6246, 41689}, {6256, 6845}, {6259, 10308}, {6763, 7989}, {6828, 37821}, {6844, 12115}, {6852, 57288}, {6853, 11827}, {6868, 10585}, {6902, 25466}, {6905, 7951}, {6917, 11681}, {6934, 10588}, {6941, 26332}, {6950, 12943}, {6952, 7354}, {6956, 37002}, {7504, 26286}, {7741, 45977}, {7967, 11237}, {8227, 51111}, {9656, 12114}, {10175, 31160}, {10246, 38045}, {10304, 38070}, {10591, 10597}, {10592, 37468}, {10595, 10896}, {10698, 18393}, {10805, 31410}, {10883, 18516}, {12247, 39542}, {16116, 33899}, {16125, 40260}, {17579, 34474}, {18480, 37733}, {21151, 38206}, {25406, 38120}, {28234, 31159}, {31880, 37699}, {37820, 38665}, {38135, 38693}, {38184, 57298}, {40330, 51009}

X(59392) = midpoint of X(381) and X(51518)
X(59392) = reflection of X(i) in X(j) for these {i,j}: {2, 38109}, {3, 38114}, {165, 38134}, {376, 21155}, {381, 38142}, {3545, 38078}, {3576, 38062}, {5050, 38169}, {5054, 38085}, {5587, 38162}, {5603, 38039}, {5657, 38058}, {5731, 38033}, {5817, 38160}, {10246, 38045}, {10304, 38070}, {14853, 38148}, {21151, 38206}, {25406, 38120}, {26446, 38183}, {38693, 38135}, {57298, 38184}
X(59392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 12, 11491}, {4, 8164, 37000}, {1478, 6830, 104}, {3091, 20060, 26470}, {6668, 30264, 631}, {10894, 10895, 4}, {38039, 38142, 38163}


X(59393) = 1ST TRISECTOR OF SEGMENT X(4)X(13)

Barycentrics    9*a^8 - 18*a^6*b^2 + 18*a^2*b^6 - 9*b^8 - 18*a^6*c^2 - 18*a^2*b^4*c^2 + 36*b^6*c^2 - 18*a^2*b^2*c^4 - 54*b^4*c^4 + 18*a^2*c^6 + 36*b^2*c^6 - 9*c^8 - 4*Sqrt[3]*a^6*S - 16*Sqrt[3]*a^4*b^2*S + 12*Sqrt[3]*a^2*b^4*S + 8*Sqrt[3]*b^6*S - 16*Sqrt[3]*a^4*c^2*S - 24*Sqrt[3]*a^2*b^2*c^2*S - 8*Sqrt[3]*b^4*c^2*S + 12*Sqrt[3]*a^2*c^4*S - 8*Sqrt[3]*b^2*c^4*S + 8*Sqrt[3]*c^6*S - 20*a^4*S^2 - 8*a^2*b^2*S^2 + 28*b^4*S^2 - 8*a^2*c^2*S^2 - 56*b^2*c^2*S^2 + 28*c^4*S^2 : :
Barycentrics    (a^6+4*(b^2+c^2)*a^4-3*(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2))*sqrt(3)+2*S*(7*a^4+(b^2+c^2)*a^2-8*(b^2-c^2)^2) : : (César Lozada, October 9, 2023)
X(59393) = 2 X[4] + X[13], X[4] + 2 X[5478], 5 X[4] + X[6770], 4 X[4] - X[36961], 8 X[4] + X[41020], X[13] - 4 X[5478], 5 X[13] - 2 X[6770], 2 X[13] + X[36961], 4 X[13] - X[41020], 10 X[5478] - X[6770], 8 X[5478] + X[36961], 16 X[5478] - X[41020], 4 X[6770] + 5 X[36961], 8 X[6770] - 5 X[41020], 2 X[36961] + X[41020], and many others

X(59393) lies on these lines: {4, 13}, {5, 5473}, {14, 41061}, {20, 6669}, {30, 21156}, {98, 12820}, {113, 37752}, {115, 36962}, {381, 5463}, {382, 6771}, {396, 36992}, {530, 3839}, {542, 5093}, {546, 5617}, {616, 3832}, {618, 3091}, {619, 10723}, {946, 7975}, {1080, 19106}, {1503, 42973}, {2794, 5470}, {3070, 19073}, {3071, 19074}, {3543, 5459}, {3583, 10062}, {3585, 10078}, {3627, 20252}, {3843, 13103}, {3845, 25154}, {3853, 47610}, {5076, 20415}, {5198, 9916}, {5321, 9112}, {5334, 47861}, {5469, 14639}, {5472, 42093}, {5474, 39809}, {5479, 6777}, {5480, 51200}, {5613, 22515}, {5691, 11705}, {6054, 22577}, {6108, 36994}, {6115, 42106}, {6321, 22797}, {6459, 13917}, {6460, 13982}, {6776, 43418}, {6778, 41060}, {6779, 7685}, {6782, 42103}, {7684, 36967}, {9880, 41043}, {10304, 48311}, {10611, 22236}, {10895, 13076}, {10896, 18974}, {12142, 37197}, {12571, 51114}, {12781, 19925}, {12816, 41028}, {12817, 54571}, {13105, 26333}, {13107, 26332}, {14853, 42972}, {15305, 53048}, {16001, 48655}, {16530, 16809}, {16627, 36781}, {16808, 36771}, {16962, 44666}, {18582, 36772}, {20423, 51201}, {20428, 54140}, {21157, 23514}, {22511, 36969}, {22513, 41409}, {22576, 22694}, {22832, 36782}, {22846, 52839}, {22847, 42165}, {23005, 41017}, {23251, 49209}, {23261, 49208}, {25156, 41071}, {35019, 50688}, {35751, 41099}, {35753, 35787}, {35754, 35786}, {36767, 41106}, {36968, 41040}, {37463, 42528}, {37832, 44463}, {37835, 41019}, {41047, 50858}, {41107, 41118}, {42133, 47863}, {43550, 54562}, {44459, 46054}, {47354, 51011}, {50796, 50848}, {50802, 50849}, {50803, 50847}, {50959, 51012}, {50960, 51202}, {54589, 54670}

X(59393) = reflection of X(i) in X(j) for these {i,j}: {5463, 36765}, {5469, 14639}, {10304, 48311}, {21157, 23514}, {36765, 381}
X(59393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 13, 36961}, {4, 5478, 13}, {5, 5473, 36770}, {13, 36961, 41020}, {3843, 13103, 22796}, {3845, 25154, 41042}, {6321, 22797, 36776}, {14136, 42162, 13}, {25154, 41042, 35752}, {42813, 46855, 13}


X(59394) = 2ND TRISECTOR OF SEGMENT X(4)X(13)

Barycentrics    9*a^8 - 18*a^6*b^2 + 18*a^2*b^6 - 9*b^8 - 18*a^6*c^2 - 18*a^2*b^4*c^2 + 36*b^6*c^2 - 18*a^2*b^2*c^4 - 54*b^4*c^4 + 18*a^2*c^6 + 36*b^2*c^6 - 9*c^8 + 4*Sqrt[3]*a^6*S - 20*Sqrt[3]*a^4*b^2*S + 12*Sqrt[3]*a^2*b^4*S + 4*Sqrt[3]*b^6*S - 20*Sqrt[3]*a^4*c^2*S - 24*Sqrt[3]*a^2*b^2*c^2*S - 4*Sqrt[3]*b^4*c^2*S + 12*Sqrt[3]*a^2*c^4*S - 4*Sqrt[3]*b^2*c^4*S + 4*Sqrt[3]*c^6*S - 4*a^4*S^2 - 16*a^2*b^2*S^2 + 20*b^4*S^2 - 16*a^2*c^2*S^2 - 40*b^2*c^2*S^2 + 20*c^4*S^2 : :
Barycentrics    -2*(5*a^4+2*(b^2+c^2)*a^2-7*(b^2-c^2)^2)*S+(a^6-5*(b^2+c^2)*a^4+3*(b^2-c^2)^2*a^2+(b^4-c^4)*(b^2-c^2))*sqrt(3) : : (César Lozada, October 9, 2023)
X(59394) = X[2] + 2 X[25154], X[3] - 4 X[20252], X[4] + 2 X[13], X[4] - 4 X[5478], 2 X[4] + X[6770], 5 X[4] - 2 X[36961], 7 X[4] + 2 X[41020], X[13] + 2 X[5478], 4 X[13] - X[6770], 5 X[13] + X[36961], 7 X[13] - X[41020], 8 X[5478] + X[6770], 10 X[5478] - X[36961], 14 X[5478] + X[41020], 5 X[6770] + 4 X[36961], 7 X[6770] - 4 X[41020], and many others

X(59394) lies on these lines: {2, 9736}, {3, 20252}, {4, 13}, {5, 616}, {20, 6771}, {62, 22832}, {98, 41061}, {115, 5335}, {147, 22797}, {148, 5613}, {230, 1080}, {376, 5459}, {381, 37785}, {382, 47610}, {383, 53435}, {388, 10078}, {396, 36993}, {485, 35754}, {486, 35753}, {497, 10062}, {530, 3545}, {542, 3839}, {546, 48655}, {617, 6321}, {618, 3090}, {619, 13172}, {621, 20425}, {623, 54138}, {631, 5473}, {634, 16629}, {671, 43954}, {944, 11705}, {946, 9901}, {1587, 49209}, {1588, 49208}, {3085, 13076}, {3086, 18974}, {3089, 12142}, {3091, 5617}, {3146, 20415}, {3180, 20428}, {3524, 22489}, {3529, 35019}, {3832, 22796}, {3845, 36318}, {5066, 35749}, {5067, 36770}, {5071, 5463}, {5334, 5472}, {5470, 14651}, {5475, 16940}, {5479, 6778}, {5818, 12781}, {6054, 31695}, {6108, 36995}, {6115, 42142}, {6772, 43403}, {6777, 42103}, {6779, 42910}, {6782, 42139}, {7581, 19073}, {7582, 19074}, {7684, 30560}, {7975, 10595}, {8227, 51114}, {9862, 36962}, {9916, 10594}, {10531, 49144}, {10532, 49143}, {10590, 12942}, {10591, 12952}, {10596, 13105}, {10597, 13107}, {10598, 12922}, {10599, 12932}, {10611, 22532}, {10653, 22511}, {11121, 37824}, {11180, 22580}, {11489, 23006}, {12243, 41043}, {14538, 33560}, {15709, 48311}, {16267, 44666}, {16530, 18581}, {16941, 43448}, {16965, 22531}, {18582, 23005}, {19709, 35750}, {20125, 37752}, {21845, 43541}, {22113, 46708}, {22238, 22847}, {22492, 44464}, {22513, 42134}, {25235, 42918}, {33602, 41030}, {35752, 41106}, {36319, 36523}, {36344, 41042}, {36766, 42114}, {37463, 42155}, {40330, 51010}, {41016, 43416}, {41017, 42138}, {41060, 43364}, {41112, 41115}, {41745, 43404}, {42086, 46054}, {42094, 53430}, {42161, 52688}, {43546, 54484}, {43556, 54562}

X(59394) = midpoint of X(41036) and X(42973)
X(59394) = reflection of X(i) in X(j) for these {i,j}: {376, 21156}, {3524, 22489}, {14651, 5470}, {21156, 5459}
X(59394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 13, 6770}, {5, 13103, 616}, {13, 5478, 4}, {13, 31710, 37640}, {13, 46855, 40693}, {5473, 6669, 631}, {41099, 47865, 36344}


X(59395) = 1ST TRISECTOR OF SEGMENT X(4)X(14)

Barycentrics    9*a^8 - 18*a^6*b^2 + 18*a^2*b^6 - 9*b^8 - 18*a^6*c^2 - 18*a^2*b^4*c^2 + 36*b^6*c^2 - 18*a^2*b^2*c^4 - 54*b^4*c^4 + 18*a^2*c^6 + 36*b^2*c^6 - 9*c^8 + 4*Sqrt[3]*a^6*S + 16*Sqrt[3]*a^4*b^2*S - 12*Sqrt[3]*a^2*b^4*S - 8*Sqrt[3]*b^6*S + 16*Sqrt[3]*a^4*c^2*S + 24*Sqrt[3]*a^2*b^2*c^2*S + 8*Sqrt[3]*b^4*c^2*S - 12*Sqrt[3]*a^2*c^4*S + 8*Sqrt[3]*b^2*c^4*S - 8*Sqrt[3]*c^6*S - 20*a^4*S^2 - 8*a^2*b^2*S^2 + 28*b^4*S^2 - 8*a^2*c^2*S^2 - 56*b^2*c^2*S^2 + 28*c^4*S^2 : :
Barycentrics    (a^6+4*(b^2+c^2)*a^4-3*(b^2-c^2)^2*a^2-2*(b^4-c^4)*(b^2-c^2))*sqrt(3)-2*S*(7*a^4+(b^2+c^2)*a^2-8*(b^2-c^2)^2) : : (César Lozada, October 9, 2023)
X(59395) = 2 X[4] + X[14], X[4] + 2 X[5479], 5 X[4] + X[6773], 4 X[4] - X[36962], 8 X[4] + X[41021], X[14] - 4 X[5479], 5 X[14] - 2 X[6773], 2 X[14] + X[36962], 4 X[14] - X[41021], 10 X[5479] - X[6773], 8 X[5479] + X[36962], 16 X[5479] - X[41021], 4 X[6773] + 5 X[36962], 8 X[6773] - 5 X[41021], 2 X[36962] + X[41021], and many others

X(59395) lies on these lines: {4, 14}, {5, 5474}, {13, 41060}, {20, 6670}, {30, 21157}, {98, 12821}, {113, 37753}, {115, 36961}, {381, 5464}, {382, 6774}, {383, 19107}, {395, 36994}, {531, 3839}, {542, 5093}, {546, 5613}, {617, 3832}, {618, 10723}, {619, 3091}, {946, 7974}, {1503, 42972}, {2794, 5469}, {3070, 19075}, {3071, 19076}, {3543, 5460}, {3583, 10061}, {3585, 10077}, {3627, 20253}, {3843, 13102}, {3845, 25164}, {3853, 47611}, {5076, 20416}, {5198, 9915}, {5318, 9113}, {5335, 47862}, {5470, 14639}, {5471, 42094}, {5473, 39809}, {5478, 6778}, {5480, 51203}, {5617, 22515}, {5691, 11706}, {6054, 22578}, {6109, 36992}, {6114, 42103}, {6321, 22796}, {6459, 13916}, {6460, 13981}, {6776, 43419}, {6777, 41061}, {6780, 7684}, {6783, 42106}, {7685, 36968}, {9880, 41042}, {10304, 48312}, {10612, 22238}, {10895, 13075}, {10896, 18975}, {12141, 37197}, {12571, 51115}, {12780, 19925}, {12816, 54572}, {12817, 41029}, {13104, 26333}, {13106, 26332}, {14853, 42973}, {15305, 53049}, {16002, 48656}, {16529, 16808}, {16963, 44667}, {20423, 51204}, {20429, 54141}, {21156, 23514}, {22510, 36970}, {22512, 41408}, {22575, 22693}, {22891, 52838}, {22893, 42164}, {23004, 41016}, {23251, 49211}, {23261, 49210}, {23698, 36765}, {25166, 41070}, {35020, 50688}, {35786, 35851}, {35787, 35850}, {36329, 41099}, {36770, 38738}, {36967, 41041}, {37464, 42529}, {37835, 44459}, {41046, 50855}, {41108, 41117}, {42134, 47864}, {43551, 54561}, {44463, 46053}, {47354, 51014}, {50796, 50851}, {50802, 50852}, {50803, 50850}, {50959, 51015}, {50960, 51205}, {54590, 54669}

X(59395) = reflection of X(i) in X(j) for these {i,j}: {5470, 14639}, {10304, 48312}, {21156, 23514}
X(59395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14, 36962}, {4, 5479, 14}, {14, 36962, 41021}, {3843, 13102, 22797}, {3845, 25164, 41043}, {14137, 42159, 14}, {25164, 41043, 36330}, {42814, 46854, 14}


X(59396) = 2ND TRISECTOR OF SEGMENT X(4)X(14)

Barycentrics    9*a^8 - 18*a^6*b^2 + 18*a^2*b^6 - 9*b^8 - 18*a^6*c^2 - 18*a^2*b^4*c^2 + 36*b^6*c^2 - 18*a^2*b^2*c^4 - 54*b^4*c^4 + 18*a^2*c^6 + 36*b^2*c^6 - 9*c^8 - 4*Sqrt[3]*a^6*S + 20*Sqrt[3]*a^4*b^2*S - 12*Sqrt[3]*a^2*b^4*S - 4*Sqrt[3]*b^6*S + 20*Sqrt[3]*a^4*c^2*S + 24*Sqrt[3]*a^2*b^2*c^2*S + 4*Sqrt[3]*b^4*c^2*S - 12*Sqrt[3]*a^2*c^4*S + 4*Sqrt[3]*b^2*c^4*S - 4*Sqrt[3]*c^6*S - 4*a^4*S^2 - 16*a^2*b^2*S^2 + 20*b^4*S^2 - 16*a^2*c^2*S^2 - 40*b^2*c^2*S^2 + 20*c^4*S^2 : :
Barycentrics    2*(5*a^4+2*(b^2+c^2)*a^2-7*(b^2-c^2)^2)*S+(a^6-5*(b^2+c^2)*a^4+3*(b^2-c^2)^2*a^2+(b^4-c^4)*(b^2-c^2))*sqrt(3) : : (César Lozada, October 9, 2023)
X(59396) = X[2] + 2 X[25164], X[3] - 4 X[20253], X[4] + 2 X[14], X[4] - 4 X[5479], 2 X[4] + X[6773], 5 X[4] - 2 X[36962], 7 X[4] + 2 X[41021], X[14] + 2 X[5479], 4 X[14] - X[6773], 5 X[14] + X[36962], 7 X[14] - X[41021], 8 X[5479] + X[6773], 10 X[5479] - X[36962], 14 X[5479] + X[41021], 5 X[6773] + 4 X[36962], 7 X[6773] - 4 X[41021], and many others

X(59396) lies on these lines: {2, 9735}, {3, 20253}, {4, 14}, {5, 617}, {20, 6774}, {61, 22831}, {98, 41060}, {115, 5334}, {147, 22796}, {148, 5617}, {230, 383}, {376, 5460}, {381, 37786}, {382, 47611}, {388, 10077}, {395, 36995}, {485, 35851}, {486, 35850}, {497, 10061}, {531, 3545}, {542, 3839}, {546, 48656}, {616, 6321}, {618, 13172}, {619, 3090}, {622, 20426}, {624, 54139}, {631, 5474}, {633, 16628}, {671, 43953}, {944, 11706}, {946, 9900}, {1080, 53447}, {1587, 49211}, {1588, 49210}, {3085, 13075}, {3086, 18975}, {3089, 12141}, {3091, 5613}, {3146, 20416}, {3181, 20429}, {3524, 22490}, {3529, 35020}, {3832, 22797}, {3845, 36320}, {5066, 36327}, {5071, 5464}, {5335, 5471}, {5469, 14651}, {5475, 16941}, {5478, 6777}, {5818, 12780}, {6054, 31696}, {6109, 36993}, {6114, 42139}, {6775, 43404}, {6778, 42106}, {6780, 42911}, {6783, 42142}, {7581, 19075}, {7582, 19076}, {7685, 30559}, {7974, 10595}, {8227, 51115}, {9862, 36961}, {9915, 10594}, {10531, 49146}, {10532, 49145}, {10590, 12941}, {10591, 12951}, {10596, 13104}, {10597, 13106}, {10598, 12921}, {10599, 12931}, {10612, 22531}, {10654, 22510}, {11122, 37825}, {11180, 22579}, {11488, 23013}, {12243, 41042}, {14539, 33561}, {15709, 48312}, {16268, 44667}, {16529, 18582}, {16940, 43448}, {16964, 22532}, {18581, 23004}, {19709, 36331}, {20125, 37753}, {21846, 43540}, {22114, 46709}, {22236, 22893}, {22491, 44460}, {22512, 42133}, {25236, 42919}, {33603, 41031}, {36319, 41043}, {36330, 41106}, {36344, 36523}, {37464, 42154}, {40330, 51013}, {41016, 42135}, {41017, 43417}, {41061, 43365}, {41113, 41114}, {41746, 43403}, {42085, 46053}, {42093, 53442}, {42160, 52689}, {43547, 54485}, {43557, 54561}

X(59396) = midpoint of X(41037) and X(42972)
X(59396) = reflection of X(i) in X(j) for these {i,j}: {376, 21157}, {3524, 22490}, {14651, 5469}, {21157, 5460}
X(59396) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14, 6773}, {5, 13102, 617}, {14, 5479, 4}, {14, 31709, 37641}, {14, 46854, 40694}, {5474, 6670, 631}, {41099, 47866, 36319}


X(59397) = 2ND TRISECTOR OF SEGMENT X(4)X(15)

Barycentrics    a^6 - 5*a^4*b^2 + 3*a^2*b^4 + b^6 - 5*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + 3*a^2*c^4 - b^2*c^4 + c^6 - 8*Sqrt[3]*S^3 : :
X(59397) = X[4] + 2 X[15], X[4] - 4 X[7684], 5 X[4] - 2 X[36992], 2 X[4] + X[36993], X[15] + 2 X[7684], 5 X[15] + X[36992], 4 X[15] - X[36993], 10 X[7684] - X[36992], 8 X[7684] + X[36993], 4 X[14138] - X[22532], 4 X[36992] + 5 X[36993], X[36992] - 5 X[41036], X[36993] + 4 X[41036], 4 X[5] - X[621], 2 X[5] + X[5611], X[621] + 2 X[5611], and many others

X(59397) lies on these lines: {2, 51}, {4, 15}, {5, 303}, {6, 37463}, {13, 33388}, {20, 13350}, {98, 41070}, {187, 5335}, {298, 34380}, {302, 1351}, {376, 21158}, {381, 51484}, {383, 16644}, {396, 1080}, {397, 19780}, {470, 6530}, {531, 3545}, {533, 36765}, {616, 20425}, {618, 54140}, {622, 2080}, {623, 3090}, {631, 6671}, {858, 47575}, {944, 11707}, {946, 51688}, {2076, 53431}, {3070, 10671}, {3071, 10667}, {3091, 20428}, {3131, 54091}, {3146, 21401}, {3180, 5617}, {3523, 36755}, {3564, 37786}, {3567, 58477}, {3815, 16940}, {5067, 40334}, {5071, 50855}, {5093, 37785}, {5102, 9761}, {5334, 31415}, {5459, 41047}, {5478, 36967}, {5479, 6780}, {5480, 23302}, {5603, 44659}, {5818, 50853}, {5862, 22666}, {6109, 6773}, {6771, 29317}, {6776, 21647}, {7685, 16966}, {7709, 43454}, {7735, 16941}, {9301, 47517}, {9749, 36763}, {9763, 10516}, {10595, 51689}, {10617, 22238}, {10653, 39554}, {11299, 39656}, {11485, 41040}, {11489, 51206}, {11542, 41035}, {14539, 43453}, {14651, 22510}, {14712, 20429}, {15709, 48313}, {16267, 41023}, {16962, 41022}, {16965, 30560}, {22235, 54847}, {22236, 41038}, {24206, 34541}, {33518, 42139}, {34507, 40901}, {35229, 42162}, {36759, 40693}, {37832, 41037}, {38136, 44219}, {40330, 51016}, {41016, 42912}, {41034, 42124}, {41039, 42156}, {41041, 42132}, {42095, 53469}, {42488, 51754}, {43403, 44459}, {43542, 54570}, {47026, 52686}, {51753, 52689}

X(59397) = midpoint of X(15) and X(41036)
X(59397) = reflection of X(i) in X(j) for these {i,j}: {4, 41036}, {376, 21158}, {14651, 22510}, {14912, 36757}, {21158, 45879}, {41036, 7684}
X(59397) = circumcircle-of-inner-Napoleon-triangle-inverse of X(51)
X(59397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15, 36993}, {5, 5611, 621}, {15, 7684, 4}, {262, 22715, 44464}, {396, 1080, 6770}, {5480, 23302, 37464}, {6671, 14538, 631}, {20425, 52650, 616}, {22832, 42432, 4}, {52648, 52650, 20425}


X(59398) = 2ND TRISECTOR OF SEGMENT X(4)X(16)

Barycentrics    a^6 - 5*a^4*b^2 + 3*a^2*b^4 + b^6 - 5*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + 3*a^2*c^4 - b^2*c^4 + c^6 + 8*Sqrt[3]*S^3 : :
X(59398) = X[4] + 2 X[16], X[4] - 4 X[7685], 5 X[4] - 2 X[36994], 2 X[4] + X[36995], X[16] + 2 X[7685], 5 X[16] + X[36994], 4 X[16] - X[36995], 10 X[7685] - X[36994], 8 X[7685] + X[36995], 4 X[14139] - X[22531], 4 X[36994] + 5 X[36995], X[36994] - 5 X[41037], X[36995] + 4 X[41037], 4 X[5] - X[622], 2 X[5] + X[5615], and many others

X(59398) lies on these lines: {2, 51}, {4, 16}, {5, 302}, {6, 37464}, {14, 33389}, {20, 13349}, {98, 41071}, {187, 5334}, {299, 34380}, {303, 1351}, {376, 21159}, {381, 51485}, {383, 395}, {398, 19781}, {471, 6530}, {530, 3545}, {617, 20426}, {619, 54141}, {621, 2080}, {624, 3090}, {631, 6672}, {858, 47576}, {944, 11708}, {946, 51690}, {1080, 16645}, {2076, 53443}, {3070, 10672}, {3071, 10668}, {3091, 20429}, {3132, 54091}, {3146, 21402}, {3181, 5613}, {3523, 36756}, {3564, 37785}, {3567, 58478}, {3815, 16941}, {5067, 40335}, {5071, 50858}, {5093, 37786}, {5102, 9763}, {5335, 31415}, {5460, 41046}, {5478, 6779}, {5479, 36968}, {5480, 23303}, {5603, 44660}, {5818, 50856}, {5863, 22665}, {6108, 6770}, {6774, 29317}, {6776, 21648}, {7684, 16967}, {7709, 43455}, {7735, 16940}, {9301, 47519}, {9761, 10516}, {10595, 51691}, {10616, 22236}, {10654, 39555}, {11300, 39656}, {11486, 41041}, {11488, 51207}, {11543, 41034}, {14538, 43453}, {14651, 22511}, {14712, 20428}, {15709, 48314}, {16268, 41022}, {16963, 41023}, {16964, 30559}, {22237, 54848}, {22238, 41039}, {24206, 34540}, {33517, 42142}, {34507, 40900}, {35230, 42159}, {36760, 40694}, {37835, 41036}, {40330, 51018}, {41017, 42913}, {41035, 42121}, {41038, 42153}, {41040, 42129}, {42098, 53458}, {42489, 51753}, {43404, 44463}, {43543, 54569}, {47027, 52687}, {51754, 52688}

X(59398) = midpoint of X(16) and X(41037)
X(59398) = reflection of X(i) in X(j) for these {i,j}: {4, 41037}, {376, 21159}, {14651, 22511}, {14912, 36758}, {21159, 45880}, {41037, 7685}
X(59398) = circumcircle-of-outer-Napoleon-triangle-inverse of X(51)
X(59398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 16, 36995}, {5, 5615, 622}, {16, 7685, 4}, {262, 22714, 44460}, {383, 395, 6773}, {5480, 23303, 37463}, {6672, 14539, 631}, {20426, 44223, 617}, {22831, 42431, 4}, {44223, 52647, 20426}


X(59399) = 2ND TRISECTOR OF SEGMENT X(5)X(6)

Barycentrics    4*a^6 - 9*a^4*b^2 + 4*a^2*b^4 + b^6 - 9*a^4*c^2 - 12*a^2*b^2*c^2 - b^4*c^2 + 4*a^2*c^4 - b^2*c^4 + c^6 : :
X(59399) = 5 X[2] + X[50962], 4 X[2] - X[50978], 13 X[2] - X[51179], 5 X[5093] - X[50962], 4 X[5093] + X[50978], 13 X[5093] + X[51179], 4 X[50962] + 5 X[50978], 13 X[50962] + 5 X[51179], 13 X[50978] - 4 X[51179], X[3] - 7 X[51171], X[3] - 4 X[51732], 7 X[51171] - 4 X[51732], X[4] + 3 X[33748], X[4] + 5 X[53091], and many others

X(59399) lies on these lines: {2, 5093}, {3, 51171}, {4, 18845}, {5, 6}, {20, 55705}, {30, 5050}, {51, 10154}, {69, 3628}, {140, 1351}, {141, 5097}, {143, 9967}, {182, 550}, {193, 1656}, {343, 34565}, {376, 55697}, {381, 14912}, {427, 34545}, {511, 549}, {518, 10283}, {524, 15520}, {542, 38071}, {546, 6776}, {547, 1992}, {548, 12017}, {567, 19128}, {569, 19154}, {575, 3627}, {576, 632}, {631, 44456}, {895, 10272}, {952, 16475}, {1216, 58555}, {1350, 15712}, {1368, 5422}, {1386, 1483}, {1503, 3845}, {1511, 32300}, {1570, 3815}, {1594, 46444}, {1595, 36753}, {1596, 39588}, {1692, 18907}, {1843, 10095}, {1974, 7715}, {1994, 7605}, {2104, 31681}, {2105, 31682}, {2330, 10386}, {3090, 11898}, {3091, 39899}, {3098, 44682}, {3167, 10128}, {3329, 37451}, {3522, 55692}, {3523, 55584}, {3524, 55593}, {3530, 33878}, {3567, 18438}, {3619, 48154}, {3620, 5070}, {3629, 22330}, {3751, 5901}, {3763, 53858}, {3818, 3857}, {3832, 48662}, {3843, 39874}, {3850, 18440}, {3851, 5921}, {3856, 51537}, {3858, 8550}, {3860, 51023}, {3867, 36153}, {5028, 20576}, {5032, 5055}, {5034, 10796}, {5052, 11272}, {5066, 50957}, {5067, 20080}, {5085, 8703}, {5092, 46853}, {5095, 20304}, {5102, 11539}, {5107, 14693}, {5499, 51747}, {5640, 44212}, {5845, 38164}, {5846, 38165}, {5847, 38042}, {5848, 38168}, {5849, 38169}, {5943, 34382}, {5965, 8584}, {6417, 37342}, {6418, 37343}, {6515, 11548}, {6676, 9777}, {6677, 11427}, {6749, 39569}, {6756, 19118}, {6924, 37492}, {7405, 14627}, {7516, 37491}, {7575, 47457}, {7736, 10011}, {7745, 39764}, {8356, 22521}, {8369, 32447}, {8537, 41584}, {8981, 35841}, {9822, 32284}, {9825, 11426}, {9956, 51196}, {9969, 15074}, {10109, 50955}, {10192, 58470}, {10263, 11574}, {10264, 15118}, {10297, 47461}, {10299, 55616}, {10301, 11003}, {10541, 48873}, {10592, 39897}, {10593, 39873}, {10602, 44233}, {11002, 44210}, {11160, 15703}, {11178, 20583}, {11179, 15687}, {11180, 11737}, {11216, 44270}, {11230, 34379}, {11405, 37942}, {11477, 14869}, {11563, 51742}, {11812, 50967}, {12006, 37511}, {12061, 30551}, {12100, 54132}, {12101, 50963}, {12103, 55701}, {12108, 55724}, {12167, 21841}, {12294, 13630}, {13353, 19121}, {13364, 40673}, {13434, 19129}, {13490, 19153}, {13861, 19459}, {13910, 44501}, {13966, 35840}, {13972, 44502}, {14389, 15019}, {14891, 54170}, {15004, 37649}, {15018, 30739}, {15026, 44495}, {15033, 44241}, {15038, 15760}, {15073, 58531}, {15088, 32275}, {15534, 51182}, {15585, 34788}, {15682, 51173}, {15686, 54131}, {15692, 55624}, {15693, 51028}, {15701, 51172}, {15704, 31670}, {15711, 41153}, {15713, 50981}, {15714, 55673}, {15716, 50966}, {15717, 55604}, {15988, 17527}, {16226, 38727}, {16989, 56370}, {17504, 31884}, {17508, 45759}, {18572, 47460}, {19661, 38225}, {19709, 50974}, {19710, 29317}, {19711, 55591}, {19924, 55695}, {20190, 48881}, {20252, 51200}, {20253, 51203}, {20301, 25329}, {21356, 47599}, {21637, 31804}, {22165, 51183}, {22829, 43130}, {23042, 23048}, {23046, 38072}, {23300, 33332}, {23332, 32068}, {23514, 47855}, {25320, 45016}, {25321, 38724}, {25328, 25556}, {26206, 36749}, {28538, 38081}, {32162, 51741}, {32423, 52699}, {32455, 34507}, {32521, 35439}, {33179, 49536}, {33699, 43273}, {33749, 43865}, {33751, 55698}, {34146, 45956}, {34200, 55682}, {35018, 40330}, {36794, 42873}, {37071, 37665}, {37454, 37644}, {37640, 52263}, {37641, 52266}, {37938, 53022}, {37950, 47571}, {38028, 38049}, {38047, 38112}, {38111, 38186}, {39871, 44960}, {39893, 42270}, {39894, 42273}, {40107, 51126}, {40931, 52989}, {40981, 52274}, {41714, 58532}, {41990, 50956}, {42121, 51206}, {42124, 51207}, {42633, 44223}, {42634, 52650}, {42916, 44497}, {42917, 44498}, {44479, 58471}, {44882, 50664}, {44903, 55707}, {46030, 54218}, {46264, 55711}, {47354, 51180}, {47355, 55859}, {48885, 55696}, {48892, 55704}, {48898, 55708}, {48901, 55710}, {50779, 51047}, {50965, 55670}, {50977, 55717}, {50985, 50991}, {50988, 55596}, {50990, 51174}, {51132, 51184}, {51163, 55709}, {51166, 55680}, {53418, 53845}, {55678, 58190}, {55716, 58445}

X(59399) = midpoint of X(i) and X(j) for these {i,j}: {2, 5093}, {6, 14561}, {381, 14912}, {1351, 10519}, {5032, 5055}, {5050, 14853}, {5085, 20423}, {5476, 39561}, {11179, 53023}, {15520, 38317}, {23042, 23048}, {25320, 45016}, {25321, 38724}, {38136, 50979}, {50977, 55717}, {54132, 55610}
X(59399) = reflection of X(i) in X(j) for these {i,j}: {5, 14561}, {549, 38110}, {3845, 38136}, {8703, 5085}, {10283, 38040}, {10519, 140}, {11539, 47352}, {14561, 18583}, {15687, 53023}, {15699, 38079}, {17504, 38064}, {21167, 10168}, {21356, 47599}, {23046, 38072}, {38028, 38049}, {38042, 38167}, {38110, 597}, {38111, 38186}, {38112, 38047}, {38136, 5476}, {50965, 55670}, {50979, 39561}, {51737, 55706}, {55610, 12100}, {55649, 50983}
X(59399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 51171, 51732}, {5, 6, 1353}, {6, 18583, 5}, {182, 21850, 550}, {575, 5480, 48906}, {576, 3589, 48876}, {597, 54169, 46267}, {1351, 3618, 140}, {3090, 51170, 11898}, {3589, 48876, 632}, {3818, 22234, 12007}, {5050, 14848, 14853}, {5092, 48874, 46853}, {5097, 25555, 141}, {5476, 50979, 3845}, {5480, 48906, 3627}, {7583, 7584, 2548}, {8550, 19130, 39884}, {11542, 11543, 31415}, {12017, 51212, 548}, {15004, 37649, 41588}, {15516, 19130, 8550}, {15701, 51172, 54174}, {15713, 54173, 50981}, {19130, 39884, 3858}, {19710, 51181, 51737}, {22330, 24206, 3629}, {34507, 55714, 32455}, {58030, 58031, 18584}


X(59400) = 2ND TRISECTOR OF SEGMENT X(5)X(8)

Barycentrics    4*a^4 - 8*a^3*b + a^2*b^2 + 8*a*b^3 - 5*b^4 - 8*a^3*c + 16*a^2*b*c - 8*a*b^2*c + a^2*c^2 - 8*a*b*c^2 + 10*b^2*c^2 + 8*a*c^3 - 5*c^4 : :
X(59400) = 4 X[1] - 7 X[55856], 4 X[2] - X[50831], X[50831] + 4 X[51515], X[3] - 7 X[4678], X[5] + 2 X[8], 5 X[5] - 2 X[1482], 3 X[5] - 2 X[5603], 19 X[5] - 10 X[5734], 7 X[5] - 10 X[5818], 13 X[5] - 10 X[18493], 5 X[8] + X[1482], 3 X[8] + X[5603], 19 X[8] + 5 X[5734], 7 X[8] + 5 X[5818], 13 X[8] + 5 X[18493], 3 X[1482] - 5 X[5603], and many others

X(59400) lies on these lines: {1, 55856}, {2, 50831}, {3, 4678}, {5, 8}, {10, 632}, {40, 28190}, {140, 3617}, {145, 3628}, {355, 3627}, {495, 5425}, {515, 550}, {516, 35404}, {517, 3845}, {518, 38170}, {519, 10172}, {546, 12245}, {547, 10247}, {549, 952}, {944, 15712}, {993, 51525}, {1353, 49524}, {1385, 4691}, {1484, 3036}, {1656, 3621}, {1699, 3858}, {3057, 58632}, {3090, 20052}, {3530, 18526}, {3616, 55861}, {3622, 48154}, {3623, 5070}, {3625, 9956}, {3632, 5901}, {3654, 19710}, {3850, 8148}, {3857, 4746}, {3860, 50872}, {3872, 19907}, {4677, 5886}, {4701, 10171}, {4745, 11231}, {5067, 20014}, {5587, 38071}, {5657, 8703}, {5731, 17504}, {5846, 38165}, {5853, 38175}, {5854, 38177}, {5855, 38178}, {5881, 16192}, {6907, 19914}, {7508, 12331}, {8981, 35843}, {9778, 15704}, {9780, 51700}, {10109, 50805}, {10124, 34748}, {10164, 34773}, {10165, 38098}, {10175, 34641}, {10246, 11539}, {10595, 35018}, {10914, 31835}, {11246, 37710}, {11362, 28146}, {11545, 12647}, {11737, 34631}, {11812, 50818}, {12101, 50797}, {12898, 22251}, {13966, 35842}, {14869, 54445}, {15686, 34627}, {15687, 28212}, {15703, 20049}, {15711, 28236}, {15713, 51068}, {15935, 31397}, {16239, 37624}, {18480, 28228}, {19116, 49232}, {19117, 49233}, {19877, 41992}, {23046, 38074}, {28150, 50801}, {28160, 34638}, {28164, 50827}, {28204, 38127}, {28216, 33699}, {28234, 38034}, {31399, 33179}, {31662, 38068}, {34753, 37709}, {36920, 39542}, {37714, 40273}, {38111, 38200}, {41990, 50806}, {46932, 55862}, {47359, 50986}, {50804, 51066}, {50826, 51705}, {50830, 51709}, {50832, 51067}, {50949, 50978}, {50950, 51183}, {50951, 50979}, {50953, 51180}, {51034, 51047}, {51036, 51048}, {51069, 51087}, {51124, 51182}, {51125, 51184}

X(59400) = midpoint of X(i) and X(j) for these {i,j}: {2, 51515}, {8, 5790}, {3654, 37712}, {4677, 5886}, {4701, 10171}, {5657, 50798}, {7967, 12645}, {9778, 18525}, {10164, 47745}, {10175, 34641}, {10247, 31145}, {38138, 50823}
X(59400) = reflection of X(i) in X(j) for these {i,j}: {5, 5790}, {549, 38112}, {1483, 38028}, {1699, 18357}, {3845, 38138}, {7967, 140}, {8703, 5657}, {10222, 10171}, {10247, 547}, {10283, 38042}, {11231, 4745}, {11539, 53620}, {15699, 38081}, {15704, 9778}, {17504, 38066}, {22791, 38140}, {23046, 38074}, {34773, 10164}, {38028, 10}, {38042, 38176}, {38111, 38200}, {38112, 3679}, {50824, 11231}
X(59400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 1483, 632}, {3617, 12645, 140}, {5690, 37705, 550}, {9780, 51700, 55859}, {10283, 38042, 15699}, {10283, 38081, 38042}, {37624, 46933, 16239}, {38022, 38042, 10172}, {38042, 38176, 38081}


X(59401) = 1ST TRISECTOR OF SEGMENT X(5)X(13)

Barycentrics    3*a^8 - 3*a^6*b^2 - 9*a^4*b^4 + 15*a^2*b^6 - 6*b^8 - 3*a^6*c^2 - 6*a^4*b^2*c^2 - 15*a^2*b^4*c^2 + 24*b^6*c^2 - 9*a^4*c^4 - 15*a^2*b^2*c^4 - 36*b^4*c^4 + 15*a^2*c^6 + 24*b^2*c^6 - 6*c^8 + 4*Sqrt[3]*a^6*S - 12*Sqrt[3]*a^4*b^2*S + 4*Sqrt[3]*a^2*b^4*S + 4*Sqrt[3]*b^6*S - 12*Sqrt[3]*a^4*c^2*S - 24*Sqrt[3]*a^2*b^2*c^2*S - 4*Sqrt[3]*b^4*c^2*S + 4*Sqrt[3]*a^2*c^4*S - 4*Sqrt[3]*b^2*c^4*S + 4*Sqrt[3]*c^6*S + 4*a^4*S^2 - 20*a^2*b^2*S^2 + 16*b^4*S^2 - 20*a^2*c^2*S^2 - 32*b^2*c^2*S^2 + 16*c^4*S^2 : :
Barycentrics    (a^6-3*(b^2+c^2)*a^4+((b^2-c^2)^2-4*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2))*sqrt(3)-2*S*(a^4+4*(b^2+c^2)*a^2-5*(b^2-c^2)^2) : : (César Lozada, October 9, 2023)
X(59401) = 2 X[2] + X[25154], X[3] + 2 X[5478], X[3] - 4 X[6669], X[5478] + 2 X[6669], X[4] + 2 X[6771], 2 X[5] + X[13], 4 X[5] - X[5617], X[5] + 2 X[20252], 2 X[13] + X[5617], X[13] - 4 X[20252], X[5617] + 8 X[20252], X[16627] + 2 X[22846], 4 X[20252] + X[36765], 2 X[14] + X[22509], X[21156] - 3 X[22489], and many others

X(59401) lies on these lines: {2, 9736}, {3, 5478}, {4, 6771}, {5, 13}, {6, 47855}, {11, 10062}, {12, 10078}, {14, 22509}, {17, 16631}, {30, 21156}, {98, 22797}, {115, 5613}, {140, 5473}, {355, 11705}, {381, 5459}, {396, 20428}, {485, 49209}, {486, 49208}, {498, 13076}, {499, 18974}, {530, 5055}, {542, 3545}, {546, 36961}, {547, 5463}, {616, 3090}, {618, 1656}, {619, 6321}, {623, 20425}, {634, 40707}, {1080, 58849}, {1352, 43403}, {2782, 5470}, {3091, 6770}, {3311, 13917}, {3312, 13982}, {3542, 12142}, {3628, 36770}, {3850, 41020}, {3851, 35019}, {5054, 48311}, {5066, 36383}, {5071, 51482}, {5318, 52266}, {5469, 16267}, {5472, 18581}, {5474, 22515}, {5872, 42992}, {5901, 7975}, {6036, 41061}, {6108, 20429}, {6115, 31489}, {6302, 18586}, {6306, 18587}, {6772, 37832}, {6774, 14061}, {6777, 20253}, {6778, 15092}, {6782, 42095}, {7529, 9916}, {7583, 19073}, {7584, 19074}, {7684, 33560}, {7741, 12952}, {7951, 12942}, {8227, 9901}, {9112, 11543}, {9115, 42910}, {9762, 33378}, {9956, 12781}, {10104, 12205}, {10109, 35752}, {10272, 37752}, {10576, 35754}, {10577, 35753}, {10611, 16626}, {11178, 22580}, {11486, 47861}, {12042, 36962}, {13102, 32552}, {14136, 37824}, {16644, 31710}, {16808, 22513}, {16966, 23005}, {16967, 47859}, {18583, 51200}, {19709, 36363}, {21157, 34127}, {22492, 33477}, {22576, 33475}, {23006, 23303}, {23039, 53048}, {24206, 51010}, {36763, 42598}, {36766, 42915}, {36771, 42146}, {36772, 42124}, {36782, 42488}, {36958, 42161}, {36969, 52650}, {38224, 41023}, {40334, 54138}, {41040, 41045}, {41043, 49102}, {42110, 53430}, {42125, 47863}, {42975, 47857}, {43104, 52263}, {46708, 50570}

X(59401) = midpoint of X(13) and X(36765)
X(59401) = reflection of X(i) in X(j) for these {i,j}: {5054, 48311}, {5469, 38229}, {5617, 36765}, {21157, 34127}, {36765, 5}
X(59401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 13, 5617}, {5, 20252, 13}, {5, 42166, 37825}, {13, 37835, 41745}, {546, 47610, 36961}, {1656, 13103, 618}, {3091, 6770, 22796}, {5478, 6669, 3}, {16808, 46054, 22513}, {20415, 22796, 6770}


X(59402) = 1ST TRISECTOR OF SEGMENT X(5)X(14)

Barycentrics    3*a^8 - 3*a^6*b^2 - 9*a^4*b^4 + 15*a^2*b^6 - 6*b^8 - 3*a^6*c^2 - 6*a^4*b^2*c^2 - 15*a^2*b^4*c^2 + 24*b^6*c^2 - 9*a^4*c^4 - 15*a^2*b^2*c^4 - 36*b^4*c^4 + 15*a^2*c^6 + 24*b^2*c^6 - 6*c^8 - 4*Sqrt[3]*a^6*S + 12*Sqrt[3]*a^4*b^2*S - 4*Sqrt[3]*a^2*b^4*S - 4*Sqrt[3]*b^6*S + 12*Sqrt[3]*a^4*c^2*S + 24*Sqrt[3]*a^2*b^2*c^2*S + 4*Sqrt[3]*b^4*c^2*S - 4*Sqrt[3]*a^2*c^4*S + 4*Sqrt[3]*b^2*c^4*S - 4*Sqrt[3]*c^6*S + 4*a^4*S^2 - 20*a^2*b^2*S^2 + 16*b^4*S^2 - 20*a^2*c^2*S^2 - 32*b^2*c^2*S^2 + 16*c^4*S^2 : :
Barycentrics    (a^6-3*(b^2+c^2)*a^4+((b^2-c^2)^2-4*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2))*sqrt(3)+2*S*(a^4+4*(b^2+c^2)*a^2-5*(b^2-c^2)^2) : : (César Lozada, October 9, 2023)
X(59402) = 2 X[2] + X[25164], X[3] + 2 X[5479], X[3] - 4 X[6670], X[5479] + 2 X[6670], X[4] + 2 X[6774], 2 X[5] + X[14], 4 X[5] - X[5613], X[5] + 2 X[20253], 2 X[14] + X[5613], X[14] - 4 X[20253], X[5613] + 8 X[20253], X[16626] + 2 X[22891], 2 X[13] + X[22507], X[21157] - 3 X[22490], X[98] + 2 X[22796], 2 X[115] + X[5617], and many others

X(59402) lies on these lines: {2, 9735}, {3, 5479}, {4, 6774}, {5, 14}, {6, 47856}, {11, 10061}, {12, 10077}, {13, 22507}, {18, 16630}, {30, 21157}, {98, 22796}, {115, 5617}, {140, 5474}, {355, 11706}, {381, 5460}, {383, 58849}, {395, 20429}, {485, 49211}, {486, 49210}, {498, 13075}, {499, 18975}, {531, 5055}, {542, 3545}, {546, 36962}, {547, 5464}, {617, 3090}, {618, 6321}, {619, 1656}, {624, 20426}, {633, 40706}, {1352, 43404}, {2782, 5469}, {3091, 6773}, {3311, 13916}, {3312, 13981}, {3542, 12141}, {3850, 41021}, {3851, 35020}, {5054, 48312}, {5066, 36382}, {5071, 51483}, {5321, 52263}, {5470, 16268}, {5471, 18582}, {5473, 22515}, {5873, 42993}, {5901, 7974}, {6036, 41060}, {6109, 20428}, {6114, 31489}, {6303, 18587}, {6307, 18586}, {6771, 14061}, {6775, 37835}, {6777, 15092}, {6778, 20252}, {6783, 42098}, {7529, 9915}, {7583, 19075}, {7584, 19076}, {7685, 33561}, {7741, 12951}, {7951, 12941}, {8227, 9900}, {9113, 11542}, {9117, 42911}, {9760, 33379}, {9956, 12780}, {10104, 12204}, {10109, 36330}, {10272, 37753}, {10576, 35851}, {10577, 35850}, {10612, 16627}, {11178, 22579}, {11485, 47862}, {12042, 36961}, {13103, 32553}, {14137, 37825}, {16645, 31709}, {16809, 22512}, {16966, 47860}, {16967, 23004}, {18583, 51203}, {19709, 36362}, {21156, 34127}, {22491, 33476}, {22575, 33474}, {23013, 23302}, {23039, 53049}, {24206, 51013}, {33813, 36770}, {36959, 42160}, {36970, 44223}, {38224, 41022}, {40335, 54139}, {41041, 41044}, {41042, 49102}, {42107, 53442}, {42128, 47864}, {42974, 47858}, {43101, 52266}, {44219, 44401}, {46709, 50570}

X(59402) = midpoint of X(5469) and X(36765)
X(59402) = reflection of X(i) in X(j) for these {i,j}: {5054, 48312}, {5470, 38229}, {21156, 34127}
X(59402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 14, 5613}, {5, 20253, 14}, {5, 42163, 37824}, {14, 37832, 41746}, {546, 47611, 36962}, {1656, 13102, 619}, {3091, 6773, 22797}, {5479, 6670, 3}, {16809, 46053, 22512}, {20416, 22797, 6773}


X(59403) = 1ST TRISECTOR OF SEGMENT X(5)X(15)

Barycentrics    a^6 - 3*a^4*b^2 + a^2*b^4 + b^6 - 3*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6 - 8*Sqrt[3]*S^3 : :
X(59403) = X[3] - 4 X[6671], X[3] + 2 X[7684], 2 X[6671] + X[7684], X[4] + 2 X[13350], 2 X[5] + X[15], 4 X[5] - X[20428], 2 X[15] + X[20428], X[13] + 2 X[52650], X[16] - 4 X[14693], 2 X[36759] + X[37825], X[52] - 4 X[58477], 4 X[140] - X[14538], 2 X[187] + X[20429], 4 X[24206] - X[51016], X[355] + 2 X[11707], and many others

X(59403) lies on these lines: {2, 51}, {3, 6671}, {4, 13350}, {5, 15}, {13, 38230}, {16, 14693}, {17, 10104}, {30, 21156}, {52, 58477}, {62, 53455}, {140, 14538}, {182, 37463}, {187, 18582}, {302, 576}, {303, 24206}, {355, 11707}, {381, 44666}, {396, 3564}, {397, 10617}, {470, 39569}, {531, 5055}, {546, 36992}, {547, 50855}, {618, 20425}, {621, 3090}, {623, 1656}, {624, 2080}, {631, 36755}, {1080, 6771}, {1352, 11488}, {1691, 6115}, {2782, 22510}, {3091, 21401}, {3131, 32762}, {3412, 5872}, {3628, 40334}, {5054, 48313}, {5071, 51484}, {5093, 9761}, {5159, 47575}, {5340, 36958}, {5459, 38225}, {5613, 6109}, {5864, 11309}, {5886, 44659}, {5901, 51689}, {5965, 37786}, {6036, 41070}, {6296, 22866}, {6300, 18586}, {6304, 18587}, {6673, 51754}, {6721, 51387}, {6783, 22507}, {8227, 51688}, {8838, 38431}, {9735, 11303}, {9956, 50853}, {10358, 11290}, {10613, 37824}, {10667, 42262}, {10671, 42265}, {11489, 44498}, {11542, 41406}, {14138, 16626}, {15520, 37785}, {16627, 42598}, {16962, 36765}, {18583, 23303}, {19130, 37464}, {19780, 42156}, {20252, 36969}, {22509, 53442}, {25154, 35304}, {25164, 52022}, {25555, 44488}, {30485, 47026}, {33518, 42095}, {34314, 44266}, {35229, 42581}, {36770, 52648}, {36959, 42945}, {37832, 39555}, {41024, 52649}, {41746, 50682}

X(59403) = midpoint of X(i) and X(j) for these {i,j}: {16962, 36765}, {21158, 41036}
X(59403) = reflection of X(i) in X(j) for these {i,j}: {5054, 48313}, {39554, 38230}, {41024, 52649}
X(59403) = circumcircle-of inner-Napoleon-triangle-inverse of X(3060)
X(59403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 15, 20428}, {396, 52266, 5617}, {396, 53465, 36757}, {1656, 5611, 623}, {3366, 3367, 52642}, {6671, 7684, 3}


X(59404) = 1ST TRISECTOR OF SEGMENT X(5)X(16)

Barycentrics    a^6 - 3*a^4*b^2 + a^2*b^4 + b^6 - 3*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6 + 8*Sqrt[3]*S^3 : :
X(59404) = X[3] - 4 X[6672], X[3] + 2 X[7685], 2 X[6672] + X[7685], X[4] + 2 X[13349], 2 X[5] + X[16], 4 X[5] - X[20429], 2 X[16] + X[20429], X[14] + 2 X[44223], X[15] - 4 X[14693], 2 X[36760] + X[37824], X[52] - 4 X[58478], 4 X[140] - X[14539], 2 X[187] + X[20428], 4 X[24206] - X[51018], X[355] + 2 X[11708], X[381] + 2 X[45880], and many others

X(59404) lies on these lines: {2, 51}, {3, 6672}, {4, 13349}, {5, 16}, {14, 38230}, {15, 14693}, {18, 10104}, {30, 21157}, {52, 58478}, {61, 53466}, {140, 14539}, {182, 37464}, {187, 18581}, {302, 24206}, {303, 576}, {355, 11708}, {381, 44667}, {383, 6774}, {395, 3564}, {398, 10616}, {471, 39569}, {530, 5055}, {546, 36994}, {547, 50858}, {619, 20426}, {622, 3090}, {623, 2080}, {624, 1656}, {631, 36756}, {1352, 11489}, {1503, 44219}, {1691, 6114}, {2782, 22511}, {3091, 21402}, {3132, 32762}, {3411, 5873}, {3628, 40335}, {5054, 48314}, {5071, 51485}, {5093, 9763}, {5159, 47576}, {5339, 36959}, {5460, 38225}, {5617, 6108}, {5865, 11310}, {5886, 44660}, {5901, 51691}, {5965, 37785}, {6036, 41071}, {6297, 22911}, {6301, 18587}, {6305, 18586}, {6674, 51753}, {6721, 51388}, {6782, 22509}, {8227, 51690}, {8836, 38432}, {9736, 11304}, {9956, 50856}, {10358, 11289}, {10614, 37825}, {10668, 42262}, {10672, 42265}, {11488, 44497}, {11543, 41407}, {14139, 16627}, {15520, 37786}, {16626, 42599}, {18583, 23302}, {19130, 37463}, {19781, 42153}, {20253, 36970}, {22507, 53430}, {25154, 52021}, {25164, 35303}, {25555, 44487}, {30486, 47027}, {33517, 42098}, {34313, 44266}, {35230, 42580}, {36958, 42944}, {37835, 39554}, {41025, 44289}, {41745, 50683}, {52647, 54141}

X(59404) = midpoint of X(21159) and X(41037)
X(59404) = reflection of X(i) in X(j) for these {i,j}: {5054, 48314}, {39555, 38230}, {41025, 44289}
X(59404) = circumcircle-of-outer-Napoleon-triangle-inverse of X(3060)
X(59404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 16, 20429}, {395, 52263, 5613}, {395, 53454, 36758}, {1656, 5615, 624}, {3391, 3392, 52643}, {6672, 7685, 3}


X(59405) = 1ST TRISECTOR OF SEGMENT X(6)X(7)

Barycentrics    a^4 - 4*a^3*b + 2*a^2*b^2 + b^4 - 4*a^3*c - 6*a^2*b*c - 2*b^3*c + 2*a^2*c^2 + 2*b^2*c^2 - 2*b*c^3 + c^4 : :
X(59405) = 4 X[2] - X[50996], X[2] + 2 X[51002], 8 X[38186] - X[50996], X[50996] + 8 X[51002], 2 X[6] + X[7], X[6] + 2 X[51150], 4 X[6] - X[51190], X[7] - 4 X[51150], 2 X[7] + X[51190], X[1814] + 2 X[39063], 8 X[51150] + X[51190], 2 X[9] - 5 X[3618], X[69] - 4 X[142], X[69] + 2 X[51194], 2 X[142] + X[51194], X[144] - 7 X[51171], and many others

X(59405) lies on these lines: {2, 210}, {6, 7}, {8, 17672}, {9, 3618}, {57, 7056}, {69, 142}, {144, 17302}, {182, 5759}, {193, 24599}, {226, 24600}, {239, 2550}, {344, 17755}, {348, 1475}, {390, 1386}, {464, 1040}, {497, 52507}, {511, 21151}, {516, 16475}, {524, 38086}, {542, 38073}, {597, 6172}, {942, 41785}, {971, 14853}, {1001, 26626}, {1351, 31657}, {1445, 2260}, {1503, 38143}, {1843, 58472}, {1974, 7717}, {1992, 6173}, {2345, 49481}, {2346, 12329}, {2999, 4321}, {3008, 3751}, {3242, 5308}, {3243, 3912}, {3304, 26658}, {3416, 40333}, {3564, 38107}, {3589, 18230}, {3619, 20195}, {3672, 51052}, {3889, 28740}, {4393, 20533}, {4419, 36404}, {4437, 29627}, {4648, 16973}, {4663, 30340}, {4860, 26007}, {5050, 5762}, {5223, 29598}, {5452, 32911}, {5480, 36991}, {5732, 51212}, {5779, 18583}, {5805, 6776}, {5817, 14561}, {5846, 38185}, {5847, 16833}, {5848, 38188}, {5849, 38189}, {5853, 16834}, {6329, 51144}, {6600, 21477}, {6666, 29603}, {7289, 24590}, {8236, 38315}, {8584, 51195}, {10427, 10755}, {10519, 38122}, {11025, 58562}, {11349, 22769}, {12630, 51147}, {14548, 51400}, {14927, 52835}, {15534, 51151}, {15570, 29585}, {15587, 58621}, {16054, 41610}, {16491, 30331}, {16496, 29571}, {16593, 17316}, {16832, 49511}, {16972, 41325}, {17012, 18450}, {17284, 49529}, {17308, 24393}, {19133, 37416}, {20330, 39898}, {21010, 56715}, {21168, 38117}, {21356, 38093}, {21454, 30623}, {21617, 26063}, {24695, 53602}, {27304, 28629}, {28538, 38092}, {29611, 49524}, {29616, 49688}, {29624, 49465}, {30673, 47785}, {31211, 49505}, {31671, 48906}, {34379, 38054}, {34380, 38111}, {36976, 47373}, {37076, 51743}, {38048, 52653}, {38050, 53055}, {38166, 51516}, {38200, 50095}, {41712, 43053}, {42309, 43035}, {49775, 54389}

X(59405) = midpoint of X(38186) and X(51002)
X(59405) = reflection of X(i) in X(j) for these {i,j}: {2, 38186}, {5686, 38047}, {5817, 14561}, {8236, 38315}, {10519, 38122}, {11038, 38046}, {21151, 38115}, {21168, 38117}, {21356, 38093}, {38052, 38187}, {38107, 38164}, {51516, 38166}, {52653, 38048}, {53055, 38050}
X(59405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11038, 27475}, {2, 27484, 38057}, {6, 7, 51190}, {6, 5228, 1814}, {6, 51150, 7}, {7, 5222, 673}, {142, 51194, 69}, {3589, 50995, 18230}, {5228, 39063, 7}, {16593, 42871, 17316}


X(59406) = 1ST TRISECTOR OF SEGMENT X(6)X(8)

Barycentrics    a^3 + 3*a^2*b - a*b^2 + b^3 + 3*a^2*c + b^2*c - a*c^2 + b*c^2 + c^3 : :
X(59406) = 2 X[1] - 5 X[3618], X[1] + 2 X[49529], 5 X[3618] - 4 X[38049], 5 X[3618] + 4 X[49529], 5 X[2] - 2 X[47358], X[2] + 2 X[47359], 4 X[2] - X[50999], 7 X[2] - 4 X[51003], 5 X[38047] - X[47358], 8 X[38047] - X[50999], 7 X[38047] - 2 X[51003], X[47358] + 5 X[47359], 8 X[47358] - 5 X[50999], 7 X[47358] - 10 X[51003], and many others

X(59406) lies on these lines: {1, 344}, {2, 210}, {5, 39898}, {6, 8}, {7, 4429}, {10, 69}, {21, 12329}, {37, 27549}, {40, 51212}, {42, 345}, {55, 26065}, {78, 4878}, {80, 39900}, {81, 10327}, {100, 36740}, {141, 9780}, {144, 24723}, {145, 1386}, {182, 944}, {192, 49531}, {193, 3416}, {238, 36479}, {329, 32773}, {346, 49470}, {355, 6776}, {387, 4385}, {388, 41246}, {390, 4676}, {404, 22769}, {497, 27064}, {511, 5657}, {515, 25406}, {516, 50127}, {517, 14853}, {519, 16475}, {524, 38087}, {542, 38074}, {597, 3241}, {611, 18391}, {726, 50101}, {740, 50107}, {758, 48831}, {858, 47506}, {894, 2550}, {952, 5050}, {962, 5480}, {984, 17321}, {1001, 26685}, {1010, 41610}, {1125, 16496}, {1145, 10755}, {1215, 33137}, {1351, 5690}, {1352, 5818}, {1428, 3476}, {1449, 4901}, {1469, 1788}, {1482, 18583}, {1483, 51732}, {1503, 38144}, {1698, 3619}, {1699, 38146}, {1738, 42697}, {1743, 3883}, {1757, 29659}, {1843, 23841}, {1974, 7718}, {1992, 3679}, {1999, 3974}, {2321, 49495}, {2330, 3486}, {2551, 27420}, {2948, 32255}, {2975, 36741}, {3036, 51198}, {3086, 28748}, {3189, 4195}, {3240, 17740}, {3242, 3589}, {3244, 16491}, {3434, 26223}, {3436, 5800}, {3448, 32278}, {3564, 5790}, {3576, 38118}, {3620, 3844}, {3621, 49681}, {3622, 49465}, {3626, 51196}, {3632, 49684}, {3634, 49505}, {3654, 54132}, {3672, 49447}, {3685, 36404}, {3696, 49496}, {3729, 3755}, {3745, 30615}, {3753, 34381}, {3758, 4307}, {3763, 19877}, {3769, 7172}, {3773, 49497}, {3779, 26059}, {3790, 16972}, {3811, 37176}, {3823, 4675}, {3870, 5294}, {3876, 58633}, {3886, 17355}, {3889, 58562}, {3932, 17316}, {3945, 39570}, {3946, 49446}, {3952, 29829}, {3983, 58653}, {4000, 24349}, {4026, 5220}, {4085, 17767}, {4090, 29635}, {4202, 51738}, {4310, 16706}, {4349, 49783}, {4357, 5223}, {4437, 5308}, {4439, 50281}, {4644, 4645}, {4649, 33165}, {4651, 19822}, {4657, 49515}, {4660, 24695}, {4669, 50953}, {4677, 51005}, {4678, 51170}, {4684, 17284}, {4722, 33074}, {4734, 42049}, {4737, 41316}, {4745, 50950}, {4753, 50308}, {4899, 7174}, {4966, 29579}, {4972, 5905}, {5032, 28538}, {5085, 5731}, {5222, 32922}, {5296, 50995}, {5302, 13736}, {5542, 17282}, {5550, 47355}, {5554, 15988}, {5603, 14561}, {5687, 37492}, {5691, 14927}, {5698, 17350}, {5712, 29641}, {5718, 30741}, {5739, 29667}, {5750, 24393}, {5809, 14942}, {5836, 58694}, {5845, 35578}, {5848, 38192}, {5849, 38193}, {5850, 17274}, {5852, 48821}, {5853, 50115}, {5881, 39870}, {5886, 38167}, {5902, 34378}, {5904, 19784}, {6224, 51157}, {6329, 20050}, {6361, 31670}, {7081, 37642}, {7290, 49466}, {7321, 7613}, {7672, 28739}, {7967, 38029}, {7984, 15118}, {8236, 38048}, {8543, 28966}, {8584, 50783}, {9000, 48243}, {9029, 47793}, {9040, 47836}, {9041, 38314}, {9778, 29181}, {9812, 53023}, {9956, 40330}, {9965, 33068}, {10005, 39587}, {10246, 38110}, {10247, 38040}, {10519, 26446}, {11061, 13211}, {11179, 34627}, {11269, 28808}, {11319, 51743}, {11520, 25904}, {11574, 16980}, {11679, 53663}, {12017, 34773}, {12135, 19118}, {12589, 54361}, {12626, 51741}, {12645, 53091}, {12702, 21850}, {12782, 18906}, {13405, 56519}, {13725, 41229}, {14986, 28778}, {15303, 50920}, {15533, 51124}, {15534, 50949}, {16020, 17352}, {16173, 38197}, {16477, 49506}, {16791, 36500}, {16823, 37650}, {16830, 16973}, {17018, 17776}, {17024, 30614}, {17120, 50289}, {17165, 19785}, {17277, 39581}, {17279, 49478}, {17281, 28581}, {17289, 49450}, {17301, 28582}, {17302, 31302}, {17351, 24280}, {17494, 50765}, {17625, 56460}, {17765, 50300}, {17766, 50303}, {17768, 48829}, {17772, 50283}, {18357, 18440}, {18525, 48906}, {18526, 55705}, {18800, 50885}, {19875, 21356}, {19925, 51537}, {20053, 49679}, {20078, 32950}, {20423, 50810}, {20683, 35628}, {21677, 25898}, {22277, 26115}, {24210, 56084}, {24295, 49458}, {24597, 26227}, {24841, 52157}, {25055, 38089}, {25304, 26764}, {25453, 33144}, {25509, 30350}, {26034, 32912}, {26061, 33171}, {26078, 47329}, {26098, 29673}, {26105, 29843}, {26626, 32029}, {27538, 29837}, {28472, 50120}, {28526, 50080}, {28530, 49721}, {29633, 49448}, {29637, 49498}, {29857, 30828}, {29868, 33153}, {31034, 31079}, {31091, 33070}, {31145, 47356}, {31161, 33128}, {32784, 49712}, {32847, 50030}, {32915, 42032}, {32942, 36845}, {33088, 33162}, {33091, 37685}, {33159, 49490}, {33164, 42042}, {33167, 42043}, {34195, 51747}, {34380, 38112}, {34632, 54131}, {35026, 36215}, {36221, 36231}, {36480, 49697}, {36534, 49707}, {37553, 56078}, {37676, 59296}, {37701, 38198}, {37710, 39901}, {37714, 39878}, {38052, 50116}, {38195, 53055}, {39099, 50254}, {39875, 49601}, {39876, 49602}, {40333, 47595}, {41153, 51145}, {41539, 56367}, {43273, 50864}, {44669, 48832}, {48798, 48870}, {48804, 48861}, {48806, 48857}, {48877, 48922}, {49693, 50302}, {49746, 52653}, {49772, 50314}, {50581, 50636}, {50779, 51054}, {50781, 50952}, {50782, 51187}, {50786, 51067}, {50790, 51006}, {50791, 51143}, {50796, 51023}, {50798, 50979}, {50821, 50967}, {50890, 51008}, {50994, 51004}, {51089, 51105}, {51091, 51153}, {51146, 51185}

X(59406) = midpoint of X(i) and X(j) for these {i,j}: {38047, 47359}, {38049, 49529}
X(59406) = reflection of X(i) in X(j) for these {i,j}: {1, 38049}, {2, 38047}, {1699, 38146}, {3241, 38315}, {3576, 38118}, {3679, 38191}, {5603, 14561}, {5657, 38116}, {5686, 38190}, {5731, 5085}, {5790, 38165}, {5886, 38167}, {7967, 38029}, {8236, 38048}, {9812, 53023}, {10246, 38110}, {10247, 38040}, {10519, 26446}, {11038, 38186}, {16173, 38197}, {21356, 19875}, {25055, 38089}, {37701, 38198}, {38314, 47352}, {38315, 597}, {53055, 38195}, {53620, 38087}
X(59406) = barycentric product X(190)*X(48069)
X(59406) = barycentric quotient X(48069)/X(514)
X(59406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8, 51192}, {6, 49524, 8}, {8, 5749, 5263}, {10, 3751, 69}, {42, 33163, 345}, {145, 51171, 1386}, {193, 3617, 3416}, {1125, 49536, 16496}, {1386, 49688, 145}, {1449, 4901, 49476}, {1698, 49511, 3619}, {1757, 29659, 50295}, {1757, 50295, 54280}, {3240, 33170, 17740}, {3242, 3589, 3616}, {3416, 4663, 193}, {3620, 46933, 3844}, {3758, 32850, 4307}, {4026, 5220, 17257}, {4085, 32935, 24248}, {4899, 17023, 7174}, {7172, 37666, 3769}, {8584, 50783, 51001}, {8584, 50951, 50783}, {11269, 32931, 28808}, {16706, 49499, 4310}, {17018, 33166, 17776}, {33114, 46897, 2}, {49690, 51147, 20050}, {50282, 50313, 50107}, {50781, 50952, 50992}, {50783, 50951, 51072}, {50786, 51067, 51169}, {50952, 51066, 50781}, {51001, 51072, 50783}, {51067, 51197, 50786}


X(59407) = 2ND TRISECTOR OF SEGMENT X(6)X(8)

Barycentrics    a^3 - 3*a^2*b + 2*a*b^2 - 2*b^3 - 3*a^2*c - 2*b^2*c + 2*a*c^2 - 2*b*c^2 - 2*c^3 : :
X(59407) = 4 X[1] - 7 X[47355], 2 X[1] + X[49690], 7 X[47355] + 2 X[49690], 4 X[2] - X[50790], X[2] - 4 X[50951], 5 X[2] - 2 X[50998], 11 X[2] - 8 X[51154], X[50790] - 16 X[50951], 5 X[50790] - 8 X[50998], 11 X[50790] - 32 X[51154], 10 X[50951] - X[50998], 11 X[50951] - 2 X[51154], 11 X[50998] - 20 X[51154], X[6] + 2 X[8], X[6] - 4 X[49524], and many others

X(59407) lies on these lines: {1, 17267}, {2, 9053}, {6, 8}, {10, 3242}, {37, 4901}, {40, 48872}, {45, 3717}, {55, 33161}, {69, 4678}, {141, 3617}, {145, 3589}, {182, 12645}, {355, 36990}, {390, 17340}, {516, 49721}, {517, 38144}, {518, 599}, {519, 38023}, {597, 31145}, {611, 41684}, {726, 48829}, {940, 33091}, {944, 53094}, {952, 5085}, {956, 5096}, {966, 10005}, {1001, 33165}, {1350, 5690}, {1376, 33169}, {1386, 3632}, {1698, 49465}, {2550, 17118}, {2916, 9798}, {3052, 4030}, {3057, 58633}, {3243, 17231}, {3416, 3626}, {3618, 3621}, {3622, 51126}, {3625, 49681}, {3661, 49698}, {3751, 4668}, {3773, 49460}, {3844, 16496}, {3883, 16885}, {3886, 53664}, {3932, 36479}, {4085, 49453}, {4265, 5687}, {4363, 32850}, {4370, 52653}, {4383, 33090}, {4421, 33167}, {4428, 33164}, {4445, 49450}, {4643, 4899}, {4657, 49527}, {4660, 17767}, {4669, 5847}, {4677, 16475}, {4691, 49511}, {4696, 53510}, {4701, 49684}, {4745, 47358}, {4864, 17284}, {4929, 17306}, {4942, 33095}, {5050, 51515}, {5092, 18526}, {5220, 33076}, {5480, 12245}, {5657, 31884}, {5686, 17330}, {5718, 31091}, {5731, 55673}, {5790, 10516}, {5844, 14561}, {5853, 17281}, {5854, 38192}, {5855, 38193}, {7172, 37646}, {7174, 17325}, {7232, 49499}, {8148, 19130}, {9041, 21358}, {9055, 17251}, {10168, 34748}, {10247, 38317}, {10327, 37674}, {12195, 59232}, {12531, 51157}, {12702, 48910}, {13211, 25335}, {15523, 41711}, {15533, 50782}, {16794, 36500}, {16884, 49476}, {17229, 49451}, {17245, 39570}, {17253, 49515}, {17255, 31302}, {17275, 24393}, {17279, 49466}, {17286, 49467}, {17311, 49478}, {17354, 49704}, {17398, 39587}, {17597, 29679}, {17723, 50743}, {17765, 48805}, {17766, 50313}, {17769, 50287}, {17783, 29872}, {18183, 24440}, {18525, 48905}, {19145, 35843}, {19146, 35842}, {20052, 51171}, {20070, 51163}, {20423, 50823}, {21000, 35261}, {22277, 59307}, {25336, 32278}, {26227, 31187}, {28234, 38035}, {28508, 32935}, {28555, 50080}, {28566, 50127}, {28581, 50087}, {28582, 49747}, {29593, 32029}, {29594, 38186}, {29633, 49534}, {29674, 42871}, {30811, 31079}, {33170, 37540}, {34573, 46933}, {34641, 47356}, {34718, 54131}, {34773, 55676}, {37624, 58445}, {37705, 46264}, {38057, 48849}, {38316, 41310}, {43273, 50798}, {46932, 51128}, {46934, 51127}, {48804, 48842}, {49457, 49531}, {49693, 49706}, {49697, 50308}, {50781, 50989}, {50785, 51004}, {50789, 51005}, {50791, 51067}, {50810, 51024}, {50818, 50983}, {50872, 50959}, {50950, 51188}, {50993, 50999}, {50997, 51102}, {51003, 51066}, {51036, 51051}, {51069, 51089}, {51103, 51149}, {51124, 51187}

X(59407) = midpoint of X(i) and X(j) for these {i,j}: {4677, 16475}, {5050, 51515}
X(59407) = reflection of X(i) in X(j) for these {i,j}: {5085, 38116}, {10247, 38317}, {10516, 5790}, {14561, 38165}, {21358, 53620}, {31884, 5657}, {38047, 38191}, {38315, 38047}, {47352, 38087}, {51000, 16475}, {53023, 38144}
X(59407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 49524, 6}, {10, 3242, 3763}, {10, 49688, 3242}, {1386, 3632, 49679}, {3618, 3621, 51147}, {3626, 49529, 3416}, {4030, 33163, 3052}, {4669, 47359, 50783}, {15533, 50949, 50782}, {38047, 38191, 38087}, {38047, 38315, 47352}, {38087, 38315, 38047}, {47359, 50783, 15534}, {50781, 51070, 51125}


X(59408) = 1ST TRISECTOR OF SEGMENT X(6)X(10)

Barycentrics    4*a^3 + 5*a^2*b + b^3 + 5*a^2*c + b^2*c + b*c^2 + c^3 : :
X(59408) = 2 X[1] + X[49536], X[1] - 7 X[51171], X[49536] + 14 X[51171], 5 X[2] - 2 X[50787], 5 X[2] + X[50952], 4 X[2] - X[51004], 2 X[50787] + X[50952], 8 X[50787] - 5 X[51004], 4 X[50952] + 5 X[51004], 2 X[6] + X[10], 5 X[6] + X[3416], 4 X[6] - X[51196], 5 X[10] - 2 X[3416], 2 X[10] + X[51196], X[3416] - 5 X[38047], and many others

X(59408) lies on these lines: {1, 4899}, {2, 34379}, {6, 10}, {42, 35263}, {44, 50290}, {69, 3634}, {141, 51073}, {182, 4297}, {193, 1698}, {355, 53091}, {511, 10164}, {515, 5050}, {516, 14853}, {518, 551}, {519, 16475}, {524, 38089}, {542, 38076}, {575, 39870}, {611, 11019}, {726, 50114}, {740, 50115}, {942, 58694}, {946, 18583}, {1051, 33164}, {1100, 4078}, {1125, 3618}, {1351, 6684}, {1353, 9956}, {1385, 51732}, {1386, 3244}, {1428, 4315}, {1503, 38146}, {1570, 31398}, {1738, 3758}, {1757, 17023}, {1843, 58474}, {1992, 3828}, {2321, 49489}, {2325, 50281}, {2330, 4314}, {3091, 39878}, {3564, 10175}, {3589, 4663}, {3619, 31253}, {3625, 49524}, {3626, 51192}, {3629, 3844}, {3635, 16491}, {3636, 16496}, {3707, 50298}, {3755, 4672}, {3791, 53663}, {3817, 14561}, {3827, 3919}, {3836, 4667}, {3879, 33159}, {3883, 16477}, {3923, 4780}, {3932, 16666}, {3946, 32935}, {3950, 16972}, {4001, 29663}, {4026, 16669}, {4028, 5294}, {4085, 28494}, {4133, 17355}, {4138, 25453}, {4356, 36404}, {4416, 29633}, {4649, 17353}, {4669, 5846}, {4722, 54311}, {4745, 51169}, {5028, 31396}, {5032, 19875}, {5034, 10791}, {5093, 26446}, {5267, 36741}, {5480, 51118}, {5587, 14912}, {5686, 48854}, {5845, 38187}, {5848, 38197}, {5849, 38198}, {5852, 17382}, {5853, 50300}, {5883, 34381}, {5921, 7989}, {6144, 22266}, {6702, 51198}, {6776, 19925}, {8582, 15988}, {8584, 50781}, {9780, 51170}, {9967, 31760}, {10165, 38110}, {10519, 58441}, {10754, 51578}, {10756, 28346}, {11160, 19876}, {11179, 34648}, {11231, 34380}, {11263, 51747}, {11720, 32300}, {12512, 51212}, {13605, 15118}, {13912, 35841}, {13975, 35840}, {14848, 28194}, {15303, 50919}, {15481, 17045}, {15534, 50785}, {16469, 36479}, {16473, 26206}, {16670, 50295}, {17120, 50307}, {17277, 39580}, {17351, 28556}, {17363, 26083}, {17367, 24231}, {17765, 50294}, {17768, 50091}, {17771, 50092}, {18481, 55705}, {18492, 39874}, {18800, 50884}, {19118, 49542}, {19877, 20080}, {19883, 47352}, {20423, 50808}, {21060, 29645}, {21850, 31730}, {24295, 49685}, {25406, 28164}, {25440, 37492}, {28158, 51538}, {28484, 49726}, {28508, 49630}, {28516, 50109}, {28522, 50118}, {28526, 50127}, {28538, 38098}, {28555, 50112}, {28570, 48821}, {30768, 31034}, {31191, 49676}, {31673, 48906}, {33121, 49554}, {34638, 54131}, {34641, 47356}, {34790, 58621}, {38054, 38186}, {38155, 39561}, {38315, 47359}, {41153, 51006}, {43146, 51724}, {43273, 50862}, {47358, 51109}, {47457, 51693}, {49481, 50117}, {49585, 51741}, {49764, 49775}, {49766, 50284}, {49769, 49783}, {50022, 50314}, {50779, 51059}, {50783, 51067}, {50784, 51187}, {50786, 51001}, {50788, 50992}, {50796, 50979}, {50803, 51023}, {50829, 50967}, {50834, 51002}, {50889, 51008}, {50950, 51069}, {50999, 51108}, {51711, 51746}

X(59408) = midpoint of X(i) and X(j) for these {i,j}: {6, 38047}, {5032, 19875}, {5093, 26446}, {5587, 14912}, {38191, 51005}, {38315, 47359}
X(59408) = reflection of X(i) in X(j) for these {i,j}: {10, 38047}, {551, 38049}, {3817, 14561}, {4669, 38191}, {10164, 38118}, {10165, 38110}, {10175, 38167}, {10519, 58441}, {19883, 47352}, {38049, 597}, {38054, 38186}, {51071, 38315}
X(59408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50952, 50787}, {6, 10, 51196}, {1125, 3751, 49505}, {1386, 49529, 3244}, {3589, 4663, 49511}, {3589, 49511, 19862}, {3618, 3751, 1125}, {8584, 50781, 51197}, {17355, 49488, 4133}, {49524, 49684, 3625}, {51001, 51066, 50786}, {51006, 51089, 51104}


X(59409) = 1ST TRISECTOR OF SEGMENT X(6)X(13)

Barycentrics    5*a^6 - 14*a^4*b^2 + 7*a^2*b^4 + 2*b^6 - 14*a^4*c^2 - 18*a^2*b^2*c^2 - 2*b^4*c^2 + 7*a^2*c^4 - 2*b^2*c^4 + 2*c^6 - 6*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(59409) = 4 X[2] - X[51011], 2 X[6] + X[13], 4 X[6] - X[51200], 2 X[13] + X[51200], 2 X[115] + X[51203], 4 X[5476] - X[41042], 4 X[597] - X[5463], 2 X[597] + X[22580], X[5463] + 2 X[22580], X[69] - 4 X[6669], 4 X[182] - X[5473], 2 X[396] + X[51206], X[25154] + 2 X[50979], X[616] - 7 X[51171], 2 X[618] - 5 X[3618], and many others

X(59409) lies on these lines: {2, 14136}, {6, 13}, {16, 38064}, {17, 599}, {18, 44512}, {30, 36757}, {61, 20423}, {62, 597}, {69, 6669}, {182, 5473}, {395, 38079}, {396, 51206}, {397, 25154}, {511, 16962}, {524, 16267}, {530, 36758}, {575, 42990}, {616, 51171}, {618, 3618}, {619, 10754}, {1351, 6771}, {1352, 41121}, {1353, 20252}, {1386, 7975}, {1503, 42973}, {1992, 5459}, {2781, 30439}, {3107, 5969}, {3411, 25555}, {3412, 11477}, {3589, 36770}, {3751, 11705}, {5032, 47855}, {5182, 12155}, {5237, 50983}, {5335, 31710}, {5339, 50963}, {5352, 50965}, {5478, 6776}, {5480, 36961}, {5617, 18583}, {5921, 49874}, {6054, 14137}, {6108, 37640}, {6115, 37641}, {6329, 51159}, {6593, 37752}, {6772, 23006}, {8584, 22846}, {9763, 14645}, {10168, 36782}, {10611, 51208}, {11178, 49907}, {11179, 41107}, {11180, 41119}, {11482, 20415}, {11624, 14984}, {12142, 19118}, {12793, 51741}, {12816, 36990}, {13103, 53091}, {14561, 16268}, {14853, 41022}, {15533, 49903}, {15534, 42506}, {15694, 22892}, {16001, 53092}, {16242, 36764}, {16960, 44498}, {16963, 47352}, {16965, 43273}, {20582, 42488}, {20583, 42779}, {21356, 48311}, {22235, 51215}, {22577, 51798}, {22826, 36211}, {25565, 42580}, {35751, 51185}, {35752, 51012}, {36251, 42998}, {36760, 51019}, {36767, 42533}, {36771, 37835}, {36772, 36968}, {41101, 54131}, {41118, 49825}, {41943, 54173}, {42035, 43455}, {42152, 50967}, {42156, 50955}, {42157, 51024}, {42162, 51023}, {42511, 51212}, {42632, 48873}, {42791, 48874}, {42814, 50959}, {42896, 44497}, {42935, 51138}, {42977, 51202}, {42988, 50962}, {43769, 51177}, {43776, 51130}, {44882, 46334}, {46854, 51015}, {49860, 50992}

X(59409) = reflection of X(i) in X(j) for these {i,j}: {5469, 6034}, {21356, 48311}, {36765, 14561}
X(59409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 13, 51200}, {6, 42974, 51203}, {115, 42974, 13}, {597, 22580, 5463}, {3589, 51010, 36770}, {16267, 22511, 22489}


X(59410) = 2ND TRISECTOR OF SEGMENT X(6)X(13)

Barycentrics    a^6 - 10*a^4*b^2 + 5*a^2*b^4 + 4*b^6 - 10*a^4*c^2 - 18*a^2*b^2*c^2 - 4*b^4*c^2 + 5*a^2*c^4 - 4*b^2*c^4 + 4*c^6 - 6*Sqrt[3]*a^2*(a^2 + b^2 + c^2)*S : :
X(59410) = 5 X[2] - 2 X[51202], X[6] + 2 X[13], 5 X[6] - 2 X[51200], 5 X[13] + X[51200], 4 X[19130] - X[48655], X[148] + 2 X[51160], 2 X[182] + X[13103], 2 X[597] + X[51482], X[599] - 4 X[5459], X[599] + 2 X[22580], 2 X[5459] + X[22580], X[616] - 4 X[3589], 4 X[618] - 7 X[47355], X[1350] - 4 X[6771], X[1352] - 4 X[20252], and many others

X(59410) lies on these lines: {2, 51202}, {6, 13}, {17, 50977}, {18, 25565}, {148, 51160}, {182, 13103}, {397, 597}, {398, 50959}, {511, 16267}, {530, 11297}, {576, 42992}, {599, 635}, {616, 3589}, {618, 47355}, {1350, 6771}, {1352, 20252}, {1386, 9901}, {1992, 22114}, {2781, 11624}, {3098, 41943}, {3180, 51161}, {3242, 11705}, {3618, 51159}, {3763, 6669}, {3830, 46855}, {5055, 22511}, {5071, 22847}, {5335, 53435}, {5340, 25154}, {5350, 51022}, {5351, 51137}, {5463, 22238}, {5473, 53094}, {5478, 36990}, {5480, 6770}, {5617, 49948}, {5969, 9763}, {6108, 16644}, {6115, 16645}, {6582, 11301}, {6772, 42155}, {6776, 49825}, {10168, 41100}, {10611, 15533}, {10653, 38064}, {11160, 22235}, {11178, 22846}, {11179, 41112}, {11180, 49874}, {11477, 20415}, {11645, 36757}, {12205, 59232}, {14136, 49947}, {15693, 36782}, {16001, 53093}, {16629, 44514}, {16630, 51140}, {16772, 50965}, {16962, 19924}, {16963, 38317}, {19145, 35754}, {19146, 35753}, {20190, 41974}, {20423, 40693}, {20582, 42598}, {21156, 31884}, {21167, 43107}, {21358, 21360}, {22165, 42502}, {22236, 51024}, {22513, 42154}, {24206, 49907}, {25555, 42990}, {25561, 44512}, {31670, 47610}, {31695, 51798}, {31710, 42094}, {33560, 51016}, {35019, 40341}, {37640, 53430}, {41022, 53023}, {41101, 48901}, {42148, 50983}, {42159, 50964}, {42166, 47354}, {42631, 55674}, {42779, 44511}, {42921, 50956}, {42959, 55652}, {43770, 51029}, {43773, 51132}, {46335, 48904}, {47865, 51012}, {49813, 51212}, {49862, 54170}, {50993, 51011}

X(59410) = midpoint of X(36757) and X(42973)
X(59410) = reflection of X(i) in X(j) for these {i,j}: {21358, 22489}, {31884, 21156}
X(59410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5459, 22580, 599}, {6669, 51010, 3763}


X(59411) = 2ND TRISECTOR OF SEGMENT X(6)X(20)

Barycentrics    7*a^6 - 5*a^2*b^4 - 2*b^6 - 6*a^2*b^2*c^2 + 2*b^4*c^2 - 5*a^2*c^4 + 2*b^2*c^4 - 2*c^6 : :
X(59411) = 11 X[2] - 8 X[50960], X[2] - 4 X[50971], 5 X[2] - 2 X[51022], 13 X[2] - 16 X[51139], 2 X[2] - 3 X[55673], 2 X[50960] - 11 X[50971], 20 X[50960] - 11 X[51022], 13 X[50960] - 22 X[51139], 16 X[50960] - 33 X[55673], 10 X[50971] - X[51022], 13 X[50971] - 4 X[51139], 8 X[50971] - 3 X[55673], 13 X[51022] - 40 X[51139], and many others

X(59411) lies on these lines: {2, 50960}, {3, 2916}, {4, 33750}, {5, 55676}, {6, 20}, {22, 26913}, {30, 5085}, {64, 36989}, {66, 8567}, {67, 37853}, {69, 43691}, {74, 25335}, {140, 55671}, {141, 3522}, {154, 7667}, {182, 1657}, {206, 5895}, {376, 599}, {381, 17508}, {382, 5092}, {511, 3534}, {516, 17301}, {518, 34620}, {524, 55591}, {542, 15689}, {548, 1352}, {550, 1350}, {575, 48879}, {576, 48920}, {597, 15683}, {611, 4316}, {613, 4324}, {732, 22676}, {1192, 59346}, {1351, 48880}, {1370, 13394}, {1656, 48884}, {1691, 44526}, {2076, 54993}, {2777, 52697}, {2781, 25331}, {2930, 16163}, {3066, 37900}, {3098, 15069}, {3146, 3589}, {3242, 4297}, {3313, 46850}, {3416, 12512}, {3526, 48889}, {3528, 55656}, {3529, 5480}, {3618, 5059}, {3619, 21734}, {3796, 52397}, {3827, 5918}, {3830, 38317}, {3832, 51126}, {3843, 55678}, {3844, 16192}, {3845, 51167}, {3860, 50988}, {4265, 37022}, {5050, 15681}, {5054, 55670}, {5068, 51127}, {5072, 55677}, {5073, 19130}, {5076, 55681}, {5079, 55675}, {5093, 19924}, {5096, 7580}, {5102, 11179}, {5210, 53475}, {5339, 53440}, {5340, 53428}, {5476, 15685}, {5493, 49681}, {5596, 5894}, {5621, 17702}, {5846, 9778}, {5921, 55622}, {5925, 19149}, {5965, 55593}, {5999, 31489}, {6144, 6776}, {6409, 32497}, {6410, 32494}, {7492, 37638}, {7500, 17825}, {7512, 15578}, {7756, 40825}, {7991, 49679}, {8550, 55722}, {8556, 53015}, {8584, 51135}, {8703, 47353}, {8717, 51797}, {9021, 11220}, {9973, 52520}, {10168, 15684}, {10249, 44458}, {10304, 21167}, {10323, 44883}, {10387, 15338}, {10601, 20062}, {11001, 14853}, {11178, 14093}, {11403, 31521}, {11477, 12103}, {11645, 15688}, {11646, 38747}, {11812, 50956}, {11821, 44762}, {11898, 55606}, {12017, 17800}, {12121, 16010}, {12203, 59232}, {12289, 35446}, {13567, 59343}, {13619, 39588}, {14130, 52990}, {14532, 50659}, {14810, 18440}, {14848, 55706}, {14982, 38726}, {15462, 34584}, {15533, 15697}, {15640, 50959}, {15682, 50983}, {15690, 50968}, {15691, 34380}, {15693, 55667}, {15695, 50977}, {15700, 25561}, {15704, 31670}, {15717, 34573}, {15720, 55669}, {15812, 44247}, {16111, 25336}, {16836, 34726}, {17845, 37198}, {18358, 46853}, {18553, 55655}, {18583, 43621}, {19124, 37196}, {19145, 42267}, {19146, 42266}, {19708, 47354}, {19710, 20423}, {20070, 51147}, {20127, 51941}, {20190, 48904}, {21735, 40330}, {21850, 55711}, {22165, 50972}, {23251, 53487}, {23261, 53488}, {24476, 31805}, {25555, 49139}, {25565, 35403}, {28146, 38029}, {28150, 38035}, {28158, 38049}, {28160, 38144}, {28164, 38047}, {28172, 38118}, {28182, 38040}, {28186, 38116}, {30739, 41424}, {31152, 35268}, {31305, 45073}, {31860, 37899}, {31952, 41328}, {33267, 39141}, {33534, 49669}, {33878, 48885}, {33923, 39884}, {34146, 54334}, {34507, 55629}, {34638, 47356}, {36883, 38803}, {37182, 37637}, {37479, 44000}, {37674, 50699}, {37679, 50698}, {37751, 38805}, {38335, 55680}, {39874, 55607}, {39899, 52987}, {40107, 48662}, {40332, 52854}, {41716, 52093}, {42785, 58207}, {42786, 55863}, {43150, 55637}, {44245, 48876}, {44280, 47450}, {44423, 54167}, {44541, 54996}, {46332, 50980}, {47358, 50815}, {48310, 50687}, {48874, 55582}, {48895, 49136}, {48942, 55679}, {48943, 49133}, {50781, 50816}, {50782, 50812}, {50783, 50808}, {50785, 51083}, {50787, 51081}, {50789, 50814}, {50790, 50811}, {50791, 51079}, {50955, 55624}, {50967, 51188}, {50970, 50992}, {50993, 51023}, {51080, 51089}, {51136, 51187}, {51164, 55685}, {51177, 54132}, {51732, 58203}

X(59411) = midpoint of X(i) and X(j) for these {i,j}: {20, 25406}, {5050, 15681}, {10516, 48905}, {11001, 14853}, {15683, 51538}
X(59411) = reflection of X(i) in X(j) for these {i,j}: {6, 25406}, {381, 17508}, {599, 31884}, {3830, 38317}, {5102, 11179}, {10516, 3}, {11178, 55657}, {14853, 51737}, {21358, 10304}, {25330, 5621}, {25406, 44882}, {25561, 55664}, {31884, 376}, {36990, 10516}, {47450, 44280}, {50687, 48310}, {51024, 14853}, {51538, 597}, {53023, 5085}, {54131, 5050}
X(59411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 36990, 3763}, {3, 48898, 48905}, {3, 48905, 36990}, {4, 53094, 47355}, {6, 20, 48872}, {20, 44882, 6}, {141, 3522, 55651}, {182, 1657, 48910}, {182, 48891, 1657}, {548, 1352, 55646}, {550, 46264, 1350}, {3522, 14927, 141}, {3618, 5059, 51163}, {3818, 33751, 3}, {3830, 55682, 38317}, {3843, 55678, 58445}, {5085, 38072, 38110}, {5085, 53023, 47352}, {5092, 48896, 382}, {6776, 17538, 48881}, {6776, 48881, 53097}, {6776, 53097, 6144}, {11001, 50975, 51737}, {11001, 51737, 51024}, {12017, 17800, 48901}, {12103, 48906, 48873}, {14853, 51737, 55703}, {14853, 55703, 51185}, {15578, 34775, 40686}, {15690, 54173, 50968}, {15717, 51537, 34573}, {25406, 51212, 33748}, {37899, 54012, 31860}, {42258, 42259, 7738}, {47353, 50976, 8703}, {48662, 55639, 40107}, {48873, 48906, 11477}, {48884, 55674, 1656}, {48889, 55672, 3526}, {48892, 48898, 3}, {51024, 51737, 51185}, {51024, 55703, 14853}, {51027, 54173, 50989}, {51136, 54174, 51187}


X(59412) = 1ST TRISECTOR OF SEGMENT X(7)X(8)

Barycentrics    3*a^3 - a^2*b + a*b^2 - 3*b^3 - a^2*c + 6*a*b*c + 3*b^2*c + a*c^2 + 3*b*c^2 - 3*c^3 : :
X(59412) = 5 X[2] - 4 X[38059], 3 X[2] - 4 X[38204], 5 X[2] - 2 X[50836], X[2] - 4 X[51100], 3 X[9779] - 4 X[38150], 5 X[38052] - 2 X[38059], 3 X[38052] - 2 X[38204], 5 X[38052] - X[50836], 4 X[38052] - X[52653], 3 X[38059] - 5 X[38204], X[38059] - 5 X[51100], 8 X[38059] - 5 X[52653], 10 X[38204] - 3 X[50836], X[38204] - 3 X[51100], and many others

X(59412) lies on these lines: {1, 7613}, {2, 165}, {4, 11024}, {7, 8}, {9, 5128}, {10, 144}, {21, 11495}, {40, 4208}, {42, 41825}, {78, 12560}, {100, 954}, {142, 390}, {145, 5542}, {226, 46917}, {329, 20292}, {355, 36996}, {392, 443}, {404, 1001}, {442, 5759}, {452, 52835}, {527, 5686}, {528, 8236}, {673, 38048}, {938, 5883}, {942, 30628}, {944, 31657}, {946, 17580}, {971, 3753}, {1376, 5226}, {1621, 37270}, {1698, 51090}, {1706, 5261}, {1738, 4307}, {1770, 19855}, {1836, 18228}, {1890, 4200}, {2093, 5785}, {2099, 33558}, {2475, 36991}, {2476, 3826}, {2478, 10248}, {2886, 5435}, {2951, 3146}, {3062, 19925}, {3091, 11372}, {3161, 24280}, {3241, 5853}, {3243, 20050}, {3254, 9802}, {3359, 6843}, {3434, 9776}, {3474, 3925}, {3475, 34612}, {3522, 43151}, {3576, 38123}, {3617, 5223}, {3621, 43180}, {3622, 30331}, {3641, 21169}, {3663, 39587}, {3671, 20007}, {3679, 5850}, {3685, 29627}, {3698, 5229}, {3717, 4454}, {3729, 39570}, {3754, 18412}, {3755, 3945}, {3812, 14100}, {3823, 54389}, {3832, 8582}, {3872, 4321}, {3876, 58634}, {3886, 4869}, {3889, 58563}, {3947, 27525}, {3983, 58678}, {4000, 4344}, {4188, 52769}, {4190, 43161}, {4193, 42356}, {4292, 5833}, {4295, 5692}, {4313, 28629}, {4326, 54392}, {4335, 59305}, {4346, 7174}, {4349, 17014}, {4356, 29624}, {4363, 5772}, {4373, 49446}, {4402, 51150}, {4413, 5328}, {4429, 5749}, {4452, 49476}, {4488, 27549}, {4511, 30275}, {4660, 39581}, {4847, 21454}, {5018, 28125}, {5082, 9797}, {5084, 18482}, {5129, 41869}, {5175, 5728}, {5225, 58608}, {5249, 10578}, {5250, 37436}, {5253, 42884}, {5274, 5437}, {5281, 25525}, {5296, 24723}, {5308, 20533}, {5552, 8232}, {5558, 6601}, {5587, 50736}, {5603, 35272}, {5657, 5762}, {5691, 43182}, {5696, 20612}, {5703, 12609}, {5704, 15299}, {5714, 9709}, {5731, 11112}, {5732, 19860}, {5734, 20330}, {5735, 24987}, {5744, 33108}, {5775, 36279}, {5779, 5818}, {5790, 5843}, {5809, 45043}, {5815, 57282}, {5817, 17532}, {5828, 9654}, {5845, 35578}, {5851, 38202}, {5852, 38203}, {5886, 38172}, {6172, 6175}, {6224, 10427}, {6361, 8728}, {6856, 31658}, {6871, 54370}, {6894, 9800}, {6933, 15254}, {6951, 54179}, {7222, 49524}, {7700, 54228}, {7967, 38030}, {8732, 10527}, {9312, 10004}, {9785, 10179}, {9791, 21811}, {9965, 25006}, {10177, 52367}, {10246, 38111}, {10247, 38041}, {10394, 17668}, {10916, 31420}, {11246, 28610}, {11415, 26060}, {12436, 14986}, {12625, 18221}, {12630, 42871}, {12699, 17582}, {12702, 50238}, {14450, 40661}, {15298, 54286}, {16173, 38207}, {16371, 38031}, {16417, 34474}, {16857, 28178}, {16863, 40273}, {17100, 32558}, {17531, 26129}, {17558, 31730}, {17559, 22793}, {17564, 38043}, {19706, 38028}, {19861, 43166}, {20057, 25557}, {20075, 27186}, {20103, 46873}, {20344, 53381}, {21168, 26446}, {21617, 27383}, {21949, 37642}, {24309, 37254}, {24541, 37267}, {24693, 50295}, {25055, 38094}, {25568, 49732}, {25993, 52840}, {26047, 27064}, {26050, 26115}, {26626, 41845}, {28503, 36588}, {28534, 41848}, {28570, 37654}, {29181, 50171}, {29611, 50314}, {30513, 56263}, {30686, 37104}, {31142, 46916}, {31295, 43178}, {31601, 45714}, {31602, 45713}, {33075, 41915}, {33110, 36845}, {34632, 44217}, {35271, 38122}, {35289, 37262}, {35291, 37274}, {37701, 38208}, {37756, 38046}, {38042, 51516}, {40724, 56900}, {43173, 50431}, {49484, 53665}, {50396, 50810}, {50397, 50864}, {50834, 51066}, {50835, 51072}, {50999, 51151}, {51000, 51195}, {51001, 51002}, {51054, 51057}, {51093, 51098}, {51351, 52511}

X(59412) = midpoint of X(30424) and X(38210)
X(59412) = reflection of X(i) in X(j) for these {i,j}: {1, 38054}, {2, 38052}, {390, 38316}, {1699, 38151}, {3241, 11038}, {3576, 38123}, {3679, 38201}, {5223, 38210}, {5603, 38107}, {5657, 38121}, {5686, 38200}, {5731, 21151}, {5790, 38170}, {5886, 38172}, {6172, 38057}, {7967, 38030}, {8236, 38053}, {10246, 38111}, {10247, 38041}, {11038, 6173}, {16173, 38207}, {16475, 38187}, {21168, 26446}, {24644, 3817}, {25055, 38094}, {37701, 38208}, {38052, 51100}, {38316, 142}, {41861, 5883}, {50836, 38059}, {51516, 38042}, {52653, 2}, {53055, 38205}, {53620, 38092}
X(59412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 2550, 8}, {9, 40333, 9780}, {10, 4312, 144}, {65, 15587, 41228}, {142, 390, 3616}, {1738, 4307, 5222}, {1836, 26040, 18228}, {2476, 26062, 19877}, {2550, 5880, 7}, {3416, 32087, 8}, {3434, 9776, 10580}, {3474, 3925, 5273}, {3617, 20059, 5223}, {3696, 32099, 8}, {3826, 5698, 18230}, {3826, 18230, 19877}, {5082, 11037, 9797}, {5223, 30424, 20059}, {5249, 17784, 10578}, {5686, 38092, 38200}, {5686, 38200, 53620}, {5805, 35514, 962}, {8236, 38053, 38314}, {10427, 20119, 6224}, {38205, 53055, 32558}, {57266, 57267, 31994}


X(59413) = 2ND TRISECTOR OF SEGMENT X(7)X(8)

Barycentrics    3*a^3 - 5*a^2*b + 5*a*b^2 - 3*b^3 - 5*a^2*c + 6*a*b*c + 3*b^2*c + 5*a*c^2 + 3*b*c^2 - 3*c^3 : :
X(59413) = 4 X[1] - X[12630], 2 X[1] - 5 X[40333], X[12630] - 8 X[38204], X[12630] - 10 X[40333], 4 X[38204] - 5 X[40333], 4 X[2] - X[50839], X[2] + 2 X[51102], X[8236] - 4 X[38200], 3 X[8236] - 4 X[38316], X[8236] + 4 X[51102], 3 X[38200] - X[38316], 8 X[38200] - X[50839], 8 X[38316] - 3 X[50839], X[38316] + 3 X[51102], and many others

X(59413) lies on these lines: {1, 12630}, {2, 3158}, {7, 8}, {9, 3617}, {10, 390}, {80, 45116}, {142, 145}, {144, 4678}, {200, 5226}, {210, 9812}, {329, 33110}, {355, 31797}, {392, 5082}, {443, 6764}, {480, 8543}, {516, 3543}, {517, 38149}, {519, 11038}, {528, 38057}, {594, 5819}, {673, 29611}, {938, 16201}, {952, 21151}, {958, 7676}, {960, 7673}, {962, 5692}, {1001, 3871}, {1145, 20119}, {1156, 3036}, {1329, 7678}, {1376, 7677}, {1445, 1706}, {1698, 30331}, {2345, 5838}, {2346, 3913}, {2802, 45043}, {2886, 7679}, {3035, 12730}, {3057, 58634}, {3091, 43166}, {3174, 12536}, {3189, 9710}, {3241, 38053}, {3243, 3621}, {3419, 5809}, {3434, 18228}, {3523, 43175}, {3616, 3826}, {3622, 20195}, {3624, 43179}, {3625, 30340}, {3626, 5223}, {3632, 5542}, {3640, 31602}, {3641, 31601}, {3698, 5572}, {3729, 10005}, {3755, 39587}, {3812, 11025}, {3869, 40659}, {3886, 39570}, {3925, 10578}, {3983, 5225}, {4208, 6765}, {4307, 49772}, {4308, 8732}, {4312, 4668}, {4318, 28043}, {4321, 4915}, {4323, 20007}, {4343, 59311}, {4344, 16475}, {4371, 51150}, {4452, 49527}, {4454, 4899}, {4460, 49476}, {4461, 4901}, {4669, 5850}, {4677, 51100}, {4691, 51090}, {4745, 50836}, {4779, 25101}, {4816, 43180}, {4847, 5435}, {4863, 10580}, {4866, 51118}, {4869, 49451}, {4882, 5261}, {4888, 4924}, {4929, 53594}, {5178, 10177}, {5222, 38315}, {5231, 31188}, {5249, 20015}, {5263, 38048}, {5273, 17784}, {5274, 8580}, {5528, 20085}, {5550, 42819}, {5657, 37428}, {5690, 5759}, {5696, 40269}, {5703, 31419}, {5704, 9709}, {5772, 38191}, {5775, 54286}, {5790, 5817}, {5805, 12245}, {5844, 38107}, {5846, 38185}, {5854, 38202}, {5855, 38203}, {5883, 11024}, {6049, 6067}, {6173, 31145}, {6601, 7320}, {6666, 46933}, {6762, 56999}, {7229, 49524}, {7613, 16496}, {7674, 24987}, {7675, 9623}, {7967, 38122}, {8270, 18624}, {8545, 51781}, {9778, 34612}, {9779, 31140}, {10247, 38171}, {10427, 12531}, {11526, 30275}, {12645, 31657}, {12669, 31788}, {14439, 52164}, {15015, 54445}, {15590, 48627}, {15679, 17768}, {17275, 41325}, {18391, 41861}, {19875, 38059}, {20050, 42871}, {20053, 25557}, {20070, 52835}, {21031, 42356}, {21077, 31420}, {21168, 38126}, {24389, 24982}, {24477, 49732}, {24644, 38158}, {26047, 32942}, {27475, 28581}, {28234, 38036}, {28566, 37654}, {29593, 41845}, {30393, 51783}, {33090, 41915}, {34122, 53055}, {36845, 58623}, {37161, 41857}, {38175, 51516}, {46934, 58433}, {49467, 53665}, {50393, 56028}, {50834, 51070}, {50840, 51067}, {50949, 50996}, {50951, 50997}, {51036, 51053}

X(59413) = midpoint of X(38200) and X(51102)
X(59413) = reflection of X(i) in X(j) for these {i,j}: {1, 38204}, {2, 38200}, {3241, 38053}, {5686, 3679}, {5817, 5790}, {6172, 5686}, {7967, 38122}, {8236, 2}, {10247, 38171}, {11038, 38052}, {21151, 38121}, {21168, 38126}, {24644, 38158}, {38052, 38201}, {38107, 38170}, {50839, 8236}, {51516, 38175}, {52653, 38057}, {53055, 34122}
X(59413) = anticomplement of X(38316)
X(59413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 2550, 7}, {8, 21296, 49450}, {10, 390, 18230}, {144, 4678, 24393}, {355, 35514, 36991}, {3059, 5836, 7672}, {4863, 26040, 10580}, {11038, 38092, 38052}, {17784, 25006, 5273}, {31995, 47595, 7}, {36928, 36929, 52715}, {38052, 38201, 38092}, {52653, 53620, 38057}, {57266, 57267, 32086}


X(59414) = 1ST TRISECTOR OF SEGMENT X(7)X(9)

Barycentrics    (a - b - c)*(a^2 - 5*a*b + 2*b^2 - 5*a*c - 4*b*c + 2*c^2) : :
X(59414) = X[7] - 7 X[4678], 2 X[8] + X[9], 5 X[8] + X[390], X[8] + 2 X[24393], 3 X[8] + X[52653], 5 X[9] - 2 X[390], X[9] - 4 X[24393], 3 X[9] - 2 X[52653], X[390] - 5 X[5686], X[390] - 10 X[24393], 3 X[390] - 5 X[52653], 3 X[5686] - X[52653], 6 X[24393] - X[52653], 4 X[10] - X[3243], 8 X[10] - 5 X[20195], 2 X[3243] - 5 X[20195], and many others

X(59414) lies on these lines: {1, 17337}, {7, 4678}, {8, 9}, {10, 3243}, {142, 3617}, {145, 6666}, {200, 5432}, {210, 11238}, {355, 52835}, {516, 4669}, {517, 38154}, {518, 599}, {519, 38025}, {952, 21153}, {1001, 3632}, {1145, 5528}, {1445, 37709}, {1698, 42871}, {2550, 3626}, {3036, 3254}, {3057, 58635}, {3174, 21677}, {3621, 18230}, {3624, 15570}, {3633, 42819}, {3680, 24389}, {3681, 28609}, {3711, 5231}, {4134, 31162}, {4299, 57279}, {4321, 40663}, {4330, 41229}, {4361, 4929}, {4384, 49698}, {4533, 9614}, {4648, 4924}, {4654, 4661}, {4659, 4899}, {4668, 5223}, {4691, 5542}, {4701, 30331}, {4745, 38204}, {4746, 5698}, {4816, 15254}, {4847, 10589}, {4864, 31183}, {4915, 5854}, {5219, 11526}, {5437, 46916}, {5690, 5732}, {5790, 38150}, {5844, 38108}, {5846, 38190}, {5855, 38212}, {6594, 12531}, {7174, 49772}, {7672, 9578}, {8236, 31145}, {9053, 16833}, {9654, 34790}, {10247, 38318}, {11038, 38093}, {11531, 42356}, {12560, 41687}, {12630, 20052}, {12645, 31658}, {15298, 41684}, {17296, 49450}, {22312, 59307}, {25006, 25525}, {27484, 29615}, {28234, 38037}, {33091, 56518}, {34641, 47357}, {34918, 42015}, {36845, 51780}, {38054, 38098}, {38112, 38122}, {38191, 48802}, {43161, 47745}, {46933, 58433}, {49524, 51194}, {49697, 50314}, {50835, 51072}, {50838, 51066}, {50949, 51152}, {50951, 51002}, {51069, 51101}, {51070, 51100}

X(59414) = midpoint of X(i) and X(j) for these {i,j}: {8, 5686}, {8236, 31145}
X(59414) = reflection of X(i) in X(j) for these {i,j}: {9, 5686}, {3243, 38053}, {5686, 24393}, {6173, 38200}, {10247, 38318}, {21153, 38126}, {38053, 10}, {38057, 38210}, {38093, 53620}, {38108, 38175}, {38122, 38112}, {38150, 5790}, {38200, 3679}, {38204, 4745}, {38316, 38057}, {51099, 38204}
X(59414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 4901, 4007}, {8, 10005, 2321}, {8, 24393, 9}, {10, 3243, 20195}, {38057, 38210, 38097}, {38097, 38316, 38057}


X(59415) = 2ND TRISECTOR OF SEGMENT X(8)X(11)

Barycentrics    (a - b - c)*(a^3 - a^2*b + 2*b^3 - a^2*c + a*b*c - 2*b^2*c - 2*b*c^2 + 2*c^3) : :
X(59415) = X[1] - 4 X[6702], 2 X[1] + X[12531], X[1] + 2 X[15863], 2 X[1] - 5 X[31272], 8 X[6702] + X[12531], 2 X[6702] + X[15863], 8 X[6702] - 5 X[31272], X[12531] - 4 X[15863], X[12531] + 5 X[31272], X[12531] + 4 X[32557], 4 X[15863] + 5 X[31272], 5 X[31272] - 4 X[32557], 4 X[2] - X[10031], 5 X[2] - 2 X[50843], 2 X[2] + X[50890], and mnay others

X(59415) lies on these lines: {1, 6702}, {2, 952}, {5, 10698}, {8, 11}, {9, 20119}, {10, 21}, {40, 6246}, {65, 12532}, {72, 6797}, {104, 355}, {119, 2476}, {145, 1387}, {149, 1145}, {153, 377}, {214, 1698}, {388, 12832}, {392, 38176}, {405, 12331}, {442, 11698}, {452, 12690}, {474, 12773}, {515, 13587}, {517, 37375}, {519, 16173}, {522, 14629}, {528, 38057}, {644, 21044}, {900, 23678}, {944, 6713}, {958, 4996}, {960, 17636}, {1001, 12730}, {1125, 7972}, {1146, 26074}, {1156, 2550}, {1317, 3616}, {1376, 17100}, {1482, 5154}, {1484, 4187}, {1512, 36002}, {1537, 3091}, {1621, 10087}, {1656, 19907}, {1699, 38161}, {1737, 5176}, {1768, 37714}, {1837, 3871}, {1862, 4194}, {2475, 10742}, {2771, 3753}, {2800, 5587}, {2801, 10861}, {2802, 3679}, {2804, 53342}, {2829, 14647}, {2932, 9709}, {2975, 10090}, {3035, 6224}, {3090, 11729}, {3120, 26727}, {3241, 32558}, {3244, 33709}, {3254, 24393}, {3315, 6788}, {3416, 10755}, {3555, 58587}, {3576, 38133}, {3621, 25416}, {3622, 12735}, {3625, 26726}, {3626, 21630}, {3634, 33337}, {3738, 14430}, {3754, 11571}, {3812, 17660}, {3814, 41684}, {3868, 12736}, {3869, 18254}, {3876, 46694}, {3885, 9581}, {3889, 18240}, {3935, 51362}, {3983, 58663}, {4188, 18525}, {4189, 12747}, {4190, 12248}, {4197, 9803}, {4200, 12138}, {4511, 5123}, {4512, 50841}, {4651, 37373}, {4668, 12653}, {4669, 50891}, {4677, 50894}, {4678, 6919}, {4745, 40998}, {4861, 12740}, {4881, 28204}, {5046, 5690}, {5047, 38665}, {5080, 13273}, {5083, 9578}, {5087, 36920}, {5141, 48667}, {5177, 9952}, {5187, 12245}, {5250, 5541}, {5252, 20118}, {5253, 10074}, {5303, 5445}, {5533, 12647}, {5603, 23513}, {5657, 5840}, {5686, 5856}, {5691, 46684}, {5704, 36977}, {5731, 21154}, {5777, 17654}, {5836, 17638}, {5844, 17533}, {5848, 38192}, {5851, 38202}, {5853, 6735}, {5881, 11715}, {5886, 38182}, {6264, 19861}, {6265, 7504}, {6326, 19860}, {6598, 56121}, {6684, 12119}, {6734, 13279}, {6872, 13199}, {6904, 13226}, {6910, 10609}, {6912, 12775}, {6943, 32554}, {7679, 10956}, {7982, 16174}, {7989, 13253}, {7993, 8583}, {8068, 10573}, {8227, 25485}, {8236, 38060}, {8256, 12764}, {8988, 18991}, {9802, 13996}, {9809, 38757}, {9947, 17661}, {10006, 47729}, {10039, 10073}, {10247, 38044}, {10265, 12751}, {10427, 40333}, {10708, 46894}, {10728, 12515}, {10826, 12758}, {10827, 11570}, {10914, 47744}, {10950, 27529}, {11038, 38205}, {11112, 38138}, {11113, 38112}, {11219, 36006}, {11256, 32537}, {11362, 14217}, {11545, 17757}, {11604, 13272}, {11680, 39692}, {11684, 56790}, {12641, 21627}, {12702, 22938}, {12737, 17619}, {12738, 31254}, {13143, 15862}, {13271, 32198}, {13747, 37705}, {13883, 19077}, {13911, 19113}, {13936, 19078}, {13973, 19112}, {13976, 18992}, {14011, 17751}, {14110, 58666}, {15015, 19875}, {15059, 31525}, {15079, 22837}, {15678, 50821}, {15679, 50796}, {16475, 38197}, {16865, 51525}, {17183, 32025}, {17532, 38755}, {17536, 24987}, {17544, 38629}, {17547, 38059}, {17549, 26446}, {17556, 51517}, {17572, 51529}, {17677, 53346}, {18518, 37301}, {18524, 27086}, {18861, 22758}, {18976, 24914}, {19081, 49601}, {19082, 49602}, {19862, 33812}, {19877, 31235}, {19925, 34789}, {21077, 33593}, {24541, 31399}, {24715, 36237}, {25055, 38104}, {26075, 36154}, {28160, 36005}, {28186, 36004}, {33143, 37716}, {33898, 33899}, {35262, 37712}, {35990, 54441}, {37043, 56756}, {37256, 38753}, {37291, 38762}, {37701, 38219}, {37709, 41554}, {37736, 54392}, {38149, 54448}, {38389, 38512}, {38756, 50239}, {50842, 51072}, {50892, 51070}, {50893, 51071}, {50910, 51709}

X(59415) = midpoint of X(i) and X(j) for these {i,j}: {3679, 37718}, {5686, 45043}, {15863, 32557}
X(59415) = reflection of X(i) in X(j) for these {i,j}: {1, 32557}, {2, 34122}, {1699, 38161}, {3576, 38133}, {3679, 38213}, {5603, 23513}, {5657, 38128}, {5686, 38211}, {5731, 21154}, {5790, 38177}, {5886, 38182}, {7967, 38032}, {8236, 38060}, {10246, 34126}, {10247, 38044}, {10707, 37718}, {11038, 38205}, {14151, 38053}, {16475, 38197}, {25055, 38104}, {32557, 6702}, {34474, 26446}, {37701, 38219}, {38752, 38042}, {53620, 38099}
X(59415) = anticomplement of X(34123)
X(59415) = barycentric product X(4391)*X(14513)
X(59415) = barycentric quotient X(14513)/X(651)
X(59415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6702, 31272}, {1, 15863, 12531}, {2, 50890, 10031}, {5, 19914, 10698}, {8, 11, 1320}, {8, 4193, 5330}, {10, 80, 100}, {11, 3036, 8}, {40, 6246, 10724}, {100, 5260, 51506}, {149, 3617, 1145}, {355, 12619, 104}, {355, 25005, 404}, {1145, 12019, 149}, {1317, 6667, 3616}, {1698, 9897, 214}, {1737, 5176, 54391}, {3754, 47320, 11571}, {5554, 5818, 2476}, {5818, 12247, 119}, {5836, 58683, 17638}, {6224, 9780, 3035}, {6702, 15863, 1}, {6788, 24222, 3315}, {6797, 58659, 72}, {10265, 12751, 38669}, {12515, 18480, 10728}, {12531, 31272, 1}, {12736, 46685, 3868}, {13911, 49241, 19113}, {13973, 49240, 19112}, {34122, 38177, 38215}


X(59416) = 2ND TRISECTOR OF SEGMENT X(8)X(12)

Barycentrics    a^4 - 2*a^3*b + a^2*b^2 + 2*a*b^3 - 2*b^4 - 2*a^3*c + 5*a^2*b*c - a*b^2*c + a^2*c^2 - a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 - 2*c^4 : :
X(59416) = 5 X[2] - 2 X[51112], 5 X[38058] - X[51112], X[8] + 2 X[12], 4 X[10] - X[2975], 2 X[10] + X[37710], X[2975] + 2 X[37710], 2 X[355] + X[11491], X[145] - 4 X[37737], 5 X[3617] + X[20060], X[944] - 4 X[31659], X[1320] - 4 X[8068], 5 X[1698] - 2 X[51111], 5 X[3616] - 8 X[6668], 5 X[3616] - 2 X[37734], 4 X[6668] - X[37734], and many others

X(59416) lies on these lines: {1, 7504}, {2, 952}, {5, 5330}, {8, 12}, {10, 36}, {21, 355}, {80, 1621}, {145, 6933}, {165, 36005}, {377, 3421}, {515, 17549}, {517, 17577}, {519, 37701}, {529, 38100}, {758, 3679}, {944, 31659}, {1145, 33110}, {1320, 8068}, {1376, 4996}, {1482, 5141}, {1698, 51111}, {1699, 38162}, {2475, 5690}, {3036, 3925}, {3256, 6735}, {3576, 38134}, {3616, 6668}, {3654, 15679}, {3753, 38176}, {3822, 41684}, {3838, 36920}, {3868, 9578}, {3869, 10827}, {3871, 5086}, {3876, 58636}, {3877, 5587}, {3889, 58566}, {3890, 10826}, {3897, 5881}, {3898, 37718}, {3968, 38213}, {4189, 18525}, {4193, 5818}, {4197, 5554}, {4678, 5177}, {4861, 33956}, {4881, 11231}, {4999, 9780}, {5046, 18357}, {5047, 24987}, {5178, 10915}, {5250, 37714}, {5252, 54391}, {5253, 18395}, {5432, 6224}, {5444, 33337}, {5603, 38109}, {5657, 5841}, {5686, 5857}, {5731, 21155}, {5842, 11114}, {5844, 17530}, {5849, 38193}, {5852, 38203}, {5886, 38183}, {6871, 12245}, {6921, 46933}, {6980, 10698}, {7483, 37705}, {7705, 19861}, {8236, 38061}, {9708, 37300}, {10129, 25415}, {10247, 38045}, {10861, 38200}, {10959, 54361}, {11038, 38206}, {11112, 38112}, {11113, 38138}, {12115, 13243}, {12531, 17057}, {13587, 26446}, {15678, 35258}, {15863, 41689}, {16173, 38219}, {16475, 38198}, {16858, 38155}, {17531, 25005}, {17532, 51518}, {17535, 24982}, {18518, 20846}, {19860, 31254}, {19875, 35262}, {19877, 31260}, {20104, 24926}, {21677, 56880}, {24541, 47745}, {25055, 38105}, {28186, 37299}, {28224, 37298}, {31880, 50581}, {33147, 54315}, {33961, 34606}, {34195, 37719}, {34773, 37291}, {37706, 51683}, {38218, 53055}, {51066, 51113}

X(59416) = reflection of X(i) in X(j) for these {i,j}: {1, 38062}, {2, 38058}, {1699, 38162}, {3576, 38134}, {3679, 38214}, {5603, 38109}, {5657, 38129}, {5686, 38212}, {5731, 21155}, {5790, 38178}, {5886, 38183}, {7967, 38033}, {8236, 38061}, {10246, 38114}, {10247, 38045}, {11038, 38206}, {16173, 38219}, {16475, 38198}, {25055, 38105}, {53055, 38218}, {53620, 38100}
X(59416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 37710, 2975}, {3877, 5587, 37375}, {5086, 10039, 3871}, {6668, 37734, 3616}, {11680, 12647, 1320}, {38058, 38178, 38215}


X(59417) = 1ST TRISECTOR OF SEGMENT X(8)X(20)

Barycentrics    a^4 + 4*a^3*b - 2*a^2*b^2 - 4*a*b^3 + b^4 + 4*a^3*c - 8*a^2*b*c + 4*a*b^2*c - 2*a^2*c^2 + 4*a*b*c^2 - 2*b^2*c^2 - 4*a*c^3 + c^4 : :
X(59417) = 4 X[1] - 7 X[3523], X[1] - 4 X[43174], 2 X[1] - 3 X[54445], 7 X[3523] - 8 X[10164], 7 X[3523] - 16 X[43174], 7 X[3523] - 6 X[54445], 4 X[10164] - 3 X[54445], 8 X[43174] - 3 X[54445], X[2] - 4 X[3654], 7 X[2] - 4 X[3656], 5 X[2] - 4 X[5886], 9 X[2] - 8 X[11230], 7 X[2] - 8 X[11231], 3 X[2] - 4 X[26446], X[2] + 2 X[50810], and many others

X(59417) lies on these lines: {1, 3523}, {2, 392}, {3, 145}, {4, 3617}, {5, 46933}, {7, 2093}, {8, 20}, {10, 962}, {21, 10306}, {46, 3600}, {55, 37106}, {65, 3475}, {72, 5658}, {79, 31410}, {100, 3428}, {104, 35238}, {140, 8148}, {144, 153}, {149, 6827}, {165, 519}, {329, 6735}, {346, 573}, {347, 4566}, {355, 3146}, {376, 952}, {381, 28212}, {388, 11246}, {390, 5119}, {391, 1766}, {404, 22770}, {411, 5687}, {452, 5554}, {474, 8158}, {484, 4293}, {497, 40663}, {499, 18220}, {516, 3543}, {518, 34744}, {548, 18526}, {549, 10247}, {550, 12645}, {551, 11224}, {631, 1482}, {758, 15104}, {912, 4661}, {938, 1697}, {944, 3522}, {946, 5056}, {956, 6244}, {960, 6953}, {970, 59299}, {993, 5537}, {999, 1000}, {1006, 10679}, {1056, 21454}, {1064, 3240}, {1072, 33131}, {1125, 5734}, {1146, 41325}, {1155, 3476}, {1210, 9785}, {1385, 3623}, {1400, 31325}, {1478, 3245}, {1480, 14997}, {1512, 31018}, {1519, 27131}, {1537, 6969}, {1572, 37665}, {1587, 35611}, {1588, 35610}, {1656, 46931}, {1657, 37705}, {1698, 4301}, {1706, 5837}, {1737, 5274}, {1788, 3057}, {1897, 37410}, {2098, 7288}, {2099, 5218}, {2136, 6764}, {2550, 6839}, {2551, 8256}, {2801, 50835}, {2802, 11219}, {2975, 10310}, {3036, 10724}, {3085, 5903}, {3086, 5697}, {3088, 41722}, {3090, 22791}, {3097, 11200}, {3218, 3359}, {3241, 3576}, {3244, 7987}, {3295, 6986}, {3339, 11037}, {3340, 5703}, {3416, 5921}, {3419, 5759}, {3434, 6840}, {3436, 37437}, {3474, 5183}, {3486, 37568}, {3487, 50193}, {3524, 10246}, {3525, 5901}, {3528, 20054}, {3529, 18525}, {3530, 37624}, {3534, 28224}, {3545, 38042}, {3555, 31787}, {3577, 54357}, {3586, 30332}, {3587, 5768}, {3616, 6684}, {3620, 39898}, {3624, 58245}, {3625, 12512}, {3626, 5493}, {3632, 4297}, {3633, 16192}, {3634, 11522}, {3635, 30389}, {3636, 16189}, {3650, 40267}, {3655, 20049}, {3671, 51784}, {3672, 4424}, {3681, 6001}, {3697, 9856}, {3813, 50031}, {3817, 19875}, {3820, 6945}, {3828, 7988}, {3830, 28216}, {3832, 5818}, {3839, 5587}, {3855, 40273}, {3868, 31788}, {3869, 6838}, {3870, 18444}, {3872, 5744}, {3876, 12672}, {3878, 6979}, {3880, 24477}, {3885, 31786}, {3889, 9940}, {3895, 36845}, {3911, 7962}, {3913, 5584}, {3921, 10157}, {3935, 18446}, {3951, 6223}, {3957, 18443}, {3984, 7971}, {4002, 5806}, {4188, 11249}, {4189, 11248}, {4190, 59318}, {4192, 59295}, {4198, 6197}, {4208, 24987}, {4221, 16704}, {4294, 10573}, {4295, 5261}, {4300, 50581}, {4302, 41684}, {4305, 59316}, {4308, 15803}, {4312, 51782}, {4315, 53056}, {4323, 13411}, {4345, 44675}, {4420, 6261}, {4421, 5855}, {4533, 31821}, {4662, 12688}, {4668, 49140}, {4669, 28164}, {4677, 15697}, {4691, 37714}, {4711, 15726}, {4720, 7415}, {4745, 50865}, {4847, 5775}, {4882, 12565}, {5054, 10283}, {5059, 28168}, {5066, 50822}, {5067, 18493}, {5068, 9956}, {5071, 38034}, {5082, 6836}, {5125, 56887}, {5128, 10106}, {5129, 5250}, {5176, 44447}, {5177, 5758}, {5221, 45081}, {5226, 31434}, {5260, 11496}, {5273, 7994}, {5304, 9620}, {5330, 6921}, {5398, 30652}, {5423, 51284}, {5541, 9803}, {5550, 13464}, {5552, 6960}, {5559, 37524}, {5601, 11823}, {5602, 11822}, {5659, 6888}, {5660, 50841}, {5704, 12053}, {5709, 6904}, {5730, 6962}, {5748, 51423}, {5763, 6856}, {5771, 6935}, {5774, 23512}, {5815, 6736}, {5817, 38126}, {5836, 6837}, {5842, 49719}, {5846, 25406}, {5854, 11194}, {5882, 20050}, {5902, 11038}, {6194, 14839}, {6210, 27549}, {6256, 56880}, {6260, 54199}, {6459, 49233}, {6460, 49232}, {6554, 21872}, {6738, 53053}, {6762, 12640}, {6765, 10884}, {6769, 17558}, {6825, 25413}, {6828, 31419}, {6847, 37585}, {6848, 31837}, {6850, 20060}, {6868, 20066}, {6875, 11849}, {6876, 32141}, {6880, 10698}, {6883, 44455}, {6886, 7686}, {6890, 14110}, {6906, 35448}, {6908, 10528}, {6912, 9708}, {6915, 9709}, {6916, 9965}, {6919, 25005}, {6926, 10529}, {6932, 17757}, {6938, 35460}, {6940, 10680}, {6943, 24390}, {6948, 20067}, {6950, 35000}, {6972, 10527}, {6974, 40587}, {6987, 20075}, {7046, 37420}, {7385, 39570}, {7397, 24599}, {7411, 20015}, {7488, 8193}, {7585, 35774}, {7586, 35775}, {7672, 50195}, {7680, 33108}, {7966, 51786}, {7976, 32522}, {8164, 39542}, {8168, 11495}, {8227, 19877}, {8236, 21153}, {8275, 13462}, {8666, 59326}, {8703, 50818}, {8715, 59320}, {9053, 31884}, {9538, 54295}, {9540, 35641}, {9542, 9583}, {9589, 19925}, {9668, 11545}, {9746, 50291}, {9779, 10175}, {9802, 10265}, {9819, 11019}, {9952, 12732}, {9955, 15022}, {9961, 14872}, {10107, 28629}, {10165, 15708}, {10172, 38021}, {10248, 18492}, {10268, 41575}, {10298, 15177}, {10389, 15933}, {10444, 32087}, {10531, 37162}, {10578, 11529}, {10580, 31393}, {10586, 23340}, {10587, 24474}, {10591, 18395}, {10914, 31793}, {11001, 28186}, {11041, 24929}, {11113, 21168}, {11491, 20013}, {11528, 58440}, {11661, 47033}, {11681, 15908}, {11682, 27383}, {11684, 12667}, {11843, 35245}, {11844, 35244}, {12100, 50805}, {12115, 20078}, {12247, 20095}, {12410, 17928}, {12513, 32426}, {12528, 31797}, {12531, 24466}, {12630, 43175}, {12632, 59340}, {12635, 32157}, {12649, 37423}, {12651, 18249}, {12701, 54361}, {12778, 14683}, {12779, 54211}, {12848, 54204}, {13199, 19914}, {13329, 37610}, {13405, 18421}, {13935, 35642}, {13996, 38669}, {14269, 38081}, {14511, 56758}, {14853, 38116}, {15640, 28150}, {15680, 16139}, {15682, 28178}, {15683, 28160}, {15698, 50824}, {15701, 58238}, {15705, 17502}, {15720, 51700}, {15759, 50831}, {15931, 25439}, {15971, 48917}, {16137, 31480}, {16191, 50829}, {16236, 53054}, {17314, 37499}, {17548, 26285}, {17578, 18480}, {18230, 43166}, {18481, 20052}, {18788, 36479}, {18991, 42522}, {18992, 42523}, {19065, 49226}, {19066, 49227}, {19742, 56960}, {19861, 26062}, {20012, 37400}, {20014, 21734}, {20037, 37620}, {20084, 47032}, {20196, 44848}, {21151, 24473}, {21625, 30337}, {21677, 37433}, {21871, 27508}, {22793, 50689}, {23249, 35788}, {23259, 35789}, {24247, 41322}, {24393, 36991}, {25055, 58441}, {25568, 44663}, {26286, 37307}, {27081, 30444}, {27715, 52388}, {28198, 38074}, {28232, 50796}, {28909, 32847}, {29616, 36698}, {30271, 49450}, {30308, 51069}, {30331, 53052}, {30392, 51071}, {31447, 33179}, {31673, 50691}, {32558, 38133}, {33090, 50699}, {33091, 50698}, {33559, 37001}, {33699, 50797}, {34200, 34748}, {34560, 52400}, {34607, 44669}, {34610, 38455}, {34628, 34641}, {34656, 38323}, {35258, 50742}, {35842, 42261}, {35843, 42260}, {35986, 38665}, {37267, 37623}, {37402, 56018}, {37584, 48363}, {37611, 38460}, {37685, 44414}, {37709, 41348}, {38121, 44217}, {38144, 51538}, {38707, 53799}, {41338, 54286}, {41869, 50688}, {46219, 58247}, {46873, 51409}, {47359, 51028}, {48877, 48915}, {48882, 50419}, {48883, 56799}, {48919, 48923}, {49524, 51212}, {50804, 50813}, {50817, 51705}, {50862, 51070}, {50873, 51067}, {50949, 51023}, {50950, 51215}, {50951, 51024}, {50953, 51211}, {51034, 51064}, {51036, 51065}, {51085, 51097}, {51086, 51104}, {51093, 58221}, {51110, 58241}, {51124, 51214}, {51125, 51216}, {51147, 53094}, {55862, 58249}

X(59417) = midpoint of X(i) and X(j) for these {i,j}: {8, 9778}, {1699, 7991}, {3534, 51515}, {5657, 50810}, {5790, 12702}, {7967, 12245}, {24477, 34711}
X(59417) = reflection of X(i) in X(j) for these {i,j}: {1, 10164}, {2, 5657}, {4, 5790}, {20, 9778}, {145, 7967}, {381, 38112}, {962, 1699}, {1482, 38028}, {1699, 10}, {3241, 3576}, {3545, 38066}, {3656, 11231}, {3830, 38138}, {3839, 53620}, {4301, 10171}, {5587, 38127}, {5603, 26446}, {5657, 3654}, {5660, 50841}, {5731, 165}, {5790, 5690}, {5817, 38126}, {5886, 50821}, {7967, 3}, {8236, 21153}, {9778, 40}, {9812, 5587}, {10164, 43174}, {10247, 549}, {11224, 551}, {12699, 38140}, {14269, 38081}, {14853, 38116}, {16200, 10165}, {31162, 10175}, {34631, 10247}, {37712, 4669}, {50687, 38074}, {50864, 37712}, {51515, 50823}, {51538, 38144}, {53014, 9746}
X(59417) = anticomplement of X(5603)
X(59417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10164, 54445}, {3, 12245, 145}, {4, 5690, 3617}, {4, 5790, 54448}, {4, 12702, 20070}, {8, 40, 20}, {10, 962, 3091}, {10, 7991, 962}, {40, 5881, 31730}, {40, 11362, 8}, {63, 51433, 8}, {140, 8148, 10595}, {140, 10595, 46934}, {165, 5731, 10304}, {355, 6361, 3146}, {376, 34718, 31145}, {484, 12647, 4293}, {631, 1482, 3622}, {944, 3579, 3522}, {946, 9780, 5056}, {956, 6244, 6909}, {1056, 36279, 21454}, {1125, 11531, 5734}, {1697, 4848, 938}, {1737, 30305, 5274}, {1788, 3057, 14986}, {2093, 31397, 7}, {2136, 24391, 6764}, {3146, 4678, 355}, {3421, 6925, 153}, {3421, 35514, 6925}, {3522, 3621, 944}, {3616, 6684, 10303}, {3617, 20070, 4}, {3617, 54448, 5790}, {3623, 15717, 1385}, {3626, 5493, 5691}, {3654, 50810, 2}, {3679, 34632, 3543}, {3870, 30503, 18444}, {4295, 10039, 5261}, {4691, 51118, 37714}, {5119, 18391, 390}, {5183, 5252, 3474}, {5330, 6921, 24558}, {5587, 9812, 3839}, {5587, 38127, 53620}, {5603, 5657, 26446}, {5603, 26446, 2}, {5690, 12702, 4}, {5734, 9588, 55864}, {5818, 12699, 3832}, {6684, 7982, 3616}, {6736, 12526, 5815}, {8227, 19877, 46936}, {9588, 11531, 1125}, {9812, 53620, 5587}, {10164, 54445, 3523}, {10165, 16200, 38314}, {10175, 31162, 9779}, {10573, 11010, 4294}, {12672, 58643, 3876}, {13199, 19914, 20085}, {13464, 31423, 5550}, {18357, 48661, 4}, {37568, 41687, 3486}, {51069, 51120, 30308}


X(59418) = 1ST TRISECTOR OF SEGMENT X(9)X(20)

Barycentrics    5*a^6 - 8*a^5*b - 3*a^4*b^2 + 8*a^3*b^3 - a^2*b^4 - b^6 - 8*a^5*c - 6*a^4*b*c + 8*a^3*b^2*c + 4*a^2*b^3*c + 2*b^5*c - 3*a^4*c^2 + 8*a^3*b*c^2 - 6*a^2*b^2*c^2 + b^4*c^2 + 8*a^3*c^3 + 4*a^2*b*c^3 - 4*b^3*c^3 - a^2*c^4 + b^2*c^4 + 2*b*c^5 - c^6 : :
X(59418) = 3 X[21153] - X[38150], 2 X[50808] + X[50836], 4 X[3] - X[7], 2 X[3] + X[5759], 5 X[3] - 2 X[31657], 5 X[3] - X[51514], X[7] + 2 X[5759], 5 X[7] - 8 X[31657], 5 X[7] - 4 X[51514], 5 X[5759] + 4 X[31657], 5 X[5759] + 2 X[51514], 5 X[21151] - 4 X[31657], 5 X[21151] - 2 X[51514], 2 X[4] - 5 X[18230], X[4] - 4 X[31658], and many others

X(59418) lies on these lines: {2, 165}, {3, 7}, {4, 18230}, {8, 43161}, {9, 20}, {30, 5817}, {40, 390}, {72, 12669}, {78, 144}, {140, 31671}, {142, 3523}, {145, 43175}, {152, 28345}, {153, 6594}, {212, 18623}, {329, 7411}, {376, 971}, {381, 38113}, {388, 15837}, {411, 5698}, {480, 5815}, {497, 7964}, {515, 5686}, {517, 8236}, {518, 5731}, {527, 10304}, {549, 38107}, {550, 5779}, {573, 5838}, {631, 5805}, {936, 2951}, {962, 1001}, {1156, 24466}, {1350, 51190}, {1593, 7717}, {2287, 4229}, {2550, 6836}, {3059, 58637}, {3090, 18482}, {3091, 6666}, {3219, 10430}, {3305, 50696}, {3332, 5308}, {3358, 9799}, {3428, 7677}, {3486, 41712}, {3524, 38122}, {3528, 33597}, {3529, 31672}, {3534, 51516}, {3545, 38067}, {3576, 11038}, {3579, 5704}, {3587, 5809}, {3601, 52819}, {3616, 52769}, {3826, 6828}, {3830, 38139}, {4293, 15298}, {4294, 15299}, {4297, 5223}, {4304, 10398}, {4305, 18412}, {4308, 12128}, {4312, 13411}, {4313, 5728}, {4314, 30330}, {4644, 50677}, {5054, 38073}, {5222, 13329}, {5296, 13727}, {5542, 7987}, {5572, 7957}, {5587, 38130}, {5603, 38031}, {5657, 37428}, {5705, 31420}, {5734, 42819}, {5735, 15717}, {5749, 36706}, {5819, 37499}, {5825, 6868}, {5832, 6966}, {5843, 8703}, {5845, 31884}, {5856, 38693}, {6068, 38759}, {6173, 15692}, {6223, 37426}, {6282, 7675}, {6684, 40333}, {6764, 7674}, {6835, 15254}, {6870, 19877}, {6895, 9780}, {6988, 31663}, {6991, 42356}, {6992, 8257}, {7078, 34028}, {7580, 18228}, {7672, 14110}, {7676, 10310}, {7678, 15908}, {7991, 30331}, {8232, 37108}, {8273, 11037}, {9785, 42884}, {10165, 38036}, {10167, 28610}, {10303, 20195}, {10394, 51489}, {10578, 15931}, {10580, 41338}, {10857, 21454}, {11200, 16475}, {11372, 31730}, {11531, 43179}, {12100, 38111}, {12245, 12630}, {14269, 38082}, {14853, 38117}, {15708, 38093}, {17502, 38030}, {17504, 38065}, {17508, 38115}, {20059, 21734}, {20070, 43166}, {21617, 35242}, {26446, 38149}, {27382, 41325}, {27383, 45392}, {29335, 36674}, {30271, 51052}, {31018, 35986}, {32613, 54158}, {34632, 47357}, {37000, 54203}, {37048, 54322}, {37712, 38210}, {38053, 38454}, {38075, 50687}, {38080, 41983}, {38145, 51538}, {43273, 50996}, {44882, 50995}, {47487, 54425}, {50695, 54370}, {50810, 50839}, {50811, 50835}, {50812, 50840}, {50815, 50834}, {50816, 50837}, {50838, 51082}, {50965, 50997}, {50971, 51191}, {51042, 51053}, {51150, 53094}, {55864, 58433}

X(59418) = midpoint of X(i) and X(j) for these {i,j}: {376, 21168}, {3534, 51516}, {5759, 21151}, {9778, 52653}
X(59418) = reflection of X(i) in X(j) for these {i,j}: {2, 21153}, {4, 38108}, {7, 21151}, {381, 38113}, {1699, 38059}, {3545, 38067}, {3830, 38139}, {5587, 38130}, {5603, 38031}, {6172, 21168}, {9812, 38037}, {11038, 3576}, {14269, 38082}, {14853, 38117}, {21151, 3}, {31671, 38137}, {37712, 38210}, {38030, 17502}, {38036, 10165}, {38052, 10164}, {38065, 17504}, {38073, 5054}, {38080, 41983}, {38107, 549}, {38108, 31658}, {38111, 12100}, {38115, 17508}, {38137, 140}, {38149, 26446}, {38151, 58441}, {50687, 38075}, {51514, 31657}, {51538, 38145}
X(59418) = anticomplement of X(38150)
X(59418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5759, 7}, {4, 31658, 18230}, {9, 20, 36991}, {40, 37423, 938}, {144, 3522, 5732}, {390, 1445, 938}, {4312, 16192, 43151}, {6282, 12848, 54206}, {6666, 52835, 3091}, {12512, 51090, 2951}


X(59419) = 2ND TRISECTOR OF SEGMENT X(10)X(11)

Barycentrics    a^3*b - 3*a^2*b^2 - a*b^3 + 3*b^4 + a^3*c + 2*a^2*b*c + 2*a*b^2*c - 3*a^2*c^2 + 2*a*b*c^2 - 6*b^2*c^2 - a*c^3 + 3*c^4 : :
X(59419) = X[1] - 3 X[32558], X[1] - 4 X[33709], 3 X[32558] - 4 X[33709], 5 X[2] - 2 X[50844], 2 X[2] + X[50889], X[15015] + 3 X[37718], 5 X[15015] - 6 X[50844], 2 X[15015] + 3 X[50889], 5 X[37718] + 2 X[50844], 4 X[50844] + 5 X[50889], 2 X[5] + X[10265], 4 X[5] - X[21635], 2 X[10265] + X[21635], X[10] + 2 X[11], and many others

X(59419) lies on these lines: {1, 32558}, {2, 5426}, {5, 2771}, {10, 11}, {80, 1125}, {100, 3634}, {104, 19925}, {149, 1698}, {153, 7989}, {214, 6667}, {226, 20118}, {404, 46816}, {515, 57298}, {518, 3814}, {519, 16173}, {528, 38059}, {547, 551}, {758, 17533}, {942, 47320}, {946, 12619}, {1210, 8068}, {1320, 3626}, {1387, 3244}, {1484, 9956}, {1737, 11813}, {1768, 3091}, {2476, 41862}, {2800, 3817}, {2801, 38054}, {2829, 38161}, {3035, 50205}, {3036, 3625}, {3090, 6326}, {3614, 17660}, {3616, 9897}, {3617, 12653}, {3624, 6224}, {3628, 22935}, {3635, 12531}, {3636, 7972}, {3671, 12832}, {3754, 7173}, {3828, 10707}, {3833, 17530}, {3847, 3878}, {3851, 16128}, {3874, 58587}, {3898, 38042}, {3911, 13273}, {3947, 5083}, {3956, 44847}, {4067, 18254}, {4084, 12736}, {4193, 5692}, {4297, 6246}, {4301, 16174}, {4669, 5854}, {4701, 26726}, {4745, 50891}, {5046, 56790}, {5047, 35204}, {5056, 9803}, {5068, 9809}, {5154, 33593}, {5267, 10090}, {5533, 31397}, {5541, 9780}, {5550, 20085}, {5587, 10199}, {5818, 6264}, {5840, 10164}, {5848, 38197}, {5851, 38207}, {5856, 38216}, {6681, 35271}, {6684, 10738}, {6705, 12761}, {6931, 22836}, {7705, 37720}, {8227, 12247}, {8674, 24959}, {8983, 49241}, {8988, 49548}, {9802, 46933}, {10006, 48284}, {10031, 51108}, {10057, 44675}, {10073, 13411}, {10165, 34126}, {10172, 38752}, {10197, 38316}, {10572, 20107}, {10588, 37736}, {10609, 58453}, {10724, 12512}, {10769, 51578}, {10770, 28346}, {10826, 35262}, {11281, 35018}, {11375, 41558}, {11571, 33815}, {11604, 37162}, {12248, 18492}, {12515, 18483}, {12571, 34789}, {12690, 31235}, {12764, 58405}, {13199, 31423}, {13464, 19914}, {13971, 49240}, {13976, 49547}, {14217, 43174}, {14439, 21090}, {18357, 51714}, {19112, 49619}, {19113, 49618}, {19877, 20095}, {19883, 34123}, {21251, 49511}, {22938, 31730}, {23869, 24222}, {26446, 51517}, {28164, 38693}, {28172, 38754}, {30144, 54361}, {31673, 38602}, {31732, 58508}, {34474, 58441}, {34790, 58611}, {46684, 51118}, {50842, 51067}, {50843, 51109}, {50846, 51071}, {50890, 51103}, {50892, 51069}, {50893, 51091}

X(59419) = midpoint of X(i) and X(j) for these {i,j}: {2, 37718}, {11, 34122}, {26446, 51517}
X(59419) = reflection of X(i) in X(j) for these {i,j}: {10, 34122}, {551, 32557}, {3817, 23513}, {4669, 38213}, {10164, 38133}, {10165, 34126}, {10175, 38182}, {32557, 45310}, {34122, 6702}, {34474, 58441}, {35271, 6681}, {38054, 38205}, {38752, 10172}, {50889, 37718}
X(59419) = complement of X(15015)
X(59419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 10265, 21635}, {10, 11, 21630}, {11, 6702, 10}, {80, 1125, 33337}, {80, 31272, 1125}, {214, 6667, 19862}, {942, 58683, 47320}, {1387, 15863, 3244}, {3616, 9897, 33812}, {3825, 17606, 10}, {5056, 9803, 15017}, {6246, 6713, 4297}, {6667, 12019, 214}, {17619, 24387, 10}, {32557, 38182, 38219}


X(59420) = 2ND TRISECTOR OF SEGMENT X(10)X(20)

Barycentrics    12*a^4 + a^3*b - 9*a^2*b^2 - a*b^3 - 3*b^4 + a^3*c - 2*a^2*b*c + a*b^2*c - 9*a^2*c^2 + a*b*c^2 + 6*b^2*c^2 - a*c^3 - 3*c^4 : :
X(59420) = X[1] - 7 X[50693], X[2] - 4 X[50816], 5 X[2] - 2 X[50869], 11 X[2] - 8 X[51076], 10 X[50816] - X[50869], 11 X[50816] - 2 X[51076], 11 X[50869] - 20 X[51076], 5 X[3] - 2 X[18483], 8 X[3] - 5 X[19862], 4 X[3] - X[51118], 5 X[3817] - 4 X[18483], 4 X[3817] - 5 X[19862], 16 X[18483] - 25 X[19862], 8 X[18483] - 5 X[51118], and many others

X(59420) lies on these lines: {1, 50693}, {2, 28158}, {3, 3817}, {4, 51073}, {10, 20}, {30, 10164}, {36, 51783}, {40, 3625}, {354, 4314}, {376, 516}, {515, 3534}, {517, 550}, {519, 9778}, {548, 946}, {549, 28154}, {726, 22676}, {758, 5918}, {952, 15691}, {962, 30392}, {971, 4134}, {993, 11495}, {997, 2951}, {1125, 3522}, {1210, 4324}, {1385, 28216}, {1657, 6684}, {1698, 5059}, {1699, 10304}, {2801, 24466}, {2816, 38778}, {3146, 3634}, {3523, 12571}, {3524, 10171}, {3528, 41869}, {3529, 19925}, {3579, 12103}, {3623, 58241}, {3624, 21734}, {3635, 20070}, {3636, 9589}, {3681, 9859}, {3828, 15683}, {3830, 10172}, {3832, 31253}, {3860, 51088}, {3947, 5217}, {4067, 31793}, {4292, 59337}, {4294, 21625}, {4298, 10389}, {4301, 10246}, {4302, 11019}, {4304, 5902}, {4315, 5919}, {4316, 31397}, {4333, 13411}, {4537, 12528}, {5010, 35986}, {5049, 30331}, {5267, 12511}, {5587, 11001}, {5657, 38098}, {5731, 11224}, {5844, 51082}, {5853, 34626}, {5883, 10178}, {5886, 15688}, {5901, 41981}, {6282, 43178}, {6361, 16200}, {6909, 41853}, {6934, 21628}, {7987, 15808}, {7988, 15692}, {7989, 49135}, {8142, 48284}, {8227, 21735}, {8582, 15680}, {8703, 10165}, {9582, 43407}, {9955, 46853}, {10176, 15726}, {10247, 15689}, {10248, 34595}, {11230, 28182}, {11362, 28224}, {11599, 38747}, {11812, 51074}, {12565, 30144}, {13462, 30332}, {13464, 58230}, {13598, 58548}, {13605, 37853}, {13893, 42414}, {13912, 42267}, {13947, 42413}, {13975, 42266}, {15640, 50803}, {15681, 26446}, {15682, 50829}, {15686, 28160}, {15690, 28174}, {15695, 50828}, {15704, 31663}, {15717, 19878}, {16418, 38204}, {18492, 49138}, {19708, 50802}, {19710, 28168}, {19872, 50689}, {19877, 50692}, {21630, 38759}, {21636, 38736}, {22266, 49140}, {22791, 31662}, {22793, 33923}, {24929, 30424}, {28190, 50821}, {28202, 38028}, {28234, 34748}, {29317, 38118}, {30271, 50117}, {30308, 51086}, {30389, 58195}, {31191, 37416}, {31399, 33697}, {31423, 33703}, {31737, 46850}, {33557, 59326}, {33574, 51724}, {34614, 34633}, {34616, 34635}, {34618, 34637}, {34620, 34639}, {34622, 34642}, {34624, 34644}, {34628, 34641}, {34630, 34649}, {35445, 51782}, {37331, 41430}, {38052, 50742}, {39870, 48892}, {42258, 49547}, {42259, 49548}, {43273, 51197}, {44882, 51196}, {46332, 51084}, {50811, 51096}, {50864, 51067}, {50865, 51109}, {50868, 51066}, {50965, 51004}, {50971, 51005}, {50972, 51003}, {51042, 51059}, {51069, 54448}, {51080, 51093}, {51081, 51103}, {51134, 51153}, {51135, 51155}

X(59420) = midpoint of X(i) and X(j) for these {i,j}: {20, 165}, {5587, 11001}, {6361, 16200}, {15681, 26446}, {15704, 38042}
X(59420) = reflection of X(i) in X(j) for these {i,j}: {4, 58441}, {10, 165}, {165, 12512}, {946, 17502}, {3817, 3}, {3830, 10172}, {4301, 10246}, {5731, 50815}, {5883, 10178}, {9812, 1125}, {10165, 8703}, {11230, 34200}, {13598, 58548}, {17502, 548}, {19883, 10304}, {22791, 31662}, {31673, 38042}, {34648, 26446}, {38042, 31663}, {38127, 3579}, {50862, 5587}, {51071, 5731}, {51118, 3817}
X(59420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 51118, 19862}, {20, 12512, 10}, {376, 34638, 551}, {550, 31730, 4297}, {3146, 16192, 3634}, {3522, 9812, 58221}, {3529, 35242, 19925}, {4297, 5493, 3244}, {4297, 31730, 5493}, {9812, 58221, 1125}, {10164, 38076, 11231}, {12511, 37022, 5267}, {15690, 51705, 51079}, {15704, 31663, 31673}, {51120, 51705, 51104}


X(59421) = 1ST TRISECTOR OF SEGMENT X(12)X(20)

Barycentrics    a*(3*a^6 - 3*a^5*b - 6*a^4*b^2 + 6*a^3*b^3 + 3*a^2*b^4 - 3*a*b^5 - 3*a^5*c + a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c + a*b^4*c + b^5*c - 6*a^4*c^2 + 2*a^3*b*c^2 + 2*a^2*b^2*c^2 + 2*a*b^3*c^2 + 6*a^3*c^3 - 2*a^2*b*c^3 + 2*a*b^2*c^3 - 2*b^3*c^3 + 3*a^2*c^4 + a*b*c^4 - 3*a*c^5 + b*c^5) : :
X(59421) = 4 X[3] - X[2975], 2 X[3] + X[11491], X[2975] + 2 X[11491], X[4] - 4 X[31659], 2 X[12] + X[20], 2 X[35] + X[411], 5 X[631] - 2 X[26470], X[962] - 4 X[37737], 7 X[3523] - 4 X[4999], 5 X[3091] - 8 X[6668], 5 X[3091] - 2 X[52837], 4 X[6668] - X[52837], 5 X[3522] + X[20060], 5 X[3522] - 2 X[30264], X[20060] + 2 X[30264], and many others

X(59421) lies on these lines: {2, 5842}, {3, 8}, {4, 31659}, {12, 20}, {21, 5587}, {35, 411}, {140, 26060}, {165, 758}, {376, 5841}, {381, 38114}, {404, 10165}, {474, 38031}, {515, 17549}, {517, 33595}, {529, 10304}, {631, 26470}, {962, 37737}, {993, 37712}, {1006, 11231}, {1155, 18444}, {1376, 37106}, {1385, 4004}, {1621, 5886}, {1699, 38062}, {2077, 7411}, {2550, 3523}, {2829, 37299}, {3091, 6668}, {3149, 9779}, {3522, 20060}, {3534, 51518}, {3545, 38070}, {3576, 13587}, {3579, 37733}, {3651, 5812}, {3681, 21165}, {3830, 38142}, {3871, 11012}, {4189, 11500}, {4294, 6962}, {4297, 37710}, {4302, 6932}, {4421, 5855}, {4855, 10268}, {5010, 6909}, {5047, 10172}, {5204, 37734}, {5248, 6915}, {5253, 6942}, {5260, 6875}, {5284, 6911}, {5432, 6840}, {5552, 59345}, {5603, 38033}, {5705, 6986}, {5817, 37284}, {5849, 25406}, {5852, 37105}, {6253, 6888}, {6284, 6960}, {6690, 6839}, {6763, 16192}, {6857, 38149}, {6868, 11681}, {6876, 11248}, {6883, 9342}, {6906, 28160}, {6912, 44425}, {6949, 23513}, {6954, 11680}, {6966, 43161}, {6972, 52793}, {7288, 10959}, {7508, 18524}, {7672, 15803}, {7987, 51111}, {9352, 18443}, {9812, 38039}, {10175, 16858}, {10283, 37621}, {10303, 31260}, {10884, 35242}, {11010, 51717}, {11507, 57283}, {11517, 21168}, {11684, 37700}, {11849, 28212}, {12114, 17548}, {12116, 55296}, {14269, 38085}, {14795, 16173}, {14853, 38120}, {15338, 37437}, {15680, 18242}, {15692, 31157}, {15908, 20066}, {16370, 38058}, {16371, 54445}, {16861, 54447}, {16948, 37699}, {19705, 51112}, {20119, 30312}, {21161, 26446}, {26086, 37403}, {27529, 31789}, {28443, 38042}, {28461, 38183}, {31424, 58636}, {33597, 56288}, {34195, 59318}, {35258, 52026}, {38078, 50687}, {38148, 51538}, {41689, 46684}, {51576, 52665}, {52265, 52367}

X(59421) = midpoint of X(3534) and X(51518)
X(59421) = reflection of X(i) in X(j) for these {i,j}: {2, 21155}, {4, 38109}, {381, 38114}, {1699, 38062}, {3545, 38070}, {3830, 38142}, {5587, 38134}, {5603, 38033}, {5817, 38132}, {9812, 38039}, {14269, 38085}, {14853, 38120}, {37712, 38214}, {38109, 31659}, {50687, 38078}, {51538, 38148}
X(59421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 944, 5303}, {3, 5731, 38693}, {3, 11491, 2975}, {3522, 20060, 30264}, {4302, 6932, 10724}, {6668, 52837, 3091}, {6796, 59331, 21}, {6875, 11499, 5260}, {6905, 32613, 1621}, {6942, 10267, 5253}, {6954, 37000, 11680}


X(59422) = X(4)X(542)∩X(20)X(691)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(a^4*b^2 - b^6 + a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :
X(59422) = 3 X[2] - 4 X[52533]

X(59422) lies on the cubic K617 and these lines: {2, 10415}, {3, 16092}, {4, 542}, {5, 5968}, {20, 691}, {30, 51926}, {69, 14364}, {76, 850}, {111, 3767}, {194, 31125}, {315, 892}, {316, 53351}, {458, 52767}, {858, 51253}, {1236, 19510}, {2408, 38526}, {3436, 5380}, {5254, 14263}, {5286, 52450}, {5486, 57539}, {6656, 52756}, {7391, 8877}, {7417, 14568}, {7493, 10416}, {7509, 52760}, {7519, 52142}, {7748, 17964}, {7763, 30786}, {7765, 14609}, {7770, 52758}, {7827, 46512}, {7841, 17948}, {8352, 47280}, {9139, 56686}, {9154, 15454}, {9178, 36165}, {10555, 54395}, {10630, 43448}, {11054, 41724}, {11185, 34574}, {11289, 52750}, {11290, 52751}, {11303, 52748}, {11304, 52749}, {15069, 51405}, {15899, 16063}, {16062, 52747}, {16175, 32248}, {18027, 46111}, {23236, 57470}, {34158, 52672}, {34169, 44518}, {34511, 42008}, {37445, 52764}, {40132, 57491}, {41404, 43619}, {46599, 47238}

X(59422) = reflection of X(14357) in X(52533)
X(59422) = anticomplement of X(14357)
X(59422) = polar conjugate of X(51823)
X(59422) = anticomplement of the isogonal conjugate of X(14246)
X(59422) = X(59422) = anticomplement of the isotomic conjugate of X(52551)
X(59422) = isotomic conjugate of the complement of X(56569)
X(59422) = isotomic conjugate of the isogonal conjugate of X(57485)
X(59422) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {111, 17482}, {671, 21274}, {897, 5189}, {923, 14712}, {10561, 21221}, {14246, 8}, {16568, 14360}, {36085, 35522}, {52142, 192}, {52551, 6327}, {57481, 4329}
X(59422) = X(i)-Ceva conjugate of X(j) for these (i,j): {34574, 5466}, {52551, 2}
X(59422) = X(i)-isoconjugate of X(j) for these (i,j): {48, 51823}, {896, 1177}, {922, 2373}, {1973, 53784}, {9247, 58078}, {10422, 42081}, {14567, 37220}
X(59422) = X(i)-Dao conjugate of X(j) for these (i,j): {468, 5095}, {858, 6593}, {1249, 51823}, {5181, 3292}, {6337, 53784}, {14961, 2482}, {15899, 1177}, {38971, 690}, {39061, 2373}, {52628, 52629}
X(59422) = cevapoint of X(i) and X(j) for these (i,j): {2, 56569}, {858, 5181}, {895, 19330}
X(59422) = trilinear pole of line {858, 47138}
X(59422) = barycentric product X(i)*X(j) for these {i,j}: {76, 57485}, {111, 1236}, {671, 858}, {892, 47138}, {897, 20884}, {1502, 51962}, {2052, 51253}, {2393, 18023}, {5181, 57539}, {5523, 30786}, {14246, 57476}, {14961, 46111}, {18022, 34158}, {18669, 46277}, {18818, 19510}, {39269, 57481}
X(59422) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 51823}, {69, 53784}, {111, 1177}, {264, 58078}, {671, 2373}, {858, 524}, {895, 18876}, {1236, 3266}, {1560, 5095}, {2393, 187}, {5181, 2482}, {5523, 468}, {5968, 36823}, {10630, 10422}, {14580, 44102}, {14961, 3292}, {15398, 41511}, {17172, 6629}, {18023, 46140}, {18669, 896}, {19510, 39785}, {20884, 14210}, {21017, 4062}, {21109, 4750}, {31125, 46165}, {34158, 184}, {39269, 57496}, {46277, 37220}, {47138, 690}, {47426, 39689}, {51253, 394}, {51962, 32}, {52672, 5967}, {56579, 34161}, {57485, 6}
X(59422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 9214, 14246}, {4, 14246, 52483}, {671, 9214, 52483}, {671, 14246, 4}, {9214, 36894, 53155}, {10416, 57481, 7493}, {14357, 52533, 2}


X(59423) = X(4)X(1499)∩X(20)X(111)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(2*a^6 - 3*a^4*b^2 - 4*a^2*b^4 + b^6 - 3*a^4*c^2 + 12*a^2*b^2*c^2 - b^4*c^2 - 4*a^2*c^4 - b^2*c^4 + c^6) : :

X(59423) lies on the cubic K617 and these lines: {2, 34161}, {4, 1499}, {5, 45143}, {20, 111}, {68, 34165}, {315, 671}, {892, 6392}, {2548, 14609}, {3767, 17964}, {5254, 9214}, {5286, 14246}, {5968, 7738}, {8753, 15591}, {10630, 43448}, {14063, 31125}, {30786, 32972}, {35287, 52141}, {37689, 41404}, {44915, 53419}

X(59423) = anticomplement of X(34161)
X(59423) = anticomplement of the isogonal conjugate of X(14263)
X(59423) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {92, 56579}, {897, 3266}, {14263, 8}, {36045, 55140}, {36128, 8681}, {36142, 9131}, {51819, 192}
X(59423) = X(896)-isoconjugate of X(56007)
X(59423) = X(15899)-Dao conjugate of X(56007)
X(59423) = barycentric quotient X(111)/X(56007)
X(59423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14263, 52450}, {4, 36877, 14263}, {14263, 34169, 4}, {34169, 36877, 52450}


X(59424) = X(4)X(51)∩X(20)X(107)

Barycentrics    (a^2 + b^2 - c^2)^2*(a^2 - b^2 + c^2)^2*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 10*a^4*b^2*c^2 - 6*a^2*b^4*c^2 - 2*b^6*c^2 - 6*a^2*b^2*c^4 + 6*b^4*c^4 + 2*a^2*c^6 - 2*b^2*c^6 - c^8) : :

X(59424) lies on the cubic K617 and these lines: {2, 1105}, {3, 5879}, {4, 51}, {5, 41372}, {20, 107}, {64, 51358}, {68, 56683}, {133, 6759}, {235, 11547}, {254, 56686}, {315, 6528}, {393, 36424}, {403, 52534}, {1370, 52578}, {1498, 1559}, {1515, 12315}, {1596, 41365}, {1906, 33971}, {2883, 56296}, {2996, 56687}, {3146, 6525}, {3767, 41368}, {3832, 10002}, {5059, 34286}, {5925, 42457}, {6529, 41361}, {6530, 37197}, {6616, 11206}, {6621, 35260}, {6622, 14165}, {10996, 52147}, {11413, 46927}, {14063, 36426}, {14457, 57677}, {15056, 44134}, {15466, 37201}, {15591, 56688}, {16080, 58378}, {18404, 34334}, {20427, 40664}, {22466, 57684}, {26332, 47372}, {36127, 56819}, {36434, 43448}, {41371, 43831}, {41425, 54050}

X(59424) = anticomplement of X(14379)
X(59424) = anticomplement of the isogonal conjugate of X(14249)
X(59424) = isotomic conjugate of the anticomplement of X(14390)
X(59424) = polar conjugate of the isotomic conjugate of X(46927)
X(59424) = anticomplementary isogonal conjugate of X(57451)
X(59424) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 57451}, {92, 253}, {158, 3146}, {204, 3164}, {393, 18663}, {610, 46717}, {821, 64}, {823, 3265}, {1249, 6360}, {1895, 20}, {6335, 20298}, {6521, 32001}, {6525, 192}, {14249, 8}, {15466, 4329}, {17898, 34186}, {18750, 6527}, {24021, 107}, {36043, 55127}, {36126, 8057}, {44697, 347}, {44698, 20222}, {53011, 18666}, {57219, 4560}, {57806, 32064}
X(59424) = X(57775)-Ceva conjugate of X(2052)
X(59424) = X(i)-isoconjugate of X(j) for these (i,j): {255, 43695}, {19614, 51347}
X(59424) = X(i)-Dao conjugate of X(j) for these (i,j): {4, 51347}, {235, 185}, {6523, 43695}, {35968, 520}
X(59424) = cevapoint of X(30211) and X(35968)
X(59424) = barycentric product X(i)*X(j) for these {i,j}: {4, 46927}, {1093, 2063}, {1660, 18027}, {2052, 11413}, {14091, 57775}, {14249, 57483}, {15352, 30211}, {15466, 39268}
X(59424) = barycentric quotient X(i)/X(j) for these {i,j}: {393, 43695}, {1249, 51347}, {1660, 577}, {2063, 3964}, {6529, 30249}, {11413, 394}, {14091, 185}, {14390, 14379}, {17510, 14642}, {30211, 52613}, {33630, 18213}, {36982, 6509}, {39268, 1073}, {46927, 69}, {57483, 15394}
X(59424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1075, 5878}, {4, 6225, 51892}, {4, 6761, 14216}, {4, 14249, 52448}, {4, 14361, 6225}, {4, 36876, 14249}, {20, 6523, 107}, {1498, 51342, 1559}, {6225, 14361, 57517}, {14249, 34170, 4}, {14363, 52172, 22802}, {22802, 52172, 4}, {34170, 36876, 52448}, {51892, 57517, 6225}


X(59425) = X(4)X(885)∩X(20)X(105)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^5*b - a^4*b^2 - a*b^5 + b^6 + a^5*c - 2*a^3*b^2*c - 3*a*b^4*c - a^4*c^2 - 2*a^3*b*c^2 + 4*a^2*b^2*c^2 + 4*a*b^3*c^2 - b^4*c^2 + 4*a*b^2*c^3 - 3*a*b*c^4 - b^2*c^4 - a*c^5 + c^6) : :

X(59425) lies on the cubic K617 and these lines: {2, 34159}, {4, 885}, {20, 105}, {315, 2481}, {2996, 3436}, {8751, 41361}, {15521, 56793}, {17732, 18785}

X(59425) = anticomplement of X(34159)
X(59425) = anticomplement of the isogonal conjugate of X(14267)
X(59425) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {105, 3685}, {673, 3263}, {1438, 25257}, {1738, 20344}, {3290, 20533}, {14267, 8}, {36041, 55137}, {36086, 48408}, {36124, 34381}, {51838, 105}
X(59425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14267, 52456}, {4, 56602, 14267}, {14267, 34173, 4}, {34173, 56602, 52456}


X(59426) = X(2)X(10422)∩X(20)X(842)

Barycentrics    (a^4 - b^4 + b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6)*(a^6 - 2*a^4*b^2 - 2*a^2*b^4 + b^6 - a^4*c^2 + 5*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6) : :

X(59426) lies on the cubic K617 and these lines: {2, 10422}, {4, 14984}, {20, 842}, {1383, 40347}, {10630, 43448}, {13485, 32006}, {13574, 16063}, {14360, 41896}, {15454, 56689}, {18560, 47293}

X(59426) = anticomplement of X(39169)
X(59426) = anticomplement of the isogonal conjugate of X(58080)
X(59426) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {41521, 17497}, {58080, 8}
X(59426) = X(2157)-isoconjugate of X(37784)
X(59426) = X(40583)-Dao conjugate of X(37784)
X(59426) = cevapoint of X(5099) and X(9517)
X(59426) = barycentric product X(i)*X(j) for these {i,j}: {316, 40347}, {9979, 53895}, {37804, 41521}, {57481, 58080}
X(59426) = barycentric quotient X(i)/X(j) for these {i,j}: {23, 37784}, {316, 37803}, {8744, 37777}, {10317, 41615}, {14246, 57491}, {18374, 41336}, {22151, 5866}, {40347, 67}, {41521, 8791}, {52951, 20772}, {53895, 17708}, {58080, 57496}
X(59426) = {X(41521),X(58080)}-harmonic conjugate of X(4)


X(59427) = X(2)X(39166)∩X(20)X(759)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*b*c - 2*a*b^4*c - b^5*c - a^4*c^2 + 4*a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 + 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - b*c^5 + c^6) : :

X(59427) lies on the cubic K617 and these lines: {2, 39166}, {4, 6003}, {20, 759}, {80, 3436}, {315, 14616}, {377, 56950}, {1411, 56819}, {2161, 17732}, {3767, 48449}, {6928, 45926}, {14584, 18962}

X(59427) = anticomplement of X(39166)
X(59427) = anticomplement of the isogonal conjugate of X(38938)
X(59427) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {80, 16086}, {2161, 32849}, {24624, 35550}, {30117, 6224}, {38938, 8}
X(59427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 51834, 38938}, {34172, 38938, 4}


X(59428) = X(4)X(94)∩X(20)X(476)

Barycentrics    (a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 7*a^4*b^2*c^2 - 4*a^2*b^4*c^2 - b^6*c^2 - 4*a^2*b^2*c^4 + 4*b^4*c^4 + 2*a^2*c^6 - b^2*c^6 - c^8) : :

X(59428) lies on the cubic K617 and these lines: {2, 5627}, {3, 34209}, {4, 94}, {5, 14611}, {20, 476}, {68, 43707}, {69, 57766}, {110, 18279}, {315, 35139}, {376, 14993}, {381, 46428}, {631, 53137}, {1141, 21451}, {2888, 10412}, {2996, 54554}, {3091, 14356}, {3146, 46429}, {3153, 58704}, {3470, 31874}, {3529, 52056}, {3543, 14583}, {3767, 56396}, {4240, 6761}, {6070, 59368}, {6526, 15384}, {7785, 39358}, {10688, 31725}, {11001, 51345}, {11442, 56683}, {13573, 37444}, {14094, 41390}, {14480, 59370}, {18404, 59274}, {31676, 45735}, {34150, 52010}, {40138, 56399}, {44440, 50480}, {46085, 59288}, {50435, 58261}

X(59428) = anticomplement of X(14385)
X(59428) = anticomplement of the isogonal conjugate of X(14254)
X(59428) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1784, 12383}, {1989, 18668}, {2166, 30}, {2173, 18301}, {14206, 1272}, {14254, 8}, {14583, 192}, {32680, 3268}, {36035, 14731}, {36047, 55141}, {36129, 9033}, {41392, 4560}, {56399, 6360}, {57482, 4329}
X(59428) = X(i)-isoconjugate of X(j) for these (i,j): {2624, 48373}, {6149, 11744}
X(59428) = X(i)-Dao conjugate of X(j) for these (i,j): {403, 1986}, {14993, 11744}, {16177, 526}, {39170, 51346}
X(59428) = barycentric product X(i)*X(j) for these {i,j}: {94, 2071}, {328, 15262}, {12825, 40427}, {35139, 46425}, {38937, 57482}
X(59428) = barycentric quotient X(i)/X(j) for these {i,j}: {94, 51967}, {476, 48373}, {1989, 11744}, {2071, 323}, {12825, 34834}, {15262, 186}, {34170, 14165}, {38937, 57487}, {46425, 526}, {50433, 40082}, {56399, 51346}
X(59428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 14254, 52449}, {4, 51835, 14254}, {265, 14254, 4}, {265, 51835, 52449}, {476, 51254, 20}, {14254, 58723, 6344}


X(59429) = X(4)X(4846)∩X(20)X(1302)

Barycentrics    (a^4 + 4*a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 16*a^4*b^2*c^2 - 10*a^2*b^4*c^2 - 4*b^6*c^2 - 10*a^2*b^2*c^4 + 10*b^4*c^4 + 2*a^2*c^6 - 4*b^2*c^6 - c^8) : :

X(59429) lies on the cubic K617 and these lines: {4, 4846}, {20, 1302}, {30, 51471}, {315, 54988}, {376, 56709}, {1533, 52165}, {2996, 56686}, {5254, 34288}, {11414, 34426}, {15591, 56684}, {34165, 56687}

X(59429) = anticomplement of the isogonal conjugate of X(39263)
X(59429) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {39263, 8}, {40385, 18668}
X(59429) = barycentric product X(21312)*X(34289)
X(59429) = barycentric quotient X(i)/X(j) for these {i,j}: {21312, 15066}, {34288, 35512}
X(59429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 39263, 4846}, {39263, 47103, 4}


X(59430) = X(4)X(3580)∩X(20)X(43660)

Barycentrics    (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 + a^4*b^2 - 5*a^2*b^4 + 3*b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - 5*b^4*c^2 - a^2*c^4 + b^2*c^4 + c^6)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - 5*a^2*c^4 - 5*b^2*c^4 + 3*c^6) : :

X(59430) lies on the cubics K611 and K617 and these lines: {2, 51471}, {4, 3580}, {20, 43660}, {315, 1494}, {2996, 56684}, {34165, 56688}, {40138, 56710}, {41361, 56683}

X(59430) = isogonal conjugate of X(52168)
X(59430) = anticomplement of X(51471)
X(59430) = anticomplement of the isogonal conjugate of X(58081)
X(59430) = isotomic conjugate of the polar conjugate of X(56710)
X(59430) = X(58081)-anticomplementary conjugate of X(8)
X(59430) = X(1)-isoconjugate of X(52168)
X(59430) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 52168}, {381, 40909}, {16253, 18533}
X(59430) = cevapoint of X(9007) and X(53832)
X(59430) = barycentric product X(i)*X(j) for these {i,j}: {69, 56710}, {34801, 52147}
X(59430) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 52168}, {376, 37645}, {40138, 18533}, {40385, 40387}, {52487, 56270}, {56710, 4}
X(59430) = {X(4),X(58081)}-harmonic conjugate of X(52487)


X(59431) = X(4)X(514)∩X(20)X(103)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + a*c^2 + b*c^2 - 2*c^3)*(a^3 + a*b^2 - 2*b^3 - a^2*c + b^2*c - a*c^2 + c^3)*(2*a^7 - a^6*b - 2*a^5*b^2 + a^4*b^3 - a^2*b^5 + b^7 - a^6*c + a^4*b^2*c + a^2*b^4*c - b^6*c - 2*a^5*c^2 + a^4*b*c^2 - 3*b^5*c^2 + a^4*c^3 + 3*b^4*c^3 + a^2*b*c^4 + 3*b^3*c^4 - a^2*c^5 - 3*b^2*c^5 - b*c^6 + c^7) : :

X(59431) lies on the cubic K617 and these lines: {2, 54233}, {4, 514}, {5, 45144}, {20, 103}, {68, 17732}, {315, 18025}, {348, 15634}, {10739, 56787}

X(59431) = anticomplement of X(54233)
X(59431) = anticomplement of the isogonal conjugate of X(54232)
X(59431) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1736, 152}, {36039, 55125}, {36101, 35517}, {36122, 916}, {54232, 8}
X(59431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 53133, 54232}, {47107, 54232, 4}


X(59432) = X(4)X(66)∩X(20)X(1289)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 + b^4 - c^4)*(a^4 - b^4 + c^4)*(a^10 - a^8*b^2 - 2*a^6*b^4 + 2*a^4*b^6 + a^2*b^8 - b^10 - a^8*c^2 + 4*a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 4*a^2*b^6*c^2 - b^8*c^2 - 2*a^6*c^4 + 2*a^4*b^2*c^4 - 2*a^2*b^4*c^4 + 2*b^6*c^4 + 2*a^4*c^6 - 4*a^2*b^2*c^6 + 2*b^4*c^6 + a^2*c^8 - b^2*c^8 - c^10) : :

X(59432) lies on the cubic K617 and these lines: {2, 39172}, {4, 66}, {20, 1289}, {254, 56687}, {378, 14376}, {427, 35211}, {7391, 17407}, {15591, 56685}

X(59432) = anticomplement of X(39172)
X(59432) = anticomplement of the isogonal conjugate of X(58075)
X(59432) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {17407, 192}, {41361, 21215}, {46244, 13575}, {58075, 8}


X(59433) = X(4)X(513)∩X(20)X(104)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 + 2*a*b*c - a*c^2 - b*c^2)*(a^3 - a*b^2 - a^2*c + 2*a*b*c - b^2*c - a*c^2 + c^3)*(a^6*b - a^4*b^3 - a^2*b^5 + b^7 + a^6*c - 2*a^5*b*c - a^4*b^2*c + 2*a^3*b^3*c + a^2*b^4*c - b^6*c - a^4*b*c^2 - 3*b^5*c^2 - a^4*c^3 + 2*a^3*b*c^3 + 3*b^4*c^3 + a^2*b*c^4 + 3*b^3*c^4 - a^2*c^5 - 3*b^2*c^5 - b*c^6 + c^7) : :

X(59433) lies on the cubic K617 and these lines: {2, 39173}, {4, 513}, {5, 45145}, {20, 104}, {68, 3436}, {315, 18816}, {2250, 17732}, {3434, 36944}, {10525, 15635}, {10738, 56761}

X(59433) = anticomplement of X(39173)
X(59433) = anticomplement of the isogonal conjugate of X(14266)
X(59433) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {104, 4511}, {1737, 153}, {14266, 8}, {34234, 3262}, {36037, 55126}, {36110, 44428}, {36123, 912}, {40437, 12532}, {51824, 192}
X(59433) = X(42423)-Dao conjugate of X(517)
X(59433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 51832, 14266}, {14266, 38952, 4}


X(59434) = X(4)X(74)∩X(20)X(1304)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(4*a^10 - 7*a^8*b^2 - 2*a^6*b^4 + 8*a^4*b^6 - 2*a^2*b^8 - b^10 - 7*a^8*c^2 + 22*a^6*b^2*c^2 - 12*a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 - 12*a^4*b^2*c^4 + 16*a^2*b^4*c^4 - 2*b^6*c^4 + 8*a^4*c^6 - 6*a^2*b^2*c^6 - 2*b^4*c^6 - 2*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(59434) lies on the cubic K617 and these lines: {2, 51346}, {3, 1552}, {4, 74}, {20, 1304}, {30, 52646}, {315, 16077}, {520, 12111}, {1885, 35908}, {4240, 51892}, {14264, 18560}, {14385, 35481}, {15454, 56683}, {32695, 41361}, {34150, 35490}

X(59434) = anticomplement of X(51346)
X(59434) = anticomplement of the isogonal conjugate of X(38937)
X(59434) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {36119, 52403}, {38937, 8}
X(59434) = X(10151)-Dao conjugate of X(13202)
X(59434) = barycentric product X(16080)*X(16386)
X(59434) = barycentric quotient X(16386)/X(11064)
X(59434) = {X(10152 ),X(38937)}-harmonic conjugate of X(4)


X(59435) = X(4)X(64)∩X(20)X(1301)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 3*c^4)*(a^4 + 2*a^2*b^2 - 3*b^4 - 2*a^2*c^2 + 2*b^2*c^2 + c^4)*(5*a^10 - 9*a^8*b^2 - 2*a^6*b^4 + 10*a^4*b^6 - 3*a^2*b^8 - b^10 - 9*a^8*c^2 + 32*a^6*b^2*c^2 - 18*a^4*b^4*c^2 - 8*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 - 18*a^4*b^2*c^4 + 22*a^2*b^4*c^4 - 2*b^6*c^4 + 10*a^4*c^6 - 8*a^2*b^2*c^6 - 2*b^4*c^6 - 3*a^2*c^8 + 3*b^2*c^8 - c^10) : :

X(59435) lies on the cubic K617 and these lines: {2, 51347}, {4, 64}, {20, 1301}, {30, 41085}, {254, 56683}, {315, 53639}, {1073, 1885}, {3542, 11589}, {5894, 46065}, {5925, 28785}, {15591, 56687}, {17814, 18850}, {22468, 34410}, {31942, 44438}, {52071, 57483}

X(59435) = anticomplement of X(51347)
X(59435) = anticomplement of the isogonal conjugate of X(39268)
X(59435) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {14390, 6360}, {17510, 192}, {39268, 8}, {57483, 4329}
X(59435) = X(34410)-Ceva conjugate of X(459)
X(59435) = X(37197)-Dao conjugate of X(5895)
X(59435) = barycentric product X(459)*X(30552)
X(59435) = barycentric quotient X(30552)/X(37669)
X(59435) = {X(39268),X(47109)}-harmonic conjugate of X(4)


X(59436) = X(4)X(690)∩X(20)X(842)

Barycentrics    (a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 - b^4*c^2 + 2*a^2*c^4 + 2*b^2*c^4 - 2*c^6)*(a^6 - a^4*b^2 + 2*a^2*b^4 - 2*b^6 - a^4*c^2 + 2*b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)*(2*a^10 - 4*a^8*b^2 + a^6*b^4 + 3*a^4*b^6 - 3*a^2*b^8 + b^10 - 4*a^8*c^2 + 8*a^6*b^2*c^2 - 5*a^4*b^4*c^2 + 8*a^2*b^6*c^2 - 3*b^8*c^2 + a^6*c^4 - 5*a^4*b^2*c^4 - 10*a^2*b^4*c^4 + 2*b^6*c^4 + 3*a^4*c^6 + 8*a^2*b^2*c^6 + 2*b^4*c^6 - 3*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(59436) lies on the cubic K617 and these lines: {2, 51474}, {4, 690}, {20, 842}, {315, 5641}, {2996, 54554}, {3767, 48453}, {5877, 23350}, {6337, 52094}

X(59436) = anticomplement of X(51474)
X(59436) = anticomplement of the isogonal conjugate of X(38939)
X(59436) = X(38939)-anticomplementary conjugate of X(8)
X(59436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 56603, 38939}, {34174, 38939, 4}





leftri  Inconics through two given points: X(59437) - X(59458)  rightri

This preamble and centers X(59437)-X(59458) were contributed by César Eliud Lozada, October 5, 2023.

In Eagles, Thomas Henry, Constructive Geometry of Plane Curves, McMillan and Co., London, 1885, available in www.archive.org, there are expained and proved methods for constructing conics touching three distinct, not concurrent given lines and passing through two given points (problem 83, pp.134 and problem 112, pp. 182).

Let ABC be the triangle bounded by the three given tangents and P, Q the given points. Both P and Q must be in the same side with respect to every tangent. This means that P and Q must be both interior to ABC (problem 83) or both exterior to it (problem 112).

The construction by Eagles follows (using century XXI cyclic notation):

  1. Let A', B', C' be the intersections of line PQ and BC, CA, AB, respectively.
  2. Let B1, B2 be the double points of the involution {A', B'} and {P, Q} (see preamble just before X(14782)). Eagles call these double points the foci of the involution and he proves that these points lie on the chord joining the touchpoints of the inconic with BC and AC.
  3. Analogously, let C1, C2 be the double points of the involution {A', C'} and {P, Q}. These points lie on the chord joining the touchpoints of the inconic with BC and AB.
  4. Take any point obtained in 2), for example Bi=B1, and any point obtained in 3), for example Cj=C1, and let Ha be the A'-harmonic mean of (Bi, Cj). (See preamble just before X(59294))
  5. The line AHa cuts BC at A*, which is the touchpoint of the desired inconic with the line BC. Then, from 2) and 3), the other touchpoints of the inconic are B* = A*Bi∩AC and C* = A*Cj∩AB. Now we have either five points on the conic or can get the perspector of the inconic; then the conic is unambigously determined.
  6. Repeat 4) and 5) with the other possible combinations of Bi and Cj and, finally, four conics are found, all touching the given lines and passing through the given points.

Some remarks are needed here:

  1. The above construction was made by starting from A'. If we start from B' or C', the same set of inconics is obtained in each case.
  2. If P, Q are both interior to ABC then the four inconics are ellipses, but if they are both exterior to ABC then the resulting inconics can be of mixed types, i.e., some of them can be ellipses and some of them can be hyperbolas. Eagles does not mention this plurality in problem 112.
  3. When P, Q are triangle centers or when they are a bicentric pair, it can be conjectured that just one out of the four inconics is a central inconic, which means that its perspector and center are both triangle centers. Also, it can be conjectured that the two triads of perspectors and centers of the remaining non-central inconics are, respectively, vertices of two central triangles.
  4. It is necessary to examine which combination of Bi and Cj leads to the central inconic, because the required combination depends on the relative positions of P and Q.

The appearance of (i, j, m, n) in the following list means that the central inellipse through X(i) and X(j) has perspector X(m) and center X(n):

(1, 2, 59437, 59438), (1, 6, 59439, 59440), (1, 7, 59441, 59442), (1, 8, 59443, 59444), (1, 31, 765, 24036), (1, 32, 59445, 59446), (2, 3, 59447, 59448)*, (2, 6, 1016, 4422), (2, 7, 59449, 59450), (2, 8, 55339, 59451), (2, 31, 59452, 59453), (2, 32, 4590, 620), (3, 4, 55346, 15252)*, (7, 8, 4998, 3035), (7, 55, 59457, 59458), (7, 56, 4998, 3035), (8, 55, 4076, 3039), (8, 56, 4998, 3035), (31, 32, 59455, 59456), (55, 56, 59, 13006)

(*): For acute ABC only. This fact guarantees that X(3) and X(4) are interior to ABC. Note that all the other centers X(i), X(j) used in this list are always interior to any acute or obtuse triangle.

The inellipse through the Brocard points (PU(1)) has perspector X(52205) and center X(59454). The inellipse through their isotomic conjugates, PU(11), has perspector X(40098) and center X(26582).

A general expression for the perspectors of these inconics can be seen here.

underbar

X(59437) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(2)

Barycentrics    (sqrt(a)-sqrt(b))^2*(sqrt(a)-sqrt(c))^2 : :

X(59437) lies on these lines: {}

X(59437) = isotomic conjugate of the complement of X(55322)
X(59437) = isotomic conjugate of the anticomplement of X(59438)
X(59437) = cevapoint of X(i) and X(j) for these {i, j}: {1, 55321}, {2, 55322}
X(59437) = X(i)-cross conjugate of-X(j) for these (i, j): (1, 55321), (2, 55322), (366, 190), (40375, 55325), (59438, 2)
X(59437) = X(59439)-reciprocal conjugate of-X(1)
X(59437) = trilinear pole of the line {55321, 55322} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59437) = perspector of the inellipse with center X(59438)
X(59437) = barycentric square of X(55322)
X(59437) = barycentric product X(75)*X(59439)
X(59437) = trilinear square of X(55321)
X(59437) = trilinear product X(i)*X(j) for these {i, j}: {2, 59439}, {55322, 55325}


X(59438) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(2)

Barycentrics    2*a-2*(sqrt(b)+sqrt(c))*sqrt(a)+b+c : :
X(59438) = 3*X(2)+X(55322)

X(59438) lies on these lines: {1, 55374}, {2, 55322}, {10, 40374}, {366, 551}, {1125, 40378}

X(59438) = complement of the isotomic conjugate of X(59437)
X(59438) = crosspoint of X(2) and X(59437)
X(59438) = X(i)-complementary conjugate of-X(j) for these (i, j): (59437, 2887), (59439, 141)
X(59438) = X(2)-daleth conjugate of-X(55322)
X(59438) = center of the inellipse with perspector X(59437)
X(59438) = inverse of X(55322) in Steiner inellipse
X(59438) = pole of the line {55321, 55322} with respect to the Steiner inellipse


X(59439) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(6)

Barycentrics    a*(sqrt(a)-sqrt(b))^2*(sqrt(a)-sqrt(c))^2 : :

X(59439) lies on these lines: {}

X(59439) = isotomic conjugate of the anticomplement of X(59440)
X(59439) = cevapoint of X(i) and X(j) for these {i, j}: {1, 55325}, {6, 55326}
X(59439) = X(i)-cross conjugate of-X(j) for these (i, j): (1, 55325), (6, 55326), (364, 55321), (365, 100), (59440, 2)
X(59439) = X(59437)-reciprocal conjugate of-X(75)
X(59439) = trilinear pole of the line {55325, 55326} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59439) = 1st Vu point of X(55326)
X(59439) = perspector of the inellipse with center X(59440)
X(59439) = barycentric square of X(55321)
X(59439) = barycentric product X(i)*X(j) for these {i, j}: {1, 59437}, {55322, 55325}
X(59439) = trilinear square of X(55325)
X(59439) = trilinear product X(i)*X(j) for these {i, j}: {6, 59437}, {55321, 55326}, {55322, 58996}


X(59440) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(6)

Barycentrics    a*((b+c)*a-2*sqrt(a*b)*b-2*sqrt(c*a)*c+b^2+c^2) : :

X(59440) lies on these lines: {365, 1386}

X(59440) = complement of the isotomic conjugate of X(59439)
X(59440) = crosspoint of X(2) and X(59439)
X(59440) = X(i)-complementary conjugate of-X(j) for these (i, j): (59437, 626), (59439, 2887)
X(59440) = center of the inellipse with perspector X(59439)
X(59440) = pole of the line {55325, 55326} with respect to the Steiner inellipse


X(59441) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(7)

Barycentrics    (a+b-c)*(a-b+c)*((a-b)^2+4*a*b*sin(C/2)-(a+b)*c)*((a-c)^2+4*a*c*sin(B/2)-(a+c)*b) : :

X(59441) lies on these lines: {}

X(59441) = isotomic conjugate of the anticomplement of X(59442)
X(59441) = cevapoint of X(i) and X(j) for these {i, j}: {1, 55328}, {7, 55329}
X(59441) = X(i)-cross conjugate of-X(j) for these (i, j): (1, 55328), (7, 55329), (167, 55331), (174, 658), (503, 43192), (59442, 2)
X(59441) = X(i)-Dao conjugate of-X(j) for these (i, j): (223, 10501), (17113, 10491)
X(59441) = X(i)-isoconjugate of-X(j) for these {i, j}: {55, 10501}, {1253, 10491}
X(59441) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (57, 10501), (279, 10491), (10489, 1146), (10502, 3119), (18885, 2310)
X(59441) = trilinear pole of the line {55328, 55329} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59441) = perspector of the inellipse with center X(59442)
X(59441) = barycentric product X(i)*X(j) for these {i, j}: {1275, 10489}, {55329, 55341}
X(59441) = trilinear square of X(55328)
X(59441) = trilinear product X(i)*X(j) for these {i, j}: {1275, 18885}, {7045, 10489}, {43192, 55329}
X(59441) = trilinear quotient X(i)/X(j) for these (i, j): (7, 10501), (1088, 10491), (10489, 2310), (10502, 3022), (18885, 14936), (55329, 10495)


X(59442) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(7)

Barycentrics    4*c*a*(a-b+c)*sin(B/2)+4*b*a*(a+b-c)*sin(C/2)+2*a^3-3*(b+c)*a^2+(b^2-c^2)*(b-c) : :

X(59442) lies on these lines: {1, 7057}, {174, 5542}, {8090, 18886}, {10164, 15495}, {13385, 53006}, {13405, 16015}

X(59442) = complement of the isotomic conjugate of X(59441)
X(59442) = crosspoint of X(2) and X(59441)
X(59442) = X(59441)-complementary conjugate of-X(2887)
X(59442) = center of the inellipse with perspector X(59441)
X(59442) = pole of the line {55328, 55329} with respect to the Steiner inellipse


X(59443) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(8)

Barycentrics    ((a+b)*c-4*a*b*sin(C/2)+(a-b)^2)*((a+c)*b-4*a*c*sin(B/2)+(a-c)^2) : :

X(59443) lies on these lines: {}

X(59443) = isotomic conjugate of X(10504)
X(59443) = cevapoint of X(i) and X(j) for these {i, j}: {1, 55331}, {8, 55332}
X(59443) = X(i)-cross conjugate of-X(j) for these (i, j): (1, 55331), (8, 55332), (145, 55341), (188, 190), (361, 45875), (59444, 2)
X(59443) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 10504), (223, 12809), (39121, 6732)
X(59443) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 10504}, {55, 12809}
X(59443) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 10504), (57, 12809), (7028, 6732), (7048, 21623), (16017, 21618), (55363, 45877)
X(59443) = trilinear pole of the line {55331, 55332} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59443) = perspector of the inellipse with center X(59444)
X(59443) = barycentric product X(45876)*X(55332)
X(59443) = trilinear square of X(55331)
X(59443) = trilinear product X(i)*X(j) for these {i, j}: {45875, 55332}, {45876, 55363}
X(59443) = trilinear quotient X(i)/X(j) for these (i, j): (7, 12809), (75, 10504), (53123, 6732), (55332, 45877), (55363, 45878)


X(59444) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(8)

Barycentrics    2*a^2+(b+c)*(-a+b+c)-4*a*(b*sin(C/2)+c*sin(B/2)) : :

X(59444) lies on the Spieker circle and these lines: {1, 5430}, {2, 10504}, {8, 10505}, {10, 188}, {519, 58777}, {1376, 10496}, {16016, 17355}, {20114, 55331}

X(59444) = midpoint of X(8) and X(10505)
X(59444) = complement of X(10504)
X(59444) = crosspoint of X(2) and X(59443)
X(59444) = X(i)-complementary conjugate of-X(j) for these (i, j): (3659, 45304), (59443, 2887)
X(59444) = center of the inellipse with perspector X(59443)
X(59444) = pole of the line {55331, 55332} with respect to the Steiner inellipse


X(59445) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(32)

Barycentrics    a*(a*sqrt(a)-b*sqrt(b))^2*(a*sqrt(a)-c*sqrt(c))^2 : :

X(59445) lies on these lines: {}

X(59445) = isotomic conjugate of the anticomplement of X(59446)
X(59445) = X(i)-cross conjugate of-X(j) for these (i, j): (18753, 1492), (59446, 2)
X(59445) = X(59452)-reciprocal conjugate of-X(75)
X(59445) = perspector of the inellipse with center X(59446)
X(59445) = barycentric product X(1)*X(59452)
X(59445) = trilinear product X(6)*X(59452)


X(59446) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(1) AND X(32)

Barycentrics    a*(b*(a*sqrt(a)-b*sqrt(b))^2+c*(a*sqrt(a)-c*sqrt(c))^2) : :

X(59446) lies on these lines: {}

X(59446) = complement of the isotomic conjugate of X(59445)
X(59446) = crosspoint of X(2) and X(59445)
X(59446) = X(i)-complementary conjugate of-X(j) for these (i, j): (59445, 2887), (59452, 626)
X(59446) = center of the inellipse with perspector X(59445)
X(59446) = pole of the the tripolar of X(59445) with respect to the Steiner inellipse


X(59447) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(3), WHEN ABC IS ACUTE

Barycentrics    (sqrt(SA)*a-sqrt(SC)*c)^2*(sqrt(SA)*a-sqrt(SB)*b)^2 : :

X(59447) lies on these lines: {}

X(59447) = isotomic conjugate of the anticomplement of X(59448)
X(59447) = X(i)-cross conjugate of-X(j) for these (i, j): (5374, 648), (59448, 2)
X(59447) = perspector of the inellipse with center X(59448)


X(59448) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(3), WHEN ABC IS ACUTE

Barycentrics    (sqrt(SA)*a-sqrt(SB)*b)^2+(sqrt(SA)*a-sqrt(SC)*c)^2 : :

Only for acute ABC

X(59448) lies on these lines: {5, 20033}, {549, 5374}

X(59448) = complement of the isotomic conjugate of X(59447)
X(59448) = crosspoint of X(2) and X(59447)
X(59448) = X(59447)-complementary conjugate of-X(2887)
X(59448) = center of the inellipse with perspector X(59447)
X(59448) = pole of the the tripolar of X(59447) with respect to the Steiner inellipse


X(59449) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(7)

Barycentrics    (a-b+c)*(b-2*sqrt(c*a)*sin(B/2))*(a+b-c)*(c-2*sqrt(a*b)*sin(C/2)) : :

X(59449) lies on these lines: {508, 55082}

X(59449) = isotomic conjugate of the anticomplement of X(59450)
X(59449) = X(i)-cross conjugate of-X(j) for these (i, j): (508, 664), (59450, 2)
X(59449) = X(3160)-Dao conjugate of-X(5997)
X(59449) = X(41)-isoconjugate of-X(5997)
X(59449) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 5997), (5998, 11), (55339, 8)
X(59449) = perspector of the inellipse with center X(59450)
X(59449) = barycentric product X(i)*X(j) for these {i, j}: {7, 55339}, {4998, 5998}
X(59449) = trilinear product X(i)*X(j) for these {i, j}: {57, 55339}, {4564, 5998}
X(59449) = trilinear quotient X(i)/X(j) for these (i, j): (85, 5997), (5998, 2170), (55339, 9)


X(59450) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(7)

Barycentrics    2*sqrt(a*c)*(a-b+c)*sin(B/2)+2*(a+b-c)*sqrt(a*b)*sin(C/2)-(b+c)*a+(b-c)^2 : :

X(59450) lies on these lines: {508, 6173}

X(59450) = complement of the isotomic conjugate of X(59449)
X(59450) = crosspoint of X(2) and X(59449)
X(59450) = X(i)-complementary conjugate of-X(j) for these (i, j): (55339, 21244), (59449, 2887)
X(59450) = center of the inellipse with perspector X(59449)
X(59450) = pole of the the tripolar of X(59449) with respect to the Steiner inellipse


X(59451) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(8)

Barycentrics    (b-2*sqrt(a*c)*sin(B/2))*(c-2*sqrt(a*b)*sin(C/2))*((b+c)*(-a+2*sqrt(b*c)*sin(A/2))-2*sqrt(a)*(b-c)*(sqrt(b)*sin(C/2)-sqrt(c)*sin(B/2))) : :

X(59451) lies on the Spieker circle and these lines: {2, 5997}, {10, 14218}, {3679, 55336}

X(59451) = complement of X(5997)
X(59451) = crosspoint of X(2) and X(55339)
X(59451) = X(i)-complementary conjugate of-X(j) for these (i, j): (55339, 2887), (59449, 17046)
X(59451) = X(2)-daleth conjugate of-X(55338)
X(59451) = center of the inellipse with perspector X(55339)
X(59451) = inverse of X(55338) in Steiner inellipse
X(59451) = pole of the the tripolar of X(55339) with respect to the Steiner inellipse


X(59452) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(31)

Barycentrics    (a^(3/2)-b^(3/2))^2*(a^(3/2)-c^(3/2))^2 : :

X(59452) lies on these lines: {}

X(59452) = isotomic conjugate of the anticomplement of X(59453)
X(59452) = X(i)-cross conjugate of-X(j) for these (i, j): (365, 4586), (59453, 2)
X(59452) = X(59445)-reciprocal conjugate of-X(1)
X(59452) = perspector of the inellipse with center X(59453)
X(59452) = barycentric product X(75)*X(59445)
X(59452) = trilinear product X(2)*X(59445)


X(59453) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(2) AND X(31)

Barycentrics    (a^(3/2)-b^(3/2))^2+(a^(3/2)-c^(3/2))^2 : :

X(59453) lies on these lines: {}

X(59453) = complement of the isotomic conjugate of X(59452)
X(59453) = crosspoint of X(2) and X(59452)
X(59453) = X(i)-complementary conjugate of-X(j) for these (i, j): (59445, 141), (59452, 2887)
X(59453) = center of the inellipse with perspector X(59452)
X(59453) = pole of the the tripolar of X(59452) with respect to the Steiner inellipse


X(59454) = CENTER OF THE CENTRAL INELLIPSE THROUGH BROCARD POINTS

Barycentrics    a^2*(b^2*(b*a-c^2)^2+c^2*(c*a-b^2)^2) : :
X(59454) = X(17143)-5*X(27195)

X(59454) lies on these lines: {1, 39}, {2, 1978}, {37, 17793}, {42, 20457}, {43, 30646}, {192, 32035}, {350, 20688}, {668, 5283}, {672, 21760}, {740, 1575}, {1084, 4422}, {2229, 27070}, {2238, 20372}, {3009, 20868}, {3056, 23433}, {3117, 17316}, {3229, 3912}, {3783, 21830}, {6373, 23466}, {6375, 17279}, {6378, 17280}, {6651, 19579}, {8265, 17243}, {8671, 31451}, {11326, 18758}, {14751, 23632}, {16589, 27020}, {17143, 27195}, {18793, 24491}, {20433, 25753}, {20464, 20669}, {20531, 53823}, {20591, 43534}, {20861, 23462}, {23478, 33299}, {23543, 56507}, {26959, 40479}

X(59454) = complementary conjugate of the complement of X(51856)
X(59454) = complement of X(56660)
X(59454) = cross-difference of every pair of points on the line X(659)X(30667)
X(59454) = crosspoint of X(2) and X(52205)
X(59454) = crosssum of X(i) and X(j) for these {i, j}: {2, 17475}, {6, 4366}
X(59454) = X(874)-Ceva conjugate of-X(512)
X(59454) = X(i)-complementary conjugate of-X(j) for these (i, j): (292, 20542), (1911, 20333), (1922, 17793), (1927, 39044), (14598, 17755), (18267, 2), (30663, 626), (34067, 27854), (40098, 21235), (51856, 10), (52205, 2887)
X(59454) = center of the inellipse with perspector X(52205)
X(59454) = perspector of the circumconic through X(660) and X(54985)
X(59454) = inverse of X(291) in Brocard inellipse
X(59454) = pole of the line {291, 659} with respect to the Brocard inellipse
X(59454) = pole of the line {20333, 20335} with respect to the circumhyperbola dual of Yff parabola
X(59454) = pole of the line {665, 3572} with respect to the Steiner inellipse


X(59455) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(31) AND X(32)

Barycentrics    a^3*(sqrt(a)-sqrt(b))^2*(sqrt(a)-sqrt(c))^2 : :

X(59455) lies on these lines: {}

X(59455) = isogonal conjugate of the isotomic conjugate of X(59439)
X(59455) = isogonal conjugate of the anticomplement of X(59440)
X(59455) = isotomic conjugate of the anticomplement of X(59456)
X(59455) = X(59456)-cross conjugate of-X(2)
X(59455) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (59437, 561), (59439, 76)
X(59455) = perspector of the inellipse with center X(59456)
X(59455) = barycentric square of X(55326)
X(59455) = barycentric product X(i)*X(j) for these {i, j}: {6, 59439}, {31, 59437}, {55325, 58996}
X(59455) = trilinear square of X(58996)
X(59455) = trilinear product X(i)*X(j) for these {i, j}: {31, 59439}, {32, 59437}


X(59456) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(31) AND X(32)

Barycentrics    a^3*(b^3*(sqrt(a)-sqrt(b))^2+c^3*(sqrt(a)-sqrt(c))^2) : :

X(59456) lies on these lines: {}

X(59456) = complement of the isotomic conjugate of X(59455)
X(59456) = crosspoint of X(2) and X(59455)
X(59456) = X(i)-complementary conjugate of-X(j) for these (i, j): (59437, 40379), (59439, 21235), (59455, 2887)
X(59456) = center of the inellipse with perspector X(59455)
X(59456) = pole of the the tripolar of X(59455) with respect to the Steiner inellipse


X(59457) = PERSPECTOR OF THE CENTRAL INELLIPSE THROUGH X(7) AND X(55)

Barycentrics    (a-b)^2*(a-c)^2*(a+b-c)^3*(a-b+c)^3 : :

X(59457) lies on these lines: {1, 14512}, {7, 55370}, {279, 1262}, {348, 46102}, {479, 36887}, {514, 658}, {527, 1275}, {651, 57180}, {927, 934}, {1323, 7045}, {4569, 54953}, {4573, 41206}, {4998, 28058}, {5088, 38461}, {7056, 38941}, {14189, 24011}, {53183, 59105}, {56379, 57581}

X(59457) = isogonal conjugate of X(3022)
X(59457) = isotomic conjugate of X(4081)
X(59457) = cevapoint of X(i) and X(j) for these {i, j}: {7, 658}, {55, 651}, {100, 144}, {279, 934}, {322, 21580}, {348, 664}, {479, 4626}, {1638, 52333}, {4617, 7023}
X(59457) = X(24011)-Ceva conjugate of-X(23586)
X(59457) = X(i)-cross conjugate of-X(j) for these (i, j): (7, 658), (55, 651), (77, 4573), (279, 36838), (347, 4554), (479, 4626), (1088, 4616), (3160, 664), (3474, 653), (7023, 4617), (7045, 1275), (7056, 4569), (7070, 645), (7411, 662), (9778, 190), (11246, 38340), (11495, 100), (14189, 927), (30295, 37139), (38454, 37143), (41339, 666), (52333, 1638), (52870, 56543), (59458, 2)
X(59457) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 24010), (2, 4081), (7, 13609), (9, 3119), (223, 2310), (478, 14936), (514, 5532), (1086, 23615), (1214, 52335), (3160, 1146), (3161, 23970), (5375, 4130), (5452, 35508), (6609, 3271), (6631, 4163), (10001, 3239), (17113, 11), (36908, 4516), (39026, 4105), (39054, 58329), (40590, 36197), (40593, 24026), (40615, 42462), (40837, 42069), (52870, 33573)
X(59457) = X(i)-isoconjugate of-X(j) for these {i, j}: {6, 3119}, {7, 24012}, {9, 14936}, {11, 1253}, {31, 4081}, {33, 3270}, {41, 1146}, {55, 2310}, {56, 24010}, {57, 35508}, {200, 3271}, {212, 42069}, {220, 2170}, {244, 480}, {279, 52064}, {284, 36197}, {512, 58329}, {513, 4105}, {514, 57180}, {522, 8641}, {604, 23970}, {607, 34591}, {649, 4130}, {650, 657}, {663, 3900}, {667, 4163}, {692, 23615}, {728, 1015}, {1021, 3709}, {1024, 52614}, {1086, 6602}, {1090, 6066}, {1110, 5532}, {1802, 8735}, {1857, 2638}, {1977, 30693}, {2175, 24026}, {2194, 52335}, {2212, 2968}, {2328, 4516}, {2332, 53560}, {2643, 6061}, {3063, 3239}, {3122, 56182}, {3248, 5423}, {3737, 4524}, {4041, 21789}, {4171, 7252}, {4319, 14935}, {4858, 14827}
X(59457) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 3119), (2, 4081), (7, 1146), (8, 23970), (9, 24010), (41, 24012), (55, 35508), (56, 14936), (57, 2310), (59, 220), (65, 36197), (77, 34591), (85, 24026), (100, 4130), (101, 4105), (109, 657), (190, 4163), (222, 3270), (226, 52335), (249, 6061), (269, 2170), (278, 42069), (279, 11), (331, 21666), (347, 5514), (348, 2968), (479, 1086), (514, 23615), (552, 26856), (651, 3900), (658, 522), (662, 58329), (664, 3239), (692, 57180), (738, 244), (765, 728), (927, 28132), (934, 650), (1016, 5423), (1020, 4041), (1086, 5532), (1088, 4858), (1110, 6602), (1119, 8735), (1252, 480), (1253, 52064), (1262, 55), (1275, 8), (1323, 33573), (1407, 3271)
X(59457) = X(9355)-zayin conjugate of-X(657)
X(59457) = trilinear pole of the line {651, 658} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59457) = perspector of the inellipse with center X(59458)
X(59457) = pole of the line {3022, 4081} with respect to the Steiner-Wallace hyperbola
X(59457) = barycentric product X(i)*X(j) for these {i, j}: {7, 1275}, {8, 23586}, {9, 24011}, {55, 57581}, {59, 57792}, {76, 7339}, {85, 7045}, {100, 36838}, {101, 52937}, {109, 46406}, {190, 4626}, {279, 4998}, {312, 24013}, {348, 55346}, {479, 1016}, {651, 4569}, {658, 664}, {668, 4617}, {738, 7035}, {765, 23062}
X(59457) = trilinear product X(i)*X(j) for these {i, j}: {7, 7045}, {8, 24013}, {9, 23586}, {41, 57581}, {55, 24011}, {57, 1275}, {59, 1088}, {75, 7339}, {77, 55346}, {85, 1262}, {100, 4626}, {101, 36838}, {109, 4569}, {190, 4617}, {269, 4998}, {279, 4564}, {312, 23971}, {348, 7128}, {479, 765}, {651, 658}
X(59457) = trilinear quotient X(i)/X(j) for these (i, j): (2, 3119), (7, 2310), (8, 24010), (9, 35508), (55, 24012), (57, 14936), (59, 1253), (75, 4081), (77, 3270), (85, 1146), (99, 58329), (100, 4105), (101, 57180), (109, 8641), (190, 4130), (220, 52064), (226, 36197), (269, 3271), (273, 42069), (279, 2170)


X(59458) = CENTER OF THE CENTRAL INELLIPSE THROUGH X(7) AND X(55)

Barycentrics    (a-b)^2*(a+b-c)^3+(a-c)^2*(a-b+c)^3 : :

X(59458) lies on these lines: {1, 528}, {2, 4081}, {9, 23972}, {11, 37771}, {55, 40576}, {241, 3012}, {347, 11495}, {517, 22465}, {522, 33562}, {523, 16599}, {651, 5851}, {676, 2804}, {1155, 16272}, {1329, 7952}, {1376, 56183}, {1897, 25882}, {2310, 5723}, {3000, 43066}, {3039, 55133}, {3160, 4626}, {3663, 30621}, {3672, 28071}, {3946, 5572}, {4422, 24980}, {4858, 24014}, {4999, 17102}, {5087, 44901}, {5842, 18455}, {6129, 23585}, {6253, 9538}, {9371, 23710}, {9440, 17246}, {10310, 38295}, {10578, 41803}, {11700, 38759}, {14760, 52826}, {15726, 43035}, {16112, 54425}, {17044, 24009}, {18413, 21889}, {22464, 38454}, {37800, 42356}, {38293, 41563}, {38757, 51889}, {40555, 55145}

X(59458) = complement of X(4081)
X(59458) = complementary conjugate of the complement of X(7339)
X(59458) = crosspoint of X(2) and X(59457)
X(59458) = crosssum of X(6) and X(3022)
X(59458) = X(i)-complementary conjugate of-X(j) for these (i, j): (109, 5514), (269, 46100), (934, 124), (1106, 46101), (1110, 5574), (1262, 3452), (1275, 21244), (1415, 13609), (1461, 26932), (2149, 6554), (4617, 116), (4619, 20317), (4626, 21252), (6614, 11), (7045, 1329), (7128, 41883), (7143, 24040), (7339, 10), (7366, 6547), (23586, 17046), (23971, 142), (23979, 1212), (24011, 17047), (24013, 2886), (24027, 9), (24033, 15849), (36059, 40616), (43924, 34530), (59151, 513), (59457, 2887)
X(59458) = center of the inellipse with perspector X(59457)
X(59458) = pole of the line {2826, 34789} with respect to the incircle
X(59458) = pole of the line {527, 40510} with respect to the circumhyperbola dual of Yff parabola
X(59458) = pole of the line {651, 658} with respect to the Steiner inellipse





leftri  Lateral-inconics and related triangles: X(59459) - X(59483)  rightri

This preamble and centers X(59459)-X(59483) were contributed by César Eliud Lozada, October 8, 2023.

Continuing with the preamble just before X(59437), let's consider the three non-central inconics of ABC passing through two given centers U, X.

Ordered properly, these inconics seem to be related each to one vertex of ABC. In this section, the A-, B-, C- inconics through U, X wil be referred as the lateral-inconics of (U,X). Let Tp be the triangle with vertices in the perspectors of the lateral inconics of (U, X) and Tc the triangle with vertices on their centers.

For all centers considered in this section, it resulted that Tp is perspective to ABC, and Tc is perspective to the medial triangle of ABC.

The appearance of (i, j, m, n) in the following list means that, if X(i), X(j) are the given centers on the inconics, then the perspector (Tp, ABC) is X(m) and the perspector (Tc, medial-of-ABC) is X(n):

(1, 2, 59459, 59460), (1, 6, 59461, 59462), (1, 7, 59463, 59464), (1, 8, 59465, 59466), (1, 55, 59467, 59468), (1, 56, 59469, 59470), (2, 6, 1509, 17045), (2, 7, 59471, 59472), (2, 8, 59473, 59474), (7, 8, 6063, 2886), (7, 55, 59475, 59476), (7, 56, 552, 59477), (8, 55, 261, 4999), (8, 56, 59478, 59479), (55, 56, 7, 1), (3, 4, 59482, 59483)*
(*): Only for ABC acute.
For Brocard points PU(1), perspectors (Tp, ABC), (Tc, medial-of-ABC) are X(59480), X(59481), respectively. For isotomic conjugates of Brocard points, PU(11), perspectors (Tp, ABC), (Tc, medial-of-ABC) are X(40099), X(26558), respectively.

A list of coordinates of A-vertices for each Tp, Tc treated in this section can be seen here.

underbar

X(59459) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(2) )

Barycentrics    (sqrt(a)+sqrt(b))^2*(sqrt(a)+sqrt(c))^2 : :

X(59459) lies on these lines: {190, 366}

X(59459) = isotomic conjugate of the anticomplement of X(59460)
X(59459) = X(59460)-cross conjugate of-X(2)
X(59459) = X(i)-isoconjugate of-X(j) for these {i, j}: {367, 20664}, {1015, 59439}, {1086, 59455}, {3248, 59437}, {20527, 52865}, {40378, 52866}
X(59459) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (765, 59439), (1016, 59437), (1110, 59455), (59461, 1)
X(59459) = perspector of the inconic with center X(59460)
X(59459) = barycentric product X(75)*X(59461)
X(59459) = trilinear product X(2)*X(59461)
X(59459) = trilinear quotient X(i)/X(j) for these (i, j): (1016, 59439), (1252, 59455), (7035, 59437)


X(59460) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(2) )

Barycentrics    (sqrt(a)+sqrt(b))^2+(sqrt(a)+sqrt(c))^2 : :

X(59460) lies on these lines: {10, 366}, {551, 40374}, {1125, 40378}

X(59460) = complement of the isotomic conjugate of X(59459)
X(59460) = crosspoint of X(2) and X(59459)
X(59460) = X(i)-complementary conjugate of-X(j) for these (i, j): (1110, 59438), (23990, 59440), (59459, 2887), (59461, 141)
X(59460) = center of the inconic with perspector X(59459)
X(59460) = pole of the the tripolar of X(59459) with respect to the Steiner inellipse


X(59461) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(6) )

Barycentrics    a*(sqrt(a)+sqrt(b))^2*(sqrt(a)+sqrt(c))^2 : :

X(59461) lies on these lines: {100, 365}

X(59461) = isotomic conjugate of the anticomplement of X(59462)
X(59461) = X(59462)-cross conjugate of-X(2)
X(59461) = X(i)-isoconjugate of-X(j) for these {i, j}: {244, 59439}, {367, 367}, {1015, 59437}, {1111, 59455}, {20527, 20664}
X(59461) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (765, 59437), (1252, 59439), (23990, 59455), (59459, 75)
X(59461) = perspector of the inconic with center X(59462)
X(59461) = barycentric product X(1)*X(59459)
X(59461) = trilinear product X(6)*X(59459)
X(59461) = trilinear quotient X(i)/X(j) for these (i, j): (765, 59439), (1016, 59437), (1110, 59455)


X(59462) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(6) )

Barycentrics    a*((sqrt(a)+sqrt(b))^2*b+(sqrt(a)+sqrt(c))^2*c) : :

X(59462) lies on these lines: {365, 4640}, {3666, 59440}, {29654, 59453}

X(59462) = complement of the isotomic conjugate of X(59461)
X(59462) = crosspoint of X(2) and X(59461)
X(59462) = X(i)-complementary conjugate of-X(j) for these (i, j): (23990, 59438), (59459, 626), (59461, 2887)
X(59462) = center of the inconic with perspector X(59461)
X(59462) = pole of the the tripolar of X(59461) with respect to the Steiner inellipse


X(59463) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(7) )

Barycentrics    (a+b-c)*(a-b+c)*((a-b)^2-c*(a+b)-4*a*b*sin(C/2))*((a-c)^2-b*(a+c)-4*c*a*sin(B/2)) : :

X(59463) lies on these lines: {174, 658}

X(59463) = isotomic conjugate of the anticomplement of X(59464)
X(59463) = X(59464)-cross conjugate of-X(2)
X(59463) = X(i)-Dao conjugate of-X(j) for these (i, j): (223, 10502), (17113, 10489)
X(59463) = X(i)-isoconjugate of-X(j) for these {i, j}: {55, 10502}, {220, 18885}, {1253, 10489}, {16012, 16012}, {24012, 59441}
X(59463) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (57, 10502), (269, 18885), (279, 10489), (10491, 1146), (10501, 3119), (23586, 59441), (59467, 9)
X(59463) = perspector of the inconic with center X(59464)
X(59463) = barycentric product X(i)*X(j) for these {i, j}: {85, 59467}, {1275, 10491}
X(59463) = trilinear product X(i)*X(j) for these {i, j}: {7, 59467}, {7002, 59469}, {7045, 10491}, {10501, 59457}
X(59463) = trilinear quotient X(i)/X(j) for these (i, j): (7, 10502), (279, 18885), (1088, 10489), (10491, 2310), (10501, 3022), (21456, 18887), (24011, 59441)


X(59464) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(7) )

Barycentrics    -4*c*a*(a-b+c)*sin(B/2)-4*a*b*(a+b-c)*sin(C/2)+2*a^3-3*(b+c)*a^2+(b^2-c^2)*(b-c) : :

X(59464) lies on these lines: {174, 10164}, {5542, 15495}, {8090, 21456}, {13405, 16015}

X(59464) = complement of the isotomic conjugate of X(59463)
X(59464) = crosspoint of X(2) and X(59463)
X(59464) = X(i)-complementary conjugate of-X(j) for these (i, j): (59463, 2887), (59467, 1329)
X(59464) = center of the inconic with perspector X(59463)
X(59464) = pole of the the tripolar of X(59463) with respect to the Steiner inellipse


X(59465) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(8) )

Barycentrics    (b*(a+c)+(a-c)^2+4*c*a*sin(B/2))*(c*(a+b)+(a-b)^2+4*a*b*sin(C/2)) : :

X(59465) lies on these lines: {188, 190}

X(59465) = isotomic conjugate of the anticomplement of X(59466)
X(59465) = X(59466)-cross conjugate of-X(2)
X(59465) = X(i)-isoconjugate of-X(j) for these {i, j}: {3248, 59443}, {16011, 16011}
X(59465) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1016, 59443), (7057, 21624), (10504, 1086), (12809, 53538), (52999, 18885), (59469, 57)
X(59465) = perspector of the inconic with center X(59466)
X(59465) = barycentric product X(i)*X(j) for these {i, j}: {312, 59469}, {1016, 10504}
X(59465) = trilinear product X(i)*X(j) for these {i, j}: {8, 59469}, {765, 10504}, {4076, 12809}
X(59465) = trilinear quotient X(i)/X(j) for these (i, j): (7035, 59443), (10504, 244), (12809, 1357)


X(59466) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(8) )

Barycentrics    4*a*b*sin(C/2)+4*a*c*sin(B/2)+(2*a-b-c)*a+(b+c)^2 : :

X(59466) lies on these lines: {10, 236}, {16016, 17355}

X(59466) = complement of the isotomic conjugate of X(59465)
X(59466) = crosspoint of X(2) and X(59465)
X(59466) = X(i)-complementary conjugate of-X(j) for these (i, j): (692, 6728), (1110, 59444), (59465, 2887), (59469, 2886)
X(59466) = center of the inconic with perspector X(59465)
X(59466) = pole of the the tripolar of X(59465) with respect to the Steiner inellipse


X(59467) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(55) )

Barycentrics    a*(b*(a+c)-(a-c)^2+4*a*c*sin(B/2))*(c*(a+b)-(a-b)^2+4*a*b*sin(C/2)) : :

X(59467) lies on these lines: {259, 651}, {260, 8076}

X(59467) = isogonal conjugate of X(10502)
X(59467) = isotomic conjugate of the anticomplement of X(59468)
X(59467) = X(59468)-cross conjugate of-X(2)
X(59467) = X(i)-Dao conjugate of-X(j) for these (i, j): (223, 10489), (478, 18885)
X(59467) = X(i)-isoconjugate of-X(j) for these {i, j}: {9, 18885}, {55, 10489}, {173, 18887}, {177, 16012}, {3022, 59441}, {7707, 7707}, {16016, 18888}
X(59467) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (56, 18885), (57, 10489), (260, 16016), (10491, 4858), (10501, 1146), (59463, 85)
X(59467) = perspector of the inconic with center X(59468)
X(59467) = barycentric product X(i)*X(j) for these {i, j}: {9, 59463}, {1275, 10501}, {4564, 10491}
X(59467) = trilinear product X(i)*X(j) for these {i, j}: {55, 59463}, {59, 10491}, {7045, 10501}
X(59467) = trilinear quotient X(i)/X(j) for these (i, j): (7, 10489), (57, 18885), (258, 18887), (260, 16012), (10491, 11), (10501, 2310), (21456, 21624), (59457, 59441)


X(59468) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(55) )

Barycentrics    a*(-4*a*b^2*sin(C/2)-4*a*c^2*sin(B/2)+(b+c)*a^2-2*(b^2+b*c+c^2)*a+(b^2-c^2)*(b-c)) : :

X(59468) lies on these lines: {}

X(59468) = complement of the isotomic conjugate of X(59467)
X(59468) = crosspoint of X(2) and X(59467)
X(59468) = crosssum of X(6) and X(10502)
X(59468) = X(i)-complementary conjugate of-X(j) for these (i, j): (59463, 17047), (59467, 2887)
X(59468) = center of the inconic with perspector X(59467)
X(59468) = pole of the the tripolar of X(59467) with respect to the Steiner inellipse


X(59469) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(1), X(56) )

Barycentrics    a*(a+b-c)*(a-b+c)*(4*a*b*sin(C/2)+c*(a+b)+(a-b)^2)*(4*a*c*sin(B/2)+b*(a+c)+(a-c)^2) : :

X(59469) lies on these lines: {260, 8076}, {266, 651}

X(59469) = isotomic conjugate of the anticomplement of X(59470)
X(59469) = X(59465)-beth conjugate of-X(59465)
X(59469) = X(59470)-cross conjugate of-X(2)
X(59469) = X(i)-isoconjugate of-X(j) for these {i, j}: {258, 18887}, {3271, 59443}, {15997, 15997}, {16011, 42017}
X(59469) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4564, 59443), (10504, 4858), (12809, 1086), (42622, 18887), (59465, 312)
X(59469) = perspector of the inconic with center X(59470)
X(59469) = barycentric product X(i)*X(j) for these {i, j}: {57, 59465}, {1016, 12809}, {4564, 10504}
X(59469) = trilinear product X(i)*X(j) for these {i, j}: {56, 59465}, {59, 10504}, {765, 12809}, {52999, 59467}
X(59469) = trilinear quotient X(i)/X(j) for these (i, j): (173, 18887), (4998, 59443), (7022, 10489), (10504, 11), (12809, 244), (18886, 21624), (52999, 10502)


X(59470) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(1), X(56) )

Barycentrics    a*(4*(a-b+c)*a*c^2*sin(B/2)+4*(a+b-c)*a*b^2*sin(C/2)+(b+c)*a^3-(b^2+c^2)*a^2-(b+c)*(b^2-4*b*c+c^2)*a+(b^2-c^2)^2) : :

X(59470) lies on these lines: {}

X(59470) = complement of the isotomic conjugate of X(59469)
X(59470) = crosspoint of X(2) and X(59469)
X(59470) = X(59469)-complementary conjugate of-X(2887)
X(59470) = center of the inconic with perspector X(59469)
X(59470) = pole of the the tripolar of X(59469) with respect to the Steiner inellipse


X(59471) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(2), X(7) )

Barycentrics    (a+b-c)*(a-b+c)*(b+2*sqrt(c*a)*sin(B/2))*(c+2*sqrt(a*b)*sin(C/2)) : :

X(59471) lies on these lines: {508, 664}, {4564, 59449}

X(59471) = isotomic conjugate of the anticomplement of X(59472)
X(59471) = X(59472)-cross conjugate of-X(2)
X(59471) = X(3160)-Dao conjugate of-X(5998)
X(59471) = X(41)-isoconjugate of-X(5998)
X(59471) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7, 5998), (1275, 59449), (4998, 55339), (5997, 11), (59473, 8)
X(59471) = perspector of the inconic with center X(59472)
X(59471) = barycentric product X(i)*X(j) for these {i, j}: {7, 59473}, {4998, 5997}
X(59471) = trilinear product X(i)*X(j) for these {i, j}: {57, 59473}, {4564, 5997}
X(59471) = trilinear quotient X(i)/X(j) for these (i, j): (85, 5998), (5997, 2170)


X(59472) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(2), X(7) )

Barycentrics    2*sqrt(a*c)*(a-b+c)*sin(B/2)+2*sqrt(a*b)*(a+b-c)*sin(C/2)+(b+c)*a-(b-c)^2 : :

X(59472) lies on these lines: {9, 508}, {142, 59450}

X(59472) = complement of the isotomic conjugate of X(59471)
X(59472) = crosspoint of X(2) and X(59471)
X(59472) = X(i)-complementary conjugate of-X(j) for these (i, j): (2149, 59451), (24027, 59450), (59471, 2887), (59473, 21244)
X(59472) = center of the inconic with perspector X(59471)
X(59472) = pole of the the tripolar of X(59471) with respect to the Steiner inellipse


X(59473) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(2), X(8) )

Barycentrics    (b+2*sqrt(c*a)*sin(B/2))*(c+2*sqrt(a*b)*sin(C/2)) : :

X(59473) lies on these lines: {190, 55336}, {765, 55339}

X(59473) = isotomic conjugate of X(5998)
X(59473) = X(59474)-cross conjugate of-X(2)
X(59473) = X(2)-Dao conjugate of-X(5998)
X(59473) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 5998}, {3248, 55339}
X(59473) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 5998), (1016, 55339), (4998, 59449), (5997, 1086), (59471, 7)
X(59473) = perspector of the inconic with center X(59474)
X(59473) = barycentric product X(i)*X(j) for these {i, j}: {8, 59471}, {1016, 5997}
X(59473) = trilinear product X(i)*X(j) for these {i, j}: {9, 59471}, {765, 5997}
X(59473) = trilinear quotient X(i)/X(j) for these (i, j): (75, 5998), (5997, 244), (7035, 55339)


X(59474) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(2), X(8) )

Barycentrics    b+c+2*sqrt(a*b)*sin(C/2)+2*sqrt(c*a)*sin(B/2) : :

X(59474) lies on these lines: {1, 55336}, {2, 5998}, {10, 14218}

X(59474) = complement of X(5998)
X(59474) = crosspoint of X(2) and X(59473)
X(59474) = X(i)-complementary conjugate of-X(j) for these (i, j): (1110, 59451), (2149, 59450), (59471, 17046), (59473, 2887)
X(59474) = center of the inconic with perspector X(59473)
X(59474) = pole of the the tripolar of X(59473) with respect to the Steiner inellipse


X(59475) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(7), X(55) )

Barycentrics    (a+b-c)*(a-b+c)*(a^2-(2*b+c)*a+(b-c)*b)^2*(a^2-(b+2*c)*a-(b-c)*c)^2 : :

X(59475) lies on these lines: {85, 6606}, {1170, 42310}, {2346, 14189}, {6666, 32008}, {9441, 10482}, {28058, 57815}

X(59475) = isotomic conjugate of X(6067)
X(59475) = cevapoint of X(i) and X(j) for these {i, j}: {11, 56322}, {2346, 21453}
X(59475) = X(i)-cross conjugate of-X(j) for these (i, j): (11, 56322), (59476, 2)
X(59475) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 6067), (1086, 57252)
X(59475) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 6067}, {142, 20229}, {354, 2293}, {692, 57252}, {1212, 1475}, {1418, 8012}, {1827, 22053}, {2488, 35338}, {17194, 52020}, {18164, 21795}, {21127, 35326}
X(59475) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 6067), (514, 57252), (1170, 354), (1174, 2293), (1803, 22053), (2346, 1212), (6605, 3059), (10482, 8012), (10509, 10481), (21453, 142), (31618, 20880), (32008, 4847), (42311, 59181), (53243, 35326), (56118, 51972), (56255, 21039), (56322, 6362), (57815, 1229), (58322, 21127)
X(59475) = perspector of the inconic with center X(59476)
X(59475) = barycentric product X(i)*X(j) for these {i, j}: {1170, 57815}, {2346, 31618}, {6605, 42311}, {6606, 56322}, {10509, 56118}, {21453, 32008}
X(59475) = trilinear product X(i)*X(j) for these {i, j}: {1170, 32008}, {1174, 31618}, {2346, 21453}, {6605, 10509}, {6606, 58322}, {10482, 42311}
X(59475) = trilinear quotient X(i)/X(j) for these (i, j): (75, 6067), (693, 57252), (1170, 1475), (1174, 20229), (2346, 2293), (6605, 8012), (6606, 35338), (10509, 1418), (21453, 354), (31618, 142), (32008, 1212), (40443, 22053), (42311, 10481), (47487, 22079), (56118, 3059), (56157, 21039), (56255, 21795), (56322, 21127), (57815, 4847), (58322, 2488)


X(59476) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(7), X(55) )

Barycentrics    2*a^5-6*(b+c)*a^4+(5*b^2+8*b*c+5*c^2)*a^3+(b^2-c^2)*(b-c)*a^2-(3*b^2+4*b*c+3*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)^3 : :
X(59476) = 3*X(4995)-X(7676)

X(59476) lies on these lines: {1, 17337}, {2, 480}, {7, 5432}, {9, 6690}, {11, 2346}, {12, 6895}, {37, 59458}, {55, 42356}, {140, 5542}, {142, 3035}, {390, 5068}, {495, 52769}, {498, 954}, {518, 4999}, {528, 3584}, {1001, 1329}, {1155, 41857}, {1445, 17718}, {2886, 6600}, {3036, 31397}, {3058, 7678}, {3711, 10578}, {3740, 5572}, {3911, 58563}, {4995, 7676}, {5218, 8232}, {5223, 7483}, {5433, 11038}, {5686, 24953}, {5703, 38057}, {5719, 30329}, {5762, 31659}, {5850, 58404}, {5851, 29007}, {6691, 38053}, {6745, 58634}, {6887, 12260}, {7677, 15888}, {8164, 43161}, {8236, 54361}, {9440, 17245}, {10056, 19536}, {10175, 18527}, {11018, 58635}, {11025, 37703}, {11277, 13159}, {14100, 52638}, {14526, 17768}, {15298, 17437}, {15837, 21617}, {17045, 24980}, {29571, 30621}, {38204, 47742}, {38316, 51784}, {38472, 58472}

X(59476) = midpoint of X(15837) and X(21617)
X(59476) = complement of X(6067)
X(59476) = crosspoint of X(2) and X(59475)
X(59476) = X(59475)-complementary conjugate of-X(2887)
X(59476) = center of the inconic with perspector X(59475)
X(59476) = pole of the line {6603, 58433} with respect to the circumhyperbola dual of Yff parabola
X(59476) = pole of the the tripolar of X(59475) with respect to the Steiner inellipse


X(59477) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(7), X(56) )

Barycentrics    2*a^3+2*(b+c)*a^2+(3*b^2-4*b*c+3*c^2)*a+(b^2-c^2)*(b-c) : :

X(59477) lies on these lines: {1, 49732}, {2, 6057}, {11, 33150}, {244, 14757}, {528, 7191}, {614, 49736}, {982, 17366}, {1086, 29821}, {1125, 58381}, {1386, 24177}, {1834, 53619}, {2886, 4000}, {3035, 3752}, {3589, 24165}, {3672, 8167}, {3740, 4353}, {3741, 4395}, {3742, 3946}, {3755, 4906}, {3756, 33135}, {3816, 19785}, {3826, 17599}, {4003, 26723}, {4061, 51003}, {4682, 24175}, {4697, 24200}, {4703, 49741}, {4719, 11281}, {4850, 6690}, {4854, 7292}, {4999, 16579}, {5256, 25557}, {5272, 17301}, {5573, 17051}, {5846, 24169}, {5852, 32911}, {5855, 54315}, {6667, 33133}, {7263, 25496}, {11019, 59458}, {15253, 26740}, {17017, 40688}, {17024, 34612}, {17070, 24239}, {17123, 17246}, {17245, 17600}, {17395, 26102}, {19862, 50052}, {28556, 32930}, {29644, 34824}, {29653, 40480}, {29683, 43055}, {32861, 48632}, {32946, 48631}, {33143, 37663}, {33147, 37662}, {33152, 51415}, {44419, 50023}, {45310, 50103}

X(59477) = complement of X(6057)
X(59477) = complementary conjugate of the complement of X(7341)
X(59477) = crosspoint of X(2) and X(552)
X(59477) = crosssum of X(6) and X(7064)
X(59477) = X(i)-complementary conjugate of-X(j) for these (i, j): (269, 34829), (552, 2887), (593, 3452), (604, 6537), (757, 1329), (763, 21246), (849, 9), (1014, 3454), (1101, 3039), (1333, 38930), (1357, 24040), (1408, 1213), (1412, 1211), (1414, 31946), (1434, 21245), (1509, 21244), (2150, 6554), (4556, 20317), (4565, 4129), (7203, 125), (7341, 10), (7342, 37), (16947, 16589), (17096, 21253), (24041, 3038), (57181, 6627)
X(59477) = center of the inconic with perspector X(552)
X(59477) = pole of the line {6537, 38930} with respect to the circumhyperbola dual of Yff parabola
X(59477) = pole of the line {17096, 30724} with respect to the Steiner inellipse


X(59478) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(8), X(56) )

Barycentrics    (a+b-c)*(a-b+c)*(a^2+(b-2*c)*a+c*(b+c))^2*(a^2-(2*b-c)*a+b*(b+c))^2 : :

X(59478) lies on these lines: {1222, 9364}, {1476, 5205}, {3451, 52549}, {8706, 44720}, {10106, 40420}

X(59478) = isotomic conjugate of the anticomplement of X(59479)
X(59478) = cevapoint of X(i) and X(j) for these {i, j}: {145, 2975}, {1222, 1476}
X(59478) = X(59479)-cross conjugate of-X(2)
X(59478) = X(i)-isoconjugate of-X(j) for these {i, j}: {1201, 3057}, {1828, 22072}, {2347, 3752}, {3452, 20228}, {6615, 23845}, {18163, 21796}
X(59478) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1222, 3452), (1476, 3752), (3451, 1201), (8706, 25268), (23617, 3057), (32017, 20895), (40420, 3663), (51476, 2347), (52549, 6736), (56173, 4415), (56190, 21809), (56258, 21031), (56323, 21120)
X(59478) = perspector of the inconic with center X(59479)
X(59478) = barycentric product X(i)*X(j) for these {i, j}: {1222, 40420}, {1476, 32017}
X(59478) = trilinear product X(i)*X(j) for these {i, j}: {1222, 1476}, {3451, 32017}, {23617, 40420}
X(59478) = trilinear quotient X(i)/X(j) for these (i, j): (1222, 3057), (1476, 1201), (3451, 20228), (23617, 2347), (32017, 3452), (40420, 3752), (40446, 1828), (56173, 4642), (56258, 21809), (56323, 6615)


X(59479) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(8), X(56) )

Barycentrics    2*a^5-2*(b+c)*a^4+(b^2+8*b*c+c^2)*a^3+(b+c)*(b^2-6*b*c+c^2)*a^2-(3*b^2-8*b*c+3*c^2)*(b+c)^2*a+(b^2-c^2)^2*(b+c) : :

X(59479) lies on these lines: {9, 8256}, {37, 3035}, {198, 15813}, {346, 1376}, {1766, 57288}, {2345, 2886}, {3731, 37828}, {4534, 23617}, {5836, 17355}, {15849, 54283}, {17243, 24334}, {17281, 49732}, {49736, 54359}

X(59479) = complement of the isotomic conjugate of X(59478)
X(59479) = crosspoint of X(2) and X(59478)
X(59479) = X(59478)-complementary conjugate of-X(2887)
X(59479) = center of the inconic with perspector X(59478)
X(59479) = pole of the the tripolar of X(59478) with respect to the Steiner inellipse


X(59480) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( PU(1) )

Barycentrics    a^2*(b*a+c^2)^2*(c*a+b^2)^2 : :

X(59480) lies on these lines: {1, 694}, {8, 52651}, {172, 41882}, {256, 1107}, {257, 350}, {893, 1193}, {904, 1914}, {960, 3783}, {1432, 3863}, {1909, 40849}, {2176, 40729}, {2269, 16514}, {2276, 45240}, {3721, 52135}, {17493, 40099}, {18759, 51318}, {21008, 29055}, {26752, 27805}, {26801, 32010}, {40935, 57265}

X(59480) = isogonal conjugate of X(6645)
X(59480) = isotomic conjugate of the anticomplement of X(59481)
X(59480) = crosssum of X(17752) and X(27954)
X(59480) = X(i)-cross conjugate of-X(j) for these (i, j): (18786, 694), (59481, 2)
X(59480) = X(i)-Dao conjugate of-X(j) for these (i, j): (39029, 27982), (39092, 30669)
X(59480) = X(17493)-hirst inverse of-X(40099)
X(59480) = X(i)-isoconjugate of-X(j) for these {i, j}: {85, 10799}, {171, 894}, {172, 1909}, {256, 7369}, {291, 27982}, {385, 18787}, {1016, 7207}, {1580, 30669}, {1920, 7122}, {2295, 17103}, {2329, 7176}, {2330, 7196}, {3023, 4564}, {3287, 6649}, {4027, 30663}, {4367, 18047}, {4369, 4579}, {7081, 7175}, {7188, 17743}, {8033, 20964}, {40098, 51903}, {40745, 40790}
X(59480) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (172, 7369), (256, 1909), (257, 1920), (694, 30669), (893, 894), (904, 171), (1178, 17103), (1431, 7176), (1432, 7196), (1914, 27982), (1967, 18787), (2175, 10799), (3248, 7207), (3271, 3023), (3863, 7187), (7032, 7188), (7104, 172), (7249, 7205), (17493, 3978), (18786, 1966), (29055, 6649), (30643, 18891), (30658, 239), (40099, 76), (40432, 8033), (40729, 2295), (41517, 40098), (51328, 4027), (52651, 3963), (55018, 4998)
X(59480) = barycentric square of X(256)
X(59480) = perspector of the inconic with center X(59481)
X(59480) = barycentric product X(i)*X(j) for these {i, j}: {6, 40099}, {11, 55018}, {257, 893}, {335, 30658}, {694, 17493}, {904, 7018}, {1431, 4451}, {1581, 18786}, {1911, 30643}, {4366, 41517}, {7104, 44187}, {40432, 52651}
X(59480) = trilinear product X(i)*X(j) for these {i, j}: {31, 40099}, {256, 893}, {257, 904}, {291, 30658}, {694, 18786}, {1178, 52651}, {1922, 30643}, {1967, 17493}, {2170, 55018}, {7018, 7104}, {8300, 41517}, {32010, 40729}
X(59480) = trilinear quotient X(i)/X(j) for these (i, j): (41, 10799), (171, 7369), (238, 27982), (256, 894), (257, 1909), (694, 18787), (893, 171), (904, 172), (1015, 7207), (1431, 7175), (1432, 7176), (1581, 30669), (2170, 3023), (2275, 7188), (3863, 7184), (3865, 7187), (3903, 18047), (4451, 17787), (4496, 7244), (7018, 1920)


X(59481) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( PU(1) )

Barycentrics    a^2*((b^4+c^4)*a^2+2*(b+c)*b^2*c^2*a+b^2*c^2*(b^2+c^2)) : :

X(59481) lies on these lines: {2, 1221}, {9, 39}, {37, 17793}, {256, 7168}, {1084, 17045}, {2092, 16514}, {2276, 53676}, {3117, 17257}, {3229, 4357}, {4364, 8265}, {4657, 6375}, {6377, 17302}, {16584, 28366}

X(59481) = complement of the isotomic conjugate of X(59480)
X(59481) = crosspoint of X(2) and X(59480)
X(59481) = crosssum of X(6) and X(6645)
X(59481) = X(i)-complementary conjugate of-X(j) for these (i, j): (1927, 1966), (7104, 51575), (30658, 20542), (40099, 21235), (59480, 2887)
X(59481) = center of the inconic with perspector X(59480)
X(59481) = pole of the the tripolar of X(59480) with respect to the Steiner inellipse


X(59482) = PERSPECTOR OF THESE TRIANGLES: ABC AND PERSPECTORS OF LATERAL-INELLIPSES OF ( X(3), X(4) )

Barycentrics    (a+b)^2*(a+c)^2*(-a+b+c)^2*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

Note: Only for acute ABC.

X(59482) lies on these lines: {1, 648}, {2, 36419}, {3, 57669}, {4, 25446}, {8, 6061}, {10, 447}, {21, 243}, {27, 1842}, {28, 242}, {29, 270}, {60, 52914}, {69, 7498}, {86, 44698}, {92, 13739}, {107, 11101}, {110, 39440}, {112, 17911}, {125, 54125}, {132, 7379}, {162, 11109}, {185, 37142}, {225, 415}, {232, 19312}, {250, 3109}, {264, 405}, {281, 2189}, {297, 49728}, {318, 1793}, {340, 49716}, {393, 13736}, {409, 1940}, {410, 1935}, {416, 22341}, {811, 18140}, {823, 6912}, {1010, 40411}, {1012, 52578}, {1043, 2322}, {1092, 7531}, {1093, 3560}, {1105, 13734}, {1125, 52954}, {1724, 36794}, {1789, 17515}, {1792, 4183}, {1968, 4195}, {1974, 37055}, {2074, 41013}, {2723, 59041}, {3562, 53044}, {5278, 40395}, {7054, 36421}, {7058, 51978}, {7270, 52412}, {7513, 17277}, {8747, 11110}, {13725, 17907}, {13743, 34334}, {13745, 37765}, {14006, 54396}, {15014, 50164}, {15466, 37228}, {17569, 40835}, {18679, 26117}, {18747, 52248}, {18750, 56374}, {19285, 57831}, {19783, 40138}, {23582, 37045}, {23999, 52240}, {24570, 46927}, {25986, 49745}, {30716, 47270}, {35474, 48939}, {37028, 53050}, {41204, 48894}, {44330, 50054}

X(59482) = isogonal conjugate of X(1425)
X(59482) = polar conjugate of X(6354)
X(59482) = isotomic conjugate of X(6356)
X(59482) = cevapoint of X(i) and X(j) for these {i, j}: {3, 3562}, {21, 29}, {28, 44698}, {1146, 21789}, {2322, 4183}, {2968, 7253}, {17926, 42069}
X(59482) = crosssum of X(i) and X(j) for these {i, j}: {3269, 55230}, {20975, 55234}
X(59482) = X(i)-Ceva conjugate of-X(j) for these (i, j): (23999, 648), (44181, 52919), (57779, 46103)
X(59482) = X(i)-cross conjugate of-X(j) for these (i, j): (21, 1098), (1021, 648), (2326, 46103), (2968, 7253), (4183, 2326), (7054, 7058), (8021, 2287), (40616, 15411), (42069, 17926), (59483, 2)
X(59482) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 201), (2, 6356), (9, 37755), (442, 41393), (521, 2972), (522, 125), (656, 2632), (905, 1367), (1146, 57243), (1249, 6354), (1834, 21671), (2968, 4064), (3160, 20618), (3161, 26942), (3239, 15526), (4000, 21015), (5452, 2197), (6552, 3695), (6600, 3690), (6626, 56382), (7358, 57109), (7952, 12), (11517, 7066), (13999, 51663), (14714, 55230), (17115, 20975), (21172, 122), (23050, 756), (24771, 3949), (34961, 23067), (35508, 55232), (36033, 7138), (36103, 1254), (36830, 52610), (38966, 4705), (38991, 55234), (39052, 1020), (39062, 4566), (40582, 1214), (40589, 52373), (40592, 1439), (40596, 53321), (40602, 73), (40605, 307), (40625, 17094), (40837, 6046), (55067, 51664), (55068, 656)
X(59482) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 1254}, {4, 7138}, {6, 37755}, {10, 1410}, {12, 603}, {31, 6356}, {34, 7066}, {37, 52373}, {41, 20618}, {42, 1439}, {48, 6354}, {56, 201}, {57, 2197}, {65, 73}, {71, 1427}, {72, 1042}, {77, 181}, {78, 7143}, {125, 24027}, {212, 6046}, {213, 56382}, {219, 7147}, {222, 2171}, {225, 22341}, {226, 1409}, {228, 3668}, {269, 3690}, {307, 1402}, {594, 7099}, {604, 26942}, {647, 1020}, {651, 55234}, {656, 53321}, {661, 52610}, {756, 7053}, {810, 4566}, {822, 52607}, {872, 7056}, {934, 55230}, {1106, 3695}, {1214, 1400}, {1262, 3708}, {1397, 57807}, {1398, 52387}, {1407, 3949}, {1415, 57243}, {1426, 3682}, {1435, 52386}, {1446, 2200}, {1461, 55232}
X(59482) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (1, 37755), (2, 6356), (4, 6354), (7, 20618), (8, 26942), (9, 201), (19, 1254), (21, 1214), (27, 3668), (28, 1427), (29, 226), (33, 2171), (34, 7147), (48, 7138), (55, 2197), (58, 52373), (60, 222), (81, 1439), (86, 56382), (107, 52607), (110, 52610), (112, 53321), (162, 1020), (189, 6355), (200, 3949), (219, 7066), (220, 3690), (250, 1262), (261, 348), (270, 57), (278, 6046), (281, 12), (283, 40152), (284, 73), (285, 52037), (286, 1446), (312, 57807), (314, 1231), (318, 6358), (332, 52565), (333, 307), (341, 52369), (346, 3695), (522, 57243), (552, 30682), (593, 7053), (607, 181), (608, 7143), (648, 4566), (657, 55230)
X(59482) = trilinear pole of the line {7253, 15146} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59482) = inverse Mimosa transform of X(412)
X(59482) = perspector of the inconic with center X(59483)
X(59482) = pole of the line {4705, 51663} with respect to the polar circle
X(59482) = pole of the line {73, 228} with respect to the Stammler hyperbola
X(59482) = pole of the line {72, 307} with respect to the Steiner-Wallace hyperbola
X(59482) = barycentric product X(i)*X(j) for these {i, j}: {4, 7058}, {8, 46103}, {9, 57779}, {21, 31623}, {27, 1043}, {29, 333}, {33, 52379}, {60, 7017}, {69, 36421}, {75, 2326}, {86, 2322}, {92, 1098}, {99, 17926}, {107, 15411}, {249, 21666}, {250, 23978}, {261, 281}, {264, 7054}, {270, 312}, {274, 4183}
X(59482) = trilinear product X(i)*X(j) for these {i, j}: {2, 2326}, {4, 1098}, {8, 270}, {9, 46103}, {19, 7058}, {21, 29}, {27, 2287}, {28, 1043}, {33, 261}, {55, 57779}, {60, 318}, {63, 36421}, {81, 2322}, {86, 4183}, {92, 7054}, {107, 57081}, {162, 7253}, {250, 24026}, {273, 6061}, {274, 2332}
X(59482) = trilinear quotient X(i)/X(j) for these (i, j): (2, 37755), (3, 7138), (4, 1254), (8, 201), (9, 2197), (21, 73), (27, 1427), (28, 1042), (29, 65), (33, 181), (34, 7143), (58, 1410), (60, 603), (75, 6356), (78, 7066), (81, 52373), (85, 20618), (86, 1439), (92, 6354), (162, 53321)


X(59483) = PERSPECTOR OF THESE TRIANGLES: MEDIAL AND CENTERS OF LATERAL-INELLIPSES OF ( X(3), X(4) )

Barycentrics    (-a+b+c)^2*(2*a^6+2*(b+c)*a^5-(b^2-4*b*c+c^2)*a^4-2*(b^2-c^2)*(b-c)*a^3-2*(b^2+3*b*c+c^2)*(b-c)^2*a^2-4*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)^2*(b-c)^2) : :

Note: Only for acute ABC.

X(59483) lies on these lines: {2, 1119}, {3, 281}, {5, 9}, {19, 8727}, {37, 15252}, {63, 10400}, {142, 40535}, {268, 3560}, {282, 18443}, {284, 1146}, {610, 5787}, {942, 9119}, {1100, 52948}, {1826, 20420}, {1901, 8558}, {2322, 2968}, {2324, 37696}, {3197, 33899}, {3739, 5745}, {4357, 44334}, {4422, 14767}, {4657, 20204}, {5273, 7522}, {5514, 7110}, {6554, 7535}, {6644, 15817}, {6675, 37565}, {6825, 15831}, {6826, 55116}, {7079, 8728}, {7532, 27382}, {16608, 56552}, {17045, 23583}, {17257, 52251}, {20226, 37523}, {20262, 51755}, {20263, 55108}, {30412, 55892}, {30413, 55887}, {34231, 38292}, {36011, 40616}, {46835, 54405}

X(59483) = complement of X(6356)
X(59483) = crosspoint of X(2) and X(59482)
X(59483) = crosssum of X(6) and X(1425)
X(59483) = X(i)-complementary conjugate of-X(j) for these (i, j): (33, 34829), (60, 34822), (270, 2886), (284, 18642), (1021, 127), (1098, 1368), (1172, 17052), (1333, 18643), (1474, 18635), (2150, 17073), (2185, 18639), (2189, 142), (2194, 18641), (2203, 1834), (2204, 17056), (2299, 442), (2322, 21245), (2326, 141), (2328, 21530), (2332, 1211), (4183, 3454), (6061, 34823), (7054, 18589), (17926, 21253), (21789, 34846), (23609, 34851), (32676, 656), (36421, 20305), (46103, 17046), (52914, 17072), (57081, 55069), (57134, 122), (57655, 24025), (57657, 18592), (57779, 17047), (59482, 2887)
X(59483) = center of the inconic with perspector X(59482)
X(59483) = pole of the line {1834, 18643} with respect to the circumhyperbola dual of Yff parabola
X(59483) = pole of the line {7253, 15146} with respect to the Steiner inellipse


X(59484) = (name pending)

Barycentrics    -4*(2*a^12-2*(b^2+c^2)*a^10-(b^4-4*b^2*c^2+c^4)*a^8-4*(b^4-c^4)*(b^2-c^2)*a^6+8*(b^6-c^6)*(b^2-c^2)*a^4-2*(b^4-c^4)^2*(b^2+c^2)*a^2-(b^4+c^4)*(b^2-c^2)^4)*S*sqrt(S^2-12*R^2*SW+48*R^4)+4*a^16-6*(b^2+c^2)*a^14-(11*b^4-34*b^2*c^2+11*c^4)*a^12+2*(b^2+c^2)*(14*b^4-29*b^2*c^2+14*c^4)*a^10-(b^2-c^2)^2*(21*b^4+76*b^2*c^2+21*c^4)*a^8+2*(b^4-c^4)*(b^2-c^2)*(5*b^4+24*b^2*c^2+5*c^4)*a^6-(b^2-c^2)^2*(5*b^8+5*c^8+2*(2*b^4+23*b^2*c^2+2*c^4)*b^2*c^2)*a^4-2*(b^4-c^4)*(b^2-c^2)^3*b^2*c^2*a^2+(b^4+c^4)*(b^2-c^2)^6 : :   (César E. Lozada - October 10, 2023)

X(59484) lies on the cubics K001, K1349, the curve Q171 and these lines: {112, 376}


X(59485) = (name pending)

Barycentrics    4*(2*a^12-2*(b^2+c^2)*a^10-(b^4-4*b^2*c^2+c^4)*a^8-4*(b^4-c^4)*(b^2-c^2)*a^6+8*(b^6-c^6)*(b^2-c^2)*a^4-2*(b^4-c^4)^2*(b^2+c^2)*a^2-(b^4+c^4)*(b^2-c^2)^4)*S*sqrt(S^2-12*R^2*SW+48*R^4)+4*a^16-6*(b^2+c^2)*a^14-(11*b^4-34*b^2*c^2+11*c^4)*a^12+2*(b^2+c^2)*(14*b^4-29*b^2*c^2+14*c^4)*a^10-(b^2-c^2)^2*(21*b^4+76*b^2*c^2+21*c^4)*a^8+2*(b^4-c^4)*(b^2-c^2)*(5*b^4+24*b^2*c^2+5*c^4)*a^6-(b^2-c^2)^2*(5*b^8+5*c^8+2*(2*b^4+23*b^2*c^2+2*c^4)*b^2*c^2)*a^4-2*(b^4-c^4)*(b^2-c^2)^3*b^2*c^2*a^2+(b^4+c^4)*(b^2-c^2)^6 : :   (César E. Lozada - October 10, 2023)

X(59485) lies on the cubics K001, K1349, the curve Q171 and these lines: {112, 376}


X(59486) = X(1)X(88)∩X(513)X(46779)

Barycentrics    a*(a - b)*(a + b - 2*c)*(a - c)*(a - 2*b + c)*(a^2*b - 2*a*b^2 + a^2*c + b^2*c - 2*a*c^2 + b*c^2) : :

X(59486) lies on the cubic K635 and these lines: {1, 88}, {513, 46779}, {660, 876}, {898, 901}, {1022, 1026}, {2403, 53358}, {4555, 4618}, {4582, 53340}, {4585, 39154}, {4591, 17944}, {9272, 23832}, {36848, 56811}, {39185, 57456}

X(59486) = X(i)-isoconjugate of X(j) for these (i,j): {649, 46797}, {900, 2382}, {1960, 18822}
X(59486) = X(i)-Dao conjugate of X(j) for these (i,j): {5375, 46797}, {35123, 3762}
X(59486) = crossdifference of every pair of points on line {1635, 38979}
X(59486) = barycentric product X(i)*X(j) for these {i,j}: {88, 56811}, {100, 46795}, {537, 3257}, {4555, 20331}, {5376, 36848}
X(59486) = barycentric quotient X(i)/X(j) for these {i,j}: {100, 46797}, {537, 3762}, {3257, 18822}, {20331, 900}, {32665, 2382}, {46795, 693}, {52745, 1647}, {56811, 4358}
X(59486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {901, 5376, 3573}, {23343, 23345, 3257}


X(59487) = X(1)X(659)∩X(513)X(16507)

Barycentrics    a*(2*a - b - c)*(b - c)*(a^2*b + a*b^2 - 2*a^2*c - 2*b^2*c + a*c^2 + b*c^2)*(2*a^2*b - a*b^2 - a^2*c - b^2*c - a*c^2 + 2*b*c^2) : :

X(59487) lies on the cubic K6355 and these lines: {1, 659}, {44, 14437}, {513, 16507}, {519, 3251}, {679, 23345}, {765, 3573}, {876, 8661}, {900, 36872}, {902, 38349}, {2382, 2718}, {14637, 16495}, {18822, 47070}

X(59487) = X(i)-isoconjugate of X(j) for these (i,j): {101, 46795}, {106, 56811}, {537, 901}, {3257, 20331}, {5376, 52745}, {9268, 36848}
X(59487) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 56811}, {1015, 46795}, {38979, 537}, {55055, 20331}
X(59487) = trilinear pole of line {1635, 38979}
X(59487) = barycentric product X(i)*X(j) for these {i,j}: {513, 46797}, {1635, 18822}, {2382, 3762}, {36872, 46782}
X(59487) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 56811}, {513, 46795}, {1635, 537}, {1960, 20331}, {2087, 36848}, {2382, 3257}, {36872, 46780}, {46782, 52755}, {46797, 668}, {52226, 27922}


X(59488) = X(1)X(8632)∩X(239)X(27930)

Barycentrics    a*(b - c)*(a^2 - b*c)*(a^3*b + a*b^3 - a^3*c - a^2*b*c - a*b^2*c - b^3*c + 2*a*b*c^2)*(a^3*b - a^3*c + a^2*b*c - 2*a*b^2*c + a*b*c^2 - a*c^3 + b*c^3) : :

X(59488) lies on the cubic K635 and these lines: {1, 8632}, {239, 27930}, {876, 23355}, {1016, 3573}, {4491, 39971}, {9111, 14665}, {24286, 35172}, {43929, 52030}

X(59488) = X(813)-isoconjugate of X(9055)
X(59488) = X(40623)-Dao conjugate of X(9055)
X(59488) = trilinear pole of line {659, 40623}
X(59488) = barycentric product X(i)*X(j) for these {i,j}: {659, 35172}, {3766, 9111}
X(59488) = barycentric quotient X(i)/X(j) for these {i,j}: {659, 9055}, {9111, 660}, {35172, 4583}


X(59489) = X(1)X(665)∩X(85)X(3766)

Barycentrics    a*(b - c)*(a*b - b^2 + a*c - c^2)*(a^2*b^2 - a*b^3 + a^3*c - a^2*b*c + 2*a*b^2*c - b^3*c - 2*a^2*c^2 - a*b*c^2 + b^2*c^2 + a*c^3)*(a^3*b - 2*a^2*b^2 + a*b^3 - a^2*b*c - a*b^2*c + a^2*c^2 + 2*a*b*c^2 + b^2*c^2 - a*c^3 - b*c^3) : :

X(59489) lies on the cubic K635 and these lines: {1, 665}, {85, 3766}, {514, 3675}, {876, 885}, {900, 27475}, {2283, 3573}, {2424, 9503}, {3126, 3912}, {17758, 24287}, {39273, 47329}

X(59489) = X(101)-isoconjugate of X(51929)
X(59489) = X(1015)-Dao conjugate of X(51929)
X(59489) = trilinear pole of line {2254, 35505}
X(59489) = barycentric product X(2254)*X(35167)
X(59489) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 51929}, {35167, 51560}


X(59490) = X(1)X(1358)∩X(3)X(15728)

Barycentrics    (a + b - c)*(a - b + c)*(2*a^5 - 4*a^4*b - a^3*b^2 + 5*a^2*b^3 - a*b^4 - b^5 - 4*a^4*c + 12*a^3*b*c - 7*a^2*b^2*c + 4*a*b^3*c + 3*b^4*c - a^3*c^2 - 7*a^2*b*c^2 - 6*a*b^2*c^2 - 2*b^3*c^2 + 5*a^2*c^3 + 4*a*b*c^3 - 2*b^2*c^3 - a*c^4 + 3*b*c^4 - c^5) : :

X(59490) lies on these lines: {1, 1358}, {3, 15728}, {7, 10609}, {279, 14260}, {952, 40615}, {3321, 3361}, {6790, 35160}, {10246, 40154}, {34578, 40617}, {37544, 52823}, {43057, 53538}


X(59491) = X(2)X(7)∩X(10)X(36)

Barycentrics    2*a^3 - a^2*b - 2*a*b^2 + b^3 - a^2*c + 2*a*b*c - b^2*c - 2*a*c^2 - b*c^2 + c^3 : :

X(59491) lies on these lines: {1, 6910}, {2, 7}, {3, 3419}, {4, 4652}, {5, 3916}, {8, 3523}, {10, 36}, {11, 4640}, {20, 6705}, {21, 1210}, {31, 24239}, {35, 10916}, {37, 37634}, {40, 6890}, {44, 37663}, {46, 26363}, {55, 26015}, {56, 24987}, {65, 4999}, {72, 140}, {78, 631}, {79, 31262}, {81, 18646}, {84, 6838}, {85, 56062}, {88, 24175}, {92, 8756}, {95, 306}, {100, 4847}, {101, 34932}, {145, 13384}, {149, 24386}, {165, 3434}, {171, 29639}, {189, 56201}, {191, 21616}, {210, 3035}, {214, 51113}, {224, 8726}, {283, 3075}, {312, 3977}, {321, 20879}, {333, 662}, {349, 29477}, {354, 6690}, {377, 5705}, {392, 15325}, {411, 6245}, {442, 37582}, {452, 5704}, {474, 5791}, {497, 35258}, {499, 12514}, {516, 11680}, {518, 5432}, {519, 37525}, {549, 5440}, {551, 5425}, {748, 5121}, {914, 1150}, {936, 6921}, {940, 55399}, {942, 7483}, {946, 5180}, {950, 4189}, {956, 6735}, {958, 1470}, {960, 5433}, {982, 3011}, {988, 5230}, {993, 1737}, {1001, 17728}, {1040, 2000}, {1054, 33138}, {1071, 52265}, {1125, 3869}, {1145, 50821}, {1155, 2886}, {1214, 16586}, {1376, 25006}, {1427, 43056}, {1465, 18607}, {1466, 37228}, {1468, 5530}, {1473, 19544}, {1490, 6962}, {1512, 22758}, {1621, 11019}, {1656, 58798}, {1697, 10529}, {1698, 3436}, {1699, 44447}, {1738, 24892}, {1748, 1848}, {1770, 25639}, {1788, 19860}, {1789, 34301}, {1816, 14058}, {1861, 35994}, {1959, 17023}, {1998, 10383}, {2321, 33168}, {2346, 41573}, {2364, 4700}, {2476, 4292}, {2478, 31424}, {2646, 41575}, {2999, 24597}, {3008, 24598}, {3052, 17721}, {3086, 5250}, {3177, 27318}, {3220, 35996}, {3244, 5559}, {3336, 12609}, {3337, 51706}, {3338, 10198}, {3522, 5175}, {3525, 3951}, {3526, 3927}, {3550, 29676}, {3554, 5256}, {3579, 24390}, {3589, 43216}, {3601, 12649}, {3612, 49168}, {3616, 11529}, {3624, 12526}, {3634, 11681}, {3647, 3825}, {3649, 31260}, {3660, 58648}, {3663, 33133}, {3666, 8609}, {3674, 27187}, {3677, 26228}, {3681, 6745}, {3683, 3816}, {3686, 5361}, {3697, 47742}, {3707, 16554}, {3740, 17615}, {3746, 49627}, {3752, 16585}, {3755, 33142}, {3772, 17595}, {3812, 24953}, {3813, 37568}, {3817, 5057}, {3822, 4973}, {3828, 34637}, {3838, 11246}, {3840, 11688}, {3868, 13411}, {3870, 5218}, {3872, 5657}, {3873, 13405}, {3874, 58404}, {3876, 6700}, {3877, 44675}, {3878, 53615}, {3879, 37639}, {3893, 32157}, {3895, 34625}, {3912, 33113}, {3914, 17596}, {3940, 5054}, {3976, 28027}, {3984, 10303}, {4001, 4417}, {4003, 17061}, {4018, 37737}, {4028, 32919}, {4035, 27757}, {4054, 32939}, {4138, 33067}, {4187, 31445}, {4188, 57284}, {4192, 22060}, {4193, 12572}, {4197, 12436}, {4220, 7293}, {4297, 5086}, {4304, 17549}, {4358, 56078}, {4359, 14213}, {4383, 55400}, {4384, 24580}, {4392, 29665}, {4414, 24210}, {4416, 5741}, {4421, 4863}, {4468, 10196}, {4511, 10165}, {4641, 37662}, {4650, 17717}, {4669, 12531}, {4850, 40940}, {4853, 9588}, {4861, 11362}, {4867, 5444}, {4880, 37701}, {4917, 6764}, {4995, 51463}, {4996, 10265}, {5044, 13747}, {5047, 9843}, {5080, 10175}, {5119, 45700}, {5122, 11112}, {5123, 34606}, {5204, 5794}, {5221, 28628}, {5252, 11194}, {5260, 8582}, {5265, 18231}, {5267, 10572}, {5271, 6350}, {5281, 36845}, {5285, 37449}, {5288, 10915}, {5290, 10585}, {5291, 31398}, {5314, 19649}, {5329, 32916}, {5372, 33077}, {5393, 55397}, {5405, 55398}, {5439, 6675}, {5483, 17012}, {5552, 31423}, {5698, 10589}, {5703, 11520}, {5709, 6833}, {5715, 6860}, {5719, 24473}, {5720, 6880}, {5722, 16370}, {5728, 41576}, {5770, 6954}, {5775, 54445}, {5795, 25005}, {5847, 29849}, {5880, 31245}, {5886, 51423}, {6224, 51705}, {6260, 6960}, {6282, 6966}, {6681, 10176}, {6687, 41772}, {6691, 18253}, {6703, 41850}, {6762, 10528}, {6763, 21077}, {6827, 21165}, {6831, 37623}, {6834, 7330}, {6852, 55108}, {6853, 26877}, {6857, 54392}, {6862, 37532}, {6863, 24467}, {6871, 9579}, {6872, 9581}, {6889, 37534}, {6891, 55104}, {6905, 51755}, {6912, 7682}, {6925, 52027}, {6933, 9612}, {6958, 26921}, {6977, 37531}, {6988, 10884}, {7085, 16434}, {7280, 17647}, {7288, 19861}, {7676, 24389}, {8056, 15474}, {8227, 11415}, {8666, 10039}, {9316, 25885}, {9352, 33108}, {9578, 20076}, {9780, 17580}, {9840, 22344}, {9945, 12100}, {10167, 13226}, {10440, 56878}, {10479, 36000}, {10609, 17502}, {10707, 51783}, {11010, 49600}, {11012, 12616}, {11064, 58460}, {11230, 51409}, {11231, 17757}, {11240, 31393}, {11269, 17594}, {11350, 15509}, {11679, 17740}, {11683, 16706}, {11684, 19862}, {11691, 58440}, {12610, 16566}, {13243, 41561}, {13388, 55877}, {13389, 55876}, {13478, 24595}, {13731, 22345}, {14206, 24589}, {14555, 26871}, {14923, 43174}, {15228, 31159}, {15481, 31235}, {15844, 47516}, {15950, 44663}, {16465, 17603}, {16579, 26740}, {16602, 43055}, {16606, 27433}, {16778, 31330}, {17056, 37520}, {17074, 22128}, {17080, 34050}, {17126, 29680}, {17234, 58410}, {17292, 56883}, {17367, 56882}, {17495, 18662}, {17591, 29658}, {17593, 33135}, {17601, 33141}, {17605, 17768}, {17606, 57288}, {17715, 49989}, {17724, 21342}, {17776, 30567}, {18139, 24593}, {18141, 26872}, {18201, 33130}, {18229, 19822}, {18235, 30979}, {18750, 46752}, {19522, 22449}, {20075, 24392}, {20106, 33172}, {20557, 29827}, {20940, 52421}, {21073, 24047}, {21075, 27529}, {21370, 24611}, {21956, 31443}, {22027, 44311}, {22129, 34048}, {22276, 50362}, {23205, 37331}, {23831, 25377}, {24177, 33129}, {24231, 33127}, {24320, 37366}, {24391, 34772}, {24564, 25524}, {24603, 24612}, {24624, 40592}, {24789, 31187}, {24929, 37298}, {25466, 32636}, {25722, 43151}, {25734, 56084}, {25737, 31271}, {25957, 50752}, {26006, 31225}, {26364, 41229}, {26575, 31039}, {26593, 31020}, {26889, 37527}, {26893, 37521}, {27473, 27492}, {28606, 39595}, {28808, 56082}, {29598, 51304}, {29657, 37604}, {29683, 46901}, {29845, 50290}, {29846, 49511}, {29872, 33086}, {30625, 58442}, {30768, 33174}, {30818, 44416}, {31157, 40663}, {31272, 51090}, {31397, 54391}, {31401, 54406}, {31730, 52367}, {32844, 49554}, {32911, 54444}, {32942, 35263}, {33092, 49990}, {33105, 50307}, {33170, 53663}, {33812, 56036}, {34578, 39962}, {34605, 51782}, {35614, 43223}, {36100, 38340}, {37112, 37526}, {37253, 46878}, {37431, 54337}, {37543, 55437}, {37600, 44669}, {37674, 55405}, {37679, 55406}, {37680, 45204}, {40420, 40435}, {40530, 45738}, {41540, 41692}, {41550, 54302}, {41926, 56943}, {47033, 59319}, {51290, 51382}, {52351, 55987}, {52793, 56176}, {55460, 55880}, {55461, 55879}

X(59491) = complement of X(31053)
X(59491) = isotomic conjugate of the isogonal conjugate of X(2317)
X(59491) = isotomic conjugate of the polar conjugate of X(56814)
X(59491) = X(28184)-anticomplementary conjugate of X(693)
X(59491) = X(15446)-complementary conjugate of X(141)
X(59491) = X(7321)-Ceva conjugate of X(3244)
X(59491) = X(6)-isoconjugate of X(1389)
X(59491) = X(9)-Dao conjugate of X(1389)
X(59491) = barycentric product X(i)*X(j) for these {i,j}: {69, 56814}, {75, 1385}, {76, 2317}
X(59491) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1389}, {1385, 1}, {2317, 6}, {56814, 4}
X(59491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7, 31266}, {2, 57, 5249}, {2, 63, 908}, {2, 144, 5748}, {2, 329, 30852}, {2, 3218, 226}, {2, 3219, 3452}, {2, 5273, 3305}, {2, 5435, 3306}, {2, 5744, 63}, {2, 5745, 54357}, {2, 5905, 5219}, {2, 9965, 5226}, {2, 23958, 31019}, {2, 24627, 54311}, {2, 27003, 142}, {2, 27065, 5316}, {2, 31018, 30827}, {2, 31019, 58463}, {2, 55868, 9}, {2, 56520, 17353}, {3, 6734, 57287}, {8, 3523, 4855}, {9, 31231, 2}, {56, 26066, 24987}, {63, 908, 17781}, {63, 30852, 329}, {65, 4999, 24541}, {72, 140, 27385}, {88, 26724, 24175}, {88, 31204, 26724}, {165, 5231, 3434}, {214, 51113, 54288}, {329, 30852, 908}, {499, 12514, 41012}, {553, 58463, 31019}, {956, 26446, 6735}, {958, 24914, 24982}, {1788, 30478, 19860}, {3305, 31224, 2}, {3306, 55867, 2}, {3634, 12527, 11681}, {3752, 35466, 26723}, {3872, 5657, 51433}, {3876, 17566, 6700}, {3911, 5745, 2}, {3928, 5219, 5905}, {3929, 30827, 31018}, {4414, 29662, 24210}, {4650, 17717, 41011}, {4847, 10164, 100}, {5086, 5303, 4297}, {5218, 24477, 3870}, {5226, 9965, 31164}, {5258, 5445, 10}, {5316, 5325, 27065}, {5705, 15803, 377}, {5770, 6954, 18446}, {6675, 34753, 5439}, {6691, 18253, 25917}, {7308, 31190, 2}, {8227, 54290, 11415}, {10303, 54398, 27383}, {14829, 32851, 306}, {17077, 28287, 30037}, {17596, 33140, 3914}, {18228, 31188, 2}, {23958, 31019, 553}, {24392, 35445, 20075}, {24583, 24633, 17023}, {27383, 54398, 3984}, {27757, 32863, 4035}, {31423, 57279, 5552}, {32918, 33119, 10}


X(59492) = X(4)X(195)∩X(5)X(10227)

Barycentrics    (a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6)*(a^10 - 3*a^8*b^2 + 2*a^6*b^4 + 2*a^4*b^6 - 3*a^2*b^8 + b^10 - 3*a^8*c^2 + a^6*b^2*c^2 + 5*a^2*b^6*c^2 - 3*b^8*c^2 + 2*a^6*c^4 - 4*a^2*b^4*c^4 + 2*b^6*c^4 + 2*a^4*c^6 + 5*a^2*b^2*c^6 + 2*b^4*c^6 - 3*a^2*c^8 - 3*b^2*c^8 + c^10) : :

X(59492) lies on the cubic K1350 and these lines: {4, 195}, {5, 10227}, {110, 20414}, {265, 11584}, {546, 32639}, {1291, 3153}, {11801, 38935}, {19552, 33565}

X(59492) = X(1749)-isoconjugate of X(42059)
X(59492) = barycentric product X(13582)*X(58805)
X(59492) = barycentric quotient X(i)/X(j) for these {i,j}: {14579, 42059}, {58805, 37779}


X(59493) = X(2)X(58881)∩X(4)X(94)

Barycentrics    a^16 - 4*a^14*b^2 + 6*a^12*b^4 - 4*a^10*b^6 + 4*a^6*b^10 - 6*a^4*b^12 + 4*a^2*b^14 - b^16 - 4*a^14*c^2 + 10*a^12*b^2*c^2 - 6*a^10*b^4*c^2 - 2*a^8*b^6*c^2 - 2*a^6*b^8*c^2 + 12*a^4*b^10*c^2 - 12*a^2*b^12*c^2 + 4*b^14*c^2 + 6*a^12*c^4 - 6*a^10*b^2*c^4 + 5*a^8*b^4*c^4 - 13*a^4*b^8*c^4 + 12*a^2*b^10*c^4 - 4*b^12*c^4 - 4*a^10*c^6 - 2*a^8*b^2*c^6 + 14*a^4*b^6*c^6 - 4*a^2*b^8*c^6 - 4*b^10*c^6 - 2*a^6*b^2*c^8 - 13*a^4*b^4*c^8 - 4*a^2*b^6*c^8 + 10*b^8*c^8 + 4*a^6*c^10 + 12*a^4*b^2*c^10 + 12*a^2*b^4*c^10 - 4*b^6*c^10 - 6*a^4*c^12 - 12*a^2*b^2*c^12 - 4*b^4*c^12 + 4*a^2*c^14 + 4*b^2*c^14 - c^16 : :

X(59493) lies on the cubic K1350 and these lines: {2, 58881}, {4, 94}, {5, 33565}, {52, 36853}, {68, 14683}, {110, 2888}, {125, 13434}, {399, 13406}, {542, 46451}, {1173, 36253}, {1625, 13527}, {1658, 12383}, {2070, 32423}, {2889, 41673}, {3153, 10628}, {3410, 10254}, {3482, 51888}, {5480, 18125}, {6639, 54073}, {9143, 10201}, {9706, 14049}, {9927, 15102}, {10264, 14130}, {10298, 22109}, {11559, 43891}, {11560, 11806}, {11562, 34007}, {11692, 25739}, {11801, 11805}, {11804, 14627}, {12219, 22555}, {12244, 18562}, {12270, 50009}, {12308, 18356}, {12412, 34799}, {13160, 40640}, {14561, 25321}, {15038, 38724}, {15054, 22533}, {18912, 43578}, {19506, 32337}, {25338, 46818}, {45731, 45736}, {47065, 56407}

X(59493) = anticomplement of X(58881)
X(59493) = polar-circle-inverse of X(6746)
X(59493) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {265, 38898, 4}, {11801, 11805, 54007}, {12317, 25738, 3448}


X(59494) = X(4)X(7730)∩X(5)X(933)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^24 - 6*a^22*b^2 + 14*a^20*b^4 - 14*a^18*b^6 - a^16*b^8 + 20*a^14*b^10 - 28*a^12*b^12 + 20*a^10*b^14 - a^8*b^16 - 14*a^6*b^18 + 14*a^4*b^20 - 6*a^2*b^22 + b^24 - 6*a^22*c^2 + 29*a^20*b^2*c^2 - 52*a^18*b^4*c^2 + 35*a^16*b^6*c^2 + 8*a^14*b^8*c^2 - 18*a^12*b^10*c^2 - 4*a^10*b^12*c^2 + 2*a^8*b^14*c^2 + 30*a^6*b^16*c^2 - 43*a^4*b^18*c^2 + 24*a^2*b^20*c^2 - 5*b^22*c^2 + 14*a^20*c^4 - 52*a^18*b^2*c^4 + 71*a^16*b^4*c^4 - 38*a^14*b^6*c^4 - 5*a^12*b^8*c^4 + 16*a^10*b^10*c^4 + 5*a^8*b^12*c^4 - 38*a^6*b^14*c^4 + 51*a^4*b^16*c^4 - 32*a^2*b^18*c^4 + 8*b^20*c^4 - 14*a^18*c^6 + 35*a^16*b^2*c^6 - 38*a^14*b^4*c^6 + 33*a^12*b^6*c^6 - 14*a^10*b^8*c^6 - 22*a^8*b^10*c^6 + 40*a^6*b^12*c^6 - 29*a^4*b^14*c^6 + 10*a^2*b^16*c^6 - b^18*c^6 - a^16*c^8 + 8*a^14*b^2*c^8 - 5*a^12*b^4*c^8 - 14*a^10*b^6*c^8 + 32*a^8*b^8*c^8 - 18*a^6*b^10*c^8 - 5*a^4*b^12*c^8 + 12*a^2*b^14*c^8 - 9*b^16*c^8 + 20*a^14*c^10 - 18*a^12*b^2*c^10 + 16*a^10*b^4*c^10 - 22*a^8*b^6*c^10 - 18*a^6*b^8*c^10 + 24*a^4*b^10*c^10 - 8*a^2*b^12*c^10 + 6*b^14*c^10 - 28*a^12*c^12 - 4*a^10*b^2*c^12 + 5*a^8*b^4*c^12 + 40*a^6*b^6*c^12 - 5*a^4*b^8*c^12 - 8*a^2*b^10*c^12 + 20*a^10*c^14 + 2*a^8*b^2*c^14 - 38*a^6*b^4*c^14 - 29*a^4*b^6*c^14 + 12*a^2*b^8*c^14 + 6*b^10*c^14 - a^8*c^16 + 30*a^6*b^2*c^16 + 51*a^4*b^4*c^16 + 10*a^2*b^6*c^16 - 9*b^8*c^16 - 14*a^6*c^18 - 43*a^4*b^2*c^18 - 32*a^2*b^4*c^18 - b^6*c^18 + 14*a^4*c^20 + 24*a^2*b^2*c^20 + 8*b^4*c^20 - 6*a^2*c^22 - 5*b^2*c^22 + c^24) : :

X(59494) lies on the cubic K1350 and these lines: {4, 7730}, {5, 933}, {5963, 54067}, {6240, 44977}, {8157, 16868}, {11597, 58079}, {14118, 20625}, {18401, 18563}, {18402, 54001}, {18403, 53808}

X(59494) = polar-circle-inverse of X(32352)


X(59495) = X(3)X(974)∩X(30)X(113)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 + 7*a^4*b^2*c^2 - 4*a^2*b^4*c^2 - b^6*c^2 - 4*a^2*b^2*c^4 + 4*b^4*c^4 + 2*a^2*c^6 - b^2*c^6 - c^8) : :
X(59495) = 5 X[15051] - 3 X[15078], X[24] - 3 X[15035], X[7517] - 5 X[15040], 3 X[14643] - X[31725], 3 X[14644] - 5 X[31282], 2 X[16238] - 3 X[38793], 3 X[36518] - 2 X[44226]

X(59495) lies on the cubic K1349 and these lines: {3, 974}, {6, 15051}, {20, 11744}, {24, 15035}, {30, 113}, {74, 394}, {110, 1498}, {125, 16196}, {143, 9826}, {146, 37669}, {235, 5972}, {343, 6699}, {511, 41616}, {1092, 5663}, {1112, 13346}, {1147, 44573}, {1885, 22800}, {1986, 43574}, {2071, 11598}, {2781, 20806}, {3043, 58357}, {5562, 12041}, {5654, 38723}, {7464, 46431}, {7517, 15040}, {9306, 12133}, {9730, 36153}, {9934, 21312}, {10113, 49673}, {10257, 46085}, {11430, 37648}, {11585, 17702}, {11746, 17928}, {12038, 38726}, {12121, 18404}, {12302, 15738}, {12358, 12901}, {13289, 37480}, {13367, 44247}, {13416, 32607}, {14643, 31725}, {14644, 31282}, {14982, 28419}, {15036, 37475}, {15131, 37444}, {15462, 19118}, {15463, 35603}, {16222, 37495}, {16238, 16657}, {27082, 38942}, {33851, 44668}, {34148, 52003}, {36518, 44226}, {37638, 49672}

X(59495) = midpoint of X(i) and X(j) for these {i,j}: {110, 11413}, {12121, 18404}
X(59495) = reflection of X(i) in X(j) for these {i,j}: {125, 16196}, {235, 5972}, {10113, 49673}, {20771, 1511}, {44240, 38726}
X(59495) = X(11744)-isoconjugate of X(36119)
X(59495) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 11744}, {16177, 18808}, {39170, 48374}, {41077, 339}, {46425, 338}
X(59495) = crossdifference of every pair of points on line {2433, 47236}
X(59495) = barycentric product X(i)*X(j) for these {i,j}: {249, 16177}, {2071, 11064}
X(59495) = barycentric quotient X(i)/X(j) for these {i,j}: {2071, 16080}, {2420, 22239}, {3284, 11744}, {11064, 51967}, {16177, 338}, {46425, 18808}, {56399, 48374}
X(59495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5504, 974}, {1511, 16163, 16165}, {2071, 12825, 11598}, {10564, 51394, 11064}, {15035, 37497, 41670}, {16163, 51394, 1511}, {32607, 43652, 13416}


X(59496) = X(30)X(155)∩X(523)X(26937)

Barycentrics    (a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 4*a^6*c^2 - 4*b^6*c^2 + 6*a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 4*a^2*c^6 - 4*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 + 2*a^6*c^2 + 2*a^2*b^4*c^2 - 4*b^6*c^2 - 6*a^4*c^4 + 6*b^4*c^4 + 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(59496) lies on the cubic K1349 and these lines: {30, 155}, {523, 26937}, {1033, 1609}, {3184, 15454}, {3260, 6527}, {3542, 6523}, {3548, 34853}, {13526, 35906}, {37197, 41085}

X(59496) = isogonal conjugate of X(11441)
X(59496) = X(1)-isoconjugate of X(11441)
X(59496) = trilinear pole of line {1637, 58895}
X(59496) = barycentric quotient X(6)/X(11441)


X(59497) = X(3)X(13553)∩X(20)X(254)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(59497) lies on the cubic K1349 and these lines: {3, 13553}, {20, 254}, {131, 403}, {136, 11585}, {925, 3147}, {1498, 11744}, {1989, 2079}, {8800, 43917}, {13556, 39109}, {34756, 35490}

X(59497) = X(i)-isoconjugate of X(j) for these (i,j): {920, 10419}, {15478, 36119}
X(59497) = X(i)-Dao conjugate of X(j) for these (i,j): {1511, 15478}, {3003, 6515}, {11064, 40697}
X(59497) = barycentric product X(i)*X(j) for these {i,j}: {113, 6504}, {11064, 16172}, {46746, 47405}
X(59497) = barycentric quotient X(i)/X(j) for these {i,j}: {113, 6515}, {3284, 15478}, {6504, 40423}, {16172, 16080}, {39109, 40388}, {47405, 155}


X(59498) = X(20)X(14911)∩X(30)X(5504)

Barycentrics    a^2*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 2*a^4*c^2 + 2*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 + b^2*c^4)*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 - 2*b^2*c^4 + c^6)*(a^14 - 3*a^12*b^2 + a^10*b^4 + 5*a^8*b^6 - 5*a^6*b^8 - a^4*b^10 + 3*a^2*b^12 - b^14 - 3*a^12*c^2 + 15*a^10*b^2*c^2 - 15*a^8*b^4*c^2 - 14*a^6*b^6*c^2 + 27*a^4*b^8*c^2 - 9*a^2*b^10*c^2 - b^12*c^2 + a^10*c^4 - 15*a^8*b^2*c^4 + 46*a^6*b^4*c^4 - 26*a^4*b^6*c^4 - 15*a^2*b^8*c^4 + 9*b^10*c^4 + 5*a^8*c^6 - 14*a^6*b^2*c^6 - 26*a^4*b^4*c^6 + 42*a^2*b^6*c^6 - 7*b^8*c^6 - 5*a^6*c^8 + 27*a^4*b^2*c^8 - 15*a^2*b^4*c^8 - 7*b^6*c^8 - a^4*c^10 - 9*a^2*b^2*c^10 + 9*b^4*c^10 + 3*a^2*c^12 - b^2*c^12 - c^14) : :

X(59498) lies on the cubics K529 amd L1340 and these lines: {20, 14911}, {30, 5504}, {186, 3003}, {2986, 52403}, {4351, 36053}, {5897, 10420}, {11589, 15478}, {15454, 18531}, {34178, 51895}, {39371, 50531}

X(59498) = X(20)-Ceva conjugate of X(15478)
X(59498) = X(1725)-isoconjugate of X(50480)
X(59498) = barycentric product X(i)*X(j) for these {i,j}: {2935, 2986}, {5504, 51968}
X(59498) = barycentric quotient X(i)/X(j) for these {i,j}: {2935, 3580}, {14910, 50480}, {51968, 44138}


X(59499) = X(3)X(47433)∩X(112)X(376)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 3*a^6*c^2 + 3*a^4*b^2*c^2 + 3*a^2*b^4*c^2 - 3*b^6*c^2 + 3*a^4*c^4 - 4*a^2*b^2*c^4 + 3*b^4*c^4 - a^2*c^6 - b^2*c^6)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + 2*a^6*c^2 + 3*a^4*b^2*c^2 - 4*a^2*b^4*c^2 - b^6*c^2 - 6*a^4*c^4 + 3*a^2*b^2*c^4 + 3*b^4*c^4 + 2*a^2*c^6 - 3*b^2*c^6 + c^8) : :

X(59499) lies on the cubic K1348 and these lines: {3, 47433}, {6, 47409}, {97, 16813}, {112, 376}, {154, 1576}, {248, 43701}, {1415, 30456}, {1636, 2430}, {2416, 18876}, {2966, 40888}, {3284, 12096}, {4558, 37669}, {5063, 46099}, {10316, 53789}, {14586, 33629}, {14642, 18890}, {15905, 32661}, {32652, 41086}, {53909, 58960}

X(59499) = isogonal conjugate of X(51358)
X(59499) = isogonal conjugate of the polar conjugate of X(1294)
X(59499) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51358}, {63, 51385}, {92, 6000}, {133, 2349}, {158, 44436}, {656, 2404}, {1559, 2184}, {1577, 46587}, {1784, 57488}, {2442, 14208}, {14206, 52646}
X(59499) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51358}, {1147, 44436}, {3162, 51385}, {22391, 6000}, {40596, 2404}
X(59499) = cevapoint of X(i) and X(j) for these (i,j): {577, 3284}, {1636, 47409}
X(59499) = trilinear pole of line {184, 2430}
X(59499) = crossdifference of every pair of points on line {133, 50937}
X(59499) = barycentric product X(i)*X(j) for these {i,j}: {3, 1294}, {30, 15404}, {74, 53789}, {110, 43701}, {112, 2416}, {184, 54988}, {648, 2430}, {1495, 57762}, {5504, 56683}, {8057, 46968}, {17974, 56605}, {32646, 52613}
X(59499) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51358}, {25, 51385}, {112, 2404}, {154, 1559}, {184, 6000}, {577, 44436}, {1294, 264}, {1495, 133}, {1576, 46587}, {2416, 3267}, {2430, 525}, {5504, 56577}, {14398, 55276}, {15404, 1494}, {17974, 36893}, {18877, 57488}, {26864, 1515}, {32646, 15352}, {40352, 52646}, {42658, 55127}, {43701, 850}, {46968, 53639}, {53789, 3260}, {54988, 18022}, {56683, 44138}


X(59500) = X(6)X(14385)∩X(1138)X(3431)

Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - 4*a^2*c^6 - 4*b^2*c^6 + c^8)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 + 2*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 - 6*a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 + 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(59500) lies on the cubics K1049 and K1348 and these lines: {6, 14385}, {1138, 3431}, {1511, 3163}, {3043, 39176}, {26864, 52557}

X(59500) = X(i)-isoconjugate of X(j) for these (i,j): {75, 11074}, {92, 50467}, {2349, 14993}
X(59500) = X(i)-Dao conjugate of X(j) for these (i,j): {206, 11074}, {3284, 1272}, {22391, 50467}
X(59500) = cevapoint of X(1495) and X(40356)
X(59500) = barycentric product X(i)*X(j) for these {i,j}: {186, 20123}, {250, 19223}, {323, 11070}, {1138, 1511}, {3471, 14354}, {7799, 40356}, {18781, 39371}
X(59500) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 11074}, {184, 50467}, {1495, 14993}, {1511, 1272}, {11070, 94}, {14354, 46751}, {19223, 339}, {20123, 328}, {40356, 1989}, {52743, 14566}


X(59501) = ISOGONAL CONJUGATE OF X(59484)

Barycentrics    -4*S*(2*a^6-(b^2+c^2)*a^4-(b^4-c^4)*(b^2-c^2))*sqrt(S^2+48*R^4-12*R^2*SW)+(-a^2+b^2+c^2)*(2*a^8-(b^2+c^2)*a^6+3*(b^2-c^2)^2*a^4-3*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4) : :  (César E. Lozada - October 11, 2023)

X(59501) lies on the Moses-circles-radical-circle; the cubic K001; the curves Q099, Q171; and these lines: {4, 6}, {30, 59484}, {1073, 59485}

X(59501) = isogonal conjugate of X(59484)
X(59501) = X(50937)-Dao conjugate of-X(59502)
X(59501) = orthoassociate of X(59502)
X(59501) = polar-circle-inverse of X(59502)
X(59501) = touchpoint of Moses-circles-radical-circlee and line {44436, 59501}
X(59501) = pole of the line {525, 59502} with respect to the polar circle
X(59501) = pole of the line {394, 59484} with respect to the Stammler hyperbola
X(59501) = pole of the line {3926, 59484} with respect to the Steiner-Wallace hyperbola
X(59501) = barycentric product X(51358)*X(59485)


X(59502) = ISOGONAL CONJUGATE OF X(59485)

Barycentrics    4*S*(2*a^6-(b^2+c^2)*a^4-(b^4-c^4)*(b^2-c^2))*sqrt(S^2+48*R^4-12*R^2*SW)+(-a^2+b^2+c^2)*(2*a^8-(b^2+c^2)*a^6+3*(b^2-c^2)^2*a^4-3*(b^4-c^4)*(b^2-c^2)*a^2-(b^2-c^2)^4) : :  (César E. Lozada - October 11, 2023)

X(59502) lies on the Moses-circles-radical-circle; the cubic K001; the curves Q099, Q171; and these lines: {4, 6}, {30, 59485}, {1073, 59484}

X(59502) = isogonal conjugate of X(59485)
X(59502) = X(50937)-Dao conjugate of-X(59501)
X(59502) = orthoassociate of X(59501)
X(59502) = inverse of X(59501) in polar circle
X(59502) = touchpoint of Moses-circles-radical-circle and line {44436, 59502}
X(59502) = pole of the line {525, 59501} with respect to the polar circle
X(59502) = pole of the line {394, 59485} with respect to the Stammler hyperbola
X(59502) = pole of the line {3926, 59485} with respect to the Steiner-Wallace hyperbola
X(59502) = barycentric product X(51358)*X(59484)


X(59503) = 2ND TRISECTOR OF SEGMENT X(3)X(8)

Barycentrics    a^4 - 4*a^3*b + a^2*b^2 + 4*a*b^3 - 2*b^4 - 4*a^3*c + 8*a^2*b*c - 4*a*b^2*c + a^2*c^2 - 4*a*b*c^2 + 4*b^2*c^2 + 4*a*c^3 - 2*c^4 : :
X(59503) = 4 X[1] - 7 X[3526], 7 X[3526] - 8 X[11231], 4 X[2] - X[50805], X[2] + 2 X[50823], 3 X[10247] - 4 X[10283], X[10247] - 4 X[38112], X[10247] + 4 X[50823], X[10283] - 3 X[38112], 8 X[10283] - 3 X[50805], X[10283] + 3 X[50823], 8 X[38112] - X[50805], X[50805] + 8 X[50823], X[3] + 2 X[8], 5 X[3] - 2 X[944], X[3] - 4 X[5690], and many others

X(59503) lies on these lines: {1, 3526}, {2, 5844}, {3, 8}, {4, 4678}, {5, 3617}, {10, 1482}, {20, 37705}, {40, 1657}, {55, 41684}, {72, 25413}, {80, 9668}, {140, 145}, {165, 15688}, {210, 381}, {355, 382}, {376, 28224}, {495, 1159}, {497, 11545}, {515, 3534}, {518, 38121}, {519, 3653}, {547, 34631}, {549, 7967}, {551, 15723}, {631, 1483}, {632, 3622}, {730, 32519}, {946, 4691}, {958, 11849}, {962, 3843}, {999, 12647}, {1064, 49984}, {1125, 55858}, {1151, 35843}, {1152, 35842}, {1155, 37708}, {1158, 52683}, {1317, 38762}, {1329, 23513}, {1351, 49524}, {1376, 22765}, {1385, 3632}, {1388, 5445}, {1484, 6963}, {1698, 10222}, {1706, 37532}, {2077, 18515}, {2093, 18541}, {2098, 16173}, {2099, 31479}, {2886, 38109}, {2937, 8193}, {3036, 10738}, {3057, 58630}, {3059, 31788}, {3241, 15694}, {3245, 12943}, {3295, 10573}, {3309, 30583}, {3311, 49233}, {3312, 49232}, {3416, 11898}, {3419, 51433}, {3421, 6923}, {3428, 18524}, {3517, 12135}, {3523, 20052}, {3525, 3623}, {3543, 28216}, {3545, 38081}, {3576, 4677}, {3579, 5881}, {3616, 46219}, {3624, 33179}, {3625, 6684}, {3627, 20070}, {3628, 10595}, {3633, 15178}, {3655, 10164}, {3656, 4745}, {3681, 14988}, {3711, 5660}, {3715, 54154}, {3817, 38098}, {3830, 28174}, {3845, 54448}, {3851, 5818}, {3857, 58249}, {3878, 11928}, {3913, 37621}, {3940, 6735}, {4651, 19540}, {4662, 5887}, {4701, 5882}, {4711, 6001}, {4746, 18481}, {4816, 9588}, {4848, 5708}, {4915, 37611}, {5044, 23340}, {5050, 5846}, {5055, 5603}, {5066, 50872}, {5070, 5901}, {5073, 6361}, {5076, 7991}, {5079, 7982}, {5082, 6928}, {5119, 7082}, {5204, 37707}, {5217, 37706}, {5218, 37728}, {5252, 36279}, {5258, 26285}, {5288, 32612}, {5330, 38044}, {5493, 49133}, {5550, 55866}, {5554, 11108}, {5599, 11876}, {5600, 11875}, {5686, 51516}, {5691, 28154}, {5694, 18542}, {5697, 9669}, {5710, 37509}, {5719, 11041}, {5817, 38175}, {5840, 34606}, {5841, 34612}, {5843, 6850}, {5853, 38126}, {5854, 38128}, {5855, 38129}, {5903, 9654}, {5904, 35004}, {6244, 18519}, {6417, 19065}, {6418, 19066}, {6600, 16202}, {6762, 37612}, {6765, 37615}, {6767, 18391}, {6788, 16486}, {6842, 51416}, {6863, 7080}, {6913, 44455}, {6932, 11698}, {6971, 24390}, {6980, 17757}, {7377, 51353}, {7489, 9708}, {7506, 12410}, {7540, 34656}, {7968, 13961}, {7969, 13903}, {8227, 11278}, {8236, 12433}, {8252, 35811}, {8253, 35810}, {8256, 9709}, {8275, 37704}, {8976, 35641}, {9578, 50193}, {9623, 37533}, {9641, 54295}, {9655, 37567}, {9778, 15681}, {9798, 13564}, {9812, 14269}, {9819, 18527}, {9955, 11531}, {10039, 17718}, {10106, 37545}, {10303, 20014}, {10306, 13743}, {10310, 26321}, {10525, 38156}, {10526, 38157}, {10914, 31837}, {11038, 30312}, {11224, 50817}, {11230, 16200}, {11544, 31410}, {11812, 50831}, {11822, 45380}, {11823, 45379}, {11911, 16210}, {11929, 38214}, {12001, 16408}, {12019, 30305}, {12100, 50818}, {12513, 37535}, {12747, 15863}, {12782, 32520}, {12898, 15040}, {13465, 40267}, {13665, 35788}, {13785, 35789}, {13951, 35642}, {14093, 28236}, {14848, 38087}, {14853, 38165}, {14869, 20054}, {15684, 28178}, {15685, 28190}, {15701, 50824}, {15702, 20049}, {15703, 58238}, {15706, 17502}, {15716, 50804}, {15719, 50826}, {15722, 50825}, {15934, 31397}, {16203, 49169}, {16239, 46934}, {16434, 33090}, {16506, 48908}, {16980, 37484}, {17532, 51518}, {17556, 51517}, {17606, 30323}, {18281, 34729}, {18329, 53801}, {18510, 35775}, {18512, 35774}, {18530, 30286}, {18543, 58643}, {18545, 34790}, {19544, 33091}, {19709, 38034}, {19710, 50809}, {19877, 55860}, {20007, 52265}, {20050, 55863}, {20423, 50951}, {21150, 38586}, {21168, 31789}, {21842, 41541}, {22758, 35000}, {22770, 37251}, {22793, 37714}, {22836, 38134}, {22837, 38133}, {23960, 31263}, {24392, 58688}, {24474, 38107}, {24987, 50726}, {25405, 31231}, {28158, 50801}, {28172, 49137}, {28194, 38155}, {28228, 50796}, {28232, 34648}, {28443, 44669}, {28889, 48944}, {30389, 32900}, {31434, 50194}, {31775, 54398}, {31798, 40263}, {32613, 48696}, {33298, 38941}, {33559, 37821}, {34673, 34682}, {34689, 34698}, {34700, 34707}, {34713, 34726}, {34715, 34734}, {34717, 34740}, {34720, 34745}, {35001, 47492}, {35249, 38753}, {37568, 37711}, {37582, 37709}, {37584, 51781}, {37606, 37740}, {37924, 47321}, {38149, 44229}, {44682, 58224}, {45410, 48746}, {45411, 48747}, {46930, 55861}, {46931, 48154}, {46932, 55856}, {47032, 56879}, {47359, 50962}, {48664, 54156}, {50806, 51067}, {50890, 57006}, {50949, 50955}, {50950, 51175}, {50953, 51172}, {50954, 51125}, {51034, 51039}, {51036, 51040}, {51069, 51077}, {51124, 51174}, {51192, 53091}, {53799, 57320}

X(59503) = midpoint of X(i) and X(j) for these {i,j}: {3, 51515}, {8, 5657}, {40, 37712}, {3576, 4677}, {5790, 34718}, {7967, 31145}, {9778, 34627}, {10164, 34641}, {11224, 50817}, {38112, 50823}
X(59503) = reflection of X(i) in X(j) for these {i,j}: {1, 11231}, {2, 38112}, {3, 5657}, {4, 38138}, {381, 5790}, {1482, 5886}, {3241, 38028}, {3545, 38081}, {3576, 50821}, {3655, 10164}, {3656, 10175}, {5050, 38116}, {5054, 38066}, {5055, 53620}, {5587, 38176}, {5603, 38042}, {5657, 5690}, {5790, 3679}, {5817, 38175}, {5886, 10}, {7967, 549}, {8236, 38113}, {10175, 4745}, {10246, 26446}, {10247, 2}, {11224, 51709}, {11911, 16210}, {12645, 51515}, {14269, 38074}, {14848, 38087}, {14853, 38165}, {15681, 9778}, {16200, 11230}, {18525, 37712}, {26446, 38127}, {31162, 38140}, {34748, 7967}, {38107, 38200}, {48667, 5660}, {50805, 10247}, {51515, 8}, {51516, 5686}, {57298, 38128}
X(59503) = anticomplement of X(10283)
X(59503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 8, 12645}, {3, 12645, 18526}, {5, 12245, 8148}, {8, 5690, 3}, {10, 1482, 1656}, {40, 18525, 1657}, {140, 145, 37624}, {355, 11362, 12702}, {355, 12702, 382}, {549, 7967, 58230}, {549, 31145, 34748}, {631, 3621, 1483}, {962, 18357, 3843}, {1145, 19914, 12331}, {3525, 3623, 51700}, {3617, 12245, 5}, {3625, 6684, 37727}, {3626, 11362, 355}, {3633, 31423, 15178}, {3653, 26446, 58441}, {3654, 4669, 50798}, {3654, 50798, 3534}, {3679, 5587, 38176}, {3679, 34718, 381}, {4669, 50827, 3654}, {4746, 43174, 47745}, {5587, 38176, 5790}, {5603, 38042, 5055}, {5603, 53620, 38042}, {5818, 22791, 3851}, {5901, 9780, 5070}, {7982, 9956, 18493}, {7991, 18480, 48661}, {9708, 10679, 7489}, {9709, 10680, 45976}, {9956, 18493, 5079}, {10246, 26446, 5054}, {10246, 38066, 26446}, {10595, 46933, 3628}, {11224, 51066, 54447}, {11224, 54447, 51709}, {12647, 40663, 999}, {16200, 19875, 11230}, {18480, 48661, 5076}, {26446, 38127, 38066}, {34748, 58230, 7967}, {37567, 37710, 9655}, {43174, 47745, 18481}, {50817, 51066, 51709}, {50817, 54447, 11224}


X(59504) = X(37)X(698)∩X(304)X(960)

Barycentrics    -4*a^2*b*c+a^3*(b+c)+2*b*c*(b^2+c^2)-a*(b+c)*(b^2+c^2) : :

X(59504) lies on these lines: {6, 59554}, {37, 698}, {65, 53332}, {72, 14210}, {75, 58679}, {85, 19582}, {190, 7176}, {304, 960}, {392, 1930}, {517, 33942}, {518, 18156}, {536, 16969}, {664, 56311}, {668, 59577}, {1279, 3905}, {1441, 56083}, {1616, 3875}, {1909, 3967}, {3057, 3263}, {3160, 3161}, {3208, 40883}, {3212, 18743}, {3696, 17762}, {3714, 33939}, {3727, 30748}, {3812, 24282}, {3890, 31130}, {3962, 30941}, {3991, 4568}, {4561, 56176}, {5044, 33936}, {5543, 8834}, {5836, 30758}, {6337, 59536}, {6376, 59506}, {7187, 49514}, {8055, 31994}, {9312, 30568}, {9957, 33937}, {10179, 39731}, {16284, 27538}, {16605, 35101}, {17084, 33116}, {17090, 33780}, {17095, 56313}, {17137, 31165}, {17141, 17609}, {17755, 40133}, {18135, 43037}, {20911, 25917}, {21226, 41793}, {21272, 52353}, {21605, 30946}, {31997, 49483}, {33296, 49462}, {50011, 59703}, {59516, 59525}, {59535, 59547}, {59538, 59544}

X(59504) = pole of line {30610, 55260} with respect to the dual conic of Feuerbach hyperbola
X(59504) = center of the dual of the bicevian conic of X(1) and X(4)
X(59504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6376, 59513, 59507}, {59506, 59507, 6376}, {59512, 59515, 37}, {59536, 59537, 6337}


X(59505) = X(10)X(1920)∩X(37)X(6379)

Barycentrics    b*c*(-2*b^2*c^2+a*b*c*(b+c)+a^2*(b^2+c^2)) : :

X(59505) lies on these lines: {10, 1920}, {37, 6379}, {38, 35543}, {39, 59570}, {42, 53363}, {76, 20945}, {312, 6381}, {333, 7244}, {561, 3741}, {668, 4090}, {670, 59643}, {693, 40603}, {726, 6382}, {1921, 3840}, {1965, 49482}, {1978, 3971}, {3663, 4087}, {3993, 31008}, {4083, 22305}, {4135, 52049}, {4357, 4485}, {4362, 18056}, {4495, 14829}, {4970, 30964}, {6374, 59565}, {6376, 59517}, {6384, 10009}, {11679, 18068}, {16887, 40072}, {17760, 22028}, {18059, 43223}, {18078, 39594}, {20345, 33106}, {20528, 21086}, {20889, 46909}, {20947, 56253}, {24165, 40087}, {24732, 34832}, {30473, 59508}, {30660, 33082}, {33942, 40493}, {35538, 49521}, {39467, 59716}, {59511, 59523}

X(59505) = midpoint of X(i) and X(j) for these {i,j}: {6382, 17149}
X(59505) = center of the dual of the bicevian conic of X(1) and X(6)
X(59505) = barycentric quotient X(i)/X(j) for these (i, j): {23467, 1919}
X(59505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {561, 3741, 21443}, {668, 41318, 4090}, {1920, 51863, 10}, {6376, 59518, 59517}, {30473, 59508, 59510}, {59523, 59526, 59511}


X(59506) = X(2)X(3967)∩X(8)X(20942)

Barycentrics    a^2*(b+c)+2*b*c*(b+c)-a*(b^2+6*b*c+c^2) : :

X(59506) lies on these lines: {2, 3967}, {8, 20942}, {37, 6375}, {43, 35652}, {44, 29649}, {72, 49999}, {75, 4903}, {200, 4702}, {210, 4358}, {312, 3696}, {341, 58679}, {354, 3952}, {392, 3992}, {518, 18743}, {536, 16569}, {726, 16602}, {756, 30818}, {899, 3175}, {960, 46937}, {982, 49513}, {1149, 50078}, {1215, 25501}, {1376, 30568}, {1456, 28996}, {1834, 59685}, {1997, 27549}, {2325, 20103}, {2550, 8055}, {2899, 5794}, {3035, 56078}, {3057, 52353}, {3058, 49991}, {3161, 59536}, {3416, 18228}, {3452, 3932}, {3681, 46938}, {3698, 25253}, {3701, 25917}, {3702, 3983}, {3714, 5044}, {3717, 3816}, {3741, 42056}, {3742, 30829}, {3752, 3971}, {3755, 59686}, {3771, 41310}, {3823, 3944}, {3834, 33101}, {3840, 4096}, {3848, 24349}, {3931, 59666}, {3957, 4767}, {3985, 44798}, {3994, 42051}, {4075, 37592}, {4078, 37662}, {4082, 5316}, {4090, 49478}, {4126, 26015}, {4135, 4686}, {4370, 59544}, {4413, 56082}, {4519, 4651}, {4640, 5205}, {4664, 59298}, {4679, 10327}, {4682, 27064}, {4706, 42044}, {4723, 5919}, {4737, 10179}, {4756, 27003}, {4849, 49475}, {4871, 21342}, {4884, 5121}, {4906, 25531}, {4966, 21060}, {5087, 29641}, {5220, 30567}, {5423, 26105}, {5695, 8580}, {5836, 19582}, {5880, 56084}, {6376, 59504}, {6686, 49456}, {6690, 25101}, {7081, 15254}, {9458, 32936}, {14829, 15481}, {15587, 56085}, {15621, 33845}, {16604, 59735}, {16610, 32925}, {16814, 32916}, {17063, 28582}, {17122, 17351}, {17356, 33152}, {17490, 28555}, {17605, 30566}, {20292, 30578}, {20691, 59690}, {20923, 58693}, {23511, 49453}, {24165, 31197}, {26038, 42034}, {26103, 49499}, {26791, 33073}, {30615, 53673}, {31028, 51050}, {31035, 37593}, {31855, 50122}, {32931, 44307}, {32938, 37520}, {36634, 49452}, {36845, 49702}, {44417, 59312}, {56311, 59691}, {59518, 59526}, {59574, 59579}, {59580, 59593}, {59587, 59592}

X(59506) = midpoint of X(i) and X(j) for these {i,j}: {18743, 27538}
X(59506) = pole of line {6008, 20979} with respect to the Steiner inellipse
X(59506) = pole of line {20255, 29594} with respect to the dual conic of Yff parabola
X(59506) = center of the dual of the bicevian conic of X(1) and X(7)
X(59506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59582, 59577}, {1, 59599, 59597}, {2, 3967, 49483}, {2, 4009, 3967}, {43, 35652, 49462}, {312, 3740, 3696}, {3161, 59572, 59536}, {3752, 3971, 49523}, {3840, 4096, 49515}, {3971, 24003, 3752}, {4871, 42054, 21342}, {5423, 26105, 49688}, {6376, 59504, 59507}, {26103, 49499, 58560}, {30829, 32937, 3742}, {59511, 59517, 37}, {59536, 59572, 59581}, {59572, 59575, 59573}


X(59507) = X(7)X(8)∩X(10)X(1565)

Barycentrics    (a^2+2*b*c-a*(b+c))*((b-c)^2+a*(b+c)) : :

X(59507) lies on these lines: {1, 57033}, {2, 9311}, {7, 8}, {9, 59615}, {10, 1565}, {37, 59516}, {348, 37828}, {514, 25066}, {536, 4050}, {664, 59691}, {1111, 10914}, {1212, 21232}, {1222, 53647}, {1376, 9312}, {1447, 11260}, {2348, 26653}, {3008, 6692}, {3057, 21272}, {3061, 17284}, {3160, 59537}, {3501, 44664}, {3663, 12640}, {3665, 6735}, {3673, 3880}, {3674, 12607}, {3714, 33936}, {3732, 30618}, {3752, 27499}, {4515, 46180}, {5123, 17181}, {5439, 7278}, {6337, 59581}, {6374, 59526}, {6376, 59504}, {6610, 24334}, {6736, 52563}, {8256, 9436}, {10164, 59602}, {11530, 25590}, {14951, 17755}, {16593, 41006}, {17760, 59525}, {19584, 25102}, {20323, 26229}, {20535, 46873}, {20935, 25135}, {21024, 29594}, {22792, 37823}, {23972, 59610}, {24203, 33895}, {24774, 46894}, {24798, 37829}, {31627, 36638}, {35120, 48315}, {45247, 52755}, {59605, 59608}, {59617, 59618}

X(59507) = midpoint of X(i) and X(j) for these {i,j}: {3212, 16284}, {9311, 41792}
X(59507) = complement of X(9311)
X(59507) = center of circumconic {{A, B, C, X(658), X(1978)}}
X(59507) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1476, 9439}, {9309, 51476}, {9315, 23617}
X(59507) = X(i)-Dao conjugate of X(j) for these {i, j}: {3452, 9309}, {3663, 2}, {4885, 40528}
X(59507) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 3663}
X(59507) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 3816}, {31, 3663}, {32, 2275}, {41, 41006}, {101, 4147}, {109, 21195}, {651, 15280}, {692, 31287}, {919, 42341}, {1376, 141}, {3729, 2887}, {3967, 21245}, {4449, 116}, {4513, 1329}, {4885, 21252}, {6180, 2886}, {9310, 10}, {9312, 17046}, {9316, 142}, {16283, 9}, {18199, 53564}, {20980, 11}, {21052, 21253}, {34071, 24756}, {56714, 20540}, {57177, 5518}
X(59507) = pole of line {4449, 4885} with respect to the Steiner inellipse
X(59507) = pole of line {3663, 3816} with respect to the dual conic of Yff parabola
X(59507) = center of the dual of the bicevian conic of X(1) and X(8)
X(59507) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(27499)}}, {{A, B, C, X(8), X(1376)}}, {{A, B, C, X(65), X(3967)}}, {{A, B, C, X(75), X(9312)}}, {{A, B, C, X(257), X(40883)}}, {{A, B, C, X(518), X(3057)}}, {{A, B, C, X(883), X(21272)}}, {{A, B, C, X(3212), X(3752)}}, {{A, B, C, X(3452), X(16284)}}, {{A, B, C, X(3663), X(3729)}}, {{A, B, C, X(4513), X(56089)}}, {{A, B, C, X(17183), X(21296)}}, {{A, B, C, X(26563), X(40704)}}, {{A, B, C, X(32850), X(34918)}}
X(59507) = barycentric product X(i)*X(j) for these (i, j): {1376, 26563}, {3452, 9312}, {3663, 3729}, {12640, 27829}, {18600, 3967}, {20895, 6180}, {20907, 21362}, {21272, 4885}, {21580, 4449}
X(59507) = barycentric quotient X(i)/X(j) for these (i, j): {1201, 9315}, {1376, 23617}, {2347, 9439}, {3663, 9311}, {3729, 1222}, {3752, 9309}, {3967, 56258}, {4513, 1261}, {4885, 56323}, {6180, 1476}, {9310, 51476}, {9312, 40420}, {9316, 3451}, {21139, 40451}, {21272, 30610}, {26563, 32023}
X(59507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41792, 9311}, {3160, 59572, 59537}, {3160, 59603, 59601}, {3212, 16284, 518}, {6376, 59504, 59506}, {6376, 59513, 59504}, {21272, 26563, 3057}


X(59508) = X(2)X(650)∩X(85)X(3838)

Barycentrics    b*c*(b*(b-c)^2*c-a*(b-c)^2*(b+c)+a^2*(b^2-b*c+c^2)) : :

X(59508) lies on these lines: {2, 650}, {85, 3838}, {350, 47595}, {497, 46149}, {518, 20935}, {668, 59597}, {1212, 59619}, {1376, 4554}, {2481, 11235}, {2886, 6063}, {3212, 18738}, {3816, 32023}, {4569, 59618}, {4640, 30988}, {4998, 15813}, {5231, 7243}, {5452, 26667}, {5880, 7196}, {6376, 59504}, {7081, 18043}, {7179, 35517}, {11680, 23989}, {14615, 41003}, {16283, 40865}, {18031, 30959}, {21580, 27538}, {30473, 59505}, {30547, 37516}, {30825, 36796}, {40593, 59573}

X(59508) = midpoint of X(i) and X(j) for these {i,j}: {20935, 30545}
X(59508) = X(i)-cross conjugate of X(j) for these {i, j}: {15280, 28743}
X(59508) = center of the dual of the bicevian conic of X(1) and X(9)
X(59508) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(28743)}}, {{A, B, C, X(650), X(6063)}}, {{A, B, C, X(4885), X(32023)}}, {{A, B, C, X(31209), X(40216)}}
X(59508) = barycentric product X(i)*X(j) for these (i, j): {15280, 4554}, {28743, 693}
X(59508) = barycentric quotient X(i)/X(j) for these (i, j): {15280, 650}, {28743, 100}
X(59508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20935, 30545, 518}, {59505, 59510, 30473}


X(59509) = X(1)X(75)∩X(2)X(257)

Barycentrics    (a^2+b*c)*(b^2+c^2+a*(b+c)) : :

X(59509) lies on these lines: {1, 75}, {2, 257}, {6, 16822}, {10, 325}, {21, 15864}, {37, 698}, {39, 24254}, {99, 24850}, {101, 30132}, {213, 15994}, {223, 9312}, {330, 31317}, {348, 7204}, {385, 27954}, {386, 33936}, {441, 1214}, {664, 1220}, {758, 16887}, {894, 2329}, {904, 25838}, {960, 3674}, {986, 24282}, {995, 33945}, {1046, 17206}, {1086, 49612}, {1107, 17755}, {1125, 5976}, {1193, 20911}, {1201, 26234}, {1212, 17353}, {1213, 59626}, {1215, 1237}, {1441, 40611}, {1580, 4697}, {1655, 3985}, {1698, 30761}, {1926, 27891}, {1975, 3923}, {2170, 26965}, {2176, 49516}, {2275, 24631}, {2292, 16705}, {2295, 16720}, {2344, 16915}, {2650, 30941}, {3160, 5749}, {3263, 10459}, {3314, 30177}, {3496, 16060}, {3507, 49779}, {3666, 27455}, {3725, 16739}, {3739, 30038}, {3752, 6703}, {3754, 24170}, {3758, 54329}, {3879, 50627}, {3912, 17056}, {3930, 26759}, {4095, 17752}, {4201, 33867}, {4251, 30127}, {4352, 49518}, {4384, 9575}, {4416, 21874}, {4424, 25599}, {4531, 17792}, {4561, 5293}, {4568, 28594}, {4754, 7200}, {5294, 16585}, {5836, 40608}, {5929, 18641}, {6376, 59510}, {6626, 17799}, {6651, 14949}, {6682, 18208}, {6685, 59513}, {7770, 24249}, {7808, 24262}, {8682, 20970}, {9317, 17686}, {9398, 31637}, {11115, 17136}, {13740, 24291}, {15991, 50631}, {16517, 59557}, {16552, 46899}, {16600, 30106}, {16917, 19557}, {16969, 24357}, {17048, 26959}, {17164, 18600}, {17170, 41874}, {17284, 41878}, {17316, 26109}, {17368, 41771}, {17442, 17913}, {17448, 49481}, {17490, 26626}, {17499, 35102}, {17739, 26244}, {17754, 25918}, {18059, 35532}, {18135, 25591}, {18140, 25079}, {19584, 59516}, {19879, 28653}, {20529, 23905}, {20532, 25102}, {20955, 37678}, {21126, 28863}, {21232, 27020}, {21808, 27097}, {21816, 50179}, {24268, 41236}, {24443, 27162}, {24586, 54382}, {24982, 53839}, {25123, 51863}, {25978, 27691}, {26689, 59207}, {27067, 48131}, {27248, 41876}, {27697, 28369}, {27820, 56174}, {27984, 41534}, {29633, 40533}, {29960, 41877}, {30030, 30748}, {30116, 33942}, {30758, 59311}, {34434, 39712}, {35078, 35127}, {36905, 59605}, {39035, 40861}, {39046, 39775}, {40589, 59631}, {49482, 51710}, {49758, 58452}, {51974, 56657}, {59538, 59574}

X(59509) = midpoint of X(i) and X(j) for these {i,j}: {17762, 33296}, {664, 40845}
X(59509) = complement of X(257)
X(59509) = perspector of circumconic {{A, B, C, X(799), X(6649)}}
X(59509) = center of circumconic {{A, B, C, X(664), X(1978)}}
X(59509) = X(i)-isoconjugate-of-X(j) for these {i, j}: {25, 57690}, {893, 2298}, {904, 1220}, {1169, 52651}, {1974, 57859}, {7104, 30710}, {14534, 40729}
X(59509) = X(i)-Dao conjugate of X(j) for these {i, j}: {1107, 56901}, {1211, 256}, {4357, 2}, {6505, 57690}, {16587, 14624}, {16592, 4581}, {40597, 2298}, {52087, 893}
X(59509) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 4357}, {664, 3907}
X(59509) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 3846}, {31, 4357}, {32, 1107}, {42, 46826}, {56, 17062}, {101, 21051}, {171, 141}, {172, 10}, {291, 5031}, {385, 20542}, {604, 24239}, {692, 25666}, {825, 3805}, {894, 2887}, {904, 26558}, {1215, 21245}, {1333, 6682}, {1397, 28358}, {1415, 3907}, {1580, 20333}, {1691, 17793}, {1909, 626}, {1911, 325}, {1920, 21235}, {1922, 18904}, {1933, 17755}, {2210, 39044}, {2295, 3454}, {2329, 1329}, {2330, 3452}, {2533, 21253}, {3287, 124}, {3955, 18589}, {4367, 116}, {4369, 21252}, {4447, 20540}, {4570, 40546}, {4579, 3835}, {7009, 20305}, {7081, 21244}, {7119, 5}, {7121, 30038}, {7122, 2}, {7175, 2886}, {7176, 17046}, {7196, 17047}, {7234, 8287}, {14598, 3229}, {17103, 21240}, {18047, 21260}, {18200, 53564}, {18787, 20541}, {20964, 1211}, {20981, 11}, {21823, 24040}, {22061, 21530}, {32739, 3709}, {34073, 48289}, {45882, 55061}, {51319, 34832}, {51902, 21250}, {56242, 1086}, {57234, 125}, {59159, 44417}
X(59509) = pole of line {4357, 46826} with respect to the Kiepert hyperbola
X(59509) = pole of line {3907, 7192} with respect to the Steiner circumellipse
X(59509) = pole of line {2533, 3907} with respect to the Steiner inellipse
X(59509) = pole of line {1, 1178} with respect to the Wallace hyperbola
X(59509) = pole of line {4481, 15411} with respect to the dual conic of Orthic inconic
X(59509) = pole of line {325, 3846} with respect to the dual conic of Yff parabola
X(59509) = center of the dual of the bicevian conic of X(1) and X(10)
X(59509) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1215)}}, {{A, B, C, X(2), X(6645)}}, {{A, B, C, X(75), X(1237)}}, {{A, B, C, X(86), X(1432)}}, {{A, B, C, X(171), X(444)}}, {{A, B, C, X(257), X(314)}}, {{A, B, C, X(274), X(1920)}}, {{A, B, C, X(740), X(1580)}}, {{A, B, C, X(874), X(17941)}}, {{A, B, C, X(960), X(1043)}}, {{A, B, C, X(1045), X(2092)}}, {{A, B, C, X(1193), X(3736)}}, {{A, B, C, X(1211), X(17762)}}, {{A, B, C, X(1220), X(3907)}}, {{A, B, C, X(1581), X(45197)}}, {{A, B, C, X(1964), X(40936)}}, {{A, B, C, X(1966), X(16609)}}, {{A, B, C, X(2295), X(5263)}}, {{A, B, C, X(3666), X(33296)}}, {{A, B, C, X(3978), X(16705)}}, {{A, B, C, X(4095), X(31359)}}, {{A, B, C, X(4367), X(32922)}}, {{A, B, C, X(4369), X(5209)}}, {{A, B, C, X(4647), X(4697)}}, {{A, B, C, X(7146), X(56696)}}, {{A, B, C, X(40845), X(59191)}}, {{A, B, C, X(45196), X(46238)}}
X(59509) = barycentric product X(i)*X(j) for these (i, j): {171, 20911}, {304, 444}, {1193, 1920}, {1211, 17103}, {1215, 16705}, {1237, 40153}, {1909, 3666}, {2269, 7205}, {2292, 8033}, {3674, 7081}, {3687, 7176}, {3882, 4374}, {3910, 6649}, {3963, 54308}, {4357, 894}, {4369, 53332}, {4509, 4579}, {7196, 960}, {16739, 2295}, {17787, 24471}, {18047, 3004}, {18235, 85}, {27455, 41318}, {27697, 86}, {27891, 45218}, {27958, 41003}, {28369, 75}, {59191, 6645}
X(59509) = barycentric quotient X(i)/X(j) for these (i, j): {63, 57690}, {171, 2298}, {304, 57859}, {444, 19}, {894, 1220}, {1193, 893}, {1215, 14624}, {1909, 30710}, {1920, 1240}, {2292, 52651}, {2300, 904}, {3666, 256}, {3674, 7249}, {3687, 4451}, {3725, 40729}, {3882, 3903}, {3955, 2359}, {4357, 257}, {4369, 4581}, {4579, 36147}, {6649, 6648}, {7175, 961}, {7196, 31643}, {16705, 32010}, {17103, 14534}, {18047, 8707}, {18235, 9}, {20911, 7018}, {22097, 7015}, {22345, 7116}, {24471, 1432}, {27697, 10}, {28369, 1}, {40153, 1178}, {51575, 56901}, {53332, 27805}, {54308, 40432}, {57234, 57162}, {59191, 40099}
X(59509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1966, 56696, 51575}, {3212, 17084, 7249}, {16705, 53332, 2292}, {17762, 33296, 740}, {18697, 54308, 39774}, {59574, 59602, 59538}


X(59510) = X(2)X(18067)∩X(76)X(3846)

Barycentrics    b*c*(a^2*b*c-b*c*(b^2+c^2)+a*(b^3+c^3)) : :

X(59510) lies on these lines: {2, 18067}, {43, 18057}, {76, 3846}, {305, 2887}, {698, 21250}, {984, 51861}, {3266, 25957}, {3452, 6381}, {3761, 27792}, {3836, 57518}, {4505, 8026}, {6376, 59509}, {6505, 14208}, {8024, 25760}, {9464, 21415}, {17149, 17793}, {18052, 26102}, {18069, 56249}, {25960, 39998}, {30473, 59505}

X(59510) = center of the dual of the bicevian conic of X(1) and X(19)
X(59510) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9464, 25958, 21415}, {30473, 59508, 59505}


X(59511) = X(2)X(38)∩X(5)X(10)

Barycentrics    -2*a*b*c+a^2*(b+c)+b*c*(b+c) : :

X(59511) lies on these lines: {1, 341}, {2, 38}, {5, 10}, {6, 29649}, {8, 25591}, {9, 1755}, {11, 29673}, {31, 4434}, {37, 6375}, {39, 21902}, {42, 4358}, {43, 312}, {55, 4011}, {57, 32935}, {72, 3831}, {75, 16569}, {100, 32930}, {171, 4672}, {190, 17596}, {192, 4903}, {200, 32941}, {210, 3741}, {226, 3836}, {238, 7081}, {321, 899}, {329, 4655}, {354, 4871}, {518, 3840}, {519, 4849}, {536, 4135}, {612, 25496}, {614, 32920}, {661, 40585}, {726, 3752}, {748, 26227}, {750, 4697}, {872, 18137}, {894, 16999}, {908, 2887}, {936, 27411}, {942, 46827}, {976, 5192}, {978, 4385}, {1001, 29670}, {1054, 32939}, {1089, 3216}, {1104, 8669}, {1111, 18142}, {1125, 59577}, {1193, 3701}, {1201, 4696}, {1376, 3923}, {1698, 49598}, {1738, 48643}, {1756, 29418}, {1757, 14829}, {1921, 41318}, {1961, 50293}, {1962, 31035}, {1997, 59406}, {1999, 49489}, {2176, 4095}, {2206, 30905}, {2276, 3985}, {2292, 26030}, {2308, 41241}, {2325, 59547}, {2607, 4418}, {2999, 32921}, {3008, 12263}, {3035, 44416}, {3112, 7035}, {3175, 4970}, {3210, 28516}, {3214, 3702}, {3218, 32938}, {3219, 32918}, {3240, 32915}, {3242, 29668}, {3244, 4891}, {3290, 21101}, {3305, 29828}, {3550, 4676}, {3589, 29645}, {3634, 39589}, {3662, 33101}, {3666, 3971}, {3678, 50605}, {3681, 30942}, {3687, 3773}, {3695, 17748}, {3699, 3961}, {3703, 37663}, {3705, 33165}, {3706, 4685}, {3714, 59303}, {3715, 37660}, {3717, 24239}, {3720, 46897}, {3728, 27261}, {3739, 24182}, {3742, 49479}, {3751, 30567}, {3757, 17123}, {3758, 37604}, {3769, 16468}, {3771, 17279}, {3775, 4104}, {3782, 21093}, {3790, 32855}, {3791, 17763}, {3816, 11814}, {3821, 4415}, {3823, 3838}, {3873, 30957}, {3898, 34587}, {3902, 49984}, {3920, 32944}, {3925, 25385}, {3932, 29671}, {3935, 32943}, {3936, 29687}, {3944, 4429}, {3953, 19847}, {3959, 25610}, {3975, 40790}, {3976, 25492}, {3980, 4413}, {3993, 35652}, {3994, 17147}, {3995, 46904}, {3996, 5524}, {4023, 21085}, {4075, 20108}, {4082, 4439}, {4085, 24210}, {4193, 36568}, {4335, 56085}, {4353, 59732}, {4362, 4383}, {4376, 24685}, {4388, 26791}, {4417, 29674}, {4422, 6690}, {4423, 29651}, {4451, 17280}, {4465, 24326}, {4519, 49988}, {4521, 59673}, {4527, 5212}, {4557, 24425}, {4561, 24291}, {4640, 59679}, {4642, 25253}, {4645, 33096}, {4650, 17350}, {4660, 24703}, {4671, 32860}, {4673, 59294}, {4682, 33682}, {4683, 26792}, {4687, 25124}, {4692, 49997}, {4703, 26034}, {4713, 24260}, {4722, 37639}, {4732, 59296}, {4734, 49452}, {4753, 32853}, {4847, 49693}, {4850, 32925}, {4865, 10327}, {4892, 25957}, {4968, 27627}, {4972, 30566}, {4981, 31241}, {4997, 29861}, {5057, 32948}, {5150, 20986}, {5233, 32778}, {5268, 50302}, {5269, 50300}, {5287, 5625}, {5293, 13740}, {5297, 32772}, {5316, 53663}, {5329, 26264}, {5432, 17611}, {5718, 29653}, {5741, 15523}, {5745, 15819}, {5883, 49993}, {6376, 59509}, {6679, 7792}, {6688, 17049}, {6692, 50535}, {6745, 59692}, {7174, 59599}, {7191, 32927}, {7292, 32923}, {8167, 24331}, {8580, 50314}, {9284, 16587}, {9316, 28997}, {9466, 50025}, {10157, 45305}, {10459, 52353}, {11019, 49529}, {11680, 33117}, {13742, 36573}, {14555, 50308}, {16086, 37717}, {16602, 49483}, {16610, 24165}, {16706, 33152}, {16822, 26687}, {16825, 37679}, {17012, 32928}, {17018, 46938}, {17020, 32924}, {17135, 21805}, {17289, 25120}, {17355, 20103}, {17369, 59628}, {17484, 33067}, {17490, 49493}, {17591, 49447}, {17592, 41839}, {17594, 30568}, {17602, 29654}, {17605, 21241}, {17717, 29641}, {17718, 29642}, {17720, 25453}, {17721, 30615}, {17724, 29672}, {17760, 25994}, {17777, 33095}, {17795, 33938}, {17889, 25351}, {18201, 27002}, {18228, 44431}, {18229, 30393}, {19540, 29054}, {19582, 37598}, {20310, 25066}, {20335, 30748}, {20528, 25102}, {20530, 49481}, {20942, 42043}, {20947, 37678}, {21060, 49511}, {21232, 25119}, {21242, 25006}, {21893, 22199}, {22034, 28522}, {22167, 25277}, {22173, 25615}, {23675, 25881}, {24248, 56084}, {24254, 27076}, {24295, 59726}, {24440, 26029}, {24443, 56318}, {24693, 26040}, {24850, 25440}, {25115, 59570}, {25144, 34832}, {25248, 26779}, {25382, 36220}, {25531, 29820}, {25651, 25655}, {25666, 30584}, {25760, 27131}, {25918, 56025}, {25960, 29667}, {25961, 31019}, {26037, 27798}, {26102, 30829}, {26105, 36479}, {26580, 32781}, {27003, 32940}, {27040, 33299}, {27065, 32917}, {27130, 33169}, {27184, 33174}, {28808, 33137}, {29635, 38047}, {29637, 33126}, {29662, 33114}, {29677, 33122}, {29821, 32926}, {29844, 49688}, {29846, 33157}, {29849, 32862}, {29850, 33133}, {29857, 30852}, {30578, 33100}, {30824, 31245}, {30861, 49490}, {31233, 49532}, {32843, 33078}, {32844, 33091}, {32847, 33071}, {32850, 33106}, {32851, 33164}, {32914, 37680}, {32932, 56009}, {32934, 56082}, {33065, 33172}, {33066, 33085}, {33068, 33099}, {33072, 33107}, {33118, 33140}, {33121, 37758}, {33125, 33151}, {33132, 37759}, {34020, 52049}, {34790, 50608}, {34937, 59731}, {36497, 52242}, {36634, 42034}, {37593, 50111}, {37671, 49711}, {38462, 40982}, {39594, 49497}, {41624, 49754}, {43223, 44307}, {44720, 59310}, {49459, 59295}, {54389, 59572}, {56696, 59622}, {59505, 59523}, {59687, 59688}

X(59511) = midpoint of X(i) and X(j) for these {i,j}: {1, 4737}, {3752, 3967}, {3840, 4090}, {43, 312}, {982, 32937}
X(59511) = reflection of X(i) in X(j) for these {i,j}: {3752, 6686}, {4090, 59596}
X(59511) = complement of X(982)
X(59511) = perspector of circumconic {{A, B, C, X(4562), X(56188)}}
X(59511) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1581, 740}
X(59511) = X(i)-complementary conjugate of X(j) for these {i, j}: {983, 10}, {2276, 51582}, {3407, 21264}, {4621, 3835}, {7033, 2887}, {7034, 21235}, {7132, 142}, {7255, 53564}, {8684, 3837}, {8685, 522}, {17743, 141}, {18898, 17023}, {38810, 21240}, {38813, 1125}, {40415, 3741}, {56180, 1329}, {56196, 3454}, {56358, 2886}
X(59511) = pole of line {21302, 28521} with respect to the orthoptic circle of the Steiner Inellipse
X(59511) = pole of line {513, 6687} with respect to the Spieker circle
X(59511) = pole of line {10950, 17765} with respect to the Feuerbach hyperbola
X(59511) = pole of line {2092, 29671} with respect to the Kiepert hyperbola
X(59511) = pole of line {812, 4391} with respect to the Steiner inellipse
X(59511) = pole of line {18192, 33295} with respect to the Wallace hyperbola
X(59511) = pole of line {3752, 3912} with respect to the dual conic of Yff parabola
X(59511) = center of the dual of the bicevian conic of X(1) and X(75)
X(59511) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(29402)}}, {{A, B, C, X(38), X(7035)}}, {{A, B, C, X(244), X(3112)}}, {{A, B, C, X(291), X(1222)}}, {{A, B, C, X(335), X(2051)}}, {{A, B, C, X(812), X(44353)}}, {{A, B, C, X(870), X(17063)}}, {{A, B, C, X(982), X(7033)}}, {{A, B, C, X(6682), X(39717)}}, {{A, B, C, X(43534), X(51870)}}, {{A, B, C, X(56190), X(56256)}}
X(59511) = barycentric product X(i)*X(j) for these (i, j): {29402, 3952}
X(59511) = barycentric quotient X(i)/X(j) for these (i, j): {29402, 7192}
X(59511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1215, 24325}, {2, 17063, 58467}, {2, 17165, 244}, {2, 24349, 17063}, {2, 27538, 984}, {2, 32931, 1215}, {2, 32937, 982}, {2, 33153, 33123}, {2, 33166, 33119}, {2, 3952, 38}, {2, 42056, 50094}, {2, 984, 6682}, {9, 32916, 59624}, {10, 3452, 3846}, {10, 59686, 59684}, {37, 59506, 59517}, {38, 3952, 42054}, {43, 312, 740}, {55, 4011, 4432}, {171, 27064, 4672}, {210, 30818, 3741}, {210, 3741, 49457}, {244, 17165, 42055}, {518, 59596, 4090}, {726, 6686, 3752}, {750, 26223, 4697}, {982, 32937, 537}, {984, 27538, 4096}, {1215, 24003, 2}, {3666, 3971, 49456}, {3666, 4009, 3971}, {3699, 32942, 3961}, {3740, 44417, 10}, {3752, 3967, 726}, {3816, 49524, 29655}, {3840, 4090, 518}, {3932, 37662, 29671}, {3961, 32942, 49473}, {4362, 4383, 4974}, {4903, 59298, 192}, {5205, 27064, 171}, {6685, 59517, 37}, {10164, 59544, 59665}, {10164, 59579, 59544}, {10164, 59637, 59620}, {11814, 29655, 3816}, {17063, 24349, 42053}, {17355, 59562, 59668}, {17763, 32911, 3791}, {19582, 59299, 37598}, {21093, 24169, 3782}, {25102, 59512, 59516}, {25760, 29679, 28595}, {25957, 31053, 4892}, {26034, 31018, 4703}, {26227, 26688, 748}, {26792, 33086, 4683}, {27131, 29679, 25760}, {29821, 32926, 49472}, {32862, 37651, 29849}, {59523, 59526, 59505}, {59544, 59579, 59664}


X(59512) = X(1)X(25497)∩X(2)X(3727)

Barycentrics    -2*a^2*b*c+a^3*(b+c)+b*c*(b^2+c^2) : :

X(59512) lies on these lines: {1, 25497}, {2, 3727}, {3, 59700}, {6, 18156}, {10, 20529}, {37, 698}, {75, 16969}, {76, 49777}, {85, 4713}, {141, 960}, {172, 4797}, {190, 7187}, {213, 14210}, {304, 742}, {312, 25111}, {517, 20255}, {518, 59554}, {524, 21874}, {626, 5074}, {740, 25136}, {894, 41875}, {982, 24652}, {1125, 24254}, {1212, 4422}, {1215, 24656}, {1334, 16720}, {1616, 4361}, {1930, 3230}, {2238, 26689}, {2241, 30108}, {2329, 24358}, {3057, 30748}, {3061, 17279}, {3721, 27097}, {3735, 30110}, {3739, 20257}, {3797, 34063}, {3869, 30945}, {3878, 21240}, {3914, 24366}, {3915, 4372}, {4051, 24735}, {4376, 9310}, {4465, 26563}, {4531, 4553}, {4640, 59625}, {6376, 59524}, {7200, 56024}, {7789, 17044}, {10027, 33938}, {16515, 31997}, {16583, 35101}, {16827, 17762}, {16973, 59557}, {17339, 41771}, {17448, 17755}, {17752, 20947}, {20271, 24282}, {20528, 25102}, {20963, 46899}, {21232, 25079}, {24003, 25107}, {24181, 34824}, {24325, 25130}, {24349, 24654}, {24699, 33867}, {25264, 41805}, {25994, 59513}, {27340, 54389}, {28368, 42707}, {33939, 40859}, {36232, 59610}, {56926, 59626}, {59545, 59580}, {59563, 59692}, {59693, 59697}

X(59512) = midpoint of X(i) and X(j) for these {i,j}: {304, 2176}
X(59512) = complement of X(3959)
X(59512) = pole of line {24533, 29324} with respect to the Steiner inellipse
X(59512) = pole of line {20227, 21892} with respect to the dual conic of Yff parabola
X(59512) = center of the dual of the bicevian conic of X(1) and X(76)
X(59512) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 59504, 59515}, {141, 59704, 59703}, {304, 2176, 742}, {304, 35274, 2176}, {27097, 53332, 3721}, {59511, 59516, 25102}, {59580, 59607, 59545}


X(59513) = X(75)X(3880)∩X(664)X(1455)

Barycentrics    -4*a^2*b*c+a^3*(b+c)-a*(b-c)^2*(b+c)+2*b*c*(b^2-b*c+c^2) : :

X(59513) lies on these lines: {75, 3880}, {190, 40872}, {320, 44663}, {350, 43037}, {392, 33934}, {517, 20924}, {518, 49779}, {536, 10027}, {664, 1455}, {668, 59586}, {712, 36226}, {758, 49780}, {960, 20955}, {1214, 45048}, {1975, 9312}, {2275, 41793}, {2802, 20893}, {3057, 33930}, {3160, 6337}, {3212, 18156}, {3263, 21272}, {3693, 33946}, {3812, 41875}, {4408, 29226}, {4595, 40883}, {5836, 33943}, {6376, 59504}, {6685, 59509}, {9957, 33940}, {10914, 33933}, {14210, 49999}, {17760, 59516}, {21281, 21605}, {25994, 59512}, {30806, 53332}, {33944, 58679}, {33951, 41391}, {35101, 49777}, {59515, 59524}

X(59513) = center of the dual of the bicevian conic of X(1) and X(80)
X(59513) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59504, 59507, 6376}


X(59514) = X(37)X(2998)∩X(668)X(1100)

Barycentrics    b*c*(a^2*(b+c)-2*b*c*(b+c)+2*a*(b^2+b*c+c^2)) : :

X(59514) lies on these lines: {37, 2998}, {141, 56253}, {313, 17239}, {536, 18133}, {594, 6381}, {668, 1100}, {714, 25121}, {2092, 13466}, {3264, 17235}, {3596, 17237}, {3666, 40603}, {3723, 18140}, {3739, 18143}, {3765, 17385}, {3948, 17229}, {3963, 4708}, {3975, 17357}, {4033, 4681}, {4044, 48636}, {4110, 4718}, {4358, 26758}, {4377, 5224}, {4410, 28604}, {4494, 17253}, {4506, 6646}, {4688, 18144}, {4698, 18040}, {4726, 39995}, {4735, 31337}, {17259, 18065}, {17299, 18135}, {17344, 17790}, {17348, 18044}, {17372, 18147}, {18046, 25298}, {18146, 50123}, {18148, 25109}, {18150, 30044}, {20913, 28633}, {20917, 31238}, {25107, 46838}, {29593, 30596}, {30963, 46845}, {31060, 48630}, {59626, 59666}

X(59514) = pole of line {513, 4801} with respect to the dual conic of DeLongchamps ellipse
X(59514) = center of the dual of the bicevian conic of X(1) and X(81)
X(59514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 30473, 59519}, {6376, 30473, 37}, {18040, 59212, 4698}, {52043, 56249, 3739}


X(59515) = X(1)X(9055)∩X(37)X(698)

Barycentrics    2*a^2*b*c-b*c*(b^2+c^2)+a*(b+c)*(b^2+c^2) : :

X(59515) lies on these lines: {1, 9055}, {10, 35101}, {37, 698}, {72, 524}, {75, 30054}, {141, 304}, {190, 6645}, {192, 16969}, {194, 16515}, {257, 20947}, {335, 41875}, {514, 4075}, {536, 25371}, {538, 3159}, {594, 17762}, {712, 1125}, {742, 960}, {918, 24099}, {986, 25350}, {1086, 33943}, {1500, 4568}, {1616, 17318}, {1655, 33946}, {2292, 16720}, {2295, 25263}, {3263, 3727}, {3666, 59564}, {3678, 8682}, {3735, 20255}, {3754, 35103}, {3954, 14210}, {3959, 30758}, {3995, 28368}, {4415, 17789}, {4432, 51710}, {4472, 49598}, {4561, 18755}, {4713, 19582}, {4754, 56318}, {4797, 37539}, {5277, 33952}, {6376, 20532}, {6690, 59720}, {15985, 20336}, {16518, 27340}, {16525, 32449}, {16722, 27809}, {16744, 21827}, {17262, 25242}, {17332, 21879}, {17448, 49521}, {17499, 33948}, {18050, 29983}, {18057, 25134}, {18140, 21138}, {18156, 49509}, {20331, 25248}, {20453, 30045}, {20598, 23473}, {21024, 33939}, {21101, 24656}, {21216, 37673}, {21331, 29968}, {24330, 25253}, {25083, 59546}, {25376, 41886}, {25434, 57288}, {26689, 46907}, {27481, 41771}, {28309, 50122}, {28478, 53002}, {30963, 33890}, {35286, 36647}, {35652, 49757}, {36404, 59557}, {44416, 59627}, {59513, 59524}

X(59515) = pole of line {19308, 21005} with respect to the Steiner inellipse
X(59515) = pole of line {513, 6687} with respect to the dual conic of anticomplementary circle
X(59515) = center of the dual of the bicevian conic of X(1) and X(83)
X(59515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 59504, 59512}, {257, 20947, 21025}, {2292, 16720, 25349}, {3735, 33942, 20255}, {25263, 53332, 2295}, {59583, 59609, 59546}


X(59516) = X(1)X(17048)∩X(2)X(4051)

Barycentrics    b*(b-c)^2*c+a^3*(b+c)+a*b*c*(b+c)-a^2*(b^2+4*b*c+c^2) : :

X(59516) lies on these lines: {1, 17048}, {2, 4051}, {3, 6647}, {6, 59616}, {8, 26101}, {9, 16284}, {37, 59507}, {39, 36226}, {41, 28961}, {75, 4050}, {85, 3208}, {142, 5836}, {192, 17090}, {304, 4095}, {518, 59615}, {527, 21872}, {740, 25132}, {1334, 30806}, {1930, 29699}, {2140, 2802}, {2170, 28742}, {2280, 26653}, {2329, 40872}, {3057, 20335}, {3212, 51058}, {3295, 24249}, {3730, 35102}, {3871, 9317}, {3880, 6706}, {3991, 46180}, {4032, 22370}, {4090, 59554}, {4513, 24333}, {4595, 33943}, {4851, 21231}, {4919, 55082}, {7264, 46894}, {7278, 16549}, {9025, 25375}, {9310, 24685}, {10039, 17046}, {10914, 17050}, {10915, 34847}, {14210, 29381}, {14923, 30949}, {14951, 25101}, {16609, 17316}, {16975, 25073}, {17062, 31397}, {17063, 24654}, {17244, 51381}, {17296, 21233}, {17451, 21272}, {17755, 24524}, {17760, 59513}, {18743, 25119}, {19584, 59509}, {20528, 25102}, {20691, 49777}, {20955, 49516}, {21139, 25237}, {22837, 55161}, {24325, 24656}, {24631, 25303}, {25139, 30829}, {27096, 39244}, {29697, 33942}, {59504, 59525}, {59584, 59610}

X(59516) = midpoint of X(i) and X(j) for these {i,j}: {85, 3208}
X(59516) = reflection of X(i) in X(j) for these {i,j}: {20257, 6706}
X(59516) = complement of X(4051)
X(59516) = X(i)-complementary conjugate of X(j) for these {i, j}: {25576, 124}, {56353, 1329}
X(59516) = pole of line {24749, 43041} with respect to the Steiner inellipse
X(59516) = center of the dual of the bicevian conic of X(1) and X(85)
X(59516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3880, 6706, 20257}, {25102, 59512, 59511}


X(59517) = X(2)X(726)∩X(10)X(312)

Barycentrics    -(b*c*(b+c))+a*(b^2+4*b*c+c^2) : :
X(59517) = -X[596]+4*X[19878], X[3159]+2*X[3634], 2*X[3239]+X[59721], 2*X[3678]+X[35633], 3*X[3921]+X[50122], 5*X[4687]+X[21080], -4*X[5044]+X[59303], 5*X[19862]+X[24068], X[22024]+5*X[31264], -2*X[24176]+5*X[31253], -7*X[27268]+X[42027]

X(59517) lies on these lines: {1, 4090}, {2, 726}, {9, 29649}, {10, 312}, {31, 4759}, {37, 6375}, {38, 4871}, {42, 31035}, {43, 3993}, {45, 32916}, {75, 4135}, {190, 17122}, {192, 16569}, {210, 392}, {344, 3771}, {354, 42054}, {405, 8669}, {474, 8720}, {518, 4096}, {522, 28602}, {536, 58451}, {537, 3742}, {596, 19878}, {612, 4011}, {614, 49464}, {714, 4755}, {740, 3740}, {756, 3741}, {846, 5205}, {899, 3995}, {908, 29653}, {982, 30829}, {984, 3840}, {1125, 1215}, {1500, 59690}, {1639, 20525}, {1698, 30863}, {1920, 6381}, {1961, 27064}, {2887, 49769}, {3159, 3634}, {3175, 28522}, {3239, 59721}, {3305, 4362}, {3452, 4078}, {3626, 3706}, {3663, 30758}, {3666, 6686}, {3678, 35633}, {3681, 42057}, {3683, 4434}, {3687, 6541}, {3693, 20103}, {3699, 3750}, {3715, 32853}, {3717, 29655}, {3720, 3952}, {3743, 25123}, {3752, 49456}, {3755, 59684}, {3773, 5743}, {3821, 4656}, {3826, 48643}, {3828, 27798}, {3836, 4415}, {3842, 44417}, {3846, 3932}, {3848, 28582}, {3891, 17125}, {3896, 49988}, {3921, 50122}, {3923, 5268}, {3967, 24325}, {3980, 56082}, {3985, 17355}, {3994, 4359}, {4052, 38204}, {4104, 49560}, {4113, 4701}, {4151, 27799}, {4187, 20487}, {4356, 59686}, {4357, 20947}, {4370, 59574}, {4383, 49477}, {4413, 32934}, {4422, 6679}, {4423, 32920}, {4485, 56253}, {4518, 11814}, {4519, 4691}, {4650, 17336}, {4671, 26037}, {4672, 4682}, {4679, 4865}, {4685, 32915}, {4687, 21080}, {4703, 50304}, {4704, 59298}, {4709, 59296}, {4734, 36634}, {4756, 32940}, {4849, 49471}, {4868, 59669}, {4918, 50038}, {4944, 8714}, {4991, 32911}, {5044, 59303}, {5233, 33092}, {5241, 6057}, {5249, 21093}, {5272, 49455}, {5283, 52655}, {5284, 32927}, {5297, 32930}, {5423, 36479}, {6051, 59582}, {6376, 59505}, {6536, 26251}, {6684, 9959}, {6688, 14839}, {7174, 29668}, {7226, 30957}, {7308, 16825}, {7322, 36480}, {7806, 25101}, {8026, 10009}, {8258, 59639}, {8582, 49609}, {9330, 31330}, {9342, 32845}, {10157, 28850}, {10453, 49510}, {13411, 27409}, {15569, 59596}, {16601, 59720}, {16602, 49523}, {16604, 21884}, {16814, 59624}, {17017, 26688}, {17061, 31289}, {17063, 49447}, {17123, 32926}, {17124, 32933}, {17165, 30950}, {17234, 33101}, {17261, 17596}, {17263, 33130}, {17264, 33160}, {17304, 30791}, {17350, 37604}, {17353, 29645}, {17490, 49445}, {17598, 25531}, {17760, 27269}, {17763, 27065}, {17764, 49732}, {17765, 49736}, {17766, 40998}, {17777, 33109}, {18133, 25113}, {18140, 41318}, {19582, 59311}, {19804, 50117}, {19862, 24068}, {21590, 33942}, {22024, 31264}, {24176, 31253}, {24349, 25502}, {24692, 33099}, {24988, 33145}, {25501, 32771}, {25960, 32862}, {25961, 33151}, {25970, 26611}, {26038, 49474}, {26102, 32937}, {26103, 31302}, {26105, 29844}, {26580, 29687}, {26792, 32949}, {27076, 59570}, {27131, 29643}, {27268, 42027}, {28581, 58629}, {29845, 33166}, {29851, 33153}, {29854, 31053}, {30566, 33105}, {30942, 46938}, {30947, 49508}, {30963, 49521}, {31018, 32946}, {32914, 35595}, {32918, 33761}, {32921, 37679}, {32924, 37687}, {32928, 37680}, {32931, 43223}, {32935, 37674}, {32938, 37633}, {38000, 51294}, {42041, 46909}, {44416, 58443}, {49469, 59295}, {59692, 59726}, {59719, 59723}

X(59517) = midpoint of X(i) and X(j) for these {i,j}: {1125, 59718}, {2, 3971}, {24165, 32925}, {354, 42054}, {3681, 42057}, {3740, 35652}, {4685, 32915}
X(59517) = reflection of X(i) in X(j) for these {i,j}: {42053, 3848}, {59718, 4075}
X(59517) = complement of X(24165)
X(59517) = X(i)-complementary conjugate of X(j) for these {i, j}: {55997, 2887}, {56011, 141}
X(59517) = pole of line {28470, 47793} with respect to the orthoptic circle of the Steiner Inellipse
X(59517) = pole of line {4063, 4785} with respect to the Steiner inellipse
X(59517) = pole of line {3661, 19804} with respect to the dual conic of Yff parabola
X(59517) = center of the dual of the bicevian conic of X(1) and X(86)
X(59517) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(24165), X(55997)}}, {{A, B, C, X(27494), X(34258)}}, {{A, B, C, X(31359), X(39969)}}
X(59517) = barycentric product X(i)*X(j) for these (i, j): {190, 48401}
X(59517) = barycentric quotient X(i)/X(j) for these (i, j): {48401, 514}
X(59517) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32925, 24165}, {2, 3971, 726}, {37, 59506, 59511}, {37, 59511, 6685}, {37, 59565, 59716}, {43, 41839, 3993}, {612, 4011, 49482}, {756, 4358, 3741}, {846, 5205, 59679}, {899, 3995, 4970}, {984, 18743, 3840}, {1125, 59718, 59717}, {1125, 59732, 59730}, {1215, 44307, 1125}, {1961, 27064, 33682}, {3452, 4078, 29671}, {3666, 24003, 6686}, {3740, 35652, 740}, {3848, 28582, 42053}, {3971, 24165, 32925}, {4009, 44307, 1215}, {4075, 59717, 59718}, {4370, 59574, 59664}, {5268, 30568, 3923}, {6376, 59518, 59505}, {17123, 32926, 50023}, {20103, 59585, 59547}, {20103, 59638, 59621}, {26102, 32937, 49479}


X(59518) = X(2)X(1978)∩X(76)X(85)

Barycentrics    b^2*c^2*(2*a^2+b*c-a*(b+c)) : :

X(59518) lies on these lines: {1, 7033}, {2, 1978}, {37, 6374}, {45, 670}, {75, 3840}, {76, 85}, {192, 6383}, {274, 39703}, {308, 17267}, {310, 4671}, {321, 31028}, {334, 3944}, {344, 9230}, {561, 4358}, {668, 27538}, {726, 6384}, {874, 1376}, {982, 18149}, {1215, 27808}, {1502, 17243}, {1921, 18743}, {1962, 35532}, {1965, 4011}, {1966, 29649}, {2162, 24502}, {2276, 18275}, {3403, 30567}, {3596, 4485}, {3741, 23490}, {3971, 17149}, {3978, 17316}, {3995, 30964}, {4087, 24239}, {4090, 24524}, {4518, 32023}, {4704, 34086}, {5718, 40363}, {6376, 59505}, {6381, 20945}, {7018, 29674}, {8620, 27105}, {17165, 41314}, {17234, 20453}, {17244, 18891}, {17311, 33769}, {17786, 20528}, {18035, 44723}, {18059, 32931}, {18277, 19584}, {20023, 29583}, {20532, 21250}, {20942, 21615}, {27091, 59570}, {27801, 30022}, {28659, 30092}, {29687, 30632}, {30963, 35538}, {31008, 41839}, {32937, 36863}, {39467, 59565}, {40034, 44307}, {51058, 52664}, {57518, 59761}, {59506, 59526}

X(59518) = midpoint of X(i) and X(j) for these {i,j}: {6384, 8026}
X(59518) = perspector of circumconic {{A, B, C, X(4572), X(54985)}}
X(59518) = X(i)-isoconjugate-of-X(j) for these {i, j}: {32, 3551}
X(59518) = X(i)-Dao conjugate of X(j) for these {i, j}: {3662, 2275}, {6376, 3551}, {17448, 22343}, {31286, 6377}
X(59518) = X(i)-complementary conjugate of X(j) for these {i, j}: {56357, 21250}
X(59518) = pole of line {6373, 21302} with respect to the Steiner circumellipse
X(59518) = pole of line {6373, 17072} with respect to the Steiner inellipse
X(59518) = pole of line {284, 21785} with respect to the Wallace hyperbola
X(59518) = pole of line {652, 22092} with respect to the dual conic of polar circle
X(59518) = pole of line {3766, 4083} with respect to the dual conic of Brocard inellipse
X(59518) = pole of line {982, 6376} with respect to the dual conic of Yff parabola
X(59518) = center of the dual of the bicevian conic of X(1) and X(87)
X(59518) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(41771)}}, {{A, B, C, X(2), X(31286)}}, {{A, B, C, X(85), X(24524)}}, {{A, B, C, X(226), X(4090)}}, {{A, B, C, X(1016), X(46180)}}, {{A, B, C, X(2162), X(6377)}}, {{A, B, C, X(3550), X(7146)}}, {{A, B, C, X(3912), X(34523)}}, {{A, B, C, X(7033), X(30545)}}, {{A, B, C, X(17760), X(30701)}}, {{A, B, C, X(20917), X(32017)}}
X(59518) = barycentric product X(i)*X(j) for these (i, j): {310, 4090}, {1978, 31286}, {3550, 561}, {17350, 76}, {24524, 75}, {48330, 6386}
X(59518) = barycentric quotient X(i)/X(j) for these (i, j): {75, 3551}, {3550, 31}, {4090, 42}, {17105, 7121}, {17350, 6}, {23472, 1919}, {24524, 1}, {24840, 3271}, {31286, 649}, {41771, 2275}, {48330, 667}, {57235, 20979}, {59676, 22343}
X(59518) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1978, 6382}, {2, 6382, 10009}, {312, 1920, 76}, {312, 40493, 21590}, {4485, 20947, 3596}, {6384, 8026, 726}, {21590, 40493, 20924}, {59505, 59517, 6376}


X(59519) = X(37)X(2998)∩X(44)X(668)

Barycentrics    b*c*(a^2*(b+c)+2*b*c*(b+c)-2*a*(b^2+b*c+c^2)) : :

X(59519) lies on these lines: {37, 2998}, {44, 668}, {312, 31056}, {313, 17229}, {320, 4506}, {350, 4727}, {536, 4033}, {594, 20888}, {599, 4494}, {3263, 31082}, {3264, 3834}, {3596, 17231}, {3661, 4377}, {3739, 18040}, {3760, 50087}, {3765, 17359}, {3844, 4710}, {3943, 6381}, {3963, 17239}, {3975, 41310}, {4009, 48090}, {4044, 50097}, {4110, 4686}, {4358, 39699}, {4361, 18065}, {4408, 59522}, {4482, 7113}, {4681, 18133}, {4688, 20917}, {4698, 56249}, {4739, 18143}, {4755, 59212}, {4852, 18044}, {8610, 27076}, {15492, 29542}, {16610, 59712}, {16666, 24524}, {17243, 56253}, {17344, 17787}, {17374, 17790}, {20532, 52882}, {30866, 31243}, {30963, 39260}, {40603, 44307}

X(59519) = midpoint of X(i) and X(j) for these {i,j}: {4033, 52043}
X(59519) = pole of line {8, 513} with respect to the dual conic of DeLongchamps ellipse
X(59519) = center of the dual of the bicevian conic of X(1) and X(88)
X(59519) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2998), X(39699)}}, {{A, B, C, X(18832), X(40040)}}
X(59519) = barycentric product X(i)*X(j) for these (i, j): {53571, 668}
X(59519) = barycentric quotient X(i)/X(j) for these (i, j): {53571, 513}
X(59519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 30473, 59514}, {4033, 52043, 536}, {4110, 18144, 4686}, {17786, 30473, 37}


X(59520) = X(5)X(92)∩X(30)X(1824)

Barycentrics    2*a^4*b*c+a*(b-c)^2*(b+c)^3-b*c*(b^2-c^2)^2-a^2*b*c*(b^2+c^2)-a^3*(b+c)*(b^2+c^2) : :

X(59520) lies on these lines: {5, 92}, {30, 1824}, {192, 22149}, {321, 50153}, {511, 22027}, {514, 59638}, {523, 6690}, {1851, 36661}, {1897, 20834}, {5089, 6677}, {6360, 47522}, {7046, 36474}, {7102, 36663}, {7140, 34119}, {14206, 21807}, {15973, 41013}, {18750, 20430}, {20760, 51046}, {21318, 37370}, {21319, 53349}, {23772, 33130}, {40937, 59566}

X(59520) = center of the dual of the bicevian conic of X(1) and X(95)
X(59520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59588, 59611, 6677}


X(59521) = X(523)X(1577)∩X(814)X(6050)

Barycentrics    (b-c)*(b+c)*(-3*b*c+a*(b+c)) : :
X(59521) = -X[663]+3*X[48183],-X[3669]+3*X[48198],-X[3777]+3*X[3837], -3*X[3835]+X[48129], 3*X[4010]+X[4729], -3*X[4129]+X[48053], X[4367]+3*X[30709], X[4462]+3*X[48184], X[4474]+3*X[47841], -X[4560]+3*X[47829], X[4774]+3*X[47840], 3*X[4800]+X[21302], -3*X[4874]+X[50517], 3*X[14430]+X[48279] and many others

X(59521) lies on these lines: {512, 59737}, {523, 1577}, {663, 48183}, {693, 48401}, {814, 6050}, {891, 59714}, {900, 17072}, {1125, 29268}, {1734, 28221}, {2487, 24287}, {2533, 4806}, {3239, 29082}, {3566, 59743}, {3669, 48198}, {3700, 21053}, {3762, 48406}, {3777, 3837}, {3835, 48129}, {4010, 4729}, {4129, 48053}, {4147, 48090}, {4367, 30709}, {4462, 48184}, {4474, 47841}, {4560, 47829}, {4774, 47840}, {4791, 21260}, {4800, 21302}, {4874, 50517}, {4885, 29324}, {4977, 47957}, {7178, 18004}, {8714, 53571}, {14321, 40466}, {14430, 48279}, {14837, 29078}, {17496, 30795}, {18155, 25126}, {20317, 29362}, {21128, 59713}, {21301, 47872}, {23301, 58361}, {24290, 59549}, {26985, 48323}, {28175, 47967}, {28209, 47942}, {28213, 47959}, {28217, 48267}, {29152, 31286}, {29226, 59522}, {29344, 31288}, {31251, 48321}, {45324, 52601}, {47724, 48553}, {47814, 48392}, {47831, 48330}, {47839, 48289}, {47922, 48399}, {48002, 50457}, {48144, 48233}

X(59521) = midpoint of X(i) and X(j) for these {i,j}: {1577, 21051}, {2533, 4806}, {21301, 48248}, {30709, 48206}, {3762, 48406}, {3837, 4391}, {4147, 48090}, {4791, 21260}, {47922, 48399}, {48002, 50457}, {693, 48401}, {7178, 18004}
X(59521) = perspector of circumconic {{A, B, C, X(321), X(1278)}}
X(59521) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 29227}, {110, 36598}, {163, 38247}, {662, 36614}, {1576, 40027}, {4565, 36630}
X(59521) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 29227}, {115, 38247}, {244, 36598}, {1084, 36614}, {4858, 40027}, {55064, 36630}
X(59521) = pole of line {442, 4429} with respect to the nine-point circle
X(59521) = pole of line {28, 38247} with respect to the polar circle
X(59521) = pole of line {3125, 21144} with respect to the Kiepert hyperbola
X(59521) = pole of line {1211, 23897} with respect to the Steiner inellipse
X(59521) = pole of line {693, 23765} with respect to the dual conic of Stammler hyperbola
X(59521) = pole of line {513, 6687} with respect to the dual conic of Wallace hyperbola
X(59521) = center of the dual of the bicevian conic of X(1) and X(99)
X(59521) = intersection, other than A, B, C, of circumconics {{A, B, C, X(523), X(29226)}}, {{A, B, C, X(1278), X(42713)}}, {{A, B, C, X(3932), X(21868)}}, {{A, B, C, X(3992), X(4135)}}, {{A, B, C, X(4404), X(35352)}}
X(59521) = barycentric product X(i)*X(j) for these (i, j): {10, 59522}, {1278, 523}, {1577, 16569}, {4050, 4077}, {4135, 514}, {4903, 7178}, {14618, 22149}, {16969, 850}, {17090, 3700}, {20943, 661}, {21868, 693}, {22227, 6386}, {29226, 321}
X(59521) = barycentric quotient X(i)/X(j) for these (i, j): {37, 29227}, {512, 36614}, {523, 38247}, {661, 36598}, {1278, 99}, {1577, 40027}, {4041, 36630}, {4050, 643}, {4135, 190}, {4903, 645}, {16569, 662}, {16969, 110}, {17090, 4573}, {20943, 799}, {21868, 100}, {22149, 4558}, {22227, 667}, {29226, 81}, {59522, 86}
X(59521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1577, 14431, 21051}, {1577, 21051, 523}, {21301, 47872, 48248}


X(59522) = X(2)X(4382)∩X(514)X(661)

Barycentrics    (b-c)*(-3*b*c+a*(b+c)) : :
X(59522) = 3*X[2]+X[4382], X[649]+3*X[21297], -X[650]+3*X[4928], -X[659]+3*X[47831], -2*X[2516]+3*X[45675], -X[4025]+3*X[21204], 3*X[4120]+X[47676], -3*X[4379]+X[4932], -X[4380]+5*X[24924], 3*X[4453]+X[48266], X[4724]+3*X[48170], -X[4730]+3*X[17072] and many others

X(59522) lies on these lines: {2, 4382}, {514, 661}, {522, 3837}, {523, 48417}, {649, 21297}, {650, 4928}, {659, 47831}, {812, 4394}, {891, 25142}, {918, 48415}, {1125, 29033}, {1491, 28161}, {2254, 4962}, {2490, 6009}, {2516, 45675}, {2786, 3676}, {3004, 4500}, {3261, 23886}, {3667, 4010}, {3700, 3776}, {3716, 48089}, {3798, 59749}, {4024, 31094}, {4025, 21204}, {4052, 4444}, {4106, 4369}, {4120, 47676}, {4147, 48279}, {4151, 23301}, {4367, 28525}, {4379, 4932}, {4380, 24924}, {4401, 25537}, {4408, 59519}, {4453, 48266}, {4522, 23770}, {4724, 48170}, {4730, 17072}, {4762, 25666}, {4763, 31250}, {4765, 44432}, {4770, 21260}, {4778, 4806}, {4782, 48206}, {4804, 44429}, {4810, 47823}, {4813, 26798}, {4818, 48178}, {4820, 47754}, {4830, 47803}, {4838, 48424}, {4893, 26824}, {4913, 47802}, {4922, 45667}, {4931, 47677}, {4940, 28840}, {4944, 49299}, {4976, 47882}, {4988, 51317}, {6545, 25259}, {6546, 47650}, {7192, 31147}, {7658, 23801}, {7662, 48050}, {8714, 23818}, {9508, 48198}, {14321, 28851}, {14432, 47722}, {16892, 47790}, {17069, 45677}, {17494, 30835}, {18197, 28398}, {20954, 21191}, {20979, 29426}, {21104, 48270}, {21115, 48420}, {21146, 28225}, {21183, 28906}, {21196, 47757}, {23655, 48287}, {23729, 47788}, {23731, 47791}, {24674, 48325}, {24719, 47833}, {24769, 42043}, {26049, 48196}, {27193, 48218}, {27345, 47795}, {27467, 30038}, {28147, 48030}, {28155, 48010}, {28191, 48002}, {28229, 48028}, {28470, 48327}, {29005, 46399}, {29226, 59521}, {29807, 48064}, {30795, 47830}, {31148, 48071}, {31149, 48291}, {31207, 47776}, {31209, 47932}, {31287, 45678}, {43067, 48049}, {45315, 47962}, {45746, 48416}, {46403, 47832}, {47653, 47873}, {47656, 48418}, {47671, 47781}, {47673, 48423}, {47685, 48072}, {47694, 48042}, {47697, 48593}, {47756, 48274}, {47759, 47984}, {47760, 48000}, {47762, 48016}, {47786, 49296}, {47789, 49294}, {47808, 53558}, {47812, 48073}, {47819, 48264}, {47821, 48009}, {47834, 48023}, {47869, 47926}, {47870, 47923}, {47879, 47890}, {47930, 48421}, {47980, 48148}, {47985, 48142}, {47986, 48143}, {47991, 48133}, {47992, 48134}, {47993, 48135}, {48001, 48126}, {48020, 48237}, {48026, 49291}, {48027, 49292}, {48037, 48108}, {48044, 48152}, {48082, 48412}, {48107, 48592}, {48115, 48625}, {48147, 48588}, {48153, 48590}, {48189, 50328}, {48202, 48248}, {48397, 48558}, {48543, 50522}, {48575, 50343}

X(59522) = midpoint of X(i) and X(j) for these {i,j}: {1491, 48394}, {17072, 48273}, {20954, 21191}, {21104, 48270}, {21146, 48043}, {21196, 48268}, {21297, 47779}, {3004, 4500}, {3700, 3776}, {3716, 48089}, {3837, 48090}, {4010, 24720}, {4106, 4369}, {4147, 48279}, {4382, 48008}, {4522, 23770}, {4804, 48017}, {4806, 48098}, {4885, 23813}, {4932, 20295}, {43067, 48049}, {46403, 48063}, {47672, 47996}, {47685, 48072}, {47694, 48042}, {47697, 48593}, {47756, 48419}, {47980, 48148}, {47984, 48141}, {47985, 48142}, {47986, 48143}, {47991, 48133}, {47992, 48134}, {47993, 48135}, {48000, 48125}, {48001, 48126}, {48002, 48127}, {48009, 48119}, {48010, 48120}, {48016, 48114}, {48026, 49291}, {48027, 49292}, {48037, 48108}, {48044, 48152}, {48071, 48079}, {48073, 48080}, {48107, 48592}, {48115, 48625}, {48147, 48588}, {48153, 48590}, {48170, 48547}, {48274, 48404}, {649, 49287}, {650, 49289}, {661, 48399}, {693, 3835}, {7192, 48041}, {7662, 48050}
X(59522) = reflection of X(i) in X(j) for these {i,j}: {3798, 59749}, {31286, 4885}, {59550, 59612}, {59751, 59752}
X(59522) = complement of X(48008)
X(59522) = perspector of circumconic {{A, B, C, X(75), X(1278)}}
X(59522) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 29227}, {100, 36614}, {101, 36598}, {109, 36630}, {692, 38247}, {32739, 40027}
X(59522) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 29227}, {11, 36630}, {192, 4595}, {1015, 36598}, {1086, 38247}, {8054, 36614}, {40619, 40027}
X(59522) = X(i)-complementary conjugate of X(j) for these {i, j}: {39742, 116}, {39966, 11}
X(59522) = pole of line {347, 33138} with respect to the DeLongchamps circle
X(59522) = pole of line {573, 50808} with respect to the excircles-radical circle
X(59522) = pole of line {3663, 3817} with respect to the incircle
X(59522) = pole of line {7987, 9746} with respect to the orthoptic circle of the Steiner Inellipse
X(59522) = pole of line {19, 36630} with respect to the polar circle
X(59522) = pole of line {8, 4821} with respect to the Steiner circumellipse
X(59522) = pole of line {10, 3662} with respect to the Steiner inellipse
X(59522) = pole of line {522, 48056} with respect to the Yff parabola
X(59522) = pole of line {24248, 59387} with respect to the Suppa-Cucoanes circle
X(59522) = pole of line {63, 22066} with respect to the dual conic of polar circle
X(59522) = pole of line {3971, 6376} with respect to the dual conic of Brocard inellipse
X(59522) = pole of line {244, 4124} with respect to the dual conic of Yff parabola
X(59522) = center of the dual of the bicevian conic of X(1) and X(190)
X(59522) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(40598)}}, {{A, B, C, X(514), X(29226)}}, {{A, B, C, X(1278), X(4358)}}, {{A, B, C, X(3912), X(16569)}}, {{A, B, C, X(3948), X(4052)}}, {{A, B, C, X(4444), X(4462)}}, {{A, B, C, X(6381), X(18832)}}, {{A, B, C, X(16969), X(57015)}}, {{A, B, C, X(17090), X(30806)}}, {{A, B, C, X(40012), X(52043)}}
X(59522) = barycentric product X(i)*X(j) for these (i, j): {1278, 514}, {3676, 4903}, {4135, 7192}, {16569, 693}, {16969, 3261}, {17090, 522}, {20943, 513}, {21868, 7199}, {22149, 46107}, {22227, 4602}, {24002, 4050}, {29226, 75}, {59521, 86}
X(59522) = barycentric quotient X(i)/X(j) for these (i, j): {1, 29227}, {513, 36598}, {514, 38247}, {649, 36614}, {650, 36630}, {693, 40027}, {1278, 190}, {4050, 644}, {4135, 3952}, {4903, 3699}, {16569, 100}, {16969, 101}, {17090, 664}, {20943, 668}, {21868, 1018}, {22149, 1331}, {22227, 798}, {23560, 1919}, {29226, 1}, {40598, 4595}, {57114, 7121}, {59521, 10}
X(59522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4382, 48008}, {649, 21297, 49287}, {649, 26985, 47779}, {661, 693, 48399}, {693, 4728, 3835}, {693, 4776, 47672}, {812, 4885, 31286}, {1491, 48394, 28161}, {3700, 3776, 30519}, {3700, 4927, 3776}, {3835, 4486, 59751}, {3835, 47996, 4776}, {3835, 48399, 661}, {3837, 48090, 522}, {4010, 24720, 3667}, {4010, 48184, 24720}, {4106, 4369, 4785}, {4106, 45320, 4369}, {4120, 48414, 47676}, {4379, 20295, 4932}, {4380, 24924, 45313}, {4776, 47672, 47996}, {4804, 44429, 48017}, {4806, 48098, 4778}, {4885, 23813, 812}, {4928, 49289, 650}, {4962, 59612, 59550}, {7192, 31147, 48041}, {17494, 30835, 47778}, {21146, 48043, 28225}, {21297, 26985, 649}, {26798, 47780, 4813}, {26824, 27138, 4893}, {31148, 48079, 48071}, {46403, 47832, 48063}, {47672, 47996, 514}, {47756, 48274, 48404}, {47757, 48268, 21196}, {47759, 48141, 47984}, {47760, 48125, 48000}, {47762, 48114, 48016}, {47812, 48080, 48073}, {47821, 48119, 48009}, {48002, 48127, 28191}, {48010, 48120, 28155}, {48270, 48413, 21104}, {48404, 48419, 48274}, {48420, 49272, 21115}


X(59523) = X(2)X(35543)∩X(37)X(6374)

Barycentrics    b*c*(a^2*(b-c)^2-2*b^2*c^2+a^3*(b+c)+2*a*b*c*(b+c)) : :

X(59523) lies on these lines: {2, 35543}, {37, 6374}, {334, 3838}, {518, 41318}, {536, 34020}, {561, 30818}, {668, 59596}, {1920, 44417}, {1978, 3666}, {3175, 30964}, {3740, 51863}, {3742, 18149}, {3752, 6382}, {3844, 7018}, {3967, 17149}, {6376, 59504}, {6384, 49483}, {7033, 49465}, {8026, 49523}, {10009, 16602}, {16610, 40087}, {17448, 41259}, {18135, 20942}, {24732, 25144}, {25280, 58629}, {31008, 35652}, {59505, 59511}

X(59523) = center of the dual of the bicevian conic of X(1) and X(256)


X(59524) = X(2)X(41774)∩X(6)X(16284)

Barycentrics    -2*a^2*b*c+b*(b-c)^2*c+a^3*(b+c)+2*a*b*c*(b+c) : :

X(59524) lies on these lines: {2, 41774}, {6, 16284}, {8, 49752}, {10, 49777}, {37, 59507}, {742, 17752}, {1086, 5836}, {1107, 21232}, {1125, 36226}, {2295, 30806}, {3212, 49509}, {3626, 50025}, {3727, 21272}, {4675, 32049}, {6376, 59512}, {6738, 49776}, {10027, 33944}, {13466, 59666}, {14951, 17353}, {17334, 21872}, {20532, 25102}, {21332, 28742}, {21888, 24214}, {24524, 49481}, {25111, 51863}, {35080, 35120}, {41240, 49779}, {59513, 59515}

X(59524) = midpoint of X(i) and X(j) for these {i,j}: {17752, 20955}
X(59524) = center of the dual of the bicevian conic of X(1) and X(257)
X(59524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17752, 20955, 742}


X(59525) = X(2)X(6552)∩X(10)X(4437)

Barycentrics    -4*b^2*c^2+a^3*(b+c)-2*a^2*(b+c)^2+a*(b+c)^3 : :

X(59525) lies on circumconic {{A, B, C, X(2998), X(6553)}} and on these lines: {2, 6552}, {5, 49773}, {10, 4437}, {37, 2998}, {72, 29381}, {76, 4515}, {85, 40883}, {192, 33780}, {210, 23483}, {321, 26757}, {392, 29699}, {517, 29697}, {668, 1212}, {942, 29400}, {1279, 26687}, {1385, 4482}, {1909, 44798}, {3752, 26752}, {3753, 29691}, {3868, 29510}, {3912, 12607}, {3991, 6381}, {4696, 27096}, {4723, 28742}, {4849, 17033}, {4875, 25278}, {4986, 24774}, {5439, 29375}, {10027, 45219}, {10914, 23891}, {17495, 26773}, {17540, 50745}, {17760, 59507}, {20880, 30730}, {21896, 53675}, {24524, 40133}, {26125, 30693}, {26759, 30818}, {27091, 52541}, {30701, 46835}, {30869, 59310}, {32034, 42048}, {41240, 49478}, {59504, 59516}, {59557, 59597}

X(59525) = center of the dual of the bicevian conic of X(1) and X(277)
X(59525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59597, 59616, 59557}


X(59526) = X(37)X(2998)∩X(44)X(1966)

Barycentrics    b*c*(2*b^2*c^2+a^3*(b+c)-a^2*(b+c)^2) : :

X(59526) lies on these lines: {8, 21615}, {37, 2998}, {44, 1966}, {75, 3617}, {76, 3696}, {210, 561}, {334, 3823}, {350, 28581}, {518, 668}, {536, 9295}, {716, 13466}, {740, 6381}, {799, 1155}, {1237, 40607}, {1279, 39044}, {1575, 39028}, {1757, 4495}, {1909, 3739}, {1920, 3740}, {1978, 4009}, {2669, 30938}, {3263, 20448}, {3403, 5220}, {3706, 18152}, {3752, 17149}, {3760, 49459}, {3952, 35543}, {3967, 6382}, {3975, 33677}, {4358, 53363}, {4383, 18056}, {4408, 29226}, {4723, 20435}, {4732, 20888}, {4849, 25287}, {6374, 59507}, {6384, 16602}, {6385, 58655}, {10009, 49483}, {15569, 18140}, {16284, 20923}, {18059, 44307}, {18135, 49470}, {18157, 30806}, {18891, 20694}, {19567, 25125}, {20345, 32850}, {20530, 52044}, {20718, 35544}, {20943, 49468}, {21443, 49457}, {21902, 59570}, {24524, 49478}, {25278, 49450}, {31238, 31997}, {33675, 36803}, {41318, 59596}, {44417, 51863}, {59505, 59511}, {59506, 59518}

X(59526) = midpoint of X(i) and X(j) for these {i,j}: {668, 1921}
X(59526) = pole of line {4106, 20983} with respect to the Steiner circumellipse
X(59526) = pole of line {69, 513} with respect to the dual conic of DeLongchamps ellipse
X(59526) = center of the dual of the bicevian conic of X(1) and X(291)
X(59526) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2998), X(4373)}}, {{A, B, C, X(18832), X(40014)}}
X(59526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {668, 1921, 518}, {59505, 59511, 59523}


X(59527) = X(2)X(9289)∩X(4)X(69)

Barycentrics    (a^4+2*b^2*c^2-a^2*(b^2+c^2))*(-2*a^2*(b^2-c^2)^2+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)) : :

X(59527) lies on these lines: {2, 9289}, {4, 69}, {6, 59556}, {39, 59698}, {216, 59530}, {339, 12162}, {441, 7789}, {1105, 53639}, {1562, 26154}, {1975, 9306}, {2883, 41005}, {5254, 15595}, {6000, 41009}, {6337, 59535}, {6390, 59659}, {7816, 34360}, {8263, 52881}, {9466, 34850}, {11381, 30737}, {13881, 26958}, {21243, 59635}, {24730, 42671}, {35067, 59545}, {39174, 52766}, {59528, 59529}, {59546, 59558}

X(59527) = midpoint of X(i) and X(j) for these {i,j}: {54412, 57008}
X(59527) = complement of X(9289)
X(59527) = center of circumconic {{A, B, C, X(4563), X(53639)}}
X(59527) = X(i)-isoconjugate-of-X(j) for these {i, j}: {775, 9292}, {9258, 41890}
X(59527) = X(i)-Dao conjugate of X(j) for these {i, j}: {2883, 9292}, {6509, 9307}, {41005, 2}
X(59527) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 41005}
X(59527) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 41005}, {1957, 141}, {1958, 1368}, {1968, 10}, {1973, 5254}, {2451, 34846}, {9306, 18589}, {9308, 2887}, {16229, 21253}, {17478, 127}, {24019, 59745}
X(59527) = pole of line {1899, 9292} with respect to the Jerabek hyperbola
X(59527) = pole of line {5254, 41005} with respect to the Kiepert hyperbola
X(59527) = pole of line {184, 9292} with respect to the Stammler hyperbola
X(59527) = pole of line {15143, 16229} with respect to the Steiner inellipse
X(59527) = pole of line {3, 9307} with respect to the Wallace hyperbola
X(59527) = center of the dual of the bicevian conic of X(3) and X(4)
X(59527) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(9306)}}, {{A, B, C, X(185), X(511)}}, {{A, B, C, X(235), X(43976)}}, {{A, B, C, X(264), X(1975)}}, {{A, B, C, X(800), X(3186)}}, {{A, B, C, X(1968), X(43695)}}, {{A, B, C, X(2883), X(52578)}}, {{A, B, C, X(6509), X(57008)}}, {{A, B, C, X(9289), X(9308)}}, {{A, B, C, X(9290), X(40887)}}, {{A, B, C, X(13567), X(54412)}}, {{A, B, C, X(16229), X(22466)}}, {{A, B, C, X(17773), X(44146)}}, {{A, B, C, X(19166), X(32001)}}, {{A, B, C, X(40325), X(44079)}}, {{A, B, C, X(45199), X(45207)}}
X(59527) = barycentric product X(i)*X(j) for these (i, j): {13567, 1975}, {17773, 99}, {17858, 1958}, {41005, 9308}
X(59527) = barycentric quotient X(i)/X(j) for these (i, j): {185, 51336}, {774, 9258}, {800, 9292}, {1958, 775}, {1975, 801}, {6508, 9255}, {9306, 41890}, {9308, 1105}, {13567, 9307}, {17773, 523}, {41005, 9289}
X(59527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {54412, 57008, 511}


X(59528) = X(76)X(1075)∩X(264)X(9729)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^10*(b^2+c^2)-4*a^8*(b^4+c^4)-2*b^2*c^2*(b^2-c^2)^2*(b^4+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)+2*a^6*(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)+2*a^4*(-2*b^8+b^6*c^2+4*b^4*c^4+b^2*c^6-2*c^8)) : :

X(59528) lies on these lines: {76, 1075}, {99, 56298}, {264, 9729}, {317, 16625}, {1078, 40664}, {1249, 6337}, {1975, 56296}, {3168, 54412}, {3462, 7769}, {6528, 14363}, {13335, 41204}, {15466, 57008}, {32445, 40887}, {34229, 41425}, {39530, 58732}, {51358, 59635}, {59527, 59529}, {59530, 59533}

X(59528) = center of the dual of the bicevian conic of X(3) and X(68)


X(59529) = X(3)X(14363)∩X(4)X(15010)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-2*a^4*(b^2-c^2)^2-2*b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)+a^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)) : :

X(59529) lies on these lines: {3, 14363}, {4, 15010}, {51, 46106}, {216, 59531}, {264, 6688}, {324, 373}, {436, 575}, {450, 34986}, {511, 3168}, {1075, 5907}, {1093, 9729}, {1249, 59543}, {1352, 14361}, {1990, 6677}, {2052, 5943}, {2501, 40938}, {3819, 51877}, {3917, 35360}, {4240, 44110}, {5462, 8887}, {5640, 42400}, {5972, 56297}, {6509, 42453}, {6525, 46264}, {6618, 11179}, {8780, 15576}, {9306, 56296}, {9730, 40641}, {10192, 59654}, {13567, 39569}, {14249, 46850}, {14569, 37648}, {14855, 34334}, {15274, 30771}, {21243, 51358}, {41371, 46927}, {44249, 52057}, {53415, 59661}, {59527, 59528}

X(59529) = midpoint of X(i) and X(j) for these {i,j}: {3168, 15466}
X(59529) = center of the dual of the bicevian conic of X(3) and X(69)
X(59529) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 59650, 14363}, {2052, 5943, 39530}, {3168, 15466, 511}, {59531, 59532, 216}


X(59530) = X(3)X(59698)∩X(6)X(54412)

Barycentrics    -2*a^2*b^2*c^2*(b^2-c^2)^2+a^8*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)-2*a^6*(b^4-b^2*c^2+c^4)+a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :

X(59530) lies on these lines: {3, 59698}, {6, 54412}, {64, 15271}, {76, 32445}, {141, 2883}, {154, 4074}, {206, 3492}, {216, 59527}, {217, 44146}, {264, 38297}, {384, 1971}, {511, 59556}, {1235, 3331}, {1503, 6248}, {1970, 15014}, {2777, 7830}, {3357, 7815}, {3734, 6759}, {3934, 6000}, {5876, 36952}, {5878, 7800}, {6696, 58446}, {7761, 22802}, {7789, 16252}, {7816, 10282}, {10024, 54074}, {10181, 24656}, {10192, 59545}, {12162, 34850}, {13196, 41593}, {14767, 44870}, {17128, 57275}, {39604, 43278}, {58437, 59695}, {59528, 59533}, {59532, 59534}

X(59530) = midpoint of X(i) and X(j) for these {i,j}: {76, 32445}
X(59530) = center of the dual of the bicevian conic of X(3) and X(76)
X(59530) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7789, 16252, 59706}


X(59531) = X(3)X(3168)∩X(30)X(51)

Barycentrics    b^2*c^2*(b^2-c^2)^4+a^8*(b^4+4*b^2*c^2+c^4)+a^4*(b^2-c^2)^2*(3*b^4-b^2*c^2+3*c^4)-a^2*(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)-a^6*(3*b^6+2*b^4*c^2+2*b^2*c^4+3*c^6) : :
X(59531) = X[140]+2*X[6663], 5*X[1656]+X[41481], 2*X[3628]+X[15912], 2*X[5462]+X[51888], -X[6662]+4*X[16239]

X(59531) lies on these lines: {2, 42453}, {3, 3168}, {5, 2052}, {30, 51}, {140, 6663}, {216, 59529}, {232, 6677}, {523, 58434}, {546, 42400}, {547, 10184}, {549, 51877}, {852, 56302}, {1656, 41481}, {2790, 45979}, {3164, 38283}, {3628, 15912}, {5462, 51888}, {5943, 32428}, {6662, 16239}, {6676, 47202}, {7734, 15312}, {13754, 14640}, {15466, 30258}, {23292, 47153}, {34545, 41202}

X(59531) = midpoint of X(i) and X(j) for these {i,j}: {2, 42453}
X(59531) = center of the dual of the bicevian conic of X(3) and X(95)
X(59531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {216, 59529, 59532}


X(59532) = X(3)X(1093)∩X(5)X(389)

Barycentrics    b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)+a^2*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)-3*a^8*(b^4+c^4)-a^4*(b^2-c^2)^2*(b^4+5*b^2*c^2+c^4)+3*a^6*(b^6+c^6) : :

X(59532) lies on circumconic {{A, B, C, X(1105), X(14941)}} and on these lines: {2, 1972}, {3, 1093}, {5, 389}, {24, 37846}, {140, 14363}, {184, 47208}, {216, 59529}, {230, 800}, {264, 38283}, {324, 852}, {418, 46106}, {511, 59660}, {2052, 6638}, {3567, 45997}, {3580, 57529}, {4993, 12834}, {5640, 57528}, {6688, 14767}, {8794, 43975}, {10184, 11451}, {23583, 58447}, {38605, 40082}, {42453, 46832}, {44079, 44227}, {44334, 49111}, {44924, 58470}, {47405, 59543}, {59530, 59534}, {59553, 59569}

X(59532) = midpoint of X(i) and X(j) for these {i,j}: {2052, 6638}
X(59532) = pole of line {6130, 57120} with respect to the polar circle
X(59532) = pole of line {417, 34148} with respect to the Stammler hyperbola
X(59532) = pole of line {2451, 14618} with respect to the Steiner inellipse
X(59532) = pole of line {647, 16229} with respect to the dual conic of DeLongchamps circle
X(59532) = center of the dual of the bicevian conic of X(3) and X(264)
X(59532) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3168, 30258}, {2, 35360, 13409}, {216, 59529, 59531}


X(59533) = X(6)X(436)∩X(230)X(231)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^2*c^2*(b^2-c^2)^4+a^8*(b^4+c^4)+a^6*(-3*b^6+2*b^4*c^2+2*b^2*c^4-3*c^6)+3*a^4*(b^8-b^6*c^2-b^2*c^6+c^8)-a^2*(b^10-b^6*c^4-b^4*c^6+c^10)) : :

X(59533) lies on these lines: {6, 436}, {39, 14363}, {51, 6748}, {53, 2052}, {107, 1971}, {216, 59529}, {230, 231}, {389, 27359}, {1075, 32445}, {3053, 42457}, {3269, 52661}, {3289, 35360}, {6781, 52057}, {15274, 31489}, {40664, 41368}, {59528, 59530}, {59558, 59661}

X(59533) = polar conjugate of X(54976)
X(59533) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 54976}
X(59533) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1987, 53}
X(59533) = pole of line {2, 32320} with respect to the polar circle
X(59533) = pole of line {53, 34980} with respect to the Jerabek hyperbola
X(59533) = pole of line {125, 2052} with respect to the Kiepert hyperbola
X(59533) = pole of line {4, 39201} with respect to the Orthic inconic
X(59533) = pole of line {525, 35071} with respect to the dual conic of Wallace hyperbola
X(59533) = center of the dual of the bicevian conic of X(3) and X(287)
X(59533) = intersection, other than A, B, C, of circumconics {{A, B, C, X(53), X(42293)}}, {{A, B, C, X(523), X(43710)}}, {{A, B, C, X(647), X(1988)}}
X(59533) = barycentric product X(i)*X(j) for these (i, j): {2052, 46841}
X(59533) = barycentric quotient X(i)/X(j) for these (i, j): {4, 54976}, {46841, 394}
X(59533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {232, 47202, 230}, {3168, 47739, 6}


X(59534) = X(5)X(2883)∩X(297)X(511)

Barycentrics    a^2*(-b^4-c^4+a^2*(b^2+c^2))*(-3*b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-2*b^4+3*b^2*c^2-2*c^4)) : :

X(59534) lies on these lines: {5, 2883}, {297, 511}, {420, 5167}, {512, 31286}, {1990, 46185}, {3818, 34236}, {5943, 52247}, {9306, 58311}, {11328, 13335}, {11672, 48316}, {14917, 58500}, {15143, 52128}, {38283, 38297}, {46033, 46831}, {52006, 59707}, {59527, 59528}, {59530, 59532}

X(59534) = midpoint of X(i) and X(j) for these {i,j}: {1990, 46185}
X(59534) = perspector of circumconic {{A, B, C, X(38262), X(40896)}}
X(59534) = X(i)-isoconjugate-of-X(j) for these {i, j}: {293, 38264}, {1821, 36617}, {1910, 38256}, {36120, 36608}
X(59534) = X(i)-Dao conjugate of X(j) for these {i, j}: {132, 38264}, {11672, 38256}, {40601, 36617}, {46094, 36608}
X(59534) = pole of line {879, 38264} with respect to the polar circle
X(59534) = pole of line {17974, 38256} with respect to the Stammler hyperbola
X(59534) = pole of line {6394, 36608} with respect to the Wallace hyperbola
X(59534) = center of the dual of the bicevian conic of X(3) and X(290)
X(59534) = intersection, other than A, B, C, of circumconics {{A, B, C, X(297), X(38283)}}, {{A, B, C, X(6530), X(17703)}}, {{A, B, C, X(40804), X(44704)}}
X(59534) = barycentric product X(i)*X(j) for these (i, j): {297, 38283}, {325, 38297}, {40896, 511}
X(59534) = barycentric quotient X(i)/X(j) for these (i, j): {232, 38264}, {237, 36617}, {511, 38256}, {3289, 36608}, {38283, 287}, {38297, 98}, {40896, 290}


X(59535) = X(2)X(59770)∩X(51)X(4576)

Barycentrics    a^4*(b^2+c^2)+2*b^2*c^2*(b^2+c^2)-a^2*(b^4+6*b^2*c^2+c^4) : :

X(59535) lies on these lines: {2, 59770}, {39, 59563}, {51, 4576}, {194, 35294}, {305, 3819}, {511, 57518}, {538, 21001}, {1352, 19583}, {1368, 51371}, {1613, 41622}, {1994, 9146}, {3051, 45672}, {3231, 19568}, {3265, 52032}, {3266, 3917}, {4563, 34986}, {5092, 37894}, {5650, 8024}, {5943, 11059}, {6337, 59527}, {6374, 59561}, {6390, 53415}, {6677, 59548}, {6688, 18906}, {8041, 30749}, {8589, 59696}, {13567, 50567}, {14810, 33651}, {15082, 40022}, {36650, 41747}, {59504, 59547}, {59552, 59553}, {59555, 59558}

X(59535) = pole of line {9491, 32472} with respect to the Steiner inellipse
X(59535) = pole of line {5113, 39905} with respect to the dual conic of circumcircle of the Johnson triangle
X(59535) = center of the dual of the bicevian conic of X(4) and X(6)
X(59535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {305, 3819, 14994}, {59563, 59564, 39}


X(59536) = X(1)X(59574)∩X(2)X(48645)

Barycentrics    3*a^3-2*a^2*(b+c)-2*a*(b^2+c^2)+(b+c)*(b^2+c^2) : :

X(59536) lies on these lines: {1, 59574}, {2, 48645}, {6, 59544}, {31, 47356}, {55, 3977}, {63, 3712}, {165, 3932}, {345, 3416}, {519, 21000}, {524, 16570}, {1155, 17776}, {1376, 56078}, {1836, 4427}, {2325, 10164}, {3035, 30568}, {3052, 49681}, {3161, 59506}, {3647, 5814}, {3683, 17740}, {3696, 5273}, {3703, 35258}, {3704, 31424}, {3706, 55868}, {3710, 5217}, {3717, 4421}, {3729, 6690}, {3749, 4884}, {3771, 17276}, {3772, 32934}, {3838, 24280}, {3928, 4966}, {3966, 33168}, {3967, 5218}, {4414, 32777}, {4643, 33160}, {4650, 4851}, {4689, 33163}, {4702, 24477}, {4901, 31508}, {5432, 56082}, {5695, 5745}, {5794, 56313}, {5880, 33116}, {6337, 59504}, {6679, 17301}, {7283, 26066}, {17064, 28530}, {17122, 41313}, {17275, 59624}, {17279, 17596}, {17281, 32916}, {17594, 38047}, {17599, 35263}, {17601, 33164}, {17718, 32933}, {17720, 32936}, {17728, 51583}, {19750, 49986}, {24703, 32851}, {24789, 32845}, {26034, 50104}, {29649, 59665}, {30828, 44446}, {32917, 50048}, {33137, 59769}, {37642, 49462}, {37828, 56311}, {59576, 59587}, {59577, 59591}, {59584, 59597}, {59595, 59600}

X(59536) = center of the dual of the bicevian conic of X(4) and X(7)
X(59536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {345, 4640, 3416}, {3161, 59572, 59506}, {4427, 33113, 1836}, {6337, 59504, 59537}, {17594, 44416, 38047}, {59506, 59581, 59572}, {59544, 59547, 6}, {59576, 59587, 59598}, {59580, 59583, 1}


X(59537) = X(9)X(59602)∩X(78)X(7181)

Barycentrics    3*a^4-a^3*(b+c)+(b-c)^2*(b^2+c^2)+a*(b+c)*(b^2+c^2)-4*a^2*(b^2-b*c+c^2) : :

X(59537) lies on these lines: {9, 59602}, {78, 7181}, {348, 47595}, {518, 17081}, {664, 37828}, {1837, 17136}, {3035, 9312}, {3160, 59507}, {3663, 8572}, {3665, 35262}, {4643, 59700}, {5088, 25681}, {5794, 17095}, {5880, 17084}, {6337, 59504}, {6921, 43037}, {7223, 27385}, {8256, 25716}, {53597, 56177}, {59544, 59551}, {59605, 59614}, {59610, 59616}

X(59537) = center of the dual of the bicevian conic of X(4) and X(8)
X(59537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {348, 59691, 47595}, {3160, 59572, 59507}


X(59538) = X(6)X(6337)∩X(99)X(1834)

Barycentrics    4*a^4+2*a^3*(b+c)+a^2*(-3*b^2+2*b*c-3*c^2)+(b^2+c^2)^2 : :

X(59538) lies on these lines: {6, 6337}, {58, 6390}, {99, 1834}, {1213, 6626}, {1975, 37646}, {2482, 20970}, {3926, 4252}, {3933, 4257}, {4253, 8369}, {4258, 32985}, {5022, 14001}, {5030, 7819}, {6629, 41014}, {7789, 33863}, {15326, 24995}, {15670, 17175}, {17056, 17103}, {17499, 35297}, {17694, 38930}, {17747, 26686}, {18156, 59580}, {18755, 32459}, {33296, 59634}, {59504, 59544}, {59509, 59574}

X(59538) = pole of line {3945, 32972} with respect to the Kiepert hyperbola
X(59538) = pole of line {1611, 35216} with respect to the Stammler hyperbola
X(59538) = pole of line {6392, 46707} with respect to the Wallace hyperbola
X(59538) = center of the dual of the bicevian conic of X(4) and X(10)
X(59538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59574, 59602, 59509}, {59625, 59627, 1213}


X(59539) = X(6)X(6337)∩X(15)X(6390)

Barycentrics    sqrt(3)*a^2*S+3*(3*a^2-b^2-c^2)*SA : :

X(59539) lies on these lines: {6, 6337}, {15, 6390}, {99, 5318}, {325, 42087}, {396, 30471}, {1007, 42093}, {1975, 23302}, {3926, 11480}, {3933, 10645}, {5321, 7763}, {7752, 42101}, {7773, 42108}, {7776, 42090}, {7799, 42942}, {19780, 32459}, {30472, 43229}, {32815, 42098}, {32816, 42096}, {32819, 42110}, {32820, 42945}, {32824, 43238}, {32829, 42095}, {32831, 42119}, {32835, 42139}, {32837, 42154}, {32840, 43869}

X(59539) = pole of line {6392, 46708} with respect to the Wallace hyperbola
X(59539) = center of the dual of the bicevian conic of X(4) and X(13)
X(59539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59540, 59542}, {6, 6337, 59540}, {30471, 59634, 396}, {59540, 59541, 6}


X(59540) = X(6)X(6337)∩X(16)X(6390)

Barycentrics    sqrt(3)*a^2*S-3*(3*a^2-b^2-c^2)*SA : :

X(59540) lies on these lines: {6, 6337}, {16, 6390}, {99, 5321}, {325, 42088}, {395, 30472}, {1007, 42094}, {1975, 23303}, {3926, 11481}, {3933, 10646}, {5318, 7763}, {7752, 42102}, {7773, 42109}, {7776, 42091}, {7799, 42943}, {19781, 32459}, {30471, 43228}, {32815, 42095}, {32816, 42097}, {32819, 42107}, {32820, 42944}, {32824, 43239}, {32829, 42098}, {32831, 42120}, {32835, 42142}, {32837, 42155}, {32840, 43870}

X(59540) = pole of line {6392, 46709} with respect to the Wallace hyperbola
X(59540) = center of the dual of the bicevian conic of X(4) and X(14)
X(59540) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59539, 59541}, {6, 6337, 59539}, {30472, 59634, 395}, {59539, 59542, 6}


X(59541) = X(6)X(6337)∩X(99)X(397)

Barycentrics    3*a^4+(b^2+c^2)*(-4*a^2+b^2+c^2)-2*sqrt(3)*a^2*S : :

X(59541) lies on these lines: {6, 6337}, {15, 3933}, {61, 6390}, {69, 36836}, {76, 16772}, {99, 397}, {183, 42945}, {303, 32819}, {315, 42942}, {325, 42147}, {395, 30471}, {396, 1975}, {398, 7763}, {1007, 5339}, {3785, 11480}, {3926, 22236}, {5238, 7767}, {5321, 7752}, {7769, 42599}, {7773, 42164}, {7776, 42150}, {7782, 42943}, {7811, 42791}, {8369, 36775}, {11185, 42598}, {22237, 32873}, {23302, 59635}, {32006, 43194}, {32815, 42156}, {32816, 42154}, {32828, 43238}, {32829, 42153}, {32884, 42611}, {34229, 42490}, {43150, 52193}, {43228, 59634}

X(59541) = pole of line {6392, 46710} with respect to the Wallace hyperbola
X(59541) = center of the dual of the bicevian conic of X(4) and X(17)
X(59541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59539, 59540}, {6, 6337, 59542}, {303, 32819, 42166}, {59539, 59542, 6337}


X(59542) = X(6)X(6337)∩X(99)X(398)

Barycentrics    3*a^4+(b^2+c^2)*(-4*a^2+b^2+c^2)+2*sqrt(3)*a^2*S : :

X(59542) lies on these lines: {6, 6337}, {16, 3933}, {62, 6390}, {69, 36843}, {76, 16773}, {99, 398}, {183, 42944}, {302, 32819}, {315, 42943}, {325, 42148}, {395, 1975}, {396, 30472}, {397, 7763}, {1007, 5340}, {3785, 11481}, {3926, 22238}, {5237, 7767}, {5318, 7752}, {7769, 42598}, {7773, 42165}, {7776, 42151}, {7782, 42942}, {7811, 42792}, {11185, 42599}, {22235, 32873}, {23303, 59635}, {32006, 43193}, {32815, 42153}, {32816, 42155}, {32828, 43239}, {32829, 42156}, {32884, 42610}, {34229, 42491}, {43150, 52194}, {43229, 59634}

X(59542) = pole of line {6392, 46711} with respect to the Wallace hyperbola
X(59542) = center of the dual of the bicevian conic of X(4) and X(18)
X(59542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59540, 59539}, {6, 6337, 59541}, {302, 32819, 42163}, {59540, 59541, 6337}


X(59543) = X(2)X(98)∩X(3)X(1661)

Barycentrics    3*a^6-3*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4-6*b^2*c^2+c^4) : :

X(59543) lies on these lines: {2, 98}, {3, 1661}, {4, 18418}, {5, 11425}, {6, 6387}, {20, 51403}, {25, 11064}, {51, 37645}, {52, 15887}, {69, 38282}, {140, 17814}, {141, 19153}, {154, 1368}, {155, 16238}, {206, 15812}, {235, 35602}, {315, 420}, {343, 6090}, {376, 40196}, {394, 468}, {427, 35259}, {450, 11547}, {461, 48938}, {511, 6353}, {575, 18928}, {631, 5907}, {858, 31383}, {1092, 3542}, {1147, 22529}, {1249, 59529}, {1350, 10154}, {1370, 1495}, {1498, 16196}, {1503, 8780}, {1568, 18533}, {1596, 37497}, {1656, 44076}, {1843, 28708}, {1853, 5159}, {1974, 28419}, {2548, 52438}, {3089, 13346}, {3098, 10565}, {3147, 5562}, {3167, 13567}, {3292, 6515}, {3546, 6759}, {3548, 10539}, {3564, 26958}, {3589, 32621}, {3618, 6688}, {3763, 13562}, {3796, 30739}, {3818, 8889}, {3819, 7494}, {3917, 7493}, {4549, 18324}, {4846, 10272}, {5020, 14561}, {5644, 6329}, {5654, 6644}, {5707, 52259}, {5788, 52260}, {5816, 59632}, {5895, 44247}, {5943, 11427}, {6248, 52288}, {6337, 59527}, {6389, 59706}, {6640, 18350}, {6642, 9815}, {6643, 10282}, {6676, 17811}, {6816, 13367}, {7193, 20266}, {7386, 35260}, {7394, 10546}, {7396, 29012}, {7398, 19130}, {7484, 13394}, {7490, 48902}, {7500, 44082}, {7521, 10441}, {7539, 35283}, {7714, 48901}, {7734, 53094}, {9777, 47597}, {9833, 11585}, {9909, 15448}, {10257, 18451}, {10606, 16976}, {11204, 48378}, {11206, 16051}, {11284, 37649}, {11402, 37648}, {11430, 18537}, {11433, 34986}, {11441, 26937}, {11595, 44155}, {11793, 41725}, {11898, 21974}, {12362, 17821}, {13392, 50140}, {14156, 44441}, {14569, 15144}, {14852, 44911}, {15035, 35481}, {15060, 18580}, {15066, 43653}, {15068, 44452}, {15069, 37911}, {15131, 20772}, {15533, 47453}, {15594, 50666}, {16063, 26881}, {16266, 44232}, {16319, 36192}, {16925, 35294}, {17809, 45298}, {17810, 20423}, {18020, 34405}, {18282, 42021}, {18420, 43586}, {18435, 38794}, {18440, 23332}, {18531, 51393}, {18916, 43844}, {18951, 41597}, {20850, 29181}, {21001, 52261}, {21841, 37498}, {22352, 46336}, {24252, 59628}, {24570, 48894}, {26255, 44106}, {26864, 31255}, {26882, 47528}, {26884, 56456}, {26885, 56457}, {31101, 35265}, {31152, 35266}, {31282, 34224}, {32237, 34608}, {32661, 34517}, {34254, 56430}, {34507, 52290}, {36752, 43593}, {36983, 46850}, {37119, 43598}, {37188, 59707}, {37483, 37971}, {37489, 44211}, {37511, 45979}, {37638, 52297}, {37672, 41588}, {40326, 40825}, {41204, 46927}, {41424, 43621}, {43652, 59349}, {44233, 44413}, {45303, 52298}, {47316, 53097}, {47405, 59532}, {47426, 59563}, {52283, 54393}, {59578, 59606}

X(59543) = midpoint of X(i) and X(j) for these {i,j}: {6353, 37669}, {8780, 30771}
X(59543) = reflection of X(i) in X(j) for these {i,j}: {4, 18418}, {8780, 59699}
X(59543) = inverse of X(1899) in Thomson-Gibert-Moses hyperbola
X(59543) = complement of X(23291)
X(59543) = X(i)-complementary conjugate of X(j) for these {i, j}: {34233, 10}
X(59543) = pole of line {8057, 53263} with respect to the circumcircle
X(59543) = pole of line {1899, 9155} with respect to the Parry circle
X(59543) = pole of line {511, 30552} with respect to the Jerabek hyperbola
X(59543) = pole of line {230, 15905} with respect to the Kiepert hyperbola
X(59543) = pole of line {511, 1204} with respect to the Stammler hyperbola
X(59543) = pole of line {2799, 20580} with respect to the Steiner inellipse
X(59543) = pole of line {325, 30771} with respect to the Wallace hyperbola
X(59543) = pole of line {3566, 59652} with respect to the dual conic of DeLongchamps circle
X(59543) = center of the dual of the bicevian conic of X(4) and X(69)
X(59543) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(18848)}}, {{A, B, C, X(125), X(34405)}}, {{A, B, C, X(184), X(11595)}}, {{A, B, C, X(1899), X(18020)}}, {{A, B, C, X(26913), X(44175)}}, {{A, B, C, X(39287), X(54012)}}
X(59543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 110, 1899}, {2, 14826, 21243}, {2, 5012, 54012}, {2, 9544, 18911}, {6, 59551, 59553}, {154, 1368, 46264}, {154, 59767, 1368}, {858, 35264, 31383}, {1352, 15462, 11179}, {1503, 59699, 8780}, {3548, 10539, 14216}, {5020, 23292, 14561}, {5642, 5972, 15462}, {5972, 9306, 2}, {6090, 37453, 343}, {6353, 37669, 511}, {6677, 59553, 6}, {8780, 30771, 1503}, {9306, 21243, 14826}, {10192, 53415, 3}, {11427, 40132, 5943}, {14156, 46261, 44441}, {14826, 21243, 1352}, {44082, 51360, 7500}


X(59544) = X(2)X(44446)∩X(10)X(30)

Barycentrics    4*a^3-a^2*(b+c)-2*a*(b^2+c^2)+(b+c)*(b^2+c^2) : :
X(59544) = 3*X[2]+X[44446], X[345]+X[1707], -X[3749]+3*X[35261]

X(59544) lies on these lines: {2, 44446}, {6, 59536}, {10, 30}, {31, 3977}, {37, 59574}, {38, 35263}, {55, 49529}, {63, 33171}, {69, 16570}, {171, 4078}, {306, 896}, {345, 1707}, {516, 4438}, {518, 59580}, {519, 3052}, {527, 3771}, {553, 29642}, {846, 50290}, {1376, 59684}, {1386, 59583}, {1836, 50752}, {2321, 17735}, {2325, 29649}, {2886, 59769}, {3011, 32933}, {3219, 4104}, {3244, 4884}, {3550, 3717}, {3663, 6679}, {3666, 38049}, {3687, 7262}, {3712, 4028}, {3749, 35261}, {3772, 28526}, {3846, 51090}, {3883, 33167}, {3911, 4011}, {3912, 4650}, {3914, 4427}, {3923, 5745}, {4001, 33156}, {4035, 17770}, {4082, 4434}, {4090, 59584}, {4138, 17768}, {4370, 59506}, {4414, 5294}, {4416, 33160}, {4418, 54357}, {4432, 11019}, {4480, 33101}, {4655, 20106}, {4667, 4797}, {4676, 24239}, {5257, 59628}, {5273, 50314}, {6685, 50115}, {6690, 17351}, {12512, 39589}, {13405, 32935}, {17064, 24280}, {17122, 25101}, {17353, 17596}, {17355, 32916}, {17594, 26065}, {17781, 29846}, {20992, 50611}, {21000, 49688}, {24175, 31289}, {24248, 56519}, {25440, 59639}, {25453, 50091}, {26098, 59779}, {26723, 32845}, {27538, 59593}, {28546, 48649}, {28580, 33137}, {29857, 44447}, {30768, 32950}, {32934, 40940}, {32973, 59557}, {33088, 36277}, {33113, 41011}, {33116, 50307}, {33163, 35258}, {50104, 50781}, {59504, 59538}, {59537, 59551}, {59545, 59554}, {59562, 59644}, {59674, 59682}

X(59544) = midpoint of X(i) and X(j) for these {i,j}: {345, 1707}
X(59544) = pole of line {523, 14341} with respect to the Spieker circle
X(59544) = center of the dual of the bicevian conic of X(4) and X(75)
X(59544) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59536, 59547}, {63, 59692, 49511}, {171, 56078, 4078}, {345, 1707, 5847}, {3712, 4641, 4028}, {4427, 56520, 3914}, {10164, 59579, 59511}, {18253, 50054, 10}, {59511, 59664, 59579}, {59511, 59665, 10164}


X(59545) = X(3)X(66)∩X(5)X(620)

Barycentrics    4*a^4-3*a^2*(b^2+c^2)+(b^2+c^2)^2 : :
X(59545) = -X[3767]+3*X[11288], X[32006]+3*X[35927]

X(59545) lies on these lines: {2, 15815}, {3, 66}, {4, 44377}, {5, 620}, {6, 6337}, {20, 7778}, {30, 3788}, {32, 3629}, {39, 597}, {69, 439}, {76, 13468}, {83, 9606}, {99, 5254}, {127, 44240}, {140, 3734}, {148, 33245}, {183, 32964}, {187, 3630}, {193, 22331}, {194, 5306}, {230, 1975}, {315, 33235}, {316, 33250}, {325, 3552}, {343, 35296}, {376, 7784}, {384, 3815}, {385, 32820}, {524, 3053}, {543, 7886}, {546, 7862}, {548, 7761}, {549, 3934}, {550, 626}, {574, 7819}, {599, 35287}, {625, 3627}, {631, 58446}, {682, 1634}, {988, 17045}, {1003, 7745}, {1007, 32981}, {1078, 15598}, {1211, 21508}, {1213, 22267}, {1384, 7758}, {2393, 52545}, {2549, 32954}, {2883, 59706}, {2896, 33276}, {3054, 7907}, {3055, 16924}, {3146, 37690}, {3314, 33014}, {3523, 15271}, {3530, 7815}, {3545, 39142}, {3589, 5013}, {3618, 22332}, {3620, 5585}, {3631, 3785}, {3763, 32990}, {3767, 11288}, {3793, 7855}, {4045, 33185}, {5024, 33242}, {5026, 8550}, {5103, 18860}, {5206, 7767}, {5286, 8716}, {5305, 7781}, {5480, 9737}, {5743, 21511}, {6248, 38748}, {6292, 8589}, {6656, 7782}, {6658, 7925}, {6661, 7786}, {6680, 15048}, {6707, 37176}, {6748, 42406}, {6781, 7821}, {7610, 32834}, {7618, 33237}, {7622, 8367}, {7735, 33205}, {7736, 33201}, {7738, 33181}, {7748, 8361}, {7750, 7836}, {7752, 19687}, {7756, 7874}, {7762, 7799}, {7764, 18907}, {7769, 8370}, {7770, 15491}, {7773, 22110}, {7783, 7792}, {7788, 33266}, {7794, 15513}, {7797, 52695}, {7802, 7870}, {7803, 33220}, {7804, 31406}, {7805, 14148}, {7808, 19697}, {7813, 35007}, {7817, 36521}, {7820, 8362}, {7822, 8359}, {7830, 7880}, {7832, 8356}, {7833, 7945}, {7834, 8368}, {7842, 15704}, {7847, 8363}, {7849, 46853}, {7854, 8588}, {7857, 47286}, {7861, 33186}, {7865, 34200}, {7867, 8357}, {7868, 32965}, {7869, 33923}, {7872, 8360}, {7881, 14907}, {7885, 33265}, {7887, 53419}, {7889, 31652}, {7890, 39785}, {7895, 14929}, {7896, 47101}, {7898, 33268}, {7899, 33229}, {7911, 8353}, {7912, 33257}, {7917, 51224}, {7931, 33260}, {7933, 45017}, {7934, 19695}, {7935, 8354}, {7938, 33275}, {7940, 33228}, {7943, 52691}, {7947, 14712}, {8584, 30435}, {8667, 32830}, {8724, 51136}, {9167, 20112}, {9300, 33255}, {9766, 32831}, {9821, 37461}, {10192, 59530}, {11147, 21358}, {11164, 33006}, {11168, 31276}, {11174, 14037}, {11184, 32835}, {11185, 33233}, {11286, 31401}, {11291, 42265}, {11292, 42262}, {12322, 42258}, {12323, 42259}, {13334, 24256}, {13356, 42421}, {13357, 32449}, {13567, 52275}, {13881, 32815}, {14033, 32829}, {14039, 31400}, {14064, 44526}, {14357, 47077}, {15000, 47047}, {15069, 39647}, {15597, 32832}, {15698, 55732}, {15810, 51585}, {16043, 34573}, {16044, 37647}, {16919, 37661}, {16986, 33022}, {17128, 33259}, {17327, 37339}, {17390, 37552}, {17693, 37664}, {18806, 32448}, {20065, 32821}, {20081, 22329}, {20181, 30478}, {20582, 33215}, {22247, 47617}, {23292, 59211}, {30747, 46517}, {30749, 44210}, {31274, 39565}, {31489, 32971}, {32006, 35927}, {32450, 51123}, {32494, 45872}, {32497, 45871}, {32816, 33239}, {32817, 50774}, {32822, 34505}, {32826, 32969}, {32828, 33216}, {32839, 32983}, {32867, 50571}, {32974, 44519}, {32979, 34803}, {32989, 37637}, {33023, 44541}, {33189, 43448}, {33197, 53142}, {33273, 46226}, {34506, 59780}, {34827, 37458}, {35067, 59527}, {35303, 42631}, {35304, 42632}, {36770, 37340}, {37172, 42154}, {37173, 42155}, {37188, 53415}, {37341, 37832}, {37465, 59765}, {39141, 51374}, {40319, 51611}, {40344, 45759}, {41940, 51587}, {44345, 52773}, {47061, 51143}, {53474, 58846}, {59512, 59580}, {59544, 59554}, {59553, 59556}, {59691, 59703}

X(59545) = midpoint of X(i) and X(j) for these {i,j}: {3053, 3926}, {44532, 46236}, {99, 44534}
X(59545) = complement of X(44518)
X(59545) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40347, 524}
X(59545) = X(i)-complementary conjugate of X(j) for these {i, j}: {56362, 10}
X(59545) = pole of line {193, 625} with respect to the Kiepert hyperbola
X(59545) = pole of line {1576, 57216} with respect to the Kiepert parabola
X(59545) = pole of line {22, 1611} with respect to the Stammler hyperbola
X(59545) = pole of line {6562, 59549} with respect to the Steiner circumellipse
X(59545) = pole of line {351, 3265} with respect to the Steiner inellipse
X(59545) = pole of line {315, 6392} with respect to the Wallace hyperbola
X(59545) = pole of line {6563, 31072} with respect to the dual conic of 1st DrozFarny circle
X(59545) = center of the dual of the bicevian conic of X(4) and X(76)
X(59545) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(6339)}}, {{A, B, C, X(2353), X(36616)}}
X(59545) = barycentric product X(i)*X(j) for these (i, j): {46444, 69}
X(59545) = barycentric quotient X(i)/X(j) for these (i, j): {46444, 4}
X(59545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7789, 141}, {6, 6337, 59546}, {69, 439, 5023}, {99, 7807, 5254}, {620, 7816, 5}, {626, 32456, 550}, {1003, 7763, 7745}, {1975, 16925, 230}, {3053, 3926, 524}, {3552, 7891, 325}, {3926, 32985, 3053}, {5013, 14001, 3589}, {5206, 7801, 7767}, {6337, 32973, 6}, {7752, 19687, 53418}, {7767, 27088, 5206}, {7783, 33225, 7792}, {7783, 7792, 9607}, {7789, 32459, 3}, {7820, 37512, 8362}, {7836, 13586, 7750}, {7907, 59635, 3054}, {13881, 32970, 44381}, {20065, 32821, 50771}, {32815, 32970, 13881}, {32828, 33216, 44535}, {33246, 59634, 5306}, {59580, 59607, 59512}


X(59546) = X(2)X(9607)∩X(3)X(524)

Barycentrics    2*a^4-5*a^2*(b^2+c^2)+(b^2+c^2)^2 : :
X(59546) = X[4]+3*X[8716], X[20]+3*X[9766], -3*X[549]+X[7751], -5*X[631]+3*X[13468], -5*X[632]+9*X[12040], 5*X[1656]+3*X[51122], 7*X[3090]+9*X[9741], -5*X[3091]+9*X[11184], -X[3146]+9*X[9770], -7*X[3523]+3*X[8667], -11*X[3525]+9*X[15597], -X[3529]+9*X[53142] and many others

X(59546) lies on circumconic {{A, B, C, X(5486), X(6339)}} and on these lines: {2, 9607}, {3, 524}, {4, 8716}, {5, 7781}, {6, 6337}, {20, 9766}, {30, 7764}, {32, 32455}, {39, 698}, {69, 15815}, {76, 58446}, {99, 7745}, {140, 538}, {141, 3926}, {183, 33012}, {193, 5023}, {194, 230}, {325, 6655}, {384, 9300}, {439, 1992}, {525, 9820}, {543, 546}, {548, 754}, {549, 7751}, {550, 7759}, {574, 3631}, {597, 14001}, {599, 32990}, {620, 5305}, {631, 13468}, {632, 12040}, {732, 13334}, {736, 32516}, {988, 4364}, {1007, 32980}, {1503, 9737}, {1634, 11326}, {1656, 51122}, {1975, 3815}, {2021, 41651}, {2482, 5007}, {2996, 34803}, {3053, 3629}, {3055, 16922}, {3090, 9741}, {3091, 11184}, {3146, 9770}, {3329, 19692}, {3523, 8667}, {3525, 15597}, {3529, 53142}, {3530, 7780}, {3544, 7620}, {3552, 41624}, {3627, 7775}, {3628, 52229}, {3630, 3785}, {3734, 31406}, {3767, 44381}, {3788, 7902}, {3793, 7890}, {3849, 12103}, {3857, 8176}, {3934, 14148}, {4400, 52793}, {5024, 7795}, {5025, 22110}, {5072, 20112}, {5079, 7615}, {5254, 7763}, {5286, 33189}, {5306, 16925}, {5319, 11288}, {5480, 10983}, {5585, 11008}, {6309, 11171}, {6329, 9605}, {6392, 37637}, {6656, 7799}, {6661, 55085}, {6665, 14961}, {6677, 59559}, {7499, 19568}, {7610, 10303}, {7622, 14869}, {7738, 7778}, {7739, 32954}, {7750, 7906}, {7752, 53419}, {7754, 50774}, {7757, 7807}, {7760, 35297}, {7762, 7782}, {7765, 8361}, {7767, 7813}, {7769, 47286}, {7770, 9606}, {7772, 8369}, {7773, 33279}, {7774, 33244}, {7777, 32819}, {7784, 32818}, {7785, 19696}, {7788, 32965}, {7791, 32821}, {7792, 7891}, {7793, 15480}, {7794, 8359}, {7796, 7936}, {7801, 8362}, {7809, 19695}, {7812, 33250}, {7814, 33229}, {7821, 8357}, {7826, 8589}, {7829, 8368}, {7834, 33211}, {7836, 7948}, {7837, 33014}, {7838, 32456}, {7840, 33260}, {7855, 15515}, {7860, 8353}, {7870, 8363}, {7873, 8354}, {7880, 8364}, {7888, 33184}, {7916, 14929}, {7922, 52691}, {8149, 32448}, {8584, 32985}, {8591, 14042}, {8724, 44230}, {8725, 35002}, {8860, 33204}, {9764, 37450}, {9885, 42613}, {9886, 42612}, {9888, 52090}, {10256, 18768}, {11148, 46936}, {11163, 14035}, {11168, 33001}, {11285, 32833}, {11541, 23334}, {11676, 35701}, {12007, 13335}, {12108, 34506}, {12811, 47617}, {13196, 34870}, {13567, 59211}, {13571, 13586}, {13881, 32829}, {14064, 32837}, {14614, 32964}, {15271, 32830}, {15491, 31400}, {15534, 35287}, {15704, 34504}, {16060, 49731}, {16061, 49738}, {16267, 37341}, {16268, 37340}, {16509, 55861}, {16923, 19570}, {17004, 20105}, {17251, 37339}, {17330, 22267}, {17800, 44678}, {19284, 50265}, {20081, 37688}, {22165, 33215}, {22329, 33259}, {22401, 34828}, {25083, 59515}, {27088, 35007}, {31404, 32822}, {32006, 44519}, {32366, 52545}, {32449, 59695}, {32816, 44526}, {32824, 32968}, {32825, 32986}, {32836, 32978}, {33004, 37671}, {33194, 53033}, {33233, 44401}, {33458, 37173}, {33459, 37172}, {33474, 37177}, {33475, 37178}, {36182, 47245}, {36212, 53415}, {40727, 55857}, {46853, 47101}, {50688, 53141}, {51170, 51579}, {59527, 59558}

X(59546) = midpoint of X(i) and X(j) for these {i,j}: {5, 7781}, {550, 7759}, {8149, 32448}, {9741, 9771}
X(59546) = reflection of X(i) in X(j) for these {i,j}: {7780, 3530}
X(59546) = pole of line {626, 3620} with respect to the Kiepert hyperbola
X(59546) = pole of line {1611, 1627} with respect to the Stammler hyperbola
X(59546) = pole of line {6562, 31299} with respect to the Steiner circumellipse
X(59546) = pole of line {669, 5940} with respect to the Steiner inellipse
X(59546) = pole of line {6392, 7760} with respect to the Wallace hyperbola
X(59546) = pole of line {523, 14341} with respect to the dual conic of anticomplementary circle
X(59546) = pole of line {6563, 9209} with respect to the dual conic of circumcircle of the Johnson triangle
X(59546) = center of the dual of the bicevian conic of X(4) and X(83)
X(59546) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 51123, 7781}, {6, 6337, 59545}, {39, 6390, 7789}, {39, 7789, 3589}, {39, 7863, 7819}, {99, 7858, 19687}, {439, 1992, 22331}, {620, 32450, 5305}, {3788, 7902, 33186}, {3926, 5013, 141}, {5254, 7763, 44377}, {6390, 7819, 7863}, {7618, 14023, 3}, {7738, 32831, 7778}, {7750, 7906, 50771}, {7763, 31859, 5254}, {7794, 31652, 8359}, {7801, 53096, 8362}, {7813, 37512, 7767}, {7858, 19687, 7745}, {7890, 15513, 3793}, {7906, 33275, 7946}, {7946, 33275, 7750}, {15048, 33186, 7902}, {31652, 39785, 7794}, {59583, 59609, 59515}


X(59547) = X(1)X(11851)∩X(10)X(345)

Barycentrics    2*a^3-3*a^2*(b+c)-2*a*(b^2+c^2)+(b+c)*(b^2+c^2) : :
X(59547) = -X[17156]+5*X[55868], X[33088]+3*X[35258]

X(59547) lies on these lines: {1, 11851}, {6, 59536}, {10, 345}, {42, 3977}, {43, 56078}, {55, 519}, {63, 4028}, {193, 16570}, {226, 28526}, {306, 4414}, {497, 49554}, {516, 29671}, {518, 59583}, {536, 6690}, {726, 13405}, {740, 5745}, {846, 3687}, {908, 32936}, {968, 17740}, {982, 49768}, {1040, 22836}, {1100, 59574}, {1104, 59592}, {1125, 3666}, {1266, 33130}, {1376, 4078}, {1386, 59580}, {1707, 51196}, {1738, 33116}, {1914, 4856}, {2276, 6685}, {2321, 31477}, {2325, 59511}, {2646, 4918}, {2886, 28580}, {3011, 17147}, {3035, 35652}, {3052, 49684}, {3159, 59719}, {3175, 5432}, {3178, 4292}, {3208, 20368}, {3244, 3749}, {3550, 49476}, {3626, 3703}, {3634, 32777}, {3635, 3744}, {3636, 17599}, {3663, 3771}, {3685, 24239}, {3686, 59624}, {3693, 20103}, {3755, 4438}, {3821, 20106}, {3828, 50104}, {3838, 28530}, {3879, 4650}, {3883, 32855}, {3912, 17596}, {3914, 33113}, {3946, 6679}, {3950, 10164}, {3971, 6745}, {3993, 39595}, {4001, 4062}, {4021, 29645}, {4030, 4701}, {4035, 4655}, {4054, 29678}, {4133, 11679}, {4138, 24248}, {4298, 8720}, {4353, 29656}, {4356, 29635}, {4357, 33160}, {4427, 41011}, {4640, 5847}, {4780, 33137}, {4933, 33081}, {4970, 40940}, {5249, 32845}, {5294, 46904}, {5530, 7283}, {5717, 24850}, {5744, 39594}, {6541, 59679}, {6738, 49609}, {8715, 9798}, {9371, 59722}, {12567, 18235}, {12572, 17748}, {12575, 49613}, {16569, 25101}, {17017, 35263}, {17156, 55868}, {17339, 59298}, {17593, 33158}, {17601, 33092}, {18743, 50535}, {19742, 49986}, {21000, 49681}, {24177, 29642}, {24210, 32851}, {24231, 29839}, {25440, 27802}, {26065, 59408}, {27757, 33100}, {28557, 48643}, {29573, 53056}, {29574, 37604}, {29639, 32929}, {29844, 30331}, {32860, 54357}, {33064, 50753}, {33088, 35258}, {33156, 54311}, {37577, 39582}, {37619, 43174}, {37646, 49462}, {59504, 59535}, {59565, 59646}, {59636, 59733}

X(59547) = midpoint of X(i) and X(j) for these {i,j}: {226, 32934}, {63, 4028}
X(59547) = reflection of X(i) in X(j) for these {i,j}: {48643, 58463}, {59730, 13405}
X(59547) = X(i)-complementary conjugate of X(j) for these {i, j}: {54123, 21245}
X(59547) = pole of line {392, 10544} with respect to the Feuerbach hyperbola
X(59547) = pole of line {1211, 26132} with respect to the dual conic of Yff parabola
X(59547) = center of the dual of the bicevian conic of X(4) and X(86)
X(59547) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 59536, 59544}, {63, 4028, 34379}, {345, 17594, 10}, {726, 13405, 59730}, {3159, 59719, 59731}, {3666, 3712, 59692}, {3666, 59692, 1125}, {3914, 33113, 50752}, {3950, 10164, 29649}, {20103, 59585, 59517}, {28557, 58463, 48643}


X(59548) = X(6)X(6337)∩X(99)X(1503)

Barycentrics    2*a^6+a^4*(b^2+c^2)+(b^2+c^2)^3-4*a^2*(b^4+b^2*c^2+c^4) : :
X(59548) = -X[1692]+3*X[2482], -2*X[5031]+X[53419], -2*X[5103]+3*X[22110], -3*X[6786]+X[52460]

X(59548) lies on these lines: {6, 6337}, {30, 51371}, {69, 3522}, {99, 1503}, {141, 1975}, {154, 4176}, {183, 21167}, {230, 698}, {315, 48881}, {325, 29181}, {511, 6390}, {524, 2076}, {1007, 53023}, {1350, 3926}, {1691, 32459}, {1692, 2482}, {3094, 7789}, {3098, 3933}, {3266, 32269}, {3564, 33813}, {3589, 7892}, {3631, 33275}, {3785, 55646}, {4121, 7667}, {4576, 11064}, {5031, 53419}, {5103, 22110}, {5480, 7763}, {6527, 59224}, {6677, 59535}, {6786, 52460}, {7767, 14810}, {7773, 51163}, {7776, 48873}, {7788, 50965}, {7948, 34573}, {9300, 51580}, {10008, 15069}, {10516, 32815}, {10519, 32817}, {15448, 56430}, {17984, 30736}, {19583, 26958}, {29012, 51397}, {32006, 48872}, {32816, 48910}, {32822, 40330}, {32831, 51212}, {32833, 54169}, {32837, 54131}, {34146, 51386}, {39089, 39091}, {40278, 48874}, {44377, 46236}, {44380, 50640}, {52347, 54374}, {59567, 59651}

X(59548) = midpoint of X(i) and X(j) for these {i,j}: {12215, 51374}, {99, 6393}
X(59548) = reflection of X(i) in X(j) for these {i,j}: {1691, 32459}, {230, 59695}, {53419, 5031}
X(59548) = pole of line {7912, 32972} with respect to the Kiepert hyperbola
X(59548) = pole of line {4590, 36841} with respect to the Kiepert parabola
X(59548) = pole of line {1611, 20998} with respect to the Stammler hyperbola
X(59548) = pole of line {6562, 11123} with respect to the Steiner circumellipse
X(59548) = pole of line {148, 2794} with respect to the Wallace hyperbola
X(59548) = pole of line {3566, 6225} with respect to the dual conic of orthic inconic
X(59548) = center of the dual of the bicevian conic of X(4) and X(98)
X(59548) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2710), X(3532)}}, {{A, B, C, X(6339), X(35510)}}
X(59548) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 6337, 59552}, {99, 6393, 1503}, {698, 59695, 230}, {12215, 51374, 524}, {51374, 59634, 12215}


X(59549) = X(30)X(511)∩X(351)X(3265)

Barycentrics    (b-c)*(b+c)*(5*a^2-3*(b^2+c^2)) : :

X(59549) lies on these lines: {30, 511}, {351, 3265}, {647, 14471}, {879, 3532}, {1640, 10189}, {2433, 40323}, {2485, 2519}, {2492, 2506}, {2525, 8644}, {3569, 54259}, {4563, 42398}, {6130, 58759}, {6132, 52613}, {6339, 9178}, {6587, 45689}, {9148, 44552}, {10278, 53374}, {11186, 59740}, {14223, 54767}, {14610, 39904}, {15077, 35364}, {15357, 34953}, {16230, 42399}, {18004, 55285}, {18331, 46982}, {18332, 54248}, {20580, 32605}, {22089, 44680}, {24290, 59521}, {32193, 39905}, {33294, 53365}, {33803, 47293}, {35605, 51258}, {39201, 53247}, {39228, 44826}, {39520, 57204}, {44427, 58757}, {48299, 58140}, {48300, 58178}, {48960, 48974}, {48991, 49006}, {49279, 58144}, {53567, 59745}, {59550, 59559}

X(59549) = isogonal conjugate of X(58097)
X(59549) = perspector of circumconic {{A, B, C, X(2), X(20080)}}
X(59549) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 58097}, {162, 38263}, {163, 38259}, {662, 36616}, {4575, 36611}
X(59549) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 58097}, {115, 38259}, {125, 38263}, {136, 36611}, {193, 57216}, {1084, 36616}
X(59549) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 51579}, {57216, 69}
X(59549) = X(i)-complementary conjugate of X(j) for these {i, j}: {163, 51579}, {36616, 8287}, {38259, 21253}, {38263, 34846}, {58097, 10}
X(59549) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {36616, 21221}, {38259, 21294}, {58097, 8}
X(59549) = pole of line {4, 1353} with respect to the anticomplementary circle
X(59549) = pole of line {156, 182} with respect to the 1st Brocard circle
X(59549) = pole of line {3, 3620} with respect to the 2nd Brocard circle
X(59549) = pole of line {3, 3620} with respect to the circumcircle
X(59549) = pole of line {6, 546} with respect to the cosine circle
X(59549) = pole of line {20, 11898} with respect to the DeLongchamps circle
X(59549) = pole of line {4, 1353} with respect to the 1st DrozFarny circle
X(59549) = pole of line {3, 3620} with respect to the 2nd DrozFarny circle
X(59549) = pole of line {156, 182} with respect to the 1st Lemoine circle
X(59549) = pole of line {355, 39878} with respect to the Fuhrmann circle
X(59549) = pole of line {4, 1353} with respect to the circumcircle of the Johnson triangle
X(59549) = pole of line {5, 3618} with respect to the nine-point circle
X(59549) = pole of line {381, 14912} with respect to the orthocentroidal circle
X(59549) = pole of line {2, 50954} with respect to the orthoptic circle of the Steiner Inellipse
X(59549) = pole of line {4, 1353} with respect to the polar circle
X(59549) = pole of line {3, 3620} with respect to the Stammler circle
X(59549) = pole of line {5, 3618} with respect to the Steiner circle
X(59549) = pole of line {26, 35219} with respect to the tangential circle
X(59549) = pole of line {523, 4885} with respect to the Kiepert parabola
X(59549) = pole of line {6, 8889} with respect to the Orthic inconic
X(59549) = pole of line {110, 58097} with respect to the Stammler hyperbola
X(59549) = pole of line {2, 15815} with respect to the Steiner circumellipse
X(59549) = pole of line {2, 15815} with respect to the Steiner inellipse
X(59549) = pole of line {99, 58097} with respect to the Wallace hyperbola
X(59549) = pole of line {599, 34200} with respect to the anti-Artzt circle
X(59549) = pole of line {6393, 59765} with respect to the dual conic of 2nd Brocard circle
X(59549) = pole of line {6, 59564} with respect to the dual conic of nine-point circle
X(59549) = pole of line {69, 30771} with respect to the dual conic of polar circle
X(59549) = pole of line {5032, 11165} with respect to the dual conic of Lemoine inellipse
X(59549) = pole of line {193, 439} with respect to the dual conic of orthic inconic
X(59549) = pole of line {524, 57216} with respect to the dual conic of Yff hyperbola
X(59549) = pole of line {523, 14341} with respect to the dual conic of Wallace hyperbola
X(59549) = center of the dual of the bicevian conic of X(4) and X(99)
X(59549) = intersection, other than A, B, C, of circumconics {{A, B, C, X(30), X(38282)}}, {{A, B, C, X(511), X(3532)}}, {{A, B, C, X(524), X(6339)}}, {{A, B, C, X(542), X(54767)}}, {{A, B, C, X(758), X(16570)}}, {{A, B, C, X(2996), X(51579)}}, {{A, B, C, X(3564), X(15077)}}, {{A, B, C, X(9293), X(55122)}}
X(59549) = barycentric product X(i)*X(j) for these (i, j): {10, 59550}, {1577, 16570}, {5023, 850}, {20080, 523}, {38282, 525}, {43665, 59559}
X(59549) = barycentric quotient X(i)/X(j) for these (i, j): {6, 58097}, {512, 36616}, {523, 38259}, {647, 38263}, {2501, 36611}, {5023, 110}, {16570, 662}, {20080, 99}, {38282, 648}, {51579, 57216}, {59550, 86}, {59559, 2421}
X(59549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {525, 1499, 826}, {525, 3566, 523}, {525, 3800, 3906}, {525, 690, 3566}, {3569, 54259, 59652}, {3906, 32478, 3800}, {22089, 53263, 44680}


X(59550) = X(239)X(514)∩X(918)X(2516)

Barycentrics    (b-c)*(5*a^2-3*(b^2+c^2)) : :
X(59550) = -X[3239]+3*X[45674], -5*X[3676]+3*X[48413], -X[3835]+3*X[44551], -5*X[4369]+X[48430], -15*X[4453]+7*X[48420], X[4467]+3*X[47758], 3*X[4773]+X[49299], 3*X[4897]+X[48026], -5*X[6590]+X[48436], -5*X[26798]+9*X[47757], -7*X[27138]+9*X[44432], X[43067]+3*X[45669] and many others

X(59550) lies on these lines: {239, 514}, {522, 47132}, {918, 2516}, {2254, 4962}, {2473, 3309}, {2487, 28898}, {2504, 29216}, {2786, 7658}, {3239, 45674}, {3667, 21212}, {3676, 48413}, {3835, 44551}, {4369, 48430}, {4453, 48420}, {4467, 47758}, {4773, 49299}, {4897, 48026}, {6590, 48436}, {17069, 28846}, {21206, 53521}, {26798, 47757}, {27138, 44432}, {28161, 49292}, {28225, 50348}, {30519, 43061}, {43067, 45669}, {46919, 48270}, {47677, 47768}, {47785, 47971}, {47886, 48013}, {59549, 59559}, {59752, 59755}

X(59550) = midpoint of X(i) and X(j) for these {i,j}: {3798, 4025}, {44432, 53333}
X(59550) = reflection of X(i) in X(j) for these {i,j}: {59522, 59612}, {59751, 7658}
X(59550) = perspector of circumconic {{A, B, C, X(86), X(20080)}}
X(59550) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 58097}, {100, 36616}, {692, 38259}, {906, 36611}, {1783, 38263}
X(59550) = X(i)-Dao conjugate of X(j) for these {i, j}: {1086, 38259}, {5190, 36611}, {8054, 36616}, {39006, 38263}, {40589, 58097}
X(59550) = pole of line {3664, 3817} with respect to the incircle
X(59550) = pole of line {1826, 36611} with respect to the polar circle
X(59550) = pole of line {101, 58097} with respect to the Stammler hyperbola
X(59550) = pole of line {1125, 17304} with respect to the Steiner inellipse
X(59550) = pole of line {50307, 59387} with respect to the Suppa-Cucoanes circle
X(59550) = pole of line {29583, 30568} with respect to the dual conic of incircle
X(59550) = pole of line {3120, 21137} with respect to the dual conic of Yff parabola
X(59550) = pole of line {4936, 17316} with respect to the dual conic of Suppa-Cucoanes circle
X(59550) = center of the dual of the bicevian conic of X(4) and X(190)
X(59550) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5023), X(14964)}}, {{A, B, C, X(14953), X(38282)}}, {{A, B, C, X(16570), X(18206)}}, {{A, B, C, X(16704), X(20080)}}
X(59550) = barycentric product X(i)*X(j) for these (i, j): {3261, 5023}, {16570, 693}, {20080, 514}, {38282, 4025}, {59549, 86}
X(59550) = barycentric quotient X(i)/X(j) for these (i, j): {58, 58097}, {514, 38259}, {649, 36616}, {1459, 38263}, {5023, 101}, {7649, 36611}, {16570, 100}, {20080, 190}, {38282, 1897}, {59549, 10}
X(59550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2786, 7658, 59751}, {3798, 4025, 514}, {4025, 4750, 3798}, {4025, 4786, 16892}, {4962, 59612, 59522}


X(59551) = X(2)X(8550)∩X(6)X(6387)

Barycentrics    7*a^6-8*a^4*(b^2+c^2)+2*(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4-10*b^2*c^2+c^4) : :

X(59551) lies on circumconic {{A, B, C, X(40323), X(43537)}} and on these lines: {2, 8550}, {4, 45248}, {5, 22333}, {6, 6387}, {25, 5642}, {69, 58434}, {110, 1853}, {154, 1370}, {155, 44452}, {184, 31255}, {468, 37672}, {524, 38282}, {1350, 10192}, {1368, 43273}, {1498, 47090}, {1634, 38283}, {2063, 34117}, {2883, 41427}, {3053, 59651}, {3153, 17845}, {3167, 5972}, {3292, 37453}, {3763, 58447}, {5013, 59656}, {5085, 53415}, {5181, 15534}, {5656, 58762}, {5893, 53050}, {5894, 32605}, {5895, 16386}, {6053, 35450}, {6353, 11477}, {6816, 14528}, {7392, 23292}, {7394, 35259}, {7398, 38072}, {7499, 17811}, {7500, 35266}, {7734, 55684}, {8780, 36990}, {8889, 47353}, {9306, 10516}, {9705, 31282}, {9820, 18420}, {9924, 28708}, {10096, 16266}, {10154, 53097}, {11425, 18537}, {13392, 40909}, {14852, 40111}, {15004, 47597}, {15034, 35480}, {15576, 46927}, {16252, 35513}, {17810, 37645}, {17814, 52262}, {17821, 44239}, {18569, 51933}, {19132, 28419}, {31152, 44110}, {35260, 59343}, {35602, 44440}, {36650, 52261}, {37489, 59648}, {37497, 51425}, {37498, 37971}, {37499, 59623}, {47552, 51187}, {59537, 59544}

X(59551) = pole of line {11477, 12086} with respect to the Stammler hyperbola
X(59551) = center of the dual of the bicevian conic of X(4) and X(253)
X(59551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10192, 37669, 1350}, {59543, 59553, 6}


X(59552) = X(6)X(6337)∩X(99)X(5480)

Barycentrics    4*a^6-3*a^4*(b^2+c^2)+(b^2+c^2)^3-2*a^2*(b^4+4*b^2*c^2+c^4) : :

X(59552) lies on these lines: {6, 6337}, {69, 15717}, {99, 5480}, {141, 5116}, {182, 6390}, {325, 44882}, {549, 14994}, {597, 14036}, {1007, 36990}, {1353, 50567}, {1503, 7763}, {1975, 3589}, {2482, 5052}, {3266, 13394}, {3629, 51374}, {3785, 55676}, {3815, 4048}, {3926, 5085}, {3933, 5092}, {4176, 17809}, {5017, 32459}, {5306, 5976}, {5972, 59766}, {6393, 8550}, {7767, 17508}, {7782, 48881}, {7789, 50659}, {7799, 51737}, {9606, 42534}, {10192, 57518}, {10516, 32829}, {14928, 39884}, {15491, 24273}, {25406, 32831}, {32006, 59411}, {32451, 35297}, {32816, 48905}, {32833, 50983}, {32837, 43273}, {34511, 40825}, {48874, 51396}, {48906, 51371}, {51126, 59635}, {59535, 59553}

X(59552) = pole of line {15589, 32972} with respect to the Kiepert hyperbola
X(59552) = pole of line {3832, 6392} with respect to the Wallace hyperbola
X(59552) = center of the dual of the bicevian conic of X(4) and X(262)
X(59552) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 6337, 59548}


X(59553) = X(5)X(578)∩X(30)X(154)

Barycentrics    4*a^6+4*a^2*b^2*c^2-5*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2) : :
X(59553) = -X[68]+4*X[3628], 2*X[140]+X[155], 2*X[156]+X[23335], 2*X[546]+X[12118], 5*X[631]+X[12164], -5*X[632]+2*X[12359], 5*X[1656]+X[6193], -X[2931]+4*X[13392], -7*X[3090]+X[12429], -7*X[3526]+X[11411], -4*X[3530]+X[12163], 2*X[3589]+X[52016] and many others

X(59553) lies on these lines: {2, 3167}, {3, 11821}, {4, 8780}, {5, 578}, {6, 6387}, {22, 48874}, {24, 31802}, {25, 21850}, {30, 154}, {32, 59651}, {39, 59656}, {49, 11585}, {51, 5642}, {68, 3628}, {110, 427}, {140, 155}, {141, 53022}, {156, 23335}, {182, 41619}, {184, 1368}, {193, 38282}, {235, 34148}, {343, 3292}, {394, 6676}, {420, 7762}, {428, 35264}, {450, 56297}, {468, 1993}, {511, 10154}, {524, 58434}, {525, 10190}, {539, 15699}, {542, 15113}, {546, 12118}, {547, 14852}, {549, 3819}, {550, 5944}, {568, 44211}, {573, 59623}, {597, 6688}, {631, 12164}, {632, 12359}, {852, 23158}, {858, 9544}, {912, 38028}, {1092, 6823}, {1154, 34351}, {1181, 16196}, {1351, 6353}, {1353, 5972}, {1370, 26864}, {1595, 10539}, {1596, 13352}, {1613, 52261}, {1619, 12084}, {1656, 6193}, {1692, 40326}, {1899, 5159}, {1915, 18907}, {2072, 9703}, {2854, 10169}, {2931, 13392}, {2979, 40112}, {3090, 12429}, {3147, 12160}, {3157, 15325}, {3526, 11411}, {3530, 12163}, {3535, 49086}, {3536, 49087}, {3542, 13142}, {3546, 19347}, {3548, 18914}, {3580, 52297}, {3589, 52016}, {3618, 19588}, {3627, 5448}, {3742, 34381}, {3796, 10691}, {3845, 17702}, {3850, 12293}, {3917, 13394}, {3933, 37894}, {5012, 30739}, {5020, 11427}, {5033, 14471}, {5085, 7734}, {5133, 59771}, {5409, 8964}, {5449, 55856}, {5480, 59699}, {5504, 10272}, {5609, 15115}, {5644, 59373}, {5651, 37649}, {5656, 54992}, {5901, 9928}, {5921, 52299}, {5943, 34382}, {6391, 51171}, {6515, 37453}, {6593, 23296}, {6776, 30771}, {6800, 7667}, {7403, 18350}, {7499, 15066}, {7516, 9908}, {7536, 22139}, {7539, 54013}, {7561, 22136}, {7584, 8909}, {7689, 15712}, {8548, 10601}, {8703, 34513}, {8728, 41608}, {8889, 18440}, {8981, 10666}, {9704, 37452}, {9705, 34224}, {9909, 35260}, {9925, 11284}, {9936, 16239}, {10018, 56292}, {10128, 14561}, {10257, 18445}, {10263, 58545}, {10565, 33878}, {10592, 18970}, {10593, 12428}, {10605, 16976}, {10661, 42121}, {10662, 42124}, {10665, 13966}, {11206, 34609}, {11456, 47090}, {11464, 44239}, {11477, 47316}, {12161, 16238}, {12235, 15026}, {12271, 15024}, {12282, 15028}, {12310, 13595}, {12362, 19357}, {12596, 32227}, {12893, 22251}, {13346, 16252}, {13366, 37648}, {13371, 15139}, {13383, 16266}, {13596, 20125}, {13857, 44108}, {13925, 19062}, {13993, 19061}, {14389, 37439}, {14530, 34938}, {14826, 18358}, {14869, 15083}, {15035, 44268}, {15068, 52262}, {15534, 47455}, {15760, 22115}, {15805, 17836}, {15958, 40634}, {17809, 59767}, {17825, 51732}, {17834, 44277}, {18435, 44218}, {18928, 53091}, {19122, 46444}, {19125, 28419}, {19459, 28708}, {19544, 26668}, {20794, 38283}, {20850, 51212}, {21841, 36747}, {23128, 31406}, {23163, 41008}, {23291, 39899}, {23293, 52293}, {26926, 28408}, {26958, 37911}, {31074, 46818}, {31829, 35602}, {31945, 57592}, {32123, 46029}, {32140, 32144}, {32609, 38321}, {33586, 37897}, {34330, 50708}, {34380, 37672}, {34603, 35265}, {34796, 44280}, {35259, 38136}, {35266, 44082}, {35836, 42582}, {35837, 42583}, {37458, 51393}, {37489, 37935}, {39522, 44233}, {39571, 58465}, {41673, 54384}, {44110, 51360}, {44232, 44752}, {44235, 54217}, {44241, 51394}, {44683, 58891}, {45967, 55039}, {59532, 59569}, {59535, 59552}, {59545, 59556}, {59594, 59613}

X(59553) = midpoint of X(i) and X(j) for these {i,j}: {11206, 34609}, {2, 3167}, {5654, 47391}, {5656, 54992}
X(59553) = reflection of X(i) in X(j) for these {i,j}: {10154, 10192}, {14852, 547}
X(59553) = inverse of X(51) in Thomson-Gibert-Moses hyperbola
X(59553) = X(i)-Ceva conjugate of X(j) for these {i, j}: {45857, 3}
X(59553) = X(i)-complementary conjugate of X(j) for these {i, j}: {55999, 18589}
X(59553) = pole of line {15074, 37511} with respect to the Jerabek hyperbola
X(59553) = pole of line {577, 30771} with respect to the Kiepert hyperbola
X(59553) = pole of line {3288, 3566} with respect to the MacBeath circumconic
X(59553) = pole of line {1351, 1593} with respect to the Stammler hyperbola
X(59553) = pole of line {35297, 57065} with respect to the Steiner inellipse
X(59553) = pole of line {1007, 32000} with respect to the Wallace hyperbola
X(59553) = pole of line {2501, 3566} with respect to the dual conic of DeLongchamps circle
X(59553) = center of the dual of the bicevian conic of X(4) and X(264)
X(59553) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7612), X(15740)}}, {{A, B, C, X(41899), X(56267)}}
X(59553) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11402, 45298}, {2, 3167, 3564}, {6, 59543, 6677}, {6, 59551, 59543}, {49, 11585, 31804}, {184, 11064, 1368}, {184, 1368, 48906}, {394, 6676, 48876}, {468, 1993, 41588}, {511, 10192, 10154}, {568, 59648, 44211}, {1147, 9820, 5}, {5020, 11427, 18583}, {5654, 47391, 30}, {5972, 34986, 13567}, {10601, 52077, 8548}, {11402, 45298, 50979}, {12038, 22660, 550}, {13352, 51425, 1596}, {13567, 34986, 1353}, {41597, 43839, 12359}


X(59554) = X(6)X(59504)∩X(536)X(2176)

Barycentrics    -2*a^2*b*c+3*a^3*(b+c)+2*b*c*(b^2+c^2)-a*(b+c)*(b^2+c^2) : :

X(59554) lies on these lines: {6, 59504}, {142, 59703}, {220, 17351}, {304, 21874}, {518, 59512}, {536, 2176}, {960, 3739}, {1191, 4852}, {1265, 4851}, {3290, 26689}, {3666, 25307}, {3869, 30748}, {3962, 30945}, {4090, 59516}, {4517, 24656}, {4520, 24326}, {4950, 42378}, {5044, 24254}, {16605, 24282}, {17348, 39248}, {20255, 44663}, {21342, 24652}, {24654, 49499}, {25102, 59596}, {36647, 49533}, {41015, 53332}, {49481, 58679}, {51150, 59704}, {59544, 59545}, {59570, 59658}

X(59554) = midpoint of X(i) and X(j) for these {i,j}: {304, 21874}
X(59554) = center of the dual of the bicevian conic of X(4) and X(274)
X(59554) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59596, 59615, 25102}


X(59555) = X(6)X(6337)∩X(53)X(7763)

Barycentrics    (a^2-b^2-c^2)*(2*a^6-7*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(6*b^4-4*b^2*c^2+6*c^4)) : :

X(59555) lies on these lines: {6, 6337}, {53, 7763}, {99, 6748}, {141, 40697}, {216, 6390}, {524, 8553}, {570, 7789}, {571, 32459}, {599, 50572}, {3589, 13351}, {3629, 10607}, {3926, 36751}, {3933, 10979}, {4558, 32455}, {5254, 42406}, {5866, 15109}, {8573, 34511}, {19583, 31489}, {23292, 52032}, {34828, 36212}, {59535, 59558}

X(59555) = center of the dual of the bicevian conic of X(4) and X(275)


X(59556) = X(6)X(59527)∩X(155)X(3734)

Barycentrics    (a^2-b^2-c^2)*(-2*b^2*c^2*(b^2-c^2)^2+3*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-4*b^4+6*b^2*c^2-4*c^4)) : :

X(59556) lies on these lines: {6, 59527}, {155, 3734}, {216, 57008}, {389, 59698}, {511, 59530}, {525, 32450}, {620, 9820}, {625, 5448}, {626, 22660}, {1147, 7816}, {3788, 5654}, {3934, 13754}, {5907, 14767}, {7804, 23128}, {7815, 12163}, {12038, 32456}, {28695, 39913}, {59545, 59553}

X(59556) = center of the dual of the bicevian conic of X(4) and X(276)


X(59557) = X(1)X(17755)∩X(10)X(14064)

Barycentrics    a^4-3*a^3*(b+c)+a^2*(b+c)^2-2*b*c*(b^2+c^2)+a*(b+c)*(b^2+c^2) : :

X(59557) lies on these lines: {1, 17755}, {6, 59504}, {8, 27129}, {9, 16822}, {10, 14064}, {220, 3729}, {614, 26689}, {668, 59619}, {883, 6167}, {960, 4384}, {1191, 16834}, {1265, 3912}, {1930, 54330}, {2082, 53332}, {2176, 3875}, {3340, 30030}, {3905, 16970}, {3952, 26653}, {7982, 49774}, {8583, 24631}, {9312, 56025}, {11529, 29968}, {11682, 30036}, {12514, 30108}, {12526, 24586}, {15829, 30038}, {16517, 59509}, {16973, 59512}, {17278, 59703}, {18156, 51194}, {25728, 30618}, {32973, 59544}, {36404, 59515}, {59525, 59597}

X(59557) = center of the dual of the bicevian conic of X(4) and X(277)
X(59557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59597, 59616, 59525}


X(59558) = X(6)X(6387)∩X(230)X(5972)

Barycentrics    2*a^10-9*a^8*(b^2+c^2)-8*a^4*b^2*c^2*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-4*a^2*(b^2-c^2)^2*(b^4+c^4)+2*a^6*(5*b^4+6*b^2*c^2+5*c^4) : :

X(59558) lies on these lines: {6, 6387}, {39, 59659}, {216, 53415}, {230, 5972}, {232, 11064}, {441, 11672}, {468, 3289}, {577, 10192}, {1352, 31489}, {1625, 10257}, {1990, 59662}, {3055, 21243}, {3331, 47090}, {3815, 9306}, {5642, 8779}, {6390, 59698}, {6676, 40805}, {10317, 59648}, {14961, 51425}, {15311, 40349}, {15595, 44377}, {16196, 32445}, {16252, 22401}, {17814, 31401}, {37935, 54082}, {46185, 59571}, {52128, 56370}, {59527, 59546}, {59533, 59661}, {59535, 59555}

X(59558) = pole of line {1033, 57071} with respect to the Steiner inellipse
X(59558) = pole of line {3566, 6247} with respect to the dual conic of DeLongchamps circle
X(59558) = center of the dual of the bicevian conic of X(4) and X(287)


X(59559) = X(3)X(3532)∩X(237)X(511)

Barycentrics    a^2*(5*a^2-3*(b^2+c^2))*(-b^4-c^4+a^2*(b^2+c^2)) : :

X(59559) lies on these lines: {3, 3532}, {39, 6688}, {237, 511}, {420, 7799}, {538, 52261}, {575, 37344}, {3292, 35296}, {6337, 59527}, {6390, 59651}, {6677, 59546}, {7789, 58447}, {8623, 50370}, {8681, 34990}, {9306, 59211}, {11328, 58470}, {11672, 48316}, {15606, 52274}, {21849, 37465}, {32444, 44870}, {34986, 52275}, {44102, 52437}, {52144, 54439}, {59545, 59553}, {59549, 59550}

X(59559) = midpoint of X(i) and X(j) for these {i,j}: {36212, 59707}
X(59559) = perspector of circumconic {{A, B, C, X(2421), X(20080)}}
X(59559) = X(i)-isoconjugate-of-X(j) for these {i, j}: {293, 36611}, {1821, 36616}, {1910, 38259}, {36120, 38263}
X(59559) = X(i)-Dao conjugate of X(j) for these {i, j}: {132, 36611}, {11672, 38259}, {40601, 36616}, {46094, 38263}
X(59559) = pole of line {98, 3146} with respect to the Stammler hyperbola
X(59559) = pole of line {290, 38263} with respect to the Wallace hyperbola
X(59559) = center of the dual of the bicevian conic of X(4) and X(290)
X(59559) = intersection, other than A, B, C, of circumconics {{A, B, C, X(237), X(38282)}}, {{A, B, C, X(511), X(3532)}}, {{A, B, C, X(36212), X(36609)}}
X(59559) = barycentric product X(i)*X(j) for these (i, j): {325, 5023}, {2421, 59549}, {16570, 1959}, {20080, 511}, {36212, 38282}
X(59559) = barycentric quotient X(i)/X(j) for these (i, j): {232, 36611}, {237, 36616}, {511, 38259}, {3289, 38263}, {5023, 98}, {14966, 58097}, {16570, 1821}, {20080, 290}, {38282, 16081}, {59549, 43665}
X(59559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9155, 36212, 59707}, {36212, 59707, 511}


X(59560) = X(32)X(670)∩X(39)X(6374)

Barycentrics    -(b^4*c^4*(b^2+c^2))+a^2*b^2*c^2*(b^4+b^2*c^2+c^4) : :

X(59560) lies on circumconic {{A, B, C, X(42486), X(43688)}} and on these lines: {32, 670}, {39, 6374}, {76, 7849}, {305, 7895}, {512, 32548}, {538, 47846}, {626, 40050}, {1502, 7794}, {3229, 19562}, {3266, 7871}, {3267, 6337}, {3314, 52568}, {3619, 26192}, {3933, 30736}, {3978, 7855}, {5041, 41259}, {7748, 16084}, {7781, 52608}, {7786, 59213}, {7796, 35540}, {7822, 9230}, {14603, 32452}

X(59560) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39968, 8024}
X(59560) = pole of line {33786, 59232} with respect to the Wallace hyperbola
X(59560) = pole of line {3221, 9493} with respect to the dual conic of Brocard inellipse
X(59560) = center of the dual of the bicevian conic of X(6) and X(25)


X(59561) = X(2)X(9307)∩X(4)X(69)

Barycentrics    (a^4+2*b^2*c^2-a^2*(b^2+c^2))*((b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(59561) lies on these lines: {2, 9307}, {3, 30549}, {4, 69}, {39, 59566}, {53, 8263}, {114, 41005}, {141, 14726}, {206, 19221}, {230, 800}, {538, 22152}, {1249, 59529}, {2790, 3184}, {3164, 59707}, {6374, 59535}, {6467, 53350}, {7778, 20208}, {8667, 33580}, {8681, 41760}, {9306, 9308}, {14363, 59659}, {16196, 53844}, {16312, 47090}, {23976, 59656}, {32152, 41008}, {35136, 40405}, {59649, 59651}

X(59561) = midpoint of X(i) and X(j) for these {i,j}: {3186, 14615}
X(59561) = complement of X(9307)
X(59561) = center of circumconic {{A, B, C, X(107), X(4609)}}
X(59561) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9255, 57388}
X(59561) = X(i)-Dao conjugate of X(j) for these {i, j}: {1196, 9289}, {1368, 9292}, {5254, 2}
X(59561) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 5254}
X(59561) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 5254}, {48, 41005}, {162, 59745}, {1957, 5}, {1958, 141}, {1968, 226}, {1975, 2887}, {2451, 8287}, {9306, 10}, {9308, 20305}, {17215, 21252}, {17478, 125}, {17893, 53575}, {22089, 34846}, {30476, 21253}
X(59561) = pole of line {2451, 17215} with respect to the Steiner inellipse
X(59561) = center of the dual of the bicevian conic of X(6) and X(69)
X(59561) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(9306)}}, {{A, B, C, X(76), X(9308)}}, {{A, B, C, X(511), X(6467)}}, {{A, B, C, X(877), X(53350)}}, {{A, B, C, X(1196), X(3186)}}, {{A, B, C, X(1368), X(14615)}}, {{A, B, C, X(1975), X(5254)}}, {{A, B, C, X(22401), X(57008)}}, {{A, B, C, X(40887), X(44132)}}, {{A, B, C, X(45199), X(45207)}}
X(59561) = barycentric product X(i)*X(j) for these (i, j): {1368, 9308}, {1957, 21406}, {1975, 5254}, {30476, 53350}
X(59561) = barycentric quotient X(i)/X(j) for these (i, j): {1196, 9292}, {1368, 9289}, {1968, 57388}, {1975, 40405}, {5254, 9307}, {6467, 51336}, {9308, 40413}, {17872, 9258}, {18671, 9255}, {53350, 43188}
X(59561) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 14913, 6248}, {3186, 14615, 511}, {59566, 59569, 39}


X(59562) = X(2)X(22172)∩X(10)X(511)

Barycentrics    -2*a*b^2*c^2+b^2*c^2*(b+c)+a^3*(b^2+c^2) : :

X(59562) lies on these lines: {2, 22172}, {9, 59690}, {10, 511}, {39, 59565}, {75, 12263}, {76, 16571}, {313, 2234}, {538, 21095}, {668, 7184}, {730, 1740}, {1026, 56196}, {1376, 50686}, {1958, 4112}, {1964, 3264}, {2664, 17787}, {3663, 17793}, {3739, 24327}, {3778, 27102}, {4357, 25120}, {4438, 24396}, {4710, 18792}, {6007, 21257}, {6684, 59620}, {17065, 24351}, {17351, 25382}, {17353, 25106}, {17355, 20103}, {17445, 46898}, {19868, 24325}, {20340, 21746}, {20456, 25277}, {24003, 25101}, {24199, 30982}, {27076, 34832}, {27091, 41886}, {30054, 45216}, {59544, 59644}, {59563, 59570}

X(59562) = midpoint of X(i) and X(j) for these {i,j}: {1740, 3596}
X(59562) = pole of line {512, 31286} with respect to the Spieker circle
X(59562) = pole of line {28358, 30030} with respect to the dual conic of Yff parabola
X(59562) = center of the dual of the bicevian conic of X(6) and X(75)
X(59562) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1740, 3596, 730}, {27102, 53338, 3778}, {59511, 59668, 17355}


X(59563) = X(2)X(694)∩X(3)X(37890)

Barycentrics    a^4*b^2+(a^2-b^2)^2*c^2+b^2*c^4 : :

X(59563) lies on these lines: {2, 694}, {3, 37890}, {6, 40405}, {39, 59535}, {51, 59765}, {76, 11333}, {141, 1368}, {184, 5026}, {305, 732}, {427, 5031}, {441, 7789}, {524, 3787}, {620, 58447}, {626, 21536}, {698, 1196}, {858, 40379}, {1691, 37894}, {1915, 16951}, {2056, 12215}, {2076, 33651}, {3051, 3266}, {3231, 8024}, {3917, 30749}, {4011, 36232}, {4048, 9306}, {4159, 51430}, {5108, 10328}, {5650, 8891}, {6374, 37891}, {6676, 59695}, {10191, 59773}, {10192, 59530}, {11205, 31088}, {11324, 42534}, {13196, 34986}, {13330, 30793}, {16276, 20998}, {19568, 40130}, {20965, 46900}, {24206, 39816}, {24254, 59628}, {34537, 38830}, {47426, 59543}, {59512, 59692}, {59562, 59570}, {59569, 59571}, {59702, 59706}

X(59563) = midpoint of X(i) and X(j) for these {i,j}: {305, 1613}
X(59563) = complement of X(3981)
X(59563) = X(i)-Ceva conjugate of X(j) for these {i, j}: {51982, 732}
X(59563) = X(i)-complementary conjugate of X(j) for these {i, j}: {38829, 16600}
X(59563) = pole of line {325, 1196} with respect to the Kiepert hyperbola
X(59563) = pole of line {1691, 19121} with respect to the Stammler hyperbola
X(59563) = pole of line {804, 3267} with respect to the Steiner inellipse
X(59563) = pole of line {385, 1196} with respect to the Wallace hyperbola
X(59563) = pole of line {3566, 24284} with respect to the dual conic of anticomplementary circle
X(59563) = pole of line {8711, 53331} with respect to the dual conic of Moses circle
X(59563) = pole of line {24284, 57146} with respect to the dual conic of polar circle
X(59563) = center of the dual of the bicevian conic of X(6) and X(76)
X(59563) = intersection, other than A, B, C, of circumconics {{A, B, C, X(694), X(40405)}}, {{A, B, C, X(3124), X(38830)}}, {{A, B, C, X(20859), X(34537)}}
X(59563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4074, 24256}, {2, 4576, 20859}, {39, 59535, 59564}, {76, 35294, 21001}, {305, 1613, 732}, {305, 35275, 1613}, {16951, 56430, 1915}


X(59564) = X(2)X(698)∩X(141)X(305)

Barycentrics    -(b^2*c^2*(b^2+c^2))+a^2*(b^4+4*b^2*c^2+c^4) : :
X(59564) = 3*X[5650]+X[19568], -X[6664]+4*X[51127]

X(59564) lies on circumconic {{A, B, C, X(31360), X(52660)}} and on these lines: {2, 698}, {39, 59535}, {141, 305}, {194, 21001}, {354, 9055}, {524, 3917}, {525, 45693}, {732, 3819}, {1180, 59773}, {1613, 32449}, {3051, 31088}, {3094, 57518}, {3266, 8041}, {3589, 4074}, {3666, 59515}, {3981, 11059}, {4563, 14153}, {4576, 20965}, {5116, 37894}, {5650, 19568}, {5943, 5969}, {6664, 51127}, {7484, 8177}, {7757, 35294}, {8891, 34573}, {10329, 56430}, {11205, 45672}, {14645, 32068}, {16951, 42421}, {20859, 59765}, {25134, 51861}, {35288, 36650}, {36212, 53415}, {37512, 59696}, {40379, 59768}, {59566, 59571}

X(59564) = pole of line {3314, 40022} with respect to the Kiepert hyperbola
X(59564) = pole of line {56428, 59232} with respect to the Stammler hyperbola
X(59564) = pole of line {9491, 13586} with respect to the Steiner inellipse
X(59564) = pole of line {512, 31286} with respect to the dual conic of anticomplementary circle
X(59564) = pole of line {9210, 53331} with respect to the dual conic of circumcircle of the Johnson triangle
X(59564) = pole of line {3288, 59549} with respect to the dual conic of nine-point circle
X(59564) = center of the dual of the bicevian conic of X(6) and X(83)
X(59564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 59535, 59563}


X(59565) = X(10)X(75)∩X(43)X(192)

Barycentrics    (-(b*c)+a*(b+c))*(b*c*(b+c)+a*(b^2+c^2)) : :
X(59565) = X[1278]+3*X[32925], -5*X[4699]+X[17157], -7*X[4772]+3*X[17155]

X(59565) lies on these lines: {2, 17038}, {10, 75}, {37, 6375}, {38, 20892}, {39, 59562}, {42, 25277}, {43, 192}, {194, 16571}, {244, 30044}, {256, 3975}, {330, 25528}, {386, 3993}, {519, 3688}, {536, 4096}, {714, 3739}, {740, 960}, {899, 56185}, {982, 30090}, {1107, 51575}, {1125, 25124}, {1278, 32925}, {2092, 35068}, {2309, 53338}, {2667, 34587}, {3159, 28522}, {3666, 25123}, {3687, 3797}, {3720, 25295}, {3728, 3741}, {3778, 20340}, {3840, 20923}, {4039, 28287}, {4358, 22167}, {4443, 21257}, {4681, 52875}, {4699, 17157}, {4709, 17461}, {4772, 17155}, {4871, 21330}, {5518, 31845}, {6048, 49445}, {6374, 59505}, {6383, 17149}, {6686, 25106}, {7184, 21226}, {8669, 54410}, {9534, 49474}, {14199, 30649}, {17147, 59309}, {17184, 21688}, {17355, 59735}, {17748, 27559}, {17755, 19563}, {17793, 28358}, {18040, 25113}, {18589, 20254}, {19763, 57505}, {20606, 24728}, {21219, 26135}, {21796, 59690}, {24349, 59311}, {24520, 25660}, {25120, 27633}, {25140, 30473}, {27268, 29825}, {30116, 49479}, {39467, 59518}, {40937, 59720}, {41838, 43225}, {49456, 59577}, {52872, 59718}, {59547, 59646}

X(59565) = midpoint of X(i) and X(j) for these {i,j}: {24068, 50117}, {43225, 51837}, {75, 21080}
X(59565) = reflection of X(i) in X(j) for these {i,j}: {59716, 37}
X(59565) = complement of X(42027)
X(59565) = perspector of circumconic {{A, B, C, X(1978), X(4595)}}
X(59565) = center of circumconic {{A, B, C, X(3952), X(4609)}}
X(59565) = X(i)-isoconjugate-of-X(j) for these {i, j}: {87, 57399}, {667, 59094}, {1258, 2162}, {7121, 40418}, {21759, 40409}, {43931, 59102}
X(59565) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 1221}, {3741, 23493}, {6631, 59094}, {16742, 7192}, {21024, 2}, {21838, 330}, {40598, 40418}, {51575, 87}
X(59565) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 21024}, {1107, 3741}, {3952, 4083}, {56241, 23886}
X(59565) = X(i)-complementary conjugate of X(j) for these {i, j}: {21, 20545}, {28, 20256}, {31, 21024}, {43, 3454}, {58, 3840}, {81, 20255}, {110, 4083}, {163, 31286}, {192, 21245}, {284, 20258}, {662, 21191}, {692, 798}, {1333, 75}, {1403, 442}, {1408, 17063}, {1412, 20257}, {1423, 17052}, {1437, 20254}, {1576, 21348}, {2176, 1211}, {2194, 3061}, {2203, 20271}, {2206, 16604}, {2209, 1213}, {3835, 21253}, {4083, 125}, {4567, 40562}, {7304, 21240}, {8640, 115}, {16695, 11}, {17217, 21252}, {18197, 116}, {20760, 21530}, {20906, 53575}, {20979, 8287}, {21835, 23991}, {22090, 34846}, {25098, 127}, {27644, 141}, {31008, 626}, {33296, 2887}, {36860, 21262}, {38832, 10}, {41526, 17056}, {52923, 31946}, {56181, 1329}, {57074, 1086}
X(59565) = pole of line {15599, 28470} with respect to the excircles-radical circle
X(59565) = pole of line {21024, 21331} with respect to the Kiepert hyperbola
X(59565) = pole of line {3835, 17217} with respect to the Steiner inellipse
X(59565) = pole of line {4568, 36863} with respect to the Yff parabola
X(59565) = pole of line {75, 20255} with respect to the dual conic of Yff parabola
X(59565) = center of the dual of the bicevian conic of X(6) and X(86)
X(59565) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3728)}}, {{A, B, C, X(37), X(56250)}}, {{A, B, C, X(43), X(75)}}, {{A, B, C, X(76), X(192)}}, {{A, B, C, X(313), X(3971)}}, {{A, B, C, X(726), X(2309)}}, {{A, B, C, X(1107), X(6376)}}, {{A, B, C, X(1269), X(4970)}}, {{A, B, C, X(1921), X(30097)}}, {{A, B, C, X(3123), X(23822)}}, {{A, B, C, X(3596), X(27538)}}, {{A, B, C, X(4357), X(41531)}}, {{A, B, C, X(10009), X(16738)}}, {{A, B, C, X(18169), X(40780)}}, {{A, B, C, X(21024), X(33296)}}, {{A, B, C, X(21080), X(21838)}}, {{A, B, C, X(24731), X(33680)}}
X(59565) = barycentric product X(i)*X(j) for these (i, j): {192, 3741}, {1107, 6376}, {2309, 6382}, {3835, 53338}, {16738, 3971}, {17752, 59171}, {20891, 43}, {21024, 33296}, {21713, 7304}, {27538, 30097}, {31008, 3728}, {45216, 76}
X(59565) = barycentric quotient X(i)/X(j) for these (i, j): {43, 1258}, {190, 59094}, {192, 40418}, {1107, 87}, {1197, 7121}, {2176, 57399}, {2309, 2162}, {3728, 16606}, {3741, 330}, {6376, 1221}, {17752, 59158}, {20891, 6384}, {21024, 42027}, {21700, 6378}, {21838, 23493}, {22065, 23086}, {22206, 7148}, {22389, 15373}, {33296, 40409}, {45216, 6}, {53268, 34071}, {53338, 4598}, {59171, 27447}
X(59565) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 27538, 53676}, {2228, 56249, 25121}, {3728, 20891, 3741}, {4699, 17157, 24165}, {6376, 41886, 34832}, {24068, 50117, 726}, {59517, 59716, 37}


X(59566) = X(3)X(3186)∩X(5)X(264)

Barycentrics    b^2*c^2*(b^2-c^2)^2+a^4*(b^4+c^4)-a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(59566) = X[12272]+3*X[39906]

X(59566) lies on circumconic {{A, B, C, X(18027), X(46735)}} and on these lines: {3, 3186}, {5, 264}, {30, 1843}, {39, 59561}, {69, 32515}, {140, 45847}, {194, 22152}, {216, 52261}, {232, 6677}, {373, 47143}, {523, 3589}, {1368, 56920}, {2782, 14913}, {3095, 14615}, {3164, 11328}, {5020, 42453}, {6374, 19602}, {6656, 9229}, {7401, 41481}, {11007, 26156}, {12272, 39906}, {15851, 47738}, {16330, 44452}, {19121, 37906}, {20775, 32516}, {20794, 32448}, {21531, 23635}, {21637, 51430}, {37466, 40680}, {40279, 41762}, {40937, 59520}, {59564, 59571}

X(59566) = pole of line {420, 39201} with respect to the polar circle
X(59566) = pole of line {525, 4486} with respect to the MacBeath inconic
X(59566) = pole of line {1092, 35925} with respect to the Wallace hyperbola
X(59566) = pole of line {9479, 34980} with respect to the dual conic of Wallace hyperbola
X(59566) = center of the dual of the bicevian conic of X(6) and X(95)


X(59567) = X(3)X(3504)∩X(441)X(525)

Barycentrics    (a^2-b^2-c^2)*(-(b^2*c^2*(b^2+c^2))+a^2*(b^4+c^4)) : :

X(59567) lies on these lines: {3, 3504}, {39, 59535}, {194, 11333}, {237, 4576}, {304, 7019}, {305, 1368}, {325, 21536}, {441, 525}, {698, 3229}, {3095, 57518}, {3917, 4173}, {3978, 32515}, {4074, 7819}, {5976, 52261}, {6374, 19602}, {6393, 40708}, {6660, 56430}, {8891, 47298}, {21001, 31981}, {59548, 59651}

X(59567) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 699}, {25, 43761}, {1973, 3225}, {51992, 56828}
X(59567) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 699}, {3229, 419}, {6337, 3225}, {6338, 8858}, {6505, 43761}, {35540, 17984}, {39080, 25}, {40810, 17980}
X(59567) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8858, 69}, {35524, 698}, {36214, 3933}
X(59567) = pole of line {112, 699} with respect to the Stammler hyperbola
X(59567) = pole of line {20, 30217} with respect to the Steiner circumellipse
X(59567) = pole of line {3, 9491} with respect to the Steiner inellipse
X(59567) = pole of line {648, 1974} with respect to the Wallace hyperbola
X(59567) = pole of line {2, 669} with respect to the dual conic of anticomplementary circle
X(59567) = pole of line {1368, 10190} with respect to the dual conic of cosine circle
X(59567) = pole of line {2, 669} with respect to the dual conic of 1st DrozFarny circle
X(59567) = pole of line {2, 669} with respect to the dual conic of circumcircle of the Johnson triangle
X(59567) = pole of line {2979, 44445} with respect to the dual conic of Moses circle
X(59567) = pole of line {69, 25423} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(59567) = pole of line {2, 669} with respect to the dual conic of polar circle
X(59567) = pole of line {69, 3049} with respect to the dual conic of Orthic inconic
X(59567) = pole of line {2971, 14618} with respect to the dual conic of Stammler hyperbola
X(59567) = pole of line {2501, 42068} with respect to the dual conic of Wallace hyperbola
X(59567) = center of the dual of the bicevian conic of X(6) and X(98)
X(59567) = lies on the inconic with perspector X(8858)
X(59567) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(2524)}}, {{A, B, C, X(305), X(647)}}, {{A, B, C, X(525), X(698)}}, {{A, B, C, X(2227), X(2522)}}, {{A, B, C, X(3265), X(35524)}}, {{A, B, C, X(7019), X(25098)}}, {{A, B, C, X(9429), X(14908)}}, {{A, B, C, X(14961), X(41337)}}, {{A, B, C, X(24284), X(39080)}}, {{A, B, C, X(32540), X(41009)}}, {{A, B, C, X(32748), X(45201)}}
X(59567) = barycentric product X(i)*X(j) for these (i, j): {3, 35524}, {69, 698}, {305, 3229}, {2227, 304}, {3267, 41337}, {32748, 40050}, {39080, 40708}, {40364, 51907}
X(59567) = barycentric quotient X(i)/X(j) for these (i, j): {3, 699}, {63, 43761}, {69, 3225}, {698, 4}, {2227, 19}, {3229, 25}, {3926, 8858}, {9429, 57204}, {12215, 32544}, {32540, 57260}, {32748, 1974}, {35524, 264}, {36214, 51992}, {36821, 8753}, {39080, 419}, {41337, 112}, {47648, 17980}, {51322, 44089}, {51907, 1973}, {51912, 56828}, {52460, 2207}
X(59567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6374, 52636, 59566}


X(59568) = X(325)X(523)∩X(804)X(8651)

Barycentrics    (b-c)*(b+c)*(-3*b^2*c^2+a^2*(b^2+c^2)) : :
X(59568) = -X[647]+3*X[45689], -X[669]+5*X[31072], X[2525]+3*X[9134], -2*X[6587]+3*X[10189], -3*X[10278]+X[33294], -3*X[11176]+5*X[31277], -3*X[27798]+X[50544], 3*X[31176]+X[58784], -5*X[31279]+X[31296], -X[50553]+5*X[55188]

X(59568) lies on these lines: {325, 523}, {647, 45689}, {669, 31072}, {804, 8651}, {2501, 9479}, {2525, 9134}, {3566, 54262}, {3569, 54259}, {3700, 21053}, {3804, 25423}, {4977, 30094}, {6587, 10189}, {8288, 59739}, {10278, 33294}, {11176, 31277}, {11182, 59741}, {20512, 23818}, {21206, 59571}, {27798, 50544}, {31176, 58784}, {31279, 31296}, {39513, 57206}, {45259, 59744}, {50553, 55188}, {53571, 59721}

X(59568) = midpoint of X(i) and X(j) for these {i,j}: {23285, 56739}, {850, 23301}
X(59568) = reflection of X(i) in X(j) for these {i,j}: {44451, 30476}
X(59568) = isotomic conjugate of X(58119)
X(59568) = perspector of circumconic {{A, B, C, X(76), X(20081)}}
X(59568) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 58119}, {110, 38275}, {163, 38262}, {662, 36615}
X(59568) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 58119}, {115, 38262}, {194, 57150}, {244, 38275}, {1084, 36615}
X(59568) = pole of line {2, 20775} with respect to the nine-point circle
X(59568) = pole of line {3, 10847} with respect to the orthoptic circle of the Steiner Inellipse
X(59568) = pole of line {25, 7766} with respect to the polar circle
X(59568) = pole of line {5117, 5254} with respect to the Orthic inconic
X(59568) = pole of line {69, 33019} with respect to the Steiner circumellipse
X(59568) = pole of line {141, 5025} with respect to the Steiner inellipse
X(59568) = pole of line {110, 58119} with respect to the Wallace hyperbola
X(59568) = pole of line {512, 31286} with respect to the dual conic of Wallace hyperbola
X(59568) = center of the dual of the bicevian conic of X(6) and X(99)
X(59568) = intersection, other than A, B, C, of circumconics {{A, B, C, X(325), X(21001)}}, {{A, B, C, X(1502), X(32746)}}, {{A, B, C, X(3261), X(21206)}}, {{A, B, C, X(3264), X(21095)}}, {{A, B, C, X(3266), X(20081)}}, {{A, B, C, X(16571), X(35550)}}, {{A, B, C, X(20945), X(35544)}}
X(59568) = barycentric product X(i)*X(j) for these (i, j): {10, 21206}, {1577, 16571}, {14618, 22152}, {17091, 3700}, {20081, 523}, {20945, 661}, {21001, 850}, {21095, 514}, {43665, 59571}
X(59568) = barycentric quotient X(i)/X(j) for these (i, j): {2, 58119}, {512, 36615}, {523, 38262}, {661, 38275}, {16571, 662}, {17091, 4573}, {20081, 99}, {20945, 799}, {21001, 110}, {21095, 190}, {21206, 86}, {22152, 4558}, {32746, 57150}, {59571, 2421}
X(59568) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {804, 30476, 44451}, {850, 9148, 23301}, {23285, 56739, 523}, {31072, 53365, 669}


X(59569) = X(3)X(14615)∩X(5)X(14913)

Barycentrics    b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)+a^2*b^2*c^2*(b^2+c^2)-a^4*(b^4+4*b^2*c^2+c^4) : :

X(59569) lies on these lines: {3, 14615}, {5, 14913}, {39, 59561}, {69, 49111}, {76, 22152}, {264, 2782}, {800, 52261}, {1353, 45847}, {1843, 14881}, {2854, 34845}, {3095, 3186}, {3260, 20775}, {6467, 21531}, {8681, 14767}, {9723, 33813}, {12042, 40947}, {12272, 37988}, {14880, 19459}, {19602, 37891}, {22143, 36794}, {23635, 53350}, {37893, 40888}, {59532, 59553}, {59563, 59571}

X(59569) = midpoint of X(i) and X(j) for these {i,j}: {264, 20794}
X(59569) = pole of line {5907, 37334} with respect to the Wallace hyperbola
X(59569) = pole of line {804, 2489} with respect to the dual conic of DeLongchamps circle
X(59569) = center of the dual of the bicevian conic of X(6) and X(264)
X(59569) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {39, 59561, 59566}, {264, 20794, 2782}


X(59570) = X(2)X(20363)∩X(37)X(6382)

Barycentrics    2*b^3*c^3-a*b^2*c^2*(b+c)+a^3*(b+c)*(b^2+c^2) : :

X(59570) lies on these lines: {2, 20363}, {37, 6382}, {39, 59505}, {194, 20945}, {561, 21877}, {1107, 51863}, {1215, 25102}, {1575, 1920}, {1978, 27035}, {3661, 18134}, {3705, 30748}, {3739, 3741}, {4087, 28358}, {4365, 30955}, {4485, 27633}, {6679, 40548}, {6686, 40562}, {8620, 27104}, {18891, 21883}, {20333, 24210}, {21232, 25111}, {21814, 35543}, {21902, 59526}, {23632, 53363}, {24003, 25116}, {25115, 59511}, {26752, 41318}, {27076, 59517}, {27091, 59518}, {59554, 59658}, {59562, 59563}

X(59570) = midpoint of X(i) and X(j) for these {i,j}: {561, 21877}
X(59570) = complement of X(21345)
X(59570) = X(i)-complementary conjugate of X(j) for these {i, j}: {56247, 3454}, {56357, 1211}
X(59570) = center of the dual of the bicevian conic of X(6) and X(274)


X(59571) = X(39)X(19602)∩X(114)X(325)

Barycentrics    a^2*(-3*b^2*c^2+a^2*(b^2+c^2))*(-b^4-c^4+a^2*(b^2+c^2)) : :
X(59571) = X[5167]+3*X[7799], X[7779]+3*X[47638]

X(59571) lies on these lines: {39, 19602}, {114, 325}, {141, 8681}, {3314, 3819}, {3491, 7763}, {3815, 6688}, {3917, 7897}, {3926, 6310}, {5065, 53500}, {5167, 7799}, {5943, 7777}, {6000, 51872}, {6337, 14135}, {6374, 59535}, {7736, 34236}, {7764, 58556}, {7779, 47638}, {9306, 58354}, {11672, 48316}, {12045, 15491}, {15082, 16986}, {15574, 43152}, {21001, 22152}, {21206, 59568}, {32831, 58212}, {34383, 44377}, {35294, 53147}, {36213, 56437}, {46185, 59558}, {52995, 56923}, {59563, 59569}, {59564, 59566}

X(59571) = midpoint of X(i) and X(j) for these {i,j}: {325, 51427}
X(59571) = perspector of circumconic {{A, B, C, X(2396), X(20081)}}
X(59571) = X(i)-isoconjugate-of-X(j) for these {i, j}: {98, 38275}, {1821, 36615}, {1910, 38262}
X(59571) = X(i)-Dao conjugate of X(j) for these {i, j}: {11672, 38262}, {40601, 36615}
X(59571) = pole of line {1976, 38262} with respect to the Stammler hyperbola
X(59571) = pole of line {3164, 32746} with respect to the Steiner inellipse
X(59571) = pole of line {98, 58119} with respect to the Wallace hyperbola
X(59571) = center of the dual of the bicevian conic of X(6) and X(290)
X(59571) = intersection, other than A, B, C, of circumconics {{A, B, C, X(325), X(21001)}}, {{A, B, C, X(6393), X(22152)}}, {{A, B, C, X(20081), X(51373)}}, {{A, B, C, X(21206), X(51370)}}, {{A, B, C, X(40810), X(51374)}}
X(59571) = barycentric product X(i)*X(j) for these (i, j): {1755, 20945}, {2421, 59568}, {16571, 1959}, {17091, 59734}, {17209, 21095}, {20081, 511}, {21001, 325}, {22152, 297}
X(59571) = barycentric quotient X(i)/X(j) for these (i, j): {237, 36615}, {511, 38262}, {1755, 38275}, {2421, 58119}, {16571, 1821}, {20081, 290}, {20945, 46273}, {21001, 98}, {22152, 287}, {59568, 43665}
X(59571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {325, 51427, 511}, {325, 6786, 51427}


X(59572) = X(2)X(11)∩X(3)X(1603)

Barycentrics    3*a^3-3*a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2-6*b*c+c^2) : :

X(59572) lies on these lines: {1, 6692}, {2, 11}, {3, 1603}, {4, 2077}, {8, 1319}, {9, 2272}, {10, 631}, {12, 6904}, {20, 1329}, {35, 5084}, {36, 3421}, {40, 6700}, {43, 1818}, {56, 7080}, {57, 6745}, {65, 26062}, {75, 34229}, {78, 1788}, {119, 6948}, {140, 9709}, {142, 47375}, {145, 8256}, {154, 20307}, {165, 3452}, {197, 19649}, {200, 3911}, {210, 5744}, {214, 7967}, {329, 1155}, {345, 5205}, {355, 6961}, {377, 10588}, {388, 404}, {443, 498}, {452, 5217}, {474, 3085}, {480, 8732}, {495, 16417}, {499, 5082}, {516, 30827}, {517, 6970}, {518, 5435}, {527, 53056}, {549, 9708}, {590, 31413}, {632, 31493}, {750, 5712}, {899, 40958}, {908, 3474}, {936, 6261}, {938, 56176}, {958, 3523}, {960, 6962}, {962, 25681}, {966, 2267}, {971, 18236}, {993, 3524}, {997, 5657}, {999, 17564}, {1054, 33144}, {1056, 45701}, {1058, 8715}, {1071, 58649}, {1125, 1706}, {1210, 3189}, {1260, 54366}, {1377, 9540}, {1378, 13935}, {1420, 6736}, {1575, 7735}, {1588, 9679}, {1656, 31418}, {1698, 6857}, {1836, 5748}, {1861, 6353}, {1936, 25938}, {1997, 3685}, {2098, 24558}, {2183, 20368}, {3052, 51415}, {3086, 5687}, {3158, 11019}, {3160, 59507}, {3161, 59506}, {3295, 52264}, {3306, 3475}, {3333, 59722}, {3436, 4188}, {3476, 6735}, {3485, 27385}, {3486, 4855}, {3487, 59719}, {3522, 8165}, {3525, 10806}, {3526, 31419}, {3585, 57000}, {3600, 12607}, {3601, 8582}, {3616, 3848}, {3618, 17792}, {3624, 31452}, {3634, 16845}, {3660, 17658}, {3689, 17728}, {3693, 40127}, {3740, 5273}, {3742, 10578}, {3749, 5121}, {3771, 53665}, {3811, 58405}, {3812, 5703}, {3838, 59412}, {3913, 6691}, {3928, 21060}, {3974, 17740}, {4011, 24410}, {4023, 14552}, {4187, 4294}, {4190, 5229}, {4193, 5225}, {4293, 16371}, {4307, 37662}, {4308, 32049}, {4323, 10107}, {4386, 7736}, {4419, 17596}, {4470, 24336}, {4512, 5316}, {4521, 28589}, {4640, 18228}, {4648, 17122}, {4847, 31231}, {4872, 30740}, {4998, 8817}, {4999, 10303}, {5010, 11111}, {5067, 25639}, {5070, 31420}, {5087, 9812}, {5123, 6966}, {5172, 37313}, {5175, 17606}, {5204, 21031}, {5226, 5880}, {5248, 17559}, {5253, 10528}, {5265, 12513}, {5267, 10299}, {5277, 31402}, {5289, 59417}, {5325, 30393}, {5328, 9778}, {5437, 13405}, {5440, 18391}, {5587, 6935}, {5603, 12703}, {5720, 14647}, {5745, 8580}, {5785, 38130}, {5790, 38762}, {5794, 6910}, {5795, 7987}, {5818, 6977}, {5837, 9588}, {5840, 6973}, {5905, 9352}, {6260, 10270}, {6284, 6919}, {6337, 6376}, {6361, 21616}, {6381, 32817}, {6554, 41795}, {6636, 9713}, {6681, 45700}, {6796, 6865}, {6848, 10310}, {6882, 18499}, {6891, 11499}, {6892, 9956}, {6893, 26285}, {6923, 38752}, {6926, 11500}, {6929, 33814}, {6931, 52367}, {6938, 34474}, {6940, 10786}, {6944, 11248}, {6950, 51506}, {6954, 26446}, {6963, 37000}, {6964, 11496}, {6967, 11491}, {6978, 37820}, {6981, 10525}, {6982, 38763}, {6989, 31659}, {6992, 59421}, {7074, 25934}, {7290, 45204}, {7354, 37267}, {7483, 19855}, {7494, 34822}, {7962, 34711}, {8169, 11495}, {9316, 23693}, {9623, 10165}, {9654, 17563}, {9702, 11003}, {9710, 55864}, {9711, 15717}, {9712, 44802}, {9776, 17718}, {9954, 11575}, {10072, 48696}, {10157, 17668}, {10178, 18227}, {10198, 17582}, {10527, 17566}, {10590, 11112}, {10624, 25522}, {10895, 37435}, {10980, 51099}, {11015, 19877}, {11024, 28628}, {11227, 58650}, {12115, 18861}, {12245, 30144}, {12572, 35242}, {12701, 26129}, {13411, 28629}, {13463, 18220}, {14001, 27091}, {14646, 46684}, {15325, 34625}, {15326, 31141}, {15587, 18230}, {15674, 46931}, {15803, 21075}, {15804, 37270}, {15829, 43174}, {16020, 16602}, {16284, 17081}, {16569, 24752}, {17030, 32978}, {17074, 45729}, {17314, 29649}, {17490, 37764}, {17573, 18990}, {17580, 25466}, {17583, 31410}, {17597, 43055}, {17625, 51380}, {17783, 40688}, {17917, 38300}, {19721, 52245}, {20015, 51463}, {20181, 58446}, {20196, 35445}, {20541, 37690}, {22758, 38760}, {24174, 36573}, {24884, 25664}, {24954, 37568}, {26015, 31224}, {26039, 59628}, {26098, 56010}, {26558, 32990}, {26687, 32973}, {27131, 44447}, {27255, 33043}, {27382, 59689}, {28600, 59297}, {28808, 32932}, {30613, 31209}, {31287, 45252}, {31401, 31405}, {31416, 31455}, {31484, 32785}, {31485, 35255}, {32929, 37762}, {33137, 56009}, {33337, 50818}, {33849, 37577}, {37291, 46933}, {37364, 43161}, {37540, 37663}, {37694, 51660}, {37722, 56936}, {38028, 40587}, {38052, 58463}, {42884, 52804}, {49631, 50314}, {49734, 50420}, {50295, 59679}, {52907, 59686}, {54361, 57287}, {54389, 59511}, {59574, 59600}, {59605, 59617}

X(59572) = complement of X(5274)
X(59572) = X(i)-isoconjugate-of-X(j) for these {i, j}: {106, 45824}
X(59572) = X(i)-Dao conjugate of X(j) for these {i, j}: {214, 45824}
X(59572) = pole of line {659, 42337} with respect to the circumcircle
X(59572) = pole of line {4925, 4962} with respect to the Spieker circle
X(59572) = pole of line {918, 30719} with respect to the Steiner inellipse
X(59572) = pole of line {30941, 37373} with respect to the Wallace hyperbola
X(59572) = pole of line {3008, 30827} with respect to the dual conic of Yff parabola
X(59572) = pole of line {30, 511} with respect to the dual conic of Privalov conic
X(59572) = center of the dual of the bicevian conic of X(7) and X(8)
X(59572) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(29005)}}, {{A, B, C, X(11), X(8817)}}, {{A, B, C, X(55), X(43946)}}, {{A, B, C, X(497), X(4998)}}, {{A, B, C, X(673), X(10307)}}, {{A, B, C, X(693), X(10584)}}, {{A, B, C, X(6063), X(10589)}}, {{A, B, C, X(14942), X(56089)}}, {{A, B, C, X(26105), X(40419)}}, {{A, B, C, X(28999), X(30610)}}
X(59572) = barycentric product X(i)*X(j) for these (i, j): {100, 29005}
X(59572) = barycentric quotient X(i)/X(j) for these (i, j): {44, 45824}, {29005, 693}
X(59572) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 100, 497}, {2, 1376, 2550}, {2, 149, 10584}, {2, 17784, 11}, {2, 3434, 10589}, {2, 390, 3816}, {2, 5281, 1001}, {2, 55, 26105}, {8, 6921, 7288}, {10, 631, 30478}, {36, 3421, 34610}, {55, 26105, 47357}, {57, 6745, 25568}, {100, 497, 34607}, {100, 54348, 55}, {140, 9709, 19843}, {165, 3452, 5698}, {200, 3911, 24477}, {377, 27529, 10588}, {404, 5552, 388}, {1376, 3035, 2}, {3158, 31190, 11019}, {3522, 8165, 57288}, {3600, 27525, 12607}, {3689, 17728, 36845}, {3816, 35023, 4421}, {3816, 4421, 390}, {3913, 6691, 14986}, {4190, 11681, 5229}, {4855, 24982, 3486}, {5328, 9778, 24703}, {5437, 13405, 38053}, {5687, 13747, 3086}, {5745, 8580, 38057}, {6284, 31246, 6919}, {6700, 59675, 40}, {6735, 35262, 3476}, {8715, 10200, 1058}, {10164, 20103, 9}, {16371, 17757, 4293}, {17567, 59591, 1}, {20196, 35445, 40998}, {25440, 26364, 4}, {26062, 27383, 65}, {59506, 59536, 3161}, {59506, 59573, 59575}, {59506, 59581, 59536}, {59507, 59537, 3160}


X(59573) = X(1)X(59600)∩X(7)X(8)

Barycentrics    (a^2+2*b*c-a*(b+c))*(-2*a*(b-c)^2+a^2*(b+c)+(b-c)^2*(b+c)) : :

X(59573) lies on these lines: {1, 59600}, {2, 56718}, {7, 8}, {910, 24728}, {1146, 59688}, {1212, 59620}, {1376, 3729}, {1818, 49462}, {2886, 24199}, {3035, 25101}, {3161, 59506}, {3452, 9950}, {3663, 50441}, {3685, 59691}, {3739, 24341}, {4858, 17668}, {4859, 17063}, {4899, 8256}, {9801, 24703}, {14100, 20905}, {17351, 24411}, {17355, 20103}, {17612, 24026}, {23618, 53640}, {25887, 45275}, {26651, 41339}, {27549, 37828}, {30807, 31391}, {35111, 59579}, {40593, 59508}, {41006, 43182}, {49732, 50119}

X(59573) = center of circumconic {{A, B, C, X(3699), X(52937)}}
X(59573) = X(i)-Dao conjugate of X(j) for these {i, j}: {41006, 2}, {43182, 9309}
X(59573) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 41006}
X(59573) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 41006}, {56, 3816}, {109, 4147}, {604, 3663}, {934, 15280}, {1376, 1329}, {1397, 2275}, {1415, 31287}, {1461, 21195}, {3729, 21244}, {4014, 46100}, {4449, 124}, {6168, 20540}, {6180, 141}, {9310, 3452}, {9312, 2887}, {9316, 10}, {16283, 6554}, {20980, 26932}, {22091, 123}, {32735, 42341}
X(59573) = pole of line {497, 9309} with respect to the Feuerbach hyperbola
X(59573) = pole of line {4885, 6168} with respect to the Steiner inellipse
X(59573) = pole of line {3663, 41006} with respect to the dual conic of Yff parabola
X(59573) = center of the dual of the bicevian conic of X(7) and X(9)
X(59573) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(1376)}}, {{A, B, C, X(85), X(3729)}}, {{A, B, C, X(518), X(14100)}}, {{A, B, C, X(1441), X(3967)}}, {{A, B, C, X(3212), X(40133)}}, {{A, B, C, X(6180), X(10307)}}, {{A, B, C, X(9312), X(16284)}}, {{A, B, C, X(11019), X(39126)}}, {{A, B, C, X(20905), X(40704)}}
X(59573) = barycentric product X(i)*X(j) for these (i, j): {1376, 20905}, {11019, 3729}, {26818, 3967}, {41006, 9312}
X(59573) = barycentric quotient X(i)/X(j) for these (i, j): {1200, 9439}, {3729, 56026}, {9312, 23618}, {11019, 9311}, {20905, 32023}, {20978, 9315}, {40133, 9309}
X(59573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59572, 59575, 59506}, {59620, 59621, 1212}


X(59574) = X(1)X(59536)∩X(2)X(10032)

Barycentrics    4*a^3-a*(b-c)^2+(b+c)*(b^2+c^2) : :
X(59574) = 2*X[58]+X[3704], -X[1834]+4*X[8258]

X(59574) lies on these lines: {1, 59536}, {2, 10032}, {37, 59544}, {58, 3704}, {81, 3712}, {141, 4650}, {165, 29181}, {171, 3932}, {333, 4733}, {354, 35263}, {524, 33160}, {528, 33121}, {545, 33152}, {846, 6703}, {894, 6690}, {896, 1211}, {1010, 18253}, {1086, 6679}, {1100, 59547}, {1155, 5294}, {1213, 59624}, {1376, 26065}, {1834, 8258}, {2895, 4831}, {3035, 27064}, {3158, 47359}, {3286, 18235}, {3550, 49524}, {3589, 17596}, {3647, 4205}, {3649, 56778}, {3703, 17126}, {3745, 3977}, {3771, 17365}, {3816, 4676}, {3923, 37646}, {3925, 56520}, {3966, 36277}, {4026, 4640}, {4030, 33170}, {4046, 16704}, {4234, 44669}, {4370, 59517}, {4418, 35466}, {4421, 59406}, {4422, 17122}, {4427, 4854}, {4428, 35261}, {4512, 49740}, {4643, 16570}, {4672, 37662}, {4682, 56078}, {4697, 17056}, {4884, 17716}, {4921, 46918}, {4966, 59692}, {4995, 46897}, {5221, 17526}, {5432, 26223}, {5657, 48832}, {5695, 37642}, {5743, 7262}, {5790, 48833}, {5846, 33167}, {5852, 33126}, {5880, 56519}, {6685, 59665}, {6688, 16482}, {7228, 33130}, {9340, 15523}, {9778, 48829}, {10164, 50115}, {10543, 17539}, {11115, 21677}, {17061, 32939}, {17070, 41806}, {17243, 37604}, {17246, 29645}, {17340, 29649}, {17369, 32916}, {17602, 32933}, {17724, 32940}, {17799, 59627}, {21000, 36479}, {24477, 48805}, {25914, 37582}, {28530, 33135}, {30652, 33089}, {32780, 44419}, {32930, 37634}, {33114, 34612}, {33118, 49732}, {33163, 37540}, {37666, 49486}, {49725, 56523}, {59506, 59579}, {59509, 59538}, {59572, 59600}, {59593, 59596}, {59623, 59626}

X(59574) = center of the dual of the bicevian conic of X(7) and X(10)
X(59574) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {171, 44416, 3932}, {8258, 24850, 1834}, {59624, 59628, 1213}


X(59575) = X(312)X(5784)∩X(1376)X(4009)

Barycentrics    a^5*(b+c)+4*a^3*b*c*(b+c)+2*a^2*(b^2-c^2)^2+2*b*c*(b^2-c^2)^2-2*a^4*(b^2+b*c+c^2)-a*(b-c)^2*(b+c)*(b^2+6*b*c+c^2) : :

X(59575) lies on these lines: {312, 5784}, {1089, 18251}, {1376, 4009}, {1818, 35652}, {1861, 4415}, {2550, 3967}, {2886, 4054}, {3161, 59506}, {4723, 5836}, {4858, 10157}, {4939, 12915}, {7069, 26011}, {8256, 52354}, {13257, 45206}, {13411, 56939}, {17122, 24411}, {17869, 58631}, {40937, 59637}, {59576, 59582}

X(59575) = center of the dual of the bicevian conic of X(7) and X(21)
X(59575) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59506, 59573, 59572}, {59637, 59638, 40937}


X(59576) = X(1)X(3161)∩X(72)X(2325)

Barycentrics    2*a^4+3*a^3*(b+c)-3*a^2*(b+c)^2+(b+c)^4-a*(b+c)*(3*b^2+2*b*c+3*c^2) : :

X(59576) lies on these lines: {1, 3161}, {10, 56082}, {72, 2325}, {190, 4292}, {519, 52354}, {644, 54301}, {1089, 18249}, {1104, 4370}, {1125, 3989}, {1210, 30568}, {1265, 4304}, {3159, 40940}, {3634, 4054}, {3710, 5016}, {3717, 5100}, {3952, 59722}, {3977, 6700}, {3992, 43174}, {4009, 6684}, {4082, 12514}, {12436, 32933}, {13411, 56078}, {19582, 44675}, {25728, 54433}, {32934, 59685}, {40521, 42450}, {52387, 59646}, {59536, 59587}, {59575, 59582}, {59591, 59599}

X(59576) = center of the dual of the bicevian conic of X(7) and X(27)
X(59576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3159, 59639, 40940}, {59536, 59598, 59587}


X(59577) = X(8)X(210)∩X(10)X(3967)

Barycentrics    (a-b-c)*(b+c)*(a^2-2*b*c+a*(b+c)) : :

X(59577) lies on these lines: {8, 210}, {10, 3967}, {65, 3952}, {72, 3992}, {321, 3983}, {518, 46937}, {536, 6048}, {668, 59504}, {984, 1698}, {1089, 3696}, {1125, 59511}, {1201, 50078}, {1215, 43222}, {1329, 3717}, {1434, 53658}, {2321, 38930}, {2325, 3694}, {3159, 52872}, {3175, 3214}, {3178, 16597}, {3189, 6555}, {3244, 34587}, {3293, 4069}, {3436, 53673}, {3622, 46897}, {3698, 56318}, {3699, 52352}, {3704, 4082}, {3710, 21031}, {3740, 4385}, {3812, 32937}, {3831, 49515}, {3921, 4647}, {3931, 4075}, {3932, 18589}, {3956, 4066}, {3971, 4646}, {3985, 4515}, {3991, 4103}, {4005, 17751}, {4015, 4125}, {4126, 6734}, {4540, 42031}, {4696, 25917}, {4731, 17164}, {4737, 58679}, {4767, 34772}, {4849, 50590}, {5084, 49688}, {5302, 7081}, {6284, 49991}, {6682, 51073}, {6745, 34851}, {9534, 58629}, {10479, 51034}, {10744, 18480}, {13741, 49465}, {16594, 28018}, {18743, 34791}, {20691, 35068}, {21087, 31845}, {21290, 32537}, {21342, 46827}, {24003, 52541}, {24068, 59669}, {25459, 33118}, {26029, 49447}, {26066, 27549}, {27525, 27544}, {30473, 59619}, {34790, 50625}, {35652, 50581}, {37592, 59666}, {40663, 52354}, {49452, 53676}, {49456, 59565}, {50861, 58798}, {59536, 59591}, {59584, 59592}

X(59577) = midpoint of X(i) and X(j) for these {i,j}: {19582, 44720}
X(59577) = reflection of X(i) in X(j) for these {i,j}: {56174, 10}
X(59577) = complement of X(34860)
X(59577) = anticomplement of X(10563)
X(59577) = center of circumconic {{A, B, C, X(3699), X(3952)}}
X(59577) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 56155}, {1333, 42304}, {1408, 34860}, {1412, 39956}, {7341, 56192}, {8690, 43924}, {16947, 40012}
X(59577) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 56155}, {37, 42304}, {2321, 2}, {40599, 39956}
X(59577) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 2321}, {3952, 4139}, {56237, 3714}, {56253, 3175}
X(59577) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 2321}, {56, 3813}, {110, 4139}, {604, 24175}, {692, 4394}, {3175, 21245}, {3214, 3454}, {3217, 3452}, {3875, 2887}, {3913, 1329}, {3915, 10}, {4106, 21252}, {4139, 125}, {4186, 5}, {4383, 141}, {4498, 116}, {16946, 2}, {18135, 626}, {28387, 17052}, {30568, 21244}, {42312, 124}, {58334, 5514}
X(59577) = pole of line {4106, 4498} with respect to the Steiner inellipse
X(59577) = pole of line {2321, 24175} with respect to the dual conic of Yff parabola
X(59577) = pole of line {3756, 53540} with respect to the dual conic of Wallace hyperbola
X(59577) = center of the dual of the bicevian conic of X(7) and X(57)
X(59577) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(3214)}}, {{A, B, C, X(10), X(44720)}}, {{A, B, C, X(37), X(19582)}}, {{A, B, C, X(65), X(3880)}}, {{A, B, C, X(79), X(4106)}}, {{A, B, C, X(312), X(3175)}}, {{A, B, C, X(341), X(56253)}}, {{A, B, C, X(2321), X(3875)}}, {{A, B, C, X(2478), X(4186)}}, {{A, B, C, X(3217), X(3876)}}, {{A, B, C, X(3702), X(4451)}}, {{A, B, C, X(3877), X(3915)}}, {{A, B, C, X(3975), X(20317)}}, {{A, B, C, X(4383), X(14555)}}, {{A, B, C, X(18135), X(28809)}}, {{A, B, C, X(18228), X(28387)}}
X(59577) = barycentric product X(i)*X(j) for these (i, j): {10, 30568}, {312, 3214}, {313, 3217}, {321, 3913}, {2321, 3875}, {3175, 8}, {3701, 4383}, {4033, 42312}, {4139, 646}, {18135, 210}, {20317, 3952}, {27432, 27538}, {28387, 341}, {30713, 3915}, {30730, 4106}, {56253, 9}
X(59577) = barycentric quotient X(i)/X(j) for these (i, j): {10, 42304}, {37, 56155}, {210, 39956}, {644, 8690}, {2321, 34860}, {3175, 7}, {3214, 57}, {3217, 58}, {3701, 40012}, {3875, 1434}, {3913, 81}, {3915, 1412}, {4106, 17096}, {4139, 3669}, {4186, 1396}, {4383, 1014}, {4498, 7203}, {6057, 56123}, {16946, 1408}, {18135, 57785}, {20317, 7192}, {21963, 53538}, {28387, 269}, {30568, 86}, {42312, 1019}, {56123, 55011}, {56253, 85}, {58334, 7252}
X(59577) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59582, 59506}, {1, 59599, 59598}, {2, 34860, 10563}, {210, 3701, 3714}, {341, 27538, 960}, {1089, 3697, 3696}, {3699, 56311, 56176}, {3952, 52353, 65}, {4015, 4125, 5295}, {19582, 44720, 3880}, {59582, 59586, 1}


X(59578) = X(1)X(59588)∩X(9)X(119)

Barycentrics    3*a^5-2*a^4*(b+c)+(b-c)^2*(b+c)^3-2*a*(b^2-c^2)^2-a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2) : :

X(59578) lies on these lines: {1, 59588}, {3, 59644}, {9, 119}, {19, 7359}, {30, 18594}, {48, 3655}, {219, 8756}, {281, 355}, {282, 45770}, {515, 59678}, {517, 27382}, {519, 22147}, {610, 18481}, {946, 59725}, {1249, 59653}, {1375, 45738}, {1781, 57282}, {2264, 5722}, {3161, 59582}, {3668, 31184}, {3913, 59728}, {5886, 40942}, {9709, 17355}, {14543, 41004}, {17262, 59641}, {20818, 37727}, {23529, 35273}, {37821, 55116}, {37828, 59682}, {59543, 59606}, {59584, 59585}, {59647, 59655}

X(59578) = center of the dual of the bicevian conic of X(7) and X(69)
X(59578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 59671, 26446}, {281, 59681, 355}, {59588, 59594, 1}, {59644, 59646, 3}


X(59579) = X(1)X(3161)∩X(4)X(9)

Barycentrics    4*a^2-3*a*(b+c)+(b+c)^2 : :

X(59579) lies on these lines: {1, 3161}, {2, 4488}, {4, 9}, {6, 2325}, {8, 3973}, {31, 4082}, {36, 38869}, {37, 537}, {44, 2321}, {45, 3986}, {75, 50118}, {101, 48257}, {142, 4422}, {144, 17284}, {188, 59466}, {190, 3663}, {192, 50114}, {193, 49765}, {236, 59444}, {329, 20106}, {344, 3664}, {346, 519}, {391, 3626}, {527, 7232}, {545, 17356}, {594, 3707}, {597, 4681}, {644, 23617}, {672, 3840}, {894, 4473}, {958, 43162}, {1018, 2347}, {1100, 4029}, {1125, 3731}, {1212, 59727}, {1213, 28546}, {1266, 17352}, {1278, 41140}, {1400, 46827}, {1449, 51071}, {1698, 31722}, {1864, 58697}, {2324, 30144}, {3008, 3729}, {3452, 44416}, {3618, 4021}, {3634, 5296}, {3636, 16673}, {3644, 50108}, {3662, 4480}, {3671, 56536}, {3683, 53663}, {3686, 4058}, {3693, 4090}, {3717, 4676}, {3739, 49726}, {3772, 4052}, {3817, 4438}, {3836, 30424}, {3879, 17264}, {3912, 17339}, {3943, 16669}, {3945, 29606}, {3946, 17262}, {3952, 35263}, {3993, 59408}, {4000, 17132}, {4011, 11019}, {4060, 53664}, {4078, 4349}, {4297, 30618}, {4315, 41391}, {4357, 17336}, {4363, 6666}, {4373, 31189}, {4416, 17280}, {4431, 17349}, {4432, 30331}, {4439, 49684}, {4454, 4859}, {4461, 16833}, {4656, 5294}, {4659, 37650}, {4667, 17243}, {4700, 17299}, {4718, 50109}, {4847, 32930}, {4856, 16670}, {4873, 5839}, {4887, 17282}, {4888, 29627}, {4889, 8584}, {4896, 17234}, {4908, 16671}, {4912, 48631}, {4967, 17335}, {4989, 49453}, {5120, 59221}, {5222, 55998}, {5257, 16814}, {5267, 54322}, {5325, 44417}, {5542, 32935}, {6172, 17272}, {6184, 59676}, {6541, 51196}, {6646, 29596}, {6687, 7263}, {6700, 27382}, {6738, 56937}, {7222, 20195}, {7229, 16832}, {8557, 49627}, {8568, 11814}, {9441, 9950}, {10436, 25072}, {11319, 52354}, {11813, 21068}, {13405, 59216}, {15808, 16676}, {16604, 21826}, {16668, 50113}, {16970, 50023}, {17023, 17261}, {17120, 29574}, {17121, 49543}, {17151, 37681}, {17257, 29604}, {17263, 41138}, {17266, 31300}, {17268, 20072}, {17278, 49721}, {17286, 54280}, {17289, 50093}, {17298, 41141}, {17302, 50090}, {17304, 20073}, {17330, 38098}, {17332, 17359}, {17333, 17358}, {17334, 17357}, {17338, 24199}, {17342, 17347}, {17365, 41310}, {17367, 25269}, {17370, 49748}, {17382, 36522}, {17384, 49742}, {17781, 33157}, {18230, 25590}, {20090, 29601}, {20456, 22214}, {20927, 24209}, {21060, 59692}, {21061, 50608}, {24175, 32939}, {24177, 32933}, {24325, 38059}, {24393, 49484}, {24850, 59685}, {25440, 59678}, {25498, 49737}, {26065, 30568}, {26364, 27508}, {27064, 56078}, {28808, 56523}, {29423, 56253}, {29605, 51170}, {29673, 51783}, {31183, 31995}, {33163, 40998}, {34361, 34524}, {35111, 59573}, {35341, 55330}, {37588, 52549}, {38049, 49456}, {40127, 50535}, {40940, 56082}, {41242, 54357}, {42316, 59679}, {44735, 56085}, {49505, 50995}, {49535, 51058}, {50311, 50834}, {56084, 56519}, {59506, 59574}, {59580, 59584}, {59644, 59666}, {59668, 59690}

X(59579) = midpoint of X(i) and X(j) for these {i,j}: {346, 1743}, {4488, 4862}
X(59579) = reflection of X(i) in X(j) for these {i,j}: {21255, 17279}, {4072, 346}, {4310, 1125}
X(59579) = inverse of X(44897) in Spieker circle
X(59579) = complement of X(4862)
X(59579) = perspector of circumconic {{A, B, C, X(1897), X(58131)}}
X(59579) = X(i)-complementary conjugate of X(j) for these {i, j}: {18811, 17047}, {34523, 626}, {55989, 141}
X(59579) = pole of line {8710, 48387} with respect to the circumcircle
X(59579) = pole of line {514, 2490} with respect to the Spieker circle
X(59579) = pole of line {1834, 3244} with respect to the Kiepert hyperbola
X(59579) = pole of line {4962, 25259} with respect to the Steiner circumellipse
X(59579) = pole of line {1635, 3239} with respect to the Steiner inellipse
X(59579) = pole of line {101, 4169} with respect to the Yff parabola
X(59579) = pole of line {3667, 31291} with respect to the dual conic of incircle
X(59579) = pole of line {145, 3834} with respect to the dual conic of Yff parabola
X(59579) = center of the dual of the bicevian conic of X(7) and X(75)
X(59579) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(6553)}}, {{A, B, C, X(19), X(36603)}}, {{A, B, C, X(281), X(38255)}}, {{A, B, C, X(1706), X(56220)}}, {{A, B, C, X(2490), X(8756)}}
X(59579) = barycentric product X(i)*X(j) for these (i, j): {10, 17539}, {190, 2490}
X(59579) = barycentric quotient X(i)/X(j) for these (i, j): {2490, 514}, {17539, 86}
X(59579) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3161, 59585}, {2, 4488, 4862}, {4, 39589, 10}, {6, 2325, 3950}, {6, 3950, 3244}, {9, 54389, 17355}, {10, 15828, 9}, {44, 17340, 2321}, {45, 5750, 3986}, {190, 17353, 3663}, {344, 3664, 29600}, {344, 50127, 3664}, {346, 1743, 519}, {346, 519, 4072}, {527, 17279, 21255}, {594, 15492, 3707}, {894, 25101, 29571}, {894, 4473, 25101}, {1766, 10443, 5493}, {3039, 59479, 59588}, {3663, 17353, 31191}, {3686, 17281, 4058}, {3686, 4058, 4669}, {3729, 26685, 3008}, {3731, 5749, 1125}, {3986, 5750, 19862}, {4078, 4672, 4349}, {4416, 17280, 29594}, {4422, 17351, 142}, {4432, 49529, 30331}, {4908, 16671, 17388}, {16670, 17314, 4856}, {16814, 17369, 5257}, {16885, 17281, 3686}, {17334, 17357, 50092}, {17336, 17354, 4357}, {17339, 17350, 3912}, {18230, 25590, 31211}, {26065, 30568, 39595}, {31594, 31595, 2551}, {59511, 59544, 10164}, {59511, 59664, 59544}, {59580, 59596, 59584}, {59644, 59689, 59675}


X(59580) = X(1)X(59536)∩X(31)X(3712)

Barycentrics    4*a^3-2*a^2*(b+c)-a*(b^2+c^2)+(b+c)*(b^2+c^2) : :

X(59580) lies on these lines: {1, 59536}, {8, 21000}, {10, 50241}, {21, 5835}, {31, 3712}, {55, 33163}, {141, 4640}, {165, 17279}, {171, 17243}, {345, 3052}, {518, 59544}, {524, 1707}, {528, 4438}, {545, 33144}, {846, 4364}, {902, 3703}, {968, 6703}, {1215, 49726}, {1376, 4422}, {1386, 59547}, {3035, 4011}, {3058, 33119}, {3550, 3932}, {3589, 17594}, {3629, 4028}, {3666, 35263}, {3683, 5743}, {3685, 37646}, {3704, 54354}, {3744, 3977}, {3749, 9053}, {3769, 3943}, {3771, 17768}, {3772, 28530}, {3782, 4427}, {3816, 4432}, {3840, 59665}, {3923, 6690}, {3980, 34824}, {4030, 33161}, {4035, 28570}, {4090, 59664}, {4138, 28534}, {4370, 27538}, {4650, 4966}, {4676, 37662}, {4689, 5294}, {4847, 59769}, {4970, 50112}, {4995, 32931}, {5281, 54389}, {5432, 32930}, {5745, 49484}, {6154, 33117}, {6682, 48810}, {7081, 17340}, {8053, 18235}, {10192, 59705}, {11246, 29632}, {13405, 17351}, {17061, 32934}, {17246, 29634}, {17334, 33126}, {17365, 29839}, {17602, 32936}, {17724, 32933}, {17776, 37540}, {18156, 59538}, {24358, 25355}, {24542, 40688}, {24850, 25466}, {25591, 52793}, {26128, 49741}, {28550, 48649}, {30811, 44447}, {32777, 35258}, {32929, 35466}, {32940, 37703}, {33115, 34612}, {50104, 50949}, {59506, 59593}, {59512, 59545}, {59579, 59584}, {59691, 59704}, {59693, 59699}

X(59580) = midpoint of X(i) and X(j) for these {i,j}: {345, 3052}
X(59580) = pole of line {57054, 57088} with respect to the Steiner inellipse
X(59580) = center of the dual of the bicevian conic of X(7) and X(76)
X(59580) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59536, 59583}, {55, 44416, 49524}, {345, 3052, 5846}, {345, 35261, 3052}, {3744, 3977, 4884}, {4640, 59692, 141}, {59512, 59545, 59607}, {59579, 59584, 59596}


X(59581) = X(44)X(59665)∩X(1155)X(3936)

Barycentrics    (2*a-b-c)*(3*a^2-a*(b+c)-2*(b^2-b*c+c^2)) : :

X(59581) lies on these lines: {44, 59665}, {1155, 3936}, {1376, 59779}, {2321, 10164}, {2516, 59590}, {3161, 59506}, {3689, 49702}, {3717, 35023}, {3911, 4702}, {3977, 6174}, {4054, 5432}, {4640, 5233}, {4780, 37646}, {5218, 49483}, {6337, 59507}, {6690, 24199}, {17235, 17596}, {28555, 37764}, {56009, 59769}, {59583, 59593}

X(59581) = center of the dual of the bicevian conic of X(7) and X(80)
X(59581) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59536, 59572, 59506}


X(59582) = X(8)X(7317)∩X(10)X(4009)

Barycentrics    -2*a^2*b*c+a^3*(b+c)+2*b*c*(b+c)^2-a*(b+c)*(b^2+4*b*c+c^2) : :

X(59582) lies on these lines: {8, 7317}, {10, 4009}, {72, 27538}, {312, 3697}, {341, 392}, {517, 52353}, {942, 3952}, {960, 3992}, {1089, 3740}, {1698, 3967}, {2478, 53673}, {2899, 3419}, {3159, 59669}, {3161, 59578}, {3293, 35652}, {3555, 18743}, {3666, 4075}, {3701, 5044}, {3706, 4015}, {3710, 3820}, {3717, 4187}, {3831, 4096}, {3916, 5205}, {3921, 4903}, {4126, 10916}, {4358, 34790}, {4533, 10449}, {4540, 4717}, {4723, 9957}, {5082, 8055}, {5084, 5423}, {5271, 51572}, {5439, 32937}, {5440, 56311}, {5687, 30568}, {6051, 59517}, {8580, 50044}, {9709, 56082}, {9955, 30566}, {10914, 19582}, {15171, 49991}, {16610, 24068}, {19858, 56237}, {21101, 25086}, {25967, 39544}, {37162, 53672}, {42054, 46827}, {50122, 59294}, {59575, 59576}

X(59582) = center of the dual of the bicevian conic of X(7) and X(81)
X(59582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59577, 59586}, {4075, 59666, 3666}, {27538, 46937, 72}, {59506, 59577, 1}


X(59583) = X(2)X(4398)∩X(63)X(524)

Barycentrics    2*a^3-2*a^2*(b+c)-3*a*(b^2+c^2)+(b+c)*(b^2+c^2) : :

X(59583) lies on these lines: {1, 59536}, {2, 4398}, {11, 32936}, {38, 3712}, {55, 4884}, {57, 17243}, {63, 524}, {140, 3159}, {141, 345}, {145, 21000}, {190, 37662}, {192, 37646}, {226, 545}, {306, 3631}, {333, 4399}, {518, 59547}, {519, 51787}, {536, 5745}, {594, 38000}, {597, 26065}, {726, 6690}, {1086, 33116}, {1211, 33168}, {1386, 59544}, {2886, 28530}, {2975, 4918}, {3035, 3971}, {3052, 51147}, {3210, 4395}, {3589, 3666}, {3687, 17332}, {3703, 4414}, {3752, 4422}, {3782, 33113}, {3838, 28526}, {3911, 35652}, {3925, 32845}, {3928, 4851}, {3932, 17596}, {3943, 14829}, {3995, 37634}, {4026, 33167}, {4035, 17345}, {4075, 47742}, {4141, 33162}, {4271, 29529}, {4361, 5273}, {4362, 28472}, {4415, 32851}, {4417, 17334}, {4439, 59679}, {4440, 41878}, {4640, 5846}, {4665, 5737}, {4681, 39595}, {4854, 33119}, {4995, 32927}, {5241, 33761}, {5256, 6329}, {5325, 17348}, {5432, 32925}, {5437, 41313}, {5718, 32933}, {5743, 17740}, {6057, 32918}, {6692, 59585}, {6703, 28606}, {7228, 17056}, {7238, 18134}, {11246, 29643}, {13405, 28582}, {16602, 25101}, {17132, 58463}, {17147, 35466}, {17235, 20106}, {17301, 56519}, {17309, 37655}, {17313, 21454}, {17318, 37642}, {17337, 17490}, {17388, 37683}, {17593, 33164}, {17594, 49524}, {17595, 17776}, {17768, 29671}, {20582, 50104}, {24176, 50205}, {24177, 40480}, {24627, 42033}, {25083, 59515}, {25527, 49741}, {26070, 41806}, {26132, 49747}, {27186, 27754}, {28309, 55868}, {28556, 48643}, {30699, 31187}, {32777, 34573}, {40940, 59769}, {42051, 54357}, {50112, 56523}, {59581, 59593}

X(59583) = midpoint of X(i) and X(j) for these {i,j}: {2886, 32934}, {55, 4884}
X(59583) = pole of line {4057, 27086} with respect to the Steiner inellipse
X(59583) = pole of line {514, 2490} with respect to the dual conic of anticomplementary circle
X(59583) = pole of line {3904, 41800} with respect to the dual conic of circumcircle of the Johnson triangle
X(59583) = center of the dual of the bicevian conic of X(7) and X(83)
X(59583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59536, 59580}, {55, 4884, 9053}, {2886, 32934, 28530}, {3666, 3977, 44416}, {3666, 44416, 3589}, {3703, 4414, 44419}, {3752, 56078, 4422}, {3995, 51583, 37634}, {17056, 32939, 7228}, {59515, 59546, 59609}


X(59584) = X(1)X(6692)∩X(2)X(3158)

Barycentrics    (a-b-c)*(4*a^2-(b-c)^2-a*(b+c)) : :
X(59584) = X[3]+2*X[59722], 5*X[631]+X[6765], X[946]+2*X[8715], 2*X[1125]+X[3913], 5*X[1698]+X[3189], X[2136]+5*X[3616], X[3174]+2*X[6666], -7*X[3523]+X[6762], -7*X[3622]+X[3680], -4*X[3636]+X[10912], X[3811]+2*X[6684], -2*X[3813]+5*X[19862] and many others

X(59584) lies on these lines: {1, 6692}, {2, 3158}, {3, 59722}, {8, 13384}, {9, 1200}, {10, 6675}, {35, 21075}, {55, 3452}, {78, 5837}, {100, 226}, {142, 1376}, {165, 527}, {171, 3939}, {200, 5218}, {210, 4995}, {214, 49626}, {329, 35445}, {354, 6174}, {390, 30827}, {474, 51723}, {515, 45701}, {516, 4421}, {518, 10164}, {519, 3653}, {522, 3971}, {528, 3817}, {551, 3848}, {631, 6765}, {650, 40599}, {674, 10440}, {740, 49631}, {942, 59675}, {946, 8715}, {950, 5552}, {1001, 20103}, {1125, 3913}, {1279, 45204}, {1329, 4314}, {1621, 5316}, {1697, 27383}, {1698, 3189}, {1699, 34607}, {1706, 5703}, {1864, 46694}, {2057, 10393}, {2136, 3616}, {2280, 8568}, {2321, 7081}, {2550, 58463}, {2646, 6736}, {3035, 11019}, {3085, 57284}, {3169, 59297}, {3174, 6666}, {3243, 5435}, {3244, 25405}, {3295, 6700}, {3421, 30282}, {3523, 6762}, {3576, 34619}, {3601, 5795}, {3622, 3680}, {3636, 10912}, {3689, 4847}, {3712, 4082}, {3740, 15733}, {3752, 17071}, {3755, 33135}, {3811, 6684}, {3813, 19862}, {3816, 30331}, {3870, 3911}, {3871, 12053}, {3921, 15670}, {3925, 52638}, {3950, 59671}, {4028, 4434}, {4031, 9352}, {4078, 28346}, {4090, 59544}, {4097, 43223}, {4297, 12607}, {4304, 17757}, {4308, 45036}, {4313, 27525}, {4422, 59686}, {4640, 21060}, {4656, 4689}, {4734, 50109}, {4779, 6557}, {4848, 34772}, {4855, 10106}, {4882, 30478}, {4917, 10529}, {4923, 11679}, {5049, 17564}, {5087, 51783}, {5121, 17715}, {5217, 12527}, {5219, 17784}, {5297, 56317}, {5437, 10578}, {5440, 31397}, {5534, 6705}, {5542, 35023}, {5687, 13411}, {5698, 31508}, {5728, 59614}, {5748, 9580}, {5854, 50841}, {5882, 10915}, {6154, 17605}, {6260, 11248}, {6601, 58433}, {6691, 21625}, {6738, 37828}, {6743, 26066}, {6764, 10303}, {6919, 41864}, {7256, 40605}, {7674, 20195}, {8582, 37080}, {9337, 33097}, {9778, 28609}, {9780, 12625}, {9842, 11496}, {9843, 47742}, {10158, 10180}, {10171, 11235}, {10200, 40270}, {10391, 51380}, {10580, 31190}, {11224, 34711}, {11236, 28164}, {11239, 35262}, {11362, 22836}, {11518, 26062}, {12536, 46933}, {12541, 46934}, {12575, 25681}, {12635, 43174}, {12710, 58649}, {13607, 49169}, {14100, 18236}, {16117, 21077}, {17023, 19589}, {17197, 56181}, {17262, 59732}, {17527, 51724}, {17603, 17658}, {17613, 41561}, {17724, 24177}, {17765, 49554}, {17768, 50808}, {20075, 30852}, {21620, 25440}, {28058, 41006}, {28158, 34626}, {28228, 34647}, {28600, 35104}, {30332, 46873}, {31231, 36845}, {33113, 49991}, {33116, 43290}, {33126, 50092}, {34610, 58221}, {34701, 59387}, {34791, 51774}, {37364, 43175}, {38059, 58451}, {40869, 41795}, {41457, 56009}, {49511, 59679}, {50290, 59726}, {50443, 56936}, {54358, 59604}, {59516, 59610}, {59536, 59597}, {59577, 59592}, {59578, 59585}, {59579, 59580}, {59644, 59733}, {59645, 59711}

X(59584) = midpoint of X(i) and X(j) for these {i,j}: {165, 25568}, {1699, 34607}, {11224, 34711}, {2, 3158}, {3576, 34619}, {34701, 59387}, {9778, 28609}
X(59584) = reflection of X(i) in X(j) for these {i,j}: {11235, 10171}, {24386, 2}
X(59584) = complement of X(24392)
X(59584) = X(i)-Dao conjugate of X(j) for these {i, j}: {4875, 24199}
X(59584) = X(i)-complementary conjugate of X(j) for these {i, j}: {56081, 21244}, {56314, 1329}
X(59584) = pole of line {30719, 31605} with respect to the Steiner inellipse
X(59584) = pole of line {4943, 4959} with respect to the dual conic of incircle
X(59584) = pole of line {220, 30827} with respect to the dual conic of Yff parabola
X(59584) = center of the dual of the bicevian conic of X(7) and X(85)
X(59584) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(24386), X(35160)}}, {{A, B, C, X(56088), X(56089)}}
X(59584) = barycentric product X(i)*X(j) for these (i, j): {2487, 3699}
X(59584) = barycentric quotient X(i)/X(j) for these (i, j): {2487, 3676}
X(59584) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59572, 6692}, {2, 3158, 5853}, {2, 5853, 24386}, {10, 56176, 12437}, {55, 6745, 3452}, {165, 25568, 527}, {200, 5218, 5745}, {200, 5745, 24393}, {1125, 3913, 21627}, {1376, 13405, 142}, {3601, 7080, 5795}, {3689, 5432, 4847}, {3811, 6684, 24391}, {3871, 27385, 12053}, {4855, 10528, 10106}, {8715, 59719, 946}, {59580, 59596, 59579}


X(59585) = X(1)X(3161)∩X(37)X(39)

Barycentrics    2*a^2-5*a*(b+c)+(b+c)^2 : :
X(59585) = -X[7]+3*X[29600], X[144]+3*X[29573], X[4929]+3*X[8236], -X[17151]+5*X[18230]

X(59585) lies on these lines: {1, 3161}, {2, 31326}, {6, 3635}, {7, 29600}, {8, 4072}, {9, 519}, {10, 346}, {35, 38869}, {37, 39}, {44, 4856}, {45, 2321}, {75, 25072}, {142, 17132}, {144, 29573}, {145, 3973}, {190, 3664}, {192, 3008}, {344, 3663}, {391, 3625}, {516, 4078}, {527, 17243}, {536, 6666}, {551, 5749}, {594, 4745}, {966, 4058}, {968, 4082}, {1023, 21748}, {1100, 4370}, {1266, 17263}, {1575, 21826}, {1696, 25440}, {1743, 3244}, {1766, 12512}, {2276, 6686}, {2324, 22836}, {2345, 3634}, {3247, 3636}, {3294, 59303}, {3633, 31722}, {3662, 41141}, {3672, 31191}, {3686, 3943}, {3693, 20103}, {3707, 17299}, {3729, 29571}, {3758, 4909}, {3759, 50110}, {3826, 28557}, {3828, 5257}, {3879, 17336}, {3912, 6646}, {3946, 4422}, {3971, 13405}, {3977, 31035}, {3995, 40940}, {4007, 4746}, {4021, 4664}, {4052, 25525}, {4060, 17330}, {4065, 40977}, {4075, 59646}, {4357, 17264}, {4361, 28313}, {4416, 17242}, {4419, 21255}, {4431, 17260}, {4452, 31183}, {4461, 16832}, {4473, 17319}, {4480, 17300}, {4488, 4888}, {4656, 17776}, {4700, 15492}, {4704, 17023}, {4718, 17337}, {4739, 31285}, {4755, 7227}, {4788, 29628}, {4862, 29627}, {4887, 17234}, {4929, 8236}, {4982, 16671}, {5745, 35652}, {6692, 59583}, {6700, 27396}, {6738, 55337}, {7263, 28301}, {10436, 50118}, {10443, 28228}, {11019, 59216}, {12575, 56536}, {16601, 59727}, {16667, 51071}, {16669, 50113}, {16677, 17303}, {16777, 50115}, {16970, 49477}, {17133, 17348}, {17151, 18230}, {17231, 49742}, {17233, 17328}, {17239, 49737}, {17241, 49748}, {17244, 25269}, {17246, 41310}, {17247, 29596}, {17257, 29594}, {17267, 50092}, {17279, 17323}, {17280, 17326}, {17298, 20073}, {17316, 25728}, {17349, 50019}, {17350, 29574}, {17364, 29601}, {21061, 35633}, {21809, 57015}, {22003, 27565}, {22031, 34830}, {24209, 28974}, {26685, 50114}, {27147, 50119}, {27508, 45701}, {28639, 49726}, {29575, 31300}, {31333, 37756}, {32844, 40998}, {34379, 50995}, {34524, 41006}, {39595, 41839}, {42049, 51780}, {42696, 50100}, {49520, 49768}, {58441, 59680}, {59578, 59584}, {59716, 59735}, {59719, 59725}, {59723, 59731}

X(59585) = midpoint of X(i) and X(j) for these {i,j}: {142, 17262}, {53594, 55998}, {9, 3950}
X(59585) = reflection of X(i) in X(j) for these {i,j}: {7263, 58433}
X(59585) = complement of X(53594)
X(59585) = perspector of circumconic {{A, B, C, X(8050), X(51564)}}
X(59585) = pole of line {3454, 4691} with respect to the Kiepert hyperbola
X(59585) = pole of line {26853, 48038} with respect to the Steiner circumellipse
X(59585) = pole of line {649, 31182} with respect to the Steiner inellipse
X(59585) = pole of line {4103, 4752} with respect to the Yff parabola
X(59585) = pole of line {3667, 21302} with respect to the dual conic of incircle
X(59585) = pole of line {141, 3617} with respect to the dual conic of Yff parabola
X(59585) = center of the dual of the bicevian conic of X(7) and X(86)
X(59585) = intersection, other than A, B, C, of circumconics {{A, B, C, X(596), X(1000)}}, {{A, B, C, X(36916), X(56076)}}
X(59585) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3161, 59579}, {9, 3950, 519}, {37, 17340, 5750}, {37, 17355, 1125}, {37, 2325, 17355}, {75, 25072, 31211}, {192, 25101, 3008}, {346, 3731, 10}, {966, 4873, 4058}, {2325, 5750, 17340}, {2345, 16676, 3986}, {2345, 3986, 3634}, {3244, 15828, 1743}, {3943, 16814, 3686}, {3971, 13405, 59732}, {4416, 17242, 49765}, {4422, 4681, 3946}, {4488, 29621, 4888}, {4656, 17776, 20106}, {4664, 17353, 4021}, {4704, 17339, 17023}, {5749, 16673, 551}, {15492, 17388, 4700}, {16675, 17281, 5257}, {17262, 41313, 142}, {28301, 58433, 7263}, {41839, 56078, 39595}, {59517, 59547, 20103}, {59646, 59733, 59722}


X(59586) = X(8)X(4533)∩X(72)X(341)

Barycentrics    2*a^2*b*c+a^3*(b+c)+2*b*c*(b+c)^2-a*(b+c)*(b^2+4*b*c+c^2) : :
X(59586) = -X[3999]+2*X[49993], -X[16610]+4*X[52872]

X(59586) lies on these lines: {8, 4533}, {10, 3782}, {30, 49991}, {72, 341}, {75, 3921}, {392, 4737}, {517, 3952}, {518, 3992}, {519, 4009}, {536, 31855}, {668, 59513}, {942, 52353}, {995, 50078}, {1089, 4662}, {1739, 28582}, {3421, 5423}, {3555, 46937}, {3679, 3967}, {3693, 4103}, {3697, 4385}, {3699, 5440}, {3701, 17135}, {3706, 4125}, {3717, 17757}, {3740, 4692}, {3753, 32937}, {3814, 21087}, {3880, 4738}, {3994, 49984}, {3999, 49993}, {4075, 37548}, {4422, 50745}, {4511, 4767}, {4696, 5044}, {4868, 59718}, {4962, 59590}, {5690, 52354}, {7743, 30566}, {9369, 17614}, {10914, 44720}, {16610, 52872}, {19875, 49483}, {44784, 50914}

X(59586) = midpoint of X(i) and X(j) for these {i,j}: {3952, 4723}, {3994, 49984}
X(59586) = reflection of X(i) in X(j) for these {i,j}: {16610, 59669}, {3999, 49993}, {59669, 52872}
X(59586) = center of the dual of the bicevian conic of X(7) and X(88)
X(59586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59577, 59582}, {3952, 4723, 517}, {4737, 27538, 392}, {52872, 59717, 59669}, {59669, 59717, 16610}


X(59587) = X(1)X(6692)∩X(3)X(6745)

Barycentrics    4*a^4-a^3*(b+c)+a*(b+c)^3+(b^2-c^2)^2-a^2*(5*b^2+2*b*c+5*c^2) : :

X(59587) lies on these lines: {1, 6692}, {3, 6745}, {6, 59604}, {8, 10165}, {10, 2646}, {35, 3452}, {40, 27383}, {55, 6700}, {56, 59722}, {65, 6174}, {72, 10164}, {78, 6684}, {100, 946}, {140, 4847}, {200, 631}, {210, 52793}, {214, 10915}, {226, 7702}, {306, 24581}, {329, 35242}, {390, 25522}, {404, 21620}, {405, 20103}, {474, 13405}, {498, 57284}, {499, 5853}, {515, 4855}, {519, 1388}, {527, 58887}, {549, 34790}, {551, 3918}, {908, 31730}, {936, 5218}, {950, 26364}, {1125, 3303}, {1145, 3244}, {1210, 3035}, {1329, 4304}, {1376, 13411}, {1385, 6736}, {1420, 34619}, {1737, 12437}, {2077, 6260}, {2551, 30282}, {3075, 3939}, {3085, 5438}, {3086, 3158}, {3419, 3634}, {3421, 7987}, {3523, 57279}, {3525, 5231}, {3576, 7080}, {3612, 5795}, {3624, 5082}, {3689, 5433}, {3697, 37298}, {3722, 28018}, {3811, 3911}, {3870, 6921}, {3913, 44675}, {3916, 21060}, {3947, 11112}, {4187, 4314}, {4251, 8568}, {4294, 30827}, {4297, 17757}, {4298, 16371}, {4311, 12607}, {4421, 10624}, {4511, 11014}, {4848, 22836}, {4917, 11240}, {4995, 25917}, {5045, 17564}, {5086, 31399}, {5175, 54447}, {5217, 12572}, {5248, 5316}, {5281, 31435}, {5435, 41863}, {5493, 51409}, {5534, 6961}, {5730, 43174}, {5731, 27525}, {5748, 41869}, {5815, 15717}, {5882, 6735}, {5884, 51379}, {6681, 49627}, {6705, 17857}, {6737, 26446}, {6743, 58441}, {6765, 7288}, {6769, 6927}, {6857, 8580}, {6884, 10175}, {8227, 17784}, {8582, 24929}, {8715, 11502}, {9614, 34607}, {9843, 37080}, {9945, 18480}, {10106, 45701}, {10391, 58649}, {10528, 35262}, {10863, 11496}, {11019, 13747}, {11529, 26062}, {11681, 31673}, {12059, 13369}, {12436, 17718}, {12512, 58798}, {12675, 51380}, {13528, 54198}, {13996, 33176}, {14740, 38760}, {15015, 45287}, {15803, 25568}, {16370, 18250}, {17566, 26015}, {17613, 54227}, {17724, 24171}, {18483, 30852}, {19843, 46917}, {19862, 24390}, {20588, 37534}, {21031, 37600}, {21627, 48696}, {24882, 25664}, {27396, 59644}, {28234, 56387}, {31397, 59691}, {32934, 59731}, {34773, 51362}, {37704, 56936}, {37734, 37829}, {37828, 56177}, {38130, 41228}, {44547, 59614}, {53579, 56536}, {59506, 59592}, {59536, 59576}, {59594, 59595}

X(59587) = midpoint of X(i) and X(j) for these {i,j}: {4855, 5552}
X(59587) = pole of line {30827, 52405} with respect to the dual conic of Yff parabola
X(59587) = center of the dual of the bicevian conic of X(7) and X(92)
X(59587) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6745, 21075}, {65, 6174, 59675}, {100, 27385, 946}, {3035, 56176, 1210}, {4421, 25681, 10624}, {4855, 5552, 515}, {24929, 47742, 8582}, {25440, 59719, 226}, {27529, 57287, 10175}, {59536, 59598, 59576}


X(59588) = X(5)X(281)∩X(19)X(30)

Barycentrics    2*a^5-2*a^4*(b+c)+(b-c)^2*(b+c)^3-3*a*(b^2-c^2)^2+a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2) : :

X(59588) lies on these lines: {1, 59578}, {5, 281}, {9, 5690}, {19, 30}, {92, 6678}, {140, 8756}, {145, 22147}, {219, 5844}, {347, 31184}, {517, 59646}, {546, 1826}, {610, 34773}, {952, 59681}, {1212, 59680}, {1385, 59644}, {1482, 27382}, {1483, 20818}, {1731, 21933}, {1781, 18990}, {1839, 3853}, {1953, 7359}, {2264, 37730}, {2322, 36011}, {3109, 40582}, {3880, 59728}, {5089, 6677}, {5882, 59678}, {5901, 40942}, {6147, 54424}, {6929, 55116}, {7110, 52200}, {8256, 59682}, {8804, 28174}, {9119, 14988}, {13464, 59725}, {14571, 59649}, {15973, 17911}, {16546, 34634}, {18481, 18594}, {25078, 47742}, {38860, 44220}

X(59588) = pole of line {2490, 14344} with respect to the polar circle
X(59588) = center of the dual of the bicevian conic of X(7) and X(95)
X(59588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3039, 59479, 59579}, {6677, 59520, 59611}, {8756, 40937, 59671}, {40937, 59671, 140}


X(59589) = X(523)X(661)∩X(900)X(2490)

Barycentrics    (b-c)*(b+c)*(5*a-3*(b+c)) : :
X(59589) = -5*X[3004]+X[48435], -5*X[3835]+X[48427], -X[4790]+9*X[4944], X[4820]+3*X[47765], X[4897]+3*X[53339], 3*X[4927]+X[49272], -3*X[4990]+X[48327], -X[17069]+3*X[45661], 5*X[25259]+3*X[48422], X[44449]+3*X[47788], 3*X[45343]+X[47991], -X[47675]+9*X[47790] and many others

X(59589) lies on these lines: {522, 14350}, {523, 661}, {525, 7657}, {650, 28221}, {900, 2490}, {918, 48415}, {2487, 2786}, {2516, 4962}, {2527, 3667}, {3004, 48435}, {3835, 48427}, {4521, 4926}, {4770, 4843}, {4790, 4944}, {4820, 47765}, {4897, 53339}, {4927, 49272}, {4990, 48327}, {6590, 28209}, {17069, 45661}, {21714, 55232}, {24290, 59521}, {25259, 48422}, {28213, 48026}, {28898, 59751}, {44449, 47788}, {45343, 47991}, {47675, 47790}, {47764, 48397}, {47769, 48274}, {47786, 48271}, {47870, 47988}, {47874, 50525}, {47881, 49284}, {48270, 48399}, {48275, 53584}, {50326, 50359}

X(59589) = midpoint of X(i) and X(j) for these {i,j}: {3700, 14321}
X(59589) = reflection of X(i) in X(j) for these {i,j}: {2490, 3239}
X(59589) = perspector of circumconic {{A, B, C, X(10), X(3621)}}
X(59589) = X(i)-isoconjugate-of-X(j) for these {i, j}: {81, 8699}, {110, 36603}, {163, 36606}, {1333, 58131}, {1576, 40026}
X(59589) = X(i)-Dao conjugate of X(j) for these {i, j}: {37, 58131}, {115, 36606}, {244, 36603}, {4858, 40026}, {6741, 38255}, {40586, 8699}, {40622, 36621}
X(59589) = pole of line {27, 19824} with respect to the polar circle
X(59589) = pole of line {1213, 46932} with respect to the Steiner inellipse
X(59589) = pole of line {3241, 56313} with respect to the dual conic of incircle
X(59589) = pole of line {514, 2490} with respect to the dual conic of Wallace hyperbola
X(59589) = center of the dual of the bicevian conic of X(7) and X(99)
X(59589) = intersection, other than A, B, C, of circumconics {{A, B, C, X(523), X(4962)}}, {{A, B, C, X(661), X(2516)}}, {{A, B, C, X(3621), X(4062)}}, {{A, B, C, X(3943), X(4072)}}, {{A, B, C, X(3973), X(4053)}}, {{A, B, C, X(4037), X(20942)}}, {{A, B, C, X(42664), X(58154)}}
X(59589) = barycentric product X(i)*X(j) for these (i, j): {10, 4962}, {313, 58154}, {1577, 3973}, {2516, 321}, {3621, 523}, {4072, 514}, {14618, 22147}, {20942, 661}, {21000, 850}
X(59589) = barycentric quotient X(i)/X(j) for these (i, j): {10, 58131}, {42, 8699}, {523, 36606}, {661, 36603}, {1577, 40026}, {2516, 81}, {3621, 99}, {3700, 38255}, {3973, 662}, {4072, 190}, {4962, 86}, {7178, 36621}, {20942, 799}, {21000, 110}, {22147, 4558}, {38296, 4565}, {58154, 58}
X(59589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {900, 3239, 2490}, {3700, 14321, 523}, {3700, 4120, 14321}, {3700, 4841, 4931}


X(59590) = X(513)X(1577)∩X(905)X(3716)

Barycentrics    (b-c)*(a^3+a*(b-c)^2-2*a^2*(b+c)+2*b*c*(b+c)) : :
X(59590) = -X[3777]+3*X[4800], -2*X[4394]+3*X[47817], -3*X[4448]+2*X[6050], -X[4801]+3*X[48172], -3*X[8643]+X[53536], -2*X[9508]+3*X[48561], -2*X[14353]+3*X[48173], -2*X[17072]+3*X[45664],-2*X[23789]+3*X[45320], -2*X[23795]+5*X[31250], -3*X[31147]+X[48116], -X[47718]+3*X[47870], -3*X[47760]+2*X[48066] and many others

X(59590) lies on these lines: {513, 1577}, {514, 50508}, {522, 47965}, {523, 47966}, {650, 8714}, {667, 53270}, {784, 48029}, {900, 50501}, {905, 3716}, {918, 21185}, {1734, 20317}, {2516, 59581}, {2526, 4129}, {2787, 48329}, {2826, 6332}, {3309, 4391}, {3762, 3900}, {3777, 4800}, {3803, 6002}, {3810, 49280}, {4040, 23880}, {4151, 47921}, {4170, 8712}, {4382, 47936}, {4394, 47817}, {4448, 6050}, {4462, 14077}, {4724, 23882}, {4762, 47970}, {4791, 42325}, {4801, 48172}, {4804, 47929}, {4806, 48092}, {4820, 29190}, {4885, 4905}, {4940, 48086}, {4962, 59586}, {6372, 7662}, {8643, 53536}, {8678, 48265}, {9508, 48561}, {14353, 48173}, {17072, 45664}, {21188, 50357}, {21201, 23875}, {23789, 45320}, {23795, 31250}, {28475, 48150}, {28481, 48269}, {29021, 48271}, {29098, 48096}, {29142, 49286}, {29148, 50517}, {29158, 48095}, {29170, 48248}, {29304, 43052}, {29324, 48327}, {29354, 47131}, {30198, 57091}, {30520, 47712}, {31147, 48116}, {47708, 49275}, {47709, 49273}, {47718, 47870}, {47760, 48066}, {47793, 50356}, {47815, 50343}, {47821, 48410}, {47832, 48151}, {47872, 50359}, {47906, 48142}, {47911, 48153}, {47952, 47987}, {47953, 47994}, {47962, 48004}, {48043, 48091}, {48078, 55282}, {48149, 48578}

X(59590) = midpoint of X(i) and X(j) for these {i,j}: {4382, 47936}, {4391, 53343}, {4724, 48264}, {4804, 47929}, {47708, 49275}, {47709, 49273}, {47906, 48142}, {47911, 48153}, {48078, 55282}
X(59590) = reflection of X(i) in X(j) for these {i,j}: {1734, 20317}, {2526, 4129}, {3803, 48063}, {4905, 4885}, {47952, 47987}, {47953, 47994}, {47962, 48004}, {48086, 4940}, {48091, 48043}, {48092, 4806}, {50357, 21188}, {50515, 48248}, {650, 59672}, {905, 3716}
X(59590) = pole of line {5082, 49688} with respect to the anticomplementary circle
X(59590) = pole of line {1058, 37592} with respect to the incircle
X(59590) = pole of line {3294, 7308} with respect to the Steiner inellipse
X(59590) = center of the dual of the bicevian conic of X(7) and X(100)
X(59590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4391, 53343, 3309}, {4724, 48264, 23882}, {6002, 48063, 3803}, {8714, 59672, 650}, {29170, 48248, 50515}


X(59591) = X(2)X(496)∩X(4)X(100)

Barycentrics    3*a^4+4*a*b*c*(b+c)+(b^2-c^2)^2-4*a^2*(b^2+b*c+c^2) : :

X(59591) lies on these lines: {1, 6692}, {2, 496}, {3, 3421}, {4, 100}, {5, 17784}, {8, 631}, {10, 3486}, {20, 17757}, {35, 2551}, {40, 6745}, {46, 25568}, {55, 5084}, {56, 6174}, {57, 59675}, {69, 43146}, {72, 31787}, {78, 5657}, {145, 1145}, {149, 6931}, {165, 21075}, {200, 6684}, {214, 49169}, {329, 3579}, {346, 59671}, {355, 6935}, {376, 3436}, {377, 8164}, {388, 25440}, {390, 4187}, {404, 1056}, {405, 5281}, {443, 1376}, {452, 3820}, {495, 6904}, {497, 3825}, {498, 2550}, {499, 48696}, {517, 6927}, {519, 7288}, {528, 10591}, {668, 6337}, {908, 6361}, {942, 26062}, {944, 4855}, {952, 6961}, {956, 3523}, {1071, 51380}, {1125, 37556}, {1210, 3158}, {1249, 51574}, {1259, 6916}, {1260, 6908}, {1329, 4294}, {1478, 57000}, {1479, 34607}, {1482, 6970}, {1621, 17559}, {1697, 6700}, {1698, 17552}, {1706, 13411}, {1737, 3189}, {1771, 3939}, {1788, 3811}, {2057, 18446}, {2077, 12667}, {2136, 44675}, {2257, 59604}, {2975, 3524}, {3035, 3086}, {3058, 31246}, {3090, 3434}, {3147, 56877}, {3161, 59578}, {3293, 37642}, {3296, 27003}, {3419, 9780}, {3474, 21077}, {3476, 10915}, {3485, 54286}, {3488, 24982}, {3525, 10527}, {3529, 5080}, {3545, 52367}, {3555, 5435}, {3576, 6736}, {3600, 16371}, {3616, 10914}, {3617, 6910}, {3634, 51724}, {3679, 30478}, {3689, 24914}, {3697, 5273}, {3722, 28074}, {3746, 26105}, {3753, 5703}, {3814, 5225}, {3873, 58573}, {3911, 6765}, {3916, 5815}, {3991, 40127}, {4000, 59641}, {4193, 20075}, {4293, 12607}, {4386, 31402}, {4511, 6880}, {4678, 37291}, {4847, 31423}, {4853, 10165}, {4881, 36977}, {4917, 31224}, {4995, 17561}, {5067, 11680}, {5071, 49719}, {5154, 20095}, {5175, 9956}, {5177, 31479}, {5217, 21031}, {5253, 11239}, {5260, 50739}, {5261, 11112}, {5289, 32157}, {5432, 19843}, {5433, 34625}, {5438, 31397}, {5439, 10578}, {5603, 27385}, {5690, 6954}, {5698, 59316}, {5730, 6962}, {5744, 34790}, {5748, 12699}, {5790, 6892}, {5795, 30282}, {5818, 57287}, {6154, 10896}, {6223, 17613}, {6244, 37421}, {6353, 56876}, {6653, 32961}, {6690, 19855}, {6767, 52264}, {6827, 32141}, {6828, 38149}, {6838, 35514}, {6848, 10306}, {6851, 18524}, {6865, 11491}, {6893, 11849}, {6919, 15171}, {6922, 51416}, {6933, 33110}, {6944, 10679}, {6948, 10942}, {6950, 38901}, {6951, 10522}, {6958, 12331}, {6966, 10609}, {6977, 59388}, {6978, 51525}, {6979, 8166}, {6981, 38752}, {7280, 34610}, {7294, 34720}, {7373, 17564}, {7402, 28789}, {7494, 10327}, {7521, 57808}, {8165, 11113}, {8256, 56177}, {9646, 31413}, {9654, 37435}, {9778, 58798}, {9843, 10389}, {9940, 17658}, {9945, 18525}, {10164, 57279}, {10198, 26040}, {10200, 25439}, {10299, 56879}, {10396, 59614}, {10529, 17566}, {10585, 50741}, {10587, 17531}, {10595, 14923}, {10624, 30827}, {10785, 38665}, {10893, 20400}, {11682, 50810}, {12527, 35242}, {12572, 35445}, {12575, 25522}, {12675, 46677}, {12711, 58649}, {13587, 20076}, {13742, 26029}, {13747, 14986}, {14001, 26752}, {14647, 17857}, {15338, 31141}, {16925, 53675}, {17143, 34229}, {18391, 37828}, {18481, 51362}, {18990, 37267}, {20070, 51409}, {20103, 31435}, {20553, 32823}, {20588, 59333}, {21060, 54290}, {21735, 56880}, {24440, 36573}, {24582, 28740}, {25681, 30305}, {26801, 32978}, {27526, 36698}, {28757, 31185}, {30323, 34711}, {31249, 40270}, {31259, 46932}, {31405, 31497}, {31416, 31501}, {31418, 34612}, {31434, 57284}, {34474, 37002}, {36578, 54315}, {36944, 42020}, {37176, 59299}, {37740, 37829}, {38462, 46937}, {43161, 50031}, {51433, 56387}, {59536, 59577}, {59576, 59599}

X(59591) = center of the dual of the bicevian conic of X(7) and X(189)
X(59591) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5082), X(57882)}}, {{A, B, C, X(37203), X(55962)}}
X(59591) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59572, 17567}, {2, 3871, 1058}, {2, 5687, 5082}, {2, 56936, 496}, {3, 7080, 3421}, {10, 5218, 6857}, {20, 27525, 17757}, {35, 2551, 11111}, {100, 5552, 4}, {404, 10528, 1056}, {498, 2550, 6856}, {1329, 4421, 4294}, {1376, 3085, 443}, {3035, 3913, 3086}, {3295, 47742, 2}, {3434, 27529, 3090}, {4855, 6735, 944}, {8715, 26364, 497}, {25440, 45701, 388}, {37828, 56176, 18391}, {54286, 59719, 3485}, {59675, 59722, 57}


X(59592) = X(1)X(59536)∩X(8)X(21)

Barycentrics    (a-b-c)*(2*a+b+c)*(2*a^2-b^2-c^2+a*(b+c)) : :

X(59592) lies on these lines: {1, 59536}, {8, 21}, {35, 3932}, {551, 3743}, {1104, 59547}, {3161, 59598}, {3624, 4657}, {3634, 4205}, {3647, 41014}, {3649, 4427}, {3685, 4999}, {3701, 4995}, {3916, 4966}, {3977, 37080}, {4358, 52793}, {4387, 6910}, {4436, 28258}, {4647, 15670}, {4854, 56778}, {5217, 17776}, {5695, 6857}, {6284, 33113}, {6690, 7283}, {13745, 19875}, {14210, 59602}, {15338, 57808}, {17056, 24850}, {17243, 37603}, {17262, 36573}, {17296, 51576}, {17768, 25650}, {24953, 32929}, {29830, 52783}, {33160, 49728}, {37573, 44416}, {41875, 59634}, {56078, 56176}, {59506, 59587}, {59577, 59584}

X(59592) = midpoint of X(i) and X(j) for these {i,j}: {52352, 56313}
X(59592) = center of circumconic {{A, B, C, X(835), X(3699)}}
X(59592) = X(i)-Dao conjugate of X(j) for these {i, j}: {3686, 2}, {17058, 4608}
X(59592) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 3686}
X(59592) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 3686}, {692, 14321}, {3879, 2887}, {4641, 141}, {4897, 21252}, {11363, 5}, {56078, 21244}, {56176, 1329}
X(59592) = pole of line {4897, 57088} with respect to the Steiner inellipse
X(59592) = center of the dual of the bicevian conic of X(7) and X(226)
X(59592) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(56176)}}, {{A, B, C, X(333), X(56078)}}, {{A, B, C, X(1125), X(52352)}}, {{A, B, C, X(1213), X(56313)}}, {{A, B, C, X(3649), X(44669)}}, {{A, B, C, X(3686), X(3879)}}, {{A, B, C, X(3702), X(4720)}}, {{A, B, C, X(4897), X(5557)}}
X(59592) = barycentric product X(i)*X(j) for these (i, j): {1125, 56078}, {3686, 3879}, {3702, 4641}, {4359, 56176}, {30729, 4897}
X(59592) = barycentric quotient X(i)/X(j) for these (i, j): {56078, 1268}, {56176, 1255}
X(59592) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 3712, 3704}, {24850, 59723, 17056}, {52352, 56313, 44669}


X(59593) = X(1)X(6692)∩X(2)X(3749)

Barycentrics    4*a^3+6*a*b*c-3*a^2*(b+c)+(b-c)^2*(b+c) : :

X(59593) lies on these lines: {1, 6692}, {2, 3749}, {33, 5218}, {35, 4222}, {100, 24210}, {171, 6745}, {226, 56010}, {238, 20103}, {475, 498}, {984, 10164}, {986, 59675}, {1376, 1738}, {3011, 26724}, {3035, 24239}, {3452, 3550}, {3666, 6174}, {3687, 4434}, {3689, 37634}, {3744, 5121}, {3791, 5212}, {3820, 37589}, {3911, 3961}, {3938, 24216}, {4357, 59679}, {4650, 21060}, {4656, 17601}, {4995, 44307}, {5205, 59692}, {5255, 6700}, {5266, 47742}, {5293, 6684}, {5316, 8616}, {5435, 16496}, {9337, 33095}, {9350, 26723}, {13161, 25440}, {13405, 17122}, {14469, 16477}, {17531, 28027}, {17572, 23675}, {17725, 24177}, {21075, 37603}, {27538, 59544}, {33119, 49991}, {33121, 43290}, {33137, 46917}, {37607, 59722}, {37646, 49772}, {38049, 59298}, {40940, 56009}, {59506, 59580}, {59574, 59596}, {59581, 59583}

X(59593) = center of the dual of the bicevian conic of X(7) and X(257)
X(59593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59679, 59726, 4357}


X(59594) = X(9)X(140)∩X(30)X(610)

Barycentrics    4*a^5-2*a^4*(b+c)+(b-c)^2*(b+c)^3-a*(b^2-c^2)^2-3*a^3*(b^2+c^2)+a^2*(b+c)*(b^2+c^2) : :

X(59594) lies on these lines: {1, 59578}, {3, 27382}, {5, 40942}, {7, 31184}, {8, 22147}, {9, 140}, {19, 22791}, {30, 610}, {48, 7359}, {219, 5690}, {220, 59680}, {281, 952}, {282, 37700}, {307, 31186}, {380, 15172}, {496, 2264}, {515, 59725}, {517, 59644}, {550, 8804}, {946, 59678}, {1385, 59646}, {1723, 15325}, {1781, 39542}, {2182, 37356}, {3035, 59682}, {3109, 56948}, {3973, 31231}, {5279, 7561}, {5746, 24470}, {5749, 16408}, {6147, 52259}, {6891, 27508}, {8550, 31897}, {9119, 24475}, {12699, 18594}, {14543, 41007}, {14743, 36949}, {17365, 24884}, {19512, 27384}, {24315, 58457}, {27381, 30883}, {37364, 40869}, {38028, 40937}, {56176, 59728}, {59553, 59613}, {59587, 59595}

X(59594) = midpoint of X(i) and X(j) for these {i,j}: {281, 20818}
X(59594) = pole of line {900, 7649} with respect to the dual conic of DeLongchamps circle
X(59594) = center of the dual of the bicevian conic of X(7) and X(264)
X(59594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59578, 59588}, {219, 59671, 5690}, {281, 20818, 952}, {40942, 59681, 5}


X(59595) = X(1)X(3161)∩X(9)X(497)

Barycentrics    (-a+b+c)^2*(4*a^3+a^2*(b+c)+(b-c)^2*(b+c)-2*a*(b^2+c^2)) : :

X(59595) lies on circumconic {{A, B, C, X(6553), X(6601)}} and on these lines: {1, 3161}, {9, 497}, {10, 13583}, {37, 55375}, {100, 59678}, {190, 3668}, {219, 2325}, {346, 4936}, {644, 3950}, {894, 26109}, {1108, 4370}, {1210, 59682}, {1400, 35341}, {1743, 56937}, {2321, 42378}, {2328, 4082}, {3692, 6736}, {3977, 26651}, {4052, 37887}, {5552, 59725}, {5749, 59216}, {6745, 27382}, {17132, 24779}, {17355, 55337}, {18698, 50118}, {20227, 25096}, {26685, 30568}, {38869, 59320}, {51574, 57055}, {59536, 59600}, {59587, 59594}

X(59595) = X(i)-Dao conjugate of X(j) for these {i, j}: {3965, 4357}
X(59595) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1220, 200}
X(59595) = pole of line {6558, 7256} with respect to the Yff parabola
X(59595) = pole of line {277, 20007} with respect to the dual conic of Yff parabola
X(59595) = center of the dual of the bicevian conic of X(7) and X(273)
X(59595) = barycentric product X(i)*X(j) for these (i, j): {12437, 8}
X(59595) = barycentric quotient X(i)/X(j) for these (i, j): {12437, 7}
X(59595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3692, 59646, 6736}, {59682, 59728, 1210}


X(59596) = X(2)X(3999)∩X(43)X(536)

Barycentrics    3*a^2*(b+c)+2*b*c*(b+c)-a*(b^2+4*b*c+c^2) : :

X(59596) lies on these lines: {2, 3999}, {10, 3838}, {37, 27538}, {42, 4009}, {43, 536}, {44, 7081}, {141, 21060}, {142, 59686}, {145, 20942}, {200, 49484}, {210, 31330}, {226, 3823}, {312, 4849}, {518, 3840}, {537, 6686}, {668, 59523}, {942, 49993}, {960, 58644}, {1155, 32938}, {1215, 3739}, {1376, 17351}, {2999, 49463}, {3175, 3240}, {3452, 49524}, {3666, 3952}, {3681, 30818}, {3689, 32930}, {3699, 27064}, {3706, 21805}, {3715, 29828}, {3717, 37662}, {3742, 24003}, {3752, 28582}, {3769, 16669}, {3816, 49529}, {3826, 59684}, {3848, 49479}, {3920, 4767}, {3946, 59732}, {3971, 4681}, {4096, 6685}, {4104, 17239}, {4126, 29639}, {4135, 28484}, {4358, 4891}, {4363, 8580}, {4422, 13405}, {4514, 26791}, {4533, 10479}, {4651, 51036}, {4663, 29649}, {4670, 5268}, {4688, 26038}, {4718, 4734}, {4755, 42056}, {4903, 49470}, {5087, 29673}, {5432, 59769}, {5743, 53663}, {6708, 46694}, {6745, 44416}, {9458, 32940}, {15254, 29670}, {15481, 32916}, {15569, 59517}, {16569, 49483}, {16602, 24349}, {16610, 17165}, {17259, 30393}, {17279, 25568}, {17356, 33144}, {17357, 33126}, {17490, 49525}, {17591, 49513}, {17605, 33117}, {18236, 34852}, {18743, 49478}, {20718, 25123}, {21870, 32915}, {24325, 58451}, {24514, 40883}, {25079, 34791}, {25102, 59554}, {25466, 59685}, {26103, 51055}, {29839, 41310}, {29873, 30823}, {36634, 49493}, {41318, 59526}, {42034, 49468}, {42043, 49462}, {44307, 46897}, {49447, 59298}, {49491, 58560}, {59574, 59593}, {59579, 59580}, {59658, 59715}

X(59596) = midpoint of X(i) and X(j) for these {i,j}: {312, 4849}, {3752, 32937}, {43, 3967}, {4090, 59511}
X(59596) = complement of X(21342)
X(59596) = pole of line {1500, 29600} with respect to the dual conic of Yff parabola
X(59596) = center of the dual of the bicevian conic of X(7) and X(274)
X(59596) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 4009, 35652}, {43, 3967, 536}, {210, 32931, 44417}, {312, 4849, 28581}, {1215, 3740, 3739}, {3752, 32937, 28582}, {4090, 59511, 518}, {59579, 59584, 59580}


X(59597) = X(2)X(4126)∩X(6)X(4090)

Barycentrics    a^3-3*a^2*(b+c)-2*b*c*(b+c)+2*a*(b+c)^2 : :

X(59597) lies on these lines: {2, 4126}, {6, 4090}, {8, 10896}, {43, 49453}, {45, 4096}, {55, 3952}, {190, 4421}, {200, 3967}, {210, 5271}, {312, 49460}, {321, 3711}, {341, 12635}, {518, 30567}, {528, 56084}, {668, 59508}, {883, 59618}, {908, 30615}, {1001, 27538}, {1265, 12607}, {1376, 3699}, {1836, 49991}, {2099, 4723}, {2550, 6555}, {3242, 29668}, {3416, 21060}, {3452, 49688}, {3689, 56082}, {3701, 49687}, {3703, 53661}, {3715, 26227}, {3755, 59732}, {3807, 36528}, {3846, 59407}, {3870, 4009}, {3932, 5423}, {3935, 4387}, {3961, 48805}, {4030, 31018}, {4134, 5774}, {4152, 34612}, {4358, 41711}, {4383, 32927}, {4384, 58629}, {4413, 17165}, {4415, 48829}, {4437, 30825}, {4737, 5289}, {4849, 49486}, {4942, 32932}, {5220, 7081}, {6690, 27549}, {8580, 49483}, {11236, 16086}, {11238, 30566}, {17278, 59684}, {17318, 42043}, {17780, 32933}, {17783, 33115}, {18229, 51034}, {18743, 42871}, {24392, 49694}, {29651, 42056}, {29690, 30824}, {29842, 47352}, {30115, 48832}, {30578, 34611}, {32862, 53660}, {32920, 37679}, {32938, 37540}, {37682, 49479}, {39595, 47359}, {44663, 51284}, {50106, 54309}, {50313, 59726}, {59525, 59557}, {59536, 59584}

X(59597) = center of the dual of the bicevian conic of X(7) and X(277)
X(59597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59599, 59506}, {200, 3967, 5695}, {3699, 32937, 1376}, {4096, 29670, 45}, {5423, 25568, 3932}, {59525, 59557, 59616}


X(59598) = X(8)X(11238)∩X(56)X(3952)

Barycentrics    (a-b-c)*(a^3-a^2*(b+c)+2*b*c*(b+c)-2*a*(b^2+c^2)) : :

X(59598) lies on these lines: {8, 11238}, {56, 3952}, {78, 4009}, {145, 4767}, {341, 5289}, {936, 3967}, {958, 27538}, {1043, 4903}, {1265, 1329}, {2098, 4723}, {2099, 52353}, {2899, 44669}, {3161, 59592}, {3189, 8055}, {3216, 4069}, {3242, 25079}, {3699, 3913}, {3702, 3711}, {3717, 25681}, {3772, 59685}, {3971, 4255}, {3992, 5730}, {4126, 10527}, {4188, 4756}, {4387, 4420}, {4413, 56318}, {4422, 36573}, {4999, 27549}, {5552, 28829}, {5854, 42020}, {6552, 52871}, {10896, 30566}, {10912, 44720}, {11512, 28582}, {11517, 52355}, {12635, 46937}, {12701, 49991}, {16594, 28074}, {17054, 24003}, {20805, 23343}, {24914, 52354}, {25524, 32937}, {30568, 56176}, {30615, 41012}, {51572, 54335}, {56177, 56311}, {59536, 59576}

X(59598) = midpoint of X(i) and X(j) for these {i,j}: {2899, 44722}
X(59598) = center of the dual of the bicevian conic of X(7) and X(278)
X(59598) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 59599, 59577}, {2899, 44722, 44669}, {3699, 19582, 3913}, {59576, 59587, 59536}, {59685, 59731, 3772}


X(59599) = X(2)X(15590)∩X(9)X(2319)

Barycentrics    (a-b-c)*(a^2+4*b*c-3*a*(b+c)) : :

X(59599) lies on these lines: {2, 15590}, {8, 31509}, {9, 2319}, {43, 4069}, {57, 3952}, {200, 4009}, {341, 15829}, {908, 53673}, {1997, 4899}, {2136, 19582}, {2899, 12625}, {3158, 3699}, {3239, 24771}, {3243, 18743}, {3340, 52353}, {3452, 4901}, {3667, 46946}, {3680, 44720}, {3717, 30827}, {3870, 4767}, {3886, 4903}, {3928, 5205}, {3967, 4659}, {4000, 59686}, {4126, 5231}, {4723, 7962}, {5437, 32937}, {5573, 24003}, {5853, 6555}, {6557, 10005}, {7174, 59511}, {7322, 32931}, {9580, 49991}, {10327, 31142}, {11523, 46937}, {17296, 21060}, {20942, 49451}, {25430, 46897}, {27131, 53672}, {46917, 56082}, {59576, 59591}

X(59599) = midpoint of X(i) and X(j) for these {i,j}: {6555, 8055}
X(59599) = pole of line {663, 4943} with respect to the dual conic of incircle
X(59599) = center of the dual of the bicevian conic of X(7) and X(279)
X(59599) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2319), X(31509)}}, {{A, B, C, X(7155), X(55998)}}
X(59599) = barycentric product X(i)*X(j) for these (i, j): {55998, 8}
X(59599) = barycentric quotient X(i)/X(j) for these (i, j): {55998, 7}
X(59599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3452, 5423, 4901}, {3699, 30568, 3158}, {3967, 8580, 4659}, {6557, 10005, 24386}, {59506, 59597, 1}, {59686, 59732, 4000}


X(59600) = X(1)X(59573)∩X(7)X(50441)

Barycentrics    a^5-4*a*b*(b-c)^2*c+a^4*(b+c)+2*b*(b-c)^2*c*(b+c)+a^3*(-5*b^2+2*b*c-5*c^2)+a^2*(b+c)*(3*b^2-4*b*c+3*c^2) : :

X(59600) lies on these lines: {1, 59573}, {7, 50441}, {55, 26651}, {220, 59620}, {480, 28968}, {894, 1376}, {910, 43173}, {1818, 5695}, {1944, 11495}, {3035, 26685}, {3207, 24728}, {5918, 27413}, {10178, 27411}, {10427, 56445}, {10436, 15587}, {15668, 24341}, {15726, 27384}, {17077, 42014}, {17262, 24411}, {24396, 41886}, {34522, 59621}, {40869, 43182}, {46835, 59688}, {59536, 59595}, {59572, 59574}

X(59600) = center of the dual of the bicevian conic of X(7) and X(281)


X(59601) = X(7)X(58560)∩X(85)X(3848)

Barycentrics    (a+b-c)*(a-b+c)*(-2*a^2*(b-c)^2-2*b*(b-c)^2*c+a^3*(b+c)+a*(b+c)*(b^2-4*b*c+c^2)) : :

X(59601) lies on these lines: {7, 58560}, {9, 55327}, {85, 3848}, {210, 35312}, {354, 37780}, {479, 26105}, {518, 31526}, {658, 4640}, {1088, 3742}, {1214, 3676}, {1323, 6692}, {1376, 56309}, {2550, 31527}, {2898, 5880}, {3160, 59507}, {3599, 47357}, {3967, 4554}, {5057, 42386}, {5698, 9533}, {7056, 24703}, {7196, 28600}, {9446, 42819}, {15587, 56310}, {23062, 58608}, {40593, 59508}, {59602, 59608}

X(59601) = midpoint of X(i) and X(j) for these {i,j}: {31526, 31627}
X(59601) = center of the dual of the bicevian conic of X(8) and X(9)


X(59602) = X(7)X(21)∩X(9)X(59537)

Barycentrics    (2*a^2-b^2-c^2-a*(b+c))*(2*a^2-(b-c)^2+a*(b+c)) : :

X(59602) lies on these lines: {7, 21}, {9, 59537}, {958, 25583}, {1375, 16832}, {1565, 5267}, {2784, 11711}, {3160, 59618}, {3704, 6390}, {4999, 5088}, {5434, 25581}, {6690, 7176}, {6910, 7223}, {7354, 27187}, {7987, 47595}, {10164, 59507}, {14210, 59592}, {17095, 57288}, {17136, 21677}, {17272, 45036}, {17762, 59634}, {19557, 59625}, {20880, 31157}, {30806, 52793}, {37597, 40133}, {59509, 59538}, {59601, 59608}

X(59602) = center of circumconic {{A, B, C, X(658), X(4610)}}
X(59602) = X(i)-Dao conjugate of X(j) for these {i, j}: {3664, 2}
X(59602) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 3664}
X(59602) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 3838}, {31, 3664}, {32, 41015}, {1415, 55285}, {4416, 2887}, {4640, 141}, {17069, 21252}
X(59602) = pole of line {3664, 3838} with respect to the dual conic of Yff parabola
X(59602) = center of the dual of the bicevian conic of X(8) and X(10)
X(59602) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(4640)}}, {{A, B, C, X(3664), X(4416)}}, {{A, B, C, X(17056), X(17084)}}, {{A, B, C, X(17768), X(21677)}}
X(59602) = barycentric product X(i)*X(j) for these (i, j): {3664, 4416}, {17069, 17136}
X(59602) = barycentric quotient X(i)/X(j) for these (i, j): {17069, 56321}
X(59602) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59509, 59538, 59574}


X(59603) = X(9)X(59608)∩X(65)X(40702)

Barycentrics    (a+b-c)*(a-b+c)*(a^4*(b+c)-2*b*(b-c)^2*c*(b+c)-a^3*(b^2+c^2)-a^2*(b+c)*(b^2-4*b*c+c^2)+a*(b+c)^2*(b^2-4*b*c+c^2)) : :

X(59603) lies on these lines: {9, 59608}, {65, 40702}, {348, 24914}, {960, 4566}, {1329, 56382}, {1376, 34059}, {1446, 3812}, {2551, 14256}, {3160, 59507}, {3212, 31627}, {4413, 9312}, {6376, 40593}, {16284, 31526}, {17048, 45227}, {18227, 50562}, {20103, 59605}, {26563, 34855}

X(59603) = center of the dual of the bicevian conic of X(8) and X(21)
X(59603) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59507, 59601, 3160}


X(59604) = X(6)X(59587)∩X(9)X(2272)

Barycentrics    2*a^5+5*a^4*(b+c)+(b-c)^2*(b+c)^3-4*a^3*(b^2+c^2)+2*a*(b+c)^2*(b^2+c^2)-2*a^2*(b+c)*(3*b^2-2*b*c+3*c^2) : :

X(59604) lies on these lines: {6, 59587}, {9, 2272}, {19, 59675}, {71, 6700}, {100, 40963}, {579, 6745}, {2257, 59591}, {2260, 59722}, {2264, 6174}, {2321, 24914}, {2345, 31423}, {3035, 40942}, {3692, 6921}, {3694, 3911}, {4254, 8568}, {4413, 5257}, {5432, 5750}, {8804, 26364}, {21075, 37500}, {26062, 54424}, {40940, 51574}, {54358, 59584}, {58405, 59733}

X(59604) = center of the dual of the bicevian conic of X(8) and X(27)
X(59604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3035, 59689, 40942}


X(59605) = X(7)X(12437)∩X(9)X(2124)

Barycentrics    (a+b-c)*(a-b+c)*(2*a^5+4*a^3*b*c-5*a^4*(b+c)-(b-c)^4*(b+c)-2*a*(b+c)^2*(b^2+c^2)+2*a^2*(b+c)*(3*b^2-2*b*c+3*c^2)) : :

X(59605) lies on circumconic {{A, B, C, X(2996), X(42483)}} and on these lines: {7, 12437}, {9, 2124}, {72, 1323}, {226, 2996}, {279, 11523}, {347, 15829}, {527, 3188}, {664, 950}, {3061, 43035}, {3452, 34059}, {3668, 12635}, {5438, 14256}, {7176, 52819}, {12625, 25718}, {20103, 59603}, {25525, 31994}, {36905, 59509}, {56382, 57284}, {59507, 59608}, {59537, 59614}, {59572, 59617}

X(59605) = midpoint of X(i) and X(j) for these {i,j}: {3188, 50563}
X(59605) = center of the dual of the bicevian conic of X(8) and X(29)
X(59605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3188, 50563, 527}


X(59606) = X(1)X(5787)∩X(4)X(18624)

Barycentrics    3*a^6-a^5*(b+c)+(b-c)^4*(b+c)^2+a*(b-c)^2*(b+c)^3+a^4*(-3*b^2+4*b*c-3*c^2)-a^2*(b-c)^2*(b^2+4*b*c+c^2) : :

X(59606) lies on these lines: {1, 5787}, {3, 36908}, {4, 18624}, {9, 59611}, {33, 6357}, {57, 9572}, {222, 23710}, {223, 13612}, {278, 5805}, {355, 18447}, {942, 7490}, {971, 18623}, {1068, 57282}, {1071, 38295}, {1535, 7967}, {1870, 5722}, {3160, 59608}, {5287, 11374}, {6259, 7952}, {10157, 54425}, {19541, 43035}, {20103, 59610}, {34032, 56294}, {59543, 59578}, {59644, 59655}

X(59606) = center of the dual of the bicevian conic of X(8) and X(69)


X(59607) = X(3)X(17044)∩X(6)X(17081)

Barycentrics    4*a^4-2*a^3*(b+c)+a^2*(-3*b^2+4*b*c-3*c^2)+(b-c)^2*(b^2+c^2) : :

X(59607) lies on these lines: {3, 17044}, {6, 17081}, {9, 59537}, {41, 7181}, {56, 51150}, {116, 34773}, {141, 37836}, {241, 35290}, {348, 3207}, {550, 5074}, {1055, 3665}, {1385, 21258}, {2140, 38028}, {2329, 25355}, {3160, 23972}, {3177, 51406}, {4000, 8572}, {4640, 59699}, {4881, 27006}, {4904, 21842}, {5433, 9317}, {5834, 11349}, {5901, 14377}, {6647, 12607}, {6691, 24249}, {6706, 10165}, {10164, 59610}, {13624, 34847}, {16689, 20470}, {17136, 40997}, {17729, 22791}, {20269, 37618}, {24784, 45287}, {26658, 42316}, {37605, 51400}, {59512, 59545}

X(59607) = midpoint of X(i) and X(j) for these {i,j}: {348, 3207}
X(59607) = center of the dual of the bicevian conic of X(8) and X(76)
X(59607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 59537, 59609}, {348, 3207, 5845}, {1385, 51775, 21258}, {10164, 59610, 59615}, {59512, 59545, 59580}


X(59608) = X(4)X(7)∩X(10)X(6356)

Barycentrics    (a+b-c)^2*(a-b+c)^2*(b+c)*(a^5-2*a^4*(b+c)+2*b*(b-c)^2*c*(b+c)-a*(b^2-c^2)^2+2*a^2*(b^3+c^3)) : :

X(59608) lies on these lines: {4, 7}, {9, 59603}, {10, 6356}, {72, 4566}, {225, 20618}, {226, 21049}, {440, 36908}, {442, 56382}, {934, 3651}, {1427, 23653}, {1834, 3668}, {3160, 59606}, {4297, 40933}, {4515, 4605}, {6708, 23058}, {7580, 34059}, {9312, 37240}, {36118, 44698}, {59507, 59605}, {59601, 59602}

X(59608) = center of circumconic {{A, B, C, X(658), X(4566)}}
X(59608) = X(i)-Dao conjugate of X(j) for these {i, j}: {3668, 2}
X(59608) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 3668}
X(59608) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 8727}, {31, 3668}, {213, 53422}, {7580, 141}, {34059, 17046}, {45738, 2887}
X(59608) = pole of line {3668, 53422} with respect to the Kiepert hyperbola
X(59608) = pole of line {3668, 8727} with respect to the dual conic of Yff parabola
X(59608) = center of the dual of the bicevian conic of X(8) and X(78)
X(59608) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7580)}}, {{A, B, C, X(10), X(1895)}}, {{A, B, C, X(72), X(971)}}, {{A, B, C, X(273), X(34059)}}, {{A, B, C, X(3668), X(45738)}}
X(59608) = barycentric product X(i)*X(j) for these (i, j): {226, 34059}, {1446, 7580}, {3668, 45738}
X(59608) = barycentric quotient X(i)/X(j) for these (i, j): {7580, 2287}, {34059, 333}, {45738, 1043}


X(59609) = X(1)X(25355)∩X(78)X(524)

Barycentrics    2*a^4+a^2*(-5*b^2+4*b*c-5*c^2)+(b-c)^2*(b^2+c^2)+2*a*(b+c)*(b^2+c^2) : :

X(59609) lies on these lines: {1, 25355}, {9, 59537}, {78, 524}, {141, 348}, {514, 47742}, {3207, 51144}, {3616, 4363}, {4364, 8583}, {4419, 8572}, {5845, 59691}, {6691, 46180}, {6700, 44664}, {7181, 33299}, {7228, 55082}, {11240, 28309}, {16831, 50178}, {17044, 25066}, {17081, 50995}, {17332, 59700}, {24036, 58458}, {25083, 59515}, {25583, 34522}, {26006, 44416}

X(59609) = pole of line {522, 31287} with respect to the dual conic of anticomplementary circle
X(59609) = center of the dual of the bicevian conic of X(8) and X(83)
X(59609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 59537, 59607}, {59515, 59546, 59583}


X(59610) = X(1)X(142)∩X(9)X(2124)

Barycentrics    4*a^4+(b-c)^4-5*a^3*(b+c)+a*(b-c)^2*(b+c)-a^2*(b^2-10*b*c+c^2) : :

X(59610) lies on these lines: {1, 142}, {2, 25716}, {9, 2124}, {10, 17044}, {116, 47745}, {220, 1323}, {279, 527}, {551, 6706}, {664, 41006}, {728, 28981}, {1212, 16578}, {3244, 21258}, {3452, 25930}, {4551, 55368}, {4667, 6510}, {5074, 31673}, {5222, 6692}, {5308, 58463}, {5325, 24635}, {5437, 17014}, {5543, 6173}, {5745, 59215}, {5882, 34847}, {6603, 10481}, {8568, 26653}, {9310, 52563}, {9312, 26658}, {9317, 12053}, {10164, 59607}, {10939, 17668}, {11362, 51775}, {12447, 17073}, {15178, 20328}, {18634, 20007}, {20103, 59606}, {20195, 31721}, {23972, 59507}, {25091, 43044}, {25467, 46913}, {25525, 29624}, {27340, 50115}, {36232, 59512}, {40555, 47742}, {59516, 59584}, {59537, 59616}

X(59610) = X(i)-complementary conjugate of X(j) for these {i, j}: {56355, 1329}
X(59610) = pole of line {3676, 14392} with respect to the Steiner inellipse
X(59610) = center of the dual of the bicevian conic of X(8) and X(85)
X(59610) = intersection, other than A, B, C, of circumconics {{A, B, C, X(277), X(38254)}}, {{A, B, C, X(2125), X(36627)}}, {{A, B, C, X(6601), X(36605)}}
X(59610) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9312, 26658, 40869}, {59607, 59615, 10164}


X(59611) = X(5)X(278)∩X(30)X(33)

Barycentrics    2*a^6+(b-c)^4*(b+c)^2+2*a*(b-c)^2*(b+c)^3-2*a^3*(b+c)*(b^2+c^2)-a^4*(b^2-4*b*c+c^2)-2*a^2*(b-c)^2*(b^2+3*b*c+c^2) : :

X(59611) lies on these lines: {1, 5763}, {5, 278}, {9, 59606}, {30, 33}, {140, 23710}, {222, 5843}, {347, 19541}, {1068, 8728}, {1214, 15252}, {1886, 59671}, {3160, 5658}, {3742, 22465}, {4353, 58577}, {5089, 6677}, {5432, 16272}, {5779, 18623}, {5817, 18624}, {6357, 7069}, {7952, 37424}, {8226, 37798}, {8727, 57477}, {10157, 43035}, {10164, 59458}, {11374, 25430}, {18447, 31789}, {22027, 53415}, {31658, 59645}

X(59611) = center of the dual of the bicevian conic of X(8) and X(95)
X(59611) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 59606, 59613}, {6677, 59520, 59588}


X(59612) = X(241)X(514)∩X(658)X(3234)

Barycentrics    (b-c)*(-5*a^2+3*(b-c)^2+2*a*(b+c)) : :
X(59612) = X[693]+3*X[44551], X[3239]+3*X[4453], X[3798]+3*X[21204], 3*X[4025]+5*X[26985], -X[4521]+3*X[44902], X[4765]+3*X[21183], -X[4813]+9*X[47757], -X[4979]+9*X[47758], -9*X[14475]+X[48269], -5*X[31250]+3*X[45334], -2*X[31287]+3*X[44563], 3*X[45663]+X[48426] and many others

X(59612) lies on these lines: {241, 514}, {658, 3234}, {676, 3667}, {693, 44551}, {2254, 4962}, {2786, 59752}, {3239, 4453}, {3309, 17427}, {3798, 21204}, {4025, 26985}, {4105, 48287}, {4521, 44902}, {4765, 21183}, {4813, 47757}, {4979, 47758}, {6366, 58877}, {6608, 48018}, {10307, 23838}, {14353, 28161}, {14475, 48269}, {23893, 56275}, {28296, 44314}, {31250, 45334}, {31287, 44563}, {45663, 48426}, {45685, 48427}, {47123, 59750}, {47664, 47785}, {47670, 47886}, {48042, 59630}, {48550, 53586}, {59751, 59755}

X(59612) = midpoint of X(i) and X(j) for these {i,j}: {14837, 30723}, {2254, 54261}, {3676, 7658}, {3776, 43061}, {59522, 59550}
X(59612) = perspector of circumconic {{A, B, C, X(7), X(20059)}}
X(59612) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 58108}, {109, 36627}, {692, 36605}, {1415, 36625}
X(59612) = X(i)-Dao conjugate of X(j) for these {i, j}: {11, 36627}, {478, 58108}, {1086, 36605}, {1146, 36625}, {40615, 38254}
X(59612) = pole of line {1486, 8171} with respect to the circumcircle
X(59612) = pole of line {7, 3817} with respect to the incircle
X(59612) = pole of line {11522, 44431} with respect to the orthoptic circle of the Steiner Inellipse
X(59612) = pole of line {281, 36627} with respect to the polar circle
X(59612) = pole of line {145, 4312} with respect to the Steiner circumellipse
X(59612) = pole of line {1, 7613} with respect to the Steiner inellipse
X(59612) = pole of line {4312, 30286} with respect to the Suppa-Cucoanes circle
X(59612) = pole of line {11, 21139} with respect to the dual conic of Yff parabola
X(59612) = pole of line {29627, 30568} with respect to the dual conic of Suppa-Cucoanes circle
X(59612) = center of the dual of the bicevian conic of X(8) and X(190)
X(59612) = intersection, other than A, B, C, of circumconics {{A, B, C, X(241), X(36603)}}, {{A, B, C, X(1323), X(56275)}}, {{A, B, C, X(1465), X(33633)}}, {{A, B, C, X(3911), X(10307)}}, {{A, B, C, X(38293), X(43046)}}
X(59612) = barycentric product X(i)*X(j) for these (i, j): {20059, 514}, {33633, 4391}, {38293, 52621}, {53056, 693}
X(59612) = barycentric quotient X(i)/X(j) for these (i, j): {56, 58108}, {514, 36605}, {522, 36625}, {650, 36627}, {3676, 38254}, {20059, 190}, {33633, 651}, {38293, 3939}, {53056, 100}
X(59612) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1638, 3676, 7658}, {2254, 54261, 4962}, {3676, 46919, 21104}, {14837, 30723, 514}


X(59613) = X(3)X(18623)∩X(30)X(7070)

Barycentrics    4*a^6-2*a^2*b*(b-c)^2*c-2*a^5*(b+c)+(b-c)^4*(b+c)^2+a^4*(-5*b^2+4*b*c-5*c^2)+2*a^3*(b+c)*(b^2+c^2) : :

X(59613) lies on these lines: {3, 18623}, {9, 59606}, {30, 7070}, {212, 6357}, {222, 31657}, {278, 5762}, {495, 3745}, {971, 59645}, {3157, 6147}, {5432, 47057}, {5690, 8270}, {5759, 18624}, {5763, 7078}, {5777, 59647}, {7330, 59653}, {15252, 34048}, {19541, 54425}, {23072, 24470}, {34050, 37364}, {34586, 38028}, {59553, 59594}

X(59613) = midpoint of X(i) and X(j) for these {i,j}: {278, 22117}
X(59613) = pole of line {3064, 48026} with respect to the dual conic of DeLongchamps circle
X(59613) = center of the dual of the bicevian conic of X(8) and X(264)
X(59613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 59606, 59611}, {278, 22117, 5762}


X(59614) = X(2)X(5766)∩X(10)X(1006)

Barycentrics    4*a^6-3*a^4*(b-c)^2-7*a^5*(b+c)+(b-c)^4*(b+c)^2-2*a^2*(b+c)^2*(b^2+c^2)-a*(b-c)^2*(b+c)*(3*b^2-2*b*c+3*c^2)+2*a^3*(b+c)*(5*b^2-4*b*c+5*c^2) : :

X(59614) lies on these lines: {2, 5766}, {4, 59675}, {9, 2272}, {10, 1006}, {226, 3035}, {943, 9843}, {950, 4421}, {954, 6692}, {1210, 11517}, {1260, 3911}, {1376, 13615}, {1706, 16845}, {1708, 6745}, {1864, 6174}, {3524, 5438}, {4847, 42842}, {5325, 5784}, {5728, 59584}, {5759, 30827}, {6700, 6880}, {6735, 37313}, {8582, 54430}, {10392, 35023}, {10396, 59591}, {16370, 57284}, {31397, 37249}, {44547, 59587}, {52804, 57278}, {59537, 59605}

X(59614) = center of the dual of the bicevian conic of X(8) and X(273)


X(59615) = X(9)X(59507)∩X(37)X(3212)

Barycentrics    2*b*(b-c)^2*c+3*a^3*(b+c)-a*(b-c)^2*(b+c)-2*a^2*(b^2+3*b*c+c^2) : :

X(59615) lies on these lines: {9, 59507}, {37, 3212}, {85, 21872}, {141, 5837}, {142, 10107}, {517, 2140}, {518, 59516}, {536, 3208}, {960, 21232}, {1334, 43037}, {2136, 4361}, {3730, 44664}, {3739, 5836}, {4422, 52528}, {4520, 26563}, {4875, 21272}, {5074, 9956}, {5690, 34847}, {5697, 24774}, {6684, 17044}, {8074, 58458}, {9312, 42316}, {9317, 37568}, {10164, 59607}, {10179, 17048}, {10222, 55161}, {11362, 21258}, {16969, 57033}, {17090, 51052}, {17239, 18589}, {17372, 26130}, {17758, 50193}, {20718, 25132}, {21239, 28633}, {25102, 59554}, {26101, 41687}, {31994, 41325}

X(59615) = midpoint of X(i) and X(j) for these {i,j}: {85, 21872}
X(59615) = center of the dual of the bicevian conic of X(8) and X(274)
X(59615) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10164, 59610, 59607}, {25102, 59554, 59596}


X(59616) = X(2)X(2098)∩X(8)X(16593)

Barycentrics    a^4-2*b*(b-c)^2*c-4*a^3*(b+c)-2*a*b*c*(b+c)+3*a^2*(b+c)^2 : :

X(59616) lies on these lines: {2, 2098}, {6, 59516}, {8, 16593}, {9, 59507}, {10, 17675}, {55, 26653}, {56, 28961}, {190, 17090}, {220, 21232}, {2099, 28742}, {3008, 12640}, {3035, 26658}, {3711, 26757}, {4050, 4361}, {5433, 28967}, {6167, 59618}, {7288, 28981}, {11530, 16832}, {12513, 40872}, {16916, 40865}, {17033, 49486}, {28740, 40663}, {43037, 55337}, {59525, 59557}, {59537, 59610}

X(59616) = center of the dual of the bicevian conic of X(8) and X(277)
X(59616) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59525, 59557, 59597}


X(59617) = X(1)X(4566)∩X(7)X(19925)

Barycentrics    (a+b-c)^2*(a-b+c)^2*(a^3+2*a^2*(b+c)+4*b*c*(b+c)-3*a*(b+c)^2) : :

X(59617) lies on these lines: {1, 4566}, {7, 19925}, {9, 59603}, {10, 14256}, {57, 5792}, {165, 34059}, {269, 979}, {347, 43174}, {658, 9312}, {738, 43037}, {934, 25440}, {1020, 3501}, {1119, 24391}, {1439, 3812}, {1446, 3339}, {1698, 56382}, {1847, 54422}, {1861, 56871}, {2551, 56873}, {3160, 10164}, {3188, 53056}, {3973, 56378}, {4569, 6376}, {9533, 31994}, {10004, 38204}, {12526, 40702}, {23058, 39063}, {30393, 50562}, {33899, 41010}, {59507, 59618}, {59572, 59605}

X(59617) = center of the dual of the bicevian conic of X(8) and X(280)
X(59617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {658, 9312, 17106}


X(59618) = X(7)X(11235)∩X(9)X(55327)

Barycentrics    (a+b-c)*(a-b+c)*(a^4-2*b*(b-c)^2*c+a^2*(-3*b^2+2*b*c-3*c^2)+2*a*(b^3+c^3)) : :

X(59618) lies on these lines: {7, 11235}, {9, 55327}, {55, 35312}, {348, 58904}, {479, 24477}, {658, 1376}, {664, 4421}, {883, 59597}, {1001, 31526}, {2550, 9533}, {2886, 7056}, {2898, 17768}, {3160, 59602}, {3321, 34612}, {3676, 34048}, {4569, 59508}, {4640, 56309}, {4860, 59181}, {5220, 31627}, {5698, 31527}, {6167, 59616}, {9446, 42871}, {26015, 30623}, {30825, 39063}, {40719, 58560}, {59507, 59617}, {59537, 59605}

X(59618) = midpoint of X(i) and X(j) for these {i,j}: {2898, 50559}
X(59618) = center of the dual of the bicevian conic of X(8) and X(281)
X(59618) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2898, 50559, 17768}


X(59619) = X(2)X(17920)∩X(76)X(85)

Barycentrics    b*(a^2+(b-c)^2)*c*(a^2*(b+c)+b*c*(b+c)-a*(b^2+b*c+c^2)) : :

X(59619) lies on these lines: {2, 17920}, {75, 17046}, {76, 85}, {318, 20621}, {668, 59557}, {693, 26690}, {1210, 1738}, {1212, 59508}, {1214, 46735}, {2083, 16560}, {3673, 17060}, {3772, 24781}, {6376, 21232}, {6631, 24524}, {6656, 18639}, {7124, 26667}, {7131, 18026}, {17279, 46835}, {17671, 18589}, {18835, 20923}, {19803, 37092}, {20935, 21384}, {25021, 26579}, {30473, 59577}

X(59619) = center of circumconic {{A, B, C, X(18026), X(51560)}}
X(59619) = X(i)-isoconjugate-of-X(j) for these {i, j}: {184, 30688}, {3500, 7084}
X(59619) = X(i)-Dao conjugate of X(j) for these {i, j}: {6554, 3500}
X(59619) = X(i)-complementary conjugate of X(j) for these {i, j}: {32, 9367}, {604, 982}, {651, 25128}, {1395, 28087}, {1402, 53476}, {3501, 1329}, {13588, 21246}, {21348, 124}, {22443, 123}, {23655, 26932}, {32937, 21244}, {34247, 3452}, {39930, 20542}, {41526, 14823}, {51949, 9}, {51956, 17793}, {51986, 3846}, {56413, 20333}, {57205, 34591}
X(59619) = center of the dual of the bicevian conic of X(9) and X(57)
X(59619) = intersection, other than A, B, C, of circumconics {{A, B, C, X(85), X(17786)}}, {{A, B, C, X(226), X(52577)}}, {{A, B, C, X(304), X(46735)}}, {{A, B, C, X(2082), X(46180)}}, {{A, B, C, X(3501), X(3912)}}, {{A, B, C, X(3673), X(18033)}}, {{A, B, C, X(13588), X(17671)}}, {{A, B, C, X(18589), X(52565)}}, {{A, B, C, X(21609), X(32937)}}
X(59619) = barycentric product X(i)*X(j) for these (i, j): {1969, 30689}, {17786, 4000}, {21438, 3732}, {28110, 312}, {32937, 3673}
X(59619) = barycentric quotient X(i)/X(j) for these (i, j): {92, 30688}, {3501, 7123}, {3673, 54128}, {4000, 3500}, {17786, 30701}, {21438, 48070}, {28110, 57}, {30689, 48}, {32937, 56179}, {34247, 7084}


X(59620) = X(3)X(3923)∩X(10)X(971)

Barycentrics    -2*a*b*(b-c)^2*c+a^4*(b+c)+b*(b-c)^2*c*(b+c)+a^2*(b+c)*(b^2-3*b*c+c^2)-2*a^3*(b^2-b*c+c^2) : :
X(59620) = -X[192]+3*X[54474]

X(59620) lies on these lines: {1, 39126}, {2, 10868}, {3, 3923}, {9, 55001}, {10, 971}, {20, 49598}, {40, 43173}, {75, 1742}, {142, 9944}, {165, 1215}, {192, 54474}, {220, 59600}, {516, 24325}, {517, 49479}, {740, 991}, {894, 9441}, {900, 27473}, {958, 43163}, {960, 43168}, {990, 50302}, {1212, 59573}, {1253, 28968}, {1385, 29327}, {1441, 3000}, {1721, 10436}, {1754, 4697}, {2310, 17077}, {2783, 48929}, {2801, 49457}, {2826, 24141}, {2951, 25590}, {3062, 16832}, {3523, 25079}, {3579, 29369}, {3664, 28849}, {3672, 10186}, {3739, 15726}, {3741, 10167}, {3836, 12618}, {3840, 11227}, {3879, 28870}, {3980, 7580}, {4104, 41561}, {4335, 44735}, {4363, 11495}, {4418, 7411}, {4432, 52769}, {4452, 11200}, {4672, 13329}, {5690, 49697}, {5695, 50677}, {5732, 50314}, {5851, 17332}, {5918, 31993}, {6007, 50658}, {6244, 29670}, {6684, 59562}, {7228, 38454}, {9355, 17277}, {9440, 40862}, {9778, 32771}, {9950, 29571}, {9961, 31339}, {10178, 44417}, {10446, 25124}, {11220, 31330}, {11362, 49536}, {12530, 30035}, {12723, 30097}, {13727, 24342}, {15717, 25591}, {16112, 17259}, {16571, 32462}, {17355, 43151}, {17733, 37501}, {18252, 20258}, {24248, 36706}, {24257, 37474}, {25066, 43158}, {25243, 35293}, {25385, 37374}, {28854, 50116}, {29069, 41430}, {29301, 48886}, {31657, 49676}, {34824, 42356}, {35514, 36479}, {43177, 49511}, {50603, 58617}, {50608, 58567}, {59624, 59663}, {59668, 59680}

X(59620) = midpoint of X(i) and X(j) for these {i,j}: {75, 1742}
X(59620) = reflection of X(i) in X(j) for these {i,j}: {45305, 3739}
X(59620) = pole of line {3900, 31287} with respect to the Spieker circle
X(59620) = center of the dual of the bicevian conic of X(9) and X(75)
X(59620) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 43182, 59688}, {75, 1742, 28850}, {1212, 59573, 59621}, {1721, 10436, 48900}, {3739, 15726, 45305}, {10164, 59637, 59511}


X(59621) = X(7)X(21084)∩X(10)X(75)

Barycentrics    -(b*(b-c)^2*c*(b+c))+a^3*(b^2+c^2)+a*(b-c)^2*(b^2+4*b*c+c^2)-a^2*(b+c)*(2*b^2-b*c+2*c^2) : :

X(59621) lies on these lines: {7, 21084}, {10, 75}, {169, 24728}, {519, 3059}, {522, 6666}, {536, 58634}, {1212, 59573}, {3693, 20103}, {3971, 8580}, {3993, 56809}, {4096, 58650}, {6700, 59723}, {12572, 12689}, {15587, 28850}, {21804, 30097}, {24269, 57284}, {24274, 41006}, {24341, 45305}, {26651, 28125}, {34522, 59600}, {49537, 49759}, {59716, 59727}

X(59621) = midpoint of X(i) and X(j) for these {i,j}: {7, 21084}
X(59621) = pole of line {3835, 10025} with respect to the Steiner inellipse
X(59621) = pole of line {75, 25002} with respect to the dual conic of Yff parabola
X(59621) = center of the dual of the bicevian conic of X(9) and X(86)
X(59621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1212, 59573, 59620}, {20103, 59638, 59517}


X(59622) = X(2)X(661)∩X(799)X(1215)

Barycentrics    (a+b)*(a+c)*(2*a*b*c*(b+c)+a^2*(b^2+c^2)+b*c*(b^2+c^2)) : :

X(59622) lies on these lines: {2, 661}, {740, 39915}, {756, 4576}, {799, 1215}, {1965, 8033}, {3720, 16741}, {3846, 51370}, {4357, 51369}, {4974, 7304}, {6626, 17799}, {6682, 32010}, {16739, 18169}, {16887, 18165}, {18827, 42053}, {34021, 51575}, {49516, 56441}, {56696, 59511}

X(59622) = center of the dual of the bicevian conic of X(10) and X(37)
X(59622) = intersection, other than A, B, C, of circumconics {{A, B, C, X(661), X(873)}}, {{A, B, C, X(4369), X(32010)}}, {{A, B, C, X(29457), X(39717)}}
X(59622) = barycentric product X(i)*X(j) for these (i, j): {46369, 7199}
X(59622) = barycentric quotient X(i)/X(j) for these (i, j): {46369, 1018}


X(59623) = X(3)X(1661)∩X(468)X(1790)

Barycentrics    4*a^6+2*a^5*(b+c)+a^4*(-3*b^2+2*b*c-3*c^2)-2*a^3*(b+c)*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4) : :

X(59623) lies on these lines: {3, 1661}, {199, 11064}, {430, 18653}, {440, 5972}, {468, 1790}, {572, 6677}, {573, 59553}, {991, 10154}, {1213, 40589}, {1375, 37527}, {4191, 13394}, {5642, 22080}, {6353, 37474}, {7536, 9306}, {15448, 20834}, {37499, 59551}, {59574, 59626}

X(59623) = center of the dual of the bicevian conic of X(10) and X(69)


X(59624) = X(2)X(896)∩X(10)X(30)

Barycentrics    2*a^3-a^2*(b+c)-b*c*(b+c)-2*a*(b^2+b*c+c^2) : :

X(59624) lies on these lines: {1, 41629}, {2, 896}, {9, 1755}, {10, 30}, {37, 50252}, {42, 4753}, {44, 6685}, {45, 29649}, {55, 49457}, {58, 58386}, {63, 24325}, {81, 5625}, {114, 124}, {171, 3842}, {191, 49598}, {238, 6682}, {333, 740}, {345, 50308}, {537, 3757}, {612, 50094}, {756, 4434}, {758, 18165}, {902, 4981}, {910, 56955}, {958, 23844}, {968, 32853}, {993, 3185}, {1046, 11110}, {1213, 59574}, {1215, 3219}, {1654, 33160}, {1707, 50302}, {1834, 12579}, {1962, 16704}, {2234, 16569}, {2244, 17256}, {2292, 39766}, {2650, 17588}, {2887, 54357}, {3052, 36480}, {3178, 49716}, {3454, 58449}, {3474, 24693}, {3578, 4062}, {3666, 4974}, {3683, 3741}, {3686, 59547}, {3705, 50296}, {3712, 21085}, {3725, 18169}, {3740, 59679}, {3771, 4643}, {3773, 56078}, {3775, 59692}, {3791, 28606}, {3840, 15254}, {3870, 49449}, {3923, 5737}, {3929, 32935}, {3980, 19732}, {4011, 37660}, {4061, 50309}, {4090, 15481}, {4096, 7081}, {4205, 8258}, {4267, 12567}, {4357, 6679}, {4362, 49456}, {4364, 29645}, {4414, 5278}, {4418, 5235}, {4425, 35466}, {4427, 21020}, {4428, 49458}, {4438, 5273}, {4512, 32941}, {4535, 42033}, {4641, 43223}, {4685, 4689}, {4687, 37604}, {4722, 29822}, {4732, 32932}, {4760, 49717}, {4831, 37631}, {4835, 17349}, {4854, 50755}, {4938, 50277}, {5220, 29670}, {5271, 32934}, {5361, 32915}, {6626, 17799}, {6646, 33130}, {6675, 56949}, {6690, 17332}, {6703, 25354}, {7415, 31424}, {8025, 53034}, {8616, 49473}, {9791, 33135}, {10164, 59688}, {10436, 16570}, {16585, 16598}, {16814, 59517}, {16823, 42053}, {17056, 17770}, {17122, 17260}, {17123, 24627}, {17135, 30564}, {17185, 53393}, {17258, 33152}, {17275, 59536}, {17277, 17596}, {17333, 33101}, {17355, 59664}, {17592, 37652}, {17601, 59296}, {17763, 33761}, {19742, 46904}, {20045, 42039}, {21879, 59720}, {22329, 50093}, {24003, 27065}, {24616, 29814}, {24723, 33138}, {24851, 25446}, {25351, 33068}, {25447, 25655}, {25501, 37520}, {26227, 42054}, {28494, 33109}, {28498, 33073}, {28595, 33083}, {29574, 50250}, {29640, 33066}, {29651, 49491}, {29661, 32859}, {33082, 33116}, {33158, 37653}, {36263, 42055}, {37553, 49497}, {40840, 50314}, {41014, 59723}, {56018, 58399}, {59620, 59663}, {59625, 59633}

X(59624) = midpoint of X(i) and X(j) for these {i,j}: {333, 846}
X(59624) = complement of X(33097)
X(59624) = pole of line {28561, 53334} with respect to the orthoptic circle of the Steiner Inellipse
X(59624) = pole of line {523, 25666} with respect to the Spieker circle
X(59624) = pole of line {4529, 57066} with respect to the Steiner inellipse
X(59624) = center of the dual of the bicevian conic of X(10) and X(75)
X(59624) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4683, 4892}, {2, 7262, 4672}, {2, 896, 4697}, {9, 32916, 59511}, {10, 3647, 24850}, {81, 10180, 5625}, {238, 38000, 6682}, {333, 846, 740}, {968, 32853, 49471}, {1213, 59574, 59628}, {3219, 32917, 1215}, {3683, 3741, 4432}, {3712, 49724, 21085}, {4418, 5235, 27798}, {5273, 50295, 4438}, {17592, 37652, 49489}, {18253, 49728, 10}, {27065, 32918, 24003}, {33083, 33115, 28595}


X(59625) = X(3)X(66)∩X(6)X(22267)

Barycentrics    2*a^4-2*a^2*(b^2+c^2)-b*c*(b^2+c^2)-a*(b+c)*(b^2+c^2) : :

X(59625) lies on these lines: {3, 66}, {6, 22267}, {86, 17689}, {99, 21024}, {172, 25349}, {187, 16887}, {230, 56561}, {524, 17206}, {597, 5021}, {620, 3454}, {960, 59700}, {993, 20255}, {1211, 19308}, {1213, 6626}, {1444, 15985}, {1634, 23212}, {1834, 35916}, {2271, 3629}, {2292, 7267}, {3589, 16060}, {3788, 48835}, {4189, 30945}, {4426, 25350}, {4640, 59512}, {4657, 37608}, {4799, 27187}, {4851, 37574}, {5224, 33062}, {5267, 21240}, {5737, 37274}, {5743, 11329}, {6629, 20970}, {6707, 11110}, {6998, 44377}, {7784, 36489}, {7816, 50605}, {8616, 24652}, {11064, 22377}, {13196, 54388}, {13586, 33954}, {15668, 56769}, {16061, 34573}, {17045, 37607}, {17234, 33063}, {17245, 33047}, {17283, 17695}, {17327, 56768}, {17337, 33825}, {17390, 37573}, {17693, 30966}, {17798, 44419}, {19329, 49728}, {19557, 59602}, {21554, 58446}, {21869, 44382}, {21898, 44383}, {21965, 25434}, {21997, 24366}, {22066, 56509}, {22351, 50991}, {22355, 51143}, {25102, 59679}, {33296, 50252}, {48925, 49484}, {59624, 59633}

X(59625) = midpoint of X(i) and X(j) for these {i,j}: {17206, 18755}
X(59625) = pole of line {3767, 17379} with respect to the Kiepert hyperbola
X(59625) = pole of line {22, 35216} with respect to the Stammler hyperbola
X(59625) = pole of line {315, 17343} with respect to the Wallace hyperbola
X(59625) = center of the dual of the bicevian conic of X(10) and X(76)
X(59625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1213, 59538, 59627}, {6626, 16917, 1213}, {16060, 33863, 3589}, {17206, 18755, 524}, {17206, 21937, 18755}


X(59626) = X(2)X(18714)∩X(37)X(4568)

Barycentrics    a^4*(b+c)+a*b*c*(b^2+c^2)+b*c*(b+c)*(b^2+c^2)+2*a^3*(b^2+b*c+c^2)+a^2*(b^3+c^3) : :

X(59626) lies on these lines: {2, 18714}, {37, 4568}, {86, 27705}, {583, 46899}, {1213, 59509}, {2160, 33828}, {3770, 41805}, {4272, 14210}, {7113, 41247}, {16887, 21873}, {21863, 24170}, {24254, 46838}, {27697, 52897}, {42713, 54308}, {56926, 59512}, {59514, 59666}, {59574, 59623}

X(59626) = pole of line {2786, 8060} with respect to the dual conic of anticomplementary circle
X(59626) = center of the dual of the bicevian conic of X(10) and X(81)


X(59627) = X(39)X(698)∩X(58)X(524)

Barycentrics    2*a^4-a^2*(b-c)^2+2*a^3*(b+c)+a*(b+c)*(b^2+c^2)+(b^2+c^2)*(b^2+b*c+c^2) : :

X(59627) lies on these lines: {10, 25434}, {39, 698}, {58, 524}, {99, 53423}, {141, 16061}, {538, 6693}, {1211, 1931}, {1213, 6626}, {2238, 24384}, {4472, 8680}, {4754, 56778}, {5030, 34573}, {6651, 41879}, {6703, 40773}, {6707, 53476}, {7764, 48866}, {7781, 20083}, {7813, 17200}, {16714, 27593}, {17175, 24956}, {17799, 59574}, {21024, 44379}, {44416, 59515}

X(59627) = pole of line {626, 17300} with respect to the Kiepert hyperbola
X(59627) = pole of line {1627, 35216} with respect to the Stammler hyperbola
X(59627) = pole of line {7760, 46707} with respect to the Wallace hyperbola
X(59627) = pole of line {523, 25666} with respect to the dual conic of anticomplementary circle
X(59627) = center of the dual of the bicevian conic of X(10) and X(83)


X(59628) = X(2)X(846)∩X(10)X(58)

Barycentrics    2*a^3+a^2*(b+c)+(b+c)*(b^2+b*c+c^2)+a*(b^2+4*b*c+c^2) : :
X(59628) = -X[4683]+5*X[31247]

X(59628) lies on these lines: {2, 846}, {10, 58}, {75, 29645}, {81, 21085}, {86, 33160}, {165, 7379}, {442, 1155}, {516, 37360}, {519, 3745}, {551, 17600}, {740, 6703}, {744, 3739}, {896, 41809}, {940, 49560}, {1125, 3666}, {1211, 4697}, {1213, 59574}, {1215, 59724}, {1575, 2092}, {1698, 26051}, {1961, 6541}, {2239, 5294}, {2305, 17303}, {2345, 29649}, {2784, 37527}, {3178, 25526}, {3661, 37604}, {3687, 33682}, {3771, 10436}, {3773, 4682}, {3828, 49729}, {3842, 44416}, {3936, 23812}, {3985, 17355}, {4038, 49764}, {4061, 49685}, {4062, 8025}, {4205, 12579}, {4359, 29654}, {4362, 19822}, {4472, 6690}, {4640, 50298}, {4650, 5224}, {4672, 5743}, {4683, 31247}, {5257, 59544}, {5263, 29655}, {6684, 15973}, {7413, 10164}, {8013, 16704}, {11115, 27714}, {12512, 13442}, {16569, 17368}, {16814, 59664}, {16830, 33167}, {17116, 33152}, {17122, 17289}, {17369, 59511}, {17490, 29646}, {17589, 21674}, {17593, 19862}, {17740, 29644}, {17748, 43531}, {19812, 33149}, {19827, 32784}, {19856, 38000}, {21020, 50755}, {21081, 49564}, {24174, 37036}, {24252, 59543}, {24254, 59563}, {24325, 29656}, {24628, 29604}, {24931, 56949}, {24943, 26627}, {25058, 43223}, {25645, 41812}, {26039, 59572}, {27798, 35466}, {28605, 29847}, {29635, 50314}, {29653, 32779}, {29671, 50302}, {29683, 31025}, {29841, 49474}, {30832, 33097}, {32783, 49676}, {37553, 48822}, {37831, 49569}, {37834, 49570}, {38408, 56903}, {41629, 42334}, {41818, 53034}, {44417, 58443}, {51619, 59679}, {56520, 59306}

X(59628) = midpoint of X(i) and X(j) for these {i,j}: {1211, 4697}, {4418, 4425}, {81, 21085}
X(59628) = complement of X(4425)
X(59628) = perspector of circumconic {{A, B, C, X(35148), X(42362)}}
X(59628) = X(i)-complementary conjugate of X(j) for these {i, j}: {39722, 21245}, {39977, 3454}
X(59628) = pole of line {1100, 3846} with respect to the Kiepert hyperbola
X(59628) = pole of line {1193, 1326} with respect to the Stammler hyperbola
X(59628) = pole of line {1019, 2786} with respect to the Steiner inellipse
X(59628) = pole of line {4357, 17731} with respect to the Wallace hyperbola
X(59628) = pole of line {239, 1211} with respect to the dual conic of Yff parabola
X(59628) = center of the dual of the bicevian conic of X(10) and X(86)
X(59628) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1220), X(11599)}}, {{A, B, C, X(1929), X(2363)}}, {{A, B, C, X(4600), X(6536)}}, {{A, B, C, X(6650), X(14534)}}
X(59628) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3980, 3821}, {2, 4418, 4425}, {2, 4427, 6536}, {2, 846, 25354}, {171, 19808, 10}, {1211, 4697, 17770}, {4418, 4425, 2796}


X(59629) = X(21)X(4367)∩X(30)X(511)

Barycentrics    (b-c)*(b+c)*(3*a^2-b^2+b*c-c^2+a*(b+c)) : :
X(59629) = -X[21]+X[4367], -X[79]+X[50574], -X[191]+X[1019], -X[351]+X[47755], -X[442]+X[21051], -X[1637]+X[47764], -X[2292]+X[48151], -X[2533]+X[18004], -X[3649]+X[4806], -X[3700]+X[54256], -X[3776]+X[48129], -X[3777]+X[42661] and many others

X(59629) lies on these lines: {21, 4367}, {30, 511}, {79, 50574}, {191, 1019}, {351, 47755}, {442, 21051}, {1637, 47764}, {2292, 48151}, {2533, 18004}, {3649, 4806}, {3700, 54256}, {3776, 48129}, {3777, 42661}, {3801, 4822}, {3960, 42653}, {4010, 23755}, {4129, 11263}, {4449, 53563}, {4707, 4983}, {4776, 32193}, {4784, 11684}, {4879, 34195}, {4905, 42666}, {5428, 44811}, {8663, 47676}, {9148, 47769}, {10122, 39541}, {11176, 47758}, {14270, 39476}, {14321, 40466}, {14417, 48574}, {14420, 47759}, {14424, 47763}, {16126, 48337}, {16137, 34958}, {21677, 44729}, {26725, 47839}, {28602, 47836}, {35016, 48328}, {35637, 39548}, {44408, 53263}, {44826, 48386}, {45689, 47765}, {48046, 48401}, {48053, 50453}, {48131, 58375}, {48286, 58163}, {48387, 53247}, {49277, 50352}

X(59629) = perspector of circumconic {{A, B, C, X(2), X(20090)}}
X(59629) = X(i)-Dao conjugate of X(j) for these {i, j}: {1654, 57060}, {55065, 36632}
X(59629) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57060, 86}
X(59629) = pole of line {40, 20369} with respect to the Bevan circle
X(59629) = pole of line {3, 17300} with respect to the 2nd Brocard circle
X(59629) = pole of line {3, 17300} with respect to the circumcircle
X(59629) = pole of line {3, 17300} with respect to the 2nd DrozFarny circle
X(59629) = pole of line {5, 17277} with respect to the nine-point circle
X(59629) = pole of line {3, 17300} with respect to the Stammler circle
X(59629) = pole of line {5, 17277} with respect to the Steiner circle
X(59629) = pole of line {115, 4934} with respect to the Kiepert hyperbola
X(59629) = pole of line {523, 2487} with respect to the Kiepert parabola
X(59629) = pole of line {6, 4212} with respect to the Orthic inconic
X(59629) = pole of line {2, 23897} with respect to the Steiner circumellipse
X(59629) = pole of line {2, 23897} with respect to the Steiner inellipse
X(59629) = pole of line {6337, 17379} with respect to the dual conic of Orthic inconic
X(59629) = pole of line {523, 25666} with respect to the dual conic of Wallace hyperbola
X(59629) = center of the dual of the bicevian conic of X(10) and X(99)
X(59629) = intersection, other than A, B, C, of circumconics {{A, B, C, X(79), X(17770)}}, {{A, B, C, X(522), X(18014)}}, {{A, B, C, X(524), X(20090)}}, {{A, B, C, X(536), X(27705)}}, {{A, B, C, X(740), X(41875)}}, {{A, B, C, X(2786), X(7178)}}, {{A, B, C, X(4964), X(14321)}}, {{A, B, C, X(9293), X(23938)}}
X(59629) = barycentric product X(i)*X(j) for these (i, j): {10, 59630}, {20090, 523}, {23938, 4610}, {27705, 513}, {41875, 661}
X(59629) = barycentric quotient X(i)/X(j) for these (i, j): {4024, 36632}, {20090, 99}, {23938, 4024}, {27705, 668}, {41875, 799}, {59630, 86}
X(59629) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {758, 42325, 512}


X(59630) = X(239)X(514)∩X(553)X(3676)

Barycentrics    (b-c)*(3*a^2-b^2+b*c-c^2+a*(b+c)) : :
X(59630) = -X[661]+3*X[45674], -3*X[1638]+X[48049], X[4024]+3*X[53333], 3*X[4453]+X[4979], 3*X[4467]+X[4838], -X[4468]+3*X[45313], -X[4500]+3*X[48563], -3*X[4763]+X[48046], -3*X[4885]+X[4949], 3*X[4984]+X[26824], 3*X[6545]+X[26853], -X[8045]+3*X[48568] and many others

X(59630) lies on these lines: {239, 514}, {513, 13246}, {522, 54265}, {553, 3676}, {650, 28855}, {661, 45674}, {918, 2527}, {1638, 48049}, {2185, 18200}, {2487, 25666}, {2488, 42325}, {2516, 28910}, {2702, 4573}, {2786, 3700}, {3239, 28906}, {3667, 4010}, {3776, 4790}, {3835, 5249}, {3960, 52326}, {4024, 53333}, {4394, 28851}, {4453, 4979}, {4458, 4784}, {4467, 4838}, {4468, 45313}, {4500, 48563}, {4521, 5745}, {4763, 48046}, {4840, 21187}, {4885, 4949}, {4926, 48417}, {4962, 47834}, {4976, 49291}, {4984, 26824}, {6008, 48415}, {6545, 26853}, {7653, 28898}, {8045, 48568}, {10196, 27013}, {14475, 26798}, {17069, 28840}, {20295, 21204}, {21183, 49287}, {21209, 52393}, {24924, 44449}, {28225, 48007}, {29402, 52602}, {31207, 47769}, {31209, 48076}, {44435, 50525}, {47720, 58178}, {47757, 48041}, {47761, 48270}, {47762, 47971}, {47778, 48038}, {47779, 48269}, {47782, 48147}, {47783, 47984}, {47784, 47991}, {47785, 47996}, {47800, 48037}, {47882, 48026}, {47886, 48107}, {47891, 49289}, {47930, 48567}, {47995, 48071}, {48016, 48398}, {48039, 48575}, {48042, 59612}, {48050, 48245}, {48104, 48422}, {48427, 49281}, {48554, 48592}, {57447, 58898}

X(59630) = midpoint of X(i) and X(j) for these {i,j}: {3776, 4790}, {3835, 48013}, {4025, 4932}, {4369, 4897}, {4458, 4784}, {4840, 21187}, {4976, 49291}, {47995, 48071}, {48008, 49296}, {48016, 48398}, {48427, 49281}, {7192, 21196}
X(59630) = reflection of X(i) in X(j) for these {i,j}: {25666, 2487}, {3835, 59749}, {59755, 47758}
X(59630) = perspector of circumconic {{A, B, C, X(86), X(20090)}}
X(59630) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 36632}
X(59630) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 36632}
X(59630) = pole of line {1447, 3664} with respect to the incircle
X(59630) = pole of line {1826, 36632} with respect to the polar circle
X(59630) = pole of line {1125, 3685} with respect to the Steiner inellipse
X(59630) = pole of line {29569, 30568} with respect to the dual conic of incircle
X(59630) = pole of line {3120, 7200} with respect to the dual conic of Yff parabola
X(59630) = pole of line {16826, 56078} with respect to the dual conic of Suppa-Cucoanes circle
X(59630) = center of the dual of the bicevian conic of X(10) and X(190)
X(59630) = intersection, other than A, B, C, of circumconics {{A, B, C, X(239), X(55090)}}, {{A, B, C, X(16704), X(20090)}}, {{A, B, C, X(17495), X(27705)}}
X(59630) = barycentric product X(i)*X(j) for these (i, j): {1019, 27705}, {20090, 514}, {41875, 513}, {59629, 86}
X(59630) = barycentric quotient X(i)/X(j) for these (i, j): {523, 36632}, {20090, 190}, {27705, 4033}, {41875, 668}, {59629, 10}
X(59630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3835, 47758, 59749}, {3835, 59749, 59755}, {4025, 48574, 4932}, {4025, 4932, 514}, {4369, 4897, 2786}, {4750, 7192, 21196}, {4786, 49296, 48008}, {47758, 48013, 3835}


X(59631) = X(2)X(1029)∩X(37)X(99)

Barycentrics    (a+b)*(a+c)*(a^3+a*b*c+b*c*(b+c)) : :

X(59631) lies on these lines: {2, 1029}, {6, 2669}, {21, 20470}, {37, 99}, {56, 59225}, {58, 4974}, {75, 19623}, {81, 17495}, {83, 39798}, {86, 1086}, {142, 25536}, {229, 11115}, {239, 757}, {257, 2160}, {261, 3739}, {274, 1333}, {377, 41761}, {384, 2134}, {404, 41328}, {448, 10436}, {593, 4359}, {594, 6645}, {645, 17351}, {662, 894}, {741, 18170}, {873, 1914}, {1001, 11104}, {1030, 17693}, {1100, 1509}, {1213, 6626}, {1220, 35991}, {1326, 24325}, {1441, 4565}, {1444, 26643}, {1931, 17277}, {1963, 4360}, {2106, 16685}, {2303, 56023}, {3110, 17049}, {3686, 6629}, {3752, 14534}, {3759, 51311}, {3770, 5277}, {4026, 35916}, {4195, 25504}, {4363, 27958}, {4386, 8033}, {4560, 18311}, {4590, 36227}, {4623, 34021}, {5301, 31997}, {5333, 17587}, {6156, 40085}, {6646, 56935}, {7783, 20136}, {8025, 16714}, {8818, 25687}, {10026, 40164}, {11321, 36743}, {12215, 15989}, {13610, 24374}, {16706, 24617}, {16756, 40941}, {16825, 59243}, {16884, 51356}, {17056, 40605}, {17121, 33766}, {17184, 52393}, {17275, 34016}, {17362, 17731}, {17365, 40882}, {17366, 24378}, {17669, 53421}, {17686, 18092}, {17694, 50036}, {19308, 27042}, {20174, 52379}, {20179, 37128}, {20337, 25662}, {23617, 57189}, {24271, 25660}, {24330, 56432}, {24384, 34528}, {25946, 27111}, {26115, 37294}, {26234, 38858}, {29584, 40438}, {31128, 37675}, {33854, 59180}, {37792, 49727}, {39915, 40750}, {40589, 59509}, {44396, 56291}

X(59631) = midpoint of X(i) and X(j) for these {i,j}: {13610, 24374}
X(59631) = perspector of circumconic {{A, B, C, X(17930), X(53631)}}
X(59631) = X(i)-Dao conjugate of X(j) for these {i, j}: {16696, 141}, {52601, 21833}
X(59631) = X(i)-Ceva conjugate of X(j) for these {i, j}: {83, 81}
X(59631) = pole of line {81, 17669} with respect to the Kiepert hyperbola
X(59631) = pole of line {4164, 4623} with respect to the Kiepert parabola
X(59631) = pole of line {1030, 17735} with respect to the Stammler hyperbola
X(59631) = pole of line {16874, 50342} with respect to the Steiner circumellipse
X(59631) = pole of line {1655, 2895} with respect to the Wallace hyperbola
X(59631) = center of the dual of the bicevian conic of X(10) and X(226)
X(59631) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1029), X(3770)}}, {{A, B, C, X(2375), X(3444)}}, {{A, B, C, X(4590), X(38814)}}, {{A, B, C, X(39722), X(39921)}}
X(59631) = barycentric product X(i)*X(j) for these (i, j): {274, 5277}, {3770, 81}, {4418, 86}, {52601, 99}
X(59631) = barycentric quotient X(i)/X(j) for these (i, j): {3770, 321}, {4418, 10}, {5277, 37}, {52601, 523}
X(59631) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1444, 26643, 27164}, {17693, 26110, 1030}


X(59632) = X(5)X(578)∩X(30)X(2328)

Barycentrics    2*a^6-a*(b-c)^2*(b+c)^3-b*c*(b^2-c^2)^2-2*a^4*(b^2+c^2)+a^3*(b+c)*(b^2+c^2)+a^2*b*c*(b^2+4*b*c+c^2) : :

X(59632) lies on these lines: {5, 578}, {27, 22139}, {30, 2328}, {110, 3136}, {154, 36477}, {184, 47514}, {394, 48934}, {1213, 40589}, {2360, 50418}, {3167, 7522}, {3292, 17167}, {3564, 6678}, {5651, 37355}, {5816, 59543}, {7058, 41014}, {11064, 34119}, {18653, 22080}, {31900, 48917}, {36659, 37669}, {37103, 48908}, {37113, 48909}

X(59632) = midpoint of X(i) and X(j) for these {i,j}: {27, 22139}
X(59632) = pole of line {5889, 48875} with respect to the Stammler hyperbola
X(59632) = pole of line {2501, 54229} with respect to the dual conic of DeLongchamps circle
X(59632) = center of the dual of the bicevian conic of X(10) and X(264)


X(59633) = X(10)X(20529)∩X(37)X(16827)

Barycentrics    -2*b^2*c^2+a^3*(b+c)-a*(b+c)*(b^2+3*b*c+c^2)-a^2*(b^2+4*b*c+c^2) : :

X(59633) lies on these lines: {10, 20529}, {37, 16827}, {210, 24656}, {274, 21879}, {518, 25130}, {620, 58449}, {758, 36812}, {762, 29383}, {960, 3739}, {1212, 39035}, {1213, 59509}, {1654, 41875}, {2176, 25384}, {3061, 17259}, {3125, 29460}, {3740, 25102}, {4425, 24366}, {4670, 21874}, {4673, 28634}, {4852, 41813}, {7187, 17256}, {9791, 24364}, {14949, 17260}, {17175, 21839}, {17275, 18156}, {21264, 25917}, {25109, 58451}, {31323, 34063}, {59624, 59625}

X(59633) = midpoint of X(i) and X(j) for these {i,j}: {274, 21879}
X(59633) = pole of line {18155, 24381} with respect to the Steiner inellipse
X(59633) = center of the dual of the bicevian conic of X(10) and X(274)


X(59634) = X(2)X(1975)∩X(30)X(99)

Barycentrics    4*a^4+b^4+4*b^2*c^2+c^4-5*a^2*(b^2+c^2) : :
X(59634) = X[115]+2*X[15301], -X[148]+4*X[44377], X[187]+2*X[14148], -X[385]+4*X[32459], -4*X[620]+X[47286], X[7813]+2*X[32456], 5*X[7925]+X[20094], X[8352]+2*X[15300], -X[14568]+3*X[41134], X[14712]+2*X[50771], X[14928]+2*X[51397], 2*X[14981]+X[54996] and many others

X(59634) lies on these lines: {2, 1975}, {3, 32820}, {4, 32837}, {6, 33255}, {20, 32821}, {30, 99}, {39, 6661}, {69, 10304}, {76, 549}, {115, 15301}, {148, 44377}, {183, 3524}, {187, 14148}, {194, 5306}, {230, 19570}, {274, 15670}, {298, 42942}, {299, 42943}, {305, 44210}, {315, 3534}, {340, 37931}, {350, 5298}, {376, 3926}, {381, 7763}, {384, 9300}, {385, 32459}, {395, 30472}, {396, 30471}, {524, 2076}, {538, 1569}, {542, 6393}, {543, 33228}, {547, 7769}, {548, 7768}, {550, 7796}, {597, 14036}, {599, 33008}, {620, 47286}, {631, 32824}, {637, 13692}, {638, 13812}, {671, 56064}, {754, 8598}, {1003, 34511}, {1007, 3839}, {1078, 12100}, {1272, 2071}, {1909, 4995}, {2396, 45662}, {2549, 33219}, {3053, 33266}, {3265, 47001}, {3266, 7426}, {3523, 32869}, {3529, 32825}, {3543, 7773}, {3545, 32815}, {3552, 7837}, {3564, 21166}, {3627, 7814}, {3628, 38231}, {3785, 19708}, {3788, 11648}, {3845, 7752}, {3933, 7782}, {3978, 44215}, {4576, 40112}, {5054, 37688}, {5055, 11185}, {5071, 32822}, {5286, 33224}, {5309, 7781}, {5866, 37941}, {5913, 31128}, {5971, 37909}, {6148, 44280}, {6626, 49730}, {6656, 7863}, {6680, 39593}, {7739, 7792}, {7745, 19686}, {7753, 7816}, {7757, 8369}, {7758, 33235}, {7759, 33250}, {7764, 14537}, {7767, 34200}, {7771, 17504}, {7774, 33187}, {7776, 15681}, {7778, 33251}, {7784, 33263}, {7794, 40344}, {7801, 7865}, {7802, 15686}, {7813, 32456}, {7818, 8353}, {7821, 19695}, {7827, 8368}, {7835, 7884}, {7836, 7924}, {7840, 33265}, {7860, 15704}, {7870, 33184}, {7871, 19710}, {7883, 8354}, {7888, 33229}, {7892, 9607}, {7909, 8357}, {7917, 15691}, {7925, 20094}, {7946, 33268}, {8352, 15300}, {8358, 31168}, {8362, 47005}, {8591, 14041}, {8781, 54767}, {9698, 51587}, {9740, 11147}, {9741, 33191}, {9766, 33007}, {9770, 11164}, {10256, 14651}, {10303, 32893}, {10411, 40111}, {11001, 32818}, {11064, 44575}, {11104, 50231}, {11128, 52193}, {11129, 52194}, {11163, 14033}, {11165, 11286}, {11184, 33016}, {11288, 51122}, {11410, 44134}, {11645, 51371}, {11737, 15031}, {13196, 39652}, {13468, 33274}, {13754, 51383}, {14568, 41134}, {14614, 32985}, {14711, 34506}, {14712, 50771}, {14836, 52636}, {14891, 43459}, {14907, 15688}, {14928, 51397}, {14981, 54996}, {15561, 39663}, {15589, 15705}, {15682, 32816}, {15683, 32006}, {15687, 48913}, {15692, 32830}, {15694, 32832}, {15702, 32828}, {15708, 32874}, {15709, 32885}, {15719, 32892}, {15721, 32834}, {15980, 51524}, {16898, 22332}, {16990, 53095}, {17103, 37631}, {17564, 18146}, {17762, 59602}, {18362, 33249}, {19569, 33257}, {19697, 55085}, {20580, 57069}, {23235, 56370}, {31152, 34254}, {31274, 32457}, {32826, 41099}, {32986, 53142}, {33223, 53033}, {33278, 44526}, {33296, 59538}, {35266, 56430}, {36212, 40884}, {37804, 47097}, {40996, 47114}, {41146, 50640}, {41875, 59592}, {43228, 59541}, {43229, 59542}, {44212, 57518}, {44218, 58846}, {44369, 50567}, {44576, 51389}, {47245, 57616}, {50254, 51578}

X(59634) = midpoint of X(i) and X(j) for these {i,j}: {7840, 33265}, {8591, 14041}, {99, 7799}
X(59634) = reflection of X(i) in X(j) for these {i,j}: {14041, 22110}, {14651, 10256}, {19570, 230}, {22329, 35297}, {325, 7799}, {35297, 2482}, {39663, 15561}, {7799, 6390}
X(59634) = inverse of X(10722) in Wallace hyperbola
X(59634) = perspector of circumconic {{A, B, C, X(6035), X(34412)}}
X(59634) = X(i)-Dao conjugate of X(j) for these {i, j}: {40996, 47296}
X(59634) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44877, 69}
X(59634) = pole of line {14824, 46609} with respect to the circumcircle
X(59634) = pole of line {2394, 38259} with respect to the DeLongchamps circle
X(59634) = pole of line {69, 6034} with respect to the Kiepert hyperbola
X(59634) = pole of line {4143, 4563} with respect to the Kiepert parabola
X(59634) = pole of line {3053, 5191} with respect to the Stammler hyperbola
X(59634) = pole of line {3566, 11123} with respect to the Steiner circumellipse
X(59634) = pole of line {3566, 10192} with respect to the Steiner inellipse
X(59634) = pole of line {146, 148} with respect to the Wallace hyperbola
X(59634) = pole of line {6563, 20477} with respect to the dual conic of nine-point circle
X(59634) = pole of line {20208, 40920} with respect to the dual conic of polar circle
X(59634) = pole of line {20, 523} with respect to the dual conic of Orthic inconic
X(59634) = pole of line {6388, 51428} with respect to the dual conic of Wallace hyperbola
X(59634) = center of the dual of the bicevian conic of X(13) and X(14)
X(59634) = intersection, other than A, B, C, of circumconics {{A, B, C, X(542), X(10722)}}, {{A, B, C, X(842), X(8770)}}, {{A, B, C, X(2996), X(5641)}}, {{A, B, C, X(16092), X(16316)}}, {{A, B, C, X(34174), X(54767)}}, {{A, B, C, X(46290), X(57452)}}, {{A, B, C, X(52094), X(56064)}}
X(59634) = barycentric product X(i)*X(j) for these (i, j): {56021, 69}
X(59634) = barycentric quotient X(i)/X(j) for these (i, j): {56021, 4}
X(59634) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 32833, 37671}, {30, 6390, 7799}, {30, 7799, 325}, {99, 7799, 30}, {115, 15301, 47287}, {194, 33246, 5306}, {376, 3926, 7788}, {376, 7788, 7750}, {395, 59540, 30472}, {396, 59539, 30471}, {538, 2482, 35297}, {538, 35297, 22329}, {1003, 34511, 41624}, {3524, 32817, 32836}, {3524, 32836, 183}, {3933, 8703, 7811}, {5306, 59545, 33246}, {7739, 33220, 7792}, {7782, 7811, 8703}, {7818, 34504, 8353}, {7925, 20094, 53419}, {8369, 51123, 7757}, {12215, 59548, 51374}, {14148, 35022, 187}, {15708, 32874, 34229}, {15709, 52713, 32885}, {31859, 33220, 7739}, {32820, 37671, 32833}, {36521, 39785, 8598}


X(59635) = X(4)X(183)∩X(5)X(76)

Barycentrics    -b^4+4*b^2*c^2-c^4+a^2*(b^2+c^2) : :

X(59635) lies on these lines: {2, 1975}, {3, 11185}, {4, 183}, {5, 76}, {6, 16924}, {11, 1909}, {12, 350}, {20, 9756}, {30, 1078}, {32, 8370}, {39, 32992}, {69, 3091}, {75, 1329}, {83, 5305}, {99, 140}, {115, 3934}, {141, 5025}, {148, 7824}, {187, 19687}, {193, 32991}, {194, 3815}, {230, 384}, {235, 264}, {274, 4187}, {297, 59197}, {302, 42599}, {303, 42598}, {305, 37439}, {308, 17984}, {310, 47513}, {311, 13160}, {315, 381}, {316, 546}, {317, 7507}, {339, 10024}, {343, 52247}, {376, 32826}, {382, 14907}, {385, 7745}, {403, 1235}, {427, 40022}, {428, 1799}, {442, 18140}, {468, 11056}, {491, 32489}, {492, 32488}, {524, 7785}, {538, 1506}, {543, 37512}, {547, 7799}, {548, 43459}, {549, 7782}, {550, 7771}, {597, 7920}, {599, 33006}, {625, 7794}, {626, 9466}, {631, 32815}, {637, 6290}, {638, 6289}, {639, 13930}, {640, 13877}, {668, 24390}, {671, 7847}, {732, 53484}, {754, 39590}, {850, 59741}, {858, 26235}, {1007, 5056}, {1043, 36693}, {1213, 33834}, {1216, 51440}, {1238, 57805}, {1513, 6248}, {1594, 44146}, {1595, 58782}, {1598, 15574}, {1655, 37661}, {1656, 7763}, {1834, 37678}, {2476, 18135}, {2478, 16992}, {2548, 7754}, {2549, 11285}, {2886, 6376}, {2896, 14041}, {3053, 14035}, {3054, 7907}, {3055, 16922}, {3090, 3926}, {3096, 33184}, {3136, 18152}, {3314, 32966}, {3329, 33020}, {3363, 7812}, {3523, 32870}, {3524, 52718}, {3525, 32822}, {3533, 32883}, {3544, 32823}, {3545, 7788}, {3552, 17004}, {3589, 7797}, {3619, 33180}, {3620, 32980}, {3627, 7802}, {3628, 6390}, {3629, 7921}, {3630, 7946}, {3631, 7939}, {3734, 7746}, {3760, 7951}, {3761, 7741}, {3767, 7770}, {3788, 17130}, {3813, 24524}, {3814, 20888}, {3816, 31997}, {3832, 15589}, {3839, 32893}, {3845, 7811}, {3850, 7768}, {3851, 7776}, {3855, 32827}, {3857, 7850}, {3858, 7860}, {4045, 31239}, {4193, 34284}, {4441, 11681}, {5007, 53489}, {5023, 7610}, {5046, 37670}, {5055, 32833}, {5066, 7809}, {5067, 32817}, {5068, 37668}, {5071, 32818}, {5088, 54443}, {5133, 39998}, {5152, 44224}, {5187, 45962}, {5206, 33250}, {5210, 33244}, {5286, 11174}, {5306, 7787}, {5309, 7808}, {5475, 7751}, {5939, 11623}, {5989, 14651}, {6179, 18907}, {6310, 40951}, {6381, 25639}, {6392, 7736}, {6393, 24206}, {6530, 44144}, {6655, 53419}, {6661, 6680}, {6683, 7765}, {6722, 7874}, {7384, 14829}, {7486, 32831}, {7499, 16276}, {7539, 34254}, {7566, 44128}, {7603, 7764}, {7615, 7800}, {7617, 7801}, {7620, 33215}, {7735, 32971}, {7747, 7780}, {7748, 7815}, {7749, 7816}, {7753, 7805}, {7755, 7804}, {7757, 31406}, {7758, 31415}, {7759, 17131}, {7761, 33229}, {7774, 32962}, {7775, 7855}, {7777, 20081}, {7778, 32961}, {7779, 33024}, {7781, 31455}, {7784, 14063}, {7786, 15048}, {7790, 8362}, {7791, 15271}, {7793, 11361}, {7795, 7887}, {7803, 51580}, {7810, 7842}, {7817, 7889}, {7819, 7828}, {7820, 7886}, {7821, 39601}, {7822, 7844}, {7823, 33018}, {7825, 7854}, {7826, 7843}, {7827, 8367}, {7830, 19695}, {7831, 8357}, {7832, 8361}, {7833, 11168}, {7836, 32967}, {7839, 9300}, {7857, 8369}, {7867, 18362}, {7868, 14064}, {7870, 59780}, {7883, 37350}, {7885, 32993}, {7897, 33011}, {7898, 14062}, {7901, 46226}, {7904, 33019}, {7917, 12811}, {7919, 8364}, {7929, 20112}, {7930, 33186}, {7932, 16895}, {7933, 16986}, {7941, 50771}, {7942, 33185}, {7944, 8360}, {7947, 22110}, {7948, 34573}, {8024, 37990}, {8556, 33017}, {8598, 15513}, {8667, 20065}, {8860, 32985}, {9307, 56067}, {9605, 40727}, {9607, 15491}, {9698, 32450}, {9722, 52636}, {9766, 33005}, {9983, 51851}, {10170, 51383}, {10303, 32897}, {10449, 36687}, {11057, 15687}, {11163, 31404}, {11164, 35287}, {11257, 37451}, {11632, 12054}, {11793, 51439}, {12086, 34883}, {12107, 21395}, {12607, 17144}, {12815, 31274}, {14042, 14712}, {14382, 51441}, {14588, 44386}, {14614, 32983}, {14767, 53481}, {14788, 28706}, {14928, 20190}, {14994, 19130}, {15597, 33274}, {15760, 41009}, {15810, 53144}, {15815, 33001}, {15980, 49111}, {16043, 43448}, {16252, 57275}, {16275, 52285}, {16589, 33033}, {16626, 51018}, {16627, 51016}, {16925, 37637}, {16984, 19689}, {16989, 33269}, {16999, 33030}, {17006, 32459}, {17103, 37634}, {17143, 17757}, {17181, 20925}, {17245, 33835}, {17277, 38930}, {17530, 18145}, {18055, 40997}, {18142, 18738}, {18840, 33285}, {20477, 59349}, {20913, 26019}, {21043, 23915}, {21243, 59527}, {21264, 26558}, {21843, 33235}, {21956, 26752}, {23302, 59541}, {23303, 59542}, {23514, 32458}, {24256, 53475}, {25264, 31460}, {25303, 37722}, {25466, 30963}, {26179, 49123}, {27142, 27515}, {27269, 33045}, {27374, 58500}, {31400, 32975}, {31401, 31859}, {31489, 32999}, {32824, 32839}, {32835, 46936}, {32964, 44535}, {32965, 44526}, {32969, 53033}, {32979, 37667}, {32988, 37690}, {33008, 44519}, {33012, 53095}, {33199, 39143}, {33245, 44381}, {33296, 37662}, {33798, 37636}, {34507, 44369}, {35283, 56430}, {35705, 38664}, {37454, 37804}, {37532, 55417}, {38071, 48913}, {39266, 44230}, {40107, 51438}, {44251, 58849}, {49353, 53488}, {49354, 53487}, {50991, 51238}, {51126, 59552}, {51358, 59528}

X(59635) = midpoint of X(i) and X(j) for these {i,j}: {7785, 17129}
X(59635) = isotomic conjugate of X(45857)
X(59635) = complement of X(7783)
X(59635) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 45857}, {5943, 20775}
X(59635) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54911, 69}
X(59635) = X(i)-complementary conjugate of X(j) for these {i, j}: {8601, 10}
X(59635) = X(i)-cross conjugate of X(j) for these {i, j}: {5943, 56022}
X(59635) = pole of line {14041, 18105} with respect to the nine-point circle
X(59635) = pole of line {14824, 44823} with respect to the orthocentroidal circle
X(59635) = pole of line {57071, 58319} with respect to the polar circle
X(59635) = pole of line {69, 194} with respect to the Kiepert hyperbola
X(59635) = pole of line {4563, 55279} with respect to the Kiepert parabola
X(59635) = pole of line {3053, 17809} with respect to the Stammler hyperbola
X(59635) = pole of line {3566, 54262} with respect to the Steiner inellipse
X(59635) = pole of line {182, 193} with respect to the Wallace hyperbola
X(59635) = pole of line {523, 44450} with respect to the dual conic of Orthic inconic
X(59635) = pole of line {6388, 6784} with respect to the dual conic of Wallace hyperbola
X(59635) = center of the dual of the bicevian conic of X(17) and X(18)
X(59635) = intersection, other than A, B, C, of circumconics {{A, B, C, X(262), X(5943)}}, {{A, B, C, X(327), X(2996)}}, {{A, B, C, X(1975), X(56067)}}, {{A, B, C, X(5013), X(9307)}}, {{A, B, C, X(7738), X(34208)}}
X(59635) = barycentric product X(i)*X(j) for these (i, j): {5943, 76}, {17868, 75}, {56022, 69}
X(59635) = barycentric quotient X(i)/X(j) for these (i, j): {2, 45857}, {5943, 6}, {17868, 1}, {31989, 2056}, {56022, 4}
X(59635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17128, 7789}, {2, 2996, 7738}, {3, 11185, 32819}, {3, 32832, 37688}, {4, 183, 7750}, {4, 32828, 183}, {5, 3933, 7752}, {69, 3091, 7773}, {76, 7752, 3933}, {83, 14568, 5305}, {115, 3934, 6656}, {115, 6292, 7861}, {141, 18906, 51374}, {194, 16921, 3815}, {316, 15031, 546}, {385, 16044, 7745}, {546, 7767, 316}, {626, 39565, 33228}, {1007, 32830, 32821}, {1656, 7763, 37647}, {2476, 18135, 37664}, {2548, 7754, 41624}, {3054, 59545, 7907}, {3091, 32834, 69}, {3545, 46951, 7788}, {3628, 6390, 7769}, {3734, 7746, 7807}, {3767, 7770, 7792}, {3832, 15589, 32006}, {3832, 32872, 15589}, {3933, 7752, 325}, {3934, 7861, 6292}, {5025, 31276, 141}, {5056, 32830, 1007}, {5067, 32817, 32829}, {5133, 39998, 45201}, {5286, 32968, 11174}, {5475, 7751, 7762}, {6392, 32987, 7736}, {6683, 32457, 7765}, {7486, 32831, 34803}, {7748, 7815, 8356}, {7749, 7816, 35297}, {7751, 7762, 50251}, {7754, 44543, 2548}, {7763, 53127, 1656}, {7785, 17129, 524}, {7795, 43620, 7887}, {7810, 47617, 8352}, {7815, 18546, 7748}, {7819, 43291, 7828}, {7822, 7844, 8363}, {7823, 33018, 53418}, {7826, 43457, 7843}, {7832, 14061, 8361}, {7836, 32967, 44377}, {7854, 18424, 7825}, {9466, 39565, 626}, {11185, 32832, 3}, {14035, 17008, 3053}, {14063, 16990, 7784}, {15271, 44518, 7791}, {17129, 33013, 7785}, {20081, 33002, 7777}, {32815, 32838, 631}, {32992, 47286, 39}, {51265, 51272, 3589}


X(59636) = X(10)X(75)∩X(975)X(3923)

Barycentrics    a^2*b*c*(b+c)+a^3*(b^2+c^2)-b*c*(b+c)*(b^2+c^2)+a*(b^4+2*b^3*c-2*b^2*c^2+2*b*c^3+c^4) : :
X(59636) = 3*X[3175]+X[17635], -X[3729]+3*X[3971], X[12530]+3*X[32915], -5*X[17304]+3*X[24165]

X(59636) lies on these lines: {10, 75}, {519, 40965}, {536, 58653}, {740, 18252}, {975, 3923}, {1766, 3509}, {3159, 28526}, {3175, 17635}, {3500, 17733}, {3729, 3971}, {3985, 17355}, {11679, 24615}, {12530, 32915}, {12610, 29671}, {17304, 24165}, {17738, 41251}, {23688, 52043}, {24248, 54433}, {27341, 42027}, {59547, 59733}

X(59636) = midpoint of X(i) and X(j) for these {i,j}: {21080, 49518}
X(59636) = pole of line {75, 26561} with respect to the dual conic of Yff parabola
X(59636) = center of the dual of the bicevian conic of X(19) and X(86)
X(59636) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21080, 49518, 726}


X(59637) = X(9)X(2253)∩X(10)X(5777)

Barycentrics    a^5*(b+c)-a^3*(b-c)^2*(b+c)-2*a*b*(b-c)^2*c*(b+c)+b*c*(b^2-c^2)^2-a^4*(b^2+c^2)+a^2*(b+c)^2*(b^2-3*b*c+c^2) : :

X(59637) lies on these lines: {9, 2253}, {10, 5777}, {165, 32931}, {226, 12618}, {312, 991}, {321, 29016}, {516, 1215}, {581, 2901}, {971, 44417}, {1071, 50605}, {1089, 4300}, {1211, 13257}, {1699, 32771}, {1709, 29828}, {1736, 52358}, {1754, 26223}, {1768, 32918}, {1858, 52357}, {2345, 5658}, {2635, 6358}, {2801, 3741}, {3159, 37528}, {3739, 10157}, {3817, 24325}, {3846, 21635}, {4011, 52769}, {4192, 24330}, {4359, 5400}, {4363, 19541}, {4418, 44425}, {5531, 32945}, {5536, 32940}, {5737, 5779}, {5927, 31993}, {6684, 59639}, {7411, 41242}, {7987, 25591}, {9809, 33083}, {9941, 33101}, {10167, 30818}, {10479, 12528}, {13329, 27064}, {15931, 32930}, {18446, 48863}, {19925, 49598}, {22792, 50050}, {24003, 58441}, {26446, 59669}, {32947, 34789}, {36706, 56084}, {37400, 54035}, {40937, 59575}, {46684, 59679}

X(59637) = pole of line {521, 31287} with respect to the Spieker circle
X(59637) = center of the dual of the bicevian conic of X(21) and X(75)
X(59637) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5927, 31993, 48888}, {40937, 59575, 59638}, {59511, 59620, 10164}


X(59638) = X(2)X(44311)∩X(10)X(321)

Barycentrics    (b+c)*(a^4*(b+c)-b*(b-c)^2*c*(b+c)-a^3*(b+c)^2+a*(b-c)^2*(b^2+4*b*c+c^2)-a^2*(b^3+c^3)) : :

X(59638) lies on these lines: {2, 44311}, {10, 321}, {226, 22027}, {405, 44040}, {514, 59520}, {516, 40635}, {522, 6690}, {596, 26363}, {740, 58699}, {851, 22002}, {3693, 20103}, {4415, 8286}, {19843, 24068}, {24225, 33130}, {24434, 34589}, {40937, 59575}, {41839, 56809}

X(59638) = midpoint of X(i) and X(j) for these {i,j}: {226, 22027}
X(59638) = pole of line {4359, 48381} with respect to the dual conic of Yff parabola
X(59638) = center of the dual of the bicevian conic of X(21) and X(86)
X(59638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59517, 59621, 20103}


X(59639) = X(4)X(9)∩X(38)X(1125)

Barycentrics    2*a^4+3*a^3*(b+c)-a^2*(b+c)^2-a*(b+c)^3+(b+c)^2*(b^2+c^2) : :

X(59639) lies on these lines: {1, 52354}, {4, 9}, {38, 1125}, {44, 3695}, {140, 59769}, {190, 23537}, {386, 56078}, {387, 3161}, {519, 1724}, {595, 3717}, {942, 4422}, {975, 26065}, {1265, 37817}, {1453, 3244}, {1698, 33099}, {1714, 56082}, {1834, 4370}, {2325, 2901}, {2802, 40964}, {3159, 40940}, {3216, 3977}, {3678, 59692}, {3927, 17279}, {4011, 10916}, {4205, 16814}, {4438, 21616}, {4656, 20083}, {5044, 44416}, {5292, 30568}, {5295, 17340}, {5814, 16885}, {6684, 59637}, {8258, 59517}, {8616, 50607}, {8728, 17351}, {10449, 17339}, {12047, 33115}, {13407, 32938}, {16062, 17336}, {17229, 49718}, {17264, 56018}, {17348, 50042}, {18232, 59674}, {24003, 58405}, {24850, 59664}, {24928, 59704}, {25253, 50759}, {25440, 59544}, {26364, 27540}, {27659, 46827}, {32935, 51706}, {37652, 50606}, {43531, 50115}, {50624, 56989}, {59675, 59686}

X(59639) = midpoint of X(i) and X(j) for these {i,j}: {1724, 3710}
X(59639) = pole of line {4000, 18139} with respect to the dual conic of Yff parabola
X(59639) = center of the dual of the bicevian conic of X(27) and X(75)
X(59639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1724, 3710, 519}, {12572, 39589, 10}, {40940, 59576, 3159}, {59544, 59685, 25440}


X(59640) = X(71)X(9022)∩X(141)X(52396)

Barycentrics    a^4*(b+c)-a^3*(b^2+c^2)-2*a^2*(b+c)*(b^2+c^2)+b*c*(b+c)*(b^2+c^2) : :

X(59640) lies on these lines: {71, 9022}, {141, 52396}, {524, 18650}, {726, 58410}, {942, 17243}, {2325, 24219}, {3589, 3666}, {3663, 3739}, {3670, 17279}, {4286, 20336}, {4359, 17259}, {4422, 40941}, {4884, 40959}, {6666, 24176}, {17262, 17863}, {17348, 31445}, {17495, 37650}, {25649, 32851}

X(59640) = pole of line {4057, 48080} with respect to the Steiner inellipse
X(59640) = center of the dual of the bicevian conic of X(27) and X(83)


X(59641) = X(142)X(1376)∩X(536)X(59671)

Barycentrics    2*a^5+a^4*(b+c)-2*a^3*(b+c)^2+2*a*b*c*(b+c)^2-2*a^2*(b+c)*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+c^2) : :

X(59641) lies on these lines: {142, 1376}, {536, 59671}, {3158, 18634}, {3452, 55111}, {3880, 17043}, {3913, 17073}, {3946, 17048}, {4000, 59591}, {4361, 26446}, {4657, 9709}, {4851, 51775}, {8715, 18589}, {10039, 24435}, {11499, 12610}, {16608, 56176}, {17262, 59578}, {17306, 46917}, {24780, 48696}, {25006, 25447}, {34830, 59719}, {40530, 59733}, {40940, 51574}

X(59641) = center of the dual of the bicevian conic of X(27) and X(85)


X(59642) = X(5)X(10)∩X(30)X(1842)

Barycentrics    a^6*(b+c)+b*(b-c)^2*c*(b+c)^3-a^3*(b^2-c^2)^2+a^5*(b^2+c^2)-a^4*(b+c)*(b^2+c^2)-a^2*b*c*(b+c)*(b^2-4*b*c+c^2) : :

X(59642) lies on these lines: {5, 10}, {30, 1842}, {92, 16415}, {140, 8756}, {956, 7535}, {976, 37729}, {1109, 28267}, {2828, 38602}, {3011, 6677}, {4245, 41013}, {5020, 26227}, {6532, 40530}, {6644, 23843}, {9816, 41229}, {15325, 52259}, {16305, 44452}, {17862, 22458}, {21530, 51410}, {24914, 37695}, {30449, 46878}

X(59642) = pole of line {4391, 57042} with respect to the Steiner inellipse
X(59642) = pole of line {6588, 21894} with respect to the dual conic of DeLongchamps circle
X(59642) = center of the dual of the bicevian conic of X(27) and X(95)
X(59642) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6708, 9895, 5}


X(59643) = X(171)X(799)∩X(274)X(6682)

Barycentrics    b*(a+b)*c*(a+c)*(a^3*b*c+a*b^2*c^2-b^2*c^2*(b+c)+a^2*(b+c)*(b^2+c^2)) : :

X(59643) lies on these lines: {171, 799}, {274, 6682}, {670, 59505}, {1740, 34022}, {1921, 32010}, {2669, 34020}, {3736, 7168}, {3741, 18021}, {5209, 14829}, {6376, 6626}, {6384, 51314}, {8033, 17149}, {14195, 17596}, {18064, 56431}, {18155, 27929}, {19643, 33106}, {34021, 51575}, {35623, 40072}

X(59643) = center of the dual of the bicevian conic of X(37) and X(65)


X(59644) = X(9)X(1158)∩X(10)X(1503)

Barycentrics    4*a^5-a^4*(b+c)+(b-c)^2*(b+c)^3-2*a*(b^2-c^2)^2-2*a^3*(b^2+c^2) : :

X(59644) lies on these lines: {2, 41010}, {3, 59578}, {4, 18594}, {6, 8074}, {9, 1158}, {10, 1503}, {19, 946}, {40, 27382}, {48, 5882}, {101, 2321}, {142, 24315}, {169, 5750}, {198, 6796}, {219, 11362}, {223, 20224}, {226, 1781}, {281, 515}, {282, 6261}, {307, 14543}, {516, 59725}, {517, 59594}, {519, 20818}, {572, 41006}, {650, 40590}, {910, 10445}, {1210, 2264}, {1249, 42451}, {1375, 3668}, {1376, 17355}, {1385, 59588}, {1436, 5450}, {1449, 17706}, {1723, 3911}, {1743, 1788}, {1765, 2272}, {1766, 40869}, {1826, 2173}, {1939, 2092}, {1940, 5930}, {2182, 12616}, {2262, 31870}, {2322, 2360}, {2331, 59285}, {3211, 24391}, {3731, 5218}, {3812, 35893}, {3950, 56176}, {3986, 6690}, {5257, 50198}, {5279, 21075}, {5776, 9948}, {5884, 9119}, {6256, 55116}, {6696, 54227}, {7289, 44356}, {7359, 8804}, {7719, 21620}, {8715, 59728}, {10164, 59663}, {10165, 40937}, {10174, 59683}, {10192, 59645}, {12514, 47441}, {12608, 20263}, {16548, 21068}, {20206, 40535}, {21629, 51435}, {23986, 40943}, {24580, 45738}, {26063, 31399}, {27396, 59587}, {47161, 51701}, {51889, 53009}, {59544, 59562}, {59579, 59666}, {59584, 59733}, {59606, 59655}

X(59644) = midpoint of X(i) and X(j) for these {i,j}: {281, 610}
X(59644) = complement of X(41010)
X(59644) = X(i)-complementary conjugate of X(j) for these {i, j}: {34414, 2887}
X(59644) = pole of line {525, 7658} with respect to the Spieker circle
X(59644) = pole of line {57045, 57049} with respect to the Steiner inellipse
X(59644) = center of the dual of the bicevian conic of X(69) and X(75)
X(59644) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3429), X(10309)}}, {{A, B, C, X(34414), X(41010)}}
X(59644) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 59678, 59681}, {19, 40942, 946}, {281, 610, 515}, {24315, 40530, 142}, {59579, 59675, 59689}, {59671, 59681, 10}


X(59645) = X(1)X(2)∩X(165)X(347)

Barycentrics    4*a^6-3*a^5*(b+c)+(b-c)^4*(b+c)^2+a*(b-c)^2*(b+c)^3+a^4*(-3*b^2+2*b*c-3*c^2)-2*a^2*(b^2-c^2)^2+2*a^3*(b+c)*(b^2+c^2) : :

X(59645) lies on circumconic {{A, B, C, X(2), X(38268)}} and on these lines: {1, 2}, {3, 36908}, {9, 38268}, {20, 18624}, {37, 20311}, {40, 1435}, {162, 2328}, {165, 347}, {204, 7952}, {212, 23710}, {219, 21060}, {222, 43177}, {278, 516}, {527, 22117}, {651, 41561}, {971, 59613}, {1040, 34050}, {1062, 6245}, {1214, 10164}, {1249, 59646}, {1323, 57479}, {1376, 38288}, {1455, 4297}, {1498, 54227}, {1709, 45275}, {1750, 54425}, {1754, 3668}, {1838, 51118}, {2192, 16870}, {3452, 15252}, {3671, 5706}, {3817, 37695}, {4219, 58326}, {4640, 59458}, {5542, 37543}, {5732, 18623}, {5927, 58906}, {6260, 40658}, {6353, 8074}, {7009, 10445}, {7515, 39130}, {7580, 43035}, {7682, 37697}, {10181, 59683}, {10192, 59644}, {17061, 30621}, {18455, 51755}, {21628, 57276}, {24030, 41086}, {24703, 44901}, {30424, 55010}, {31658, 59611}, {38295, 55104}, {59584, 59711}

X(59645) = midpoint of X(i) and X(j) for these {i,j}: {278, 7070}
X(59645) = X(i)-complementary conjugate of X(j) for these {i, j}: {34402, 2887}
X(59645) = pole of line {514, 57196} with respect to the Steiner inellipse
X(59645) = pole of line {2, 34402} with respect to the dual conic of Yff parabola
X(59645) = center of the dual of the bicevian conic of X(69) and X(85)
X(59645) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 387, 6738}, {1, 40940, 11019}, {278, 7070, 516}, {10192, 59658, 59644}, {16870, 34048, 59687}, {37695, 40960, 3817}


X(59646) = X(2)X(3668)∩X(4)X(9)

Barycentrics    (-a+b+c)^2*(2*a^3+a^2*(b+c)+(b-c)^2*(b+c)) : :

X(59646) lies on these lines: {1, 27382}, {2, 3668}, {3, 59578}, {4, 9}, {6, 6738}, {20, 18594}, {37, 800}, {44, 21933}, {198, 53579}, {200, 346}, {219, 519}, {220, 2321}, {282, 997}, {284, 58325}, {380, 4314}, {515, 59681}, {517, 59588}, {527, 16608}, {534, 17359}, {610, 4297}, {758, 9119}, {936, 30265}, {950, 2264}, {958, 51687}, {960, 44661}, {965, 12447}, {1125, 3002}, {1146, 3686}, {1210, 1723}, {1212, 5750}, {1249, 59645}, {1385, 59594}, {1486, 15621}, {1731, 40963}, {1743, 18391}, {1761, 8558}, {1781, 4292}, {1903, 31803}, {1944, 3664}, {2195, 6559}, {2257, 11019}, {2263, 5749}, {2287, 6737}, {2294, 12563}, {2322, 2328}, {2323, 4856}, {2324, 3811}, {2325, 3694}, {2822, 3184}, {2835, 3039}, {3008, 17861}, {3085, 3731}, {3119, 21033}, {3161, 7080}, {3452, 17279}, {3663, 27509}, {3671, 5746}, {3692, 6736}, {3713, 51972}, {3739, 5745}, {3827, 52528}, {3912, 27420}, {3986, 10198}, {4075, 59585}, {4298, 54405}, {4329, 18228}, {4331, 5296}, {4357, 37774}, {4538, 40659}, {4656, 27540}, {5257, 46835}, {5273, 18655}, {5279, 12527}, {5514, 31845}, {5795, 49524}, {5882, 20818}, {6260, 15831}, {6666, 34852}, {6684, 59671}, {6700, 25078}, {6744, 54358}, {6745, 27396}, {8715, 55111}, {9367, 17053}, {12577, 54385}, {13609, 16597}, {14543, 18650}, {17353, 30854}, {17863, 40940}, {18674, 34587}, {20205, 55869}, {20263, 21616}, {21160, 31424}, {21255, 52457}, {21717, 41011}, {22147, 37727}, {23600, 30568}, {25964, 52819}, {26932, 53598}, {27384, 29571}, {27544, 56078}, {28070, 54359}, {30809, 41010}, {30827, 31261}, {31018, 53816}, {35068, 35508}, {36629, 36916}, {40582, 51382}, {40607, 44670}, {49168, 53994}, {52387, 59576}, {59547, 59565}

X(59646) = midpoint of X(i) and X(j) for these {i,j}: {19, 8804}, {3668, 45738}
X(59646) = inverse of X(31896) in Spieker circle
X(59646) = complement of X(3668)
X(59646) = perspector of circumconic {{A, B, C, X(1897), X(6558)}}
X(59646) = center of circumconic {{A, B, C, X(107), X(3952)}}
X(59646) = X(i)-isoconjugate-of-X(j) for these {i, j}: {57, 951}, {269, 2983}, {604, 58005}, {905, 59090}, {1257, 1407}, {1410, 40414}, {1439, 57390}, {7099, 40445}, {29163, 43932}, {40431, 52373}
X(59646) = X(i)-Dao conjugate of X(j) for these {i, j}: {440, 279}, {1834, 2}, {3161, 58005}, {5452, 951}, {6600, 2983}, {24771, 1257}, {40940, 56382}
X(59646) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 1834}, {3952, 3900}
X(59646) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 18635}, {9, 17052}, {21, 2886}, {31, 1834}, {41, 17056}, {48, 18643}, {55, 442}, {58, 11019}, {60, 3742}, {81, 21258}, {110, 3900}, {163, 7658}, {200, 3454}, {210, 34829}, {212, 18641}, {219, 18642}, {220, 1211}, {283, 34822}, {284, 142}, {314, 17047}, {333, 17046}, {346, 21245}, {643, 17072}, {657, 8287}, {662, 46399}, {663, 8286}, {692, 656}, {1021, 116}, {1043, 2887}, {1098, 3741}, {1172, 16608}, {1175, 11018}, {1253, 1213}, {1260, 21530}, {1333, 4000}, {1408, 5573}, {1576, 6129}, {1792, 1368}, {1802, 440}, {1812, 18639}, {2150, 3946}, {2175, 2092}, {2185, 17050}, {2193, 17073}, {2194, 1}, {2203, 17054}, {2204, 3772}, {2206, 52541}, {2287, 141}, {2299, 1210}, {2322, 20305}, {2326, 34830}, {2327, 18589}, {2328, 10}, {2332, 226}, {2361, 6739}, {3063, 17058}, {3239, 21253}, {3737, 17059}, {3900, 125}, {4183, 5}, {4397, 53575}, {4578, 31946}, {4612, 17066}, {5546, 4885}, {6061, 960}, {6602, 38930}, {7054, 3739}, {7058, 21240}, {7071, 50036}, {7252, 4904}, {7253, 21252}, {7256, 21260}, {7258, 21262}, {7259, 3835}, {8641, 115}, {14827, 16589}, {21789, 11}, {23609, 4999}, {32652, 17898}, {32676, 21172}, {46889, 51571}, {52425, 18592}, {56181, 20338}, {56182, 1329}, {57055, 127}, {57108, 34846}, {57134, 2968}, {57657, 3752}, {58327, 45162}, {58328, 31845}, {58329, 124}, {58331, 5099}, {58332, 53829}, {58335, 46654}, {58337, 113}, {58338, 123}, {58340, 122}
X(59646) = pole of line {43061, 48387} with respect to the circumcircle
X(59646) = pole of line {514, 28984} with respect to the Spieker circle
X(59646) = pole of line {1834, 6738} with respect to the Kiepert hyperbola
X(59646) = pole of line {657, 1021} with respect to the Steiner inellipse
X(59646) = pole of line {938, 1834} with respect to the dual conic of Yff parabola
X(59646) = center of the dual of the bicevian conic of X(69) and X(86)
X(59646) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(11471)}}, {{A, B, C, X(4), X(346)}}, {{A, B, C, X(10), X(2322)}}, {{A, B, C, X(19), X(200)}}, {{A, B, C, X(71), X(2328)}}, {{A, B, C, X(220), X(41320)}}, {{A, B, C, X(281), X(5423)}}, {{A, B, C, X(440), X(8804)}}, {{A, B, C, X(516), X(18650)}}, {{A, B, C, X(1043), X(1869)}}, {{A, B, C, X(1706), X(44692)}}, {{A, B, C, X(1826), X(4082)}}, {{A, B, C, X(2195), X(2354)}}, {{A, B, C, X(2333), X(40977)}}, {{A, B, C, X(6559), X(46878)}}, {{A, B, C, X(14543), X(41321)}}
X(59646) = barycentric product X(i)*X(j) for these (i, j): {8, 950}, {346, 40940}, {1043, 1834}, {1104, 341}, {1265, 1842}, {2264, 312}, {2322, 440}, {14543, 3239}, {17863, 200}, {18650, 7046}, {21671, 59482}, {29162, 6558}, {52622, 53290}
X(59646) = barycentric quotient X(i)/X(j) for these (i, j): {8, 58005}, {55, 951}, {200, 1257}, {220, 2983}, {440, 56382}, {950, 7}, {1104, 269}, {1834, 3668}, {1842, 1119}, {2264, 57}, {2322, 40414}, {2332, 57390}, {4183, 40431}, {7046, 40445}, {8750, 59090}, {14543, 658}, {17863, 1088}, {18650, 7056}, {18673, 1439}, {21671, 6356}, {29162, 58817}, {40940, 279}, {40977, 1427}, {40984, 1042}, {44093, 52373}, {53290, 1461}
X(59646) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 45738, 3668}, {3, 59578, 59644}, {9, 23058, 966}, {9, 281, 10}, {19, 8804, 516}, {1125, 59725, 40942}, {4297, 59678, 610}, {5746, 54424, 3671}, {6736, 59595, 3692}, {7359, 40942, 59725}, {31594, 31595, 12572}, {40937, 40942, 1125}, {59585, 59722, 59733}


X(59647) = X(1)X(6824)∩X(3)X(36908)

Barycentrics    4*a^7+8*a^3*b^2*c^2+a^6*(b+c)-a^4*(b-c)^2*(b+c)-a^2*(b-c)^2*(b+c)^3+(b-c)^4*(b+c)^3-6*a^5*(b^2+c^2)+2*a*(b^2-c^2)^2*(b^2+c^2) : :

X(59647) lies on these lines: {1, 6824}, {3, 36908}, {10, 18447}, {63, 38295}, {226, 44665}, {255, 23710}, {551, 34831}, {1062, 34050}, {3671, 45923}, {5777, 59613}, {6245, 18455}, {6985, 43035}, {8757, 16870}, {15252, 20264}, {16869, 18451}, {18623, 41854}, {59578, 59655}

X(59647) = center of the dual of the bicevian conic of X(69) and X(92)


X(59648) = X(3)X(1661)∩X(5)X(11449)

Barycentrics    4*a^10-11*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-4*a^2*(b^2-c^2)^2*(b^4+c^4)+2*a^4*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)+2*a^6*(4*b^4+7*b^2*c^2+4*c^4) : :
X(59648) = X[110]+2*X[44452], 2*X[113]+X[44246], -X[265]+4*X[44911], X[403]+2*X[1511], 2*X[468]+X[22115], X[1495]+2*X[14156], X[2070]+2*X[11064], X[2071]+2*X[46817], -X[2072]+4*X[5972], -X[3581]+4*X[37935], -X[5073]+4*X[51998], -X[5899]+4*X[15448] and many others

X(59648) lies on these lines: {3, 1661}, {5, 11449}, {24, 31815}, {30, 14643}, {49, 11245}, {110, 44452}, {113, 44246}, {140, 1614}, {265, 44911}, {403, 1511}, {468, 22115}, {549, 15072}, {567, 6677}, {568, 44211}, {1495, 14156}, {1656, 19467}, {1853, 6640}, {2070, 11064}, {2071, 46817}, {2072, 5972}, {2979, 44213}, {3548, 11206}, {3580, 11597}, {3581, 37935}, {3628, 6288}, {5054, 13394}, {5073, 51998}, {5576, 43839}, {5642, 13754}, {5891, 10182}, {5899, 15448}, {5907, 46265}, {6000, 38793}, {7426, 13391}, {9703, 13567}, {9705, 43588}, {9820, 45735}, {10151, 12121}, {10154, 13340}, {10193, 12162}, {10255, 23324}, {10257, 10540}, {10272, 15646}, {10282, 37452}, {10317, 59558}, {10539, 23329}, {11459, 34477}, {11563, 22251}, {11694, 44282}, {11799, 51394}, {12778, 51713}, {12900, 13851}, {13160, 58435}, {13367, 50143}, {13619, 58885}, {14157, 15122}, {14788, 58407}, {15020, 47336}, {15034, 50435}, {15040, 31726}, {16222, 45780}, {16534, 21663}, {18281, 35264}, {18323, 38795}, {20127, 47114}, {21841, 37495}, {23039, 34351}, {23236, 37911}, {29181, 37956}, {32111, 34152}, {32609, 44665}, {34148, 44232}, {34153, 46031}, {37347, 43586}, {37477, 37971}, {37489, 59551}, {37494, 37669}, {37936, 46114}, {38942, 44958}, {43821, 58465}, {44278, 54040}

X(59648) = pole of line {11413, 12041} with respect to the Stammler hyperbola
X(59648) = center of the dual of the bicevian conic of X(69) and X(94)
X(59648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5972, 51393, 2072}, {10540, 38794, 10257}, {13392, 44234, 40111}, {40111, 44234, 3580}, {44211, 59553, 568}


X(59649) = X(5)X(393)∩X(6)X(30)

Barycentrics    2*a^8+(b^2-c^2)^4+a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-7*b^4+6*b^2*c^2-7*c^4) : :

X(59649) lies on these lines: {2, 33630}, {3, 1033}, {4, 15851}, {5, 393}, {6, 30}, {20, 38292}, {26, 8573}, {53, 546}, {140, 216}, {232, 6677}, {233, 12812}, {376, 36413}, {382, 40065}, {441, 3164}, {523, 58437}, {548, 577}, {550, 15905}, {566, 23336}, {648, 41008}, {800, 5305}, {1060, 7129}, {1062, 2331}, {1172, 20420}, {1368, 45141}, {1609, 1658}, {1657, 5702}, {1765, 45929}, {1886, 40937}, {3003, 6663}, {3018, 53414}, {3087, 3627}, {3163, 22052}, {3284, 12103}, {3522, 45245}, {3530, 36751}, {3534, 33636}, {3553, 8144}, {3554, 32047}, {3628, 52703}, {3853, 6748}, {5066, 18487}, {5254, 46432}, {5304, 9909}, {6389, 20204}, {6676, 16318}, {6823, 41361}, {7575, 41758}, {7667, 8792}, {7735, 10154}, {7952, 42018}, {8553, 15331}, {8743, 12362}, {8744, 34664}, {8746, 52073}, {8755, 37565}, {9722, 13406}, {9825, 55415}, {10020, 16310}, {10096, 16328}, {10125, 18573}, {10257, 47183}, {10979, 12100}, {11062, 44232}, {11574, 53795}, {14091, 40938}, {14571, 59588}, {14576, 44233}, {14930, 44442}, {16196, 39575}, {16199, 40179}, {17907, 41005}, {18583, 32428}, {21734, 52707}, {23583, 34828}, {25337, 47228}, {26906, 56296}, {31305, 43136}, {33923, 36748}, {34477, 46262}, {34482, 34658}, {34609, 37665}, {37765, 45198}, {39568, 52223}, {40135, 53420}, {40896, 52289}, {40995, 52283}, {42329, 42873}, {44234, 47144}, {44452, 47162}, {52070, 52418}, {53415, 59662}, {59561, 59651}

X(59649) = midpoint of X(i) and X(j) for these {i,j}: {6, 42459}
X(59649) = perspector of circumconic {{A, B, C, X(1302), X(54705)}}
X(59649) = pole of line {42660, 58342} with respect to the circumcircle
X(59649) = pole of line {381, 9786} with respect to the Kiepert hyperbola
X(59649) = pole of line {6617, 15066} with respect to the Stammler hyperbola
X(59649) = pole of line {9209, 32320} with respect to the Steiner inellipse
X(59649) = center of the dual of the bicevian conic of X(69) and X(95)
X(59649) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3346), X(4846)}}, {{A, B, C, X(34288), X(54710)}}
X(59649) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1249, 59657}, {6, 42459, 30}, {6389, 20204, 44335}, {17907, 41005, 44334}


X(59650) = X(3)X(14363)∩X(52)X(3168)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-2*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)-2*a^8*(2*b^4+b^2*c^2+2*c^4)+2*a^6*(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)-4*a^4*(b^8-2*b^6*c^2-2*b^2*c^6+c^8)+a^2*(b^10-b^8*c^2-b^2*c^8+c^10)) : :

X(59650) lies on these lines: {3, 14363}, {52, 3168}, {1075, 12162}, {1093, 9730}, {1216, 35360}, {5446, 46106}, {5462, 13450}, {5891, 51877}, {6530, 43817}, {6663, 46832}, {10020, 47204}, {10095, 42400}, {10170, 56303}, {10539, 56296}, {10575, 14249}, {10625, 15466}, {16252, 59654}, {34334, 46850}, {40647, 52661}, {51393, 56298}

X(59650) = center of the dual of the bicevian conic of X(69) and X(97)
X(59650) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14363, 59529, 3}


X(59651) = X(2)X(39646)∩X(3)X(1661)

Barycentrics    2*a^8+3*a^6*(b^2+c^2)+a^2*(b^2+c^2)^3+(b^4-c^4)^2-a^4*(7*b^4+2*b^2*c^2+7*c^4) : :

X(59651) lies on these lines: {2, 39646}, {3, 1661}, {32, 59553}, {39, 6677}, {114, 44334}, {187, 14471}, {230, 3229}, {237, 11064}, {325, 420}, {441, 5972}, {460, 51389}, {468, 36212}, {3053, 59551}, {3926, 38282}, {5158, 8263}, {5642, 52144}, {6390, 59559}, {6660, 15448}, {7789, 58434}, {7819, 58447}, {8721, 30771}, {8780, 59363}, {9155, 44887}, {10154, 30270}, {11328, 23292}, {14981, 37911}, {15585, 50666}, {20854, 29181}, {37338, 37649}, {44437, 47090}, {46987, 47166}, {59548, 59567}, {59561, 59649}

X(59651) = pole of line {6461, 20580} with respect to the Steiner inellipse
X(59651) = center of the dual of the bicevian conic of X(69) and X(98)
X(59651) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 59543, 59656}


X(59652) = X(230)X(231)∩X(512)X(50642)

Barycentrics    (b-c)*(b+c)*(-5*a^4+3*(b^2-c^2)^2+2*a^2*(b^2+c^2)) : :
X(59652) = X[850]+3*X[44552], X[3265]+3*X[9979], X[3569]+X[54259], X[6562]+3*X[8029], -3*X[10278]+X[58882], X[14343]+X[53345], 5*X[31072]+3*X[33294], X[41300]+3*X[44568]

X(59652) lies on these lines: {230, 231}, {512, 50642}, {669, 53318}, {850, 44552}, {924, 58895}, {1249, 57295}, {2395, 36616}, {2799, 14341}, {3265, 9979}, {3569, 54259}, {3700, 21052}, {5466, 47586}, {6388, 34988}, {6562, 8029}, {6791, 34981}, {9033, 57201}, {9409, 46005}, {10097, 43695}, {10278, 58882}, {14343, 53345}, {31072, 33294}, {32320, 39520}, {41300, 44568}, {53527, 55242}, {55212, 57099}

X(59652) = midpoint of X(i) and X(j) for these {i,j}: {14343, 53345}, {2501, 6587}, {3569, 54259}
X(59652) = perspector of circumconic {{A, B, C, X(4), X(3146)}}
X(59652) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 44060}, {162, 36609}, {163, 35510}, {662, 3532}, {4575, 38253}
X(59652) = X(i)-Dao conjugate of X(j) for these {i, j}: {20, 36841}, {115, 35510}, {122, 40170}, {125, 36609}, {136, 38253}, {1084, 3532}, {3162, 44060}, {13611, 37669}, {15748, 4558}, {58759, 14638}
X(59652) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14572, 13611}, {46208, 115}, {57219, 393}, {58759, 523}
X(59652) = X(i)-complementary conjugate of X(j) for these {i, j}: {32676, 45248}, {51316, 21253}
X(59652) = pole of line {25, 37689} with respect to the circumcircle
X(59652) = pole of line {427, 3087} with respect to the nine-point circle
X(59652) = pole of line {5094, 5304} with respect to the orthocentroidal circle
X(59652) = pole of line {2, 15851} with respect to the polar circle
X(59652) = pole of line {125, 52335} with respect to the Kiepert hyperbola
X(59652) = pole of line {155, 3627} with respect to the MacBeath circumconic
X(59652) = pole of line {4, 1192} with respect to the Orthic inconic
X(59652) = pole of line {193, 17578} with respect to the Steiner circumellipse
X(59652) = pole of line {6, 3091} with respect to the Steiner inellipse
X(59652) = pole of line {5, 11425} with respect to the dual conic of DeLongchamps circle
X(59652) = pole of line {18907, 51170} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(59652) = pole of line {3926, 36609} with respect to the dual conic of polar circle
X(59652) = pole of line {525, 7658} with respect to the dual conic of Wallace hyperbola
X(59652) = center of the dual of the bicevian conic of X(69) and X(99)
X(59652) = intersection, other than A, B, C, of circumconics {{A, B, C, X(232), X(36616)}}, {{A, B, C, X(393), X(45245)}}, {{A, B, C, X(468), X(3146)}}, {{A, B, C, X(647), X(46005)}}, {{A, B, C, X(1990), X(33630)}}, {{A, B, C, X(3003), X(38292)}}, {{A, B, C, X(14380), X(57145)}}, {{A, B, C, X(14572), X(16318)}}
X(59652) = barycentric product X(i)*X(j) for these (i, j): {107, 13611}, {1577, 18594}, {3146, 523}, {14249, 57145}, {14572, 6587}, {14618, 38292}, {18624, 3700}, {33630, 525}, {43665, 59662}, {45245, 58759}
X(59652) = barycentric quotient X(i)/X(j) for these (i, j): {25, 44060}, {512, 3532}, {523, 35510}, {647, 36609}, {2501, 38253}, {3146, 99}, {6587, 40170}, {13611, 3265}, {14572, 44326}, {18594, 662}, {18624, 4573}, {33630, 648}, {38292, 4558}, {44705, 33893}, {45245, 36841}, {57145, 15394}, {59662, 2421}
X(59652) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1637, 2501, 6587}, {2501, 6587, 523}, {2501, 9209, 12077}, {3569, 54259, 59549}


X(59653) = X(1)X(5)∩X(3)X(36908)

Barycentrics    3*a^7+2*a^6*(b+c)-2*a^2*b*(b-c)^2*c*(b+c)+(b-c)^4*(b+c)^3+2*a*(b^2-c^2)^2*(b^2+c^2)-a^3*(b+c)^2*(b^2-4*b*c+c^2)-2*a^5*(2*b^2+b*c+2*c^2)-a^4*(b+c)*(3*b^2-4*b*c+3*c^2) : :

X(59653) lies on these lines: {1, 5}, {3, 36908}, {72, 38295}, {278, 12699}, {347, 3579}, {517, 37417}, {1068, 5812}, {1158, 59458}, {1249, 59578}, {2192, 8757}, {5787, 18455}, {5930, 18481}, {6259, 40658}, {7078, 23710}, {7330, 59613}, {7952, 37822}, {11499, 38288}, {12118, 57282}, {31184, 40940}, {37411, 43035}

X(59653) = center of the dual of the bicevian conic of X(69) and X(189)


X(59654) = X(107)X(15647)∩X(133)X(2883)

Barycentrics    2*a^4*(b^2-c^2)^4+2*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)+a^6*b^2*c^2*(b^2+c^2)-2*a^8*(b^4+c^4)-a^2*(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :

X(59654) lies on these lines: {107, 15647}, {125, 18121}, {133, 2883}, {136, 13567}, {1112, 58261}, {2781, 35360}, {2970, 11746}, {6344, 46430}, {10192, 59529}, {14254, 14708}, {16252, 59650}, {18912, 52415}, {24975, 34844}, {44668, 46106}, {52917, 56296}

X(59654) = center of the dual of the bicevian conic of X(69) and X(249)


X(59655) = X(3)X(1033)∩X(6)X(13)

Barycentrics    7*a^8+2*(b^2-c^2)^4-7*a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-5*b^4+18*b^2*c^2-5*c^4) : :

X(59655) lies on these lines: {2, 52443}, {3, 1033}, {4, 45245}, {6, 13}, {30, 33630}, {53, 5076}, {216, 15720}, {230, 21974}, {253, 44335}, {382, 393}, {577, 15696}, {631, 52707}, {648, 40995}, {1656, 15851}, {1657, 1990}, {2331, 18447}, {3284, 49136}, {3534, 42459}, {3843, 40065}, {3851, 5702}, {5158, 55857}, {7129, 18455}, {8573, 45735}, {10979, 15706}, {16303, 37955}, {16318, 30771}, {18487, 36431}, {20080, 44216}, {20208, 23583}, {22120, 55415}, {31726, 47162}, {34609, 52058}, {44246, 47183}, {44334, 56013}, {59578, 59647}, {59606, 59644}

X(59655) = midpoint of X(i) and X(j) for these {i,j}: {33630, 36413}
X(59655) = reflection of X(i) in X(j) for these {i,j}: {33636, 36413}
X(59655) = pole of line {14270, 58342} with respect to the circumcircle
X(59655) = pole of line {30, 1620} with respect to the Kiepert hyperbola
X(59655) = pole of line {323, 6617} with respect to the Stammler hyperbola
X(59655) = pole of line {1637, 57201} with respect to the Steiner inellipse
X(59655) = center of the dual of the bicevian conic of X(69) and X(253)
X(59655) = intersection, other than A, B, C, of circumconics {{A, B, C, X(265), X(3346)}}, {{A, B, C, X(28783), X(50433)}}
X(59655) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 36413, 33636}, {393, 38292, 382}, {1249, 59657, 3}, {33630, 36413, 30}


X(59656) = X(2)X(9863)∩X(3)X(1661)

Barycentrics    4*a^8-a^4*(b^2-c^2)^2-3*a^6*(b^2+c^2)+(b^4-c^4)^2-a^2*(b^6-5*b^4*c^2-5*b^2*c^4+c^6) : :

X(59656) lies on these lines: {2, 9863}, {3, 1661}, {32, 6677}, {39, 59553}, {141, 1576}, {343, 44887}, {420, 7750}, {441, 9306}, {1368, 42671}, {3148, 11064}, {3284, 8263}, {3785, 38282}, {5013, 59551}, {5188, 10154}, {8362, 58447}, {8721, 8780}, {13394, 14096}, {23976, 59561}, {30771, 59363}, {34396, 37648}, {44334, 54393}

X(59656) = center of the dual of the bicevian conic of X(69) and X(262)
X(59656) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 59543, 59651}


X(59657) = X(3)X(1033)∩X(5)X(6)

Barycentrics    4*a^8+(b^2-c^2)^4-5*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)-a^4*(b^4-10*b^2*c^2+c^4) : :

X(59657) lies on these lines: {2, 15851}, {3, 1033}, {4, 36413}, {5, 6}, {9, 15252}, {20, 33630}, {30, 393}, {53, 3284}, {69, 44334}, {112, 41890}, {140, 40138}, {141, 20204}, {193, 52251}, {216, 549}, {230, 46432}, {232, 10154}, {233, 15860}, {381, 40065}, {382, 33636}, {427, 52058}, {441, 9308}, {546, 3087}, {550, 577}, {597, 14767}, {632, 5158}, {648, 41005}, {1060, 2331}, {1062, 7129}, {1172, 8727}, {1368, 16318}, {1595, 22120}, {1609, 37814}, {1656, 5702}, {2450, 46444}, {3008, 14743}, {3172, 31829}, {3553, 37729}, {3845, 6748}, {3858, 6749}, {5020, 5304}, {5065, 15048}, {5306, 40136}, {5907, 41369}, {6644, 8573}, {6676, 45141}, {6677, 7735}, {6678, 37642}, {6823, 8743}, {7401, 43136}, {7522, 37666}, {7585, 55887}, {7586, 55892}, {8553, 15646}, {8703, 36748}, {8778, 44247}, {9825, 30435}, {10169, 34845}, {10192, 59660}, {10317, 37458}, {10979, 44682}, {11007, 51937}, {11563, 47144}, {11585, 15262}, {12362, 41361}, {13351, 14836}, {13468, 58464}, {14569, 23606}, {14642, 15341}, {14869, 52703}, {15355, 44212}, {15712, 36751}, {15717, 52707}, {15761, 52418}, {16196, 41489}, {16328, 16532}, {17907, 41008}, {18487, 19710}, {18907, 52950}, {20207, 53415}, {20208, 44335}, {22052, 46853}, {23115, 55415}, {23976, 59561}, {24884, 37646}, {26906, 56297}, {32455, 58408}, {35325, 55345}, {40535, 53996}, {40884, 40896}, {44452, 46262}, {59532, 59553}

X(59657) = midpoint of X(i) and X(j) for these {i,j}: {393, 15905}, {40995, 56013}
X(59657) = complement of X(40995)
X(59657) = X(i)-Dao conjugate of X(j) for these {i, j}: {33553, 2}
X(59657) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 33553}
X(59657) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 33553}, {18848, 2887}, {41894, 18589}, {46005, 34846}
X(59657) = pole of line {34952, 58342} with respect to the circumcircle
X(59657) = pole of line {57065, 59652} with respect to the polar circle
X(59657) = pole of line {3, 33553} with respect to the Kiepert hyperbola
X(59657) = pole of line {1993, 6617} with respect to the Stammler hyperbola
X(59657) = pole of line {1636, 2501} with respect to the Steiner inellipse
X(59657) = pole of line {523, 10151} with respect to the dual conic of DeLongchamps circle
X(59657) = center of the dual of the bicevian conic of X(69) and X(264)
X(59657) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(3346)}}, {{A, B, C, X(2165), X(38253)}}, {{A, B, C, X(3344), X(40170)}}, {{A, B, C, X(18848), X(33553)}}, {{A, B, C, X(28783), X(36609)}}
X(59657) = barycentric product X(i)*X(j) for these (i, j): {18848, 33553}
X(59657) = barycentric quotient X(i)/X(j) for these (i, j): {33553, 40995}
X(59657) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1249, 59649}, {3, 59655, 1249}, {4, 36413, 38292}, {141, 23583, 20204}, {393, 15905, 30}, {577, 1990, 42459}, {577, 42459, 550}, {7583, 7584, 39571}


X(59658) = X(10)X(23332)∩X(92)X(3198)

Barycentrics    -2*a^4*b*c+3*a^5*(b+c)-a*(b-c)^2*(b+c)^3+2*b*c*(b^2-c^2)^2-2*a^3*(b+c)*(b^2+c^2) : :

X(59658) lies on these lines: {10, 23332}, {92, 3198}, {536, 20760}, {910, 7009}, {1215, 5836}, {2264, 26000}, {3740, 21231}, {6708, 44661}, {10192, 59644}, {11362, 18242}, {17441, 26011}, {18607, 53349}, {18750, 30271}, {23207, 53761}, {59554, 59570}, {59596, 59715}

X(59658) = midpoint of X(i) and X(j) for these {i,j}: {92, 3198}
X(59658) = center of the dual of the bicevian conic of X(69) and X(274)
X(59658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {59644, 59645, 10192}


X(59659) = X(2)X(1181)∩X(5)X(578)

Barycentrics    2*a^10-2*a^2*(b^2-c^2)^4-7*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-2*a^4*(b^2+c^2)^3+8*a^6*(b^4+b^2*c^2+c^4) : :
X(59659) = X[235]+X[1092], -X[11457]+5*X[31282], 3*X[35264]+X[37444]

X(59659) lies on circumconic {{A, B, C, X(18850), X(22261)}} and on these lines: {2, 1181}, {3, 1661}, {4, 11064}, {5, 578}, {26, 15448}, {39, 59558}, {49, 50143}, {110, 6146}, {113, 5893}, {140, 5663}, {141, 3549}, {154, 6643}, {155, 13567}, {195, 32455}, {235, 1092}, {323, 21451}, {343, 7505}, {389, 6677}, {394, 3542}, {468, 5562}, {511, 21841}, {524, 41587}, {546, 12897}, {547, 15806}, {550, 46817}, {567, 50139}, {576, 8263}, {858, 16655}, {1154, 44232}, {1209, 6593}, {1216, 13383}, {1352, 1656}, {1368, 6759}, {1498, 3546}, {1503, 10539}, {1511, 52070}, {1514, 52071}, {1568, 3575}, {1594, 43598}, {1596, 13346}, {1885, 51394}, {1941, 51385}, {1995, 45089}, {2072, 12134}, {2777, 44247}, {3089, 37498}, {3090, 14826}, {3167, 39571}, {3491, 20576}, {3547, 17811}, {3548, 6247}, {3564, 58465}, {3628, 21243}, {3819, 16197}, {3853, 46114}, {5056, 14389}, {5068, 59771}, {5133, 43614}, {5159, 20299}, {5446, 44233}, {5447, 16618}, {5448, 31833}, {5449, 31831}, {5480, 7529}, {5642, 13367}, {5651, 7399}, {5654, 6642}, {5876, 44158}, {5887, 58459}, {5891, 7542}, {6000, 16196}, {6353, 17834}, {6390, 59527}, {6644, 13568}, {6676, 11793}, {6696, 10257}, {6703, 6861}, {6804, 37476}, {6816, 19357}, {7392, 43841}, {7506, 11745}, {7509, 13394}, {7517, 29181}, {7553, 51392}, {7592, 37648}, {7789, 59698}, {8254, 12812}, {8361, 15595}, {8780, 9833}, {9603, 49123}, {9825, 18388}, {9967, 15585}, {10018, 11459}, {10019, 36518}, {10020, 11591}, {10024, 14643}, {10154, 46728}, {10282, 12362}, {10540, 37452}, {10625, 37971}, {10982, 37645}, {10984, 30739}, {11245, 43844}, {11381, 47090}, {11411, 26958}, {11412, 32269}, {11425, 18537}, {11449, 52069}, {11457, 31282}, {11484, 14561}, {11746, 12235}, {11819, 51391}, {12242, 14913}, {12359, 15068}, {12605, 51393}, {13292, 41597}, {13365, 22051}, {13403, 44920}, {13562, 24206}, {13754, 16238}, {14216, 30771}, {14363, 59561}, {14530, 46264}, {14788, 35283}, {15035, 35491}, {15058, 37118}, {15471, 34507}, {15873, 36747}, {16051, 34781}, {16072, 19467}, {16621, 23335}, {16657, 34148}, {18435, 40928}, {18531, 34782}, {22115, 22955}, {22802, 44241}, {23336, 45959}, {25337, 32142}, {26882, 35266}, {27082, 49670}, {31802, 44212}, {31834, 44234}, {32171, 52073}, {34850, 58446}, {35264, 37444}, {37636, 58805}, {40917, 45015}, {43839, 52262}, {44236, 45958}, {45118, 58439}, {45303, 52296}, {46850, 55294}

X(59659) = midpoint of X(i) and X(j) for these {i,j}: {10539, 11585}, {235, 1092}
X(59659) = pole of line {577, 3546} with respect to the Kiepert hyperbola
X(59659) = pole of line {5889, 10605} with respect to the Stammler hyperbola
X(59659) = pole of line {13400, 20580} with respect to the Steiner inellipse
X(59659) = pole of line {770, 2501} with respect to the dual conic of DeLongchamps circle
X(59659) = center of the dual of the bicevian conic of X(69) and X(275)
X(59659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 51425, 16252}, {5, 1147, 12241}, {5, 40111, 12370}, {5, 59553, 578}, {5, 9820, 23292}, {1498, 59767, 3546}, {2072, 18350, 12134}, {3089, 37669, 37498}, {3548, 18451, 6247}, {5448, 43586, 31833}, {5654, 6642, 12233}, {5876, 44452, 44158}, {6644, 22660, 13568}, {10170, 44516, 140}, {10257, 12162, 6696}, {10539, 11585, 1503}, {16252, 53415, 3}, {23335, 46261, 16621}


X(59660) = X(3)X(14363)∩X(5)X(16254)

Barycentrics    -8*a^4*b^2*c^2*(b^2-c^2)^2+2*b^2*c^2*(b^2-c^2)^4+3*a^10*(b^2+c^2)-a^2*(b^2-c^2)^4*(b^2+c^2)-2*a^8*(4*b^4+b^2*c^2+4*c^4)+2*a^6*(3*b^6+b^4*c^2+b^2*c^4+3*c^6) : :

X(59660) lies on these lines: {3, 14363}, {5, 16254}, {51, 44924}, {216, 3168}, {389, 40641}, {436, 3284}, {511, 59532}, {5020, 8667}, {5943, 14767}, {6676, 23583}, {6716, 53415}, {10192, 59657}, {26880, 56296}, {35360, 46832}, {41586, 57529}

X(59660) = center of the dual of the bicevian conic of X(69) and X(276)


X(59661) = X(3)X(1033)∩X(4)X(1353)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^8-(b^2-c^2)^4-7*a^6*(b^2+c^2)-a^2*(b^2+c^2)^3+a^4*(7*b^4+6*b^2*c^2+7*c^4)) : :

X(59661) lies on these lines: {3, 1033}, {4, 1353}, {5, 9308}, {30, 15351}, {53, 576}, {264, 18583}, {297, 34380}, {393, 1351}, {458, 59399}, {468, 35360}, {511, 1990}, {524, 39569}, {648, 3564}, {1075, 16196}, {1352, 15274}, {1368, 56296}, {1656, 32000}, {1941, 31829}, {1993, 14569}, {2967, 16318}, {3087, 11482}, {3167, 6524}, {3168, 6677}, {3186, 21841}, {3548, 46741}, {5050, 40138}, {5097, 6748}, {5159, 51358}, {5523, 18449}, {5878, 34808}, {6525, 8780}, {6676, 56297}, {6749, 15520}, {10002, 18440}, {11547, 41588}, {11898, 56013}, {12134, 46700}, {12362, 56298}, {14361, 30771}, {14363, 59561}, {15576, 46264}, {16976, 40664}, {17907, 48876}, {21850, 33971}, {31802, 41365}, {31945, 47147}, {33630, 44456}, {34382, 34854}, {36747, 55415}, {37124, 51732}, {37451, 45141}, {37942, 38294}, {43999, 51171}, {45847, 47202}, {47152, 55308}, {53415, 59529}, {59533, 59558}

X(59661) = midpoint of X(i) and X(j) for these {i,j}: {41204, 44704}, {648, 6530}
X(59661) = reflection of X(i) in X(j) for these {i,j}: {44228, 6530}
X(59661) = pole of line {58378, 59549} with respect to the polar circle
X(59661) = center of the dual of the bicevian conic of X(69) and X(287)
X(59661) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3346), X(15351)}}, {{A, B, C, X(28783), X(38263)}}
X(59661) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 42873, 18583}, {648, 6530, 3564}, {3564, 6530, 44228}, {9308, 41371, 5}, {41204, 44704, 30}


X(59662) = X(6)X(8780)∩X(232)X(511)

Barycentrics    a^2*(5*a^4-3*(b^2-c^2)^2-2*a^2*(b^2+c^2))*(-b^4-c^4+a^2*(b^2+c^2)) : :

X(59662) lies on these lines: {6, 8780}, {39, 44870}, {217, 15012}, {232, 511}, {1249, 59529}, {1495, 52058}, {1990, 59558}, {3818, 7736}, {3819, 22240}, {5907, 39575}, {5943, 15355}, {5972, 16318}, {6248, 47738}, {6723, 53496}, {8744, 51394}, {9306, 45141}, {9475, 59707}, {10192, 59657}, {10313, 32237}, {11672, 48316}, {18418, 43448}, {23583, 59706}, {40135, 53500}, {53415, 59649}

X(59662) = perspector of circumconic {{A, B, C, X(3146), X(4230)}}
X(59662) = X(i)-isoconjugate-of-X(j) for these {i, j}: {293, 38253}, {1821, 3532}, {1910, 35510}, {36120, 36609}
X(59662) = X(i)-Dao conjugate of X(j) for these {i, j}: {132, 38253}, {11672, 35510}, {15748, 287}, {40601, 3532}, {46094, 36609}
X(59662) = pole of line {38253, 43665} with respect to the polar circle
X(59662) = pole of line {287, 20080} with respect to the Stammler hyperbola
X(59662) = pole of line {36609, 57799} with respect to the Wallace hyperbola
X(59662) = center of the dual of the bicevian conic of X(69) and X(290)
X(59662) = intersection, other than A, B, C, of circumconics {{A, B, C, X(232), X(36616)}}, {{A, B, C, X(511), X(38263)}}, {{A, B, C, X(2211), X(33630)}}
X(59662) = barycentric product X(i)*X(j) for these (i, j): {297, 38292}, {2421, 59652}, {3146, 511}, {18594, 1959}, {18624, 59734}, {33630, 36212}
X(59662) = barycentric quotient X(i)/X(j) for these (i, j): {232, 38253}, {237, 3532}, {511, 35510}, {3146, 290}, {3289, 36609}, {18594, 1821}, {33630, 16081}, {38292, 287}, {59652, 43665}


X(59663) = X(4)X(18673)∩X(10)X(5777)

Barycentrics    a^8*(b+c)-2*a*b*(b-c)^4*c*(b+c)^2+b*(b-c)^4*c*(b+c)^3+a^2*(b-c)^2*(b+c)^3*(b^2-b*c+c^2)-2*a^3*(b^2-c^2)^2*(b^2-b*c+c^2)-2*a^7*(b^2+b*c+c^2)-a^4*(b-c)^2*(b+c)*(b^2+3*b*c+c^2)+2*a^5*(b+c)^2*(2*b^2-3*b*c+2*c^2)-a^6*(b^3+c^3) : :

X(59663) lies on these lines: {4, 18673}, {5, 25361}, {10, 5777}, {92, 2947}, {158, 1745}, {223, 24030}, {226, 1859}, {281, 5658}, {412, 2939}, {515, 7510}, {516, 3198}, {971, 6708}, {1490, 39585}, {2635, 40149}, {2831, 21635}, {3185, 51435}, {5927, 51758}, {7497, 51697}, {9942, 14058}, {10164, 59644}, {11347, 43160}, {11500, 23844}, {13257, 26942}, {13405, 16870}, {27413, 30265}, {59620, 59624}

X(59663) = midpoint of X(i) and X(j) for these {i,j}: {92, 2947}
X(59663) = center of the dual of the bicevian conic of X(75) and X(78)


X(59664) = X(2)X(17767)∩X(10)X(3627)

Barycentrics    4*a^3-2*a*(b^2+b*c+c^2)+(b+c)*(b^2+b*c+c^2) : :

X(59664) lies on these lines: {2, 17767}, {10, 3627}, {31, 4439}, {190, 6679}, {752, 33164}, {1699, 4438}, {3219, 3775}, {3475, 32935}, {3773, 7262}, {3836, 11246}, {3846, 44416}, {4011, 17728}, {4090, 59580}, {4370, 59517}, {4473, 17122}, {4512, 50313}, {4527, 37652}, {4650, 17339}, {4672, 56078}, {16814, 59628}, {17355, 59624}, {17764, 33118}, {17771, 33158}, {17772, 42033}, {24850, 59639}, {25734, 26128}, {28158, 39589}, {28542, 33132}, {31289, 32939}, {32916, 54389}, {35263, 42054}

X(59664) = pole of line {4802, 31287} with respect to the Spieker circle
X(59664) = center of the dual of the bicevian conic of X(75) and X(79)
X(59664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4370, 59574, 59517}, {59511, 59544, 59665}, {59544, 59579, 59511}


X(59665) = X(2)X(48649)∩X(10)X(550)

Barycentrics    (2*a-b-c)*(2*a^2-b^2+b*c-c^2) : :

X(59665) lies on these lines: {2, 48649}, {10, 550}, {44, 59581}, {100, 49693}, {165, 4438}, {752, 32851}, {846, 58443}, {902, 49700}, {910, 56955}, {1155, 3836}, {2345, 32916}, {3689, 49701}, {3771, 7232}, {3840, 59580}, {3846, 4640}, {3911, 4432}, {3977, 4434}, {4085, 17601}, {4394, 59672}, {4650, 17364}, {4759, 51415}, {4781, 33136}, {5218, 32935}, {5744, 32941}, {6679, 16706}, {6685, 59574}, {6690, 7228}, {17287, 33160}, {17719, 17767}, {17764, 33140}, {21000, 29844}, {28542, 37759}, {29649, 59536}, {37540, 50288}, {44416, 59679}

X(59665) = pole of line {4698, 4777} with respect to the Spieker circle
X(59665) = center of the dual of the bicevian conic of X(75) and X(80)
X(59665) = barycentric product X(i)*X(j) for these (i, j): {4358, 4650}, {17364, 519}
X(59665) = barycentric quotient X(i)/X(j) for these (i, j): {4650, 88}, {17364, 903}
X(59665) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3977, 4434, 4439}, {10164, 59544, 59511}, {59511, 59544, 59664}


X(59666) = X(1)X(4723)∩X(5)X(10)

Barycentrics    a^3*(b+c)-2*a*b*c*(b+c)+b*c*(b+c)^2+a^2*(b^2+c^2) : :

X(59666) lies on circumconic {{A, B, C, X(34434), X(56145)}} and on these lines: {1, 4723}, {2, 3953}, {5, 10}, {43, 2901}, {58, 5205}, {121, 24982}, {210, 50605}, {341, 995}, {386, 46937}, {537, 24167}, {596, 16610}, {726, 25106}, {899, 1089}, {936, 27410}, {942, 49993}, {996, 19861}, {1125, 17724}, {1193, 3992}, {1215, 3634}, {1222, 47622}, {1698, 32931}, {1739, 56318}, {2899, 48837}, {3159, 4009}, {3216, 3701}, {3290, 21067}, {3293, 4358}, {3336, 32938}, {3647, 59679}, {3666, 4075}, {3670, 3952}, {3678, 3831}, {3679, 25591}, {3697, 30818}, {3699, 13741}, {3702, 31855}, {3735, 25610}, {3741, 4015}, {3743, 25123}, {3752, 24068}, {3825, 29673}, {3828, 49598}, {3874, 4090}, {3881, 4871}, {3931, 59506}, {3987, 25253}, {4011, 8715}, {4065, 35652}, {4256, 56311}, {4385, 17749}, {4568, 25994}, {4692, 27627}, {4696, 49997}, {5268, 39946}, {5737, 51572}, {6684, 59637}, {6789, 17614}, {7359, 17355}, {7741, 33117}, {9371, 44040}, {9957, 34587}, {13466, 59524}, {16828, 31264}, {17020, 43993}, {17527, 49524}, {24046, 32937}, {24254, 25107}, {24325, 49508}, {24880, 25688}, {25440, 49127}, {26364, 56445}, {26687, 30108}, {26689, 29381}, {28576, 59672}, {29697, 35274}, {33118, 45939}, {34831, 46694}, {37592, 59577}, {44416, 47742}, {44720, 50637}, {51573, 51575}, {59514, 59626}, {59579, 59644}, {59711, 59715}

X(59666) = midpoint of X(i) and X(j) for these {i,j}: {3216, 3701}, {3987, 25253}
X(59666) = complement of X(3953)
X(59666) = X(i)-complementary conjugate of X(j) for these {i, j}: {55990, 141}
X(59666) = pole of line {513, 6681} with respect to the Spieker circle
X(59666) = pole of line {4391, 21385} with respect to the Steiner inellipse
X(59666) = center of the dual of the bicevian conic of X(75) and X(81)
X(59666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3666, 59582, 4075}, {4090, 46827, 3874}


X(59667) = X(9)X(1755)∩X(10)X(8230)

Barycentrics    a^4*(b+c)-2*a*b*c*(b^2+c^2)+b*c*(b+c)*(b^2+c^2)+a^2*(b^3+c^3) : :

X(59667) lies on these lines: {9, 1755}, {10, 8230}, {43, 3718}, {238, 25079}, {312, 1716}, {1215, 4357}, {2239, 4019}, {4011, 7083}, {4438, 56445}, {17077, 30801}, {17122, 41247}, {17257, 32931}, {17306, 24325}, {17353, 24003}, {17755, 25106}, {21232, 25140}, {27305, 30800}, {32784, 49598}

X(59667) = pole of line {830, 25666} with respect to the Spieker circle
X(59667) = center of the dual of the bicevian conic of X(75) and X(82)


X(59668) = X(2)X(4941)∩X(10)X(15310)

Barycentrics    a^3*(b-c)^2+a^2*b*c*(b+c)+b^2*c^2*(b+c)-a*b*c*(b^2+4*b*c+c^2) : :

X(59668) lies on these lines: {2, 4941}, {10, 15310}, {87, 4110}, {141, 25382}, {190, 25120}, {1964, 29705}, {2234, 29423}, {2345, 19584}, {3729, 17793}, {7155, 46032}, {7227, 24327}, {16604, 59716}, {17116, 30982}, {17339, 24003}, {17354, 25106}, {17355, 20103}, {24325, 49528}, {24451, 41886}, {24575, 26076}, {59579, 59690}, {59620, 59680}

X(59668) = midpoint of X(i) and X(j) for these {i,j}: {87, 4110}
X(59668) = complement of X(4941)
X(59668) = X(i)-complementary conjugate of X(j) for these {i, j}: {56353, 21250}
X(59668) = pole of line {4083, 31286} with respect to the Spieker circle
X(59668) = center of the dual of the bicevian conic of X(75) and X(87)
X(59668) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17355, 59562, 59511}


X(59669) = X(1)X(4487)∩X(5)X(10)

Barycentrics    a^3*(b+c)-4*a*b*c*(b+c)+b*c*(b+c)^2+a^2*(b^2+c^2) : :
X(59669) = -4*X[3634]+X[3999], X[4358]+X[31855], X[16610]+2*X[52872]

X(59669) lies on these lines: {1, 4487}, {2, 4694}, {5, 10}, {36, 9458}, {121, 1737}, {341, 17749}, {518, 49993}, {519, 24003}, {537, 24168}, {899, 3992}, {1149, 4738}, {1215, 3828}, {1319, 6789}, {1698, 32771}, {1739, 3952}, {2901, 46937}, {3159, 59582}, {3216, 52353}, {3290, 4103}, {3626, 25079}, {3634, 3999}, {3667, 59672}, {3697, 50605}, {3699, 30117}, {3741, 3956}, {3831, 4015}, {3880, 34587}, {3921, 30818}, {4090, 5883}, {4358, 31855}, {4723, 49997}, {4868, 59517}, {4975, 49984}, {13466, 49777}, {16610, 52872}, {19870, 31264}, {19875, 32931}, {21805, 49999}, {24068, 59577}, {26446, 59637}, {26688, 37610}, {26689, 29691}, {31289, 50749}, {33309, 43290}, {54319, 56145}

X(59669) = midpoint of X(i) and X(j) for these {i,j}: {1, 4487}, {1149, 4738}, {1739, 3952}, {16610, 59586}, {21805, 49999}, {4358, 31855}, {4723, 49997}, {4975, 49984}, {899, 3992}
X(59669) = reflection of X(i) in X(j) for these {i,j}: {59586, 52872}
X(59669) = complement of X(4694)
X(59669) = perspector of circumconic {{A, B, C, X(42360), X(56188)}}
X(59669) = pole of line {513, 1125} with respect to the Spieker circle
X(59669) = pole of line {4391, 30568} with respect to the Steiner inellipse
X(59669) = center of the dual of the bicevian conic of X(75) and X(88)
X(59669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16610, 59586, 59717}, {52872, 59717, 59586}


X(59670) = X(10)X(30)∩X(21)X(5697)

Barycentrics    a*(2*a^6-a^5*(b+c)-5*a^4*(b^2+c^2)+2*a^3*(b+c)*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)-a*(b+c)*(b^2-b*c+c^2)*(b^2+b*c+c^2)+4*a^2*(b^4+c^4)) : :

X(59670) lies on these lines: {10, 30}, {21, 5697}, {79, 9352}, {191, 997}, {758, 1319}, {3648, 26364}, {3652, 25440}, {3825, 16142}, {6701, 45065}, {8715, 16141}, {11263, 41546}, {11684, 30144}, {12104, 51111}, {15863, 33856}, {48698, 51506}

X(59670) = midpoint of X(i) and X(j) for these {i,j}: {191, 27086}
X(59670) = pole of line {523, 3628} with respect to the Spieker circle
X(59670) = center of the dual of the bicevian conic of X(75) and X(94)


X(59671) = X(3)X(281)∩X(5)X(19)

Barycentrics    2*a^5+(b-c)^2*(b+c)^3-a*(b^2-c^2)^2-a^3*(b^2+c^2)-a^2*(b+c)*(b^2+c^2) : :

X(59671) lies on circumconic {{A, B, C, X(2372), X(3429)}} and on these lines: {2, 41007}, {3, 281}, {5, 19}, {8, 20818}, {9, 119}, {10, 1503}, {12, 1781}, {30, 1826}, {37, 1939}, {48, 952}, {71, 7359}, {92, 7536}, {101, 594}, {140, 8756}, {169, 17303}, {198, 11499}, {199, 7140}, {219, 5690}, {284, 21933}, {346, 59591}, {355, 610}, {380, 5722}, {440, 52412}, {495, 54405}, {517, 40942}, {536, 59641}, {546, 1839}, {572, 1146}, {650, 56325}, {653, 6356}, {1060, 2331}, {1108, 15325}, {1375, 1441}, {1436, 22758}, {1723, 24914}, {1737, 2264}, {1766, 46835}, {1886, 59611}, {1953, 5901}, {2173, 18357}, {2260, 34753}, {2294, 5719}, {2333, 15973}, {2345, 9709}, {2697, 40116}, {3035, 25078}, {3109, 7054}, {3197, 5778}, {3579, 8804}, {3695, 59222}, {3950, 59584}, {4329, 30808}, {5089, 6676}, {5279, 17757}, {5341, 50036}, {5587, 18594}, {5657, 27382}, {5730, 27395}, {5746, 36279}, {5747, 39542}, {5750, 8074}, {5762, 24332}, {5776, 33899}, {6684, 59646}, {6690, 25081}, {6825, 42018}, {6850, 55116}, {6908, 15831}, {6998, 17927}, {7079, 37424}, {7110, 16548}, {7719, 8728}, {8755, 37565}, {9119, 34339}, {11374, 54424}, {13731, 17911}, {14543, 40999}, {16608, 24315}, {17043, 58406}, {17073, 20204}, {21049, 55100}, {21231, 58457}, {22147, 59380}, {26063, 38042}, {28780, 51419}, {29215, 53579}, {32047, 52033}, {35221, 38871}, {37158, 40582}, {37165, 41321}, {41340, 52260}, {43174, 59725}, {44416, 44418}, {44452, 47161}

X(59671) = reflection of X(i) in X(j) for these {i,j}: {17043, 58406}
X(59671) = complement of X(41007)
X(59671) = pole of line {441, 525} with respect to the Spieker circle
X(59671) = pole of line {57042, 57156} with respect to the Steiner inellipse
X(59671) = center of the dual of the bicevian conic of X(75) and X(95)
X(59671) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 59644, 59681}, {140, 59588, 40937}, {284, 21933, 37730}, {5690, 59594, 219}, {8756, 40937, 59588}


X(59672) = X(1)X(4462)∩X(2)X(4905)

Barycentrics    (b-c)*(a^3-2*a*b*c-a^2*(b+c)+b*c*(b+c)) : :
X(59672) = -X[649]+3*X[47817], -X[764]+3*X[47841], -X[1019]+3*X[47804], -X[1491]+3*X[48553], -X[1734]+3*X[47793], -X[2254]+3*X[47794], -X[2530]+3*X[47822], -X[3777]+3*X[47839], 3*X[4728]+X[47936], -3*X[4776]+X[48086], -3*X[4800]+X[48273] and many others

X(59672) lies on these lines: {1, 4462}, {2, 4905}, {10, 3309}, {513, 3814}, {514, 3716}, {519, 4162}, {522, 48003}, {649, 47817}, {650, 8714}, {659, 29013}, {663, 3762}, {667, 993}, {693, 47970}, {764, 47841}, {830, 48063}, {900, 50504}, {918, 20517}, {1019, 47804}, {1125, 3669}, {1491, 48553}, {1577, 4724}, {1734, 47793}, {1960, 29324}, {2254, 47794}, {2530, 47822}, {2533, 48351}, {2787, 48331}, {2832, 48547}, {3647, 4782}, {3667, 59669}, {3700, 29190}, {3777, 47839}, {3878, 4083}, {3887, 4147}, {3907, 4794}, {3910, 49288}, {4010, 29302}, {4040, 4391}, {4063, 12514}, {4086, 48340}, {4142, 23875}, {4151, 47965}, {4170, 4498}, {4394, 59665}, {4401, 6002}, {4404, 42312}, {4468, 21185}, {4490, 48305}, {4728, 47936}, {4761, 48367}, {4776, 48086}, {4778, 8062}, {4791, 29051}, {4800, 48273}, {4811, 50346}, {4823, 48623}, {4830, 29270}, {4874, 6372}, {4885, 23789}, {4893, 48409}, {4922, 58155}, {4960, 47941}, {4978, 47832}, {4985, 46385}, {5267, 39227}, {6004, 21051}, {6008, 51090}, {7192, 47942}, {10015, 29304}, {14321, 28481}, {14349, 47821}, {17072, 42325}, {17924, 39585}, {21146, 47875}, {21201, 23877}, {21301, 48111}, {23795, 31287}, {23796, 31250}, {23800, 48165}, {23879, 49286}, {23880, 48284}, {23887, 48546}, {25259, 29294}, {25380, 48075}, {25439, 58334}, {25666, 48066}, {28576, 59666}, {28591, 48545}, {28840, 47987}, {29062, 50347}, {29130, 48300}, {29158, 47890}, {29160, 47708}, {29168, 48405}, {29170, 50512}, {29196, 50340}, {29198, 52601}, {29216, 50326}, {30565, 48272}, {30835, 48556}, {31251, 36848}, {31288, 45666}, {41800, 50357}, {46403, 47977}, {47694, 47959}, {47697, 47948}, {47709, 48557}, {47711, 47972}, {47712, 48094}, {47713, 48118}, {47715, 47874}, {47795, 48151}, {47811, 48264}, {47813, 47906}, {47818, 48144}, {47820, 48320}, {47826, 50449}, {47837, 50359}, {47838, 48131}, {47840, 48335}, {47872, 50352}, {47911, 48578}, {47913, 48234}, {48023, 48551}, {48089, 59714}, {48183, 48406}, {48186, 50354}, {48330, 51111}, {48561, 50336}, {49278, 57066}, {50455, 57514}

X(59672) = midpoint of X(i) and X(j) for these {i,j}: {1, 4462}, {1577, 4724}, {1734, 53343}, {2533, 48351}, {21301, 48111}, {4040, 4391}, {4063, 48080}, {4086, 48340}, {4170, 4498}, {4404, 42312}, {4468, 21185}, {4490, 48305}, {4761, 48367}, {4791, 48065}, {4811, 50346}, {4823, 48623}, {4960, 47941}, {4978, 47929}, {4985, 46385}, {46403, 47977}, {47694, 47959}, {47697, 47948}, {47711, 47972}, {47712, 48094}, {47713, 48118}, {48055, 48403}, {650, 59590}, {659, 48267}, {663, 3762}, {667, 48265}, {693, 47970}, {7192, 47942}, {7662, 47966}
X(59672) = reflection of X(i) in X(j) for these {i,j}: {10, 20317}, {23789, 4885}, {3669, 1125}, {4401, 53580}, {48066, 25666}, {48075, 25380}, {48089, 59714}, {48285, 663}
X(59672) = complement of X(4905)
X(59672) = perspector of circumconic {{A, B, C, X(35058), X(39721)}}
X(59672) = X(i)-complementary conjugate of X(j) for these {i, j}: {692, 40599}
X(59672) = pole of line {518, 970} with respect to the excircles-radical circle
X(59672) = pole of line {3953, 24248} with respect to the incircle
X(59672) = pole of line {518, 1125} with respect to the Spieker circle
X(59672) = pole of line {321, 3294} with respect to the Steiner inellipse
X(59672) = pole of line {31946, 48047} with respect to the dual conic of Wallace hyperbola
X(59672) = center of the dual of the bicevian conic of X(75) and X(100)
X(59672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 59590, 8714}, {659, 48267, 29013}, {667, 48265, 29148}, {1577, 4724, 29186}, {4040, 4391, 29066}, {4448, 48265, 667}, {4791, 48065, 29051}, {6002, 53580, 4401}, {47793, 53343, 1734}, {47815, 48080, 4063}, {47832, 47929, 4978}, {48055, 48403, 514}, {48075, 48196, 25380}


X(59673) = X(171)X(26652)∩X(1215)X(4468)

Barycentrics    (b-c)*(-2*a*b^2*c^2+a^4*(b+c)+b^2*c^2*(b+c)-a^3*(b^2+b*c+c^2)) : :

X(59673) lies on these lines: {171, 26652}, {649, 32916}, {1215, 4468}, {3676, 24325}, {3835, 3846}, {4521, 59511}, {6586, 59721}, {6589, 20525}, {14321, 28481}, {17123, 26694}, {18108, 30909}, {20295, 50295}, {24353, 24720}, {25128, 37998}, {26571, 33174}, {31993, 44319}, {32771, 47676}

X(59673) = pole of line {674, 3589} with respect to the Spieker circle
X(59673) = pole of line {28287, 56079} with respect to the Steiner inellipse
X(59673) = center of the dual of the bicevian conic of X(75) and X(101)


X(59674) = X(9)X(1755)∩X(10)X(6917)

Barycentrics    a*(a^5-a^4*(b+c)-2*a^3*(b^2+c^2)+a*(b^2+c^2)^2+2*a^2*(b^3+c^3)-(b+c)*(b^4+c^4)) : :

X(59674) lies on these lines: {9, 1755}, {10, 6917}, {63, 2887}, {740, 1711}, {1708, 3836}, {1756, 56524}, {3219, 26032}, {3846, 55869}, {4011, 7082}, {4432, 30223}, {6505, 16598}, {15296, 29670}, {18232, 59639}, {20588, 49693}, {25760, 55872}, {25957, 55873}, {32941, 42012}, {59544, 59682}

X(59674) = midpoint of X(i) and X(j) for these {i,j}: {1711, 3719}
X(59674) = center of the dual of the bicevian conic of X(75) and X(158)
X(59674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1711, 3719, 740}


X(59675) = X(2)X(9614)∩X(3)X(10)

Barycentrics    4*a^4+a^3*(b+c)+(b^2-c^2)^2-a*(b+c)*(b^2-6*b*c+c^2)-a^2*(5*b^2+2*b*c+5*c^2) : :

X(59675) lies on these lines: {1, 26062}, {2, 9614}, {3, 10}, {4, 59614}, {19, 59604}, {35, 8582}, {36, 6736}, {40, 6700}, {46, 6745}, {55, 9843}, {57, 59591}, {65, 6174}, {100, 1210}, {165, 12572}, {214, 3244}, {404, 31397}, {452, 1698}, {516, 6848}, {519, 1420}, {551, 3812}, {595, 45204}, {631, 1706}, {942, 59584}, {946, 3035}, {986, 59593}, {997, 43174}, {1054, 24171}, {1058, 31190}, {1125, 1697}, {1155, 21075}, {1158, 59687}, {1329, 31730}, {1467, 3811}, {1737, 37313}, {1939, 6184}, {2078, 10916}, {2093, 27383}, {2550, 31423}, {2551, 35242}, {3085, 12436}, {3295, 6692}, {3361, 34619}, {3452, 3579}, {3523, 9623}, {3625, 5126}, {3634, 5084}, {3671, 59719}, {3698, 52793}, {3814, 51118}, {3817, 6944}, {3820, 31663}, {3825, 25973}, {3826, 3847}, {3828, 11111}, {3878, 31798}, {3893, 5298}, {3911, 5687}, {4002, 37298}, {4188, 4311}, {4292, 5552}, {4298, 45701}, {4301, 6970}, {4304, 24982}, {4315, 10915}, {4386, 31396}, {4848, 5440}, {5053, 54316}, {5082, 31231}, {5123, 31673}, {5265, 12629}, {5435, 6765}, {5438, 5657}, {5493, 21616}, {5530, 56010}, {5766, 38052}, {5784, 58636}, {5836, 10165}, {5882, 8256}, {6361, 30827}, {6594, 30424}, {6681, 49600}, {6690, 19862}, {6904, 31434}, {6921, 44675}, {7080, 15803}, {7682, 11248}, {7967, 45036}, {8715, 11019}, {9613, 37267}, {9679, 13936}, {9780, 17576}, {9943, 58649}, {10106, 16371}, {10199, 34639}, {10200, 12575}, {11362, 59691}, {11491, 43175}, {12053, 13747}, {12514, 20103}, {12527, 58887}, {13369, 58645}, {15325, 21627}, {15587, 38130}, {17010, 38901}, {17706, 51071}, {17792, 38118}, {18250, 37427}, {20588, 59336}, {21625, 25439}, {23340, 31870}, {25681, 28194}, {26363, 58441}, {31159, 38411}, {31803, 58660}, {31853, 52907}, {38068, 49732}, {40263, 46694}, {40998, 59316}, {43177, 59333}, {43182, 52684}, {59579, 59644}, {59639, 59686}, {59678, 59682}

X(59675) = midpoint of X(i) and X(j) for these {i,j}: {7080, 15803}
X(59675) = reflection of X(i) in X(j) for these {i,j}: {10, 37828}
X(59675) = complement of X(9614)
X(59675) = pole of line {6332, 49272} with respect to the Steiner inellipse
X(59675) = pole of line {3772, 5748} with respect to the dual conic of Yff parabola
X(59675) = center of the dual of the bicevian conic of X(75) and X(189)
X(59675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 59572, 6700}, {55, 9843, 51724}, {57, 59591, 59722}, {1376, 6684, 10}, {1697, 17567, 1125}, {4188, 6735, 4311}, {8715, 58405, 11019}, {12640, 24928, 3244}, {59644, 59689, 59579}


X(59676) = X(1)X(87)∩X(2)X(3551)

Barycentrics    (2*a^2+b*c-a*(b+c))*(a*(b-c)^2+b*c*(b+c)) : :

X(59676) lies on these lines: {1, 87}, {2, 3551}, {9, 59679}, {10, 15310}, {142, 20530}, {513, 25140}, {1145, 55062}, {2092, 50115}, {3550, 4090}, {6184, 59579}, {6686, 17353}, {11530, 50314}, {12640, 49529}, {16482, 24742}, {17355, 19584}, {24342, 25965}, {26103, 26806}

X(59676) = complement of X(3551)
X(59676) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3551, 57400}
X(59676) = X(i)-Dao conjugate of X(j) for these {i, j}: {17448, 2}
X(59676) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 17448}
X(59676) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 3662}, {31, 17448}, {3550, 10}, {4090, 3454}, {17105, 3840}, {17350, 141}, {23472, 1086}, {24524, 2887}, {24840, 46100}, {31286, 116}, {48330, 11}, {59518, 626}
X(59676) = pole of line {31286, 57235} with respect to the Steiner inellipse
X(59676) = pole of line {3662, 17448} with respect to the dual conic of Yff parabola
X(59676) = center of the dual of the bicevian conic of X(75) and X(192)
X(59676) = intersection, other than A, B, C, of circumconics {{A, B, C, X(87), X(3550)}}, {{A, B, C, X(330), X(17350)}}, {{A, B, C, X(3551), X(17448)}}, {{A, B, C, X(3840), X(7155)}}, {{A, B, C, X(4090), X(42027)}}, {{A, B, C, X(16722), X(32005)}}
X(59676) = barycentric product X(i)*X(j) for these (i, j): {17178, 4090}, {17350, 3840}, {17448, 24524}, {20892, 3550}, {22343, 59518}
X(59676) = barycentric quotient X(i)/X(j) for these (i, j): {4090, 56197}, {17350, 32011}, {17448, 3551}


X(59677) = X(10)X(971)∩X(85)X(170)

Barycentrics    -2*a*b*(b-c)^4*c+a^6*(b+c)+b*(b-c)^4*c*(b+c)+a^2*(b-c)^2*(b+c)*(b^2+c^2)-4*a^3*(b-c)^2*(b^2+b*c+c^2)-2*a^5*(2*b^2+b*c+2*c^2)+a^4*(b+c)*(6*b^2-7*b*c+6*c^2) : :

X(59677) lies on these lines: {3, 43163}, {10, 971}, {85, 170}, {517, 43168}, {1212, 43158}, {1446, 3000}, {1742, 3673}, {3160, 24009}, {5527, 55082}, {5732, 24325}, {6706, 15726}, {9305, 24333}, {9312, 56380}, {10178, 34852}, {11201, 43983}, {24728, 29054}

X(59677) = midpoint of X(i) and X(j) for these {i,j}: {85, 170}
X(59677) = reflection of X(i) in X(j) for these {i,j}: {1212, 43158}, {34848, 6706}
X(59677) = center of the dual of the bicevian conic of X(75) and X(200)
X(59677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6706, 15726, 34848}


X(59678) = X(9)X(2272)∩X(10)X(1503)

Barycentrics    8*a^5-3*a^4*(b+c)+(b-c)^2*(b+c)^3-4*a*(b^2-c^2)^2-4*a^3*(b^2+c^2)+2*a^2*(b+c)*(b^2+c^2) : :

X(59678) lies on circumconic {{A, B, C, X(3429), X(10307)}} and on these lines: {4, 59725}, {9, 2272}, {10, 1503}, {19, 4301}, {100, 59595}, {101, 3950}, {380, 30331}, {515, 59578}, {516, 18594}, {610, 4297}, {910, 10443}, {946, 59594}, {1781, 3671}, {1826, 34648}, {1944, 43172}, {2173, 8804}, {2264, 11019}, {2760, 40116}, {3244, 20818}, {3668, 14543}, {3817, 40942}, {5279, 21060}, {5542, 54405}, {5746, 30424}, {5750, 38204}, {5819, 38151}, {5882, 59588}, {20263, 21635}, {22147, 28234}, {25440, 59579}, {59675, 59682}

X(59678) = midpoint of X(i) and X(j) for these {i,j}: {18594, 27382}
X(59678) = pole of line {57064, 57197} with respect to the Steiner inellipse
X(59678) = center of the dual of the bicevian conic of X(75) and X(253)
X(59678) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {610, 59646, 4297}, {18594, 27382, 516}


X(59679) = X(2)X(902)∩X(3)X(10)

Barycentrics    2*a^3-a*(b-c)^2-2*a^2*(b+c)-b*c*(b+c) : :

X(59679) lies on these lines: {2, 902}, {3, 10}, {9, 59676}, {35, 3831}, {42, 37639}, {43, 5145}, {55, 3840}, {57, 29670}, {63, 4090}, {100, 3741}, {165, 3923}, {171, 4279}, {183, 3663}, {200, 49510}, {226, 24692}, {238, 6686}, {312, 17601}, {333, 56009}, {498, 26057}, {519, 4256}, {551, 16486}, {726, 7081}, {750, 43223}, {752, 37662}, {846, 5205}, {986, 8669}, {1054, 3757}, {1125, 5255}, {1150, 4685}, {1155, 1215}, {1211, 6174}, {1621, 4871}, {1698, 4195}, {2177, 42057}, {2802, 35626}, {2887, 5432}, {3011, 24169}, {3035, 3846}, {3158, 49458}, {3306, 29651}, {3634, 13740}, {3647, 59666}, {3666, 4434}, {3683, 24003}, {3740, 59624}, {3749, 29668}, {3752, 50023}, {3769, 49477}, {3771, 5218}, {3775, 35023}, {3828, 4234}, {3836, 6690}, {3911, 29655}, {3950, 31477}, {3961, 24627}, {3971, 4414}, {3980, 29828}, {3993, 17594}, {4011, 35258}, {4026, 58443}, {4085, 37646}, {4135, 32934}, {4203, 32917}, {4357, 59593}, {4385, 8720}, {4417, 50304}, {4421, 32941}, {4425, 26250}, {4439, 59583}, {4640, 59511}, {4709, 11679}, {4970, 17763}, {5248, 46827}, {5269, 29650}, {5278, 9350}, {5325, 59684}, {5435, 36479}, {5437, 24331}, {6541, 59547}, {7824, 30038}, {8715, 50608}, {9352, 32771}, {9458, 27065}, {11354, 19744}, {11814, 40998}, {12042, 41193}, {13405, 49676}, {16468, 59298}, {17124, 25501}, {17349, 36634}, {17355, 26244}, {17591, 49464}, {17593, 32926}, {17595, 32920}, {17684, 30030}, {17719, 33068}, {17766, 24239}, {19243, 49993}, {19278, 59311}, {21071, 31451}, {21242, 34612}, {24165, 26227}, {24850, 31663}, {25102, 59625}, {25496, 37540}, {25999, 54335}, {27002, 29820}, {28508, 33096}, {28512, 33071}, {29665, 33125}, {29846, 33086}, {30063, 33047}, {31151, 41878}, {32851, 33079}, {32864, 49988}, {33116, 49769}, {33152, 37764}, {33162, 51583}, {33771, 35633}, {37604, 59297}, {37642, 50287}, {37683, 42043}, {37684, 42042}, {42316, 59579}, {44416, 59665}, {46684, 59637}, {49511, 59584}, {50295, 59572}, {51619, 59628}, {53601, 59730}, {56949, 59719}

X(59679) = midpoint of X(i) and X(j) for these {i,j}: {7081, 17596}
X(59679) = complement of X(33106)
X(59679) = pole of line {28565, 47808} with respect to the orthoptic circle of the Steiner Inellipse
X(59679) = pole of line {6332, 30519} with respect to the Steiner inellipse
X(59679) = pole of line {3772, 17367} with respect to the dual conic of Yff parabola
X(59679) = center of the dual of the bicevian conic of X(75) and X(257)
X(59679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32948, 21241}, {2, 3550, 49482}, {57, 29670, 49479}, {171, 6685, 33682}, {846, 5205, 59517}, {1376, 32916, 10}, {3035, 44419, 3846}, {4357, 59593, 59726}, {7081, 17596, 726}, {17594, 29649, 3993}, {37683, 42043, 49685}


X(59680) = X(9)X(119)∩X(37)X(140)

Barycentrics    2*a^5+(b-c)^2*(b+c)^3-a*(b^2-c^2)^2-a^3*(b^2-4*b*c+c^2)-a^2*(b+c)*(b^2+4*b*c+c^2) : :

X(59680) lies on these lines: {3, 2345}, {5, 1766}, {6, 5690}, {9, 119}, {10, 29207}, {19, 1595}, {37, 140}, {220, 59594}, {346, 631}, {355, 59772}, {495, 2285}, {496, 54359}, {517, 5750}, {549, 17281}, {572, 594}, {573, 17369}, {579, 5771}, {970, 10469}, {1030, 33814}, {1100, 5844}, {1212, 59588}, {1213, 30449}, {1375, 25001}, {1385, 2321}, {1387, 17452}, {1483, 17299}, {2171, 37737}, {2265, 21012}, {2268, 37730}, {3579, 10445}, {3723, 51700}, {3731, 31423}, {3739, 19512}, {3950, 10165}, {4007, 37727}, {4058, 5882}, {4472, 24220}, {4908, 11812}, {4999, 59479}, {5257, 11231}, {5657, 5749}, {5755, 16549}, {5816, 38042}, {5819, 38121}, {5831, 31419}, {5839, 59380}, {5901, 17398}, {6684, 17355}, {6996, 28604}, {7227, 29069}, {10246, 17314}, {12433, 55100}, {12610, 17385}, {12702, 26039}, {13006, 56325}, {16435, 19822}, {16777, 38028}, {16972, 38110}, {17275, 38112}, {21231, 36949}, {24581, 25243}, {31657, 50995}, {37654, 38066}, {38602, 59235}, {41325, 59381}, {50087, 50824}, {50115, 50821}, {50131, 50823}, {54283, 54322}, {58441, 59585}, {59620, 59668}

X(59680) = midpoint of X(i) and X(j) for these {i,j}: {572, 594}
X(59680) = pole of line {3910, 14838} with respect to the Spieker circle
X(59680) = center of the dual of the bicevian conic of X(75) and X(261)
X(59680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {572, 594, 952}, {1766, 17303, 5}, {4999, 59479, 59727}


X(59681) = X(3)X(9)∩X(6)X(169)

Barycentrics    a*(2*a^4-a^3*(b+c)-(b^2-c^2)^2-a^2*(b^2+c^2)+a*(b+c)*(b^2+c^2)) : :
X(59681) = -X[4319]+3*X[35273]

X(59681) lies on these lines: {1, 2264}, {2, 41004}, {3, 9}, {4, 27382}, {5, 40942}, {6, 169}, {7, 24781}, {10, 1503}, {19, 219}, {28, 72}, {30, 8804}, {37, 101}, {40, 18594}, {44, 579}, {45, 37504}, {48, 1385}, {56, 1723}, {57, 1122}, {63, 11347}, {65, 1781}, {71, 2173}, {78, 37052}, {105, 14523}, {110, 40582}, {142, 3589}, {144, 24604}, {197, 58648}, {210, 5285}, {218, 2285}, {220, 1766}, {222, 55875}, {226, 6678}, {228, 8021}, {241, 16551}, {265, 7110}, {277, 28079}, {281, 355}, {307, 1375}, {321, 59186}, {329, 7490}, {346, 41391}, {374, 10202}, {380, 3295}, {442, 44093}, {443, 5749}, {478, 5452}, {496, 40963}, {515, 59646}, {518, 51687}, {572, 1212}, {573, 910}, {604, 43065}, {607, 22132}, {608, 22131}, {650, 14737}, {651, 1439}, {672, 16056}, {692, 21867}, {894, 16054}, {906, 1950}, {912, 9119}, {952, 59588}, {966, 5791}, {999, 2257}, {1071, 37275}, {1108, 1731}, {1119, 54425}, {1214, 1762}, {1282, 9440}, {1400, 28246}, {1441, 14543}, {1445, 37272}, {1449, 15934}, {1482, 22147}, {1486, 15733}, {1633, 17668}, {1713, 4245}, {1726, 25091}, {1741, 24467}, {1752, 50196}, {1761, 4047}, {1782, 2983}, {1817, 3219}, {1824, 26885}, {1826, 7359}, {1827, 36010}, {1839, 22793}, {1859, 6056}, {1939, 21857}, {1951, 22118}, {1953, 10222}, {1958, 25083}, {2000, 35259}, {2002, 23144}, {2050, 27411}, {2183, 5755}, {2194, 43214}, {2246, 2347}, {2256, 9957}, {2261, 9940}, {2262, 2323}, {2265, 39006}, {2268, 16601}, {2270, 5709}, {2303, 37594}, {2324, 37531}, {2327, 37227}, {2328, 3198}, {2355, 26893}, {2747, 40116}, {2809, 30621}, {3059, 40910}, {3079, 7046}, {3197, 31788}, {3305, 21483}, {3556, 18251}, {3601, 3731}, {3686, 8074}, {3692, 5687}, {3694, 38903}, {3713, 17742}, {3876, 7520}, {3916, 37264}, {3950, 12437}, {3973, 15803}, {3990, 46884}, {4219, 5927}, {4223, 5728}, {4228, 16465}, {4319, 35273}, {4640, 41430}, {5045, 22153}, {5122, 16885}, {5126, 37519}, {5227, 7719}, {5257, 6675}, {5294, 37266}, {5296, 6857}, {5341, 17796}, {5356, 56534}, {5440, 27396}, {5572, 52015}, {5708, 16670}, {5722, 5802}, {5743, 5745}, {5746, 57282}, {5750, 8728}, {5773, 20905}, {5787, 6554}, {5805, 5819}, {5811, 37417}, {5813, 26668}, {5816, 46835}, {5831, 26036}, {5887, 38860}, {5908, 17814}, {6510, 18161}, {6847, 27508}, {6996, 27420}, {7079, 9947}, {7291, 37659}, {8727, 40869}, {8731, 59207}, {9028, 16608}, {9122, 55104}, {9310, 40968}, {9816, 37543}, {9895, 42463}, {9956, 26063}, {10436, 37075}, {10445, 20420}, {11018, 25514}, {11101, 56948}, {11248, 55111}, {11518, 16667}, {12262, 31803}, {12329, 40659}, {14018, 58798}, {15178, 23073}, {15509, 55869}, {15587, 24309}, {15947, 44665}, {16548, 21871}, {17073, 24316}, {17257, 24609}, {17303, 56746}, {17350, 37274}, {17353, 37326}, {17355, 30618}, {17368, 37097}, {17451, 21748}, {17502, 22054}, {17612, 23617}, {17682, 41246}, {17811, 21370}, {18180, 56000}, {18589, 58457}, {18596, 37613}, {18598, 41340}, {18634, 31184}, {18650, 30810}, {19350, 34339}, {19925, 59725}, {20262, 51755}, {20601, 37597}, {20602, 43216}, {20991, 42012}, {21621, 53415}, {22063, 34586}, {22122, 52413}, {22126, 35631}, {22357, 31666}, {24317, 58406}, {24684, 58410}, {25078, 59691}, {25440, 59682}, {26006, 41007}, {26685, 37280}, {27064, 37092}, {28739, 37382}, {35326, 55323}, {37254, 41228}, {37418, 38856}, {37581, 37658}, {37584, 54420}, {45305, 51435}, {50658, 52823}, {56176, 59733}, {58326, 58906}

X(59681) = midpoint of X(i) and X(j) for these {i,j}: {19, 219}, {9, 5781}
X(59681) = reflection of X(i) in X(j) for these {i,j}: {16608, 40530}, {18589, 58457}
X(59681) = complement of X(41004)
X(59681) = perspector of circumconic {{A, B, C, X(13138), X(13397)}}
X(59681) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57287, 56178}
X(59681) = X(i)-complementary conjugate of X(j) for these {i, j}: {34406, 2887}, {40436, 1368}, {55994, 141}, {56003, 18589}, {56305, 10}
X(59681) = pole of line {525, 3239} with respect to the Spieker circle
X(59681) = pole of line {1723, 2361} with respect to the Feuerbach hyperbola
X(59681) = pole of line {1817, 3218} with respect to the Stammler hyperbola
X(59681) = pole of line {6591, 47695} with respect to the Steiner inellipse
X(59681) = pole of line {162, 27834} with respect to the Hutson-Moses hyperbola
X(59681) = pole of line {513, 1835} with respect to the dual conic of DeLongchamps circle
X(59681) = pole of line {1279, 12053} with respect to the dual conic of Yff parabola
X(59681) = center of the dual of the bicevian conic of X(75) and X(264)
X(59681) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(759)}}, {{A, B, C, X(268), X(56269)}}, {{A, B, C, X(282), X(2341)}}, {{A, B, C, X(329), X(15831)}}, {{A, B, C, X(1257), X(1807)}}, {{A, B, C, X(1436), X(34079)}}, {{A, B, C, X(1439), X(5379)}}, {{A, B, C, X(1903), X(2161)}}, {{A, B, C, X(5438), X(51498)}}, {{A, B, C, X(17054), X(39267)}}, {{A, B, C, X(34048), X(55989)}}, {{A, B, C, X(34406), X(41004)}}
X(59681) = barycentric product X(i)*X(j) for these (i, j): {1, 57287}, {100, 44409}, {21452, 52663}, {56178, 7}
X(59681) = barycentric quotient X(i)/X(j) for these (i, j): {44409, 693}, {56178, 8}, {57287, 75}
X(59681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 59594, 40942}, {6, 54405, 942}, {9, 1490, 15831}, {9, 282, 42018}, {9, 5781, 971}, {9, 610, 3}, {9, 965, 5044}, {10, 59644, 59671}, {10, 59678, 59644}, {19, 219, 517}, {37, 284, 24929}, {48, 40937, 1385}, {355, 59578, 281}, {2287, 5279, 72}, {2323, 16547, 2262}, {5341, 17796, 21853}, {16548, 52405, 21871}, {25440, 59682, 59689}


X(59682) = X(4)X(9)∩X(6)X(4574)

Barycentrics    a*(a^4-2*a^3*(b+c)-(b+c)^2*(b^2-b*c+c^2)+a*(b+c)*(2*b^2-b*c+2*c^2)) : :

X(59682) lies on these lines: {4, 9}, {6, 4574}, {37, 30143}, {44, 3694}, {45, 4016}, {55, 58697}, {63, 20106}, {190, 17861}, {200, 902}, {214, 20818}, {219, 25078}, {346, 49168}, {519, 1723}, {579, 49676}, {672, 3771}, {728, 4072}, {1018, 40968}, {1108, 52978}, {1210, 59595}, {1724, 52387}, {1743, 3811}, {2257, 3244}, {2264, 8715}, {3035, 59594}, {3161, 18391}, {3204, 40988}, {3731, 54318}, {3919, 54424}, {3950, 8557}, {4370, 21933}, {4422, 16608}, {4438, 5755}, {5227, 49505}, {5749, 10198}, {6738, 55337}, {8256, 59588}, {10197, 50115}, {12432, 56536}, {16788, 21811}, {22836, 27396}, {25440, 59681}, {25728, 26699}, {26364, 27382}, {37828, 59578}, {46345, 50535}, {59544, 59674}, {59675, 59678}

X(59682) = midpoint of X(i) and X(j) for these {i,j}: {1723, 3692}
X(59682) = pole of line {4000, 34772} with respect to the dual conic of Yff parabola
X(59682) = center of the dual of the bicevian conic of X(75) and X(273)
X(59682) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(55989)}}, {{A, B, C, X(2983), X(54324)}}
X(59682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {219, 25078, 30144}, {1210, 59595, 59728}, {1723, 3692, 519}, {59681, 59689, 25440}


X(59683) = X(9)X(2947)∩X(118)X(124)

Barycentrics    a*(-2*b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)-a^5*(b+c)*(b^2+c^2)-a*(b-c)^2*(b+c)^3*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+2*a^3*(b+c)*(b^4+c^4)-2*a^4*(b^4-b^2*c^2+c^4)) : :

X(59683) lies on these lines: {2, 39796}, {5, 58491}, {9, 2947}, {10, 6000}, {29, 7066}, {92, 44707}, {118, 124}, {181, 5327}, {515, 960}, {518, 40960}, {916, 6708}, {946, 10110}, {1001, 34048}, {1013, 6056}, {4640, 41430}, {5778, 9564}, {5907, 34831}, {5943, 34830}, {6508, 7069}, {10174, 59644}, {10181, 59645}, {11793, 14058}, {50601, 56885}

X(59683) = midpoint of X(i) and X(j) for these {i,j}: {92, 44707}
X(59683) = complement of X(39796)
X(59683) = pole of line {520, 6130} with respect to the Spieker circle
X(59683) = center of the dual of the bicevian conic of X(75) and X(276)


X(59684) = X(2)X(16496)∩X(5)X(10)

Barycentrics    3*a^2*(b+c)+(b+c)*(b^2+c^2)-2*a*(b^2+4*b*c+c^2) : :

X(59684) lies on these lines: {2, 16496}, {5, 10}, {43, 4078}, {141, 58629}, {142, 4090}, {210, 20455}, {537, 24175}, {612, 38049}, {748, 49991}, {1376, 59544}, {1738, 27538}, {2321, 37673}, {3663, 4096}, {3717, 16569}, {3742, 49536}, {3755, 59517}, {3823, 4138}, {3826, 59596}, {3836, 21060}, {3840, 24393}, {3977, 9350}, {3980, 46916}, {4035, 49769}, {4104, 32782}, {4126, 16610}, {4383, 49684}, {4438, 20103}, {4656, 42056}, {4682, 59408}, {4767, 26724}, {4780, 35652}, {4847, 24003}, {4899, 17063}, {5212, 33092}, {5316, 29673}, {5325, 59679}, {5739, 50781}, {6555, 16020}, {6666, 29670}, {11019, 49693}, {11814, 24386}, {15064, 59688}, {17277, 50611}, {17278, 59597}, {18743, 49772}, {20684, 25615}, {24177, 42054}, {28580, 30568}, {30393, 50295}, {32911, 51005}, {36479, 51780}, {37682, 47359}, {49524, 58451}, {49554, 51415}, {52907, 58441}, {56009, 56078}

X(59684) = center of the dual of the bicevian conic of X(75) and X(277)
X(59684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 59686, 59511}, {17278, 59597, 59730}


X(59685) = X(1)X(44722)∩X(5)X(10)

Barycentrics    a^2*(b-c)^2+3*a^3*(b+c)+(b+c)^2*(b^2+c^2)-a*(b+c)*(b^2+4*b*c+c^2) : :

X(59685) lies on these lines: {1, 44722}, {5, 10}, {386, 4078}, {519, 1616}, {537, 24171}, {899, 3710}, {978, 3717}, {1125, 3242}, {1210, 24003}, {1265, 1722}, {1834, 59506}, {3646, 36479}, {3678, 49511}, {3772, 59598}, {3880, 59704}, {3915, 49991}, {3952, 23536}, {3976, 4899}, {4090, 21620}, {4101, 29687}, {4422, 56176}, {4438, 6700}, {4847, 25079}, {5045, 49536}, {5293, 17353}, {5777, 59688}, {12436, 32935}, {13161, 27538}, {20103, 39589}, {21629, 58637}, {24178, 32937}, {24391, 46827}, {24393, 50608}, {24443, 52354}, {24850, 59579}, {25006, 25591}, {25101, 37573}, {25440, 59544}, {25466, 59596}, {25914, 49515}, {25967, 49454}, {26685, 37552}, {27385, 33115}, {30142, 38049}, {32934, 59576}, {33117, 41012}, {37594, 59408}

X(59685) = midpoint of X(i) and X(j) for these {i,j}: {1265, 1722}
X(59685) = pole of line {513, 44928} with respect to the Spieker circle
X(59685) = pole of line {3752, 17265} with respect to the dual conic of Yff parabola
X(59685) = center of the dual of the bicevian conic of X(75) and X(278)
X(59685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3772, 59598, 59731}, {25440, 59639, 59544}


X(59686) = X(1)X(6555)∩X(5)X(10)

Barycentrics    5*a^2*(b+c)+(b+c)^3-2*a*(b^2+6*b*c+c^2) : :

X(59686) lies on these lines: {1, 6555}, {2, 4899}, {5, 10}, {43, 3950}, {142, 59596}, {899, 4082}, {1721, 8580}, {1738, 4052}, {3244, 4952}, {3663, 27538}, {3717, 45204}, {3755, 59506}, {3947, 36503}, {3952, 24177}, {3967, 53594}, {4000, 59599}, {4090, 5542}, {4356, 59517}, {4422, 59584}, {4640, 15828}, {5423, 23511}, {11019, 24003}, {12640, 59704}, {20205, 46694}, {21060, 21255}, {24175, 32937}, {26688, 49991}, {29670, 38059}, {52907, 59572}, {59639, 59675}

X(59686) = midpoint of X(i) and X(j) for these {i,j}: {5423, 23511}
X(59686) = pole of line {3752, 29627} with respect to the dual conic of Yff parabola
X(59686) = center of the dual of the bicevian conic of X(75) and X(279)
X(59686) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4000, 59599, 59732}, {59511, 59684, 10}


X(59687) = X(4)X(519)∩X(11)X(118)

Barycentrics    3*a^5*(b+c)-(b-c)^4*(b+c)^2+6*a^2*(b^2-c^2)^2-2*a^3*(b+c)*(b^2-4*b*c+c^2)-a*(b-c)^2*(b+c)*(b^2+10*b*c+c^2)-a^4*(5*b^2+2*b*c+5*c^2) : :
X(59687) = -3*X[1699]+X[36845], -3*X[5720]+X[6948], 3*X[9812]+X[20015], -6*X[10171]+5*X[31249], -5*X[11522]+X[18452]

X(59687) lies on these lines: {2, 11407}, {4, 519}, {9, 2272}, {10, 5777}, {11, 118}, {84, 6700}, {142, 10157}, {200, 329}, {355, 54198}, {515, 5289}, {527, 19541}, {551, 6913}, {912, 7682}, {936, 6223}, {942, 9842}, {946, 34791}, {950, 37738}, {971, 3452}, {997, 1490}, {1071, 9843}, {1158, 59675}, {1210, 6945}, {1329, 9948}, {1538, 24386}, {1699, 36845}, {1709, 6745}, {2192, 16870}, {3086, 38271}, {3586, 4342}, {3671, 9612}, {3947, 12617}, {4413, 41706}, {5316, 10167}, {5400, 24177}, {5437, 36996}, {5438, 12246}, {5493, 37411}, {5720, 6948}, {5732, 18228}, {5745, 5779}, {5812, 51118}, {5817, 25525}, {5837, 31821}, {5882, 49736}, {6245, 6882}, {6259, 57284}, {6829, 15016}, {6843, 38076}, {6954, 7330}, {6974, 13411}, {6976, 18446}, {6980, 51755}, {7080, 7995}, {7580, 50808}, {8582, 15071}, {9812, 20015}, {10171, 31249}, {10382, 30331}, {10888, 39594}, {11372, 25568}, {11522, 18452}, {12520, 18250}, {12688, 21075}, {12705, 59722}, {13405, 54370}, {15239, 54286}, {17781, 36002}, {21077, 21628}, {21151, 51780}, {25440, 56889}, {30291, 38052}, {31142, 54205}, {31146, 50802}, {37001, 58798}, {37421, 43174}, {38666, 50114}, {38757, 50796}, {40998, 43175}, {51972, 59170}, {52684, 55869}, {59511, 59688}

X(59687) = midpoint of X(i) and X(j) for these {i,j}: {329, 1750}
X(59687) = reflection of X(i) in X(j) for these {i,j}: {18391, 19925}, {31146, 50802}, {4297, 997}
X(59687) = complement of X(30304)
X(59687) = pole of line {521, 31286} with respect to the excircles-radical circle
X(59687) = center of the dual of the bicevian conic of X(75) and X(280)
X(59687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41561, 43177}, {226, 1864, 11019}, {329, 1750, 516}, {1490, 12572, 4297}, {1490, 5811, 12572}, {5777, 6260, 10}, {5927, 13257, 226}, {16870, 34048, 59645}, {21077, 31871, 21628}


X(59688) = X(10)X(971)∩X(69)X(1721)

Barycentrics    -4*a*b*(b-c)^2*c+a^4*(b+c)-(b-c)^2*(b+c)*(b^2+c^2)-4*a^3*(b^2-b*c+c^2)+2*a^2*(b+c)*(2*b^2-3*b*c+2*c^2) : :
X(59688) = -5*X[3620]+X[9801], -X[9950]+3*X[29594], -3*X[10519]+X[12717]

X(59688) lies on these lines: {4, 43173}, {10, 971}, {69, 1721}, {141, 15726}, {142, 45305}, {165, 4104}, {307, 3000}, {515, 4660}, {516, 1350}, {517, 49505}, {946, 15310}, {990, 5847}, {991, 50290}, {1125, 37501}, {1146, 59573}, {1211, 5918}, {1215, 41561}, {1709, 59692}, {1738, 48878}, {1742, 4357}, {2801, 49529}, {2808, 17792}, {2951, 17272}, {3062, 17284}, {3620, 9801}, {3663, 28850}, {3664, 48900}, {3834, 42356}, {4138, 8727}, {4297, 29207}, {4416, 9441}, {4643, 11495}, {4871, 10863}, {5732, 50295}, {5743, 10178}, {5777, 59685}, {5851, 17351}, {6260, 51575}, {7184, 58034}, {9355, 17353}, {9842, 46827}, {9950, 29594}, {10164, 59624}, {10519, 12717}, {11362, 49510}, {12610, 29353}, {13727, 50307}, {15064, 59684}, {16112, 17279}, {17345, 38454}, {17668, 26932}, {21625, 35680}, {24274, 41006}, {24325, 43177}, {43163, 57284}, {46835, 59600}, {59511, 59687}, {59544, 59674}

X(59688) = midpoint of X(i) and X(j) for these {i,j}: {69, 1721}
X(59688) = reflection of X(i) in X(j) for these {i,j}: {21629, 141}
X(59688) = center of the dual of the bicevian conic of X(75) and X(281)
X(59688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 43182, 59620}, {69, 1721, 28849}, {141, 15726, 21629}


X(59689) = X(9)X(165)∩X(37)X(986)

Barycentrics    a*(3*a^3*(b+c)-a^2*(b^2+c^2)+(b+c)^2*(b^2+c^2)-a*(b+c)*(3*b^2-2*b*c+3*c^2)) : :

X(59689) lies on these lines: {6, 37552}, {9, 165}, {37, 986}, {44, 54316}, {56, 3692}, {65, 27396}, {71, 960}, {100, 2264}, {198, 30618}, {219, 59691}, {281, 37828}, {346, 1788}, {380, 4421}, {517, 25078}, {518, 579}, {528, 40963}, {573, 25066}, {672, 3965}, {942, 59733}, {1084, 2092}, {1108, 3880}, {1155, 5279}, {1329, 8804}, {1400, 3693}, {1696, 55337}, {1723, 5687}, {1826, 5123}, {2257, 3913}, {2260, 34791}, {2345, 26066}, {3035, 40942}, {3161, 26062}, {3169, 40133}, {3739, 58410}, {3826, 5257}, {4261, 4719}, {4422, 40530}, {5044, 48886}, {5218, 5749}, {5227, 37500}, {5296, 26040}, {5572, 8299}, {5750, 6690}, {5836, 40937}, {6684, 17355}, {16814, 50198}, {17275, 24247}, {17348, 24266}, {17351, 24315}, {21866, 44663}, {24471, 25083}, {25440, 59681}, {25887, 37555}, {27382, 59572}, {51574, 59705}, {58405, 59728}, {59579, 59644}

X(59689) = midpoint of X(i) and X(j) for these {i,j}: {579, 3694}
X(59689) = pole of line {4823, 4885} with respect to the Spieker circle
X(59689) = center of the dual of the bicevian conic of X(75) and X(286)
X(59689) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3062), X(39946)}}, {{A, B, C, X(11051), X(45988)}}
X(59689) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {579, 3694, 518}, {25440, 59682, 59681}, {40942, 59604, 3035}, {59579, 59675, 59644}


X(59690) = X(2)X(20456)∩X(5)X(10)

Barycentrics    -2*a*b^2*c^2-2*a^2*b*c*(b+c)+b^2*c^2*(b+c)+a^3*(b+c)^2 : :

X(59690) lies on these lines: {2, 20456}, {5, 10}, {9, 59562}, {43, 30830}, {76, 16569}, {518, 46843}, {730, 2664}, {899, 3948}, {1215, 24603}, {1500, 59517}, {1575, 35068}, {3008, 17793}, {3912, 24003}, {4357, 25106}, {4384, 12263}, {4394, 59665}, {6685, 16589}, {9458, 40109}, {12782, 27538}, {14470, 52959}, {17122, 17499}, {17353, 25120}, {20340, 20683}, {20691, 59506}, {21260, 25142}, {21796, 59565}, {21826, 59716}, {22172, 25277}, {24190, 33101}, {25623, 27254}, {27036, 53338}, {27269, 59298}, {29576, 32931}, {40521, 59738}, {49758, 59720}, {59579, 59668}

X(59690) = midpoint of X(i) and X(j) for these {i,j}: {2664, 3975}
X(59690) = pole of line {513, 4698} with respect to the Spieker circle
X(59690) = pole of line {4391, 22028} with respect to the Steiner inellipse
X(59690) = center of the dual of the bicevian conic of X(75) and X(291)
X(59690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2664, 3975, 730}


X(59691) = X(1)X(474)∩X(10)X(140)

Barycentrics    a*(2*a^3-a^2*(b+c)+(b+c)*(b^2+c^2)-2*a*(b^2-b*c+c^2)) : :
X(59691) = -X[12649]+3*X[17728]

X(59691) lies on these lines: {1, 474}, {2, 1837}, {3, 960}, {4, 5087}, {5, 15842}, {8, 1319}, {9, 3207}, {10, 140}, {11, 25962}, {12, 27385}, {20, 12679}, {21, 662}, {30, 21616}, {35, 392}, {36, 72}, {37, 5110}, {40, 5289}, {46, 5730}, {55, 4855}, {56, 78}, {57, 12635}, {63, 5204}, {65, 404}, {69, 17081}, {80, 17619}, {100, 3057}, {101, 25066}, {104, 14872}, {141, 37836}, {142, 11281}, {145, 3689}, {165, 15829}, {191, 59319}, {200, 1420}, {210, 2975}, {219, 59689}, {224, 10391}, {241, 25940}, {326, 24471}, {348, 47595}, {354, 5253}, {355, 5123}, {377, 3838}, {388, 27383}, {405, 3612}, {443, 28628}, {495, 59719}, {496, 1125}, {499, 3419}, {515, 1329}, {517, 6924}, {519, 8256}, {528, 12053}, {529, 4311}, {536, 24334}, {551, 49732}, {595, 37589}, {604, 3965}, {631, 26066}, {664, 59507}, {758, 37582}, {851, 30986}, {908, 7354}, {910, 3061}, {912, 32612}, {936, 958}, {942, 22836}, {944, 6967}, {946, 37281}, {950, 3816}, {956, 4662}, {971, 24265}, {976, 49465}, {978, 1104}, {993, 5044}, {995, 5266}, {999, 3811}, {1001, 3601}, {1012, 41871}, {1055, 33299}, {1071, 6326}, {1108, 54316}, {1151, 30556}, {1152, 30557}, {1155, 3869}, {1191, 37552}, {1193, 1386}, {1201, 3744}, {1210, 6691}, {1212, 52084}, {1222, 43290}, {1259, 1470}, {1279, 21214}, {1387, 49600}, {1388, 3872}, {1455, 37694}, {1468, 4663}, {1482, 54286}, {1519, 11826}, {1610, 19649}, {1616, 3749}, {1697, 4421}, {1698, 37525}, {1737, 13747}, {1755, 22066}, {1770, 51409}, {1836, 4190}, {1859, 37253}, {1861, 11363}, {1888, 35994}, {1960, 4925}, {2077, 12672}, {2099, 10107}, {2217, 13732}, {2320, 19877}, {2329, 44798}, {2348, 26690}, {2475, 17605}, {2478, 24954}, {2550, 3616}, {2551, 5731}, {2650, 37520}, {2810, 41682}, {3040, 11713}, {3041, 11714}, {3042, 11700}, {3053, 39248}, {3059, 7677}, {3189, 14986}, {3218, 3962}, {3219, 5303}, {3242, 8572}, {3244, 51714}, {3286, 46877}, {3295, 10179}, {3304, 3870}, {3333, 40726}, {3336, 4018}, {3337, 24473}, {3361, 11523}, {3428, 58637}, {3434, 11376}, {3452, 4297}, {3474, 37267}, {3476, 7080}, {3485, 5880}, {3501, 6603}, {3522, 5698}, {3555, 5563}, {3579, 3878}, {3586, 25522}, {3600, 25568}, {3622, 3748}, {3624, 37571}, {3679, 21842}, {3683, 4189}, {3684, 40133}, {3685, 59573}, {3693, 9310}, {3697, 5258}, {3699, 9369}, {3702, 49485}, {3739, 25523}, {3754, 50194}, {3769, 20036}, {3813, 44675}, {3814, 18480}, {3820, 34773}, {3846, 50050}, {3848, 54392}, {3868, 32636}, {3871, 5919}, {3876, 15481}, {3877, 37568}, {3893, 38460}, {3897, 9780}, {3899, 37572}, {3911, 6737}, {3916, 5692}, {3924, 16610}, {3925, 10959}, {3931, 4256}, {3938, 32577}, {3950, 59479}, {4002, 24926}, {4067, 4973}, {4187, 10572}, {4252, 54386}, {4295, 34647}, {4299, 58798}, {4305, 5084}, {4313, 26105}, {4314, 49736}, {4413, 19860}, {4420, 54391}, {4515, 56530}, {4520, 41423}, {4557, 55362}, {4670, 24336}, {4679, 6872}, {4848, 5855}, {4853, 46917}, {4860, 11520}, {4861, 20586}, {4863, 10529}, {5048, 14923}, {5057, 37256}, {5126, 8666}, {5175, 10589}, {5193, 17658}, {5217, 5250}, {5225, 26129}, {5227, 37519}, {5229, 5748}, {5247, 5529}, {5248, 9858}, {5251, 37616}, {5252, 5552}, {5265, 20007}, {5267, 10176}, {5273, 45085}, {5293, 37617}, {5426, 25542}, {5427, 31938}, {5432, 24987}, {5433, 6734}, {5436, 8167}, {5450, 5777}, {5554, 37740}, {5558, 56114}, {5691, 30827}, {5693, 59332}, {5694, 23961}, {5708, 12559}, {5719, 51706}, {5720, 12114}, {5722, 10200}, {5745, 12447}, {5791, 13151}, {5795, 9711}, {5815, 34610}, {5837, 10164}, {5845, 59609}, {5886, 33596}, {6265, 37562}, {6284, 41012}, {6554, 54079}, {6600, 22754}, {6692, 6738}, {6735, 10944}, {6736, 38455}, {6744, 17051}, {6745, 10106}, {6762, 13462}, {6796, 31786}, {6905, 14110}, {6909, 12688}, {6911, 7686}, {6940, 21740}, {6996, 30812}, {7675, 58608}, {7783, 49514}, {7971, 10270}, {8071, 11517}, {8168, 12629}, {8170, 53058}, {8299, 14714}, {8580, 30389}, {8715, 9957}, {9342, 51683}, {9565, 37594}, {9613, 11236}, {9615, 31438}, {9679, 35775}, {9709, 10246}, {9785, 34607}, {9945, 15171}, {9956, 26287}, {10073, 47033}, {10192, 59692}, {10202, 37733}, {10269, 12675}, {10393, 37244}, {10448, 44307}, {10525, 22835}, {10882, 35628}, {10895, 30852}, {10916, 15325}, {10950, 24982}, {11019, 12437}, {11108, 37606}, {11112, 12047}, {11116, 56833}, {11194, 57279}, {11230, 25639}, {11235, 50443}, {11248, 45776}, {11362, 59675}, {11415, 28534}, {11500, 37611}, {11533, 17593}, {11682, 37567}, {11813, 22793}, {12608, 31775}, {12609, 37737}, {12649, 17728}, {12709, 17612}, {12739, 58591}, {13205, 17622}, {13374, 37533}, {13411, 25466}, {13587, 31165}, {13902, 31413}, {14792, 35204}, {14803, 19525}, {14868, 54417}, {15489, 22276}, {15569, 19765}, {15570, 17609}, {15726, 37022}, {15823, 37106}, {16408, 54318}, {16413, 54369}, {16788, 25068}, {16845, 45039}, {17100, 17638}, {17102, 34977}, {17136, 26563}, {17448, 52127}, {17532, 37692}, {17563, 39542}, {17567, 18391}, {17573, 36279}, {17580, 28629}, {17603, 45230}, {17690, 48646}, {17724, 23675}, {17757, 45287}, {17784, 24558}, {18165, 37442}, {18178, 18465}, {18254, 38602}, {18446, 58567}, {18857, 32153}, {18990, 21077}, {19278, 31359}, {19537, 58887}, {19767, 24530}, {19862, 35016}, {20107, 58453}, {20846, 34879}, {21635, 22792}, {21874, 33863}, {21896, 56009}, {22072, 25941}, {22300, 35631}, {22325, 37620}, {22344, 53280}, {22479, 41611}, {22753, 37531}, {22758, 58631}, {22760, 25875}, {22766, 37249}, {22837, 25405}, {23846, 37619}, {24247, 46835}, {24266, 34852}, {24299, 26363}, {24390, 34123}, {24582, 26526}, {24774, 25532}, {24881, 25645}, {24927, 37727}, {25055, 33595}, {25078, 59681}, {25439, 31792}, {25533, 52360}, {26286, 31837}, {27003, 34195}, {27086, 44782}, {27399, 41245}, {28275, 37030}, {30115, 37592}, {30282, 31435}, {30478, 54445}, {30538, 31235}, {30811, 40985}, {30818, 54331}, {31142, 34620}, {31249, 37723}, {31397, 59587}, {31419, 32214}, {31788, 40257}, {31803, 34862}, {31806, 37623}, {31838, 32613}, {31936, 37363}, {32157, 35023}, {34046, 45729}, {34880, 51379}, {35459, 37251}, {37588, 45219}, {37624, 40587}, {37730, 52264}, {42443, 49598}, {46830, 58325}, {48893, 49728}, {48894, 49734}, {50196, 58585}, {52528, 53579}, {53996, 55118}, {55301, 55305}, {56311, 59506}, {59545, 59703}, {59580, 59704}

X(59691) = midpoint of X(i) and X(j) for these {i,j}: {1, 5687}, {100, 12740}, {11682, 37567}, {20, 12679}, {25440, 30144}, {3, 45770}, {46, 5730}, {4299, 58798}, {4311, 21075}, {56, 78}, {8, 37738}
X(59691) = reflection of X(i) in X(j) for these {i,j}: {10, 47742}, {1210, 6691}, {1329, 6700}, {496, 1125}, {50196, 58585}
X(59691) = complement of X(1837)
X(59691) = perspector of circumconic {{A, B, C, X(27834), X(46640)}}
X(59691) = X(i)-complementary conjugate of X(j) for these {i, j}: {34399, 2887}, {40436, 1329}, {55994, 41883}, {56003, 3452}, {56305, 20262}, {59759, 21244}
X(59691) = pole of line {521, 48329} with respect to the circumcircle
X(59691) = pole of line {1776, 2098} with respect to the Feuerbach hyperbola
X(59691) = pole of line {1155, 5324} with respect to the Stammler hyperbola
X(59691) = pole of line {3669, 3904} with respect to the Steiner inellipse
X(59691) = center of the dual of the bicevian conic of X(76) and X(85)
X(59691) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(43946)}}, {{A, B, C, X(1037), X(3435)}}, {{A, B, C, X(1156), X(43703)}}, {{A, B, C, X(1837), X(34399)}}, {{A, B, C, X(2137), X(5573)}}, {{A, B, C, X(3680), X(56179)}}, {{A, B, C, X(5836), X(23617)}}, {{A, B, C, X(7131), X(8056)}}, {{A, B, C, X(8686), X(52541)}}, {{A, B, C, X(17054), X(56155)}}
X(59691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10914, 33895}, {1, 11512, 17054}, {1, 1376, 5836}, {1, 25524, 3742}, {1, 45047, 5573}, {1, 474, 3812}, {1, 52541, 4906}, {1, 5438, 1376}, {1, 5440, 56176}, {1, 5687, 3880}, {2, 5086, 17606}, {3, 12520, 10178}, {3, 45770, 6001}, {3, 6261, 9943}, {3, 960, 4640}, {3, 997, 960}, {4, 25681, 5087}, {8, 1319, 11260}, {8, 37738, 33956}, {8, 59572, 37828}, {8, 6921, 24914}, {9, 45036, 7987}, {10, 10165, 4999}, {10, 214, 1385}, {10, 47745, 3036}, {46, 5730, 44663}, {55, 19861, 58679}, {56, 78, 518}, {78, 35262, 56}, {200, 1420, 12513}, {210, 37605, 2975}, {224, 37248, 10391}, {355, 26364, 5123}, {377, 11375, 3838}, {404, 4511, 65}, {515, 6700, 1329}, {936, 958, 3740}, {952, 47742, 10}, {999, 3811, 34791}, {1125, 24929, 51715}, {1125, 57284, 2886}, {1193, 37539, 1386}, {2975, 4881, 37605}, {3244, 51714, 51788}, {3304, 3870, 58609}, {3336, 4867, 4018}, {3337, 41696, 24473}, {3452, 4297, 57288}, {3476, 7080, 32049}, {3485, 6904, 5880}, {3601, 8583, 1001}, {3616, 37080, 42819}, {3689, 20323, 145}, {3749, 56630, 1616}, {3869, 4188, 1155}, {3916, 35271, 7280}, {4187, 10609, 10572}, {4311, 21075, 529}, {4413, 34471, 19860}, {4855, 19861, 55}, {5044, 13624, 993}, {5126, 34790, 8666}, {5253, 34772, 354}, {5265, 20007, 24477}, {5267, 10176, 31445}, {5692, 7280, 3916}, {5730, 16371, 46}, {5795, 20103, 9711}, {6326, 37561, 1071}, {6691, 44669, 1210}, {6735, 10944, 32537}, {6745, 10106, 12607}, {10269, 37700, 12675}, {11517, 52148, 8071}, {17502, 31445, 5267}, {25440, 30144, 517}, {25524, 56177, 1}, {25917, 37600, 21}, {37588, 47623, 45219}, {40587, 51577, 37624}, {47595, 59537, 348}, {57284, 58461, 8728}


X(59692) = X(1)X(345)∩X(10)X(55)

Barycentrics    2*a^3-a^2*(b+c)+(b+c)*(b^2+c^2) : :
X(59692) = X[3891]+3*X[50105], X[3938]+3*X[33161], -5*X[31237]+X[33094], X[32933]+3*X[33122]

X(59692) lies on these lines: {1, 345}, {2, 968}, {6, 4028}, {8, 3749}, {9, 4104}, {10, 55}, {31, 306}, {37, 1196}, {38, 3977}, {42, 5294}, {43, 17353}, {63, 33171}, {69, 1707}, {100, 5310}, {141, 4640}, {142, 3980}, {149, 29872}, {165, 17284}, {171, 3912}, {190, 33126}, {192, 29634}, {226, 3771}, {238, 3687}, {312, 4008}, {321, 3011}, {344, 5268}, {354, 49768}, {515, 4112}, {516, 2887}, {518, 44416}, {519, 3703}, {527, 4376}, {536, 17061}, {551, 17599}, {553, 49676}, {612, 4078}, {614, 17740}, {726, 29656}, {740, 6679}, {758, 40959}, {846, 4357}, {894, 29839}, {896, 4001}, {902, 15523}, {908, 29846}, {960, 34851}, {976, 3710}, {984, 56078}, {996, 49626}, {997, 1040}, {1009, 1402}, {1104, 3704}, {1125, 3666}, {1211, 3683}, {1215, 3693}, {1266, 29860}, {1376, 1486}, {1403, 3840}, {1621, 32779}, {1709, 59688}, {1722, 13742}, {1754, 28849}, {1782, 10319}, {1836, 4138}, {1914, 3686}, {2177, 26061}, {2276, 5750}, {2308, 4062}, {2321, 4362}, {2325, 3971}, {2886, 49484}, {3052, 3416}, {3120, 29865}, {3175, 17602}, {3178, 5717}, {3218, 33173}, {3219, 33175}, {3434, 29857}, {3452, 4011}, {3550, 29674}, {3626, 4030}, {3634, 4689}, {3663, 26128}, {3664, 4697}, {3678, 59639}, {3695, 5266}, {3702, 56778}, {3706, 35466}, {3717, 3961}, {3722, 33162}, {3729, 33144}, {3740, 4422}, {3741, 4154}, {3750, 32780}, {3751, 26065}, {3755, 25453}, {3769, 17233}, {3772, 5695}, {3775, 59624}, {3782, 28526}, {3823, 49732}, {3831, 6684}, {3844, 44419}, {3846, 4432}, {3870, 33163}, {3883, 8616}, {3886, 33137}, {3891, 50105}, {3920, 32849}, {3931, 17698}, {3935, 33166}, {3936, 41011}, {3938, 33161}, {3946, 4970}, {3957, 33170}, {3967, 17340}, {3993, 29645}, {3996, 33118}, {4035, 32946}, {4054, 33127}, {4292, 24850}, {4359, 24542}, {4387, 17720}, {4414, 24943}, {4416, 7262}, {4417, 4676}, {4418, 5249}, {4424, 19869}, {4427, 17184}, {4438, 4847}, {4450, 48647}, {4512, 50295}, {4527, 50754}, {4641, 34379}, {4642, 25904}, {4650, 33087}, {4671, 29665}, {4672, 50753}, {4682, 17243}, {4684, 32913}, {4692, 50745}, {4693, 33135}, {4700, 5332}, {4703, 51090}, {4717, 50757}, {4734, 17367}, {4871, 6692}, {4884, 49465}, {4966, 59574}, {4968, 28027}, {4972, 30768}, {5057, 30831}, {5205, 59593}, {5256, 38049}, {5263, 33116}, {5432, 30818}, {5530, 13740}, {5725, 11354}, {5743, 15254}, {5853, 29673}, {5955, 11108}, {6685, 24295}, {6690, 44417}, {6700, 9371}, {6703, 15569}, {6743, 39589}, {6745, 59511}, {7081, 17280}, {7191, 33168}, {7283, 13161}, {7580, 21629}, {8056, 25509}, {8258, 35633}, {10106, 41346}, {10192, 59691}, {10389, 36479}, {12047, 25645}, {16455, 50605}, {17023, 17592}, {17126, 32858}, {17127, 33077}, {17135, 56520}, {17147, 26230}, {17155, 29638}, {17156, 24597}, {17303, 31477}, {17338, 26038}, {17339, 27538}, {17368, 59297}, {17469, 32848}, {17526, 54418}, {17591, 29660}, {17596, 29637}, {17601, 29596}, {17647, 37227}, {17715, 33169}, {17716, 33092}, {17721, 49554}, {17724, 59730}, {17781, 33065}, {17889, 29858}, {18134, 50307}, {19785, 29855}, {20103, 24003}, {20335, 24259}, {21060, 59579}, {21935, 25982}, {24165, 29672}, {24231, 32939}, {24239, 32851}, {24248, 25527}, {24280, 26132}, {24459, 58331}, {24552, 29639}, {24987, 54331}, {25006, 32945}, {25091, 25968}, {25385, 58463}, {25440, 37034}, {25466, 50054}, {25568, 54389}, {25591, 27385}, {26015, 32943}, {26034, 35258}, {26723, 32860}, {27186, 29870}, {27757, 33107}, {27804, 29833}, {28605, 29681}, {29670, 53663}, {29671, 49482}, {29686, 46901}, {29848, 32925}, {29862, 33109}, {29866, 31019}, {29871, 33150}, {29873, 33110}, {29874, 33155}, {31237, 33094}, {31330, 54357}, {32775, 32936}, {32845, 33123}, {32926, 42033}, {32933, 33122}, {33076, 39597}, {33088, 49684}, {36475, 46916}, {37552, 54433}, {37642, 39594}, {40942, 59734}, {41711, 49536}, {50316, 56523}, {59512, 59563}, {59517, 59726}, {59701, 59705}

X(59692) = midpoint of X(i) and X(j) for these {i,j}: {31, 306}, {3703, 3744}, {3914, 32929}, {33156, 35263}
X(59692) = reflection of X(i) in X(j) for these {i,j}: {2887, 20106}, {40940, 6679}
X(59692) = complement of X(3914)
X(59692) = X(i)-complementary conjugate of X(j) for these {i, j}: {110, 17115}, {1037, 442}, {7084, 1213}, {7123, 1211}, {7131, 17052}, {30701, 21245}, {40403, 141}, {40411, 20305}, {48070, 21253}, {52778, 31946}, {56179, 3454}, {57386, 226}
X(59692) = pole of line {11068, 23874} with respect to the circumcircle
X(59692) = pole of line {72, 10544} with respect to the Feuerbach hyperbola
X(59692) = pole of line {1019, 2484} with respect to the Steiner inellipse
X(59692) = pole of line {1211, 4384} with respect to the dual conic of Yff parabola
X(59692) = center of the dual of the bicevian conic of X(76) and X(86)
X(59692) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1751), X(39721)}}, {{A, B, C, X(2218), X(39954)}}, {{A, B, C, X(56102), X(56146)}}
X(59692) = barycentric product X(i)*X(j) for these (i, j): {190, 48299}
X(59692) = barycentric quotient X(i)/X(j) for these (i, j): {48299, 514}
X(59692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32929, 3914}, {2, 32932, 1738}, {2, 3685, 24210}, {2, 968, 50290}, {31, 306, 5847}, {55, 32777, 10}, {63, 33171, 49511}, {141, 59580, 4640}, {171, 33158, 3912}, {238, 33160, 3687}, {306, 35263, 31}, {516, 20106, 2887}, {612, 17776, 4078}, {740, 6679, 40940}, {846, 32783, 4357}, {896, 33081, 4001}, {1125, 59547, 3666}, {1836, 30811, 4138}, {3666, 3712, 59547}, {3703, 3744, 519}, {3744, 50104, 3703}, {3771, 3923, 226}, {3846, 4432, 40998}, {3870, 33163, 49529}, {3886, 56519, 33137}, {3914, 32929, 28580}, {3980, 29642, 142}, {3996, 33118, 49772}, {4414, 24943, 54311}, {4418, 29632, 5249}, {4970, 29654, 3946}, {8616, 32778, 3883}, {13405, 17355, 1215}, {17715, 33169, 49466}, {17716, 33092, 49476}, {24552, 33113, 29639}, {26128, 32934, 3663}, {29846, 32930, 908}, {32851, 32942, 24239}, {32939, 33124, 24231}, {32943, 33119, 26015}, {49511, 59544, 63}


X(59693) = X(3)X(18611)∩X(142)X(214)

Barycentrics    a*(2*a^4+a^3*(b+c)-a*(b-c)^2*(b+c)-3*a^2*(b^2+c^2)+(b^2+c^2)^2) : :

X(59693) lies on these lines: {3, 18611}, {141, 37836}, {142, 214}, {326, 2178}, {1319, 4361}, {1385, 3739}, {1958, 8609}, {2646, 15668}, {3306, 37595}, {4399, 11260}, {4657, 17614}, {4719, 37594}, {4851, 5440}, {4852, 24928}, {9306, 59705}, {11329, 44179}, {17136, 53510}, {17390, 56176}, {19297, 43216}, {35262, 37539}, {37596, 52127}, {59512, 59697}, {59580, 59699}

X(59693) = midpoint of X(i) and X(j) for these {i,j}: {326, 2178}
X(59693) = pole of line {4453, 57242} with respect to the Steiner inellipse
X(59693) = center of the dual of the bicevian conic of X(76) and X(92)
X(59693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {326, 2178, 34377}


X(59694) = X(2)X(44522)∩X(3)X(66)

Barycentrics    a^2*(2*(a^2-b^2)^3-(6*a^4-4*a^2*b^2+b^4)*c^2+(6*a^2-b^2)*c^4-2*c^6) : :

X(59694) lies on these lines: {2, 44522}, {3, 66}, {23, 44377}, {50, 54439}, {99, 53474}, {524, 11063}, {597, 52275}, {620, 7575}, {625, 37967}, {2930, 44395}, {3284, 34990}, {3580, 40604}, {3589, 44180}, {3629, 9723}, {3630, 8553}, {3788, 7555}, {4395, 4996}, {6150, 33526}, {7227, 7279}, {7492, 7778}, {7496, 58446}, {8584, 35302}, {11145, 44382}, {11146, 44383}, {15109, 34573}, {15646, 22452}, {32456, 37950}, {35298, 44380}, {37344, 48310}, {44381, 44533}, {44386, 53416}

X(59694) = midpoint of X(i) and X(j) for these {i,j}: {11063, 52437}
X(59694) = pole of line {8151, 30474} with respect to the orthoptic circle of the Steiner Inellipse
X(59694) = pole of line {3767, 11004} with respect to the Kiepert hyperbola
X(59694) = pole of line {22, 44533} with respect to the Stammler hyperbola
X(59694) = pole of line {315, 46723} with respect to the Wallace hyperbola
X(59694) = center of the dual of the bicevian conic of X(76) and X(94)
X(59694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11063, 52437, 524}, {33526, 33527, 40111}, {35296, 52437, 11063}


X(59695) = X(3)X(66)∩X(6)X(16925)

Barycentrics    2*a^6+a^4*(b^2+c^2)-2*a^2*(b^2+c^2)^2+(b^2+c^2)*(b^4+c^4) : :
X(59695) = -X[2456]+5*X[38750], X[5207]+3*X[13586], 3*X[15561]+X[35383]

X(59695) lies on these lines: {3, 66}, {6, 16925}, {30, 5031}, {69, 7891}, {99, 53475}, {140, 24256}, {187, 51371}, {230, 698}, {249, 524}, {325, 2076}, {511, 620}, {597, 11288}, {625, 29317}, {626, 14810}, {732, 2021}, {1211, 56772}, {1213, 56561}, {1513, 5103}, {1692, 50567}, {2456, 38750}, {3094, 3589}, {3098, 3788}, {3564, 5026}, {3619, 32965}, {3629, 40825}, {3763, 7791}, {3852, 51427}, {4074, 7499}, {5017, 7763}, {5111, 51438}, {5149, 35375}, {5207, 13586}, {5480, 37466}, {5743, 21485}, {6656, 34573}, {6676, 59563}, {6707, 56731}, {7667, 40379}, {7761, 55649}, {7764, 41413}, {7769, 53484}, {7778, 31884}, {7784, 55646}, {7816, 24206}, {7819, 10007}, {7825, 48880}, {7830, 55653}, {7842, 48885}, {7862, 48901}, {7863, 14994}, {7866, 51128}, {7907, 18906}, {8290, 39102}, {8356, 20582}, {8369, 42534}, {12215, 15993}, {15561, 35383}, {15668, 56733}, {15985, 24384}, {17245, 21993}, {20576, 52997}, {21358, 33008}, {24383, 50254}, {29012, 32456}, {32218, 37927}, {32269, 59765}, {32449, 59546}, {32954, 51126}, {34146, 59706}, {34870, 42421}, {37450, 58446}, {39080, 52261}, {44381, 44534}, {44390, 53498}, {44391, 53497}, {46184, 51736}, {58437, 59530}

X(59695) = midpoint of X(i) and X(j) for these {i,j}: {187, 51371}, {1691, 6393}, {1692, 50567}, {12215, 15993}, {230, 59548}, {325, 2076}, {5111, 51438}, {6, 51374}, {99, 53475}
X(59695) = reflection of X(i) in X(j) for these {i,j}: {5103, 44377}
X(59695) = perspector of circumconic {{A, B, C, X(31614), X(44766)}}
X(59695) = pole of line {3767, 7752} with respect to the Kiepert hyperbola
X(59695) = pole of line {1576, 14588} with respect to the Kiepert parabola
X(59695) = pole of line {22, 3124} with respect to the Stammler hyperbola
X(59695) = pole of line {3265, 10190} with respect to the Steiner inellipse
X(59695) = pole of line {115, 315} with respect to the Wallace hyperbola
X(59695) = center of the dual of the bicevian conic of X(76) and X(98)
X(59695) = intersection, other than A, B, C, of circumconics {{A, B, C, X(66), X(4590)}}, {{A, B, C, X(249), X(2353)}}, {{A, B, C, X(14376), X(47389)}}
X(59695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 59545, 4048}, {230, 59548, 698}, {1691, 6393, 524}, {3094, 7807, 3589}, {6393, 35297, 1691}, {29181, 44377, 5103}


X(59696) = X(2)X(8627)∩X(3)X(37890)

Barycentrics    2*a^6-a^4*(b^2+c^2)-b^2*c^2*(b^2+c^2)-2*a^2*(b^4+b^2*c^2+c^4) : :

X(59696) lies on these lines: {2, 8627}, {3, 37890}, {22, 24256}, {251, 10191}, {732, 1799}, {1915, 10007}, {3866, 7793}, {4074, 6636}, {5026, 15822}, {5031, 7499}, {5116, 33651}, {6030, 10130}, {7495, 40379}, {7771, 21001}, {7830, 58447}, {8589, 59535}, {9019, 10551}, {11205, 52898}, {37512, 59564}, {37891, 41884}, {42052, 52906}

X(59696) = midpoint of X(i) and X(j) for these {i,j}: {1799, 10329}
X(59696) = center of the dual of the bicevian conic of X(76) and X(141)
X(59696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1799, 10329, 732}, {1799, 35277, 10329}, {6030, 10130, 10328}


X(59697) = X(3)X(66)∩X(332)X(524)

Barycentrics    2*a^5+2*a^4*(b+c)-2*a^3*(b^2+c^2)-a^2*(b+c)*(b^2+c^2)+b*c*(b+c)*(b^2+c^2)+a*(b^2+c^2)*(b^2+b*c+c^2) : :

X(59697) lies on these lines: {3, 66}, {99, 53476}, {171, 17390}, {261, 56953}, {332, 524}, {620, 17052}, {1010, 6707}, {1030, 15985}, {1211, 56934}, {1213, 9509}, {1901, 44387}, {2174, 44416}, {3589, 5110}, {4851, 37603}, {7413, 44377}, {17056, 40605}, {17327, 19278}, {37232, 49734}, {59512, 59693}

X(59697) = midpoint of X(i) and X(j) for these {i,j}: {332, 2305}
X(59697) = pole of line {3767, 37652} with respect to the Kiepert hyperbola
X(59697) = center of the dual of the bicevian conic of X(76) and X(226)
X(59697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {332, 2305, 524}


X(59698) = X(2)X(3269)∩X(113)X(127)

Barycentrics    -2*a^2*b^2*c^2*(b^2-c^2)^2+a^8*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)-2*a^6*(b^4+c^4)+a^4*(b^6+c^6) : :

X(59698) lies on these lines: {2, 3269}, {3, 59530}, {39, 59527}, {76, 9419}, {99, 34360}, {113, 127}, {115, 15595}, {287, 39849}, {339, 1625}, {389, 59556}, {394, 41253}, {525, 47233}, {620, 690}, {811, 35075}, {1352, 6033}, {1971, 15013}, {2072, 54074}, {2782, 52128}, {2871, 53570}, {3289, 44146}, {3331, 30737}, {3491, 18806}, {3734, 4074}, {3934, 5907}, {5026, 15462}, {5031, 34138}, {6334, 34990}, {6390, 59558}, {7770, 31636}, {7789, 59659}, {10540, 54076}, {11591, 36952}, {19576, 37890}, {23583, 39473}, {26226, 39643}, {32445, 41009}, {32661, 40856}, {39469, 46185}, {47426, 59543}, {51425, 54075}, {53725, 53737}

X(59698) = midpoint of X(i) and X(j) for these {i,j}: {339, 1625}, {3289, 44146}, {3331, 30737}, {76, 9419}
X(59698) = complement of X(3269)
X(59698) = X(i)-complementary conjugate of X(j) for these {i, j}: {107, 8287}, {110, 16595}, {112, 16573}, {162, 15526}, {163, 35071}, {250, 1214}, {393, 24040}, {648, 34846}, {662, 122}, {799, 55069}, {811, 127}, {823, 125}, {1096, 23991}, {1101, 6509}, {2173, 42306}, {4556, 55044}, {4599, 47413}, {5379, 440}, {6528, 21253}, {15384, 1427}, {18020, 18589}, {23357, 828}, {23582, 10}, {23590, 24005}, {23964, 37}, {23999, 141}, {24000, 2}, {24001, 16177}, {24019, 115}, {24021, 13567}, {24022, 3767}, {24041, 6389}, {32230, 226}, {32713, 16592}, {36104, 41172}, {41937, 16584}, {46254, 1368}, {52914, 16596}, {52919, 11}, {52920, 1086}, {52921, 26932}, {56829, 39008}, {57973, 53575}, {59153, 16612}
X(59698) = pole of line {9306, 24284} with respect to the 1st Brocard circle
X(59698) = pole of line {2797, 20094} with respect to the Steiner circumellipse
X(59698) = pole of line {99, 107} with respect to the Steiner inellipse
X(59698) = pole of line {31998, 40888} with respect to the Wallace hyperbola
X(59698) = pole of line {46099, 46184} with respect to the dual conic of anticomplementary circle
X(59698) = pole of line {1084, 6388} with respect to the dual conic of DeLongchamps circle
X(59698) = center of the dual of the bicevian conic of X(76) and X(249)
X(59698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51425, 54075, 59706}


X(59699) = X(2)X(10541)∩X(141)X(206)

Barycentrics    8*a^6-7*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4-6*b^2*c^2+c^4) : :

X(59699) lies on these lines: {2, 10541}, {3, 15105}, {4, 45248}, {22, 35266}, {110, 13567}, {141, 206}, {154, 7386}, {394, 15448}, {427, 5642}, {524, 6353}, {597, 5020}, {1092, 47093}, {1147, 15873}, {1352, 58434}, {1503, 8780}, {2883, 22966}, {3091, 15752}, {3167, 3629}, {3589, 15435}, {4232, 37672}, {4640, 59607}, {5480, 59553}, {5894, 47114}, {5943, 22829}, {5972, 23332}, {6247, 10257}, {6593, 8584}, {6677, 8550}, {6997, 23292}, {7391, 11064}, {9544, 37648}, {9820, 11818}, {10272, 19479}, {11206, 59767}, {12359, 44234}, {15063, 44268}, {15069, 38282}, {15152, 21312}, {16196, 44762}, {17809, 40132}, {17811, 21167}, {18451, 23328}, {18531, 34782}, {20192, 53863}, {22555, 52403}, {26883, 47091}, {27365, 41670}, {29181, 37669}, {30739, 44110}, {41619, 51730}, {44249, 51393}, {47353, 52299}, {59580, 59693}

X(59699) = midpoint of X(i) and X(j) for these {i,j}: {8780, 59543}
X(59699) = pole of line {12220, 22528} with respect to the Stammler hyperbola
X(59699) = center of the dual of the bicevian conic of X(76) and X(253)
X(59699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 53415, 44882}, {8780, 59543, 1503}, {9306, 10192, 141}


X(59700) = X(3)X(59512)∩X(56)X(49481)

Barycentrics    2*a^4-a^3*(b+c)-b*c*(b^2+c^2)-2*a^2*(b^2-b*c+c^2) : :

X(59700) lies on these lines: {3, 59512}, {56, 49481}, {141, 37836}, {214, 21240}, {742, 21008}, {960, 59625}, {1055, 16720}, {1078, 49777}, {1193, 7267}, {1385, 20255}, {4361, 8572}, {4643, 59537}, {5074, 7830}, {6647, 25102}, {17084, 24699}, {17332, 59609}, {30748, 37605}

X(59700) = center of the dual of the bicevian conic of X(76) and X(257)


X(59701) = X(140)X(12609)∩X(468)X(3683)

Barycentrics    2*a^6-2*a^3*b*c*(b+c)+(b^2-c^2)^2*(b^2+c^2)-a^4*(b^2-4*b*c+c^2)-2*a^2*(b^4+b^3*c+b*c^3+c^4) : :

X(59701) lies on these lines: {140, 12609}, {197, 56366}, {468, 3683}, {1125, 58383}, {1155, 7499}, {2887, 3035}, {3185, 7536}, {3579, 52262}, {3955, 5848}, {4640, 6676}, {4999, 49598}, {5849, 20986}, {6677, 15254}, {6684, 58403}, {6690, 50302}, {6707, 34830}, {7561, 12514}, {18692, 53035}, {22276, 23292}, {22769, 56367}, {25968, 52139}, {26259, 32939}, {59692, 59705}

X(59701) = midpoint of X(i) and X(j) for these {i,j}: {20986, 26942}
X(59701) = center of the dual of the bicevian conic of X(76) and X(261)
X(59701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4640, 6676, 40560}, {20986, 26942, 5849}


X(59702) = X(3)X(66)∩X(126)X(137)

Barycentrics    2*a^8-5*a^6*(b^2+c^2)+(b^4-c^4)^2+a^4*(5*b^4+2*b^2*c^2+5*c^4)-a^2*(3*b^6+b^4*c^2+b^2*c^4+3*c^6) : :

X(59702) lies on these lines: {3, 66}, {5, 15827}, {6, 40697}, {99, 53477}, {126, 137}, {131, 46655}, {264, 44389}, {311, 53414}, {343, 8553}, {427, 44377}, {458, 42406}, {524, 571}, {570, 3589}, {620, 14767}, {1370, 7778}, {1975, 41770}, {3575, 34827}, {3788, 23335}, {5590, 56500}, {5591, 56499}, {6748, 44388}, {7499, 58446}, {7807, 41760}, {7816, 31833}, {8905, 12241}, {9723, 54347}, {13351, 37649}, {13567, 47731}, {14806, 34573}, {20819, 47526}, {23292, 52032}, {31099, 37690}, {44380, 50645}, {44436, 53415}, {45472, 56498}, {45473, 56497}, {58437, 59707}, {59563, 59706}

X(59702) = midpoint of X(i) and X(j) for these {i,j}: {571, 52347}
X(59702) = X(i)-complementary conjugate of X(j) for these {i, j}: {57387, 226}
X(59702) = pole of line {3767, 6515} with respect to the Kiepert hyperbola
X(59702) = pole of line {3265, 53263} with respect to the Steiner inellipse
X(59702) = center of the dual of the bicevian conic of X(76) and X(275)
X(59702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {571, 52347, 524}, {7789, 34828, 141}


X(59703) = X(141)X(960)∩X(220)X(4422)

Barycentrics    2*a^3*(b+c)-2*a*(b+c)*(b^2+c^2)+(b^2+c^2)^2+a^2*(b^2-4*b*c+c^2) : :

X(59703) lies on these lines: {141, 960}, {142, 59554}, {220, 4422}, {524, 39248}, {997, 7789}, {1191, 17390}, {1265, 4361}, {2176, 17243}, {4437, 16969}, {4465, 40997}, {5690, 27076}, {8256, 25107}, {9607, 49514}, {17045, 19766}, {17278, 59557}, {25681, 44377}, {26066, 58446}, {50011, 59504}, {50072, 50112}, {59545, 59691}

X(59703) = center of the dual of the bicevian conic of X(76) and X(277)
X(59703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 59704, 59512}


X(59704) = X(1)X(597)∩X(10)X(3829)

Barycentrics    4*a^3*(b+c)-2*a*(b+c)*(b^2+c^2)+(b+c)^2*(b^2+c^2)+a^2*(b^2-8*b*c+c^2) : :

X(59704) lies on these lines: {1, 597}, {10, 3829}, {141, 960}, {496, 34587}, {1191, 51147}, {1201, 4884}, {1265, 1616}, {2885, 8256}, {3629, 54386}, {3717, 45219}, {3823, 4301}, {3880, 59685}, {3943, 20036}, {5835, 25917}, {12447, 49484}, {12640, 59686}, {15829, 17279}, {16594, 25005}, {19861, 44416}, {24928, 59639}, {49524, 58679}, {51150, 59554}, {59580, 59691}

X(59704) = midpoint of X(i) and X(j) for these {i,j}: {1265, 1616}
X(59704) = pole of line {35518, 47884} with respect to the Steiner inellipse
X(59704) = center of the dual of the bicevian conic of X(76) and X(279)
X(59704) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1265, 1616, 9053}, {59512, 59703, 141}


X(59705) = X(3)X(960)∩X(37)X(11358)

Barycentrics    2*a^4*b*c+3*a^5*(b+c)+a*(b+c)*(b^2+c^2)^2-2*a^3*(b+c)*(2*b^2-b*c+2*c^2) : :

X(59705) lies on these lines: {3, 960}, {37, 11358}, {65, 36000}, {72, 19759}, {244, 1962}, {518, 2352}, {1155, 37312}, {1376, 40937}, {1801, 2361}, {3035, 6708}, {3683, 27174}, {3702, 7288}, {3706, 17740}, {3741, 53042}, {3980, 25523}, {5087, 19542}, {5836, 37528}, {6051, 25524}, {9306, 59693}, {9895, 25440}, {10192, 59580}, {11322, 42700}, {15254, 16368}, {24703, 37419}, {51574, 59689}, {59692, 59701}

X(59705) = midpoint of X(i) and X(j) for these {i,j}: {2352, 3998}
X(59705) = center of the dual of the bicevian conic of X(76) and X(286)
X(59705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2352, 3998, 518}


X(59706) = X(2)X(57275)∩X(141)X(206)

Barycentrics    2*a^10+b^10-b^8*c^2-b^2*c^8+c^10-5*a^8*(b^2+c^2)-2*a^4*b^2*c^2*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^4+c^4)+4*a^6*(b^4+b^2*c^2+c^4) : :
X(59706) = 3*X[2]+X[57275]

X(59706) lies on these lines: {2, 57275}, {114, 1503}, {127, 51393}, {141, 206}, {154, 7778}, {232, 51736}, {325, 1971}, {441, 11672}, {468, 9418}, {620, 6000}, {625, 18400}, {626, 10282}, {1990, 40887}, {2072, 54076}, {2393, 44380}, {2777, 32456}, {2883, 59545}, {3564, 57011}, {3788, 6759}, {6389, 59543}, {6509, 34828}, {7542, 34850}, {7761, 11202}, {7784, 17821}, {7789, 16252}, {7807, 32445}, {7825, 34785}, {7862, 18381}, {10533, 45472}, {10534, 45473}, {10540, 54074}, {11206, 37690}, {14767, 58447}, {15311, 32459}, {17849, 42406}, {23583, 59662}, {34146, 59695}, {44381, 53496}, {51425, 54075}, {58434, 58446}, {59563, 59702}

X(59706) = midpoint of X(i) and X(j) for these {i,j}: {325, 1971}
X(59706) = reflection of X(i) in X(j) for these {i,j}: {53496, 44381}
X(59706) = pole of line {12220, 38873} with respect to the Stammler hyperbola
X(59706) = pole of line {9723, 57069} with respect to the Steiner inellipse
X(59706) = center of the dual of the bicevian conic of X(76) and X(287)
X(59706) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7789, 16252, 59530}, {51425, 54075, 59698}


X(59707) = X(2)X(6248)∩X(3)X(64)

Barycentrics    a^2*(3*a^2-b^2-c^2)*(-b^4-c^4+a^2*(b^2+c^2)) : :

X(59707) lies on these lines: {2, 6248}, {3, 64}, {25, 9737}, {32, 34986}, {39, 3981}, {51, 37465}, {99, 419}, {110, 23700}, {114, 297}, {160, 11574}, {182, 37344}, {184, 13335}, {187, 9217}, {216, 14913}, {232, 15143}, {237, 511}, {394, 5171}, {441, 5972}, {460, 23698}, {538, 44215}, {566, 29959}, {570, 9822}, {694, 2024}, {800, 20794}, {1092, 52276}, {1147, 52278}, {1216, 52274}, {1352, 26870}, {1495, 37183}, {1609, 52016}, {1634, 3003}, {1692, 57258}, {1974, 9723}, {2021, 3229}, {2032, 38880}, {2393, 34990}, {2450, 51389}, {2782, 52261}, {3053, 3167}, {3095, 21849}, {3117, 13357}, {3164, 59561}, {3231, 50370}, {3292, 35298}, {3506, 52992}, {3566, 3798}, {3917, 37184}, {4230, 34157}, {4558, 44102}, {5013, 5020}, {5421, 35222}, {5562, 37114}, {6337, 6353}, {6390, 32223}, {6638, 22401}, {6660, 18860}, {6676, 7789}, {6688, 37338}, {7468, 47213}, {9407, 22085}, {9418, 51386}, {9475, 59662}, {9734, 35259}, {10192, 59530}, {10607, 19118}, {10983, 17810}, {11672, 51427}, {13449, 40853}, {13754, 44221}, {14826, 26907}, {14961, 44894}, {15082, 21163}, {15270, 52545}, {16187, 52771}, {20854, 35002}, {21513, 31652}, {22143, 40135}, {23181, 44896}, {32152, 35937}, {32444, 46847}, {32456, 51430}, {34099, 52658}, {34236, 50652}, {37188, 59543}, {40981, 58555}, {43130, 50648}, {43460, 56376}, {43705, 44099}, {44437, 47620}, {44870, 54003}, {51394, 52279}, {52006, 59534}, {58437, 59702}

X(59707) = midpoint of X(i) and X(j) for these {i,j}: {1634, 3003}, {237, 36212}, {44437, 47620}, {7468, 47213}
X(59707) = reflection of X(i) in X(j) for these {i,j}: {36212, 59559}
X(59707) = perspector of circumconic {{A, B, C, X(193), X(2421)}}
X(59707) = X(i)-isoconjugate-of-X(j) for these {i, j}: {98, 8769}, {290, 38252}, {293, 34208}, {336, 14248}, {1821, 8770}, {1910, 2996}, {6391, 36120}, {46273, 53059}
X(59707) = X(i)-Dao conjugate of X(j) for these {i, j}: {69, 57799}, {132, 34208}, {11672, 2996}, {15525, 43665}, {40601, 8770}, {46094, 6391}, {51579, 290}
X(59707) = X(i)-Ceva conjugate of X(j) for these {i, j}: {232, 511}
X(59707) = pole of line {520, 19588} with respect to the circumcircle
X(59707) = pole of line {1204, 9737} with respect to the Jerabek hyperbola
X(59707) = pole of line {1624, 58766} with respect to the Kiepert parabola
X(59707) = pole of line {20, 98} with respect to the Stammler hyperbola
X(59707) = pole of line {6337, 52613} with respect to the Steiner inellipse
X(59707) = pole of line {290, 6391} with respect to the Wallace hyperbola
X(59707) = center of the dual of the bicevian conic of X(76) and X(290)
X(59707) = intersection, other than A, B, C, of circumconics {{A, B, C, X(64), X(511)}}, {{A, B, C, X(237), X(6353)}}, {{A, B, C, X(439), X(15143)}}, {{A, B, C, X(1073), X(3167)}}, {{A, B, C, X(3798), X(17209)}}, {{A, B, C, X(6091), X(11589)}}, {{A, B, C, X(6337), X(14379)}}, {{A, B, C, X(8798), X(44716)}}, {{A, B, C, X(14291), X(43034)}}, {{A, B, C, X(34854), X(51335)}}, {{A, B, C, X(40810), X(40813)}}, {{A, B, C, X(40819), X(52765)}}, {{A, B, C, X(47733), X(51249)}}
X(59707) = barycentric product X(i)*X(j) for these (i, j): {193, 511}, {232, 6337}, {237, 57518}, {297, 3167}, {1707, 1959}, {1755, 18156}, {2396, 8651}, {2421, 3566}, {3053, 325}, {3289, 54412}, {3569, 57216}, {10607, 6530}, {17081, 59734}, {17209, 4028}, {19118, 6393}, {20022, 3787}, {21874, 51369}, {30558, 51426}, {32459, 5968}, {33632, 51371}, {36212, 6353}, {47733, 51427}, {51374, 6}, {51439, 56891}
X(59707) = barycentric quotient X(i)/X(j) for these (i, j): {193, 290}, {232, 34208}, {237, 8770}, {511, 2996}, {1707, 1821}, {1755, 8769}, {2211, 14248}, {2421, 35136}, {3053, 98}, {3167, 287}, {3289, 6391}, {3566, 43665}, {3787, 20021}, {6337, 57799}, {6353, 16081}, {8651, 2395}, {9417, 38252}, {9418, 53059}, {10607, 6394}, {14966, 3565}, {18156, 46273}, {19118, 6531}, {32459, 52145}, {36212, 6340}, {41588, 53245}, {47430, 51441}, {51374, 76}, {57216, 43187}, {57518, 18024}
X(59707) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {25, 59211, 9737}, {39, 11328, 5943}, {110, 35296, 52144}, {184, 52275, 13335}, {237, 36212, 511}, {237, 9155, 36212}, {394, 52277, 5171}, {441, 59651, 5972}, {9155, 36212, 59559}


X(59708) = X(2)X(22796)∩X(3)X(113)

Barycentrics    sqrt(3)*(2*a^8+4*a^6*(b^2+c^2)-2*a^2*b^2*c^2*(b^2+c^2)+(b^4-c^4)^2-a^4*(7*b^4+4*b^2*c^2+7*c^4))+2*(6*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(5*b^4+4*b^2*c^2+5*c^4))*S : :

X(59708) lies on circumconic {{A, B, C, X(11744), X(54562)}} and on these lines: {2, 22796}, {3, 113}, {15, 32223}, {125, 14170}, {468, 13350}, {542, 40709}, {1533, 35469}, {3130, 19130}, {3132, 58447}, {3163, 40578}, {3170, 9115}, {5642, 11131}, {6771, 32461}, {7493, 9735}, {11064, 36755}, {13349, 13394}, {15768, 41887}, {16770, 32907}, {21970, 22236}, {32237, 41035}, {34008, 51360}, {36756, 44210}, {37645, 47066}

X(59708) = pole of line {2071, 36755} with respect to the Stammler hyperbola
X(59708) = center of the dual of the bicevian conic of X(76) and X(298)


X(59709) = X(2)X(22797)∩X(3)X(113)

Barycentrics    sqrt(3)*(2*a^8+4*a^6*(b^2+c^2)-2*a^2*b^2*c^2*(b^2+c^2)+(b^4-c^4)^2-a^4*(7*b^4+4*b^2*c^2+7*c^4))-2*(6*a^6-2*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(5*b^4+4*b^2*c^2+5*c^4))*S : :

X(59709) lies on circumconic {{A, B, C, X(11744), X(54561)}} and on these lines: {2, 22797}, {3, 113}, {16, 32223}, {125, 14169}, {141, 59710}, {468, 13349}, {542, 40710}, {1533, 35470}, {3129, 19130}, {3131, 58447}, {3163, 40579}, {3171, 9117}, {5642, 11130}, {6774, 32460}, {7493, 9736}, {11064, 36756}, {13350, 13394}, {15769, 41888}, {16771, 32909}, {21970, 22238}, {32237, 41034}, {34009, 51360}, {36755, 44210}, {37645, 47068}

X(59709) = pole of line {2071, 36756} with respect to the Stammler hyperbola
X(59709) = center of the dual of the bicevian conic of X(76) and X(299)


X(59710) = X(2)X(37825)∩X(3)X(64)

Barycentrics    a^2*(-3*(-3*a^2+b^2+c^2)*(b^4+c^4-a^2*(b^2+c^2))+2*sqrt(3)*(4*a^4-3*a^2*b^2-b^4-3*a^2*c^2+4*b^2*c^2-c^4)*S) : :

X(59710) lies on circumconic {{A, B, C, X(64), X(54847)}} and on these lines: {2, 37825}, {3, 64}, {25, 47066}, {51, 11126}, {61, 34986}, {62, 5943}, {110, 11146}, {141, 59709}, {216, 10640}, {394, 47068}, {396, 52971}, {470, 5617}, {473, 16626}, {511, 3129}, {618, 33501}, {623, 33497}, {1495, 11131}, {3130, 52348}, {3131, 44719}, {3167, 22236}, {3284, 40580}, {3292, 11127}, {3917, 34009}, {5020, 22238}, {5650, 14169}, {5651, 13349}, {6090, 9735}, {9736, 35259}, {13754, 48365}, {14538, 32237}, {15030, 35470}, {15066, 36756}, {19773, 37824}, {32223, 52194}, {32460, 33529}, {35315, 41000}, {35469, 51394}, {40710, 43150}, {41477, 44109}, {43586, 48366}

X(59710) = midpoint of X(i) and X(j) for these {i,j}: {3129, 44718}
X(59710) = pole of line {1204, 47066} with respect to the Jerabek hyperbola
X(59710) = pole of line {20, 6770} with respect to the Stammler hyperbola
X(59710) = center of the dual of the bicevian conic of X(76) and X(300)
X(59710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1495, 11131, 36755}, {3129, 44718, 511}


X(59711) = X(142)X(5836)∩X(519)X(21231)

Barycentrics    -2*a^3*b*c+a^4*(b+c)+b*(b-c)^2*c*(b+c)+a*b*c*(b+c)^2-a^2*(b+c)^3 : :

X(59711) lies on these lines: {142, 5836}, {284, 40863}, {519, 21231}, {1145, 18635}, {2802, 34830}, {3946, 21232}, {10039, 17052}, {10915, 18589}, {15668, 40587}, {18726, 21272}, {21271, 22021}, {22837, 25523}, {24435, 48696}, {26130, 49169}, {59584, 59645}, {59666, 59715}

X(59711) = midpoint of X(i) and X(j) for these {i,j}: {21271, 22021}
X(59711) = center of the dual of the bicevian conic of X(81) and X(85)


X(59712) = X(2)X(17786)∩X(668)X(3218)

Barycentrics    b*c*(-2*a^2*b*c+a^3*(b+c)+b*c*(b+c)^2-a*(b+c)*(b^2+c^2)) : :

X(59712) lies on these lines: {2, 17786}, {668, 3218}, {2895, 19811}, {3264, 3936}, {3596, 33077}, {3666, 40603}, {3687, 28654}, {3975, 32849}, {3977, 48008}, {4033, 4358}, {4110, 4671}, {4359, 17239}, {4723, 51362}, {4783, 33136}, {4850, 30473}, {4980, 27792}, {5741, 30713}, {14996, 24524}, {16610, 59519}, {16704, 25298}, {16729, 59769}, {17483, 19809}, {17484, 40875}, {17495, 52043}, {17787, 37656}, {18040, 24589}, {19787, 41821}, {20892, 31017}, {20920, 20937}, {27131, 59761}, {29423, 41241}, {59713, 59714}

X(59712) = pole of line {329, 4462} with respect to the dual conic of DeLongchamps ellipse
X(59712) = center of the dual of the bicevian conic of X(81) and X(88)
X(59712) = barycentric product X(i)*X(j) for these (i, j): {53574, 668}
X(59712) = barycentric quotient X(i)/X(j) for these (i, j): {53574, 513}


X(59713) = X(649)X(3766)∩X(661)X(3261)

Barycentrics    b*(b-c)*c*(a*b*c-a^2*(b+c)+b*c*(b+c)) : :

X(59713) lies on these lines: {75, 48266}, {514, 27647}, {649, 3766}, {650, 4408}, {661, 3261}, {693, 4988}, {802, 58288}, {824, 58361}, {850, 3835}, {1577, 45746}, {2517, 47701}, {3005, 21260}, {3700, 20909}, {3762, 47676}, {4024, 20906}, {4086, 47691}, {4120, 21438}, {4374, 4813}, {4391, 16892}, {4397, 53558}, {4406, 48019}, {4411, 48026}, {4728, 35519}, {4823, 50557}, {4978, 47667}, {8034, 23818}, {18154, 20949}, {18155, 47886}, {20907, 48269}, {20908, 25259}, {20950, 48094}, {20952, 21606}, {20954, 48277}, {21128, 59521}, {21828, 25511}, {25627, 58286}, {29013, 55180}, {29771, 47878}, {30061, 48101}, {45338, 52326}, {59712, 59714}

X(59713) = reflection of X(i) in X(j) for these {i,j}: {58286, 25627}
X(59713) = pole of line {3775, 12263} with respect to the Steiner inellipse
X(59713) = center of the dual of the bicevian conic of X(81) and X(100)
X(59713) = barycentric product X(i)*X(j) for these (i, j): {32860, 693}, {48273, 75}
X(59713) = barycentric quotient X(i)/X(j) for these (i, j): {32860, 100}, {48273, 1}
X(59713) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3766, 24622, 649}, {18154, 20949, 48275}


X(59714) = X(10)X(48273)∩X(514)X(661)

Barycentrics    (b-c)*(a^2*(b+c)-3*b*c*(b+c)+a*(b^2+c^2)) : :
X(59714) = -X[1019]+5*X[26985], X[4063]+3*X[21297], X[4382]+3*X[47794], -X[4401]+3*X[47831], X[4804]+3*X[47816], X[4810]+3*X[47837], -3*X[4928]+X[14838], X[4960]+3*X[47759], 3*X[14431]+X[48279], -X[23789]+3*X[48184], X[24719]+3*X[47875], -5*X[26798]+X[48085] and many others

X(59714) lies on these lines: {10, 48273}, {514, 661}, {522, 44316}, {814, 1125}, {891, 59521}, {1019, 26985}, {1769, 4962}, {3261, 22043}, {3634, 50504}, {3667, 14288}, {3837, 8714}, {4010, 50337}, {4063, 21297}, {4151, 21260}, {4382, 47794}, {4401, 47831}, {4804, 47816}, {4810, 47837}, {4885, 29013}, {4928, 14838}, {4960, 47759}, {14431, 48279}, {21188, 29216}, {22044, 24087}, {22320, 29350}, {23789, 48184}, {23813, 29302}, {24719, 47875}, {26798, 48085}, {27673, 48011}, {28161, 48350}, {29238, 31288}, {29270, 31286}, {30709, 48282}, {31010, 45746}, {31149, 48301}, {47679, 48416}, {47724, 47840}, {47779, 48064}, {47780, 47947}, {47790, 57068}, {47834, 47948}, {47839, 48284}, {47970, 48170}, {48003, 49289}, {48008, 48196}, {48012, 48394}, {48065, 48547}, {48089, 59672}, {48114, 48566}, {48206, 50512}, {48218, 55187}, {48237, 48586}, {48264, 48556}, {48612, 49291}, {48613, 49292}, {59712, 59713}, {59748, 59755}

X(59714) = midpoint of X(i) and X(j) for these {i,j}: {10, 48273}, {21260, 48090}, {23789, 48267}, {3261, 22043}, {3835, 4823}, {31010, 45746}, {4010, 50337}, {47997, 48399}, {48003, 49289}, {48011, 49287}, {48012, 48394}, {48089, 59672}, {48612, 49291}, {48613, 49292}, {693, 4129}
X(59714) = reflection of X(i) in X(j) for these {i,j}: {50504, 3634}
X(59714) = X(i)-isoconjugate-of-X(j) for these {i, j}: {101, 36604}
X(59714) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 36604}
X(59714) = pole of line {10, 17165} with respect to the Steiner inellipse
X(59714) = pole of line {6382, 56249} with respect to the dual conic of Brocard inellipse
X(59714) = pole of line {244, 21112} with respect to the dual conic of Yff parabola
X(59714) = center of the dual of the bicevian conic of X(81) and X(190)
X(59714) = barycentric quotient X(i)/X(j) for these (i, j): {513, 36604}
X(59714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3835, 4823, 514}, {21260, 48090, 4151}, {48184, 48267, 23789}


X(59715) = X(10)X(141)∩X(37)X(4033)

Barycentrics    (b+c)*(2*b^2*c^2+a^3*(b+c)-a*b*c*(b+c)+a^2*(b^2+c^2)) : :

X(59715) lies on these lines: {6, 29511}, {10, 141}, {37, 4033}, {42, 20530}, {75, 26756}, {239, 34017}, {306, 37663}, {313, 536}, {321, 26771}, {524, 44418}, {668, 16696}, {3293, 4852}, {3666, 40603}, {3934, 4399}, {4361, 31855}, {4377, 21857}, {4651, 21264}, {4681, 56253}, {4690, 15983}, {4698, 25125}, {5741, 44417}, {16726, 27102}, {16828, 25130}, {17045, 27076}, {17351, 21362}, {17372, 17751}, {17388, 30819}, {17757, 21245}, {19874, 24656}, {20340, 58571}, {21022, 22289}, {21238, 44671}, {24004, 26799}, {25107, 25498}, {25116, 43223}, {28593, 40607}, {28639, 56191}, {31037, 31993}, {52959, 53478}, {59596, 59658}, {59666, 59711}

X(59715) = midpoint of X(i) and X(j) for these {i,j}: {313, 21858}
X(59715) = X(i)-Dao conjugate of X(j) for these {i, j}: {21327, 26959}
X(59715) = center of the dual of the bicevian conic of X(81) and X(274)
X(59715) = intersection, other than A, B, C, of circumconics {{A, B, C, X(13476), X(27809)}}, {{A, B, C, X(36957), X(56249)}}
X(59715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {313, 21858, 536}, {4033, 26772, 37}


X(59716) = X(1)X(87)∩X(10)X(4110)

Barycentrics    2*a*b^2*c^2-b^2*c^2*(b+c)+a^2*(b+c)*(b^2-4*b*c+c^2) : :
X(59716) = -X[1278]+3*X[24165], -3*X[3971]+5*X[4704], -3*X[4664]+X[21080], X[4788]+3*X[17155]

X(59716) lies on circumconic {{A, B, C, X(87), X(40027)}} and on these lines: {1, 87}, {10, 4110}, {37, 6375}, {75, 3840}, {519, 21746}, {536, 42053}, {714, 4681}, {740, 5836}, {1278, 24165}, {1486, 20475}, {2901, 5883}, {3551, 26135}, {3728, 4738}, {3739, 40562}, {3741, 22167}, {3831, 28611}, {3971, 4704}, {4022, 41683}, {4033, 25121}, {4090, 53676}, {4357, 21100}, {4664, 21080}, {4788, 17155}, {4821, 30948}, {4871, 20892}, {4941, 20917}, {4970, 56185}, {8669, 27802}, {16604, 59668}, {17448, 23433}, {17786, 24456}, {20340, 22172}, {21826, 59690}, {23633, 28597}, {24451, 25528}, {29649, 47299}, {39467, 59505}, {59585, 59735}, {59621, 59727}

X(59716) = midpoint of X(i) and X(j) for these {i,j}: {192, 42027}
X(59716) = reflection of X(i) in X(j) for these {i,j}: {59565, 37}
X(59716) = X(i)-complementary conjugate of X(j) for these {i, j}: {57400, 34832}
X(59716) = pole of line {20979, 28758} with respect to the Steiner inellipse
X(59716) = pole of line {3662, 6376} with respect to the dual conic of Yff parabola
X(59716) = center of the dual of the bicevian conic of X(86) and X(87)
X(59716) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 59565, 59517}, {75, 17063, 24182}, {192, 42027, 726}, {17786, 24456, 34832}


X(59717) = X(1)X(3159)∩X(10)X(38)

Barycentrics    a^2*(b-c)^2-b*c*(b+c)^2+a*(b+c)*(b^2+c^2) : :
X(59717) = -X[1]+X[3159], -X[8]+X[20068], -X[10]+X[38], -X[36]+X[32927], -X[39]+X[21067], -X[190]+X[40091], -X[244]+X[3992], -X[313]+X[24219], -X[335]+X[30109], -X[341]+X[24046], -X[495]+X[4884], -X[551]+X[3971] and many others

X(59717) lies on these lines: {1, 3159}, {8, 20068}, {10, 38}, {30, 511}, {36, 32927}, {39, 21067}, {190, 40091}, {244, 3992}, {313, 24219}, {335, 30109}, {341, 24046}, {495, 4884}, {551, 3971}, {668, 57029}, {956, 22027}, {993, 32920}, {995, 32937}, {1072, 10916}, {1107, 22011}, {1125, 1215}, {1149, 34587}, {1227, 1266}, {1575, 4103}, {2901, 3555}, {3230, 4115}, {3242, 48863}, {3263, 17205}, {3634, 6532}, {3679, 17155}, {3701, 3953}, {3723, 24067}, {3753, 50078}, {3814, 4013}, {3833, 42053}, {3840, 4125}, {3891, 49683}, {3952, 49997}, {3977, 50745}, {3994, 4975}, {4015, 58642}, {4066, 50608}, {4297, 30272}, {4358, 4694}, {4385, 50605}, {4434, 4973}, {4695, 4738}, {4742, 22045}, {5049, 35652}, {5251, 32923}, {5315, 32938}, {5883, 42055}, {6376, 24166}, {6381, 21208}, {6735, 44311}, {6767, 17262}, {6788, 36926}, {10176, 42054}, {11359, 59407}, {11813, 21093}, {12053, 44040}, {16474, 32928}, {16610, 52872}, {16887, 33941}, {17140, 56191}, {17157, 49448}, {17448, 22036}, {17449, 49999}, {17495, 31855}, {19582, 56804}, {19862, 31264}, {20045, 52680}, {20108, 37592}, {21080, 49479}, {22013, 23632}, {22035, 57015}, {24170, 33938}, {24349, 30116}, {25248, 29699}, {25439, 32934}, {32845, 48696}, {32933, 37610}, {33888, 40859}, {34860, 46937}, {38047, 48819}, {38315, 48867}, {42027, 42285}, {48812, 48865}, {48836, 49688}, {48843, 49524}, {51118, 52853}, {58387, 58391}

X(59717) = isotomic conjugate of X(53650)
X(59717) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39995, 4358}, {53650, 2}
X(59717) = X(i)-complementary conjugate of X(j) for these {i, j}: {53650, 2887}
X(59717) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53650, 6327}
X(59717) = pole of line {2, 4063} with respect to the Steiner circumellipse
X(59717) = pole of line {2, 4063} with respect to the Steiner inellipse
X(59717) = pole of line {514, 4033} with respect to the Yff parabola
X(59717) = pole of line {99, 53650} with respect to the Wallace hyperbola
X(59717) = pole of line {693, 4967} with respect to the dual conic of Bevan circle
X(59717) = pole of line {4828, 6374} with respect to the dual conic of Brocard inellipse
X(59717) = pole of line {26824, 30473} with respect to the dual conic of DeLongchamps ellipse
X(59717) = pole of line {321, 1086} with respect to the dual conic of Yff parabola
X(59717) = center of the dual of the bicevian conic of X(86) and X(88)
X(59717) = lies on the inconic with perspector X(53650)
X(59717) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10), X(4132)}}, {{A, B, C, X(513), X(596)}}, {{A, B, C, X(514), X(35058)}}, {{A, B, C, X(523), X(42471)}}, {{A, B, C, X(900), X(53565)}}, {{A, B, C, X(3995), X(40603)}}, {{A, B, C, X(4083), X(42285)}}
X(59717) = barycentric product X(i)*X(j) for these (i, j): {190, 53565}
X(59717) = barycentric quotient X(i)/X(j) for these (i, j): {2, 53650}, {53565, 514}
X(59717) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 24068, 3159}, {10, 596, 24176}, {244, 3992, 49993}, {537, 714, 726}, {1125, 59718, 59517}, {1739, 4723, 10}, {16610, 59586, 59669}, {59517, 59718, 4075}, {59586, 59669, 52872}


X(59718) = X(10)X(28605)∩X(1125)X(1215)

Barycentrics    -2*b*c*(b+c)^2+2*a^2*(b^2+b*c+c^2)+a*(b+c)*(2*b^2+3*b*c+2*c^2) : :
X(59718) = -2*X[596]+5*X[31253], 2*X[3159]+X[3626], 2*X[3634]+X[24068], X[3898]+X[50078]

X(59718) lies on these lines: {10, 28605}, {519, 3681}, {536, 3956}, {596, 31253}, {726, 3828}, {984, 4125}, {1089, 4981}, {1125, 1215}, {3159, 3626}, {3634, 24068}, {3833, 28582}, {3898, 50078}, {3994, 4717}, {4868, 59586}, {52872, 59565}

X(59718) = midpoint of X(i) and X(j) for these {i,j}: {10, 32925}, {24068, 24165}, {3898, 50078}
X(59718) = reflection of X(i) in X(j) for these {i,j}: {1125, 59517}, {24165, 3634}, {59517, 4075}
X(59718) = pole of line {4063, 31147} with respect to the Steiner inellipse
X(59718) = center of the dual of the bicevian conic of X(86) and X(89)
X(59718) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4075, 59717, 59517}, {59517, 59717, 1125}


X(59719) = X(1)X(2)∩X(35)X(908)

Barycentrics    2*a^4-a^3*(b+c)+(b^2-c^2)^2+a*(b+c)*(b^2+c^2)-a^2*(3*b^2+2*b*c+3*c^2) : :
X(59719) = X[355]+3*X[56177], 5*X[631]+3*X[25568], X[2136]+7*X[9624], 7*X[3090]+X[3189], 3*X[3158]+5*X[8227], -11*X[3525]+3*X[24477], -X[3813]+3*X[11230], X[3913]+3*X[5886], 3*X[4421]+X[12699], -X[8666]+3*X[10165], 3*X[10175]+X[12437], 3*X[10246]+X[32049] and many others

X(59719) lies on these lines: {1, 2}, {3, 21077}, {5, 56176}, {12, 5440}, {35, 908}, {55, 21616}, {72, 5432}, {100, 12047}, {119, 6246}, {140, 518}, {142, 42885}, {210, 7483}, {214, 10106}, {226, 7702}, {354, 13747}, {355, 56177}, {404, 13407}, {474, 17718}, {495, 59691}, {515, 10942}, {516, 6796}, {517, 32157}, {527, 24684}, {528, 9955}, {529, 13624}, {596, 59730}, {631, 25568}, {674, 34466}, {758, 6684}, {942, 3035}, {946, 8715}, {950, 3814}, {993, 21075}, {1145, 11011}, {1329, 24929}, {1376, 11374}, {1385, 12607}, {1470, 4298}, {1478, 4855}, {1479, 30852}, {1483, 32537}, {1738, 24160}, {1770, 31053}, {1788, 12559}, {1858, 18254}, {2077, 3651}, {2136, 9624}, {2478, 59337}, {2646, 10955}, {2801, 6705}, {2802, 11729}, {2900, 6832}, {3090, 3189}, {3158, 8227}, {3159, 59547}, {3295, 25681}, {3338, 6921}, {3434, 37692}, {3436, 3612}, {3452, 5248}, {3475, 17567}, {3485, 54286}, {3487, 59572}, {3525, 24477}, {3555, 5433}, {3576, 10805}, {3649, 6174}, {3671, 59675}, {3678, 5745}, {3689, 24390}, {3697, 24953}, {3740, 6675}, {3742, 52264}, {3746, 41012}, {3812, 5719}, {3813, 11230}, {3817, 6896}, {3822, 57284}, {3841, 58463}, {3847, 18527}, {3871, 30384}, {3873, 17566}, {3874, 3911}, {3880, 5901}, {3881, 6681}, {3913, 5886}, {3916, 52793}, {3940, 26066}, {3950, 54283}, {4075, 34851}, {4187, 37080}, {4256, 13161}, {4292, 35976}, {4294, 5748}, {4297, 6899}, {4301, 12703}, {4421, 12699}, {4999, 34790}, {5044, 6690}, {5045, 6691}, {5087, 15171}, {5123, 37730}, {5178, 7504}, {5217, 58798}, {5218, 12514}, {5249, 37731}, {5250, 31452}, {5266, 37662}, {5267, 12527}, {5270, 15015}, {5288, 5444}, {5441, 31160}, {5443, 48696}, {5445, 41696}, {5462, 34372}, {5482, 8679}, {5542, 11047}, {5687, 11375}, {5720, 12617}, {5794, 31479}, {5836, 37737}, {5850, 37534}, {5853, 24387}, {5854, 33179}, {5905, 58887}, {6256, 6851}, {6594, 43180}, {6600, 6918}, {6692, 58565}, {6833, 17857}, {6834, 37569}, {6849, 12571}, {6880, 12704}, {6910, 41229}, {6962, 41338}, {6966, 10085}, {7294, 51463}, {7537, 56316}, {7951, 57287}, {8256, 50194}, {8666, 10165}, {8983, 44643}, {9709, 28628}, {9956, 44669}, {10164, 55104}, {10175, 12437}, {10202, 58441}, {10246, 32049}, {10270, 43151}, {10283, 33895}, {10389, 25522}, {10404, 16371}, {10543, 33595}, {10572, 11681}, {10624, 11813}, {10914, 15950}, {10965, 12053}, {11009, 51433}, {11010, 51423}, {11018, 58649}, {11236, 18481}, {11260, 38028}, {11415, 59316}, {11523, 31423}, {11599, 13189}, {12189, 21636}, {12329, 19547}, {12563, 33815}, {12572, 37284}, {12575, 26358}, {12594, 49511}, {12616, 37700}, {12625, 54447}, {12635, 26446}, {12686, 54227}, {12702, 34647}, {12749, 33337}, {12775, 21635}, {13104, 51115}, {13105, 51114}, {13217, 13605}, {13278, 21630}, {13463, 51709}, {13750, 51379}, {13971, 44644}, {15178, 38455}, {15325, 34791}, {15528, 55297}, {15556, 18838}, {15624, 19543}, {15888, 17614}, {16193, 51380}, {16869, 50366}, {16973, 31401}, {17527, 51715}, {17719, 23537}, {17768, 31663}, {17770, 23693}, {18492, 34701}, {18542, 31673}, {20060, 21578}, {20323, 34123}, {20359, 50594}, {22886, 51117}, {22931, 51116}, {24025, 59729}, {24161, 56009}, {24174, 26728}, {24210, 33771}, {24784, 51384}, {24847, 53601}, {25917, 52638}, {26482, 51782}, {28228, 49163}, {28609, 35242}, {31231, 41863}, {31730, 35251}, {31806, 37562}, {33682, 41263}, {34379, 45729}, {34719, 45035}, {34830, 59641}, {35204, 41550}, {37433, 41698}, {37568, 51409}, {40661, 58449}, {40942, 59728}, {50205, 58451}, {56949, 59679}, {58578, 58657}, {59517, 59723}, {59585, 59725}

X(59719) = midpoint of X(i) and X(j) for these {i,j}: {1, 10915}, {10, 22836}, {1125, 59722}, {1385, 12607}, {1483, 32537}, {11248, 12608}, {12616, 37700}, {3, 21077}, {3811, 10916}, {3913, 49600}, {5, 56176}, {8669, 17748}, {946, 8715}
X(59719) = complement of X(10916)
X(59719) = center of the dual of the bicevian conic of X(86) and X(92)
X(59719) = intersection, other than A, B, C, of circumconics {{A, B, C, X(596), X(10527)}}, {{A, B, C, X(1210), X(43972)}}, {{A, B, C, X(4861), X(56137)}}, {{A, B, C, X(12649), X(54972)}}
X(59719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10528, 49626}, {1, 10530, 49627}, {1, 10915, 519}, {1, 12648, 3244}, {1, 3624, 10586}, {1, 45701, 10915}, {1, 5552, 10}, {2, 3811, 10916}, {10, 13411, 1125}, {10, 19862, 19854}, {10, 3244, 10573}, {10, 551, 19860}, {10, 6737, 3626}, {12, 5440, 17647}, {226, 59587, 25440}, {474, 17718, 51706}, {942, 3035, 58405}, {946, 59584, 8715}, {1125, 20103, 3634}, {1376, 11374, 12609}, {3085, 27383, 997}, {3485, 59591, 54286}, {3624, 6765, 45700}, {3678, 58404, 5745}, {3913, 5886, 49600}, {5552, 10528, 15867}, {5719, 47742, 3812}, {11248, 12608, 516}, {11248, 37713, 12608}, {27529, 34772, 1737}, {40942, 59733, 59728}, {59547, 59731, 3159}


X(59720) = X(37)X(3229)∩X(72)X(8669)

Barycentrics    a^4*(b+c)-b^2*c^2*(b+c)-a^3*(b^2+c^2)+a*(b^4+c^4) : :

X(59720) lies on these lines: {37, 3229}, {72, 8669}, {141, 25346}, {304, 3771}, {385, 17799}, {442, 23947}, {665, 3700}, {726, 25083}, {1125, 3666}, {1580, 50775}, {1959, 4039}, {2210, 30908}, {3507, 4518}, {3912, 5988}, {3944, 32117}, {4434, 20715}, {4447, 43534}, {5999, 18788}, {6690, 59515}, {7413, 29649}, {7824, 17596}, {8844, 19522}, {16601, 59517}, {16831, 24342}, {17719, 17789}, {17762, 33160}, {20531, 21536}, {21879, 59624}, {24036, 59735}, {29671, 37360}, {33130, 33943}, {37298, 49608}, {40937, 59565}, {49758, 59690}

X(59720) = midpoint of X(i) and X(j) for these {i,j}: {1959, 4039}
X(59720) = X(i)-complementary conjugate of X(j) for these {i, j}: {983, 45162}, {8684, 31946}, {38813, 17793}, {40415, 20542}, {40834, 626}
X(59720) = pole of line {1019, 7255} with respect to the Steiner inellipse
X(59720) = center of the dual of the bicevian conic of X(86) and X(98)


X(59721) = X(10)X(23801)∩X(665)X(3700)

Barycentrics    (b-c)*(-2*a*b^2*c^2+b^2*c^2*(b+c)-a^3*(b+c)^2+a^2*(b+c)*(b^2+b*c+c^2)) : :
X(59721) = -2*X[3239]+3*X[59517], -3*X[3971]+X[25259]

X(59721) lies on these lines: {10, 23801}, {522, 4874}, {650, 20525}, {665, 3700}, {726, 4025}, {984, 57244}, {3005, 3835}, {3239, 59517}, {3971, 25259}, {4151, 4500}, {6586, 59673}, {6589, 6685}, {17072, 42666}, {21173, 53336}, {24782, 50333}, {53571, 59568}

X(59721) = perspector of circumconic {{A, B, C, X(39745), X(54120)}}
X(59721) = pole of line {894, 16549} with respect to the Steiner inellipse
X(59721) = center of the dual of the bicevian conic of X(86) and X(101)


X(59722) = X(1)X(2)∩X(4)X(3158)

Barycentrics    2*a^4-a^3*(b+c)-3*a^2*(b+c)^2+a*(b+c)^3+(b^2-c^2)^2 : :
X(59722) = -X[3]+3*X[59584], X[4]+3*X[3158], X[40]+3*X[25568], -5*X[631]+X[6762], -5*X[1656]+3*X[24386], X[2136]+3*X[5603], -7*X[3090]+3*X[24392], X[3189]+3*X[5587], -X[3680]+5*X[10595], -3*X[4421]+X[31730], 3*X[5657]+X[11523], -5*X[5818]+X[12625] and many others

X(59722) lies on these lines: {1, 2}, {3, 59584}, {4, 3158}, {5, 5853}, {12, 3689}, {35, 12527}, {40, 25568}, {55, 12572}, {56, 59587}, {57, 59591}, {100, 4292}, {142, 9709}, {226, 5687}, {281, 3950}, {355, 12437}, {443, 46917}, {495, 57284}, {515, 12607}, {516, 5812}, {518, 5771}, {522, 35100}, {527, 3579}, {528, 18483}, {631, 6762}, {758, 31788}, {908, 3871}, {946, 3913}, {950, 17757}, {1056, 5438}, {1058, 30827}, {1376, 12436}, {1466, 4298}, {1482, 12640}, {1656, 24386}, {1706, 3487}, {1788, 41863}, {2136, 5603}, {2260, 59604}, {2801, 18238}, {2802, 7686}, {3035, 34791}, {3072, 3939}, {3090, 24392}, {3159, 16870}, {3189, 5587}, {3295, 3452}, {3333, 59572}, {3421, 3601}, {3436, 4304}, {3555, 3911}, {3671, 54286}, {3678, 18249}, {3680, 10595}, {3694, 17355}, {3746, 40998}, {3754, 12563}, {3816, 40270}, {3874, 37566}, {3880, 13464}, {3881, 58405}, {3893, 15950}, {3940, 5837}, {3952, 59576}, {3991, 40869}, {4015, 40659}, {4075, 59585}, {4311, 4855}, {4421, 31730}, {4646, 34937}, {4662, 6690}, {4851, 58412}, {4917, 30852}, {5045, 6692}, {5049, 52264}, {5082, 5219}, {5084, 10389}, {5218, 57279}, {5248, 18250}, {5281, 5815}, {5440, 10106}, {5534, 6245}, {5537, 33557}, {5657, 11523}, {5686, 31446}, {5745, 34790}, {5748, 9614}, {5791, 24393}, {5795, 24929}, {5818, 12625}, {5850, 37560}, {5882, 32049}, {5886, 21627}, {6174, 32636}, {6361, 28609}, {6691, 58609}, {6865, 43175}, {7674, 38150}, {7680, 12558}, {7719, 53579}, {7994, 37421}, {8668, 42843}, {9371, 59547}, {9612, 17784}, {9711, 51715}, {10164, 37526}, {10165, 12513}, {10171, 24387}, {10268, 47375}, {10310, 12512}, {11236, 31673}, {11362, 12635}, {11496, 52804}, {12047, 48696}, {12514, 21060}, {12575, 21616}, {12667, 28164}, {12705, 59687}, {13607, 38455}, {15733, 58631}, {16201, 58650}, {16408, 51723}, {16973, 31396}, {17529, 46916}, {17559, 38316}, {17615, 41562}, {17647, 51782}, {20359, 50580}, {20588, 59335}, {21031, 37080}, {21096, 46835}, {21635, 25438}, {24178, 56009}, {24391, 26446}, {24394, 58383}, {24477, 31423}, {24914, 41711}, {24953, 52638}, {25081, 58387}, {31419, 58463}, {31452, 41229}, {31760, 34372}, {32157, 44663}, {34607, 41869}, {37447, 37725}, {37607, 59593}, {37730, 51362}, {39559, 49524}, {39777, 50842}, {44547, 51380}, {49163, 54198}, {59326, 59421}, {59725, 59728}

X(59722) = midpoint of X(i) and X(j) for these {i,j}: {10, 3811}, {1482, 12640}, {10915, 22836}, {11362, 12635}, {12607, 56176}, {21635, 25438}, {355, 12437}, {3244, 49169}, {49163, 54198}, {5534, 6245}, {5882, 32049}, {6260, 10306}, {8715, 21077}, {946, 3913}
X(59722) = reflection of X(i) in X(j) for these {i,j}: {1125, 59719}, {10916, 3634}, {22837, 3636}
X(59722) = pole of line {514, 25924} with respect to the Steiner inellipse
X(59722) = pole of line {86, 24213} with respect to the Wallace hyperbola
X(59722) = center of the dual of the bicevian conic of X(86) and X(189)
X(59722) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(78), X(36629)}}, {{A, B, C, X(281), X(27383)}}, {{A, B, C, X(4853), X(56136)}}, {{A, B, C, X(11019), X(43972)}}, {{A, B, C, X(36845), X(56144)}}
X(59722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6700, 1125}, {1, 6745, 6700}, {1, 7080, 10}, {10, 10198, 3634}, {10, 19862, 19855}, {10, 3244, 18391}, {10, 3811, 519}, {10, 6743, 3626}, {55, 21075, 12572}, {57, 59591, 59675}, {78, 10528, 31397}, {145, 27385, 44675}, {519, 3634, 10916}, {519, 3636, 22837}, {908, 3871, 10624}, {1376, 21620, 12436}, {3870, 5552, 1210}, {5045, 47742, 6692}, {5084, 10389, 51724}, {5281, 5815, 31424}, {5748, 56936, 9614}, {6260, 10306, 516}, {6600, 11500, 8715}, {12607, 56176, 515}, {21616, 25439, 12575}, {32049, 56177, 5882}, {59646, 59733, 59585}


X(59723) = X(1)X(8258)∩X(10)X(1043)

Barycentrics    2*a^4+b^4+b^3*c+b*c^3+c^4-a^3*(b+c)-3*a*b*c*(b+c)-2*a^2*(2*b^2+3*b*c+2*c^2) : :
X(59723) = X[21]+X[3178], -5*X[15674]+X[27368]

X(59723) lies on these lines: {1, 8258}, {10, 1043}, {21, 3178}, {35, 29653}, {58, 49564}, {405, 17748}, {519, 15670}, {740, 6675}, {846, 25650}, {1125, 3666}, {1962, 56778}, {2796, 11263}, {3454, 12579}, {3634, 17514}, {3647, 17770}, {4065, 50757}, {4418, 24936}, {4425, 25645}, {5248, 29671}, {5745, 35633}, {6155, 24956}, {6684, 48894}, {6693, 58380}, {6700, 59621}, {6857, 17733}, {7283, 29640}, {8720, 51706}, {9791, 25663}, {11115, 27577}, {11544, 28546}, {15674, 27368}, {16342, 33156}, {16706, 19862}, {17056, 24850}, {17588, 20653}, {19270, 33158}, {19329, 25440}, {21093, 37731}, {24851, 41878}, {24931, 25354}, {30143, 49609}, {41014, 59624}, {41193, 51578}, {49554, 51724}, {54357, 59302}, {59517, 59719}, {59585, 59731}

X(59723) = midpoint of X(i) and X(j) for these {i,j}: {21, 3178}
X(59723) = X(i)-complementary conjugate of X(j) for these {i, j}: {56184, 21245}
X(59723) = center of the dual of the bicevian conic of X(86) and X(226)
X(59723) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 3178, 38456}, {846, 25650, 56949}, {11110, 33160, 10}, {17056, 59592, 24850}


X(59724) = X(10)X(257)∩X(171)X(3699)

Barycentrics    (a^2-b^2-b*c-c^2+a*(b+c))*(-(b*c*(b+c))+a*(b^2+c^2)) : :
X(59724) = X[291]+3*X[3807]

X(59724) lies on these lines: {10, 257}, {120, 49769}, {171, 3699}, {210, 20670}, {291, 3807}, {312, 11814}, {726, 1575}, {1125, 25089}, {1215, 59628}, {2786, 9508}, {2796, 20716}, {3634, 21208}, {3666, 6686}, {3773, 20531}, {3775, 52960}, {4368, 42720}, {4583, 39028}, {6541, 18035}, {9055, 40533}, {17596, 27538}, {17600, 25531}, {17719, 19808}, {17761, 20000}, {18061, 19963}, {20525, 50333}, {20690, 52656}

X(59724) = midpoint of X(i) and X(j) for these {i,j}: {10, 4568}
X(59724) = reflection of X(i) in X(j) for these {i,j}: {21208, 3634}
X(59724) = perspector of circumconic {{A, B, C, X(6542), X(23354)}}
X(59724) = X(i)-isoconjugate-of-X(j) for these {i, j}: {727, 1929}, {6650, 34077}, {17962, 20332}, {23355, 37135}
X(59724) = X(i)-Dao conjugate of X(j) for these {i, j}: {239, 3253}, {1575, 40725}, {17793, 1929}, {20532, 6650}, {22116, 9505}, {39041, 20332}, {41841, 3226}
X(59724) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40794, 6541}
X(59724) = center of the dual of the bicevian conic of X(86) and X(239)
X(59724) = intersection, other than A, B, C, of circumconics {{A, B, C, X(257), X(17793)}}, {{A, B, C, X(726), X(1916)}}, {{A, B, C, X(1575), X(1581)}}, {{A, B, C, X(6541), X(17990)}}, {{A, B, C, X(6542), X(43040)}}, {{A, B, C, X(20671), X(40794)}}
X(59724) = barycentric product X(i)*X(j) for these (i, j): {1575, 20947}, {1757, 52043}, {6542, 726}, {17735, 35538}, {17934, 21053}, {18035, 40155}, {23354, 2786}
X(59724) = barycentric quotient X(i)/X(j) for these (i, j): {726, 6650}, {1575, 1929}, {1757, 20332}, {3009, 17962}, {5029, 23355}, {6541, 27809}, {6542, 3226}, {6651, 3253}, {17475, 40767}, {17735, 727}, {17793, 40725}, {18266, 34077}, {20693, 18793}, {20785, 17972}, {20947, 32020}, {21053, 18014}, {21830, 2054}, {23354, 35148}, {40155, 9506}, {52043, 18032}, {52656, 9505}


X(59725) = X(6)X(5199)∩X(9)X(3634)

Barycentrics    (a-b-c)*(6*a^4+a^3*(b+c)-a*(b-c)^2*(b+c)+a^2*(-3*b^2+2*b*c-3*c^2)-3*(b^2-c^2)^2) : :

X(59725) lies on these lines: {4, 59678}, {6, 5199}, {9, 3634}, {10, 3332}, {219, 3626}, {281, 519}, {282, 22836}, {515, 59594}, {516, 59644}, {610, 28164}, {946, 59578}, {1125, 3002}, {1146, 4856}, {1743, 27541}, {1944, 53598}, {2047, 31595}, {3664, 37774}, {5552, 59595}, {5831, 46835}, {8804, 12512}, {10445, 53579}, {13405, 31324}, {13464, 59588}, {17355, 20103}, {18594, 51118}, {19925, 59681}, {20106, 27413}, {20818, 28236}, {21061, 52888}, {22147, 47745}, {25078, 46830}, {26006, 40903}, {26364, 27508}, {27420, 29604}, {43174, 59671}, {59585, 59719}, {59722, 59728}

X(59725) = X(i)-complementary conjugate of X(j) for these {i, j}: {2194, 45036}, {41441, 17052}
X(59725) = center of the dual of the bicevian conic of X(86) and X(253)
X(59725) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7359, 40942, 59646}, {40942, 59646, 1125}


X(59726) = X(1)X(2)∩X(35)X(12579)

Barycentrics    2*a^3+b^3+c^3-a^2*(b+c)+a*(b^2+4*b*c+c^2) : :

X(59726) lies on circumconic {{A, B, C, X(2985), X(20016)}} and on these lines: {1, 2}, {35, 12579}, {100, 4425}, {171, 17770}, {516, 36528}, {518, 58443}, {750, 33064}, {1211, 4434}, {1215, 59628}, {1324, 20834}, {1376, 3821}, {2796, 4415}, {3035, 6682}, {3452, 49482}, {3678, 8258}, {3699, 32780}, {3740, 6679}, {3791, 4023}, {3816, 49473}, {3842, 6690}, {3846, 17766}, {3923, 56084}, {4015, 6693}, {4096, 44416}, {4357, 59593}, {4413, 26128}, {4418, 21093}, {4703, 37540}, {5233, 17716}, {5248, 38903}, {6211, 10164}, {6541, 33160}, {9342, 33123}, {9350, 32774}, {11814, 32942}, {12512, 49127}, {17122, 33126}, {17124, 33122}, {17725, 19804}, {19786, 56009}, {21060, 36483}, {24169, 32775}, {24295, 59511}, {25342, 25368}, {25378, 34611}, {27184, 56010}, {30832, 33079}, {30867, 33106}, {31289, 58451}, {33121, 49697}, {37646, 49457}, {42039, 51583}, {50290, 59584}, {50313, 59597}, {59517, 59692}

X(59726) = midpoint of X(i) and X(j) for these {i,j}: {10, 30115}, {3961, 29655}
X(59726) = complement of X(29655)
X(59726) = X(i)-Dao conjugate of X(j) for these {i, j}: {27707, 41879}
X(59726) = pole of line {3057, 49705} with respect to the Feuerbach hyperbola
X(59726) = center of the dual of the bicevian conic of X(86) and X(257)
X(59726) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 29656, 1125}, {2, 29848, 29672}, {2, 3961, 29655}, {10, 30115, 519}, {10, 51073, 36499}, {1125, 20103, 6686}, {4651, 29683, 50755}, {5297, 29846, 29653}, {29672, 29848, 29656}


X(59727) = X(9)X(1389)∩X(10)X(37)

Barycentrics    a*(b+c)*(a^3-a^2*(b+c)+(b+c)*(b^2-3*b*c+c^2)-a*(b^2-b*c+c^2)) : :

X(59727) lies on these lines: {2, 20237}, {9, 1389}, {10, 37}, {75, 25065}, {321, 25080}, {346, 19843}, {572, 51111}, {758, 2171}, {936, 16673}, {993, 1766}, {997, 3247}, {1018, 21811}, {1212, 59579}, {1215, 22027}, {1400, 3754}, {2269, 2802}, {2285, 8666}, {2345, 25078}, {3008, 25099}, {3294, 21809}, {3626, 3965}, {3678, 21078}, {3692, 3731}, {3713, 22836}, {3739, 16578}, {3884, 17452}, {3930, 58699}, {3949, 58636}, {3988, 24048}, {4015, 21033}, {4552, 18698}, {4999, 59479}, {5248, 54359}, {5336, 49480}, {5705, 27396}, {5750, 8609}, {5783, 16777}, {5830, 17355}, {5831, 17281}, {6666, 25097}, {14624, 15065}, {16548, 38871}, {16577, 31993}, {16579, 44417}, {16601, 59585}, {16788, 40968}, {16832, 26669}, {17052, 21091}, {17284, 24554}, {18229, 28606}, {21066, 50036}, {21825, 23934}, {25067, 31211}, {32118, 54410}, {35016, 55100}, {37597, 53594}, {40967, 58697}, {49598, 56325}, {59621, 59716}

X(59727) = midpoint of X(i) and X(j) for these {i,j}: {2171, 21061}
X(59727) = pole of line {3739, 24982} with respect to the dual conic of Yff parabola
X(59727) = center of the dual of the bicevian conic of X(86) and X(261)
X(59727) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(1389)}}, {{A, B, C, X(3704), X(15065)}}, {{A, B, C, X(18785), X(21965)}}
X(59727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 2321, 59733}, {2171, 21061, 758}, {4999, 59479, 59680}, {5783, 16777, 30144}, {17355, 40937, 24036}


X(59728) = X(10)X(3692)∩X(37)X(39)

Barycentrics    2*a^5+4*a^3*b*c-3*a^4*(b+c)+(b-c)^2*(b+c)^3+2*a^2*(b+c)*(b^2+b*c+c^2)-2*a*(b^4+b^3*c+b*c^3+c^4) : :

X(59728) lies on these lines: {9, 10916}, {10, 3692}, {37, 39}, {190, 53596}, {219, 519}, {281, 10915}, {344, 24179}, {346, 997}, {536, 58457}, {1210, 59595}, {1723, 49627}, {3008, 20171}, {3086, 3161}, {3663, 28420}, {3731, 26363}, {3811, 27382}, {3880, 59588}, {3913, 59578}, {3950, 22836}, {4011, 11019}, {8715, 59644}, {17073, 17262}, {21933, 52978}, {40942, 59719}, {56176, 59594}, {58405, 59689}, {59722, 59725}

X(59728) = center of the dual of the bicevian conic of X(86) and X(273)
X(59728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1210, 59595, 59682}, {40942, 59733, 59719}


X(59729) = X(1)X(56100)∩X(37)X(7746)

Barycentrics    a*(a^5*(b+c)+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4+c^4)+a*(b+c)*(b^4+c^4)) : :

X(59729) lies on these lines: {1, 56100}, {37, 7746}, {758, 37565}, {942, 5496}, {1125, 3666}, {3634, 25091}, {3838, 8143}, {3874, 8758}, {3931, 30147}, {4850, 10200}, {10198, 28606}, {12047, 16586}, {16578, 58405}, {16610, 20107}, {17102, 22836}, {20104, 44307}, {24025, 59719}, {25067, 31253}, {40937, 45927}

X(59729) = X(i)-complementary conjugate of X(j) for these {i, j}: {7130, 17052}, {52186, 3454}, {56352, 21245}
X(59729) = center of the dual of the bicevian conic of X(86) and X(275)


X(59730) = X(8)X(4138)∩X(226)X(519)

Barycentrics    2*a^3-3*a^2*(b+c)+2*a*(b^2+c^2)+(b+c)*(b^2-4*b*c+c^2) : :

X(59730) lies on these lines: {8, 4138}, {10, 24159}, {55, 28526}, {226, 519}, {312, 49768}, {537, 5745}, {553, 4434}, {596, 59719}, {726, 13405}, {908, 32923}, {1125, 1215}, {1707, 26245}, {2887, 3626}, {3008, 4090}, {3011, 17165}, {3175, 37703}, {3244, 26098}, {3634, 26128}, {3636, 25496}, {3663, 29670}, {3679, 26132}, {3717, 33130}, {3772, 49529}, {3817, 29844}, {3838, 9053}, {3883, 33101}, {3911, 42055}, {3938, 4054}, {3944, 49466}, {4052, 30331}, {4082, 29642}, {4096, 6666}, {4298, 8669}, {4353, 6685}, {4362, 34379}, {4365, 50744}, {4656, 29651}, {4685, 30985}, {4701, 4892}, {4745, 28595}, {4780, 30699}, {4899, 33138}, {5219, 49554}, {5249, 32927}, {5294, 31161}, {5542, 29649}, {5853, 48643}, {6686, 30982}, {6690, 28582}, {6692, 42053}, {6745, 24165}, {7081, 24231}, {11679, 49505}, {16825, 21060}, {17063, 50535}, {17132, 24333}, {17278, 59597}, {17355, 21101}, {17724, 59692}, {18134, 49766}, {20045, 41011}, {21093, 40998}, {22837, 34036}, {28027, 56318}, {28039, 54286}, {29675, 56078}, {33106, 49771}, {33111, 49527}, {33127, 50752}, {33137, 49536}, {33163, 56521}, {34378, 40635}, {39595, 49479}, {40719, 53594}, {53601, 59679}

X(59730) = midpoint of X(i) and X(j) for these {i,j}: {226, 32920}
X(59730) = reflection of X(i) in X(j) for these {i,j}: {59547, 13405}
X(59730) = pole of line {345, 17595} with respect to the dual conic of Yff parabola
X(59730) = center of the dual of the bicevian conic of X(86) and X(277)
X(59730) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {226, 32920, 519}, {726, 13405, 59547}, {1125, 59732, 59517}, {17278, 59597, 59684}, {26128, 53663, 3634}


X(59731) = X(1)X(2899)∩X(10)X(1265)

Barycentrics    2*a^4-a^2*(b-c)^2-a^3*(b+c)+3*a*(b+c)*(b^2+c^2)+(b+c)^2*(b^2-4*b*c+c^2) : :

X(59731) lies on these lines: {1, 2899}, {10, 1265}, {519, 1837}, {726, 6700}, {1125, 1215}, {3159, 59547}, {3626, 42378}, {3772, 59598}, {3971, 13411}, {4078, 11374}, {4292, 21093}, {4929, 50444}, {6691, 28582}, {8669, 12572}, {17132, 24334}, {17733, 21060}, {24046, 50535}, {25440, 28526}, {27385, 32925}, {30568, 36573}, {32927, 41012}, {32934, 59587}, {34937, 59511}, {37552, 56084}, {59585, 59723}

X(59731) = center of the dual of the bicevian conic of X(86) and X(278)
X(59731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3159, 59719, 59547}, {3772, 59598, 59685}


X(59732) = X(1)X(8055)∩X(10)X(5423)

Barycentrics    2*a^3-3*a^2*(b+c)+4*a*(b+c)^2+(b+c)*(b^2-6*b*c+c^2) : :

X(59732) lies on these lines: {1, 8055}, {10, 5423}, {497, 519}, {726, 20103}, {1125, 1215}, {1376, 17132}, {2550, 4052}, {3008, 27538}, {3159, 16870}, {3626, 4104}, {3755, 59597}, {3946, 59596}, {3950, 25568}, {3952, 40940}, {3967, 17355}, {3971, 13405}, {4000, 59599}, {4082, 20106}, {4353, 59511}, {4929, 5274}, {5850, 29649}, {6692, 28582}, {6700, 24068}, {6745, 32925}, {8580, 53594}, {17262, 59584}, {20344, 21093}, {32927, 40998}, {32937, 39595}, {33085, 53598}, {45204, 49446}

X(59732) = pole of line {21302, 43061} with respect to the dual conic of incircle
X(59732) = center of the dual of the bicevian conic of X(86) and X(279)
X(59732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3971, 13405, 59585}, {4000, 59599, 59686}, {59517, 59730, 1125}


X(59733) = X(1)X(1257)∩X(10)X(37)

Barycentrics    a*(b+c)*((a-b)^2*(a+b)-a*(a+b)*c-a*c^2+c^3) : :

X(59733) lies on these lines: {1, 1257}, {6, 4574}, {9, 943}, {10, 37}, {19, 8715}, {35, 5279}, {42, 58390}, {71, 758}, {100, 1781}, {192, 17861}, {198, 49553}, {200, 756}, {219, 22836}, {281, 15065}, {306, 25080}, {344, 25097}, {346, 1089}, {519, 40937}, {572, 22061}, {579, 3874}, {942, 59689}, {993, 5227}, {1018, 2171}, {1108, 3244}, {1215, 3693}, {1334, 21078}, {1400, 3970}, {1486, 4557}, {1723, 3870}, {1743, 25082}, {1765, 2801}, {1953, 2802}, {2197, 3178}, {2256, 30144}, {2260, 3881}, {2269, 57015}, {2276, 3771}, {2294, 3754}, {2345, 10198}, {3161, 3952}, {3247, 54318}, {3293, 40977}, {3294, 21033}, {3509, 37508}, {3664, 25083}, {3666, 20106}, {3912, 4019}, {3930, 21061}, {3958, 4127}, {3965, 6743}, {4032, 22003}, {4047, 4067}, {4075, 59585}, {4084, 21866}, {4097, 21867}, {4433, 21804}, {4856, 43065}, {6358, 43683}, {6708, 35652}, {8804, 21077}, {10197, 17281}, {14973, 58648}, {16577, 26942}, {16578, 16608}, {16603, 21069}, {16667, 26690}, {16777, 30143}, {17151, 24554}, {17314, 49168}, {17776, 52369}, {18698, 45744}, {20818, 56177}, {20964, 57165}, {21065, 50036}, {21255, 37597}, {24780, 28757}, {25440, 54405}, {29016, 51758}, {30329, 51058}, {40530, 59641}, {40590, 40599}, {40607, 40659}, {40942, 59719}, {43534, 56144}, {54286, 54424}, {56176, 59681}, {58405, 59604}, {59547, 59636}, {59584, 59644}

X(59733) = midpoint of X(i) and X(j) for these {i,j}: {71, 22021}
X(59733) = X(i)-isoconjugate-of-X(j) for these {i, j}: {58, 37887}, {593, 41501}, {849, 43683}, {1019, 6011}, {1412, 6598}
X(59733) = X(i)-Dao conjugate of X(j) for these {i, j}: {10, 37887}, {4075, 43683}, {8286, 4560}, {35193, 2185}, {35583, 3960}, {40599, 6598}
X(59733) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6358, 3678}
X(59733) = pole of line {3960, 17925} with respect to the polar circle
X(59733) = pole of line {661, 21390} with respect to the Steiner inellipse
X(59733) = center of the dual of the bicevian conic of X(86) and X(286)
X(59733) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(25081)}}, {{A, B, C, X(9), X(43683)}}, {{A, B, C, X(10), X(943)}}, {{A, B, C, X(37), X(2259)}}, {{A, B, C, X(281), X(56948)}}, {{A, B, C, X(740), X(6003)}}, {{A, B, C, X(758), X(55994)}}, {{A, B, C, X(1213), X(56439)}}, {{A, B, C, X(2321), X(56316)}}, {{A, B, C, X(2335), X(41503)}}, {{A, B, C, X(3694), X(36910)}}, {{A, B, C, X(3695), X(15065)}}, {{A, B, C, X(3704), X(56946)}}, {{A, B, C, X(3743), X(56840)}}, {{A, B, C, X(3811), X(6757)}}, {{A, B, C, X(3931), X(37583)}}, {{A, B, C, X(4205), X(13739)}}, {{A, B, C, X(5174), X(5295)}}, {{A, B, C, X(5248), X(39772)}}
X(59733) = barycentric product X(i)*X(j) for these (i, j): {10, 34772}, {12, 56946}, {307, 56316}, {765, 8286}, {1089, 56840}, {3699, 57107}, {3701, 37583}, {3952, 6003}, {5174, 72}, {13739, 3695}, {15065, 27086}, {15556, 8}, {21961, 4567}, {23775, 57731}, {31603, 4069}, {33116, 37}, {41503, 57807}, {56439, 594}, {56948, 6358}
X(59733) = barycentric quotient X(i)/X(j) for these (i, j): {37, 37887}, {210, 6598}, {594, 43683}, {756, 41501}, {3690, 43708}, {4557, 6011}, {5174, 286}, {6003, 7192}, {8286, 1111}, {15556, 7}, {21961, 16732}, {33116, 274}, {34772, 86}, {37583, 1014}, {41503, 270}, {56316, 29}, {56439, 1509}, {56840, 757}, {56946, 261}, {56948, 2185}, {57107, 3676}, {57139, 7203}
X(59733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 27396, 25078}, {9, 3949, 3678}, {10, 37, 25081}, {37, 2092, 16600}, {37, 2321, 59727}, {37, 3694, 10}, {37, 3991, 3950}, {71, 22021, 758}, {59585, 59722, 59646}


X(59734) = X(9)X(43)∩X(37)X(230)

Barycentrics    a^2*(a-b-c)*(-b^4-c^4+a^2*(b^2+c^2)) : :

X(59734) lies on these lines: {9, 43}, {37, 230}, {39, 986}, {55, 219}, {71, 37619}, {101, 1324}, {109, 20741}, {220, 18755}, {232, 240}, {281, 345}, {325, 42717}, {511, 1755}, {518, 8608}, {522, 650}, {579, 1403}, {607, 1259}, {672, 23622}, {758, 3002}, {1212, 18253}, {1500, 2329}, {1575, 1738}, {1691, 17735}, {1735, 13006}, {1758, 3509}, {1761, 18591}, {1818, 2272}, {1914, 2323}, {1959, 36212}, {2197, 5279}, {2810, 20785}, {3003, 4053}, {3666, 3946}, {3684, 14936}, {3703, 4178}, {3730, 54388}, {3869, 22070}, {4511, 7117}, {5179, 49637}, {5273, 25059}, {5399, 22164}, {5943, 24511}, {6184, 9441}, {6335, 16089}, {6603, 52964}, {12109, 40955}, {15990, 56926}, {16699, 21677}, {17053, 20284}, {19582, 27397}, {20262, 38408}, {20335, 43063}, {20683, 51928}, {22071, 27396}, {23619, 29958}, {25078, 50650}, {29658, 41269}, {35072, 58325}, {39029, 56785}, {39690, 53280}, {40942, 59692}, {41423, 53128}, {52386, 54316}, {59547, 59565}

X(59734) = perspector of circumconic {{A, B, C, X(8), X(3903)}}
X(59734) = center of circumconic {{A, B, C, X(1959), X(2396)}}
X(59734) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7, 1910}, {34, 287}, {56, 1821}, {57, 98}, {77, 6531}, {85, 1976}, {222, 36120}, {248, 273}, {269, 15628}, {278, 293}, {290, 604}, {336, 608}, {603, 16081}, {685, 51664}, {1395, 57799}, {1397, 46273}, {1414, 2395}, {2422, 4625}, {2715, 4077}, {2966, 4017}, {4369, 36065}, {4564, 43920}, {7178, 36084}, {7180, 36036}, {7182, 57260}, {9154, 51653}, {9476, 51647}, {14600, 57787}, {14601, 20567}, {17094, 36104}, {17932, 55208}, {34536, 51651}, {43187, 51641}
X(59734) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 1821}, {132, 278}, {511, 43034}, {2679, 7180}, {3161, 290}, {5452, 98}, {5976, 6063}, {6600, 15628}, {6741, 43665}, {7952, 16081}, {11517, 287}, {11672, 7}, {34961, 2966}, {38987, 7178}, {39000, 17094}, {39039, 273}, {39040, 85}, {39073, 43045}, {40601, 56}, {40608, 2395}, {46094, 222}, {50440, 2}
X(59734) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 50440}, {8, 7062}, {1959, 511}, {3573, 926}, {3948, 35104}, {56109, 55}
X(59734) = X(i)-complementary conjugate of X(j) for these {i, j}: {21, 20542}, {31, 50440}, {41, 46842}, {55, 45162}, {284, 20333}, {292, 17052}, {741, 2886}, {875, 8286}, {1808, 1368}, {1911, 442}, {1922, 17056}, {2175, 35068}, {2194, 17793}, {2196, 18642}, {2311, 141}, {4876, 21245}, {5546, 27854}, {7077, 3454}, {14598, 2092}, {17938, 3907}, {18265, 1213}, {18268, 142}, {18827, 17047}, {36800, 626}, {36806, 21263}, {37128, 17046}, {51858, 1211}, {56154, 2887}, {57657, 17755}
X(59734) = X(i)-cross conjugate of X(j) for these {i, j}: {7062, 8}
X(59734) = pole of line {278, 7180} with respect to the polar circle
X(59734) = pole of line {23638, 50491} with respect to the Brocard inellipse
X(59734) = pole of line {3271, 7062} with respect to the Feuerbach hyperbola
X(59734) = pole of line {2886, 8286} with respect to the Kiepert hyperbola
X(59734) = pole of line {7, 4565} with respect to the Stammler hyperbola
X(59734) = pole of line {9, 3287} with respect to the Steiner inellipse
X(59734) = pole of line {222, 4573} with respect to the Wallace hyperbola
X(59734) = pole of line {442, 4904} with respect to the dual conic of Yff parabola
X(59734) = pole of line {4384, 17899} with respect to the dual conic of Suppa-Cucoanes circle
X(59734) = center of the dual of the bicevian conic of X(86) and X(290)
X(59734) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(4529)}}, {{A, B, C, X(43), X(30584)}}, {{A, B, C, X(55), X(3700)}}, {{A, B, C, X(219), X(3596)}}, {{A, B, C, X(232), X(650)}}, {{A, B, C, X(237), X(52326)}}, {{A, B, C, X(240), X(256)}}, {{A, B, C, X(281), X(2175)}}, {{A, B, C, X(297), X(8021)}}, {{A, B, C, X(325), X(50333)}}, {{A, B, C, X(345), X(6056)}}, {{A, B, C, X(1959), X(2328)}}, {{A, B, C, X(2238), X(15628)}}, {{A, B, C, X(3289), X(52307)}}, {{A, B, C, X(3693), X(42717)}}, {{A, B, C, X(3716), X(7281)}}, {{A, B, C, X(4230), X(33305)}}, {{A, B, C, X(4765), X(17209)}}, {{A, B, C, X(5976), X(8844)}}, {{A, B, C, X(7054), X(40099)}}, {{A, B, C, X(14284), X(44728)}}, {{A, B, C, X(36212), X(57055)}}, {{A, B, C, X(46889), X(57158)}}, {{A, B, C, X(50347), X(51862)}}, {{A, B, C, X(50440), X(56154)}}, {{A, B, C, X(53521), X(53523)}}
X(59734) = barycentric product X(i)*X(j) for these (i, j): {1, 44694}, {41, 46238}, {114, 56109}, {210, 51369}, {212, 40703}, {219, 297}, {232, 345}, {237, 3596}, {240, 78}, {281, 36212}, {290, 7062}, {314, 5360}, {325, 55}, {341, 51651}, {346, 43034}, {511, 8}, {607, 6393}, {1259, 6530}, {1264, 34854}, {1334, 51370}, {1755, 312}, {1857, 51386}, {1959, 9}, {2194, 42703}, {2211, 57919}, {2396, 3709}, {2421, 3700}, {2799, 5546}, {3289, 7017}, {3445, 44728}, {3569, 645}, {3699, 53521}, {3703, 51862}, {3712, 5968}, {3718, 57653}, {4230, 52355}, {15627, 51389}, {15628, 36790}, {17209, 2321}, {20022, 3688}, {23997, 4086}, {28659, 9417}, {31623, 42702}, {33299, 3405}, {35910, 7359}, {36797, 684}, {40363, 9418}, {42717, 650}, {44114, 6064}, {44132, 52425}, {50440, 56154}, {50567, 5547}
X(59734) = barycentric quotient X(i)/X(j) for these (i, j): {8, 290}, {9, 1821}, {33, 36120}, {41, 1910}, {55, 98}, {78, 336}, {212, 293}, {219, 287}, {220, 15628}, {232, 278}, {237, 56}, {240, 273}, {281, 16081}, {297, 331}, {312, 46273}, {325, 6063}, {345, 57799}, {511, 7}, {607, 6531}, {643, 36036}, {645, 43187}, {684, 17094}, {1259, 6394}, {1755, 57}, {1959, 85}, {2175, 1976}, {2211, 608}, {2421, 4573}, {2491, 7180}, {3271, 43920}, {3289, 222}, {3569, 7178}, {3596, 18024}, {3688, 20021}, {3700, 43665}, {3709, 2395}, {3712, 52145}, {4548, 11610}, {5360, 65}, {5546, 2966}, {5547, 9154}, {6056, 17974}, {6393, 57918}, {7062, 511}, {7063, 15630}, {9155, 7181}, {9417, 604}, {9418, 1397}, {9448, 14601}, {9475, 43045}, {11672, 43034}, {14966, 4565}, {15628, 34536}, {17209, 1434}, {23611, 1355}, {23997, 1414}, {34854, 1118}, {36212, 348}, {36797, 22456}, {40703, 57787}, {40972, 3404}, {42075, 51651}, {42702, 1214}, {42717, 4554}, {43034, 279}, {44114, 1365}, {44694, 75}, {44707, 53174}, {46238, 20567}, {51369, 57785}, {51386, 7055}, {51427, 17082}, {51651, 269}, {51980, 7316}, {52425, 248}, {53521, 3676}, {56109, 40428}, {57653, 34}, {58343, 1354}, {59571, 17091}, {59662, 18624}, {59707, 17081}
X(59734) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {893, 2276, 2092}, {1959, 36212, 43034}


X(59735) = X(10)X(3975)∩X(39)X(21902)

Barycentrics    2*a^3*b*c+b^2*c^2*(b+c)+a*b*c*(b^2+c^2)-a^2*(b+c)*(b^2+b*c+c^2) : :
X(59735) = -3*X[17264]+X[21100]

X(59735) lies on these lines: {10, 3975}, {39, 21902}, {239, 58287}, {291, 46843}, {519, 20683}, {650, 8714}, {714, 4422}, {726, 3008}, {1125, 1215}, {1575, 35068}, {3967, 12263}, {3971, 17023}, {3978, 6381}, {4253, 29649}, {4358, 20456}, {6679, 7829}, {6685, 21838}, {16604, 59506}, {17155, 29628}, {17157, 17338}, {17264, 21100}, {17353, 21080}, {17355, 59565}, {17367, 32925}, {17795, 39929}, {24036, 59720}, {25101, 42027}, {59585, 59716}

X(59735) = pole of line {3294, 4063} with respect to the Steiner inellipse
X(59735) = pole of line {26582, 31027} with respect to the dual conic of Yff parabola
X(59735) = center of the dual of the bicevian conic of X(86) and X(291)


X(59736) = X(2)X(21828)∩X(75)X(4120)

Barycentrics    b*(b-c)*c*(a^3+a*b*c-2*a^2*(b+c)+b*c*(b+c)) : :

X(59736) lies on these lines: {2, 21828}, {75, 4120}, {321, 45661}, {650, 4408}, {661, 4374}, {693, 47878}, {850, 25666}, {1577, 47782}, {1635, 3766}, {2786, 4359}, {3239, 20909}, {3261, 4893}, {3739, 21894}, {3762, 4453}, {4086, 47797}, {4129, 55180}, {4391, 47886}, {4406, 48544}, {4411, 47777}, {4750, 19804}, {4988, 18154}, {6544, 21606}, {6546, 20950}, {17894, 59751}, {20906, 47874}, {20907, 47765}, {20908, 30565}, {21196, 58361}, {24589, 45674}, {25299, 50486}, {29404, 48101}, {29808, 47671}, {30024, 48275}, {30061, 47958}, {30835, 35519}, {40619, 59746}

X(59736) = pole of line {21630, 56537} with respect to the Steiner inellipse
X(59736) = pole of line {17280, 27290} with respect to the dual conic of Suppa-Cucoanes circle
X(59736) = center of the dual of the bicevian conic of X(88) and X(100)


X(59737) = X(1)X(30709)∩X(115)X(116)

Barycentrics    (b-c)*(b+c)*(a^2-3*b*c+a*(b+c)) : :
X(59737) = X[1]+3*X[30709], -3*X[551]+X[4922], -5*X[1698]+X[50343], -X[1960]+3*X[48183], -X[3960]+3*X[4928], -X[4369]+3*X[45324], -X[4794]+3*X[48547], -X[13277]+3*X[59419], -3*X[14419]+5*X[19862], -3*X[21181]+X[50342], 3*X[21297]+X[21385], -X[23795]+3*X[36848] and many others

X(59737) lies on these lines: {1, 30709}, {10, 4010}, {115, 116}, {119, 31845}, {512, 59521}, {514, 661}, {519, 45342}, {522, 31946}, {525, 7657}, {551, 4922}, {656, 4962}, {812, 4422}, {900, 6702}, {1125, 2787}, {1698, 50343}, {1960, 48183}, {2775, 18483}, {3634, 9508}, {3667, 50329}, {3700, 50453}, {3760, 53370}, {3837, 23814}, {3887, 12019}, {3947, 53551}, {3960, 4928}, {4013, 55244}, {4033, 4103}, {4049, 4080}, {4075, 58363}, {4106, 29512}, {4145, 21714}, {4151, 4770}, {4170, 4807}, {4369, 45324}, {4394, 29013}, {4794, 48547}, {4885, 29148}, {5248, 53257}, {5259, 16158}, {6002, 19512}, {8714, 21260}, {13277, 59419}, {13466, 35068}, {14419, 19862}, {14837, 29216}, {16594, 30860}, {20317, 29302}, {21090, 21091}, {21099, 22042}, {21124, 57068}, {21181, 50342}, {21206, 28906}, {21297, 21385}, {23789, 48265}, {23795, 36848}, {23894, 39714}, {24183, 45674}, {26985, 48320}, {27045, 48008}, {27585, 27589}, {27773, 47778}, {28161, 47842}, {29152, 31288}, {29178, 31286}, {30835, 48321}, {31010, 47679}, {32478, 59743}, {47723, 48161}, {47724, 47821}, {47725, 48171}, {47816, 48264}, {47822, 48284}, {48267, 50337}, {49287, 58288}

X(59737) = midpoint of X(i) and X(j) for these {i,j}: {10, 4010}, {1577, 4129}, {21124, 57068}, {23789, 48265}, {3700, 50453}, {3835, 4791}, {31010, 47679}, {4049, 4120}, {4170, 4807}, {4707, 22037}, {48267, 50337}
X(59737) = reflection of X(i) in X(j) for these {i,j}: {23814, 3837}, {9508, 3634}
X(59737) = inverse of X(1086) in Kiepert hyperbola
X(59737) = perspector of circumconic {{A, B, C, X(75), X(4608)}}
X(59737) = center of circumconic {{A, B, C, X(6548), X(21297)}}
X(59737) = X(i)-isoconjugate-of-X(j) for these {i, j}: {110, 39982}, {163, 39697}, {1576, 39994}
X(59737) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 39697}, {244, 39982}, {3943, 17780}, {4858, 39994}
X(59737) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6548, 523}, {21297, 4145}
X(59737) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 34590}, {37, 3259}, {88, 53564}, {101, 34587}, {106, 17761}, {213, 35092}, {692, 51583}, {901, 3739}, {1018, 121}, {2316, 34589}, {3257, 3741}, {4013, 21253}, {4080, 21252}, {4555, 21240}, {4557, 16594}, {4559, 1145}, {4674, 116}, {5376, 512}, {5548, 960}, {9268, 4369}, {9456, 244}, {32665, 1125}, {32719, 3666}
X(59737) = pole of line {376, 573} with respect to the excircles-radical circle
X(59737) = pole of line {3822, 4085} with respect to the nine-point circle
X(59737) = pole of line {9746, 26227} with respect to the orthoptic circle of the Steiner Inellipse
X(59737) = pole of line {19, 39697} with respect to the polar circle
X(59737) = pole of line {24036, 49729} with respect to the Spieker circle
X(59737) = pole of line {514, 1086} with respect to the Kiepert hyperbola
X(59737) = pole of line {3914, 21045} with respect to the Orthic inconic
X(59737) = pole of line {8, 44006} with respect to the Steiner circumellipse
X(59737) = pole of line {10, 3120} with respect to the Steiner inellipse
X(59737) = pole of line {522, 3159} with respect to the Yff parabola
X(59737) = pole of line {1230, 1577} with respect to the dual conic of Stammler hyperbola
X(59737) = pole of line {244, 523} with respect to the dual conic of Yff parabola
X(59737) = pole of line {1111, 48274} with respect to the dual conic of Hutson-Moses hyperbola
X(59737) = pole of line {661, 1213} with respect to the dual conic of Wallace hyperbola
X(59737) = center of the dual of the bicevian conic of X(88) and X(190)
X(59737) = intersection, other than A, B, C, of circumconics {{A, B, C, X(226), X(30566)}}, {{A, B, C, X(514), X(4033)}}, {{A, B, C, X(661), X(4103)}}, {{A, B, C, X(693), X(21297)}}, {{A, B, C, X(1086), X(4978)}}, {{A, B, C, X(1577), X(21714)}}, {{A, B, C, X(1959), X(40091)}}, {{A, B, C, X(3762), X(4049)}}, {{A, B, C, X(3912), X(31855)}}, {{A, B, C, X(3936), X(14554)}}, {{A, B, C, X(3948), X(18145)}}, {{A, B, C, X(4013), X(39994)}}, {{A, B, C, X(4080), X(4358)}}, {{A, B, C, X(4491), X(14349)}}, {{A, B, C, X(14210), X(17160)}}, {{A, B, C, X(14963), X(33882)}}, {{A, B, C, X(23141), X(57184)}}
X(59737) = barycentric product X(i)*X(j) for these (i, j): {10, 21297}, {313, 4491}, {1577, 37680}, {4145, 75}, {17160, 523}, {18145, 661}, {20948, 33882}, {21385, 321}, {21606, 37}, {21714, 86}, {31855, 693}, {40089, 512}, {40091, 850}, {40095, 4010}, {52619, 58292}, {52872, 6548}
X(59737) = barycentric quotient X(i)/X(j) for these (i, j): {523, 39697}, {661, 39982}, {1577, 39994}, {4145, 1}, {4491, 58}, {17160, 99}, {18145, 799}, {21297, 86}, {21385, 81}, {21606, 274}, {21714, 10}, {21805, 40522}, {23141, 1790}, {31855, 100}, {33882, 163}, {37680, 662}, {40089, 670}, {40091, 110}, {40095, 4589}, {52872, 17780}, {57051, 52680}, {58292, 4557}
X(59737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1577, 4129, 514}, {1577, 48551, 50457}, {1577, 58361, 4791}, {4010, 14431, 10}, {4049, 22037, 4707}, {4120, 4707, 22037}, {4170, 21052, 4807}


X(59738) = X(10)X(141)∩X(536)X(3264)

Barycentrics    a^2*(b-c)^2*(b+c)+2*b^2*c^2*(b+c)+a^3*(b+c)^2-a*b*c*(b^2+6*b*c+c^2) : :

X(59738) lies on circumconic {{A, B, C, X(17758), X(36957)}} and on these lines: {10, 141}, {536, 3264}, {899, 20530}, {3216, 4852}, {3835, 4132}, {4395, 27076}, {16610, 59519}, {16726, 25298}, {17382, 25107}, {20340, 44671}, {24004, 27036}, {25498, 26030}, {26048, 57039}, {30748, 31079}, {30819, 50098}, {40521, 59690}

X(59738) = midpoint of X(i) and X(j) for these {i,j}: {16726, 25298}
X(59738) = pole of line {693, 18133} with respect to the Steiner inellipse
X(59738) = center of the dual of the bicevian conic of X(88) and X(274)


X(59739) = X(125)X(137)∩X(338)X(523)

Barycentrics    (b-c)^2*(b+c)^2*(-a^4+3*b^2*c^2+a^2*(b^2+c^2)) : :
X(59739) = X[1634]+3*X[53346]

X(59739) lies on these lines: {6, 43458}, {115, 9479}, {125, 137}, {338, 523}, {546, 58495}, {868, 38394}, {1576, 41254}, {1577, 53564}, {1634, 53346}, {3613, 45108}, {4092, 21714}, {4858, 31946}, {7336, 8287}, {8288, 59568}, {8901, 16186}, {15359, 59741}, {21531, 53474}, {34845, 41760}, {38393, 41221}

X(59739) = midpoint of X(i) and X(j) for these {i,j}: {21531, 53474}, {338, 7668}
X(59739) = perspector of circumconic {{A, B, C, X(31065), X(39183)}}
X(59739) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1101, 45108}
X(59739) = X(i)-Dao conjugate of X(j) for these {i, j}: {523, 45108}, {31296, 1078}
X(59739) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3613, 523}
X(59739) = pole of line {868, 8901} with respect to the nine-point circle
X(59739) = pole of line {4230, 35311} with respect to the polar circle
X(59739) = pole of line {826, 3569} with respect to the Kiepert hyperbola
X(59739) = pole of line {325, 1232} with respect to the dual conic of Stammler hyperbola
X(59739) = pole of line {140, 143} with respect to the dual conic of Wallace hyperbola
X(59739) = center of the dual of the bicevian conic of X(99) and X(110)
X(59739) = intersection, other than A, B, C, of circumconics {{A, B, C, X(338), X(43458)}}, {{A, B, C, X(7668), X(45108)}}
X(59739) = barycentric quotient X(i)/X(j) for these (i, j): {115, 45108}
X(59739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {338, 7668, 523}


X(59740) = X(23)X(385)∩X(546)X(1499)

Barycentrics    (b-c)*(b+c)*(3*a^4-b^4+b^2*c^2-c^4+a^2*(b^2+c^2)) : :
X(59740) = -X[3005]+3*X[32193], -7*X[3090]+3*X[15099], -X[6563]+3*X[45317], 3*X[8029]+X[31299], X[8664]+3*X[9979], -3*X[14610]+X[41298]

X(59740) lies on these lines: {23, 385}, {428, 2501}, {525, 54263}, {546, 1499}, {1510, 45259}, {2525, 9479}, {3005, 32193}, {3090, 15099}, {3566, 54262}, {5113, 30218}, {5133, 10189}, {6563, 45317}, {6676, 44451}, {8029, 31299}, {8664, 9979}, {10278, 37349}, {11186, 59549}, {14316, 14318}, {14610, 41298}, {20184, 45261}, {30215, 55221}, {30216, 55223}

X(59740) = midpoint of X(i) and X(j) for these {i,j}: {14316, 14318}
X(59740) = perspector of circumconic {{A, B, C, X(83), X(20088)}}
X(59740) = X(i)-complementary conjugate of X(j) for these {i, j}: {13578, 10}
X(59740) = pole of line {385, 5133} with respect to the nine-point circle
X(59740) = pole of line {5169, 50248} with respect to the orthocentroidal circle
X(59740) = pole of line {5, 20088} with respect to the orthoptic circle of the Steiner Inellipse
X(59740) = pole of line {427, 7779} with respect to the polar circle
X(59740) = pole of line {419, 7745} with respect to the Orthic inconic
X(59740) = pole of line {3589, 7797} with respect to the Steiner inellipse
X(59740) = pole of line {826, 21212} with respect to the dual conic of Wallace hyperbola
X(59740) = center of the dual of the bicevian conic of X(99) and X(141)
X(59740) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2501), X(18010)}}, {{A, B, C, X(20088), X(52898)}}
X(59740) = barycentric product X(i)*X(j) for these (i, j): {20088, 523}
X(59740) = barycentric quotient X(i)/X(j) for these (i, j): {20088, 99}


X(59741) = X(4)X(53266)∩X(5)X(523)

Barycentrics    (b-c)*(b+c)*(-3*b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)-2*a^4*(b^4+c^4)+a^2*(b^6+c^6)) : :
X(59741) = X[4]+3*X[53266], -5*X[632]+3*X[44814], -7*X[3090]+3*X[34291], -7*X[3523]+3*X[53275]

X(59741) lies on these lines: {4, 53266}, {5, 523}, {427, 46371}, {512, 546}, {525, 5449}, {526, 36253}, {632, 44814}, {690, 20379}, {804, 11623}, {826, 13565}, {850, 59635}, {868, 10278}, {1499, 52101}, {1594, 14618}, {1885, 16229}, {2395, 13881}, {3090, 34291}, {3523, 53275}, {3566, 6247}, {3850, 39482}, {7745, 47229}, {7752, 52632}, {7773, 53347}, {7789, 30476}, {8574, 43291}, {10189, 11007}, {11182, 59568}, {15359, 59739}, {15543, 42733}, {16254, 41167}, {17128, 31072}, {18314, 52526}, {37742, 47256}, {41079, 53567}, {42598, 57123}, {42599, 57122}, {44895, 47252}

X(59741) = midpoint of X(i) and X(j) for these {i,j}: {14618, 34964}, {15543, 42733}, {41079, 53567}, {5, 23105}
X(59741) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8901, 523}
X(59741) = pole of line {36739, 45147} with respect to the Kiepert parabola
X(59741) = pole of line {3, 47285} with respect to the Yff hyperbola
X(59741) = pole of line {16310, 59558} with respect to the dual conic of DeLongchamps circle
X(59741) = pole of line {526, 5972} with respect to the dual conic of Wallace hyperbola
X(59741) = center of the dual of the bicevian conic of X(99) and X(249)
X(59741) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 23105, 523}


X(59742) = X(2)X(47001)∩X(427)X(523)

Barycentrics    (b-c)*(b+c)*(a^8*(b^2+c^2)-3*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)-a^6*(b^2+c^2)^2+a^2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)-a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(59742) lies on these lines: {2, 47001}, {25, 47252}, {427, 523}, {428, 47004}, {525, 21243}, {850, 5133}, {868, 10278}, {879, 1853}, {1368, 18312}, {3830, 46996}, {5094, 47247}, {6587, 10189}, {6677, 30476}, {10254, 47002}, {13595, 47259}, {18559, 46997}, {35473, 47003}, {38321, 46990}, {42654, 58434}, {45689, 46425}, {47175, 52285}, {47253, 52297}, {53265, 53365}

X(59742) = pole of line {25, 47285} with respect to the Yff hyperbola
X(59742) = pole of line {5972, 6720} with respect to the dual conic of Wallace hyperbola
X(59742) = center of the dual of the bicevian conic of X(99) and X(250)


X(59743) = X(404)X(4367)∩X(523)X(656)

Barycentrics    (b-c)*(b+c)*(-3*a^2+b^2-3*b*c+c^2+a*(b+c)) : :
X(59743) = -X[8045]+3*X[45332], -X[18004]+3*X[21052], 7*X[21952]+X[23755], X[24093]+X[48151], -3*X[41800]+X[48289]

X(59743) lies on these lines: {140, 28473}, {214, 48328}, {404, 4367}, {442, 21051}, {512, 3754}, {523, 656}, {2487, 4107}, {3566, 59521}, {5445, 47837}, {8045, 45332}, {14321, 21053}, {14837, 29366}, {18004, 21052}, {18111, 18700}, {21301, 28217}, {21952, 23755}, {24093, 48151}, {32478, 59737}, {41800, 48289}

X(59743) = midpoint of X(i) and X(j) for these {i,j}: {24093, 48151}
X(59743) = perspector of circumconic {{A, B, C, X(226), X(31300)}}
X(59743) = pole of line {17056, 23947} with respect to the Steiner inellipse
X(59743) = center of the dual of the bicevian conic of X(99) and X(257)
X(59743) = barycentric product X(i)*X(j) for these (i, j): {10, 59749}, {31300, 523}
X(59743) = barycentric quotient X(i)/X(j) for these (i, j): {31300, 99}, {59749, 86}


X(59744) = X(30)X(511)∩X(110)X(39193)

Barycentrics    (b-c)*(b+c)*((a^2-b^2)^3+(-3*a^4+b^4)*c^2+(3*a^2+b^2)*c^4-c^6) : :
X(59744) = -X[110]+X[39193], -X[879]+X[34436], -X[2081]+X[2501], -X[2394]+X[54498], -X[2525]+X[46953], -X[3265]+X[6132], -X[5466]+X[54782], -X[5489]+X[46608], -X[8800]+X[10412], -X[14696]+X[32193], -X[14698]+X[47263], -X[15328]+X[45788] and many others

X(59744) lies on these lines: {30, 511}, {110, 39193}, {879, 34436}, {2081, 2501}, {2394, 54498}, {2525, 46953}, {3265, 6132}, {5466, 54782}, {5489, 46608}, {8800, 10412}, {14696, 32193}, {14698, 47263}, {15328, 45788}, {18124, 35364}, {23286, 53247}, {23290, 57065}, {34963, 59745}, {37084, 44826}, {38359, 57069}, {39520, 57071}, {45259, 59568}, {45801, 47125}

X(59744) = isogonal conjugate of X(46963)
X(59744) = perspector of circumconic {{A, B, C, X(2), X(93)}}
X(59744) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 46963}, {162, 15317}, {163, 13579}, {27361, 36134}
X(59744) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 46963}, {115, 13579}, {125, 15317}, {137, 27361}, {15241, 4}
X(59744) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4, 52120}, {44062, 3}
X(59744) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 52120}, {13579, 21253}, {15317, 34846}, {46963, 10}
X(59744) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {13579, 21294}, {46963, 8}
X(59744) = pole of line {4, 1994} with respect to the anticomplementary circle
X(59744) = pole of line {3, 70} with respect to the 2nd Brocard circle
X(59744) = pole of line {3, 70} with respect to the circumcircle
X(59744) = pole of line {6, 11818} with respect to the cosine circle
X(59744) = pole of line {4, 1994} with respect to the 1st DrozFarny circle
X(59744) = pole of line {3, 70} with respect to the 2nd DrozFarny circle
X(59744) = pole of line {4, 1994} with respect to the circumcircle of the Johnson triangle
X(59744) = pole of line {5, 156} with respect to the nine-point circle
X(59744) = pole of line {381, 11402} with respect to the orthocentroidal circle
X(59744) = pole of line {2, 59648} with respect to the orthoptic circle of the Steiner Inellipse
X(59744) = pole of line {4, 1994} with respect to the polar circle
X(59744) = pole of line {3, 70} with respect to the Stammler circle
X(59744) = pole of line {5, 156} with respect to the Steiner circle
X(59744) = pole of line {26, 68} with respect to the tangential circle
X(59744) = pole of line {389, 10116} with respect to the Taylor circle
X(59744) = pole of line {11, 52120} with respect to the Feuerbach hyperbola
X(59744) = pole of line {125, 52120} with respect to the Jerabek hyperbola
X(59744) = pole of line {5, 45780} with respect to the Johnson circumconic
X(59744) = pole of line {115, 52120} with respect to the Kiepert hyperbola
X(59744) = pole of line {523, 2072} with respect to the Kiepert parabola
X(59744) = pole of line {6, 70} with respect to the Orthic inconic
X(59744) = pole of line {110, 46963} with respect to the Stammler hyperbola
X(59744) = pole of line {2, 9609} with respect to the Steiner circumellipse
X(59744) = pole of line {2, 9609} with respect to the Steiner inellipse
X(59744) = pole of line {99, 46963} with respect to the Wallace hyperbola
X(59744) = pole of line {3589, 5028} with respect to the dual conic of anticomplementary circle
X(59744) = pole of line {141, 7887} with respect to the dual conic of circumcircle
X(59744) = pole of line {6, 16925} with respect to the dual conic of nine-point circle
X(59744) = pole of line {69, 3548} with respect to the dual conic of polar circle
X(59744) = pole of line {11165, 35302} with respect to the dual conic of Lemoine inellipse
X(59744) = pole of line {6337, 6515} with respect to the dual conic of Orthic inconic
X(59744) = pole of line {523, 44452} with respect to the dual conic of Wallace hyperbola
X(59744) = center of the dual of the bicevian conic of X(99) and X(275)
X(59744) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(2904)}}, {{A, B, C, X(30), X(7505)}}, {{A, B, C, X(511), X(8553)}}, {{A, B, C, X(523), X(55251)}}, {{A, B, C, X(524), X(45794)}}, {{A, B, C, X(924), X(55228)}}, {{A, B, C, X(1154), X(8800)}}, {{A, B, C, X(1510), X(2501)}}, {{A, B, C, X(3564), X(18124)}}, {{A, B, C, X(13754), X(45788)}}, {{A, B, C, X(27352), X(32428)}}
X(59744) = barycentric product X(i)*X(j) for these (i, j): {525, 7505}, {850, 8553}, {45794, 523}
X(59744) = barycentric quotient X(i)/X(j) for these (i, j): {6, 46963}, {523, 13579}, {647, 15317}, {2904, 41679}, {7505, 648}, {8553, 110}, {12077, 27361}, {45794, 99}
X(59744) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {520, 55121, 523}, {523, 3566, 1510}, {690, 30209, 3566}, {690, 6368, 924}


X(59745) = X(2)X(22089)∩X(5)X(525)

Barycentrics    (b-c)*(b+c)*(-(b^2*c^2*(b^2-c^2)^2)+a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-2*b^4+b^2*c^2-2*c^4)) : :

X(59745) lies on these lines: {2, 22089}, {4, 39201}, {5, 525}, {30, 39228}, {115, 34984}, {235, 44705}, {403, 523}, {419, 44451}, {427, 9209}, {512, 6130}, {520, 35062}, {647, 16229}, {690, 39503}, {804, 2485}, {2079, 3568}, {2422, 3224}, {2450, 3566}, {2797, 52584}, {5489, 16868}, {7577, 42733}, {8673, 44918}, {9210, 37988}, {14566, 46029}, {14880, 39517}, {25423, 53265}, {30474, 37990}, {34845, 50718}, {34963, 59744}, {36189, 47249}, {39491, 39504}, {44411, 55285}, {45259, 57065}, {45317, 50707}, {45681, 50140}, {50329, 53527}, {53567, 59549}

X(59745) = midpoint of X(i) and X(j) for these {i,j}: {14618, 15451}, {4, 39201}, {44705, 47194}, {647, 16229}
X(59745) = reflection of X(i) in X(j) for these {i,j}: {23301, 34964}, {5, 39510}, {57065, 45259}, {6130, 52585}
X(59745) = inverse of X(43278) in nine-point circle
X(59745) = isogonal conjugate of X(44828)
X(59745) = complement of X(22089)
X(59745) = perspector of circumconic {{A, B, C, X(1972), X(2052)}}
X(59745) = center of circumconic {{A, B, C, X(647), X(16229)}}
X(59745) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 44828}, {162, 40800}, {163, 54114}, {662, 1988}, {4575, 43710}
X(59745) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 44828}, {115, 54114}, {125, 40800}, {136, 43710}, {264, 6331}, {1084, 1988}
X(59745) = X(i)-Ceva conjugate of X(j) for these {i, j}: {647, 523}, {16229, 3566}
X(59745) = X(i)-complementary conjugate of X(j) for these {i, j}: {162, 59561}, {9255, 122}, {9258, 15526}, {9292, 16573}, {9307, 34846}, {24019, 59527}, {36120, 57294}, {43188, 18589}, {51336, 16595}, {57653, 48316}
X(59745) = pole of line {24, 1075} with respect to the circumcircle
X(59745) = pole of line {4, 6} with respect to the nine-point circle
X(59745) = pole of line {378, 7709} with respect to the orthocentroidal circle
X(59745) = pole of line {25, 3168} with respect to the orthoptic circle of the Steiner Inellipse
X(59745) = pole of line {3, 3164} with respect to the polar circle
X(59745) = pole of line {1503, 6144} with respect to the Steiner circle
X(59745) = pole of line {3269, 9409} with respect to the Kiepert hyperbola
X(59745) = pole of line {4, 40896} with respect to the MacBeath inconic
X(59745) = pole of line {53, 2052} with respect to the Orthic inconic
X(59745) = pole of line {6515, 40853} with respect to the Steiner circumellipse
X(59745) = pole of line {297, 3981} with respect to the Steiner inellipse
X(59745) = pole of line {3981, 41760} with respect to the dual conic of circumcircle
X(59745) = pole of line {230, 800} with respect to the dual conic of DeLongchamps circle
X(59745) = pole of line {3964, 40800} with respect to the dual conic of polar circle
X(59745) = pole of line {520, 6130} with respect to the dual conic of Wallace hyperbola
X(59745) = center of the dual of the bicevian conic of X(99) and X(276)
X(59745) = intersection, other than A, B, C, of circumconics {{A, B, C, X(403), X(6638)}}, {{A, B, C, X(3164), X(37778)}}, {{A, B, C, X(3168), X(52661)}}, {{A, B, C, X(3224), X(6530)}}, {{A, B, C, X(26887), X(42453)}}, {{A, B, C, X(44145), X(57008)}}
X(59745) = barycentric product X(i)*X(j) for these (i, j): {2501, 57008}, {3164, 523}, {3168, 525}, {14618, 6638}, {15412, 42453}, {18314, 26887}, {32445, 850}
X(59745) = barycentric quotient X(i)/X(j) for these (i, j): {6, 44828}, {512, 1988}, {523, 54114}, {647, 40800}, {2501, 43710}, {3164, 99}, {3168, 648}, {6638, 4558}, {26887, 18315}, {32445, 110}, {42453, 14570}, {57008, 4563}
X(59745) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 52585, 6130}, {525, 39510, 5}, {3566, 34964, 23301}, {14618, 15451, 523}


X(59746) = X(75)X(4103)∩X(115)X(116)

Barycentrics    (b-c)^2*(-a^2+3*b*c+a*(b+c)) : :
X(59746) = X[1018]+3*X[53381]

X(59746) lies on these lines: {11, 58898}, {75, 4103}, {85, 9328}, {115, 116}, {142, 21090}, {514, 1111}, {1018, 53381}, {1125, 2795}, {1447, 17729}, {2140, 3673}, {3120, 21176}, {3820, 4013}, {4568, 30997}, {4739, 52872}, {6710, 52826}, {7264, 17758}, {17197, 53546}, {17205, 27918}, {18159, 57038}, {22011, 33940}, {22106, 44320}, {24192, 59749}, {38365, 48065}, {40619, 59736}

X(59746) = midpoint of X(i) and X(j) for these {i,j}: {1111, 17761}
X(59746) = perspector of circumconic {{A, B, C, X(4608), X(26824)}}
X(59746) = X(i)-Dao conjugate of X(j) for these {i, j}: {17494, 17277}
X(59746) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17758, 514}
X(59746) = pole of line {523, 2254} with respect to the dual conic of Yff parabola
X(59746) = pole of line {47711, 48274} with respect to the dual conic of Hutson-Moses hyperbola
X(59746) = pole of line {1213, 3930} with respect to the dual conic of Wallace hyperbola
X(59746) = center of the dual of the bicevian conic of X(100) and X(190)
X(59746) = intersection, other than A, B, C, of circumconics {{A, B, C, X(514), X(47970)}}, {{A, B, C, X(2170), X(9328)}}
X(59746) = barycentric product X(i)*X(j) for these (i, j): {1111, 5284}, {16727, 46196}, {17163, 17205}, {26824, 514}, {47970, 693}, {52619, 58300}
X(59746) = barycentric quotient X(i)/X(j) for these (i, j): {5284, 765}, {26824, 190}, {47970, 100}, {58300, 4557}
X(59746) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1086, 21208, 24185}, {1111, 17761, 514}


X(59747) = X(2)X(20949)∩X(37)X(20906)

Barycentrics    (b-c)*(2*b^2*c^2+a^3*(b+c)-a*b*c*(b+c)-a^2*(b+c)^2) : :
X(59747) = 3*X[2]+X[20949], 3*X[14433]+X[21123], -X[17458]+5*X[30835], X[20950]+3*X[47793], X[20979]+3*X[27485], X[21225]+3*X[21606]

X(59747) lies on these lines: {2, 20949}, {37, 20906}, {141, 40474}, {513, 3739}, {650, 4408}, {786, 25666}, {3063, 17348}, {3835, 4132}, {4361, 48307}, {4384, 21007}, {4657, 48165}, {4670, 20980}, {4698, 21348}, {4776, 31993}, {4802, 4885}, {4852, 48302}, {4977, 17066}, {6706, 21198}, {14433, 21123}, {15668, 48281}, {17259, 21390}, {17458, 30835}, {20317, 30520}, {20530, 48197}, {20950, 47793}, {20953, 27045}, {20979, 27485}, {21225, 21606}, {21264, 47822}, {23790, 24603}, {25130, 48344}, {25498, 48181}, {28639, 48283}, {30748, 44429}, {44417, 47760}

X(59747) = midpoint of X(i) and X(j) for these {i,j}: {37, 20906}, {650, 4408}
X(59747) = reflection of X(i) in X(j) for these {i,j}: {21348, 4698}
X(59747) = X(i)-complementary conjugate of X(j) for these {i, j}: {101, 40585}, {34443, 1086}, {55026, 116}
X(59747) = pole of line {319, 350} with respect to the Steiner inellipse
X(59747) = center of the dual of the bicevian conic of X(100) and X(274)


X(59748) = X(239)X(514)∩X(2786)X(3709)

Barycentrics    (b-c)*(-3*a^3-2*a^2*(b+c)+(b+c)*(b^2+b*c+c^2)+a*(2*b^2+b*c+2*c^2)) : :
X(59748) = -X[1577]+3*X[45674], -X[47696]+5*X[58143], 3*X[47782]+X[48149], X[48277]+3*X[48570], -2*X[59714]+3*X[59755]

X(59748) lies on these lines: {239, 514}, {522, 52601}, {814, 44314}, {1577, 45674}, {2487, 26732}, {2786, 3709}, {3667, 48066}, {4467, 8045}, {4818, 50515}, {4823, 59749}, {6002, 17069}, {8714, 13246}, {9508, 29037}, {21212, 29013}, {25380, 29232}, {32212, 50504}, {44315, 48273}, {47696, 58143}, {47782, 48149}, {48277, 48570}, {59714, 59755}

X(59748) = midpoint of X(i) and X(j) for these {i,j}: {1019, 21196}, {4467, 8045}, {4818, 50515}
X(59748) = reflection of X(i) in X(j) for these {i,j}: {32212, 50504}, {4823, 59749}, {48273, 44315}
X(59748) = X(i)-isoconjugate-of-X(j) for these {i, j}: {163, 36633}
X(59748) = X(i)-Dao conjugate of X(j) for these {i, j}: {115, 36633}
X(59748) = pole of line {1826, 36633} with respect to the polar circle
X(59748) = pole of line {846, 1125} with respect to the Steiner inellipse
X(59748) = pole of line {3120, 23774} with respect to the dual conic of Yff parabola
X(59748) = pole of line {1999, 3950} with respect to the dual conic of Suppa-Cucoanes circle
X(59748) = center of the dual of the bicevian conic of X(190) and X(226)
X(59748) = barycentric quotient X(i)/X(j) for these (i, j): {523, 36633}
X(59748) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1019, 21196, 514}


X(59749) = X(2)X(48082)∩X(241)X(514)

Barycentrics    (b-c)*(-3*a^2+b^2-3*b*c+c^2+a*(b+c)) : :
X(59749) = -9*X[2]+X[48082], X[649]+3*X[21204], X[693]+3*X[45674], X[3716]+3*X[48245], X[4025]+3*X[47779], X[4142]+3*X[48569], X[4382]+3*X[45679], 3*X[4453]+5*X[24924], X[4458]+3*X[47823], 3*X[4750]+5*X[26985], 3*X[4786]+X[49287], X[4897]+3*X[4928] and many others

X(59749) lies on circumconic {{A, B, C, X(3911), X(31300)}} and on these lines: {2, 48082}, {241, 514}, {649, 21204}, {693, 45674}, {812, 2487}, {2490, 28890}, {2786, 4885}, {3667, 3837}, {3716, 48245}, {3798, 59522}, {3835, 5249}, {4025, 47779}, {4142, 48569}, {4379, 20522}, {4382, 45679}, {4394, 48415}, {4453, 24924}, {4458, 47823}, {4750, 26985}, {4786, 49287}, {4823, 59748}, {4897, 4928}, {4932, 26277}, {6545, 27013}, {7653, 28859}, {8689, 28225}, {10196, 31207}, {13246, 24720}, {14321, 45678}, {14475, 20295}, {21116, 26777}, {21183, 48008}, {24192, 59746}, {25666, 28855}, {28161, 48233}, {28846, 58463}, {28851, 31287}, {28906, 59751}, {29350, 33815}, {30835, 47755}, {31250, 48270}, {37998, 58591}, {44435, 47907}, {45313, 48398}, {45661, 47971}, {47123, 48575}, {47657, 47886}, {47762, 48104}, {47773, 48425}, {47776, 48414}, {47778, 49296}, {47785, 48399}, {47795, 49277}, {47800, 48073}, {47881, 48427}, {48041, 48574}, {48071, 48554}

X(59749) = midpoint of X(i) and X(j) for these {i,j}: {13246, 24720}, {3676, 31286}, {3798, 59522}, {3835, 59630}, {4369, 21212}, {4394, 48415}, {4823, 59748}, {47758, 59755}
X(59749) = perspector of circumconic {{A, B, C, X(7), X(31300)}}
X(59749) = pole of line {3829, 44412} with respect to the nine-point circle
X(59749) = pole of line {1, 26806} with respect to the Steiner inellipse
X(59749) = pole of line {8055, 29572} with respect to the dual conic of incircle
X(59749) = pole of line {17244, 30568} with respect to the dual conic of Suppa-Cucoanes circle
X(59749) = center of the dual of the bicevian conic of X(190) and X(257)
X(59749) = barycentric product X(i)*X(j) for these (i, j): {31300, 514}, {59743, 86}
X(59749) = barycentric quotient X(i)/X(j) for these (i, j): {31300, 190}, {59743, 10}
X(59749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1638, 4369, 21212}, {3676, 31286, 514}, {3835, 47758, 59630}, {59630, 59755, 3835}


X(59750) = X(4)X(2457)∩X(523)X(3960)

Barycentrics    (b-c)*(-a^4-3*a^2*b*c+a*b*c*(b+c)+(b^2-c^2)^2) : :
X(59750) = -X[4404]+3*X[23678], -3*X[11125]+X[48307], -2*X[21172]+X[48294], 3*X[30724]+X[40500]

X(59750) lies on circumconic {{A, B, C, X(4), X(20060)}} and on these lines: {4, 2457}, {513, 21180}, {514, 4581}, {522, 4823}, {523, 3960}, {900, 21179}, {3887, 44409}, {4404, 23678}, {4707, 57091}, {4777, 14353}, {4962, 21185}, {6003, 53522}, {7647, 59285}, {8058, 48287}, {11125, 48307}, {20315, 34120}, {20516, 20523}, {21172, 48294}, {30724, 40500}, {34958, 42337}, {47123, 59612}

X(59750) = midpoint of X(i) and X(j) for these {i,j}: {4707, 57091}
X(59750) = reflection of X(i) in X(j) for these {i,j}: {21201, 7649}, {48294, 21172}
X(59750) = perspector of circumconic {{A, B, C, X(6336), X(20060)}}
X(59750) = X(i)-isoconjugate-of-X(j) for these {i, j}: {692, 52442}
X(59750) = X(i)-Dao conjugate of X(j) for these {i, j}: {1086, 52442}
X(59750) = pole of line {23850, 50749} with respect to the circumcircle
X(59750) = pole of line {4298, 5563} with respect to the incircle
X(59750) = pole of line {519, 6198} with respect to the polar circle
X(59750) = pole of line {5341, 8756} with respect to the Orthic inconic
X(59750) = pole of line {1999, 17483} with respect to the Steiner circumellipse
X(59750) = pole of line {5249, 33133} with respect to the Steiner inellipse
X(59750) = pole of line {1737, 3336} with respect to the Suppa-Cucoanes circle
X(59750) = pole of line {16732, 23773} with respect to the dual conic of Yff parabola
X(59750) = pole of line {14429, 57099} with respect to the dual conic of Wallace hyperbola
X(59750) = center of the dual of the bicevian conic of X(190) and X(261)
X(59750) = barycentric product X(i)*X(j) for these (i, j): {20060, 514}
X(59750) = barycentric quotient X(i)/X(j) for these (i, j): {514, 52442}, {20060, 190}
X(59750) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3667, 7649, 21201}


X(59751) = X(2)X(3798)∩X(514)X(661)

Barycentrics    (b-c)*(a^2+b^2+4*b*c+c^2-4*a*(b+c)) : :
X(59751) = X[649]+3*X[47786], 3*X[1639]+X[4106], X[3004]+3*X[4944], -X[3676]+3*X[4928], X[3700]+3*X[47760], X[4024]+3*X[47783], X[4025]+3*X[4120], X[4122]+3*X[48555], 3*X[4379]+X[48038], -X[4394]+3*X[45326], X[4500]+3*X[45315] and many others

X(59751) lies on these lines: {2, 3798}, {514, 661}, {522, 25666}, {649, 47786}, {812, 4521}, {900, 31287}, {1639, 4106}, {2490, 6008}, {2786, 7658}, {3004, 4944}, {3566, 14341}, {3667, 3716}, {3676, 4928}, {3700, 47760}, {3887, 17115}, {4024, 47783}, {4025, 4120}, {4063, 28041}, {4122, 48555}, {4375, 31182}, {4379, 48038}, {4394, 45326}, {4406, 29488}, {4500, 45315}, {4522, 28161}, {4765, 47778}, {4785, 43061}, {4786, 31207}, {4813, 47789}, {4820, 47784}, {4885, 14321}, {4893, 48268}, {4897, 31250}, {4927, 48087}, {4962, 47828}, {7192, 47764}, {10196, 49287}, {17894, 59736}, {20295, 47766}, {20315, 50329}, {21183, 48082}, {21212, 45339}, {23729, 47770}, {24924, 48013}, {25259, 27138}, {26798, 47771}, {26985, 47769}, {28169, 48431}, {28225, 48050}, {28898, 59589}, {28906, 59749}, {31147, 48060}, {31148, 48034}, {43060, 44307}, {44449, 47758}, {45320, 48046}, {45685, 48276}, {45745, 47790}, {46403, 48546}, {47756, 48271}, {47759, 49293}, {47762, 49284}, {47768, 48079}, {47777, 48274}, {47785, 48266}, {47788, 48026}, {47802, 50326}, {47806, 48080}, {47812, 48036}, {47821, 49285}, {47832, 48039}, {47879, 48049}, {47881, 47988}, {48040, 48184}, {48089, 48166}, {48185, 49295}, {48429, 53584}, {48545, 53343}, {48592, 53586}, {59612, 59755}

X(59751) = midpoint of X(i) and X(j) for these {i,j}: {14350, 59752}, {20315, 50329}, {3239, 3835}, {3676, 48270}, {3798, 48269}, {4106, 11068}, {4120, 44432}, {4885, 14321}, {48592, 53586}
X(59751) = reflection of X(i) in X(j) for these {i,j}: {59522, 59752}, {59550, 7658}
X(59751) = complement of X(3798)
X(59751) = perspector of circumconic {{A, B, C, X(75), X(53646)}}
X(59751) = X(i)-complementary conjugate of X(j) for these {i, j}: {37, 5139}, {213, 15525}, {692, 6337}, {2996, 21252}, {3565, 3739}, {8769, 116}, {8770, 11}, {35136, 21240}, {38252, 1086}, {53059, 1015}
X(59751) = pole of line {8, 9746} with respect to the orthoptic circle of the Steiner Inellipse
X(59751) = pole of line {5783, 20103} with respect to the Spieker circle
X(59751) = pole of line {1086, 15525} with respect to the Kiepert hyperbola
X(59751) = pole of line {8, 28526} with respect to the Steiner circumellipse
X(59751) = pole of line {10, 2996} with respect to the Steiner inellipse
X(59751) = pole of line {522, 2977} with respect to the Yff parabola
X(59751) = center of the dual of the bicevian conic of X(190) and X(277)
X(59751) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48269, 3798}, {1639, 4106, 11068}, {2786, 7658, 59550}, {3835, 4486, 59522}, {3835, 45661, 3239}, {4025, 30835, 44432}, {4120, 30835, 4025}, {4885, 14321, 28846}, {4928, 48270, 3676}, {14350, 59752, 514}, {25259, 27138, 47757}, {26798, 47771, 49294}, {26985, 47769, 49296}


X(59752) = X(514)X(661)∩X(3667)X(4885)

Barycentrics    (b-c)*(a^2+b^2+10*b*c+c^2-6*a*(b+c)) : :
X(59752) = -X[4765]+5*X[30835], -X[11068]+3*X[45334], -X[14351]+2*X[31286], 5*X[26798]+3*X[47789], 5*X[26985]+3*X[47786], 7*X[27138]+X[48268], 3*X[44551]+X[48266], -X[59550]+3*X[59755]

X(59752) lies on these lines: {514, 661}, {812, 31182}, {2786, 59612}, {3667, 4885}, {4106, 43061}, {4521, 23813}, {4765, 30835}, {4928, 4962}, {4940, 28225}, {11068, 45334}, {14351, 31286}, {26798, 47789}, {26985, 47786}, {27138, 48268}, {44432, 48239}, {44551, 48266}, {59550, 59755}

X(59752) = midpoint of X(i) and X(j) for these {i,j}: {4106, 43061}, {4521, 23813}, {59522, 59751}
X(59752) = reflection of X(i) in X(j) for these {i,j}: {14350, 59751}, {14351, 31286}
X(59752) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1415, 38270}
X(59752) = X(i)-Dao conjugate of X(j) for these {i, j}: {1146, 38270}
X(59752) = pole of line {3663, 5274} with respect to the incircle
X(59752) = pole of line {1742, 8580} with respect to the Spieker circle
X(59752) = pole of line {10, 4862} with respect to the Steiner inellipse
X(59752) = pole of line {244, 4534} with respect to the dual conic of Yff parabola
X(59752) = center of the dual of the bicevian conic of X(190) and X(279)
X(59752) = barycentric product X(i)*X(j) for these (i, j): {35519, 38289}
X(59752) = barycentric quotient X(i)/X(j) for these (i, j): {522, 38270}, {38289, 109}
X(59752) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 59751, 14350}, {59522, 59751, 514}


X(59753) = X(514)X(656)∩X(521)X(3960)

Barycentrics    a*(b-c)*(a*b*c+2*a^2*(b+c)-(b+c)*(2*b^2-b*c+2*c^2)) : :
X(59753) = -3*X[1638]+X[44409], -3*X[4379]+X[5214], -X[4581]+3*X[48573], -X[7253]+3*X[47795], -2*X[8062]+3*X[48218], -3*X[47828]+X[50346]

X(59753) lies on circumconic {{A, B, C, X(4823), X(14838)}} and on these lines: {513, 4401}, {514, 656}, {521, 3960}, {522, 4823}, {905, 6003}, {926, 34954}, {1638, 44409}, {1734, 4017}, {1769, 4962}, {2254, 3667}, {3676, 57107}, {3887, 6129}, {3900, 14353}, {4041, 28155}, {4379, 5214}, {4581, 48573}, {4707, 20294}, {4791, 28623}, {4905, 17420}, {4926, 14315}, {6005, 50330}, {7253, 47795}, {8062, 48218}, {8672, 48012}, {15313, 48294}, {22091, 39210}, {23189, 39476}, {23875, 52355}, {25604, 53343}, {27673, 57155}, {28147, 57099}, {35057, 48287}, {38469, 48343}, {39532, 57170}, {47828, 50346}, {47842, 47997}, {57188, 58817}

X(59753) = midpoint of X(i) and X(j) for these {i,j}: {1734, 4017}, {2254, 21189}, {4707, 20294}, {4905, 17420}, {50350, 53527}, {656, 23800}, {905, 7655}
X(59753) = reflection of X(i) in X(j) for these {i,j}: {4823, 47843}, {47997, 47842}, {48018, 50350}, {48287, 51648}
X(59753) = perspector of circumconic {{A, B, C, X(9311), X(25417)}}
X(59753) = pole of line {3295, 23850} with respect to the circumcircle
X(59753) = pole of line {4, 43} with respect to the excircles-radical circle
X(59753) = pole of line {10883, 11019} with respect to the incircle
X(59753) = pole of line {6198, 39585} with respect to the polar circle
X(59753) = pole of line {1754, 5247} with respect to the excentral-hexyl ellipse
X(59753) = pole of line {3663, 5249} with respect to the Steiner inellipse
X(59753) = pole of line {11068, 48011} with respect to the Yff parabola
X(59753) = pole of line {3585, 18391} with respect to the Suppa-Cucoanes circle
X(59753) = pole of line {2170, 16732} with respect to the dual conic of Yff parabola
X(59753) = pole of line {21052, 57099} with respect to the dual conic of Wallace hyperbola
X(59753) = center of the dual of the bicevian conic of X(190) and X(286)
X(59753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {522, 47843, 4823}, {522, 50350, 48018}, {656, 23800, 514}, {905, 7655, 6003}, {1734, 4017, 28161}, {2254, 21189, 3667}, {4905, 17420, 28225}, {35057, 51648, 48287}, {50350, 53527, 522}


X(59754) = X(2)X(885)∩X(513)X(5249)

Barycentrics    (b-c)*(a^5-2*a^4*(b+c)+a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a*b*c*(b^2+c^2)+a^3*(b^2+b*c+c^2)) : :

X(59754) lies on these lines: {2, 885}, {442, 11247}, {513, 5249}, {650, 6690}, {667, 4228}, {693, 5284}, {905, 23811}, {1001, 40166}, {1577, 4204}, {2788, 8645}, {2886, 11193}, {3309, 8226}, {3716, 47203}, {3757, 4391}, {3900, 25006}, {4183, 17924}, {4874, 47789}, {5133, 21260}, {5326, 31287}, {8641, 26546}, {14008, 30968}, {15584, 31209}, {17072, 25972}, {18344, 25985}, {21189, 37887}, {24390, 32195}, {29128, 47708}, {37870, 48237}, {47780, 52601}

X(59754) = center of the dual of the bicevian conic of X(100) and it(X(100))


X(59755) = X(2)X(514)∩X(10)X(44315)

Barycentrics    (b-c)*(-3*a^2+b^2-5*b*c+c^2+3*a*(b+c)) : :
X(59755) = X[10]+2*X[44315], 2*X[1125]+X[44314], -7*X[3624]+X[5592], -4*X[3634]+X[32212], X[3776]+5*X[31250], 2*X[3837]+X[13246], X[4458]+5*X[30795], X[4951]+3*X[48227], -X[14442]+5*X[27191], X[21196]+5*X[26985], -25*X[24924]+X[48145], 5*X[26777]+7*X[48412] and many others

X(59755) lies on circumconic {{A, B, C, X(514), X(34024)}} and on these lines: {2, 514}, {10, 44315}, {513, 3848}, {522, 48198}, {650, 48413}, {812, 44902}, {824, 4885}, {918, 45678}, {1125, 44314}, {1638, 2786}, {1647, 40468}, {3624, 5592}, {3634, 32212}, {3667, 3817}, {3742, 37998}, {3776, 31250}, {3835, 5249}, {3837, 13246}, {3961, 48287}, {4369, 47756}, {4444, 56226}, {4448, 28225}, {4453, 45661}, {4458, 30795}, {4728, 45674}, {4763, 4927}, {4778, 45666}, {4951, 48227}, {4962, 26718}, {6084, 45675}, {6550, 19947}, {6633, 6634}, {6692, 31286}, {7658, 23801}, {14442, 27191}, {17072, 29655}, {20834, 39476}, {21196, 26985}, {21297, 45679}, {23814, 25377}, {24924, 48145}, {26777, 48412}, {27115, 48414}, {28147, 28602}, {28846, 45339}, {28855, 47760}, {28890, 45326}, {29820, 48294}, {30835, 47769}, {31287, 48415}, {38019, 58418}, {45315, 47891}, {45320, 47882}, {45340, 45668}, {45343, 47894}, {45344, 58372}, {47754, 47879}, {47874, 48434}, {47886, 48423}, {59550, 59752}, {59612, 59751}, {59714, 59748}

X(59755) = midpoint of X(i) and X(j) for these {i,j}: {1638, 4928}, {2, 21204}, {21183, 47778}, {21196, 48416}, {21297, 45679}, {3776, 47770}, {3835, 47758}, {4369, 47756}, {4453, 45661}, {4728, 45674}, {4763, 4927}, {44902, 45677}, {45315, 47891}, {45320, 47882}, {45343, 47894}, {45344, 58372}, {47754, 47879}, {47757, 47779}, {48198, 48215}, {650, 48413}, {6545, 10196}, {6548, 45684}
X(59755) = reflection of X(i) in X(j) for these {i,j}: {47758, 59749}, {59630, 47758}
X(59755) = complement of X(10196)
X(59755) = X(i)-Dao conjugate of X(j) for these {i, j}: {4440, 6631}
X(59755) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42555, 514}
X(59755) = pole of line {519, 4645} with respect to the Steiner inellipse
X(59755) = pole of line {1647, 4124} with respect to the dual conic of Yff parabola
X(59755) = center of the dual of the bicevian conic of X(190) and it(X(190))
X(59755) = lies on the inconic with perspector X(34024)
X(59755) = barycentric product X(i)*X(j) for these (i, j): {1086, 34024}
X(59755) = barycentric quotient X(i)/X(j) for these (i, j): {34024, 1016}
X(59755) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14475, 21204}, {2, 21204, 514}, {2, 6545, 10196}, {2, 6546, 45684}, {2, 6548, 6546}, {1638, 4928, 2786}, {3835, 59749, 59630}, {10196, 21204, 6545}, {44902, 45677, 812}, {48198, 48215, 522}


X(59756) = X(2)X(22401)∩X(3)X(40413)

Barycentrics    b^2*c^2*(a^4-6*a^2*b^2+b^4-c^4)*(a^4-b^4-6*a^2*c^2+c^4) : :

X(59756) lies on these lines: {2, 22401}, {3, 40413}, {69, 3819}, {76, 6340}, {95, 16419}, {183, 57800}, {264, 1368}, {287, 17811}, {305, 30739}, {325, 40032}, {1799, 7484}, {2373, 7485}, {7494, 10603}, {8797, 8889}, {13567, 42313}, {13575, 46336}, {30786, 31255}

X(59756) = isotomic conjugate of X(5020)
X(59756) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 5020}, {9247, 43981}
X(59756) = X(i)-cross conjugate of X(j) for these {i, j}: {3620, 76}
X(59756) = perspector of the dual conic of cosine circle
X(59756) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(1368)}}, {{A, B, C, X(5), X(16419)}}, {{A, B, C, X(25), X(30739)}}, {{A, B, C, X(64), X(262)}}, {{A, B, C, X(76), X(54412)}}, {{A, B, C, X(98), X(14457)}}, {{A, B, C, X(183), X(13567)}}, {{A, B, C, X(290), X(37874)}}, {{A, B, C, X(325), X(17811)}}, {{A, B, C, X(327), X(41530)}}, {{A, B, C, X(337), X(2339)}}, {{A, B, C, X(427), X(7484)}}, {{A, B, C, X(468), X(31255)}}, {{A, B, C, X(631), X(8889)}}, {{A, B, C, X(801), X(54124)}}, {{A, B, C, X(847), X(53103)}}, {{A, B, C, X(858), X(7485)}}, {{A, B, C, X(1093), X(7612)}}, {{A, B, C, X(1239), X(3266)}}, {{A, B, C, X(1370), X(46336)}}, {{A, B, C, X(2052), X(34384)}}, {{A, B, C, X(3526), X(11548)}}, {{A, B, C, X(4846), X(54709)}}, {{A, B, C, X(5094), X(7499)}}, {{A, B, C, X(5133), X(40916)}}, {{A, B, C, X(5486), X(40323)}}, {{A, B, C, X(6676), X(30771)}}, {{A, B, C, X(7019), X(7131)}}, {{A, B, C, X(7249), X(56359)}}, {{A, B, C, X(7386), X(16540)}}, {{A, B, C, X(7494), X(16051)}}, {{A, B, C, X(7495), X(30744)}}, {{A, B, C, X(7496), X(31074)}}, {{A, B, C, X(7734), X(34609)}}, {{A, B, C, X(8024), X(11059)}}, {{A, B, C, X(8770), X(9307)}}, {{A, B, C, X(10159), X(40009)}}, {{A, B, C, X(14489), X(15318)}}, {{A, B, C, X(15246), X(31101)}}, {{A, B, C, X(18022), X(57817)}}, {{A, B, C, X(21448), X(40324)}}, {{A, B, C, X(30758), X(40072)}}, {{A, B, C, X(31152), X(43957)}}, {{A, B, C, X(32216), X(44210)}}, {{A, B, C, X(39287), X(43530)}}, {{A, B, C, X(40801), X(52441)}}, {{A, B, C, X(46111), X(54636)}}, {{A, B, C, X(57925), X(58029)}}
X(59756) = barycentric product X(i)*X(j) for these (i, j): {264, 56339}, {17040, 76}
X(59756) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5020}, {264, 43981}, {17040, 6}, {56339, 3}


X(59757) = X(3)X(317)∩X(276)X(6389)

Barycentrics    ((a^2-b^2)^4-2*(a^2-b^2)^2*(a^2+b^2)*c^2+2*(a^2+b^2)^2*c^4-2*(a^2+b^2)*c^6+c^8)*(a^8-2*a^2*(b-c)*(b+c)*(b^2-2*c^2)*(b^2+c^2)-2*a^6*(b^2+2*c^2)+(b^2-c^2)^2*(b^4+c^4)+2*a^4*(b^4+b^2*c^2+3*c^4)) : :

X(59757) lies on these lines: {3, 317}, {76, 52350}, {276, 6389}, {394, 7763}, {492, 26922}, {631, 17974}, {1217, 40680}, {7509, 54124}, {11412, 54032}, {32132, 46746}

X(59757) = trilinear pole of line {6563, 520}
X(59757) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 6641}, {2179, 19179}
X(59757) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 6641}
X(59757) = perspector of the dual conic of Dou circle
X(59757) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(68), X(9290)}}, {{A, B, C, X(69), X(18027)}}, {{A, B, C, X(76), X(95)}}, {{A, B, C, X(216), X(6389)}}, {{A, B, C, X(264), X(34386)}}, {{A, B, C, X(287), X(13599)}}, {{A, B, C, X(297), X(631)}}, {{A, B, C, X(1972), X(42021)}}, {{A, B, C, X(1987), X(17042)}}, {{A, B, C, X(3523), X(52251)}}, {{A, B, C, X(3525), X(35937)}}, {{A, B, C, X(7386), X(26205)}}, {{A, B, C, X(7494), X(26155)}}, {{A, B, C, X(7769), X(32833)}}, {{A, B, C, X(7795), X(51373)}}, {{A, B, C, X(7799), X(32832)}}, {{A, B, C, X(9289), X(40448)}}, {{A, B, C, X(11412), X(44144)}}, {{A, B, C, X(15740), X(23582)}}, {{A, B, C, X(18855), X(56267)}}, {{A, B, C, X(31617), X(34403)}}, {{A, B, C, X(32533), X(54732)}}, {{A, B, C, X(32828), X(32831)}}, {{A, B, C, X(32829), X(32830)}}, {{A, B, C, X(32834), X(32837)}}, {{A, B, C, X(32835), X(32836)}}, {{A, B, C, X(32838), X(32841)}}, {{A, B, C, X(32839), X(32840)}}, {{A, B, C, X(32870), X(32876)}}, {{A, B, C, X(32871), X(32875)}}, {{A, B, C, X(32873), X(32877)}}, {{A, B, C, X(32879), X(32884)}}, {{A, B, C, X(32880), X(32887)}}, {{A, B, C, X(32881), X(32886)}}, {{A, B, C, X(32882), X(32889)}}, {{A, B, C, X(32891), X(32893)}}, {{A, B, C, X(32892), X(32895)}}, {{A, B, C, X(32896), X(32898)}}, {{A, B, C, X(40832), X(55560)}}, {{A, B, C, X(52581), X(57822)}}, {{A, B, C, X(53201), X(54660)}}, {{A, B, C, X(55561), X(57903)}}
X(59757) = barycentric product X(i)*X(j) for these (i, j): {264, 56337}, {56347, 76}
X(59757) = barycentric quotient X(i)/X(j) for these (i, j): {3, 6641}, {95, 19179}, {56337, 3}, {56347, 6}


X(59758) = X(2)X(10340)∩X(76)X(427)

Barycentrics    b^2*c^2*(2*a^2*b^2+(a^2+b^2)*c^2+c^4)*(b^2*(b^2+c^2)+a^2*(b^2+2*c^2)) : :

X(59758) lies on these lines: {2, 10340}, {69, 1241}, {76, 427}, {141, 305}, {1502, 21248}, {1613, 11324}, {1799, 15270}, {7386, 20021}, {8024, 40050}, {15523, 40071}, {23297, 39998}

X(59758) = trilinear pole of line {3267, 826}
X(59758) = X(i)-isoconjugate-of-X(j) for these {i, j}: {560, 7770}, {1973, 19126}
X(59758) = X(i)-Dao conjugate of X(j) for these {i, j}: {6337, 19126}, {6374, 7770}, {36901, 47128}
X(59758) = pole of line {31360, 40022} with respect to the Kiepert hyperbola
X(59758) = perspector of the dual conic of 1st Lemoine circle
X(59758) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(66)}}, {{A, B, C, X(25), X(9229)}}, {{A, B, C, X(32), X(7794)}}, {{A, B, C, X(69), X(45201)}}, {{A, B, C, X(76), X(305)}}, {{A, B, C, X(297), X(7386)}}, {{A, B, C, X(308), X(18018)}}, {{A, B, C, X(327), X(31630)}}, {{A, B, C, X(1239), X(18019)}}, {{A, B, C, X(1613), X(3314)}}, {{A, B, C, X(1916), X(17042)}}, {{A, B, C, X(5117), X(11324)}}, {{A, B, C, X(8770), X(44558)}}, {{A, B, C, X(9464), X(39998)}}, {{A, B, C, X(13854), X(54122)}}, {{A, B, C, X(18895), X(57923)}}, {{A, B, C, X(30541), X(46240)}}, {{A, B, C, X(31360), X(37876)}}, {{A, B, C, X(40022), X(56067)}}, {{A, B, C, X(40405), X(57852)}}, {{A, B, C, X(44187), X(57925)}}
X(59758) = barycentric product X(i)*X(j) for these (i, j): {31360, 76}, {37876, 8024}
X(59758) = barycentric quotient X(i)/X(j) for these (i, j): {69, 19126}, {76, 7770}, {850, 47128}, {8024, 8891}, {31360, 6}, {37876, 251}


X(59759) = X(1)X(4438)∩X(28)X(1792)

Barycentrics    ((a-b)^2*(a+b)+c^3)*(b^3+(a-c)^2*(a+c)) : :

X(59759) lies on these lines: {1, 4438}, {28, 1792}, {57, 3719}, {75, 37887}, {81, 33113}, {105, 3705}, {278, 345}, {279, 3926}, {291, 3771}, {312, 2006}, {344, 56218}, {985, 29671}, {1002, 29839}, {1224, 19827}, {1255, 29841}, {1390, 29634}, {2224, 14829}, {3912, 7132}, {4417, 56524}, {7058, 33077}, {8056, 17282}, {15474, 17740}, {16100, 20254}, {17279, 32017}, {17378, 39980}, {21907, 33168}, {25650, 51223}, {29474, 39797}, {29635, 30571}, {30710, 32777}, {36805, 42380}

X(59759) = isotomic conjugate of X(3772)
X(59759) = trilinear pole of line {20294, 20296}
X(59759) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 3924}, {25, 26934}, {31, 3772}, {32, 17861}, {55, 36570}, {56, 40968}, {213, 17189}, {604, 1837}, {649, 53279}, {1333, 21935}, {1400, 40980}, {1918, 16749}, {1973, 41004}
X(59759) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40968}, {2, 3772}, {9, 3924}, {37, 21935}, {223, 36570}, {3161, 1837}, {5375, 53279}, {6337, 41004}, {6376, 17861}, {6505, 26934}, {6626, 17189}, {34021, 16749}, {40582, 40980}
X(59759) = X(i)-cross conjugate of X(j) for these {i, j}: {521, 668}, {40436, 34399}, {56003, 34406}
X(59759) = pole of line {3772, 17189} with respect to the Wallace hyperbola
X(59759) = perspector of the dual conic of Fuhrmann circle
X(59759) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(7), X(56519)}}, {{A, B, C, X(59), X(17080)}}, {{A, B, C, X(63), X(4567)}}, {{A, B, C, X(75), X(33116)}}, {{A, B, C, X(76), X(333)}}, {{A, B, C, X(83), X(44733)}}, {{A, B, C, X(92), X(2985)}}, {{A, B, C, X(189), X(20568)}}, {{A, B, C, X(226), X(34895)}}, {{A, B, C, X(239), X(3771)}}, {{A, B, C, X(304), X(2064)}}, {{A, B, C, X(306), X(27801)}}, {{A, B, C, X(312), X(1016)}}, {{A, B, C, X(321), X(33113)}}, {{A, B, C, X(332), X(3596)}}, {{A, B, C, X(335), X(4438)}}, {{A, B, C, X(345), X(1792)}}, {{A, B, C, X(561), X(4600)}}, {{A, B, C, X(1125), X(29841)}}, {{A, B, C, X(1799), X(4998)}}, {{A, B, C, X(2051), X(17743)}}, {{A, B, C, X(3187), X(25645)}}, {{A, B, C, X(3661), X(29671)}}, {{A, B, C, X(3666), X(32777)}}, {{A, B, C, X(3705), X(3912)}}, {{A, B, C, X(3752), X(17279)}}, {{A, B, C, X(4384), X(29839)}}, {{A, B, C, X(4850), X(33157)}}, {{A, B, C, X(4997), X(34523)}}, {{A, B, C, X(5271), X(25650)}}, {{A, B, C, X(5435), X(17282)}}, {{A, B, C, X(5745), X(55076)}}, {{A, B, C, X(6335), X(31628)}}, {{A, B, C, X(6679), X(14621)}}, {{A, B, C, X(7054), X(27396)}}, {{A, B, C, X(7799), X(56440)}}, {{A, B, C, X(14554), X(55988)}}, {{A, B, C, X(16826), X(29635)}}, {{A, B, C, X(16831), X(29837)}}, {{A, B, C, X(17023), X(29634)}}, {{A, B, C, X(17077), X(29474)}}, {{A, B, C, X(17244), X(29655)}}, {{A, B, C, X(17266), X(29844)}}, {{A, B, C, X(17284), X(29840)}}, {{A, B, C, X(17298), X(39749)}}, {{A, B, C, X(17322), X(19827)}}, {{A, B, C, X(17367), X(29656)}}, {{A, B, C, X(17378), X(55955)}}, {{A, B, C, X(17397), X(29645)}}, {{A, B, C, X(17740), X(17776)}}, {{A, B, C, X(18835), X(33932)}}, {{A, B, C, X(20106), X(50582)}}, {{A, B, C, X(24624), X(39700)}}, {{A, B, C, X(25665), X(32914)}}, {{A, B, C, X(27475), X(33121)}}, {{A, B, C, X(28606), X(32779)}}, {{A, B, C, X(28654), X(33077)}}, {{A, B, C, X(28774), X(56524)}}, {{A, B, C, X(29571), X(29843)}}, {{A, B, C, X(29598), X(29838)}}, {{A, B, C, X(29614), X(29842)}}, {{A, B, C, X(30171), X(32858)}}, {{A, B, C, X(32849), X(33168)}}, {{A, B, C, X(34234), X(40012)}}, {{A, B, C, X(34258), X(40435)}}, {{A, B, C, X(34277), X(36796)}}, {{A, B, C, X(36807), X(40420)}}, {{A, B, C, X(39714), X(56358)}}, {{A, B, C, X(40824), X(57996)}}, {{A, B, C, X(44187), X(57820)}}, {{A, B, C, X(55942), X(57722)}}, {{A, B, C, X(56003), X(56305)}}
X(59759) = barycentric product X(i)*X(j) for these (i, j): {304, 55994}, {305, 56305}, {3669, 42380}, {34399, 8}, {34406, 69}, {40436, 75}, {56003, 76}
X(59759) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3924}, {2, 3772}, {8, 1837}, {9, 40968}, {10, 21935}, {21, 40980}, {57, 36570}, {63, 26934}, {69, 41004}, {75, 17861}, {86, 17189}, {100, 53279}, {274, 16749}, {1259, 53850}, {34399, 7}, {34406, 4}, {40436, 1}, {42380, 646}, {55994, 19}, {56003, 6}, {56305, 25}


X(59760) = X(8)X(81)∩X(10)X(57)

Barycentrics    (a^2+2*a*b+(b+c)^2)*(a^2+2*a*c+(b+c)^2) : :

X(59760) lies on these lines: {1, 2321}, {2, 3701}, {8, 81}, {10, 57}, {28, 281}, {72, 959}, {88, 9780}, {89, 3617}, {105, 405}, {145, 25417}, {274, 3596}, {277, 3739}, {278, 475}, {279, 1441}, {330, 28604}, {344, 32009}, {345, 37870}, {346, 6051}, {377, 29667}, {518, 51223}, {519, 39948}, {631, 29828}, {936, 53663}, {956, 961}, {957, 960}, {962, 7229}, {966, 41229}, {975, 3974}, {985, 5247}, {997, 56231}, {1002, 3555}, {1022, 28147}, {1125, 25430}, {1170, 5772}, {1191, 17369}, {1215, 43071}, {1255, 3616}, {1390, 56985}, {1422, 9623}, {1432, 49598}, {1453, 39958}, {1698, 8056}, {2006, 15065}, {2282, 31339}, {2334, 4046}, {2550, 40188}, {3086, 44417}, {3241, 51605}, {3242, 56137}, {3416, 4340}, {3486, 56146}, {3487, 32771}, {3488, 54331}, {3622, 27789}, {3634, 39963}, {3679, 39980}, {3757, 37176}, {4000, 19784}, {4294, 50054}, {4295, 4363}, {4339, 16394}, {4418, 6361}, {4647, 34914}, {4699, 39724}, {4859, 19880}, {5015, 50408}, {5082, 50314}, {5234, 6554}, {5550, 40434}, {5714, 25760}, {5749, 16466}, {5793, 18391}, {5955, 7080}, {6757, 52374}, {6762, 59772}, {7132, 56196}, {7227, 30305}, {8583, 56230}, {9534, 59406}, {10327, 16454}, {10385, 50053}, {10479, 24477}, {11037, 29611}, {11111, 48851}, {11116, 40143}, {12513, 57664}, {13742, 16823}, {16828, 56051}, {17279, 56217}, {17280, 39738}, {17289, 30701}, {17303, 19866}, {17321, 19865}, {17355, 31435}, {17480, 39722}, {17514, 27040}, {17740, 26115}, {19854, 37887}, {19856, 52654}, {19861, 56354}, {19868, 39959}, {19875, 36603}, {19877, 39962}, {25492, 36805}, {26745, 46933}, {28612, 48831}, {29641, 37153}, {29679, 37462}, {34051, 38955}, {37548, 50048}, {38057, 39797}, {38314, 56037}, {39950, 55076}, {39954, 57007}, {50305, 51673}, {50310, 51670}

X(59760) = isogonal conjugate of X(16466)
X(59760) = isotomic conjugate of X(17321)
X(59760) = trilinear pole of line {3700, 4949}
X(59760) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16466}, {3, 7713}, {6, 5256}, {25, 54404}, {31, 17321}, {56, 5250}, {57, 4254}, {58, 3931}, {110, 50332}, {163, 48402}, {603, 4194}, {604, 14555}, {662, 50492}, {692, 47995}, {1437, 39579}
X(59760) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 5250}, {2, 17321}, {3, 16466}, {9, 5256}, {10, 3931}, {115, 48402}, {244, 50332}, {1084, 50492}, {1086, 47995}, {3161, 14555}, {5452, 4254}, {6505, 54404}, {7952, 4194}, {36103, 7713}
X(59760) = X(i)-cross conjugate of X(j) for these {i, j}: {17303, 2}, {17599, 7}, {45745, 190}, {54418, 4}
X(59760) = pole of line {16466, 17321} with respect to the Wallace hyperbola
X(59760) = perspector of the dual conic of Longuet-Higgins circle
X(59760) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(4), X(75)}}, {{A, B, C, X(7), X(596)}}, {{A, B, C, X(8), X(10)}}, {{A, B, C, X(9), X(280)}}, {{A, B, C, X(21), X(475)}}, {{A, B, C, X(27), X(37037)}}, {{A, B, C, X(29), X(443)}}, {{A, B, C, X(34), X(23051)}}, {{A, B, C, X(37), X(2334)}}, {{A, B, C, X(42), X(19853)}}, {{A, B, C, X(56), X(37592)}}, {{A, B, C, X(58), X(5105)}}, {{A, B, C, X(65), X(5711)}}, {{A, B, C, X(72), X(345)}}, {{A, B, C, X(76), X(56044)}}, {{A, B, C, X(78), X(19843)}}, {{A, B, C, X(79), X(4373)}}, {{A, B, C, X(80), X(9578)}}, {{A, B, C, X(83), X(39721)}}, {{A, B, C, X(84), X(2297)}}, {{A, B, C, X(85), X(18840)}}, {{A, B, C, X(86), X(3296)}}, {{A, B, C, X(87), X(45989)}}, {{A, B, C, X(90), X(23617)}}, {{A, B, C, X(145), X(1698)}}, {{A, B, C, X(192), X(28604)}}, {{A, B, C, X(219), X(52389)}}, {{A, B, C, X(256), X(979)}}, {{A, B, C, X(305), X(54433)}}, {{A, B, C, X(318), X(2123)}}, {{A, B, C, X(321), X(19822)}}, {{A, B, C, X(335), X(58012)}}, {{A, B, C, X(344), X(3739)}}, {{A, B, C, X(346), X(4866)}}, {{A, B, C, X(348), X(14376)}}, {{A, B, C, X(392), X(12513)}}, {{A, B, C, X(405), X(518)}}, {{A, B, C, X(406), X(17518)}}, {{A, B, C, X(451), X(11116)}}, {{A, B, C, X(519), X(9780)}}, {{A, B, C, X(551), X(5550)}}, {{A, B, C, X(650), X(53089)}}, {{A, B, C, X(673), X(18841)}}, {{A, B, C, X(749), X(5331)}}, {{A, B, C, X(903), X(26039)}}, {{A, B, C, X(941), X(1126)}}, {{A, B, C, X(943), X(56179)}}, {{A, B, C, X(947), X(2983)}}, {{A, B, C, X(956), X(960)}}, {{A, B, C, X(983), X(1247)}}, {{A, B, C, X(984), X(5247)}}, {{A, B, C, X(987), X(39977)}}, {{A, B, C, X(989), X(8769)}}, {{A, B, C, X(994), X(56032)}}, {{A, B, C, X(997), X(10527)}}, {{A, B, C, X(1000), X(1222)}}, {{A, B, C, X(1001), X(3555)}}, {{A, B, C, X(1037), X(57662)}}, {{A, B, C, X(1042), X(56158)}}, {{A, B, C, X(1068), X(54292)}}, {{A, B, C, X(1125), X(3616)}}, {{A, B, C, X(1149), X(25492)}}, {{A, B, C, X(1215), X(49598)}}, {{A, B, C, X(1245), X(16606)}}, {{A, B, C, X(1440), X(7091)}}, {{A, B, C, X(1453), X(7174)}}, {{A, B, C, X(1476), X(7318)}}, {{A, B, C, X(1791), X(57832)}}, {{A, B, C, X(2346), X(56140)}}, {{A, B, C, X(2996), X(32018)}}, {{A, B, C, X(3085), X(19860)}}, {{A, B, C, X(3086), X(19861)}}, {{A, B, C, X(3241), X(3634)}}, {{A, B, C, X(3244), X(19877)}}, {{A, B, C, X(3427), X(57719)}}, {{A, B, C, X(3445), X(16714)}}, {{A, B, C, X(3449), X(39945)}}, {{A, B, C, X(3467), X(55989)}}, {{A, B, C, X(3617), X(3679)}}, {{A, B, C, X(3621), X(19875)}}, {{A, B, C, X(3622), X(3624)}}, {{A, B, C, X(3626), X(53620)}}, {{A, B, C, X(3633), X(46932)}}, {{A, B, C, X(3680), X(7110)}}, {{A, B, C, X(3828), X(20050)}}, {{A, B, C, X(3870), X(19855)}}, {{A, B, C, X(3912), X(39581)}}, {{A, B, C, X(3920), X(19784)}}, {{A, B, C, X(4000), X(17289)}}, {{A, B, C, X(4393), X(19856)}}, {{A, B, C, X(4492), X(57666)}}, {{A, B, C, X(4511), X(26363)}}, {{A, B, C, X(4699), X(17280)}}, {{A, B, C, X(4861), X(26364)}}, {{A, B, C, X(5222), X(19868)}}, {{A, B, C, X(5223), X(5234)}}, {{A, B, C, X(5251), X(5904)}}, {{A, B, C, X(5256), X(19866)}}, {{A, B, C, X(5258), X(5692)}}, {{A, B, C, X(5311), X(19865)}}, {{A, B, C, X(5436), X(41863)}}, {{A, B, C, X(5485), X(40023)}}, {{A, B, C, X(5551), X(39704)}}, {{A, B, C, X(5554), X(10039)}}, {{A, B, C, X(5556), X(36588)}}, {{A, B, C, X(5557), X(30712)}}, {{A, B, C, X(5558), X(28626)}}, {{A, B, C, X(6625), X(27494)}}, {{A, B, C, X(6762), X(31435)}}, {{A, B, C, X(7080), X(9623)}}, {{A, B, C, X(7191), X(19836)}}, {{A, B, C, X(7219), X(18018)}}, {{A, B, C, X(7319), X(51782)}}, {{A, B, C, X(7320), X(42285)}}, {{A, B, C, X(7498), X(16054)}}, {{A, B, C, X(7952), X(21147)}}, {{A, B, C, X(8583), X(14986)}}, {{A, B, C, X(9292), X(36873)}}, {{A, B, C, X(9309), X(15315)}}, {{A, B, C, X(9534), X(31330)}}, {{A, B, C, X(10159), X(20569)}}, {{A, B, C, X(10308), X(48806)}}, {{A, B, C, X(10405), X(57725)}}, {{A, B, C, X(10429), X(43672)}}, {{A, B, C, X(10449), X(31339)}}, {{A, B, C, X(11102), X(52252)}}, {{A, B, C, X(12647), X(25005)}}, {{A, B, C, X(14013), X(57007)}}, {{A, B, C, X(14377), X(39716)}}, {{A, B, C, X(14497), X(57884)}}, {{A, B, C, X(14942), X(15998)}}, {{A, B, C, X(16086), X(36568)}}, {{A, B, C, X(16474), X(27785)}}, {{A, B, C, X(16615), X(54758)}}, {{A, B, C, X(16815), X(50316)}}, {{A, B, C, X(16817), X(33171)}}, {{A, B, C, X(16828), X(17018)}}, {{A, B, C, X(17024), X(19881)}}, {{A, B, C, X(17038), X(39969)}}, {{A, B, C, X(17097), X(56136)}}, {{A, B, C, X(17303), X(17321)}}, {{A, B, C, X(17501), X(51789)}}, {{A, B, C, X(17743), X(27483)}}, {{A, B, C, X(17758), X(39749)}}, {{A, B, C, X(17911), X(38057)}}, {{A, B, C, X(18082), X(56172)}}, {{A, B, C, X(18391), X(24987)}}, {{A, B, C, X(18490), X(30598)}}, {{A, B, C, X(19767), X(19858)}}, {{A, B, C, X(19846), X(36565)}}, {{A, B, C, X(19851), X(32783)}}, {{A, B, C, X(19854), X(34772)}}, {{A, B, C, X(19862), X(38314)}}, {{A, B, C, X(19867), X(29832)}}, {{A, B, C, X(19869), X(26228)}}, {{A, B, C, X(20057), X(51073)}}, {{A, B, C, X(20615), X(55919)}}, {{A, B, C, X(22116), X(56753)}}, {{A, B, C, X(24931), X(39766)}}, {{A, B, C, X(25055), X(46934)}}, {{A, B, C, X(25512), X(29814)}}, {{A, B, C, X(26115), X(30116)}}, {{A, B, C, X(26812), X(27136)}}, {{A, B, C, X(29579), X(50305)}}, {{A, B, C, X(30513), X(52344)}}, {{A, B, C, X(31900), X(37036)}}, {{A, B, C, X(31906), X(56985)}}, {{A, B, C, X(31925), X(56986)}}, {{A, B, C, X(32635), X(36626)}}, {{A, B, C, X(33833), X(37168)}}, {{A, B, C, X(34260), X(57749)}}, {{A, B, C, X(36606), X(43732)}}, {{A, B, C, X(36934), X(59261)}}, {{A, B, C, X(39741), X(40718)}}, {{A, B, C, X(39949), X(56155)}}, {{A, B, C, X(39975), X(56343)}}, {{A, B, C, X(40411), X(40435)}}, {{A, B, C, X(40436), X(56027)}}, {{A, B, C, X(41506), X(46772)}}, {{A, B, C, X(43734), X(54786)}}, {{A, B, C, X(46931), X(51093)}}, {{A, B, C, X(48819), X(52372)}}, {{A, B, C, X(52185), X(56003)}}, {{A, B, C, X(54120), X(56210)}}, {{A, B, C, X(54972), X(58002)}}, {{A, B, C, X(55918), X(55991)}}, {{A, B, C, X(56138), X(56239)}}
X(59760) = barycentric quotient X(i)/X(j) for these (i, j): {1, 5256}, {2, 17321}, {6, 16466}, {8, 14555}, {9, 5250}, {19, 7713}, {37, 3931}, {55, 4254}, {63, 54404}, {281, 4194}, {512, 50492}, {514, 47995}, {523, 48402}, {661, 50332}, {1826, 39579}, {59069, 4565}


X(59761) = X(6)X(2985)∩X(76)X(321)

Barycentrics    b^2*c^2*(-a+b+c)^2 : :

X(59761) lies on these lines: {2, 32017}, {6, 2985}, {8, 23638}, {57, 40875}, {75, 24177}, {76, 321}, {197, 8707}, {226, 17786}, {305, 1978}, {312, 2321}, {313, 42034}, {329, 668}, {341, 4082}, {345, 646}, {594, 34258}, {1015, 39694}, {1086, 40012}, {1260, 7256}, {1265, 7046}, {1500, 30830}, {1921, 18153}, {2064, 14615}, {2345, 30710}, {3208, 3975}, {3264, 18743}, {3306, 19809}, {3713, 7058}, {3718, 34404}, {3948, 53675}, {4033, 4417}, {4358, 27130}, {4398, 18739}, {4415, 30473}, {4656, 6376}, {4671, 28654}, {5837, 44720}, {6335, 17903}, {6609, 6613}, {11679, 17787}, {16284, 44792}, {17316, 30092}, {21608, 49757}, {27131, 59712}, {27538, 40966}, {27808, 52369}, {28660, 56086}, {30681, 42032}, {34546, 54113}, {40022, 40087}, {40071, 41530}, {40364, 57792}, {42029, 50092}, {57518, 59518}, {57888, 57977}

X(59761) = isogonal conjugate of X(52410)
X(59761) = isotomic conjugate of X(1407)
X(59761) = polar conjugate of X(1398)
X(59761) = complement of X(46716)
X(59761) = trilinear pole of line {4397, 42337}
X(59761) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52410}, {6, 1106}, {25, 7099}, {31, 1407}, {32, 269}, {34, 52411}, {41, 7023}, {48, 1398}, {55, 7366}, {56, 604}, {57, 1397}, {65, 16947}, {85, 41280}, {109, 57181}, {163, 7250}, {184, 1435}, {222, 1395}, {244, 23979}, {279, 560}, {479, 9447}, {603, 608}, {658, 1980}, {667, 1461}, {669, 4637}, {738, 2175}, {934, 1919}, {1015, 24027}, {1042, 1333}, {1088, 1501}, {1119, 9247}, {1262, 3248}, {1357, 2149}, {1400, 1408}, {1402, 1412}, {1404, 1417}, {1410, 1474}, {1413, 2199}, {1415, 43924}, {1416, 52635}, {1427, 2206}, {1576, 7216}, {1847, 14575}, {1917, 57792}, {1924, 4616}, {1973, 7053}, {1974, 7177}, {1977, 7045}, {2150, 7143}, {2171, 7342}, {2187, 6612}, {2203, 52373}, {2208, 6611}, {3063, 6614}, {4565, 51641}, {4619, 8027}, {4635, 9426}, {7125, 7337}, {7128, 22096}, {7138, 36420}, {8662, 58985}, {9448, 23062}, {20567, 41281}, {32660, 43923}, {32739, 43932}, {53321, 57129}
X(59761) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 604}, {2, 1407}, {3, 52410}, {9, 1106}, {11, 57181}, {37, 1042}, {115, 7250}, {223, 7366}, {346, 1616}, {522, 1015}, {650, 1357}, {1146, 43924}, {1249, 1398}, {1577, 53538}, {2170, 42336}, {2968, 649}, {3160, 7023}, {3161, 56}, {3239, 3937}, {3752, 59173}, {4000, 16502}, {4858, 7216}, {5452, 1397}, {6337, 7053}, {6374, 279}, {6376, 269}, {6505, 7099}, {6552, 6}, {6600, 32}, {6631, 1461}, {6741, 7180}, {7358, 22383}, {7952, 608}, {9296, 934}, {9428, 4616}, {10001, 6614}, {11517, 52411}, {12640, 20228}, {14714, 1919}, {15347, 34543}, {17053, 17114}, {17115, 1977}, {23050, 1973}, {24771, 31}, {35508, 667}, {40582, 1408}, {40593, 738}, {40599, 1402}, {40602, 16947}, {40603, 1427}, {40605, 1412}, {40609, 52635}, {40619, 43932}, {40624, 3669}, {51574, 1410}, {52871, 1404}, {55064, 51641}, {55068, 57129}, {56325, 7143}, {57434, 21758}, {59577, 1400}, {59619, 28017}
X(59761) = X(i)-Ceva conjugate of X(j) for these {i, j}: {28659, 3596}
X(59761) = X(i)-cross conjugate of X(j) for these {i, j}: {341, 3596}, {1146, 4397}, {15416, 646}, {23978, 52622}, {35506, 57158}
X(59761) = pole of line {7250, 57181} with respect to the polar circle
X(59761) = pole of line {16947, 52410} with respect to the Stammler hyperbola
X(59761) = pole of line {6363, 21301} with respect to the Steiner circumellipse
X(59761) = pole of line {6363, 21260} with respect to the Steiner inellipse
X(59761) = pole of line {1333, 1407} with respect to the Wallace hyperbola
X(59761) = pole of line {47793, 52326} with respect to the dual conic of incircle
X(59761) = pole of line {693, 29288} with respect to the dual conic of Brocard inellipse
X(59761) = pole of line {3125, 53545} with respect to the dual conic of Stammler hyperbola
X(59761) = pole of line {4385, 24165} with respect to the dual conic of Yff parabola
X(59761) = perspector of the dual conic of mixtilinear incircles radical circle
X(59761) = lies on the inconic with perspector X(31625)
X(59761) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3452)}}, {{A, B, C, X(6), X(23638)}}, {{A, B, C, X(8), X(2985)}}, {{A, B, C, X(9), X(27184)}}, {{A, B, C, X(57), X(52517)}}, {{A, B, C, X(76), X(312)}}, {{A, B, C, X(92), X(36796)}}, {{A, B, C, X(200), X(3661)}}, {{A, B, C, X(220), X(3954)}}, {{A, B, C, X(279), X(24177)}}, {{A, B, C, X(318), X(30710)}}, {{A, B, C, X(321), X(346)}}, {{A, B, C, X(329), X(1275)}}, {{A, B, C, X(333), X(5233)}}, {{A, B, C, X(345), X(1016)}}, {{A, B, C, X(522), X(39694)}}, {{A, B, C, X(561), X(3596)}}, {{A, B, C, X(594), X(3713)}}, {{A, B, C, X(598), X(46103)}}, {{A, B, C, X(712), X(3900)}}, {{A, B, C, X(1043), X(4102)}}, {{A, B, C, X(1146), X(52626)}}, {{A, B, C, X(1255), X(33151)}}, {{A, B, C, X(2052), X(18359)}}, {{A, B, C, X(2287), X(32782)}}, {{A, B, C, X(2994), X(59196)}}, {{A, B, C, X(3208), X(33890)}}, {{A, B, C, X(3239), X(52043)}}, {{A, B, C, X(3926), X(55112)}}, {{A, B, C, X(4087), X(18891)}}, {{A, B, C, X(4110), X(6382)}}, {{A, B, C, X(4183), X(33736)}}, {{A, B, C, X(4391), X(6557)}}, {{A, B, C, X(4397), X(35543)}}, {{A, B, C, X(5837), X(46872)}}, {{A, B, C, X(10570), X(34527)}}, {{A, B, C, X(14534), X(30513)}}, {{A, B, C, X(15466), X(57538)}}, {{A, B, C, X(17903), X(23984)}}, {{A, B, C, X(24026), X(40213)}}, {{A, B, C, X(27130), X(30827)}}, {{A, B, C, X(27801), X(30713)}}, {{A, B, C, X(34918), X(56046)}}, {{A, B, C, X(39696), X(56089)}}, {{A, B, C, X(40013), X(56075)}}, {{A, B, C, X(40966), X(52651)}}, {{A, B, C, X(43740), X(54686)}}, {{A, B, C, X(50621), X(53089)}}, {{A, B, C, X(52406), X(57919)}}, {{A, B, C, X(54821), X(56218)}}
X(59761) = barycentric product X(i)*X(j) for these (i, j): {190, 52622}, {200, 561}, {210, 40072}, {281, 57919}, {304, 7101}, {305, 7046}, {310, 4082}, {312, 312}, {314, 3701}, {318, 3718}, {341, 75}, {345, 7017}, {346, 76}, {1016, 23978}, {1043, 313}, {1146, 31625}, {1253, 1928}, {1260, 18022}, {1265, 264}, {1502, 220}, {1577, 7258}, {1969, 3692}, {1978, 3239}, {2175, 44159}, {2287, 27801}, {2321, 28660}, {2322, 40071}, {3261, 6558}, {3596, 8}, {3710, 44130}, {3713, 40828}, {3900, 6386}, {4073, 7034}, {4086, 7257}, {4087, 4518}, {4163, 4572}, {4171, 4602}, {4391, 646}, {4397, 668}, {4441, 59260}, {4515, 6385}, {4524, 4609}, {5423, 6063}, {7256, 850}, {14827, 40362}, {15416, 6335}, {18021, 6057}, {20567, 728}, {20948, 7259}, {24026, 7035}, {27424, 4110}, {27808, 7253}, {28654, 7058}, {28659, 9}, {30681, 331}, {30693, 85}, {30713, 333}, {34387, 4076}, {35519, 3699}, {40050, 7071}, {40363, 55}, {40364, 7079}, {40495, 4578}, {41283, 480}, {42455, 57950}, {44172, 58327}, {44723, 6557}, {52406, 92}, {57793, 7080}
X(59761) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1106}, {2, 1407}, {4, 1398}, {6, 52410}, {7, 7023}, {8, 56}, {9, 604}, {10, 1042}, {11, 1357}, {12, 7143}, {21, 1408}, {33, 1395}, {55, 1397}, {57, 7366}, {60, 7342}, {63, 7099}, {69, 7053}, {72, 1410}, {75, 269}, {76, 279}, {78, 603}, {85, 738}, {92, 1435}, {189, 6612}, {190, 1461}, {200, 31}, {210, 1402}, {219, 52411}, {220, 32}, {261, 7341}, {264, 1119}, {280, 1413}, {281, 608}, {284, 16947}, {304, 7177}, {305, 7056}, {306, 52373}, {312, 57}, {313, 3668}, {314, 1014}, {318, 34}, {321, 1427}, {329, 6611}, {333, 1412}, {341, 1}, {345, 222}, {346, 6}, {480, 2175}, {522, 43924}, {523, 7250}, {556, 7370}, {561, 1088}, {644, 1415}, {645, 4565}, {646, 651}, {650, 57181}, {657, 1919}, {664, 6614}, {668, 934}, {670, 4616}, {693, 43932}, {728, 41}, {765, 24027}, {799, 4637}, {1016, 1262}, {1021, 57129}, {1043, 58}, {1089, 1254}, {1098, 849}, {1146, 1015}, {1229, 1418}, {1252, 23979}, {1253, 560}, {1259, 7335}, {1260, 184}, {1264, 1804}, {1265, 3}, {1275, 23971}, {1320, 1417}, {1329, 17114}, {1502, 57792}, {1577, 7216}, {1792, 1437}, {1802, 9247}, {1857, 7337}, {1969, 1847}, {1978, 658}, {2175, 41280}, {2287, 1333}, {2310, 3248}, {2321, 1400}, {2322, 1474}, {2324, 2199}, {2325, 1404}, {2328, 2206}, {2968, 3937}, {3208, 41526}, {3239, 649}, {3261, 58817}, {3263, 34855}, {3270, 22096}, {3452, 59173}, {3596, 7}, {3680, 16945}, {3685, 1428}, {3692, 48}, {3693, 52635}, {3694, 1409}, {3695, 1425}, {3699, 109}, {3700, 7180}, {3701, 65}, {3702, 32636}, {3703, 1401}, {3705, 7248}, {3710, 73}, {3713, 5019}, {3717, 1458}, {3718, 77}, {3719, 7125}, {3790, 1469}, {3886, 1471}, {3900, 667}, {3952, 53321}, {3965, 2300}, {3974, 1460}, {3975, 1429}, {3996, 55086}, {4012, 7083}, {4033, 1020}, {4041, 51641}, {4073, 7032}, {4076, 59}, {4081, 3271}, {4082, 42}, {4086, 4017}, {4087, 1447}, {4110, 1423}, {4130, 3063}, {4148, 8632}, {4163, 663}, {4171, 798}, {4183, 2203}, {4385, 4320}, {4391, 3669}, {4397, 513}, {4420, 1399}, {4441, 59242}, {4451, 1431}, {4477, 56242}, {4511, 52440}, {4515, 213}, {4524, 669}, {4528, 1960}, {4529, 20981}, {4546, 8643}, {4554, 4617}, {4571, 36059}, {4572, 4626}, {4578, 692}, {4587, 32660}, {4602, 4635}, {4673, 3361}, {4723, 1319}, {4768, 53528}, {4858, 53538}, {4873, 1405}, {4990, 50512}, {4996, 41282}, {4998, 7339}, {5423, 55}, {5552, 1406}, {6057, 181}, {6063, 479}, {6335, 32714}, {6358, 7147}, {6386, 4569}, {6552, 1616}, {6554, 16502}, {6555, 3052}, {6556, 3445}, {6557, 40151}, {6558, 101}, {6559, 1438}, {6602, 9447}, {6615, 42336}, {6632, 4619}, {6735, 1457}, {6736, 1201}, {7017, 278}, {7027, 266}, {7035, 7045}, {7046, 25}, {7058, 593}, {7071, 1974}, {7079, 1973}, {7080, 221}, {7101, 19}, {7253, 3733}, {7256, 110}, {7257, 1414}, {7258, 662}, {7259, 163}, {7360, 26884}, {8641, 1980}, {8706, 59123}, {8707, 52928}, {9448, 41281}, {10005, 42314}, {14827, 1501}, {14936, 1977}, {14942, 1416}, {15411, 7254}, {15416, 905}, {16284, 17106}, {17143, 38859}, {17787, 7175}, {17926, 43925}, {18021, 552}, {18152, 33765}, {18155, 7203}, {20007, 4252}, {20336, 1439}, {20567, 23062}, {20895, 1122}, {21615, 42309}, {21666, 2969}, {23104, 21132}, {23970, 14936}, {23978, 1086}, {24026, 244}, {27424, 7153}, {27538, 1403}, {27801, 1446}, {27808, 4566}, {28132, 43929}, {28654, 6354}, {28659, 85}, {28660, 1434}, {28809, 5228}, {30681, 219}, {30693, 9}, {30713, 226}, {30729, 36075}, {30730, 4559}, {31623, 1396}, {31625, 1275}, {33931, 7204}, {34387, 1358}, {34388, 6046}, {34404, 1422}, {34524, 34543}, {35506, 39015}, {35519, 3676}, {36197, 3121}, {36421, 36420}, {36795, 34051}, {36796, 1462}, {36802, 32735}, {40071, 56382}, {40072, 57785}, {40137, 8662}, {40213, 8042}, {40363, 6063}, {41013, 1426}, {41283, 57880}, {42020, 41426}, {42032, 52424}, {42033, 2003}, {42069, 42067}, {42337, 6363}, {42455, 764}, {42462, 21143}, {44159, 41283}, {44189, 55117}, {44426, 43923}, {44448, 51652}, {44694, 51651}, {44720, 1420}, {44723, 5435}, {45791, 20229}, {47793, 57238}, {50333, 53539}, {51972, 1475}, {51984, 14260}, {52335, 3122}, {52344, 52372}, {52345, 40933}, {52346, 1394}, {52369, 37755}, {52387, 7138}, {52406, 63}, {52409, 1411}, {52549, 3451}, {52609, 52610}, {52622, 514}, {53008, 57652}, {54113, 6609}, {54967, 8269}, {55016, 1361}, {55019, 1360}, {55112, 7011}, {55116, 3209}, {56086, 57663}, {56087, 56496}, {56094, 2163}, {56182, 2194}, {56277, 15375}, {57055, 22383}, {57158, 6371}, {57492, 7151}, {57783, 56972}, {57793, 1440}, {57918, 30682}, {57919, 348}, {57925, 56359}, {57928, 24016}, {58327, 2210}, {58328, 52434}, {58335, 50521}, {59201, 51302}, {59260, 1002}
X(59761) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 56312, 23638}, {312, 30693, 52406}, {312, 30713, 3596}, {312, 4110, 3687}, {3596, 44723, 312}, {20928, 46738, 2064}, {28659, 57919, 76}


X(59762) = X(691)X(22456)∩X(892)X(6528)

Barycentrics    (a-b)*b^2*(a+b)*(a-c)*c^2*(a+c)*(a^2+b^2-2*c^2)*(a^2+b^2-c^2)*(a^2-2*b^2+c^2)*(a^2-b^2+c^2) : :

X(59762) lies on these lines: {691, 22456}, {892, 6528}, {6331, 14618}, {16089, 16093}, {17983, 17984}, {18023, 44132}, {30786, 57981}, {41079, 43187}, {44146, 46111}, {52940, 57932}

X(59762) = polar conjugate of X(351)
X(59762) = trilinear pole of line {264, 2970}
X(59762) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 351}, {184, 2642}, {187, 810}, {560, 14417}, {647, 922}, {656, 14567}, {661, 23200}, {690, 9247}, {798, 3292}, {822, 44102}, {896, 3049}, {1917, 45807}, {1924, 6390}, {2200, 14419}, {4575, 21906}, {14273, 52430}, {23216, 24039}, {36060, 54274}
X(59762) = X(i)-Dao conjugate of X(j) for these {i, j}: {136, 21906}, {1249, 351}, {1560, 54274}, {6374, 14417}, {9428, 6390}, {15899, 3049}, {31998, 3292}, {36830, 23200}, {39052, 922}, {39061, 647}, {39062, 187}, {40596, 14567}
X(59762) = X(i)-cross conjugate of X(j) for these {i, j}: {892, 53080}
X(59762) = pole of line {21906, 35507} with respect to the polar circle
X(59762) = perspector of the dual conic of Parry circle
X(59762) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(76), X(35139)}}, {{A, B, C, X(648), X(935)}}, {{A, B, C, X(671), X(691)}}, {{A, B, C, X(2996), X(53202)}}, {{A, B, C, X(5485), X(53199)}}, {{A, B, C, X(6037), X(53230)}}, {{A, B, C, X(6331), X(6528)}}, {{A, B, C, X(14618), X(46456)}}, {{A, B, C, X(16077), X(55270)}}, {{A, B, C, X(46134), X(55218)}}
X(59762) = barycentric product X(i)*X(j) for these (i, j): {4, 53080}, {162, 57999}, {264, 892}, {1969, 36085}, {4609, 8753}, {5380, 57796}, {6331, 671}, {14618, 52940}, {17983, 670}, {18020, 52632}, {18022, 691}, {18023, 648}, {30786, 6528}, {32729, 44161}, {36128, 4602}, {41272, 42395}, {46111, 99}, {46277, 811}, {57968, 897}
X(59762) = barycentric quotient X(i)/X(j) for these (i, j): {4, 351}, {76, 14417}, {92, 2642}, {99, 3292}, {107, 44102}, {110, 23200}, {111, 3049}, {112, 14567}, {162, 922}, {264, 690}, {286, 14419}, {340, 44814}, {468, 54274}, {648, 187}, {670, 6390}, {671, 647}, {691, 184}, {811, 896}, {877, 9155}, {892, 3}, {895, 39201}, {897, 810}, {935, 59175}, {1235, 14424}, {1502, 45807}, {2052, 14273}, {2501, 21906}, {2970, 33919}, {4235, 39689}, {5380, 228}, {5466, 20975}, {5968, 39469}, {6331, 524}, {6335, 21839}, {6528, 468}, {8753, 669}, {9154, 878}, {9214, 9409}, {9979, 47415}, {14246, 42659}, {14618, 1648}, {14908, 58310}, {14977, 3269}, {16077, 9717}, {16081, 52038}, {17983, 512}, {17984, 11183}, {18020, 5467}, {18022, 35522}, {18023, 525}, {18817, 51479}, {18818, 30491}, {22456, 5967}, {30786, 520}, {32729, 14575}, {34334, 58349}, {34336, 33915}, {34574, 14908}, {36085, 48}, {36128, 798}, {36142, 9247}, {36827, 20775}, {37778, 58780}, {43926, 22096}, {44129, 4750}, {44130, 14432}, {44146, 1649}, {45773, 47390}, {46104, 22105}, {46111, 523}, {46254, 23889}, {46277, 656}, {46456, 56395}, {52035, 52144}, {52551, 9517}, {52632, 125}, {52940, 4558}, {53080, 69}, {53155, 5191}, {53367, 47412}, {55229, 6629}, {55231, 16702}, {57539, 10097}, {57968, 14210}, {57999, 14208}, {58782, 9125}, {59422, 42665}


X(59763) = X(2)X(44148)∩X(4)X(5447)

Barycentrics    b^2*c^2*(a^4+(b^2-c^2)^2-2*a^2*(4*b^2+c^2))*(a^4+(b^2-c^2)^2-2*a^2*(b^2+4*c^2)) : :

X(59763) lies on the Kiepert hyperbola and on these lines: {2, 44148}, {4, 5447}, {30, 54742}, {83, 15066}, {98, 40916}, {141, 34289}, {10302, 40814}, {14389, 43527}, {17811, 40393}, {18841, 37645}, {21358, 36789}, {26235, 40824}, {37636, 37874}, {44133, 54926}, {44135, 54778}

X(59763) = isogonal conjugate of X(33872)
X(59763) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33872}, {2148, 14845}
X(59763) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 33872}, {216, 14845}
X(59763) = X(i)-cross conjugate of X(j) for these {i, j}: {5055, 264}
X(59763) = perspector of the dual conic of Stammler circle
X(59763) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(141), X(15066)}}, {{A, B, C, X(264), X(44148)}}, {{A, B, C, X(297), X(40916)}}, {{A, B, C, X(327), X(57817)}}, {{A, B, C, X(394), X(5447)}}, {{A, B, C, X(3619), X(37645)}}, {{A, B, C, X(3763), X(14389)}}, {{A, B, C, X(7998), X(14919)}}, {{A, B, C, X(9141), X(40705)}}, {{A, B, C, X(9289), X(55982)}}, {{A, B, C, X(10170), X(36952)}}, {{A, B, C, X(14387), X(34384)}}, {{A, B, C, X(17811), X(37636)}}, {{A, B, C, X(21358), X(40112)}}, {{A, B, C, X(26235), X(40814)}}, {{A, B, C, X(31360), X(43756)}}, {{A, B, C, X(40802), X(42286)}}, {{A, B, C, X(46111), X(46326)}}, {{A, B, C, X(55032), X(57822)}}
X(59763) = barycentric quotient X(i)/X(j) for these (i, j): {5, 14845}, {6, 33872}


X(59764) = X(2)X(13341)∩X(4)X(3819)

Barycentrics    b^2*c^2*(a^4+(b^2-c^2)^2-2*a^2*(5*b^2+c^2))*(a^4+(b^2-c^2)^2-2*a^2*(b^2+5*c^2)) : :

X(59764) lies on the Kiepert hyperbola and on these lines: {2, 13341}, {4, 3819}, {83, 17811}, {98, 16419}, {141, 37874}, {264, 54867}, {459, 3619}, {8796, 40684}, {10691, 14458}, {14534, 25934}, {15466, 54710}, {18841, 37669}, {23292, 43527}

X(59764) = isogonal conjugate of X(13342)
X(59764) = isotomic conjugate of X(17825)
X(59764) = polar conjugate of X(5198)
X(59764) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 13342}, {31, 17825}, {48, 5198}, {560, 32834}, {2148, 27355}
X(59764) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17825}, {3, 13342}, {216, 27355}, {1249, 5198}, {6374, 32834}
X(59764) = X(i)-cross conjugate of X(j) for these {i, j}: {5056, 264}
X(59764) = pole of line {13342, 17825} with respect to the Wallace hyperbola
X(59764) = perspector of the dual conic of Steiner circle
X(59764) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(13348)}}, {{A, B, C, X(6), X(13341)}}, {{A, B, C, X(95), X(34412)}}, {{A, B, C, X(97), X(54041)}}, {{A, B, C, X(141), X(17811)}}, {{A, B, C, X(257), X(56230)}}, {{A, B, C, X(297), X(16419)}}, {{A, B, C, X(305), X(57817)}}, {{A, B, C, X(327), X(41530)}}, {{A, B, C, X(1073), X(3819)}}, {{A, B, C, X(1211), X(25934)}}, {{A, B, C, X(3619), X(37669)}}, {{A, B, C, X(3763), X(23292)}}, {{A, B, C, X(10318), X(44557)}}, {{A, B, C, X(10691), X(11331)}}, {{A, B, C, X(33172), X(37659)}}
X(59764) = barycentric product X(i)*X(j) for these (i, j): {52224, 76}
X(59764) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17825}, {4, 5198}, {5, 27355}, {6, 13342}, {76, 32834}, {52224, 6}


X(59765) = X(2)X(6)∩X(5)X(20326)

Barycentrics    b^2*c^2*(b^2+c^2)+a^2*(b^4-4*b^2*c^2+c^4) : :

X(59765) lies on these lines: {2, 6}, {5, 20326}, {51, 59563}, {110, 13196}, {125, 5031}, {126, 2679}, {237, 32459}, {373, 24256}, {512, 625}, {620, 32223}, {623, 33480}, {624, 33481}, {698, 3124}, {732, 3291}, {858, 5103}, {1196, 41622}, {1495, 5026}, {1978, 20491}, {1995, 4048}, {3094, 11059}, {3229, 7813}, {3793, 8623}, {3978, 9428}, {3981, 57518}, {4074, 5943}, {4563, 5111}, {4576, 20977}, {4871, 20549}, {5106, 6390}, {5116, 26257}, {5149, 37906}, {6388, 48444}, {7789, 37338}, {7790, 41259}, {7862, 34850}, {8627, 26276}, {9465, 32449}, {12151, 35279}, {12215, 20998}, {13330, 35275}, {13410, 46900}, {18906, 30793}, {20255, 25760}, {20859, 59564}, {21138, 40075}, {21250, 25957}, {30736, 34087}, {31088, 46906}, {32269, 59695}, {37465, 59545}

X(59765) = midpoint of X(i) and X(j) for these {i,j}: {3124, 3266}, {4576, 20977}
X(59765) = complement of X(3231)
X(59765) = perspector of circumconic {{A, B, C, X(99), X(2998)}}
X(59765) = center of circumconic {{A, B, C, X(886), X(5118)}}
X(59765) = X(i)-Dao conjugate of X(j) for these {i, j}: {52625, 888}
X(59765) = X(i)-Ceva conjugate of X(j) for these {i, j}: {886, 523}
X(59765) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 35073}, {661, 9151}, {729, 37}, {798, 39010}, {886, 42327}, {3228, 10}, {9150, 4369}, {14608, 16597}, {32717, 14838}, {34087, 2887}, {36133, 523}, {37132, 2}, {46156, 16587}, {51510, 19563}, {52765, 16591}, {57993, 21263}
X(59765) = pole of line {141, 9009} with respect to the nine-point circle
X(59765) = pole of line {1499, 6194} with respect to the orthoptic circle of the Steiner Inellipse
X(59765) = pole of line {2501, 3186} with respect to the polar circle
X(59765) = pole of line {5969, 6467} with respect to the Jerabek hyperbola
X(59765) = pole of line {2, 670} with respect to the Kiepert hyperbola
X(59765) = pole of line {3566, 3981} with respect to the Orthic inconic
X(59765) = pole of line {523, 20081} with respect to the Steiner circumellipse
X(59765) = pole of line {76, 523} with respect to the Steiner inellipse
X(59765) = pole of line {2, 57150} with respect to the Wallace hyperbola
X(59765) = pole of line {525, 4074} with respect to the dual conic of anticomplementary circle
X(59765) = pole of line {30, 511} with respect to the dual conic of 2nd Brocard circle
X(59765) = pole of line {525, 10278} with respect to the dual conic of circumcircle
X(59765) = pole of line {525, 1196} with respect to the dual conic of DeLongchamps circle
X(59765) = pole of line {40162, 57082} with respect to the dual conic of Brocard inellipse
X(59765) = pole of line {1125, 6377} with respect to the dual conic of Yff parabola
X(59765) = pole of line {115, 9151} with respect to the dual conic of Wallace hyperbola
X(59765) = center of the dual conic of 2nd Brocard circle
X(59765) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(512), X(1613)}}, {{A, B, C, X(3231), X(34087)}}, {{A, B, C, X(9292), X(9463)}}, {{A, B, C, X(21001), X(40162)}}, {{A, B, C, X(23301), X(53147)}}, {{A, B, C, X(23342), X(57993)}}
X(59765) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 56442, 230}, {373, 30749, 24256}, {3124, 3266, 698}


X(59766) = X(2)X(2418)∩X(5)X(11059)

Barycentrics    -b^6-16*a^2*b^2*c^2+5*b^4*c^2+5*b^2*c^4-c^6+a^4*(b^2+c^2) : :

X(59766) lies on circumconic {{A, B, C, X(9307), X(21448)}} and on these lines: {2, 2418}, {5, 11059}, {99, 44212}, {315, 10300}, {325, 1368}, {427, 2971}, {632, 11056}, {1353, 4563}, {3266, 3933}, {3580, 59773}, {3964, 16419}, {5020, 19583}, {5159, 7763}, {5972, 59552}, {6340, 8797}, {6656, 30793}, {7767, 46336}, {7773, 47315}, {8362, 30749}, {10691, 14907}, {11184, 15880}, {13567, 50567}, {31133, 56435}, {32827, 34609}, {33184, 59768}, {38940, 45968}, {41588, 51438}, {48906, 56430}

X(59766) = pole of line {1992, 9306} with respect to the Wallace hyperbola
X(59766) = pole of line {30, 511} with respect to the dual conic of cosine circle
X(59766) = center of the dual conic of cosine circle
X(59766) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3266, 30739, 3933}


X(59767) = X(2)X(6)∩X(3)X(113)

Barycentrics    3*a^6-4*a^4*(b^2+c^2)+2*(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4-10*b^2*c^2+c^4) : :

X(59767) lies on these lines: {2, 6}, {3, 113}, {5, 37497}, {20, 15448}, {23, 48872}, {25, 48910}, {30, 41424}, {64, 16196}, {74, 49672}, {76, 44877}, {125, 6090}, {140, 5646}, {154, 1368}, {182, 41615}, {184, 31255}, {220, 56457}, {376, 1514}, {381, 10564}, {441, 34360}, {468, 1350}, {511, 21970}, {549, 4846}, {625, 52251}, {858, 35259}, {974, 11459}, {1352, 5159}, {1407, 56456}, {1495, 31152}, {1498, 3546}, {1503, 16051}, {1533, 21312}, {1593, 22549}, {1656, 13352}, {1657, 32237}, {1853, 9306}, {1885, 41427}, {1995, 53023}, {3090, 16657}, {3292, 26869}, {3526, 9730}, {3548, 17814}, {3819, 21968}, {3917, 37453}, {4232, 29181}, {5020, 19130}, {5054, 37470}, {5085, 30739}, {5094, 5651}, {5124, 21494}, {5480, 40132}, {5504, 14852}, {5544, 25555}, {5642, 14982}, {5907, 7729}, {6350, 17044}, {6643, 17821}, {6644, 40909}, {6677, 17810}, {6723, 34507}, {6795, 31945}, {6820, 53506}, {7386, 10192}, {7393, 19908}, {7493, 31884}, {7494, 58434}, {7703, 30744}, {7784, 11331}, {7790, 41235}, {7998, 41670}, {8263, 17813}, {9140, 51027}, {9289, 35910}, {9818, 14156}, {9820, 37514}, {9826, 15067}, {9909, 48880}, {10264, 15068}, {10519, 52290}, {10546, 31133}, {10602, 32114}, {11002, 40929}, {11202, 18536}, {11206, 59699}, {11456, 20125}, {11472, 15122}, {12293, 49673}, {12383, 18396}, {13154, 58407}, {13394, 46336}, {13857, 34417}, {14826, 23332}, {14920, 19221}, {15053, 36852}, {15341, 40813}, {15681, 32267}, {15723, 44751}, {15812, 19132}, {16063, 59411}, {16072, 51394}, {16238, 17834}, {16319, 59231}, {16419, 58447}, {17809, 59553}, {18553, 31856}, {18580, 32620}, {19467, 45248}, {20266, 55405}, {20998, 41238}, {21766, 52300}, {22647, 23308}, {22966, 22971}, {26255, 51024}, {30775, 47354}, {31101, 35264}, {31670, 31860}, {32223, 33878}, {32269, 53097}, {32459, 37188}, {33979, 43291}, {34505, 41254}, {34609, 48884}, {35237, 46817}, {35260, 44882}, {37897, 48873}, {37911, 48876}, {39522, 46114}, {39602, 44116}, {39884, 47629}, {40347, 40802}, {40920, 43150}, {41447, 41465}, {41462, 47596}, {41887, 42155}, {41888, 42154}, {43653, 52297}, {43957, 55676}, {44210, 55646}, {44526, 51389}, {44754, 52262}, {45303, 54013}, {45311, 50955}, {47097, 47353}, {47316, 48874}, {47571, 54173}, {47582, 55582}, {51163, 52301}, {53093, 54012}

X(59767) = complement of X(37643)
X(59767) = perspector of circumconic {{A, B, C, X(99), X(48373)}}
X(59767) = X(i)-complementary conjugate of X(j) for these {i, j}: {18850, 20305}
X(59767) = pole of line {9033, 14824} with respect to the 2nd Brocard circle
X(59767) = pole of line {669, 9033} with respect to the circumcircle
X(59767) = pole of line {6467, 43273} with respect to the Jerabek hyperbola
X(59767) = pole of line {99, 5502} with respect to the Kiepert parabola
X(59767) = pole of line {6, 2071} with respect to the Stammler hyperbola
X(59767) = pole of line {523, 41077} with respect to the Steiner inellipse
X(59767) = pole of line {2, 40135} with respect to the Wallace hyperbola
X(59767) = pole of line {30, 511} with respect to the dual conic of 2nd DrozFarny circle
X(59767) = pole of line {3265, 53369} with respect to the dual conic of Orthic inconic
X(59767) = center of the dual conic of 2nd DrozFarny circle
X(59767) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11744)}}, {{A, B, C, X(6), X(44877)}}, {{A, B, C, X(76), X(47296)}}, {{A, B, C, X(394), X(40082)}}, {{A, B, C, X(801), X(26958)}}, {{A, B, C, X(2407), X(43188)}}, {{A, B, C, X(7735), X(40347)}}, {{A, B, C, X(9289), X(11064)}}, {{A, B, C, X(15066), X(43713)}}, {{A, B, C, X(17811), X(30541)}}, {{A, B, C, X(35910), X(56437)}}, {{A, B, C, X(37648), X(43530)}}, {{A, B, C, X(37784), X(40802)}}
X(59767) = barycentric product X(i)*X(j) for these (i, j): {44438, 69}
X(59767) = barycentric quotient X(i)/X(j) for these (i, j): {44438, 4}
X(59767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11064, 6}, {2, 15066, 37638}, {2, 23292, 17825}, {2, 26668, 26005}, {2, 3589, 59777}, {2, 37645, 37648}, {2, 37669, 13567}, {2, 394, 26958}, {2, 53415, 17811}, {2, 69, 47296}, {25, 51360, 48910}, {113, 37853, 11744}, {125, 6090, 15069}, {140, 5654, 37475}, {394, 3580, 40341}, {858, 35259, 36990}, {1368, 59543, 154}, {1495, 31152, 48905}, {3546, 59659, 1498}, {3548, 17814, 40686}, {5094, 5651, 10516}, {5642, 32216, 43273}, {6644, 51391, 40909}, {9306, 30771, 1853}, {11064, 37648, 37645}, {13394, 46336, 53094}, {13567, 37669, 37672}, {13857, 47597, 54131}, {15066, 37638, 599}, {26958, 40341, 3580}, {31670, 44212, 31860}


X(59768) = X(2)X(99)∩X(53)X(232)

Barycentrics    (b^2-c^2)^2*(b^2+c^2)+a^2*(b^4+4*b^2*c^2+c^4) : :

X(59768) lies on these lines: {2, 99}, {6, 31152}, {23, 7756}, {25, 44526}, {32, 16063}, {39, 858}, {51, 53505}, {53, 232}, {125, 3094}, {140, 47298}, {230, 43957}, {305, 3314}, {577, 7386}, {626, 3266}, {1078, 19577}, {1180, 31101}, {1194, 1368}, {1196, 5913}, {1370, 7737}, {1506, 5169}, {1648, 20859}, {1879, 3055}, {1995, 7748}, {2548, 31099}, {3291, 5254}, {3767, 46336}, {3917, 15993}, {3981, 6791}, {5013, 5094}, {5025, 11059}, {5028, 18911}, {5063, 6103}, {5133, 7603}, {5189, 7747}, {5305, 10300}, {5306, 58267}, {5354, 5355}, {5475, 31133}, {5650, 53475}, {6032, 31074}, {6656, 30749}, {7396, 37665}, {7484, 37637}, {7495, 37512}, {7496, 7749}, {7738, 16051}, {7745, 46517}, {7746, 40916}, {7753, 10989}, {7763, 30747}, {7764, 31088}, {7765, 9465}, {7783, 30777}, {7794, 9464}, {7824, 11056}, {7830, 26233}, {7836, 30785}, {7847, 26257}, {7933, 30793}, {7934, 57518}, {8041, 8288}, {8356, 15822}, {8627, 48892}, {9220, 31489}, {9300, 16303}, {9698, 31857}, {10329, 35901}, {11284, 44518}, {14537, 47314}, {15484, 34609}, {19568, 45201}, {24206, 39691}, {27371, 31400}, {33184, 59766}, {37920, 44525}, {37990, 39601}, {40379, 59564}, {41586, 44453}, {44116, 46264}, {44422, 56925}, {44529, 50660}

X(59768) = pole of line {14273, 31296} with respect to the polar circle
X(59768) = pole of line {51, 524} with respect to the Kiepert hyperbola
X(59768) = pole of line {9134, 14618} with respect to the Orthic inconic
X(59768) = pole of line {187, 34883} with respect to the Stammler hyperbola
X(59768) = pole of line {524, 1915} with respect to the Wallace hyperbola
X(59768) = pole of line {30, 511} with respect to the dual conic of 1st Lemoine circle
X(59768) = center of the dual conic of 1st Lemoine circle
X(59768) = intersection, other than A, B, C, of circumconics {{A, B, C, X(111), X(9229)}}, {{A, B, C, X(3613), X(30786)}}
X(59768) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3266, 31107, 626}, {5169, 15302, 1506}, {5254, 30739, 3291}, {7847, 37803, 26257}


X(59769) = X(2)X(4912)∩X(10)X(550)

Barycentrics    4*a^3-a^2*(b+c)-3*a*(b^2+c^2)+2*(b^3+c^3) : :

X(59769) lies on these lines: {2, 4912}, {6, 56523}, {10, 550}, {44, 26070}, {57, 17265}, {63, 17345}, {140, 59639}, {345, 17299}, {518, 50748}, {536, 3977}, {896, 28570}, {910, 966}, {1150, 17229}, {1155, 3823}, {2886, 59544}, {3006, 28566}, {3011, 28582}, {3218, 3834}, {3452, 15828}, {3666, 56520}, {3683, 33119}, {3712, 28581}, {3729, 31187}, {3739, 54357}, {3752, 17352}, {3772, 31232}, {3911, 4422}, {3936, 4715}, {3999, 24542}, {4394, 6002}, {4438, 4640}, {4473, 31201}, {4641, 31034}, {4689, 33114}, {4725, 16704}, {4847, 59580}, {4852, 24597}, {5233, 15492}, {5235, 28633}, {5325, 5743}, {5432, 59596}, {5737, 50052}, {5744, 17279}, {5745, 17355}, {5791, 50054}, {6687, 16610}, {9356, 37774}, {11679, 53664}, {14829, 17268}, {14996, 27754}, {16729, 59712}, {17070, 28526}, {17116, 31205}, {17239, 32779}, {17298, 54281}, {17300, 33116}, {17304, 56519}, {17307, 38000}, {17338, 31197}, {17348, 17740}, {17356, 17595}, {17357, 24627}, {17359, 37660}, {17386, 37683}, {17484, 30823}, {17725, 49513}, {17768, 50752}, {21241, 28534}, {21857, 45048}, {26223, 31281}, {28472, 50754}, {28484, 50755}, {29658, 49523}, {31229, 50103}, {31424, 50050}, {32777, 55868}, {33137, 59536}, {35652, 37646}, {39559, 49728}, {40940, 59583}, {56009, 59581}

X(59769) = midpoint of X(i) and X(j) for these {i,j}: {3977, 35466}
X(59769) = pole of line {37, 650} with respect to the Spieker circle
X(59769) = pole of line {4926, 19582} with respect to the Steiner inellipse
X(59769) = pole of line {30, 511} with respect to the dual conic of Fuhrmann circle
X(59769) = center of the dual conic of Fuhrmann circle
X(59769) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63, 30811, 17345}, {1150, 50104, 17229}, {3977, 35466, 536}, {5745, 44416, 44417}, {37646, 56078, 35652}, {56523, 59779, 6}


X(59770) = X(2)X(59535)∩X(69)X(30736)

Barycentrics    8*b^4*c^4*(b^2+c^2)-2*a^4*(b^2+c^2)*(2*b^4+3*b^2*c^2+2*c^4)+a^6*(4*b^4-b^2*c^2+4*c^4)+a^2*(-5*b^6*c^2+6*b^4*c^4-5*b^2*c^6) : :

X(59770) lies on these lines: {2, 59535}, {69, 30736}, {193, 39361}, {698, 46948}, {850, 44007}, {1369, 1899}, {4176, 41916}, {14360, 31670}, {32747, 51170}, {51171, 52637}

X(59770) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {662, 32472}, {14614, 8}, {32472, 21221}, {41412, 192}, {41622, 21289}
X(59770) = pole of line {14614, 37465} with respect to the Wallace hyperbola
X(59770) = pole of line {30, 511} with respect to the dual conic of half Moses circle
X(59770) = pole of line {512, 15724} with respect to the dual conic of Moses circle
X(59770) = center of the dual conic of half Moses circle


X(59771) = X(2)X(6)∩X(94)X(264)

Barycentrics    2*a^6+a^2*b^2*c^2-3*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2) : :

X(59771) lies on these lines: {2, 6}, {4, 35265}, {23, 31670}, {30, 3431}, {49, 34514}, {94, 264}, {110, 3818}, {113, 37077}, {125, 11422}, {146, 378}, {184, 31074}, {265, 3043}, {316, 32761}, {381, 10272}, {382, 15806}, {399, 44287}, {427, 9544}, {468, 11002}, {470, 16771}, {471, 16770}, {511, 52300}, {542, 7703}, {850, 52743}, {858, 11003}, {1147, 41171}, {1199, 6640}, {1353, 52293}, {1495, 48895}, {1503, 31857}, {1531, 11430}, {1594, 9545}, {1995, 7693}, {2071, 4846}, {2979, 58447}, {2986, 7578}, {3060, 32223}, {3091, 9820}, {3167, 3410}, {3292, 43150}, {3448, 5094}, {3526, 8254}, {3541, 43605}, {3564, 9716}, {3567, 43839}, {3574, 11449}, {3839, 51425}, {5012, 31101}, {5054, 46114}, {5068, 59659}, {5092, 13857}, {5093, 52292}, {5133, 59553}, {5189, 6800}, {5476, 10545}, {5480, 14002}, {5504, 15033}, {5640, 5972}, {5642, 10546}, {5654, 7527}, {5663, 10294}, {5890, 6699}, {5965, 38397}, {6053, 15305}, {6143, 12161}, {6243, 58407}, {6671, 30439}, {6672, 30440}, {6689, 7999}, {7426, 21850}, {7492, 13394}, {7495, 33884}, {7519, 35260}, {7533, 35259}, {7579, 11935}, {7605, 11284}, {7699, 17702}, {7706, 15035}, {7998, 52989}, {9143, 18440}, {9220, 30685}, {9306, 37353}, {9703, 39504}, {9706, 18381}, {9723, 40604}, {10304, 41465}, {10982, 21451}, {10989, 46264}, {11126, 40709}, {11127, 40710}, {11402, 30744}, {11704, 58806}, {12242, 15043}, {12317, 18445}, {12319, 47391}, {13321, 44234}, {13366, 26913}, {13579, 56346}, {14156, 15045}, {14165, 32002}, {14561, 16042}, {14582, 41298}, {14787, 54434}, {14805, 51391}, {14940, 36749}, {14982, 51739}, {15000, 32447}, {15032, 18281}, {15080, 48892}, {15360, 37517}, {15544, 58448}, {16163, 18388}, {16252, 17578}, {16261, 16534}, {16868, 37472}, {16981, 32269}, {18358, 53843}, {18387, 44665}, {18883, 56404}, {18911, 30745}, {18917, 37119}, {20423, 37907}, {23293, 34986}, {26283, 38396}, {26864, 31133}, {26869, 40920}, {30786, 52668}, {31283, 43808}, {31833, 38942}, {31945, 46868}, {32139, 35482}, {32216, 55705}, {32225, 55716}, {33565, 55039}, {33878, 47596}, {33879, 58445}, {34289, 56063}, {34796, 35473}, {34797, 43394}, {35264, 37349}, {35268, 48879}, {36747, 58805}, {37496, 44262}, {37827, 47453}, {37901, 48910}, {37909, 54131}, {37943, 39522}, {41008, 56266}, {44413, 46451}, {54803, 55957}, {56565, 57271}

X(59771) = midpoint of X(i) and X(j) for these {i,j}: {7579, 11935}
X(59771) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2159, 45821}
X(59771) = X(i)-Dao conjugate of X(j) for these {i, j}: {3163, 45821}
X(59771) = pole of line {523, 18571} with respect to the Steiner inellipse
X(59771) = pole of line {2, 18375} with respect to the Wallace hyperbola
X(59771) = pole of line {30, 511} with respect to the dual conic of circumcircle of the Johnson triangle
X(59771) = center of the dual conic of circumcircle of the Johnson triangle
X(59771) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(18559)}}, {{A, B, C, X(94), X(18550)}}, {{A, B, C, X(264), X(52149)}}, {{A, B, C, X(323), X(43530)}}, {{A, B, C, X(3580), X(7578)}}, {{A, B, C, X(7788), X(18019)}}, {{A, B, C, X(15066), X(56063)}}, {{A, B, C, X(44555), X(54803)}}, {{A, B, C, X(44569), X(54807)}}, {{A, B, C, X(45794), X(56346)}}
X(59771) = barycentric product X(i)*X(j) for these (i, j): {18559, 69}
X(59771) = barycentric quotient X(i)/X(j) for these (i, j): {30, 45821}, {18559, 4}
X(59771) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11004, 3580}, {2, 11427, 34545}, {2, 37645, 323}, {2, 37779, 37638}, {491, 492, 52149}, {1594, 9545, 34799}, {1993, 37638, 37779}, {3167, 31236, 3410}, {5642, 19130, 10546}, {7426, 21850, 48912}, {7579, 11935, 32423}, {11064, 14389, 2}, {11064, 23292, 14389}


X(59772) = X(1)X(594)∩X(4)X(9)

Barycentrics    a^2+a*(b+c)+2*(b+c)^2 : :

X(59772) lies on these lines: {1, 594}, {2, 2321}, {4, 9}, {6, 3679}, {8, 1449}, {37, 1698}, {57, 19822}, {75, 4494}, {86, 17294}, {141, 6173}, {142, 29611}, {145, 4060}, {192, 29610}, {198, 9709}, {273, 6358}, {274, 17786}, {344, 24603}, {346, 5257}, {355, 59680}, {391, 50115}, {527, 5232}, {536, 17327}, {572, 5881}, {599, 4888}, {604, 37709}, {894, 17270}, {936, 50558}, {965, 52405}, {1100, 3632}, {1108, 25068}, {1125, 4058}, {1211, 28609}, {1213, 3731}, {1268, 4687}, {1278, 17326}, {1574, 2277}, {1654, 50127}, {1743, 17275}, {2171, 5219}, {2268, 5727}, {2276, 59312}, {2285, 9578}, {2323, 5783}, {2324, 8580}, {2325, 5296}, {2350, 14624}, {2549, 48812}, {3187, 6539}, {3208, 31339}, {3214, 4270}, {3589, 16833}, {3617, 3686}, {3618, 50095}, {3619, 24199}, {3620, 50116}, {3624, 16777}, {3626, 5839}, {3630, 4795}, {3631, 10022}, {3633, 16884}, {3634, 3950}, {3661, 10436}, {3662, 29591}, {3664, 4470}, {3695, 19859}, {3723, 4898}, {3729, 5224}, {3737, 21958}, {3739, 17265}, {3758, 32025}, {3761, 30473}, {3763, 4688}, {3773, 39586}, {3828, 3986}, {3844, 38052}, {3925, 54424}, {3930, 41867}, {3943, 16673}, {3973, 17330}, {3997, 48852}, {4000, 29604}, {4016, 46895}, {4029, 19877}, {4072, 51073}, {4357, 4659}, {4360, 29603}, {4361, 17385}, {4363, 17239}, {4364, 55998}, {4371, 50114}, {4384, 17289}, {4431, 17321}, {4445, 4670}, {4472, 4851}, {4643, 7227}, {4648, 29594}, {4654, 32782}, {4657, 4665}, {4667, 32099}, {4668, 16667}, {4669, 4856}, {4675, 48635}, {4686, 17325}, {4698, 17269}, {4699, 17282}, {4708, 17262}, {4726, 17323}, {4733, 38047}, {4739, 17290}, {4740, 17324}, {4745, 37654}, {4751, 17285}, {4772, 17291}, {4798, 17390}, {4862, 17118}, {4877, 5235}, {4902, 49727}, {4908, 16677}, {4909, 4916}, {5044, 21871}, {5105, 10459}, {5251, 54285}, {5258, 36743}, {5564, 16834}, {5692, 21853}, {5704, 31325}, {5705, 39564}, {5737, 50052}, {5742, 36910}, {5772, 24393}, {5831, 9623}, {6048, 52538}, {6707, 50097}, {6762, 59760}, {7110, 56843}, {7222, 53598}, {7323, 25466}, {7737, 48807}, {9574, 33167}, {9581, 54359}, {9588, 37499}, {9708, 54322}, {10447, 17790}, {10472, 19584}, {11679, 19808}, {15668, 17229}, {15984, 48922}, {16487, 48810}, {16517, 33165}, {16672, 19872}, {16675, 52706}, {16788, 54316}, {16815, 17358}, {16831, 17233}, {16832, 17279}, {16970, 33159}, {17023, 42696}, {17053, 29827}, {17116, 17238}, {17119, 17384}, {17160, 17400}, {17210, 56023}, {17228, 17298}, {17251, 17351}, {17256, 25728}, {17259, 17359}, {17267, 31238}, {17280, 29576}, {17295, 41847}, {17297, 48640}, {17302, 29608}, {17309, 28639}, {17315, 29597}, {17318, 25498}, {17336, 31144}, {17357, 31183}, {17363, 51353}, {17379, 29615}, {17394, 29605}, {17452, 50443}, {17747, 30393}, {17756, 30970}, {18065, 20913}, {19804, 30693}, {19825, 54311}, {19827, 55095}, {21074, 57279}, {21101, 25527}, {22021, 25525}, {24388, 24392}, {25280, 34283}, {25440, 38871}, {26806, 48634}, {27147, 29587}, {28635, 37650}, {29616, 36834}, {29679, 40131}, {30827, 44417}, {31034, 56810}, {31248, 51488}, {31995, 50092}, {32941, 48851}, {33635, 43260}, {35227, 50305}, {38093, 53665}, {38316, 39581}, {40127, 46916}, {40937, 44798}, {41809, 56082}, {48802, 49529}, {49524, 51194}, {50123, 51105}, {56902, 59311}

X(59772) = midpoint of X(i) and X(j) for these {i,j}: {5232, 7229}
X(59772) = trilinear pole of line {47912, 48397}
X(59772) = perspector of circumconic {{A, B, C, X(1897), X(53658)}}
X(59772) = pole of line {28308, 47766} with respect to the orthoptic circle of the Steiner Inellipse
X(59772) = pole of line {1834, 3679} with respect to the Kiepert hyperbola
X(59772) = pole of line {4778, 25259} with respect to the Steiner circumellipse
X(59772) = pole of line {3239, 4778} with respect to the Steiner inellipse
X(59772) = pole of line {101, 4756} with respect to the Yff parabola
X(59772) = pole of line {17206, 42028} with respect to the Wallace hyperbola
X(59772) = pole of line {30, 511} with respect to the dual conic of Longuet-Higgins circle
X(59772) = pole of line {1698, 4000} with respect to the dual conic of Yff parabola
X(59772) = center of the dual conic of Longuet-Higgins circle
X(59772) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(1224)}}, {{A, B, C, X(19), X(25430)}}, {{A, B, C, X(75), X(1890)}}, {{A, B, C, X(281), X(56086)}}, {{A, B, C, X(318), X(18250)}}, {{A, B, C, X(2350), X(2354)}}, {{A, B, C, X(8756), X(48397)}}, {{A, B, C, X(46878), X(55076)}}
X(59772) = barycentric product X(i)*X(j) for these (i, j): {10, 14005}, {190, 48397}, {5290, 8}, {47912, 668}
X(59772) = barycentric quotient X(i)/X(j) for these (i, j): {5290, 7}, {14005, 86}, {47912, 513}, {48397, 514}
X(59772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 594, 4007}, {2, 2321, 3247}, {2, 32087, 3946}, {2, 48628, 3875}, {6, 3679, 4034}, {8, 5750, 1449}, {9, 1706, 54420}, {10, 17355, 966}, {10, 2345, 9}, {75, 17307, 17304}, {141, 25590, 6173}, {346, 5257, 16676}, {346, 9780, 5257}, {594, 17398, 17299}, {894, 29593, 17270}, {966, 2345, 17355}, {1125, 4058, 17314}, {1213, 17281, 3731}, {3617, 5749, 3686}, {3661, 28604, 10436}, {3686, 5749, 16670}, {3723, 50087, 4898}, {3731, 19875, 1213}, {3739, 17284, 20195}, {3739, 17293, 17284}, {4361, 17385, 29598}, {4363, 17239, 17272}, {4472, 48636, 4851}, {4699, 17292, 17282}, {4898, 25055, 3723}, {5232, 7229, 527}, {5564, 17381, 16834}, {7090, 14121, 18250}, {15668, 17229, 29573}, {15828, 17355, 54389}, {17118, 17237, 4862}, {17233, 28653, 16831}, {17275, 17369, 1743}, {17280, 43985, 29576}, {17299, 17303, 17398}, {17299, 17398, 1}, {17304, 17307, 17306}, {17304, 17308, 17307}, {17309, 28639, 29602}, {17359, 28633, 17259}


X(59773) = X(2)X(59535)∩X(6)X(9146)

Barycentrics    a^4*(b^2+c^2)+2*b^2*c^2*(b^2+c^2)-a^2*(b^4+7*b^2*c^2+c^4) : :

X(59773) lies on these lines: {2, 59535}, {6, 9146}, {69, 3266}, {76, 33879}, {99, 10546}, {183, 5888}, {538, 8617}, {698, 39576}, {850, 6374}, {1180, 59564}, {2979, 57518}, {3098, 5971}, {3231, 41747}, {3580, 59766}, {3589, 15302}, {3763, 23642}, {3818, 14360}, {4563, 11422}, {4576, 5640}, {5650, 9464}, {6031, 55653}, {8024, 44299}, {10191, 59563}, {15080, 56430}, {31088, 35275}, {31670, 56435}, {46900, 51171}

X(59773) = pole of line {19136, 41412} with respect to the Stammler hyperbola
X(59773) = pole of line {32456, 32472} with respect to the Steiner inellipse
X(59773) = pole of line {1995, 14614} with respect to the Wallace hyperbola
X(59773) = pole of line {30, 511} with respect to the dual conic of Moses circle
X(59773) = center of the dual conic of Moses circle
X(59773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4576, 11059, 5640}


X(59774) = X(141)X(3161)∩X(346)X(4395)

Barycentrics    6*a^2+5*b^2+4*b*c+5*c^2-8*a*(b+c) : :

X(59774) lies on these lines: {141, 3161}, {344, 7227}, {346, 4395}, {391, 4478}, {524, 17240}, {1213, 17280}, {2321, 4399}, {2325, 17235}, {3589, 17264}, {3631, 4370}, {3986, 17359}, {4034, 50097}, {4098, 17045}, {4664, 51127}, {6329, 17242}, {6707, 41313}, {7228, 17234}, {7231, 29627}, {7238, 17267}, {15828, 50081}, {17247, 17342}, {17261, 20582}, {17279, 55998}, {17345, 36522}, {17352, 28309}, {17355, 49738}, {24199, 41310}, {25101, 49731}

X(59774) = pole of line {30, 511} with respect to the dual conic of Moses-Longuet-Higgins circle
X(59774) = center of the dual conic of Moses-Longuet-Higgins circle
X(59774) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4370, 17268, 3631}


X(59775) = X(2)X(3569)∩X(30)X(511)

Barycentrics    (b-c)*(b+c)*(a^6-3*a^4*(b^2+c^2)+b^2*c^2*(b^2+c^2)+a^2*(2*b^4-b^2*c^2+2*c^4)) : :
X(59775) = -X[2]+X[3569], -X[3]+X[9420], -X[99]+X[1625], -X[115]+X[46656], -X[290]+X[671], -X[351]+X[5652], -X[381]+X[31953], -X[385]+X[32221], -X[597]+X[2492], -X[598]+X[14223], -X[599]+X[35522], -X[647]+X[45335] and many others

X(59775) lies on these lines: {2, 3569}, {3, 9420}, {30, 511}, {99, 1625}, {115, 46656}, {290, 671}, {351, 5652}, {381, 31953}, {385, 32221}, {597, 2492}, {598, 14223}, {599, 35522}, {647, 45335}, {684, 8724}, {879, 11632}, {881, 36214}, {887, 3511}, {1637, 45327}, {1640, 9979}, {1916, 39680}, {2394, 43535}, {2435, 54962}, {2482, 8552}, {3268, 39905}, {3288, 36900}, {4108, 11186}, {5113, 45680}, {5465, 33509}, {5485, 58754}, {6130, 45321}, {6321, 53174}, {7426, 32120}, {8591, 39355}, {8659, 41190}, {9135, 9147}, {9148, 34290}, {9180, 11167}, {9208, 11176}, {9409, 14830}, {9513, 11006}, {9877, 19912}, {9888, 53247}, {9890, 21731}, {11182, 45689}, {11656, 32119}, {12243, 53345}, {14398, 59373}, {14458, 52459}, {14824, 58752}, {18314, 57082}, {19911, 34291}, {22329, 52038}, {31174, 54262}, {33548, 53567}, {33813, 52128}, {39931, 44427}, {40550, 45682}, {40856, 52199}, {41167, 45319}, {43673, 55009}, {44813, 50977}, {44820, 50983}, {44826, 52728}, {45317, 50550}, {45329, 54267}, {45333, 50549}, {45722, 48951}, {45723, 48982}

X(59775) = isotomic conjugate of X(53199)
X(59775) = perspector of circumconic {{A, B, C, X(2), X(39099)}}
X(59775) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 53199}, {163, 43532}, {662, 46316}
X(59775) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 53199}, {115, 43532}, {1084, 46316}, {39100, 99}
X(59775) = X(i)-complementary conjugate of X(j) for these {i, j}: {43532, 21253}, {46316, 8287}, {53199, 2887}
X(59775) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {43532, 21294}, {46316, 21221}, {53199, 6327}
X(59775) = pole of line {4, 11646} with respect to the anticomplementary circle
X(59775) = pole of line {182, 10007} with respect to the 1st Brocard circle
X(59775) = pole of line {3, 5026} with respect to the 2nd Brocard circle
X(59775) = pole of line {3, 5026} with respect to the circumcircle
X(59775) = pole of line {6, 98} with respect to the cosine circle
X(59775) = pole of line {20, 22679} with respect to the DeLongchamps circle
X(59775) = pole of line {4, 11646} with respect to the 1st DrozFarny circle
X(59775) = pole of line {3, 5026} with respect to the 2nd DrozFarny circle
X(59775) = pole of line {182, 10007} with respect to the 1st Lemoine circle
X(59775) = pole of line {39, 5477} with respect to the Gallatly circle
X(59775) = pole of line {39, 5477} with respect to the half Moses circle
X(59775) = pole of line {4, 11646} with respect to the circumcircle of the Johnson triangle
X(59775) = pole of line {39, 5477} with respect to the Moses circle
X(59775) = pole of line {381, 19905} with respect to the orthocentroidal circle
X(59775) = pole of line {2, 33876} with respect to the orthoptic circle of the Steiner Inellipse
X(59775) = pole of line {4, 11646} with respect to the polar circle
X(59775) = pole of line {3, 5026} with respect to the Stammler circle
X(59775) = pole of line {125, 6071} with respect to the Jerabek hyperbola
X(59775) = pole of line {115, 23878} with respect to the Kiepert hyperbola
X(59775) = pole of line {183, 523} with respect to the Kiepert parabola
X(59775) = pole of line {110, 3288} with respect to the Stammler hyperbola
X(59775) = pole of line {2, 2782} with respect to the Steiner circumellipse
X(59775) = pole of line {2, 2782} with respect to the Steiner inellipse
X(59775) = pole of line {99, 23878} with respect to the Wallace hyperbola
X(59775) = pole of line {599, 6054} with respect to the anti-Artzt circle
X(59775) = pole of line {57257, 59765} with respect to the dual conic of 2nd Brocard circle
X(59775) = pole of line {141, 57257} with respect to the dual conic of circumcircle
X(59775) = pole of line {57257, 59767} with respect to the dual conic of 2nd DrozFarny circle
X(59775) = pole of line {2, 694} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(59775) = pole of line {30, 511} with respect to the dual conic of Parry circle
X(59775) = pole of line {57257, 59776} with respect to the dual conic of Stammler circle
X(59775) = pole of line {5969, 11165} with respect to the dual conic of Lemoine inellipse
X(59775) = pole of line {3095, 6337} with respect to the dual conic of Orthic inconic
X(59775) = pole of line {523, 3815} with respect to the dual conic of Wallace hyperbola
X(59775) = center of the dual conic of Parry circle
X(59775) = lies on the inconic with perspector X(53199)
X(59775) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2782)}}, {{A, B, C, X(4), X(53865)}}, {{A, B, C, X(30), X(43535)}}, {{A, B, C, X(99), X(23878)}}, {{A, B, C, X(290), X(524)}}, {{A, B, C, X(511), X(671)}}, {{A, B, C, X(512), X(26714)}}, {{A, B, C, X(523), X(46040)}}, {{A, B, C, X(538), X(5503)}}, {{A, B, C, X(542), X(598)}}, {{A, B, C, X(543), X(11167)}}, {{A, B, C, X(599), X(17430)}}, {{A, B, C, X(690), X(43665)}}, {{A, B, C, X(726), X(34899)}}, {{A, B, C, X(732), X(54822)}}, {{A, B, C, X(804), X(39681)}}, {{A, B, C, X(1503), X(54962)}}, {{A, B, C, X(1916), X(32515)}}, {{A, B, C, X(1987), X(2393)}}, {{A, B, C, X(2794), X(14458)}}, {{A, B, C, X(2799), X(52632)}}, {{A, B, C, X(2854), X(9513)}}, {{A, B, C, X(3564), X(54872)}}, {{A, B, C, X(3569), X(55143)}}, {{A, B, C, X(3906), X(14223)}}, {{A, B, C, X(5485), X(5969)}}, {{A, B, C, X(8681), X(36214)}}, {{A, B, C, X(8704), X(9180)}}, {{A, B, C, X(10097), X(39469)}}, {{A, B, C, X(34383), X(45146)}}
X(59775) = barycentric product X(i)*X(j) for these (i, j): {2080, 850}, {14295, 45146}, {21460, 35522}, {39099, 523}
X(59775) = barycentric quotient X(i)/X(j) for these (i, j): {2, 53199}, {512, 46316}, {523, 43532}, {2080, 110}, {21460, 691}, {39099, 99}, {45146, 805}, {53865, 6037}
X(59775) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3569, 45336}, {512, 690, 804}, {690, 2799, 525}, {3413, 3414, 23878}, {3566, 9479, 690}, {3569, 53331, 24284}, {9208, 11183, 11176}, {24284, 45336, 2}


X(59776) = X(2)X(6)∩X(5)X(33879)

Barycentrics    a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4+11*b^2*c^2+c^4) : :

X(59776) lies on circumconic {{A, B, C, X(34289), X(59777)}} and on these lines: {2, 6}, {5, 33879}, {30, 5888}, {511, 44300}, {549, 10546}, {858, 15082}, {5643, 34380}, {5646, 16063}, {5650, 19130}, {7495, 16187}, {7496, 35283}, {7703, 30739}, {7998, 21850}, {10109, 14487}, {10124, 10264}, {12045, 41586}, {14002, 21167}, {26879, 55858}, {37439, 44299}, {37909, 50984}, {37990, 51360}, {40916, 46264}, {42786, 53843}, {47313, 55653}, {48912, 54169}

X(59776) = pole of line {525, 44577} with respect to the dual conic of circumcircle
X(59776) = pole of line {30, 511} with respect to the dual conic of Stammler circle
X(59776) = center of the dual conic of Stammler circle
X(59776) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37644, 59777}, {2, 59771, 51126}, {37636, 37648, 3580}


X(59777) = X(2)X(6)∩X(3)X(14924)

Barycentrics    a^2*((a^2-b^2)^2-2*(a^2+13*b^2)*c^2+c^4) : :

X(59777) lies on these lines: {2, 6}, {3, 14924}, {5, 35237}, {23, 55673}, {25, 55676}, {30, 46945}, {51, 55582}, {110, 55703}, {154, 12017}, {155, 48154}, {182, 12045}, {373, 1350}, {381, 33534}, {399, 45311}, {474, 48897}, {511, 5544}, {632, 37498}, {1192, 43584}, {1351, 15082}, {1495, 5085}, {1498, 1656}, {1583, 6412}, {1584, 6411}, {1995, 53094}, {3066, 15107}, {3098, 6688}, {3167, 55710}, {3426, 16836}, {3526, 37483}, {3533, 10982}, {3539, 23259}, {3540, 23249}, {3628, 32139}, {3796, 10546}, {3819, 44456}, {3832, 16936}, {4256, 37244}, {4550, 37475}, {5020, 5092}, {5050, 16187}, {5054, 32223}, {5056, 15811}, {5067, 11456}, {5070, 17814}, {5406, 6469}, {5407, 6468}, {5437, 55406}, {5640, 53097}, {5650, 11477}, {5651, 53093}, {5888, 11451}, {5943, 33878}, {6090, 55711}, {6200, 55577}, {6396, 55579}, {6617, 10979}, {6723, 19140}, {6805, 42283}, {6806, 42284}, {7074, 8167}, {7308, 55405}, {7395, 37487}, {7484, 34417}, {7485, 10545}, {7496, 55651}, {7998, 55722}, {8962, 41438}, {9306, 55705}, {9818, 58871}, {9909, 55672}, {10516, 54012}, {10541, 35259}, {10606, 37470}, {10691, 43621}, {11108, 48903}, {11539, 44413}, {12006, 33540}, {13348, 52518}, {15037, 55860}, {15052, 46935}, {15068, 15805}, {15235, 42277}, {15236, 42274}, {15703, 18451}, {16042, 55684}, {16421, 37474}, {16484, 25893}, {16486, 19860}, {16842, 36745}, {16855, 36754}, {16862, 36746}, {16863, 51340}, {17531, 37501}, {17809, 50664}, {17821, 37513}, {21766, 55591}, {26864, 43650}, {26909, 38283}, {30258, 33924}, {30734, 35268}, {32237, 55682}, {33586, 41462}, {35595, 55437}, {36747, 55858}, {36752, 55857}, {36836, 41477}, {36843, 41478}, {37344, 53095}, {37476, 43586}, {38072, 51360}, {39522, 47598}, {43957, 48910}, {44436, 52703}, {46336, 53023}, {51780, 52405}, {55585, 58470}

X(59777) = pole of line {6, 9542} with respect to the Stammler hyperbola
X(59777) = pole of line {30, 511} with respect to the dual conic of Steiner circle
X(59777) = center of the dual conic of Steiner circle
X(59777) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(32874)}}, {{A, B, C, X(6), X(33881)}}, {{A, B, C, X(111), X(14930)}}, {{A, B, C, X(21448), X(37665)}}
X(59777) = barycentric product X(i)*X(j) for these (i, j): {32874, 6}, {33881, 76}
X(59777) = barycentric quotient X(i)/X(j) for these (i, j): {32874, 76}, {33881, 6}
X(59777) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17825, 17811}, {2, 3589, 59767}, {2, 37643, 34573}, {2, 37644, 59776}, {2, 37648, 3763}, {6, 15066, 37672}, {3066, 40916, 31884}, {5020, 5092, 41424}, {6688, 16419, 17810}, {7484, 34417, 55646}, {10601, 15066, 6}, {11284, 22112, 5085}, {17825, 37672, 10601}, {26864, 43650, 55699}, {33586, 41462, 55607}


X(59778) = X(2)X(6)∩X(66)X(161)

Barycentrics    a^6*(b^2+c^2)-a^2*(b^2+c^2)^3+(b^4-c^4)^2-a^4*(b^4+c^4) : :

X(59778) lies on these lines: {2, 6}, {23, 46448}, {26, 1352}, {30, 15321}, {52, 24206}, {66, 161}, {68, 7516}, {159, 34177}, {311, 53416}, {511, 1209}, {566, 52347}, {1350, 14790}, {1503, 2916}, {3098, 18474}, {3313, 21243}, {3564, 7568}, {3818, 7540}, {3917, 6697}, {5085, 12359}, {6247, 59411}, {7506, 37488}, {7528, 10516}, {7854, 10316}, {7999, 20303}, {9967, 24572}, {9973, 16789}, {10519, 47528}, {11750, 14810}, {13371, 48876}, {13490, 18358}, {13562, 18374}, {14561, 53999}, {14788, 32191}, {14913, 32113}, {15069, 47525}, {18375, 41005}, {19127, 46442}, {19131, 34507}, {20564, 42313}, {23300, 54334}, {26869, 31521}, {31114, 33884}, {31181, 54173}, {31305, 36990}, {34138, 36952}, {37990, 58532}, {41586, 58471}

X(59778) = pole of line {525, 3050} with respect to the dual conic of circumcircle
X(59778) = pole of line {30, 511} with respect to the dual conic of tangential circle
X(59778) = center of the dual conic of tangential circle
X(59778) = intersection, other than A, B, C, of circumconics {{A, B, C, X(183), X(20564)}}, {{A, B, C, X(14389), X(15321)}}, {{A, B, C, X(20806), X(36952)}}
X(59778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 343, 6}


X(59779) = X(1)X(8258)∩X(2)X(2415)

Barycentrics    (a-b-c)*(3*a^2+a*(b+c)-2*(b^2-b*c+c^2)) : :

X(59779) lies on these lines: {1, 8258}, {2, 2415}, {6, 56523}, {9, 4070}, {57, 17234}, {63, 3936}, {75, 31205}, {165, 29641}, {190, 5219}, {306, 55868}, {312, 20882}, {321, 55867}, {333, 4034}, {344, 3911}, {345, 2321}, {391, 3687}, {516, 30741}, {527, 30828}, {536, 31187}, {644, 27754}, {908, 25728}, {968, 33119}, {991, 23691}, {1150, 17294}, {1376, 59581}, {1698, 56311}, {1707, 29671}, {1999, 4898}, {2325, 28808}, {2899, 3634}, {3006, 35258}, {3011, 49446}, {3218, 17298}, {3239, 45684}, {3306, 16549}, {3624, 19582}, {3666, 56519}, {3685, 5231}, {3705, 4512}, {3710, 6910}, {3712, 3886}, {3717, 5218}, {3875, 35466}, {3912, 5744}, {3928, 18134}, {3929, 4417}, {4085, 4438}, {4384, 17740}, {4414, 29857}, {4652, 57808}, {4654, 41878}, {4678, 39800}, {4780, 33137}, {4850, 16600}, {4873, 30608}, {4936, 17244}, {4995, 30615}, {5256, 56520}, {5271, 33168}, {5325, 14555}, {5705, 7283}, {5718, 50127}, {6745, 27549}, {7988, 17777}, {9369, 51784}, {9534, 31446}, {12625, 52352}, {13725, 39559}, {14829, 17240}, {16086, 30282}, {16570, 32946}, {16834, 24597}, {17064, 32934}, {17235, 25527}, {17238, 38000}, {17274, 30811}, {17282, 17595}, {17284, 24627}, {17286, 37660}, {17308, 32779}, {17336, 31142}, {17338, 54390}, {17376, 54281}, {17776, 30567}, {18193, 29642}, {19875, 36926}, {20602, 24611}, {21242, 50126}, {24248, 50752}, {24620, 31183}, {24629, 29603}, {25083, 25939}, {25268, 31035}, {25525, 32939}, {25650, 54422}, {25734, 31053}, {26098, 59544}, {27520, 28796}, {27543, 28836}, {28920, 52405}, {29573, 37684}, {29828, 33161}, {29855, 46901}, {30392, 47624}, {30829, 31190}, {30834, 31164}, {31204, 50106}, {31232, 50101}, {31266, 32933}, {31423, 46937}, {32774, 56521}, {32850, 35445}, {33070, 36277}, {33121, 37553}, {37759, 55998}

X(59779) = X(i)-Dao conjugate of X(j) for these {i, j}: {3707, 551}
X(59779) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55955, 8}
X(59779) = pole of line {3699, 53388} with respect to the Yff parabola
X(59779) = pole of line {4654, 41629} with respect to the Wallace hyperbola
X(59779) = pole of line {514, 4120} with respect to the dual conic of incircle
X(59779) = pole of line {30, 511} with respect to the dual conic of Suppa-Cucoanes circle
X(59779) = center of the dual conic of Suppa-Cucoanes circle
X(59779) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4052), X(34895)}}, {{A, B, C, X(8056), X(56177)}}
X(59779) = barycentric product X(i)*X(j) for these (i, j): {56177, 75}
X(59779) = barycentric quotient X(i)/X(j) for these (i, j): {56177, 1}
X(59779) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3977, 3729}, {2, 56078, 30568}, {6, 59769, 56523}, {345, 5745, 11679}, {17740, 54357, 4384}, {37660, 50104, 17286}


X(59780) = X(2)X(2418)∩X(30)X(599)

Barycentrics    4*a^4+b^4+14*b^2*c^2+c^4-a^2*(b^2+c^2) : :
X(59780) = -X[1992]+3*X[11286], -X[2549]+3*X[21358], -X[5077]+3*X[21356], X[11160]+3*X[14033], -X[22253]+3*X[59373], -X[44526]+5*X[50993]

X(59780) lies on these lines: {2, 2418}, {3, 42850}, {5, 7801}, {30, 599}, {69, 11159}, {76, 8369}, {141, 543}, {183, 27088}, {325, 3363}, {376, 3424}, {384, 44367}, {385, 19661}, {524, 3734}, {525, 45329}, {538, 597}, {549, 2482}, {550, 7810}, {620, 15597}, {625, 20112}, {632, 7863}, {671, 33184}, {1316, 14916}, {1384, 9740}, {1641, 34094}, {1975, 8359}, {1992, 11286}, {2549, 21358}, {3054, 9167}, {3314, 8352}, {3627, 7794}, {3767, 8365}, {3815, 39785}, {3845, 31173}, {3849, 14929}, {3858, 7821}, {3933, 7785}, {5077, 21356}, {5181, 32424}, {5305, 33237}, {5306, 14711}, {5461, 7880}, {5569, 32459}, {7615, 7778}, {7617, 44377}, {7618, 15271}, {7622, 58446}, {7737, 15533}, {7761, 50991}, {7767, 33007}, {7789, 44401}, {7792, 11054}, {7795, 8360}, {7804, 8584}, {7817, 33185}, {7818, 15687}, {7831, 10302}, {7854, 15704}, {7870, 59635}, {7879, 33192}, {7881, 33006}, {7883, 32819}, {7908, 8176}, {7924, 8596}, {7931, 41135}, {8356, 8591}, {8367, 31406}, {8556, 12100}, {8667, 37809}, {8724, 37451}, {9164, 43084}, {9172, 30749}, {9829, 44210}, {9939, 19687}, {10256, 58831}, {10717, 30739}, {11160, 14033}, {11163, 32833}, {11164, 14907}, {11185, 37350}, {11288, 23055}, {12243, 37450}, {13468, 50370}, {14039, 32869}, {14148, 15491}, {15300, 15810}, {15598, 32456}, {15760, 34897}, {16986, 32480}, {16990, 35955}, {19708, 55726}, {20582, 51848}, {22253, 59373}, {23053, 32828}, {32515, 41146}, {32874, 33191}, {34506, 59545}, {37671, 51224}, {37688, 41134}, {44526, 50993}, {44649, 45331}, {48906, 51798}

X(59780) = midpoint of X(i) and X(j) for these {i,j}: {11286, 32836}, {5077, 32815}, {69, 11159}, {7737, 15533}
X(59780) = reflection of X(i) in X(j) for these {i,j}: {14929, 22165}, {15048, 2}, {7761, 50991}, {8584, 7804}
X(59780) = pole of line {599, 7853} with respect to the Kiepert hyperbola
X(59780) = pole of line {1384, 6800} with respect to the Stammler hyperbola
X(59780) = pole of line {1499, 4108} with respect to the Steiner inellipse
X(59780) = pole of line {1992, 14907} with respect to the Wallace hyperbola
X(59780) = pole of line {523, 7840} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(59780) = pole of line {30, 511} with respect to the dual conic of Artzt circle
X(59780) = center of the dual conic of Artzt circle
X(59780) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2418), X(54990)}}, {{A, B, C, X(14906), X(21448)}}
X(59780) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32817, 11165}, {2, 40727, 43291}, {2, 52229, 15048}, {2, 52713, 40727}, {2, 6390, 12040}, {2, 9741, 5024}, {385, 35954, 19661}, {2482, 11168, 549}, {2482, 9466, 11168}, {3849, 22165, 14929}, {7615, 7778, 8355}, {7795, 34505, 8360}, {8367, 34511, 31406}, {21356, 32815, 5077}


X(59781) = X(3)X(3667)∩X(6)X(519)

Barycentrics    a^6 - a^5*b - 2*a^4*b^2 - a^5*c + 5*a^4*b*c - 2*a^4*c^2 - 4*a^2*b^2*c^2 + 4*a*b^3*c^2 - b^4*c^2 + 4*a*b^2*c^3 - 2*b^3*c^3 - b^2*c^4 : :

X(59781) lies on the Brocard circle and these lines: {3, 3667}, {6, 519}, {385, 24502}, {1316, 24267}, {3734, 24279}, {3923, 5091}, {4195, 6790}, {4279, 56801}, {4759, 17735}, {6788, 13740}, {52148, 59676}

X(59781) = psi-transform of X(9059)
X(59781) = crossdifference of every pair of points on line {8610, 9002}


X(59782) = X(3)X(902)∩X(6)X(649)

Barycentrics    a^2*(a^4 - a^3*b - a^2*b^2 + 2*a*b^3 + b^4 - a^3*c + 5*a^2*b*c - 4*a*b^2*c - 4*b^3*c - a^2*c^2 - 4*a*b*c^2 + 8*b^2*c^2 + 2*a*c^3 - 4*b*c^3 + c^4) : :

X(59782) lies on the Brocard circle and these lines: {3, 902}, {6, 649}, {106, 35281}, {574, 46407}, {750, 19945}, {901, 995}, {999, 43922}, {1083, 4414}, {1797, 10761}, {2226, 39264}, {2712, 53942}, {4025, 49751}, {4750, 24281}, {17679, 37716}, {23858, 46150}

X(59782) = circumcircle-inverse of X(902)
X(59782) = psi-transform of X(106)
X(59782) = crossdifference of every pair of points on line {519, 47766}


X(59783) = X(3)X(1960)∩X(6)X(101)

Barycentrics    a^2*(a^6 - 2*a^5*b - 2*a^4*b^2 + 2*a^3*b^3 + 2*a^2*b^4 - b^6 - 2*a^5*c + 8*a^4*b*c - 6*a^2*b^3*c - 4*a*b^4*c + 4*b^5*c - 2*a^4*c^2 - 3*a^2*b^2*c^2 + 8*a*b^3*c^2 - 4*b^4*c^2 + 2*a^3*c^3 - 6*a^2*b*c^3 + 8*a*b^2*c^3 + 2*a^2*c^4 - 4*a*b*c^4 - 4*b^2*c^4 + 4*b*c^5 - c^6) : :
X(59783) = X[103] - 3 X[38695], X[1293] - 3 X[38690], X[10739] - 3 X[57300], X[10744] - 3 X[38764], 5 X[38774] - 3 X[57328]

X(59783) lies on the Brocard circle and these lines: {3, 1960}, {6, 101}, {103, 38695}, {116, 6715}, {121, 6710}, {1054, 5091}, {1083, 14419}, {1293, 38690}, {1316, 17777}, {2776, 53712}, {2789, 53721}, {2796, 24279}, {2802, 8301}, {2808, 38604}, {2809, 11717}, {2827, 53746}, {2842, 17972}, {3960, 36280}, {5029, 46407}, {10739, 57300}, {10744, 38764}, {11814, 24294}, {18047, 21290}, {25569, 46409}, {38599, 53790}, {38774, 57328}, {53606, 53933}

X(59783) = midpoint of X(101) and X(106)
X(59783) = reflection of X(i) in X(j) for these {i,j}: {116, 6715}, {121, 6710}
X(59783) = circumcircle-inverse of X(1960)
X(59783) = psi-transform of X(901)


X(59784) = X(3)X(10)∩X(6)X(522)

Barycentrics    a^8 - a^7*b - a^6*b^2 + a^5*b^3 - a^7*c + 3*a^6*b*c - a^5*b^2*c - a^4*b^3*c - a^6*c^2 - a^5*b*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*a*b^5*c^2 + b^6*c^2 + a^5*c^3 - a^4*b*c^3 - 2*a^2*b^3*c^3 + 2*a*b^4*c^3 + a^2*b^2*c^4 + 2*a*b^3*c^4 - 2*b^4*c^4 - 2*a*b^2*c^5 + b^2*c^6 : :

X(59784) lies on the Brocard circle and these lines: {2, 46410}, {3, 10}, {6, 522}, {333, 7462}, {1083, 4011}, {1220, 18340}, {6795, 24253}, {11814, 24294}, {17975, 46180}, {24247, 46407}, {24267, 24269}

X(59784) = psi-transform of X(1311)
X(59784) = crossdifference of every pair of points on line {6589, 8679}


X(59785) = X(3)X(3231)∩X(111)X(5939)

Barycentrics    a^2*(2*a^6*b^4 - 4*a^4*b^6 - 5*a^6*b^2*c^2 + 4*a^4*b^4*c^2 + 4*a^2*b^6*c^2 + 2*a^6*c^4 + 4*a^4*b^2*c^4 - 5*a^2*b^4*c^4 - b^6*c^4 - 4*a^4*c^6 + 4*a^2*b^2*c^6 - b^4*c^6) : :

X(59785) lies on the Brocard circle and these lines: {3, 3231}, {6, 669}, {111, 5939}, {351, 30229}, {385, 6031}, {574, 5108}, {1316, 14609}, {5970, 9465}, {6232, 57594}, {7757, 9150}, {11580, 32531}

X(59785) = circumcircle-inverse of X(3231)
X(59785) = psi-transform of X(729)


X(59786) = X(3)X(9489)∩X(6)X(538)

Barycentrics    2*a^8*b^4 - 5*a^8*b^2*c^2 + a^6*b^4*c^2 + a^4*b^6*c^2 + 2*a^8*c^4 + a^6*b^2*c^4 + a^4*b^4*c^4 - 4*a^2*b^6*c^4 + a^4*b^2*c^6 - 4*a^2*b^4*c^6 + 4*b^6*c^6 : :

X(59786) lies on the Brocard circle and these lines: {3, 9489}, {6, 538}, {76, 51510}, {183, 5970}, {670, 33757}, {880, 3972}, {1003, 23342}, {1316, 4048}, {5026, 43765}, {7770, 14700}, {7778, 9152}, {11284, 48439}, {13515, 32526}, {33756, 35073}, {44558, 53919}

X(59786) = circumcircle-inverse of X(9489)
X(59786) = psi-transform of X(9066)


X(59787) = X(3)X(513)∩X(6)X(517)

Barycentrics    a*(a^8 - a^7*b - 2*a^6*b^2 + 2*a^5*b^3 + a^4*b^4 - a^3*b^5 - a^7*c + 5*a^6*b*c - 2*a^5*b^2*c - 5*a^4*b^3*c + 3*a^3*b^4*c + a^2*b^5*c - b^7*c - 2*a^6*c^2 - 2*a^5*b*c^2 + 4*a^4*b^2*c^2 + 2*a^3*b^3*c^2 - 4*a*b^5*c^2 + 2*b^6*c^2 + 2*a^5*c^3 - 5*a^4*b*c^3 + 2*a^3*b^2*c^3 - 6*a^2*b^3*c^3 + 4*a*b^4*c^3 + b^5*c^3 + a^4*c^4 + 3*a^3*b*c^4 + 4*a*b^3*c^4 - 4*b^4*c^4 - a^3*c^5 + a^2*b*c^5 - 4*a*b^2*c^5 + b^3*c^5 + 2*b^2*c^6 - b*c^7) : :
X(59787) = 3 X[5085] - X[38530]

X(59787) lies on the Brocard circle, the Feuerbach circumhyperbola of the Brocard triangle, and these lines: {3, 513}, {6, 517}, {36, 1423}, {182, 5091}, {1083, 30580}, {1340, 36735}, {1341, 36736}, {1352, 24250}, {1618, 5698}, {1742, 2077}, {2267, 31394}, {2792, 5150}, {5085, 38530}, {7427, 24482}, {15635, 22129}, {16434, 34583}, {24249, 24263}, {26611, 34858}, {31849, 37415}

X(59787) = midpoint of X(6) and X(38531)
X(59787) = reflection of X(i) in X(j) for these {i,j}: {1352, 24250}, {5091, 182}
X(59787) = psi-transform of X(9058)
X(59787) = crossdifference of every pair of points on line {8609, 9001}


X(59788) = X(3)X(392)∩X(6)X(650)

Barycentrics    a*(a^8 - a^7*b - 2*a^6*b^2 + 2*a^5*b^3 + a^4*b^4 - a^3*b^5 - a^7*c + 7*a^6*b*c - 4*a^5*b^2*c - 7*a^4*b^3*c + 7*a^3*b^4*c - a^2*b^5*c - 2*a*b^6*c + b^7*c - 2*a^6*c^2 - 4*a^5*b*c^2 + 14*a^4*b^2*c^2 - 6*a^3*b^3*c^2 - 8*a^2*b^4*c^2 + 6*a*b^5*c^2 + 2*a^5*c^3 - 7*a^4*b*c^3 - 6*a^3*b^2*c^3 + 18*a^2*b^3*c^3 - 4*a*b^4*c^3 - b^5*c^3 + a^4*c^4 + 7*a^3*b*c^4 - 8*a^2*b^2*c^4 - 4*a*b^3*c^4 - a^3*c^5 - a^2*b*c^5 + 6*a*b^2*c^5 - b^3*c^5 - 2*a*b*c^6 + b*c^7) : :

X(59788) lies on the Brocard circle and these lines: {3, 392}, {6, 650}, {110, 56755}, {1083, 5651}, {2699, 53941}, {2726, 47045}, {3306, 42753}, {3658, 26637}, {4414, 46410}, {5091, 30580}, {6795, 37527}, {11284, 16482}, {14266, 59196}, {26884, 50366}

X(59788) = psi-transform of X(104)
X(59788) = crossdifference of every pair of points on line {517, 40134}


X(59789) = X(3)X(695)∩X(6)X(688)

Barycentrics    a^2*(a^4*b^8 + a^8*b^2*c^2 - a^4*b^6*c^2 - 2*a^4*b^4*c^4 - a^4*b^2*c^6 + b^6*c^6 + a^4*c^8) : :

X(59789) lies on the Brocard circle and these lines: {3, 695}, {6, 688}, {694, 15588}, {1316, 30229}, {3124, 13519}, {5012, 14885}, {7760, 13511}, {8627, 39557}, {9998, 10330}, {53918, 53968}, {59047, 59048}

X(59789) = circumcircle-inverse of X(8623)
X(59789) = psi-transform of X(733)


X(59790) = X(3)X(887)∩X(6)X(99)

Barycentrics    2*a^10*b^4 - a^8*b^6 - 5*a^10*b^2*c^2 + 4*a^8*b^4*c^2 - 7*a^6*b^6*c^2 + 4*a^4*b^8*c^2 + 2*a^10*c^4 + 4*a^8*b^2*c^4 + 4*a^4*b^6*c^4 - 4*a^2*b^8*c^4 - a^8*c^6 - 7*a^6*b^2*c^6 + 4*a^4*b^4*c^6 - a^2*b^6*c^6 + b^8*c^6 + 4*a^4*b^2*c^8 - 4*a^2*b^4*c^8 + b^6*c^8 : :
X(59790) = 3 X[21166] - X[39639]

X(59790) lies on the Brocard circle and these lines: {3, 887}, {6, 99}, {76, 47646}, {1316, 5149}, {2482, 33756}, {3734, 43765}, {5027, 5108}, {5152, 20998}, {6022, 15452}, {9998, 10330}, {10291, 13515}, {13586, 14607}, {17970, 53735}, {21166, 39639}, {23698, 44949}, {33813, 53791}

X(59790) = midpoint of X(99) and X(729)
X(59790) = circumcircle-inverse of X(887)
X(59790) = psi-transform of X(9150)
X(59790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 5182, 52067}, {51492, 51493, 51510}


X(59791) = X(3)X(905)∩X(6)X(19)

Barycentrics    a*(a^2 - b^2 - c^2)*(a^8 - a^7*b - a^4*b^4 + a^3*b^5 - a^7*c + a^6*b*c + a^4*b^3*c - 3*a^3*b^4*c + a^2*b^5*c + b^7*c + 2*a^3*b^3*c^2 - 2*b^6*c^2 + a^4*b*c^3 + 2*a^3*b^2*c^3 - 2*a^2*b^3*c^3 - b^5*c^3 - a^4*c^4 - 3*a^3*b*c^4 + 4*b^4*c^4 + a^3*c^5 + a^2*b*c^5 - b^3*c^5 - 2*b^2*c^6 + b*c^7) : :

X(59791) lies on the Brocard circle and these lines: {3, 905}, {6, 19}, {184, 5091}, {651, 10763}, {1479, 15612}, {2194, 14119}, {2714, 53964}, {2724, 35185}, {6776, 18343}, {14257, 23984}

X(59791) = circumcircle-inverse of X(1946)
X(59791) = psi-transform of X(108)
X(59791) = crossdifference of every pair of points on line {521, 5089}


X(59792) = X(3)X(191)∩X(6)X(8674)

Barycentrics    a*(a^10 - a^9*b - a^8*b^2 + a^7*b^3 - a^6*b^4 + a^5*b^5 + a^4*b^6 - a^3*b^7 - a^9*c + a^8*b*c + a^7*b^2*c - 3*a^5*b^4*c - 2*a^4*b^5*c + 5*a^3*b^6*c - 2*a*b^8*c + b^9*c - a^8*c^2 + a^7*b*c^2 + a^6*b^2*c^2 + a^5*b^3*c^2 + a^4*b^4*c^2 - a^3*b^5*c^2 - 2*a^2*b^6*c^2 + a^7*c^3 + a^5*b^2*c^3 + a^4*b^3*c^3 - 3*a^3*b^4*c^3 + a^2*b^5*c^3 - a^6*c^4 - 3*a^5*b*c^4 + a^4*b^2*c^4 - 3*a^3*b^3*c^4 + 2*a^2*b^4*c^4 + 2*a*b^5*c^4 + a^5*c^5 - 2*a^4*b*c^5 - a^3*b^2*c^5 + a^2*b^3*c^5 + 2*a*b^4*c^5 - 2*b^5*c^5 + a^4*c^6 + 5*a^3*b*c^6 - 2*a^2*b^2*c^6 - a^3*c^7 - 2*a*b*c^8 + b*c^9) : :

X(59792) lies on the Brocard circle and these lines: {3, 191}, {6, 8674}, {110, 1083}, {690, 5091}, {1316, 2787}, {2783, 6795}, {7475, 37783}, {18332, 37527}, {24279, 24287}, {35901, 53560}

X(59792) = psi-transform of X(2752)
X(59792) = crossdifference of every pair of points on line {2836, 47227}


X(59793) = X(2)X(9129)∩X(3)X(67)

Barycentrics    a^12 - 2*a^10*b^2 - a^8*b^4 + 2*a^6*b^6 - 2*a^10*c^2 + 8*a^8*b^2*c^2 - 4*a^6*b^4*c^2 + 2*a^4*b^6*c^2 - 4*a^2*b^8*c^2 + b^10*c^2 - a^8*c^4 - 4*a^6*b^2*c^4 - 3*a^4*b^4*c^4 + 4*a^2*b^6*c^4 + 2*a^6*c^6 + 2*a^4*b^2*c^6 + 4*a^2*b^4*c^6 - 2*b^6*c^6 - 4*a^2*b^2*c^8 + b^2*c^10 : :
X(59793) = X[67] - 4 X[48946], 3 X[5621] - 2 X[53709], X[148] - 3 X[25320], 3 X[5085] - 2 X[53725], 3 X[5182] - 2 X[6593], 3 X[5182] - X[15342], 2 X[5465] - 3 X[47352], 3 X[5622] - X[22265], 3 X[6034] - 4 X[15118], 3 X[6034] - 2 X[16278], 3 X[21166] - 2 X[33851], 2 X[31854] - 5 X[53093]

X(59793) lies on the Brocard circle and these lines: {2, 9129}, {3, 67}, {6, 690}, {99, 2854}, {110, 5026}, {114, 14982}, {125, 10418}, {148, 25320}, {182, 18332}, {338, 48983}, {524, 7472}, {597, 9144}, {804, 1316}, {895, 5969}, {1350, 53710}, {1503, 11005}, {2453, 2793}, {2780, 57594}, {2781, 10753}, {2782, 6795}, {3448, 10330}, {3566, 47550}, {5085, 53725}, {5182, 6593}, {5465, 47352}, {5622, 18338}, {5663, 12177}, {5987, 8289}, {6034, 15118}, {6776, 18331}, {8429, 53132}, {8787, 41720}, {9125, 14685}, {9140, 9830}, {11179, 57612}, {12215, 14607}, {12367, 47326}, {14928, 50711}, {18800, 34319}, {19140, 32135}, {21166, 33851}, {25328, 36165}, {31854, 53093}, {47284, 55122}

X(59793) = midpoint of X(6776) and X(18331)
X(59793) = reflection of X(i) in X(j) for these {i,j}: {67, 15357}, {110, 5026}, {1350, 53710}, {2930, 53735}, {5648, 2482}, {9144, 597}, {11646, 125}, {12367, 47326}, {14982, 114}, {15342, 6593}, {15357, 48946}, {16278, 15118}, {18332, 182}, {19140, 32135}, {34319, 18800}, {41720, 8787}
X(59793) = psi-transform of X(2770)
X(59793) = crossdifference of every pair of points on line {2492, 2854}
X(59793) = X(99)-lineconjugate of X(2854)
X(59793) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5182, 15342, 6593}, {15118, 16278, 6034}


X(59794) = X(3)X(17414)∩X(6)X(23)

Barycentrics    a^2*(4*a^10 - 6*a^8*b^2 - 4*a^6*b^4 + 10*a^4*b^6 - 4*b^10 - 6*a^8*c^2 + 13*a^6*b^2*c^2 - 6*a^4*b^4*c^2 - 6*a^2*b^6*c^2 + 4*b^8*c^2 - 4*a^6*c^4 - 6*a^4*b^2*c^4 + 9*a^2*b^4*c^4 - b^6*c^4 + 10*a^4*c^6 - 6*a^2*b^2*c^6 - b^4*c^6 + 4*b^2*c^8 - 4*c^10) : :

X(59794) lies on the Brocard circle and these lines: {3, 17414}, {6, 23}, {30, 6232}, {523, 6322}, {1316, 10166}, {2502, 6323}, {6324, 14002}, {6795, 53728}, {8429, 9130}, {9140, 9830}, {15080, 32694}

X(59794) = circumcircle-inverse of X(17414)
X(59794) = psi-transform of X(11636)


X(59795) = X(3)X(2502)∩X(6)X(351)

Barycentrics    a^2*(a^10 - a^8*b^2 - 17*a^6*b^4 + 28*a^4*b^6 - 10*a^2*b^8 + b^10 - a^8*c^2 + 32*a^6*b^2*c^2 - 24*a^4*b^4*c^2 - 22*a^2*b^6*c^2 + 8*b^8*c^2 - 17*a^6*c^4 - 24*a^4*b^2*c^4 + 57*a^2*b^4*c^4 - 8*b^6*c^4 + 28*a^4*c^6 - 22*a^2*b^2*c^6 - 8*b^4*c^6 - 10*a^2*c^8 + 8*b^2*c^8 + c^10) : :

X(59795) lies on the Brocard circle and these lines: {3, 2502}, {6, 351}, {111, 59227}, {183, 6322}, {187, 9130}, {574, 9129}, {647, 17964}, {1316, 9125}, {2482, 5108}, {5912, 7426}, {6055, 6795}, {9155, 15596}, {15268, 35901}, {40283, 42007}

X(59795) = circumcircle-inverse of X(2502)
X(59795) = Parry-circle-inverse of X(6)
X(59795) = Parry-isodynamic-circle-inverse of X(3)
X(59795) = psi-transform of X(843)
X(59795) = crossdifference of every pair of points on line {543, 9189}
X(59795) = X(42007)-line conjugate of X(40283)


X(59796) = X(3)X(69)∩X(6)X(3566)

Barycentrics    (a^2 - b^2 - c^2)*(a^10 - 2*a^8*b^2 - 3*a^6*b^4 - 2*a^8*c^2 + 11*a^6*b^2*c^2 - a^4*b^4*c^2 + 5*a^2*b^6*c^2 - b^8*c^2 - 3*a^6*c^4 - a^4*b^2*c^4 - 10*a^2*b^4*c^4 + b^6*c^4 + 5*a^2*b^2*c^6 + b^4*c^6 - b^2*c^8) : :
X(59796) = 3 X[5050] - X[18348]

X(59796) lies on the Brocard circle and these lines: {3, 69}, {6, 3566}, {125, 6719}, {184, 5108}, {1648, 1899}, {3143, 35902}, {5050, 18348}, {5203, 43448}, {5622, 18332}, {15531, 53895}, {18440, 52473}, {23333, 49123}

X(59796) = midpoint of X(6776) and X(18347)
X(59796) = psi-transform of X(2374)
X(59796) = crossdifference of every pair of points on line {2489, 8681}


X(59797) = X(3)X(4595)∩X(6)X(100)

Barycentrics    a^2*(a*b + a*c - 2*b*c)^2 : :

X(59797) lies on the Brocard inellipse and these lines: {2, 4595}, {6, 100}, {42, 1015}, {43, 1018}, {672, 20972}, {890, 3768}, {899, 3230}, {902, 20663}, {1016, 59053}, {1017, 8632}, {1635, 39686}, {2092, 3030}, {2177, 40732}, {2238, 4370}, {2276, 20973}, {2347, 14936}, {3231, 56009}, {4366, 37680}, {5040, 39689}, {5297, 16526}, {8299, 16501}, {9427, 21753}, {16514, 54309}, {17475, 17780}, {20455, 35505}

X(59797) = isogonal conjugate of X(57542)
X(59797) = isogonal conjugate of the isotomic conjugate of X(13466)
X(59797) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 3230}, {100, 890}, {1016, 23343}
X(59797) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57542}, {739, 31002}, {889, 23892}, {3227, 37129}, {3248, 57572}, {4607, 43928}
X(59797) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57542}, {536, 76}, {891, 1086}, {1646, 693}, {40614, 31002}
X(59797) = crossdifference of every pair of points on line {891, 3227}
X(59797) = barycentric product X(i)*X(j) for these {i,j}: {1, 42083}, {6, 13466}, {100, 14434}, {536, 3230}, {739, 8031}, {890, 41314}, {891, 23343}, {899, 899}, {1016, 39011}, {3768, 23891}, {4076, 47016}, {14441, 57950}, {52897, 52959}
X(59797) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57542}, {890, 43928}, {899, 31002}, {1016, 57572}, {3230, 3227}, {8031, 35543}, {13466, 76}, {14404, 35353}, {14434, 693}, {14441, 764}, {23343, 889}, {39011, 1086}, {41314, 57994}, {42083, 75}, {47016, 1358}


X(59798) = X(6)X(109)∩X(31)X(1015)

Barycentrics    a^2*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)^2 : :

X(59798) lies on the Brocard inellipse and these lines: {6, 109}, {31, 1015}, {665, 1017}, {902, 35505}, {1100, 41166}, {1262, 59105}, {1409, 39687}, {1415, 14827}, {1977, 20228}, {3094, 41160}, {5075, 39689}, {6433, 41161}, {10485, 41157}, {18591, 41164}, {20229, 21742}, {21758, 39686}

X(59798) = isogonal conjugate of X(57565)
X(59798) = isogonal conjugate of the isotomic conjugate of X(35110)
X(59798) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 1055}, {109, 6139}, {1262, 23346}
X(59798) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57565}, {1121, 1156}, {2310, 57563}, {23893, 35157}
X(59798) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57565}, {527, 76}, {6366, 23978}, {33573, 35519}
X(59798) = crossdifference of every pair of points on line {1121, 6366}
X(59798) = barycentric product X(i)*X(j) for these {i,j}: {1, 42082}, {6, 35110}, {55, 3321}, {56, 6068}, {59, 3328}, {527, 1055}, {1155, 1155}, {1262, 35091}, {6139, 56543}, {6366, 23346}, {6603, 6610}
X(59798) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57565}, {1055, 1121}, {1262, 57563}, {3321, 6063}, {3328, 34387}, {6068, 3596}, {23346, 35157}, {35091, 23978}, {35110, 76}, {42082, 75}


X(59799) = X(6)X(109)∩X(31)X(1015)

Barycentrics    a^2*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3)^2 : :

X(59799) lies on the Brocard inellipse and these lines: {6, 103}, {31, 14936}, {32, 56}, {1977, 21750}, {2426, 56785}, {3124, 40984}, {3195, 14827}, {3269, 20970}, {8750, 35508}, {20229, 39687}

X(59799) = isogonal conjugate of X(57548)
X(59799) = isogonal conjugate of the isotomic conjugate of X(23972)
X(59799) = isogonal conjugate of the polar conjugate of X(42073)
X(59799) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57548}, {75, 59195}, {103, 57996}, {18025, 36101}
X(59799) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57548}, {206, 59195}, {516, 76}
X(59799) = crossdifference of every pair of points on line {18025, 50333}
X(59799) = barycentric product X(i)*X(j) for these {i,j}: {1, 42077}, {3, 42073}, {6, 23972}, {31, 24014}, {32, 59206}, {55, 1360}, {184, 21665}, {649, 3234}, {676, 2426}, {910, 910}, {1397, 55019}, {1456, 41339}, {14953, 51436}, {32739, 58280}
X(59799) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57548}, {32, 59195}, {910, 57996}, {1360, 6063}, {2426, 57928}, {3234, 1978}, {21665, 18022}, {23972, 76}, {24014, 561}, {42073, 264}, {42077, 75}, {55019, 40363}, {59206, 1502}


X(59800) = X(6)X(104)∩X(32)X(1977)

Barycentrics    a^4*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)^2 : :

X(59800) lies on the Brocard inellipse and these lines: {6, 104}, {32, 1977}, {41, 217}, {213, 14936}, {1015, 1400}, {1145, 2427}, {2092, 3269}, {2183, 40613}, {3124, 53387}, {8776, 35505}

X(59800) = isogonal conjugate of X(57550)
X(59800) = isogonal conjugate of the isotomic conjugate of X(23980)
X(59800) = isogonal conjugate of the polar conjugate of X(42072)
X(59800) = X(1415)-Ceva conjugate of X(23220)
X(59800) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57550}, {75, 59196}, {561, 41933}, {18816, 34234}
X(59800) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57550}, {206, 59196}, {517, 76}, {40368, 41933}, {57293, 15413}
X(59800) = barycentric product X(i)*X(j) for these {i,j}: {1, 42078}, {3, 42072}, {6, 23980}, {31, 24028}, {32, 26611}, {55, 1361}, {184, 21664}, {667, 15632}, {692, 42757}, {859, 51377}, {1397, 55016}, {2183, 2183}, {2427, 3310}, {23101, 34858}, {23220, 53151}, {23979, 55153}, {23981, 53549}
X(59800) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57550}, {32, 59196}, {1361, 6063}, {1501, 41933}, {15632, 6386}, {21664, 18022}, {23980, 76}, {24028, 561}, {26611, 1502}, {42072, 264}, {42078, 75}, {42757, 40495}, {51377, 57984}, {55016, 40363}


X(59801) = X(6)X(691)∩X(187)X(3292)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(2*a^2 - b^2 - c^2)^2 : :

X(59801) lies on the Brocard inellipse and these lines: {6, 691}, {187, 3292}, {249, 9217}, {511, 52067}, {512, 3124}, {1017, 20666}, {1501, 59175}, {1648, 5099}, {1691, 6593}, {1692, 9408}, {2021, 9419}, {2679, 21905}, {2682, 42344}, {3049, 9427}, {5970, 38523}, {8787, 51224}, {9181, 20976}, {10630, 52678}, {14444, 23992}, {21906, 35507}, {33704, 33803}, {40544, 41939}

X(59801) = isogonal conjugate of X(57552)
X(59801) = reflection of X(3124) in the Brocard axis
X(59801) = isogonal conjugate of the isotomic conjugate of X(23992)
X(59801) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 351}, {3124, 21906}, {9217, 187}, {22259, 669}, {36792, 1649}, {39689, 54274}, {52678, 512}, {58780, 14443}
X(59801) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57552}, {75, 34539}, {799, 34574}, {892, 36085}, {897, 52940}, {10630, 24037}, {15398, 46254}, {24041, 57539}, {36142, 53080}
X(59801) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57552}, {206, 34539}, {512, 10630}, {524, 34537}, {690, 76}, {1648, 670}, {1649, 18023}, {3005, 57539}, {6593, 52940}, {21905, 671}, {23992, 53080}, {38988, 892}, {38996, 34574}, {48317, 59762}
X(59801) = crossdifference of every pair of points on line {892, 5466}
X(59801) = barycentric product X(i)*X(j) for these {i,j}: {6, 23992}, {110, 14443}, {111, 14444}, {115, 39689}, {187, 1648}, {351, 690}, {512, 1649}, {523, 54274}, {524, 21906}, {574, 20382}, {647, 58780}, {669, 52629}, {691, 46049}, {843, 41176}, {1084, 36792}, {2482, 3124}, {2642, 2642}, {2643, 42081}, {2682, 9717}, {3122, 52068}, {5095, 20975}, {5099, 59175}, {5467, 33919}, {9125, 58754}, {9178, 33915}, {14567, 52628}, {35507, 40826}, {38988, 40517}
X(59801) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57552}, {32, 34539}, {187, 52940}, {351, 892}, {669, 34574}, {690, 53080}, {1084, 10630}, {1648, 18023}, {1649, 670}, {2482, 34537}, {3124, 57539}, {9427, 41936}, {14273, 59762}, {14443, 850}, {14444, 3266}, {20382, 40826}, {21906, 671}, {23992, 76}, {33919, 52632}, {35507, 574}, {36792, 44168}, {39689, 4590}, {41176, 45809}, {42081, 24037}, {46049, 35522}, {52629, 4609}, {54274, 99}, {58780, 6331}
X(59801) = {X(38369),X(38988)}-harmonic conjugate of X(3124)


X(59802) = X(2)X(694)∩X(6)X(699)

Barycentrics    a^2*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4)^2 : :

X(59802) lies on the Brocard inellipse and these lines: {2, 694}, {6, 699}, {39, 9427}, {194, 32548}, {698, 35524}, {1015, 23473}, {1977, 23632}, {3269, 32452}, {4609, 19562}, {9493, 19590}, {24973, 32529}

X(59802) = reflection of X(9427) in X(39)
X(59802) = X(6)-Ceva conjugate of X(3229)
X(59802) = X(3225)-isoconjugate of X(43761)
X(59802) = X(i)-Dao conjugate of X(j) for these (i,j): {698, 76}, {9429, 9427}, {39080, 3225}
X(59802) = crossdifference of every pair of points on line {3225, 5027}
X(59802) = barycentric product X(i)*X(j) for these {i,j}: {698, 3229}, {2227, 2227}, {32748, 35524}, {39080, 47648}, {52460, 59567}
X(59802) = barycentric quotient X(i)/X(j) for these {i,j}: {3229, 3225}, {32748, 699}, {51322, 32544}, {51907, 43761}


X(59803) = X(6)X(691)∩X(187)X(3124)

Barycentrics    a^2*(2*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 4*b^2*c^2 - c^4)^2 : :

X(59803) lies on the Brocard inellipse and these lines: {6, 691}, {110, 41404}, {111, 9218}, {187, 3124}, {249, 46276}, {512, 39689}, {1641, 44956}, {1691, 28662}, {2030, 9427}, {2502, 9181}, {3269, 5107}, {5104, 9019}, {5969, 34205}, {10630, 20998}, {32694, 38524}

X(59803) = isogonal conjugate of X(57561)
X(59803) = reflection of X(39689) in the Brocard axis
X(59803) = isogonal conjugate of the isotomic conjugate of X(35087)
X(59803) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 2502}, {34539, 23348}
X(59803) = X(1)-isoconjugate of X(57561)
X(59803) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57561}, {543, 76}, {41176, 35522}
X(59803) = crossdifference of every pair of points on line {9168, 18823}
X(59803) = barycentric product X(i)*X(j) for these {i,j}: {6, 35087}, {543, 2502}, {1641, 17964}, {8371, 9181}, {9171, 9182}, {23348, 33921}
X(59803) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57561}, {2502, 18823}, {9171, 9180}, {9181, 9170}, {35087, 76}
X(59803) = {X(9181),X(17964)}-harmonic conjugate of X(2502)


X(59804) = X(6)X(98)∩X(115)X(2086)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)^2 : :

X(59804) lies on the Brocard inellipse and these lines: {6, 98}, {115, 2086}, {574, 21444}, {3124, 38352}, {5008, 9408}, {6784, 9420}, {7668, 51404}, {10485, 15920}, {11623, 45910}, {15630, 20975}, {34359, 46303}, {39689, 44109}, {50664, 52128}

X(59804) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 3288}, {98, 9420}
X(59804) = X(i)-Dao conjugate of X(j) for these (i,j): {23878, 76}, {33569, 325}
X(59804) = barycentric product X(i)*X(j) for these {i,j}: {183, 6784}, {3288, 23878}, {34536, 39009}
X(59804) = barycentric quotient X(i)/X(j) for these {i,j}: {6784, 262}, {39009, 36790}


X(59805) = X(6)X(842)∩X(115)X(826)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)^2 : :

X(59805) lies on the Brocard inellipse and these lines: {6, 842}, {115, 826}, {125, 12077}, {187, 9408}, {232, 511}, {316, 39931}, {394, 10425}, {512, 3269}, {523, 51404}, {647, 3124}, {805, 34359}, {1495, 5107}, {1570, 8779}, {1648, 3258}, {1691, 13195}, {1971, 5111}, {2065, 57253}, {2207, 2710}, {2420, 38613}, {2679, 38974}, {2698, 38525}, {2971, 44011}, {3094, 34235}, {3447, 23963}, {5099, 33504}, {8430, 32112}, {9427, 14113}, {14251, 32452}, {14398, 47415}, {15630, 20975}, {15631, 36790}, {20977, 47213}, {22416, 31848}, {30451, 38356}, {33803, 39849}, {36471, 38970}, {38383, 43460}, {41181, 51429}, {41939, 47220}, {47079, 47406}

X(59805) = isogonal conjugate of X(57562)
X(59805) = reflection of X(3269) in the Brocard axis
X(59805) = isogonal conjugate of the isotomic conjugate of X(35088)
X(59805) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 3569}, {338, 868}, {2967, 58262}, {3425, 9420}, {3447, 237}, {34130, 512}, {36790, 41167}, {39265, 17994}, {57253, 647}, {57493, 684}
X(59805) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57562}, {662, 41173}, {1101, 34536}, {1821, 57742}, {1910, 57991}, {2715, 36036}, {2966, 36084}, {17932, 36104}, {18858, 56982}, {23995, 57541}, {24041, 41932}
X(59805) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57562}, {511, 249}, {523, 34536}, {1084, 41173}, {2491, 40820}, {2679, 2715}, {2799, 76}, {3005, 41932}, {11672, 57991}, {18314, 57541}, {35088, 43187}, {38970, 22456}, {38987, 2966}, {39000, 17932}, {39469, 14585}, {40601, 57742}, {41167, 287}, {41172, 99}, {55267, 290}, {57294, 32661}
X(59805) = crossdifference of every pair of points on line {879, 2966}
X(59805) = barycentric product X(i)*X(j) for these {i,j}: {6, 35088}, {115, 36790}, {125, 2967}, {297, 41172}, {325, 44114}, {338, 11672}, {511, 868}, {523, 41167}, {684, 16230}, {850, 58262}, {1109, 23996}, {2715, 46052}, {2799, 3569}, {3124, 32458}, {3269, 36426}, {5968, 51429}, {6333, 17994}, {8029, 15631}, {9419, 23962}, {15526, 51334}, {23994, 42075}, {41181, 57493}
X(59805) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57562}, {115, 34536}, {237, 57742}, {297, 41174}, {338, 57541}, {511, 57991}, {512, 41173}, {684, 17932}, {868, 290}, {882, 18858}, {2491, 2715}, {2679, 40820}, {2799, 43187}, {2967, 18020}, {3124, 41932}, {3569, 2966}, {9419, 23357}, {11672, 249}, {15631, 31614}, {16230, 22456}, {17994, 685}, {20975, 47388}, {23996, 24041}, {32458, 34537}, {35088, 76}, {36425, 23963}, {36790, 4590}, {39469, 43754}, {41167, 99}, {41172, 287}, {42075, 1101}, {44114, 98}, {51334, 23582}, {51429, 52145}, {57430, 57490}, {58260, 1976}, {58262, 110}
X(59805) = {X(51429),X(57430)}-harmonic conjugate of X(41181)


X(59806) = X(11)X(982)∩X(12)X(85)

Barycentrics    (a + b - c)*(a - b + c)*(a*b^2 - b^2*c + a*c^2 - b*c^2)^2 : :

X(59806) lies on the incircle and these lines: {2, 11689}, {11, 982}, {12, 85}, {55, 15323}, {56, 932}, {57, 20375}, {226, 1357}, {1356, 3649}, {1364, 20359}, {1463, 17793}, {3022, 12053}, {3023, 5988}, {3837, 20366}, {19917, 21343}, {40663, 47016}, {43040, 59724}

X(59806) = midpoint of X(19917) and X(21343)
X(59806) = complement of X(11689)
X(59806) = X(7)-Ceva conjugate of X(43040)
X(i)-isoconjugate of X(j) for these (i,j): {41, 57535}, {727, 8851}, {34077, 36799}
X(59806) = X(i)-Dao conjugate of X(j) for these (i,j): {726, 8}, {3160, 57535}, {17793, 8851}, {20532, 36799}
X(59806) = barycentric product X(i)*X(j) for these {i,j}: {7, 20532}, {331, 20759}, {726, 43040}, {1463, 52043}, {6063, 20671}, {20690, 57785}
X(59806) = barycentric quotient X(i)/X(j) for these {i,j}: {7, 57535}, {726, 36799}, {1463, 20332}, {1575, 8851}, {20532, 8}, {20671, 55}, {20690, 210}, {20759, 219}, {43040, 3226}


X(59807) = X(1)X(47007)∩X(11)X(518)

Barycentrics    a^2*(a - b - c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + 2*a*b^2*c - 3*b^3*c - a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 - a*c^3 - 3*b*c^3 + c^4)^2 : :

X(59807) lies on the incircle and these lines: {1, 47007}, {11, 518}, {55, 840}, {56, 2742}, {354, 14027}, {513, 3021}, {517, 1358}, {1155, 1357}, {1317, 3309}, {3022, 5048}, {3057, 3328}, {3321, 43932}, {3326, 17642}, {6065, 22560}, {15185, 16184}, {15737, 54408}, {42871, 44045}

X(59807) = reflection of X(47007) in X(1)
X(59807) = reflection of X(3021) in the OI line


X(59808) = X(1)X(47003)∩X(11)X(241)

Barycentrics    (a + b - c)*(a - b + c)*(a^4*b - 2*a^3*b^2 + a^2*b^3 + a^4*c - b^4*c - 2*a^3*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 - b*c^4)^2 : :

X(59808) lies on the incircle and these lines: {1, 44043}, {11, 241}, {12, 1566}, {55, 2724}, {56, 927}, {65, 15615}, {388, 14732}, {498, 57353}, {499, 57315}, {514, 1362}, {516, 3022}, {1364, 20358}, {3025, 53801}, {3323, 10481}, {3328, 5542}, {5433, 40554}, {5532, 43672}, {12943, 44975}

X(59808) = reflection of X(44043) in X(1)
X(59808) = reflection of X(1362) in the Soddy line
X(59808) = X(28850)-Dao conjugate of X(8)


X(59809) = X(3)X(11)∩X(12)X(5521)

Barycentrics    (a + b - c)*(a - b + c)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c - 2*a^2*b*c + a*b^2*c - a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4)^2 : :

X(59809) lies on the incircle and these lines: {3, 11}, {12, 5521}, {55, 915}, {56, 13397}, {77, 1358}, {1317, 55126}, {3025, 5570}, {3028, 53529}, {3326, 16869}, {10149, 31522}


X(59810) = X(11)X(136)∩X(12)X(131)

Barycentrics    (a - b - c)*(b - c)^2*(a^6 - 2*a^4*b^2 + a^2*b^4 - a^4*b*c + b^5*c - 2*a^4*c^2 - 2*b^3*c^3 + a^2*c^4 + b*c^5)^2 : :

X(59810) lies on the incircle and these lines: {1, 53802}, {11, 136}, {12, 131}, {55, 925}, {56, 1300}, {215, 58061}, {498, 57314}, {499, 57334}, {1479, 13556}, {2477, 58066}, {3024, 55121}, {3027, 39822}, {3028, 7354}, {5204, 38718}, {5432, 34844}, {5433, 34840}, {12943, 44990}, {12953, 44974}, {21667, 37722}


X(59811) = X(11)X(131)∩X(12)X(136)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)^2*(a^6 - 2*a^4*b^2 + a^2*b^4 + a^4*b*c - b^5*c - 2*a^4*c^2 + 2*b^3*c^3 + a^2*c^4 - b*c^5)^2 : :

X(59811) lies on the incircle and these lines: {1, 53802}, {11, 131}, {12, 136}, {55, 1300}, {56, 925}, {215, 58066}, {498, 57334}, {499, 57314}, {1478, 13556}, {2477, 58061}, {3023, 39815}, {3024, 6284}, {3028, 55121}, {5217, 38718}, {5432, 34840}, {5433, 34844}, {10149, 33965}, {12943, 44974}, {12953, 44990}, {15888, 21667}, {18990, 47017}


X(59812) = X(1)X(88)∩X(7)X(34548)

Barycentrics    a*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c - 4*a^3*b*c + 5*a^2*b^2*c - 10*a*b^3*c + 4*b^4*c - 2*a^3*c^2 + 5*a^2*b*c^2 + 12*a*b^2*c^2 - 3*b^3*c^2 - 10*a*b*c^3 - 3*b^2*c^3 + 2*a*c^4 + 4*b*c^4 - c^5) : :
X(59812) = 3 X[354] - X[1357]

X(59812) lies on these lines: {1, 88}, {7, 34548}, {55, 14664}, {57, 1293}, {65, 6018}, {121, 1210}, {226, 5510}, {354, 1357}, {518, 3038}, {758, 53618}, {938, 21290}, {942, 53790}, {1647, 14740}, {2796, 24472}, {2810, 11028}, {2827, 5083}, {2841, 12016}, {2976, 6085}, {3586, 10730}, {3601, 38695}, {3681, 21267}, {3880, 37743}, {3956, 31520}, {4090, 11019}, {5570, 33645}, {5708, 38590}, {5722, 10744}, {6715, 13411}, {9579, 44984}, {10580, 17777}, {11018, 52827}, {11374, 57300}, {11518, 38671}, {11731, 44675}, {12053, 44313}, {15522, 57282}, {15803, 38713}, {15934, 38576}, {16193, 58597}, {18391, 50914}, {24929, 38604}, {30350, 51765}, {37582, 38620}, {45219, 56795}

X(59812) = midpoint of X(65) and X(6018)
X(59812) = incircle-inverse of X(100)


X(59813) = X(1)X(103)∩X(7)X(80)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + 2*a*b^2*c - b^3*c - a^2*c^2 + 2*a*b*c^2 - a*c^3 - b*c^3 + c^4) : :
X(59813) = 3 X[5902] - X[18413], 3 X[354] - X[3022], 3 X[354] - 2 X[14760]

X(59813) lies on these lines: {1, 103}, {7, 80}, {36, 32624}, {46, 4350}, {56, 11712}, {57, 101}, {65, 1358}, {77, 5119}, {85, 3754}, {116, 226}, {118, 1210}, {152, 938}, {214, 6516}, {269, 2093}, {279, 5903}, {348, 3878}, {354, 3022}, {388, 50896}, {517, 1323}, {544, 553}, {651, 5540}, {658, 18240}, {664, 2802}, {738, 7982}, {758, 9436}, {759, 1414}, {883, 4986}, {928, 20520}, {942, 2808}, {999, 14878}, {1025, 24036}, {1282, 3339}, {1425, 24211}, {1439, 2823}, {1443, 3245}, {1445, 28345}, {1565, 2800}, {1835, 38461}, {1845, 36118}, {1876, 5185}, {2784, 4298}, {2807, 3664}, {2810, 24471}, {3041, 3812}, {3160, 5697}, {3336, 38859}, {3340, 10695}, {3586, 10727}, {3601, 38692}, {3660, 58592}, {3676, 24201}, {3678, 33298}, {3874, 6604}, {3887, 5083}, {3911, 6710}, {3942, 53409}, {3982, 34929}, {4304, 38773}, {4341, 56544}, {4625, 38477}, {4654, 10708}, {4674, 7271}, {4845, 10980}, {4904, 39063}, {5011, 58320}, {5219, 31273}, {5249, 34933}, {5543, 50190}, {5708, 38572}, {5722, 10741}, {5883, 40719}, {6168, 57015}, {6359, 24202}, {6712, 13411}, {7183, 8666}, {7269, 15227}, {8829, 15501}, {9446, 58626}, {9579, 10725}, {10136, 17625}, {10739, 57282}, {11018, 52825}, {11374, 57297}, {11518, 38668}, {11529, 34930}, {11728, 44675}, {11809, 22464}, {14256, 38502}, {15803, 38690}, {15934, 38574}, {16193, 58594}, {17439, 23890}, {20096, 21454}, {21314, 23839}, {24798, 45288}, {24929, 38601}, {30350, 51809}, {30384, 51364}, {36279, 59242}, {37544, 52823}, {37582, 38599}, {43947, 58817}, {55082, 58565}

X(59813) = midpoint of X(i) and X(j) for these {i,j}: {65, 1362}, {39787, 39788}
X(59813) = reflection of X(i) in X(j) for these {i,j}: {1323, 34855}, {3022, 14760}, {3041, 3812}, {11028, 942}
X(59813) = incircle-inverse of X(934)
X(59813) = X(55)-isoconjugate of X(40450)
X(59813) = X(i)-Dao conjugate of X(j) for these (i,j): {223, 40450}, {16578, 24026}
X(59813) = barycentric product X(i)*X(j) for these {i,j}: {7, 16578}, {279, 14740}, {331, 22346}, {348, 1830}, {1275, 55335}, {6063, 21742}, {21797, 57785}
X(59813) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 40450}, {1830, 281}, {14740, 346}, {16578, 8}, {21742, 55}, {21797, 210}, {22346, 219}, {55335, 1146}
X(59813) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 4566, 1111}, {354, 3022, 14760}


X(59814) = X(1)X(41)∩X(7)X(34547)

Barycentrics    a*(a^5*b - 3*a^4*b^2 + 4*a^3*b^3 - 4*a^2*b^4 + 3*a*b^5 - b^6 + a^5*c - 2*a^4*b*c + a^3*b^2*c + 3*a^2*b^3*c - 6*a*b^4*c + 3*b^5*c - 3*a^4*c^2 + a^3*b*c^2 - 2*a^2*b^2*c^2 + 3*a*b^3*c^2 - 3*b^4*c^2 + 4*a^3*c^3 + 3*a^2*b*c^3 + 3*a*b^2*c^3 + 2*b^3*c^3 - 4*a^2*c^4 - 6*a*b*c^4 - 3*b^2*c^4 + 3*a*c^5 + 3*b*c^5 - c^6) : :
X(59814) = 3 X[354] - X[1358], 5 X[5439] - 3 X[34124]

X(59814) lies on these lines: {1, 41}, {7, 34547}, {57, 1292}, {65, 3021}, {120, 1210}, {226, 5511}, {354, 1358}, {518, 3039}, {528, 5572}, {938, 20344}, {942, 28915}, {2795, 10122}, {2826, 5083}, {2835, 12016}, {3586, 10729}, {3601, 38694}, {5439, 34124}, {5708, 38589}, {5722, 10743}, {5902, 9519}, {6714, 13411}, {9579, 44983}, {11018, 52826}, {11374, 57299}, {11518, 38670}, {11730, 44675}, {15521, 57282}, {15803, 38712}, {15934, 38575}, {16193, 58596}, {18391, 50911}, {24929, 38603}, {30350, 51770}, {37582, 38619}

X(59814) = midpoint of X(65) and X(3021)
X(59814) = incircle-inverse of X(101)


X(59815) = X(1)X(98)∩X(77)X(99)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^4 - a^2*b^2 + a*b^3 - a*b^2*c - a^2*c^2 - a*b*c^2 + b^2*c^2 + a*c^3) : :
X(59815) = 3 X[354] - X[3023]

X(59815) lies on these lines: {1, 98}, {7, 148}, {46, 10086}, {56, 11711}, {57, 99}, {65, 1356}, {114, 1210}, {115, 226}, {147, 938}, {354, 3023}, {388, 13178}, {543, 553}, {620, 3911}, {671, 4654}, {942, 2782}, {950, 2794}, {1155, 15452}, {1836, 13183}, {1837, 12184}, {1876, 5186}, {2783, 12736}, {2784, 6738}, {2787, 5083}, {2792, 12016}, {3338, 10089}, {3339, 13174}, {3340, 7983}, {3485, 38220}, {3487, 14651}, {3488, 9862}, {3586, 10722}, {3601, 34473}, {3660, 58590}, {3671, 11599}, {3912, 5977}, {4292, 23698}, {4304, 38749}, {5219, 14061}, {5708, 13188}, {5722, 6033}, {5969, 24471}, {6036, 13411}, {6321, 57282}, {7132, 30139}, {7178, 40459}, {9579, 10723}, {9612, 14639}, {9864, 18391}, {10404, 13182}, {11018, 52821}, {11019, 21636}, {11177, 15933}, {11374, 38224}, {11518, 38664}, {11724, 44675}, {12042, 24929}, {12188, 15934}, {13173, 37541}, {15803, 21166}, {15903, 39595}, {16193, 58589}, {16591, 16613}, {18541, 38733}, {19108, 51842}, {19109, 51841}, {20094, 21454}, {30350, 51796}, {33645, 53792}, {33813, 37582}, {37544, 52822}, {41240, 45208}

X(59815) = midpoint of X(65) and X(3027)
X(59815) = reflection of X(24472) in X(942)
X(59815) = incircle-inverse of X(29055)
X(59815) = {X(1),X(10069)}-harmonic conjugate of X(11710)


X(59816) = X(1)X(102)∩X(11)X(65)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^5*b - a^4*b^2 - a*b^5 + b^6 + a^5*c - 2*a^4*b*c + a^3*b^2*c - a^2*b^3*c + 2*a*b^4*c - b^5*c - a^4*c^2 + a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 - b^4*c^2 - a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + 2*a*b*c^4 - b^2*c^4 - a*c^5 - b*c^5 + c^6) : :
X(59816) = 3 X[354] - X[1364], 3 X[5902] + X[52129]

X(59816) lies on these lines: {1, 102}, {4, 24034}, {7, 33650}, {11, 65}, {31, 57}, {46, 14690}, {56, 11700}, {124, 226}, {151, 938}, {196, 497}, {354, 1360}, {388, 13532}, {515, 1875}, {517, 15252}, {518, 3042}, {676, 8677}, {758, 23998}, {928, 20520}, {942, 2818}, {959, 2006}, {1118, 48482}, {1319, 47115}, {1457, 1835}, {1479, 14257}, {1795, 3338}, {1830, 35015}, {1846, 51889}, {1887, 18483}, {2779, 15904}, {2792, 24472}, {2807, 5173}, {2823, 38357}, {2840, 51422}, {2849, 53522}, {3040, 3812}, {3340, 10703}, {3586, 10726}, {3601, 38691}, {3660, 33647}, {3738, 4458}, {3827, 34050}, {3911, 6718}, {4347, 56414}, {4654, 10716}, {5708, 38579}, {5722, 10740}, {5902, 52129}, {6711, 13411}, {7138, 10571}, {9579, 10732}, {10747, 57282}, {10776, 34789}, {11018, 52824}, {11365, 54081}, {11374, 38776}, {11518, 38667}, {11727, 44675}, {12005, 30493}, {13464, 23711}, {15251, 37544}, {15253, 35650}, {15803, 38697}, {15934, 38573}, {16193, 58593}, {18391, 50899}, {18541, 38780}, {18838, 33645}, {23981, 24025}, {24929, 38600}, {27628, 43048}, {30350, 51808}, {37582, 38607}, {47140, 51713}, {53293, 53321}, {56412, 58565}

X(59816) = midpoint of X(i) and X(j) for these {i,j}: {1, 1845}, {65, 1361}
X(59816) = reflection of X(i) in X(j) for these {i,j}: {3040, 3812}, {12016, 942}
X(59816) = incircle-inverse of X(108)
X(59816) = barycentric product X(57)*X(23541)
X(59816) = barycentric quotient X(23541)/X(312)


X(59817) = X(1)X(74)∩X(57)X(110)

Barycentrics    a*(a + b - c)*(a - b + c)*(b + c)*(a^5 - a^3*b^2 - a^2*b^3 + b^5 + a^2*b^2*c - b^4*c - a^3*c^2 + a^2*b*c^2 + a*b^2*c^2 - a^2*c^3 - b*c^4 + c^5) : :
X(59817) = 3 X[354] - X[3024], 3 X[354] + X[11670], 3 X[5902] + X[19470], X[7727] - 5 X[18398]

X(59817) lies on these lines: {1, 74}, {5, 43855}, {7, 3448}, {46, 10088}, {56, 11720}, {57, 110}, {65, 1365}, {113, 1210}, {125, 226}, {146, 938}, {265, 57282}, {354, 3024}, {388, 13211}, {399, 5708}, {516, 46687}, {542, 553}, {942, 5663}, {950, 2777}, {974, 2779}, {1112, 1876}, {1155, 18593}, {1511, 37582}, {1770, 12896}, {1772, 6126}, {1785, 1830}, {1836, 12904}, {1837, 12373}, {2771, 7687}, {2772, 11028}, {2778, 10271}, {2842, 35650}, {2854, 24471}, {2948, 3339}, {3338, 10091}, {3340, 7984}, {3488, 12244}, {3586, 10721}, {3601, 15055}, {3649, 14873}, {3660, 58601}, {3671, 13605}, {3911, 5972}, {4031, 24981}, {4292, 17702}, {4298, 46683}, {4304, 16111}, {4654, 9140}, {5083, 8674}, {5219, 15059}, {5714, 15081}, {5722, 7728}, {5902, 19470}, {6147, 10264}, {6699, 13411}, {7727, 18398}, {9579, 10733}, {9612, 14644}, {10272, 34753}, {10404, 12903}, {10620, 15934}, {10693, 12709}, {11018, 44403}, {11374, 15061}, {11518, 15054}, {11529, 33535}, {11723, 44675}, {11746, 46017}, {12041, 24929}, {12261, 39542}, {12368, 18391}, {12778, 36279}, {12902, 18541}, {13204, 37541}, {14683, 21454}, {15035, 15803}, {16164, 41547}, {16193, 58582}, {19110, 51842}, {19111, 51841}, {21180, 35053}, {24470, 32423}, {30350, 51794}, {31523, 41554}, {32609, 37545}, {37544, 52831}

X(59817) = midpoint of X(i) and X(j) for these {i,j}: {65, 3028}, {1770, 12896}, {3024, 11670}
X(59817) = reflection of X(46683) in X(4298)
X(59817) = incircle-inverse of X(26700)
X(59817) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10081, 11709}, {354, 11670, 3024}


X(59818) = X(1)X(60)∩X(57)X(74)

Barycentrics    a*(a^8*b - a^7*b^2 - 2*a^6*b^3 + 3*a^5*b^4 - 3*a^3*b^6 + 2*a^2*b^7 + a*b^8 - b^9 + a^8*c + 2*a^7*b*c - 2*a^5*b^3*c - 2*a^4*b^4*c - 2*a^3*b^5*c + 2*a*b^7*c + b^8*c - a^7*c^2 - 2*a^5*b^2*c^2 + 3*a^4*b^3*c^2 + 2*a^3*b^4*c^2 - 5*a^2*b^5*c^2 + a*b^6*c^2 + 2*b^7*c^2 - 2*a^6*c^3 - 2*a^5*b*c^3 + 3*a^4*b^2*c^3 + 6*a^3*b^3*c^3 + 3*a^2*b^4*c^3 - 2*a*b^5*c^3 - 2*b^6*c^3 + 3*a^5*c^4 - 2*a^4*b*c^4 + 2*a^3*b^2*c^4 + 3*a^2*b^3*c^4 - 4*a*b^4*c^4 - 2*a^3*b*c^5 - 5*a^2*b^2*c^5 - 2*a*b^3*c^5 - 3*a^3*c^6 + a*b^2*c^6 - 2*b^3*c^6 + 2*a^2*c^7 + 2*a*b*c^7 + 2*b^2*c^7 + a*c^8 + b*c^8 - c^9) : :
X(59818) = 3 X[354] - X[3028], 3 X[5902] + X[7727], 5 X[18398] - X[19470]

X(59818) lies on these lines: {1, 60}, {7, 146}, {46, 10065}, {56, 11709}, {57, 74}, {65, 1354}, {80, 1099}, {113, 226}, {125, 1210}, {185, 43855}, {265, 5722}, {354, 3028}, {388, 12368}, {399, 15934}, {496, 12261}, {515, 46683}, {541, 553}, {690, 24472}, {934, 7266}, {938, 3448}, {942, 5663}, {950, 17702}, {1319, 51881}, {1387, 2771}, {1511, 24929}, {1836, 12374}, {1837, 12903}, {1876, 12133}, {2773, 12016}, {2774, 11028}, {2777, 4292}, {2779, 15904}, {2781, 24471}, {3019, 5902}, {3295, 12778}, {3333, 33535}, {3338, 10081}, {3339, 9904}, {3340, 7978}, {3488, 12383}, {3586, 10733}, {3601, 15035}, {3660, 58582}, {3911, 6699}, {4304, 16163}, {4654, 10706}, {5425, 7343}, {5708, 10620}, {5719, 10272}, {5972, 13411}, {7728, 57282}, {8674, 12736}, {9143, 15933}, {9579, 10721}, {9581, 14644}, {10404, 12373}, {10572, 18968}, {11018, 52831}, {11019, 13605}, {11374, 14643}, {11518, 14094}, {11735, 44675}, {12041, 37582}, {12327, 37541}, {12433, 32423}, {12898, 37739}, {13211, 18391}, {15041, 37545}, {15051, 30282}, {15055, 15803}, {16193, 58601}, {18398, 19470}, {18541, 38790}, {19059, 51842}, {19060, 51841}, {30350, 51793}, {37544, 52820}

X(59818) = midpoint of X(i) and X(j) for these {i,j}: {65, 3024}, {10572, 18968}
X(59818) = incircle-inverse of X(759)
X(59818) = {X(1),X(10091)}-harmonic conjugate of X(11720)


X(59819) = X(1)X(111)∩X(57)X(1296)

Barycentrics    a*(b + c)*(a^8 + a^7*b - 4*a^6*b^2 + a^5*b^3 - a^3*b^5 + 4*a^2*b^6 - a*b^7 - b^8 + a^7*c + 2*a^6*b*c - 7*a^5*b^2*c - 6*a^4*b^3*c - 5*a^3*b^4*c - 6*a^2*b^5*c + 3*a*b^6*c + 2*b^7*c - 4*a^6*c^2 - 7*a^5*b*c^2 + 21*a^4*b^2*c^2 + 15*a^3*b^3*c^2 - 15*a^2*b^4*c^2 + 4*a*b^5*c^2 + 2*b^6*c^2 + a^5*c^3 - 6*a^4*b*c^3 + 15*a^3*b^2*c^3 + 30*a^2*b^3*c^3 - 10*a*b^4*c^3 - 6*b^5*c^3 - 5*a^3*b*c^4 - 15*a^2*b^2*c^4 - 10*a*b^3*c^4 + 6*b^4*c^4 - a^3*c^5 - 6*a^2*b*c^5 + 4*a*b^2*c^5 - 6*b^3*c^5 + 4*a^2*c^6 + 3*a*b*c^6 + 2*b^2*c^6 - a*c^7 + 2*b*c^7 - c^8) : :
X(59819) = 3 X[354] - X[3325]

X(59819) lies on these lines: {1, 111}, {57, 1296}, {65, 6019}, {126, 1210}, {226, 5512}, {354, 3325}, {543, 24472}, {938, 14360}, {942, 33962}, {950, 23699}, {2805, 12736}, {2813, 11028}, {2830, 5083}, {2852, 12016}, {3488, 14654}, {3586, 10734}, {3601, 38698}, {3911, 40556}, {5708, 38593}, {5722, 10748}, {6719, 13411}, {9579, 44987}, {11018, 52832}, {11258, 15934}, {11374, 38796}, {11518, 38675}, {14650, 24929}, {15803, 38716}, {16193, 58602}, {18391, 50924}, {18541, 38800}, {22338, 57282}, {30350, 51814}, {37582, 38623}

X(59819) = midpoint of X(65) and X(6019)
X(59819) = incircle-inverse of X(8691)


X(59820) = X(1)X(102)∩X(7)X(34550)

Barycentrics    a*(a^11*b - a^10*b^2 - 3*a^9*b^3 + 3*a^8*b^4 + 2*a^7*b^5 - 2*a^6*b^6 + 2*a^5*b^7 - 2*a^4*b^8 - 3*a^3*b^9 + 3*a^2*b^10 + a*b^11 - b^12 + a^11*c - 2*a^10*b*c + 4*a^9*b^2*c - a^8*b^3*c - 14*a^7*b^4*c + 12*a^6*b^5*c + 8*a^5*b^6*c - 10*a^4*b^7*c + 5*a^3*b^8*c - 2*a^2*b^9*c - 4*a*b^10*c + 3*b^11*c - a^10*c^2 + 4*a^9*b*c^2 - 4*a^8*b^2*c^2 + 12*a^7*b^3*c^2 + 2*a^6*b^4*c^2 - 28*a^5*b^5*c^2 + 12*a^4*b^6*c^2 + 4*a^3*b^7*c^2 - 9*a^2*b^8*c^2 + 8*a*b^9*c^2 - 3*a^9*c^3 - a^8*b*c^3 + 12*a^7*b^2*c^3 - 24*a^6*b^3*c^3 + 18*a^5*b^4*c^3 + 10*a^4*b^5*c^3 - 28*a^3*b^6*c^3 + 24*a^2*b^7*c^3 + a*b^8*c^3 - 9*b^9*c^3 + 3*a^8*c^4 - 14*a^7*b*c^4 + 2*a^6*b^2*c^4 + 18*a^5*b^3*c^4 - 20*a^4*b^4*c^4 + 22*a^3*b^5*c^4 + 6*a^2*b^6*c^4 - 26*a*b^7*c^4 + 9*b^8*c^4 + 2*a^7*c^5 + 12*a^6*b*c^5 - 28*a^5*b^2*c^5 + 10*a^4*b^3*c^5 + 22*a^3*b^4*c^5 - 44*a^2*b^5*c^5 + 20*a*b^6*c^5 + 6*b^7*c^5 - 2*a^6*c^6 + 8*a^5*b*c^6 + 12*a^4*b^2*c^6 - 28*a^3*b^3*c^6 + 6*a^2*b^4*c^6 + 20*a*b^5*c^6 - 16*b^6*c^6 + 2*a^5*c^7 - 10*a^4*b*c^7 + 4*a^3*b^2*c^7 + 24*a^2*b^3*c^7 - 26*a*b^4*c^7 + 6*b^5*c^7 - 2*a^4*c^8 + 5*a^3*b*c^8 - 9*a^2*b^2*c^8 + a*b^3*c^8 + 9*b^4*c^8 - 3*a^3*c^9 - 2*a^2*b*c^9 + 8*a*b^2*c^9 - 9*b^3*c^9 + 3*a^2*c^10 - 4*a*b*c^10 + a*c^11 + 3*b*c^11 - c^12) : :
X(59820) = 3 X[354] - X[1359]

X(59820) lies on these lines: {1, 102}, {7, 34550}, {57, 1295}, {65, 3318}, {123, 1210}, {226, 25640}, {354, 1359}, {938, 34188}, {950, 2829}, {1439, 2823}, {2778, 10271}, {2798, 24472}, {2804, 12736}, {2812, 11028}, {2835, 15501}, {2849, 12016}, {3586, 10731}, {3601, 38696}, {5708, 38592}, {5722, 10746}, {6717, 13411}, {9579, 44986}, {11018, 52829}, {11374, 57302}, {11518, 38673}, {11733, 44675}, {15803, 38715}, {15934, 38578}, {16193, 58599}, {18391, 50917}, {24929, 38606}, {33566, 57282}, {37582, 38622}

X(59820) = midpoint of X(65) and X(3318)
X(59820) = incircle-inverse of X(102)


X(59821) = X(1)X(112)∩X(7)X(12384)

Barycentrics    a*(a^12*b - a^11*b^2 - 2*a^10*b^3 + a^9*b^4 + a^8*b^5 + 2*a^7*b^6 - 2*a^5*b^8 - a^4*b^9 - a^3*b^10 + 2*a^2*b^11 + a*b^12 - b^13 + a^12*c + 2*a^11*b*c - 2*a^9*b^3*c - a^8*b^4*c - a^4*b^8*c - 2*a^3*b^9*c + 2*a*b^11*c + b^12*c - a^11*c^2 + 2*a^9*b^2*c^2 + a^8*b^3*c^2 - 3*a^7*b^4*c^2 - a^6*b^5*c^2 + 3*a^5*b^6*c^2 + a^4*b^7*c^2 - 3*a^2*b^9*c^2 - a*b^10*c^2 + 2*b^11*c^2 - 2*a^10*c^3 - 2*a^9*b*c^3 + a^8*b^2*c^3 + 2*a^7*b^3*c^3 + a^6*b^4*c^3 + a^4*b^6*c^3 + 2*a^3*b^7*c^3 + a^2*b^8*c^3 - 2*a*b^9*c^3 - 2*b^10*c^3 + a^9*c^4 - a^8*b*c^4 - 3*a^7*b^2*c^4 + a^6*b^3*c^4 - 2*a^5*b^4*c^4 + a^3*b^6*c^4 + a^2*b^7*c^4 + 3*a*b^8*c^4 - b^9*c^4 + a^8*c^5 - a^6*b^2*c^5 - a^2*b^6*c^5 + b^8*c^5 + 2*a^7*c^6 + 3*a^5*b^2*c^6 + a^4*b^3*c^6 + a^3*b^4*c^6 - a^2*b^5*c^6 - 6*a*b^6*c^6 + a^4*b^2*c^7 + 2*a^3*b^3*c^7 + a^2*b^4*c^7 - 2*a^5*c^8 - a^4*b*c^8 + a^2*b^3*c^8 + 3*a*b^4*c^8 + b^5*c^8 - a^4*c^9 - 2*a^3*b*c^9 - 3*a^2*b^2*c^9 - 2*a*b^3*c^9 - b^4*c^9 - a^3*c^10 - a*b^2*c^10 - 2*b^3*c^10 + 2*a^2*c^11 + 2*a*b*c^11 + 2*b^2*c^11 + a*c^12 + b*c^12 - c^13) : :
X(59821) = 3 X[354] - X[3320]

X(59821) lies on these lines: {1, 112}, {7, 12384}, {46, 13116}, {56, 12265}, {57, 1297}, {65, 6020}, {127, 1210}, {132, 226}, {354, 3320}, {388, 12784}, {553, 9530}, {938, 13219}, {942, 53795}, {950, 2794}, {1836, 12955}, {1837, 13296}, {1876, 12145}, {2799, 24472}, {2806, 12736}, {2831, 5083}, {2853, 12016}, {3338, 13117}, {3339, 12408}, {3340, 13099}, {3488, 13200}, {3586, 10735}, {3601, 38699}, {3911, 34841}, {4304, 14689}, {5708, 13115}, {5722, 10749}, {6720, 13411}, {9518, 11028}, {9579, 44988}, {10404, 12945}, {11018, 52833}, {11374, 57304}, {11518, 38676}, {12340, 37541}, {12918, 57282}, {13280, 18391}, {13310, 15934}, {15803, 38717}, {16193, 58603}, {18541, 48658}, {19093, 51842}, {19094, 51841}, {24929, 38608}, {37582, 38624}

X(59821) = midpoint of X(65) and X(6020)
X(59821) = incircle-inverse of X(26702)
X(59821) = {X(1),X(13312)}-harmonic conjugate of X(11722)


X(59822) = X(1)X(691)∩X(57)X(842)

Barycentrics    a*(a^12*b - a^11*b^2 - 3*a^10*b^3 + a^9*b^4 + 3*a^8*b^5 + 2*a^7*b^6 - 2*a^5*b^8 - 3*a^4*b^9 - a^3*b^10 + 3*a^2*b^11 + a*b^12 - b^13 + a^12*c + 2*a^11*b*c - a^10*b^2*c - 4*a^9*b^3*c - a^8*b^4*c + 2*a^7*b^5*c + 2*a^6*b^6*c + 2*a^5*b^7*c - a^4*b^8*c - 4*a^3*b^9*c - a^2*b^10*c + 2*a*b^11*c + b^12*c - a^11*c^2 - a^10*b*c^2 + 6*a^9*b^2*c^2 + 4*a^8*b^3*c^2 - 8*a^7*b^4*c^2 - 6*a^6*b^5*c^2 + 6*a^5*b^6*c^2 + 8*a^4*b^7*c^2 - 8*a^2*b^9*c^2 - 3*a*b^10*c^2 + 3*b^11*c^2 - 3*a^10*c^3 - 4*a^9*b*c^3 + 4*a^8*b^2*c^3 + 8*a^7*b^3*c^3 - 6*a^5*b^5*c^3 + 8*a^3*b^7*c^3 + 4*a^2*b^8*c^3 - 4*a*b^9*c^3 - 3*b^10*c^3 + a^9*c^4 - a^8*b*c^4 - 8*a^7*b^2*c^4 - 3*a^4*b^5*c^4 + 8*a^2*b^7*c^4 + 8*a*b^8*c^4 - 3*b^9*c^4 + 3*a^8*c^5 + 2*a^7*b*c^5 - 6*a^6*b^2*c^5 - 6*a^5*b^3*c^5 - 3*a^4*b^4*c^5 - 6*a^3*b^5*c^5 - 6*a^2*b^6*c^5 + 2*a*b^7*c^5 + 3*b^8*c^5 + 2*a^7*c^6 + 2*a^6*b*c^6 + 6*a^5*b^2*c^6 - 6*a^2*b^5*c^6 - 12*a*b^6*c^6 + 2*a^5*b*c^7 + 8*a^4*b^2*c^7 + 8*a^3*b^3*c^7 + 8*a^2*b^4*c^7 + 2*a*b^5*c^7 - 2*a^5*c^8 - a^4*b*c^8 + 4*a^2*b^3*c^8 + 8*a*b^4*c^8 + 3*b^5*c^8 - 3*a^4*c^9 - 4*a^3*b*c^9 - 8*a^2*b^2*c^9 - 4*a*b^3*c^9 - 3*b^4*c^9 - a^3*c^10 - a^2*b*c^10 - 3*a*b^2*c^10 - 3*b^3*c^10 + 3*a^2*c^11 + 2*a*b*c^11 + 3*b^2*c^11 + a*c^12 + b*c^12 - c^13) : :
X(59822) = 3 X[354] - X[6023]

X(59822) lies on these lines: {1, 691}, {57, 842}, {65, 6027}, {226, 16188}, {354, 6023}, {523, 24472}, {942, 53793}, {1210, 5099}, {3586, 44969}, {3601, 38702}, {3911, 16760}, {5708, 38583}, {9579, 44972}, {11374, 57307}, {11518, 38679}, {13411, 40544}, {15803, 38704}, {15934, 38582}, {24929, 38611}, {37582, 38613}, {38953, 57282}

X(59822) = midpoint of X(65) and X(6027)


X(59823) = X(1)X(477)∩X(57)X(476)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^12 - 2*a^10*b^2 - 2*a^9*b^3 + a^8*b^4 + 5*a^7*b^5 - a^6*b^6 - 3*a^5*b^7 + 2*a^4*b^8 - a^3*b^9 - a^2*b^10 + a*b^11 + 2*a^9*b^2*c - 5*a^7*b^4*c + 3*a^5*b^6*c + a^3*b^8*c - a*b^10*c - 2*a^10*c^2 + 2*a^9*b*c^2 + 4*a^8*b^2*c^2 - a^6*b^4*c^2 - 5*a^5*b^5*c^2 - 4*a^4*b^6*c^2 + 5*a^3*b^7*c^2 + 2*a^2*b^8*c^2 - 2*a*b^9*c^2 + b^10*c^2 - 2*a^9*c^3 + 5*a^5*b^4*c^3 - 5*a^3*b^6*c^3 + 2*a*b^8*c^3 + a^8*c^4 - 5*a^7*b*c^4 - a^6*b^2*c^4 + 5*a^5*b^3*c^4 + 5*a^4*b^4*c^4 - a^2*b^6*c^4 + a*b^7*c^4 - 4*b^8*c^4 + 5*a^7*c^5 - 5*a^5*b^2*c^5 - a*b^6*c^5 - a^6*c^6 + 3*a^5*b*c^6 - 4*a^4*b^2*c^6 - 5*a^3*b^3*c^6 - a^2*b^4*c^6 - a*b^5*c^6 + 6*b^6*c^6 - 3*a^5*c^7 + 5*a^3*b^2*c^7 + a*b^4*c^7 + 2*a^4*c^8 + a^3*b*c^8 + 2*a^2*b^2*c^8 + 2*a*b^3*c^8 - 4*b^4*c^8 - a^3*c^9 - 2*a*b^2*c^9 - a^2*c^10 - a*b*c^10 + b^2*c^10 + a*c^11) : :
X(59823) = 3 X[354] - X[33965]

X(59823) lies on these lines: {1, 477}, {7, 14731}, {57, 476}, {65, 33964}, {226, 3258}, {354, 33965}, {938, 34193}, {942, 16168}, {1210, 25641}, {3586, 14989}, {3601, 38701}, {3911, 22104}, {4654, 34312}, {5708, 38580}, {9579, 44967}, {11374, 57306}, {11518, 38678}, {13411, 31379}, {15803, 38700}, {15934, 38581}, {20957, 57282}, {24929, 38610}, {33645, 53809}, {37582, 38609}

X(59823) = midpoint of X(65) and X(33964)


X(59824) = X(1)X(107)∩X(7)X(34549)

Barycentrics    a^15*b - a^14*b^2 - 2*a^13*b^3 + 5*a^12*b^4 - 4*a^11*b^5 - 10*a^10*b^6 + 15*a^9*b^7 + 10*a^8*b^8 - 15*a^7*b^9 - 5*a^6*b^10 + 4*a^5*b^11 + a^4*b^12 + 2*a^3*b^13 - a*b^15 + a^15*c + 2*a^14*b*c - 2*a^12*b^3*c - 6*a^11*b^4*c - 10*a^10*b^5*c + 5*a^9*b^6*c + 20*a^8*b^7*c + 5*a^7*b^8*c - 10*a^6*b^9*c - 6*a^5*b^10*c - 2*a^4*b^11*c + 2*a^2*b^13*c + a*b^14*c - a^14*c^2 - 6*a^12*b^2*c^2 + 11*a^11*b^3*c^2 + 9*a^10*b^4*c^2 - 26*a^9*b^5*c^2 + 13*a^8*b^6*c^2 + 10*a^7*b^7*c^2 - 19*a^6*b^8*c^2 + 16*a^5*b^9*c^2 - 13*a^3*b^11*c^2 + 3*a^2*b^12*c^2 + 2*a*b^13*c^2 + b^14*c^2 - 2*a^13*c^3 - 2*a^12*b*c^3 + 11*a^11*b^2*c^3 + 22*a^10*b^3*c^3 + 6*a^9*b^4*c^3 - 20*a^8*b^5*c^3 - 30*a^7*b^6*c^3 - 20*a^6*b^7*c^3 + 6*a^5*b^8*c^3 + 22*a^4*b^9*c^3 + 11*a^3*b^10*c^3 - 2*a^2*b^11*c^3 - 2*a*b^12*c^3 + 5*a^12*c^4 - 6*a^11*b*c^4 + 9*a^10*b^2*c^4 + 6*a^9*b^3*c^4 - 46*a^8*b^4*c^4 + 30*a^7*b^5*c^4 + 24*a^6*b^6*c^4 - 50*a^5*b^7*c^4 + 23*a^4*b^8*c^4 + 16*a^3*b^9*c^4 - 9*a^2*b^10*c^4 + 4*a*b^11*c^4 - 6*b^12*c^4 - 4*a^11*c^5 - 10*a^10*b*c^5 - 26*a^9*b^2*c^5 - 20*a^8*b^3*c^5 + 30*a^7*b^4*c^5 + 60*a^6*b^5*c^5 + 30*a^5*b^6*c^5 - 20*a^4*b^7*c^5 - 26*a^3*b^8*c^5 - 10*a^2*b^9*c^5 - 4*a*b^10*c^5 - 10*a^10*c^6 + 5*a^9*b*c^6 + 13*a^8*b^2*c^6 - 30*a^7*b^3*c^6 + 24*a^6*b^4*c^6 + 30*a^5*b^5*c^6 - 48*a^4*b^6*c^6 + 10*a^3*b^7*c^6 + 6*a^2*b^8*c^6 - 15*a*b^9*c^6 + 15*b^10*c^6 + 15*a^9*c^7 + 20*a^8*b*c^7 + 10*a^7*b^2*c^7 - 20*a^6*b^3*c^7 - 50*a^5*b^4*c^7 - 20*a^4*b^5*c^7 + 10*a^3*b^6*c^7 + 20*a^2*b^7*c^7 + 15*a*b^8*c^7 + 10*a^8*c^8 + 5*a^7*b*c^8 - 19*a^6*b^2*c^8 + 6*a^5*b^3*c^8 + 23*a^4*b^4*c^8 - 26*a^3*b^5*c^8 + 6*a^2*b^6*c^8 + 15*a*b^7*c^8 - 20*b^8*c^8 - 15*a^7*c^9 - 10*a^6*b*c^9 + 16*a^5*b^2*c^9 + 22*a^4*b^3*c^9 + 16*a^3*b^4*c^9 - 10*a^2*b^5*c^9 - 15*a*b^6*c^9 - 5*a^6*c^10 - 6*a^5*b*c^10 + 11*a^3*b^3*c^10 - 9*a^2*b^4*c^10 - 4*a*b^5*c^10 + 15*b^6*c^10 + 4*a^5*c^11 - 2*a^4*b*c^11 - 13*a^3*b^2*c^11 - 2*a^2*b^3*c^11 + 4*a*b^4*c^11 + a^4*c^12 + 3*a^2*b^2*c^12 - 2*a*b^3*c^12 - 6*b^4*c^12 + 2*a^3*c^13 + 2*a^2*b*c^13 + 2*a*b^2*c^13 + a*b*c^14 + b^2*c^14 - a*c^15 : :
X(59824) = 3 X[354] - X[3324]

X(59824) lies on these lines: {1, 107}, {7, 34549}, {57, 1294}, {65, 7158}, {122, 1210}, {133, 226}, {354, 3324}, {938, 34186}, {942, 53803}, {950, 2777}, {2797, 24472}, {2803, 12736}, {2811, 11028}, {2828, 5083}, {2846, 12016}, {3184, 4304}, {3488, 5667}, {3586, 10152}, {3601, 23239}, {3911, 34842}, {5708, 38591}, {5722, 10745}, {6716, 13411}, {9528, 10122}, {9579, 44985}, {11018, 52828}, {11374, 57301}, {11518, 38672}, {11732, 44675}, {15803, 38714}, {15934, 38577}, {16193, 58598}, {18391, 50916}, {22337, 57282}, {24929, 38605}, {37582, 38621}

X(59824) = midpoint of X(65) and X(7158)
X(59824) = incircle-inverse of X(26701)


X(59825) = X(1)X(476)∩X(57)X(477)

Barycentrics    a^15*b - a^14*b^2 - 3*a^13*b^3 + 5*a^12*b^4 + a^11*b^5 - 10*a^10*b^6 + 5*a^9*b^7 + 10*a^8*b^8 - 5*a^7*b^9 - 5*a^6*b^10 - a^5*b^11 + a^4*b^12 + 3*a^3*b^13 - a*b^15 + a^15*c + 2*a^14*b*c - a^13*b^2*c - 4*a^12*b^3*c - 3*a^11*b^4*c - 2*a^10*b^5*c + 3*a^9*b^6*c + 8*a^8*b^7*c + 3*a^7*b^8*c - 2*a^6*b^9*c - 3*a^5*b^10*c - 4*a^4*b^11*c - a^3*b^12*c + 2*a^2*b^13*c + a*b^14*c - a^14*c^2 - a^13*b*c^2 - 2*a^12*b^2*c^2 + 8*a^11*b^3*c^2 + 4*a^10*b^4*c^2 - 15*a^9*b^5*c^2 + 6*a^8*b^6*c^2 + 4*a^7*b^7*c^2 - 8*a^6*b^8*c^2 + 13*a^5*b^9*c^2 - a^4*b^10*c^2 - 12*a^3*b^11*c^2 + a^2*b^12*c^2 + 3*a*b^13*c^2 + b^14*c^2 - 3*a^13*c^3 - 4*a^12*b*c^3 + 8*a^11*b^2*c^3 + 16*a^10*b^3*c^3 + 3*a^9*b^4*c^3 - 12*a^8*b^5*c^3 - 16*a^7*b^6*c^3 - 12*a^6*b^7*c^3 + 3*a^5*b^8*c^3 + 16*a^4*b^9*c^3 + 8*a^3*b^10*c^3 - 4*a^2*b^11*c^3 - 3*a*b^12*c^3 + 5*a^12*c^4 - 3*a^11*b*c^4 + 4*a^10*b^2*c^4 + 3*a^9*b^3*c^4 - 24*a^8*b^4*c^4 + 15*a^7*b^5*c^4 + 12*a^6*b^6*c^4 - 27*a^5*b^7*c^4 + 12*a^4*b^8*c^4 + 13*a^3*b^9*c^4 - 3*a^2*b^10*c^4 - a*b^11*c^4 - 6*b^12*c^4 + a^11*c^5 - 2*a^10*b*c^5 - 15*a^9*b^2*c^5 - 12*a^8*b^3*c^5 + 15*a^7*b^4*c^5 + 30*a^6*b^5*c^5 + 15*a^5*b^6*c^5 - 12*a^4*b^7*c^5 - 15*a^3*b^8*c^5 - 2*a^2*b^9*c^5 + a*b^10*c^5 - 10*a^10*c^6 + 3*a^9*b*c^6 + 6*a^8*b^2*c^6 - 16*a^7*b^3*c^6 + 12*a^6*b^4*c^6 + 15*a^5*b^5*c^6 - 24*a^4*b^6*c^6 + 4*a^3*b^7*c^6 + 2*a^2*b^8*c^6 - 5*a*b^9*c^6 + 15*b^10*c^6 + 5*a^9*c^7 + 8*a^8*b*c^7 + 4*a^7*b^2*c^7 - 12*a^6*b^3*c^7 - 27*a^5*b^4*c^7 - 12*a^4*b^5*c^7 + 4*a^3*b^6*c^7 + 8*a^2*b^7*c^7 + 5*a*b^8*c^7 + 10*a^8*c^8 + 3*a^7*b*c^8 - 8*a^6*b^2*c^8 + 3*a^5*b^3*c^8 + 12*a^4*b^4*c^8 - 15*a^3*b^5*c^8 + 2*a^2*b^6*c^8 + 5*a*b^7*c^8 - 20*b^8*c^8 - 5*a^7*c^9 - 2*a^6*b*c^9 + 13*a^5*b^2*c^9 + 16*a^4*b^3*c^9 + 13*a^3*b^4*c^9 - 2*a^2*b^5*c^9 - 5*a*b^6*c^9 - 5*a^6*c^10 - 3*a^5*b*c^10 - a^4*b^2*c^10 + 8*a^3*b^3*c^10 - 3*a^2*b^4*c^10 + a*b^5*c^10 + 15*b^6*c^10 - a^5*c^11 - 4*a^4*b*c^11 - 12*a^3*b^2*c^11 - 4*a^2*b^3*c^11 - a*b^4*c^11 + a^4*c^12 - a^3*b*c^12 + a^2*b^2*c^12 - 3*a*b^3*c^12 - 6*b^4*c^12 + 3*a^3*c^13 + 2*a^2*b*c^13 + 3*a*b^2*c^13 + a*b*c^14 + b^2*c^14 - a*c^15 : :
X(59825) = 3 X[354] - X[33964]

X(59825) lies on these lines: {1, 476}, {7, 34193}, {57, 477}, {65, 33965}, {226, 25641}, {354, 33964}, {938, 14731}, {942, 16168}, {1210, 3258}, {3586, 44967}, {3601, 38700}, {3911, 31379}, {5708, 38581}, {5722, 20957}, {6147, 18319}, {9579, 14989}, {11374, 57305}, {11518, 38677}, {13411, 22104}, {15803, 38701}, {15934, 38580}, {24201, 53809}, {24929, 38609}, {36179, 43855}, {37582, 38610}

X(59825) = midpoint of X(65) and X(33965)


X(59826) = X(1)X(476)∩X(58)X(34921)

Barycentrics    a^2*(a + b)*(a + c)*(-(a^4*b^2) + 2*a^2*b^4 - b^6 + a^5*c + a^3*b^2*c - 2*a*b^4*c - a^2*b^2*c^2 + 2*b^4*c^2 - 2*a^3*c^3 + a*b^2*c^3 - b^2*c^4 + a*c^5)*(a^5*b - 2*a^3*b^3 + a*b^5 - a^4*c^2 + a^3*b*c^2 - a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 + 2*a^2*c^4 - 2*a*b*c^4 + 2*b^2*c^4 - c^6) : :

X(59826) lies on the circumcircle and these lines: {1, 476}, {58, 34921}, {101, 2609}, {110, 6149}, {759, 2605}, {1101, 58979}, {1141, 2616}, {1464, 14158}, {2151, 5994}, {2152, 5995}, {2222, 2594}, {2627, 39430}, {2689, 38336}, {3737, 43655}, {17104, 36069}, {30580, 53920}, {34594, 48698}

X(59826) = X(2)-isoconjugate of X(3013)
X(59826) = X(32664)-Dao conjugate of X(3013)
X(59826) = trilinear pole of line {6, 2624}
X(59826) = barycentric quotient X(31)/X(3013)


X(59827) = X(1)X(691)∩X(99)X(14210)

Barycentrics    a*(a + b)*(a + c)*(a^4 - a^3*b - a^2*b^2 - a*b^3 + b^4 + 2*a*b*c^2 - c^4)*(a^4 - b^4 - a^3*c + 2*a*b^2*c - a^2*c^2 - a*c^3 + c^4) : :

X(59827) lies on the circumcircle and these lines: {1, 691}, {99, 14210}, {100, 4062}, {101, 21839}, {110, 896}, {111, 661}, {476, 36815}, {741, 2605}, {759, 4367}, {1019, 53180}, {1284, 26700}, {1290, 33097}, {1412, 34921}, {1464, 29055}, {3737, 53933}, {12030, 30580}, {12031, 24286}, {24041, 45773}, {36066, 56934}, {36150, 59027}

X(59827) = X(i)-isoconjugate of X(j) for these (i,j): {2, 2503}, {10, 24436}
X(59827) = X(32664)-Dao conjugate of X(2503)
X(59827) = trilinear pole of line {6, 2642}
X(59827) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 2503}, {1333, 24436}


X(59828) = X(1)X(477)∩X(759)X(1464)

Barycentrics    a^2*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^5*c + a^3*b^2*c - 2*a*b^4*c + a^2*b^2*c^2 - 2*b^4*c^2 - 2*a^3*c^3 + a*b^2*c^3 + b^2*c^4 + a*c^5)*(a^5*b - 2*a^3*b^3 + a*b^5 + a^4*c^2 + a^3*b*c^2 + a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - 2*a^2*c^4 - 2*a*b*c^4 - 2*b^2*c^4 + c^6) : :

X(59828) lies on the circumcircle and these lines: {1, 477}, {759, 1464}, {2605, 26700}, {2695, 33858}

X(59828) = cevapoint of X(1464) and X(2605)





leftri  Centers of orthogonal circles: X(59829) - X(59993)  rightri

This preamble and centers X(59829)-X(59993) were contributed by César Eliud Lozada, October 22, 2023.

  1. Given a circle Ω and two points P, Q not lying on a diameter of Ω, there exists an unique circle Ω through P and Q and orthogonal to Ω.

    This circle is denoted here Ω(P, Q). Its center is the intersection of the perpendicular bisectors of PP' and QQ', where P', Q' are the inverses of P, Q in Ω. Take in account that, when a point P approaches to Ω, the perpendicular bisector of P and P' approaches to the tangent to Ω at P.

  2. Given a circle Ω, a line 𝓁 not passing through the center of Ω, and a point P on 𝓁, there exists an unique circle Ω orthogonal to Ω and tangent to 𝓁 at P.

    This circle is denoted here Ω(𝓁, P). Its center is the intersection of the perpendicular to 𝓁 through P and the perpendicular bisector of P and its inverse P' in Ω.

underbar

X(59829) = CENTER OF Ω( X(1), X(2) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*a^3+2*(b+c)*a^2-(b^2+3*b*c+c^2)*a-(b+c)*(b^2-3*b*c+c^2)) : :
X(59829) = X(30709)-3*X(48173) = 2*X(48198)-3*X(48209)

X(59829) lies on these lines: {2, 59895}, {351, 523}, {513, 663}, {522, 14419}, {551, 3667}, {1491, 7292}, {1635, 21348}, {2517, 48206}, {3720, 42312}, {3900, 28284}, {4057, 18613}, {4491, 23765}, {4768, 31288}, {4874, 37764}, {9001, 28396}, {26144, 29324}, {28161, 59914}, {28183, 57088}, {28221, 59913}, {30709, 48173}, {43223, 48547}, {48198, 48209}

X(59829) = reflection of X(2517) in X(48206)
X(59829) = anticomplement of X(59895)
X(59829) = cross-difference of every pair of points on the line X(9)X(574)
X(59829) = X(59895)-Dao conjugate of-X(59895)
X(59829) = perspector of the circumconic through X(57) and X(598)
X(59829) = pole of the line {56, 1995} with respect to the circumcircle
X(59829) = pole of the line {65, 53614} with respect to the incircle
X(59829) = pole of the line {381, 50533} with respect to the orthoptic circle of Steiner inellipse
X(59829) = pole of the line {318, 5094} with respect to the polar circle
X(59829) = pole of the line {1475, 13410} with respect to the Brocard inellipse
X(59829) = pole of the line {24237, 44317} with respect to the circumhyperbola dual of Yff parabola
X(59829) = pole of the line {7004, 11936} with respect to the Feuerbach circumhyperbola
X(59829) = pole of the line {2262, 53418} with respect to the orthic inconic
X(59829) = pole of the line {643, 9145} with respect to the Stammler hyperbola
X(59829) = pole of the line {1992, 3210} with respect to the Steiner circumellipse
X(59829) = pole of the line {597, 3752} with respect to the Steiner inellipse
X(59829) = pole of the line {7257, 9146} with respect to the Steiner-Wallace hyperbola
X(59829) = center of circle {{X(1), X(2), X(23)}}
X(59829) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (43924, 59836, 59834), (59839, 59912, 59841)


X(59830) = CENTER OF Ω( X(1), X(4) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*((b^2+b*c+c^2)*a^4-2*(b+c)*b*c*a^3-2*(b^2-c^2)^2*a^2+2*(b^2-c^2)*(b-c)*b*c*a+(b^2-c^2)*(b-c)*(b^3+c^3)) : :

X(59830) lies on these lines: {2, 59899}, {11, 35012}, {225, 54239}, {403, 523}, {513, 663}, {522, 946}, {953, 14987}, {2654, 42768}, {2849, 23224}, {8677, 21189}, {23383, 39199}, {31667, 51701}, {59916, 59917}

X(59830) = anticomplement of X(59899)
X(59830) = cross-difference of every pair of points on the line X(9)X(577)
X(59830) = crosspoint of X(108) and X(1389)
X(59830) = crosssum of X(521) and X(1385)
X(59830) = X(522)-beth conjugate of-X(44426)
X(59830) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 56099), (59899, 59899)
X(59830) = X(109)-isoconjugate of-X(56099)
X(59830) = X(650)-reciprocal conjugate of-X(56099)
X(59830) = perspector of the circumconic through X(57) and X(2052)
X(59830) = pole of the line {24, 56} with respect to the circumcircle
X(59830) = pole of the line {65, 1785} with respect to the incircle
X(59830) = pole of the line {3, 318} with respect to the polar circle
X(59830) = pole of the line {53, 2262} with respect to the orthic inconic
X(59830) = pole of the line {3210, 6515} with respect to the Steiner circumellipse
X(59830) = pole of the line {3752, 13567} with respect to the Steiner inellipse
X(59830) = trilinear quotient X(522)/X(56099)
X(59830) = center of circle {{X(1), X(4), X(36)}}


X(59831) = CENTER OF Ω( X(1), X(5) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^6-(3*b^2+2*b*c+3*c^2)*a^4+4*(b+c)*b*c*a^3+(3*b^4-7*b^2*c^2+3*c^4)*a^2-4*(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59831) lies on these lines: {513, 663}, {523, 10096}, {676, 59919}, {900, 5901}

X(59831) = cross-difference of every pair of points on the line X(9)X(15109)
X(59831) = perspector of the circumconic through X(57) and X(11538)
X(59831) = pole of the line {56, 13621} with respect to the circumcircle
X(59831) = pole of the line {65, 53616} with respect to the incircle
X(59831) = pole of the line {318, 6143} with respect to the polar circle
X(59831) = pole of the line {65, 25643} with respect to the de Longchamps ellipse
X(59831) = pole of the line {3752, 34545} with respect to the Steiner inellipse
X(59831) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 5, 36}, {1484, 5494, 6265}, {10222, 10225, 25436}


X(59832) = CENTER OF Ω( X(1), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(2*a^3-2*(b+c)*a^2+(2*b^2+3*b*c+2*c^2)*a-(b+c)*(2*b^2-3*b*c+2*c^2)) : :
X(59832) = 3*X(2483)-X(58172) = 3*X(2484)+X(58168) = 3*X(21003)-5*X(58152)

X(59832) lies on these lines: {512, 2030}, {513, 663}, {667, 3941}, {918, 48287}, {919, 28899}, {926, 39521}, {1100, 4162}, {1386, 3309}, {2483, 58172}, {2484, 58168}, {4775, 16784}, {8641, 53763}, {9313, 50512}, {21003, 58152}, {30520, 48282}

X(59832) = cross-difference of every pair of points on the line X(9)X(599)
X(59832) = perspector of the circumconic through X(57) and X(1383)
X(59832) = pole of the line {56, 1384} with respect to the circumcircle
X(59832) = pole of the line {1475, 5008} with respect to the Brocard inellipse
X(59832) = pole of the line {2262, 9971} with respect to the orthic inconic
X(59832) = pole of the line {643, 9146} with respect to the Stammler hyperbola
X(59832) = pole of the line {3752, 9465} with respect to the Steiner inellipse
X(59832) = center of circle {{X(1), X(6), X(36)}}


X(59833) = CENTER OF Ω( X(1), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*(b+c)*a^3-(3*b^2+b*c+3*c^2)*a^2+(b^3-c^3)*(b-c)) : :

X(59833) lies on these lines: {513, 663}, {514, 5542}, {676, 28902}, {926, 1734}, {1491, 9029}, {4490, 13476}, {4983, 52596}, {5098, 9040}, {9443, 21127}, {28878, 47949}, {46003, 59838}

X(59833) = cross-difference of every pair of points on the line X(9)X(24264)
X(59833) = crosssum of X(3900) and X(15254)
X(59833) = X(54474)-reciprocal conjugate of-X(190)
X(59833) = perspector of the circumconic through X(57) and X(34521)
X(59833) = pole of the line {56, 38459} with respect to the circumcircle
X(59833) = pole of the line {65, 14520} with respect to the incircle
X(59833) = pole of the line {65, 1055} with respect to the de Longchamps ellipse
X(59833) = barycentric product X(514)*X(54474)
X(59833) = trilinear product X(513)*X(54474)
X(59833) = trilinear quotient X(54474)/X(100)
X(59833) = center of circle {{X(1), X(7), X(36)}}


X(59834) = CENTER OF Ω( X(1), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*(b+c)*a^2+(b^2-7*b*c+c^2)*a-(b+c)*(b^2-3*b*c+c^2)) : :
X(59834) = 3*X(28114)-2*X(59976) = 3*X(47801)+X(59970)

X(59834) lies on these lines: {10, 3667}, {513, 663}, {900, 4397}, {901, 53279}, {1633, 6163}, {2827, 39225}, {2976, 4806}, {4491, 48383}, {6133, 56323}, {8670, 50358}, {14430, 50355}, {24130, 57235}, {28096, 39771}, {28114, 59976}, {28217, 59841}, {47801, 59970}

X(59834) = reflection of X(56323) in X(6133)
X(59834) = cross-difference of every pair of points on the line X(9)X(9351)
X(59834) = crosssum of X(513) and X(33895)
X(59834) = X(27130)-reciprocal conjugate of-X(668)
X(59834) = perspector of the circumconic through X(57) and X(27130)
X(59834) = pole of the line {56, 8668} with respect to the circumcircle
X(59834) = pole of the line {12435, 38476} with respect to the Conway circle
X(59834) = pole of the line {65, 53618} with respect to the incircle
X(59834) = pole of the line {1482, 5205} with respect to the orthoptic circle of Steiner inellipse
X(59834) = pole of the line {3210, 26791} with respect to the Steiner circumellipse
X(59834) = barycentric product X(513)*X(27130)
X(59834) = trilinear product X(649)*X(27130)
X(59834) = trilinear quotient X(27130)/X(190)
X(59834) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 8, 36}, {3635, 4701, 7317}, {4511, 23153, 41684}
X(59834) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (43924, 59836, 59829), (59839, 59913, 59864)


X(59835) = CENTER OF Ω( X(1), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(3*a^4-6*(b+c)*a^3+2*(2*b^2+b*c+2*c^2)*a^2-2*(b^3+c^3)*a+(b^2-c^2)^2) : :

X(59835) lies on these lines: {37, 4162}, {513, 663}, {650, 8645}, {667, 1486}, {692, 52985}, {1001, 3309}, {3900, 22108}, {6050, 6182}, {6084, 21185}, {8642, 11934}, {9029, 43065}, {17115, 23865}, {18344, 58370}, {20872, 39227}, {59920, 59922}, {59923, 59924}

X(59835) = perspector of the circumconic through X(57) and X(34525)
X(59835) = pole of the line {56, 169} with respect to the circumcircle
X(59835) = center of circle {{X(1), X(9), X(36)}}


X(59836) = CENTER OF Ω( X(1), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^3+2*(b+c)*a^2-5*b*c*a-(b+c)*(b^2-3*b*c+c^2)) : :
X(59836) = 3*X(47801)+X(59968)

X(59836) lies on these lines: {513, 663}, {522, 6133}, {656, 28396}, {692, 6163}, {900, 8062}, {901, 26711}, {1125, 3667}, {2496, 4926}, {4057, 24457}, {4083, 59972}, {4777, 59839}, {10459, 42312}, {47801, 59968}

X(59836) = midpoint of X(4057) and X(24457)
X(59836) = X(26791)-reciprocal conjugate of-X(668)
X(59836) = perspector of the circumconic through X(57) and X(26791)
X(59836) = pole of the line {56, 24174} with respect to the circumcircle
X(59836) = pole of the line {65, 53619} with respect to the incircle
X(59836) = pole of the line {355, 5211} with respect to the orthoptic circle of Steiner inellipse
X(59836) = pole of the line {65, 33895} with respect to the de Longchamps ellipse
X(59836) = pole of the line {3752, 17351} with respect to the Steiner inellipse
X(59836) = barycentric product X(513)*X(26791)
X(59836) = trilinear product X(649)*X(26791)
X(59836) = trilinear quotient X(26791)/X(190)
X(59836) = center of circle {{X(1), X(10), X(36)}}
X(59836) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59829, 59834, 43924), (59841, 59864, 59914)


X(59837) = CENTER OF Ω( X(1), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^3+(b+c)*a^2-(b^2+b*c+c^2)*a-(b^2-c^2)*(b-c)) : :
X(59837) = 3*X(1022)+X(53392) = X(3762)-3*X(48168) = X(4036)-3*X(48209) = X(4086)-3*X(48207) = X(4397)-3*X(48230) = X(4404)-3*X(48205) = 3*X(11125)+X(30572) = X(21222)+3*X(26144) = X(21343)+3*X(28284)

X(59837) lies on these lines: {1, 8674}, {106, 759}, {109, 26700}, {244, 2611}, {513, 663}, {523, 8043}, {650, 23758}, {656, 8702}, {676, 15253}, {764, 4491}, {900, 1387}, {905, 4777}, {924, 34954}, {999, 53306}, {1022, 53392}, {1421, 53551}, {2850, 35050}, {3295, 53248}, {3315, 13277}, {3738, 14315}, {3762, 48168}, {4010, 33148}, {4036, 48209}, {4086, 48207}, {4397, 48230}, {4404, 48205}, {4458, 6370}, {4802, 21112}, {5606, 59075}, {6126, 35055}, {9013, 48328}, {9034, 24417}, {11125, 30572}, {12746, 52368}, {13604, 23869}, {14353, 15313}, {16726, 46458}, {16757, 47131}, {16777, 24290}, {17045, 24285}, {19947, 53565}, {21189, 48283}, {21222, 26144}, {21343, 28284}, {21348, 29204}, {21828, 47227}, {21894, 45342}, {23800, 48302}, {24416, 57023}, {24457, 46816}, {28179, 48003}, {39200, 53308}, {42757, 53305}, {47234, 55195}, {48293, 57099}, {48303, 50350}

X(59837) = midpoint of X(i) and X(j) for these {i, j}: {764, 4491}, {21189, 48283}, {23800, 48302}, {42757, 53305}, {48293, 57099}, {48303, 50350}
X(59837) = reflection of X(53565) in X(19947)
X(59837) = complement of the isotomic conjugate of X(4622)
X(59837) = cross-difference of every pair of points on the line X(9)X(1030)
X(59837) = crosspoint of X(i) and X(j) for these {i, j}: {1, 1290}, {2, 4622}, {934, 2006}
X(59837) = crosssum of X(i) and X(j) for these {i, j}: {1, 8674}, {6, 4730}, {521, 18455}, {2323, 3900}, {4867, 57178}
X(59837) = X(i)-beth conjugate of-X(j) for these (i, j): (21, 8674), (522, 21180)
X(59837) = X(i)-complementary conjugate of-X(j) for these (i, j): (58, 3259), (88, 21253), (106, 125), (110, 121), (163, 16594), (849, 34590), (901, 3454), (903, 53575), (1417, 8286), (1576, 4370), (1797, 127), (2206, 35092), (3257, 21245), (4591, 141), (4615, 626), (4622, 2887), (4634, 21235), (9268, 31946), (9456, 8287), (15383, 3141), (32659, 15526), (32665, 1211), (32719, 1213), (36058, 34846), (46150, 46654)
X(59837) = X(i)-Dao conjugate of-X(j) for these (i, j): (1015, 21739), (1086, 40716), (8054, 3065), (55053, 19302)
X(59837) = X(i)-isoconjugate of-X(j) for these {i, j}: {8, 34921}, {100, 3065}, {101, 21739}, {190, 19302}, {692, 40716}, {3218, 14147}, {4585, 11075}, {6742, 7343}
X(59837) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (484, 190), (513, 21739), (514, 40716), (604, 34921), (649, 3065), (667, 19302), (6126, 4585), (6187, 14147), (11076, 6742), (17484, 668), (17791, 1978), (19297, 100), (21864, 3952), (23071, 1332), (35055, 333), (42657, 9), (47058, 4555), (50148, 15455), (56935, 799), (58285, 1018)
X(59837) = center of the inconic with perspector X(4622)
X(59837) = perspector of the circumconic through X(57) and X(484)
X(59837) = pole of the line {2771, 52510} with respect to the Adams circle
X(59837) = pole of the line {56, 1421} with respect to the circumcircle
X(59837) = pole of the line {2771, 12435} with respect to the Conway circle
X(59837) = pole of the line {2771, 6769} with respect to the hexyl circle
X(59837) = pole of the line {80, 502} with respect to the incentral circle
X(59837) = pole of the line {65, 79} with respect to the incircle
X(59837) = pole of the line {318, 451} with respect to the polar circle
X(59837) = pole of the line {4129, 8287} with respect to the circumhyperbola dual of Yff parabola
X(59837) = pole of the line {58, 65} with respect to the de Longchamps ellipse
X(59837) = pole of the line {3024, 3025} with respect to the Feuerbach circumhyperbola
X(59837) = pole of the line {2262, 53421} with respect to the orthic inconic
X(59837) = pole of the line {643, 57119} with respect to the Stammler hyperbola
X(59837) = pole of the line {3210, 20086} with respect to the Steiner circumellipse
X(59837) = pole of the line {81, 88} with respect to the Steiner inellipse
X(59837) = barycentric product X(i)*X(j) for these {i, j}: {85, 42657}, {226, 35055}, {484, 514}, {513, 17484}, {649, 17791}, {661, 56935}, {693, 19297}, {900, 47058}, {4467, 11076}, {7192, 21864}, {7199, 58285}, {7265, 14158}, {7332, 17404}, {14838, 50148}, {17924, 23071}
X(59837) = trilinear product X(i)*X(j) for these {i, j}: {7, 42657}, {65, 35055}, {484, 513}, {512, 56935}, {514, 19297}, {649, 17484}, {667, 17791}, {1019, 21864}, {1635, 47058}, {2605, 50148}, {7192, 58285}, {7649, 23071}, {11076, 14838}, {14158, 57099}, {31522, 34921}, {50462, 54244}
X(59837) = trilinear quotient X(i)/X(j) for these (i, j): (56, 34921), (484, 100), (513, 3065), (514, 21739), (649, 19302), (693, 40716), (2161, 14147), (2605, 7343), (14158, 13486), (17484, 190), (17791, 668), (19297, 101), (21864, 1018), (23071, 1331), (35055, 21), (40612, 4585), (42657, 55), (47058, 3257), (50148, 6742), (56935, 99)
X(59837) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 11, 36}, {80, 1317, 3024}, {106, 11717, 23869}, {119, 12737, 14664}, {1385, 1484, 19907}, {6265, 11713, 37726}
X(59837) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1769, 14413, 53314), (2605, 53314, 51646), (53308, 53313, 39200)


X(59838) = CENTER OF Ω( X(2), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-7*(b+c)*a^6+(10*b^2+11*b*c+10*c^2)*a^5-(b+c)*(9*b^2-7*b*c+9*c^2)*a^4+2*(3*b^4+3*c^4+b*c*(b-c)^2)*a^3-(b^2-c^2)*(b-c)*(b^2+8*b*c+c^2)*a^2-(b^2-c^2)^2*(2*b^2-3*b*c+2*c^2)*a+(b^2-c^2)*(b-c)^3*(b^2+3*b*c+c^2)) : :

X(59838) lies on these lines: {351, 523}, {885, 46006}, {6173, 28292}, {46003, 59833}

X(59838) = perspector of the circumconic through X(598) and X(34521)
X(59838) = pole of the line {1995, 37761} with respect to the circumcircle
X(59838) = center of circle {{X(2), X(7), X(23)}}


X(59839) = CENTER OF Ω( X(2), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^4+(b+c)*a^3+(b^2+b*c+c^2)*a^2+(b+c)*(b^2-6*b*c+c^2)*a-(b^2-3*b*c+c^2)*(b+c)^2) : :
X(59839) = 4*X(21180)-X(47720)

X(59839) lies on these lines: {2, 59887}, {351, 523}, {514, 4581}, {900, 4397}, {2804, 47815}, {3667, 3679}, {3961, 42312}, {4777, 59836}, {4786, 5271}, {7292, 47691}, {20906, 47755}, {21180, 47720}, {37764, 48062}

X(59839) = anticomplement of X(59887)
X(59839) = cross-difference of every pair of points on the line X(574)X(2269)
X(59839) = X(59887)-Dao conjugate of-X(59887)
X(59839) = perspector of the circumconic through X(598) and X(34523)
X(59839) = pole of the line {1995, 37762} with respect to the circumcircle
X(59839) = pole of the line {5094, 46878} with respect to the polar circle
X(59839) = pole of the line {1992, 1999} with respect to the Steiner circumellipse
X(59839) = pole of the line {597, 39595} with respect to the Steiner inellipse
X(59839) = pole of the line {6002, 9810} with respect to the Yff parabola
X(59839) = center of circle {{X(2), X(8), X(23)}}
X(59839) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59829, 59841, 59912), (59834, 59864, 59913)


X(59840) = CENTER OF Ω( X(2), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*a^6-8*(b+c)*a^5+(11*b^2+13*b*c+11*c^2)*a^4-4*(b+c)*(b^2+c^2)*a^3-2*(2*b^4+2*c^4+b*c*(b^2-4*b*c+c^2))*a^2+4*(b+c)*(b^4-b^2*c^2+c^4)*a-(b^2+3*b*c+c^2)*(b^2-c^2)^2) : :

X(59840) lies on these lines: {351, 523}, {3900, 22108}

X(59840) = perspector of the circumconic through X(598) and X(34525)
X(59840) = pole of the line {1995, 37763} with respect to the circumcircle
X(59840) = center of circle {{X(2), X(9), X(23)}}


X(59841) = CENTER OF Ω( X(2), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(4*a^4+3*(b+c)*a^3-2*b*c*a^2-3*(b+c)*b*c*a-(b^2-3*b*c+c^2)*(b+c)^2) : :

X(59841) lies on these lines: {351, 523}, {522, 6133}, {900, 47835}, {3667, 3828}, {4977, 7178}, {7628, 47801}, {28217, 59834}

X(59841) = perspector of the circumconic through X(598) and X(34527)
X(59841) = pole of the line {1995, 37764} with respect to the circumcircle
X(59841) = pole of the line {5169, 11681} with respect to the nine-point circle
X(59841) = pole of the line {597, 27064} with respect to the Steiner inellipse
X(59841) = center of circle {{X(2), X(10), X(23)}}
X(59841) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59836, 59914, 59864), (59839, 59912, 59829)


X(59842) = CENTER OF Ω( X(2), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*((b+c)*a^4-2*(b-c)^2*a^3+(2*b-c)*(b-2*c)*(b+c)*a^2-(2*b^2+3*b*c+2*c^2)*(b-c)^2*a+(b^4-c^4)*(b-c)) : :

X(59842) lies on these lines: {100, 26711}, {351, 523}, {676, 15253}, {2826, 45310}, {3777, 30804}, {6362, 47875}, {14425, 55133}

X(59842) = cross-difference of every pair of points on the line X(574)X(16283)
X(59842) = perspector of the circumconic through X(598) and X(34529)
X(59842) = pole of the line {149, 5169} with respect to the nine-point circle
X(59842) = pole of the line {11936, 35604} with respect to the Feuerbach circumhyperbola
X(59842) = pole of the line {1499, 3878} with respect to the Kiepert parabola
X(59842) = center of circle {{X(2), X(11), X(23)}}


X(59843) = CENTER OF Ω( X(4), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b^2-c^2)*(2*(b^2+c^2)*a^6-(2*b^4-b^2*c^2+2*c^4)*a^4-2*(b^6+c^6)*a^2+(2*b^4+b^2*c^2+2*c^4)*(b^2-c^2)^2) : :

X(59843) lies on these lines: {53, 44705}, {403, 523}, {512, 2030}, {525, 5480}, {842, 43656}, {2485, 2881}, {3005, 59652}, {6587, 42665}, {15649, 34983}, {17414, 53318}, {18312, 39510}, {46005, 46615}, {52590, 52967}

X(59843) = reflection of X(i) in X(j) for these (i, j): (18312, 39510), (46005, 46615)
X(59843) = cross-difference of every pair of points on the line X(577)X(599)
X(59843) = crosssum of X(525) and X(8550)
X(59843) = perspector of the circumconic through X(1383) and X(2052)
X(59843) = pole of the line {24, 1384} with respect to the circumcircle
X(59843) = pole of the line {3, 41377} with respect to the polar circle
X(59843) = pole of the line {53, 9971} with respect to the orthic inconic
X(59843) = pole of the line {9465, 13567} with respect to the Steiner inellipse
X(59843) = center of circle {{X(4), X(6), X(186)}}


X(59844) = CENTER OF Ω( X(4), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^9+(b+c)*a^8-4*(b^2+3*b*c+c^2)*a^7-2*(b+c)*(2*b^2-9*b*c+2*c^2)*a^6+6*(b^2-c^2)^2*a^5+2*(b^2-c^2)*(b-c)*(3*b^2+2*b*c+3*c^2)*a^4-4*(b+c)*(b^2-c^2)*(b^3-c^3)*a^3-2*(b^2-c^2)*(b-c)^3*(2*b^2+3*b*c+2*c^2)*a^2+(b^2-c^2)^4*a+(b^2-c^2)^3*(b-c)^3)/a : :

X(59844) lies on these lines: {403, 523}, {3900, 5805}, {46003, 59833}

X(59844) = perspector of the circumconic through X(2052) and X(34521)
X(59844) = pole of the line {24, 38461} with respect to the circumcircle
X(59844) = center of circle {{X(4), X(7), X(186)}}


X(59845) = CENTER OF Ω( X(4), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^5-3*(b+c)*a^4+2*(b+c)^2*a^3+2*(b+c)*(b^2-3*b*c+c^2)*a^2-3*(b^2-c^2)^2*a+(b^2-c^2)^2*(b+c))/a : :

X(59845) lies on these lines: {2, 59888}, {355, 513}, {403, 523}, {900, 4397}, {1411, 48283}, {23843, 48383}

X(59845) = anticomplement of X(59888)
X(59845) = cross-difference of every pair of points on the line X(577)X(34543)
X(59845) = X(59888)-Dao conjugate of-X(59888)
X(59845) = perspector of the circumconic through X(2052) and X(34523)
X(59845) = pole of the line {24, 38462} with respect to the circumcircle
X(59845) = pole of the line {2077, 12084} with respect to the 1st Droz-Farny circle
X(59845) = pole of the line {6515, 56084} with respect to the Steiner circumellipse
X(59845) = center of circle {{X(4), X(8), X(186)}}


X(59846) = CENTER OF Ω( X(4), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(-a+b+c)*((b^2+b*c+c^2)*a^4-2*(b^3+c^3)*a^3+4*b^2*c^2*a^2+2*(b^3-c^3)*(b^2-c^2)*a-(b+c)*(b^2-c^2)*(b^3-c^3)) : :

X(59846) lies on these lines: {403, 523}, {3900, 22108}

X(59846) = perspector of the circumconic through X(2052) and X(34525)
X(59846) = pole of the line {24, 38902} with respect to the circumcircle
X(59846) = center of circle {{X(4), X(9), X(186)}}


X(59847) = CENTER OF Ω( X(4), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(-a+b+c)*((b+c)*a^4-(b^2+c^2)*a^3+(b+c)*b*c*a^2+(b^2-c^2)^2*a-(b^2-c^2)*(b^3-c^3)) : :
X(59847) = 3*X(48185)-X(57108)

X(59847) lies on these lines: {403, 523}, {514, 19925}, {522, 6133}, {1842, 48062}, {8045, 9397}, {8676, 18004}, {15280, 29047}, {48185, 57108}, {50333, 52622}, {50337, 52305}

X(59847) = perspector of the circumconic through X(2052) and X(34527)
X(59847) = pole of the line {24, 17927} with respect to the circumcircle
X(59847) = pole of the line {4, 20872} with respect to the nine-point circle
X(59847) = pole of the line {3, 17086} with respect to the polar circle
X(59847) = pole of the line {13567, 27064} with respect to the Steiner inellipse
X(59847) = center of circle {{X(4), X(10), X(186)}}


X(59848) = CENTER OF Ω( X(4), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*((b+c)*a^9-(b+c)^2*a^8-(b+c)*(2*b^2-3*b*c+2*c^2)*a^7+2*(b^4+c^4+2*b*c*(b^2+c^2))*a^6-(b+c)*(3*b^2-2*b*c+3*c^2)*b*c*a^5-2*(b^2-c^2)^2*b*c*a^4+(b^2-c^2)*(b-c)*(2*b^4+2*c^4+b*c*(b+c)^2)*a^3-2*(b^2-c^2)^2*(b^4+c^4)*a^2-(b^2-c^2)^2*(b-c)^2*(b^3+c^3)*a+(b^4-c^4)*(b^2-c^2)^3) : :

X(59848) lies on these lines: {104, 26707}, {403, 523}, {676, 15253}, {2804, 44929}, {42337, 59945}

X(59848) = perspector of the circumconic through X(2052) and X(34529)
X(59848) = pole of the line {4, 54065} with respect to the nine-point circle
X(59848) = pole of the line {3, 34188} with respect to the polar circle
X(59848) = pole of the line {4, 38578} with respect to the MacBeath inconic
X(59848) = pole of the line {53, 56907} with respect to the orthic inconic
X(59848) = center of circle {{X(4), X(11), X(186)}}


X(59849) = CENTER OF Ω( X(5), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b^2-c^2)*(a^8-2*(b^2+c^2)*a^6-2*b^2*c^2*a^4+(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^2-(b^4-b^2*c^2+c^4)*(b^2-c^2)^2) : :

X(59849) lies on these lines: {512, 2030}, {523, 10096}, {2489, 51513}, {3566, 11619}, {18117, 38463}, {32478, 59896}, {34952, 40981}

X(59849) = cross-difference of every pair of points on the line X(599)X(9723)
X(59849) = crosssum of X(6563) and X(37688)
X(59849) = perspector of the circumconic through X(1383) and X(11538)
X(59849) = pole of the line {1384, 13621} with respect to the circumcircle
X(59849) = pole of the line {6143, 7763} with respect to the polar circle
X(59849) = pole of the line {9465, 34545} with respect to the Steiner inellipse
X(59849) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {5, 6, 187}, {403, 7575, 48317}


X(59850) = CENTER OF Ω( X(5), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^11-7*(b+c)*a^10+6*(b+c)^2*a^9+(b+c)*(5*b^2+8*b*c+5*c^2)*a^8-2*(6*b^4+6*c^4+b*c*(12*b^2+29*b*c+12*c^2))*a^7+(b+c)*(10*b^4+10*c^4-3*b*c*(8*b^2-25*b*c+8*c^2))*a^6-4*(b^6+c^6-b*c*(4*b^2-9*b*c+4*c^2)*(b+c)^2)*a^5-2*(b^2-c^2)*(b-c)*(3*b^4+3*c^4-b*c*(6*b^2-b*c+6*c^2))*a^4+2*(b^2-c^2)^2*(5*b^4+5*c^4-b*c*(4*b^2+b*c+4*c^2))*a^3-(b^2-c^2)*(b-c)^3*(3*b^4+3*c^4+b*c*(20*b^2+27*b*c+20*c^2))*a^2-2*(b^2-c^2)^4*(b-c)^2*a+(b^2-c^2)^3*(b-c)^3*(b^2+4*b*c+c^2)) : :

X(59850) lies on these lines: {523, 10096}, {46003, 59833}

X(59850) = perspector of the circumconic through X(11538) and X(34521)
X(59850) = pole of the line {13621, 38464} with respect to the circumcircle
X(59850) = center of circle {{X(5), X(7), X(2070)}}


X(59851) = CENTER OF Ω( X(5), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-2*(b-c)^2*a^5+(b+c)*(b^2-12*b*c+c^2)*a^4-2*(b^4+c^4-b*c*(4*b^2+9*b*c+4*c^2))*a^3+(b+c)*(b^4+c^4+b*c*(8*b^2-25*b*c+8*c^2))*a^2+2*(b^2-c^2)^2*(b^2-6*b*c+c^2)*a-(b^2-c^2)^2*(b+c)*(b^2-4*b*c+c^2)) : :

X(59851) lies on these lines: {523, 10096}, {900, 4397}

X(59851) = cross-difference of every pair of points on the line X(15109)X(34543)
X(59851) = perspector of the circumconic through X(11538) and X(34523)
X(59851) = pole of the line {13621, 38465} with respect to the circumcircle
X(59851) = center of circle {{X(5), X(8), X(2070)}}


X(59852) = CENTER OF Ω( X(5), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(-a+b+c)*(a^9-3*(b+c)*a^8+8*(b+c)*(b^2+c^2)*a^6-(6*b^4+5*b^2*c^2+6*c^4)*a^5-(b+c)*(6*b^4-7*b^2*c^2+6*c^4)*a^4+(8*b^6+8*c^6-(3*b^2-14*b*c+3*c^2)*b^2*c^2)*a^3-7*(b^2-c^2)*(b-c)*b^2*c^2*a^2-(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)*a+(b^2-c^2)^4*(b+c)) : :

X(59852) lies on these lines: {523, 10096}, {3900, 22108}

X(59852) = perspector of the circumconic through X(11538) and X(34525)
X(59852) = pole of the line {13621, 38902} with respect to the circumcircle
X(59852) = center of circle {{X(5), X(9), X(2070)}}


X(59853) = CENTER OF Ω( X(5), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(-a+b+c)*(a^6+(b+c)*a^5-(b-c)^2*a^4-(b^3+c^3)*a^3+(b^2+b*c+c^2)*b*c*a^2+(b^2-c^2)*(b-c)*b*c*a-(b^2-c^2)^2*b*c) : :

X(59853) lies on these lines: {513, 9956}, {522, 6133}, {523, 10096}, {6006, 59899}

X(59853) = perspector of the circumconic through X(11538) and X(34527)
X(59853) = pole of the line {13621, 38903} with respect to the circumcircle
X(59853) = pole of the line {27064, 34545} with respect to the Steiner inellipse
X(59853) = center of circle {{X(5), X(10), X(1324)}}


X(59854) = CENTER OF Ω( X(5), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-4*(b^2+c^2)*a^5+(b+c)*(b^2+b*c+c^2)*a^4+(2*b^4+2*c^4+b*c*(b^2-4*b*c+c^2))*a^3+(b^3+c^3)*(b-c)^2*a^2-(b^2-c^2)^2*b*c*a-(b^2-c^2)^3*(b-c)) : :

X(59854) lies on these lines: {523, 10096}, {676, 15253}

X(59854) = perspector of the circumconic through X(11538) and X(34529)
X(59854) = pole of the line {1484, 33332} with respect to the nine-point circle
X(59854) = pole of the line {33150, 34545} with respect to the Steiner inellipse
X(59854) = center of circle {{X(5), X(11), X(2070)}}


X(59855) = CENTER OF Ω( X(6), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(4*(b^2+b*c+c^2)*a^7-2*(b+c)*(7*b^2-2*b*c+7*c^2)*a^6+2*(10*b^4+10*c^4+b*c*(6*b^2+b*c+6*c^2))*a^5-(b+c)*(18*b^4+18*c^4-b*c*(4*b^2+b*c+4*c^2))*a^4+4*(b^2+b*c+c^2)*(3*b^4-4*b^2*c^2+3*c^4)*a^3-2*(b^2-c^2)*(b-c)*(b^4+c^4+b*c*(4*b^2+3*b*c+4*c^2))*a^2-2*(b^2-c^2)^2*(2*b^4+2*c^4-b*c*(2*b^2-b*c+2*c^2))*a+(b^2-c^2)*(b-c)^3*(2*b^4+2*c^4+b*c*(4*b^2+b*c+4*c^2))) : :

X(59855) lies on these lines: {512, 2030}, {46003, 59833}, {51150, 59884}

X(59855) = perspector of the circumconic through X(1383) and X(34521)
X(59855) = pole of the line {1384, 38466} with respect to the circumcircle
X(59855) = center of circle {{X(6), X(7), X(187)}}


X(59856) = CENTER OF Ω( X(6), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(4*(b^2+b*c+c^2)*a^4+2*(b+c)*(b^2-4*b*c+c^2)*a^3+2*(b^2+b*c+c^2)^2*a^2+(b+c)*(2*b^4+2*c^4-b*c*(8*b^2-b*c+8*c^2))*a-(2*b^4+2*c^4-b*c*(4*b^2-b*c+4*c^2))*(b+c)^2) : :

X(59856) lies on these lines: {512, 2030}, {900, 4397}, {28481, 49524}

X(59856) = cross-difference of every pair of points on the line X(599)X(34543)
X(59856) = perspector of the circumconic through X(1383) and X(34523)
X(59856) = pole of the line {1384, 38467} with respect to the circumcircle
X(59856) = center of circle {{X(6), X(8), X(187)}}


X(59857) = CENTER OF Ω( X(6), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(2*a^4-4*(b+c)*a^3+(4*b^2-b*c+4*c^2)*a^2-2*(b+c)*(2*b^2-3*b*c+2*c^2)*a+(2*b^2+3*b*c+2*c^2)*(b-c)^2) : :

X(59857) lies on these lines: {169, 2496}, {512, 2030}, {649, 3669}, {919, 59109}, {1960, 9437}, {3900, 22108}, {59922, 59923}

X(59857) = cross-difference of every pair of points on the line X(200)X(599)
X(59857) = perspector of the circumconic through X(269) and X(1383)
X(59857) = pole of the line {1384, 21002} with respect to the circumcircle
X(59857) = pole of the line {5008, 20978} with respect to the Brocard inellipse
X(59857) = pole of the line {7259, 9146} with respect to the Stammler hyperbola
X(59857) = pole of the line {9465, 52541} with respect to the Steiner inellipse
X(59857) = center of circle {{X(6), X(9), X(187)}}


X(59858) = CENTER OF Ω( X(6), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*((b+c)*a^5+2*(b^2+b*c+c^2)*a^4+(b^3+c^3)*a^3+(b^4+c^4+b*c*(b^2+b*c+c^2))*a^2-(b+c)*(b^2+c^2)*b*c*a-(b^4+c^4-b*c*(b^2+b*c+c^2))*(b+c)^2) : :

X(59858) lies on these lines: {512, 2030}, {522, 6133}, {28478, 59906}

X(59858) = perspector of the circumconic through X(1383) and X(34527)
X(59858) = pole of the line {1384, 38903} with respect to the circumcircle
X(59858) = pole of the line {9465, 27064} with respect to the Steiner inellipse
X(59858) = center of circle {{X(6), X(10), X(187)}}


X(59859) = CENTER OF Ω( X(7), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(7*a^6-14*(b+c)*a^5+3*(3*b^2+4*b*c+3*c^2)*a^4-2*(b+c)*(2*b^2-b*c+2*c^2)*a^3+(b^2+c^2)*(b-c)^2*a^2+2*(b^3+c^3)*(b-c)^2*a-(b^2-c^2)^2*(b-c)^2)/a : :

X(59859) lies on these lines: {900, 4397}, {2550, 3309}, {46003, 59833}

X(59859) = perspector of the circumconic through X(34521) and X(34523)
X(59859) = pole of the line {38468, 38900} with respect to the circumcircle
X(59859) = center of circle {{X(7), X(8), X(17100)}}


X(59860) = CENTER OF Ω( X(7), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*(b+c)*a^7-(11*b^2+5*b*c+11*c^2)*a^6+6*(b+c)*(4*b^2-3*b*c+4*c^2)*a^5-(25*b^2-37*b*c+25*c^2)*(b+c)^2*a^4+2*(b+c)*(5*b^4+5*c^4+2*b*c*(3*b^2-8*b*c+3*c^2))*a^3+(3*b^4+3*c^4-b*c*(9*b^2+28*b*c+9*c^2))*(b-c)^2*a^2-2*(b^2-c^2)*(b-c)*(2*b^4+2*c^4+b*c*(b^2-4*b*c+c^2))*a+(b^2-c^2)^2*(b-c)^2*(b^2+3*b*c+c^2)) : :

X(59860) lies on these lines: {142, 28292}, {3900, 22108}, {46003, 59833}

X(59860) = perspector of the circumconic through X(34521) and X(34525)
X(59860) = pole of the line {38900, 38902} with respect to the circumcircle
X(59860) = center of circle {{X(7), X(9), X(32624)}}


X(59861) = CENTER OF Ω( X(7), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^8-7*(b+c)*a^7+4*(2*b^2-3*b*c+2*c^2)*a^6+41*(b+c)*b*c*a^5-(9*b^4+9*c^4+b*c*(21*b^2+32*b*c+21*c^2))*a^4+(b+c)*(9*b^4+9*c^4-2*b*c*(b^2-5*b*c+c^2))*a^3-2*(b^3-c^3)*(b-c)*(b^2+6*b*c+c^2)*a^2-(b^2-c^2)*(b-c)*(2*b^4+2*c^4+b*c*(3*b^2-2*b*c+3*c^2))*a+(b^2-c^2)^2*(b-c)^2*(b^2+5*b*c+c^2)) : :

X(59861) lies on these lines: {522, 6133}, {46003, 59833}

X(59861) = perspector of the circumconic through X(34521) and X(34527)
X(59861) = pole of the line {38900, 38903} with respect to the circumcircle
X(59861) = center of circle {{X(7), X(10), X(1324)}}


X(59862) = CENTER OF Ω( X(7), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-7*(b+c)*a^6+2*(5*b^2+7*b*c+5*c^2)*a^5-(b+c)*(9*b^2-7*b*c+9*c^2)*a^4+3*(2*b^2+3*b*c+2*c^2)*(b-c)^2*a^3-(b^2-c^2)*(b-c)*(b^2+9*b*c+c^2)*a^2-(2*b^2+3*b*c+2*c^2)*(b-c)^4*a+(b^2-c^2)*(b-c)^3*(b^2+4*b*c+c^2)) : :

X(59862) lies on these lines: {676, 15253}, {46003, 59833}

X(59862) = perspector of the circumconic through X(34521) and X(34529)
X(59862) = center of circle {{X(7), X(11), X(14667)}}


X(59863) = CENTER OF Ω( X(8), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*(b+c)*a^6-(7*b^2+11*b*c+7*c^2)*a^5+(b+c)*(7*b^2+17*b*c+7*c^2)*a^4+2*(b^4+c^4-b*c*(13*b^2+22*b*c+13*c^2))*a^3-2*(b+c)*(4*b^4+4*c^4-b*c*(11*b^2+2*b*c+11*c^2))*a^2+(5*b^4+5*c^4-b*c*(13*b^2-12*b*c+13*c^2))*(b+c)^2*a-(b^3+c^3)*(b^2-c^2)^2) : :

X(59863) lies on these lines: {900, 4397}, {3900, 22108}

X(59863) = perspector of the circumconic through X(34523) and X(34525)
X(59863) = pole of the line {38901, 38902} with respect to the circumcircle
X(59863) = center of circle {{X(8), X(9), X(17100)}}


X(59864) = CENTER OF Ω( X(8), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^4-(b+c)*a^3+8*b*c*a^2+(b+c)*(2*b^2-9*b*c+2*c^2)*a-(b^2-3*b*c+c^2)*(b+c)^2) : :

X(59864) lies on these lines: {522, 6133}, {523, 7286}, {900, 4397}, {3626, 3667}, {28183, 57088}, {48187, 59912}

X(59864) = cross-difference of every pair of points on the line X(4266)X(34543)
X(59864) = perspector of the circumconic through X(34523) and X(34527)
X(59864) = pole of the line {38901, 38903} with respect to the circumcircle
X(59864) = pole of the line {37684, 56084} with respect to the Steiner circumellipse
X(59864) = center of circle {{X(8), X(10), X(1324)}}
X(59864) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59836, 59914, 59841), (59839, 59913, 59834)


X(59865) = CENTER OF Ω( X(8), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-2*(b^2-3*b*c+c^2)*a^5+(b+c)*(b^2-7*b*c+c^2)*a^4-(2*b^4+2*c^4-b*c*(11*b^2-2*b*c+11*c^2))*a^3+(b+c)*(b^4+c^4+b*c*(7*b^2-20*b*c+7*c^2))*a^2+(2*b^2-13*b*c+2*c^2)*(b^2-c^2)^2*a-(b^2-c^2)^2*(b+c)*(b^2-4*b*c+c^2)) : :

X(59865) lies on these lines: {676, 15253}, {900, 4397}

X(59865) = perspector of the circumconic through X(34523) and X(34529)
X(59865) = center of circle {{X(8), X(11), X(14667)}}


X(59866) = CENTER OF Ω( X(9), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^4-(b+c)*a^3-(b+2*c)*(2*b+c)*a^2+(b+c)*(3*b^2+2*b*c+3*c^2)*a-(b^2+b*c+c^2)*(b+c)^2) : :

X(59866) lies on these lines: {522, 6133}, {798, 4130}, {3900, 22108}, {9508, 28898}, {21349, 48346}, {21391, 48111}

X(59866) = perspector of the circumconic through X(34525) and X(34527)
X(59866) = pole of the line {38902, 38903} with respect to the circumcircle
X(59866) = center of circle {{X(9), X(10), X(1324)}}


X(59867) = CENTER OF Ω( X(9), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^9-5*(b+c)*a^8+(8*b^2+17*b*c+8*c^2)*a^7-22*(b+c)*b*c*a^6-(14*b^4+14*c^4-3*b*c*(5*b^2+6*b*c+5*c^2))*a^5+2*(b+c)*(7*b^4+7*c^4-10*b*c*(b^2-b*c+c^2))*a^4-(b^4+c^4+2*b*c*(6*b^2-5*b*c+6*c^2))*b*c*a^3-2*(b^2-c^2)^2*(b+c)*(4*b^2-5*b*c+4*c^2)*a^2+(5*b^4+5*c^4+b*c*(b^2-4*b*c+c^2))*(b^2-c^2)^2*a-(b^2-c^2)^4*(b+c)) : :

X(59867) lies on these lines: {676, 15253}, {3900, 22108}

X(59867) = perspector of the circumconic through X(34525) and X(34529)
X(59867) = center of circle {{X(9), X(11), X(14667)}}


X(59868) = CENTER OF Ω( X(10), X(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^7-(2*b^2-3*b*c+2*c^2)*a^5+(b+c)*b*c*a^4+(b^4+c^4+2*b*c*(b-c)^2)*a^3-2*(b+c)*b^2*c^2*a^2-3*(b^2-c^2)^2*b*c*a+(b^2-c^2)^2*(b+c)*b*c) : :

X(59868) lies on these lines: {522, 6133}, {676, 15253}, {2827, 6702}

X(59868) = perspector of the circumconic through X(34527) and X(34529)
X(59868) = center of circle {{X(10), X(11), X(1324)}}


X(59869) = CENTER OF Ω( BICENTRIC PAIR PU(11) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^10-(b^4-3*b^2*c^2+c^4)*a^6+(b^4-c^4)*(b^2-c^2)*a^4-(b^8+c^8+2*(b^2-c^2)^2*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)*b^2*c^2 : :

X(59869) lies on these lines: {30, 141}, {99, 1495}, {113, 35002}, {115, 32223}, {525, 22105}, {805, 5167}, {1843, 15014}, {5104, 41583}, {6660, 34360}, {11574, 15013}

X(59869) = midpoint of X(6660) and X(34360)
X(59869) = pole of the line {39513, 42534} with respect to the 1st Lemoine circle


X(59870) = CENTER OF Ω( X(2), X(3) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(8*a^7-3*(b+c)*a^6-14*(b^2+c^2)*a^5+3*(b+c)^3*a^4+4*(b^4+3*b^2*c^2+c^4)*a^3+3*(b+c)*(b^2+c^2)*(b^2-4*b*c+c^2)*a^2+2*(b^4-c^4)*(b^2-c^2)*a-3*(b^2-c^2)^3*(b-c)) : :

X(59870) lies on these lines: {513, 59875}, {523, 549}, {3667, 45677}, {4962, 59945}

X(59870) = center of circle {{X(2), X(3), X(5570)}}
X(59870) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59871, 59943, 59872), (59876, 59944, 59875)


X(59871) = CENTER OF Ω( X(2), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^7-(b+c)*a^6+2*(b^2+c^2)*a^5+(b+c)*(b^2-6*b*c+c^2)*a^4-8*(2*b^4-3*b^2*c^2+2*c^4)*a^3+(b+c)*(b^4+c^4+6*b*c*(2*b^2-3*b*c+2*c^2))*a^2+10*(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^2*(b+c)*(b^2+6*b*c+c^2)) : :

X(59871) lies on these lines: {381, 523}, {522, 59875}, {3667, 45677}, {7743, 39540}, {28217, 59944}, {28225, 59947}

X(59871) = pole of the line {10295, 18283} with respect to the polar circle
X(59871) = center of circle {{X(2), X(4), X(51615)}}
X(59871) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59870, 59872, 59943), (59875, 59879, 59945)


X(59872) = CENTER OF Ω( X(2), X(5) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-8*(b^2+c^2)*a^5+(b+c)*(b^2+6*b*c+c^2)*a^4+2*(5*b^4-3*b^2*c^2+5*c^4)*a^3+(b+c)*(b^4+c^4-12*b*c*(b^2-b*c+c^2))*a^2-4*(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^2*(b+c)*(b^2-6*b*c+c^2)) : :

X(59872) lies on these lines: {514, 59875}, {523, 547}, {900, 59876}, {3667, 45677}, {6006, 59944}

X(59872) = center of circle {{X(2), X(5), X(5533)}}
X(59872) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59871, 59943, 59870), (59876, 59946, 59879)


X(59873) = CENTER OF Ω( X(2), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(8*a^7-(b+c)*a^6-18*(b^2+c^2)*a^5+(b+c)*(19*b^2-30*b*c+19*c^2)*a^4-12*(2*b^2-c^2)*(b^2-2*c^2)*a^3+(b+c)*(17*b^4+17*c^4-2*b*c*(12*b^2+b*c+12*c^2))*a^2+2*(b^2+c^2)^3*a+(b^4-c^4)*(b^2+c^2)*(-3*b+3*c)) : :

X(59873) lies on these lines: {597, 1499}, {2498, 3309}, {3667, 45677}

X(59873) = center of circle {{X(2), X(6), X(51615)}}


X(59874) = CENTER OF Ω( X(2), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(5*a^4+2*(b+c)*a^3-4*(5*b^2-8*b*c+5*c^2)*a^2+2*(b+c)*(7*b^2-12*b*c+7*c^2)*a-(b^2+18*b*c+c^2)*(b-c)^2) : :

X(59874) lies on these lines: {514, 59878}, {3667, 45677}, {6173, 28292}

X(59874) = pole of the line {4542, 4936} with respect to the Mandart inellipse
X(59874) = center of circle {{X(2), X(7), X(1323)}}


X(59875) = CENTER OF Ω( X(3), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*((b+c)*a^6+2*(b^2+c^2)*a^5-(b+c)^3*a^4-4*(b^4-b^2*c^2+c^4)*a^3-(b+c)*(b^2+c^2)*(b^2-4*b*c+c^2)*a^2+2*(b^4-c^4)*(b^2-c^2)*a+(b^2-c^2)^3*(b-c)) : :

X(59875) lies on these lines: {5, 523}, {406, 48209}, {513, 59870}, {514, 59872}, {522, 59871}, {4778, 59943}, {25514, 47799}

X(59875) = pole of the line {280, 2071} with respect to the 1st Droz-Farny circle
X(59875) = pole of the line {186, 18283} with respect to the polar circle
X(59875) = pole of the line {3580, 4402} with respect to the Steiner inellipse
X(59875) = center of circle {{X(3), X(4), X(5570)}}
X(59875) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59871, 59945, 59879), (59876, 59944, 59870)


X(59876) = CENTER OF Ω( X(3), X(5) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-4*(b^2+c^2)*a^5+(b+c)^3*a^4+2*(b^4+b^2*c^2+c^4)*a^3+(b+c)*(b^2+c^2)*(b^2-4*b*c+c^2)*a^2-(b^2-c^2)^3*(b-c)) : :

X(59876) lies on these lines: {140, 523}, {513, 59870}, {676, 4926}, {900, 59872}, {8674, 39540}, {28220, 59947}

X(59876) = pole of the line {7701, 17437} with respect to the incircle
X(59876) = center of circle {{X(3), X(5), X(5533)}}
X(59876) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59870, 59875, 59944), (59872, 59879, 59946)


X(59877) = CENTER OF Ω( X(3), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*(b-c)*((b+c)*a^8-2*(b^2+c^2)*a^7-2*(b+c)*b*c*a^6+2*(b^4+4*b^2*c^2+c^4)*a^5-2*(b^3+c^3)*(b^2+c^2)*a^4+2*(b^4-c^4)*(b^2-c^2)*a^3+2*(b+c)*(b^4+c^4-2*b*c*(b^2-3*b*c+c^2))*b*c*a^2-2*(b^8+c^8-2*(b^4-3*b^2*c^2+c^4)*b^2*c^2)*a+(b^4-c^4)*(b^2-c^2)^2*(b-c)) : :

X(59877) lies on these lines: {182, 512}, {513, 59870}, {2494, 59885}, {2498, 3309}, {50658, 59954}

X(59877) = center of circle {{X(3), X(6), X(5570)}}


X(59878) = CENTER OF Ω( X(3), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^8-(b+c)*a^7-(7*b^2-6*b*c+7*c^2)*a^6+(b+c)*(3*b^2-2*b*c+3*c^2)*a^5+(b^2+c^2)*(9*b^2-16*b*c+9*c^2)*a^4-(b+c)*(3*b^4+3*c^4-2*b*c*(2*b-c)*(b-2*c))*a^3-(5*b^4+5*c^4-2*b*c*(2*b^2+3*b*c+2*c^2))*(b-c)^2*a^2+(b^2-c^2)^3*(b-c)*a+(b^2-c^2)^2*(b-c)^4) : :

X(59878) lies on these lines: {513, 59870}, {514, 59874}, {31657, 59897}

X(59878) = pole of the line {17437, 21314} with respect to the incircle
X(59878) = center of circle {{X(3), X(7), X(1323)}}


X(59879) = CENTER OF Ω( X(4), X(5) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6+(b^2-c^2)*(b-c)*a^4-2*(3*b^4-5*b^2*c^2+3*c^4)*a^3+(b+c)*(b^4+c^4+4*b*c*(b-c)^2)*a^2+4*(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^2*(b+c)^3) : :

X(59879) lies on these lines: {522, 59871}, {523, 546}, {900, 59872}, {3667, 59944}

X(59879) = pole of the line {13619, 18283} with respect to the polar circle
X(59879) = center of circle {{X(4), X(5), X(5533)}}
X(59879) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (59871, 59945, 59875), (59876, 59946, 59872)


X(59880) = CENTER OF Ω( X(4), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*((b+c)*a^10-6*(b^2+c^2)*a^9+(b+c)*(7*b^2-2*b*c+7*c^2)*a^8+4*(b^4+b^2*c^2+c^4)*a^7-2*(b+c)*(5*b^4+5*c^4-2*b*c*(b^2-b*c+c^2))*a^6+8*(b^4-c^4)*(b^2-c^2)*a^5-2*(b^2-c^2)*(b-c)*(3*b^4+3*c^4+2*b*c*(3*b^2+4*b*c+3*c^2))*a^4-4*(b^2-c^2)^2*(b^4-b^2*c^2+c^4)*a^3+(b^2-c^2)*(b-c)*(9*b^6+9*c^6+(14*b^4+14*c^4+b*c*(15*b^2+4*b*c+15*c^2))*b*c)*a^2-2*(b^4-c^4)^2*(b^2+c^2)*a-(b^4-c^4)^2*(b^2-c^2)*(b-c)) : :

X(59880) lies on these lines: {522, 59871}, {525, 5480}, {2498, 3309}

X(59880) = pole of the line {18283, 41377} with respect to the polar circle
X(59880) = center of circle {{X(4), X(6), X(51616)}}


X(59881) = CENTER OF Ω( X(4), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a^8-(b+c)*a^7-(3*b^2-2*b*c+3*c^2)*a^6+3*(b^2-c^2)*(b-c)*a^5+(3*b^4+3*c^4-2*b*c*(4*b^2-9*b*c+4*c^2))*a^4-3*(b^2-c^2)*(b-c)^3*a^3-(b^4+c^4-2*b*c*(4*b^2+5*b*c+4*c^2))*(b-c)^2*a^2+(b^2-c^2)^2*(b+c)*(b^2-6*b*c+c^2)*a-4*(b^2-c^2)^2*(b-c)^2*b*c) : :

X(59881) lies on these lines: {514, 59874}, {522, 59871}, {1119, 59935}, {3900, 5805}

X(59881) = pole of the line {17112, 18283} with respect to the polar circle
X(59881) = center of circle {{X(4), X(7), X(1323)}}


X(59882) = CENTER OF Ω( X(5), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^11-(b+c)*a^10-8*(b^2+c^2)*a^9+(b+c)*(7*b^2-6*b*c+7*c^2)*a^8+2*(2*b^4+11*b^2*c^2+2*c^4)*a^7-2*(b+c)*(3*b^4+3*c^4-4*b*c*(b-c)^2)*a^6+4*(2*b^2-c^2)*(b^2-2*c^2)*(b^2+c^2)*a^5-2*(b+c)*(3*b^6+3*c^6-(2*b^4+2*c^4-b*c*(5*b^2-16*b*c+5*c^2))*b*c)*a^4-2*(3*b^8+3*c^8-b^2*c^2*(11*b^4-20*b^2*c^2+11*c^4))*a^3+(b^2-c^2)*(b-c)*(7*b^6+7*c^6+(6*b^4+6*c^4+b*c*(b^2-12*b*c+c^2))*b*c)*a^2-(b^4-c^4)^2*(b^2-c^2)*(b-c)) : :

X(59882) lies on these lines: {900, 59872}, {2498, 3309}, {3566, 11619}

X(59882) = center of circle {{X(5), X(6), X(5533)}}


X(59883) = CENTER OF Ω( X(5), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^8+(b+c)*a^7-(13*b^2-14*b*c+13*c^2)*a^6+(b+c)*(5*b^2-14*b*c+5*c^2)*a^5+(19*b^4+19*c^4-4*b*c*(9*b^2-13*b*c+9*c^2))*a^4-(b+c)*(13*b^4+13*c^4-2*b*c*(14*b^2-17*b*c+14*c^2))*a^3-(7*b^4+7*c^4-16*b*c*(b^2+b*c+c^2))*(b-c)^2*a^2+7*(b^2-c^2)^3*(b-c)*a-(b^2-c^2)^2*(b-c)^2*(b^2+10*b*c+c^2)) : :

X(59883) lies on these lines: {514, 59874}, {900, 59872}

X(59883) = center of circle {{X(5), X(7), X(1323)}}


X(59884) = CENTER OF Ω( X(6), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*a^8-3*(b+c)*a^7-(5*b^2-2*b*c+5*c^2)*a^6+(b+c)*(15*b^2-22*b*c+15*c^2)*a^5-(19*b^4+19*c^4-2*b*c*(6*b^2+b*c+6*c^2))*a^4+(b+c)*(19*b^4+19*c^4-2*b*c*(12*b^2-7*b*c+12*c^2))*a^3-(b^2-c^2)^2*(11*b^2-6*b*c+11*c^2)*a^2+(b^4-c^4)*(b^2+c^2)*(b-c)*a+(b-c)^4*(b^2+c^2)^2) : :

X(59884) lies on these lines: {514, 59874}, {2498, 3309}, {51150, 59855}

X(59884) = center of circle {{X(6), X(7), X(1323)}}


X(59885) = CENTER OF Ω( BROCARD POINTS PU(1) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*((b^2-c^2)^2*a^6-2*(b^4-c^4)*(b-c)*a^5-(2*b^2-3*b*c+2*c^2)*(b^2+c^2)*b*c*a^4+2*(b^6-c^6)*(b-c)*a^3-(b^8+c^8-2*(b^6+c^6-(b^2-c^2)^2*b*c)*b*c)*a^2+2*(b^4-c^4)*b^2*c^2*(b-c)*a-b^2*c^2*(b^4+c^4)*(b-c)^2) : :

X(59885) lies on these lines: {3, 6}, {2494, 59877}, {39641, 39642}


X(59886) = CENTER OF Ω( BICENTRIC PAIR PU(11 )), WHERE Ω = INCIRCLE

Barycentrics    2*a^10-(5*b^2-4*b*c+5*c^2)*a^8-2*(b^2-c^2)*(b-c)*a^7-2*(3*b^4+3*c^4-b*c*(3*b^2+2*b*c+3*c^2))*a^6+2*(b^4-c^4)*(b-c)*a^5+2*(4*b^6+4*c^6-(b^4+c^4+2*b*c*(b^2-b*c+c^2))*b*c)*a^4+2*(b^2-c^2)*(b-c)*(b^4+c^4)*a^3-2*(3*b^6+3*c^6+(2*b^4+2*c^4+b*c*(b^2-8*b*c+c^2))*b*c)*b*c*a^2-2*(b^4-c^4)*(b-c)*(b^4+4*b^2*c^2+c^4)*a+(b^4-c^4)*(b^2-c^2)*(b^4+c^4-2*(b^2-3*b*c+c^2)*b*c) : :

X(59886) lies on these lines: {30, 141}


X(59887) = CENTER OF Ω( X(1), X(2) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^4+2*(b+c)*a^3-4*(b^2+b*c+c^2)*a^2-2*(b+c)*(2*b^2-3*b*c+2*c^2)*a+(b^2+c^2)*(b+c)^2) : :

X(59887) lies on these lines: {2, 59839}, {514, 24459}, {523, 7625}, {551, 3667}, {900, 6129}, {6006, 50353}, {9048, 25923}, {21348, 47765}, {28209, 59909}

X(59887) = complement of X(59839)
X(59887) = pole of the line {1837, 53614} with respect to the incircle
X(59887) = pole of the line {26476, 30739} with respect to the nine-point circle
X(59887) = pole of the line {376, 50533} with respect to the orthoptic circle of Steiner inellipse
X(59887) = pole of the line {4232, 37764} with respect to the polar circle
X(59887) = pole of the line {43448, 53994} with respect to the orthic inconic
X(59887) = pole of the line {599, 3687} with respect to the Steiner inellipse
X(59887) = center of circle {{X(1), X(2), X(858)}}
X(59887) = (X(7628), X(59969))-harmonic conjugate of X(59895)


X(59888) = CENTER OF Ω( X(1), X(3) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^6-(3*b^2+2*b*c+3*c^2)*a^4+4*(b+c)*b*c*a^3+(3*b^4-2*b^2*c^2+3*c^4)*a^2-2*(b+c)*(2*b^2-3*b*c+2*c^2)*b*c*a-(b^2-c^2)^2*(b-c)^2) : :

X(59888) lies on these lines: {2, 59845}, {513, 1385}, {523, 7663}, {900, 6129}, {3667, 31667}, {14353, 15313}, {28175, 59975}

X(59888) = complement of X(59845)
X(59888) = pole of the line {7387, 22765} with respect to the circumcircle
X(59888) = pole of the line {1837, 53615} with respect to the incircle
X(59888) = pole of the line {11585, 26476} with respect to the nine-point circle
X(59888) = center of circle {{X(1), X(3), X(2072)}}


X(59889) = CENTER OF Ω( X(1), X(4) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^7-(b+c)*a^6+(b+c)^2*a^5+(b+c)*(b^2-4*b*c+c^2)*a^4-5*(b^2-c^2)^2*a^3+(b^2-c^2)*(b-c)*(b^2+6*b*c+c^2)*a^2+(b^2-c^2)^2*(3*b^2-2*b*c+3*c^2)*a-(b^4-c^4)*(b^2-c^2)*(b+c)) : :

X(59889) lies on these lines: {513, 14312}, {522, 946}, {523, 10151}, {900, 6129}, {3667, 53304}, {4777, 59962}, {15313, 53549}

X(59889) = X(522)-beth conjugate of-X(16228)
X(59889) = pole of the line {10893, 37197} with respect to the 2nd Droz-Farny circle
X(59889) = pole of the line {1785, 1837} with respect to the incircle
X(59889) = pole of the line {235, 1877} with respect to the nine-point circle
X(59889) = pole of the line {20, 45766} with respect to the polar circle
X(59889) = pole of the line {393, 53994} with respect to the orthic inconic
X(59889) = center of circle {{X(1), X(4), X(403)}}


X(59890) = CENTER OF Ω( X(1), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^7-(b+c)*a^6-(b-c)^2*a^5+(b+c)*(b^2-6*b*c+c^2)*a^4-(b+c)^2*(b^2-6*b*c+c^2)*a^3+(b+c)*(b^4+c^4-4*b*c*(b-c)^2)*a^2+(b+c)^2*(b^4-4*b^2*c^2+c^4)*a-(b^4-c^4)*(b^2+c^2)*(b-c)) : :

X(59890) lies on these lines: {900, 6129}, {1386, 3309}, {2492, 3566}

X(59890) = center of circle {{X(1), X(6), X(39692)}}


X(59891) = CENTER OF Ω( X(1), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^5-9*(b+c)*a^4+2*(7*b^2+2*b*c+7*c^2)*a^3-2*(b+c)*(2*b^2-b*c+2*c^2)*a^2-(b-c)^2*(3*b^2+2*b*c+3*c^2)*a+(b^2-c^2)*(b-c)*(b^2+4*b*c+c^2)) : :

X(59891) lies on these lines: {514, 5542}, {900, 6129}, {59894, 59897}

X(59891) = pole of the line {1837, 53617} with respect to the incircle
X(59891) = center of circle {{X(1), X(7), X(39692)}}


X(59892) = CENTER OF Ω( X(1), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(3*a^4-6*(b+c)*a^3-4*(b^2-7*b*c+c^2)*a^2+2*(b+c)*(2*b^2-9*b*c+2*c^2)*a-(b+c)^2*(b^2-4*b*c+c^2)) : :

X(59892) lies on these lines: {10, 3667}, {900, 6129}, {7628, 28217}

X(59892) = pole of the line {1837, 53618} with respect to the incircle
X(59892) = center of circle {{X(1), X(8), X(39692)}}
X(59892) = (X(7628), X(59970))-harmonic conjugate of X(59909)


X(59893) = CENTER OF Ω( X(2), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b^2-c^2)*(3*a^6-5*(b^2+c^2)*a^4-(7*b^4-4*b^2*c^2+7*c^4)*a^2+(b^2+c^2)^3) : :
X(59893) = 5*X(31279)-X(55271)

X(59893) lies on these lines: {523, 7625}, {525, 14279}, {597, 1499}, {2492, 3566}, {5099, 53569}, {31279, 55271}

X(59893) = cross-difference of every pair of points on the line X(1384)X(9872)
X(59893) = pole of the line {574, 24855} with respect to the nine-point circle
X(59893) = pole of the line {40727, 47597} with respect to the orthocentroidal circle
X(59893) = pole of the line {315, 524} with respect to the Lemoine inellipse
X(59893) = center of circle {{X(2), X(6), X(858)}}


X(59894) = CENTER OF Ω( X(2), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^7-3*(b+c)*a^6+3*(b+c)^2*a^5-(b+c)*(b^2-10*b*c+c^2)*a^4-(b^2+6*b*c+c^2)^2*a^3+(b+c)*(3*b^4+3*c^4-2*b*c*(6*b^2-17*b*c+6*c^2))*a^2-3*(b^2-c^2)^2*(b-c)^2*a+(b^2-c^2)*(b-c)^3*(b^2+6*b*c+c^2)) : :

X(59894) lies on these lines: {514, 59986}, {523, 7625}, {6173, 28292}, {59891, 59897}

X(59894) = pole of the line {4232, 37763} with respect to the polar circle
X(59894) = center of circle {{X(2), X(7), X(858)}}


X(59895) = CENTER OF Ω( X(2), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^4+(b+c)*a^3-2*(b^2+c^2)*a^2-(b+c)*(2*b^2+3*b*c+2*c^2)*a+3*b*c*(b+c)^2) : :
X(59895) = X(14419)-3*X(48228) = X(30709)+3*X(48243) = 3*X(48204)-X(48226)

X(59895) lies on these lines: {2, 59829}, {513, 3823}, {523, 7625}, {2517, 47827}, {3667, 3828}, {4768, 31251}, {14419, 48228}, {28221, 59968}, {30709, 48243}, {48204, 48226}

X(59895) = midpoint of X(2517) and X(47827)
X(59895) = complement of X(59829)
X(59895) = cross-difference of every pair of points on the line X(1384)X(21769)
X(59895) = perspector of the circumconic through X(5485) and X(39694)
X(59895) = pole of the line {1329, 30739} with respect to the nine-point circle
X(59895) = pole of the line {960, 53002} with respect to the Spieker circle
X(59895) = pole of the line {6791, 16613} with respect to the Kiepert circumhyperbola
X(59895) = pole of the line {312, 599} with respect to the Steiner inellipse
X(59895) = center of circle {{X(2), X(10), X(858)}}
X(59895) = (X(7628), X(59969))-harmonic conjugate of X(59887)


X(59896) = CENTER OF Ω( X(3), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a^2*(b^2-c^2)*(a^8-2*(b^2+c^2)*a^6+2*b^2*c^2*a^4+2*(b^2+c^2)*(b^4+c^4)*a^2-b^8-c^8+2*(b^4-3*b^2*c^2+c^4)*b^2*c^2) : :

X(59896) lies on these lines: {182, 512}, {523, 7663}, {570, 59988}, {647, 9134}, {804, 2485}, {826, 7624}, {2489, 2507}, {2492, 3566}, {2799, 7631}, {6753, 23301}, {16040, 58882}, {23333, 34964}, {32478, 59849}, {44680, 44820}

X(59896) = reflection of X(44680) in X(44820)
X(59896) = cross-difference of every pair of points on the line X(1609)X(15993)
X(59896) = pole of the line {2080, 7387} with respect to the circumcircle
X(59896) = pole of the line {1236, 3548} with respect to the 1st Droz-Farny circle
X(59896) = pole of the line {5254, 11585} with respect to the nine-point circle
X(59896) = pole of the line {317, 41760} with respect to the orthic inconic
X(59896) = pole of the line {394, 3981} with respect to the Steiner inellipse
X(59896) = center of circle {{X(3), X(6), X(2072)}}


X(59897) = CENTER OF Ω( X(3), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(2*a^11-7*(b+c)*a^10+6*(b+c)^2*a^9+(b+c)*(5*b^2+8*b*c+5*c^2)*a^8-12*(b^4+c^4+2*b*c*(b+c)^2)*a^7+2*(b+c)*(5*b^4+5*c^4-b*c*(12*b^2-19*b*c+12*c^2))*a^6-4*(b^6+c^6-(4*b^4+4*c^4+b*c*(11*b^2+4*b*c+11*c^2))*b*c)*a^5-2*(b+c)*(3*b^6+3*c^6-(12*b^4+12*c^4-b*c*(27*b^2-20*b*c+27*c^2))*b*c)*a^4+2*(b^2-c^2)^2*(b-c)^2*(5*b^2+6*b*c+5*c^2)*a^3-(b^2-c^2)*(b-c)^3*(3*b^4+3*c^4+4*b*c*(5*b^2+6*b*c+5*c^2))*a^2-2*(b^2-c^2)^4*(b-c)^2*a+(b^2-c^2)^3*(b-c)^3*(b^2+4*b*c+c^2)) : :

X(59897) lies on these lines: {523, 7663}, {31657, 59878}, {59891, 59894}

X(59897) = center of circle {{X(3), X(7), X(2072)}}


X(59898) = CENTER OF Ω( X(3), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-2*(b-c)^2*a^5+(b+c)*(b^2-12*b*c+c^2)*a^4-2*(b^4+c^4-2*b*c*(2*b^2+7*b*c+2*c^2))*a^3+(b+c)*(b^4+c^4+4*b*c*(2*b^2-7*b*c+2*c^2))*a^2+2*(b^2-c^2)^2*(b^2-6*b*c+c^2)*a-(b^2-c^2)^2*(b+c)*(b^2-4*b*c+c^2)) : :

X(59898) lies on these lines: {523, 7663}, {900, 5690}, {7628, 28217}

X(59898) = center of circle {{X(3), X(8), X(2072)}}


X(59899) = CENTER OF Ω( X(3), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^7-2*(b^2+c^2)*a^5-(b+c)*b*c*a^4+(b^4+c^4+2*b*c*(b^2+3*b*c+c^2))*a^3-4*(b+c)*b^2*c^2*a^2-2*(b^2-c^2)^2*b*c*a+(b^2-c^2)^2*(b+c)*b*c) : :
X(59899) = X(42757)-3*X(48186)

X(59899) lies on these lines: {2, 59830}, {513, 3823}, {522, 6684}, {523, 7663}, {4086, 23224}, {4397, 53304}, {6006, 59853}, {22072, 48303}, {42757, 48186}

X(59899) = midpoint of X(i) and X(j) for these {i, j}: {4086, 23224}, {4397, 53304}
X(59899) = complement of X(59830)
X(59899) = cross-difference of every pair of points on the line X(1609)X(21769)
X(59899) = X(56099)-complementary conjugate of-X(124)
X(59899) = perspector of the circumconic through X(6504) and X(39694)
X(59899) = pole of the line {1329, 11585} with respect to the nine-point circle
X(59899) = pole of the line {312, 394} with respect to the Steiner inellipse
X(59899) = center of circle {{X(3), X(10), X(2072)}}


X(59900) = CENTER OF Ω( X(4), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b^2-c^2)*(a^10+3*(b^2+c^2)*a^8-2*(3*b^4-b^2*c^2+3*c^4)*a^6-2*(b^4-c^4)*(b^2-c^2)*a^4+(b^2-c^2)^2*(5*b^4+4*b^2*c^2+5*c^4)*a^2-(b^4-c^4)^2*(b^2+c^2)) : :

X(59900) lies on these lines: {523, 10151}, {525, 5480}, {2492, 3566}, {2799, 44918}

X(59900) = pole of the line {32, 235} with respect to the nine-point circle
X(59900) = pole of the line {20, 41377} with respect to the polar circle
X(59900) = center of circle {{X(4), X(6), X(403)}}


X(59901) = CENTER OF Ω( X(4), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^11-4*(b+c)*a^10+(5*b^2+6*b*c+5*c^2)*a^9-2*(b+c)*b*c*a^8-6*(b^2-c^2)^2*a^7+4*(b+c)*(b^2+2*b*c-2*c^2)*(2*b^2-2*b*c-c^2)*a^6-2*(b^2-c^2)^2*(b+3*c)*(3*b+c)*a^5-4*(b^2-c^2)*(b-c)*b*c*(3*b^2+2*b*c+3*c^2)*a^4+(b^2-c^2)^2*(b+c)^2*(5*b^2+6*b*c+5*c^2)*a^3-4*(b^2-c^2)*(b-c)*(b^6+c^6+2*b^2*c^2*(2*b^2+3*b*c+2*c^2))*a^2+(b^2-c^2)^4*(b-c)^2*a-2*(b^2-c^2)^3*(b-c)^3*b*c) : :

X(59901) lies on these lines: {523, 10151}, {3900, 5805}, {59891, 59894}

X(59901) = center of circle {{X(4), X(7), X(403)}}


X(59902) = CENTER OF Ω( X(4), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^7-(b+c)^2*a^5+6*(b+c)*b*c*a^4-(b+c)^4*a^3-4*(b+c)*(b^2-3*b*c+c^2)*b*c*a^2+(b^2-c^2)^2*(b^2+6*b*c+c^2)*a-2*(b^2-c^2)^2*(b+c)*b*c) : :

X(59902) lies on these lines: {355, 513}, {523, 10151}, {7628, 28217}, {26482, 59972}

X(59902) = center of circle {{X(4), X(8), X(403)}}


X(59903) = CENTER OF Ω( X(4), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^6-(b+c)*a^5+(b+c)^2*a^4-(b+c)*(b^2+b*c+c^2)*a^3-(2*b-c)*(b-2*c)*(b+c)^2*a^2+(b^2-c^2)*(b-c)*(2*b^2+3*b*c+2*c^2)*a-b*c*(b^2-c^2)^2) : :

X(59903) lies on these lines: {513, 3823}, {514, 19925}, {523, 10151}, {46102, 53279}

X(59903) = cross-difference of every pair of points on the line X(15905)X(21769)
X(59903) = perspector of the circumconic through X(459) and X(39694)
X(59903) = pole of the line {318, 37197} with respect to the 2nd Droz-Farny circle
X(59903) = pole of the line {235, 1329} with respect to the nine-point circle
X(59903) = pole of the line {1562, 16613} with respect to the Kiepert circumhyperbola
X(59903) = pole of the line {312, 26958} with respect to the Steiner inellipse
X(59903) = center of circle {{X(4), X(10), X(403)}}


X(59904) = CENTER OF Ω( X(6), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(2*a^11-9*(b+c)*a^10+6*(b+c)^2*a^9+(b+c)*(21*b^2-16*b*c+21*c^2)*a^8-4*(11*b^4+11*c^4+2*b*c*(3*b^2-b*c+3*c^2))*a^7+2*(b+c)*(23*b^4-25*b^2*c^2+23*c^4)*a^6-12*(b^2-c^2)^2*(3*b^2+4*b*c+3*c^2)*a^5+2*(b+c)*(5*b^6+5*c^6+(8*b^4+8*c^4-b*c*(17*b^2-4*b*c+17*c^2))*b*c)*a^4+2*(b^4-c^4)*(b^2-c^2)*(5*b^2-4*b*c+5*c^2)*a^3-(b^2-c^2)*(b-c)*(5*b^6+5*c^6+(10*b^4+10*c^4-b*c*(7*b^2-32*b*c+7*c^2))*b*c)*a^2-2*(b^4-c^4)^2*(b-c)^2*a+(b^4-c^4)*(b^2+c^2)*(b-c)^3*(b^2+4*b*c+c^2)) : :

X(59904) lies on these lines: {2492, 3566}, {51150, 59855}, {59891, 59894}

X(59904) = center of circle {{X(6), X(7), X(49123)}}


X(59905) = CENTER OF Ω( X(6), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(2*a^8+3*(b+c)*a^7-(9*b^2+10*b*c+9*c^2)*a^6-(b+c)*(5*b^2-24*b*c+5*c^2)*a^5-5*(b+c)^2*(b^2+c^2)*a^4-(b+c)*(7*b^4+7*c^4-4*b*c*(4*b^2+b*c+4*c^2))*a^3+(b+c)^2*(5*b^4+5*c^4-4*b*c*(2*b^2-b*c+2*c^2))*a^2+(b+c)*(b^2-8*b*c+c^2)*(b^2+c^2)^2*a-(b^2-4*b*c+c^2)*(b+c)^2*(b^2+c^2)^2) : :

X(59905) lies on these lines: {2492, 3566}, {7628, 28217}, {28481, 49524}

X(59905) = center of circle {{X(6), X(8), X(49123)}}


X(59906) = CENTER OF Ω( X(6), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^8+(b+c)*a^7-2*(b^2+c^2)*a^6-(b+c)*(2*b^2-3*b*c+2*c^2)*a^5-3*(b^3+c^3)*(b+c)*a^4-(b+c)*(3*b^4+3*c^4-2*b*c*(b^2+3*b*c+c^2))*a^3-2*(b^2+c^2)*(b+c)^2*b*c*a^2-(b+c)*(b^2+c^2)^2*b*c*a+b*c*(b+c)^2*(b^2+c^2)^2) : :

X(59906) lies on these lines: {513, 3823}, {2492, 3566}, {28478, 59858}

X(59906) = center of circle {{X(6), X(10), X(3814)}}


X(59907) = CENTER OF Ω( X(7), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^8-3*(b+c)*a^7+(3*b^2+28*b*c+3*c^2)*a^6-(b+c)*(b^2+50*b*c+c^2)*a^5-(b^4+c^4-14*b*c*(3*b^2+5*b*c+3*c^2))*a^4+(b+c)*(3*b^4+3*c^4-2*b*c*(16*b^2-b*c+16*c^2))*a^3-(3*b^6+3*c^6-(12*b^4+12*c^4+b*c*(3*b^2+8*b*c+3*c^2))*b*c)*a^2+(b^2-c^2)*(b-c)^3*(b^2+6*b*c+c^2)*a-2*(b^2-c^2)^2*(b-c)^2*b*c) : :

X(59907) lies on these lines: {2550, 3309}, {7628, 28217}, {59891, 59894}


X(59908) = CENTER OF Ω( X(7), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^8+(b+c)*a^7-8*(b-c)^2*a^6+(b+c)*(4*b^2-31*b*c+4*c^2)*a^5+(9*b^4+9*c^4+b*c*(23*b^2+60*b*c+23*c^2))*a^4-(b+c)*(b^2+c^2)*(7*b^2+26*b*c+7*c^2)*a^3-2*(b^6+c^6-(9*b^4+9*c^4+b*c*(b^2+14*b*c+c^2))*b*c)*a^2+(b^2-c^2)*(b-c)^3*(2*b^2+9*b*c+2*c^2)*a-(b^2-c^2)^2*(b-c)^2*b*c) : :

X(59908) lies on these lines: {513, 3823}, {59891, 59894}

X(59908) = center of circle {{X(7), X(10), X(3814)}}


X(59909) = CENTER OF Ω( X(8), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^4-3*(b+c)*a^3-2*(b^2-6*b*c+c^2)*a^2+(b+c)*(2*b^2-3*b*c+2*c^2)*a-b*c*(b+c)^2) : :

X(59909) lies on these lines: {513, 3823}, {523, 59968}, {3626, 3667}, {7628, 28217}, {28209, 59887}

X(59909) = center of circle {{X(8), X(10), X(3814)}}
X(59909) = (X(7628), X(59970))-harmonic conjugate of X(59892)


X(59910) = CENTER OF Ω( BROCARD POINTS PU(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a^2*((b^2-c^2)^2*a^6-(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^4+(b^8+c^8-2*(b^2-c^2)^2*b^2*c^2)*a^2+(b^4-c^4)*(b^2-c^2)*b^2*c^2) : :

X(59910) lies on these lines: {3, 6}, {804, 2485}, {3291, 38352}, {13196, 36212}, {39641, 39642}, {52967, 53499}

X(59910) = pole of the line {2524, 5254} with respect to the nine-point circle
X(59910) = pole of the line {5, 46172} with respect to the Kiepert circumhyperbola
X(59910) = pole of the line {924, 41760} with respect to the orthic inconic
X(59910) = pole of the line {647, 3981} with respect to the Steiner inellipse


X(59911) = CENTER OF Ω( BICENTRIC PAIR PU(11) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    2*a^10-3*(b^2+c^2)*a^8-4*(b^4-3*b^2*c^2+c^4)*a^6+4*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^4-2*(b^8+c^8+b^2*c^2*(5*b^4-8*b^2*c^2+5*c^4))*a^2+(b^8-c^8)*(c^2-b^2) : :

X(59911) lies on these lines: {30, 141}, {620, 58871}, {625, 6699}, {7830, 10170}

X(59911) = (X(4550), X(7761))-harmonic conjugate of X(141)


X(59912) = CENTER OF Ω( X(1)X(2), X(2) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(6*a^3-(b+c)*a^2-3*b*c*a-(b+c)*(b^2-3*b*c+c^2)) : :
X(59912) = 8*X(13246)+X(25259) = X(47676)+8*X(53580) = X(47781)+2*X(48578) = X(47877)+2*X(48248) = X(48174)+2*X(48247) = 4*X(48179)-X(48543)

X(59912) lies on these lines: {2, 3667}, {23, 39225}, {98, 53946}, {351, 523}, {659, 47650}, {676, 47663}, {901, 9057}, {1302, 53942}, {1443, 1447}, {1995, 4057}, {2496, 4926}, {2789, 8643}, {2976, 4806}, {4024, 4765}, {4232, 7649}, {4927, 59943}, {5297, 42312}, {7479, 35278}, {7493, 20294}, {9083, 9097}, {13246, 25259}, {14779, 47773}, {16231, 52301}, {26248, 48220}, {28191, 48203}, {28195, 47797}, {28199, 48211}, {28205, 47809}, {44432, 48041}, {47676, 53580}, {47781, 48578}, {47877, 48248}, {48174, 48247}, {48179, 48543}, {48187, 59864}

X(59912) = reflection of X(4927) in X(59943)
X(59912) = anticomplement of X(59969)
X(59912) = cross-difference of every pair of points on the line X(574)X(1334)
X(59912) = X(59969)-Dao conjugate of-X(59969)
X(59912) = perspector of the circumconic through X(598) and X(1434)
X(59912) = pole of the line {1995, 18613} with respect to the circumcircle
X(59912) = pole of the line {553, 51615} with respect to the incircle
X(59912) = pole of the line {355, 381} with respect to the orthoptic circle of Steiner inellipse
X(59912) = pole of the line {5094, 53008} with respect to the polar circle
X(59912) = pole of the line {3939, 9145} with respect to the Stammler hyperbola
X(59912) = pole of the line {1992, 3875} with respect to the Steiner circumellipse
X(59912) = pole of the line {597, 3946} with respect to the Steiner inellipse
X(59912) = pole of the line {3699, 9146} with respect to the Steiner-Wallace hyperbola
X(59912) = pole of the line {4380, 14321} with respect to the Yff parabola
X(59912) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (26275, 47804, 47798), (44433, 47803, 47808), (47798, 47804, 47771), (47800, 47805, 44435), (47804, 48223, 48231), (59829, 59841, 59839)


X(59913) = CENTER OF Ω( X(1)X(2), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^4-3*(b+c)*a^3-(b^2-15*b*c+c^2)*a^2+3*(b+c)*(b^2-4*b*c+c^2)*a-(b+c)^2*(b^2-3*b*c+c^2)) : :

X(59913) lies on these lines: {2, 59968}, {8, 3667}, {522, 4318}, {900, 4397}, {2496, 4926}, {4057, 38901}, {4962, 59914}, {17100, 39225}, {28221, 59829}

X(59913) = anticomplement of X(59968)
X(59913) = cross-difference of every pair of points on the line X(2347)X(34543)
X(59913) = X(56113)-anticomplementary conjugate of-X(33650)
X(59913) = X(59968)-Dao conjugate of-X(59968)
X(59913) = perspector of the circumconic through X(34523) and X(40420)
X(59913) = pole of the line {46, 519} with respect to the incircle of anticomplementary triangle
X(59913) = pole of the line {355, 50535} with respect to the orthoptic circle of Steiner inellipse
X(59913) = pole of the line {57, 1997} with respect to the Steiner circumellipse
X(59913) = pole of the line {6692, 17351} with respect to the Steiner inellipse
X(59913) = pole of the line {4462, 26695} with respect to the Yff parabola
X(59913) = (X(59834), X(59864))-harmonic conjugate of X(59839)


X(59914) = CENTER OF Ω( X(1)X(2), X(10) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(3*a^4+(b+c)*a^3+3*b*c*a^2+(b+c)*(b^2-6*b*c+c^2)*a-(b+c)^2*(b^2-3*b*c+c^2)) : :

X(59914) lies on these lines: {10, 3667}, {514, 4581}, {522, 6133}, {1324, 39225}, {4024, 4765}, {4057, 38903}, {4962, 59913}, {5293, 42312}, {7081, 47801}, {28161, 59829}, {33138, 48575}

X(59914) = pole of the line {12545, 38476} with respect to the Conway circle
X(59914) = pole of the line {4298, 53618} with respect to the incircle
X(59914) = pole of the line {5205, 19925} with respect to the orthoptic circle of Steiner inellipse
X(59914) = pole of the line {519, 3704} with respect to the Spieker circle
X(59914) = pole of the line {27064, 39595} with respect to the Steiner inellipse
X(59914) = pole of the line {6002, 14321} with respect to the Yff parabola
X(59914) = center of circle {{X(1737), X(6735), X(17100)}}
X(59914) = (X(59841), X(59864))-harmonic conjugate of X(59836)


X(59915) = CENTER OF Ω( X(1)X(4), X(4) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((b+c)*a^2-b*c*a-b^3-c^3) : :

X(59915) lies on these lines: {4, 522}, {24, 39199}, {25, 47798}, {27, 27486}, {34, 21173}, {107, 53965}, {186, 39226}, {242, 514}, {403, 523}, {406, 48173}, {427, 47808}, {451, 48186}, {469, 47790}, {475, 48243}, {513, 44428}, {653, 36094}, {661, 57043}, {953, 32706}, {1897, 14513}, {3064, 17985}, {3261, 54314}, {4091, 21187}, {4196, 48242}, {4207, 48172}, {4212, 47828}, {4213, 47832}, {4777, 16228}, {6198, 48303}, {6353, 47800}, {6995, 48239}, {7378, 48169}, {7490, 47785}, {8889, 47806}, {16231, 28161}, {17924, 48402}, {17926, 45745}, {18344, 47708}, {21189, 55128}, {21666, 35012}, {26704, 36067}, {45746, 46107}, {47123, 59916}, {47136, 59917}, {47728, 58313}, {48228, 52252}, {54340, 57093}, {56816, 57224}

X(59915) = reflection of X(4091) in X(21187)
X(59915) = polar conjugate of X(44765)
X(59915) = cross-difference of every pair of points on the line X(71)X(577)
X(59915) = crosspoint of X(i) and X(j) for these {i, j}: {264, 653}, {286, 54240}, {1897, 34406}
X(59915) = crosssum of X(i) and X(j) for these {i, j}: {184, 652}, {228, 36054}
X(59915) = X(36127)-Ceva conjugate of-X(4)
X(59915) = X(124)-cross conjugate of-X(4)
X(59915) = X(i)-Dao conjugate of-X(j) for these (i, j): (65, 23067), (124, 3), (136, 15232), (1249, 44765), (3162, 32653), (5190, 13478), (5521, 2217), (6332, 52616), (6523, 26704), (6589, 6332), (7952, 56112), (20620, 10570), (24220, 23161), (34588, 72), (36103, 36050), (39053, 57757)
X(59915) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 36050}, {48, 44765}, {63, 32653}, {72, 59005}, {228, 54951}, {255, 26704}, {521, 15386}, {603, 56112}, {906, 13478}, {1331, 2217}, {1946, 57757}, {2995, 32656}, {4575, 15232}, {10570, 36059}, {35183, 46974}
X(59915) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 44765), (19, 36050), (25, 32653), (27, 54951), (124, 6332), (281, 56112), (393, 26704), (573, 1331), (653, 57757), (1474, 59005), (2501, 15232), (3064, 10570), (3185, 906), (3192, 101), (3869, 1332), (4225, 4558), (4417, 4561), (6589, 3), (6591, 2217), (7649, 13478), (10571, 1813), (16754, 1444), (17080, 6516), (17555, 190), (17924, 2995), (21189, 63), (22276, 4574), (32674, 15386), (38345, 521), (40590, 23067), (40626, 52616), (46107, 57906), (47411, 57241), (52310, 3682), (56553, 6517), (56827, 4552), (57111, 3719), (57184, 326), (57220, 59), (57242, 3926)
X(59915) = X(1415)-zayin conjugate of-X(652)
X(59915) = perspector of the circumconic through X(27) and X(2052)
X(59915) = pole of the line {515, 34938} with respect to the anticomplementary circle
X(59915) = pole of the line {24, 23383} with respect to the circumcircle
X(59915) = pole of the line {515, 12084} with respect to the 1st Droz-Farny circle
X(59915) = pole of the line {4292, 51616} with respect to the incircle
X(59915) = pole of the line {515, 6756} with respect to the incircle-of-orthic triangle
X(59915) = pole of the line {515, 18569} with respect to the Johnson triangle circumcircle
X(59915) = pole of the line {3, 10} with respect to the polar circle
X(59915) = pole of the line {1, 4} with respect to the MacBeath inconic
X(59915) = pole of the line {53, 1839} with respect to the orthic inconic
X(59915) = pole of the line {3187, 6515} with respect to the Steiner circumellipse
X(59915) = pole of the line {13567, 40940} with respect to the Steiner inellipse
X(59915) = barycentric product X(i)*X(j) for these {i, j}: {92, 21189}, {124, 653}, {158, 57184}, {264, 6589}, {393, 57242}, {514, 17555}, {573, 46107}, {3192, 3261}, {3869, 17924}, {4225, 14618}, {4417, 7649}, {4560, 56827}, {10571, 46110}, {16754, 41013}, {17080, 44426}, {18026, 38345}, {34387, 57220}, {34588, 54240}, {36127, 40626}, {47411, 52938}
X(59915) = trilinear product X(i)*X(j) for these {i, j}: {4, 21189}, {92, 6589}, {108, 124}, {393, 57184}, {513, 17555}, {573, 17924}, {653, 38345}, {693, 3192}, {1096, 57242}, {1118, 57111}, {1826, 16754}, {3064, 17080}, {3185, 46107}, {3737, 56827}, {3869, 7649}, {4225, 24006}, {4417, 6591}, {4858, 57220}, {10571, 44426}, {17925, 21078}
X(59915) = trilinear quotient X(i)/X(j) for these (i, j): (4, 36050), (19, 32653), (28, 59005), (92, 44765), (108, 15386), (124, 521), (158, 26704), (286, 54951), (318, 56112), (573, 906), (3185, 32656), (3192, 692), (3869, 1331), (4225, 4575), (4417, 1332), (6589, 48), (7649, 2217), (10571, 36059), (16754, 1790), (17080, 1813)
X(59915) = center of circle {{X(1), X(5018), X(5691)}}


X(59916) = CENTER OF Ω( X(1)X(4), X(33) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(-a+b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8-2*(b^2-b*c+c^2)*a^6-2*(3*b^2-2*b*c+3*c^2)*b*c*a^4+4*(b+c)*b^2*c^2*a^3+2*(b^6+c^6+3*(b^3-c^3)*(b-c)*b*c)*a^2-4*(b^2-c^2)*(b-c)*b^2*c^2*a-(b^6+c^6+(4*b^4+4*c^4+b*c*(3*b^2+4*b*c+3*c^2))*b*c)*(b-c)^2) : :

X(59916) lies on these lines: {33, 522}, {1459, 54244}, {47123, 59915}, {59830, 59917}

X(59916) = pole of the line {17860, 34822} with respect to the polar circle


X(59917) = CENTER OF Ω( X(1)X(4), X(34) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8-2*(b^2+b*c+c^2)*a^6+6*(b+c)^2*b*c*a^4-12*(b+c)*b^2*c^2*a^3+2*(b^6+c^6-(3*b^4+3*c^4+b*c*(3*b^2-4*b*c+3*c^2))*b*c)*a^2+4*(b+c)*(3*b^2-2*b*c+3*c^2)*b^2*c^2*a-(b^6+c^6-(4*b^4+4*c^4-b*c*(11*b^2-12*b*c+11*c^2))*b*c)*(b+c)^2) : :

X(59917) lies on these lines: {34, 522}, {32757, 39226}, {47136, 59915}, {59830, 59916}


X(59918) = CENTER OF Ω( X(1)X(5), X(5) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(2*a^7-(b+c)*a^6-4*(b^2+c^2)*a^5+(b+c)*(b^2+c^2)*a^4+2*(b^4+c^4+b*c*(b^2-b*c+c^2))*a^3+(b+c)*(b^4+c^4-b*c*(2*b^2-b*c+2*c^2))*a^2-2*(b^2-c^2)^2*b*c*a-(b^2-c^2)^3*(b-c)) : :

X(59918) lies on these lines: {5, 900}, {523, 10096}, {2070, 39478}, {3518, 39534}, {3737, 4960}, {13595, 26275}, {13621, 39200}, {21308, 39493}, {37943, 44428}

X(59918) = crosspoint of X(26707) and X(26711)
X(59918) = perspector of the circumconic through X(11538) and X(52393)
X(59918) = pole of the line {13621, 26707} with respect to the circumcircle
X(59918) = pole of the line {5533, 24470} with respect to the incircle
X(59918) = pole of the line {952, 33332} with respect to the nine-point circle
X(59918) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {3, 1484, 11698}, {5, 2070, 26707}, {36, 5885, 23477}


X(59919) = CENTER OF Ω( X(1)X(5), X(12) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(2*a^8-3*(b+c)*a^7-(3*b^2+2*b*c+3*c^2)*a^6+5*(b+c)*(b^2+c^2)*a^5+(b^4+c^4+8*b*c*(b+c)^2)*a^4-(b+c)*(b^4+c^4+b*c*(4*b^2+13*b*c+4*c^2))*a^3-(b^4+c^4+b*c*(4*b^2-11*b*c+4*c^2))*(b+c)^2*a^2-(b^2-c^2)^2*(b+c)*(b^2-4*b*c+c^2)*a+(b^2-c^2)^4) : :

X(59919) lies on these lines: {12, 900}, {676, 59831}, {5957, 51646}, {32626, 39478}


X(59920) = CENTER OF Ω( X(1)X(6), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(2*a^4-2*(b+c)*a^3+(2*b^2-b*c+2*c^2)*a^2-2*(b+c)*(b^2-3*b*c+c^2)*a-b*c*(b^2+c^2)) : :

X(59920) lies on these lines: {6, 3309}, {187, 39227}, {512, 2030}, {667, 1384}, {919, 32722}, {1019, 1429}, {2440, 16483}, {4162, 16785}, {5033, 39519}, {15484, 31149}, {59835, 59922}

X(59920) = cross-difference of every pair of points on the line X(210)X(599)
X(59920) = perspector of the circumconic through X(1014) and X(1383)
X(59920) = pole of the line {1384, 3941} with respect to the circumcircle
X(59920) = pole of the line {518, 5102} with respect to the 2nd Lemoine (or cosine) circle
X(59920) = pole of the line {644, 9146} with respect to the Stammler hyperbola


X(59921) = CENTER OF Ω( X(1)X(6), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^5-5*(b+c)*a^4+2*(5*b^2+4*b*c+5*c^2)*a^3-2*(b+c)*(5*b^2-4*b*c+5*c^2)*a^2+(5*b^4-2*b^2*c^2+5*c^4)*a-(b^2-c^2)^2*(b+c)) : :

X(59921) lies on these lines: {9, 3309}, {241, 514}, {667, 38902}, {3887, 4130}, {3900, 22108}, {8732, 59941}, {32625, 39227}

X(59921) = perspector of the circumconic through X(7) and X(34525)
X(59921) = pole of the line {1486, 38902} with respect to the circumcircle
X(59921) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 5223, 53617}, {9, 32625, 32753}


X(59922) = CENTER OF Ω( X(1)X(6), X(37) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(a^5-(b+c)*a^4-(4*b^2+9*b*c+4*c^2)*a^3+2*(b+c)*(2*b^2-b*c+2*c^2)*a^2-(b^2+c^2)*(b^2+b*c+c^2)*a+(b^2-c^2)^2*(b+c)) : :

X(59922) lies on these lines: {37, 3309}, {3669, 14349}, {32758, 39227}, {59835, 59920}, {59857, 59923}


X(59923) = CENTER OF Ω( X(1)X(6), X(44) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(7*a^5-15*(b+c)*a^4+5*(4*b^2+b*c+4*c^2)*a^3-2*(b+c)*(10*b^2-13*b*c+10*c^2)*a^2+3*(3*b^4+3*c^4-b*c*(b+c)^2)*a-(b^2-c^2)^2*(b+c)) : :

X(59923) lies on these lines: {44, 3309}, {57, 1022}, {59835, 59924}, {59857, 59922}


X(59924) = CENTER OF Ω( X(1)X(6), X(45) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a*(b-c)*(2*a^5+6*(b+c)*a^4-(26*b^2+35*b*c+26*c^2)*a^3+2*(b+c)*(13*b^2-7*b*c+13*c^2)*a^2-3*(4*b^4+4*c^4+b*c*(b^2+c^2))*a+4*(b^2-c^2)^2*(b+c)) : :

X(59924) lies on these lines: {45, 3309}, {3669, 47777}, {59835, 59923}


X(59925) = CENTER OF Ω( X(1)X(7), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(2*a^4-5*(b+c)*a^3+(3*b^2+5*b*c+3*c^2)*a^2+(b-c)*(b^2-c^2)*a-(b^3-c^3)*(b-c)) : :

X(59925) lies on these lines: {7, 514}, {658, 14733}, {663, 3676}, {840, 2369}, {3900, 4131}, {18450, 28292}, {32624, 39476}, {34865, 48386}, {38900, 44408}, {43042, 47755}, {46003, 59833}, {49300, 58816}

X(59925) = perspector of the circumconic through X(10509) and X(34521)
X(59925) = pole of the line {1323, 52819} with respect to the incircle
X(59925) = pole of the line {348, 26015} with respect to the Steiner circumellipse
X(59925) = pole of the line {20049, 52542} with respect to the Steiner inellipse


X(59926) = CENTER OF Ω( X(1)X(7), X(20) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(-a+b+c)*(2*a^5-(b+c)*a^4-(2*b^2-b*c+2*c^2)*a^3+(b+c)*b*c*a^2-(b-c)^2*b*c*a+(b^2-c^2)*(b^3-c^3)) : :
X(59926) = 5*X(3091)-4*X(39532) = 7*X(3832)-8*X(44928) = 3*X(44426)-4*X(44815)

X(59926) lies on these lines: {20, 514}, {22, 47771}, {280, 44448}, {347, 30181}, {522, 663}, {523, 14329}, {925, 53925}, {1262, 1897}, {1370, 44435}, {2071, 39476}, {2370, 53703}, {2811, 4091}, {3091, 39532}, {3151, 47781}, {3832, 44928}, {3900, 4131}, {4105, 29037}, {4296, 4449}, {4843, 6563}, {6516, 46964}, {7396, 47757}, {7488, 48386}, {7560, 47791}, {9538, 48294}, {10565, 47766}, {11413, 44408}, {17134, 17166}, {20298, 45746}, {21302, 52365}, {23661, 46110}, {24016, 53642}, {25259, 57108}, {27505, 47793}, {44426, 44815}, {47773, 59343}

X(59926) = reflection of X(25259) in X(57108)
X(59926) = anticomplement of the polar conjugate of X(658)
X(59926) = cross-difference of every pair of points on the line X(1400)X(46432)
X(59926) = crosspoint of X(4569) and X(31623)
X(59926) = crosssum of X(1409) and X(8641)
X(59926) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (77, 33650), (109, 5942), (222, 37781), (603, 39351), (658, 21270), (906, 30695), (934, 4), (1262, 4391), (1332, 54113), (1410, 148), (1415, 30694), (1439, 3448), (1461, 5905), (1804, 34188), (1813, 329), (4558, 18750), (4565, 92), (4569, 11442), (4575, 45738), (4616, 20242), (4617, 56927), (4637, 17220), (6516, 3436), (6517, 52366), (6614, 12649), (7045, 20293), (7053, 149), (7056, 21293), (7099, 4440), (7177, 150), (7339, 521), (13149, 317), (23971, 17896), (24027, 25259), (32660, 3177), (32668, 48381), (32714, 6515), (36059, 144), (36118, 5906), (44717, 4462), (52373, 21221), (52610, 2895), (56382, 21294)
X(59926) = pole of the line {11413, 23361} with respect to the circumcircle
X(59926) = pole of the line {1490, 5074} with respect to the hexyl circle
X(59926) = pole of the line {950, 51617} with respect to the incircle
X(59926) = pole of the line {225, 3012} with respect to the polar circle
X(59926) = pole of the line {8, 144} with respect to the power circles radical circle
X(59926) = pole of the line {7253, 8057} with respect to the Kiepert parabola
X(59926) = pole of the line {63, 348} with respect to the Steiner circumellipse
X(59926) = pole of the line {4391, 39470} with respect to the Yff parabola
X(59926) = (1st anti-circumperp)-isogonal conjugate-of-X(664)


X(59927) = CENTER OF Ω( X(2)X(6), X(2) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b^2-c^2)*(11*a^4-2*(b^2+c^2)*a^2-b^4+4*b^2*c^2-c^4) : :
X(59927) = 8*X(14341)+X(31299)

X(59927) lies on these lines: {2, 1499}, {23, 5926}, {98, 10102}, {110, 9080}, {351, 523}, {512, 9189}, {669, 1995}, {690, 30474}, {691, 1302}, {1649, 47596}, {2408, 7735}, {2501, 4232}, {2793, 8644}, {3288, 9209}, {3566, 9191}, {5466, 26255}, {5640, 9009}, {6563, 7493}, {7495, 44451}, {8704, 9125}, {9084, 9136}, {14341, 31299}, {39533, 52301}

X(59927) = anticomplement of X(59982)
X(59927) = cross-difference of every pair of points on the line X(574)X(5650)
X(59927) = crosssum of X(512) and X(22111)
X(59927) = X(39236)-anticomplementary conjugate of-X(21221)
X(59927) = X(i)-Dao conjugate of-X(j) for these (i, j): (115, 46645), (59982, 59982)
X(59927) = X(163)-isoconjugate of-X(46645)
X(59927) = X(523)-reciprocal conjugate of-X(46645)
X(59927) = X(1995)-vertex conjugate of-X(22329)
X(59927) = inverse of X(9123) in Kiepert parabola
X(59927) = pole of the line {1995, 22329} with respect to the circumcircle
X(59927) = pole of the line {5169, 7840} with respect to the nine-point circle
X(59927) = pole of the line {381, 524} with respect to the orthoptic circle of Steiner inellipse
X(59927) = pole of the line {5094, 22110} with respect to the polar circle
X(59927) = pole of the line {1499, 8598} with respect to the Kiepert parabola
X(59927) = pole of the line {9023, 9145} with respect to the Stammler hyperbola
X(59927) = pole of the line {1992, 11159} with respect to the Steiner circumellipse
X(59927) = pole of the line {597, 3734} with respect to the Steiner inellipse
X(59927) = pole of the line {9146, 9191} with respect to the Steiner-Wallace hyperbola
X(59927) = trilinear quotient X(1577)/X(46645)
X(59927) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {187, 39022, 39023}, {325, 5939, 22329}
X(59927) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (351, 14327, 9123), (8599, 15724, 9123)


X(59928) = CENTER OF Ω( X(2)X(6), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b^2-c^2)*(2*a^6-(2*b^4-13*b^2*c^2+2*c^4)*a^2-b^2*c^2*(b^2+c^2)) : :

X(59928) lies on these lines: {6, 1499}, {187, 5926}, {512, 2030}, {525, 41617}, {669, 1384}, {691, 26714}, {729, 9136}, {2444, 9463}, {3288, 9209}, {3569, 9137}, {5033, 39518}, {15484, 31176}, {18907, 25423}, {31415, 39511}, {38920, 53330}

X(59928) = cross-difference of every pair of points on the line X(599)X(5650)
X(59928) = perspector of the circumconic through X(1383) and X(9084)
X(59928) = pole of the line {524, 3545} with respect to the 2nd Lemoine (or cosine) circle
X(59928) = pole of the line {5480, 5913} with respect to the orthoptic circle of Steiner inellipse
X(59928) = pole of the line {323, 47740} with respect to the orthosymmedial circle
X(59928) = pole of the line {1992, 20192} with respect to the MacBeath circumconic
X(59928) = pole of the line {9971, 51745} with respect to the orthic inconic
X(59928) = pole of the line {1995, 9870} with respect to the Steiner circumellipse
X(59928) = pole of the line {9465, 16317} with respect to the Steiner inellipse
X(59928) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {23, 8115, 8116}, {385, 5939, 39099}


X(59929) = CENTER OF Ω( X(2)X(7), X(2) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(6*a^5-11*(b+c)*a^4+(4*b^2+5*b*c+4*c^2)*a^3+(2*b-c)*(b-2*c)*(b+c)*a^2-(b+c)^2*(2*b^2-3*b*c+2*c^2)*a+(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)) : :

X(59929) lies on these lines: {2, 28292}, {351, 523}, {1995, 23865}, {3064, 4232}, {7253, 46006}, {9056, 14733}, {35278, 50403}, {37761, 44435}, {37763, 45755}

X(59929) = anticomplement of X(59984)
X(59929) = X(59984)-Dao conjugate of-X(59984)
X(59929) = pole of the line {381, 527} with respect to the orthoptic circle of Steiner inellipse


X(59930) = CENTER OF Ω( X(2)X(7), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)^2*(a-b+c)^2*(2*a^5-7*(b+c)*a^4+(8*b^2+17*b*c+8*c^2)*a^3-(b+c)*(2*b^2+9*b*c+2*c^2)*a^2-(b+c)^2*(2*b^2-3*b*c+2*c^2)*a+(b^2-c^2)*(b-c)*(b^2+3*b*c+c^2)) : :

X(59930) lies on these lines: {2, 59986}, {7, 28292}, {514, 59931}, {23865, 38900}, {37761, 44435}, {46003, 59833}

X(59930) = anticomplement of X(59986)
X(59930) = X(59986)-Dao conjugate of-X(59986)
X(59930) = pole of the line {1996, 1998} with respect to the Steiner circumellipse


X(59931) = CENTER OF Ω( X(2)X(7), X(9) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(a^7-5*(b+c)*a^6+9*(b+c)^2*a^5-(b+c)*(5*b^2+14*b*c+5*c^2)*a^4-(5*b^4+5*c^4+2*b*c*(2*b^2-11*b*c+2*c^2))*a^3+3*(b+c)*(3*b^4+3*c^4+2*b*c*(2*b-c)*(b-2*c))*a^2-(b+c)^2*(5*b^4+5*c^4+2*b*c*(2*b^2-7*b*c+2*c^2))*a+(b^2-c^2)*(b-c)*(b^4+c^4+2*b*c*(b+2*c)*(2*b+c))) : :

X(59931) lies on these lines: {9, 28292}, {514, 59930}, {3900, 22108}, {23865, 38902}, {37763, 45755}


X(59932) = CENTER OF Ω( X(4)X(6), X(4) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(-a^4+b^4+c^4) : :
X(59932) = 7*X(3090)-4*X(54260)

X(59932) lies on these lines: {4, 525}, {24, 39201}, {107, 10423}, {186, 39228}, {232, 52590}, {264, 44173}, {378, 22089}, {403, 523}, {419, 2501}, {427, 30474}, {512, 16230}, {648, 33803}, {826, 16229}, {842, 1300}, {847, 34347}, {1289, 6529}, {2450, 6563}, {2485, 55129}, {2848, 42658}, {2970, 36189}, {3090, 54260}, {3542, 47194}, {3566, 44427}, {5489, 35488}, {5664, 35481}, {6334, 44918}, {6353, 9209}, {7927, 51513}, {8673, 33294}, {9213, 47627}, {14165, 47216}, {15423, 46953}, {16868, 39510}, {17924, 47708}, {18808, 52487}, {23582, 46619}, {35473, 45681}, {35480, 58346}, {41370, 59991}, {47122, 59934}, {52448, 55273}

X(59932) = reflection of X(6334) in X(44918)
X(59932) = polar conjugate of X(44766)
X(59932) = cevapoint of X(53569) and X(55273)
X(59932) = cross-difference of every pair of points on the line X(426)X(577)
X(59932) = crosspoint of X(i) and X(j) for these {i, j}: {107, 264}, {648, 34405}, {15352, 46104}
X(59932) = crosssum of X(i) and X(j) for these {i, j}: {184, 520}, {647, 40947}, {20775, 32320}
X(59932) = X(i)-Ceva conjugate of-X(j) for these (i, j): (6529, 4), (32687, 6530), (52448, 53569), (52618, 14618)
X(59932) = X(i)-cross conjugate of-X(j) for these (i, j): (127, 4), (2485, 33294), (53569, 52448), (55273, 53569)
X(59932) = X(i)-Dao conjugate of-X(j) for these (i, j): (32, 32661), (115, 14376), (127, 3), (136, 66), (137, 41168), (427, 1634), (1249, 44766), (2485, 3265), (3265, 4143), (5099, 54060), (5139, 2353), (6523, 1289), (38970, 34138), (47413, 3917), (53569, 1899), (55047, 394), (55070, 20775)
X(59932) = X(i)-isoconjugate of-X(j) for these {i, j}: {48, 44766}, {66, 4575}, {163, 14376}, {255, 1289}, {822, 44183}, {2156, 4558}, {2353, 4592}, {4020, 53657}, {8766, 46967}, {15388, 24018}, {36134, 41168}, {40146, 55202}
X(59932) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 44766), (22, 4558), (107, 44183), (127, 3265), (206, 32661), (315, 4563), (393, 1289), (523, 14376), (1760, 4592), (2172, 4575), (2485, 3), (2489, 2353), (2492, 54060), (2501, 66), (4150, 4561), (4456, 1331), (4463, 1332), (8673, 394), (8743, 110), (11605, 17708), (11610, 43754), (12077, 41168), (14396, 51394), (14618, 18018), (16230, 34138), (16757, 1444), (17409, 1576), (17907, 99), (18105, 46765), (18187, 4131), (20641, 55202), (21034, 32656), (21178, 17206), (23582, 55272), (23881, 3933), (27373, 35325), (31636, 17932), (32085, 53657), (32713, 15388), (33294, 69), (38356, 520), (40073, 52608), (40938, 1634), (41375, 41676), (43717, 46967), (47413, 52613), (52448, 648), (52915, 249), (53569, 525), (55129, 441)
X(59932) = X(24)-vertex conjugate of-X(6530)
X(59932) = trilinear pole of the line {38356, 53569} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59932) = orthoassociate of X(43389)
X(59932) = perspector of the circumconic through X(2052) and X(6330)
X(59932) = inverse of X(43389) in polar circle
X(59932) = pole of the line {1503, 6193} with respect to the anticomplementary circle
X(59932) = pole of the line {24, 1485} with respect to the circumcircle
X(59932) = pole of the line {1503, 12084} with respect to the 1st Droz-Farny circle
X(59932) = pole of the line {389, 1503} with respect to the incircle-of-orthic triangle
X(59932) = pole of the line {1503, 18569} with respect to the Johnson triangle circumcircle
X(59932) = pole of the line {25, 53506} with respect to the orthoptic circle of Steiner inellipse
X(59932) = pole of the line {3, 66} with respect to the polar circle
X(59932) = pole of the line {1249, 53848} with respect to the MacBeath circumconic
X(59932) = pole of the line {4, 6} with respect to the MacBeath inconic
X(59932) = pole of the line {53, 428} with respect to the orthic inconic
X(59932) = pole of the line {297, 6515} with respect to the Steiner circumellipse
X(59932) = pole of the line {5305, 13567} with respect to the Steiner inellipse
X(59932) = barycentric product X(i)*X(j) for these {i, j}: {4, 33294}, {22, 14618}, {107, 127}, {264, 2485}, {315, 2501}, {338, 52915}, {393, 57069}, {523, 17907}, {525, 52448}, {648, 53569}, {850, 8743}, {1093, 58359}, {1760, 24006}, {1826, 21178}, {2052, 8673}, {2489, 40073}, {2970, 4611}, {4150, 7649}, {4456, 46107}, {4463, 17924}
X(59932) = trilinear product X(i)*X(j) for these {i, j}: {19, 33294}, {22, 24006}, {92, 2485}, {127, 24019}, {158, 8673}, {162, 53569}, {656, 52448}, {661, 17907}, {823, 38356}, {1096, 57069}, {1109, 52915}, {1577, 8743}, {1760, 2501}, {1824, 21178}, {1826, 16757}, {2172, 14618}, {2489, 20641}, {4150, 6591}, {4456, 17924}, {4463, 7649}
X(59932) = trilinear quotient X(i)/X(j) for these (i, j): (22, 4575), (92, 44766), (127, 24018), (158, 1289), (315, 4592), (823, 44183), (1577, 14376), (1760, 4558), (2172, 32661), (2485, 48), (2501, 2156), (2618, 41168), (4150, 1332), (4456, 906), (4463, 1331), (8673, 255), (8743, 163), (8767, 46967), (16757, 1790), (17907, 662)
X(59932) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1986, 10295, 57584}, {5523, 51940, 53772}


X(59933) = CENTER OF Ω( X(4)X(6), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b^2-c^2)*(2*a^6-(2*b^4-b^2*c^2+2*c^4)*a^2-b^2*c^2*(b^2+c^2)) : :

X(59933) lies on these lines: {6, 525}, {187, 39228}, {419, 2501}, {512, 2030}, {729, 842}, {1384, 39201}, {1499, 3049}, {2485, 9517}, {2491, 5926}, {2780, 59987}, {3566, 37085}, {3906, 39520}, {5024, 22089}, {5033, 39517}, {8673, 16040}, {9210, 9463}, {39510, 43620}, {43291, 59745}

X(59933) = cross-difference of every pair of points on the line X(599)X(1853)
X(59933) = X(17428)-reciprocal conjugate of-X(599)
X(59933) = perspector of the circumconic through X(1383) and X(2373)
X(59933) = pole of the line {5039, 19136} with respect to the 1st Lemoine circle
X(59933) = pole of the line {1503, 1992} with respect to the 2nd Lemoine (or cosine) circle
X(59933) = pole of the line {6, 54076} with respect to the orthosymmedial circle
X(59933) = pole of the line {141, 5523} with respect to the polar circle
X(59933) = pole of the line {154, 524} with respect to the MacBeath circumconic
X(59933) = pole of the line {428, 9971} with respect to the orthic inconic
X(59933) = pole of the line {23, 7754} with respect to the Steiner circumellipse
X(59933) = pole of the line {468, 5305} with respect to the Steiner inellipse
X(59933) = barycentric product X(598)*X(17428)
X(59933) = trilinear product X(17428)*X(55927)
X(59933) = trilinear quotient X(17428)/X(36263)


X(59934) = CENTER OF Ω( X(4)X(6), X(53) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^16-2*(b^2+c^2)*a^14+13*b^2*c^2*a^12+(b^2+c^2)*(2*b^4-25*b^2*c^2+2*c^4)*a^10-2*(b^8+c^8-2*b^2*c^2*(5*b^4+14*b^2*c^2+5*c^4))*a^8+2*(b^2+c^2)*(b^8+c^8-b^2*c^2*(3*b^2+4*b*c+3*c^2)*(3*b^2-4*b*c+3*c^2))*a^6+(b^2-c^2)^2*(5*b^4-6*b^2*c^2+5*c^4)*b^2*c^2*a^4-(b^4-c^4)*(b^2-c^2)*(2*b^8+2*c^8-b^2*c^2*(7*b^4-6*b^2*c^2+7*c^4))*a^2+(b^4+c^4)*(b^2-c^2)^6) : :

X(59934) lies on these lines: {53, 525}, {47122, 59932}

X(59934) = pole of the line {13509, 34828} with respect to the polar circle


X(59935) = CENTER OF Ω( X(4)X(7), X(4) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3+(b+c)*a^2-(b+c)^2*a-(b-c)*(b^2-c^2))/a : :

X(59935) lies on these lines: {4, 3900}, {92, 2399}, {278, 905}, {403, 523}, {513, 57089}, {514, 3064}, {693, 46110}, {1119, 59881}, {1528, 8058}, {1734, 1838}, {1946, 41227}, {2812, 54247}, {7178, 57224}, {8063, 14837}, {14077, 39536}, {20624, 53183}, {40149, 57243}, {41013, 52623}, {48303, 54238}

X(59935) = polar conjugate of X(13138)
X(59935) = cross-difference of every pair of points on the line X(212)X(577)
X(59935) = crosspoint of X(i) and X(j) for these {i, j}: {92, 54240}, {264, 13149}, {653, 40444}
X(59935) = crosssum of X(48) and X(36054)
X(59935) = X(31623)-beth conjugate of-X(4391)
X(59935) = X(i)-Ceva conjugate of-X(j) for these (i, j): (693, 44426), (46110, 17924)
X(59935) = X(i)-cross conjugate of-X(j) for these (i, j): (5514, 4), (6129, 17896)
X(59935) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 268), (57, 1813), (115, 52389), (136, 1903), (244, 41087), (281, 100), (1015, 1433), (1086, 41081), (1146, 271), (1249, 13138), (3162, 32652), (4858, 56944), (5190, 84), (5514, 3), (5521, 1436), (6129, 57055), (6523, 40117), (16596, 63), (17898, 57045), (20620, 282), (36103, 36049), (38966, 7367), (38991, 2188), (40615, 56972), (40617, 55117), (40622, 52037), (40624, 44189), (40837, 37141), (55044, 219), (55063, 1259), (55065, 53010)
X(59935) = X(i)-isoconjugate of-X(j) for these {i, j}: {3, 36049}, {48, 13138}, {63, 32652}, {84, 906}, {101, 1433}, {109, 268}, {110, 41087}, {163, 52389}, {184, 44327}, {189, 32656}, {212, 37141}, {219, 8059}, {255, 40117}, {271, 1415}, {280, 32660}, {282, 36059}, {651, 2188}, {692, 41081}, {1331, 1436}, {1332, 2208}, {1413, 4587}, {1576, 56944}, {1813, 2192}, {1903, 4575}, {2357, 4558}, {3939, 55117}, {6516, 7118}, {6517, 7154}, {32661, 39130}, {52425, 53642}
X(59935) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (4, 13138), (19, 36049), (25, 32652), (34, 8059), (40, 1331), (92, 44327), (196, 651), (198, 906), (208, 109), (221, 36059), (223, 1813), (227, 23067), (273, 53642), (278, 37141), (322, 4561), (329, 1332), (342, 664), (347, 6516), (393, 40117), (513, 1433), (514, 41081), (522, 271), (523, 52389), (650, 268), (661, 41087), (663, 2188), (1577, 56944), (1817, 4558), (2187, 32656), (2199, 32660), (2324, 4587), (2331, 101), (2360, 4575), (2501, 1903), (3064, 282), (3194, 110), (3195, 692), (3209, 1415), (3318, 57101), (3669, 55117), (3676, 56972), (4024, 53010), (4391, 44189), (5514, 57055), (6087, 46974), (6129, 3), (6591, 1436), (7013, 6517), (7080, 4571), (7178, 52037)
X(59935) = trilinear pole of the line {38357, 38362} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(59935) = perspector of the circumconic through X(273) and X(342)
X(59935) = pole of the line {971, 34938} with respect to the anticomplementary circle
X(59935) = pole of the line {971, 12084} with respect to the 1st Droz-Farny circle
X(59935) = pole of the line {971, 6756} with respect to the incircle-of-orthic triangle
X(59935) = pole of the line {971, 18569} with respect to the Johnson triangle circumcircle
X(59935) = pole of the line {3, 9} with respect to the polar circle
X(59935) = pole of the line {4, 7} with respect to the MacBeath inconic
X(59935) = pole of the line {1895, 5081} with respect to the Steiner circumellipse
X(59935) = pole of the line {1210, 13567} with respect to the Steiner inellipse
X(59935) = barycentric product X(i)*X(j) for these {i, j}: {4, 17896}, {40, 46107}, {75, 54239}, {92, 14837}, {196, 4391}, {208, 35519}, {223, 46110}, {264, 6129}, {273, 8058}, {322, 7649}, {329, 17924}, {331, 14298}, {342, 522}, {347, 44426}, {650, 40701}, {668, 38362}, {693, 7952}, {850, 3194}, {1577, 41083}, {1817, 14618}
X(59935) = trilinear product X(i)*X(j) for these {i, j}: {2, 54239}, {4, 14837}, {19, 17896}, {40, 17924}, {92, 6129}, {190, 38362}, {196, 522}, {198, 46107}, {208, 4391}, {221, 46110}, {223, 44426}, {227, 57215}, {273, 14298}, {278, 8058}, {286, 55212}, {322, 6591}, {329, 7649}, {342, 650}, {347, 3064}, {514, 7952}
X(59935) = trilinear quotient X(i)/X(j) for these (i, j): (4, 36049), (19, 32652), (40, 906), (92, 13138), (158, 40117), (196, 109), (198, 32656), (208, 1415), (221, 32660), (223, 36059), (264, 44327), (273, 37141), (278, 8059), (322, 1332), (329, 1331), (331, 53642), (342, 651), (347, 1813), (514, 1433), (522, 268)


X(59936) = CENTER OF Ω( X(4)X(7), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(5*a^5-11*(b+c)*a^4+4*(b^2+3*b*c+c^2)*a^3+4*(b-c)*(b^2-c^2)*a^2-(b^2-c^2)^2*a-(b^2-c^2)*(b-c)^3)/a : :

X(59936) lies on these lines: {7, 3900}, {514, 3064}, {15728, 53183}, {46003, 59833}

X(59936) = perspector of the circumconic through X(273) and X(34521)
X(59936) = pole of the line {3668, 43064} with respect to the incircle
X(59936) = pole of the line {9, 51218} with respect to the polar circle
X(59936) = pole of the line {12649, 37780} with respect to the Steiner circumellipse


X(59937) = CENTER OF Ω( X(5)X(6), X(5) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b^2-c^2)*(3*a^8-8*(b^2+c^2)*a^6+(6*b^4-b^2*c^2+6*c^4)*a^4-(b^2+c^2)*b^2*c^2*a^2-(b^2-c^2)^4) : :

X(59937) lies on these lines: {5, 3566}, {523, 10096}, {1141, 23096}, {2070, 44680}, {3288, 6587}, {3518, 58757}, {7576, 42399}, {11635, 53957}, {13152, 39512}, {13621, 34952}, {37943, 57065}

X(59937) = cross-difference of every pair of points on the line X(3819)X(15109)
X(59937) = perspector of the circumconic through X(11538) and X(57408)
X(59937) = pole of the line {13621, 40981} with respect to the circumcircle
X(59937) = pole of the line {3564, 33332} with respect to the nine-point circle
X(59937) = center of circle {{X(3), X(18347), X(43893)}}


X(59938) = CENTER OF Ω( X(5)X(6), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b^2-c^2)*(2*a^6-(2*b^4-7*b^2*c^2+2*c^4)*a^2-b^2*c^2*(b^2+c^2)) : :

X(59938) lies on these lines: {6, 3566}, {187, 44680}, {512, 2030}, {690, 39520}, {729, 14659}, {1384, 34952}, {2780, 7651}, {3288, 6587}, {8744, 57065}, {13400, 54259}

X(59938) = cross-difference of every pair of points on the line X(599)X(3819)
X(59938) = perspector of the circumconic through X(1383) and X(2374)
X(59938) = pole of the line {1384, 40981} with respect to the circumcircle
X(59938) = pole of the line {3564, 3845} with respect to the 2nd Lemoine (or cosine) circle
X(59938) = pole of the line {524, 3060} with respect to the orthic inconic
X(59938) = center of circle {{X(6), X(187), X(5166)}}


X(59939) = CENTER OF Ω( X(6)X(7), X(6) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    a^2*(b-c)*(2*(b+c)*a^8-4*(b^2+b*c+c^2)*a^7+2*(b+c)*(b^2+c^2)*a^6-10*b^2*c^2*a^5-(b+c)*(2*b^4-13*b^2*c^2+2*c^4)*a^4+2*(2*b^6+2*c^6+b*c*(2*b^2+3*b*c+2*c^2)*(b^2-4*b*c+c^2))*a^3-2*(b+c)*(b^6+c^6-5*b^2*c^2*(b^2-b*c+c^2))*a^2-(b^4-c^4)*b^2*c^2*(b-c)) : :

X(59939) lies on these lines: {512, 2030}, {1384, 8638}, {38466, 59940}

X(59939) = pole of the line {5102, 5845} with respect to the 2nd Lemoine (or cosine) circle


X(59940) = CENTER OF Ω( X(6)X(7), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)^2*(a-b+c)^2*(2*a^7-7*(b+c)*a^6+2*(5*b^2+8*b*c+5*c^2)*a^5-(b+c)*(9*b^2+10*b*c+9*c^2)*a^4+2*(3*b^4+3*c^4+b*c*(9*b^2+10*b*c+9*c^2))*a^3-(b+c)*(b^4+c^4+2*b*c*(3*b^2+2*b*c+3*c^2))*a^2-2*(b+c)*(b^2-c^2)*(b^3-c^3)*a+(b^2-c^2)*(b-c)*(b^4+c^4+2*b*c*(b^2+c^2))) : :

X(59940) lies on these lines: {8638, 38900}, {29240, 43930}, {38466, 59939}, {46003, 59833}


X(59941) = CENTER OF Ω( X(7)X(8), X(7) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a+b-c)^2*(a-b+c)^2/a : :

X(59941) lies on these lines: {2, 59979}, {7, 3309}, {85, 4462}, {279, 3669}, {513, 50360}, {514, 7216}, {658, 37143}, {667, 38859}, {693, 6362}, {927, 934}, {1088, 6548}, {1111, 15634}, {1446, 4444}, {1847, 17924}, {3676, 30804}, {3900, 46402}, {4077, 58860}, {4083, 23839}, {4131, 53357}, {4391, 58748}, {4555, 4569}, {4583, 46406}, {4635, 17930}, {4905, 10481}, {7192, 43932}, {8732, 59921}, {9320, 52508}, {17096, 17925}, {23819, 31605}, {46003, 59833}

X(59941) = isotomic conjugate of X(4578)
X(59941) = anticomplement of X(59979)
X(59941) = cevapoint of X(i) and X(j) for these {i, j}: {513, 43049}, {3676, 58817}
X(59941) = cross-difference of every pair of points on the line X(1253)X(6602)
X(59941) = crosspoint of X(i) and X(j) for these {i, j}: {658, 10509}, {1088, 4569}, {36838, 57880}, {53653, 56026}
X(59941) = crosssum of X(i) and X(j) for these {i, j}: {657, 8012}, {1253, 8641}
X(59941) = X(i)-anticomplementary conjugate of-X(j) for these (i, j): (53653, 54113), (53888, 30695)
X(59941) = X(i)-beth conjugate of-X(j) for these (i, j): (1434, 3669), (52621, 52621)
X(59941) = X(i)-Ceva conjugate of-X(j) for these (i, j): (658, 53242), (4569, 1088), (36838, 279), (46406, 1446)
X(59941) = X(i)-cross conjugate of-X(j) for these (i, j): (1111, 1847), (1358, 279), (3676, 24002), (40615, 7), (58321, 513)
X(59941) = X(i)-Dao conjugate of-X(j) for these (i, j): (2, 4578), (11, 480), (115, 4515), (223, 3939), (513, 8641), (514, 3900), (650, 4130), (661, 657), (1015, 220), (1086, 200), (1111, 51972), (1146, 728), (1214, 4069), (1566, 51418), (1577, 4163), (3160, 644), (3669, 4162), (4129, 58336), (4858, 4082), (4988, 4171), (5190, 7079), (5514, 7368), (5521, 7071), (6376, 6558), (6544, 14427), (6609, 692), (6615, 4105), (6626, 7259), (8054, 1253), (17113, 100), (20317, 58334), (26932, 1260), (34021, 7256), (35119, 58327), (36908, 4557), (38991, 6602), (39006, 1802), (40593, 3699), (40615, 9), (40617, 55), (40618, 3692), (40619, 346), (40620, 2287), (40621, 4936), (40622, 210), (40624, 5423), (40625, 56182), (40837, 56183), (46398, 51380), (50330, 4524)
X(59941) = X(i)-isoconjugate of-X(j) for these {i, j}: {31, 4578}, {32, 6558}, {41, 644}, {55, 3939}, {59, 4105}, {100, 1253}, {101, 220}, {109, 480}, {163, 4515}, {190, 14827}, {200, 692}, {212, 56183}, {213, 7259}, {346, 32739}, {522, 6066}, {607, 4587}, {646, 9447}, {651, 6602}, {657, 1252}, {663, 6065}, {728, 1415}, {765, 8641}, {906, 7079}, {1110, 3900}, {1260, 8750}, {1331, 7071}, {1334, 5546}, {1576, 4082}, {1783, 1802}, {1918, 7256}, {2149, 4130}, {2175, 3699}, {2194, 4069}, {2205, 7258}, {2212, 4571}, {2328, 4557}, {2332, 4574}, {2340, 52927}, {3239, 23990}, {4524, 4570}, {4564, 57180}, {4619, 35508}, {4636, 7064}, {4936, 34080}, {7046, 32656}, {7368, 36049}, {14936, 59149}, {28071, 54325}, {30730, 57657}, {34067, 58327}
X(59941) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (2, 4578), (7, 644), (11, 4130), (57, 3939), (75, 6558), (77, 4587), (85, 3699), (86, 7259), (226, 4069), (244, 657), (269, 101), (274, 7256), (278, 56183), (279, 100), (310, 7258), (348, 4571), (479, 651), (513, 220), (514, 200), (522, 728), (523, 4515), (552, 4612), (649, 1253), (650, 480), (651, 6065), (658, 765), (663, 6602), (667, 14827), (676, 51418), (693, 346), (738, 109), (764, 14936), (812, 58327), (905, 1260), (934, 1252), (1014, 5546), (1015, 8641), (1019, 2328), (1086, 3900), (1088, 190), (1106, 32739), (1111, 3239), (1119, 1783), (1275, 57731), (1357, 3063), (1358, 650), (1407, 692), (1415, 6066), (1427, 4557), (1434, 643)
X(59941) = X(35338)-zayin conjugate of-X(657)
X(59941) = perspector of the circumconic through X(1088) and X(23062)
X(59941) = pole of the line {169, 1445} with respect to the Adams circle
X(59941) = pole of the line {1602, 23397} with respect to the circumcircle
X(59941) = pole of the line {10481, 24181} with respect to the incircle
X(59941) = pole of the line {480, 4515} with respect to the polar circle
X(59941) = pole of the line {1088, 6604} with respect to the Steiner circumellipse
X(59941) = pole of the line {11019, 21258} with respect to the Steiner inellipse
X(59941) = pole of the line {4578, 7259} with respect to the Steiner-Wallace hyperbola
X(59941) = barycentric product X(i)*X(j) for these {i, j}: {7, 24002}, {11, 36838}, {57, 52621}, {75, 58817}, {76, 43932}, {85, 3676}, {244, 46406}, {269, 3261}, {279, 693}, {310, 7216}, {349, 7203}, {479, 4391}, {513, 57792}, {514, 1088}, {522, 23062}, {646, 41292}, {650, 57880}, {658, 1111}, {738, 35519}, {934, 23989}
X(59941) = trilinear product X(i)*X(j) for these {i, j}: {2, 58817}, {7, 3676}, {11, 4626}, {56, 52621}, {57, 24002}, {75, 43932}, {85, 3669}, {226, 17096}, {244, 4569}, {269, 693}, {274, 7216}, {279, 514}, {310, 7250}, {479, 522}, {513, 1088}, {649, 57792}, {650, 23062}, {658, 1086}, {663, 57880}, {664, 1358}
X(59941) = trilinear quotient X(i)/X(j) for these (i, j): (7, 3939), (11, 4105), (75, 4578), (76, 6558), (85, 644), (109, 6066), (244, 8641), (269, 692), (273, 56183), (274, 7259), (279, 101), (310, 7256), (348, 4587), (349, 30730), (479, 109), (513, 1253), (514, 220), (522, 480), (552, 4636), (649, 14827)
X(59941) = center of circle {{X(7), X(14189), X(32624)}}


X(59942) = CENTER OF Ω( X(7)X(8), X(8) ), WHERE Ω = CIRCUMCIRCLE

Barycentrics    (b-c)*(a^4-4*(b+c)*a^3+2*(3*b^2-b*c+3*c^2)*a^2-2*(b+c)*(2*b^2-3*b*c+2*c^2)*a+(b^2-c^2)^2)/a : :

X(59942) lies on these lines: {2, 59977}, {8, 3309}, {100, 47815}, {693, 6362}, {900, 4397}, {3669, 10529}, {4905, 10916}, {11680, 47819}, {48111, 57287}

X(59942) = anticomplement of X(59977)
X(59942) = cross-difference of every pair of points on the line X(14827)X(34543)
X(59942) = X(59977)-Dao conjugate of-X(59977)
X(59942) = perspector of the circumconic through X(34523) and X(57792)
X(59942) = pole of the line {1602, 38901} with respect to the circumcircle
X(59942) = pole of the line {518, 20013} with respect to the incircle of anticomplementary triangle
X(59942) = pole of the line {7071, 10965} with respect to the polar circle
X(59942) = pole of the line {6604, 56084} with respect to the Steiner circumellipse


X(59943) = CENTER OF Ω( X(2)X(3), X(2) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(12*a^3-5*(b+c)*a^2-6*(b^2+c^2)*a-(b+c)*(5*b^2-18*b*c+5*c^2)) : :

X(59943) lies on these lines: {2, 523}, {676, 4926}, {3667, 45677}, {3837, 59946}, {4778, 59875}, {4874, 48619}, {4927, 59912}, {39386, 59944}, {39540, 51615}

X(59943) = midpoint of X(4927) and X(59912)
X(59943) = pole of the line {524, 4402} with respect to the Steiner inellipse
X(59943) = (X(59870), X(59872))-harmonic conjugate of X(59871)


X(59944) = CENTER OF Ω( X(2)X(3), X(3) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^7-(b+c)*a^6-6*(b^2+c^2)*a^5+(b+c)^3*a^4+8*b^2*c^2*a^3+(b+c)*(b^2+c^2)*(b^2-4*b*c+c^2)*a^2+2*(b^4-c^4)*(b^2-c^2)*a-(b^2-c^2)^3*(b-c)) : :

X(59944) lies on these lines: {3, 523}, {513, 59870}, {900, 59945}, {3667, 59879}, {4977, 59947}, {5570, 39540}, {6006, 59872}, {17437, 44409}, {28217, 59871}, {39386, 59943}

X(59944) = center of circle {{X(5533), X(6882), X(56423)}}
X(59944) = (X(59870), X(59875))-harmonic conjugate of X(59876)


X(59945) = CENTER OF Ω( X(2)X(3), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^7-3*(b+c)*a^6-2*(b^2+c^2)*a^5+(b+c)*(3*b^2-2*b*c+3*c^2)*a^4-8*(b^2-c^2)^2*a^3+(b^2-c^2)*(b-c)*(3*b+c)*(b+3*c)*a^2+6*(b^4-c^4)*(b^2-c^2)*a+(b^2-c^2)^2*(b+c)*(-3*b^2-2*b*c-3*c^2)) : :

X(59945) lies on these lines: {4, 523}, {513, 59947}, {522, 59871}, {676, 4926}, {900, 59944}, {4962, 59870}, {28221, 59946}, {39540, 51616}, {42337, 59848}

X(59945) = pole of the line {30, 18283} with respect to the polar circle
X(59945) = center of circle {{X(1532), X(5533), X(56423)}}
X(59945) = (X(59875), X(59879))-harmonic conjugate of X(59871)


X(59946) = CENTER OF Ω( X(2)X(3), X(5) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*(b^2+c^2)*a^5-2*(b+c)*b*c*a^4-4*(b^4-b^2*c^2+c^4)*a^3+(b+c)*(4*b^2-5*b*c+4*c^2)*b*c*a^2+2*(b^4-c^4)*(b^2-c^2)*a-2*(b^2-c^2)^2*(b+c)*b*c) : :

X(59946) lies on these lines: {5, 523}, {900, 59872}, {3837, 59943}, {4188, 48207}, {5533, 39540}, {28209, 59947}, {28217, 59871}, {28221, 59945}

X(59946) = (X(59872), X(59879))-harmonic conjugate of X(59876)


X(59947) = CENTER OF Ω( X(2)X(3), X(20) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(12*a^7+3*(b+c)*a^6-14*(b^2+c^2)*a^5-(b+c)*(3*b^2-2*b*c+3*c^2)*a^4-8*(b^4-4*b^2*c^2+c^4)*a^3-(b^2-c^2)*(b-c)*(3*b+c)*(b+3*c)*a^2+10*(b^4-c^4)*(b^2-c^2)*a+(b^2-c^2)^2*(b+c)*(3*b^2+2*b*c+3*c^2)) : :

X(59947) lies on these lines: {20, 523}, {513, 59945}, {4778, 59875}, {4977, 59944}, {28209, 59946}, {28220, 59876}, {28225, 59871}, {39540, 51617}


X(59948) = CENTER OF Ω( X(2)X(6), X(2) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(12*a^5+(b+c)*a^4-30*(b^2+c^2)*a^3+2*(b+c)*(22*b^2-45*b*c+22*c^2)*a^2-6*(b^4-10*b^2*c^2+c^4)*a-(b+c)*(5*b^4+5*c^4-2*b*c*(9*b^2-17*b*c+9*c^2))) : :

X(59948) lies on these lines: {2, 1499}, {3667, 45677}, {39545, 51615}


X(59949) = CENTER OF Ω( X(2)X(6), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^9-3*(b+c)*a^8-6*(b^2+c^2)*a^7+2*(b+c)*(7*b^2-5*b*c+7*c^2)*a^6-2*(11*b^4-10*b^2*c^2+11*c^4)*a^5+2*(b+c)*(10*b^4+10*c^4-b*c*(9*b^2+14*b*c+9*c^2))*a^4-2*(b^2+c^2)*(5*b^4-18*b^2*c^2+5*c^4)*a^3+2*(b^3+c^3)*(b-c)^2*(b^2+c^2)*a^2+2*(b^4-c^4)^2*a-(b^4-c^4)*(b^2+c^2)^2*(b-c)) : :

X(59949) lies on these lines: {6, 1499}, {2498, 3309}

X(59949) = (X(59953), X(59965))-harmonic conjugate of X(59959)


X(59950) = CENTER OF Ω( X(2)X(7), X(2) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(9*a^5-5*(b+c)*a^4-2*(25*b^2-34*b*c+25*c^2)*a^3+2*(b+c)*(37*b^2-64*b*c+37*c^2)*a^2-(23*b^4+23*c^4+2*b*c*(14*b^2-43*b*c+14*c^2))*a-(b^2-c^2)*(b-c)*(5*b^2-30*b*c+5*c^2)) : :

X(59950) lies on these lines: {2, 28292}, {2826, 59951}, {3667, 45677}


X(59951) = CENTER OF Ω( X(2)X(7), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(a^4-6*(b-c)^2*a^2+4*(b+c)*(2*b^2-3*b*c+2*c^2)*a-(3*b^2+14*b*c+3*c^2)*(b-c)^2) : :

X(59951) lies on these lines: {7, 28292}, {514, 59874}, {2826, 59950}, {3676, 21314}

X(59951) = pole of the line {21314, 59612} with respect to the incircle
X(59951) = pole of the line {3160, 43050} with respect to the circumhyperbola dual of Yff parabola


X(59952) = CENTER OF Ω( X(3)X(6), X(3) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*(b-c)*((b+c)*a^6-2*(b^2+c^2)*a^5-(b+c)^3*a^4+4*(b^4+b^2*c^2+c^4)*a^3-(b+c)*(b^2+c^2)*(b^2-4*b*c+c^2)*a^2-2*(b^2+c^2)*(b^4+c^4)*a+(b^2-c^2)^3*(b-c)) : :

X(59952) lies on these lines: {3, 512}, {513, 59870}, {2473, 2488}, {5570, 39541}, {17437, 44410}


X(59953) = CENTER OF Ω( X(3)X(6), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*(b-c)*((b+c)*a^6-2*(b^2+c^2)*a^5+(b+c)*(3*b^2-2*b*c+3*c^2)*a^4-4*(b^4-b^2*c^2+c^4)*a^3+(b+c)*(3*b^4+3*c^4-2*b*c*(2*b^2+3*b*c+2*c^2))*a^2-2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a+(b^4-c^4)*(b^2+c^2)*(b-c)) : :

X(59953) lies on these lines: {6, 512}, {2473, 2488}, {2498, 3309}

X(59953) = (X(59949), X(59959))-harmonic conjugate of X(59965)


X(59954) = CENTER OF Ω( X(3)X(6), X(15) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*(b-c)*(-2*((b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^3+c^3)*a^2-2*(b^4-4*b^2*c^2+c^4)*a+(b^4-c^4)*(b-c))*S+((b+c)*a^6-2*(b^2+c^2)*a^5-(b+c)^3*a^4+4*(b^4+b^2*c^2+c^4)*a^3-(b+c)*(b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2))*a^2-2*(b^2+c^2)*(b^4+c^4)*a+(b^2-c^2)^3*(b-c))*sqrt(3)) : :

X(59954) lies on these lines: {15, 512}, {50658, 59877}


X(59955) = CENTER OF Ω( X(3)X(6), X(16) ), WHERE Ω = INCIRCLE

Barycentrics    a^2*(b-c)*(2*((b+c)*a^4-2*(b^2+c^2)*a^3+2*(b^3+c^3)*a^2-2*(b^4-4*b^2*c^2+c^4)*a+(b^4-c^4)*(b-c))*S+((b+c)*a^6-2*(b^2+c^2)*a^5-(b+c)^3*a^4+4*(b^4+b^2*c^2+c^4)*a^3-(b+c)*(b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2))*a^2-2*(b^2+c^2)*(b^4+c^4)*a+(b^2-c^2)^3*(b-c))*sqrt(3)) : :

X(59955) lies on these lines: {16, 512}, {50658, 59877}


X(59956) = CENTER OF Ω( X(3)X(8), X(3) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(3*a^3-(b+c)*a^2-(3*b^2-4*b*c+3*c^2)*a+(b^2-c^2)*(b-c))*(2*a^4-(b+c)*a^3-(b+c)^2*a^2+(b+c)*(b^2+c^2)*a-(b^2-c^2)^2) : :

X(59956) lies on these lines: {3, 900}, {513, 59870}, {28217, 59957}

X(59956) = pole of the line {17437, 59809} with respect to the incircle
X(59956) = center of circle {{X(3), X(5570), X(59809)}}


X(59957) = CENTER OF Ω( X(3)X(8), X(8) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(5*a-3*b-3*c)*(2*a^3-3*(b+c)*a^2-4*(b^2-3*b*c+c^2)*a+(b^2-c^2)*(b-c)) : :

X(59957) lies on these lines: {8, 900}, {2976, 3035}, {3667, 59963}, {28217, 59956}


X(59958) = CENTER OF Ω( X(4)X(6), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^9-5*(b+c)*a^8-2*(b^2+c^2)*a^7+2*(b+c)*(b^2+b*c+c^2)*a^6-2*(b^2-c^2)^2*a^5+2*(b^2-c^2)*(b-c)*(4*b^2+5*b*c+4*c^2)*a^4-6*(b^4-c^4)*(b^2-c^2)*a^3-2*(b^2-c^2)*(b-c)^2*(b^3-c^3)*a^2+2*(b^2-c^2)^2*(3*b^4+2*b^2*c^2+3*c^4)*a+(b^2-c^2)^2*(b+c)^3*(-3*b^2+4*b*c-3*c^2)) : :

X(59958) lies on these lines: {4, 525}, {522, 59871}

X(59958) = pole of the line {1503, 18283} with respect to the polar circle


X(59959) = CENTER OF Ω( X(4)X(6), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^9-7*(b+c)*a^8+2*(b^2+c^2)*a^7+2*(b^3+c^3)*a^6-2*(3*b^4-2*b^2*c^2+3*c^4)*a^5+2*(b+c)*(4*b^4+4*c^4-b*c*(b+c)^2)*a^4-2*(b^4-c^4)*(b^2-c^2)*a^3-2*(b^3-c^3)*(b^4-c^4)*a^2+2*(b^4-c^4)^2*a-(b^4-c^4)*(b^2+c^2)^2*(b-c)) : :

X(59959) lies on these lines: {6, 525}, {2498, 3309}

X(59959) = (X(59953), X(59965))-harmonic conjugate of X(59949)


X(59960) = CENTER OF Ω( X(4)X(7), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(-a+b+c)*(a^3+(b+c)*a^2-(b+c)^2*a-(b^2-c^2)*(b-c))*(a^5-2*(b-c)^2*a^3+(b^2-c^2)^2*a-4*(b^2-c^2)*(b-c)*b*c) : :

X(59960) lies on these lines: {4, 3900}, {522, 59871}, {1734, 31516}, {6362, 59961}

X(59960) = X(55118)-Dao conjugate of-X(100)
X(59960) = pole of the line {971, 18283} with respect to the polar circle


X(59961) = CENTER OF Ω( X(4)X(7), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(a^4-3*(b+c)*a^3+3*(b-c)^2*a^2-(b+c)*(b^2-6*b*c+c^2)*a+4*b*c*(b-c)^2) : :

X(59961) lies on these lines: {7, 3900}, {514, 59874}, {905, 21314}, {1734, 20121}, {6362, 59960}, {7192, 43932}

X(59961) = pole of the line {21314, 43064} with respect to the incircle
X(59961) = pole of the line {4957, 17158} with respect to the Steiner circumellipse


X(59962) = CENTER OF Ω( X(4)X(8), X(4) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a^7+2*(b+c)*a^6-(b^2+10*b*c+c^2)*a^5-4*(b+c)*(b^2-3*b*c+c^2)*a^4-(b-c)^4*a^3+2*(b^2-c^2)*(b-c)^3*a^2+(b^2-c^2)^2*(b^2+6*b*c+c^2)*a-4*(b^2-c^2)^2*(b+c)*b*c) : :

X(59962) lies on these lines: {4, 513}, {522, 59871}, {900, 7661}, {4777, 59889}

X(59962) = pole of the line {517, 18283} with respect to the polar circle


X(59963) = CENTER OF Ω( X(4)X(8), X(8) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a^4+3*(b+c)*a^3+(3*b^2-38*b*c+3*c^2)*a^2+(b+c)*(b^2+18*b*c+c^2)*a-4*b*c*(b+c)^2) : :

X(59963) lies on these lines: {8, 513}, {900, 7661}, {3667, 59957}, {4962, 23813}, {14352, 20317}

X(59963) = reflection of X(14352) in X(20317)
X(59963) = pole of the line {8, 16602} with respect to the Spieker circle
X(59963) = pole of the line {4358, 36606} with respect to the Steiner circumellipse


X(59964) = CENTER OF Ω( X(5)X(6), X(5) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(2*(b^2+c^2)*a^7-2*(b+c)*(2*b^2-3*b*c+2*c^2)*a^6-2*(b^4+4*b^2*c^2+c^4)*a^5+(b+c)*(8*b^4+8*c^4-b*c*(14*b^2-15*b*c+14*c^2))*a^4-2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)*a^3-(b+c)*(4*b^6+4*c^6-(10*b^4+10*c^4-b*c*(5*b^2+4*b*c+5*c^2))*b*c)*a^2+2*(b^2-c^2)^4*a-2*(b^2-c^2)^3*(b-c)*b*c) : :

X(59964) lies on these lines: {5, 3566}, {900, 59872}


X(59965) = CENTER OF Ω( X(5)X(6), X(6) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(4*a^9-5*(b+c)*a^8-2*(b^2+c^2)*a^7+2*(b+c)*(4*b^2-3*b*c+4*c^2)*a^6-2*(7*b^4-6*b^2*c^2+7*c^4)*a^5+2*(b+c)*(7*b^4+7*c^4-b*c*(5*b^2+8*b*c+5*c^2))*a^4-2*(b^2-3*c^2)*(3*b^2-c^2)*(b^2+c^2)*a^3-2*(b^4-c^4)*b*c*(b-c)*a^2+2*(b^4-c^4)^2*a-(b^4-c^4)*(b^2+c^2)^2*(b-c)) : :

X(59965) lies on these lines: {6, 3566}, {2498, 3309}

X(59965) = (X(59949), X(59959))-harmonic conjugate of X(59953)


X(59966) = CENTER OF Ω( X(7)X(8), X(7) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a+b-c)*(a-b+c)*(a^4-3*(b+c)*a^3+3*(b^2+c^2)*a^2-(b+c)*(b^2+c^2)*a+4*b*c*(b-c)^2) : :
X(59966) = 5*X(20195)-3*X(59979)

X(59966) lies on these lines: {7, 3309}, {514, 59874}, {2826, 58817}, {3669, 21314}, {4905, 20121}, {20195, 59979}

X(59966) = pole of the line {1418, 4859} with respect to the incircle


X(59967) = CENTER OF Ω( X(7)X(8), X(8) ), WHERE Ω = INCIRCLE

Barycentrics    (b-c)*(a^6+(b+c)*a^5-2*(b^2+13*b*c+c^2)*a^4-2*(b+c)*(b^2-19*b*c+c^2)*a^3+(b^4+c^4-2*b*c*(21*b^2-13*b*c+21*c^2))*a^2+(b+c)*(b^4+c^4+6*b*c*(3*b^2-5*b*c+3*c^2))*a-4*b*c*(b^2-c^2)^2) : :

X(59967) lies on these lines: {8, 3309}, {3667, 59957}, {4905, 21267}


X(59968) = CENTER OF Ω( X(1)X(2), X(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(-a+b+c)*(a^3-3*(b+c)*a^2-(3*b-c)*(b-3*c)*a+(b^2-c^2)*(b-c)) : :
X(59968) = 3*X(47801)-4*X(59836)

X(59968) lies on these lines: {1, 3667}, {2, 59913}, {513, 14284}, {522, 3717}, {523, 59909}, {900, 6129}, {3259, 38357}, {3310, 48269}, {4162, 28217}, {4926, 47800}, {4962, 59748}, {7649, 24457}, {26476, 44316}, {28221, 59895}, {39508, 39692}, {47801, 59836}

X(59968) = reflection of X(7649) in X(24457)
X(59968) = complement of X(59913)
X(59968) = X(11)-Dao conjugate of-X(56113)
X(59968) = X(109)-isoconjugate of-X(56113)
X(59968) = X(650)-reciprocal conjugate of-X(56113)
X(59968) = pole of the line {38471, 44039} with respect to the excircles radical circle
X(59968) = pole of the line {519, 1837} with respect to the incircle
X(59968) = pole of the line {944, 5121} with respect to the orthoptic circle of Steiner inellipse
X(59968) = pole of the line {34, 38460} with respect to the polar circle
X(59968) = pole of the line {3756, 3937} with respect to the Feuerbach circumhyperbola
X(59968) = pole of the line {3452, 17276} with respect to the Steiner inellipse
X(59968) = trilinear quotient X(522)/X(56113)
X(59968) = center of circle {{X(8), X(145), X(10538)}}
X(59968) = (X(59972), X(59976))-harmonic conjugate of X(59980)


X(59969) = CENTER OF Ω( X(1)X(2), X(2) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(3*a^3+(b+c)*a^2-3*(3*b^2+2*b*c+3*c^2)*a+(b+c)*(b^2+6*b*c+c^2)) : :
X(59969) = 8*X(25380)+X(48269) = 10*X(30795)-X(47123) = 2*X(36848)+X(48546) = X(47764)+2*X(47824) = 4*X(47823)-X(48574) = 2*X(48232)+X(48554) = X(48398)+8*X(53573)

X(59969) lies on these lines: {2, 3667}, {523, 7625}, {661, 4521}, {858, 39508}, {2505, 7659}, {4608, 44435}, {4926, 47800}, {5094, 7649}, {16051, 20315}, {16231, 52284}, {20294, 30769}, {21196, 30764}, {25380, 48269}, {28191, 47809}, {28195, 47807}, {28199, 48178}, {28205, 47799}, {30739, 44316}, {30765, 48175}, {30795, 47123}, {36848, 48546}, {39225, 40916}, {40132, 44925}, {47764, 47824}, {47823, 48574}, {48232, 48554}, {48398, 53573}

X(59969) = complement of X(59912)
X(59969) = cross-difference of every pair of points on the line X(1384)X(3915)
X(59969) = perspector of the circumconic through X(5485) and X(34860)
X(59969) = pole of the line {11238, 51615} with respect to the incircle
X(59969) = pole of the line {3011, 47597} with respect to the orthocentroidal circle
X(59969) = pole of the line {40, 376} with respect to the orthoptic circle of Steiner inellipse
X(59969) = pole of the line {3756, 6791} with respect to the Kiepert circumhyperbola
X(59969) = pole of the line {11160, 17132} with respect to the Steiner circumellipse
X(59969) = pole of the line {599, 2321} with respect to the Steiner inellipse
X(59969) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 48545, 47801), (30792, 47802, 47806), (47802, 47806, 47757), (59887, 59895, 7628)


X(59970) = CENTER OF Ω( X(1)X(2), X(8) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(5*a^4-12*(b+c)*a^3-4*(2*b^2-13*b*c+2*c^2)*a^2+8*(b+c)*(b^2-3*b*c+c^2)*a-(b^2-c^2)^2) : :
X(59970) = 3*X(47801)-4*X(59834)

X(59970) lies on these lines: {8, 3667}, {513, 14284}, {2505, 7659}, {6006, 59971}, {7628, 28217}, {47801, 59834}

X(59970) = pole of the line {519, 2899} with respect to the incircle of anticomplementary triangle
X(59970) = pole of the line {12245, 50535} with respect to the orthoptic circle of Steiner inellipse
X(59970) = pole of the line {4399, 54280} with respect to the Steiner inellipse
X(59970) = (X(59892), X(59909))-harmonic conjugate of X(7628)


X(59971) = CENTER OF Ω( X(1)X(2), X(10) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(-a+b+c)*((b+c)*a^2+(b^2-b*c+c^2)*a-b*c*(b+c)) : :
X(59971) = X(1459)-3*X(48165) = 2*X(2605)-3*X(45316) = X(4449)-3*X(48173) = X(17418)-3*X(47793) = X(21173)-3*X(47794) = 3*X(21198)-X(59750) = 3*X(26144)-X(48303) = 3*X(48168)-X(48283) = 3*X(48181)-X(53314) = 3*X(48186)-X(48281) = 3*X(48209)-X(48342)

X(59971) lies on these lines: {2, 43924}, {8, 42312}, {9, 20979}, {10, 3667}, {124, 3259}, {513, 3823}, {514, 24459}, {521, 3716}, {522, 3717}, {661, 4521}, {663, 20293}, {832, 48063}, {958, 4057}, {993, 39225}, {1146, 39011}, {1329, 44316}, {1459, 48165}, {2254, 25627}, {2551, 44444}, {2605, 45316}, {3038, 36951}, {3452, 14434}, {3676, 25008}, {3737, 27527}, {3741, 48547}, {3762, 21189}, {3810, 52355}, {3814, 39508}, {3835, 6371}, {4017, 4462}, {4142, 23874}, {4449, 48173}, {4468, 26545}, {4977, 47843}, {6003, 59672}, {6006, 59970}, {6363, 21260}, {7649, 46878}, {7705, 56861}, {8062, 9001}, {9002, 31946}, {17418, 47793}, {20294, 21132}, {20315, 34823}, {21120, 57158}, {21173, 47794}, {21191, 21246}, {21198, 59750}, {21244, 21262}, {23791, 48009}, {24718, 48029}, {25005, 39771}, {25143, 25380}, {26144, 48303}, {26932, 38989}, {28225, 47987}, {34589, 38979}, {48043, 50497}, {48168, 48283}, {48181, 53314}, {48186, 48281}, {48209, 48342}

X(59971) = midpoint of X(i) and X(j) for these {i, j}: {8, 42312}, {663, 20293}, {3762, 21189}, {4017, 4462}, {20294, 21132}, {21120, 57158}
X(59971) = complementary conjugate of X(3756)
X(59971) = complement of X(43924)
X(59971) = cross-difference of every pair of points on the line X(604)X(3915)
X(59971) = crosssum of X(100) and X(53625)
X(59971) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 16614), (513, 522), (20317, 4521)
X(59971) = X(i)-complementary conjugate of-X(j) for these (i, j): (1, 3756), (2, 4904), (8, 11), (9, 1086), (10, 8286), (21, 244), (31, 16614), (37, 17058), (41, 6377), (42, 16613), (55, 1015), (56, 17071), (59, 6129), (75, 17059), (78, 2968), (99, 3742), (100, 1), (101, 3752), (108, 17054), (109, 52541), (190, 142), (200, 1146), (210, 115), (294, 27918), (312, 116), (314, 53564), (333, 17761), (341, 124), (346, 26932), (480, 35508), (643, 1125), (644, 2), (645, 3739), (646, 141), (650, 6547), (651, 4000), (660, 1738), (662, 3946), (664, 11019), (668, 2886), (692, 17053), (728, 13609), (765, 522), (799, 17050), (835, 5439), (931, 4719), (932, 17063), (934, 5573), (960, 15611), (1016, 4885)
X(59971) = X(i)-Dao conjugate of-X(j) for these (i, j): (1, 53625), (11, 979), (312, 668), (1146, 39694), (2968, 56276), (3756, 39701), (16614, 2), (35508, 56279), (40624, 58019)
X(59971) = X(i)-isoconjugate of-X(j) for these {i, j}: {56, 53625}, {109, 979}, {1415, 39694}, {1461, 56279}
X(59971) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (9, 53625), (522, 39694), (650, 979), (978, 651), (3169, 100), (3210, 664), (3239, 56276), (3900, 56279), (4391, 58019), (4521, 39701), (16614, 43924), (19582, 190), (20805, 1813), (21769, 109), (21857, 4551)
X(59971) = center of: the circumconic with perspector X(16614), the central inconic through X(522) and X(35519)
X(59971) = perspector of the circumconic with center X(16614)
X(59971) = pole of the line {239, 39592} with respect to the Bevan circle
X(59971) = pole of the line {519, 44039} with respect to the excircles radical circle
X(59971) = pole of the line {3976, 12053} with respect to the incircle
X(59971) = pole of the line {1329, 2885} with respect to the nine-point circle
X(59971) = pole of the line {40, 5205} with respect to the orthoptic circle of Steiner inellipse
X(59971) = pole of the line {34, 979} with respect to the polar circle
X(59971) = pole of the line {519, 960} with respect to the Spieker circle
X(59971) = pole of the line {23441, 23637} with respect to the Brocard inellipse
X(59971) = pole of the line {3756, 16613} with respect to the Kiepert circumhyperbola
X(59971) = pole of the line {2321, 3061} with respect to the Mandart inellipse
X(59971) = pole of the line {312, 2321} with respect to the Steiner inellipse
X(59971) = pole of the line {6332, 8632} with respect to the Yff parabola
X(59971) = barycentric product X(i)*X(j) for these {i, j}: {514, 19582}, {522, 3210}, {693, 3169}, {978, 4391}, {4521, 27835}, {18155, 21857}, {20805, 46110}, {21769, 35519}
X(59971) = trilinear product X(i)*X(j) for these {i, j}: {513, 19582}, {514, 3169}, {522, 978}, {646, 16614}, {650, 3210}, {4162, 27835}, {4391, 21769}, {4560, 21857}, {20805, 44426}
X(59971) = trilinear quotient X(i)/X(j) for these (i, j): (8, 53625), (522, 979), (978, 109), (3169, 101), (3210, 651), (3239, 56279), (4391, 39694), (4397, 56276), (16614, 57181), (19582, 100), (20805, 36059), (21769, 1415), (21857, 4559), (35519, 58019)
X(59971) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {1, 8, 10538}, {1737, 3259, 6735}
X(59971) = (X(6615), X(14430))-harmonic conjugate of X(4397)


X(59972) = CENTER OF Ω( X(1)X(3), X(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^3+(b+c)*a^2-(b^2+6*b*c+c^2)*a-(b+c)*(b^2-4*b*c+c^2)) : :

X(59972) lies on these lines: {1, 513}, {522, 8062}, {523, 47921}, {650, 28183}, {900, 6129}, {905, 4926}, {1470, 48390}, {1769, 15313}, {2509, 4526}, {3667, 51648}, {3669, 28217}, {4083, 59836}, {4397, 26144}, {5516, 17071}, {5552, 48165}, {6615, 9001}, {7655, 14315}, {10200, 48230}, {14284, 53522}, {26364, 48181}, {26482, 59902}, {28165, 47965}, {30198, 53314}

X(59972) = midpoint of X(14284) and X(53522)
X(59972) = reflection of X(7655) in X(14315)
X(59972) = cross-difference of every pair of points on the line X(44)X(2178)
X(59972) = perspector of the circumconic through X(88) and X(2994)
X(59972) = pole of the line {36, 12652} with respect to the apollonian circle of mixtilinear incircles
X(59972) = pole of the line {36, 1722} with respect to the circumcircle
X(59972) = pole of the line {517, 1479} with respect to the incircle
X(59972) = pole of the line {26476, 28018} with respect to the nine-point circle
X(59972) = pole of the line {1068, 4200} with respect to the polar circle
X(59972) = pole of the line {3937, 53525} with respect to the Feuerbach circumhyperbola
X(59972) = pole of the line {17495, 20078} with respect to the Steiner circumellipse
X(59972) = pole of the line {63, 16610} with respect to the Steiner inellipse
X(59972) = (X(59968), X(59980))-harmonic conjugate of X(59976)


X(59973) = CENTER OF Ω( X(1)X(3), X(3) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(-a+b+c)*(-a^2+b^2+c^2)*(a^3+(b+c)*a^2-(b^2+c^2)*a-(b^2-c^2)*(b-c)) : :
X(59973) = X(14304)-3*X(48228) = X(42455)-3*X(48181)

X(59973) lies on these lines: {2, 44426}, {3, 513}, {4, 44923}, {5, 16228}, {123, 10017}, {440, 47760}, {464, 4776}, {514, 59975}, {521, 656}, {522, 8062}, {523, 7663}, {1038, 48281}, {1040, 48307}, {1060, 48283}, {1062, 48302}, {1214, 47887}, {1368, 47802}, {2804, 6129}, {2968, 51402}, {3738, 59753}, {3900, 18455}, {6608, 47828}, {6615, 17418}, {6676, 47803}, {6961, 43933}, {7386, 44429}, {7494, 47804}, {7536, 47761}, {7649, 44815}, {7658, 8058}, {9051, 23187}, {14304, 48228}, {16573, 57463}, {17102, 23757}, {18589, 40474}, {20294, 44428}, {21188, 51648}, {23880, 52599}, {34120, 48230}, {34588, 38981}, {35072, 35091}, {37565, 59974}, {37613, 48332}, {42455, 48181}, {44436, 47176}, {50350, 53285}, {55126, 55297}

X(59973) = midpoint of X(i) and X(j) for these {i, j}: {20294, 44428}, {50350, 53285}
X(59973) = reflection of X(i) in X(j) for these (i, j): (4, 44923), (7649, 44815), (16228, 5)
X(59973) = complementary conjugate of the complement of X(36059)
X(59973) = complement of X(44426)
X(59973) = isotomic conjugate of the polar conjugate of X(46389)
X(59973) = cross-difference of every pair of points on the line X(19)X(1609)
X(59973) = crosspoint of X(2) and X(6516)
X(59973) = crosssum of X(i) and X(j) for these {i, j}: {6, 18344}, {109, 36082}, {650, 19354}
X(59973) = X(i)-Ceva conjugate of-X(j) for these (i, j): (2, 6506), (522, 521), (6516, 6511), (6517, 1214), (57878, 26932)
X(59973) = X(i)-complementary conjugate of-X(j) for these (i, j): (3, 124), (31, 6506), (48, 26932), (59, 20316), (73, 125), (77, 21252), (101, 41883), (109, 5), (110, 34831), (163, 6708), (184, 1146), (212, 5514), (222, 116), (255, 123), (307, 53575), (577, 16596), (603, 11), (651, 20305), (664, 21243), (692, 20262), (906, 3452), (1214, 21253), (1262, 46396), (1331, 1329), (1332, 21244), (1409, 8287), (1410, 8286), (1415, 226), (1437, 34589), (1459, 46100), (1461, 16608), (1576, 40942), (1813, 141), (3215, 5521), (4558, 21246), (4565, 34830), (4575, 960), (6056, 40616), (6516, 2887), (6517, 1368), (7053, 17059), (7078, 46663), (7099, 4904), (7114, 7358), (7335, 2968), (8750, 15849), (17975, 46670), (22341, 34846), (23067, 3454), (23979, 14837)
X(59973) = X(i)-Dao conjugate of-X(j) for these (i, j): (11, 7040), (63, 664), (6506, 2), (7358, 36626), (26932, 7318), (35072, 2994), (36033, 36082), (38983, 90), (40626, 20570)
X(59973) = X(i)-isoconjugate of-X(j) for these {i, j}: {4, 36082}, {90, 108}, {109, 7040}, {653, 2164}, {1069, 36127}, {2994, 32674}, {7072, 36118}, {7318, 8750}
X(59973) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (46, 653), (48, 36082), (521, 2994), (650, 7040), (652, 90), (905, 7318), (1068, 54240), (1406, 32714), (1800, 662), (1946, 2164), (2178, 108), (3157, 651), (3193, 648), (3559, 823), (5552, 6335), (5905, 18026), (6332, 20570), (6505, 664), (6506, 44426), (6511, 6516), (20930, 46404), (21188, 273), (31631, 811), (36054, 1069), (46389, 4), (51648, 278), (52033, 36127), (55214, 225), (56848, 36118), (57055, 36626), (57124, 8748), (57241, 6513)
X(59973) = center of: the circumconic with perspector X(6506), the inconic with perspector X(6516)
X(59973) = perspector of the circumconic with center X(6506)
X(59973) = pole of the line {517, 3556} with respect to the circumcircle
X(59973) = pole of the line {12547, 38474} with respect to the Conway circle
X(59973) = pole of the line {1071, 1479} with respect to the incircle
X(59973) = pole of the line {158, 1068} with respect to the polar circle
X(59973) = pole of the line {5570, 18732} with respect to the de Longchamps ellipse
X(59973) = pole of the line {162, 3658} with respect to the Stammler hyperbola
X(59973) = pole of the line {6360, 20078} with respect to the Steiner circumellipse
X(59973) = pole of the line {63, 77} with respect to the Steiner inellipse
X(59973) = barycentric product X(i)*X(j) for these {i, j}: {46, 6332}, {69, 46389}, {78, 21188}, {332, 55214}, {345, 51648}, {521, 5905}, {522, 6505}, {525, 3193}, {652, 20930}, {656, 31631}, {905, 5552}, {1406, 15416}, {1577, 1800}, {2178, 35518}, {3157, 4391}, {3559, 24018}, {6506, 6516}, {6511, 44426}, {40152, 57083}, {52033, 52616}
X(59973) = trilinear product X(i)*X(j) for these {i, j}: {46, 521}, {63, 46389}, {78, 51648}, {219, 21188}, {520, 3559}, {522, 3157}, {523, 1800}, {647, 31631}, {650, 6505}, {652, 5905}, {656, 3193}, {1068, 57241}, {1459, 5552}, {1812, 55214}, {1813, 6506}, {1946, 20930}, {2178, 6332}, {3064, 6511}, {21077, 23189}, {22341, 57083}
X(59973) = trilinear quotient X(i)/X(j) for these (i, j): (3, 36082), (46, 108), (521, 90), (522, 7040), (652, 2164), (1068, 36127), (1800, 110), (2178, 32674), (3157, 109), (3193, 162), (3559, 107), (4025, 7318), (5552, 1897), (5905, 653), (6332, 2994), (6505, 651), (6506, 3064), (6511, 1813), (20930, 18026), (21188, 278)
X(59973) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {36, 2077, 6326}, {109, 1785, 2716}, {10017, 46974, 54083}
X(59973) = (X(656), X(14414))-harmonic conjugate of X(57241)


X(59974) = CENTER OF Ω( X(1)X(3), X(36) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^6-(3*b^2+b*c+3*c^2)*a^4+3*(b+c)*b*c*a^3+(3*b^4+3*c^4+b*c*(b^2+c^2))*a^2-(b+c)*(3*b^2-4*b*c+3*c^2)*b*c*a-(b^4-c^4)*(b^2-c^2)) : :

X(59974) lies on these lines: {36, 238}, {33178, 48302}, {37565, 59973}, {43052, 59975}

X(59974) = pole of the line {3666, 22128} with respect to the Steiner inellipse
X(59974) = center of circle {{X(1155), X(1319), X(14873)}}


X(59975) = CENTER OF Ω( X(1)X(3), X(40) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^6-3*(b+c)^2*a^4+2*(b+c)*b*c*a^3+(3*b^2-2*b*c+3*c^2)*(b^2+4*b*c+c^2)*a^2-2*(b+c)^3*b*c*a-(b^2-c^2)^2*(b^2+4*b*c+c^2)) : :

X(59975) lies on these lines: {40, 513}, {514, 59973}, {523, 47921}, {3737, 47965}, {9001, 17418}, {28175, 59888}, {43052, 59974}

X(59975) = cross-difference of every pair of points on the line X(5120)X(10306)
X(59975) = perspector of the circumconic through X(10305) and X(56234)
X(59975) = pole of the line {517, 2910} with respect to the Bevan circle
X(59975) = pole of the line {2077, 9911} with respect to the circumcircle


X(59976) = CENTER OF Ω( X(1)X(4), X(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(3*a^4-2*(b+c)*a^3-2*(b-c)^2*a^2+2*(b^2-c^2)*(b-c)*a-(b^2-c^2)^2) : :
X(59976) = 3*X(28114)-X(59834)

X(59976) lies on these lines: {1, 522}, {142, 28590}, {513, 1835}, {649, 52587}, {676, 28217}, {894, 48070}, {900, 6129}, {1086, 55359}, {1470, 39199}, {1519, 1769}, {1734, 7629}, {3064, 22383}, {3259, 3756}, {3738, 21186}, {4397, 9031}, {4778, 21102}, {5552, 48243}, {5553, 23838}, {5554, 20293}, {6006, 7661}, {6588, 48269}, {8058, 53532}, {9001, 47136}, {10200, 48186}, {20316, 24982}, {21103, 28147}, {21184, 23725}, {23874, 57091}, {26364, 48228}, {28074, 39771}, {28114, 59834}, {32475, 37562}

X(59976) = cross-difference of every pair of points on the line X(219)X(945)
X(59976) = X(i)-Dao conjugate of-X(j) for these (i, j): (1086, 58003), (8054, 945)
X(59976) = X(i)-isoconjugate of-X(j) for these {i, j}: {100, 945}, {692, 58003}
X(59976) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (514, 58003), (649, 945), (944, 190), (2261, 100), (54200, 653)
X(59976) = perspector of the circumconic through X(278) and X(944)
X(59976) = pole of the line {56, 515} with respect to the incircle
X(59976) = pole of the line {8, 1785} with respect to the polar circle
X(59976) = pole of the line {3937, 38357} with respect to the Feuerbach circumhyperbola
X(59976) = pole of the line {19, 53994} with respect to the orthic inconic
X(59976) = pole of the line {3218, 30699} with respect to the Steiner circumellipse
X(59976) = pole of the line {3772, 3911} with respect to the Steiner inellipse
X(59976) = barycentric product X(i)*X(j) for these {i, j}: {514, 944}, {693, 2261}, {6332, 54200}
X(59976) = trilinear product X(i)*X(j) for these {i, j}: {513, 944}, {514, 2261}, {521, 54200}
X(59976) = trilinear quotient X(i)/X(j) for these (i, j): (513, 945), (693, 58003), (944, 100), (2261, 101), (54200, 108)
X(59976) = (X(59968), X(59980))-harmonic conjugate of X(59972)


X(59977) = CENTER OF Ω( X(1)X(6), X(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(-a+b+c)*(a^4-2*(b^2+b*c+c^2)*a^2+2*(b+c)*b*c*a+(b-c)^4) : :

X(59977) lies on these lines: {1, 3309}, {2, 59942}, {497, 47819}, {650, 6362}, {667, 22768}, {764, 10965}, {900, 6129}, {905, 53523}, {2530, 11934}, {2646, 48329}, {3057, 48346}, {3601, 48111}, {4462, 10528}, {5218, 47815}, {5432, 48561}, {5552, 20317}, {7004, 55380}, {10958, 21260}, {14803, 39227}, {42312, 51648}, {59672, 59719}

X(59977) = complement of X(59942)
X(59977) = cross-difference of every pair of points on the line X(1617)X(1723)
X(59977) = perspector of the circumconic through X(6601) and X(39947)
X(59977) = pole of the line {518, 12687} with respect to the hexyl circle
X(59977) = pole of the line {518, 1837} with respect to the incircle
X(59977) = pole of the line {3675, 3937} with respect to the Feuerbach circumhyperbola


X(59978) = CENTER OF Ω( X(1)X(6), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(a^8-2*(b+c)*a^7+2*(b^2+3*b*c+c^2)*a^6-2*(b+c)*(b^2+3*b*c+c^2)*a^5+4*(b^2+c^2)*b*c*a^4+2*(b+c)*(b^4+c^4-2*b*c*(b^2-4*b*c+c^2))*a^3-2*(b^3+c^3)*(b+c)*(b^2+c^2)*a^2+2*(b^4-c^4)*(b-c)*(b^2+3*b*c+c^2)*a-(b^4-c^4)^2) : :

X(59978) lies on these lines: {6, 3309}, {2492, 3566}


X(59979) = CENTER OF Ω( X(1)X(6), X(9) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a*(b-c)*(-a+b+c)^2*(a^3-3*(b+c)*a^2+(3*b^2-2*b*c+3*c^2)*a-(b^2-c^2)*(b-c)) : :
X(59979) = 5*X(18230)-X(57090) = 5*X(20195)-2*X(59966)

X(59979) lies on these lines: {2, 59941}, {9, 3309}, {220, 4162}, {650, 6362}, {657, 3900}, {1212, 3669}, {1566, 5514}, {3119, 55380}, {6554, 20317}, {7079, 18344}, {7368, 58334}, {13609, 40629}, {14077, 40465}, {14298, 40628}, {14330, 57055}, {18230, 57090}, {20195, 59966}, {25925, 43042}, {34591, 38980}, {35092, 35508}

X(59979) = complement of X(59941)
X(59979) = cross-difference of every pair of points on the line X(269)X(1617)
X(59979) = crosspoint of X(2) and X(4578)
X(59979) = crosssum of X(i) and X(j) for these {i, j}: {6, 43932}, {101, 53888}
X(59979) = X(514)-Ceva conjugate of-X(3900)
X(59979) = X(i)-complementary conjugate of-X(j) for these (i, j): (41, 4904), (55, 17059), (101, 21258), (200, 21252), (220, 116), (480, 124), (560, 17071), (644, 17046), (692, 11019), (1110, 3900), (1252, 46399), (1253, 11), (2175, 3756), (2328, 53564), (3699, 17047), (3939, 2886), (4082, 53575), (4105, 46100), (4515, 21253), (4578, 2887), (4587, 18639), (5546, 17050), (6065, 17072), (6066, 522), (6558, 626), (6602, 26932), (7259, 21240), (9448, 16614), (14827, 1086), (23990, 7658), (24012, 34530), (24027, 17427), (32739, 4000)
X(59979) = X(i)-Dao conjugate of-X(j) for these (i, j): (200, 190), (24771, 53653), (35508, 42361)
X(59979) = X(i)-isoconjugate of-X(j) for these {i, j}: {279, 53888}, {1407, 53653}, {1461, 42361}, {4617, 42470}
X(59979) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (200, 53653), (1253, 53888), (3174, 664), (3900, 42361), (4105, 42470), (8732, 36838), (16572, 658), (20946, 46406), (21002, 934), (24771, 190), (36845, 4569), (56937, 4554)
X(59979) = center of the inconic with perspector X(4578)
X(59979) = perspector of the circumconic through X(200) and X(3174)
X(59979) = pole of the line {3059, 4863} with respect to the Mandart inellipse
X(59979) = pole of the line {20015, 20111} with respect to the Steiner circumellipse
X(59979) = pole of the line {200, 220} with respect to the Steiner inellipse
X(59979) = barycentric product X(i)*X(j) for these {i, j}: {514, 24771}, {522, 3174}, {650, 56937}, {657, 20946}, {1021, 21096}, {3239, 16572}, {3900, 36845}, {4130, 8732}, {4397, 21002}
X(59979) = trilinear product X(i)*X(j) for these {i, j}: {513, 24771}, {650, 3174}, {657, 36845}, {663, 56937}, {3239, 21002}, {3900, 16572}, {4105, 8732}, {8641, 20946}, {21096, 21789}
X(59979) = trilinear quotient X(i)/X(j) for these (i, j): (220, 53888), (346, 53653), (3174, 651), (3239, 42361), (4130, 42470), (8732, 4626), (16572, 934), (20946, 4569), (21002, 1461), (21096, 4566), (24771, 100), (36845, 658), (56937, 664)


X(59980) = CENTER OF Ω( X(1)X(7), X(1) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(5*a^3-5*(b+c)*a^2+(b+c)^2*a-(b^2-c^2)*(b-c)) : :
X(59980) = X(2254)-4*X(52596) = 2*X(21172)+X(42312) = X(45745)+2*X(48301) = X(47136)+2*X(48303) = 2*X(48329)+X(48398) = 2*X(48336)+X(49296) = X(53558)+5*X(58154)

X(59980) lies on these lines: {1, 514}, {676, 4162}, {900, 6129}, {1638, 17427}, {2254, 52596}, {3900, 47800}, {4017, 6006}, {4083, 47801}, {4895, 14837}, {6591, 47765}, {6608, 46919}, {7649, 48302}, {8710, 21052}, {8713, 47887}, {9031, 26144}, {11239, 47793}, {21172, 42312}, {27385, 44448}, {45701, 47794}, {45745, 48301}, {47136, 48303}, {47841, 48545}, {48329, 48398}, {48336, 49296}, {53558, 58154}

X(59980) = reflection of X(48545) in X(47841)
X(59980) = cross-difference of every pair of points on the line X(672)X(16059)
X(59980) = X(34607)-reciprocal conjugate of-X(190)
X(59980) = perspector of the circumconic through X(673) and X(34607)
X(59980) = pole of the line {516, 1837} with respect to the incircle
X(59980) = pole of the line {239, 28610} with respect to the Steiner circumellipse
X(59980) = barycentric product X(514)*X(34607)
X(59980) = trilinear product X(513)*X(34607)
X(59980) = trilinear quotient X(34607)/X(100)
X(59980) = (X(59972), X(59976))-harmonic conjugate of X(59968)


X(59981) = CENTER OF Ω( X(1)X(7), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(7*a^6-18*(b+c)*a^5+3*(b^2+14*b*c+c^2)*a^4+4*(b+c)*(7*b^2-16*b*c+7*c^2)*a^3-3*(b-c)^2*(9*b^2+14*b*c+9*c^2)*a^2+6*(b^2-c^2)^2*(b+c)*a+(b-c)^6) : :

X(59981) lies on these lines: {7, 514}, {1638, 17427}, {59891, 59894}


X(59982) = CENTER OF Ω( X(2)X(6), X(2) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b^2-c^2)*(7*a^4-16*(b^2+c^2)*a^2+b^4+14*b^2*c^2+c^4) : :

X(59982) lies on these lines: {2, 1499}, {125, 9193}, {523, 7625}, {525, 9191}, {690, 9209}, {858, 39511}, {1007, 2408}, {1649, 32216}, {2501, 5094}, {3154, 5099}, {3566, 9189}, {5466, 30775}, {5650, 9009}, {5926, 40916}, {5996, 54262}, {6563, 30769}, {9168, 16051}, {23301, 30739}, {37454, 59740}, {39533, 52284}, {40132, 44931}

X(59982) = complement of X(59927)
X(59982) = cross-difference of every pair of points on the line X(1384)X(35259)
X(59982) = X(46645)-complementary conjugate of-X(21253)
X(59982) = X(1084)-Dao conjugate of-X(39236)
X(59982) = X(690)-hirst inverse of-X(9209)
X(59982) = X(662)-isoconjugate of-X(39236)
X(59982) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (512, 39236), (9741, 99)
X(59982) = perspector of the circumconic through X(5485) and X(9741)
X(59982) = pole of the line {22110, 30739} with respect to the nine-point circle
X(59982) = pole of the line {230, 21448} with respect to the orthocentroidal circle
X(59982) = pole of the line {376, 524} with respect to the orthoptic circle of Steiner inellipse
X(59982) = pole of the line {4232, 22329} with respect to the polar circle
X(59982) = pole of the line {22110, 30769} with respect to the power circles radical circle
X(59982) = pole of the line {6791, 9189} with respect to the Kiepert circumhyperbola
X(59982) = pole of the line {26869, 43448} with respect to the orthic inconic
X(59982) = pole of the line {11160, 52229} with respect to the Steiner circumellipse
X(59982) = pole of the line {599, 2549} with respect to the Steiner inellipse
X(59982) = pole of the line {47245, 47597} with respect to the Yff hyperbola
X(59982) = barycentric product X(523)*X(9741)
X(59982) = trilinear product X(661)*X(9741)
X(59982) = trilinear quotient X(i)/X(j) for these (i, j): (661, 39236), (9741, 662)
X(59982) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {325, 22329, 53136}, {3580, 34312, 40112}


X(59983) = CENTER OF Ω( X(2)X(6), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b^2-c^2)*(a^8-6*(b^2+c^2)*a^6+36*b^2*c^2*a^4+2*(b^2-3*c^2)*(3*b^2-c^2)*(b^2+c^2)*a^2-(b^4-c^4)^2) : :

X(59983) lies on these lines: {6, 1499}, {525, 35522}, {690, 9209}, {2492, 3566}, {39511, 49123}

X(59983) = cross-difference of every pair of points on the line X(9027)X(19136)
X(59983) = pole of the line {5913, 6776} with respect to the orthoptic circle of Steiner inellipse
X(59983) = pole of the line {10602, 26869} with respect to the orthic inconic
X(59983) = pole of the line {9870, 16063} with respect to the Steiner circumellipse
X(59983) = pole of the line {2549, 16317} with respect to the Steiner inellipse
X(59983) = center of circle {{X(858), X(8115), X(8116)}}


X(59984) = CENTER OF Ω( X(2)X(7), X(2) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(3*a^5-7*(b+c)*a^4-4*(b^2-b*c+c^2)*a^3+4*(b+c)*(4*b^2-b*c+4*c^2)*a^2-(b+c)^2*(7*b^2-6*b*c+7*c^2)*a-(b^2-c^2)*(b-c)*(b^2-6*b*c+c^2)) : :

X(59984) lies on these lines: {2, 28292}, {523, 7625}, {656, 47800}, {3064, 5094}, {30738, 30764}, {44432, 54264}, {47766, 59986}, {47808, 56321}

X(59984) = complement of X(59929)
X(59984) = pole of the line {376, 527} with respect to the orthoptic circle of Steiner inellipse
X(59984) = pole of the line {6791, 43960} with respect to the Kiepert circumhyperbola


X(59985) = CENTER OF Ω( X(2)X(7), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(-a+b+c)^2*(5*a^7-3*(b+c)*a^6-(29*b^2-34*b*c+29*c^2)*a^5+(b+c)*(47*b^2-86*b*c+47*c^2)*a^4-(b-c)^2*(13*b^2+54*b*c+13*c^2)*a^3-(b^2-c^2)*(b-c)*(13*b^2-34*b*c+13*c^2)*a^2+(b-c)^4*(5*b^2+14*b*c+5*c^2)*a+(b^2-c^2)*(b-c)^5) : :

X(59985) lies on these lines: {7, 28292}, {3900, 59986}, {59891, 59894}


X(59986) = CENTER OF Ω( X(2)X(7), X(9) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(-a+b+c)^2*(a^7+(b+c)*a^6-3*(3*b^2-2*b*c+3*c^2)*a^5+(b+c)*(7*b^2-22*b*c+7*c^2)*a^4+(7*b^4+7*c^4-2*b*c*(2*b-c)*(b-2*c))*a^3-(b^2-c^2)*(b-c)*(9*b^2-10*b*c+9*c^2)*a^2+(b^2-c^2)^2*(b-c)^2*a+(b^2-c^2)*(b-c)^5) : :

X(59986) lies on these lines: {2, 59930}, {9, 28292}, {514, 59894}, {3900, 59985}, {47766, 59984}

X(59986) = complement of X(59930)


X(59987) = CENTER OF Ω( X(3)X(6), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a^2*(b^2-c^2)*(-a^2+b^2+c^2)*(a^4+2*(b^2+c^2)*a^2+b^4-4*b^2*c^2+c^4) : :

X(59987) lies on these lines: {6, 512}, {39, 46953}, {441, 525}, {523, 7652}, {690, 2485}, {1499, 2489}, {2422, 13352}, {2492, 3566}, {2780, 59933}, {3049, 30209}, {5286, 30735}, {9730, 56748}, {14398, 30230}, {39503, 49123}, {45807, 52598}

X(59987) = reflection of X(45807) in X(52598)
X(59987) = cross-difference of every pair of points on the line X(25)X(524)
X(59987) = X(47139)-reciprocal conjugate of-X(44146)
X(59987) = perspector of the circumconic through X(69) and X(111)
X(59987) = pole of the line {159, 187} with respect to the circumcircle
X(59987) = pole of the line {511, 10602} with respect to the 2nd Lemoine (or cosine) circle
X(59987) = pole of the line {187, 46264} with respect to the Moses circle
X(59987) = pole of the line {393, 44146} with respect to the polar circle
X(59987) = pole of the line {187, 6467} with respect to the Brocard inellipse
X(59987) = pole of the line {3265, 53272} with respect to the Kiepert parabola
X(59987) = pole of the line {394, 8681} with respect to the MacBeath circumconic
X(59987) = pole of the line {1899, 2393} with respect to the orthic inconic
X(59987) = pole of the line {112, 5468} with respect to the Stammler hyperbola
X(59987) = pole of the line {3, 3291} with respect to the Steiner inellipse
X(59987) = barycentric product X(i)*X(j) for these {i, j}: {895, 47139}, {8673, 40232}
X(59987) = trilinear product X(36060)*X(47139)


X(59988) = CENTER OF Ω( X(3)X(6), X(15) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a^2*(-2*(a^4-b^4-c^4+4*b^2*c^2)*S+(a^6-3*(b^2+c^2)*a^4+(3*b^4+8*b^2*c^2+3*c^4)*a^2-(b^2+c^2)*(b^4+c^4))*sqrt(3))*(b^2-c^2) : :

X(59988) lies on these lines: {15, 512}, {570, 59896}, {6112, 39503}, {23872, 52584}

X(59988) = pole of the line {9225, 44718} with respect to the Steiner inellipse


X(59989) = CENTER OF Ω( X(3)X(6), X(16) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    a^2*(2*(a^4-b^4-c^4+4*b^2*c^2)*S+(a^6-3*(b^2+c^2)*a^4+(3*b^4+8*b^2*c^2+3*c^4)*a^2-(b^2+c^2)*(b^4+c^4))*sqrt(3))*(b^2-c^2) : :

X(59989) lies on these lines: {16, 512}, {570, 59896}, {6113, 39503}, {23873, 52584}

X(59989) = pole of the line {9225, 44719} with respect to the Steiner inellipse


X(59990) = CENTER OF Ω( X(3)X(7), X(3) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(-a+b+c)*(-a^2+b^2+c^2)*(2*a^6-3*(b+c)*a^5-(3*b^2+2*b*c+3*c^2)*a^4+4*(b^3+c^3)*a^3+2*(b^2-c^2)^2*a^2-(b^2-c^2)*(b-c)^3*a-(b^2-c^2)^2*(b-c)^2) : :
X(59990) = 3*X(14414)+X(57243)

X(59990) lies on these lines: {523, 7663}, {3900, 17069}, {14414, 57243}, {17094, 58340}

X(59990) = midpoint of X(17094) and X(58340)
X(59990) = X(i)-complementary conjugate of-X(j) for these (i, j): (1794, 5514), (15439, 20262), (32651, 226), (36048, 5)
X(59990) = pole of the line {5762, 7387} with respect to the circumcircle
X(59990) = pole of the line {348, 394} with respect to the Steiner inellipse


X(59991) = CENTER OF Ω( X(4)X(6), X(6) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b^2-c^2)*(5*a^8-2*(b^2+c^2)*a^6-4*(b^4-b^2*c^2+c^4)*a^4+2*(b^4-c^4)*(b^2-c^2)*a^2-(b^4-c^4)^2) : :

X(59991) lies on these lines: {6, 525}, {32, 47194}, {460, 512}, {2492, 3566}, {3800, 30491}, {5099, 6388}, {9517, 47125}, {39510, 49123}, {41370, 59932}

X(59991) = cross-difference of every pair of points on the line X(394)X(2393)
X(59991) = X(41719)-reciprocal conjugate of-X(99)
X(59991) = perspector of the circumconic through X(393) and X(2373)
X(59991) = pole of the line {69, 5523} with respect to the polar circle
X(59991) = pole of the line {6562, 35522} with respect to the Kiepert parabola
X(59991) = pole of the line {524, 52077} with respect to the MacBeath circumconic
X(59991) = pole of the line {23, 6392} with respect to the Steiner circumellipse
X(59991) = pole of the line {468, 3767} with respect to the Steiner inellipse
X(59991) = barycentric product X(523)*X(41719)
X(59991) = trilinear product X(661)*X(41719)
X(59991) = trilinear quotient X(41719)/X(662)


X(59992) = CENTER OF Ω( X(4)X(7), X(4) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-2*(b+c)*a^4+2*(b^3+c^3)*a^2-(b^2-c^2)^2*a+2*(b^2-c^2)*(b-c)*b*c) : :

X(59992) lies on these lines: {4, 3900}, {513, 5146}, {514, 39536}, {523, 10151}, {905, 1838}, {1882, 57243}, {1946, 54394}, {3064, 48026}, {6129, 54238}, {39534, 48403}

X(59992) = cross-difference of every pair of points on the line X(3990)X(15905)
X(59992) = crosssum of X(3) and X(58340)
X(59992) = X(i)-Ceva conjugate of-X(j) for these (i, j): (4, 38388), (17926, 7649)
X(59992) = X(i)-reciprocal conjugate of-X(j) for these (i, j): (7580, 1332), (38388, 57055), (45738, 4561)
X(59992) = Zosma transform of X(57108)
X(59992) = pole of the line {971, 3575} with respect to the incircle-of-orthic triangle
X(59992) = pole of the line {971, 14790} with respect to the Johnson triangle circumcircle
X(59992) = pole of the line {20, 72} with respect to the polar circle
X(59992) = pole of the line {1562, 38388} with respect to the Kiepert circumhyperbola
X(59992) = pole of the line {278, 393} with respect to the orthic inconic
X(59992) = barycentric product X(i)*X(j) for these {i, j}: {3064, 34059}, {7580, 17924}, {7649, 45738}, {13149, 38388}, {17926, 59608}
X(59992) = trilinear product X(i)*X(j) for these {i, j}: {6591, 45738}, {7580, 7649}, {18344, 34059}, {36118, 38388}
X(59992) = trilinear quotient X(i)/X(j) for these (i, j): (7580, 1331), (34059, 6516), (38388, 57108), (45738, 1332)
X(59992) = center of circle {{X(4), X(403), X(59935)}}


X(59993) = CENTER OF Ω( X(4)X(7), X(7) ), WHERE Ω = NINE-POINT CIRCLE

Barycentrics    (b-c)*(a^9-6*(b+c)*a^8+4*(4*b^2+b*c+4*c^2)*a^7-2*(b+c)*(13*b^2-19*b*c+13*c^2)*a^6+10*(b-c)^2*(3*b^2+8*b*c+3*c^2)*a^5-2*(b^2-c^2)*(b-c)*(13*b^2+49*b*c+13*c^2)*a^4+4*(4*b^4+4*c^4+b*c*(19*b^2+34*b*c+19*c^2))*(b-c)^2*a^3-2*(b^2-c^2)*(b-c)*(3*b^4+3*c^4+b*c*(b^2+24*b*c+c^2))*a^2+(b^2-c^2)^2*(b-c)^4*a-2*(b^2-c^2)*(b-c)^5*b*c) : :

X(59993) lies on these lines: {7, 3900}, {3064, 48026}, {59891, 59894}

X(59993) = pole of the line {144, 51218} with respect to the polar circle


X(59994) = COMPLEMENT OF X(33769)

Barycentrics    a^4*(b^2 + c^2)^2 : :

X(59994) lies on these lines: {2, 31613}, {6, 694}, {32, 160}, {39, 141}, {115, 3613}, {184, 9233}, {194, 1502}, {233, 1196}, {308, 40858}, {325, 1194}, {524, 45210}, {570, 15993}, {597, 6375}, {670, 52637}, {702, 9230}, {813, 21777}, {1015, 13476}, {1180, 3314}, {1186, 4173}, {1964, 21752}, {3051, 20775}, {3118, 27374}, {3229, 3589}, {3248, 21815}, {4027, 40416}, {4074, 9496}, {4577, 36432}, {5041, 52536}, {5052, 52967}, {5283, 25660}, {6374, 7757}, {7777, 9465}, {8623, 41328}, {9969, 46305}, {13356, 52016}, {17332, 59481}, {17390, 59454}, {30736, 32450}, {35319, 35971}, {52554, 59262}, {52656, 52922}

X(59994) = complement of X(33769)
X(59994) = complement of the isotomic conjugate of X(27375)
X(59994) = isogonal conjugate of the complement of X(46715)
X(59994) = isogonal conjugate of the isotomic conjugate of X(8041)
X(59994) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 52042}, {1924, 36901}, {3613, 21235}, {11794, 21263}, {27375, 2887}
X(59994) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 52042}, {39, 8041}, {1634, 688}, {31613, 39}, {44168, 4576}
X(59994) = X(i)-isoconjugate of X(j) for these (i,j): {75, 52395}, {82, 308}, {83, 3112}, {251, 18833}, {312, 41284}, {689, 55240}, {1109, 57545}, {1577, 52936}, {4577, 18070}, {4593, 58784}, {4599, 52618}, {18105, 37204}, {34055, 46104}, {40016, 46289}, {43763, 56979}, {52376, 56251}, {52394, 56186}
X(59994) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 40016}, {141, 308}, {206, 52395}, {688, 1084}, {826, 23962}, {3124, 52618}, {6665, 1502}, {34452, 83}, {36213, 56979}, {40585, 18833}, {52042, 2}, {55050, 58784}
X(59994) = crossdifference of every pair of points on line {804, 18105}
X(59994) = barycentric product X(i)*X(j) for these {i,j}: {6, 8041}, {32, 7794}, {38, 1964}, {39, 39}, {99, 2531}, {110, 57132}, {141, 3051}, {427, 20775}, {688, 4576}, {1401, 3688}, {1576, 2528}, {1634, 3005}, {1843, 3917}, {1923, 1930}, {1974, 4175}, {2175, 41285}, {3237, 3238}, {3933, 27369}, {4020, 17442}, {4093, 46159}, {4553, 50521}, {7813, 41272}, {8024, 41331}, {8623, 56978}, {10007, 59273}, {11205, 52554}, {15449, 23357}, {16696, 21814}, {16887, 41267}, {17187, 21035}, {21123, 46148}, {27375, 52042}, {42346, 59167}, {44168, 55050}, {46156, 52961}, {56915, 56977}
X(59994) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 52395}, {38, 18833}, {39, 308}, {141, 40016}, {688, 58784}, {1397, 41284}, {1576, 52936}, {1634, 689}, {1843, 46104}, {1923, 82}, {1964, 3112}, {2084, 18070}, {2528, 44173}, {2531, 523}, {3005, 52618}, {3051, 83}, {3118, 16890}, {3203, 41296}, {4175, 40050}, {4576, 42371}, {7794, 1502}, {8041, 76}, {8623, 56979}, {9494, 18105}, {11205, 52570}, {15449, 23962}, {16030, 41488}, {17938, 59026}, {20775, 1799}, {21035, 56251}, {21814, 56186}, {23357, 57545}, {27369, 32085}, {27374, 17500}, {31613, 31622}, {41267, 18082}, {41285, 41283}, {41331, 251}, {42548, 18092}, {52042, 33769}, {55050, 1084}, {56915, 56976}, {57132, 850}
X(59994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3117, 8265}, {6, 8265, 1084}, {3051, 20775, 41331}, {3118, 42548, 27374}, {39968, 55081, 2}


X(59995) = COMPLEMENT OF X(46721)

Barycentrics    b^2*c^2*(b^2 + c^2)^2 : :

X(59995) lies on these lines: {2, 46721}, {6, 305}, {67, 69}, {76, 3763}, {99, 2916}, {141, 6665}, {338, 1502}, {670, 40035}, {1930, 21249}, {1975, 20987}, {3124, 6664}, {3266, 3589}, {4121, 6697}, {5207, 15321}, {6393, 59778}, {7794, 14125}, {9230, 35549}, {13232, 35522}, {14994, 52042}, {21289, 57975}, {23989, 57915}, {26235, 51128}, {28667, 28677}, {33798, 58532}, {34573, 39998}, {47355, 57518}, {48905, 58846}

X(59995) = complement of X(46721)
X(59995) = isotomic conjugate of the isogonal conjugate of X(7794)
X(59995) = polar conjugate of the isogonal conjugate of X(4175)
X(59995) = X(i)-Ceva conjugate of X(j) for these (i,j): {8024, 7794}, {59154, 141}
X(59995) = X(i)-isoconjugate of X(j) for these (i,j): {82, 46288}, {251, 46289}, {560, 52395}, {1924, 52936}, {4117, 57545}, {4630, 55240}, {9447, 41284}, {18105, 34072}
X(59995) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 251}, {141, 46288}, {339, 58784}, {732, 51318}, {826, 3124}, {1194, 52580}, {6374, 52395}, {6665, 6}, {7794, 1627}, {9428, 52936}, {15449, 18105}, {40585, 46289}, {52042, 1501}
X(59995) = cevapoint of X(i) and X(j) for these (i,j): {4175, 7794}, {8024, 28677}
X(59995) = barycentric product X(i)*X(j) for these {i,j}: {39, 52568}, {76, 7794}, {83, 14125}, {141, 8024}, {264, 4175}, {670, 2528}, {1235, 3933}, {1502, 8041}, {1930, 1930}, {3596, 41285}, {4576, 23285}, {4609, 57132}, {15449, 34537}, {21248, 59154}, {28677, 33665}, {35540, 56977}
X(59995) = barycentric quotient X(i)/X(j) for these {i,j}: {38, 46289}, {39, 46288}, {76, 52395}, {141, 251}, {670, 52936}, {732, 56975}, {826, 18105}, {1235, 32085}, {1634, 4630}, {1930, 82}, {2528, 512}, {2531, 9426}, {3917, 10547}, {3933, 1176}, {4175, 3}, {4568, 4628}, {4576, 827}, {6063, 41284}, {6665, 1627}, {7794, 6}, {8024, 83}, {8041, 32}, {10007, 41295}, {14125, 141}, {15449, 3124}, {16703, 52376}, {21248, 52580}, {23285, 58784}, {23642, 59188}, {28666, 44091}, {28677, 41884}, {34537, 57545}, {35540, 56976}, {39691, 51906}, {41285, 56}, {42554, 59180}, {48084, 18108}, {51371, 51862}, {52568, 308}, {55239, 4599}, {56977, 733}, {57132, 669}
X(59995) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 6665, 8041}, {141, 8024, 42554}, {1502, 44166, 338}, {3763, 52554, 10007}


X(59996) = ISOGONAL CONJUGATE OF X(7794)

Barycentrics    a^2/(b^2 + c^2)^2 : :

X(59996) lies on these lines: {6, 14247}, {23, 251}, {32, 733}, {39, 46227}, {82, 16600}, {83, 316}, {141, 40003}, {187, 9481}, {249, 57545}, {595, 4628}, {1501, 7878}, {1915, 7768}, {4577, 7760}, {5254, 38946}, {8370, 38888}, {8744, 44091}, {9605, 56916}, {10547, 39674}, {14970, 33515}, {18098, 21802}, {34870, 39557}, {35007, 52696}, {35971, 59076}, {38834, 51450}, {52570, 56976}, {53966, 59026}

X(59996) = isogonal conjugate of X(7794)
X(59996) = isogonal conjugate of the anticomplement of X(7829)
X(59996) = isogonal conjugate of the complement of X(7760)
X(59996) = isotomic conjugate of the complement of X(46721)
X(59996) = isogonal conjugate of the isotomic conjugate of X(52395)
X(59996) = X(57545)-Ceva conjugate of X(827)
X(59996) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7794}, {9, 41285}, {19, 4175}, {38, 141}, {39, 1930}, {75, 8041}, {662, 2528}, {799, 57132}, {1235, 4020}, {1923, 52568}, {1964, 8024}, {2236, 56977}, {2530, 4568}, {2531, 4602}, {3005, 55239}, {3404, 51371}, {3665, 33299}, {3917, 20883}, {3933, 17442}, {3954, 16887}, {4553, 16892}, {4576, 8061}, {14125, 46289}, {15449, 24041}, {15523, 16696}, {16703, 21035}, {20898, 52554}, {46148, 48084}
X(59996) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 7794}, {6, 4175}, {39, 14125}, {83, 28677}, {206, 8041}, {478, 41285}, {1084, 2528}, {3005, 15449}, {38996, 57132}, {41884, 8024}
X(59996) = cevapoint of X(i) and X(j) for these (i,j): {2, 46721}, {6, 1627}, {251, 46288}, {3124, 18105}, {51318, 56975}
X(59996) = trilinear pole of line {2492, 2514}
X(59996) = crossdifference of every pair of points on line {2528, 57132}
X(59996) = barycentric product X(i)*X(j) for these {i,j}: {6, 52395}, {55, 41284}, {82, 82}, {83, 251}, {308, 46288}, {512, 52936}, {733, 56976}, {827, 58784}, {1176, 32085}, {3112, 46289}, {3124, 57545}, {4577, 18105}, {4599, 55240}, {4628, 10566}, {4630, 52618}, {5027, 59026}, {10547, 46104}, {14885, 40163}, {14970, 56975}, {18070, 34072}, {18098, 52376}, {43763, 56971}, {57421, 59180}
X(59996) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 4175}, {6, 7794}, {32, 8041}, {56, 41285}, {82, 1930}, {83, 8024}, {141, 14125}, {251, 141}, {308, 52568}, {512, 2528}, {669, 57132}, {733, 56977}, {827, 4576}, {1176, 3933}, {1627, 6665}, {3124, 15449}, {4599, 55239}, {4628, 4568}, {4630, 1634}, {9426, 2531}, {10547, 3917}, {18105, 826}, {18108, 48084}, {32085, 1235}, {41284, 6063}, {41295, 10007}, {41884, 28677}, {44091, 28666}, {46288, 39}, {46289, 38}, {51862, 51371}, {51906, 39691}, {52376, 16703}, {52395, 76}, {52580, 21248}, {52936, 670}, {56975, 732}, {56976, 35540}, {57545, 34537}, {58784, 23285}, {59180, 42554}, {59188, 23642}
X(59996) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {83, 41884, 7859}, {251, 14885, 5007}, {46227, 46228, 39}


X(59997) = COMPLEMENT OF X(39771)

Barycentrics    (a - b - c)*(b - c)*(3*a^3 - 2*a^2*b - 4*a*b^2 + b^3 - 2*a^2*c + 7*a*b*c - 4*a*c^2 + c^3) : :
X(59997) = 3 X[25020] - X[53528]

X(59997) lies on the Mandart parabola and these lines: {2, 39771}, {8, 522}, {9, 649}, {10, 3667}, {124, 35587}, {513, 960}, {900, 3036}, {1647, 23808}, {2827, 18254}, {3662, 26596}, {3676, 17274}, {3738, 15558}, {4468, 17333}, {4778, 23764}, {4861, 42312}, {5289, 23345}, {5777, 30198}, {6646, 47676}, {17420, 49652}, {18253, 28217}, {21211, 21246}, {25020, 53528}

X(59997) = complement of X(39771)
X(59997) = X(i)-complementary conjugate of X(j) for these (i,j): {679, 17059}, {901, 1145}, {1318, 11}, {1320, 3259}, {2226, 4904}, {4618, 2886}, {4638, 142}, {5548, 16594}
X(59997) = X(900)-Ceva conjugate of X(522)
X(59997) = X(i)-Dao conjugate of X(j) for these (i,j): {4997, 4555}, {51402, 36936}
X(59997) = crossdifference of every pair of points on line {1149, 1404}
X(59997) = barycentric product X(522)*X(30577)
X(59997) = barycentric quotient X(i)/X(j) for these {i,j}: {1639, 36936}, {30577, 664}


X(59998) = MIDPOINT OF X(23757) AND X(43728)

Barycentrics    (b - c)*(-a + b + c)*(-a^6 - a^5*b + 3*a^4*b^2 + 2*a^3*b^3 - 3*a^2*b^4 - a*b^5 + b^6 - a^5*c + a^4*b*c - 4*a^3*b^2*c + 5*a*b^4*c - b^5*c + 3*a^4*c^2 - 4*a^3*b*c^2 + 6*a^2*b^2*c^2 - 4*a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 - 4*a*b^2*c^3 + 2*b^3*c^3 - 3*a^2*c^4 + 5*a*b*c^4 - b^2*c^4 - a*c^5 - b*c^5 + c^6) : :
X(59998) = 3 X[5603] - X[42755]

X(59998) lies on the Mandart parabola and these lines: {1, 522}, {10, 8058}, {281, 3064}, {513, 45776}, {514, 42757}, {521, 9957}, {1387, 2804}, {2405, 23706}, {3738, 15558}, {5603, 42755}, {14628, 52356}, {23808, 37629}, {40937, 57055}

X(59998) = midpoint of X(23757) and X(43728)
on the Mandart parabola
X(59998) = X(i)-complementary conjugate of X(j) for these (i,j): {2720, 119}, {32669, 52659}, {34858, 55153}, {41933, 26932}
X(59998) = X(2804)-Ceva conjugate of X(522)
X(59998) = X(34234)-Dao conjugate of X(54953)


X(59999) = X(11)X(522)∩X(124)X(5516)

Barycentrics    (a - b - c)*(b - c)^2*(5*a^3 - 4*a^2*b - 5*a*b^2 + 4*b^3 - 4*a^2*c + 11*a*b*c - 3*b^2*c - 5*a*c^2 - 3*b*c^2 + 4*c^3) : :
X(59999) = 3 X[11] + X[51402], 5 X[11] - X[51442], 5 X[51402] + 3 X[51442], X[51562] - 9 X[59377]

X(59999) lies on the Mandart parabola and these lines: {11, 522}, {124, 5516}, {515, 55314}, {519, 1387}, {551, 34232}, {1146, 4521}, {1647, 23808}, {3259, 6006}, {3738, 33646}, {4778, 6075}, {17059, 57434}, {34589, 38979}, {51562, 59377}

X(59999) = X(i)-complementary conjugate of X(j) for these (i,j): {679, 17072}, {1318, 513}, {1417, 23757}, {2226, 4885}, {4638, 21232}, {23345, 1145}, {23838, 121}, {41935, 905}
X(59999) = X(519)-Ceva conjugate of X(522)


X(60000) = X(2)X(196)∩X(55)X(102)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(a^4 - 2*a^2*b^2 + b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a^2*c^2 - 2*a*b*c^2 + b^2*c^2 + a*c^3 + b*c^3 - 2*c^4)*(a^4 - a^3*b + a^2*b^2 + a*b^3 - 2*b^4 + a^2*b*c - 2*a*b^2*c + b^3*c - 2*a^2*c^2 + a*b*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(60000) lies on the cubics K555 and K577 and on these lines: {2, 196}, {7, 57495}, {25, 35012}, {55, 102}, {56, 58741}, {57, 905}, {222, 1461}, {1262, 7011}, {1875, 35014}, {11334, 14260}, {22350, 23981}, {54242, 56634}

X(60000) = isogonal conjugate of the isotomic conjugate of X(56666)
X(60000) = X(i)-Ceva conjugate of X(j) for these (i,j): {7, 56634}, {36100, 1465}
X(60000) = X(i)-isoconjugate of X(j) for these (i,j): {9, 56638}, {515, 52663}, {1309, 46391}, {1809, 8755}, {2182, 51565}, {14304, 32641}, {34234, 51361}
X(60000) = X(i)-Dao conjugate of X(j) for these (i,j): {478, 56638}, {1465, 59205}
X(60000) = cevapoint of X(i) and X(j) for these (i,j): {1361, 2183}, {3310, 35012}
X(60000) = trilinear pole of line {1457, 8677}
X(60000) = barycentric product X(i)*X(j) for these {i,j}: {6, 56666}, {102, 22464}, {1457, 34393}, {1465, 36100}, {36038, 36040}
X(60000) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 56638}, {102, 51565}, {1457, 515}, {1769, 14304}, {8677, 39471}, {22464, 35516}, {24029, 42718}, {32643, 32641}, {32677, 52663}, {35012, 10017}, {36040, 36037}, {36055, 1809}, {36067, 1309}, {36100, 36795}, {56666, 76}, {56973, 38554}, {58741, 56757}



This is the end of PART 30: Centers X(58001) - X(60000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)