leftri rightri


This is PART 32: Centers X(62001) - X(64000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


X(62001) = X(2)X(3)∩X(395)X(41972)

Barycentrics    20*a^4-19*(b^2-c^2)^2-a^2*(b^2+c^2) : :
X(62001) = -19*X[2]+13*X[3], -5*X[1699]+2*X[61280], X[3098]+2*X[51026], X[3579]+2*X[50869], -5*X[3653]+7*X[61271], -5*X[3656]+2*X[61292], -4*X[3818]+X[50978], -4*X[4746]+13*X[18480], 5*X[4816]+13*X[12699], -2*X[5092]+5*X[51129], 5*X[5691]+4*X[61281], -X[6361]+7*X[50800] and many others

X(62001) lies on these lines: {2, 3}, {395, 41972}, {396, 41971}, {1131, 43522}, {1132, 43521}, {1699, 61280}, {3098, 51026}, {3579, 50869}, {3653, 61271}, {3656, 61292}, {3818, 50978}, {4746, 18480}, {4816, 12699}, {5092, 51129}, {5349, 41107}, {5350, 41108}, {5691, 61281}, {6361, 50800}, {6490, 18538}, {6491, 18762}, {6492, 13846}, {6493, 13847}, {9812, 61251}, {10283, 28208}, {11178, 50970}, {11455, 13451}, {11488, 43639}, {11489, 43640}, {11645, 59399}, {13624, 51074}, {13925, 43257}, {13993, 43256}, {14831, 32137}, {16267, 42138}, {16268, 42135}, {16656, 45731}, {16772, 43246}, {16773, 43247}, {16808, 43645}, {16809, 43646}, {18440, 51178}, {18483, 50824}, {18907, 39563}, {19106, 42917}, {19107, 42916}, {21850, 50986}, {22791, 50831}, {23251, 43504}, {23261, 43503}, {25055, 28190}, {25561, 48874}, {28146, 61260}, {28164, 61270}, {28174, 61257}, {28186, 61275}, {28194, 38138}, {28198, 38081}, {28216, 53620}, {31162, 61244}, {31670, 50973}, {31673, 32900}, {33697, 50802}, {33698, 54891}, {34648, 37705}, {34773, 50862}, {36969, 44016}, {36970, 44015}, {37517, 51182}, {39874, 51173}, {40273, 61296}, {41953, 41958}, {41954, 41957}, {41967, 42273}, {41968, 42270}, {41973, 42898}, {41974, 42899}, {42093, 42922}, {42094, 42923}, {42101, 42972}, {42102, 42973}, {42104, 42912}, {42105, 42913}, {42117, 42693}, {42118, 42692}, {42136, 42633}, {42137, 42634}, {42153, 43109}, {42156, 43108}, {42157, 43368}, {42158, 43369}, {42215, 53517}, {42216, 53520}, {42268, 52048}, {42269, 52047}, {42494, 43634}, {42495, 43635}, {42520, 42964}, {42521, 42965}, {42557, 52046}, {42558, 52045}, {42568, 42602}, {42569, 42603}, {42584, 42910}, {42585, 42911}, {42588, 42989}, {42589, 42988}, {42627, 43398}, {42628, 43397}, {42785, 51138}, {42904, 43233}, {42905, 43232}, {42942, 43226}, {42943, 43227}, {42974, 43201}, {42975, 43202}, {43386, 43560}, {43387, 43561}, {43401, 43631}, {43402, 43630}, {43475, 61719}, {48880, 50980}, {48884, 50959}, {48895, 51183}, {48905, 50964}, {48906, 51022}, {50799, 61524}, {50803, 50826}, {50814, 50822}, {50832, 51080}, {50833, 51076}, {50864, 61295}, {50865, 61256}, {50960, 50981}, {50987, 51135}, {50988, 51131}, {51136, 51180}, {51142, 55588}, {51993, 51998}

X(62001) = midpoint of X(i) and X(j) for these {i,j}: {382, 3524}, {3543, 5055}, {3830, 3839}, {15682, 15688}
X(62001) = reflection of X(i) in X(j) for these {i,j}: {11539, 381}, {15686, 3524}, {15688, 547}, {15691, 14890}, {15704, 15688}, {17504, 3545}, {3, 14892}, {3524, 5066}, {3839, 14893}, {5, 3839}, {550, 11539}, {5055, 546}, {8703, 5055}
X(62001) = inverse of X(61996) in orthocentroidal circle
X(62001) = inverse of X(61996) in Yff hyperbola
X(62001) = complement of X(62140)
X(62001) = anticomplement of X(58187)
X(62001) = pole of line {523, 61996} with respect to the orthocentroidal circle
X(62001) = pole of line {6, 61996} with respect to the Kiepert hyperbola
X(62001) = pole of line {523, 61996} with respect to the Yff hyperbola
X(62001) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(45759)}}, {{A, B, C, X(6662), X(49133)}}, {{A, B, C, X(10109), X(54924)}}, {{A, B, C, X(11539), X(54512)}}, {{A, B, C, X(11541), X(36889)}}, {{A, B, C, X(15700), X(18550)}}, {{A, B, C, X(15703), X(54585)}}, {{A, B, C, X(48154), X(60121)}}, {{A, B, C, X(55858), X(60122)}}
X(62001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3543, 11541}, {2, 3860, 6959}, {2, 6949, 6926}, {2, 6959, 6846}, {4, 15687, 3845}, {4, 3830, 14893}, {4, 5076, 3861}, {5, 15704, 3523}, {5, 8703, 10124}, {20, 11737, 15713}, {20, 7486, 5154}, {30, 14892, 3}, {30, 14893, 3839}, {30, 15688, 15704}, {30, 3524, 15686}, {30, 3545, 17504}, {30, 381, 11539}, {30, 3839, 5}, {30, 5066, 3524}, {30, 546, 5055}, {30, 547, 15688}, {381, 11001, 3628}, {381, 15684, 15715}, {381, 15695, 5056}, {381, 17800, 2}, {381, 3146, 12100}, {381, 382, 15695}, {381, 3830, 3146}, {381, 5056, 5066}, {547, 15704, 15711}, {549, 3845, 3858}, {550, 3845, 381}, {631, 3146, 1657}, {631, 5067, 4187}, {631, 6941, 20}, {1656, 15640, 15691}, {1656, 15710, 14890}, {1657, 10124, 8703}, {1657, 15722, 376}, {1657, 3830, 3543}, {1657, 5055, 15705}, {3545, 17504, 15699}, {3627, 3845, 549}, {3628, 11001, 15714}, {3830, 12102, 15687}, {3830, 14269, 5054}, {3830, 15703, 382}, {3832, 15681, 10109}, {3843, 15682, 547}, {3845, 15687, 3627}, {3851, 15683, 11812}, {3853, 3861, 17800}, {3856, 15690, 5071}, {3856, 5073, 14869}, {5066, 15686, 632}, {5067, 6829, 7486}, {5071, 5073, 15690}, {6880, 16845, 6961}, {10109, 15681, 15712}, {10124, 12100, 631}, {11001, 15714, 550}, {11539, 15714, 15707}, {12101, 14893, 12102}, {12102, 12103, 5076}, {12102, 14893, 3830}, {14890, 15691, 15710}, {15682, 15688, 30}, {15765, 18585, 3859}


X(62002) = X(2)X(3)∩X(6)X(43477)

Barycentrics    37*a^4-35*(b^2-c^2)^2-2*a^2*(b^2+c^2) : :
X(62002) = -35*X[2]+24*X[3], 6*X[3817]+5*X[50866], 2*X[4677]+9*X[9812], 5*X[4745]+6*X[51119], 6*X[5102]+5*X[51023], 6*X[5587]+5*X[50873], 6*X[5603]+5*X[50863], 5*X[8584]+6*X[51025], 3*X[9589]+8*X[51070], 3*X[9778]+8*X[50869], -27*X[9779]+16*X[51108], -35*X[10248]+2*X[11531] and many others

X(62002) lies on these lines: {2, 3}, {6, 43477}, {13, 54579}, {14, 54578}, {15, 43368}, {16, 43369}, {316, 32892}, {371, 42608}, {372, 42609}, {590, 42577}, {615, 42576}, {671, 54815}, {1131, 6470}, {1132, 6471}, {1151, 42606}, {1152, 42607}, {1327, 54542}, {1328, 54543}, {3424, 54896}, {3817, 50866}, {4677, 9812}, {4745, 51119}, {5102, 51023}, {5343, 43253}, {5344, 43252}, {5587, 50873}, {5603, 50863}, {6468, 42604}, {6469, 42605}, {8584, 51025}, {8972, 41950}, {9589, 51070}, {9778, 50869}, {9779, 51108}, {10248, 11531}, {10516, 51029}, {11180, 55720}, {11224, 50871}, {11278, 20049}, {11648, 14930}, {12816, 43552}, {12817, 43553}, {13665, 43522}, {13785, 43521}, {13941, 41949}, {14458, 60113}, {14484, 54642}, {14490, 43699}, {14492, 54476}, {14853, 51216}, {15533, 51166}, {16194, 16981}, {16200, 50864}, {16964, 43556}, {16965, 43557}, {17503, 60147}, {18845, 54582}, {19053, 43507}, {19054, 43508}, {20070, 51068}, {20080, 48895}, {22165, 51537}, {23249, 43504}, {23259, 43503}, {30392, 50802}, {32532, 60327}, {33602, 42982}, {33603, 42983}, {33748, 50963}, {34641, 58248}, {34754, 41119}, {34755, 41120}, {35822, 43560}, {35823, 43561}, {36969, 43032}, {36970, 43033}, {38155, 50865}, {38259, 54477}, {39284, 54552}, {41107, 42133}, {41108, 42134}, {41112, 43474}, {41113, 43473}, {41121, 42104}, {41122, 42105}, {41895, 54519}, {41951, 43884}, {41952, 43883}, {42103, 46334}, {42106, 46335}, {42140, 49905}, {42141, 49906}, {42154, 42502}, {42155, 42503}, {42263, 43887}, {42264, 43888}, {42417, 52666}, {42418, 52667}, {42504, 42911}, {42505, 42910}, {42506, 49876}, {42507, 49875}, {42508, 42941}, {42509, 42940}, {42526, 43509}, {42527, 43510}, {42532, 43010}, {42533, 43011}, {42890, 42921}, {42891, 42920}, {42906, 42975}, {42907, 42974}, {42952, 43398}, {42953, 43397}, {43108, 43542}, {43109, 43543}, {43228, 43540}, {43229, 43541}, {43312, 45384}, {43313, 45385}, {43399, 49908}, {43400, 49907}, {43465, 49948}, {43466, 49947}, {43495, 49904}, {43496, 49903}, {43951, 45103}, {47353, 51214}, {47586, 54478}, {50813, 61263}, {50862, 51105}, {50867, 51705}, {50868, 51071}, {50959, 55703}, {50975, 55685}, {50990, 51024}, {50991, 51165}, {50992, 55722}, {50993, 51163}, {50994, 61044}, {51022, 51185}, {51066, 51118}, {51074, 54445}, {51213, 54173}, {51217, 51737}, {53101, 54520}, {54595, 60295}, {54596, 60296}, {54647, 60324}, {54706, 60281}, {54717, 60650}, {54726, 54794}, {54761, 54886}, {54762, 54844}, {54781, 54870}, {54813, 60145}, {54923, 60120}

X(62002) = midpoint of X(i) and X(j) for these {i,j}: {382, 15718}, {3543, 5056}
X(62002) = reflection of X(i) in X(j) for these {i,j}: {15715, 5072}, {15721, 3855}, {20, 15715}, {376, 5070}, {3525, 381}
X(62002) = anticomplement of X(62059)
X(62002) = pole of line {6, 43566} with respect to the Kiepert hyperbola
X(62002) = pole of line {69, 62054} with respect to the Wallace hyperbola
X(62002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(140), X(54552)}}, {{A, B, C, X(468), X(54815)}}, {{A, B, C, X(470), X(54579)}}, {{A, B, C, X(471), X(54578)}}, {{A, B, C, X(1656), X(54923)}}, {{A, B, C, X(3525), X(54512)}}, {{A, B, C, X(3535), X(54598)}}, {{A, B, C, X(3536), X(54599)}}, {{A, B, C, X(5067), X(54585)}}, {{A, B, C, X(5071), X(54924)}}, {{A, B, C, X(10304), X(43699)}}, {{A, B, C, X(11331), X(60113)}}, {{A, B, C, X(13603), X(35472)}}, {{A, B, C, X(14490), X(55576)}}, {{A, B, C, X(15749), X(21734)}}, {{A, B, C, X(38282), X(54477)}}, {{A, B, C, X(43951), X(52293)}}, {{A, B, C, X(52283), X(54896)}}, {{A, B, C, X(52288), X(54642)}}, {{A, B, C, X(52289), X(54476)}}, {{A, B, C, X(52290), X(54519)}}, {{A, B, C, X(52292), X(60147)}}, {{A, B, C, X(52299), X(54582)}}, {{A, B, C, X(53857), X(60327)}}
X(62002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 15683}, {2, 17578, 15682}, {2, 3534, 15705}, {2, 3845, 3832}, {3, 11001, 15697}, {3, 15699, 15702}, {3, 3832, 5068}, {3, 3855, 5056}, {3, 547, 15709}, {30, 15715, 20}, {30, 381, 3525}, {30, 3855, 15721}, {30, 5070, 376}, {30, 5072, 15715}, {411, 3523, 3528}, {3090, 3523, 6857}, {3091, 3534, 2}, {3522, 3525, 15717}, {3526, 6826, 3090}, {3530, 15702, 15708}, {3543, 3545, 5059}, {3543, 5056, 30}, {3545, 11001, 11812}, {3545, 3853, 3543}, {3830, 14269, 15693}, {3830, 3845, 11001}, {3832, 15022, 3850}, {3839, 10124, 3854}, {3839, 15687, 17578}, {3839, 15697, 5066}, {3839, 15721, 3855}, {3839, 7486, 381}, {3845, 11539, 3860}, {5066, 15687, 3830}, {5066, 15698, 7486}, {5068, 17578, 3146}, {6930, 15711, 11540}, {11001, 15698, 15690}, {11539, 15691, 3}, {12102, 14869, 5076}, {14269, 15709, 3839}, {43477, 43478, 6}, {43507, 43567, 19053}, {43508, 43566, 19054}


X(62003) = X(1)X(50863)∩X(2)X(3)

Barycentrics    31*a^4-29*(b^2-c^2)^2-2*a^2*(b^2+c^2) : :
X(62003) = 4*X[1]+5*X[50863], -29*X[2]+20*X[3], 4*X[6]+5*X[51216], 4*X[10]+5*X[50873], 4*X[69]+5*X[51211], 4*X[141]+5*X[51029], 5*X[962]+4*X[34641], 4*X[1125]+5*X[50866], 4*X[3244]+5*X[50864], 4*X[3589]+5*X[51167], 4*X[3626]+5*X[50865], 4*X[3629]+5*X[51023] and many others

X(62003) lies on these lines: {1, 50863}, {2, 3}, {6, 51216}, {10, 50873}, {69, 51211}, {141, 51029}, {590, 43406}, {615, 43405}, {962, 34641}, {1125, 50866}, {1131, 54595}, {1132, 54596}, {1327, 43516}, {1328, 43515}, {1587, 43504}, {1588, 43503}, {3244, 50864}, {3311, 54542}, {3312, 54543}, {3424, 33698}, {3589, 51167}, {3626, 50865}, {3629, 51023}, {3631, 51024}, {3632, 34648}, {3636, 50862}, {4031, 51790}, {4681, 51065}, {4686, 51064}, {5304, 39563}, {5334, 43195}, {5335, 43196}, {5365, 41107}, {5366, 41108}, {5395, 54717}, {5550, 51074}, {5734, 51095}, {6329, 51022}, {6486, 60293}, {6487, 60294}, {7583, 43522}, {7584, 43521}, {7585, 43791}, {7586, 43792}, {7811, 32886}, {8596, 22505}, {10653, 42894}, {10654, 42895}, {11008, 51215}, {11160, 48901}, {11180, 48895}, {11645, 33748}, {12816, 42779}, {12817, 42780}, {12818, 35822}, {12819, 35823}, {12820, 36970}, {12821, 36969}, {14484, 54494}, {14488, 53101}, {15431, 32225}, {15808, 34628}, {16962, 42104}, {16963, 42105}, {18581, 43397}, {18582, 43398}, {20050, 31162}, {20054, 34627}, {20057, 31673}, {20583, 36990}, {22235, 41101}, {22237, 41100}, {22793, 31145}, {28198, 54448}, {31414, 56618}, {34638, 50874}, {35242, 51078}, {35786, 43257}, {35787, 43256}, {36427, 61306}, {37640, 42781}, {37641, 42782}, {38098, 59417}, {40341, 51028}, {41895, 60132}, {41963, 42577}, {41964, 42576}, {42087, 42932}, {42088, 42933}, {42101, 43202}, {42102, 43201}, {42103, 43399}, {42106, 43400}, {42133, 43031}, {42134, 43030}, {42160, 43546}, {42161, 43547}, {42415, 42986}, {42416, 42987}, {42629, 42636}, {42630, 42635}, {42641, 43790}, {42642, 43789}, {42803, 42903}, {42804, 42902}, {42813, 49876}, {42814, 49875}, {43242, 43293}, {43243, 43292}, {43416, 43552}, {43417, 43553}, {43475, 49827}, {43476, 49826}, {43570, 54598}, {43571, 54599}, {46933, 50799}, {51133, 55646}, {51213, 54170}, {51537, 54174}, {52519, 54476}, {53100, 54896}, {53105, 54519}, {53109, 54520}, {54642, 60142}, {54720, 60147}, {54815, 60219}, {54845, 60113}, {60327, 60631}

X(62003) = midpoint of X(i) and X(j) for these {i,j}: {382, 15707}
X(62003) = reflection of X(i) in X(j) for these {i,j}: {15705, 3545}, {15709, 381}, {20, 15705}
X(62003) = inverse of X(61994) in orthocentroidal circle
X(62003) = inverse of X(61994) in Yff hyperbola
X(62003) = anticomplement of X(15710)
X(62003) = pole of line {523, 61994} with respect to the orthocentroidal circle
X(62003) = pole of line {6, 61994} with respect to the Kiepert hyperbola
X(62003) = pole of line {523, 61994} with respect to the Yff hyperbola
X(62003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(15681)}}, {{A, B, C, X(3535), X(54595)}}, {{A, B, C, X(3536), X(54596)}}, {{A, B, C, X(4846), X(15711)}}, {{A, B, C, X(7486), X(54923)}}, {{A, B, C, X(8889), X(54717)}}, {{A, B, C, X(10303), X(54552)}}, {{A, B, C, X(12103), X(31361)}}, {{A, B, C, X(15692), X(57894)}}, {{A, B, C, X(15709), X(54512)}}, {{A, B, C, X(15718), X(18550)}}, {{A, B, C, X(18296), X(58193)}}, {{A, B, C, X(21400), X(58192)}}, {{A, B, C, X(31363), X(55860)}}, {{A, B, C, X(33698), X(52283)}}, {{A, B, C, X(36889), X(49135)}}, {{A, B, C, X(37453), X(54519)}}, {{A, B, C, X(52288), X(54494)}}, {{A, B, C, X(52290), X(60132)}}, {{A, B, C, X(55859), X(60618)}}
X(62003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11737, 5056}, {2, 14269, 3839}, {2, 15683, 3528}, {2, 15700, 10303}, {2, 15710, 15708}, {2, 3146, 15681}, {2, 550, 15692}, {4, 12102, 17578}, {4, 15682, 14893}, {20, 3839, 3545}, {30, 3545, 15705}, {30, 381, 15709}, {382, 15707, 30}, {382, 546, 10299}, {546, 15687, 3830}, {546, 15690, 11737}, {546, 3525, 13587}, {546, 3529, 15022}, {548, 3845, 381}, {549, 15722, 6947}, {2050, 5076, 3}, {3523, 3543, 15640}, {3523, 7486, 632}, {3524, 15697, 10304}, {3524, 3545, 1656}, {3525, 3545, 5055}, {3543, 15697, 3146}, {3545, 15707, 11112}, {3627, 3845, 15714}, {3830, 14269, 15688}, {3830, 14893, 3525}, {3839, 10304, 3091}, {3843, 3861, 6831}, {3845, 15681, 3855}, {3855, 15696, 17583}, {3860, 5073, 15702}, {5054, 15714, 3524}, {5076, 14893, 15682}, {11812, 15692, 3523}, {12811, 14893, 3845}, {14269, 15688, 546}, {14893, 15682, 3832}, {15022, 15717, 17590}, {15640, 17578, 3543}, {15683, 15690, 20}, {17580, 17677, 2}


X(62004) = X(2)X(3)∩X(6)X(42612)

Barycentrics    13*a^4-12*(b^2-c^2)^2-a^2*(b^2+c^2) : :
X(62004) = -36*X[2]+25*X[3], 8*X[576]+3*X[48662], -16*X[3631]+5*X[55584], X[3632]+10*X[22793], -36*X[3656]+25*X[58236], -12*X[3818]+X[55580], 7*X[5691]+4*X[32900], -4*X[6154]+15*X[38755], 3*X[10247]+8*X[31673], -18*X[10516]+7*X[55602], -3*X[10620]+14*X[15044], X[11008]+10*X[39884] and many others

X(62004) lies on these lines: {2, 3}, {6, 42612}, {576, 48662}, {3303, 18513}, {3304, 18514}, {3426, 17505}, {3631, 55584}, {3632, 22793}, {3656, 58236}, {3818, 55580}, {5422, 52100}, {5691, 32900}, {5708, 51790}, {6154, 38755}, {6199, 22615}, {6395, 22644}, {6407, 42271}, {6408, 42272}, {6417, 42284}, {6418, 42283}, {6425, 35786}, {6426, 35787}, {6427, 23251}, {6428, 23261}, {6445, 42273}, {6446, 42270}, {6447, 6564}, {6448, 6565}, {6472, 8972}, {6473, 13941}, {6500, 23249}, {6501, 23259}, {6519, 42263}, {6522, 42264}, {7585, 60305}, {7586, 60306}, {8976, 53519}, {9690, 43406}, {9691, 18538}, {10247, 31673}, {10516, 55602}, {10620, 15044}, {11008, 39884}, {11477, 48895}, {11480, 42947}, {11481, 42946}, {11482, 36990}, {11485, 42630}, {11486, 42629}, {12111, 16982}, {12290, 13321}, {12293, 45184}, {12699, 51515}, {12818, 43516}, {12819, 43515}, {12820, 16964}, {12821, 16965}, {12902, 38791}, {13093, 18376}, {13111, 53105}, {13202, 15027}, {13886, 42643}, {13939, 42644}, {13951, 53518}, {14488, 53109}, {15025, 34584}, {15029, 15040}, {15808, 58230}, {16189, 34748}, {16625, 18439}, {17810, 43807}, {18483, 37624}, {18550, 52518}, {18874, 52093}, {19116, 43507}, {19117, 43508}, {21358, 55617}, {21400, 22334}, {22332, 39590}, {24981, 38789}, {25561, 55611}, {29012, 55701}, {29317, 55620}, {29323, 55684}, {31371, 61137}, {31399, 50869}, {31412, 42575}, {31672, 51514}, {32340, 55039}, {32787, 43570}, {32788, 43571}, {33698, 53100}, {34641, 58249}, {34747, 58240}, {35822, 42642}, {35823, 42641}, {36253, 38790}, {36969, 42780}, {36970, 42779}, {37484, 46847}, {37545, 51792}, {38021, 58232}, {38072, 55704}, {38733, 38745}, {38734, 38744}, {38757, 48680}, {40341, 48901}, {42101, 42161}, {42102, 42160}, {42104, 42166}, {42105, 42163}, {42115, 43227}, {42116, 43226}, {42125, 42165}, {42126, 42162}, {42127, 42159}, {42128, 42164}, {42130, 42598}, {42131, 42599}, {42140, 42962}, {42141, 42963}, {42275, 43881}, {42276, 43882}, {42429, 42774}, {42430, 42773}, {42431, 42938}, {42432, 42939}, {42528, 43249}, {42529, 43248}, {42561, 42574}, {42584, 42951}, {42585, 42950}, {42610, 43231}, {42611, 43230}, {42625, 42797}, {42626, 42798}, {42908, 42973}, {42909, 42972}, {42920, 43401}, {42921, 43402}, {42922, 43473}, {42923, 43474}, {42940, 42988}, {42941, 42989}, {42998, 43110}, {42999, 43111}, {43016, 43232}, {43017, 43233}, {43022, 43305}, {43023, 43304}, {43136, 53419}, {43405, 43407}, {43477, 56612}, {43478, 56613}, {43621, 55616}, {45187, 46849}, {47353, 55721}, {48884, 53093}, {48889, 53097}, {48904, 55614}, {48910, 55595}, {48942, 55687}, {48943, 55637}, {50798, 58245}, {50862, 58235}, {51024, 55583}, {51163, 55593}, {53023, 53092}, {53102, 54717}, {54494, 60142}

X(62004) = midpoint of X(i) and X(j) for these {i,j}: {382, 15720}
X(62004) = reflection of X(i) in X(j) for these {i,j}: {15720, 3855}, {3, 5072}, {3534, 15721}
X(62004) = anticomplement of X(62062)
X(62004) = pole of line {185, 61991} with respect to the Jerabek hyperbola
X(62004) = pole of line {6, 12818} with respect to the Kiepert hyperbola
X(62004) = pole of line {69, 55663} with respect to the Wallace hyperbola
X(62004) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(21735)}}, {{A, B, C, X(376), X(17505)}}, {{A, B, C, X(1173), X(23040)}}, {{A, B, C, X(3426), X(17506)}}, {{A, B, C, X(3516), X(61137)}}, {{A, B, C, X(3521), X(10299)}}, {{A, B, C, X(3522), X(21400)}}, {{A, B, C, X(3523), X(18550)}}, {{A, B, C, X(3528), X(32533)}}, {{A, B, C, X(3531), X(35477)}}, {{A, B, C, X(14893), X(18848)}}, {{A, B, C, X(15077), X(19708)}}, {{A, B, C, X(21844), X(22334)}}, {{A, B, C, X(31371), X(61138)}}, {{A, B, C, X(35473), X(52518)}}, {{A, B, C, X(37453), X(60132)}}, {{A, B, C, X(47598), X(60122)}}, {{A, B, C, X(49139), X(57897)}}
X(62004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 546}, {3, 15685, 17538}, {3, 15703, 10303}, {3, 15704, 15689}, {3, 3090, 15694}, {3, 3146, 17800}, {3, 5072, 5070}, {3, 546, 3851}, {4, 12102, 5076}, {4, 17578, 3845}, {4, 20, 14893}, {4, 3543, 3861}, {4, 382, 14269}, {20, 377, 15715}, {30, 15721, 3534}, {30, 3855, 15720}, {381, 15695, 5055}, {382, 15681, 5073}, {382, 15720, 30}, {382, 3851, 15681}, {382, 5079, 3529}, {546, 12102, 15687}, {546, 14869, 3091}, {546, 550, 3544}, {550, 12100, 3528}, {550, 15687, 3853}, {550, 3530, 10304}, {3090, 3528, 17549}, {3091, 14869, 5079}, {3091, 3529, 14869}, {3525, 5056, 3628}, {3529, 3627, 382}, {3529, 3855, 3525}, {3543, 3861, 1656}, {3627, 3628, 3146}, {3628, 3853, 3627}, {3830, 15689, 3543}, {3832, 10299, 11737}, {3832, 11541, 632}, {3839, 17538, 12811}, {3845, 10304, 381}, {3845, 17578, 1657}, {3850, 15682, 15696}, {3850, 15696, 15703}, {3851, 14269, 3843}, {3851, 17800, 15707}, {3855, 15715, 5056}, {10303, 15696, 3}, {10304, 11001, 15691}, {11001, 15701, 15695}, {12811, 17538, 3526}, {12820, 16964, 43546}, {12821, 16965, 43547}, {14269, 15687, 3830}, {15681, 15701, 15688}, {15688, 15700, 15759}, {15707, 17800, 550}, {15715, 17679, 549}, {15716, 15720, 3530}, {42612, 42613, 6}, {43195, 43367, 43196}, {43196, 43366, 43195}


X(62005) = X(2)X(3)∩X(40)X(50873)

Barycentrics    25*a^4-23*(b^2-c^2)^2-2*a^2*(b^2+c^2) : :
X(62005) = -23*X[2]+16*X[3], 2*X[40]+5*X[50873], 2*X[944]+5*X[50863], 5*X[962]+2*X[50817], 2*X[1350]+5*X[51029], 5*X[3623]+16*X[31673], -8*X[3818]+X[54174], 2*X[4297]+5*X[50866], 3*X[5032]+4*X[36990], 5*X[5691]+2*X[51082], 5*X[5921]+2*X[51178], -X[5984]+8*X[9880] and many others

X(62005) lies on these lines: {2, 3}, {40, 50873}, {316, 32869}, {395, 43365}, {396, 43364}, {519, 10248}, {598, 54706}, {671, 60327}, {944, 50863}, {962, 50817}, {1131, 42572}, {1132, 42573}, {1350, 51029}, {1587, 43503}, {1588, 43504}, {2996, 54815}, {3311, 43522}, {3312, 43521}, {3424, 60113}, {3623, 31673}, {3818, 54174}, {4297, 50866}, {4678, 28194}, {5032, 36990}, {5318, 43474}, {5321, 43473}, {5339, 43253}, {5340, 43252}, {5343, 41107}, {5344, 41108}, {5691, 51082}, {5921, 51178}, {5984, 9880}, {6490, 41950}, {6491, 41949}, {6776, 51216}, {7585, 41955}, {7586, 41956}, {7788, 32880}, {7809, 32840}, {7860, 32892}, {7871, 32826}, {7989, 50874}, {8796, 54552}, {8972, 53519}, {9542, 42604}, {9543, 41948}, {9589, 51072}, {9779, 34628}, {9812, 31145}, {10653, 44016}, {10654, 44015}, {11002, 32062}, {11160, 51538}, {11439, 21969}, {12279, 58470}, {12699, 20052}, {12816, 42160}, {12817, 42161}, {13579, 54886}, {13585, 54844}, {13941, 53518}, {14226, 42523}, {14241, 42522}, {14484, 54476}, {14927, 50959}, {14930, 53418}, {15305, 16981}, {16241, 43636}, {16242, 43637}, {16964, 43475}, {16965, 43476}, {17503, 60324}, {18581, 43399}, {18582, 43400}, {18845, 54520}, {19106, 43397}, {19107, 43398}, {19875, 50869}, {19876, 28158}, {19883, 50870}, {19924, 51213}, {20014, 61244}, {20049, 31162}, {20070, 50796}, {20080, 47353}, {21356, 50970}, {21358, 51026}, {21454, 51790}, {22235, 54579}, {22237, 54578}, {22793, 50872}, {23302, 42587}, {23303, 42586}, {25055, 51080}, {25565, 33750}, {28164, 61271}, {28208, 61277}, {30308, 46934}, {31423, 51078}, {32002, 54111}, {32006, 32882}, {32787, 42570}, {32788, 42571}, {32819, 32879}, {32831, 48913}, {32881, 59634}, {34632, 38127}, {38076, 46932}, {38098, 51119}, {38259, 54519}, {38314, 50862}, {39838, 41135}, {39884, 51215}, {40273, 50818}, {41895, 60147}, {41943, 42106}, {41944, 42103}, {41947, 42272}, {41961, 42263}, {41962, 42264}, {42101, 43541}, {42102, 43540}, {42104, 43403}, {42105, 43404}, {42134, 61719}, {42135, 43481}, {42138, 43482}, {42139, 43401}, {42142, 43402}, {42153, 43495}, {42156, 43496}, {42159, 49875}, {42162, 49876}, {42164, 49813}, {42165, 49812}, {42268, 43256}, {42269, 43257}, {42275, 42558}, {42276, 42557}, {42283, 42539}, {42284, 42540}, {42417, 54598}, {42418, 54599}, {42635, 42695}, {42636, 42694}, {42682, 43771}, {42683, 43772}, {42692, 42941}, {42693, 42940}, {42898, 43556}, {42899, 43557}, {42920, 46334}, {42921, 46335}, {42972, 49826}, {42973, 49827}, {43201, 43228}, {43202, 43229}, {43242, 43543}, {43243, 43542}, {43342, 43516}, {43343, 43515}, {43560, 43566}, {43561, 43567}, {43769, 49906}, {43770, 49905}, {43951, 53101}, {44882, 51167}, {45103, 60328}, {47352, 51135}, {47354, 61044}, {47586, 54896}, {48872, 50960}, {48889, 50967}, {48895, 54132}, {48901, 51028}, {48904, 50956}, {50814, 51118}, {50864, 61296}, {50973, 51212}, {51022, 59373}, {51024, 51537}, {54601, 60166}, {54642, 60118}, {54737, 54894}, {54923, 60161}, {59417, 61257}

X(62005) = midpoint of X(i) and X(j) for these {i,j}: {382, 15701}, {3528, 15682}, {7989, 50874}
X(62005) = reflection of X(i) in X(j) for these {i,j}: {15698, 3851}, {15701, 3857}, {15702, 381}, {2, 3832}, {20, 15698}, {376, 15703}, {3534, 14869}, {3851, 3845}, {31423, 51078}
X(62005) = inverse of X(61992) in orthocentroidal circle
X(62005) = inverse of X(61992) in Yff hyperbola
X(62005) = anticomplement of X(62063)
X(62005) = pole of line {523, 61992} with respect to the orthocentroidal circle
X(62005) = pole of line {6, 42539} with respect to the Kiepert hyperbola
X(62005) = pole of line {523, 61992} with respect to the Yff hyperbola
X(62005) = pole of line {69, 62056} with respect to the Wallace hyperbola
X(62005) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(468), X(60327)}}, {{A, B, C, X(631), X(54552)}}, {{A, B, C, X(1494), X(50693)}}, {{A, B, C, X(3090), X(54923)}}, {{A, B, C, X(3535), X(54542)}}, {{A, B, C, X(3536), X(54543)}}, {{A, B, C, X(4846), X(14891)}}, {{A, B, C, X(5094), X(54706)}}, {{A, B, C, X(6353), X(54815)}}, {{A, B, C, X(6820), X(54601)}}, {{A, B, C, X(7505), X(54886)}}, {{A, B, C, X(14893), X(18850)}}, {{A, B, C, X(14940), X(54844)}}, {{A, B, C, X(15686), X(16251)}}, {{A, B, C, X(15702), X(54512)}}, {{A, B, C, X(15707), X(18550)}}, {{A, B, C, X(17582), X(54932)}}, {{A, B, C, X(32952), X(54551)}}, {{A, B, C, X(32953), X(54828)}}, {{A, B, C, X(38282), X(54519)}}, {{A, B, C, X(52283), X(60113)}}, {{A, B, C, X(52288), X(54476)}}, {{A, B, C, X(52290), X(60147)}}, {{A, B, C, X(52292), X(60324)}}, {{A, B, C, X(52293), X(60328)}}, {{A, B, C, X(52299), X(54520)}}
X(62005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3839, 3854}, {4, 13473, 7378}, {4, 15682, 14269}, {4, 376, 14893}, {20, 3543, 15684}, {30, 14869, 3534}, {30, 381, 15702}, {30, 3832, 2}, {30, 3845, 3851}, {30, 3851, 15698}, {30, 3857, 15701}, {376, 10124, 15692}, {376, 14893, 3839}, {376, 3543, 3146}, {376, 3830, 3543}, {376, 5071, 5054}, {381, 15718, 5}, {381, 3543, 15683}, {549, 15687, 3853}, {1657, 14269, 3860}, {1657, 5054, 15695}, {3146, 15022, 12103}, {3146, 3832, 3523}, {3528, 15682, 30}, {3529, 5066, 15708}, {3543, 15721, 15640}, {3545, 15681, 15721}, {3830, 14269, 1657}, {3830, 3860, 15682}, {3832, 5068, 3857}, {3845, 15684, 5071}, {3850, 15685, 15709}, {5066, 15689, 13725}, {10109, 17800, 15710}, {12100, 15681, 376}, {12102, 14893, 15687}, {14269, 15682, 3091}, {14892, 15682, 20}, {14892, 15695, 3533}, {14893, 15687, 3830}, {15022, 15721, 4217}, {15640, 15721, 15681}, {15681, 15721, 3522}, {42101, 43541, 43553}, {42102, 43540, 43552}


X(62006) = X(2)X(3)∩X(17)X(43400)

Barycentrics    12*a^4-11*(b^2-c^2)^2-a^2*(b^2+c^2) : :
X(62006) = -33*X[2]+23*X[3], -11*X[141]+6*X[55599], 2*X[143]+3*X[32062], -3*X[185]+8*X[58533], 2*X[575]+3*X[51022], 2*X[962]+3*X[61251], -11*X[1353]+16*X[55715], X[1483]+4*X[31673], -9*X[1699]+4*X[61278], -4*X[3579]+9*X[61260], -9*X[3656]+4*X[61290], -11*X[3818]+X[55581] and many others

X(62006) lies on these lines: {2, 3}, {17, 43400}, {18, 43399}, {141, 55599}, {143, 32062}, {185, 58533}, {265, 46851}, {575, 51022}, {962, 61251}, {1353, 55715}, {1483, 31673}, {1503, 55714}, {1587, 6498}, {1588, 6499}, {1699, 61278}, {3411, 42165}, {3412, 42164}, {3521, 14487}, {3579, 61260}, {3656, 61290}, {3818, 55581}, {4297, 61270}, {5254, 34571}, {5318, 42923}, {5321, 42922}, {5368, 18907}, {5480, 33749}, {5690, 28232}, {5691, 61286}, {5734, 28224}, {5965, 39884}, {6101, 46847}, {6241, 13451}, {6417, 43508}, {6418, 43507}, {6431, 43516}, {6432, 43515}, {6435, 19117}, {6436, 19116}, {6470, 43316}, {6471, 43317}, {6494, 13665}, {6495, 13785}, {7583, 43791}, {7584, 43792}, {7765, 53418}, {8981, 53519}, {9588, 61259}, {9589, 61255}, {9606, 39590}, {9656, 15171}, {9668, 31410}, {9671, 18990}, {9681, 18538}, {10110, 45956}, {10248, 61245}, {10263, 46849}, {10283, 18483}, {10386, 37719}, {11362, 38138}, {11482, 51180}, {11488, 43634}, {11489, 43635}, {12290, 16881}, {12370, 16656}, {12699, 61249}, {13202, 20379}, {13474, 45957}, {13570, 14641}, {13966, 53518}, {14075, 53419}, {14449, 15305}, {14483, 43612}, {14531, 16194}, {14677, 20396}, {14855, 18874}, {15060, 15606}, {15067, 46852}, {15072, 58531}, {15178, 50862}, {15605, 22804}, {15619, 17507}, {15888, 18513}, {16621, 45731}, {16658, 45970}, {16772, 42144}, {16773, 42145}, {16808, 43630}, {16809, 43631}, {16836, 44871}, {16960, 42138}, {16961, 42135}, {16964, 42102}, {16965, 42101}, {18480, 28228}, {18492, 28178}, {18514, 37722}, {18553, 50978}, {18762, 43313}, {19106, 43293}, {19107, 43292}, {19130, 55700}, {21850, 55717}, {22791, 28236}, {22793, 28234}, {23241, 61569}, {24206, 55621}, {24470, 51790}, {28146, 31399}, {28150, 31447}, {28174, 37714}, {28182, 61261}, {28186, 61276}, {29012, 55702}, {29181, 55598}, {29317, 55619}, {31417, 44526}, {31454, 35786}, {31492, 43619}, {32340, 36966}, {33697, 38034}, {34753, 51792}, {35787, 42226}, {35812, 42271}, {35813, 42272}, {36836, 42512}, {36843, 42513}, {37727, 40273}, {38072, 51181}, {38076, 50826}, {38112, 41869}, {38136, 48884}, {38137, 43177}, {40107, 51163}, {40693, 42136}, {40694, 42137}, {41943, 43368}, {41944, 43369}, {41973, 42520}, {41974, 42521}, {42085, 42916}, {42086, 42917}, {42087, 43873}, {42088, 43874}, {42099, 43240}, {42100, 43241}, {42103, 43193}, {42104, 42156}, {42105, 42153}, {42106, 43194}, {42107, 42433}, {42110, 42434}, {42112, 42490}, {42113, 42491}, {42117, 42813}, {42118, 42814}, {42121, 43227}, {42124, 43226}, {42125, 42889}, {42128, 42888}, {42159, 42634}, {42160, 43416}, {42161, 43417}, {42162, 42633}, {42215, 43789}, {42216, 43790}, {42692, 42694}, {42693, 42695}, {42898, 42995}, {42899, 42994}, {42934, 44015}, {42935, 44016}, {42970, 43014}, {42971, 43015}, {46732, 47591}, {48874, 55609}, {48876, 55589}, {48889, 55586}, {48901, 55723}, {48904, 55613}, {48906, 55709}, {50956, 55614}, {50981, 55631}, {51143, 55611}, {51491, 52102}, {55712, 59399}

X(62006) = midpoint of X(i) and X(j) for these {i,j}: {4, 5076}, {382, 631}, {3627, 3858}, {3843, 17578}, {14093, 15682}, {15684, 15697}
X(62006) = reflection of X(i) in X(j) for these {i,j}: {1656, 546}, {15686, 15693}, {15692, 5066}, {15695, 547}, {15704, 3522}, {15712, 3091}, {15713, 381}, {17538, 140}, {17578, 3853}, {3522, 12812}, {3859, 3861}, {5, 3843}, {550, 632}, {631, 3859}, {632, 3858}, {8703, 5071}
X(62006) = inverse of X(61991) in orthocentroidal circle
X(62006) = inverse of X(61991) in Yff hyperbola
X(62006) = complement of X(62143)
X(62006) = anticomplement of X(62064)
X(62006) = pole of line {523, 61991} with respect to the orthocentroidal circle
X(62006) = pole of line {185, 14893} with respect to the Jerabek hyperbola
X(62006) = pole of line {6, 43781} with respect to the Kiepert hyperbola
X(62006) = pole of line {523, 61991} with respect to the Yff hyperbola
X(62006) = pole of line {69, 55662} with respect to the Wallace hyperbola
X(62006) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(186), X(46851)}}, {{A, B, C, X(265), X(46853)}}, {{A, B, C, X(1105), X(14893)}}, {{A, B, C, X(3520), X(14487)}}, {{A, B, C, X(3521), X(12100)}}, {{A, B, C, X(6662), X(49136)}}, {{A, B, C, X(15318), X(15681)}}, {{A, B, C, X(15688), X(21400)}}, {{A, B, C, X(15713), X(54512)}}, {{A, B, C, X(15723), X(60122)}}, {{A, B, C, X(17505), X(44245)}}, {{A, B, C, X(47599), X(60121)}}
X(62006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3854, 10109}, {3, 4, 14893}, {4, 12102, 15687}, {4, 13473, 1595}, {4, 15687, 3627}, {4, 3146, 14269}, {4, 3627, 3845}, {4, 382, 3861}, {5, 14869, 5067}, {5, 15687, 3853}, {5, 20, 549}, {5, 3843, 3858}, {5, 8703, 3526}, {30, 140, 17538}, {30, 15693, 15686}, {30, 3091, 15712}, {30, 3522, 15704}, {30, 381, 15713}, {30, 3853, 17578}, {30, 3858, 632}, {30, 3859, 631}, {30, 3861, 3859}, {30, 5066, 15692}, {30, 5071, 8703}, {30, 546, 1656}, {30, 547, 15695}, {30, 632, 550}, {140, 17538, 15714}, {140, 3855, 5}, {381, 3522, 12812}, {382, 3832, 548}, {546, 10109, 3854}, {548, 3861, 3832}, {550, 3845, 3857}, {550, 3857, 15699}, {550, 632, 15711}, {631, 1656, 16239}, {1656, 5076, 3830}, {1657, 5066, 14869}, {2041, 2042, 15681}, {2043, 2044, 15723}, {3146, 14269, 3850}, {3525, 10299, 15708}, {3543, 3855, 17800}, {3830, 15688, 3543}, {3839, 12103, 6917}, {3839, 16434, 3851}, {3839, 5073, 3628}, {3843, 15696, 3091}, {3851, 12103, 11539}, {3851, 15682, 12103}, {3853, 3861, 382}, {3855, 5154, 5079}, {3859, 3861, 3843}, {3860, 15684, 17504}, {5055, 7491, 5054}, {5059, 5072, 12100}, {5068, 15681, 12108}, {10299, 14269, 546}, {12101, 12102, 4}, {14093, 15682, 30}, {15022, 15688, 140}, {15688, 17800, 20}, {15698, 15708, 15718}, {15698, 17538, 3522}, {15717, 15722, 3530}, {18586, 18587, 15640}


X(62007) = X(2)X(3)∩X(13)X(43398)

Barycentrics    19*a^4-17*(b^2-c^2)^2-2*a^2*(b^2+c^2) : :
X(62007) = -17*X[2]+12*X[3], -3*X[165]+8*X[50803], -X[193]+16*X[48895], 3*X[962]+2*X[4677], 3*X[1699]+2*X[50862], X[3241]+4*X[31673], 7*X[3622]+8*X[33697], -4*X[3654]+9*X[54448], -8*X[4745]+3*X[34632], 3*X[5691]+2*X[51071], -3*X[5731]+8*X[50802], -3*X[5734]+2*X[51097] and many others

X(62007) lies on these lines: {2, 3}, {13, 43398}, {14, 43397}, {98, 54896}, {165, 50803}, {193, 48895}, {262, 54642}, {315, 32892}, {390, 18513}, {395, 43242}, {396, 43243}, {485, 54598}, {486, 54599}, {511, 51211}, {515, 50863}, {516, 50840}, {553, 51790}, {598, 54520}, {671, 54519}, {962, 4677}, {1029, 54789}, {1131, 22615}, {1132, 22644}, {1327, 7585}, {1328, 7586}, {1503, 51216}, {1699, 50862}, {2996, 54477}, {3087, 18487}, {3241, 31673}, {3311, 43560}, {3312, 43561}, {3424, 17503}, {3590, 9681}, {3593, 13678}, {3595, 13798}, {3600, 18514}, {3617, 28198}, {3620, 19924}, {3622, 33697}, {3654, 54448}, {4669, 28228}, {4745, 34632}, {5334, 41107}, {5335, 41108}, {5346, 39563}, {5366, 61719}, {5395, 54582}, {5485, 54815}, {5691, 51071}, {5731, 50802}, {5734, 51097}, {5818, 28202}, {5921, 54131}, {5965, 36324}, {6033, 8596}, {6480, 43568}, {6481, 43569}, {6564, 43257}, {6565, 43256}, {7583, 43520}, {7584, 43519}, {7620, 44678}, {7750, 32893}, {7802, 32885}, {7809, 32826}, {7988, 50815}, {7989, 34638}, {7991, 51070}, {8584, 36990}, {8591, 39809}, {8796, 54512}, {8960, 42608}, {9143, 12295}, {9542, 42263}, {9544, 13482}, {9740, 18546}, {9766, 11148}, {9779, 51705}, {9812, 28234}, {9993, 61304}, {10033, 14976}, {10248, 31162}, {10653, 12817}, {10654, 12816}, {10722, 41135}, {10723, 15300}, {10991, 41154}, {11002, 11455}, {11160, 31670}, {11177, 36523}, {11180, 48901}, {11231, 50813}, {11465, 44871}, {11488, 43402}, {11489, 43401}, {11522, 51104}, {12156, 46034}, {12279, 16226}, {12699, 31145}, {13570, 20791}, {13585, 54942}, {13691, 33456}, {13810, 33457}, {13846, 43406}, {13847, 43405}, {14226, 54543}, {14241, 54542}, {14458, 41895}, {14484, 45103}, {14492, 53101}, {14537, 43448}, {14927, 38072}, {15072, 58470}, {15305, 21969}, {15355, 33880}, {15533, 51212}, {15534, 51023}, {16191, 28236}, {16960, 41119}, {16961, 41120}, {18362, 43618}, {18482, 59375}, {18483, 38314}, {18510, 42539}, {18512, 42540}, {18525, 20049}, {18581, 46334}, {18582, 46335}, {19053, 42283}, {19054, 42284}, {19106, 42510}, {19107, 42511}, {20070, 38074}, {21356, 48910}, {21849, 32062}, {22165, 51024}, {22235, 54480}, {22236, 42502}, {22237, 54479}, {22238, 42503}, {22793, 34627}, {23249, 43503}, {23259, 43504}, {25154, 36318}, {25164, 36320}, {25406, 50959}, {25561, 43621}, {28146, 50799}, {28164, 30308}, {28168, 50819}, {28172, 51074}, {28178, 50809}, {28186, 50806}, {28194, 51072}, {28204, 51092}, {28212, 50797}, {28232, 50796}, {29181, 50993}, {29317, 50956}, {29323, 50975}, {31363, 54791}, {31487, 60291}, {31672, 60984}, {31884, 50960}, {32006, 32869}, {32532, 60147}, {32785, 42537}, {32786, 42538}, {32787, 52666}, {32788, 52667}, {33602, 42136}, {33603, 42137}, {33698, 54866}, {33748, 51022}, {34628, 51108}, {35369, 48657}, {35750, 41042}, {35786, 43512}, {35787, 43511}, {35820, 42523}, {35821, 42522}, {36331, 41043}, {36427, 61315}, {36961, 47865}, {36962, 47866}, {36969, 41113}, {36970, 41112}, {36991, 60963}, {37640, 42102}, {37641, 42101}, {37712, 51120}, {37714, 51067}, {38110, 51177}, {38664, 41147}, {40693, 43016}, {40694, 43017}, {41100, 49810}, {41101, 49811}, {41121, 42085}, {41122, 42086}, {41152, 53097}, {41869, 53620}, {41979, 54634}, {41980, 54635}, {42090, 43240}, {42091, 43241}, {42093, 42683}, {42094, 42682}, {42096, 42791}, {42097, 42792}, {42103, 42513}, {42106, 42512}, {42107, 42514}, {42110, 42515}, {42117, 42803}, {42118, 42804}, {42119, 49905}, {42120, 49906}, {42122, 43246}, {42123, 43247}, {42125, 43481}, {42128, 43482}, {42135, 43109}, {42138, 43108}, {42140, 42518}, {42141, 42519}, {42154, 42777}, {42155, 42778}, {42159, 42507}, {42160, 42973}, {42161, 42972}, {42162, 42506}, {42164, 42509}, {42165, 42508}, {42215, 43522}, {42216, 43521}, {42258, 42577}, {42259, 42576}, {42413, 52045}, {42414, 52046}, {42516, 42589}, {42517, 42588}, {42524, 42603}, {42525, 42602}, {42532, 42813}, {42533, 42814}, {42557, 43336}, {42558, 43337}, {42586, 42944}, {42587, 42945}, {42609, 58866}, {42795, 43636}, {42796, 43637}, {42888, 42986}, {42889, 42987}, {42906, 43487}, {42907, 43488}, {42910, 43870}, {42911, 43869}, {43334, 43471}, {43335, 43472}, {43473, 43502}, {43474, 43501}, {43537, 54478}, {43542, 54579}, {43543, 54578}, {43951, 60281}, {47353, 50992}, {47354, 50994}, {47586, 54647}, {48884, 51171}, {48889, 61044}, {49261, 61322}, {49262, 61323}, {50868, 51095}, {50869, 51069}, {50870, 54445}, {50990, 51537}, {50991, 51163}, {51026, 51143}, {51078, 54447}, {51084, 61266}, {54476, 60127}, {54494, 54521}, {54498, 54601}, {54522, 54646}, {54531, 54923}, {54532, 54795}, {54540, 54565}, {54552, 54867}, {54585, 60161}, {54586, 54623}, {54595, 60299}, {54596, 60300}, {54622, 54687}, {54637, 60327}, {54639, 54717}, {54659, 54889}, {54666, 54870}, {54685, 54931}, {54688, 54756}, {54706, 60284}, {54726, 54766}, {54757, 54794}, {54761, 54844}, {54785, 54886}, {54813, 60647}, {54892, 60121}, {54893, 60122}, {54913, 54941}, {54924, 60193}, {54927, 54943}, {60113, 60150}, {60132, 60632}

X(62007) = midpoint of X(i) and X(j) for these {i,j}: {382, 15694}, {3091, 3543}, {15684, 15696}, {30308, 50866}
X(62007) = reflection of X(i) in X(j) for these {i,j}: {11001, 15695}, {14093, 5}, {15683, 17538}, {15692, 3091}, {15694, 3858}, {15697, 2}, {15711, 5066}, {17538, 15694}, {20, 15692}, {376, 1656}, {3522, 5071}, {3534, 15713}, {3543, 17578}, {3858, 14893}, {549, 3859}, {5071, 3843}, {5076, 15687}, {631, 381}
X(62007) = inverse of X(61989) in orthocentroidal circle
X(62007) = inverse of X(61989) in Yff hyperbola
X(62007) = complement of X(62145)
X(62007) = anticomplement of X(19708)
X(62007) = pole of line {523, 61989} with respect to the orthocentroidal circle
X(62007) = pole of line {6, 61989} with respect to the Kiepert hyperbola
X(62007) = pole of line {523, 61989} with respect to the Yff hyperbola
X(62007) = pole of line {69, 62059} with respect to the Wallace hyperbola
X(62007) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(58190)}}, {{A, B, C, X(253), X(11001)}}, {{A, B, C, X(265), X(14093)}}, {{A, B, C, X(297), X(54896)}}, {{A, B, C, X(451), X(54789)}}, {{A, B, C, X(458), X(54642)}}, {{A, B, C, X(468), X(54519)}}, {{A, B, C, X(470), X(54581)}}, {{A, B, C, X(471), X(54580)}}, {{A, B, C, X(631), X(54512)}}, {{A, B, C, X(1494), X(15697)}}, {{A, B, C, X(1585), X(54598)}}, {{A, B, C, X(1586), X(54599)}}, {{A, B, C, X(3090), X(54585)}}, {{A, B, C, X(3147), X(54879)}}, {{A, B, C, X(3424), X(52292)}}, {{A, B, C, X(3523), X(54552)}}, {{A, B, C, X(3525), X(54667)}}, {{A, B, C, X(3533), X(60122)}}, {{A, B, C, X(3545), X(54924)}}, {{A, B, C, X(3861), X(18846)}}, {{A, B, C, X(4232), X(54815)}}, {{A, B, C, X(4846), X(17504)}}, {{A, B, C, X(5056), X(54923)}}, {{A, B, C, X(5067), X(54838)}}, {{A, B, C, X(5071), X(46455)}}, {{A, B, C, X(5094), X(54520)}}, {{A, B, C, X(6353), X(54477)}}, {{A, B, C, X(7495), X(54931)}}, {{A, B, C, X(8889), X(54582)}}, {{A, B, C, X(10018), X(54870)}}, {{A, B, C, X(11331), X(41895)}}, {{A, B, C, X(14269), X(18850)}}, {{A, B, C, X(14458), X(52290)}}, {{A, B, C, X(14484), X(52293)}}, {{A, B, C, X(14940), X(54942)}}, {{A, B, C, X(15640), X(36889)}}, {{A, B, C, X(15701), X(18550)}}, {{A, B, C, X(17503), X(52283)}}, {{A, B, C, X(17538), X(31361)}}, {{A, B, C, X(18296), X(58195)}}, {{A, B, C, X(31363), X(55856)}}, {{A, B, C, X(32956), X(54897)}}, {{A, B, C, X(37462), X(54932)}}, {{A, B, C, X(45103), X(52288)}}, {{A, B, C, X(46219), X(60618)}}, {{A, B, C, X(46336), X(54704)}}, {{A, B, C, X(52289), X(53101)}}, {{A, B, C, X(53857), X(60147)}}
X(62007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 10304}, {2, 15640, 20}, {2, 15683, 8703}, {2, 15698, 15721}, {2, 15705, 11812}, {2, 30, 15697}, {2, 3146, 11001}, {2, 3522, 15693}, {2, 3543, 15640}, {2, 3830, 3543}, {2, 3832, 5066}, {2, 8703, 3523}, {4, 15682, 3845}, {4, 3529, 3861}, {4, 3545, 14893}, {4, 376, 14269}, {4, 5076, 17578}, {5, 15685, 15698}, {5, 30, 14093}, {30, 14893, 3858}, {30, 15687, 5076}, {30, 15694, 17538}, {30, 15713, 3534}, {30, 17538, 15683}, {30, 381, 631}, {30, 3843, 5071}, {30, 3859, 549}, {30, 5066, 15711}, {30, 5071, 3522}, {376, 14269, 3832}, {376, 3544, 11539}, {381, 10304, 5056}, {381, 11539, 3544}, {381, 15707, 5}, {381, 3628, 3545}, {546, 15684, 3524}, {546, 3529, 16371}, {546, 5059, 7486}, {1656, 15706, 15694}, {1656, 3832, 3091}, {2043, 2044, 3533}, {3090, 15681, 15705}, {3146, 17697, 15704}, {3523, 10304, 15715}, {3523, 14893, 3839}, {3529, 3861, 3854}, {3534, 10109, 15719}, {3543, 10304, 3146}, {3543, 14269, 10303}, {3545, 15715, 3628}, {3627, 14893, 15706}, {3627, 15701, 15682}, {3830, 12101, 4}, {3832, 15693, 6888}, {3851, 15640, 6960}, {3851, 15686, 15709}, {5066, 15711, 1656}, {5068, 7397, 16858}, {7585, 43566, 1327}, {7586, 43567, 1328}, {10109, 15719, 2}, {10304, 15697, 15695}, {10653, 12817, 49824}, {10653, 43541, 42983}, {10654, 12816, 49825}, {10654, 43540, 42982}, {11539, 12100, 15701}, {11539, 17800, 376}, {11540, 15682, 5059}, {11541, 15709, 15686}, {11737, 15689, 3525}, {12101, 15687, 3830}, {12816, 49825, 43540}, {12817, 49824, 43541}, {14093, 15721, 15692}, {14269, 17800, 381}, {15684, 15696, 30}, {15693, 15695, 15714}, {15699, 15702, 17559}, {15703, 15704, 15710}, {30308, 50866, 28164}, {36969, 41113, 49826}, {42134, 49827, 41112}, {42940, 49947, 42589}, {42941, 49948, 42588}, {47353, 51538, 51028}


X(62008) = X(2)X(3)∩X(143)X(11455)

Barycentrics    9*a^4-8*(b^2-c^2)^2-a^2*(b^2+c^2) : :
X(62008) = -24*X[2]+17*X[3], 4*X[143]+3*X[11455], -9*X[373]+16*X[44871], 3*X[568]+4*X[13474], -8*X[575]+15*X[50963], 4*X[962]+3*X[51515], -X[1351]+8*X[48895], -8*X[1539]+X[12308], -12*X[1699]+5*X[37624], 3*X[3060]+4*X[32137], -8*X[3818]+X[55584], 4*X[4301]+3*X[18525] and many others

X(62008) lies on these lines: {2, 3}, {143, 11455}, {373, 44871}, {515, 61282}, {516, 61258}, {517, 61252}, {568, 13474}, {575, 50963}, {952, 10248}, {962, 51515}, {999, 9671}, {1159, 37721}, {1351, 48895}, {1498, 14627}, {1539, 12308}, {1619, 32365}, {1699, 37624}, {3060, 32137}, {3070, 6500}, {3071, 6501}, {3295, 9656}, {3411, 42155}, {3412, 42154}, {3426, 11572}, {3521, 3531}, {3527, 18550}, {3583, 7373}, {3585, 6767}, {3818, 55584}, {4301, 18525}, {4309, 9654}, {4317, 9669}, {4325, 10896}, {4330, 10895}, {4846, 61137}, {5024, 39590}, {5050, 48884}, {5085, 48942}, {5093, 36990}, {5319, 53419}, {5339, 42990}, {5340, 42991}, {5349, 42161}, {5350, 42160}, {5355, 43136}, {5691, 10247}, {5734, 18526}, {5735, 60884}, {5790, 51118}, {5881, 8148}, {5882, 51075}, {5890, 58533}, {5895, 18376}, {5901, 58233}, {6053, 12295}, {6101, 16261}, {6199, 35821}, {6221, 35786}, {6241, 13321}, {6243, 16194}, {6278, 22810}, {6281, 22809}, {6284, 31480}, {6395, 35820}, {6398, 35787}, {6407, 35812}, {6408, 35813}, {6417, 23251}, {6418, 23261}, {6445, 42265}, {6446, 42262}, {6472, 8981}, {6473, 13966}, {6560, 41953}, {6561, 31487}, {7747, 21309}, {7749, 15603}, {7756, 31492}, {7872, 14535}, {7989, 28154}, {7998, 11017}, {8550, 51130}, {8976, 9681}, {9588, 28146}, {9589, 18480}, {9607, 15484}, {9624, 28160}, {9655, 37722}, {9668, 15888}, {9680, 42273}, {9690, 42258}, {9698, 44526}, {9704, 26883}, {9780, 28182}, {9812, 12645}, {9955, 58230}, {10095, 12279}, {10145, 43408}, {10146, 43407}, {10246, 33697}, {10263, 11439}, {10516, 55604}, {10721, 20379}, {11002, 45957}, {11178, 55595}, {11362, 48661}, {11477, 51174}, {11485, 42813}, {11486, 42814}, {11645, 53092}, {11898, 51538}, {12000, 41698}, {12315, 18405}, {12699, 47745}, {12702, 37714}, {12902, 15063}, {12943, 37720}, {12953, 37719}, {13093, 18383}, {13202, 38724}, {13363, 52093}, {13598, 18435}, {13665, 22615}, {13785, 22644}, {13903, 42225}, {13951, 41949}, {13961, 42226}, {14128, 54047}, {14848, 51022}, {14978, 52578}, {14981, 38733}, {15041, 20396}, {15057, 34584}, {15058, 54048}, {15069, 44456}, {15171, 31410}, {15178, 50806}, {15606, 46847}, {15811, 36749}, {15851, 52945}, {16003, 38790}, {16654, 44076}, {16772, 42106}, {16773, 42103}, {16808, 43194}, {16809, 43193}, {16964, 42094}, {16965, 42093}, {17814, 37496}, {17851, 18762}, {18394, 43599}, {18436, 46849}, {18483, 61276}, {18510, 23263}, {18512, 23253}, {18553, 51024}, {18874, 20791}, {19106, 42153}, {19107, 42156}, {19130, 55697}, {20304, 38633}, {21358, 55620}, {22236, 41971}, {22238, 41972}, {22246, 53418}, {22791, 58238}, {22804, 54202}, {23269, 43508}, {23275, 43507}, {24206, 55624}, {25561, 55614}, {28172, 61268}, {28202, 50800}, {29012, 42785}, {29317, 55616}, {31414, 42215}, {31417, 31470}, {31454, 42269}, {31457, 43457}, {31467, 43619}, {31494, 57288}, {31673, 37727}, {31884, 48943}, {32062, 34783}, {32063, 34786}, {32447, 52854}, {33878, 48889}, {34754, 42691}, {34755, 42690}, {36969, 43775}, {36970, 43776}, {36991, 51514}, {37484, 44870}, {37725, 48680}, {37726, 38756}, {38072, 55701}, {38634, 61576}, {38635, 61575}, {38636, 61580}, {38637, 60759}, {38638, 61574}, {38639, 61591}, {38640, 61587}, {38732, 39838}, {38743, 39809}, {40107, 48910}, {40693, 42102}, {40694, 42101}, {40909, 52101}, {42095, 42433}, {42096, 43226}, {42097, 43227}, {42098, 42434}, {42099, 42490}, {42100, 42491}, {42104, 42128}, {42105, 42125}, {42108, 42132}, {42109, 42129}, {42115, 43633}, {42116, 43632}, {42119, 42962}, {42120, 42963}, {42136, 42815}, {42137, 42816}, {42140, 42817}, {42141, 42818}, {42149, 43401}, {42152, 43402}, {42159, 42941}, {42162, 42940}, {42164, 42988}, {42165, 42989}, {42259, 43415}, {42268, 45385}, {42431, 43399}, {42432, 43400}, {42580, 42625}, {42581, 42626}, {42779, 42964}, {42780, 42965}, {42799, 43492}, {42800, 43491}, {42934, 43366}, {42935, 43367}, {43426, 54480}, {43427, 54479}, {43523, 43568}, {43524, 43569}, {47353, 55724}, {48872, 55632}, {48879, 55648}, {48896, 55678}, {48904, 55610}, {48905, 55692}, {50957, 55602}, {50993, 55597}, {51516, 52835}, {51517, 52836}, {51518, 52837}, {53023, 53091}, {58220, 61265}, {58250, 61251}, {58531, 61136}, {59503, 61255}

X(62008) = midpoint of X(i) and X(j) for these {i,j}: {382, 3526}
X(62008) = reflection of X(i) in X(j) for these {i,j}: {15701, 381}, {15715, 6959}, {3, 3851}, {3523, 3857}, {3526, 3832}, {3528, 5}, {3534, 15702}
X(62008) = inverse of X(61988) in orthocentroidal circle
X(62008) = inverse of X(37947) in Stammler circle
X(62008) = inverse of X(61988) in Yff hyperbola
X(62008) = complement of X(62146)
X(62008) = anticomplement of X(62069)
X(62008) = pole of line {523, 61988} with respect to the orthocentroidal circle
X(62008) = pole of line {523, 37947} with respect to the Stammler circle
X(62008) = pole of line {185, 14269} with respect to the Jerabek hyperbola
X(62008) = pole of line {6, 61988} with respect to the Kiepert hyperbola
X(62008) = pole of line {523, 61988} with respect to the Yff hyperbola
X(62008) = pole of line {69, 55659} with respect to the Wallace hyperbola
X(62008) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(23040)}}, {{A, B, C, X(68), X(19708)}}, {{A, B, C, X(265), X(3528)}}, {{A, B, C, X(376), X(21400)}}, {{A, B, C, X(378), X(61137)}}, {{A, B, C, X(631), X(18550)}}, {{A, B, C, X(1105), X(14269)}}, {{A, B, C, X(1657), X(15319)}}, {{A, B, C, X(3426), X(21844)}}, {{A, B, C, X(3520), X(3531)}}, {{A, B, C, X(3521), X(3524)}}, {{A, B, C, X(3527), X(35473)}}, {{A, B, C, X(3861), X(18848)}}, {{A, B, C, X(4846), X(61138)}}, {{A, B, C, X(10124), X(60122)}}, {{A, B, C, X(13599), X(55861)}}, {{A, B, C, X(15318), X(15704)}}, {{A, B, C, X(15701), X(54512)}}, {{A, B, C, X(15715), X(15740)}}, {{A, B, C, X(17505), X(17538)}}, {{A, B, C, X(17703), X(35487)}}, {{A, B, C, X(35409), X(36889)}}, {{A, B, C, X(40448), X(55866)}}
X(62008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3851, 15703}, {3, 4, 14269}, {3, 5073, 15685}, {4, 15687, 5076}, {4, 3091, 14893}, {4, 3146, 3845}, {4, 3543, 546}, {5, 30, 3528}, {5, 382, 17800}, {5, 3853, 17578}, {20, 3524, 548}, {20, 3627, 382}, {20, 381, 5070}, {20, 382, 5073}, {20, 5068, 631}, {20, 631, 8703}, {30, 15702, 3534}, {30, 381, 15701}, {30, 3832, 3526}, {30, 3857, 3523}, {30, 6959, 15715}, {140, 15689, 3}, {140, 3627, 15682}, {376, 3858, 5079}, {381, 15682, 15689}, {381, 1656, 12811}, {381, 3534, 15699}, {381, 3861, 3843}, {381, 8703, 5055}, {382, 3526, 30}, {382, 3853, 3830}, {382, 5076, 3853}, {546, 8703, 5068}, {548, 3530, 15714}, {548, 3845, 3855}, {550, 3859, 5067}, {550, 5072, 15694}, {631, 15705, 3530}, {962, 51515, 58247}, {1656, 3146, 15681}, {2041, 2042, 15704}, {2043, 2044, 10124}, {3091, 15714, 1656}, {3146, 10124, 1657}, {3526, 3832, 3851}, {3528, 3832, 5}, {3543, 14269, 15722}, {3543, 5068, 11541}, {3544, 15683, 15712}, {3545, 15704, 15720}, {3627, 12811, 3146}, {3627, 3861, 20}, {3628, 5059, 15688}, {3830, 14269, 15684}, {3830, 5055, 3543}, {3830, 5073, 3627}, {3839, 5067, 3859}, {3843, 3851, 3832}, {3851, 15681, 14869}, {3853, 12101, 3861}, {3854, 11001, 632}, {3854, 17800, 6980}, {3859, 5067, 5072}, {3860, 15712, 3544}, {5054, 17800, 6882}, {5056, 12103, 15693}, {5068, 15705, 17697}, {5350, 42160, 42974}, {6989, 14892, 547}, {7540, 13488, 18562}, {8352, 14068, 7866}, {8703, 10124, 3524}, {10299, 12812, 15723}, {11539, 12108, 6897}, {12102, 15687, 4}, {12811, 14869, 3090}, {14269, 15685, 381}, {15704, 15720, 15695}, {15712, 17542, 5054}, {18383, 61721, 13093}, {18553, 51024, 55580}


X(62009) = X(2)X(3)∩X(13)X(42589)

Barycentrics    29*a^4-25*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :
X(62009) = -25*X[2]+18*X[3], -9*X[98]+16*X[41154], -9*X[944]+16*X[51107], -X[1992]+8*X[48895], -25*X[3241]+32*X[58237], 2*X[3654]+5*X[50873], -12*X[3817]+5*X[50819], -12*X[3818]+5*X[50990], 25*X[4677]+3*X[58248], 4*X[4745]+3*X[41869], -27*X[5102]+20*X[41149], 3*X[5485]+4*X[44678] and many others

X(62009) lies on these lines: {2, 3}, {13, 42589}, {14, 42588}, {61, 43201}, {62, 43202}, {98, 41154}, {944, 51107}, {1327, 43795}, {1328, 43796}, {1992, 48895}, {3241, 58237}, {3316, 6484}, {3317, 6485}, {3654, 50873}, {3817, 50819}, {3818, 50990}, {4677, 58248}, {4745, 41869}, {5102, 41149}, {5318, 43397}, {5321, 43398}, {5485, 44678}, {5587, 50809}, {5603, 50862}, {5691, 51097}, {6200, 42537}, {6221, 43536}, {6361, 51066}, {6396, 42538}, {6398, 54597}, {6431, 23253}, {6432, 23263}, {6433, 43210}, {6434, 43209}, {6437, 43257}, {6438, 43256}, {6486, 42413}, {6487, 42414}, {6560, 14226}, {6561, 14241}, {7612, 54478}, {9541, 43887}, {9690, 42604}, {9778, 50799}, {9779, 31662}, {10139, 42577}, {10140, 42576}, {10248, 28204}, {10385, 18513}, {10516, 50966}, {10722, 36523}, {11180, 51188}, {11455, 21849}, {11488, 46335}, {11489, 46334}, {11531, 34627}, {12117, 38746}, {12243, 41147}, {12245, 34648}, {12699, 58244}, {12816, 33602}, {12817, 33603}, {12820, 42516}, {12821, 42517}, {13665, 43566}, {13785, 43567}, {14458, 32532}, {14482, 53418}, {14492, 60281}, {14853, 51022}, {15749, 57715}, {16200, 50818}, {16808, 42952}, {16809, 42953}, {17503, 60150}, {18480, 51072}, {18483, 51105}, {18487, 40065}, {18492, 51069}, {18841, 54813}, {18842, 54582}, {19053, 43504}, {19054, 43503}, {19106, 41120}, {19107, 41119}, {19924, 50994}, {21356, 55594}, {22165, 55582}, {22791, 51092}, {22793, 34631}, {23269, 35771}, {23275, 35770}, {28150, 50874}, {28158, 50813}, {28160, 50867}, {28168, 50807}, {28178, 50800}, {28198, 51068}, {29012, 51217}, {29323, 50964}, {31162, 51096}, {31670, 50992}, {31672, 60971}, {31673, 51093}, {32787, 41957}, {32788, 41958}, {32819, 32896}, {33604, 54581}, {33605, 54580}, {33623, 49855}, {33625, 49858}, {33697, 38314}, {34754, 43400}, {34755, 43399}, {36318, 36961}, {36320, 36962}, {36324, 48665}, {36326, 48666}, {36967, 43024}, {36968, 43025}, {36969, 43031}, {36970, 43030}, {38064, 48942}, {38074, 51067}, {38155, 50810}, {38735, 41151}, {39284, 54667}, {41100, 42105}, {41101, 42104}, {41121, 42119}, {41122, 42120}, {41150, 50811}, {41152, 50967}, {41153, 43273}, {41895, 54612}, {41943, 42775}, {41944, 42776}, {42085, 49862}, {42086, 49861}, {42093, 49824}, {42094, 49825}, {42101, 49948}, {42102, 49947}, {42115, 43247}, {42116, 43246}, {42125, 43109}, {42126, 42907}, {42127, 42906}, {42128, 43108}, {42133, 43229}, {42134, 43228}, {42140, 42511}, {42141, 42510}, {42153, 42805}, {42154, 42986}, {42155, 42987}, {42156, 42806}, {42159, 42533}, {42162, 42532}, {42215, 43386}, {42216, 43387}, {42275, 42525}, {42276, 42524}, {42419, 42974}, {42420, 42975}, {42431, 49904}, {42432, 49903}, {42472, 42529}, {42473, 42528}, {42605, 43415}, {42813, 49811}, {42814, 49810}, {42912, 43364}, {42913, 43365}, {42940, 43779}, {42941, 43780}, {42962, 54579}, {42963, 54578}, {43226, 52079}, {43227, 52080}, {43401, 49906}, {43402, 49905}, {43416, 43477}, {43417, 43478}, {45103, 60127}, {47353, 51166}, {47354, 55591}, {48884, 59373}, {48889, 54170}, {48910, 50991}, {50865, 59388}, {50866, 51705}, {50871, 58241}, {50989, 51024}, {51027, 51187}, {51029, 54173}, {51110, 58231}, {51129, 59411}, {51142, 51163}, {51167, 51737}, {51186, 55607}, {51214, 51538}, {51537, 55587}, {51709, 58234}, {53101, 54707}, {54512, 54867}, {54519, 54637}, {54520, 60284}, {54523, 54642}, {54531, 54585}, {54608, 54720}, {54756, 54947}, {54760, 54789}, {54761, 54942}, {54763, 54791}, {54765, 54827}, {54792, 54809}, {54815, 60627}, {54838, 60120}, {54879, 54930}, {54896, 60185}, {54924, 56346}, {58470, 61136}

X(62009) = midpoint of X(i) and X(j) for these {i,j}: {382, 15703}, {3543, 3832}, {15682, 15698}
X(62009) = reflection of X(i) in X(j) for these {i,j}: {15700, 3857}, {15702, 3832}, {20, 15700}, {376, 3090}, {3523, 381}, {3857, 14893}
X(62009) = inverse of X(61987) in orthocentroidal circle
X(62009) = inverse of X(61987) in Yff hyperbola
X(62009) = anticomplement of X(62073)
X(62009) = pole of line {523, 61987} with respect to the orthocentroidal circle
X(62009) = pole of line {6, 61987} with respect to the Kiepert hyperbola
X(62009) = pole of line {523, 61987} with respect to the Yff hyperbola
X(62009) = pole of line {69, 15759} with respect to the Wallace hyperbola
X(62009) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15759)}}, {{A, B, C, X(140), X(54667)}}, {{A, B, C, X(297), X(54647)}}, {{A, B, C, X(548), X(15749)}}, {{A, B, C, X(1656), X(54838)}}, {{A, B, C, X(3091), X(54924)}}, {{A, B, C, X(3523), X(54512)}}, {{A, B, C, X(3845), X(18847)}}, {{A, B, C, X(3861), X(18853)}}, {{A, B, C, X(4232), X(54477)}}, {{A, B, C, X(4846), X(15706)}}, {{A, B, C, X(5056), X(54585)}}, {{A, B, C, X(7378), X(54813)}}, {{A, B, C, X(11331), X(32532)}}, {{A, B, C, X(11410), X(14483)}}, {{A, B, C, X(11738), X(35472)}}, {{A, B, C, X(14458), X(53857)}}, {{A, B, C, X(14490), X(55572)}}, {{A, B, C, X(15750), X(57715)}}, {{A, B, C, X(18296), X(58196)}}, {{A, B, C, X(37174), X(54478)}}, {{A, B, C, X(46219), X(54660)}}, {{A, B, C, X(46935), X(60121)}}, {{A, B, C, X(52284), X(54582)}}, {{A, B, C, X(52290), X(54612)}}, {{A, B, C, X(52292), X(60150)}}, {{A, B, C, X(52293), X(60127)}}, {{A, B, C, X(54763), X(55856)}}
X(62009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15722}, {2, 15695, 3524}, {2, 15697, 15716}, {2, 20, 15759}, {2, 3861, 6833}, {4, 11001, 3845}, {4, 11541, 3843}, {4, 17578, 3529}, {4, 3525, 3861}, {4, 5071, 14269}, {30, 14893, 3857}, {30, 15700, 20}, {30, 381, 3523}, {30, 3832, 15702}, {30, 3857, 15700}, {376, 3545, 3533}, {381, 17504, 15022}, {381, 3529, 15709}, {381, 5067, 3545}, {3090, 10299, 3526}, {3146, 14269, 5071}, {3146, 3839, 15718}, {3528, 15701, 15698}, {3529, 15682, 15640}, {3534, 15718, 8703}, {3534, 3830, 3627}, {3543, 11001, 15682}, {3543, 15708, 3146}, {3543, 3839, 5059}, {3545, 15702, 3090}, {3830, 3845, 3543}, {3839, 15022, 381}, {3839, 5059, 547}, {3845, 15640, 5067}, {3845, 15686, 5066}, {3845, 3853, 3830}, {3845, 8703, 3850}, {3861, 6927, 631}, {6981, 14093, 13745}, {10109, 15722, 2}, {10304, 13741, 549}, {11001, 15719, 376}, {11737, 17800, 15705}, {11812, 15640, 11001}, {12102, 17578, 4}, {12816, 37640, 33602}, {12817, 37641, 33603}, {15022, 15640, 3534}, {15682, 15698, 30}, {15698, 15702, 15719}, {15709, 15719, 11812}


X(62010) = X(2)X(3)∩X(13)X(42888)

Barycentrics    34*a^4-29*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62010) = -29*X[2]+21*X[3], 3*X[5093]+5*X[51216], 3*X[5790]+5*X[50873], 3*X[5886]+5*X[50866], -9*X[9779]+5*X[50832], 3*X[10247]+5*X[50863], -7*X[10248]+X[61597], 3*X[14561]+5*X[51167], -X[32455]+7*X[48895], -3*X[40273]+X[51071], -5*X[47353]+X[50985], 3*X[48661]+5*X[51072] and many others

X(62010) lies on these lines: {2, 3}, {13, 42888}, {14, 42889}, {671, 54852}, {4669, 28212}, {5093, 51216}, {5349, 42935}, {5350, 42934}, {5790, 50873}, {5886, 50866}, {9779, 50832}, {10247, 50863}, {10248, 61597}, {12816, 42940}, {12817, 42941}, {13665, 43406}, {13785, 43405}, {14458, 60630}, {14561, 51167}, {16241, 43649}, {16242, 43644}, {16962, 54480}, {16963, 54479}, {16964, 42419}, {16965, 42420}, {17503, 60323}, {18510, 43521}, {18512, 43522}, {19106, 33606}, {19107, 33607}, {20582, 48943}, {22615, 43342}, {22644, 43343}, {28146, 51069}, {28154, 50803}, {28160, 51085}, {28168, 50870}, {28174, 50827}, {28178, 50869}, {28186, 51103}, {28190, 50802}, {28216, 50796}, {28224, 51087}, {29012, 51138}, {29317, 51143}, {32455, 48895}, {33602, 43466}, {33603, 43465}, {37640, 42688}, {37641, 42689}, {37832, 43368}, {37835, 43369}, {40273, 51071}, {41100, 42101}, {41101, 42102}, {41119, 43298}, {41120, 43299}, {41121, 43402}, {41122, 43401}, {41953, 43381}, {41954, 43380}, {42087, 43544}, {42088, 43545}, {42103, 43247}, {42104, 49947}, {42105, 49948}, {42106, 43246}, {42122, 49907}, {42123, 49908}, {42126, 43397}, {42127, 43398}, {42135, 42510}, {42136, 43228}, {42137, 43229}, {42138, 42511}, {42143, 42792}, {42146, 42791}, {42154, 49811}, {42155, 49810}, {42164, 42532}, {42165, 42533}, {42215, 43503}, {42216, 43504}, {42263, 43526}, {42264, 43525}, {42270, 42524}, {42273, 42525}, {42429, 43102}, {42430, 43103}, {42502, 42695}, {42503, 42694}, {42506, 42925}, {42507, 42924}, {42522, 60289}, {42523, 60290}, {42588, 42634}, {42589, 42633}, {42631, 42686}, {42632, 42687}, {42682, 43418}, {42683, 43419}, {42692, 43367}, {42693, 43366}, {42815, 43477}, {42816, 43478}, {42972, 43491}, {42973, 43492}, {43382, 45385}, {43383, 45384}, {47353, 50985}, {48661, 51072}, {48874, 51186}, {48889, 50991}, {50820, 61266}, {50822, 54448}, {51070, 61255}, {51076, 61267}, {51133, 55649}, {51182, 54132}, {52047, 53519}, {52048, 53518}, {53106, 54608}, {53107, 54643}, {54477, 60250}, {54493, 60175}, {54582, 60649}, {54646, 60192}, {54890, 60282}, {60228, 60326}, {60325, 60632}

X(62010) = midpoint of X(i) and X(j) for these {i,j}: {382, 547}, {546, 3543}, {548, 15684}, {3146, 15691}, {3627, 14893}, {3830, 12101}, {3853, 15687}, {12100, 15682}, {20582, 48943}
X(62010) = reflection of X(i) in X(j) for these {i,j}: {10109, 3845}, {10124, 546}, {11737, 3861}, {11812, 3860}, {12102, 15687}, {14891, 3850}, {15686, 12108}, {15691, 16239}, {15759, 5066}, {3530, 381}, {3534, 11540}, {3850, 14893}, {549, 3856}
X(62010) = inverse of X(61986) in orthocentroidal circle
X(62010) = inverse of X(61986) in Yff hyperbola
X(62010) = anticomplement of X(46332)
X(62010) = pole of line {523, 61986} with respect to the orthocentroidal circle
X(62010) = pole of line {6, 61986} with respect to the Kiepert hyperbola
X(62010) = pole of line {523, 61986} with respect to the Yff hyperbola
X(62010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(468), X(54852)}}, {{A, B, C, X(3530), X(54512)}}, {{A, B, C, X(5079), X(54585)}}, {{A, B, C, X(11331), X(60630)}}, {{A, B, C, X(13623), X(15711)}}, {{A, B, C, X(38071), X(54924)}}, {{A, B, C, X(52292), X(60323)}}, {{A, B, C, X(52297), X(54608)}}, {{A, B, C, X(52298), X(54643)}}
X(62010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 14093}, {2, 14891, 11812}, {2, 1657, 8703}, {2, 3830, 3627}, {4, 3534, 3845}, {4, 3543, 5055}, {4, 3628, 3861}, {4, 382, 3857}, {30, 11540, 3534}, {30, 12108, 15686}, {30, 14893, 3850}, {30, 15687, 12102}, {30, 16239, 15691}, {30, 381, 3530}, {30, 3845, 10109}, {30, 3850, 14891}, {30, 3856, 549}, {30, 3861, 11737}, {30, 5066, 15759}, {30, 546, 10124}, {381, 15708, 5}, {547, 5054, 4205}, {548, 5066, 2}, {1657, 15700, 15689}, {1657, 5068, 15712}, {3525, 15701, 15713}, {3530, 15759, 15698}, {3530, 3850, 12812}, {3534, 15701, 10304}, {3534, 3845, 5066}, {3627, 15712, 382}, {3628, 14891, 14890}, {3830, 12102, 3860}, {3830, 15687, 12101}, {3843, 15684, 15706}, {3843, 15686, 14892}, {3845, 15682, 12100}, {3845, 15713, 381}, {3851, 6850, 1656}, {3853, 12101, 3830}, {3857, 10304, 547}, {3857, 15704, 3525}, {5055, 15684, 1657}, {5066, 12101, 4}, {6969, 15709, 15683}, {10109, 11540, 3628}, {10109, 15759, 11540}, {12100, 15682, 30}, {14892, 14893, 3843}, {14892, 15686, 12108}, {15686, 15706, 548}, {15698, 15704, 15690}, {15705, 17578, 3543}


X(62011) = X(2)X(3)∩X(13)X(42516)

Barycentrics    23*a^4-19*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :
X(62011) = -19*X[2]+14*X[3], X[40]+4*X[50869], X[944]+4*X[50862], X[1350]+4*X[51026], 7*X[3619]+8*X[48943], -2*X[3630]+7*X[47353], X[3633]+14*X[31673], -2*X[3656]+7*X[10248], X[4297]+4*X[50870], 4*X[5691]+X[50818], -2*X[6144]+7*X[54132], X[6776]+4*X[51022] and many others

X(62011) lies on these lines: {2, 3}, {13, 42516}, {14, 42517}, {40, 50869}, {671, 60325}, {944, 50862}, {1327, 60309}, {1328, 60310}, {1350, 51026}, {3316, 53130}, {3317, 53131}, {3619, 48943}, {3630, 47353}, {3633, 31673}, {3656, 10248}, {3679, 28232}, {4297, 50870}, {4668, 28194}, {5334, 42683}, {5335, 42682}, {5339, 49826}, {5340, 49827}, {5349, 42899}, {5350, 42898}, {5365, 43229}, {5366, 43228}, {5485, 60326}, {5691, 50818}, {5818, 50809}, {5965, 51538}, {6144, 54132}, {6459, 14241}, {6460, 14226}, {6490, 42263}, {6491, 42264}, {6492, 41952}, {6493, 41951}, {6560, 43800}, {6561, 43799}, {6776, 51022}, {7612, 54493}, {7753, 14482}, {7773, 32876}, {7788, 32877}, {7809, 32822}, {7987, 51074}, {8227, 50819}, {9812, 34631}, {10595, 28208}, {10653, 42897}, {10654, 42896}, {10733, 56567}, {11455, 14831}, {11645, 51176}, {12243, 39838}, {12245, 50865}, {12290, 21849}, {12699, 20053}, {12820, 34754}, {12821, 34755}, {13482, 26883}, {13886, 43257}, {13903, 54542}, {13939, 43256}, {13961, 54543}, {14492, 18844}, {14494, 54646}, {16267, 43022}, {16268, 43023}, {16808, 42512}, {16809, 42513}, {16960, 42140}, {16961, 42141}, {16962, 43013}, {16963, 43012}, {18394, 32601}, {18842, 54890}, {18912, 51996}, {19053, 22644}, {19054, 22615}, {19106, 42902}, {19107, 42903}, {19875, 50874}, {19924, 51029}, {21356, 48889}, {21358, 51164}, {22793, 50864}, {23267, 43406}, {23269, 43522}, {23273, 43405}, {23275, 43521}, {28198, 50873}, {28228, 34648}, {28234, 34627}, {28236, 31162}, {31672, 60976}, {32532, 54857}, {32819, 32875}, {33602, 40693}, {33603, 40694}, {33604, 42988}, {33605, 42989}, {35820, 43504}, {35821, 43503}, {35822, 52666}, {35823, 52667}, {36990, 50974}, {37640, 42104}, {37641, 42105}, {37832, 52079}, {37835, 52080}, {38314, 50867}, {39874, 48895}, {39884, 51028}, {40330, 50966}, {41112, 43492}, {41113, 43491}, {41119, 42432}, {41120, 42431}, {41943, 42142}, {41944, 42139}, {42085, 43542}, {42086, 43543}, {42101, 42778}, {42102, 42777}, {42111, 42429}, {42112, 42929}, {42113, 42928}, {42114, 42430}, {42115, 43555}, {42116, 43554}, {42117, 43540}, {42118, 43541}, {42122, 43493}, {42123, 43494}, {42133, 42941}, {42134, 42940}, {42147, 49874}, {42148, 49873}, {42157, 49862}, {42158, 49861}, {42159, 42436}, {42162, 42435}, {42163, 42519}, {42166, 42518}, {42260, 42537}, {42261, 42538}, {42433, 43369}, {42434, 43368}, {42496, 43243}, {42497, 43242}, {42510, 42801}, {42511, 42802}, {42514, 42631}, {42515, 42632}, {42520, 42973}, {42521, 42972}, {42775, 43632}, {42776, 43633}, {42813, 49813}, {42814, 49812}, {42926, 49908}, {42927, 49907}, {43195, 43778}, {43196, 43777}, {43397, 43402}, {43398, 43401}, {43416, 43466}, {43417, 43465}, {43418, 43488}, {43419, 43487}, {43446, 54574}, {43447, 54575}, {43505, 51911}, {43506, 51910}, {43525, 54596}, {43526, 54595}, {43562, 60303}, {43563, 60304}, {43566, 60289}, {43567, 60290}, {46267, 48942}, {47352, 51177}, {48874, 50957}, {48898, 50964}, {48901, 51023}, {50810, 51118}, {50868, 61296}, {50967, 51163}, {51043, 52852}, {51129, 53094}, {51179, 51212}, {51217, 59373}, {53106, 60150}, {53107, 60127}, {54720, 60323}, {54845, 60630}, {54852, 60219}, {60281, 60329}

X(62011) = midpoint of X(i) and X(j) for these {i,j}: {631, 15682}, {3146, 15697}, {3830, 5076}, {14093, 15684}, {51029, 51537}
X(62011) = reflection of X(i) in X(j) for these {i,j}: {1656, 3845}, {11001, 3522}, {15681, 15714}, {15692, 381}, {15693, 3858}, {15695, 5}, {15697, 1656}, {15711, 3859}, {15713, 546}, {17538, 2}, {17578, 3830}, {2, 3843}, {20, 15693}, {376, 5071}, {3534, 632}, {50809, 5818}, {50819, 8227}, {50966, 40330}, {53094, 51129}, {7987, 51074}
X(62011) = inverse of X(61983) in orthocentroidal circle
X(62011) = inverse of X(61983) in Yff hyperbola
X(62011) = anticomplement of X(14093)
X(62011) = pole of line {523, 61983} with respect to the orthocentroidal circle
X(62011) = pole of line {6, 61983} with respect to the Kiepert hyperbola
X(62011) = pole of line {523, 61983} with respect to the Yff hyperbola
X(62011) = pole of line {69, 45759} with respect to the Wallace hyperbola
X(62011) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(45759)}}, {{A, B, C, X(253), X(58204)}}, {{A, B, C, X(265), X(15695)}}, {{A, B, C, X(468), X(60325)}}, {{A, B, C, X(547), X(54838)}}, {{A, B, C, X(632), X(54660)}}, {{A, B, C, X(1494), X(17538)}}, {{A, B, C, X(3839), X(18847)}}, {{A, B, C, X(3843), X(18849)}}, {{A, B, C, X(3845), X(18852)}}, {{A, B, C, X(4232), X(60326)}}, {{A, B, C, X(4846), X(15700)}}, {{A, B, C, X(5054), X(54667)}}, {{A, B, C, X(5070), X(54763)}}, {{A, B, C, X(15684), X(36889)}}, {{A, B, C, X(15691), X(43699)}}, {{A, B, C, X(15692), X(54512)}}, {{A, B, C, X(18844), X(52289)}}, {{A, B, C, X(18851), X(50689)}}, {{A, B, C, X(21734), X(54552)}}, {{A, B, C, X(31361), X(58195)}}, {{A, B, C, X(37174), X(54493)}}, {{A, B, C, X(46936), X(60121)}}, {{A, B, C, X(52284), X(54890)}}, {{A, B, C, X(52297), X(60150)}}, {{A, B, C, X(52298), X(60127)}}, {{A, B, C, X(53857), X(54857)}}, {{A, B, C, X(55864), X(60122)}}
X(62011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15718, 15702}, {2, 30, 17538}, {2, 3543, 15684}, {2, 3839, 3850}, {4, 11541, 3832}, {4, 17538, 3843}, {4, 3524, 3845}, {4, 3544, 3861}, {5, 30, 15695}, {20, 12102, 4}, {20, 547, 15715}, {30, 15693, 20}, {30, 15714, 15681}, {30, 3522, 11001}, {30, 381, 15692}, {30, 3830, 17578}, {30, 3845, 1656}, {30, 3858, 15693}, {30, 3859, 15711}, {30, 546, 15713}, {30, 632, 3534}, {376, 3090, 549}, {376, 3543, 15682}, {381, 15681, 10124}, {381, 15684, 15686}, {382, 12101, 3839}, {547, 15715, 15709}, {549, 15687, 12101}, {1656, 15681, 15714}, {1656, 15697, 3524}, {1657, 3843, 12812}, {3090, 11001, 15710}, {3524, 3845, 3855}, {3529, 3545, 15698}, {3534, 11737, 15721}, {3545, 15682, 3529}, {3627, 12101, 15689}, {3627, 12102, 5072}, {3627, 15684, 3543}, {3627, 15687, 14893}, {3627, 3850, 382}, {3832, 11541, 10299}, {3832, 15721, 11737}, {3839, 11001, 3090}, {3839, 15710, 3545}, {3843, 15684, 14093}, {3843, 15712, 3091}, {3859, 15711, 5055}, {3860, 15688, 5056}, {3861, 5059, 3544}, {11541, 11737, 376}, {14093, 15684, 30}, {14093, 15694, 15712}, {14269, 15693, 3858}, {14893, 15684, 2}, {14893, 15686, 381}, {15681, 15714, 15697}, {15687, 17578, 5071}, {15693, 15709, 631}, {40693, 43201, 33602}, {40694, 43202, 33603}, {42588, 43202, 40694}, {42589, 43201, 40693}, {51029, 51537, 19924}


X(62012) = X(2)X(3)∩X(371)X(43380)

Barycentrics    28*a^4-23*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62012) = -23*X[2]+17*X[3], -5*X[3818]+2*X[50982], -8*X[9955]+5*X[50832], X[11178]+2*X[51026], -4*X[11180]+X[51183], X[12702]+5*X[50873], -8*X[18357]+5*X[50822], -8*X[18358]+5*X[51184], -5*X[18480]+2*X[50827], X[18481]+5*X[50866], -5*X[18483]+2*X[51085], 5*X[18492]+7*X[50874] and many others

X(62012) lies on these lines: {2, 3}, {371, 43380}, {372, 43381}, {516, 38081}, {3818, 50982}, {5318, 43400}, {5321, 43399}, {6417, 43522}, {6418, 43521}, {7583, 43503}, {7584, 43504}, {9681, 42577}, {9955, 50832}, {11178, 51026}, {11180, 51183}, {12702, 50873}, {12816, 42164}, {12817, 42165}, {16267, 42102}, {16268, 42101}, {16962, 42138}, {16963, 42135}, {18357, 50822}, {18358, 51184}, {18480, 50827}, {18481, 50866}, {18483, 51085}, {18492, 50874}, {18526, 50863}, {19130, 50987}, {19875, 28182}, {21849, 45957}, {21850, 51140}, {21969, 32137}, {22791, 51087}, {28150, 61260}, {28154, 38076}, {28158, 38083}, {28164, 38022}, {28168, 61270}, {28174, 61254}, {28186, 61279}, {28190, 38021}, {28194, 59400}, {28198, 38138}, {28216, 38074}, {31162, 50831}, {31730, 50826}, {32787, 43340}, {32788, 43341}, {33697, 50824}, {33878, 51029}, {34648, 50823}, {35255, 43337}, {35256, 43336}, {36430, 59657}, {36969, 42922}, {36970, 42923}, {37640, 42888}, {37641, 42889}, {37705, 50830}, {37832, 42684}, {37835, 42685}, {39899, 51216}, {40273, 61284}, {42087, 43483}, {42088, 43484}, {42093, 42634}, {42094, 42633}, {42104, 43416}, {42105, 43417}, {42117, 42895}, {42118, 42894}, {42121, 43025}, {42124, 43024}, {42129, 43648}, {42132, 43647}, {42133, 42689}, {42134, 42688}, {42140, 42496}, {42141, 42497}, {42157, 43475}, {42158, 43476}, {42268, 42640}, {42269, 42639}, {42275, 43211}, {42276, 43212}, {42415, 42516}, {42416, 42517}, {42727, 43629}, {42728, 43628}, {42795, 43226}, {42796, 43227}, {42940, 42973}, {42941, 42972}, {42964, 61719}, {42970, 43007}, {42971, 43006}, {43000, 43328}, {43001, 43329}, {43150, 50978}, {43338, 43569}, {43339, 43568}, {43430, 52047}, {43431, 52048}, {46264, 51167}, {48880, 50960}, {48881, 50981}, {48884, 50979}, {48895, 51022}, {48942, 51737}, {48943, 50965}, {50865, 61250}, {50986, 54131}

X(62012) = midpoint of X(i) and X(j) for these {i,j}: {382, 3545}, {3146, 15689}, {3543, 14269}, {5054, 15682}, {10304, 15684}
X(62012) = reflection of X(i) in X(j) for these {i,j}: {10304, 5066}, {11539, 3839}, {14269, 12101}, {15686, 5054}, {15688, 14892}, {15689, 547}, {15699, 3845}, {15704, 10304}, {17504, 381}, {3545, 14893}, {5, 14269}, {550, 15699}, {5054, 546}, {8703, 3545}
X(62012) = anticomplement of X(41982)
X(62012) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(13623), X(14891)}}, {{A, B, C, X(15723), X(18550)}}, {{A, B, C, X(17504), X(54512)}}
X(62012) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5072, 13741}, {4, 15640, 381}, {4, 17800, 546}, {4, 3543, 3534}, {4, 5072, 3861}, {5, 8703, 15694}, {30, 10304, 15704}, {30, 12101, 14269}, {30, 14269, 5}, {30, 14892, 15688}, {30, 14893, 3545}, {30, 15699, 550}, {30, 3545, 8703}, {30, 381, 17504}, {30, 3845, 15699}, {30, 5066, 10304}, {30, 546, 5054}, {30, 547, 15689}, {376, 5072, 11540}, {381, 15022, 5066}, {381, 15640, 548}, {381, 3830, 17578}, {548, 12102, 4}, {548, 3628, 3523}, {549, 3845, 3857}, {1657, 10109, 15714}, {3146, 6834, 15684}, {3522, 3543, 15682}, {3523, 15640, 15683}, {3523, 15694, 11812}, {3529, 5067, 3522}, {3529, 5076, 12102}, {3534, 5055, 3524}, {3543, 5076, 12101}, {3545, 15683, 15706}, {3545, 15706, 3628}, {3627, 12102, 632}, {3627, 15687, 3845}, {3627, 3858, 382}, {3830, 15687, 3627}, {3830, 3853, 15687}, {3830, 5076, 3543}, {3832, 15685, 10124}, {3839, 15688, 14892}, {3850, 15681, 15713}, {5055, 10304, 14890}, {5066, 14890, 5055}, {8703, 14893, 3858}, {10304, 15022, 15709}, {10304, 15684, 30}, {11001, 11737, 15712}, {14892, 15688, 11539}, {15698, 17678, 15720}, {15709, 17504, 549}, {15759, 17800, 15686}


X(62013) = X(2)X(3)∩X(6)X(43515)

Barycentrics    14*a^4-11*(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(62013) = -33*X[2]+25*X[3], -11*X[141]+7*X[55605], X[576]+3*X[51022], -5*X[1539]+X[24981], -X[3244]+5*X[22793], -X[3629]+5*X[48901], -3*X[3631]+5*X[18553], -7*X[3632]+15*X[61247], -11*X[3818]+3*X[55589], -11*X[5480]+7*X[55712], -X[5493]+3*X[18357], X[5882]+3*X[33697] and many others

X(62013) lies on these lines: {2, 3}, {6, 43515}, {17, 42108}, {18, 42109}, {141, 55605}, {395, 12821}, {396, 12820}, {397, 42136}, {398, 42137}, {576, 51022}, {1503, 55715}, {1539, 24981}, {3070, 6435}, {3071, 6436}, {3244, 22793}, {3411, 43109}, {3412, 43108}, {3519, 46851}, {3564, 55719}, {3626, 28174}, {3629, 48901}, {3631, 18553}, {3632, 61247}, {3636, 28160}, {3818, 55589}, {3982, 12433}, {5254, 14075}, {5270, 15172}, {5318, 42630}, {5321, 42629}, {5339, 42105}, {5340, 42104}, {5343, 42127}, {5344, 42126}, {5349, 19106}, {5350, 19107}, {5480, 55712}, {5493, 18357}, {5844, 31673}, {5882, 33697}, {5893, 45185}, {6000, 12002}, {6147, 51790}, {6154, 22799}, {6199, 43376}, {6329, 15807}, {6395, 43377}, {6417, 43507}, {6418, 43508}, {6453, 43409}, {6454, 43410}, {6560, 43433}, {6561, 43432}, {6688, 55286}, {7583, 53519}, {7584, 53518}, {7780, 53144}, {8550, 48884}, {8960, 42271}, {10187, 42429}, {10188, 42430}, {10222, 50862}, {10263, 32062}, {10627, 46847}, {10722, 61600}, {10723, 61599}, {10724, 61605}, {10725, 61604}, {10727, 61602}, {10728, 61601}, {10732, 61603}, {10733, 61598}, {10990, 11801}, {11017, 13348}, {11522, 61279}, {11542, 42432}, {11543, 42431}, {12295, 13142}, {12816, 42635}, {12817, 42636}, {12818, 43570}, {12819, 43571}, {13364, 14641}, {13382, 16881}, {13391, 46849}, {13392, 46686}, {13419, 51998}, {13421, 13598}, {13451, 13491}, {13464, 28186}, {13570, 32205}, {13925, 42263}, {13993, 42264}, {14487, 14861}, {14488, 53102}, {15003, 58531}, {16194, 31834}, {16621, 32423}, {16964, 42909}, {16965, 42908}, {17704, 44871}, {18358, 48904}, {18376, 61540}, {18480, 28216}, {18481, 61274}, {18483, 28190}, {18583, 55707}, {19116, 52667}, {19117, 52666}, {19925, 28182}, {20054, 61245}, {20424, 32111}, {22791, 61291}, {23253, 43405}, {23263, 43406}, {25555, 55700}, {28150, 61259}, {28168, 61272}, {28178, 43174}, {28198, 61255}, {28212, 51118}, {28228, 61253}, {29181, 55592}, {29317, 55609}, {32142, 46852}, {32340, 50708}, {32767, 50709}, {32785, 43312}, {32786, 43313}, {33698, 60334}, {34380, 55723}, {34507, 51163}, {34545, 52100}, {34641, 61249}, {34786, 44762}, {35786, 41963}, {35787, 41964}, {36969, 43111}, {36970, 43110}, {37832, 42794}, {37835, 42793}, {39884, 40341}, {41869, 61254}, {41973, 42940}, {41974, 42941}, {42096, 42627}, {42097, 42628}, {42101, 42158}, {42102, 42157}, {42112, 43238}, {42113, 43239}, {42115, 42776}, {42116, 42775}, {42122, 43366}, {42123, 43367}, {42125, 43769}, {42128, 43770}, {42130, 43197}, {42131, 43198}, {42135, 42151}, {42138, 42150}, {42140, 42988}, {42141, 42989}, {42143, 42978}, {42144, 42152}, {42145, 42149}, {42146, 42979}, {42163, 42938}, {42164, 43416}, {42165, 43417}, {42166, 42939}, {42225, 42643}, {42226, 42644}, {42268, 43524}, {42269, 43523}, {42272, 58866}, {42433, 42946}, {42434, 42947}, {42496, 42813}, {42497, 42814}, {42568, 43337}, {42569, 43336}, {42584, 42944}, {42585, 42945}, {42612, 42991}, {42613, 42990}, {42645, 43626}, {42646, 43627}, {42684, 43636}, {42685, 43637}, {42797, 43227}, {42798, 43226}, {42970, 43030}, {42971, 43031}, {43479, 43647}, {43480, 43648}, {43676, 50251}, {43773, 44015}, {43774, 44016}, {48889, 55599}, {48895, 55713}, {48910, 61545}, {48942, 51732}, {48943, 55619}, {50956, 55626}, {51095, 61290}, {51143, 55617}, {53100, 53105}, {53109, 60142}, {54494, 60332}

X(62013) = midpoint of X(i) and X(j) for these {i,j}: {382, 546}, {547, 15682}, {548, 3146}, {3543, 12101}, {3627, 3853}, {10722, 61600}, {10723, 61599}, {10724, 61605}, {10725, 61604}, {10727, 61602}, {10728, 61601}, {10732, 61603}, {10733, 61598}, {12100, 15684}, {13598, 32137}, {18358, 48904}, {33697, 40273}, {41869, 61510}, {48910, 61545}
X(62013) = reflection of X(i) in X(j) for these {i,j}: {10109, 14893}, {10124, 3845}, {12102, 3853}, {12103, 16239}, {13348, 11017}, {13392, 46686}, {14891, 3860}, {15686, 11540}, {15759, 381}, {17704, 44871}, {20, 12108}, {3, 3856}, {3530, 546}, {3628, 3861}, {3850, 4}, {3861, 12102}, {32142, 46852}, {548, 12811}, {51700, 18483}
X(62013) = complement of X(62151)
X(62013) = anticomplement of X(62087)
X(62013) = pole of line {185, 61976} with respect to the Jerabek hyperbola
X(62013) = pole of line {6, 42904} with respect to the Kiepert hyperbola
X(62013) = pole of line {69, 55652} with respect to the Wallace hyperbola
X(62013) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(44245)}}, {{A, B, C, X(3518), X(46851)}}, {{A, B, C, X(3519), X(46853)}}, {{A, B, C, X(3521), X(14869)}}, {{A, B, C, X(6662), X(15682)}}, {{A, B, C, X(12100), X(14861)}}, {{A, B, C, X(14487), X(14865)}}, {{A, B, C, X(15717), X(43970)}}, {{A, B, C, X(15759), X(54512)}}, {{A, B, C, X(18550), X(55857)}}, {{A, B, C, X(37453), X(53100)}}, {{A, B, C, X(40448), X(47598)}}
X(62013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14893, 3856}, {3, 3856, 10109}, {4, 15682, 3523}, {4, 1656, 3845}, {4, 1657, 3858}, {4, 30, 3850}, {4, 3146, 1656}, {4, 3523, 3843}, {4, 5059, 381}, {5, 15704, 15711}, {5, 3627, 3543}, {5, 550, 15720}, {20, 5066, 12108}, {20, 5079, 17504}, {20, 6956, 15703}, {30, 11540, 15686}, {30, 12102, 3861}, {30, 12108, 20}, {30, 16239, 12103}, {30, 3845, 10124}, {30, 3853, 12102}, {30, 3856, 3}, {30, 3860, 14891}, {30, 3861, 3628}, {140, 546, 3851}, {381, 12103, 16239}, {382, 12102, 11737}, {382, 14269, 3529}, {382, 15681, 3146}, {382, 15687, 546}, {382, 15720, 5073}, {382, 5076, 14269}, {546, 14869, 12811}, {546, 3853, 15687}, {548, 12103, 15697}, {550, 15712, 3528}, {632, 17800, 15690}, {1656, 15697, 15712}, {1657, 10299, 550}, {1657, 3851, 10299}, {1657, 3858, 140}, {3146, 3855, 15681}, {3524, 10124, 11812}, {3529, 14269, 5}, {3529, 17567, 15695}, {3529, 3543, 382}, {3529, 3855, 3524}, {3530, 10124, 14869}, {3627, 3830, 3853}, {3628, 3861, 3860}, {3830, 17578, 3627}, {3832, 8703, 12812}, {3839, 17800, 632}, {3843, 14093, 7402}, {3843, 15682, 15704}, {3843, 15688, 3544}, {3843, 15704, 547}, {3845, 14869, 3855}, {3850, 12102, 4}, {3853, 12101, 5076}, {5349, 19106, 42924}, {12100, 15684, 30}, {12103, 16239, 15759}, {12108, 17504, 3530}, {14269, 15687, 12101}, {14869, 15681, 548}, {19106, 43547, 43485}, {19107, 43546, 43486}, {42924, 43485, 42416}, {42925, 43486, 42415}, {43195, 43486, 43546}, {43195, 43546, 5350}, {43196, 43485, 43547}, {43196, 43547, 5349}, {43515, 43516, 6}


X(62014) = X(2)X(3)∩X(13)X(42907)

Barycentrics    32*a^4-25*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62014) = -25*X[2]+19*X[3], X[597]+2*X[48942], X[3655]+5*X[50866], X[3818]+2*X[51026], -2*X[6361]+5*X[50822], X[11179]+5*X[51167], X[11278]+2*X[50868], 4*X[11531]+5*X[61245], 5*X[12699]+X[50871], -8*X[16200]+5*X[61293], 5*X[18440]+X[51214], X[18480]+2*X[50869] and many others

X(62014) lies on these lines: {2, 3}, {13, 42907}, {14, 42906}, {597, 48942}, {952, 58241}, {3655, 50866}, {3818, 51026}, {5237, 43247}, {5238, 43246}, {5318, 42799}, {5321, 42800}, {6361, 50822}, {6433, 43211}, {6434, 43212}, {6449, 42537}, {6450, 42538}, {6484, 43210}, {6485, 43209}, {6560, 43317}, {6561, 43316}, {9691, 43536}, {11179, 51167}, {11278, 50868}, {11485, 43201}, {11486, 43202}, {11531, 61245}, {12699, 50871}, {13665, 43405}, {13785, 43406}, {15935, 51790}, {16200, 61293}, {16267, 43245}, {16268, 43244}, {16772, 42952}, {16773, 42953}, {16962, 42102}, {16963, 42101}, {18440, 51214}, {18480, 50869}, {18483, 50870}, {18581, 43420}, {18582, 43421}, {19106, 42634}, {19107, 42633}, {20582, 55633}, {21850, 51022}, {22791, 50862}, {23302, 43325}, {23303, 43324}, {28160, 58234}, {28190, 30392}, {28198, 38155}, {28202, 38112}, {31162, 61295}, {31662, 38022}, {31670, 51027}, {31673, 51120}, {34628, 58231}, {34718, 50873}, {34748, 50863}, {37517, 51025}, {37705, 50865}, {38079, 55695}, {39874, 51180}, {41971, 42905}, {41972, 42904}, {42087, 43199}, {42088, 43200}, {42099, 43107}, {42100, 43100}, {42117, 42973}, {42118, 42972}, {42129, 43398}, {42132, 43397}, {42159, 43109}, {42162, 43108}, {42163, 42891}, {42166, 42890}, {42258, 42639}, {42259, 42640}, {42415, 43771}, {42416, 43772}, {42635, 44015}, {42636, 44016}, {42786, 50972}, {42888, 42974}, {42889, 42975}, {42940, 43399}, {42941, 43400}, {42960, 49903}, {42961, 49904}, {43226, 43548}, {43227, 43549}, {43544, 43636}, {43545, 43637}, {43621, 51164}, {47354, 55594}, {48310, 55680}, {48892, 51129}, {48895, 50979}, {48905, 50987}, {48943, 54169}, {50826, 61261}, {50978, 55582}, {58227, 61270}

X(62014) = midpoint of X(i) and X(j) for these {i,j}: {382, 3839}, {3146, 15688}, {3524, 15684}, {5055, 15682}
X(62014) = reflection of X(i) in X(j) for these {i,j}: {11539, 3845}, {15686, 11539}, {15688, 5066}, {15699, 14269}, {376, 14892}, {3524, 546}, {3839, 12101}, {549, 3839}, {550, 5055}, {5055, 14893}
X(62014) = complement of X(58202)
X(62014) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(44880), X(57715)}}, {{A, B, C, X(45759), X(54512)}}
X(62014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15681, 3860}, {4, 15682, 15692}, {4, 15684, 11540}, {4, 15696, 546}, {4, 3146, 5070}, {4, 382, 12103}, {30, 12101, 3839}, {30, 14269, 15699}, {30, 14892, 376}, {30, 14893, 5055}, {30, 3839, 549}, {30, 3845, 11539}, {30, 5066, 15688}, {30, 546, 3524}, {376, 5072, 6989}, {381, 15698, 12812}, {381, 15713, 5}, {547, 15690, 3530}, {549, 12103, 8703}, {549, 3845, 3850}, {631, 7402, 1656}, {1657, 11737, 15711}, {3146, 15688, 30}, {3530, 12103, 3522}, {3543, 11001, 382}, {3543, 3830, 3853}, {3543, 3832, 15682}, {3543, 5076, 11812}, {3627, 3830, 15687}, {3627, 3845, 3543}, {3859, 12102, 4}, {3860, 15681, 632}, {5054, 15689, 15710}, {5054, 8703, 17504}, {5055, 15706, 17678}, {5076, 15682, 14893}, {11001, 12101, 3845}, {11539, 15708, 15713}, {11812, 12811, 547}, {11812, 14893, 3832}, {14893, 15682, 550}, {15690, 15704, 15686}


X(62015) = X(2)X(3)∩X(17)X(43475)

Barycentrics    22*a^4-17*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62015) = -17*X[2]+13*X[3], X[40]+7*X[50874], X[944]+7*X[50867], X[1350]+7*X[51164], -3*X[1539]+X[56567], X[5901]+4*X[50870], -X[6361]+3*X[38081], X[6776]+7*X[51217], -7*X[7989]+5*X[50825], -4*X[12121]+7*X[22250], 2*X[13474]+X[14449], -X[14927]+5*X[50963] and many others

X(62015) lies on these lines: {2, 3}, {17, 43475}, {18, 43476}, {40, 50874}, {397, 42964}, {398, 42965}, {551, 28190}, {671, 54891}, {944, 50867}, {1151, 43568}, {1152, 43569}, {1327, 43340}, {1328, 43341}, {1350, 51164}, {1539, 56567}, {3679, 28216}, {3828, 28154}, {4746, 28194}, {5318, 43399}, {5321, 43400}, {5349, 41100}, {5350, 41101}, {5365, 42588}, {5366, 42589}, {5901, 50870}, {6361, 38081}, {6776, 51217}, {7989, 50825}, {8981, 43526}, {10653, 42889}, {10654, 42888}, {11542, 42905}, {11543, 42904}, {11645, 12007}, {11694, 46686}, {12121, 22250}, {12816, 42147}, {12817, 42148}, {12820, 42693}, {12821, 42692}, {13451, 14915}, {13474, 14449}, {13607, 28208}, {13925, 41952}, {13966, 43525}, {13993, 41951}, {14810, 50960}, {14927, 50963}, {16191, 28224}, {18357, 28202}, {18583, 48942}, {19106, 43417}, {19107, 43416}, {19924, 50982}, {20070, 50797}, {22793, 50862}, {23251, 43342}, {23261, 43343}, {23302, 42795}, {23303, 42796}, {28158, 61262}, {28174, 34648}, {28198, 50827}, {31663, 50803}, {33606, 42814}, {33607, 42813}, {34628, 38034}, {34632, 38138}, {34638, 38140}, {35786, 43210}, {35787, 43209}, {35814, 42272}, {35815, 42271}, {35822, 53519}, {35823, 53518}, {36967, 42627}, {36968, 42628}, {36969, 42136}, {36970, 42137}, {37832, 42585}, {37835, 42584}, {38079, 48905}, {38627, 41147}, {39884, 50985}, {41152, 55588}, {41943, 42122}, {41944, 42123}, {41973, 42419}, {41974, 42420}, {41979, 43626}, {41980, 43627}, {42085, 42496}, {42086, 42497}, {42101, 42913}, {42102, 42912}, {42133, 42634}, {42134, 42633}, {42143, 42685}, {42146, 42684}, {42163, 42694}, {42164, 42898}, {42165, 42899}, {42166, 42695}, {42266, 43211}, {42267, 43212}, {42268, 43338}, {42269, 43339}, {42429, 42954}, {42430, 42955}, {42431, 43109}, {42432, 43108}, {42635, 43773}, {42636, 43774}, {42688, 42974}, {42689, 42975}, {42777, 43245}, {42778, 43244}, {42934, 43228}, {42935, 43229}, {42940, 43007}, {42941, 43006}, {42942, 43197}, {42943, 43198}, {46267, 50959}, {47354, 48904}, {48310, 48896}, {48661, 50823}, {48662, 50986}, {48872, 50956}, {48901, 51022}, {48920, 50984}, {50808, 61259}, {50824, 50866}, {50830, 50865}, {50831, 50863}, {50872, 61245}, {50954, 61044}, {50978, 51029}, {50979, 51167}, {51023, 51182}, {51183, 51211}

X(62015) = midpoint of X(i) and X(j) for these {i,j}: {5, 15682}, {382, 3845}, {549, 15684}, {3146, 8703}, {3543, 15687}, {3627, 3830}, {15640, 15704}, {22793, 50862}, {39884, 51024}, {47354, 48904}, {48661, 50823}, {48662, 50986}, {48901, 51022}, {50872, 61245}
X(62015) = reflection of X(i) in X(j) for these {i,j}: {140, 3845}, {11694, 46686}, {12100, 546}, {12101, 3853}, {12103, 2}, {14810, 50960}, {14893, 15687}, {15681, 14891}, {15686, 10124}, {15690, 5}, {15691, 547}, {15704, 15759}, {15759, 3856}, {2, 3861}, {20, 11812}, {3, 3860}, {376, 11737}, {3534, 3628}, {3845, 12102}, {3853, 3830}, {31663, 50803}, {38627, 41147}, {48920, 50984}, {546, 12101}, {547, 14893}, {548, 5066}, {550, 10109}, {5066, 4}, {50808, 61259}, {55588, 41152}, {8703, 3850}
X(62015) = inverse of X(61981) in orthocentroidal circle
X(62015) = inverse of X(61981) in Yff hyperbola
X(62015) = complement of X(44903)
X(62015) = anticomplement of X(62089)
X(62015) = pole of line {523, 61981} with respect to the orthocentroidal circle
X(62015) = pole of line {6, 61981} with respect to the Kiepert hyperbola
X(62015) = pole of line {523, 61981} with respect to the Yff hyperbola
X(62015) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(253), X(58205)}}, {{A, B, C, X(265), X(15690)}}, {{A, B, C, X(468), X(54891)}}, {{A, B, C, X(1494), X(12103)}}, {{A, B, C, X(6662), X(50691)}}, {{A, B, C, X(13623), X(17504)}}, {{A, B, C, X(31361), X(58193)}}, {{A, B, C, X(34200), X(54512)}}, {{A, B, C, X(34483), X(58190)}}, {{A, B, C, X(55863), X(60122)}}
X(62015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 12103}, {4, 10303, 3843}, {4, 15682, 10304}, {4, 15698, 3839}, {4, 17800, 3857}, {4, 3146, 3526}, {4, 3543, 15684}, {4, 3857, 3861}, {5, 10304, 11540}, {5, 15681, 14891}, {20, 15703, 15714}, {30, 10109, 550}, {30, 10124, 15686}, {30, 11812, 20}, {30, 12101, 546}, {30, 12102, 3845}, {30, 14891, 15681}, {30, 15687, 14893}, {30, 15759, 15704}, {30, 3628, 3534}, {30, 3830, 3853}, {30, 3845, 140}, {30, 3850, 8703}, {30, 3856, 15759}, {30, 3860, 3}, {30, 3861, 2}, {30, 546, 12100}, {30, 547, 15691}, {140, 3853, 12102}, {140, 5066, 5055}, {376, 3091, 15723}, {376, 3543, 382}, {376, 3845, 11737}, {376, 5071, 15708}, {381, 15681, 15702}, {381, 15684, 15683}, {381, 15686, 10124}, {381, 15702, 5}, {381, 15718, 5071}, {382, 5055, 15640}, {546, 12100, 14892}, {549, 15714, 15706}, {550, 3839, 10109}, {3091, 15685, 17504}, {3522, 5068, 2478}, {3523, 5056, 17559}, {3534, 5055, 15717}, {3543, 3830, 15687}, {3627, 15687, 3543}, {3839, 10109, 3859}, {3839, 15698, 5072}, {3843, 11001, 15699}, {3845, 15708, 3850}, {3845, 15759, 5066}, {3845, 17504, 3091}, {3845, 5055, 3856}, {3856, 12102, 4}, {5068, 6894, 3854}, {6833, 13635, 15709}, {10299, 15708, 15693}, {10303, 15700, 549}, {10304, 15640, 5059}, {10304, 15690, 548}, {12812, 15703, 547}, {14269, 15718, 381}, {14891, 15681, 15690}, {14893, 15687, 12101}, {15640, 15704, 30}, {15681, 15693, 376}, {15703, 15714, 11812}


X(62016) = X(2)X(3)∩X(17)X(42130)

Barycentrics    13*a^4-10*(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(62016) = -30*X[2]+23*X[3], -9*X[568]+16*X[12002], -25*X[3763]+18*X[55640], -10*X[3818]+3*X[55591], 2*X[5097]+5*X[48884], -12*X[5102]+5*X[39899], 5*X[5691]+2*X[11278], 3*X[5895]+4*X[14864], X[6243]+6*X[32062], 3*X[10516]+4*X[48943], -16*X[11017]+9*X[54041], -8*X[11362]+15*X[50797] and many others

X(62016) lies on these lines: {2, 3}, {17, 42130}, {18, 42131}, {61, 43399}, {62, 43400}, {397, 42104}, {398, 42105}, {399, 15811}, {568, 12002}, {3311, 53519}, {3312, 53518}, {3519, 14490}, {3763, 55640}, {3818, 55591}, {4857, 9655}, {5008, 44518}, {5097, 48884}, {5102, 39899}, {5210, 12815}, {5270, 9668}, {5339, 41974}, {5340, 41973}, {5349, 11486}, {5350, 11485}, {5365, 42118}, {5366, 42117}, {5691, 11278}, {5895, 14864}, {6199, 23253}, {6243, 32062}, {6395, 23263}, {6407, 43413}, {6408, 43414}, {6417, 52666}, {6418, 52667}, {6429, 6564}, {6430, 6565}, {6431, 18512}, {6432, 18510}, {6433, 42266}, {6434, 42267}, {6437, 8960}, {6438, 58866}, {6445, 42413}, {6446, 42414}, {6455, 10195}, {6456, 10194}, {6480, 8976}, {6481, 13951}, {6484, 35786}, {6485, 35787}, {6486, 42265}, {6487, 42262}, {9541, 10137}, {9669, 37587}, {10141, 35812}, {10142, 35813}, {10143, 42639}, {10144, 42640}, {10187, 42528}, {10188, 42529}, {10248, 28186}, {10516, 48943}, {10895, 51817}, {11017, 54041}, {11362, 50797}, {11531, 18525}, {12111, 13421}, {12121, 38792}, {12645, 31673}, {12702, 38155}, {13364, 52093}, {13431, 15800}, {13432, 48675}, {13903, 42263}, {13961, 42264}, {16200, 18526}, {16808, 43027}, {16809, 43026}, {18405, 48672}, {18440, 55722}, {18493, 30392}, {18550, 34567}, {18553, 48910}, {19106, 42816}, {19107, 42815}, {19116, 43508}, {19117, 43507}, {20127, 38725}, {22236, 43245}, {22238, 43244}, {22615, 43802}, {22644, 43801}, {22728, 52854}, {25555, 55699}, {28202, 50874}, {29012, 55711}, {29317, 55607}, {29323, 55691}, {32787, 43432}, {32788, 43433}, {33179, 33697}, {33541, 37489}, {34507, 55582}, {34754, 42094}, {34755, 42093}, {34780, 61721}, {36753, 52100}, {36990, 37517}, {37484, 46849}, {37727, 50862}, {38730, 38746}, {38735, 38741}, {39561, 48895}, {39809, 52090}, {40280, 44863}, {41869, 59503}, {41951, 43563}, {41952, 43562}, {41959, 42258}, {41960, 42259}, {41963, 42275}, {41964, 42276}, {42090, 42950}, {42091, 42951}, {42101, 42151}, {42102, 42150}, {42108, 42152}, {42109, 42149}, {42112, 42945}, {42113, 42944}, {42115, 42920}, {42116, 42921}, {42122, 42494}, {42123, 42495}, {42125, 42158}, {42128, 42157}, {42133, 42924}, {42134, 42925}, {42136, 42998}, {42137, 42999}, {42140, 42907}, {42141, 42906}, {42153, 42961}, {42154, 42992}, {42155, 42993}, {42156, 42960}, {42159, 43401}, {42162, 43402}, {42225, 42575}, {42226, 42574}, {42480, 42991}, {42481, 42990}, {42496, 43477}, {42497, 43478}, {42514, 43247}, {42515, 43246}, {42537, 43211}, {42538, 43212}, {42582, 43786}, {42583, 43785}, {42584, 43398}, {42585, 43397}, {42694, 43646}, {42695, 43645}, {42773, 42919}, {42774, 42918}, {42904, 43023}, {42905, 43022}, {43028, 43638}, {43029, 43643}, {43407, 45385}, {43408, 45384}, {43503, 53513}, {43504, 53516}, {47354, 55595}, {48662, 51538}, {48872, 55627}, {48879, 55645}, {48889, 55603}, {48896, 55680}, {48904, 55594}, {48905, 55695}, {48942, 50664}, {50798, 51119}, {50805, 50868}, {50806, 50870}, {50954, 51026}, {50955, 51165}, {50962, 51025}, {51022, 51172}, {51166, 51175}, {51173, 53092}, {51186, 55611}, {51537, 55593}, {55683, 59411}

X(62016) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3528}, {15684, 15701}
X(62016) = reflection of X(i) in X(j) for these {i,j}: {15681, 15698}, {15702, 3845}, {20, 14869}, {3, 3832}, {3528, 3857}, {3534, 15703}, {3851, 4}
X(62016) = anticomplement of X(62091)
X(62016) = pole of line {185, 61975} with respect to the Jerabek hyperbola
X(62016) = pole of line {6, 43432} with respect to the Kiepert hyperbola
X(62016) = pole of line {69, 55650} with respect to the Wallace hyperbola
X(62016) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(50693)}}, {{A, B, C, X(3426), X(35479)}}, {{A, B, C, X(3518), X(14490)}}, {{A, B, C, X(3519), X(10304)}}, {{A, B, C, X(3521), X(10303)}}, {{A, B, C, X(3628), X(18550)}}, {{A, B, C, X(3854), X(18846)}}, {{A, B, C, X(3858), X(18848)}}, {{A, B, C, X(6662), X(35404)}}, {{A, B, C, X(13599), X(47599)}}, {{A, B, C, X(14483), X(35475)}}, {{A, B, C, X(14861), X(15717)}}, {{A, B, C, X(15319), X(58207)}}, {{A, B, C, X(15704), X(21400)}}, {{A, B, C, X(15713), X(60122)}}, {{A, B, C, X(15723), X(40448)}}, {{A, B, C, X(15749), X(17538)}}, {{A, B, C, X(17505), X(49140)}}, {{A, B, C, X(34567), X(35473)}}, {{A, B, C, X(35472), X(43719)}}, {{A, B, C, X(44879), X(57715)}}
X(62016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 17800, 15686}, {3, 3543, 382}, {3, 3830, 3853}, {3, 3843, 3545}, {3, 3850, 1656}, {3, 5, 15723}, {3, 5067, 5054}, {3, 5070, 11812}, {3, 5073, 5059}, {4, 10299, 3839}, {4, 15682, 3522}, {4, 20, 3858}, {4, 30, 3851}, {4, 3146, 140}, {4, 3522, 546}, {4, 3854, 3861}, {4, 5056, 3845}, {4, 5059, 3850}, {20, 12102, 14269}, {20, 14269, 5072}, {20, 5072, 15693}, {20, 547, 3}, {30, 14869, 20}, {30, 15698, 15681}, {30, 15703, 3534}, {30, 3845, 15702}, {30, 3857, 3528}, {140, 15687, 4}, {381, 1657, 15720}, {382, 1656, 5073}, {382, 3534, 3146}, {382, 3830, 5076}, {546, 15682, 17800}, {546, 15686, 5067}, {546, 15759, 5}, {547, 15686, 15715}, {547, 3853, 12102}, {550, 3850, 3533}, {1656, 3523, 3526}, {1656, 5073, 1657}, {1657, 15720, 15696}, {2043, 2044, 15713}, {3090, 16857, 3628}, {3146, 15687, 3843}, {3526, 15693, 14869}, {3526, 5079, 15703}, {3529, 3854, 15712}, {3529, 3861, 5055}, {3533, 5059, 550}, {3534, 3843, 5079}, {3545, 11001, 15692}, {3545, 3832, 3857}, {3627, 17578, 3830}, {3627, 3853, 3543}, {3832, 5059, 3523}, {3839, 15704, 5070}, {3845, 15640, 6926}, {3855, 12103, 15694}, {3855, 15640, 12103}, {3855, 15717, 6892}, {3861, 15712, 3854}, {5070, 15704, 14093}, {11001, 15723, 15688}, {14269, 15693, 381}, {14813, 14814, 10304}, {15684, 15701, 30}, {41973, 42909, 5340}, {41974, 42908, 5339}, {42093, 42431, 42989}, {42094, 42432, 42988}


X(62017) = X(1)X(50866)∩X(2)X(3)

Barycentrics    17*a^4-13*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :
X(62017) = X[1]+5*X[50866], -13*X[2]+10*X[3], X[8]+5*X[50873], -8*X[10]+5*X[50809], X[69]+5*X[51029], -8*X[141]+5*X[50966], X[145]+5*X[50863], X[193]+5*X[51216], -8*X[1125]+5*X[50819], -4*X[1539]+X[9143], -X[1992]+4*X[48901], -X[3241]+4*X[22793] and many others

X(62017) lies on these lines: {1, 50866}, {2, 3}, {6, 42641}, {8, 50873}, {10, 50809}, {13, 42140}, {14, 42141}, {61, 42589}, {62, 42588}, {69, 51029}, {98, 54720}, {141, 50966}, {145, 50863}, {193, 51216}, {317, 36889}, {371, 12818}, {372, 12819}, {397, 49827}, {398, 49826}, {516, 38074}, {538, 53143}, {542, 51538}, {598, 52519}, {671, 54845}, {754, 5485}, {1125, 50819}, {1151, 41948}, {1152, 41947}, {1285, 53419}, {1327, 6459}, {1328, 6460}, {1539, 9143}, {1992, 48901}, {3068, 43405}, {3069, 43406}, {3241, 22793}, {3244, 31162}, {3311, 43386}, {3312, 43387}, {3316, 42266}, {3317, 42267}, {3424, 60631}, {3488, 51790}, {3585, 10385}, {3586, 3982}, {3589, 50975}, {3590, 6519}, {3591, 6522}, {3619, 50956}, {3622, 50806}, {3624, 51074}, {3626, 34648}, {3629, 50974}, {3631, 48910}, {3632, 31673}, {3634, 50812}, {3636, 50811}, {3644, 51065}, {3653, 9779}, {3656, 20057}, {3818, 54170}, {4678, 50797}, {4681, 51043}, {4739, 51044}, {5092, 50964}, {5237, 42514}, {5238, 42515}, {5334, 42941}, {5335, 42940}, {5343, 43229}, {5344, 43228}, {5349, 49948}, {5350, 49947}, {5351, 43446}, {5352, 43447}, {5365, 42165}, {5366, 42164}, {5476, 14927}, {5691, 34747}, {5702, 18487}, {6154, 10711}, {6241, 21849}, {6329, 43273}, {6337, 48913}, {6361, 50796}, {6407, 42639}, {6408, 42640}, {6417, 43520}, {6418, 43519}, {6425, 42577}, {6426, 42576}, {6439, 9541}, {6440, 41949}, {6441, 23249}, {6442, 23259}, {6451, 43517}, {6452, 43518}, {6476, 6564}, {6477, 6565}, {6478, 31412}, {6479, 42561}, {6759, 13482}, {6776, 20583}, {7581, 22615}, {7582, 22644}, {7612, 33698}, {7735, 39563}, {7750, 32886}, {7788, 32826}, {7809, 32817}, {7842, 18840}, {7872, 18841}, {7967, 28208}, {8164, 18513}, {8166, 24042}, {8591, 22505}, {8981, 43536}, {9540, 43210}, {9693, 43879}, {9780, 50799}, {9812, 28204}, {9862, 9880}, {10248, 10595}, {10653, 42629}, {10654, 42630}, {10706, 24981}, {10722, 12243}, {11008, 31670}, {11160, 39884}, {11177, 22515}, {11178, 43621}, {11179, 48895}, {11180, 40341}, {11485, 43540}, {11486, 43541}, {11645, 14912}, {11693, 46686}, {12112, 44413}, {12117, 35022}, {12245, 34641}, {12290, 14831}, {12317, 13202}, {12699, 20050}, {12816, 42432}, {12817, 42431}, {12820, 16962}, {12821, 16963}, {13474, 21969}, {13624, 50807}, {13713, 49029}, {13836, 49028}, {13846, 43408}, {13847, 43407}, {13886, 41945}, {13935, 43209}, {13939, 41946}, {13966, 54597}, {14458, 60219}, {14488, 18842}, {14492, 18843}, {14494, 54494}, {15428, 53017}, {15808, 50802}, {15811, 56292}, {16226, 61136}, {16263, 18847}, {16267, 42085}, {16268, 42086}, {16772, 42927}, {16773, 42926}, {16808, 43366}, {16809, 43367}, {17503, 60337}, {18376, 54050}, {18440, 51028}, {18480, 34632}, {18483, 34628}, {18492, 50808}, {18514, 47743}, {18525, 20054}, {18553, 50990}, {19053, 23275}, {19054, 23269}, {19106, 37641}, {19107, 37640}, {19875, 28150}, {19878, 51079}, {20080, 51211}, {20112, 55823}, {20423, 39874}, {22236, 49874}, {22238, 49873}, {23253, 32787}, {23263, 32788}, {23267, 52666}, {23273, 52667}, {24473, 31822}, {28158, 38076}, {28160, 38314}, {28164, 38021}, {28178, 38066}, {28194, 59388}, {28198, 59387}, {28202, 53620}, {29012, 59373}, {29323, 38064}, {31672, 60957}, {32532, 53100}, {32827, 59634}, {32868, 37671}, {33602, 41101}, {33603, 41100}, {33750, 48310}, {34573, 50968}, {35786, 42413}, {35787, 42414}, {36875, 57471}, {36967, 42142}, {36968, 42139}, {36969, 42104}, {36970, 42105}, {36990, 54132}, {37832, 42112}, {37835, 42113}, {40693, 43486}, {40694, 43485}, {41107, 42160}, {41108, 42161}, {41112, 42779}, {41113, 42780}, {41119, 42157}, {41120, 42158}, {41895, 60322}, {41943, 42494}, {41944, 42495}, {41971, 43010}, {41972, 43011}, {41977, 43476}, {41978, 43475}, {42089, 42429}, {42092, 42430}, {42093, 42987}, {42094, 42986}, {42101, 43404}, {42102, 43403}, {42103, 52080}, {42106, 52079}, {42130, 43364}, {42131, 43365}, {42133, 42155}, {42134, 42154}, {42136, 43111}, {42137, 43110}, {42150, 49862}, {42151, 49861}, {42159, 49812}, {42162, 49813}, {42215, 43507}, {42216, 43508}, {42271, 43257}, {42272, 43256}, {42275, 43509}, {42276, 43510}, {42415, 42633}, {42416, 42634}, {42496, 43552}, {42497, 43553}, {42510, 42814}, {42511, 42813}, {42516, 43771}, {42517, 43772}, {42580, 43369}, {42581, 43368}, {42586, 42792}, {42587, 42791}, {42602, 42638}, {42603, 42637}, {42625, 43100}, {42626, 43107}, {42775, 49907}, {42776, 49908}, {42910, 43227}, {42911, 43226}, {42918, 43230}, {42919, 43231}, {42938, 46334}, {42939, 46335}, {42942, 43877}, {42943, 43878}, {42974, 43466}, {42975, 43465}, {42988, 43108}, {42989, 43109}, {42996, 43025}, {42997, 43024}, {43566, 52047}, {43567, 52048}, {43570, 60307}, {43571, 60308}, {43618, 46453}, {44456, 51215}, {45103, 60330}, {46931, 50825}, {47353, 51163}, {47354, 51164}, {47355, 51129}, {48839, 54786}, {48904, 51537}, {48905, 50959}, {48943, 50977}, {50800, 61524}, {50803, 50813}, {50817, 51119}, {50820, 51076}, {50955, 51213}, {50958, 55582}, {50960, 50969}, {50963, 51171}, {50973, 51165}, {50976, 51131}, {50994, 52987}, {51025, 51178}, {51127, 51134}, {51135, 55699}, {53105, 60150}, {53109, 60127}, {54519, 60636}, {54647, 60334}, {60142, 60281}, {60325, 60626}

X(62017) = midpoint of X(i) and X(j) for these {i,j}: {382, 14269}, {3146, 10304}, {3545, 15682}, {5054, 15684}
X(62017) = reflection of X(i) in X(j) for these {i,j}: {10304, 381}, {11001, 10304}, {11693, 46686}, {14269, 15687}, {15681, 17504}, {15683, 15689}, {15689, 5}, {15699, 14893}, {17504, 546}, {2, 14269}, {20, 5054}, {376, 3545}, {3524, 3839}, {3534, 15699}, {3545, 4}, {5054, 3845}
X(62017) = inverse of X(61980) in orthocentroidal circle
X(62017) = inverse of X(61980) in Yff hyperbola
X(62017) = complement of X(62153)
X(62017) = anticomplement of X(15688)
X(62017) = pole of line {523, 61980} with respect to the orthocentroidal circle
X(62017) = pole of line {6, 61980} with respect to the Kiepert hyperbola
X(62017) = pole of line {523, 61980} with respect to the Yff hyperbola
X(62017) = pole of line {69, 34200} with respect to the Wallace hyperbola
X(62017) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(34200)}}, {{A, B, C, X(265), X(15689)}}, {{A, B, C, X(297), X(54720)}}, {{A, B, C, X(376), X(57823)}}, {{A, B, C, X(381), X(18847)}}, {{A, B, C, X(382), X(36889)}}, {{A, B, C, X(468), X(54845)}}, {{A, B, C, X(546), X(18851)}}, {{A, B, C, X(549), X(54667)}}, {{A, B, C, X(3521), X(55863)}}, {{A, B, C, X(3526), X(54660)}}, {{A, B, C, X(3544), X(55958)}}, {{A, B, C, X(3628), X(54763)}}, {{A, B, C, X(3832), X(18849)}}, {{A, B, C, X(3839), X(18852)}}, {{A, B, C, X(3843), X(18853)}}, {{A, B, C, X(3855), X(18846)}}, {{A, B, C, X(4232), X(60132)}}, {{A, B, C, X(4846), X(15693)}}, {{A, B, C, X(5055), X(54838)}}, {{A, B, C, X(5059), X(14863)}}, {{A, B, C, X(5094), X(52519)}}, {{A, B, C, X(7378), X(54717)}}, {{A, B, C, X(7486), X(60121)}}, {{A, B, C, X(10299), X(57822)}}, {{A, B, C, X(10303), X(60122)}}, {{A, B, C, X(10304), X(54512)}}, {{A, B, C, X(11331), X(60219)}}, {{A, B, C, X(12108), X(31371)}}, {{A, B, C, X(14488), X(52284)}}, {{A, B, C, X(15697), X(16251)}}, {{A, B, C, X(15703), X(18550)}}, {{A, B, C, X(15715), X(57894)}}, {{A, B, C, X(15740), X(44682)}}, {{A, B, C, X(18296), X(58203)}}, {{A, B, C, X(18843), X(52289)}}, {{A, B, C, X(18850), X(41099)}}, {{A, B, C, X(18854), X(50689)}}, {{A, B, C, X(19710), X(43699)}}, {{A, B, C, X(33698), X(37174)}}, {{A, B, C, X(37453), X(60150)}}, {{A, B, C, X(50693), X(54552)}}, {{A, B, C, X(52283), X(60631)}}, {{A, B, C, X(52290), X(60322)}}, {{A, B, C, X(52292), X(60337)}}, {{A, B, C, X(52293), X(60330)}}, {{A, B, C, X(53100), X(53857)}}, {{A, B, C, X(54595), X(55573)}}, {{A, B, C, X(54596), X(55569)}}
X(62017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15707}, {2, 15681, 3528}, {2, 15687, 4}, {2, 15692, 14869}, {2, 15715, 631}, {2, 17677, 17527}, {2, 17679, 4187}, {2, 3529, 376}, {2, 3543, 382}, {2, 376, 10299}, {2, 381, 3544}, {2, 3851, 5071}, {3, 11737, 2}, {4, 11541, 5}, {4, 17538, 3832}, {4, 3524, 3839}, {4, 3525, 3843}, {4, 3528, 546}, {4, 3543, 15682}, {4, 5071, 3845}, {5, 15689, 15708}, {13, 42140, 43482}, {14, 42141, 43481}, {20, 5071, 15698}, {30, 10304, 11001}, {30, 14893, 15699}, {30, 15687, 14269}, {30, 15689, 15683}, {30, 15699, 3534}, {30, 17504, 15681}, {30, 381, 10304}, {30, 3845, 5054}, {30, 5054, 20}, {30, 546, 17504}, {376, 3090, 15719}, {381, 12100, 5056}, {381, 15695, 3628}, {381, 17800, 12100}, {381, 3830, 3853}, {381, 6958, 632}, {382, 11737, 15640}, {382, 3830, 15687}, {382, 5076, 3851}, {382, 5079, 5073}, {382, 550, 3146}, {547, 15685, 3522}, {1657, 5066, 15692}, {3146, 10304, 30}, {3146, 3544, 3529}, {3146, 5056, 17800}, {3524, 3839, 3545}, {3533, 5054, 15709}, {3534, 14893, 3091}, {3534, 15693, 6891}, {3534, 15699, 15705}, {3543, 17578, 3830}, {3545, 15709, 3090}, {3627, 3830, 3543}, {3830, 15684, 5076}, {3832, 5073, 17538}, {3839, 5059, 14890}, {3843, 5059, 3525}, {3851, 3859, 13587}, {3858, 15690, 15703}, {3860, 15694, 5068}, {3860, 15704, 15694}, {4239, 17531, 474}, {5066, 15692, 5067}, {5071, 15698, 3533}, {7486, 10303, 17590}, {10109, 14093, 10303}, {10304, 11539, 3524}, {10304, 15705, 15714}, {10304, 15707, 15715}, {10304, 15715, 15710}, {11001, 15715, 550}, {12100, 17697, 15702}, {12699, 50864, 34631}, {13596, 18534, 7556}, {14269, 15707, 381}, {14269, 15710, 3855}, {15683, 15708, 15689}, {15690, 15703, 15717}, {16371, 16859, 16417}, {16371, 17576, 13742}, {31673, 50865, 34627}, {34648, 41869, 50810}, {34648, 50869, 41869}, {42629, 43419, 10653}, {42641, 42642, 6}


X(62018) = X(2)X(3)∩X(395)X(43478)

Barycentrics    41*a^4-31*(b^2-c^2)^2-10*a^2*(b^2+c^2) : :
X(62018) = -31*X[2]+24*X[3], -15*X[1699]+8*X[51085], 5*X[3623]+16*X[33697], X[4669]+6*X[50869], X[4677]+6*X[51118], -X[8596]+8*X[39809], -9*X[9778]+16*X[51069], -27*X[9779]+20*X[51109], 3*X[9812]+4*X[50862], X[11055]+6*X[52854], 4*X[11455]+3*X[16981], -8*X[12699]+X[20049] and many others

X(62018) lies on these lines: {2, 3}, {395, 43478}, {396, 43477}, {511, 51213}, {515, 50867}, {516, 50874}, {590, 42537}, {615, 42538}, {1327, 60295}, {1328, 60296}, {1503, 51217}, {1699, 51085}, {3068, 43380}, {3069, 43381}, {3424, 60632}, {3623, 33697}, {4669, 50869}, {4677, 51118}, {4678, 28198}, {5318, 42589}, {5321, 42588}, {6564, 43526}, {6565, 43525}, {7929, 54477}, {8596, 39809}, {9778, 51069}, {9779, 51109}, {9812, 50862}, {10302, 54815}, {11055, 52854}, {11455, 16981}, {11485, 33602}, {11486, 33603}, {12699, 20049}, {12816, 49811}, {12817, 49810}, {14226, 42226}, {14241, 42225}, {14458, 60625}, {14492, 60650}, {14927, 51185}, {15533, 51163}, {15534, 51022}, {17503, 60336}, {18581, 43476}, {18582, 43475}, {18845, 54643}, {19053, 43508}, {19054, 43507}, {19106, 43474}, {19107, 43473}, {20070, 34648}, {22165, 51026}, {28164, 51110}, {28182, 50800}, {29181, 50994}, {31145, 31673}, {31162, 51092}, {33606, 42510}, {33607, 42511}, {33626, 52838}, {33627, 52839}, {35749, 36961}, {36327, 36962}, {36969, 49827}, {36970, 49826}, {38259, 54608}, {41100, 42133}, {41101, 42134}, {41107, 42104}, {41108, 42105}, {41895, 54866}, {42085, 42976}, {42086, 42977}, {42093, 49812}, {42094, 49813}, {42099, 43397}, {42100, 43398}, {42103, 42631}, {42106, 42632}, {42108, 49905}, {42109, 49906}, {42140, 43540}, {42141, 43541}, {42143, 42933}, {42146, 42932}, {42147, 43201}, {42148, 43202}, {42150, 43013}, {42151, 43012}, {42157, 49860}, {42158, 49859}, {42159, 43023}, {42162, 43022}, {42263, 43383}, {42264, 43382}, {42270, 54599}, {42273, 54598}, {42275, 43568}, {42276, 43569}, {42518, 43298}, {42519, 43299}, {42532, 43556}, {42533, 43557}, {42604, 43210}, {42605, 43209}, {42803, 42815}, {42804, 42816}, {42942, 43364}, {42943, 43365}, {43228, 43466}, {43229, 43465}, {43256, 43504}, {43257, 43503}, {43403, 46335}, {43404, 46334}, {43560, 60313}, {43561, 60314}, {43951, 60282}, {45103, 60331}, {47353, 51029}, {48884, 51170}, {50816, 61264}, {50827, 59387}, {50870, 51103}, {50990, 61044}, {50991, 51537}, {50992, 51024}, {51066, 54448}, {51076, 58221}, {51131, 55673}, {51138, 53023}, {51216, 54132}, {53101, 54521}, {54476, 60192}, {54519, 60200}, {54520, 54639}, {54642, 60333}, {54852, 60635}, {54896, 60102}, {60113, 60175}, {60147, 60228}, {60327, 60637}

X(62018) = midpoint of X(i) and X(j) for these {i,j}: {3526, 15684}
X(62018) = reflection of X(i) in X(j) for these {i,j}: {15701, 3845}, {20, 15702}, {376, 3851}, {3528, 381}
X(62018) = anticomplement of X(62094)
X(62018) = pole of line {69, 62072} with respect to the Wallace hyperbola
X(62018) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(550), X(54552)}}, {{A, B, C, X(3346), X(58203)}}, {{A, B, C, X(3528), X(54512)}}, {{A, B, C, X(3544), X(54585)}}, {{A, B, C, X(3851), X(54923)}}, {{A, B, C, X(4846), X(41983)}}, {{A, B, C, X(10301), X(54815)}}, {{A, B, C, X(11331), X(60625)}}, {{A, B, C, X(13623), X(15716)}}, {{A, B, C, X(15689), X(16251)}}, {{A, B, C, X(15697), X(35510)}}, {{A, B, C, X(18850), X(23046)}}, {{A, B, C, X(33232), X(54897)}}, {{A, B, C, X(38282), X(54608)}}, {{A, B, C, X(52283), X(60632)}}, {{A, B, C, X(52290), X(54866)}}, {{A, B, C, X(52292), X(60336)}}, {{A, B, C, X(52293), X(60331)}}, {{A, B, C, X(52299), X(54643)}}
X(62018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 3522}, {2, 15640, 15683}, {2, 15697, 15705}, {2, 17578, 3830}, {2, 5059, 15697}, {2, 5066, 15022}, {3, 3523, 5154}, {4, 15682, 3534}, {4, 17800, 3091}, {4, 3146, 15717}, {20, 3091, 15720}, {30, 15702, 20}, {30, 381, 3528}, {30, 3845, 15701}, {382, 12101, 11001}, {382, 15687, 15710}, {382, 3522, 3146}, {382, 3830, 12101}, {549, 3850, 5055}, {3068, 43380, 60299}, {3069, 43381, 60300}, {3090, 15710, 15702}, {3091, 8703, 2}, {3522, 3832, 3090}, {3526, 15684, 30}, {3528, 3851, 16857}, {3534, 15682, 15640}, {3534, 5055, 12100}, {3543, 3839, 382}, {3545, 6905, 15684}, {3830, 15685, 5076}, {3856, 15706, 5071}, {4229, 6912, 3525}, {5055, 15687, 4}, {10109, 12100, 632}, {10303, 15697, 15759}, {11001, 12101, 3839}, {14269, 15692, 3854}, {15022, 15683, 10304}, {15640, 15759, 5059}, {15683, 17678, 376}


X(62019) = X(2)X(3)∩X(6)X(43521)

Barycentrics    31*a^4-23*(b^2-c^2)^2-8*a^2*(b^2+c^2) : :
X(62019) = -23*X[2]+18*X[3], X[3241]+4*X[33697], -2*X[3655]+7*X[10248], -12*X[3818]+7*X[50994], 2*X[4669]+3*X[41869], -X[4677]+6*X[31673], -8*X[4745]+3*X[6361], 4*X[5691]+X[34631], 3*X[7967]+32*X[50870], -8*X[8584]+3*X[39874], -6*X[9812]+X[50818], -3*X[9862]+8*X[36523] and many others

X(62019) lies on these lines: {2, 3}, {6, 43521}, {511, 51029}, {515, 50866}, {516, 51067}, {517, 50873}, {598, 54707}, {671, 54612}, {952, 50863}, {1327, 60301}, {1328, 60302}, {1503, 51167}, {1992, 33623}, {3068, 43503}, {3069, 43504}, {3241, 33697}, {3564, 51216}, {3655, 10248}, {3818, 50994}, {4669, 41869}, {4677, 31673}, {4745, 6361}, {5318, 49876}, {5321, 49875}, {5691, 34631}, {5965, 51023}, {6437, 43380}, {6438, 43381}, {6564, 43405}, {6565, 43406}, {7612, 54647}, {7967, 50870}, {8584, 39874}, {9542, 42639}, {9812, 50818}, {9862, 36523}, {10171, 50820}, {10175, 50813}, {10595, 51104}, {11179, 48942}, {11180, 51163}, {11455, 21969}, {12816, 33604}, {12817, 33605}, {12820, 43645}, {12821, 43646}, {14226, 42283}, {14241, 42284}, {14458, 54637}, {14492, 60284}, {14561, 51177}, {14651, 41154}, {16267, 43770}, {16268, 43769}, {16960, 42511}, {16961, 42510}, {17503, 60185}, {18480, 51068}, {18483, 51110}, {19106, 41113}, {19107, 41112}, {19924, 50990}, {21356, 43621}, {22165, 48910}, {23249, 43386}, {23251, 42417}, {23259, 43387}, {23261, 42418}, {23267, 53519}, {23273, 53518}, {28146, 50809}, {28154, 50799}, {28172, 30308}, {28190, 50806}, {28198, 51072}, {28216, 50797}, {28228, 50869}, {28232, 50810}, {28234, 50865}, {28236, 50862}, {29181, 51142}, {29317, 50966}, {31162, 51091}, {32532, 60150}, {32822, 32896}, {33602, 42134}, {33603, 42133}, {33748, 51173}, {34380, 51211}, {34627, 51118}, {34648, 51070}, {36319, 36962}, {36344, 36961}, {36346, 48665}, {36352, 48666}, {36967, 43475}, {36968, 43476}, {36990, 51187}, {41100, 42141}, {41101, 42140}, {41107, 42105}, {41108, 42104}, {41119, 42119}, {41120, 42120}, {41149, 54131}, {41945, 42577}, {41946, 42576}, {42093, 42778}, {42094, 42777}, {42095, 43398}, {42098, 43397}, {42101, 49906}, {42102, 49905}, {42108, 42518}, {42109, 42519}, {42112, 42632}, {42113, 42631}, {42125, 43478}, {42128, 43477}, {42139, 42513}, {42142, 42512}, {42150, 49903}, {42151, 49904}, {42154, 49825}, {42155, 49824}, {42159, 42977}, {42162, 42976}, {42431, 42507}, {42432, 42506}, {42528, 43241}, {42529, 43240}, {42532, 43783}, {42533, 43784}, {42537, 53130}, {42538, 53131}, {42586, 42599}, {42587, 42598}, {42682, 42941}, {42683, 42940}, {42775, 43027}, {42776, 43026}, {42813, 49860}, {42814, 49859}, {43195, 43245}, {43196, 43244}, {43199, 43636}, {43200, 43637}, {43209, 43510}, {43210, 43509}, {43554, 49907}, {43555, 49908}, {45103, 54523}, {46334, 49861}, {46335, 49862}, {47353, 51026}, {48895, 59373}, {48904, 54170}, {50807, 54445}, {50811, 51106}, {50967, 51164}, {50974, 51217}, {51022, 54132}, {51024, 51188}, {51086, 61265}, {51179, 51213}, {53103, 54478}, {54477, 60143}, {54512, 54710}, {54519, 60627}, {54531, 54838}, {54582, 54616}, {54608, 60631}, {54667, 54867}, {54760, 54947}, {54764, 54827}, {54785, 54942}, {54788, 54789}, {54924, 60137}, {60127, 60281}

X(62019) = midpoint of X(i) and X(j) for these {i,j}: {1656, 15684}, {3146, 15692}, {3543, 17578}
X(62019) = reflection of X(i) in X(j) for these {i,j}: {14093, 3858}, {15681, 15712}, {15683, 15696}, {15692, 3843}, {15693, 3845}, {15714, 546}, {17538, 5071}, {20, 15694}, {376, 3091}, {3522, 381}, {3843, 15687}, {5071, 4}, {50819, 30308}, {632, 14893}
X(62019) = inverse of X(61979) in orthocentroidal circle
X(62019) = inverse of X(61979) in Yff hyperbola
X(62019) = anticomplement of X(15695)
X(62019) = pole of line {523, 61979} with respect to the orthocentroidal circle
X(62019) = pole of line {6, 33602} with respect to the Kiepert hyperbola
X(62019) = pole of line {523, 61979} with respect to the Yff hyperbola
X(62019) = pole of line {69, 62073} with respect to the Wallace hyperbola
X(62019) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(468), X(54612)}}, {{A, B, C, X(3522), X(54512)}}, {{A, B, C, X(3523), X(54667)}}, {{A, B, C, X(3832), X(54924)}}, {{A, B, C, X(4846), X(15707)}}, {{A, B, C, X(5056), X(54838)}}, {{A, B, C, X(5068), X(54585)}}, {{A, B, C, X(5094), X(54707)}}, {{A, B, C, X(7409), X(54813)}}, {{A, B, C, X(11331), X(54637)}}, {{A, B, C, X(18847), X(41106)}}, {{A, B, C, X(33699), X(36889)}}, {{A, B, C, X(37174), X(54647)}}, {{A, B, C, X(46935), X(54763)}}, {{A, B, C, X(52292), X(60185)}}, {{A, B, C, X(52293), X(54523)}}, {{A, B, C, X(52301), X(54477)}}, {{A, B, C, X(53857), X(60150)}}
X(62019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 15685}, {2, 15690, 15698}, {2, 15697, 15711}, {2, 15711, 631}, {2, 3860, 3545}, {2, 6834, 11541}, {3, 3560, 19238}, {4, 15682, 11001}, {4, 30, 5071}, {4, 3146, 3528}, {20, 5066, 15719}, {30, 14893, 632}, {30, 15687, 3843}, {30, 15694, 20}, {30, 15696, 15683}, {30, 15712, 15681}, {30, 381, 3522}, {30, 3843, 15692}, {30, 3845, 15693}, {30, 3858, 14093}, {30, 5071, 17538}, {30, 546, 15714}, {140, 382, 3146}, {140, 3843, 3091}, {376, 15682, 15640}, {376, 3545, 140}, {376, 5067, 3524}, {382, 12102, 5059}, {382, 3853, 15717}, {632, 4194, 6853}, {1656, 15684, 30}, {1656, 3843, 3857}, {3091, 15717, 1656}, {3146, 3857, 3529}, {3525, 11541, 15704}, {3528, 11001, 3534}, {3529, 3839, 15702}, {3529, 3853, 4}, {3534, 15707, 8703}, {3534, 3830, 15687}, {3534, 3860, 2}, {3543, 3830, 15682}, {3832, 15681, 15709}, {3839, 15717, 11737}, {3845, 11001, 5067}, {3845, 17504, 5066}, {3853, 15684, 3839}, {3857, 12108, 5079}, {5073, 14893, 10304}, {10304, 14893, 3855}, {12101, 15759, 3845}, {12816, 42085, 49813}, {12817, 42086, 49812}, {14269, 15683, 3090}, {14269, 15723, 3856}, {15683, 15723, 376}, {15693, 15695, 15759}, {15693, 15713, 15708}, {19106, 41113, 42588}, {19107, 41112, 42589}, {28172, 30308, 50819}, {33602, 43482, 49947}, {33602, 43501, 42134}, {33603, 43481, 49948}, {33603, 43502, 42133}, {33623, 33625, 1992}, {42133, 43401, 43481}, {42133, 49948, 33603}, {42134, 43402, 43482}, {42134, 49947, 33602}, {42284, 43257, 14241}, {43521, 43522, 6}


X(62020) = X(2)X(3)∩X(15)X(43298)

Barycentrics    19*a^4-14*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62020) = -14*X[2]+11*X[3], X[599]+2*X[48904], X[3656]+8*X[50870], -2*X[4701]+11*X[31673], X[8148]+2*X[50864], -14*X[10248]+5*X[37624], -7*X[10516]+4*X[55615], 2*X[10723]+X[48657], X[11178]+2*X[48943], -4*X[11179]+7*X[51173], -5*X[11180]+2*X[50985], X[11898]+8*X[51163] and many others

X(62020) lies on these lines: {2, 3}, {15, 43298}, {16, 43299}, {395, 42690}, {396, 42691}, {590, 43337}, {599, 48904}, {615, 43336}, {1327, 42271}, {1328, 42272}, {3656, 50870}, {4701, 31673}, {5237, 42586}, {5238, 42587}, {5339, 42935}, {5340, 42934}, {5343, 42588}, {5344, 42589}, {5790, 28202}, {6468, 6564}, {6469, 6565}, {6470, 35822}, {6471, 35823}, {6560, 43343}, {6561, 43342}, {8148, 50864}, {8162, 9668}, {8976, 43339}, {9540, 42537}, {9541, 43405}, {9543, 43536}, {9681, 41952}, {9704, 13482}, {10248, 37624}, {10302, 54917}, {10516, 55615}, {10653, 42689}, {10654, 42688}, {10723, 48657}, {10982, 52100}, {11178, 48943}, {11179, 51173}, {11180, 50985}, {11224, 28204}, {11480, 43544}, {11481, 43545}, {11485, 43402}, {11486, 43401}, {11645, 15520}, {11898, 51163}, {11935, 14157}, {12017, 50959}, {12355, 39809}, {12645, 51118}, {12699, 50805}, {12702, 34648}, {12816, 22236}, {12817, 22238}, {12943, 37602}, {13321, 14915}, {13886, 43566}, {13935, 42538}, {13939, 43567}, {13951, 43338}, {14692, 39838}, {14848, 29012}, {15516, 48942}, {16194, 54048}, {16267, 42094}, {16268, 42093}, {16962, 42128}, {16963, 42125}, {18439, 21969}, {18440, 51024}, {18481, 50806}, {18493, 34628}, {18525, 50865}, {18526, 31162}, {18550, 57714}, {19106, 42897}, {19107, 42896}, {23253, 43340}, {23263, 43341}, {25055, 28168}, {25561, 48872}, {28178, 53620}, {28198, 59503}, {29323, 47352}, {31670, 50962}, {31730, 50799}, {32006, 32890}, {32520, 52854}, {33606, 42158}, {33607, 42157}, {33878, 50954}, {34627, 50830}, {34631, 50863}, {34638, 61261}, {34718, 41869}, {34748, 50867}, {36967, 43204}, {36968, 43203}, {36969, 42126}, {36970, 42127}, {36990, 55720}, {38077, 38754}, {39899, 48884}, {41107, 42964}, {41108, 42965}, {41112, 42164}, {41113, 42165}, {41121, 42695}, {41122, 42694}, {41945, 43380}, {41946, 43381}, {42096, 42962}, {42097, 42963}, {42099, 42795}, {42100, 42796}, {42103, 42686}, {42104, 42941}, {42105, 42940}, {42106, 42687}, {42108, 42817}, {42109, 42818}, {42112, 42684}, {42113, 42685}, {42129, 43484}, {42132, 43483}, {42140, 43416}, {42141, 43417}, {42144, 43403}, {42145, 43404}, {42153, 46334}, {42154, 42815}, {42155, 42816}, {42156, 46335}, {42258, 43526}, {42259, 43525}, {42268, 43209}, {42269, 43210}, {42283, 43796}, {42284, 43795}, {42429, 43227}, {42430, 43226}, {42431, 49948}, {42432, 49947}, {42518, 42939}, {42519, 42938}, {42528, 42954}, {42529, 42955}, {42924, 49824}, {42925, 49825}, {43020, 43032}, {43021, 43033}, {43150, 48910}, {43244, 44016}, {43245, 44015}, {43273, 48895}, {43477, 43542}, {43478, 43543}, {43621, 47354}, {43628, 54635}, {43629, 54634}, {43769, 49873}, {43770, 49874}, {44456, 51023}, {46264, 50963}, {48662, 54132}, {48881, 50956}, {48889, 55608}, {48905, 55696}, {50804, 51119}, {50815, 61268}, {50955, 51026}, {50957, 54169}, {50961, 51165}, {50989, 55583}, {50991, 55595}, {51025, 51174}, {51120, 61244}, {51182, 51216}, {53023, 55706}

X(62020) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3524}, {3839, 15682}, {5055, 15684}
X(62020) = reflection of X(i) in X(j) for these {i,j}: {1657, 15688}, {11539, 14893}, {15681, 3524}, {15688, 381}, {15689, 3545}, {20, 11539}, {3, 3839}, {3524, 3845}, {3534, 5055}, {3839, 15687}, {38754, 38077}, {550, 14892}, {5054, 14269}, {5055, 4}
X(62020) = inverse of X(61978) in orthocentroidal circle
X(62020) = inverse of X(61978) in Yff hyperbola
X(62020) = anticomplement of X(62098)
X(62020) = pole of line {523, 61978} with respect to the orthocentroidal circle
X(62020) = pole of line {6, 61978} with respect to the Kiepert hyperbola
X(62020) = pole of line {523, 61978} with respect to the Yff hyperbola
X(62020) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(547), X(18550)}}, {{A, B, C, X(3426), X(44878)}}, {{A, B, C, X(3521), X(55864)}}, {{A, B, C, X(3857), X(18848)}}, {{A, B, C, X(4846), X(15719)}}, {{A, B, C, X(10301), X(54917)}}, {{A, B, C, X(11001), X(43699)}}, {{A, B, C, X(11737), X(54585)}}, {{A, B, C, X(13603), X(47485)}}, {{A, B, C, X(13623), X(15692)}}, {{A, B, C, X(14869), X(60122)}}, {{A, B, C, X(15688), X(54512)}}, {{A, B, C, X(18317), X(46333)}}, {{A, B, C, X(21734), X(34483)}}, {{A, B, C, X(35473), X(57714)}}, {{A, B, C, X(44682), X(57822)}}
X(62020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15681, 15697}, {3, 15699, 5054}, {3, 3843, 5068}, {3, 3855, 1656}, {3, 5055, 15709}, {4, 15682, 15683}, {4, 15717, 546}, {4, 17800, 5072}, {4, 3146, 548}, {5, 15685, 14093}, {20, 13635, 15704}, {30, 14892, 550}, {30, 14893, 11539}, {30, 15687, 3839}, {30, 15688, 1657}, {30, 3524, 15681}, {30, 3545, 15689}, {30, 381, 15688}, {30, 3845, 3524}, {376, 12101, 3843}, {376, 5068, 15713}, {381, 15693, 5079}, {381, 15706, 5055}, {381, 1657, 15693}, {381, 3830, 5076}, {382, 1656, 3146}, {382, 3534, 15684}, {382, 3853, 15696}, {546, 11001, 15694}, {547, 3529, 15695}, {549, 15640, 17800}, {549, 5066, 7486}, {550, 14892, 15708}, {550, 15703, 15716}, {2043, 2044, 14869}, {3090, 15690, 15718}, {3091, 15686, 15701}, {3146, 3524, 30}, {3526, 5076, 4}, {3534, 5054, 10304}, {3534, 5072, 549}, {3543, 17578, 15682}, {3543, 3830, 382}, {3628, 15720, 3526}, {3839, 15709, 5066}, {3845, 10124, 3855}, {3845, 15714, 12811}, {3851, 8703, 15723}, {3855, 15697, 10124}, {10124, 15691, 15714}, {10124, 15697, 3}, {11540, 15022, 15703}, {12702, 34648, 50797}, {12811, 15714, 2}, {13635, 16434, 20}, {14093, 14890, 15706}, {14269, 15689, 3545}, {14890, 15698, 15707}, {14893, 15700, 381}, {14893, 15759, 3857}, {15682, 15691, 5073}, {15682, 17578, 15687}, {15684, 17800, 15640}, {15685, 15698, 3534}, {15687, 17578, 3830}, {15709, 15721, 14890}, {17538, 17577, 12100}, {31162, 50866, 33697}, {39899, 54131, 51172}, {41945, 43380, 43430}, {41946, 43381, 43431}, {51167, 54131, 48884}


X(62021) = X(2)X(3)∩X(69)X(46851)

Barycentrics    15*a^4-11*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :
X(62021) = -33*X[2]+26*X[3], 5*X[962]+2*X[61244], -11*X[1352]+4*X[55586], -55*X[3618]+48*X[55700], -11*X[3818]+4*X[55592], -10*X[4301]+3*X[61296], 8*X[4746]+13*X[41869], 15*X[4816]+13*X[9589], -5*X[5734]+12*X[22793], X[5881]+6*X[51118], -3*X[6361]+10*X[37714], X[7982]+6*X[50862] and many others

X(62021) lies on these lines: {2, 3}, {69, 46851}, {371, 42570}, {372, 42571}, {515, 61289}, {516, 61256}, {542, 51217}, {962, 61244}, {1056, 9670}, {1058, 9657}, {1131, 31487}, {1132, 42226}, {1352, 55586}, {1587, 53519}, {1588, 53518}, {3311, 43507}, {3312, 43508}, {3316, 9680}, {3317, 35787}, {3411, 42086}, {3412, 42085}, {3487, 51790}, {3618, 55700}, {3622, 28190}, {3818, 55592}, {4293, 9671}, {4294, 9656}, {4301, 61296}, {4309, 5229}, {4317, 5225}, {4678, 28216}, {4746, 41869}, {4816, 9589}, {5237, 42776}, {5238, 42775}, {5343, 42165}, {5344, 42164}, {5365, 42155}, {5366, 42154}, {5734, 22793}, {5881, 51118}, {6284, 31410}, {6361, 37714}, {6435, 23267}, {6436, 23273}, {6494, 7585}, {6495, 7586}, {6561, 31414}, {7581, 22644}, {7582, 22615}, {7747, 14075}, {7756, 31417}, {7796, 32822}, {7871, 32817}, {7982, 50862}, {7998, 46852}, {8960, 43503}, {8976, 9692}, {9588, 28150}, {9624, 28164}, {9681, 31412}, {9693, 42258}, {9698, 43619}, {9705, 26883}, {9780, 28154}, {9812, 33697}, {10110, 61136}, {10248, 28160}, {10483, 47743}, {10541, 51177}, {11455, 13598}, {11465, 13570}, {11477, 51022}, {11488, 43632}, {11489, 43633}, {12295, 12317}, {12325, 32340}, {12818, 35815}, {12819, 35814}, {13474, 14531}, {13886, 42263}, {13939, 42264}, {14487, 15740}, {14912, 55714}, {14927, 48895}, {15031, 52718}, {15058, 15606}, {15069, 51163}, {16263, 18849}, {16808, 43636}, {16809, 43637}, {16964, 42105}, {16965, 42104}, {17852, 43410}, {18513, 31452}, {20791, 44863}, {23253, 42271}, {23263, 42272}, {25406, 55702}, {25739, 32601}, {28146, 61258}, {28172, 61271}, {28194, 50874}, {28204, 50867}, {28208, 61282}, {29012, 55712}, {29317, 55605}, {31420, 57288}, {31450, 39590}, {31454, 43408}, {31670, 55719}, {33884, 45958}, {35770, 43516}, {35771, 43515}, {35812, 42275}, {35813, 42276}, {36967, 42494}, {36968, 42495}, {38021, 51080}, {38072, 51135}, {38074, 50814}, {39874, 48901}, {40065, 52945}, {40107, 43621}, {40693, 42140}, {40694, 42141}, {41112, 42909}, {41113, 42908}, {42099, 43463}, {42100, 43464}, {42101, 43193}, {42102, 43194}, {42103, 42433}, {42106, 42434}, {42108, 42156}, {42109, 42153}, {42112, 52079}, {42113, 52080}, {42119, 42813}, {42120, 42814}, {42122, 43364}, {42123, 43365}, {42133, 42148}, {42134, 42147}, {42150, 43542}, {42151, 43543}, {42157, 43399}, {42158, 43400}, {42159, 43769}, {42160, 42990}, {42161, 42991}, {42162, 43770}, {42268, 42414}, {42269, 42413}, {42431, 43481}, {42432, 43482}, {42490, 43397}, {42491, 43398}, {42545, 42939}, {42546, 42938}, {42815, 43473}, {42816, 43474}, {42817, 43634}, {42818, 43635}, {42912, 43477}, {42913, 43478}, {42928, 43642}, {42929, 43641}, {42934, 43778}, {42935, 43777}, {42940, 42998}, {42941, 42999}, {43018, 43033}, {43019, 43032}, {43256, 53516}, {43257, 53513}, {43413, 43562}, {43414, 43563}, {43504, 58866}, {46264, 55707}, {48661, 61249}, {48873, 55613}, {48884, 51538}, {48889, 55609}, {48904, 55589}, {48942, 55713}, {48943, 55599}, {50817, 50869}, {50818, 50866}, {50870, 51082}, {50956, 55631}, {50973, 51026}, {50974, 51167}, {50990, 55588}, {51029, 51179}, {51212, 55723}, {54891, 60219}, {59417, 61255}

X(62021) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3523}
X(62021) = reflection of X(i) in X(j) for these {i,j}: {15700, 3845}, {20, 3526}, {3090, 4}, {3528, 3832}
X(62021) = anticomplement of X(62100)
X(62021) = pole of line {185, 41099} with respect to the Jerabek hyperbola
X(62021) = pole of line {69, 46853} with respect to the Wallace hyperbola
X(62021) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(25), X(46851)}}, {{A, B, C, X(68), X(15688)}}, {{A, B, C, X(69), X(46853)}}, {{A, B, C, X(381), X(18849)}}, {{A, B, C, X(546), X(18852)}}, {{A, B, C, X(1105), X(41099)}}, {{A, B, C, X(1593), X(14487)}}, {{A, B, C, X(3091), X(18847)}}, {{A, B, C, X(3521), X(15694)}}, {{A, B, C, X(3545), X(18846)}}, {{A, B, C, X(3832), X(18851)}}, {{A, B, C, X(3839), X(18853)}}, {{A, B, C, X(3843), X(18854)}}, {{A, B, C, X(3855), X(18848)}}, {{A, B, C, X(5059), X(15318)}}, {{A, B, C, X(10109), X(54838)}}, {{A, B, C, X(11539), X(54660)}}, {{A, B, C, X(12100), X(15740)}}, {{A, B, C, X(14869), X(31371)}}, {{A, B, C, X(15077), X(44245)}}, {{A, B, C, X(15685), X(21400)}}, {{A, B, C, X(15686), X(15749)}}, {{A, B, C, X(15693), X(54667)}}, {{A, B, C, X(15703), X(54763)}}, {{A, B, C, X(15721), X(60122)}}, {{A, B, C, X(17538), X(52441)}}
X(62021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5076, 4}, {2, 6838, 15711}, {3, 14893, 3854}, {4, 11001, 3091}, {4, 15682, 3529}, {4, 17538, 381}, {4, 3524, 546}, {4, 3529, 3545}, {4, 3544, 3845}, {4, 5067, 3843}, {5, 12108, 5070}, {5, 382, 3146}, {5, 5054, 13735}, {5, 548, 5054}, {20, 17578, 3853}, {20, 3526, 3528}, {20, 3832, 3526}, {20, 3843, 5067}, {20, 3855, 631}, {30, 3526, 20}, {30, 3845, 15700}, {381, 17538, 3533}, {382, 15696, 15684}, {382, 3627, 17578}, {382, 5076, 17800}, {546, 15696, 7486}, {546, 5059, 3524}, {631, 15710, 15717}, {631, 3528, 15698}, {1657, 12102, 3839}, {1657, 3525, 376}, {1657, 3830, 12102}, {1657, 3839, 3525}, {2041, 2042, 5059}, {2043, 2044, 15721}, {3091, 11001, 10299}, {3091, 13735, 5}, {3091, 5073, 11001}, {3146, 12103, 11541}, {3146, 3523, 30}, {3146, 3839, 1657}, {3522, 3544, 15709}, {3522, 3845, 3544}, {3528, 3832, 3090}, {3533, 17538, 15710}, {3543, 17578, 382}, {3544, 6831, 3832}, {3830, 5054, 15687}, {3843, 5067, 3855}, {3858, 15681, 10303}, {3860, 15705, 5071}, {3861, 17800, 2}, {5056, 6909, 10304}, {5059, 11540, 17538}, {5059, 7486, 15696}, {5076, 17800, 3861}, {6826, 12108, 15703}, {7385, 15683, 12103}, {7486, 15717, 11540}, {12108, 15700, 3523}, {14269, 15704, 5056}, {14784, 14785, 15688}, {22615, 52667, 7582}, {22644, 52666, 7581}


X(62022) = X(2)X(3)∩X(15)X(12820)

Barycentrics    26*a^4-19*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62022) = -19*X[2]+15*X[3], X[3244]+5*X[33697], X[3629]+5*X[48884], -13*X[3656]+9*X[61285], -2*X[6154]+5*X[61605], -2*X[6329]+5*X[48895], -9*X[7988]+7*X[50833], -X[8584]+3*X[48901], -3*X[9778]+7*X[50800], -5*X[12699]+X[34747], -X[15300]+3*X[22505], -X[15533]+3*X[39884] and many others

X(62022) lies on these lines: {2, 3}, {13, 43105}, {14, 43106}, {15, 12820}, {16, 12821}, {395, 43400}, {396, 43399}, {485, 6492}, {486, 6493}, {511, 51026}, {515, 50870}, {517, 50869}, {671, 54934}, {952, 50862}, {1327, 42225}, {1328, 42226}, {3244, 33697}, {3564, 51022}, {3626, 28198}, {3629, 48884}, {3631, 19924}, {3656, 61285}, {4669, 28174}, {4745, 28202}, {5844, 50865}, {5965, 51025}, {6154, 61605}, {6329, 48895}, {6490, 13846}, {6491, 13847}, {7583, 42417}, {7584, 42418}, {7988, 50833}, {8584, 48901}, {9541, 42639}, {9778, 50800}, {11542, 12816}, {11543, 12817}, {11645, 20583}, {12699, 34747}, {12818, 42577}, {12819, 42576}, {14458, 60626}, {14488, 60283}, {15300, 22505}, {15533, 39884}, {15534, 51167}, {16808, 42791}, {16809, 42792}, {17502, 51074}, {17503, 60335}, {17508, 51129}, {18358, 48943}, {18480, 38098}, {18538, 43210}, {18553, 41152}, {18762, 43209}, {19106, 42800}, {19107, 42799}, {22615, 42642}, {22644, 42641}, {22793, 51071}, {24981, 61598}, {28150, 51069}, {28160, 51103}, {28168, 50802}, {28178, 50796}, {28182, 50821}, {28190, 51709}, {28212, 50874}, {28224, 50866}, {28234, 51119}, {29323, 50959}, {31162, 51094}, {31673, 34641}, {32787, 43316}, {32788, 43317}, {33698, 54644}, {34380, 51024}, {34628, 51700}, {34648, 61510}, {35786, 42525}, {35787, 42524}, {36969, 42630}, {36970, 42629}, {38034, 51110}, {38138, 51068}, {40693, 42509}, {40694, 42508}, {41100, 42894}, {41101, 42895}, {41107, 42137}, {41108, 42136}, {41112, 42117}, {41113, 42118}, {41119, 43332}, {41120, 43333}, {41121, 42102}, {41122, 42101}, {42085, 49811}, {42086, 49810}, {42087, 49907}, {42088, 49908}, {42093, 42497}, {42094, 42496}, {42096, 43197}, {42097, 43198}, {42104, 42889}, {42105, 42888}, {42107, 42429}, {42108, 42912}, {42109, 42913}, {42110, 42430}, {42122, 43331}, {42123, 43330}, {42135, 49906}, {42138, 49905}, {42140, 42633}, {42141, 42634}, {42143, 43324}, {42146, 43325}, {42147, 42506}, {42148, 42507}, {42154, 42415}, {42155, 42416}, {42164, 42779}, {42165, 42780}, {42263, 43503}, {42264, 43504}, {42283, 42644}, {42284, 42643}, {42419, 61719}, {42431, 42533}, {42432, 42532}, {42502, 42813}, {42503, 42814}, {42528, 43369}, {42529, 43368}, {42574, 43256}, {42575, 43257}, {42584, 42631}, {42585, 42632}, {42588, 42975}, {42589, 42974}, {42598, 54480}, {42599, 54479}, {42627, 43475}, {42628, 43476}, {42817, 43639}, {42818, 43640}, {42922, 43488}, {42923, 43487}, {42924, 42972}, {42925, 42973}, {42970, 43250}, {42971, 43251}, {42988, 43201}, {42989, 43202}, {43102, 43230}, {43103, 43231}, {43403, 43630}, {43404, 43631}, {43501, 43540}, {43502, 43541}, {43548, 54577}, {43549, 54576}, {44324, 46847}, {44678, 53143}, {44935, 50708}, {45103, 54920}, {47353, 51164}, {48873, 51186}, {48904, 61545}, {50812, 61263}, {50964, 59411}, {50992, 51029}, {51075, 61280}, {51078, 59420}, {51142, 52987}, {51217, 54132}, {53105, 54851}, {53109, 54734}, {54131, 61624}, {54477, 60210}, {54494, 54645}, {54717, 60238}, {60132, 60216}

X(62022) = midpoint of X(i) and X(j) for these {i,j}: {5, 15684}, {382, 15687}, {549, 3146}, {3543, 3627}, {3845, 15682}, {5073, 15686}
X(62022) = reflection of X(i) in X(j) for these {i,j}: {140, 14893}, {11001, 15759}, {12100, 3845}, {12101, 3830}, {12103, 547}, {14893, 3853}, {15681, 3530}, {15686, 3628}, {15690, 5066}, {15691, 5}, {15704, 14891}, {20, 10124}, {376, 3850}, {381, 12102}, {3534, 10109}, {34628, 51700}, {44324, 46847}, {546, 15687}, {547, 4}, {548, 381}, {549, 3861}, {550, 11737}, {5066, 12101}, {61510, 34648}, {61597, 31162}, {61624, 54131}, {8703, 3860}
X(62022) = inverse of X(61977) in orthocentroidal circle
X(62022) = inverse of X(61977) in Yff hyperbola
X(62022) = complement of X(62154)
X(62022) = anticomplement of X(62101)
X(62022) = pole of line {523, 61977} with respect to the orthocentroidal circle
X(62022) = pole of line {6, 43032} with respect to the Kiepert hyperbola
X(62022) = pole of line {523, 61977} with respect to the Yff hyperbola
X(62022) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(15691)}}, {{A, B, C, X(468), X(54934)}}, {{A, B, C, X(548), X(54512)}}, {{A, B, C, X(5072), X(54585)}}, {{A, B, C, X(6662), X(50690)}}, {{A, B, C, X(11331), X(60626)}}, {{A, B, C, X(23046), X(54924)}}, {{A, B, C, X(37453), X(54851)}}, {{A, B, C, X(52292), X(60335)}}, {{A, B, C, X(52293), X(54920)}}
X(62022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15688}, {2, 15640, 3529}, {2, 15681, 8703}, {2, 15697, 15715}, {2, 17504, 11812}, {2, 3528, 15693}, {2, 3830, 15687}, {2, 8703, 3530}, {4, 3146, 15696}, {4, 8703, 3860}, {5, 11001, 15759}, {30, 10109, 3534}, {30, 10124, 20}, {30, 12102, 381}, {30, 14891, 15704}, {30, 14893, 140}, {30, 15759, 11001}, {30, 3530, 15681}, {30, 3628, 15686}, {30, 381, 548}, {30, 3830, 12101}, {30, 3850, 376}, {30, 3853, 14893}, {30, 3861, 549}, {30, 5066, 15690}, {30, 547, 12103}, {381, 15709, 5}, {382, 15688, 15684}, {382, 3851, 3146}, {547, 12100, 11540}, {547, 15691, 15692}, {550, 14269, 11737}, {550, 15687, 14269}, {3090, 15714, 14890}, {3534, 3845, 10109}, {3543, 3627, 30}, {3544, 15698, 2}, {3545, 15704, 14891}, {3830, 12101, 3853}, {3839, 15686, 3628}, {3843, 15683, 11539}, {3853, 12103, 4}, {3860, 5066, 3859}, {3860, 8703, 547}, {5067, 15640, 15685}, {5079, 15681, 15710}, {11001, 15759, 15691}, {11737, 14269, 546}, {12100, 12101, 3845}, {14269, 15681, 5079}, {14269, 15700, 3855}, {14893, 15690, 5066}, {15681, 15710, 550}, {15688, 15709, 17504}, {15701, 15759, 12100}, {42633, 49825, 43207}, {42634, 49824, 43208}


X(62023) = X(2)X(3)∩X(6)X(48942)

Barycentrics    11*a^4-8*(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(62023) = -24*X[2]+19*X[3], X[6]+4*X[48942], -3*X[185]+8*X[12002], X[1350]+4*X[48943], X[1351]+4*X[48884], X[1482]+4*X[33697], -X[3519]+6*X[32340], -8*X[3818]+3*X[55593], -8*X[4301]+3*X[34748], -3*X[5050]+8*X[48895], -3*X[5093]+8*X[48901], -4*X[5493]+9*X[5790] and many others

X(62023) lies on these lines: {2, 3}, {6, 48942}, {17, 42096}, {18, 42097}, {53, 33636}, {61, 42909}, {62, 42908}, {185, 12002}, {355, 28232}, {397, 42105}, {398, 42104}, {542, 51167}, {1327, 31487}, {1350, 48943}, {1351, 48884}, {1482, 33697}, {3519, 32340}, {3531, 14861}, {3818, 55593}, {4301, 34748}, {4857, 7373}, {5050, 48895}, {5093, 48901}, {5270, 6767}, {5339, 19106}, {5340, 19107}, {5343, 42118}, {5344, 42117}, {5346, 21309}, {5349, 42086}, {5350, 42085}, {5365, 42141}, {5366, 42140}, {5493, 5790}, {5691, 8148}, {5818, 28182}, {5925, 18376}, {5965, 36990}, {6199, 23251}, {6243, 13474}, {6395, 23261}, {6407, 6564}, {6408, 6565}, {6417, 35821}, {6418, 35820}, {6445, 42266}, {6446, 42267}, {6449, 35786}, {6450, 35787}, {6472, 31412}, {6473, 42561}, {6474, 13903}, {6475, 13961}, {6500, 22644}, {6501, 22615}, {7745, 22246}, {7747, 43136}, {7843, 51122}, {8960, 42263}, {8976, 9690}, {9541, 10145}, {9589, 50798}, {9691, 42258}, {9703, 26883}, {9812, 18526}, {10137, 43339}, {10138, 43338}, {10247, 22793}, {10248, 34773}, {10263, 11455}, {10516, 55616}, {10627, 16261}, {10733, 12160}, {10990, 38724}, {10991, 38732}, {10992, 38743}, {10993, 38755}, {11178, 55602}, {11439, 13391}, {11480, 42979}, {11481, 42978}, {11482, 11645}, {11485, 42432}, {11486, 42431}, {11522, 28160}, {11542, 43770}, {11543, 43769}, {12017, 29323}, {12295, 38790}, {12315, 34786}, {12645, 58247}, {12699, 28236}, {12816, 43426}, {12817, 43427}, {12902, 13202}, {13093, 14864}, {13321, 13491}, {13340, 44870}, {13598, 18439}, {13665, 42271}, {13785, 42272}, {13951, 42276}, {13966, 17851}, {14841, 22334}, {14862, 17845}, {15026, 52093}, {15056, 54047}, {15603, 18424}, {15655, 39565}, {16194, 37484}, {16960, 42094}, {16961, 42093}, {18383, 35450}, {18394, 34469}, {18436, 32062}, {18440, 51163}, {18492, 28154}, {18493, 28164}, {18525, 28234}, {18538, 42413}, {18550, 43908}, {18553, 33878}, {18762, 42414}, {19130, 55692}, {21400, 43719}, {22331, 39563}, {23039, 46849}, {23253, 42225}, {23263, 42226}, {24206, 55632}, {25555, 48905}, {25561, 55626}, {26864, 40242}, {28158, 61261}, {28190, 58233}, {28202, 37714}, {28204, 50866}, {28228, 31673}, {29012, 53091}, {29317, 55604}, {30308, 31666}, {30315, 31663}, {30714, 38789}, {31670, 48662}, {33520, 38767}, {34507, 48910}, {34632, 61255}, {34780, 51491}, {36969, 41973}, {36970, 41974}, {36987, 46852}, {36999, 44455}, {37727, 50870}, {38733, 39838}, {38744, 39809}, {39899, 51538}, {40693, 43402}, {40694, 43401}, {41362, 48672}, {41963, 42269}, {41964, 42268}, {42087, 42921}, {42088, 42920}, {42099, 43238}, {42100, 43239}, {42101, 42131}, {42102, 42130}, {42103, 42944}, {42106, 42945}, {42108, 42128}, {42109, 42125}, {42112, 42132}, {42113, 42129}, {42121, 42776}, {42122, 42962}, {42123, 42963}, {42124, 42775}, {42136, 42999}, {42137, 42998}, {42144, 42817}, {42145, 42818}, {42159, 42778}, {42160, 42941}, {42161, 42940}, {42162, 42777}, {42164, 42974}, {42165, 42975}, {42259, 45385}, {42264, 58866}, {42429, 42580}, {42430, 42581}, {42516, 43416}, {42517, 43417}, {42586, 49908}, {42587, 49907}, {42813, 43399}, {42814, 43400}, {42926, 43648}, {42927, 43647}, {42936, 43240}, {42937, 43241}, {42960, 43645}, {42961, 43646}, {42986, 43496}, {42987, 43495}, {43010, 43022}, {43011, 43023}, {43105, 43773}, {43106, 43774}, {43292, 43325}, {43293, 43324}, {43422, 49947}, {43423, 49948}, {43477, 43634}, {43478, 43635}, {43626, 43629}, {43627, 43628}, {45959, 54048}, {47353, 55580}, {48673, 52854}, {48680, 52836}, {48872, 55624}, {48879, 55643}, {48889, 55610}, {48896, 55682}, {50805, 50867}, {50955, 51164}, {50957, 55620}, {50962, 51217}, {50963, 53093}, {50993, 55600}, {51024, 55724}, {51175, 51213}, {52835, 60884}, {53023, 55705}, {58228, 61272}, {58236, 61288}

X(62023) = midpoint of X(i) and X(j) for these {i,j}: {382, 5076}, {631, 3146}
X(62023) = reflection of X(i) in X(j) for these {i,j}: {1656, 4}, {1657, 3522}, {11001, 15714}, {15681, 15693}, {15692, 3845}, {15695, 381}, {15696, 3091}, {15713, 14893}, {17538, 5}, {17578, 3627}, {20, 632}, {3, 3843}, {3522, 3858}, {3534, 5071}, {3843, 5076}, {3859, 12102}, {5076, 17578}, {52093, 15026}
X(62023) = inverse of X(61976) in orthocentroidal circle
X(62023) = inverse of X(37936) in Stammler circle
X(62023) = inverse of X(61976) in Yff hyperbola
X(62023) = anticomplement of X(62104)
X(62023) = pole of line {523, 61976} with respect to the orthocentroidal circle
X(62023) = pole of line {523, 37936} with respect to the Stammler circle
X(62023) = pole of line {185, 61970} with respect to the Jerabek hyperbola
X(62023) = pole of line {6, 43422} with respect to the Kiepert hyperbola
X(62023) = pole of line {523, 61976} with respect to the Yff hyperbola
X(62023) = pole of line {69, 55647} with respect to the Wallace hyperbola
X(62023) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(253), X(58208)}}, {{A, B, C, X(265), X(17538)}}, {{A, B, C, X(3090), X(18550)}}, {{A, B, C, X(3426), X(44879)}}, {{A, B, C, X(3519), X(3528)}}, {{A, B, C, X(3521), X(3525)}}, {{A, B, C, X(3522), X(14841)}}, {{A, B, C, X(3524), X(14861)}}, {{A, B, C, X(3527), X(35475)}}, {{A, B, C, X(3529), X(21400)}}, {{A, B, C, X(3531), X(14865)}}, {{A, B, C, X(5068), X(18846)}}, {{A, B, C, X(6662), X(33699)}}, {{A, B, C, X(11541), X(17505)}}, {{A, B, C, X(11812), X(60122)}}, {{A, B, C, X(14528), X(23040)}}, {{A, B, C, X(15695), X(54512)}}, {{A, B, C, X(19708), X(42021)}}, {{A, B, C, X(21844), X(43719)}}, {{A, B, C, X(31361), X(58188)}}, {{A, B, C, X(35473), X(43908)}}, {{A, B, C, X(35489), X(38433)}}, {{A, B, C, X(35502), X(61137)}}
X(62023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15702, 6948}, {3, 3526, 15722}, {3, 382, 15684}, {4, 11541, 3533}, {4, 15682, 5059}, {4, 20, 3850}, {4, 3146, 550}, {4, 3523, 546}, {4, 3529, 5068}, {4, 3533, 3839}, {4, 382, 5073}, {4, 5059, 5}, {4, 5068, 3845}, {5, 17538, 15693}, {5, 30, 17538}, {20, 632, 14093}, {30, 12102, 3859}, {30, 14893, 15713}, {30, 15693, 15681}, {30, 15714, 11001}, {30, 17578, 5076}, {30, 3091, 15696}, {30, 3522, 1657}, {30, 3627, 17578}, {30, 381, 15695}, {30, 3845, 15692}, {30, 5071, 3534}, {30, 5076, 3843}, {30, 632, 20}, {376, 3861, 5072}, {381, 11001, 15707}, {381, 12100, 5055}, {381, 3146, 17800}, {381, 3534, 11539}, {381, 382, 3146}, {382, 3627, 3830}, {382, 5076, 30}, {546, 3534, 5070}, {548, 3839, 5079}, {548, 5079, 15701}, {631, 17538, 10304}, {631, 17578, 3853}, {1656, 14093, 15720}, {1656, 15696, 15712}, {1656, 15712, 15694}, {1656, 15720, 632}, {1656, 3858, 3851}, {1656, 5076, 4}, {2043, 2044, 11812}, {3091, 15712, 1656}, {3146, 3853, 381}, {3522, 5056, 631}, {3526, 3529, 15689}, {3543, 3627, 382}, {3830, 15684, 14269}, {3830, 5055, 15687}, {3832, 15704, 5054}, {3839, 11541, 548}, {3843, 15689, 12812}, {3843, 15694, 3091}, {3843, 3851, 3858}, {3851, 15681, 10299}, {3856, 15686, 3525}, {5349, 42086, 42989}, {5350, 42085, 42988}, {5365, 42141, 42924}, {5366, 42925, 42815}, {10299, 17538, 3522}, {10304, 15702, 12100}, {12085, 13621, 3}, {12101, 15704, 3832}, {12812, 15692, 3526}, {14269, 15684, 15685}, {14269, 15685, 15703}, {14813, 14814, 3528}, {14893, 15640, 15688}, {15695, 15707, 15714}, {34786, 61721, 12315}, {52838, 52839, 36990}


X(62024) = X(2)X(3)∩X(6)X(42964)

Barycentrics    17*a^4-12*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62024) = -36*X[2]+29*X[3], X[576]+6*X[48942], -12*X[3818]+5*X[55595], -X[5881]+15*X[50866], -16*X[7687]+9*X[38633], X[7982]+6*X[33697], -X[8148]+8*X[51118], -2*X[9588]+3*X[50800], -18*X[10516]+11*X[55620], -10*X[11439]+3*X[54048], 4*X[11477]+3*X[48662], -5*X[11482]+12*X[48901] and many others

X(62024) lies on these lines: {2, 3}, {6, 42964}, {542, 51164}, {576, 48942}, {3818, 55595}, {5881, 50866}, {6199, 42271}, {6395, 42272}, {6407, 42275}, {6408, 42276}, {6417, 22644}, {6418, 22615}, {6427, 35821}, {6428, 35820}, {6445, 42269}, {6446, 42268}, {6447, 35815}, {6448, 35814}, {6453, 45384}, {6454, 45385}, {6472, 13925}, {6473, 13993}, {6519, 6564}, {6522, 6565}, {7687, 38633}, {7982, 33697}, {8148, 51118}, {8972, 10145}, {9588, 50800}, {9691, 31412}, {9692, 42639}, {10146, 13941}, {10248, 28190}, {10516, 55620}, {10541, 29323}, {11439, 54048}, {11477, 48662}, {11482, 48901}, {11485, 42895}, {11486, 42894}, {11645, 53858}, {12279, 13321}, {12308, 13202}, {13340, 40247}, {13886, 43383}, {13939, 43382}, {14692, 38733}, {15044, 34584}, {15069, 51167}, {15811, 50461}, {16189, 51087}, {17505, 44763}, {18396, 34563}, {18483, 58230}, {19106, 42689}, {19107, 42688}, {21358, 55623}, {21400, 43691}, {25561, 55628}, {28168, 30389}, {28204, 50874}, {29012, 53092}, {29317, 55602}, {31454, 43503}, {32340, 54202}, {33541, 53779}, {33887, 37489}, {34628, 58232}, {34748, 58240}, {34786, 58795}, {36969, 42934}, {36970, 42935}, {36990, 55724}, {38072, 55698}, {38638, 46686}, {41963, 43568}, {41964, 43569}, {42093, 42690}, {42094, 42691}, {42104, 42165}, {42105, 42164}, {42108, 42162}, {42109, 42159}, {42112, 42598}, {42113, 42599}, {42126, 42161}, {42127, 42160}, {42129, 42685}, {42130, 42166}, {42131, 42163}, {42132, 42684}, {42136, 56617}, {42137, 56616}, {42270, 43882}, {42273, 43881}, {42283, 43431}, {42284, 43430}, {42429, 42491}, {42430, 42490}, {42433, 43545}, {42434, 43544}, {42506, 43422}, {42507, 43423}, {42612, 43776}, {42613, 43775}, {42795, 43238}, {42796, 43239}, {42954, 43227}, {42955, 43226}, {42996, 43026}, {42997, 43027}, {43032, 43304}, {43033, 43305}, {43150, 48904}, {43244, 43547}, {43245, 43546}, {43399, 43632}, {43400, 43633}, {43542, 43634}, {43543, 43635}, {43621, 55593}, {43626, 46473}, {43627, 46476}, {44456, 51163}, {45958, 54047}, {47353, 55583}, {48661, 51515}, {48889, 55614}, {48895, 53093}, {48910, 55580}, {48943, 52987}, {51024, 55721}, {53023, 55701}

X(62024) = midpoint of X(i) and X(j) for these {i,j}: {3090, 3146}
X(62024) = reflection of X(i) in X(j) for these {i,j}: {1657, 3528}, {15681, 15701}, {3526, 4}
X(62024) = inverse of X(37939) in Stammler circle
X(62024) = anticomplement of X(62106)
X(62024) = pole of line {523, 37939} with respect to the Stammler circle
X(62024) = pole of line {185, 61968} with respect to the Jerabek hyperbola
X(62024) = pole of line {69, 55645} with respect to the Wallace hyperbola
X(62024) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3521), X(3533)}}, {{A, B, C, X(3527), X(35478)}}, {{A, B, C, X(5056), X(18550)}}, {{A, B, C, X(5059), X(21400)}}, {{A, B, C, X(5066), X(18848)}}, {{A, B, C, X(10299), X(13623)}}, {{A, B, C, X(11001), X(32533)}}, {{A, B, C, X(15022), X(18846)}}, {{A, B, C, X(15702), X(31371)}}, {{A, B, C, X(17505), X(33703)}}, {{A, B, C, X(17506), X(44763)}}, {{A, B, C, X(21735), X(34483)}}, {{A, B, C, X(21844), X(43691)}}, {{A, B, C, X(22334), X(47485)}}
X(62024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 3091}, {3, 15685, 12103}, {3, 15703, 14869}, {3, 3525, 15707}, {3, 3627, 3830}, {3, 5079, 15694}, {4, 10303, 546}, {4, 10304, 3856}, {4, 15683, 5}, {4, 15684, 17800}, {4, 15698, 3832}, {4, 20, 5066}, {4, 30, 3526}, {4, 3146, 15704}, {4, 3529, 15022}, {4, 382, 15684}, {30, 15701, 15681}, {30, 3528, 1657}, {381, 3534, 15709}, {382, 1657, 15682}, {382, 5076, 3146}, {443, 5068, 5056}, {546, 15704, 10303}, {550, 7486, 15706}, {632, 17504, 12108}, {1656, 12103, 3}, {1657, 14269, 5070}, {1657, 3853, 14269}, {1657, 5070, 15695}, {3090, 3146, 30}, {3090, 3523, 632}, {3090, 3857, 5072}, {3146, 3627, 5076}, {3526, 3851, 5055}, {3526, 5072, 3090}, {3528, 14269, 3851}, {3529, 12102, 381}, {3529, 15022, 548}, {3529, 17578, 12102}, {3627, 12102, 17578}, {3830, 5073, 3843}, {3856, 10304, 1656}, {3861, 5059, 5054}, {5055, 15695, 549}, {15022, 15640, 3529}, {15022, 15709, 3628}, {15640, 17578, 4}, {15684, 17800, 5073}, {42964, 42965, 6}


X(62025) = X(2)X(3)∩X(15)X(42518)

Barycentrics    37*a^4-26*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62025) = -26*X[2]+21*X[3], X[599]+4*X[48943], X[3633]+14*X[33697], 2*X[4677]+3*X[48661], X[6144]+14*X[48884], -X[15534]+21*X[51164], -12*X[48889]+7*X[51186], 4*X[48942]+X[54131], -21*X[50800]+16*X[51069], -7*X[50813]+12*X[61262], -21*X[50874]+X[51093], -21*X[50957]+16*X[51143] and many others

X(62025) lies on these lines: {2, 3}, {15, 42518}, {16, 42519}, {371, 42577}, {372, 42576}, {511, 51167}, {516, 50797}, {517, 50866}, {599, 48943}, {952, 50873}, {1503, 51172}, {3311, 43322}, {3312, 43323}, {3564, 51029}, {3633, 33697}, {4668, 28198}, {4669, 28232}, {4677, 48661}, {5844, 50863}, {5965, 51024}, {6144, 48884}, {6221, 43503}, {6398, 43504}, {6439, 6564}, {6440, 6565}, {6441, 18512}, {6442, 18510}, {6451, 60297}, {6452, 60298}, {6476, 13846}, {6477, 13847}, {6478, 13903}, {6479, 13961}, {9680, 42606}, {9690, 42639}, {10653, 42682}, {10654, 42683}, {12816, 16960}, {12817, 16961}, {15534, 51164}, {16966, 43368}, {16967, 43369}, {22236, 43550}, {22238, 43551}, {28146, 51066}, {28158, 50799}, {28164, 50806}, {28172, 51109}, {28228, 50798}, {28234, 50862}, {28236, 50805}, {29181, 50954}, {29317, 50993}, {31454, 42608}, {34380, 51216}, {35255, 43405}, {35256, 43406}, {35770, 42642}, {35771, 42641}, {36967, 42962}, {36968, 42963}, {41100, 42816}, {41101, 42815}, {41107, 42126}, {41108, 42127}, {41112, 43402}, {41113, 43401}, {41121, 42096}, {41122, 42097}, {42087, 42512}, {42088, 42513}, {42093, 46334}, {42094, 46335}, {42104, 43229}, {42105, 43228}, {42108, 42511}, {42109, 42510}, {42112, 42791}, {42113, 42792}, {42125, 49904}, {42128, 49903}, {42129, 42631}, {42130, 49905}, {42131, 49906}, {42132, 42632}, {42150, 42502}, {42151, 42503}, {42154, 43232}, {42155, 43233}, {42431, 42508}, {42432, 42509}, {42435, 42506}, {42436, 42507}, {42516, 49825}, {42517, 49824}, {42520, 42974}, {42521, 42975}, {42524, 42527}, {42525, 42526}, {42584, 43247}, {42585, 43246}, {42640, 43415}, {42902, 43429}, {42903, 43428}, {42996, 49908}, {42997, 49907}, {43304, 49948}, {43305, 49947}, {43471, 43877}, {43472, 43878}, {48889, 51186}, {48942, 54131}, {50800, 51069}, {50813, 61262}, {50874, 51093}, {50957, 51143}, {50962, 51026}, {50964, 55682}, {50992, 51217}, {50994, 55593}, {51022, 51175}, {51165, 51174}, {54890, 60287}, {60326, 60638}

X(62025) = midpoint of X(i) and X(j) for these {i,j}: {3146, 5071}, {3843, 15684}
X(62025) = reflection of X(i) in X(j) for these {i,j}: {1657, 14093}, {11001, 15711}, {14093, 3843}, {15681, 631}, {15685, 15697}, {15686, 12812}, {15694, 4}, {15696, 381}, {15712, 14893}, {376, 3858}, {381, 5076}, {3091, 15687}
X(62025) = anticomplement of X(62108)
X(62025) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3830), X(57896)}}, {{A, B, C, X(10109), X(18550)}}, {{A, B, C, X(12811), X(54585)}}, {{A, B, C, X(15696), X(54512)}}
X(62025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 548}, {2, 3627, 3830}, {2, 8703, 15718}, {3, 3830, 12101}, {3, 3859, 1656}, {4, 30, 15694}, {30, 14093, 1657}, {30, 14893, 15712}, {30, 15687, 3091}, {30, 15711, 11001}, {30, 381, 15696}, {30, 3858, 376}, {30, 5076, 381}, {30, 631, 15681}, {381, 1657, 15706}, {382, 3534, 15682}, {1656, 15695, 15693}, {1656, 17578, 5076}, {1657, 15688, 15686}, {1657, 5076, 3843}, {3091, 11001, 15711}, {3146, 5071, 30}, {3534, 12100, 15688}, {3534, 13633, 15640}, {3830, 15684, 2}, {3830, 15685, 4}, {3839, 17800, 15700}, {3850, 15686, 15708}, {5066, 15681, 15716}, {5073, 15687, 5054}, {6926, 14269, 5066}, {10109, 15682, 5073}, {10299, 15687, 14269}, {11540, 12101, 3845}, {11737, 15640, 15685}, {11737, 17504, 16863}, {12100, 14869, 15719}, {12100, 15685, 3534}, {12101, 15640, 3}, {14269, 15718, 3850}, {14893, 15689, 5072}, {15682, 17578, 15713}, {15685, 15694, 15697}, {15686, 15694, 14093}


X(62026) = X(2)X(3)∩X(6)X(42888)

Barycentrics    10*a^4-7*(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(62026) = -21*X[2]+17*X[3], -5*X[40]+9*X[61257], -7*X[141]+5*X[55608], -3*X[143]+4*X[12002], -3*X[265]+2*X[13393], -5*X[576]+3*X[51136], -X[1353]+3*X[51538], -X[1483]+3*X[9812], -3*X[1539]+X[30714], -3*X[1699]+2*X[51700], -3*X[3060]+X[45957], -7*X[3589]+6*X[55686] and many others

X(62026) lies on these lines: {2, 3}, {6, 42888}, {10, 28182}, {15, 42693}, {16, 42692}, {17, 41978}, {18, 41977}, {40, 61257}, {61, 43402}, {62, 43401}, {141, 55608}, {143, 12002}, {195, 12112}, {265, 13393}, {355, 28216}, {371, 53517}, {372, 53520}, {397, 19107}, {398, 19106}, {511, 32137}, {515, 61292}, {516, 61510}, {517, 61246}, {542, 51026}, {576, 51136}, {946, 28190}, {952, 33697}, {1154, 13433}, {1353, 51538}, {1483, 9812}, {1503, 48942}, {1539, 30714}, {1699, 51700}, {2794, 61600}, {2829, 61601}, {3060, 45957}, {3519, 13603}, {3521, 57730}, {3564, 48884}, {3589, 55686}, {3818, 55596}, {3819, 11017}, {4857, 18990}, {5229, 10386}, {5270, 15171}, {5318, 42432}, {5321, 42431}, {5339, 42104}, {5340, 42105}, {5343, 42141}, {5344, 42140}, {5349, 11543}, {5350, 11542}, {5365, 11486}, {5366, 11485}, {5480, 55710}, {5493, 18480}, {5558, 18530}, {5663, 13598}, {5690, 61256}, {5691, 5844}, {5840, 61605}, {5843, 52835}, {5876, 32062}, {5882, 22793}, {5893, 14862}, {5894, 18376}, {5901, 28164}, {6101, 16194}, {6243, 11455}, {6361, 38138}, {6468, 8981}, {6469, 13966}, {6470, 6561}, {6471, 6560}, {6564, 41961}, {6565, 41962}, {6688, 44871}, {6749, 59649}, {7583, 42271}, {7584, 42272}, {7755, 53419}, {7860, 32819}, {7871, 32820}, {8162, 12953}, {8550, 15520}, {8960, 42284}, {8976, 42413}, {9541, 43413}, {9589, 50817}, {9681, 43503}, {9955, 28172}, {9956, 28158}, {10095, 46850}, {10113, 10990}, {10152, 14863}, {10187, 43101}, {10188, 43104}, {10222, 51082}, {10246, 10248}, {10263, 11381}, {10272, 22250}, {10619, 20585}, {10627, 44870}, {10722, 45155}, {10723, 52090}, {10991, 22515}, {10992, 22505}, {10993, 22799}, {11224, 12699}, {11439, 37484}, {11522, 34773}, {11591, 46849}, {11801, 20417}, {11803, 18400}, {12006, 14641}, {12279, 45956}, {12295, 18555}, {13202, 13431}, {13348, 46852}, {13363, 44863}, {13391, 31834}, {13403, 61299}, {13421, 13754}, {13451, 13630}, {13464, 28160}, {13491, 16881}, {13925, 42258}, {13951, 42414}, {13993, 42259}, {14128, 46847}, {14855, 15026}, {14864, 15311}, {14900, 19160}, {14927, 59399}, {15105, 18381}, {15325, 18514}, {15516, 29012}, {15644, 45958}, {15726, 61541}, {15805, 33534}, {15807, 44829}, {15811, 16266}, {16808, 42585}, {16809, 42584}, {16836, 18874}, {16964, 42941}, {16965, 42940}, {17702, 61598}, {18357, 28146}, {18358, 29317}, {18383, 61540}, {18481, 61275}, {18483, 28168}, {18538, 41948}, {18553, 29181}, {18583, 48895}, {18762, 41947}, {19130, 55690}, {19925, 28154}, {20070, 59400}, {20190, 50959}, {22615, 42216}, {22644, 42215}, {22791, 61287}, {22802, 44762}, {22804, 54201}, {23249, 43411}, {23251, 42225}, {23253, 42570}, {23259, 43412}, {23261, 42226}, {23263, 42571}, {23698, 61599}, {24206, 55634}, {24305, 59371}, {25555, 29323}, {28150, 61524}, {28174, 31673}, {28194, 50870}, {28202, 50814}, {28204, 50869}, {28208, 61286}, {28212, 37712}, {31162, 61289}, {31406, 43619}, {31447, 34638}, {31487, 43257}, {31663, 61262}, {31730, 61259}, {32515, 52854}, {32903, 58434}, {34380, 36990}, {34507, 48904}, {34564, 43585}, {34573, 48920}, {34754, 43546}, {34755, 43547}, {34786, 51491}, {35255, 35786}, {35256, 35787}, {35812, 43210}, {35813, 43209}, {35820, 53519}, {35821, 53518}, {36969, 42164}, {36970, 42165}, {36992, 52839}, {36994, 52838}, {37705, 48661}, {37727, 50874}, {38136, 48905}, {39884, 48910}, {42085, 43422}, {42086, 43423}, {42087, 42627}, {42088, 42628}, {42093, 42145}, {42094, 42144}, {42096, 42138}, {42097, 42135}, {42099, 42146}, {42100, 42143}, {42103, 43239}, {42106, 43238}, {42111, 42774}, {42112, 42124}, {42113, 42121}, {42114, 42773}, {42115, 42495}, {42116, 42494}, {42125, 43631}, {42126, 42998}, {42127, 42999}, {42128, 43630}, {42133, 42989}, {42134, 42988}, {42147, 42992}, {42148, 42993}, {42159, 42497}, {42162, 42496}, {42163, 43633}, {42166, 43632}, {42260, 42568}, {42261, 42569}, {42270, 42557}, {42273, 42558}, {42283, 58866}, {42429, 42489}, {42430, 42488}, {42433, 42793}, {42434, 42794}, {42537, 42639}, {42538, 42640}, {42580, 42958}, {42581, 42959}, {42629, 43775}, {42630, 43776}, {42637, 43406}, {42638, 43405}, {42795, 42947}, {42796, 42946}, {42813, 42912}, {42814, 42913}, {42894, 43019}, {42895, 43018}, {42918, 42948}, {42919, 42949}, {42936, 43226}, {42937, 43227}, {42938, 42961}, {42939, 42960}, {42942, 43399}, {42943, 43400}, {42994, 43229}, {42995, 43228}, {43242, 43557}, {43243, 43556}, {43338, 43524}, {43339, 43523}, {43542, 43639}, {43543, 43640}, {43621, 48876}, {43699, 43719}, {44882, 55693}, {44935, 52863}, {48880, 55635}, {48881, 55630}, {48889, 55615}, {48898, 55689}, {50973, 51167}, {50991, 55597}, {51023, 55724}, {51029, 51178}, {51732, 53023}, {52047, 53513}, {52048, 53516}, {52837, 52851}

X(62026) = midpoint of X(i) and X(j) for these {i,j}: {5, 3146}, {382, 3627}, {550, 5073}, {3845, 15684}, {10263, 11381}, {15640, 15686}, {15682, 15687}, {33697, 51118}, {34786, 51491}, {37705, 48661}, {39884, 48910}, {43621, 48876}, {48884, 51163}
X(62026) = reflection of X(i) in X(j) for these {i,j}: {140, 4}, {10627, 44870}, {11001, 14891}, {11591, 46849}, {12100, 14893}, {12103, 5}, {13348, 46852}, {13382, 12002}, {13471, 16340}, {13491, 16881}, {14449, 13598}, {14641, 12006}, {14893, 3830}, {15644, 45958}, {15681, 11812}, {15686, 10109}, {15690, 381}, {15691, 5066}, {15704, 3530}, {18583, 48895}, {20, 3628}, {3, 3861}, {376, 3860}, {3534, 11737}, {3853, 3627}, {3859, 5076}, {31730, 61259}, {44829, 15807}, {46850, 10095}, {48920, 34573}, {5, 12102}, {546, 3853}, {547, 12101}, {548, 546}, {550, 3850}, {5066, 15687}, {54201, 22804}, {61540, 18383}
X(62026) = inverse of X(61975) in orthocentroidal circle
X(62026) = inverse of X(61975) in Yff hyperbola
X(62026) = complement of X(62155)
X(62026) = anticomplement of X(44245)
X(62026) = pole of line {523, 61975} with respect to the orthocentroidal circle
X(62026) = pole of line {185, 3858} with respect to the Jerabek hyperbola
X(62026) = pole of line {6, 61975} with respect to the Kiepert hyperbola
X(62026) = pole of line {523, 61975} with respect to the Yff hyperbola
X(62026) = pole of line {69, 55644} with respect to the Wallace hyperbola
X(62026) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(30), X(14863)}}, {{A, B, C, X(265), X(12103)}}, {{A, B, C, X(632), X(3521)}}, {{A, B, C, X(1105), X(3858)}}, {{A, B, C, X(3518), X(13603)}}, {{A, B, C, X(3519), X(8703)}}, {{A, B, C, X(3520), X(57730)}}, {{A, B, C, X(3529), X(43699)}}, {{A, B, C, X(3530), X(14861)}}, {{A, B, C, X(3534), X(52441)}}, {{A, B, C, X(3543), X(6662)}}, {{A, B, C, X(3851), X(18848)}}, {{A, B, C, X(3854), X(18850)}}, {{A, B, C, X(5056), X(18846)}}, {{A, B, C, X(5079), X(18550)}}, {{A, B, C, X(10124), X(40448)}}, {{A, B, C, X(14491), X(35475)}}, {{A, B, C, X(15690), X(54512)}}, {{A, B, C, X(15701), X(60122)}}, {{A, B, C, X(21400), X(49137)}}, {{A, B, C, X(21734), X(42021)}}, {{A, B, C, X(43719), X(55576)}}, {{A, B, C, X(43970), X(44682)}}, {{A, B, C, X(46081), X(57584)}}, {{A, B, C, X(55861), X(60171)}}
X(62026) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 17578, 15687}, {3, 381, 7486}, {3, 382, 15682}, {3, 3855, 15699}, {3, 3861, 5066}, {3, 4, 3858}, {3, 5, 10124}, {3, 7486, 15713}, {4, 10295, 10019}, {4, 10299, 3832}, {4, 11541, 10299}, {4, 3146, 1657}, {4, 3522, 381}, {4, 3529, 5056}, {4, 376, 3854}, {4, 5056, 3843}, {4, 5059, 1656}, {5, 3627, 3830}, {5, 376, 12108}, {5, 550, 3523}, {20, 3845, 3628}, {20, 3851, 15712}, {20, 5076, 3845}, {30, 11737, 3534}, {30, 11812, 15681}, {30, 12101, 547}, {30, 14891, 11001}, {30, 14893, 12100}, {30, 16340, 13471}, {30, 3530, 15704}, {30, 3627, 3853}, {30, 3628, 20}, {30, 381, 15690}, {30, 3860, 376}, {30, 5066, 15691}, {30, 5076, 3859}, {140, 3853, 4}, {381, 3530, 12812}, {382, 3543, 3627}, {382, 3830, 3146}, {382, 5076, 15684}, {549, 3843, 12811}, {631, 14269, 3857}, {632, 3832, 11737}, {1656, 5059, 550}, {1656, 5073, 5059}, {1885, 18325, 16618}, {2043, 2044, 15701}, {3090, 10303, 2049}, {3091, 8703, 16239}, {3146, 12102, 12103}, {3146, 17578, 3839}, {3146, 3627, 12102}, {3523, 3533, 5054}, {3523, 3839, 5068}, {3528, 17571, 15700}, {3528, 5072, 11539}, {3529, 3843, 549}, {3530, 12108, 15722}, {3533, 3845, 3850}, {3534, 3832, 632}, {3545, 15696, 14869}, {3627, 15687, 17578}, {3628, 3859, 14892}, {3830, 12100, 12101}, {3845, 15712, 3851}, {3857, 15686, 631}, {3858, 15712, 5071}, {5056, 11001, 6827}, {5068, 15682, 5073}, {5071, 17578, 5076}, {5072, 15685, 3528}, {5073, 5076, 3533}, {5321, 42431, 42924}, {5349, 42109, 42158}, {5349, 42158, 11543}, {5350, 42108, 42157}, {5350, 42157, 11542}, {5663, 13598, 14449}, {6658, 8352, 8361}, {7517, 15331, 12105}, {10124, 12102, 3861}, {10124, 15687, 14893}, {12002, 13382, 143}, {12002, 14915, 13382}, {12086, 18378, 15646}, {12100, 12103, 548}, {12102, 12103, 546}, {12103, 14893, 5}, {12812, 15690, 3530}, {14269, 15640, 15686}, {14269, 15686, 10109}, {14813, 14814, 8703}, {14869, 15696, 15759}, {15640, 15686, 30}, {15682, 17578, 3}, {15720, 16239, 140}, {33697, 51118, 952}, {34754, 43546, 43773}, {34755, 43547, 43774}, {42133, 43769, 42989}, {42134, 43770, 42988}, {42433, 42978, 42793}, {42434, 42979, 42794}, {42888, 42889, 6}, {48884, 51163, 3564}


X(62027) = X(2)X(3)∩X(485)X(6474)

Barycentrics    23*a^4-16*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62027) = -16*X[2]+13*X[3], X[1351]+8*X[48942], -4*X[3098]+7*X[50957], -4*X[3579]+7*X[50800], -5*X[3655]+8*X[51075], -4*X[4746]+13*X[31673], 5*X[4816]+13*X[41869], X[8148]+8*X[33697], -4*X[9166]+3*X[38634], 2*X[10722]+X[12355], -8*X[11178]+5*X[55604], -5*X[11179]+8*X[51130] and many others

X(62027) lies on these lines: {2, 3}, {485, 6474}, {486, 6475}, {515, 58238}, {1351, 48942}, {1384, 39563}, {3098, 50957}, {3579, 50800}, {3653, 28172}, {3655, 51075}, {4746, 31673}, {4816, 41869}, {5093, 11645}, {5339, 43008}, {5340, 43009}, {5349, 42510}, {5350, 42511}, {6472, 42258}, {6473, 42259}, {6500, 35821}, {6501, 35820}, {6564, 9690}, {6565, 43415}, {8148, 33697}, {8976, 43210}, {9166, 38634}, {9680, 42526}, {9691, 13846}, {10247, 28208}, {10722, 12355}, {11178, 55604}, {11179, 51130}, {11180, 51217}, {11485, 42973}, {11486, 42972}, {11542, 43201}, {11543, 43202}, {11648, 43136}, {11820, 51993}, {12699, 34748}, {12818, 43380}, {12819, 43381}, {13951, 43209}, {15905, 36430}, {16261, 54047}, {16267, 43781}, {16268, 43782}, {16808, 43325}, {16809, 43324}, {16962, 42094}, {16963, 42093}, {17851, 42276}, {18440, 50961}, {18481, 58233}, {18525, 50804}, {18550, 44731}, {19875, 28154}, {19883, 58226}, {21358, 55624}, {23234, 38635}, {23251, 43385}, {23253, 52047}, {23261, 43384}, {23263, 52048}, {25561, 55629}, {28146, 38066}, {28168, 38021}, {28178, 38074}, {28190, 38314}, {28202, 38176}, {29323, 38072}, {31162, 50874}, {31670, 51026}, {33878, 48943}, {34627, 50867}, {34628, 50806}, {34632, 50797}, {34638, 50799}, {36969, 42799}, {36970, 42800}, {38637, 59377}, {39838, 48657}, {41107, 43776}, {41108, 43775}, {42090, 43107}, {42091, 43100}, {42095, 42429}, {42098, 42430}, {42104, 42975}, {42105, 42974}, {42119, 43328}, {42120, 43329}, {42126, 42941}, {42127, 42940}, {42225, 43316}, {42226, 43317}, {42275, 45384}, {42690, 43196}, {42691, 43195}, {42785, 48905}, {42791, 42921}, {42792, 42920}, {42914, 51944}, {42915, 51945}, {42928, 43293}, {42929, 43292}, {43026, 49908}, {43027, 49907}, {43193, 54594}, {43194, 54593}, {43312, 43788}, {43313, 43787}, {43330, 43400}, {43331, 43399}, {43497, 43636}, {43498, 43637}, {43542, 43630}, {43543, 43631}, {43632, 49905}, {43633, 49906}, {44456, 48884}, {47353, 48904}, {47745, 48661}, {48662, 51163}, {48889, 55616}, {48895, 50963}, {48906, 51173}, {48910, 50955}, {50805, 50873}, {50819, 61272}, {50868, 61244}, {50954, 54170}, {50962, 51029}, {50993, 55602}, {51164, 54131}, {51175, 51216}, {51189, 55588}, {54891, 60626}

X(62027) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3545}, {5073, 15689}, {14269, 15684}
X(62027) = reflection of X(i) in X(j) for these {i,j}: {10304, 3845}, {1657, 10304}, {11001, 17504}, {14269, 3830}, {15681, 5054}, {15685, 15689}, {15688, 3839}, {15689, 381}, {15699, 12101}, {17504, 14893}, {20, 15699}, {3, 14269}, {3534, 3545}, {3545, 15687}, {5054, 4}, {54047, 16261}
X(62027) = inverse of X(12105) in Stammler circle
X(62027) = anticomplement of X(62111)
X(62027) = pole of line {523, 12105} with respect to the Stammler circle
X(62027) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(58202)}}, {{A, B, C, X(5071), X(18550)}}, {{A, B, C, X(12108), X(60122)}}, {{A, B, C, X(12811), X(18848)}}, {{A, B, C, X(15319), X(49136)}}, {{A, B, C, X(15689), X(54512)}}, {{A, B, C, X(21400), X(49138)}}, {{A, B, C, X(35473), X(44731)}}
X(62027) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15695, 6825}, {2, 6926, 15722}, {4, 15692, 3860}, {4, 20, 12811}, {4, 30, 5054}, {20, 381, 15701}, {30, 10304, 1657}, {30, 12101, 15699}, {30, 14269, 3}, {30, 14893, 17504}, {30, 15687, 3545}, {30, 15689, 15685}, {30, 15699, 20}, {30, 17504, 11001}, {30, 3545, 3534}, {30, 381, 15689}, {30, 3839, 15688}, {30, 3845, 10304}, {30, 5054, 15681}, {140, 3861, 3857}, {140, 5079, 5070}, {140, 8703, 15692}, {381, 10109, 3851}, {381, 15716, 3090}, {381, 3524, 5055}, {381, 3534, 140}, {381, 3627, 3830}, {381, 382, 15682}, {382, 3830, 15684}, {546, 15683, 15693}, {632, 3628, 16864}, {1657, 3845, 15694}, {2043, 2044, 12108}, {3090, 15691, 15716}, {3146, 3830, 15703}, {3522, 13727, 631}, {3524, 3839, 14892}, {3529, 5066, 14093}, {3530, 15691, 8703}, {3534, 15687, 3843}, {3534, 3545, 15707}, {3543, 15682, 3627}, {3560, 10299, 3526}, {3627, 11541, 5076}, {3830, 15681, 4}, {3830, 15701, 12101}, {3830, 3843, 15687}, {3860, 15692, 5079}, {5054, 15696, 15710}, {5054, 15706, 15719}, {5055, 15689, 3524}, {5073, 17800, 11541}, {11001, 14893, 1656}, {14269, 15684, 30}, {14893, 15721, 381}, {15154, 15155, 12105}, {15682, 17578, 15691}, {15684, 15685, 5073}, {15687, 15707, 14269}, {42105, 43402, 42974}


X(62028) = X(2)X(3)∩X(6)X(42970)

Barycentrics    13*a^4-9*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :
X(62028) = -27*X[2]+22*X[3], -9*X[265]+4*X[38626], -8*X[575]+3*X[14927], -8*X[576]+3*X[39874], -13*X[944]+18*X[61285], X[962]+4*X[33697], X[1352]+4*X[48943], -3*X[2979]+8*X[46849], -21*X[3619]+16*X[55631], -3*X[3620]+2*X[55595], -9*X[3623]+10*X[58236], -9*X[3818]+4*X[55597] and many others

X(62028) lies on these lines: {2, 3}, {6, 42970}, {13, 43770}, {14, 43769}, {17, 43204}, {18, 43203}, {61, 42105}, {62, 42104}, {69, 46848}, {74, 18296}, {146, 31815}, {265, 38626}, {316, 32822}, {371, 42575}, {372, 42574}, {395, 42805}, {396, 42806}, {515, 16189}, {542, 51029}, {575, 14927}, {576, 39874}, {590, 6488}, {615, 6489}, {944, 61285}, {962, 33697}, {1056, 12953}, {1058, 12943}, {1173, 31371}, {1285, 44518}, {1352, 48943}, {1587, 53518}, {1588, 53519}, {2979, 46849}, {3316, 42260}, {3317, 42261}, {3426, 14843}, {3567, 51996}, {3592, 23249}, {3594, 23259}, {3616, 28168}, {3617, 28178}, {3618, 29323}, {3619, 55631}, {3620, 55595}, {3623, 58236}, {3746, 5229}, {3818, 55597}, {4301, 50818}, {4701, 12245}, {5225, 5563}, {5237, 42113}, {5238, 42112}, {5334, 42165}, {5335, 42164}, {5339, 43401}, {5340, 43402}, {5343, 42155}, {5344, 42154}, {5349, 42778}, {5350, 42777}, {5351, 42103}, {5352, 42106}, {5365, 42148}, {5366, 42147}, {5368, 7737}, {5485, 14023}, {5493, 38074}, {5640, 14641}, {5691, 28234}, {5714, 51790}, {5731, 58232}, {5734, 28208}, {5818, 28150}, {5881, 50862}, {5921, 55724}, {5965, 48884}, {6033, 38628}, {6200, 43405}, {6225, 34786}, {6241, 16625}, {6321, 38627}, {6396, 43406}, {6419, 22644}, {6420, 22615}, {6425, 13886}, {6426, 13939}, {6453, 31412}, {6454, 42276}, {6455, 43374}, {6456, 43375}, {6484, 43337}, {6485, 43336}, {6519, 8972}, {6522, 13941}, {6560, 23275}, {6561, 23269}, {6564, 42413}, {6565, 42414}, {6761, 15005}, {6776, 53858}, {7581, 35821}, {7582, 35820}, {7583, 43507}, {7584, 43508}, {7728, 38632}, {7745, 14482}, {7748, 41940}, {7773, 32891}, {7967, 22793}, {7982, 28236}, {7991, 28232}, {7999, 46847}, {8884, 18847}, {9540, 10147}, {9541, 43879}, {9543, 45384}, {9589, 34627}, {9693, 13846}, {9781, 15012}, {9812, 10222}, {9862, 38734}, {10148, 13935}, {10165, 58225}, {10248, 18481}, {10283, 58235}, {10595, 28160}, {10721, 12317}, {10722, 44945}, {10738, 38631}, {10741, 38630}, {10742, 38629}, {11002, 13491}, {11412, 32062}, {11455, 45186}, {11477, 51163}, {12112, 36747}, {12244, 36253}, {12250, 18405}, {12290, 13598}, {12295, 15054}, {12383, 38791}, {12645, 58249}, {12699, 58240}, {12900, 15023}, {13172, 38745}, {13199, 38757}, {13202, 14094}, {13452, 32533}, {13474, 45187}, {14561, 55694}, {14654, 38801}, {14912, 22330}, {15020, 46686}, {15021, 15081}, {15025, 16111}, {15027, 34584}, {15069, 51022}, {15077, 16835}, {15605, 32340}, {15644, 16261}, {15860, 40065}, {16263, 18851}, {16808, 52079}, {16809, 52080}, {16960, 42119}, {16961, 42120}, {16982, 34783}, {17852, 43880}, {18358, 55602}, {18383, 54050}, {18483, 30389}, {18492, 28158}, {18553, 54170}, {18840, 54917}, {19106, 42160}, {19107, 42161}, {22234, 29012}, {22236, 42108}, {22238, 42109}, {22331, 53419}, {22332, 53418}, {23235, 39838}, {23253, 42263}, {23263, 42264}, {25406, 48895}, {28172, 58229}, {28194, 50866}, {28204, 50873}, {29317, 51537}, {31425, 38076}, {31447, 50799}, {31670, 48942}, {32819, 32890}, {34754, 43771}, {34755, 43772}, {34781, 61721}, {35007, 43618}, {35786, 42638}, {35787, 42637}, {36836, 42102}, {36843, 42101}, {37640, 42432}, {37641, 42431}, {38072, 51177}, {38664, 39809}, {38665, 52836}, {38672, 38956}, {39884, 55580}, {40330, 55614}, {40686, 50709}, {40693, 42516}, {40694, 42517}, {41100, 42908}, {41101, 42909}, {41121, 42515}, {41122, 42514}, {42096, 42166}, {42097, 42163}, {42115, 43365}, {42116, 43364}, {42136, 43465}, {42137, 43466}, {42266, 43509}, {42267, 43510}, {42494, 42980}, {42495, 42981}, {42510, 43202}, {42511, 43201}, {42528, 42593}, {42529, 42592}, {42629, 43488}, {42630, 43487}, {42813, 43542}, {42814, 43543}, {42900, 43308}, {42901, 43309}, {42940, 42999}, {42941, 42998}, {42988, 43540}, {42989, 43541}, {43193, 43404}, {43194, 43403}, {43197, 43647}, {43198, 43648}, {43226, 43240}, {43227, 43241}, {43242, 43474}, {43243, 43473}, {43479, 43554}, {43480, 43555}, {43521, 56618}, {43522, 56619}, {43619, 53096}, {43621, 52987}, {46264, 55708}, {48873, 55611}, {48889, 55617}, {50810, 50870}, {50974, 51026}, {51165, 51178}, {51491, 58795}

X(62028) = midpoint of X(i) and X(j) for these {i,j}: {3091, 3146}, {5073, 15696}
X(62028) = reflection of X(i) in X(j) for these {i,j}: {11001, 15692}, {12812, 12102}, {14093, 3845}, {15681, 15713}, {15683, 15695}, {15696, 3858}, {15697, 381}, {15711, 14893}, {17538, 3091}, {20, 1656}, {3091, 5076}, {3522, 3843}, {3529, 17538}, {3858, 3853}, {4, 17578}, {550, 3859}, {5076, 3627}, {631, 4}
X(62028) = anticomplement of X(15696)
X(62028) = pole of line {185, 61964} with respect to the Jerabek hyperbola
X(62028) = pole of line {69, 33923} with respect to the Wallace hyperbola
X(62028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(18847)}}, {{A, B, C, X(25), X(46848)}}, {{A, B, C, X(30), X(18296)}}, {{A, B, C, X(64), X(55574)}}, {{A, B, C, X(69), X(33923)}}, {{A, B, C, X(140), X(31371)}}, {{A, B, C, X(376), X(14843)}}, {{A, B, C, X(381), X(18851)}}, {{A, B, C, X(546), X(18853)}}, {{A, B, C, X(550), X(15077)}}, {{A, B, C, X(1173), X(3516)}}, {{A, B, C, X(1217), X(41099)}}, {{A, B, C, X(1657), X(32533)}}, {{A, B, C, X(3090), X(18846)}}, {{A, B, C, X(3091), X(18849)}}, {{A, B, C, X(3515), X(16835)}}, {{A, B, C, X(3517), X(22334)}}, {{A, B, C, X(3521), X(46219)}}, {{A, B, C, X(3545), X(18848)}}, {{A, B, C, X(3832), X(18852)}}, {{A, B, C, X(3839), X(18854)}}, {{A, B, C, X(3855), X(18850)}}, {{A, B, C, X(4846), X(15720)}}, {{A, B, C, X(5073), X(17505)}}, {{A, B, C, X(6995), X(54917)}}, {{A, B, C, X(12100), X(54667)}}, {{A, B, C, X(13452), X(32534)}}, {{A, B, C, X(13472), X(35477)}}, {{A, B, C, X(15692), X(31361)}}, {{A, B, C, X(15694), X(54660)}}, {{A, B, C, X(15697), X(54512)}}, {{A, B, C, X(15699), X(54763)}}, {{A, B, C, X(15708), X(60122)}}, {{A, B, C, X(15712), X(15740)}}, {{A, B, C, X(18363), X(52296)}}, {{A, B, C, X(21400), X(49139)}}, {{A, B, C, X(52518), X(55571)}}
X(62028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17568, 16952}, {2, 3853, 4}, {3, 11541, 3529}, {3, 11737, 17542}, {3, 12811, 2}, {3, 3146, 11541}, {3, 546, 15022}, {4, 11001, 5}, {4, 20, 3545}, {4, 3525, 546}, {4, 3528, 381}, {4, 376, 3855}, {4, 382, 15682}, {4, 5067, 3839}, {4, 5071, 3843}, {20, 3545, 10299}, {20, 3854, 549}, {20, 5068, 15716}, {30, 12102, 12812}, {30, 14893, 15711}, {30, 15692, 11001}, {30, 15695, 15683}, {30, 15713, 15681}, {30, 3627, 5076}, {30, 381, 15697}, {30, 3845, 14093}, {30, 3853, 3858}, {30, 3858, 15696}, {30, 3859, 550}, {30, 5076, 3091}, {376, 3855, 3533}, {546, 12103, 16239}, {546, 15690, 3628}, {546, 3627, 3830}, {548, 14269, 5068}, {548, 5068, 15702}, {550, 3839, 5067}, {550, 3859, 15694}, {550, 5067, 15698}, {631, 15712, 15719}, {631, 3545, 1656}, {1657, 15687, 3832}, {1657, 15690, 20}, {2043, 2044, 15708}, {3091, 12812, 3544}, {3091, 15697, 10303}, {3091, 17538, 631}, {3091, 3146, 30}, {3091, 3522, 632}, {3146, 3543, 3627}, {3522, 3843, 5071}, {3525, 3545, 3090}, {3529, 15682, 3146}, {3530, 3851, 17564}, {3534, 3861, 5056}, {3545, 15688, 15709}, {3627, 15704, 3853}, {3627, 5076, 17578}, {3830, 15684, 15688}, {3832, 15640, 1657}, {3845, 17800, 3523}, {3850, 15681, 15717}, {3851, 6891, 3526}, {5059, 10303, 12103}, {6857, 7486, 5070}, {6906, 11541, 15686}, {10303, 12103, 3528}, {10303, 16239, 3525}, {11001, 15709, 376}, {12103, 15697, 17538}, {12811, 15704, 3}, {13735, 15022, 17568}, {14782, 14783, 10109}, {15022, 17535, 7486}, {15640, 15687, 3524}, {15696, 15714, 3522}, {35820, 52666, 7582}, {35821, 52667, 7581}, {42283, 43407, 13939}, {42284, 43408, 13886}, {42970, 42971, 6}


X(62029) = X(1)X(50874)∩X(2)X(3)

Barycentrics    25*a^4-17*(b^2-c^2)^2-8*a^2*(b^2+c^2) : :
X(62029) = -X[1]+7*X[50874], -17*X[2]+14*X[3], -X[6]+7*X[51164], -X[8]+7*X[50867], X[69]+8*X[48943], -X[193]+7*X[51213], -10*X[1698]+7*X[50813], -10*X[3618]+7*X[51177], -4*X[3625]+7*X[34627], -4*X[3630]+7*X[11180], -4*X[3633]+7*X[34631], -10*X[3763]+7*X[50969] and many others

X(62029) lies on these lines: {1, 50874}, {2, 3}, {6, 51164}, {8, 50867}, {53, 36427}, {69, 48943}, {193, 51213}, {515, 16191}, {1131, 52047}, {1132, 52048}, {1327, 42570}, {1328, 42571}, {1587, 43521}, {1588, 43522}, {1698, 50813}, {3316, 42568}, {3317, 42569}, {3586, 4114}, {3618, 51177}, {3625, 34627}, {3630, 11180}, {3633, 34631}, {3763, 50969}, {4668, 31673}, {4691, 6361}, {4764, 51065}, {5318, 43482}, {5321, 43481}, {5334, 43401}, {5335, 43402}, {5339, 49875}, {5340, 49876}, {5349, 43502}, {5350, 43501}, {5365, 49948}, {5366, 49947}, {5485, 60325}, {5550, 50807}, {6144, 51024}, {6425, 60303}, {6426, 60304}, {6484, 43568}, {6485, 43569}, {7935, 60183}, {8252, 43787}, {8253, 43788}, {8596, 38744}, {9812, 28208}, {10155, 54646}, {10248, 51709}, {10653, 43031}, {10654, 43030}, {11178, 50966}, {11645, 51538}, {12243, 39809}, {12290, 21969}, {12699, 50818}, {12816, 42150}, {12817, 42151}, {14226, 23263}, {14241, 23253}, {16267, 42119}, {16268, 42120}, {16772, 42587}, {16773, 42586}, {16962, 43645}, {16963, 43646}, {16964, 43491}, {16965, 43492}, {18440, 51179}, {18492, 34638}, {18525, 50863}, {18581, 43400}, {18582, 43399}, {18844, 60127}, {19053, 22615}, {19054, 22644}, {19862, 50820}, {20053, 33697}, {21356, 29317}, {23251, 42572}, {23261, 42573}, {23267, 53518}, {23269, 42271}, {23273, 53519}, {23275, 42272}, {25055, 28172}, {28146, 53620}, {28164, 61275}, {28182, 54448}, {28194, 37712}, {28198, 59388}, {28202, 59387}, {31145, 48661}, {31253, 51083}, {31412, 42537}, {31670, 50974}, {32001, 36889}, {32455, 39874}, {32819, 32877}, {32822, 32875}, {32823, 32876}, {32888, 37671}, {33604, 42511}, {33605, 42510}, {35242, 50803}, {36969, 42140}, {36970, 42141}, {37640, 42105}, {37641, 42104}, {37832, 42929}, {37835, 42928}, {38074, 38127}, {39563, 43618}, {39884, 54174}, {41112, 42432}, {41113, 42431}, {41971, 43033}, {41972, 43032}, {42085, 42895}, {42086, 42894}, {42093, 43543}, {42094, 43542}, {42096, 42693}, {42097, 42692}, {42135, 43478}, {42138, 43477}, {42139, 43555}, {42142, 43554}, {42147, 49825}, {42148, 49824}, {42157, 49813}, {42158, 49812}, {42159, 42801}, {42162, 42802}, {42225, 43507}, {42226, 43508}, {42263, 53517}, {42264, 53520}, {42413, 43536}, {42414, 54597}, {42508, 42899}, {42509, 42898}, {42538, 42561}, {42557, 43406}, {42558, 43405}, {42589, 61719}, {42625, 43464}, {42626, 43463}, {42635, 43245}, {42636, 43244}, {42813, 49862}, {42814, 49861}, {42986, 43540}, {42987, 43541}, {43430, 60620}, {43431, 60621}, {43444, 54574}, {43445, 54575}, {43621, 54170}, {43837, 51996}, {44456, 51211}, {46933, 50800}, {48880, 50956}, {48884, 51023}, {48905, 51135}, {48942, 51212}, {50960, 55646}, {50967, 51167}, {50976, 51126}, {51118, 61296}, {51163, 54132}, {53103, 54493}, {53106, 60185}, {53107, 54523}, {54612, 60209}, {54616, 54890}, {54637, 54857}, {54707, 60146}, {54852, 60636}, {60143, 60326}, {60284, 60329}, {60322, 60630}, {60323, 60631}

X(62029) = midpoint of X(i) and X(j) for these {i,j}: {3146, 3839}, {5073, 15688}
X(62029) = reflection of X(i) in X(j) for these {i,j}: {10304, 14269}, {11001, 3524}, {11539, 12101}, {15681, 11539}, {15683, 15688}, {15686, 14892}, {15688, 3845}, {20, 5055}, {376, 3839}, {3524, 4}, {3839, 3830}, {5055, 15687}
X(62029) = inverse of X(61973) in orthocentroidal circle
X(62029) = inverse of X(61973) in Yff hyperbola
X(62029) = complement of X(58204)
X(62029) = anticomplement of X(15689)
X(62029) = pole of line {523, 61973} with respect to the orthocentroidal circle
X(62029) = pole of line {6, 61973} with respect to the Kiepert hyperbola
X(62029) = pole of line {523, 61973} with respect to the Yff hyperbola
X(62029) = pole of line {69, 14093} with respect to the Wallace hyperbola
X(62029) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(14093)}}, {{A, B, C, X(1494), X(46333)}}, {{A, B, C, X(3521), X(55866)}}, {{A, B, C, X(3544), X(18848)}}, {{A, B, C, X(3627), X(36889)}}, {{A, B, C, X(4232), X(60325)}}, {{A, B, C, X(4846), X(15701)}}, {{A, B, C, X(5067), X(18846)}}, {{A, B, C, X(5071), X(18847)}}, {{A, B, C, X(14843), X(58195)}}, {{A, B, C, X(15318), X(58208)}}, {{A, B, C, X(15692), X(54667)}}, {{A, B, C, X(18850), X(41106)}}, {{A, B, C, X(21400), X(58207)}}, {{A, B, C, X(46936), X(54763)}}, {{A, B, C, X(52297), X(60185)}}, {{A, B, C, X(52298), X(54523)}}, {{A, B, C, X(52301), X(60326)}}, {{A, B, C, X(54660), X(55864)}}, {{A, B, C, X(57822), X(61138)}}
X(62029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14891, 631}, {2, 20, 14093}, {2, 3543, 3627}, {4, 11001, 5071}, {4, 11541, 3528}, {4, 20, 3544}, {4, 3529, 5067}, {20, 5055, 15710}, {30, 11539, 15681}, {30, 12101, 11539}, {30, 14269, 10304}, {30, 14892, 15686}, {30, 15687, 5055}, {30, 15688, 15683}, {30, 3524, 11001}, {30, 3830, 3839}, {30, 3845, 15688}, {30, 5055, 20}, {376, 15682, 3146}, {376, 3545, 5054}, {381, 11812, 15022}, {382, 3543, 15682}, {546, 15685, 15692}, {546, 15688, 11112}, {547, 15697, 10299}, {547, 17800, 15697}, {548, 15684, 15640}, {548, 3850, 632}, {1657, 3830, 14893}, {1657, 3843, 12108}, {1657, 5054, 15689}, {3090, 3534, 15715}, {3090, 3853, 4}, {3091, 15681, 15698}, {3146, 12102, 3529}, {3146, 17578, 3523}, {3146, 3525, 11541}, {3146, 3543, 3830}, {3146, 3839, 30}, {3523, 17578, 12102}, {3523, 5067, 3525}, {3524, 5067, 15709}, {3543, 15640, 17578}, {3627, 15712, 3853}, {3830, 15684, 1657}, {3830, 5073, 15703}, {3839, 15705, 5}, {3843, 15706, 14892}, {3845, 14891, 5072}, {3845, 15703, 3854}, {3851, 15690, 15721}, {5055, 15710, 15702}, {5059, 5076, 3855}, {5068, 15717, 16408}, {10304, 14269, 3545}, {11737, 15695, 10303}, {12100, 14893, 3850}, {12101, 15681, 3091}, {12102, 15640, 376}, {14892, 15686, 15706}, {14892, 15706, 2}, {15640, 17578, 381}, {15702, 15710, 3524}, {23253, 41945, 14241}, {34648, 50814, 61256}, {41869, 50862, 34627}, {42119, 43201, 16267}, {42120, 43202, 16268}, {48910, 51022, 11180}


X(62030) = X(2)X(3)∩X(13)X(43473)

Barycentrics    43*a^4-29*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62030) = -29*X[2]+24*X[3], -X[3621]+16*X[33697], -8*X[4669]+3*X[20070], -X[4745]+6*X[50870], -X[5921]+16*X[48942], -X[8584]+6*X[51026], X[8596]+4*X[10722], -3*X[9812]+8*X[50869], -7*X[10248]+2*X[34628], -4*X[11055]+9*X[44434], X[11160]+4*X[48910], X[11180]+4*X[48904] and many others

X(62030) lies on these lines: {2, 3}, {13, 43473}, {14, 43474}, {316, 32896}, {511, 51216}, {515, 50873}, {516, 50866}, {517, 50863}, {1327, 13721}, {1328, 13844}, {1503, 51029}, {3564, 51211}, {3621, 33697}, {3623, 28208}, {4669, 20070}, {4677, 28228}, {4745, 50870}, {5318, 42516}, {5321, 42517}, {5334, 42800}, {5335, 42799}, {5921, 48942}, {5965, 51028}, {6200, 54542}, {6396, 54543}, {7585, 42417}, {7586, 42418}, {7802, 32893}, {8584, 51026}, {8596, 10722}, {8972, 41961}, {9541, 43503}, {9812, 50869}, {10248, 34628}, {11055, 44434}, {11160, 48910}, {11180, 48904}, {11488, 43421}, {11489, 43420}, {11645, 51170}, {12816, 49860}, {12817, 49859}, {13846, 42537}, {13847, 42538}, {13886, 60307}, {13939, 60308}, {13941, 41962}, {14458, 60635}, {14537, 14930}, {15533, 51022}, {15534, 51163}, {16960, 46335}, {16961, 46334}, {17503, 54921}, {18845, 54734}, {19053, 53519}, {19054, 53518}, {19106, 49826}, {19107, 49827}, {20080, 48884}, {22165, 61044}, {22235, 43201}, {22237, 43202}, {28164, 51105}, {28182, 50809}, {28232, 50867}, {28234, 50864}, {28236, 50865}, {29181, 50990}, {31145, 41869}, {32787, 42577}, {32788, 42576}, {33622, 52838}, {33624, 52839}, {33750, 50964}, {34648, 51068}, {35750, 36961}, {35820, 43520}, {35821, 43519}, {36331, 36962}, {36969, 42520}, {36970, 42521}, {36990, 50992}, {37640, 42509}, {37641, 42508}, {38136, 51177}, {38140, 50813}, {38259, 54851}, {41100, 42104}, {41101, 42105}, {41121, 43331}, {41122, 43330}, {42085, 42532}, {42086, 42533}, {42087, 54581}, {42088, 54580}, {42093, 49861}, {42094, 49862}, {42096, 42515}, {42097, 42514}, {42099, 43475}, {42100, 43476}, {42108, 49947}, {42109, 49948}, {42112, 43399}, {42113, 43400}, {42119, 42777}, {42120, 42778}, {42133, 42510}, {42134, 42511}, {42139, 42792}, {42140, 42683}, {42141, 42682}, {42142, 42791}, {42157, 49811}, {42158, 49810}, {42215, 43521}, {42216, 43522}, {42268, 42524}, {42269, 42525}, {42275, 42608}, {42276, 42609}, {42502, 43332}, {42503, 43333}, {42539, 43317}, {42540, 43316}, {42588, 43401}, {42589, 43402}, {42727, 42730}, {42728, 42729}, {42910, 42931}, {42911, 42930}, {42940, 43465}, {42941, 43466}, {42962, 43493}, {42963, 43494}, {43242, 43417}, {43243, 43416}, {43324, 49908}, {43325, 49907}, {43328, 43501}, {43329, 43502}, {43403, 43552}, {43404, 43553}, {43407, 43561}, {43408, 43560}, {43540, 49813}, {43541, 49812}, {43548, 54579}, {43549, 54578}, {43562, 60311}, {43563, 60312}, {43951, 60283}, {47353, 51217}, {48872, 51143}, {50993, 51537}, {51093, 51118}, {51133, 55654}, {51213, 54132}, {52835, 60971}, {53101, 54522}, {54476, 54645}, {54519, 60628}, {54520, 60648}, {54644, 60113}, {54815, 60277}, {54934, 60625}, {60147, 60216}, {60327, 60641}

X(62030) = midpoint of X(i) and X(j) for these {i,j}: {5073, 14093}, {5076, 15684}, {15640, 15697}
X(62030) = reflection of X(i) in X(j) for these {i,j}: {1656, 15687}, {1657, 15714}, {11001, 15693}, {15681, 632}, {15683, 3522}, {15692, 4}, {15695, 3845}, {15713, 12101}, {17538, 381}, {17578, 3543}, {20, 5071}, {376, 3843}, {5071, 5076}
X(62030) = anticomplement of X(15697)
X(62030) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1657), X(54552)}}, {{A, B, C, X(3534), X(35510)}}, {{A, B, C, X(5070), X(18846)}}, {{A, B, C, X(11331), X(60635)}}, {{A, B, C, X(15688), X(16251)}}, {{A, B, C, X(17538), X(54512)}}, {{A, B, C, X(18850), X(38071)}}, {{A, B, C, X(38282), X(54851)}}, {{A, B, C, X(43699), X(58205)}}, {{A, B, C, X(52292), X(54921)}}, {{A, B, C, X(52299), X(54734)}}, {{A, B, C, X(54667), X(61138)}}
X(62030) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 3146}, {4, 15696, 3091}, {4, 15710, 381}, {4, 15719, 3860}, {4, 30, 15692}, {4, 3529, 5070}, {4, 547, 3839}, {20, 3091, 15712}, {30, 12101, 15713}, {30, 15687, 1656}, {30, 15693, 11001}, {30, 15714, 1657}, {30, 3522, 15683}, {30, 3543, 17578}, {30, 381, 17538}, {30, 3843, 376}, {30, 3845, 15695}, {30, 5071, 20}, {30, 632, 15681}, {1656, 14892, 5071}, {3146, 3627, 15022}, {3522, 15022, 631}, {3543, 15640, 3830}, {3543, 3839, 3627}, {3628, 12101, 3845}, {3830, 8703, 4}, {3832, 15683, 15705}, {3832, 6675, 5072}, {3853, 6985, 3858}, {3860, 15681, 15719}, {5054, 8703, 15698}, {6966, 16434, 5059}, {10109, 15708, 2}, {11001, 15693, 15697}, {11812, 12103, 8703}, {12101, 15713, 3843}, {12811, 14890, 547}, {15640, 15697, 30}, {15684, 15698, 15640}, {15685, 15718, 3534}, {15717, 17538, 3522}


X(62031) = X(2)X(3)∩X(1327)X(6437)

Barycentrics    38*a^4-25*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62031) = -25*X[2]+21*X[3], -X[3625]+7*X[33697], -X[3630]+7*X[48884], -X[3654]+5*X[50866], -5*X[11694]+6*X[38792], -5*X[20582]+4*X[55636], -5*X[22165]+3*X[55587], -3*X[40273]+2*X[51103], -25*X[41869]+X[58248], -5*X[47354]+3*X[55603], -3*X[48874]+5*X[50993], -3*X[48889]+2*X[51143] and many others

X(62031) lies on circumconic {{A, B, C, X(12103), X(54512)}} and on these lines: {2, 3}, {397, 42419}, {398, 42420}, {511, 51025}, {515, 51119}, {517, 50868}, {519, 58244}, {524, 48943}, {952, 51120}, {1327, 6437}, {1328, 6438}, {1503, 51165}, {3564, 51166}, {3625, 33697}, {3630, 48884}, {3654, 50866}, {4677, 28212}, {4745, 28146}, {5318, 42532}, {5321, 42533}, {5349, 43635}, {5350, 43634}, {5844, 50871}, {6221, 42537}, {6398, 42538}, {6429, 42608}, {6430, 42609}, {6480, 43210}, {6481, 43209}, {6486, 42606}, {6487, 42607}, {6564, 43887}, {6565, 43888}, {8981, 10139}, {9690, 43536}, {10140, 13966}, {10653, 42888}, {10654, 42889}, {11480, 43246}, {11481, 43247}, {11485, 43207}, {11486, 43208}, {11542, 46335}, {11543, 46334}, {11645, 32455}, {11694, 38792}, {12816, 42502}, {12817, 42503}, {14929, 32892}, {16267, 42890}, {16268, 42891}, {20582, 55636}, {22165, 55587}, {28150, 50870}, {28160, 50869}, {28164, 58234}, {28172, 31662}, {28174, 50862}, {28178, 38155}, {28182, 50796}, {28186, 51071}, {28202, 61510}, {28224, 50865}, {29012, 51026}, {29317, 50991}, {33606, 43646}, {33607, 43645}, {34380, 51027}, {34638, 61259}, {34754, 42506}, {34755, 42507}, {36967, 43197}, {36968, 43198}, {40273, 51103}, {41100, 42109}, {41101, 42108}, {41107, 43402}, {41108, 43401}, {41112, 42509}, {41113, 42508}, {41119, 42096}, {41120, 42097}, {41121, 42122}, {41122, 42123}, {41869, 58248}, {41945, 43434}, {41946, 43435}, {42104, 49948}, {42105, 49947}, {42126, 49826}, {42127, 49827}, {42130, 49862}, {42131, 49861}, {42135, 43326}, {42136, 43229}, {42137, 43228}, {42138, 43327}, {42143, 42928}, {42144, 42511}, {42145, 42510}, {42146, 42929}, {42225, 42577}, {42226, 42576}, {42260, 43562}, {42261, 43563}, {42417, 53518}, {42418, 53519}, {42429, 42505}, {42430, 42504}, {42435, 42973}, {42436, 42972}, {42496, 43428}, {42497, 43429}, {42584, 42792}, {42585, 42791}, {42627, 42952}, {42628, 42953}, {42631, 43200}, {42632, 43199}, {42643, 53517}, {42644, 53520}, {42727, 43626}, {42728, 43627}, {42906, 49859}, {42907, 49860}, {43399, 49907}, {43400, 49908}, {43415, 54597}, {43501, 43639}, {43502, 43640}, {43566, 45384}, {43567, 45385}, {43632, 49903}, {43633, 49904}, {47354, 55603}, {48874, 50993}, {48889, 51143}, {50803, 61614}, {50815, 61269}, {50867, 51072}, {50874, 51105}, {50971, 55680}, {50990, 51217}, {51067, 61255}, {51084, 61267}, {51118, 61597}, {51163, 61624}, {51164, 51185}, {51167, 54173}, {51186, 55618}, {60286, 60326}

X(62031) = midpoint of X(i) and X(j) for these {i,j}: {549, 5073}, {3146, 15687}, {3627, 15684}, {8703, 15640}
X(62031) = reflection of X(i) in X(j) for these {i,j}: {140, 15687}, {1657, 14891}, {11001, 11812}, {12100, 12101}, {12103, 381}, {14893, 3627}, {15681, 3628}, {15686, 3850}, {15690, 3845}, {15691, 546}, {15704, 10124}, {20, 11737}, {376, 3861}, {3534, 3860}, {3853, 3543}, {34638, 61259}, {547, 3853}, {548, 14893}, {549, 12102}, {5066, 3830}
X(62031) = complement of X(62157)
X(62031) = anticomplement of X(62118)
X(62031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 15684}, {2, 15718, 15713}, {2, 3845, 3850}, {2, 548, 12100}, {4, 15705, 381}, {5, 14093, 14890}, {30, 10124, 15704}, {30, 11737, 20}, {30, 11812, 11001}, {30, 12102, 549}, {30, 14891, 1657}, {30, 15687, 140}, {30, 3543, 3853}, {30, 3627, 14893}, {30, 3628, 15681}, {30, 381, 12103}, {30, 3830, 5066}, {30, 3850, 15686}, {30, 3861, 376}, {30, 546, 15691}, {140, 12103, 3528}, {140, 3545, 547}, {547, 3850, 14892}, {3146, 15687, 30}, {3146, 3543, 3545}, {3534, 15687, 3860}, {3543, 11001, 3830}, {3543, 15708, 17578}, {3545, 15702, 7486}, {3627, 17538, 12102}, {3830, 11001, 3845}, {3830, 15640, 8703}, {3830, 15693, 4}, {3830, 5066, 12101}, {3843, 15689, 15703}, {3845, 5059, 15759}, {10109, 12108, 2}, {10124, 14269, 3859}, {11001, 11812, 15690}, {11001, 15719, 15697}, {11539, 15693, 11812}, {12100, 12101, 546}, {12103, 15712, 548}, {12108, 14890, 15721}, {14269, 15704, 10124}, {15685, 15707, 3534}, {15698, 15721, 15693}, {15759, 16239, 15719}


X(62032) = X(1)X(50869)∩X(2)X(3)

Barycentrics    29*a^4-19*(b^2-c^2)^2-10*a^2*(b^2+c^2) : :
X(62032) = -X[1]+4*X[50869], -19*X[2]+16*X[3], -X[6]+4*X[51026], -X[8]+4*X[50862], -X[10]+4*X[50870], -X[69]+4*X[51022], -X[145]+4*X[50865], -X[193]+4*X[51024], -4*X[551]+7*X[10248], -4*X[962]+X[20049], -X[1278]+4*X[51065], -X[1992]+4*X[51163] and many others

X(62032) lies on these lines: {1, 50869}, {2, 3}, {6, 51026}, {8, 50862}, {10, 50870}, {69, 51022}, {145, 50865}, {193, 51024}, {395, 43202}, {396, 43201}, {397, 42589}, {398, 42588}, {551, 10248}, {962, 20049}, {1131, 41945}, {1132, 41946}, {1278, 51065}, {1327, 35815}, {1328, 35814}, {1992, 51163}, {3068, 43383}, {3069, 43382}, {3241, 51118}, {3244, 51119}, {3424, 60625}, {3617, 34648}, {3620, 51167}, {3621, 41869}, {3622, 34628}, {3623, 31162}, {3629, 51165}, {3632, 50868}, {4301, 51092}, {4678, 31673}, {4740, 52852}, {4788, 51064}, {5032, 51538}, {5343, 41100}, {5344, 41101}, {5349, 42514}, {5350, 42515}, {5493, 51068}, {5550, 50815}, {5691, 31145}, {5921, 48904}, {6000, 16981}, {6392, 19569}, {6490, 42284}, {6491, 42283}, {6492, 43512}, {6493, 43511}, {6564, 43337}, {6565, 43336}, {7585, 53518}, {7586, 53519}, {7773, 32881}, {7802, 32872}, {7850, 32836}, {7928, 54815}, {8591, 39838}, {8596, 10723}, {9143, 13202}, {9540, 43568}, {9543, 13846}, {9680, 43562}, {9780, 34638}, {9955, 50819}, {10302, 60327}, {10722, 35369}, {11008, 51166}, {11057, 32834}, {11160, 36990}, {11177, 39809}, {11180, 48884}, {12279, 21849}, {12699, 51087}, {13445, 48912}, {13847, 42414}, {13935, 43569}, {14484, 60650}, {16241, 43292}, {16242, 43293}, {16267, 42134}, {16268, 42133}, {16644, 43364}, {16645, 43365}, {16964, 49826}, {16965, 49827}, {18357, 50809}, {18358, 50966}, {18440, 50985}, {18525, 50830}, {18845, 54521}, {19053, 42272}, {19054, 42271}, {19130, 50975}, {19875, 28158}, {19877, 50803}, {20014, 50872}, {20050, 51120}, {20052, 33697}, {20054, 50871}, {20080, 48910}, {22236, 43556}, {22238, 43557}, {23249, 43342}, {23253, 43430}, {23259, 43343}, {23263, 43431}, {28146, 38074}, {28150, 54448}, {28164, 38314}, {28172, 38021}, {28182, 38066}, {28202, 59417}, {31412, 43210}, {31670, 51140}, {32819, 32880}, {32826, 32869}, {32894, 37671}, {33602, 42988}, {33603, 42989}, {33606, 42159}, {33607, 42162}, {34595, 51076}, {34786, 54211}, {35812, 43794}, {35813, 43793}, {36969, 43014}, {36970, 43015}, {37640, 42108}, {37641, 42109}, {38259, 54866}, {40341, 51025}, {41119, 43632}, {41120, 43633}, {41895, 60336}, {41943, 42695}, {41944, 42694}, {42099, 43483}, {42100, 43484}, {42103, 42429}, {42104, 42972}, {42105, 42973}, {42106, 42430}, {42119, 43473}, {42120, 43474}, {42129, 42933}, {42130, 43542}, {42131, 43543}, {42132, 42932}, {42140, 42941}, {42141, 42940}, {42150, 49874}, {42151, 49873}, {42160, 42935}, {42161, 42934}, {42258, 42537}, {42259, 42538}, {42263, 42540}, {42264, 42539}, {42266, 43503}, {42267, 43504}, {42431, 49875}, {42432, 49876}, {42506, 42909}, {42507, 42908}, {42510, 43017}, {42511, 43016}, {42516, 43105}, {42517, 43106}, {42561, 43209}, {42631, 42920}, {42632, 42921}, {42690, 42913}, {42691, 42912}, {42791, 43479}, {42792, 43480}, {42918, 43398}, {42919, 43397}, {42942, 43552}, {42943, 43553}, {42964, 42999}, {42965, 42998}, {42982, 43482}, {42983, 43481}, {43100, 43870}, {43107, 43869}, {43150, 43621}, {43193, 49861}, {43194, 49862}, {43300, 43419}, {43301, 43418}, {43340, 52047}, {43341, 52048}, {43401, 43465}, {43402, 43466}, {43769, 49948}, {43770, 49947}, {43883, 60291}, {43884, 60292}, {43951, 54639}, {44456, 51182}, {46933, 50808}, {46934, 50802}, {47353, 61044}, {47586, 60632}, {48879, 50969}, {48892, 50964}, {48942, 54174}, {48943, 51028}, {50982, 51217}, {51029, 51170}, {51129, 55676}, {51138, 51164}, {52835, 60984}, {53101, 60331}, {54476, 60333}, {54519, 60639}, {54542, 60293}, {54543, 60294}, {54706, 60239}, {60102, 60113}, {60147, 60200}, {60228, 60324}, {60282, 60328}

X(62032) = midpoint of X(i) and X(j) for these {i,j}: {5054, 5073}, {10304, 15640}
X(62032) = reflection of X(i) in X(j) for these {i,j}: {10304, 4}, {1657, 17504}, {11001, 5054}, {14269, 3627}, {15681, 15699}, {15683, 10304}, {15689, 3845}, {15699, 3853}, {17504, 12101}, {20, 3545}, {376, 14269}, {3529, 15689}, {3545, 3830}, {5032, 51538}, {5054, 15687}
X(62032) = inverse of X(61972) in orthocentroidal circle
X(62032) = inverse of X(61972) in Yff hyperbola
X(62032) = anticomplement of X(62120)
X(62032) = pole of line {523, 61972} with respect to the orthocentroidal circle
X(62032) = pole of line {6, 61972} with respect to the Kiepert hyperbola
X(62032) = pole of line {523, 61972} with respect to the Yff hyperbola
X(62032) = pole of line {69, 62081} with respect to the Wallace hyperbola
X(62032) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3346), X(49137)}}, {{A, B, C, X(3526), X(18846)}}, {{A, B, C, X(3529), X(54552)}}, {{A, B, C, X(3535), X(60295)}}, {{A, B, C, X(3536), X(60296)}}, {{A, B, C, X(3855), X(54923)}}, {{A, B, C, X(4846), X(11812)}}, {{A, B, C, X(5066), X(18850)}}, {{A, B, C, X(8703), X(16251)}}, {{A, B, C, X(10301), X(60327)}}, {{A, B, C, X(13623), X(15700)}}, {{A, B, C, X(15022), X(18848)}}, {{A, B, C, X(15683), X(52443)}}, {{A, B, C, X(15715), X(54667)}}, {{A, B, C, X(17578), X(36889)}}, {{A, B, C, X(18317), X(58202)}}, {{A, B, C, X(31621), X(44335)}}, {{A, B, C, X(38282), X(54866)}}, {{A, B, C, X(44346), X(46270)}}, {{A, B, C, X(52283), X(60625)}}, {{A, B, C, X(52290), X(60336)}}, {{A, B, C, X(52299), X(54521)}}
X(62032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15715, 17533}, {2, 3530, 17556}, {2, 3543, 17578}, {4, 10303, 3832}, {4, 15682, 15684}, {4, 20, 15022}, {4, 3529, 3526}, {4, 5055, 3839}, {20, 3091, 10299}, {20, 3525, 3522}, {20, 3543, 3830}, {20, 3545, 15705}, {30, 10304, 15683}, {30, 12101, 17504}, {30, 14269, 376}, {30, 15689, 3529}, {30, 15699, 15681}, {30, 17504, 1657}, {30, 3545, 20}, {30, 3627, 14269}, {30, 3830, 3545}, {30, 3845, 15689}, {30, 3853, 15699}, {30, 5054, 11001}, {376, 3544, 15701}, {376, 5066, 10303}, {381, 15698, 7486}, {381, 15722, 12812}, {382, 15682, 3543}, {549, 15704, 15690}, {1656, 3530, 3525}, {1657, 12101, 5071}, {3091, 10299, 13735}, {3146, 15683, 15640}, {3146, 17578, 5059}, {3146, 3543, 2}, {3525, 15698, 549}, {3529, 3845, 15692}, {3534, 15709, 10304}, {3543, 15640, 4}, {3545, 15690, 15708}, {3627, 15711, 15687}, {3839, 10304, 5055}, {3845, 12812, 381}, {3845, 15692, 5068}, {3850, 6864, 3851}, {3851, 15691, 15719}, {3851, 6923, 1656}, {3853, 11541, 3523}, {3860, 14093, 5067}, {5055, 15706, 11539}, {5072, 15681, 15759}, {6863, 15681, 15696}, {10303, 10304, 15706}, {10304, 15640, 30}, {10304, 15708, 15698}, {10304, 15709, 15717}, {11001, 15687, 3091}, {11180, 48884, 51216}, {13735, 15705, 5054}, {14269, 15706, 5066}, {14893, 15685, 631}, {15640, 15684, 3146}, {15683, 15717, 3534}, {33697, 34627, 50863}, {34632, 50867, 31673}


X(62033) = X(2)X(3)∩X(17)X(42587)

Barycentrics    31*a^4-20*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62033) = -20*X[2]+17*X[3], -X[3655]+4*X[50869], -2*X[3818]+5*X[51167], -2*X[6361]+5*X[50797], -5*X[8148]+8*X[51120], -10*X[11178]+7*X[55607], -X[11179]+4*X[51026], -8*X[11278]+5*X[34748], -5*X[11693]+6*X[38792], -5*X[18440]+8*X[51025], -2*X[18480]+5*X[50866], -5*X[18525]+8*X[50868] and many others

X(62033) lies on these lines: {2, 3}, {17, 42587}, {18, 42586}, {3070, 43322}, {3071, 43323}, {3655, 50869}, {3818, 51167}, {5102, 11645}, {5237, 42953}, {5238, 42952}, {5351, 43476}, {5352, 43475}, {6199, 53518}, {6361, 50797}, {6395, 53519}, {6407, 43210}, {6408, 43209}, {6480, 45384}, {6481, 45385}, {8148, 51120}, {8976, 43503}, {9691, 42413}, {11178, 55607}, {11179, 51026}, {11278, 34748}, {11480, 43372}, {11481, 43373}, {11485, 43245}, {11486, 43244}, {11693, 38792}, {11916, 13690}, {11917, 13811}, {12816, 43194}, {12817, 43193}, {12818, 43526}, {12819, 43525}, {13951, 43504}, {16200, 28208}, {16644, 42997}, {16645, 42996}, {16962, 42096}, {16963, 42097}, {18440, 51025}, {18480, 50866}, {18525, 50868}, {19116, 43522}, {19117, 43521}, {21358, 55627}, {21850, 51029}, {22791, 50873}, {23253, 42537}, {23263, 42538}, {25561, 55633}, {28168, 30392}, {28172, 58230}, {28182, 53620}, {28194, 51515}, {29323, 55703}, {31162, 32900}, {31662, 38021}, {31670, 51165}, {33697, 50798}, {34718, 50862}, {34754, 42973}, {34755, 42972}, {36969, 43232}, {36970, 43233}, {37517, 48943}, {37705, 50863}, {38072, 55695}, {39874, 51172}, {41869, 50871}, {42090, 42957}, {42091, 42956}, {42099, 43199}, {42100, 43200}, {42103, 43100}, {42106, 43107}, {42108, 42974}, {42109, 42975}, {42126, 43401}, {42127, 43402}, {42526, 43562}, {42527, 43563}, {42528, 43295}, {42529, 43294}, {42629, 42688}, {42630, 42689}, {42799, 43308}, {42800, 43309}, {42906, 42913}, {42907, 42912}, {43306, 43482}, {43307, 43481}, {43621, 51022}, {44456, 51166}, {47353, 48942}, {47354, 55604}, {48662, 48904}, {48884, 50955}, {48889, 55622}, {48895, 55699}, {48905, 50963}, {48910, 51027}, {50806, 50874}, {50954, 51217}, {51186, 55620}

X(62033) = midpoint of X(i) and X(j) for these {i,j}: {3524, 15640}, {5055, 5073}
X(62033) = reflection of X(i) in X(j) for these {i,j}: {1657, 3524}, {11001, 11539}, {11539, 3853}, {15681, 5055}, {15685, 15688}, {15688, 4}, {15689, 14269}, {3524, 15687}, {3534, 3839}, {3839, 3627}, {5055, 3830}
X(62033) = inverse of X(37953) in Stammler circle
X(62033) = pole of line {523, 37953} with respect to the Stammler circle
X(62033) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(46333)}}, {{A, B, C, X(12812), X(18848)}}, {{A, B, C, X(21400), X(50692)}}
X(62033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11539, 15707}, {3, 14269, 3545}, {3, 15685, 15686}, {3, 15700, 6908}, {3, 15703, 11812}, {3, 3543, 3830}, {3, 3850, 5070}, {4, 15685, 15694}, {4, 15697, 11737}, {4, 20, 12812}, {30, 11539, 11001}, {30, 15687, 3524}, {30, 15688, 15685}, {30, 3627, 3839}, {30, 3839, 3534}, {30, 3853, 11539}, {381, 15714, 15703}, {381, 3534, 631}, {382, 15682, 15684}, {631, 10304, 17504}, {1657, 15723, 15690}, {3146, 17800, 5073}, {3524, 15640, 30}, {3529, 14893, 15693}, {3534, 3851, 15718}, {3543, 11001, 3853}, {3545, 15708, 15699}, {3627, 15022, 5076}, {3830, 15681, 3843}, {3830, 15689, 14269}, {3830, 15694, 4}, {3830, 17800, 381}, {3832, 15690, 15723}, {3843, 15681, 15701}, {3845, 15686, 16239}, {3851, 5070, 15022}, {10303, 16861, 3525}, {10304, 15689, 15695}, {11539, 12100, 15708}, {12101, 15683, 1656}, {14269, 15689, 5055}, {14269, 17504, 3851}, {14892, 15710, 3526}, {15640, 15687, 1657}, {15685, 15699, 15689}, {15686, 15708, 15688}, {15687, 15690, 3832}, {15688, 15708, 3}, {15689, 15707, 10304}, {15695, 17800, 15681}, {15699, 17504, 14890}


X(62034) = X(2)X(3)∩X(61)X(42108)

Barycentrics    14*a^4-9*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62034) = -27*X[2]+23*X[3], -9*X[141]+7*X[55611], -X[576]+3*X[51163], -9*X[3818]+5*X[55600], -5*X[4301]+3*X[51087], -9*X[5480]+7*X[55708], -X[5609]+3*X[13202], -7*X[5690]+9*X[61254], -5*X[5881]+3*X[50830], -3*X[5893]+2*X[50414], -X[6101]+3*X[32062], -7*X[10541]+9*X[38136] and many others

X(62034) lies on these lines: {2, 3}, {61, 42108}, {62, 42109}, {141, 55611}, {395, 43635}, {396, 43634}, {397, 42934}, {398, 42935}, {515, 58240}, {576, 51163}, {1151, 43337}, {1152, 43336}, {1199, 52100}, {1503, 48943}, {2777, 38626}, {2794, 38627}, {2829, 38631}, {3564, 48904}, {3592, 22644}, {3594, 22615}, {3818, 55600}, {4301, 51087}, {5237, 42101}, {5238, 42102}, {5343, 42634}, {5344, 42633}, {5349, 42913}, {5350, 42912}, {5351, 42143}, {5352, 42146}, {5480, 55708}, {5493, 61255}, {5609, 13202}, {5690, 61254}, {5691, 28212}, {5840, 38629}, {5844, 41869}, {5881, 50830}, {5893, 50414}, {5901, 28168}, {6000, 14449}, {6101, 32062}, {6146, 34563}, {6419, 42271}, {6420, 42272}, {6425, 42275}, {6426, 42276}, {6447, 43408}, {6448, 43407}, {6451, 43405}, {6452, 43406}, {6453, 13925}, {6454, 13993}, {6488, 42260}, {6489, 42261}, {6519, 31412}, {6522, 42561}, {7583, 53518}, {7584, 53519}, {7747, 41940}, {7850, 32819}, {7982, 28224}, {7991, 28216}, {8981, 43339}, {9692, 43566}, {10095, 14641}, {10222, 28186}, {10541, 38136}, {10575, 16881}, {10627, 40247}, {10722, 14692}, {11482, 51538}, {12007, 22330}, {12295, 51522}, {12512, 61262}, {12699, 16189}, {12897, 61299}, {12943, 15172}, {13391, 13474}, {13451, 40647}, {13464, 50869}, {13598, 16982}, {13607, 28160}, {13966, 17852}, {14677, 15027}, {14915, 16625}, {14927, 53092}, {14929, 32826}, {15029, 38723}, {15044, 20127}, {15069, 50985}, {15178, 28164}, {15860, 59649}, {16772, 42695}, {16773, 42694}, {16808, 42687}, {16809, 42686}, {16964, 43401}, {16965, 43402}, {17702, 38632}, {18296, 44763}, {18357, 28150}, {18358, 55606}, {18480, 28182}, {18583, 29323}, {19106, 42164}, {19107, 42165}, {19116, 52666}, {19117, 52667}, {20070, 61251}, {20299, 50709}, {21850, 53858}, {22234, 48901}, {22236, 42105}, {22238, 42104}, {22331, 43618}, {22332, 43619}, {22791, 61284}, {22793, 28190}, {23251, 43340}, {23261, 43341}, {23698, 38628}, {28154, 61524}, {28174, 33697}, {28178, 31673}, {28198, 61249}, {28202, 50827}, {28228, 61246}, {29181, 43150}, {29317, 55597}, {30315, 50825}, {30389, 38034}, {30531, 61659}, {31454, 43380}, {31666, 61272}, {31670, 61624}, {31672, 61596}, {31834, 32137}, {32142, 46847}, {32165, 44755}, {32358, 44935}, {32479, 59546}, {32533, 43691}, {34380, 48910}, {34483, 46848}, {34507, 51022}, {34573, 55650}, {34584, 36253}, {34773, 61279}, {35007, 53419}, {35814, 53516}, {35815, 53513}, {36836, 42112}, {36843, 42113}, {36969, 42925}, {36970, 42924}, {38028, 58229}, {38956, 51532}, {39809, 51523}, {39838, 51524}, {39884, 43621}, {40330, 55620}, {42096, 42162}, {42097, 42159}, {42099, 42598}, {42100, 42599}, {42107, 42591}, {42110, 42590}, {42117, 42161}, {42118, 42160}, {42122, 42166}, {42123, 42163}, {42126, 42689}, {42127, 42688}, {42130, 42691}, {42131, 42690}, {42133, 43631}, {42134, 43630}, {42147, 43021}, {42148, 43020}, {42150, 42496}, {42151, 42497}, {42157, 43416}, {42158, 43417}, {42266, 43879}, {42267, 43880}, {42431, 42940}, {42432, 42941}, {42433, 43484}, {42434, 43483}, {42492, 43397}, {42493, 43398}, {42532, 43424}, {42533, 43425}, {42801, 43001}, {42802, 43000}, {42813, 42892}, {42814, 42893}, {42916, 43647}, {42917, 43648}, {42922, 43466}, {42923, 43465}, {42944, 43545}, {42945, 43544}, {43102, 43227}, {43103, 43226}, {43624, 43628}, {43625, 43629}, {44324, 45958}, {44882, 55694}, {48881, 55628}, {48884, 55583}, {48889, 55623}, {48895, 55698}, {48905, 51732}, {51525, 52836}, {51526, 61604}, {51528, 61602}, {51529, 61601}, {51534, 61603}, {51700, 61274}, {52987, 61545}, {53096, 53418}, {58249, 61245}

X(62034) = midpoint of X(i) and X(j) for these {i,j}: {5, 5073}, {549, 15640}, {3146, 3627}, {39884, 43621}
X(62034) = reflection of X(i) in X(j) for these {i,j}: {140, 3853}, {10575, 16881}, {10627, 46849}, {1657, 3530}, {11001, 10124}, {12100, 15687}, {12101, 3543}, {12103, 546}, {14641, 10095}, {15681, 10109}, {15683, 15759}, {15686, 3860}, {15690, 14893}, {15691, 3845}, {15704, 3628}, {20, 3850}, {3, 12102}, {31834, 32137}, {48905, 51732}, {546, 3627}, {547, 3830}, {548, 4}, {550, 3861}, {5493, 61255}, {61510, 31673}, {61596, 31672}, {61597, 12699}, {61598, 13202}, {61599, 39838}, {61600, 39809}, {61605, 52836}, {61624, 31670}
X(62034) = complement of X(62159)
X(62034) = anticomplement of X(62123)
X(62034) = pole of line {185, 3857} with respect to the Jerabek hyperbola
X(62034) = pole of line {69, 55640} with respect to the Wallace hyperbola
X(62034) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(3857)}}, {{A, B, C, X(1173), X(35478)}}, {{A, B, C, X(1294), X(58203)}}, {{A, B, C, X(3521), X(55856)}}, {{A, B, C, X(3523), X(46168)}}, {{A, B, C, X(3533), X(31371)}}, {{A, B, C, X(5055), X(18848)}}, {{A, B, C, X(5059), X(32533)}}, {{A, B, C, X(6662), X(17578)}}, {{A, B, C, X(10303), X(18846)}}, {{A, B, C, X(13623), X(15712)}}, {{A, B, C, X(15707), X(60122)}}, {{A, B, C, X(15721), X(31361)}}, {{A, B, C, X(17504), X(43970)}}, {{A, B, C, X(18296), X(33703)}}, {{A, B, C, X(21400), X(49133)}}, {{A, B, C, X(32534), X(43691)}}, {{A, B, C, X(33923), X(34483)}}, {{A, B, C, X(34484), X(46848)}}
X(62034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12102, 546}, {3, 12812, 140}, {3, 3544, 632}, {3, 3627, 12102}, {3, 3857, 3628}, {3, 4, 3857}, {3, 546, 12812}, {4, 13635, 3533}, {4, 15640, 17800}, {4, 15709, 3832}, {4, 15717, 381}, {4, 17800, 549}, {4, 20, 5055}, {4, 3529, 10303}, {4, 549, 3856}, {5, 3522, 11812}, {5, 550, 3524}, {20, 14093, 550}, {20, 15687, 3850}, {20, 3850, 12100}, {30, 10109, 15681}, {30, 10124, 11001}, {30, 14893, 15690}, {30, 15759, 15683}, {30, 3530, 1657}, {30, 3543, 12101}, {30, 3628, 15704}, {30, 3830, 547}, {30, 3850, 20}, {30, 3860, 15686}, {30, 546, 12103}, {140, 14893, 3859}, {140, 3853, 14893}, {376, 3522, 6961}, {376, 3858, 16239}, {381, 17538, 14869}, {382, 5073, 3543}, {546, 3627, 3853}, {550, 3830, 3861}, {632, 3627, 15687}, {1657, 17578, 3845}, {1657, 3530, 15691}, {1657, 3845, 3530}, {2043, 2044, 15707}, {3091, 15704, 15759}, {3146, 3529, 5073}, {3146, 3543, 3529}, {3146, 3627, 30}, {3522, 14269, 5}, {3524, 3543, 3830}, {3529, 3533, 17538}, {3529, 3543, 5076}, {3534, 12101, 5066}, {3534, 15694, 10304}, {3543, 5076, 3627}, {3627, 11541, 12811}, {3628, 12108, 3526}, {3628, 12811, 15022}, {3628, 15704, 548}, {3628, 15759, 12108}, {3628, 3856, 5072}, {3832, 15681, 15712}, {3832, 15712, 10109}, {3843, 5059, 8703}, {3858, 16239, 14892}, {3861, 12108, 3091}, {5349, 43633, 42913}, {6834, 10304, 15684}, {10304, 17578, 4}, {12103, 12812, 3}, {13635, 15717, 3534}, {15156, 15157, 5899}, {28178, 31673, 61510}, {42102, 42585, 42627}


X(62035) = X(2)X(3)∩X(485)X(41969)

Barycentrics    19*a^4-12*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62035) = -36*X[2]+31*X[3], -X[576]+6*X[48943], -12*X[1539]+7*X[15039], -12*X[3818]+7*X[55602], -3*X[5093]+8*X[51163], -8*X[5691]+3*X[51515], -3*X[6241]+8*X[16982], -X[7991]+6*X[33697], -3*X[10247]+8*X[51118], -7*X[10541]+12*X[48895], -X[11477]+6*X[48904], -3*X[14848]+8*X[51026] and many others

X(62035) lies on these lines: {2, 3}, {485, 41969}, {486, 41970}, {576, 48943}, {1539, 15039}, {3818, 55602}, {5093, 51163}, {5343, 42517}, {5344, 42516}, {5691, 51515}, {5965, 48662}, {6199, 22644}, {6241, 16982}, {6395, 22615}, {6407, 42284}, {6408, 42283}, {6417, 42271}, {6418, 42272}, {6427, 35820}, {6428, 35821}, {6447, 23251}, {6448, 23261}, {6455, 43881}, {6456, 43882}, {6474, 13886}, {6475, 13939}, {6519, 42266}, {6522, 42267}, {7991, 33697}, {8148, 28236}, {9680, 41967}, {9690, 31412}, {9800, 19914}, {10247, 51118}, {10541, 48895}, {11477, 48904}, {11482, 29012}, {11485, 43334}, {11486, 43335}, {13903, 42413}, {13961, 42414}, {13993, 17851}, {14848, 51026}, {15041, 15044}, {15905, 61314}, {16189, 28208}, {16960, 42096}, {16961, 42097}, {18493, 28172}, {18525, 28228}, {20397, 38633}, {20398, 38634}, {20399, 38635}, {20400, 38636}, {21358, 55628}, {22235, 43634}, {22237, 43635}, {28164, 37624}, {28234, 48661}, {29317, 55595}, {29323, 53093}, {32137, 54048}, {35822, 43385}, {35823, 43384}, {36990, 55580}, {38072, 55694}, {39522, 52100}, {41953, 42259}, {41954, 42258}, {41963, 43503}, {41964, 43504}, {42085, 42683}, {42086, 42682}, {42095, 42931}, {42098, 42930}, {42108, 42161}, {42109, 42160}, {42112, 42166}, {42113, 42163}, {42115, 43324}, {42116, 43325}, {42126, 42165}, {42127, 42164}, {42130, 42162}, {42131, 42159}, {42133, 43329}, {42134, 43328}, {42150, 42777}, {42151, 42778}, {42154, 43009}, {42155, 43008}, {42275, 53513}, {42276, 53516}, {42429, 43239}, {42430, 43238}, {42431, 42800}, {42432, 42799}, {42490, 43548}, {42491, 43549}, {42561, 43415}, {42584, 42963}, {42585, 42962}, {42612, 42965}, {42613, 42964}, {42813, 43331}, {42814, 43330}, {42890, 43546}, {42891, 43547}, {42900, 43205}, {42901, 43206}, {42908, 46334}, {42909, 46335}, {43022, 43033}, {43023, 43032}, {43193, 43333}, {43194, 43332}, {43195, 43636}, {43196, 43637}, {43621, 55584}, {47353, 55588}, {48872, 55620}, {48879, 55641}, {48884, 53097}, {48889, 55626}, {48896, 55684}, {48901, 53092}, {48905, 55701}, {48942, 52987}, {50865, 58240}, {50869, 58235}, {50955, 55583}, {51024, 55718}, {51514, 52835}

X(62035) = midpoint of X(i) and X(j) for these {i,j}: {3843, 5073}, {5071, 15640}
X(62035) = reflection of X(i) in X(j) for these {i,j}: {1656, 17578}, {1657, 631}, {15683, 15711}, {15685, 14093}, {15694, 3830}, {15696, 4}, {15704, 12812}, {15712, 3853}, {20, 3858}, {3, 5076}, {3091, 3627}
X(62035) = inverse of X(37940) in Stammler circle
X(62035) = anticomplement of X(62126)
X(62035) = pole of line {523, 37940} with respect to the Stammler circle
X(62035) = pole of line {185, 61955} with respect to the Jerabek hyperbola
X(62035) = pole of line {69, 55638} with respect to the Wallace hyperbola
X(62035) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(547), X(18848)}}, {{A, B, C, X(3426), X(47486)}}, {{A, B, C, X(5068), X(18550)}}, {{A, B, C, X(15682), X(17505)}}, {{A, B, C, X(21400), X(49135)}}, {{A, B, C, X(32533), X(49138)}}, {{A, B, C, X(35477), X(44731)}}, {{A, B, C, X(41983), X(60122)}}, {{A, B, C, X(41990), X(54585)}}
X(62035) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10303, 15718}, {3, 15684, 3146}, {3, 17538, 15695}, {3, 3146, 5073}, {3, 5076, 3843}, {3, 546, 5055}, {4, 12103, 5079}, {4, 15692, 3859}, {4, 20, 547}, {4, 30, 15696}, {4, 3530, 381}, {20, 12102, 5072}, {20, 3858, 15693}, {30, 12812, 15704}, {30, 14093, 15685}, {30, 15711, 15683}, {30, 17578, 1656}, {30, 3627, 3091}, {30, 3830, 15694}, {30, 3853, 15712}, {30, 3858, 20}, {30, 631, 1657}, {140, 17533, 5054}, {381, 3534, 15708}, {382, 1657, 3543}, {1656, 15696, 15692}, {3091, 3522, 3525}, {3091, 3525, 12812}, {3091, 3627, 5076}, {3146, 3543, 11541}, {3530, 12812, 632}, {3543, 11541, 546}, {3543, 15640, 15705}, {3543, 5055, 3830}, {3627, 14869, 12102}, {3830, 17800, 3851}, {3830, 5073, 17800}, {3843, 15696, 5070}, {3843, 5073, 30}, {3851, 17800, 15689}, {3861, 11001, 15720}, {5055, 15681, 8703}, {5059, 15687, 3526}, {5072, 12102, 14269}, {6959, 15683, 15688}, {10124, 15712, 631}, {12108, 15688, 3}, {12812, 15704, 3522}, {15692, 17578, 4}


X(62036) = X(1)X(28190)∩X(2)X(3)

Barycentrics    8*a^4-5*(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(62036) = -15*X[2]+13*X[3], -5*X[141]+4*X[55612], -3*X[165]+4*X[61259], -3*X[389]+4*X[12002], -3*X[568]+X[12279], -5*X[576]+12*X[51165], -5*X[1352]+3*X[55591], -5*X[1353]+6*X[5102], -4*X[1482]+3*X[61293], -5*X[1511]+6*X[38792], -3*X[1539]+2*X[16534], -3*X[2883]+2*X[45185] and many others

X(62036) lies on these lines: {1, 28190}, {2, 3}, {8, 28216}, {10, 28154}, {12, 51817}, {13, 42890}, {14, 42891}, {15, 5350}, {16, 5349}, {17, 42087}, {18, 42088}, {40, 28182}, {52, 45957}, {61, 42941}, {62, 42940}, {141, 55612}, {143, 10575}, {155, 51959}, {165, 61259}, {316, 32820}, {355, 28178}, {371, 53518}, {372, 53519}, {389, 12002}, {395, 43633}, {396, 43632}, {397, 19106}, {398, 19107}, {485, 6429}, {486, 6430}, {496, 10483}, {515, 11278}, {516, 4746}, {517, 61245}, {542, 51166}, {567, 8718}, {568, 12279}, {576, 51165}, {590, 6486}, {615, 6487}, {946, 28168}, {952, 11531}, {962, 28224}, {1151, 43794}, {1152, 43793}, {1154, 11381}, {1263, 35724}, {1327, 6425}, {1328, 6426}, {1352, 55591}, {1353, 5102}, {1385, 28172}, {1478, 10386}, {1482, 61293}, {1483, 12678}, {1503, 34788}, {1506, 15602}, {1511, 38792}, {1539, 16534}, {2777, 14864}, {2883, 45185}, {3070, 42225}, {3071, 42226}, {3311, 52667}, {3312, 52666}, {3411, 46334}, {3412, 46335}, {3519, 57715}, {3521, 34567}, {3564, 48910}, {3579, 28158}, {3586, 24470}, {3589, 48896}, {3590, 43509}, {3591, 43510}, {3654, 61255}, {3818, 48874}, {3819, 46852}, {3917, 45958}, {3933, 7860}, {4301, 28208}, {4816, 5691}, {4857, 7354}, {5008, 5254}, {5041, 7747}, {5097, 8550}, {5270, 6284}, {5318, 34754}, {5321, 34755}, {5334, 42888}, {5335, 42889}, {5339, 42086}, {5340, 42085}, {5343, 11486}, {5344, 11485}, {5351, 42429}, {5352, 42430}, {5365, 42120}, {5366, 42119}, {5446, 13382}, {5447, 46847}, {5448, 51548}, {5480, 29323}, {5493, 5690}, {5562, 32137}, {5663, 13421}, {5732, 38137}, {5844, 48661}, {5876, 13474}, {5878, 31815}, {5882, 22791}, {5893, 34785}, {5894, 18383}, {5895, 32358}, {5901, 30392}, {5925, 61540}, {5946, 46850}, {6000, 10263}, {6102, 13598}, {6199, 23269}, {6221, 23253}, {6243, 12290}, {6253, 52851}, {6361, 61510}, {6395, 23275}, {6398, 23263}, {6409, 10195}, {6410, 10194}, {6431, 6561}, {6432, 6560}, {6433, 18538}, {6434, 18762}, {6437, 23251}, {6438, 23261}, {6447, 42537}, {6448, 42538}, {6453, 43210}, {6454, 43209}, {6480, 8981}, {6481, 13966}, {6482, 43879}, {6483, 43880}, {6484, 6564}, {6485, 6565}, {6519, 43413}, {6522, 43414}, {6696, 18376}, {6749, 42459}, {7583, 22644}, {7584, 22615}, {7748, 18907}, {7756, 31406}, {7764, 32479}, {7768, 32819}, {7776, 32824}, {7900, 47287}, {7982, 61297}, {7987, 61269}, {7989, 61614}, {7991, 50823}, {8960, 42258}, {9541, 13925}, {9579, 12433}, {9589, 50871}, {9607, 14537}, {9655, 15172}, {9657, 15170}, {9833, 61721}, {9862, 61600}, {10110, 14641}, {10113, 14677}, {10137, 45384}, {10138, 45385}, {10139, 12818}, {10140, 12819}, {10222, 51119}, {10248, 18493}, {10264, 10990}, {10283, 11522}, {10516, 55622}, {10592, 15338}, {10593, 15326}, {10619, 20424}, {10620, 13393}, {10625, 32062}, {10627, 15030}, {10645, 43292}, {10646, 43293}, {10721, 16659}, {10722, 52090}, {10991, 39809}, {10992, 39838}, {10993, 11698}, {11017, 54044}, {11180, 55580}, {11362, 28202}, {11374, 51790}, {11439, 23039}, {11455, 18436}, {11480, 42921}, {11481, 42920}, {11542, 42096}, {11543, 42097}, {11565, 34564}, {11591, 16194}, {11623, 22515}, {11801, 20127}, {11803, 15800}, {12006, 14855}, {12041, 38725}, {12042, 38735}, {12162, 13391}, {12248, 61601}, {12383, 61598}, {12512, 38140}, {12571, 17502}, {12702, 59400}, {12815, 15513}, {12943, 15171}, {12953, 18990}, {13172, 61599}, {13199, 61605}, {13202, 30714}, {13340, 15058}, {13346, 40111}, {13369, 31822}, {13451, 37481}, {13464, 22793}, {13470, 61744}, {13665, 43408}, {13785, 43407}, {14157, 37495}, {14226, 43884}, {14241, 43883}, {14449, 34783}, {14483, 14861}, {14490, 42021}, {14627, 52100}, {14650, 38802}, {14831, 16982}, {14862, 34782}, {15056, 44324}, {15060, 15644}, {15067, 44870}, {15068, 15811}, {15174, 61716}, {15305, 31834}, {15311, 34786}, {15749, 43719}, {15935, 57282}, {16163, 22251}, {16189, 61290}, {16192, 61263}, {16808, 42945}, {16809, 42944}, {16836, 44863}, {16964, 41974}, {16965, 41973}, {18358, 48873}, {18370, 35888}, {18400, 44762}, {18405, 20427}, {18480, 28150}, {18482, 38111}, {18483, 38028}, {18492, 61260}, {18525, 28212}, {18553, 29317}, {18555, 41588}, {18581, 42584}, {18582, 42585}, {18583, 48905}, {19130, 55688}, {20190, 38079}, {20418, 22938}, {20582, 55637}, {21167, 48920}, {21230, 32340}, {21356, 55602}, {21357, 22804}, {21659, 61299}, {22165, 55588}, {22236, 43416}, {22238, 43417}, {22728, 61625}, {24206, 55636}, {25555, 38136}, {25565, 50988}, {28194, 50868}, {28204, 51120}, {29181, 34507}, {30315, 61262}, {31162, 61286}, {31399, 34638}, {31414, 43257}, {31730, 38042}, {32142, 36987}, {33751, 51126}, {33813, 38746}, {33814, 38758}, {34628, 61276}, {35255, 42269}, {35256, 42268}, {35770, 35821}, {35771, 35820}, {35812, 42639}, {35813, 42640}, {35814, 53520}, {35815, 53517}, {36967, 42166}, {36968, 42163}, {36969, 42147}, {36970, 42148}, {36990, 43621}, {37497, 51933}, {37714, 38081}, {37727, 50865}, {38021, 50832}, {38072, 50987}, {38074, 50822}, {38076, 50825}, {38110, 48898}, {38141, 38759}, {38229, 38749}, {38599, 38770}, {38600, 38782}, {38788, 40685}, {38956, 52057}, {39561, 48901}, {39874, 61624}, {42090, 42146}, {42091, 42143}, {42093, 42113}, {42094, 42112}, {42099, 42102}, {42100, 42101}, {42107, 42937}, {42110, 42936}, {42125, 42917}, {42126, 42141}, {42127, 42140}, {42128, 42916}, {42129, 42776}, {42130, 42134}, {42131, 42133}, {42132, 42775}, {42154, 42161}, {42155, 42160}, {42159, 42913}, {42162, 42912}, {42179, 53457}, {42180, 53468}, {42181, 53456}, {42182, 53467}, {42259, 43790}, {42270, 43785}, {42273, 43786}, {42433, 42599}, {42434, 42598}, {42494, 42627}, {42495, 42628}, {42496, 43634}, {42497, 43635}, {42510, 43423}, {42511, 43422}, {42528, 42958}, {42529, 42959}, {42582, 51911}, {42583, 51910}, {42645, 43629}, {42646, 43628}, {42682, 43106}, {42683, 43105}, {42692, 43196}, {42693, 43195}, {42773, 43103}, {42774, 43102}, {42777, 43645}, {42778, 43646}, {42791, 42952}, {42792, 42953}, {42813, 42942}, {42814, 42943}, {42900, 43014}, {42901, 43015}, {42954, 43367}, {42955, 43366}, {42986, 43556}, {42987, 43557}, {42995, 61719}, {43010, 43016}, {43011, 43017}, {43012, 43203}, {43013, 43204}, {43328, 43550}, {43329, 43551}, {43334, 43500}, {43335, 43499}, {43364, 52079}, {43365, 52080}, {43438, 43570}, {43439, 43571}, {43446, 43870}, {43447, 43869}, {43618, 44518}, {43676, 54891}, {44829, 46084}, {44977, 44985}, {46264, 55711}, {47354, 55606}, {48310, 55679}, {48872, 55618}, {48879, 55640}, {48880, 55633}, {48881, 48889}, {48885, 55645}, {48892, 55680}, {50811, 61278}, {50971, 55681}, {50978, 53097}, {50984, 55652}, {51127, 55669}, {51128, 55657}, {51180, 51213}, {51184, 51217}, {51214, 55724}, {51537, 55610}, {52093, 58531}, {53023, 55699}, {58241, 61296}, {58248, 61244}

X(62036) = midpoint of X(i) and X(j) for these {i,j}: {4, 5073}, {381, 15640}, {382, 3146}, {6243, 12290}, {11541, 17800}, {15682, 15684}, {36990, 43621}
X(62036) = reflection of X(i) in X(j) for these {i,j}: {10264, 12295}, {1353, 31670}, {1483, 12699}, {10575, 143}, {10625, 45959}, {1657, 140}, {11001, 547}, {11698, 52836}, {12103, 3861}, {12248, 61601}, {12383, 61598}, {13172, 61599}, {13199, 61605}, {13369, 31822}, {13491, 5446}, {13619, 11558}, {14641, 10110}, {14677, 10113}, {15105, 14864}, {15644, 46849}, {15681, 5066}, {15683, 12100}, {15686, 3845}, {15704, 5}, {17800, 12103}, {18481, 40273}, {20, 546}, {20127, 11801}, {21230, 32340}, {21850, 51163}, {22791, 51118}, {3, 3853}, {376, 12101}, {3529, 548}, {3534, 14893}, {3627, 382}, {3845, 3543}, {34153, 1539}, {34773, 22793}, {34783, 14449}, {34785, 5893}, {36966, 15800}, {37484, 31834}, {37705, 5691}, {39874, 61624}, {39884, 48884}, {44882, 48895}, {45957, 52}, {48873, 18358}, {48874, 3818}, {48881, 48889}, {48896, 3589}, {48905, 18583}, {48906, 48901}, {5, 3627}, {548, 12102}, {549, 3830}, {550, 4}, {5562, 32137}, {5690, 31673}, {5876, 13474}, {5894, 18383}, {5925, 61540}, {51163, 48943}, {51872, 39838}, {632, 17578}, {6102, 13598}, {6361, 61510}, {61297, 7982}, {7991, 61249}, {8703, 15687}, {9862, 61600}
X(62036) = inverse of X(61970) in orthocentroidal circle
X(62036) = inverse of X(61970) in Yff hyperbola
X(62036) = complement of X(17800)
X(62036) = anticomplement of X(12103)
X(62036) = pole of line {5214, 28187} with respect to the Conway circle
X(62036) = pole of line {28187, 44409} with respect to the incircle
X(62036) = pole of line {523, 61970} with respect to the orthocentroidal circle
X(62036) = pole of line {185, 3850} with respect to the Jerabek hyperbola
X(62036) = pole of line {6, 43783} with respect to the Kiepert hyperbola
X(62036) = pole of line {523, 61970} with respect to the Yff hyperbola
X(62036) = pole of line {69, 33751} with respect to the Wallace hyperbola
X(62036) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(64), X(35479)}}, {{A, B, C, X(68), X(50693)}}, {{A, B, C, X(265), X(15704)}}, {{A, B, C, X(548), X(3519)}}, {{A, B, C, X(549), X(14861)}}, {{A, B, C, X(1494), X(44903)}}, {{A, B, C, X(1656), X(18848)}}, {{A, B, C, X(3426), X(55578)}}, {{A, B, C, X(3471), X(18507)}}, {{A, B, C, X(3518), X(57715)}}, {{A, B, C, X(3520), X(34567)}}, {{A, B, C, X(3521), X(3628)}}, {{A, B, C, X(3523), X(18846)}}, {{A, B, C, X(3529), X(15749)}}, {{A, B, C, X(3532), X(35472)}}, {{A, B, C, X(3533), X(18847)}}, {{A, B, C, X(3830), X(6662)}}, {{A, B, C, X(4846), X(10303)}}, {{A, B, C, X(5068), X(18850)}}, {{A, B, C, X(5072), X(18550)}}, {{A, B, C, X(10109), X(60121)}}, {{A, B, C, X(10304), X(42021)}}, {{A, B, C, X(10594), X(14490)}}, {{A, B, C, X(11410), X(43908)}}, {{A, B, C, X(11539), X(40448)}}, {{A, B, C, X(11738), X(44879)}}, {{A, B, C, X(13473), X(46081)}}, {{A, B, C, X(13599), X(15703)}}, {{A, B, C, X(14483), X(14865)}}, {{A, B, C, X(15318), X(49134)}}, {{A, B, C, X(15693), X(60122)}}, {{A, B, C, X(15721), X(60618)}}, {{A, B, C, X(15750), X(43719)}}, {{A, B, C, X(16251), X(21734)}}, {{A, B, C, X(19710), X(54512)}}, {{A, B, C, X(21400), X(49136)}}, {{A, B, C, X(31361), X(55864)}}, {{A, B, C, X(32533), X(49140)}}, {{A, B, C, X(35499), X(55980)}}, {{A, B, C, X(41522), X(57584)}}, {{A, B, C, X(48154), X(60171)}}
X(62036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 17800}, {2, 17800, 12103}, {2, 3861, 3857}, {2, 5076, 3861}, {3, 15702, 3530}, {3, 20, 15690}, {3, 3526, 15719}, {3, 3543, 3853}, {3, 3545, 16239}, {3, 381, 5067}, {3, 382, 3543}, {3, 3832, 547}, {3, 4, 3850}, {3, 5, 11539}, {3, 5067, 11812}, {4, 11001, 3533}, {4, 140, 3858}, {4, 3146, 5073}, {4, 3522, 3851}, {4, 3529, 3523}, {4, 3533, 3832}, {5, 30, 15704}, {5, 8703, 14869}, {20, 13587, 15698}, {20, 3091, 15705}, {20, 3525, 15688}, {20, 3830, 546}, {20, 3854, 10299}, {30, 11558, 13619}, {30, 12100, 15683}, {30, 12101, 376}, {30, 140, 1657}, {30, 14893, 3534}, {30, 17578, 632}, {30, 382, 3627}, {30, 3845, 15686}, {30, 5066, 15681}, {30, 546, 20}, {30, 547, 11001}, {140, 1657, 550}, {140, 3850, 5056}, {143, 10575, 45956}, {376, 3843, 3628}, {376, 5068, 15720}, {381, 17578, 12102}, {382, 15684, 3146}, {397, 42108, 42432}, {398, 42109, 42431}, {548, 632, 17504}, {1656, 10299, 140}, {1656, 3830, 4}, {1657, 3830, 3854}, {1657, 3851, 3522}, {2043, 2044, 15693}, {2070, 12086, 10226}, {2777, 14864, 15105}, {3090, 14269, 3856}, {3090, 15683, 15696}, {3091, 10303, 16371}, {3091, 3530, 15699}, {3146, 15682, 382}, {3146, 17578, 15640}, {3520, 5899, 12107}, {3523, 17504, 15712}, {3525, 4193, 15694}, {3526, 15685, 17538}, {3526, 3839, 12811}, {3528, 12108, 15711}, {3528, 5055, 12108}, {3529, 17578, 381}, {3530, 14893, 3091}, {3534, 15699, 15714}, {3543, 15686, 15687}, {3543, 3545, 3830}, {3545, 5067, 15022}, {3627, 3857, 5076}, {3628, 12101, 3843}, {3830, 15705, 14893}, {3839, 17538, 3526}, {3843, 15720, 5068}, {3854, 10299, 1656}, {3854, 5056, 3545}, {3855, 5054, 12812}, {3859, 12108, 5055}, {3861, 12103, 2}, {5079, 15689, 15717}, {5079, 15717, 10124}, {5189, 10301, 1368}, {5339, 42086, 42924}, {5343, 43769, 11486}, {5344, 43770, 11485}, {5365, 42120, 42989}, {5366, 42119, 42988}, {5691, 28174, 37705}, {7517, 11250, 7575}, {7756, 53418, 31406}, {10109, 15688, 549}, {10625, 32062, 45959}, {11112, 17535, 13735}, {11539, 15686, 8703}, {11539, 15687, 3845}, {11541, 17800, 30}, {11542, 42096, 43630}, {11543, 42097, 43631}, {11563, 13371, 5}, {12087, 13596, 3}, {12108, 15691, 3528}, {12295, 34584, 10264}, {14269, 15683, 12100}, {14269, 15696, 3090}, {14813, 14814, 548}, {15105, 41362, 14864}, {15305, 37484, 31834}, {15338, 18513, 10592}, {15640, 17578, 3529}, {15644, 46849, 15060}, {15765, 18585, 11737}, {18323, 18565, 11585}, {18481, 40273, 10283}, {19106, 42108, 42117}, {19106, 42432, 397}, {19107, 42109, 42118}, {22615, 42264, 7584}, {22644, 42263, 7583}, {22793, 28164, 34773}, {23263, 42414, 6398}, {28160, 51118, 22791}, {29012, 48943, 51163}, {29012, 51163, 21850}, {29181, 48884, 39884}, {35821, 42272, 42216}, {42093, 42113, 42123}, {42094, 42112, 42122}, {42096, 42105, 11542}, {42097, 42104, 11543}, {42137, 42925, 5340}, {42159, 43193, 42913}, {42162, 43194, 42912}, {42164, 43401, 16965}, {42266, 42284, 8981}, {42267, 42283, 13966}, {44882, 48895, 38136}


X(62037) = X(1)X(50873)∩X(2)X(3)

Barycentrics    37*a^4-23*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62037) = -2*X[1]+5*X[50873], -23*X[2]+20*X[3], -2*X[6]+5*X[51029], -2*X[8]+5*X[50863], -2*X[10]+5*X[50866], -2*X[69]+5*X[51216], -2*X[141]+5*X[51167], -2*X[193]+5*X[51211], -5*X[962]+2*X[34747], -2*X[3244]+5*X[50865], -8*X[3626]+5*X[34632], -2*X[3629]+5*X[51024] and many others

X(62037) lies on these lines: {1, 50873}, {2, 3}, {6, 51029}, {8, 50863}, {10, 50866}, {69, 51216}, {141, 51167}, {193, 51211}, {754, 53143}, {962, 34747}, {1327, 43512}, {1328, 43511}, {2996, 54934}, {3244, 50865}, {3311, 43521}, {3312, 43522}, {3424, 60626}, {3626, 34632}, {3629, 51024}, {3631, 51022}, {3632, 50864}, {3636, 34628}, {3644, 51064}, {3982, 15933}, {4301, 51094}, {4686, 51065}, {5032, 29012}, {5349, 49861}, {5350, 49862}, {5365, 42510}, {5366, 42511}, {5691, 34641}, {6329, 51026}, {6429, 43380}, {6430, 43381}, {6459, 43385}, {6460, 43384}, {7802, 32886}, {7811, 32868}, {8252, 43406}, {8253, 43405}, {9540, 43503}, {9542, 42284}, {10248, 51705}, {10653, 42630}, {10654, 42629}, {11008, 48910}, {11180, 43621}, {12818, 42266}, {12819, 42267}, {12820, 18582}, {12821, 18581}, {13935, 43504}, {14488, 60648}, {15808, 50874}, {16267, 42105}, {16268, 42104}, {16962, 42134}, {16963, 42133}, {19106, 42799}, {19107, 42800}, {19877, 50812}, {20050, 41869}, {20057, 31162}, {20423, 48943}, {20583, 51163}, {22235, 43632}, {22237, 43633}, {22615, 42523}, {22644, 42522}, {28150, 53620}, {28154, 54448}, {33416, 43398}, {33417, 43397}, {33697, 50810}, {34595, 51079}, {34638, 50870}, {34648, 50867}, {35822, 43515}, {35823, 43516}, {36967, 43195}, {36968, 43196}, {36969, 42982}, {36970, 42983}, {36990, 54174}, {37640, 43105}, {37641, 43106}, {37689, 39563}, {38098, 59387}, {40341, 51023}, {41119, 42939}, {41120, 42938}, {41895, 60335}, {41945, 42537}, {41946, 42538}, {42085, 42900}, {42086, 42901}, {42090, 43399}, {42091, 43400}, {42093, 43420}, {42094, 43421}, {42112, 43403}, {42113, 43404}, {42126, 43110}, {42127, 43111}, {42130, 43328}, {42131, 43329}, {42136, 43481}, {42137, 43482}, {42140, 43401}, {42141, 43402}, {42157, 49825}, {42158, 49824}, {42160, 43008}, {42161, 43009}, {42163, 42586}, {42166, 42587}, {42275, 43507}, {42276, 43508}, {42283, 43259}, {42494, 42791}, {42495, 42792}, {42514, 49948}, {42515, 49947}, {42641, 52667}, {42642, 52666}, {42803, 42974}, {42804, 42975}, {42813, 54593}, {42814, 54594}, {42892, 43331}, {42893, 43330}, {42904, 43203}, {42905, 43204}, {42910, 43230}, {42911, 43231}, {43201, 43332}, {43202, 43333}, {43252, 43487}, {43253, 43488}, {46932, 50799}, {46934, 50819}, {48879, 50956}, {48884, 50967}, {48904, 54132}, {48942, 54173}, {49907, 54581}, {49908, 54580}, {50813, 61261}, {51213, 54131}, {52093, 58470}, {53101, 54920}, {53109, 54522}, {54519, 60210}, {54720, 54921}, {54845, 60635}, {60132, 60628}, {61301, 61306}

X(62037) = midpoint of X(i) and X(j) for these {i,j}: {3839, 15640}
X(62037) = reflection of X(i) in X(j) for these {i,j}: {1657, 11539}, {11001, 5055}, {15683, 3524}, {15688, 15687}, {15704, 14892}, {20, 3839}, {3524, 3830}, {3529, 15688}, {3839, 3543}, {5055, 3627}
X(62037) = anticomplement of X(62130)
X(62037) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1217), X(41991)}}, {{A, B, C, X(3525), X(31361)}}, {{A, B, C, X(3530), X(18846)}}, {{A, B, C, X(3543), X(57897)}}, {{A, B, C, X(4846), X(15713)}}, {{A, B, C, X(6353), X(54934)}}, {{A, B, C, X(16251), X(19708)}}, {{A, B, C, X(18848), X(46936)}}, {{A, B, C, X(18850), X(19709)}}, {{A, B, C, X(36889), X(50688)}}, {{A, B, C, X(41983), X(46168)}}, {{A, B, C, X(46333), X(54512)}}, {{A, B, C, X(49140), X(54552)}}, {{A, B, C, X(52283), X(60626)}}, {{A, B, C, X(52290), X(60335)}}
X(62037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10299, 15721}, {2, 15683, 550}, {2, 3522, 15700}, {2, 382, 3543}, {2, 3832, 11737}, {4, 15719, 381}, {4, 3529, 3530}, {4, 632, 3832}, {20, 3839, 15708}, {30, 11539, 1657}, {30, 14892, 15704}, {30, 15687, 15688}, {30, 15688, 3529}, {30, 3524, 15683}, {30, 3543, 3839}, {30, 3627, 5055}, {30, 3830, 3524}, {30, 3839, 20}, {30, 5055, 11001}, {381, 5059, 15697}, {382, 5073, 546}, {546, 550, 3526}, {547, 12103, 15759}, {632, 10299, 17533}, {3091, 3526, 5056}, {3091, 3543, 3830}, {3146, 17578, 5073}, {3146, 3543, 15640}, {3523, 16239, 10303}, {3524, 15709, 12108}, {3524, 15759, 15705}, {3528, 3855, 16239}, {3529, 5076, 16417}, {3530, 15688, 15710}, {3534, 11737, 10299}, {3627, 15696, 4}, {3830, 14093, 3861}, {3830, 15683, 3091}, {3839, 15640, 30}, {3845, 15700, 3544}, {3853, 15685, 5071}, {5054, 10304, 15692}, {5079, 15681, 8703}, {6834, 11001, 15682}, {10299, 11737, 2}, {10303, 15692, 15719}, {14269, 15681, 5054}, {14269, 17504, 3545}, {15682, 15684, 3146}


X(62038) = X(2)X(3)∩X(141)X(55613)

Barycentrics    18*a^4-11*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62038) = -33*X[2]+29*X[3], -11*X[141]+9*X[55613], -5*X[575]+6*X[51130], -3*X[962]+X[61297], -3*X[3653]+7*X[50874], -11*X[3818]+7*X[55605], -11*X[5480]+9*X[55707], -4*X[6053]+5*X[61598], -9*X[12699]+5*X[61288], X[15069]+3*X[43621], -5*X[15178]+6*X[51075], -2*X[15606]+3*X[45959] and many others

X(62038) lies on these lines: {2, 3}, {141, 55613}, {371, 43316}, {372, 43317}, {397, 42799}, {398, 42800}, {516, 61249}, {575, 51130}, {962, 61297}, {1503, 55719}, {3411, 43417}, {3412, 43416}, {3564, 55723}, {3592, 43385}, {3594, 43384}, {3653, 50874}, {3818, 55605}, {4301, 28186}, {5349, 43330}, {5350, 43331}, {5480, 55707}, {5691, 28216}, {5844, 9589}, {5881, 28212}, {5901, 28172}, {6053, 61598}, {6435, 35820}, {6436, 35821}, {6437, 43340}, {6438, 43341}, {6494, 52667}, {6495, 52666}, {7748, 14075}, {7765, 34571}, {9657, 15172}, {9692, 45384}, {11362, 28178}, {11542, 43632}, {11543, 43633}, {12699, 61288}, {12818, 43337}, {12819, 43336}, {13474, 31834}, {13925, 42266}, {13993, 42267}, {15069, 43621}, {15178, 51075}, {15606, 45959}, {16772, 42585}, {16773, 42584}, {16964, 42109}, {16965, 42108}, {18357, 28154}, {18358, 55609}, {18383, 50709}, {18583, 55702}, {19106, 43009}, {19107, 43008}, {22791, 61282}, {22793, 61278}, {23238, 44981}, {28146, 61510}, {28158, 61524}, {28160, 61286}, {28168, 40273}, {28174, 47745}, {28182, 31673}, {28190, 51118}, {28202, 50801}, {28224, 41869}, {29012, 55715}, {29181, 55586}, {29317, 55592}, {29323, 55709}, {31417, 44519}, {31447, 61259}, {31487, 43408}, {32340, 54201}, {38064, 51164}, {38066, 50867}, {40107, 48942}, {40647, 58533}, {40693, 42144}, {40694, 42145}, {42085, 42889}, {42086, 42888}, {42087, 43197}, {42088, 43198}, {42099, 42627}, {42100, 42628}, {42101, 42433}, {42102, 42434}, {42104, 43193}, {42105, 43194}, {42112, 42156}, {42113, 42153}, {42122, 42813}, {42123, 42814}, {42136, 42148}, {42137, 42147}, {42143, 43874}, {42146, 43873}, {42149, 43420}, {42152, 43421}, {42159, 43333}, {42162, 43332}, {42164, 42990}, {42165, 42991}, {42262, 43315}, {42265, 43314}, {42429, 42944}, {42430, 42945}, {42431, 43402}, {42432, 43401}, {42488, 42930}, {42489, 42931}, {42545, 42779}, {42546, 42780}, {42629, 42934}, {42630, 42935}, {42633, 43770}, {42634, 43769}, {42785, 44882}, {42904, 43012}, {42905, 43013}, {42922, 43778}, {42923, 43777}, {42924, 42940}, {42925, 42941}, {42938, 43782}, {42939, 43781}, {43100, 43476}, {43107, 43475}, {43278, 46170}, {43422, 49811}, {43423, 49810}, {43540, 43639}, {43541, 43640}, {43546, 43645}, {43547, 43646}, {43630, 43771}, {43631, 43772}, {44324, 44870}, {48884, 55589}, {48901, 55712}, {48904, 55717}, {48943, 55713}, {50956, 55641}, {51022, 52987}, {51143, 55623}, {51163, 55714}

X(62038) = midpoint of X(i) and X(j) for these {i,j}: {3627, 5073}, {15640, 15687}
X(62038) = reflection of X(i) in X(j) for these {i,j}: {140, 3627}, {1657, 3628}, {11001, 11737}, {12103, 4}, {15681, 3860}, {15683, 11812}, {15685, 14891}, {15690, 15687}, {15691, 12101}, {15704, 3850}, {20, 3861}, {3853, 382}, {31834, 13474}, {548, 3853}, {550, 12102}, {5066, 3543}, {54201, 32340}
X(62038) = inverse of X(11563) in Steiner circle
X(62038) = complement of X(62162)
X(62038) = anticomplement of X(62136)
X(62038) = pole of line {523, 11563} with respect to the Steiner circle
X(62038) = pole of line {185, 38071} with respect to the Jerabek hyperbola
X(62038) = pole of line {6, 43334} with respect to the Kiepert hyperbola
X(62038) = pole of line {69, 55635} with respect to the Wallace hyperbola
X(62038) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(15697)}}, {{A, B, C, X(1105), X(38071)}}, {{A, B, C, X(3521), X(15699)}}, {{A, B, C, X(5070), X(18848)}}, {{A, B, C, X(6662), X(50688)}}, {{A, B, C, X(15318), X(49136)}}, {{A, B, C, X(15692), X(18846)}}, {{A, B, C, X(15718), X(60122)}}, {{A, B, C, X(40448), X(45760)}}, {{A, B, C, X(46851), X(52294)}}
X(62038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 15681, 632}, {4, 15704, 11540}, {4, 15710, 3091}, {4, 30, 12103}, {4, 3529, 15692}, {4, 632, 3860}, {5, 13634, 1010}, {5, 15717, 16239}, {5, 550, 15717}, {20, 140, 548}, {20, 15682, 382}, {20, 382, 3627}, {20, 3832, 3524}, {20, 548, 15691}, {30, 11737, 11001}, {30, 11812, 15683}, {30, 12102, 550}, {30, 14891, 15685}, {30, 3543, 5066}, {30, 3628, 1657}, {30, 382, 3853}, {30, 3850, 15704}, {30, 3860, 15681}, {30, 3861, 20}, {140, 12101, 546}, {140, 12103, 8703}, {140, 12811, 547}, {140, 3627, 12101}, {140, 3853, 3861}, {140, 5066, 3090}, {381, 5073, 11541}, {382, 17800, 17578}, {382, 3843, 3543}, {1657, 15687, 3628}, {1657, 3628, 15690}, {2043, 2044, 15718}, {3090, 3627, 12102}, {3146, 15682, 5073}, {3522, 3857, 10124}, {3529, 5068, 15689}, {3530, 11540, 631}, {3530, 12811, 5070}, {3530, 16239, 5054}, {3530, 3861, 12811}, {3534, 3858, 12108}, {3627, 8703, 4}, {3830, 15704, 3850}, {3850, 11540, 5079}, {3853, 12103, 3859}, {3853, 15690, 3832}, {3854, 12102, 14893}, {3859, 12103, 3530}, {3861, 10109, 3856}, {5054, 8703, 14891}, {5059, 5076, 549}, {6924, 15686, 15712}, {11542, 43632, 43634}, {11543, 43633, 43635}, {12101, 15691, 14892}, {12102, 15685, 140}, {12102, 16239, 3843}, {14784, 14785, 15697}, {14892, 15691, 12100}, {15640, 15687, 30}, {17578, 17800, 5}


X(62039) = X(2)X(3)∩X(13)X(43630)

Barycentrics    28*a^4-17*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62039) = -17*X[2]+15*X[3], -X[1353]+4*X[48904], -15*X[1483]+16*X[51095], -3*X[3576]+7*X[50874], -2*X[3626]+5*X[33697], -2*X[3631]+5*X[48884], -3*X[5085]+7*X[51164], -3*X[5657]+7*X[50867], -3*X[10519]+7*X[51217], -5*X[13468]+6*X[53144], -3*X[14912]+7*X[51213], -6*X[18553]+5*X[51142] and many others

X(62039) lies on these lines: {2, 3}, {13, 43630}, {14, 43631}, {15, 42502}, {16, 42503}, {511, 51183}, {515, 50831}, {516, 50823}, {1327, 43321}, {1328, 43320}, {1353, 48904}, {1483, 51095}, {1503, 50986}, {3244, 28208}, {3576, 50874}, {3626, 33697}, {3629, 11645}, {3631, 48884}, {3654, 28182}, {3656, 28190}, {3982, 15935}, {4669, 28202}, {4677, 28174}, {4745, 28150}, {5085, 51164}, {5318, 42506}, {5321, 42507}, {5334, 42416}, {5335, 42415}, {5476, 51026}, {5657, 50867}, {6407, 60307}, {6408, 60308}, {6425, 43570}, {6426, 43571}, {6433, 43568}, {6434, 43569}, {6560, 42576}, {6561, 42577}, {7583, 43515}, {7584, 43516}, {8584, 29012}, {9691, 43560}, {10283, 28168}, {10519, 51217}, {10653, 42923}, {10654, 42922}, {12816, 42916}, {12817, 42917}, {12820, 42099}, {12821, 42100}, {13468, 53144}, {13665, 42643}, {13785, 42644}, {13846, 42608}, {13847, 42609}, {14488, 60287}, {14912, 51213}, {16191, 28186}, {16241, 43475}, {16242, 43476}, {16964, 43310}, {16965, 43311}, {18510, 43522}, {18512, 43521}, {18538, 43503}, {18553, 51142}, {18762, 43504}, {18907, 39593}, {19106, 43228}, {19107, 43229}, {20582, 48879}, {20583, 21850}, {21849, 45956}, {22165, 39884}, {22505, 36521}, {22566, 35022}, {22793, 51103}, {23249, 42537}, {23259, 42538}, {23302, 42504}, {23303, 42505}, {28146, 50862}, {28154, 50796}, {28158, 50821}, {28160, 51071}, {28164, 50824}, {28172, 50869}, {28178, 59400}, {28198, 34641}, {28212, 50864}, {28216, 50798}, {28228, 50830}, {28232, 50868}, {29181, 50978}, {29317, 51022}, {29323, 59399}, {31162, 61284}, {31673, 38098}, {32479, 51123}, {34628, 40273}, {34648, 38081}, {34747, 41869}, {36969, 42144}, {36970, 42145}, {37640, 42515}, {37641, 42514}, {37832, 42957}, {37835, 42956}, {38034, 50832}, {38079, 48898}, {38136, 50987}, {38140, 50825}, {40341, 43621}, {41100, 42940}, {41101, 42941}, {41107, 42117}, {41108, 42118}, {41112, 42137}, {41113, 42136}, {41119, 42112}, {41120, 42113}, {41121, 42087}, {41122, 42088}, {41147, 51523}, {41152, 52987}, {42085, 42509}, {42086, 42508}, {42096, 42511}, {42097, 42510}, {42101, 49908}, {42102, 49907}, {42104, 42913}, {42105, 42912}, {42121, 42631}, {42122, 49905}, {42123, 49906}, {42124, 42632}, {42130, 42496}, {42131, 42497}, {42140, 49826}, {42141, 49827}, {42149, 42586}, {42152, 42587}, {42157, 42635}, {42158, 42636}, {42225, 42417}, {42226, 42418}, {42274, 54596}, {42275, 52047}, {42276, 52048}, {42277, 54595}, {42429, 43247}, {42430, 43246}, {42528, 43230}, {42529, 43231}, {42639, 53130}, {42640, 53131}, {42641, 43322}, {42642, 43323}, {42888, 42975}, {42889, 42974}, {42890, 43773}, {42891, 43774}, {42892, 42905}, {42893, 42904}, {42918, 43369}, {42919, 43368}, {42938, 49904}, {42939, 49903}, {42962, 43477}, {42963, 43478}, {43004, 43204}, {43005, 43203}, {43226, 54577}, {43227, 54576}, {43486, 61719}, {43509, 43566}, {43510, 43567}, {43511, 60306}, {43512, 60305}, {43546, 43632}, {43547, 43633}, {43647, 49874}, {43648, 49873}, {48310, 48891}, {48873, 50993}, {48874, 48942}, {48906, 48943}, {49911, 51484}, {49914, 51485}, {50806, 61273}, {50810, 61251}, {50811, 61279}, {50812, 61614}, {50826, 50870}, {50828, 61270}, {50960, 55649}, {50991, 51184}, {51092, 61293}, {51096, 61297}, {51167, 51186}, {54717, 60645}, {60132, 60638}

X(62039) = midpoint of X(i) and X(j) for these {i,j}: {3146, 15684}, {3543, 5073}, {3830, 15640}
X(62039) = reflection of X(i) in X(j) for these {i,j}: {1657, 547}, {11001, 5066}, {15681, 546}, {15683, 140}, {15685, 12100}, {15686, 4}, {15687, 382}, {15691, 12102}, {15704, 381}, {15714, 17578}, {17800, 15691}, {20, 14893}, {376, 3853}, {3534, 12101}, {34628, 40273}, {48879, 20582}, {5, 3543}, {549, 3627}, {550, 15687}, {5476, 51026}, {51709, 50869}, {8703, 3830}
X(62039) = inverse of X(61969) in orthocentroidal circle
X(62039) = inverse of X(61969) in Yff hyperbola
X(62039) = complement of X(62163)
X(62039) = anticomplement of X(62138)
X(62039) = pole of line {523, 61969} with respect to the orthocentroidal circle
X(62039) = pole of line {6, 61969} with respect to the Kiepert hyperbola
X(62039) = pole of line {523, 61969} with respect to the Yff hyperbola
X(62039) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(44903)}}, {{A, B, C, X(3534), X(57823)}}, {{A, B, C, X(15704), X(54512)}}, {{A, B, C, X(18848), X(55857)}}, {{A, B, C, X(44904), X(60121)}}
X(62039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 382}, {2, 15687, 3845}, {2, 15715, 15701}, {2, 3530, 15713}, {2, 3851, 10109}, {4, 15708, 381}, {5, 8703, 11812}, {20, 14893, 11539}, {30, 12100, 15685}, {30, 12102, 15691}, {30, 140, 15683}, {30, 14893, 20}, {30, 15691, 17800}, {30, 17578, 15714}, {30, 3543, 5}, {30, 3627, 549}, {30, 381, 15704}, {30, 382, 15687}, {30, 3853, 376}, {30, 5066, 11001}, {30, 546, 15681}, {30, 547, 1657}, {381, 15708, 12812}, {381, 3534, 15722}, {382, 14269, 3543}, {382, 5073, 3529}, {382, 550, 3627}, {546, 15681, 17504}, {3146, 15684, 30}, {3522, 15713, 15711}, {3524, 3543, 5076}, {3529, 3543, 14269}, {3534, 15722, 3522}, {3534, 3543, 12101}, {3830, 11001, 5066}, {3839, 15715, 5079}, {3855, 15707, 547}, {8703, 15686, 15697}, {8703, 15713, 15698}, {11539, 14893, 3857}, {11737, 12100, 2}, {11737, 14869, 15699}, {11737, 15688, 14869}, {12100, 15685, 15686}, {12100, 15697, 8703}, {12102, 15691, 3545}, {12102, 17800, 15712}, {12812, 15690, 12100}, {14269, 15681, 15720}, {14869, 15686, 15688}, {15640, 15682, 3830}, {15681, 17504, 550}, {15685, 15694, 3534}, {15686, 15687, 11737}, {15687, 17504, 546}, {15704, 15713, 15690}, {28172, 50869, 51709}, {41112, 43108, 42633}, {41113, 43109, 42634}, {42130, 42496, 43639}, {42131, 42497, 43640}, {42136, 43109, 41113}, {42137, 43108, 41112}, {42941, 43105, 43418}


X(62040) = X(2)X(3)∩X(13)X(42130)

Barycentrics    17*a^4-10*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62040) = -10*X[2]+9*X[3], -9*X[115]+8*X[41151], -9*X[355]+8*X[51070], -9*X[946]+8*X[41150], -9*X[1351]+8*X[41149], -9*X[1352]+8*X[41152], -9*X[1482]+8*X[51091], -5*X[1699]+4*X[31662], -6*X[3098]+7*X[51186], -9*X[3655]+10*X[51104], -25*X[3763]+22*X[55642], -6*X[3818]+5*X[50993] and many others

X(62040) lies on these lines: {2, 3}, {13, 42130}, {14, 42131}, {15, 43331}, {16, 43330}, {61, 42509}, {62, 42508}, {115, 41151}, {355, 51070}, {395, 42113}, {396, 42112}, {399, 37672}, {511, 51027}, {515, 50805}, {516, 50798}, {517, 50871}, {524, 43621}, {542, 51187}, {590, 43503}, {598, 54734}, {599, 48884}, {615, 43504}, {671, 54851}, {946, 41150}, {962, 34748}, {1160, 13691}, {1161, 13810}, {1327, 6221}, {1328, 6398}, {1351, 41149}, {1352, 41152}, {1482, 51091}, {1503, 50962}, {1699, 31662}, {2794, 12355}, {3098, 51186}, {3311, 42417}, {3312, 42418}, {3564, 51214}, {3654, 28150}, {3655, 51104}, {3656, 28164}, {3679, 33697}, {3763, 55642}, {3818, 50993}, {4669, 12702}, {4677, 18525}, {4745, 31673}, {5008, 11648}, {5050, 51173}, {5097, 48904}, {5102, 29012}, {5306, 43618}, {5318, 42511}, {5321, 42510}, {5476, 55703}, {5480, 41153}, {5587, 50866}, {5603, 50873}, {5691, 28202}, {5790, 28154}, {6033, 15300}, {6199, 42537}, {6321, 41147}, {6361, 51072}, {6395, 42538}, {6407, 23253}, {6408, 23263}, {6429, 13903}, {6430, 13961}, {6431, 35820}, {6432, 35821}, {6433, 6564}, {6434, 6565}, {6437, 13665}, {6438, 13785}, {6455, 42602}, {6456, 42603}, {6480, 13846}, {6481, 13847}, {6484, 8976}, {6485, 13951}, {6496, 43254}, {6497, 43255}, {6519, 42608}, {6522, 42609}, {7585, 43521}, {7586, 43522}, {7603, 11742}, {7988, 50820}, {8584, 31670}, {8981, 10137}, {9300, 43619}, {9690, 60307}, {9766, 32479}, {9778, 50867}, {9812, 50824}, {9880, 41154}, {10138, 13966}, {10165, 50807}, {10246, 28172}, {10247, 28190}, {10516, 51167}, {10620, 33586}, {10645, 43399}, {10646, 43400}, {10653, 42108}, {10654, 42109}, {10722, 48657}, {11055, 48673}, {11178, 48872}, {11179, 51163}, {11180, 55584}, {11231, 50812}, {11238, 37587}, {11278, 18526}, {11480, 42430}, {11481, 42429}, {11485, 41112}, {11486, 41113}, {11531, 28204}, {11645, 15534}, {11668, 54478}, {11738, 44555}, {12117, 38743}, {12645, 28194}, {12699, 51071}, {12816, 36967}, {12817, 36968}, {13102, 36382}, {13103, 36383}, {13340, 32062}, {13713, 45489}, {13836, 45488}, {14226, 43508}, {14241, 43507}, {14458, 60216}, {14492, 60283}, {14537, 44526}, {14641, 16226}, {14830, 36523}, {14848, 48901}, {14855, 58470}, {14915, 21969}, {15030, 54047}, {15107, 52055}, {15533, 18440}, {16200, 28160}, {16267, 43016}, {16268, 43017}, {16644, 42632}, {16645, 42631}, {17503, 54644}, {17834, 33541}, {18480, 51066}, {18481, 51103}, {18483, 51109}, {18493, 51110}, {18510, 42264}, {18512, 42263}, {18581, 42792}, {18582, 42791}, {19053, 42226}, {19054, 42225}, {19106, 41101}, {19107, 41100}, {20423, 51165}, {20582, 55639}, {21356, 55604}, {21358, 48880}, {22165, 33878}, {22236, 42506}, {22238, 42507}, {22615, 41946}, {22644, 41945}, {22793, 34628}, {22796, 36767}, {23249, 43316}, {23259, 43317}, {23334, 51123}, {25561, 48879}, {25565, 55676}, {26446, 50800}, {28146, 59503}, {28158, 50796}, {28168, 50811}, {28174, 50864}, {28178, 50810}, {28216, 51515}, {28224, 50872}, {28228, 50804}, {29181, 50955}, {29317, 47353}, {29323, 39561}, {30392, 51709}, {31162, 33179}, {31671, 60963}, {31730, 51069}, {32006, 32896}, {32424, 38800}, {32787, 42275}, {32788, 42276}, {33416, 51944}, {33417, 51945}, {33616, 33621}, {33617, 33620}, {33623, 37786}, {33625, 37785}, {33706, 48663}, {34648, 38066}, {34706, 34740}, {34707, 34739}, {34754, 36969}, {34755, 36970}, {35751, 48655}, {35770, 42576}, {35771, 42577}, {35873, 39648}, {35874, 39679}, {36329, 48656}, {36386, 48666}, {36388, 48665}, {36521, 38730}, {36749, 52100}, {36990, 50989}, {37640, 42144}, {37641, 42145}, {38028, 50819}, {38072, 48898}, {38079, 55692}, {38110, 50975}, {38112, 50809}, {39884, 54170}, {40727, 47102}, {41107, 42127}, {41108, 42126}, {41119, 42105}, {41120, 42104}, {41121, 42094}, {41122, 42093}, {42085, 43228}, {42086, 43229}, {42117, 42419}, {42118, 42420}, {42119, 49825}, {42120, 49824}, {42122, 42907}, {42123, 42906}, {42129, 42625}, {42132, 42626}, {42133, 49861}, {42134, 49862}, {42140, 42588}, {42141, 42589}, {42150, 49811}, {42151, 49810}, {42153, 42586}, {42156, 42587}, {42157, 42532}, {42158, 42533}, {42159, 42503}, {42162, 42502}, {42283, 43888}, {42284, 43887}, {42514, 49875}, {42515, 49876}, {42528, 42931}, {42529, 42930}, {42633, 42889}, {42634, 42888}, {42639, 43509}, {42640, 43510}, {42729, 54635}, {42730, 54634}, {42902, 43326}, {42903, 43327}, {42912, 43328}, {42913, 43329}, {42964, 43485}, {42965, 43486}, {42972, 42977}, {42973, 42976}, {43009, 61719}, {43314, 43562}, {43315, 43563}, {43336, 43381}, {43337, 43380}, {43342, 43515}, {43343, 43516}, {43415, 60308}, {43416, 49813}, {43417, 49812}, {44678, 51122}, {45103, 54645}, {47352, 48895}, {47354, 55610}, {48310, 55678}, {48855, 48916}, {48881, 51143}, {48889, 55633}, {48896, 55688}, {48905, 48943}, {49851, 49941}, {49852, 49942}, {50799, 50870}, {50806, 50869}, {50829, 61263}, {50863, 59388}, {50954, 51022}, {50963, 51026}, {50971, 55682}, {50977, 55618}, {50979, 51538}, {51076, 61266}, {51078, 58441}, {51164, 55685}, {51537, 55616}, {53023, 55695}, {53517, 60313}, {53520, 60314}, {54477, 60277}, {54519, 60641}, {54522, 60281}, {54582, 60238}, {54608, 60626}, {54612, 60635}, {54813, 60644}, {54934, 60228}

X(62040) = midpoint of X(i) and X(j) for these {i,j}: {5073, 15684}, {11541, 15683}, {15640, 15682}
X(62040) = reflection of X(i) in X(j) for these {i,j}: {1657, 381}, {11001, 3845}, {11178, 48942}, {11179, 51163}, {13340, 32062}, {14830, 39809}, {15681, 4}, {15683, 5}, {15684, 3146}, {15685, 2}, {15686, 3853}, {15704, 14893}, {17800, 376}, {20, 15687}, {3, 3543}, {376, 3627}, {381, 382}, {382, 15684}, {3529, 549}, {3534, 3830}, {3654, 50862}, {3655, 51118}, {3679, 33697}, {3830, 15682}, {34628, 22793}, {34707, 34739}, {34718, 5691}, {34740, 34706}, {34748, 962}, {48657, 10722}, {48872, 11178}, {48879, 25561}, {5059, 15686}, {599, 48884}, {51122, 44678}, {51705, 50869}, {51737, 51026}, {54131, 48904}, {54170, 39884}, {54173, 51022}, {55584, 11180}
X(62040) = inverse of X(3860) in orthocentroidal circle
X(62040) = inverse of X(37958) in Stammler circle
X(62040) = inverse of X(3860) in Yff hyperbola
X(62040) = complement of X(62165)
X(62040) = anticomplement of X(19710)
X(62040) = pole of line {523, 3860} with respect to the orthocentroidal circle
X(62040) = pole of line {523, 37958} with respect to the Stammler circle
X(62040) = pole of line {185, 61946} with respect to the Jerabek hyperbola
X(62040) = pole of line {6, 3860} with respect to the Kiepert hyperbola
X(62040) = pole of line {523, 3860} with respect to the Yff hyperbola
X(62040) = pole of line {69, 55634} with respect to the Wallace hyperbola
X(62040) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(64), X(44880)}}, {{A, B, C, X(264), X(3860)}}, {{A, B, C, X(265), X(15683)}}, {{A, B, C, X(468), X(54851)}}, {{A, B, C, X(632), X(18848)}}, {{A, B, C, X(1494), X(15685)}}, {{A, B, C, X(1657), X(54512)}}, {{A, B, C, X(3521), X(7486)}}, {{A, B, C, X(3529), X(18317)}}, {{A, B, C, X(3843), X(54924)}}, {{A, B, C, X(4846), X(15709)}}, {{A, B, C, X(5066), X(18550)}}, {{A, B, C, X(5094), X(54734)}}, {{A, B, C, X(11331), X(60216)}}, {{A, B, C, X(11410), X(44731)}}, {{A, B, C, X(14040), X(54551)}}, {{A, B, C, X(14490), X(52294)}}, {{A, B, C, X(15705), X(16251)}}, {{A, B, C, X(15711), X(57822)}}, {{A, B, C, X(15712), X(60122)}}, {{A, B, C, X(15719), X(18847)}}, {{A, B, C, X(15749), X(49138)}}, {{A, B, C, X(18846), X(21734)}}, {{A, B, C, X(21735), X(54667)}}, {{A, B, C, X(33286), X(54828)}}, {{A, B, C, X(52292), X(54644)}}, {{A, B, C, X(52293), X(54645)}}
X(62040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15690}, {2, 15690, 3}, {2, 15711, 15701}, {2, 15759, 15722}, {2, 30, 15685}, {2, 376, 15711}, {2, 4, 3860}, {3, 15708, 15700}, {3, 3545, 15723}, {3, 3830, 3845}, {3, 3832, 1656}, {3, 3843, 5056}, {3, 3851, 16239}, {3, 5055, 15702}, {3, 547, 5054}, {4, 11001, 15719}, {4, 12103, 5070}, {4, 12811, 3843}, {4, 20, 632}, {4, 30, 15681}, {5, 15683, 15689}, {5, 30, 15683}, {20, 15687, 5055}, {20, 5055, 14093}, {30, 14893, 15704}, {30, 15682, 3830}, {30, 15684, 382}, {30, 15686, 5059}, {30, 15687, 20}, {30, 3146, 15684}, {30, 376, 17800}, {30, 381, 1657}, {30, 3845, 11001}, {30, 3853, 15686}, {30, 549, 3529}, {376, 3832, 11539}, {381, 5054, 5079}, {382, 1656, 3627}, {382, 1657, 5076}, {546, 10304, 15703}, {547, 15705, 6980}, {548, 5071, 15707}, {632, 8703, 12100}, {1328, 43209, 6398}, {1657, 5076, 3526}, {1657, 5079, 15696}, {2043, 2044, 15712}, {3091, 10303, 17568}, {3146, 15640, 15682}, {3522, 15699, 15718}, {3524, 17578, 14893}, {3530, 3627, 4}, {3534, 15693, 15688}, {3534, 15716, 15695}, {3534, 5066, 15706}, {3534, 5072, 15698}, {3543, 15702, 15687}, {3543, 3545, 3853}, {3543, 5059, 3545}, {3544, 15687, 14269}, {3544, 3832, 3850}, {3830, 15685, 2}, {3839, 15694, 5072}, {3839, 15698, 10109}, {3845, 15686, 11812}, {3845, 5066, 3832}, {3845, 8703, 547}, {5055, 14093, 15720}, {8703, 11540, 15692}, {8703, 12100, 15710}, {10109, 15698, 15694}, {11001, 15682, 3543}, {11540, 12103, 8703}, {11541, 15683, 30}, {12100, 15720, 15693}, {12101, 15685, 15716}, {12101, 15716, 381}, {12816, 36967, 49905}, {12816, 49905, 42128}, {12817, 49906, 42125}, {14269, 15681, 3530}, {14269, 15701, 5066}, {14269, 17800, 376}, {14892, 15714, 3525}, {14893, 15704, 3524}, {15640, 15684, 3534}, {15695, 15722, 15759}, {15704, 17578, 3851}, {15765, 18585, 3544}, {28150, 50862, 3654}, {36969, 46335, 49947}, {36970, 46334, 49948}, {42096, 49947, 46335}, {42097, 49948, 46334}, {42141, 42589, 49826}, {42528, 43549, 42931}, {42529, 43548, 42930}, {42537, 52667, 43257}, {42538, 52666, 43256}, {43210, 53518, 1327}


X(62041) = X(2)X(3)∩X(495)X(4330)

Barycentrics    12*a^4-7*(b^2-c^2)^2-5*a^2*(b^2+c^2) : :
X(62041) = -21*X[2]+19*X[3], -3*X[40]+4*X[61255], -3*X[1483]+4*X[4301], -7*X[3818]+5*X[55608], -4*X[5446]+3*X[45956], -10*X[5734]+9*X[61283], -3*X[5946]+2*X[14641], -8*X[6684]+9*X[61260], -4*X[7843]+3*X[51123], -4*X[7982]+3*X[50831], -3*X[7991]+5*X[61248], -4*X[10095]+3*X[14855] and many others

X(62041) lies on these lines: {2, 3}, {40, 61255}, {61, 43401}, {62, 43402}, {141, 48942}, {355, 28182}, {395, 43001}, {396, 43000}, {397, 42965}, {398, 42964}, {485, 6468}, {486, 6469}, {495, 4330}, {496, 4325}, {515, 61297}, {516, 37705}, {542, 51182}, {952, 9589}, {962, 61295}, {1353, 29012}, {1483, 4301}, {1503, 55720}, {3357, 50709}, {3411, 5321}, {3412, 5318}, {3521, 57714}, {3564, 43621}, {3818, 55608}, {4299, 9671}, {4302, 9656}, {4309, 12943}, {4316, 10593}, {4317, 12953}, {4324, 10592}, {4333, 12019}, {4338, 37730}, {5229, 31480}, {5305, 43618}, {5339, 42634}, {5340, 42633}, {5349, 36968}, {5350, 36967}, {5351, 43545}, {5352, 43544}, {5365, 43640}, {5366, 43639}, {5446, 45956}, {5480, 48943}, {5663, 14531}, {5690, 28150}, {5734, 61283}, {5881, 28174}, {5946, 14641}, {6101, 13474}, {6241, 14449}, {6470, 42263}, {6471, 42264}, {6684, 61260}, {7354, 37602}, {7583, 42275}, {7584, 42276}, {7747, 9607}, {7756, 9606}, {7765, 18907}, {7843, 51123}, {7873, 59780}, {7982, 50831}, {7991, 61248}, {8162, 9657}, {8960, 43210}, {9644, 32047}, {9670, 18990}, {9680, 18538}, {9681, 23251}, {9693, 13903}, {9698, 53418}, {9705, 37495}, {10095, 14855}, {10112, 53779}, {10263, 14915}, {10283, 22793}, {10386, 15888}, {10483, 37722}, {10574, 13451}, {10625, 32137}, {10627, 16194}, {10721, 23236}, {11224, 28186}, {11362, 28146}, {11381, 13391}, {11439, 13340}, {11455, 37484}, {11477, 50986}, {11485, 42889}, {11486, 42888}, {11542, 42112}, {11543, 42113}, {11591, 32062}, {11749, 44967}, {12007, 15520}, {12295, 14677}, {12699, 28190}, {12702, 61251}, {13202, 34153}, {13491, 13598}, {13603, 34483}, {13607, 22791}, {13624, 61270}, {13665, 42413}, {13785, 42414}, {13925, 23253}, {13993, 23263}, {14073, 44981}, {14128, 36987}, {14848, 51029}, {14929, 32819}, {15032, 52100}, {15067, 46849}, {15072, 16881}, {15516, 29323}, {16003, 34584}, {16111, 20396}, {16772, 42099}, {16773, 42100}, {16960, 43636}, {16961, 43637}, {16962, 42909}, {16963, 42908}, {16964, 42108}, {16965, 42109}, {18350, 43576}, {18358, 48872}, {18394, 43903}, {18405, 61540}, {18480, 28158}, {18481, 61278}, {18525, 28216}, {18553, 51022}, {19106, 42144}, {19107, 42145}, {19116, 35821}, {19117, 35820}, {19130, 55686}, {19925, 31447}, {21317, 52219}, {22337, 23241}, {23249, 31487}, {23261, 43431}, {24206, 55638}, {24470, 37723}, {25555, 50987}, {25561, 50981}, {26883, 40111}, {28154, 31673}, {28168, 34773}, {28194, 50830}, {28202, 50823}, {28212, 61245}, {28224, 48661}, {29181, 55585}, {29317, 39884}, {31162, 61282}, {31414, 43408}, {31425, 61261}, {31450, 44519}, {31454, 41954}, {31666, 50802}, {32521, 52854}, {32523, 44422}, {34224, 43599}, {34754, 42683}, {34755, 42682}, {35242, 61262}, {35812, 42284}, {35813, 42283}, {35814, 42259}, {35815, 42258}, {37714, 38112}, {38081, 43174}, {38110, 48895}, {38136, 48898}, {40107, 48874}, {40273, 61276}, {40693, 42096}, {40694, 42097}, {41119, 42587}, {41120, 42586}, {41362, 52102}, {41953, 41970}, {41971, 42157}, {41972, 42158}, {42087, 42813}, {42088, 42814}, {42093, 42584}, {42094, 42585}, {42101, 42686}, {42102, 42687}, {42103, 42491}, {42104, 42123}, {42105, 42122}, {42106, 42490}, {42121, 42433}, {42124, 42434}, {42130, 43634}, {42131, 43635}, {42133, 42690}, {42134, 42691}, {42140, 42688}, {42141, 42689}, {42150, 43416}, {42151, 43417}, {42160, 42924}, {42161, 42925}, {42164, 42431}, {42165, 42432}, {42215, 42272}, {42216, 42271}, {42492, 42919}, {42493, 42918}, {42598, 43483}, {42599, 43484}, {42625, 42920}, {42626, 42921}, {42629, 43301}, {42630, 43300}, {42777, 43546}, {42778, 43547}, {42779, 43245}, {42780, 43244}, {42795, 42945}, {42796, 42944}, {42938, 44016}, {42939, 44015}, {42962, 52079}, {42963, 52080}, {42970, 43031}, {42971, 43030}, {42974, 43770}, {42975, 43769}, {43105, 43302}, {43106, 43303}, {43209, 58866}, {43211, 43503}, {43212, 43504}, {43438, 60313}, {43439, 60314}, {43493, 43552}, {43494, 43553}, {43699, 44763}, {44870, 54042}, {44882, 55696}, {48876, 48884}, {48879, 55635}, {48880, 55630}, {48881, 55625}, {48889, 55634}, {48896, 55689}, {48901, 55710}, {50865, 61288}, {50959, 55687}, {50980, 55644}, {50982, 52987}, {50991, 55600}, {51023, 55580}, {58239, 61291}, {61258, 61524}

X(62041) = midpoint of X(i) and X(j) for these {i,j}: {1657, 11541}, {3146, 5073}, {15640, 15684}
X(62041) = reflection of X(i) in X(j) for these {i,j}: {141, 48942}, {10625, 32137}, {1657, 546}, {11001, 14893}, {11749, 44967}, {13491, 13598}, {14073, 44981}, {14677, 12295}, {15681, 12101}, {15683, 5066}, {15685, 547}, {15686, 3830}, {15687, 15682}, {15704, 4}, {17800, 548}, {20, 3853}, {21317, 52219}, {21850, 48904}, {3529, 140}, {32521, 52854}, {34153, 13202}, {34773, 51118}, {45957, 10263}, {48872, 18358}, {48876, 48884}, {48906, 51163}, {5, 382}, {550, 3627}, {5059, 12103}, {5480, 48943}, {5690, 33697}, {6101, 13474}, {6241, 14449}, {61295, 962}, {8703, 3543}
X(62041) = inverse of X(61968) in orthocentroidal circle
X(62041) = inverse of X(44961) in Steiner circle
X(62041) = inverse of X(61968) in Yff hyperbola
X(62041) = complement of X(49137)
X(62041) = anticomplement of X(62144)
X(62041) = pole of line {523, 61968} with respect to the orthocentroidal circle
X(62041) = pole of line {523, 19918} with respect to the Steiner circle
X(62041) = pole of line {185, 5066} with respect to the Jerabek hyperbola
X(62041) = pole of line {6, 42902} with respect to the Kiepert hyperbola
X(62041) = pole of line {523, 61968} with respect to the Yff hyperbola
X(62041) = pole of line {69, 55633} with respect to the Wallace hyperbola
X(62041) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(64), X(44878)}}, {{A, B, C, X(547), X(3521)}}, {{A, B, C, X(1105), X(5066)}}, {{A, B, C, X(3519), X(41981)}}, {{A, B, C, X(3520), X(57714)}}, {{A, B, C, X(3526), X(18848)}}, {{A, B, C, X(3530), X(13623)}}, {{A, B, C, X(4846), X(55864)}}, {{A, B, C, X(5073), X(15318)}}, {{A, B, C, X(5076), X(6662)}}, {{A, B, C, X(8703), X(34483)}}, {{A, B, C, X(10304), X(18846)}}, {{A, B, C, X(13603), X(34484)}}, {{A, B, C, X(15022), X(18850)}}, {{A, B, C, X(15700), X(60122)}}, {{A, B, C, X(15719), X(15740)}}, {{A, B, C, X(15721), X(60007)}}, {{A, B, C, X(31361), X(46935)}}, {{A, B, C, X(33703), X(43699)}}, {{A, B, C, X(35478), X(57730)}}, {{A, B, C, X(44763), X(55576)}}, {{A, B, C, X(47478), X(60121)}}
X(62041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15687, 3858}, {3, 1656, 15721}, {3, 17578, 3861}, {3, 382, 17578}, {3, 3858, 15699}, {3, 4, 5066}, {3, 5068, 10124}, {3, 5071, 140}, {4, 10303, 381}, {4, 10304, 5072}, {4, 15698, 3091}, {4, 20, 3526}, {4, 30, 15704}, {4, 3146, 15684}, {4, 3526, 3856}, {4, 3529, 10304}, {4, 3534, 3628}, {4, 376, 15022}, {5, 14869, 5070}, {5, 382, 3627}, {5, 8703, 631}, {20, 17578, 3855}, {20, 382, 3853}, {20, 3843, 3530}, {20, 3855, 3}, {30, 12101, 15681}, {30, 12103, 5059}, {30, 140, 3529}, {30, 14893, 11001}, {30, 15682, 15687}, {30, 3543, 8703}, {30, 3627, 550}, {30, 3853, 20}, {30, 5066, 15683}, {30, 546, 1657}, {30, 547, 15685}, {30, 548, 17800}, {140, 3529, 15686}, {140, 3832, 5}, {376, 3850, 14869}, {376, 5076, 3850}, {381, 3528, 16239}, {382, 15696, 3830}, {485, 43337, 43339}, {486, 43336, 43338}, {546, 15713, 6864}, {548, 3628, 15717}, {549, 10304, 15711}, {550, 3845, 632}, {631, 3528, 15705}, {1657, 15705, 12103}, {1657, 3543, 546}, {2041, 2042, 5073}, {3146, 15640, 4}, {3523, 14269, 12811}, {3529, 3832, 15696}, {3530, 3853, 3843}, {3534, 14269, 17678}, {3627, 15704, 3857}, {3830, 15696, 3832}, {3839, 15691, 15713}, {3851, 17538, 12100}, {3854, 17538, 6863}, {5066, 10124, 5055}, {5899, 12086, 15331}, {6927, 17800, 12101}, {6943, 15683, 6880}, {7486, 15717, 15709}, {10263, 14915, 45957}, {10303, 13635, 3534}, {10303, 15712, 549}, {10303, 15759, 15712}, {10304, 15696, 548}, {11001, 14893, 17504}, {11541, 15682, 5068}, {12087, 14130, 7555}, {12101, 15681, 11539}, {12103, 16239, 3528}, {12811, 15690, 3523}, {15640, 15684, 30}, {15682, 17578, 382}, {15683, 17578, 7486}, {15686, 15687, 5071}, {15687, 15699, 3845}, {15687, 15713, 3839}, {15705, 15719, 15700}, {15765, 18585, 14892}, {29323, 51163, 48906}, {35820, 42225, 19117}, {35821, 42226, 19116}


X(62042) = X(2)X(3)∩X(8)X(28202)

Barycentrics    19*a^4-11*(b^2-c^2)^2-8*a^2*(b^2+c^2) : :
X(62042) = -11*X[2]+10*X[3], -5*X[40]+6*X[38098], -11*X[69]+8*X[55586], -8*X[182]+7*X[51177], -11*X[1352]+8*X[55592], -2*X[3244]+5*X[41869], -7*X[3619]+4*X[48879], -8*X[3626]+5*X[6361], -8*X[3629]+5*X[39874], -4*X[3631]+5*X[47353], -2*X[3655]+3*X[9812], -11*X[3818]+8*X[55609] and many others

X(62042) lies on these lines: {2, 3}, {6, 43797}, {8, 28202}, {13, 42112}, {14, 42113}, {40, 38098}, {69, 55586}, {98, 60631}, {182, 51177}, {371, 43515}, {372, 43516}, {397, 49876}, {398, 49875}, {515, 34631}, {516, 34627}, {542, 11008}, {671, 60322}, {944, 50865}, {962, 28208}, {1151, 41952}, {1152, 41951}, {1285, 5309}, {1327, 13886}, {1328, 13939}, {1350, 51022}, {1352, 55592}, {1494, 32001}, {1992, 29012}, {3068, 43791}, {3069, 43792}, {3070, 42641}, {3071, 42642}, {3163, 33630}, {3241, 28160}, {3244, 41869}, {3316, 52045}, {3317, 52046}, {3488, 3982}, {3586, 4031}, {3619, 48879}, {3626, 6361}, {3629, 39874}, {3631, 47353}, {3632, 28194}, {3654, 33697}, {3655, 9812}, {3679, 28150}, {3818, 55609}, {3849, 53143}, {4297, 50869}, {4301, 51095}, {5032, 51176}, {5334, 43106}, {5335, 43105}, {5339, 42899}, {5340, 42898}, {5343, 49948}, {5344, 49947}, {5349, 49906}, {5350, 49905}, {5351, 42776}, {5352, 42775}, {5365, 33603}, {5366, 33602}, {5368, 11648}, {5476, 48943}, {5485, 54845}, {5587, 34638}, {5603, 28172}, {5657, 28158}, {5691, 50810}, {5818, 50808}, {5921, 51179}, {5984, 12355}, {6154, 10728}, {6221, 43507}, {6241, 21969}, {6329, 48905}, {6398, 43508}, {6435, 6561}, {6436, 6560}, {6447, 43376}, {6448, 43377}, {6459, 42537}, {6460, 42538}, {6470, 43385}, {6471, 43384}, {6684, 50813}, {6776, 51024}, {7581, 42272}, {7582, 42271}, {7612, 54720}, {7737, 14075}, {7738, 14537}, {7750, 32868}, {7753, 43619}, {7788, 32822}, {7811, 52713}, {7967, 28164}, {8227, 50815}, {8716, 23334}, {9541, 43789}, {9681, 43570}, {9741, 32479}, {9880, 35021}, {10147, 43409}, {10148, 43410}, {10155, 54494}, {10595, 50811}, {10645, 43231}, {10646, 43230}, {10653, 42140}, {10654, 42141}, {10721, 24981}, {10723, 12243}, {11178, 55613}, {11179, 29323}, {11180, 29181}, {11645, 50974}, {12117, 39838}, {12245, 28198}, {12383, 56567}, {12512, 50870}, {12699, 20057}, {12816, 42152}, {12817, 42149}, {12818, 31412}, {12819, 42561}, {12820, 42430}, {12821, 42429}, {13202, 20125}, {13846, 23253}, {13847, 23263}, {13925, 43560}, {13993, 43561}, {14226, 23261}, {14241, 23251}, {14458, 60636}, {14488, 54616}, {14810, 50956}, {14912, 20583}, {14927, 20423}, {15808, 38021}, {16261, 36987}, {16267, 33604}, {16268, 33605}, {16644, 52079}, {16645, 52080}, {16964, 42514}, {16965, 42515}, {18405, 50709}, {18440, 54174}, {18553, 50994}, {18842, 52519}, {18843, 60127}, {19053, 35821}, {19054, 35820}, {19106, 37640}, {19107, 37641}, {19116, 43520}, {19117, 43519}, {19875, 50866}, {19924, 51023}, {20049, 28224}, {20050, 28204}, {20070, 50798}, {21356, 48873}, {21358, 51167}, {22236, 49825}, {22238, 49824}, {22505, 52695}, {22615, 42414}, {22644, 42413}, {22793, 38314}, {23249, 41945}, {23259, 41946}, {23267, 42263}, {23269, 32787}, {23273, 42264}, {23275, 32788}, {25055, 50819}, {25406, 55707}, {26883, 43572}, {28146, 34632}, {28154, 59387}, {28174, 31145}, {28178, 34718}, {28182, 59417}, {29317, 54170}, {31423, 50803}, {31663, 50799}, {31670, 55715}, {31672, 60983}, {31673, 38074}, {32532, 60337}, {32823, 59634}, {32826, 37671}, {33698, 53103}, {33706, 52854}, {34089, 43254}, {34091, 43255}, {35242, 38076}, {35822, 42275}, {35823, 42276}, {36836, 43501}, {36843, 43502}, {36967, 42105}, {36968, 42104}, {36969, 42119}, {36970, 42120}, {36990, 50967}, {38064, 48895}, {38741, 41135}, {39884, 51216}, {40330, 50965}, {40693, 42635}, {40694, 42636}, {41100, 42160}, {41101, 42161}, {41107, 43486}, {41108, 43485}, {41112, 42157}, {41113, 42158}, {41119, 43201}, {41120, 43202}, {41943, 42099}, {41944, 42100}, {41971, 42900}, {41972, 42901}, {42085, 42629}, {42086, 42630}, {42087, 43403}, {42088, 43404}, {42096, 42941}, {42097, 42940}, {42101, 42625}, {42102, 42626}, {42103, 42528}, {42106, 42529}, {42108, 42155}, {42109, 42154}, {42117, 43111}, {42118, 43110}, {42130, 42986}, {42131, 42987}, {42133, 42586}, {42134, 42587}, {42144, 42974}, {42145, 42975}, {42150, 42973}, {42151, 42972}, {42159, 42938}, {42162, 42939}, {42164, 49827}, {42165, 49826}, {42274, 43518}, {42277, 43517}, {42283, 43510}, {42284, 43509}, {42431, 42588}, {42432, 42589}, {42433, 42495}, {42434, 42494}, {42510, 43633}, {42511, 43632}, {42545, 42612}, {42546, 42613}, {42608, 43413}, {42609, 43414}, {42633, 43243}, {42634, 43242}, {42817, 43473}, {42818, 43474}, {42888, 42983}, {42889, 42982}, {42910, 43293}, {42911, 43292}, {42912, 43540}, {42913, 43541}, {42958, 54479}, {42959, 54480}, {43008, 43492}, {43009, 43491}, {43100, 43446}, {43107, 43447}, {43273, 51163}, {43444, 54576}, {43445, 54577}, {43463, 43873}, {43464, 43874}, {43571, 60302}, {43636, 43771}, {43637, 43772}, {43676, 54612}, {43790, 53519}, {44882, 51026}, {46027, 54036}, {46264, 55712}, {46267, 48898}, {46453, 53419}, {46847, 54041}, {47352, 50975}, {47354, 48872}, {48476, 49092}, {48477, 49093}, {48661, 50872}, {48662, 51215}, {48884, 54173}, {48901, 51029}, {48942, 50977}, {50809, 53620}, {50821, 50867}, {50828, 50874}, {50955, 61044}, {50979, 51213}, {50983, 51164}, {50990, 52987}, {51043, 51063}, {51044, 52852}, {51120, 61296}, {51130, 55711}, {51134, 55671}, {51143, 55626}, {51178, 55722}, {53100, 54637}, {53102, 54707}, {53105, 60185}, {53109, 54523}, {60132, 60143}, {60142, 60284}, {60150, 60219}, {60281, 60330}

X(62042) = midpoint of X(i) and X(j) for these {i,j}: {3146, 15640}, {11001, 11541}
X(62042) = reflection of X(i) in X(j) for these {i,j}: {1350, 51022}, {1657, 3845}, {11001, 4}, {12117, 39838}, {12243, 10723}, {12245, 50864}, {12512, 50870}, {14927, 20423}, {15640, 5073}, {15681, 15687}, {15682, 3146}, {15683, 381}, {15685, 5}, {15704, 12101}, {17800, 8703}, {2, 382}, {20, 3830}, {20070, 50798}, {20423, 48904}, {376, 3543}, {3529, 2}, {3534, 3627}, {3543, 15684}, {3654, 33697}, {33706, 52854}, {39874, 54132}, {4, 15682}, {40, 50862}, {4297, 50869}, {43273, 51163}, {44882, 51026}, {48872, 47354}, {5059, 3534}, {5476, 48943}, {50810, 5691}, {50811, 51118}, {50818, 962}, {50872, 48661}, {50967, 36990}, {50974, 51212}, {50977, 48942}, {5984, 12355}, {51043, 51063}, {51044, 52852}, {51178, 55722}, {51179, 5921}, {51215, 48662}, {54036, 46027}, {54132, 48910}, {54173, 48884}, {54174, 18440}, {6241, 21969}, {6776, 51024}, {61044, 50955}, {61296, 51120}, {944, 50865}
X(62042) = inverse of X(44267) in anticomplementary circle
X(62042) = inverse of X(61967) in orthocentroidal circle
X(62042) = inverse of X(61967) in Yff hyperbola
X(62042) = complement of X(62166)
X(62042) = anticomplement of X(15681)
X(62042) = pole of line {523, 44267} with respect to the anticomplementary circle
X(62042) = pole of line {523, 61967} with respect to the orthocentroidal circle
X(62042) = pole of line {185, 61945} with respect to the Jerabek hyperbola
X(62042) = pole of line {6, 51129} with respect to the Kiepert hyperbola
X(62042) = pole of line {523, 61967} with respect to the Yff hyperbola
X(62042) = pole of line {69, 15688} with respect to the Wallace hyperbola
X(62042) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15688)}}, {{A, B, C, X(265), X(15685)}}, {{A, B, C, X(297), X(60631)}}, {{A, B, C, X(468), X(60322)}}, {{A, B, C, X(1138), X(13473)}}, {{A, B, C, X(1494), X(3529)}}, {{A, B, C, X(1597), X(14487)}}, {{A, B, C, X(3524), X(18847)}}, {{A, B, C, X(3525), X(18848)}}, {{A, B, C, X(3528), X(18846)}}, {{A, B, C, X(3544), X(18851)}}, {{A, B, C, X(4232), X(54845)}}, {{A, B, C, X(4846), X(15694)}}, {{A, B, C, X(5067), X(18849)}}, {{A, B, C, X(5071), X(18850)}}, {{A, B, C, X(7409), X(54717)}}, {{A, B, C, X(7486), X(54763)}}, {{A, B, C, X(8797), X(47478)}}, {{A, B, C, X(10303), X(54660)}}, {{A, B, C, X(10304), X(54667)}}, {{A, B, C, X(11331), X(60636)}}, {{A, B, C, X(15022), X(60121)}}, {{A, B, C, X(15683), X(54512)}}, {{A, B, C, X(15687), X(36889)}}, {{A, B, C, X(15692), X(16251)}}, {{A, B, C, X(15710), X(57894)}}, {{A, B, C, X(15715), X(57822)}}, {{A, B, C, X(15717), X(60122)}}, {{A, B, C, X(18852), X(41106)}}, {{A, B, C, X(31361), X(46936)}}, {{A, B, C, X(31371), X(55857)}}, {{A, B, C, X(33287), X(54828)}}, {{A, B, C, X(37174), X(54720)}}, {{A, B, C, X(37453), X(60185)}}, {{A, B, C, X(50692), X(54552)}}, {{A, B, C, X(52284), X(52519)}}, {{A, B, C, X(52301), X(60132)}}, {{A, B, C, X(53857), X(60337)}}
X(62042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 3530}, {2, 14269, 3855}, {2, 15720, 15709}, {2, 17504, 631}, {2, 20, 15688}, {2, 30, 3529}, {2, 3543, 15687}, {2, 3839, 3851}, {2, 546, 3545}, {2, 550, 15710}, {4, 17538, 5067}, {4, 20, 3525}, {4, 30, 11001}, {4, 3528, 3544}, {5, 14093, 15721}, {5, 30, 15685}, {20, 15705, 15690}, {20, 3854, 3}, {30, 12101, 15704}, {30, 15682, 4}, {30, 15684, 3543}, {30, 15687, 15681}, {30, 3146, 15682}, {30, 3534, 5059}, {30, 3627, 3534}, {30, 381, 15683}, {30, 3845, 1657}, {30, 5073, 15640}, {30, 8703, 17800}, {140, 5079, 17580}, {376, 15698, 14093}, {376, 15715, 3528}, {376, 381, 15702}, {381, 15686, 15692}, {381, 15702, 5071}, {381, 3534, 15718}, {382, 15688, 3830}, {382, 3530, 17578}, {382, 3851, 3627}, {546, 5079, 13587}, {547, 14893, 3856}, {631, 3861, 6977}, {1656, 15690, 15705}, {1657, 15694, 15691}, {1657, 17578, 3090}, {3146, 3543, 15684}, {3522, 5055, 15719}, {3524, 11001, 17538}, {3534, 10304, 16434}, {3534, 3627, 3839}, {3534, 3851, 17504}, {3543, 15683, 381}, {3543, 5059, 547}, {3830, 15688, 546}, {3845, 15691, 15694}, {5054, 12101, 3832}, {5054, 15704, 15697}, {5066, 15714, 15723}, {5076, 15689, 5066}, {6895, 13741, 7406}, {10304, 15691, 376}, {10304, 17578, 3845}, {11001, 11541, 30}, {11111, 14093, 10299}, {11541, 15682, 3524}, {11645, 51212, 50974}, {11737, 15687, 14269}, {11737, 15700, 2}, {12101, 15704, 5054}, {12102, 15696, 5068}, {14093, 15721, 15698}, {14269, 15681, 15700}, {14269, 15700, 11737}, {14890, 17504, 15707}, {15681, 15684, 382}, {15681, 15700, 550}, {15683, 15692, 15686}, {15689, 15723, 15714}, {15691, 15694, 10304}, {15694, 15716, 549}, {15695, 15699, 15717}, {15700, 15710, 15715}, {15714, 15723, 3523}, {16239, 17800, 20}, {18586, 18587, 12102}, {21356, 48873, 50966}, {38314, 50873, 22793}, {42133, 42943, 43543}, {42134, 42942, 43542}, {42150, 42973, 49813}, {42151, 42972, 49812}, {42528, 43400, 42103}, {42529, 43399, 42106}, {43256, 43522, 43387}, {43257, 43521, 43386}, {43797, 43798, 6}, {51029, 59373, 48901}


X(62043) = X(2)X(3)∩X(13)X(43636)

Barycentrics    40*a^4-23*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62043) = -23*X[2]+21*X[3], -6*X[1699]+5*X[50832], -25*X[4668]+28*X[61253], -5*X[4677]+6*X[61246], -3*X[5050]+5*X[51029], -5*X[5476]+4*X[51135], -X[6144]+7*X[43621], -3*X[10246]+5*X[50873], -3*X[26446]+5*X[50866], -5*X[31162]+4*X[61281], -5*X[34628]+7*X[61277], -6*X[40273]+5*X[51105] and many others

X(62043) lies on circumconic {{A, B, C, X(41987), X(54924)}} and on these lines: {2, 3}, {13, 43636}, {14, 43637}, {597, 48943}, {1699, 50832}, {3625, 28198}, {3630, 19924}, {4668, 61253}, {4669, 28146}, {4677, 61246}, {5050, 51029}, {5318, 42976}, {5321, 42977}, {5476, 51135}, {6144, 43621}, {6199, 43521}, {6395, 43522}, {6480, 43380}, {6481, 43381}, {9693, 60303}, {10246, 50873}, {12816, 42087}, {12817, 42088}, {19106, 42633}, {19107, 42634}, {22165, 29317}, {26446, 50866}, {28150, 50814}, {28154, 38127}, {28158, 38112}, {28160, 51082}, {28164, 61283}, {28168, 50824}, {28172, 51103}, {28174, 50817}, {28178, 37712}, {28186, 51093}, {28190, 50865}, {28194, 61245}, {28208, 61295}, {28216, 50864}, {29012, 51136}, {29323, 50979}, {31162, 61281}, {34628, 61277}, {35255, 43503}, {35256, 43504}, {35820, 42417}, {35821, 42418}, {37832, 54591}, {37835, 54592}, {40273, 51105}, {41100, 42145}, {41101, 42144}, {41107, 42109}, {41108, 42108}, {41112, 42096}, {41113, 42097}, {41119, 42122}, {41120, 42123}, {41121, 42693}, {41122, 42692}, {41869, 61292}, {42101, 42928}, {42102, 42929}, {42104, 49906}, {42105, 49905}, {42112, 43416}, {42113, 43417}, {42121, 42429}, {42124, 42430}, {42126, 49875}, {42127, 49876}, {42130, 49813}, {42131, 49812}, {42136, 49948}, {42137, 49947}, {42140, 42514}, {42141, 42515}, {42159, 42586}, {42162, 42587}, {42262, 43563}, {42265, 43562}, {42283, 42640}, {42284, 42639}, {42502, 43550}, {42503, 43551}, {42506, 43022}, {42507, 43023}, {42510, 43631}, {42511, 43630}, {42528, 43476}, {42529, 43475}, {42940, 46334}, {42941, 46335}, {42942, 44015}, {42943, 44016}, {43006, 43235}, {43007, 43234}, {43209, 53520}, {43210, 53517}, {43318, 53130}, {43319, 53131}, {43418, 43500}, {43419, 43499}, {43491, 61719}, {48874, 50991}, {48942, 54169}, {50811, 61280}, {50822, 59387}, {50863, 59503}, {50874, 61270}, {50987, 53023}, {51066, 61257}, {51080, 51709}, {51705, 61273}

X(62043) = midpoint of X(i) and X(j) for these {i,j}: {11541, 15681}
X(62043) = reflection of X(i) in X(j) for these {i,j}: {1657, 14893}, {11001, 12101}, {15681, 3853}, {15683, 546}, {15685, 5066}, {15686, 3627}, {15704, 15687}, {3529, 547}, {3627, 15684}, {3845, 15682}, {549, 382}, {550, 3543}, {5059, 15691}, {597, 48943}, {54169, 48942}
X(62043) = complement of X(62167)
X(62043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15689}, {2, 15693, 14890}, {2, 15706, 11812}, {2, 3830, 14893}, {2, 3843, 5066}, {2, 8703, 15712}, {4, 14093, 14892}, {5, 17504, 10124}, {30, 12101, 11001}, {30, 14893, 1657}, {30, 15682, 3845}, {30, 15684, 3627}, {30, 15687, 15704}, {30, 15691, 5059}, {30, 3543, 550}, {30, 3627, 15686}, {30, 3853, 15681}, {30, 5066, 15685}, {30, 546, 15683}, {30, 547, 3529}, {376, 3830, 3860}, {376, 3854, 5054}, {382, 11001, 12101}, {550, 3627, 3843}, {1657, 3627, 5}, {3090, 15689, 14891}, {3090, 3843, 3850}, {3534, 3845, 15713}, {3543, 5054, 12102}, {3850, 14893, 3839}, {3853, 15681, 15699}, {3854, 16239, 6855}, {3860, 5066, 3854}, {5059, 14269, 15691}, {8703, 14869, 15711}, {10124, 12100, 15701}, {11001, 12101, 549}, {11541, 15681, 30}, {11812, 12812, 2}, {12102, 12103, 3090}, {14269, 15691, 632}, {15684, 15689, 382}, {15687, 15704, 11539}, {15690, 17504, 8703}


X(62044) = X(2)X(3)∩X(15)X(43325)

Barycentrics    16*a^4-9*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62044) = -27*X[2]+25*X[3], -9*X[141]+8*X[55617], -3*X[185]+4*X[16982], -9*X[373]+8*X[55286], -2*X[575]+3*X[51163], -9*X[946]+8*X[58232], -9*X[1483]+10*X[16189], -4*X[3631]+5*X[39884], -4*X[3636]+5*X[22793], -9*X[3818]+7*X[55611], -9*X[5480]+8*X[55704], -27*X[5886]+25*X[58229] and many others

X(62044) lies on these lines: {2, 3}, {15, 43325}, {16, 43324}, {61, 42109}, {62, 42108}, {141, 55617}, {185, 16982}, {373, 55286}, {395, 43330}, {396, 43331}, {397, 43009}, {398, 43008}, {486, 17852}, {575, 51163}, {946, 58232}, {952, 58245}, {1353, 48910}, {1483, 16189}, {1503, 55721}, {1994, 52100}, {3592, 42275}, {3594, 42276}, {3626, 28150}, {3629, 29012}, {3631, 39884}, {3632, 28174}, {3636, 22793}, {3818, 55611}, {5237, 42135}, {5238, 42138}, {5351, 42101}, {5352, 42102}, {5365, 42497}, {5366, 42496}, {5480, 55704}, {5690, 28154}, {5691, 28182}, {5886, 58229}, {6154, 38629}, {6329, 48901}, {6361, 59400}, {6419, 42225}, {6420, 42226}, {6425, 22644}, {6426, 22615}, {6429, 43337}, {6430, 43336}, {6447, 23249}, {6448, 23259}, {6519, 13925}, {6522, 13993}, {6564, 41948}, {6565, 41947}, {7982, 28186}, {7991, 28178}, {8981, 41961}, {9579, 15935}, {10147, 12818}, {10148, 12819}, {10222, 28164}, {10386, 12943}, {10627, 32062}, {11008, 55724}, {11455, 31834}, {11477, 43621}, {11482, 14927}, {11801, 15021}, {12699, 61283}, {13391, 45187}, {13491, 16625}, {13846, 43523}, {13847, 43524}, {13903, 43507}, {13961, 43508}, {13966, 41962}, {14023, 53143}, {14641, 15012}, {14677, 36253}, {14881, 32523}, {15025, 38788}, {15044, 61548}, {15048, 41940}, {15178, 51118}, {15808, 38034}, {15860, 42459}, {16241, 43231}, {16242, 43230}, {16808, 42947}, {16809, 42946}, {16964, 42613}, {16965, 42612}, {18358, 55614}, {18381, 50709}, {18483, 31666}, {19116, 42264}, {19117, 42263}, {20054, 58249}, {20190, 38136}, {21357, 32340}, {21850, 22330}, {22234, 48904}, {22236, 42112}, {22238, 42113}, {22505, 35022}, {22515, 35021}, {22791, 28168}, {22799, 35023}, {24981, 38632}, {28158, 33697}, {28172, 34773}, {28202, 34641}, {29181, 55583}, {29317, 55588}, {31425, 50799}, {31652, 53418}, {31670, 53858}, {31673, 38112}, {32789, 43312}, {32790, 43313}, {34153, 38791}, {34573, 55652}, {34584, 38626}, {34628, 61278}, {34747, 61297}, {34754, 42781}, {34755, 42782}, {36836, 42105}, {36843, 42104}, {36987, 45958}, {37832, 42798}, {37835, 42797}, {38110, 48896}, {40107, 51022}, {41963, 42639}, {41964, 42640}, {41977, 42814}, {41978, 42813}, {42096, 42161}, {42097, 42160}, {42099, 42166}, {42100, 42163}, {42117, 42165}, {42118, 42164}, {42119, 42889}, {42120, 42888}, {42122, 42162}, {42123, 42159}, {42126, 42416}, {42127, 42415}, {42133, 42917}, {42134, 42916}, {42140, 42923}, {42141, 42922}, {42147, 42779}, {42148, 42780}, {42153, 43420}, {42154, 43111}, {42155, 43110}, {42156, 43421}, {42157, 42633}, {42158, 42634}, {42266, 53513}, {42267, 53516}, {42268, 43315}, {42269, 43314}, {42545, 42990}, {42546, 42991}, {42793, 49908}, {42794, 49907}, {42938, 42943}, {42939, 42942}, {42940, 43633}, {42941, 43632}, {42958, 43476}, {42959, 43475}, {42978, 43247}, {42979, 43246}, {42988, 43634}, {42989, 43635}, {43193, 43417}, {43194, 43416}, {43316, 43515}, {43317, 43516}, {43588, 44935}, {43676, 54934}, {44882, 48943}, {45186, 45957}, {46849, 54042}, {48874, 48884}, {48876, 55597}, {48880, 55628}, {48881, 48942}, {48898, 55694}, {48905, 59399}, {50865, 61286}, {51538, 53092}, {53100, 60626}, {53105, 60335}, {53109, 54920}, {55595, 61545}, {58225, 61269}, {60132, 60210}

X(62044) = midpoint of X(i) and X(j) for these {i,j}: {3, 11541}
X(62044) = reflection of X(i) in X(j) for these {i,j}: {1353, 48910}, {1483, 41869}, {1657, 3853}, {15683, 12101}, {15685, 14893}, {15704, 3627}, {17800, 140}, {3529, 546}, {3627, 3146}, {3845, 15684}, {44755, 53779}, {44882, 48943}, {45957, 45186}, {48874, 48884}, {48881, 48942}, {48906, 48904}, {549, 15682}, {550, 382}, {5059, 548}
X(62044) = complement of X(49139)
X(62044) = anticomplement of X(62151)
X(62044) = pole of line {185, 12811} with respect to the Jerabek hyperbola
X(62044) = pole of line {69, 55630} with respect to the Wallace hyperbola
X(62044) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(12811)}}, {{A, B, C, X(3521), X(35018)}}, {{A, B, C, X(5054), X(18848)}}, {{A, B, C, X(15682), X(18296)}}, {{A, B, C, X(15706), X(60122)}}, {{A, B, C, X(16835), X(47486)}}, {{A, B, C, X(32533), X(49135)}}, {{A, B, C, X(37453), X(60335)}}, {{A, B, C, X(46848), X(52294)}}
X(62044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11541, 30}, {3, 12102, 3857}, {3, 12811, 632}, {3, 15022, 140}, {3, 4, 12811}, {4, 15696, 547}, {4, 20, 5054}, {4, 5054, 3859}, {4, 5070, 3860}, {5, 550, 17504}, {20, 3533, 15695}, {20, 3845, 15712}, {20, 5076, 3628}, {30, 12101, 15683}, {30, 140, 17800}, {30, 14893, 15685}, {30, 15684, 3845}, {30, 3146, 3627}, {30, 3627, 15704}, {30, 3853, 1657}, {30, 546, 3529}, {30, 548, 5059}, {382, 15681, 4}, {382, 15720, 3830}, {382, 1657, 14269}, {382, 17800, 3855}, {382, 5059, 11737}, {382, 550, 15687}, {546, 3530, 5079}, {548, 11737, 15720}, {548, 3830, 3858}, {548, 3858, 11539}, {549, 3845, 14892}, {550, 3530, 8703}, {1657, 14269, 3528}, {1657, 15682, 3853}, {1657, 15695, 20}, {2043, 2044, 15706}, {2049, 5079, 1656}, {3091, 3146, 15682}, {3146, 3529, 382}, {3523, 6958, 548}, {3526, 5070, 16351}, {3529, 3855, 17538}, {3529, 5079, 12103}, {3534, 17578, 3850}, {3534, 6848, 5066}, {3544, 10299, 16857}, {3544, 13587, 3851}, {3627, 15704, 5}, {3627, 3845, 5076}, {3627, 3857, 12102}, {3856, 15691, 3523}, {5054, 5070, 3533}, {5056, 7377, 3545}, {5076, 15695, 3091}, {5079, 15694, 6933}, {8703, 11539, 15692}, {12103, 12811, 3}, {14869, 15687, 546}, {14869, 15704, 550}, {14892, 15695, 549}, {15156, 15157, 2070}, {15687, 15704, 14869}, {15692, 15720, 3530}, {29012, 53779, 44755}, {42108, 43106, 42630}, {42109, 43105, 42629}, {42112, 42137, 43630}, {42112, 43630, 43647}, {42113, 42136, 43631}, {42113, 43631, 43648}


X(62045) = X(2)X(3)∩X(6)X(43310)

Barycentrics    25*a^4-14*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62045) = -14*X[2]+13*X[3], -4*X[40]+5*X[50797], -5*X[355]+4*X[50814], -7*X[599]+6*X[55596], -5*X[946]+4*X[51080], -4*X[1350]+5*X[50954], -5*X[1351]+4*X[51136], -5*X[1352]+4*X[50970], -5*X[1482]+4*X[51082], -4*X[4297]+5*X[50806], -16*X[4746]+13*X[12702], -10*X[4816]+13*X[18525] and many others

X(62045) lies on these lines: {2, 3}, {6, 43310}, {15, 42587}, {16, 42586}, {40, 50797}, {355, 50814}, {599, 55596}, {946, 51080}, {1327, 13903}, {1328, 13961}, {1350, 50954}, {1351, 51136}, {1352, 50970}, {1482, 51082}, {1587, 42537}, {1588, 42538}, {3068, 43321}, {3069, 43320}, {3241, 28190}, {3655, 28172}, {3679, 28154}, {4297, 50806}, {4746, 12702}, {4816, 18525}, {5339, 46334}, {5340, 46335}, {5480, 51135}, {5818, 50867}, {6221, 53517}, {6361, 61253}, {6398, 53520}, {6470, 35820}, {6471, 35821}, {6776, 51172}, {8227, 50874}, {9668, 37602}, {9812, 61280}, {10248, 50819}, {10516, 55630}, {11178, 55615}, {11224, 28160}, {11485, 42898}, {11486, 42899}, {11645, 50962}, {11898, 19924}, {12512, 50799}, {12645, 28198}, {12816, 36836}, {12817, 36843}, {12820, 43199}, {12821, 43200}, {14848, 48905}, {15038, 35237}, {15516, 43273}, {15520, 29323}, {16194, 54047}, {18440, 55585}, {18510, 42276}, {18512, 42275}, {22615, 43209}, {22644, 43210}, {25561, 55638}, {28146, 34718}, {28150, 59503}, {28158, 38127}, {28164, 61287}, {28168, 31162}, {28178, 34627}, {28182, 34632}, {28186, 34748}, {28194, 61244}, {28208, 48661}, {28216, 31145}, {31673, 38066}, {34648, 61257}, {35450, 50709}, {36967, 42817}, {36968, 42818}, {36969, 42130}, {36970, 42131}, {36990, 55590}, {39899, 43621}, {40273, 50873}, {40330, 51217}, {41943, 42094}, {41944, 42093}, {41951, 53131}, {41952, 53130}, {42095, 43400}, {42096, 42974}, {42097, 42975}, {42098, 43399}, {42112, 42815}, {42113, 42816}, {42115, 42692}, {42116, 42693}, {42127, 61719}, {42258, 42572}, {42259, 42573}, {42413, 52047}, {42414, 52048}, {42429, 42996}, {42430, 42997}, {42488, 43475}, {42489, 43476}, {42512, 42684}, {42513, 42685}, {42584, 43404}, {42585, 43403}, {42625, 43373}, {42626, 43372}, {42629, 43245}, {42630, 43244}, {42950, 43294}, {42951, 43295}, {42972, 43193}, {42973, 43194}, {43632, 49947}, {43633, 49948}, {44882, 50963}, {46267, 53023}, {47352, 48896}, {48662, 51175}, {48872, 55608}, {48873, 51022}, {48879, 55634}, {48884, 55601}, {48889, 51167}, {48895, 55689}, {48901, 51173}, {48910, 55716}, {48942, 55625}, {48943, 55696}, {50864, 61246}, {50975, 55692}, {50976, 58445}, {50989, 55588}, {50991, 55602}, {51023, 55584}, {51118, 61277}, {51177, 51732}, {55686, 59411}

X(62045) = midpoint of X(i) and X(j) for these {i,j}: {2, 11541}
X(62045) = reflection of X(i) in X(j) for these {i,j}: {1657, 3830}, {11001, 3627}, {15681, 3543}, {15683, 15687}, {15685, 4}, {17800, 2}, {3, 15682}, {381, 15684}, {3529, 3845}, {3534, 382}, {3830, 3146}, {43273, 48904}, {48873, 51022}, {5059, 8703}, {5073, 15640}, {50805, 48661}, {51175, 48662}, {55584, 51023}
X(62045) = inverse of X(61965) in orthocentroidal circle
X(62045) = inverse of X(61965) in Yff hyperbola
X(62045) = complement of X(62169)
X(62045) = anticomplement of X(44903)
X(62045) = pole of line {523, 61965} with respect to the orthocentroidal circle
X(62045) = pole of line {6, 61965} with respect to the Kiepert hyperbola
X(62045) = pole of line {523, 61965} with respect to the Yff hyperbola
X(62045) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1494), X(17800)}}, {{A, B, C, X(14869), X(18848)}}, {{A, B, C, X(18550), X(38071)}}, {{A, B, C, X(44682), X(60122)}}
X(62045) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 30}, {2, 30, 17800}, {2, 6949, 15690}, {3, 15681, 15691}, {3, 5055, 15713}, {3, 5068, 3526}, {4, 20, 14869}, {4, 30, 15685}, {5, 376, 15718}, {20, 14269, 15693}, {30, 15640, 5073}, {30, 15687, 15683}, {30, 3146, 3830}, {30, 3627, 11001}, {30, 3845, 3529}, {30, 8703, 5059}, {376, 14893, 15703}, {376, 3543, 14893}, {381, 14093, 15723}, {381, 15693, 547}, {381, 15700, 1656}, {1657, 14893, 14093}, {1657, 3146, 382}, {1657, 3830, 5054}, {3091, 15690, 15707}, {3146, 11541, 12103}, {3146, 3839, 15682}, {3523, 3860, 5055}, {3528, 17567, 3530}, {3529, 3845, 15689}, {3545, 15695, 15720}, {3545, 15704, 15695}, {3627, 16239, 4}, {3830, 14269, 12102}, {3830, 15685, 12100}, {3830, 15722, 3845}, {3839, 3855, 3860}, {3861, 15688, 6887}, {5054, 15716, 3523}, {5055, 11001, 15696}, {5071, 15715, 15709}, {10124, 15687, 3839}, {10303, 15677, 15702}, {10304, 12101, 3851}, {11001, 15716, 3534}, {11737, 15681, 15688}, {11737, 15699, 5071}, {12100, 14893, 11737}, {12100, 15686, 376}, {12103, 17800, 1657}, {12812, 15692, 15694}, {14093, 15723, 15700}, {14269, 15681, 15715}, {14269, 15693, 5072}, {14893, 15691, 10124}, {14893, 15703, 381}, {15681, 15684, 3543}, {15682, 15683, 15687}, {15683, 15687, 3}, {15683, 15691, 15681}, {15683, 17578, 15721}, {15685, 15694, 15686}, {15686, 15687, 15699}, {15688, 16239, 15716}, {15699, 15713, 16239}, {28208, 48661, 50805}, {36970, 43637, 43646}, {43310, 43311, 6}


X(62046) = X(2)X(3)∩X(13)X(43327)

Barycentrics    29*a^4-16*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62046) = -16*X[2]+15*X[3], -6*X[165]+7*X[50800], -15*X[1482]+14*X[51094], -2*X[3629]+5*X[43621], -128*X[3636]+125*X[58233], -3*X[5790]+4*X[50862], -3*X[5886]+4*X[50869], -3*X[10175]+4*X[50870], -7*X[10248]+6*X[38022], -8*X[11178]+7*X[55616], -5*X[12017]+8*X[48943], -3*X[14561]+4*X[51026] and many others

X(62046) lies on these lines: {2, 3}, {13, 43327}, {14, 43326}, {165, 50800}, {485, 10145}, {486, 10146}, {519, 58247}, {1327, 41954}, {1328, 17851}, {1482, 51094}, {3629, 43621}, {3632, 28198}, {3636, 58233}, {3654, 28158}, {3656, 28172}, {4677, 28202}, {5093, 29323}, {5318, 49811}, {5321, 49810}, {5334, 43109}, {5335, 43108}, {5339, 42533}, {5340, 42532}, {5418, 43562}, {5420, 43563}, {5790, 50862}, {5886, 50869}, {6472, 41969}, {6473, 41970}, {6474, 22644}, {6475, 22615}, {6500, 42576}, {6501, 42577}, {8148, 28208}, {8976, 12818}, {9690, 13846}, {9691, 23251}, {10175, 50870}, {10247, 28168}, {10248, 38022}, {11178, 55616}, {11485, 41971}, {11486, 41972}, {11645, 44456}, {11648, 21309}, {12017, 48943}, {12816, 42099}, {12817, 42100}, {12819, 13951}, {12820, 42626}, {12821, 42625}, {13665, 43210}, {13785, 43209}, {13847, 43415}, {14561, 51026}, {14848, 51163}, {15533, 55584}, {15534, 29012}, {15655, 18362}, {16962, 42587}, {16963, 42586}, {18487, 38292}, {18510, 43256}, {18512, 43257}, {18525, 34641}, {19106, 49947}, {19107, 49948}, {19569, 22253}, {19924, 40341}, {20054, 58250}, {20583, 31670}, {21358, 48879}, {22246, 44526}, {22793, 51105}, {25406, 51173}, {25561, 55639}, {28146, 50798}, {28160, 51093}, {28164, 51095}, {28178, 50864}, {28186, 50805}, {28232, 50804}, {29317, 50955}, {31884, 50957}, {32479, 51122}, {32900, 41869}, {33602, 42496}, {33603, 42497}, {34595, 58220}, {34628, 37624}, {34748, 48661}, {35822, 42641}, {35823, 42642}, {36521, 38743}, {36523, 38741}, {36967, 49903}, {36968, 49904}, {36969, 42976}, {36970, 42977}, {37832, 43231}, {37835, 43230}, {38034, 50819}, {38072, 48896}, {38136, 50975}, {38138, 50809}, {38140, 50812}, {39593, 43136}, {39884, 50990}, {41100, 42097}, {41101, 42096}, {41112, 42112}, {41113, 42113}, {41119, 42087}, {41120, 42088}, {41121, 42116}, {41122, 42115}, {42093, 42429}, {42094, 42430}, {42107, 42985}, {42108, 42975}, {42109, 42974}, {42110, 42984}, {42117, 49826}, {42118, 49827}, {42122, 49862}, {42123, 49861}, {42126, 43106}, {42127, 43105}, {42130, 42511}, {42131, 42510}, {42136, 49824}, {42137, 49825}, {42140, 49875}, {42141, 49876}, {42225, 42537}, {42226, 42538}, {42258, 43515}, {42259, 43516}, {42271, 42418}, {42272, 42417}, {42419, 42998}, {42420, 42999}, {42431, 42967}, {42432, 42966}, {42504, 42798}, {42505, 42797}, {42509, 61719}, {42514, 43111}, {42515, 43110}, {42520, 43245}, {42521, 43244}, {42526, 52045}, {42527, 52046}, {42631, 43196}, {42632, 43195}, {42635, 43632}, {42636, 43633}, {42918, 51944}, {42919, 51945}, {42972, 43784}, {42973, 43783}, {42986, 43639}, {42987, 43640}, {43014, 43305}, {43015, 43304}, {43207, 43647}, {43208, 43648}, {43336, 53520}, {43337, 53517}, {45384, 53130}, {45385, 53131}, {45879, 49945}, {45880, 49946}, {47101, 53144}, {47353, 55593}, {48873, 50991}, {48884, 55604}, {48901, 51185}, {48904, 53091}, {48942, 55629}, {50797, 51068}, {50806, 51110}, {50954, 50994}, {50963, 55697}, {50993, 55610}, {51088, 61264}, {51187, 55724}, {51189, 52987}, {52047, 52667}, {52048, 52666}, {60132, 60286}

X(62046) = midpoint of X(i) and X(j) for these {i,j}: {3543, 11541}
X(62046) = reflection of X(i) in X(j) for these {i,j}: {1657, 3543}, {15681, 382}, {15683, 3627}, {15684, 5073}, {15685, 3830}, {17800, 381}, {3, 15684}, {381, 3146}, {3529, 15687}, {3534, 15682}, {34748, 48661}, {5059, 549}
X(62046) = inverse of X(61963) in orthocentroidal circle
X(62046) = inverse of X(18571) in Stammler circle
X(62046) = inverse of X(61963) in Yff hyperbola
X(62046) = anticomplement of X(62154)
X(62046) = pole of line {523, 61963} with respect to the orthocentroidal circle
X(62046) = pole of line {523, 18571} with respect to the Stammler circle
X(62046) = pole of line {6, 61963} with respect to the Kiepert hyperbola
X(62046) = pole of line {523, 61963} with respect to the Yff hyperbola
X(62046) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3830), X(57897)}}, {{A, B, C, X(3857), X(54585)}}, {{A, B, C, X(5059), X(18317)}}, {{A, B, C, X(12108), X(18848)}}, {{A, B, C, X(17800), X(54512)}}, {{A, B, C, X(18550), X(41106)}}
X(62046) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10299, 11812}, {2, 15697, 15710}, {2, 3830, 14269}, {2, 5066, 5079}, {2, 8703, 15700}, {3, 11001, 6958}, {4, 15689, 15703}, {4, 20, 12108}, {5, 15697, 15716}, {30, 15687, 3529}, {30, 3543, 1657}, {30, 3627, 15683}, {30, 381, 17800}, {30, 5073, 15684}, {30, 549, 5059}, {381, 3534, 12100}, {381, 5054, 5056}, {381, 550, 15707}, {382, 15688, 15687}, {382, 1657, 546}, {546, 550, 631}, {550, 3853, 3544}, {631, 5068, 3628}, {1657, 3543, 5055}, {1657, 3830, 15722}, {3091, 15691, 15706}, {3528, 11737, 5054}, {3529, 15687, 15688}, {3534, 12100, 15695}, {3534, 3845, 15701}, {3543, 11541, 30}, {3543, 15705, 4}, {3545, 15696, 15718}, {3628, 12100, 15713}, {3830, 15681, 2}, {3830, 15701, 3845}, {3830, 3843, 12101}, {3839, 14093, 5070}, {3839, 15704, 14093}, {3860, 15686, 15698}, {3860, 15698, 1656}, {5055, 15689, 15705}, {5056, 11001, 15690}, {5073, 17800, 3146}, {5079, 17504, 15694}, {8703, 12101, 5068}, {10109, 12100, 11539}, {11001, 12100, 3534}, {11001, 17800, 15685}, {12101, 15759, 6959}, {14269, 15681, 3}, {14269, 15684, 382}, {15154, 15155, 18571}, {15681, 15707, 550}, {15684, 15685, 3830}, {15687, 15688, 3851}, {15687, 15715, 381}, {15695, 17800, 11001}, {15707, 17800, 15681}


X(62047) = X(2)X(3)∩X(17)X(42693)

Barycentrics    20*a^4-11*(b^2-c^2)^2-9*a^2*(b^2+c^2) : :
X(62047) = -33*X[2]+31*X[3], -11*X[141]+10*X[55619], -16*X[576]+15*X[51180], -11*X[1353]+12*X[55717], -11*X[3818]+9*X[55613], -11*X[5480]+10*X[55702], -4*X[5691]+3*X[59400], -2*X[6361]+3*X[61251], -3*X[10283]+4*X[51118], -4*X[12002]+3*X[46850], -3*X[12244]+4*X[13393], -5*X[12699]+4*X[61281] and many others

X(62047) lies on these lines: {2, 3}, {17, 42693}, {18, 42692}, {141, 55619}, {397, 42144}, {398, 42145}, {576, 51180}, {1353, 55717}, {1483, 28164}, {1503, 55723}, {3818, 55613}, {5270, 10386}, {5339, 42113}, {5340, 42112}, {5343, 42131}, {5344, 42130}, {5349, 42100}, {5350, 42099}, {5480, 55702}, {5493, 28154}, {5690, 28158}, {5691, 59400}, {5882, 28168}, {6200, 43786}, {6221, 42570}, {6361, 61251}, {6396, 43785}, {6398, 42571}, {6407, 43507}, {6408, 43508}, {6435, 42225}, {6436, 42226}, {6437, 43515}, {6438, 43516}, {6459, 6494}, {6460, 6495}, {8550, 29323}, {8960, 53517}, {10283, 51118}, {12002, 46850}, {12244, 13393}, {12279, 14449}, {12699, 61281}, {13598, 45956}, {14845, 55286}, {15800, 20585}, {16772, 42430}, {16773, 42429}, {16808, 43873}, {16809, 43874}, {16964, 42994}, {16965, 42995}, {18481, 61280}, {18538, 42568}, {18553, 48874}, {18762, 42569}, {18907, 34571}, {19106, 43630}, {19107, 43631}, {19116, 42271}, {19117, 42272}, {21850, 55714}, {22791, 28172}, {25555, 48943}, {26861, 46851}, {28146, 37705}, {28174, 61244}, {28178, 61246}, {28182, 37712}, {28186, 61296}, {28190, 61292}, {28208, 61297}, {28216, 61245}, {29012, 55719}, {29181, 55581}, {29317, 55586}, {31663, 61260}, {33697, 38138}, {34507, 55589}, {34786, 50709}, {36967, 42909}, {36968, 42908}, {38022, 50869}, {38079, 51026}, {38081, 50862}, {38083, 50870}, {38136, 48896}, {39884, 55592}, {40273, 61275}, {41869, 61287}, {41973, 44018}, {41974, 44017}, {42085, 42922}, {42086, 42923}, {42087, 42916}, {42088, 42917}, {42096, 42925}, {42097, 42924}, {42108, 42158}, {42109, 42157}, {42117, 42431}, {42118, 42432}, {42119, 43647}, {42120, 43648}, {42126, 43769}, {42127, 43770}, {42136, 42151}, {42137, 42150}, {42149, 42584}, {42152, 42585}, {42160, 42634}, {42161, 42633}, {42694, 43200}, {42695, 43199}, {42906, 42961}, {42907, 42960}, {42940, 42993}, {42941, 42992}, {42964, 43244}, {42965, 43245}, {43336, 43571}, {43337, 43570}, {43401, 43632}, {43402, 43633}, {44882, 55700}, {45185, 51491}, {48661, 61295}, {48876, 55598}, {48881, 55621}, {48884, 55605}, {48901, 55707}, {48904, 55712}, {48906, 55713}, {50981, 55637}, {51022, 55606}, {51135, 51181}, {51143, 55628}, {51163, 55709}, {51178, 55724}, {53520, 58866}

X(62047) = midpoint of X(i) and X(j) for these {i,j}: {382, 11541}
X(62047) = reflection of X(i) in X(j) for these {i,j}: {12279, 14449}, {15686, 15682}, {15704, 382}, {17800, 546}, {3529, 3853}, {5, 3146}, {5059, 140}, {61295, 48661}, {8703, 15684}
X(62047) = complement of X(62170)
X(62047) = anticomplement of X(58203)
X(62047) = pole of line {185, 61940} with respect to the Jerabek hyperbola
X(62047) = pole of line {69, 55628} with respect to the Wallace hyperbola
X(62047) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3519), X(44245)}}, {{A, B, C, X(3521), X(12812)}}, {{A, B, C, X(6662), X(38335)}}, {{A, B, C, X(14861), X(14869)}}, {{A, B, C, X(15681), X(52441)}}, {{A, B, C, X(15716), X(60122)}}, {{A, B, C, X(15720), X(18848)}}, {{A, B, C, X(26861), X(46853)}}, {{A, B, C, X(26863), X(46851)}}, {{A, B, C, X(51348), X(58208)}}
X(62047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14893, 5}, {4, 15720, 3850}, {4, 20, 15720}, {5, 15022, 6846}, {5, 15704, 376}, {5, 3525, 15699}, {5, 8703, 12108}, {20, 15687, 632}, {20, 3544, 14093}, {30, 140, 5059}, {30, 15682, 15686}, {30, 15684, 8703}, {30, 3853, 3529}, {30, 546, 17800}, {140, 11737, 1656}, {140, 15704, 550}, {140, 3850, 5055}, {140, 5059, 15704}, {376, 382, 12102}, {376, 5054, 15759}, {376, 5055, 12100}, {376, 5059, 1657}, {382, 11541, 30}, {382, 15685, 3091}, {382, 15704, 3845}, {382, 17800, 5067}, {382, 3529, 11737}, {382, 3845, 3627}, {548, 3860, 3525}, {550, 3627, 3858}, {550, 3858, 549}, {1656, 15717, 140}, {1657, 3523, 12103}, {1657, 3830, 3523}, {1657, 5073, 3146}, {2043, 2044, 15716}, {3149, 11001, 631}, {3528, 12811, 15713}, {3529, 15684, 3853}, {3529, 15702, 20}, {3534, 3861, 14869}, {3853, 12108, 3839}, {3853, 8703, 3857}, {3856, 12102, 14893}, {5076, 11001, 3530}, {6907, 15696, 3528}, {11541, 15640, 382}, {12102, 15696, 6824}, {15681, 17578, 3628}, {15682, 17800, 546}


X(62048) = X(2)X(3)∩X(13)X(43325)

Barycentrics    31*a^4-17*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62048) = -17*X[2]+16*X[3], -4*X[355]+5*X[50863], -4*X[946]+5*X[50873], -5*X[962]+4*X[51077], -4*X[1351]+5*X[51211], -4*X[1352]+5*X[51216], -17*X[3241]+18*X[16191], -5*X[3623]+8*X[41869], -3*X[5032]+2*X[14927], -4*X[5480]+5*X[51029], -4*X[5493]+5*X[51072], -5*X[5691]+4*X[50801] and many others

X(62048) lies on these lines: {2, 3}, {13, 43325}, {14, 43324}, {355, 50863}, {395, 42586}, {396, 42587}, {515, 20049}, {516, 31145}, {542, 35369}, {946, 50873}, {962, 51077}, {1151, 43560}, {1152, 43561}, {1351, 51211}, {1352, 51216}, {1494, 52443}, {2794, 8596}, {3068, 42540}, {3069, 42539}, {3241, 16191}, {3424, 60635}, {3621, 28194}, {3623, 41869}, {3679, 28158}, {5032, 14927}, {5343, 42510}, {5344, 42511}, {5355, 43618}, {5365, 16963}, {5366, 16962}, {5480, 51029}, {5493, 51072}, {5691, 50801}, {5921, 19924}, {6459, 43519}, {6460, 43520}, {6486, 43568}, {6487, 43569}, {7583, 43521}, {7584, 43522}, {7750, 32894}, {7809, 32841}, {7860, 32896}, {7917, 32840}, {7987, 50874}, {8972, 41952}, {9530, 20218}, {9543, 23251}, {9778, 34648}, {9812, 34628}, {9956, 50813}, {10248, 25055}, {10721, 56567}, {11057, 32826}, {11160, 29181}, {11180, 29317}, {11645, 51028}, {12279, 21969}, {13941, 41951}, {14831, 16981}, {14907, 32893}, {14930, 44526}, {16192, 50803}, {16226, 52093}, {16964, 49875}, {16965, 49876}, {18583, 51177}, {18845, 54522}, {19053, 42271}, {19054, 42272}, {19876, 59420}, {19925, 50866}, {20014, 28204}, {20052, 28202}, {20070, 47745}, {21356, 48872}, {23253, 53130}, {23263, 53131}, {23269, 52047}, {23275, 52048}, {24206, 50969}, {28146, 34627}, {28150, 34632}, {28154, 59417}, {28172, 31162}, {28182, 34718}, {28186, 34631}, {28198, 50804}, {28208, 50872}, {31454, 60291}, {32006, 32879}, {32062, 33884}, {32064, 50709}, {32787, 42413}, {32788, 42414}, {32810, 51953}, {32811, 51952}, {32819, 32882}, {32835, 48913}, {33697, 38074}, {35255, 42604}, {35256, 42605}, {35820, 43257}, {35821, 43256}, {36990, 50958}, {37640, 42109}, {37641, 42108}, {38076, 46931}, {38314, 51075}, {39838, 52695}, {41107, 43009}, {41108, 43008}, {41112, 43632}, {41113, 43633}, {41119, 43013}, {41120, 43012}, {41895, 54921}, {41943, 42430}, {41944, 42429}, {41945, 52667}, {41946, 52666}, {41949, 42283}, {41950, 42284}, {42085, 42799}, {42086, 42800}, {42087, 43421}, {42088, 43420}, {42089, 43400}, {42092, 43399}, {42099, 43403}, {42100, 43404}, {42119, 43401}, {42120, 43402}, {42126, 43481}, {42127, 43482}, {42139, 43478}, {42142, 43477}, {42149, 54594}, {42150, 49825}, {42151, 49824}, {42152, 54593}, {42154, 43465}, {42155, 43466}, {42160, 46334}, {42161, 46335}, {42431, 49826}, {42432, 49827}, {42520, 42965}, {42521, 42964}, {42528, 43490}, {42529, 43489}, {42635, 42890}, {42636, 42891}, {42688, 43110}, {42689, 43111}, {42785, 46267}, {42894, 43203}, {42895, 43204}, {42898, 43496}, {42899, 43495}, {42908, 49904}, {42909, 49903}, {42942, 43332}, {42943, 43333}, {42962, 43554}, {42963, 43555}, {42974, 43243}, {42975, 43242}, {43193, 43774}, {43194, 43773}, {43201, 49905}, {43202, 49906}, {43209, 43511}, {43210, 43512}, {43228, 43252}, {43229, 43253}, {43238, 54581}, {43239, 54580}, {43334, 43636}, {43335, 43637}, {43338, 60300}, {43339, 60299}, {43566, 60311}, {43567, 60312}, {43621, 54132}, {43951, 60648}, {47352, 51026}, {48661, 50818}, {48662, 51179}, {48885, 50956}, {48896, 50975}, {48904, 51213}, {48910, 51170}, {50862, 53620}, {50960, 55651}, {50965, 51537}, {51023, 61044}, {51130, 51163}, {51132, 51212}, {51164, 53094}, {52835, 59375}, {54706, 60238}, {60147, 60628}, {60216, 60324}, {60277, 60327}, {60283, 60328}

X(62048) = midpoint of X(i) and X(j) for these {i,j}: {11541, 15682}
X(62048) = reflection of X(i) in X(j) for these {i,j}: {11001, 382}, {12279, 21969}, {14927, 51024}, {15682, 5073}, {15683, 3543}, {15685, 3627}, {17800, 3845}, {2, 3146}, {20, 15682}, {20070, 50864}, {376, 15684}, {3146, 15640}, {3529, 3830}, {48872, 51022}, {5059, 2}, {50818, 48661}, {51179, 48662}, {54132, 43621}, {61044, 51023}
X(62048) = inverse of X(61962) in orthocentroidal circle
X(62048) = inverse of X(61962) in Yff hyperbola
X(62048) = anticomplement of X(15683)
X(62048) = pole of line {523, 61962} with respect to the orthocentroidal circle
X(62048) = pole of line {6, 51131} with respect to the Kiepert hyperbola
X(62048) = pole of line {525, 44565} with respect to the Steiner circumellipse
X(62048) = pole of line {523, 61962} with respect to the Yff hyperbola
X(62048) = pole of line {69, 50971} with respect to the Wallace hyperbola
X(62048) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(30), X(52443)}}, {{A, B, C, X(547), X(18850)}}, {{A, B, C, X(549), X(16251)}}, {{A, B, C, X(1494), X(5059)}}, {{A, B, C, X(3346), X(49136)}}, {{A, B, C, X(4846), X(10124)}}, {{A, B, C, X(15022), X(31361)}}, {{A, B, C, X(15351), X(44346)}}, {{A, B, C, X(15696), X(18846)}}, {{A, B, C, X(15710), X(18847)}}, {{A, B, C, X(33703), X(54552)}}, {{A, B, C, X(44335), X(53201)}}, {{A, B, C, X(52283), X(60635)}}, {{A, B, C, X(52290), X(54921)}}, {{A, B, C, X(52299), X(54522)}}, {{A, B, C, X(60122), X(61138)}}
X(62048) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15699, 17697}, {2, 30, 5059}, {4, 11001, 15710}, {4, 3529, 15696}, {4, 376, 547}, {13, 43325, 43331}, {14, 43324, 43330}, {20, 3090, 3522}, {20, 3627, 5068}, {20, 3861, 15717}, {20, 5067, 7397}, {20, 5073, 3146}, {30, 3543, 15683}, {30, 3627, 15685}, {30, 382, 11001}, {30, 3830, 3529}, {30, 3845, 17800}, {30, 5073, 15682}, {140, 381, 5071}, {376, 15702, 15714}, {376, 381, 15721}, {376, 5071, 15700}, {376, 547, 15692}, {381, 15681, 8703}, {381, 15685, 15691}, {381, 15689, 549}, {381, 15703, 14892}, {381, 15716, 15703}, {550, 14892, 15716}, {1657, 3545, 15697}, {3090, 11001, 15689}, {3090, 12101, 3839}, {3091, 3534, 15705}, {3146, 15683, 3543}, {3146, 3522, 382}, {3146, 5059, 17578}, {3524, 15682, 3627}, {3534, 14893, 15702}, {3543, 15686, 3832}, {3543, 15692, 4}, {3627, 15685, 3524}, {3843, 15690, 15709}, {3861, 15701, 3545}, {8703, 12811, 5054}, {8703, 15699, 3530}, {11001, 15682, 12101}, {11001, 15689, 20}, {11001, 15710, 12103}, {11541, 15682, 30}, {12101, 15689, 3090}, {14891, 15687, 381}, {14893, 15702, 3091}, {14927, 51024, 5032}, {15022, 15708, 2}, {15681, 15696, 15686}, {15686, 15700, 376}, {15696, 15719, 10304}, {25055, 50869, 10248}


X(62049) = X(2)X(3)∩X(40)X(51067)

Barycentrics    35*a^4-19*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62049) = -19*X[2]+18*X[3], -9*X[40]+10*X[51067], -9*X[944]+10*X[51097], -9*X[1350]+10*X[51142], -6*X[1699]+5*X[50819], -3*X[3576]+4*X[50869], -6*X[3653]+7*X[10248], -4*X[4669]+3*X[6361], -20*X[4745]+21*X[61256], -3*X[5085]+4*X[51026], -4*X[5476]+5*X[51029], -3*X[5657]+4*X[50862] and many others

X(62049) lies on these lines: {2, 3}, {40, 51067}, {395, 33603}, {396, 33602}, {397, 42509}, {398, 42508}, {516, 50817}, {519, 28647}, {944, 51097}, {1285, 11648}, {1350, 51142}, {1503, 51178}, {1587, 42417}, {1588, 42418}, {1699, 50819}, {1992, 43621}, {3576, 50869}, {3653, 10248}, {4669, 6361}, {4745, 61256}, {5085, 51026}, {5476, 51029}, {5485, 54612}, {5657, 50862}, {5818, 34638}, {6490, 9541}, {6491, 14226}, {6560, 42538}, {6561, 42537}, {7581, 42576}, {7582, 42577}, {7967, 28172}, {8584, 48910}, {9741, 44678}, {9778, 61257}, {9812, 61279}, {9880, 41151}, {10164, 50870}, {10519, 51022}, {10595, 34628}, {10653, 42589}, {10654, 42588}, {10722, 15300}, {11057, 52713}, {11480, 43554}, {11481, 43555}, {11488, 12816}, {11489, 12817}, {12112, 37672}, {12245, 28202}, {13846, 41961}, {13847, 41962}, {14458, 60627}, {14912, 51024}, {15534, 39874}, {18538, 43566}, {18762, 43567}, {18842, 54707}, {19053, 42276}, {19054, 42275}, {19106, 42511}, {19107, 42510}, {19924, 50992}, {20070, 61246}, {21356, 48884}, {22615, 42571}, {22644, 42570}, {23249, 42572}, {23259, 42573}, {23267, 43257}, {23269, 41945}, {23273, 43256}, {23275, 41946}, {28146, 50864}, {28150, 37712}, {28154, 59388}, {28158, 50814}, {28160, 50818}, {28164, 51082}, {28168, 61287}, {28182, 50798}, {28186, 50872}, {28198, 61244}, {28232, 50871}, {29012, 50974}, {29181, 50973}, {29317, 51023}, {31162, 51107}, {31673, 51066}, {32532, 60185}, {32787, 43521}, {32788, 43522}, {32819, 32892}, {33623, 49911}, {33625, 49914}, {33697, 53620}, {34631, 51096}, {35822, 42413}, {35823, 42414}, {36967, 49862}, {36968, 49861}, {36969, 49813}, {36970, 49812}, {36990, 51189}, {37640, 42112}, {37641, 42113}, {38127, 61254}, {41107, 42141}, {41108, 42140}, {41112, 42119}, {41113, 42120}, {41119, 44015}, {41120, 44016}, {41121, 42105}, {41122, 42104}, {41149, 51136}, {41150, 51080}, {41152, 47353}, {41153, 51135}, {41869, 51071}, {42087, 43542}, {42088, 43543}, {42089, 43003}, {42090, 49907}, {42091, 49908}, {42092, 43002}, {42093, 42792}, {42094, 42791}, {42096, 43228}, {42097, 43229}, {42122, 43540}, {42123, 43541}, {42133, 49906}, {42134, 49905}, {42149, 43202}, {42150, 42506}, {42151, 42507}, {42152, 43201}, {42154, 49826}, {42155, 49827}, {42419, 43465}, {42420, 43466}, {42532, 43632}, {42533, 43633}, {42557, 43375}, {42558, 43374}, {42692, 43494}, {42693, 43493}, {42940, 49824}, {42941, 49825}, {42942, 49874}, {42943, 49873}, {43338, 60621}, {43339, 60620}, {43401, 49947}, {43402, 49948}, {43509, 43536}, {43510, 53519}, {43770, 61719}, {48881, 51186}, {50809, 59387}, {50811, 51104}, {50813, 50866}, {50816, 54447}, {50828, 61271}, {50873, 51709}, {50967, 50989}, {50969, 51167}, {50975, 53023}, {51074, 58221}, {51092, 61292}, {51106, 51118}, {51129, 55673}, {51705, 61274}, {53103, 54647}, {54477, 60629}, {54523, 60281}, {54582, 60616}, {54637, 60150}, {54667, 54710}, {54788, 54947}, {54797, 54827}, {60127, 60284}

X(62049) = reflection of X(i) in X(j) for these {i,j}: {1992, 43621}, {11001, 15682}, {15682, 15640}, {15683, 382}, {17800, 15687}, {20, 15684}, {376, 3146}, {3529, 3543}, {3543, 5073}, {5059, 381}
X(62049) = inverse of X(61961) in orthocentroidal circle
X(62049) = inverse of X(61961) in Yff hyperbola
X(62049) = anticomplement of X(15685)
X(62049) = pole of line {523, 61961} with respect to the orthocentroidal circle
X(62049) = pole of line {6, 61961} with respect to the Kiepert hyperbola
X(62049) = pole of line {523, 61961} with respect to the Yff hyperbola
X(62049) = pole of line {69, 15695} with respect to the Wallace hyperbola
X(62049) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15695)}}, {{A, B, C, X(3522), X(54667)}}, {{A, B, C, X(3854), X(54585)}}, {{A, B, C, X(4232), X(54612)}}, {{A, B, C, X(5059), X(54512)}}, {{A, B, C, X(5068), X(54838)}}, {{A, B, C, X(11331), X(60627)}}, {{A, B, C, X(12101), X(36889)}}, {{A, B, C, X(14863), X(50691)}}, {{A, B, C, X(15708), X(16251)}}, {{A, B, C, X(18317), X(49137)}}, {{A, B, C, X(18847), X(19708)}}, {{A, B, C, X(32533), X(35407)}}, {{A, B, C, X(50689), X(54924)}}, {{A, B, C, X(52284), X(54707)}}, {{A, B, C, X(53857), X(60185)}}
X(62049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15695, 15698}, {2, 15697, 15759}, {2, 15716, 631}, {2, 15759, 15719}, {2, 17566, 475}, {2, 20, 15695}, {2, 3543, 12101}, {4, 6968, 548}, {5, 5073, 3146}, {20, 5076, 3533}, {30, 15640, 15682}, {30, 15682, 11001}, {30, 15684, 20}, {30, 15687, 17800}, {30, 3543, 3529}, {30, 381, 5059}, {30, 382, 15683}, {30, 5073, 3543}, {376, 15682, 3830}, {376, 3545, 3523}, {376, 3839, 3525}, {381, 12103, 15705}, {395, 33603, 33605}, {396, 33602, 33604}, {1657, 3830, 12100}, {3091, 15686, 15710}, {3146, 3523, 382}, {3522, 3543, 14269}, {3523, 14893, 3545}, {3524, 11001, 3534}, {3529, 3543, 3524}, {3534, 11812, 3522}, {3534, 12101, 2}, {3534, 14269, 11812}, {3534, 15694, 8703}, {3534, 3830, 5}, {3543, 15683, 15694}, {3545, 15683, 17538}, {3545, 17538, 15715}, {3545, 3628, 5071}, {3830, 5054, 3845}, {3843, 15691, 15708}, {3845, 8703, 3628}, {3854, 10304, 10124}, {4220, 15675, 15701}, {11001, 15682, 4}, {12102, 15703, 3839}, {12103, 15705, 376}, {15697, 15719, 3528}, {15698, 15719, 15712}


X(62050) = X(2)X(3)∩X(516)X(50804)

Barycentrics    41*a^4-22*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62050) = -22*X[2]+21*X[3], -11*X[599]+10*X[55598], -15*X[5050]+16*X[51130], -15*X[10246]+16*X[51075], -11*X[11178]+10*X[55619], -11*X[11898]+8*X[55581], -3*X[14848]+4*X[48904], -11*X[15534]+12*X[55719], -11*X[18440]+8*X[55586], -14*X[22566]+13*X[52886], -4*X[32455]+7*X[43621], -11*X[36990]+8*X[55592] and many others

X(62050) lies on these lines: {2, 3}, {516, 50804}, {599, 55598}, {1503, 51174}, {3633, 28208}, {4677, 28146}, {5050, 51130}, {6144, 11645}, {6200, 42526}, {6396, 42527}, {6435, 42263}, {6436, 42264}, {6494, 42272}, {6495, 42271}, {8976, 42525}, {9690, 43507}, {10246, 51075}, {11178, 55619}, {11898, 55581}, {12645, 28202}, {12816, 42430}, {12817, 42429}, {13951, 42524}, {14075, 39593}, {14848, 48904}, {15533, 29317}, {15534, 55719}, {16808, 42504}, {16809, 42505}, {18440, 55586}, {19106, 42506}, {19107, 42507}, {22566, 52886}, {28150, 50798}, {28158, 50801}, {28160, 50805}, {28164, 51077}, {28172, 51071}, {28182, 50864}, {29012, 50962}, {29181, 50961}, {29323, 55717}, {32455, 43621}, {36990, 55592}, {37832, 43471}, {37835, 43472}, {38176, 50797}, {41100, 42126}, {41101, 42127}, {41107, 42096}, {41108, 42097}, {41112, 42109}, {41113, 42108}, {42087, 42502}, {42088, 42503}, {42093, 42631}, {42094, 42632}, {42095, 43476}, {42098, 43475}, {42099, 49905}, {42100, 49906}, {42117, 42588}, {42118, 42589}, {42122, 49874}, {42123, 49873}, {42125, 43782}, {42128, 43781}, {42130, 49947}, {42131, 49948}, {42136, 49812}, {42137, 49813}, {42144, 49876}, {42145, 49875}, {42215, 42537}, {42216, 42538}, {42275, 42417}, {42276, 42418}, {42510, 42816}, {42511, 42815}, {42528, 54592}, {42529, 54591}, {42586, 42801}, {42587, 42802}, {42608, 53130}, {42609, 53131}, {42817, 42903}, {42818, 42902}, {42912, 43771}, {42913, 43772}, {42928, 49908}, {42929, 49907}, {42942, 49860}, {42943, 49859}, {42968, 43245}, {42969, 43244}, {42974, 46335}, {42975, 46334}, {42976, 43194}, {42977, 43193}, {43226, 51945}, {43227, 51944}, {43273, 55713}, {43415, 43508}, {43418, 43636}, {43419, 43637}, {43525, 53520}, {43526, 53517}, {47352, 48943}, {48661, 51093}, {48662, 50992}, {48872, 55605}, {48874, 50994}, {48884, 55609}, {48905, 55712}, {48910, 55715}, {50816, 61263}, {50954, 55599}, {50956, 55643}, {50990, 55593}, {51022, 55610}, {51143, 55629}, {51173, 51185}, {51186, 55621}, {54131, 55714}

X(62050) = reflection of X(i) in X(j) for these {i,j}: {1657, 15684}, {15681, 3146}, {15685, 15682}, {17800, 3543}, {381, 5073}, {3830, 15640}, {5059, 15687}
X(62050) = anticomplement of X(62157)
X(62050) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3859), X(54585)}}, {{A, B, C, X(18317), X(49138)}}, {{A, B, C, X(49137), X(54512)}}
X(62050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14891, 15701}, {2, 3534, 14093}, {20, 14891, 15689}, {20, 15682, 12101}, {30, 15640, 3830}, {30, 15682, 15685}, {30, 15687, 5059}, {30, 3146, 15681}, {30, 3543, 17800}, {140, 15022, 5070}, {140, 15714, 3524}, {140, 8703, 15698}, {381, 15688, 140}, {381, 15691, 15700}, {381, 3524, 1656}, {381, 3534, 15716}, {382, 1657, 5072}, {548, 3845, 2}, {548, 3850, 14869}, {1656, 3146, 382}, {1657, 15706, 15686}, {3534, 15700, 15695}, {3627, 15686, 14892}, {3627, 15712, 3861}, {3830, 11001, 15693}, {5072, 14093, 5054}, {5073, 15685, 15682}, {5073, 15689, 15684}, {6890, 15682, 547}, {11001, 15693, 3534}, {11737, 17504, 5084}, {11812, 15691, 8703}, {12101, 12811, 3845}, {12101, 15701, 381}, {14269, 15683, 15696}, {14269, 15696, 15723}, {14892, 15689, 15706}, {15640, 15697, 3146}, {15684, 15689, 3627}, {15684, 15718, 3543}, {15685, 15701, 20}, {15718, 17538, 15688}, {17538, 17800, 1657}


X(62051) = X(2)X(3)∩X(6)X(42537)

Barycentrics    47*a^4-25*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62051) = -25*X[2]+24*X[3], -50*X[551]+49*X[58231], -6*X[962]+5*X[51092], -125*X[3623]+128*X[58237], -4*X[3654]+5*X[50863], -6*X[3817]+7*X[50874], -4*X[4677]+3*X[20070], -3*X[5032]+4*X[48910], -6*X[5587]+7*X[50867], -25*X[5603]+24*X[58234], -4*X[8584]+3*X[14927], -3*X[9589]+2*X[51096] and many others

X(62051) lies on these lines: {2, 3}, {6, 42537}, {61, 43252}, {62, 43253}, {516, 50838}, {519, 58248}, {551, 58231}, {590, 43566}, {615, 43567}, {962, 51092}, {1131, 6429}, {1132, 6430}, {1327, 6480}, {1328, 6481}, {1503, 51214}, {3621, 28198}, {3623, 58237}, {3654, 50863}, {3817, 50874}, {4669, 28158}, {4677, 20070}, {5032, 48910}, {5334, 43233}, {5335, 43232}, {5343, 42507}, {5344, 42506}, {5587, 50867}, {5603, 58234}, {6200, 42604}, {6221, 42540}, {6396, 42605}, {6398, 42539}, {6431, 42417}, {6432, 42418}, {6433, 53518}, {6434, 53519}, {6437, 43210}, {6438, 43209}, {6445, 43536}, {6446, 54597}, {6453, 60291}, {6454, 60292}, {6482, 43794}, {6483, 43793}, {6484, 23253}, {6485, 23263}, {7802, 32874}, {8584, 14927}, {8972, 43887}, {9541, 43791}, {9543, 22644}, {9589, 51096}, {9778, 50862}, {9812, 51103}, {10139, 23251}, {10140, 23261}, {10516, 51217}, {10653, 44018}, {10654, 44017}, {11160, 55582}, {11180, 55587}, {13665, 43321}, {13785, 43320}, {13846, 43507}, {13847, 43508}, {13941, 43888}, {14853, 51213}, {14930, 43619}, {15533, 61044}, {15534, 51166}, {16200, 28172}, {16267, 43556}, {16268, 43557}, {18581, 43553}, {18582, 43552}, {19106, 42976}, {19107, 42977}, {19924, 20080}, {20049, 28208}, {21356, 55607}, {22165, 51025}, {28150, 50864}, {28154, 50810}, {28160, 50872}, {28164, 51093}, {28190, 50818}, {29012, 51028}, {29181, 50992}, {29317, 54174}, {29323, 54132}, {32787, 43889}, {32788, 43890}, {33534, 34545}, {33602, 42912}, {33603, 42913}, {34754, 41112}, {34755, 41113}, {36324, 44667}, {36326, 44666}, {36836, 43201}, {36843, 43202}, {36967, 49874}, {36968, 49873}, {36969, 49811}, {36970, 49810}, {36990, 50990}, {38155, 51068}, {41100, 42113}, {41101, 42112}, {41107, 43245}, {41108, 43244}, {41119, 42099}, {41120, 42100}, {42085, 49826}, {42086, 49827}, {42087, 43540}, {42088, 43541}, {42090, 43199}, {42091, 43200}, {42108, 49948}, {42109, 49947}, {42126, 43109}, {42127, 43108}, {42140, 43229}, {42141, 43228}, {42154, 42588}, {42155, 42589}, {42160, 42533}, {42161, 42532}, {42215, 43797}, {42216, 43798}, {42260, 43560}, {42261, 43561}, {42429, 43404}, {42430, 43403}, {42508, 43769}, {42509, 43770}, {42512, 43195}, {42513, 43196}, {42514, 43305}, {42515, 43304}, {42584, 43543}, {42585, 43542}, {42631, 42996}, {42632, 42997}, {42910, 43476}, {42911, 43475}, {42940, 49812}, {42941, 49813}, {42956, 43870}, {42957, 43869}, {43292, 43399}, {43293, 43400}, {43322, 43408}, {43323, 43407}, {43372, 49907}, {43373, 49908}, {43495, 43633}, {43496, 43632}, {43521, 52047}, {43522, 52048}, {43621, 51170}, {43951, 60287}, {44678, 53141}, {46204, 58267}, {47354, 55618}, {48872, 50991}, {49855, 51485}, {49858, 51484}, {50808, 54448}, {50869, 51109}, {50870, 59420}, {50873, 51705}, {50969, 55640}, {50993, 51022}, {51026, 59411}, {51029, 51737}, {51105, 51118}, {51163, 51185}, {51165, 51538}, {51186, 51537}, {51216, 54173}, {54542, 60297}, {54543, 60298}, {54815, 60131}, {60147, 60638}

X(62051) = reflection of X(i) in X(j) for these {i,j}: {15683, 3146}, {2, 15640}, {376, 5073}, {3529, 15684}, {5059, 3543}
X(62051) = anticomplement of X(62160)
X(62051) = pole of line {69, 62099} with respect to the Wallace hyperbola
X(62051) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3858), X(54923)}}, {{A, B, C, X(4846), X(47598)}}, {{A, B, C, X(5054), X(16251)}}, {{A, B, C, X(5073), X(54552)}}, {{A, B, C, X(11001), X(35510)}}, {{A, B, C, X(15699), X(18850)}}, {{A, B, C, X(15749), X(50692)}}, {{A, B, C, X(18317), X(49139)}}, {{A, B, C, X(49138), X(54512)}}
X(62051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 3146}, {2, 8703, 15717}, {4, 15685, 15697}, {4, 376, 15699}, {20, 15022, 3522}, {20, 17578, 13735}, {20, 3543, 3545}, {20, 3830, 2}, {30, 15684, 3529}, {30, 3146, 15683}, {30, 3543, 5059}, {30, 5073, 376}, {376, 13735, 15705}, {376, 15712, 10304}, {546, 15690, 11812}, {547, 8703, 6863}, {3146, 5059, 3832}, {3146, 5068, 382}, {3525, 3545, 547}, {3529, 15684, 3839}, {3534, 3830, 10109}, {3534, 3845, 15719}, {3543, 15708, 4}, {3543, 3839, 3853}, {3545, 11001, 15690}, {3545, 15688, 15708}, {3545, 15702, 1656}, {3830, 15716, 546}, {3845, 15686, 12100}, {5055, 15686, 13168}, {5073, 15707, 15684}, {6887, 15693, 15694}, {11001, 15682, 3845}, {11001, 15690, 20}, {11001, 15719, 3534}, {12100, 12812, 11540}, {12101, 15681, 15698}, {12101, 15698, 3091}, {14269, 17538, 15721}, {15684, 15702, 3543}, {15685, 15686, 11001}, {15686, 16239, 15688}, {42537, 42538, 6}


X(62052) = X(2)X(3)∩X(15)X(33602)

Barycentrics    59*a^4-31*(b^2-c^2)^2-28*a^2*(b^2+c^2) : :
X(62052) = -31*X[2]+30*X[3], -15*X[944]+16*X[51095], -16*X[4745]+15*X[50809], -6*X[5050]+7*X[51213], -16*X[8584]+15*X[51176], -6*X[10165]+7*X[50874], -4*X[20583]+5*X[48910], -6*X[26446]+7*X[50867], -6*X[48873]+7*X[50994], -15*X[50819]+16*X[51108], -15*X[50966]+16*X[50991]

X(62052) lies on these lines: {2, 3}, {15, 33602}, {16, 33603}, {944, 51095}, {4677, 28150}, {4745, 50809}, {5050, 51213}, {5485, 54934}, {6560, 42537}, {6561, 42538}, {6564, 43799}, {6565, 43800}, {8584, 51176}, {10165, 50874}, {11008, 11645}, {12818, 42638}, {12819, 42637}, {12820, 42142}, {12821, 42139}, {18843, 54734}, {19106, 43331}, {19107, 43330}, {20050, 28208}, {20583, 48910}, {22615, 60306}, {22644, 60305}, {26446, 50867}, {28154, 50864}, {28158, 50810}, {28164, 50818}, {28172, 51094}, {28190, 50872}, {29181, 51179}, {31412, 42525}, {32532, 60335}, {33416, 54576}, {33417, 54577}, {33604, 42912}, {33605, 42913}, {35255, 43566}, {35256, 43567}, {36967, 49860}, {36968, 49859}, {37640, 42514}, {37641, 42515}, {39593, 43618}, {41100, 42140}, {41101, 42141}, {41107, 42112}, {41108, 42113}, {41945, 42641}, {41946, 42642}, {42085, 42588}, {42086, 42589}, {42087, 43332}, {42088, 43333}, {42089, 43476}, {42092, 43475}, {42096, 49876}, {42097, 49875}, {42099, 43542}, {42100, 43543}, {42104, 42631}, {42105, 42632}, {42119, 42532}, {42120, 42533}, {42260, 42608}, {42261, 42609}, {42417, 42576}, {42418, 42577}, {42429, 54594}, {42430, 54593}, {42502, 43421}, {42503, 43420}, {42508, 43106}, {42509, 43105}, {42510, 43324}, {42511, 43325}, {42524, 42561}, {42584, 43541}, {42585, 43540}, {42627, 43552}, {42628, 43553}, {42775, 42947}, {42776, 42946}, {42781, 49947}, {42782, 49948}, {42910, 43003}, {42911, 43002}, {42932, 42962}, {42933, 42963}, {42940, 42987}, {42941, 42986}, {43004, 49862}, {43005, 49861}, {43008, 43769}, {43009, 43770}, {43110, 43466}, {43111, 43465}, {43246, 43364}, {43247, 43365}, {43401, 49825}, {43402, 49824}, {48873, 50994}, {50819, 51108}, {50966, 50991}, {52519, 60283}, {54644, 54720}, {54845, 60216}, {54851, 60219}, {54920, 60281}, {60132, 60641}, {60150, 60626}

X(62052) = reflection of X(i) in X(j) for these {i,j}: {11001, 15640}, {15683, 5073}, {5059, 15684}
X(62052) = anticomplement of X(62163)
X(62052) = pole of line {69, 62101} with respect to the Wallace hyperbola
X(62052) = intersection, other than A, B, C, of circumconics {{A, B, C, X(548), X(54667)}}, {{A, B, C, X(3859), X(18853)}}, {{A, B, C, X(4232), X(54934)}}, {{A, B, C, X(5072), X(54838)}}, {{A, B, C, X(5079), X(18851)}}, {{A, B, C, X(8703), X(18847)}}, {{A, B, C, X(18849), X(55864)}}, {{A, B, C, X(19708), X(57894)}}, {{A, B, C, X(49140), X(54512)}}, {{A, B, C, X(53857), X(60335)}}
X(62052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15710, 15719}, {2, 3534, 3528}, {4, 11001, 8703}, {4, 12103, 631}, {4, 3525, 3859}, {4, 3528, 5079}, {20, 14269, 15715}, {20, 15709, 376}, {30, 15640, 11001}, {30, 15684, 5059}, {30, 5073, 15683}, {382, 15707, 15687}, {382, 3529, 10299}, {547, 8703, 15693}, {550, 14891, 15688}, {631, 3545, 15703}, {3146, 5059, 7486}, {3528, 15687, 3545}, {3528, 15692, 15710}, {3529, 15682, 2}, {3529, 15710, 15681}, {3543, 15683, 14891}, {3830, 11001, 15698}, {3843, 15685, 3534}, {3857, 6971, 6836}, {5054, 15681, 550}, {5059, 15684, 3524}, {5066, 8703, 5054}, {11001, 15640, 15682}, {12811, 17578, 4}, {15681, 15687, 15692}, {15681, 15688, 12103}, {15682, 15685, 3090}, {15682, 15698, 3830}, {15687, 17504, 3857}


X(62053) = X(2)X(3)∩X(519)X(58249)

Barycentrics    23*a^4-12*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62053) = -36*X[2]+35*X[3], -8*X[3630]+7*X[55584], -16*X[3631]+15*X[55593], -12*X[3818]+11*X[55620], -3*X[5093]+4*X[43621], -24*X[5882]+25*X[58236], -4*X[6154]+5*X[38756], -4*X[9589]+3*X[34748], -7*X[10541]+6*X[48896], -10*X[11439]+9*X[54047], -5*X[11482]+6*X[48910], -9*X[12355]+8*X[38627] and many others

X(62053) lies on these lines: {2, 3}, {519, 58249}, {1327, 43523}, {1328, 43524}, {3244, 28172}, {3284, 36431}, {3625, 28150}, {3630, 55584}, {3631, 55593}, {3632, 28146}, {3633, 28160}, {3818, 55620}, {5093, 43621}, {5339, 42436}, {5340, 42435}, {5882, 58236}, {6144, 29012}, {6154, 38756}, {6199, 42272}, {6395, 42271}, {6407, 22644}, {6408, 22615}, {6409, 43881}, {6410, 43882}, {6417, 42275}, {6418, 42276}, {6427, 42263}, {6428, 42264}, {6445, 43879}, {6446, 43880}, {6447, 42266}, {6448, 42267}, {6500, 42225}, {6501, 42226}, {6519, 23251}, {6522, 23261}, {7982, 28168}, {7991, 28154}, {8148, 28164}, {9543, 60289}, {9589, 34748}, {9680, 43786}, {10541, 48896}, {10645, 43471}, {10646, 43472}, {11439, 54047}, {11477, 29323}, {11480, 43195}, {11481, 43196}, {11482, 48910}, {11485, 42629}, {11486, 42630}, {12355, 38627}, {12645, 28182}, {12818, 41950}, {12819, 41949}, {13665, 43515}, {13785, 43516}, {13939, 17851}, {18510, 42414}, {18512, 42413}, {18525, 28158}, {20050, 28186}, {20053, 28174}, {20054, 28212}, {22330, 51024}, {22505, 52886}, {23249, 43321}, {23259, 43320}, {24981, 38790}, {28208, 58245}, {29317, 40341}, {31425, 50866}, {31447, 50800}, {31454, 43570}, {31487, 43210}, {33534, 36753}, {36967, 43546}, {36968, 43547}, {36969, 42802}, {36970, 42801}, {36990, 55595}, {42101, 42956}, {42102, 42957}, {42112, 42165}, {42113, 42164}, {42130, 42161}, {42131, 42160}, {42153, 42429}, {42156, 42430}, {42157, 43305}, {42158, 43304}, {42431, 42612}, {42432, 42613}, {42433, 42996}, {42434, 42997}, {42490, 54591}, {42491, 54592}, {42773, 42984}, {42774, 42985}, {42779, 43232}, {42780, 43233}, {42908, 49906}, {42909, 49905}, {42964, 43499}, {42965, 43500}, {42988, 43401}, {42989, 43402}, {42990, 43310}, {42991, 43311}, {43136, 43618}, {43197, 43473}, {43198, 43474}, {43242, 43648}, {43243, 43647}, {43306, 43487}, {43307, 43488}, {43507, 60309}, {43508, 60310}, {47353, 55597}, {48872, 55602}, {48879, 55626}, {48884, 55614}, {48889, 55641}, {48895, 55684}, {48901, 55701}, {48904, 53093}, {48905, 53092}, {48942, 55637}, {48943, 55687}, {50414, 61721}, {50955, 55588}, {51163, 55705}, {52100, 53779}

X(62053) = reflection of X(i) in X(j) for these {i,j}: {17800, 5073}
X(62053) = inverse of X(37941) in Stammler circle
X(62053) = anticomplement of X(62164)
X(62053) = pole of line {523, 37941} with respect to the Stammler circle
X(62053) = pole of line {185, 61935} with respect to the Jerabek hyperbola
X(62053) = pole of line {69, 55621} with respect to the Wallace hyperbola
X(62053) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3854), X(18550)}}, {{A, B, C, X(12100), X(18848)}}, {{A, B, C, X(21400), X(50691)}}
X(62053) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15686, 15688}, {2, 3528, 15712}, {2, 3843, 3851}, {2, 546, 5072}, {3, 14269, 5079}, {3, 15684, 3627}, {3, 3628, 15701}, {4, 15697, 16239}, {4, 16239, 381}, {4, 20, 12100}, {20, 15687, 15720}, {20, 15710, 550}, {20, 3850, 14093}, {30, 5073, 17800}, {381, 3534, 15705}, {382, 15720, 15687}, {382, 550, 14269}, {546, 632, 3544}, {550, 3855, 15700}, {1657, 14093, 20}, {1657, 15684, 3843}, {1657, 3843, 15689}, {3146, 15704, 5076}, {3146, 3529, 546}, {3146, 5059, 10303}, {3627, 12812, 4}, {3627, 15686, 12812}, {3627, 15704, 12108}, {3830, 15681, 15707}, {3843, 5055, 3850}, {3851, 15707, 5070}, {5055, 12100, 15694}, {5073, 15681, 382}, {5079, 16418, 15703}, {12100, 15699, 15702}, {12108, 15704, 17538}, {12812, 14869, 2}, {14269, 15710, 5055}, {14869, 15688, 3}, {15156, 15157, 18571}, {15640, 15706, 15684}, {15684, 15689, 3830}, {15685, 15688, 15681}, {15689, 17800, 1657}, {15702, 17697, 632}


X(62054) = X(2)X(3)∩X(6)X(41959)

Barycentrics    71*a^4-(b^2-c^2)^2-70*a^2*(b^2+c^2) : :
X(62054) = -X[2]+24*X[3], 15*X[165]+8*X[51085], X[1992]+22*X[55656], 3*X[5032]+20*X[55646], -X[5603]+24*X[58216], 15*X[5731]+8*X[50827], 9*X[7988]+14*X[51083], 2*X[8584]+21*X[55651], 9*X[9778]+14*X[51110], -9*X[9779]+32*X[51086], X[11179]+22*X[55662], -48*X[13607]+25*X[51092] and many others

X(62054) lies on these lines: {2, 3}, {6, 41959}, {165, 51085}, {590, 43384}, {615, 43385}, {1992, 55656}, {5032, 55646}, {5603, 58216}, {5731, 50827}, {6200, 43525}, {6396, 43526}, {7782, 32892}, {7988, 51083}, {8584, 55651}, {8589, 14930}, {9541, 43315}, {9542, 52048}, {9778, 51110}, {9779, 51086}, {10653, 42930}, {10654, 42931}, {11179, 55662}, {13607, 51092}, {16192, 51071}, {16966, 43552}, {16967, 43553}, {17502, 50872}, {17508, 51028}, {20070, 51105}, {20423, 55664}, {23269, 42526}, {23275, 42527}, {25055, 58215}, {25406, 50982}, {31884, 51138}, {32785, 43380}, {32786, 43381}, {32789, 43566}, {32790, 43567}, {32874, 43459}, {37640, 42685}, {37641, 42684}, {41112, 43483}, {41113, 43484}, {42085, 43490}, {42086, 43489}, {42090, 43545}, {42091, 43544}, {42107, 54580}, {42110, 54581}, {42119, 43333}, {42120, 43332}, {42149, 43253}, {42152, 43252}, {42508, 42945}, {42509, 42944}, {42510, 42796}, {42511, 42795}, {42518, 43106}, {42519, 43105}, {42528, 49825}, {42529, 49824}, {42631, 49811}, {42632, 49810}, {42686, 49948}, {42687, 49947}, {42799, 43015}, {42800, 43014}, {42896, 42976}, {42897, 42977}, {42902, 43331}, {42903, 43330}, {42964, 43557}, {42965, 43556}, {42982, 43109}, {42983, 43108}, {43226, 54579}, {43227, 54578}, {43334, 43646}, {43335, 43645}, {43338, 52045}, {43339, 52046}, {43869, 49813}, {43870, 49812}, {50829, 54448}, {50966, 55682}, {50967, 55657}, {51087, 59417}, {51103, 58221}, {51140, 55660}, {51170, 55653}, {51185, 61044}, {54132, 55670}, {54170, 55671}, {54173, 55663}, {54174, 55649}, {54521, 60648}, {54522, 54639}, {54644, 60625}, {54645, 60650}, {54851, 60639}, {54866, 60628}, {54921, 60228}, {60175, 60635}, {60216, 60336}, {60283, 60331}, {60311, 60313}, {60312, 60314}

X(62054) = pole of line {69, 62002} with respect to the Wallace hyperbola
X(62054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3346), X(55861)}}, {{A, B, C, X(18317), X(55860)}}, {{A, B, C, X(35510), X(41099)}}
X(62054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15697, 3146}, {2, 3830, 5068}, {3, 15710, 15692}, {3, 15714, 3524}, {4, 15709, 547}, {4, 15719, 11540}, {140, 3091, 442}, {376, 14269, 20}, {376, 15706, 10303}, {376, 3524, 1656}, {548, 3845, 3534}, {549, 5072, 15709}, {1006, 5067, 140}, {1656, 3146, 3832}, {1656, 3627, 3855}, {3091, 6836, 382}, {3522, 15717, 15022}, {3528, 14891, 15708}, {3530, 15701, 15719}, {3534, 15701, 5066}, {3534, 15706, 15701}, {3860, 15696, 11001}, {3860, 8703, 15696}, {5054, 15681, 12811}, {5066, 15711, 15706}, {6847, 15640, 17578}, {6889, 11812, 15721}, {8703, 12103, 15695}, {8703, 15711, 3530}, {10299, 14093, 3839}, {10303, 10304, 376}, {10304, 15683, 3522}, {10304, 15692, 4}, {10304, 15698, 2}, {10304, 15717, 15683}, {11001, 15716, 3523}, {15683, 15705, 15717}, {15688, 15721, 5059}, {15693, 15695, 3858}, {15698, 15759, 10304}, {15706, 15711, 15698}, {15706, 17800, 549}, {41959, 41960, 6}


X(62055) = X(2)X(3)∩X(15)X(43002)

Barycentrics    53*a^4-(b^2-c^2)^2-52*a^2*(b^2+c^2) : :
X(62055) = -X[2]+18*X[3], 9*X[40]+8*X[51107], 15*X[165]+2*X[51077], X[1992]+16*X[55653], 12*X[3576]+5*X[50809], 3*X[5032]+14*X[55639], 12*X[5085]+5*X[50966], 15*X[5731]+2*X[50804], 3*X[6361]+14*X[51110], 2*X[8584]+15*X[55646], -3*X[9812]+20*X[51084], 12*X[10164]+5*X[50819] and many others

X(62055) lies on these lines: {2, 3}, {15, 43002}, {16, 43003}, {40, 51107}, {69, 33608}, {165, 51077}, {1131, 42526}, {1132, 42527}, {1992, 55653}, {3576, 50809}, {5032, 55639}, {5085, 50966}, {5210, 14482}, {5731, 50804}, {6361, 51110}, {6480, 43525}, {6481, 43526}, {8584, 55646}, {9540, 42418}, {9812, 51084}, {10164, 50819}, {10519, 50989}, {11179, 55659}, {12117, 41147}, {12245, 51096}, {13935, 42417}, {14912, 55657}, {15023, 56567}, {15534, 55656}, {16192, 51097}, {16241, 42588}, {16242, 42589}, {16772, 42508}, {16773, 42509}, {19053, 42525}, {19054, 42524}, {20423, 55667}, {21167, 50975}, {21969, 55166}, {25406, 50961}, {31663, 34631}, {31730, 58215}, {31884, 51132}, {33602, 46334}, {33603, 46335}, {33750, 50974}, {35242, 51071}, {35255, 43386}, {35256, 43387}, {38064, 55666}, {38738, 41154}, {39874, 50994}, {41100, 52080}, {41101, 52079}, {41107, 43777}, {41108, 43778}, {41112, 43004}, {41113, 43005}, {41119, 43463}, {41120, 43464}, {41121, 43771}, {41122, 43772}, {41149, 50967}, {41150, 50808}, {41152, 43273}, {41153, 50965}, {42472, 42514}, {42473, 42515}, {42502, 43193}, {42503, 43194}, {42504, 49811}, {42505, 49810}, {42528, 43542}, {42529, 43543}, {42625, 49825}, {42626, 49824}, {42631, 43481}, {42632, 43482}, {42805, 42977}, {42806, 42976}, {42936, 43201}, {42937, 43202}, {42986, 49826}, {42987, 49827}, {43026, 43770}, {43027, 43769}, {43326, 51916}, {43327, 51915}, {43370, 43781}, {43371, 43782}, {43428, 49875}, {43429, 49876}, {43509, 53131}, {43510, 53130}, {50810, 51091}, {50811, 51070}, {50813, 51075}, {50958, 51177}, {50969, 51130}, {50992, 55661}, {51028, 55682}, {51137, 51538}, {51138, 55618}, {51179, 51187}, {51188, 54169}, {51709, 58216}, {54132, 55673}, {54170, 55674}, {54173, 55660}, {54174, 55643}, {55672, 59373}, {60150, 60286}

X(62055) = midpoint of X(i) and X(j) for these {i,j}: {376, 3533}
X(62055) = reflection of X(i) in X(j) for these {i,j}: {2, 15722}
X(62055) = anticomplement of X(61929)
X(62055) = pole of line {69, 12101} with respect to the Wallace hyperbola
X(62055) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(12101)}}, {{A, B, C, X(15721), X(18852)}}, {{A, B, C, X(18317), X(55857)}}, {{A, B, C, X(46412), X(55862)}}
X(62055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15695}, {2, 12103, 6848}, {2, 20, 12101}, {3, 10304, 15715}, {3, 15710, 376}, {3, 15714, 10304}, {140, 15692, 3524}, {140, 3857, 5070}, {140, 8703, 3534}, {376, 10299, 15709}, {376, 15698, 15719}, {376, 3524, 3090}, {376, 3533, 30}, {381, 15707, 140}, {631, 3529, 5056}, {631, 3544, 3533}, {3146, 15692, 15707}, {3146, 5056, 3843}, {3522, 17504, 15702}, {3524, 8703, 15682}, {3528, 15692, 3545}, {3534, 15693, 15703}, {3854, 16418, 7486}, {8703, 10109, 15689}, {8703, 12100, 381}, {8703, 14891, 15701}, {8703, 15701, 20}, {10109, 15693, 15721}, {10304, 12100, 11001}, {10304, 15692, 3146}, {10304, 15705, 11539}, {10304, 15715, 631}, {11001, 15715, 12100}, {11539, 12100, 15693}, {12100, 15695, 2}, {12100, 15715, 15698}, {15688, 15717, 5071}, {15689, 15693, 10109}, {15689, 15721, 4}, {15698, 15719, 10299}, {33608, 33609, 69}, {42631, 49862, 43481}, {42632, 49861, 43482}


X(62056) = X(2)X(3)∩X(193)X(55656)

Barycentrics    47*a^4-(b^2-c^2)^2-46*a^2*(b^2+c^2) : :
X(62056) = -X[2]+16*X[3], X[193]+44*X[55656], -4*X[1125]+49*X[58215], X[1992]+14*X[55651], X[3241]+14*X[16192], -X[3616]+10*X[58217], 7*X[3619]+8*X[50971], 7*X[3622]+8*X[50808], X[3623]+8*X[35242], 7*X[3624]+8*X[50816], -16*X[3655]+X[20014], -X[3656]+16*X[58219] and many others

X(62056) lies on these lines: {2, 3}, {193, 55656}, {395, 43253}, {396, 43252}, {1125, 58215}, {1992, 55651}, {3241, 16192}, {3616, 58217}, {3619, 50971}, {3622, 50808}, {3623, 35242}, {3624, 50816}, {3655, 20014}, {3656, 58219}, {4678, 50811}, {4772, 51042}, {5032, 31884}, {5092, 51028}, {5304, 5585}, {5351, 42521}, {5352, 42520}, {5550, 34638}, {5965, 33750}, {6055, 35369}, {6410, 9543}, {6411, 41961}, {6412, 41962}, {6776, 55662}, {7771, 32874}, {7782, 32869}, {7811, 32841}, {9780, 50815}, {10168, 50969}, {10519, 55663}, {11057, 32835}, {11179, 55658}, {11480, 42516}, {11481, 42517}, {11693, 15036}, {12017, 50966}, {13624, 50872}, {14482, 15603}, {14810, 54174}, {14853, 55664}, {14930, 53095}, {16226, 16981}, {19883, 58213}, {20049, 51705}, {20057, 50814}, {20080, 54169}, {20423, 55668}, {20583, 55622}, {22052, 36427}, {22235, 42518}, {22237, 42519}, {28228, 38314}, {28232, 54445}, {32785, 42540}, {32786, 42539}, {32810, 51952}, {32811, 51953}, {33748, 55643}, {34628, 46933}, {34648, 46931}, {36836, 43002}, {36843, 43003}, {38064, 55667}, {38068, 54448}, {41977, 49876}, {41978, 49875}, {42095, 43553}, {42098, 43552}, {42119, 42778}, {42120, 42777}, {42433, 49825}, {42434, 49824}, {42522, 52048}, {42523, 52047}, {42582, 43566}, {42583, 43567}, {42588, 43238}, {42589, 43239}, {42682, 43202}, {42683, 43201}, {42888, 42985}, {42889, 42984}, {42942, 43870}, {42943, 43869}, {42944, 43237}, {42945, 43236}, {43209, 43519}, {43210, 43520}, {46932, 50829}, {47355, 50972}, {50832, 58224}, {50965, 51171}, {50967, 55653}, {51073, 51081}, {51104, 58229}, {51138, 55607}, {51170, 55646}, {52443, 57822}, {54132, 55674}, {54170, 55676}, {54173, 55659}, {55671, 61044}, {55673, 59373}

X(62056) = midpoint of X(i) and X(j) for these {i,j}: {1656, 15689}, {3545, 17538}, {5054, 15695}, {10304, 15692}
X(62056) = reflection of X(i) in X(j) for these {i,j}: {15693, 17504}, {3522, 10304}, {3545, 15694}, {3843, 15699}, {5054, 15712}, {5071, 5054}
X(62056) = anticomplement of X(61930)
X(62056) = pole of line {69, 62005} with respect to the Wallace hyperbola
X(62056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(381), X(52443)}}, {{A, B, C, X(3346), X(55857)}}, {{A, B, C, X(5059), X(57822)}}, {{A, B, C, X(46412), X(55866)}}
X(62056) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 5059}, {3, 10304, 15705}, {3, 14093, 15711}, {3, 15710, 10304}, {3, 8703, 15715}, {20, 3523, 3628}, {20, 3851, 3146}, {30, 15694, 3545}, {30, 15699, 3843}, {30, 15712, 5054}, {30, 17504, 15693}, {140, 376, 15640}, {376, 11541, 3534}, {376, 3524, 5055}, {376, 3845, 20}, {376, 5067, 15685}, {381, 3860, 6906}, {382, 15693, 15694}, {548, 15716, 15702}, {549, 15685, 5067}, {549, 6949, 7486}, {631, 14093, 15697}, {631, 17538, 3858}, {3091, 5059, 17578}, {3146, 3522, 15696}, {3522, 15717, 3091}, {3524, 15688, 3839}, {3524, 5055, 15708}, {3528, 15709, 15689}, {3534, 10299, 15721}, {3534, 11737, 11541}, {3534, 15721, 3832}, {3545, 15706, 3523}, {3545, 15715, 15706}, {3839, 10304, 15688}, {3861, 12100, 549}, {5055, 17504, 3524}, {5071, 15698, 15712}, {5076, 14093, 15695}, {6908, 15689, 15707}, {8703, 15694, 17538}, {10304, 15692, 30}, {10304, 15705, 2}, {10304, 15706, 15683}, {10304, 15708, 376}, {11001, 15700, 10303}, {12100, 15689, 15709}, {14093, 15697, 3522}, {14093, 15711, 631}, {15689, 15709, 3543}, {15690, 15718, 3090}, {15692, 15693, 15717}, {15693, 15695, 3845}, {15694, 15715, 15692}, {15695, 15712, 5071}, {15705, 15717, 17504}


X(62057) = X(2)X(3)∩X(511)X(51181)

Barycentrics    44*a^4-(b^2-c^2)^2-43*a^2*(b^2+c^2) : :
X(62057) = -X[2]+15*X[3], -X[551]+8*X[58219], -X[597]+8*X[55668], X[1353]+20*X[55655], 5*X[3098]+2*X[20583], -X[3622]+7*X[58220], X[3629]+20*X[55653], 11*X[3654]+3*X[61294], 4*X[4297]+3*X[38081], -8*X[4669]+15*X[50822], 3*X[5032]+11*X[55632], -4*X[6329]+25*X[55672] and many others

X(62057) lies on these lines: {2, 3}, {511, 51181}, {515, 50826}, {516, 50833}, {524, 55658}, {551, 58219}, {597, 55668}, {1353, 55655}, {1503, 50981}, {3098, 20583}, {3622, 58220}, {3629, 55653}, {3654, 61294}, {4297, 38081}, {4669, 50822}, {5032, 55632}, {6329, 55672}, {6409, 43258}, {6410, 43259}, {6411, 52048}, {6412, 52047}, {6437, 43525}, {6438, 43526}, {8584, 14810}, {8981, 42418}, {10172, 51081}, {10283, 50808}, {10645, 42792}, {10646, 42791}, {11230, 50816}, {12512, 38022}, {13966, 42417}, {15534, 51180}, {15808, 28198}, {16192, 51094}, {16241, 43631}, {16242, 43630}, {17502, 50832}, {17508, 50987}, {19053, 42644}, {19054, 42643}, {21850, 55665}, {22165, 51184}, {28154, 51083}, {28164, 51088}, {28174, 51110}, {28190, 50820}, {28216, 50813}, {28224, 51068}, {29181, 50988}, {31663, 51071}, {33750, 50992}, {34641, 34773}, {37705, 38098}, {38034, 51084}, {38042, 50815}, {38110, 55664}, {38136, 51137}, {38176, 51080}, {38317, 50972}, {41149, 55652}, {41957, 41966}, {41958, 41965}, {42115, 43003}, {42116, 43002}, {42121, 43419}, {42122, 49906}, {42123, 49905}, {42124, 43418}, {42149, 42509}, {42152, 42508}, {42157, 42503}, {42158, 42502}, {42415, 42975}, {42416, 42974}, {42506, 42945}, {42507, 42944}, {42510, 42633}, {42511, 42634}, {42528, 43106}, {42529, 43105}, {42602, 42641}, {42603, 42642}, {42612, 42898}, {42613, 42899}, {42631, 42916}, {42632, 42917}, {42904, 51915}, {42905, 51916}, {42922, 43109}, {42923, 43108}, {43006, 43228}, {43007, 43229}, {43101, 43196}, {43104, 43195}, {43110, 49948}, {43111, 49947}, {43197, 43481}, {43198, 43482}, {43639, 49876}, {43640, 49875}, {48874, 55666}, {48876, 55662}, {48906, 55661}, {50809, 58230}, {50811, 59400}, {50824, 51095}, {50831, 51705}, {50965, 55670}, {50966, 55697}, {50970, 55640}, {50978, 55660}, {50979, 55649}, {50980, 51143}, {50983, 55667}, {50986, 51737}, {51072, 61245}, {51109, 58216}, {51132, 55627}, {51138, 55603}, {51183, 54173}, {54169, 55659}

X(62057) = midpoint of X(i) and X(j) for these {i,j}: {376, 3526}, {3528, 15700}
X(62057) = reflection of X(i) in X(j) for these {i,j}: {14869, 15700}, {15687, 3851}, {15701, 12100}, {5, 15702}
X(62057) = complement of X(62000)
X(62057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5066), X(57897)}}, {{A, B, C, X(18317), X(55856)}}
X(62057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 14269}, {2, 15640, 3855}, {2, 15707, 11812}, {2, 382, 5066}, {2, 3830, 11737}, {3, 10304, 14891}, {3, 14093, 15705}, {3, 15688, 15715}, {3, 8703, 15711}, {30, 12100, 15701}, {30, 15700, 14869}, {30, 3851, 15687}, {140, 17800, 6911}, {376, 15707, 546}, {376, 15712, 15699}, {376, 3524, 5056}, {550, 15720, 3858}, {550, 632, 382}, {3522, 15706, 547}, {3524, 15686, 632}, {3526, 15700, 15707}, {3528, 15700, 30}, {3534, 15713, 3845}, {3534, 15719, 10109}, {5054, 15697, 12101}, {5059, 10299, 15720}, {5066, 15695, 15686}, {8703, 15686, 15695}, {8703, 15713, 3534}, {8703, 15714, 15759}, {10109, 12100, 15719}, {10109, 15719, 15713}, {10299, 10304, 15681}, {10299, 14891, 17504}, {10304, 14891, 5}, {10304, 15690, 8703}, {10304, 15692, 5059}, {10304, 15693, 15690}, {11540, 12100, 15693}, {11540, 14891, 12100}, {11540, 15690, 15682}, {11737, 15720, 11539}, {11812, 15716, 15712}, {12100, 15690, 11540}, {12101, 15697, 15704}, {14093, 15705, 140}, {14869, 17504, 15700}, {15681, 15693, 2}, {15681, 15700, 15702}, {15687, 15688, 550}, {15687, 17504, 3530}, {15688, 15700, 3851}, {15689, 15717, 10124}, {15696, 15708, 14893}, {15699, 15712, 549}


X(62058) = X(2)X(3)∩X(40)X(51085)

Barycentrics    41*a^4-(b^2-c^2)^2-40*a^2*(b^2+c^2) : :
X(62058) = -X[2]+14*X[3], 5*X[40]+8*X[51085], -X[69]+40*X[55661], 12*X[165]+X[34631], 8*X[182]+5*X[50966], 5*X[944]+8*X[50827], 5*X[1350]+8*X[51138], 8*X[1385]+5*X[50809], -X[1699]+27*X[58213], X[1992]+12*X[55649], -5*X[3618]+44*X[55665], -X[3633]+14*X[51705] and many others

X(62058) lies on these lines: {2, 3}, {40, 51085}, {69, 55661}, {165, 34631}, {182, 50966}, {371, 43525}, {372, 43526}, {542, 52886}, {944, 50827}, {1151, 41970}, {1152, 41969}, {1285, 8589}, {1350, 51138}, {1385, 50809}, {1699, 58213}, {1992, 55649}, {3618, 55665}, {3633, 51705}, {3653, 58219}, {3654, 20053}, {5032, 55629}, {5237, 43003}, {5238, 43002}, {5343, 43100}, {5344, 43107}, {5418, 43536}, {5420, 54597}, {5550, 58214}, {5585, 46453}, {5818, 50815}, {6144, 51737}, {6454, 9693}, {6496, 52048}, {6497, 52047}, {6684, 50819}, {6776, 50982}, {7788, 32876}, {8227, 50816}, {8252, 43788}, {8253, 43787}, {8584, 55641}, {8976, 60299}, {9540, 43386}, {10385, 59319}, {10595, 50808}, {10645, 42796}, {10646, 42795}, {10653, 43493}, {10654, 43494}, {11179, 55657}, {11488, 44019}, {11489, 44020}, {11693, 15023}, {12007, 50967}, {13347, 13482}, {13607, 16192}, {13935, 43387}, {13951, 60300}, {14482, 15655}, {14692, 52695}, {14912, 55654}, {15051, 56567}, {17502, 34632}, {17508, 54170}, {20423, 55669}, {20583, 55618}, {21356, 51177}, {23267, 41956}, {23269, 41952}, {23273, 41955}, {23275, 41951}, {25055, 50813}, {25406, 55660}, {31447, 51068}, {32000, 57896}, {32455, 55646}, {32787, 43338}, {32788, 43339}, {32875, 59634}, {33604, 42433}, {33605, 42434}, {33750, 54169}, {35814, 42638}, {35815, 42637}, {38064, 55668}, {40330, 50971}, {41100, 42802}, {41101, 42801}, {41119, 42965}, {41120, 42964}, {41943, 42120}, {41944, 42119}, {41945, 43510}, {41946, 43509}, {41953, 43375}, {41954, 43374}, {41971, 42929}, {41972, 42928}, {42085, 43545}, {42086, 43544}, {42133, 42587}, {42134, 42586}, {42488, 43201}, {42489, 43202}, {42490, 49874}, {42491, 49873}, {42496, 42968}, {42497, 42969}, {42514, 42596}, {42515, 42597}, {42528, 43483}, {42529, 43484}, {42539, 43882}, {42540, 43881}, {42588, 43783}, {42589, 43784}, {42602, 43336}, {42603, 43337}, {42625, 43542}, {42626, 43543}, {42694, 43444}, {42695, 43445}, {42898, 49875}, {42899, 49876}, {42944, 49827}, {42945, 49826}, {43521, 60309}, {43522, 60310}, {43568, 60289}, {43569, 60290}, {43879, 60303}, {43880, 60304}, {45522, 48781}, {45523, 48780}, {46267, 51212}, {47352, 50969}, {48661, 50833}, {48662, 50981}, {48876, 51176}, {48920, 51029}, {50965, 55671}, {50974, 55659}, {50979, 55648}, {51132, 55622}, {51140, 55655}, {53103, 60630}, {54132, 55676}, {54173, 55658}, {54174, 55639}, {54523, 60649}, {54852, 60183}, {55674, 59373}, {60143, 60323}, {60185, 60250}, {60325, 60643}

X(62058) = anticomplement of X(61931)
X(62058) = pole of line {69, 38335} with respect to the Wallace hyperbola
X(62058) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(38335)}}, {{A, B, C, X(3545), X(57896)}}, {{A, B, C, X(7408), X(54852)}}, {{A, B, C, X(8797), X(45757)}}, {{A, B, C, X(13623), X(14269)}}, {{A, B, C, X(18535), X(43713)}}, {{A, B, C, X(46412), X(55859)}}, {{A, B, C, X(52301), X(60323)}}
X(62058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14093, 376}, {3, 10304, 15698}, {3, 14093, 14891}, {3, 15688, 15711}, {3, 15759, 10304}, {3, 376, 15715}, {3, 8703, 15705}, {4, 10303, 5067}, {4, 548, 17538}, {20, 17504, 15719}, {376, 15692, 15702}, {376, 3524, 5071}, {376, 3529, 15691}, {376, 631, 3543}, {548, 15712, 5072}, {549, 14891, 15706}, {549, 15704, 547}, {549, 15714, 15759}, {549, 5066, 15694}, {550, 15716, 15708}, {1657, 15718, 10124}, {1657, 6928, 550}, {3522, 15721, 15681}, {3523, 15688, 15682}, {3524, 11001, 3525}, {3524, 3528, 11001}, {3524, 8703, 11541}, {3526, 17800, 3859}, {3530, 15695, 3839}, {3534, 15717, 15709}, {3543, 15700, 631}, {3543, 15705, 15700}, {5072, 15684, 14893}, {10304, 15640, 3522}, {10304, 15692, 15683}, {10304, 15698, 4}, {10304, 15705, 5055}, {10304, 15717, 3534}, {12100, 15681, 15721}, {14093, 14891, 2}, {14093, 15684, 548}, {14093, 15700, 1657}, {14093, 15706, 15684}, {14093, 15718, 15686}, {14891, 14893, 15712}, {14891, 15686, 15718}, {14891, 15718, 15692}, {15022, 15708, 11540}, {15681, 15721, 3545}, {15683, 15692, 549}, {15688, 15711, 3523}, {15689, 15706, 14890}, {15690, 15707, 3091}, {15692, 15702, 3524}, {15698, 15709, 15717}


X(62059) = X(2)X(3)∩X(99)X(32892)

Barycentrics    35*a^4-(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(62059) = -X[2]+12*X[3], -15*X[165]+4*X[50814], X[193]+32*X[55653], -3*X[962]+14*X[51110], 3*X[1699]+8*X[50816], X[1992]+10*X[55646], -X[3060]+12*X[55166], 8*X[3098]+3*X[5032], X[3241]+10*X[35242], -12*X[3576]+X[50872], 6*X[4297]+5*X[51066], 2*X[4677]+9*X[5731] and many others

X(62059) lies on these lines: {2, 3}, {99, 32892}, {165, 50814}, {193, 55653}, {395, 42509}, {396, 42508}, {524, 55656}, {542, 55662}, {962, 51110}, {1327, 42558}, {1328, 42557}, {1699, 50816}, {1992, 55646}, {3060, 55166}, {3068, 42418}, {3069, 42417}, {3098, 5032}, {3241, 35242}, {3576, 50872}, {4297, 51066}, {4677, 5731}, {4745, 37712}, {5050, 50966}, {5085, 51028}, {5304, 8588}, {5306, 5585}, {5334, 43645}, {5335, 43646}, {5476, 50969}, {5493, 41150}, {5886, 58216}, {5921, 50994}, {6194, 11055}, {6361, 58219}, {6411, 9542}, {6412, 19053}, {6448, 9693}, {6450, 9543}, {6451, 52048}, {6452, 52047}, {6459, 42569}, {6460, 42568}, {6776, 55659}, {7585, 53131}, {7586, 53130}, {7987, 34632}, {7991, 51107}, {8584, 31884}, {8589, 37665}, {8667, 11148}, {8972, 43256}, {9588, 51067}, {9681, 43884}, {9778, 50828}, {10164, 50864}, {10165, 50812}, {10246, 50809}, {10519, 51215}, {10645, 42510}, {10646, 42511}, {10653, 43869}, {10654, 43870}, {10992, 41151}, {11160, 55658}, {11177, 36521}, {11179, 55655}, {11480, 42792}, {11481, 42791}, {12512, 51109}, {13468, 53141}, {13941, 43257}, {14853, 55667}, {15300, 34473}, {15533, 25406}, {15534, 55651}, {16192, 51093}, {16241, 43465}, {16242, 43466}, {16267, 43479}, {16268, 43480}, {16644, 42588}, {16645, 42589}, {17502, 61279}, {17508, 54132}, {19924, 55665}, {20049, 61292}, {20070, 61277}, {20423, 55670}, {20583, 55607}, {21167, 51023}, {22235, 42433}, {22237, 42434}, {25055, 58217}, {26446, 50819}, {28208, 46933}, {30308, 51086}, {30389, 51104}, {31663, 61284}, {32785, 43209}, {32786, 43210}, {33750, 51178}, {34628, 51069}, {34631, 61281}, {36967, 49824}, {36968, 49825}, {38064, 55669}, {38066, 61246}, {38127, 50811}, {38736, 41135}, {41107, 42504}, {41108, 42505}, {41112, 42528}, {41113, 42529}, {41119, 43033}, {41120, 43032}, {41121, 42091}, {41122, 42090}, {42089, 43541}, {42092, 43540}, {42103, 54580}, {42106, 54581}, {42112, 43478}, {42113, 43477}, {42119, 49906}, {42120, 49905}, {42154, 42503}, {42155, 42502}, {42258, 42579}, {42259, 42578}, {42263, 42567}, {42264, 42566}, {42274, 43567}, {42277, 43566}, {42506, 42631}, {42507, 42632}, {42522, 42524}, {42523, 42525}, {42584, 43246}, {42585, 43247}, {42637, 52045}, {42638, 52046}, {42912, 52080}, {42913, 52079}, {42932, 49875}, {42933, 49876}, {42942, 49812}, {42943, 49813}, {42976, 42998}, {42977, 42999}, {42988, 43252}, {42989, 43253}, {43254, 51910}, {43255, 51911}, {43273, 50990}, {43403, 46334}, {43404, 46335}, {43459, 46951}, {44882, 50993}, {46893, 53142}, {50802, 58213}, {50808, 51105}, {50810, 51092}, {50813, 51709}, {50815, 59387}, {50817, 51705}, {50820, 50863}, {50821, 61247}, {50873, 51083}, {50965, 51185}, {50967, 55649}, {50972, 53023}, {50973, 51737}, {50976, 51216}, {50977, 55663}, {50979, 55643}, {50984, 59411}, {50991, 51135}, {50992, 54169}, {51079, 58441}, {51096, 61289}, {51108, 54445}, {51132, 55618}, {51138, 55591}, {51170, 55639}, {51171, 55672}, {53094, 54170}, {53620, 61250}, {54044, 61136}, {55674, 61044}, {55676, 59373}, {59418, 60963}

X(62059) = midpoint of X(i) and X(j) for these {i,j}: {376, 3525}
X(62059) = reflection of X(i) in X(j) for these {i,j}: {15715, 3}, {15717, 15715}, {15719, 15716}, {15721, 15717}, {2, 15719}, {3525, 15718}, {3855, 15723}, {5056, 15721}, {5070, 549}
X(62059) = complement of X(62002)
X(62059) = anticomplement of X(61932)
X(62059) = pole of line {69, 62007} with respect to the Wallace hyperbola
X(62059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(41106)}}, {{A, B, C, X(1217), X(55861)}}, {{A, B, C, X(1294), X(15715)}}, {{A, B, C, X(5068), X(52441)}}, {{A, B, C, X(5070), X(18317)}}, {{A, B, C, X(46412), X(55858)}}
X(62059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12100, 3523}, {2, 15682, 3091}, {2, 15683, 3845}, {2, 15717, 15719}, {2, 3534, 3543}, {2, 3832, 10109}, {2, 8703, 15697}, {3, 14093, 17504}, {3, 15688, 14891}, {3, 15714, 15710}, {3, 30, 15715}, {3, 3534, 15711}, {3, 376, 15705}, {3, 8703, 15698}, {5, 12100, 15722}, {5, 12103, 5073}, {20, 15692, 15708}, {30, 15718, 3525}, {30, 15723, 3855}, {30, 549, 5070}, {376, 15703, 15683}, {376, 15715, 15718}, {376, 3525, 30}, {376, 5054, 3146}, {549, 14269, 3533}, {550, 15706, 15702}, {631, 12103, 3854}, {631, 13168, 550}, {1657, 3860, 15682}, {3090, 6831, 3851}, {3091, 3543, 14269}, {3524, 3529, 15694}, {3524, 3533, 549}, {3524, 3543, 10303}, {3528, 15682, 15695}, {3530, 15689, 5071}, {3534, 12101, 3529}, {3534, 15694, 12101}, {3534, 15716, 15720}, {3534, 15722, 5}, {3534, 5076, 15685}, {3543, 10304, 3522}, {3839, 15640, 3830}, {5071, 15689, 5059}, {8703, 15693, 11001}, {8703, 15711, 11812}, {10109, 15709, 2}, {10124, 14093, 376}, {10303, 15692, 3524}, {10304, 15692, 20}, {10304, 15697, 8703}, {10304, 15698, 15640}, {10304, 15705, 3839}, {10304, 15715, 5056}, {11001, 15698, 15693}, {12100, 15690, 10124}, {13742, 15707, 15721}, {14093, 15701, 15690}, {14093, 17504, 4}, {14269, 15695, 3534}, {14891, 15688, 631}, {15681, 15709, 3832}, {15681, 15712, 15709}, {15685, 15700, 15713}, {15685, 15713, 3545}, {15686, 15707, 3090}, {15688, 15703, 12103}, {15690, 17504, 15701}, {15715, 15719, 15716}, {15715, 15721, 15692}, {15716, 15718, 12100}, {15716, 15719, 15717}, {51086, 59420, 30308}


X(62060) = X(2)X(3)∩X(165)X(3623)

Barycentrics    31*a^4-(b^2-c^2)^2-30*a^2*(b^2+c^2) : :
X(62060) = -3*X[2]+32*X[3], X[145]+28*X[16192], 24*X[165]+5*X[3623], X[193]+28*X[55651], -3*X[3621]+32*X[43174], 21*X[3622]+8*X[5493], 9*X[5032]+20*X[55614], -11*X[5550]+98*X[58215], -3*X[5603]+32*X[58219], 24*X[5731]+5*X[20052], -32*X[5882]+3*X[20014], -X[5921]+88*X[55662] and many others

X(62060) lies on these lines: {2, 3}, {99, 32882}, {145, 16192}, {165, 3623}, {193, 55651}, {397, 43869}, {398, 43870}, {590, 60291}, {615, 60292}, {1078, 32894}, {1131, 43409}, {1132, 43410}, {1152, 9543}, {3068, 56619}, {3069, 56618}, {3621, 43174}, {3622, 5493}, {3785, 32879}, {5032, 55614}, {5237, 42795}, {5238, 42796}, {5343, 43026}, {5344, 43027}, {5368, 8588}, {5550, 58215}, {5603, 58219}, {5731, 20052}, {5882, 20014}, {5921, 55662}, {6411, 43511}, {6412, 43512}, {6419, 43525}, {6420, 43526}, {6451, 42522}, {6452, 42523}, {6496, 9542}, {6776, 55658}, {7320, 35445}, {7768, 32841}, {7850, 32831}, {7860, 32835}, {7991, 51085}, {8252, 43561}, {8253, 43560}, {8550, 55654}, {9541, 35814}, {10194, 51911}, {10195, 51910}, {10519, 55659}, {11230, 58214}, {11623, 35369}, {12007, 55646}, {12512, 46934}, {13607, 35242}, {14853, 55668}, {14862, 54211}, {14930, 15815}, {15043, 55166}, {16241, 43424}, {16242, 43425}, {20080, 55656}, {20190, 51028}, {23958, 37551}, {25555, 55665}, {28164, 46930}, {31412, 60293}, {31884, 51170}, {32785, 43519}, {32786, 43520}, {32824, 32880}, {32825, 32881}, {33748, 55629}, {33750, 55655}, {34507, 55661}, {37640, 42794}, {37641, 42793}, {41945, 43884}, {41946, 43883}, {41963, 42637}, {41964, 42638}, {42119, 43480}, {42120, 43479}, {42160, 43545}, {42161, 43544}, {42258, 43377}, {42259, 43376}, {42431, 42955}, {42432, 42954}, {42433, 43483}, {42434, 43484}, {42528, 42959}, {42529, 42958}, {42561, 60294}, {42686, 43496}, {42687, 43495}, {42690, 43464}, {42691, 43463}, {42773, 43556}, {42774, 43557}, {42775, 43473}, {42776, 43474}, {42988, 43242}, {42989, 43243}, {43150, 55663}, {43238, 43465}, {43239, 43466}, {43338, 43413}, {43339, 43414}, {43378, 43789}, {43379, 43790}, {43438, 43879}, {43439, 43880}, {43540, 51944}, {43541, 51945}, {43681, 60336}, {47586, 60639}, {50966, 53092}, {50967, 55647}, {51138, 53097}, {51140, 55652}, {51171, 55673}, {54132, 55679}, {54174, 55631}, {55676, 61044}, {60145, 60331}

X(62060) = pole of line {185, 61783} with respect to the Jerabek hyperbola
X(62060) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1217), X(55860)}}, {{A, B, C, X(3346), X(5070)}}, {{A, B, C, X(3519), X(38335)}}, {{A, B, C, X(3853), X(42021)}}, {{A, B, C, X(5076), X(34483)}}, {{A, B, C, X(5198), X(43713)}}, {{A, B, C, X(15715), X(40448)}}
X(62060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15696, 14891}, {3, 20, 15705}, {3, 3528, 15692}, {3, 382, 15711}, {3, 5, 15715}, {3, 548, 15698}, {4, 10304, 3522}, {4, 140, 7486}, {4, 1657, 15640}, {20, 13735, 17578}, {20, 3523, 1656}, {20, 3530, 13742}, {20, 3545, 3146}, {20, 549, 15022}, {140, 15712, 15707}, {140, 17504, 6850}, {140, 3534, 4}, {376, 15712, 5056}, {546, 549, 3526}, {548, 11540, 15704}, {549, 3534, 3545}, {550, 3523, 5068}, {1656, 10299, 3523}, {1656, 3830, 3850}, {1656, 5073, 546}, {3146, 13741, 3857}, {3146, 3832, 15687}, {3522, 10299, 3854}, {3522, 3523, 5059}, {3522, 5068, 550}, {3523, 5059, 2}, {3525, 15688, 20}, {3628, 15640, 3832}, {3857, 10303, 13741}, {5059, 17578, 5073}, {5066, 15708, 17678}, {10299, 11541, 6923}, {10303, 10304, 548}, {10303, 15698, 15717}, {10304, 15692, 3534}, {10304, 15698, 15683}, {15022, 15717, 549}, {15683, 15717, 10303}, {15697, 15717, 17542}, {15703, 15720, 140}, {15704, 15706, 631}, {15709, 17800, 3091}, {15712, 15716, 10299}


X(62061) = X(2)X(3)∩X(69)X(55657)

Barycentrics    25*a^4-(b^2-c^2)^2-24*a^2*(b^2+c^2) : :
X(62061) = -3*X[2]+26*X[3], -X[69]+24*X[55657], X[193]+22*X[55648], 8*X[576]+15*X[50966], 13*X[944]+10*X[4816], -2*X[946]+25*X[58217], -X[1352]+24*X[55663], -3*X[1699]+49*X[58215], 3*X[1992]+20*X[55637], -5*X[3618]+28*X[55669], 7*X[3619]+16*X[33751], -16*X[4746]+39*X[5657] and many others

X(62061) lies on these lines: {2, 3}, {69, 55657}, {193, 55648}, {576, 50966}, {944, 4816}, {946, 58217}, {1056, 59325}, {1058, 59319}, {1285, 37512}, {1352, 55663}, {1587, 42568}, {1588, 42569}, {1699, 58215}, {1992, 55637}, {3618, 55669}, {3619, 33751}, {4746, 5657}, {5032, 55602}, {5286, 5585}, {5343, 42774}, {5344, 42773}, {5365, 43446}, {5366, 43447}, {5418, 42570}, {5420, 42571}, {5493, 10595}, {5702, 36748}, {5882, 16192}, {6361, 61275}, {6409, 41961}, {6410, 41962}, {6411, 7581}, {6412, 7582}, {6420, 9693}, {6451, 43511}, {6452, 43512}, {6776, 55656}, {8550, 33750}, {9541, 41964}, {9589, 50813}, {9812, 58216}, {10164, 61256}, {10194, 43518}, {10195, 43517}, {10222, 50809}, {10619, 18931}, {10990, 15036}, {11179, 55650}, {12002, 15028}, {12245, 32900}, {13421, 40280}, {13464, 58221}, {14912, 55646}, {16772, 43481}, {16773, 43482}, {17502, 61277}, {20421, 42021}, {23251, 42566}, {23261, 42567}, {23269, 41948}, {23275, 41947}, {25406, 55655}, {25555, 55667}, {28190, 46931}, {31425, 34627}, {31663, 61287}, {31666, 34632}, {31670, 55664}, {33416, 43444}, {33417, 43445}, {33602, 43107}, {33603, 43100}, {33748, 55616}, {34504, 55823}, {34507, 55659}, {35812, 43411}, {35813, 43412}, {40693, 43493}, {40694, 43494}, {41977, 42150}, {41978, 42151}, {42085, 42978}, {42086, 42979}, {42099, 42776}, {42100, 42775}, {42117, 43480}, {42118, 43479}, {42119, 42993}, {42120, 42992}, {42140, 42937}, {42141, 42936}, {42163, 51945}, {42164, 51915}, {42165, 51916}, {42166, 51944}, {42283, 43506}, {42284, 43505}, {42433, 42959}, {42434, 42958}, {42494, 44015}, {42495, 44016}, {42512, 42965}, {42513, 42964}, {42557, 51911}, {42558, 51910}, {42627, 43556}, {42628, 43557}, {42908, 42910}, {42909, 42911}, {42924, 42926}, {42925, 42927}, {42988, 43869}, {42989, 43870}, {42998, 52080}, {42999, 52079}, {43174, 61296}, {43193, 43542}, {43194, 43543}, {43407, 53517}, {43408, 53520}, {43459, 52713}, {46264, 55662}, {48873, 55665}, {50970, 55626}, {51170, 55624}, {51212, 55670}, {51705, 61289}, {54170, 55687}, {54445, 58219}, {55678, 61044}, {55679, 59373}, {59417, 61292}

X(62061) = anticomplement of X(61935)
X(62061) = pole of line {185, 61787} with respect to the Jerabek hyperbola
X(62061) = pole of line {69, 5076} with respect to the Wallace hyperbola
X(62061) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(5076)}}, {{A, B, C, X(1597), X(57713)}}, {{A, B, C, X(3091), X(14863)}}, {{A, B, C, X(3431), X(11403)}}, {{A, B, C, X(3532), X(18535)}}, {{A, B, C, X(3545), X(52441)}}, {{A, B, C, X(3830), X(42021)}}, {{A, B, C, X(5198), X(11270)}}, {{A, B, C, X(10594), X(20421)}}, {{A, B, C, X(14269), X(14861)}}, {{A, B, C, X(15705), X(40448)}}, {{A, B, C, X(15708), X(51348)}}
X(62061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 5076}, {3, 10304, 631}, {3, 14093, 3530}, {3, 15696, 17504}, {3, 20, 15698}, {3, 3522, 10299}, {3, 3526, 15711}, {3, 382, 14891}, {3, 5, 15705}, {3, 548, 15692}, {3, 631, 15715}, {3, 8703, 15717}, {4, 15702, 1656}, {4, 3523, 3525}, {20, 15684, 3529}, {20, 15712, 3533}, {140, 1657, 3854}, {376, 15698, 5054}, {376, 631, 3146}, {548, 15716, 16417}, {548, 15720, 5059}, {550, 15712, 3628}, {631, 3090, 11539}, {1656, 3529, 4}, {1657, 5054, 3851}, {3146, 3525, 3544}, {3146, 3839, 3853}, {3522, 15692, 3858}, {3522, 3523, 1657}, {3522, 5056, 550}, {3523, 3854, 140}, {3524, 17538, 5067}, {3524, 3528, 17538}, {3529, 15717, 15702}, {3533, 15698, 15712}, {3628, 15695, 20}, {3628, 3851, 5056}, {3830, 11737, 3839}, {3839, 15717, 12108}, {5054, 15712, 3523}, {5056, 10304, 3522}, {5059, 15692, 15720}, {5059, 15720, 3090}, {5344, 42773, 43463}, {6891, 15711, 2}, {10303, 15696, 15682}, {10304, 12100, 376}, {10304, 15715, 11001}, {11001, 11541, 17800}, {11001, 15715, 3524}, {12103, 12108, 3857}, {14869, 15689, 17578}, {15684, 15702, 5071}, {15695, 15707, 15684}, {15696, 17504, 10303}


X(62062) = X(2)X(3)∩X(6)X(43871)

Barycentrics    24*a^4-(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62062) = -3*X[2]+25*X[3], -X[141]+12*X[55663], 9*X[165]+2*X[61286], X[1353]+10*X[55646], X[1483]+10*X[35242], X[3244]+10*X[31663], 8*X[3579]+3*X[61283], -16*X[3626]+5*X[61245], X[3629]+10*X[14810], -2*X[3631]+35*X[55658], 6*X[3632]+5*X[61297], -4*X[3636]+15*X[17502] and many others

X(62062) lies on these lines: {2, 3}, {6, 43871}, {141, 55663}, {165, 61286}, {524, 55652}, {1353, 55646}, {1483, 35242}, {1503, 55662}, {3244, 31663}, {3411, 42797}, {3412, 42798}, {3564, 55656}, {3579, 61283}, {3626, 61245}, {3629, 14810}, {3631, 55658}, {3632, 61297}, {3636, 17502}, {3917, 55286}, {4297, 61251}, {5305, 5585}, {5349, 43249}, {5350, 43248}, {5351, 42634}, {5352, 42633}, {5368, 9607}, {5480, 55664}, {5886, 58217}, {6329, 17508}, {6411, 19117}, {6412, 9681}, {6418, 9693}, {6451, 42643}, {6452, 42644}, {6560, 42578}, {6561, 42579}, {7987, 61278}, {8227, 58215}, {8252, 43516}, {8253, 43515}, {8550, 55650}, {8584, 55617}, {8589, 9606}, {9588, 37705}, {11008, 33750}, {11362, 61295}, {11482, 51181}, {11592, 14855}, {12007, 55640}, {15063, 22251}, {15808, 58219}, {16192, 37727}, {18553, 50980}, {20050, 61293}, {21850, 55670}, {29181, 55665}, {31425, 61249}, {31447, 38112}, {31487, 42637}, {32455, 55630}, {34380, 55648}, {34747, 61290}, {35812, 41956}, {35813, 41955}, {38034, 58216}, {38110, 55669}, {40107, 55659}, {40341, 55654}, {41100, 42794}, {41101, 42793}, {42112, 42611}, {42113, 42610}, {42121, 42434}, {42124, 42433}, {42144, 42489}, {42145, 42488}, {42147, 42938}, {42148, 42939}, {42153, 43630}, {42156, 43631}, {42159, 51945}, {42162, 51944}, {42266, 43790}, {42267, 43789}, {42528, 43485}, {42529, 43486}, {42545, 42580}, {42546, 42581}, {42773, 43416}, {42774, 43417}, {42779, 42943}, {42780, 42942}, {42900, 43873}, {42901, 43874}, {42922, 43635}, {42923, 43634}, {42990, 43250}, {42991, 43251}, {43008, 43234}, {43009, 43235}, {43523, 43793}, {43524, 43794}, {43546, 51916}, {43547, 51915}, {43645, 43774}, {43646, 43773}, {44882, 55661}, {48874, 55672}, {48876, 55657}, {48881, 55666}, {48906, 55655}, {50965, 55679}, {50979, 55631}, {51737, 55647}, {55624, 61624}, {55676, 59399}, {58221, 61276}, {61258, 61614}

X(62062) = reflection of X(i) in X(j) for these {i,j}: {15721, 12100}, {549, 15716}, {5072, 140}
X(62062) = complement of X(62004)
X(62062) = pole of line {185, 14891} with respect to the Jerabek hyperbola
X(62062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(14891)}}, {{A, B, C, X(15318), X(19709)}}, {{A, B, C, X(15705), X(60007)}}
X(62062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10304, 140}, {3, 140, 15711}, {3, 14093, 3523}, {3, 15688, 10299}, {3, 15720, 15715}, {3, 1656, 15705}, {3, 1657, 15698}, {3, 3522, 12100}, {3, 4, 14891}, {20, 15717, 3525}, {20, 3528, 15688}, {20, 549, 5}, {30, 12100, 15721}, {30, 140, 5072}, {382, 15720, 5070}, {382, 3528, 548}, {546, 1010, 15022}, {546, 10109, 3851}, {548, 12100, 3859}, {550, 14869, 15687}, {550, 15687, 15704}, {550, 3627, 15681}, {3522, 12100, 3627}, {3525, 5070, 16239}, {3526, 3851, 17530}, {3526, 6941, 5066}, {3528, 10299, 20}, {3528, 15715, 3855}, {3528, 3530, 550}, {3529, 3832, 382}, {3534, 12108, 3858}, {3830, 15716, 15719}, {3855, 15717, 15720}, {5059, 15701, 12812}, {10299, 15688, 546}, {10304, 15686, 8703}, {10304, 15711, 15686}, {13742, 15705, 15717}, {14869, 17504, 15712}, {15681, 17530, 3853}, {15687, 15712, 14869}, {15688, 15700, 3830}, {15690, 15705, 549}, {15700, 15711, 17504}, {15704, 15712, 11539}, {15717, 15720, 3530}, {15721, 15971, 13741}, {43871, 43872, 6}


X(62063) = X(2)X(3)∩X(165)X(3241)

Barycentrics    23*a^4-(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62063) = -X[2]+8*X[3], 5*X[40]+2*X[51077], -X[69]+22*X[55656], X[145]+20*X[35242], 6*X[165]+X[3241], -8*X[182]+X[51028], -X[193]+8*X[51737], 2*X[355]+5*X[50819], 4*X[551]+3*X[9778], -2*X[597]+9*X[55673], 5*X[944]+2*X[50804], 2*X[946]+5*X[50812] and many others

X(62063) lies on these lines: {2, 3}, {13, 43294}, {14, 43295}, {40, 51077}, {69, 55656}, {99, 32869}, {145, 35242}, {165, 3241}, {182, 51028}, {193, 51737}, {355, 50819}, {372, 9543}, {395, 43870}, {396, 43869}, {519, 16192}, {524, 55651}, {541, 15036}, {542, 55658}, {551, 9778}, {574, 14930}, {597, 55673}, {944, 50804}, {946, 50812}, {962, 50828}, {1078, 32874}, {1125, 58217}, {1131, 41952}, {1132, 41951}, {1327, 51910}, {1328, 51911}, {1350, 5032}, {1351, 50966}, {1352, 50975}, {1385, 50872}, {1482, 50809}, {1992, 31884}, {3058, 5265}, {3098, 51170}, {3576, 34632}, {3579, 3623}, {3587, 23958}, {3621, 3654}, {3622, 28194}, {3624, 58215}, {3653, 6361}, {3655, 20049}, {3828, 54448}, {4297, 50801}, {4678, 28204}, {5085, 54170}, {5092, 54132}, {5204, 10385}, {5210, 5304}, {5237, 42511}, {5238, 42510}, {5281, 5434}, {5318, 51944}, {5321, 51945}, {5334, 41944}, {5335, 41943}, {5343, 46335}, {5344, 46334}, {5355, 8588}, {5365, 49908}, {5366, 49907}, {5476, 55668}, {5480, 50968}, {5493, 51105}, {5585, 7735}, {5691, 50829}, {5731, 31145}, {5921, 50977}, {5984, 52695}, {6053, 15051}, {6055, 8596}, {6221, 43320}, {6398, 43321}, {6409, 19054}, {6410, 19053}, {6411, 7585}, {6412, 7586}, {6428, 9693}, {6449, 52048}, {6450, 52047}, {6451, 9542}, {6455, 42522}, {6456, 42523}, {6459, 52046}, {6460, 52045}, {6496, 7581}, {6497, 7582}, {6684, 50864}, {6776, 50961}, {7739, 15513}, {7767, 32879}, {7771, 46951}, {7782, 32836}, {7788, 32841}, {7809, 32835}, {7811, 10513}, {7904, 51579}, {7917, 32831}, {7987, 20070}, {8584, 55614}, {8591, 34473}, {8716, 9740}, {8722, 46944}, {9143, 15055}, {9541, 43323}, {9588, 51068}, {9589, 51108}, {9779, 59420}, {9809, 50844}, {9812, 34638}, {10164, 34628}, {10168, 55667}, {10178, 31165}, {10248, 51083}, {10519, 55657}, {10576, 43560}, {10577, 43561}, {10645, 42997}, {10646, 42996}, {10990, 15023}, {11002, 36987}, {11160, 25406}, {11177, 21166}, {11179, 33750}, {11180, 55660}, {11488, 42625}, {11489, 42626}, {11531, 51085}, {11632, 35369}, {11898, 51176}, {12007, 51214}, {12512, 25055}, {13336, 13482}, {13678, 45509}, {13798, 45508}, {13903, 43386}, {13961, 43387}, {14561, 55664}, {14810, 50967}, {14831, 20791}, {14853, 46267}, {14907, 32837}, {14912, 55643}, {14927, 21358}, {14986, 59319}, {15035, 56567}, {15042, 20125}, {15803, 15933}, {16644, 43465}, {16645, 43466}, {16808, 43552}, {16809, 43553}, {16962, 43495}, {16963, 43496}, {17704, 21969}, {18538, 42540}, {18762, 42539}, {19875, 50815}, {19876, 28164}, {19883, 50816}, {19924, 50969}, {19925, 51079}, {20052, 34773}, {20080, 54173}, {20423, 55674}, {20582, 59411}, {20583, 55591}, {21163, 44434}, {21356, 44882}, {21454, 30282}, {22052, 36413}, {22235, 43193}, {22236, 42792}, {22237, 43194}, {22238, 42791}, {22676, 44562}, {23302, 43540}, {23303, 43541}, {28198, 50813}, {31162, 54445}, {31412, 43209}, {31423, 50820}, {31663, 50810}, {31670, 55665}, {31673, 46930}, {31730, 46934}, {32006, 32873}, {32062, 33879}, {32522, 33706}, {32785, 42604}, {32786, 42605}, {32787, 42637}, {32788, 42638}, {32815, 32893}, {32834, 43459}, {32839, 48913}, {32840, 59634}, {33748, 55610}, {33751, 40330}, {34627, 38176}, {34754, 42796}, {34755, 42795}, {35238, 61157}, {35510, 41008}, {35595, 58808}, {35770, 43525}, {35771, 43526}, {36990, 50984}, {37665, 53095}, {37749, 38698}, {38064, 55672}, {38068, 46932}, {38098, 51080}, {38738, 41135}, {38747, 41134}, {40693, 42631}, {40694, 42632}, {41112, 42433}, {41113, 42434}, {41119, 43556}, {41120, 43557}, {41467, 59767}, {41973, 49810}, {41974, 49811}, {42087, 42956}, {42088, 42957}, {42090, 43404}, {42091, 43403}, {42096, 42501}, {42097, 42500}, {42099, 43474}, {42100, 43473}, {42108, 43478}, {42109, 43477}, {42111, 42430}, {42114, 42429}, {42122, 43778}, {42123, 43777}, {42140, 42587}, {42141, 42586}, {42147, 49812}, {42148, 49813}, {42149, 49827}, {42152, 49826}, {42153, 42589}, {42156, 42588}, {42157, 49824}, {42158, 49825}, {42266, 43255}, {42267, 43254}, {42270, 43567}, {42273, 43566}, {42490, 43769}, {42491, 43770}, {42561, 43210}, {42797, 42934}, {42798, 42935}, {42799, 42929}, {42800, 42928}, {42898, 42943}, {42899, 42942}, {42944, 49861}, {42945, 49862}, {42952, 43546}, {42953, 43547}, {42974, 43242}, {42975, 43243}, {42982, 43481}, {42983, 43482}, {42988, 43109}, {42989, 43108}, {43002, 43228}, {43003, 43229}, {43306, 43493}, {43307, 43494}, {43364, 43401}, {43365, 43402}, {43380, 60293}, {43381, 60294}, {43416, 43463}, {43417, 43464}, {43479, 43773}, {43480, 43774}, {43951, 60645}, {46264, 55661}, {47352, 51130}, {47586, 60638}, {47745, 50811}, {48310, 48872}, {48873, 55666}, {48876, 51215}, {48885, 51137}, {48896, 50956}, {50965, 53094}, {50970, 55622}, {50979, 55629}, {50983, 51212}, {51086, 51118}, {51106, 58225}, {51138, 55722}, {51139, 51163}, {51171, 55676}, {51174, 55648}, {51709, 58219}, {54042, 61136}, {59418, 60984}, {60118, 60287}, {60131, 60147}

X(62063) = midpoint of X(i) and X(j) for these {i,j}: {376, 15702}, {3528, 15698}, {3534, 3851}, {31423, 50820}
X(62063) = reflection of X(i) in X(j) for these {i,j}: {14869, 12100}, {15698, 3}, {15702, 15700}, {15703, 549}, {2, 3523}, {3090, 15701}, {3523, 15698}, {3830, 3857}, {3832, 2}, {51068, 9588}
X(62063) = inverse of X(61930) in orthocentroidal circle
X(62063) = inverse of X(61930) in Yff hyperbola
X(62063) = complement of X(62005)
X(62063) = anticomplement of X(61936)
X(62063) = pole of line {523, 61930} with respect to the orthocentroidal circle
X(62063) = pole of line {185, 61788} with respect to the Jerabek hyperbola
X(62063) = pole of line {6, 61930} with respect to the Kiepert hyperbola
X(62063) = pole of line {523, 61930} with respect to the Yff hyperbola
X(62063) = pole of line {69, 50687} with respect to the Wallace hyperbola
X(62063) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(50687)}}, {{A, B, C, X(95), X(15705)}}, {{A, B, C, X(1217), X(55857)}}, {{A, B, C, X(1294), X(15698)}}, {{A, B, C, X(1494), X(3832)}}, {{A, B, C, X(3346), X(3628)}}, {{A, B, C, X(3839), X(35510)}}, {{A, B, C, X(3853), X(54552)}}, {{A, B, C, X(4846), X(14893)}}, {{A, B, C, X(15683), X(57822)}}, {{A, B, C, X(15684), X(16251)}}, {{A, B, C, X(15686), X(18850)}}, {{A, B, C, X(15703), X(18317)}}, {{A, B, C, X(46219), X(46412)}}, {{A, B, C, X(49138), X(60122)}}
X(62063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 3522}, {2, 15705, 15717}, {2, 3, 15705}, {2, 30, 3832}, {2, 376, 15683}, {2, 3839, 15022}, {3, 15688, 12100}, {3, 15689, 15716}, {3, 15695, 15706}, {3, 15759, 15710}, {3, 30, 15698}, {3, 3534, 17504}, {3, 381, 14891}, {3, 5054, 15711}, {3, 548, 10299}, {3, 549, 15715}, {5, 15706, 15719}, {13, 43294, 43372}, {14, 43295, 43373}, {20, 10304, 8703}, {20, 3091, 5073}, {20, 3523, 3090}, {20, 3627, 5059}, {20, 5068, 3146}, {20, 5070, 17578}, {30, 12100, 14869}, {30, 549, 15703}, {140, 15689, 15682}, {140, 15716, 3524}, {140, 8703, 15689}, {376, 15686, 15697}, {376, 5071, 15681}, {381, 15694, 15699}, {381, 5073, 15687}, {548, 5054, 11001}, {549, 14893, 15723}, {549, 15686, 11737}, {549, 8703, 15691}, {550, 5070, 11541}, {3090, 3524, 15701}, {3524, 12101, 10303}, {3524, 15699, 15708}, {3528, 15698, 30}, {3530, 17538, 5056}, {3530, 3830, 15709}, {3534, 15718, 547}, {3534, 17504, 631}, {3545, 11541, 12101}, {3627, 14891, 15718}, {3655, 59417, 20049}, {3832, 15022, 3851}, {3845, 15707, 3525}, {3854, 6955, 16417}, {3856, 17504, 15693}, {5054, 11001, 3091}, {5054, 5073, 10109}, {5055, 15690, 3529}, {5067, 6934, 3855}, {7987, 50808, 38314}, {8703, 12100, 15685}, {8703, 17504, 3627}, {10109, 15687, 381}, {10124, 15684, 3545}, {10299, 11001, 5054}, {10304, 15692, 376}, {10304, 15708, 15688}, {10646, 43233, 42996}, {11737, 12100, 549}, {12100, 15686, 15694}, {12100, 15688, 4}, {12100, 15697, 2}, {12103, 15713, 14269}, {12812, 15686, 15684}, {14093, 15715, 3543}, {14269, 15713, 5067}, {14869, 15694, 15702}, {14893, 15723, 5071}, {15681, 15723, 14893}, {15682, 15689, 20}, {15683, 15721, 5068}, {15684, 15693, 10124}, {15688, 15694, 15686}, {15689, 15716, 140}, {15690, 15712, 5055}, {15693, 16434, 3839}, {15695, 15706, 5}, {15695, 15719, 15640}, {15696, 15707, 3845}, {15698, 15700, 15692}, {15698, 15702, 15700}, {15700, 15702, 3523}, {15701, 15702, 15721}, {15709, 17538, 3830}, {21358, 50971, 14927}, {38314, 50808, 20070}, {48310, 50972, 48872}, {50965, 53094, 59373}, {50965, 59373, 61044}


X(62064) = X(2)X(3)∩X(17)X(43783)

Barycentrics    22*a^4-(b^2-c^2)^2-21*a^2*(b^2+c^2) : :
X(62064) = -3*X[2]+23*X[3], -X[141]+11*X[55662], X[1216]+4*X[55286], X[1353]+9*X[55643], 4*X[3098]+X[61624], 4*X[3579]+X[61597], -X[3589]+6*X[55664], X[3629]+9*X[55640], -X[5480]+11*X[55665], X[5493]+9*X[17502], -X[5734]+3*X[50832], X[8550]+9*X[55649] and many others

X(62064) lies on these lines: {2, 3}, {17, 43783}, {18, 43784}, {141, 55662}, {395, 43634}, {396, 43635}, {524, 55650}, {1216, 55286}, {1353, 55643}, {1503, 55661}, {3098, 61624}, {3564, 55655}, {3579, 61597}, {3589, 55664}, {3629, 55640}, {5237, 43009}, {5238, 43008}, {5339, 43329}, {5340, 43328}, {5346, 8588}, {5349, 43102}, {5350, 43103}, {5351, 43007}, {5352, 43006}, {5480, 55665}, {5493, 17502}, {5734, 50832}, {5844, 35242}, {5901, 28232}, {5965, 55653}, {6435, 41970}, {6436, 41969}, {6496, 19117}, {6497, 19116}, {7987, 28212}, {8550, 55649}, {8584, 55611}, {8981, 43314}, {9729, 13421}, {10595, 58224}, {10619, 54201}, {10627, 13382}, {10645, 42924}, {10646, 42925}, {11202, 15105}, {11204, 44762}, {11522, 28216}, {11542, 43334}, {11543, 43335}, {11592, 46850}, {12002, 13363}, {12007, 55636}, {12512, 58219}, {13392, 15036}, {13393, 34153}, {13624, 28228}, {13925, 43316}, {13966, 43315}, {13993, 43317}, {14449, 16836}, {15035, 22250}, {16192, 61294}, {16772, 43426}, {16773, 43427}, {16960, 41974}, {16961, 41973}, {18358, 33751}, {18483, 58214}, {18583, 55670}, {21850, 55671}, {25555, 55668}, {28234, 31663}, {28236, 61524}, {29181, 55666}, {32455, 55625}, {33750, 55648}, {34380, 55646}, {34507, 55658}, {34754, 43872}, {34755, 43871}, {36967, 42958}, {36968, 42959}, {37714, 50825}, {37853, 61598}, {38736, 61600}, {38747, 61599}, {38759, 61605}, {38771, 61604}, {42090, 42774}, {42091, 42773}, {42099, 42948}, {42100, 42949}, {42136, 42937}, {42137, 42936}, {42160, 51945}, {42161, 51944}, {42164, 42978}, {42165, 42979}, {42431, 42905}, {42432, 42904}, {42490, 42512}, {42491, 42513}, {42528, 42777}, {42529, 42778}, {42584, 42683}, {42585, 42682}, {42586, 43246}, {42587, 43247}, {42590, 42941}, {42591, 42940}, {42598, 43489}, {42599, 43490}, {42637, 43413}, {42638, 43414}, {42793, 42913}, {42794, 42912}, {42797, 43776}, {42798, 43775}, {42813, 43548}, {42814, 43549}, {42888, 42920}, {42889, 42921}, {42890, 43484}, {42891, 43483}, {42922, 43869}, {42923, 43870}, {43330, 51916}, {43331, 51915}, {44882, 55660}, {45185, 61540}, {48874, 55673}, {48876, 55656}, {48881, 55667}, {48906, 55654}, {50808, 61278}, {50965, 55681}, {50979, 55626}, {51732, 55676}, {51737, 55644}, {55659, 61545}

X(62064) = midpoint of X(i) and X(j) for these {i,j}: {5, 17538}, {376, 15713}, {549, 15695}, {550, 1656}, {632, 15696}, {3522, 15712}, {3859, 12103}, {8703, 15692}, {14093, 15711}, {15704, 17578}
X(62064) = reflection of X(i) in X(j) for these {i,j}: {140, 15712}, {12103, 15696}, {12812, 631}, {15693, 14891}, {15714, 15759}, {3843, 3628}, {3853, 3091}, {3859, 632}, {5066, 15694}, {5071, 11812}, {632, 3530}
X(62064) = complement of X(62006)
X(62064) = anticomplement of X(41989)
X(62064) = pole of line {185, 61789} with respect to the Jerabek hyperbola
X(62064) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3519), X(15687)}}, {{A, B, C, X(3861), X(14861)}}, {{A, B, C, X(14891), X(40448)}}, {{A, B, C, X(17578), X(42021)}}
X(62064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14093, 631}, {3, 15688, 15717}, {3, 15696, 15692}, {3, 20, 17504}, {3, 3526, 15705}, {3, 382, 15698}, {3, 5, 14891}, {3, 548, 12100}, {3, 631, 15711}, {3, 8703, 3530}, {4, 3522, 15696}, {5, 550, 5059}, {20, 12108, 5066}, {20, 15719, 5079}, {20, 17504, 12108}, {30, 11812, 5071}, {30, 14891, 15693}, {30, 15696, 12103}, {30, 15712, 140}, {30, 15759, 15714}, {30, 3091, 3853}, {30, 3628, 3843}, {30, 631, 12812}, {30, 632, 3859}, {140, 12103, 4}, {546, 548, 15691}, {547, 3860, 14892}, {550, 3523, 3850}, {631, 15697, 5076}, {1656, 3522, 550}, {1656, 3843, 5068}, {3091, 3528, 15695}, {3091, 3533, 1656}, {3523, 15640, 16052}, {3524, 15704, 16239}, {3526, 15686, 12102}, {3529, 11539, 3856}, {3530, 12103, 547}, {3530, 12108, 15719}, {3530, 12811, 5054}, {3534, 14869, 3861}, {3627, 15717, 11812}, {3843, 15713, 3628}, {3853, 14892, 546}, {10299, 15693, 15712}, {10304, 14891, 15690}, {10304, 15681, 8703}, {12100, 14892, 549}, {12812, 14093, 548}, {14093, 15711, 30}, {14813, 14814, 15687}, {15681, 15696, 17538}, {15688, 15717, 3627}, {15692, 15696, 632}, {15693, 15695, 15682}, {15693, 17538, 5}, {15704, 16239, 14893}


X(62065) = X(2)X(3)∩X(541)X(15042)

Barycentrics    43*a^4-2*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(62065) = -2*X[2]+15*X[3], 12*X[165]+X[50805], -X[599]+14*X[55658], 2*X[1992]+11*X[55632], -10*X[3616]+49*X[58220], 4*X[3629]+35*X[55639], -16*X[6329]+55*X[55678], 4*X[8584]+9*X[55610], 2*X[11179]+11*X[55648], 6*X[11231]+7*X[50820], -X[11898]+40*X[55655], 12*X[14810]+X[15534] and many others

X(62065) lies on these lines: {2, 3}, {165, 50805}, {541, 15042}, {599, 55658}, {1151, 42524}, {1152, 42525}, {1992, 55632}, {3616, 58220}, {3629, 55639}, {3642, 33619}, {3643, 33618}, {5351, 42636}, {5352, 42635}, {6329, 55678}, {6445, 52048}, {6446, 52047}, {6451, 53131}, {6452, 53130}, {6496, 41946}, {6497, 41945}, {8584, 55610}, {8588, 39593}, {11179, 55648}, {11231, 50820}, {11480, 42532}, {11481, 42533}, {11485, 42792}, {11486, 42791}, {11898, 55655}, {14810, 15534}, {14830, 35022}, {14848, 55674}, {15533, 55654}, {16192, 34718}, {16960, 42968}, {16961, 42969}, {16962, 42798}, {16963, 42797}, {17502, 51105}, {17508, 51185}, {18440, 55661}, {18510, 42417}, {18512, 42418}, {18526, 34641}, {20583, 33878}, {25055, 58219}, {25406, 51175}, {31663, 51093}, {31884, 50962}, {32900, 34747}, {33544, 33586}, {36523, 38731}, {38028, 50813}, {38110, 50969}, {40341, 55653}, {41100, 43014}, {41101, 43015}, {41112, 43106}, {41113, 43105}, {41121, 42131}, {41122, 42130}, {41943, 43485}, {41944, 43486}, {42090, 51915}, {42091, 51916}, {42115, 42511}, {42116, 42510}, {42122, 49861}, {42123, 49862}, {42126, 51945}, {42127, 51944}, {42140, 43247}, {42141, 43246}, {42433, 49903}, {42434, 49904}, {42488, 42586}, {42489, 42587}, {42504, 42528}, {42505, 42529}, {42508, 42631}, {42509, 42632}, {42518, 43483}, {42519, 43484}, {42625, 42817}, {42626, 42818}, {42629, 49907}, {42630, 49908}, {42773, 43016}, {42774, 43017}, {42815, 49860}, {42816, 49859}, {42944, 49810}, {42945, 49811}, {42946, 42972}, {42947, 42973}, {43273, 55657}, {47352, 55668}, {50954, 51186}, {50965, 55682}, {50979, 55624}, {51084, 58216}, {51140, 55645}, {51172, 55697}, {51173, 55667}, {51188, 55652}, {51737, 55643}, {54131, 55669}, {54170, 55692}

X(62065) = midpoint of X(i) and X(j) for these {i,j}: {376, 10303}
X(62065) = reflection of X(i) in X(j) for these {i,j}: {5067, 549}
X(62065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3845), X(57823)}}, {{A, B, C, X(5067), X(18317)}}
X(62065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12100, 15707}, {2, 15719, 14869}, {2, 3530, 15701}, {3, 14093, 5054}, {3, 15681, 17504}, {3, 15689, 15692}, {3, 15694, 15705}, {3, 15701, 15711}, {3, 15707, 15715}, {3, 3534, 15716}, {3, 3830, 15698}, {3, 5055, 14891}, {3, 8703, 15693}, {20, 17578, 6880}, {20, 6961, 15696}, {30, 549, 5067}, {376, 10303, 30}, {376, 15706, 1656}, {376, 3524, 3832}, {548, 15705, 15694}, {550, 14869, 3853}, {550, 3530, 3544}, {3522, 14891, 5055}, {3845, 15692, 15722}, {3851, 5067, 5079}, {5066, 8703, 376}, {5067, 5068, 12812}, {8703, 11812, 15697}, {8703, 12100, 11001}, {8703, 15711, 5066}, {10299, 10303, 3530}, {10304, 11001, 8703}, {10304, 12100, 15695}, {10304, 15707, 15688}, {10304, 15714, 3}, {10304, 15715, 550}, {11539, 15711, 12100}, {11539, 17800, 381}, {11737, 15713, 2}, {11812, 15697, 3830}, {12100, 15690, 3628}, {12100, 15759, 15714}, {14093, 15716, 3534}, {14269, 15707, 11539}, {15640, 15693, 15723}, {15681, 17504, 15720}, {15688, 15700, 382}, {15688, 15706, 14269}, {15688, 15720, 15681}, {15689, 15692, 3526}, {15689, 15722, 3845}, {15691, 15708, 3843}, {15695, 15701, 17800}, {15697, 15698, 11812}, {15701, 15711, 15706}, {15720, 17504, 15700}


X(62066) = X(2)X(3)∩X(6)X(9693)

Barycentrics    21*a^4-(b^2-c^2)^2-20*a^2*(b^2+c^2) : :
X(62066) = -3*X[2]+22*X[3], -X[69]+20*X[55655], 15*X[165]+4*X[13607], X[193]+18*X[55643], 11*X[944]+8*X[4701], -X[1352]+20*X[55661], 3*X[1992]+16*X[55631], 14*X[3579]+5*X[61284], -5*X[3618]+24*X[55670], 6*X[4297]+13*X[31425], 9*X[5032]+10*X[55595], -5*X[5734]+24*X[13624] and many others

X(62066) lies on these lines: {2, 3}, {6, 9693}, {61, 42796}, {62, 42795}, {69, 55655}, {165, 13607}, {193, 55643}, {541, 15023}, {944, 4701}, {1131, 43374}, {1132, 43375}, {1192, 11431}, {1285, 15815}, {1352, 55661}, {1992, 55631}, {3053, 14482}, {3411, 42934}, {3412, 42935}, {3579, 61284}, {3618, 55670}, {4297, 31425}, {4309, 59319}, {4317, 59325}, {4325, 5218}, {4330, 7288}, {5032, 55595}, {5210, 9607}, {5319, 15513}, {5343, 51915}, {5344, 51916}, {5734, 13624}, {6361, 58221}, {6395, 9543}, {6411, 43338}, {6412, 43339}, {6419, 43526}, {6420, 43525}, {6455, 9692}, {6456, 43512}, {6459, 35814}, {6460, 9680}, {6496, 7585}, {6497, 7586}, {6684, 61254}, {6776, 55654}, {6781, 31417}, {7582, 9681}, {7738, 8588}, {7771, 32822}, {7850, 32818}, {7967, 31663}, {7982, 50809}, {8550, 51179}, {8589, 31450}, {9588, 59388}, {9589, 61274}, {9624, 12512}, {9705, 43652}, {9778, 61276}, {10165, 58217}, {10283, 58224}, {10519, 55656}, {10595, 17502}, {10645, 52080}, {10646, 52079}, {11179, 55647}, {11362, 16192}, {11477, 50966}, {11480, 42685}, {11481, 42684}, {11488, 42433}, {11489, 42434}, {12007, 31884}, {12245, 35242}, {14561, 55665}, {14810, 14912}, {14853, 55671}, {15036, 15063}, {15057, 38726}, {15326, 31410}, {15606, 54041}, {16241, 42965}, {16242, 42964}, {16772, 42986}, {16773, 42987}, {16960, 43777}, {16961, 43778}, {16966, 42695}, {16967, 42694}, {18538, 60293}, {18762, 60294}, {20070, 61278}, {20190, 54170}, {20421, 34483}, {20423, 55675}, {23039, 55286}, {23267, 35812}, {23273, 35813}, {25406, 55653}, {31414, 42261}, {31487, 43382}, {31670, 55666}, {32785, 43336}, {32786, 43337}, {33748, 55604}, {33749, 55637}, {33750, 55646}, {33879, 46849}, {34631, 61282}, {35820, 43787}, {35821, 43788}, {37640, 42806}, {37641, 42805}, {37832, 43203}, {37835, 43204}, {39874, 40107}, {41973, 49861}, {41974, 49862}, {42090, 43464}, {42091, 43463}, {42108, 42611}, {42109, 42610}, {42119, 43301}, {42120, 43300}, {42140, 42489}, {42141, 42488}, {42147, 42686}, {42148, 42687}, {42149, 43482}, {42152, 43481}, {42157, 43484}, {42158, 43483}, {42159, 43545}, {42162, 43544}, {42164, 51945}, {42165, 51944}, {42268, 43506}, {42269, 43505}, {42275, 43559}, {42276, 43558}, {42490, 42971}, {42491, 42970}, {42637, 43509}, {42638, 43510}, {42773, 43403}, {42774, 43404}, {42813, 42955}, {42814, 42954}, {42988, 43493}, {42989, 43494}, {42996, 43019}, {42997, 43018}, {43150, 55659}, {43174, 50818}, {43211, 43376}, {43212, 43377}, {43254, 43521}, {43255, 43522}, {43513, 52667}, {43514, 52666}, {46264, 55660}, {48873, 55667}, {50810, 61288}, {50967, 55641}, {50982, 51176}, {51028, 55701}, {51140, 55644}, {51170, 55616}, {51212, 55672}, {54132, 55684}, {54173, 55652}, {54174, 55620}, {55681, 59373}, {55682, 61044}, {58214, 61268}

X(62066) = reflection of X(i) in X(j) for these {i,j}: {4, 15022}
X(62066) = anticomplement of X(61937)
X(62066) = pole of line {185, 15698} with respect to the Jerabek hyperbola
X(62066) = pole of line {69, 3853} with respect to the Wallace hyperbola
X(62066) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(38335)}}, {{A, B, C, X(69), X(3853)}}, {{A, B, C, X(548), X(18851)}}, {{A, B, C, X(1105), X(15698)}}, {{A, B, C, X(3346), X(46935)}}, {{A, B, C, X(3830), X(34483)}}, {{A, B, C, X(3843), X(13623)}}, {{A, B, C, X(3845), X(15740)}}, {{A, B, C, X(5055), X(18853)}}, {{A, B, C, X(5068), X(15318)}}, {{A, B, C, X(6662), X(41989)}}, {{A, B, C, X(10303), X(18852)}}, {{A, B, C, X(11737), X(54763)}}, {{A, B, C, X(14891), X(60007)}}, {{A, B, C, X(15683), X(18849)}}, {{A, B, C, X(15688), X(54660)}}, {{A, B, C, X(18535), X(44763)}}, {{A, B, C, X(18847), X(49136)}}, {{A, B, C, X(20421), X(34484)}}, {{A, B, C, X(46412), X(47598)}}
X(62066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15704, 4}, {2, 20, 3853}, {3, 140, 15705}, {3, 14093, 140}, {3, 15688, 15712}, {3, 15720, 15711}, {3, 1656, 14891}, {3, 1657, 17504}, {3, 3523, 15715}, {3, 3528, 631}, {3, 376, 10299}, {3, 548, 15717}, {3, 550, 15692}, {4, 13635, 5073}, {4, 17538, 15683}, {4, 3524, 10303}, {4, 3525, 5055}, {4, 5071, 3857}, {5, 5076, 3832}, {20, 13742, 3830}, {20, 15717, 3526}, {20, 3530, 5067}, {20, 631, 3855}, {376, 10299, 3090}, {376, 3855, 20}, {548, 10304, 3528}, {548, 15704, 15696}, {548, 549, 17800}, {550, 3525, 15682}, {3090, 10299, 15719}, {3146, 15712, 15702}, {3522, 10303, 3534}, {3522, 15692, 5076}, {3522, 15694, 17538}, {3522, 3524, 3529}, {3523, 14893, 3525}, {3523, 15683, 3628}, {3523, 17538, 3545}, {3524, 12102, 6897}, {3524, 15702, 15722}, {3524, 3529, 3533}, {3526, 17800, 3856}, {3526, 3856, 7486}, {3528, 15715, 382}, {3533, 10303, 15709}, {3534, 15640, 6949}, {3534, 15706, 15694}, {3534, 15722, 5066}, {3534, 5073, 15704}, {3545, 15682, 14893}, {5054, 5059, 3544}, {5055, 11812, 17678}, {5071, 15712, 1006}, {7486, 15717, 549}, {10303, 10304, 3522}, {10304, 15683, 8703}, {10304, 15698, 376}, {10304, 15717, 548}, {11812, 15692, 3524}, {12101, 16239, 5}, {12103, 15693, 5056}, {12108, 15681, 5068}, {12811, 14893, 3858}, {14093, 15705, 11001}, {15688, 15712, 3146}, {15706, 15715, 15698}, {15715, 17538, 3523}


X(62067) = X(2)X(3)∩X(6)X(41969)

Barycentrics    19*a^4-(b^2-c^2)^2-18*a^2*(b^2+c^2) : :
X(62067) = -3*X[2]+20*X[3], 10*X[40]+7*X[20057], -X[69]+18*X[55654], 15*X[165]+2*X[3244], X[193]+16*X[14810], -X[962]+18*X[58221], 8*X[1350]+9*X[33748], -X[1352]+18*X[55660], 3*X[1992]+14*X[55626], 9*X[2979]+8*X[13382], -5*X[3618]+22*X[55671], -5*X[3620]+56*X[55658] and many others

X(62067) lies on these lines: {2, 3}, {6, 41969}, {17, 43465}, {18, 43466}, {40, 20057}, {69, 55654}, {148, 55819}, {165, 3244}, {193, 14810}, {390, 7280}, {397, 43242}, {398, 43243}, {962, 58221}, {1078, 32868}, {1350, 33748}, {1352, 55660}, {1992, 55626}, {2896, 51579}, {2979, 13382}, {2996, 60334}, {3312, 9543}, {3357, 41462}, {3411, 49876}, {3412, 49875}, {3424, 60642}, {3590, 5418}, {3591, 5420}, {3600, 5010}, {3601, 4031}, {3618, 55671}, {3620, 55658}, {3622, 17502}, {3629, 31884}, {3631, 55656}, {3632, 5731}, {3636, 5493}, {3819, 52093}, {3982, 5703}, {5032, 52987}, {5092, 61044}, {5206, 5304}, {5265, 59319}, {5281, 59325}, {5286, 8588}, {5334, 43480}, {5335, 43479}, {5343, 42090}, {5344, 42091}, {5351, 42995}, {5352, 42994}, {5365, 42089}, {5366, 42092}, {5395, 60332}, {5732, 60983}, {5734, 50808}, {5882, 20050}, {6154, 38693}, {6200, 42522}, {6329, 53094}, {6396, 42523}, {6409, 9542}, {6411, 42637}, {6412, 42638}, {6427, 9693}, {6451, 7581}, {6452, 7582}, {6459, 41964}, {6460, 41963}, {6519, 52048}, {6522, 52047}, {6560, 43376}, {6561, 43377}, {6776, 55653}, {7690, 45525}, {7692, 45524}, {7780, 53142}, {7781, 9740}, {7782, 15589}, {8550, 11008}, {8567, 44762}, {8972, 42261}, {8976, 60291}, {9588, 38098}, {9692, 19054}, {9778, 13464}, {10187, 42920}, {10188, 42921}, {10194, 42266}, {10195, 42267}, {10519, 55655}, {10541, 54170}, {10576, 43515}, {10577, 43516}, {10619, 18913}, {10627, 61136}, {10645, 42896}, {10646, 42897}, {10653, 42932}, {10654, 42933}, {10990, 15051}, {10991, 35022}, {10992, 35021}, {11036, 30282}, {11160, 55652}, {11179, 55644}, {11270, 26861}, {11488, 43106}, {11489, 43105}, {11522, 12512}, {12002, 15024}, {13348, 20791}, {13474, 44299}, {13624, 20070}, {13846, 43411}, {13847, 43412}, {13941, 42260}, {13951, 60292}, {14561, 55666}, {14853, 55672}, {14907, 32825}, {14912, 55639}, {15023, 15063}, {15036, 16534}, {15055, 24981}, {15080, 38942}, {15105, 17821}, {15258, 45845}, {16644, 51916}, {16645, 51915}, {16962, 42612}, {16963, 42613}, {17508, 51171}, {18221, 37524}, {18436, 55286}, {18538, 43519}, {18553, 55663}, {18762, 43520}, {19876, 51079}, {20423, 55677}, {20583, 53097}, {22052, 40138}, {22235, 42158}, {22237, 42157}, {22793, 58216}, {23608, 26909}, {25406, 40341}, {25555, 55669}, {28160, 46932}, {28164, 30315}, {30389, 34632}, {31425, 53620}, {31447, 34627}, {31670, 55667}, {32450, 32522}, {32787, 43413}, {32788, 43414}, {32789, 43785}, {32790, 43786}, {32886, 43459}, {33416, 43365}, {33417, 43364}, {33521, 35024}, {33884, 40647}, {34506, 53143}, {34507, 55657}, {34595, 58213}, {35260, 54211}, {35812, 43256}, {35813, 43257}, {37512, 37665}, {37714, 50815}, {38808, 58797}, {42085, 42902}, {42086, 42903}, {42087, 42774}, {42088, 42773}, {42096, 42776}, {42097, 42775}, {42115, 43871}, {42116, 43872}, {42119, 42944}, {42120, 42945}, {42125, 43488}, {42128, 43487}, {42133, 42937}, {42134, 42936}, {42149, 42983}, {42150, 42780}, {42151, 42779}, {42152, 42982}, {42160, 42978}, {42161, 42979}, {42433, 43418}, {42434, 43419}, {42457, 54053}, {42528, 42992}, {42529, 42993}, {42924, 52080}, {42925, 52079}, {43016, 43027}, {43017, 43026}, {43108, 43253}, {43109, 43252}, {43238, 43769}, {43239, 43770}, {43424, 49874}, {43425, 49873}, {43537, 43676}, {43681, 60337}, {44134, 57897}, {45186, 55166}, {45384, 60620}, {45385, 60621}, {46264, 55659}, {46934, 58219}, {48873, 55668}, {50965, 55684}, {50966, 55724}, {50967, 55637}, {50979, 55620}, {51028, 53093}, {51170, 55610}, {51212, 55673}, {51700, 58224}, {51737, 55641}, {53099, 53102}, {53100, 60285}, {53105, 53859}, {54132, 55687}, {54173, 55650}, {54174, 55614}, {59418, 60933}, {60142, 60647}, {60145, 60330}

X(62067) = reflection of X(i) in X(j) for these {i,j}: {3854, 3533}
X(62067) = anticomplement of X(3544)
X(62067) = pole of line {185, 61791} with respect to the Jerabek hyperbola
X(62067) = pole of line {69, 50688} with respect to the Wallace hyperbola
X(62067) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(12102)}}, {{A, B, C, X(69), X(50688)}}, {{A, B, C, X(253), X(3855)}}, {{A, B, C, X(382), X(26861)}}, {{A, B, C, X(631), X(51348)}}, {{A, B, C, X(1217), X(55856)}}, {{A, B, C, X(1294), X(61138)}}, {{A, B, C, X(3091), X(57897)}}, {{A, B, C, X(3346), X(5067)}}, {{A, B, C, X(3519), X(5076)}}, {{A, B, C, X(3532), X(5198)}}, {{A, B, C, X(3534), X(60618)}}, {{A, B, C, X(3627), X(42021)}}, {{A, B, C, X(5066), X(31363)}}, {{A, B, C, X(6353), X(60334)}}, {{A, B, C, X(6662), X(14892)}}, {{A, B, C, X(7714), X(53100)}}, {{A, B, C, X(8889), X(60332)}}, {{A, B, C, X(11270), X(26863)}}, {{A, B, C, X(11403), X(14528)}}, {{A, B, C, X(15698), X(40448)}}, {{A, B, C, X(15723), X(46412)}}, {{A, B, C, X(15740), X(50689)}}, {{A, B, C, X(35502), X(57713)}}, {{A, B, C, X(37453), X(53859)}}, {{A, B, C, X(49135), X(57894)}}, {{A, B, C, X(52283), X(60642)}}
X(62067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 14269}, {2, 15705, 15700}, {2, 15707, 15721}, {2, 16371, 13735}, {2, 3522, 550}, {2, 3544, 7486}, {2, 3832, 5079}, {2, 404, 4234}, {2, 4188, 11346}, {2, 4234, 13741}, {3, 10304, 20}, {3, 14093, 5}, {3, 15688, 3530}, {3, 15696, 12100}, {3, 17800, 15716}, {3, 20, 15692}, {3, 3526, 14891}, {3, 3530, 15715}, {3, 376, 15717}, {3, 382, 17504}, {3, 4192, 17542}, {3, 5, 15698}, {3, 548, 3524}, {3, 550, 10299}, {3, 631, 15705}, {3, 8703, 631}, {4, 10299, 15720}, {20, 10303, 3839}, {20, 3091, 15640}, {20, 3523, 5056}, {20, 4220, 15702}, {30, 3533, 3854}, {140, 11541, 5068}, {140, 15717, 3523}, {140, 3523, 15708}, {140, 376, 5059}, {140, 3845, 1656}, {140, 5059, 3091}, {376, 3524, 3845}, {376, 5067, 15704}, {376, 631, 11541}, {382, 5055, 546}, {474, 16297, 404}, {546, 3525, 17573}, {546, 550, 1657}, {548, 14869, 15681}, {549, 17538, 3832}, {550, 15720, 4}, {550, 3530, 3851}, {1656, 3522, 15697}, {1657, 5068, 3543}, {2045, 2046, 15709}, {3090, 15696, 15683}, {3091, 3523, 140}, {3522, 5059, 376}, {3523, 10304, 3522}, {3524, 3855, 14869}, {3525, 3534, 17578}, {3528, 15710, 3}, {3528, 15715, 3529}, {3528, 3529, 15688}, {3528, 3855, 548}, {3529, 12108, 4188}, {3543, 10304, 8703}, {3832, 16859, 5055}, {3855, 15681, 3146}, {4245, 16409, 16297}, {6200, 43511, 42522}, {6396, 43512, 42523}, {11106, 13735, 13725}, {11357, 16863, 2}, {11737, 15704, 382}, {11737, 17504, 15693}, {12100, 15696, 3090}, {12108, 17800, 5071}, {14784, 14785, 12102}, {14810, 33750, 193}, {14813, 14814, 5076}, {14869, 15681, 3855}, {15640, 15717, 10303}, {15681, 15700, 10124}, {15693, 15704, 5067}, {15716, 17800, 12108}, {41969, 41970, 6}, {42096, 42948, 42776}, {42097, 42949, 42775}


X(62068) = X(2)X(3)∩X(6)X(42795)

Barycentrics    37*a^4-2*(b^2-c^2)^2-35*a^2*(b^2+c^2) : :
X(62068) = -2*X[2]+13*X[3], -16*X[182]+5*X[51172], -X[599]+12*X[55657], -5*X[1351]+16*X[51138], -5*X[1482]+16*X[51085], -X[1699]+12*X[58216], 2*X[1992]+9*X[55624], 20*X[4816]+13*X[18526], -2*X[5655]+13*X[15042], 4*X[5901]+7*X[50813], -16*X[6684]+5*X[50797], 4*X[8584]+7*X[55602] and many others

X(62068) lies on these lines: {2, 3}, {6, 42795}, {182, 51172}, {524, 55648}, {542, 55656}, {599, 55657}, {1351, 51138}, {1482, 51085}, {1699, 58216}, {1992, 55624}, {3311, 43526}, {3312, 43525}, {4816, 18526}, {5309, 5585}, {5655, 15042}, {5901, 50813}, {6407, 52048}, {6408, 52047}, {6425, 42524}, {6426, 42525}, {6451, 41946}, {6452, 41945}, {6455, 53131}, {6456, 53130}, {6498, 41969}, {6499, 41970}, {6684, 50797}, {8584, 55602}, {8591, 38634}, {9143, 38633}, {9956, 50820}, {10645, 42800}, {10646, 42799}, {10653, 42687}, {10654, 42686}, {11177, 38635}, {11178, 55663}, {11179, 55643}, {11480, 43420}, {11481, 43421}, {11645, 55662}, {11898, 50982}, {12007, 50962}, {12645, 50827}, {13607, 50805}, {14810, 51140}, {14848, 55676}, {14927, 50980}, {15040, 56567}, {15534, 55637}, {16241, 43033}, {16242, 43032}, {16964, 54594}, {16965, 54593}, {18583, 50969}, {19924, 55671}, {20070, 50832}, {21358, 33751}, {24206, 50976}, {30308, 58215}, {31663, 51087}, {33606, 42157}, {33607, 42158}, {34632, 58230}, {36836, 43008}, {36843, 43009}, {36967, 43011}, {36968, 43010}, {37832, 42586}, {37835, 42587}, {38021, 58217}, {39899, 55653}, {41943, 42625}, {41944, 42626}, {41957, 43315}, {41958, 43314}, {42090, 42690}, {42091, 42691}, {42115, 42684}, {42116, 42685}, {42125, 43545}, {42128, 43544}, {42129, 43490}, {42130, 51945}, {42131, 51944}, {42132, 43489}, {42150, 42899}, {42151, 42898}, {42154, 43484}, {42155, 43483}, {42258, 43343}, {42259, 43342}, {42271, 43559}, {42272, 43558}, {42490, 46334}, {42491, 46335}, {42528, 42930}, {42529, 42931}, {42578, 43384}, {42579, 43385}, {42773, 42973}, {42774, 42972}, {42922, 43493}, {42923, 43494}, {42934, 49948}, {42935, 49947}, {42940, 42951}, {42941, 42950}, {42954, 43549}, {42955, 43548}, {42964, 43239}, {42965, 43238}, {42998, 43002}, {42999, 43003}, {43150, 55658}, {43273, 55655}, {43382, 43509}, {43383, 43510}, {43505, 43566}, {43506, 43567}, {46267, 55672}, {47352, 55669}, {48661, 50812}, {48662, 50975}, {48872, 51137}, {48873, 51173}, {50979, 55616}, {50987, 61044}, {51175, 55651}, {51177, 61545}, {51185, 55679}, {51737, 55639}, {54131, 55670}, {54170, 55697}, {54891, 60277}

X(62068) = midpoint of X(i) and X(j) for these {i,j}: {376, 15721}, {3534, 5072}
X(62068) = reflection of X(i) in X(j) for these {i,j}: {15716, 3}, {15718, 15715}, {15720, 15716}, {15723, 15718}, {381, 15723}, {3830, 3855}, {5070, 15719}, {6848, 3857}
X(62068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15716)}}, {{A, B, C, X(3839), X(13623)}}, {{A, B, C, X(17578), X(34483)}}, {{A, B, C, X(43713), X(52294)}}, {{A, B, C, X(44903), X(57822)}}
X(62068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3857, 5055}, {3, 15688, 15693}, {3, 15689, 12100}, {3, 15694, 14891}, {3, 15695, 3524}, {3, 15701, 15705}, {3, 15707, 15711}, {3, 15718, 15715}, {3, 3830, 17504}, {3, 5055, 15698}, {4, 10304, 8703}, {4, 12103, 17800}, {4, 15022, 3859}, {4, 3526, 5079}, {4, 5070, 5072}, {20, 15711, 15707}, {30, 15718, 15723}, {30, 3857, 6848}, {376, 14891, 15694}, {376, 15692, 547}, {376, 15715, 15721}, {376, 547, 15681}, {376, 549, 15684}, {382, 7489, 3854}, {548, 549, 15683}, {549, 15686, 5066}, {550, 15705, 15701}, {1656, 3543, 381}, {3091, 10303, 17535}, {3522, 15702, 15691}, {3523, 15690, 14269}, {3524, 15686, 15703}, {3528, 12100, 15689}, {3534, 15706, 3526}, {3534, 5054, 4}, {3534, 5072, 30}, {3832, 6913, 3851}, {6938, 7486, 5}, {10304, 15698, 548}, {10304, 15706, 15688}, {10304, 15759, 3}, {11539, 15697, 5073}, {12100, 15689, 1656}, {12100, 15704, 15709}, {14093, 15692, 15696}, {14093, 15700, 376}, {14269, 17800, 6834}, {14891, 15694, 15700}, {15681, 15692, 5054}, {15681, 15718, 5070}, {15683, 15698, 549}, {15686, 15703, 382}, {15688, 15693, 1657}, {15689, 15704, 3534}, {15691, 15702, 3830}, {15691, 17504, 15702}, {15695, 15703, 15686}, {15715, 15718, 15716}, {15715, 15719, 15692}, {15716, 15717, 15706}, {15716, 15723, 15718}, {15718, 15723, 15720}, {42795, 42796, 6}


X(62069) = X(2)X(3)∩X(165)X(1483)

Barycentrics    16*a^4-(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62069) = -3*X[2]+17*X[3], -X[141]+8*X[55659], 6*X[165]+X[1483], X[185]+6*X[54044], -5*X[576]+12*X[51138], -3*X[597]+10*X[55677], -X[946]+8*X[58219], X[1353]+6*X[31884], 3*X[1992]+11*X[55620], 5*X[3098]+2*X[12007], 5*X[3579]+2*X[13607], -2*X[3589]+9*X[55667] and many others

X(62069) lies on these lines: {2, 3}, {15, 42685}, {16, 42684}, {61, 42795}, {62, 42796}, {141, 55659}, {165, 1483}, {185, 54044}, {397, 42687}, {398, 42686}, {485, 43438}, {486, 43439}, {524, 55644}, {576, 51138}, {590, 43340}, {597, 55677}, {615, 43341}, {946, 58219}, {952, 16192}, {1353, 31884}, {1503, 55658}, {1992, 55620}, {3098, 12007}, {3564, 55651}, {3579, 13607}, {3589, 55667}, {3592, 43526}, {3594, 43525}, {3624, 28182}, {3629, 55627}, {3654, 61297}, {3917, 45957}, {4297, 38112}, {5204, 10386}, {5237, 42634}, {5238, 42633}, {5318, 42979}, {5321, 42978}, {5339, 43630}, {5340, 43631}, {5343, 42628}, {5344, 42627}, {5462, 55166}, {5480, 55668}, {5493, 13624}, {5650, 32137}, {5882, 31663}, {5894, 14862}, {5901, 58221}, {5925, 61606}, {6101, 13382}, {6241, 44324}, {6329, 55683}, {6409, 19117}, {6410, 19116}, {6425, 52048}, {6426, 52047}, {6435, 41969}, {6436, 41970}, {6445, 43511}, {6446, 43512}, {6451, 42637}, {6452, 42638}, {6497, 9541}, {6501, 9543}, {7869, 32459}, {7987, 10283}, {8550, 14810}, {8584, 55597}, {8589, 31406}, {9730, 13421}, {9778, 51700}, {10187, 42908}, {10188, 42909}, {10194, 42263}, {10195, 42264}, {10222, 51085}, {10263, 17704}, {10282, 15105}, {10627, 45956}, {10645, 43014}, {10646, 43015}, {11179, 55641}, {11362, 50830}, {11480, 42924}, {11481, 42925}, {11522, 61273}, {11592, 12162}, {12002, 15026}, {12006, 36987}, {12244, 15042}, {12383, 13393}, {12512, 38028}, {13464, 17502}, {13623, 57713}, {14449, 40280}, {14677, 16534}, {14692, 21166}, {14855, 32142}, {14864, 23328}, {14912, 55632}, {14929, 32821}, {15048, 15513}, {15515, 18907}, {15803, 15935}, {16772, 41974}, {16773, 41973}, {16960, 43300}, {16961, 43301}, {16964, 42958}, {16965, 42959}, {17508, 48874}, {18481, 61251}, {18538, 43336}, {18553, 21167}, {18583, 55673}, {18762, 43337}, {19106, 42949}, {19107, 42948}, {20190, 50965}, {20417, 34153}, {21850, 55674}, {22615, 43559}, {22644, 43558}, {23251, 43378}, {23261, 43379}, {23332, 32903}, {25406, 55648}, {25555, 48881}, {25561, 51134}, {28190, 31423}, {28202, 50833}, {29181, 55669}, {30315, 61260}, {30503, 61148}, {30507, 58922}, {31487, 43413}, {32455, 55608}, {33749, 55623}, {33750, 55629}, {34380, 55639}, {34507, 55655}, {34628, 61255}, {34773, 43174}, {35242, 61295}, {35255, 43430}, {35256, 43431}, {35814, 41964}, {35815, 41963}, {36967, 51915}, {36968, 51916}, {38110, 55672}, {38136, 48885}, {39884, 55662}, {41869, 61270}, {42021, 43713}, {42085, 42774}, {42086, 42773}, {42087, 43017}, {42088, 43016}, {42090, 43239}, {42091, 43238}, {42108, 43442}, {42109, 43443}, {42117, 42944}, {42118, 42945}, {42119, 42917}, {42120, 42916}, {42121, 42157}, {42122, 42149}, {42123, 42152}, {42124, 42158}, {42135, 42937}, {42138, 42936}, {42144, 42954}, {42145, 42955}, {42163, 43545}, {42166, 43544}, {42490, 43416}, {42491, 43417}, {42580, 42694}, {42581, 42695}, {42582, 43785}, {42583, 43786}, {42688, 43770}, {42689, 43769}, {42793, 42934}, {42794, 42935}, {42815, 43479}, {42816, 43480}, {42912, 43640}, {42913, 43639}, {42920, 43102}, {42921, 43103}, {42922, 42988}, {42923, 42989}, {42946, 42961}, {42947, 42960}, {42974, 43635}, {42975, 43634}, {42994, 43228}, {42995, 43229}, {43150, 44882}, {43256, 43411}, {43257, 43412}, {43302, 43775}, {43303, 43776}, {43485, 43773}, {43486, 43774}, {46025, 52543}, {48876, 55653}, {48892, 55663}, {48906, 55649}, {48920, 51126}, {50832, 61278}, {50979, 55606}, {50982, 55652}, {50985, 55647}, {50987, 55684}, {51140, 55637}, {51181, 53092}, {51732, 55678}, {51737, 55631}, {53094, 59399}, {54157, 61659}, {54169, 55650}, {54170, 55701}, {55604, 61624}, {58215, 61268}, {58216, 59420}, {58217, 61272}, {61245, 61524}

X(62069) = midpoint of X(i) and X(j) for these {i,j}: {3, 3528}, {376, 15701}
X(62069) = reflection of X(i) in X(j) for these {i,j}: {15702, 12100}, {3627, 3832}, {3845, 15703}, {3851, 140}, {3857, 3526}, {5, 14869}, {549, 15698}
X(62069) = complement of X(62008)
X(62069) = pole of line {185, 44324} with respect to the Jerabek hyperbola
X(62069) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(546), X(13623)}}, {{A, B, C, X(1294), X(44682)}}, {{A, B, C, X(3519), X(3853)}}, {{A, B, C, X(3543), X(42021)}}, {{A, B, C, X(3627), X(34483)}}, {{A, B, C, X(3845), X(14861)}}, {{A, B, C, X(5198), X(44763)}}, {{A, B, C, X(6662), X(19709)}}, {{A, B, C, X(10594), X(43713)}}, {{A, B, C, X(13596), X(57713)}}, {{A, B, C, X(15721), X(51348)}}, {{A, B, C, X(17504), X(40448)}}
X(62069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10304, 548}, {3, 14093, 20}, {3, 15696, 3524}, {3, 1657, 10299}, {3, 17800, 15706}, {3, 3526, 15698}, {3, 3528, 30}, {3, 3530, 15711}, {3, 3534, 15717}, {3, 382, 15692}, {3, 3843, 15716}, {3, 5, 17504}, {3, 631, 14891}, {3, 8703, 5}, {4, 10303, 1656}, {4, 15683, 5073}, {4, 3523, 3526}, {4, 3533, 15022}, {4, 5059, 15684}, {4, 550, 15704}, {20, 12100, 632}, {20, 15710, 3}, {20, 15720, 3850}, {20, 632, 15687}, {30, 12100, 15702}, {30, 140, 3851}, {30, 3832, 3627}, {140, 1657, 3858}, {140, 3522, 550}, {376, 10303, 17800}, {382, 15692, 12108}, {546, 11540, 7486}, {548, 14891, 5072}, {548, 3628, 3534}, {549, 10304, 8703}, {549, 3526, 14869}, {631, 15688, 12103}, {632, 3627, 3544}, {1656, 15711, 15712}, {1656, 17800, 4}, {1657, 10299, 140}, {3146, 15693, 16239}, {3146, 16858, 3091}, {3522, 10299, 1657}, {3523, 15702, 15720}, {3524, 15684, 11540}, {3524, 15696, 546}, {3525, 15681, 3861}, {3526, 17800, 3832}, {3526, 5072, 15703}, {3530, 3627, 11539}, {3534, 15717, 3628}, {5070, 11001, 12102}, {6919, 11001, 3843}, {8703, 11539, 376}, {8703, 17504, 15686}, {10303, 15706, 3530}, {10303, 17800, 5066}, {10304, 15710, 5055}, {10304, 15759, 549}, {12103, 14891, 631}, {12108, 15690, 382}, {14093, 15710, 12100}, {14813, 14814, 3853}, {14869, 15704, 3857}, {14869, 15712, 3523}, {14891, 15688, 3845}, {15686, 17504, 15713}, {15689, 15715, 11812}, {15690, 15692, 15699}, {15691, 16239, 3146}, {15695, 15705, 547}, {15697, 15707, 14893}, {15706, 17800, 10303}, {33751, 55661, 21167}, {54044, 55286, 185}


X(62070) = X(2)X(3)∩X(635)X(33619)

Barycentrics    31*a^4-2*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(62070) = -2*X[2]+11*X[3], -X[599]+10*X[55655], 2*X[1992]+7*X[55616], 8*X[3098]+X[50962], 8*X[3579]+X[50805], 2*X[3818]+7*X[50976], 16*X[4701]+11*X[18526], -2*X[5476]+11*X[55671], -4*X[5642]+13*X[15042], -2*X[6053]+5*X[11693], 2*X[6361]+25*X[58224], 4*X[8584]+5*X[55595] and many others

X(62070) lies on these lines: {2, 3}, {524, 55643}, {542, 55654}, {599, 55655}, {635, 33619}, {636, 33618}, {1992, 55616}, {3098, 50962}, {3579, 50805}, {3592, 42524}, {3594, 42525}, {3818, 50976}, {4701, 18526}, {5210, 5355}, {5476, 55671}, {5642, 15042}, {6053, 11693}, {6361, 58224}, {6449, 53131}, {6450, 53130}, {6455, 41946}, {6456, 41945}, {6496, 32787}, {6497, 32788}, {7739, 15655}, {8584, 55595}, {9680, 42418}, {10168, 50968}, {11178, 55661}, {11179, 51174}, {11645, 55660}, {11898, 55651}, {12017, 50965}, {12355, 38736}, {12645, 16192}, {12702, 51077}, {14848, 17508}, {15534, 55631}, {16241, 51944}, {16242, 51945}, {16267, 42625}, {16268, 42626}, {18440, 55658}, {18480, 50820}, {18481, 50801}, {18483, 51083}, {18493, 58219}, {18510, 52046}, {18512, 52045}, {19924, 55673}, {20423, 55678}, {21850, 50969}, {22236, 42980}, {22238, 42981}, {22791, 50813}, {28178, 58218}, {28198, 58221}, {31730, 51075}, {33750, 55624}, {33751, 47353}, {33878, 51132}, {34628, 50797}, {34638, 50806}, {34718, 35242}, {36967, 42818}, {36968, 42817}, {37832, 43781}, {37835, 43782}, {39899, 50961}, {41121, 42773}, {41122, 42774}, {41869, 51084}, {41955, 41966}, {41956, 41965}, {42085, 43100}, {42086, 43107}, {42090, 42970}, {42091, 42971}, {42130, 42972}, {42131, 42973}, {42144, 43202}, {42145, 43201}, {42433, 49905}, {42434, 49906}, {42633, 52080}, {42634, 52079}, {42785, 51024}, {42815, 51916}, {42816, 51915}, {43230, 43240}, {43231, 43241}, {43238, 46334}, {43239, 46335}, {43273, 55653}, {43775, 49947}, {43776, 49948}, {43777, 43869}, {43778, 43870}, {46264, 50958}, {47352, 55670}, {48881, 51130}, {48891, 51141}, {48906, 51175}, {48910, 51137}, {50800, 51079}, {50957, 51134}, {50967, 55632}, {50977, 55656}, {50979, 55604}, {51086, 61268}, {51140, 55636}, {51172, 54170}, {51185, 55681}, {51737, 55629}, {54131, 55672}, {54132, 55692}, {54173, 55648}, {55663, 59411}

X(62070) = midpoint of X(i) and X(j) for these {i,j}: {376, 15708}, {10304, 15710}, {15688, 15706}
X(62070) = reflection of X(i) in X(j) for these {i,j}: {15706, 3}, {15707, 15705}, {15708, 17504}, {3, 15710}, {5054, 15706}, {5055, 15708}
X(62070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15706)}}, {{A, B, C, X(15704), X(57822)}}
X(62070) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15691, 5073}, {2, 15714, 3}, {2, 376, 15704}, {3, 10304, 15688}, {3, 14093, 3534}, {3, 15681, 12100}, {3, 15694, 15698}, {3, 15695, 549}, {3, 15701, 14891}, {3, 15707, 15705}, {3, 15718, 15711}, {3, 17800, 10299}, {3, 3534, 15700}, {3, 376, 15693}, {3, 381, 15716}, {3, 3830, 15692}, {3, 5055, 17504}, {3, 548, 15720}, {4, 15711, 15718}, {20, 14891, 15701}, {20, 3524, 15699}, {30, 15705, 15707}, {30, 17504, 15708}, {140, 15685, 381}, {140, 17504, 3524}, {140, 3091, 5070}, {140, 376, 15685}, {140, 8703, 376}, {376, 15692, 11737}, {376, 15698, 5067}, {376, 15717, 3845}, {381, 10109, 5072}, {381, 1657, 15682}, {382, 15693, 15723}, {547, 10299, 15722}, {547, 15697, 17800}, {549, 3528, 15695}, {549, 3853, 2}, {549, 3860, 3533}, {550, 15698, 15694}, {631, 15690, 15684}, {631, 3530, 6842}, {3522, 12100, 15681}, {3524, 10304, 8703}, {3524, 3545, 15721}, {3524, 8703, 15689}, {3530, 11001, 15703}, {3534, 15700, 1656}, {3545, 3839, 3859}, {5055, 14269, 3091}, {5059, 11737, 3830}, {5070, 14269, 14892}, {8703, 14891, 20}, {10299, 15697, 547}, {10304, 15688, 14093}, {10304, 15710, 30}, {10304, 15759, 5055}, {11001, 15703, 5076}, {11539, 15720, 5054}, {11541, 15717, 140}, {11812, 15683, 3851}, {12100, 15681, 3526}, {14892, 15682, 14269}, {14892, 15689, 1657}, {15688, 17504, 382}, {15702, 17528, 10124}, {15705, 15707, 15706}, {54170, 55705, 51172}


X(62071) = X(2)X(3)∩X(165)X(51087)

Barycentrics    59*a^4-4*(b^2-c^2)^2-55*a^2*(b^2+c^2) : :
X(62071) = -4*X[2]+21*X[3], 15*X[165]+2*X[51087], -8*X[551]+25*X[58224], -15*X[5093]+32*X[51138], 15*X[5731]+2*X[50830], 2*X[6144]+49*X[55639], 8*X[8584]+9*X[55593], -15*X[10247]+32*X[51085], 16*X[12007]+35*X[55616], -3*X[14692]+20*X[36521], -X[15533]+18*X[55649], 2*X[15534]+15*X[55629] and many others

X(62071) lies on these lines: {2, 3}, {165, 51087}, {551, 58224}, {1327, 43881}, {1328, 43882}, {3311, 42524}, {3312, 42525}, {5093, 51138}, {5210, 39593}, {5306, 15603}, {5339, 43311}, {5340, 43310}, {5418, 60313}, {5420, 60314}, {5731, 50830}, {6144, 55639}, {6199, 43526}, {6395, 43525}, {6445, 53131}, {6446, 53130}, {6449, 43258}, {6450, 43259}, {6455, 43338}, {6456, 43339}, {8584, 55593}, {10247, 51085}, {11480, 43232}, {11481, 43233}, {11485, 42795}, {11486, 42796}, {12007, 55616}, {14692, 36521}, {15533, 55649}, {15534, 55629}, {16241, 42691}, {16242, 42690}, {16644, 42689}, {16645, 42688}, {21358, 55661}, {25406, 50985}, {31663, 34748}, {31884, 51140}, {32455, 55604}, {33606, 42154}, {33607, 42155}, {33750, 50962}, {34595, 58214}, {36967, 42505}, {36968, 42504}, {38072, 55666}, {41100, 42997}, {41101, 42996}, {41107, 43300}, {41108, 43301}, {42115, 42533}, {42116, 42532}, {42119, 42969}, {42120, 42968}, {42126, 42956}, {42127, 42957}, {42506, 42528}, {42507, 42529}, {42510, 42685}, {42511, 42684}, {42526, 42608}, {42527, 42609}, {42631, 43499}, {42632, 43500}, {42686, 42975}, {42687, 42974}, {42799, 43309}, {42800, 43308}, {42801, 42934}, {42802, 42935}, {42912, 43002}, {42913, 43003}, {43150, 55656}, {43193, 49903}, {43194, 49904}, {43302, 43304}, {43303, 43305}, {43336, 43380}, {43337, 43381}, {46334, 51944}, {46335, 51945}, {47353, 55660}, {48661, 51109}, {48662, 50993}, {50808, 58230}, {50827, 51515}, {50955, 55654}, {50965, 55697}, {50968, 55670}, {50973, 55640}, {51024, 55667}, {51185, 55682}, {51187, 55641}, {51737, 55624}, {54852, 60131}, {60323, 60638}

X(62071) = reflection of X(i) in X(j) for these {i,j}: {381, 3533}, {7486, 549}
X(62071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7486), X(18317)}}, {{A, B, C, X(13623), X(41099)}}
X(62071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 3850}, {2, 15718, 15701}, {2, 3534, 15684}, {3, 14093, 15689}, {3, 14269, 15692}, {3, 15684, 15706}, {3, 15703, 17504}, {3, 3522, 5070}, {3, 376, 15707}, {3, 6891, 3845}, {3, 8703, 3830}, {4, 15717, 14869}, {20, 15719, 6944}, {30, 3533, 381}, {30, 549, 7486}, {376, 15707, 5073}, {376, 3524, 17578}, {548, 10304, 14093}, {548, 14890, 15686}, {3528, 11737, 15688}, {3528, 15714, 5054}, {3534, 15693, 5066}, {3534, 15716, 3526}, {3534, 15759, 3}, {3830, 17800, 15640}, {3830, 8703, 15695}, {5066, 15698, 15693}, {8703, 11812, 376}, {8703, 12100, 15697}, {8703, 15759, 15698}, {10304, 15683, 3528}, {10304, 15698, 8703}, {10304, 15759, 3534}, {11540, 15711, 15717}, {11737, 15699, 5056}, {12100, 15685, 15694}, {12100, 15686, 2}, {12100, 15688, 15685}, {12100, 15690, 11737}, {14093, 15706, 548}, {14869, 15711, 12100}, {14890, 15686, 4}, {15640, 15698, 549}, {15686, 15712, 15699}, {15689, 15706, 5055}, {15689, 15718, 3843}, {15695, 15701, 15681}, {15696, 17504, 15703}, {15707, 15712, 15718}


X(62072) = X(2)X(3)∩X(1327)X(42604)

Barycentrics    67*a^4-5*(b^2-c^2)^2-62*a^2*(b^2+c^2) : :
X(62072) = -5*X[2]+24*X[3], 5*X[1992]+14*X[55607], 12*X[4297]+7*X[51068], -2*X[4669]+21*X[16192], 15*X[5032]+4*X[55582], 3*X[5984]+16*X[36521], 10*X[8584]+9*X[55591], 9*X[9778]+10*X[51105], 3*X[9812]+16*X[50816], -X[11160]+20*X[55646], 5*X[11179]+14*X[55633], -X[11180]+20*X[55655] and many others

X(62072) lies on circumconic {{A, B, C, X(3845), X(35510)}} and on these lines: {2, 3}, {1327, 42604}, {1328, 42605}, {1992, 55607}, {3068, 41958}, {3069, 41957}, {4297, 51068}, {4669, 16192}, {5032, 55582}, {5984, 36521}, {6411, 42418}, {6412, 42417}, {6429, 43511}, {6430, 43512}, {6433, 19054}, {6434, 19053}, {6480, 53131}, {6481, 53130}, {8584, 55591}, {9543, 35771}, {9778, 51105}, {9812, 50816}, {10645, 49875}, {10646, 49876}, {11160, 55646}, {11179, 55633}, {11180, 55655}, {11231, 50863}, {12512, 51110}, {13846, 43889}, {13847, 43890}, {14927, 51143}, {15534, 55622}, {17502, 50813}, {17508, 50969}, {19883, 58217}, {20070, 51103}, {20080, 55642}, {20423, 55680}, {21356, 55656}, {22165, 55651}, {30308, 51083}, {30392, 50808}, {31145, 35242}, {32893, 43459}, {33602, 42131}, {33603, 42130}, {33748, 50966}, {33750, 54174}, {34754, 42510}, {34755, 42511}, {35770, 42525}, {36967, 49859}, {36968, 49860}, {38110, 51211}, {39561, 51028}, {41112, 42504}, {41113, 42505}, {41149, 55614}, {42090, 49873}, {42091, 49874}, {42225, 42527}, {42226, 42526}, {42502, 42588}, {42503, 42589}, {42508, 49813}, {42509, 49812}, {42528, 49826}, {42529, 49827}, {42576, 43507}, {42577, 43508}, {42606, 43209}, {42607, 43210}, {42625, 43869}, {42626, 43870}, {42890, 49904}, {42891, 49903}, {42910, 43474}, {42911, 43473}, {42932, 43481}, {42933, 43482}, {42972, 43026}, {42973, 43027}, {43002, 49947}, {43003, 49948}, {43004, 43244}, {43005, 43245}, {43012, 43311}, {43013, 43310}, {43199, 46334}, {43200, 46335}, {43495, 61719}, {44882, 50994}, {46893, 53141}, {50812, 54445}, {50814, 51094}, {50965, 55703}, {50967, 55627}, {50971, 51186}, {50972, 51538}, {50974, 55643}, {50990, 51027}, {51025, 59411}, {51092, 51705}, {51108, 58221}, {51119, 59420}, {51166, 51185}, {51170, 55594}, {51214, 51737}, {54132, 55695}, {54170, 55711}, {54173, 55645}

X(62072) = anticomplement of X(61938)
X(62072) = pole of line {69, 62018} with respect to the Wallace hyperbola
X(62072) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3534, 3146}, {3, 11812, 15698}, {3, 15686, 3524}, {3, 15688, 547}, {3, 15690, 15719}, {3, 15723, 17504}, {3, 3522, 3832}, {3, 3545, 15692}, {3, 376, 15708}, {3, 3853, 10299}, {3, 5059, 15717}, {3, 548, 3533}, {3, 7491, 15703}, {3, 8703, 11001}, {20, 10304, 14093}, {20, 3523, 3544}, {140, 15687, 5055}, {140, 15704, 3843}, {376, 15693, 15640}, {376, 3524, 382}, {546, 3832, 6894}, {547, 3843, 3545}, {548, 15715, 3839}, {549, 3839, 16858}, {3091, 15708, 15723}, {3146, 15717, 140}, {3146, 16418, 3091}, {3146, 3528, 3522}, {3522, 15705, 15683}, {3524, 15686, 5056}, {3528, 15710, 15687}, {3534, 15707, 3860}, {3543, 15708, 5067}, {5066, 8703, 15695}, {6844, 13729, 7493}, {7486, 15692, 15707}, {8703, 15698, 15697}, {8703, 15759, 15693}, {10304, 15692, 3528}, {11001, 15640, 5059}, {11001, 15698, 11812}, {12100, 15690, 3850}, {14093, 15710, 20}, {15640, 15693, 2}, {15682, 15711, 3523}, {15685, 15723, 3845}, {15688, 15704, 376}, {15688, 15711, 15682}, {15690, 15719, 3543}, {15695, 15703, 3534}, {15702, 15710, 3}, {51737, 55618, 51214}


X(62073) = X(2)X(3)∩X(6)X(42524)

Barycentrics    25*a^4-2*(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62073) = -2*X[2]+9*X[3], 9*X[40]+5*X[51097], -15*X[165]+X[50817], -4*X[597]+11*X[55678], -X[599]+8*X[55653], -9*X[1482]+16*X[51107], -3*X[1699]+10*X[51084], 2*X[1992]+5*X[55604], 6*X[3098]+X[15534], 6*X[3579]+X[51093], 3*X[3653]+4*X[12512], 5*X[3654]+2*X[51082] and many others

X(62073) lies on these lines: {2, 3}, {6, 42524}, {13, 51944}, {14, 51945}, {40, 51097}, {165, 50817}, {302, 33611}, {303, 33610}, {395, 43237}, {396, 43236}, {524, 55639}, {542, 51189}, {597, 55678}, {599, 55653}, {1482, 51107}, {1699, 51084}, {1992, 55604}, {3098, 15534}, {3579, 51093}, {3653, 12512}, {3654, 51082}, {3655, 51096}, {3656, 41150}, {4297, 38066}, {4669, 61244}, {4677, 18526}, {4745, 18481}, {5050, 50965}, {5092, 51185}, {5206, 39593}, {5306, 15655}, {5339, 43012}, {5340, 43013}, {5351, 42977}, {5352, 42976}, {5476, 50968}, {6144, 55634}, {6199, 52048}, {6221, 53131}, {6321, 41154}, {6395, 52047}, {6398, 53130}, {6411, 18512}, {6412, 18510}, {6445, 19054}, {6446, 19053}, {6449, 41946}, {6450, 41945}, {6451, 32787}, {6452, 32788}, {6486, 43338}, {6487, 43339}, {6494, 41969}, {6495, 41970}, {6496, 42418}, {6497, 42417}, {6560, 42572}, {6561, 42573}, {7767, 32896}, {8182, 51122}, {8584, 33878}, {9880, 41148}, {9955, 58217}, {10164, 61257}, {10165, 50806}, {10168, 55671}, {10246, 50808}, {10516, 55663}, {10645, 42631}, {10646, 42632}, {11165, 47101}, {11178, 55659}, {11179, 55629}, {11480, 41100}, {11481, 41101}, {11485, 42510}, {11486, 42511}, {11592, 52093}, {11632, 41151}, {11645, 51186}, {11648, 44541}, {11898, 54169}, {12188, 15300}, {12243, 38634}, {12355, 38731}, {12699, 51109}, {12702, 51071}, {12816, 42962}, {12817, 42963}, {13321, 36987}, {13624, 51105}, {13903, 42568}, {13961, 42569}, {14810, 51188}, {14830, 36521}, {14848, 53094}, {15042, 37853}, {15048, 15603}, {15069, 55652}, {15533, 39899}, {16192, 28204}, {16241, 42131}, {16242, 42130}, {16644, 46334}, {16645, 46335}, {16772, 49811}, {16773, 49810}, {17502, 61275}, {18440, 50993}, {18525, 51066}, {19924, 55676}, {20423, 41153}, {20585, 54202}, {21358, 48892}, {21969, 40280}, {22052, 59655}, {22791, 58224}, {25406, 51178}, {26446, 50797}, {28146, 61271}, {28150, 51083}, {28158, 50807}, {28160, 50820}, {28164, 50800}, {28168, 51088}, {28174, 50813}, {28178, 50833}, {28194, 51106}, {28198, 51110}, {28208, 61256}, {29012, 50976}, {29181, 51173}, {29323, 51141}, {31663, 34718}, {31730, 51108}, {31884, 50973}, {32519, 33706}, {33542, 37490}, {33750, 50979}, {34632, 37624}, {35255, 43256}, {35256, 43257}, {35750, 47610}, {36331, 47611}, {36523, 38730}, {36767, 48655}, {36836, 42532}, {36843, 42533}, {36967, 42816}, {36968, 42815}, {36990, 55662}, {37712, 50821}, {38072, 48885}, {38127, 50798}, {40341, 55642}, {41107, 42625}, {41108, 42626}, {41112, 42817}, {41113, 42818}, {41119, 42088}, {41120, 42087}, {41121, 42127}, {41122, 42126}, {41149, 50962}, {41152, 50955}, {41462, 52055}, {41943, 43193}, {41944, 43194}, {42095, 43636}, {42098, 43637}, {42115, 43229}, {42116, 43228}, {42117, 49861}, {42118, 49862}, {42121, 49824}, {42122, 49827}, {42123, 49826}, {42124, 49825}, {42133, 43247}, {42134, 43246}, {42153, 43784}, {42156, 43783}, {42157, 42505}, {42158, 42504}, {42160, 43100}, {42161, 43107}, {42263, 42557}, {42264, 42558}, {42490, 42973}, {42491, 42972}, {42496, 43869}, {42497, 43870}, {42512, 42691}, {42513, 42690}, {42520, 42795}, {42521, 42796}, {42526, 51910}, {42527, 51911}, {42528, 42974}, {42529, 42975}, {42586, 42813}, {42587, 42814}, {42793, 42899}, {42794, 42898}, {42912, 49875}, {42913, 49876}, {42914, 43476}, {42915, 43475}, {42928, 43420}, {42929, 43421}, {42932, 43207}, {42933, 43208}, {42942, 51915}, {42943, 51916}, {42996, 43015}, {42997, 43014}, {43032, 43295}, {43033, 43294}, {43108, 49812}, {43109, 49813}, {43209, 53517}, {43210, 53520}, {43273, 50989}, {43374, 60301}, {43375, 60302}, {43542, 43631}, {43543, 43630}, {43787, 43881}, {43788, 43882}, {44015, 49907}, {44016, 49908}, {44882, 51142}, {46264, 50991}, {46267, 55675}, {47352, 55672}, {48872, 55666}, {48905, 55661}, {48906, 50992}, {48910, 55665}, {49901, 49952}, {49902, 49953}, {50799, 51081}, {50805, 50814}, {50811, 59503}, {50812, 51709}, {50825, 59387}, {50874, 61265}, {50954, 50971}, {50963, 50972}, {50967, 55624}, {50977, 55654}, {51072, 61524}, {51136, 51175}, {51137, 53023}, {51140, 55627}, {53091, 54170}, {53620, 61253}, {54131, 55674}, {54132, 55697}, {55166, 58470}, {55660, 59411}, {58230, 61280}

X(62073) = midpoint of X(i) and X(j) for these {i,j}: {376, 3523}, {3857, 15686}
X(62073) = reflection of X(i) in X(j) for these {i,j}: {15700, 3}, {15701, 15698}, {15703, 3523}, {381, 3526}, {3090, 549}, {3526, 15700}, {3851, 15702}
X(62073) = inverse of X(61934) in orthocentroidal circle
X(62073) = inverse of X(61934) in Yff hyperbola
X(62073) = complement of X(62009)
X(62073) = anticomplement of X(61939)
X(62073) = pole of line {523, 61934} with respect to the orthocentroidal circle
X(62073) = pole of line {185, 61793} with respect to the Jerabek hyperbola
X(62073) = pole of line {6, 43207} with respect to the Kiepert hyperbola
X(62073) = pole of line {523, 61934} with respect to the Yff hyperbola
X(62073) = pole of line {69, 62019} with respect to the Wallace hyperbola
X(62073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(95), X(15716)}}, {{A, B, C, X(1294), X(15700)}}, {{A, B, C, X(3090), X(18317)}}, {{A, B, C, X(19710), X(57822)}}
X(62073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 12101}, {2, 12100, 15722}, {2, 15690, 15685}, {2, 15759, 3}, {2, 5154, 4194}, {2, 8703, 15695}, {3, 10304, 14093}, {3, 14093, 15688}, {3, 15681, 3524}, {3, 15689, 549}, {3, 15694, 17504}, {3, 15696, 15720}, {3, 15701, 15698}, {3, 15707, 14891}, {3, 15718, 15705}, {3, 17800, 15712}, {3, 3522, 382}, {3, 381, 15706}, {3, 3830, 12100}, {3, 3843, 10299}, {3, 5055, 15692}, {3, 5073, 15717}, {3, 548, 1656}, {4, 14891, 15707}, {4, 15707, 15723}, {5, 15705, 15718}, {20, 15719, 5066}, {30, 15698, 15701}, {30, 15702, 3851}, {30, 3523, 15703}, {30, 549, 3090}, {376, 10124, 15681}, {376, 12103, 15689}, {376, 15692, 14893}, {376, 15705, 5}, {376, 3523, 30}, {376, 3524, 3146}, {376, 3839, 12103}, {381, 15688, 15696}, {382, 3534, 11001}, {548, 12811, 550}, {548, 3845, 15697}, {549, 12103, 3839}, {550, 11812, 15682}, {631, 15640, 10109}, {1656, 14869, 3526}, {1656, 5054, 10124}, {1657, 15688, 376}, {3090, 3528, 3522}, {3146, 3525, 12811}, {3523, 3832, 3525}, {3524, 15697, 3845}, {3534, 11812, 5076}, {3534, 14093, 8703}, {3534, 3830, 1657}, {3545, 15691, 17800}, {3845, 8703, 548}, {5054, 15700, 3523}, {5066, 12100, 12108}, {5066, 17504, 15719}, {6926, 15685, 15759}, {10109, 15640, 14269}, {10109, 15686, 15640}, {10299, 15683, 11539}, {10645, 42631, 49947}, {10646, 42632, 49948}, {11001, 15689, 3534}, {11539, 15683, 3843}, {11812, 15682, 5055}, {12100, 14893, 11812}, {12100, 15690, 3860}, {12108, 15694, 5054}, {14893, 15682, 3830}, {15685, 15695, 15690}, {15687, 15708, 5070}, {15690, 15711, 2}, {15690, 15759, 15711}, {15691, 15712, 3545}, {15695, 15759, 15716}, {15696, 15706, 381}, {15698, 15701, 15700}, {15699, 17533, 15694}, {15700, 15701, 15693}, {15708, 17538, 15687}, {42157, 42505, 49904}, {42158, 42504, 49903}, {42510, 42791, 11485}, {42511, 42792, 11486}, {42524, 42525, 6}, {50812, 58221, 51709}, {50814, 51705, 61287}, {50968, 55673, 5476}, {51737, 55610, 50962}


X(62074) = X(2)X(3)∩X(590)X(43570)

Barycentrics    23*a^4-2*(b^2-c^2)^2-21*a^2*(b^2+c^2) : :
X(62074) = -6*X[2]+25*X[3], -3*X[599]+22*X[55652], 3*X[2979]+16*X[55286], 4*X[3629]+15*X[55610], -X[3632]+20*X[31663], -5*X[3763]+24*X[55663], -6*X[5603]+25*X[58224], X[6144]+18*X[55630], 4*X[8550]+15*X[55629], 15*X[8567]+4*X[45185], -3*X[10516]+22*X[55662], 4*X[10990]+15*X[15040] and many others

X(62074) lies on these lines: {2, 3}, {590, 43570}, {599, 55652}, {615, 43571}, {2979, 55286}, {3629, 55610}, {3632, 31663}, {3763, 55663}, {5237, 42799}, {5238, 42800}, {5286, 15603}, {5603, 58224}, {6144, 55630}, {6445, 42637}, {6446, 42638}, {6447, 53131}, {6448, 53130}, {6449, 43523}, {6450, 43524}, {6484, 43338}, {6485, 43339}, {6496, 18512}, {6497, 18510}, {6522, 9681}, {7581, 42643}, {7582, 42644}, {8550, 55629}, {8567, 45185}, {10516, 55662}, {10645, 42779}, {10646, 42780}, {10653, 42794}, {10654, 42793}, {10984, 11935}, {10990, 15040}, {11008, 55632}, {11230, 58217}, {11480, 43030}, {11481, 43031}, {11898, 55646}, {11999, 40912}, {12645, 35242}, {14530, 15105}, {14810, 40341}, {14848, 55681}, {15041, 24981}, {15042, 38788}, {15069, 55650}, {15534, 55617}, {16644, 43330}, {16645, 43331}, {16964, 51945}, {16965, 51944}, {16966, 43324}, {16967, 43325}, {17811, 52100}, {18440, 55655}, {18526, 43174}, {18553, 55658}, {20583, 55724}, {22235, 43631}, {22236, 43008}, {22237, 43630}, {22238, 43009}, {25555, 55673}, {33542, 37489}, {33750, 55584}, {33751, 55656}, {34507, 55651}, {35022, 52090}, {36990, 55661}, {39899, 55643}, {41973, 42626}, {41974, 42625}, {42099, 42951}, {42100, 42950}, {42122, 43871}, {42123, 43872}, {42125, 42774}, {42126, 43547}, {42127, 43546}, {42128, 42773}, {42129, 42630}, {42130, 43239}, {42131, 43238}, {42132, 42629}, {42153, 42958}, {42156, 42959}, {42157, 42818}, {42158, 42817}, {42260, 43315}, {42261, 43314}, {42268, 43786}, {42269, 43785}, {42494, 42584}, {42495, 42585}, {42612, 49947}, {42613, 49948}, {42686, 42782}, {42687, 42781}, {42797, 42989}, {42798, 42988}, {42815, 42945}, {42816, 42944}, {42938, 42975}, {42939, 42974}, {42946, 43025}, {42947, 43024}, {42968, 43646}, {42969, 43645}, {42992, 43485}, {42993, 43486}, {43028, 43196}, {43029, 43195}, {43193, 43332}, {43194, 43333}, {43273, 55647}, {43489, 43633}, {43490, 43632}, {43676, 60335}, {48872, 55667}, {48905, 55660}, {48910, 55666}, {50819, 61249}, {50962, 55606}, {50965, 53092}, {51737, 55602}, {53023, 55665}, {53100, 60210}, {53102, 54920}, {54131, 55675}, {54934, 60642}, {55659, 59411}, {60334, 60626}

X(62074) = pole of line {185, 61794} with respect to the Jerabek hyperbola
X(62074) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3519), X(17578)}}, {{A, B, C, X(3532), X(52294)}}, {{A, B, C, X(3839), X(14861)}}, {{A, B, C, X(11403), X(44731)}}, {{A, B, C, X(15682), X(42021)}}, {{A, B, C, X(15706), X(40448)}}, {{A, B, C, X(26861), X(49135)}}, {{A, B, C, X(49139), X(57894)}}
X(62074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15681, 3530}, {3, 15689, 631}, {3, 15695, 5}, {3, 17800, 3524}, {3, 3522, 1657}, {3, 3526, 15716}, {3, 3528, 15688}, {3, 376, 3526}, {3, 3830, 15717}, {3, 3843, 12100}, {3, 3851, 10299}, {3, 5, 15706}, {3, 5070, 15692}, {3, 5073, 15712}, {3, 548, 381}, {3, 8703, 15696}, {4, 3523, 632}, {4, 5068, 3860}, {4, 550, 15681}, {20, 14869, 14269}, {20, 15693, 5072}, {20, 15709, 12102}, {20, 15715, 14869}, {376, 15712, 5073}, {381, 15693, 15709}, {382, 15720, 1656}, {548, 17504, 3529}, {550, 15712, 546}, {550, 3530, 4}, {632, 8703, 548}, {1656, 15700, 15720}, {1657, 15720, 3851}, {1657, 3851, 382}, {3522, 5056, 376}, {3528, 10299, 3522}, {3529, 17576, 3858}, {3530, 15681, 5079}, {5054, 14093, 8703}, {8703, 15719, 15695}, {11812, 15712, 3523}, {12103, 15692, 5070}, {14269, 15715, 15693}, {14813, 14814, 17578}, {15688, 15700, 3534}, {15688, 15710, 5054}, {15688, 15720, 550}, {15707, 15716, 15700}, {15714, 15717, 3}, {22236, 43420, 43008}, {22238, 43421, 43009}


X(62075) = X(2)X(3)∩X(5023)X(5355)

Barycentrics    21*a^4-2*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62075) = -6*X[2]+23*X[3], -32*X[575]+15*X[51172], -3*X[599]+20*X[55650], 9*X[1350]+8*X[33749], 14*X[3579]+3*X[61291], -5*X[3763]+22*X[55662], 14*X[4297]+3*X[61247], -10*X[5734]+27*X[58230], -9*X[5790]+26*X[31425], -8*X[5901]+25*X[58224], -8*X[6053]+25*X[15040], X[6144]+16*X[55625] and many others

X(62075) lies on these lines: {2, 3}, {575, 51172}, {599, 55650}, {1350, 33749}, {3411, 42529}, {3412, 42528}, {3579, 61291}, {3763, 55662}, {4297, 61247}, {5010, 31480}, {5023, 5355}, {5210, 7765}, {5267, 31494}, {5305, 15603}, {5351, 43776}, {5352, 43775}, {5734, 58230}, {5790, 31425}, {5901, 58224}, {6053, 15040}, {6144, 55625}, {6398, 9681}, {6407, 42637}, {6408, 42638}, {6409, 31487}, {6411, 13903}, {6412, 13961}, {6451, 31454}, {6480, 43338}, {6481, 43339}, {6496, 9680}, {6519, 41946}, {6522, 41945}, {8550, 51174}, {8589, 31492}, {9588, 38176}, {9589, 17502}, {9657, 59325}, {9670, 59319}, {9692, 19117}, {9693, 43511}, {9778, 61278}, {10516, 55661}, {11179, 55620}, {11412, 55286}, {11480, 42990}, {11481, 42991}, {11482, 50965}, {11592, 12279}, {11898, 55643}, {12512, 61276}, {12702, 61284}, {14810, 39899}, {15042, 16111}, {15069, 55649}, {15484, 31457}, {15534, 55611}, {18440, 33751}, {18525, 31447}, {18526, 31663}, {25406, 55632}, {31470, 37512}, {33544, 37475}, {33750, 44456}, {35242, 59503}, {36990, 55660}, {38066, 61248}, {40107, 55651}, {40341, 55640}, {40647, 54047}, {41971, 43019}, {41972, 43018}, {42126, 42491}, {42127, 42490}, {42129, 43632}, {42132, 43633}, {42157, 51945}, {42158, 51944}, {42488, 42962}, {42489, 42963}, {42625, 42988}, {42626, 42989}, {42785, 48885}, {42815, 43193}, {42816, 43194}, {42958, 46335}, {42959, 46334}, {43016, 43238}, {43017, 43239}, {43174, 50804}, {43273, 55644}, {43907, 55653}, {47355, 55664}, {48661, 58221}, {48872, 55668}, {48905, 55659}, {48910, 55667}, {50810, 61290}, {50962, 55602}, {51077, 61282}, {51132, 55580}, {51175, 55641}, {51737, 55595}, {53023, 55666}, {54131, 55677}, {55658, 59411}, {58222, 61273}

X(62075) = inverse of X(41989) in orthocentroidal circle
X(62075) = inverse of X(41989) in Yff hyperbola
X(62075) = pole of line {523, 41989} with respect to the orthocentroidal circle
X(62075) = pole of line {185, 15700} with respect to the Jerabek hyperbola
X(62075) = pole of line {6, 41989} with respect to the Kiepert hyperbola
X(62075) = pole of line {523, 41989} with respect to the Yff hyperbola
X(62075) = intersection, other than A, B, C, of circumconics {{A, B, C, X(264), X(41989)}}, {{A, B, C, X(1105), X(15700)}}, {{A, B, C, X(5066), X(15318)}}, {{A, B, C, X(15706), X(60007)}}
X(62075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 140, 15716}, {3, 15681, 3523}, {3, 15688, 1657}, {3, 15689, 140}, {3, 15695, 4}, {3, 1656, 15706}, {3, 1657, 15693}, {3, 17800, 3530}, {3, 3534, 15720}, {3, 3830, 15712}, {3, 3843, 15717}, {3, 3851, 12100}, {3, 4, 15700}, {3, 5073, 3524}, {4, 631, 13735}, {5, 3530, 10303}, {5, 3543, 3843}, {20, 15717, 3090}, {20, 3524, 5}, {20, 3528, 8703}, {20, 3627, 17800}, {20, 5070, 382}, {20, 631, 3861}, {381, 15696, 20}, {381, 15706, 15701}, {381, 8703, 15688}, {382, 1656, 3832}, {548, 16239, 550}, {550, 3090, 15685}, {1657, 15693, 5079}, {3090, 16239, 5070}, {3522, 10303, 376}, {3523, 11541, 15699}, {3523, 15681, 5072}, {3524, 12101, 15694}, {3526, 15688, 15696}, {3529, 12101, 5073}, {3534, 15720, 5076}, {3534, 5054, 3543}, {3543, 5066, 14269}, {3832, 7486, 3544}, {5059, 15715, 12108}, {5073, 14269, 3627}, {8703, 11540, 6960}, {10299, 12103, 5055}, {10299, 15714, 3}, {10303, 14269, 1656}, {11812, 15695, 3534}, {12100, 17538, 3851}, {12103, 15714, 10299}, {12811, 15712, 15721}, {14891, 15685, 5054}, {15685, 15701, 5066}, {15689, 15716, 381}, {15706, 17800, 3526}, {33751, 55654, 18440}


X(62076) = X(2)X(3)∩X(40)X(51094)

Barycentrics    41*a^4-4*(b^2-c^2)^2-37*a^2*(b^2+c^2) : :
X(62076) = -4*X[2]+15*X[3], 15*X[40]+7*X[51094], -16*X[1125]+49*X[58220], 10*X[3579]+X[34747], 8*X[3629]+25*X[55604], -X[4677]+12*X[31663], 3*X[5093]+8*X[50965], 3*X[5790]+8*X[50815], 3*X[5886]+8*X[50816], -3*X[9812]+14*X[50833], 3*X[10175]+8*X[51081], 3*X[10247]+8*X[50808] and many others

X(62076) lies on these lines: {2, 3}, {40, 51094}, {524, 55632}, {542, 55648}, {1125, 58220}, {3311, 42525}, {3312, 42524}, {3579, 34747}, {3629, 55604}, {4677, 31663}, {5023, 39593}, {5093, 50965}, {5585, 11648}, {5790, 50815}, {5886, 50816}, {6199, 53131}, {6395, 53130}, {6407, 41946}, {6408, 41945}, {9690, 19054}, {9691, 42637}, {9812, 50833}, {10175, 51081}, {10247, 50808}, {10706, 15042}, {11179, 55616}, {11480, 42631}, {11481, 42632}, {11645, 55656}, {12820, 33417}, {12821, 33416}, {14561, 50972}, {14810, 15533}, {15534, 55610}, {16192, 38066}, {16644, 43033}, {16645, 43032}, {16962, 42508}, {16963, 42509}, {16964, 42505}, {16965, 42504}, {17502, 50812}, {17508, 50968}, {18481, 38098}, {19053, 43415}, {19106, 43248}, {19107, 43249}, {19924, 55678}, {20583, 44456}, {21358, 55658}, {21766, 33887}, {22052, 36431}, {31730, 58224}, {33602, 42627}, {33603, 42628}, {33751, 48662}, {35022, 48657}, {36521, 38635}, {36836, 42635}, {36843, 42636}, {38072, 55669}, {40341, 55639}, {41100, 42116}, {41101, 42115}, {41119, 42131}, {41120, 42130}, {42093, 42985}, {42094, 42984}, {42117, 43871}, {42118, 43872}, {42121, 42589}, {42122, 49812}, {42123, 49813}, {42124, 42588}, {42154, 43011}, {42155, 43010}, {42263, 43882}, {42264, 43881}, {42266, 42642}, {42267, 42641}, {42433, 42506}, {42434, 42507}, {42490, 43546}, {42491, 43547}, {42528, 49947}, {42529, 49948}, {42904, 43204}, {42905, 43203}, {42944, 49859}, {42945, 49860}, {43002, 49826}, {43003, 49827}, {43110, 49876}, {43111, 49875}, {43195, 43230}, {43196, 43231}, {43228, 51915}, {43229, 51916}, {43254, 43515}, {43255, 43516}, {43273, 55643}, {43418, 49905}, {43419, 49906}, {47353, 55657}, {50811, 51515}, {50819, 51068}, {50955, 55649}, {50973, 55627}, {50975, 50994}, {50988, 51538}, {50993, 55654}, {51024, 55670}, {51095, 51705}, {51103, 58230}, {51140, 55618}, {51187, 55626}, {51737, 55593}

X(62076) = midpoint of X(i) and X(j) for these {i,j}: {376, 15717}
X(62076) = reflection of X(i) in X(j) for these {i,j}: {15718, 3}, {15720, 15715}, {15723, 15717}, {381, 3525}, {5056, 549}, {5070, 15718}, {5072, 15721}
X(62076) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15718)}}, {{A, B, C, X(5056), X(18317)}}
X(62076) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15687}, {2, 15681, 3830}, {2, 15697, 3529}, {2, 15698, 3530}, {2, 3528, 8703}, {2, 8703, 15688}, {3, 14269, 15700}, {3, 15684, 3524}, {3, 15688, 15681}, {3, 15689, 15694}, {3, 30, 15718}, {3, 548, 5073}, {3, 8703, 15695}, {20, 15706, 15703}, {20, 15714, 15706}, {30, 15715, 15720}, {30, 15717, 15723}, {30, 15718, 5070}, {30, 15721, 5072}, {30, 549, 5056}, {376, 15705, 12102}, {376, 15708, 15704}, {376, 15717, 30}, {376, 17504, 382}, {376, 3524, 5059}, {548, 15711, 11001}, {550, 17504, 11737}, {631, 3533, 6998}, {3522, 15698, 15690}, {3522, 15708, 376}, {3524, 15696, 15684}, {3534, 3845, 15685}, {3843, 15695, 15697}, {3845, 10109, 3091}, {3855, 15710, 15715}, {5059, 6977, 3627}, {5073, 15701, 10109}, {8703, 15690, 3522}, {8703, 15711, 548}, {10299, 11001, 2}, {10299, 15687, 5054}, {10304, 14093, 3}, {14093, 15688, 3528}, {15681, 15707, 3851}, {15685, 15693, 5055}, {15686, 15705, 3526}, {15688, 15700, 550}, {15688, 15707, 15689}, {15688, 15710, 14269}, {15689, 15694, 17800}, {15690, 15698, 381}, {15693, 15708, 15722}, {15693, 15716, 15717}, {15695, 15701, 3534}, {15701, 15718, 15719}, {15704, 15713, 3845}, {15704, 15759, 15698}, {15713, 15722, 15701}, {15715, 15717, 17504}, {15716, 15723, 15693}, {15718, 15720, 15707}


X(62077) = X(2)X(3)∩X(40)X(51091)

Barycentrics    49*a^4-5*(b^2-c^2)^2-44*a^2*(b^2+c^2) : :
X(62077) = -5*X[2]+18*X[3], 9*X[40]+4*X[51091], -5*X[69]+44*X[55642], 12*X[165]+X[50818], 9*X[1350]+4*X[41149], 5*X[1992]+8*X[55594], 6*X[3576]+7*X[50813], 9*X[4297]+4*X[51070], -2*X[4669]+15*X[35242], -28*X[4745]+15*X[61250], 6*X[5085]+7*X[50969], 8*X[5097]+5*X[54170] and many others

X(62077) lies on these lines: {2, 3}, {40, 51091}, {61, 42926}, {62, 42927}, {69, 55642}, {165, 50818}, {1350, 41149}, {1992, 55594}, {3576, 50813}, {4297, 51070}, {4669, 35242}, {4745, 61250}, {5008, 14482}, {5085, 50969}, {5097, 54170}, {5102, 33750}, {5334, 51945}, {5335, 51944}, {5485, 46893}, {5603, 50812}, {5657, 50871}, {6361, 51105}, {6409, 42418}, {6410, 42417}, {6411, 43256}, {6412, 43257}, {6429, 41946}, {6430, 41945}, {6434, 9541}, {6480, 19054}, {6481, 19053}, {6484, 7581}, {6485, 7582}, {8584, 55582}, {9778, 31662}, {10137, 42522}, {10138, 42523}, {10164, 50820}, {10385, 37587}, {10516, 51134}, {10519, 51027}, {10645, 43481}, {10646, 43482}, {11160, 55639}, {11179, 55612}, {11180, 55651}, {11480, 43304}, {11481, 43305}, {12512, 41150}, {13846, 41965}, {13847, 41966}, {14853, 50968}, {14912, 51214}, {15534, 55607}, {16192, 34627}, {16200, 50808}, {16808, 43501}, {16809, 43502}, {18481, 51068}, {20423, 55685}, {21167, 50976}, {21356, 55653}, {22165, 55646}, {25406, 51179}, {31730, 51110}, {31884, 50974}, {32785, 43521}, {32786, 43522}, {33179, 34632}, {33602, 42086}, {33603, 42085}, {34631, 61284}, {35255, 43889}, {35256, 43890}, {36967, 49861}, {36968, 49862}, {37640, 42631}, {37641, 42632}, {38155, 50815}, {38736, 41151}, {38738, 41147}, {39874, 50990}, {41100, 43232}, {41101, 43233}, {41107, 42986}, {41108, 42987}, {41112, 43244}, {41113, 43245}, {41119, 43199}, {41120, 43200}, {41121, 43463}, {41122, 43464}, {41152, 44882}, {42087, 49873}, {42088, 49874}, {42090, 42589}, {42091, 42588}, {42117, 43494}, {42118, 43493}, {42119, 43003}, {42120, 43002}, {42126, 43555}, {42127, 43554}, {42150, 42977}, {42151, 42976}, {42157, 49859}, {42158, 49860}, {42413, 43255}, {42414, 43254}, {42504, 43310}, {42505, 43311}, {42510, 52080}, {42511, 52079}, {42524, 53130}, {42525, 53131}, {42528, 42997}, {42529, 42996}, {42625, 49826}, {42626, 49827}, {43320, 52047}, {43321, 52048}, {43645, 43778}, {43646, 43777}, {46264, 50994}, {49855, 49914}, {49858, 49911}, {50809, 51097}, {50810, 51096}, {50819, 51067}, {50828, 61274}, {50966, 51737}, {50967, 55618}, {50971, 55654}, {50975, 51142}, {50989, 54169}, {50992, 55636}, {51083, 51119}, {51176, 54173}, {51186, 55656}, {51187, 55622}, {51212, 55683}, {51537, 55662}, {52666, 60298}, {52667, 60297}, {54132, 55703}, {55691, 59373}, {60127, 60287}, {60150, 60638}

X(62077) = midpoint of X(i) and X(j) for these {i,j}: {376, 10299}
X(62077) = reflection of X(i) in X(j) for these {i,j}: {5079, 549}
X(62077) = anticomplement of X(61941)
X(62077) = pole of line {69, 33699} with respect to the Wallace hyperbola
X(62077) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(33699)}}, {{A, B, C, X(3856), X(15740)}}, {{A, B, C, X(3858), X(54838)}}, {{A, B, C, X(5073), X(54667)}}, {{A, B, C, X(5079), X(18317)}}, {{A, B, C, X(15694), X(18852)}}, {{A, B, C, X(33923), X(54660)}}
X(62077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 3860}, {2, 15690, 11001}, {2, 15697, 15685}, {3, 11001, 15719}, {3, 11539, 15692}, {3, 15686, 15708}, {3, 15688, 15686}, {3, 15689, 15723}, {3, 15722, 6908}, {3, 3534, 11812}, {3, 3850, 15717}, {3, 5067, 10299}, {3, 548, 5059}, {3, 6891, 15695}, {3, 6961, 5073}, {4, 12812, 3855}, {4, 3524, 15694}, {20, 15715, 15709}, {30, 549, 5079}, {376, 10299, 30}, {376, 15709, 20}, {376, 3524, 3529}, {546, 12103, 6985}, {550, 15701, 15640}, {3522, 3524, 376}, {3524, 3543, 3533}, {3534, 15693, 14269}, {3534, 15720, 3830}, {3534, 15722, 12101}, {3534, 8703, 3522}, {3545, 11001, 15682}, {3627, 6913, 546}, {3858, 11539, 547}, {5055, 15683, 1532}, {5059, 15692, 11539}, {5059, 15708, 11737}, {8703, 12100, 15688}, {10304, 14093, 3528}, {11001, 15702, 3845}, {11001, 15719, 3545}, {12100, 14869, 15693}, {12100, 15685, 2}, {12100, 15688, 15697}, {12100, 15697, 4}, {12101, 15698, 6967}, {12101, 15711, 15722}, {12101, 15759, 15711}, {13741, 15692, 15707}, {14891, 15696, 3839}, {15640, 15701, 5071}, {15640, 15705, 15701}, {15682, 15698, 631}, {15682, 15710, 15698}, {15683, 17504, 3525}, {15686, 15694, 3543}, {15689, 15714, 3523}, {15691, 15706, 3091}, {15692, 15720, 3524}, {15695, 15722, 3534}, {15708, 16239, 15702}


X(62078) = X(2)X(3)∩X(165)X(3621)

Barycentrics    29*a^4-3*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(62078) = -9*X[2]+32*X[3], -24*X[165]+X[3621], 3*X[193]+20*X[55614], -4*X[576]+27*X[33750], -5*X[3617]+28*X[16192], -5*X[3620]+28*X[55651], 7*X[3622]+16*X[12512], 15*X[3623]+8*X[7991], 16*X[4297]+7*X[4678], 11*X[5550]+12*X[59420], -24*X[5731]+X[20014], -X[5921]+24*X[55649] and many others

X(62078) lies on these lines: {2, 3}, {99, 32880}, {165, 3621}, {193, 55614}, {315, 32881}, {397, 43428}, {398, 43429}, {576, 33750}, {3592, 9543}, {3594, 43512}, {3617, 16192}, {3620, 55651}, {3622, 12512}, {3623, 7991}, {4297, 4678}, {5237, 43031}, {5238, 43030}, {5351, 42967}, {5352, 42966}, {5550, 59420}, {5731, 20014}, {5921, 55649}, {6053, 15020}, {6361, 31666}, {6425, 42637}, {6426, 42638}, {6433, 43382}, {6434, 43383}, {6439, 42574}, {6440, 42575}, {6459, 43884}, {6460, 43883}, {6519, 42522}, {6522, 42523}, {6776, 55637}, {7771, 32872}, {7782, 32840}, {9588, 50801}, {9589, 58225}, {9729, 16981}, {9778, 30389}, {10519, 55647}, {11002, 17704}, {11008, 55622}, {11179, 55611}, {11202, 54211}, {14683, 15021}, {14853, 55679}, {14907, 32841}, {14912, 55602}, {14927, 55656}, {14930, 22332}, {15028, 55166}, {15029, 48375}, {16189, 50808}, {16644, 43556}, {16645, 43557}, {16772, 51944}, {16773, 51945}, {17852, 19053}, {19876, 51081}, {20080, 31884}, {22330, 51028}, {23060, 58266}, {25406, 55626}, {28164, 46931}, {31425, 50864}, {33748, 55724}, {33751, 55652}, {33884, 45187}, {34473, 35369}, {35242, 47745}, {37640, 43495}, {37641, 43496}, {38314, 58229}, {39874, 55648}, {40107, 50975}, {40330, 55658}, {42099, 42593}, {42100, 42592}, {42147, 51916}, {42148, 51915}, {42154, 43480}, {42155, 43479}, {42164, 43772}, {42165, 43771}, {42225, 43435}, {42226, 43434}, {42413, 43561}, {42414, 43560}, {42528, 43775}, {42529, 43776}, {42598, 43326}, {42599, 43327}, {42785, 55670}, {42793, 49812}, {42794, 49813}, {42982, 43777}, {42983, 43778}, {43193, 43773}, {43194, 43774}, {43621, 55664}, {46264, 55650}, {46934, 58221}, {48873, 55677}, {50809, 61286}, {50967, 55617}, {51118, 58217}, {51170, 53097}, {51171, 55684}, {51709, 58223}, {53093, 61044}, {53858, 54170}, {54132, 55704}, {54174, 55597}, {55286, 61136}, {60147, 60728}

X(62078) = pole of line {185, 61798} with respect to the Jerabek hyperbola
X(62078) = pole of line {69, 50690} with respect to the Wallace hyperbola
X(62078) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(50690)}}, {{A, B, C, X(1217), X(15703)}}, {{A, B, C, X(3346), X(5055)}}, {{A, B, C, X(12101), X(32533)}}, {{A, B, C, X(15319), X(41099)}}
X(62078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11346, 7504}, {2, 17568, 5177}, {3, 12103, 631}, {3, 13587, 13731}, {3, 15688, 12103}, {3, 15696, 3628}, {3, 17538, 10303}, {3, 3091, 15717}, {3, 3525, 15692}, {3, 3529, 3523}, {3, 3534, 14869}, {3, 3627, 3524}, {3, 3628, 10299}, {3, 5079, 12100}, {3, 548, 3529}, {3, 550, 3525}, {4, 631, 15703}, {20, 15721, 4}, {20, 3091, 11541}, {20, 3523, 381}, {20, 3524, 5068}, {20, 5073, 15683}, {20, 8703, 3522}, {140, 11541, 3091}, {140, 376, 20}, {140, 381, 5067}, {140, 3856, 15699}, {376, 15759, 15708}, {376, 3524, 15685}, {381, 632, 3090}, {548, 11812, 550}, {550, 15692, 3832}, {631, 15683, 3854}, {3091, 15640, 12102}, {3091, 5067, 15022}, {3146, 15704, 5059}, {3146, 15705, 12108}, {3146, 3832, 5076}, {3522, 15717, 376}, {3523, 17578, 2}, {3524, 10109, 15721}, {3525, 15682, 12811}, {3529, 12102, 15640}, {3529, 15022, 17578}, {5059, 15698, 6872}, {5192, 17549, 2478}, {8703, 14891, 15688}, {10299, 15696, 3543}, {10303, 17538, 3146}, {11001, 15712, 7486}, {15685, 15693, 10109}, {15693, 17800, 6929}, {15704, 17504, 632}


X(62079) = X(2)X(3)∩X(61)X(42684)

Barycentrics    28*a^4-3*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(62079) = -9*X[2]+31*X[3], 3*X[1353]+8*X[55606], -X[3630]+12*X[55638], -27*X[3653]+49*X[58225], 8*X[4297]+3*X[59400], -4*X[4301]+15*X[50832], 6*X[5188]+5*X[32523], 3*X[5493]+8*X[58232], -4*X[5881]+15*X[50822], 7*X[7991]+15*X[61284], 3*X[8550]+8*X[55617], 3*X[10283]+8*X[12512] and many others

X(62079) lies on these lines: {2, 3}, {61, 42684}, {62, 42685}, {397, 51915}, {398, 51916}, {524, 55628}, {1353, 55606}, {1503, 55652}, {3564, 55641}, {3630, 55638}, {3653, 58225}, {4297, 59400}, {4301, 50832}, {5188, 32523}, {5349, 42593}, {5350, 42592}, {5493, 58232}, {5881, 50822}, {6411, 43430}, {6412, 43431}, {6425, 43338}, {6426, 43339}, {6445, 43382}, {6446, 43383}, {6447, 42637}, {6448, 42638}, {7991, 61284}, {8550, 55617}, {9681, 43525}, {10147, 43258}, {10148, 43259}, {10283, 12512}, {10645, 42922}, {10646, 42923}, {11482, 33750}, {12007, 52987}, {13348, 45956}, {15023, 20127}, {15042, 61598}, {15069, 51184}, {16192, 38112}, {20190, 48874}, {21850, 55681}, {22234, 51138}, {22251, 38788}, {29181, 55675}, {30389, 61279}, {31447, 38081}, {33751, 43150}, {34380, 55620}, {38022, 50816}, {38079, 50972}, {38083, 51081}, {38110, 55677}, {38136, 55669}, {39884, 55657}, {42087, 42964}, {42088, 42965}, {42101, 43468}, {42102, 43467}, {42108, 42493}, {42109, 42492}, {42117, 42686}, {42118, 42687}, {42135, 42954}, {42138, 42955}, {42139, 43647}, {42142, 43648}, {42149, 51945}, {42152, 51944}, {42528, 42935}, {42529, 42934}, {42612, 43302}, {42613, 43303}, {42694, 43402}, {42695, 43401}, {42777, 42891}, {42778, 42890}, {42900, 42957}, {42901, 42956}, {42998, 43640}, {42999, 43639}, {43010, 43631}, {43011, 43630}, {43340, 43879}, {43341, 43880}, {43483, 43783}, {43484, 43784}, {43544, 43633}, {43545, 43632}, {44882, 55647}, {48876, 55644}, {48881, 55679}, {48906, 55631}, {50808, 58240}, {50830, 61297}, {50965, 55718}, {50979, 55583}, {51140, 55611}, {51163, 55664}, {51182, 55623}, {51737, 55588}, {55687, 59399}, {58219, 59420}, {61247, 61524}

X(62079) = midpoint of X(i) and X(j) for these {i,j}: {376, 15716}
X(62079) = reflection of X(i) in X(j) for these {i,j}: {15723, 12100}, {3855, 140}, {5, 15720}
X(62079) = pole of line {185, 61801} with respect to the Jerabek hyperbola
X(62079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12103, 14869}, {3, 12108, 17504}, {3, 15688, 17538}, {3, 15696, 3090}, {3, 15704, 549}, {3, 20, 12108}, {3, 3090, 12100}, {3, 3146, 3530}, {3, 3534, 10303}, {3, 376, 546}, {3, 5072, 15717}, {3, 5076, 3524}, {3, 546, 15712}, {3, 548, 15704}, {3, 550, 632}, {5, 15712, 11812}, {5, 8703, 3522}, {30, 12100, 15723}, {30, 140, 3855}, {140, 12811, 17697}, {140, 3543, 5}, {376, 15716, 30}, {548, 15759, 4}, {548, 3856, 15696}, {548, 549, 550}, {1657, 12108, 6924}, {3090, 6985, 15687}, {3522, 3534, 548}, {3523, 11357, 15721}, {3525, 5072, 3628}, {3526, 3534, 5073}, {3530, 12101, 3533}, {3530, 15686, 3858}, {3534, 14269, 15683}, {3627, 3628, 3857}, {3628, 5066, 5079}, {3853, 10299, 15713}, {3855, 15022, 5072}, {5073, 15720, 5056}, {6891, 15718, 15688}, {6949, 15697, 3534}, {10299, 15689, 3853}, {12103, 14869, 3627}, {14890, 15691, 15640}, {15022, 17538, 17800}, {15022, 17697, 7486}, {15698, 17538, 15022}, {15698, 17800, 140}


X(62080) = X(2)X(3)∩X(599)X(33751)

Barycentrics    35*a^4-4*(b^2-c^2)^2-31*a^2*(b^2+c^2) : :
X(62080) = -4*X[2]+13*X[3], X[599]+8*X[33751], -10*X[3098]+X[50973], 8*X[3579]+X[34748], 5*X[3655]+4*X[50814], 5*X[4746]+13*X[51080], 5*X[4816]+13*X[50811], 4*X[5092]+5*X[50968], -X[7988]+4*X[58216], X[8148]+8*X[50808], 5*X[9778]+4*X[61280], 2*X[11178]+7*X[50976] and many others

X(62080) lies on these lines: {2, 3}, {524, 55624}, {528, 38637}, {541, 38638}, {542, 38633}, {543, 38634}, {599, 33751}, {3098, 50973}, {3411, 42509}, {3412, 42508}, {3579, 34748}, {3655, 50814}, {4746, 51080}, {4816, 50811}, {5092, 50968}, {6417, 53131}, {6418, 53130}, {6496, 35822}, {6497, 35823}, {6500, 52048}, {6501, 52047}, {7988, 58216}, {8148, 50808}, {9530, 38639}, {9541, 43415}, {9691, 19054}, {9778, 61280}, {10645, 43646}, {10646, 43645}, {11178, 50976}, {11179, 50970}, {11645, 55654}, {11693, 37853}, {12512, 61277}, {12699, 50816}, {13624, 50812}, {13903, 43256}, {13961, 43257}, {15533, 55637}, {15534, 55602}, {16962, 42625}, {16963, 42626}, {17502, 61274}, {18440, 50971}, {18492, 51088}, {18493, 34638}, {18525, 50815}, {19924, 55682}, {21358, 55657}, {25561, 55662}, {28150, 58218}, {28194, 58230}, {28198, 61275}, {28202, 58221}, {28208, 61254}, {28216, 58226}, {31487, 42418}, {31670, 50972}, {31673, 51081}, {34718, 51082}, {35242, 50798}, {36836, 42631}, {36843, 42632}, {37712, 38066}, {38072, 55670}, {38127, 61247}, {38747, 48657}, {42115, 42529}, {42116, 42528}, {42125, 43100}, {42128, 43107}, {42154, 42894}, {42155, 42895}, {42566, 43795}, {42567, 43796}, {42586, 49907}, {42587, 49908}, {42690, 43200}, {42691, 43199}, {42910, 43780}, {42911, 43779}, {42984, 43637}, {42985, 43636}, {43014, 43304}, {43015, 43305}, {43273, 55639}, {44456, 50965}, {47353, 55655}, {48662, 55651}, {48880, 50963}, {48906, 51178}, {50810, 61292}, {50819, 61524}, {50828, 58224}, {50832, 58228}, {50955, 55646}, {51024, 55672}, {51104, 58235}, {51135, 54169}, {51136, 55632}, {51140, 55607}, {51705, 61284}, {51737, 55584}, {54131, 55678}, {58249, 61282}

X(62080) = midpoint of X(i) and X(j) for these {i,j}: {376, 15705}, {15689, 15707}
X(62080) = reflection of X(i) in X(j) for these {i,j}: {15706, 15710}, {15707, 3}, {15709, 17504}, {381, 15709}, {5054, 15705}, {5055, 15707}
X(62080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15707)}}, {{A, B, C, X(3858), X(52441)}}, {{A, B, C, X(12103), X(57822)}}, {{A, B, C, X(58203), X(60122)}}
X(62080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 12103}, {3, 15681, 15701}, {3, 15684, 15693}, {3, 15685, 549}, {3, 15688, 15689}, {3, 15695, 15681}, {3, 15696, 3851}, {3, 15703, 12100}, {3, 30, 15707}, {3, 3534, 15694}, {3, 3830, 15718}, {4, 15714, 15716}, {5, 12108, 3533}, {5, 376, 3534}, {20, 15759, 15700}, {20, 16434, 550}, {30, 15705, 5054}, {30, 15709, 381}, {30, 15710, 15706}, {30, 17504, 15709}, {376, 12100, 1657}, {381, 3534, 3529}, {381, 6958, 17800}, {548, 5067, 15696}, {549, 15696, 15685}, {549, 3861, 2}, {1657, 12100, 15703}, {1657, 15703, 3830}, {1657, 5054, 3839}, {3090, 3525, 16864}, {3146, 3523, 5067}, {3522, 3529, 548}, {3524, 15689, 5073}, {3524, 3534, 14269}, {3524, 3545, 10303}, {3524, 5054, 15722}, {3528, 8703, 14093}, {3533, 5046, 140}, {3534, 10303, 15684}, {3534, 15693, 12101}, {3534, 15720, 3543}, {3543, 15711, 15720}, {3851, 5070, 12812}, {5054, 15688, 376}, {8703, 10304, 15688}, {10124, 12101, 5}, {10304, 15688, 3}, {11001, 14891, 3526}, {11812, 17504, 3524}, {14093, 15688, 10304}, {14269, 15694, 5055}, {15681, 15701, 3843}, {15682, 15712, 15723}, {15684, 15693, 5070}, {15686, 15698, 1656}, {15688, 15689, 15695}, {15689, 15707, 30}, {15690, 15692, 382}, {50976, 55656, 11178}


X(62081) = X(2)X(3)∩X(165)X(31145)

Barycentrics    43*a^4-5*(b^2-c^2)^2-38*a^2*(b^2+c^2) : :
X(62081) = -5*X[2]+16*X[3], -12*X[165]+X[31145], 4*X[182]+7*X[50969], 5*X[193]+28*X[55607], X[962]+10*X[50812], 10*X[1350]+X[51214], 4*X[1385]+7*X[50813], 5*X[1992]+6*X[55591], 32*X[3579]+X[20014], -5*X[3623]+16*X[51705], -16*X[3654]+5*X[20052], 10*X[4297]+X[50871] and many others

X(62081) lies on these lines: {2, 3}, {165, 31145}, {182, 50969}, {193, 55607}, {524, 55622}, {542, 55642}, {633, 33613}, {634, 33612}, {962, 50812}, {1131, 43209}, {1132, 43210}, {1350, 51214}, {1385, 50813}, {1992, 55591}, {3579, 20014}, {3623, 51705}, {3654, 20052}, {4297, 50871}, {4678, 35242}, {5032, 50965}, {5097, 51028}, {5102, 54170}, {5237, 49876}, {5238, 49875}, {5691, 51079}, {5731, 20049}, {5921, 33751}, {6411, 43889}, {6412, 43890}, {6419, 43794}, {6420, 43793}, {6429, 19054}, {6430, 19053}, {6431, 43511}, {6432, 43512}, {6433, 7585}, {6434, 7586}, {6437, 41946}, {6438, 41945}, {6481, 9541}, {6684, 50820}, {6776, 55633}, {7771, 32893}, {7802, 32873}, {8596, 34473}, {9542, 43797}, {9543, 42637}, {9681, 42524}, {9778, 30392}, {9956, 50863}, {10519, 55645}, {11160, 31884}, {11179, 55603}, {11180, 55649}, {11531, 50808}, {12512, 38314}, {14853, 55680}, {16192, 50815}, {16200, 34632}, {16241, 42903}, {16242, 42902}, {16267, 42891}, {16268, 42890}, {16981, 36987}, {18583, 51211}, {19875, 50868}, {19878, 58215}, {19883, 51119}, {19924, 55683}, {20057, 58248}, {20423, 55688}, {21356, 50971}, {21358, 51025}, {22235, 42588}, {22237, 42589}, {23302, 42586}, {23303, 42587}, {24206, 51216}, {25055, 50816}, {25406, 55618}, {32785, 43789}, {32786, 43790}, {32808, 51952}, {32809, 51953}, {32871, 48913}, {32879, 59634}, {33179, 50872}, {33750, 39561}, {34628, 38155}, {34638, 58221}, {35369, 38736}, {35770, 53130}, {35771, 53131}, {36990, 51134}, {37689, 44541}, {38747, 52695}, {41943, 42091}, {41944, 42090}, {42085, 43200}, {42086, 43199}, {42119, 51945}, {42120, 51944}, {42154, 43297}, {42155, 43296}, {42159, 42953}, {42162, 42952}, {42433, 49826}, {42434, 49827}, {42528, 42896}, {42529, 42897}, {42596, 43475}, {42597, 43476}, {42631, 42998}, {42632, 42999}, {42910, 43249}, {42911, 43248}, {42912, 43242}, {42913, 43243}, {43193, 49862}, {43194, 49861}, {43252, 49813}, {43253, 49812}, {44882, 51027}, {46267, 48873}, {47352, 50972}, {48310, 51165}, {48876, 51177}, {50664, 54132}, {50967, 55612}, {50968, 51212}, {50974, 55629}, {50984, 51537}, {51106, 58229}, {51137, 51213}, {51166, 59373}, {54173, 55636}, {54174, 55594}, {55711, 61044}

X(62081) = midpoint of X(i) and X(j) for these {i,j}: {376, 15715}, {3534, 5070}
X(62081) = reflection of X(i) in X(j) for these {i,j}: {15719, 3}, {15721, 15715}, {2, 15717}, {3525, 15716}, {5056, 15719}
X(62081) = anticomplement of X(61944)
X(62081) = pole of line {69, 51022} with respect to the Wallace hyperbola
X(62081) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(15719)}}, {{A, B, C, X(1494), X(50689)}}, {{A, B, C, X(3346), X(5079)}}, {{A, B, C, X(3839), X(52443)}}, {{A, B, C, X(15691), X(18850)}}, {{A, B, C, X(16251), X(35404)}}
X(62081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11001, 15708}, {3, 15686, 15702}, {3, 15688, 15690}, {3, 15696, 3850}, {3, 16239, 10299}, {3, 30, 15719}, {3, 3534, 11539}, {3, 550, 5067}, {20, 10299, 15022}, {20, 1656, 3146}, {20, 3523, 546}, {30, 15716, 3525}, {30, 15719, 5056}, {376, 15681, 15697}, {376, 15702, 15686}, {376, 3524, 15681}, {376, 3528, 14093}, {376, 5071, 3534}, {546, 14891, 549}, {549, 10109, 15694}, {550, 15698, 3839}, {631, 5068, 16859}, {1656, 3845, 3545}, {1657, 15711, 15709}, {3146, 3522, 548}, {3525, 3855, 1656}, {3525, 5056, 13742}, {3528, 8703, 10304}, {3534, 14891, 5071}, {3534, 15710, 3523}, {3534, 5070, 30}, {3543, 15708, 547}, {3545, 15690, 20}, {3545, 5067, 10109}, {5054, 15640, 5068}, {5054, 17538, 15640}, {5056, 15721, 15723}, {5071, 15710, 14891}, {8703, 10304, 3522}, {10124, 15697, 15683}, {10304, 15688, 15705}, {11001, 15708, 3832}, {15681, 15714, 3524}, {15682, 17504, 10303}, {15683, 15692, 2}, {15686, 15702, 3543}, {15689, 15759, 631}, {15691, 15695, 376}, {15691, 15700, 4}, {15692, 15718, 15717}, {15692, 15721, 15718}, {15695, 15700, 15691}, {15696, 17504, 15682}, {15705, 15717, 15716}, {15715, 15718, 15692}, {15719, 15723, 15721}


X(62082) = X(2)X(3)∩X(17)X(42131)

Barycentrics    17*a^4-2*(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62082) = -6*X[2]+19*X[3], 12*X[165]+X[18526], 4*X[185]+9*X[54047], -3*X[599]+16*X[55647], -3*X[1699]+16*X[58219], -5*X[3763]+18*X[55660], 4*X[5493]+9*X[10246], 5*X[5734]+21*X[50813], -3*X[5890]+16*X[55286], X[6144]+12*X[55615], X[6241]+12*X[54044], 2*X[6776]+11*X[55632] and many others

X(62082) lies on these lines: {2, 3}, {17, 42131}, {18, 42130}, {165, 18526}, {185, 54047}, {371, 43338}, {372, 43339}, {395, 42969}, {396, 42968}, {599, 55647}, {1587, 43413}, {1588, 43414}, {1699, 58219}, {2777, 15042}, {3519, 43713}, {3532, 34483}, {3763, 55660}, {5210, 7755}, {5237, 42934}, {5238, 42935}, {5351, 42626}, {5352, 42625}, {5365, 42585}, {5366, 42584}, {5418, 41948}, {5420, 41947}, {5493, 10246}, {5585, 7756}, {5734, 50813}, {5890, 55286}, {6144, 55615}, {6199, 42637}, {6241, 54044}, {6395, 42638}, {6408, 9541}, {6409, 18512}, {6410, 18510}, {6411, 8960}, {6412, 58866}, {6427, 53131}, {6428, 53130}, {6447, 41946}, {6448, 41945}, {6449, 41961}, {6450, 41962}, {6451, 41963}, {6452, 41964}, {6496, 42259}, {6497, 42258}, {6776, 55632}, {6781, 31467}, {7581, 9690}, {7582, 43383}, {7691, 13432}, {7850, 32821}, {8550, 55610}, {9540, 43411}, {10516, 55659}, {10606, 45185}, {10645, 41974}, {10646, 41973}, {10990, 32609}, {10991, 14692}, {11179, 55602}, {11480, 43302}, {11481, 43303}, {11485, 42684}, {11486, 42685}, {11522, 17502}, {11592, 15305}, {11623, 38731}, {11742, 39565}, {11898, 55639}, {12007, 33878}, {12307, 13431}, {12645, 43174}, {12702, 13607}, {13348, 54048}, {13623, 14528}, {13665, 51910}, {13785, 51911}, {13935, 43412}, {14677, 38638}, {14848, 50968}, {14862, 48672}, {15036, 38790}, {15040, 37853}, {15041, 30714}, {15069, 55644}, {15105, 32063}, {15513, 44541}, {15534, 55600}, {16192, 18525}, {16534, 38788}, {16644, 42959}, {16645, 42958}, {16960, 42798}, {16961, 42797}, {17851, 42523}, {18440, 55651}, {18493, 58221}, {18553, 55655}, {20417, 38723}, {22615, 43514}, {22644, 43513}, {25406, 55616}, {25555, 55676}, {26861, 43691}, {27082, 44683}, {28208, 31425}, {31447, 34628}, {31663, 59503}, {31884, 39899}, {32142, 52093}, {32903, 40686}, {33542, 34564}, {33544, 37489}, {33750, 53091}, {33751, 34507}, {34153, 38633}, {35450, 44762}, {36748, 59655}, {36836, 42528}, {36843, 42529}, {36967, 43427}, {36968, 43426}, {36990, 55658}, {37714, 50820}, {38028, 58224}, {38747, 52090}, {40341, 55633}, {40693, 42794}, {40694, 42793}, {42021, 44763}, {42085, 42690}, {42086, 42691}, {42087, 42688}, {42088, 42689}, {42090, 42818}, {42091, 42817}, {42096, 42908}, {42097, 42909}, {42099, 42954}, {42100, 42955}, {42115, 42150}, {42116, 42151}, {42121, 43770}, {42124, 43769}, {42126, 43239}, {42127, 43238}, {42129, 42432}, {42132, 42431}, {42144, 42495}, {42145, 42494}, {42149, 42686}, {42152, 42687}, {42153, 42964}, {42156, 42965}, {42157, 42816}, {42158, 42815}, {42262, 43379}, {42265, 43378}, {42270, 43559}, {42273, 43558}, {42433, 42974}, {42434, 42975}, {42775, 43103}, {42776, 43102}, {42920, 42951}, {42921, 42950}, {42938, 43645}, {42939, 43646}, {42978, 43632}, {42979, 43633}, {42980, 43022}, {42981, 43023}, {42992, 43193}, {42993, 43194}, {43150, 55649}, {43273, 55637}, {43340, 45384}, {43341, 45385}, {43374, 43519}, {43375, 43520}, {43517, 43560}, {43518, 43561}, {43630, 43870}, {43631, 43869}, {44882, 55643}, {46264, 55648}, {47352, 55675}, {47355, 55666}, {48872, 55670}, {48873, 55678}, {48874, 55697}, {48879, 55664}, {48880, 55671}, {48881, 55682}, {48885, 55673}, {48891, 55662}, {48892, 55654}, {48896, 55663}, {48898, 55656}, {48905, 55657}, {48906, 55624}, {48910, 55669}, {48920, 55665}, {50800, 51081}, {50962, 55595}, {50965, 55724}, {50972, 51173}, {51138, 51172}, {51140, 55606}, {51737, 55580}, {53023, 55668}, {54131, 55679}

X(62082) = pole of line {185, 61803} with respect to the Jerabek hyperbola
X(62082) = pole of line {69, 48942} with respect to the Wallace hyperbola
X(62082) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(381), X(14863)}}, {{A, B, C, X(3091), X(13623)}}, {{A, B, C, X(3146), X(34483)}}, {{A, B, C, X(3518), X(43713)}}, {{A, B, C, X(3519), X(3543)}}, {{A, B, C, X(3532), X(34484)}}, {{A, B, C, X(3832), X(14861)}}, {{A, B, C, X(3860), X(52441)}}, {{A, B, C, X(5059), X(26861)}}, {{A, B, C, X(10594), X(44763)}}, {{A, B, C, X(13596), X(14528)}}, {{A, B, C, X(13599), X(47478)}}, {{A, B, C, X(15700), X(40448)}}, {{A, B, C, X(26863), X(43691)}}, {{A, B, C, X(33703), X(42021)}}
X(62082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15681, 631}, {3, 15688, 15696}, {3, 15695, 20}, {3, 17800, 549}, {3, 3528, 14093}, {3, 3534, 3526}, {3, 376, 382}, {3, 3830, 3530}, {3, 3843, 3524}, {3, 3851, 15712}, {3, 5, 15700}, {3, 5070, 12100}, {3, 5073, 3523}, {3, 550, 1656}, {3, 631, 15716}, {4, 10299, 10303}, {4, 15709, 5056}, {4, 3522, 548}, {4, 5056, 3857}, {20, 15698, 3628}, {20, 15712, 3851}, {20, 3628, 15684}, {20, 5054, 5076}, {140, 15693, 15720}, {140, 15704, 4}, {140, 550, 5059}, {376, 10304, 15759}, {376, 15717, 15704}, {376, 17504, 15685}, {376, 5059, 550}, {382, 15723, 3091}, {549, 15704, 3856}, {550, 3523, 5073}, {1656, 5054, 3533}, {1656, 5068, 5079}, {1657, 15720, 381}, {3522, 15712, 15695}, {3524, 12103, 3843}, {3529, 12100, 5070}, {3530, 17538, 3830}, {3530, 3857, 15709}, {3533, 5059, 3845}, {3534, 14093, 10304}, {3534, 15716, 5066}, {3843, 6850, 140}, {3845, 15759, 15698}, {3856, 15704, 15640}, {3856, 5055, 5072}, {6971, 15718, 17682}, {8703, 14093, 15688}, {10304, 15688, 15706}, {11541, 15708, 5}, {14813, 14814, 3543}, {14891, 15697, 14269}, {15640, 15704, 17800}, {15683, 15689, 3534}, {15684, 15698, 5054}, {15685, 17504, 15723}, {15688, 15693, 376}, {15690, 15710, 15694}, {15696, 15720, 1657}, {15700, 15708, 15693}, {15704, 15717, 5055}, {15704, 15759, 15717}, {15717, 15759, 3}, {42431, 42773, 42132}, {42432, 42774, 42129}, {42964, 43484, 42153}, {42965, 43483, 42156}


X(62083) = X(2)X(3)∩X(165)X(3625)

Barycentrics    25*a^4-3*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62083) = -9*X[2]+28*X[3], -3*X[69]+22*X[55641], -7*X[147]+26*X[52886], -21*X[165]+2*X[3625], 3*X[193]+16*X[55606], -8*X[575]+27*X[33750], -3*X[1352]+22*X[55652], -5*X[3620]+24*X[55649], -21*X[3622]+40*X[31666], -2*X[3630]+21*X[31884], -2*X[3633]+21*X[5731], 12*X[3635]+7*X[7991] and many others

X(62083) lies on these lines: {2, 3}, {61, 42929}, {62, 42928}, {69, 55641}, {99, 32877}, {147, 52886}, {165, 3625}, {193, 55606}, {397, 51944}, {398, 51945}, {575, 33750}, {1352, 55652}, {2777, 15023}, {3098, 43814}, {3311, 43321}, {3312, 43320}, {3316, 43519}, {3317, 43520}, {3592, 42637}, {3594, 42638}, {3601, 4114}, {3620, 55649}, {3622, 31666}, {3630, 31884}, {3633, 5731}, {3635, 7991}, {3817, 58217}, {4297, 4668}, {4301, 58229}, {5032, 55721}, {5261, 59325}, {5274, 59319}, {5343, 43373}, {5344, 43372}, {5640, 40284}, {5921, 55646}, {6144, 25406}, {6200, 43883}, {6361, 61277}, {6396, 43884}, {6419, 43511}, {6420, 43512}, {6453, 42522}, {6454, 9541}, {6460, 9542}, {6480, 43382}, {6481, 43383}, {6488, 9692}, {6496, 23267}, {6497, 23273}, {6519, 7581}, {6522, 7582}, {6776, 55631}, {9588, 50815}, {9680, 43256}, {10519, 33751}, {10645, 42982}, {10646, 42983}, {10653, 42802}, {10654, 42801}, {11008, 55618}, {11179, 55600}, {11477, 33748}, {11480, 43242}, {11481, 43243}, {12250, 50414}, {12279, 40247}, {12512, 30389}, {13340, 55286}, {13347, 46865}, {13464, 50812}, {14853, 55681}, {14912, 55595}, {14927, 55654}, {15020, 37853}, {15178, 20070}, {15513, 37689}, {16189, 34632}, {16625, 20791}, {16964, 43480}, {16965, 43479}, {16982, 40280}, {17821, 54211}, {20053, 59417}, {20080, 55629}, {31652, 37665}, {31670, 55675}, {31730, 61275}, {32455, 53097}, {32876, 37668}, {34507, 50975}, {35242, 38127}, {37640, 43304}, {37641, 43305}, {38064, 51211}, {38068, 50863}, {39874, 55643}, {40330, 55657}, {40693, 43646}, {40694, 43645}, {41119, 42959}, {41120, 42958}, {41971, 43023}, {41972, 43022}, {42090, 43870}, {42091, 43869}, {42111, 43472}, {42114, 43471}, {42149, 42933}, {42152, 42932}, {42160, 43295}, {42161, 43294}, {42163, 42956}, {42166, 42957}, {42258, 42569}, {42259, 42568}, {42435, 42528}, {42436, 42529}, {42541, 43510}, {42542, 43509}, {42570, 43879}, {42571, 43880}, {42580, 43365}, {42581, 43364}, {42944, 51916}, {42945, 51915}, {43211, 60303}, {43212, 60304}, {43540, 43633}, {43541, 43632}, {43621, 55666}, {44846, 61154}, {46264, 55647}, {46724, 57896}, {46933, 61257}, {48873, 55679}, {50808, 58245}, {50813, 58232}, {50814, 61289}, {50967, 55611}, {50969, 55704}, {51028, 53858}, {51170, 55580}, {51171, 55687}, {51178, 55623}, {51212, 55684}, {51538, 55671}, {54132, 55708}, {59418, 60977}, {61307, 61314}

X(62083) = anticomplement of X(61945)
X(62083) = pole of line {185, 61804} with respect to the Jerabek hyperbola
X(62083) = pole of line {69, 50691} with respect to the Wallace hyperbola
X(62083) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(50691)}}, {{A, B, C, X(1217), X(15699)}}, {{A, B, C, X(3091), X(57896)}}, {{A, B, C, X(3346), X(5071)}}, {{A, B, C, X(3533), X(51348)}}, {{A, B, C, X(3832), X(52441)}}, {{A, B, C, X(3854), X(15740)}}, {{A, B, C, X(12811), X(31363)}}, {{A, B, C, X(15077), X(50687)}}, {{A, B, C, X(15696), X(60618)}}
X(62083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14093, 10304}, {2, 15705, 15718}, {2, 3522, 548}, {2, 3627, 3091}, {3, 10303, 15692}, {3, 12103, 3525}, {3, 15689, 5072}, {3, 15696, 546}, {3, 15704, 631}, {3, 17538, 2}, {3, 20, 10303}, {3, 3090, 15717}, {3, 3146, 3523}, {3, 5072, 15712}, {3, 5076, 3530}, {3, 546, 3524}, {3, 548, 17538}, {3, 550, 3090}, {3, 632, 10299}, {4, 631, 15699}, {20, 15692, 5056}, {20, 3523, 3839}, {20, 5056, 15640}, {376, 3525, 12103}, {548, 14891, 550}, {548, 5072, 16434}, {550, 16239, 15685}, {632, 17578, 6912}, {632, 3534, 11541}, {1657, 15718, 5}, {1657, 5054, 3843}, {3090, 12102, 3854}, {3146, 12102, 3543}, {3146, 16864, 3858}, {3146, 3854, 12102}, {3522, 10304, 20}, {3524, 15696, 5059}, {3524, 5059, 7486}, {3528, 8703, 3522}, {3530, 11001, 5068}, {3534, 10299, 3832}, {3627, 12103, 1657}, {3627, 14869, 12812}, {3832, 10299, 15721}, {3832, 16347, 5079}, {3832, 17590, 5071}, {3854, 15717, 5054}, {10299, 11541, 632}, {10299, 11737, 17533}, {10304, 15688, 15708}, {12100, 12812, 12108}, {12100, 14893, 14890}, {12100, 15688, 376}, {12103, 12108, 3627}, {12108, 17538, 3146}, {13633, 17504, 15702}, {15684, 15706, 11540}, {15685, 16239, 4}, {15695, 15710, 15683}, {16434, 17538, 15689}, {17504, 17800, 3533}


X(62084) = X(2)X(3)∩X(165)X(4816)

Barycentrics    23*a^4-3*(b^2-c^2)^2-20*a^2*(b^2+c^2) : :
X(62084) = -9*X[2]+26*X[3], X[69]+16*X[33751], -39*X[165]+5*X[4816], 3*X[193]+14*X[55602], -3*X[962]+20*X[31666], -3*X[1352]+20*X[55650], 9*X[1992]+8*X[55588], -15*X[3618]+32*X[55679], -7*X[3619]+24*X[55657], -5*X[3620]+22*X[55648], 13*X[4297]+4*X[4746], 2*X[4301]+15*X[50812] and many others

X(62084) lies on these lines: {2, 3}, {61, 52079}, {62, 52080}, {69, 33751}, {165, 4816}, {193, 55602}, {962, 31666}, {1352, 55650}, {1992, 55588}, {3316, 42267}, {3317, 42266}, {3592, 43338}, {3594, 43339}, {3618, 55679}, {3619, 55657}, {3620, 55648}, {4297, 4746}, {4301, 50812}, {5007, 14482}, {5334, 42686}, {5335, 42687}, {5343, 51916}, {5344, 51915}, {5351, 42119}, {5352, 42120}, {5368, 7738}, {5493, 50813}, {5734, 58232}, {5881, 50819}, {5921, 55643}, {6221, 43382}, {6337, 7850}, {6361, 30389}, {6398, 43383}, {6411, 13886}, {6412, 13939}, {6419, 42637}, {6420, 42638}, {6426, 9541}, {6427, 43511}, {6428, 43512}, {6453, 7581}, {6454, 7582}, {6459, 43798}, {6460, 43797}, {6494, 43321}, {6495, 43320}, {6776, 55626}, {7991, 13607}, {8164, 59325}, {8591, 38627}, {9143, 38626}, {9681, 43793}, {9778, 15178}, {10645, 42986}, {10646, 42987}, {11008, 55612}, {11177, 38628}, {11179, 55597}, {11440, 25712}, {11464, 32601}, {11468, 14810}, {11522, 58225}, {12007, 53097}, {12244, 15020}, {12317, 15021}, {13347, 43576}, {14912, 52987}, {14927, 55653}, {15012, 36987}, {15034, 37853}, {15036, 38791}, {15069, 50975}, {15644, 61136}, {16267, 43002}, {16268, 43003}, {18840, 54891}, {20080, 55624}, {20125, 38788}, {22236, 42684}, {22238, 42685}, {23267, 43430}, {23273, 43431}, {25406, 55606}, {28190, 46932}, {31425, 38074}, {31447, 50864}, {31670, 55677}, {33602, 42959}, {33603, 42958}, {33750, 53093}, {34632, 58240}, {35242, 59388}, {35369, 38634}, {35812, 43342}, {35813, 43343}, {35814, 42260}, {35815, 42261}, {37484, 55286}, {37640, 42795}, {37641, 42796}, {38021, 51083}, {40330, 55656}, {40693, 42892}, {40694, 42893}, {41963, 43256}, {41964, 43257}, {42103, 43468}, {42106, 43467}, {42121, 42688}, {42124, 42689}, {42139, 42954}, {42142, 42955}, {42147, 51945}, {42148, 51944}, {42159, 42901}, {42162, 42900}, {42215, 43884}, {42216, 43883}, {42431, 43544}, {42432, 43545}, {42433, 43481}, {42434, 43482}, {42813, 43447}, {42814, 43446}, {42926, 43020}, {42927, 43021}, {42950, 43473}, {42951, 43474}, {42980, 43232}, {42981, 43233}, {43150, 55647}, {43300, 43777}, {43301, 43778}, {43336, 43787}, {43337, 43788}, {43407, 43879}, {43408, 43880}, {43542, 43769}, {43543, 43770}, {43621, 55667}, {44882, 55641}, {46264, 55644}, {47743, 59319}, {48873, 55681}, {48874, 55701}, {48881, 55684}, {48885, 55675}, {48892, 55652}, {48906, 55620}, {50969, 51138}, {50982, 51177}, {51140, 55600}, {51176, 55628}, {51179, 55617}, {51212, 55687}, {51538, 55672}, {51705, 58245}, {53092, 61044}, {54170, 55718}, {55694, 59373}

X(62084) = midpoint of X(i) and X(j) for these {i,j}: {20, 3854}
X(62084) = reflection of X(i) in X(j) for these {i,j}: {4, 7486}
X(62084) = anticomplement of X(61946)
X(62084) = pole of line {185, 61807} with respect to the Jerabek hyperbola
X(62084) = pole of line {69, 62036} with respect to the Wallace hyperbola
X(62084) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3517), X(43713)}}, {{A, B, C, X(3526), X(18852)}}, {{A, B, C, X(3845), X(31371)}}, {{A, B, C, X(3851), X(13623)}}, {{A, B, C, X(3853), X(15077)}}, {{A, B, C, X(5066), X(18854)}}, {{A, B, C, X(5073), X(34483)}}, {{A, B, C, X(6995), X(54891)}}, {{A, B, C, X(10304), X(18851)}}, {{A, B, C, X(11540), X(46412)}}, {{A, B, C, X(15022), X(18853)}}, {{A, B, C, X(15704), X(18849)}}, {{A, B, C, X(18847), X(50692)}}, {{A, B, C, X(32533), X(38335)}}, {{A, B, C, X(33923), X(46168)}}, {{A, B, C, X(34200), X(54660)}}, {{A, B, C, X(42021), X(49133)}}
X(62084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12103, 11541}, {3, 12103, 2}, {3, 13587, 9840}, {3, 14869, 15692}, {3, 15696, 3627}, {3, 15704, 10303}, {3, 1657, 14869}, {3, 17538, 3090}, {3, 20, 3525}, {3, 3525, 10299}, {3, 3529, 631}, {3, 3534, 3628}, {3, 3628, 15717}, {3, 5079, 15712}, {3, 550, 3091}, {4, 15717, 15709}, {4, 17538, 15704}, {4, 3524, 3526}, {4, 3525, 15022}, {4, 5067, 5066}, {20, 10299, 3545}, {20, 15705, 1656}, {20, 3522, 15688}, {20, 3854, 30}, {376, 10304, 15698}, {376, 15709, 3534}, {376, 15710, 15682}, {376, 3090, 17538}, {548, 15759, 550}, {549, 15704, 546}, {550, 3526, 15683}, {1657, 15692, 5067}, {3146, 10303, 5072}, {3522, 10304, 548}, {3522, 3528, 376}, {3522, 8703, 3528}, {3523, 11001, 3855}, {3523, 15696, 11001}, {3526, 17800, 3861}, {3530, 15689, 5059}, {3530, 5059, 5071}, {3545, 15698, 549}, {3627, 15689, 7580}, {3627, 15693, 16408}, {3627, 15703, 6915}, {3830, 15716, 15713}, {3845, 5054, 17532}, {3857, 12103, 17800}, {5072, 15704, 3146}, {10303, 15704, 4}, {10304, 15683, 15759}, {14093, 15688, 3830}, {14093, 15759, 10304}, {15683, 15759, 3524}, {15686, 15720, 17578}, {15696, 16239, 20}, {15698, 16434, 3529}, {15716, 16239, 3523}


X(62085) = X(2)X(3)∩X(17)X(43033)

Barycentrics    15*a^4-2*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62085) = -6*X[2]+17*X[3], 7*X[40]+4*X[32900], -12*X[165]+X[12645], -3*X[599]+14*X[55644], 3*X[1853]+8*X[32903], 10*X[3579]+X[61296], 3*X[3653]+8*X[50816], -5*X[3763]+16*X[55659], 8*X[4297]+3*X[59503], -10*X[4301]+21*X[61277], 8*X[5188]+3*X[32519], -15*X[5657]+4*X[61246] and many others

X(62085) lies on these lines: {2, 3}, {17, 43033}, {18, 43032}, {40, 32900}, {165, 12645}, {524, 55620}, {542, 55641}, {599, 55644}, {1131, 43787}, {1132, 43788}, {1384, 9607}, {1503, 55648}, {1853, 32903}, {3312, 9681}, {3411, 11481}, {3412, 11480}, {3564, 55632}, {3579, 61296}, {3653, 50816}, {3763, 55659}, {4297, 59503}, {4301, 61277}, {4316, 9656}, {4324, 9671}, {4325, 5217}, {4330, 5204}, {4338, 37600}, {5010, 9657}, {5023, 7765}, {5122, 37723}, {5188, 32519}, {5206, 44541}, {5237, 42626}, {5238, 42625}, {5351, 42975}, {5352, 42974}, {5418, 53517}, {5420, 53520}, {5550, 28182}, {5585, 7748}, {5657, 61246}, {5731, 61292}, {5734, 61280}, {5790, 16192}, {5881, 31663}, {5882, 50814}, {5965, 55622}, {6144, 55608}, {6200, 31487}, {6279, 35246}, {6280, 35247}, {6361, 58230}, {6411, 35812}, {6412, 35813}, {6417, 42637}, {6418, 42638}, {6427, 53130}, {6428, 53131}, {6445, 6460}, {6446, 6459}, {6451, 9680}, {6452, 13961}, {6455, 18512}, {6456, 18510}, {6472, 42522}, {6473, 42523}, {6496, 6560}, {6497, 6561}, {6500, 43511}, {6501, 43512}, {6684, 61257}, {6776, 55624}, {6781, 31457}, {7280, 9670}, {7581, 9691}, {7728, 15042}, {8148, 61281}, {8550, 50970}, {8567, 52102}, {8588, 44519}, {8589, 31467}, {8717, 18350}, {9588, 18525}, {9589, 13624}, {9624, 17502}, {9655, 59325}, {9668, 59319}, {9690, 19117}, {9698, 53095}, {9778, 37624}, {9862, 38635}, {10164, 61258}, {10246, 12512}, {10516, 55658}, {10541, 50968}, {10574, 55286}, {10645, 43193}, {10646, 43194}, {10990, 15039}, {11017, 33879}, {11179, 55595}, {11202, 48672}, {11204, 34780}, {11362, 18526}, {11495, 37535}, {11592, 15058}, {11645, 55652}, {11898, 31884}, {12111, 54044}, {12163, 45184}, {12244, 38638}, {12248, 38636}, {12253, 38639}, {12316, 20585}, {12383, 38633}, {12702, 61287}, {12902, 15057}, {13172, 38634}, {13199, 38637}, {13340, 14531}, {13491, 54041}, {13598, 40284}, {13665, 42578}, {13785, 42579}, {14810, 15069}, {14848, 55687}, {14981, 38742}, {15036, 38789}, {15040, 15063}, {15041, 23236}, {15045, 58533}, {15067, 52093}, {15086, 40930}, {15326, 31452}, {15484, 15515}, {15534, 55597}, {15606, 34783}, {15748, 44866}, {15815, 31470}, {16003, 38723}, {16772, 42091}, {16773, 42090}, {16936, 52099}, {16960, 42891}, {16961, 42890}, {16964, 42818}, {16965, 42817}, {17814, 46945}, {18440, 55649}, {18481, 38127}, {19106, 42950}, {19107, 42951}, {19116, 43415}, {19924, 55684}, {22236, 42528}, {22238, 42529}, {22793, 61271}, {23251, 42558}, {23261, 42557}, {25406, 55604}, {25555, 51173}, {29181, 55678}, {29317, 55671}, {29323, 55662}, {30389, 50812}, {31414, 35255}, {31425, 61256}, {31730, 61276}, {32609, 37853}, {33542, 37486}, {33543, 33544}, {33749, 53097}, {33750, 48874}, {33884, 45957}, {35242, 37712}, {36836, 42990}, {36843, 42991}, {36967, 42989}, {36968, 42988}, {36969, 42773}, {36970, 42774}, {36987, 37481}, {36990, 55657}, {37483, 43845}, {37725, 38754}, {38064, 50972}, {38066, 50815}, {38068, 51081}, {38803, 52698}, {39899, 55629}, {40107, 55646}, {40341, 55627}, {40647, 54048}, {42089, 42692}, {42092, 42693}, {42093, 43636}, {42094, 43637}, {42096, 42489}, {42097, 42488}, {42115, 42147}, {42116, 42148}, {42125, 42491}, {42126, 42531}, {42127, 42530}, {42128, 42490}, {42129, 44016}, {42130, 42153}, {42131, 42156}, {42132, 44015}, {42164, 51916}, {42165, 51915}, {42275, 42567}, {42276, 42566}, {42570, 43407}, {42571, 43408}, {42797, 43245}, {42798, 43244}, {42928, 43235}, {42929, 43234}, {42934, 43251}, {42935, 43250}, {42958, 42972}, {42959, 42973}, {43174, 51080}, {43273, 55631}, {44882, 55639}, {46264, 55643}, {47352, 55677}, {47355, 48920}, {48872, 55672}, {48873, 55682}, {48879, 55666}, {48880, 55673}, {48884, 55663}, {48885, 55676}, {48891, 55660}, {48892, 55651}, {48896, 55661}, {48898, 55654}, {48904, 55664}, {48905, 55655}, {48906, 55616}, {48910, 55670}, {50797, 50820}, {50806, 51083}, {50821, 61252}, {50954, 50976}, {50962, 52987}, {50965, 55580}, {50969, 51172}, {50973, 55614}, {51705, 61282}, {51737, 55724}, {53023, 55669}, {54131, 55681}, {55653, 59411}, {58220, 61272}, {58247, 61283}, {59417, 61297}, {59655, 61301}

X(62085) = midpoint of X(i) and X(j) for these {i,j}: {20, 3855}, {3534, 15723}
X(62085) = reflection of X(i) in X(j) for these {i,j}: {15720, 3}, {15723, 15716}, {5070, 15717}, {5072, 15720}
X(62085) = pole of line {185, 15693} with respect to the Jerabek hyperbola
X(62085) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(546), X(52441)}}, {{A, B, C, X(1105), X(15693)}}, {{A, B, C, X(1294), X(15720)}}, {{A, B, C, X(3519), X(50690)}}, {{A, B, C, X(5879), X(54006)}}, {{A, B, C, X(12101), X(21400)}}, {{A, B, C, X(15640), X(34483)}}, {{A, B, C, X(15700), X(60007)}}, {{A, B, C, X(15740), X(41106)}}, {{A, B, C, X(44903), X(60122)}}, {{A, B, C, X(58195), X(60618)}}
X(62085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 140, 15706}, {3, 15681, 140}, {3, 15689, 4}, {3, 15694, 10299}, {3, 15695, 550}, {3, 15720, 15716}, {3, 1656, 15700}, {3, 17538, 5079}, {3, 17800, 631}, {3, 20, 3526}, {3, 30, 15720}, {3, 3522, 15688}, {3, 3534, 1656}, {3, 3830, 3523}, {3, 3843, 3530}, {3, 3851, 3524}, {3, 5055, 15712}, {3, 5070, 15717}, {3, 5073, 549}, {3, 548, 15696}, {4, 12108, 15703}, {4, 15705, 12108}, {5, 10124, 13735}, {5, 12102, 3832}, {5, 3861, 3854}, {5, 548, 376}, {20, 15717, 3855}, {20, 3526, 382}, {20, 3530, 3843}, {20, 3853, 17800}, {20, 3855, 30}, {20, 631, 3853}, {30, 15716, 15723}, {30, 15717, 5070}, {140, 15681, 5076}, {376, 10304, 12100}, {376, 3523, 12103}, {381, 15688, 15695}, {381, 15693, 11539}, {381, 1657, 3146}, {548, 8703, 3528}, {549, 17538, 5073}, {550, 15714, 3628}, {550, 3544, 15681}, {550, 3628, 11001}, {631, 3528, 10304}, {631, 6941, 5068}, {632, 15691, 5059}, {1657, 15718, 5072}, {2041, 2042, 3850}, {3091, 17542, 3090}, {3523, 12103, 3830}, {3524, 17578, 16239}, {3526, 15696, 20}, {3529, 15712, 5055}, {3543, 5068, 6844}, {3627, 10299, 15694}, {3850, 15713, 6933}, {4325, 5217, 31480}, {5054, 15716, 15718}, {5059, 15698, 632}, {6451, 42259, 13903}, {6452, 42258, 13961}, {6455, 42261, 18512}, {6456, 42260, 18510}, {6893, 12108, 17678}, {8703, 15688, 14093}, {10299, 15759, 3}, {10304, 11001, 15714}, {10304, 15695, 381}, {11001, 15714, 15707}, {12108, 15689, 1657}, {14093, 15688, 3534}, {14893, 16239, 5}, {15681, 15722, 3839}, {15686, 15710, 15701}, {15688, 15696, 548}, {15690, 15712, 3529}, {15691, 15698, 14269}, {15693, 15703, 5054}, {15697, 17504, 15684}, {15703, 15705, 15693}, {15703, 15718, 15721}, {15704, 16239, 17578}, {16239, 17578, 3851}, {42490, 43633, 42128}, {42491, 43632, 42125}, {48920, 55667, 47355}


X(62086) = X(1)X(50813)∩X(2)X(3)

Barycentrics    37*a^4-5*(b^2-c^2)^2-32*a^2*(b^2+c^2) : :
X(62086) = 2*X[1]+7*X[50813], -5*X[2]+14*X[3], 2*X[6]+7*X[50969], 2*X[10]+7*X[50820], 2*X[69]+7*X[51177], 2*X[141]+7*X[50976], 2*X[1125]+7*X[51083], 5*X[1992]+4*X[55587], 8*X[3098]+X[50974], -28*X[3579]+X[20053], 2*X[3625]+7*X[50811], 2*X[3630]+7*X[43273] and many others

X(62086) lies on these lines: {1, 50813}, {2, 3}, {6, 50969}, {10, 50820}, {69, 51177}, {141, 50976}, {524, 55618}, {542, 55640}, {590, 43787}, {615, 43788}, {1056, 51817}, {1125, 51083}, {1992, 55587}, {3098, 50974}, {3579, 20053}, {3625, 50811}, {3630, 43273}, {3633, 50810}, {3655, 50809}, {4668, 50819}, {4718, 51044}, {4726, 51042}, {4764, 51043}, {5318, 43554}, {5321, 43555}, {5334, 43494}, {5335, 43493}, {5339, 33605}, {5340, 33604}, {5351, 49812}, {5352, 49813}, {6144, 50967}, {6361, 50812}, {6409, 43256}, {6410, 43257}, {6429, 7581}, {6430, 7582}, {6433, 41961}, {6434, 41962}, {6438, 9541}, {6459, 6485}, {6460, 6484}, {6776, 55622}, {7736, 15602}, {7750, 32876}, {9693, 42525}, {10137, 19117}, {10138, 19116}, {11160, 55629}, {11179, 50966}, {11180, 50971}, {11278, 34632}, {11480, 43481}, {11481, 43482}, {11531, 51705}, {11693, 20125}, {12112, 46945}, {12243, 38736}, {13886, 51910}, {13939, 51911}, {14226, 43408}, {14241, 43407}, {14912, 55591}, {16267, 42091}, {16268, 42090}, {16962, 42120}, {16963, 42119}, {19924, 55685}, {20057, 58244}, {20423, 55691}, {21356, 55649}, {22165, 55641}, {23267, 52045}, {23269, 43209}, {23273, 52046}, {23275, 43210}, {25406, 55603}, {28194, 30392}, {28202, 54445}, {28232, 58227}, {31162, 50816}, {31662, 38314}, {32455, 50965}, {32822, 32888}, {32823, 32889}, {32877, 37671}, {33602, 42165}, {33603, 42164}, {33750, 55703}, {33751, 54173}, {34648, 51081}, {34754, 42528}, {34755, 42529}, {35770, 42638}, {35771, 42637}, {36836, 49875}, {36843, 49876}, {36889, 46724}, {37517, 54170}, {38021, 59420}, {38064, 55680}, {38742, 52695}, {38749, 52886}, {39874, 50975}, {41107, 41978}, {41108, 41977}, {41943, 42588}, {41944, 42589}, {42087, 43543}, {42088, 43542}, {42149, 42890}, {42150, 42436}, {42151, 42435}, {42152, 42891}, {42157, 49861}, {42158, 49862}, {42413, 42603}, {42414, 42602}, {42433, 42802}, {42434, 42801}, {42496, 42932}, {42497, 42933}, {42512, 43771}, {42513, 43772}, {42584, 43540}, {42585, 43541}, {42586, 42598}, {42587, 42599}, {42791, 42998}, {42792, 42999}, {42795, 43499}, {42796, 43500}, {42944, 49824}, {42945, 49825}, {42952, 43633}, {42953, 43632}, {42972, 43200}, {42973, 43199}, {43006, 43234}, {43007, 43235}, {43254, 52667}, {43255, 52666}, {43403, 51915}, {43404, 51916}, {43511, 52047}, {43512, 52048}, {43621, 51137}, {46264, 55642}, {46931, 50800}, {47354, 55656}, {48873, 55683}, {48892, 51023}, {48905, 51025}, {48906, 51179}, {50868, 51079}, {50873, 61268}, {50968, 51166}, {50972, 54131}, {50978, 55632}, {51077, 58248}, {51212, 55688}, {51537, 55659}, {51737, 55722}, {54132, 55711}, {55695, 59373}, {60325, 60629}

X(62086) = midpoint of X(i) and X(j) for these {i,j}: {376, 15710}, {15689, 15706}
X(62086) = reflection of X(i) in X(j) for these {i,j}: {15708, 3}, {15709, 15705}, {15710, 10304}, {2, 15706}, {3524, 15710}, {3545, 15708}
X(62086) = anticomplement of X(61948)
X(62086) = pole of line {69, 15684} with respect to the Wallace hyperbola
X(62086) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15684)}}, {{A, B, C, X(1294), X(15708)}}, {{A, B, C, X(3431), X(35501)}}, {{A, B, C, X(11738), X(18535)}}, {{A, B, C, X(17538), X(57822)}}, {{A, B, C, X(20421), X(55572)}}, {{A, B, C, X(21734), X(54660)}}
X(62086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15718, 631}, {2, 20, 15684}, {2, 3543, 3850}, {2, 376, 17538}, {3, 11001, 15702}, {3, 11812, 15692}, {3, 15690, 3543}, {3, 15723, 12100}, {3, 20, 3533}, {3, 30, 15708}, {3, 3534, 547}, {3, 3543, 15719}, {3, 550, 3832}, {3, 6958, 15703}, {4, 17800, 6969}, {20, 15698, 5071}, {20, 15717, 3859}, {30, 10304, 15710}, {30, 15705, 15709}, {30, 15708, 3545}, {376, 15682, 550}, {376, 15759, 11541}, {376, 3529, 15697}, {376, 631, 3534}, {376, 8703, 3528}, {382, 15711, 15721}, {547, 3534, 5059}, {547, 3845, 3851}, {548, 8703, 14093}, {549, 15697, 3529}, {550, 15692, 15682}, {3522, 10304, 15688}, {3524, 11541, 15699}, {3524, 3528, 10304}, {3534, 15718, 3627}, {3534, 17504, 3839}, {3543, 15719, 5067}, {3545, 15719, 11539}, {3627, 17504, 14890}, {3628, 5076, 13587}, {3830, 15714, 15717}, {3832, 15692, 11812}, {3832, 5056, 12811}, {5054, 15684, 14892}, {5054, 15688, 15695}, {5054, 5076, 5055}, {5068, 13727, 5}, {6926, 15694, 3}, {10299, 15682, 17678}, {10304, 15688, 376}, {11001, 15702, 4}, {11001, 17538, 15686}, {11179, 55594, 51214}, {12100, 15683, 3090}, {12100, 15696, 15683}, {12103, 15694, 15640}, {14093, 15688, 15689}, {14093, 15695, 15712}, {14890, 17504, 15718}, {14892, 15689, 20}, {14892, 15712, 5054}, {15640, 15694, 3855}, {15681, 15759, 3523}, {15682, 15692, 3525}, {15684, 15712, 2}, {15686, 15712, 3845}, {15687, 15716, 10303}, {15688, 15689, 548}, {15689, 15706, 30}, {15690, 15719, 11001}, {15691, 15693, 3146}, {15705, 15709, 3524}, {15709, 15710, 15705}, {35242, 50815, 34627}, {50971, 55646, 11180}, {50975, 54169, 39874}


X(62087) = X(2)X(3)∩X(141)X(55652)

Barycentrics    22*a^4-3*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62087) = -9*X[2]+25*X[3], -3*X[141]+11*X[55652], 3*X[1353]+5*X[55595], 3*X[3629]+5*X[52987], -X[3630]+9*X[55630], -X[3631]+5*X[14810], -9*X[3656]+25*X[58229], -3*X[5480]+11*X[55675], -9*X[6030]+X[44755], 3*X[6154]+5*X[51529], -3*X[6329]+5*X[20190], -3*X[7728]+19*X[15023] and many others

X(62087) lies on these lines: {2, 3}, {141, 55652}, {395, 43486}, {396, 43485}, {511, 55286}, {524, 55617}, {1151, 42643}, {1152, 42644}, {1353, 55595}, {1503, 55647}, {3564, 33751}, {3626, 28224}, {3629, 52987}, {3630, 55630}, {3631, 14810}, {3636, 28174}, {3656, 58229}, {5237, 42122}, {5238, 42123}, {5480, 55675}, {6030, 44755}, {6154, 51529}, {6329, 20190}, {6411, 13925}, {6412, 13993}, {6427, 42637}, {6428, 42638}, {6448, 9541}, {6519, 19117}, {6522, 19116}, {7728, 15023}, {8252, 12819}, {8253, 12818}, {8550, 55600}, {9729, 16982}, {9821, 32523}, {10147, 43523}, {10148, 43524}, {10575, 44324}, {10645, 43106}, {10646, 43105}, {11008, 55610}, {11592, 14915}, {12512, 15178}, {13391, 15012}, {13392, 16111}, {13624, 28216}, {14449, 36987}, {14677, 15034}, {14855, 31834}, {15020, 38788}, {15021, 34153}, {15051, 61598}, {15808, 17502}, {16772, 42798}, {16773, 42797}, {18358, 55655}, {18583, 55681}, {20583, 55718}, {21850, 55684}, {23302, 42905}, {23303, 42904}, {24981, 51522}, {25406, 55602}, {28150, 58219}, {28194, 58232}, {28202, 58223}, {29181, 55679}, {31666, 31730}, {33750, 55701}, {34380, 55606}, {34573, 55663}, {34773, 61294}, {35242, 61510}, {35255, 51910}, {35256, 51911}, {36967, 42938}, {36968, 42939}, {38098, 61249}, {38136, 55671}, {39884, 55654}, {40107, 50971}, {40273, 59420}, {40341, 55626}, {41107, 42794}, {41108, 42793}, {42147, 43110}, {42148, 43111}, {42150, 51945}, {42151, 51944}, {42157, 42497}, {42158, 42496}, {42160, 42628}, {42161, 42627}, {42163, 42585}, {42166, 42584}, {42433, 42779}, {42434, 42780}, {42528, 42924}, {42529, 42925}, {42580, 43196}, {42581, 43195}, {42625, 43635}, {42626, 43634}, {42635, 42791}, {42636, 42792}, {42795, 43775}, {42796, 43776}, {43197, 43631}, {43198, 43630}, {43230, 43401}, {43231, 43402}, {43244, 43773}, {43245, 43774}, {43546, 51915}, {43547, 51916}, {43576, 46865}, {44882, 55637}, {45187, 54042}, {46850, 54044}, {48874, 53093}, {48876, 55641}, {48881, 51732}, {48885, 55677}, {48892, 55650}, {48906, 55614}, {50771, 51587}, {50808, 61286}, {50824, 58245}, {50825, 61258}, {50872, 58236}, {50965, 55583}, {51163, 55667}, {51737, 55721}, {52099, 54434}, {55580, 61624}, {55646, 61545}

X(62087) = midpoint of X(i) and X(j) for these {i,j}: {20, 3850}, {376, 15759}, {550, 3530}, {3534, 10124}, {3628, 12103}, {10109, 15686}, {11812, 15691}, {12102, 15704}, {13392, 16111}, {14891, 15690}, {31730, 51700}, {48881, 51732}
X(62087) = reflection of X(i) in X(j) for these {i,j}: {11540, 14891}, {12108, 3}, {12811, 12108}, {3856, 140}
X(62087) = complement of X(62013)
X(62087) = pole of line {185, 61808} with respect to the Jerabek hyperbola
X(62087) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(12108)}}, {{A, B, C, X(3534), X(43970)}}, {{A, B, C, X(14938), X(41985)}}, {{A, B, C, X(58202), X(60122)}}
X(62087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15689, 5076}, {3, 15696, 3146}, {3, 15704, 140}, {3, 1657, 10303}, {3, 16661, 7575}, {3, 20, 632}, {3, 30, 12108}, {3, 3090, 15712}, {3, 3146, 549}, {3, 3529, 14869}, {3, 3534, 3090}, {3, 376, 15704}, {3, 5072, 3524}, {3, 5076, 3523}, {5, 550, 15681}, {20, 12100, 3850}, {20, 15710, 15720}, {30, 12108, 12811}, {30, 140, 3856}, {30, 14891, 11540}, {140, 15685, 3861}, {140, 15704, 12102}, {140, 3091, 3628}, {140, 382, 11737}, {140, 548, 376}, {376, 10304, 15693}, {376, 15708, 3534}, {382, 15681, 5059}, {382, 15720, 5055}, {546, 12103, 3529}, {546, 12812, 3851}, {549, 3146, 12812}, {550, 15687, 20}, {550, 3529, 12103}, {550, 8703, 3528}, {632, 15687, 3544}, {1657, 15707, 3855}, {3091, 3529, 382}, {3522, 3528, 15688}, {3522, 8703, 548}, {3528, 10299, 10304}, {3528, 15688, 550}, {3529, 5079, 3627}, {3530, 14891, 10299}, {3530, 3627, 1010}, {3534, 15712, 3853}, {3627, 14869, 5079}, {3628, 12102, 3091}, {3845, 15704, 11541}, {3853, 15712, 10124}, {3857, 15704, 15640}, {5054, 6880, 3858}, {5055, 15693, 15702}, {5073, 11539, 3859}, {10109, 15686, 30}, {10299, 13725, 6947}, {10299, 15681, 5}, {10304, 15690, 14891}, {10304, 17538, 3}, {11737, 12102, 546}, {11737, 15759, 17504}, {12100, 15720, 3530}, {12101, 15692, 14890}, {12108, 12811, 16239}, {15681, 15702, 15687}, {15687, 15710, 12100}, {15688, 15700, 15695}, {15689, 15714, 5066}, {42629, 42947, 42166}, {42630, 42946, 42163}, {42797, 43419, 16773}, {42798, 43418, 16772}


X(62088) = X(2)X(3)∩X(13)X(42689)

Barycentrics    29*a^4-4*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(62088) = -4*X[2]+11*X[3], 5*X[40]+2*X[51087], -8*X[165]+X[51515], 2*X[182]+5*X[50968], -2*X[599]+9*X[55643], 5*X[944]+2*X[50830], 5*X[1350]+2*X[51140], 2*X[1353]+5*X[50966], 2*X[1385]+5*X[50812], 2*X[1483]+5*X[50809], -4*X[3622]+7*X[58228], -11*X[3654]+4*X[4701] and many others

X(62088) lies on these lines: {2, 3}, {13, 42689}, {14, 42688}, {15, 51944}, {16, 51945}, {40, 51087}, {165, 51515}, {182, 50968}, {524, 55616}, {542, 55639}, {590, 43336}, {599, 55643}, {615, 43337}, {944, 50830}, {1350, 51140}, {1353, 50966}, {1385, 50812}, {1483, 50809}, {2549, 15603}, {3311, 43338}, {3312, 43339}, {3622, 58228}, {3654, 4701}, {4297, 50827}, {5309, 15655}, {5318, 51915}, {5321, 51916}, {5339, 33606}, {5340, 33607}, {5476, 55678}, {5690, 50819}, {6199, 41946}, {6395, 41945}, {6417, 53130}, {6418, 53131}, {6447, 42525}, {6448, 42524}, {6451, 35822}, {6452, 35823}, {6455, 35815}, {6456, 35814}, {6472, 7581}, {6473, 7582}, {6496, 13846}, {6497, 13847}, {6500, 42637}, {6501, 42638}, {6684, 51079}, {6776, 50985}, {7989, 51088}, {8148, 51705}, {8976, 43209}, {10145, 19117}, {10146, 19116}, {11178, 55654}, {11179, 55593}, {11485, 42528}, {11486, 42529}, {11645, 50976}, {12007, 50965}, {12512, 37624}, {12699, 58224}, {13607, 50808}, {13951, 43210}, {14692, 38747}, {14810, 50955}, {14848, 48881}, {14927, 50954}, {15533, 55631}, {15534, 55595}, {16192, 28208}, {16644, 42691}, {16645, 42690}, {16808, 42984}, {16809, 42985}, {18451, 46945}, {19876, 28168}, {20423, 55692}, {21358, 55655}, {22236, 42631}, {22238, 42632}, {25561, 55660}, {31423, 50800}, {31663, 50798}, {33751, 43273}, {34483, 44763}, {35242, 38066}, {36836, 42935}, {36843, 42934}, {37853, 56567}, {38072, 55672}, {38633, 38723}, {38634, 38731}, {38635, 38742}, {38636, 38754}, {38638, 38788}, {41951, 43569}, {41952, 43568}, {42090, 42686}, {42091, 42687}, {42096, 42954}, {42097, 42955}, {42112, 42501}, {42113, 42500}, {42115, 42626}, {42116, 42625}, {42117, 42969}, {42118, 42968}, {42130, 42970}, {42131, 42971}, {42150, 42792}, {42151, 42791}, {42283, 43514}, {42284, 43513}, {42429, 43029}, {42430, 43028}, {42433, 49947}, {42434, 49948}, {42586, 43203}, {42587, 43204}, {42684, 42943}, {42685, 42942}, {42773, 49907}, {42774, 49908}, {42916, 42932}, {42917, 42933}, {43010, 43310}, {43011, 43311}, {43030, 43304}, {43031, 43305}, {43150, 55646}, {43211, 43340}, {43212, 43341}, {43430, 52045}, {43431, 52046}, {44456, 51737}, {44882, 50982}, {46267, 53094}, {47352, 48885}, {47353, 55653}, {48661, 50828}, {48662, 50977}, {48872, 50963}, {48873, 50972}, {48876, 50975}, {48920, 51137}, {50973, 55612}, {51024, 55674}, {51107, 58236}, {51138, 53091}, {51172, 61044}, {54131, 55682}, {54173, 55632}

X(62088) = midpoint of X(i) and X(j) for these {i,j}: {3526, 3534}, {16192, 50820}, {50976, 55651}
X(62088) = reflection of X(i) in X(j) for these {i,j}: {15701, 3}, {15703, 15700}, {381, 15702}, {3526, 15698}, {3528, 8703}, {3830, 3851}, {3851, 15701}, {50800, 31423}, {7989, 51088}
X(62088) = anticomplement of X(61949)
X(62088) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15701)}}, {{A, B, C, X(3545), X(13623)}}, {{A, B, C, X(15691), X(57822)}}, {{A, B, C, X(33703), X(34483)}}, {{A, B, C, X(34484), X(44763)}}, {{A, B, C, X(43713), X(47485)}}
X(62088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 376, 15691}, {3, 14269, 15693}, {3, 15685, 5054}, {3, 15688, 15695}, {3, 15695, 15689}, {3, 15696, 5073}, {3, 15722, 17504}, {3, 381, 15718}, {3, 3830, 15707}, {3, 550, 3843}, {4, 10304, 15759}, {4, 15759, 15706}, {5, 15710, 15716}, {20, 15693, 14269}, {20, 15715, 547}, {30, 15698, 3526}, {30, 15700, 15703}, {30, 8703, 3528}, {376, 15691, 15696}, {376, 15692, 15686}, {376, 15715, 20}, {376, 3543, 550}, {376, 8703, 14093}, {381, 15683, 15684}, {381, 15700, 15702}, {381, 3534, 15683}, {549, 11737, 17678}, {549, 14891, 15717}, {550, 14891, 3543}, {1656, 17504, 15722}, {1657, 15723, 15687}, {3522, 8703, 15688}, {3524, 15640, 3628}, {3524, 15687, 15723}, {3524, 15690, 1657}, {3526, 3534, 30}, {3528, 15698, 10304}, {3534, 15688, 548}, {3534, 15706, 4}, {3534, 5066, 15685}, {3830, 15707, 5070}, {3843, 5055, 5066}, {3845, 14890, 7486}, {3845, 15705, 15720}, {3854, 15717, 10303}, {5072, 15693, 15709}, {10304, 15695, 17800}, {11001, 15721, 14893}, {11001, 17504, 1656}, {12102, 14869, 3090}, {12103, 15711, 3545}, {14093, 15688, 376}, {14093, 15695, 15694}, {14093, 15696, 15714}, {14269, 15709, 5055}, {14869, 15715, 15700}, {14893, 17504, 15721}, {15640, 15690, 3534}, {15681, 15694, 3830}, {15681, 15700, 3851}, {15681, 15718, 381}, {15689, 15694, 15681}, {15691, 15714, 2}, {15697, 15710, 5}, {15700, 15703, 15701}, {15704, 15714, 549}, {15705, 17538, 3845}, {15706, 15759, 3}, {16192, 50820, 28208}, {50976, 55651, 11645}


X(62089) = X(2)X(3)∩X(182)X(51166)

Barycentrics    34*a^4-5*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(62089) = -5*X[2]+13*X[3], -5*X[182]+X[51166], X[355]+7*X[50820], -5*X[597]+9*X[55685], X[946]+7*X[51083], -X[962]+5*X[50832], X[1351]+7*X[50969], X[1352]+7*X[50976], -5*X[1353]+X[51214], -5*X[1385]+X[51120], X[1482]+7*X[50813], -13*X[3654]+5*X[4816] and many others

X(62089) lies on these lines: {2, 3}, {182, 51166}, {355, 50820}, {524, 33751}, {542, 55636}, {551, 28216}, {597, 55685}, {946, 51083}, {962, 50832}, {1351, 50969}, {1352, 50976}, {1353, 51214}, {1385, 51120}, {1482, 50813}, {1503, 55645}, {3564, 55627}, {3654, 4816}, {3828, 28190}, {4746, 28204}, {5351, 43208}, {5352, 43207}, {5434, 51817}, {5690, 50871}, {5691, 50825}, {5921, 51184}, {6431, 53130}, {6432, 53131}, {6433, 42216}, {6434, 42215}, {6455, 43256}, {6456, 43257}, {6486, 32787}, {6487, 32788}, {6684, 50868}, {7690, 48781}, {7692, 48780}, {7753, 15602}, {8596, 38634}, {10171, 58216}, {10645, 42496}, {10646, 42497}, {11160, 55624}, {11179, 55591}, {11180, 55643}, {11278, 51705}, {11531, 50824}, {11694, 16111}, {11898, 51177}, {12512, 33179}, {13364, 55166}, {14810, 50971}, {15170, 37587}, {16241, 42584}, {16242, 42585}, {17502, 34638}, {18581, 42587}, {18582, 42586}, {18583, 55683}, {19924, 50972}, {20582, 55657}, {21356, 55648}, {22165, 55637}, {25565, 55664}, {28174, 31662}, {28198, 50816}, {29181, 46267}, {31663, 50815}, {34380, 55603}, {34648, 61614}, {34754, 42943}, {34755, 42942}, {35770, 52048}, {35771, 52047}, {36836, 43635}, {36843, 43634}, {36990, 50980}, {37517, 51737}, {37832, 42889}, {37835, 42888}, {38079, 55676}, {41121, 43027}, {41122, 43026}, {41149, 55588}, {41943, 42088}, {41944, 42087}, {42089, 42906}, {42092, 42907}, {42123, 61719}, {42258, 43888}, {42259, 43887}, {42429, 42500}, {42430, 42501}, {42431, 43107}, {42432, 43100}, {42433, 43109}, {42434, 43108}, {42631, 42924}, {42632, 42925}, {42686, 43419}, {42687, 43418}, {42799, 42928}, {42800, 42929}, {42898, 42912}, {42899, 42913}, {42944, 46335}, {42945, 46334}, {43102, 43402}, {43103, 43401}, {43209, 43211}, {43210, 43212}, {43273, 55622}, {43787, 45384}, {43788, 45385}, {44882, 55633}, {47354, 55655}, {48310, 55669}, {48874, 50968}, {48876, 51027}, {48881, 55691}, {48885, 50983}, {48898, 51134}, {48906, 55607}, {48920, 50959}, {50829, 61259}, {50965, 55587}, {50974, 55616}, {50978, 55629}, {50979, 55722}, {50984, 55659}, {50987, 51212}, {50988, 55671}, {51084, 51118}, {51137, 51163}, {51910, 52045}, {51911, 52046}, {54169, 55640}

X(62089) = midpoint of X(i) and X(j) for these {i,j}: {2, 12103}, {3, 15690}, {20, 5066}, {140, 3534}, {547, 15686}, {548, 8703}, {549, 15691}, {550, 12100}, {3853, 11001}, {11694, 16111}, {12101, 15704}, {14810, 50971}, {14893, 15681}, {31663, 50815}, {41149, 55588}, {48885, 50983}, {48920, 50959}
X(62089) = reflection of X(i) in X(j) for these {i,j}: {10109, 3530}, {10124, 14891}, {11737, 549}, {11812, 3}, {12102, 10109}, {3530, 15759}, {3628, 12100}, {3830, 12811}, {3845, 16239}, {3850, 11812}, {3860, 140}, {3861, 2}, {546, 11540}, {5066, 12108}, {50984, 55659}, {61259, 50829}
X(62089) = complement of X(62015)
X(62089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(11812)}}, {{A, B, C, X(1494), X(3861)}}, {{A, B, C, X(11737), X(18317)}}, {{A, B, C, X(17538), X(43970)}}
X(62089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 3861}, {3, 11539, 12100}, {3, 15681, 15723}, {3, 15686, 547}, {3, 15696, 5059}, {3, 15719, 17504}, {3, 30, 11812}, {3, 3534, 3545}, {3, 376, 15686}, {3, 5067, 15712}, {20, 17504, 5066}, {30, 10109, 12102}, {30, 11540, 546}, {30, 12100, 3628}, {30, 12811, 3830}, {30, 140, 3860}, {30, 14891, 10124}, {30, 16239, 3845}, {30, 549, 11737}, {140, 12100, 15707}, {140, 546, 7486}, {376, 10304, 381}, {376, 15683, 15689}, {376, 15686, 15690}, {376, 15692, 3534}, {376, 3528, 15692}, {376, 549, 15691}, {381, 10304, 15714}, {381, 15695, 376}, {382, 15713, 14892}, {546, 3524, 11540}, {547, 15702, 16239}, {549, 15681, 14893}, {549, 15687, 15703}, {549, 15714, 15715}, {549, 8703, 14093}, {550, 17800, 12103}, {550, 8703, 10304}, {631, 11114, 15701}, {1657, 15698, 15699}, {3090, 3525, 16863}, {3091, 10303, 474}, {3091, 6909, 3146}, {3522, 15688, 8703}, {3530, 10109, 14890}, {3534, 15692, 15687}, {3545, 6850, 15713}, {3628, 10304, 15759}, {3839, 15716, 14869}, {3845, 11539, 5056}, {5054, 15697, 15704}, {5054, 15704, 12101}, {5059, 7380, 5076}, {5066, 17504, 12108}, {5079, 7486, 6929}, {8703, 15688, 548}, {10124, 14891, 3530}, {10124, 15759, 14891}, {10304, 11001, 3}, {10304, 15695, 550}, {11001, 11539, 3853}, {11737, 14891, 549}, {12100, 15690, 11001}, {12101, 15704, 30}, {12102, 14890, 10109}, {14891, 15686, 3850}, {14893, 15691, 15681}, {15681, 15723, 3543}, {15682, 15706, 632}, {15683, 15700, 5}, {15686, 15714, 11539}, {15687, 15692, 140}, {15689, 15700, 15683}


X(62090) = X(2)X(3)∩X(40)X(51096)

Barycentrics    47*a^4-7*(b^2-c^2)^2-40*a^2*(b^2+c^2) : :
X(62090) = -7*X[2]+18*X[3], 9*X[40]+2*X[51096], -7*X[69]+40*X[55634], 6*X[165]+5*X[50819], 7*X[1992]+4*X[55585], -12*X[3098]+X[50992], -27*X[3576]+16*X[41150], -4*X[4745]+15*X[35242], -27*X[5085]+16*X[41153], 3*X[5657]+8*X[50815], 6*X[5731]+5*X[50809], 3*X[6361]+8*X[51103] and many others

X(62090) lies on these lines: {2, 3}, {40, 51096}, {69, 55634}, {165, 50819}, {542, 55635}, {1992, 55585}, {3098, 50992}, {3576, 41150}, {4745, 35242}, {5085, 41153}, {5365, 42587}, {5366, 42586}, {5657, 50815}, {5731, 50809}, {6361, 51103}, {6470, 41946}, {6471, 41945}, {6776, 51188}, {7967, 50808}, {9741, 47101}, {9779, 51084}, {9862, 36521}, {10164, 51081}, {10302, 54612}, {10385, 37602}, {10519, 41152}, {10595, 51106}, {10645, 43493}, {10646, 43494}, {10653, 42795}, {10654, 42796}, {11179, 55590}, {11180, 51142}, {11224, 50813}, {11480, 49826}, {11481, 49827}, {11485, 42420}, {11486, 42419}, {11488, 33604}, {11489, 33605}, {12512, 51107}, {12702, 51092}, {13607, 34631}, {13886, 43342}, {13939, 43343}, {14226, 43210}, {14241, 43209}, {14651, 41147}, {14912, 41149}, {16192, 38074}, {16644, 33602}, {16645, 33603}, {18481, 51072}, {19053, 42524}, {19054, 42525}, {19924, 55689}, {21356, 48892}, {22165, 39874}, {22615, 34091}, {22644, 34089}, {23253, 42576}, {23263, 42577}, {25406, 50966}, {31730, 51105}, {31884, 50975}, {33751, 55608}, {34473, 41151}, {34627, 51067}, {36967, 43301}, {36968, 43300}, {38737, 41148}, {41121, 43554}, {41122, 43555}, {41943, 43769}, {41944, 43770}, {42085, 43032}, {42086, 43033}, {42087, 49824}, {42088, 49825}, {42115, 43108}, {42116, 43109}, {42140, 49908}, {42141, 49907}, {42150, 42533}, {42151, 42532}, {42154, 42686}, {42155, 42687}, {42157, 49810}, {42158, 49811}, {42263, 43375}, {42264, 43374}, {42274, 42537}, {42277, 42538}, {42433, 42976}, {42434, 42977}, {42510, 42529}, {42511, 42528}, {42543, 43369}, {42544, 43368}, {42588, 43000}, {42589, 43001}, {42625, 42791}, {42626, 42792}, {42629, 42952}, {42630, 42953}, {42684, 43228}, {42685, 43229}, {42815, 42932}, {42816, 42933}, {42918, 54479}, {42919, 54480}, {42942, 52080}, {42943, 52079}, {42968, 42982}, {42969, 42983}, {43150, 50994}, {43199, 43771}, {43200, 43772}, {43256, 43386}, {43257, 43387}, {43336, 43536}, {43337, 54597}, {43401, 43501}, {43402, 43502}, {43430, 51910}, {43431, 51911}, {43481, 49947}, {43482, 49948}, {43517, 52667}, {43518, 52666}, {43568, 60301}, {43569, 60302}, {44541, 46453}, {46264, 50990}, {47353, 51134}, {48881, 51185}, {48905, 51143}, {50812, 51085}, {50825, 54448}, {50830, 59417}, {50867, 61263}, {50961, 55627}, {50967, 51187}, {50968, 51138}, {50969, 51737}, {50974, 55615}, {50985, 51176}, {50991, 55646}, {51023, 55649}, {51136, 55618}, {51177, 54173}, {51179, 55610}, {51189, 54169}, {51212, 55690}, {54170, 55720}, {54523, 60282}, {54608, 60143}, {54616, 54643}, {54637, 60175}, {54707, 60239}, {54866, 60627}, {55696, 59373}, {60150, 60637}, {60185, 60228}, {60192, 60284}

X(62090) = reflection of X(i) in X(j) for these {i,j}: {15721, 3}, {2, 15716}, {3525, 15715}, {3855, 15721}, {5056, 15718}, {5072, 549}
X(62090) = anticomplement of X(61950)
X(62090) = pole of line {69, 62040} with respect to the Wallace hyperbola
X(62090) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(35401)}}, {{A, B, C, X(1294), X(15721)}}, {{A, B, C, X(1597), X(57714)}}, {{A, B, C, X(5072), X(18317)}}, {{A, B, C, X(10301), X(54612)}}, {{A, B, C, X(13623), X(19709)}}, {{A, B, C, X(20421), X(44878)}}, {{A, B, C, X(34483), X(49134)}}, {{A, B, C, X(38335), X(43699)}}, {{A, B, C, X(49135), X(54667)}}, {{A, B, C, X(52301), X(54608)}}
X(62090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15759}, {2, 15692, 15722}, {2, 15695, 376}, {2, 15716, 15719}, {2, 15759, 15698}, {3, 15691, 3839}, {3, 15697, 15682}, {3, 30, 15721}, {3, 3861, 3523}, {3, 5071, 3524}, {3, 550, 17578}, {4, 15702, 5055}, {4, 3534, 11001}, {20, 14093, 15710}, {20, 15710, 15702}, {20, 17697, 5073}, {30, 15715, 3525}, {30, 15718, 5056}, {30, 15721, 3855}, {30, 549, 5072}, {376, 15682, 15697}, {376, 15710, 20}, {376, 3524, 17538}, {376, 3529, 15689}, {376, 3545, 550}, {549, 3534, 15640}, {1657, 15714, 15708}, {3534, 15693, 15684}, {3534, 3830, 15704}, {3534, 5066, 15683}, {3534, 8703, 10304}, {3830, 15706, 11540}, {3845, 15690, 6958}, {5066, 11540, 15699}, {6891, 15695, 15716}, {7486, 17578, 3856}, {8703, 12100, 14093}, {10124, 10303, 15709}, {10124, 17578, 3545}, {10304, 15683, 3}, {11001, 12100, 3544}, {11540, 15704, 3830}, {12101, 15693, 2}, {14226, 43788, 43210}, {14241, 43787, 43209}, {15681, 15705, 3090}, {15682, 15709, 5066}, {15683, 15697, 3534}, {15683, 15709, 4}, {15687, 15699, 3850}, {15687, 15702, 5071}, {15687, 15707, 17580}, {15689, 15692, 3529}, {15690, 15711, 15685}, {15698, 15719, 15717}, {15710, 15720, 15715}, {42586, 43107, 5366}, {42587, 43100, 5365}, {42625, 42791, 49875}, {43256, 43509, 43386}, {43257, 43510, 43387}


X(62091) = X(2)X(3)∩X(40)X(61292)

Barycentrics    20*a^4-3*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62091) = -9*X[2]+23*X[3], 5*X[40]+2*X[61292], -X[52]+8*X[55286], -3*X[141]+10*X[55650], -15*X[165]+X[61244], 4*X[575]+3*X[48874], 3*X[1353]+4*X[52987], -X[3630]+8*X[55625], -2*X[3631]+9*X[55640], -3*X[5480]+10*X[55677], X[5609]+6*X[37853], 3*X[5894]+4*X[50414] and many others

X(62091) lies on these lines: {2, 3}, {40, 61292}, {52, 55286}, {141, 55650}, {165, 61244}, {395, 41977}, {396, 41978}, {397, 43646}, {398, 43645}, {524, 55611}, {575, 48874}, {1353, 52987}, {1503, 55644}, {3564, 55626}, {3630, 55625}, {3631, 55640}, {3951, 9945}, {5305, 44541}, {5351, 42117}, {5352, 42118}, {5480, 55677}, {5563, 10386}, {5609, 37853}, {5894, 50414}, {6427, 42638}, {6428, 42637}, {6453, 19117}, {6454, 19116}, {6459, 6522}, {6460, 6519}, {6496, 13925}, {6497, 13993}, {6560, 42568}, {6561, 42569}, {6776, 55620}, {7782, 14929}, {7982, 61281}, {7991, 61287}, {8550, 55597}, {8981, 51910}, {9588, 50820}, {9624, 58225}, {9681, 52048}, {10222, 12512}, {10283, 31730}, {10575, 54044}, {10645, 42916}, {10646, 42917}, {11381, 11592}, {11480, 42922}, {11481, 42923}, {13464, 50816}, {13966, 51911}, {14449, 20791}, {14641, 40247}, {15021, 38723}, {15026, 40284}, {15034, 38788}, {15052, 52099}, {15068, 46945}, {15644, 45956}, {15801, 20585}, {16192, 28186}, {18358, 55654}, {18481, 59400}, {18907, 31652}, {19106, 42592}, {19107, 42593}, {20127, 22251}, {20190, 48881}, {21850, 55687}, {22791, 31666}, {23328, 32903}, {25406, 55595}, {28174, 30389}, {28182, 61271}, {28202, 51083}, {29181, 55681}, {31663, 37705}, {31834, 54041}, {33751, 48906}, {34380, 55602}, {34507, 50971}, {34573, 55662}, {35240, 44755}, {35242, 38112}, {35812, 42572}, {35813, 42573}, {36836, 42123}, {36843, 42122}, {36969, 51915}, {36970, 51916}, {37640, 43635}, {37641, 43634}, {37712, 61524}, {38110, 48885}, {38136, 55672}, {38726, 51522}, {38736, 51523}, {38747, 51524}, {38759, 51525}, {38771, 51526}, {38783, 51527}, {38803, 51535}, {39884, 55653}, {40273, 58221}, {41947, 41949}, {41948, 41950}, {41961, 42216}, {41962, 42215}, {42093, 42591}, {42094, 42590}, {42099, 42692}, {42100, 42693}, {42101, 42493}, {42102, 42492}, {42133, 43647}, {42134, 43648}, {42144, 42599}, {42145, 42598}, {42150, 42634}, {42151, 42633}, {42159, 42585}, {42162, 42584}, {42225, 43880}, {42226, 43879}, {42260, 43319}, {42261, 43318}, {42271, 42567}, {42272, 42566}, {42791, 42990}, {42792, 42991}, {42904, 43874}, {42905, 43873}, {44882, 55631}, {45957, 54042}, {46264, 55641}, {48661, 61273}, {48873, 55684}, {48876, 55637}, {48880, 55675}, {48892, 55647}, {48898, 55652}, {50814, 50831}, {50815, 50822}, {50823, 51080}, {50825, 51081}, {50965, 51180}, {50970, 50986}, {50972, 50987}, {50978, 51135}, {50979, 55721}, {51082, 61297}, {51118, 58219}, {51126, 55664}, {51136, 51183}, {51163, 55668}, {51181, 55708}, {51705, 58240}, {51737, 55718}, {55643, 61545}

X(62091) = midpoint of X(i) and X(j) for these {i,j}: {20, 3851}, {3534, 15702}
X(62091) = reflection of X(i) in X(j) for these {i,j}: {14869, 3}, {15703, 12100}, {3627, 3857}, {3832, 140}, {3857, 14869}, {5, 3523}
X(62091) = complement of X(62016)
X(62091) = pole of line {185, 61810} with respect to the Jerabek hyperbola
X(62091) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(14869)}}, {{A, B, C, X(3843), X(52441)}}, {{A, B, C, X(3858), X(14863)}}, {{A, B, C, X(15691), X(43970)}}, {{A, B, C, X(22268), X(41984)}}
X(62091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15696, 3529}, {3, 15704, 632}, {3, 16661, 12107}, {3, 17538, 546}, {3, 20, 3628}, {3, 30, 14869}, {3, 3091, 3530}, {3, 3146, 12108}, {3, 3525, 12100}, {3, 3534, 3091}, {3, 3627, 549}, {3, 3628, 15712}, {3, 5079, 3524}, {3, 550, 3627}, {5, 15712, 5054}, {20, 15698, 3851}, {20, 15712, 3845}, {20, 3533, 15684}, {20, 3851, 30}, {30, 12100, 15703}, {30, 140, 3832}, {30, 14869, 3857}, {140, 15696, 15686}, {140, 3830, 5}, {376, 10304, 3830}, {376, 14093, 10124}, {376, 15705, 3534}, {376, 15718, 15691}, {376, 3528, 3523}, {548, 3522, 8703}, {550, 3845, 20}, {3090, 3832, 5072}, {3091, 10303, 17697}, {3146, 12103, 15704}, {3146, 3523, 3090}, {3522, 15688, 548}, {3529, 10304, 3}, {3533, 15684, 3859}, {3534, 15705, 14893}, {3534, 15714, 15699}, {3830, 5054, 5071}, {3850, 15717, 15713}, {3860, 15718, 11539}, {5054, 15695, 376}, {5073, 15692, 16239}, {8703, 15686, 10304}, {8703, 17504, 14093}, {10299, 15697, 17800}, {10299, 17800, 547}, {10304, 15686, 15711}, {10304, 15696, 140}, {10645, 43631, 42916}, {10646, 43630, 42917}, {11001, 12100, 6944}, {11001, 15720, 3861}, {12100, 12102, 3525}, {12100, 12103, 12102}, {12102, 12103, 1657}, {12103, 12108, 3146}, {14093, 15690, 17504}, {15681, 15717, 3850}, {15686, 15696, 550}, {15689, 15759, 15687}, {15722, 16434, 12103}


X(62092) = X(2)X(3)∩X(113)X(15023)

Barycentrics    19*a^4-3*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62092) = -9*X[2]+22*X[3], -3*X[69]+16*X[55631], -6*X[113]+19*X[15023], -15*X[165]+2*X[47745], 3*X[193]+10*X[55595], -3*X[568]+16*X[55286], -3*X[1352]+16*X[55647], 9*X[1992]+4*X[55583], 5*X[3618]+8*X[48885], -7*X[3619]+20*X[55655], -5*X[3620]+18*X[55643], 11*X[4297]+2*X[4701] and many others

X(62092) lies on these lines: {2, 3}, {69, 55631}, {113, 15023}, {165, 47745}, {193, 55595}, {568, 55286}, {1285, 7772}, {1352, 55647}, {1992, 55583}, {3068, 51910}, {3069, 51911}, {3316, 42264}, {3317, 42263}, {3594, 9541}, {3618, 48885}, {3619, 55655}, {3620, 55643}, {3785, 32890}, {4297, 4701}, {4301, 50816}, {5237, 42119}, {5238, 42120}, {5286, 44541}, {5351, 42090}, {5352, 42091}, {5365, 42491}, {5366, 42490}, {5447, 52093}, {5493, 50812}, {5731, 32900}, {5881, 50815}, {5921, 55639}, {6053, 12244}, {6225, 50414}, {6337, 7917}, {6409, 23267}, {6410, 23273}, {6411, 43407}, {6412, 43408}, {6419, 42638}, {6420, 42637}, {6425, 7581}, {6426, 7582}, {6427, 43512}, {6428, 43511}, {6449, 43883}, {6450, 43884}, {6453, 6460}, {6454, 6459}, {6488, 32787}, {6489, 32788}, {6496, 8972}, {6497, 13941}, {6519, 7585}, {6522, 7586}, {6776, 55614}, {7738, 35007}, {7816, 55732}, {7967, 7991}, {7982, 12512}, {7998, 14641}, {9624, 34638}, {9693, 19054}, {9707, 32601}, {9741, 14023}, {9778, 10222}, {10137, 42643}, {10138, 42644}, {10519, 55641}, {10541, 33750}, {10595, 30389}, {10625, 61136}, {11008, 55603}, {11179, 55588}, {11456, 46945}, {11480, 43777}, {11481, 43778}, {11482, 61044}, {11491, 44846}, {12290, 40247}, {12317, 38723}, {12383, 15021}, {13464, 58229}, {13491, 33884}, {14094, 37853}, {14561, 55675}, {14677, 15039}, {14830, 38628}, {14853, 55684}, {14912, 53097}, {14927, 55649}, {15020, 16111}, {15054, 38726}, {15069, 50971}, {15077, 20421}, {16189, 51705}, {16625, 36987}, {19877, 28168}, {20080, 55616}, {20190, 51212}, {20423, 55694}, {22236, 52079}, {22238, 52080}, {23235, 38747}, {23269, 43879}, {23275, 43880}, {25406, 33751}, {28178, 46934}, {31412, 43374}, {31454, 43256}, {31663, 59388}, {31670, 55679}, {31884, 39874}, {33630, 36748}, {37515, 43576}, {37640, 42433}, {37641, 42434}, {38664, 38736}, {38665, 38759}, {38666, 38771}, {38667, 38783}, {38675, 38803}, {40330, 55654}, {41943, 43002}, {41944, 43003}, {41951, 60302}, {41952, 60301}, {41957, 43319}, {41958, 43318}, {41973, 49812}, {41974, 49813}, {42112, 42580}, {42113, 42581}, {42130, 43870}, {42131, 43869}, {42154, 43494}, {42155, 43493}, {42160, 43772}, {42161, 43771}, {42163, 43464}, {42166, 43463}, {42258, 43510}, {42259, 43509}, {42262, 43518}, {42265, 43517}, {42431, 43203}, {42432, 43204}, {42512, 43546}, {42513, 43547}, {42557, 43516}, {42558, 43515}, {42561, 43375}, {42566, 43885}, {42567, 43886}, {42592, 42921}, {42593, 42920}, {42612, 43205}, {42613, 43206}, {42625, 42998}, {42626, 42999}, {42779, 42795}, {42780, 42796}, {42785, 51538}, {42924, 42927}, {42925, 42926}, {42944, 43543}, {42945, 43542}, {43238, 43554}, {43239, 43555}, {43446, 51916}, {43447, 51915}, {43621, 55669}, {44299, 46849}, {44882, 55626}, {46264, 55637}, {46850, 54041}, {48873, 55687}, {48874, 53092}, {48880, 55677}, {48891, 51537}, {48892, 55644}, {48898, 55650}, {48906, 55602}, {50801, 50820}, {50813, 51077}, {50828, 58225}, {50958, 50976}, {50961, 51177}, {50966, 55597}, {50968, 53858}, {50969, 51132}, {50974, 55611}, {51075, 51083}, {54170, 55721}, {54173, 55628}, {55698, 59373}

X(62092) = midpoint of X(i) and X(j) for these {i,j}: {20, 5068}
X(62092) = reflection of X(i) in X(j) for these {i,j}: {10303, 3}, {4, 5067}, {5067, 10299}
X(62092) = anticomplement of X(61953)
X(62092) = pole of line {185, 61814} with respect to the Jerabek hyperbola
X(62092) = pole of line {69, 5073} with respect to the Wallace hyperbola
X(62092) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(5073)}}, {{A, B, C, X(1294), X(10303)}}, {{A, B, C, X(1597), X(13472)}}, {{A, B, C, X(3431), X(55571)}}, {{A, B, C, X(3515), X(20421)}}, {{A, B, C, X(3517), X(11270)}}, {{A, B, C, X(3627), X(14843)}}, {{A, B, C, X(3830), X(15077)}}, {{A, B, C, X(3839), X(15319)}}, {{A, B, C, X(3843), X(31371)}}, {{A, B, C, X(3851), X(15740)}}, {{A, B, C, X(16835), X(18535)}}, {{A, B, C, X(17505), X(35403)}}, {{A, B, C, X(18851), X(19708)}}, {{A, B, C, X(22270), X(47598)}}, {{A, B, C, X(42021), X(49139)}}, {{A, B, C, X(47527), X(55976)}}
X(62092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15714}, {2, 16434, 17538}, {3, 10303, 10299}, {3, 12103, 3091}, {3, 12108, 15692}, {3, 15704, 2}, {3, 1657, 632}, {3, 16661, 7556}, {3, 30, 10303}, {3, 3146, 631}, {3, 3529, 3525}, {3, 3534, 546}, {3, 5072, 3530}, {3, 5076, 549}, {3, 546, 3523}, {3, 550, 3146}, {3, 632, 15717}, {20, 140, 15682}, {20, 3090, 11541}, {20, 3522, 8703}, {20, 3524, 4}, {20, 3627, 3529}, {20, 5068, 30}, {30, 10299, 5067}, {376, 15682, 15689}, {376, 15710, 3534}, {376, 3522, 3528}, {376, 3545, 15697}, {376, 631, 550}, {381, 3090, 3544}, {381, 5073, 3853}, {381, 8703, 10304}, {382, 12108, 15022}, {546, 3528, 4221}, {548, 15688, 3522}, {548, 550, 15695}, {549, 5059, 3855}, {550, 12100, 17800}, {1657, 15701, 3861}, {1657, 15717, 3545}, {3090, 16434, 15691}, {3090, 3529, 3627}, {3146, 10304, 3}, {3146, 16866, 3856}, {3525, 3544, 3628}, {3529, 10299, 5079}, {3534, 15710, 5071}, {3544, 17538, 11001}, {3832, 15712, 15709}, {10304, 11001, 15715}, {10304, 11539, 15710}, {10304, 15695, 376}, {11001, 15712, 6938}, {11541, 17538, 20}, {12100, 17800, 5056}, {12108, 15022, 3533}, {12811, 15691, 15704}, {12811, 15704, 5073}, {14890, 15701, 15721}, {15022, 15692, 12108}, {15022, 15699, 3090}, {15681, 15712, 3832}, {15685, 15707, 381}, {15697, 15717, 1657}, {15698, 15721, 3524}


X(62093) = X(2)X(3)∩X(17)X(42930)

Barycentrics    25*a^4-4*(b^2-c^2)^2-21*a^2*(b^2+c^2) : :
X(62093) = -12*X[2]+29*X[3], 2*X[576]+15*X[50968], -8*X[946]+25*X[58224], 3*X[3653]+14*X[51083], 8*X[5493]+9*X[10247], 5*X[6361]+12*X[61280], X[8148]+16*X[12512], 8*X[8550]+9*X[55593], 2*X[10222]+15*X[50812], 5*X[11362]+12*X[51080], X[12308]+16*X[37853], 9*X[13340]+8*X[13382] and many others

X(62093) lies on these lines: {2, 3}, {17, 42930}, {18, 42931}, {61, 43421}, {62, 43420}, {576, 50968}, {946, 58224}, {3070, 43314}, {3071, 43315}, {3653, 51083}, {5237, 43645}, {5238, 43646}, {5254, 15603}, {5339, 43005}, {5340, 43004}, {5493, 10247}, {6361, 61280}, {6445, 42261}, {6446, 42260}, {6451, 8960}, {6452, 42569}, {6455, 51910}, {6456, 51911}, {6460, 9691}, {6472, 19117}, {6473, 19116}, {7583, 43413}, {7584, 43414}, {7585, 10145}, {7586, 10146}, {7755, 15655}, {8148, 12512}, {8550, 55593}, {8981, 43411}, {9540, 43316}, {10222, 50812}, {11362, 51080}, {11480, 41974}, {11481, 41973}, {12308, 37853}, {13340, 13382}, {13431, 54202}, {13935, 43317}, {13966, 43412}, {15533, 55623}, {16111, 38638}, {16163, 38633}, {16964, 43333}, {16965, 43332}, {18493, 59420}, {18553, 55651}, {22236, 42800}, {22238, 42799}, {23251, 43881}, {23261, 43882}, {24466, 38637}, {25555, 55678}, {28168, 30315}, {31663, 37712}, {31730, 58230}, {33751, 33878}, {34507, 55639}, {35450, 45185}, {37727, 50814}, {38066, 50820}, {38634, 38738}, {38635, 38749}, {38636, 38761}, {42090, 42989}, {42091, 42988}, {42093, 43325}, {42094, 43324}, {42099, 42774}, {42100, 42773}, {42112, 42948}, {42113, 42949}, {42130, 42944}, {42131, 42945}, {42157, 43427}, {42158, 43426}, {42225, 42571}, {42226, 42570}, {42528, 43009}, {42529, 43008}, {42813, 43489}, {42814, 43490}, {42817, 43769}, {42818, 43770}, {42936, 43637}, {42937, 43636}, {42958, 43632}, {42959, 43633}, {42980, 43014}, {42981, 43015}, {43026, 43239}, {43027, 43238}, {43174, 61244}, {43273, 55620}, {43409, 53517}, {43410, 53520}, {44882, 55624}, {47353, 55650}, {48662, 48892}, {48881, 55697}, {48885, 55682}, {50955, 55637}, {50973, 55606}, {51024, 55677}, {51700, 58228}, {52093, 54044}, {55648, 59411}

X(62093) = midpoint of X(i) and X(j) for these {i,j}: {20, 3544}
X(62093) = pole of line {185, 61815} with respect to the Jerabek hyperbola
X(62093) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(55863)}}, {{A, B, C, X(3519), X(15682)}}, {{A, B, C, X(3845), X(52441)}}, {{A, B, C, X(3855), X(14861)}}, {{A, B, C, X(15718), X(40448)}}, {{A, B, C, X(35502), X(44731)}}, {{A, B, C, X(42021), X(49138)}}, {{A, B, C, X(43719), X(52294)}}
X(62093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15681, 5070}, {3, 15684, 631}, {3, 15689, 17800}, {3, 15696, 15681}, {3, 17800, 15694}, {3, 20, 5055}, {3, 3534, 3843}, {3, 382, 15701}, {3, 3843, 15707}, {3, 5, 15718}, {3, 548, 15695}, {3, 550, 5073}, {4, 12103, 1657}, {4, 140, 5079}, {4, 3522, 8703}, {4, 5056, 3859}, {4, 5070, 3851}, {20, 14093, 3}, {20, 3544, 30}, {20, 4220, 3839}, {376, 12103, 15696}, {376, 3523, 550}, {376, 3528, 3146}, {376, 3830, 15689}, {376, 8703, 5054}, {382, 548, 6961}, {547, 8703, 10304}, {550, 3850, 20}, {1657, 5054, 4}, {3146, 15702, 6885}, {3146, 3525, 3857}, {3146, 3843, 3830}, {3523, 3854, 3533}, {3523, 5068, 3525}, {3526, 17538, 15685}, {3830, 15707, 15703}, {3857, 15712, 140}, {5054, 15696, 12103}, {5073, 15701, 5068}, {5079, 15696, 3534}, {8703, 15710, 14093}, {12811, 15719, 3526}, {14093, 15696, 632}, {14813, 14814, 15682}, {15686, 15717, 5076}, {48892, 55643, 48662}


X(62094) = X(2)X(3)∩X(13)X(43869)

Barycentrics    31*a^4-5*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(62094) = -5*X[2]+12*X[3], -9*X[165]+2*X[4669], 5*X[193]+16*X[55594], -3*X[962]+10*X[51105], -15*X[1699]+8*X[51119], 5*X[1992]+2*X[55582], -8*X[3098]+X[11160], -8*X[3579]+X[31145], 5*X[3620]+16*X[48892], 2*X[3654]+5*X[50819], -12*X[3655]+5*X[51092], -5*X[3656]+12*X[31662] and many others

X(62094) lies on these lines: {2, 3}, {13, 43869}, {14, 43870}, {15, 49875}, {16, 49876}, {165, 4669}, {193, 55594}, {390, 37587}, {394, 46945}, {511, 50969}, {515, 50820}, {516, 51083}, {517, 50813}, {524, 55607}, {542, 55633}, {962, 51105}, {1151, 42418}, {1152, 42417}, {1270, 13798}, {1271, 13678}, {1503, 50976}, {1587, 6486}, {1588, 6487}, {1699, 51119}, {1992, 55582}, {3068, 43887}, {3069, 43888}, {3098, 11160}, {3424, 60286}, {3564, 51177}, {3579, 31145}, {3620, 48892}, {3622, 28198}, {3654, 50819}, {3655, 51092}, {3656, 31662}, {3817, 50873}, {4293, 51817}, {4297, 4677}, {4745, 34628}, {5032, 37517}, {5097, 61044}, {5102, 33748}, {5188, 11055}, {5306, 44541}, {5318, 43326}, {5321, 43327}, {5334, 43245}, {5335, 43244}, {5343, 42505}, {5344, 42504}, {5351, 42507}, {5352, 42506}, {5473, 35749}, {5474, 36327}, {5476, 55680}, {5493, 51107}, {5587, 50863}, {5731, 50808}, {5921, 50990}, {6200, 42542}, {6396, 42541}, {6411, 43209}, {6412, 43210}, {6429, 6460}, {6430, 6459}, {6431, 41946}, {6432, 41945}, {6433, 9542}, {6434, 32788}, {6437, 19054}, {6438, 19053}, {6480, 7585}, {6481, 7586}, {6484, 42261}, {6485, 42260}, {6560, 43889}, {6561, 43890}, {6776, 55612}, {7737, 15602}, {7811, 32896}, {7987, 34638}, {7988, 51086}, {7991, 51091}, {8584, 54170}, {8591, 38736}, {8596, 12042}, {8667, 53141}, {9143, 38726}, {9541, 53131}, {9774, 14976}, {9778, 16200}, {10516, 51216}, {10519, 55640}, {10645, 41112}, {10646, 41113}, {10653, 42976}, {10654, 42977}, {11177, 15300}, {11179, 33751}, {11180, 14810}, {11451, 55166}, {11480, 43428}, {11481, 43429}, {11488, 43002}, {11489, 43003}, {11531, 12512}, {12243, 38731}, {12816, 42092}, {12817, 42089}, {13665, 43787}, {13785, 43788}, {14226, 42225}, {14241, 42226}, {14853, 51211}, {14855, 33884}, {15533, 44882}, {15534, 25406}, {16241, 42952}, {16242, 42953}, {16964, 49859}, {16965, 49860}, {18538, 43521}, {18762, 43522}, {19924, 51171}, {20049, 34773}, {20070, 33179}, {20423, 33750}, {20582, 55656}, {20791, 21969}, {21356, 55646}, {22165, 31884}, {22235, 41943}, {22237, 41944}, {22531, 36346}, {22532, 36352}, {22843, 33627}, {22890, 33626}, {23253, 43254}, {23263, 43255}, {23269, 43211}, {23275, 43212}, {25565, 55665}, {28182, 50833}, {30392, 50816}, {31663, 34627}, {31730, 38314}, {32885, 43459}, {33595, 60984}, {33602, 42127}, {33603, 42126}, {33697, 46930}, {34754, 41100}, {34755, 41101}, {35242, 53620}, {35248, 45017}, {35770, 43511}, {35771, 43512}, {36319, 49856}, {36344, 49857}, {36836, 42508}, {36843, 42509}, {36967, 49827}, {36968, 49826}, {37640, 42791}, {37641, 42792}, {37749, 38803}, {38064, 48885}, {38155, 50864}, {38749, 52695}, {39561, 54132}, {41107, 42091}, {41108, 42090}, {41121, 42900}, {41122, 42901}, {41149, 53097}, {42085, 49873}, {42086, 49874}, {42087, 42589}, {42088, 42588}, {42115, 43482}, {42116, 43481}, {42119, 49948}, {42120, 49947}, {42130, 43543}, {42131, 43542}, {42154, 49861}, {42155, 49862}, {42163, 42587}, {42166, 42586}, {42510, 42528}, {42511, 42529}, {42522, 42525}, {42523, 42524}, {42532, 42998}, {42533, 42999}, {42625, 43228}, {42626, 43229}, {42795, 43646}, {42796, 43645}, {42815, 43493}, {42816, 43494}, {42940, 51916}, {42941, 51915}, {42942, 51944}, {42943, 51945}, {42966, 61719}, {43024, 43294}, {43025, 43295}, {43199, 43403}, {43200, 43404}, {43273, 50992}, {43465, 46334}, {43466, 46335}, {46264, 55636}, {47101, 53142}, {47354, 55654}, {48873, 55688}, {48881, 55699}, {50811, 59417}, {50865, 51109}, {50868, 51069}, {50967, 55603}, {50972, 51166}, {50974, 55610}, {50975, 51215}, {50977, 55645}, {50978, 55624}, {50993, 51023}, {51025, 51143}, {51165, 53023}, {51185, 51212}, {51186, 55651}, {51188, 55614}, {54519, 60279}

X(62094) = midpoint of X(i) and X(j) for these {i,j}: {376, 3528}, {3534, 15701}
X(62094) = reflection of X(i) in X(j) for these {i,j}: {15702, 3}, {2, 15698}, {381, 14869}, {3090, 15700}, {3543, 3832}, {3832, 15702}, {3851, 549}, {4, 15703}
X(62094) = inverse of X(61938) in orthocentroidal circle
X(62094) = inverse of X(61938) in Yff hyperbola
X(62094) = complement of X(62018)
X(62094) = anticomplement of X(41106)
X(62094) = pole of line {523, 61938} with respect to the orthocentroidal circle
X(62094) = pole of line {185, 61816} with respect to the Jerabek hyperbola
X(62094) = pole of line {6, 61938} with respect to the Kiepert hyperbola
X(62094) = pole of line {523, 61938} with respect to the Yff hyperbola
X(62094) = pole of line {69, 15640} with respect to the Wallace hyperbola
X(62094) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15640)}}, {{A, B, C, X(253), X(41099)}}, {{A, B, C, X(1294), X(15702)}}, {{A, B, C, X(1297), X(30734)}}, {{A, B, C, X(3346), X(3544)}}, {{A, B, C, X(3851), X(18317)}}, {{A, B, C, X(4846), X(23046)}}, {{A, B, C, X(11541), X(54667)}}, {{A, B, C, X(15689), X(18850)}}, {{A, B, C, X(15697), X(57822)}}, {{A, B, C, X(34200), X(46168)}}, {{A, B, C, X(52283), X(60286)}}
X(62094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 3543}, {2, 15640, 3839}, {2, 15683, 3830}, {2, 15693, 15721}, {2, 15705, 15693}, {2, 20, 15640}, {2, 376, 15697}, {2, 3830, 3091}, {2, 8703, 10304}, {3, 15686, 3545}, {3, 15690, 11001}, {3, 1657, 16239}, {3, 20, 5056}, {3, 30, 15702}, {3, 3533, 15717}, {3, 3543, 15708}, {3, 3845, 15719}, {3, 547, 3524}, {4, 376, 15689}, {5, 3090, 17566}, {20, 10304, 15692}, {30, 15700, 3090}, {30, 15702, 3832}, {30, 15703, 4}, {30, 549, 3851}, {376, 11001, 15690}, {376, 14093, 15683}, {376, 15688, 3522}, {376, 15710, 17538}, {376, 3524, 550}, {382, 14891, 15709}, {547, 12108, 11539}, {548, 15688, 376}, {548, 8703, 15695}, {1657, 17504, 5071}, {3091, 3523, 3526}, {3526, 15701, 15713}, {3526, 15759, 15698}, {3534, 12100, 15682}, {3534, 15701, 30}, {3543, 10304, 3}, {3545, 15686, 5059}, {3830, 14093, 15759}, {3839, 15692, 10303}, {3845, 11539, 10109}, {3845, 15690, 3534}, {3845, 15713, 547}, {5054, 15691, 3529}, {5054, 5071, 17542}, {5055, 15714, 10299}, {5056, 5079, 6991}, {5066, 15716, 631}, {6859, 6975, 468}, {6919, 17578, 5068}, {8703, 15759, 14093}, {9778, 51705, 50872}, {10299, 12103, 17578}, {10304, 15697, 2}, {11001, 15719, 3845}, {11812, 15690, 15686}, {12103, 15714, 5055}, {14093, 15689, 12108}, {14869, 15717, 3523}, {15681, 15716, 5066}, {15687, 15706, 3525}, {15688, 15695, 8703}, {15689, 15721, 20}, {15702, 15719, 15701}, {15710, 17538, 381}, {25406, 50965, 54174}, {42087, 49906, 42589}, {42088, 49905, 42588}, {42528, 42632, 42510}, {46334, 49825, 43465}, {46335, 49824, 43466}, {50812, 51705, 9778}, {51028, 51737, 33748}


X(62095) = X(1)X(50816)∩X(2)X(3)

Barycentrics    41*a^4-7*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(62095) = X[1]+8*X[50816], -7*X[2]+16*X[3], X[6]+8*X[50972], X[8]+8*X[50815], X[10]+8*X[51081], 8*X[40]+X[20049], X[69]+8*X[50971], X[145]+8*X[50808], -X[146]+4*X[11693], X[193]+8*X[50965], X[1278]+8*X[51042], -10*X[3098]+X[50961] and many others

X(62095) lies on these lines: {1, 50816}, {2, 3}, {6, 50972}, {8, 50815}, {10, 51081}, {40, 20049}, {69, 50971}, {145, 50808}, {146, 11693}, {193, 50965}, {323, 46945}, {542, 55630}, {1278, 51042}, {3098, 50961}, {3241, 12512}, {3579, 20052}, {3616, 34638}, {3617, 34628}, {3618, 51130}, {3620, 50958}, {3621, 50811}, {3622, 51083}, {3623, 34632}, {3632, 51080}, {3655, 50813}, {4297, 31145}, {4678, 50820}, {4788, 51044}, {5237, 49827}, {5238, 49826}, {5304, 44541}, {5921, 55635}, {6468, 7585}, {6469, 7586}, {6470, 42638}, {6471, 42637}, {6527, 57822}, {6776, 55608}, {7712, 41467}, {7811, 32840}, {7917, 32841}, {7991, 51092}, {8142, 47869}, {8591, 38747}, {8596, 38738}, {9143, 37853}, {9543, 19054}, {9778, 11224}, {10513, 59634}, {10519, 55638}, {11008, 50970}, {11057, 32831}, {11160, 44882}, {11177, 38736}, {11179, 50969}, {11180, 48892}, {11542, 42932}, {11543, 42933}, {12117, 35369}, {14853, 55686}, {15516, 54132}, {16644, 43771}, {16645, 43772}, {16772, 42588}, {16773, 42589}, {16962, 42091}, {16963, 42090}, {16981, 20791}, {19130, 51213}, {19877, 50862}, {19924, 33750}, {20014, 50810}, {20050, 50814}, {20054, 51082}, {20070, 51705}, {20080, 43273}, {20105, 33706}, {20423, 55696}, {21356, 59411}, {22236, 43495}, {22238, 43496}, {23302, 43201}, {23303, 43202}, {32006, 32895}, {32880, 37671}, {33751, 55720}, {34595, 50869}, {34648, 46932}, {34773, 50809}, {35242, 50864}, {35255, 43787}, {35256, 43788}, {40341, 51135}, {41150, 58229}, {41945, 43511}, {41946, 43512}, {41967, 42578}, {41968, 42579}, {42159, 43026}, {42162, 43027}, {42263, 42539}, {42264, 42540}, {42270, 42537}, {42273, 42538}, {42433, 49875}, {42434, 49876}, {42514, 54581}, {42515, 54580}, {42576, 43785}, {42577, 43786}, {42944, 43003}, {42945, 43002}, {42974, 43777}, {42975, 43778}, {43101, 43478}, {43104, 43477}, {43193, 49813}, {43194, 49812}, {43256, 51910}, {43257, 51911}, {43401, 43552}, {43402, 43553}, {43769, 49905}, {43770, 49906}, {43773, 49862}, {43774, 49861}, {44367, 46944}, {46264, 55634}, {46931, 50829}, {46934, 50865}, {48873, 55690}, {48906, 50966}, {50967, 55601}, {50968, 51132}, {50976, 54169}, {50992, 55614}, {51023, 55646}, {51028, 55716}, {51086, 58217}, {51136, 55607}, {51179, 55604}, {51737, 61044}, {54173, 55625}, {54174, 55590}

X(62095) = midpoint of X(i) and X(j) for these {i,j}: {3534, 15707}
X(62095) = reflection of X(i) in X(j) for these {i,j}: {15705, 10304}, {15708, 15710}, {15709, 3}, {2, 15705}, {3545, 15707}, {3839, 15709}
X(62095) = anticomplement of X(61954)
X(62095) = pole of line {69, 62048} with respect to the Wallace hyperbola
X(62095) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(15709)}}, {{A, B, C, X(3346), X(5072)}}, {{A, B, C, X(3854), X(36889)}}, {{A, B, C, X(3860), X(4846)}}, {{A, B, C, X(15690), X(18850)}}, {{A, B, C, X(16251), X(33699)}}, {{A, B, C, X(50693), X(57822)}}
X(62095) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 17578}, {2, 3543, 3854}, {3, 15682, 15721}, {3, 30, 15709}, {3, 3534, 15687}, {3, 376, 15697}, {3, 3855, 3523}, {4, 376, 15690}, {20, 140, 3146}, {20, 15697, 15691}, {20, 15721, 15682}, {20, 3523, 3627}, {20, 3543, 15685}, {30, 15707, 3545}, {30, 15710, 15708}, {140, 3843, 3090}, {376, 11001, 15696}, {376, 3524, 15689}, {376, 3528, 3534}, {382, 15714, 15719}, {548, 15695, 376}, {548, 3533, 4229}, {550, 8703, 14891}, {631, 15686, 15640}, {1656, 13632, 15694}, {1657, 15759, 15702}, {3090, 3524, 5054}, {3091, 15705, 11114}, {3146, 3522, 3528}, {3524, 3545, 140}, {3524, 8703, 10304}, {3528, 3534, 15692}, {3534, 15707, 30}, {3534, 3860, 11001}, {3830, 15715, 10303}, {3839, 10304, 3}, {5054, 5055, 16239}, {5066, 15687, 3843}, {5071, 15682, 3861}, {6996, 17800, 5059}, {10124, 14892, 15699}, {10304, 15688, 3522}, {10304, 15697, 3839}, {10304, 15708, 15710}, {11001, 16239, 3543}, {14093, 15689, 14892}, {14093, 15690, 4}, {14892, 17504, 15701}, {15022, 15702, 2}, {15681, 15698, 3091}, {15682, 15691, 20}, {15682, 15721, 5068}, {15683, 15717, 5066}, {15684, 15711, 3525}, {15688, 15689, 8703}, {15691, 15721, 15683}, {15701, 17504, 3524}, {15707, 17579, 17525}, {15708, 15710, 15705}


X(62096) = X(2)X(3)∩X(69)X(55627)

Barycentrics    29*a^4-5*(b^2-c^2)^2-24*a^2*(b^2+c^2) : :
X(62096) = -15*X[2]+34*X[3], -5*X[69]+24*X[55627], -5*X[962]+24*X[31662], -5*X[1352]+24*X[55645], -25*X[3618]+44*X[55683], 10*X[5493]+9*X[16200], 5*X[6776]+14*X[55607], 3*X[7967]+16*X[12512], -2*X[7991]+21*X[50813], 10*X[8550]+9*X[55591], 15*X[9778]+4*X[11278], -3*X[11160]+22*X[55620] and many others

X(62096) lies on these lines: {2, 3}, {69, 55627}, {371, 43794}, {372, 43793}, {962, 31662}, {1181, 46945}, {1285, 5041}, {1352, 55645}, {1587, 6433}, {1588, 6434}, {3070, 43787}, {3071, 43788}, {3618, 55683}, {5351, 43245}, {5352, 43244}, {5365, 43464}, {5366, 43463}, {5493, 16200}, {6200, 43413}, {6396, 43414}, {6411, 23269}, {6412, 23275}, {6429, 43797}, {6430, 43798}, {6432, 9541}, {6437, 7581}, {6438, 7582}, {6480, 42261}, {6481, 42260}, {6484, 56619}, {6485, 56618}, {6486, 51910}, {6487, 51911}, {6560, 43411}, {6561, 43412}, {6776, 55607}, {7967, 12512}, {7991, 50813}, {8550, 55591}, {8981, 43889}, {9778, 11278}, {10194, 52666}, {10195, 52667}, {10645, 43769}, {10646, 43770}, {11160, 55620}, {11180, 55641}, {11362, 50819}, {11465, 55166}, {11485, 42927}, {11486, 42926}, {13393, 38633}, {13607, 58248}, {13966, 43890}, {14912, 55582}, {17852, 42417}, {21356, 55644}, {22235, 42131}, {22237, 42130}, {23249, 43409}, {23259, 43410}, {23267, 41963}, {23273, 41964}, {25406, 55587}, {30392, 31730}, {31454, 43386}, {31670, 55680}, {32064, 32903}, {33751, 37517}, {34507, 55636}, {34754, 42151}, {34755, 42150}, {35242, 38155}, {35255, 43376}, {35256, 43377}, {36836, 43481}, {36843, 43482}, {37727, 50809}, {41967, 53513}, {41968, 53516}, {41971, 42528}, {41972, 42529}, {41973, 42090}, {41974, 42091}, {42099, 42495}, {42100, 42494}, {42133, 42774}, {42134, 42773}, {42139, 42908}, {42142, 42909}, {42147, 51944}, {42148, 51945}, {42154, 42793}, {42155, 42794}, {42159, 42958}, {42162, 42959}, {42164, 43423}, {42165, 43422}, {42262, 43786}, {42265, 43785}, {42266, 43792}, {42267, 43791}, {42998, 52079}, {42999, 52080}, {43199, 43633}, {43200, 43632}, {44882, 55618}, {46264, 55633}, {48873, 55691}, {48881, 55703}, {48885, 55685}, {48892, 55640}, {50969, 53097}, {50971, 55626}, {50974, 55606}, {51166, 53093}, {51212, 55695}, {51537, 55657}

X(62096) = midpoint of X(i) and X(j) for these {i,j}: {20, 15022}
X(62096) = anticomplement of X(61955)
X(62096) = pole of line {185, 61817} with respect to the Jerabek hyperbola
X(62096) = pole of line {69, 49136} with respect to the Wallace hyperbola
X(62096) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(49136)}}, {{A, B, C, X(1294), X(55864)}}, {{A, B, C, X(1597), X(34567)}}, {{A, B, C, X(3519), X(15684)}}, {{A, B, C, X(5072), X(15740)}}, {{A, B, C, X(5076), X(15749)}}, {{A, B, C, X(5198), X(11738)}}, {{A, B, C, X(11270), X(55578)}}, {{A, B, C, X(14528), X(35501)}}, {{A, B, C, X(17800), X(42021)}}, {{A, B, C, X(20421), X(35479)}}, {{A, B, C, X(46936), X(51348)}}, {{A, B, C, X(55575), X(57713)}}
X(62096) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11001, 5067}, {3, 15686, 3832}, {3, 15690, 20}, {3, 15696, 15686}, {3, 17800, 15723}, {3, 20, 3545}, {3, 3534, 3853}, {3, 3543, 631}, {3, 382, 11812}, {3, 3850, 3523}, {3, 3853, 15708}, {3, 5059, 3533}, {3, 5067, 3524}, {3, 550, 5059}, {3, 6961, 15695}, {4, 140, 5071}, {4, 15702, 5056}, {4, 1657, 11541}, {4, 3522, 3528}, {20, 15022, 30}, {20, 15705, 546}, {140, 3529, 4}, {376, 15698, 15689}, {376, 15710, 15697}, {376, 3528, 17538}, {376, 3529, 15696}, {376, 3545, 15690}, {546, 1656, 5068}, {631, 3090, 10124}, {632, 6913, 3628}, {1532, 17504, 3525}, {3523, 5059, 3850}, {3528, 11001, 3}, {3533, 3545, 1656}, {3534, 15698, 6834}, {3830, 15712, 17590}, {3853, 15708, 3090}, {5067, 17538, 11001}, {8703, 15700, 10304}, {10304, 15686, 15719}, {10304, 15696, 3529}, {12103, 14093, 15717}, {12103, 15717, 15682}, {14813, 14814, 15684}, {15686, 15700, 3543}, {15692, 15704, 3855}, {42134, 42773, 43447}


X(62097) = X(2)X(3)∩X(13)X(43479)

Barycentrics    17*a^4-3*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62097) = -9*X[2]+20*X[3], 10*X[40]+X[20050], -3*X[69]+14*X[55626], -3*X[146]+14*X[15020], -5*X[147]+16*X[35022], -5*X[148]+16*X[35021], -5*X[152]+16*X[35024], -5*X[153]+16*X[35023], -12*X[154]+X[54211], -15*X[165]+4*X[3626], 3*X[193]+8*X[52987], -16*X[576]+27*X[33748] and many others

X(62097) lies on these lines: {2, 3}, {13, 43479}, {14, 43480}, {15, 43242}, {16, 43243}, {40, 20050}, {69, 55626}, {146, 15020}, {147, 35022}, {148, 35021}, {152, 35024}, {153, 35023}, {154, 54211}, {165, 3626}, {193, 52987}, {253, 46724}, {390, 5563}, {542, 55628}, {576, 33748}, {577, 45245}, {597, 51211}, {599, 51134}, {944, 20054}, {962, 3636}, {1078, 32886}, {1131, 42267}, {1132, 42266}, {1350, 11008}, {1352, 55644}, {1503, 55641}, {1587, 9542}, {1588, 43884}, {2996, 60335}, {3241, 50812}, {3244, 5731}, {3411, 49827}, {3412, 49826}, {3424, 60210}, {3564, 55620}, {3592, 42638}, {3594, 42637}, {3600, 3746}, {3601, 3982}, {3617, 31663}, {3619, 55654}, {3620, 14810}, {3629, 25406}, {3631, 5921}, {3632, 4297}, {3644, 30271}, {3679, 51079}, {3917, 52093}, {4031, 11518}, {4299, 5281}, {4301, 51083}, {4302, 5265}, {5010, 5261}, {5032, 55718}, {5206, 37689}, {5237, 42090}, {5238, 42091}, {5274, 7280}, {5304, 35007}, {5334, 5351}, {5335, 5352}, {5343, 43032}, {5344, 43033}, {5365, 16242}, {5366, 16241}, {5395, 54920}, {5493, 16189}, {5550, 28150}, {5603, 31666}, {5609, 38788}, {5732, 60957}, {5881, 50820}, {5925, 35260}, {5984, 38742}, {6154, 38669}, {6241, 33884}, {6329, 10541}, {6361, 15178}, {6407, 42643}, {6408, 42644}, {6411, 43879}, {6412, 43880}, {6419, 43512}, {6420, 9541}, {6425, 6460}, {6426, 6459}, {6441, 42574}, {6442, 42575}, {6447, 7581}, {6448, 7582}, {6451, 13886}, {6452, 13939}, {6453, 7585}, {6454, 7586}, {6455, 23267}, {6456, 23273}, {6496, 42226}, {6497, 42225}, {6519, 42216}, {6522, 42215}, {6776, 55606}, {6781, 31400}, {7738, 22331}, {7782, 37668}, {7982, 9778}, {7987, 15808}, {7998, 40247}, {7999, 14641}, {8142, 48125}, {8550, 54174}, {8589, 31404}, {8972, 43314}, {9545, 37480}, {9588, 50864}, {9589, 58229}, {9692, 10147}, {9740, 34504}, {10148, 32788}, {10222, 20070}, {10519, 48892}, {10574, 36987}, {10575, 54041}, {10576, 12818}, {10577, 12819}, {10645, 43010}, {10646, 43011}, {10653, 42612}, {10654, 42613}, {11057, 32825}, {11160, 50975}, {11179, 55583}, {11424, 46865}, {11480, 42781}, {11481, 42782}, {11482, 48874}, {11522, 34638}, {13336, 43576}, {13348, 15072}, {13941, 43315}, {14023, 53142}, {14094, 38726}, {14561, 55677}, {14683, 38723}, {14853, 48885}, {14912, 55580}, {14927, 55646}, {14986, 15338}, {15012, 20791}, {15021, 16163}, {15029, 48378}, {15034, 16111}, {15036, 38795}, {15044, 38727}, {15051, 38791}, {15054, 24981}, {15069, 50976}, {15513, 43448}, {15582, 61088}, {16192, 59387}, {16772, 42932}, {16773, 42933}, {16964, 43331}, {16965, 43330}, {16981, 37481}, {17502, 46934}, {18439, 54044}, {18581, 42946}, {18582, 42947}, {19924, 55694}, {20049, 50809}, {20080, 55610}, {20094, 38731}, {20095, 51529}, {20096, 51528}, {20190, 33750}, {20423, 55698}, {20427, 50414}, {20582, 51216}, {20583, 50972}, {22234, 54132}, {22235, 42798}, {22237, 42797}, {22676, 32522}, {23235, 38736}, {25055, 58225}, {26864, 32601}, {28160, 46933}, {29012, 55652}, {29181, 55684}, {29317, 55675}, {30315, 50862}, {31371, 41427}, {31414, 52045}, {31447, 38074}, {31670, 55681}, {32826, 43459}, {34628, 38098}, {34632, 58245}, {34641, 50815}, {34747, 50808}, {35812, 43376}, {35813, 43377}, {36836, 42120}, {36843, 42119}, {36967, 42780}, {36968, 42779}, {37484, 61136}, {37640, 51945}, {37641, 51944}, {37665, 53096}, {38664, 38747}, {38668, 38771}, {38674, 38783}, {38688, 38803}, {38754, 51525}, {38766, 51526}, {38778, 51527}, {38798, 51535}, {39874, 55629}, {40330, 55653}, {40341, 44882}, {40693, 43485}, {40694, 43486}, {41963, 43384}, {41964, 43385}, {42085, 43870}, {42086, 43869}, {42112, 43196}, {42113, 43195}, {42122, 52080}, {42123, 52079}, {42140, 42599}, {42141, 42598}, {42143, 43474}, {42144, 43464}, {42145, 43463}, {42146, 43473}, {42149, 43419}, {42150, 42528}, {42151, 42529}, {42152, 43418}, {42157, 42938}, {42158, 42939}, {42159, 42630}, {42160, 42931}, {42161, 42930}, {42162, 42629}, {42431, 43540}, {42432, 43541}, {42433, 42998}, {42434, 42999}, {42488, 43230}, {42489, 43231}, {42578, 53513}, {42579, 53516}, {42584, 43487}, {42585, 43488}, {42592, 43324}, {42593, 43325}, {42625, 43421}, {42626, 43420}, {42635, 42990}, {42636, 42991}, {42773, 42941}, {42774, 42940}, {42775, 43401}, {42776, 43402}, {42803, 42942}, {42804, 42943}, {42954, 43636}, {42955, 43637}, {42986, 43631}, {42987, 43630}, {43403, 43546}, {43404, 43547}, {43430, 43889}, {43431, 43890}, {43537, 60626}, {43570, 60622}, {43571, 60623}, {43621, 55670}, {45957, 54047}, {46264, 55631}, {48880, 55679}, {48881, 53093}, {48898, 55647}, {48906, 55595}, {50967, 55600}, {50969, 55588}, {50971, 51215}, {51170, 55724}, {51538, 55676}, {51737, 53858}, {53100, 60628}, {53102, 54522}, {54050, 58795}, {54173, 55623}, {54921, 60219}, {54934, 60285}, {59418, 60942}, {60142, 60648}, {60305, 60311}, {60306, 60312}, {60337, 60635}

X(62097) = midpoint of X(i) and X(j) for these {i,j}: {20, 5056}, {3534, 15718}
X(62097) = reflection of X(i) in X(j) for these {i,j}: {2, 15715}, {3525, 3}, {3855, 15720}, {4, 5070}, {5056, 15717}
X(62097) = anticomplement of X(3855)
X(62097) = pole of line {185, 61820} with respect to the Jerabek hyperbola
X(62097) = pole of line {69, 49135} with respect to the Wallace hyperbola
X(62097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(57894)}}, {{A, B, C, X(69), X(49135)}}, {{A, B, C, X(253), X(546)}}, {{A, B, C, X(547), X(1217)}}, {{A, B, C, X(548), X(60618)}}, {{A, B, C, X(1294), X(3525)}}, {{A, B, C, X(1656), X(51348)}}, {{A, B, C, X(3346), X(3545)}}, {{A, B, C, X(3830), X(31361)}}, {{A, B, C, X(3839), X(31371)}}, {{A, B, C, X(3858), X(4846)}}, {{A, B, C, X(5068), X(15740)}}, {{A, B, C, X(5072), X(31363)}}, {{A, B, C, X(6353), X(60335)}}, {{A, B, C, X(7714), X(54934)}}, {{A, B, C, X(8889), X(54920)}}, {{A, B, C, X(11270), X(47486)}}, {{A, B, C, X(13452), X(52294)}}, {{A, B, C, X(15077), X(17578)}}, {{A, B, C, X(15687), X(32533)}}, {{A, B, C, X(15696), X(18850)}}, {{A, B, C, X(15710), X(18851)}}, {{A, B, C, X(15723), X(22270)}}, {{A, B, C, X(46333), X(60122)}}, {{A, B, C, X(50688), X(57823)}}, {{A, B, C, X(52283), X(60210)}}
X(62097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15700, 15708}, {2, 15710, 15692}, {2, 15717, 15720}, {2, 16347, 17546}, {2, 16408, 1010}, {2, 17531, 13740}, {2, 3146, 546}, {2, 3522, 3528}, {2, 3855, 5056}, {2, 4201, 17575}, {2, 474, 13741}, {2, 550, 20}, {3, 14869, 10299}, {3, 15681, 5079}, {3, 15696, 12103}, {3, 15704, 3090}, {3, 1657, 3628}, {3, 30, 3525}, {3, 3146, 10303}, {3, 3534, 3627}, {3, 3627, 631}, {3, 3628, 3524}, {3, 382, 14869}, {3, 5076, 12108}, {3, 5079, 3530}, {3, 550, 3529}, {4, 15719, 5070}, {4, 3528, 15710}, {4, 376, 15696}, {4, 631, 547}, {20, 10303, 3146}, {20, 15640, 1657}, {20, 3522, 10304}, {20, 3839, 5059}, {20, 5056, 30}, {30, 15720, 3855}, {140, 11001, 17578}, {376, 10304, 15697}, {376, 3524, 15690}, {546, 3530, 632}, {548, 550, 15688}, {550, 3530, 15681}, {632, 15696, 17538}, {1010, 14269, 3544}, {1657, 3524, 3832}, {1657, 3832, 15640}, {3090, 17538, 15704}, {3091, 10304, 3}, {3522, 17578, 14093}, {3523, 3543, 7486}, {3526, 15682, 3854}, {3528, 15688, 3522}, {3529, 17504, 15022}, {3529, 3544, 382}, {3529, 4221, 549}, {3530, 15720, 15719}, {3544, 11539, 17539}, {3627, 15022, 3839}, {3628, 17800, 3149}, {5056, 15717, 15721}, {5073, 12100, 5067}, {10304, 15697, 3543}, {11001, 14093, 15705}, {11540, 17800, 4}, {11541, 15708, 3091}, {12108, 15704, 5076}, {13587, 17544, 16371}, {15681, 15688, 8703}, {15681, 15696, 550}, {15681, 15710, 2}, {15685, 15714, 15709}, {15691, 15712, 17800}, {15705, 17578, 140}, {15710, 15719, 15715}, {15712, 17800, 3545}, {15715, 15720, 15717}, {15717, 15721, 3523}, {33750, 48873, 51171}


X(62098) = X(2)X(3)∩X(13)X(42971)

Barycentrics    28*a^4-5*(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62098) = -5*X[2]+11*X[3], -4*X[165]+X[59400], X[597]+2*X[48885], 5*X[1353]+4*X[55587], X[1483]+8*X[12512], X[3098]+2*X[50971], -11*X[3579]+2*X[4701], -7*X[3653]+5*X[61274], X[3655]+5*X[50812], -2*X[3818]+5*X[50980], -X[5097]+10*X[33751], -5*X[5476]+11*X[55683] and many others

X(62098) lies on these lines: {2, 3}, {13, 42971}, {14, 42970}, {165, 59400}, {395, 43245}, {396, 43244}, {524, 55603}, {542, 55627}, {597, 48885}, {1353, 55587}, {1483, 12512}, {1503, 55640}, {3098, 50971}, {3564, 55618}, {3579, 4701}, {3653, 61274}, {3655, 50812}, {3818, 50980}, {5097, 33751}, {5318, 42530}, {5321, 42531}, {5349, 43247}, {5350, 43246}, {5476, 55683}, {6411, 43211}, {6412, 43212}, {6429, 42261}, {6430, 42260}, {6431, 52047}, {6432, 52048}, {6449, 43256}, {6450, 43257}, {6453, 42418}, {6454, 42417}, {6480, 42216}, {6481, 42215}, {6484, 32787}, {6485, 32788}, {6486, 42259}, {6487, 42258}, {6781, 15602}, {7739, 44541}, {7776, 32891}, {9778, 61283}, {10283, 28198}, {10645, 44019}, {10646, 44020}, {10653, 51945}, {10654, 51944}, {10706, 22251}, {11160, 55616}, {11178, 50981}, {11179, 50968}, {11180, 55639}, {11278, 50816}, {11531, 61284}, {11645, 55645}, {11694, 20127}, {12702, 50813}, {13348, 45957}, {13624, 34638}, {14848, 33750}, {14929, 59634}, {15326, 51817}, {16241, 42145}, {16242, 42144}, {16267, 42088}, {16268, 42087}, {16644, 42584}, {16645, 42585}, {16772, 46334}, {16773, 46335}, {16962, 42118}, {16963, 42117}, {16966, 43642}, {16967, 43641}, {17502, 38022}, {17508, 38079}, {18480, 50825}, {18481, 50820}, {18483, 51084}, {19924, 55695}, {20423, 55699}, {20582, 55655}, {21356, 55643}, {21850, 50987}, {22165, 55631}, {22791, 50832}, {25055, 28178}, {25565, 55666}, {28150, 61270}, {28168, 61260}, {28174, 30392}, {28182, 58221}, {28186, 61254}, {28202, 38028}, {28208, 38081}, {29181, 55685}, {31730, 51083}, {33179, 51705}, {33606, 42797}, {33607, 42798}, {33878, 50969}, {34628, 61250}, {34718, 50819}, {34748, 50809}, {34754, 42529}, {34755, 42528}, {34773, 50808}, {35770, 41945}, {35771, 41946}, {35822, 43887}, {35823, 43888}, {36969, 43107}, {36970, 43100}, {37517, 50972}, {37705, 50822}, {38066, 61251}, {38110, 55680}, {39899, 51177}, {41107, 42891}, {41108, 42890}, {41149, 55583}, {42090, 42913}, {42091, 42912}, {42122, 42634}, {42123, 42633}, {42159, 42587}, {42162, 42586}, {42163, 42953}, {42166, 42952}, {42433, 43228}, {42434, 43229}, {42510, 42925}, {42511, 42924}, {42791, 42980}, {42792, 42981}, {42906, 42940}, {42907, 42941}, {42984, 43649}, {42985, 43644}, {43000, 43497}, {43001, 43498}, {43201, 43648}, {43202, 43647}, {43273, 51183}, {43634, 49876}, {43635, 49875}, {44882, 55612}, {46264, 50976}, {47354, 55653}, {48310, 55670}, {48876, 55633}, {48879, 50959}, {48880, 50983}, {48881, 50664}, {48892, 51134}, {48906, 50965}, {48943, 51129}, {50810, 61295}, {50821, 51081}, {50826, 50868}, {50830, 51080}, {50833, 51119}, {50970, 51182}, {50974, 55604}, {50977, 55642}, {50984, 55658}, {50985, 51135}, {50988, 51165}, {51077, 58244}, {54173, 55622}, {58227, 61275}

X(62098) = midpoint of X(i) and X(j) for these {i,j}: {20, 5055}, {376, 15688}, {3524, 3534}, {3839, 15681}, {10304, 15689}, {11539, 15686}
X(62098) = reflection of X(i) in X(j) for these {i,j}: {11539, 3}, {14892, 3530}, {15687, 5055}, {15688, 548}, {15699, 17504}, {17504, 10304}, {3830, 14892}, {3839, 140}, {3845, 11539}, {38022, 17502}, {38079, 17508}, {48310, 55670}, {5, 3524}, {546, 14890}, {5055, 12100}, {61251, 38066}, {8703, 15688}
X(62098) = complement of X(62020)
X(62098) = anticomplement of X(61957)
X(62098) = pole of line {185, 61821} with respect to the Jerabek hyperbola
X(62098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(11539)}}, {{A, B, C, X(15696), X(57822)}}, {{A, B, C, X(18317), X(38071)}}, {{A, B, C, X(44904), X(55958)}}
X(62098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15691, 15704}, {2, 15696, 15691}, {2, 376, 15696}, {3, 11001, 547}, {3, 15686, 3845}, {3, 16239, 15712}, {3, 1657, 5067}, {3, 20, 3850}, {3, 30, 11539}, {3, 3534, 3543}, {3, 376, 15690}, {3, 381, 15719}, {3, 5056, 3530}, {3, 5059, 16239}, {4, 14891, 15713}, {5, 15704, 5073}, {5, 15712, 10303}, {20, 12100, 15687}, {20, 14093, 12100}, {20, 15710, 5055}, {30, 10304, 17504}, {30, 14892, 3830}, {30, 15688, 8703}, {30, 17504, 15699}, {30, 3530, 14892}, {30, 548, 15688}, {376, 10304, 15689}, {376, 15695, 548}, {376, 3528, 15697}, {381, 15697, 12103}, {381, 3528, 15759}, {382, 15698, 10124}, {547, 11812, 3533}, {550, 632, 20}, {631, 15685, 14893}, {1657, 15692, 5066}, {3091, 15718, 11540}, {3146, 15701, 11737}, {3146, 17549, 3091}, {3522, 10303, 3528}, {3523, 15684, 10109}, {3524, 3533, 15708}, {3528, 5059, 3}, {3529, 15694, 12101}, {3530, 14892, 15709}, {3534, 14093, 15720}, {3534, 15694, 3529}, {3534, 5076, 15681}, {3534, 8703, 15711}, {3543, 3545, 14269}, {3839, 15706, 140}, {3845, 15699, 3545}, {3850, 12100, 15702}, {5055, 14093, 15710}, {5066, 15692, 14869}, {5071, 15716, 12108}, {8703, 15704, 15714}, {10299, 15640, 15703}, {10303, 15705, 3524}, {10304, 15689, 30}, {11812, 15690, 3534}, {12100, 15687, 632}, {12101, 15694, 5}, {12103, 15759, 381}, {12103, 16239, 5059}, {15640, 15703, 3861}, {15681, 15706, 3839}, {15681, 15722, 5076}, {15682, 15700, 3628}, {15683, 15693, 546}, {15686, 15690, 550}, {15688, 15689, 10304}, {15697, 16239, 15686}, {15699, 17504, 549}, {15702, 15720, 11812}, {15704, 15714, 2}, {15716, 17800, 5071}, {51134, 54169, 48892}


X(62099) = X(2)X(3)∩X(165)X(51072)

Barycentrics    61*a^4-11*(b^2-c^2)^2-50*a^2*(b^2+c^2) : :
X(62099) = -11*X[2]+24*X[3], -18*X[165]+5*X[51072], X[4677]+12*X[50815], X[4745]+12*X[51081], 3*X[5731]+10*X[50812], 11*X[6776]+28*X[55605], X[8584]+12*X[50972], -3*X[9589]+16*X[41150], 11*X[11179]+2*X[55581], 8*X[12007]+5*X[54170], 12*X[12512]+X[51093], 8*X[13607]+5*X[34632] and many others

X(62099) lies on these lines: {2, 3}, {165, 51072}, {1993, 46945}, {4677, 50815}, {4745, 51081}, {5351, 49810}, {5352, 49811}, {5731, 50812}, {6221, 43797}, {6398, 43798}, {6436, 9541}, {6496, 43340}, {6497, 43341}, {6776, 55605}, {7585, 42418}, {7586, 42417}, {8584, 50972}, {8972, 43209}, {9540, 43342}, {9589, 41150}, {10645, 49825}, {10646, 49824}, {11179, 55581}, {12007, 54170}, {12512, 51093}, {13607, 34632}, {13935, 43343}, {13941, 43210}, {14907, 32896}, {14927, 50993}, {15533, 50971}, {16192, 51069}, {20080, 55609}, {20423, 55700}, {22843, 36324}, {22890, 36326}, {23249, 42608}, {23251, 60293}, {23259, 42609}, {23261, 60294}, {25406, 50968}, {31412, 42606}, {31884, 50990}, {33602, 42691}, {33603, 42690}, {33751, 55714}, {34628, 51068}, {34638, 51110}, {37640, 42508}, {37641, 42509}, {41119, 42504}, {41120, 42505}, {41945, 43338}, {41946, 43339}, {42087, 49861}, {42088, 49862}, {42090, 49827}, {42091, 49826}, {42093, 51916}, {42094, 51915}, {42101, 42515}, {42102, 42514}, {42119, 42792}, {42120, 42791}, {42260, 42524}, {42261, 42525}, {42532, 49875}, {42533, 49876}, {42561, 42607}, {42602, 43560}, {42603, 43561}, {42604, 43789}, {42605, 43790}, {42686, 43466}, {42687, 43465}, {43002, 43869}, {43003, 43870}, {43028, 43478}, {43029, 43477}, {43302, 43646}, {43303, 43645}, {44882, 50992}, {46334, 49860}, {46335, 49859}, {50813, 51087}, {50819, 59417}, {50820, 50827}, {50956, 55660}, {50967, 55599}, {50969, 51140}, {50975, 55613}, {50976, 50982}, {50985, 51177}, {50991, 59411}, {51028, 55717}, {51083, 51085}, {51108, 59420}, {51119, 61271}, {51143, 55651}, {51170, 55723}, {51178, 55603}, {54132, 55713}, {54173, 55621}, {54521, 54639}, {54608, 60639}, {54866, 60200}, {60102, 60632}, {60175, 60625}, {60192, 60650}, {60228, 60336}, {60282, 60331}

X(62099) = anticomplement of X(61958)
X(62099) = pole of line {6, 60299} with respect to the Kiepert hyperbola
X(62099) = pole of line {69, 62051} with respect to the Wallace hyperbola
X(62099) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(35402)}}, {{A, B, C, X(3346), X(12811)}}
X(62099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 3832}, {2, 3534, 15683}, {2, 3854, 10109}, {3, 20, 3854}, {20, 546, 5059}, {376, 15688, 20}, {376, 3524, 15696}, {376, 3528, 15689}, {376, 8703, 15697}, {548, 549, 15688}, {549, 1656, 15709}, {549, 5055, 3525}, {550, 8703, 11812}, {3522, 15683, 10304}, {3524, 15684, 7486}, {3534, 15695, 548}, {3534, 15759, 4}, {3534, 5066, 11001}, {3830, 15688, 8703}, {3832, 17678, 5055}, {5068, 15717, 10303}, {8703, 15690, 3830}, {10304, 15640, 15698}, {10304, 15683, 15717}, {10304, 15697, 15640}, {11001, 15698, 5066}, {12811, 15685, 15682}, {15022, 15705, 549}, {15640, 15697, 3534}, {15640, 15698, 2}, {15681, 15708, 17578}, {15682, 15709, 6952}, {15683, 15705, 15022}, {15685, 15719, 3839}, {15686, 15710, 3091}, {15704, 15709, 3543}, {15719, 17538, 15685}


X(62100) = X(2)X(3)∩X(6)X(33751)

Barycentrics    11*a^4-2*(b^2-c^2)^2-9*a^2*(b^2+c^2) : :
X(62100) = -6*X[2]+13*X[3], -X[6]+8*X[33751], 11*X[40]+3*X[61294], -2*X[69]+9*X[55624], -4*X[141]+11*X[55648], -2*X[146]+9*X[38638], -2*X[147]+9*X[38635], -2*X[148]+9*X[38634], -2*X[149]+9*X[38637], -2*X[153]+9*X[38636], 4*X[185]+3*X[54048], 3*X[399]+4*X[10990] and many others

X(62100) lies on these lines: {2, 3}, {6, 33751}, {15, 43018}, {16, 43019}, {17, 42127}, {18, 42126}, {32, 44541}, {40, 61294}, {61, 42625}, {62, 42626}, {64, 26861}, {69, 55624}, {141, 55648}, {146, 38638}, {147, 38635}, {148, 38634}, {149, 38637}, {153, 38636}, {185, 54048}, {195, 37483}, {397, 42091}, {398, 42090}, {399, 10990}, {485, 6496}, {486, 6497}, {524, 55602}, {541, 15039}, {542, 50976}, {599, 55637}, {962, 58230}, {1038, 9642}, {1151, 51910}, {1152, 51911}, {1350, 33542}, {1352, 55643}, {1482, 5493}, {1498, 52099}, {1503, 55639}, {1587, 6445}, {1588, 6446}, {1620, 13403}, {3019, 50677}, {3053, 5355}, {3070, 6451}, {3071, 6452}, {3098, 11898}, {3207, 41326}, {3448, 38633}, {3519, 3532}, {3564, 55616}, {3579, 4816}, {3622, 28216}, {3624, 28154}, {3653, 51075}, {3763, 48896}, {3818, 55654}, {4297, 18526}, {4304, 37545}, {4316, 9654}, {4324, 9669}, {4746, 18481}, {4857, 5204}, {5010, 9655}, {5023, 7755}, {5050, 48881}, {5085, 48885}, {5093, 48874}, {5206, 44519}, {5210, 7756}, {5217, 5270}, {5237, 41973}, {5238, 41974}, {5254, 15655}, {5339, 10646}, {5340, 10645}, {5343, 42121}, {5344, 42124}, {5349, 42089}, {5350, 42092}, {5351, 42154}, {5352, 42155}, {5365, 42144}, {5366, 42145}, {5447, 18439}, {5480, 55678}, {5585, 7746}, {5702, 33636}, {5790, 35242}, {5876, 52093}, {5882, 12512}, {5894, 32063}, {5918, 40266}, {5925, 11202}, {5965, 55607}, {6030, 43585}, {6053, 16111}, {6144, 55596}, {6199, 42638}, {6221, 42261}, {6241, 54042}, {6243, 36987}, {6361, 37624}, {6395, 42637}, {6398, 42260}, {6407, 42216}, {6408, 42215}, {6409, 8960}, {6410, 58866}, {6411, 8976}, {6412, 13951}, {6418, 9541}, {6427, 9681}, {6428, 41945}, {6449, 18512}, {6450, 18510}, {6455, 6560}, {6456, 6561}, {6776, 55604}, {6781, 15815}, {7280, 9668}, {7585, 9691}, {7592, 37496}, {7666, 35602}, {7753, 31470}, {7767, 32824}, {7782, 7917}, {7869, 32456}, {7991, 50805}, {8148, 9778}, {8550, 33878}, {8567, 34785}, {8588, 44518}, {8666, 34707}, {8715, 34740}, {8717, 43652}, {8778, 41366}, {9588, 28208}, {9624, 28202}, {9729, 13321}, {9780, 28190}, {9821, 32519}, {10187, 16809}, {10188, 16808}, {10194, 42275}, {10195, 42276}, {10246, 31730}, {10263, 20791}, {10282, 48672}, {10516, 48891}, {10541, 19924}, {10605, 10619}, {10620, 11850}, {10625, 13382}, {10627, 15072}, {10984, 37477}, {10991, 13188}, {10992, 12188}, {10993, 12773}, {11178, 55650}, {11179, 55580}, {11204, 14864}, {11258, 38798}, {11270, 14841}, {11362, 50804}, {11444, 54044}, {11480, 42158}, {11481, 42157}, {11482, 51737}, {11485, 42151}, {11486, 42150}, {11522, 13624}, {11542, 43769}, {11543, 43770}, {11623, 38730}, {11645, 55644}, {11742, 44535}, {11935, 37480}, {12017, 48873}, {12121, 20417}, {12163, 33544}, {12279, 15067}, {12290, 32142}, {12315, 15105}, {12331, 38754}, {12384, 38639}, {12699, 59420}, {12897, 21970}, {13093, 44762}, {13115, 14900}, {13340, 40647}, {13348, 14855}, {13925, 43376}, {13993, 43377}, {14133, 50672}, {14528, 14861}, {14530, 20427}, {14537, 31492}, {14641, 18435}, {14643, 15042}, {14810, 18440}, {14848, 20190}, {14862, 17821}, {14907, 32820}, {15036, 34584}, {15040, 16534}, {15041, 16163}, {15046, 48378}, {15047, 44413}, {15051, 38789}, {15069, 55631}, {15484, 37512}, {15513, 44526}, {15515, 31467}, {15534, 55588}, {16192, 28160}, {16644, 43633}, {16645, 43632}, {16936, 18451}, {17502, 18493}, {17508, 48872}, {18525, 31663}, {18538, 42414}, {18553, 48905}, {18762, 42413}, {19130, 55671}, {21850, 33750}, {22236, 42433}, {22238, 42434}, {22676, 48673}, {22793, 58221}, {23039, 46850}, {24206, 55656}, {25406, 55584}, {25555, 48880}, {28158, 61268}, {28168, 31423}, {28194, 51083}, {28198, 30389}, {28204, 50820}, {28232, 61277}, {29012, 55651}, {29317, 42785}, {29323, 55658}, {31162, 31666}, {31479, 59325}, {31670, 55682}, {31884, 34507}, {32612, 41853}, {33520, 38574}, {33521, 38572}, {33596, 60922}, {34632, 61286}, {34782, 35450}, {35240, 51933}, {35255, 43407}, {35256, 43408}, {35770, 43338}, {35771, 43339}, {36836, 36968}, {36843, 36967}, {36969, 42490}, {36970, 42491}, {36990, 55653}, {37498, 43845}, {37727, 50808}, {37832, 42909}, {37835, 42908}, {38064, 51130}, {38066, 50801}, {38573, 38778}, {38579, 38783}, {38591, 52057}, {38593, 38803}, {38749, 52090}, {38805, 52698}, {39899, 44882}, {40107, 55641}, {40262, 48664}, {40280, 45186}, {40341, 55612}, {41121, 42586}, {41122, 42587}, {42021, 43719}, {42085, 42944}, {42086, 42945}, {42087, 42149}, {42088, 42152}, {42093, 42937}, {42094, 42936}, {42096, 42774}, {42097, 42773}, {42099, 42129}, {42100, 42132}, {42108, 42948}, {42109, 42949}, {42122, 42999}, {42123, 42998}, {42125, 42432}, {42128, 42431}, {42136, 42495}, {42137, 42494}, {42584, 43771}, {42585, 43772}, {42633, 43635}, {42634, 43634}, {42890, 42969}, {42891, 42968}, {42926, 43496}, {42927, 43495}, {43022, 43030}, {43023, 43031}, {43150, 55640}, {43273, 55606}, {43296, 43783}, {43297, 43784}, {43401, 51915}, {43402, 51916}, {43409, 43432}, {43410, 43433}, {46264, 55629}, {47102, 59546}, {47352, 55679}, {47355, 55669}, {48876, 55632}, {48879, 55670}, {48884, 55659}, {48889, 55660}, {48895, 55667}, {48898, 55646}, {48901, 55673}, {48904, 55668}, {48906, 55593}, {48910, 55674}, {48920, 53023}, {50798, 51079}, {50816, 51077}, {50954, 55647}, {50955, 51134}, {50961, 50971}, {50962, 50968}, {50965, 51174}, {50972, 51132}, {50975, 51175}, {51173, 55681}, {51185, 55694}, {51212, 55697}, {54131, 55687}, {54445, 58224}, {54891, 60642}, {58247, 61597}

X(62100) = midpoint of X(i) and X(j) for these {i,j}: {20, 3090}, {3534, 15700}
X(62100) = reflection of X(i) in X(j) for these {i,j}: {15703, 15698}, {3, 3528}, {381, 15701}, {3526, 3}, {3832, 14869}, {3851, 3523}, {47355, 55669}
X(62100) = inverse of X(61940) in orthocentroidal circle
X(62100) = inverse of X(61940) in Yff hyperbola
X(62100) = complement of X(62021)
X(62100) = anticomplement of X(3857)
X(62100) = pole of line {523, 61940} with respect to the orthocentroidal circle
X(62100) = pole of line {185, 15720} with respect to the Jerabek hyperbola
X(62100) = pole of line {6, 61940} with respect to the Kiepert hyperbola
X(62100) = pole of line {523, 61940} with respect to the Yff hyperbola
X(62100) = pole of line {69, 11541} with respect to the Wallace hyperbola
X(62100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(20), X(26861)}}, {{A, B, C, X(64), X(26863)}}, {{A, B, C, X(69), X(11541)}}, {{A, B, C, X(265), X(50688)}}, {{A, B, C, X(382), X(14841)}}, {{A, B, C, X(1105), X(15720)}}, {{A, B, C, X(1294), X(3526)}}, {{A, B, C, X(2693), X(37947)}}, {{A, B, C, X(3091), X(14861)}}, {{A, B, C, X(3146), X(3519)}}, {{A, B, C, X(3518), X(3532)}}, {{A, B, C, X(3521), X(50689)}}, {{A, B, C, X(3529), X(42021)}}, {{A, B, C, X(3544), X(15740)}}, {{A, B, C, X(3843), X(15319)}}, {{A, B, C, X(3856), X(15318)}}, {{A, B, C, X(5879), X(34864)}}, {{A, B, C, X(6662), X(38071)}}, {{A, B, C, X(7486), X(51348)}}, {{A, B, C, X(10109), X(13599)}}, {{A, B, C, X(10594), X(43719)}}, {{A, B, C, X(12102), X(21400)}}, {{A, B, C, X(13623), X(15022)}}, {{A, B, C, X(14528), X(14865)}}, {{A, B, C, X(14893), X(52441)}}, {{A, B, C, X(15693), X(40448)}}, {{A, B, C, X(15703), X(60171)}}, {{A, B, C, X(18317), X(41106)}}, {{A, B, C, X(19710), X(60122)}}, {{A, B, C, X(34483), X(49140)}}, {{A, B, C, X(35475), X(57713)}}, {{A, B, C, X(35502), X(43908)}}, {{A, B, C, X(43917), X(44995)}}
X(62100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 3861}, {2, 12103, 17800}, {2, 15711, 6863}, {2, 17800, 5076}, {2, 20, 11541}, {3, 15694, 15717}, {3, 15695, 548}, {3, 15704, 5079}, {3, 17800, 2}, {3, 3526, 15700}, {3, 376, 15696}, {3, 382, 5054}, {3, 3830, 631}, {3, 3843, 549}, {3, 4, 15720}, {3, 5055, 3530}, {3, 5070, 3524}, {3, 5073, 140}, {3, 548, 15688}, {3, 631, 15706}, {20, 140, 5073}, {20, 3090, 30}, {20, 3524, 3627}, {20, 3627, 15685}, {30, 14869, 3832}, {30, 15698, 15703}, {30, 3523, 3851}, {140, 3523, 15701}, {140, 3627, 5068}, {140, 381, 1656}, {140, 3850, 15699}, {140, 5068, 5070}, {140, 5073, 381}, {140, 550, 20}, {376, 10304, 15690}, {376, 8703, 15689}, {381, 3526, 3090}, {382, 5054, 5072}, {546, 15717, 15694}, {548, 550, 3522}, {549, 3529, 3843}, {550, 3858, 15686}, {631, 15704, 3830}, {1532, 3525, 3545}, {1656, 3522, 14093}, {1656, 3534, 1657}, {1657, 15696, 550}, {1657, 15706, 3850}, {1657, 15720, 4}, {2041, 2042, 3856}, {2045, 2046, 11539}, {3146, 3533, 3858}, {3522, 3523, 3528}, {3522, 5059, 10304}, {3523, 17566, 15709}, {3525, 15683, 3853}, {3528, 17538, 15702}, {3529, 7397, 8703}, {3530, 3858, 3533}, {3534, 8703, 15716}, {3543, 15759, 15707}, {3830, 15706, 15723}, {3832, 15698, 14869}, {3845, 15710, 15718}, {3853, 17504, 3525}, {5059, 10304, 10299}, {5237, 43194, 42975}, {5238, 43193, 42974}, {6411, 42267, 8976}, {6412, 42266, 13951}, {6449, 42259, 18512}, {6450, 42258, 18510}, {6455, 6560, 13903}, {6456, 6561, 13961}, {6879, 17578, 14893}, {7580, 15717, 15682}, {9681, 41946, 6427}, {10263, 55286, 20791}, {10299, 15702, 3523}, {10299, 17538, 5059}, {10304, 15681, 15693}, {10304, 15682, 14891}, {10304, 15690, 15681}, {10304, 17538, 5}, {10619, 12307, 13432}, {10645, 42131, 42817}, {10646, 42130, 42818}, {11001, 15717, 546}, {11480, 42158, 42988}, {11481, 42157, 42989}, {12101, 15721, 5055}, {13348, 14855, 18436}, {13348, 18436, 54047}, {14810, 59411, 18440}, {14813, 14814, 3146}, {14869, 15703, 3526}, {15685, 15689, 15691}, {15688, 15696, 3}, {15690, 15693, 3534}, {15693, 15696, 17538}, {15704, 15723, 382}, {17563, 17576, 16857}, {37853, 38723, 10620}, {38726, 38788, 399}, {38731, 38747, 12188}, {38736, 38742, 13188}, {42431, 43238, 42128}, {42432, 43239, 42125}, {42434, 42528, 22238}, {44882, 55610, 39899}, {48891, 55655, 10516}, {48920, 55672, 53023}, {52093, 54041, 5876}


X(62101) = X(2)X(3)∩X(15)X(42416)

Barycentrics    38*a^4-7*(b^2-c^2)^2-31*a^2*(b^2+c^2) : :
X(62101) = -7*X[2]+15*X[3], -7*X[597]+11*X[55689], -3*X[1699]+7*X[50833], -5*X[3579]+X[34641], 7*X[3629]+5*X[55585], X[3631]+5*X[48892], X[3654]+7*X[50820], -15*X[3655]+7*X[51094], -X[4745]+3*X[31663], -7*X[8584]+3*X[55720], -3*X[11224]+7*X[50824], -3*X[14810]+X[50991] and many others

X(62101) lies on these lines: {2, 3}, {15, 42416}, {16, 42415}, {61, 42420}, {62, 42419}, {511, 50972}, {515, 51081}, {517, 50816}, {524, 55601}, {542, 55625}, {597, 55689}, {952, 50815}, {1503, 55638}, {1699, 50833}, {3564, 50971}, {3579, 34641}, {3629, 55585}, {3631, 48892}, {3636, 28198}, {3654, 50820}, {3655, 51094}, {4669, 28224}, {4745, 31663}, {5844, 50808}, {5901, 34638}, {5965, 51135}, {6329, 19924}, {6468, 42216}, {6469, 42215}, {8584, 55720}, {10645, 49903}, {10646, 49904}, {11224, 50824}, {11542, 46334}, {11543, 46335}, {12816, 42889}, {12817, 42888}, {12818, 43254}, {12819, 43255}, {12820, 42109}, {12821, 42108}, {14810, 50991}, {15516, 33751}, {15520, 51737}, {15534, 50968}, {16881, 55286}, {16962, 43485}, {16963, 43486}, {17502, 51109}, {19106, 43230}, {19107, 43231}, {20190, 41153}, {20582, 48891}, {20583, 55716}, {22165, 51134}, {28160, 51069}, {28168, 50829}, {28174, 51103}, {28178, 50828}, {28202, 51108}, {28212, 51083}, {29012, 51143}, {29181, 55686}, {29323, 50984}, {33750, 50987}, {34380, 50965}, {34628, 61510}, {34632, 61597}, {34747, 34773}, {35255, 43209}, {35256, 43210}, {36967, 42792}, {36968, 42791}, {36969, 43872}, {36970, 43871}, {38079, 48872}, {38098, 61524}, {39884, 51186}, {41107, 43106}, {41108, 43105}, {41121, 42629}, {41122, 42630}, {41943, 42798}, {41944, 42797}, {42087, 42497}, {42088, 42496}, {42089, 43247}, {42090, 49948}, {42091, 49947}, {42092, 43246}, {42115, 49827}, {42116, 49826}, {42122, 42528}, {42123, 42529}, {42130, 49824}, {42131, 49825}, {42136, 49908}, {42137, 49907}, {42147, 42533}, {42148, 42532}, {42154, 49810}, {42155, 49811}, {42266, 43212}, {42267, 43211}, {42417, 42524}, {42418, 42525}, {42429, 43195}, {42430, 43196}, {42502, 43013}, {42503, 43012}, {42504, 42973}, {42505, 42972}, {42506, 42939}, {42507, 42938}, {42510, 42626}, {42511, 42625}, {42568, 43342}, {42569, 43343}, {42631, 42942}, {42632, 42943}, {42633, 49875}, {42634, 49876}, {42635, 43022}, {42636, 43023}, {42682, 43545}, {42683, 43544}, {42686, 43001}, {42687, 43000}, {42984, 43364}, {42985, 43365}, {43002, 49874}, {43003, 49873}, {44882, 55608}, {48310, 48879}, {48873, 51185}, {48881, 55710}, {48885, 51732}, {50812, 51093}, {50826, 59387}, {50959, 55670}, {50961, 55618}, {50975, 50992}, {50976, 54173}, {50980, 55654}, {50982, 55627}, {50986, 55593}, {50988, 53023}, {50989, 55626}, {51023, 55643}, {51067, 61249}, {51084, 61269}, {51120, 61280}, {51136, 55603}, {51139, 55664}, {51709, 59420}, {54169, 55635}, {54170, 61624}

X(62101) = midpoint of X(i) and X(j) for these {i,j}: {3, 15691}, {20, 547}, {140, 15686}, {376, 548}, {546, 15681}, {549, 12103}, {3534, 12100}, {5901, 34638}, {8703, 15690}, {11001, 12101}, {14893, 15704}, {20582, 48891}, {34628, 61510}, {34632, 61597}, {54170, 61624}
X(62101) = reflection of X(i) in X(j) for these {i,j}: {10109, 12100}, {10124, 3}, {11737, 3530}, {11812, 15759}, {12102, 547}, {14893, 16239}, {15759, 8703}, {381, 12108}, {3543, 3856}, {3628, 14891}, {3845, 11540}, {3850, 549}, {3860, 11812}, {3861, 10124}
X(62101) = complement of X(62022)
X(62101) = anticomplement of X(61960)
X(62101) = pole of line {69, 62052} with respect to the Wallace hyperbola
X(62101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(10124)}}, {{A, B, C, X(3830), X(57823)}}, {{A, B, C, X(43970), X(50693)}}
X(62101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 382}, {2, 15688, 8703}, {2, 15698, 15707}, {3, 15682, 15713}, {3, 15683, 15699}, {3, 1657, 7486}, {3, 20, 3858}, {3, 30, 10124}, {3, 3534, 15682}, {3, 3839, 549}, {20, 15715, 14269}, {30, 11540, 3845}, {30, 11812, 3860}, {30, 12100, 10109}, {30, 12108, 381}, {30, 14891, 3628}, {30, 16239, 14893}, {30, 3856, 3543}, {30, 547, 12102}, {30, 549, 3850}, {30, 8703, 15759}, {140, 12100, 15719}, {376, 10304, 15696}, {376, 3522, 15689}, {376, 8703, 15690}, {382, 3839, 15687}, {382, 550, 12103}, {548, 12103, 3522}, {549, 11001, 12101}, {550, 14869, 20}, {550, 17504, 15681}, {3524, 14893, 16239}, {3528, 15681, 17504}, {3529, 15696, 550}, {3830, 10304, 15711}, {3845, 12100, 11540}, {5066, 12101, 3839}, {5066, 15690, 15691}, {5071, 10304, 3}, {8703, 15695, 548}, {8703, 15711, 10304}, {10109, 12100, 11812}, {10109, 15682, 3861}, {10109, 15759, 12100}, {10124, 15687, 11737}, {10299, 12108, 3530}, {10304, 15686, 140}, {10304, 15696, 15686}, {11001, 12101, 30}, {11001, 15710, 2}, {11812, 15759, 14891}, {12100, 15690, 3534}, {12101, 12103, 11001}, {12102, 15759, 15693}, {14093, 15685, 15698}, {14269, 14869, 547}, {14269, 15715, 14869}, {15681, 15688, 3528}, {15681, 17504, 546}, {15682, 15713, 5066}, {15682, 15719, 5071}, {15684, 15705, 632}, {15685, 15698, 5}, {15686, 15711, 3830}, {15687, 15699, 3855}, {15688, 15689, 15710}, {15688, 15696, 15700}, {15690, 15691, 15697}


X(62102) = X(2)X(3)∩X(165)X(4678)

Barycentrics    27*a^4-5*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62102) = -15*X[2]+32*X[3], 16*X[40]+X[20014], -5*X[69]+22*X[55622], X[145]+16*X[12512], -24*X[165]+7*X[4678], 5*X[193]+12*X[55591], -5*X[1352]+22*X[55642], X[1992]+16*X[50972], X[3241]+16*X[50816], -45*X[3617]+28*X[61252], 5*X[3620]+12*X[59411], X[3621]+16*X[4297] and many others

X(62102) lies on these lines: {2, 3}, {40, 20014}, {69, 55622}, {145, 12512}, {165, 4678}, {193, 55591}, {316, 32873}, {397, 51945}, {398, 51944}, {590, 43519}, {615, 43520}, {1131, 6411}, {1132, 6412}, {1352, 55642}, {1587, 6484}, {1588, 6485}, {1992, 50972}, {3241, 50816}, {3617, 61252}, {3620, 59411}, {3621, 4297}, {3622, 9589}, {3623, 9778}, {3679, 51081}, {3785, 32880}, {4301, 30392}, {4309, 37587}, {4325, 51817}, {4330, 14986}, {4788, 30271}, {5010, 31410}, {5102, 61044}, {5188, 20105}, {5265, 9670}, {5267, 31420}, {5281, 9657}, {5657, 61248}, {5731, 61288}, {5734, 31730}, {5882, 50812}, {5921, 48892}, {5984, 38736}, {6409, 31414}, {6429, 7585}, {6430, 7586}, {6431, 43512}, {6432, 43511}, {6433, 42259}, {6434, 42258}, {6437, 6460}, {6438, 6459}, {6480, 51910}, {6481, 51911}, {6496, 23269}, {6497, 23275}, {6776, 55603}, {6781, 31450}, {7751, 53141}, {7782, 32841}, {7802, 32895}, {8142, 26824}, {8550, 50968}, {8589, 31417}, {9541, 35770}, {9542, 31487}, {9588, 38155}, {9607, 44541}, {9681, 35771}, {9693, 42522}, {9706, 37480}, {10519, 55636}, {11004, 46945}, {11160, 50971}, {11180, 55637}, {11278, 61282}, {11362, 20052}, {12571, 58217}, {12702, 61290}, {14683, 37853}, {14853, 55688}, {14907, 32840}, {15066, 16936}, {15072, 15606}, {15602, 31400}, {16192, 46933}, {16200, 20070}, {16772, 43465}, {16773, 43466}, {17128, 55729}, {18581, 43295}, {18582, 43294}, {20049, 50808}, {20057, 58241}, {20080, 44882}, {20094, 38747}, {20095, 38759}, {20096, 38771}, {20099, 38803}, {21766, 61150}, {22236, 43304}, {22238, 43305}, {25406, 55582}, {28164, 46932}, {31145, 50815}, {31407, 37512}, {31425, 59387}, {31670, 55683}, {32785, 43560}, {32786, 43561}, {33748, 48874}, {33750, 48885}, {33751, 39561}, {33884, 46850}, {34754, 42433}, {34755, 42434}, {35240, 41467}, {35369, 38738}, {35812, 43407}, {35813, 43408}, {37689, 44519}, {40107, 55640}, {40693, 42891}, {40694, 42890}, {40897, 47381}, {41112, 43310}, {41113, 43311}, {41949, 42263}, {41950, 42264}, {42140, 42491}, {42141, 42490}, {42153, 43870}, {42156, 43869}, {42157, 42996}, {42158, 42997}, {42164, 43557}, {42165, 43556}, {42500, 43477}, {42501, 43478}, {42528, 42999}, {42529, 42998}, {42775, 43552}, {42776, 43553}, {42793, 49861}, {42794, 49862}, {42795, 43485}, {42796, 43486}, {42797, 42964}, {42798, 42965}, {42990, 43232}, {42991, 43233}, {43174, 50871}, {43238, 43540}, {43239, 43541}, {43242, 52079}, {43243, 52080}, {43372, 43403}, {43373, 43404}, {46264, 55627}, {48873, 55695}, {48880, 55680}, {48881, 55711}, {48898, 55645}, {50969, 52987}, {50974, 55602}, {51027, 51134}, {51170, 55722}, {51212, 55699}, {51537, 55656}

X(62102) = midpoint of X(i) and X(j) for these {i,j}: {20, 7486}
X(62102) = reflection of X(i) in X(j) for these {i,j}: {3533, 3}
X(62102) = anticomplement of X(3854)
X(62102) = pole of line {185, 15708} with respect to the Jerabek hyperbola
X(62102) = pole of line {69, 50692} with respect to the Wallace hyperbola
X(62102) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(33699)}}, {{A, B, C, X(69), X(50692)}}, {{A, B, C, X(1105), X(15708)}}, {{A, B, C, X(1294), X(3533)}}, {{A, B, C, X(3346), X(3851)}}, {{A, B, C, X(3856), X(4846)}}, {{A, B, C, X(5072), X(46455)}}, {{A, B, C, X(15749), X(50687)}}, {{A, B, C, X(18850), X(44245)}}, {{A, B, C, X(19711), X(60007)}}
X(62102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16418, 4201}, {3, 11001, 5056}, {3, 15723, 15712}, {3, 1657, 547}, {3, 20, 3832}, {3, 30, 3533}, {3, 3545, 3523}, {3, 3850, 15719}, {3, 4, 15708}, {3, 550, 11001}, {4, 15699, 3091}, {20, 10304, 631}, {20, 15717, 17578}, {20, 3523, 382}, {20, 382, 15683}, {20, 3832, 5059}, {20, 548, 3522}, {20, 631, 3146}, {20, 7486, 30}, {376, 15688, 15697}, {376, 3528, 15696}, {550, 8703, 3628}, {631, 5067, 11539}, {3146, 3522, 10304}, {3146, 3832, 3853}, {3522, 15717, 3528}, {3528, 15696, 20}, {3529, 15692, 5068}, {3533, 7486, 13742}, {3853, 12100, 16239}, {3855, 10303, 13735}, {4197, 17533, 4193}, {5056, 10304, 3}, {6998, 15709, 140}, {10299, 15704, 3839}, {10304, 17800, 15717}, {11001, 11539, 3543}, {11001, 15715, 3545}, {14093, 15704, 10299}, {14869, 15685, 4}, {15688, 15694, 8703}, {15691, 15710, 15640}, {15696, 17800, 550}, {15697, 15708, 15686}, {15699, 15714, 12100}, {15717, 17578, 2}


X(62103) = X(2)X(3)∩X(542)X(55624)

Barycentrics    43*a^4-8*(b^2-c^2)^2-35*a^2*(b^2+c^2) : :
X(62103) = -8*X[2]+17*X[3], 2*X[3098]+7*X[50976], 2*X[3579]+7*X[50820], X[3653]+2*X[59420], X[3655]+8*X[50816], X[11179]+8*X[50972], 2*X[11693]+X[20127], -X[12702]+10*X[50812], -2*X[15533]+11*X[55620], 5*X[18481]+4*X[50827], -X[18526]+10*X[50819], 5*X[31730]+4*X[51085] and many others

X(62103) lies on these lines: {2, 3}, {542, 55624}, {3098, 50976}, {3579, 50820}, {3653, 59420}, {3655, 50816}, {5343, 43003}, {5344, 43002}, {5418, 43380}, {5420, 43381}, {5585, 39563}, {6407, 51910}, {6408, 51911}, {6417, 43339}, {6418, 43338}, {6500, 41946}, {6501, 41945}, {10645, 42689}, {10646, 42688}, {10653, 42684}, {10654, 42685}, {11179, 50972}, {11480, 42892}, {11481, 42893}, {11485, 42800}, {11486, 42799}, {11645, 55643}, {11693, 20127}, {12702, 50812}, {12816, 42773}, {12817, 42774}, {13623, 44731}, {13665, 43314}, {13785, 43315}, {15533, 55620}, {16267, 43330}, {16268, 43331}, {16644, 42930}, {16645, 42931}, {16962, 42795}, {16963, 42796}, {17851, 42215}, {18481, 50827}, {18526, 50819}, {19106, 43298}, {19107, 43299}, {19924, 55697}, {21309, 44541}, {22052, 61306}, {28178, 58226}, {28198, 58230}, {31730, 51085}, {33544, 44786}, {33751, 53091}, {33878, 50968}, {34632, 58247}, {34718, 50815}, {34748, 50808}, {34773, 50813}, {35822, 43384}, {35823, 43385}, {36967, 43303}, {36968, 43302}, {37496, 46945}, {39899, 50975}, {41943, 42965}, {41944, 42964}, {42099, 43545}, {42100, 43544}, {42115, 43301}, {42116, 43300}, {42119, 56616}, {42120, 56617}, {42130, 42686}, {42131, 42687}, {42260, 43525}, {42261, 43526}, {42625, 43021}, {42626, 43020}, {42690, 42972}, {42691, 42973}, {42786, 51167}, {42954, 43325}, {42955, 43324}, {43150, 55639}, {43273, 55604}, {43342, 52045}, {43343, 52046}, {43879, 60313}, {43880, 60314}, {46264, 50982}, {47353, 55648}, {48881, 51138}, {48885, 55692}, {48892, 50955}, {48906, 50969}, {50963, 55676}, {50966, 51182}, {50993, 55644}, {51024, 55678}, {51174, 55594}, {51187, 55597}

X(62103) = midpoint of X(i) and X(j) for these {i,j}: {3534, 15706}
X(62103) = reflection of X(i) in X(j) for these {i,j}: {15706, 10304}, {15710, 8703}, {381, 15708}, {5054, 15710}, {5055, 15706}
X(62103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5071), X(13623)}}, {{A, B, C, X(13596), X(44731)}}, {{A, B, C, X(34483), X(49138)}}, {{A, B, C, X(44245), X(57822)}}, {{A, B, C, X(45759), X(46168)}}
X(62103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15685, 15703}, {3, 15702, 6825}, {3, 16239, 6850}, {3, 3534, 15684}, {3, 381, 15722}, {3, 5056, 6948}, {3, 6958, 3543}, {4, 15692, 11540}, {4, 15717, 632}, {4, 3534, 15681}, {30, 10304, 15706}, {30, 15706, 5055}, {30, 8703, 15710}, {376, 15688, 15689}, {376, 3522, 15690}, {376, 8703, 15696}, {381, 3534, 15704}, {547, 3530, 15713}, {548, 15704, 3522}, {549, 15640, 5072}, {549, 3534, 17800}, {549, 3856, 2}, {550, 12108, 20}, {550, 8703, 547}, {3146, 15711, 15723}, {3522, 15713, 14093}, {3524, 10304, 15759}, {3526, 15683, 3830}, {3526, 3534, 15683}, {3528, 15686, 15693}, {3530, 15704, 4}, {3534, 15688, 10304}, {3534, 15706, 30}, {3545, 15717, 14890}, {3830, 15714, 6842}, {5054, 15688, 8703}, {5055, 15684, 14269}, {5055, 15707, 15709}, {5079, 15719, 15694}, {7486, 15698, 549}, {8703, 12103, 15692}, {10304, 15683, 3524}, {11001, 15700, 3843}, {12812, 15690, 15691}, {15682, 15714, 15720}, {15683, 15759, 3526}, {15686, 15693, 5073}, {15688, 15689, 3}, {15688, 15696, 5054}, {15689, 15695, 15688}, {15690, 15698, 3534}, {15698, 15704, 381}, {15706, 15709, 15707}, {15713, 15759, 15698}, {42799, 43420, 11486}, {42800, 43421, 11485}


X(62104) = X(2)X(3)∩X(15)X(42966)

Barycentrics    16*a^4-3*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62104) = -9*X[2]+19*X[3], -3*X[141]+8*X[55647], -6*X[165]+X[37705], -X[575]+6*X[33751], 2*X[576]+3*X[48874], 3*X[1353]+2*X[53097], 3*X[1483]+2*X[7991], -6*X[3589]+11*X[55675], -X[3630]+6*X[55615], -2*X[3631]+7*X[55633], -3*X[3817]+8*X[58219], -3*X[4301]+8*X[58232] and many others

X(62104) lies on these lines: {2, 3}, {15, 42966}, {16, 42967}, {141, 55647}, {165, 37705}, {511, 32523}, {516, 31666}, {524, 55600}, {542, 51134}, {575, 33751}, {576, 48874}, {1353, 53097}, {1385, 28232}, {1483, 7991}, {1503, 55637}, {2777, 22251}, {3304, 10386}, {3564, 55614}, {3579, 28236}, {3589, 55675}, {3630, 55615}, {3631, 55633}, {3817, 58219}, {3984, 9945}, {4301, 58232}, {5237, 42117}, {5238, 42118}, {5351, 16961}, {5352, 16960}, {5368, 15048}, {5480, 55679}, {5493, 50824}, {5609, 14677}, {5921, 55632}, {5965, 44882}, {6247, 32903}, {6411, 43434}, {6412, 43435}, {6425, 19117}, {6426, 19116}, {6428, 9541}, {6445, 43883}, {6446, 43884}, {6447, 6460}, {6448, 6459}, {6451, 13925}, {6452, 13993}, {6453, 42216}, {6454, 42215}, {6776, 55602}, {6781, 31406}, {7843, 12040}, {7982, 61283}, {7987, 28178}, {8550, 55588}, {9588, 38081}, {9730, 16982}, {10222, 28228}, {10263, 15012}, {10283, 30389}, {10541, 48873}, {10625, 45956}, {10627, 14855}, {10645, 43004}, {10646, 43005}, {10990, 38632}, {10991, 38628}, {10992, 38627}, {10993, 38631}, {11480, 43631}, {11481, 43630}, {11592, 15030}, {12162, 54044}, {12244, 15039}, {12511, 38602}, {12512, 28234}, {12699, 61273}, {13348, 13491}, {13624, 59420}, {13630, 36987}, {14094, 38788}, {14641, 15067}, {14643, 15023}, {14927, 55643}, {15020, 20127}, {15021, 32423}, {15044, 40685}, {15054, 38723}, {15178, 31730}, {16192, 18357}, {16267, 42794}, {16268, 42793}, {16881, 20791}, {16964, 42778}, {16965, 42777}, {18358, 55651}, {18439, 44324}, {18481, 61245}, {18583, 55684}, {18907, 53096}, {19924, 55698}, {20190, 21850}, {21167, 48891}, {22052, 61314}, {22236, 42123}, {22238, 42122}, {22330, 51737}, {22676, 32516}, {23235, 38742}, {25406, 55580}, {28186, 35242}, {28204, 51079}, {29012, 55650}, {29181, 55687}, {29317, 55677}, {30714, 38626}, {31399, 50825}, {31423, 61260}, {31425, 50826}, {31487, 43256}, {31663, 38112}, {32141, 44846}, {33521, 38630}, {33542, 43807}, {33750, 51732}, {34153, 37853}, {34380, 55595}, {34573, 55660}, {34584, 38795}, {34628, 61249}, {35812, 43209}, {35813, 43210}, {36836, 42091}, {36843, 42090}, {37471, 43576}, {37498, 46945}, {38110, 48880}, {38136, 55674}, {38664, 38731}, {38665, 38754}, {38666, 38766}, {38667, 38778}, {38675, 38798}, {38736, 51524}, {38747, 51523}, {38759, 51529}, {38771, 51528}, {38783, 51534}, {39874, 55624}, {39884, 55649}, {40693, 43428}, {40694, 43429}, {42099, 42599}, {42100, 42598}, {42101, 43241}, {42102, 43240}, {42103, 42493}, {42106, 42492}, {42108, 42580}, {42109, 42581}, {42112, 43102}, {42113, 43103}, {42115, 42923}, {42116, 42922}, {42121, 42164}, {42124, 42165}, {42136, 43647}, {42137, 43648}, {42144, 42163}, {42145, 42166}, {42147, 42528}, {42148, 42529}, {42160, 42585}, {42161, 42584}, {42225, 53516}, {42226, 53513}, {42266, 43880}, {42267, 43879}, {42431, 43027}, {42432, 43026}, {42502, 43424}, {42503, 43425}, {42612, 42684}, {42613, 42685}, {42625, 42924}, {42626, 42925}, {42795, 42891}, {42796, 42890}, {42912, 43193}, {42913, 43194}, {42936, 43401}, {42937, 43402}, {42938, 43245}, {42939, 43244}, {42946, 44016}, {42947, 44015}, {42998, 43635}, {42999, 43634}, {43197, 43465}, {43198, 43466}, {43364, 43649}, {43365, 43644}, {43621, 55671}, {46264, 55626}, {46850, 54042}, {48876, 48892}, {48898, 55644}, {48906, 52987}, {48942, 51128}, {50811, 61297}, {50813, 50831}, {50820, 50823}, {50832, 58229}, {50865, 58225}, {50965, 55597}, {50969, 50986}, {50971, 55611}, {50972, 55583}, {50976, 50978}, {50979, 55718}, {51126, 55666}, {51163, 55670}, {51177, 51183}, {55639, 61545}, {55641, 59411}, {58221, 61272}, {58245, 61286}, {61251, 61524}

X(62104) = midpoint of X(i) and X(j) for these {i,j}: {3, 17538}, {20, 1656}, {376, 15695}, {1657, 17578}, {3522, 15696}, {3534, 15692}, {14093, 15697}, {15686, 15713}
X(62104) = reflection of X(i) in X(j) for these {i,j}: {15711, 14093}, {15713, 15714}, {15714, 8703}, {3522, 548}, {3627, 3091}, {3843, 140}, {3845, 15694}, {3858, 631}, {5, 15712}, {550, 15696}, {5071, 12100}, {5076, 12812}, {51126, 55666}, {632, 3}
X(62104) = complement of X(62023)
X(62104) = anticomplement of X(3859)
X(62104) = pole of line {185, 12108} with respect to the Jerabek hyperbola
X(62104) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(50690)}}, {{A, B, C, X(632), X(1294)}}, {{A, B, C, X(1105), X(12108)}}, {{A, B, C, X(12101), X(17505)}}, {{A, B, C, X(13623), X(44904)}}, {{A, B, C, X(15319), X(41987)}}, {{A, B, C, X(15690), X(43970)}}
X(62104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10303, 12100}, {3, 15681, 5072}, {3, 15696, 17538}, {3, 1657, 3090}, {3, 16661, 7555}, {3, 20, 546}, {3, 30, 632}, {3, 3146, 140}, {3, 3529, 3628}, {3, 3534, 3146}, {3, 3627, 14869}, {3, 4, 12108}, {3, 5072, 3523}, {3, 5076, 631}, {3, 550, 15704}, {3, 632, 15712}, {5, 15703, 6929}, {5, 550, 15686}, {20, 10299, 3830}, {20, 15690, 550}, {20, 15705, 4}, {30, 12100, 5071}, {30, 12812, 5076}, {30, 140, 3843}, {30, 14093, 15711}, {30, 15714, 15713}, {30, 631, 3858}, {30, 8703, 15714}, {140, 15687, 5}, {140, 3146, 3857}, {140, 3860, 7486}, {376, 15688, 15690}, {376, 3090, 16434}, {376, 3522, 15696}, {382, 10303, 12811}, {546, 12811, 3854}, {546, 16239, 15022}, {548, 550, 8703}, {549, 10109, 11539}, {549, 550, 20}, {550, 3627, 12103}, {631, 3522, 14093}, {1656, 3843, 3545}, {1657, 10304, 3530}, {1657, 15694, 17578}, {3090, 10304, 3}, {3146, 16418, 3832}, {3146, 3857, 15687}, {3522, 15692, 3528}, {3522, 15695, 548}, {3522, 17578, 10304}, {3523, 15681, 3853}, {3523, 17530, 15702}, {3524, 17800, 3850}, {3530, 15691, 1657}, {3545, 15703, 10109}, {3627, 15720, 6973}, {3628, 12103, 3529}, {3830, 10299, 16239}, {3843, 5079, 3091}, {5054, 5059, 3861}, {5072, 15681, 11541}, {5073, 15717, 547}, {6451, 43407, 13925}, {6452, 43408, 13993}, {10109, 15705, 549}, {10304, 15691, 3845}, {10627, 14855, 45957}, {12100, 12811, 10303}, {12101, 15759, 6863}, {14093, 15697, 30}, {14093, 17538, 12812}, {14869, 15687, 5079}, {14869, 15704, 3627}, {15681, 15759, 15699}, {15685, 15710, 10124}, {15688, 15689, 15705}, {15688, 15696, 1656}, {15689, 15703, 3534}, {15695, 15696, 3522}, {15713, 15714, 17504}


X(62105) = X(2)X(3)∩X(13)X(42798)

Barycentrics    21*a^4-4*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62105) = -12*X[2]+25*X[3], -3*X[3060]+16*X[55286], -16*X[3579]+3*X[51515], -28*X[3626]+15*X[61247], 8*X[3629]+5*X[55584], -16*X[3631]+55*X[55632], -32*X[3636]+45*X[58230], -14*X[4301]+27*X[61279], -3*X[5050]+16*X[33751], 6*X[5493]+7*X[61282], X[5882]+12*X[50816], -12*X[5886]+25*X[58224] and many others

X(62105) lies on these lines: {2, 3}, {13, 42798}, {14, 42797}, {61, 41972}, {62, 41971}, {1350, 43807}, {3060, 55286}, {3411, 42115}, {3412, 42116}, {3579, 51515}, {3626, 61247}, {3629, 55584}, {3631, 55632}, {3636, 58230}, {3767, 15603}, {4299, 31480}, {4301, 61279}, {4338, 37606}, {5050, 33751}, {5237, 43486}, {5238, 43485}, {5351, 43419}, {5352, 43418}, {5493, 61282}, {5882, 50816}, {5886, 58224}, {6221, 51910}, {6329, 48873}, {6398, 51911}, {6417, 9681}, {6445, 31487}, {6446, 42258}, {6449, 43318}, {6450, 43319}, {6451, 35812}, {6452, 35813}, {6472, 7585}, {6473, 7586}, {6496, 42267}, {6497, 42266}, {6501, 9541}, {7737, 31470}, {7749, 11742}, {8148, 61284}, {8550, 50972}, {8567, 32903}, {8976, 41954}, {9607, 21309}, {9656, 59325}, {9671, 59319}, {9691, 42216}, {9693, 19117}, {9778, 61286}, {11455, 11592}, {11480, 42939}, {11481, 42938}, {11485, 42433}, {11486, 42434}, {12017, 48885}, {12121, 38633}, {12279, 54044}, {12308, 38788}, {12512, 37727}, {12702, 61291}, {12820, 42581}, {12821, 42580}, {13491, 54047}, {13624, 61274}, {13951, 41953}, {14855, 15606}, {15042, 34584}, {15066, 52100}, {15068, 52099}, {15069, 48892}, {15533, 55617}, {15655, 44519}, {16644, 43546}, {16645, 43547}, {16772, 42131}, {16773, 42130}, {17851, 42644}, {19106, 42546}, {19107, 42545}, {20054, 61297}, {20070, 58238}, {20127, 38638}, {21358, 55652}, {23236, 37853}, {24981, 38723}, {28160, 31425}, {30435, 44541}, {31730, 37624}, {32787, 43523}, {32788, 43524}, {33556, 35268}, {33749, 55724}, {34641, 51079}, {35021, 38634}, {35022, 38635}, {35023, 38636}, {35024, 38765}, {35240, 55157}, {35242, 61254}, {36836, 42779}, {36843, 42780}, {36969, 42947}, {36970, 42946}, {37832, 43230}, {37835, 43231}, {38066, 61252}, {38072, 55675}, {40107, 48662}, {40341, 55610}, {40693, 43106}, {40694, 43105}, {41112, 42794}, {41113, 42793}, {41969, 42261}, {41970, 42260}, {42099, 42491}, {42100, 42490}, {42415, 52080}, {42416, 52079}, {42528, 42991}, {42529, 42990}, {43174, 51081}, {43273, 55602}, {44882, 55604}, {46264, 55624}, {47353, 55647}, {48661, 59420}, {48872, 55678}, {48879, 55671}, {48880, 55682}, {48881, 53091}, {48891, 55654}, {48896, 55656}, {48898, 55643}, {48905, 55648}, {48920, 55673}, {50955, 55631}, {50968, 52987}, {50976, 55614}, {51024, 55679}, {51095, 58249}

X(62105) = midpoint of X(i) and X(j) for these {i,j}: {20, 5067}
X(62105) = reflection of X(i) in X(j) for these {i,j}: {5079, 10299}
X(62105) = pole of line {185, 15701} with respect to the Jerabek hyperbola
X(62105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(15701)}}, {{A, B, C, X(1294), X(46219)}}, {{A, B, C, X(3858), X(15318)}}, {{A, B, C, X(15718), X(60007)}}, {{A, B, C, X(18850), X(58195)}}
X(62105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 15720}, {3, 15681, 3851}, {3, 15684, 140}, {3, 1657, 5055}, {3, 17800, 5070}, {3, 20, 3843}, {3, 3534, 5073}, {3, 4, 15701}, {3, 5073, 15694}, {3, 550, 15681}, {5, 12101, 3832}, {5, 548, 3522}, {20, 3528, 3530}, {20, 3843, 17800}, {20, 5067, 30}, {30, 10299, 5079}, {376, 15695, 15689}, {376, 548, 15696}, {382, 15688, 3528}, {382, 15696, 550}, {382, 15720, 5}, {382, 3526, 3855}, {550, 15687, 12103}, {550, 3530, 20}, {632, 3845, 6939}, {1656, 10304, 3}, {1656, 12103, 15685}, {1657, 15700, 546}, {2041, 2042, 3858}, {3522, 17538, 15711}, {3524, 17538, 13635}, {3529, 15710, 3533}, {3529, 15720, 14269}, {3530, 3855, 3526}, {3534, 15720, 3529}, {3534, 8703, 15722}, {3543, 10303, 5068}, {5055, 15701, 10124}, {5059, 12100, 5072}, {5059, 6838, 17538}, {6496, 42267, 45384}, {6497, 42266, 45385}, {6861, 15693, 15713}, {10304, 12103, 1656}, {10304, 15685, 15718}, {12101, 15697, 3534}, {15681, 15695, 15688}, {15681, 15707, 3830}, {15681, 15718, 15687}, {15688, 15689, 15707}, {15688, 15696, 382}, {15688, 15700, 8703}, {55639, 59411, 48662}


X(62106) = X(2)X(3)∩X(40)X(61297)

Barycentrics    24*a^4-5*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62106) = -15*X[2]+29*X[3], 6*X[40]+X[61297], -5*X[141]+12*X[55645], -9*X[165]+2*X[61249], -10*X[575]+3*X[51166], 5*X[1353]+2*X[55582], -8*X[3579]+X[61245], -8*X[4297]+X[61295], 2*X[5097]+5*X[48881], -5*X[5480]+12*X[55680], -X[5882]+15*X[51079], 3*X[7991]+4*X[61290] and many others

X(62106) lies on these lines: {2, 3}, {40, 61297}, {141, 55645}, {165, 61249}, {575, 51166}, {1353, 55582}, {1503, 55633}, {3411, 42117}, {3412, 42118}, {3564, 55607}, {3579, 61245}, {4297, 61295}, {5008, 9607}, {5097, 48881}, {5237, 43245}, {5238, 43244}, {5480, 55680}, {5882, 51079}, {6431, 9681}, {6433, 7583}, {6434, 7584}, {6437, 19117}, {6438, 19116}, {6455, 31414}, {6480, 42259}, {6481, 42258}, {6482, 32787}, {6483, 32788}, {6486, 31454}, {6519, 43256}, {6522, 43257}, {6781, 9606}, {7991, 61290}, {8550, 51134}, {9588, 28186}, {9589, 10283}, {9624, 28178}, {9692, 18512}, {9698, 15602}, {10645, 43013}, {10646, 43012}, {11278, 61283}, {11485, 43635}, {11486, 43634}, {11531, 61286}, {12279, 44324}, {12702, 61293}, {13491, 15606}, {13624, 61273}, {13903, 43889}, {13961, 43890}, {14531, 45956}, {15068, 16936}, {15069, 55622}, {15178, 51120}, {15338, 37587}, {15888, 51817}, {16192, 28190}, {18357, 31425}, {21850, 33751}, {22165, 55623}, {22791, 31662}, {23302, 42907}, {23303, 42906}, {28204, 51083}, {29181, 55691}, {30392, 61278}, {31663, 38155}, {31730, 33179}, {31834, 52093}, {32903, 52102}, {34628, 61248}, {34754, 42148}, {34755, 42147}, {35242, 38138}, {35812, 42226}, {35813, 42225}, {36967, 43023}, {36968, 43022}, {37517, 48874}, {38079, 55679}, {38110, 55683}, {38136, 48920}, {40107, 55636}, {40693, 43631}, {40694, 43630}, {41973, 42792}, {41974, 42791}, {42121, 43632}, {42124, 43633}, {42130, 42917}, {42131, 42916}, {42136, 42491}, {42137, 42490}, {42149, 51944}, {42152, 51945}, {42153, 42585}, {42156, 42584}, {42431, 43199}, {42432, 43200}, {42496, 43769}, {42497, 43770}, {42545, 43636}, {42546, 43637}, {42625, 42925}, {42626, 42924}, {42633, 42990}, {42634, 42991}, {42904, 42956}, {42905, 42957}, {42942, 43640}, {42943, 43639}, {42948, 51916}, {42949, 51915}, {43560, 43881}, {43561, 43882}, {44882, 55594}, {45186, 55286}, {46264, 55618}, {47354, 55650}, {48873, 55703}, {48876, 55627}, {48880, 55685}, {48885, 50664}, {48892, 55612}, {48898, 55640}, {48906, 55587}, {50969, 55602}, {50971, 52987}, {50978, 55614}, {55699, 59399}, {58215, 61265}, {58231, 61277}, {58248, 61287}

X(62106) = midpoint of X(i) and X(j) for these {i,j}: {20, 3526}
X(62106) = reflection of X(i) in X(j) for these {i,j}: {3528, 548}, {3627, 3851}, {3845, 15702}, {3857, 3523}
X(62106) = complement of X(62024)
X(62106) = pole of line {185, 11812} with respect to the Jerabek hyperbola
X(62106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(11812)}}, {{A, B, C, X(1294), X(55856)}}, {{A, B, C, X(43917), X(45002)}}, {{A, B, C, X(58193), X(60618)}}
X(62106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11001, 3850}, {3, 11539, 15712}, {3, 13564, 13620}, {3, 1657, 3545}, {3, 20, 3853}, {3, 3534, 5059}, {3, 4, 11812}, {3, 5059, 547}, {3, 5067, 3530}, {3, 5073, 15723}, {3, 550, 15686}, {5, 17504, 631}, {5, 3839, 6970}, {20, 3526, 30}, {20, 3528, 3526}, {20, 3855, 17800}, {30, 15702, 3845}, {30, 3523, 3857}, {30, 548, 3528}, {376, 15696, 548}, {382, 15696, 15689}, {382, 549, 5}, {547, 3853, 3856}, {550, 3627, 3534}, {550, 8703, 15704}, {1657, 14890, 3627}, {1657, 15717, 3861}, {3090, 3839, 3851}, {3522, 11001, 3}, {3522, 15689, 12103}, {3525, 6906, 3090}, {3529, 12100, 3858}, {3530, 3853, 5067}, {3534, 15688, 15718}, {3850, 12103, 11001}, {3851, 17504, 14869}, {3853, 6948, 15699}, {3855, 17538, 20}, {3861, 15717, 632}, {5073, 5187, 5066}, {8703, 15686, 11539}, {10303, 11108, 3525}, {12101, 15710, 549}, {12103, 15689, 550}, {15022, 15718, 140}, {15683, 15720, 12102}, {15686, 15714, 3543}, {15688, 15714, 8703}, {15704, 15712, 15687}


X(62107) = X(2)X(3)∩X(17)X(42691)

Barycentrics    19*a^4-4*(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62107) = -12*X[2]+23*X[3], -5*X[3567]+16*X[55286], 3*X[5050]+8*X[48885], 3*X[5093]+8*X[48881], 8*X[5493]+3*X[8148], 3*X[5925]+8*X[14862], 2*X[6241]+9*X[54047], -12*X[7967]+X[58247], X[7991]+21*X[50820], 8*X[8550]+3*X[55584], -15*X[8567]+4*X[14864], 3*X[10247]+8*X[31730] and many others

X(62107) lies on these lines: {2, 3}, {17, 42691}, {18, 42690}, {397, 42684}, {398, 42685}, {542, 55620}, {590, 43432}, {615, 43433}, {1384, 5368}, {1503, 55632}, {1587, 9690}, {1588, 43415}, {3070, 43336}, {3071, 43337}, {3311, 43339}, {3312, 43338}, {3519, 44763}, {3567, 55286}, {5050, 48885}, {5093, 48881}, {5339, 42688}, {5340, 42689}, {5343, 42585}, {5344, 42584}, {5351, 51944}, {5352, 51945}, {5493, 8148}, {5925, 14862}, {6199, 42261}, {6241, 54047}, {6395, 42260}, {6407, 42259}, {6408, 42258}, {6449, 35815}, {6450, 35814}, {6451, 42267}, {6452, 42266}, {6455, 8960}, {6456, 58866}, {6474, 7585}, {6475, 7586}, {6496, 42264}, {6497, 42263}, {6500, 9541}, {7666, 9707}, {7746, 11742}, {7755, 44519}, {7756, 15655}, {7967, 58247}, {7991, 50820}, {8550, 55584}, {8567, 14864}, {8976, 43791}, {9605, 44541}, {9680, 43209}, {9691, 56619}, {9704, 37480}, {10194, 42271}, {10195, 42272}, {10247, 31730}, {10574, 13421}, {10576, 43378}, {10577, 43379}, {10606, 32903}, {10619, 54202}, {10721, 15042}, {10990, 12308}, {10991, 38731}, {10992, 38742}, {10993, 38754}, {11362, 50816}, {11439, 11592}, {11456, 52099}, {11480, 42992}, {11481, 42993}, {11623, 38634}, {11645, 55641}, {12007, 44456}, {12017, 33751}, {12290, 54044}, {13093, 45185}, {13382, 37484}, {13464, 58230}, {13623, 43908}, {13951, 43792}, {14692, 38749}, {15533, 55611}, {16534, 38638}, {18481, 51515}, {18483, 58220}, {18553, 55646}, {19106, 42773}, {19107, 42774}, {19116, 43798}, {19117, 43797}, {19924, 55701}, {20417, 38633}, {20418, 38637}, {21358, 55650}, {22236, 42935}, {22238, 42934}, {25555, 48872}, {29012, 55648}, {29181, 55692}, {29317, 55678}, {29323, 55656}, {30315, 33697}, {30714, 38788}, {31884, 43150}, {33520, 38766}, {34483, 43719}, {34507, 55629}, {34513, 57713}, {34638, 61276}, {35257, 51933}, {36836, 41974}, {36843, 41973}, {36969, 42959}, {36970, 42958}, {37727, 50815}, {38072, 55677}, {38736, 52090}, {41943, 43424}, {41944, 43425}, {41963, 43430}, {41964, 43431}, {42085, 42686}, {42086, 42687}, {42087, 42989}, {42088, 42988}, {42093, 42954}, {42094, 42955}, {42099, 43239}, {42100, 43238}, {42104, 42948}, {42105, 42949}, {42115, 42157}, {42116, 42158}, {42126, 42944}, {42127, 42945}, {42130, 42149}, {42131, 42152}, {42153, 43032}, {42154, 42796}, {42155, 42795}, {42156, 43033}, {42270, 43514}, {42273, 43513}, {42275, 43882}, {42276, 43881}, {42433, 42626}, {42434, 42625}, {42490, 43544}, {42491, 43545}, {42528, 43194}, {42529, 43193}, {42775, 42950}, {42776, 42951}, {42779, 43300}, {42780, 43301}, {42815, 43769}, {42816, 43770}, {42904, 43295}, {42905, 43294}, {43210, 43343}, {43250, 43775}, {43251, 43776}, {43273, 55595}, {43409, 43568}, {43410, 43569}, {44882, 55593}, {46264, 55616}, {47353, 55644}, {48873, 55705}, {48879, 55673}, {48891, 55651}, {48892, 55610}, {48896, 55654}, {48898, 55639}, {48905, 55643}, {48920, 55676}, {50813, 50830}, {50827, 51083}, {50955, 55626}, {50968, 55606}, {50969, 50985}, {50976, 51140}, {51024, 55681}, {51177, 51182}, {52093, 54042}

X(62107) = midpoint of X(i) and X(j) for these {i,j}: {20, 3525}
X(62107) = reflection of X(i) in X(j) for these {i,j}: {15715, 8703}, {381, 15719}, {5070, 3}, {5072, 15717}
X(62107) = anticomplement of X(41991)
X(62107) = pole of line {185, 61832} with respect to the Jerabek hyperbola
X(62107) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(5070)}}, {{A, B, C, X(3090), X(13623)}}, {{A, B, C, X(3518), X(44763)}}, {{A, B, C, X(3519), X(33703)}}, {{A, B, C, X(3529), X(34483)}}, {{A, B, C, X(3532), X(47485)}}, {{A, B, C, X(3545), X(14861)}}, {{A, B, C, X(11001), X(42021)}}, {{A, B, C, X(13596), X(43908)}}, {{A, B, C, X(15707), X(40448)}}, {{A, B, C, X(34484), X(43719)}}, {{A, B, C, X(43713), X(44879)}}, {{A, B, C, X(43917), X(45001)}}
X(62107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 631}, {3, 15681, 3843}, {3, 15685, 5}, {3, 15696, 15689}, {3, 15703, 3530}, {3, 1657, 3851}, {3, 17800, 5055}, {3, 20, 3830}, {3, 30, 5070}, {3, 382, 15694}, {3, 3843, 15701}, {4, 7486, 3850}, {20, 10304, 15022}, {20, 3522, 10299}, {20, 3525, 30}, {20, 3528, 16239}, {30, 15717, 5072}, {30, 15719, 381}, {30, 8703, 15715}, {140, 3854, 1656}, {376, 15689, 15695}, {376, 15690, 15688}, {382, 15706, 3628}, {548, 15704, 10304}, {548, 17538, 15706}, {548, 3628, 8703}, {549, 15759, 15705}, {549, 16239, 10303}, {550, 3522, 1657}, {631, 15640, 3857}, {1656, 15716, 15720}, {1657, 3522, 3}, {1657, 3851, 5073}, {3146, 15709, 3856}, {3522, 17538, 3858}, {3523, 15683, 4}, {3525, 15717, 549}, {3526, 15704, 15684}, {3526, 3534, 15704}, {3528, 10303, 15759}, {3528, 15697, 12103}, {3528, 5059, 15712}, {3530, 11001, 5076}, {3530, 5076, 15703}, {3534, 15698, 15685}, {3534, 15706, 15683}, {3545, 17538, 20}, {3628, 15683, 382}, {3830, 15694, 3545}, {3851, 5070, 5056}, {3854, 10299, 140}, {10303, 15717, 15719}, {10304, 15704, 3526}, {12103, 15712, 5059}, {13742, 15721, 3525}, {14093, 15685, 15707}, {14782, 14783, 13735}, {15684, 15704, 17800}, {15689, 15695, 15681}, {15694, 15715, 15718}, {15697, 15759, 3534}, {15710, 17578, 12108}, {16394, 17578, 3854}


X(62108) = X(2)X(3)∩X(511)X(51134)

Barycentrics    52*a^4-11*(b^2-c^2)^2-41*a^2*(b^2+c^2) : :
X(62108) = -11*X[2]+21*X[3], 11*X[1353]+4*X[55581], X[3630]+14*X[48892], -X[4669]+21*X[51083], 2*X[8584]+3*X[48874], X[10283]+4*X[59420], -X[15534]+21*X[50976], -3*X[16226]+8*X[55286], -11*X[22165]+36*X[55621], -8*X[31663]+3*X[38081], -22*X[32455]+7*X[55723], 11*X[44882]+4*X[55592] and many others

X(62108) lies on circumconic {{A, B, C, X(3858), X(18317)}} and on these lines: {2, 3}, {511, 51134}, {515, 50822}, {516, 50832}, {517, 51079}, {524, 55598}, {542, 55619}, {952, 50812}, {1353, 55581}, {1503, 51184}, {3564, 50968}, {3630, 48892}, {4669, 51083}, {5844, 50819}, {5965, 50965}, {8584, 48874}, {9541, 42574}, {10283, 59420}, {11480, 49811}, {11481, 49810}, {11542, 51945}, {11543, 51944}, {15534, 50976}, {16226, 55286}, {16241, 42683}, {16242, 42682}, {16960, 46334}, {16961, 46335}, {16966, 51915}, {16967, 51916}, {19106, 43246}, {19107, 43247}, {19116, 42417}, {19117, 42418}, {19924, 55702}, {22165, 55621}, {28146, 51109}, {28158, 51084}, {28186, 51066}, {28228, 50824}, {28232, 51103}, {28234, 50815}, {28236, 50816}, {29181, 50987}, {31663, 38081}, {32455, 55723}, {33602, 43869}, {33603, 43870}, {34380, 50975}, {41107, 43631}, {41108, 43630}, {41121, 42145}, {41122, 42144}, {41943, 43783}, {41944, 43784}, {42090, 42634}, {42091, 42633}, {42107, 54592}, {42110, 54591}, {42117, 42792}, {42118, 42791}, {42122, 42510}, {42123, 42511}, {42130, 49861}, {42131, 49862}, {42150, 42419}, {42151, 42420}, {42258, 42524}, {42259, 42525}, {42263, 42640}, {42264, 42639}, {42480, 42520}, {42481, 42521}, {42492, 43471}, {42493, 43472}, {42496, 42588}, {42497, 42589}, {42500, 43240}, {42501, 43241}, {42516, 49875}, {42517, 49876}, {42528, 42977}, {42529, 42976}, {42543, 43227}, {42544, 43226}, {42576, 42602}, {42577, 42603}, {42777, 42916}, {42778, 42917}, {42922, 49947}, {42923, 49948}, {42940, 43874}, {42941, 43873}, {44882, 55592}, {48881, 55715}, {48885, 55709}, {48898, 50991}, {48906, 55586}, {50820, 51093}, {50826, 51069}, {50833, 61270}, {50862, 61260}, {50969, 50992}, {50971, 50986}, {50972, 50978}, {50979, 55717}, {50981, 51143}, {50985, 55603}, {50990, 55629}, {51022, 55657}, {51068, 61251}, {51130, 55685}, {51135, 51182}, {51177, 55593}, {51181, 55707}, {51737, 55713}, {55700, 59399}

X(62108) = midpoint of X(i) and X(j) for these {i,j}: {20, 15694}, {376, 15696}, {3091, 15681}, {14093, 17538}, {15686, 15712}, {15695, 15697}
X(62108) = reflection of X(i) in X(j) for these {i,j}: {12812, 14891}, {14093, 548}, {15686, 17538}, {15687, 1656}, {15697, 15690}, {15711, 8703}, {15712, 14093}, {15714, 3522}, {3543, 3859}, {3845, 15713}, {3858, 549}, {5, 15692}, {5076, 547}, {632, 15714}, {8703, 15695}
X(62108) = complement of X(62025)
X(62108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15684}, {2, 3830, 3850}, {5, 15723, 15699}, {30, 14093, 15712}, {30, 14891, 12812}, {30, 15713, 3845}, {30, 15714, 632}, {30, 3522, 15714}, {30, 3859, 3543}, {30, 547, 5076}, {30, 548, 14093}, {30, 549, 3858}, {376, 15689, 548}, {376, 15697, 15695}, {548, 550, 3627}, {550, 3845, 3534}, {632, 15711, 15693}, {3522, 17538, 3843}, {3528, 15640, 15716}, {3528, 3854, 3}, {3534, 11540, 15704}, {3534, 15688, 15701}, {3845, 15711, 15713}, {5079, 15719, 11540}, {6932, 15702, 15688}, {10304, 12103, 15687}, {10304, 15685, 11812}, {11001, 15688, 15759}, {11001, 15759, 5}, {11812, 12103, 15685}, {11812, 14892, 2}, {12101, 15698, 11539}, {14093, 15684, 15692}, {14093, 15689, 17538}, {14093, 15696, 15689}, {14093, 17538, 30}, {14892, 14893, 3856}, {15640, 15716, 547}, {15681, 15698, 12101}, {15684, 15691, 15686}, {15686, 15689, 550}, {15688, 15759, 8703}, {15691, 15759, 11001}, {15693, 15695, 3522}, {15693, 15714, 15711}, {15695, 15696, 15697}, {15696, 15697, 15690}, {15705, 17800, 11737}


X(62109) = X(2)X(3)∩X(17)X(42586)

Barycentrics    37*a^4-8*(b^2-c^2)^2-29*a^2*(b^2+c^2) : :
X(62109) = -8*X[2]+15*X[3], -4*X[599]+11*X[55632], -8*X[3241]+X[58247], -4*X[3624]+7*X[58220], -X[3654]+8*X[50816], -15*X[3655]+8*X[51095], X[3656]+6*X[59420], -8*X[4297]+X[34748], -X[4677]+15*X[50812], -X[8584]+15*X[51134], 6*X[9778]+X[50805], -4*X[11178]+11*X[55648] and many others

X(62109) lies on these lines: {2, 3}, {17, 42586}, {18, 42587}, {511, 50976}, {515, 51083}, {517, 50820}, {542, 55616}, {590, 42608}, {599, 55632}, {615, 42609}, {952, 50813}, {1327, 42526}, {1328, 42527}, {1384, 39593}, {1587, 10145}, {1588, 10146}, {3241, 58247}, {3564, 50969}, {3624, 58220}, {3654, 50816}, {3655, 51095}, {3656, 59420}, {4297, 34748}, {4677, 50812}, {5418, 42606}, {5420, 42607}, {5585, 18362}, {6407, 42525}, {6408, 42524}, {6417, 51910}, {6418, 51911}, {6500, 41945}, {6501, 41946}, {6564, 42576}, {6565, 42577}, {8584, 51134}, {9690, 32787}, {9691, 42259}, {9778, 50805}, {11178, 55648}, {11480, 43418}, {11481, 43419}, {11485, 42632}, {11486, 42631}, {11645, 55639}, {11648, 15655}, {12355, 38634}, {12512, 34718}, {12702, 34747}, {12820, 42098}, {12821, 42095}, {13468, 53143}, {14810, 50993}, {15300, 38731}, {15533, 50968}, {15534, 55584}, {15603, 44526}, {16644, 42504}, {16645, 42505}, {17502, 50806}, {17508, 50963}, {17851, 43257}, {18481, 34641}, {18525, 38098}, {19924, 55705}, {20583, 48881}, {21358, 48891}, {25561, 55656}, {28168, 50800}, {28202, 51110}, {29012, 51186}, {29323, 50957}, {31487, 43523}, {31663, 51066}, {32788, 43415}, {33751, 54131}, {34380, 51177}, {35257, 55157}, {36521, 38741}, {36836, 43485}, {36843, 43486}, {36967, 42509}, {36968, 42508}, {36969, 43024}, {36970, 43025}, {38072, 48920}, {38736, 48657}, {40341, 48892}, {41100, 42626}, {41101, 42625}, {41107, 42116}, {41108, 42115}, {41112, 42131}, {41113, 42130}, {41869, 58224}, {42087, 42782}, {42088, 42781}, {42090, 43229}, {42091, 43228}, {42096, 49908}, {42097, 49907}, {42119, 43110}, {42120, 43111}, {42153, 42797}, {42154, 42507}, {42155, 42506}, {42156, 42798}, {42415, 42634}, {42416, 42633}, {42417, 53131}, {42418, 53130}, {42474, 42544}, {42475, 42543}, {42528, 49948}, {42529, 49947}, {42588, 42815}, {42589, 42816}, {42779, 42976}, {42780, 42977}, {42791, 42974}, {42792, 42975}, {43002, 43403}, {43003, 43404}, {43232, 43250}, {43233, 43251}, {43273, 55593}, {43475, 43643}, {43476, 43638}, {43487, 43869}, {43488, 43870}, {43881, 52667}, {43882, 52666}, {44786, 52099}, {47353, 55643}, {48662, 54169}, {48885, 53091}, {49905, 51945}, {49906, 51944}, {50824, 58238}, {50873, 61269}, {50955, 55624}, {50972, 54173}, {51024, 55682}, {51071, 51079}, {51081, 51705}, {51105, 58230}, {51174, 55591}, {51185, 55697}, {51187, 52987}, {51189, 55626}

X(62109) = midpoint of X(i) and X(j) for these {i,j}: {20, 15702}, {3851, 15681}
X(62109) = reflection of X(i) in X(j) for these {i,j}: {15698, 8703}, {15700, 3528}, {15703, 3}, {381, 3523}, {3543, 3857}, {3832, 549}, {3851, 15700}
X(62109) = anticomplement of X(61963)
X(62109) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(15703)}}, {{A, B, C, X(3534), X(57894)}}, {{A, B, C, X(3832), X(18317)}}
X(62109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15682, 546}, {2, 15700, 15701}, {2, 15710, 12100}, {2, 3534, 15681}, {2, 3855, 10109}, {3, 15681, 14269}, {3, 30, 15703}, {3, 3534, 15685}, {20, 15702, 30}, {20, 15710, 15687}, {30, 3528, 15700}, {30, 3857, 3543}, {30, 549, 3832}, {30, 8703, 15698}, {376, 15697, 8703}, {376, 3534, 15695}, {376, 550, 15688}, {381, 5054, 5067}, {382, 15720, 3544}, {548, 550, 3529}, {1657, 10304, 15694}, {1657, 15716, 3845}, {3522, 15682, 15759}, {3523, 17578, 3090}, {3528, 3529, 3523}, {3534, 15690, 15689}, {3534, 15693, 11001}, {3534, 15696, 15690}, {3534, 15759, 17800}, {3543, 15706, 5070}, {3627, 15705, 15723}, {3845, 10304, 15716}, {8703, 11001, 15693}, {8703, 15690, 15697}, {10304, 15691, 1657}, {10304, 15694, 3}, {11001, 15693, 3830}, {11812, 15640, 381}, {12100, 15687, 2}, {12101, 15719, 1656}, {14093, 15720, 15710}, {14269, 15703, 3851}, {14869, 15700, 15707}, {15681, 15689, 550}, {15681, 15707, 382}, {15682, 15759, 5054}, {15683, 15719, 12101}, {15686, 15759, 15682}, {15687, 15710, 15720}, {15687, 15720, 5055}, {15687, 17504, 632}, {15688, 15700, 3528}, {15688, 15720, 14093}, {15689, 15695, 3534}, {15696, 17800, 6882}, {36968, 42532, 42508}


X(62110) = X(2)X(3)∩X(17)X(43869)

Barycentrics    23*a^4-5*(b^2-c^2)^2-18*a^2*(b^2+c^2) : :
X(62110) = -15*X[2]+28*X[3], -14*X[40]+X[20053], -5*X[69]+18*X[55618], 5*X[193]+8*X[55587], -5*X[962]+18*X[30392], -5*X[1352]+18*X[55640], -X[1992]+14*X[50976], -X[3241]+14*X[50820], 5*X[3620]+8*X[48898], -35*X[3622]+48*X[31662], -X[3625]+14*X[12512], -10*X[3630]+49*X[55607] and many others

X(62110) lies on these lines: {2, 3}, {17, 43869}, {18, 43870}, {40, 20053}, {69, 55618}, {99, 32875}, {193, 55587}, {315, 32876}, {962, 30392}, {1352, 55640}, {1587, 6480}, {1588, 6481}, {1992, 50976}, {2794, 52886}, {3241, 50820}, {3424, 60640}, {3590, 23249}, {3591, 23259}, {3620, 48898}, {3622, 31662}, {3625, 12512}, {3630, 55607}, {3633, 4297}, {3635, 5493}, {3679, 51083}, {4114, 11036}, {4294, 37587}, {4299, 51817}, {4311, 7320}, {4316, 5261}, {4324, 5274}, {4668, 43174}, {4764, 30271}, {4857, 5265}, {5097, 33748}, {5102, 48881}, {5270, 5281}, {5339, 42793}, {5340, 42794}, {5343, 10646}, {5344, 10645}, {5365, 42099}, {5366, 42100}, {5656, 55156}, {5732, 60976}, {5734, 51081}, {5882, 9778}, {5921, 55622}, {5984, 38731}, {6144, 44882}, {6200, 43889}, {6361, 33179}, {6396, 43890}, {6411, 42414}, {6412, 42413}, {6429, 42259}, {6430, 42258}, {6437, 42522}, {6438, 42523}, {6451, 23269}, {6452, 23275}, {6453, 43256}, {6454, 43257}, {6484, 9542}, {6486, 6560}, {6487, 6561}, {6776, 55594}, {7756, 37689}, {7782, 32825}, {7898, 51579}, {7991, 50815}, {8550, 55582}, {8960, 43407}, {8972, 42267}, {8976, 43519}, {9540, 43376}, {9541, 35771}, {9543, 42216}, {10141, 32787}, {10142, 32788}, {10171, 58217}, {10187, 43365}, {10188, 43364}, {10194, 23263}, {10195, 23253}, {10519, 55633}, {10575, 33884}, {10653, 42435}, {10654, 42436}, {11148, 34504}, {11160, 50969}, {11180, 55631}, {11206, 15105}, {11278, 20070}, {11362, 50812}, {11441, 16936}, {11480, 43769}, {11481, 43770}, {11738, 26861}, {13348, 52093}, {13382, 36987}, {13935, 43377}, {13941, 42266}, {13951, 43520}, {14641, 54041}, {14683, 38788}, {14853, 33751}, {14907, 32824}, {14929, 32879}, {15051, 38792}, {15580, 61088}, {15589, 32878}, {16200, 31730}, {16772, 51945}, {16773, 51944}, {18553, 55645}, {18581, 42958}, {18582, 42959}, {19877, 28172}, {20094, 38742}, {20095, 38754}, {20096, 38766}, {20099, 38798}, {21356, 55641}, {22235, 42086}, {22237, 42085}, {23251, 43785}, {23261, 43786}, {25406, 32455}, {25555, 55683}, {28146, 46934}, {30389, 34638}, {31145, 50813}, {31414, 43209}, {31670, 55685}, {33416, 43472}, {33417, 43471}, {33750, 48880}, {34507, 55627}, {34754, 42091}, {34755, 42090}, {35770, 51911}, {37517, 61044}, {37714, 50868}, {37727, 50819}, {38808, 51348}, {39561, 48885}, {40330, 48891}, {40693, 43244}, {40694, 43245}, {41973, 42528}, {41974, 42529}, {42087, 42983}, {42088, 42982}, {42096, 42495}, {42097, 42494}, {42112, 42937}, {42113, 42936}, {42122, 43496}, {42123, 43495}, {42126, 43557}, {42127, 43556}, {42135, 43446}, {42138, 43447}, {42139, 42774}, {42140, 43239}, {42141, 43238}, {42142, 42773}, {42149, 43466}, {42150, 42995}, {42151, 42994}, {42152, 43465}, {42157, 42801}, {42158, 42802}, {42159, 43200}, {42162, 43199}, {42260, 43511}, {42261, 43512}, {42431, 42960}, {42432, 42961}, {42433, 42804}, {42434, 42803}, {42690, 43488}, {42691, 43487}, {43408, 58866}, {43537, 60209}, {44762, 54050}, {46264, 55612}, {48873, 50664}, {48874, 51170}, {48892, 55603}, {50816, 50871}, {50872, 51079}, {50968, 51215}, {50971, 51214}, {50972, 51027}, {50974, 55595}, {51028, 51134}, {51171, 55695}, {51212, 55703}, {51537, 55654}, {53099, 60146}, {53106, 53859}, {54857, 60285}, {59418, 61000}, {60329, 60647}

X(62110) = midpoint of X(i) and X(j) for these {i,j}: {20, 10303}
X(62110) = reflection of X(i) in X(j) for these {i,j}: {5067, 3}, {5068, 10299}
X(62110) = anticomplement of X(61964)
X(62110) = pole of line {185, 44299} with respect to the Jerabek hyperbola
X(62110) = pole of line {69, 49140} with respect to the Wallace hyperbola
X(62110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(51348)}}, {{A, B, C, X(69), X(49140)}}, {{A, B, C, X(253), X(3843)}}, {{A, B, C, X(1217), X(35018)}}, {{A, B, C, X(1294), X(5067)}}, {{A, B, C, X(3346), X(3855)}}, {{A, B, C, X(3519), X(49136)}}, {{A, B, C, X(3532), X(55578)}}, {{A, B, C, X(3534), X(26861)}}, {{A, B, C, X(3853), X(31361)}}, {{A, B, C, X(3857), X(4846)}}, {{A, B, C, X(5072), X(14861)}}, {{A, B, C, X(7714), X(54857)}}, {{A, B, C, X(8703), X(60618)}}, {{A, B, C, X(11738), X(26863)}}, {{A, B, C, X(14841), X(15684)}}, {{A, B, C, X(15022), X(15740)}}, {{A, B, C, X(15704), X(42021)}}, {{A, B, C, X(15719), X(40448)}}, {{A, B, C, X(15749), X(50688)}}, {{A, B, C, X(19709), X(31363)}}, {{A, B, C, X(34567), X(35502)}}, {{A, B, C, X(52283), X(60640)}}, {{A, B, C, X(52297), X(53859)}}
X(62110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15684, 3839}, {2, 15717, 12108}, {2, 3146, 3843}, {2, 3850, 5056}, {3, 11001, 3832}, {3, 15696, 15690}, {3, 15702, 15717}, {3, 16239, 3524}, {3, 1657, 3850}, {3, 30, 5067}, {3, 382, 11539}, {3, 3832, 15708}, {3, 3853, 15702}, {3, 5, 15719}, {20, 10303, 30}, {20, 10304, 3091}, {20, 15692, 3146}, {20, 3528, 7486}, {20, 3839, 3529}, {20, 5056, 5059}, {30, 10299, 5068}, {140, 3857, 1656}, {140, 550, 3534}, {376, 17538, 548}, {376, 550, 3522}, {382, 15718, 12812}, {548, 12103, 14891}, {548, 12108, 8703}, {548, 15689, 17538}, {548, 3627, 14093}, {548, 3843, 3528}, {631, 12103, 15683}, {631, 5073, 3854}, {1656, 15707, 140}, {1656, 1657, 15684}, {1657, 15689, 550}, {1657, 15712, 4}, {1657, 5072, 5073}, {3146, 3528, 15692}, {3522, 3523, 10304}, {3522, 5059, 3}, {3524, 15704, 17578}, {3528, 3529, 15707}, {3529, 15702, 3853}, {3530, 15682, 15022}, {3534, 15688, 15703}, {3545, 5067, 5079}, {3843, 15703, 5072}, {3845, 15703, 3545}, {3850, 15686, 1657}, {5056, 15708, 3533}, {5068, 10299, 10303}, {5343, 10646, 43480}, {5344, 10645, 43479}, {10299, 10303, 3523}, {11001, 13168, 631}, {11001, 15708, 3543}, {11541, 15710, 3526}, {12103, 15683, 20}, {15686, 15690, 15689}, {15696, 16434, 2}, {42157, 42928, 42801}, {42158, 42929, 42802}


X(62111) = X(2)X(3)∩X(6)X(43639)

Barycentrics    32*a^4-7*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(62111) = -7*X[2]+13*X[3], -4*X[165]+X[61251], -X[597]+4*X[33751], -X[3098]+4*X[50972], -13*X[3579]+4*X[4746], -4*X[3654]+X[61245], -X[3655]+7*X[50820], 5*X[4816]+13*X[18481], -4*X[9955]+7*X[50833], -X[11179]+7*X[50976], -2*X[11180]+5*X[51184], -4*X[11224]+7*X[61283] and many others

X(62111) lies on these lines: {2, 3}, {6, 43639}, {13, 42687}, {14, 42686}, {165, 61251}, {395, 42796}, {396, 42795}, {524, 55596}, {542, 55615}, {597, 33751}, {1503, 55630}, {3098, 50972}, {3579, 4746}, {3653, 28178}, {3654, 61245}, {3655, 50820}, {4816, 18481}, {5318, 43483}, {5321, 43484}, {6470, 42261}, {6471, 42260}, {7850, 59634}, {8717, 40111}, {8981, 43209}, {9955, 50833}, {10302, 54891}, {11179, 50976}, {11180, 51184}, {11224, 61283}, {11645, 55638}, {12007, 48874}, {13623, 57714}, {13966, 43210}, {15516, 48885}, {16772, 42965}, {16773, 42964}, {16962, 42088}, {16963, 42087}, {16964, 41977}, {16965, 41978}, {18357, 50826}, {18358, 50981}, {18510, 43788}, {18512, 43787}, {18526, 50809}, {18581, 43647}, {18582, 43648}, {19116, 53131}, {19117, 53130}, {19130, 50988}, {19875, 28190}, {19883, 28154}, {19924, 55706}, {20582, 48896}, {21850, 55696}, {22236, 43109}, {22238, 43108}, {22791, 34638}, {23269, 60299}, {23275, 60300}, {28146, 38022}, {28168, 38068}, {28172, 38083}, {28182, 38021}, {28186, 38081}, {28198, 59420}, {28208, 38112}, {28216, 38314}, {29181, 55693}, {29317, 38079}, {31162, 50832}, {31730, 50824}, {33697, 50829}, {33878, 50975}, {34627, 50822}, {34628, 37705}, {34648, 50825}, {34718, 50813}, {34773, 50815}, {35820, 43380}, {35821, 43381}, {36427, 59649}, {36967, 42634}, {36968, 42633}, {36987, 45956}, {39899, 50966}, {41119, 42586}, {41120, 42587}, {41153, 55694}, {41945, 51910}, {41946, 51911}, {41955, 41962}, {41956, 41961}, {42085, 51944}, {42086, 51945}, {42101, 51916}, {42102, 51915}, {42117, 42528}, {42118, 42529}, {42121, 42972}, {42122, 42625}, {42123, 42626}, {42124, 42973}, {42129, 43202}, {42130, 42497}, {42131, 42496}, {42132, 43201}, {42147, 42631}, {42148, 42632}, {42157, 42792}, {42158, 42791}, {42225, 52046}, {42226, 52045}, {42263, 43212}, {42264, 43211}, {42912, 43631}, {42913, 43630}, {42934, 43229}, {42935, 43228}, {43100, 43545}, {43107, 43544}, {43150, 54169}, {43273, 51182}, {43336, 43342}, {43337, 43343}, {43519, 43536}, {43520, 54597}, {44413, 46945}, {44882, 55590}, {46264, 50968}, {47354, 48891}, {48876, 55625}, {48880, 55689}, {48881, 50979}, {48884, 50984}, {48892, 50965}, {48898, 55635}, {48906, 50971}, {50461, 52099}, {50808, 50830}, {50811, 61295}, {50959, 55672}, {50961, 55607}, {50980, 55653}, {50987, 54131}, {50991, 55637}, {50992, 55602}, {51023, 55639}, {51081, 51085}, {51136, 55594}, {51138, 55710}, {51139, 55665}, {58221, 61270}

X(62111) = midpoint of X(i) and X(j) for these {i,j}: {20, 5054}, {376, 15689}, {3534, 10304}, {3545, 15681}, {11001, 14269}, {15686, 17504}
X(62111) = reflection of X(i) in X(j) for these {i,j}: {10304, 548}, {14269, 140}, {15687, 15699}, {15689, 15690}, {15699, 3}, {17504, 8703}, {3545, 12100}, {3627, 3545}, {3845, 5054}, {5, 17504}, {549, 10304}, {550, 15689}, {61270, 58221}
X(62111) = complement of X(62027)
X(62111) = anticomplement of X(61965)
X(62111) = pole of line {185, 61835} with respect to the Jerabek hyperbola
X(62111) = pole of line {69, 62169} with respect to the Wallace hyperbola
X(62111) = intersection, other than A, B, C, of circumconics {{A, B, C, X(547), X(13623)}}, {{A, B, C, X(1294), X(15699)}}, {{A, B, C, X(10301), X(54891)}}, {{A, B, C, X(13596), X(57714)}}, {{A, B, C, X(18317), X(23046)}}, {{A, B, C, X(43713), X(44878)}}
X(62111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15682, 10124}, {3, 15683, 5066}, {3, 15687, 15713}, {3, 15697, 15691}, {3, 15721, 12100}, {3, 1657, 3855}, {3, 30, 15699}, {3, 3534, 15683}, {4, 10304, 15706}, {5, 8703, 15714}, {20, 15698, 15684}, {20, 376, 15695}, {30, 12100, 3545}, {30, 15690, 15689}, {30, 15699, 15687}, {30, 5054, 3845}, {30, 548, 10304}, {376, 15696, 15690}, {376, 3534, 548}, {376, 550, 8703}, {381, 15711, 14869}, {381, 15717, 11540}, {548, 3856, 3528}, {549, 15698, 15712}, {549, 15711, 15717}, {549, 3857, 2}, {549, 5055, 11539}, {549, 550, 3534}, {3146, 15700, 10109}, {3524, 5055, 14890}, {3526, 15681, 15640}, {3526, 3534, 15681}, {3528, 3830, 14891}, {3529, 15693, 14893}, {3533, 17538, 20}, {3534, 15688, 5055}, {3534, 15695, 15698}, {3628, 5066, 5071}, {3628, 5076, 3857}, {3830, 14891, 632}, {3857, 12103, 15704}, {5066, 10124, 7486}, {5073, 15702, 3860}, {7486, 15683, 15682}, {10124, 15682, 3858}, {10304, 15683, 15709}, {10304, 15706, 15759}, {10304, 15709, 3}, {10304, 15717, 15710}, {11001, 14093, 140}, {11001, 14269, 30}, {11001, 15705, 14269}, {11540, 15717, 549}, {12100, 15681, 3627}, {14093, 14269, 15705}, {14869, 15710, 17504}, {15684, 15698, 3628}, {15685, 15692, 546}, {15687, 15691, 15686}, {15687, 15713, 5}, {15691, 15697, 550}, {15700, 17800, 6833}, {43639, 43640, 6}


X(62112) = X(1)X(51079)∩X(2)X(3)

Barycentrics    49*a^4-11*(b^2-c^2)^2-38*a^2*(b^2+c^2) : :
X(62112) = -X[1]+10*X[51079], -11*X[2]+20*X[3], -X[6]+10*X[51134], -X[8]+10*X[50812], -X[69]+10*X[50968], -X[145]+10*X[50819], -5*X[165]+2*X[38098], -X[193]+10*X[50975], 4*X[3244]+5*X[34632], -14*X[3619]+5*X[51216], -X[3621]+10*X[50809], -14*X[3624]+5*X[50873] and many others

X(62112) lies on these lines: {1, 51079}, {2, 3}, {6, 51134}, {8, 50812}, {13, 42932}, {14, 42933}, {69, 50968}, {145, 50819}, {165, 38098}, {193, 50975}, {542, 55613}, {590, 42641}, {615, 42642}, {3244, 34632}, {3619, 51216}, {3621, 50809}, {3624, 50873}, {3626, 34628}, {3629, 50971}, {3631, 50972}, {3632, 50808}, {3636, 34638}, {3644, 51042}, {4031, 15933}, {4297, 34747}, {5032, 55717}, {5351, 49824}, {5352, 49825}, {5493, 51095}, {6435, 9541}, {6494, 52047}, {6495, 52048}, {6776, 55592}, {8717, 43572}, {9778, 61291}, {9780, 50863}, {10653, 42635}, {10654, 42636}, {11008, 43273}, {11160, 55605}, {11179, 55723}, {11488, 51945}, {11489, 51944}, {12512, 34641}, {15808, 50865}, {16267, 43465}, {16268, 43466}, {16962, 42982}, {16963, 42983}, {16966, 43477}, {16967, 43478}, {18481, 50813}, {19924, 55707}, {20050, 50811}, {20054, 50810}, {20057, 31730}, {20070, 61284}, {20080, 50966}, {20423, 55702}, {28198, 61279}, {33878, 51177}, {40341, 50965}, {42096, 43100}, {42097, 43107}, {42099, 43541}, {42100, 43540}, {42117, 43253}, {42118, 43252}, {42121, 43488}, {42124, 43487}, {42522, 53130}, {42523, 53131}, {42584, 43542}, {42585, 43543}, {42586, 42945}, {42587, 42944}, {42629, 43403}, {42630, 43404}, {42631, 42999}, {42632, 42998}, {42779, 49826}, {42780, 49827}, {42910, 43196}, {42911, 43195}, {43028, 51916}, {43029, 51915}, {43110, 43482}, {43111, 43481}, {43364, 43642}, {43365, 43641}, {43479, 43633}, {43480, 43632}, {43491, 54593}, {43492, 54594}, {43523, 43883}, {43524, 43884}, {44882, 54174}, {46264, 50969}, {46930, 50799}, {47355, 51029}, {48873, 55709}, {48881, 50976}, {48885, 54132}, {48892, 50967}, {50864, 51083}, {50866, 51073}, {50956, 55658}, {50990, 55626}, {51022, 55656}, {51128, 51167}, {51171, 51211}, {51178, 55594}, {54173, 55619}, {55719, 61044}

X(62112) = midpoint of X(i) and X(j) for these {i,j}: {20, 15708}
X(62112) = reflection of X(i) in X(j) for these {i,j}: {15706, 8703}, {15708, 10304}, {15710, 15688}, {2, 15710}, {3545, 15706}, {3839, 15708}
X(62112) = anticomplement of X(61967)
X(62112) = pole of line {69, 62166} with respect to the Wallace hyperbola
X(62112) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3543), X(57823)}}, {{A, B, C, X(15695), X(18850)}}
X(62112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 382}, {2, 15687, 3091}, {2, 15688, 10304}, {2, 15705, 15707}, {2, 15715, 3523}, {2, 3530, 15721}, {3, 1657, 3856}, {4, 376, 15695}, {20, 10304, 3839}, {20, 15692, 15640}, {20, 15708, 30}, {20, 3522, 10303}, {30, 10304, 15708}, {30, 15688, 15710}, {30, 15706, 3545}, {30, 8703, 15706}, {376, 11001, 548}, {376, 17538, 8703}, {376, 3534, 3522}, {382, 550, 17538}, {382, 8703, 15715}, {3523, 17538, 20}, {3524, 3529, 14269}, {3524, 3545, 15694}, {3526, 6982, 140}, {3528, 3529, 15720}, {3534, 15695, 11812}, {3534, 15711, 11001}, {3534, 15720, 15681}, {3839, 10304, 15692}, {8703, 14893, 3}, {8703, 15686, 3858}, {8703, 17538, 15683}, {10299, 11001, 15687}, {10299, 15687, 2}, {12103, 14093, 15682}, {14093, 15682, 15717}, {15640, 15692, 5056}, {15681, 15688, 17504}, {15682, 16434, 376}, {15683, 15694, 3543}, {15684, 15719, 5068}, {15685, 15702, 17578}, {15688, 15689, 550}, {15688, 17504, 3528}, {15691, 15695, 4}, {15707, 15710, 15705}, {15720, 17504, 3524}, {42096, 43100, 43202}, {42097, 43107, 43201}


X(62113) = X(2)X(3)∩X(15)X(42891)

Barycentrics    21*a^4-5*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62113) = -15*X[2]+26*X[3], -5*X[69]+16*X[55612], -7*X[962]+18*X[61279], -5*X[1352]+16*X[55636], -14*X[3579]+3*X[61247], -5*X[3618]+16*X[33751], 7*X[3619]+4*X[48896], -14*X[4297]+3*X[61291], -24*X[4746]+13*X[5881], -15*X[4816]+26*X[11362], 8*X[5493]+3*X[34631], -21*X[5657]+10*X[61250] and many others

X(62113) lies on these lines: {2, 3}, {15, 42891}, {16, 42890}, {69, 55612}, {388, 51817}, {962, 61279}, {1056, 4325}, {1058, 4330}, {1131, 6451}, {1132, 6452}, {1352, 55636}, {1503, 55622}, {1587, 6429}, {1588, 6430}, {2548, 15602}, {3068, 6486}, {3069, 6487}, {3316, 6411}, {3317, 6412}, {3411, 43245}, {3412, 43244}, {3579, 61247}, {3618, 33751}, {3619, 48896}, {4297, 61291}, {4316, 31452}, {4746, 5881}, {4816, 11362}, {5008, 7738}, {5217, 31410}, {5237, 43770}, {5238, 43769}, {5493, 34631}, {5550, 28154}, {5657, 61250}, {5731, 11278}, {5818, 31425}, {5882, 50819}, {6200, 31414}, {6241, 15606}, {6361, 16200}, {6409, 23269}, {6410, 23275}, {6425, 43256}, {6426, 43257}, {6431, 9541}, {6433, 23267}, {6434, 23273}, {6437, 42259}, {6438, 42258}, {6459, 51910}, {6460, 9681}, {6484, 6560}, {6485, 6561}, {6776, 55591}, {7583, 9692}, {7967, 11531}, {7982, 50815}, {8550, 50975}, {8718, 51261}, {9588, 61254}, {9589, 10595}, {9680, 13886}, {9693, 42638}, {9778, 37727}, {10137, 18512}, {10138, 18510}, {11160, 55602}, {11180, 55626}, {11456, 16936}, {11477, 50971}, {11488, 43633}, {11489, 43632}, {12317, 38788}, {13607, 58241}, {13939, 42266}, {14912, 48881}, {14927, 40107}, {15069, 55618}, {15515, 31417}, {15749, 20421}, {15815, 31407}, {16192, 31399}, {16808, 43642}, {16809, 43641}, {20070, 61286}, {20125, 38726}, {21356, 55637}, {22236, 43481}, {22238, 43482}, {25406, 33749}, {26878, 58808}, {28190, 46933}, {29012, 55642}, {29181, 55699}, {29317, 55683}, {31447, 59387}, {31662, 61276}, {31670, 55688}, {33604, 42794}, {33605, 42793}, {33630, 61301}, {33750, 48872}, {33879, 46852}, {34754, 42120}, {34755, 42119}, {35770, 42260}, {35771, 42261}, {39561, 48873}, {39874, 55607}, {40280, 58533}, {42085, 43011}, {42086, 43010}, {42087, 52080}, {42088, 52079}, {42090, 42433}, {42091, 42434}, {42096, 43464}, {42097, 43463}, {42112, 42489}, {42113, 42488}, {42130, 42987}, {42131, 42986}, {42133, 42491}, {42134, 42490}, {42144, 43870}, {42145, 43869}, {42163, 43555}, {42164, 43543}, {42165, 43542}, {42166, 43554}, {42275, 43375}, {42276, 43374}, {42429, 42921}, {42430, 42920}, {42516, 43646}, {42517, 43645}, {42537, 43255}, {42538, 43254}, {42586, 49874}, {42587, 49873}, {42588, 42992}, {42589, 42993}, {42625, 42999}, {42626, 42998}, {42773, 43401}, {42774, 43402}, {42944, 51944}, {42945, 51945}, {43174, 50812}, {43407, 43509}, {43408, 43510}, {43416, 43479}, {43417, 43480}, {43519, 45384}, {43520, 45385}, {44882, 55582}, {46264, 55603}, {48880, 55695}, {48891, 55645}, {48892, 55587}, {48898, 55627}, {48920, 51538}, {50664, 51212}, {50813, 50871}, {50820, 51120}, {50868, 51083}, {50969, 51027}, {50974, 52987}, {50976, 51166}, {51177, 51214}, {51537, 55653}, {58244, 61287}

X(62113) = midpoint of X(i) and X(j) for these {i,j}: {20, 15717}
X(62113) = reflection of X(i) in X(j) for these {i,j}: {15718, 8703}, {3855, 15717}, {4, 3525}, {5056, 3}
X(62113) = anticomplement of X(61970)
X(62113) = pole of line {185, 15702} with respect to the Jerabek hyperbola
X(62113) = pole of line {69, 17800} with respect to the Wallace hyperbola
X(62113) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(54), X(35501)}}, {{A, B, C, X(68), X(15684)}}, {{A, B, C, X(69), X(17800)}}, {{A, B, C, X(1105), X(15702)}}, {{A, B, C, X(1294), X(5056)}}, {{A, B, C, X(3431), X(55575)}}, {{A, B, C, X(3830), X(15749)}}, {{A, B, C, X(3839), X(15318)}}, {{A, B, C, X(5055), X(15740)}}, {{A, B, C, X(11270), X(55572)}}, {{A, B, C, X(15705), X(54660)}}, {{A, B, C, X(15750), X(20421)}}, {{A, B, C, X(18535), X(57715)}}, {{A, B, C, X(18851), X(61138)}}, {{A, B, C, X(34483), X(58202)}}, {{A, B, C, X(41983), X(60007)}}
X(62113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11541, 4}, {2, 20, 17800}, {3, 15686, 5059}, {3, 15708, 10299}, {3, 1657, 3845}, {3, 30, 5056}, {3, 3533, 3524}, {3, 3543, 3533}, {3, 382, 16239}, {3, 3850, 15708}, {3, 4, 15702}, {3, 5059, 3545}, {5, 3530, 15694}, {20, 15717, 30}, {20, 17578, 1657}, {20, 3522, 5}, {20, 376, 3528}, {20, 548, 631}, {30, 15717, 3855}, {30, 8703, 15718}, {376, 15682, 15688}, {376, 15710, 15695}, {376, 3529, 3522}, {376, 550, 17538}, {376, 631, 548}, {382, 16239, 3832}, {548, 12103, 3861}, {631, 3855, 5070}, {1657, 10304, 3090}, {1657, 3530, 17578}, {2041, 2042, 3839}, {3091, 10303, 16417}, {3091, 17576, 15699}, {3146, 10299, 5071}, {3146, 15708, 3850}, {3522, 3534, 3529}, {3522, 3543, 3}, {3523, 15682, 3544}, {3523, 15704, 15682}, {3524, 11001, 3543}, {3524, 13635, 5076}, {3524, 3525, 15720}, {3528, 11001, 5067}, {3528, 3855, 15715}, {3529, 10299, 14269}, {3529, 5076, 11541}, {3530, 15716, 15717}, {3545, 15686, 11001}, {3545, 15719, 15723}, {3855, 15717, 3525}, {5046, 10303, 5054}, {6931, 13587, 5177}, {10304, 17578, 3530}, {11541, 17538, 12103}, {12103, 17800, 20}, {14784, 14785, 15684}, {14869, 15684, 3854}, {15683, 15695, 15710}, {15688, 15704, 3523}, {15689, 15697, 376}, {15708, 15718, 15719}


X(62114) = X(2)X(3)∩X(40)X(50830)

Barycentrics    46*a^4-11*(b^2-c^2)^2-35*a^2*(b^2+c^2) : :
X(62114) = -11*X[2]+19*X[3], -5*X[40]+X[50830], -X[182]+5*X[51134], -5*X[1350]+X[50985], -X[1353]+5*X[50975], -X[1385]+5*X[51079], -X[1483]+5*X[50819], -5*X[4297]+X[51087], -X[5690]+5*X[50812], -5*X[6776]+X[51182], X[12007]+5*X[48885], -5*X[12512]+X[50827] and many others

X(62114) lies on these lines: {2, 3}, {40, 50830}, {182, 51134}, {524, 55592}, {542, 55609}, {1151, 43384}, {1152, 43385}, {1350, 50985}, {1353, 50975}, {1385, 51079}, {1483, 50819}, {1503, 55621}, {3564, 55599}, {4297, 51087}, {5365, 43003}, {5366, 43002}, {5690, 50812}, {6200, 43316}, {6396, 43317}, {6409, 43340}, {6410, 43341}, {6435, 41945}, {6436, 41946}, {6459, 6495}, {6460, 6494}, {6776, 51182}, {8981, 43342}, {10653, 43421}, {10654, 43420}, {11645, 50972}, {12007, 48885}, {12512, 50827}, {13607, 50815}, {13966, 43343}, {16772, 33607}, {16773, 33606}, {19106, 43489}, {19107, 43490}, {19924, 51138}, {23302, 43324}, {23303, 43325}, {28198, 51085}, {28208, 50816}, {28212, 59420}, {28216, 34638}, {29181, 55700}, {33416, 51916}, {33417, 51915}, {33751, 46267}, {34380, 55589}, {36969, 42930}, {36970, 42931}, {41943, 42687}, {41944, 42686}, {42085, 43333}, {42086, 43332}, {42099, 43484}, {42100, 43483}, {42121, 51944}, {42124, 51945}, {42143, 42430}, {42146, 42429}, {42157, 42899}, {42158, 42898}, {42263, 43315}, {42264, 43314}, {42415, 43645}, {42416, 43646}, {42496, 42795}, {42497, 42796}, {42684, 42912}, {42685, 42913}, {42791, 43207}, {42792, 43208}, {42793, 49904}, {42794, 49903}, {42799, 42943}, {42800, 42942}, {42924, 43009}, {42925, 43008}, {42934, 43108}, {42935, 43109}, {42940, 43545}, {42941, 43544}, {44882, 51140}, {48661, 50832}, {48662, 51184}, {48873, 50976}, {48876, 50968}, {48881, 55723}, {48892, 55586}, {48920, 50983}, {50965, 55605}, {50981, 55648}, {50982, 55619}, {51022, 55655}, {51130, 55688}, {51143, 55647}, {51177, 55584}, {51737, 55712}, {51910, 52048}, {51911, 52047}

X(62114) = midpoint of X(i) and X(j) for these {i,j}: {20, 12100}, {376, 15691}, {546, 11001}, {547, 15681}, {548, 3534}, {550, 15690}, {1657, 12101}, {5066, 15704}, {8703, 12103}, {48885, 50971}, {48920, 50983}
X(62114) = reflection of X(i) in X(j) for these {i,j}: {10109, 3}, {11737, 14891}, {12101, 16239}, {12102, 2}, {14890, 10304}, {15759, 548}, {3530, 8703}, {3628, 15759}, {3845, 12108}, {3850, 12100}, {3860, 3530}, {3861, 11812}, {4, 11540}, {51130, 55688}, {51143, 55647}
X(62114) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(10109)}}, {{A, B, C, X(1494), X(12102)}}, {{A, B, C, X(13623), X(15699)}}
X(62114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 12102}, {3, 30, 10109}, {4, 549, 547}, {20, 3522, 3544}, {20, 376, 14093}, {30, 10304, 14890}, {30, 11812, 3861}, {30, 12100, 3850}, {30, 12108, 3845}, {30, 14891, 11737}, {30, 15759, 3628}, {30, 3530, 3860}, {30, 548, 15759}, {30, 8703, 3530}, {376, 17538, 3543}, {376, 3543, 15688}, {376, 549, 548}, {376, 550, 15691}, {547, 12103, 15681}, {547, 15691, 12103}, {547, 549, 11540}, {548, 5066, 10304}, {549, 15686, 15683}, {549, 15687, 5055}, {549, 15704, 15684}, {550, 15689, 15690}, {632, 8703, 15710}, {1657, 12101, 30}, {1657, 17504, 12101}, {3528, 15685, 11539}, {3530, 3850, 632}, {3534, 10304, 15704}, {3534, 15688, 17800}, {3534, 15695, 15640}, {3534, 5055, 20}, {3543, 15688, 15714}, {3543, 15714, 140}, {3850, 14093, 14891}, {6891, 15688, 3522}, {10304, 15022, 15698}, {10304, 15684, 549}, {10304, 15704, 5066}, {11737, 14891, 11812}, {12101, 17504, 16239}, {14093, 15687, 12100}, {15640, 15706, 5}, {15681, 15696, 376}, {15681, 15710, 15687}, {15683, 15692, 4}, {15689, 15697, 550}, {15695, 15719, 8703}, {15702, 15710, 15692}, {15718, 17538, 15686}


X(62115) = X(2)X(3)∩X(69)X(55609)

Barycentrics    43*a^4-11*(b^2-c^2)^2-32*a^2*(b^2+c^2) : :
X(62115) = -11*X[2]+18*X[3], -11*X[69]+32*X[55609], -9*X[671]+16*X[41151], -X[1992]+8*X[48892], -12*X[3098]+5*X[50990], -15*X[3576]+8*X[51075], -12*X[3579]+5*X[51072], -8*X[4297]+X[34631], -15*X[5085]+8*X[51130], -15*X[5657]+8*X[50801], 3*X[6361]+4*X[51071], -9*X[6776]+2*X[51187] and many others

X(62115) lies on these lines: {2, 3}, {69, 55609}, {511, 51177}, {515, 50813}, {516, 50820}, {542, 55605}, {590, 43521}, {615, 43522}, {671, 41151}, {1285, 14075}, {1503, 50969}, {1992, 48892}, {3098, 50990}, {3576, 51075}, {3579, 51072}, {4297, 34631}, {5085, 51130}, {5237, 49810}, {5238, 49811}, {5334, 42792}, {5335, 42791}, {5343, 42503}, {5344, 42502}, {5473, 36318}, {5474, 36320}, {5657, 50801}, {6361, 51071}, {6468, 43384}, {6469, 43385}, {6496, 42526}, {6497, 42527}, {6560, 42525}, {6561, 42524}, {6776, 51187}, {7581, 42418}, {7582, 42417}, {7750, 32896}, {7967, 50819}, {9541, 43787}, {9741, 47102}, {9778, 50818}, {9862, 15300}, {10172, 50866}, {10517, 13810}, {10518, 13691}, {10519, 50958}, {11004, 52099}, {11179, 55719}, {11180, 41152}, {11230, 50873}, {11480, 49825}, {11481, 49824}, {11645, 50994}, {12512, 34627}, {14226, 42263}, {14241, 42264}, {14912, 50975}, {15533, 39874}, {15534, 48881}, {16772, 42586}, {16773, 42587}, {16962, 43769}, {16963, 43770}, {18546, 55823}, {19924, 55712}, {20423, 55707}, {23249, 43536}, {23259, 54597}, {23267, 43209}, {23269, 52045}, {23273, 43210}, {23275, 52046}, {25406, 55717}, {28164, 51083}, {28208, 51068}, {29181, 50976}, {31162, 41150}, {31730, 51093}, {32787, 41956}, {32788, 41955}, {32822, 32892}, {33604, 43493}, {33605, 43494}, {33608, 33611}, {33609, 33610}, {33750, 51024}, {34628, 47745}, {34638, 51104}, {34773, 51092}, {35242, 51069}, {37640, 42632}, {37641, 42631}, {38042, 50863}, {38064, 48920}, {38176, 50864}, {38317, 51029}, {38747, 41147}, {41100, 42090}, {41101, 42091}, {41112, 42529}, {41113, 42528}, {41119, 42100}, {41120, 42099}, {41121, 42141}, {41122, 42140}, {41149, 44882}, {41153, 54131}, {41869, 51109}, {41951, 43786}, {41952, 43785}, {42085, 49861}, {42086, 49862}, {42087, 43778}, {42088, 43777}, {42104, 42515}, {42105, 42514}, {42119, 42510}, {42120, 42511}, {42139, 42430}, {42142, 42429}, {42154, 52080}, {42155, 52079}, {42283, 43518}, {42284, 43517}, {42472, 54480}, {42473, 54479}, {42508, 42998}, {42509, 42999}, {42512, 43230}, {42513, 43231}, {42520, 43646}, {42521, 43645}, {42940, 43464}, {42941, 43463}, {42942, 49875}, {42943, 49876}, {43228, 43481}, {43229, 43482}, {43374, 52667}, {43375, 52666}, {43544, 43637}, {43545, 43636}, {43632, 49904}, {43633, 49903}, {46264, 50992}, {46334, 49813}, {46335, 49812}, {46349, 54036}, {47353, 50972}, {48873, 55714}, {48880, 55702}, {48885, 54170}, {48898, 55619}, {48905, 50991}, {50804, 50809}, {50811, 51096}, {50815, 51107}, {50956, 55657}, {50961, 50966}, {50967, 51188}, {50971, 54132}, {50974, 55589}, {51022, 55654}, {51143, 55646}, {51174, 51176}, {51178, 55591}, {51211, 59399}, {51212, 55709}, {54173, 55613}, {54523, 60284}, {54612, 60143}, {54616, 54707}, {54637, 60185}, {60150, 60627}

X(62115) = midpoint of X(i) and X(j) for these {i,j}: {3526, 15681}
X(62115) = reflection of X(i) in X(j) for these {i,j}: {15701, 8703}, {15702, 3528}, {3528, 376}, {3543, 3851}, {3832, 15700}, {4, 15702}
X(62115) = anticomplement of X(61974)
X(62115) = pole of line {6, 33604} with respect to the Kiepert hyperbola
X(62115) = pole of line {69, 15685} with respect to the Wallace hyperbola
X(62115) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15685)}}, {{A, B, C, X(3854), X(54838)}}, {{A, B, C, X(3860), X(36889)}}, {{A, B, C, X(5059), X(54667)}}, {{A, B, C, X(50690), X(54512)}}, {{A, B, C, X(52301), X(54612)}}
X(62115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15711}, {2, 15697, 15690}, {2, 15711, 15719}, {2, 20, 15685}, {2, 3543, 3860}, {20, 3522, 3627}, {30, 15700, 3832}, {30, 15702, 4}, {30, 3528, 15702}, {30, 376, 3528}, {30, 3851, 3543}, {30, 8703, 15701}, {140, 3832, 3090}, {376, 15710, 548}, {376, 3545, 3522}, {376, 631, 15688}, {548, 3543, 15710}, {550, 15691, 15689}, {550, 3534, 15697}, {3522, 15640, 12100}, {3524, 11541, 381}, {3524, 5071, 140}, {3526, 15681, 30}, {3529, 10304, 5071}, {3529, 15719, 3830}, {3534, 3830, 15686}, {3543, 15710, 3525}, {3830, 5072, 3845}, {3839, 14093, 10299}, {3845, 8703, 14891}, {8703, 10109, 3}, {10304, 15683, 5072}, {10304, 15686, 3529}, {10304, 15696, 376}, {11001, 17538, 3534}, {12100, 15640, 3545}, {12100, 15681, 15640}, {12101, 15716, 2}, {12103, 15688, 15683}, {14093, 15704, 3839}, {15683, 15688, 631}, {15684, 15708, 3855}, {15685, 15695, 15716}, {15685, 15716, 12101}, {15686, 15696, 10304}, {15686, 15719, 11001}, {15689, 15691, 20}, {15691, 15697, 15682}, {15695, 15716, 8703}, {15698, 15701, 3524}, {15698, 15719, 15700}, {33604, 43493, 49905}, {33605, 43494, 49906}


X(62116) = X(2)X(3)∩X(6)X(41971)

Barycentrics    31*a^4-8*(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62116) = -8*X[2]+13*X[3], -2*X[182]+7*X[50976], -4*X[599]+9*X[55624], -4*X[671]+9*X[38634], -2*X[1353]+7*X[51177], -2*X[1385]+7*X[50820], -13*X[3654]+8*X[4746], -2*X[5690]+7*X[50813], -8*X[5731]+3*X[58238], -4*X[6054]+9*X[38635], -2*X[6684]+7*X[51083], -4*X[9140]+9*X[38633] and many others

X(62116) lies on these lines: {2, 3}, {6, 41971}, {13, 42586}, {14, 42587}, {182, 50976}, {542, 55604}, {599, 55624}, {671, 38634}, {1353, 51177}, {1385, 50820}, {1587, 6474}, {1588, 6475}, {3654, 4746}, {3655, 28228}, {4816, 28204}, {5346, 44519}, {5690, 50813}, {5731, 58238}, {5965, 55593}, {6054, 38635}, {6445, 35822}, {6446, 35823}, {6472, 42638}, {6473, 42637}, {6500, 42260}, {6501, 42261}, {6560, 9690}, {6561, 43415}, {6684, 51083}, {7753, 44541}, {7987, 50806}, {8717, 9703}, {9140, 38633}, {9681, 42418}, {9691, 32787}, {10706, 38638}, {10707, 38637}, {10711, 38636}, {11178, 55643}, {11645, 50968}, {11742, 15603}, {12315, 32903}, {12816, 42490}, {12817, 42491}, {15087, 52099}, {15533, 55602}, {16960, 42529}, {16961, 42528}, {17851, 18510}, {19924, 53091}, {20127, 56567}, {21358, 48896}, {25561, 55654}, {28198, 37624}, {28208, 50812}, {28232, 34638}, {28234, 34748}, {28236, 34718}, {31162, 58230}, {33602, 43479}, {33603, 43480}, {33751, 47352}, {34773, 58247}, {36836, 46334}, {36843, 46335}, {36969, 51945}, {36970, 51944}, {38072, 48879}, {38731, 48657}, {40693, 43236}, {40694, 43237}, {41953, 41968}, {41954, 41967}, {41969, 53130}, {41970, 53131}, {42085, 42778}, {42086, 42777}, {42125, 42513}, {42128, 42512}, {42275, 43790}, {42276, 43789}, {42433, 42521}, {42434, 42520}, {42626, 61719}, {42791, 42988}, {42792, 42989}, {42894, 42996}, {42895, 42997}, {43273, 48885}, {43342, 43887}, {43343, 43888}, {43632, 49906}, {43633, 49905}, {44456, 48892}, {46267, 48920}, {47353, 48891}, {48872, 55692}, {48873, 50971}, {48874, 50962}, {48876, 50969}, {48880, 55705}, {48898, 50955}, {48905, 55632}, {48942, 51141}, {50963, 53094}, {50980, 51537}, {50993, 55637}, {51174, 55587}, {51187, 55588}, {54131, 55697}

X(62116) = midpoint of X(i) and X(j) for these {i,j}: {3091, 11001}, {3534, 15696}, {15681, 15694}, {15697, 17538}
X(62116) = reflection of X(i) in X(j) for these {i,j}: {12812, 15759}, {14093, 376}, {15693, 3522}, {15694, 14093}, {15695, 15696}, {15696, 15697}, {15697, 550}, {15711, 548}, {3, 15695}, {381, 15692}, {3091, 15711}, {3534, 17538}, {3830, 1656}, {3843, 15693}, {3858, 12100}, {4, 15713}, {5071, 15714}, {5076, 2}, {50806, 7987}, {50963, 53094}, {50993, 55637}, {51537, 50980}, {55629, 50968}, {631, 8703}
X(62116) = pole of line {185, 61849} with respect to the Jerabek hyperbola
X(62116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(19709)}}, {{A, B, C, X(1494), X(5076)}}
X(62116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 5076}, {3, 15684, 15703}, {3, 5055, 15722}, {4, 14891, 15723}, {20, 15690, 15688}, {20, 376, 549}, {20, 546, 1657}, {30, 12100, 3858}, {30, 15692, 381}, {30, 15693, 3843}, {30, 15696, 15695}, {30, 15711, 3091}, {30, 15713, 4}, {30, 15714, 5071}, {30, 15759, 12812}, {30, 17538, 3534}, {30, 3522, 15693}, {30, 548, 15711}, {30, 550, 15697}, {30, 8703, 631}, {376, 3534, 15681}, {376, 3543, 8703}, {376, 5071, 3522}, {381, 14093, 15692}, {381, 15700, 10124}, {381, 3534, 15686}, {382, 10304, 15701}, {546, 14869, 17573}, {546, 631, 1656}, {546, 8703, 15705}, {547, 549, 3525}, {1657, 11541, 17800}, {1657, 15700, 3543}, {1657, 15705, 3830}, {1657, 8703, 5055}, {3090, 3525, 17535}, {3528, 3845, 15706}, {3534, 15688, 20}, {3543, 8703, 15700}, {3545, 13587, 5066}, {3545, 13735, 10109}, {3830, 5055, 546}, {3839, 15759, 15720}, {4193, 16239, 3526}, {5054, 11001, 5073}, {6891, 15685, 2}, {6958, 15690, 6825}, {10109, 10299, 5054}, {10304, 15701, 3}, {11645, 50968, 55629}, {12101, 15708, 5079}, {14093, 15693, 15714}, {14093, 15696, 376}, {14891, 15723, 15707}, {15681, 15684, 15685}, {15681, 15694, 30}, {15681, 15695, 15694}, {15684, 15703, 14269}, {15685, 15703, 15684}, {15689, 15695, 15696}, {15694, 15695, 14093}, {15696, 15697, 15689}, {41971, 41972, 6}


X(62117) = X(2)X(3)∩X(69)X(55608)

Barycentrics    27*a^4-7*(b^2-c^2)^2-20*a^2*(b^2+c^2) : :
X(62117) = -21*X[2]+34*X[3], -7*X[69]+20*X[55608], X[944]+12*X[59420], -7*X[1352]+20*X[55634], -18*X[3579]+5*X[61248], 5*X[3618]+8*X[48920], -18*X[4297]+5*X[61288], -27*X[5657]+14*X[61252], -27*X[5731]+14*X[61282], 7*X[6361]+6*X[11224], -2*X[7982]+15*X[50819], -8*X[8550]+21*X[51177] and many others

X(62117) lies on these lines: {2, 3}, {69, 55608}, {944, 59420}, {1285, 9607}, {1352, 55634}, {1587, 9693}, {3316, 42276}, {3317, 42275}, {3579, 61248}, {3618, 48920}, {4297, 61288}, {4309, 37602}, {5334, 42685}, {5335, 42684}, {5351, 43543}, {5352, 43542}, {5657, 61252}, {5731, 61282}, {6361, 11224}, {6459, 43788}, {6460, 43787}, {6470, 9541}, {7581, 9681}, {7756, 46453}, {7982, 50819}, {8162, 15338}, {8550, 51177}, {8972, 43340}, {9606, 44541}, {9705, 37480}, {11206, 32903}, {11477, 50975}, {11488, 43013}, {11489, 43012}, {12512, 59388}, {13941, 43341}, {14912, 48892}, {14927, 43150}, {15520, 48873}, {15740, 57714}, {16964, 42987}, {16965, 42986}, {22235, 43493}, {22237, 43494}, {23267, 35815}, {23269, 35812}, {23273, 35814}, {23275, 35813}, {25406, 55716}, {28164, 31425}, {28182, 46934}, {31414, 42267}, {31454, 43407}, {31457, 43618}, {31670, 55690}, {33751, 51538}, {35786, 43558}, {35787, 43559}, {37640, 43022}, {37641, 43023}, {38021, 51081}, {38074, 50816}, {39874, 55601}, {40107, 55630}, {40693, 52079}, {40694, 52080}, {42119, 42433}, {42120, 42434}, {42144, 42690}, {42145, 42691}, {42149, 42796}, {42152, 42795}, {42153, 42686}, {42156, 42687}, {42157, 42926}, {42158, 42927}, {42159, 43484}, {42162, 43483}, {42163, 51944}, {42166, 51945}, {42258, 43338}, {42259, 43339}, {42266, 43431}, {42494, 43544}, {42495, 43545}, {42516, 43775}, {42517, 43776}, {42584, 42689}, {42585, 42688}, {42694, 42954}, {42695, 42955}, {42813, 43463}, {42814, 43464}, {42890, 43301}, {42891, 43300}, {42932, 43556}, {42933, 43557}, {42990, 43481}, {42991, 43482}, {43174, 50813}, {43302, 43777}, {43303, 43778}, {43386, 43883}, {43387, 43884}, {43806, 51179}, {46264, 55596}, {48880, 55706}, {48885, 55585}, {48891, 55638}, {48898, 55615}, {50972, 55641}, {50982, 55614}, {50992, 55597}, {51023, 55631}, {51212, 55710}

X(62117) = reflection of X(i) in X(j) for these {i,j}: {4, 10303}, {5068, 3}
X(62117) = anticomplement of X(61975)
X(62117) = pole of line {185, 15709} with respect to the Jerabek hyperbola
X(62117) = pole of line {69, 62155} with respect to the Wallace hyperbola
X(62117) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(547), X(15740)}}, {{A, B, C, X(1105), X(15709)}}, {{A, B, C, X(1294), X(5068)}}, {{A, B, C, X(1593), X(57714)}}, {{A, B, C, X(3534), X(18849)}}, {{A, B, C, X(3628), X(18852)}}, {{A, B, C, X(3853), X(43699)}}, {{A, B, C, X(5070), X(13623)}}, {{A, B, C, X(11270), X(44878)}}, {{A, B, C, X(14890), X(46412)}}, {{A, B, C, X(15318), X(50689)}}, {{A, B, C, X(15681), X(34483)}}, {{A, B, C, X(15717), X(18851)}}, {{A, B, C, X(17504), X(54660)}}, {{A, B, C, X(18847), X(49140)}}, {{A, B, C, X(21400), X(35401)}}, {{A, B, C, X(31371), X(41991)}}, {{A, B, C, X(43713), X(55570)}}, {{A, B, C, X(44580), X(60007)}}
X(62117) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15699, 3523}, {3, 1657, 15687}, {3, 30, 5068}, {3, 3858, 15721}, {3, 4, 15709}, {3, 550, 15697}, {4, 17538, 3534}, {4, 3524, 3628}, {4, 3528, 15717}, {20, 15696, 3528}, {20, 15717, 17800}, {20, 3522, 382}, {20, 376, 631}, {20, 382, 11001}, {20, 3832, 1657}, {20, 631, 3529}, {20, 7486, 15683}, {376, 15719, 15688}, {382, 12103, 20}, {548, 15704, 3526}, {548, 3526, 10304}, {548, 3853, 15759}, {549, 12101, 5055}, {549, 15710, 15698}, {550, 12103, 15689}, {1657, 3628, 15640}, {2050, 3628, 3091}, {3090, 3522, 15710}, {3146, 15721, 3858}, {3522, 11001, 3090}, {3522, 3839, 3}, {3523, 15681, 11541}, {3534, 15689, 549}, {3534, 5055, 15686}, {3861, 5071, 3855}, {5059, 8703, 3525}, {5073, 15692, 3544}, {10304, 15683, 5066}, {10304, 15704, 4}, {11001, 15689, 376}, {12103, 15689, 3522}, {15683, 15709, 15682}, {15683, 15717, 17578}, {15696, 17800, 548}, {15697, 17578, 15696}, {15717, 17578, 7486}, {42795, 42965, 42152}, {42796, 42964, 42149}


X(62118) = X(2)X(3)∩X(395)X(42928)

Barycentrics    50*a^4-13*(b^2-c^2)^2-37*a^2*(b^2+c^2) : :
X(62118) = -13*X[2]+21*X[3], -5*X[4669]+3*X[61246], -X[5476]+5*X[51134], X[15534]+3*X[48874], X[22165]+3*X[48898], 5*X[31730]+X[61292], -X[32455]+7*X[48892], -3*X[40273]+5*X[51109], -21*X[50813]+5*X[51072], -21*X[50820]+5*X[51105], -X[50862]+3*X[61614], -7*X[50874]+15*X[61266] and many others

X(62118) lies on these lines: {2, 3}, {395, 42928}, {396, 42929}, {511, 51135}, {517, 51080}, {952, 50814}, {3564, 50970}, {4669, 61246}, {4745, 28186}, {5476, 51134}, {5844, 51082}, {6200, 42572}, {6396, 42573}, {6411, 42576}, {6412, 42577}, {6439, 6560}, {6440, 6561}, {6451, 42639}, {6452, 42640}, {6476, 32787}, {6477, 32788}, {7583, 42525}, {7584, 42524}, {9690, 43386}, {11480, 49860}, {11481, 49859}, {14929, 32896}, {15534, 48874}, {16241, 42889}, {16242, 42888}, {16772, 43491}, {16773, 43492}, {22165, 48898}, {28146, 51108}, {28150, 51081}, {28160, 50816}, {28174, 50815}, {28182, 50828}, {28194, 61281}, {28202, 51700}, {28212, 51071}, {28216, 51705}, {28224, 50808}, {29012, 50972}, {31730, 61292}, {32455, 48892}, {33610, 52193}, {33611, 52194}, {34380, 51136}, {36969, 42504}, {36970, 42505}, {40273, 51109}, {41100, 42122}, {41101, 42123}, {41119, 42145}, {41120, 42144}, {41121, 42530}, {41122, 42531}, {41961, 43209}, {41962, 43210}, {42087, 42631}, {42088, 42632}, {42115, 42589}, {42116, 42588}, {42121, 43878}, {42124, 43877}, {42130, 49812}, {42131, 49813}, {42164, 49904}, {42165, 49903}, {42417, 52048}, {42418, 52047}, {42496, 42529}, {42497, 42528}, {42500, 54591}, {42501, 54592}, {42506, 42791}, {42507, 42792}, {42508, 42511}, {42509, 42510}, {42635, 42891}, {42636, 42890}, {42643, 43526}, {42644, 43525}, {42692, 49908}, {42693, 49907}, {42912, 43207}, {42913, 43208}, {42942, 43109}, {42943, 43108}, {43387, 43415}, {43519, 60289}, {43520, 60290}, {43630, 49827}, {43631, 49826}, {43647, 43870}, {43648, 43869}, {50813, 51072}, {50820, 51105}, {50862, 61614}, {50874, 61266}, {50958, 55627}, {50969, 50990}, {50973, 59411}, {50976, 51185}, {50994, 55629}, {51079, 51709}, {51184, 55624}, {52886, 61599}

X(62118) = midpoint of X(i) and X(j) for these {i,j}: {140, 15681}, {376, 12103}, {547, 15704}, {548, 15686}, {550, 15691}, {1657, 14893}, {3534, 15690}, {3853, 15683}, {5066, 11001}
X(62118) = reflection of X(i) in X(j) for these {i,j}: {10109, 15759}, {11737, 3}, {11812, 8703}, {12101, 11540}, {12102, 10124}, {14891, 548}, {14893, 12108}, {15687, 16239}, {3543, 12811}, {3850, 14891}, {3860, 12100}, {3861, 549}
X(62118) = complement of X(62031)
X(62118) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(11737)}}, {{A, B, C, X(3861), X(18317)}}
X(62118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12100, 12108}, {2, 15682, 3843}, {2, 15684, 3845}, {2, 3850, 10109}, {3, 12101, 11540}, {20, 376, 5054}, {30, 10124, 12102}, {30, 11540, 12101}, {30, 12108, 14893}, {30, 12811, 3543}, {30, 14891, 3850}, {30, 16239, 15687}, {30, 548, 14891}, {30, 549, 3861}, {30, 8703, 11812}, {140, 12100, 15722}, {140, 15681, 30}, {376, 3523, 15688}, {548, 12103, 1657}, {550, 15686, 15689}, {550, 3534, 15690}, {550, 8703, 15697}, {1657, 5054, 15684}, {3534, 15695, 20}, {3534, 15696, 15685}, {3628, 3861, 3851}, {3845, 8703, 15698}, {5054, 15703, 3533}, {6864, 11539, 15703}, {8703, 11001, 5066}, {8703, 11812, 15759}, {10109, 12102, 3860}, {10109, 14890, 2}, {10109, 15759, 3530}, {10124, 12108, 14890}, {10124, 15759, 12100}, {11540, 12101, 11737}, {12100, 15690, 376}, {14891, 14893, 10124}, {15681, 15688, 3544}, {15682, 15688, 15711}, {15682, 15711, 547}, {15683, 17504, 3853}, {15684, 15712, 14892}, {15686, 15689, 548}, {15689, 17538, 15686}, {15690, 15691, 3534}, {15695, 15698, 8703}, {15704, 15711, 15682}, {42528, 42585, 42497}, {42529, 42584, 42496}


X(62119) = X(2)X(3)∩X(599)X(55623)

Barycentrics    23*a^4-6*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62119) = -18*X[2]+29*X[3], -9*X[599]+20*X[55623], 8*X[5493]+3*X[50805], 3*X[5925]+8*X[50414], -24*X[6053]+35*X[15039], -9*X[10516]+20*X[55650], -X[11477]+12*X[48892], 5*X[11482]+6*X[48873], -3*X[11898]+14*X[55602], -X[12702]+12*X[59420], -3*X[14848]+14*X[50976], 2*X[14927]+9*X[55624] and many others

X(62119) lies on these lines: {2, 3}, {599, 55623}, {1503, 55620}, {5206, 11742}, {5237, 42816}, {5238, 42815}, {5351, 42126}, {5352, 42127}, {5355, 22331}, {5493, 50805}, {5925, 50414}, {6053, 15039}, {6425, 51911}, {6426, 51910}, {6427, 42260}, {6428, 42261}, {6445, 43407}, {6446, 43408}, {6453, 18512}, {6454, 18510}, {6455, 53513}, {6456, 53516}, {6496, 42276}, {6497, 42275}, {6519, 6560}, {6522, 6561}, {9690, 43883}, {10147, 35822}, {10148, 35823}, {10516, 55650}, {10645, 42903}, {10646, 42902}, {11477, 48892}, {11480, 43010}, {11481, 43011}, {11482, 48873}, {11645, 55628}, {11898, 55602}, {12702, 59420}, {13903, 42267}, {13961, 42266}, {14848, 50976}, {14927, 55624}, {15020, 38790}, {15069, 55611}, {16936, 18445}, {18440, 55626}, {20190, 48872}, {22236, 42896}, {22238, 42897}, {29012, 55641}, {29181, 55701}, {29317, 55684}, {29323, 55652}, {30389, 48661}, {31652, 44541}, {33541, 61150}, {34754, 43250}, {34755, 43251}, {35007, 44519}, {36748, 61314}, {36836, 42131}, {36843, 42130}, {36990, 55644}, {38021, 58225}, {39899, 52987}, {40107, 50968}, {42108, 42951}, {42109, 42950}, {42144, 43772}, {42145, 43771}, {42164, 42818}, {42165, 42817}, {42263, 42579}, {42264, 42578}, {42413, 45385}, {42414, 45384}, {42435, 43421}, {42436, 43420}, {42785, 53094}, {42946, 43636}, {42947, 43637}, {43193, 43775}, {43194, 43776}, {43230, 43483}, {43231, 43484}, {43273, 55583}, {43415, 43884}, {43630, 43778}, {43631, 43777}, {44882, 55724}, {46264, 55595}, {46850, 54048}, {48879, 55679}, {48880, 53093}, {48881, 55580}, {48885, 53097}, {48891, 55637}, {48896, 55647}, {48898, 55614}, {48905, 55631}, {48910, 55681}, {48920, 55687}, {50819, 61286}, {50824, 58236}, {51134, 51173}, {51172, 53858}, {51175, 55597}, {53023, 55677}, {54131, 55698}

X(62119) = reflection of X(i) in X(j) for these {i,j}: {15721, 8703}, {381, 15716}, {5072, 3}
X(62119) = pole of line {185, 61850} with respect to the Jerabek hyperbola
X(62119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(5072)}}, {{A, B, C, X(1494), X(35401)}}, {{A, B, C, X(14269), X(15319)}}, {{A, B, C, X(18848), X(44903)}}
X(62119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10303, 15700}, {3, 15681, 3146}, {3, 1657, 5076}, {3, 17800, 546}, {3, 30, 5072}, {3, 3146, 1656}, {3, 3830, 632}, {3, 3843, 10303}, {3, 3851, 12108}, {3, 5073, 3090}, {3, 546, 5054}, {20, 11541, 15704}, {20, 3522, 15682}, {20, 376, 140}, {20, 381, 1657}, {20, 550, 15689}, {20, 8703, 5073}, {30, 8703, 15721}, {140, 15685, 382}, {140, 15704, 11541}, {140, 3627, 3091}, {140, 382, 381}, {140, 5070, 15723}, {376, 5067, 3522}, {381, 15720, 5070}, {382, 1656, 3845}, {548, 550, 15697}, {1656, 15697, 15696}, {1657, 15688, 3526}, {1657, 15696, 15688}, {3091, 11541, 3627}, {3091, 15708, 13741}, {3091, 15717, 3525}, {3146, 3524, 12811}, {3522, 15686, 17800}, {3522, 5067, 15759}, {3524, 10124, 15701}, {3525, 6867, 15703}, {3528, 5068, 14891}, {3534, 5054, 15686}, {3627, 12103, 20}, {3845, 17504, 10124}, {6891, 12101, 15716}, {6904, 17578, 3832}, {10304, 12108, 3}, {11541, 15704, 15685}, {12102, 15704, 5059}, {12103, 15696, 5079}, {15685, 15689, 376}, {15689, 15691, 3534}, {15717, 15720, 15693}, {15717, 15723, 15720}


X(62120) = X(1)X(34638)∩X(2)X(3)

Barycentrics    19*a^4-5*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62120) = X[1]+2*X[34638], -5*X[2]+8*X[3], -X[6]+4*X[50971], X[8]+2*X[34628], -X[10]+4*X[50816], -4*X[40]+X[31145], -4*X[98]+X[8596], -X[141]+4*X[50972], X[145]+8*X[31730], -5*X[165]+2*X[38155], -X[192]+4*X[51042], -X[193]+4*X[43273] and many others

X(62120) lies on these lines: {1, 34638}, {2, 3}, {6, 50971}, {8, 34628}, {10, 50816}, {15, 43244}, {16, 43245}, {40, 31145}, {61, 49875}, {62, 49876}, {69, 41467}, {98, 8596}, {99, 10513}, {141, 50972}, {145, 31730}, {165, 38155}, {192, 51042}, {193, 43273}, {230, 11742}, {371, 43256}, {372, 43257}, {390, 15326}, {395, 43466}, {396, 43465}, {485, 43519}, {486, 43520}, {516, 30392}, {519, 9778}, {524, 55591}, {538, 22676}, {542, 55603}, {553, 4313}, {597, 48872}, {599, 14927}, {633, 33611}, {634, 33610}, {671, 38747}, {754, 53142}, {944, 20049}, {962, 51705}, {1078, 32893}, {1125, 51081}, {1131, 6409}, {1132, 6410}, {1151, 43209}, {1152, 43210}, {1278, 51044}, {1327, 60311}, {1328, 60312}, {1350, 11160}, {1352, 55633}, {1503, 55618}, {1587, 9543}, {1588, 51910}, {1698, 50862}, {1992, 44882}, {2794, 52695}, {3068, 6433}, {3069, 6434}, {3070, 43887}, {3071, 43888}, {3098, 11180}, {3219, 58808}, {3241, 4297}, {3244, 51080}, {3316, 6496}, {3317, 6497}, {3424, 60628}, {3579, 4678}, {3589, 51165}, {3590, 41952}, {3591, 41951}, {3592, 42418}, {3594, 42417}, {3600, 10385}, {3616, 50865}, {3617, 50812}, {3618, 51024}, {3620, 48905}, {3621, 18481}, {3622, 31162}, {3623, 3655}, {3629, 51135}, {3632, 50814}, {3636, 58231}, {3653, 28146}, {3679, 12512}, {3763, 51022}, {3785, 32869}, {3818, 51216}, {3828, 16192}, {3926, 11057}, {4302, 37587}, {4304, 15933}, {4316, 10056}, {4324, 10072}, {4511, 43178}, {4699, 51065}, {4704, 51064}, {4740, 30271}, {4788, 51043}, {4995, 5261}, {5008, 7739}, {5032, 5102}, {5097, 48873}, {5237, 41113}, {5238, 41112}, {5265, 11238}, {5274, 5298}, {5281, 11237}, {5306, 44519}, {5334, 16963}, {5335, 16962}, {5339, 49861}, {5340, 49862}, {5343, 5351}, {5344, 5352}, {5365, 41122}, {5366, 41121}, {5395, 54522}, {5476, 48920}, {5493, 51093}, {5550, 50802}, {5603, 28202}, {5657, 28208}, {5731, 16200}, {5732, 60984}, {5882, 51092}, {5918, 44663}, {5921, 48898}, {5984, 8591}, {6000, 33884}, {6054, 38736}, {6411, 42604}, {6412, 42605}, {6429, 32787}, {6430, 32788}, {6431, 6460}, {6432, 6459}, {6437, 7585}, {6438, 7586}, {6451, 42540}, {6452, 42539}, {6455, 23269}, {6456, 23275}, {6480, 6560}, {6481, 6561}, {6482, 42525}, {6483, 42524}, {6484, 35822}, {6485, 35823}, {6486, 42267}, {6487, 42266}, {6488, 43413}, {6489, 43414}, {6776, 48885}, {6781, 14930}, {7581, 52047}, {7582, 52048}, {7712, 51394}, {7736, 44541}, {7750, 32840}, {7767, 32880}, {7768, 32896}, {7771, 32885}, {7773, 32873}, {7782, 32837}, {7802, 32831}, {7811, 32830}, {7885, 51579}, {8142, 31150}, {8717, 43574}, {8972, 42264}, {9140, 37853}, {9143, 16163}, {9542, 23267}, {9544, 37480}, {9589, 51103}, {9779, 19883}, {9780, 34648}, {9812, 25055}, {9821, 20105}, {9939, 34624}, {9961, 31165}, {10137, 43386}, {10138, 43387}, {10141, 43883}, {10142, 43884}, {10168, 48879}, {10248, 30308}, {10519, 11645}, {10574, 21969}, {10645, 43403}, {10646, 43404}, {10653, 34754}, {10654, 34755}, {10706, 11693}, {10707, 38759}, {10708, 38771}, {10709, 38783}, {10717, 38803}, {11002, 16226}, {11008, 51136}, {11015, 20008}, {11177, 12117}, {11178, 55642}, {11179, 37517}, {11480, 43332}, {11481, 43333}, {11485, 43481}, {11486, 43482}, {11668, 60113}, {11694, 38790}, {11738, 35257}, {11824, 13666}, {11825, 13786}, {12243, 35369}, {12279, 13348}, {12702, 20014}, {13172, 14830}, {13391, 61136}, {13678, 51952}, {13798, 51953}, {13941, 42263}, {14484, 60648}, {14537, 31400}, {14561, 55680}, {14683, 16111}, {14853, 55695}, {14907, 32836}, {14915, 54041}, {15072, 36987}, {15644, 52093}, {16241, 42134}, {16242, 42133}, {16267, 42086}, {16268, 42085}, {16644, 42141}, {16645, 42140}, {16936, 37672}, {18480, 50863}, {18483, 50873}, {18487, 61301}, {18492, 46930}, {18581, 42931}, {18582, 42930}, {18845, 54645}, {19053, 42258}, {19054, 42259}, {19862, 50869}, {19875, 28164}, {19877, 50829}, {19878, 58217}, {19924, 39561}, {20050, 51082}, {20052, 34718}, {20054, 50817}, {20080, 46264}, {20081, 33706}, {20095, 38761}, {20096, 38773}, {20099, 37749}, {20423, 48880}, {20427, 32903}, {20477, 36889}, {20582, 51537}, {21356, 31884}, {21843, 39563}, {21850, 51211}, {22165, 55614}, {22235, 42165}, {22237, 42164}, {23249, 43314}, {23253, 42602}, {23259, 43315}, {23263, 42603}, {24473, 31805}, {25565, 55669}, {28150, 38021}, {28160, 38074}, {28172, 38068}, {28182, 38022}, {28186, 38066}, {28204, 59417}, {28228, 58241}, {28610, 34701}, {29012, 55640}, {29181, 55703}, {29317, 33750}, {30331, 45834}, {31253, 50870}, {31670, 55691}, {31673, 46932}, {32424, 38798}, {32785, 43507}, {32786, 43508}, {32815, 32874}, {32819, 32872}, {32822, 32882}, {32870, 43459}, {33751, 55683}, {33878, 50974}, {34473, 41135}, {34504, 47102}, {34595, 51086}, {34604, 34616}, {34605, 34618}, {34607, 34620}, {34610, 34626}, {34611, 34630}, {34631, 34773}, {35240, 54036}, {35242, 46933}, {35750, 41020}, {35770, 42261}, {35771, 42260}, {36331, 41021}, {36413, 36427}, {36836, 43769}, {36843, 43770}, {36967, 42091}, {36968, 42090}, {36969, 43199}, {36970, 43200}, {37640, 42088}, {37641, 42087}, {37666, 48842}, {37668, 59634}, {37689, 44526}, {37832, 42113}, {37835, 42112}, {38079, 55682}, {38259, 54644}, {38746, 41134}, {39874, 50966}, {39899, 51179}, {40330, 48896}, {40341, 50970}, {40693, 46334}, {40694, 46335}, {41100, 42150}, {41101, 42151}, {41119, 42431}, {41120, 42432}, {41428, 55616}, {41869, 46934}, {41943, 42161}, {41944, 42160}, {41975, 54635}, {41976, 54634}, {42089, 43549}, {42092, 43548}, {42096, 51944}, {42097, 51945}, {42099, 42972}, {42100, 42973}, {42119, 42943}, {42120, 42942}, {42126, 43329}, {42127, 43328}, {42129, 42906}, {42130, 42913}, {42131, 42912}, {42132, 42907}, {42139, 43402}, {42142, 43401}, {42149, 49824}, {42152, 49825}, {42157, 42631}, {42158, 42632}, {42225, 43317}, {42226, 43316}, {42429, 43473}, {42430, 43474}, {42433, 42510}, {42434, 42511}, {42520, 42935}, {42521, 42934}, {42570, 60299}, {42571, 60300}, {42588, 42791}, {42589, 42792}, {42641, 53517}, {42642, 53520}, {42727, 43624}, {42728, 43625}, {42817, 43493}, {42818, 43494}, {42891, 61719}, {42932, 43416}, {42933, 43417}, {42940, 43202}, {42941, 43201}, {43174, 51072}, {43193, 43228}, {43194, 43229}, {43440, 54578}, {43441, 54579}, {43621, 51213}, {43681, 54851}, {43951, 60238}, {44299, 46847}, {47352, 51538}, {47354, 55646}, {47586, 60216}, {48310, 55673}, {48891, 50977}, {48906, 51177}, {48910, 50983}, {50709, 61680}, {50976, 51171}, {50978, 55604}, {50984, 55656}, {51026, 51126}, {51067, 61252}, {51084, 61268}, {51091, 58245}, {51212, 51737}, {52053, 54056}, {52054, 54055}, {53108, 54476}, {54734, 60145}, {54815, 56059}, {54920, 60650}, {54934, 60639}, {60118, 60283}, {60147, 60277}, {60324, 60641}, {60335, 60625}, {60336, 60626}

X(62120) = midpoint of X(i) and X(j) for these {i,j}: {20, 10304}, {1657, 14269}, {3534, 15689}, {3545, 11001}, {5054, 15681}, {15699, 15704}
X(62120) = reflection of X(i) in X(j) for these {i,j}: {10304, 376}, {10706, 11693}, {11002, 20791}, {11693, 38726}, {14269, 549}, {15682, 14269}, {15689, 550}, {17504, 548}, {2, 10304}, {21356, 31884}, {376, 15689}, {381, 17504}, {3524, 15688}, {3543, 3545}, {3545, 3}, {3830, 15699}, {3839, 3524}, {4, 5054}, {41135, 34473}, {5032, 25406}, {5054, 8703}, {51538, 47352}, {53620, 165}, {9779, 58221}, {9812, 25055}
X(62120) = inverse of X(61944) in orthocentroidal circle
X(62120) = inverse of X(61944) in Yff hyperbola
X(62120) = complement of X(62032)
X(62120) = anticomplement of X(3839)
X(62120) = pole of line {523, 61944} with respect to the orthocentroidal circle
X(62120) = pole of line {185, 15082} with respect to the Jerabek hyperbola
X(62120) = pole of line {6, 61944} with respect to the Kiepert hyperbola
X(62120) = pole of line {523, 61944} with respect to the Yff hyperbola
X(62120) = pole of line {69, 15683} with respect to the Wallace hyperbola
X(62120) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15683)}}, {{A, B, C, X(297), X(60635)}}, {{A, B, C, X(468), X(54921)}}, {{A, B, C, X(546), X(3346)}}, {{A, B, C, X(1105), X(55864)}}, {{A, B, C, X(1217), X(5079)}}, {{A, B, C, X(1294), X(3545)}}, {{A, B, C, X(1494), X(50687)}}, {{A, B, C, X(2693), X(37953)}}, {{A, B, C, X(3522), X(57822)}}, {{A, B, C, X(3543), X(35510)}}, {{A, B, C, X(3627), X(54552)}}, {{A, B, C, X(3830), X(16251)}}, {{A, B, C, X(3832), X(36889)}}, {{A, B, C, X(3843), X(54923)}}, {{A, B, C, X(3854), X(51348)}}, {{A, B, C, X(3859), X(18855)}}, {{A, B, C, X(4846), X(5066)}}, {{A, B, C, X(7486), X(15740)}}, {{A, B, C, X(8703), X(18850)}}, {{A, B, C, X(8889), X(54522)}}, {{A, B, C, X(11270), X(44880)}}, {{A, B, C, X(11738), X(52294)}}, {{A, B, C, X(14269), X(18317)}}, {{A, B, C, X(15022), X(55958)}}, {{A, B, C, X(15749), X(17578)}}, {{A, B, C, X(17538), X(60122)}}, {{A, B, C, X(18846), X(49134)}}, {{A, B, C, X(21735), X(60618)}}, {{A, B, C, X(31621), X(44334)}}, {{A, B, C, X(35501), X(44731)}}, {{A, B, C, X(38282), X(54644)}}, {{A, B, C, X(40506), X(44335)}}, {{A, B, C, X(44216), X(46270)}}, {{A, B, C, X(46412), X(55863)}}, {{A, B, C, X(47332), X(50480)}}, {{A, B, C, X(47339), X(53934)}}, {{A, B, C, X(52283), X(60628)}}, {{A, B, C, X(52288), X(60648)}}, {{A, B, C, X(52299), X(54645)}}, {{A, B, C, X(52485), X(56371)}}, {{A, B, C, X(54660), X(61138)}}
X(62120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15705}, {2, 140, 17678}, {2, 15677, 11106}, {2, 15683, 3146}, {2, 17578, 381}, {2, 20, 15683}, {2, 3543, 3832}, {2, 376, 3522}, {2, 381, 15022}, {2, 3854, 5071}, {2, 5059, 3543}, {3, 11539, 3524}, {3, 15719, 15692}, {3, 1657, 3853}, {3, 20, 5059}, {3, 22, 13620}, {3, 30, 3545}, {3, 3534, 15686}, {3, 3545, 15708}, {3, 381, 11812}, {3, 3830, 15723}, {3, 3845, 15702}, {3, 3853, 3533}, {4, 3090, 3859}, {4, 631, 5079}, {5, 14093, 15698}, {5, 15698, 15721}, {20, 15697, 376}, {20, 15721, 15685}, {20, 3091, 1657}, {20, 3523, 3529}, {20, 3543, 11001}, {20, 376, 2}, {20, 548, 17578}, {30, 14269, 15682}, {30, 15699, 3830}, {30, 3524, 3839}, {30, 376, 10304}, {30, 548, 17504}, {30, 549, 14269}, {30, 550, 15689}, {30, 8703, 5054}, {140, 7486, 17536}, {376, 15682, 3528}, {376, 17538, 3534}, {376, 3524, 15688}, {376, 3528, 15695}, {376, 550, 15697}, {382, 10303, 3854}, {546, 15714, 15701}, {547, 11812, 632}, {547, 3853, 3860}, {550, 15686, 15690}, {1657, 15695, 549}, {1657, 3528, 3091}, {2043, 2044, 17538}, {3146, 15717, 5068}, {3146, 3522, 15717}, {3524, 15682, 14892}, {3524, 3545, 11539}, {3534, 15681, 12103}, {3534, 15696, 15681}, {3543, 5056, 3845}, {3545, 15709, 5067}, {3627, 10299, 7486}, {3627, 15759, 15694}, {3627, 4221, 10303}, {3655, 50872, 3623}, {3655, 6361, 50872}, {3830, 15706, 15699}, {3830, 15723, 3850}, {3843, 15716, 10124}, {3845, 15702, 5056}, {5055, 10303, 13745}, {5066, 15700, 3525}, {5073, 14869, 6830}, {5073, 15700, 5066}, {6361, 50819, 3655}, {6409, 42414, 1131}, {6410, 42413, 1132}, {10304, 15640, 15709}, {10304, 15692, 15710}, {10304, 15708, 3}, {11001, 11812, 15640}, {11001, 15686, 20}, {11177, 12117, 20094}, {11179, 48892, 50975}, {11179, 51028, 51170}, {11180, 50969, 3098}, {12101, 15703, 3855}, {12101, 15712, 15703}, {12103, 15690, 547}, {12103, 15696, 4}, {12117, 38749, 11177}, {14093, 15685, 5}, {14893, 15711, 3526}, {15681, 15695, 5070}, {15681, 15696, 8703}, {15683, 17678, 15684}, {15685, 15688, 14890}, {15686, 15696, 15719}, {15687, 15693, 3090}, {15692, 15697, 15696}, {15693, 17800, 15687}, {15694, 15759, 10299}, {15699, 15704, 30}, {15699, 15706, 631}, {15709, 17504, 3523}, {16644, 42141, 43540}, {16645, 42140, 43541}, {28158, 58221, 9779}, {31730, 50811, 34632}, {34627, 50813, 3579}, {34632, 50811, 145}, {34638, 50815, 1}, {41943, 42161, 49874}, {41944, 42160, 49873}, {42087, 42625, 37641}, {42088, 42626, 37640}, {42130, 52080, 42983}, {42131, 52079, 42982}, {42586, 49905, 42165}, {42587, 49906, 42164}, {43273, 48881, 54170}, {43273, 54170, 193}, {43540, 43869, 16644}, {48905, 50968, 54169}, {48905, 54169, 51023}, {51214, 54170, 55582}


X(62121) = X(2)X(3)∩X(49)X(8717)

Barycentrics    15*a^4-4*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62121) = -12*X[2]+19*X[3], -5*X[962]+12*X[61280], -9*X[1351]+16*X[33749], -4*X[1352]+11*X[55632], -8*X[1483]+X[58247], -X[1498]+8*X[32903], -8*X[3098]+X[48662], -10*X[3579]+3*X[37712], -3*X[3653]+10*X[51079], -4*X[3818]+11*X[55648], -8*X[4297]+X[8148], -8*X[4301]+15*X[37624] and many others

X(62121) lies on these lines: {2, 3}, {49, 8717}, {61, 43646}, {62, 43645}, {516, 61277}, {517, 61289}, {542, 55602}, {962, 61280}, {999, 4330}, {1351, 33749}, {1352, 55632}, {1384, 7765}, {1483, 58247}, {1498, 32903}, {1503, 55616}, {3098, 48662}, {3295, 4325}, {3411, 42154}, {3412, 42155}, {3579, 37712}, {3653, 51079}, {3818, 55648}, {4297, 8148}, {4301, 37624}, {4309, 7373}, {4316, 9657}, {4317, 6767}, {4324, 9670}, {4333, 37606}, {5010, 9656}, {5050, 48880}, {5085, 48920}, {5093, 48873}, {5339, 42528}, {5340, 42529}, {5657, 61253}, {5691, 31447}, {5731, 61281}, {5882, 51080}, {5925, 14530}, {6101, 52093}, {6199, 9681}, {6221, 51911}, {6361, 61286}, {6395, 42258}, {6398, 51910}, {6407, 6560}, {6408, 6561}, {6409, 45384}, {6410, 45385}, {6417, 42260}, {6418, 42261}, {6445, 31454}, {6449, 42267}, {6450, 42266}, {6451, 35820}, {6452, 35821}, {6455, 35812}, {6456, 35813}, {6474, 9693}, {6496, 23251}, {6497, 23261}, {6781, 9605}, {7280, 9671}, {7354, 31480}, {7583, 9690}, {7584, 43415}, {7745, 31470}, {7747, 31492}, {7748, 11742}, {7988, 58219}, {7991, 34748}, {8550, 51135}, {8976, 53517}, {9588, 28160}, {9589, 10246}, {9607, 43136}, {9624, 28146}, {9655, 31452}, {9680, 13665}, {9691, 18512}, {9692, 23267}, {9707, 43599}, {9778, 18526}, {10541, 50976}, {10575, 15606}, {11362, 51515}, {11480, 43633}, {11481, 43632}, {11485, 42434}, {11486, 42433}, {11495, 26321}, {11645, 55626}, {12017, 48872}, {12111, 54047}, {12279, 54042}, {12308, 16163}, {12511, 18515}, {12512, 18525}, {12702, 61296}, {12902, 37853}, {13340, 46850}, {13348, 18439}, {13491, 54048}, {13903, 31414}, {13951, 53520}, {13961, 42225}, {14641, 23039}, {14855, 37484}, {14981, 38731}, {15045, 55286}, {15058, 54044}, {15063, 38723}, {15068, 52100}, {15069, 48898}, {15484, 31450}, {15533, 55600}, {15603, 43619}, {16003, 38788}, {16111, 23236}, {16192, 28168}, {16772, 42127}, {16773, 42126}, {16936, 37483}, {16960, 42689}, {16961, 42688}, {16962, 43310}, {16963, 43311}, {16964, 42115}, {16965, 42116}, {17845, 52102}, {18440, 55624}, {18442, 56516}, {18480, 31425}, {18481, 59420}, {18510, 42637}, {18553, 55641}, {19106, 42490}, {19107, 42491}, {19924, 53092}, {21358, 55647}, {22236, 43232}, {22238, 43233}, {23241, 38621}, {28154, 61271}, {28164, 61258}, {28194, 61282}, {28202, 30389}, {28208, 61252}, {29012, 55639}, {29181, 55705}, {29323, 55651}, {31467, 43618}, {31663, 37714}, {31666, 50865}, {31670, 55692}, {31730, 37727}, {31884, 48891}, {33543, 33887}, {33751, 48910}, {33878, 48885}, {34507, 55620}, {34783, 36987}, {34785, 35450}, {35255, 42414}, {35256, 42413}, {36967, 43305}, {36968, 43304}, {36969, 43372}, {36970, 43373}, {36990, 55643}, {37494, 43807}, {37545, 37723}, {37726, 38754}, {38064, 51134}, {38066, 50812}, {38072, 55679}, {38634, 38733}, {38635, 38736}, {38636, 38756}, {38637, 38759}, {38638, 38726}, {38639, 48658}, {40107, 48905}, {40693, 42131}, {40694, 42130}, {41963, 42572}, {41964, 42573}, {41973, 42631}, {41974, 42632}, {42090, 42148}, {42091, 42147}, {42096, 44016}, {42097, 44015}, {42099, 42153}, {42100, 42156}, {42129, 42692}, {42132, 42693}, {42157, 42625}, {42158, 42626}, {42545, 43545}, {42546, 43544}, {42584, 42815}, {42585, 42816}, {42596, 43226}, {42597, 43227}, {42629, 42691}, {42630, 42690}, {42813, 43637}, {42814, 43636}, {42888, 43464}, {42889, 43463}, {42912, 43769}, {42913, 43770}, {43150, 55622}, {43174, 61248}, {43177, 51514}, {43273, 55580}, {43322, 53130}, {43323, 53131}, {43374, 43560}, {43375, 43561}, {43785, 43879}, {43786, 43880}, {43845, 52099}, {44456, 44882}, {46264, 55593}, {47353, 55637}, {48661, 58230}, {48879, 53094}, {48881, 55584}, {48884, 55654}, {48889, 55656}, {48895, 55671}, {48896, 55646}, {48901, 55678}, {48904, 55673}, {48942, 55660}, {48943, 55667}, {50805, 61290}, {50955, 55614}, {50968, 55631}, {50973, 52987}, {51024, 55687}, {58220, 61268}, {58222, 61270}, {59503, 61246}

X(62121) = midpoint of X(i) and X(j) for these {i,j}: {20, 3528}, {15681, 15701}
X(62121) = reflection of X(i) in X(j) for these {i,j}: {15702, 8703}, {381, 15698}, {382, 3832}, {3526, 3528}, {3830, 15703}, {3851, 3}, {4, 14869}
X(62121) = anticomplement of X(61976)
X(62121) = pole of line {185, 15694} with respect to the Jerabek hyperbola
X(62121) = pole of line {6, 43306} with respect to the Kiepert hyperbola
X(62121) = pole of line {69, 55592} with respect to the Wallace hyperbola
X(62121) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(15694)}}, {{A, B, C, X(1294), X(3851)}}, {{A, B, C, X(3521), X(41099)}}, {{A, B, C, X(3627), X(52441)}}, {{A, B, C, X(3845), X(15318)}}, {{A, B, C, X(6662), X(41991)}}, {{A, B, C, X(15691), X(60122)}}, {{A, B, C, X(15707), X(60007)}}, {{A, B, C, X(21400), X(50687)}}, {{A, B, C, X(34483), X(46333)}}, {{A, B, C, X(43917), X(45003)}}
X(62121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 140}, {3, 15681, 5073}, {3, 15684, 1656}, {3, 15685, 4}, {3, 1656, 15707}, {3, 17800, 3843}, {3, 20, 17800}, {3, 30, 3851}, {3, 382, 5070}, {3, 550, 15689}, {4, 15708, 12812}, {5, 10124, 5067}, {5, 3526, 15703}, {5, 3530, 3525}, {5, 3853, 3839}, {20, 15717, 3529}, {20, 17578, 11001}, {20, 376, 5}, {20, 548, 382}, {20, 550, 15696}, {30, 15698, 381}, {30, 3528, 3526}, {30, 8703, 15702}, {376, 11001, 15705}, {376, 12103, 1657}, {376, 15681, 15718}, {376, 3839, 8703}, {382, 15696, 548}, {382, 3526, 3832}, {548, 15704, 7486}, {549, 5059, 5076}, {550, 15691, 17538}, {550, 15704, 15690}, {550, 17538, 3534}, {1656, 3529, 15684}, {1657, 3534, 12103}, {1657, 5054, 3146}, {2041, 2042, 3845}, {2043, 2044, 15691}, {3523, 15702, 12108}, {3534, 15688, 15686}, {3534, 15696, 20}, {3543, 15712, 5079}, {3627, 10124, 3854}, {3627, 10304, 15720}, {3830, 15689, 376}, {3853, 8703, 15717}, {3861, 15696, 6961}, {5070, 15694, 16239}, {10304, 15720, 3}, {11001, 14093, 14269}, {11541, 15692, 3850}, {12100, 14869, 3523}, {12100, 15685, 3830}, {12902, 37853, 38633}, {15681, 15689, 15695}, {15681, 15695, 5055}, {15681, 15701, 30}, {15685, 15688, 15694}, {15686, 15688, 15685}, {15686, 15690, 15708}, {15686, 15694, 15681}, {15686, 15697, 15688}, {15690, 15704, 3522}, {15702, 15707, 15701}, {15707, 17800, 3853}, {38733, 38747, 38634}, {38759, 48680, 38637}, {42433, 43194, 11486}, {42434, 43193, 11485}


X(62122) = X(2)X(3)∩X(6476)X(6560)

Barycentrics    47*a^4-13*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(62122) = -13*X[2]+20*X[3], -X[962]+8*X[50815], -8*X[1350]+X[51215], 5*X[3620]+16*X[48891], -8*X[4297]+X[50872], 3*X[5032]+4*X[48873], -X[5691]+8*X[50816], 3*X[5731]+4*X[34638], -X[5921]+8*X[50965], X[11008]+20*X[48881], -X[11531]+8*X[51080], -10*X[12512]+3*X[38098] and many others

X(62122) lies on these lines: {2, 3}, {962, 50815}, {1350, 51215}, {3068, 43318}, {3069, 43319}, {3620, 48891}, {3622, 28202}, {4297, 50872}, {5032, 48873}, {5351, 49873}, {5352, 49874}, {5691, 50816}, {5731, 34638}, {5921, 50965}, {6407, 43386}, {6408, 43387}, {6409, 42641}, {6410, 42642}, {6441, 41945}, {6442, 41946}, {6455, 14241}, {6456, 14226}, {6476, 6560}, {6477, 6561}, {6478, 53130}, {6479, 53131}, {6486, 43342}, {6487, 43343}, {7989, 50867}, {9542, 35822}, {10147, 43411}, {10148, 43412}, {10576, 43566}, {10577, 43567}, {10645, 43540}, {10646, 43541}, {11008, 48881}, {11531, 51080}, {11645, 50969}, {12512, 38098}, {12820, 42911}, {12821, 42910}, {16192, 51083}, {18481, 20054}, {19875, 50863}, {19883, 50873}, {20050, 31730}, {20057, 28194}, {20583, 25406}, {21356, 50968}, {21358, 51216}, {25055, 51079}, {28208, 50813}, {34628, 34641}, {34632, 34747}, {36836, 42588}, {36843, 42589}, {36967, 42804}, {36968, 42803}, {36969, 43869}, {36970, 43870}, {36990, 50972}, {37640, 43106}, {37641, 43105}, {41112, 42939}, {41113, 42938}, {41119, 43479}, {41120, 43480}, {42143, 43553}, {42146, 43552}, {42157, 42636}, {42158, 42635}, {42159, 42797}, {42160, 43012}, {42161, 43013}, {42162, 42798}, {42262, 42537}, {42265, 42538}, {42413, 52046}, {42414, 52045}, {42524, 43524}, {42525, 43523}, {42532, 42612}, {42533, 42613}, {42602, 43507}, {42603, 43508}, {42629, 43230}, {42630, 43231}, {42637, 43210}, {42638, 43209}, {43002, 43201}, {43003, 43202}, {43022, 43485}, {43023, 43486}, {43211, 43521}, {43212, 43522}, {43256, 43512}, {43257, 43511}, {43416, 43487}, {43417, 43488}, {43418, 43465}, {43419, 43466}, {43632, 49824}, {43633, 49825}, {44882, 51028}, {47352, 51134}, {48310, 51029}, {48885, 50967}, {48892, 54132}, {50812, 53620}, {50958, 55622}, {50964, 55669}, {50971, 51212}, {50994, 55626}, {51081, 51118}, {51135, 55722}, {51176, 55584}, {54170, 59411}

X(62122) = midpoint of X(i) and X(j) for these {i,j}: {3090, 11001}, {15681, 15700}
X(62122) = reflection of X(i) in X(j) for these {i,j}: {16192, 51083}, {2, 3528}, {3525, 6891}, {3526, 8703}, {3832, 15698}, {4, 15701}, {50867, 7989}, {50964, 55669}, {50994, 55626}, {6848, 5070}
X(62122) = anticomplement of X(61980)
X(62122) = pole of line {69, 62153} with respect to the Wallace hyperbola
X(62122) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(14269)}}, {{A, B, C, X(1294), X(41106)}}, {{A, B, C, X(1494), X(50688)}}, {{A, B, C, X(3839), X(57897)}}, {{A, B, C, X(3858), X(51348)}}, {{A, B, C, X(12102), X(31361)}}, {{A, B, C, X(14093), X(18850)}}
X(62122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10299, 15708}, {2, 15707, 10303}, {2, 3146, 14269}, {2, 3522, 15710}, {2, 382, 3839}, {3, 11540, 3524}, {4, 376, 14093}, {20, 10303, 1657}, {20, 15692, 15683}, {20, 15696, 7486}, {20, 15697, 10304}, {30, 15698, 3832}, {30, 15701, 4}, {30, 5070, 6848}, {30, 6891, 3525}, {30, 8703, 3526}, {376, 11001, 549}, {376, 15683, 15692}, {376, 15715, 15688}, {376, 17538, 15691}, {376, 5071, 8703}, {546, 550, 15696}, {548, 15682, 15705}, {550, 17504, 15690}, {3146, 6931, 546}, {3526, 3850, 3090}, {3528, 3529, 3851}, {3534, 15689, 12103}, {3534, 15693, 6958}, {3543, 10304, 15721}, {3543, 15721, 3091}, {8703, 12100, 6926}, {8703, 14269, 10299}, {10124, 15701, 15702}, {10299, 14269, 2}, {10299, 15687, 17564}, {11001, 15689, 3522}, {11001, 15710, 382}, {12103, 15689, 11001}, {14093, 15690, 376}, {15681, 15687, 3529}, {15681, 15688, 15687}, {15681, 15700, 30}, {15682, 15705, 5056}, {15683, 15686, 20}, {15683, 15692, 3543}, {15684, 15710, 16401}, {15687, 15688, 15715}, {15692, 15702, 3523}, {15692, 15708, 15718}, {15695, 15704, 3545}, {15700, 15703, 14869}, {16371, 17534, 16417}, {43002, 43201, 43238}, {48873, 50975, 5032}


X(62123) = X(2)X(3)∩X(6)X(43634)

Barycentrics    18*a^4-5*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62123) = -15*X[2]+23*X[3], -5*X[141]+9*X[55640], -X[575]+3*X[50971], -3*X[3579]+X[61249], -5*X[4297]+X[11278], -X[5097]+5*X[48892], 3*X[5102]+5*X[48873], -5*X[5480]+9*X[55685], -9*X[5690]+5*X[61248], -3*X[9729]+2*X[58533], X[10222]+3*X[34638], -3*X[11180]+11*X[55620] and many others

X(62123) lies on these lines: {2, 3}, {6, 43634}, {141, 55640}, {397, 43244}, {398, 43245}, {516, 61278}, {517, 61290}, {575, 50971}, {1503, 55612}, {3070, 6486}, {3071, 6487}, {3564, 48885}, {3579, 61249}, {3590, 43521}, {3591, 43522}, {3767, 11742}, {4297, 11278}, {4301, 28216}, {4316, 15888}, {4324, 37722}, {4325, 15338}, {4330, 15172}, {5041, 6781}, {5097, 48892}, {5102, 48873}, {5237, 42497}, {5238, 42496}, {5319, 44519}, {5349, 42430}, {5350, 42429}, {5351, 43417}, {5352, 43416}, {5462, 55286}, {5480, 55685}, {5663, 15606}, {5690, 61248}, {5844, 31730}, {6361, 61597}, {6429, 6560}, {6430, 6561}, {6431, 42260}, {6432, 42261}, {6433, 42226}, {6434, 42225}, {6445, 43889}, {6446, 43890}, {6449, 31414}, {6453, 43209}, {6454, 43210}, {6455, 42414}, {6456, 42413}, {6480, 7583}, {6481, 7584}, {6484, 31454}, {6485, 42266}, {6496, 52667}, {6497, 52666}, {7354, 51817}, {7747, 15602}, {8718, 40111}, {8960, 43887}, {9680, 13925}, {9681, 42216}, {9706, 37477}, {9729, 58533}, {10143, 43386}, {10144, 43387}, {10222, 34638}, {10627, 14641}, {11180, 55620}, {11362, 28224}, {11522, 50820}, {11531, 34773}, {11542, 43633}, {11543, 43632}, {11592, 44870}, {12512, 28186}, {12571, 58219}, {12702, 61297}, {12816, 42959}, {12817, 42958}, {13340, 45957}, {13392, 38726}, {13491, 36987}, {13624, 28182}, {13993, 42263}, {14531, 14855}, {14677, 23236}, {15069, 55607}, {15171, 37587}, {15178, 50815}, {15311, 32903}, {16200, 61282}, {16528, 48915}, {16772, 42100}, {16773, 42099}, {16836, 58531}, {16964, 42585}, {16965, 42584}, {18357, 31447}, {18358, 48896}, {18553, 51025}, {18583, 55691}, {20379, 37853}, {20582, 55650}, {21850, 55703}, {22165, 55611}, {22392, 48916}, {22791, 30392}, {28154, 61272}, {28160, 61255}, {28172, 61259}, {28174, 33179}, {28178, 31662}, {28190, 31663}, {29012, 55636}, {29181, 50664}, {29317, 55688}, {31406, 44541}, {31417, 53095}, {31425, 38042}, {31487, 42638}, {33543, 61150}, {33697, 61614}, {33751, 55680}, {34380, 48881}, {34754, 42088}, {34755, 42087}, {35237, 51959}, {35242, 61258}, {35255, 41954}, {35256, 41953}, {36836, 43428}, {36843, 43429}, {36967, 41972}, {36968, 41971}, {37517, 44882}, {38155, 61524}, {39561, 48880}, {40107, 48891}, {41955, 41970}, {41956, 41969}, {41967, 43879}, {41968, 43880}, {42085, 43327}, {42086, 43326}, {42090, 43193}, {42091, 43194}, {42096, 42628}, {42097, 42627}, {42108, 42489}, {42109, 42488}, {42122, 42148}, {42123, 42147}, {42126, 43198}, {42127, 43197}, {42135, 42491}, {42138, 42490}, {42144, 42153}, {42145, 42156}, {42163, 43200}, {42164, 42528}, {42165, 42529}, {42166, 43199}, {42415, 42934}, {42416, 42935}, {42629, 42687}, {42630, 42686}, {42692, 56608}, {42693, 56609}, {42777, 42965}, {42778, 42964}, {42791, 42992}, {42792, 42993}, {42813, 42889}, {42814, 42888}, {42942, 42966}, {42943, 42967}, {42954, 43871}, {42955, 43872}, {42984, 43477}, {42985, 43478}, {43294, 43873}, {43295, 43874}, {43785, 52045}, {43786, 52046}, {43888, 58866}, {46264, 55591}, {47354, 55644}, {48872, 55699}, {48874, 55582}, {48876, 55618}, {48879, 55683}, {48898, 55603}, {48905, 55622}, {48906, 55722}, {48920, 51732}, {50978, 55602}, {51127, 55664}, {51128, 55662}, {51165, 55679}, {51214, 55580}, {58237, 61281}, {58248, 61289}, {61252, 61510}

X(62123) = midpoint of X(i) and X(j) for these {i,j}: {20, 548}, {140, 15704}, {546, 1657}, {547, 11001}, {550, 12103}, {3534, 15691}, {6361, 61597}, {10627, 14641}, {12100, 15681}, {12101, 15683}, {15686, 15690}, {18358, 48896}, {48905, 61545}
X(62123) = reflection of X(i) in X(j) for these {i,j}: {10124, 8703}, {11737, 15759}, {12102, 140}, {12571, 58219}, {13392, 38726}, {15687, 11540}, {15759, 376}, {382, 3856}, {3530, 548}, {3850, 3}, {3853, 16239}, {3860, 14891}, {3861, 3530}, {4, 12108}, {44870, 11592}, {5462, 55286}
X(62123) = complement of X(62034)
X(62123) = pole of line {185, 11539} with respect to the Jerabek hyperbola
X(62123) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(15640)}}, {{A, B, C, X(1105), X(11539)}}, {{A, B, C, X(3521), X(23046)}}, {{A, B, C, X(3522), X(43970)}}, {{A, B, C, X(14861), X(44904)}}, {{A, B, C, X(15719), X(60007)}}
X(62123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15702, 15712}, {3, 16239, 3530}, {3, 1656, 15719}, {3, 1657, 3543}, {3, 30, 3850}, {3, 382, 5067}, {3, 3850, 11812}, {3, 4, 11539}, {3, 5056, 549}, {3, 5059, 3845}, {3, 550, 15690}, {4, 12108, 10109}, {4, 17678, 5072}, {5, 550, 15696}, {20, 15696, 5}, {20, 3528, 17800}, {20, 376, 382}, {20, 382, 15704}, {20, 3832, 11001}, {20, 550, 548}, {20, 631, 1657}, {30, 11540, 15687}, {30, 140, 12102}, {30, 14891, 3860}, {30, 16239, 3853}, {30, 3530, 3861}, {30, 376, 15759}, {30, 8703, 10124}, {140, 11737, 3628}, {140, 12102, 11737}, {140, 15693, 12108}, {140, 382, 3856}, {140, 5067, 16239}, {140, 546, 5055}, {376, 11001, 15708}, {376, 15685, 17504}, {376, 5055, 8703}, {547, 3853, 3832}, {548, 12103, 20}, {550, 17538, 15691}, {550, 3534, 12103}, {632, 5073, 14893}, {1657, 15722, 3146}, {1657, 5055, 11541}, {1657, 8703, 546}, {3091, 16418, 3090}, {3146, 15712, 5066}, {3522, 15681, 3627}, {3522, 3545, 3}, {3522, 3627, 12100}, {3523, 12812, 11540}, {3523, 15687, 12812}, {3526, 3627, 3859}, {3530, 10124, 631}, {3545, 6958, 15686}, {3830, 16417, 3858}, {3845, 15704, 5059}, {3845, 15708, 547}, {3845, 17504, 15723}, {3854, 6906, 381}, {3857, 15714, 15720}, {3859, 12100, 3526}, {4190, 17542, 13735}, {5073, 10304, 632}, {5076, 10299, 15699}, {10109, 15759, 15693}, {12100, 15681, 30}, {12102, 15759, 140}, {12103, 15691, 550}, {12108, 12811, 1010}, {13340, 52093, 45957}, {13741, 15640, 4}, {14784, 14785, 15640}, {15682, 15720, 3857}, {15689, 15693, 376}, {15696, 17800, 3528}, {42433, 42890, 34755}, {42434, 42891, 34754}, {43634, 43635, 6}


X(62124) = X(2)X(3)∩X(6)X(43495)

Barycentrics    25*a^4-7*(b^2-c^2)^2-18*a^2*(b^2+c^2) : :
X(62124) = -21*X[2]+32*X[3], -X[8]+12*X[59420], -16*X[40]+5*X[20052], 3*X[145]+8*X[5493], -X[193]+12*X[59411], -4*X[576]+15*X[50975], -7*X[1352]+18*X[55630], -5*X[1992]+16*X[51135], -5*X[3241]+16*X[51080], -5*X[3617]+16*X[12512], -X[3621]+12*X[9778], -5*X[3623]+16*X[4297] and many others

X(62124) lies on these lines: {2, 3}, {6, 43495}, {8, 59420}, {40, 20052}, {99, 32879}, {145, 5493}, {193, 59411}, {489, 51953}, {490, 51952}, {576, 50975}, {1352, 55630}, {1992, 51135}, {1993, 16936}, {3241, 51080}, {3600, 8162}, {3617, 12512}, {3621, 9778}, {3623, 4297}, {3785, 32882}, {4294, 37602}, {4314, 5558}, {4324, 14986}, {4678, 37712}, {4821, 30271}, {5304, 44519}, {5318, 43479}, {5321, 43480}, {5343, 42099}, {5344, 42100}, {5365, 10646}, {5366, 10645}, {5550, 28158}, {5882, 20070}, {5921, 55608}, {5984, 10992}, {6409, 53517}, {6410, 53520}, {6468, 42638}, {6469, 42637}, {6470, 42259}, {6471, 42258}, {6776, 55585}, {7691, 41467}, {7768, 32840}, {7802, 32825}, {7860, 32831}, {7871, 32841}, {7904, 60285}, {7991, 20049}, {8142, 26777}, {8550, 61044}, {8972, 42414}, {9589, 50815}, {9681, 43256}, {9692, 35822}, {9841, 23958}, {10222, 50819}, {10248, 58221}, {10513, 32820}, {10519, 48891}, {10574, 16981}, {10990, 14683}, {10991, 20094}, {11480, 22235}, {11481, 22237}, {11488, 42794}, {11489, 42793}, {11742, 37689}, {12002, 15045}, {12174, 35253}, {12250, 45185}, {12279, 33884}, {12324, 15108}, {12632, 34626}, {13941, 42413}, {14853, 48920}, {15516, 48880}, {15520, 48892}, {16192, 46932}, {18553, 55638}, {18581, 43636}, {18582, 43637}, {19106, 42959}, {19107, 42958}, {20014, 31730}, {20081, 22676}, {20096, 33521}, {22615, 42557}, {22644, 42558}, {23302, 43473}, {23303, 43474}, {25555, 33750}, {28164, 46933}, {29012, 55635}, {29317, 55689}, {31145, 50814}, {31454, 43411}, {31663, 61257}, {31670, 55693}, {32815, 32894}, {32816, 32895}, {34507, 55615}, {35242, 54448}, {35820, 42540}, {35821, 42539}, {36967, 42995}, {36968, 42994}, {36987, 52093}, {41963, 43376}, {41964, 43377}, {42090, 42998}, {42091, 42999}, {42096, 43870}, {42097, 43869}, {42108, 42774}, {42109, 42773}, {42122, 43242}, {42123, 43243}, {42140, 42944}, {42141, 42945}, {42149, 43011}, {42152, 43010}, {42160, 43032}, {42161, 43033}, {42271, 43561}, {42272, 43560}, {42429, 42909}, {42430, 42908}, {42494, 42693}, {42495, 42692}, {42584, 42988}, {42585, 42989}, {42586, 49862}, {42587, 49861}, {42598, 51945}, {42599, 51944}, {42686, 43772}, {42687, 43771}, {43407, 51911}, {43408, 51910}, {43681, 47586}, {44882, 51170}, {46264, 55590}, {48872, 51171}, {48873, 55716}, {48885, 55596}, {48898, 55601}, {51023, 55626}, {51092, 58245}, {51118, 61271}, {51136, 53097}, {59417, 61244}, {60118, 60145}, {60328, 60647}

X(62124) = midpoint of X(i) and X(j) for these {i,j}: {15681, 15716}
X(62124) = reflection of X(i) in X(j) for these {i,j}: {15723, 8703}, {3855, 3}, {4, 15720}
X(62124) = anticomplement of X(50689)
X(62124) = pole of line {185, 61856} with respect to the Jerabek hyperbola
X(62124) = pole of line {6, 60291} with respect to the Kiepert hyperbola
X(62124) = pole of line {69, 62152} with respect to the Wallace hyperbola
X(62124) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(3855)}}, {{A, B, C, X(3346), X(3843)}}, {{A, B, C, X(3519), X(49137)}}, {{A, B, C, X(3543), X(52441)}}, {{A, B, C, X(3832), X(51348)}}, {{A, B, C, X(3853), X(16251)}}, {{A, B, C, X(4846), X(12811)}}, {{A, B, C, X(5079), X(14861)}}, {{A, B, C, X(7714), X(60324)}}, {{A, B, C, X(12103), X(42021)}}, {{A, B, C, X(14841), X(49134)}}, {{A, B, C, X(15696), X(26861)}}, {{A, B, C, X(15740), X(46936)}}, {{A, B, C, X(18846), X(49133)}}, {{A, B, C, X(18850), X(33923)}}, {{A, B, C, X(19708), X(60618)}}, {{A, B, C, X(35502), X(57730)}}, {{A, B, C, X(35510), X(50690)}}, {{A, B, C, X(43699), X(50688)}}
X(62124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15682, 7486}, {3, 15683, 17578}, {3, 15721, 15717}, {3, 17578, 2}, {3, 20, 15683}, {3, 30, 3855}, {3, 382, 15699}, {3, 3855, 15721}, {3, 3861, 15709}, {4, 15720, 5056}, {20, 15690, 15022}, {20, 15696, 3832}, {20, 15697, 3}, {20, 3091, 11001}, {20, 3523, 1657}, {20, 3543, 15704}, {20, 550, 3522}, {30, 15720, 4}, {30, 8703, 15723}, {140, 550, 15696}, {376, 11001, 5054}, {548, 5073, 10299}, {550, 15686, 140}, {1657, 3146, 5059}, {1657, 3522, 3854}, {1657, 3523, 3146}, {3091, 5054, 13735}, {3146, 15705, 5}, {3146, 3522, 3523}, {3146, 3832, 3830}, {3522, 15683, 5068}, {3523, 5056, 3525}, {3528, 15704, 3543}, {3529, 15686, 20}, {3529, 15696, 10304}, {3855, 5071, 5072}, {5073, 10299, 3091}, {6825, 17800, 5076}, {8972, 42414, 43519}, {10124, 15682, 3839}, {10299, 11001, 5073}, {12100, 15689, 376}, {13742, 15717, 631}, {13941, 42413, 43520}, {15681, 15716, 30}, {15686, 15696, 3529}, {15689, 15704, 3528}, {42108, 42774, 42776}, {42109, 42773, 42775}, {42568, 42570, 8972}, {42569, 42571, 13941}, {43495, 43496, 6}


X(62125) = X(2)X(3)∩X(3070)X(6488)

Barycentrics    31*a^4-9*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62125) = -27*X[2]+40*X[3], -36*X[1125]+49*X[58225], -9*X[1352]+22*X[55628], 8*X[3244]+5*X[20070], -15*X[3620]+28*X[55626], -45*X[3623]+32*X[58240], -2*X[3629]+15*X[59411], 8*X[3631]+5*X[14927], -2*X[3632]+15*X[9778], -18*X[4297]+5*X[16189], 10*X[5493]+3*X[34747], -3*X[5656]+16*X[32903] and many others

X(62125) lies on these lines: {2, 3}, {1125, 58225}, {1352, 55628}, {3068, 10147}, {3069, 10148}, {3070, 6488}, {3071, 6489}, {3244, 20070}, {3311, 43788}, {3312, 43787}, {3620, 55626}, {3623, 58240}, {3629, 59411}, {3631, 14927}, {3632, 9778}, {4297, 16189}, {5343, 42528}, {5344, 42529}, {5349, 51944}, {5350, 51945}, {5351, 42630}, {5352, 42629}, {5418, 42604}, {5420, 42605}, {5493, 34747}, {5656, 32903}, {5921, 55606}, {6329, 48872}, {6431, 43383}, {6432, 43382}, {6447, 43321}, {6448, 43320}, {6453, 43407}, {6454, 43408}, {6519, 23267}, {6522, 23273}, {6560, 9543}, {6776, 55583}, {7991, 20050}, {8717, 9545}, {8976, 42540}, {9540, 43519}, {9812, 15808}, {10519, 55623}, {11008, 53097}, {12121, 38626}, {12632, 34620}, {12820, 42936}, {12821, 42937}, {13202, 15023}, {13846, 43785}, {13847, 43786}, {13935, 43520}, {13951, 42539}, {14023, 53141}, {14853, 55698}, {17852, 42637}, {19106, 42947}, {19107, 42946}, {20054, 31730}, {20080, 52987}, {20127, 38632}, {22234, 48892}, {22236, 43106}, {22238, 43105}, {22330, 48880}, {25406, 53858}, {28150, 46934}, {31670, 55694}, {33750, 48879}, {35369, 51523}, {35510, 57823}, {35812, 60291}, {35813, 60292}, {35822, 43523}, {35823, 43524}, {36836, 43465}, {36843, 43466}, {36967, 43496}, {36968, 43495}, {36969, 42798}, {36970, 42797}, {38627, 38730}, {38628, 38741}, {38629, 38753}, {38630, 38765}, {39874, 55595}, {40107, 50969}, {40330, 55644}, {42112, 43295}, {42113, 43294}, {42144, 43488}, {42145, 43487}, {42149, 42996}, {42152, 42997}, {42157, 42613}, {42158, 42612}, {42163, 43870}, {42166, 43869}, {42413, 53516}, {42414, 53513}, {42433, 43486}, {42434, 43485}, {42584, 42982}, {42585, 42983}, {42625, 43770}, {42626, 43769}, {42635, 49826}, {42636, 49827}, {42638, 43883}, {42920, 43553}, {42921, 43552}, {42944, 43541}, {42945, 43540}, {43621, 55679}, {46264, 55588}, {48873, 51170}, {48885, 55600}, {48891, 55617}, {48898, 55597}, {48920, 55704}, {50863, 61258}, {51095, 58242}, {51538, 55684}

X(62125) = anticomplement of X(61982)
X(62125) = pole of line {185, 61863} with respect to the Jerabek hyperbola
X(62125) = pole of line {69, 62149} with respect to the Wallace hyperbola
X(62125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(382), X(35510)}}, {{A, B, C, X(3146), X(57823)}}, {{A, B, C, X(3346), X(3845)}}, {{A, B, C, X(3854), X(31371)}}, {{A, B, C, X(5076), X(16251)}}, {{A, B, C, X(15077), X(50691)}}, {{A, B, C, X(15740), X(46935)}}, {{A, B, C, X(18296), X(50687)}}, {{A, B, C, X(18850), X(46853)}}
X(62125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3529, 3146}, {2, 5059, 382}, {3, 11541, 3091}, {3, 12811, 631}, {3, 15704, 11541}, {3, 3146, 15022}, {4, 12108, 13727}, {20, 10304, 1657}, {20, 15697, 4}, {20, 3091, 15704}, {20, 3522, 15683}, {20, 3523, 11001}, {20, 376, 5059}, {376, 11001, 5055}, {376, 15685, 15708}, {376, 15717, 3522}, {376, 3845, 10304}, {376, 5059, 15717}, {382, 15693, 3851}, {382, 15704, 3529}, {550, 15681, 3528}, {1657, 10304, 17578}, {1657, 15696, 15716}, {3091, 10303, 5067}, {3522, 15022, 3}, {3522, 15683, 3832}, {3522, 3832, 15705}, {3528, 3529, 546}, {3529, 17538, 550}, {3534, 12103, 17538}, {3534, 6958, 8703}, {3627, 15716, 3090}, {3851, 3860, 3855}, {5076, 6958, 12103}, {5079, 10299, 10303}, {5418, 43560, 42604}, {5420, 43561, 42605}, {6827, 17800, 381}, {6847, 15682, 3830}, {10691, 11113, 11114}, {11001, 15696, 3523}, {11737, 15708, 2}, {11737, 16863, 16371}, {12103, 17538, 20}, {15685, 15688, 11737}, {15686, 15691, 15694}, {15688, 15699, 15710}, {15689, 15759, 376}, {16370, 16417, 11108}, {16370, 16862, 16858}


X(62126) = X(2)X(3)∩X(61)X(43639)

Barycentrics    24*a^4-7*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62126) = -21*X[2]+31*X[3], -7*X[141]+12*X[55638], -9*X[165]+4*X[61255], -X[1353]+6*X[59411], -8*X[3579]+3*X[61251], -8*X[4297]+3*X[61283], -7*X[5480]+12*X[55686], -X[5690]+6*X[59420], -14*X[9588]+9*X[38138], -9*X[11224]+14*X[61286], -8*X[11362]+3*X[61245], -X[11482]+3*X[50975] and many others

X(62126) lies on these lines: {2, 3}, {61, 43639}, {62, 43640}, {141, 55638}, {165, 61255}, {1353, 59411}, {1503, 55608}, {3579, 61251}, {4297, 61283}, {4317, 8162}, {4330, 37602}, {5237, 42778}, {5238, 42777}, {5318, 43648}, {5321, 43647}, {5351, 43017}, {5352, 43016}, {5480, 55686}, {5690, 59420}, {5734, 28216}, {5965, 48881}, {6468, 7583}, {6469, 7584}, {6470, 42260}, {6471, 42261}, {6781, 9607}, {9588, 38138}, {9681, 19117}, {9693, 18512}, {10645, 42530}, {10646, 42531}, {11224, 61286}, {11362, 61245}, {11482, 50975}, {11522, 50832}, {11592, 32062}, {12161, 16936}, {12512, 38112}, {12565, 19907}, {13925, 42414}, {13993, 42413}, {14641, 15606}, {15516, 48892}, {15520, 48880}, {16772, 42145}, {16773, 42144}, {16960, 43633}, {16961, 43632}, {18481, 61297}, {21850, 48920}, {22251, 34584}, {28164, 31447}, {28168, 31399}, {28178, 61276}, {28190, 37714}, {28228, 34773}, {28234, 61295}, {29012, 55634}, {29181, 55710}, {29317, 55690}, {31450, 44541}, {31454, 42226}, {31487, 43407}, {31492, 43618}, {33749, 44882}, {33751, 38136}, {38110, 48879}, {39884, 55635}, {40107, 55625}, {40693, 42584}, {40694, 42585}, {42087, 42991}, {42088, 42990}, {42090, 43631}, {42091, 43630}, {42112, 42491}, {42113, 42490}, {42117, 42433}, {42118, 42434}, {42122, 43193}, {42123, 43194}, {42157, 42634}, {42158, 42633}, {42225, 51910}, {42429, 42598}, {42430, 42599}, {42684, 42939}, {42685, 42938}, {42793, 42972}, {42794, 42973}, {44015, 56609}, {44016, 56608}, {48872, 59399}, {48874, 55585}, {48876, 48891}, {48885, 55601}, {48898, 55596}, {48906, 55720}, {50811, 61290}, {50959, 55675}, {50972, 55644}, {50980, 55650}, {50986, 55580}, {50991, 55628}, {58217, 61266}, {58239, 61284}

X(62126) = midpoint of X(i) and X(j) for these {i,j}: {20, 15696}, {1657, 3091}, {11001, 15694}, {15704, 15712}
X(62126) = reflection of X(i) in X(j) for these {i,j}: {14093, 15690}, {15687, 15713}, {15697, 15691}, {15711, 376}, {382, 3859}, {3627, 1656}, {3845, 15692}, {3858, 3}, {549, 15695}, {550, 17538}, {5076, 140}, {631, 548}, {632, 3522}
X(62126) = complement of X(62035)
X(62126) = pole of line {185, 10124} with respect to the Jerabek hyperbola
X(62126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(10124)}}, {{A, B, C, X(1294), X(3858)}}, {{A, B, C, X(3521), X(3860)}}, {{A, B, C, X(14269), X(15318)}}
X(62126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15691, 550}, {3, 1657, 15682}, {3, 30, 3858}, {3, 382, 7486}, {3, 3839, 140}, {3, 3858, 15713}, {3, 4, 10124}, {5, 15686, 20}, {5, 20, 15704}, {5, 3530, 11539}, {20, 15697, 17578}, {20, 15717, 11001}, {20, 17538, 15696}, {20, 3528, 1657}, {20, 376, 17800}, {20, 550, 5}, {30, 140, 5076}, {30, 15690, 14093}, {30, 15691, 15697}, {30, 15692, 3845}, {30, 15695, 549}, {30, 1656, 3627}, {30, 3522, 632}, {30, 376, 15711}, {30, 3859, 382}, {30, 548, 631}, {376, 11539, 8703}, {382, 631, 3859}, {382, 7486, 3861}, {550, 12103, 15686}, {550, 3627, 376}, {631, 15696, 548}, {631, 3091, 5070}, {632, 3522, 15714}, {632, 3858, 5071}, {1656, 14269, 3091}, {1657, 15685, 6968}, {1657, 3528, 3853}, {2041, 2042, 14269}, {3522, 5071, 3}, {3528, 14269, 3530}, {3529, 11541, 6996}, {3627, 15711, 1656}, {3839, 10124, 6846}, {3843, 15696, 3522}, {3861, 5066, 3832}, {5059, 15688, 3628}, {5071, 17578, 3843}, {5073, 12100, 3857}, {10299, 15684, 12811}, {10299, 16052, 15720}, {11001, 15694, 30}, {11539, 15687, 5066}, {11541, 15720, 14893}, {15681, 15689, 15722}, {15682, 15697, 15695}, {15686, 15691, 15687}, {15686, 17538, 15712}


X(62127) = X(2)X(3)∩X(40)X(4701)

Barycentrics    17*a^4-5*(b^2-c^2)^2-12*a^2*(b^2+c^2) : :
X(62127) = -15*X[2]+22*X[3], -11*X[40]+4*X[4701], -X[69]+8*X[48885], 3*X[944]+4*X[5493], -5*X[1352]+12*X[55627], 3*X[2979]+4*X[14641], -25*X[3618]+32*X[55688], -5*X[3818]+12*X[55645], -10*X[4297]+3*X[16200], -8*X[5097]+15*X[25406], -3*X[5102]+10*X[44882], -9*X[5485]+16*X[7780] and many others

X(62127) lies on these lines: {2, 3}, {15, 42927}, {16, 42926}, {17, 42141}, {18, 42140}, {40, 4701}, {61, 43481}, {62, 43482}, {69, 48885}, {325, 32891}, {944, 5493}, {1056, 15338}, {1058, 15326}, {1131, 6455}, {1132, 6456}, {1352, 55627}, {1503, 55607}, {1587, 6437}, {1588, 6438}, {1975, 32890}, {2979, 14641}, {3068, 6484}, {3069, 6485}, {3070, 6433}, {3071, 6434}, {3316, 52667}, {3317, 52666}, {3592, 43256}, {3594, 43257}, {3618, 55688}, {3619, 29323}, {3622, 28178}, {3818, 55645}, {4297, 16200}, {4324, 37587}, {4325, 10385}, {5041, 14482}, {5097, 25406}, {5102, 44882}, {5237, 43204}, {5238, 43203}, {5254, 11742}, {5270, 51817}, {5339, 42970}, {5340, 42971}, {5343, 11481}, {5344, 11480}, {5365, 42096}, {5366, 42097}, {5485, 7780}, {5731, 33179}, {5878, 32903}, {5882, 6361}, {6200, 23269}, {6241, 36987}, {6337, 7860}, {6396, 23275}, {6411, 23253}, {6412, 23263}, {6425, 43209}, {6426, 43210}, {6429, 43407}, {6430, 43408}, {6431, 42259}, {6432, 42258}, {6459, 35770}, {6460, 35771}, {6480, 23267}, {6481, 23273}, {6482, 35822}, {6483, 35823}, {6486, 8960}, {6487, 43510}, {6776, 55582}, {6781, 7738}, {7581, 42260}, {7582, 42261}, {7750, 32824}, {7755, 46453}, {7768, 32817}, {7782, 32823}, {7802, 32818}, {7830, 18840}, {7967, 11278}, {7982, 34638}, {7991, 50818}, {8164, 10483}, {8550, 55722}, {8717, 34148}, {8718, 37480}, {8981, 43376}, {9543, 18512}, {9624, 50820}, {9693, 32787}, {9780, 28168}, {9862, 10992}, {10519, 55622}, {10625, 52093}, {10653, 42891}, {10654, 42890}, {10721, 38792}, {10722, 38746}, {10723, 38735}, {10727, 38770}, {10728, 38758}, {10732, 38782}, {10733, 38725}, {10984, 43576}, {10990, 12383}, {10991, 13172}, {10993, 12248}, {11160, 55595}, {11180, 55614}, {11362, 50809}, {11381, 54041}, {11488, 42431}, {11489, 42432}, {11738, 42021}, {12244, 30714}, {12245, 31730}, {12250, 44762}, {12253, 14900}, {12290, 13348}, {12317, 16111}, {12512, 38155}, {12632, 34740}, {12699, 31662}, {12818, 42558}, {12819, 42557}, {13464, 30392}, {13886, 41963}, {13939, 41964}, {13966, 43377}, {14226, 35813}, {14241, 35812}, {14561, 55683}, {14853, 55699}, {14907, 32822}, {14912, 37517}, {14927, 34507}, {15105, 34781}, {15602, 43618}, {15740, 34567}, {16192, 28172}, {16241, 42909}, {16242, 42908}, {18439, 33884}, {18553, 55636}, {19106, 42494}, {19107, 42495}, {20125, 38723}, {20427, 45185}, {21356, 55631}, {21740, 43178}, {22235, 42127}, {22237, 42126}, {25555, 48879}, {27355, 55166}, {29012, 55633}, {29181, 55711}, {29317, 55691}, {30264, 35514}, {31400, 44541}, {31414, 43413}, {31425, 34648}, {31487, 43386}, {31670, 55695}, {33534, 54434}, {33602, 41943}, {33603, 41944}, {33750, 48910}, {33751, 43621}, {34754, 42090}, {34755, 42091}, {34785, 54050}, {35814, 43524}, {35815, 43523}, {35820, 43432}, {35821, 43433}, {37640, 41974}, {37641, 41973}, {38021, 51079}, {38072, 51134}, {38074, 50812}, {38802, 44987}, {39561, 48892}, {39874, 48898}, {41100, 42995}, {41101, 42994}, {41112, 43426}, {41113, 43427}, {41977, 43011}, {41978, 43010}, {42085, 42981}, {42086, 42980}, {42087, 42999}, {42088, 42998}, {42089, 42776}, {42092, 42775}, {42099, 42149}, {42100, 42152}, {42104, 42937}, {42105, 42936}, {42119, 42151}, {42120, 42150}, {42133, 43239}, {42134, 43238}, {42136, 43870}, {42137, 43869}, {42139, 43446}, {42142, 43447}, {42153, 42793}, {42156, 42794}, {42159, 42961}, {42160, 42528}, {42161, 42529}, {42162, 42960}, {42225, 43890}, {42226, 43889}, {42490, 43401}, {42491, 43402}, {42537, 42603}, {42538, 42602}, {42584, 42806}, {42585, 42805}, {42586, 42791}, {42587, 42792}, {42682, 56608}, {42683, 56609}, {42684, 43773}, {42685, 43774}, {42988, 43465}, {42989, 43466}, {43174, 59388}, {43422, 49874}, {43423, 49873}, {43459, 52718}, {43485, 43777}, {43486, 43778}, {46264, 55587}, {48872, 55703}, {48881, 55591}, {48896, 55640}, {48901, 55680}, {48905, 55618}, {48920, 50664}, {50819, 51120}, {50966, 51027}, {50968, 51025}, {50969, 55626}, {50971, 53093}, {50974, 53097}, {50975, 51166}, {51176, 51214}, {51537, 55649}

X(62127) = midpoint of X(i) and X(j) for these {i,j}: {1657, 3851}, {11001, 15702}
X(62127) = reflection of X(i) in X(j) for these {i,j}: {14869, 548}, {15698, 376}, {15703, 8703}, {382, 3857}, {3090, 3528}, {3832, 3}, {4, 3523}
X(62127) = anticomplement of X(61984)
X(62127) = pole of line {185, 3533} with respect to the Jerabek hyperbola
X(62127) = pole of line {69, 15704} with respect to the Wallace hyperbola
X(62127) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(49136)}}, {{A, B, C, X(69), X(15704)}}, {{A, B, C, X(74), X(55578)}}, {{A, B, C, X(550), X(18849)}}, {{A, B, C, X(1105), X(3533)}}, {{A, B, C, X(1294), X(3832)}}, {{A, B, C, X(1593), X(34567)}}, {{A, B, C, X(1656), X(18852)}}, {{A, B, C, X(3519), X(17800)}}, {{A, B, C, X(3523), X(18851)}}, {{A, B, C, X(3532), X(55572)}}, {{A, B, C, X(3534), X(42021)}}, {{A, B, C, X(3627), X(15749)}}, {{A, B, C, X(3628), X(15740)}}, {{A, B, C, X(3839), X(51348)}}, {{A, B, C, X(3857), X(31371)}}, {{A, B, C, X(3860), X(6662)}}, {{A, B, C, X(4846), X(5072)}}, {{A, B, C, X(5055), X(14861)}}, {{A, B, C, X(5059), X(18847)}}, {{A, B, C, X(5068), X(18853)}}, {{A, B, C, X(5198), X(57715)}}, {{A, B, C, X(5897), X(38438)}}, {{A, B, C, X(10594), X(11738)}}, {{A, B, C, X(11270), X(35479)}}, {{A, B, C, X(11403), X(14483)}}, {{A, B, C, X(11410), X(57713)}}, {{A, B, C, X(12100), X(54660)}}, {{A, B, C, X(14528), X(55575)}}, {{A, B, C, X(15685), X(54667)}}, {{A, B, C, X(15697), X(60122)}}, {{A, B, C, X(15708), X(40448)}}, {{A, B, C, X(18850), X(21735)}}, {{A, B, C, X(35501), X(43908)}}
X(62127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20, 15704}, {3, 11812, 15717}, {3, 15686, 20}, {3, 15723, 3530}, {3, 20, 11001}, {3, 30, 3832}, {3, 3543, 5067}, {3, 3545, 631}, {3, 382, 547}, {3, 3832, 15702}, {3, 4, 3533}, {3, 5, 15708}, {4, 11001, 5059}, {4, 15711, 13725}, {4, 17538, 550}, {4, 3524, 1656}, {4, 5067, 3850}, {20, 15689, 11541}, {20, 15697, 3146}, {20, 17538, 376}, {20, 3146, 15681}, {20, 3522, 1657}, {20, 3534, 17538}, {20, 376, 3529}, {30, 3528, 3090}, {30, 376, 15698}, {30, 3857, 382}, {30, 548, 14869}, {30, 8703, 15703}, {376, 10299, 3522}, {376, 15682, 15710}, {376, 15696, 16434}, {376, 15709, 8703}, {376, 3090, 3528}, {382, 10304, 3525}, {382, 15701, 3857}, {382, 15712, 5068}, {548, 12811, 15714}, {549, 17578, 3544}, {631, 3529, 15682}, {1656, 3146, 4}, {2043, 2044, 15697}, {3090, 3832, 3545}, {3146, 15697, 548}, {3146, 3524, 3855}, {3522, 5056, 3}, {3522, 5059, 5056}, {3627, 15717, 5071}, {3832, 5056, 3851}, {3853, 12811, 3845}, {5068, 10304, 15712}, {5076, 12100, 7486}, {6200, 42414, 23269}, {6396, 42413, 23275}, {7581, 43788, 42260}, {7582, 43787, 42261}, {8703, 17800, 3091}, {11001, 15690, 15719}, {11001, 15702, 30}, {13635, 15696, 10299}, {14813, 14814, 17800}, {15681, 15696, 12811}, {15681, 15697, 3524}, {15691, 15704, 15696}, {15696, 15704, 2}, {15701, 15712, 3523}, {15717, 17800, 1532}, {41963, 43785, 42264}, {41964, 43786, 42263}, {42085, 52080, 42987}, {42086, 52079, 42986}, {42096, 42944, 5365}, {42097, 42945, 5366}, {42267, 42638, 23267}


X(62128) = X(2)X(3)∩X(4325)X(6767)

Barycentrics    27*a^4-8*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62128) = -24*X[2]+35*X[3], -18*X[3579]+7*X[61252], -36*X[3626]+25*X[61248], -16*X[3631]+5*X[48662], -16*X[3636]+5*X[48661], -18*X[4297]+7*X[61282], 3*X[5050]+8*X[48920], 3*X[5093]+8*X[48880], 8*X[5493]+3*X[34748], -8*X[5550]+11*X[58222], 4*X[6144]+7*X[55584], -9*X[8148]+20*X[61288] and many others

X(62128) lies on these lines: {2, 3}, {3411, 42625}, {3412, 42626}, {3579, 61252}, {3626, 61248}, {3631, 48662}, {3636, 48661}, {4297, 61282}, {4325, 6767}, {4330, 7373}, {5050, 48920}, {5093, 48880}, {5493, 34748}, {5550, 58222}, {6144, 55584}, {6407, 42267}, {6408, 42266}, {6445, 51911}, {6446, 51910}, {6472, 43407}, {6473, 43408}, {6474, 18512}, {6475, 18510}, {6781, 43136}, {7584, 17851}, {8148, 61288}, {9589, 37624}, {9691, 31487}, {9698, 44541}, {10145, 42638}, {10146, 42637}, {11008, 48874}, {11485, 43250}, {11486, 43251}, {11645, 55620}, {12279, 54047}, {14530, 32903}, {15069, 48885}, {16644, 42798}, {16645, 42797}, {18525, 59420}, {18553, 50968}, {20057, 58238}, {20379, 38633}, {20477, 57897}, {20791, 58533}, {21309, 44519}, {21766, 33539}, {22236, 43485}, {22238, 43486}, {26864, 43599}, {29012, 55632}, {29317, 55692}, {29323, 55648}, {31666, 50820}, {32455, 48873}, {35021, 38733}, {35022, 38744}, {35023, 38756}, {35024, 38768}, {35812, 42578}, {35813, 42579}, {35822, 43258}, {35823, 43259}, {36836, 43418}, {36843, 43419}, {38034, 58226}, {38635, 52886}, {40107, 55624}, {40341, 44796}, {41973, 42636}, {41974, 42635}, {42090, 43106}, {42091, 43105}, {42096, 43297}, {42097, 43296}, {42099, 42928}, {42100, 42929}, {42115, 42938}, {42116, 42939}, {42153, 42630}, {42156, 42629}, {42429, 43238}, {42430, 43239}, {42433, 42436}, {42434, 42435}, {42488, 43195}, {42489, 43196}, {42528, 43032}, {42529, 43033}, {42580, 43249}, {42581, 43248}, {43193, 43234}, {43194, 43235}, {43230, 43491}, {43231, 43492}, {44456, 59411}, {48872, 55705}, {48891, 55610}, {48892, 53091}, {48896, 55639}, {48905, 55616}, {50976, 55687}, {51093, 58249}, {58233, 61278}, {58247, 61290}

X(62128) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5072}, {11001, 15721}
X(62128) = reflection of X(i) in X(j) for these {i,j}: {15703, 6891}, {15716, 376}, {382, 3855}, {3830, 15723}
X(62128) = pole of line {185, 61864} with respect to the Jerabek hyperbola
X(62128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3843), X(57897)}}, {{A, B, C, X(15722), X(60007)}}
X(62128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10299, 12108}, {2, 15684, 14269}, {2, 17538, 550}, {2, 382, 3843}, {2, 3850, 5079}, {3, 15702, 6850}, {3, 16239, 6948}, {3, 1656, 15722}, {3, 1657, 15684}, {20, 15696, 17800}, {20, 17538, 548}, {20, 382, 15681}, {20, 550, 382}, {20, 631, 15704}, {30, 15723, 3830}, {30, 376, 15716}, {30, 6891, 15703}, {382, 15688, 3530}, {382, 15696, 3528}, {382, 15720, 3855}, {382, 3526, 546}, {546, 550, 376}, {548, 15686, 20}, {548, 3853, 14891}, {550, 3528, 15696}, {550, 3529, 15688}, {1657, 14093, 3627}, {1657, 15712, 5073}, {1657, 16434, 15694}, {1657, 17538, 15689}, {1657, 3534, 17538}, {3526, 5056, 5070}, {3528, 3855, 15717}, {3529, 15688, 3851}, {3830, 15717, 15973}, {3830, 6926, 11540}, {3843, 5070, 5072}, {3851, 15681, 3529}, {5079, 15720, 15723}, {11001, 15721, 30}, {11812, 13735, 3526}, {11812, 15700, 15707}, {12108, 15689, 6928}, {14269, 15681, 15685}, {14869, 15719, 15720}, {14893, 17504, 2}, {15686, 17538, 1657}, {15696, 17800, 3}, {15717, 17578, 5056}


X(62129) = X(2)X(3)∩X(395)X(42587)

Barycentrics    37*a^4-11*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(62129) = -11*X[2]+16*X[3], -2*X[355]+7*X[50813], -2*X[946]+7*X[50820], -2*X[1351]+7*X[51177], -2*X[1352]+7*X[50969], -X[1992]+6*X[59411], -X[3621]+16*X[31730], -X[3679]+6*X[59420], -3*X[5032]+8*X[44882], -2*X[5480]+7*X[50976], -X[5921]+16*X[48885], X[5984]+4*X[12117] and many others

X(62129) lies on these lines: {2, 3}, {355, 50813}, {395, 42587}, {396, 42586}, {542, 55598}, {946, 50820}, {1131, 52045}, {1132, 52046}, {1351, 51177}, {1352, 50969}, {1992, 59411}, {3241, 28228}, {3621, 31730}, {3623, 28194}, {3679, 59420}, {5032, 44882}, {5237, 49824}, {5238, 49825}, {5480, 50976}, {5731, 28232}, {5818, 50863}, {5921, 48885}, {5965, 55589}, {5984, 12117}, {6361, 32900}, {6409, 41952}, {6410, 41951}, {6411, 43507}, {6412, 43508}, {6455, 43434}, {6456, 43435}, {6494, 7581}, {6495, 7582}, {6776, 55581}, {6781, 14075}, {7735, 11742}, {7788, 32879}, {7802, 32841}, {7987, 51079}, {8227, 50873}, {8976, 43521}, {9542, 42226}, {9543, 32787}, {9692, 42525}, {9778, 28236}, {10248, 19883}, {10519, 55621}, {10645, 42512}, {10646, 42513}, {11179, 55717}, {11180, 55613}, {11645, 55619}, {12512, 53620}, {13846, 42414}, {13847, 42413}, {13951, 43522}, {14853, 55700}, {14907, 32869}, {14927, 50965}, {16192, 50862}, {16644, 42683}, {16645, 42682}, {16772, 42518}, {16773, 42519}, {18481, 20014}, {19875, 50816}, {19924, 50975}, {19925, 51083}, {20049, 28234}, {20052, 28204}, {20070, 50811}, {20080, 48881}, {20423, 48920}, {21358, 50972}, {28198, 50819}, {32006, 32881}, {33751, 51213}, {35369, 38749}, {38064, 48879}, {38076, 46930}, {38314, 50815}, {38747, 41135}, {40330, 51216}, {42090, 61719}, {42095, 43478}, {42096, 43541}, {42097, 43540}, {42098, 43477}, {42122, 43481}, {42123, 43482}, {42133, 42430}, {42134, 42429}, {42144, 43543}, {42145, 43542}, {42150, 49875}, {42151, 49876}, {42154, 42899}, {42155, 42898}, {42164, 49861}, {42165, 49862}, {42215, 43787}, {42216, 43788}, {42260, 43256}, {42261, 43257}, {42431, 49874}, {42432, 49873}, {42494, 43002}, {42495, 43003}, {42516, 42942}, {42517, 42943}, {42520, 42966}, {42521, 42967}, {42910, 43371}, {42911, 43370}, {43246, 43447}, {43247, 43446}, {43273, 61044}, {43326, 43428}, {43327, 43429}, {43376, 43785}, {43377, 43786}, {43401, 43473}, {43402, 43474}, {43407, 53130}, {43408, 53131}, {43769, 49947}, {43770, 49948}, {46264, 54174}, {48872, 50971}, {48873, 51028}, {48874, 50974}, {48880, 54132}, {48891, 54173}, {48892, 55712}, {48898, 50967}, {50956, 55655}, {50990, 55614}, {51022, 55651}, {51134, 53094}, {51178, 55587}, {60279, 60327}, {60286, 60324}

X(62129) = midpoint of X(i) and X(j) for these {i,j}: {20, 15697}, {631, 11001}, {5076, 15685}, {14093, 15681}, {15704, 15711}
X(62129) = reflection of X(i) in X(j) for these {i,j}: {1656, 8703}, {15682, 3843}, {15692, 376}, {15695, 550}, {15697, 17538}, {15713, 548}, {17538, 3534}, {17578, 2}, {2, 3522}, {381, 15714}, {3522, 15697}, {3543, 5071}, {3830, 632}, {3843, 15711}, {3859, 15759}, {4, 15693}, {5071, 14093}, {5076, 15713}, {50863, 5818}, {50873, 8227}, {50956, 55655}, {50990, 55614}, {51216, 40330}, {53094, 51134}, {631, 15695}, {7987, 51079}
X(62129) = anticomplement of X(61985)
X(62129) = pole of line {69, 50970} with respect to the Wallace hyperbola
X(62129) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1294), X(41099)}}, {{A, B, C, X(1494), X(17578)}}, {{A, B, C, X(4846), X(11737)}}, {{A, B, C, X(15687), X(16251)}}, {{A, B, C, X(18317), X(35403)}}, {{A, B, C, X(18850), X(34200)}}, {{A, B, C, X(19709), X(46455)}}, {{A, B, C, X(50687), X(52443)}}
X(62129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 17578}, {20, 10304, 11001}, {20, 3523, 15704}, {20, 376, 15683}, {30, 15693, 4}, {30, 15711, 3843}, {30, 15713, 5076}, {30, 15759, 3859}, {30, 17538, 15697}, {30, 3534, 17538}, {30, 376, 15692}, {30, 5071, 3543}, {30, 548, 15713}, {30, 550, 15695}, {30, 632, 3830}, {30, 8703, 1656}, {376, 15686, 20}, {376, 15702, 8703}, {376, 3529, 15702}, {376, 381, 10304}, {376, 5071, 14093}, {381, 15684, 3853}, {381, 547, 3544}, {550, 15681, 15715}, {631, 17538, 550}, {1656, 11737, 5071}, {1657, 15690, 3524}, {1657, 3524, 15640}, {3091, 15692, 15694}, {3524, 15640, 3832}, {3528, 3830, 15708}, {3534, 15681, 15691}, {3830, 15708, 5068}, {3839, 10304, 15707}, {3839, 8703, 15717}, {3843, 15688, 15711}, {3845, 15710, 10303}, {5056, 10304, 12100}, {5076, 15713, 3545}, {10304, 11001, 3146}, {10304, 11539, 15705}, {10304, 15640, 3628}, {10304, 15692, 15714}, {10304, 15695, 3522}, {11539, 15693, 631}, {11541, 15719, 14269}, {11737, 15681, 3529}, {12101, 15706, 5067}, {12108, 15702, 15721}, {14093, 15681, 30}, {14269, 15719, 7486}, {15681, 15689, 15703}, {15681, 15691, 376}, {15682, 15688, 3523}, {15683, 15717, 15684}, {15684, 15702, 3839}, {15684, 15707, 381}, {15686, 15691, 15681}, {15688, 15704, 15682}, {15692, 15721, 15693}, {15703, 15721, 17678}, {15703, 17678, 2}, {48872, 50971, 59373}


X(62130) = X(1)X(50819)∩X(2)X(3)

Barycentrics    23*a^4-7*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62130) = -2*X[1]+5*X[50819], -7*X[2]+10*X[3], -2*X[6]+5*X[50975], -2*X[8]+5*X[50809], -2*X[10]+5*X[50812], -5*X[40]+2*X[34641], X[69]+8*X[48891], -2*X[141]+5*X[50968], -2*X[193]+5*X[51176], -5*X[671]+8*X[35021], -5*X[944]+2*X[34747], -2*X[1125]+5*X[51079] and many others

X(62130) lies on these lines: {1, 50819}, {2, 3}, {6, 50975}, {8, 50809}, {10, 50812}, {40, 34641}, {69, 48891}, {141, 50968}, {165, 38074}, {193, 51176}, {395, 52080}, {396, 52079}, {489, 13678}, {490, 13798}, {542, 55596}, {671, 35021}, {754, 9741}, {944, 34747}, {1056, 4316}, {1058, 4324}, {1125, 51079}, {1249, 36427}, {1285, 6781}, {1352, 55625}, {1587, 43209}, {1588, 43210}, {1992, 48873}, {3098, 51023}, {3244, 6361}, {3316, 42272}, {3317, 42271}, {3488, 4031}, {3579, 50864}, {3589, 51134}, {3618, 48879}, {3626, 34627}, {3629, 43273}, {3631, 11180}, {3632, 31730}, {3636, 31162}, {3644, 51043}, {3653, 9812}, {3655, 20057}, {4293, 8162}, {4299, 10385}, {4302, 37602}, {4681, 51042}, {4686, 51044}, {5237, 49861}, {5238, 49862}, {5334, 42625}, {5335, 42626}, {5339, 42792}, {5340, 42791}, {5343, 49906}, {5344, 49905}, {5351, 41120}, {5352, 41119}, {5476, 55690}, {5485, 60322}, {5550, 50873}, {5657, 38098}, {5731, 28198}, {5882, 51094}, {6054, 35022}, {6154, 12248}, {6329, 50971}, {6468, 23267}, {6469, 23273}, {6470, 7581}, {6471, 7582}, {6564, 43374}, {6565, 43375}, {7592, 16936}, {7612, 60631}, {7773, 32887}, {7825, 39142}, {7967, 11224}, {7982, 51095}, {8591, 38741}, {9143, 20127}, {9540, 14241}, {9541, 43788}, {9778, 28204}, {9862, 12117}, {10168, 43621}, {10595, 51705}, {10706, 40196}, {10710, 35024}, {10711, 35023}, {10984, 13482}, {11008, 46264}, {11177, 38730}, {11179, 48880}, {11480, 43487}, {11481, 43488}, {11485, 43111}, {11486, 43110}, {11488, 42529}, {11489, 42528}, {11645, 55615}, {12243, 38749}, {12244, 24981}, {12702, 20054}, {12816, 42494}, {12817, 42495}, {12818, 42602}, {12819, 42603}, {12820, 42105}, {12821, 42104}, {13846, 23269}, {13847, 23275}, {13886, 42414}, {13925, 43519}, {13935, 14226}, {13939, 42413}, {13993, 43520}, {14488, 60616}, {14912, 59411}, {14927, 48885}, {15516, 48920}, {15520, 19924}, {15808, 41869}, {16241, 42113}, {16242, 42112}, {16267, 42100}, {16268, 42099}, {16772, 49874}, {16773, 49873}, {16962, 42086}, {16963, 42085}, {16964, 49812}, {16965, 49813}, {18481, 20050}, {18492, 50829}, {18510, 42644}, {18512, 42643}, {18581, 42430}, {18582, 42429}, {18843, 54523}, {19053, 42261}, {19054, 42260}, {19877, 50799}, {20421, 43699}, {20423, 48892}, {20583, 44882}, {21356, 29012}, {22236, 49826}, {22238, 49827}, {22615, 42537}, {22644, 42538}, {23249, 41954}, {23259, 41953}, {23302, 51945}, {23303, 51944}, {25055, 28150}, {28154, 54445}, {28160, 53620}, {28202, 38314}, {28208, 59388}, {29317, 55693}, {31412, 43515}, {31670, 55696}, {32000, 57822}, {32787, 41969}, {32788, 41970}, {32819, 32886}, {32822, 37671}, {33602, 42156}, {33603, 42153}, {33750, 47352}, {33878, 51179}, {34089, 42273}, {34091, 42270}, {34595, 51074}, {34648, 35242}, {34773, 50872}, {35812, 43570}, {35813, 43571}, {35822, 42638}, {35823, 42637}, {36836, 42586}, {36843, 42587}, {36889, 57894}, {36967, 41971}, {36968, 41972}, {37480, 43572}, {37640, 42090}, {37641, 42091}, {38064, 51538}, {38731, 52695}, {39874, 40341}, {40344, 55732}, {40693, 42588}, {40694, 42589}, {41107, 43769}, {41108, 43770}, {41112, 43633}, {41113, 43632}, {41967, 43521}, {41968, 43522}, {42087, 43482}, {42088, 43481}, {42089, 43196}, {42092, 43195}, {42096, 43404}, {42097, 43403}, {42121, 43541}, {42124, 43540}, {42157, 42510}, {42158, 42511}, {42164, 49824}, {42165, 49825}, {42263, 43510}, {42264, 43509}, {42266, 43387}, {42267, 43386}, {42433, 42780}, {42434, 42779}, {42478, 43250}, {42479, 43251}, {42512, 44015}, {42513, 44016}, {42520, 42891}, {42521, 42890}, {42561, 43516}, {42584, 42974}, {42585, 42975}, {42892, 43203}, {42893, 43204}, {42912, 43465}, {42913, 43466}, {42940, 43555}, {42941, 43554}, {42942, 43106}, {42943, 43105}, {42946, 43003}, {42947, 43002}, {43100, 43402}, {43107, 43401}, {43193, 49875}, {43194, 49876}, {43483, 43637}, {43484, 43636}, {43485, 61719}, {44526, 46453}, {46932, 50825}, {46933, 50863}, {46934, 50806}, {48872, 51737}, {48874, 54174}, {48896, 55635}, {48898, 55590}, {48906, 51028}, {48910, 50976}, {50868, 61256}, {50954, 55632}, {50959, 55676}, {50961, 55594}, {50969, 54169}, {50972, 55646}, {50977, 55634}, {50982, 55607}, {50991, 55626}, {50992, 52987}, {51136, 55582}, {51345, 51835}, {52519, 54616}, {53100, 60627}, {53103, 54720}, {53144, 55823}, {54595, 60315}, {54596, 60316}, {54637, 60337}, {54845, 60143}, {55706, 59373}, {60132, 60629}, {60150, 60636}, {60185, 60219}, {60284, 60330}

X(62130) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5055}, {3524, 11001}, {3839, 15683}, {15681, 15688}
X(62130) = reflection of X(i) in X(j) for these {i,j}: {10304, 15689}, {11539, 548}, {14269, 17504}, {15682, 3839}, {15688, 550}, {2, 15688}, {3524, 376}, {3543, 5055}, {3545, 10304}, {3830, 11539}, {3839, 3}, {3853, 14890}, {38074, 165}, {4, 3524}, {5055, 8703}, {51538, 38064}, {52695, 38731}, {9812, 3653}
X(62130) = inverse of X(61947) in orthocentroidal circle
X(62130) = inverse of X(61947) in Yff hyperbola
X(62130) = complement of X(62037)
X(62130) = anticomplement of X(14269)
X(62130) = pole of line {523, 61947} with respect to the orthocentroidal circle
X(62130) = pole of line {185, 61867} with respect to the Jerabek hyperbola
X(62130) = pole of line {6, 61947} with respect to the Kiepert hyperbola
X(62130) = pole of line {523, 61947} with respect to the Yff hyperbola
X(62130) = pole of line {69, 15681} with respect to the Wallace hyperbola
X(62130) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(49134)}}, {{A, B, C, X(69), X(15681)}}, {{A, B, C, X(376), X(57894)}}, {{A, B, C, X(546), X(36889)}}, {{A, B, C, X(1138), X(37984)}}, {{A, B, C, X(1294), X(3839)}}, {{A, B, C, X(1597), X(14491)}}, {{A, B, C, X(2693), X(37957)}}, {{A, B, C, X(3528), X(57822)}}, {{A, B, C, X(3830), X(43699)}}, {{A, B, C, X(4232), X(60322)}}, {{A, B, C, X(4846), X(19709)}}, {{A, B, C, X(5070), X(15740)}}, {{A, B, C, X(5897), X(38446)}}, {{A, B, C, X(11270), X(55570)}}, {{A, B, C, X(13603), X(18535)}}, {{A, B, C, X(15022), X(54763)}}, {{A, B, C, X(15683), X(54667)}}, {{A, B, C, X(15717), X(54660)}}, {{A, B, C, X(18317), X(38335)}}, {{A, B, C, X(18850), X(19708)}}, {{A, B, C, X(20421), X(55576)}}, {{A, B, C, X(35501), X(57714)}}, {{A, B, C, X(37174), X(60631)}}, {{A, B, C, X(37934), X(60740)}}, {{A, B, C, X(50693), X(60122)}}, {{A, B, C, X(52301), X(54845)}}
X(62130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11737, 3090}, {2, 14269, 3545}, {2, 15681, 3529}, {2, 15692, 15720}, {2, 15700, 631}, {2, 20, 15681}, {2, 3528, 15715}, {2, 3543, 546}, {2, 3855, 5071}, {2, 5084, 11359}, {3, 15691, 15697}, {3, 3534, 15691}, {3, 381, 15713}, {3, 3839, 15709}, {3, 5066, 15721}, {20, 15691, 15682}, {20, 17538, 4}, {20, 3522, 15704}, {20, 376, 11001}, {30, 11539, 3830}, {30, 14890, 3853}, {30, 548, 11539}, {30, 8703, 5055}, {376, 15685, 5067}, {376, 3534, 17538}, {376, 631, 8703}, {381, 15698, 3525}, {381, 15713, 7486}, {381, 3522, 15698}, {382, 10299, 3544}, {382, 15688, 15707}, {546, 3529, 11541}, {546, 8703, 15700}, {548, 3830, 15692}, {549, 15685, 3146}, {1657, 8703, 3543}, {3522, 3543, 15722}, {3524, 3525, 15708}, {3526, 3628, 17590}, {3528, 17538, 550}, {3528, 3544, 10299}, {3529, 10299, 382}, {3534, 15686, 20}, {3830, 15720, 11737}, {3839, 15705, 10124}, {3845, 14093, 3523}, {3851, 15681, 15685}, {3853, 15711, 15703}, {3855, 15682, 15687}, {3860, 15723, 15022}, {5055, 8703, 15705}, {5056, 6872, 2049}, {5076, 15718, 10109}, {6361, 50811, 34631}, {6958, 15686, 5059}, {10299, 15707, 3524}, {10304, 15689, 376}, {10304, 17504, 15710}, {11480, 43542, 43493}, {11481, 43543, 43494}, {11737, 15720, 2}, {12100, 15684, 3091}, {12101, 15714, 3526}, {12103, 15686, 3534}, {12812, 15696, 3522}, {14093, 17800, 3845}, {14269, 15688, 17504}, {14269, 15689, 15688}, {14893, 15701, 5056}, {15640, 15695, 15719}, {15681, 15687, 15683}, {15681, 15688, 30}, {15681, 15689, 14269}, {15681, 15697, 3855}, {15682, 15709, 3839}, {15683, 15697, 3}, {15685, 15696, 549}, {15687, 17504, 15699}, {15688, 15710, 3528}, {15688, 17504, 10304}, {15690, 15704, 381}, {15691, 15699, 15689}, {15700, 15722, 3530}, {15721, 17578, 5066}, {18481, 34632, 50818}, {31730, 34628, 50810}, {34638, 50811, 6361}, {34648, 50816, 35242}, {41945, 43256, 7581}, {41946, 43257, 7582}, {46264, 54170, 50974}, {48905, 50965, 11180}


X(62131) = X(2)X(3)∩X(6)X(42994)

Barycentrics    13*a^4-4*(b^2-c^2)^2-9*a^2*(b^2+c^2) : :
X(62131) = -12*X[2]+17*X[3], -8*X[40]+3*X[51515], -3*X[154]+8*X[32903], -4*X[265]+9*X[38633], -X[355]+6*X[59420], -6*X[599]+11*X[55620], X[1350]+4*X[48891], X[1351]+4*X[48880], -4*X[1352]+9*X[55624], -13*X[1482]+18*X[61285], -4*X[3818]+9*X[55643], -8*X[4297]+3*X[10247] and many others

X(62131) lies on these lines: {2, 3}, {6, 42994}, {17, 42097}, {18, 42096}, {40, 51515}, {74, 14841}, {154, 32903}, {265, 38633}, {355, 59420}, {397, 42090}, {398, 42091}, {516, 37624}, {542, 55595}, {599, 55620}, {999, 4324}, {1154, 52093}, {1181, 37496}, {1327, 43409}, {1328, 43410}, {1350, 48891}, {1351, 48880}, {1352, 55624}, {1384, 5346}, {1482, 61285}, {1503, 55604}, {2777, 14530}, {3070, 6445}, {3071, 6446}, {3295, 4316}, {3426, 26861}, {3519, 43719}, {3616, 28182}, {3818, 55643}, {4297, 10247}, {4299, 6767}, {4302, 7373}, {5050, 48872}, {5085, 48879}, {5093, 44882}, {5318, 42794}, {5321, 42793}, {5339, 16961}, {5340, 16960}, {5343, 42144}, {5344, 42145}, {5349, 42112}, {5350, 42113}, {5365, 42121}, {5366, 42124}, {5493, 18481}, {5585, 39565}, {5732, 51514}, {5734, 50819}, {5790, 12512}, {5876, 54047}, {5882, 8148}, {5890, 13421}, {5895, 14862}, {5925, 32063}, {5965, 33878}, {6033, 38635}, {6199, 42260}, {6221, 42267}, {6241, 54048}, {6243, 13382}, {6321, 38634}, {6395, 42261}, {6398, 42266}, {6411, 43881}, {6412, 43882}, {6417, 42259}, {6418, 42258}, {6449, 8960}, {6450, 42263}, {6451, 23251}, {6452, 23261}, {6455, 35820}, {6456, 35821}, {6459, 6501}, {6460, 6500}, {6496, 6564}, {6497, 6565}, {6519, 35822}, {6522, 35823}, {6781, 30435}, {7583, 9691}, {7728, 38638}, {7747, 44541}, {7755, 44526}, {7802, 32821}, {7987, 28154}, {7998, 32137}, {8550, 44456}, {8976, 42276}, {8981, 42414}, {9690, 42226}, {9704, 37477}, {9778, 12645}, {9833, 15105}, {10187, 42095}, {10188, 42098}, {10194, 42283}, {10195, 42284}, {10516, 55648}, {10575, 13340}, {10595, 58233}, {10606, 14864}, {10619, 12316}, {10627, 12279}, {10738, 38637}, {10742, 38636}, {10990, 12121}, {10991, 38730}, {10992, 38741}, {10993, 38753}, {11017, 44299}, {11178, 55641}, {11441, 52100}, {11455, 32142}, {11480, 42431}, {11481, 42432}, {11482, 19924}, {11485, 42158}, {11486, 42157}, {11522, 28146}, {11623, 38733}, {11645, 55614}, {11820, 18442}, {12017, 29317}, {12254, 13432}, {12290, 54042}, {12307, 44748}, {12308, 20127}, {12315, 45185}, {12699, 58230}, {12902, 20417}, {12918, 38639}, {13093, 34785}, {13108, 22676}, {13348, 18435}, {13464, 48661}, {13598, 40280}, {13665, 41963}, {13785, 41964}, {13951, 42275}, {13966, 42413}, {14449, 61136}, {14641, 18436}, {14848, 50971}, {14861, 43908}, {15036, 15046}, {15040, 34584}, {15042, 61574}, {15056, 54044}, {15069, 55602}, {15533, 55597}, {15655, 44518}, {16192, 33697}, {16534, 38723}, {16808, 42773}, {16809, 42774}, {16936, 36747}, {16962, 42586}, {16963, 42587}, {16964, 42625}, {16965, 42626}, {17834, 43807}, {17845, 35450}, {17851, 23273}, {18440, 55616}, {18493, 28150}, {18510, 43408}, {18512, 43407}, {18525, 43174}, {18553, 31884}, {19106, 43238}, {19107, 43239}, {20070, 58247}, {20190, 51024}, {20418, 38754}, {20427, 44762}, {21358, 55644}, {22236, 41974}, {22238, 41973}, {22809, 48734}, {22810, 48735}, {25555, 48910}, {25561, 55652}, {28158, 58224}, {28168, 35242}, {28236, 31730}, {29012, 55629}, {29181, 53091}, {29323, 55646}, {31487, 53130}, {31656, 38640}, {31670, 55697}, {32046, 43576}, {33520, 38765}, {33542, 33887}, {33543, 44749}, {33636, 40138}, {33751, 53023}, {34507, 48662}, {34754, 43485}, {34755, 43486}, {35812, 51850}, {35813, 51849}, {36836, 42992}, {36843, 42993}, {36967, 43193}, {36968, 43194}, {36990, 55639}, {37484, 46850}, {37714, 50812}, {37853, 38724}, {38072, 55681}, {38726, 38789}, {38731, 38744}, {38732, 38747}, {38736, 38743}, {38738, 52090}, {38759, 51517}, {39899, 48874}, {42085, 42989}, {42086, 42988}, {42087, 42151}, {42088, 42150}, {42103, 42948}, {42106, 42949}, {42108, 42920}, {42109, 42921}, {42119, 42924}, {42120, 42925}, {42122, 42998}, {42123, 42999}, {42125, 42682}, {42126, 42149}, {42127, 42152}, {42128, 42683}, {42153, 42528}, {42154, 42433}, {42155, 42434}, {42156, 42529}, {42163, 42513}, {42164, 42778}, {42165, 42777}, {42166, 42512}, {42225, 42637}, {42474, 42596}, {42475, 42597}, {42518, 43422}, {42519, 43423}, {42520, 42990}, {42521, 42991}, {42580, 42985}, {42581, 42984}, {42584, 43769}, {42585, 43770}, {42690, 43547}, {42691, 43546}, {42729, 43629}, {42730, 43628}, {42797, 44016}, {42798, 44015}, {42813, 43024}, {42814, 43025}, {42900, 43016}, {42901, 43017}, {42904, 43026}, {42905, 43027}, {42908, 42978}, {42909, 42979}, {42938, 42964}, {42939, 42965}, {43018, 43205}, {43019, 43206}, {43150, 55618}, {43242, 43496}, {43243, 43495}, {43273, 55724}, {43376, 43509}, {43377, 43510}, {43432, 43879}, {43433, 43880}, {43511, 43787}, {43512, 43788}, {45959, 54041}, {46264, 55584}, {47353, 55631}, {48881, 55593}, {48884, 55651}, {48889, 55654}, {48895, 55673}, {48901, 55682}, {48904, 55676}, {48942, 55658}, {48943, 55669}, {50955, 55606}, {50968, 55637}, {50976, 55684}, {54131, 55701}

X(62131) = midpoint of X(i) and X(j) for these {i,j}: {20, 17538}, {1656, 1657}, {3529, 17578}, {11001, 15692}, {15681, 15695}
X(62131) = reflection of X(i) in X(j) for these {i,j}: {1656, 3522}, {14093, 15697}, {15693, 376}, {15694, 15695}, {15696, 17538}, {15714, 15690}, {17578, 632}, {3, 15696}, {382, 3091}, {3522, 550}, {3830, 15694}, {3843, 3}, {4, 15712}, {44749, 33543}, {5071, 8703}, {5076, 631}, {632, 548}
X(62131) = inverse of X(37944) in Stammler circle
X(62131) = anticomplement of X(61988)
X(62131) = pole of line {523, 37944} with respect to the Stammler circle
X(62131) = pole of line {185, 46219} with respect to the Jerabek hyperbola
X(62131) = pole of line {69, 48920} with respect to the Wallace hyperbola
X(62131) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(30), X(14841)}}, {{A, B, C, X(68), X(11541)}}, {{A, B, C, X(376), X(26861)}}, {{A, B, C, X(1105), X(46219)}}, {{A, B, C, X(1294), X(3843)}}, {{A, B, C, X(1494), X(35434)}}, {{A, B, C, X(3090), X(14861)}}, {{A, B, C, X(3426), X(26863)}}, {{A, B, C, X(3518), X(43719)}}, {{A, B, C, X(3519), X(3529)}}, {{A, B, C, X(3532), X(44879)}}, {{A, B, C, X(3544), X(4846)}}, {{A, B, C, X(6662), X(23046)}}, {{A, B, C, X(14528), X(35475)}}, {{A, B, C, X(14865), X(43908)}}, {{A, B, C, X(15690), X(60122)}}, {{A, B, C, X(15701), X(40448)}}, {{A, B, C, X(17538), X(42021)}}, {{A, B, C, X(18550), X(50689)}}, {{A, B, C, X(21400), X(50688)}}, {{A, B, C, X(35404), X(52441)}}, {{A, B, C, X(41982), X(57822)}}
X(62131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14269, 3526}, {3, 15684, 5}, {3, 20, 15681}, {3, 30, 3843}, {3, 3526, 15718}, {3, 3830, 5070}, {3, 3843, 15694}, {3, 5070, 15707}, {4, 3522, 15712}, {20, 12103, 3534}, {20, 376, 15704}, {20, 550, 1657}, {30, 15690, 15714}, {30, 15697, 14093}, {30, 15712, 4}, {30, 17538, 15696}, {30, 376, 15693}, {30, 548, 632}, {30, 631, 5076}, {30, 632, 17578}, {30, 8703, 5071}, {140, 15685, 5073}, {140, 15704, 5059}, {140, 17504, 3523}, {140, 3091, 1656}, {140, 550, 376}, {376, 11541, 15717}, {376, 14269, 6926}, {376, 15640, 17504}, {376, 15683, 11737}, {376, 15708, 8703}, {381, 382, 12102}, {631, 17538, 15697}, {1656, 15693, 140}, {1656, 15696, 3522}, {1656, 3843, 3851}, {1656, 5076, 3858}, {1657, 3534, 550}, {1657, 5059, 15685}, {1657, 5073, 17800}, {2043, 2044, 15690}, {2045, 2046, 10124}, {3146, 10299, 3850}, {3146, 3526, 14269}, {3522, 5059, 3091}, {3524, 3853, 5079}, {3528, 15683, 3627}, {3529, 5067, 15640}, {3530, 3543, 5072}, {3534, 15688, 15691}, {3534, 15696, 17538}, {3545, 6880, 3146}, {3545, 7486, 6859}, {3627, 15690, 3528}, {3850, 8703, 10299}, {5055, 15701, 15723}, {6455, 35820, 45384}, {6456, 35821, 45385}, {6781, 44519, 30435}, {7385, 15640, 17566}, {11001, 15688, 15684}, {11001, 15691, 15688}, {11001, 15692, 30}, {11413, 13564, 3}, {11541, 15717, 3845}, {12102, 15640, 382}, {12102, 15704, 3529}, {12102, 17504, 5067}, {12103, 15686, 20}, {12812, 15711, 631}, {14269, 15708, 5055}, {14641, 36987, 18436}, {14784, 14785, 11541}, {15640, 17504, 381}, {15681, 15689, 3830}, {15683, 15690, 5054}, {15684, 15688, 15701}, {15688, 15723, 15759}, {15689, 15694, 15695}, {15691, 15701, 15689}, {33751, 53023, 55678}, {42263, 51910, 6450}, {42994, 42995, 6}, {48880, 59411, 1351}, {48885, 48905, 55610}, {48905, 55610, 48662}


X(62132) = X(2)X(3)∩X(590)X(42576)

Barycentrics    55*a^4-17*(b^2-c^2)^2-38*a^2*(b^2+c^2) : :
X(62132) = -17*X[2]+24*X[3], -3*X[1699]+10*X[51079], -2*X[4677]+9*X[9778], -2*X[4745]+9*X[59420], -12*X[5050]+5*X[51211], -5*X[8584]+12*X[51135], -X[8596]+8*X[38749], -3*X[9589]+10*X[51104], -9*X[9812]+16*X[51108], -12*X[10165]+5*X[50873], -X[11160]+8*X[48881], -X[11180]+8*X[48885] and many others

X(62132) lies on these lines: {2, 3}, {590, 42576}, {615, 42577}, {1131, 42568}, {1132, 42569}, {1699, 51079}, {4677, 9778}, {4678, 28208}, {4745, 59420}, {5050, 51211}, {5306, 11742}, {5334, 42631}, {5335, 42632}, {5343, 49904}, {5344, 49903}, {6496, 60307}, {6497, 60308}, {7585, 43209}, {7586, 43210}, {8584, 51135}, {8596, 38749}, {9543, 42267}, {9589, 51104}, {9680, 60291}, {9812, 51108}, {10165, 50873}, {10513, 11057}, {11160, 48881}, {11180, 48885}, {11480, 42502}, {11481, 42503}, {12512, 51066}, {14711, 22676}, {14830, 35369}, {14907, 32892}, {14927, 22165}, {15533, 50970}, {15534, 61044}, {16191, 51071}, {18481, 20049}, {18581, 42505}, {18582, 42504}, {20070, 34638}, {26446, 50863}, {28150, 50820}, {28158, 61271}, {28160, 50813}, {28202, 61277}, {28228, 51094}, {29012, 50969}, {31145, 31730}, {31414, 43785}, {34632, 61296}, {35255, 42540}, {35256, 42539}, {36967, 49875}, {36968, 49876}, {37712, 50808}, {37832, 43552}, {37835, 43553}, {38127, 50864}, {41100, 43007}, {41101, 43006}, {41121, 43637}, {41122, 43636}, {41152, 55614}, {42085, 42507}, {42086, 42506}, {42087, 42509}, {42088, 42508}, {42090, 46334}, {42091, 46335}, {42112, 49908}, {42113, 49907}, {42139, 51944}, {42142, 51945}, {42263, 42573}, {42264, 42572}, {42429, 42905}, {42430, 42904}, {42478, 43228}, {42479, 43229}, {42516, 43106}, {42517, 43105}, {42532, 49826}, {42533, 49827}, {42537, 43508}, {42538, 43507}, {42625, 43466}, {42626, 43465}, {42940, 43870}, {42941, 43869}, {47102, 53141}, {48880, 51170}, {50811, 51092}, {50812, 59387}, {50815, 51105}, {50866, 58441}, {50870, 61264}, {50872, 61287}, {50965, 50990}, {50971, 51185}, {51081, 58221}, {51082, 61294}, {51134, 53023}, {51178, 54174}

X(62132) = midpoint of X(i) and X(j) for these {i,j}: {1657, 15703}, {3832, 15683}, {11001, 15698}
X(62132) = reflection of X(i) in X(j) for these {i,j}: {3523, 376}, {3543, 3090}, {4, 15700}
X(62132) = anticomplement of X(61989)
X(62132) = pole of line {69, 62145} with respect to the Wallace hyperbola
X(62132) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4846), X(14892)}}, {{A, B, C, X(15682), X(35510)}}, {{A, B, C, X(16251), X(38335)}}, {{A, B, C, X(18850), X(45759)}}, {{A, B, C, X(50691), X(52441)}}
X(62132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3845, 5068}, {3, 381, 14890}, {5, 14891, 5054}, {20, 10304, 15681}, {20, 15697, 11001}, {30, 15700, 4}, {30, 3090, 3543}, {30, 376, 3523}, {376, 11001, 3830}, {376, 15705, 3522}, {376, 1657, 3839}, {376, 3146, 15705}, {550, 15704, 16239}, {550, 5054, 376}, {3146, 15717, 3854}, {3146, 3523, 3832}, {3523, 3839, 15703}, {3529, 15689, 15692}, {3534, 15685, 550}, {3534, 15690, 17538}, {3534, 15695, 15691}, {3543, 3839, 12102}, {3830, 15693, 5}, {3830, 5054, 5066}, {3851, 16239, 3090}, {5071, 15708, 5129}, {6958, 15689, 3534}, {8703, 11001, 15640}, {10109, 10303, 2}, {10304, 15681, 5059}, {11001, 15698, 30}, {11540, 17538, 6838}, {13741, 15699, 17528}, {14891, 15685, 15682}, {15640, 15697, 8703}, {15681, 17538, 10304}, {15682, 17538, 15690}, {15683, 15705, 3146}, {15684, 15710, 5056}, {15693, 17538, 15697}, {15698, 15702, 15693}


X(62133) = X(2)X(3)∩X(69)X(55600)

Barycentrics    29*a^4-9*(b^2-c^2)^2-20*a^2*(b^2+c^2) : :
X(62133) = -27*X[2]+38*X[3], -9*X[69]+20*X[55600], -9*X[1352]+20*X[55623], -27*X[1699]+49*X[58225], -21*X[3619]+32*X[55647], -4*X[4301]+15*X[50819], 8*X[5493]+3*X[50818], -4*X[5881]+15*X[50809], -3*X[5921]+14*X[55602], 9*X[6361]+2*X[58245], -27*X[7967]+16*X[58240], -9*X[9812]+20*X[31666] and many others

X(62133) lies on these lines: {2, 3}, {69, 55600}, {371, 43336}, {372, 43337}, {1285, 44519}, {1352, 55623}, {1587, 41956}, {1588, 41955}, {1699, 58225}, {3070, 10147}, {3071, 10148}, {3311, 43383}, {3312, 43382}, {3411, 42589}, {3412, 42588}, {3619, 55647}, {4301, 50819}, {5237, 43011}, {5238, 43010}, {5351, 42140}, {5352, 42141}, {5493, 50818}, {5881, 50809}, {5921, 55602}, {6361, 58245}, {6425, 43407}, {6426, 43408}, {6453, 23267}, {6454, 23273}, {6488, 42264}, {6489, 42263}, {6496, 43374}, {6497, 43375}, {6519, 42226}, {6522, 42225}, {7967, 58240}, {9540, 42578}, {9680, 14241}, {9812, 31666}, {11480, 56609}, {11481, 56608}, {11742, 22331}, {12007, 59411}, {12160, 35253}, {13607, 16189}, {13935, 42579}, {14692, 38628}, {14843, 44763}, {14912, 48880}, {14927, 55606}, {15069, 50966}, {16625, 61136}, {22234, 51212}, {22330, 25406}, {29012, 55628}, {29317, 55694}, {31425, 50816}, {31670, 55698}, {32523, 44434}, {34754, 43777}, {34755, 43778}, {35786, 43513}, {35787, 43514}, {35814, 42637}, {35815, 42638}, {36836, 42986}, {36843, 42987}, {39874, 52987}, {40247, 54041}, {40693, 42806}, {40694, 42805}, {42096, 42686}, {42097, 42687}, {42099, 42964}, {42100, 42965}, {42104, 42954}, {42105, 42955}, {42112, 43464}, {42113, 43463}, {42150, 42935}, {42151, 42934}, {42164, 42685}, {42165, 42684}, {42413, 43510}, {42414, 43509}, {42431, 43033}, {42432, 43032}, {42433, 43770}, {42434, 43769}, {42512, 42798}, {42513, 42797}, {42694, 42776}, {42695, 42775}, {43150, 55617}, {43250, 43300}, {43251, 43301}, {43621, 55681}, {44882, 53858}, {46264, 55583}, {48873, 55721}, {48885, 55611}, {48891, 55597}, {48892, 55708}, {48898, 55588}, {51538, 55687}

X(62133) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5070}, {11001, 15715}
X(62133) = reflection of X(i) in X(j) for these {i,j}: {15719, 376}, {4, 15717}
X(62133) = anticomplement of X(61990)
X(62133) = pole of line {185, 61870} with respect to the Jerabek hyperbola
X(62133) = pole of line {69, 62144} with respect to the Wallace hyperbola
X(62133) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(49133)}}, {{A, B, C, X(549), X(18851)}}, {{A, B, C, X(1294), X(50689)}}, {{A, B, C, X(3517), X(43691)}}, {{A, B, C, X(3853), X(18296)}}, {{A, B, C, X(5072), X(18853)}}, {{A, B, C, X(7486), X(18852)}}, {{A, B, C, X(13623), X(46219)}}, {{A, B, C, X(14843), X(33703)}}, {{A, B, C, X(15700), X(54660)}}, {{A, B, C, X(15740), X(55856)}}, {{A, B, C, X(17800), X(18847)}}, {{A, B, C, X(18848), X(46333)}}, {{A, B, C, X(18849), X(50693)}}, {{A, B, C, X(43713), X(55574)}}, {{A, B, C, X(47478), X(54763)}}
X(62133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12102, 2}, {3, 3146, 3544}, {3, 3544, 631}, {3, 382, 12812}, {3, 3857, 10303}, {4, 3524, 7486}, {4, 3525, 5072}, {4, 3526, 3545}, {4, 5071, 3856}, {4, 548, 15698}, {20, 12103, 17538}, {20, 17538, 3529}, {20, 3522, 15681}, {20, 550, 11001}, {30, 376, 15719}, {376, 3533, 3528}, {548, 3857, 3}, {549, 15695, 10304}, {550, 3853, 15695}, {1657, 15695, 3853}, {3090, 15719, 3525}, {3091, 3533, 3090}, {3146, 10304, 3628}, {3146, 3857, 3149}, {3528, 15682, 3533}, {3534, 17800, 550}, {3628, 15704, 17800}, {3628, 17800, 3146}, {3628, 5072, 5056}, {5056, 10304, 15717}, {5059, 15696, 3524}, {5059, 7486, 15684}, {10303, 13741, 3526}, {10304, 17800, 4}, {11001, 15695, 15682}, {11001, 15715, 30}, {12103, 15704, 3534}, {14892, 15759, 549}, {15697, 15710, 376}, {42413, 51910, 43510}


X(62134) = X(2)X(3)∩X(32)X(11742)

Barycentrics    19*a^4-6*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62134) = -18*X[2]+25*X[3], 4*X[575]+3*X[48872], X[576]+6*X[48920], -9*X[599]+16*X[55617], 2*X[3629]+5*X[48873], -8*X[3631]+15*X[55610], -15*X[3763]+22*X[55652], -9*X[5640]+16*X[55286], -X[5895]+8*X[32903], -9*X[6030]+2*X[53779], 2*X[6154]+5*X[38753], -48*X[6329]+55*X[55701] and many others

X(62134) lies on these lines: {2, 3}, {15, 43326}, {16, 43327}, {32, 11742}, {61, 42966}, {62, 42967}, {394, 52100}, {575, 48872}, {576, 48920}, {590, 43515}, {599, 55617}, {615, 43516}, {1503, 55602}, {2777, 15039}, {3303, 4316}, {3304, 4324}, {3629, 48873}, {3631, 55610}, {3763, 55652}, {5007, 44519}, {5237, 42126}, {5238, 42127}, {5339, 42938}, {5340, 42939}, {5351, 42096}, {5352, 42097}, {5640, 55286}, {5895, 32903}, {6030, 53779}, {6154, 38753}, {6329, 55701}, {6407, 42226}, {6408, 42225}, {6425, 18512}, {6426, 18510}, {6427, 42259}, {6428, 42258}, {6447, 6560}, {6448, 6561}, {6451, 42272}, {6452, 42271}, {6455, 42276}, {6456, 42275}, {6488, 8960}, {6489, 58866}, {6496, 22644}, {6497, 22615}, {7756, 22331}, {7991, 18526}, {8717, 37495}, {9680, 43570}, {9681, 43209}, {9691, 23267}, {10141, 35815}, {10142, 35814}, {10187, 42543}, {10188, 42544}, {10516, 55647}, {10541, 29317}, {10574, 16982}, {10575, 54048}, {11008, 55584}, {11439, 54044}, {11477, 48880}, {11480, 42629}, {11481, 42630}, {11482, 44882}, {11485, 43106}, {11486, 43105}, {11592, 16261}, {11645, 55611}, {11898, 48881}, {11935, 52525}, {12645, 31730}, {12902, 15021}, {13340, 14641}, {13665, 51911}, {13785, 51910}, {13903, 42264}, {13961, 42263}, {14537, 31470}, {14927, 55604}, {15020, 34584}, {15023, 61574}, {15027, 37853}, {15034, 38790}, {15040, 38791}, {15069, 55600}, {15808, 28150}, {17852, 35823}, {18439, 54047}, {18440, 48885}, {18524, 44846}, {19924, 53858}, {20057, 28174}, {20127, 24981}, {20190, 48879}, {20583, 51172}, {22236, 42131}, {22238, 42130}, {23249, 43434}, {23259, 43435}, {28146, 30389}, {29012, 55626}, {29181, 53092}, {29323, 55644}, {31162, 58232}, {31399, 50816}, {31666, 41869}, {34638, 37727}, {35021, 38742}, {35022, 38731}, {36836, 42100}, {36843, 42099}, {36990, 55637}, {39884, 55632}, {39899, 48898}, {40341, 44748}, {41119, 42794}, {41120, 42793}, {42104, 42951}, {42105, 42950}, {42112, 42599}, {42113, 42598}, {42115, 42164}, {42116, 42165}, {42129, 42946}, {42132, 42947}, {42153, 43017}, {42154, 42780}, {42155, 42779}, {42156, 43016}, {42160, 42818}, {42161, 42817}, {42429, 42798}, {42430, 42797}, {42433, 42975}, {42434, 42974}, {42528, 43547}, {42529, 43546}, {42586, 42632}, {42587, 42631}, {42612, 43485}, {42613, 43486}, {42625, 42989}, {42626, 42988}, {42635, 46334}, {42636, 46335}, {42888, 43870}, {42889, 43869}, {43197, 43648}, {43198, 43647}, {43273, 55721}, {43493, 43556}, {43494, 43557}, {43523, 43785}, {43524, 43786}, {43621, 55682}, {46264, 55580}, {48884, 55650}, {48892, 53093}, {48896, 55631}, {48904, 55677}, {48905, 55606}, {48910, 55687}, {50815, 61276}, {51163, 55678}, {51709, 58229}, {53023, 55679}, {54131, 55704}

X(62134) = midpoint of X(i) and X(j) for these {i,j}: {1657, 3526}
X(62134) = reflection of X(i) in X(j) for these {i,j}: {15701, 376}, {382, 3851}, {3528, 550}, {3830, 15702}, {3851, 3528}
X(62134) = pole of line {185, 55858} with respect to the Jerabek hyperbola
X(62134) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(50690)}}, {{A, B, C, X(1105), X(55858)}}, {{A, B, C, X(18848), X(19710)}}, {{A, B, C, X(18850), X(58188)}}, {{A, B, C, X(31371), X(41106)}}, {{A, B, C, X(58186), X(60618)}}
X(62134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12103, 3534}, {3, 15681, 3529}, {3, 17800, 3627}, {3, 3091, 5054}, {3, 3146, 5072}, {3, 3627, 1656}, {3, 3830, 3628}, {3, 3843, 3525}, {3, 3851, 14869}, {3, 5073, 3091}, {3, 5079, 15720}, {4, 15721, 5}, {4, 7397, 12100}, {20, 17538, 15704}, {20, 3534, 1657}, {20, 550, 15681}, {30, 15702, 3830}, {30, 3528, 3851}, {30, 376, 15701}, {30, 550, 3528}, {382, 3534, 550}, {548, 11001, 5073}, {550, 15687, 548}, {550, 3530, 376}, {1656, 15701, 3526}, {1656, 3544, 5079}, {1657, 15688, 382}, {1657, 15696, 381}, {1657, 3526, 30}, {1657, 3534, 15696}, {3146, 5072, 5076}, {3522, 3855, 17504}, {3529, 3855, 11541}, {3530, 15711, 10299}, {3530, 3627, 3544}, {3544, 3627, 14269}, {3832, 10303, 3090}, {3851, 14269, 3832}, {5059, 15690, 6948}, {5059, 8703, 3843}, {5072, 15720, 2049}, {5076, 5079, 546}, {10303, 15704, 17800}, {11539, 12108, 10303}, {12103, 15704, 17538}, {12108, 17538, 15689}, {14269, 15688, 15706}, {15681, 15707, 15685}, {15685, 15689, 15721}, {15696, 15720, 15688}, {15698, 15707, 15700}, {15701, 15703, 11539}, {15704, 17538, 3}, {15706, 15720, 3530}, {42625, 43632, 42989}, {42626, 43633, 42988}


X(62135) = X(2)X(3)∩X(15)X(42588)

Barycentrics    41*a^4-13*(b^2-c^2)^2-28*a^2*(b^2+c^2) : :
X(62135) = -13*X[2]+18*X[3], X[944]+4*X[34638], X[1992]+4*X[48880], -12*X[3098]+7*X[50994], -12*X[3579]+7*X[51068], -3*X[3817]+8*X[51081], -9*X[4297]+4*X[51107], -X[4677]+6*X[31730], -3*X[5102]+8*X[51135], -3*X[5485]+8*X[47101], -3*X[5587]+8*X[50816], -27*X[5603]+32*X[41150] and many others

X(62135) lies on these lines: {2, 3}, {15, 42588}, {16, 42589}, {69, 33610}, {511, 51176}, {515, 50809}, {516, 50819}, {944, 34638}, {1327, 43314}, {1328, 43315}, {1503, 50966}, {1992, 48880}, {3068, 42525}, {3069, 42524}, {3098, 50994}, {3579, 51068}, {3817, 51081}, {4297, 51107}, {4316, 10385}, {4677, 31730}, {5102, 51135}, {5237, 49859}, {5238, 49860}, {5473, 36344}, {5474, 36319}, {5485, 47101}, {5587, 50816}, {5603, 41150}, {5965, 51179}, {6200, 14241}, {6221, 43386}, {6361, 51093}, {6396, 14226}, {6398, 43387}, {6409, 42576}, {6410, 42577}, {6433, 42572}, {6434, 42573}, {6441, 43256}, {6442, 43257}, {6476, 23267}, {6477, 23273}, {6484, 43342}, {6485, 43343}, {6560, 43788}, {6561, 43787}, {6564, 42538}, {6565, 42537}, {9541, 43209}, {10516, 50972}, {10595, 28202}, {10653, 42520}, {10654, 42521}, {11057, 32817}, {11179, 48920}, {11180, 51189}, {11480, 42518}, {11481, 42519}, {11488, 33602}, {11489, 33603}, {11645, 50990}, {11648, 46453}, {11668, 54647}, {12245, 34628}, {12512, 38074}, {12816, 42113}, {12817, 42112}, {14458, 60641}, {14639, 41148}, {14651, 41151}, {14853, 41153}, {15533, 48881}, {16200, 51080}, {16241, 43002}, {16242, 43003}, {16960, 42892}, {16961, 42893}, {18842, 54734}, {21969, 61136}, {22165, 48905}, {23269, 51911}, {23275, 51910}, {28158, 51079}, {28164, 50812}, {28194, 51097}, {28208, 51072}, {28228, 50811}, {28234, 50818}, {28236, 50810}, {29181, 50975}, {31162, 51106}, {32532, 54644}, {33604, 42145}, {33605, 42144}, {33750, 50976}, {35255, 43536}, {35256, 54597}, {36967, 43481}, {36968, 43482}, {36969, 43324}, {36970, 43325}, {37640, 46334}, {37641, 46335}, {38136, 51213}, {38140, 50867}, {38747, 41154}, {39874, 48891}, {40693, 42927}, {40694, 42926}, {41100, 42119}, {41101, 42120}, {41107, 42090}, {41108, 42091}, {41112, 42100}, {41113, 42099}, {41119, 42141}, {41120, 42140}, {41149, 43273}, {41152, 50965}, {41869, 51108}, {42085, 42631}, {42086, 42632}, {42087, 49876}, {42088, 49875}, {42108, 51944}, {42109, 51945}, {42111, 43476}, {42114, 43475}, {42160, 49904}, {42161, 49903}, {42275, 43522}, {42276, 43521}, {42429, 42512}, {42430, 42513}, {42504, 42813}, {42505, 42814}, {42506, 43633}, {42507, 43632}, {42510, 42517}, {42511, 42516}, {42514, 43548}, {42515, 43549}, {42777, 42791}, {42778, 42792}, {42930, 43463}, {42931, 43464}, {42942, 49826}, {42943, 49827}, {43210, 43385}, {43244, 43777}, {43245, 43778}, {43374, 43507}, {43375, 43508}, {43403, 43877}, {43404, 43878}, {43416, 43493}, {43417, 43494}, {43420, 49948}, {43421, 49947}, {43477, 43875}, {43478, 43876}, {43489, 43501}, {43490, 43502}, {43497, 43771}, {43498, 43772}, {43554, 43869}, {43555, 43870}, {47353, 50969}, {48892, 59373}, {48898, 54170}, {50808, 51070}, {50813, 59420}, {50958, 55618}, {50964, 55670}, {50974, 51187}, {51177, 54132}, {51215, 55593}, {54522, 60284}, {54612, 60628}, {54645, 60281}, {54707, 60648}, {54934, 60637}, {60127, 60283}, {60150, 60216}, {60301, 60622}, {60302, 60623}

X(62135) = midpoint of X(i) and X(j) for these {i,j}: {1657, 15694}, {3091, 15683}, {15681, 15696}
X(62135) = reflection of X(i) in X(j) for these {i,j}: {14093, 550}, {15692, 15696}, {15697, 3534}, {15711, 15690}, {17578, 15694}, {2, 15695}, {376, 17538}, {3091, 14093}, {3543, 1656}, {3830, 15713}, {3843, 15714}, {4, 15692}, {5071, 3522}, {5076, 549}, {631, 376}
X(62135) = anticomplement of X(61993)
X(62135) = pole of line {69, 19710} with respect to the Wallace hyperbola
X(62135) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(19710)}}, {{A, B, C, X(547), X(18852)}}, {{A, B, C, X(1657), X(54667)}}, {{A, B, C, X(4232), X(54851)}}, {{A, B, C, X(5076), X(18317)}}, {{A, B, C, X(5897), X(38441)}}, {{A, B, C, X(11331), X(60641)}}, {{A, B, C, X(14891), X(46168)}}, {{A, B, C, X(15696), X(18849)}}, {{A, B, C, X(15710), X(18850)}}, {{A, B, C, X(15712), X(54660)}}, {{A, B, C, X(15740), X(48154)}}, {{A, B, C, X(50691), X(54512)}}, {{A, B, C, X(52284), X(54734)}}, {{A, B, C, X(53857), X(54644)}}
X(62135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15716}, {2, 15640, 12101}, {2, 15722, 15702}, {2, 15759, 3524}, {4, 17538, 15696}, {4, 3524, 547}, {4, 376, 15710}, {4, 8703, 15719}, {20, 3534, 11001}, {30, 15690, 15711}, {30, 15694, 17578}, {30, 15696, 15692}, {30, 15713, 3830}, {30, 15714, 3843}, {30, 17538, 376}, {30, 3522, 5071}, {30, 3534, 15697}, {30, 376, 631}, {30, 549, 5076}, {30, 550, 14093}, {547, 15681, 15683}, {548, 3839, 15715}, {549, 5054, 17533}, {550, 15704, 3861}, {632, 15696, 3522}, {1656, 3861, 3091}, {1657, 15691, 10304}, {3528, 3543, 15709}, {3529, 15698, 15682}, {3529, 16434, 3090}, {3534, 15681, 8703}, {3534, 15685, 15690}, {3534, 15697, 17538}, {3534, 3830, 550}, {3543, 15689, 3528}, {3839, 15715, 3533}, {3845, 8703, 3530}, {3861, 6987, 7498}, {5054, 15690, 6960}, {5055, 15689, 7491}, {6926, 15685, 382}, {8703, 11540, 3}, {8703, 12103, 3534}, {10304, 17578, 15694}, {11001, 15682, 3529}, {11540, 15640, 4}, {11541, 15715, 3839}, {11737, 15707, 16861}, {15681, 15696, 30}, {15682, 15698, 3545}, {15683, 15697, 15713}, {15684, 15711, 6837}, {15685, 15690, 2}, {15687, 15705, 5067}, {15689, 15704, 3543}, {15690, 15711, 15695}, {15710, 15719, 15698}, {42085, 42631, 49812}, {42086, 42632, 49813}, {54132, 59411, 51177}


X(62136) = X(2)X(3)∩X(17)X(42687)

Barycentrics    22*a^4-7*(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62136) = -21*X[2]+29*X[3], -7*X[141]+11*X[55635], -7*X[5480]+11*X[55689], X[8550]+3*X[48880], -3*X[11224]+7*X[34773], -X[11381]+3*X[44324], -2*X[12002]+3*X[12006], X[12007]+5*X[48920], -9*X[13364]+8*X[15003], -X[13421]+3*X[40647], -X[13474]+3*X[54044], -X[14862]+3*X[32903] and many others

X(62136) lies on these lines: {2, 3}, {17, 42687}, {18, 42686}, {141, 55635}, {395, 42964}, {396, 42965}, {397, 42584}, {398, 42585}, {1503, 55601}, {3564, 48891}, {4297, 28216}, {4299, 8162}, {4324, 15172}, {5237, 43001}, {5238, 43000}, {5349, 42978}, {5350, 42979}, {5480, 55689}, {5493, 5844}, {5882, 28212}, {6468, 42226}, {6469, 42225}, {6470, 42216}, {6471, 42215}, {6560, 43339}, {6561, 43338}, {7581, 43383}, {7582, 43382}, {7850, 32820}, {8550, 48880}, {10110, 55286}, {10645, 42889}, {10646, 42888}, {11224, 34773}, {11381, 44324}, {11542, 42684}, {11543, 42685}, {11592, 46849}, {12002, 12006}, {12007, 48920}, {12512, 28190}, {13364, 15003}, {13382, 13391}, {13392, 34584}, {13393, 17702}, {13421, 40647}, {13464, 28178}, {13474, 54044}, {13607, 28174}, {13623, 57730}, {13925, 43340}, {13993, 43341}, {14861, 57714}, {14862, 32903}, {14929, 32824}, {15105, 34785}, {15516, 29181}, {15520, 44882}, {16772, 42795}, {16773, 42796}, {18481, 61294}, {18553, 55634}, {18583, 48879}, {25555, 55686}, {28146, 51700}, {28158, 61272}, {28186, 43174}, {28202, 51085}, {28224, 31730}, {28232, 61281}, {29012, 55625}, {29317, 51732}, {34380, 48898}, {34507, 55608}, {34632, 61297}, {35814, 43786}, {35815, 43785}, {36967, 42935}, {36968, 42934}, {38022, 50820}, {38079, 50976}, {38081, 50813}, {38083, 51083}, {38723, 61598}, {38731, 61599}, {38742, 61600}, {38754, 61601}, {38766, 61602}, {38778, 61603}, {41963, 51911}, {41964, 51910}, {41973, 42943}, {41974, 42942}, {42087, 42924}, {42088, 42925}, {42099, 42993}, {42100, 42992}, {42104, 42774}, {42105, 42773}, {42111, 42477}, {42112, 43239}, {42113, 43238}, {42114, 42476}, {42122, 42158}, {42123, 42157}, {42136, 42944}, {42137, 42945}, {42140, 42690}, {42141, 42691}, {42144, 42149}, {42145, 42152}, {42147, 43007}, {42148, 43006}, {42163, 42430}, {42164, 42497}, {42165, 42496}, {42166, 42429}, {42260, 43336}, {42261, 43337}, {42263, 43431}, {42264, 43430}, {42275, 43433}, {42276, 43432}, {42528, 42793}, {42529, 42794}, {42598, 42909}, {42599, 42908}, {42688, 42989}, {42689, 42988}, {42912, 43633}, {42913, 43632}, {42926, 42983}, {42927, 42982}, {42998, 43631}, {42999, 43630}, {43150, 48885}, {43211, 43380}, {43212, 43381}, {43401, 43544}, {43402, 43545}, {48881, 55596}, {48892, 55706}, {48896, 55630}, {50808, 61249}, {50959, 55677}, {50972, 55647}, {50975, 53092}, {50982, 55606}, {50991, 55623}, {51023, 55620}, {59420, 61524}

X(62136) = midpoint of X(i) and X(j) for these {i,j}: {20, 12103}, {140, 1657}, {548, 15704}, {3529, 3853}, {5066, 15683}, {14893, 15685}, {15681, 15690}, {18583, 48879}
X(62136) = reflection of X(i) in X(j) for these {i,j}: {10110, 55286}, {11737, 8703}, {11812, 376}, {12102, 3530}, {14891, 15690}, {382, 12811}, {3627, 16239}, {3628, 548}, {3853, 12108}, {3861, 3}, {46849, 11592}
X(62136) = complement of X(62038)
X(62136) = pole of line {185, 55859} with respect to the Jerabek hyperbola
X(62136) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(547), X(14861)}}, {{A, B, C, X(632), X(13623)}}, {{A, B, C, X(1105), X(55859)}}, {{A, B, C, X(1294), X(3861)}}, {{A, B, C, X(3521), X(41991)}}, {{A, B, C, X(3528), X(43970)}}, {{A, B, C, X(3532), X(44878)}}, {{A, B, C, X(6662), X(41099)}}, {{A, B, C, X(12103), X(34483)}}, {{A, B, C, X(13596), X(57730)}}, {{A, B, C, X(14865), X(57714)}}, {{A, B, C, X(26861), X(41981)}}
X(62136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10124, 3530}, {3, 17578, 15699}, {3, 30, 3861}, {3, 382, 5071}, {3, 3855, 15713}, {3, 3858, 140}, {3, 7486, 549}, {4, 15709, 5068}, {4, 15717, 1656}, {4, 3523, 5055}, {4, 3534, 550}, {4, 3628, 3850}, {5, 17538, 15690}, {20, 15686, 12103}, {20, 17538, 15681}, {20, 3534, 15704}, {30, 12108, 3853}, {30, 12811, 382}, {30, 3530, 12102}, {30, 376, 11812}, {30, 8703, 11737}, {140, 1657, 30}, {140, 546, 5056}, {376, 15707, 8703}, {382, 12100, 12811}, {546, 15716, 16239}, {548, 12103, 3534}, {548, 17800, 3856}, {549, 15704, 17800}, {550, 15712, 376}, {1656, 15684, 4}, {3523, 15716, 15712}, {3528, 15022, 15706}, {3528, 15721, 3}, {3529, 15717, 15684}, {3530, 12102, 10109}, {3530, 3628, 14890}, {3534, 15681, 10304}, {3534, 15704, 548}, {3543, 14869, 3859}, {3627, 15713, 3855}, {3627, 16239, 3860}, {3628, 11812, 3526}, {3853, 8703, 12108}, {3857, 15704, 3529}, {3857, 8703, 15717}, {5072, 17800, 15640}, {10303, 12811, 3628}, {10304, 11540, 14891}, {10304, 14891, 15759}, {10304, 15683, 15682}, {10304, 17678, 15698}, {11001, 15696, 3627}, {11737, 14891, 15702}, {11812, 15699, 10124}, {15681, 17538, 5}, {15682, 15702, 3839}, {15683, 15697, 15709}, {15684, 15717, 3857}, {15687, 15709, 5066}, {15699, 17578, 546}


X(62137) = X(2)X(3)∩X(6)X(43645)

Barycentrics    25*a^4-8*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62137) = -8*X[2]+11*X[3], -X[599]+4*X[48885], X[1351]+8*X[48920], -40*X[3616]+49*X[58228], -5*X[3655]+8*X[51080], -8*X[5092]+5*X[50963], -8*X[5476]+11*X[55692], -X[5790]+4*X[59420], 2*X[6361]+X[50805], -7*X[8148]+16*X[32900], -4*X[9778]+X[51515], -16*X[9955]+25*X[58224] and many others

X(62137) lies on these lines: {2, 3}, {6, 43645}, {115, 15603}, {395, 42970}, {396, 42971}, {542, 55593}, {599, 48885}, {1351, 48920}, {3616, 58228}, {3653, 28150}, {3655, 51080}, {4316, 6767}, {4324, 7373}, {5092, 50963}, {5093, 19924}, {5210, 39563}, {5339, 42981}, {5340, 42980}, {5476, 55692}, {5790, 59420}, {6361, 50805}, {6407, 35822}, {6408, 35823}, {6411, 42558}, {6412, 42557}, {6445, 42264}, {6446, 42263}, {6472, 7583}, {6473, 7584}, {6500, 42259}, {6501, 42258}, {6781, 11742}, {7728, 11693}, {8148, 32900}, {9543, 43386}, {9691, 53130}, {9778, 51515}, {9955, 58224}, {10137, 35815}, {10138, 35814}, {10246, 28202}, {10247, 28198}, {11178, 50968}, {11179, 51135}, {11480, 42973}, {11481, 42972}, {11645, 55610}, {12017, 48879}, {12699, 50815}, {12702, 34628}, {12816, 43238}, {12817, 43239}, {13624, 50806}, {13846, 51911}, {13847, 51910}, {13903, 42414}, {13961, 42413}, {15533, 55595}, {16267, 42116}, {16268, 42115}, {16644, 42429}, {16645, 42430}, {16936, 36749}, {16962, 42100}, {16963, 42099}, {16964, 42587}, {16965, 42586}, {17502, 61271}, {17851, 42225}, {18440, 50965}, {18481, 34638}, {18525, 50808}, {18526, 34632}, {19875, 28168}, {21358, 29323}, {22236, 46334}, {22238, 46335}, {22791, 58233}, {25561, 55651}, {28146, 58230}, {28154, 38021}, {28160, 38066}, {28164, 61257}, {28174, 58238}, {28178, 38314}, {28190, 38074}, {28194, 61287}, {28208, 37712}, {29012, 55624}, {29317, 55697}, {31670, 50971}, {31673, 50816}, {32006, 32891}, {33697, 50800}, {33750, 38079}, {33878, 48891}, {34584, 38638}, {35237, 50461}, {35820, 42568}, {35821, 42569}, {36427, 42459}, {36430, 36748}, {36969, 43637}, {36970, 43636}, {37640, 42584}, {37641, 42585}, {37832, 51945}, {37835, 51944}, {38072, 55682}, {38738, 48657}, {39874, 51175}, {39899, 51178}, {41100, 43194}, {41101, 43193}, {42090, 42974}, {42091, 42975}, {42096, 42528}, {42097, 42529}, {42112, 42692}, {42113, 42693}, {42129, 43402}, {42130, 42943}, {42131, 42942}, {42132, 43401}, {42260, 43209}, {42261, 43210}, {42275, 45385}, {42276, 45384}, {42431, 49905}, {42432, 49906}, {42433, 49948}, {42434, 49947}, {42496, 52079}, {42497, 52080}, {42514, 42775}, {42515, 42776}, {42566, 53518}, {42567, 53519}, {42631, 43632}, {42632, 43633}, {42635, 43205}, {42636, 43206}, {42688, 43419}, {42689, 43418}, {42924, 49876}, {42925, 49875}, {42926, 43208}, {42927, 43207}, {42996, 43005}, {42997, 43004}, {43136, 44519}, {43273, 44456}, {43515, 43568}, {43516, 43569}, {43621, 50983}, {46264, 51136}, {47353, 48896}, {48661, 51705}, {48662, 54173}, {48872, 53091}, {48881, 50970}, {48884, 50957}, {48892, 54131}, {48898, 55584}, {48905, 50955}, {50797, 50813}, {50799, 51083}, {50821, 61256}, {50864, 61253}, {50954, 50969}, {50977, 55632}, {50993, 55631}, {51172, 51177}, {51174, 55582}, {51187, 55583}, {54445, 58226}

X(62137) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5054}, {3545, 15683}, {10304, 11001}, {14269, 15685}, {15681, 15689}
X(62137) = reflection of X(i) in X(j) for these {i,j}: {10304, 550}, {14269, 3}, {15684, 14269}, {15689, 3534}, {15699, 548}, {17504, 15690}, {3, 15689}, {381, 10304}, {382, 3545}, {3543, 15699}, {3545, 8703}, {3830, 5054}, {4, 17504}, {5054, 376}, {5055, 15688}, {7728, 11693}
X(62137) = inverse of X(61949) in orthocentroidal circle
X(62137) = inverse of X(61949) in Yff hyperbola
X(62137) = anticomplement of X(61995)
X(62137) = pole of line {523, 61949} with respect to the orthocentroidal circle
X(62137) = pole of line {185, 55866} with respect to the Jerabek hyperbola
X(62137) = pole of line {6, 61949} with respect to the Kiepert hyperbola
X(62137) = pole of line {523, 61949} with respect to the Yff hyperbola
X(62137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(55866)}}, {{A, B, C, X(1294), X(14269)}}, {{A, B, C, X(18317), X(50687)}}, {{A, B, C, X(33923), X(57822)}}, {{A, B, C, X(44245), X(60122)}}
X(62137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15691, 15696}, {3, 15681, 15685}, {3, 15685, 15684}, {3, 15703, 15722}, {3, 30, 14269}, {3, 3830, 15703}, {4, 14093, 15701}, {20, 12103, 1657}, {20, 15686, 3534}, {20, 3534, 15681}, {30, 15688, 5055}, {30, 15690, 17504}, {30, 15699, 3543}, {30, 17504, 4}, {30, 3545, 382}, {30, 5054, 3830}, {30, 548, 15699}, {30, 8703, 3545}, {376, 10124, 14093}, {376, 11001, 3146}, {376, 15683, 14893}, {381, 3534, 550}, {546, 15698, 15723}, {547, 15640, 5076}, {547, 3528, 15716}, {548, 15699, 15710}, {550, 15704, 3853}, {632, 3850, 4190}, {1656, 15689, 7491}, {1657, 3534, 376}, {3522, 3845, 15700}, {3523, 15715, 12100}, {3525, 3543, 3860}, {3528, 15640, 547}, {3529, 15697, 549}, {3534, 15696, 15691}, {3543, 15693, 3851}, {3545, 15706, 15694}, {3545, 8703, 15706}, {3628, 3853, 3858}, {3830, 15718, 5}, {3830, 5055, 3839}, {3845, 15691, 16434}, {3845, 15700, 5070}, {5054, 15705, 15718}, {5054, 15706, 3523}, {5055, 15689, 15688}, {5055, 15707, 11539}, {6932, 11541, 140}, {10304, 11001, 30}, {10304, 15707, 3}, {11001, 17538, 15715}, {11178, 50968, 55639}, {12100, 14893, 3628}, {12101, 15702, 5072}, {12108, 15709, 5054}, {12811, 15704, 3529}, {15681, 15694, 15683}, {15681, 15695, 17800}, {15681, 17800, 11001}, {15683, 17538, 8703}, {15689, 15707, 15695}, {15689, 17800, 15707}, {15691, 15704, 2}, {15695, 15707, 10304}, {15695, 17800, 381}, {15696, 15704, 5073}, {15699, 15710, 15693}, {15706, 17538, 15689}, {15719, 17578, 11737}, {43645, 43646, 6}, {50814, 61244, 34718}


X(62138) = X(2)X(3)∩X(15)X(43230)

Barycentrics    34*a^4-11*(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62138) = -11*X[2]+15*X[3], -5*X[3579]+3*X[38098], X[3629]+5*X[48880], -3*X[5093]+7*X[51177], -3*X[5790]+7*X[50813], -3*X[5886]+7*X[50820], -2*X[6329]+5*X[48892], -11*X[8584]+9*X[55717], -3*X[9778]+X[50823], -3*X[10175]+7*X[51083], -3*X[14561]+7*X[50976], -3*X[14810]+2*X[51143] and many others

X(62138) lies on these lines: {2, 3}, {15, 43230}, {16, 43231}, {397, 42635}, {398, 42636}, {485, 42641}, {486, 42642}, {524, 48891}, {542, 55592}, {597, 48879}, {1327, 42576}, {1328, 42577}, {1503, 55599}, {3070, 42525}, {3071, 42524}, {3564, 55589}, {3579, 38098}, {3626, 28208}, {3629, 48880}, {3631, 11645}, {4324, 15170}, {4677, 28224}, {4745, 28160}, {5093, 51177}, {5334, 43208}, {5335, 43207}, {5790, 50813}, {5886, 50820}, {6329, 48892}, {6409, 43515}, {6410, 43516}, {6435, 42418}, {6436, 42417}, {6451, 42526}, {6452, 42527}, {6453, 43785}, {6454, 43786}, {6459, 6499}, {6460, 6498}, {6781, 39593}, {8584, 55717}, {9778, 50823}, {10175, 51083}, {11542, 42791}, {11543, 42792}, {11694, 34584}, {11742, 15048}, {13925, 51911}, {13993, 51910}, {14561, 50976}, {14810, 51143}, {15534, 48873}, {17502, 51079}, {17508, 51134}, {18481, 34747}, {18510, 43787}, {18512, 43788}, {18538, 42606}, {18762, 42607}, {19106, 42504}, {19107, 42505}, {19924, 20583}, {22165, 55605}, {22250, 61598}, {22793, 51109}, {28146, 50815}, {28150, 51108}, {28154, 50828}, {28172, 50816}, {28174, 51071}, {28178, 51705}, {28182, 51709}, {28186, 50808}, {28190, 50821}, {28194, 51095}, {28202, 51103}, {28216, 50824}, {28232, 51080}, {29012, 50991}, {29181, 55713}, {29317, 50971}, {30308, 50833}, {31662, 51075}, {31663, 51069}, {31730, 34641}, {32787, 42643}, {32788, 42644}, {33416, 43476}, {33417, 43475}, {33750, 50963}, {35021, 61600}, {35022, 61599}, {35023, 61605}, {35024, 61604}, {36836, 49811}, {36843, 49810}, {39884, 50993}, {40693, 42586}, {40694, 42587}, {41100, 42087}, {41101, 42088}, {41112, 42626}, {41113, 42625}, {41119, 42097}, {41120, 42096}, {41121, 42137}, {41122, 42136}, {41943, 43546}, {41944, 43547}, {42090, 49947}, {42091, 49948}, {42093, 43247}, {42094, 43246}, {42099, 42507}, {42100, 42506}, {42101, 43871}, {42102, 43872}, {42115, 49824}, {42116, 49825}, {42117, 42510}, {42118, 42511}, {42122, 43106}, {42123, 43105}, {42126, 49861}, {42127, 49862}, {42130, 42634}, {42131, 42633}, {42144, 49859}, {42145, 49860}, {42147, 42419}, {42148, 42420}, {42164, 42938}, {42165, 42939}, {42225, 53131}, {42226, 53130}, {42415, 42509}, {42416, 42508}, {42431, 49903}, {42432, 49904}, {42433, 42977}, {42434, 42976}, {42502, 42629}, {42503, 42630}, {42532, 42584}, {42533, 42585}, {42627, 42941}, {42628, 42940}, {42686, 43636}, {42687, 43637}, {42817, 43487}, {42818, 43488}, {42904, 43373}, {42905, 43372}, {42930, 43642}, {42931, 43641}, {43209, 52047}, {43210, 52048}, {43401, 49907}, {43402, 49908}, {43521, 45384}, {43522, 45385}, {44882, 55714}, {46893, 53144}, {48881, 55598}, {48885, 55619}, {48896, 54169}, {48898, 55581}, {48920, 55719}, {50709, 61606}, {50829, 61262}, {50866, 61263}, {50956, 55654}, {50965, 55613}, {50968, 51186}, {50979, 59411}, {50981, 55643}, {50985, 55591}, {50990, 55610}, {51022, 55649}, {51070, 61249}, {51130, 55695}, {51737, 55707}

X(62138) = midpoint of X(i) and X(j) for these {i,j}: {5, 15683}, {20, 15686}, {376, 15704}, {549, 1657}, {550, 15681}, {597, 48879}, {3529, 15687}, {3845, 15685}, {8703, 11001}, {48896, 54169}
X(62138) = reflection of X(i) in X(j) for these {i,j}: {140, 376}, {12100, 15690}, {12101, 12100}, {12103, 15686}, {14893, 3}, {15682, 3860}, {15684, 3861}, {15687, 3530}, {15690, 3534}, {15691, 12103}, {382, 11737}, {3543, 3628}, {3627, 10124}, {3830, 11812}, {3845, 15759}, {3853, 549}, {3859, 14093}, {4, 14891}, {547, 548}, {548, 15691}, {5066, 8703}
X(62138) = complement of X(62039)
X(62138) = anticomplement of X(61997)
X(62138) = pole of line {185, 61876} with respect to the Jerabek hyperbola
X(62138) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(14893)}}, {{A, B, C, X(3845), X(57897)}}, {{A, B, C, X(3853), X(18317)}}
X(62138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10299, 15701}, {2, 14869, 11540}, {2, 15682, 14269}, {2, 15707, 15713}, {2, 3534, 550}, {2, 3845, 11737}, {3, 30, 14893}, {4, 15701, 6846}, {20, 15686, 30}, {30, 10124, 3627}, {30, 11737, 382}, {30, 12103, 15691}, {30, 14093, 3859}, {30, 14891, 4}, {30, 15686, 12103}, {30, 3530, 15687}, {30, 3628, 3543}, {30, 3861, 15684}, {30, 549, 3853}, {140, 15759, 12100}, {140, 382, 546}, {140, 3853, 3091}, {376, 11541, 15708}, {376, 15640, 15693}, {376, 382, 17504}, {376, 5059, 5055}, {376, 5067, 10304}, {381, 15710, 14869}, {549, 3853, 14892}, {550, 15687, 15688}, {1657, 15695, 15682}, {1657, 3534, 15695}, {3091, 15717, 3533}, {3091, 3845, 3860}, {3146, 14093, 15699}, {3522, 15684, 11539}, {3528, 15682, 2}, {3534, 11001, 8703}, {3534, 15685, 376}, {3534, 15704, 15759}, {3534, 3830, 15697}, {3545, 15714, 12108}, {3627, 10304, 10124}, {3830, 8703, 11812}, {3851, 15688, 15715}, {6977, 15717, 3526}, {11001, 15640, 15685}, {11001, 15697, 3830}, {11539, 15684, 3861}, {11540, 15759, 15717}, {11540, 17538, 15690}, {11737, 17504, 140}, {12100, 12101, 547}, {12100, 15690, 548}, {12103, 15690, 3534}, {14269, 15681, 1657}, {14892, 15682, 12101}, {15640, 15693, 3845}, {15640, 15759, 5066}, {15681, 15688, 3529}, {15681, 15700, 15683}, {15682, 15695, 549}, {15683, 15689, 5}, {15683, 15708, 11541}, {15685, 15693, 15640}, {15687, 15688, 3530}, {41101, 42088, 43109}


X(62139) = X(2)X(3)∩X(13)X(42684)

Barycentrics    38*a^4-13*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(62139) = -13*X[2]+17*X[3], -5*X[12117]+X[14692], -3*X[38079]+X[43621], -X[48661]+5*X[50819], -X[48662]+5*X[50966], -5*X[48874]+X[50985], -5*X[48898]+X[51140]

X(62139) lies on these lines: {2, 3}, {13, 42684}, {14, 42685}, {524, 48920}, {551, 28182}, {952, 34638}, {1151, 43342}, {1152, 43343}, {3655, 28216}, {4316, 15170}, {5097, 51135}, {5237, 33606}, {5238, 33607}, {5844, 34628}, {5901, 50815}, {6200, 41954}, {6396, 41953}, {6439, 42264}, {6440, 42263}, {6441, 42216}, {6442, 42215}, {6455, 42639}, {6456, 42640}, {6476, 35822}, {6477, 35823}, {6478, 7583}, {6479, 7584}, {6484, 42572}, {6485, 42573}, {9956, 50816}, {11645, 50982}, {11742, 18907}, {12007, 19924}, {12117, 14692}, {13607, 28198}, {13846, 43340}, {13847, 43341}, {14927, 50978}, {16644, 42889}, {16645, 42888}, {16962, 42965}, {16963, 42964}, {18583, 50971}, {20070, 50831}, {23251, 43568}, {23261, 43569}, {24206, 50972}, {28194, 32900}, {28208, 50827}, {33179, 51080}, {33751, 50959}, {35255, 41952}, {35256, 41951}, {36967, 42584}, {36968, 42585}, {38079, 43621}, {41943, 42429}, {41944, 42430}, {42096, 43198}, {42097, 43197}, {42101, 43876}, {42102, 43875}, {42104, 51944}, {42105, 51945}, {42122, 61719}, {42136, 42528}, {42137, 42529}, {42144, 42497}, {42145, 42496}, {42147, 43109}, {42148, 43108}, {42157, 43635}, {42158, 43634}, {42164, 42631}, {42165, 42632}, {42266, 52048}, {42267, 52047}, {42271, 43212}, {42272, 43211}, {42431, 42791}, {42432, 42792}, {42490, 43246}, {42491, 43247}, {42543, 43100}, {42544, 43107}, {42627, 43483}, {42628, 43484}, {42924, 42934}, {42925, 42935}, {43110, 43245}, {43111, 43244}, {43273, 61624}, {48661, 50819}, {48662, 50966}, {48872, 50979}, {48874, 50985}, {48879, 51737}, {48896, 50965}, {48898, 51140}, {50808, 61510}, {50811, 61597}, {50865, 51700}, {50958, 55612}, {50964, 55671}, {50986, 61044}, {50994, 55620}, {51024, 51732}, {51026, 58445}, {51042, 61623}, {51120, 61281}, {51184, 55616}

X(62139) = midpoint of X(i) and X(j) for these {i,j}: {5, 15685}, {549, 15683}, {550, 11001}, {1657, 8703}, {3529, 3845}, {3534, 15704}, {14927, 50978}, {15681, 15686}, {20070, 50831}, {48872, 50979}, {48879, 51737}, {48896, 50965}, {50986, 61044}
X(62139) = reflection of X(i) in X(j) for these {i,j}: {140, 15690}, {12100, 550}, {12101, 3}, {15682, 3850}, {15687, 14891}, {15690, 12103}, {15691, 15686}, {18583, 50971}, {24206, 50972}, {382, 10109}, {3543, 10124}, {3627, 11812}, {3830, 3530}, {3853, 12100}, {33179, 51080}, {4, 15759}, {546, 8703}, {547, 376}, {548, 3534}, {5066, 548}, {5097, 51135}, {50865, 51700}, {5901, 50815}, {50958, 55612}, {50959, 33751}, {51024, 51732}, {51026, 58445}, {51120, 61281}, {61510, 50808}, {61545, 50965}, {61597, 50811}, {61623, 51042}, {61624, 43273}, {9956, 50816}
X(62139) = anticomplement of X(61999)
X(62139) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(58208)}}, {{A, B, C, X(1294), X(12101)}}, {{A, B, C, X(11539), X(13623)}}
X(62139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3859, 140}, {5, 15698, 14890}, {20, 15681, 15686}, {30, 10109, 382}, {30, 10124, 3543}, {30, 11812, 3627}, {30, 12100, 3853}, {30, 12103, 15690}, {30, 14891, 15687}, {30, 15686, 15691}, {30, 15759, 4}, {30, 3530, 3830}, {30, 3534, 548}, {30, 3850, 15682}, {30, 550, 12100}, {30, 8703, 546}, {376, 15683, 15684}, {376, 15687, 14891}, {376, 15700, 8703}, {376, 15721, 14093}, {376, 3543, 15700}, {376, 381, 15714}, {381, 14093, 15707}, {381, 15681, 11001}, {381, 15695, 15715}, {381, 3853, 14893}, {381, 549, 3628}, {549, 15686, 3534}, {550, 11539, 15695}, {1657, 3534, 5055}, {3146, 15695, 11539}, {3146, 15715, 381}, {3526, 3534, 15689}, {3529, 15689, 3845}, {3530, 3830, 14892}, {3534, 10304, 550}, {3534, 15681, 15683}, {3534, 15684, 376}, {3534, 15685, 15698}, {3534, 17800, 10304}, {3543, 15692, 5068}, {3543, 8703, 10124}, {3627, 15688, 11812}, {3830, 15709, 3857}, {3839, 15711, 16239}, {3845, 8703, 15722}, {5055, 15722, 3526}, {10304, 11001, 17800}, {11111, 15721, 15702}, {11540, 12101, 5066}, {11540, 15640, 12101}, {13635, 17538, 6977}, {14891, 15687, 547}, {15681, 15683, 15704}, {15681, 15686, 30}, {15682, 15696, 17504}, {15682, 17504, 3850}, {15686, 15691, 12103}, {15686, 15704, 549}, {42144, 42625, 42497}, {42145, 42626, 42496}


X(62140) = X(2)X(3)∩X(1327)X(6455)

Barycentrics    29*a^4-10*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62140) = -10*X[2]+13*X[3], X[599]+2*X[48896], -5*X[3655]+2*X[51120], -2*X[3818]+5*X[50968], -4*X[4746]+13*X[31730], -10*X[4816]+13*X[34718], 4*X[5097]+5*X[48872], 2*X[6361]+X[34748], -4*X[8717]+X[53780], -4*X[10168]+7*X[50976], -5*X[10516]+8*X[55645], -5*X[11178]+8*X[55636] and many others

X(62140) lies on these lines: {2, 3}, {542, 55591}, {599, 48896}, {1327, 6455}, {1328, 6456}, {3311, 43209}, {3312, 43210}, {3655, 51120}, {3818, 50968}, {4746, 31730}, {4816, 34718}, {5041, 44519}, {5097, 48872}, {5102, 19924}, {5339, 42631}, {5340, 42632}, {6361, 34748}, {6407, 42414}, {6408, 42413}, {6417, 43256}, {6418, 43257}, {6427, 42418}, {6428, 42417}, {6429, 35822}, {6430, 35823}, {6433, 13665}, {6434, 13785}, {6437, 18512}, {6438, 18510}, {6449, 43887}, {6450, 43888}, {6480, 42264}, {6481, 42263}, {6484, 13903}, {6485, 13961}, {6486, 13846}, {6487, 13847}, {6496, 42602}, {6497, 42603}, {8717, 53780}, {10139, 35815}, {10140, 35814}, {10168, 50976}, {10516, 55645}, {11178, 55636}, {11179, 51166}, {11180, 55604}, {11237, 51817}, {11278, 50811}, {11480, 42429}, {11481, 42430}, {11645, 55603}, {11693, 38723}, {12017, 50971}, {12355, 38749}, {12702, 34638}, {14848, 29317}, {14915, 54047}, {15602, 44541}, {16200, 28198}, {16241, 42962}, {16242, 42963}, {16267, 42127}, {16268, 42126}, {16644, 43296}, {16645, 43297}, {16808, 51945}, {16809, 51944}, {16962, 42815}, {16963, 42816}, {18440, 55607}, {18480, 50812}, {18481, 50805}, {18483, 51079}, {18526, 34628}, {19106, 43199}, {19107, 43200}, {20582, 55648}, {21356, 55624}, {21850, 50975}, {22115, 44747}, {22165, 55602}, {22791, 50819}, {25055, 28154}, {25565, 55671}, {28146, 30392}, {28182, 58230}, {28190, 53620}, {28208, 59503}, {29012, 55618}, {29323, 55640}, {33878, 51175}, {34754, 42155}, {34755, 42154}, {35253, 37493}, {36967, 42131}, {36968, 42130}, {36990, 55633}, {37517, 43273}, {37705, 50809}, {38066, 38155}, {38634, 41135}, {39561, 59411}, {39899, 48880}, {41100, 42890}, {41101, 42891}, {41107, 42586}, {41108, 42587}, {42096, 42901}, {42097, 42900}, {42099, 42975}, {42100, 42974}, {42108, 43100}, {42109, 43107}, {42125, 42528}, {42128, 42529}, {42160, 42792}, {42161, 42791}, {42813, 42952}, {42814, 42953}, {42928, 43325}, {42929, 43324}, {43211, 52667}, {43212, 52666}, {43254, 53518}, {43255, 53519}, {43314, 43789}, {43315, 43790}, {43380, 43515}, {43381, 43516}, {43407, 52047}, {43408, 52048}, {43621, 50963}, {43632, 49948}, {43633, 49947}, {43787, 43890}, {43788, 43889}, {46264, 50962}, {47352, 55685}, {47353, 48885}, {47354, 55639}, {48879, 50664}, {48881, 50955}, {48892, 51024}, {48898, 55722}, {48905, 51027}, {48910, 55691}, {48920, 55587}, {48943, 51137}, {50797, 50868}, {50800, 50816}, {50806, 51119}, {50807, 51081}, {50869, 61268}, {50954, 51025}, {50957, 50972}, {50969, 55632}, {51087, 58244}, {51186, 55637}, {51188, 55588}, {53023, 55680}

X(62140) = midpoint of X(i) and X(j) for these {i,j}: {1657, 15688}, {3524, 15683}, {3529, 3839}, {5055, 15685}
X(62140) = reflection of X(i) in X(j) for these {i,j}: {11539, 15690}, {14269, 10304}, {15684, 3839}, {15688, 3534}, {381, 15688}, {382, 5055}, {3524, 550}, {3543, 11539}, {3830, 3524}, {3839, 8703}, {5054, 15689}, {5055, 376}
X(62140) = anticomplement of X(62001)
X(62140) = pole of line {185, 61878} with respect to the Jerabek hyperbola
X(62140) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(38335)}}, {{A, B, C, X(17504), X(46168)}}, {{A, B, C, X(46853), X(57822)}}
X(62140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15690, 6891}, {2, 6848, 3860}, {3, 11812, 15700}, {3, 15681, 11001}, {3, 15723, 15693}, {3, 3830, 547}, {3, 3843, 3533}, {3, 3845, 15723}, {3, 3853, 1656}, {3, 5055, 15708}, {3, 5059, 382}, {3, 5073, 3832}, {4, 15691, 15695}, {20, 11001, 15686}, {20, 15681, 3534}, {30, 10304, 14269}, {30, 11539, 3543}, {30, 15690, 11539}, {30, 3524, 3830}, {30, 376, 5055}, {30, 3839, 15684}, {30, 550, 3524}, {376, 11001, 5059}, {376, 11541, 2}, {376, 15640, 140}, {376, 15704, 15685}, {376, 15717, 8703}, {376, 3091, 15759}, {381, 15688, 15706}, {381, 3534, 15696}, {382, 3534, 376}, {548, 15682, 15694}, {550, 3830, 14093}, {1012, 3090, 3091}, {1656, 12108, 3526}, {1657, 15688, 30}, {1657, 3534, 381}, {1657, 5076, 17800}, {3090, 15714, 15722}, {3090, 3525, 16408}, {3091, 10303, 404}, {3522, 15687, 15701}, {3524, 12108, 15707}, {3528, 5066, 15718}, {3534, 14093, 550}, {3534, 15681, 1657}, {3534, 15716, 15697}, {3534, 5054, 15689}, {3543, 15719, 3850}, {3853, 8703, 15702}, {6958, 15685, 6926}, {8703, 11737, 15717}, {10304, 14269, 5054}, {11001, 15686, 3}, {11001, 15702, 3529}, {11737, 15759, 12108}, {12103, 15704, 11541}, {14269, 15689, 10304}, {14893, 15698, 5070}, {15681, 15685, 15704}, {15684, 15707, 3839}, {15686, 15704, 3845}, {15687, 15701, 5072}, {15696, 15706, 15688}, {15704, 15759, 15683}, {15715, 17578, 10109}


X(62141) = X(2)X(3)∩X(15)X(42781)

Barycentrics    26*a^4-9*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62141) = -27*X[2]+35*X[3], -9*X[145]+X[58249], -X[3629]+5*X[48898], -3*X[3630]+7*X[52987], -3*X[3631]+5*X[55606], X[6144]+7*X[48873], 3*X[11008]+5*X[55580], -3*X[13392]+2*X[38791], -X[14449]+3*X[14855], 3*X[14927]+5*X[55595], -5*X[15034]+3*X[61598], -21*X[15808]+25*X[31666] and many others

X(62141) lies on these lines: {2, 3}, {15, 42781}, {16, 42782}, {61, 42584}, {62, 42585}, {145, 58249}, {1503, 55597}, {3244, 28212}, {3311, 42575}, {3312, 42574}, {3411, 43208}, {3412, 43207}, {3564, 48920}, {3625, 28224}, {3626, 28186}, {3629, 48898}, {3630, 52987}, {3631, 55606}, {3636, 28146}, {4316, 15172}, {5237, 42630}, {5238, 42629}, {5318, 42929}, {5321, 42928}, {5351, 42136}, {5352, 42137}, {6144, 48873}, {6329, 29317}, {6407, 43788}, {6408, 43787}, {6425, 42226}, {6426, 42225}, {6431, 43336}, {6432, 43337}, {6488, 8981}, {6489, 13966}, {10147, 43318}, {10148, 43319}, {10222, 28216}, {10653, 43634}, {10654, 43635}, {11008, 55580}, {12820, 42488}, {12821, 42489}, {13392, 38791}, {13925, 42276}, {13993, 42275}, {14449, 14855}, {14927, 55595}, {15034, 61598}, {15178, 28178}, {15808, 31666}, {16189, 34773}, {16772, 42429}, {16773, 42430}, {16936, 39522}, {17852, 42263}, {18357, 59420}, {18358, 55637}, {18583, 55694}, {22234, 44882}, {22330, 29181}, {28182, 51700}, {29012, 55617}, {31834, 36987}, {32423, 38626}, {32455, 48891}, {34380, 48880}, {36836, 42145}, {36843, 42144}, {36967, 43111}, {36968, 43110}, {38731, 52886}, {39884, 55626}, {40341, 48874}, {41869, 58229}, {42087, 42416}, {42088, 42415}, {42101, 42591}, {42102, 42590}, {42112, 42628}, {42113, 42627}, {42140, 43198}, {42141, 43197}, {42143, 43196}, {42146, 43195}, {42163, 42888}, {42166, 42889}, {42433, 42801}, {42434, 42802}, {42435, 42779}, {42436, 42780}, {42496, 42939}, {42497, 42938}, {42543, 42978}, {42544, 42979}, {42633, 43769}, {42634, 43770}, {42641, 43570}, {42642, 43571}, {42797, 42814}, {42798, 42813}, {42890, 43646}, {42891, 43645}, {42916, 43487}, {42917, 43488}, {42940, 43551}, {42941, 43550}, {43102, 43472}, {43103, 43471}, {43879, 51911}, {43880, 51910}, {45384, 60305}, {45385, 60306}, {48872, 53858}, {48879, 55708}, {48881, 55600}, {48885, 55623}, {48892, 51732}, {48896, 55611}, {50812, 61258}, {51094, 58242}, {51163, 55681}, {57894, 57896}

X(62141) = midpoint of X(i) and X(j) for these {i,j}: {546, 3529}, {547, 15685}, {548, 1657}, {11001, 15691}, {12100, 15683}, {12103, 15704}
X(62141) = reflection of X(i) in X(j) for these {i,j}: {10109, 376}, {10124, 15690}, {12102, 3}, {14890, 15689}, {15759, 15691}, {3530, 550}, {3543, 11540}, {3627, 12108}, {3850, 548}, {51732, 48892}
X(62141) = pole of line {185, 55861} with respect to the Jerabek hyperbola
X(62141) = intersection, other than A, B, C, of circumconics {{A, B, C, X(546), X(57896)}}, {{A, B, C, X(548), X(57894)}}, {{A, B, C, X(1105), X(55861)}}, {{A, B, C, X(1294), X(12102)}}, {{A, B, C, X(10304), X(43970)}}
X(62141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14093, 17504}, {2, 15710, 15718}, {2, 3627, 546}, {3, 12102, 3628}, {3, 30, 12102}, {3, 3146, 3857}, {3, 3544, 14869}, {3, 3627, 12812}, {3, 382, 3544}, {3, 3857, 140}, {4, 15701, 5}, {5, 550, 15688}, {20, 15681, 550}, {20, 1657, 15686}, {21, 3544, 1656}, {30, 11540, 3543}, {30, 15689, 14890}, {30, 15690, 10124}, {30, 15691, 15759}, {30, 376, 10109}, {30, 548, 3850}, {30, 550, 3530}, {140, 15703, 16239}, {140, 546, 5079}, {546, 10299, 1010}, {546, 3628, 11737}, {548, 12812, 3}, {548, 14893, 15712}, {550, 15687, 3528}, {550, 15704, 3529}, {631, 3544, 16408}, {631, 6847, 5056}, {1657, 12103, 12108}, {1657, 3534, 3843}, {3146, 5079, 15687}, {3528, 3529, 3146}, {3529, 15681, 15704}, {3627, 15686, 17538}, {3627, 15704, 1657}, {3627, 15712, 5072}, {3627, 5072, 14893}, {3832, 6893, 5066}, {3843, 3850, 3860}, {10124, 14093, 14891}, {11001, 15691, 30}, {11112, 15710, 15707}, {14892, 15690, 14093}, {15681, 15688, 11001}, {15684, 15686, 15691}, {15684, 15688, 2}, {15686, 15704, 3627}, {15686, 17538, 12103}, {15689, 15712, 548}


X(62142) = X(2)X(3)∩X(15)X(42689)

Barycentrics    23*a^4-8*(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62142) = -24*X[2]+31*X[3], -8*X[944]+X[58247], -X[1351]+8*X[48891], 3*X[5050]+4*X[48879], 3*X[5093]+4*X[48872], 3*X[5925]+4*X[45185], -10*X[10992]+3*X[14692], -20*X[11522]+27*X[58230], -2*X[12290]+9*X[54047], -8*X[18553]+15*X[55629], -X[33878]+8*X[48920], -8*X[34507]+15*X[55604] and many others

X(62142) lies on these lines: {2, 3}, {15, 42689}, {16, 42688}, {944, 58247}, {1351, 48891}, {3070, 9690}, {3071, 43415}, {4316, 7373}, {4324, 6767}, {5050, 48879}, {5093, 48872}, {5339, 43427}, {5340, 43426}, {5925, 45185}, {6199, 42267}, {6395, 42266}, {6407, 35815}, {6408, 35814}, {6445, 8960}, {6446, 58866}, {6474, 7583}, {6475, 7584}, {6500, 42258}, {6501, 42259}, {6560, 43785}, {6561, 43786}, {7756, 21309}, {10645, 42909}, {10646, 42908}, {10992, 14692}, {11480, 42691}, {11481, 42690}, {11485, 41974}, {11486, 41973}, {11522, 58230}, {11645, 55602}, {12290, 54047}, {13846, 43438}, {13847, 43439}, {13903, 43413}, {13961, 43414}, {14841, 43691}, {16936, 36753}, {17851, 42413}, {18553, 55629}, {29012, 55616}, {29317, 55705}, {29323, 55639}, {31454, 43342}, {33878, 48920}, {34507, 55604}, {34773, 58238}, {36990, 55632}, {41963, 42276}, {41964, 42275}, {42087, 56609}, {42088, 56608}, {42090, 42988}, {42091, 42989}, {42096, 43423}, {42097, 43422}, {42099, 43023}, {42100, 43022}, {42112, 42944}, {42113, 42945}, {42115, 42432}, {42116, 42431}, {42122, 43769}, {42123, 43770}, {42125, 42686}, {42128, 42687}, {42130, 42151}, {42131, 42150}, {42149, 42685}, {42152, 42684}, {42153, 42430}, {42156, 42429}, {42159, 42793}, {42162, 42794}, {42271, 43410}, {42272, 43409}, {42414, 43411}, {42488, 51945}, {42489, 51944}, {42530, 43296}, {42531, 43297}, {42584, 42998}, {42585, 42999}, {42773, 42955}, {42774, 42954}, {42964, 42993}, {42965, 42992}, {43150, 48896}, {43300, 43775}, {43301, 43776}, {44456, 48898}, {48662, 48881}, {48880, 55584}, {48884, 55648}, {48885, 55624}, {48892, 55697}, {48904, 55678}, {48905, 55593}, {48910, 55692}, {48942, 55656}, {48943, 55671}, {50819, 61278}, {50963, 55684}, {50976, 55681}, {50993, 55628}, {51140, 55724}, {53091, 59411}

X(62142) = midpoint of X(i) and X(j) for these {i,j}: {3529, 3832}, {15683, 15698}, {15685, 15703}
X(62142) = reflection of X(i) in X(j) for these {i,j}: {382, 3090}, {3523, 550}, {3830, 15700}, {3857, 548}
X(62142) = pole of line {185, 55860} with respect to the Jerabek hyperbola
X(62142) = pole of line {6, 43438} with respect to the Kiepert hyperbola
X(62142) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(55860)}}, {{A, B, C, X(3519), X(11001)}}, {{A, B, C, X(3525), X(13623)}}, {{A, B, C, X(5059), X(14841)}}, {{A, B, C, X(5067), X(14861)}}, {{A, B, C, X(17538), X(34483)}}, {{A, B, C, X(43719), X(47485)}}, {{A, B, C, X(44763), X(44879)}}
X(62142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 17800, 15684}, {3, 5070, 15722}, {4, 10304, 140}, {4, 140, 5072}, {4, 15022, 3858}, {4, 15704, 1657}, {4, 3522, 549}, {4, 3526, 3851}, {4, 5056, 3856}, {20, 11001, 12103}, {20, 15681, 3}, {20, 3529, 15686}, {30, 15700, 3830}, {30, 548, 3857}, {30, 550, 3523}, {382, 12103, 15689}, {548, 15704, 15683}, {548, 3857, 15698}, {550, 3850, 3522}, {550, 5059, 1656}, {1656, 1657, 5059}, {1656, 5059, 5073}, {3146, 15688, 5070}, {3522, 12101, 15720}, {3523, 3533, 14869}, {3525, 16854, 632}, {3526, 3857, 5055}, {3534, 15640, 15695}, {3534, 15704, 17800}, {3545, 16393, 12812}, {3627, 15759, 7486}, {3830, 15695, 15719}, {3843, 6978, 15685}, {3850, 12103, 550}, {3851, 6916, 15694}, {3857, 15698, 3526}, {5072, 15696, 10304}, {6914, 14891, 631}, {6961, 15685, 3146}, {10304, 15686, 3534}, {11001, 12103, 382}, {11541, 15697, 3530}, {13635, 17538, 4}, {14813, 14814, 11001}, {15681, 17800, 15704}, {15683, 15698, 30}, {15711, 17538, 15696}


X(62143) = X(2)X(3)∩X(39)X(11742)

Barycentrics    17*a^4-6*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62143) = -18*X[2]+23*X[3], 2*X[575]+3*X[48879], 2*X[576]+3*X[48872], -9*X[599]+14*X[55611], -6*X[1352]+11*X[55620], -3*X[3763]+4*X[55650], -6*X[3818]+11*X[55641], -3*X[5895]+8*X[50414], -7*X[7982]+12*X[32900], -9*X[10516]+14*X[55644], -7*X[10541]+12*X[48892], -X[11477]+6*X[48898] and many others

X(62143) lies on these lines: {2, 3}, {39, 11742}, {61, 42131}, {62, 42130}, {156, 41470}, {575, 48879}, {576, 48872}, {599, 55611}, {1352, 55620}, {1482, 28232}, {1503, 55595}, {3070, 6519}, {3071, 6522}, {3303, 4324}, {3304, 4316}, {3592, 42267}, {3594, 42266}, {3763, 55650}, {3818, 55641}, {5237, 42096}, {5238, 42097}, {5346, 6781}, {5351, 42125}, {5352, 42128}, {5895, 50414}, {5965, 48880}, {6199, 43407}, {6395, 43408}, {6427, 42258}, {6428, 42259}, {6447, 18512}, {6448, 18510}, {6449, 42276}, {6450, 42275}, {6451, 22644}, {6452, 22615}, {6453, 42264}, {6454, 42263}, {6455, 42272}, {6456, 42271}, {6496, 42284}, {6497, 42283}, {7772, 44519}, {7936, 11164}, {7982, 32900}, {8717, 37472}, {8718, 9703}, {8960, 10147}, {8976, 51911}, {9681, 43322}, {9690, 43788}, {9691, 43883}, {10148, 58866}, {10516, 55644}, {10541, 48892}, {10620, 37486}, {11477, 48898}, {11482, 29181}, {11645, 55600}, {11850, 18442}, {11898, 48905}, {11935, 13346}, {11999, 44788}, {12117, 38628}, {12162, 54047}, {12702, 28236}, {13321, 15012}, {13391, 52093}, {13951, 51910}, {14641, 37484}, {14848, 55704}, {14855, 16625}, {14927, 55593}, {15020, 38789}, {15024, 55286}, {15034, 34584}, {15039, 16163}, {15042, 46686}, {15069, 55597}, {15178, 48661}, {15484, 31652}, {16189, 28198}, {16960, 36836}, {16961, 36843}, {18439, 36987}, {18440, 48896}, {18481, 28228}, {18493, 28154}, {18526, 28234}, {18553, 55628}, {19357, 34563}, {20190, 48910}, {22236, 42100}, {22238, 42099}, {28178, 37624}, {29012, 55614}, {29317, 53093}, {29323, 55637}, {31447, 50812}, {31467, 44541}, {31670, 55701}, {31730, 59503}, {32137, 54041}, {34785, 58795}, {35007, 44526}, {36253, 38788}, {36990, 55631}, {38723, 38791}, {38731, 38745}, {38734, 38742}, {39884, 55624}, {39899, 48873}, {41945, 43785}, {41946, 43786}, {41965, 43879}, {41966, 43880}, {42090, 42165}, {42091, 42164}, {42108, 42956}, {42109, 42957}, {42112, 42163}, {42113, 42166}, {42115, 42160}, {42116, 42161}, {42154, 43233}, {42155, 43232}, {42159, 42682}, {42162, 42683}, {42225, 43320}, {42226, 43321}, {42429, 42997}, {42430, 42996}, {42431, 42626}, {42432, 42625}, {42433, 42989}, {42434, 42988}, {42512, 42945}, {42513, 42944}, {42516, 43769}, {42517, 43770}, {42592, 42773}, {42593, 42774}, {42813, 43372}, {42814, 43373}, {42934, 43646}, {42935, 43645}, {42974, 43633}, {42975, 43632}, {43193, 43304}, {43194, 43305}, {43273, 55718}, {43306, 43465}, {43307, 43466}, {43342, 43523}, {43343, 43524}, {43415, 43787}, {44882, 53092}, {45187, 54048}, {46264, 55724}, {48881, 55602}, {48884, 55647}, {48885, 55626}, {48889, 55652}, {48895, 55675}, {48901, 55684}, {48904, 55679}, {50805, 58245}, {50811, 58240}, {50954, 55623}, {51163, 55682}, {51173, 55694}, {51538, 55692}, {53023, 55681}, {54131, 55708}

X(62143) = midpoint of X(i) and X(j) for these {i,j}: {1657, 15696}, {3091, 3529}, {15685, 15694}
X(62143) = reflection of X(i) in X(j) for these {i,j}: {1656, 15696}, {14093, 3534}, {15694, 15697}, {15697, 15686}, {15711, 15691}, {17578, 15712}, {3, 17538}, {381, 15695}, {382, 1656}, {3543, 15713}, {3830, 15692}, {3843, 3522}, {3858, 548}, {5073, 17578}, {5076, 3}, {631, 550}
X(62143) = anticomplement of X(62006)
X(62143) = pole of line {185, 55857} with respect to the Jerabek hyperbola
X(62143) = pole of line {69, 55599} with respect to the Wallace hyperbola
X(62143) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(50691)}}, {{A, B, C, X(1105), X(55857)}}, {{A, B, C, X(1294), X(5076)}}, {{A, B, C, X(3521), X(3854)}}, {{A, B, C, X(14861), X(46935)}}, {{A, B, C, X(15686), X(18848)}}, {{A, B, C, X(17505), X(50687)}}, {{A, B, C, X(43970), X(46332)}}
X(62143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15681, 15704}, {3, 17800, 3146}, {3, 30, 5076}, {3, 3090, 15720}, {3, 3627, 5079}, {3, 382, 5072}, {3, 3830, 3090}, {3, 3843, 632}, {3, 3851, 10303}, {3, 5055, 12108}, {3, 5072, 5054}, {3, 5073, 546}, {3, 5076, 1656}, {3, 546, 3526}, {3, 632, 15693}, {4, 15708, 5}, {4, 20, 15686}, {20, 11001, 550}, {20, 15704, 3}, {20, 3529, 12103}, {30, 15686, 15697}, {30, 15691, 15711}, {30, 15692, 3830}, {30, 15712, 17578}, {30, 15713, 3543}, {30, 3522, 3843}, {30, 548, 3858}, {30, 550, 631}, {376, 17578, 15712}, {381, 15688, 12100}, {381, 1657, 17800}, {381, 3526, 5056}, {548, 3858, 15692}, {550, 11539, 548}, {550, 3853, 10304}, {631, 15712, 15707}, {631, 3522, 15714}, {1656, 15696, 14093}, {1656, 3534, 15696}, {1657, 15720, 5059}, {1657, 3534, 382}, {3090, 3525, 13741}, {3146, 10304, 3544}, {3146, 3544, 3853}, {3529, 17538, 3091}, {3534, 15700, 15689}, {3628, 12100, 14869}, {3851, 6982, 3628}, {3861, 10299, 15703}, {10299, 15640, 3861}, {10303, 12102, 3851}, {11001, 12100, 15685}, {11001, 17800, 1657}, {11737, 12100, 11539}, {11737, 15692, 15694}, {12100, 15697, 15695}, {12103, 15704, 3529}, {12812, 15686, 17538}, {15684, 15715, 381}, {15685, 15686, 15688}, {15685, 15694, 30}, {15686, 15688, 3534}, {15693, 15696, 3522}, {15707, 17800, 5073}


X(62144) = X(2)X(3)∩X(17)X(42137)

Barycentrics    14*a^4-5*(b^2-c^2)^2-9*a^2*(b^2+c^2) : :
X(62144) = -15*X[2]+19*X[3], -7*X[40]+3*X[61247], -3*X[74]+2*X[13393], -5*X[141]+7*X[55633], -5*X[576]+3*X[51166], -5*X[1352]+9*X[55618], -5*X[3589]+6*X[55680], -5*X[3818]+9*X[55640], 3*X[5102]+5*X[48872], -5*X[5480]+7*X[55691], -7*X[5690]+5*X[61250], -X[5876]+3*X[36987] and many others

X(62144) lies on these lines: {2, 3}, {17, 42137}, {18, 42136}, {40, 61247}, {61, 43244}, {62, 43245}, {74, 13393}, {141, 55633}, {397, 34754}, {398, 34755}, {516, 33179}, {576, 51166}, {952, 5493}, {1154, 14641}, {1352, 55618}, {1385, 28182}, {1503, 48920}, {3070, 6480}, {3071, 6481}, {3564, 48880}, {3579, 28190}, {3589, 55680}, {3818, 55640}, {4297, 28178}, {4299, 15172}, {4316, 15171}, {4324, 18990}, {4325, 15170}, {4857, 15326}, {5008, 7756}, {5097, 29181}, {5102, 48872}, {5237, 42430}, {5238, 42429}, {5270, 15338}, {5305, 6781}, {5318, 43016}, {5321, 43017}, {5339, 42091}, {5340, 42090}, {5343, 42115}, {5344, 42116}, {5349, 10646}, {5350, 10645}, {5351, 42940}, {5352, 42941}, {5447, 32137}, {5480, 55691}, {5690, 61250}, {5876, 36987}, {5882, 11278}, {5892, 55286}, {5901, 28150}, {6221, 42414}, {6243, 52093}, {6284, 37587}, {6390, 7860}, {6398, 42413}, {6411, 10195}, {6412, 10194}, {6419, 43209}, {6420, 43210}, {6427, 43256}, {6428, 43257}, {6429, 42264}, {6430, 42263}, {6431, 42216}, {6432, 42215}, {6433, 8981}, {6434, 13966}, {6437, 42226}, {6438, 42225}, {6445, 23269}, {6446, 23275}, {6451, 23253}, {6452, 23263}, {6455, 52667}, {6456, 52666}, {6468, 43794}, {6469, 43793}, {6482, 31454}, {6484, 8960}, {6485, 58866}, {6486, 13925}, {6487, 13993}, {6519, 31414}, {7728, 22250}, {7802, 32820}, {8550, 37517}, {8717, 32046}, {8718, 37477}, {9589, 50824}, {9680, 43432}, {9729, 12002}, {9778, 37705}, {10171, 58219}, {10222, 51120}, {10263, 14855}, {10483, 51817}, {10627, 14915}, {10990, 32423}, {11180, 55602}, {11381, 54042}, {11432, 35253}, {11485, 43769}, {11486, 43770}, {11522, 51700}, {11531, 18481}, {11542, 42431}, {11543, 42432}, {11623, 61600}, {11694, 38791}, {11801, 37853}, {12279, 13340}, {12512, 18357}, {12699, 30392}, {13348, 44324}, {13364, 17704}, {13382, 13421}, {13391, 46850}, {13392, 38723}, {13464, 28146}, {13474, 32142}, {13607, 58237}, {13624, 28158}, {13903, 43376}, {13961, 43377}, {14449, 40647}, {14861, 34567}, {14864, 61540}, {15311, 45185}, {15644, 31834}, {16200, 28216}, {16252, 32903}, {16266, 35237}, {16534, 34584}, {16936, 44413}, {18358, 29323}, {18480, 59420}, {18553, 48885}, {18581, 42906}, {18582, 42907}, {18583, 48892}, {18907, 44519}, {19106, 42627}, {19107, 42628}, {19116, 43408}, {19117, 43407}, {20070, 61295}, {20190, 50971}, {20418, 61601}, {20582, 55647}, {21850, 55711}, {22165, 55600}, {22235, 42916}, {22237, 42917}, {22791, 61279}, {23302, 42959}, {23303, 42958}, {25555, 55688}, {25561, 50972}, {26861, 57715}, {28154, 40273}, {28160, 43174}, {28164, 61524}, {28172, 31663}, {28186, 31730}, {28198, 61286}, {28228, 58244}, {29012, 55612}, {29317, 50664}, {31406, 43618}, {31447, 34648}, {31670, 55703}, {34380, 48873}, {34507, 48881}, {34573, 48942}, {34785, 44762}, {35255, 42272}, {35256, 42271}, {35770, 42259}, {35771, 42258}, {36836, 42496}, {36843, 42497}, {36967, 41974}, {36968, 41973}, {37484, 45957}, {38079, 55684}, {38110, 43621}, {38726, 38792}, {38735, 38747}, {38736, 38746}, {39561, 44882}, {39884, 55622}, {41121, 42544}, {41122, 42543}, {41869, 61274}, {41977, 43005}, {41978, 43004}, {42087, 42158}, {42088, 42157}, {42096, 42149}, {42097, 42152}, {42101, 42937}, {42102, 42936}, {42112, 42121}, {42113, 42124}, {42117, 42151}, {42118, 42150}, {42119, 43631}, {42120, 43630}, {42130, 42999}, {42131, 42998}, {42135, 43239}, {42138, 43238}, {42147, 42891}, {42148, 42890}, {42160, 42625}, {42161, 42626}, {42163, 42528}, {42164, 42433}, {42165, 42434}, {42166, 42529}, {42266, 43786}, {42267, 43785}, {42510, 42587}, {42511, 42586}, {42686, 44016}, {42687, 44015}, {42813, 43199}, {42814, 43200}, {42908, 43402}, {42909, 43401}, {42934, 43231}, {42935, 43230}, {42942, 43633}, {42943, 43632}, {42980, 43010}, {42981, 43011}, {43105, 43776}, {43106, 43775}, {43254, 43885}, {43255, 43886}, {43422, 49905}, {43423, 49906}, {43887, 53513}, {43888, 53516}, {46264, 55722}, {47354, 55637}, {48310, 55675}, {48874, 48905}, {48876, 55607}, {48901, 55685}, {50978, 55595}, {51127, 55666}, {51128, 55660}, {51163, 55683}, {51537, 55643}, {51732, 55699}

X(62144) = midpoint of X(i) and X(j) for these {i,j}: {5, 3529}, {20, 15704}, {549, 15685}, {550, 1657}, {3627, 17800}, {8703, 15683}, {11001, 15686}, {20070, 61295}, {37484, 45957}, {44882, 48879}, {48872, 48906}, {48874, 48905}, {48881, 48896}
X(62144) = reflection of X(i) in X(j) for these {i,j}: {140, 550}, {11801, 37853}, {12100, 15691}, {12103, 20}, {12812, 15696}, {13383, 15332}, {13421, 13382}, {13474, 32142}, {14449, 40647}, {14893, 8703}, {15682, 11737}, {15684, 3860}, {15687, 15759}, {15690, 15686}, {16252, 32903}, {18357, 12512}, {18583, 48892}, {25561, 50972}, {382, 3628}, {3146, 3861}, {3543, 11812}, {3627, 3530}, {3830, 14891}, {3853, 3}, {31834, 15644}, {32137, 5447}, {45959, 13348}, {48942, 34573}, {546, 548}, {547, 15690}, {548, 12103}, {5066, 376}
X(62144) = complement of X(62041)
X(62144) = anticomplement of X(12102)
X(62144) = pole of line {185, 55856} with respect to the Jerabek hyperbola
X(62144) = pole of line {69, 55600} with respect to the Wallace hyperbola
X(62144) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(49140)}}, {{A, B, C, X(548), X(26861)}}, {{A, B, C, X(1105), X(55856)}}, {{A, B, C, X(1294), X(3853)}}, {{A, B, C, X(3519), X(15704)}}, {{A, B, C, X(3521), X(3857)}}, {{A, B, C, X(3532), X(35479)}}, {{A, B, C, X(3628), X(14861)}}, {{A, B, C, X(3839), X(6662)}}, {{A, B, C, X(4846), X(15022)}}, {{A, B, C, X(11812), X(40448)}}, {{A, B, C, X(14841), X(17800)}}, {{A, B, C, X(14865), X(34567)}}, {{A, B, C, X(15695), X(60122)}}, {{A, B, C, X(26863), X(57715)}}, {{A, B, C, X(34483), X(58196)}}, {{A, B, C, X(42021), X(50693)}}, {{A, B, C, X(43719), X(55578)}}, {{A, B, C, X(43970), X(46853)}}
X(62144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 12102, 3859}, {3, 1657, 5059}, {3, 20, 15686}, {3, 2937, 13620}, {3, 30, 3853}, {3, 382, 3545}, {3, 3832, 11539}, {3, 3843, 15723}, {3, 3845, 16239}, {3, 5, 11812}, {3, 5067, 549}, {4, 3522, 15720}, {5, 3627, 14269}, {20, 11001, 3}, {20, 15683, 17538}, {20, 30, 12103}, {20, 3529, 3534}, {30, 11737, 15682}, {30, 11812, 3543}, {30, 14891, 3830}, {30, 15332, 13383}, {30, 15686, 15690}, {30, 15691, 12100}, {30, 15696, 12812}, {30, 15759, 15687}, {30, 3530, 3627}, {30, 376, 5066}, {30, 3860, 15684}, {30, 548, 546}, {30, 8703, 14893}, {140, 12103, 550}, {140, 3850, 547}, {140, 3853, 3850}, {140, 5066, 1656}, {140, 5073, 12101}, {140, 550, 548}, {376, 15706, 8703}, {382, 3523, 3858}, {547, 15686, 15691}, {549, 3146, 3861}, {631, 15687, 12811}, {632, 3528, 14891}, {632, 3830, 3856}, {1656, 1657, 17800}, {1656, 3522, 15711}, {1657, 3534, 5073}, {1657, 5073, 3529}, {2043, 2044, 15695}, {3522, 3543, 3533}, {3523, 3858, 3628}, {3528, 3830, 632}, {3534, 14269, 376}, {3534, 17800, 10303}, {3534, 5073, 3522}, {3543, 10303, 3832}, {3545, 11001, 15683}, {3839, 15714, 11540}, {3843, 10304, 14869}, {3843, 14869, 10109}, {3850, 16239, 5056}, {3858, 8703, 3523}, {5054, 17578, 3857}, {5059, 11001, 1657}, {5073, 15720, 4}, {10303, 14269, 5}, {10303, 15711, 3530}, {10304, 11541, 3843}, {11001, 15686, 30}, {11250, 11414, 7555}, {12512, 28168, 18357}, {12811, 15759, 631}, {14813, 14814, 15704}, {15122, 18282, 140}, {15683, 17538, 382}, {15684, 15697, 17504}, {15684, 17504, 3860}, {15685, 15696, 3146}, {15687, 15689, 15759}, {42088, 42157, 42924}, {42112, 42121, 42888}, {42113, 42124, 42889}, {42164, 42433, 42913}, {42165, 42434, 42912}, {42584, 42925, 42158}, {42585, 42924, 42157}


X(62145) = X(2)X(3)∩X(590)X(42538)

Barycentrics    53*a^4-19*(b^2-c^2)^2-34*a^2*(b^2+c^2) : :
X(62145) = -19*X[2]+24*X[3], -4*X[4669]+9*X[9778], -X[4677]+6*X[34638], -X[5921]+16*X[48920], 4*X[6361]+X[20049], 2*X[8584]+3*X[48872], -3*X[9589]+8*X[51107], -3*X[9812]+8*X[50815], -12*X[10171]+7*X[50874], -12*X[10175]+7*X[50867], X[11160]+4*X[48905], X[11180]+4*X[48896] and many others

X(62145) lies on these lines: {2, 3}, {590, 42538}, {615, 42537}, {3623, 28198}, {4669, 9778}, {4677, 34638}, {5237, 43557}, {5238, 43556}, {5318, 42518}, {5321, 42519}, {5334, 42977}, {5335, 42976}, {5343, 49859}, {5344, 49860}, {5921, 48920}, {5965, 54174}, {6361, 20049}, {6459, 42418}, {6460, 42417}, {6490, 42264}, {6491, 42263}, {8584, 48872}, {8717, 13482}, {8972, 41954}, {9300, 11742}, {9542, 43788}, {9543, 35822}, {9589, 51107}, {9812, 50815}, {10171, 50874}, {10175, 50867}, {10653, 41971}, {10654, 41972}, {11160, 48905}, {11180, 48896}, {13678, 32814}, {13941, 41953}, {14561, 51213}, {14855, 16981}, {14927, 15533}, {16960, 42632}, {16961, 42631}, {19106, 42512}, {19107, 42513}, {19924, 51170}, {20070, 34628}, {20080, 48880}, {23302, 43002}, {23303, 43003}, {28146, 50819}, {28158, 51109}, {28164, 51066}, {28168, 50863}, {28172, 50812}, {28186, 50809}, {28194, 51092}, {28228, 51093}, {28232, 50811}, {29317, 50975}, {29323, 51216}, {30308, 51079}, {32785, 43566}, {32786, 43567}, {33748, 51177}, {36967, 49826}, {36968, 49827}, {41121, 42113}, {41122, 42112}, {41967, 42272}, {41968, 42271}, {41969, 42414}, {41970, 42413}, {42090, 49811}, {42091, 49810}, {42096, 42792}, {42097, 42791}, {42099, 42510}, {42100, 42511}, {42125, 42933}, {42128, 42932}, {42139, 42515}, {42140, 49906}, {42141, 49905}, {42142, 42514}, {42147, 42508}, {42148, 42509}, {42154, 42517}, {42155, 42516}, {42429, 49903}, {42430, 49904}, {42474, 51915}, {42475, 51916}, {42520, 46334}, {42521, 46335}, {42524, 43520}, {42525, 43519}, {42570, 42641}, {42571, 42642}, {42588, 42942}, {42589, 42943}, {42604, 43507}, {42605, 43508}, {42625, 49861}, {42626, 49862}, {42682, 43541}, {42683, 43540}, {42944, 43202}, {42945, 43201}, {43242, 43482}, {43243, 43481}, {43465, 49947}, {43466, 49948}, {50808, 51068}, {50820, 54445}, {50869, 58221}, {50965, 50994}, {50971, 51538}, {51026, 55673}, {51069, 54448}, {51142, 55614}

X(62145) = midpoint of X(i) and X(j) for these {i,j}: {3522, 15683}, {3529, 5071}, {15685, 15693}
X(62145) = reflection of X(i) in X(j) for these {i,j}: {15684, 3858}, {15692, 17538}, {15694, 550}, {15696, 15686}, {15712, 15691}, {17578, 15692}, {2, 15697}, {3091, 376}, {30308, 51079}, {3543, 631}, {3830, 15711}, {4, 14093}, {5071, 15696}, {5076, 15714}
X(62145) = anticomplement of X(62007)
X(62145) = pole of line {69, 62132} with respect to the Wallace hyperbola
X(62145) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3346), X(12102)}}, {{A, B, C, X(4846), X(47478)}}, {{A, B, C, X(14269), X(16251)}}, {{A, B, C, X(15640), X(35510)}}, {{A, B, C, X(17504), X(18850)}}, {{A, B, C, X(18846), X(58207)}}
X(62145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15683}, {2, 3830, 3832}, {2, 5059, 15640}, {2, 8703, 15705}, {4, 376, 17504}, {20, 10304, 15686}, {20, 11001, 2}, {30, 14093, 4}, {30, 15686, 15696}, {30, 15691, 15712}, {30, 15692, 17578}, {30, 15696, 5071}, {30, 15711, 3830}, {30, 15714, 5076}, {30, 17538, 15692}, {30, 376, 3091}, {30, 3858, 15684}, {30, 550, 15694}, {30, 631, 3543}, {140, 15711, 15693}, {140, 376, 10304}, {140, 5072, 5067}, {376, 11001, 15685}, {376, 11541, 5055}, {376, 382, 15708}, {546, 8703, 15722}, {3091, 3522, 15717}, {3534, 15685, 3845}, {3534, 15701, 15690}, {3534, 17800, 11540}, {3534, 3845, 376}, {3543, 15705, 5068}, {3830, 15696, 15711}, {3859, 15695, 15698}, {5055, 15700, 140}, {5059, 15717, 3146}, {5076, 15689, 15714}, {6969, 15710, 381}, {6978, 17800, 1657}, {8703, 15685, 11541}, {10124, 15690, 8703}, {15640, 15685, 5059}, {15685, 15693, 30}, {15685, 15704, 11001}, {15691, 17800, 3545}, {15692, 15697, 15695}, {15695, 17538, 15697}, {17538, 17578, 3522}


X(62146) = X(2)X(3)∩X(74)X(14843)

Barycentrics    25*a^4-9*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62146) = -27*X[2]+34*X[3], -X[69]+8*X[48920], -9*X[944]+2*X[58245], -18*X[946]+25*X[58229], -9*X[1352]+16*X[55617], -3*X[3619]+4*X[55644], -15*X[3620]+22*X[55620], -5*X[4301]+12*X[51080], -10*X[5493]+3*X[50817], -5*X[5818]+12*X[59420], -5*X[5881]+12*X[50814], -3*X[5921]+10*X[55595] and many others

X(62146) lies on these lines: {2, 3}, {69, 48920}, {74, 14843}, {944, 58245}, {946, 58229}, {1056, 4324}, {1058, 4316}, {1151, 43788}, {1152, 43787}, {1285, 7756}, {1352, 55617}, {3071, 17852}, {3592, 43407}, {3594, 43408}, {3619, 55644}, {3620, 55620}, {3622, 28182}, {4301, 51080}, {5237, 42140}, {5238, 42141}, {5343, 42625}, {5344, 42626}, {5351, 42112}, {5352, 42113}, {5493, 50817}, {5818, 59420}, {5881, 50814}, {5921, 55595}, {6361, 61296}, {6425, 23267}, {6426, 23273}, {6447, 42226}, {6448, 42225}, {6488, 43509}, {6489, 43510}, {7738, 41940}, {7967, 16189}, {9540, 53517}, {9588, 50813}, {9693, 35822}, {10147, 23269}, {10148, 23275}, {11455, 40247}, {11742, 22332}, {12317, 38626}, {12699, 58232}, {13464, 50819}, {13886, 42276}, {13903, 43519}, {13935, 53520}, {13939, 42275}, {13961, 43520}, {14226, 41964}, {14241, 41963}, {14912, 48872}, {14927, 52987}, {15023, 46686}, {15069, 50970}, {18296, 20421}, {20190, 51538}, {22234, 25406}, {22330, 48891}, {28146, 61277}, {28150, 30389}, {28164, 61256}, {28194, 61289}, {29012, 55611}, {29181, 53858}, {29317, 55708}, {31425, 50862}, {31652, 43618}, {31670, 55704}, {31730, 37712}, {32903, 35260}, {34507, 50966}, {35237, 56292}, {35770, 43337}, {35771, 43336}, {35820, 42570}, {35821, 42571}, {36967, 43769}, {36968, 43770}, {39874, 53097}, {40330, 55641}, {41977, 43032}, {41978, 43033}, {42096, 52080}, {42097, 52079}, {42108, 43464}, {42109, 43463}, {42144, 42987}, {42145, 42986}, {42147, 43481}, {42148, 43482}, {42149, 42430}, {42150, 43021}, {42151, 43020}, {42152, 42429}, {42153, 43494}, {42156, 43493}, {42157, 43646}, {42158, 43645}, {42431, 42892}, {42432, 42893}, {42524, 43414}, {42525, 43413}, {42568, 43879}, {42569, 43880}, {42912, 42927}, {42913, 42926}, {42958, 43003}, {42959, 43002}, {42996, 43012}, {42997, 43013}, {43242, 43630}, {43243, 43631}, {43517, 53518}, {43518, 53519}, {43621, 55687}, {43777, 56608}, {43778, 56609}, {46264, 55721}, {48661, 61280}, {48873, 55583}, {48880, 55588}, {48885, 55628}, {48892, 55694}, {48896, 55600}, {48898, 55718}, {51910, 52666}, {51911, 52667}, {58225, 61271}, {58240, 61287}, {59417, 61246}

X(62146) = midpoint of X(i) and X(j) for these {i,j}: {3090, 3529}, {15685, 15700}
X(62146) = reflection of X(i) in X(j) for these {i,j}: {3526, 550}, {3543, 15701}, {4, 3528}, {6848, 15715}
X(62146) = anticomplement of X(62008)
X(62146) = pole of line {185, 60781} with respect to the Jerabek hyperbola
X(62146) = pole of line {69, 62131} with respect to the Wallace hyperbola
X(62146) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(30), X(14843)}}, {{A, B, C, X(68), X(49139)}}, {{A, B, C, X(1294), X(50688)}}, {{A, B, C, X(3517), X(13452)}}, {{A, B, C, X(3830), X(18296)}}, {{A, B, C, X(3851), X(31371)}}, {{A, B, C, X(5073), X(15077)}}, {{A, B, C, X(11270), X(55574)}}, {{A, B, C, X(13472), X(55571)}}, {{A, B, C, X(15702), X(18851)}}, {{A, B, C, X(15740), X(46219)}}, {{A, B, C, X(18535), X(46848)}}, {{A, B, C, X(18850), X(61138)}}, {{A, B, C, X(33703), X(52441)}}, {{A, B, C, X(36889), X(41987)}}, {{A, B, C, X(37935), X(60740)}}
X(62146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12811, 10303}, {3, 15022, 631}, {3, 3529, 11541}, {3, 3627, 15022}, {3, 382, 12811}, {4, 3528, 15702}, {20, 11001, 4}, {20, 1657, 376}, {20, 3146, 12103}, {20, 3522, 15686}, {20, 3529, 17538}, {20, 5059, 3534}, {30, 15701, 3543}, {30, 15715, 6848}, {30, 550, 3526}, {376, 15682, 5054}, {376, 3523, 3528}, {376, 3830, 3524}, {382, 12100, 3854}, {547, 3830, 3839}, {550, 15713, 548}, {550, 3861, 14093}, {1657, 12103, 3146}, {1657, 5054, 17800}, {3090, 11001, 6968}, {3090, 15698, 14869}, {3090, 3523, 3525}, {3090, 3857, 3544}, {3091, 3146, 3830}, {3091, 3526, 3090}, {3146, 3839, 3627}, {3522, 15682, 5067}, {3522, 17800, 15682}, {3522, 5067, 15715}, {3523, 3832, 15703}, {3524, 11001, 15683}, {3524, 3525, 12108}, {3526, 3851, 547}, {3529, 15704, 11001}, {3534, 15022, 16434}, {3543, 15696, 10299}, {3545, 11541, 6905}, {3830, 12108, 3091}, {5073, 10304, 3855}, {8703, 17578, 3533}, {11001, 17538, 3529}, {11541, 17538, 3}, {12103, 12108, 550}, {12103, 15704, 1657}, {15640, 15691, 15710}, {15685, 15700, 30}, {15686, 17800, 3522}


X(62147) = X(2)X(3)∩X(40)X(4746)

Barycentrics    19*a^4-7*(b^2-c^2)^2-12*a^2*(b^2+c^2) : :
X(62147) = -21*X[2]+26*X[3], -13*X[40]+8*X[4746], X[69]+4*X[48896], -7*X[1352]+12*X[55615], -7*X[3618]+8*X[55690], -7*X[3818]+12*X[55638], -8*X[5493]+3*X[12245], -X[5881]+6*X[34638], -14*X[5882]+9*X[11224], 3*X[5925]+2*X[44762], -3*X[6225]+8*X[45185], 2*X[8550]+3*X[48872] and many others

X(62147) lies on these lines: {2, 3}, {15, 42806}, {16, 42805}, {17, 42113}, {18, 42112}, {40, 4746}, {69, 48896}, {515, 4816}, {944, 28228}, {1352, 55615}, {3070, 6468}, {3071, 6469}, {3316, 22644}, {3317, 22615}, {3590, 35255}, {3591, 35256}, {3616, 28154}, {3617, 28190}, {3618, 55690}, {3623, 28216}, {3818, 55638}, {4294, 8162}, {4299, 37602}, {5237, 43543}, {5238, 43542}, {5339, 42926}, {5340, 42927}, {5343, 42096}, {5344, 42097}, {5365, 11481}, {5366, 11480}, {5493, 12245}, {5734, 28202}, {5818, 28172}, {5881, 34638}, {5882, 11224}, {5925, 44762}, {5965, 39874}, {6225, 45185}, {6361, 28234}, {6470, 43407}, {6471, 43408}, {7581, 42267}, {7582, 42266}, {7745, 11742}, {7748, 46453}, {7755, 43619}, {7802, 32817}, {7860, 32818}, {8550, 48872}, {8960, 23269}, {9624, 50815}, {10248, 17502}, {10595, 28146}, {10645, 42494}, {10646, 42495}, {10990, 12317}, {11455, 13348}, {11522, 28150}, {12002, 15043}, {12254, 13431}, {12290, 36987}, {13474, 54041}, {13925, 60291}, {13993, 60292}, {14912, 48898}, {14927, 48880}, {15105, 17845}, {15516, 25406}, {15520, 48879}, {15740, 57730}, {15811, 54434}, {16960, 42090}, {16961, 42091}, {17821, 50709}, {18553, 55625}, {18581, 42908}, {18582, 42909}, {20125, 34584}, {22235, 42116}, {22237, 42115}, {23249, 41963}, {23251, 43409}, {23259, 41964}, {23261, 43410}, {23267, 42260}, {23273, 42261}, {23275, 42275}, {25555, 43621}, {29012, 55608}, {29317, 55710}, {29323, 55634}, {31404, 44541}, {31412, 51911}, {31414, 53130}, {31670, 55706}, {33750, 51163}, {34507, 48920}, {34785, 41470}, {35812, 43432}, {35813, 43433}, {35820, 43509}, {35821, 43510}, {36836, 42777}, {36843, 42778}, {36967, 42516}, {36968, 42517}, {37640, 43633}, {37641, 43632}, {38079, 51213}, {38083, 50867}, {41957, 42259}, {41958, 42258}, {41973, 42099}, {41974, 42100}, {41977, 42901}, {41978, 42900}, {42087, 42998}, {42088, 42999}, {42101, 42774}, {42102, 42773}, {42104, 42776}, {42105, 42775}, {42108, 43239}, {42109, 43238}, {42119, 42158}, {42120, 42157}, {42125, 43480}, {42128, 43479}, {42130, 42924}, {42131, 42925}, {42133, 42944}, {42134, 42945}, {42140, 42149}, {42141, 42152}, {42144, 42989}, {42145, 42988}, {42160, 42430}, {42161, 42429}, {42225, 43511}, {42226, 43512}, {42433, 43427}, {42434, 43426}, {42512, 42529}, {42513, 42528}, {42543, 49861}, {42544, 49862}, {42561, 51910}, {42586, 49826}, {42587, 49827}, {42641, 43887}, {42642, 43888}, {42793, 42940}, {42794, 42941}, {42817, 43556}, {42818, 43557}, {42920, 43446}, {42921, 43447}, {44299, 46852}, {45186, 61136}, {46264, 55720}, {48885, 55630}, {48892, 51538}, {48901, 55686}, {50975, 53093}, {50992, 55588}, {51023, 55606}, {51179, 53097}

X(62147) = midpoint of X(i) and X(j) for these {i,j}: {631, 3529}, {5076, 17800}, {14093, 15685}, {15683, 15697}
X(62147) = reflection of X(i) in X(j) for these {i,j}: {1656, 550}, {15682, 5071}, {15692, 3534}, {15695, 15686}, {15713, 15691}, {17538, 20}, {17578, 3}, {382, 632}, {3091, 15696}, {3146, 3843}, {3543, 15693}, {3830, 15714}, {4, 3522}, {5071, 15697}, {631, 17538}
X(62147) = anticomplement of X(5076)
X(62147) = pole of line {185, 61886} with respect to the Jerabek hyperbola
X(62147) = pole of line {69, 12103} with respect to the Wallace hyperbola
X(62147) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(49137)}}, {{A, B, C, X(69), X(12103)}}, {{A, B, C, X(140), X(18851)}}, {{A, B, C, X(632), X(15740)}}, {{A, B, C, X(1294), X(17578)}}, {{A, B, C, X(1593), X(57730)}}, {{A, B, C, X(1657), X(18847)}}, {{A, B, C, X(3519), X(15681)}}, {{A, B, C, X(3522), X(18849)}}, {{A, B, C, X(3532), X(55570)}}, {{A, B, C, X(3627), X(43699)}}, {{A, B, C, X(3851), X(18853)}}, {{A, B, C, X(3854), X(18854)}}, {{A, B, C, X(4846), X(5079)}}, {{A, B, C, X(5056), X(18852)}}, {{A, B, C, X(5070), X(14861)}}, {{A, B, C, X(5198), X(13603)}}, {{A, B, C, X(10109), X(54763)}}, {{A, B, C, X(10151), X(14536)}}, {{A, B, C, X(10299), X(18850)}}, {{A, B, C, X(12811), X(31371)}}, {{A, B, C, X(14491), X(35502)}}, {{A, B, C, X(15693), X(54660)}}, {{A, B, C, X(15696), X(42021)}}, {{A, B, C, X(15705), X(60618)}}, {{A, B, C, X(15721), X(40448)}}, {{A, B, C, X(19710), X(54667)}}, {{A, B, C, X(50688), X(51348)}}
X(62147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17800, 11541}, {2, 20, 12103}, {3, 15682, 3855}, {3, 15687, 7486}, {3, 30, 17578}, {3, 382, 5066}, {3, 3855, 15709}, {3, 5, 15721}, {3, 5071, 631}, {4, 11001, 1657}, {4, 13635, 17800}, {4, 3525, 3851}, {4, 3528, 140}, {4, 376, 10299}, {4, 5071, 3858}, {20, 11001, 3529}, {20, 15704, 11001}, {20, 30, 17538}, {20, 3146, 3534}, {20, 3529, 376}, {20, 5059, 550}, {30, 15686, 15695}, {30, 15691, 15713}, {30, 15693, 3543}, {30, 15696, 3091}, {30, 15714, 3830}, {30, 3534, 15692}, {30, 3843, 3146}, {30, 5071, 15682}, {30, 550, 1656}, {30, 632, 382}, {140, 3146, 4}, {382, 15695, 632}, {548, 3525, 15710}, {548, 3543, 3525}, {550, 5073, 3523}, {631, 1656, 3533}, {1656, 3858, 5068}, {3090, 10109, 6874}, {3091, 3522, 15712}, {3146, 15692, 3843}, {3146, 3528, 3545}, {3146, 3534, 3528}, {3146, 7486, 15687}, {3523, 5059, 5073}, {3534, 17800, 3857}, {3627, 10304, 5067}, {3627, 15720, 3854}, {3627, 6996, 6942}, {3830, 15717, 3544}, {3845, 6923, 5056}, {3853, 15688, 10303}, {3854, 10304, 15720}, {3855, 15700, 16849}, {3855, 15709, 3090}, {3857, 15687, 3861}, {5068, 15683, 5059}, {12103, 17800, 2}, {14093, 15685, 30}, {14813, 14814, 15681}, {15640, 15689, 15702}, {15681, 15704, 20}, {15687, 15692, 5071}, {15687, 15699, 3860}, {15696, 15712, 3522}, {15697, 17578, 3}, {23269, 43788, 42638}, {23275, 43787, 42637}, {42099, 42151, 43770}, {42100, 42150, 43769}, {42260, 42414, 23267}, {42276, 42638, 23269}


X(62148) = X(1)X(51080)∩X(2)X(3)

Barycentrics    35*a^4-13*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62148) = -5*X[1]+8*X[51080], -13*X[2]+16*X[3], -5*X[6]+8*X[51135], -X[8]+4*X[34638], -5*X[69]+8*X[50970], -X[145]+4*X[34628], -5*X[193]+8*X[51136], -5*X[1698]+8*X[50816], X[1992]+2*X[48872], -5*X[3616]+8*X[50815], -5*X[3617]+8*X[50808], -5*X[3618]+8*X[50971] and many others

X(62148) lies on these lines: {1, 51080}, {2, 3}, {6, 51135}, {8, 34638}, {13, 43637}, {14, 43636}, {69, 50970}, {145, 34628}, {193, 51136}, {371, 43322}, {372, 43323}, {754, 53141}, {1151, 42572}, {1152, 42573}, {1698, 50816}, {1992, 48872}, {3068, 6439}, {3069, 6440}, {3616, 50815}, {3617, 50808}, {3618, 50971}, {3619, 51022}, {3620, 50965}, {3621, 34632}, {3622, 50865}, {3623, 50811}, {3624, 50869}, {3763, 50972}, {4678, 31730}, {4704, 51042}, {4772, 51065}, {4821, 51044}, {5032, 29181}, {5237, 49873}, {5238, 49874}, {5365, 41944}, {5366, 41943}, {5921, 48896}, {6361, 20014}, {6433, 42641}, {6434, 42642}, {6449, 14241}, {6450, 14226}, {6459, 43209}, {6460, 43210}, {6478, 35822}, {6479, 35823}, {6480, 43342}, {6481, 43343}, {7736, 11742}, {7750, 32880}, {7802, 32840}, {8972, 42540}, {9778, 37712}, {9780, 50862}, {9812, 61274}, {10653, 43645}, {10654, 43646}, {11057, 32830}, {11160, 14927}, {11177, 35369}, {11178, 50969}, {11179, 48879}, {11480, 43540}, {11481, 43541}, {12699, 50819}, {13665, 43788}, {13785, 43787}, {13846, 42570}, {13847, 42571}, {13941, 42539}, {14831, 52093}, {14907, 32874}, {15808, 51119}, {16267, 42090}, {16268, 42091}, {16644, 43201}, {16645, 43202}, {18440, 50966}, {18481, 50872}, {18492, 50867}, {18525, 50809}, {18581, 43373}, {18582, 43372}, {19862, 51081}, {19875, 59420}, {20049, 20070}, {20057, 51120}, {20080, 48905}, {20423, 48891}, {22236, 42588}, {22238, 42589}, {23251, 42538}, {23261, 42537}, {23267, 43321}, {23273, 43320}, {25055, 28158}, {28146, 61279}, {28150, 61275}, {28164, 53620}, {28172, 54448}, {28194, 61291}, {28198, 61287}, {28208, 59417}, {31670, 50975}, {31673, 50812}, {32787, 42414}, {32788, 42413}, {32808, 51953}, {32809, 51952}, {32826, 32893}, {32882, 37671}, {33878, 51215}, {34631, 61292}, {34648, 46933}, {35260, 50709}, {36967, 43232}, {36968, 43233}, {37640, 43252}, {37641, 43253}, {37832, 43294}, {37835, 43295}, {40112, 40196}, {41107, 43310}, {41108, 43311}, {42093, 42956}, {42094, 42957}, {42101, 51944}, {42102, 51945}, {42112, 43404}, {42113, 43403}, {42119, 43305}, {42120, 43304}, {42133, 42528}, {42134, 42529}, {42139, 43100}, {42140, 42625}, {42141, 42626}, {42142, 43107}, {42150, 49826}, {42151, 49827}, {42160, 42631}, {42161, 42632}, {42164, 49812}, {42165, 49813}, {42262, 43567}, {42265, 43566}, {42271, 42569}, {42272, 42568}, {42431, 49825}, {42432, 49824}, {42433, 42543}, {42434, 42544}, {42490, 43002}, {42491, 43003}, {42510, 43632}, {42511, 43633}, {42584, 43481}, {42585, 43482}, {42586, 43228}, {42587, 43229}, {42791, 43556}, {42792, 43557}, {42940, 43878}, {42941, 43877}, {42942, 43465}, {42943, 43466}, {42998, 46334}, {42999, 46335}, {43110, 43778}, {43111, 43777}, {43273, 51170}, {43416, 52079}, {43417, 52080}, {43473, 43869}, {43474, 43870}, {43503, 60297}, {43504, 60298}, {43641, 44016}, {43642, 44015}, {44456, 51176}, {46264, 51028}, {46930, 50829}, {47355, 51026}, {48873, 54174}, {48880, 50967}, {48881, 51023}, {48898, 54132}, {48920, 54173}, {50813, 50863}, {50820, 50873}, {50866, 51083}, {50870, 51073}, {50958, 55607}, {50964, 55672}, {50976, 51029}, {50994, 55614}, {51024, 51171}, {51092, 61289}, {51167, 55656}, {51177, 51211}, {52045, 52667}, {52046, 52666}, {54706, 60645}, {59373, 59411}, {60131, 60327}, {60287, 60328}, {60324, 60638}

X(62148) = midpoint of X(i) and X(j) for these {i,j}: {3524, 3529}, {15685, 15688}
X(62148) = reflection of X(i) in X(j) for these {i,j}: {11539, 15691}, {15682, 5055}, {15688, 15686}, {19875, 59420}, {382, 11539}, {3146, 3839}, {3524, 3534}, {3543, 3524}, {3545, 15689}, {3839, 376}, {4, 15688}, {5055, 550}, {59373, 59411}
X(62148) = inverse of X(61952) in orthocentroidal circle
X(62148) = inverse of X(61952) in Yff hyperbola
X(62148) = anticomplement of X(50687)
X(62148) = pole of line {523, 61952} with respect to the orthocentroidal circle
X(62148) = pole of line {185, 12045} with respect to the Jerabek hyperbola
X(62148) = pole of line {6, 61952} with respect to the Kiepert hyperbola
X(62148) = pole of line {523, 61952} with respect to the Yff hyperbola
X(62148) = pole of line {69, 62129} with respect to the Wallace hyperbola
X(62148) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3346), X(5076)}}, {{A, B, C, X(3543), X(52443)}}, {{A, B, C, X(3845), X(16251)}}, {{A, B, C, X(4846), X(10109)}}, {{A, B, C, X(12100), X(18850)}}, {{A, B, C, X(21734), X(57822)}}, {{A, B, C, X(36889), X(50689)}}, {{A, B, C, X(38441), X(56306)}}, {{A, B, C, X(44334), X(46270)}}, {{A, B, C, X(49135), X(52441)}}
X(62148) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 5059}, {2, 5079, 17532}, {3, 381, 11540}, {4, 15686, 15697}, {4, 16239, 3091}, {4, 376, 12100}, {5, 12100, 15694}, {5, 1657, 3529}, {20, 11001, 15683}, {20, 15697, 15686}, {20, 1657, 3146}, {20, 3523, 12103}, {20, 3543, 3534}, {30, 11539, 382}, {30, 15689, 3545}, {30, 15691, 11539}, {30, 3524, 3543}, {30, 3534, 3524}, {30, 376, 3839}, {30, 5055, 15682}, {30, 550, 5055}, {376, 11001, 1657}, {376, 14893, 15692}, {376, 15682, 3525}, {376, 3830, 3523}, {376, 3839, 15705}, {381, 15711, 3533}, {382, 15718, 3860}, {549, 15697, 7397}, {3146, 3854, 17578}, {3524, 15694, 15708}, {3524, 15709, 15720}, {3524, 15710, 15711}, {3525, 15682, 14893}, {3528, 3845, 15721}, {3545, 15689, 10304}, {3627, 15695, 15702}, {3845, 15721, 15022}, {10124, 13735, 2}, {11001, 15681, 20}, {11541, 15696, 5056}, {11541, 15698, 15687}, {11812, 14893, 5}, {12100, 15699, 5054}, {12101, 17678, 13587}, {13587, 13731, 16859}, {13587, 17571, 16371}, {14869, 15688, 15710}, {15681, 15704, 11001}, {15682, 15692, 3832}, {15684, 15690, 631}, {15685, 15686, 4}, {15685, 15688, 30}, {15687, 15696, 15698}, {15691, 15718, 376}, {15694, 15697, 3522}, {15697, 15708, 15688}, {17545, 17549, 16370}, {42586, 43228, 43769}, {42587, 43229, 43770}


X(62149) = X(2)X(3)∩X(6)X(43785)

Barycentrics    29*a^4-11*(b^2-c^2)^2-18*a^2*(b^2+c^2) : :
X(62149) = -33*X[2]+40*X[3], -11*X[1352]+18*X[55613], -8*X[3626]+15*X[9778], 2*X[3629]+5*X[48872], -3*X[3632]+10*X[5493], -X[5921]+8*X[48880], -8*X[6329]+15*X[59411], -11*X[6776]+4*X[55723], -33*X[10519]+40*X[55619], 2*X[11008]+5*X[61044], -16*X[12512]+9*X[54448], -8*X[13382]+15*X[52093] and many others

X(62149) lies on these lines: {2, 3}, {6, 43785}, {61, 43231}, {62, 43230}, {516, 20057}, {1131, 41963}, {1132, 41964}, {1151, 43376}, {1152, 43377}, {1352, 55613}, {3590, 23251}, {3591, 23261}, {3622, 28150}, {3626, 9778}, {3629, 48872}, {3632, 5493}, {3982, 4313}, {5343, 42091}, {5344, 42090}, {5365, 42112}, {5366, 42113}, {5921, 48880}, {6200, 43515}, {6329, 59411}, {6396, 43516}, {6409, 43507}, {6410, 43508}, {6433, 42570}, {6434, 42571}, {6435, 42267}, {6436, 42266}, {6776, 55723}, {7756, 14075}, {7802, 10513}, {8981, 43788}, {9777, 35253}, {10519, 55619}, {11008, 61044}, {11015, 20059}, {11542, 43487}, {11543, 43488}, {12512, 54448}, {13382, 52093}, {13925, 60620}, {13966, 43787}, {13993, 60621}, {14853, 55702}, {14907, 32868}, {14927, 40341}, {15808, 28158}, {16241, 43552}, {16242, 43553}, {16981, 40647}, {18553, 55621}, {18845, 60332}, {20050, 20070}, {20080, 48873}, {22235, 42141}, {22237, 42140}, {23249, 43570}, {23259, 43571}, {29012, 55605}, {29317, 55712}, {31412, 41950}, {31454, 43258}, {31670, 55707}, {34507, 55599}, {34785, 54211}, {35369, 38741}, {38259, 60334}, {41949, 42561}, {42085, 42780}, {42086, 42779}, {42087, 43769}, {42088, 43770}, {42099, 42999}, {42100, 42998}, {42108, 42495}, {42109, 42494}, {42119, 43106}, {42120, 43105}, {42130, 43242}, {42131, 43243}, {42139, 43874}, {42142, 43873}, {42149, 43557}, {42152, 43556}, {42157, 42994}, {42158, 42995}, {42160, 42938}, {42161, 42939}, {42225, 42523}, {42226, 42522}, {42275, 43520}, {42276, 43519}, {42413, 43511}, {42414, 43512}, {42415, 43631}, {42416, 43630}, {42510, 42543}, {42511, 42544}, {42528, 42908}, {42529, 42909}, {42612, 49826}, {42613, 49827}, {42641, 53513}, {42642, 53516}, {42684, 43771}, {42685, 43772}, {42793, 43480}, {42794, 43479}, {42797, 43474}, {42798, 43473}, {42920, 42958}, {42921, 42959}, {42928, 43498}, {42929, 43497}, {43560, 51911}, {43561, 51910}, {43676, 47586}, {43681, 53100}, {43773, 56608}, {43774, 56609}, {44134, 57894}, {46264, 55719}, {48879, 51170}, {48891, 55709}, {48896, 55589}, {48898, 55715}, {48920, 55609}, {50809, 61249}, {50956, 55652}, {51177, 53092}, {51952, 58803}, {51953, 58804}, {53102, 60118}, {60142, 60145}, {60147, 60642}

X(62149) = midpoint of X(i) and X(j) for these {i,j}: {3528, 3529}
X(62149) = reflection of X(i) in X(j) for these {i,j}: {15682, 15703}, {15702, 3534}, {382, 14869}, {3146, 3832}, {3543, 15698}, {3851, 550}
X(62149) = anticomplement of X(50688)
X(62149) = pole of line {185, 46935} with respect to the Jerabek hyperbola
X(62149) = pole of line {69, 62125} with respect to the Wallace hyperbola
X(62149) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(46935)}}, {{A, B, C, X(3346), X(3853)}}, {{A, B, C, X(3522), X(57894)}}, {{A, B, C, X(3843), X(16251)}}, {{A, B, C, X(4846), X(12812)}}, {{A, B, C, X(6662), X(41987)}}, {{A, B, C, X(14841), X(15685)}}, {{A, B, C, X(14861), X(55857)}}, {{A, B, C, X(15688), X(26861)}}, {{A, B, C, X(15698), X(60618)}}, {{A, B, C, X(15712), X(18850)}}, {{A, B, C, X(17578), X(51348)}}, {{A, B, C, X(18846), X(49139)}}, {{A, B, C, X(33699), X(54552)}}, {{A, B, C, X(35510), X(49135)}}, {{A, B, C, X(38282), X(60334)}}, {{A, B, C, X(42021), X(44245)}}, {{A, B, C, X(52299), X(60332)}}
X(62149) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17578, 546}, {2, 3855, 15022}, {2, 550, 3522}, {3, 10109, 631}, {4, 376, 15712}, {20, 10304, 12103}, {20, 15683, 3146}, {20, 3091, 3534}, {20, 3543, 17538}, {30, 14869, 382}, {30, 15703, 15682}, {30, 3534, 15702}, {30, 550, 3851}, {140, 550, 15688}, {376, 11812, 10304}, {376, 3146, 13735}, {376, 5073, 5056}, {382, 15695, 1010}, {382, 550, 10299}, {546, 3530, 15699}, {548, 11541, 3839}, {548, 3543, 16858}, {548, 5079, 15715}, {550, 1657, 3529}, {550, 3851, 3528}, {1656, 15718, 140}, {1656, 1657, 15685}, {1657, 15681, 550}, {1657, 5059, 15683}, {3090, 14869, 16857}, {3090, 3528, 15700}, {3146, 3522, 5068}, {3522, 5068, 15717}, {3523, 5056, 3526}, {3526, 15707, 14869}, {3526, 17578, 3832}, {3528, 3529, 30}, {3534, 15699, 376}, {5056, 5073, 17578}, {5073, 15712, 4}, {5079, 15693, 16067}, {10299, 14869, 3523}, {10304, 15687, 2}, {11001, 15704, 20}, {13635, 15697, 5059}, {15022, 15683, 17800}, {15682, 15696, 10303}, {17538, 17800, 3543}, {43785, 43786, 6}


X(62150) = X(2)X(3)∩X(1159)X(4333)

Barycentrics    21*a^4-8*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62150) = -24*X[2]+29*X[3], X[1351]+4*X[48879], -14*X[3579]+9*X[61254], -14*X[4297]+9*X[61279], -3*X[5050]+8*X[48891], -27*X[5093]+32*X[33749], -7*X[8148]+12*X[61291], -4*X[8227]+5*X[58224], -4*X[9589]+9*X[10247], -9*X[9778]+4*X[61249], -4*X[10721]+9*X[38638], -4*X[10722]+9*X[38635] and many others

X(62150) lies on these lines: {2, 3}, {516, 61284}, {1159, 4333}, {1351, 48879}, {3068, 10145}, {3069, 10146}, {3070, 9691}, {3579, 61254}, {4297, 61279}, {4316, 9670}, {4324, 9657}, {4325, 7373}, {4330, 6767}, {5050, 48891}, {5093, 33749}, {5339, 42430}, {5340, 42429}, {5346, 44526}, {5734, 28178}, {5965, 48905}, {6417, 42267}, {6418, 42266}, {6445, 35820}, {6446, 35821}, {7747, 11742}, {7756, 43136}, {7765, 21309}, {8148, 61291}, {8227, 58224}, {9589, 10247}, {9606, 43618}, {9680, 42272}, {9690, 31454}, {9778, 61249}, {10143, 43342}, {10144, 43343}, {10721, 38638}, {10722, 38635}, {10723, 38634}, {10724, 38637}, {10728, 38636}, {10733, 38633}, {11362, 61247}, {11480, 43642}, {11481, 43641}, {11485, 43633}, {11486, 43632}, {11645, 55595}, {12279, 54048}, {12512, 61258}, {13881, 15603}, {14531, 14641}, {15069, 48880}, {15338, 31480}, {15606, 18439}, {16772, 42113}, {16773, 42112}, {16960, 42097}, {16961, 42096}, {18481, 28232}, {18493, 28158}, {18510, 42413}, {18512, 42414}, {20070, 61297}, {23241, 38591}, {28146, 37624}, {28150, 61276}, {28154, 61274}, {28160, 61250}, {28168, 37714}, {28182, 58233}, {28198, 61288}, {28228, 37727}, {29012, 55604}, {29317, 53091}, {29323, 55629}, {31457, 44541}, {31487, 42260}, {31666, 50806}, {32903, 61721}, {33878, 48896}, {36836, 42892}, {36843, 42893}, {36990, 55624}, {37494, 61150}, {38639, 44988}, {38640, 44981}, {40107, 55616}, {41869, 58230}, {42095, 43371}, {42098, 43370}, {42099, 42991}, {42100, 42990}, {42115, 42901}, {42116, 42900}, {42130, 42148}, {42131, 42147}, {42154, 43020}, {42155, 43021}, {42160, 42778}, {42161, 42777}, {42271, 45385}, {42275, 43415}, {42512, 43401}, {42513, 43402}, {42544, 61719}, {42801, 43420}, {42802, 43421}, {42936, 51945}, {42937, 51944}, {42938, 43636}, {42939, 43637}, {43209, 43786}, {43210, 43785}, {43422, 49903}, {43423, 49904}, {43485, 43645}, {43486, 43646}, {44456, 48872}, {47353, 55620}, {48884, 55643}, {48885, 55632}, {48892, 55692}, {48904, 55682}, {48910, 55697}, {48920, 55610}, {48942, 55654}, {48943, 55673}, {50963, 55687}, {50976, 55679}, {50993, 55623}, {51024, 55701}, {55705, 59411}, {58222, 61269}, {58238, 61286}, {58250, 61295}

X(62150) = midpoint of X(i) and X(j) for these {i,j}: {3522, 3529}, {3843, 17800}
X(62150) = reflection of X(i) in X(j) for these {i,j}: {1656, 17538}, {15694, 3534}, {15696, 20}, {15712, 12103}, {381, 15697}, {382, 631}, {3091, 550}, {3146, 3858}, {3543, 15711}, {3830, 14093}, {3843, 15696}, {5073, 5076}, {5076, 3522}
X(62150) = pole of line {185, 15703} with respect to the Jerabek hyperbola
X(62150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1105), X(15703)}}, {{A, B, C, X(3521), X(41106)}}, {{A, B, C, X(15318), X(15687)}}, {{A, B, C, X(44682), X(46168)}}
X(62150) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1657, 15685}, {3, 4, 15703}, {5, 20, 3534}, {5, 3524, 3526}, {5, 3530, 3533}, {20, 1657, 17800}, {20, 17578, 17538}, {20, 30, 15696}, {20, 3528, 12103}, {20, 3529, 5}, {20, 5059, 3528}, {30, 12103, 15712}, {30, 14093, 3830}, {30, 15697, 381}, {30, 15711, 3543}, {30, 17538, 1656}, {30, 3522, 5076}, {30, 3534, 15694}, {30, 3858, 3146}, {30, 5076, 5073}, {30, 550, 3091}, {30, 631, 382}, {382, 3526, 3861}, {382, 548, 5070}, {631, 17578, 3859}, {631, 7486, 632}, {1656, 15695, 3}, {1656, 17538, 15695}, {1656, 17578, 3843}, {1657, 15704, 15681}, {1657, 3534, 3529}, {2041, 2042, 15687}, {3091, 3522, 3524}, {3146, 15721, 4}, {3146, 3533, 12101}, {3522, 3529, 30}, {3526, 15696, 14093}, {3830, 15695, 15713}, {3861, 15759, 16239}, {10303, 15697, 3522}, {11001, 15704, 1657}, {12103, 15712, 15697}, {12103, 15759, 550}, {15681, 17800, 20}, {15684, 15722, 14269}, {15712, 16239, 631}


X(62151) = X(2)X(3)∩X(6)X(42415)

Barycentrics    18*a^4-7*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62151) = -21*X[2]+25*X[3], -9*X[40]+5*X[61248], -7*X[141]+9*X[55630], -3*X[3579]+2*X[61255], X[3629]+5*X[48879], -7*X[3818]+11*X[55635], -7*X[5480]+9*X[55693], -9*X[5690]+7*X[61252], -3*X[5943]+4*X[55286], -2*X[6329]+5*X[48891], -X[9589]+3*X[34773], -7*X[10248]+9*X[61270] and many others

X(62151) lies on these lines: {2, 3}, {6, 42415}, {40, 61248}, {61, 43111}, {62, 43110}, {141, 55630}, {323, 52100}, {397, 43231}, {398, 43230}, {516, 61286}, {1131, 43788}, {1132, 43787}, {1503, 55590}, {2548, 11742}, {3244, 28174}, {3411, 42164}, {3412, 42165}, {3564, 48896}, {3579, 61255}, {3626, 28160}, {3629, 48879}, {3631, 29012}, {3632, 28224}, {3636, 28150}, {3818, 55635}, {4031, 12433}, {4297, 28182}, {4301, 28178}, {4309, 8162}, {4316, 37722}, {4317, 15172}, {4324, 15888}, {4325, 15171}, {4330, 18990}, {4333, 37724}, {5237, 42545}, {5238, 42546}, {5334, 43307}, {5335, 43306}, {5349, 42528}, {5350, 42529}, {5351, 43402}, {5352, 43401}, {5480, 55693}, {5690, 61252}, {5893, 32903}, {5901, 28154}, {5943, 55286}, {6329, 48891}, {6468, 42276}, {6469, 42275}, {6470, 6560}, {6471, 6561}, {6486, 53517}, {6487, 53520}, {7583, 42643}, {7584, 42644}, {8972, 60305}, {9589, 34773}, {9680, 43515}, {9681, 42264}, {9692, 23269}, {9705, 37477}, {9706, 43576}, {10248, 61270}, {10282, 50709}, {10653, 43305}, {10654, 43304}, {10721, 13392}, {11224, 18481}, {11362, 28186}, {11480, 42889}, {11481, 42888}, {11542, 42434}, {11543, 42433}, {13348, 32137}, {13391, 14641}, {13491, 14531}, {13598, 58533}, {13846, 43570}, {13847, 43571}, {13941, 60306}, {14915, 15606}, {15069, 48874}, {15516, 29317}, {15520, 48898}, {15808, 22793}, {16003, 44796}, {16163, 61598}, {16772, 42137}, {16773, 42136}, {16964, 42123}, {16965, 42122}, {18357, 28172}, {18358, 48885}, {18538, 51911}, {18583, 55696}, {18762, 51910}, {20050, 61297}, {20396, 37853}, {20583, 33749}, {23302, 43195}, {23303, 43196}, {24466, 61605}, {25555, 50971}, {28158, 40273}, {28168, 61524}, {28190, 31730}, {28212, 37727}, {29181, 55716}, {29323, 55625}, {31399, 33697}, {31447, 31673}, {31457, 53418}, {34380, 48905}, {35812, 42272}, {35813, 42271}, {36967, 42779}, {36968, 42780}, {36969, 42997}, {36970, 42996}, {38738, 61599}, {38749, 61600}, {38761, 61601}, {38773, 61602}, {38785, 61603}, {40107, 48920}, {40341, 48873}, {40693, 42145}, {40694, 42144}, {41121, 42794}, {41122, 42793}, {41869, 51700}, {42087, 43633}, {42088, 43632}, {42099, 42148}, {42100, 42147}, {42104, 42491}, {42105, 42490}, {42112, 42153}, {42113, 42156}, {42117, 43193}, {42118, 43194}, {42130, 43631}, {42131, 43630}, {42143, 43295}, {42146, 43294}, {42160, 42497}, {42161, 42496}, {42431, 42912}, {42432, 42913}, {42543, 43108}, {42544, 43109}, {42612, 43228}, {42613, 43229}, {42627, 42813}, {42628, 42814}, {42647, 43624}, {42648, 43625}, {42890, 42935}, {42891, 42934}, {42924, 42991}, {42925, 42990}, {42980, 43033}, {42981, 43032}, {44755, 54036}, {44870, 54044}, {44882, 55710}, {45956, 52093}, {46264, 61624}, {48880, 55596}, {48881, 55608}, {48892, 55690}, {48901, 55689}, {48910, 51732}, {50959, 55679}, {50972, 55650}, {50975, 55701}, {50991, 55617}, {51023, 55602}, {51095, 58240}

X(62151) = midpoint of X(i) and X(j) for these {i,j}: {5, 17800}, {550, 3529}, {1657, 15704}, {3627, 5059}, {15685, 15686}
X(62151) = reflection of X(i) in X(j) for these {i,j}: {140, 12103}, {10721, 13392}, {12100, 15686}, {12101, 376}, {14893, 15690}, {15682, 10124}, {15684, 10109}, {18358, 48885}, {382, 3530}, {3146, 3850}, {3543, 15759}, {3853, 548}, {32137, 13348}, {41869, 51700}, {48910, 51732}, {546, 550}, {547, 3534}, {548, 20}, {5066, 15691}, {5073, 12102}, {5893, 32903}, {61510, 31730}, {61545, 48881}, {61597, 18481}, {61598, 16163}, {61599, 38738}, {61600, 38749}, {61601, 38761}, {61602, 38773}, {61603, 38785}, {61605, 24466}, {61624, 46264}
X(62151) = inverse of X(37938) in Steiner circle
X(62151) = complement of X(62044)
X(62151) = anticomplement of X(62013)
X(62151) = pole of line {523, 29495} with respect to the Steiner circle
X(62151) = pole of line {185, 15699} with respect to the Jerabek hyperbola
X(62151) = pole of line {69, 55605} with respect to the Wallace hyperbola
X(62151) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(15699)}}, {{A, B, C, X(3521), X(38071)}}, {{A, B, C, X(5076), X(15318)}}, {{A, B, C, X(6662), X(50689)}}, {{A, B, C, X(21400), X(35434)}}, {{A, B, C, X(49139), X(57823)}}
X(62151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15682, 3858}, {3, 15721, 15712}, {3, 1657, 15683}, {3, 382, 3855}, {3, 3858, 10124}, {3, 4, 15699}, {3, 5068, 15713}, {4, 12100, 12812}, {4, 14869, 11737}, {5, 550, 3528}, {20, 17800, 5}, {20, 30, 548}, {20, 3529, 382}, {20, 3832, 17538}, {20, 3861, 15691}, {20, 5059, 631}, {20, 548, 12103}, {20, 631, 3534}, {20, 6880, 15718}, {30, 10109, 15684}, {30, 10124, 15682}, {30, 12102, 5073}, {30, 15690, 14893}, {30, 15759, 3543}, {30, 3534, 547}, {30, 376, 12101}, {30, 3850, 3146}, {30, 548, 3853}, {30, 550, 546}, {140, 12103, 15690}, {140, 3853, 3859}, {382, 15681, 20}, {382, 15720, 3843}, {382, 17504, 3856}, {382, 550, 3530}, {547, 12100, 14890}, {549, 5073, 12102}, {550, 15704, 15681}, {550, 3627, 17504}, {1657, 11001, 15704}, {1657, 15681, 3529}, {2041, 2042, 5076}, {3146, 10299, 14269}, {3146, 15708, 4}, {3146, 8703, 3850}, {3522, 15709, 3}, {3522, 3544, 15700}, {3522, 3845, 12108}, {3530, 11737, 16239}, {3530, 16239, 14869}, {3530, 4205, 5054}, {3534, 5059, 3627}, {3543, 15759, 14892}, {3627, 17504, 3851}, {3830, 15712, 12811}, {3845, 6891, 11812}, {3853, 5066, 3861}, {3856, 3861, 3839}, {5068, 15713, 3628}, {5073, 17538, 549}, {6931, 10299, 15707}, {11737, 15688, 12100}, {12100, 12812, 140}, {12101, 15713, 5066}, {14269, 15688, 15708}, {14869, 15686, 550}, {15681, 15683, 15687}, {15681, 15685, 15688}, {15685, 15686, 30}, {15686, 15699, 15697}, {18481, 28216, 61597}, {42415, 42416, 6}, {42433, 42630, 42938}, {42434, 42629, 42939}


X(62152) = X(2)X(3)∩X(15)X(43324)

Barycentrics    23*a^4-9*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62152) = -27*X[2]+32*X[3], X[193]+4*X[48872], -9*X[1352]+14*X[55611], -3*X[3620]+4*X[55614], -3*X[3621]+8*X[7991], -7*X[4678]+12*X[9778], -8*X[5493]+3*X[31145], -27*X[5603]+32*X[58232], -3*X[5921]+8*X[52987], X[6776]+4*X[48879], -4*X[7758]+9*X[53141], -3*X[8596]+8*X[10991] and many others

X(62152) lies on these lines: {2, 3}, {15, 43324}, {16, 43325}, {145, 28228}, {193, 48872}, {315, 32879}, {397, 42516}, {398, 42517}, {485, 42540}, {486, 42539}, {515, 20052}, {516, 3623}, {590, 43560}, {615, 43561}, {1131, 6488}, {1132, 6489}, {1352, 55611}, {3068, 43519}, {3069, 17852}, {3070, 9543}, {3071, 43884}, {3590, 52045}, {3591, 52046}, {3616, 28158}, {3617, 28164}, {3620, 55614}, {3621, 7991}, {3785, 32894}, {4316, 14986}, {4678, 9778}, {5237, 42112}, {5238, 42113}, {5339, 43420}, {5340, 43421}, {5343, 42433}, {5344, 42434}, {5351, 42133}, {5352, 42134}, {5422, 16936}, {5493, 31145}, {5556, 53054}, {5603, 58232}, {5921, 52987}, {5965, 48896}, {6419, 43407}, {6420, 43408}, {6447, 23267}, {6448, 23273}, {6449, 43788}, {6450, 43787}, {6453, 42276}, {6454, 42275}, {6482, 43430}, {6483, 43431}, {6776, 48879}, {7585, 42414}, {7586, 42413}, {7758, 53141}, {7982, 28232}, {8596, 10991}, {8972, 42272}, {9542, 23269}, {9545, 43576}, {9780, 59420}, {9812, 30389}, {10147, 42638}, {10148, 42637}, {10248, 58225}, {10444, 33800}, {10519, 48920}, {10541, 51538}, {10595, 28182}, {10653, 43009}, {10654, 43008}, {11002, 15012}, {11230, 58223}, {11381, 33884}, {11441, 33534}, {11488, 42683}, {11489, 42682}, {12121, 38632}, {12279, 45187}, {12512, 46933}, {13846, 60291}, {13847, 60292}, {13941, 42271}, {14853, 48891}, {14927, 20080}, {15044, 37853}, {16192, 46931}, {16625, 16981}, {16772, 43540}, {16773, 43541}, {16960, 42161}, {16961, 42160}, {20014, 20070}, {20127, 38626}, {20190, 43621}, {20477, 54111}, {22234, 29317}, {22235, 43332}, {22236, 43465}, {22237, 43333}, {22238, 43466}, {22330, 48898}, {22615, 43315}, {22644, 43314}, {23253, 51911}, {23263, 51910}, {29012, 55600}, {29181, 51170}, {29323, 55623}, {31399, 50812}, {31670, 55708}, {32815, 32882}, {32826, 32872}, {32827, 32873}, {33750, 48904}, {35007, 43619}, {35369, 38664}, {35770, 43336}, {35771, 43337}, {36836, 42141}, {36843, 42140}, {37665, 44519}, {38064, 51213}, {38068, 50867}, {38259, 54921}, {38627, 38741}, {38628, 38730}, {38631, 38753}, {39874, 55580}, {39884, 55620}, {40330, 55637}, {40693, 42429}, {40694, 42430}, {41973, 42521}, {41974, 42520}, {42085, 43015}, {42086, 43014}, {42108, 43474}, {42109, 43473}, {42115, 43329}, {42116, 43328}, {42144, 42983}, {42145, 42982}, {42157, 42800}, {42158, 42799}, {42263, 43511}, {42264, 43512}, {42512, 42813}, {42513, 42814}, {42584, 43242}, {42585, 43243}, {42588, 43252}, {42589, 43253}, {42598, 43869}, {42599, 43870}, {43193, 43495}, {43194, 43496}, {43384, 43786}, {43385, 43785}, {43618, 53096}, {43771, 56608}, {43772, 56609}, {43879, 52667}, {43880, 52666}, {46264, 55718}, {46934, 51118}, {47586, 60635}, {48873, 55588}, {48880, 55597}, {48905, 61044}, {50819, 61276}, {51092, 58242}, {51163, 55684}, {51171, 59411}, {51212, 53858}, {60324, 60628}, {60328, 60648}

X(62152) = midpoint of X(i) and X(j) for these {i,j}: {1656, 17800}, {3529, 17538}, {5059, 17578}
X(62152) = reflection of X(i) in X(j) for these {i,j}: {15682, 15694}, {15693, 15686}, {17578, 3522}, {382, 15712}, {3091, 17538}, {3146, 3091}, {3522, 20}, {3843, 550}, {4, 15696}, {5071, 3534}, {51996, 16936}, {632, 12103}
X(62152) = anticomplement of X(17578)
X(62152) = pole of line {185, 10219} with respect to the Jerabek hyperbola
X(62152) = pole of line {69, 62124} with respect to the Wallace hyperbola
X(62152) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(546), X(16251)}}, {{A, B, C, X(1105), X(46936)}}, {{A, B, C, X(1217), X(19709)}}, {{A, B, C, X(3346), X(3830)}}, {{A, B, C, X(3530), X(18850)}}, {{A, B, C, X(4846), X(35018)}}, {{A, B, C, X(5068), X(31371)}}, {{A, B, C, X(13452), X(47486)}}, {{A, B, C, X(14843), X(49138)}}, {{A, B, C, X(15077), X(49135)}}, {{A, B, C, X(17578), X(18296)}}, {{A, B, C, X(18846), X(49137)}}, {{A, B, C, X(18855), X(41991)}}, {{A, B, C, X(35510), X(50692)}}, {{A, B, C, X(38282), X(54921)}}, {{A, B, C, X(50690), X(52443)}}, {{A, B, C, X(60618), X(61138)}}
X(62152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3544, 17568}, {3, 12102, 3090}, {3, 3544, 10303}, {3, 3627, 3544}, {3, 382, 3857}, {3, 3857, 3525}, {3, 5076, 12812}, {4, 15696, 15692}, {4, 15710, 5070}, {4, 15719, 5}, {4, 376, 3530}, {20, 1657, 15683}, {20, 17800, 3832}, {20, 3523, 3534}, {20, 3529, 3146}, {20, 3543, 550}, {20, 5059, 2}, {30, 12103, 632}, {30, 15686, 15693}, {30, 15694, 15682}, {30, 15696, 4}, {30, 15712, 382}, {30, 17538, 3091}, {30, 3522, 17578}, {30, 3534, 5071}, {30, 550, 3843}, {140, 1657, 13635}, {140, 547, 4205}, {376, 15701, 10304}, {376, 3544, 3}, {382, 10304, 5068}, {548, 15682, 5056}, {548, 5056, 15705}, {548, 6927, 7486}, {632, 12103, 15696}, {632, 3859, 5079}, {1656, 15711, 631}, {1656, 17800, 30}, {1656, 3843, 5066}, {1657, 11001, 20}, {1657, 15704, 3529}, {3091, 10303, 1656}, {3146, 13741, 15687}, {3146, 3832, 3627}, {3522, 5068, 15712}, {3523, 14891, 15717}, {3528, 5073, 3839}, {3529, 11001, 15704}, {3529, 5068, 6996}, {3534, 11539, 376}, {3543, 15717, 3854}, {3627, 11539, 546}, {3851, 15721, 13735}, {3853, 15689, 10299}, {3853, 15696, 7390}, {4188, 16860, 404}, {4188, 17536, 11345}, {5066, 14891, 11539}, {5070, 15710, 3523}, {5073, 15686, 3528}, {12103, 15696, 17538}, {12103, 15704, 15681}, {15681, 15685, 5054}, {15685, 15717, 5059}, {15692, 15696, 3522}


X(62153) = X(2)X(3)∩X(6)X(51211)

Barycentrics    43*a^4-17*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(62153) = -17*X[2]+20*X[3], -8*X[6]+5*X[51211], -8*X[10]+5*X[50863], -8*X[141]+5*X[51216], X[193]+8*X[48879], -8*X[1125]+5*X[50873], -2*X[3244]+5*X[34628], -8*X[3589]+5*X[51029], -7*X[3619]+10*X[50968], -7*X[3622]+10*X[50819], -7*X[3624]+10*X[51079], -2*X[3626]+5*X[34638] and many others

X(62153) lies on these lines: {2, 3}, {6, 51211}, {10, 50863}, {141, 51216}, {193, 48879}, {516, 16191}, {754, 11148}, {1125, 50873}, {3244, 34628}, {3589, 51029}, {3619, 50968}, {3622, 50819}, {3624, 51079}, {3626, 34638}, {3629, 51028}, {3631, 51023}, {3632, 34632}, {3634, 50866}, {3636, 50865}, {3818, 50969}, {4678, 50809}, {4681, 51064}, {4739, 51065}, {5334, 42430}, {5335, 42429}, {5343, 42938}, {5344, 42939}, {6329, 51024}, {6361, 20054}, {6455, 43560}, {6456, 43561}, {8596, 38741}, {8981, 43521}, {9540, 43515}, {9780, 50812}, {10653, 43243}, {10654, 43242}, {10721, 11693}, {11008, 48905}, {11160, 48873}, {11180, 48880}, {12820, 43364}, {12821, 43365}, {13935, 43516}, {13966, 43522}, {14927, 54174}, {15808, 50815}, {16267, 42629}, {16268, 42630}, {18480, 50813}, {18483, 50820}, {20057, 50811}, {20583, 51212}, {21850, 51177}, {21969, 52093}, {28150, 38314}, {28164, 38098}, {28168, 38074}, {29317, 33748}, {34573, 51167}, {36427, 36431}, {36967, 42635}, {36968, 42636}, {40341, 51215}, {41100, 43486}, {41101, 43485}, {41107, 42543}, {41108, 42544}, {41121, 43479}, {41122, 43480}, {41945, 42414}, {41946, 42413}, {42090, 42973}, {42091, 42972}, {42096, 43429}, {42097, 43428}, {42119, 42803}, {42120, 42804}, {42130, 43481}, {42131, 43482}, {42147, 42586}, {42148, 42587}, {42157, 49875}, {42158, 49876}, {42266, 43256}, {42267, 43257}, {42510, 42780}, {42511, 42779}, {42568, 43380}, {42569, 43381}, {42576, 53513}, {42577, 53516}, {42602, 43566}, {42603, 43567}, {42682, 56609}, {42683, 56608}, {42775, 43002}, {42776, 43003}, {42932, 43201}, {42933, 43202}, {42942, 42982}, {42943, 42983}, {42966, 46334}, {42967, 46335}, {43105, 43327}, {43106, 43326}, {43376, 43523}, {43377, 43524}, {43632, 49827}, {43633, 49826}, {46931, 50799}, {47355, 51134}, {48891, 50975}, {48896, 61044}, {50816, 50867}, {50874, 51081}, {50960, 55656}, {50971, 51213}, {50972, 51217}

X(62153) = midpoint of X(i) and X(j) for these {i,j}: {5054, 17800}
X(62153) = reflection of X(i) in X(j) for these {i,j}: {10304, 20}, {10721, 11693}, {14269, 550}, {15682, 5054}, {15684, 15699}, {15699, 12103}, {382, 17504}, {3146, 3545}, {3543, 10304}, {3545, 3534}, {4, 15689}, {5054, 15686}
X(62153) = anticomplement of X(62017)
X(62153) = pole of line {69, 62122} with respect to the Wallace hyperbola
X(62153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(253), X(15687)}}, {{A, B, C, X(15693), X(18850)}}, {{A, B, C, X(16251), X(41099)}}
X(62153) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15683, 3529}, {2, 17504, 15708}, {2, 2478, 17677}, {2, 3146, 15687}, {2, 3522, 15715}, {2, 3528, 15692}, {2, 5046, 17679}, {3, 14890, 3524}, {4, 376, 15693}, {20, 15692, 3534}, {20, 30, 10304}, {20, 3543, 15697}, {20, 5056, 17538}, {30, 10304, 3543}, {30, 12103, 15699}, {30, 15686, 5054}, {30, 15689, 4}, {30, 15699, 15684}, {30, 3545, 3146}, {30, 550, 14269}, {140, 17504, 15707}, {140, 3091, 7486}, {140, 3534, 376}, {376, 11001, 15704}, {376, 11541, 3845}, {376, 15682, 5067}, {376, 15685, 5059}, {376, 3845, 15717}, {376, 5067, 15759}, {376, 6834, 1656}, {382, 15688, 5055}, {382, 3851, 12102}, {550, 14269, 15710}, {1656, 3627, 6831}, {1657, 11001, 15683}, {3522, 17566, 10299}, {3529, 11001, 15681}, {3534, 15687, 3528}, {3543, 15697, 3523}, {5054, 17800, 30}, {5055, 15688, 17504}, {5055, 15693, 11539}, {5059, 15683, 15685}, {5059, 15717, 11541}, {5073, 15690, 5071}, {8703, 12102, 15723}, {10303, 12102, 3091}, {10304, 15721, 15705}, {11001, 15683, 20}, {14269, 15707, 5079}, {14269, 15710, 2}, {14893, 15719, 15022}, {15681, 15685, 382}, {15682, 15686, 3522}, {15682, 15715, 546}, {15683, 15704, 15640}, {15686, 17800, 15682}, {15687, 15707, 3545}, {15692, 15703, 15721}, {15693, 15703, 140}


X(62154) = X(2)X(3)∩X(13)X(42543)

Barycentrics    32*a^4-13*(b^2-c^2)^2-19*a^2*(b^2+c^2) : :
X(62154) = -13*X[2]+15*X[3], -2*X[3631]+5*X[48880], -6*X[3817]+7*X[50833], -4*X[4677]+3*X[61245], -6*X[5587]+7*X[50826], -2*X[5691]+3*X[38081], -5*X[8667]+3*X[53143], -3*X[10172]+2*X[50870], -3*X[10283]+2*X[50865], -6*X[10516]+7*X[50981], -3*X[11230]+2*X[50869], -3*X[11231]+4*X[50816] and many others

X(62154) lies on these lines: {2, 3}, {13, 42543}, {14, 42544}, {395, 42630}, {396, 42629}, {516, 51095}, {524, 48879}, {597, 48891}, {621, 33613}, {622, 33612}, {1151, 42576}, {1152, 42577}, {1483, 34628}, {1499, 34752}, {3070, 6478}, {3071, 6479}, {3244, 28198}, {3629, 19924}, {3631, 48880}, {3654, 28190}, {3817, 50833}, {4669, 28160}, {4677, 61245}, {5318, 42632}, {5321, 42631}, {5587, 50826}, {5690, 34638}, {5691, 38081}, {6200, 42639}, {6396, 42640}, {6409, 12818}, {6410, 12819}, {6411, 43503}, {6412, 43504}, {6429, 43342}, {6430, 43343}, {6439, 53130}, {6440, 53131}, {6441, 6560}, {6442, 6561}, {6445, 14241}, {6446, 14226}, {6480, 42572}, {6481, 42573}, {6488, 43432}, {6489, 43433}, {8667, 53143}, {8981, 42525}, {9541, 42643}, {9680, 42608}, {9691, 43519}, {10172, 50870}, {10283, 50865}, {10516, 50981}, {10653, 43108}, {10654, 43109}, {11230, 50869}, {11231, 50816}, {11480, 43877}, {11481, 43878}, {11485, 42588}, {11486, 42589}, {12816, 42109}, {12817, 42108}, {13846, 43791}, {13847, 43792}, {13966, 42524}, {14853, 51181}, {15533, 48873}, {16241, 43195}, {16242, 43196}, {16964, 42636}, {16965, 42635}, {18581, 43297}, {18582, 43296}, {20583, 48906}, {21969, 45956}, {22165, 29012}, {22615, 43212}, {22644, 43211}, {22793, 51108}, {28146, 50824}, {28150, 51103}, {28154, 51705}, {28158, 51709}, {28168, 38112}, {28172, 50821}, {28174, 51093}, {28178, 50811}, {28186, 50823}, {28202, 51071}, {28208, 34641}, {28212, 50831}, {28232, 51087}, {29317, 50979}, {29323, 50965}, {31730, 38098}, {33602, 42817}, {33603, 42818}, {33610, 52194}, {33611, 52193}, {33750, 51029}, {34747, 61295}, {35021, 36523}, {36836, 49860}, {36843, 49859}, {36967, 42145}, {36968, 42144}, {36969, 42791}, {36970, 42792}, {38022, 51118}, {38028, 50815}, {38034, 51109}, {38042, 50862}, {38079, 51163}, {38080, 52835}, {38110, 50971}, {38138, 51066}, {38176, 50868}, {38317, 51026}, {39561, 51135}, {39884, 50991}, {41100, 42117}, {41101, 42118}, {41107, 42087}, {41108, 42088}, {41112, 42097}, {41113, 42096}, {41119, 42137}, {41120, 42136}, {41121, 43401}, {41122, 43402}, {42090, 49905}, {42091, 49906}, {42099, 43106}, {42100, 43105}, {42103, 51944}, {42106, 51945}, {42107, 43476}, {42110, 43475}, {42112, 43417}, {42113, 43416}, {42115, 49873}, {42116, 49874}, {42122, 49947}, {42123, 49948}, {42126, 49812}, {42127, 49813}, {42130, 42415}, {42131, 42416}, {42135, 42528}, {42138, 42529}, {42140, 42497}, {42141, 42496}, {42147, 43485}, {42148, 43486}, {42154, 42584}, {42155, 42585}, {42215, 43209}, {42216, 43210}, {42263, 52048}, {42264, 52047}, {42266, 42417}, {42267, 42418}, {42419, 42509}, {42420, 42508}, {42431, 42506}, {42432, 42507}, {42502, 43016}, {42503, 43017}, {42510, 43640}, {42511, 43639}, {42520, 43645}, {42521, 43646}, {42532, 42779}, {42533, 42780}, {42598, 42798}, {42599, 42797}, {42686, 42906}, {42687, 42907}, {42692, 43484}, {42693, 43483}, {42781, 42942}, {42782, 42943}, {42912, 49811}, {42913, 49810}, {43254, 43562}, {43255, 43563}, {43328, 43642}, {43329, 43641}, {43473, 43554}, {43474, 43555}, {43787, 45385}, {43788, 45384}, {48920, 54169}, {50799, 61614}, {50807, 58221}, {50822, 51068}, {50832, 51110}, {50864, 59400}, {50958, 55603}, {50964, 55673}, {50994, 51184}, {51024, 59399}, {51167, 55654}, {51183, 54174}

X(62154) = midpoint of X(i) and X(j) for these {i,j}: {376, 17800}, {381, 5059}, {1657, 15683}, {3529, 15681}, {11001, 15685}
X(62154) = reflection of X(i) in X(j) for these {i,j}: {1483, 34628}, {15640, 12101}, {15682, 12100}, {15684, 140}, {15686, 15704}, {15687, 550}, {381, 12103}, {3146, 547}, {3543, 548}, {3627, 376}, {3830, 15690}, {3845, 3534}, {4, 15691}, {5, 15686}, {549, 20}, {550, 15681}, {5073, 14893}, {597, 48891}, {5690, 34638}, {51183, 54174}, {54169, 48920}
X(62154) = complement of X(62046)
X(62154) = anticomplement of X(62022)
X(62154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(35404)}}, {{A, B, C, X(8703), X(57894)}}
X(62154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15681}, {2, 14269, 5066}, {2, 15697, 3528}, {2, 15698, 15720}, {2, 15710, 15693}, {2, 3830, 546}, {2, 550, 8703}, {2, 8703, 17504}, {3, 15640, 12101}, {20, 3830, 15690}, {30, 12100, 15682}, {30, 12101, 15640}, {30, 12103, 381}, {30, 140, 15684}, {30, 14893, 5073}, {30, 15690, 3830}, {30, 15691, 4}, {30, 376, 3627}, {30, 547, 3146}, {30, 548, 3543}, {30, 550, 15687}, {376, 14269, 3530}, {376, 3627, 11539}, {376, 3832, 15706}, {376, 5066, 15711}, {381, 15697, 15759}, {382, 550, 14869}, {546, 1010, 3544}, {546, 3530, 1656}, {549, 15699, 3525}, {549, 15705, 15712}, {549, 3845, 10109}, {549, 550, 15688}, {1656, 10303, 16239}, {1657, 15685, 11001}, {3146, 15689, 547}, {3525, 3830, 3860}, {3528, 3529, 5059}, {3529, 11001, 2}, {3534, 15640, 11540}, {3534, 15682, 12100}, {3534, 15701, 376}, {3543, 15710, 3851}, {3830, 15716, 3545}, {3830, 15723, 6833}, {3839, 15696, 14891}, {3860, 15693, 15699}, {5066, 15759, 10303}, {5073, 10304, 14893}, {10303, 15719, 15701}, {10304, 14893, 632}, {11001, 15683, 15685}, {11001, 15685, 30}, {11539, 15701, 15713}, {11812, 15691, 15695}, {12100, 15682, 3845}, {12103, 15759, 15697}, {13735, 15716, 11812}, {15681, 15687, 15686}, {15681, 15688, 20}, {15681, 17800, 14269}, {15686, 17504, 550}, {15687, 17504, 5}, {15705, 16239, 549}


X(62155) = X(1)X(28182)∩X(2)X(3)

Barycentrics    12*a^4-5*(b^2-c^2)^2-7*a^2*(b^2+c^2) : :
X(62155) = -15*X[2]+17*X[3], -2*X[143]+3*X[14855], -9*X[165]+7*X[61258], -3*X[568]+5*X[52093], -5*X[946]+6*X[31662], -2*X[962]+3*X[61283], -5*X[1352]+7*X[55607], -5*X[1539]+6*X[38792], -10*X[3589]+11*X[55683], -9*X[3654]+7*X[61252], -5*X[3818]+7*X[55633], -3*X[3917]+2*X[32137] and many others

X(62155) lies on these lines: {1, 28182}, {2, 3}, {17, 43401}, {18, 43402}, {40, 28190}, {49, 43576}, {61, 42429}, {62, 42430}, {141, 48920}, {143, 14855}, {155, 33534}, {165, 61258}, {485, 6433}, {486, 6434}, {495, 4324}, {496, 4316}, {511, 45957}, {516, 1483}, {517, 61297}, {542, 51183}, {568, 52093}, {944, 28216}, {946, 31662}, {962, 61283}, {1131, 6445}, {1132, 6446}, {1352, 55607}, {1353, 29181}, {1385, 28158}, {1503, 48879}, {1539, 38792}, {3311, 42414}, {3312, 42413}, {3411, 42432}, {3412, 42431}, {3564, 48872}, {3579, 28172}, {3589, 55683}, {3654, 61252}, {3818, 55633}, {3917, 32137}, {4292, 15935}, {4297, 10283}, {4299, 9670}, {4301, 28146}, {4302, 9657}, {4309, 18990}, {4317, 15171}, {4325, 6284}, {4330, 7354}, {4333, 37730}, {5008, 7765}, {5041, 7756}, {5097, 29317}, {5102, 46264}, {5237, 42940}, {5238, 42941}, {5305, 43619}, {5318, 42434}, {5319, 44526}, {5321, 42433}, {5343, 42497}, {5344, 42496}, {5349, 5351}, {5350, 5352}, {5480, 48891}, {5493, 28208}, {5650, 11017}, {5690, 28164}, {5691, 38112}, {5734, 48661}, {5876, 15606}, {5881, 28186}, {5882, 28202}, {5894, 52102}, {5918, 61541}, {6101, 14915}, {6102, 14641}, {6221, 31414}, {6361, 28224}, {6407, 23269}, {6408, 23275}, {6419, 43210}, {6420, 43209}, {6427, 43257}, {6428, 43256}, {6429, 42260}, {6430, 42261}, {6431, 6560}, {6432, 6561}, {6437, 7583}, {6438, 7584}, {6449, 52667}, {6450, 52666}, {6455, 23253}, {6456, 23263}, {6480, 31454}, {6481, 35821}, {6482, 8960}, {6483, 58866}, {6484, 8981}, {6485, 13966}, {6486, 35812}, {6487, 35813}, {7747, 9606}, {7802, 14929}, {7982, 61290}, {8148, 61293}, {8550, 51166}, {8718, 9706}, {9541, 31487}, {9588, 18357}, {9589, 16200}, {9624, 40273}, {9643, 32047}, {9671, 15325}, {9680, 23251}, {9692, 13903}, {9730, 58533}, {9778, 61510}, {9812, 51700}, {9956, 59420}, {10113, 38725}, {10141, 43258}, {10142, 43259}, {10192, 32903}, {10263, 45956}, {10483, 15888}, {10575, 13391}, {10627, 11381}, {11180, 55595}, {11362, 28160}, {11485, 43634}, {11486, 43635}, {11488, 42889}, {11489, 42888}, {11495, 38170}, {11531, 28174}, {11542, 42113}, {11543, 42112}, {11591, 36987}, {11742, 31492}, {11801, 15057}, {12161, 35237}, {12279, 37484}, {12290, 13340}, {12295, 20396}, {12512, 31447}, {12699, 61278}, {12702, 61245}, {12943, 31452}, {13348, 15060}, {13474, 15067}, {13925, 42638}, {13993, 42637}, {14128, 32062}, {14677, 16003}, {14927, 34380}, {15058, 44324}, {15063, 34153}, {15069, 48873}, {15326, 37720}, {15338, 37719}, {15602, 53418}, {15815, 31417}, {16111, 20379}, {16194, 32142}, {16658, 57715}, {16772, 19106}, {16773, 19107}, {16964, 34755}, {16965, 34754}, {18483, 61270}, {18492, 61614}, {18538, 43314}, {18553, 50965}, {18583, 43621}, {18762, 43315}, {19116, 42225}, {19117, 42226}, {19130, 55680}, {20582, 55644}, {21356, 55620}, {21850, 39561}, {22165, 55597}, {22251, 38723}, {22257, 53803}, {22505, 38746}, {22515, 38735}, {22615, 35256}, {22644, 35255}, {22676, 61550}, {22791, 28150}, {22799, 38758}, {22802, 50709}, {23302, 42930}, {23303, 42931}, {24206, 55645}, {28168, 31730}, {28194, 50831}, {28212, 61295}, {29012, 48874}, {29323, 39884}, {30392, 41869}, {31399, 31663}, {31666, 38022}, {31670, 55711}, {33751, 48943}, {34628, 61288}, {34798, 43595}, {35242, 61259}, {35254, 52101}, {35770, 42215}, {35771, 42216}, {36836, 43332}, {36843, 43333}, {36967, 42165}, {36968, 42164}, {36990, 55618}, {37496, 43605}, {37587, 37722}, {37714, 61524}, {38028, 51118}, {38079, 50971}, {38081, 50808}, {38083, 50816}, {38110, 48892}, {38111, 52835}, {38136, 48904}, {38229, 38747}, {40280, 58531}, {40693, 42097}, {40694, 42096}, {41943, 42960}, {41944, 42961}, {41945, 43786}, {41946, 43785}, {42085, 42584}, {42086, 42585}, {42090, 42137}, {42091, 42136}, {42099, 42118}, {42100, 42117}, {42101, 42489}, {42102, 42488}, {42108, 42121}, {42109, 42124}, {42143, 42491}, {42146, 42490}, {42150, 42633}, {42151, 42634}, {42154, 42924}, {42155, 42925}, {42157, 42799}, {42158, 42800}, {42159, 42625}, {42160, 42913}, {42161, 42912}, {42162, 42626}, {42283, 51910}, {42284, 51911}, {42500, 43399}, {42501, 43400}, {42520, 42612}, {42521, 42613}, {42528, 42599}, {42529, 42598}, {42590, 42773}, {42591, 42774}, {42641, 43523}, {42642, 43524}, {42791, 54593}, {42792, 54594}, {42793, 42908}, {42794, 42909}, {42934, 43105}, {42935, 43106}, {42944, 43026}, {42945, 43027}, {42962, 43869}, {42963, 43870}, {42974, 43639}, {42975, 43640}, {42980, 43016}, {42981, 43017}, {43174, 50822}, {43197, 52079}, {43198, 52080}, {43497, 44015}, {43498, 44016}, {43618, 44519}, {44882, 50664}, {47354, 55631}, {48310, 55677}, {48876, 48880}, {48884, 55640}, {48885, 55636}, {48901, 55691}, {48905, 55722}, {48910, 55703}, {50811, 61282}, {50832, 51119}, {50978, 52987}, {50987, 51165}, {50988, 55675}, {51025, 51184}, {51127, 55667}, {51128, 55659}, {51261, 56516}, {51537, 55639}, {51538, 51732}, {52945, 59657}, {54157, 55038}, {58217, 61265}, {58231, 61275}, {58241, 61289}, {58248, 61296}

X(62155) = midpoint of X(i) and X(j) for these {i,j}: {3, 5059}, {20, 17800}, {1657, 3529}, {12279, 37484}, {15683, 15685}
X(62155) = reflection of X(i) in X(j) for these {i,j}: {141, 48920}, {10263, 46850}, {11381, 10627}, {12290, 31834}, {15640, 14893}, {15684, 12100}, {15686, 11001}, {15687, 3534}, {15704, 1657}, {21850, 48898}, {382, 548}, {3146, 140}, {3543, 15690}, {3627, 550}, {3830, 15691}, {3845, 15686}, {33697, 12512}, {39884, 48881}, {4, 12103}, {43621, 18583}, {48876, 48880}, {48943, 33751}, {5, 20}, {550, 15704}, {5073, 546}, {5480, 48891}, {51163, 48892}, {6102, 14641}, {61245, 12702}, {8703, 15681}, {9589, 61286}
X(62155) = inverse of X(61955) in orthocentroidal circle
X(62155) = inverse of X(61955) in Yff hyperbola
X(62155) = complement of X(49136)
X(62155) = anticomplement of X(62026)
X(62155) = pole of line {5214, 28179} with respect to the Conway circle
X(62155) = pole of line {28179, 44409} with respect to the incircle
X(62155) = pole of line {523, 61955} with respect to the orthocentroidal circle
X(62155) = pole of line {523, 39508} with respect to the Steiner circle
X(62155) = pole of line {185, 547} with respect to the Jerabek hyperbola
X(62155) = pole of line {6, 61955} with respect to the Kiepert hyperbola
X(62155) = pole of line {523, 61955} with respect to the Yff hyperbola
X(62155) = pole of line {69, 55608} with respect to the Wallace hyperbola
X(62155) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(15683)}}, {{A, B, C, X(74), X(44880)}}, {{A, B, C, X(547), X(1105)}}, {{A, B, C, X(3521), X(5066)}}, {{A, B, C, X(3830), X(15318)}}, {{A, B, C, X(3854), X(16251)}}, {{A, B, C, X(4846), X(7486)}}, {{A, B, C, X(14093), X(60122)}}, {{A, B, C, X(14861), X(55859)}}, {{A, B, C, X(14892), X(60121)}}, {{A, B, C, X(15682), X(15749)}}, {{A, B, C, X(15696), X(18848)}}, {{A, B, C, X(15708), X(60007)}}, {{A, B, C, X(15709), X(15740)}}, {{A, B, C, X(15710), X(18849)}}, {{A, B, C, X(44731), X(55575)}}, {{A, B, C, X(52294), X(57715)}}
X(62155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11812, 15712}, {3, 15686, 550}, {3, 15723, 3523}, {3, 1656, 15708}, {3, 1657, 11001}, {3, 3543, 3850}, {3, 3545, 140}, {3, 381, 3533}, {3, 382, 3832}, {3, 3832, 16239}, {3, 3850, 11539}, {3, 4, 547}, {3, 5056, 11812}, {4, 17538, 15710}, {4, 5054, 12811}, {4, 5070, 3859}, {4, 5079, 3860}, {4, 8703, 632}, {5, 11539, 5067}, {5, 3526, 15699}, {20, 15696, 12103}, {20, 15717, 17538}, {20, 17578, 376}, {20, 3146, 3528}, {20, 3528, 3534}, {20, 3529, 17800}, {20, 382, 548}, {30, 11001, 15686}, {30, 12100, 15684}, {30, 12103, 4}, {30, 140, 3146}, {30, 14893, 15640}, {30, 15686, 3845}, {30, 15690, 3543}, {30, 1657, 15704}, {30, 546, 5073}, {30, 548, 382}, {30, 550, 3627}, {140, 15687, 3857}, {140, 3146, 15687}, {140, 3843, 5}, {140, 3860, 5079}, {376, 17578, 3526}, {381, 15710, 11540}, {382, 631, 3861}, {546, 11812, 5056}, {548, 3861, 631}, {549, 3627, 3858}, {550, 3627, 549}, {1656, 15682, 12102}, {1656, 3861, 6970}, {1657, 15685, 3529}, {2041, 2042, 3830}, {2043, 2044, 14093}, {2937, 7464, 10226}, {3146, 3528, 3843}, {3522, 15702, 3}, {3522, 3628, 17504}, {3522, 3830, 3628}, {3523, 5068, 13725}, {3523, 5076, 5066}, {3526, 17578, 546}, {3526, 5073, 17578}, {3528, 5079, 3530}, {3529, 11001, 5059}, {3529, 15683, 1657}, {3530, 12103, 15696}, {3530, 3859, 5070}, {3628, 15691, 3522}, {3830, 12100, 6959}, {3832, 7486, 3545}, {3839, 15720, 12812}, {3843, 15696, 15692}, {3851, 10304, 12108}, {5066, 15689, 15714}, {5070, 5079, 7486}, {5072, 10299, 10124}, {5072, 15695, 10299}, {5072, 6831, 3856}, {6658, 8353, 8362}, {8703, 11540, 15711}, {10263, 46850, 45956}, {11001, 17800, 3853}, {11413, 17714, 15646}, {11539, 15686, 15690}, {12088, 18859, 15331}, {12101, 12108, 3851}, {12290, 13340, 31834}, {12512, 33697, 38042}, {12812, 15759, 15720}, {14269, 15697, 14891}, {14784, 14785, 15683}, {14893, 15688, 15713}, {15640, 15688, 14893}, {15681, 15696, 20}, {15683, 15685, 30}, {15690, 15719, 8703}, {28178, 61286, 9589}, {29323, 48881, 39884}, {37496, 52100, 43605}, {42099, 42118, 43630}, {42099, 43633, 42147}, {42100, 42117, 43631}, {42100, 43632, 42148}, {42147, 43633, 42118}, {42148, 43632, 42117}, {42225, 42259, 19116}, {42226, 42258, 19117}, {43621, 59411, 18583}, {48892, 51163, 38110}


X(62156) = X(2)X(3)∩X(371)X(43786)

Barycentrics    26*a^4-11*(b^2-c^2)^2-15*a^2*(b^2+c^2) : :
X(62156) = -33*X[2]+37*X[3], -5*X[7991]+3*X[50830], -X[8550]+3*X[48896], -4*X[13382]+3*X[14449], -2*X[13393]+3*X[14677], -2*X[13474]+3*X[44324], -13*X[18481]+9*X[61285], -11*X[18553]+15*X[55619], -11*X[18583]+12*X[55700], -4*X[32903]+3*X[61606], -11*X[34507]+15*X[55598], -11*X[43150]+15*X[55599] and many others

X(62156) lies on these lines: {2, 3}, {371, 43786}, {372, 43785}, {395, 43425}, {396, 43424}, {397, 42585}, {398, 42584}, {1151, 43340}, {1152, 43341}, {1503, 55586}, {1587, 42575}, {1588, 42574}, {3564, 55581}, {5349, 42628}, {5350, 42627}, {5365, 42690}, {5366, 42691}, {5493, 28186}, {5882, 28178}, {6200, 43409}, {6396, 43410}, {6407, 43376}, {6408, 43377}, {6417, 43797}, {6418, 43798}, {6433, 43515}, {6434, 43516}, {6435, 42266}, {6436, 42267}, {6459, 56619}, {6460, 56618}, {6494, 19117}, {6495, 19116}, {6498, 43407}, {6499, 43408}, {7991, 50830}, {8550, 48896}, {8981, 43791}, {9541, 43411}, {9692, 43521}, {9935, 12379}, {12007, 29317}, {13382, 14449}, {13393, 14677}, {13464, 28154}, {13474, 44324}, {13607, 28146}, {13966, 43792}, {16241, 42695}, {16242, 42694}, {16266, 33534}, {18358, 48920}, {18481, 61285}, {18553, 55619}, {18583, 55700}, {19106, 42684}, {19107, 42685}, {23249, 43413}, {23259, 43414}, {28168, 43174}, {29012, 55592}, {29181, 55719}, {29323, 55609}, {32903, 61606}, {34507, 55598}, {36836, 43422}, {36843, 43423}, {36967, 42965}, {36968, 42964}, {41973, 42100}, {41974, 42099}, {42090, 42889}, {42091, 42888}, {42108, 42908}, {42109, 42909}, {42122, 42431}, {42123, 42432}, {42130, 43769}, {42131, 43770}, {42144, 42151}, {42145, 42150}, {42147, 42429}, {42148, 42430}, {42225, 43336}, {42226, 43337}, {42629, 43773}, {42630, 43774}, {42793, 42796}, {42794, 42795}, {42912, 43426}, {42913, 43427}, {42918, 43442}, {42919, 43443}, {42948, 43293}, {42949, 43292}, {42990, 43108}, {42991, 43109}, {42998, 43630}, {42999, 43631}, {43150, 55599}, {43430, 43794}, {43431, 43793}, {43621, 51732}, {44882, 55707}, {48879, 55589}, {48880, 55605}, {48881, 55613}, {48898, 55712}, {50827, 61249}, {50985, 53097}, {51022, 55637}, {59420, 61259}

X(62156) = midpoint of X(i) and X(j) for these {i,j}: {550, 5059}, {15704, 17800}
X(62156) = reflection of X(i) in X(j) for these {i,j}: {12100, 15681}, {12101, 15686}, {15684, 15759}, {15691, 11001}, {18358, 48920}, {3146, 3530}, {3853, 12103}, {43621, 51732}, {546, 20}, {548, 15704}, {5073, 3850}, {61545, 48880}
X(62156) = pole of line {185, 61907} with respect to the Jerabek hyperbola
X(62156) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3519), X(15686)}}, {{A, B, C, X(13623), X(14869)}}, {{A, B, C, X(14861), X(16239)}}, {{A, B, C, X(34483), X(44245)}}
X(62156) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 10299, 15022}, {4, 10303, 3851}, {4, 140, 5066}, {4, 15683, 1657}, {4, 15698, 5056}, {4, 3522, 3526}, {4, 5055, 3858}, {4, 548, 140}, {5, 15709, 3628}, {20, 15690, 12103}, {20, 15705, 17538}, {20, 30, 546}, {30, 11001, 15691}, {30, 12103, 3853}, {30, 15681, 12100}, {30, 15686, 12101}, {30, 15759, 15684}, {30, 3530, 3146}, {30, 3850, 5073}, {382, 10304, 3857}, {546, 548, 549}, {549, 15022, 16239}, {549, 15688, 15759}, {549, 15704, 20}, {550, 5073, 3850}, {1657, 17800, 4}, {1657, 5059, 550}, {3146, 15686, 3530}, {3525, 5068, 1656}, {3526, 15640, 3627}, {3529, 15683, 17800}, {3534, 15684, 15709}, {3627, 12100, 3859}, {3861, 11540, 5072}, {11541, 15696, 15687}, {14813, 14814, 15686}, {14869, 17578, 3860}, {14890, 17538, 548}, {15683, 17800, 15704}, {15687, 15696, 12108}, {15688, 15691, 15690}, {15689, 17578, 14869}, {15704, 17800, 30}, {42090, 42889, 43197}


X(62157) = X(2)X(3)∩X(511)X(51182)

Barycentrics    44*a^4-19*(b^2-c^2)^2-25*a^2*(b^2+c^2) : :
X(62157) = -19*X[2]+21*X[3], -2*X[12007]+5*X[48896], -3*X[17502]+2*X[50869], -3*X[17508]+2*X[51026], -2*X[22165]+3*X[48874], -3*X[38034]+4*X[50815], -3*X[38079]+2*X[48904], -3*X[38136]+4*X[50971], -3*X[38138]+4*X[50808], -3*X[38140]+4*X[50816], -6*X[40273]+7*X[51110], -4*X[47353]+5*X[51184] and many others

X(62157) lies on these lines: {2, 3}, {511, 51182}, {515, 50830}, {516, 51087}, {1483, 28202}, {1503, 50985}, {3625, 28208}, {3630, 11645}, {4114, 15935}, {4677, 28186}, {4745, 28172}, {5318, 33607}, {5321, 33606}, {5334, 43640}, {5335, 43639}, {6490, 42576}, {6491, 42577}, {6564, 42606}, {6565, 42607}, {8584, 29317}, {10283, 28158}, {10302, 54852}, {10653, 42509}, {10654, 42508}, {12007, 48896}, {12816, 42124}, {12817, 42121}, {13665, 42538}, {13785, 42537}, {16772, 43550}, {16773, 43551}, {17502, 50869}, {17508, 51026}, {18510, 43382}, {18512, 43383}, {19106, 42791}, {19107, 42792}, {22165, 48874}, {23251, 42608}, {23261, 42609}, {28146, 51071}, {28150, 50824}, {28160, 50823}, {28164, 50827}, {28174, 50831}, {28182, 50811}, {29012, 50978}, {29181, 51140}, {34632, 61245}, {35255, 43568}, {35256, 43569}, {36969, 42502}, {36970, 42503}, {37640, 42689}, {37641, 42688}, {38034, 50815}, {38079, 48904}, {38136, 50971}, {38138, 50808}, {38140, 50816}, {40273, 51110}, {41100, 43499}, {41101, 43500}, {41107, 42145}, {41108, 42144}, {41112, 42122}, {41113, 42123}, {41121, 42109}, {41122, 42108}, {42096, 42510}, {42097, 42511}, {42099, 42922}, {42100, 42923}, {42119, 43648}, {42120, 43647}, {42133, 42515}, {42134, 42514}, {42136, 49906}, {42137, 49905}, {42154, 43109}, {42155, 43108}, {42164, 42436}, {42165, 42435}, {42215, 42418}, {42216, 42417}, {42225, 43209}, {42226, 43210}, {42263, 43336}, {42264, 43337}, {42271, 43341}, {42272, 43340}, {42275, 52048}, {42276, 52047}, {42429, 43007}, {42430, 43006}, {42478, 49826}, {42479, 49827}, {42504, 42543}, {42505, 42544}, {42506, 42942}, {42507, 42943}, {42584, 42634}, {42585, 42633}, {42631, 42940}, {42632, 42941}, {42684, 43401}, {42685, 43402}, {42690, 42888}, {42691, 42889}, {42968, 43465}, {42969, 43466}, {42976, 43491}, {42977, 43492}, {43101, 43476}, {43104, 43475}, {43105, 43244}, {43106, 43245}, {43338, 43343}, {43339, 43342}, {43416, 49860}, {43417, 49859}, {47353, 51184}, {48310, 48943}, {50825, 61260}, {50872, 61293}, {51072, 61251}, {51129, 55670}, {51138, 59399}, {51142, 55606}, {51180, 54132}, {51181, 51185}, {54608, 60250}, {54643, 60649}, {60175, 60630}, {60228, 60323}

X(62157) = midpoint of X(i) and X(j) for these {i,j}: {5059, 15681}, {15683, 17800}
X(62157) = reflection of X(i) in X(j) for these {i,j}: {15640, 5066}, {15682, 15690}, {15684, 548}, {15686, 1657}, {15687, 20}, {15704, 15683}, {382, 15691}, {3543, 12103}, {3627, 15686}, {5, 15681}, {549, 15704}, {5073, 547}, {61245, 34632}, {8703, 11001}
X(62157) = complement of X(62050)
X(62157) = anticomplement of X(62031)
X(62157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3845), X(57896)}}, {{A, B, C, X(10301), X(54852)}}, {{A, B, C, X(11812), X(13623)}}
X(62157) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14093, 12100}, {2, 3534, 548}, {2, 3627, 3845}, {4, 3534, 15759}, {5, 8703, 15693}, {20, 30, 15687}, {20, 632, 550}, {30, 12103, 3543}, {30, 15683, 15704}, {30, 15686, 3627}, {30, 15690, 15682}, {30, 15691, 382}, {30, 5066, 15640}, {30, 547, 5073}, {30, 548, 15684}, {376, 12101, 15713}, {548, 14893, 14890}, {549, 5055, 632}, {550, 3845, 15711}, {3534, 15640, 5066}, {3534, 15682, 11540}, {3534, 15685, 15683}, {3534, 3830, 15698}, {3534, 6834, 10124}, {3543, 15695, 10109}, {3543, 17504, 3858}, {3830, 15697, 11812}, {3845, 15711, 15699}, {6872, 15710, 15700}, {10109, 12103, 15695}, {10109, 15695, 17504}, {10304, 17678, 10299}, {11001, 15640, 3534}, {11540, 15690, 10304}, {11812, 15697, 8703}, {12812, 15718, 11539}, {14093, 15702, 14891}, {14890, 14893, 5072}, {14890, 15712, 549}, {14891, 15681, 15686}, {14893, 15689, 15712}, {15640, 15683, 11001}, {15640, 15698, 3830}, {15681, 15682, 15690}, {15682, 15690, 5}, {15682, 17538, 2}, {15683, 17800, 30}, {15684, 15706, 4}, {15686, 15687, 14093}, {15686, 15712, 15689}, {15687, 17504, 3544}


X(62158) = X(2)X(3)∩X(6)X(42429)

Barycentrics    23*a^4-10*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62158) = -10*X[2]+11*X[3], -8*X[182]+7*X[51173], -5*X[355]+4*X[50868], -5*X[946]+4*X[51119], -5*X[1351]+4*X[51166], -5*X[1352]+4*X[51025], -5*X[1482]+4*X[51120], -8*X[4701]+11*X[12702], -4*X[5097]+5*X[43273], -10*X[5476]+11*X[55699], -5*X[5480]+4*X[51165], -4*X[5691]+5*X[50797] and many others

X(62158) lies on these lines: {2, 3}, {6, 42429}, {15, 43428}, {16, 43429}, {182, 51173}, {355, 50868}, {485, 43887}, {486, 43888}, {542, 55582}, {599, 29323}, {946, 51119}, {1160, 13811}, {1161, 13690}, {1327, 6449}, {1328, 6450}, {1351, 51166}, {1352, 51025}, {1482, 51120}, {3241, 28178}, {3311, 43210}, {3312, 43209}, {3655, 28150}, {3679, 28168}, {4701, 12702}, {5008, 44526}, {5097, 43273}, {5102, 29317}, {5351, 42953}, {5352, 42952}, {5476, 55699}, {5480, 51165}, {5691, 50797}, {5901, 50819}, {6407, 42538}, {6408, 42537}, {6417, 42414}, {6418, 42413}, {6427, 42417}, {6428, 42418}, {6429, 35820}, {6430, 35821}, {6431, 42266}, {6432, 42267}, {6437, 35822}, {6438, 35823}, {6445, 52667}, {6446, 52666}, {6451, 42602}, {6452, 42603}, {6480, 13665}, {6481, 13785}, {6484, 13846}, {6485, 13847}, {6486, 23251}, {6487, 23261}, {6519, 43794}, {6522, 43793}, {6684, 50800}, {8960, 10141}, {8981, 43434}, {9668, 37587}, {9681, 43786}, {9691, 23269}, {9703, 43576}, {9956, 50812}, {10142, 58866}, {10246, 28158}, {10247, 28182}, {10516, 55640}, {11178, 55627}, {11180, 55593}, {11278, 28202}, {11531, 28198}, {11645, 11898}, {11742, 15602}, {11999, 46730}, {12117, 38744}, {12121, 56567}, {12355, 38741}, {12645, 28208}, {12943, 51817}, {13321, 14855}, {13713, 45579}, {13836, 45578}, {13903, 42272}, {13961, 42271}, {13966, 43435}, {14537, 44519}, {14641, 21969}, {14848, 48910}, {14915, 54048}, {14927, 51214}, {15087, 35237}, {16200, 28146}, {16966, 51945}, {16967, 51944}, {18440, 48879}, {18445, 33534}, {18510, 41946}, {18512, 41945}, {18526, 28194}, {18583, 50975}, {19924, 50962}, {20582, 55643}, {21356, 55616}, {21358, 48885}, {22165, 55595}, {23253, 43211}, {23263, 43212}, {24206, 50968}, {25561, 55645}, {25565, 55673}, {28154, 31162}, {28160, 34718}, {28164, 59503}, {28172, 34638}, {28174, 34748}, {28186, 34632}, {28190, 34627}, {28216, 34631}, {29012, 55591}, {31423, 50866}, {31730, 38066}, {33179, 48661}, {34754, 42097}, {34755, 42096}, {36967, 42127}, {36968, 42126}, {36969, 42817}, {36970, 42818}, {36990, 50954}, {37498, 52100}, {37517, 48905}, {37640, 42585}, {37641, 42584}, {38072, 48892}, {38723, 38792}, {38725, 38788}, {38731, 38746}, {38735, 38742}, {39561, 54131}, {41100, 42891}, {41101, 42890}, {41107, 43194}, {41108, 43193}, {41943, 42128}, {41944, 42125}, {41951, 43790}, {41952, 43789}, {42087, 42971}, {42088, 42970}, {42090, 43401}, {42091, 43402}, {42099, 61719}, {42112, 42816}, {42113, 42815}, {42115, 42940}, {42116, 42941}, {42129, 42528}, {42130, 42155}, {42131, 42154}, {42132, 42529}, {42153, 42631}, {42156, 42632}, {42159, 42792}, {42162, 42791}, {42164, 42510}, {42165, 42511}, {42431, 49947}, {42432, 49948}, {42433, 42981}, {42434, 42980}, {42512, 42693}, {42513, 42692}, {42514, 43201}, {42515, 43202}, {42924, 49827}, {42925, 49826}, {42932, 43473}, {42933, 43474}, {42966, 43633}, {42967, 43632}, {42998, 43108}, {42999, 43109}, {43205, 43637}, {43206, 43636}, {43507, 43788}, {43508, 43787}, {43621, 51737}, {43769, 49876}, {43770, 49875}, {46267, 48891}, {47352, 48904}, {47353, 48880}, {47354, 55629}, {48662, 50967}, {48873, 50955}, {48874, 51023}, {48884, 55636}, {48898, 51024}, {48920, 55633}, {50806, 51118}, {50809, 61510}, {50825, 50867}, {50874, 51084}, {50963, 51163}, {50966, 61545}, {50969, 51537}, {50977, 55622}, {50980, 51217}, {50987, 51213}, {51137, 51164}, {51172, 51212}, {51175, 55584}, {51176, 61624}, {51186, 55631}, {51188, 55583}, {53023, 55685}, {54917, 60279}, {55695, 59411}

X(62158) = midpoint of X(i) and X(j) for these {i,j}: {5059, 11001}, {15685, 17800}
X(62158) = reflection of X(i) in X(j) for these {i,j}: {1657, 15685}, {12355, 38741}, {15640, 5}, {15681, 15683}, {15682, 550}, {15684, 376}, {15685, 3529}, {2, 15704}, {21969, 14641}, {3, 11001}, {381, 15681}, {382, 3534}, {3146, 8703}, {3534, 1657}, {3543, 15686}, {3830, 20}, {38744, 12117}, {43273, 48896}, {43621, 51737}, {47353, 48880}, {48661, 50811}, {48662, 50967}, {5073, 2}, {50955, 48873}, {51023, 48874}, {51024, 48898}, {51027, 55587}, {51175, 55584}, {51188, 55583}, {53780, 35237}
X(62158) = inverse of X(61957) in orthocentroidal circle
X(62158) = inverse of X(61957) in Yff hyperbola
X(62158) = anticomplement of X(35404)
X(62158) = pole of line {523, 61957} with respect to the orthocentroidal circle
X(62158) = pole of line {185, 61911} with respect to the Jerabek hyperbola
X(62158) = pole of line {6, 61957} with respect to the Kiepert hyperbola
X(62158) = pole of line {523, 61957} with respect to the Yff hyperbola
X(62158) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(15640)}}, {{A, B, C, X(1494), X(5073)}}, {{A, B, C, X(15714), X(57822)}}, {{A, B, C, X(15721), X(18850)}}, {{A, B, C, X(18550), X(23046)}}, {{A, B, C, X(46853), X(60122)}}
X(62158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30, 5073}, {2, 376, 15714}, {3, 11539, 15693}, {3, 15681, 15686}, {3, 15719, 15706}, {3, 17800, 5059}, {3, 381, 15723}, {3, 3830, 3545}, {3, 3850, 3526}, {3, 5055, 11812}, {3, 5067, 15720}, {3, 5073, 3853}, {4, 15705, 10109}, {4, 376, 15721}, {5, 30, 15640}, {20, 10109, 15689}, {20, 15688, 3534}, {20, 30, 3830}, {20, 3146, 10299}, {20, 3525, 550}, {20, 3545, 15690}, {30, 11001, 3}, {30, 15686, 3543}, {30, 15704, 2}, {30, 3529, 15685}, {30, 3534, 382}, {30, 376, 15684}, {30, 550, 15682}, {30, 8703, 3146}, {376, 15687, 15694}, {376, 15700, 14093}, {376, 3543, 547}, {376, 381, 15700}, {381, 15693, 15703}, {381, 549, 1656}, {548, 3839, 15701}, {549, 16239, 15702}, {550, 14893, 15692}, {1656, 15688, 15716}, {1656, 15716, 5054}, {1657, 15696, 15704}, {3091, 16370, 3090}, {3146, 8703, 14269}, {3522, 5066, 15707}, {3525, 15692, 549}, {3543, 15683, 11001}, {3543, 15692, 3832}, {3543, 15702, 3845}, {3545, 11001, 20}, {3545, 15705, 11539}, {3628, 15710, 15722}, {3839, 15701, 5079}, {3850, 8703, 15708}, {5055, 15682, 5076}, {5071, 8703, 15718}, {5073, 15704, 15696}, {11001, 15686, 15681}, {11645, 55587, 51027}, {14269, 15718, 5071}, {14893, 15692, 5055}, {15681, 15683, 1657}, {15681, 15684, 376}, {15681, 15685, 15683}, {15682, 15692, 14893}, {15684, 15694, 15687}, {15685, 17800, 30}, {15687, 15694, 381}, {15689, 15705, 15688}, {42429, 42430, 6}


X(62159) = X(2)X(3)∩X(15)X(43773)

Barycentrics    16*a^4-7*(b^2-c^2)^2-9*a^2*(b^2+c^2) : :
X(62159) = -21*X[2]+23*X[3], -4*X[40]+3*X[61251], -7*X[141]+8*X[55625], -3*X[185]+2*X[13421], -7*X[1483]+6*X[11224], -4*X[1539]+5*X[22251], -7*X[3818]+9*X[55630], -7*X[5480]+8*X[55696], -3*X[5894]+2*X[14864], -9*X[5946]+8*X[12002], -4*X[6053]+5*X[34153], -10*X[7987]+9*X[61270] and many others

X(62159) lies on these lines: {2, 3}, {15, 43773}, {16, 43774}, {17, 42109}, {18, 42108}, {40, 61251}, {141, 55625}, {185, 13421}, {397, 42099}, {398, 42100}, {516, 61293}, {1353, 48905}, {1483, 11224}, {1503, 55585}, {1539, 22251}, {2777, 44762}, {3070, 43786}, {3071, 43785}, {3818, 55630}, {5237, 43402}, {5238, 43401}, {5339, 42112}, {5340, 42113}, {5349, 42121}, {5350, 42124}, {5365, 42115}, {5366, 42116}, {5480, 55696}, {5493, 28160}, {5690, 28168}, {5882, 28146}, {5894, 14864}, {5946, 12002}, {6053, 34153}, {6284, 37602}, {6468, 42260}, {6469, 42261}, {6470, 19117}, {6471, 19116}, {6484, 53517}, {6485, 53520}, {6759, 50709}, {7917, 32820}, {7987, 61270}, {7991, 50804}, {8162, 18990}, {8550, 29317}, {8960, 42272}, {9624, 50832}, {10263, 13382}, {10283, 41869}, {10619, 54157}, {11742, 31401}, {12902, 13393}, {13391, 45957}, {13464, 28158}, {13474, 54042}, {13603, 26861}, {13846, 43432}, {13847, 43433}, {13925, 52667}, {13993, 52666}, {14449, 15072}, {14861, 57730}, {14862, 51491}, {15105, 18400}, {15516, 21850}, {15520, 48896}, {16192, 61262}, {16808, 42959}, {16809, 42958}, {16962, 43424}, {16963, 43425}, {16964, 42634}, {16965, 42633}, {18481, 28182}, {18553, 48881}, {19106, 42903}, {19107, 42902}, {20791, 58531}, {21167, 48942}, {22236, 43639}, {22238, 43640}, {22791, 28154}, {25555, 48891}, {25565, 51134}, {28150, 34773}, {28172, 38176}, {28174, 61295}, {28186, 61245}, {28190, 37705}, {28202, 51077}, {29012, 55590}, {29181, 55720}, {29323, 48876}, {30315, 61614}, {30714, 34584}, {31487, 43411}, {31730, 38112}, {32062, 32142}, {34507, 48874}, {34628, 61286}, {36987, 45959}, {37640, 43634}, {37641, 43635}, {38110, 42785}, {38136, 48892}, {39884, 48880}, {40273, 61273}, {41973, 42148}, {41974, 42147}, {42085, 42924}, {42086, 42925}, {42087, 42431}, {42088, 42432}, {42096, 42151}, {42097, 42150}, {42103, 42774}, {42104, 43239}, {42105, 43238}, {42106, 42773}, {42117, 42158}, {42118, 42157}, {42119, 42922}, {42120, 42923}, {42130, 42998}, {42131, 42999}, {42135, 42944}, {42136, 42149}, {42137, 42152}, {42138, 42945}, {42140, 42989}, {42141, 42988}, {42163, 42908}, {42166, 42909}, {42225, 42267}, {42226, 42266}, {42271, 58866}, {42415, 56615}, {42416, 56614}, {42429, 43632}, {42430, 43633}, {42433, 42940}, {42434, 42941}, {42528, 42978}, {42529, 42979}, {42543, 43107}, {42544, 43100}, {42586, 43109}, {42587, 43108}, {42682, 43547}, {42683, 43546}, {42684, 42960}, {42685, 42961}, {42916, 43771}, {42917, 43772}, {42934, 43244}, {42935, 43245}, {42938, 43001}, {42939, 43000}, {42942, 42992}, {42943, 42993}, {42970, 43307}, {42971, 43306}, {43364, 43447}, {43365, 43446}, {44882, 55706}, {45186, 45956}, {48884, 55635}, {48885, 55638}, {48898, 55710}, {48901, 55693}, {48910, 59399}, {48920, 55634}, {50865, 61278}, {50959, 55681}, {50961, 53097}, {50972, 55652}, {50980, 55647}, {50986, 55724}, {50991, 55611}, {51023, 55595}, {51910, 53519}, {51911, 53518}, {52100, 56292}

X(62159) = midpoint of X(i) and X(j) for these {i,j}: {1657, 5059}, {3529, 17800}
X(62159) = reflection of X(i) in X(j) for these {i,j}: {10263, 14641}, {1353, 48905}, {15640, 547}, {15682, 15691}, {15684, 15690}, {382, 12103}, {3146, 548}, {3627, 20}, {3845, 15681}, {39884, 48880}, {48874, 48879}, {48906, 48896}, {5, 15704}, {549, 11001}, {550, 1657}, {5073, 140}, {51163, 48891}
X(62159) = complement of X(49134)
X(62159) = anticomplement of X(62034)
X(62159) = pole of line {185, 35018} with respect to the Jerabek hyperbola
X(62159) = pole of line {69, 55611} with respect to the Wallace hyperbola
X(62159) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(632), X(14861)}}, {{A, B, C, X(1105), X(35018)}}, {{A, B, C, X(3519), X(12103)}}, {{A, B, C, X(3521), X(12811)}}, {{A, B, C, X(3853), X(15319)}}, {{A, B, C, X(4846), X(46936)}}, {{A, B, C, X(6662), X(14269)}}, {{A, B, C, X(8703), X(26861)}}, {{A, B, C, X(13603), X(26863)}}, {{A, B, C, X(14841), X(15681)}}, {{A, B, C, X(14865), X(57730)}}, {{A, B, C, X(15713), X(40448)}}, {{A, B, C, X(41986), X(55958)}}, {{A, B, C, X(47599), X(60171)}}
X(62159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15682, 3861}, {3, 15687, 5}, {3, 15697, 548}, {3, 15709, 3530}, {3, 17578, 5066}, {3, 20, 15691}, {3, 382, 3839}, {3, 3855, 10124}, {3, 5, 15713}, {4, 550, 15712}, {5, 15714, 14869}, {20, 11541, 381}, {20, 140, 550}, {20, 15682, 3}, {20, 3090, 15689}, {20, 3146, 3524}, {20, 3529, 15685}, {30, 12103, 382}, {30, 140, 5073}, {30, 15681, 3845}, {30, 15690, 15684}, {30, 15691, 15682}, {30, 547, 15640}, {30, 548, 3146}, {140, 12101, 3850}, {140, 12811, 1656}, {140, 14891, 3523}, {140, 3850, 3090}, {140, 3861, 5068}, {140, 5068, 15699}, {140, 5073, 3627}, {140, 550, 8703}, {376, 3853, 632}, {382, 15710, 546}, {546, 14891, 5070}, {549, 5076, 6970}, {550, 1657, 15704}, {631, 15684, 12102}, {1656, 1657, 15681}, {1656, 3524, 140}, {1657, 17800, 5059}, {1657, 5059, 30}, {1657, 5073, 20}, {2045, 2046, 15723}, {3522, 3523, 15710}, {3522, 5073, 12101}, {3524, 8703, 15714}, {3528, 15640, 5076}, {3528, 5076, 547}, {3529, 5059, 1657}, {3530, 3830, 3857}, {3543, 15696, 3628}, {3832, 15688, 12108}, {3839, 15683, 11001}, {3839, 3850, 3858}, {3850, 12103, 3522}, {3859, 15759, 3525}, {3861, 10124, 12811}, {6824, 15712, 2478}, {8703, 11539, 14891}, {12087, 18859, 12107}, {12101, 15689, 549}, {12102, 15690, 631}, {14269, 15717, 12812}, {14813, 14814, 12103}, {14869, 15687, 3855}, {15681, 15714, 15686}, {15682, 15699, 15687}


X(62160) = X(2)X(3)∩X(6)X(41957)

Barycentrics    25*a^4-11*(b^2-c^2)^2-14*a^2*(b^2+c^2) : :
X(62160) = -11*X[2]+12*X[3], -6*X[40]+5*X[51072], -3*X[147]+4*X[15300], -3*X[165]+2*X[50862], -6*X[1350]+5*X[50990], -11*X[1352]+14*X[55605], -3*X[1699]+4*X[50815], -5*X[3620]+8*X[48880], -6*X[4297]+5*X[51105], -2*X[4677]+3*X[34632], -4*X[4745]+3*X[5691], -3*X[5032]+4*X[46264] and many others

X(62160) lies on these lines: {2, 3}, {6, 41957}, {15, 49811}, {16, 49810}, {40, 51072}, {145, 28198}, {147, 15300}, {165, 50862}, {193, 19924}, {315, 32896}, {395, 43420}, {396, 43421}, {485, 42525}, {486, 42524}, {511, 51178}, {515, 50817}, {516, 50839}, {542, 55581}, {598, 54522}, {621, 33610}, {622, 33611}, {944, 28202}, {962, 34628}, {1151, 42570}, {1152, 42571}, {1270, 13678}, {1271, 13798}, {1327, 8972}, {1328, 13941}, {1350, 50990}, {1352, 55605}, {1503, 50973}, {1699, 50815}, {1992, 48905}, {1993, 33534}, {1994, 35237}, {2549, 14075}, {2996, 54851}, {3068, 42538}, {3069, 42537}, {3284, 52707}, {3424, 60216}, {3620, 48880}, {3654, 28168}, {3656, 28154}, {3849, 11148}, {4297, 51105}, {4316, 5274}, {4324, 5261}, {4669, 28164}, {4677, 34632}, {4745, 5691}, {5032, 46264}, {5050, 51177}, {5304, 43619}, {5318, 43332}, {5321, 43333}, {5334, 42510}, {5335, 42511}, {5343, 16963}, {5344, 16962}, {5365, 42433}, {5366, 42434}, {5395, 54734}, {5476, 50975}, {5731, 28158}, {5734, 51107}, {5921, 15533}, {6200, 43507}, {6221, 43316}, {6361, 28208}, {6396, 43508}, {6398, 43317}, {6425, 43786}, {6426, 43785}, {6435, 6560}, {6436, 6561}, {6453, 43376}, {6454, 43377}, {6455, 42526}, {6456, 42527}, {6484, 43515}, {6485, 43516}, {6564, 43314}, {6565, 43315}, {6776, 55719}, {6781, 37689}, {7585, 42276}, {7586, 42275}, {7620, 47101}, {7739, 34571}, {7750, 32869}, {7802, 32836}, {7811, 32892}, {7967, 28182}, {7988, 50874}, {8584, 51212}, {8596, 9862}, {9542, 23249}, {9543, 23269}, {9544, 43576}, {9589, 51097}, {9692, 53513}, {9740, 32479}, {9778, 28172}, {9812, 51705}, {9963, 20214}, {10165, 50820}, {10519, 55613}, {10653, 42430}, {10654, 42429}, {10722, 52695}, {10723, 36523}, {11002, 14855}, {11003, 13482}, {11057, 32815}, {11160, 11645}, {11179, 48896}, {11180, 48873}, {11455, 33884}, {11488, 42791}, {11489, 42792}, {11522, 41150}, {11668, 54896}, {13665, 43521}, {13785, 43522}, {13846, 52667}, {13847, 52666}, {14458, 60628}, {14484, 60283}, {14492, 60648}, {14853, 55707}, {15072, 21969}, {15534, 29181}, {16192, 38076}, {16644, 42693}, {16645, 42692}, {16808, 43477}, {16809, 43478}, {16966, 43475}, {16967, 43476}, {17845, 54211}, {19053, 42263}, {19054, 42264}, {19106, 41119}, {19107, 41120}, {19569, 55177}, {20070, 28204}, {20423, 33748}, {20791, 58470}, {21356, 48881}, {22165, 50970}, {22235, 42973}, {22237, 42972}, {23259, 53131}, {23267, 52047}, {23273, 52048}, {25406, 51024}, {26446, 50813}, {28146, 61287}, {28150, 50811}, {28160, 50810}, {28174, 50818}, {28190, 50798}, {28194, 61296}, {28216, 50805}, {29012, 50967}, {29317, 54132}, {29323, 54173}, {30308, 50869}, {30392, 51075}, {31412, 42568}, {31670, 55712}, {31730, 53620}, {31884, 51022}, {32532, 54921}, {32819, 32874}, {33602, 43328}, {33603, 43329}, {33622, 44666}, {33624, 44667}, {33697, 46933}, {34718, 61246}, {35255, 43788}, {35256, 43787}, {35750, 41022}, {35822, 43512}, {35823, 43511}, {36318, 36326}, {36320, 36324}, {36331, 41023}, {36427, 52945}, {36768, 36961}, {36967, 41112}, {36968, 41113}, {36969, 49874}, {36970, 49873}, {36990, 50991}, {37640, 42097}, {37641, 42096}, {37665, 43618}, {37832, 42543}, {37835, 42544}, {38064, 48904}, {38314, 41869}, {38749, 41135}, {40330, 48920}, {41100, 42085}, {41101, 42086}, {41107, 42099}, {41108, 42100}, {41121, 42134}, {41122, 42133}, {41895, 54644}, {41945, 42522}, {41946, 42523}, {42087, 42982}, {42088, 42983}, {42090, 43403}, {42091, 43404}, {42101, 43003}, {42102, 43002}, {42104, 42528}, {42105, 42529}, {42108, 42515}, {42109, 42514}, {42111, 43400}, {42114, 43399}, {42117, 43481}, {42118, 43482}, {42119, 42588}, {42120, 42589}, {42121, 43474}, {42124, 43473}, {42130, 43108}, {42131, 43109}, {42136, 43543}, {42137, 43542}, {42140, 42943}, {42141, 42942}, {42147, 42587}, {42148, 42586}, {42150, 42532}, {42151, 42533}, {42413, 42418}, {42414, 42417}, {42472, 42500}, {42473, 42501}, {42478, 43305}, {42479, 43304}, {42561, 42569}, {42584, 42975}, {42585, 42974}, {42602, 51911}, {42603, 51910}, {42813, 43479}, {42814, 43480}, {42940, 49906}, {42941, 49905}, {42980, 43013}, {42981, 43012}, {42998, 43009}, {42999, 43008}, {43101, 51944}, {43104, 51945}, {43195, 43544}, {43196, 43545}, {43211, 60307}, {43212, 60308}, {43273, 51211}, {43548, 54581}, {43549, 54580}, {43621, 51171}, {44678, 53142}, {44882, 51185}, {47353, 50994}, {48661, 61281}, {48879, 55598}, {48898, 55709}, {48910, 59373}, {49952, 50858}, {49953, 50855}, {50802, 54445}, {50808, 50863}, {50816, 50866}, {50819, 51709}, {50821, 61257}, {50867, 59420}, {50956, 55649}, {50965, 50993}, {50971, 51029}, {50972, 51167}, {50977, 55621}, {51079, 58221}, {51083, 58441}, {51091, 61289}, {51095, 51120}, {51108, 51118}, {51130, 55703}, {51134, 55673}, {51213, 59411}, {51538, 51737}, {53101, 54645}, {53108, 54642}, {54519, 60277}, {54520, 60238}, {54866, 60626}, {54934, 60200}, {60147, 60641}, {60150, 60635}, {60335, 60632}

X(62160) = midpoint of X(i) and X(j) for these {i,j}: {5059, 15683}
X(62160) = reflection of X(i) in X(j) for these {i,j}: {1992, 48905}, {11001, 15685}, {11179, 48896}, {11180, 48873}, {11541, 15684}, {15640, 2}, {15682, 3534}, {15683, 3529}, {15684, 550}, {19569, 55177}, {2, 11001}, {20, 15683}, {376, 1657}, {381, 15704}, {382, 15686}, {3146, 376}, {3543, 20}, {31145, 6361}, {4, 15681}, {5073, 549}, {5691, 34638}, {5921, 54170}, {51215, 54174}, {54170, 48872}, {8596, 9862}, {962, 34628}
X(62160) = inverse of X(61958) in orthocentroidal circle
X(62160) = inverse of X(61958) in Yff hyperbola
X(62160) = complement of X(62051)
X(62160) = anticomplement of X(15682)
X(62160) = pole of line {523, 61958} with respect to the orthocentroidal circle
X(62160) = pole of line {185, 61914} with respect to the Jerabek hyperbola
X(62160) = pole of line {6, 61958} with respect to the Kiepert hyperbola
X(62160) = pole of line {523, 61958} with respect to the Yff hyperbola
X(62160) = pole of line {69, 15697} with respect to the Wallace hyperbola
X(62160) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15697)}}, {{A, B, C, X(253), X(3830)}}, {{A, B, C, X(546), X(31361)}}, {{A, B, C, X(1217), X(12811)}}, {{A, B, C, X(1494), X(15640)}}, {{A, B, C, X(3545), X(16251)}}, {{A, B, C, X(4846), X(15699)}}, {{A, B, C, X(5054), X(18850)}}, {{A, B, C, X(5059), X(52441)}}, {{A, B, C, X(5073), X(18317)}}, {{A, B, C, X(5094), X(54522)}}, {{A, B, C, X(6353), X(54851)}}, {{A, B, C, X(8889), X(54734)}}, {{A, B, C, X(11331), X(60628)}}, {{A, B, C, X(15351), X(44576)}}, {{A, B, C, X(15712), X(60618)}}, {{A, B, C, X(17538), X(54667)}}, {{A, B, C, X(21735), X(60122)}}, {{A, B, C, X(33703), X(54512)}}, {{A, B, C, X(50691), X(54552)}}, {{A, B, C, X(52283), X(60216)}}, {{A, B, C, X(52289), X(60648)}}, {{A, B, C, X(52290), X(54644)}}, {{A, B, C, X(53857), X(54921)}}
X(62160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15640, 3543}, {2, 15683, 11001}, {2, 15697, 10304}, {2, 15698, 15708}, {2, 15717, 11812}, {2, 30, 15640}, {2, 3146, 3830}, {2, 3522, 15698}, {2, 5066, 5056}, {2, 8703, 15692}, {4, 15710, 547}, {4, 5079, 3832}, {4, 631, 12811}, {5, 376, 15705}, {20, 10303, 550}, {20, 15640, 2}, {20, 3146, 3523}, {30, 15684, 11541}, {30, 15686, 382}, {30, 15704, 381}, {30, 3534, 15682}, {30, 376, 3146}, {30, 549, 5073}, {30, 550, 15684}, {381, 15708, 7486}, {382, 15686, 3524}, {382, 15695, 5066}, {546, 14093, 15709}, {547, 15696, 15710}, {548, 14269, 15702}, {550, 12101, 15693}, {550, 3856, 3}, {1503, 54174, 51215}, {1656, 5154, 10303}, {1657, 3146, 20}, {1657, 5054, 15681}, {3091, 10304, 15721}, {3522, 17532, 15706}, {3522, 17578, 12812}, {3523, 7486, 3525}, {3528, 15687, 11112}, {3529, 11001, 15685}, {3529, 17800, 5059}, {3530, 15690, 8703}, {3534, 3830, 12100}, {3543, 10304, 3091}, {3545, 15684, 17578}, {3627, 15688, 5071}, {3830, 15685, 1657}, {3830, 15695, 15703}, {3830, 5054, 3860}, {3845, 8703, 11540}, {3860, 8703, 5054}, {5054, 12100, 15719}, {5054, 15681, 12103}, {5054, 15703, 632}, {5054, 5070, 10124}, {5055, 15691, 3528}, {5059, 15683, 30}, {5066, 15686, 15695}, {5071, 15688, 15717}, {8703, 12101, 5070}, {10124, 17578, 3839}, {10653, 46335, 49876}, {10654, 46334, 49875}, {11001, 15640, 15697}, {11001, 15682, 3534}, {11001, 15685, 15683}, {11737, 15706, 3533}, {12100, 14893, 10109}, {12100, 15713, 15722}, {12101, 15693, 3545}, {14269, 15702, 5068}, {15682, 15719, 4}, {15684, 15693, 12101}, {15686, 15703, 376}, {15687, 15689, 631}, {15690, 15698, 3522}, {15692, 15708, 3530}, {19106, 42632, 41119}, {19107, 42631, 41120}, {41101, 42086, 49826}, {41957, 41958, 6}, {42119, 42588, 43228}, {42120, 42589, 43229}, {42263, 43209, 19053}, {42264, 43210, 19054}


X(62161) = X(2)X(3)∩X(17)X(43201)

Barycentrics    29*a^4-13*(b^2-c^2)^2-16*a^2*(b^2+c^2) : :
X(62161) = -13*X[2]+14*X[3], -5*X[40]+4*X[50801], -4*X[355]+5*X[50809], -5*X[944]+4*X[51077], -4*X[946]+5*X[50819], -5*X[1350]+4*X[50958], -4*X[1351]+5*X[51176], -4*X[1352]+5*X[50966], -4*X[3625]+7*X[6361], -5*X[4297]+4*X[51075], -4*X[5480]+5*X[50975], -3*X[5657]+4*X[34638] and many others

X(62161) lies on these lines: {2, 3}, {17, 43201}, {18, 43202}, {40, 50801}, {61, 42588}, {62, 42589}, {355, 50809}, {371, 43386}, {372, 43387}, {516, 34631}, {590, 43788}, {615, 43787}, {944, 51077}, {946, 50819}, {1151, 14241}, {1152, 14226}, {1285, 5355}, {1327, 42638}, {1328, 42637}, {1350, 50958}, {1351, 51176}, {1352, 50966}, {1587, 43210}, {1588, 43209}, {1992, 29317}, {3068, 6476}, {3069, 6477}, {3241, 28146}, {3488, 4114}, {3625, 6361}, {3633, 28194}, {3655, 28154}, {3679, 28172}, {4297, 51075}, {5237, 42515}, {5238, 42514}, {5334, 42899}, {5335, 42898}, {5351, 43026}, {5352, 43027}, {5365, 49906}, {5366, 49905}, {5480, 50975}, {5656, 50709}, {5657, 34638}, {5818, 50862}, {6144, 39874}, {6411, 43517}, {6412, 43518}, {6425, 42576}, {6426, 42577}, {6429, 42572}, {6430, 42573}, {6439, 23249}, {6440, 23259}, {6441, 42264}, {6442, 42263}, {6478, 35820}, {6479, 35821}, {6776, 51132}, {7581, 43257}, {7582, 43256}, {7750, 32878}, {7773, 32889}, {7788, 32875}, {7967, 28150}, {8227, 50869}, {9143, 34584}, {9540, 41952}, {9778, 38176}, {10385, 10483}, {10595, 50865}, {11645, 50961}, {12245, 28208}, {12571, 51079}, {13886, 53130}, {13935, 41951}, {13939, 53131}, {14927, 19924}, {16192, 50866}, {18844, 54523}, {19053, 42267}, {19054, 42266}, {19875, 50813}, {19883, 50820}, {19925, 50812}, {20049, 28212}, {20053, 28204}, {20423, 48896}, {21358, 50969}, {23253, 52045}, {23263, 52046}, {23267, 41945}, {23273, 41946}, {28158, 31162}, {28160, 34632}, {28164, 34627}, {28168, 59388}, {28186, 31145}, {28190, 34718}, {28198, 50818}, {28216, 34748}, {28232, 34747}, {29012, 54170}, {31423, 50816}, {31730, 38074}, {32455, 48905}, {32819, 32888}, {32822, 32877}, {32876, 59634}, {36836, 49874}, {36843, 49873}, {36967, 42141}, {36968, 42140}, {36969, 43004}, {36970, 43005}, {37640, 42099}, {37641, 42100}, {38064, 42785}, {40330, 51022}, {40693, 43491}, {40694, 43492}, {41119, 42434}, {41120, 42433}, {41943, 42090}, {41944, 42091}, {42085, 42429}, {42086, 42430}, {42107, 51944}, {42108, 43404}, {42109, 43403}, {42110, 51945}, {42115, 43541}, {42116, 43540}, {42119, 61719}, {42133, 42625}, {42134, 42626}, {42139, 42528}, {42142, 42529}, {42147, 49826}, {42148, 49827}, {42154, 43481}, {42155, 43482}, {42159, 42631}, {42160, 49812}, {42161, 49813}, {42162, 42632}, {42271, 43522}, {42272, 43521}, {42431, 42435}, {42432, 42436}, {42512, 42795}, {42513, 42796}, {42543, 43002}, {42544, 43003}, {42602, 43374}, {42603, 43375}, {42627, 42932}, {42628, 42933}, {42910, 54592}, {42911, 54591}, {42940, 43543}, {42941, 43542}, {42944, 43502}, {42945, 43501}, {42962, 43552}, {42963, 43553}, {43030, 43310}, {43031, 43311}, {43397, 51915}, {43398, 51916}, {43632, 43769}, {43633, 43770}, {43773, 49825}, {43774, 49824}, {43775, 46335}, {43776, 46334}, {44882, 51130}, {47745, 50810}, {48310, 50976}, {48872, 50967}, {48873, 51023}, {48879, 54173}, {48889, 51217}, {48898, 51177}, {48920, 51537}, {48942, 50956}, {49038, 49092}, {49039, 49093}, {50964, 55674}, {50994, 55606}, {51135, 55711}, {51167, 55651}, {51179, 61044}, {51215, 55584}, {54857, 60627}, {54890, 60616}, {60143, 60325}, {60301, 60303}, {60302, 60304}, {60326, 60629}

X(62161) = reflection of X(i) in X(j) for these {i,j}: {11001, 3529}, {11541, 15682}, {15640, 3}, {15682, 20}, {15684, 15686}, {2, 1657}, {20, 15685}, {20423, 48896}, {376, 15683}, {3146, 3534}, {3543, 15681}, {3830, 15704}, {4, 11001}, {5073, 8703}, {50967, 48872}, {50974, 14927}, {51023, 48873}, {51179, 61044}, {51215, 55584}, {54132, 48905}, {54173, 48879}
X(62161) = inverse of X(61959) in orthocentroidal circle
X(62161) = inverse of X(61959) in Yff hyperbola
X(62161) = anticomplement of X(15684)
X(62161) = pole of line {523, 61959} with respect to the orthocentroidal circle
X(62161) = pole of line {6, 51133} with respect to the Kiepert hyperbola
X(62161) = pole of line {523, 61959} with respect to the Yff hyperbola
X(62161) = pole of line {69, 15689} with respect to the Wallace hyperbola
X(62161) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15689)}}, {{A, B, C, X(1294), X(15640)}}, {{A, B, C, X(1494), X(33703)}}, {{A, B, C, X(4846), X(15703)}}, {{A, B, C, X(14843), X(58203)}}, {{A, B, C, X(14890), X(36948)}}, {{A, B, C, X(14893), X(36889)}}, {{A, B, C, X(15319), X(50688)}}, {{A, B, C, X(15702), X(18850)}}, {{A, B, C, X(15740), X(55863)}}, {{A, B, C, X(18849), X(61138)}}, {{A, B, C, X(21734), X(60122)}}, {{A, B, C, X(37984), X(60740)}}, {{A, B, C, X(52301), X(60325)}}
X(62161) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10304, 15712}, {2, 12108, 15709}, {2, 14892, 3090}, {2, 15686, 376}, {2, 15706, 631}, {2, 17683, 8367}, {2, 3523, 14890}, {2, 3839, 5072}, {3, 30, 15640}, {3, 3857, 16418}, {4, 376, 15702}, {5, 15697, 15710}, {5, 3529, 13635}, {20, 11541, 4}, {20, 3146, 140}, {30, 15682, 11541}, {30, 15686, 15684}, {30, 15704, 3830}, {30, 3534, 3146}, {30, 8703, 5073}, {140, 15687, 381}, {140, 3627, 3843}, {376, 15686, 17538}, {376, 3529, 15683}, {381, 15681, 15691}, {381, 15694, 10109}, {381, 15700, 5070}, {381, 15701, 547}, {381, 547, 5068}, {381, 8703, 15721}, {546, 15695, 15708}, {550, 3839, 15698}, {550, 3859, 3}, {1657, 14093, 15681}, {3091, 15688, 15719}, {3146, 15692, 15687}, {3524, 3525, 15701}, {3525, 3529, 6968}, {3534, 15687, 15692}, {3534, 3545, 3528}, {3534, 3857, 10304}, {3543, 17678, 14269}, {3627, 8703, 14892}, {3830, 15706, 3850}, {3839, 15698, 5067}, {3845, 15709, 3544}, {3860, 15707, 7486}, {5059, 17800, 3529}, {5066, 15696, 15705}, {5066, 15705, 3533}, {5079, 15723, 15703}, {6429, 42641, 42572}, {6430, 42642, 42573}, {11001, 11541, 3524}, {11541, 17538, 3627}, {12101, 15640, 15682}, {12103, 17578, 10299}, {14093, 14893, 2}, {14093, 15681, 15686}, {14093, 15684, 14893}, {14093, 15723, 15706}, {14269, 15690, 3523}, {14891, 15686, 15689}, {14893, 15684, 3543}, {14893, 15686, 14093}, {14893, 15691, 14891}, {14893, 17538, 15715}, {14927, 19924, 50974}, {15681, 15691, 20}, {15681, 15703, 3534}, {15682, 15685, 11001}, {15682, 15691, 5071}, {15685, 15689, 1657}, {15687, 15692, 3545}, {43403, 52079, 43493}, {43404, 52080, 43494}, {48898, 59373, 51177}


X(62162) = X(2)X(3)∩X(40)X(61253)

Barycentrics    20*a^4-9*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62162) = -27*X[2]+29*X[3], -5*X[40]+4*X[61253], -9*X[141]+10*X[55623], -9*X[3818]+11*X[55628], -9*X[4297]+8*X[58232], -9*X[5480]+10*X[55698], -4*X[5493]+3*X[50823], -27*X[7967]+25*X[58236], -45*X[8227]+49*X[58225], -5*X[11439]+6*X[44324], -5*X[12699]+6*X[61280], -5*X[13464]+6*X[51080] and many others

X(62162) lies on these lines: {2, 3}, {40, 61253}, {61, 42145}, {62, 42144}, {141, 55623}, {485, 10147}, {486, 10148}, {1151, 43791}, {1152, 43792}, {1353, 29317}, {1483, 28146}, {1503, 55583}, {3592, 42276}, {3594, 42275}, {3818, 55628}, {4297, 58232}, {5237, 42108}, {5238, 42109}, {5351, 42135}, {5352, 42138}, {5480, 55698}, {5493, 50823}, {5690, 28172}, {6361, 61245}, {6419, 42226}, {6420, 42225}, {6425, 43321}, {6426, 43320}, {6427, 43408}, {6428, 43407}, {6453, 42272}, {6454, 42271}, {6488, 23251}, {6489, 23261}, {6519, 23249}, {6522, 23259}, {7967, 58236}, {7982, 28178}, {7991, 28186}, {8227, 58225}, {8981, 53517}, {9680, 42639}, {10222, 28150}, {10386, 10483}, {10645, 42957}, {10646, 42956}, {11439, 44324}, {12699, 61280}, {13464, 51080}, {13966, 53520}, {14641, 16625}, {14927, 55724}, {15039, 61598}, {15044, 38788}, {16189, 28182}, {16772, 42997}, {16773, 42996}, {16964, 43233}, {16965, 43232}, {17852, 42261}, {18358, 55626}, {18481, 61281}, {18907, 41940}, {19116, 42267}, {19117, 42266}, {20190, 51163}, {21850, 22234}, {22236, 42113}, {22238, 42112}, {22330, 48906}, {22791, 28158}, {28154, 34773}, {28168, 59400}, {28174, 58245}, {28190, 61246}, {28194, 61297}, {28202, 51082}, {28216, 61295}, {29012, 55588}, {29181, 55721}, {29323, 48874}, {30389, 40273}, {31399, 50826}, {31666, 38034}, {31730, 38138}, {32137, 36987}, {34507, 50970}, {34584, 38632}, {34785, 50709}, {36836, 42137}, {36843, 42136}, {38110, 48891}, {38112, 61256}, {38136, 55687}, {39884, 55606}, {40247, 54042}, {41869, 61277}, {42099, 42165}, {42100, 42164}, {42101, 43295}, {42102, 43294}, {42103, 42591}, {42106, 42590}, {42107, 43293}, {42110, 43292}, {42121, 42531}, {42122, 42161}, {42123, 42160}, {42124, 42530}, {42147, 42430}, {42148, 42429}, {42433, 43402}, {42434, 43401}, {42557, 51910}, {42558, 51911}, {42633, 43194}, {42634, 43193}, {42641, 43526}, {42642, 43525}, {42924, 43304}, {42925, 43305}, {42944, 43373}, {42945, 43372}, {42974, 43634}, {42975, 43635}, {43244, 43486}, {43245, 43485}, {43422, 49860}, {43423, 49859}, {43621, 53093}, {43789, 43879}, {43790, 43880}, {44882, 55704}, {46264, 53858}, {48661, 61283}, {48876, 48879}, {48880, 55611}, {48881, 55617}, {48898, 55708}, {48901, 55694}, {50414, 51491}, {51538, 55701}, {55602, 61545}, {61257, 61524}

X(62162) = midpoint of X(i) and X(j) for these {i,j}: {5059, 17800}
X(62162) = reflection of X(i) in X(j) for these {i,j}: {15686, 15685}, {15687, 11001}, {15704, 3529}, {21850, 48896}, {3146, 12103}, {3627, 15704}, {48876, 48879}, {5, 1657}, {5073, 548}, {61245, 6361}, {8703, 15683}
X(62162) = complement of X(49133)
X(62162) = anticomplement of X(62038)
X(62162) = pole of line {185, 12812} with respect to the Jerabek hyperbola
X(62162) = pole of line {69, 55613} with respect to the Wallace hyperbola
X(62162) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(12812)}}, {{A, B, C, X(4846), X(46935)}}, {{A, B, C, X(15688), X(18848)}}, {{A, B, C, X(17800), X(52441)}}, {{A, B, C, X(32533), X(50691)}}, {{A, B, C, X(43970), X(58187)}}
X(62162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12812, 14869}, {3, 3146, 12102}, {3, 3544, 140}, {3, 3627, 3857}, {3, 4, 12812}, {3, 5076, 3544}, {4, 15688, 16239}, {4, 20, 15688}, {5, 14892, 6864}, {5, 15712, 10124}, {5, 8703, 3523}, {20, 1656, 15690}, {20, 3146, 3525}, {20, 5073, 10109}, {20, 549, 550}, {30, 11001, 15687}, {30, 12103, 3146}, {30, 15683, 8703}, {30, 15704, 3627}, {30, 548, 5073}, {140, 3839, 5}, {376, 3839, 15722}, {382, 15694, 4}, {382, 17538, 3628}, {382, 8703, 3858}, {546, 10109, 3091}, {546, 3628, 3545}, {548, 10109, 10299}, {632, 3627, 3845}, {1657, 12103, 15704}, {1657, 3146, 12103}, {3146, 3525, 3830}, {3146, 3529, 1657}, {3522, 15684, 3861}, {3522, 3861, 11539}, {3525, 3830, 546}, {3529, 17538, 15683}, {3534, 3853, 15712}, {3545, 3830, 14893}, {3850, 15696, 17504}, {3857, 6855, 6911}, {5059, 17800, 30}, {5073, 11001, 548}, {6928, 15684, 3843}, {6971, 17800, 15696}, {10124, 12100, 15708}, {10299, 11001, 20}, {10299, 13735, 5054}, {11539, 15716, 549}, {12102, 12103, 3}, {12103, 12108, 376}, {14869, 15699, 632}, {14869, 15704, 15686}, {15156, 15157, 18859}, {15682, 15696, 3850}, {42145, 43630, 42922}


X(62163) = X(2)X(3)∩X(61)X(42587)

Barycentrics    31*a^4-14*(b^2-c^2)^2-17*a^2*(b^2+c^2) : :
X(62163) = -14*X[2]+15*X[3], -15*X[1482]+16*X[51095], -7*X[3633]+4*X[58246], -16*X[4745]+15*X[50797], -8*X[6329]+5*X[43621], -16*X[8584]+15*X[51172], -6*X[10172]+7*X[51083], -7*X[10516]+8*X[55638], -7*X[11178]+8*X[55625], -6*X[11230]+7*X[50820], -5*X[12702]+4*X[34641], -3*X[14848]+4*X[48898] and many others

X(62163) lies on these lines: {2, 3}, {61, 42587}, {62, 42586}, {516, 50805}, {599, 48879}, {623, 33619}, {624, 33618}, {1482, 51095}, {1503, 51175}, {3632, 28208}, {3633, 58246}, {3654, 28172}, {3656, 28158}, {4677, 28160}, {4745, 50797}, {5318, 49860}, {5321, 49859}, {5339, 42977}, {5340, 42976}, {6329, 43621}, {6449, 42608}, {6450, 42609}, {6455, 42606}, {6456, 42607}, {6468, 13665}, {6469, 13785}, {6470, 42266}, {6471, 42267}, {6560, 42417}, {6561, 42418}, {6564, 42526}, {6565, 42527}, {8584, 51172}, {9541, 42538}, {10172, 51083}, {10516, 55638}, {10653, 43105}, {10654, 43106}, {11178, 55625}, {11224, 28146}, {11230, 50820}, {11480, 12816}, {11481, 12817}, {11488, 42514}, {11489, 42515}, {11645, 40341}, {12702, 34641}, {12820, 16241}, {12821, 16242}, {13846, 43318}, {13847, 43319}, {13903, 43258}, {13925, 60305}, {13961, 43259}, {13993, 60306}, {14848, 48898}, {15516, 48896}, {15520, 43273}, {15533, 29012}, {15534, 55720}, {18487, 36431}, {18526, 28198}, {19106, 49905}, {19107, 49906}, {19924, 39899}, {20049, 58247}, {20583, 46264}, {22165, 48873}, {22793, 51110}, {28150, 51071}, {28154, 50811}, {28164, 50798}, {28168, 59503}, {28190, 50810}, {28202, 51093}, {28216, 50818}, {29181, 50962}, {29323, 55596}, {32063, 50709}, {32900, 58239}, {34628, 48661}, {34638, 38066}, {36836, 43546}, {36843, 43547}, {36967, 42506}, {36968, 42507}, {36990, 55608}, {38034, 50873}, {38042, 50813}, {38136, 51029}, {38138, 50863}, {38140, 50866}, {38317, 50976}, {39593, 44526}, {39884, 50994}, {41100, 42131}, {41101, 42130}, {41107, 42097}, {41108, 42096}, {41112, 42087}, {41113, 42088}, {41119, 42116}, {41120, 42115}, {41121, 42626}, {41122, 42625}, {41153, 55701}, {41947, 52046}, {41948, 52045}, {41961, 53130}, {41962, 53131}, {41977, 42153}, {41978, 42156}, {42099, 42532}, {42100, 42533}, {42108, 42792}, {42109, 42791}, {42112, 42510}, {42113, 42511}, {42117, 49875}, {42118, 49876}, {42122, 49813}, {42123, 49812}, {42126, 43419}, {42127, 43418}, {42129, 43196}, {42132, 43195}, {42136, 49873}, {42137, 49874}, {42144, 42589}, {42145, 42588}, {42154, 42508}, {42155, 42509}, {42225, 43256}, {42226, 43257}, {42270, 43563}, {42273, 43562}, {42275, 43209}, {42276, 43210}, {42431, 42635}, {42432, 42636}, {42502, 42817}, {42503, 42818}, {42504, 42529}, {42505, 42528}, {42572, 43526}, {42573, 43525}, {42631, 43230}, {42632, 43231}, {42779, 43194}, {42780, 43193}, {42888, 43543}, {42889, 43542}, {42938, 42972}, {42939, 42973}, {42962, 49907}, {42963, 49908}, {43028, 43400}, {43029, 43399}, {43108, 43111}, {43109, 43110}, {43485, 43632}, {43486, 43633}, {43523, 53513}, {43524, 53516}, {47102, 53143}, {47352, 48891}, {48662, 54170}, {48872, 55590}, {48884, 55634}, {48904, 55690}, {48905, 55716}, {48910, 55710}, {48920, 55635}, {50806, 51108}, {50819, 58230}, {50954, 50991}, {50959, 55682}, {50975, 55697}, {50989, 52987}, {50992, 55584}, {51023, 55593}, {51086, 61266}, {51173, 51737}, {51177, 59399}, {51185, 55706}, {51186, 55630}, {53023, 55686}, {55693, 59411}

X(62163) = reflection of X(i) in X(j) for these {i,j}: {15640, 8703}, {15681, 3529}, {15684, 20}, {3, 15683}, {381, 1657}, {382, 15681}, {3146, 15686}, {3534, 15685}, {3543, 15704}, {3830, 11001}, {48661, 34628}, {48662, 54170}, {5073, 376}, {599, 48879}, {54131, 48896}, {58247, 20049}
X(62163) = inverse of X(61960) in orthocentroidal circle
X(62163) = inverse of X(61960) in Yff hyperbola
X(62163) = complement of X(62052)
X(62163) = anticomplement of X(62039)
X(62163) = pole of line {523, 61960} with respect to the orthocentroidal circle
X(62163) = pole of line {6, 61960} with respect to the Kiepert hyperbola
X(62163) = pole of line {523, 61960} with respect to the Yff hyperbola
X(62163) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3856), X(54585)}}, {{A, B, C, X(3860), X(18550)}}, {{A, B, C, X(18317), X(33703)}}, {{A, B, C, X(49136), X(54512)}}
X(62163) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15681, 3534}, {2, 15682, 15687}, {2, 17504, 15701}, {2, 3528, 12100}, {2, 3534, 15688}, {2, 3845, 3851}, {3, 3861, 1656}, {3, 5055, 15721}, {3, 5073, 17578}, {20, 15684, 5054}, {20, 30, 15684}, {20, 3146, 3533}, {20, 3845, 15695}, {30, 11001, 3830}, {30, 15681, 382}, {30, 15683, 3}, {30, 15686, 3146}, {30, 15704, 3543}, {30, 1657, 381}, {30, 376, 5073}, {30, 8703, 15640}, {376, 17578, 15699}, {376, 546, 15707}, {381, 15688, 15720}, {381, 15696, 15706}, {382, 15700, 14269}, {382, 3851, 5076}, {550, 11737, 15710}, {3146, 15686, 5055}, {3526, 15693, 11812}, {3534, 14093, 15690}, {3534, 15685, 1657}, {3534, 15716, 376}, {3543, 15704, 15689}, {3543, 15709, 3861}, {3843, 15722, 10109}, {5079, 15688, 15700}, {10109, 10304, 15722}, {10109, 14869, 2}, {10109, 15722, 15723}, {11001, 15640, 8703}, {11001, 15682, 15697}, {11001, 15698, 20}, {11812, 15716, 15693}, {14269, 15681, 550}, {14269, 15700, 5079}, {15677, 15710, 15712}, {15682, 15697, 5066}, {15682, 15721, 12101}, {15683, 15687, 15681}, {15683, 15697, 11001}, {15683, 15709, 15704}, {15684, 15695, 3845}, {15687, 15699, 546}, {15690, 15701, 14093}


X(62164) = X(2)X(3)∩X(141)X(55621)

Barycentrics    24*a^4-11*(b^2-c^2)^2-13*a^2*(b^2+c^2) : :
X(62164) = -33*X[2]+35*X[3], -11*X[141]+12*X[55621], -3*X[1483]+2*X[9589], -4*X[3631]+5*X[48874], -15*X[4668]+14*X[61249], -11*X[5480]+12*X[55700], -4*X[6329]+5*X[48898], -4*X[13202]+5*X[22251], -2*X[14531]+3*X[45957], -4*X[16881]+5*X[52093], -7*X[20057]+5*X[48661], -11*X[21850]+12*X[55713] and many others

X(62164) lies on these lines: {2, 3}, {141, 55621}, {397, 42430}, {398, 42429}, {516, 61295}, {1151, 43434}, {1152, 43435}, {1483, 9589}, {1503, 55581}, {1587, 6494}, {1588, 6495}, {3244, 28146}, {3411, 42088}, {3412, 42087}, {3625, 28160}, {3626, 28172}, {3629, 29317}, {3630, 29012}, {3631, 48874}, {3632, 28186}, {3633, 28174}, {4301, 28154}, {4668, 61249}, {5237, 43230}, {5238, 43231}, {5318, 42939}, {5321, 42938}, {5334, 43635}, {5335, 43634}, {5480, 55700}, {5881, 28190}, {6329, 48898}, {6435, 42226}, {6436, 42225}, {6453, 43786}, {6454, 43785}, {6480, 43340}, {6481, 43341}, {6498, 42413}, {6499, 42414}, {9657, 10386}, {10645, 43873}, {10646, 43874}, {11362, 28168}, {12161, 33534}, {12818, 18538}, {12819, 18762}, {13202, 22251}, {14531, 45957}, {15048, 34571}, {16881, 52093}, {19116, 42275}, {19117, 42276}, {20050, 28212}, {20057, 48661}, {21850, 55713}, {22793, 61273}, {24981, 34584}, {28158, 34773}, {28178, 37727}, {29181, 55723}, {29323, 55592}, {31425, 61259}, {31487, 42643}, {32455, 55717}, {34628, 61282}, {35242, 61260}, {38136, 48891}, {39884, 48879}, {40107, 55609}, {40693, 42585}, {40694, 42584}, {41100, 42613}, {41101, 42612}, {41869, 61278}, {42096, 43326}, {42097, 43327}, {42099, 42435}, {42100, 42436}, {42108, 42433}, {42109, 42434}, {42111, 43871}, {42112, 43193}, {42113, 43194}, {42114, 43872}, {42117, 43106}, {42118, 43105}, {42121, 42928}, {42124, 42929}, {42130, 42922}, {42131, 42923}, {42144, 42148}, {42145, 42147}, {42164, 42634}, {42165, 42633}, {42488, 43471}, {42489, 43472}, {42528, 42946}, {42529, 42947}, {42543, 42592}, {42544, 42593}, {42801, 42943}, {42802, 42942}, {42815, 43487}, {42816, 43488}, {42888, 42917}, {42889, 42916}, {42940, 43547}, {42941, 43546}, {42966, 43485}, {42967, 43486}, {43418, 43491}, {43419, 43492}, {43446, 43478}, {43447, 43477}, {43570, 53130}, {43571, 53131}, {43621, 59399}, {44871, 55166}, {44882, 55702}, {48876, 55599}, {48880, 55613}, {48881, 55619}, {48896, 55712}, {48906, 55714}, {50981, 55641}, {51022, 55631}

X(62164) = reflection of X(i) in X(j) for these {i,j}: {15640, 15691}, {3627, 1657}, {3845, 15683}, {39884, 48879}, {549, 15685}, {550, 3529}, {5073, 12103}
X(62164) = complement of X(62053)
X(62164) = pole of line {185, 10109} with respect to the Jerabek hyperbola
X(62164) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(10109)}}, {{A, B, C, X(1657), X(57823)}}, {{A, B, C, X(3521), X(11737)}}
X(62164) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15688, 14891}, {2, 15712, 14869}, {2, 17682, 377}, {2, 3529, 1657}, {2, 3851, 12812}, {2, 5187, 17675}, {3, 4, 10109}, {5, 15713, 5070}, {5, 382, 15687}, {20, 3146, 5067}, {20, 382, 3530}, {20, 3843, 548}, {20, 5067, 15696}, {30, 12103, 5073}, {30, 15683, 3845}, {30, 15685, 549}, {30, 15691, 15640}, {30, 1657, 3627}, {382, 14269, 17578}, {382, 15681, 3528}, {382, 15696, 3851}, {382, 17800, 3529}, {382, 3528, 546}, {382, 3855, 3853}, {382, 550, 5}, {546, 550, 17504}, {550, 14869, 8703}, {550, 3544, 15714}, {1657, 15684, 17538}, {1657, 15686, 15704}, {1657, 3843, 20}, {3146, 15696, 3861}, {3411, 42545, 42630}, {3412, 42546, 42629}, {3522, 12102, 15699}, {3530, 3853, 3855}, {3627, 15686, 15712}, {3830, 15717, 3859}, {3856, 14893, 3843}, {5073, 15683, 12103}, {6911, 15714, 140}, {6961, 15696, 376}, {10299, 11737, 632}, {11539, 15712, 12108}, {12103, 15688, 550}, {14093, 14269, 2}, {15684, 17538, 3850}, {15704, 15712, 15686}


X(62165) = X(2)X(3)∩X(40)X(51070)

Barycentrics    37*a^4-17*(b^2-c^2)^2-20*a^2*(b^2+c^2) : :
X(62165) = -17*X[2]+18*X[3], -9*X[40]+8*X[51070], -9*X[98]+8*X[41147], -9*X[944]+8*X[51091], -9*X[1350]+8*X[41152], -6*X[3817]+7*X[50820], -9*X[4297]+8*X[41150], -2*X[4677]+3*X[6361], -6*X[5093]+5*X[51211], -3*X[5485]+4*X[47102], -6*X[5587]+7*X[50813], -15*X[5603]+16*X[51085] and many others

X(62165) lies on these lines: {2, 3}, {40, 51070}, {98, 41147}, {397, 42587}, {398, 42586}, {516, 50818}, {944, 51091}, {1327, 42525}, {1328, 42524}, {1350, 41152}, {1503, 51179}, {3068, 43521}, {3069, 43522}, {3070, 42576}, {3071, 42577}, {3817, 50820}, {4297, 41150}, {4677, 6361}, {5093, 51211}, {5485, 47102}, {5587, 50813}, {5603, 51085}, {5790, 50863}, {5886, 50873}, {6200, 43568}, {6396, 43569}, {6482, 43570}, {6483, 43571}, {6560, 43797}, {6561, 43798}, {6564, 43788}, {6565, 43787}, {6776, 41149}, {7750, 32892}, {7967, 28154}, {8584, 48905}, {10175, 50866}, {10516, 50969}, {10722, 36521}, {11180, 48872}, {11488, 42632}, {11489, 42631}, {11645, 50992}, {13607, 34628}, {13846, 41954}, {13847, 41953}, {14226, 43792}, {14241, 43791}, {14458, 60637}, {14561, 51029}, {14853, 51138}, {16191, 28150}, {16966, 54480}, {16967, 54479}, {18581, 42796}, {18582, 42795}, {18842, 54643}, {19053, 42275}, {19054, 42276}, {19106, 43542}, {19107, 43543}, {19924, 39874}, {21356, 48880}, {21849, 61136}, {23253, 41967}, {23263, 41968}, {23267, 43337}, {23269, 35815}, {23273, 43336}, {23275, 35814}, {28146, 51087}, {28158, 50811}, {28164, 50810}, {28168, 50864}, {28172, 50827}, {28178, 50872}, {28186, 50830}, {28202, 34631}, {29181, 50974}, {29317, 51140}, {29323, 51023}, {31162, 51104}, {31730, 51066}, {32532, 60175}, {32785, 43503}, {32786, 43504}, {33602, 33607}, {33603, 33606}, {33604, 43416}, {33605, 43417}, {33610, 33613}, {33611, 33612}, {33750, 50959}, {34638, 38074}, {35812, 42608}, {35813, 42609}, {35820, 43342}, {35821, 43343}, {36836, 42502}, {36843, 42503}, {36967, 49813}, {36968, 49812}, {37640, 42113}, {37641, 42112}, {38747, 41148}, {38749, 41151}, {41100, 42589}, {41101, 42588}, {41107, 41971}, {41108, 41972}, {41112, 42141}, {41113, 42140}, {41119, 42514}, {41120, 42515}, {41121, 42090}, {41122, 42091}, {41153, 44882}, {41869, 51103}, {41943, 43201}, {41944, 43202}, {41969, 42272}, {41970, 42271}, {42085, 43481}, {42086, 43482}, {42096, 43229}, {42097, 43228}, {42099, 42511}, {42100, 42510}, {42104, 49908}, {42105, 49907}, {42117, 42420}, {42118, 42419}, {42125, 43494}, {42128, 43493}, {42133, 42685}, {42134, 42684}, {42135, 43555}, {42138, 43554}, {42139, 43545}, {42142, 43544}, {42143, 43478}, {42144, 43109}, {42145, 43108}, {42146, 43477}, {42150, 42965}, {42151, 42964}, {42154, 49875}, {42155, 49876}, {42160, 42507}, {42161, 42506}, {42263, 43256}, {42264, 43257}, {42417, 43408}, {42418, 43407}, {42431, 42532}, {42432, 42533}, {42504, 42695}, {42505, 42694}, {42516, 43645}, {42517, 43646}, {42528, 43464}, {42529, 43463}, {42543, 42955}, {42544, 42954}, {42690, 43541}, {42691, 43540}, {42791, 43403}, {42792, 43404}, {42914, 43369}, {42915, 43368}, {42934, 43770}, {42935, 43769}, {42940, 49873}, {42941, 49874}, {42942, 42986}, {42943, 42987}, {43150, 50990}, {43380, 43789}, {43381, 43790}, {43382, 43387}, {43383, 43386}, {43401, 49905}, {43402, 49906}, {43483, 43501}, {43484, 43502}, {43621, 59373}, {47353, 50966}, {48879, 50994}, {48881, 50993}, {50809, 51067}, {50874, 58221}, {50960, 55654}, {50982, 51189}, {50985, 54174}, {51164, 55673}, {51176, 54132}, {53104, 54647}, {54477, 60643}, {54521, 60284}, {54582, 60646}, {54612, 60200}, {54637, 54866}, {54639, 54707}, {54852, 60641}, {60127, 60282}, {60150, 60228}, {60185, 60632}, {60192, 60281}, {60299, 60301}, {60300, 60302}

X(62165) = reflection of X(i) in X(j) for these {i,j}: {11180, 48872}, {11541, 3543}, {15640, 3534}, {15682, 11001}, {15683, 17800}, {15684, 15704}, {2, 15685}, {376, 3529}, {3146, 15681}, {3543, 1657}, {4, 15683}, {5073, 15686}
X(62165) = anticomplement of X(62040)
X(62165) = pole of line {69, 15690} with respect to the Wallace hyperbola
X(62165) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(15690)}}, {{A, B, C, X(265), X(35400)}}, {{A, B, C, X(550), X(54667)}}, {{A, B, C, X(3534), X(18847)}}, {{A, B, C, X(3628), X(18851)}}, {{A, B, C, X(3851), X(54838)}}, {{A, B, C, X(4232), X(54608)}}, {{A, B, C, X(11331), X(60637)}}, {{A, B, C, X(13623), X(15701)}}, {{A, B, C, X(15709), X(18850)}}, {{A, B, C, X(15717), X(18849)}}, {{A, B, C, X(15720), X(54660)}}, {{A, B, C, X(18317), X(49136)}}, {{A, B, C, X(35018), X(54763)}}, {{A, B, C, X(49135), X(54512)}}, {{A, B, C, X(52284), X(54643)}}, {{A, B, C, X(53857), X(60175)}}
X(62165) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15685, 11001}, {2, 20, 15690}, {4, 17538, 15717}, {4, 17800, 3529}, {4, 3528, 3628}, {4, 376, 15709}, {20, 13735, 15696}, {20, 3146, 1656}, {20, 3543, 15705}, {30, 11001, 15682}, {30, 15681, 3146}, {30, 15686, 5073}, {30, 15704, 15684}, {30, 1657, 3543}, {30, 17800, 15683}, {30, 3534, 15640}, {30, 3543, 11541}, {376, 3533, 15710}, {376, 3545, 10299}, {381, 15710, 3533}, {546, 1657, 20}, {546, 549, 5055}, {549, 15759, 15716}, {631, 3529, 1657}, {1656, 3830, 3845}, {1657, 11541, 631}, {3091, 15689, 15715}, {3146, 15681, 3524}, {3534, 15684, 5066}, {3534, 5055, 8703}, {3543, 15705, 546}, {3545, 15682, 3830}, {3830, 12100, 3854}, {3830, 15688, 10109}, {3839, 15686, 3528}, {3845, 15681, 15697}, {3845, 8703, 10124}, {3854, 5071, 3545}, {5073, 15686, 3839}, {7486, 15706, 15702}, {10299, 15709, 549}, {10304, 15683, 15704}, {10304, 15684, 4}, {11001, 15640, 15698}, {11001, 15682, 376}, {12101, 15695, 2}, {14893, 15696, 15708}, {14893, 15708, 3544}, {15640, 15683, 3534}, {15640, 15695, 6848}, {15682, 15697, 3855}, {15683, 15759, 6949}, {15684, 15704, 10304}, {15698, 15709, 15719}, {36969, 49862, 33602}, {36970, 49861, 33603}, {52666, 53131, 14226}, {52667, 53130, 14241}


X(62166) = X(2)X(3)∩X(145)X(28202)

Barycentrics    41*a^4-19*(b^2-c^2)^2-22*a^2*(b^2+c^2) : :
X(62166) = -19*X[2]+20*X[3], -5*X[3620]+8*X[48879], -6*X[5032]+5*X[51211], -8*X[5480]+7*X[51213], -5*X[5691]+6*X[38098], -5*X[7987]+4*X[50869], -7*X[7989]+8*X[50816], -5*X[9589]+7*X[51094], -5*X[9740]+4*X[53143], -7*X[10248]+8*X[50828], -8*X[12571]+7*X[50874], -8*X[19925]+7*X[50867] and many others

X(62166) lies on these lines: {2, 3}, {145, 28202}, {516, 34747}, {1131, 43515}, {1132, 43516}, {3068, 6490}, {3069, 6491}, {3070, 42538}, {3071, 42537}, {3241, 28150}, {3620, 48879}, {5032, 51211}, {5480, 51213}, {5691, 38098}, {7585, 43322}, {7586, 43323}, {7987, 50869}, {7989, 50816}, {8981, 60305}, {9541, 42542}, {9542, 52667}, {9589, 51094}, {9740, 53143}, {10248, 50828}, {10645, 12820}, {10646, 12821}, {11160, 29012}, {11180, 29323}, {11645, 51215}, {12571, 50874}, {13966, 60306}, {14927, 51028}, {16241, 43364}, {16242, 43365}, {16772, 43201}, {16773, 43202}, {18581, 42933}, {18582, 42932}, {19925, 50867}, {20049, 28174}, {20050, 28194}, {20054, 28204}, {20070, 28208}, {21356, 51216}, {21849, 52093}, {22235, 42939}, {22237, 42938}, {22793, 50819}, {25055, 50873}, {28158, 34628}, {28160, 31145}, {28164, 34632}, {28168, 34627}, {28172, 59417}, {28178, 34631}, {33748, 54131}, {33751, 50964}, {34638, 59387}, {35021, 41135}, {37832, 43477}, {37835, 43478}, {39884, 50966}, {40341, 54174}, {41943, 42134}, {41944, 42133}, {42096, 43242}, {42097, 43243}, {42099, 42982}, {42100, 42983}, {42112, 42429}, {42113, 42430}, {42119, 42587}, {42120, 42586}, {42140, 42782}, {42141, 42781}, {42144, 43110}, {42145, 43111}, {42147, 42588}, {42148, 42589}, {42150, 42635}, {42151, 42636}, {42154, 43106}, {42155, 43105}, {42157, 49826}, {42158, 49827}, {42271, 42642}, {42272, 42641}, {42514, 49905}, {42515, 49906}, {42572, 43339}, {42573, 43338}, {42775, 43107}, {42776, 43100}, {42998, 46335}, {42999, 46334}, {43465, 61719}, {43503, 51911}, {43504, 51910}, {43546, 49874}, {43547, 49873}, {43632, 49876}, {43633, 49875}, {47352, 51029}, {48872, 51023}, {48901, 50975}, {48920, 50969}, {50863, 53620}, {51026, 53094}, {51129, 55671}

X(62166) = reflection of X(i) in X(j) for these {i,j}: {11001, 17800}, {11541, 3830}, {15640, 20}, {15682, 1657}, {2, 3529}, {3146, 11001}, {3543, 15683}, {4, 15685}, {51023, 48872}, {51028, 14927}, {51215, 61044}
X(62166) = anticomplement of X(62042)
X(62166) = pole of line {69, 50968} with respect to the Wallace hyperbola
X(62166) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1494), X(49135)}}, {{A, B, C, X(5071), X(16251)}}, {{A, B, C, X(10304), X(57894)}}, {{A, B, C, X(15694), X(18850)}}, {{A, B, C, X(18317), X(35400)}}, {{A, B, C, X(31363), X(44904)}}
X(62166) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14269, 3091}, {2, 15683, 15681}, {2, 15700, 15721}, {2, 15705, 15720}, {2, 15710, 3523}, {2, 3522, 17504}, {2, 550, 10304}, {4, 12812, 3832}, {4, 376, 15694}, {20, 15640, 3839}, {20, 15708, 15697}, {20, 30, 15640}, {20, 3146, 5056}, {20, 3543, 15692}, {30, 11001, 3146}, {30, 15685, 4}, {30, 1657, 15682}, {30, 3529, 2}, {30, 3830, 11541}, {376, 5071, 14891}, {381, 11539, 5071}, {381, 15681, 550}, {381, 15695, 549}, {382, 550, 3544}, {546, 3534, 15710}, {550, 17800, 3529}, {3091, 3523, 5070}, {3146, 5059, 17800}, {3528, 15682, 14269}, {3528, 3529, 1657}, {3529, 15681, 15683}, {3543, 10304, 381}, {3543, 15686, 15708}, {3830, 15691, 15702}, {3830, 17504, 3855}, {3832, 6175, 11737}, {3845, 15705, 7486}, {3845, 17538, 15705}, {10304, 11001, 20}, {11001, 15682, 15695}, {11645, 61044, 51215}, {11737, 15686, 15688}, {12100, 14869, 15707}, {12100, 15685, 11001}, {12101, 15696, 15709}, {12101, 15709, 3854}, {15640, 15692, 3543}, {15681, 15684, 15700}, {15681, 15687, 376}, {15681, 15688, 15686}, {15684, 15700, 15687}, {15691, 15702, 3522}, {15700, 15714, 15715}


X(62167) = X(2)X(3)∩X(1327)X(6445)

Barycentrics    43*a^4-20*(b^2-c^2)^2-23*a^2*(b^2+c^2) : :
X(62167) = -20*X[2]+21*X[3], -5*X[3654]+4*X[50868], -6*X[9778]+5*X[50797], -8*X[9880]+9*X[38634], -10*X[11178]+11*X[55622], -6*X[11231]+5*X[50866], -4*X[15300]+3*X[38744], -4*X[15533]+3*X[48662], -24*X[19883]+25*X[58224], -4*X[20014]+X[58250], -15*X[21358]+16*X[55636], -8*X[22165]+9*X[55593] and many others

X(62167) lies on these lines: {2, 3}, {623, 33621}, {624, 33620}, {1327, 6445}, {1328, 6446}, {3633, 28198}, {3654, 50868}, {4669, 28172}, {6144, 19924}, {6199, 43210}, {6395, 43209}, {6417, 42417}, {6418, 42418}, {6433, 45384}, {6434, 45385}, {6474, 23269}, {6475, 23275}, {6500, 42413}, {6501, 42414}, {9690, 52667}, {9778, 50797}, {9880, 38634}, {10137, 42260}, {10138, 42261}, {10247, 28158}, {11178, 55622}, {11231, 50866}, {11485, 42430}, {11486, 42429}, {11531, 28202}, {11645, 55582}, {12816, 42626}, {12817, 42625}, {15300, 38744}, {15533, 48662}, {15534, 29317}, {16200, 28154}, {16644, 42929}, {16645, 42928}, {16964, 42586}, {16965, 42587}, {19106, 49903}, {19107, 49904}, {19883, 58224}, {20014, 58250}, {21358, 55636}, {22165, 55593}, {22236, 43491}, {22238, 43492}, {23251, 42525}, {23261, 42524}, {25561, 55642}, {28146, 51093}, {28150, 51120}, {28160, 50871}, {28164, 51515}, {28168, 50798}, {28178, 50805}, {29012, 51027}, {29323, 50955}, {31662, 51110}, {33179, 34628}, {34747, 58244}, {35814, 42642}, {35815, 42641}, {35822, 42576}, {35823, 42577}, {36967, 42895}, {36968, 42894}, {38028, 50873}, {38072, 55688}, {38110, 51029}, {38112, 50863}, {39561, 51024}, {41100, 42096}, {41101, 42097}, {41119, 42109}, {41120, 42108}, {42093, 43200}, {42094, 43199}, {42099, 49947}, {42100, 49948}, {42122, 49825}, {42123, 49824}, {42125, 42792}, {42126, 42510}, {42127, 42511}, {42128, 42791}, {42130, 43228}, {42131, 43229}, {42136, 49861}, {42137, 49862}, {42144, 49827}, {42145, 49826}, {42154, 43244}, {42155, 43245}, {42433, 43551}, {42434, 43550}, {42518, 42691}, {42519, 42690}, {42532, 43194}, {42533, 43193}, {42588, 43108}, {42589, 43109}, {42639, 43507}, {42640, 43508}, {42890, 61719}, {42896, 43327}, {42897, 43326}, {42904, 42996}, {42905, 42997}, {42942, 49811}, {42943, 49810}, {42984, 43475}, {42985, 43476}, {43415, 52666}, {47353, 55603}, {47354, 55624}, {48661, 51071}, {48874, 50990}, {48879, 55607}, {48896, 55711}, {48898, 51185}, {50799, 59420}, {50963, 59411}, {50968, 55645}, {50993, 55618}, {51025, 54173}, {51087, 58241}, {51119, 51705}, {51165, 51737}, {51186, 55629}, {51188, 55580}

X(62167) = reflection of X(i) in X(j) for these {i,j}: {11541, 15687}, {15681, 17800}, {15684, 1657}, {381, 3529}, {382, 15683}, {3830, 15685}, {5073, 15681}
X(62167) = anticomplement of X(62043)
X(62167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1294), X(35400)}}, {{A, B, C, X(18317), X(49135)}}, {{A, B, C, X(41991), X(54585)}}, {{A, B, C, X(49134), X(54512)}}
X(62167) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11001, 15686}, {2, 15684, 3830}, {2, 15698, 12108}, {2, 17538, 8703}, {3, 14269, 547}, {3, 15685, 11001}, {3, 15703, 15708}, {3, 15723, 15707}, {3, 3545, 15694}, {3, 3853, 3851}, {3, 5059, 17800}, {30, 15681, 5073}, {30, 15683, 382}, {30, 15687, 11541}, {30, 1657, 15684}, {381, 11001, 6958}, {381, 12102, 14269}, {382, 15706, 14893}, {382, 1657, 17538}, {547, 3858, 3545}, {548, 3529, 1657}, {1657, 15684, 15689}, {1657, 5072, 20}, {3523, 17538, 548}, {3534, 15701, 15695}, {3543, 11001, 15690}, {3543, 15719, 3845}, {3830, 15689, 2}, {3830, 15695, 5055}, {3830, 17800, 15685}, {3845, 15690, 15719}, {5066, 15688, 15722}, {5066, 15722, 5070}, {6979, 15697, 15692}, {11001, 15640, 11812}, {12101, 15697, 5054}, {12101, 15704, 15697}, {12102, 15709, 381}, {14893, 17538, 15706}, {15681, 15684, 15718}, {15681, 15701, 3534}, {15683, 15694, 15681}, {15684, 15689, 3843}, {15688, 15702, 3}, {15707, 15713, 15701}, {15709, 15715, 3523}


X(62168) = X(2)X(3)∩X(621)X(33608)

Barycentrics    49*a^4-23*(b^2-c^2)^2-26*a^2*(b^2+c^2) : :
X(62168) = -23*X[2]+24*X[3], -6*X[3576]+5*X[50873], -8*X[4745]+9*X[9778], -3*X[5032]+4*X[48905], -6*X[5085]+5*X[51029], -8*X[5476]+7*X[51213], -6*X[5657]+5*X[50863], -6*X[5691]+7*X[51068], -9*X[7988]+10*X[51079], -3*X[9589]+4*X[51091], -9*X[9779]+8*X[50869], -15*X[9812]+16*X[51075] and many others

X(62168) lies on these lines: {2, 3}, {621, 33608}, {622, 33609}, {1994, 33534}, {3576, 50873}, {3621, 28208}, {4677, 28164}, {4745, 9778}, {5032, 48905}, {5085, 51029}, {5334, 42429}, {5335, 42430}, {5343, 49810}, {5344, 49811}, {5476, 51213}, {5657, 50863}, {5691, 51068}, {6221, 43521}, {6398, 43522}, {6433, 43380}, {6434, 43381}, {6439, 51850}, {6440, 51849}, {7585, 43210}, {7586, 43209}, {7802, 32869}, {7988, 51079}, {9542, 14241}, {9589, 51091}, {9692, 60291}, {9779, 50869}, {9812, 51075}, {10164, 50866}, {10519, 51216}, {10576, 43562}, {10577, 43563}, {11057, 32892}, {11645, 20080}, {12816, 42090}, {12817, 42091}, {14226, 42539}, {14912, 51211}, {14927, 15534}, {14930, 43618}, {16964, 43253}, {16965, 43252}, {18487, 36413}, {19106, 49874}, {19107, 49873}, {20049, 28198}, {21167, 51167}, {22165, 48872}, {22615, 42609}, {22644, 42608}, {23302, 43477}, {23303, 43478}, {28146, 50872}, {28150, 51077}, {28158, 51071}, {28160, 50804}, {28168, 50810}, {28172, 50864}, {28178, 50818}, {29012, 50961}, {29317, 51028}, {29323, 50967}, {32787, 42538}, {32788, 42537}, {33602, 42137}, {33603, 42136}, {34632, 47745}, {34638, 51066}, {35822, 43519}, {35823, 43520}, {36346, 44667}, {36352, 44666}, {36967, 49825}, {36968, 49824}, {36969, 49860}, {36970, 49859}, {36990, 50994}, {39593, 43619}, {41100, 43641}, {41101, 43642}, {41107, 42113}, {41108, 42112}, {41112, 42099}, {41113, 42100}, {42085, 49875}, {42086, 49876}, {42087, 49813}, {42088, 49812}, {42096, 42589}, {42097, 42588}, {42104, 43553}, {42105, 43552}, {42108, 43541}, {42109, 43540}, {42119, 43327}, {42120, 43326}, {42135, 43502}, {42138, 43501}, {42140, 49948}, {42141, 49947}, {42144, 43481}, {42145, 43482}, {42160, 42977}, {42161, 42976}, {42164, 42586}, {42165, 42587}, {42263, 42418}, {42264, 42417}, {42275, 43256}, {42276, 43257}, {42283, 42605}, {42284, 42604}, {42502, 42514}, {42503, 42515}, {42543, 43475}, {42544, 43476}, {42631, 43404}, {42632, 43403}, {42795, 42952}, {42796, 42953}, {42940, 43772}, {42941, 43771}, {42942, 43428}, {42943, 43429}, {43207, 43639}, {43208, 43640}, {43228, 43465}, {43229, 43466}, {43244, 43636}, {43245, 43637}, {43246, 43463}, {43247, 43464}, {43471, 43548}, {43472, 43549}, {43515, 60313}, {43516, 60314}, {43566, 53518}, {43567, 53519}, {46334, 49827}, {46335, 49826}, {50801, 51072}, {50862, 54448}, {50958, 50990}, {50992, 61044}, {51022, 51186}, {51094, 51120}, {51110, 51118}, {51130, 51185}, {51143, 51537}, {53517, 60299}, {53520, 60300}, {54815, 60279}, {60147, 60286}

X(62168) = reflection of X(i) in X(j) for these {i,j}: {11541, 381}, {15640, 11001}, {15682, 15685}, {15683, 5059}, {376, 17800}, {3146, 15683}, {3543, 3529}
X(62168) = anticomplement of X(15640)
X(62168) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4846), X(47599)}}, {{A, B, C, X(5055), X(16251)}}, {{A, B, C, X(11539), X(18850)}}, {{A, B, C, X(11541), X(54512)}}, {{A, B, C, X(18317), X(49134)}}
X(62168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17578, 3845}, {2, 3534, 3522}, {4, 15689, 15721}, {4, 376, 11539}, {20, 10304, 15691}, {20, 15721, 15689}, {20, 3146, 5068}, {30, 11001, 15640}, {30, 15683, 3146}, {30, 15685, 15682}, {30, 17800, 376}, {30, 381, 11541}, {30, 5059, 15683}, {376, 3544, 15706}, {382, 12108, 4}, {3090, 15691, 10304}, {3090, 3524, 15694}, {3522, 17678, 15705}, {3522, 3832, 10303}, {3524, 15682, 12101}, {3530, 17578, 3832}, {3534, 14269, 15711}, {3534, 15720, 15695}, {3534, 3830, 11812}, {3534, 5076, 15722}, {3543, 10303, 14269}, {3543, 3839, 5076}, {3627, 8703, 5066}, {3830, 11001, 15697}, {3845, 15691, 15716}, {3845, 15716, 3090}, {3851, 6938, 3091}, {3855, 6936, 5067}, {5066, 8703, 15701}, {8703, 10109, 15693}, {8703, 15685, 11001}, {10109, 15721, 2}, {11001, 15682, 8703}, {12101, 15682, 3543}, {14891, 15720, 3524}, {14893, 15710, 7486}, {15640, 15697, 3830}, {15681, 15722, 3534}, {15682, 15685, 20}, {15687, 15708, 3854}, {15687, 17538, 15708}, {15701, 15716, 3530}, {15701, 17800, 15685}


X(62169) = X(2)X(3)∩X(40)X(50868)

Barycentrics    53*a^4-25*(b^2-c^2)^2-28*a^2*(b^2+c^2) : :
X(62169) = -25*X[2]+26*X[3], -5*X[40]+4*X[50868], -5*X[944]+4*X[51120], -5*X[1350]+4*X[51025], -25*X[1699]+27*X[58227], -5*X[4297]+4*X[51119], -10*X[4816]+13*X[6361], -4*X[5691]+5*X[50809], -25*X[5731]+24*X[58234], -5*X[6776]+4*X[51166], -8*X[9956]+7*X[50867], -5*X[11180]+6*X[55591] and many others

X(62169) lies on these lines: {2, 3}, {40, 50868}, {371, 42538}, {372, 42537}, {944, 51120}, {1327, 6484}, {1328, 6485}, {1350, 51025}, {1699, 58227}, {3241, 28154}, {4297, 51119}, {4816, 6361}, {5237, 43202}, {5238, 43201}, {5318, 43421}, {5321, 43420}, {5691, 50809}, {5731, 58234}, {6431, 43257}, {6432, 43256}, {6449, 43536}, {6450, 54597}, {6480, 52667}, {6481, 52666}, {6776, 51166}, {9690, 42540}, {9956, 50867}, {11180, 55591}, {11531, 50818}, {11645, 51179}, {12245, 50871}, {14226, 42261}, {14241, 42260}, {14482, 43618}, {16200, 28158}, {18583, 51213}, {19924, 51214}, {20049, 28216}, {21356, 55612}, {23249, 41959}, {23251, 43887}, {23259, 41960}, {23261, 43888}, {24206, 51217}, {28146, 34631}, {28150, 58241}, {28168, 34632}, {28172, 34627}, {28190, 31145}, {28194, 58248}, {28202, 58244}, {29323, 54170}, {34754, 42430}, {34755, 42429}, {35770, 42414}, {35771, 42413}, {36967, 42986}, {36968, 42987}, {36990, 50966}, {41107, 42890}, {41108, 42891}, {41943, 52079}, {41944, 52080}, {41977, 42159}, {41978, 42162}, {42085, 42800}, {42086, 42799}, {42113, 61719}, {42157, 42588}, {42158, 42589}, {42488, 43002}, {42489, 43003}, {42514, 42927}, {42515, 42926}, {42539, 43415}, {42639, 43560}, {42640, 43561}, {42725, 43624}, {42726, 43625}, {42803, 42922}, {42804, 42923}, {42898, 43194}, {42899, 43193}, {42940, 43333}, {42941, 43332}, {42952, 43501}, {42953, 43502}, {43008, 46334}, {43009, 46335}, {43314, 43788}, {43315, 43787}, {43334, 43487}, {43335, 43488}, {43523, 60313}, {43524, 60314}, {44882, 51165}, {47354, 55622}, {48896, 59373}, {50819, 51118}, {50974, 55722}, {50975, 51163}, {51176, 51212}, {51537, 55633}, {51705, 58231}

X(62169) = reflection of X(i) in X(j) for these {i,j}: {11001, 5059}, {11541, 2}, {15640, 1657}, {15682, 3529}, {2, 17800}, {3146, 15685}
X(62169) = anticomplement of X(62045)
X(62169) = pole of line {69, 62111} with respect to the Wallace hyperbola
X(62169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1494), X(11541)}}, {{A, B, C, X(3530), X(18849)}}, {{A, B, C, X(12108), X(54660)}}, {{A, B, C, X(15689), X(54667)}}, {{A, B, C, X(18851), X(46936)}}, {{A, B, C, X(18852), X(19709)}}, {{A, B, C, X(18854), X(41991)}}, {{A, B, C, X(58188), X(60122)}}
X(62169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 15685, 6949}, {2, 30, 11541}, {4, 17538, 3530}, {4, 632, 3855}, {20, 15684, 5071}, {20, 3146, 3851}, {30, 15685, 3146}, {30, 1657, 15640}, {30, 17800, 2}, {30, 3529, 15682}, {376, 10299, 14093}, {376, 3090, 15715}, {376, 5071, 15698}, {1657, 15640, 3524}, {1657, 3628, 20}, {3091, 10303, 17573}, {3533, 3845, 3545}, {3534, 3853, 15708}, {3543, 3832, 15687}, {3545, 15698, 3533}, {3830, 17538, 15709}, {3845, 15684, 3543}, {3851, 5076, 3861}, {10124, 15708, 15702}, {11001, 15702, 15686}, {12101, 15705, 3544}, {15681, 15684, 5054}, {15682, 15710, 4}, {15683, 15686, 11001}, {15683, 15692, 15681}, {15686, 15702, 376}, {15687, 15690, 15723}, {15687, 15723, 3832}, {15692, 15702, 15719}


X(62170) = X(2)X(3)∩X(17)X(42997)

Barycentrics    21*a^4-10*(b^2-c^2)^2-11*a^2*(b^2+c^2) : :
X(62170) = -30*X[2]+31*X[3], -10*X[3818]+11*X[55622], -14*X[4301]+15*X[61284], -4*X[5097]+5*X[48905], -6*X[5493]+5*X[61248], -16*X[8550]+15*X[51172], -7*X[9588]+6*X[33697], -5*X[9589]+6*X[11278], -35*X[9624]+36*X[31662], -9*X[9778]+8*X[61255], -15*X[10516]+16*X[55636], -4*X[11531]+5*X[18526] and many others

X(62170) lies on these lines: {2, 3}, {17, 42997}, {18, 42996}, {61, 43305}, {62, 43304}, {399, 51959}, {1131, 9690}, {1132, 43415}, {1482, 28158}, {3411, 42100}, {3412, 42099}, {3818, 55622}, {4301, 61284}, {4316, 9671}, {4324, 9656}, {4325, 9668}, {4330, 9655}, {5097, 48905}, {5351, 43373}, {5352, 43372}, {5493, 61248}, {5881, 28168}, {6407, 52667}, {6408, 52666}, {6417, 42413}, {6418, 42414}, {6429, 13665}, {6430, 13785}, {6433, 35812}, {6434, 35813}, {6437, 31487}, {6438, 35821}, {6455, 53518}, {6456, 53519}, {6480, 13903}, {6481, 13961}, {6484, 23251}, {6485, 23261}, {6486, 8976}, {6487, 13951}, {8148, 28182}, {8550, 51172}, {9588, 33697}, {9589, 11278}, {9607, 43618}, {9624, 31662}, {9654, 51817}, {9681, 42272}, {9778, 61255}, {10516, 55636}, {11531, 18526}, {11742, 39590}, {11999, 13445}, {12645, 28164}, {12702, 28172}, {12943, 31480}, {15040, 38792}, {15069, 29323}, {16200, 48661}, {16964, 42131}, {16965, 42130}, {18440, 55591}, {18510, 42267}, {18512, 42266}, {22236, 42430}, {22238, 42429}, {22793, 61274}, {29012, 55582}, {29317, 39899}, {33541, 37486}, {34754, 42127}, {34755, 42126}, {35237, 43845}, {35770, 42263}, {35771, 42264}, {36990, 55603}, {39561, 48910}, {40107, 55607}, {42096, 43633}, {42097, 43632}, {42108, 42818}, {42109, 42817}, {42112, 42148}, {42113, 42147}, {42125, 42433}, {42128, 42434}, {42153, 42902}, {42156, 42903}, {42431, 43232}, {42432, 43233}, {42610, 43226}, {42611, 43227}, {42631, 42908}, {42632, 42909}, {42892, 43016}, {42893, 43017}, {42934, 43637}, {42935, 43636}, {42964, 43646}, {42965, 43645}, {42990, 43245}, {42991, 43244}, {43174, 50797}, {43306, 43634}, {43307, 43635}, {43330, 43492}, {43331, 43491}, {43521, 43883}, {43522, 43884}, {43785, 53131}, {43786, 53130}, {48872, 55594}, {48879, 55612}, {48880, 55618}, {48884, 55627}, {48889, 55642}, {48891, 55685}, {48895, 55683}, {48896, 50664}, {48898, 55703}, {48901, 55699}, {48904, 55695}, {48920, 55640}, {48942, 55645}, {48943, 55680}, {51165, 51173}, {51175, 55580}, {51186, 55628}, {51537, 55632}, {52945, 59655}, {53023, 55688}, {55691, 59411}, {58224, 61269}, {58244, 61296}, {59503, 61250}

X(62170) = reflection of X(i) in X(j) for these {i,j}: {11541, 550}, {3, 5059}, {382, 17800}, {5073, 3529}
X(62170) = anticomplement of X(62047)
X(62170) = pole of line {185, 61920} with respect to the Jerabek hyperbola
X(62170) = pole of line {69, 55619} with respect to the Wallace hyperbola
X(62170) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(68), X(46333)}}, {{A, B, C, X(265), X(50692)}}, {{A, B, C, X(1294), X(49133)}}, {{A, B, C, X(3856), X(18550)}}, {{A, B, C, X(15714), X(60122)}}, {{A, B, C, X(17703), X(44962)}}, {{A, B, C, X(18848), X(46853)}}, {{A, B, C, X(21400), X(33699)}}
X(62170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 3830, 3850}, {3, 3843, 5067}, {3, 3845, 1656}, {3, 3850, 15723}, {3, 3851, 11539}, {3, 5056, 5054}, {3, 5073, 3543}, {4, 15697, 14869}, {4, 16371, 3860}, {5, 10303, 5070}, {5, 548, 3524}, {20, 3146, 3855}, {20, 3526, 15696}, {20, 382, 3526}, {20, 3855, 548}, {30, 550, 11541}, {382, 15696, 381}, {548, 15714, 3528}, {550, 11541, 15684}, {631, 3858, 15973}, {1657, 3526, 20}, {1657, 5076, 3534}, {2043, 2044, 15714}, {3146, 15697, 4}, {3524, 3543, 3845}, {3529, 11541, 10303}, {3529, 3533, 11001}, {3529, 3534, 1657}, {3533, 3832, 5}, {3534, 12101, 15693}, {3534, 15694, 15688}, {3534, 5073, 5076}, {3543, 11812, 14269}, {3543, 15686, 15694}, {3543, 3545, 12101}, {3543, 5059, 3529}, {3627, 15690, 5056}, {3845, 10124, 3545}, {3850, 15723, 5079}, {3851, 12103, 14093}, {3853, 5067, 3843}, {3854, 16854, 17579}, {5070, 15684, 17578}, {6836, 15640, 3091}, {10303, 15693, 15720}, {11001, 15708, 15686}, {11250, 13620, 3}, {11541, 12101, 5073}, {12103, 15682, 3851}, {15681, 15684, 10124}, {15683, 15714, 15681}, {15684, 17578, 382}, {15688, 15699, 15706}


X(62171) = X(2)X(3)∩X(17)X(52079)

Barycentrics    23*a^4-11*(b^2-c^2)^2-12*a^2*(b^2+c^2) : :
X(62171) = -33*X[2]+34*X[3], -11*X[69]+12*X[55589], -7*X[962]+8*X[32900], -11*X[1352]+12*X[55599], -7*X[3619]+8*X[48920], -11*X[3818]+12*X[55621], -5*X[9589]+6*X[51077], -14*X[9624]+15*X[50819], -8*X[12002]+9*X[14855], -8*X[13598]+9*X[61136], -8*X[14864]+9*X[54050], -33*X[14912]+32*X[55715] and many others

X(62171) lies on these lines: {2, 3}, {17, 52079}, {18, 52080}, {69, 55589}, {145, 28182}, {944, 28158}, {962, 32900}, {1151, 43786}, {1152, 43785}, {1199, 35237}, {1352, 55599}, {1531, 27082}, {2549, 34571}, {3619, 48920}, {3818, 55621}, {4316, 47743}, {4324, 8164}, {5343, 42088}, {5344, 42087}, {5365, 42108}, {5366, 42109}, {5558, 31776}, {6221, 43376}, {6361, 28172}, {6398, 43377}, {6435, 7581}, {6436, 7582}, {6449, 43507}, {6450, 43508}, {6480, 42570}, {6481, 42571}, {6488, 41952}, {6489, 41951}, {6498, 42216}, {6499, 42215}, {7592, 33534}, {7768, 32822}, {7917, 32817}, {8960, 52667}, {9542, 60291}, {9589, 51077}, {9624, 50819}, {10194, 51910}, {10195, 51911}, {10645, 42775}, {10646, 42776}, {12002, 14855}, {12245, 28164}, {12289, 32601}, {13598, 61136}, {14075, 43619}, {14864, 54050}, {14912, 55715}, {14927, 55719}, {16808, 43447}, {16809, 43446}, {18553, 55609}, {19106, 43771}, {19107, 43772}, {20070, 28190}, {22235, 42137}, {22237, 42136}, {22615, 43510}, {22644, 43509}, {23267, 42266}, {23273, 42267}, {25406, 55709}, {29012, 55581}, {29317, 39874}, {29323, 55586}, {31670, 55713}, {32137, 33884}, {33602, 42514}, {33603, 42515}, {34507, 55592}, {40693, 42430}, {40694, 42429}, {42085, 43769}, {42086, 43770}, {42096, 42999}, {42097, 42998}, {42099, 42992}, {42100, 42993}, {42104, 42495}, {42105, 42494}, {42112, 42158}, {42113, 42157}, {42119, 42431}, {42120, 42432}, {42139, 42978}, {42140, 42151}, {42141, 42150}, {42142, 42979}, {42260, 43432}, {42261, 43433}, {42433, 42908}, {42434, 42909}, {42435, 43331}, {42436, 43330}, {42584, 42989}, {42585, 42988}, {42631, 43202}, {42632, 43201}, {42920, 43464}, {42921, 43463}, {42924, 43466}, {42925, 43465}, {43413, 53130}, {43414, 53131}, {43481, 43633}, {43482, 43632}, {43485, 43636}, {43486, 43637}, {43495, 43631}, {43496, 43630}, {43621, 55712}, {44762, 50709}, {46264, 55714}, {48873, 55598}, {48879, 55613}, {48880, 55619}, {48896, 51538}, {48898, 55702}, {48901, 55700}, {50956, 55647}, {50990, 55597}, {51022, 55626}, {51130, 51177}, {51212, 55717}, {52666, 58866}

X(62171) = reflection of X(i) in X(j) for these {i,j}: {11541, 20}, {3146, 17800}, {4, 5059}
X(62171) = anticomplement of X(49136)
X(62171) = pole of line {185, 61921} with respect to the Jerabek hyperbola
X(62171) = pole of line {69, 44245} with respect to the Wallace hyperbola
X(62171) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(44245)}}, {{A, B, C, X(550), X(18847)}}, {{A, B, C, X(1294), X(50692)}}, {{A, B, C, X(1656), X(18851)}}, {{A, B, C, X(3523), X(18849)}}, {{A, B, C, X(3533), X(18850)}}, {{A, B, C, X(4846), X(55857)}}, {{A, B, C, X(5068), X(18852)}}, {{A, B, C, X(5198), X(46851)}}, {{A, B, C, X(7486), X(16251)}}, {{A, B, C, X(11403), X(14487)}}, {{A, B, C, X(12812), X(31371)}}, {{A, B, C, X(14861), X(15694)}}, {{A, B, C, X(14869), X(15740)}}, {{A, B, C, X(15319), X(17578)}}, {{A, B, C, X(15640), X(51348)}}, {{A, B, C, X(15688), X(42021)}}, {{A, B, C, X(15690), X(54667)}}, {{A, B, C, X(15701), X(54660)}}, {{A, B, C, X(18848), X(21735)}}
X(62171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 382, 14893}, {3, 3856, 2}, {4, 11001, 550}, {4, 11541, 5073}, {4, 17538, 3523}, {4, 3524, 5068}, {4, 3525, 3850}, {4, 3528, 1656}, {4, 3533, 3855}, {4, 376, 3533}, {20, 11541, 15682}, {20, 15682, 3090}, {20, 30, 11541}, {20, 3090, 376}, {20, 3627, 3524}, {20, 3861, 3528}, {20, 8703, 17538}, {30, 17800, 3146}, {140, 1657, 20}, {140, 381, 5056}, {381, 15689, 12100}, {382, 17538, 3545}, {631, 3545, 3628}, {1656, 3543, 4}, {1657, 5073, 140}, {3146, 10304, 3853}, {3146, 11001, 631}, {3146, 17800, 11001}, {3149, 13168, 3544}, {3534, 15640, 6848}, {3534, 17578, 3525}, {3627, 15691, 5070}, {3628, 17800, 15683}, {3839, 17532, 5066}, {3861, 15704, 15689}, {5076, 15686, 15717}, {6480, 43515, 42570}, {6481, 43516, 42571}, {10304, 16052, 15712}, {11001, 17800, 3529}, {11539, 12101, 381}, {12102, 15688, 7486}, {12103, 15684, 3832}, {12811, 15721, 5067}, {15640, 15683, 15706}, {15682, 15698, 12101}, {42275, 42414, 7582}, {42276, 42413, 7581}


X(62172) = X(4)X(523)∩X(52)X(520)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-a^2 + b^2 - b*c + c^2)*(-a^2 + b^2 + b*c + c^2)*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4) : :
Barycentrics    Cot[B]*(Cot[B] - Cot[C])*Cot[C]*(2*Cot[B]*Cot[C] - Cot[A]*(Cot[B] + Cot[C]))*(-3*Cot[A]^2 + Cot[B]*Cot[C] + Cot[A]*(Cot[B] + Cot[C])) : :
X(62172) = 3 X[4] - X[18808], X[57295] + 3 X[58346], 2 X[57120] - 3 X[57211]

X(62172) lies on the Feuerbach circumhyperbola of the orthic triangle and these lines: {2, 38401}, {4, 523}, {6, 2501}, {24, 46616}, {52, 520}, {107, 14220}, {113, 133}, {155, 8057}, {185, 924}, {186, 2411}, {193, 9007}, {297, 18311}, {340, 45808}, {378, 46608}, {524, 53156}, {525, 40909}, {526, 1986}, {648, 14559}, {1510, 22948}, {1640, 6749}, {1843, 8675}, {2407, 3233}, {2905, 4833}, {3087, 45801}, {3258, 16186}, {3520, 14809}, {3574, 23290}, {5095, 9003}, {5466, 60193}, {5962, 58072}, {6368, 46027}, {10412, 14618}, {11587, 53255}, {13202, 55121}, {14222, 38936}, {14314, 41078}, {14391, 45191}, {14583, 43088}, {18310, 52288}, {18507, 55141}, {23286, 51887}, {34291, 47217}, {42399, 52452}, {42660, 44274}, {46026, 50543}, {46151, 60512}, {52416, 57210}, {52661, 53178}, {52675, 57120}, {52710, 53378}

X(62172) = reflection of X(41078) in X(14314)
X(62172) = anticomplement of X(38401)
X(62172) = polar circle inverse of X(34150)
X(62172) = polar conjugate of X(39290)
X(62172) = polar conjugate of the isotomic conjugate of X(5664)
X(62172) = polar conjugate of the isogonal conjugate of X(52743)
X(62172) = orthic-isogonal conjugate of X(35235)
X(62172) = X(i)-Ceva conjugate of X(j) for these (i,j): {4, 35235}, {107, 186}, {648, 1990}, {14618, 1637}
X(62172) = X(i)-isoconjugate of X(j) for these (i,j): {48, 39290}, {74, 36061}, {162, 50464}, {265, 36034}, {476, 35200}, {656, 15395}, {662, 11079}, {1793, 36064}, {2159, 60053}, {2349, 32662}, {4575, 5627}, {4592, 40355}, {14919, 32678}, {18877, 32680}
X(62172) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 50464}, {133, 476}, {136, 5627}, {1084, 11079}, {1249, 39290}, {1637, 525}, {1650, 51254}, {3163, 60053}, {3258, 265}, {3284, 4558}, {5139, 40355}, {5664, 34767}, {8552, 3265}, {14918, 99}, {16221, 74}, {17433, 44715}, {18334, 14919}, {18402, 36831}, {35235, 56686}, {38993, 39378}, {38994, 39377}, {40596, 15395}, {47898, 36311}, {47899, 36308}, {57295, 43083}, {60342, 14380}
X(62172) = cevapoint of X(55265) and X(58346)
X(62172) = trilinear pole of line {3258, 47414}
X(62172) = crossdifference of every pair of points on line {3284, 11079}
X(62172) = barycentric product X(i)*X(j) for these {i,j}: {4, 5664}, {30, 44427}, {186, 41079}, {264, 52743}, {340, 1637}, {523, 14920}, {526, 46106}, {648, 3258}, {850, 39176}, {1511, 14618}, {1577, 35201}, {1784, 32679}, {1990, 3268}, {2081, 43752}, {2407, 35235}, {2411, 11251}, {2501, 6148}, {3260, 47230}, {6110, 23871}, {6111, 23870}, {6528, 47414}, {8552, 52661}, {9033, 14165}, {14590, 58261}, {36035, 52414}, {57487, 58263}
X(62172) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 39290}, {30, 60053}, {112, 15395}, {186, 44769}, {512, 11079}, {526, 14919}, {647, 50464}, {1495, 32662}, {1511, 4558}, {1637, 265}, {1784, 32680}, {1990, 476}, {2081, 44715}, {2088, 14380}, {2173, 36061}, {2489, 40355}, {2501, 5627}, {2624, 35200}, {3258, 525}, {4240, 39295}, {5664, 69}, {6110, 23896}, {6111, 23895}, {6137, 39378}, {6138, 39377}, {6148, 4563}, {9409, 50433}, {11062, 36831}, {11251, 2410}, {14165, 16077}, {14270, 18877}, {14397, 5961}, {14398, 52153}, {14401, 51254}, {14581, 14560}, {14920, 99}, {16240, 41392}, {34397, 32640}, {35201, 662}, {35235, 2394}, {39176, 110}, {39371, 43755}, {41079, 328}, {44427, 1494}, {46106, 35139}, {47230, 74}, {47414, 520}, {52418, 1304}, {52661, 46456}, {52743, 3}, {55265, 39170}, {58261, 14592}, {58263, 57482}, {58346, 56399}, {58900, 50467}
X(62172) = pole of line {1990, 3580} with respect to the Steiner circumellipse
X(62172) = pole of line {1990, 44665} with respect to the MacBeath circumconic
X(62172) = pole of line {16310, 47296} with respect to the Steiner inellipse
X(62172) = pole of line {30, 1990} with respect to the Orthic inconic
X(62172) = pole of line {403, 34334} with respect to the MacBeath inconic
X(62172) = pole of line {16163, 55121} with respect to the Kiepert parabola
X(62172) = pole of line {186, 5667} with respect to the circumcircle
X(62172) = pole of line {403, 52219} with respect to the nine point circle
X(62172) = pole of line {4, 11657} with respect to the orthocentroidal circle
X(62172) = pole of line {30, 74} with respect to the polar circle
X(62172) = pole of line {468, 46045} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(62172) = pole of line {107, 403} with respect to the second Droz-Farney circle


X(62173) = X(3)X(523)∩X(160)X(669)

Barycentrics    a^4*(b^2 - c^2)*(a^2 - b^2 - b*c - c^2)^2*(a^2 - b^2 + b*c - c^2)^2 : :
Barycentrics    (Cot[B] - Cot[C])*(Cot[B] + Cot[C])^2*(-3*Cot[A]^2 + Cot[B]*Cot[C] + Cot[A]*(Cot[B] + Cot[C]))^2 : :
X(62173) = 3 X[3] - X[46608], 3 X[14809] - 2 X[46608], X[14809] + 2 X[46616], X[46608] + 3 X[46616], 2 X[8562] - 3 X[44814], X[14270] - 3 X[44808], 2 X[14270] - 3 X[44809], 3 X[44814] - X[60342]

X(62173) lies on the Kiepert parabola and these lines: {3, 523}, {110, 16170}, {160, 669}, {186, 2411}, {237, 23350}, {512, 56373}, {520, 12038}, {526, 1511}, {924, 10282}, {1640, 50660}, {1649, 40604}, {2451, 18573}, {2528, 41328}, {3233, 15329}, {3265, 9723}, {3431, 14380}, {5092, 8675}, {5467, 38354}, {5489, 23286}, {9003, 39477}, {10610, 37084}, {14354, 58346}, {16171, 38610}, {18311, 35296}, {18808, 35473}, {22115, 53234}, {23108, 57136}, {25564, 55121}, {34963, 49673}, {39231, 58262}, {44889, 47253}, {44891, 58438}, {45147, 53247}, {45808, 52437}, {52743, 59500}, {53255, 57295}, {59289, 59744}

X(62173) = midpoint of X(3) and X(46616)
X(62173) = reflection of X(i) in X(j) for these {i,j}: {14809, 3}, {44809, 44808}, {60342, 8562}
X(62173) = reflection of X(14809) in the Euler line
X(62173) = isotomic conjugate of the isogonal conjugate of X(57136)
X(62173) = X(i)-Ceva conjugate of X(j) for these (i,j): {99, 323}, {15470, 526}, {37848, 52343}, {37850, 52342}, {51256, 16186}
X(62173) = X(i)-isoconjugate of X(j) for these (i,j): {94, 32678}, {265, 36129}, {476, 2166}, {798, 57546}, {811, 14595}, {1577, 23588}, {1989, 32680}, {2617, 14859}, {6344, 36061}, {20948, 23966}, {34209, 36047}, {36096, 43087}, {36143, 52983}
X(62173) = X(i)-Dao conjugate of X(j) for these (i,j): {526, 523}, {2088, 57486}, {11597, 476}, {16186, 58723}, {16221, 6344}, {17423, 14595}, {18334, 94}, {31998, 57546}, {34544, 32680}, {35581, 34209}, {40604, 35139}, {55071, 14356}, {58900, 14566}, {60342, 10412}
X(62173) = crossdifference of every pair of points on line {1989, 3003}
X(62173) = barycentric product X(i)*X(j) for these {i,j}: {50, 3268}, {76, 57136}, {99, 18334}, {186, 8552}, {323, 526}, {525, 3043}, {1576, 23965}, {2088, 10411}, {3265, 36423}, {5664, 14385}, {6149, 32679}, {7799, 14270}, {10419, 58872}, {11130, 57122}, {11131, 57123}, {14590, 16186}, {15470, 34834}, {17402, 52342}, {17403, 52343}, {22115, 44427}, {23108, 39295}, {34397, 45792}, {37802, 44808}, {45808, 52668}, {47230, 52437}, {51383, 60777}
X(62173) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 476}, {99, 57546}, {186, 46456}, {323, 35139}, {526, 94}, {1576, 23588}, {2088, 10412}, {2436, 43707}, {2623, 14859}, {2624, 2166}, {3043, 648}, {3049, 14595}, {3268, 20573}, {6149, 32680}, {8552, 328}, {14270, 1989}, {14385, 39290}, {14574, 23966}, {15470, 40427}, {16186, 14592}, {18334, 523}, {19627, 14560}, {22115, 60053}, {23965, 44173}, {36423, 107}, {44427, 18817}, {44808, 18883}, {44809, 30529}, {44814, 43084}, {47230, 6344}, {52603, 39295}, {52743, 14254}, {57136, 6}, {60342, 57486}
{X(44814),X(60342)}-harmonic conjugate of X(8562)
X(62173) = pole of line {476, 10412} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(62173) = pole of line {35139, 35316} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(62173) = pole of line {323, 18301} with respect to the Steiner circumellipse
X(62173) = pole of line {11064, 34834} with respect to the Steiner inellipse
X(62173) = pole of line {526, 1511} with respect to the Kiepert parabola
X(62173) = pole of line {30, 146} with respect to the circumcircle
X(62173) = pole of line {2072, 34333} with respect to the nine point circle
X(62173) = pole of line {403, 6344} with respect to the polar circle
X(62173) = pole of line {10257, 16319} with respect to the ninepoint circle of medial triangle


X(62174) = X(2)X(51)∩X(20)X(64)

Barycentrics    a^6 + 7*a^4*b^2 - 9*a^2*b^4 + b^6 + 7*a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 - 9*a^2*c^4 - b^2*c^4 + c^6 : :
X(62174) = 11 X[2] - 8 X[5476], 5 X[2] - 4 X[14561], 7 X[2] - 4 X[20423], 9 X[2] - 8 X[38317], X[2] + 2 X[50967], 5 X[2] - 8 X[50977], 4 X[2] - X[51028], 5 X[2] - 2 X[54132], X[2] - 4 X[54173], 2 X[2] + X[54174], 4 X[5476] - 11 X[10519], 10 X[5476] - 11 X[14561], 12 X[5476] - 11 X[14853], 14 X[5476] - 11 X[20423], 9 X[5476] - 11 X[38317], and many others

X(62174) lies on these lines: {2, 51}, {3, 193}, {4, 3620}, {5, 55584}, {6, 3523}, {20, 64}, {23, 47468}, {30, 55593}, {66, 2888}, {76, 46034}, {140, 44456}, {141, 3091}, {146, 5181}, {147, 10513}, {153, 51007}, {165, 34379}, {182, 15717}, {315, 10008}, {343, 7396}, {376, 3564}, {382, 61545}, {394, 10565}, {439, 5171}, {487, 11825}, {488, 11824}, {516, 50316}, {518, 34744}, {524, 10304}, {542, 55603}, {548, 39899}, {549, 5093}, {550, 11898}, {597, 15721}, {599, 3543}, {611, 5281}, {613, 5265}, {631, 1351}, {962, 49511}, {1092, 19121}, {1160, 11291}, {1161, 11292}, {1176, 9545}, {1204, 3098}, {1216, 3089}, {1352, 3146}, {1570, 21843}, {1992, 5085}, {2071, 53021}, {2889, 5596}, {2895, 50699}, {3056, 14986}, {3088, 6403}, {3090, 21850}, {3524, 5032}, {3525, 18583}, {3528, 48906}, {3529, 18440}, {3530, 53091}, {3534, 50966}, {3541, 6152}, {3546, 10627}, {3547, 6101}, {3589, 55722}, {3618, 10303}, {3619, 5056}, {3629, 53094}, {3630, 55607}, {3631, 36990}, {3763, 7486}, {3785, 30270}, {3818, 17578}, {3832, 31670}, {3839, 10516}, {3854, 55586}, {3926, 5188}, {4208, 26543}, {4232, 15066}, {4259, 37112}, {4549, 49670}, {4869, 7385}, {5039, 14930}, {5052, 31400}, {5054, 59399}, {5059, 29323}, {5066, 51184}, {5068, 24206}, {5071, 38136}, {5095, 15051}, {5102, 15708}, {5232, 7379}, {5562, 5656}, {5731, 5847}, {5800, 37163}, {5889, 52520}, {5999, 15589}, {6144, 55651}, {6392, 12251}, {6393, 37182}, {6467, 13348}, {6815, 15741}, {6986, 37492}, {7378, 37636}, {7386, 26869}, {7390, 17300}, {7398, 33586}, {7400, 11412}, {7404, 37484}, {7407, 17238}, {7484, 61657}, {7487, 37486}, {7488, 37485}, {7494, 61690}, {7710, 7788}, {7793, 13355}, {7987, 51196}, {7991, 49505}, {8362, 40268}, {8550, 11008}, {8584, 51214}, {8596, 19905}, {8703, 50974}, {9540, 35840}, {10168, 55717}, {10299, 12017}, {10477, 37421}, {10517, 39388}, {10518, 39387}, {10541, 32455}, {10691, 18950}, {10733, 32257}, {11001, 50955}, {11036, 24471}, {11061, 33851}, {11177, 50639}, {11179, 33750}, {11180, 15683}, {11284, 44833}, {11440, 40317}, {11444, 12294}, {11459, 34621}, {12007, 55676}, {12058, 33523}, {12100, 50962}, {12220, 15644}, {12222, 21737}, {12512, 39878}, {13736, 19782}, {13935, 35841}, {14138, 51206}, {14139, 51207}, {14645, 34473}, {14683, 32247}, {14810, 21734}, {14848, 15709}, {15022, 19130}, {15035, 25321}, {15054, 32114}, {15107, 52301}, {15108, 20062}, {15520, 38064}, {15533, 15697}, {15534, 55673}, {15577, 38435}, {15606, 61747}, {15640, 47353}, {15695, 51175}, {15698, 50979}, {15704, 48662}, {15705, 17508}, {15712, 55705}, {15720, 51732}, {15750, 46444}, {15759, 50986}, {16163, 32244}, {16475, 54445}, {16789, 44440}, {16976, 47463}, {17538, 55602}, {17928, 37491}, {18553, 43621}, {18906, 32834}, {19126, 34148}, {19131, 43574}, {19588, 37198}, {19708, 51179}, {19783, 48909}, {19924, 50687}, {20065, 35387}, {20070, 39898}, {20125, 48679}, {21312, 54184}, {21735, 55639}, {22165, 50970}, {22253, 55167}, {22467, 37488}, {22676, 32833}, {25555, 55723}, {26892, 55912}, {26893, 55907}, {28408, 58805}, {29585, 46475}, {30769, 37638}, {32000, 37200}, {32006, 53017}, {32220, 37952}, {32234, 38726}, {32451, 32522}, {32605, 41716}, {32817, 54993}, {32863, 50698}, {33524, 39879}, {33699, 50954}, {33703, 39884}, {33749, 55669}, {33923, 55632}, {34573, 46935}, {34781, 41464}, {34815, 41008}, {35913, 52095}, {35914, 52096}, {36672, 48934}, {36740, 37106}, {37108, 54383}, {37444, 61737}, {37455, 37665}, {37460, 37478}, {37473, 41590}, {37483, 39588}, {37669, 61680}, {37671, 53015}, {37760, 47569}, {39875, 43511}, {39876, 43512}, {40132, 47582}, {40341, 44882}, {40911, 46336}, {41152, 51022}, {41735, 54211}, {42637, 49229}, {42638, 49228}, {43150, 50692}, {43273, 50992}, {44137, 54033}, {44682, 55692}, {44704, 52283}, {46264, 50693}, {46442, 59346}, {46451, 47450}, {47096, 47447}, {47278, 47337}, {47354, 50994}, {47358, 50872}, {48872, 49140}, {48880, 55597}, {48885, 55600}, {48892, 55608}, {48898, 55601}, {48901, 50689}, {48910, 50688}, {50781, 50864}, {50784, 50863}, {50786, 50871}, {50787, 50865}, {50788, 50862}, {50958, 51189}, {50959, 51186}, {50961, 50969}, {50973, 51737}, {50975, 55613}, {50981, 51172}, {50984, 51185}, {50985, 51176}, {50991, 51024}, {50993, 51211}, {51001, 51705}, {51029, 51142}, {51050, 51064}, {51136, 51188}, {51140, 55660}, {51143, 51166}, {51178, 55630}, {52016, 52525}, {55721, 58445}

X(62174) = midpoint of X(i) and X(j) for these {i,j}: {599, 55591}, {10519, 50967}, {15533, 59411}, {53023, 53097}
X(62174) = reflection of X(i) in X(j) for these {i,j}: {2, 10519}, {6, 21167}, {193, 14912}, {376, 55610}, {1351, 38110}, {1992, 5085}, {3839, 21356}, {5032, 3524}, {5085, 54169}, {5093, 549}, {10519, 54173}, {11179, 55649}, {14561, 50977}, {14912, 3}, {25321, 15035}, {25406, 31884}, {47096, 47447}, {47463, 16976}, {51212, 53023}, {51538, 10516}, {53023, 141}, {54132, 14561}, {54170, 55591}, {55717, 10168}, {59411, 50965}
X(62174) = anticomplement of X(14853)
X(62174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50967, 54174}, {2, 54174, 51028}, {4, 33878, 61044}, {4, 48876, 3620}, {20, 69, 5921}, {69, 1350, 20}, {69, 14927, 15069}, {141, 51212, 3091}, {141, 53097, 51212}, {394, 33522, 10565}, {550, 11898, 39874}, {599, 54170, 3543}, {631, 1351, 51171}, {1350, 15069, 48881}, {1992, 5085, 33748}, {1992, 54169, 15692}, {3098, 6776, 3522}, {3522, 20080, 6776}, {3619, 5480, 5056}, {3620, 61044, 4}, {10516, 51538, 3839}, {11179, 55649, 33750}, {11898, 55604, 550}, {14927, 48881, 20}, {15069, 48881, 14927}, {15107, 54013, 52301}, {15640, 47353, 51216}, {15692, 33748, 5085}, {15712, 61624, 55705}, {15717, 51170, 182}, {18440, 48874, 3529}, {18440, 55595, 48874}, {21356, 51538, 10516}, {25406, 31884, 10304}, {31670, 40107, 40330}, {31670, 40330, 3832}, {33878, 48876, 4}, {34507, 55594, 48873}, {39899, 55616, 548}, {40107, 55587, 31670}, {40341, 55614, 44882}, {47353, 50982, 50990}, {48906, 55629, 3528}, {48910, 51537, 50688}, {50967, 54173, 2}, {50977, 54132, 2}, {59397, 59398, 9752}
X(62174) = pole of line {3815, 5056} with respect to the Kiepert circumhyperbola
X(62174) = pole of line {3819, 6776} with respect to the Jerabek circumhyperbola
X(62174) = pole of line {10303, 58446} with respect to the Kiepert circumhyperbola of the medial triangle
X(62174) = pole of line {154, 182} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(62174) = pole of line {3198, 60723} with respect to the Jerabek circumhyperbola of the excentral triangle
X(62174) = pole of line {20, 183} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(62174) = pole of line {2979, 5921} with respect to the Jerabek circumhyperbola of the anticomplementary triangle
X(62174) = pole of line {3265, 23878} with respect to the Steiner circumellipse
X(62174) = pole of line {3054, 5056} with respect to the BG KHO conic
X(62174) = pole of line {3053, 18424} with respect to the Pythagorean conic (see K1231)
X(62174) = pole of line {512, 30474} with respect to the orthoptic-circle-of-the-Steiner-circumellipse


X(62175) = X(6)X(22089)∩X(32)X(39201)

Barycentrics    a^4*(b^2 - c^2)*(3*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(62175) is the barycentric product of the three points introduced at X(4455) in Peter Moses's note dated March 6, 2024.

X(62175) lies on these lines: {6, 22089}, {32, 39201}, {525, 30435}, {669, 57204}, {1384, 39228}, {3172, 44705}, {7735, 59745}, {9409, 52588}, {12150, 44173}, {21309, 59933}, {37085, 42660}

X(62175) = X(i)-Ceva conjugate of X(j) for these (i,j): {3049, 669}, {36841, 154}
X(62175) = X(i)-isoconjugate of X(j) for these (i,j): {64, 4602}, {75, 44326}, {99, 57921}, {253, 799}, {304, 53639}, {310, 56235}, {459, 55202}, {561, 46639}, {648, 57780}, {662, 41530}, {670, 2184}, {811, 34403}, {1073, 57968}, {1301, 40364}, {2155, 4609}, {4554, 5931}, {4592, 52581}, {6331, 19611}, {14638, 23999}, {15394, 57973}, {17879, 55268}, {24037, 58759}, {30457, 55213}
X(62175) = X(i)-Dao conjugate of X(j) for these (i,j): {122, 1502}, {206, 44326}, {512, 58759}, {1084, 41530}, {5139, 52581}, {17423, 34403}, {38986, 57921}, {38996, 253}, {39020, 40050}, {40368, 46639}, {45245, 4609}, {45248, 52608}, {55066, 57780}
X(62175) = crossdifference of every pair of points on line {253, 305}
X(62175) = barycentric product X(i)*X(j) for these {i,j}: {20, 669}, {25, 42658}, {32, 6587}, {154, 512}, {184, 44705}, {204, 810}, {560, 17898}, {610, 798}, {647, 3172}, {667, 3198}, {1084, 36841}, {1249, 3049}, {1397, 14308}, {1562, 61206}, {1918, 21172}, {1919, 8804}, {1924, 18750}, {1974, 8057}, {1980, 52345}, {2207, 58796}, {2489, 15905}, {3005, 51508}, {3063, 30456}, {6525, 39201}, {7070, 51641}, {8641, 40933}, {9426, 14615}, {9427, 55224}, {14249, 58310}, {14345, 40354}, {14398, 15291}, {14581, 61215}, {20580, 36417}, {20975, 57153}, {33581, 58342}, {33629, 55219}, {37669, 57204}, {41937, 55269}, {47439, 58895}
X(62175) = barycentric quotient X(i)/X(j) for these {i,j}: {20, 4609}, {32, 44326}, {154, 670}, {204, 57968}, {512, 41530}, {610, 4602}, {669, 253}, {798, 57921}, {810, 57780}, {1084, 58759}, {1394, 55213}, {1501, 46639}, {1924, 2184}, {1974, 53639}, {2205, 56235}, {2489, 52581}, {3049, 34403}, {3172, 6331}, {3198, 6386}, {6587, 1502}, {8057, 40050}, {9426, 64}, {14308, 40363}, {15905, 52608}, {17898, 1928}, {33629, 55218}, {36841, 44168}, {41937, 55268}, {42658, 305}, {44162, 1301}, {44705, 18022}, {51508, 689}, {57204, 459}, {58310, 15394}
X(62175) = pole of line {44326, 52608} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(62175) = pole of line {2211, 3172} with respect to the Brocard inellipse
X(62175) = pole of line {1502, 52581} with respect to the polar circle


X(62176) = X(6)X(520)∩X(512)X(1692)

Barycentrics    a^2*(b^2 - c^2)*(3*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 2*b^2*c^2 - c^4) : :
X(62176) = X[2489] - 3 X[14398], 3 X[2489] - X[55219], X[3049] + 3 X[14398], 3 X[3049] + X[55219], 9 X[14398] - X[55219], X[3267] - 5 X[3618]

X(62176) is the trilinear product of the three points introduced at X(4455) in Peter Moses's note dated March 6, 2024.

X(62176) lies on these lines: {6, 520}, {512, 1692}, {523, 47457}, {647, 657}, {690, 59991}, {798, 7180}, {810, 3709}, {924, 2492}, {2081, 55204}, {2422, 53059}, {2491, 3221}, {2507, 54272}, {3124, 42654}, {3267, 3618}, {6388, 45212}, {6587, 8057}, {6791, 47251}, {8574, 60501}, {8675, 39520}, {9033, 47125}, {9035, 52598}, {9426, 58317}, {13341, 54257}, {15384, 32687}, {15851, 40494}, {20186, 59987}, {23975, 32713}, {30209, 59933}, {42293, 52590}, {47415, 47421}

X(62176) = midpoint of X(i) and X(j) for these {i,j}: {6, 2485}, {647, 2451}, {2489, 3049}
X(62176) = isogonal conjugate of X(44326)
X(62176) = isogonal conjugate of the isotomic conjugate of X(6587)
X(62176) = isogonal conjugate of the polar conjugate of X(44705)
X(62176) = polar conjugate of the isotomic conjugate of X(42658)
X(62176) = X(i)-complementary conjugate of X(j) for these (i,j): {9255, 55069}, {9258, 127}, {9292, 34846}, {32676, 59561}
X(62176) = X(i)-Ceva conjugate of X(j) for these (i,j): {647, 512}, {657, 798}, {2451, 3221}, {6587, 42658}, {32687, 42671}, {40186, 39020}, {55224, 20}
X(62176) = X(i)-isoconjugate of X(j) for these (i,j): {1, 44326}, {63, 53639}, {64, 799}, {75, 46639}, {86, 56235}, {99, 2184}, {110, 57921}, {112, 57780}, {162, 34403}, {163, 41530}, {253, 662}, {304, 1301}, {459, 4592}, {645, 8809}, {648, 19611}, {651, 5931}, {670, 2155}, {811, 1073}, {823, 15394}, {2632, 55268}, {4554, 52158}, {4573, 44692}, {4575, 52581}, {4602, 33581}, {4625, 30457}, {6331, 19614}, {14379, 57973}, {14638, 24000}, {14642, 57968}, {18750, 53886}, {24018, 44181}, {24041, 58759}, {35571, 51304}, {41082, 44327}, {41088, 55211}, {41489, 55202}, {53012, 55231}, {55241, 60803}
X(62176) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 44326}, {4, 6331}, {115, 41530}, {122, 76}, {125, 34403}, {136, 52581}, {206, 46639}, {244, 57921}, {1084, 253}, {1427, 46406}, {3005, 58759}, {3162, 53639}, {5139, 459}, {6587, 52617}, {17423, 1073}, {34591, 57780}, {38986, 2184}, {38991, 5931}, {38996, 64}, {39020, 305}, {40600, 56235}, {40616, 310}, {45245, 670}, {45248, 4563}, {55058, 28660}, {55066, 19611}
X(62176) = crossdifference of every pair of points on line {20, 64}
X(62176) = barycentric product X(i)*X(j) for these {i,j}: {3, 44705}, {4, 42658}, {6, 6587}, {20, 512}, {25, 8057}, {31, 17898}, {42, 21172}, {56, 14308}, {64, 58342}, {112, 1562}, {122, 32713}, {125, 57153}, {154, 523}, {204, 656}, {393, 58796}, {513, 3198}, {520, 6525}, {525, 3172}, {610, 661}, {647, 1249}, {649, 8804}, {650, 30456}, {657, 36908}, {663, 5930}, {667, 52345}, {669, 14615}, {798, 18750}, {810, 1895}, {826, 51508}, {878, 44704}, {1084, 55224}, {1394, 4041}, {1400, 14331}, {1459, 53011}, {1637, 15291}, {1990, 61215}, {2207, 20580}, {2489, 37669}, {2501, 15905}, {2623, 42459}, {3049, 15466}, {3124, 36841}, {3213, 8611}, {3269, 57219}, {3344, 58895}, {3709, 18623}, {3900, 40933}, {4017, 7070}, {5895, 46005}, {6129, 41086}, {6529, 47409}, {7156, 51664}, {7180, 27382}, {8749, 14345}, {9409, 10152}, {12077, 33629}, {14249, 39201}, {15451, 38808}, {20975, 52913}, {23964, 55269}, {32687, 57296}, {35602, 58757}, {41489, 57201}, {42671, 61189}, {44698, 55230}, {51641, 52346}, {53560, 57193}
X(62176) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 44326}, {20, 670}, {25, 53639}, {32, 46639}, {122, 52617}, {154, 99}, {204, 811}, {213, 56235}, {512, 253}, {523, 41530}, {610, 799}, {647, 34403}, {656, 57780}, {661, 57921}, {663, 5931}, {669, 64}, {798, 2184}, {810, 19611}, {1249, 6331}, {1394, 4625}, {1562, 3267}, {1895, 57968}, {1924, 2155}, {1974, 1301}, {2489, 459}, {2501, 52581}, {3049, 1073}, {3124, 58759}, {3172, 648}, {3198, 668}, {3269, 14638}, {5930, 4572}, {6525, 6528}, {6587, 76}, {7070, 7257}, {8057, 305}, {8804, 1978}, {9426, 33581}, {14308, 3596}, {14331, 28660}, {14615, 4609}, {15905, 4563}, {17898, 561}, {18750, 4602}, {21172, 310}, {23964, 55268}, {30456, 4554}, {32713, 44181}, {33581, 53886}, {33673, 55213}, {36413, 55224}, {36841, 34537}, {36908, 46406}, {37669, 52608}, {39201, 15394}, {40933, 4569}, {42658, 69}, {44698, 55229}, {44705, 264}, {46005, 34410}, {47409, 4143}, {51508, 4577}, {51641, 8809}, {52345, 6386}, {55219, 13157}, {55224, 44168}, {55269, 36793}, {57153, 18020}, {57204, 41489}, {58310, 14379}, {58342, 14615}, {58344, 38956}, {58796, 3926}, {58895, 47435}
X(62176) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {647, 30442, 58895}, {3049, 14398, 2489}
X(62176) = pole of line {3150, 13611} with respect to the Kiepert circumhyperbola
X(62176) = pole of line {3269, 9409} with respect to ABCGK
X(62176) = pole of line {3270, 20974} with respect to ABCIK
X(62176) = pole of line {44326, 52608} with respect to the Steiner/Wallace right hyperbola
X(62176) = pole of line {4563, 34211} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(62176) = pole of line {4561, 7256} with respect to the Kiepert circumhyperbola of the excentral triangle
X(62176) = pole of line {7258, 44326} with respect to the Jerabek circumhyperbola of the excentral triangle
X(62176) = pole of line {44326, 52608} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(62176) = pole of line {511, 1498} with respect to the MacBeath circumconic
X(62176) = pole of line {232, 800} with respect to the Steiner inellipse
X(62176) = pole of line {25, 32} with respect to the Brocard inellipse
X(62176) = pole of line {1843, 5895} with respect to the orthic inconic
X(62176) = pole of line {1042, 40933} with respect to the Hofstadter inellipse
X(62176) = pole of line {1044, 1716} with respect to the Mandart circumellipse, CC9
X(62176) = pole of line {1661, 3053} with respect to the circumcircle
X(62176) = pole of line {2386, 5028} with respect to the Brocard circle
X(62176) = pole of line {25, 32} with respect to the first Lemoine circle
X(62176) = pole of line {1351, 6000} with respect to the second Lemoine circle
X(62176) = pole of line {32, 38297} with respect to the Moses circle
X(62176) = pole of line {76, 459} with respect to the polar circle


X(62177) = X(2)X(61776)∩X(3)X(9147)

Barycentrics    (b^2 - c^2)*(9*a^8 - 17*a^6*b^2 + 7*a^4*b^4 + a^2*b^6 - 17*a^6*c^2 + 39*a^4*b^2*c^2 - 15*a^2*b^4*c^2 + b^6*c^2 + 7*a^4*c^4 - 15*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + b^2*c^6) : :
X(62177) = X[2] + 2 X[61776], 4 X[3] - X[9147], X[4] - 4 X[16235], X[20] + 2 X[9148], 2 X[351] - 5 X[15692], 2 X[376] + X[53365], 5 X[631] - 2 X[19912], 7 X[3523] - 4 X[11176], X[3543] - 4 X[45689], 4 X[9126] - 7 X[15698], 13 X[10299] - 4 X[11615], 8 X[44826] + X[53345]

X(62177) is the barycentric sum of the three points introduced at X(4455) in Peter Moses's note dated March 6, 2024.

X(62177) lies on thjese lines: {2, 61776}, {3, 9147}, {4, 16235}, {20, 9148}, {351, 15692}, {376, 53365}, {523, 2071}, {631, 19912}, {690, 15055}, {804, 10304}, {2780, 3524}, {2793, 21166}, {3523, 11176}, {3543, 45689}, {9126, 15698}, {10299, 11615}, {15724, 20186}, {44826, 53345}

X(62177) = pole of line {1368, 15526} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(62177) = pole of line {1370, 39352} with respect to the orthoptic-circle-of-th-Steiner-circumellipe


X(62178) = 14th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^3-(5*b+c)*a^2-(b-c)^2*a+(b^2-c^2)*(5*b-c))*(a^3-(b+5*c)*a^2-(b-c)^2*a+(b^2-c^2)*(b-5*c)) : :
X(62178) = X(5691)+2*X(18221) = 2*X(7320)-5*X(11522) = 7*X(7989)-4*X(45085) = X(7991)-4*X(11530) = 4*X(18222)-3*X(24644)

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62178) lies on the Feuerbach hyperbola and these lines: {1, 5806}, {4, 18421}, {7, 5691}, {8, 1699}, {9, 5836}, {21, 165}, {65, 3062}, {79, 6259}, {80, 59390}, {84, 3339}, {90, 2093}, {104, 3361}, {314, 16284}, {515, 3296}, {517, 4866}, {942, 9851}, {943, 53053}, {944, 18490}, {946, 1000}, {971, 31507}, {1156, 7995}, {1320, 5531}, {1709, 7285}, {1750, 5665}, {2320, 30389}, {3057, 45830}, {3146, 58834}, {3452, 7989}, {3577, 16616}, {3632, 15998}, {3680, 11224}, {4312, 10307}, {4778, 43728}, {4900, 7982}, {5226, 7320}, {5437, 7987}, {5555, 41698}, {5558, 12577}, {5559, 10827}, {5587, 5763}, {5727, 15909}, {5903, 38271}, {6598, 28609}, {6601, 37712}, {7091, 10980}, {7160, 9819}, {7682, 50444}, {7988, 26129}, {7992, 10308}, {10429, 18391}, {10864, 24645}, {11518, 45834}, {12650, 15179}, {12672, 55931}, {13606, 37719}, {15071, 55922}, {15175, 61763}, {15446, 15803}, {18483, 43734}, {20008, 59385}, {31673, 43733}, {40256, 55918}, {40779, 59311}, {51525, 56117}, {53054, 56027}, {56263, 60975}

X(62178) = reflection of X(7990) in X(1)
X(62178) = isogonal conjugate of X(7987)
X(62178) = X(3340)-cross conjugate of-X(1)
X(62178) = X(14528)-vertex conjugate of-X(56343)
X(62178) = Cundy-Parry-Psi-transform of X(18421)
X(62178) = Gibert-Burek-Moses concurrent circles image of X(13866)
X(62178) = antipode of X(7990) in Feuerbach circumhyperbola


X(62179) = 15th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^5-7*(b+c)*a^4+2*(3*b^2+20*b*c+3*c^2)*a^3+6*(b+c)*(b^2-4*b*c+c^2)*a^2-(7*b^2+6*b*c+7*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)*(b^2-22*b*c+c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62179) lies on these lines: {1, 7}, {3973, 24644}, {7613, 46943}, {11224, 58793}, {49448, 58245}


X(62180) = 16th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^3+(7*b-c)*a^2-(b-c)^2*a-(b^2-c^2)*(7*b+c))*(a^3-(b-7*c)*a^2-(b-c)^2*a+(b^2-c^2)*(b+7*c)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62180) lies on the Feuerbach hyperbola and these lines: {1, 11379}, {7, 18217}, {8, 9589}, {21, 58221}, {90, 53056}, {943, 1750}, {946, 18490}, {971, 45834}, {1000, 5691}, {1210, 56263}, {1320, 12127}, {1699, 3296}, {1838, 38268}, {4900, 58245}, {5551, 18483}, {5558, 21625}, {5665, 9844}, {7160, 53052}, {7308, 16192}, {7317, 31673}, {7320, 12575}, {7995, 55931}, {12679, 15909}, {31509, 58248}

X(62180) = reflection of X(1) in X(11379)
X(62180) = isogonal conjugate of X(16192)
X(62180) = cevapoint of X(2310) and X(48026)
X(62180) = X(3339)-cross conjugate of-X(1)


X(62181) = 17th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^5+5*(b+c)*a^4-2*(3*b^2-14*b*c+3*c^2)*a^3-6*(b+c)^3*a^2+(5*b^2+6*b*c+5*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)*(b^2-10*b*c+c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62181) lies on these lines: {1, 7}, {165, 4383}, {238, 16192}, {3751, 55722}, {6180, 53053}, {11495, 16469}, {49490, 58245}, {58221, 60846}


X(62182) = 18th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^5-5*(b+c)*a^4+2*(2*b^2+9*b*c+2*c^2)*a^3+4*(b+c)*(b^2-3*b*c+c^2)*a^2-(5*b^2+4*b*c+5*c^2)*(b-c)^2*a+(b^2-c^2)*(b-c)*(b^2-10*b*c+c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62182) lies on these lines: {1, 7}, {45, 517}, {1086, 3656}, {1709, 54352}, {2310, 25415}, {3577, 4792}, {3870, 4080}, {5219, 52429}, {8148, 20430}, {9779, 54309}, {11278, 55722}, {49712, 54370}, {52212, 52371}, {54933, 60075}


X(62183) = 19th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(a^4+2*(b+c)*a^3-2*(2*b^2-b*c+2*c^2)*a^2-2*(b+c)*(b^2+c^2)*a+(3*b^2+4*b*c+3*c^2)*(b-c)^2) : :
X(62183) = 3*X(10246)-2*X(46475)

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 08, 2024.

X(62183) lies on these lines: {1, 971}, {2, 45097}, {3, 6}, {4, 3945}, {5, 4648}, {24, 44100}, {30, 3332}, {37, 5779}, {42, 6244}, {44, 59381}, {45, 51516}, {51, 37269}, {55, 2003}, {77, 5728}, {81, 7580}, {86, 48878}, {140, 37650}, {193, 36706}, {222, 14547}, {223, 11018}, {238, 38031}, {269, 942}, {354, 56848}, {381, 17392}, {382, 5733}, {387, 37424}, {394, 13615}, {405, 37659}, {515, 4349}, {516, 4667}, {517, 8147}, {601, 1253}, {631, 37681}, {651, 954}, {916, 2293}, {940, 19541}, {944, 4344}, {990, 1100}, {999, 1064}, {1014, 36012}, {1086, 59380}, {1203, 8273}, {1260, 55400}, {1279, 10246}, {1385, 7290}, {1418, 5708}, {1442, 10394}, {1449, 5732}, {1482, 49478}, {1490, 37594}, {1536, 14548}, {1617, 61398}, {1656, 17245}, {1709, 37593}, {1742, 4649}, {1743, 31658}, {1757, 54474}, {1790, 33586}, {1818, 55432}, {1993, 20835}, {2328, 37672}, {2334, 7991}, {2808, 6767}, {2999, 11227}, {3008, 38122}, {3019, 5073}, {3060, 11350}, {3167, 20834}, {3190, 55406}, {3526, 17337}, {3560, 5453}, {3564, 36474}, {3576, 16469}, {3655, 50294}, {3664, 5805}, {3672, 36996}, {3830, 45942}, {3927, 37528}, {3946, 43177}, {4000, 31657}, {4191, 9777}, {4306, 13404}, {4340, 20420}, {4363, 29016}, {4419, 5843}, {4644, 5762}, {4675, 38107}, {4851, 12618}, {4869, 36682}, {5217, 38293}, {5222, 21151}, {5256, 10167}, {5287, 5927}, {5308, 5817}, {5422, 37309}, {5544, 16421}, {5573, 58615}, {5706, 48897}, {5707, 37411}, {5712, 8727}, {5717, 5787}, {5721, 17528}, {6090, 47523}, {6600, 45729}, {6610, 15934}, {6776, 49131}, {6913, 50317}, {6916, 48847}, {7011, 20122}, {7053, 45963}, {7411, 37685}, {7960, 11200}, {9709, 37699}, {10156, 23511}, {10157, 17022}, {10267, 21002}, {10306, 37698}, {10391, 45126}, {10398, 59215}, {10446, 49130}, {10883, 37635}, {10964, 37556}, {11108, 25878}, {11220, 17011}, {11402, 16064}, {11518, 33633}, {13633, 14848}, {13727, 17379}, {14996, 36002}, {15008, 18216}, {15178, 35227}, {15251, 38053}, {15287, 16203}, {15569, 54370}, {15668, 48888}, {16408, 37732}, {16411, 17825}, {16466, 20978}, {16670, 21153}, {16777, 60884}, {17300, 36652}, {17365, 60922}, {17378, 36721}, {17603, 56418}, {18440, 36707}, {18526, 29235}, {19517, 37521}, {19767, 37022}, {20818, 24320}, {21850, 36674}, {22053, 52424}, {25430, 30326}, {29571, 38108}, {37224, 54356}, {37240, 61220}, {39641, 39642}, {49132, 51212}, {49488, 59620}, {50307, 52682}, {55438, 56813}

X(62183) = reflection of X(i) in X(j) for these (i, j): (3, 37474), (5751, 14520)
X(62183) = Cundy-Parry-Phi-transform of X(4258)
X(62183) = Cundy-Parry-Psi-transform of X(57826)
X(62183) = perspector of the circumconic through X(110) and X(61240)
X(62183) = pole of the line {3900, 5216} with respect to the Conway circle
X(62183) = pole of the line {3900, 44410} with respect to the incircle
X(62183) = pole of the line {4843, 14618} with respect to the polar circle
X(62183) = pole of the line {34830, 60992} with respect to the circumhyperbola dual of Yff parabola
X(62183) = pole of the line {184, 37269} with respect to the Jerabek circumhyperbola
X(62183) = pole of the line {5, 5022} with respect to the Kiepert circumhyperbola
X(62183) = pole of the line {520, 657} with respect to the MacBeath circumconic
X(62183) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6, 991, 3), (55, 2003, 22117), (386, 37501, 3), (500, 36742, 3), (572, 1350, 3), (581, 36746, 3), (4675, 53599, 38107), (13329, 50677, 3), (49478, 61086, 1482)


X(62184) = X(2)X(51)∩X(3)X(61774)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - 18*b^2*c^2 - c^4) : :
X(62184) = 10 X[2] - X[51], 4 X[2] - X[373], 17 X[2] + X[2979], 19 X[2] - X[3060], 7 X[2] + 2 X[3819], 8 X[2] + X[3917], 7 X[2] - X[5640], 2 X[2] + X[5650], 11 X[2] - 2 X[5943], 13 X[2] - 4 X[6688], 5 X[2] + X[7998], 17 X[2] - 8 X[10219], 13 X[2] - X[11002], 23 X[2] - 5 X[11451], 7 X[2] - 4 X[12045], X[2] + 2 X[15082], 25 X[2] - X[16981], 29 X[2] - 2 X[21849], 28 X[2] - X[21969], 11 X[2] + X[33884], 11 X[2] + 7 X[44299], 31 X[2] - 4 X[58470], 2 X[51] - 5 X[373], 17 X[51] + 10 X[2979], 19 X[51] - 10 X[3060], 7 X[51] + 20 X[3819], 4 X[51] + 5 X[3917], 7 X[51] - 10 X[5640], X[51] + 5 X[5650], and many others

X(62184) lies on these lines: {2, 51}, {3, 61774}, {22, 55660}, {23, 55657}, {25, 55654}, {52, 55862}, {110, 55695}, {140, 10575}, {141, 61045}, {184, 55697}, {185, 3526}, {323, 55713}, {389, 61870}, {547, 36987}, {549, 32062}, {568, 55858}, {631, 13474}, {632, 9730}, {1154, 61874}, {1216, 55866}, {1495, 16187}, {1656, 44863}, {1843, 51128}, {1995, 55649}, {3066, 55593}, {3292, 5050}, {3523, 46847}, {3525, 6241}, {3533, 11459}, {3740, 61678}, {3763, 32366}, {5020, 55643}, {5054, 14915}, {5085, 5651}, {5092, 35265}, {5102, 59777}, {5446, 61878}, {5447, 55860}, {5462, 61875}, {5562, 46219}, {5643, 55716}, {5646, 11284}, {5663, 11539}, {5888, 14810}, {5890, 61865}, {5891, 10124}, {5892, 15723}, {5907, 61856}, {6000, 15709}, {6090, 17809}, {6800, 55685}, {7484, 35268}, {7485, 55667}, {7492, 55663}, {7496, 55670}, {7712, 55679}, {9026, 61686}, {9027, 21358}, {9306, 55693}, {9716, 55709}, {9729, 61863}, {9973, 61676}, {10110, 61881}, {10303, 11381}, {10545, 55606}, {10546, 55674}, {10625, 55861}, {11003, 55700}, {11455, 61833}, {11540, 15060}, {11614, 15544}, {11695, 61873}, {11793, 61867}, {11812, 16194}, {12162, 61853}, {12294, 52292}, {13331, 40130}, {13340, 55857}, {13348, 46936}, {13363, 55859}, {13391, 61879}, {13570, 61912}, {13598, 46935}, {13754, 61864}, {14002, 55653}, {14641, 61831}, {14831, 61869}, {14845, 47599}, {14855, 15713}, {14869, 55286}, {14924, 55722}, {15045, 61866}, {15066, 39561}, {15067, 16239}, {15072, 55864}, {15080, 55680}, {15107, 55615}, {15305, 61846}, {15644, 60781}, {16226, 61871}, {16409, 22080}, {16419, 22352}, {16863, 22076}, {16980, 51073}, {17704, 61848}, {18435, 61854}, {18874, 45186}, {20582, 40673}, {21663, 32620}, {21766, 55603}, {21850, 44300}, {23039, 61872}, {24206, 59776}, {27355, 61886}, {30734, 55646}, {32142, 41992}, {32237, 55664}, {34417, 55610}, {37674, 61670}, {40647, 61855}, {41462, 55627}, {44106, 55630}, {44107, 55717}, {44109, 55706}, {44870, 61834}, {46849, 61818}, {46850, 61842}, {46852, 61799}, {48912, 55612}, {51377, 61158}, {54041, 61889}, {54042, 61880}, {54044, 61898}, {54376, 61679}, {61136, 61859}

X(62184) = midpoint of X(2) and X(33879)
X(62184) = reflection of X(i) in X(j) for these {i,j}: {5650, 33879}, {33879, 15082}
X(62184) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2979, 10219}, {2, 5640, 12045}, {2, 5650, 373}, {2, 15082, 5650}, {2, 44299, 5943}, {51, 5650, 7998}, {373, 5650, 3917}, {373, 21969, 5640}, {631, 16261, 55166}, {3819, 12045, 5640}, {3819, 21969, 3917}, {5650, 12045, 21969}, {5888, 16042, 14810}, {16187, 40916, 1495}


X(62185) = X(2)X(970)∩X(10)X(30)

Barycentrics    2*a^6*b + 5*a^5*b^2 - a^4*b^3 - 7*a^3*b^4 - a^2*b^5 + 2*a*b^6 + 2*a^6*c + 8*a^5*b*c + a^4*b^2*c - 10*a^3*b^3*c - 5*a^2*b^4*c + 2*a*b^5*c + 2*b^6*c + 5*a^5*c^2 + a^4*b*c^2 - 8*a^3*b^2*c^2 - 8*a^2*b^3*c^2 - 2*a*b^4*c^2 + 2*b^5*c^2 - a^4*c^3 - 10*a^3*b*c^3 - 8*a^2*b^2*c^3 - 4*a*b^3*c^3 - 4*b^4*c^3 - 7*a^3*c^4 - 5*a^2*b*c^4 - 2*a*b^2*c^4 - 4*b^3*c^4 - a^2*c^5 + 2*a*b*c^5 + 2*b^2*c^5 + 2*a*c^6 + 2*b*c^6 : :
X(62185) = 2 X[10] + X[35203], 2 X[48887] + X[48919], X[48887] + 2 X[61524], X[48919] - 4 X[61524], 5 X[1698] + X[48917], 2 X[5690] + X[48894], 4 X[6684] - X[48893], 7 X[9588] - X[37425], 7 X[9780] - X[48899], 2 X[9956] + X[48924], X[11362] + 2 X[50418], 7 X[31423] - X[48909]

X(622) lies on these lines:: {2, 970}, {3, 48852}, {10, 30}, {140, 9568}, {181, 3584}, {381, 573}, {386, 5054}, {511, 26446}, {519, 49599}, {524, 49636}, {530, 49634}, {531, 49635}, {532, 49644}, {533, 49643}, {538, 49645}, {542, 49637}, {543, 49638}, {547, 2051}, {754, 49646}, {1682, 3582}, {1685, 13847}, {1686, 13846}, {1695, 38021}, {1698, 48917}, {2092, 3017}, {3029, 49102}, {3524, 9534}, {3628, 9569}, {3656, 19858}, {3679, 10434}, {4260, 50977}, {4276, 28443}, {5055, 9566}, {5071, 9535}, {5309, 9546}, {5530, 37631}, {5690, 48894}, {6684, 48893}, {9548, 19875}, {9567, 15694}, {9588, 37425}, {9780, 48899}, {9956, 48924}, {10056, 31496}, {10440, 11231}, {11362, 50418}, {15979, 31446}, {19853, 50810}, {30116, 34718}, {31162, 59312}, {31423, 48909}, {32419, 49639}, {32421, 49640}, {49716, 58822}, {50828, 59303}

X(62185) = midpoint of X(3679) and X(14636)
X(62185) = {X(48887),X(61524)}-harmonic conjugate of X(48919)


X(62186) = X(1)X(37757)∩X(3)X(142)

Barycentrics    a^7 - 7*a^5*b^2 + 9*a^4*b^3 - a^3*b^4 - 2*a^2*b^5 - a*b^6 + b^7 + 2*a^5*b*c - 2*a^4*b^2*c - 4*a^3*b^3*c + 4*a^2*b^4*c + 2*a*b^5*c - 2*b^6*c - 7*a^5*c^2 - 2*a^4*b*c^2 + 10*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + a*b^4*c^2 + 9*a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + b^4*c^3 - a^3*c^4 + 4*a^2*b*c^4 + a*b^2*c^4 + b^3*c^4 - 2*a^2*c^5 + 2*a*b*c^5 - a*c^6 - 2*b*c^6 + c^7 : :
X(62186) = 3 X[2] + X[11201]

X(62186) lies on these lines: {1, 37757}, {2, 11201}, {3, 142}, {170, 17095}, {348, 59677}, {3811, 28870}, {5703, 53014}, {7988, 17671}, {11200, 14986}, {28850, 45700}


X(62187) = X(2)X(51)∩X(4)X(93)

Barycentrics    a^2*(2*a^2*b^2 - 2*b^4 + 2*a^2*c^2 + b^2*c^2 - 2*c^4) : :
X(62187) = 3 X[2] - 4 X[51], 11 X[2] - 12 X[373], 9 X[2] - 8 X[3819], 5 X[2] - 4 X[3917], 5 X[2] - 6 X[5640], 13 X[2] - 12 X[5650], 7 X[2] - 8 X[5943], 15 X[2] - 16 X[6688], 7 X[2] - 6 X[7998], 31 X[2] - 32 X[10219], 2 X[2] - 3 X[11002], 9 X[2] - 10 X[11451], 47 X[2] - 48 X[12045], 25 X[2] - 24 X[15082], X[2] - 3 X[16981], and many others

X(62187) lies on these lines: {2, 51}, {3, 14449}, {4, 93}, {5, 54048}, {6, 6636}, {15, 21461}, {16, 21462}, {20, 52}, {22, 1351}, {23, 154}, {25, 323}, {26, 9545}, {30, 34796}, {54, 38435}, {69, 7394}, {110, 44082}, {140, 54047}, {143, 631}, {182, 53863}, {184, 7712}, {185, 5059}, {193, 2393}, {194, 46518}, {195, 17714}, {211, 7912}, {237, 48673}, {251, 5028}, {343, 5169}, {376, 568}, {389, 3522}, {394, 13595}, {428, 34380}, {467, 44704}, {512, 19569}, {549, 13321}, {576, 5012}, {674, 4661}, {858, 41588}, {970, 17548}, {1007, 51440}, {1112, 6353}, {1160, 1599}, {1161, 1600}, {1180, 5052}, {1181, 12087}, {1216, 5056}, {1350, 5422}, {1352, 37349}, {1370, 18950}, {1383, 1915}, {1469, 17024}, {1501, 5111}, {1503, 41628}, {1613, 20977}, {1656, 44324}, {1670, 15250}, {1671, 15249}, {1843, 7408}, {1899, 5189}, {1992, 9019}, {1995, 55724}, {2071, 37489}, {2781, 3448}, {2937, 55039}, {2987, 9157}, {3056, 29815}, {3090, 6101}, {3091, 5446}, {3095, 37184}, {3098, 15004}, {3146, 5889}, {3164, 40642}, {3167, 35265}, {3311, 13617}, {3312, 13616}, {3313, 51171}, {3518, 16266}, {3523, 3567}, {3524, 5946}, {3525, 10627}, {3528, 37481}, {3529, 6102}, {3533, 15026}, {3534, 61136}, {3543, 11455}, {3545, 23039}, {3564, 34603}, {3580, 23332}, {3581, 35473}, {3616, 31757}, {3619, 40670}, {3620, 9969}, {3621, 16980}, {3681, 9047}, {3796, 5102}, {3830, 9879}, {3832, 5562}, {3839, 11459}, {3854, 15056}, {3855, 11591}, {3873, 9037}, {3981, 9463}, {4121, 51396}, {4184, 48875}, {4188, 37482}, {4189, 5752}, {4210, 48908}, {4430, 8679}, {5034, 38862}, {5055, 13451}, {5067, 10095}, {5068, 10110}, {5071, 15067}, {5092, 34565}, {5097, 22352}, {5133, 21850}, {5154, 37536}, {5354, 11173}, {5447, 15024}, {5462, 10303}, {5480, 37353}, {5644, 7484}, {5645, 55587}, {5654, 46451}, {5663, 15682}, {5862, 34373}, {5863, 34375}, {5864, 11146}, {5865, 11145}, {5907, 50689}, {5921, 27365}, {5984, 39817}, {5986, 10754}, {6030, 55717}, {6241, 49135}, {6403, 6995}, {6759, 9935}, {6776, 20062}, {7378, 47328}, {7392, 7693}, {7409, 12294}, {7426, 59553}, {7485, 9777}, {7486, 7999}, {7488, 36747}, {7494, 18438}, {7496, 10601}, {7512, 36749}, {7517, 56292}, {7525, 14627}, {7527, 44413}, {7533, 15108}, {7691, 11424}, {7787, 41262}, {7933, 27374}, {8705, 15534}, {9143, 14984}, {9301, 37457}, {9306, 14002}, {9536, 11190}, {9539, 11189}, {9703, 37936}, {9729, 21734}, {9730, 10304}, {9780, 31737}, {9792, 59183}, {9936, 13423}, {9939, 61727}, {9973, 11008}, {10154, 61655}, {10170, 61924}, {10298, 13352}, {10299, 12006}, {10323, 37493}, {10546, 44106}, {10560, 57481}, {10574, 16625}, {10575, 49140}, {10605, 37944}, {10606, 12086}, {10653, 36981}, {10654, 36979}, {10691, 61657}, {11160, 11188}, {11202, 34148}, {11206, 44668}, {11216, 37784}, {11225, 19924}, {11245, 52397}, {11381, 50690}, {11422, 55718}, {11427, 44439}, {11433, 16063}, {11439, 45187}, {11442, 31670}, {11456, 37945}, {11465, 61863}, {11488, 61641}, {11489, 61642}, {11550, 41724}, {11624, 49813}, {11626, 49812}, {11649, 37901}, {11695, 61842}, {11793, 15022}, {11800, 13201}, {11807, 12273}, {12083, 15032}, {12088, 12161}, {12105, 58266}, {12111, 13598}, {12160, 32063}, {12162, 50688}, {12220, 40673}, {12225, 13142}, {12226, 59351}, {12239, 43512}, {12240, 43511}, {12279, 50692}, {12290, 50691}, {12834, 41462}, {13207, 14614}, {13330, 20859}, {13348, 61791}, {13363, 15702}, {13366, 15080}, {13382, 52093}, {13417, 14683}, {13434, 46728}, {13482, 39242}, {13491, 49138}, {13567, 31101}, {13570, 61962}, {13596, 15110}, {13630, 17538}, {14118, 17834}, {14128, 61945}, {14731, 16978}, {14831, 15072}, {14915, 15640}, {15012, 62078}, {15019, 43650}, {15028, 61834}, {15030, 61985}, {15033, 37478}, {15043, 15644}, {15045, 15692}, {15052, 58891}, {15053, 37480}, {15058, 61982}, {15060, 41099}, {15066, 17810}, {15068, 52294}, {15305, 50687}, {15606, 61914}, {15681, 45956}, {15705, 16226}, {16042, 17811}, {16194, 62007}, {16227, 37497}, {16261, 61989}, {16451, 48907}, {16452, 48928}, {16776, 21356}, {16836, 62063}, {17704, 62060}, {17813, 40318}, {17825, 21766}, {18322, 35926}, {18376, 50435}, {18439, 62028}, {18445, 37925}, {18570, 41398}, {19161, 61044}, {19209, 43768}, {19708, 40280}, {19767, 50593}, {19877, 58474}, {20011, 50577}, {20094, 39846}, {20961, 29814}, {20965, 44453}, {21357, 50138}, {21844, 37495}, {22112, 55581}, {22115, 47485}, {22467, 37498}, {23292, 52300}, {23293, 31857}, {25054, 40382}, {25304, 33091}, {26874, 30258}, {26881, 34986}, {26913, 51360}, {26958, 30745}, {27375, 31276}, {29181, 61658}, {30439, 42511}, {30440, 42510}, {30744, 40920}, {31133, 44555}, {31296, 54269}, {31834, 61984}, {32110, 35493}, {32142, 61886}, {32205, 61870}, {32269, 58434}, {33703, 34783}, {34417, 55723}, {35264, 37672}, {35921, 37494}, {35929, 39141}, {36750, 59354}, {36978, 37640}, {36980, 37641}, {37126, 37486}, {37344, 40268}, {37460, 52000}, {37477, 61128}, {37516, 37685}, {37940, 47391}, {37978, 44469}, {37990, 48876}, {38942, 44879}, {40916, 55580}, {42149, 61698}, {42152, 61697}, {43816, 47528}, {44056, 44325}, {44107, 55594}, {44111, 55715}, {45007, 61574}, {45957, 49136}, {46106, 51877}, {46219, 58531}, {46847, 61992}, {46850, 62152}, {46934, 58469}, {47582, 59771}, {50600, 54341}, {53048, 59378}, {53049, 59379}, {53770, 57491}, {54062, 57489}, {54334, 59373}, {55166, 62054}, {55596, 61775}, {58533, 61867}

X(62187) = midpoint of X(14531) and X(32062)
X(62187) = reflection of X(i) in X(j) for these {i,j}: {2, 3060}, {20, 5890}, {69, 9971}, {376, 568}, {2979, 51}, {3060, 21969}, {3917, 21849}, {5890, 52}, {5891, 5446}, {6101, 13364}, {9939, 61727}, {10625, 5892}, {11002, 16981}, {11160, 11188}, {11412, 5891}, {12111, 32062}, {12220, 40673}, {13340, 5946}, {13364, 16982}, {15072, 14831}, {15681, 45956}, {15683, 15072}, {32062, 13598}, {32064, 34751}, {33884, 11002}, {36987, 389}, {37484, 54042}, {44325, 44056}, {52397, 11245}, {54042, 143}, {54048, 5}
X(62187) = anticomplement of X(2979)
X(62187) = orthoptic-circle-of-the-Steiner-circumellipse-inverse of X(38227)
X(62187) = anticomplement of the isogonal conjugate of X(2980)
X(62187) = anticomplement of the isotomic conjugate of X(44176)
X(62187) = isogonal conjugate of the isotomic conjugate of X(7814)
X(62187) = psi-transform of X(34127)
X(62187) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2980, 8}, {27366, 21289}, {44176, 6327}, {44185, 21275}
X(62187) = X(44176)-Ceva conjugate of X(2)
X(62187) = crossdifference of every pair of points on line {3288, 7950}
X(62187) = barycentric product X(6)*X(7814)
X(62187) = barycentric quotient X(7814)/X(76)
X(62187) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3060, 11002}, {2, 16981, 3060}, {4, 45794, 3410}, {22, 1351, 1994}, {22, 1994, 11003}, {23, 1993, 9544}, {51, 2979, 2}, {51, 3819, 11451}, {51, 3917, 6688}, {51, 6688, 5640}, {143, 37484, 631}, {184, 15107, 37913}, {184, 37913, 7712}, {389, 36987, 20791}, {1216, 9781, 5056}, {1350, 5422, 15246}, {1993, 9544, 9716}, {1993, 33586, 23}, {2979, 3060, 51}, {2979, 5640, 44299}, {2979, 11451, 3819}, {2979, 44299, 3917}, {3060, 5640, 21849}, {3060, 21969, 16981}, {3567, 10625, 3523}, {3567, 54041, 5892}, {3819, 11451, 2}, {3917, 5640, 2}, {3917, 6688, 44299}, {3917, 21849, 5640}, {5446, 11412, 3091}, {5447, 15024, 55864}, {5480, 37636, 37353}, {5640, 44299, 6688}, {5889, 45186, 3146}, {5892, 10625, 54041}, {5892, 54041, 3523}, {5943, 7998, 2}, {5946, 13340, 3524}, {6243, 10263, 4}, {6515, 7391, 3448}, {6515, 51212, 7391}, {6688, 21849, 51}, {6688, 44299, 2}, {7485, 9777, 15018}, {9777, 33878, 7485}, {10110, 11444, 5068}, {10263, 13421, 6243}, {11004, 15107, 7712}, {11004, 37913, 184}, {11477, 33586, 1993}, {12111, 13598, 17578}, {13598, 14531, 12111}, {15043, 15644, 15717}, {15107, 37517, 11004}, {20791, 36987, 3522}, {37494, 39522, 35921}


X(62188) = X(2)X(51)∩X(3)X(1199)

Barycentrics    a^2*(2*a^2*b^2 - 2*b^4 + 2*a^2*c^2 - b^2*c^2 - 2*c^4) : :
X(62188) = 5 X[2] - 4 X[51], 13 X[2] - 12 X[373], 7 X[2] - 8 X[3819], 3 X[2] - 4 X[3917], 7 X[2] - 6 X[5640], 11 X[2] - 12 X[5650], 9 X[2] - 8 X[5943], 17 X[2] - 16 X[6688], 5 X[2] - 6 X[7998], 33 X[2] - 32 X[10219], 4 X[2] - 3 X[11002], 11 X[2] - 10 X[11451], 49 X[2] - 48 X[12045], 23 X[2] - 24 X[15082], 5 X[2] - 3 X[16981], and many others

X(62188) lies on these lines: {2, 51}, {3, 1199}, {4, 2889}, {6, 15246}, {8, 31737}, {20, 6193}, {22, 323}, {23, 394}, {25, 55584}, {30, 54048}, {52, 3523}, {68, 17711}, {69, 1369}, {110, 37913}, {140, 13321}, {141, 37353}, {143, 3525}, {184, 6030}, {185, 50693}, {186, 37494}, {193, 3313}, {194, 40642}, {211, 7938}, {343, 31074}, {376, 1154}, {389, 15717}, {512, 14976}, {549, 54047}, {568, 3524}, {631, 5946}, {633, 10210}, {674, 4430}, {962, 31738}, {970, 37307}, {1112, 38282}, {1147, 38435}, {1160, 1600}, {1161, 1599}, {1181, 16661}, {1216, 3091}, {1350, 1993}, {1351, 7485}, {1352, 15108}, {1370, 3448}, {1469, 29815}, {1493, 61243}, {1495, 55586}, {1501, 5104}, {1627, 5028}, {1656, 13451}, {1658, 38942}, {1670, 15249}, {1671, 15250}, {1843, 7409}, {1853, 10989}, {1899, 37779}, {1992, 54334}, {1995, 55580}, {2071, 37483}, {2387, 9939}, {2393, 11160}, {2781, 9143}, {2854, 50992}, {2888, 14790}, {3051, 44453}, {3056, 17024}, {3090, 10263}, {3094, 11205}, {3098, 5012}, {3146, 5562}, {3292, 26881}, {3522, 5889}, {3526, 14449}, {3528, 6102}, {3529, 18436}, {3533, 13421}, {3543, 11459}, {3545, 15067}, {3564, 52397}, {3567, 5447}, {3580, 31101}, {3581, 61128}, {3620, 29959}, {3681, 9037}, {3784, 23958}, {3787, 9465}, {3792, 17127}, {3832, 11444}, {3839, 5891}, {3854, 13570}, {3873, 9047}, {4184, 48908}, {4188, 5752}, {4189, 37482}, {4210, 48875}, {4259, 37685}, {4661, 8679}, {4678, 16980}, {5017, 34945}, {5055, 44324}, {5056, 5446}, {5059, 12111}, {5067, 32142}, {5068, 11793}, {5073, 31834}, {5133, 48876}, {5141, 37536}, {5169, 37636}, {5189, 11442}, {5422, 7496}, {5462, 55864}, {5550, 31757}, {5645, 10601}, {5651, 55581}, {5663, 11001}, {5862, 34375}, {5863, 34373}, {5864, 11145}, {5865, 11146}, {5876, 33703}, {5890, 10304}, {5892, 15708}, {5907, 17578}, {5984, 39807}, {6000, 15683}, {6403, 7378}, {6515, 16063}, {6676, 59771}, {6800, 37672}, {7186, 17126}, {7386, 18438}, {7394, 51212}, {7396, 61666}, {7408, 12294}, {7484, 15018}, {7486, 9781}, {7488, 37486}, {7500, 41716}, {7512, 9545}, {7519, 14826}, {7550, 39522}, {7555, 9703}, {7556, 22115}, {7667, 34380}, {7691, 13346}, {7734, 61657}, {7793, 41262}, {8041, 13330}, {8667, 13207}, {8681, 12058}, {8703, 61136}, {8705, 15533}, {8718, 15083}, {9306, 15107}, {9463, 20859}, {9729, 61791}, {9730, 15692}, {9777, 40916}, {9821, 37184}, {9909, 35265}, {9971, 21356}, {10095, 61886}, {10110, 15022}, {10170, 61936}, {10192, 40112}, {10298, 37478}, {10299, 37481}, {10564, 35493}, {10574, 13348}, {10984, 15801}, {10996, 31807}, {11008, 17710}, {11126, 14541}, {11127, 14540}, {11250, 12307}, {11381, 50692}, {11402, 55610}, {11411, 12226}, {11414, 43605}, {11422, 22352}, {11427, 37473}, {11433, 44439}, {11439, 50690}, {11441, 12087}, {11455, 15640}, {11488, 36978}, {11489, 36980}, {11574, 51170}, {11592, 61817}, {11624, 49862}, {11626, 49861}, {11695, 61848}, {11824, 55567}, {11825, 55566}, {12006, 61814}, {12082, 58891}, {12112, 44457}, {12162, 49135}, {12164, 33524}, {12212, 39955}, {12219, 41465}, {12251, 14957}, {12279, 45187}, {12290, 49140}, {12325, 32140}, {12824, 37669}, {12834, 22112}, {13201, 14683}, {13363, 15709}, {13364, 61899}, {13366, 14810}, {13409, 26874}, {13491, 62127}, {13595, 15066}, {13598, 15056}, {13630, 21735}, {14002, 55583}, {14096, 48673}, {14118, 37498}, {14128, 61964}, {14831, 20791}, {14845, 61912}, {14855, 15697}, {14915, 62160}, {15004, 55720}, {15019, 55721}, {15024, 61856}, {15026, 61867}, {15028, 61842}, {15030, 50687}, {15043, 61820}, {15052, 18534}, {15058, 50688}, {15068, 37925}, {15072, 36987}, {15080, 34986}, {15682, 18435}, {15688, 45956}, {15698, 40280}, {15705, 16836}, {15720, 16881}, {15739, 41590}, {16042, 17810}, {16226, 61812}, {16261, 62007}, {16451, 48928}, {16452, 48907}, {16625, 61804}, {16982, 60781}, {17538, 34783}, {17834, 22467}, {18439, 49138}, {18451, 37945}, {18570, 37496}, {19767, 50599}, {20063, 31383}, {20086, 54383}, {20094, 39836}, {20190, 44111}, {20977, 21001}, {21243, 31857}, {21850, 37990}, {21968, 37453}, {23293, 51360}, {25304, 33090}, {26913, 41586}, {31152, 44555}, {31296, 54272}, {31670, 37349}, {32062, 62032}, {32064, 44668}, {32205, 61873}, {32521, 37988}, {33264, 55005}, {33522, 37645}, {34148, 46728}, {34565, 55718}, {34566, 55706}, {34796, 44458}, {35268, 55589}, {35473, 37477}, {36747, 37126}, {36752, 45308}, {37457, 47618}, {37517, 41462}, {37668, 51439}, {37760, 59543}, {40647, 62097}, {41464, 52016}, {44003, 46717}, {44109, 55601}, {44210, 61655}, {45957, 62131}, {45959, 62028}, {46847, 62005}, {46850, 62124}, {47328, 52284}, {52093, 62125}, {52285, 61545}, {53770, 57481}, {54062, 57474}, {55038, 55603}, {55858, 58531}

X(62188) = midpoint of X(23039) and X(37484)
X(62188) = reflection of X(i) in X(j) for these {i,j}: {2, 2979}, {4, 23039}, {376, 13340}, {568, 54042}, {1992, 54334}, {3060, 3917}, {3146, 15305}, {3543, 11459}, {4430, 23155}, {5946, 10627}, {6243, 5946}, {11002, 33884}, {12824, 41673}, {15072, 36987}, {15305, 5562}, {15640, 11455}, {15682, 18435}, {16981, 7998}, {21969, 3819}, {23039, 6101}, {34796, 44458}, {45968, 7667}
X(62188) = anticomplement of X(3060)
X(62188) = anticomplement of the isogonal conjugate of X(45838)
X(62188) = isogonal conjugate of the isotomic conjugate of X(7871)
X(62188) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {45838, 8}, {57644, 21278}
X(62188) = crossdifference of every pair of points on line {3288, 37085}
X(62188) = barycentric product X(6)*X(7871)
X(62188) = barycentric quotient X(7871)/X(76)
X(62188) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2979, 33884}, {2, 16981, 51}, {22, 323, 9544}, {22, 9544, 7712}, {51, 7998, 2}, {69, 7391, 3410}, {373, 44299, 2}, {568, 54042, 3524}, {1350, 1993, 6636}, {1351, 7485, 34545}, {1370, 45794, 3448}, {1993, 6636, 11003}, {2979, 3060, 3917}, {3060, 3917, 2}, {3567, 5447, 10303}, {3819, 5640, 2}, {3819, 21969, 5640}, {5446, 7999, 5056}, {5650, 11451, 2}, {5650, 21849, 11451}, {5889, 15644, 3522}, {6101, 37484, 4}, {6243, 10627, 631}, {6688, 33879, 2}, {7492, 23061, 9716}, {7512, 16266, 9545}, {9730, 54041, 15692}, {10574, 13348, 21734}, {10625, 11412, 20}, {11444, 45186, 3832}, {13348, 14531, 10574}, {13595, 33586, 48912}, {13598, 15056, 50689}, {15066, 33586, 13595}, {15072, 36987, 62120}, {15606, 45186, 11444}, {23061, 52987, 7492}, {37478, 43574, 10298}, {37517, 43650, 53863}, {40280, 54044, 15698}, {41462, 53863, 43650}


X(62189) = X(2)X(573)∩X(10)X(30)

Barycentrics    4*a^5*b + 3*a^4*b^2 - 5*a^3*b^3 - 3*a^2*b^4 + a*b^5 + 4*a^5*c + 2*a^4*b*c - 3*a^3*b^2*c - 3*a^2*b^3*c - a*b^4*c + b^5*c + 3*a^4*c^2 - 3*a^3*b*c^2 - 4*a^2*b^2*c^2 - 5*a^3*c^3 - 3*a^2*b*c^3 - 2*b^3*c^3 - 3*a^2*c^4 - a*b*c^4 + a*c^5 + b*c^5 : :
X(62189) = X[10] + 2 X[35203], X[31730] + 2 X[48887], 4 X[49730] - X[60172], X[970] + 2 X[49641], X[946] + 2 X[48924], 2 X[1125] + X[48917], 4 X[3634] - X[48899], X[4301] - 4 X[50418], 2 X[6684] + X[48882], X[7991] + 5 X[50420], 7 X[9588] - X[15971], X[9840] + 2 X[43174], X[11362] + 2 X[48930], 2 X[12512] + X[48937], 7 X[16192] - X[48923], 7 X[31423] - X[48941], 5 X[35242] + X[48877]

X(62189) lies on these lines: {2, 573}, {3, 9568}, {10, 30}, {140, 9569}, {181, 4995}, {333, 37508}, {376, 48852}, {386, 3524}, {511, 10164}, {519, 14636}, {540, 49636}, {549, 970}, {551, 35631}, {946, 48924}, {1125, 48917}, {1682, 5298}, {1695, 25055}, {2092, 61661}, {2482, 34454}, {3029, 6055}, {3578, 3687}, {3584, 10408}, {3634, 48899}, {3679, 44039}, {4260, 54169}, {4276, 21161}, {4301, 50418}, {5054, 9566}, {5306, 9546}, {5530, 49744}, {5642, 34453}, {6174, 34458}, {6684, 48882}, {6685, 50829}, {7991, 50420}, {9534, 10304}, {9563, 43572}, {9567, 15693}, {9588, 15971}, {9840, 43174}, {10443, 60986}, {11237, 31496}, {11362, 48930}, {12512, 48937}, {13478, 37499}, {16192, 48923}, {17781, 22020}, {19853, 34632}, {19858, 31162}, {19875, 50037}, {22097, 24237}, {26044, 32431}, {30116, 50810}, {31423, 48941}, {35242, 48877}, {37520, 37631}, {39980, 50257}, {41629, 54388}, {50865, 59312}, {52793, 58772}, {54586, 56902}, {54699, 56214}


X(62190) = X(6)X(157)∩X(184)X(34416)

Barycentrics    a^4*(a^4 - a^2*b^2 - a^2*c^2 - 8*b^2*c^2) : :

X(62190) lies on these lines: {6, 157}, {184, 34416}, {237, 33872}, {1992, 3398}, {4558, 11842}, {5007, 40673}, {5158, 23606}, {5309, 41221}, {5355, 8754}, {5702, 44096}, {8541, 44162}, {9407, 33881}, {10602, 43136}, {10796, 25051}, {13342, 40981}, {14060, 32447}, {15257, 17813}, {15526, 61712}, {23200, 33871}, {30534, 39560}, {33886, 39231}

X(62190) = isogonal conjugate of the isotomic conjugate of X(22112)
X(62190) = barycentric product X(6)*X(22112)
X(62190) = barycentric quotient X(22112)/X(76)
X(62190) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1576, 46327}, {34396, 46327, 1576}


X(62191) = X(2)X(6)∩X(3)X(2502)

Barycentrics    a^2*(a^4 - 4*a^2*b^2 + b^4 - 4*a^2*c^2 + 14*b^2*c^2 + c^4) : :

X(62191) lies on these lines: {2, 6}, {3, 2502}, {111, 7998}, {187, 5651}, {353, 7496}, {511, 8585}, {574, 5650}, {1495, 8588}, {1995, 5104}, {3124, 21448}, {5107, 22111}, {5210, 35259}, {6090, 39689}, {6800, 46276}, {7771, 35279}, {8288, 32216}, {8627, 15655}, {9225, 40916}, {10418, 50977}, {11173, 11284}, {11178, 39602}, {13192, 33884}, {18424, 51360}, {20998, 21766}, {33879, 50659}, {35283, 53418}, {38010, 44116}, {38402, 46734}, {42007, 52152}

X(62191) = crossdifference of every pair of points on line {512, 9189}
X(62191) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 352, 6}, {6, 46949, 3231}, {323, 7708, 6}, {15066, 20481, 6}, {17811, 56436, 6}


X(62192) = X(57)X(279)∩X(222)X(21748)

Barycentrics    a^2*(a + b - c)^3*(a - b + c)^3*(b + c) : :

X(62192) lies on these lines: {57, 279}, {222, 21748}, {223, 2347}, {241, 28272}, {269, 61412}, {345, 6168}, {604, 1407}, {1020, 28387}, {1042, 1402}, {1055, 7011}, {1106, 1395}, {1214, 1334}, {1254, 10376}, {1323, 1764}, {1400, 1427}, {1406, 7114}, {1435, 36570}, {2357, 18210}, {3666, 34855}, {7250, 8034}, {8808, 21044}, {18593, 40152}, {40956, 61376}, {40968, 47848}

X(62192) = X(i)-isoconjugate of X(j) for these (i,j): {2, 56182}, {8, 2287}, {9, 1043}, {21, 346}, {28, 30681}, {29, 3692}, {58, 30693}, {78, 2322}, {81, 5423}, {86, 728}, {99, 4130}, {190, 58329}, {200, 333}, {210, 7058}, {220, 314}, {261, 4515}, {274, 480}, {281, 1792}, {283, 7101}, {284, 341}, {310, 6602}, {312, 2328}, {318, 2327}, {321, 6061}, {332, 7079}, {345, 4183}, {522, 7259}, {643, 3239}, {644, 7253}, {645, 3900}, {646, 21789}, {650, 7256}, {657, 7257}, {662, 4163}, {663, 7258}, {670, 57180}, {799, 4105}, {1021, 3699}, {1098, 2321}, {1172, 1265}, {1253, 28660}, {1260, 31623}, {1802, 44130}, {1812, 7046}, {2185, 4082}, {2194, 59761}, {2299, 52406}, {2326, 3710}, {2332, 3718}, {3022, 4601}, {3119, 4600}, {3694, 59482}, {3701, 7054}, {3737, 6558}, {4012, 40403}, {4081, 4567}, {4397, 5546}, {4524, 4631}, {4560, 4578}, {4571, 17926}, {4620, 24010}, {6064, 36197}, {6335, 58338}, {7368, 57795}, {14827, 40072}, {15411, 56183}, {23609, 28654}, {36797, 57055}, {36800, 58327}
X(62192) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 30693}, {226, 52406}, {478, 1043}, {1084, 4163}, {1214, 59761}, {6609, 333}, {15267, 2321}, {17113, 28660}, {32664, 56182}, {36908, 312}, {38986, 4130}, {38996, 4105}, {40586, 5423}, {40590, 341}, {40591, 30681}, {40600, 728}, {40611, 346}, {40622, 52622}, {40627, 4081}, {50497, 3119}, {55053, 58329}, {55060, 3239}, {59608, 3596}
X(62192) = trilinear pole of line {7250, 51641}
X(62192) = crossdifference of every pair of points on line {4105, 4163}
X(62192) = barycentric product X(i)*X(j) for these {i,j}: {7, 1042}, {10, 7023}, {34, 1439}, {37, 738}, {42, 479}, {56, 3668}, {57, 1427}, {58, 6046}, {65, 269}, {73, 1119}, {77, 1426}, {81, 7147}, {86, 7143}, {213, 23062}, {225, 7053}, {226, 1407}, {273, 1410}, {278, 52373}, {279, 1400}, {307, 1398}, {321, 7366}, {349, 52410}, {512, 4626}, {523, 6614}, {604, 1446}, {608, 56382}, {651, 7216}, {658, 7180}, {661, 4617}, {664, 7250}, {669, 52937}, {798, 36838}, {934, 4017}, {1014, 1254}, {1020, 3669}, {1088, 1402}, {1106, 1441}, {1214, 1435}, {1245, 7197}, {1262, 53545}, {1396, 37755}, {1409, 1847}, {1412, 6354}, {1461, 7178}, {1474, 20618}, {1880, 7177}, {1918, 57880}, {2333, 30682}, {3120, 7339}, {3122, 59457}, {3676, 53321}, {4516, 24013}, {4551, 43932}, {4559, 58817}, {4566, 43924}, {4569, 51641}, {4637, 57185}, {6611, 8808}, {7045, 53540}, {7056, 57652}, {7099, 40149}, {8809, 40933}, {10376, 56328}, {21044, 23971}, {32714, 51664}, {40961, 56359}
X(62192) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 56182}, {37, 30693}, {42, 5423}, {56, 1043}, {65, 341}, {71, 30681}, {73, 1265}, {109, 7256}, {181, 4082}, {213, 728}, {226, 59761}, {269, 314}, {279, 28660}, {479, 310}, {512, 4163}, {603, 1792}, {604, 2287}, {608, 2322}, {651, 7258}, {667, 58329}, {669, 4105}, {738, 274}, {798, 4130}, {934, 7257}, {1020, 646}, {1042, 8}, {1088, 40072}, {1106, 21}, {1119, 44130}, {1214, 52406}, {1254, 3701}, {1395, 4183}, {1397, 2328}, {1398, 29}, {1400, 346}, {1402, 200}, {1407, 333}, {1408, 1098}, {1409, 3692}, {1410, 78}, {1412, 7058}, {1415, 7259}, {1425, 3710}, {1426, 318}, {1427, 312}, {1435, 31623}, {1439, 3718}, {1446, 28659}, {1461, 645}, {1880, 7101}, {1918, 480}, {1924, 57180}, {2205, 6602}, {2206, 6061}, {3121, 3119}, {3122, 4081}, {3668, 3596}, {4017, 4397}, {4559, 6558}, {4617, 799}, {4626, 670}, {4637, 4631}, {6046, 313}, {6354, 30713}, {6611, 27398}, {6614, 99}, {7023, 86}, {7053, 332}, {7099, 1812}, {7143, 10}, {7147, 321}, {7178, 52622}, {7180, 3239}, {7197, 44154}, {7216, 4391}, {7250, 522}, {7339, 4600}, {7366, 81}, {8034, 23615}, {10376, 4385}, {16947, 7054}, {20618, 40071}, {21750, 28070}, {23062, 6385}, {23971, 4620}, {36838, 4602}, {40933, 52346}, {40934, 4012}, {43924, 7253}, {43932, 18155}, {51641, 3900}, {51664, 15416}, {52373, 345}, {52410, 284}, {52411, 2327}, {52937, 4609}, {53321, 3699}, {53540, 24026}, {53545, 23978}, {56382, 57919}, {57181, 1021}, {57652, 7046}, {61052, 52335}
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 34497, 37666}, {1407, 6611, 604}, {1407, 7023, 7366}, {1427, 52373, 1400}


X(62193) = X(6)X(31)∩X(25)X(58285)

Barycentrics    a^3*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - 2*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 + c^3) : :

X(62193) lies on these lines: {6, 31}, {25, 58285}, {35, 2979}, {238, 34611}, {602, 37622}, {748, 11235}, {2251, 52370}, {3924, 5697}, {4557, 61367}, {11680, 17123}, {17122, 29661}, {37563, 54418}


X(62194) = X(2)X(5033)∩X(32)X(184)

Barycentrics    a^4*(3*a^2 - b^2 - c^2) : :

X(62194) lies on these lines: {2, 5033}, {6, 9909}, {22, 5028}, {25, 1692}, {32, 184}, {39, 3796}, {51, 39764}, {115, 31383}, {154, 1196}, {182, 1915}, {187, 394}, {193, 33632}, {251, 11003}, {574, 22352}, {577, 9233}, {1184, 26864}, {1194, 6800}, {1397, 14599}, {1495, 34481}, {1570, 33586}, {1611, 8780}, {1613, 41412}, {1627, 9544}, {1691, 9306}, {1974, 3080}, {2056, 59232}, {3053, 3167}, {3124, 44082}, {3291, 35264}, {3767, 11206}, {3917, 5206}, {5012, 5034}, {5017, 34986}, {5039, 14153}, {5052, 11402}, {5371, 44104}, {5475, 37649}, {5477, 6515}, {6353, 6388}, {7737, 11427}, {8041, 15515}, {8779, 46432}, {9604, 13345}, {10328, 17130}, {14600, 33581}, {15080, 34945}, {17409, 34397}, {20859, 35268}, {23216, 33728}, {30747, 33796}, {32661, 41619}, {32729, 51819}, {33651, 39141}, {36417, 44077}, {40130, 44108}, {40146, 41272}, {40320, 41615}, {54276, 57206}

X(62194) = isogonal conjugate of the isotomic conjugate of X(3053)
X(62194) = isogonal conjugate of the polar conjugate of X(19118)
X(62194) = X(i)-Ceva conjugate of X(j) for these (i,j): {1974, 32}, {33632, 3053}, {47390, 14574}
X(62194) = X(i)-isoconjugate of X(j) for these (i,j): {75, 2996}, {76, 8769}, {92, 6340}, {304, 34208}, {561, 8770}, {1502, 38252}, {1577, 35136}, {1928, 53059}, {1969, 6391}, {3565, 20948}, {14248, 40364}, {18156, 57857}, {57806, 60839}
X(62194) = X(i)-Dao conjugate of X(j) for these (i,j): {69, 40050}, {206, 2996}, {15261, 57857}, {15525, 44173}, {22391, 6340}, {40368, 8770}, {40369, 53059}, {51579, 1502}
X(62194) = barycentric product X(i)*X(j) for these {i,j}: {3, 19118}, {6, 3053}, {25, 3167}, {31, 1707}, {32, 193}, {39, 33632}, {110, 8651}, {184, 6353}, {249, 47430}, {251, 3787}, {439, 53059}, {560, 18156}, {571, 56891}, {669, 57216}, {1333, 21874}, {1501, 57518}, {1576, 3566}, {1611, 53067}, {1974, 6337}, {1976, 59707}, {2175, 17081}, {2206, 4028}, {2207, 10607}, {3798, 32739}, {5139, 47390}, {6091, 44102}, {6388, 23357}, {10547, 41584}, {14575, 54412}, {14585, 21447}, {14601, 51374}, {17876, 23995}, {21970, 58941}, {32459, 32740}, {32661, 57071}, {41588, 54034}
X(62194) = barycentric quotient X(i)/X(j) for these {i,j}: {32, 2996}, {184, 6340}, {193, 1502}, {560, 8769}, {1501, 8770}, {1576, 35136}, {1707, 561}, {1917, 38252}, {1974, 34208}, {3053, 76}, {3167, 305}, {3566, 44173}, {3787, 8024}, {6337, 40050}, {6353, 18022}, {6388, 23962}, {8651, 850}, {9233, 53059}, {14574, 3565}, {14575, 6391}, {14585, 60839}, {17081, 41283}, {18156, 1928}, {19118, 264}, {21874, 27801}, {27369, 47730}, {33632, 308}, {40373, 40319}, {40981, 27364}, {44162, 14248}, {47430, 338}, {53059, 57857}, {54412, 44161}, {56891, 57904}, {57216, 4609}, {57518, 40362}
X(62194) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {154, 40825, 1196}, {184, 1501, 32}, {1495, 42295, 34481}, {1501, 14567, 184}, {3053, 3167, 3787}, {32729, 61384, 51819}, {44077, 61206, 36417}


X(62195) = X(2)X(36430)∩X(4)X(6)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4 + 4*a^2*b^2 - 5*b^4 + 4*a^2*c^2 + 10*b^2*c^2 - 5*c^4) : :

X(62195) lies on these lines: {2, 36430}, {4, 6}, {30, 61301}, {216, 5056}, {232, 15302}, {297, 21356}, {340, 11160}, {376, 61307}, {472, 49812}, {473, 49813}, {577, 5059}, {1656, 42459}, {1785, 16676}, {2052, 56270}, {3003, 33885}, {3088, 53096}, {3146, 61314}, {3163, 50687}, {3284, 3543}, {3517, 41758}, {3533, 36751}, {3545, 52703}, {3832, 5158}, {3839, 18487}, {3858, 59649}, {5068, 36412}, {5206, 37460}, {5304, 41358}, {6103, 52301}, {6525, 44106}, {7487, 35007}, {7735, 10301}, {7747, 46257}, {8737, 61370}, {8738, 61371}, {8796, 11547}, {8882, 46208}, {9722, 44959}, {10979, 61834}, {11063, 47485}, {11331, 56022}, {15682, 36427}, {15851, 61975}, {15905, 62036}, {20582, 52283}, {22052, 62110}, {34818, 46217}, {36748, 62127}, {38292, 62016}, {43981, 44134}, {45312, 52711}, {46204, 52952}, {47144, 56369}, {48310, 52288}, {52282, 56021}, {52290, 59229}, {52704, 61924}, {52707, 62003}, {59657, 62026}, {61306, 62148}, {61312, 62063}

X(62195) = polar conjugate of the isotomic conjugate of X(3545)
X(62195) = X(255)-isoconjugate of X(60193)
X(62195) = X(6523)-Dao conjugate of X(60193)
X(62195) = barycentric product X(i)*X(j) for these {i,j}: {4, 3545}, {2052, 52703}
X(62195) = barycentric quotient X(i)/X(j) for these {i,j}: {393, 60193}, {3545, 69}, {52703, 394}
X(62195) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 393, 40138}, {4, 1249, 6749}, {4, 40138, 3087}, {36430, 52945, 61315}, {52945, 61315, 2}


X(62196) = X(2)X(36430)∩X(3)X(6)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 8*b^2*c^2 + 4*c^4) : :

X(62196) lies on these lines: {2, 36430}, {3, 6}, {23, 10314}, {53, 3628}, {232, 40916}, {233, 3091}, {381, 52704}, {393, 10303}, {418, 61347}, {441, 48310}, {548, 6749}, {549, 1990}, {632, 42459}, {1249, 61807}, {3087, 50693}, {3090, 36412}, {3163, 3524}, {3523, 61307}, {3525, 61314}, {3549, 12815}, {3815, 10300}, {5054, 18487}, {5159, 47169}, {5702, 15698}, {6641, 44110}, {6643, 31417}, {6748, 15704}, {7492, 10311}, {7496, 22240}, {11062, 49671}, {15526, 21356}, {15692, 61301}, {15717, 40138}, {16328, 37950}, {17849, 50414}, {20477, 58454}, {22165, 40996}, {26880, 32078}, {26907, 44106}, {31626, 56266}, {34828, 51127}, {36422, 36431}, {36427, 61781}, {40065, 62084}, {47383, 52712}, {59649, 61810}, {59657, 61802}

X(62196) = isogonal conjugate of the polar conjugate of X(5055)
X(62196) = barycentric product X(3)*X(5055)
X(62196) = barycentric quotient X(5055)/X(264)
X(62196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52945, 61327}, {2, 61327, 61340}, {3, 216, 5158}, {3, 5158, 577}, {3, 52703, 3284}, {216, 3284, 52703}, {216, 10979, 577}, {216, 36751, 10979}, {574, 3003, 33871}, {3003, 33871, 58265}, {3284, 52703, 5158}, {5158, 10979, 3}, {36430, 61340, 61327}, {52945, 61327, 36430}


X(62197) = X(2)X(6)∩X(14)X(187)

Barycentrics    3*a^4 - 3*a^2*b^2 + 2*b^4 - 3*a^2*c^2 - 4*b^2*c^2 + 2*c^4 + 2*Sqrt[3]*a^2*S : :
X(62197) = 2 X[395] + X[16644]

X(62197) lies on these lines: {2, 6}, {14, 187}, {15, 20426}, {16, 115}, {18, 32}, {50, 30465}, {61, 7749}, {62, 7746}, {381, 43452}, {383, 53442}, {574, 16242}, {617, 53469}, {627, 53452}, {1506, 42489}, {1691, 6114}, {1989, 52039}, {2076, 53443}, {2963, 8604}, {3053, 42153}, {3094, 22714}, {3132, 8553}, {3767, 42149}, {5013, 43239}, {5023, 5339}, {5052, 33479}, {5104, 6109}, {5206, 16964}, {5210, 42154}, {5237, 7748}, {5254, 16773}, {5309, 41944}, {5351, 7756}, {5471, 16268}, {5472, 22998}, {5475, 37835}, {5585, 42626}, {5613, 6782}, {6108, 11646}, {6672, 22689}, {6772, 13084}, {6773, 53430}, {6775, 45880}, {6781, 36970}, {7603, 16967}, {7617, 12155}, {7685, 22512}, {7737, 18581}, {7745, 42599}, {8588, 36967}, {9112, 16530}, {9113, 16961}, {9115, 50858}, {9117, 22496}, {9886, 22574}, {10653, 43620}, {10654, 21843}, {11063, 38432}, {11087, 30453}, {11308, 53463}, {11481, 44465}, {11543, 19781}, {11549, 47275}, {12815, 42992}, {13881, 22238}, {14180, 15546}, {14537, 49908}, {15048, 42121}, {15484, 42129}, {15513, 42157}, {15815, 42491}, {15930, 46343}, {16808, 39601}, {16941, 53455}, {16965, 39565}, {18362, 41100}, {18424, 36969}, {22236, 44535}, {22702, 33478}, {22893, 53458}, {31415, 42910}, {31455, 42937}, {32461, 47142}, {35918, 44532}, {35932, 53447}, {36843, 44518}, {37457, 51891}, {37463, 53431}, {37464, 39560}, {39555, 47860}, {41094, 47859}, {42093, 44463}, {42913, 43291}, {42943, 53419}, {43451, 48655}, {43543, 46453}, {44219, 53499}, {47229, 57122}, {48356, 57622}, {51485, 53435}, {53446, 59379}

X(62197) = crossdifference of every pair of points on line {512, 13350}
X(62197) = barycentric product X(523)*X(14187)
X(62197) = barycentric quotient X(14187)/X(99)
X(62197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16, 22891, 23005}, {230, 395, 6}, {395, 396, 37785}, {590, 615, 302}, {7735, 11489, 61331}, {7735, 61331, 6}, {7736, 61318, 6}, {16268, 41407, 5471}, {23303, 51126, 43028}, {37835, 41406, 5475}


X(62198) = X(2)X(6)∩X(13)X(187)

Barycentrics    3*a^4 - 3*a^2*b^2 + 2*b^4 - 3*a^2*c^2 - 4*b^2*c^2 + 2*c^4 - 2*Sqrt[3]*a^2*S : :
X(62198) = 2 X[396] + X[16645]

X(62198) lies on these lines: {2, 6}, {13, 187}, {15, 115}, {16, 20425}, {17, 32}, {50, 30468}, {61, 7746}, {62, 7749}, {381, 43451}, {574, 16241}, {616, 53458}, {628, 53463}, {1080, 53430}, {1506, 42488}, {1691, 6115}, {1989, 52040}, {2076, 53431}, {2963, 8603}, {3053, 42156}, {3094, 22715}, {3131, 8553}, {3767, 42152}, {5013, 43238}, {5023, 5340}, {5052, 33478}, {5104, 6108}, {5206, 16965}, {5210, 42155}, {5238, 7748}, {5254, 16772}, {5309, 41943}, {5352, 7756}, {5471, 22997}, {5472, 16267}, {5475, 37832}, {5585, 42625}, {5617, 6783}, {6109, 11646}, {6671, 22687}, {6770, 53442}, {6772, 45879}, {6775, 13083}, {6781, 36969}, {7603, 16966}, {7617, 12154}, {7684, 22513}, {7737, 18582}, {7745, 42598}, {8588, 36968}, {9112, 16960}, {9113, 16529}, {9115, 22495}, {9117, 50855}, {9885, 22573}, {10653, 21843}, {10654, 43620}, {11063, 38431}, {11082, 30452}, {11307, 53452}, {11480, 44461}, {11537, 47275}, {11542, 19780}, {12815, 42993}, {13881, 22236}, {14174, 15546}, {14537, 49907}, {15048, 42124}, {15484, 42132}, {15513, 42158}, {15815, 42490}, {15929, 46342}, {16809, 39601}, {16940, 53466}, {16964, 39565}, {18362, 41101}, {18424, 36970}, {22238, 44535}, {22701, 33479}, {22847, 53469}, {31415, 42911}, {31455, 42936}, {32460, 47141}, {35917, 44532}, {35931, 53435}, {36836, 44518}, {37457, 51890}, {37463, 39560}, {37464, 53443}, {39554, 47859}, {41098, 47860}, {42094, 44459}, {42912, 43291}, {42942, 53419}, {43452, 48656}, {43542, 46453}, {47229, 57123}, {48354, 57621}, {51484, 53447}, {53434, 59378}

X(62198) = crossdifference of every pair of points on line {512, 13349}
X(62198) = barycentric product X(523)*X(14185)
X(62198) = barycentric quotient X(14185)/X(99)
X(62198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15, 22846, 23004}, {230, 396, 6}, {395, 396, 37786}, {590, 615, 303}, {7735, 11488, 61332}, {7735, 61332, 6}, {7736, 61317, 6}, {16267, 41406, 5472}, {23302, 51126, 43029}, {37832, 41407, 5475}


X(62199) = X(2)X(6)∩X(14)X(32)

Barycentrics    5*a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - 4*b^2*c^2 + 2*c^4 + 2*Sqrt[3]*a^2*S : :
X(62199) = 2 X[396] + 3 X[49948]

X(62199) lies on these lines: {2, 6}, {3, 43455}, {14, 32}, {16, 5309}, {18, 5007}, {30, 19780}, {39, 16242}, {62, 6774}, {115, 36969}, {187, 36967}, {194, 30472}, {231, 40580}, {383, 59232}, {398, 52689}, {616, 53428}, {1080, 53465}, {1691, 6108}, {1692, 51200}, {1989, 3457}, {2165, 34533}, {2548, 42910}, {3003, 40578}, {3053, 42154}, {3767, 10653}, {5023, 42626}, {5041, 43200}, {5206, 42529}, {5215, 36775}, {5237, 7765}, {5254, 42943}, {5305, 42913}, {5319, 42149}, {5339, 22331}, {5615, 43454}, {5979, 41751}, {6034, 6109}, {6103, 8739}, {6299, 41641}, {6581, 25187}, {6582, 6772}, {6770, 35006}, {6771, 36757}, {7746, 37832}, {7753, 37835}, {9607, 42944}, {9698, 42937}, {10613, 21156}, {10654, 19781}, {11063, 34008}, {11300, 53440}, {11648, 36968}, {14136, 59403}, {14537, 16809}, {16808, 18362}, {16964, 35007}, {19106, 39563}, {22332, 42491}, {22511, 36759}, {22847, 53429}, {32553, 41745}, {33420, 51754}, {34394, 61370}, {36970, 41408}, {36978, 61675}, {39554, 46855}, {39663, 41039}, {41108, 41409}, {43291, 43416}, {43401, 53419}, {43482, 46453}, {54489, 54589}, {54850, 54939}

X(62199) = complement of the isotomic conjugate of X(54484)
X(62199) = X(54484)-complementary conjugate of X(2887)
X(62199) = crossdifference of every pair of points on line {512, 36756}
X(62199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 61318, 6}, {62, 22510, 20425}, {395, 396, 298}, {395, 5306, 6}, {3068, 3069, 40900}, {5304, 61331, 6}, {7735, 37641, 61317}, {37641, 61317, 6}


X(62200) = X(2)X(6)∩X(13)X(32)

Barycentrics    5*a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - 4*b^2*c^2 + 2*c^4 - 2*Sqrt[3]*a^2*S : :
X(62200) = 2 X[395] + 3 X[49947]

X(62200) lies on these lines: {2, 6}, {3, 43454}, {13, 32}, {15, 5309}, {17, 5007}, {30, 19781}, {39, 16241}, {61, 6771}, {115, 36970}, {187, 36968}, {194, 30471}, {231, 40581}, {383, 53454}, {397, 52688}, {617, 53440}, {1080, 59232}, {1691, 6109}, {1692, 51203}, {1989, 3458}, {2165, 34534}, {2548, 42911}, {3003, 40579}, {3053, 42155}, {3767, 10654}, {5023, 42625}, {5041, 43199}, {5206, 42528}, {5238, 7765}, {5254, 42942}, {5305, 42912}, {5319, 42152}, {5340, 22331}, {5611, 43455}, {5978, 41753}, {6034, 6108}, {6103, 8740}, {6294, 25183}, {6295, 6775}, {6298, 41631}, {6773, 35006}, {6774, 36758}, {7746, 37835}, {7753, 37832}, {9607, 42945}, {9698, 42936}, {10614, 21157}, {10653, 19780}, {11063, 34009}, {11299, 53428}, {11648, 36967}, {14137, 59404}, {14537, 16808}, {16530, 36763}, {16809, 18362}, {16965, 35007}, {19107, 39563}, {22332, 42490}, {22510, 36760}, {22893, 53441}, {32552, 41746}, {33421, 51753}, {34395, 61371}, {36969, 41409}, {36980, 61675}, {39555, 46854}, {39663, 41038}, {41107, 41408}, {43291, 43417}, {43402, 53419}, {43481, 46453}, {54490, 54590}, {54849, 54940}

X(62200) = complement of the isotomic conjugate of X(54485)
X(62200) = X(54485)-complementary conjugate of X(2887)
X(62200) = crossdifference of every pair of points on line {512, 36755}
X(62200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 61317, 6}, {61, 22511, 20426}, {395, 396, 299}, {396, 5306, 6}, {3068, 3069, 40901}, {5304, 61332, 6}, {7735, 37640, 61318}, {37640, 61318, 6}


X(62201) = X(2)X(6)∩X(3)X(49220)

Barycentrics    3*a^6 - a^4*b^2 + a^2*b^4 + b^6 - a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6 - 8*S^3 : :

X(62201) lies on these lines:: {2, 6}, {3, 49220}, {4, 12963}, {5, 6424}, {32, 485}, {39, 5418}, {53, 52291}, {115, 6561}, {140, 6421}, {172, 31472}, {187, 6560}, {216, 24245}, {371, 3767}, {486, 5058}, {487, 53480}, {494, 55878}, {640, 13921}, {1151, 5254}, {1196, 18289}, {1328, 18362}, {1384, 13665}, {1504, 7755}, {1505, 5420}, {1587, 12968}, {1609, 3155}, {1691, 6811}, {1692, 45554}, {1914, 44623}, {2165, 6413}, {2548, 10576}, {2549, 6200}, {3053, 3070}, {3071, 12257}, {3128, 6748}, {3148, 44192}, {3311, 49221}, {3534, 49262}, {4386, 31484}, {5007, 31481}, {5023, 42259}, {5206, 42261}, {5286, 9540}, {5305, 6422}, {5319, 31465}, {5475, 42277}, {6119, 45575}, {6396, 21843}, {6423, 7583}, {6564, 7737}, {6565, 43620}, {6776, 53498}, {6781, 42276}, {7388, 44586}, {7745, 42265}, {7747, 42269}, {7748, 42260}, {7753, 42602}, {7765, 9674}, {8375, 42215}, {8573, 8970}, {8754, 41516}, {8960, 31411}, {8976, 30435}, {8992, 13357}, {9541, 43448}, {9600, 15048}, {9602, 41945}, {9646, 54416}, {9661, 16502}, {9722, 26945}, {9738, 39661}, {9892, 11157}, {10577, 45514}, {11292, 53479}, {11648, 53130}, {12969, 13935}, {13654, 49264}, {13749, 14244}, {13884, 16318}, {13901, 31459}, {13951, 44648}, {18538, 18907}, {19438, 32494}, {21309, 45384}, {22331, 53513}, {23267, 46453}, {24246, 35067}, {31401, 45513}, {31448, 31499}, {33343, 49215}, {35822, 41411}, {37446, 45406}, {39565, 42268}, {39660, 43120}, {40947, 44193}, {42258, 44518}, {42263, 53419}, {42274, 61389}, {44534, 49212}, {45511, 53475}, {53512, 58803}

X(62201) = complement of the isotomic conjugate of X(14244)
X(62201) = X(14244)-complementary conjugate of X(2887)
X(62201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44596, 6}, {6, 590, 31463}, {6, 8253, 3815}, {6, 37637, 615}, {69, 3068, 44394}, {115, 9675, 6561}, {395, 396, 1991}, {590, 615, 45473}, {591, 13663, 44393}, {615, 44394, 69}, {1505, 7749, 5420}, {3068, 7735, 6}, {5058, 7746, 486}, {5304, 8972, 31403}, {5304, 31403, 6}, {5305, 8981, 6422}, {5319, 35812, 31465}, {5420, 19105, 1505}, {6561, 13711, 115}, {6564, 41410, 7737}, {7585, 37689, 44595}, {7585, 44595, 6}, {15048, 35255, 9600}, {44594, 61322, 6}


X(62202) = X(2)X(6)∩X(3)X(49221)

Barycentrics    3*a^6 - a^4*b^2 + a^2*b^4 + b^6 - a^4*c^2 - 6*a^2*b^2*c^2 - b^4*c^2 + a^2*c^4 - b^2*c^4 + c^6 + 8*S^3 : :

X(62202) lies on these lines:: {2, 6}, {3, 49221}, {4, 12968}, {5, 6423}, {32, 486}, {39, 5420}, {53, 5200}, {115, 6560}, {140, 6422}, {172, 44622}, {187, 6561}, {216, 24246}, {372, 3767}, {485, 5062}, {488, 53479}, {493, 55865}, {549, 9600}, {639, 13880}, {1152, 5254}, {1196, 18290}, {1327, 18362}, {1384, 13785}, {1504, 5418}, {1505, 7755}, {1588, 12963}, {1609, 3156}, {1691, 6813}, {1692, 45555}, {1914, 44624}, {2165, 6414}, {2548, 10577}, {2549, 6396}, {3053, 3071}, {3070, 12256}, {3127, 6748}, {3148, 44193}, {3312, 49220}, {3526, 31465}, {3534, 49261}, {4999, 31464}, {5023, 42258}, {5206, 42260}, {5286, 13935}, {5305, 6421}, {5319, 35813}, {5432, 31459}, {5475, 42274}, {6118, 45574}, {6200, 21843}, {6424, 7584}, {6564, 43620}, {6565, 7737}, {6776, 53497}, {6781, 42275}, {7389, 44587}, {7745, 42262}, {7747, 42268}, {7748, 42261}, {7753, 42603}, {8376, 42216}, {8573, 13943}, {8754, 41515}, {8976, 44647}, {9540, 12962}, {9722, 26873}, {9739, 39660}, {9894, 11158}, {10576, 31411}, {11291, 53480}, {11648, 53131}, {13357, 13983}, {13748, 14229}, {13774, 49265}, {13937, 16318}, {13951, 30435}, {15048, 35256}, {18762, 18907}, {19439, 32497}, {21309, 45385}, {22331, 53516}, {23273, 46453}, {24245, 35067}, {31401, 45512}, {33342, 49214}, {35823, 41410}, {37446, 45407}, {39565, 42269}, {39661, 43121}, {40947, 44192}, {42259, 44518}, {42264, 53419}, {42277, 61388}, {44534, 49213}, {45510, 53475}, {53515, 58804}

X(62202) = complement of the isotomic conjugate of X(14229)
X(62202) = X(14229)-complementary conjugate of X(2887)
X(62202) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 31463}, {2, 44595, 6}, {2, 61322, 31403}, {6, 8252, 3815}, {6, 37637, 590}, {69, 3069, 44392}, {395, 396, 591}, {590, 615, 45472}, {590, 44392, 69}, {1504, 7749, 5418}, {1991, 13783, 44400}, {3069, 7735, 6}, {5062, 7746, 485}, {5305, 13966, 6421}, {5418, 19102, 1504}, {6560, 13834, 115}, {6565, 41411, 7737}, {7586, 37689, 44596}, {7586, 44596, 6}, {10576, 45515, 31411}, {31403, 44595, 61322}, {31403, 61322, 6}, {44597, 61323, 6}


X(62203) = X(4)X(32)∩X(30)X(574)

Barycentrics    3*a^4 - 2*b^4 + 4*b^2*c^2 - 2*c^4 : :
X(62203) = 3 X[574] - 4 X[3815], X[574] - 4 X[53418], 2 X[3815] - 3 X[5475], X[3815] - 3 X[53418], X[183] - 3 X[11317], X[7774] + 3 X[52942], 3 X[3363] - 2 X[58446], X[14907] - 3 X[33016]

X(62203) lies on these lines:: {2, 6781}, {3, 7603}, {4, 32}, {5, 5206}, {6, 3830}, {20, 1506}, {23, 6032}, {25, 15820}, {30, 574}, {39, 382}, {50, 61327}, {53, 46257}, {69, 44678}, {76, 14042}, {83, 7872}, {99, 7775}, {148, 7798}, {172, 18514}, {182, 53504}, {183, 3849}, {187, 381}, {230, 3845}, {232, 35480}, {262, 54482}, {315, 14068}, {316, 3314}, {376, 31415}, {378, 9699}, {384, 7825}, {385, 18546}, {428, 34481}, {543, 7774}, {546, 7746}, {550, 31455}, {571, 9220}, {576, 6321}, {598, 3329}, {620, 33007}, {625, 1003}, {626, 14035}, {671, 7766}, {754, 11185}, {1007, 2482}, {1015, 12943}, {1078, 33018}, {1196, 33880}, {1384, 14269}, {1500, 12953}, {1504, 35821}, {1505, 35820}, {1539, 14901}, {1569, 10723}, {1648, 34417}, {1656, 15513}, {1657, 37512}, {1692, 53023}, {1870, 9636}, {1914, 18513}, {1975, 7843}, {1995, 39602}, {2021, 22682}, {2079, 7545}, {2241, 3585}, {2242, 3583}, {2548, 3146}, {2549, 3543}, {3018, 36430}, {3053, 3843}, {3054, 5066}, {3055, 8703}, {3091, 7749}, {3094, 48904}, {3095, 38733}, {3180, 35693}, {3181, 35697}, {3199, 12173}, {3363, 58446}, {3529, 31401}, {3534, 8589}, {3545, 21843}, {3552, 7862}, {3627, 7745}, {3788, 19687}, {3818, 15993}, {3839, 43620}, {3851, 5023}, {3853, 5254}, {3854, 12815}, {3972, 7844}, {4045, 33017}, {4302, 31476}, {5007, 5076}, {5008, 38335}, {5013, 5073}, {5017, 48889}, {5024, 15684}, {5028, 48901}, {5033, 19130}, {5034, 29012}, {5041, 62016}, {5052, 36990}, {5054, 18584}, {5055, 5210}, {5058, 23251}, {5059, 31404}, {5062, 23261}, {5063, 18325}, {5072, 44535}, {5104, 11178}, {5107, 54131}, {5116, 48896}, {5158, 18323}, {5162, 13449}, {5198, 44527}, {5286, 50688}, {5304, 62007}, {5305, 12102}, {5306, 12101}, {5309, 15687}, {5346, 62006}, {5355, 14075}, {5471, 10653}, {5472, 10654}, {5476, 53499}, {5477, 20423}, {5480, 39764}, {5585, 15694}, {5987, 52189}, {6128, 58265}, {6284, 9650}, {6292, 32971}, {6564, 9675}, {6655, 7808}, {6658, 7752}, {6680, 14063}, {6683, 33234}, {6722, 33006}, {6748, 46432}, {6759, 9697}, {7354, 9665}, {7391, 59768}, {7615, 37667}, {7617, 17004}, {7622, 9855}, {7736, 15682}, {7738, 62028}, {7739, 62017}, {7751, 7823}, {7758, 32826}, {7759, 32819}, {7761, 8370}, {7763, 33280}, {7765, 17578}, {7769, 33257}, {7770, 7842}, {7771, 33013}, {7773, 7816}, {7778, 11159}, {7781, 7785}, {7782, 19696}, {7786, 33256}, {7787, 7902}, {7792, 8352}, {7793, 15031}, {7794, 32006}, {7800, 32979}, {7802, 7815}, {7803, 33279}, {7804, 7841}, {7809, 7908}, {7813, 32815}, {7820, 14033}, {7828, 14062}, {7830, 16924}, {7832, 14034}, {7833, 15482}, {7834, 33229}, {7835, 19686}, {7853, 11286}, {7857, 32993}, {7860, 7896}, {7863, 32816}, {7865, 7898}, {7869, 7885}, {7889, 32974}, {7900, 7916}, {7911, 7914}, {7924, 60855}, {7925, 48913}, {7942, 14045}, {8176, 8598}, {8354, 15491}, {8722, 37348}, {8981, 9685}, {9112, 16964}, {9113, 16965}, {9115, 22491}, {9117, 22492}, {9300, 33699}, {9541, 9684}, {9602, 45384}, {9605, 62023}, {9606, 62038}, {9674, 42266}, {9696, 13352}, {9698, 33703}, {9737, 38730}, {9770, 15300}, {9831, 53950}, {10254, 18429}, {10296, 22240}, {10733, 46301}, {11163, 32479}, {11173, 47353}, {11184, 50280}, {11288, 31275}, {11614, 15703}, {11742, 15602}, {12963, 35786}, {12968, 35787}, {13102, 51206}, {13103, 51207}, {13330, 38744}, {13881, 35007}, {14160, 47113}, {14458, 54903}, {14482, 62021}, {14492, 54805}, {14614, 32457}, {14711, 40341}, {14848, 53845}, {14893, 43291}, {14907, 33016}, {14930, 62018}, {14971, 37809}, {15338, 31501}, {15603, 61925}, {15655, 19709}, {15681, 53095}, {15815, 17800}, {16946, 53421}, {18494, 33842}, {18500, 44530}, {19220, 44288}, {20425, 23013}, {20426, 23006}, {21309, 35403}, {22253, 41750}, {22331, 61991}, {22332, 62035}, {22693, 36994}, {22694, 36992}, {22796, 43452}, {22797, 43451}, {23334, 37668}, {28150, 31398}, {28154, 31443}, {29323, 50659}, {30435, 62008}, {30747, 31132}, {31274, 32985}, {31400, 49135}, {31406, 62041}, {31417, 49138}, {31450, 50692}, {31457, 62155}, {31463, 42275}, {31467, 49137}, {31481, 42258}, {31492, 62170}, {31652, 44519}, {32445, 34786}, {33002, 43459}, {33267, 53107}, {33843, 44438}, {34229, 47102}, {34506, 53127}, {34733, 43453}, {36412, 46262}, {37688, 47101}, {37689, 61989}, {37924, 44521}, {39554, 41098}, {39555, 41094}, {40246, 52691}, {41745, 51483}, {41746, 51482}, {41748, 47286}, {42085, 61332}, {42086, 61331}, {42160, 61319}, {42161, 61320}, {46305, 52854}, {46453, 61980}, {48898, 53484}, {51993, 56395}, {52666, 61328}, {52667, 61329}

X(62203) = reflection of X(i) in X(j) for these {i,j}: {574, 5475}, {5475, 53418}, {8722, 37348}, {17131, 11185}
X(62203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6781, 8588}, {2, 43618, 6781}, {4, 7737, 115}, {4, 7747, 32}, {4, 10788, 14639}, {20, 1506, 15515}, {83, 33019, 7872}, {115, 7737, 32}, {115, 7747, 7737}, {148, 7812, 7798}, {187, 39601, 37637}, {230, 3845, 18424}, {230, 18424, 18362}, {316, 3734, 7818}, {316, 11361, 3734}, {381, 37637, 39601}, {382, 15484, 44526}, {384, 7825, 7867}, {1975, 7843, 7903}, {2548, 3146, 7756}, {2548, 7756, 53096}, {3053, 3843, 39565}, {3534, 31489, 8589}, {3627, 7745, 7748}, {3767, 7737, 1285}, {3830, 14537, 11648}, {3972, 14041, 7844}, {6781, 43457, 2}, {7736, 15682, 43619}, {7745, 7748, 7772}, {7770, 7842, 7935}, {7773, 7816, 7888}, {7802, 16044, 7815}, {7804, 7841, 7913}, {7860, 17128, 7896}, {15484, 44526, 39}, {15687, 18907, 53419}, {18907, 53419, 5309}, {43457, 43618, 8588}, {47859, 47860, 576}


X(62204) = X(2)X(6)∩X(32)X(671)

Barycentrics    8*a^4 + a^2*b^2 + 2*b^4 + a^2*c^2 - 5*b^2*c^2 + 2*c^4 : :
X(62204) = 4 X[7806] - X[7897]

X(62204) lies on these lines:: {2, 6}, {32, 671}, {98, 54737}, {187, 32480}, {194, 2482}, {381, 22521}, {598, 5008}, {1285, 52942}, {1383, 18818}, {1384, 9855}, {2408, 46001}, {2452, 37907}, {3552, 8591}, {3767, 34604}, {5007, 33002}, {5305, 7833}, {5309, 10631}, {5319, 33004}, {5346, 7793}, {5355, 52691}, {5368, 34506}, {5461, 7755}, {6179, 7817}, {6784, 11002}, {7607, 22330}, {7617, 33689}, {7668, 31857}, {7737, 41135}, {7753, 32994}, {7757, 11149}, {7798, 41134}, {7805, 7870}, {7810, 7856}, {7857, 22247}, {7883, 7932}, {7893, 8360}, {7900, 11318}, {7920, 8359}, {8369, 20081}, {8587, 13330}, {8596, 33007}, {9214, 14002}, {9465, 51541}, {9753, 11177}, {10486, 11482}, {10788, 11632}, {11172, 60105}, {11285, 51588}, {11317, 21309}, {12156, 18362}, {14036, 59780}, {15520, 58831}, {16092, 60695}, {16509, 53489}, {16924, 18842}, {17129, 33237}, {19661, 47286}, {20088, 33006}, {23234, 51140}, {30435, 33013}, {33001, 55794}, {33683, 33687}, {33706, 43147}, {40246, 43448}, {42535, 54487}, {43454, 51485}, {43455, 51484}, {43535, 54901}, {47586, 60113}, {54964, 61822}

X(62204) = reflection of X(i) in X(j) for these {i,j}: {2, 7806}, {7897, 2}
X(62204) = barycentric product X(i)*X(j) for these {i,j}: {598, 33683}, {33687, 60177}
X(62204) = barycentric quotient X(33683)/X(599)
X(62204) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 41136}, {6, 8859, 2}, {3329, 7610, 2}, {5032, 37689, 2}, {6179, 7817, 9939}, {7817, 9939, 7933}, {8591, 37809, 3552}, {17008, 59373, 2}


X(62205) = X(3)X(6)∩X(115)X(615)

Barycentrics    a^2*(a^2 - 2*b^2 - 2*c^2 + 2*S) : :

X(62205) lies on these lines:: {2, 60195}, {3, 6}, {115, 615}, {230, 35256}, {485, 31455}, {486, 7748}, {492, 7761}, {494, 5406}, {641, 32490}, {1015, 5414}, {1124, 31451}, {1377, 31456}, {1500, 6502}, {1506, 3070}, {1569, 49213}, {1571, 18992}, {1587, 31401}, {1588, 45525}, {1702, 31422}, {1703, 9619}, {2548, 6460}, {2549, 3069}, {3055, 18538}, {3071, 7756}, {3199, 11474}, {3269, 21641}, {3767, 13935}, {3785, 6463}, {3815, 42216}, {3917, 32575}, {5254, 13966}, {5413, 33843}, {5420, 7746}, {5475, 6560}, {6561, 13770}, {6564, 7603}, {6781, 61329}, {7586, 26617}, {7735, 43510}, {7739, 44595}, {7747, 42259}, {7749, 49220}, {7753, 41946}, {7755, 41964}, {7765, 49221}, {7853, 45472}, {8703, 61338}, {9300, 52048}, {9541, 44597}, {9597, 13963}, {9598, 13962}, {9651, 44622}, {9664, 44624}, {10577, 39565}, {10820, 14901}, {11648, 13847}, {13665, 31489}, {13785, 44526}, {13941, 43448}, {13951, 44518}, {14930, 61309}, {16041, 32805}, {18424, 42274}, {18762, 48772}, {18995, 31448}, {19003, 31421}, {19103, 31465}, {19356, 39913}, {21843, 44596}, {22725, 44531}, {23249, 31415}, {23259, 43619}, {31400, 31411}, {31449, 31482}, {31450, 31483}, {31472, 31501}, {32152, 49355}, {32786, 43620}, {35820, 39590}, {41437, 41444}, {42226, 53418}, {42258, 44648}, {42283, 48466}, {42284, 43457}, {43210, 49263}, {45421, 47101}, {46301, 49217}, {49208, 52215}, {49210, 52216}

X(62205) = isogonal conjugate of X(54503)
X(62205) = Brocard-circle-inverse of X(9675)
X(62205) = Schoutte-circle-inverse of X(43121)
X(62205) = X(1)-isoconjugate of X(54503)
X(62205) = X(3)-Dao conjugate of X(54503)
X(62205) = barycentric quotient X(6)/X(54503)
X(62205) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6, 9675}, {3, 1505, 5058}, {3, 35841, 6567}, {6, 6396, 187}, {6, 6411, 8375}, {6, 6438, 8376}, {6, 9675, 5058}, {6, 41411, 5008}, {6, 53095, 6221}, {15, 16, 43121}, {39, 372, 5062}, {372, 45565, 182}, {372, 45578, 6566}, {1152, 6421, 32}, {1505, 9675, 6}, {1587, 31401, 31481}, {3311, 15815, 9674}, {3312, 5013, 1504}, {5024, 6395, 6}, {6410, 6424, 5206}, {6438, 6443, 6}, {6454, 45513, 12968}, {9739, 9995, 39}, {12968, 45513, 5007}, {18995, 31448, 31471}, {19003, 31421, 31437}


X(62206) = X(3)X(6)∩X(115)X(590)

Barycentrics    a^2*(a^2 - 2*b^2 - 2*c^2 - 2*S) : :

X(62206) lies on these lines:: {1, 31437}, {3, 6}, {4, 31481}, {20, 31411}, {56, 31471}, {115, 590}, {230, 35255}, {485, 7748}, {486, 31455}, {491, 7761}, {493, 5407}, {642, 32491}, {1015, 2066}, {1335, 31451}, {1376, 31482}, {1378, 31456}, {1500, 2067}, {1506, 3071}, {1569, 49212}, {1571, 18991}, {1572, 9616}, {1574, 31453}, {1587, 45524}, {1588, 31401}, {1702, 9619}, {1703, 31422}, {2242, 31459}, {2548, 6459}, {2549, 3068}, {3055, 18762}, {3070, 7756}, {3199, 11473}, {3269, 21640}, {3767, 9540}, {3785, 6462}, {3815, 42215}, {3917, 32568}, {5254, 8981}, {5304, 9542}, {5412, 33843}, {5418, 7746}, {5475, 6561}, {6560, 13651}, {6565, 7603}, {6781, 61328}, {7585, 26618}, {7735, 43509}, {7737, 9541}, {7739, 44596}, {7747, 42258}, {7749, 49221}, {7753, 41945}, {7755, 41963}, {7765, 31454}, {7853, 45473}, {8703, 61337}, {8962, 55566}, {8972, 43448}, {8976, 44518}, {9300, 52047}, {9583, 9620}, {9597, 13905}, {9598, 13904}, {9651, 31472}, {9664, 44623}, {9679, 31464}, {9681, 31465}, {10576, 39565}, {10819, 14901}, {11648, 13846}, {13665, 44526}, {13785, 31489}, {14930, 61308}, {16041, 32806}, {18424, 42277}, {18538, 48773}, {18996, 31448}, {19004, 31421}, {19355, 39913}, {21843, 44595}, {22724, 44531}, {23249, 43619}, {23259, 31415}, {31501, 44622}, {32152, 49356}, {32785, 43620}, {35821, 39590}, {41438, 41445}, {42225, 53418}, {42259, 44647}, {42283, 43457}, {42284, 48467}, {43209, 49260}, {45420, 47101}, {46301, 49216}, {49209, 52214}, {49211, 52217}

X(62206) = isogonal conjugate of X(54507)
X(62206) = Schoutte-circle-inverse of X(43120)
X(62206) = X(1)-isoconjugate of X(54507)
X(62206) = X(3)-Dao conjugate of X(54507)
X(62206) = barycentric quotient X(6)/X(54507)
X(62206) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1504, 5062}, {3, 35840, 6566}, {6, 6200, 187}, {6, 6221, 9675}, {6, 6412, 8376}, {6, 6437, 8375}, {6, 9600, 574}, {6, 41410, 5008}, {6, 53095, 6398}, {15, 16, 43120}, {39, 371, 5058}, {371, 45564, 182}, {371, 45579, 6567}, {1151, 6422, 32}, {1504, 9674, 3}, {3053, 9601, 6449}, {3311, 5013, 1505}, {5024, 6199, 6}, {6409, 6423, 5206}, {6437, 6444, 6}, {6453, 45512, 12963}, {6561, 31463, 5475}, {9541, 31403, 7737}, {9583, 31427, 9620}, {9738, 9994, 39}, {12963, 45512, 5007}


X(62207) = X(1)X(7285)∩X(6)X(57)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(3*a^2 - 3*b^2 - 2*b*c - 3*c^2) : :
Barycentrics    1 + (2 - 3*Cos[A])*Cos[A] : : (so that X(62207) is a major center

X(62207) lies on these lines:: {1, 7285}, {6, 57}, {9, 23140}, {41, 7099}, {56, 2308}, {63, 37672}, {73, 4252}, {77, 4641}, {81, 6180}, {154, 26892}, {212, 50677}, {220, 394}, {221, 2099}, {278, 17365}, {323, 55466}, {524, 56367}, {559, 54437}, {581, 23072}, {597, 56460}, {599, 56366}, {603, 4255}, {651, 940}, {991, 22117}, {1046, 15832}, {1082, 54438}, {1191, 1319}, {1350, 3955}, {1413, 19349}, {1422, 3553}, {1473, 17809}, {1943, 4363}, {1993, 22129}, {1994, 55437}, {2174, 7125}, {2256, 3173}, {2261, 61671}, {2286, 51653}, {3157, 24929}, {3284, 7011}, {3305, 17811}, {3784, 5085}, {3937, 11402}, {3982, 37543}, {4383, 17074}, {4644, 6354}, {4663, 60786}, {4722, 41712}, {5122, 36745}, {5228, 37685}, {5285, 53097}, {5311, 60909}, {5711, 51782}, {6611, 21748}, {7050, 7281}, {7078, 30282}, {8545, 37595}, {8550, 26929}, {11477, 37581}, {13366, 26866}, {13462, 16466}, {15066, 55438}, {15934, 23070}, {17077, 19723}, {17625, 38315}, {17810, 26884}, {17825, 54444}, {18421, 34043}, {20182, 23144}, {21358, 56453}, {22161, 37474}, {23292, 26871}, {25417, 34056}, {26125, 42028}, {26942, 40341}, {28387, 55323}, {34028, 60975}, {34048, 37674}, {36748, 53819}, {37498, 37584}, {37504, 40152}, {40138, 55110}, {42314, 55086}, {44098, 45963}, {47352, 56444}, {50068, 60936}, {51780, 55432}, {54358, 60953}, {54366, 61661}

X(62207) = X(i)-isoconjugate of X(j) for these (i,j): {9, 5556}, {3692, 10977}
X(62207) = X(i)-Dao conjugate of X(j) for these (i,j): {478, 5556}, {1449, 4673}
X(62207) = crossdifference of every pair of points on line {2520, 3900}
X(62207) = barycentric product X(i)*X(j) for these {i,j}: {7, 5217}, {56, 32099}, {57, 3929}, {1014, 4005}, {1398, 10978}
X(62207) = barycentric quotient X(i)/X(j) for these {i,j}: {56, 5556}, {1398, 10977}, {3929, 312}, {4005, 3701}, {5217, 8}, {32099, 3596}, {51576, 4673}
X(62207) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 222, 1407}, {222, 2003, 6}, {394, 55406, 220}, {1993, 22129, 55405}, {4644, 18623, 6354}, {22128, 55400, 17811}


X(62208) = X(1)X(4208)∩X(2)X(37)

Barycentrics    3*a^3 + a^2*b + a*b^2 + 3*b^3 + a^2*c - 2*a*b*c - 3*b^2*c + a*c^2 - 3*b*c^2 + 3*c^3 : :

X(62208) lies on these lines:: {1, 4208}, {2, 37}, {7, 23681}, {8, 25527}, {20, 23537}, {57, 40968}, {63, 4346}, {144, 3782}, {145, 18134}, {171, 7613}, {223, 38459}, {226, 5222}, {239, 26132}, {269, 18624}, {273, 18678}, {278, 279}, {329, 26723}, {387, 11036}, {390, 3914}, {391, 27184}, {612, 40333}, {614, 3100}, {986, 18231}, {1086, 21454}, {1104, 3146}, {1201, 18220}, {1266, 56519}, {1449, 41825}, {1612, 37105}, {1714, 54398}, {1722, 8165}, {1999, 4869}, {2006, 44794}, {2082, 28039}, {2550, 17061}, {2999, 5226}, {3008, 18228}, {3011, 5281}, {3600, 23536}, {3619, 55095}, {3662, 37655}, {3663, 5273}, {3687, 4402}, {3755, 10578}, {3925, 39587}, {3936, 20043}, {3945, 5249}, {3946, 25525}, {4307, 17889}, {4310, 33137}, {4373, 32939}, {4415, 37650}, {4429, 7172}, {4454, 26065}, {4514, 39567}, {4641, 20059}, {4656, 18230}, {4859, 39595}, {4862, 28610}, {5177, 5262}, {5232, 5271}, {5261, 54418}, {5269, 59412}, {5286, 49758}, {5308, 41867}, {5328, 23511}, {5435, 22464}, {5437, 17067}, {5686, 33143}, {5712, 17014}, {5716, 37161}, {6354, 60939}, {7269, 54369}, {7290, 9812}, {7322, 9780}, {7378, 54293}, {7520, 19850}, {8055, 31189}, {8732, 57477}, {9965, 24597}, {10478, 17761}, {10888, 45100}, {11038, 33128}, {11106, 50065}, {11433, 23982}, {14552, 17184}, {14555, 24599}, {14986, 24781}, {16020, 24210}, {16487, 51783}, {16583, 27541}, {16749, 31623}, {16845, 50067}, {17022, 60996}, {17151, 20106}, {17352, 56084}, {17589, 25507}, {17602, 26040}, {17784, 26228}, {21907, 56050}, {24310, 27624}, {27540, 41785}, {28388, 54373}, {29621, 34064}, {30712, 42028}, {31045, 53417}, {32926, 39570}, {33132, 33144}, {37539, 56999}, {37680, 55466}, {50069, 50727}

X(62208) = X(i)-complementary conjugate of X(j) for these (i,j): {604, 51576}, {5556, 21244}, {10977, 20305}
X(62208) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4452, 345}, {2, 4461, 32777}, {2, 19785, 3672}, {2, 19824, 17147}, {2, 30699, 346}, {7, 40940, 37666}, {329, 26723, 37681}, {345, 19796, 4452}, {387, 24159, 11036}, {1086, 37642, 21454}, {3772, 4000, 2}, {19785, 33129, 2}, {19830, 33116, 50101}, {23681, 40940, 7}, {24597, 33146, 9965}, {26228, 33131, 17784}, {33137, 33147, 4310}


X(62209) = X(2)X(21850)∩X(3)X(373)

Barycentrics    a^2*(a^4 + 4*a^2*b^2 - 5*b^4 + 4*a^2*c^2 + 22*b^2*c^2 - 5*c^4) : :

X(62209) lies on these lines:: {2, 21850}, {3, 373}, {5, 37643}, {6, 1196}, {22, 55678}, {25, 10545}, {51, 44456}, {110, 30734}, {125, 3851}, {154, 50664}, {182, 41424}, {184, 5644}, {323, 9777}, {381, 1514}, {382, 54012}, {394, 21971}, {399, 41670}, {549, 58764}, {1351, 5640}, {1495, 10601}, {1511, 6642}, {1568, 5055}, {1593, 43584}, {1597, 14845}, {1656, 45089}, {1995, 5050}, {3098, 6688}, {3124, 9605}, {3517, 37513}, {3526, 32269}, {3618, 44212}, {3620, 41588}, {3819, 55582}, {3850, 13093}, {4223, 14997}, {4232, 38110}, {5024, 11328}, {5054, 20192}, {5070, 44300}, {5072, 45303}, {5092, 9909}, {5093, 5651}, {5198, 15028}, {5422, 8780}, {5462, 11484}, {5476, 59767}, {5643, 6800}, {5646, 12045}, {5650, 55584}, {5892, 18535}, {6090, 11004}, {7387, 32205}, {7392, 18358}, {7398, 39874}, {7484, 15107}, {7485, 48912}, {7496, 55643}, {7693, 31133}, {7998, 55580}, {9140, 50957}, {9463, 21448}, {9544, 52719}, {10128, 11433}, {10219, 55594}, {10300, 51538}, {10541, 32237}, {10983, 37338}, {11002, 55724}, {11414, 11465}, {11432, 15026}, {11438, 11479}, {11456, 15024}, {11477, 16187}, {11695, 39568}, {11820, 40280}, {11898, 35283}, {12006, 12315}, {12085, 18874}, {12160, 54434}, {14389, 47597}, {14848, 37645}, {14924, 55606}, {15037, 19347}, {15082, 53097}, {15703, 32225}, {16051, 38136}, {16836, 33534}, {17809, 55712}, {17811, 37517}, {18551, 61950}, {18583, 40132}, {20850, 43650}, {21309, 22111}, {21513, 30435}, {21766, 55595}, {23411, 34780}, {25514, 37680}, {25555, 61680}, {32216, 50963}, {32223, 47355}, {33586, 55604}, {35259, 44109}, {35260, 51732}, {35268, 55692}, {35501, 58871}, {37644, 50955}, {37672, 55715}, {40916, 55629}, {41462, 55610}, {43845, 56516}, {44569, 61920}, {52454, 56629}, {54013, 61657}

X(62209) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 373, 5544}, {373, 3066, 3}, {1495, 10601, 55705}, {1995, 15018, 26864}, {3098, 6688, 59777}, {3098, 59777, 16419}, {5092, 31860, 9909}, {5462, 11484, 12164}, {5640, 11284, 1351}, {6688, 17810, 16419}, {7484, 15107, 55639}, {12045, 52987, 5646}, {15018, 26864, 5050}, {17810, 59777, 3098}, {17825, 31860, 5092}


X(62210) = X(1)X(6)∩X(50)X(172)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*b*c - 2*a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(62210) lies on these lines:: {1, 6}, {35, 11063}, {36, 50660}, {41, 7297}, {42, 1989}, {48, 5356}, {50, 172}, {65, 19297}, {71, 46823}, {78, 61321}, {230, 5297}, {386, 50558}, {517, 54409}, {566, 2276}, {594, 4420}, {597, 26639}, {936, 61313}, {1030, 3579}, {1062, 52703}, {1442, 7277}, {1443, 17365}, {1482, 37503}, {1500, 3003}, {1870, 6749}, {1914, 13338}, {1953, 7300}, {1990, 6198}, {2093, 20997}, {2171, 2173}, {2178, 5221}, {2241, 33872}, {2242, 5063}, {2275, 13337}, {2278, 35459}, {2341, 4273}, {3083, 13847}, {3084, 13846}, {3196, 50194}, {3240, 17737}, {3284, 18447}, {3763, 55391}, {3811, 50087}, {3815, 7292}, {3920, 5306}, {3943, 34772}, {4251, 17444}, {4254, 8148}, {4285, 15955}, {4511, 17369}, {4861, 4969}, {5124, 13624}, {5158, 18455}, {5160, 47322}, {5217, 8553}, {5370, 44521}, {5496, 53037}, {6144, 55392}, {7031, 33886}, {7191, 9300}, {7269, 17366}, {9630, 41335}, {9722, 10592}, {11684, 38871}, {12702, 36744}, {15109, 59319}, {17012, 33133}, {17019, 61661}, {17021, 37646}, {17281, 22836}, {17388, 40997}, {18357, 50036}, {20970, 45883}, {21773, 32636}, {22837, 50131}, {31673, 53421}, {32787, 56427}, {32788, 56384}

X(62210) = barycentric product X(1)*X(3584)
X(62210) = barycentric quotient X(3584)/X(75)
X(62210) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2171, 2174, 5341}, {7968, 7969, 16474}, {11072, 11073, 42}, {16777, 56534, 40937}


X(62211) = X(1)X(6)∩X(50)X(1914)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 + 3*a^2*b*c - 2*a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(62211) lies on these lines:: {1, 6}, {35, 50660}, {36, 11063}, {42, 30537}, {48, 7300}, {50, 1914}, {81, 16718}, {172, 13338}, {230, 7292}, {524, 26639}, {566, 2275}, {604, 5341}, {609, 33886}, {650, 14399}, {1015, 3003}, {1030, 13624}, {1060, 52703}, {1086, 1443}, {1319, 19297}, {1385, 54409}, {1404, 2161}, {1429, 7202}, {1442, 17366}, {1731, 17455}, {1870, 1990}, {1953, 5356}, {1989, 11075}, {2170, 2173}, {2241, 5063}, {2242, 33872}, {2245, 35459}, {2262, 21773}, {2276, 13337}, {2999, 31201}, {3083, 13846}, {3084, 13847}, {3163, 30117}, {3196, 25405}, {3284, 18455}, {3285, 52949}, {3579, 5124}, {3763, 55392}, {3815, 5297}, {3872, 61321}, {3920, 9300}, {3943, 38460}, {4420, 17362}, {4511, 4969}, {4861, 17369}, {5053, 17444}, {5109, 15955}, {5120, 8148}, {5158, 18447}, {5204, 8553}, {5306, 7191}, {5563, 61704}, {6144, 55391}, {6198, 6749}, {7269, 7277}, {7286, 47322}, {7302, 44521}, {9623, 61313}, {9722, 10593}, {10246, 37503}, {11278, 21853}, {12702, 36743}, {15109, 59325}, {17011, 61661}, {17012, 37646}, {17013, 37642}, {17021, 37662}, {17276, 18261}, {17281, 22837}, {18483, 53421}, {20323, 61650}, {22836, 50131}, {32787, 56384}, {32788, 56427}, {33129, 40612}, {50036, 61272}, {52338, 53314}

X(62211) = crossdifference of every pair of points on line {513, 3579}
X(62211) = X(5124)-line conjugate of X(3579)
X(62211) = barycentric product X(i)*X(j) for these {i,j}: {1, 3582}, {104, 12611}
X(62211) = barycentric quotient X(i)/X(j) for these {i,j}: {3582, 75}, {12611, 3262}
X(62211) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1100, 56531, 2323}, {2170, 7113, 7297}, {7968, 7969, 5315}, {44635, 44636, 16486}


X(62212) = X(1)X(6)∩X(81)X(89)

Barycentrics    a*(5*a + 2*b + 2*c) : :

X(62212) lies on these lines:: {1, 6}, {2, 4969}, {10, 4982}, {42, 39960}, {55, 16694}, {56, 54409}, {81, 89}, {86, 16816}, {88, 14996}, {106, 52965}, {145, 17369}, {193, 17045}, {239, 41847}, {244, 14969}, {284, 5708}, {319, 29608}, {321, 19739}, {344, 6329}, {519, 61321}, {524, 17325}, {551, 4700}, {572, 12702}, {594, 3621}, {597, 17316}, {599, 17023}, {604, 5221}, {894, 4764}, {940, 17012}, {966, 46934}, {988, 22331}, {995, 4285}, {999, 19297}, {1015, 4277}, {1030, 5204}, {1086, 17014}, {1213, 5550}, {1266, 4795}, {1388, 1405}, {1404, 2099}, {1443, 5228}, {1475, 5043}, {1698, 50082}, {1766, 11278}, {1990, 34231}, {1992, 4364}, {2171, 38296}, {2234, 25426}, {2241, 5035}, {2242, 33882}, {2245, 37606}, {2260, 5036}, {2278, 36279}, {2280, 4289}, {2309, 23540}, {2325, 51071}, {2345, 20050}, {2364, 5425}, {2667, 23524}, {2999, 39948}, {3053, 37599}, {3187, 19722}, {3196, 53307}, {3240, 24512}, {3241, 3943}, {3244, 17281}, {3589, 17311}, {3616, 17330}, {3617, 17362}, {3618, 17267}, {3622, 37654}, {3623, 50113}, {3625, 5750}, {3626, 17303}, {3629, 17321}, {3634, 4856}, {3635, 50115}, {3636, 3707}, {3666, 39254}, {3672, 7277}, {3679, 61313}, {3686, 19862}, {3758, 17318}, {3759, 15668}, {3763, 3879}, {3912, 47352}, {3915, 54351}, {3945, 17366}, {3946, 4896}, {4068, 36635}, {4254, 21773}, {4273, 4658}, {4286, 19767}, {4287, 37567}, {4339, 9607}, {4346, 17365}, {4357, 6144}, {4360, 4788}, {4361, 4772}, {4363, 4393}, {4370, 61330}, {4383, 17021}, {4384, 50124}, {4395, 31139}, {4422, 29585}, {4431, 4910}, {4445, 17381}, {4470, 50098}, {4643, 15534}, {4644, 17395}, {4657, 40341}, {4665, 50129}, {4667, 4887}, {4670, 16834}, {4675, 17067}, {4690, 29603}, {4725, 17308}, {4727, 51093}, {4747, 49727}, {4792, 5114}, {4798, 50095}, {4816, 59772}, {4851, 29596}, {4852, 17118}, {4873, 50123}, {4889, 17286}, {5013, 37589}, {5069, 46189}, {5102, 46475}, {5124, 5217}, {5222, 17392}, {5256, 37520}, {5275, 7292}, {5332, 17599}, {5393, 13847}, {5405, 13846}, {5749, 17388}, {5816, 61272}, {5839, 9780}, {6470, 32556}, {6471, 32555}, {6542, 61344}, {6749, 7952}, {7232, 17380}, {7300, 54405}, {8584, 54280}, {9278, 39339}, {9326, 52900}, {9347, 54309}, {9509, 42081}, {10593, 50036}, {11011, 54377}, {11063, 14793}, {13006, 13337}, {13624, 37499}, {15533, 17237}, {15934, 17455}, {16590, 51105}, {17029, 37632}, {17120, 17262}, {17121, 17259}, {17243, 51171}, {17251, 17397}, {17255, 17396}, {17257, 32455}, {17265, 17391}, {17269, 17389}, {17271, 25503}, {17277, 29595}, {17279, 29601}, {17284, 50125}, {17290, 17378}, {17292, 50132}, {17293, 17377}, {17305, 50133}, {17309, 17368}, {17313, 17367}, {17323, 17364}, {17327, 17363}, {17332, 51170}, {17335, 29580}, {17342, 29619}, {17346, 29586}, {17354, 29588}, {17359, 29605}, {17360, 29614}, {17374, 21358}, {17387, 29630}, {17475, 37129}, {17609, 61650}, {18398, 61704}, {19744, 37869}, {19747, 31993}, {20072, 24441}, {20168, 32005}, {20170, 32107}, {20182, 37685}, {20997, 37587}, {21764, 36263}, {22332, 37552}, {23073, 50190}, {25055, 52706}, {25417, 32911}, {26071, 37652}, {29574, 51185}, {29602, 41310}, {29604, 50076}, {29610, 50077}, {29659, 50783}, {30950, 37673}, {31244, 49738}, {32847, 38087}, {33682, 49486}, {36479, 51000}, {37504, 37582}, {37595, 37679}, {37682, 54390}, {38023, 49768}, {38047, 49766}, {38107, 45942}, {39975, 52555}, {42697, 50112}, {46974, 52703}, {49762, 59407}, {49947, 53589}, {49948, 53588}, {50018, 50302}, {50660, 59334}, {55932, 60665}

X(62212) = reflection of X(17325) in X(26626)
X(62212) = X(514)-isoconjugate of X(58125)
X(62212) = crossdifference of every pair of points on line {513, 4770}
X(62212) = barycentric product X(i)*X(j) for these {i,j}: {1, 25055}, {81, 52706}, {100, 28220}, {668, 58141}
X(62212) = barycentric quotient X(i)/X(j) for these {i,j}: {692, 58125}, {25055, 75}, {28220, 693}, {52706, 321}, {58141, 513}
X(62212) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6, 45}, {1, 44, 16672}, {1, 45, 16777}, {1, 1449, 16666}, {1, 16468, 60690}, {1, 16475, 3246}, {1, 16666, 6}, {1, 16667, 16670}, {1, 16670, 37}, {1, 16676, 39260}, {6, 1100, 16884}, {6, 2256, 56534}, {6, 16672, 44}, {6, 16675, 1743}, {6, 16777, 16885}, {6, 16884, 16777}, {9, 16668, 6}, {10, 4982, 50131}, {37, 16667, 6}, {44, 16672, 45}, {44, 39260, 16676}, {45, 16884, 1}, {81, 17013, 17595}, {145, 17369, 50087}, {193, 17045, 17253}, {999, 37503, 19297}, {1100, 1449, 6}, {1100, 16666, 1}, {1743, 3723, 16675}, {2280, 7113, 4289}, {3618, 17390, 17267}, {3621, 26039, 594}, {3623, 54389, 50113}, {3758, 17318, 49721}, {3758, 29584, 17318}, {4363, 4393, 50120}, {4393, 46922, 4363}, {4644, 17395, 49747}, {4670, 16834, 17119}, {4969, 61302, 2}, {5749, 17388, a53664}, {16671, 46845, 3731}, {16676, 39260, 16672}, {16777, 16885, 16677}, {17120, 17393, 17262}, {17121, 17394, 17259}, {17374, 29598, 21358}, {17380, 20090, 7232}, {29585, 59373, 4422}, {54402, 54403, 16472}


X(62213) = X(2)X(340)∩X(4)X(6)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(7*a^4 - 8*a^2*b^2 + b^4 - 8*a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(62213) lies on these lines:: {2, 340}, {4, 6}, {20, 5158}, {25, 52188}, {39, 37460}, {44, 34231}, {69, 52289}, {112, 33872}, {140, 15905}, {193, 36794}, {216, 3522}, {232, 14930}, {233, 46935}, {264, 51170}, {275, 51990}, {281, 16669}, {297, 59373}, {317, 51171}, {376, 52703}, {458, 1992}, {460, 11405}, {468, 7736}, {470, 37641}, {471, 37640}, {524, 52288}, {577, 3523}, {597, 52283}, {648, 5032}, {1119, 7277}, {1217, 36749}, {1285, 35483}, {1405, 54200}, {1585, 19053}, {1586, 19054}, {1609, 35477}, {1656, 38292}, {1657, 15851}, {3003, 35485}, {3088, 5007}, {3091, 61327}, {3146, 15860}, {3163, 3839}, {3516, 8573}, {3535, 32788}, {3536, 32787}, {3543, 52945}, {3589, 32001}, {3618, 11331}, {3620, 53025}, {3629, 32000}, {3815, 52290}, {3850, 59657}, {4232, 10311}, {4969, 7046}, {5024, 37934}, {5063, 10312}, {5065, 8882}, {5068, 36413}, {5073, 42459}, {5094, 7735}, {5095, 6531}, {5304, 6103}, {5306, 8889}, {5475, 34569}, {6353, 9300}, {6525, 9777}, {6620, 8541}, {6623, 7753}, {6995, 55084}, {7487, 7772}, {7505, 31407}, {7737, 40135}, {7738, 37196}, {7952, 16666}, {8749, 52187}, {9605, 37458}, {10299, 36748}, {10301, 45141}, {10979, 62067}, {11062, 13337}, {11063, 35473}, {11109, 37654}, {11348, 15526}, {12150, 35940}, {13292, 18855}, {14836, 35480}, {14848, 44228}, {15484, 37984}, {15708, 61312}, {16080, 60193}, {16670, 56814}, {17120, 55393}, {17121, 55394}, {18487, 50687}, {18533, 53026}, {21735, 36751}, {21844, 50660}, {22052, 61791}, {26958, 56346}, {32455, 56013}, {32534, 41758}, {33636, 46219}, {34568, 35906}, {35471, 41335}, {36430, 52707}, {36743, 37289}, {37305, 37503}, {38005, 43717}, {44096, 46327}, {53149, 54274}, {59649, 62036}, {59655, 61975}, {61340, 61912}

X(62213) = orthosymmedial-circle-inverse of X(40138)
X(62213) = polar conjugate of the isotomic conjugate of X(3524)
X(62213) = X(63)-isoconjugate of X(3531)
X(62213) = X(3162)-Dao conjugate of X(3531)
X(62213) = barycentric product X(4)*X(3524)
X(62213) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 3531}, {3524, 69}
X(62213) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3284, 61301}, {2, 61301, 61307}, {4, 6, 40138}, {4, 5702, 1990}, {4, 6749, 3087}, {4, 40065, 6749}, {4, 40138, 393}, {6, 1990, 5702}, {6, 3087, 393}, {6, 6748, 1249}, {6, 6749, 4}, {6, 40065, 3087}, {458, 56021, 52710}, {1990, 5702, 40138}, {1992, 52710, 56021}, {3087, 40138, 4}, {3284, 61301, 36427}, {5304, 52284, 6103}, {36427, 61307, 61301}


X(62214) = X(1)X(4263)∩X(2)X(37)

Barycentrics    a^2*(a*b^2 + b^3 + a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2 + c^3) : :

X(62214) lies on these lines:: {1, 4263}, {2, 37}, {6, 1201}, {8, 21892}, {9, 1050}, {19, 28353}, {39, 3731}, {44, 28370}, {45, 28352}, {172, 28383}, {198, 1914}, {269, 292}, {291, 53676}, {391, 17448}, {573, 3230}, {579, 61036}, {604, 9259}, {665, 28396}, {672, 28361}, {869, 22172}, {1015, 1743}, {1107, 5296}, {1149, 2347}, {1333, 7419}, {1400, 2176}, {1500, 16673}, {1716, 4447}, {1766, 19514}, {2092, 3247}, {2171, 20271}, {2178, 28348}, {2183, 21769}, {2238, 24528}, {2260, 28360}, {2268, 21008}, {2269, 16969}, {2285, 28385}, {2305, 8775}, {3009, 3056}, {3122, 3779}, {3160, 34057}, {3554, 23980}, {3723, 4277}, {3778, 4517}, {3959, 17452}, {3986, 5283}, {4110, 26048}, {4310, 52541}, {5042, 5563}, {5069, 16814}, {5301, 19297}, {5749, 16604}, {7296, 16470}, {9336, 46189}, {10459, 16777}, {10987, 36744}, {15624, 39688}, {16488, 16946}, {16672, 56926}, {16968, 28386}, {16972, 28369}, {17257, 37596}, {17261, 24598}, {17314, 21857}, {21033, 49509}, {21809, 24443}, {24328, 28014}, {25081, 40986}, {25590, 31198}, {28365, 28371}, {30646, 40131}, {33854, 38869}, {34247, 40934}, {39028, 39467}, {48854, 50620}, {53543, 60933}

X(62214) = crossdifference of every pair of points on line {667, 3667}
X(62214) = barycentric product X(1)*X(24440)
X(62214) = barycentric quotient X(24440)/X(75)
X(62214) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17053, 2275}, {37, 1575, 346}, {37, 2277, 2276}, {37, 28244, 2345}, {37, 46838, 17281}, {39, 21826, 3731}, {1149, 2347, 21785}


X(62215) = X(1)X(6)∩X(19)X(3204)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 - 4*a^2*b*c + 2*a*b^2*c - 2*a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 + c^4) : :

X(62215) lies on these lines:: {1, 6}, {19, 3204}, {33, 7140}, {40, 21864}, {41, 21801}, {46, 19297}, {78, 17281}, {198, 21853}, {326, 17351}, {374, 11011}, {584, 54359}, {997, 17369}, {1766, 2174}, {1872, 59223}, {1953, 3217}, {1994, 56352}, {2082, 17444}, {2161, 37533}, {2178, 37582}, {2325, 22836}, {2345, 27395}, {3057, 37503}, {3196, 25415}, {3214, 21011}, {3340, 61704}, {3617, 27522}, {3772, 30852}, {3811, 3943}, {4336, 4878}, {4415, 54369}, {4511, 54389}, {4675, 25930}, {4700, 22837}, {4727, 6765}, {4853, 50082}, {4861, 37654}, {5119, 54409}, {7190, 17278}, {7269, 37650}, {11009, 61695}, {15500, 40138}, {16200, 61708}, {17012, 27131}, {17279, 55391}, {17299, 40997}, {17350, 44179}, {17365, 53996}, {17455, 54377}, {18151, 20173}, {21871, 36744}, {25091, 37520}, {30144, 50115}, {36743, 37605}, {36846, 50131}, {37634, 55867}, {41687, 61693}

X(62215) = X(2)-isoconjugate of X(41442)
X(62215) = X(32664)-Dao conjugate of X(41442)
X(62215) = barycentric product X(1)*X(45701)
X(62215) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 41442}, {45701, 75}
X(62215) = {X(2324),X(3553)}-harmonic conjugate of X(37)


X(62216) = X(1)X(6)∩X(19)X(4268)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 + 4*a^2*b*c - 2*a*b^2*c - 2*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + c^4) : :

X(62216) lies on these lines:: {1, 6}, {19, 4268}, {36, 61695}, {48, 2246}, {57, 61704}, {77, 5723}, {169, 7113}, {200, 50082}, {326, 17348}, {374, 1319}, {997, 17330}, {999, 61650}, {1155, 2262}, {1404, 54324}, {1442, 37650}, {1443, 37800}, {1465, 34492}, {2082, 2278}, {2161, 61146}, {2170, 2267}, {2178, 5126}, {2285, 17443}, {2325, 22837}, {2646, 37503}, {3214, 21012}, {3217, 17438}, {3576, 61708}, {3612, 54409}, {3707, 30144}, {3811, 4969}, {3870, 50131}, {3872, 17281}, {3935, 5839}, {4254, 37606}, {4273, 54356}, {4287, 7300}, {4341, 37695}, {4511, 37654}, {4530, 57277}, {4700, 22836}, {4727, 12629}, {4861, 54389}, {5035, 54382}, {5109, 54418}, {5120, 36279}, {5124, 54420}, {5819, 18450}, {5829, 8544}, {7982, 21864}, {8583, 52706}, {11425, 32318}, {16816, 27317}, {17012, 24597}, {17279, 55392}, {17337, 53996}, {17349, 44179}, {19297, 37618}, {24315, 49759}, {26639, 54280}, {31187, 54390}, {34545, 56041}, {36744, 37600}, {37697, 61730}

X(62216) = X(2)-isoconjugate of X(41487)
X(62216) = X(32664)-Dao conjugate of X(41487)
X(62216) = barycentric product X(1)*X(45700)
X(62216) = barycentric quotient X(i)/X(j) for these {i,j}: {31, 41487}, {45700, 75}
X(62216) = {X(6),X(34522)}-harmonic conjugate of X(37)


X(62217) = X(2)X(1351)∩X(3)X(49)

Barycentrics    a^2*(a^2 - 3*b^2 - 3*c^2)*(a^2 - b^2 - c^2) : :
X(62217) = 3 X[5020] - 2 X[17810], X[17810] - 3 X[17811]

X(62217) lies on these lines:: {2, 1351}, {3, 49}, {6, 3787}, {22, 6090}, {23, 55595}, {25, 2979}, {30, 14826}, {51, 44456}, {69, 1368}, {110, 55629}, {140, 11427}, {154, 3098}, {182, 37672}, {193, 45298}, {219, 3784}, {222, 3781}, {323, 7485}, {343, 14914}, {426, 61355}, {428, 54013}, {511, 5020}, {550, 11206}, {576, 17825}, {599, 21243}, {631, 12160}, {1073, 6638}, {1260, 22161}, {1350, 9306}, {1352, 34609}, {1353, 7734}, {1370, 18440}, {1460, 3792}, {1495, 55604}, {1498, 13348}, {1583, 12313}, {1584, 12314}, {1593, 11444}, {1595, 11487}, {1597, 5891}, {1598, 10625}, {1611, 5028}, {1613, 52658}, {1656, 3527}, {1657, 31383}, {1660, 34778}, {1853, 34507}, {1899, 11898}, {1993, 5050}, {1994, 40916}, {1995, 55580}, {2063, 41716}, {2972, 52170}, {3051, 9605}, {3060, 11284}, {3066, 21969}, {3426, 18435}, {3517, 37486}, {3522, 12174}, {3526, 37493}, {3534, 4549}, {3564, 7386}, {3580, 31255}, {3619, 11548}, {3620, 8889}, {3631, 23332}, {3690, 22129}, {3794, 26657}, {3933, 4176}, {3937, 55466}, {3955, 23140}, {4550, 35501}, {5012, 21766}, {5024, 8041}, {5054, 44201}, {5085, 34986}, {5092, 17809}, {5093, 5650}, {5094, 37636}, {5097, 5646}, {5102, 15082}, {5117, 7879}, {5422, 11482}, {5446, 11484}, {5622, 13416}, {5644, 15004}, {5651, 33586}, {5876, 13093}, {5943, 11477}, {6101, 6642}, {6144, 11225}, {6353, 62174}, {6515, 30739}, {6636, 26864}, {6643, 12429}, {6676, 10519}, {6677, 21970}, {6688, 37517}, {6776, 10691}, {6800, 55643}, {6803, 31802}, {6804, 13142}, {6805, 49028}, {6806, 49029}, {7083, 7186}, {7085, 22128}, {7378, 18358}, {7387, 10627}, {7392, 21850}, {7393, 11426}, {7395, 7999}, {7400, 61607}, {7494, 59553}, {7496, 55701}, {7499, 37645}, {7514, 44324}, {7522, 48934}, {7529, 37484}, {7691, 15750}, {7714, 61044}, {8354, 32463}, {9544, 55648}, {9818, 15067}, {9821, 41266}, {10154, 33522}, {10170, 44413}, {10219, 55718}, {11064, 43653}, {11245, 46336}, {11365, 31737}, {11403, 15056}, {11414, 14157}, {11433, 34380}, {11441, 37198}, {11442, 31152}, {11456, 54041}, {11459, 21312}, {11479, 11793}, {11573, 42461}, {11574, 19588}, {11591, 12085}, {11850, 12359}, {12083, 54047}, {12165, 15051}, {12251, 41235}, {12308, 15695}, {12310, 41673}, {12316, 61659}, {13340, 18534}, {13353, 43908}, {13366, 55705}, {13391, 58764}, {13615, 48908}, {14156, 15694}, {15068, 32063}, {15108, 31101}, {15246, 55682}, {15606, 17834}, {15644, 17814}, {15905, 22138}, {16187, 21849}, {16195, 46728}, {18374, 37485}, {18536, 44665}, {18910, 26944}, {18950, 20080}, {19126, 34817}, {19136, 37491}, {19520, 48909}, {20850, 35259}, {20885, 34095}, {25514, 37659}, {26869, 45794}, {26881, 55620}, {26913, 32216}, {31831, 34780}, {31860, 55585}, {33523, 34966}, {33879, 53863}, {34483, 38260}, {34608, 48874}, {35264, 55602}, {35268, 55624}, {37269, 48875}, {37273, 48917}, {37478, 55572}, {37480, 54992}, {39884, 44442}, {41424, 55594}, {41462, 55678}, {43574, 54994}, {43650, 44111}, {44098, 47038}, {44110, 55632}, {44212, 50967}, {44438, 54040}, {45488, 55577}, {45489, 55579}, {47551, 50990}, {50977, 58447}, {51344, 57450}, {53093, 61773}, {54012, 61658}, {54173, 59543}, {55716, 59777}, {55720, 58470}, {59767, 61646}

X(62217) = reflection of X(5020) in X(17811)
X(62217) = isotomic conjugate of the polar conjugate of X(5013)
X(62217) = isogonal conjugate of the polar conjugate of X(3620)
X(62217) = X(i)-Ceva conjugate of X(j) for these (i,j): {3620, 5013}, {34817, 3}
X(62217) = X(i)-isoconjugate of X(j) for these (i,j): {19, 5395}, {1973, 56067}, {24006, 58100}
X(62217) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 5395}, {5013, 43981}, {6337, 56067}
X(62217) = crossdifference of every pair of points on line {2501, 50543}
X(62217) = barycentric product X(i)*X(j) for these {i,j}: {3, 3620}, {69, 5013}, {394, 8889}, {3926, 12167}
X(62217) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 5395}, {69, 56067}, {3620, 264}, {5013, 4}, {8889, 2052}, {12167, 393}, {20775, 31506}, {32661, 58100}
X(62217) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 394, 3167}, {6, 3819, 16419}, {22, 6090, 8780}, {25, 2979, 33878}, {155, 5447, 3}, {323, 7485, 11402}, {394, 3796, 3292}, {394, 3917, 3}, {1350, 9306, 9909}, {1993, 7484, 5050}, {1993, 7998, 7484}, {2979, 15066, 25}, {5891, 37483, 1597}, {6090, 33884, 55610}, {7393, 16266, 11426}, {7485, 11402, 12017}, {8780, 55610, 22}, {10519, 37669, 6676}, {11793, 37498, 11479}, {15068, 35243, 32063}, {15068, 54042, 35243}, {15644, 17814, 39568}, {16266, 32142, 7393}


X(62218) = X(1)X(3697)∩X(9)X(55)

Barycentrics    a*(a - 3*b - 3*c)*(a - b - c) : :
X(62218) = 3 X[5437] - 2 X[10980], 3 X[8580] - X[10980]

X(62218) lies on these lines:: {1, 3697}, {2, 3243}, {3, 58688}, {8, 3452}, {9, 55}, {10, 3487}, {12, 5665}, {36, 5438}, {40, 3678}, {42, 3247}, {43, 3789}, {57, 3681}, {63, 46917}, {72, 1706}, {78, 3897}, {84, 35238}, {100, 3929}, {120, 33084}, {165, 5220}, {220, 5574}, {226, 38200}, {312, 59599}, {517, 51781}, {518, 5437}, {519, 26105}, {612, 1449}, {756, 16676}, {899, 3677}, {936, 999}, {958, 4866}, {960, 2136}, {1001, 30393}, {1191, 8951}, {1376, 3928}, {1490, 58643}, {1697, 3876}, {1698, 41863}, {1856, 7046}, {2308, 5269}, {2321, 5423}, {2550, 21060}, {2551, 6743}, {2886, 3679}, {2898, 25719}, {2951, 58678}, {2975, 45036}, {3041, 61222}, {3052, 3973}, {3189, 18250}, {3219, 35445}, {3242, 23511}, {3305, 3935}, {3306, 4661}, {3340, 3617}, {3434, 31142}, {3474, 60977}, {3475, 10390}, {3544, 3626}, {3577, 5790}, {3601, 4420}, {3686, 7172}, {3687, 4901}, {3696, 59597}, {3699, 11679}, {3749, 15601}, {3751, 37604}, {3786, 18163}, {3811, 4015}, {3848, 30350}, {3870, 5284}, {3875, 59295}, {3886, 27538}, {3913, 53052}, {3940, 9623}, {3951, 5128}, {3956, 54318}, {3961, 7290}, {3974, 4007}, {3983, 44840}, {3996, 30568}, {4005, 5183}, {4023, 30615}, {4035, 39570}, {4038, 5268}, {4050, 4517}, {4082, 4873}, {4090, 50314}, {4134, 54286}, {4312, 49732}, {4421, 15481}, {4533, 5687}, {4547, 8715}, {4557, 10434}, {4651, 30961}, {4659, 32937}, {4668, 5087}, {4669, 11525}, {4678, 11682}, {4711, 4915}, {4847, 10589}, {4853, 5048}, {5010, 41229}, {5044, 6765}, {5219, 25006}, {5234, 56176}, {5273, 59584}, {5281, 5325}, {5316, 36845}, {5328, 24386}, {5524, 17594}, {5531, 58663}, {5534, 58630}, {5573, 16496}, {5686, 5745}, {5690, 7971}, {5739, 49991}, {5784, 9954}, {5795, 20007}, {5815, 57284}, {5853, 18228}, {5927, 7994}, {6173, 26040}, {6282, 18908}, {6666, 10578}, {6769, 58631}, {7074, 52405}, {7079, 56316}, {7179, 17270}, {7226, 54309}, {7330, 35000}, {7688, 17857}, {8000, 37737}, {8056, 21342}, {8162, 25917}, {8727, 38154}, {9335, 39963}, {9580, 31018}, {9709, 54422}, {9776, 46916}, {9778, 60942}, {9780, 11518}, {9814, 15587}, {9841, 14872}, {10157, 43166}, {10176, 31393}, {10582, 41711}, {10590, 21075}, {11372, 15064}, {11520, 46933}, {11678, 36973}, {11684, 41348}, {12513, 53058}, {13405, 38057}, {14740, 60782}, {15492, 21000}, {15570, 36835}, {15600, 29820}, {17018, 25430}, {17123, 35227}, {17597, 54390}, {18193, 49503}, {18743, 49451}, {19605, 59269}, {20103, 24477}, {20196, 26015}, {20335, 59296}, {21384, 56190}, {26037, 55076}, {28043, 28050}, {30323, 33559}, {30567, 49450}, {31249, 51463}, {31435, 58657}, {31835, 49163}, {34607, 51090}, {35514, 59687}, {37709, 56879}, {42047, 59732}, {42871, 58451}, {46694, 53055}, {49460, 59506}, {53663, 59772}, {60953, 61028}

X(62218) = reflection of X(5437) in X(8580)
X(62218) = X(i)-Ceva conjugate of X(j) for these (i,j): {3617, 3731}, {4866, 9}
X(62218) = X(i)-isoconjugate of X(j) for these (i,j): {56, 30712}, {57, 39980}, {1014, 31503}, {1407, 56201}, {1412, 56226}, {3676, 28162}, {43924, 58132}
X(62218) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 30712}, {3731, 43983}, {5452, 39980}, {11530, 7}, {24771, 56201}, {40599, 56226}
X(62218) = crossdifference of every pair of points on line {3669, 47935}
X(62218) = barycentric product X(i)*X(j) for these {i,j}: {8, 3731}, {9, 3617}, {21, 4058}, {55, 42034}, {200, 5226}, {281, 3984}, {346, 3340}, {644, 28161}, {646, 48338}, {3161, 10563}, {6605, 61031}, {11530, 56200}, {14350, 31343}
X(62218) = barycentric quotient X(i)/X(j) for these {i,j}: {9, 30712}, {55, 39980}, {200, 56201}, {210, 56226}, {644, 58132}, {1334, 31503}, {3340, 279}, {3617, 85}, {3731, 7}, {3984, 348}, {4058, 1441}, {5226, 1088}, {10563, 27818}, {11530, 43983}, {28161, 24002}, {42034, 6063}, {48338, 3669}, {61031, 59181}
X(62218) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3740, 51780}, {8, 3452, 24392}, {8, 15829, 3680}, {9, 200, 3158}, {10, 25568, 25525}, {42, 7322, 3247}, {200, 210, 9}, {200, 4512, 3689}, {210, 3689, 3715}, {210, 3711, 200}, {756, 37553, 16676}, {936, 34790, 6762}, {960, 4882, 2136}, {960, 8168, 9819}, {1001, 58629, 30393}, {1376, 5223, 3928}, {2550, 21060, 28609}, {2551, 6743, 12625}, {3174, 58635, 9}, {3305, 3935, 10389}, {3340, 3617, 11530}, {3617, 3984, 3340}, {3617, 5226, 61031}, {3689, 3715, 4512}, {3715, 4512, 9}, {3870, 7308, 38316}, {3974, 4061, 4007}, {4711, 5289, 4915}, {4882, 9819, 8168}, {5534, 58630, 61122}, {8168, 9819, 2136}, {16496, 16569, 5573}, {20103, 24477, 31190}, {30827, 59414, 4847}, {40659, 58696, 210}, {41711, 61686, 10582}


X(62219) = X(2)X(61308)∩X(3)X(6)

Barycentrics    a^2*(3*a^2 - 2*S) : :

X(62219) lies on these lines:: {2, 61308}, {3, 6}, {115, 13807}, {230, 18762}, {385, 13827}, {590, 7753}, {615, 61329}, {1506, 32789}, {2548, 32785}, {3069, 61336}, {3071, 7755}, {3767, 23259}, {5254, 42225}, {5306, 42215}, {5309, 6561}, {5319, 6459}, {5412, 14581}, {5475, 42277}, {6502, 9341}, {6560, 19100}, {6564, 14537}, {7735, 23273}, {7737, 23249}, {7739, 9541}, {7745, 18538}, {7746, 42274}, {7747, 42284}, {7748, 42275}, {7749, 32790}, {7765, 42258}, {7845, 45473}, {8576, 34417}, {8972, 31481}, {9300, 35255}, {11648, 42263}, {13711, 18424}, {13821, 13843}, {13834, 43792}, {32787, 61328}, {49262, 53518}

X(62219) = isogonal conjugate of the isotomic conjugate of X(32788)
X(62219) = X(59111)-Ceva conjugate of X(512)
X(62219) = X(13821)-Dao conjugate of X(76)
X(62219) = barycentric product X(6)*X(32788)
X(62219) = barycentric quotient X(32788)/X(76)
X(62219) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3053, 6398}, {6, 6199, 1504}, {6, 6200, 39}, {6, 6398, 1505}, {6, 6412, 6421}, {6, 6437, 6422}, {6, 12963, 6200}, {6, 41410, 187}, {32, 5058, 5062}, {32, 6424, 5058}, {6199, 30435, 6}, {39655, 40825, 50375}


X(62220) = X(2)X(61309)∩X(3)X(6)

Barycentrics    a^2*(3*a^2 + 2*S) : :

X(62220) lies on these lines:: {2, 61309}, {3, 6}, {115, 13687}, {230, 18538}, {385, 13707}, {590, 61328}, {615, 7753}, {1506, 32790}, {2067, 9341}, {2548, 32786}, {3068, 61335}, {3070, 7755}, {3767, 23249}, {5254, 42226}, {5306, 42216}, {5309, 6560}, {5319, 6460}, {5413, 14581}, {5475, 42274}, {6561, 19099}, {6565, 14537}, {7735, 23267}, {7737, 23259}, {7745, 18762}, {7746, 42277}, {7747, 42283}, {7748, 42276}, {7749, 32789}, {7765, 42259}, {7845, 45472}, {8577, 34417}, {8972, 31411}, {9300, 35256}, {9540, 31483}, {11648, 42264}, {13701, 13720}, {13711, 43791}, {13834, 18424}, {21843, 31403}, {31481, 32785}, {32788, 61329}, {49261, 53519}

X(62220) = isogonal conjugate of the isotomic conjugate of X(32787)
X(62220) = X(59110)-Ceva conjugate of X(512)
X(62220) = X(13701)-Dao conjugate of X(76)
X(62220) = barycentric product X(6)*X(32787)
X(62220) = barycentric quotient X(32787)/X(76)
X(62220) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1384, 9675}, {6, 3053, 6221}, {6, 6221, 1504}, {6, 6395, 1505}, {6, 6396, 39}, {6, 6411, 6422}, {6, 6438, 6421}, {6, 12968, 6396}, {6, 19781, 51728}, {6, 41411, 187}, {32, 5062, 5058}, {32, 6423, 5062}, {6395, 30435, 6}, {39654, 40825, 50374}


X(62221) = X(11)X(244)∩X(115)X(124)

Barycentrics    (a - 3*b - 3*c)*(b - c)^2 : :

X(62221) lies on these lines:: {1, 12690}, {2, 59580}, {11, 244}, {100, 37691}, {115, 124}, {125, 38960}, {149, 17724}, {226, 49478}, {238, 17070}, {528, 17719}, {594, 25760}, {595, 40273}, {982, 3829}, {984, 2886}, {995, 38034}, {1054, 6667}, {1104, 18483}, {1111, 4939}, {1538, 53599}, {1699, 3772}, {1738, 5087}, {1739, 17533}, {1834, 12047}, {1836, 37646}, {2968, 42761}, {2969, 8754}, {3035, 24715}, {3052, 9812}, {3058, 33127}, {3259, 5515}, {3271, 38390}, {3452, 21949}, {3614, 4642}, {3752, 3817}, {3782, 4392}, {3816, 17889}, {3838, 15569}, {3840, 48649}, {3847, 24174}, {3914, 17605}, {3932, 21241}, {4000, 9779}, {4026, 25385}, {4370, 33115}, {4422, 17777}, {4424, 17530}, {4674, 34122}, {4679, 17337}, {4854, 33105}, {4892, 4966}, {4969, 32843}, {4997, 26073}, {4999, 24851}, {5011, 43291}, {5057, 35466}, {5231, 17276}, {5432, 33094}, {5510, 15611}, {5511, 53825}, {5573, 15430}, {5698, 31187}, {5718, 10129}, {5724, 17577}, {5846, 37759}, {6690, 33095}, {6871, 37614}, {7173, 24443}, {7277, 24725}, {9330, 33108}, {9669, 24159}, {9955, 23537}, {10591, 17054}, {10593, 24046}, {10707, 33148}, {11235, 33144}, {11246, 29662}, {11269, 17365}, {11814, 25351}, {13273, 51422}, {15171, 24160}, {16594, 24988}, {16732, 24026}, {17018, 17775}, {17061, 33106}, {17064, 24703}, {17197, 18211}, {17246, 29639}, {17262, 30741}, {17340, 29857}, {17395, 17723}, {17463, 53540}, {17602, 33104}, {17726, 33155}, {17734, 28174}, {17761, 28521}, {17768, 33140}, {17783, 20075}, {18191, 38389}, {18527, 26728}, {20292, 37634}, {21342, 24386}, {22313, 61672}, {23821, 34589}, {24217, 25557}, {25531, 40480}, {26139, 27191}, {28530, 32851}, {28550, 59665}, {30942, 48632}, {31272, 43055}, {32486, 38038}, {32856, 51463}, {33130, 49736}, {33131, 37663}, {33141, 49498}, {34522, 43448}, {41011, 61661}, {44006, 51583}, {48643, 50117}

X(62221) = complement of the isotomic conjugate of X(58860)
X(62221) = X(i)-complementary conjugate of X(j) for these (i,j): {2334, 513}, {4606, 27076}, {4866, 59971}, {5936, 21260}, {8694, 24003}, {25430, 3835}, {34074, 4422}, {34820, 20317}, {40023, 21262}, {47915, 141}, {56048, 512}, {56237, 31946}, {57663, 4885}, {58860, 2887}
X(62221) = X(i)-Ceva conjugate of X(j) for these (i,j): {3616, 4802}, {3617, 28161}, {5556, 513}, {30712, 514}, {31359, 523}
X(62221) = X(i)-isoconjugate of X(j) for these (i,j): {100, 28162}, {692, 58132}, {1110, 30712}, {1252, 39980}, {2149, 56201}, {4570, 31503}
X(62221) = X(i)-Dao conjugate of X(j) for these (i,j): {514, 30712}, {650, 56201}, {661, 39980}, {1086, 58132}, {4988, 56226}, {8054, 28162}, {11530, 765}, {28161, 3617}, {50330, 31503}, {50457, 10436}
X(62221) = crossdifference of every pair of points on line {101, 28162}
X(62221) = barycentric product X(i)*X(j) for these {i,j}: {11, 5226}, {244, 42034}, {514, 28161}, {1086, 3617}, {1111, 3731}, {3261, 48338}, {3340, 4858}, {4058, 17205}
X(62221) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 56201}, {244, 39980}, {514, 58132}, {649, 28162}, {1086, 30712}, {3120, 56226}, {3125, 31503}, {3340, 4564}, {3617, 1016}, {3731, 765}, {5226, 4998}, {10563, 5382}, {14350, 43290}, {28161, 190}, {42034, 7035}, {48338, 101}
X(62221) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 1086, 3756}, {11, 3120, 1086}, {149, 17724, 53534}, {1738, 5087, 51415}, {2886, 3944, 4415}, {3838, 24210, 17056}, {3914, 17605, 37662}, {10129, 33134, 5718}, {11269, 61716, 17365}


X(62222) = X(1)X(4704)∩X(8)X(144)

Barycentrics    a^3 + a^2*b - 2*a*b^2 + a^2*c - a*b*c + b^2*c - 2*a*c^2 + b*c^2 : :
X(62222) = X[8] + 2 X[4480], 5 X[190] - 2 X[4702], 5 X[3685] - 4 X[4702], X[239] + 2 X[24821], 4 X[4887] - 7 X[9780], 2 X[4966] - 3 X[17264], 4 X[6541] - 3 X[17310], 5 X[17266] - 4 X[49676], 7 X[29607] - 4 X[53601]

X(62222) lies on these lines:: {1, 4704}, {2, 18193}, {6, 49447}, {7, 27549}, {8, 144}, {9, 16823}, {10, 6646}, {38, 27064}, {44, 28582}, {57, 27538}, {63, 6194}, {69, 3790}, {75, 5220}, {85, 60909}, {100, 29348}, {145, 25269}, {171, 42054}, {190, 518}, {192, 3751}, {210, 32939}, {238, 537}, {239, 726}, {320, 3932}, {329, 3705}, {335, 49692}, {519, 32106}, {527, 3717}, {528, 49698}, {666, 9501}, {672, 3508}, {740, 49712}, {756, 32940}, {883, 14189}, {894, 984}, {896, 32927}, {1001, 17336}, {1046, 41261}, {1125, 51294}, {1155, 3699}, {1215, 38000}, {1279, 24841}, {1281, 4712}, {1350, 56180}, {1386, 49513}, {1447, 4518}, {1698, 17236}, {1738, 4440}, {1743, 49446}, {1999, 32912}, {2325, 4684}, {2796, 49697}, {2975, 60723}, {3006, 17484}, {3085, 25601}, {3218, 3952}, {3219, 3757}, {3242, 4676}, {3245, 4738}, {3416, 17347}, {3616, 3731}, {3644, 49486}, {3667, 4498}, {3681, 32932}, {3703, 33066}, {3715, 19804}, {3759, 49453}, {3773, 17287}, {3782, 33118}, {3826, 7321}, {3844, 17273}, {3868, 56311}, {3869, 9369}, {3870, 25734}, {3883, 60942}, {3912, 5850}, {3923, 49448}, {3927, 4385}, {3935, 4427}, {3967, 14829}, {3971, 32913}, {3992, 4880}, {3994, 32919}, {3999, 25531}, {4026, 17258}, {4042, 42029}, {4078, 17300}, {4090, 17596}, {4096, 17122}, {4126, 11246}, {4307, 50286}, {4310, 26685}, {4316, 49998}, {4327, 60856}, {4356, 50090}, {4358, 4756}, {4360, 4663}, {4388, 17781}, {4389, 38047}, {4415, 33121}, {4419, 59406}, {4429, 17276}, {4432, 49675}, {4438, 33101}, {4439, 17771}, {4454, 5686}, {4499, 15310}, {4579, 7193}, {4641, 32926}, {4649, 17319}, {4655, 33165}, {4656, 29837}, {4661, 32929}, {4683, 33162}, {4696, 11684}, {4703, 33169}, {4716, 4753}, {4722, 32928}, {4852, 49522}, {4860, 30829}, {4884, 33071}, {4887, 9780}, {4901, 60977}, {4903, 30567}, {4942, 42034}, {4966, 17264}, {4969, 28472}, {4997, 61649}, {5176, 53792}, {5263, 17351}, {5423, 28610}, {5542, 25101}, {5695, 49450}, {5847, 20072}, {5853, 49707}, {5904, 7283}, {5905, 29641}, {6172, 50310}, {6541, 17310}, {6542, 34379}, {6790, 21578}, {7174, 50127}, {7191, 20068}, {7226, 26223}, {7262, 32920}, {7292, 17154}, {9041, 49695}, {9053, 49709}, {9330, 26627}, {10327, 20078}, {10453, 56082}, {10980, 26103}, {13587, 44724}, {15481, 17277}, {16468, 49455}, {16477, 49472}, {16484, 49491}, {16669, 49463}, {16815, 51297}, {16824, 41229}, {16825, 49532}, {16833, 51056}, {17117, 49493}, {17121, 32921}, {17123, 42055}, {17140, 27065}, {17160, 28555}, {17184, 33166}, {17254, 32784}, {17260, 24325}, {17262, 49470}, {17263, 25557}, {17266, 49676}, {17268, 33087}, {17280, 49511}, {17288, 29674}, {17291, 33159}, {17306, 26083}, {17324, 29633}, {17333, 50295}, {17334, 24723}, {17348, 49525}, {17487, 28580}, {17764, 49701}, {17767, 24715}, {17768, 32850}, {17770, 32847}, {17777, 26015}, {17784, 44446}, {18201, 24003}, {20059, 39570}, {20470, 23343}, {21061, 56318}, {21093, 33140}, {21805, 32845}, {24216, 26139}, {24477, 56084}, {24627, 32931}, {24695, 50289}, {24844, 29327}, {26065, 29634}, {26580, 33170}, {26800, 27020}, {27184, 33163}, {27945, 40217}, {28522, 50016}, {28526, 49772}, {29580, 50777}, {29584, 51035}, {29607, 53601}, {29673, 33099}, {29839, 56078}, {30579, 54309}, {30758, 60717}, {31161, 32917}, {31300, 50307}, {32772, 42039}, {32856, 33115}, {32859, 32862}, {32941, 49503}, {33064, 33164}, {33065, 33161}, {33098, 33117}, {33114, 33151}, {33126, 44416}, {33153, 56520}, {33676, 51929}, {33931, 60729}, {35596, 53672}, {37567, 44720}, {38057, 42697}, {39126, 41712}, {41242, 46909}, {47359, 49748}, {49445, 49488}, {49452, 49497}, {49466, 51090}, {49482, 49508}, {49495, 55998}, {49721, 50075}, {50095, 50834}

X(62222) = midpoint of X(i) and X(j) for these {i,j}: {1757, 24821}, {4480, 4899}
X(62222) = reflection of X(i) in X(j) for these {i,j}: {8, 4899}, {239, 1757}, {320, 3932}, {335, 49692}, {3685, 190}, {4440, 1738}, {4645, 3717}, {4684, 2325}, {4716, 4753}, {24715, 49693}, {24841, 1279}, {32846, 4439}, {32857, 10}, {32922, 44}, {49675, 4432}
X(62222) = anticomplement of X(24231)
X(62222) = X(25380)-Dao conjugate of X(4124)
X(62222) = cevapoint of X(144) and X(33888)
X(62222) = barycentric product X(190)*X(25380)
X(62222) = barycentric quotient X(25380)/X(514)
X(62222) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 4488, 24280}, {9, 24349, 16823}, {38, 32938, 27064}, {63, 32937, 7081}, {75, 5220, 60731}, {894, 984, 16830}, {984, 32935, 894}, {3218, 3952, 5205}, {3219, 17165, 3757}, {3681, 32933, 32932}, {3729, 5223, 8}, {4649, 49456, 17319}, {4663, 49523, 4360}, {4676, 49501, 3242}, {15481, 49483, 17277}, {17334, 49524, 24723}, {17336, 49499, 1001}, {17350, 31302, 1}, {17351, 49515, 5263}, {32912, 32925, 1999}, {32931, 36263, 24627}


X(62223) = X(1)X(28534)∩X(6)X(7)

Barycentrics    3*a^2 - 2*b^2 + 4*b*c - 2*c^2 : :
X(62223) = X[45] - 4 X[4896], 3 X[45] - 4 X[29571], 3 X[4675] - 2 X[29571], 3 X[4896] - X[29571], 4 X[4405] - 5 X[17119], 2 X[4405] - 5 X[42697], 2 X[4384] - 3 X[31139]

X(62223) lies on these lines:: {1, 28534}, {2, 7238}, {6, 7}, {8, 15533}, {37, 4888}, {44, 6173}, {45, 527}, {57, 14564}, {69, 4478}, {75, 40341}, {86, 17255}, {142, 16885}, {144, 17245}, {190, 17313}, {193, 7263}, {239, 15534}, {320, 599}, {329, 37682}, {481, 44635}, {482, 44636}, {524, 4405}, {536, 29605}, {545, 17316}, {594, 7222}, {894, 3763}, {903, 4393}, {940, 17483}, {991, 60922}, {1100, 4862}, {1119, 6748}, {1150, 31030}, {1266, 50120}, {1279, 59372}, {1373, 7968}, {1374, 7969}, {1447, 31489}, {1449, 4902}, {1647, 4860}, {1743, 61020}, {1992, 4395}, {2099, 60718}, {3000, 36971}, {3196, 37272}, {3218, 26738}, {3242, 50307}, {3306, 31202}, {3475, 21000}, {3553, 7271}, {3554, 7274}, {3598, 3815}, {3618, 48631}, {3620, 7227}, {3630, 42696}, {3631, 7231}, {3662, 47355}, {3663, 16884}, {3664, 16777}, {3729, 17311}, {3758, 17290}, {3772, 3982}, {3834, 50127}, {3912, 49721}, {3943, 4454}, {3945, 17246}, {3959, 4955}, {4252, 6147}, {4255, 24470}, {4312, 49478}, {4346, 17395}, {4357, 4798}, {4361, 6144}, {4370, 29627}, {4383, 26842}, {4384, 4715}, {4389, 29586}, {4398, 20090}, {4399, 20080}, {4409, 50113}, {4419, 16672}, {4440, 17318}, {4445, 17116}, {4470, 61313}, {4473, 17234}, {4480, 41313}, {4643, 24603}, {4645, 59407}, {4648, 16675}, {4659, 17374}, {4664, 29625}, {4667, 4887}, {4670, 17274}, {4708, 10436}, {4713, 30967}, {4741, 17251}, {4795, 17023}, {4796, 17382}, {4859, 16669}, {4869, 17340}, {4911, 44518}, {5219, 31201}, {5308, 49742}, {5341, 7289}, {5695, 49764}, {5749, 48632}, {5762, 50677}, {5880, 49772}, {5902, 52626}, {5905, 37674}, {6356, 36748}, {6542, 49722}, {6549, 24281}, {6646, 15668}, {7146, 53546}, {7179, 37637}, {7229, 48635}, {8557, 60953}, {9965, 17056}, {10708, 61073}, {13329, 59380}, {15492, 20195}, {16814, 60977}, {16826, 24441}, {17120, 48629}, {17160, 50133}, {17254, 41847}, {17259, 17347}, {17262, 17300}, {17265, 17350}, {17267, 17298}, {17269, 17297}, {17273, 17327}, {17278, 60980}, {17284, 31138}, {17288, 17293}, {17292, 51186}, {17296, 53664}, {17303, 53598}, {17309, 17375}, {17314, 32093}, {17323, 17379}, {17344, 25590}, {17362, 31995}, {17367, 51185}, {17369, 21358}, {17487, 29589}, {19297, 24328}, {21010, 24405}, {21279, 53421}, {21454, 37662}, {24231, 38315}, {24331, 28558}, {24593, 30824}, {24692, 48829}, {24695, 25557}, {24841, 50790}, {26626, 49741}, {28043, 44785}, {28333, 34824}, {29569, 49748}, {29579, 49726}, {29611, 50993}, {29615, 50989}, {29617, 51188}, {29676, 33097}, {30811, 31029}, {30833, 54389}, {31019, 31187}, {31140, 54352}, {31164, 37520}, {32935, 49769}, {37580, 38530}, {42314, 60883}, {49483, 51051}, {50098, 52709}, {51099, 53534}

X(62223) = reflection of X(i) in X(j) for these {i,j}: {45, 4675}, {4675, 4896}, {17119, 42697}, {54280, 34824}
X(62223) = crossdifference of every pair of points on line {926, 58158}
X(62223) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 4644, 1086}, {7, 17365, 6}, {69, 7228, 17118}, {320, 4363, 599}, {320, 50128, 4363}, {599, 4363, 61321}, {894, 7232, 3763}, {894, 17227, 61344}, {1086, 4644, 6}, {1086, 17365, 4644}, {3664, 17276, 16777}, {3664, 60962, 17276}, {3729, 17376, 17311}, {3758, 17290, 47352}, {4000, 7277, 6}, {4361, 17364, 6144}, {4419, 17392, 16672}, {4440, 17378, 17318}, {4648, 17334, 16675}, {4648, 20059, 17334}, {4659, 17374, 50087}, {4667, 4887, 17301}, {4670, 17274, 17325}, {4888, 60933, 37}, {7222, 21296, 594}, {7232, 61344, 17227}, {7321, 17364, 4361}, {10436, 17345, 17253}, {17116, 17361, 4445}, {17227, 61344, 3763}, {17298, 17351, 17267}, {17347, 26806, 17259}


X(62224) = X(2)X(4478)∩X(6)X(8)

Barycentrics    3*a^2 - 2*b^2 - 4*b*c - 2*c^2 : :
X(62224) = 4 X[5257] - 3 X[16777], 2 X[5257] - 3 X[17275], 4 X[7231] - 5 X[17118], 2 X[7231] - 5 X[42696]

X(62224) lies on these lines:: {2, 4478}, {6, 8}, {7, 15533}, {9, 4677}, {10, 4545}, {37, 3632}, {44, 4007}, {45, 3625}, {69, 4399}, {75, 40341}, {142, 50076}, {145, 1213}, {193, 4665}, {239, 3763}, {319, 599}, {391, 3943}, {519, 5257}, {524, 7231}, {572, 59503}, {573, 12645}, {894, 15534}, {952, 37499}, {956, 1030}, {966, 3621}, {1086, 4371}, {1100, 3679}, {1449, 4668}, {1654, 17318}, {1992, 7227}, {2285, 36920}, {2321, 4701}, {2968, 36748}, {3052, 4046}, {3434, 53421}, {3553, 4915}, {3554, 4882}, {3617, 17398}, {3618, 48636}, {3620, 4395}, {3626, 17303}, {3630, 42697}, {3631, 4405}, {3633, 3723}, {3661, 47355}, {3705, 37637}, {3731, 4727}, {3759, 17293}, {3815, 7172}, {3875, 4690}, {3879, 28634}, {3969, 19723}, {4030, 31477}, {4058, 4700}, {4060, 17281}, {4254, 59235}, {4357, 50120}, {4360, 17251}, {4363, 5564}, {4384, 17311}, {4393, 17327}, {4402, 48632}, {4431, 49721}, {4460, 4748}, {4464, 41312}, {4657, 49770}, {4669, 5750}, {4678, 61313}, {4698, 29605}, {4725, 10436}, {4733, 50284}, {4746, 4856}, {4851, 50095}, {4852, 17270}, {4873, 15492}, {4889, 16831}, {4971, 17257}, {5015, 44518}, {5069, 52959}, {5110, 5774}, {5124, 5687}, {5222, 48635}, {5224, 20016}, {5227, 7297}, {5232, 17395}, {5275, 33090}, {5296, 50113}, {5697, 21873}, {5742, 20013}, {5816, 5844}, {6329, 61343}, {6539, 19738}, {6542, 17259}, {6646, 50088}, {6748, 7046}, {7081, 31489}, {7228, 20080}, {7232, 17117}, {8148, 32431}, {8252, 56386}, {8253, 56385}, {9761, 46175}, {9763, 46176}, {12513, 21773}, {15668, 17377}, {16644, 40714}, {16645, 40713}, {16666, 59772}, {16673, 50123}, {16675, 17314}, {16815, 17386}, {16816, 17265}, {16833, 17231}, {16834, 17239}, {16975, 21858}, {17045, 50129}, {17121, 48630}, {17135, 37673}, {17151, 17344}, {17160, 17255}, {17243, 50079}, {17262, 17346}, {17267, 17294}, {17269, 17349}, {17271, 17323}, {17277, 17309}, {17282, 50081}, {17287, 17290}, {17291, 51186}, {17313, 17373}, {17328, 24441}, {17337, 29616}, {17340, 37654}, {17365, 32087}, {17366, 21358}, {17368, 51185}, {17376, 31139}, {17380, 40891}, {17381, 51353}, {18526, 37508}, {19732, 20017}, {20046, 41809}, {20174, 24524}, {21027, 32852}, {21793, 32864}, {26685, 50097}, {29630, 48640}, {31187, 33077}, {35578, 51187}, {46845, 51093}, {49486, 50308}, {49509, 49690}, {50100, 61000}, {50128, 51188}

X(62224) = reflection of X(i) in X(j) for these {i,j}: {16777, 17275}, {17118, 42696}
X(62224) = crossdifference of every pair of points on line {6371, 58182}
X(62224) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 5839, 594}, {8, 17362, 6}, {44, 4007, 53664}, {69, 4399, 17119}, {239, 4445, 3763}, {319, 4361, 599}, {319, 29617, 4361}, {594, 5839, 6}, {594, 17362, 5839}, {966, 3621, 17388}, {966, 17388, 16672}, {2345, 4969, 6}, {3625, 3686, 17299}, {3632, 4034, 37}, {3686, 17299, 45}, {3759, 17293, 47352}, {3759, 29615, 17293}, {3875, 4690, 17253}, {4363, 17363, 6144}, {4371, 32099, 1086}, {4384, 17372, 17311}, {4393, 32025, 17327}, {4677, 50082, 50087}, {4852, 17270, 17325}, {5564, 17363, 4363}, {16816, 17295, 17265}, {17117, 17360, 7232}, {17121, 48630, 61344}, {17151, 17344, 49747}, {17160, 17343, 17255}, {17277, 20055, 17309}, {17294, 17348, 17267}, {17314, 17330, 16675}, {17344, 50085, 17151}


X(62225) = X(8)X(15533)∩X(75)X(141)

Barycentrics    b^2 + 10*b*c + c^2 : :

X(62225) lies on these lines:: {8, 15533}, {10, 28554}, {75, 141}, {536, 24603}, {599, 52709}, {903, 51353}, {1213, 4686}, {1992, 4363}, {3617, 49747}, {3696, 49536}, {3758, 4405}, {3875, 4798}, {3943, 4688}, {4361, 51171}, {4364, 4740}, {4370, 4384}, {4393, 10022}, {4395, 29630}, {4399, 7277}, {4407, 4733}, {4409, 4643}, {4415, 4980}, {4431, 4739}, {4470, 50120}, {4472, 17160}, {4478, 7321}, {4644, 6144}, {4659, 17330}, {4667, 50085}, {4670, 50099}, {4690, 50119}, {4708, 4726}, {4714, 52626}, {4772, 17243}, {4908, 31211}, {4971, 29588}, {5222, 17119}, {5564, 7228}, {6542, 49733}, {6703, 19833}, {7227, 17117}, {7231, 17363}, {7238, 29615}, {16816, 49726}, {16826, 28309}, {17151, 17398}, {17256, 28297}, {17281, 31183}, {17334, 28634}, {17365, 20080}, {17366, 61344}, {17388, 25590}, {17392, 29605}, {17395, 29603}, {29572, 34824}, {29593, 49741}, {29616, 31139}, {29624, 50113}, {29625, 49738}, {55955, 60710}

X(62225) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 4665, 1086}, {75, 48628, 7263}, {1086, 4665, 594}, {1086, 48635, 17227}, {4363, 50098, 4969}, {4399, 17116, 7277}, {4431, 4739, 17245}, {4470, 50120, 61302}, {4665, 7263, 61343}, {4665, 61343, 48628}, {4726, 4967, 17246}, {7263, 17227, 1086}, {7263, 48628, 48635}, {7263, 61343, 17227}, {17118, 32087, 17362}, {17227, 48628, 61343}, {17227, 61343, 48635}, {48628, 48635, 594}


X(62226) = X(2)X(3993)∩X(10)X(321)

Barycentrics    (b + c)*(a*b + a*c + 3*b*c) : :
X(62226) = X[7226] + 3 X[28605], X[7226] - 3 X[31330], 3 X[31993] - X[37593], 2 X[37593] - 3 X[43223]

X(62226) lies on these lines:: {2, 3993}, {8, 32946}, {10, 321}, {37, 24060}, {38, 4980}, {42, 4709}, {75, 982}, {171, 55095}, {192, 59312}, {210, 4732}, {226, 7235}, {310, 59505}, {319, 33097}, {519, 32771}, {561, 20888}, {594, 2887}, {726, 7226}, {740, 31993}, {984, 42029}, {1125, 32915}, {1211, 48643}, {1215, 3696}, {1654, 33099}, {1698, 41839}, {1836, 50308}, {1999, 24342}, {2321, 29653}, {2345, 25453}, {2886, 4665}, {3120, 56810}, {3175, 3842}, {3187, 33682}, {3626, 3681}, {3661, 17889}, {3679, 32937}, {3687, 25385}, {3706, 4883}, {3721, 22206}, {3739, 25501}, {3742, 4739}, {3773, 3925}, {3775, 3782}, {3831, 28612}, {3840, 4359}, {3875, 29644}, {3879, 23812}, {3886, 29651}, {3923, 5271}, {3930, 4058}, {3932, 48644}, {3980, 11679}, {3995, 27812}, {4011, 4384}, {4037, 5257}, {4042, 32935}, {4090, 4651}, {4104, 21093}, {4361, 25496}, {4362, 5269}, {4363, 32853}, {4385, 31327}, {4415, 4733}, {4438, 50048}, {4669, 31161}, {4671, 26037}, {4694, 50608}, {4699, 26102}, {4703, 17275}, {4734, 29825}, {4847, 20237}, {4848, 7211}, {4854, 50298}, {4871, 19804}, {4886, 33096}, {4967, 24210}, {4981, 49520}, {5224, 33154}, {5235, 32936}, {5249, 49560}, {5295, 49598}, {5564, 32861}, {5737, 32934}, {6535, 21027}, {6539, 34475}, {6682, 42051}, {6685, 32860}, {7244, 60735}, {8013, 26580}, {9148, 22043}, {9335, 30942}, {10180, 49462}, {11269, 19825}, {16606, 22184}, {17116, 32913}, {17117, 29821}, {17135, 49479}, {17140, 31136}, {17147, 30970}, {17160, 17600}, {17164, 59307}, {17165, 49510}, {17289, 33132}, {17490, 29827}, {17495, 31241}, {19701, 50281}, {19808, 33135}, {19822, 29635}, {19862, 56221}, {20292, 50304}, {20911, 21416}, {21026, 48648}, {21071, 52579}, {21084, 40564}, {21241, 21829}, {21443, 40087}, {21820, 24044}, {21949, 28595}, {21951, 22171}, {24168, 50605}, {24295, 26723}, {24552, 50023}, {24692, 33080}, {24703, 28634}, {25590, 39594}, {26098, 42696}, {27478, 31027}, {28522, 28606}, {28611, 46827}, {29846, 46918}, {32772, 49477}, {32857, 37653}, {32914, 49482}, {33066, 42334}, {33107, 41821}, {43534, 60267}, {43997, 58820}, {50018, 61358}, {50096, 59511}, {51863, 60719}

X(62226) = midpoint of X(28605) and X(31330)
X(62226) = reflection of X(43223) in X(31993)
X(62226) = X(46772)-Ceva conjugate of X(10)
X(62226) = X(i)-isoconjugate of X(j) for these (i,j): {58, 39972}, {1333, 39738}, {2206, 56212}, {3733, 29199}
X(62226) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 39972}, {37, 39738}, {40603, 56212}
X(62226) = barycentric product X(i)*X(j) for these {i,j}: {10, 4699}, {321, 26102}, {3952, 48399}, {4033, 29198}
X(62226) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 39738}, {37, 39972}, {321, 56212}, {1018, 29199}, {4699, 86}, {26102, 81}, {29198, 1019}, {48399, 7192}
X(62226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4365, 3993}, {2, 49474, 4970}, {10, 321, 3971}, {10, 4135, 756}, {38, 4980, 50117}, {42, 17163, 4709}, {75, 3741, 24165}, {321, 756, 4135}, {321, 21020, 10}, {756, 4135, 3971}, {1215, 3696, 4685}, {1215, 4457, 4849}, {3696, 4849, 4457}, {3706, 24325, 42057}, {3995, 27812, 59306}, {4457, 4849, 4685}, {4671, 26037, 59517}, {8013, 48642, 26580}, {17163, 31025, 42}, {48643, 50312, 1211}


X(62227) = X(1)X(19741)∩X(2)X(37)

Barycentrics    (b + c)*(-a^2 - a*b - a*c + 3*b*c) : :
X(62227) = 3 X[2] - 4 X[4358], 9 X[2] - 8 X[16610], 3 X[4358] - 2 X[16610], 4 X[16610] - 3 X[17495], 3 X[17154] - 4 X[17449], 2 X[17449] - 3 X[29824], 3 X[3952] - 2 X[21805], 4 X[3994] - X[19998], 3 X[3994] - X[21805], 3 X[19998] - 4 X[21805], 4 X[17460] - 3 X[20039], 3 X[31855] - 4 X[52872]

X(62227) lies on these lines:: {1, 19741}, {2, 37}, {8, 3159}, {10, 27797}, {42, 4135}, {72, 3621}, {144, 31303}, {145, 2901}, {149, 50747}, {190, 16704}, {239, 32094}, {244, 28516}, {306, 4072}, {329, 20017}, {514, 4024}, {516, 50000}, {518, 49980}, {519, 39699}, {537, 17145}, {538, 31061}, {594, 27081}, {726, 17154}, {740, 3952}, {756, 4732}, {894, 26860}, {899, 28522}, {908, 22031}, {975, 19337}, {1089, 4868}, {1150, 17262}, {1215, 21806}, {1449, 19743}, {1743, 3187}, {1757, 17162}, {1824, 7408}, {1897, 14954}, {2229, 20688}, {2321, 26580}, {3120, 6541}, {3218, 30579}, {3219, 18163}, {3294, 16816}, {3685, 20045}, {3790, 31079}, {3842, 27812}, {3891, 4387}, {3896, 3967}, {3912, 31647}, {3932, 4442}, {3936, 3943}, {3948, 52959}, {3950, 4054}, {3969, 4415}, {3970, 29583}, {3971, 4365}, {3993, 29822}, {4009, 28484}, {4058, 4656}, {4062, 21093}, {4066, 26115}, {4115, 40891}, {4189, 56538}, {4360, 41242}, {4425, 6535}, {4427, 17763}, {4434, 4781}, {4439, 33136}, {4519, 46909}, {4552, 18593}, {4645, 44006}, {4659, 26627}, {4678, 5295}, {4693, 32927}, {4852, 41241}, {4972, 6057}, {6539, 30582}, {7206, 36250}, {7230, 27040}, {7283, 17539}, {8025, 34064}, {10453, 20068}, {16705, 33775}, {16777, 19740}, {16884, 19717}, {16885, 19742}, {16975, 31036}, {17021, 17116}, {17029, 61163}, {17117, 35595}, {17135, 32925}, {17140, 17450}, {17146, 49532}, {17150, 32930}, {17160, 37680}, {17165, 32915}, {17230, 21070}, {17233, 31017}, {17242, 31019}, {17300, 40085}, {17310, 22035}, {17314, 31034}, {17316, 22048}, {17355, 29833}, {17460, 20039}, {17491, 32846}, {17770, 49995}, {17777, 32842}, {17780, 24428}, {18145, 40089}, {18359, 50039}, {18600, 33939}, {19284, 50044}, {19874, 42031}, {20009, 50322}, {20011, 32937}, {20016, 21839}, {20040, 25253}, {20078, 22001}, {20081, 22036}, {20290, 33099}, {21061, 25269}, {21282, 32847}, {21935, 27708}, {22010, 31053}, {22011, 24049}, {22012, 24077}, {22021, 40903}, {22022, 24048}, {22029, 36591}, {22039, 40906}, {24044, 29591}, {26758, 33077}, {26771, 28654}, {26844, 36791}, {27064, 45222}, {27801, 30638}, {28526, 49990}, {28599, 33095}, {29653, 48642}, {30939, 39698}, {30942, 49445}, {30950, 50117}, {31136, 49520}, {31161, 49471}, {31855, 52872}, {32931, 49452}, {32933, 37639}, {33761, 55095}, {39740, 56039}, {39995, 39997}, {41226, 46785}, {46897, 49462}, {52049, 53363}, {52137, 61403}, {53114, 56281}, {56209, 60267}, {60723, 61157}

X(62227) = reflection of X(i) in X(j) for these {i,j}: {3952, 3994}, {17154, 29824}, {17495, 4358}, {19998, 3952}
X(62227) = anticomplement of X(17495)
X(62227) = anticomplement of the isotomic conjugate of X(39698)
X(62227) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {39698, 6327}, {40039, 315}, {53685, 20295}, {59072, 75}
X(62227) = X(i)-Ceva conjugate of X(j) for these (i,j): {903, 10}, {17160, 31855}, {39698, 2}
X(62227) = X(i)-isoconjugate of X(j) for these (i,j): {58, 39982}, {1333, 39697}, {2206, 39994}, {52680, 60809}
X(62227) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 39982}, {37, 39697}, {3943, 519}, {40603, 39994}
X(62227) = trilinear pole of line {4145, 21714}
X(62227) = crossdifference of every pair of points on line {667, 2308}
X(62227) = barycentric product X(i)*X(j) for these {i,j}: {10, 17160}, {37, 18145}, {42, 40089}, {75, 31855}, {99, 21714}, {190, 59737}, {310, 58292}, {313, 40091}, {321, 37680}, {668, 4145}, {740, 40095}, {903, 52872}, {1018, 21606}, {3952, 21297}, {4033, 21385}, {4491, 27808}, {27801, 33882}
X(62227) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 39697}, {37, 39982}, {321, 39994}, {4145, 513}, {4491, 3733}, {17160, 86}, {18145, 274}, {21297, 7192}, {21385, 1019}, {21606, 7199}, {21714, 523}, {23141, 7254}, {31855, 1}, {33882, 1333}, {37680, 81}, {40089, 310}, {40091, 58}, {40095, 18827}, {52872, 519}, {58292, 42}, {59737, 514}
X(62227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 321, 31025}, {37, 31025, 2}, {75, 31035, 2}, {192, 4671, 2}, {312, 3644, 4850}, {312, 17147, 2}, {312, 42044, 17147}, {321, 3175, 3995}, {321, 3995, 2}, {321, 4043, 4671}, {2901, 56318, 145}, {3175, 22034, 321}, {3644, 4850, 17147}, {3790, 33134, 31079}, {3969, 4415, 31037}, {3971, 4365, 4651}, {3995, 31025, 37}, {4358, 17495, 2}, {4519, 49523, 46909}, {4850, 42044, 3644}, {17233, 33151, 31017}, {17280, 33155, 2}, {17490, 46938, 2}, {28605, 41839, 2}, {32849, 37759, 2}


X(62228) = X(8)X(1992)∩X(75)X(141)

Barycentrics    (2*b + c)*(b + 2*c) : :

X(62228) lies on these lines:: {8, 1992}, {9, 52885}, {10, 4664}, {75, 141}, {86, 4007}, {190, 3679}, {192, 4708}, {239, 47352}, {319, 4644}, {536, 17250}, {662, 4390}, {894, 6144}, {1125, 50121}, {1268, 3247}, {1278, 17239}, {1698, 4535}, {2321, 4687}, {2345, 3759}, {2643, 59261}, {3617, 17256}, {3626, 17346}, {3632, 46922}, {3634, 50110}, {3644, 4431}, {3687, 60267}, {3723, 30598}, {3729, 17328}, {3739, 17240}, {3790, 4733}, {3875, 17400}, {3943, 29576}, {4058, 4751}, {4060, 17377}, {4102, 5287}, {4357, 4764}, {4360, 29603}, {4361, 17371}, {4363, 15533}, {4377, 28605}, {4384, 17342}, {4395, 29613}, {4399, 17368}, {4407, 49447}, {4439, 50312}, {4445, 17116}, {4461, 17258}, {4470, 50079}, {4472, 17389}, {4473, 17281}, {4478, 17364}, {4643, 51353}, {4659, 17271}, {4668, 50127}, {4670, 20055}, {4678, 54280}, {4686, 17238}, {4688, 17230}, {4691, 50093}, {4699, 17229}, {4726, 17236}, {4727, 29570}, {4739, 17232}, {4740, 17237}, {4772, 17231}, {4798, 17299}, {4821, 17235}, {4908, 41848}, {4971, 17397}, {5222, 17289}, {6539, 28606}, {6542, 41847}, {7227, 17363}, {7918, 33941}, {10436, 17386}, {15668, 29625}, {16673, 31248}, {16706, 32087}, {16815, 17269}, {16816, 17359}, {16826, 50087}, {17023, 50088}, {17117, 17293}, {17118, 17287}, {17119, 17292}, {17151, 17307}, {17160, 17308}, {17244, 50097}, {17260, 53664}, {17270, 17329}, {17275, 17336}, {17280, 28634}, {17286, 17341}, {17294, 17387}, {17295, 25590}, {17301, 29591}, {17303, 17393}, {17314, 28653}, {17315, 29624}, {17318, 29610}, {17354, 50095}, {17367, 50098}, {17369, 29617}, {17374, 39704}, {17395, 29608}, {19876, 31332}, {21356, 52709}, {21868, 56210}, {26039, 50129}, {26738, 31025}, {27268, 28633}, {29577, 34824}, {29604, 50099}, {29609, 61313}, {29611, 37756}, {29612, 50113}, {29614, 50120}, {29618, 49738}, {33151, 42029}, {37212, 41423}, {38191, 49772}, {41152, 49727}, {42697, 50994}, {49450, 49536}, {52335, 60668}

X(62228) = reflection of X(17250) in X(29593)
X(62228) = isotomic conjugate of the isogonal conjugate of X(9331)
X(62228) = barycentric product X(i)*X(j) for these {i,j}: {75, 9330}, {76, 9331}, {190, 48423}
X(62228) = barycentric quotient X(i)/X(j) for these {i,j}: {9330, 1}, {9331, 6}, {9334, 9332}, {48423, 514}
X(62228) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3758, 50077}, {75, 594, 48630}, {75, 3661, 17227}, {75, 17228, 48629}, {75, 48630, 17228}, {75, 48637, 7263}, {75, 48638, 48627}, {75, 48639, 1086}, {75, 48640, 3662}, {594, 1086, 61343}, {594, 4665, 3661}, {594, 48628, 75}, {1086, 3661, 48639}, {1086, 48639, 17227}, {1086, 61343, 3661}, {1278, 17239, 17249}, {2345, 5564, 3759}, {3617, 50107, 17256}, {3661, 4665, 75}, {3661, 17227, 17228}, {3661, 48628, 4665}, {3662, 48636, 48640}, {3729, 32025, 17328}, {3943, 29576, 51488}, {4058, 4967, 17233}, {4363, 29615, 17360}, {4431, 5224, 3644}, {4445, 17116, 17361}, {4665, 61343, 1086}, {4670, 20055, 50132}, {4699, 17229, 17241}, {4798, 17299, 29588}, {4798, 29588, 17394}, {4967, 17233, 4751}, {7263, 48634, 48637}, {17117, 17293, 17370}, {17160, 17308, 17399}, {17227, 48630, 3661}, {17299, 28604, 17394}, {28604, 29588, 4798}, {48627, 48635, 48638}


X(62229) = X(2)X(4398)∩X(7)X(34064)

Barycentrics    a^2*b + 2*a*b^2 + b^3 + a^2*c + a*b*c - 2*b^2*c + 2*a*c^2 - 2*b*c^2 + c^3 : :
X(62229) = 3 X[32773] - 2 X[33169], 3 X[33154] - X[33169]

X(62229) lies on these lines:: {2, 4398}, {7, 34064}, {9, 19796}, {190, 19785}, {192, 3782}, {306, 3644}, {312, 3663}, {321, 4389}, {329, 50101}, {333, 4419}, {536, 27184}, {726, 32773}, {894, 50068}, {940, 4440}, {1086, 41839}, {1211, 1278}, {1266, 4656}, {1992, 20214}, {1999, 17276}, {2796, 17716}, {2887, 49445}, {3159, 33833}, {3175, 3662}, {3187, 17347}, {3210, 4415}, {3219, 49748}, {3305, 37756}, {3729, 19786}, {3752, 27130}, {3759, 17781}, {3875, 33066}, {3891, 33100}, {3914, 49447}, {3971, 33149}, {3982, 29574}, {3993, 33103}, {3994, 33125}, {3995, 17234}, {4135, 33174}, {4346, 18141}, {4357, 42029}, {4360, 5905}, {4384, 19820}, {4388, 49453}, {4417, 17147}, {4425, 49493}, {4429, 32925}, {4442, 7226}, {4452, 14555}, {4514, 49446}, {4659, 19808}, {4664, 5249}, {4854, 24349}, {4886, 17151}, {4970, 33101}, {5224, 28605}, {5271, 17258}, {5287, 7321}, {5739, 17160}, {16706, 56082}, {17184, 17233}, {17235, 22034}, {17247, 31993}, {17255, 37653}, {17261, 24789}, {17277, 19789}, {17301, 27064}, {17318, 17778}, {17334, 37652}, {17335, 19831}, {17336, 19830}, {17352, 33150}, {17354, 32774}, {17361, 50292}, {17365, 58820}, {17377, 32859}, {17378, 17483}, {17380, 26223}, {17889, 49456}, {18136, 59761}, {19828, 25728}, {20078, 41629}, {24177, 30829}, {24248, 32926}, {25527, 42033}, {26580, 50106}, {26746, 57037}, {26840, 49747}, {28516, 32778}, {28522, 33084}, {29641, 49523}, {29664, 48645}, {29673, 49517}, {32865, 49520}, {32921, 33099}, {32923, 49746}, {32928, 33098}, {32933, 33155}, {32934, 33152}, {32936, 33143}, {33064, 49452}, {33095, 49455}, {37595, 50128}, {41816, 42696}, {42034, 54311}, {44307, 48627}

X(62229) = reflection of X(32773) in X(33154)
X(62229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {192, 3782, 18134}, {1266, 4656, 19804}, {3210, 4415, 5233}, {3995, 33146, 17234}, {4419, 30699, 333}, {5905, 50071, 4360}, {17147, 33151, 4417}, {17184, 42044, 17233}, {17336, 19830, 26723}, {25527, 55998, 42033}, {32925, 33145, 4429}


X(62230) = X(2)X(16669)∩X(81)X(320)

Barycentrics    3*a^3 + 3*a^2*b - a*b^2 - b^3 + 3*a^2*c + 3*a*b*c - a*c^2 - c^3 : :

X(62230) lies on these lines:: {2, 16669}, {7, 19796}, {8, 19833}, {63, 17378}, {69, 19808}, {81, 320}, {86, 4001}, {193, 19804}, {312, 4644}, {319, 19797}, {333, 3664}, {524, 4886}, {527, 34064}, {940, 17364}, {1100, 26840}, {1961, 17771}, {1992, 9776}, {1999, 17365}, {3175, 31300}, {3187, 7321}, {3218, 42045}, {3219, 17317}, {3666, 20090}, {3874, 7186}, {3879, 32939}, {4038, 17770}, {4357, 42028}, {4359, 20086}, {4641, 17300}, {4649, 33068}, {4664, 20078}, {4670, 37653}, {4675, 37652}, {4851, 42033}, {5249, 41629}, {5287, 17347}, {5294, 17297}, {6646, 37595}, {7277, 27064}, {8025, 17322}, {9332, 29645}, {14996, 32859}, {16706, 37685}, {17019, 17258}, {17121, 40688}, {17276, 58820}, {17289, 32863}, {17315, 32933}, {17360, 19822}, {17373, 50048}, {17375, 32777}, {17387, 17776}, {17778, 32851}, {18134, 56519}, {19723, 27147}, {19750, 29628}, {19828, 33146}, {19832, 21296}, {19837, 56810}, {20069, 28582}, {20072, 44307}, {20101, 49478}, {22128, 56439}, {26842, 37756}, {32093, 37666}, {32913, 33073}, {32949, 33121}, {37631, 38000}, {46922, 54311}

X(62230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 320, 19786}, {940, 17364, 33066}, {3187, 7321, 19820}


X(62231) = X(1)X(4407)∩X(6)X(319)

Barycentrics    3*a^2 - b^2 - b*c - c^2 : :
X(62231) = 6 X[44] - 5 X[4473], 4 X[44] - 3 X[17264], 5 X[4473] - 3 X[6542], 10 X[4473] - 9 X[17264], 2 X[6542] - 3 X[17264], 3 X[238] - 2 X[49764], 3 X[239] - 2 X[1086], 5 X[239] - 4 X[4395], 7 X[239] - 4 X[7238], 4 X[239] - 3 X[37756], 3 X[320] - 4 X[1086], 5 X[320] - 8 X[4395], X[320] - 4 X[4969], and many others

X(62231) lies on these lines:: {1, 4407}, {2, 4690}, {6, 319}, {7, 11008}, {8, 1992}, {9, 17315}, {10, 46922}, {37, 29588}, {44, 4473}, {45, 17389}, {69, 3759}, {75, 193}, {81, 4886}, {86, 3686}, {141, 17121}, {144, 3644}, {145, 4664}, {190, 519}, {238, 49754}, {239, 320}, {344, 17386}, {391, 4687}, {518, 25048}, {527, 17160}, {536, 20016}, {594, 17120}, {597, 17292}, {599, 17367}, {648, 5081}, {662, 3684}, {742, 49715}, {752, 50016}, {894, 3629}, {896, 14459}, {966, 17394}, {1100, 1654}, {1125, 31144}, {1266, 50019}, {1447, 50251}, {1449, 5224}, {1647, 3570}, {1743, 17233}, {1757, 4439}, {2234, 4489}, {2238, 30967}, {2323, 37774}, {2325, 49761}, {2345, 51170}, {2895, 19786}, {3008, 17297}, {3187, 33066}, {3244, 50093}, {3248, 3783}, {3578, 17011}, {3589, 17287}, {3618, 17228}, {3620, 17370}, {3621, 50107}, {3630, 17288}, {3631, 17291}, {3632, 50127}, {3633, 50121}, {3662, 40341}, {3672, 17329}, {3687, 41629}, {3705, 14614}, {3707, 29574}, {3739, 20090}, {3791, 33126}, {3797, 31310}, {3834, 29590}, {3875, 17347}, {3879, 17277}, {3882, 45751}, {3912, 4700}, {3943, 28337}, {3945, 4751}, {3946, 17273}, {3975, 30939}, {4000, 17361}, {4357, 4856}, {4359, 20086}, {4360, 4416}, {4361, 6144}, {4363, 15534}, {4364, 29584}, {4384, 17378}, {4389, 16834}, {4393, 4643}, {4399, 7277}, {4405, 49727}, {4419, 50129}, {4422, 17310}, {4440, 4715}, {4480, 17133}, {4657, 17343}, {4659, 50088}, {4667, 50095}, {4670, 50082}, {4675, 16816}, {4686, 31300}, {4716, 17770}, {4741, 17301}, {4753, 32847}, {4798, 17275}, {4850, 31303}, {4851, 17263}, {4852, 6646}, {4889, 16814}, {4911, 7877}, {4938, 29632}, {5015, 7760}, {5057, 17162}, {5232, 17400}, {5263, 51196}, {5749, 48630}, {5750, 32025}, {5846, 49698}, {5847, 32850}, {6172, 20050}, {6329, 48635}, {7081, 41624}, {8584, 17369}, {9355, 28870}, {15533, 17290}, {16477, 49560}, {16522, 16826}, {16667, 17270}, {16668, 17239}, {16669, 17280}, {16670, 17294}, {16671, 17229}, {16704, 32851}, {16777, 17331}, {16815, 17392}, {16884, 17248}, {16885, 17242}, {17014, 17399}, {17023, 17271}, {17045, 17252}, {17117, 17365}, {17119, 50128}, {17230, 50076}, {17234, 31183}, {17237, 50124}, {17240, 26685}, {17241, 37650}, {17250, 26626}, {17251, 17397}, {17253, 17396}, {17254, 17395}, {17257, 17393}, {17259, 17391}, {17260, 17390}, {17261, 17388}, {17272, 17380}, {17278, 17375}, {17279, 17373}, {17281, 20055}, {17295, 17353}, {17296, 17352}, {17299, 17350}, {17300, 17348}, {17302, 17344}, {17303, 37677}, {17305, 50114}, {17309, 17339}, {17311, 17338}, {17312, 17337}, {17313, 29628}, {17314, 17336}, {17316, 17335}, {17318, 17333}, {17319, 17332}, {17321, 17328}, {17341, 30833}, {17342, 29616}, {17371, 51171}, {17483, 19820}, {17720, 31056}, {17790, 25298}, {19796, 32859}, {19808, 37685}, {19998, 22323}, {20017, 42033}, {20046, 42044}, {20058, 42720}, {20536, 26081}, {20955, 30892}, {21296, 48629}, {23659, 24437}, {24692, 50021}, {24715, 50018}, {24723, 49488}, {24841, 50017}, {25278, 41316}, {26044, 37869}, {26738, 31034}, {27191, 41140}, {27495, 36409}, {29569, 50125}, {29578, 49731}, {29585, 51488}, {29587, 50081}, {29592, 52706}, {29601, 60986}, {29609, 61302}, {29611, 59373}, {29613, 47352}, {29620, 31285}, {29659, 50283}, {29676, 32853}, {29833, 31143}, {31029, 33129}, {32029, 50026}, {32845, 49985}, {32846, 49769}, {32852, 33118}, {32861, 33121}, {32864, 33073}, {32922, 34379}, {32939, 50306}, {33076, 49685}, {33082, 49489}, {33116, 37652}, {33682, 42334}, {33891, 50248}, {36494, 49498}, {36531, 50309}, {36534, 47356}, {45222, 50277}, {45420, 56385}, {45421, 56386}, {47355, 48634}, {49450, 51192}, {50079, 54389}, {55393, 56013}

X(62231) = midpoint of X(20016) and X(20072)
X(62231) = reflection of X(i) in X(j) for these {i,j}: {239, 4969}, {320, 239}, {1266, 50019}, {3912, 4700}, {4693, 49710}, {6542, 44}, {17160, 49770}, {24692, 50021}, {24715, 50018}, {24841, 50017}, {32029, 50026}, {32847, 4753}, {49761, 2325}
X(62231) = anticomplement of X(17374)
X(62231) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17346, 17256}, {6, 319, 17289}, {6, 4445, 17368}, {6, 17363, 319}, {8, 1992, 3758}, {9, 17377, 17315}, {44, 6542, 17264}, {69, 3759, 16706}, {69, 5222, 17227}, {145, 54280, 4664}, {193, 5839, 75}, {239, 320, 37756}, {594, 32455, 17120}, {894, 17362, 5564}, {1100, 1654, 17322}, {1100, 4708, 29586}, {1654, 29586, 4708}, {3618, 32099, 17228}, {3629, 17362, 894}, {3630, 17366, 17288}, {3758, 50077, 8}, {3759, 17227, 5222}, {3879, 17277, 17317}, {4000, 20080, 17361}, {4360, 4416, 17258}, {4361, 6144, 17364}, {4361, 17364, 7321}, {4393, 4643, 17320}, {4393, 50074, 4643}, {4399, 7277, 17116}, {4643, 50131, 4393}, {4690, 16666, 2}, {4708, 29586, 17322}, {4851, 17349, 17263}, {5222, 17227, 16706}, {16667, 17270, 17381}, {16669, 17372, 17280}, {16670, 17294, 17354}, {16816, 50133, 4675}, {17275, 17379, 28653}, {17316, 37654, 17335}, {17335, 50132, 17316}, {50074, 50131, 17320}


X(62232) = X(2)X(6)∩X(14)X(7746)

Barycentrics    7*a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 8*b^2*c^2 + 4*c^4 - 2*Sqrt[3]*a^2*S : :
X(62232) = 4 X[396] + 3 X[49906]

X(62232) lies on these lines:: {2, 6}, {3, 22510}, {13, 19780}, {14, 7746}, {18, 16529}, {32, 37832}, {115, 36967}, {187, 36969}, {231, 51276}, {381, 19781}, {616, 10617}, {619, 22866}, {621, 22847}, {1080, 53454}, {1989, 40578}, {2076, 6108}, {2963, 18814}, {3053, 37333}, {3129, 11063}, {3458, 52154}, {5007, 42488}, {5309, 16241}, {5340, 52688}, {5611, 22511}, {5617, 35006}, {5869, 54485}, {6770, 53465}, {7739, 42092}, {7745, 43104}, {7748, 42529}, {7749, 16242}, {7753, 16966}, {7772, 42936}, {7907, 30472}, {9606, 42949}, {10616, 11300}, {10645, 11648}, {11304, 22893}, {12815, 42580}, {13103, 39554}, {13881, 42154}, {14537, 41409}, {18362, 36970}, {19570, 30471}, {20425, 22238}, {21445, 41039}, {22846, 39555}, {36759, 59383}, {41121, 41408}, {41940, 42592}, {42626, 44518}, {43620, 44289}

X(62232) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {395, 396, 3180}, {590, 615, 34541}, {13846, 13847, 5859}


X(62233) = X(2)X(6)∩X(13)X(7746)

Barycentrics    7*a^4 - 5*a^2*b^2 + 4*b^4 - 5*a^2*c^2 - 8*b^2*c^2 + 4*c^4 + 2*Sqrt[3]*a^2*S : :
4 X[395] + 3 X[49905]

X(62233) lies on these lines:: {2, 6}, {3, 22511}, {13, 7746}, {14, 19781}, {17, 16530}, {32, 37835}, {115, 36968}, {187, 36970}, {231, 51269}, {381, 19780}, {383, 53465}, {617, 10616}, {618, 22911}, {622, 22893}, {1989, 40579}, {2076, 6109}, {2963, 18813}, {3053, 37332}, {3130, 11063}, {3457, 52154}, {5007, 42489}, {5309, 16242}, {5339, 52689}, {5613, 35006}, {5615, 22510}, {5868, 54484}, {6773, 53454}, {7739, 42089}, {7745, 43101}, {7748, 42528}, {7749, 16241}, {7753, 16967}, {7772, 42937}, {7907, 30471}, {9606, 42948}, {10617, 11299}, {10646, 11648}, {11303, 22847}, {12815, 42581}, {13102, 39555}, {13881, 42155}, {14537, 41408}, {18362, 36969}, {19570, 30472}, {20426, 22236}, {21445, 41038}, {22891, 39554}, {36760, 59384}, {41122, 41409}, {41940, 42593}, {42625, 44518}, {43620, 52649}

X(62233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {395, 396, 3181}, {590, 615, 34540}, {13846, 13847, 5858}


X(62234) = X(2)X(330)∩X(38)X(1920)

Barycentrics    b*c*(-(a^2*b^2) + a^2*b*c - a^2*c^2 + b^2*c^2) : :

X(62234) lies on these lines:: {1, 30964}, {2, 330}, {38, 1920}, {42, 34020}, {43, 25286}, {57, 18056}, {75, 4392}, {76, 23473}, {171, 18064}, {238, 799}, {244, 1921}, {274, 30970}, {310, 3741}, {320, 350}, {334, 3006}, {561, 982}, {668, 899}, {700, 24413}, {714, 35532}, {726, 1978}, {811, 1430}, {873, 59643}, {874, 32845}, {1278, 39467}, {1458, 4554}, {1575, 59519}, {1965, 7191}, {1966, 3218}, {1977, 39914}, {3112, 17598}, {3240, 24524}, {3662, 30632}, {3666, 18059}, {3720, 31008}, {3760, 31137}, {3761, 29827}, {3840, 18152}, {3945, 20091}, {3948, 30967}, {3952, 25302}, {4022, 6385}, {4033, 41142}, {4346, 4441}, {4358, 18149}, {4359, 51863}, {4495, 18075}, {4871, 6381}, {5211, 20345}, {6374, 17157}, {6382, 17155}, {7018, 17184}, {7196, 7247}, {7244, 33764}, {7292, 39044}, {8033, 32772}, {8620, 19565}, {10453, 17137}, {10980, 18078}, {11339, 16502}, {16610, 59526}, {16706, 18058}, {17029, 52044}, {17126, 52138}, {17135, 25293}, {17143, 31136}, {17165, 41318}, {17486, 20284}, {17495, 53363}, {17756, 17786}, {18057, 18739}, {18068, 18193}, {18135, 30947}, {18140, 30950}, {18275, 35525}, {20530, 31645}, {20889, 42038}, {20935, 37655}, {21877, 26767}, {22199, 26974}, {24165, 40087}, {24197, 41535}, {25303, 29822}, {26840, 30660}, {26959, 30955}, {30940, 32919}, {30969, 40017}, {31000, 33788}, {32035, 46150}, {32925, 59518}, {33787, 54284}, {34022, 45223}, {34086, 42027}

X(62234) = X(53641)-anticomplementary conjugate of X(69)
X(62234) = X(3227)-Ceva conjugate of X(75)
X(62234) = X(i)-isoconjugate of X(j) for these (i,j): {42, 715}, {1918, 18826}
X(62234) = X(i)-Dao conjugate of X(j) for these (i,j): {2229, 899}, {6381, 536}, {34021, 18826}, {40592, 715}
X(62234) = crossdifference of every pair of points on line {213, 8640}
X(62234) = barycentric product X(i)*X(j) for these {i,j}: {81, 35532}, {274, 714}, {310, 2229}, {514, 53366}, {1921, 36817}, {3227, 52882}
X(62234) = barycentric quotient X(i)/X(j) for these {i,j}: {81, 715}, {274, 18826}, {714, 37}, {2229, 42}, {35532, 321}, {36817, 292}, {52882, 536}, {53366, 190}
X(62234) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6384, 17149, 2}, {18149, 52049, 4358}, {24165, 59505, 40087}


X(62235) = X(1)X(21)∩X(2)X(3715)

Barycentrics    a*(a^2 + a*b - 2*b^2 + a*c + b*c - 2*c^2) : :
X(62235) = 2 X[1] - 3 X[54391], 4 X[44] - 3 X[6163], 3 X[100] - 4 X[1155], 5 X[100] - 4 X[3689], 3 X[100] - 2 X[3935], 2 X[1155] - 3 X[3218], 5 X[1155] - 3 X[3689], 5 X[3218] - 2 X[3689], 3 X[3218] - X[3935], 6 X[3689] - 5 X[3935], 3 X[104] - 2 X[35459], 5 X[3617] - 6 X[40663], X[3245] - 3 X[4880], 2 X[5057] - 3 X[10707], 3 X[10707] - 4 X[26015], 4 X[908] - 5 X[31272], 11 X[5550] - 12 X[15325], 3 X[4511] - 4 X[5126], 4 X[4973] - 3 X[13587], 3 X[5080] - 4 X[12019], 8 X[5087] - 9 X[59377], 2 X[5528] - 3 X[30295], 7 X[9780] - 6 X[17757], 2 X[6594] - 3 X[60989], 3 X[6905] - 2 X[12738], 2 X[31673] - 3 X[54154]

X(62235) lies on these lines:: {1, 21}, {2, 3715}, {6, 4392}, {7, 15346}, {8, 2094}, {9, 58607}, {11, 5852}, {42, 17593}, {44, 3290}, {45, 24512}, {55, 4430}, {57, 3681}, {69, 33089}, {72, 5253}, {88, 291}, {89, 1390}, {100, 518}, {104, 35459}, {105, 56513}, {141, 33170}, {145, 34610}, {149, 17768}, {190, 29824}, {200, 9352}, {210, 9342}, {238, 3315}, {244, 1757}, {320, 3006}, {329, 5729}, {333, 17140}, {354, 3219}, {388, 3617}, {404, 5904}, {497, 20078}, {516, 13243}, {517, 38669}, {519, 3245}, {523, 4467}, {524, 32842}, {527, 1156}, {528, 35596}, {537, 17763}, {550, 944}, {553, 25006}, {726, 32919}, {750, 49448}, {894, 46909}, {902, 49675}, {908, 5850}, {940, 7226}, {942, 5260}, {956, 1159}, {982, 32911}, {984, 37633}, {1054, 21805}, {1086, 33139}, {1150, 24349}, {1255, 3989}, {1266, 50758}, {1320, 55929}, {1376, 4661}, {1449, 39251}, {1758, 53531}, {1776, 18839}, {1788, 26482}, {1961, 42039}, {2078, 14151}, {2095, 59387}, {2177, 49498}, {2246, 3509}, {2308, 17598}, {2801, 5536}, {2810, 56878}, {2886, 17483}, {3058, 10032}, {3240, 17595}, {3242, 17126}, {3243, 35258}, {3305, 10980}, {3306, 5223}, {3333, 3951}, {3337, 3678}, {3338, 3876}, {3361, 3984}, {3434, 9965}, {3474, 49719}, {3475, 55868}, {3487, 5550}, {3555, 56288}, {3579, 10167}, {3616, 3927}, {3621, 17784}, {3625, 45287}, {3634, 5557}, {3648, 15171}, {3650, 15172}, {3660, 37787}, {3662, 33114}, {3683, 29817}, {3703, 32863}, {3705, 32859}, {3711, 61156}, {3720, 33761}, {3741, 32940}, {3742, 27065}, {3751, 4850}, {3782, 33142}, {3816, 26792}, {3840, 32938}, {3870, 3928}, {3888, 50003}, {3891, 37683}, {3925, 26842}, {3929, 4666}, {3937, 9052}, {3938, 4650}, {3957, 4640}, {3977, 4684}, {3994, 24821}, {4001, 33075}, {4003, 4663}, {4018, 4861}, {4031, 24393}, {4067, 5563}, {4084, 5288}, {4114, 61031}, {4252, 36565}, {4292, 5178}, {4310, 24597}, {4316, 9963}, {4358, 4756}, {4389, 29829}, {4414, 49490}, {4420, 37582}, {4427, 17145}, {4438, 33069}, {4440, 4442}, {4511, 5126}, {4641, 7191}, {4649, 46901}, {4652, 41863}, {4655, 33120}, {4683, 29655}, {4693, 50001}, {4722, 29821}, {4767, 5205}, {4847, 20292}, {4884, 33093}, {4912, 4956}, {4921, 32914}, {4966, 32849}, {4972, 26840}, {4973, 13587}, {5047, 18398}, {5080, 12019}, {5083, 7677}, {5086, 24391}, {5087, 59377}, {5211, 20072}, {5231, 10129}, {5235, 24325}, {5249, 43180}, {5274, 20214}, {5297, 37520}, {5303, 34772}, {5528, 30295}, {5542, 54357}, {5657, 32213}, {5694, 45977}, {5708, 5815}, {5779, 9779}, {5843, 9809}, {5905, 11680}, {6583, 6920}, {6594, 60989}, {6762, 14923}, {6905, 12738}, {6986, 12005}, {7174, 9347}, {7232, 25959}, {7277, 17726}, {7779, 60446}, {9335, 37679}, {9802, 28212}, {10308, 43741}, {10394, 54408}, {10453, 32933}, {10883, 60895}, {11019, 17781}, {11025, 61005}, {11220, 41338}, {11246, 33110}, {11269, 33151}, {11349, 50378}, {12528, 12704}, {12648, 34744}, {12701, 28646}, {13373, 26878}, {14450, 24390}, {14829, 17165}, {15481, 35595}, {16704, 17154}, {16816, 24596}, {17063, 37687}, {17127, 17597}, {17135, 32939}, {17141, 17206}, {17150, 41629}, {17155, 32853}, {17156, 50106}, {17184, 33121}, {17276, 33134}, {17288, 48647}, {17364, 33070}, {17365, 33112}, {17536, 58565}, {17591, 61358}, {17599, 37685}, {17722, 61707}, {17728, 27131}, {17770, 32844}, {17771, 32843}, {20042, 31301}, {20045, 24841}, {20067, 44669}, {20068, 32926}, {23155, 26893}, {24165, 32864}, {24231, 33129}, {24468, 33557}, {24589, 60731}, {24627, 46897}, {24723, 29835}, {24725, 29676}, {24892, 33103}, {25722, 30353}, {26227, 49499}, {26234, 60729}, {28610, 30332}, {29636, 50285}, {29662, 33101}, {29673, 33067}, {29690, 33097}, {30478, 46934}, {30628, 60990}, {30831, 33064}, {30942, 32935}, {31146, 60905}, {31204, 33130}, {31302, 37684}, {31673, 54154}, {32636, 57283}, {32779, 49511}, {32856, 33140}, {32857, 33136}, {32917, 49479}, {32936, 42057}, {33080, 33169}, {33081, 33167}, {33085, 33162}, {33086, 49524}, {33087, 33161}, {33098, 33141}, {33115, 49676}, {33124, 56520}, {33137, 33146}, {33148, 35466}, {33153, 37646}, {33163, 33172}, {33173, 44416}, {34784, 60968}, {37540, 54281}, {38460, 44663}, {39594, 42044}, {40216, 57785}, {41555, 52254}, {42014, 60984}, {42871, 61155}, {46483, 48936}, {50755, 53601}, {52255, 61011}

X(62235) = reflection of X(i) in X(j) for these {i,j}: {100, 3218}, {149, 51463}, {3935, 1155}, {5057, 26015}, {9963, 4316}, {17484, 11}, {36002, 5536}
X(62235) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1121, 21287}, {1156, 1330}, {1333, 39357}, {2291, 2895}, {34056, 2893}, {34068, 1654}, {35348, 3448}, {60047, 52364}, {60479, 21294}
X(62235) = X(6)-isoconjugate of X(60094)
X(62235) = X(9)-Dao conjugate of X(60094)
X(62235) = crossdifference of every pair of points on line {661, 1643}
X(62235) = barycentric product X(i)*X(j) for these {i,j}: {1, 17297}, {75, 5030}, {100, 48571}
X(62235) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 60094}, {5030, 1}, {17297, 75}, {48571, 693}
X(62235) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {38, 32913, 81}, {44, 3999, 7292}, {63, 3873, 1621}, {210, 27003, 9342}, {238, 17449, 3315}, {244, 1757, 37680}, {354, 3219, 5284}, {899, 18201, 88}, {982, 32912, 32911}, {1155, 3935, 100}, {1776, 18839, 53055}, {2975, 3868, 34195}, {2975, 34195, 51683}, {3218, 3935, 1155}, {3337, 3678, 17531}, {3868, 3897, 12559}, {3874, 6763, 21}, {3989, 4038, 1255}, {4003, 4663, 17012}, {4641, 21342, 7191}, {4661, 23958, 1376}, {4722, 42038, 29821}, {4860, 5220, 2}, {5057, 26015, 10707}, {5231, 31164, 10129}, {5905, 24477, 11680}, {16704, 17154, 32922}, {18201, 49712, 899}, {20068, 37639, 32926}, {28610, 36845, 44447}, {30942, 32935, 41242}, {33064, 33119, 30831}, {36263, 54352, 1}, {36845, 44447, 34611}, {37520, 49515, 5297}


X(62236) = X(1)X(4015)∩X(8)X(442)

Barycentrics    a*(a^2 - 3*a*b + 2*b^2 - 3*a*c + b*c + 2*c^2) : :
X(62236) = 4 X[908] - 3 X[10707], 7 X[1320] - 6 X[41702], 7 X[4867] - 3 X[41702], 5 X[100] - 4 X[1155], 3 X[100] - 2 X[3218], 3 X[100] - 4 X[3689], 6 X[1155] - 5 X[3218], 3 X[1155] - 5 X[3689], 2 X[1155] - 5 X[3935], X[3218] - 3 X[3935], 2 X[3689] - 3 X[3935], 4 X[214] - 3 X[54391], 5 X[4511] - 4 X[25405], 3 X[5080] - 2 X[12690], 4 X[26015] - 5 X[31272], 6 X[41555] - 7 X[60996]

X(62236) lies on these lines:: {1, 4015}, {2, 3711}, {8, 442}, {9, 1174}, {35, 51570}, {42, 17600}, {55, 4661}, {63, 31508}, {78, 61762}, {80, 519}, {81, 3961}, {88, 17449}, {100, 518}, {145, 2551}, {200, 3306}, {210, 3957}, {214, 54391}, {244, 5524}, {329, 34611}, {354, 9342}, {528, 17484}, {535, 9963}, {537, 4954}, {661, 48337}, {750, 49498}, {756, 3979}, {758, 5541}, {899, 3315}, {902, 49712}, {956, 2320}, {1100, 3920}, {1376, 4430}, {1391, 4511}, {1482, 3850}, {1538, 10698}, {1757, 3722}, {2098, 20014}, {2099, 31145}, {2177, 49448}, {2238, 16777}, {2895, 4030}, {2975, 3612}, {3006, 49698}, {3058, 26792}, {3240, 3242}, {3241, 3940}, {3434, 20015}, {3555, 4420}, {3621, 12635}, {3625, 41696}, {3632, 10129}, {3633, 5330}, {3679, 21026}, {3685, 4756}, {3699, 29824}, {3717, 50744}, {3740, 29817}, {3744, 16669}, {3748, 27065}, {3750, 33761}, {3868, 54286}, {3869, 3895}, {3871, 5904}, {3881, 17531}, {3890, 3984}, {3891, 20012}, {3911, 14151}, {3938, 32911}, {3996, 17165}, {4060, 4071}, {4090, 32943}, {4127, 37563}, {4144, 17299}, {4358, 4767}, {4414, 49503}, {4547, 5506}, {4555, 57929}, {4669, 5425}, {4671, 49460}, {4684, 49991}, {4685, 32923}, {4692, 4720}, {4711, 44840}, {4716, 49983}, {4737, 49687}, {4792, 30575}, {4819, 28503}, {4849, 7191}, {4850, 16496}, {4860, 61156}, {4863, 31053}, {4864, 7292}, {4882, 11520}, {4900, 55924}, {4917, 12526}, {4946, 49464}, {4966, 60459}, {5057, 5853}, {5080, 12690}, {5220, 61155}, {5235, 49457}, {5259, 32635}, {5260, 34790}, {5297, 49478}, {5303, 56176}, {5328, 36845}, {5375, 6603}, {5531, 36002}, {5537, 13243}, {5730, 20050}, {5844, 48667}, {5846, 56886}, {5852, 6154}, {5905, 49719}, {7411, 15104}, {7677, 37736}, {7779, 20056}, {9052, 56878}, {9053, 32842}, {9780, 50394}, {10699, 17310}, {10912, 20054}, {11523, 14923}, {11680, 25568}, {14459, 17769}, {14943, 41798}, {15570, 61686}, {15733, 56551}, {15934, 53620}, {16506, 16704}, {16610, 54309}, {17012, 21870}, {17145, 17780}, {17160, 39744}, {17483, 34612}, {17495, 24841}, {17535, 50190}, {17724, 33139}, {17765, 32843}, {17768, 20095}, {17784, 20059}, {19878, 36946}, {19998, 32922}, {20011, 32926}, {20048, 49486}, {20078, 34607}, {20085, 44669}, {26015, 31272}, {26227, 49450}, {26627, 51055}, {26842, 49732}, {27479, 49459}, {27757, 49702}, {29632, 49693}, {29673, 30831}, {29685, 31247}, {30615, 32858}, {30985, 32920}, {31143, 33076}, {32779, 49529}, {32846, 49996}, {32851, 49714}, {32917, 49510}, {32931, 49458}, {32941, 41242}, {33077, 49688}, {33115, 49697}, {33129, 49772}, {33175, 49524}, {34772, 51683}, {37633, 49490}, {40216, 57815}, {41539, 60948}, {41555, 60996}, {44447, 60957}, {54352, 56010}

X(62236) = reflection of X(i) in X(j) for these {i,j}: {100, 3935}, {1320, 4867}, {3218, 3689}, {13243, 5537}, {36002, 5531}
X(62236) = anticomplement of X(51463)
X(62236) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {88, 2890}, {1174, 30578}, {2346, 21290}
X(62236) = crossdifference of every pair of points on line {1643, 48151}
X(62236) = barycentric product X(100)*X(47772)
X(62236) = barycentric quotient X(47772)/X(693)
X(62236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4015, 17536}, {1, 21805, 37680}, {210, 3957, 5284}, {210, 42819, 35595}, {899, 49675, 3315}, {3218, 3689, 100}, {3218, 3935, 3689}, {3555, 4420, 5253}, {3681, 3870, 1621}, {3711, 41711, 42871}, {3711, 42871, 2}, {3871, 5904, 11684}, {3957, 35595, 42819}, {17449, 56009, 88}, {21870, 49465, 17012}, {35595, 42819, 5284}, {49697, 50748, 33115}


X(62237) = X(4)X(524)∩X(230)X(393)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 + b^4 + a^2*c^2 - 4*b^2*c^2 + c^4) : :

X(62237) lies on these lines:: {4, 524}, {25, 22329}, {53, 3186}, {107, 16315}, {230, 393}, {264, 305}, {297, 8754}, {317, 44369}, {338, 45279}, {385, 6995}, {403, 523}, {419, 1990}, {460, 648}, {468, 10416}, {1300, 10098}, {1596, 43976}, {1632, 16310}, {1843, 56022}, {3535, 44393}, {3536, 44400}, {3564, 20774}, {4232, 8859}, {5094, 41133}, {5140, 8681}, {5523, 52490}, {7378, 7840}, {7408, 44367}, {7409, 7779}, {7577, 44388}, {7718, 50776}, {8370, 9813}, {8541, 52281}, {8753, 17948}, {8889, 22110}, {9308, 41762}, {14165, 16316}, {16081, 16098}, {16230, 33919}, {16264, 35480}, {17907, 37453}, {18533, 33971}, {21447, 47847}, {34383, 52460}, {35481, 40879}, {36207, 44438}, {37777, 47242}, {38282, 44401}, {41139, 52290}, {44134, 57533}, {44366, 55573}, {44374, 55569}, {44377, 52299}, {49542, 50250}, {51358, 51428}, {53481, 59561}

X(62237) = midpoint of X(4) and X(38294)
X(62237) = polar-circle-inverse of X(15098)
X(62237) = polar conjugate of X(41909)
X(62237) = isotomic conjugate of the isogonal conjugate of X(5140)
X(62237) = polar conjugate of the isotomic conjugate of X(47286)
X(62237) = polar conjugate of the isogonal conjugate of X(3291)
X(62237) = X(59762)-Ceva conjugate of X(2501)
X(62237) = X(i)-isoconjugate of X(j) for these (i,j): {48, 41909}, {255, 2374}, {34161, 36060}
X(62237) = X(i)-Dao conjugate of X(j) for these (i,j): {126, 3}, {1249, 41909}, {1560, 34161}, {3291, 6390}, {6523, 2374}
X(62237) = cevapoint of X(3291) and X(5140)
X(62237) = barycentric product X(i)*X(j) for these {i,j}: {4, 47286}, {76, 5140}, {126, 17983}, {264, 3291}, {297, 36874}, {648, 9134}, {2052, 8681}, {2501, 53367}, {5523, 56685}, {11634, 14618}, {14263, 44146}, {16756, 41013}, {21905, 59762}
X(62237) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 41909}, {126, 6390}, {297, 36892}, {393, 2374}, {468, 34161}, {3291, 3}, {5140, 6}, {5523, 56579}, {8681, 394}, {8753, 15387}, {9134, 525}, {11634, 4558}, {14263, 895}, {16756, 1444}, {17983, 44182}, {36874, 287}, {44467, 61444}, {47286, 69}, {51819, 14908}, {53367, 4563}, {55271, 14417}


X(62238) = X(1)X(6)∩X(19)X(4287)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c - 2*a*b^2*c - 2*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + c^4) : :

X(62238) lies on these lines:: {1, 6}, {19, 4287}, {36, 61704}, {284, 7300}, {374, 3196}, {572, 5341}, {573, 35459}, {1030, 2262}, {1155, 5124}, {1159, 5120}, {1192, 32318}, {1319, 61650}, {1385, 19297}, {1442, 5723}, {2082, 4289}, {2174, 2246}, {2278, 7297}, {2347, 46823}, {2646, 54409}, {3285, 54356}, {3872, 50087}, {3935, 17362}, {3943, 4861}, {4268, 5356}, {4364, 26639}, {4511, 17330}, {4969, 34772}, {5126, 21773}, {5297, 37661}, {5483, 26724}, {5718, 17021}, {7113, 17451}, {7269, 17334}, {10601, 56041}, {11009, 21864}, {16589, 45883}, {17012, 35466}, {17013, 24597}, {17259, 44179}, {17311, 55392}, {17595, 18179}, {36279, 36743}, {36744, 37606}, {37525, 61695}, {38460, 50113}, {50349, 55195}

X(62238) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {572, 17443, 5341}, {1100, 43065, 6}


X(62239) = X(1)X(6)∩X(36)X(21864)

Barycentrics    a*(a^4 - 2*a^2*b^2 + b^4 - a^2*b*c + 2*a*b^2*c - 2*a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 + c^4) : :

X(62239) lies on these lines:: {1, 6}, {36, 21864}, {78, 50087}, {101, 7297}, {374, 33176}, {394, 56352}, {517, 19297}, {650, 48302}, {997, 61321}, {1030, 37568}, {1252, 3726}, {1442, 17334}, {1990, 15500}, {2161, 22356}, {2174, 17452}, {2178, 37567}, {3057, 54409}, {3196, 5048}, {3204, 7300}, {3621, 27522}, {3943, 4511}, {4422, 26639}, {4861, 17330}, {4969, 38460}, {5124, 21871}, {7113, 17439}, {7269, 17245}, {11009, 61704}, {11011, 61650}, {11063, 32760}, {16701, 18198}, {17012, 37663}, {17021, 37634}, {17022, 31201}, {17262, 44179}, {17281, 30144}, {17311, 55391}, {17314, 27395}, {17438, 21809}, {21773, 21853}, {26672, 40480}, {34772, 50113}

X(62239) = crossdifference of every pair of points on line {513, 37582}
X(62239) = X(21773)-line conjugate of X(37582)
X(62239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {101, 17444, 7297}, {6603, 8609, 17796}, {16777, 17796, 8609}, {17439, 21801, 7113}


X(62240) = X(1)X(9965)∩X(6)X(553)

Barycentrics    4*a^3 + 3*a^2*b - 2*a*b^2 - b^3 + 3*a^2*c + 4*a*b*c + b^2*c - 2*a*c^2 + b*c^2 - c^3 : :

X(62240) lies on these lines:: {1, 9965}, {2, 3973}, {6, 553}, {7, 23681}, {10, 4001}, {31, 5542}, {38, 4349}, {57, 2183}, {58, 26728}, {63, 3664}, {81, 3663}, {89, 31053}, {142, 4641}, {144, 17022}, {222, 2219}, {226, 17365}, {269, 54369}, {333, 50116}, {527, 940}, {551, 8025}, {612, 5850}, {750, 21060}, {1086, 4114}, {1203, 24171}, {1407, 52819}, {1412, 18162}, {1468, 3671}, {1743, 9776}, {1754, 43177}, {2177, 50808}, {2650, 4297}, {2999, 7271}, {3187, 53594}, {3219, 29571}, {3244, 17147}, {3332, 30304}, {3452, 37520}, {3626, 19825}, {3631, 50052}, {3666, 4667}, {3687, 17364}, {3720, 51090}, {3752, 4031}, {3755, 11246}, {3772, 3982}, {3782, 60962}, {3817, 24725}, {3879, 32939}, {3914, 30424}, {3928, 5712}, {3929, 4648}, {3945, 28610}, {3950, 32933}, {3980, 4061}, {4054, 37639}, {4082, 32935}, {4104, 17771}, {4292, 48837}, {4298, 54421}, {4340, 54422}, {4480, 41839}, {4654, 37642}, {4682, 5852}, {4697, 49511}, {4715, 5743}, {4847, 32913}, {4887, 19785}, {4896, 5249}, {5287, 20078}, {5294, 21255}, {5905, 39595}, {6354, 61021}, {6703, 17345}, {7321, 41629}, {11019, 41011}, {14552, 25590}, {17023, 26840}, {17074, 41572}, {17205, 61409}, {17298, 26065}, {17300, 56078}, {17376, 44416}, {17781, 37633}, {18141, 50127}, {19645, 43172}, {20086, 50306}, {20101, 49466}, {24165, 51196}, {24169, 59408}, {24175, 32911}, {24199, 37652}, {24391, 49745}, {24695, 40998}, {24789, 60980}, {25734, 59585}, {26723, 26842}, {27003, 45204}, {29594, 32863}, {35578, 37655}, {35596, 41819}, {37683, 50128}, {37685, 50114}, {42055, 49684}, {44307, 60942}

X(62240) = reflection of X(i) in X(j) for these {i,j}: {4061, 3980}, {4656, 940}
X(62240) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 553, 24177}, {7, 37666, 23681}, {23681, 37666, 40940}, {32913, 50307, 4847}


X(62241) = X(2)X(61310)∩X(3)X(6)

Barycentrics    a^2*(a^2 - 2*b^2 - 2*c^2 - 4*S) : :
X(62241) = 3 X[371] - X[6200]

X(62241) lies on these lines:: {2, 61310}, {3, 6}, {115, 3068}, {491, 7818}, {493, 41445}, {590, 32419}, {637, 32785}, {639, 32789}, {1015, 19038}, {1500, 18996}, {1506, 1588}, {1569, 19056}, {1571, 19004}, {1587, 7756}, {2067, 31471}, {2549, 7585}, {3071, 31481}, {3301, 31451}, {5286, 42522}, {5355, 44596}, {5410, 33843}, {5475, 42215}, {6459, 7747}, {6462, 7758}, {6781, 9541}, {7582, 31401}, {7583, 7748}, {7584, 31455}, {7603, 13785}, {7736, 61329}, {7737, 61328}, {7746, 8981}, {7749, 9540}, {7753, 31403}, {8972, 43134}, {8976, 39565}, {9651, 19028}, {9664, 19030}, {9681, 19103}, {11648, 32787}, {13651, 22646}, {13846, 18362}, {13881, 13903}, {18424, 18538}, {18510, 31489}, {18512, 44526}, {18991, 31437}, {19027, 31501}, {19060, 46301}, {21640, 39913}, {21655, 53060}, {21843, 43509}, {23249, 26441}, {23259, 43457}, {23267, 43619}, {23273, 31415}, {31454, 49221}, {42258, 44647}, {43210, 49260}, {43618, 61335}, {61337, 61388}

X(62241) = reflection of X(8588) in X(9675)
X(62241) = isogonal conjugate of X(54505)
X(62241) = Schoutte-circle-inverse of X(12974)
X(62241) = X(1)-isoconjugate of X(54505)
X(62241) = X(3)-Dao conjugate of X(54505)
X(62241) = barycentric quotient X(6)/X(54505)
X(62241) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 371, 9675}, {6, 6221, 187}, {6, 6411, 8376}, {6, 9602, 1384}, {6, 9675, 32}, {6, 53095, 6395}, {15, 16, 12974}, {371, 1504, 32}, {371, 12962, 1504}, {372, 9674, 15515}, {1151, 5062, 5206}, {1504, 9675, 6}, {3592, 6422, 5058}, {5058, 6422, 7772}, {6441, 6444, 6}, {6459, 31411, 7747}, {8588, 9684, 6200}


X(62242) = X(2)X(61311)∩X(3)X(6)

Barycentrics    a^2*(a^2 - 2*b^2 - 2*c^2 - 4*S) : :a^2*(a^2 - 2*b^2 - 2*c^2 + 4*S) : :
X(62242) = 3 X[32] - 2 X[9675], 3 X[372] - X[6396]

X(62242) lies on these lines:: {2, 61311}, {3, 6}, {115, 3069}, {492, 7818}, {494, 41444}, {615, 32421}, {638, 32786}, {640, 32790}, {1015, 19037}, {1500, 18995}, {1506, 1587}, {1569, 19055}, {1571, 19003}, {1588, 7756}, {2549, 7586}, {3299, 31451}, {5286, 42523}, {5355, 44595}, {5411, 33843}, {5475, 42216}, {6460, 7747}, {6463, 7758}, {6781, 44597}, {7581, 31401}, {7583, 31455}, {7584, 7748}, {7603, 13665}, {7736, 61328}, {7737, 61329}, {7746, 13966}, {7749, 13935}, {8982, 23259}, {9651, 19027}, {9664, 19029}, {9698, 31411}, {11648, 32788}, {13651, 31463}, {13770, 22617}, {13847, 18362}, {13881, 13961}, {13941, 43133}, {13951, 39565}, {18424, 18762}, {18510, 44526}, {18512, 31489}, {19028, 31501}, {19059, 46301}, {21641, 39913}, {21656, 53061}, {21843, 43510}, {23249, 43457}, {23267, 31415}, {23273, 43619}, {42259, 44648}, {43209, 49263}, {43618, 61336}, {61338, 61389}

X(62242) = isogonal conjugate of X(54504)
X(62242) = Schoutte-circle-inverse of X(12975)
X(62242) = X(1)-isoconjugate of X(54504)
X(62242) = X(3)-Dao conjugate of X(54504)
X(62242) = barycentric quotient X(6)/X(54504)
X(62242) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 6396, 9675}, {6, 6398, 187}, {6, 6412, 8375}, {6, 53095, 6199}, {15, 16, 12975}, {372, 1505, 32}, {372, 12969, 1505}, {1152, 5058, 5206}, {3594, 6421, 5062}, {5062, 6421, 7772}, {6396, 9675, 8588}, {6442, 6443, 6}


X(62243) = X(6)X(3305)∩X(9)X(37672)

Barycentrics    1 + Cos[A]*(2 + 3*Cos[A]) : :
Barycentrics    a^2*(3*a^4 - 6*a^2*b^2 + 3*b^4 - 4*a^2*b*c + 4*b^3*c - 6*a^2*c^2 + 10*b^2*c^2 + 4*b*c^3 + 3*c^4)::

X(62243) lies on these lines: {6, 3305}, {9, 37672}, {57, 219}, {154, 3781}, {220, 394}, {222, 52405}, {323, 55438}, {599, 56456}, {1350, 26885}, {1407, 15066}, {1498, 3587}, {1790, 42316}, {2256, 20182}, {2323, 17825}, {3292, 26867}, {3690, 6090}, {3929, 23140}, {4445, 52412}, {6180, 20214}, {15069, 21015}, {15668, 40435}, {17814, 37584}, {21358, 56462}, {26872, 53415}, {26942, 59767}, {47352, 56458}, {52423, 59777}

X(62243) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {219, 17811, 55405}, {220, 394, 55406}, {220, 62207, 3219}, {394, 3219, 62207}, {3219, 62207, 55406}, {15066, 55466, 1407}


X(62244) = X(6)X(3305)∩X(9)X(37672)

Barycentrics    1 - (2 - 3*Cos[A])*Cos[A] : :
Barycentrics    a^2*(3*a^4 - 6*a^2*b^2 + 3*b^4 + 4*a^2*b*c - 4*b^3*c - 6*a^2*c^2 + 10*b^2*c^2 - 4*b*c^3 + 3*c^4) : :

X(62244) lies on these lines: {2, 62207}, {6, 3306}, {9, 222}, {57, 23140}, {154, 3784}, {220, 15066}, {221, 5289}, {323, 55437}, {329, 43036}, {394, 1407}, {599, 56457}, {651, 5328}, {1350, 26884}, {1498, 7171}, {2003, 17825}, {3292, 26866}, {3937, 6090}, {7232, 17923}, {15069, 26933}, {21358, 56464}, {26871, 53415}, {26932, 59767}, {28796, 41801}, {37543, 60980}, {47352, 56455}

X(62244) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 23140, 37672}, {222, 17811, 55406}, {394, 1407, 55405}, {15066, 22129, 220}


X(62245) = X(1)X(6)∩X(48)X(37499)

Barycentrics    -1 + Cos[A]*(2 + 3*Cos[A]) : :
Barycentrics    a^2*(a - b - c)*(3*a^2 - 3*b^2 + 2*b*c - 3*c^2) : :

X(62245lies on these lines: {1, 6}, {48, 37499}, {55, 21748}, {63, 37672}, {71, 14528}, {101, 22147}, {154, 26893}, {198, 22356}, {268, 3284}, {281, 17362}, {323, 22129}, {394, 1407}, {524, 27509}, {572, 42316}, {573, 3207}, {597, 56466}, {599, 56445}, {604, 1802}, {651, 36640}, {1146, 5839}, {1350, 7193}, {1404, 7368}, {1405, 1696}, {1944, 4361}, {1993, 55406}, {1994, 55438}, {2098, 40968}, {2175, 10387}, {2245, 37519}, {2261, 21871}, {2269, 4258}, {2289, 7113}, {2317, 54322}, {3220, 53097}, {3306, 17811}, {3686, 46835}, {3689, 7074}, {3690, 11402}, {3711, 61397}, {3759, 27420}, {3781, 5085}, {3927, 8555}, {3928, 23140}, {4336, 42014}, {4383, 5328}, {4856, 41006}, {4969, 53994}, {5042, 16283}, {5228, 37659}, {5792, 10446}, {6180, 20059}, {6510, 60974}, {6610, 60990}, {7085, 17809}, {8550, 26939}, {10601, 35595}, {11477, 24320}, {13366, 26867}, {15066, 55437}, {15817, 54409}, {15905, 35072}, {17121, 30854}, {17275, 40942}, {17301, 61002}, {17346, 27547}, {17348, 27384}, {17363, 37774}, {17366, 52457}, {17455, 36743}, {17810, 26885}, {20110, 26668}, {21358, 56452}, {21811, 34471}, {23292, 26872}, {24391, 51617}, {25878, 60996}, {26059, 46922}, {26932, 40341}, {27508, 37654}, {40138, 55116}, {45755, 57237}, {46889, 56000}, {47352, 56446}

X(62245) = X(i)-Ceva conjugate of X(j) for these (i,j): {3680, 55}, {3928, 5204}
X(62245) = X(i)-isoconjugate of X(j) for these (i,j): {7, 41441}, {57, 7319}
X(62245) = X(i)-Dao conjugate of X(j) for these (i,j): {1743, 39126}, {5452, 7319}
X(62245) = barycentric product X(i)*X(j) for these {i,j}: {8, 5204}, {9, 3928}, {21, 3962}, {41, 21605}, {55, 21296}, {219, 17917}, {281, 23140}, {284, 4035}, {3680, 45036}
X(62245) = barycentric quotient X(i)/X(j) for these {i,j}: {41, 41441}, {55, 7319}, {3928, 85}, {3962, 1441}, {4035, 349}, {5204, 7}, {17917, 331}, {21296, 6063}, {21605, 20567}, {23140, 348}, {45036, 39126}
X(62245) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 219, 220}, {9, 1100, 34522}, {44, 2324, 34524}, {63, 37672, 62207}, {219, 2323, 6}, {219, 55432, 52405}, {394, 55405, 1407}, {573, 20818, 3207}, {1993, 55466, 55406}, {5239, 5240, 12635}, {5839, 27382, 1146}


X(62246) = X(1)X(6)∩X(63)X(323)

Barycentrics    (1 + Cos[A])*(-1 + 4*Cos[A]) : :
Barycentrics    a^2*(a - b - c)*(2*a^2 - 2*b^2 + b*c - 2*c^2) : :

X(62246) lies on these lines: {1, 6}, {40, 11456}, {48, 37508}, {57, 15066}, {63, 323}, {71, 3431}, {84, 37483}, {101, 28203}, {198, 22147}, {268, 33636}, {284, 35193}, {394, 3928}, {399, 610}, {573, 22356}, {651, 60977}, {692, 41454}, {965, 45923}, {1253, 41457}, {1332, 17296}, {1495, 26893}, {1766, 16554}, {1802, 5030}, {1944, 17117}, {1993, 3929}, {2003, 55466}, {2268, 2364}, {2287, 4034}, {2289, 34544}, {2317, 3730}, {3098, 7193}, {3211, 41456}, {3219, 11004}, {3220, 33878}, {3305, 15018}, {3452, 14997}, {3619, 56452}, {3620, 56445}, {3630, 26932}, {3690, 44109}, {3781, 5092}, {5127, 33628}, {5285, 26864}, {5325, 37685}, {5437, 55399}, {5709, 15068}, {5745, 14996}, {6173, 37659}, {7110, 17275}, {7322, 61395}, {7359, 17362}, {9463, 56558}, {10987, 59734}, {15032, 55104}, {17299, 36910}, {20080, 27509}, {22136, 54422}, {23073, 37499}, {24320, 44456}, {24468, 54420}, {25878, 38093}, {26885, 34417}, {30827, 37680}, {31424, 51340}, {33633, 60990}, {34573, 56468}, {39874, 50861}, {51780, 52423}, {53996, 60989}, {61397, 62218}

X(62246) = X(56091)-Ceva conjugate of X(55)
X(62246) = X(57)-isoconjugate of X(5560)
X(62246) = X(5452)-Dao conjugate of X(5560)
X(62246) = barycentric product X(i)*X(j) for these {i,j}: {8, 7280}, {21, 4067}, {55, 17361}
X(62246) = barycentric quotient X(i)/X(j) for these {i,j}: {55, 5560}, {4067, 1441}, {7280, 7}, {17361, 6063}
X(62246) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 219, 52405}, {6, 52405, 9}, {219, 2323, 9}, {2323, 52405, 6}


X(62247) = X(6)X(25)∩X(371)X(5892)

Barycentrics    a^2*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 - 2*a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 4*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 6*b^4*c^4 + 3*a^2*c^6 + 4*b^2*c^6 - c^8 + 12*a^2*b^2*c^2*S) : :

X(62247) lies on these lines: {6, 25}, {371, 5892}, {373, 13846}, {485, 14845}, {486, 5891}, {511, 32788}, {590, 6688}, {615, 3819}, {1152, 36987}, {1154, 7584}, {1216, 58866}, {1328, 16194}, {1588, 5890}, {2781, 46689}, {2979, 3069}, {3060, 19053}, {3068, 11451}, {3071, 6000}, {3594, 45186}, {3917, 13847}, {5063, 8576}, {5446, 6420}, {5447, 35813}, {5462, 6419}, {5640, 19054}, {5907, 53516}, {5943, 32787}, {6459, 20791}, {6561, 14855}, {7582, 12239}, {7583, 13364}, {7586, 62187}, {7725, 19001}, {8577, 33872}, {11455, 23259}, {11695, 31454}, {11793, 43880}, {12099, 46688}, {13345, 26894}, {13348, 41964}, {13754, 35823}, {13785, 18435}, {13935, 54041}, {13961, 54047}, {13966, 54042}, {13993, 44324}, {16836, 41945}, {19041, 19045}, {23261, 32062}, {32786, 44299}, {35256, 54044}


X(62248) = X(6)X(25)∩X(372)X(5892)

Barycentrics    a^2*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 - 2*a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 4*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 6*b^4*c^4 + 3*a^2*c^6 + 4*b^2*c^6 - c^8 - 12*a^2*b^2*c^2*S) : :

X(62248) lies on these lines: {6, 25}, {372, 5892}, {373, 13847}, {485, 5891}, {486, 14845}, {511, 32787}, {590, 3819}, {615, 6688}, {1151, 36987}, {1154, 7583}, {1216, 8960}, {1327, 16194}, {1587, 5890}, {2781, 46688}, {2979, 3068}, {3060, 19054}, {3069, 11451}, {3070, 6000}, {3592, 45186}, {3917, 13846}, {5063, 8577}, {5446, 6419}, {5447, 35812}, {5462, 6420}, {5640, 19053}, {5907, 53513}, {5943, 32788}, {6460, 20791}, {6560, 14855}, {7581, 12240}, {7584, 13364}, {7585, 62187}, {7726, 19002}, {8576, 33872}, {8981, 54042}, {9540, 54041}, {11455, 23249}, {11793, 43879}, {12099, 46689}, {12111, 31414}, {13345, 26919}, {13348, 41963}, {13665, 18435}, {13754, 35822}, {13903, 54047}, {13925, 44324}, {15644, 31454}, {16836, 41946}, {19042, 19046}, {23251, 32062}, {31487, 37484}, {32785, 44299}, {35255, 54044}





leftri  Tran-Lozada perspectors: X(62249) - X(62265)  rightri

This preamble and centers X(62249)-X(62265) were contributed by César Eliud Lozada, March 16, 2024.

The following two ennunciates, slightly modified, are proposed by Tran Viet Hung in Romantics of geometry, March 15, 2023:

1) Let ABC be a triangle, P', P" two distinct points and A'B'C', A"B"C" their respective circumcevian triangles, such that A', A" are in the same side with respect to the line BC, and similarly B', B" and C', C". Let (a*) be the circle through A' and A" tangent to sideline BC, with center closer to the line BC. Let At be the touchpoint of (a*) and BC, and define Bt, Ct cyclically. Then the lines AAt, BBt, CCt are concurrent in a point Q1(P', P").

The point of concurrence Q1(P', P") is named here the Tran-Lozada bi-circumcevian perspector of P and P'. If P' = x' : y' : z' and P" = x" : y" : z" (barycentrics), then Q1(P', P") = sqrt(x' x")/a : sqrt(y' y")/b : sqrt(z' z")/c. From here, it is clear than P', P" must be both interior to ABC in order Q1(P', P") to be real. The barycentric coordinates of the center A* of (a*) are:

  A* = a^2*(2*sqrt(y'*y"*z'*z")*SA-(y'*z"+y"*z')*b*c) : (2*S^2*c^2*y'*y"+((y'*z"+y"*z')*c*SC+2*sqrt(y'*y"*z'*z")*b*SB)*b^3)/b^2 : (2*S^2*b^2*z'*z"+((y'*z"+y"*z')*b*SB+2*sqrt(y'*y"*z'*z")*c*SC)*c^3)/c^2

The appearance of (i, j, k) in the folowing list means that Q1(X(i), X(j)) = X(k):

(1, 2, 18297), (1, 6, 366), (1, 31, 1), (1, 32, 365), (1, 75, 75), (1, 76, 62249), (1, 560, 6), (1, 561, 76), (1, 1501, 18753), (1, 1502, 62250), (1, 1917, 31), (1, 1928, 561), (2, 3, 62254), (2, 4, 62255), (2, 6, 2), (2, 31, 366), (2, 32, 1), (2, 75, 62249), (2, 76, 76), (2, 560, 365), (2, 561, 62250), (2, 1501, 6), (2, 1502, 561), (2, 1917, 18753), (2, 1928, 62251), (3, 4, 2), (6, 31, 365), (6, 32, 6), (6, 75, 18297), (6, 76, 75), (6, 560, 18753), (6, 561, 62249), (6, 1501, 31), (6, 1502, 76), (6, 1917, 62252), (6, 1928, 62250), (31, 32, 18753), (31, 75, 2), (31, 76, 18297), (31, 560, 31), (31, 561, 75), (31, 1501, 62252), (31, 1502, 62249), (31, 1917, 32), (31, 1928, 76), (32, 75, 366), (32, 76, 2), (32, 560, 62252), (32, 561, 18297), (32, 1501, 32), (32, 1502, 75), (32, 1917, 62253), (32, 1928, 62249), (75, 76, 62250), (75, 560, 1), (75, 561, 561), (75, 1501, 365), (75, 1502, 62251), (75, 1917, 6), (75, 1928, 1502), (76, 560, 366), (76, 561, 62251), (76, 1501, 1), (76, 1502, 1502), (76, 1917, 365), (365, 366, 2), (365, 18297, 18297), (365, 18753, 1), (366, 18297, 75), (366, 18753, 366), (560, 561, 2), (560, 1501, 62253), (560, 1502, 18297), (560, 1917, 560), (560, 1928, 75), (561, 1501, 366), (561, 1917, 1), (561, 1928, 1928), (1501, 1502, 2), (1501, 1928, 18297), (1502, 1917, 366), (1917, 1928, 2), (18297, 18753, 2)

Note: The other circle (a*), whose center is farthest to the line BC, does not lead to the explained concurrence.

2) Let ABC be a triangle with circumcircle (O), P', Po two points, A'B'C' the cevian triangle of P' and AoBoCo the circumcevian triangle of Po. Let (a*) be the circle through Ao and tangent to sideline BC at A'. Let A" be the second intersection of (O) and (a*) and build B", C" cyclically. Then the lines AA", BB", CC" are concurrent in a point Q2(P', Po).

Q2(P', Po) is named here the Tran-Lozada perspector of cevian-of-P' and circumcevian-of-Po. If P' = x' : y' : z' and Po = xo : yo : zo (barycentrics), then Q2(P', Po) = (a*x')^2/xo : (b*y')^2/yo : (c*z')^2/zo.

The appearance of (i, j, k) in the folowing list means that Q2(X(i), X(j)) = X(k), for (i, j) ≤ 8:

(1, 1, 31), (1, 2, 32), (1, 3, 25), (1, 4, 184), (1, 5, 54034), (1, 6, 6), (1, 7, 2175), (1, 8, 1397), (2, 1, 1), (2, 2, 6), (2, 3, 4), (2, 4, 3), (2, 5, 54), (2, 6, 2), (2, 7, 55), (2, 8, 56), (3, 1, 52430), (3, 2, 14585), (3, 3, 184), (3, 4, 23606), (3, 5, 62256), (3, 6, 577), (3, 7, 62257), (3, 8, 62258), (4, 1, 1096), (4, 2, 2207), (4, 3, 6524), (4, 4, 25), (4, 5, 61362), (4, 6, 393), (4, 7, 6059), (4, 8, 7337), (5, 1, 62259), (5, 2, 62260), (5, 3, 62261), (5, 4, 61378), (5, 5, 51), (5, 6, 36412), (5, 7, 62262), (5, 8, 62263), (6, 1, 560), (6, 2, 1501), (6, 3, 1974), (6, 4, 14575), (6, 5, 14573), (6, 6, 32), (6, 7, 9448), (6, 8, 41280), (7, 1, 269), (7, 2, 1407), (7, 3, 1119), (7, 4, 7053), (7, 5, 62264), (7, 6, 279), (7, 7, 56), (7, 8, 7023), (8, 1, 200), (8, 2, 220), (8, 3, 7046), (8, 4, 1260), (8, 5, 62265), (8, 6, 346), (8, 7, 480), (8, 8, 55)

underbar

X(62249) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(1) AND X(76)

Barycentrics    (b*c)^(3/2) : :

X(62249) lies on the cubics K1007, K1020 and these lines: {561, 20334}, {1502, 20592}, {4179, 18297}, {6327, 20346}, {20604, 21366}

X(62249) = isotomic conjugate of X(365)
X(62249) = isogonal conjugate of X(62252)
X(62249) = cevapoint of X(i) and X(j) for these {i, j}: {1, 20604}, {2, 20346}
X(62249) = X(i)-cross conjugate of X(j) for these (i, j): (20334, 2), (20592, 1)
X(62249) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 365), (9, 18753), (37, 60548), (236, 60530), (366, 20673), (3161, 4166), (6374, 18297), (6376, 366), (15495, 60538), (18297, 40375), (20527, 20664), (32664, 62253), (40374, 6), (40603, 4179)
X(62249) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 62253}, {6, 18753}, {31, 365}, {32, 366}, {560, 18297}, {604, 4166}, {1333, 60548}, {1397, 4182}, {1917, 62250}, {2206, 4179}, {9233, 62251}, {52866, 61145}, {60538, 60539}
X(62249) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 18753), (2, 365), (8, 4166), (10, 60548), (31, 62253), (75, 366), (76, 18297), (174, 60538), (188, 60530), (312, 4182), (321, 4179), (365, 31), (366, 6), (367, 52866), (508, 266), (556, 60534), (1502, 62250), (1928, 62251), (4146, 509), (4166, 41), (4179, 42), (4182, 55), (6724, 60542), (18297, 1), (18753, 32), (39131, 60540), (40374, 20673), (40378, 20664), (55321, 58996), (55322, 55326), (55336, 259), (60534, 60539), (60548, 213), (62250, 75), (62251, 76), (62252, 560), (62253, 1501)
X(62249) = barycentric cube of X(18297)
X(62249) = perspector of the inconic with center X(20334)
X(62249) = pole of the line {365, 62252} with respect to the Steiner-Wallace hyperbola
X(62249) = barycentric product X(i)*X(j) for these {i, j}: {1, 62250}, {6, 62251}, {75, 18297}, {76, 366}, {310, 4179}, {365, 561}, {1502, 18753}, {1928, 62252}, {4166, 20567}, {4182, 6063}, {6385, 60548}, {40362, 62253}
X(62249) = trilinear product X(i)*X(j) for these {i, j}: {2, 18297}, {6, 62250}, {31, 62251}, {75, 366}, {76, 365}, {85, 4182}, {274, 4179}, {310, 60548}, {508, 556}, {561, 18753}, {1502, 62252}, {1928, 62253}, {4146, 55336}, {4166, 6063}, {40378, 61144}
X(62249) = trilinear quotient X(i)/X(j) for these (i, j): (2, 18753), (6, 62253), (75, 365), (76, 366), (312, 4166), (313, 4179), (321, 60548), (365, 32), (366, 31), (556, 60530), (561, 18297), (1502, 62249), (1928, 62250), (3596, 4182), (4146, 60538), (4166, 2175), (4179, 213), (4182, 41), (18297, 6), (18753, 560)


X(62250) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(1) AND X(1502)

Barycentrics    (b*c)^(5/2) : :

X(62250) lies on these lines: {1502, 20434}, {1928, 20543}, {20444, 20447}, {20555, 21275}

X(62250) = isotomic conjugate of X(18753)
X(62250) = isogonal conjugate of X(62253)
X(62250) = cevapoint of X(i) and X(j) for these {i, j}: {2, 20555}, {75, 20447}
X(62250) = X(i)-cross conjugate of X(j) for these (i, j): (20434, 75), (20543, 2)
X(62250) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 18753), (9, 62252), (6374, 366), (6376, 365), (20527, 52865), (40374, 31), (40378, 52866), (40603, 60548)
X(62250) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 62252}, {31, 18753}, {32, 365}, {366, 560}, {1397, 4166}, {1501, 18297}, {1917, 62249}, {2206, 60548}
X(62250) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62252), (2, 18753), (75, 365), (76, 366), (312, 4166), (313, 4179), (321, 60548), (365, 32), (366, 31), (556, 60530), (561, 18297), (1502, 62249), (3596, 4182), (4146, 60538), (4166, 2175), (4179, 213), (4182, 41), (18297, 6), (18753, 560), (20527, 52866), (40362, 62251), (40378, 52865), (55336, 60539), (60548, 1918), (62249, 1), (62251, 75), (62252, 1501), (62253, 1917)
X(62250) = perspector of the inconic with center X(20543)
X(62250) = pole of the line {18753, 62253} with respect to the Steiner-Wallace hyperbola
X(62250) = barycentric product X(i)*X(j) for these {i, j}: {1, 62251}, {75, 62249}, {76, 18297}, {365, 1502}, {366, 561}, {1928, 18753}, {4166, 41283}, {4179, 6385}, {4182, 20567}, {40362, 62252}
X(62250) = trilinear product X(i)*X(j) for these {i, j}: {2, 62249}, {6, 62251}, {75, 18297}, {76, 366}, {310, 4179}, {365, 561}, {1502, 18753}, {1928, 62252}, {4166, 20567}, {4182, 6063}, {6385, 60548}, {40362, 62253}
X(62250) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62252), (75, 18753), (76, 365), (313, 60548), (365, 560), (366, 32), (561, 366), (1502, 18297), (1928, 62249), (3596, 4166), (4166, 9447), (4179, 1918), (4182, 2175), (18297, 31), (18753, 1501), (27801, 4179), (28659, 4182), (40362, 62250), (60548, 2205)


X(62251) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(2) AND X(75)

Barycentrics    (b*c)^(7/2) : :

X(62251) lies on these lines: {20631, 40362}, {20645, 21585}

X(62251) = isotomic conjugate of X(62252)
X(62251) = cevapoint of X(75) and X(20645)
X(62251) = X(20631)-cross conjugate of-X(75)
X(62251) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62252), (9, 62253), (6374, 365), (6376, 18753), (40374, 32)
X(62251) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 62253}, {31, 62252}, {32, 18753}, {365, 560}, {366, 1501}, {1917, 18297}, {4182, 41280}, {9233, 62249}
X(62251) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62253), (2, 62252), (75, 18753), (76, 365), (313, 60548), (365, 560), (366, 32), (561, 366), (1502, 18297), (1928, 62249), (3596, 4166), (4166, 9447), (4179, 1918), (4182, 2175), (18297, 31), (18753, 1501), (27801, 4179), (28659, 4182), (40362, 62250), (60548, 2205), (62249, 6), (62250, 1), (62252, 1917), (62253, 9233)
X(62251) = trilinear cube of X(18297)
X(62251) = barycentric product X(i)*X(j) for these {i, j}: {75, 62250}, {76, 62249}, {365, 1928}, {366, 1502}, {561, 18297}, {4182, 41283}, {18753, 40362}, {40359, 62253}
X(62251) = trilinear product X(i)*X(j) for these {i, j}: {2, 62250}, {75, 62249}, {76, 18297}, {365, 1502}, {366, 561}, {1928, 18753}, {4166, 41283}, {4179, 6385}, {4182, 20567}, {40362, 62252}
X(62251) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62253), (75, 62252), (76, 18753), (365, 1501), (366, 560), (561, 365), (1502, 366), (1928, 18297), (4166, 9448), (4179, 2205), (4182, 9447), (18297, 32), (18753, 1917), (27801, 60548), (28659, 4166), (40359, 62251), (40362, 62249), (40363, 4182)


X(62252) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(2) AND X(366)

Barycentrics    a^(7/2) : :

X(62252) lies on the cubic K1021 and these lines: {1, 20592}, {6, 20458}, {31, 52865}

X(62252) = isogonal conjugate of X(62249)
X(62252) = isotomic conjugate of X(62251)
X(62252) = crosspoint of X(692) and X(59455)
X(62252) = crosssum of X(i) and X(j) for these {i, j}: {1, 20604}, {2, 20346}
X(62252) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62251), (9, 62250), (206, 366), (18753, 20645), (20543, 20631), (32664, 18297), (40368, 18753), (40369, 62253), (40374, 561)
X(62252) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 18297}, {6, 62250}, {31, 62251}, {75, 366}, {76, 365}, {85, 4182}, {274, 4179}, {310, 60548}, {508, 556}, {561, 18753}, {1928, 62253}, {4146, 55336}, {4166, 6063}, {40378, 61144}
X(62252) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62250), (2, 62251), (31, 18297), (32, 366), (365, 76), (366, 561), (560, 365), (1501, 18753), (1918, 4179), (2175, 4182), (2205, 60548), (4166, 3596), (4179, 27801), (4182, 28659), (9233, 62253), (9447, 4166), (18297, 1502), (18753, 75), (60548, 313), (62249, 1928), (62250, 40362), (62253, 1)
X(62252) = pole of the line {366, 62249} with respect to the Stammler hyperbola
X(62252) = pole of the line {62249, 62251} with respect to the Steiner-Wallace hyperbola
X(62252) = barycentric product X(i)*X(j) for these {i, j}: {1, 18753}, {6, 365}, {31, 366}, {32, 18297}, {56, 4166}, {58, 60548}, {75, 62253}, {259, 60538}, {266, 60530}, {509, 60539}, {560, 62249}, {604, 4182}, {1333, 4179}, {1501, 62250}, {1917, 62251}, {6727, 60542}, {52866, 61143}
X(62252) = trilinear product X(i)*X(j) for these {i, j}: {2, 62253}, {6, 18753}, {31, 365}, {32, 366}, {560, 18297}, {604, 4166}, {1333, 60548}, {1397, 4182}, {1501, 62249}, {1917, 62250}, {2206, 4179}, {9233, 62251}, {52866, 61145}, {60538, 60539}
X(62252) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62250), (6, 18297), (31, 366), (32, 365), (41, 4182), (75, 62251), (213, 4179), (365, 75), (366, 76), (560, 18753), (1501, 62252), (1917, 62253), (1918, 60548), (2175, 4166), (4166, 312), (4179, 313), (4182, 3596), (18297, 561), (18753, 2), (52865, 40378)
X(62252) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 20604, 20592), (6, 20469, 20458)


X(62253) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(2) AND X(18297)

Barycentrics    a^(9/2) : :

X(62253) lies on these lines: {6, 20874}

X(62253) = isogonal conjugate of X(62250)
X(62253) = crosssum of X(i) and X(j) for these {i, j}: {2, 20555}, {75, 20447}
X(62253) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 62251), (206, 18297), (32664, 62249), (40368, 365), (40369, 62252), (40374, 1502)
X(62253) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 62249}, {6, 62251}, {75, 18297}, {76, 366}, {310, 4179}, {365, 561}, {1502, 18753}, {1928, 62252}, {4166, 20567}, {4182, 6063}, {6385, 60548}
X(62253) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62251), (31, 62249), (32, 18297), (365, 561), (366, 1502), (560, 366), (1501, 365), (1917, 18753), (2205, 4179), (4166, 28659), (4182, 40363), (9233, 62252), (9447, 4182), (9448, 4166), (18297, 1928), (18753, 76), (60548, 27801), (62249, 40362), (62251, 40359), (62252, 75)
X(62253) = barycentric cube of X(365)
X(62253) = pole of the line {18297, 62250} with respect to the Stammler hyperbola
X(62253) = barycentric product X(i)*X(j) for these {i, j}: {1, 62252}, {6, 18753}, {31, 365}, {32, 366}, {560, 18297}, {604, 4166}, {1333, 60548}, {1397, 4182}, {1501, 62249}, {1917, 62250}, {2206, 4179}, {9233, 62251}, {52866, 61145}, {60538, 60539}
X(62253) = trilinear product X(i)*X(j) for these {i, j}: {6, 62252}, {31, 18753}, {32, 365}, {366, 560}, {1397, 4166}, {1501, 18297}, {1917, 62249}, {2206, 60548}, {9233, 62250}
X(62253) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62251), (6, 62249), (31, 18297), (32, 366), (365, 76), (366, 561), (560, 365), (1501, 18753), (1917, 62252), (1918, 4179), (2175, 4182), (2205, 60548), (4166, 3596), (4179, 27801), (4182, 28659), (9233, 62253), (9447, 4166), (18297, 1502), (18753, 75), (60548, 313)


X(62254) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(2) AND X(3)

Barycentrics    sqrt(SA) : :

Note: Only for ABC acute

X(62254) lies on the Steiner-Wallace hyperbola, the cubics K779, K1010 and these lines: {2, 61085}, {487, 61084}, {488, 61083}

X(62254) = anticomplement of X(61085)
X(62254) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 20034), (6337, 62254), (6376, 62255), (6505, 5374), (61085, 61085)
X(62254) = X(799)-he conjugate of-X(62254)
X(62254) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 20034}, {25, 5374}, {32, 62255}, {1973, 62254}
X(62254) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 20034), (63, 5374), (69, 62254), (75, 62255), (5374, 1), (20034, 19), (62254, 2), (62255, 92)
X(62254) = barycentric product X(i)*X(j) for these {i, j}: {63, 62255}, {75, 5374}, {304, 20034}
X(62254) = trilinear product X(i)*X(j) for these {i, j}: {2, 5374}, {3, 62255}, {69, 20034}
X(62254) = trilinear quotient X(i)/X(j) for these (i, j): (2, 20034), (69, 5374), (76, 62255), (304, 62254), (5374, 6), (20034, 25)


X(62255) = TRAN-LOZADA BI-CIRCUMCEVIAN PERSPECTOR OF X(2) AND X(4)

Barycentrics    sqrt(SB*SC)/a : :

Note: Only for ABC acute

X(62255) lies on these lines: {}

X(62255) = isotomic conjugate of X(5374)
X(62255) = polar conjugate of X(20034)
X(62255) = cevapoint of X(5374) and X(20034)
X(62255) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 5374), (1249, 20034), (6376, 62254)
X(62255) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 5374}, {32, 62254}, {48, 20034}, {9247, 62255}
X(62255) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 5374), (4, 20034), (75, 62254), (264, 62255), (5374, 3), (20034, 6), (62254, 63), (62255, 2)
X(62255) = pole of the the tripolar of X(20034) with respect to the polar circle
X(62255) = barycentric product X(i)*X(j) for these {i, j}: {76, 20034}, {92, 62254}, {264, 5374}
X(62255) = trilinear product X(i)*X(j) for these {i, j}: {4, 62254}, {75, 20034}, {92, 5374}
X(62255) = trilinear quotient X(i)/X(j) for these (i, j): (75, 5374), (76, 62254), (92, 20034), (1969, 62255), (5374, 48), (20034, 31)


X(62256) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(3) AND CIRCUMCEVIAN-OF-X(5)

Barycentrics    a^6*(-a^2+b^2+c^2)^2*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62256) lies on these lines: {51, 8882}, {54, 186}, {97, 3917}, {160, 184}, {185, 8883}, {275, 52249}, {577, 59176}, {933, 26887}, {1092, 19210}, {1495, 33629}, {3484, 19192}, {9792, 57489}, {14585, 52435}, {14910, 41271}, {22075, 40823}, {23295, 46064}, {32439, 46966}, {44078, 58306}, {46090, 46091}, {51539, 51540}

X(62256) = isogonal conjugate of the polar conjugate of X(14533)
X(62256) = isogonal conjugate of the isotomic conjugate of X(19210)
X(62256) = crossdifference of every pair of points on the line X(18314)X(57195)
X(62256) = crosspoint of X(i) and X(j) for these {i, j}: {54, 57703}, {14533, 19210}
X(62256) = crosssum of X(i) and X(j) for these {i, j}: {5, 467}, {324, 13450}, {18314, 35442}
X(62256) = X(i)-Ceva conjugate of X(j) for these (i, j): (15958, 46088), (46089, 14533)
X(62256) = X(14585)-cross conjugate of-X(14533)
X(62256) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 13450), (1147, 311), (17423, 23290), (22391, 324), (35071, 15415), (37867, 28706), (40368, 14569)
X(62256) = X(i)-isoconjugate of X(j) for these {i, j}: {5, 57806}, {53, 1969}, {75, 13450}, {92, 324}, {158, 311}, {343, 6521}, {467, 57716}, {561, 14569}, {811, 23290}, {823, 18314}, {1087, 8795}, {1093, 18695}, {1953, 18027}, {2052, 14213}, {2181, 18022}, {2618, 6528}, {6520, 28706}, {12077, 57973}, {14576, 57898}, {15415, 24019}, {18817, 51801}, {20948, 61193}, {40440, 60828}, {51513, 57968}, {57844, 62259}
X(62256) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 13450), (54, 18027), (97, 18022), (184, 324), (217, 60828), (418, 45793), (520, 15415), (577, 311), (1092, 28706), (1501, 14569), (2148, 57806), (2169, 1969), (3049, 23290), (4100, 18695), (11077, 18817), (14533, 264), (14573, 393), (14574, 61193), (14575, 53), (14585, 5), (14586, 6528), (15958, 6331), (19210, 76), (23606, 343), (34386, 44161), (36134, 57973), (36433, 5562), (39201, 18314), (40373, 3199), (44088, 36412), (46088, 850), (46089, 276), (50463, 20573), (52430, 14213), (52435, 467), (54034, 2052), (57703, 55553), (58308, 14618), (58310, 12077), (61355, 57811), (61361, 51)
X(62256) = pole of the line {54, 570} with respect to the Jerabek circumhyperbola
X(62256) = pole of the line {311, 13450} with respect to the Stammler hyperbola
X(62256) = barycentric product X(i)*X(j) for these {i, j}: {3, 14533}, {6, 19210}, {48, 2169}, {50, 50463}, {54, 577}, {95, 14585}, {97, 184}, {110, 46088}, {216, 46089}, {255, 2148}, {275, 23606}, {288, 61355}, {394, 54034}, {520, 14586}, {647, 15958}, {822, 36134}, {933, 32320}, {1092, 8882}, {1147, 57703}, {2167, 52430}
X(62256) = trilinear product X(i)*X(j) for these {i, j}: {31, 19210}, {48, 14533}, {54, 52430}, {97, 9247}, {163, 46088}, {184, 2169}, {255, 54034}, {326, 14573}, {563, 57703}, {577, 2148}, {810, 15958}, {822, 14586}, {2167, 14585}, {2190, 23606}, {4100, 8882}, {4575, 58308}, {36134, 39201}, {44687, 62258}
X(62256) = trilinear quotient X(i)/X(j) for these (i, j): (31, 13450), (48, 324), (54, 57806), (97, 1969), (255, 311), (418, 1087), (560, 14569), (563, 467), (577, 14213), (810, 23290), (822, 18314), (1092, 18695), (2148, 2052), (2167, 18027), (2169, 264), (4100, 343), (6507, 28706), (8882, 6521), (9247, 53), (14533, 92)
X(62256) = (X(14533), X(54034))-harmonic conjugate of X(184)


X(62257) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(3) AND CIRCUMCEVIAN-OF-X(7)

Barycentrics    a^6*(-a+b+c)*(-a^2+b^2+c^2)^2 : :

X(62257) lies on these lines: {577, 61054}, {607, 62262}, {2175, 9448}, {9247, 14575}, {23606, 52430}

X(62257) = isogonal conjugate of the isotomic conjugate of X(6056)
X(62257) = isogonal conjugate of the polar conjugate of X(52425)
X(62257) = crosspoint of X(6056) and X(52425)
X(62257) = X(52430)-Ceva conjugate of-X(14585)
X(62257) = X(i)-Dao conjugate of X(j) for these (i, j): (1147, 6063), (5452, 18027), (6338, 41287), (6503, 41283), (11517, 18022), (22391, 331), (36033, 57787), (37867, 57918), (40368, 1118), (40369, 7337)
X(62257) = X(i)-isoconjugate of X(j) for these {i, j}: {4, 57787}, {7, 57806}, {27, 52575}, {34, 18022}, {57, 18027}, {85, 2052}, {92, 331}, {158, 6063}, {225, 57796}, {264, 273}, {278, 1969}, {286, 57809}, {348, 6521}, {393, 20567}, {561, 1118}, {693, 52938}, {1093, 7182}, {1096, 41283}, {1393, 57844}, {1395, 44161}, {1847, 7017}, {1928, 7337}, {3261, 54240}, {4077, 6528}, {4858, 57538}, {6520, 57918}, {7178, 57973}, {13149, 46110}, {17924, 46404}, {18026, 46107}, {24032, 34387}, {36127, 40495}, {40149, 44129}, {44697, 52581}, {55213, 58757}
X(62257) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (41, 57806), (48, 57787), (55, 18027), (184, 331), (212, 1969), (219, 18022), (228, 52575), (255, 20567), (345, 44161), (394, 41283), (577, 6063), (1092, 57918), (1259, 1502), (1264, 40362), (1501, 1118), (2175, 2052), (2193, 57796), (2200, 57809), (2212, 6521), (2289, 561), (3719, 1928), (3926, 41287), (4055, 349), (4100, 7182), (6056, 76), (7065, 36793), (7335, 57792), (9233, 7337), (9247, 273), (9447, 158), (9448, 393), (14575, 278), (14585, 7), (23606, 348), (32656, 46404), (32739, 52938), (36054, 40495), (36433, 1804), (39687, 34387), (40373, 608), (52425, 264), (52430, 85), (58310, 7178), (61054, 23989), (61361, 56), (62258, 279)
X(62257) = pole of the line {6063, 57796} with respect to the Stammler hyperbola
X(62257) = barycentric product X(i)*X(j) for these {i, j}: {3, 52425}, {6, 6056}, {8, 14585}, {9, 52430}, {31, 2289}, {32, 1259}, {33, 4100}, {41, 255}, {48, 212}, {55, 577}, {59, 39687}, {78, 9247}, {184, 219}, {220, 7335}, {228, 2193}, {281, 23606}, {283, 2200}, {284, 4055}, {326, 9447}, {345, 14575}
X(62257) = trilinear product X(i)*X(j) for these {i, j}: {9, 14585}, {31, 6056}, {32, 2289}, {33, 23606}, {41, 577}, {48, 52425}, {55, 52430}, {78, 14575}, {184, 212}, {200, 62258}, {219, 9247}, {255, 2175}, {312, 61361}, {326, 9448}, {394, 9447}, {560, 1259}, {607, 4100}, {643, 58310}, {1092, 2212}, {1110, 61054}
X(62257) = trilinear quotient X(i)/X(j) for these (i, j): (3, 57787), (9, 18027), (41, 2052), (48, 331), (55, 57806), (71, 52575), (78, 18022), (184, 273), (212, 264), (219, 1969), (228, 57809), (255, 6063), (283, 57796), (326, 41283), (394, 20567), (560, 1118), (577, 85), (607, 6521), (692, 52938), (906, 46404)
X(62257) = (X(23606), X(52430))-harmonic conjugate of X(62258)


X(62258) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(3) AND CIRCUMCEVIAN-OF-X(8)

Barycentrics    a^6*(a+b-c)*(a-b+c)*(-a^2+b^2+c^2)^2 : :

X(62258) lies on these lines: {184, 61054}, {222, 61058}, {608, 62263}, {1397, 2206}, {14578, 20986}, {23606, 52430}

X(62258) = isogonal conjugate of the isotomic conjugate of X(7335)
X(62258) = isogonal conjugate of the polar conjugate of X(52411)
X(62258) = crosspoint of X(7335) and X(52411)
X(62258) = X(52430)-beth conjugate of-X(52430)
X(62258) = X(i)-Dao conjugate of X(j) for these (i, j): (478, 18027), (1147, 3596), (6338, 44159), (6503, 40363), (22391, 7017), (37867, 57919), (40368, 1857), (40369, 6059)
X(62258) = X(i)-isoconjugate of X(j) for these {i, j}: {8, 57806}, {9, 18027}, {33, 18022}, {92, 7017}, {158, 3596}, {264, 318}, {281, 1969}, {312, 2052}, {313, 1896}, {331, 7101}, {345, 6521}, {393, 28659}, {561, 1857}, {1093, 3718}, {1096, 40363}, {1928, 6059}, {2212, 44161}, {2322, 52575}, {3700, 57973}, {4086, 6528}, {4397, 52938}, {6335, 46110}, {6520, 57919}, {7046, 57787}, {7069, 57844}, {7141, 57779}, {8748, 27801}, {41013, 44130}, {47372, 57793}, {52622, 54240}, {53008, 57796}
X(62258) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (56, 18027), (184, 7017), (222, 18022), (255, 28659), (348, 44161), (394, 40363), (577, 3596), (603, 1969), (604, 57806), (1092, 57919), (1363, 36793), (1395, 6521), (1397, 2052), (1410, 52575), (1501, 1857), (1804, 1502), (3926, 44159), (4055, 30713), (4100, 3718), (6056, 59761), (7055, 40362), (7099, 57787), (7125, 561), (7183, 1928), (7335, 76), (9233, 6059), (9247, 318), (14575, 281), (14585, 8), (18604, 40072), (22341, 27801), (23606, 345), (36433, 1259), (40373, 607), (41280, 393), (41281, 2207), (41286, 36417), (51640, 20948), (52411, 264), (52430, 312), (58310, 3700), (61054, 23978), (61058, 23962), (61361, 55), (62257, 346)
X(62258) = barycentric product X(i)*X(j) for these {i, j}: {3, 52411}, {6, 7335}, {7, 14585}, {31, 7125}, {32, 1804}, {34, 4100}, {48, 603}, {56, 577}, {57, 52430}, {77, 9247}, {163, 51640}, {184, 222}, {212, 7099}, {255, 604}, {278, 23606}, {279, 62257}, {348, 14575}, {394, 1397}, {560, 7183}, {608, 1092}
X(62258) = trilinear product X(i)*X(j) for these {i, j}: {31, 7335}, {32, 7125}, {34, 23606}, {48, 52411}, {56, 52430}, {57, 14585}, {77, 14575}, {85, 61361}, {184, 603}, {222, 9247}, {255, 1397}, {269, 62257}, {326, 41280}, {560, 1804}, {577, 604}, {608, 4100}, {1092, 1395}, {1106, 6056}, {1393, 62256}, {1408, 4055}
X(62258) = trilinear quotient X(i)/X(j) for these (i, j): (48, 7017), (56, 57806), (57, 18027), (77, 18022), (184, 318), (222, 1969), (255, 3596), (326, 40363), (394, 28659), (560, 1857), (577, 312), (603, 264), (604, 2052), (608, 6521), (1092, 3718), (1363, 17879), (1395, 1093), (1397, 158), (1410, 57809), (1437, 44130)
X(62258) = (X(23606), X(52430))-harmonic conjugate of X(62257)


X(62259) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(5) AND CIRCUMCEVIAN-OF-X(1)

Barycentrics    a*((b^2+c^2)*a^2-(b^2-c^2)^2)^2 : :

X(62259) lies on these lines: {19, 52430}, {31, 2153}, {92, 1956}, {1953, 2181}, {42078, 60817}, {61378, 62262}

X(62259) = isogonal conjugate of the isotomic conjugate of X(1087)
X(62259) = cevapoint of X(62260) and X(62262)
X(62259) = crosspoint of X(36412) and X(41279)
X(62259) = crosssum of X(2167) and X(2169)
X(62259) = X(i)-Dao conjugate of X(j) for these (i, j): (6368, 17879), (6663, 75), (14363, 40440), (39052, 52939), (40588, 2167), (46394, 18042)
X(62259) = X(i)-isoconjugate of X(j) for these {i, j}: {54, 95}, {97, 275}, {140, 59143}, {264, 46089}, {276, 14533}, {288, 59183}, {647, 52939}, {2167, 2167}, {2169, 40440}, {3268, 46966}, {3269, 57573}, {8795, 19210}, {8882, 34386}, {15412, 18315}, {16030, 39287}, {18831, 23286}, {25044, 57765}, {34384, 54034}, {42405, 46088}, {43752, 46090}, {57844, 62256}
X(62259) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (51, 2167), (53, 40440), (162, 52939), (217, 2169), (1087, 76), (1953, 95), (2179, 54), (2181, 275), (3078, 20879), (3199, 2190), (9247, 46089), (14213, 34384), (21011, 56189), (21807, 56246), (23607, 14213), (24000, 57573), (24862, 20902), (34983, 24018), (36412, 75), (39019, 17879), (40981, 2148), (41279, 85), (44706, 34386), (45793, 561), (46394, 255), (55219, 2616), (57195, 14208), (60828, 1969), (61194, 36134), (61378, 63), (62260, 1), (62261, 92), (62262, 9), (62263, 57)
X(62259) = trilinear square of X(1953)
X(62259) = barycentric product X(i)*X(j) for these {i, j}: {1, 36412}, {5, 1953}, {6, 1087}, {9, 41279}, {31, 45793}, {48, 60828}, {51, 14213}, {53, 44706}, {63, 62261}, {75, 62260}, {85, 62262}, {92, 61378}, {162, 57195}, {311, 2179}, {312, 62263}, {343, 2181}, {823, 34983}, {1625, 2618}, {2167, 23607}, {2180, 56272}
X(62259) = trilinear product X(i)*X(j) for these {i, j}: {2, 62260}, {3, 62261}, {4, 61378}, {5, 51}, {6, 36412}, {7, 62262}, {8, 62263}, {31, 1087}, {32, 45793}, {53, 216}, {54, 23607}, {55, 41279}, {107, 34983}, {112, 57195}, {184, 60828}, {217, 324}, {233, 59142}, {250, 24862}, {311, 40981}, {343, 3199}
X(62259) = trilinear quotient X(i)/X(j) for these (i, j): (5, 95), (51, 54), (53, 275), (184, 46089), (216, 97), (217, 14533), (233, 59183), (311, 34384), (324, 276), (343, 34386), (418, 19210), (648, 52939), (1087, 75), (1173, 59143), (1625, 18315), (1953, 2167), (2179, 2148), (2181, 2190), (3078, 140), (3199, 8882)
X(62259) = (X(62262), X(62263))-harmonic conjugate of X(61378)


X(62260) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(5) AND CIRCUMCEVIAN-OF-X(2)

Barycentrics    a^2*((b^2+c^2)*a^2-(b^2-c^2)^2)^2 : :

X(62260) lies on these lines: {4, 1987}, {5, 41480}, {6, 1173}, {25, 14585}, {32, 3124}, {51, 217}, {53, 13450}, {112, 38848}, {143, 1625}, {185, 33842}, {232, 10110}, {381, 22416}, {389, 3331}, {1501, 60501}, {1506, 8041}, {1598, 39643}, {1970, 3518}, {1971, 34484}, {2207, 17810}, {2211, 9969}, {2548, 20859}, {2971, 40951}, {3094, 31404}, {3095, 51997}, {3289, 5446}, {3567, 32445}, {5890, 38297}, {7747, 47421}, {7752, 36790}, {7785, 57257}, {9419, 27375}, {10095, 41334}, {10982, 59229}, {11745, 60428}, {13509, 26863}, {13621, 32661}, {15026, 50678}, {15450, 52604}, {15873, 27376}, {23635, 61305}, {33853, 58889}, {34520, 36412}, {41759, 56918}, {44732, 59533}, {46394, 61378}

X(62260) = isogonal conjugate of the isotomic conjugate of X(36412)
X(62260) = polar conjugate of the isotomic conjugate of X(61378)
X(62260) = isogonal conjugate of the polar conjugate of X(62261)
X(62260) = crosspoint of X(i) and X(j) for these {i, j}: {51, 53}, {2052, 3613}, {23964, 52604}, {36412, 62261}
X(62260) = crosssum of X(i) and X(j) for these {i, j}: {2, 46724}, {95, 97}, {577, 5012}
X(62260) = X(i)-Ceva conjugate of X(j) for these (i, j): (53, 62261), (23964, 52604), (36412, 61378), (59142, 51), (61193, 15451), (61194, 55219), (62259, 62262)
X(62260) = X(i)-Dao conjugate of X(j) for these (i, j): (5, 34386), (51, 59157), (216, 34384), (2972, 15414), (6368, 36793), (6663, 76), (14363, 276), (40588, 95), (40596, 52939), (46394, 1078)
X(62260) = X(i)-isoconjugate of X(j) for these {i, j}: {95, 2167}, {97, 40440}, {276, 2169}, {656, 52939}, {1969, 46089}, {2148, 34384}, {2190, 34386}, {2632, 57573}, {20879, 59143}
X(62260) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (5, 34384), (51, 95), (53, 276), (112, 52939), (216, 34386), (217, 97), (324, 57790), (1087, 561), (2179, 2167), (2181, 40440), (3078, 1232), (3199, 275), (13450, 57844), (14569, 8795), (14570, 55218), (14575, 46089), (17434, 15414), (17500, 41488), (21807, 56189), (23607, 311), (23964, 57573), (24862, 339), (27374, 16030), (34983, 3265), (36412, 76), (39019, 36793), (40588, 59157), (40981, 54), (41279, 6063), (44088, 19210), (45793, 1502), (46394, 394), (52604, 18831), (55219, 15412), (57195, 3267), (59142, 31617), (60828, 18022), (61193, 42405), (61194, 18315), (61346, 8882), (61378, 69), (62259, 75), (62261, 264), (62262, 8), (62263, 7)
X(62260) = barycentric square of X(1953)
X(62260) = perspector of the circumconic through X(14560) and X(52604)
X(62260) = pole of the line {14398, 42293} with respect to the Brocard inellipse
X(62260) = pole of the line {6530, 15559} with respect to the Kiepert circumhyperbola
X(62260) = pole of the line {6130, 20188} with respect to the orthic inconic
X(62260) = pole of the line {7799, 34386} with respect to the Stammler hyperbola
X(62260) = barycentric product X(i)*X(j) for these {i, j}: {1, 62259}, {3, 62261}, {4, 61378}, {5, 51}, {6, 36412}, {7, 62262}, {8, 62263}, {31, 1087}, {32, 45793}, {53, 216}, {54, 23607}, {55, 41279}, {107, 34983}, {112, 57195}, {184, 60828}, {217, 324}, {233, 59142}, {250, 24862}, {311, 40981}, {343, 3199}
X(62260) = trilinear product X(i)*X(j) for these {i, j}: {5, 2179}, {6, 62259}, {9, 62263}, {19, 61378}, {31, 36412}, {32, 1087}, {41, 41279}, {48, 62261}, {51, 1953}, {57, 62262}, {158, 46394}, {216, 2181}, {560, 45793}, {2148, 23607}, {2617, 55219}, {2618, 61194}, {3199, 44706}, {9247, 60828}, {14213, 40981}, {18695, 61346}
X(62260) = trilinear quotient X(i)/X(j) for these (i, j): (51, 2167), (53, 40440), (162, 52939), (217, 2169), (1087, 76), (1953, 95), (2179, 54), (2181, 275), (3078, 20879), (3199, 2190), (9247, 46089), (14213, 34384), (21011, 56189), (21807, 56246), (23607, 14213), (24000, 57573), (24862, 20902), (34983, 24018), (36412, 75), (39019, 17879)
X(62260) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (4, 61193, 27359), (51, 3199, 217), (3567, 33885, 32445)


X(62261) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(5) AND CIRCUMCEVIAN-OF-X(3)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2)^2 : :

X(62261) lies on these lines: {4, 1173}, {5, 31505}, {25, 1989}, {51, 53}, {110, 46924}, {125, 2052}, {184, 393}, {324, 39569}, {418, 52945}, {467, 41586}, {1974, 14593}, {1990, 13366}, {3078, 23607}, {3079, 44082}, {3574, 8887}, {4175, 44132}, {6524, 34417}, {6530, 42400}, {6748, 34565}, {6750, 13450}, {8796, 14853}, {14129, 35360}, {14715, 51434}, {15805, 35716}, {21659, 41365}, {26907, 42459}, {30102, 45108}, {34836, 42453}, {35717, 56298}, {35884, 60693}, {37766, 58447}, {45793, 59164}, {53506, 61691}, {56296, 61712}, {56297, 61659}

X(62261) = polar conjugate of the isotomic conjugate of X(36412)
X(62261) = isogonal conjugate of the isotomic conjugate of X(60828)
X(62261) = polar conjugate of the isogonal conjugate of X(62260)
X(62261) = crosspoint of X(i) and X(j) for these {i, j}: {53, 13450}, {32230, 61193}
X(62261) = crosssum of X(97) and X(19210)
X(62261) = X(i)-Ceva conjugate of X(j) for these (i, j): (53, 62260), (32230, 61193), (52604, 51513), (60828, 36412)
X(62261) = X(62260)-cross conjugate of-X(36412)
X(62261) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 46089), (216, 34386), (6663, 69), (14363, 95), (39019, 15414), (40588, 97)
X(62261) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 46089}, {95, 2169}, {97, 2167}, {822, 52939}, {2148, 34386}, {19210, 40440}, {37754, 57573}
X(62261) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (5, 34386), (32, 46089), (51, 97), (53, 95), (107, 52939), (217, 19210), (324, 34384), (1087, 304), (2179, 2169), (2181, 2167), (3199, 54), (6368, 15414), (13450, 276), (14569, 275), (23607, 343), (24862, 15526), (32230, 57573), (33631, 59143), (34983, 52613), (36412, 69), (40981, 14533), (41221, 53576), (41279, 348), (45793, 305), (46394, 1092), (51513, 15412), (52604, 18315), (53386, 59183), (55132, 45792), (55219, 23286), (57195, 3265), (60828, 76), (61193, 18831), (61194, 15958), (61346, 54034), (61378, 394), (62259, 63), (62260, 3), (62262, 219), (62263, 222)
X(62261) = X(53)-waw conjugate of-X(27371)
X(62261) = pole of the line {6748, 10110} with respect to the Jerabek circumhyperbola
X(62261) = pole of the line {42400, 59533} with respect to the Kiepert circumhyperbola
X(62261) = pole of the line {15451, 55280} with respect to the orthic inconic
X(62261) = pole of the line {46089, 52437} with respect to the Stammler hyperbola
X(62261) = barycentric product X(i)*X(j) for these {i, j}: {4, 36412}, {5, 53}, {6, 60828}, {19, 1087}, {25, 45793}, {51, 324}, {92, 62259}, {107, 57195}, {216, 13450}, {264, 62260}, {275, 23607}, {281, 41279}, {311, 3199}, {331, 62262}, {343, 14569}, {1625, 23290}, {2052, 61378}, {2181, 14213}, {3078, 39284}, {6368, 61193}
X(62261) = trilinear product X(i)*X(j) for these {i, j}: {4, 62259}, {5, 2181}, {19, 36412}, {25, 1087}, {31, 60828}, {33, 41279}, {53, 1953}, {92, 62260}, {158, 61378}, {273, 62262}, {318, 62263}, {324, 2179}, {1973, 45793}, {2190, 23607}, {2617, 51513}, {2618, 52604}, {3199, 14213}, {6521, 46394}, {14569, 44706}, {24000, 24862}
X(62261) = trilinear quotient X(i)/X(j) for these (i, j): (31, 46089), (51, 2169), (53, 2167), (823, 52939), (1087, 69), (1953, 97), (2179, 14533), (2181, 54), (3199, 2148), (13450, 40440), (14213, 34386), (14569, 2190), (23607, 44706), (24862, 2632), (36412, 63), (41279, 77), (45793, 304), (46394, 4100), (51513, 2616), (52604, 36134)
X(62261) = X(32911)-of-orthic triangle, when ABC is acute
X(62261) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (51, 53, 53386), (53, 14569, 51), (2052, 6747, 125), (23607, 61378, 36412), (39284, 55084, 4), (42453, 61532, 34836)


X(62262) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(5) AND CIRCUMCEVIAN-OF-X(7)

Barycentrics    a^2*(-a+b+c)*((b^2+c^2)*a^2-(b^2-c^2)^2)^2 : :

X(62262) lies on these lines: {607, 62257}, {61378, 62259}

X(62262) = X(62259)-Ceva conjugate of-X(62260)
X(62262) = X(6663)-Dao conjugate of-X(6063)
X(62262) = X(i)-isoconjugate of X(j) for these {i, j}: {46089, 57787}, {51664, 52939}
X(62262) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1087, 20567), (36412, 6063), (41279, 57792), (44707, 34386), (45793, 41283), (46394, 1804), (61378, 348), (62259, 85), (62260, 7), (62261, 331), (62263, 279)
X(62262) = barycentric product X(i)*X(j) for these {i, j}: {8, 62260}, {9, 62259}, {41, 1087}, {53, 44707}, {55, 36412}, {219, 62261}, {220, 41279}, {281, 61378}, {346, 62263}, {1953, 7069}, {2175, 45793}, {52425, 60828}
X(62262) = trilinear product X(i)*X(j) for these {i, j}: {9, 62260}, {33, 61378}, {41, 36412}, {51, 7069}, {55, 62259}, {200, 62263}, {212, 62261}, {1087, 2175}, {1253, 41279}, {2181, 44707}, {9447, 45793}
X(62262) = trilinear quotient X(i)/X(j) for these (i, j): (1087, 6063), (7069, 95), (36412, 85), (41279, 1088), (45793, 20567), (46394, 7125), (60828, 57787), (61378, 77)
X(62262) = (X(61378), X(62259))-harmonic conjugate of X(62263)


X(62263) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(5) AND CIRCUMCEVIAN-OF-X(8)

Barycentrics    a^2*(a+b-c)*(a-b+c)*((b^2+c^2)*a^2-(b^2-c^2)^2)^2 : :

X(62263) lies on these lines: {278, 61058}, {608, 62258}, {1397, 61052}, {61378, 62259}

X(62263) = isogonal conjugate of the isotomic conjugate of X(41279)
X(62263) = X(62259)-beth conjugate of-X(62259)
X(62263) = X(6663)-Dao conjugate of-X(3596)
X(62263) = X(i)-isoconjugate of X(j) for these {i, j}: {95, 44687}, {8611, 52939}, {35196, 56189}
X(62263) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1087, 28659), (2179, 44687), (30493, 34386), (36412, 3596), (41279, 76), (45793, 40363), (46394, 1259), (61378, 345), (62259, 312), (62260, 8), (62261, 7017), (62262, 346)
X(62263) = barycentric product X(i)*X(j) for these {i, j}: {6, 41279}, {7, 62260}, {53, 30493}, {56, 36412}, {57, 62259}, {222, 62261}, {278, 61378}, {279, 62262}, {604, 1087}, {1393, 1953}, {1397, 45793}, {2181, 44708}, {52411, 60828}
X(62263) = trilinear product X(i)*X(j) for these {i, j}: {31, 41279}, {34, 61378}, {51, 1393}, {56, 62259}, {57, 62260}, {269, 62262}, {603, 62261}, {604, 36412}, {1087, 1397}, {2181, 30493}, {3199, 44708}
X(62263) = trilinear quotient X(i)/X(j) for these (i, j): (51, 44687), (1087, 3596), (1393, 95), (36412, 312), (41279, 75), (44708, 34386), (45793, 28659), (46394, 2289), (61378, 78)
X(62263) = (X(61378), X(62259))-harmonic conjugate of X(62262)


X(62264) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(7) AND CIRCUMCEVIAN-OF-X(5)

Barycentrics    a^2*(a+b-c)^2*(a-b+c)^2*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62264) lies on these lines: {54, 1439}, {2148, 33629}, {6046, 41282}

X(62264) = X(i)-Dao conjugate of X(j) for these (i, j): (6609, 5), (17113, 311)
X(62264) = X(i)-isoconjugate of X(j) for these {i, j}: {5, 200}, {8, 7069}, {51, 341}, {53, 3692}, {216, 7101}, {220, 14213}, {311, 1253}, {318, 44707}, {324, 1802}, {343, 7079}, {346, 1953}, {1043, 21807}, {1087, 62265}, {1265, 2181}, {1393, 5423}, {2179, 59761}, {2287, 21011}, {2332, 42698}, {3199, 52406}, {4082, 18180}, {4171, 14570}, {4515, 17167}, {4578, 21102}, {6065, 60804}, {7046, 44706}, {7071, 18695}, {7258, 55219}, {7259, 12077}
X(62264) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (54, 346), (95, 59761), (97, 1265), (269, 14213), (279, 311), (604, 7069), (1042, 21011), (1106, 1953), (1119, 324), (1398, 53), (1407, 5), (1439, 42698), (2148, 200), (2167, 341), (2169, 3692), (2190, 7101), (7053, 343), (7056, 28706), (7099, 44706), (7177, 18695), (7216, 2618), (7250, 12077), (7366, 1393), (8882, 7046), (14533, 1260), (14573, 14827), (18315, 7256), (36134, 7259), (44687, 30693), (52410, 51), (52411, 44707), (53538, 60804), (54034, 220)
X(62264) = barycentric product X(i)*X(j) for these {i, j}: {54, 279}, {95, 1407}, {97, 1119}, {269, 2167}, {275, 7053}, {738, 44687}, {1088, 2148}, {1398, 34386}, {1847, 2169}, {2190, 7177}, {2616, 4637}, {2623, 4616}, {7056, 8882}, {7099, 40440}, {34384, 52410}, {54034, 57792}
X(62264) = trilinear product X(i)*X(j) for these {i, j}: {54, 269}, {95, 1106}, {97, 1435}, {275, 7099}, {279, 2148}, {1088, 54034}, {1119, 2169}, {1407, 2167}, {1847, 14533}, {2190, 7053}, {2623, 4637}, {7023, 44687}, {7177, 8882}, {7216, 18315}
X(62264) = trilinear quotient X(i)/X(j) for these (i, j): (54, 200), (56, 7069), (95, 341), (97, 3692), (269, 5), (275, 7101), (279, 14213), (603, 44707), (1042, 21807), (1088, 311), (1106, 51), (1358, 60804), (1398, 2181), (1407, 1953), (1427, 21011), (1435, 53), (1847, 324), (2148, 220), (2167, 346), (2169, 1260)


X(62265) = TRAN-LOZADA PERSPECTOR OF CEVIAN-OF-X(8) AND CIRCUMCEVIAN-OF-X(5)

Barycentrics    a^2*(-a+b+c)^2*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62265) lies on these lines: {54, 72}, {2318, 58328}, {2750, 36078}

X(62265) = X(i)-Dao conjugate of X(j) for these (i, j): (6552, 311), (6600, 5), (6608, 60804), (14714, 21102), (24771, 14213)
X(62265) = X(i)-isoconjugate of X(j) for these {i, j}: {5, 269}, {7, 1393}, {51, 1088}, {53, 7177}, {216, 1847}, {273, 30493}, {278, 44708}, {279, 1953}, {311, 1106}, {324, 7099}, {343, 1435}, {479, 7069}, {934, 21102}, {1087, 62264}, {1119, 44706}, {1398, 18695}, {1407, 14213}, {1427, 17167}, {2179, 57792}, {2181, 7056}, {3668, 18180}, {4635, 55219}, {4637, 12077}, {7216, 14570}, {7339, 60804}, {17096, 35307}
X(62265) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (41, 1393), (54, 279), (95, 57792), (97, 7056), (200, 14213), (212, 44708), (220, 5), (346, 311), (657, 21102), (1253, 1953), (1260, 343), (1265, 28706), (1802, 44706), (2148, 269), (2167, 1088), (2169, 7177), (2190, 1847), (2328, 17167), (3119, 60804), (3692, 18695), (4171, 2618), (4524, 12077), (6602, 7069), (7046, 324), (7071, 53), (8882, 1119), (14533, 7053), (14573, 52410), (14827, 51), (18315, 4616), (35196, 1434), (36134, 4637), (44687, 85), (52425, 30493), (54034, 1407), (56254, 1446)
X(62265) = barycentric product X(i)*X(j) for these {i, j}: {9, 44687}, {54, 346}, {95, 220}, {97, 7046}, {200, 2167}, {275, 1260}, {341, 2148}, {1265, 8882}, {1802, 40440}, {2169, 7101}, {2190, 3692}, {2287, 56254}, {2321, 35196}, {2328, 56246}, {2616, 7259}, {2623, 7256}, {4069, 39177}, {7071, 34386}, {14827, 34384}, {39287, 61316}
X(62265) = trilinear product X(i)*X(j) for these {i, j}: {54, 200}, {55, 44687}, {95, 1253}, {97, 7079}, {210, 35196}, {220, 2167}, {275, 1802}, {341, 54034}, {346, 2148}, {1260, 2190}, {2169, 7046}, {2328, 56254}, {2623, 7259}, {3692, 8882}, {4171, 18315}, {7101, 14533}
X(62265) = trilinear quotient X(i)/X(j) for these (i, j): (54, 269), (55, 1393), (95, 1088), (97, 7177), (200, 5), (212, 30493), (219, 44708), (220, 1953), (275, 1847), (341, 311), (346, 14213), (480, 7069), (1253, 51), (1260, 44706), (1265, 18695), (1802, 216), (2148, 1407), (2167, 279), (2169, 7053), (2190, 1119)





leftri  Tran-Lozada CCO- and OOC- perspectors: X(62266) - X(62278)  rightri

This preamble and centers X(62266)-X(62278) were contributed by César Eliud Lozada, March 18, 2024.

The following two ennunciates, slightly modified, are proposed by Tran Viet Hung in Romantics of geometry, March 17, 2023:

1) Let ABC be a triangle with circumcircle (O), P', P", Po three points, with P' ≠ P", and A'B'C', A"B"C" the cevian triangles of P' and P", respectively, and AoBoCo the circumcevian triangle of Po. Let As be the second intersection of circles (O) and (A'A"Ao), and build Bs, Cs cyclically. Then the lines AAs, BBs, CCs are concurrent in a point Q1(P', P"; Po).

The point of concurrence Q1(P', P"; Po) is named here the Tran-Lozada CCO-perspector of (P',P"; Po). If P' = x' : y' : z', P" = x" : y" : z" and Po = xo: yo : zo (barycentrics), then Q1(P',P"; Po) = a^2 x' x"/xo : b^2 y' y"/yo : c^2 z' z"/zo.

The appearance of (i, j, k, n) in the folowing list means that Q1(X(i), X(j); X(k) ) = X(n), for (i, j, k) ≤ 6:

(1, 2, 1, 6), (1, 3, 1, 184), (1, 4, 1, 25), (1, 5, 1, 51), (1, 6, 1, 32), (2, 3, 1, 48), (2, 4, 1, 19), (2, 5, 1, 1953), (2, 6, 1, 31), (3, 4, 1, 31), (3, 5, 1, 62266), (3, 6, 1, 9247), (4, 5, 1, 2181), (4, 6, 1, 1973), (5, 6, 1, 2179), (1, 2, 2, 31), (1, 3, 2, 9247), (1, 4, 2, 1973), (1, 5, 2, 2179), (1, 6, 2, 560), (2, 3, 2, 184), (2, 4, 2, 25), (2, 5, 2, 51), (2, 6, 2, 32), (3, 4, 2, 32), (3, 5, 2, 217), (3, 6, 2, 14575), (4, 5, 2, 3199), (4, 6, 2, 1974), (5, 6, 2, 40981), (1, 2, 3, 19), (1, 3, 3, 31), (1, 4, 3, 1096), (1, 5, 3, 2181), (1, 6, 3, 1973), (2, 3, 3, 6), (2, 4, 3, 393), (2, 5, 3, 53), (2, 6, 3, 25), (3, 4, 3, 25), (3, 5, 3, 51), (3, 6, 3, 32), (4, 5, 3, 14569), (4, 6, 3, 2207), (5, 6, 3, 3199), (1, 2, 4, 48), (1, 3, 4, 52430), (1, 4, 4, 31), (1, 5, 4, 62266), (1, 6, 4, 9247), (2, 3, 4, 577), (2, 4, 4, 6), (2, 5, 4, 216), (2, 6, 4, 184), (3, 4, 4, 184), (3, 5, 4, 418), (3, 6, 4, 14585), (4, 5, 4, 51), (4, 6, 4, 32), (5, 6, 4, 217), (1, 2, 5, 2148), (1, 3, 5, 62267), (1, 4, 5, 62268), (1, 5, 5, 31), (1, 6, 5, 62269), (2, 3, 5, 14533), (2, 4, 5, 8882), (2, 5, 5, 6), (2, 6, 5, 54034), (3, 4, 5, 54034), (3, 5, 5, 184), (3, 6, 5, 62270), (4, 5, 5, 25), (4, 6, 5, 62271), (5, 6, 5, 32), (1, 2, 6, 1), (1, 3, 6, 48), (1, 4, 6, 19), (1, 5, 6, 1953), (1, 6, 6, 31), (2, 3, 6, 3), (2, 4, 6, 4), (2, 5, 6, 5), (2, 6, 6, 6), (3, 4, 6, 6), (3, 5, 6, 216), (3, 6, 6, 184), (4, 5, 6, 53), (4, 6, 6, 25), (5, 6, 6, 51)

2) Let ABC be a triangle, P'o, P"o, Pi three points with P'o ≠ P"o, A'oB'oC'o, A"oB"oC"o the circumcevian triangles of P'o and P"o, respectively, and AiBiCi the cevian triangle of Pi. Let As be the second intersection of the line BC and the circle (A'oA"oAi) and build Bs, Cs cyclically. Then the lines AAs, BBs, CCs are concurrent in a point Q2(P'o, P"o; Pi).

Q2(P'o, P"o; Pi) is named here the Tran-Lozada OOC-perspector of (P'o, P"o; Pi). If P'o = x'o : y'o : z'o, P"o = x"o : y"o : z"o, Pi = xi : yi : zi (barycentrics), then Q2(P'o, P"o; P*) = x'o x"o xi/ a^2 : y'o y"o yi/ b^2 : z'o z"o zi/ c^2.

The appearance of (i, j, k, n) in the folowing list means that Q2(X(i), X(j); X(k) ) = X(n), for (i, j, k) ≤ 6:

(1, 2, 1, 76), (1, 3, 1, 69), (1, 4, 1, 264), (1, 5, 1, 311), (1, 6, 1, 2), (2, 3, 1, 304), (2, 4, 1, 1969), (2, 5, 1, 62272), (2, 6, 1, 75), (3, 4, 1, 75), (3, 5, 1, 18695), (3, 6, 1, 63), (4, 5, 1, 62273), (4, 6, 1, 92), (5, 6, 1, 14213), (1, 2, 2, 75), (1, 3, 2, 63), (1, 4, 2, 92), (1, 5, 2, 14213), (1, 6, 2, 1), (2, 3, 2, 69), (2, 4, 2, 264), (2, 5, 2, 311), (2, 6, 2, 2), (3, 4, 2, 2), (3, 5, 2, 343), (3, 6, 2, 3), (4, 5, 2, 324), (4, 6, 2, 4), (5, 6, 2, 5), (1, 2, 3, 1969), (1, 3, 3, 75), (1, 4, 3, 57806), (1, 5, 3, 62273), (1, 6, 3, 92), (2, 3, 3, 76), (2, 4, 3, 18027), (2, 5, 3, 62274), (2, 6, 3, 264), (3, 4, 3, 264), (3, 5, 3, 311), (3, 6, 3, 2), (4, 5, 3, 62275), (4, 6, 3, 2052), (5, 6, 3, 324), (1, 2, 4, 304), (1, 3, 4, 326), (1, 4, 4, 75), (1, 5, 4, 18695), (1, 6, 4, 63), (2, 3, 4, 3926), (2, 4, 4, 76), (2, 5, 4, 28706), (2, 6, 4, 69), (3, 4, 4, 69), (3, 5, 4, 52347), (3, 6, 4, 394), (4, 5, 4, 311), (4, 6, 4, 2), (5, 6, 4, 343), (1, 2, 5, 62276), (1, 3, 5, 62277), (1, 4, 5, 40440), (1, 5, 5, 75), (1, 6, 5, 2167), (2, 3, 5, 34386), (2, 4, 5, 276), (2, 5, 5, 76), (2, 6, 5, 95), (3, 4, 5, 95), (3, 5, 5, 69), (3, 6, 5, 97), (4, 5, 5, 264), (4, 6, 5, 275), (5, 6, 5, 2), (1, 2, 6, 561), (1, 3, 6, 304), (1, 4, 6, 1969), (1, 5, 6, 62272), (1, 6, 6, 75), (2, 3, 6, 305), (2, 4, 6, 18022), (2, 5, 6, 62278), (2, 6, 6, 76), (3, 4, 6, 76), (3, 5, 6, 28706), (3, 6, 6, 69), (4, 5, 6, 62274), (4, 6, 6, 264), (5, 6, 6, 311)

underbar

X(62266) = TRAN-LOZADA CCO-PERSPECTOR OF (X(3), X(5); X(1) )

Barycentrics    a^3*(-a^2+b^2+c^2)*((b^2+c^2)*a^2-(b^2-c^2)^2) : :

X(62266) lies on these lines: {1, 29}, {3, 22394}, {31, 48}, {38, 2632}, {42, 21860}, {55, 2638}, {56, 7138}, {73, 1104}, {162, 1954}, {216, 44707}, {240, 45224}, {244, 37755}, {336, 3112}, {354, 8763}, {756, 34591}, {869, 7124}, {872, 61395}, {916, 22069}, {1193, 37837}, {1409, 23204}, {1824, 45932}, {1953, 2181}, {2169, 2964}, {2286, 7032}, {2617, 14213}, {3248, 61396}, {3611, 7117}, {4055, 23207}, {7085, 20753}, {8766, 17469}, {16697, 44706}, {23197, 43218}, {26892, 51651}, {42074, 42080}

X(62266) = isotomic conjugate of the polar conjugate of X(2179)
X(62266) = isogonal conjugate of X(40440)
X(62266) = crossdifference of every pair of points on the line X(822)X(1577)
X(62266) = crosspoint of X(i) and X(j) for these {i, j}: {1, 48}, {216, 30493}, {1953, 44706}
X(62266) = crosssum of X(i) and X(j) for these {i, j}: {1, 92}, {4, 18676}, {75, 44179}, {2167, 2190}
X(62266) = X(i)-beth conjugate of X(j) for these (i, j): (23181, 44708), (44707, 44707)
X(62266) = X(i)-Ceva conjugate of X(j) for these (i, j): (1, 1953), (162, 822), (1953, 2179), (1956, 1755), (2166, 2315), (36145, 798), (44709, 216), (56194, 652)
X(62266) = X(48)-daleth conjugate of-X(1755)
X(62266) = X(i)-Dao conjugate of X(j) for these (i, j): (5, 75), (6, 62276), (9, 276), (130, 656), (206, 2190), (216, 1969), (1147, 62277), (2972, 14208), (6376, 57790), (6505, 34384), (6663, 62273), (14363, 57806), (15450, 1577), (17423, 2616), (22391, 2167), (32664, 275), (36033, 95), (36103, 8795), (39019, 20948), (39052, 42405), (40368, 62268), (40588, 92), (40591, 56189), (52032, 561), (52878, 240), (55066, 15412)
X(62266) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 275}, {3, 8795}, {4, 95}, {6, 276}, {19, 62276}, {24, 34385}, {25, 34384}, {27, 56246}, {28, 56189}, {32, 57790}, {54, 264}, {69, 8884}, {74, 43752}, {75, 2190}, {76, 8882}, {92, 2167}, {96, 317}, {97, 2052}, {140, 39286}, {158, 62277}, {184, 57844}, {186, 46138}, {252, 32002}, {253, 38808}, {273, 44687}, {286, 56254}, {288, 40684}, {290, 19189}, {305, 61362}, {340, 1141}, {393, 34386}, {394, 8794}, {427, 39287}, {458, 42300}, {470, 51275}, {471, 51268}, {520, 52779}, {523, 18831}, {525, 16813}, {561, 62268}, {647, 42405}, {648, 15412}, {670, 58756}, {811, 2616}, {850, 933}, {860, 39277}, {1105, 19166}, {1298, 16089}, {1502, 62271}, {1585, 16032}
X(62266) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 276), (3, 62276), (5, 1969), (19, 8795), (31, 275), (32, 2190), (48, 95), (51, 92), (53, 57806), (63, 34384), (71, 56189), (75, 57790), (92, 57844), (162, 42405), (163, 18831), (184, 2167), (216, 75), (217, 1), (228, 56246), (255, 34386), (343, 561), (418, 63), (560, 8882), (577, 62277), (810, 15412), (823, 54950), (1087, 62274), (1096, 8794), (1393, 331), (1501, 62268), (1568, 46234), (1625, 811), (1820, 34385), (1917, 62271), (1924, 58756), (1953, 264), (1973, 8884), (2173, 43752), (2179, 4), (2180, 317), (2181, 2052), (2200, 56254), (2290, 340), (2313, 16089), (2617, 6331), (3049, 2616), (3199, 158), (4592, 55218), (5562, 304), (6368, 20948)
X(62266) = X(48)-waw conjugate of-X(4020)
X(62266) = perspector of the circumconic through X(163) and X(823)
X(62266) = pole of the the tripolar of X(44709) with respect to the Johnson circumconic
X(62266) = pole of the line {75, 255} with respect to the Stammler hyperbola
X(62266) = pole of the line {326, 561} with respect to the Steiner-Wallace hyperbola
X(62266) = barycentric product X(i)*X(j) for these {i, j}: {1, 216}, {3, 1953}, {5, 48}, {6, 44706}, {9, 30493}, {19, 5562}, {31, 343}, {32, 18695}, {37, 44709}, {42, 16697}, {51, 63}, {52, 1820}, {53, 255}, {55, 44708}, {57, 44707}, {68, 2180}, {69, 2179}, {71, 18180}, {75, 217}, {92, 418}
X(62266) = trilinear product X(i)*X(j) for these {i, j}: {2, 217}, {3, 51}, {4, 418}, {5, 184}, {6, 216}, {22, 27372}, {24, 61363}, {25, 5562}, {31, 44706}, {32, 343}, {41, 44708}, {42, 44709}, {48, 1953}, {52, 2351}, {53, 577}, {54, 61378}, {55, 30493}, {56, 44707}, {63, 2179}, {69, 40981}
X(62266) = trilinear quotient X(i)/X(j) for these (i, j): (2, 276), (3, 95), (4, 8795), (5, 264), (6, 275), (25, 8884), (30, 43752), (31, 2190), (32, 8882), (48, 2167), (51, 4), (52, 317), (53, 2052), (63, 62276), (68, 34385), (69, 34384), (71, 56246), (72, 56189), (76, 57790), (107, 52779)
X(62266) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 23112, 22394), (31, 48, 52430), (38, 6508, 2632), (162, 2167, 1954), (1953, 2181, 62259)


X(62267) = TRAN-LOZADA CCO-PERSPECTOR OF (X(1), X(3); X(5) )

Barycentrics    a^5*(-a^2+b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62267) lies on these lines: {31, 2148}, {38, 293}, {255, 2169}, {563, 52430}, {933, 59042}, {2190, 45225}, {4055, 14533}, {9247, 62269}, {52434, 54034}

X(62267) = isotomic conjugate of the polar conjugate of X(62269)
X(62267) = isogonal conjugate of X(62273)
X(62267) = crosspoint of X(i) and X(j) for these {i, j}: {2148, 2169}, {2168, 2190}
X(62267) = X(2148)-Ceva conjugate of-X(62269)
X(62267) = X(9247)-cross conjugate of-X(2148)
X(62267) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 62272), (9, 62274), (1147, 18695), (6505, 62278), (17423, 2618), (22391, 14213), (32664, 324), (34591, 15415), (36033, 311), (36103, 62275), (38986, 23290), (40368, 2181), (55066, 18314)
X(62267) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 324}, {3, 62275}, {4, 311}, {5, 264}, {6, 62274}, {19, 62272}, {25, 62278}, {51, 18022}, {52, 55553}, {53, 76}, {69, 13450}, {92, 14213}, {93, 57805}, {94, 14918}, {95, 60828}, {99, 23290}, {112, 15415}, {143, 20572}, {158, 18695}, {216, 18027}, {275, 45793}, {276, 36412}, {290, 39569}, {297, 53245}, {300, 6117}, {301, 6116}, {305, 14569}, {308, 27371}, {317, 56272}, {327, 39530}, {343, 2052}, {393, 28706}, {467, 5392}, {561, 2181}, {648, 18314}, {670, 51513}, {811, 2618}, {847, 39113}, {850, 35360}, {877, 61196}, {1087, 40440}, {1093, 52347}, {1154, 18817}, {1179, 1225}, {1235, 17500}, {1273, 6344}, {1502, 3199}, {1594, 59137}, {1953, 1969}, {2180, 57898}
X(62267) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62274), (3, 62272), (19, 62275), (31, 324), (48, 311), (54, 1969), (63, 62278), (96, 57898), (97, 561), (184, 14213), (217, 1087), (255, 28706), (560, 53), (563, 39113), (577, 18695), (656, 15415), (798, 23290), (810, 18314), (933, 57973), (1501, 2181), (1917, 3199), (1923, 27371), (1924, 51513), (1973, 13450), (2148, 264), (2167, 18022), (2168, 55553), (2169, 76), (2179, 60828), (2190, 18027), (3049, 2618), (4055, 42698), (4100, 52347), (8882, 57806), (9247, 5), (9417, 39569), (14533, 75), (14573, 19), (14575, 1953), (14585, 44706), (14586, 811), (14587, 46254), (15958, 799), (18315, 57968), (19210, 304), (19627, 51801), (23286, 20948), (34386, 1928), (36134, 6331), (40373, 2179)
X(62267) = pole of the line {18695, 62272} with respect to the Stammler hyperbola
X(62267) = barycentric product X(i)*X(j) for these {i, j}: {1, 14533}, {3, 2148}, {6, 2169}, {19, 19210}, {31, 97}, {32, 62277}, {47, 57703}, {48, 54}, {63, 54034}, {69, 62269}, {75, 62270}, {92, 62256}, {95, 9247}, {96, 563}, {162, 46088}, {163, 23286}, {184, 2167}, {255, 8882}, {275, 52430}, {293, 41270}
X(62267) = trilinear product X(i)*X(j) for these {i, j}: {2, 62270}, {3, 54034}, {4, 62256}, {6, 14533}, {25, 19210}, {31, 2169}, {32, 97}, {48, 2148}, {50, 11077}, {51, 46089}, {54, 184}, {63, 62269}, {69, 14573}, {95, 14575}, {96, 52435}, {110, 58308}, {112, 46088}, {248, 41270}, {255, 62268}, {275, 14585}
X(62267) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62274), (3, 311), (4, 62275), (6, 324), (25, 13450), (32, 53), (48, 14213), (49, 57805), (50, 14918), (51, 60828), (54, 264), (63, 62272), (69, 62278), (95, 18022), (96, 55553), (97, 76), (184, 5), (216, 45793), (217, 36412), (237, 39569)
X(62267) = (X(2148), X(62268))-harmonic conjugate of X(31)


X(62268) = TRAN-LOZADA CCO-PERSPECTOR OF (X(1), X(4); X(5) )

Barycentrics    a^3*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62268) lies on these lines: {1, 1748}, {19, 2168}, {31, 2148}, {42, 8882}, {54, 1245}, {213, 62271}, {275, 40718}, {560, 1096}, {741, 933}, {1402, 54034}, {1973, 62269}, {2181, 32676}, {3112, 40440}, {18826, 18831}, {36051, 36134}, {46289, 57653}, {57652, 61362}

X(62268) = isogonal conjugate of X(18695)
X(62268) = polar conjugate of X(62272)
X(62268) = cevapoint of X(560) and X(1973)
X(62268) = X(2190)-Ceva conjugate of-X(2148)
X(62268) = X(i)-cross conjugate of X(j) for these (i, j): (560, 62269), (62269, 2148)
X(62268) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 28706), (206, 44706), (1249, 62272), (3162, 14213), (5139, 2618), (6523, 62273), (32664, 343), (36033, 52347), (36103, 311), (38986, 6368), (40368, 62266), (40586, 42698), (55066, 60597)
X(62268) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 343}, {3, 311}, {4, 52347}, {5, 69}, {6, 28706}, {48, 62272}, {51, 305}, {52, 20563}, {53, 3926}, {63, 14213}, {68, 39113}, {75, 44706}, {76, 216}, {81, 42698}, {97, 45793}, {99, 6368}, {184, 62278}, {217, 1502}, {255, 62273}, {264, 5562}, {265, 1273}, {287, 60524}, {290, 44716}, {298, 44713}, {299, 44714}, {300, 44711}, {301, 44712}, {304, 1953}, {306, 17167}, {312, 44708}, {313, 44709}, {315, 41168}, {321, 16697}, {324, 394}, {325, 53174}, {328, 1154}, {418, 18022}, {467, 52350}, {525, 14570}, {561, 62266}, {577, 62274}, {648, 60597}, {670, 15451}, {850, 23181}, {1087, 62277}, {1092, 62275}, {1216, 59137}, {1225, 40441}, {1238, 40449}, {1393, 3718}
X(62268) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 28706), (4, 62272), (19, 311), (25, 14213), (31, 343), (32, 44706), (42, 42698), (48, 52347), (54, 304), (92, 62278), (95, 40364), (158, 62274), (275, 561), (276, 1928), (393, 62273), (560, 216), (798, 6368), (810, 60597), (933, 799), (1096, 324), (1397, 44708), (1501, 62266), (1917, 217), (1924, 15451), (1973, 5), (1974, 1953), (2148, 69), (2167, 305), (2168, 20563), (2169, 3926), (2181, 45793), (2190, 76), (2203, 17167), (2206, 16697), (2489, 2618), (2616, 3267), (2623, 14208), (3199, 1087), (6520, 62275), (8882, 75), (8884, 1969), (9247, 5562), (9406, 1568), (9417, 44716), (9447, 44707), (14533, 326), (14573, 48), (14586, 4592), (16813, 57968), (18315, 55202)
X(62268) = pole of the the tripolar of X(62272) with respect to the polar circle
X(62268) = pole of the line {18695, 44706} with respect to the Stammler hyperbola
X(62268) = barycentric product X(i)*X(j) for these {i, j}: {1, 8882}, {4, 2148}, {6, 2190}, {19, 54}, {24, 2168}, {25, 2167}, {31, 275}, {32, 40440}, {48, 8884}, {63, 61362}, {75, 62271}, {92, 54034}, {95, 1973}, {97, 1096}, {112, 2616}, {158, 14533}, {162, 2623}, {264, 62269}, {276, 560}, {393, 2169}
X(62268) = trilinear product X(i)*X(j) for these {i, j}: {2, 62271}, {3, 61362}, {4, 54034}, {6, 8882}, {19, 2148}, {24, 41271}, {25, 54}, {31, 2190}, {32, 275}, {92, 62269}, {95, 1974}, {96, 44077}, {97, 2207}, {98, 58306}, {107, 58308}, {110, 58756}, {112, 2623}, {158, 62267}, {184, 8884}, {264, 14573}
X(62268) = trilinear quotient X(i)/X(j) for these (i, j): (2, 28706), (3, 52347), (4, 311), (6, 343), (19, 14213), (24, 39113), (25, 5), (31, 44706), (32, 216), (37, 42698), (53, 45793), (54, 69), (92, 62272), (95, 305), (96, 20563), (97, 3926), (112, 14570), (158, 62273), (184, 5562), (186, 1273)
X(62268) = (X(31), X(62267))-harmonic conjugate of X(2148)


X(62269) = TRAN-LOZADA CCO-PERSPECTOR OF (X(1), X(6); X(5) )

Barycentrics    a^5*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62269) lies on these lines: {47, 48}, {933, 59040}, {1910, 2190}, {1953, 2168}, {1959, 2167}, {1973, 62268}, {2200, 52426}, {9247, 62267}

X(62269) = polar conjugate of the isotomic conjugate of X(62267)
X(62269) = isogonal conjugate of X(62272)
X(62269) = crosspoint of X(2148) and X(62268)
X(62269) = crosssum of X(14213) and X(18695)
X(62269) = X(2148)-Ceva conjugate of-X(62267)
X(62269) = X(560)-cross conjugate of-X(62268)
X(62269) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 62278), (206, 14213), (244, 15415), (3162, 62273), (22391, 18695), (32664, 311), (36033, 28706), (36103, 62274), (38986, 18314), (38996, 2618), (40368, 1953), (40369, 2179)
X(62269) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 311}, {3, 62274}, {4, 28706}, {5, 76}, {6, 62278}, {51, 1502}, {52, 57904}, {53, 305}, {63, 62273}, {69, 324}, {75, 14213}, {92, 18695}, {94, 1273}, {95, 45793}, {99, 18314}, {110, 15415}, {216, 18022}, {217, 44161}, {264, 343}, {286, 42698}, {290, 60524}, {300, 33529}, {301, 33530}, {310, 21011}, {313, 17167}, {315, 60515}, {325, 53245}, {327, 59197}, {328, 14918}, {394, 62275}, {467, 20563}, {561, 1953}, {670, 12077}, {799, 2618}, {850, 14570}, {1087, 62276}, {1154, 20573}, {1209, 57903}, {1225, 40393}, {1232, 31610}, {1393, 28659}, {1625, 44173}, {1928, 2179}, {1969, 44706}, {1978, 21102}, {2052, 52347}, {2181, 40364}, {2396, 61196}, {2617, 20948}, {3199, 40050}
X(62269) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62278), (19, 62274), (25, 62273), (31, 311), (32, 14213), (48, 28706), (54, 561), (95, 1928), (97, 40364), (184, 18695), (560, 5), (661, 15415), (669, 2618), (798, 18314), (933, 57968), (1096, 62275), (1501, 1953), (1917, 51), (1924, 12077), (1973, 324), (1980, 21102), (2148, 76), (2167, 1502), (2168, 57904), (2169, 305), (2179, 45793), (2190, 18022), (2200, 42698), (2205, 21011), (2616, 44173), (2623, 20948), (4117, 41221), (8882, 1969), (9233, 2179), (9247, 343), (9417, 60524), (9448, 7069), (14533, 304), (14573, 1), (14574, 2617), (14575, 44706), (14586, 799), (14587, 24037), (15958, 55202), (18315, 4602), (32692, 55215), (35196, 40072), (36134, 670), (40373, 62266), (40440, 44161)
X(62269) = pole of the line {14213, 62272} with respect to the Stammler hyperbola
X(62269) = barycentric product X(i)*X(j) for these {i, j}: {1, 54034}, {3, 62268}, {4, 62267}, {6, 2148}, {19, 14533}, {25, 2169}, {31, 54}, {32, 2167}, {47, 41271}, {48, 8882}, {63, 62271}, {75, 14573}, {92, 62270}, {95, 560}, {97, 1973}, {158, 62256}, {162, 58308}, {163, 2623}, {184, 2190}, {255, 61362}
X(62269) = trilinear product X(i)*X(j) for these {i, j}: {2, 14573}, {3, 62271}, {4, 62270}, {6, 54034}, {19, 62267}, {25, 14533}, {31, 2148}, {32, 54}, {48, 62268}, {95, 1501}, {96, 52436}, {97, 1974}, {112, 58308}, {184, 8882}, {248, 58306}, {275, 14575}, {276, 40373}, {393, 62256}, {512, 14586}, {560, 2167}
X(62269) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62278), (3, 28706), (4, 62274), (6, 311), (19, 62273), (25, 324), (31, 14213), (32, 5), (48, 18695), (50, 1273), (51, 45793), (54, 76), (95, 1502), (96, 57904), (97, 305), (184, 343), (228, 42698), (237, 60524), (275, 18022), (276, 44161)


X(62270) = TRAN-LOZADA CCO-PERSPECTOR OF (X(3), X(6); X(5) )

Barycentrics    a^6*(-a^2+b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62270) lies on these lines: {6, 58735}, {32, 44077}, {39, 54}, {95, 3788}, {96, 7746}, {97, 28724}, {184, 8565}, {187, 8883}, {216, 40441}, {276, 39843}, {577, 1147}, {3199, 61362}, {3202, 14573}, {8882, 52418}, {14585, 52435}, {59172, 61360}

X(62270) = isotomic conjugate of the polar conjugate of X(14573)
X(62270) = polar conjugate of the isotomic conjugate of X(62256)
X(62270) = isogonal conjugate of X(62274)
X(62270) = cevapoint of X(14575) and X(61361)
X(62270) = crossdifference of every pair of points on the line X(15415)X(23290)
X(62270) = crosspoint of X(i) and X(j) for these {i, j}: {8882, 41271}, {14533, 54034}
X(62270) = crosssum of X(i) and X(j) for these {i, j}: {311, 324}, {343, 39113}
X(62270) = X(i)-Ceva conjugate of X(j) for these (i, j): (14533, 62256), (14586, 58308), (54034, 14573)
X(62270) = X(14575)-cross conjugate of-X(54034)
X(62270) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 62278), (125, 15415), (206, 324), (1147, 28706), (3162, 62275), (17423, 18314), (22391, 311), (32664, 62273), (36033, 62272), (38996, 23290), (40368, 53), (40369, 3199)
X(62270) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 62273}, {4, 62272}, {5, 1969}, {19, 62278}, {52, 57898}, {53, 561}, {63, 62275}, {75, 324}, {92, 311}, {158, 28706}, {162, 15415}, {264, 14213}, {276, 1087}, {304, 13450}, {343, 57806}, {467, 20571}, {799, 23290}, {811, 18314}, {1502, 2181}, {1928, 3199}, {1953, 18022}, {2052, 18695}, {2179, 44161}, {2618, 6331}, {4602, 51513}, {6368, 57973}, {6521, 52347}, {12077, 57968}, {14569, 40364}, {18027, 44706}, {18833, 27371}, {20573, 51801}, {20948, 35360}, {21011, 57796}, {39113, 57716}, {39569, 46273}, {40440, 45793}, {40703, 53245}, {57790, 62259}, {60828, 62276}
X(62270) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3, 62278), (25, 62275), (31, 62273), (32, 324), (48, 62272), (54, 18022), (95, 44161), (97, 1502), (184, 311), (217, 45793), (577, 28706), (647, 15415), (669, 23290), (1501, 53), (1917, 2181), (1974, 13450), (2148, 1969), (2168, 57898), (2169, 561), (3049, 18314), (8882, 18027), (9233, 3199), (9247, 14213), (9418, 39569), (9426, 51513), (11077, 20573), (14533, 76), (14573, 4), (14574, 35360), (14575, 5), (14585, 343), (14586, 6331), (14600, 53245), (15958, 670), (19210, 305), (19627, 14918), (23195, 1225), (23216, 41221), (23286, 44173), (23606, 52347), (34386, 40362), (36134, 57968), (40373, 51), (40981, 60828), (41270, 44132), (41271, 55553), (41331, 27371), (44162, 14569), (46088, 3267), (46089, 34384)
X(62270) = pole of the line {324, 27371} with respect to the Stammler hyperbola
X(62270) = barycentric product X(i)*X(j) for these {i, j}: {1, 62267}, {3, 54034}, {4, 62256}, {6, 14533}, {25, 19210}, {31, 2169}, {32, 97}, {48, 2148}, {50, 11077}, {51, 46089}, {54, 184}, {63, 62269}, {69, 14573}, {95, 14575}, {96, 52435}, {110, 58308}, {112, 46088}, {248, 41270}, {255, 62268}, {275, 14585}
X(62270) = trilinear product X(i)*X(j) for these {i, j}: {3, 62269}, {6, 62267}, {19, 62256}, {31, 14533}, {32, 2169}, {48, 54034}, {54, 9247}, {63, 14573}, {97, 560}, {163, 58308}, {184, 2148}, {255, 62271}, {563, 41271}, {577, 62268}, {798, 15958}, {810, 14586}, {1501, 62277}, {1917, 34386}, {1973, 19210}, {2167, 14575}
X(62270) = trilinear quotient X(i)/X(j) for these (i, j): (3, 62272), (6, 62273), (19, 62275), (31, 324), (48, 311), (54, 1969), (63, 62278), (96, 57898), (97, 561), (184, 14213), (217, 1087), (255, 28706), (560, 53), (563, 39113), (577, 18695), (656, 15415), (798, 23290), (810, 18314), (933, 57973), (1501, 2181)
X(62270) = (X(54034), X(62271))-harmonic conjugate of X(32)


X(62271) = TRAN-LOZADA CCO-PERSPECTOR OF (X(4), X(6); X(5) )

Barycentrics    a^4*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62271) lies on these lines: {6, 24}, {25, 41271}, {32, 44077}, {52, 32661}, {53, 1179}, {83, 275}, {95, 7807}, {96, 230}, {97, 52275}, {213, 62268}, {217, 41759}, {276, 3114}, {569, 10311}, {571, 39110}, {729, 933}, {1501, 2207}, {1609, 57703}, {1970, 45089}, {1971, 6146}, {1974, 14573}, {2148, 2281}, {2190, 40747}, {2211, 46288}, {2422, 58756}, {3053, 8883}, {3199, 11060}, {3225, 18831}, {3518, 61208}, {3575, 58312}, {6531, 8884}, {8571, 18474}, {10316, 19210}, {14586, 32654}, {14601, 27369}, {18315, 41909}, {19627, 47328}, {32692, 40120}, {34386, 40405}, {37085, 58308}, {40441, 41334}, {44162, 46319}, {46680, 62256}

X(62271) = isogonal conjugate of X(28706)
X(62271) = polar conjugate of X(62278)
X(62271) = cevapoint of X(i) and X(j) for these {i, j}: {32, 52436}, {1501, 1974}
X(62271) = crosspoint of X(8882) and X(61362)
X(62271) = crosssum of X(343) and X(52347)
X(62271) = X(8882)-Ceva conjugate of-X(54034)
X(62271) = X(i)-cross conjugate of X(j) for these (i, j): (1501, 14573), (1974, 61362), (2489, 61206), (14573, 54034)
X(62271) = X(i)-Dao conjugate of X(j) for these (i, j): (136, 15415), (206, 343), (1249, 62278), (3162, 311), (5139, 18314), (6523, 62274), (15259, 324), (17423, 60597), (22391, 52347), (32664, 18695), (36103, 62272), (38996, 6368), (40368, 216), (40369, 217), (40600, 42698)
X(62271) = X(54034)-hirst inverse of-X(58306)
X(62271) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 18695}, {3, 62272}, {5, 304}, {48, 62278}, {51, 40364}, {63, 311}, {69, 14213}, {75, 343}, {76, 44706}, {86, 42698}, {92, 52347}, {216, 561}, {217, 1928}, {255, 62274}, {305, 1953}, {313, 16697}, {324, 326}, {336, 60524}, {394, 62273}, {799, 6368}, {811, 60597}, {1087, 34386}, {1102, 13450}, {1393, 57919}, {1502, 62266}, {1568, 33805}, {1969, 5562}, {2179, 40050}, {2617, 3267}, {2618, 4563}, {3596, 44708}, {4575, 15415}, {4592, 18314}, {4602, 15451}, {6507, 62275}, {7069, 57918}, {12077, 55202}, {14208, 14570}, {17167, 20336}, {17434, 57968}, {18180, 40071}, {20567, 44707}, {20571, 52032}, {20641, 41168}, {20948, 23181}, {27801, 44709}, {28659, 30493}, {35442, 46254}, {42459, 57780}, {44715, 46234}
X(62271) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 62278), (19, 62272), (25, 311), (31, 18695), (32, 343), (54, 305), (95, 40050), (184, 52347), (213, 42698), (275, 1502), (276, 40362), (393, 62274), (560, 44706), (669, 6368), (933, 670), (1096, 62273), (1501, 216), (1917, 62266), (1973, 14213), (1974, 5), (2148, 304), (2167, 40364), (2190, 561), (2207, 324), (2211, 60524), (2489, 18314), (2501, 15415), (2623, 3267), (3049, 60597), (3199, 45793), (6524, 62275), (8795, 44161), (8882, 76), (8884, 18022), (9233, 217), (9407, 1568), (9418, 44716), (9426, 15451), (9448, 44707), (14533, 3926), (14573, 3), (14574, 23181), (14575, 5562), (14586, 4563), (14587, 47389), (14601, 53174), (18315, 52608), (18831, 4609), (19210, 4176), (23286, 52617)
X(62271) = pole of the line {15415, 18314} with respect to the polar circle
X(62271) = pole of the line {1594, 53485} with respect to the Kiepert circumhyperbola
X(62271) = pole of the line {343, 28706} with respect to the Stammler hyperbola
X(62271) = barycentric product X(i)*X(j) for these {i, j}: {1, 62268}, {3, 61362}, {4, 54034}, {6, 8882}, {19, 2148}, {24, 41271}, {25, 54}, {31, 2190}, {32, 275}, {92, 62269}, {95, 1974}, {96, 44077}, {97, 2207}, {98, 58306}, {107, 58308}, {110, 58756}, {112, 2623}, {158, 62267}, {184, 8884}, {264, 14573}
X(62271) = trilinear product X(i)*X(j) for these {i, j}: {4, 62269}, {6, 62268}, {19, 54034}, {25, 2148}, {31, 8882}, {32, 2190}, {48, 61362}, {54, 1973}, {92, 14573}, {158, 62270}, {163, 58756}, {275, 560}, {276, 1917}, {393, 62267}, {798, 933}, {1096, 14533}, {1501, 40440}, {1910, 58306}, {1924, 18831}, {1974, 2167}
X(62271) = trilinear quotient X(i)/X(j) for these (i, j): (4, 62272), (6, 18695), (19, 311), (25, 14213), (31, 343), (32, 44706), (42, 42698), (48, 52347), (54, 304), (92, 62278), (95, 40364), (158, 62274), (275, 561), (276, 1928), (393, 62273), (560, 216), (798, 6368), (810, 60597), (933, 799), (1096, 324)
X(62271) = (X(32), X(62270))-harmonic conjugate of X(54034)


X(62272) = TRAN-LOZADA OOC-PERSPECTOR OF (X(2), X(5); X(1) )

Barycentrics    ((b^2+c^2)*a^2-(b^2-c^2)^2)/a^3 : :

X(62272) lies on these lines: {75, 91}, {76, 60091}, {92, 304}, {799, 62276}, {1760, 3403}, {1910, 4593}, {1920, 54443}, {1930, 23994}, {18695, 62273}, {27801, 57905}

X(62272) = isotomic conjugate of X(2148)
X(62272) = polar conjugate of X(62268)
X(62272) = isogonal conjugate of X(62269)
X(62272) = cevapoint of X(14213) and X(18695)
X(62272) = crosspoint of X(1969) and X(57898)
X(62272) = X(i)-Ceva conjugate of X(j) for these (i, j): (561, 18695), (799, 20948)
X(62272) = X(14213)-cross conjugate of-X(62273)
X(62272) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 2148), (5, 9247), (6, 62267), (9, 54034), (137, 798), (216, 31), (338, 661), (343, 563), (1249, 62268), (4858, 2623), (6337, 2169), (6374, 2167), (6376, 54), (6505, 14533), (6663, 2179), (14213, 21768), (14363, 1973), (16577, 21741), (31998, 36134), (32664, 14573), (34591, 58308), (36033, 62270), (36103, 62271), (36901, 2616), (39019, 810), (39039, 58306), (39040, 41270), (39054, 14586), (40588, 560), (52032, 48), (52869, 9406), (60596, 1755)
X(62272) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 14573}, {3, 62271}, {4, 62270}, {6, 54034}, {19, 62267}, {25, 14533}, {31, 2148}, {32, 54}, {48, 62268}, {95, 1501}, {96, 52436}, {97, 1974}, {112, 58308}, {184, 8882}, {248, 58306}, {275, 14575}, {276, 40373}, {393, 62256}, {512, 14586}, {560, 2167}, {571, 41271}, {577, 61362}, {669, 18315}, {798, 36134}, {933, 3049}, {1141, 19627}, {1576, 2623}, {1917, 62276}, {1973, 2169}, {1976, 41270}, {2190, 9247}, {2207, 19210}, {2489, 15958}, {3124, 14587}, {3199, 46089}, {8795, 61361}, {8884, 14585}, {8901, 23963}, {9233, 34384}, {11077, 34397}, {14574, 15412}, {14581, 46090}, {14600, 19189}, {14827, 62264}, {14910, 61372}, {16030, 46288}, {16813, 58310}, {23286, 61206}, {32661, 58756}, {32692, 34952}
X(62272) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 54034), (2, 2148), (3, 62267), (4, 62268), (5, 31), (19, 62271), (31, 14573), (48, 62270), (51, 560), (53, 1973), (63, 14533), (69, 2169), (75, 54), (76, 2167), (91, 41271), (92, 8882), (99, 36134), (158, 61362), (216, 9247), (240, 58306), (255, 62256), (264, 2190), (304, 97), (305, 62277), (311, 1), (313, 56254), (314, 35196), (324, 19), (326, 19210), (341, 62265), (343, 48), (561, 95), (656, 58308), (662, 14586), (799, 18315), (811, 933), (850, 2616), (1087, 51), (1088, 62264), (1273, 6149), (1393, 1397), (1502, 62276), (1577, 2623), (1725, 61372), (1928, 34384), (1930, 16030), (1953, 32), (1959, 41270), (1969, 275), (2179, 1501)
X(62272) = X(2616)-zayin conjugate of-X(798)
X(62272) = perspector of the circumconic through X(55215) and X(57968)
X(62272) = pole of the the tripolar of X(62268) with respect to the polar circle
X(62272) = pole of the line {9247, 62267} with respect to the Stammler hyperbola
X(62272) = pole of the line {47, 48} with respect to the Steiner-Wallace hyperbola
X(62272) = barycentric product X(i)*X(j) for these {i, j}: {1, 62278}, {5, 561}, {51, 1928}, {53, 40364}, {63, 62274}, {69, 62273}, {75, 311}, {76, 14213}, {92, 28706}, {264, 18695}, {304, 324}, {326, 62275}, {343, 1969}, {662, 15415}, {670, 2618}, {799, 18314}, {1087, 34384}, {1393, 40363}, {1502, 1953}, {2179, 40362}
X(62272) = trilinear product X(i)*X(j) for these {i, j}: {2, 311}, {3, 62274}, {4, 28706}, {5, 76}, {6, 62278}, {51, 1502}, {52, 57904}, {53, 305}, {63, 62273}, {69, 324}, {75, 14213}, {92, 18695}, {94, 1273}, {95, 45793}, {99, 18314}, {110, 15415}, {216, 18022}, {217, 44161}, {264, 343}, {286, 42698}
X(62272) = trilinear quotient X(i)/X(j) for these (i, j): (2, 54034), (3, 62270), (4, 62271), (5, 32), (6, 14573), (51, 1501), (52, 52436), (53, 1974), (63, 62267), (69, 14533), (75, 2148), (76, 54), (92, 62268), (99, 14586), (216, 14575), (217, 40373), (264, 8882), (297, 58306), (304, 2169), (305, 97)
X(62272) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (304, 1969, 46234), (561, 1969, 304)


X(62273) = TRAN-LOZADA OOC-PERSPECTOR OF (X(4), X(5); X(1) )

Barycentrics    ((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)/a^3 : :

X(62273) lies on these lines: {75, 158}, {92, 18041}, {264, 20566}, {319, 57812}, {324, 42698}, {326, 46234}, {662, 9252}, {811, 40440}, {1760, 51315}, {17858, 23994}, {18695, 62272}, {46404, 46749}, {52575, 57910}

X(62273) = polar conjugate of X(2148)
X(62273) = isotomic conjugate of X(2169)
X(62273) = isogonal conjugate of X(62267)
X(62273) = X(1969)-Ceva conjugate of-X(14213)
X(62273) = X(i)-cross conjugate of X(j) for these (i, j): (1087, 14213), (14213, 62272)
X(62273) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 2169), (5, 52430), (9, 14533), (137, 810), (139, 55216), (216, 48), (244, 58308), (338, 656), (1249, 2148), (3162, 62269), (4858, 23286), (6374, 62277), (6376, 97), (6505, 19210), (6523, 62268), (6663, 62266), (14213, 22457), (14363, 31), (14920, 6149), (16577, 22342), (32664, 62270), (34591, 46088), (35441, 37754), (36033, 62256), (36103, 54034), (39019, 822), (39039, 41270), (39052, 14586), (39054, 15958), (39062, 36134), (40588, 9247), (44311, 57103), (52032, 255)
X(62273) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 62270}, {3, 54034}, {4, 62256}, {6, 14533}, {25, 19210}, {31, 2169}, {32, 97}, {48, 2148}, {50, 11077}, {51, 46089}, {54, 184}, {63, 62269}, {69, 14573}, {95, 14575}, {96, 52435}, {110, 58308}, {112, 46088}, {248, 41270}, {255, 62268}, {275, 14585}, {276, 61361}, {394, 62271}, {512, 15958}, {560, 62277}, {563, 2168}, {571, 57703}, {577, 8882}, {647, 14586}, {810, 36134}, {933, 39201}, {1092, 61362}, {1147, 41271}, {1166, 23195}, {1495, 46090}, {1501, 34386}, {1576, 23286}, {2167, 9247}, {2190, 52430}, {2623, 32661}, {3049, 18315}, {5504, 61372}, {8565, 40140}, {8794, 36433}, {8884, 23606}, {10547, 16030}, {13366, 20574}, {14587, 20975}, {14642, 33629}, {17810, 46092}, {17974, 58306}
X(62273) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 14533), (2, 2169), (4, 2148), (5, 48), (19, 54034), (25, 62269), (31, 62270), (48, 62256), (51, 9247), (52, 563), (53, 31), (63, 19210), (75, 97), (76, 62277), (91, 57703), (92, 54), (158, 8882), (162, 14586), (216, 52430), (240, 41270), (264, 2167), (311, 63), (324, 1), (343, 255), (393, 62268), (467, 47), (561, 34386), (648, 36134), (656, 46088), (661, 58308), (662, 15958), (811, 18315), (823, 933), (847, 2168), (1087, 216), (1096, 62271), (1393, 52411), (1577, 23286), (1847, 62264), (1895, 33629), (1953, 184), (1969, 95), (1973, 14573), (2052, 2190), (2166, 11077), (2167, 46089), (2179, 14575), (2180, 52435), (2181, 32), (2349, 46090)
X(62273) = pole of the line {810, 8648} with respect to the polar circle
X(62273) = pole of the line {563, 52430} with respect to the Stammler hyperbola
X(62273) = pole of the line {255, 2169} with respect to the Steiner-Wallace hyperbola
X(62273) = barycentric product X(i)*X(j) for these {i, j}: {1, 62274}, {4, 62272}, {5, 1969}, {19, 62278}, {52, 57898}, {53, 561}, {63, 62275}, {75, 324}, {92, 311}, {158, 28706}, {162, 15415}, {264, 14213}, {276, 1087}, {304, 13450}, {343, 57806}, {467, 20571}, {799, 23290}, {811, 18314}, {1502, 2181}, {1928, 3199}
X(62273) = trilinear product X(i)*X(j) for these {i, j}: {2, 324}, {3, 62275}, {4, 311}, {5, 264}, {6, 62274}, {19, 62272}, {25, 62278}, {51, 18022}, {52, 55553}, {53, 76}, {69, 13450}, {92, 14213}, {93, 57805}, {94, 14918}, {95, 60828}, {99, 23290}, {112, 15415}, {143, 20572}, {158, 18695}, {216, 18027}
X(62273) = trilinear quotient X(i)/X(j) for these (i, j): (2, 14533), (3, 62256), (4, 54034), (5, 184), (6, 62270), (19, 62269), (25, 14573), (51, 14575), (52, 52435), (53, 32), (69, 19210), (75, 2169), (76, 97), (92, 2148), (94, 11077), (95, 46089), (99, 15958), (158, 62268), (216, 14585), (217, 61361)
X(62273) = (X(1969), X(57806))-harmonic conjugate of X(75)


X(62274) = TRAN-LOZADA OOC-PERSPECTOR OF (X(2), X(5); X(3) )

Barycentrics    ((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)/a^4 : :

X(62274) lies on these lines: {4, 60518}, {76, 297}, {83, 6531}, {99, 9291}, {264, 847}, {276, 6331}, {311, 13450}, {316, 54100}, {324, 27371}, {325, 42368}, {1078, 16089}, {7828, 16081}, {8795, 58015}, {14111, 20572}, {15897, 35360}, {17907, 32832}, {22456, 58734}, {23107, 44173}, {32992, 40822}, {34386, 57844}, {44161, 52568}, {44345, 46115}

X(62274) = isotomic conjugate of X(14533)
X(62274) = polar conjugate of X(54034)
X(62274) = isogonal conjugate of X(62270)
X(62274) = cevapoint of X(i) and X(j) for these {i, j}: {311, 324}, {343, 39113}
X(62274) = crosssum of X(14575) and X(61361)
X(62274) = X(18022)-Ceva conjugate of-X(311)
X(62274) = X(i)-cross conjugate of X(j) for these (i, j): (311, 62278), (324, 62275), (45793, 311)
X(62274) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 14533), (5, 14585), (6, 62256), (9, 62267), (115, 58308), (137, 3049), (139, 34952), (216, 184), (264, 26887), (311, 23158), (338, 647), (570, 23195), (1249, 54034), (3162, 14573), (6337, 19210), (6374, 97), (6376, 2169), (6523, 62271), (6663, 217), (9410, 46090), (14363, 32), (14920, 50), (15450, 58310), (15526, 46088), (18402, 19627), (31998, 15958), (35441, 34980), (36103, 62269), (36901, 23286), (39019, 39201), (39062, 14586), (40588, 14575), (52032, 577), (60596, 3289)
X(62274) = X(i)-isoconjugate of X(j) for these {i, j}: {3, 62269}, {6, 62267}, {19, 62256}, {31, 14533}, {32, 2169}, {48, 54034}, {54, 9247}, {63, 14573}, {97, 560}, {163, 58308}, {184, 2148}, {255, 62271}, {563, 41271}, {577, 62268}, {798, 15958}, {810, 14586}, {1501, 62277}, {1917, 34386}, {1973, 19210}, {2167, 14575}, {2168, 52435}, {2179, 46089}, {2190, 14585}, {3049, 36134}, {4100, 61362}, {8882, 52430}, {9406, 46090}, {32676, 46088}, {40373, 62276}, {40440, 61361}
X(62274) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62267), (2, 14533), (3, 62256), (4, 54034), (5, 184), (19, 62269), (25, 14573), (51, 14575), (52, 52435), (53, 32), (69, 19210), (75, 2169), (76, 97), (92, 2148), (94, 11077), (95, 46089), (99, 15958), (158, 62268), (216, 14585), (217, 61361), (264, 54), (297, 41270), (311, 3), (324, 6), (327, 51444), (328, 50463), (343, 577), (393, 62271), (403, 61372), (467, 571), (523, 58308), (525, 46088), (561, 62277), (648, 14586), (811, 36134), (847, 41271), (850, 23286), (1087, 62266), (1093, 61362), (1209, 23195), (1225, 1216), (1235, 16030), (1273, 22115), (1494, 46090), (1502, 34386), (1594, 59172), (1953, 9247), (1969, 2167), (2052, 8882), (2181, 560)
X(62274) = trilinear pole of the line {15415, 23290} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62274) = pole of the line {3049, 19627} with respect to the polar circle
X(62274) = pole of the line {14585, 52435} with respect to the Stammler hyperbola
X(62274) = pole of the line {577, 1147} with respect to the Steiner-Wallace hyperbola
X(62274) = barycentric product X(i)*X(j) for these {i, j}: {4, 62278}, {5, 18022}, {51, 44161}, {53, 1502}, {69, 62275}, {75, 62273}, {76, 324}, {92, 62272}, {264, 311}, {276, 45793}, {305, 13450}, {343, 18027}, {467, 57904}, {648, 15415}, {670, 23290}, {1273, 18817}, {1928, 2181}, {1969, 14213}, {2052, 28706}, {2618, 57968}
X(62274) = trilinear product X(i)*X(j) for these {i, j}: {2, 62273}, {4, 62272}, {5, 1969}, {19, 62278}, {52, 57898}, {53, 561}, {63, 62275}, {75, 324}, {92, 311}, {158, 28706}, {162, 15415}, {264, 14213}, {276, 1087}, {304, 13450}, {343, 57806}, {467, 20571}, {799, 23290}, {811, 18314}, {1502, 2181}, {1928, 3199}
X(62274) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62267), (4, 62269), (5, 9247), (19, 14573), (53, 560), (63, 62256), (75, 14533), (76, 2169), (92, 54034), (158, 62271), (264, 2148), (304, 19210), (311, 48), (324, 31), (343, 52430), (561, 97), (799, 15958), (811, 14586), (1087, 217), (1502, 62277)
X(62274) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (276, 6331, 7769), (18022, 18027, 76)


X(62275) = TRAN-LOZADA OOC-PERSPECTOR OF (X(4), X(5); X(3) )

Barycentrics    ((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2/a^4 : :

X(62275) lies on these lines: {4, 61636}, {5, 264}, {53, 53245}, {95, 9291}, {265, 6528}, {276, 14938}, {311, 13450}, {317, 42355}, {324, 34836}, {393, 42354}, {418, 16089}, {467, 2052}, {1494, 57843}, {14860, 54105}, {19130, 52661}, {20564, 57851}, {30506, 44176}, {33664, 58732}, {34385, 43995}, {39431, 52779}, {40410, 57844}, {60828, 61532}

X(62275) = polar conjugate of X(14533)
X(62275) = isotomic conjugate of X(19210)
X(62275) = isogonal conjugate of X(62256)
X(62275) = cevapoint of X(i) and X(j) for these {i, j}: {5, 467}, {324, 13450}, {18314, 35442}
X(62275) = X(18027)-Ceva conjugate of-X(324)
X(62275) = X(i)-cross conjugate of X(j) for these (i, j): (324, 62274), (35442, 18314), (60828, 324)
X(62275) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 19210), (5, 23606), (115, 46088), (136, 58308), (137, 39201), (139, 30451), (140, 61355), (216, 577), (338, 520), (1249, 14533), (3162, 62270), (6368, 41219), (6523, 54034), (6663, 418), (14363, 184), (14920, 22115), (15259, 14573), (35441, 35071), (36103, 62267), (39019, 32320), (39062, 15958), (40588, 14585), (52032, 1092)
X(62275) = X(i)-isoconjugate of X(j) for these {i, j}: {3, 62267}, {31, 19210}, {48, 14533}, {54, 52430}, {63, 62270}, {97, 9247}, {163, 46088}, {184, 2169}, {255, 54034}, {326, 14573}, {394, 62269}, {563, 57703}, {577, 2148}, {810, 15958}, {822, 14586}, {1092, 62268}, {2167, 14585}, {2190, 23606}, {4100, 8882}, {4575, 58308}, {6507, 62271}, {14575, 62277}, {36134, 39201}, {44687, 62258}, {46089, 62266}, {61361, 62276}
X(62275) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 19210), (4, 14533), (5, 577), (19, 62267), (25, 62270), (51, 14585), (53, 184), (92, 2169), (94, 50463), (107, 14586), (158, 2148), (216, 23606), (233, 61355), (264, 97), (275, 46089), (311, 394), (324, 3), (343, 1092), (393, 54034), (418, 36433), (467, 1147), (523, 46088), (648, 15958), (823, 36134), (847, 57703), (1093, 8882), (1096, 62269), (1953, 52430), (1969, 62277), (2052, 54), (2181, 9247), (2207, 14573), (2501, 58308), (2618, 822), (3199, 14575), (6116, 46113), (6117, 46112), (6344, 11077), (6368, 32320), (6520, 62268), (6521, 2190), (6524, 62271), (6528, 18315), (6530, 41270), (12077, 39201), (13157, 14379), (13450, 6), (14129, 49), (14213, 255), (14249, 33629)
X(62275) = trilinear pole of the line {18314, 57195} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62275) = pole of the line {30451, 39201} with respect to the polar circle
X(62275) = pole of the line {23606, 62256} with respect to the Stammler hyperbola
X(62275) = pole of the line {1092, 19210} with respect to the Steiner-Wallace hyperbola
X(62275) = barycentric product X(i)*X(j) for these {i, j}: {4, 62274}, {5, 18027}, {53, 18022}, {76, 13450}, {92, 62273}, {107, 15415}, {158, 62272}, {264, 324}, {276, 60828}, {311, 2052}, {393, 62278}, {467, 55553}, {1093, 28706}, {1502, 14569}, {2618, 57973}, {3199, 44161}, {6331, 23290}, {6521, 18695}, {6528, 18314}, {8795, 45793}
X(62275) = trilinear product X(i)*X(j) for these {i, j}: {4, 62273}, {5, 57806}, {19, 62274}, {53, 1969}, {75, 13450}, {92, 324}, {158, 311}, {343, 6521}, {393, 62272}, {467, 57716}, {561, 14569}, {811, 23290}, {823, 18314}, {1087, 8795}, {1093, 18695}, {1096, 62278}, {1953, 18027}, {2052, 14213}, {2181, 18022}, {2618, 6528}
X(62275) = trilinear quotient X(i)/X(j) for these (i, j): (4, 62267), (5, 52430), (19, 62270), (53, 9247), (75, 19210), (92, 14533), (158, 54034), (264, 2169), (311, 255), (324, 48), (343, 4100), (393, 62269), (467, 563), (811, 15958), (823, 14586), (1087, 418), (1093, 62268), (1096, 14573), (1393, 62258), (1577, 46088)
X(62275) = (X(6528), X(8795))-harmonic conjugate of X(32002)


X(62276) = TRAN-LOZADA OOC-PERSPECTOR OF (X(1), X(2); X(5) )

Barycentrics    (a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2)/a : :

X(62276) lies on these lines: {63, 1969}, {75, 255}, {95, 7523}, {275, 60197}, {276, 349}, {304, 2167}, {336, 1930}, {799, 62272}, {811, 44706}, {1102, 3403}, {1231, 20924}, {1821, 4020}, {2148, 46238}, {19811, 34384}

X(62276) = isotomic conjugate of X(1953)
X(62276) = isogonal conjugate of X(2179)
X(62276) = polar conjugate of X(2181)
X(62276) = cevapoint of X(i) and X(j) for these {i, j}: {2, 21271}, {63, 75}, {2167, 62277}, {56189, 56246}
X(62276) = X(i)-cross conjugate of X(j) for these (i, j): (63, 62277), (2167, 40440), (20879, 75), (20948, 799), (21231, 2), (24018, 811), (56189, 34384), (56246, 95)
X(62276) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 1953), (6, 62266), (9, 51), (37, 21807), (216, 62259), (244, 55219), (1249, 2181), (3160, 1393), (3161, 7069), (4858, 12077), (6337, 44706), (6374, 14213), (6376, 5), (6505, 216), (6626, 18180), (31998, 2617), (32664, 40981), (34021, 17167), (34591, 15451), (36033, 217), (36103, 3199), (36901, 2618), (38985, 42293), (39052, 52604), (39054, 1625), (39081, 2313), (40603, 21011), (40604, 2290), (40619, 21102)
X(62276) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 40981}, {3, 3199}, {4, 217}, {5, 32}, {6, 51}, {19, 62266}, {25, 216}, {31, 1953}, {41, 1393}, {48, 2181}, {52, 60501}, {53, 184}, {54, 62260}, {69, 61346}, {83, 27374}, {98, 52967}, {107, 42293}, {110, 55219}, {112, 15451}, {213, 18180}, {237, 60517}, {263, 59208}, {311, 1501}, {324, 14575}, {343, 1974}, {393, 418}, {512, 1625}, {523, 61194}, {560, 14213}, {577, 14569}, {604, 7069}, {607, 30493}, {608, 44707}, {647, 52604}, {669, 14570}, {798, 2617}, {1087, 62269}, {1154, 11060}, {1333, 21807}, {1568, 40354}, {1576, 12077}, {1917, 62272}, {1918, 17167}, {1973, 44706}, {2052, 44088}, {2081, 14560}, {2148, 62259}, {2206, 21011}, {2207, 5562}, {2211, 53174}
X(62276) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 51), (2, 1953), (3, 62266), (4, 2181), (5, 62259), (7, 1393), (8, 7069), (10, 21807), (19, 3199), (31, 40981), (48, 217), (54, 31), (63, 216), (69, 44706), (75, 5), (76, 14213), (77, 30493), (78, 44707), (86, 18180), (92, 53), (95, 1), (97, 48), (99, 2617), (158, 14569), (162, 52604), (163, 61194), (255, 418), (274, 17167), (275, 19), (276, 92), (304, 343), (305, 18695), (311, 1087), (319, 35194), (321, 21011), (323, 2290), (326, 5562), (336, 53174), (340, 51801), (348, 44708), (401, 2313), (561, 311), (656, 15451), (661, 55219), (662, 1625), (693, 21102), (799, 14570), (811, 35360), (822, 42293), (823, 61193)
X(62276) = trilinear pole of the line {2616, 14208} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62276) = perspector of the inconic with center X(21231)
X(62276) = pole of the the tripolar of X(2181) with respect to the polar circle
X(62276) = pole of the line {2179, 62266} with respect to the Stammler hyperbola
X(62276) = pole of the line {1953, 2179} with respect to the Steiner-Wallace hyperbola
X(62276) = barycentric product X(i)*X(j) for these {i, j}: {1, 34384}, {38, 41488}, {48, 57790}, {54, 561}, {63, 276}, {69, 40440}, {75, 95}, {76, 2167}, {86, 56189}, {92, 34386}, {97, 1969}, {255, 57844}, {264, 62277}, {274, 56246}, {275, 304}, {305, 2190}, {310, 56254}, {326, 8795}, {661, 55218}, {670, 2616}
X(62276) = trilinear product X(i)*X(j) for these {i, j}: {2, 95}, {3, 276}, {4, 34386}, {6, 34384}, {39, 41488}, {54, 76}, {63, 40440}, {69, 275}, {75, 2167}, {81, 56189}, {85, 44687}, {86, 56246}, {92, 62277}, {96, 7763}, {97, 264}, {99, 15412}, {107, 15414}, {140, 31617}, {141, 39287}, {183, 42300}
X(62276) = trilinear quotient X(i)/X(j) for these (i, j): (2, 51), (3, 217), (4, 3199), (5, 62260), (6, 40981), (25, 61346), (39, 27374), (54, 32), (63, 62266), (69, 216), (75, 1953), (76, 5), (85, 1393), (92, 2181), (95, 6), (96, 60501), (97, 184), (99, 1625), (110, 61194), (183, 59208)
X(62276) = (X(75), X(62277))-harmonic conjugate of X(40440)


X(62277) = TRAN-LOZADA OOC-PERSPECTOR OF (X(1), X(3); X(5) )

Barycentrics    a*(-a^2+b^2+c^2)*(a^4-(2*b^2+c^2)*a^2+(b^2-c^2)*b^2)*(a^4-(b^2+2*c^2)*a^2-(b^2-c^2)*c^2) : :

X(62277) lies on these lines: {63, 2148}, {75, 255}, {95, 307}, {97, 3998}, {326, 2169}, {775, 57972}, {2168, 8773}, {4592, 18695}, {6149, 17859}, {34386, 52396}, {42714, 56189}, {62264, 62265}

X(62277) = isotomic conjugate of the polar conjugate of X(2167)
X(62277) = isotomic conjugate of the isogonal conjugate of X(2169)
X(62277) = isogonal conjugate of X(2181)
X(62277) = cevapoint of X(i) and X(j) for these {i, j}: {3, 23112}, {63, 255}
X(62277) = X(62276)-Ceva conjugate of-X(2167)
X(62277) = X(i)-cross conjugate of X(j) for these (i, j): (63, 62276), (2169, 2167), (14208, 4592), (22394, 3)
X(62277) = X(i)-Dao conjugate of X(j) for these (i, j): (5, 62259), (6, 1953), (9, 53), (244, 51513), (577, 2180), (905, 60804), (1147, 62266), (4858, 23290), (6337, 14213), (6338, 18695), (6374, 62273), (6376, 324), (6503, 44706), (6505, 5), (11517, 7069), (15526, 2618), (22391, 2179), (26932, 21102), (32664, 3199), (34544, 11062), (34591, 12077), (36033, 51), (36103, 14569), (38985, 15451), (39040, 39569), (39052, 61193), (39054, 35360), (40585, 27371), (40591, 21807), (40604, 51801), (51574, 21011), (52032, 1087), (55066, 55219)
X(62277) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 3199}, {3, 14569}, {4, 51}, {5, 25}, {6, 53}, {19, 1953}, {28, 21807}, {32, 324}, {33, 1393}, {34, 7069}, {52, 14593}, {54, 62261}, {76, 61346}, {92, 2179}, {107, 15451}, {110, 51513}, {112, 12077}, {158, 62266}, {184, 13450}, {216, 393}, {217, 2052}, {232, 60517}, {233, 33631}, {250, 41221}, {251, 27371}, {263, 39530}, {264, 40981}, {275, 62260}, {311, 1974}, {343, 2207}, {418, 1093}, {467, 60501}, {512, 35360}, {523, 52604}, {560, 62273}, {647, 61193}, {648, 55219}, {1087, 62268}, {1096, 44706}, {1118, 44707}, {1154, 18384}, {1173, 53386}, {1474, 21011}, {1501, 62274}, {1576, 23290}, {1609, 41536}, {1625, 2501}, {1824, 18180}, {1843, 17500}, {1857, 30493}
X(62277) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 53), (3, 1953), (19, 14569), (31, 3199), (38, 27371), (47, 14576), (48, 51), (54, 19), (63, 5), (69, 14213), (71, 21807), (72, 21011), (75, 324), (76, 62273), (92, 13450), (95, 92), (97, 1), (162, 61193), (163, 52604), (184, 2179), (216, 62259), (219, 7069), (222, 1393), (255, 216), (275, 158), (276, 57806), (293, 60517), (304, 311), (305, 62272), (323, 51801), (326, 343), (336, 53245), (343, 1087), (394, 44706), (525, 2618), (560, 61346), (561, 62274), (577, 62266), (656, 12077), (661, 51513), (662, 35360), (810, 55219), (822, 15451), (905, 21102), (921, 41536), (933, 24019), (1102, 52347), (1147, 2180), (1444, 17167), (1577, 23290)
X(62277) = inverse Mimosa transform of X(21361)
X(62277) = pole of the line {1953, 2181} with respect to the Stammler hyperbola
X(62277) = pole of the line {1087, 2181} with respect to the Steiner-Wallace hyperbola
X(62277) = barycentric product X(i)*X(j) for these {i, j}: {1, 34386}, {3, 62276}, {48, 34384}, {54, 304}, {63, 95}, {69, 2167}, {75, 97}, {76, 2169}, {162, 15414}, {255, 276}, {275, 326}, {305, 2148}, {348, 44687}, {394, 40440}, {561, 14533}, {799, 23286}, {810, 55218}, {1102, 8884}, {1231, 35196}, {1444, 56246}
X(62277) = trilinear product X(i)*X(j) for these {i, j}: {2, 97}, {3, 95}, {6, 34386}, {48, 62276}, {49, 57765}, {54, 69}, {63, 2167}, {75, 2169}, {76, 14533}, {77, 44687}, {96, 9723}, {99, 23286}, {112, 15414}, {183, 51444}, {184, 34384}, {249, 53576}, {252, 44180}, {255, 40440}, {264, 19210}, {275, 394}
X(62277) = trilinear quotient X(i)/X(j) for these (i, j): (2, 53), (3, 51), (4, 14569), (5, 62261), (6, 3199), (32, 61346), (48, 2179), (54, 25), (63, 1953), (69, 5), (72, 21807), (76, 324), (77, 1393), (78, 7069), (95, 4), (96, 14593), (97, 6), (99, 35360), (110, 52604), (125, 41221)
X(62277) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (63, 4100, 18042), (40440, 62276, 75)


X(62278) = TRAN-LOZADA OOC-PERSPECTOR OF (X(2), X(5); X(6) )

Barycentrics    ((b^2+c^2)*a^2-(b^2-c^2)^2)/a^4 : :

X(62278) lies on these lines: {2, 42354}, {76, 5392}, {98, 689}, {264, 305}, {315, 2387}, {324, 27371}, {338, 40379}, {343, 53245}, {670, 34384}, {7769, 57903}, {8024, 23962}, {8039, 52568}, {14570, 40588}, {16276, 17984}, {34254, 44144}, {37894, 46247}, {39113, 59137}, {40022, 40822}, {45805, 55530}, {45806, 55529}

X(62278) = isogonal conjugate of X(14573)
X(62278) = isotomic conjugate of X(54034)
X(62278) = polar conjugate of X(62271)
X(62278) = cevapoint of X(i) and X(j) for these {i, j}: {311, 28706}, {18314, 41221}
X(62278) = crosspoint of X(1502) and X(44161)
X(62278) = crosssum of X(1501) and X(40373)
X(62278) = X(i)-Ceva conjugate of X(j) for these (i, j): (670, 44173), (1502, 28706)
X(62278) = X(i)-cross conjugate of X(j) for these (i, j): (311, 62274), (1225, 76), (41221, 18314)
X(62278) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 54034), (5, 14575), (6, 62270), (9, 62269), (137, 669), (216, 32), (338, 512), (343, 52435), (1249, 62271), (2972, 58310), (5976, 41270), (6337, 14533), (6338, 19210), (6374, 54), (6376, 2148), (6503, 62256), (6505, 62267), (6663, 40981), (9428, 18315), (14363, 1974), (14920, 34397), (15526, 58308), (31998, 14586), (34834, 61372), (36901, 2623), (39019, 3049), (40588, 1501), (44311, 58315), (52032, 184), (52869, 9407), (60596, 237)
X(62278) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 62269}, {19, 62270}, {25, 62267}, {31, 54034}, {32, 2148}, {48, 62271}, {54, 560}, {95, 1917}, {184, 62268}, {669, 36134}, {798, 14586}, {1096, 62256}, {1501, 2167}, {1924, 18315}, {1973, 14533}, {1974, 2169}, {2168, 52436}, {2190, 14575}, {2616, 14574}, {8882, 9247}, {9233, 62276}, {32676, 58308}, {40373, 40440}, {41280, 44687}, {44162, 62277}, {52430, 61362}
X(62278) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 62269), (2, 54034), (3, 62270), (4, 62271), (5, 32), (51, 1501), (52, 52436), (53, 1974), (63, 62267), (69, 14533), (75, 2148), (76, 54), (92, 62268), (99, 14586), (216, 14575), (217, 40373), (264, 8882), (297, 58306), (304, 2169), (305, 97), (311, 6), (324, 25), (325, 41270), (328, 11077), (343, 184), (394, 62256), (418, 61361), (467, 44077), (525, 58308), (561, 2167), (670, 18315), (799, 36134), (850, 2623), (1087, 2179), (1154, 19627), (1225, 570), (1273, 50), (1502, 95), (1625, 14574), (1928, 62276), (1953, 560), (1969, 2190), (2052, 61362), (2179, 1917), (2618, 798), (3199, 44162), (3265, 46088), (3267, 23286), (3580, 61372), (3926, 19210)
X(62278) = X(1502)-waw conjugate of-X(52568)
X(62278) = trilinear pole of the line {15415, 18314} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62278) = pole of the the tripolar of X(62271) with respect to the polar circle
X(62278) = pole of the line {3202, 14573} with respect to the Stammler hyperbola
X(62278) = pole of the line {160, 184} with respect to the Steiner-Wallace hyperbola
X(62278) = barycentric product X(i)*X(j) for these {i, j}: {5, 1502}, {51, 40362}, {53, 40050}, {69, 62274}, {75, 62272}, {76, 311}, {99, 15415}, {216, 44161}, {264, 28706}, {304, 62273}, {305, 324}, {343, 18022}, {561, 14213}, {670, 18314}, {1225, 57903}, {1273, 20573}, {1928, 1953}, {1969, 18695}, {2618, 4602}, {3199, 40360}
X(62278) = trilinear product X(i)*X(j) for these {i, j}: {2, 62272}, {5, 561}, {51, 1928}, {53, 40364}, {63, 62274}, {69, 62273}, {75, 311}, {76, 14213}, {92, 28706}, {264, 18695}, {304, 324}, {326, 62275}, {343, 1969}, {662, 15415}, {670, 2618}, {799, 18314}, {1087, 34384}, {1393, 40363}, {1502, 1953}, {2179, 40362}
X(62278) = trilinear quotient X(i)/X(j) for these (i, j): (2, 62269), (5, 560), (51, 1917), (63, 62270), (69, 62267), (75, 54034), (76, 2148), (92, 62271), (264, 62268), (304, 14533), (305, 2169), (311, 31), (324, 1973), (326, 62256), (343, 9247), (561, 54), (670, 36134), (799, 14586), (1087, 40981), (1393, 41280)
X(62278) = (X(1502), X(18022))-harmonic conjugate of X(305)


X(62279) = 20th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    (-a+b+c)*(b-c)^2*((b+c)*a+(b-c)^2)*((b+c)*a^2-2*(b^2+c^2)*a+(b+c)*(b^2+c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - March 19, 2024.

X(62279) lies on these lines: {125, 1647}, {2310, 6615}, {6734, 38211}

X(62279) = complementary conjugate of X(2490)
X(62279) = X(i)-Ceva conjugate of X(j) for these (i, j): (66, 6363), (6601, 42337)
X(62279) = X(i)-complementary conjugate of X(j) for these (i, j): (1, 2490), (75, 6363), (244, 2170), (269, 42337), (513, 17355), (650, 52528), (661, 27040), (1086, 24237), (1122, 522), (1201, 650), (1828, 3239), (2254, 19593), (3057, 4521), (3452, 20317), (3663, 513), (3669, 6692), (3676, 5836), (3752, 514), (4415, 4129), (4642, 661), (6363, 37), (6615, 9), (18600, 4369), (20228, 6586), (20895, 59971), (21120, 3452), (21272, 24003), (21362, 4422), (21580, 27076), (23845, 24036), (26563, 3835), (27499, 31286), (42336, 17053), (46004, 59579), (48334, 2), (52563, 4885), (59173, 905), (61222, 3039)
X(62279) = center of the circumconic through X(66) and X(2192)





leftri  Seven circles points: X(62280) - X(62286)  rightri

This preamble and centers X(62280)-X(62286) were contributed by César Eliud Lozada, March 21, 2024.

The following theorem appears in C. J. A. Evelyn, G. B. Money-Coutts, J. A. Tyrrell, The seven circles theorem and other new theorems, Great Britain, 1974:

Let (A'), (B'), (C') be three circles externally tangent (or internally tangent) to a circle (O), and touching this at A1, B1, C1, respectively. Let (A") be the circle externally tangent to (B'), (C'), and externally tangent to (O) (or internally tangent to (O), but with center A" in the side of B'C' not containing A'), touching (O) at A2, and define (B"), (C"), B2, C2 cyclically. Then, whenever the seven circles can be built, the lines A1A2, B1B2, C1C2 concur. (See figure here)

The points of concurrence Qe (or Qi) for both cases are denoted here as the external (or internal) seven circles point of circles (A'), (B'), (C').

The appearance of (Γ, i, j) in the following list means that the external- and internal- seven circles points of circles Γ are X(i) and X(j), respectively:

(excircles, 62280, 62281), (excosine, 6221, 6398), (Johnson, na, 8), (Lucas(+1), 6468, 6), (Lucas(-1), 6469, 6), (Lucas(+1) secondary, 62282, 6), (Lucas(-1) secondary, 62283, 6), (inner-mixtilinear, na, 61635), (outer-mixtilinear, 8832, 62284), (inner-Malfatti, 62285, 62286), (Soddy, 1371, 1372), (inner-Yff, na, 2099), (outer-Yff, na, 2098)
where "na" stands for "not applicable".

underbar

X(62280) = EXTERNAL SEVEN CIRCLES POINT OF EXCIRCLES

Barycentrics    (b+c)*(-a^2*b^2*(a+b-c)*c^2*(a-b+c)*(-a+b+c)*(2*a+b+c)-sqrt(b*c)*(-a+b+c)*((b^2-c^2)^2*b^2*c^2-a*b*(b-c)*c*(b^4-c^4)+a^4*(b^4+c^4-b*c*(b^2-4*b*c+c^2))+a^2*(b-c)^2*(b^4+c^4-b*c*(b^2+5*b*c+c^2))+a^3*(b+c)*(2*b^4+2*c^4-b*c*(5*b^2-8*b*c+5*c^2)))*sin(A/2)+sqrt(c*a)*(a-b+c)*(b^2*c^3*(b+c)*(b^2-c^2)+a^5*(b^3+c^3)+a^4*(b+c)*(2*b^3-2*c*b^2+c^3)+a*b*c^2*(b+c)*(2*b^3-c*b^2+c^3)+a^2*c*(b+c)*(2*b^4-c^4-2*b*(b-c)*c*(2*b+c))+a^3*(b^5-c^5+b*(2*b-c)*c*(b^2-2*b*c-c^2)))*sin(B/2)+sqrt(a*b)*(a+b-c)*(-b^3*c^2*(b+c)*(b^2-c^2)+a^5*(b^3+c^3)+a^4*(b+c)*(b^3-2*b*c^2+2*c^3)+a*b^2*c*(b+c)*(b^3-b*c^2+2*c^3)-a^2*b*(b+c)*(b^4-2*c^4-2*b*(b-c)*c*(b+2*c))-a^3*(b^5-c^5-b*(b-2*c)*c*(b^2+2*b*c-c^2)))*sin(C/2)) : :

X(62280) lies on these lines: {10, 62281}, {12, 60537}


X(62281) = INTERNAL SEVEN CIRCLES POINT OF EXCIRCLES

Barycentrics    a^2*(b+c)*(2*sqrt(b*c)*(b-c)*((b^3+c^3)*a^7+(2*b^2-3*b*c+2*c^2)*(b+c)^2*a^6+(b+c)*(b^2-12*b*c+c^2)*b*c*a^5-(b^2+c^2)*(2*b^4+2*c^4-b*c*(b^2+4*b*c+c^2))*a^4-(b+c)*(b^6+c^6-(4*b^4+4*c^4+b*c*(13*b^2-3*b*c+13*c^2))*b*c)*a^3+(2*b^4+2*c^4+b*c*(8*b^2+11*b*c+8*c^2))*(b-c)^2*b*c*a^2-(b+c)*(2*b^4+2*c^4+b*c*(b+c)^2)*b^2*c^2*a+b^3*c^3*(b+c)^4)*sin(A/2)+2*sqrt(c*a)*(-(b-c)*(b^3+c^3)*a^7-(b+c)*(2*b^4-4*c^4-b*c*(3*b^2+4*b*c-3*c^2))*a^6-(b+c)*(b^4-6*c^4-b*c*(9*b^2-7*b*c-c^2))*c*a^5+(2*b^7+4*c^7-(3*b^5-c^5+(9*b^3+13*c^3-2*b*c*(5*b-4*c))*b*c)*b*c)*a^4+(b^8+c^8-(4*b^6+4*c^6+(10*b^3-c^3-b*c*(b+6*c))*b^2*c)*b*c)*a^3-(2*b^7+2*c^7-(2*b^5+6*c^5-(3*b^3-9*c^3-b*c*(-c+3*b))*b*c)*b*c)*b*c*a^2+(2*b^6+2*c^6+(b^4+c^4-2*b*c*(3*b^2+b*c+c^2))*b*c)*b^2*c^2*a-(b+c)*(b^2+c^2)^2*b^3*c^3)*sin(B/2)-2*sqrt(a*b)*((b-c)*(b^3+c^3)*a^7+(b+c)*(4*b^4-2*c^4-(3*b^2-4*b*c-3*c^2)*b*c)*a^6+(b+c)*(6*b^4-c^4-(b^2+7*b*c-9*c^2)*b*c)*b*a^5+(4*b^7+2*c^7+(b^5-3*c^5-(13*b^3+9*c^3+2*(4*b-5*c)*b*c)*b*c)*b*c)*a^4+(b^8+c^8-(4*b^6+4*c^6-(b^3-10*c^3+(6*b+c)*b*c)*b*c^2)*b*c)*a^3-(2*b^7+2*c^7-(6*b^5+2*c^5+(9*b^3-3*c^3-b*c*(-3*c+b))*b*c)*b*c)*b*c*a^2+(2*b^6+2*c^6+(b^4+c^4-2*b*c*(b^2+b*c+3*c^2))*b*c)*b^2*c^2*a-(b+c)*(b^2+c^2)^2*b^3*c^3)*sin(C/2)+(b-c)*((b^3+c^3)*a^8+(b^2-4*b*c+c^2)*(b+c)^2*a^7-2*(b^3+c^3)*(b-c)^2*a^6-2*(b^6+c^6-(7*b^4+7*c^4+b*c*(7*b^2+2*b*c+7*c^2))*b*c)*a^5+(b+c)*(b^6+c^6+5*(b^4+c^4+b*c*(b^2-3*b*c+c^2))*b*c)*a^4+(b^2+c^2)*(b^6+c^6-(4*b^4+4*c^4+3*b*c*(b^2+c^2))*b*c)*a^3-2*(b+c)*(b^6+c^6-(b^4+c^4+2*b*c*(3*b^2-b*c+3*c^2))*b*c)*b*c*a^2+2*(b+c)^2*(b^2+c^2)^2*b^2*c^2*a-(b^2-c^2)^2*(b+c)*b^3*c^3)) : :

X(62281) lies on these lines: {10, 62280}, {181, 60537}


X(62282) = EXTERNAL SEVEN CIRCLES POINT OF LUCAS(+1)-SECONDARY CIRCLES

Barycentrics    a^2*(8*a*b*c*S+(-a^2+b^2+c^2)*(5*a^3-5*(b+c)*a^2-(5*b^2-18*b*c+5*c^2)*a+5*(b^2-c^2)*(b-c))) : :

X(62282) lies on these lines: {3, 6}, {404, 1132}, {3071, 17573}, {3316, 6906}, {6459, 19537}, {19541, 53519}, {37022, 42414}, {39641, 39642}

X(62282) = inverse of X(62283) in 1st Brocard circle
X(62282) = pole of the line {512, 62283} with respect to the 1st Brocard circle
X(62282) = pole of the line {5, 43505} with respect to the Evans conic
X(62282) = pole of the line {184, 62283} with respect to the Jerabek circumhyperbola
X(62282) = pole of the line {2, 62283} with respect to the Stammler hyperbola
X(62282) = pole of the line {5651, 62283} with respect to the Thomson-Gibert-Moses hyperbola


X(62283) = EXTERNAL SEVEN CIRCLES POINT OF LUCAS(-1)-SECONDARY CIRCLES

Barycentrics    a^2*(-8*a*b*c*S+(-a^2+b^2+c^2)*(5*a^3-5*(b+c)*a^2-(5*b^2-18*b*c+5*c^2)*a+5*(b^2-c^2)*(b-c))) : :

X(62283) lies on these lines: {3, 6}, {404, 1131}, {3070, 17573}, {3317, 6906}, {6460, 19537}, {19541, 53518}, {37022, 42413}, {39641, 39642}

X(62283) = inverse of X(62282) in 1st Brocard circle
X(62283) = pole of the line {512, 62282} with respect to the 1st Brocard circle
X(62283) = pole of the line {5, 43506} with respect to the Evans conic
X(62283) = pole of the line {184, 62282} with respect to the Jerabek circumhyperbola
X(62283) = pole of the line {2, 62282} with respect to the Stammler hyperbola
X(62283) = pole of the line {5651, 62282} with respect to the Thomson-Gibert-Moses hyperbola


X(62284) = INTERNAL SEVEN CIRCLES POINT OF OUTER-MIXTILINEAR CIRCLES

Barycentrics    a^(3/2)*(a*(a^2-3*a*(b+c)-b^2+10*b*c-c^2)-2*sqrt(a)*(sqrt(b)+sqrt(c))*(a+b-c)*(a-b+c)+3*(b^2-c^2)*(b-c)) : :

X(62284) lies on these lines: {56, 365}, {364, 7991}, {367, 7962}, {6244, 8832}, {53056, 61142}


X(62285) = EXTERNAL SEVEN CIRCLES POINT OF INNER-MALFATTI CIRCLES

Barycentrics    a*(cos(B/2)+1)*(cos(C/2)+1)*(4*b*c*(2*(5*a^7+10*(b+c)*a^6-(89*b^2-67*b*c+89*c^2)*a^5+(b+c)*(52*b^2-129*b*c+52*c^2)*a^4+(59*b^4+59*c^4+30*b*c*(4*b^2-b*c+4*c^2))*a^3-2*(b+c)*(15*b^4+15*c^4-2*b*c*(13*b^2-35*b*c+13*c^2))*a^2-(7*b^4+7*c^4+b*c*(57*b^2+40*b*c+57*c^2))*(b-c)^2*a-(b^2-c^2)*(b-c)*b*c*(3*b^2-70*b*c+3*c^2))*S+(a+b+c)*(a-b+c)*(a+b-c)*(5*a^6-22*(b+c)*a^5+(82*b^2-131*b*c+82*c^2)*a^4-(b+c)*(30*b^2-179*b*c+30*c^2)*a^3-(57*b^4+57*c^4+b*c*(61*b^2+188*b*c+61*c^2))*a^2+(b+c)*(20*b^4+20*c^4+b*c*(17*b^2+22*b*c+17*c^2))*a+2*(b^4+c^4-2*b*c*(4*b^2+11*b*c+4*c^2))*(b-c)^2))*cos(A/2)+4*c*(b-c)*(2*(6*a^7-13*(b+6*c)*a^6+(103*b^2-46*b*c+36*c^2)*a^5-2*(15*b^3-62*c^3-b*c*(43*b+80*c))*a^4-2*(44*b^4+37*c^4+b*c*(25*b^2+35*b*c+81*c^2))*a^3+(11*b^5-14*c^5-(4*b^3-45*c^3+2*b*c*(16*b-61*c))*b*c)*a^2+(b+c)*(11*b^4+16*c^4-b*c*(11*b^2+43*b*c-11*c^2))*b*a-4*(b^2-c^2)*(b+c)*c*b^2*(-3*c+b))*S+(a+b+c)*(-a+b+c)*(a+b-c)*(19*a^6-(70*b-53*c)*a^5+2*(20*b^2-64*b*c-45*c^2)*a^4+(38*b^3-6*c^3+b*c*(179*b+13*c))*a^3-(27*b^4-23*c^4+b*c*(23*b^2-12*b*c+49*c^2))*a^2-(36*b^4-c^4-b*c*(27*b^2+47*b*c-23*c^2))*c*a+b*c*(b-c)*(-c+3*b)*(b^2+6*b*c+c^2)))*cos(B/2)-4*b*(b-c)*(2*(6*a^7-13*(6*b+c)*a^6+(36*b^2-46*b*c+103*c^2)*a^5+2*(62*b^3-15*c^3+b*c*(80*b+43*c))*a^4-2*(37*b^4+44*c^4+b*c*(81*b^2+35*b*c+25*c^2))*a^3-(14*b^5-11*c^5-(45*b^3-4*c^3+2*b*c*(61*b-16*c))*b*c)*a^2+(b+c)*(16*b^4+11*c^4+b*c*(11*b^2-43*b*c-11*c^2))*c*a-4*(b^2-c^2)*(b+c)*b*c^2*(-c+3*b))*S+(a+b+c)*(-a+b+c)*(a-b+c)*(19*a^6+(53*b-70*c)*a^5-2*(45*b^2+64*b*c-20*c^2)*a^4-(6*b^3-38*c^3-b*c*(13*b+179*c))*a^3+(23*b^4-27*c^4-b*c*(49*b^2-12*b*c+23*c^2))*a^2+(b^4-36*c^4-b*c*(23*b^2-47*b*c-27*c^2))*b*a+b*c*(b-c)*(-3*c+b)*(b^2+6*b*c+c^2)))*cos(C/2)-(a+b+c)*((10*(b+c)*a^7-4*(17*b^2+10*b*c+17*c^2)*a^6-2*(b+c)*(173*b^2-379*b*c+173*c^2)*a^5+2*(324*b^4+324*c^4-b*c*(147*b^2-122*b*c+147*c^2))*a^4-2*(b+c)*(21*b^4+21*c^4+2*b*c*(129*b^2-67*b*c+129*c^2))*a^3-4*(49*b^6+49*c^6-(79*b^4+79*c^4+b*c*(185*b^2-238*b*c+185*c^2))*b*c)*a^2-2*(b^2-c^2)*(b-c)*(3*b^4+3*c^4-b*c*(65*b^2+108*b*c+65*c^2))*a+2*(9*b^4+9*c^4-2*b*c*(28*b^2+81*b*c+28*c^2))*(b-c)^2*b*c)*S+(a+b-c)*(-a+b+c)*(a-b+c)*(5*(b+c)*a^6+(103*b^2-166*b*c+103*c^2)*a^5-(b+c)*(34*b^2+43*b*c+34*c^2)*a^4-2*(75*b^4+75*c^4+b*c*(69*b^2-238*b*c+69*c^2))*a^3+(b+c)*(61*b^4+61*c^4-2*b*c*(42*b^2-187*b*c+42*c^2))*a^2+(15*b^6+15*c^6-(112*b^4+112*c^4+b*c*(51*b^2+88*b*c+51*c^2))*b*c)*a-(b^2-c^2)*(b-c)*b*c*(b^2-74*b*c+c^2)))) : :

X(62285) lies on these lines: {483, 1127}, {21455, 53078}

X(62285) = (X(483), X(31495))-harmonic conjugate of X(62286)


X(62286) = INTERNAL SEVEN CIRCLES POINT OF INNER-MALFATTI CIRCLES

Barycentrics    4*(b-c)*(a+b-c)*(a-b+c)*((2*a^3-2*(b^2+9*b*c+c^2)*a-10*b*c*(b+c))*S+(a+b+c)*(-a+b+c)*(2*a^3+(b+c)*a^2-2*(b^2-6*b*c+c^2)*a-(b^2-c^2)*(b-c)))*cos(A/2)+2*(-a+b+c)*(a+b-c)*(2*a*(a^3+(5*b-8*c)*a^2-(b^2-24*b*c+21*c^2)*a-(b^2-c^2)*(5*b-12*c))*S+(a+b+c)*(a-b+c)*(a^4+(b-4*c)*a^3-(b^2+4*b*c-7*c^2)*a^2-(b-c)*(b^2+19*b*c-2*c^2)*a-2*(b^2-c^2)*(b-c)*c))*cos(B/2)-2*(-a+b+c)*(a-b+c)*(2*a*(a^3-(8*b-5*c)*a^2-(21*b^2-24*b*c+c^2)*a-(b^2-c^2)*(12*b-5*c))*S+(a+b+c)*(a+b-c)*(a^4-(4*b-c)*a^3+(7*b^2-4*b*c-c^2)*a^2-(b-c)*(2*b^2-19*b*c-c^2)*a-2*(b^2-c^2)*(b-c)*b))*cos(C/2)+4*S^2*(b-c)*((34*a+6*b+6*c)*S+a^3-5*(b+c)*a^2-(b^2+30*b*c+c^2)*a+5*(b^2-c^2)*(b-c)) : :

X(62286) lies on these lines: {483, 1127}, {21455, 53076}

X(62286) = (X(483), X(31495))-harmonic conjugate of X(62285)


X(62287) = INVERSE OF X(2) IN COSINE CIRCLE

Barycentrics    a^2*(a^6+b^6-6*b^4*c^2-6*b^2*c^4+c^6-3*a^4*(b^2+c^2)-3*a^2*(b^4-7*b^2*c^2+c^4)) : :

X(62287) lies on these lines: {2, 6}, {111, 8681}, {353, 32621}, {511, 38716}, {843, 3565}, {895, 41936}, {1499, 2451}, {2393, 10765}, {3266, 41909}, {8549, 46959}, {9027, 36696}, {10766, 21639}, {17979, 38688}, {32127, 39024}, {39238, 39576}


X(62288) = INVERSE OF X(2) IN 2ND DROZ-FARNY CIRCLE

Barycentrics    4*a^10-5*a^8*(b^2+c^2)-3*(b^2-c^2)^4*(b^2+c^2)+a^6*(-6*b^4+26*b^2*c^2-6*c^4)+2*a^2*(b^2-c^2)^2*(b^4-7*b^2*c^2+c^4)+4*a^4*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6) : :
X(62288) = -3*X[5731]+4*X[51725], -5*X[10574]+6*X[16227], -3*X[13445]+7*X[15044], -3*X[13446]+2*X[15012], -X[14927]+3*X[52238], -5*X[15034]+6*X[51425], -3*X[15055]+2*X[20725], -3*X[23515]+2*X[58871]

X(62288) lies on these lines: {2, 3}, {69, 47474}, {110, 1514}, {125, 50434}, {146, 3564}, {325, 46988}, {511, 12825}, {516, 47321}, {524, 41737}, {575, 61744}, {850, 46991}, {895, 1503}, {944, 47471}, {1552, 14919}, {2777, 3580}, {2892, 47558}, {3012, 11809}, {3292, 38791}, {5160, 9627}, {5731, 51725}, {5889, 51491}, {5893, 34148}, {6000, 53781}, {6293, 36983}, {6776, 47571}, {7991, 47492}, {8705, 44439}, {9628, 10149}, {10564, 46686}, {10574, 16227}, {11257, 47579}, {11477, 61721}, {11806, 12295}, {12112, 52124}, {12121, 46817}, {13142, 22979}, {13219, 40996}, {13445, 15044}, {13446, 15012}, {13568, 22466}, {14094, 44665}, {14927, 52238}, {15019, 16657}, {15034, 51425}, {15054, 15311}, {15055, 20725}, {16306, 44518}, {16625, 34563}, {17702, 32111}, {23515, 58871}, {25406, 47457}, {28164, 51693}, {29181, 32113}, {32271, 54215}, {33748, 47461}, {34628, 47495}, {34632, 47488}, {34796, 41588}, {35903, 40135}, {36201, 53777}, {36993, 47575}, {36995, 47576}, {36998, 47577}, {37477, 58885}, {37853, 61691}, {39663, 46981}, {41336, 53419}, {44882, 47455}, {44967, 44988}, {44972, 44974}, {46264, 47581}, {46426, 56925}, {46850, 58481}, {47003, 47263}, {47450, 48872}, {47453, 59411}, {47473, 54170}, {47551, 54174}, {47569, 48873}, {51742, 53093}

X(62288) = midpoint of X(i) and X(j) for these {i,j}: {23, 3146}, {382, 18325}
X(62288) = reflection of X(i) in X(j) for these {i,j}: {110, 1514}, {10295, 11799}, {10564, 46686}, {11257, 47579}, {12121, 46817}, {15646, 11558}, {15681, 18579}, {15704, 18571}, {16386, 403}, {18323, 3627}, {18572, 3853}, {20, 468}, {2071, 10151}, {20725, 47296}, {325, 46988}, {3153, 13473}, {3292, 38791}, {34628, 47495}, {34632, 47488}, {36993, 47575}, {36995, 47576}, {36998, 47577}, {37477, 58885}, {46264, 47581}, {46818, 32111}, {46850, 58481}, {48873, 47569}, {50434, 125}, {54170, 47473}, {54174, 47551}, {54215, 32271}, {69, 47474}, {6776, 47571}, {7464, 10297}, {7991, 47492}, {850, 46991}, {858, 4}, {944, 47471}
X(62288) = inverse of X(15078) in circumcircle
X(62288) = inverse of X(2) in 2nd Droz-Farny circle
X(62288) = inverse of X(44276) in circumcircle of the Johnson triangle
X(62288) = inverse of X(44438) in polar circle
X(62288) = inverse of X(51519) in Stammler circle
X(62288) = X(i)-vertex conjugate of X(j) for these {i, j}: {523, 15078}
X(62288) = pole of line {523, 15078} with respect to the circumcircle
X(62288) = pole of line {2, 523} with respect to the 2nd Droz-Farny circle
X(62288) = pole of line {523, 44276} with respect to the circumcircle of the Johnson triangle
X(62288) = pole of line {523, 44438} with respect to the polar circle
X(62288) = pole of line {523, 51519} with respect to the Stammler circle
X(62288) = pole of line {185, 12824} with respect to the Jerabek hyperbola
X(62288) = pole of line {6, 41737} with respect to the Kiepert hyperbola
X(62288) = pole of line {525, 37643} with respect to the Steiner circumellipse
X(62288) = pole of line {69, 15055} with respect to the Wallace hyperbola
X(62288) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(250), X(15078)}}, {{A, B, C, X(378), X(46426)}}, {{A, B, C, X(468), X(11744)}}, {{A, B, C, X(523), X(44438)}}, {{A, B, C, X(895), X(2071)}}, {{A, B, C, X(2697), X(16051)}}, {{A, B, C, X(4235), X(48373)}}, {{A, B, C, X(15077), X(30552)}}, {{A, B, C, X(16835), X(45172)}}, {{A, B, C, X(34802), X(45171)}}, {{A, B, C, X(47097), X(54919)}}, {{A, B, C, X(49672), X(60122)}}, {{A, B, C, X(54512), X(54995)}}
X(62288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 30, 858}, {4, 7464, 10297}, {23, 3146, 30}, {30, 10151, 2071}, {30, 10297, 7464}, {30, 11558, 15646}, {30, 11799, 10295}, {30, 13473, 3153}, {30, 18571, 15704}, {30, 18579, 15681}, {30, 3627, 18323}, {30, 3853, 18572}, {30, 403, 16386}, {30, 468, 20}, {186, 6622, 468}, {1113, 1114, 15078}, {2071, 3091, 5159}, {3543, 14807, 10736}, {3543, 14808, 10737}, {5159, 10151, 3091}, {10295, 11799, 7426}, {11563, 15704, 18571}, {17702, 32111, 46818}, {20725, 47296, 15055}


X(62289) = INVERSE OF X(2) IN 1ST LEMOINE CIRCLE

Barycentrics    a^2*(a^10+4*a^6*b^2*c^2-2*b^8*c^2+3*b^6*c^4+3*b^4*c^6-2*b^2*c^8-a^8*(b^2+c^2)+a^4*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)-a^2*(b^4-b^2*c^2+c^4)^2) : :
X(62289) = -4*X[2030]+X[46298]

X(62289) lies on these lines: {2, 98}, {6, 13193}, {32, 895}, {74, 13355}, {83, 15118}, {206, 45018}, {671, 19136}, {691, 2882}, {1078, 5181}, {1177, 53765}, {1691, 2854}, {2030, 46298}, {2080, 14984}, {2456, 5663}, {2930, 39560}, {2936, 41614}, {5034, 52699}, {5038, 6593}, {9830, 18374}, {9876, 10602}, {9976, 39750}, {10753, 13352}, {11380, 41616}, {11623, 43815}, {11842, 39562}, {13858, 54298}, {13859, 54297}, {14700, 32740}, {14928, 19121}, {19120, 59793}, {19127, 51798}, {23235, 44470}, {25328, 32242}, {32305, 38523}

X(62289) = inverse of X(2) in 1st Lemoine circle
X(62289) = pole of line {2, 690} with respect to the 1st Lemoine circle
X(62289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 11579, 12192}


X(62290) = INVERSE OF X(2) IN STAMMLER CIRCLE

Barycentrics    a^2*(a^8-19*a^4*b^2*c^2-2*a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4-10*b^2*c^2+c^4)+a^2*(b^2+c^2)*(2*b^4+7*b^2*c^2+2*c^4)) : :
X(62290) = -3*X[399]+2*X[23061], -4*X[1533]+3*X[38789], -4*X[3292]+3*X[37496], -9*X[5093]+8*X[15826], -8*X[10564]+9*X[38638], -7*X[15039]+6*X[43574], -2*X[15054]+3*X[32608], -8*X[32217]+7*X[55705], -3*X[32609]+2*X[43576]

X(62290) lies on these lines: {2, 3}, {187, 40237}, {399, 23061}, {511, 12308}, {1533, 38789}, {2930, 19924}, {3098, 18551}, {3292, 37496}, {5093, 15826}, {5160, 6767}, {5898, 38790}, {6781, 44533}, {7286, 7373}, {7728, 12584}, {8546, 31670}, {8705, 44456}, {9019, 48679}, {10263, 52100}, {10545, 52099}, {10564, 38638}, {10620, 15107}, {11586, 21310}, {11649, 55724}, {12902, 16010}, {13391, 14094}, {14128, 33542}, {14926, 41462}, {15039, 43574}, {15054, 32608}, {15743, 21311}, {16194, 55606}, {18435, 52987}, {18439, 54202}, {19130, 38402}, {22338, 34010}, {29323, 58789}, {32217, 55705}, {32306, 54147}, {32609, 43576}, {34013, 38730}, {35707, 43621}, {37827, 46264}, {40115, 40350}

X(62290) = reflection of X(i) in X(j) for these {i,j}: {10620, 15107}, {32306, 54147}
X(62290) = inverse of X(12100) in circumcircle
X(62290) = inverse of X(2) in Stammler circle
X(62290) = X(i)-vertex conjugate of X(j) for these {i, j}: {523, 12100}
X(62290) = pole of line {523, 12100} with respect to the circumcircle
X(62290) = pole of line {2, 523} with respect to the Stammler circle
X(62290) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(250), X(12100)}}, {{A, B, C, X(2693), X(34200)}}, {{A, B, C, X(7533), X(18550)}}
X(62290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7530, 13621}, {23, 18571, 2070}, {23, 7464, 18571}, {1113, 1114, 12100}, {12103, 18369, 3}, {15154, 15155, 2}, {15156, 15157, 546}


X(62291) = INVERSE OF X(2) IN TANGENTIAL CIRCLE

Barycentrics    a^2*((a^2-b^2)^3*(a^2+b^2)^2+(-a^8-a^6*b^2+a^2*b^6+b^8)*c^2-2*a^2*(a^4+b^4)*c^4+a^2*(2*a^2+b^2)*c^6+(a^2+b^2)*c^8-c^10) : :

X(62291) lies on these lines: {2, 3}, {111, 62369}, {232, 9380}, {842, 59004}, {1485, 52692}, {2916, 16776}, {2918, 61134}, {3447, 51862}, {6800, 52989}, {8262, 19596}, {9465, 44523}, {10313, 11062}, {11649, 44494}, {15141, 27085}, {20987, 32218}


X(62292) = INVERSE OF X(2) IN JOHNSON CIRCUMCONIC

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(3*a^8+b^2*c^2*(b^2-c^2)^2-5*a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(b^4+5*b^2*c^2+c^4)) : :

X(62292) lies on these lines: {2, 3}, {51, 56302}, {110, 43768}, {511, 44003}, {520, 31296}, {3060, 43988}, {3164, 11002}, {5640, 42329}, {32428, 35360}, {35098, 43766}, {36831, 41586}, {37779, 44004}, {39243, 59183}, {60593, 61194}


X(62293) = INVERSE OF X(2) IN LEMOINE INELLIPSE

Barycentrics    4*a^6-5*b^6+9*b^4*c^2+9*b^2*c^4-5*c^6-9*a^4*(b^2+c^2)+6*a^2*(3*b^4-5*b^2*c^2+3*c^4) : :

X(62293) lies on these lines: {2, 6}, {297, 52467}, {511, 43910}, {671, 34806}, {1499, 8352}, {3363, 5640}, {5077, 18911}, {6791, 62311}, {7426, 18800}, {9140, 37350}, {11162, 52229}, {13378, 19130}, {15098, 33006}, {15360, 27088}, {20382, 53499}, {31099, 46959}, {31654, 51396}, {32130, 41895}, {40915, 61488}


X(62294) = INVERSE OF X(2) IN ARTZT CIRCLE

Barycentrics    a^6+6*a^4*(b^2+c^2)+3*a^2*(b^4-5*b^2*c^2+c^4)-2*(b^6+c^6) : :

X(62294) lies on these lines: {2, 6}, {23, 51224}, {30, 11258}, {111, 3849}, {538, 10717}, {543, 9870}, {671, 10989}, {754, 9172}, {843, 9100}, {2071, 61443}, {2770, 11636}, {2782, 19906}, {3291, 31173}, {3839, 38951}, {5503, 14515}, {6032, 7617}, {7426, 51240}, {7664, 26613}, {7775, 39576}, {7812, 16042}, {8597, 34169}, {9464, 11336}, {9759, 9970}, {9939, 16055}, {14360, 52229}, {14568, 20389}, {26276, 52141}, {39602, 42008}


X(62295) = INVERSE OF X(2) IN ANTI-ARTZT CIRCLE

Barycentrics    (a^2-2*(b^2+c^2))*(7*a^4+b^4-b^2*c^2+c^4-4*a^2*(b^2+c^2)) : :

X(62295) lies on these lines: {2, 6}, {23, 58854}, {187, 10554}, {1499, 9485}, {3849, 11162}, {8598, 9143}, {9146, 62309}, {10510, 20381}, {10989, 11161}, {13378, 43150}, {33884, 35955}, {35933, 62336}


X(62296) = INVERSE OF X(2) IN DUAL CONIC OF 1ST YFF-MOSES HYPERBOLA

Barycentrics    5*a^2*(b+c)-b*c*(b+c)-a*(b^2+6*b*c+c^2) : :
X(62296) = -4*X[16610]+X[17145]

X(62296) lies on these lines: {1, 2}, {44, 4781}, {513, 14404}, {536, 3952}, {537, 17495}, {750, 50283}, {903, 20347}, {1575, 39982}, {2238, 4370}, {3740, 27804}, {3995, 42056}, {4023, 48821}, {4465, 28309}, {4688, 46897}, {4755, 27811}, {4767, 17160}, {4849, 17140}, {4850, 50075}, {4954, 37680}, {5247, 16397}, {9260, 45332}, {9350, 37639}, {16610, 17145}, {16704, 56009}, {17146, 24620}, {17487, 17759}, {17756, 37654}, {19647, 50810}, {19796, 57524}, {21870, 24589}, {25351, 31029}, {26580, 50091}, {31025, 50096}, {32931, 50086}, {35983, 41629}, {46904, 50094}

X(62296) = midpoint of X(i) and X(j) for these {i,j}: {2, 19998}
X(62296) = reflection of X(i) in X(j) for these {i,j}: {2, 899}, {29824, 2}, {52768, 1575}
X(62296) = pole of line {514, 4664} with respect to the Steiner circumellipse
X(62296) = pole of line {514, 4755} with respect to the Steiner inellipse
X(62296) = pole of line {190, 47763} with respect to the Yff parabola
X(62296) = pole of line {2, 513} with respect to the dual conic of 1st Yff-Moses hyperbola
X(62296) = intersection, other than A, B, C, of circumconics {{A, B, C, X(513), X(30950)}}, {{A, B, C, X(899), X(39982)}}, {{A, B, C, X(903), X(29824)}}, {{A, B, C, X(35168), X(57038)}}
X(62296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19998, 519}, {2, 519, 29824}, {42, 899, 49997}, {43, 31855, 899}, {239, 54309, 17780}, {519, 899, 2}, {899, 49983, 4871}, {899, 49988, 19998}, {19998, 20039, 20012}, {19998, 31855, 4651}, {36440, 36458, 56191}, {49984, 49988, 59295}


X(62297) = INVERSE OF X(2) IN DUAL CONIC OF ADAMS CIRCLE

Barycentrics    (a-b-c)*(b^2-4*b*c+c^2+a*(b+c)) : :
X(62297) =

X(62297) lies on these lines: {1, 2899}, {2, 2415}, {8, 4342}, {9, 28808}, {10, 17461}, {11, 3717}, {43, 4780}, {57, 1997}, {69, 31142}, {75, 5316}, {142, 30829}, {145, 28661}, {149, 49991}, {190, 3911}, {226, 17234}, {306, 27131}, {312, 2321}, {329, 30567}, {341, 12053}, {344, 5219}, {345, 30827}, {346, 5328}, {391, 11679}, {514, 661}, {516, 5205}, {517, 62394}, {519, 13541}, {536, 51415}, {537, 24216}, {556, 34849}, {644, 31171}, {726, 5121}, {740, 5212}, {899, 61223}, {903, 36915}, {946, 46937}, {1054, 28526}, {1125, 56311}, {1213, 44417}, {1265, 9581}, {1266, 16594}, {1329, 58822}, {1738, 24003}, {1999, 4856}, {2325, 4582}, {2796, 62379}, {2885, 56174}, {2886, 59506}, {3008, 32094}, {3035, 59581}, {3038, 35104}, {3120, 60423}, {3175, 37663}, {3210, 27130}, {3218, 4480}, {3264, 14554}, {3621, 8834}, {3634, 56313}, {3662, 30861}, {3674, 18135}, {3685, 6745}, {3699, 5853}, {3701, 41012}, {3705, 4082}, {3710, 4193}, {3756, 28582}, {3813, 59577}, {3816, 3967}, {3817, 29641}, {3840, 56312}, {3846, 39597}, {3880, 6018}, {3883, 4679}, {3932, 5087}, {3952, 4899}, {3971, 24239}, {3992, 30384}, {4001, 26792}, {4023, 4519}, {4034, 14555}, {4078, 17717}, {4085, 24210}, {4357, 30818}, {4370, 59769}, {4398, 31233}, {4415, 17235}, {4416, 31018}, {4417, 17240}, {4427, 37762}, {4431, 4671}, {4545, 4886}, {4847, 27538}, {4871, 21093}, {4967, 5241}, {5231, 27549}, {5274, 5423}, {5400, 23691}, {5542, 30947}, {5744, 25728}, {6552, 12541}, {6692, 32939}, {6700, 7283}, {7081, 40998}, {7263, 31197}, {7988, 30741}, {9779, 39570}, {10453, 21060}, {11019, 32937}, {11238, 30615}, {12625, 44722}, {13161, 25079}, {13741, 34937}, {16593, 61078}, {17164, 25011}, {17244, 26137}, {17280, 30867}, {17338, 59595}, {17353, 17720}, {17495, 25268}, {17721, 49527}, {17776, 30852}, {18141, 28609}, {18153, 30545}, {20103, 32932}, {20236, 26591}, {21242, 42056}, {21627, 44720}, {22097, 29418}, {23511, 30699}, {24217, 49529}, {24390, 59582}, {24392, 59599}, {24427, 25377}, {24620, 53594}, {24709, 32927}, {24982, 25253}, {26005, 51390}, {26245, 60846}, {26688, 26723}, {27064, 39595}, {27395, 27413}, {27489, 49507}, {28236, 47624}, {28580, 56009}, {29820, 59730}, {30305, 51284}, {31053, 46938}, {31137, 49505}, {31647, 62398}, {32843, 49990}, {32844, 49762}, {32865, 59684}, {33780, 52563}, {35652, 37662}, {36791, 59712}, {37660, 50093}, {44446, 53056}, {45939, 59639}, {51615, 58371}

X(62297) = midpoint of X(i) and X(j) for these {i,j}: {5205, 17777}
X(62297) = reflection of X(i) in X(j) for these {i,j}: {1054, 50535}, {4582, 2325}, {5121, 11814}, {58371, 51615}
X(62297) = complement of X(62300)
X(62297) = perspector of circumconic {{A, B, C, X(75), X(53647)}}
X(62297) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 8686}, {56, 40400}, {101, 37627}, {604, 1120}, {608, 1811}, {1397, 36805}, {1415, 23836}, {1417, 52556}, {6079, 57181}, {9456, 56642}
X(62297) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40400}, {9, 8686}, {1015, 37627}, {1146, 23836}, {2087, 53528}, {2325, 519}, {3161, 1120}, {4370, 56642}, {16594, 57}, {16610, 3911}, {21129, 40617}, {52871, 52556}
X(62297) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 21129}, {903, 8}, {3264, 6735}, {4997, 52140}, {14554, 3687}
X(62297) = X(i)-complementary conjugate of X(j) for these {i, j}: {23835, 116}
X(62297) = X(i)-cross conjugate of X(j) for these {i, j}: {3880, 1266}
X(62297) = pole of line {9746, 28296} with respect to the orthoptic circle of the Steiner Inellipse
X(62297) = pole of line {1086, 3687} with respect to the Kiepert hyperbola
X(62297) = pole of line {163, 16947} with respect to the Stammler hyperbola
X(62297) = pole of line {8, 3667} with respect to the Steiner circumellipse
X(62297) = pole of line {10, 3667} with respect to the Steiner inellipse
X(62297) = pole of line {522, 3699} with respect to the Yff parabola
X(62297) = pole of line {662, 1412} with respect to the Wallace hyperbola
X(62297) = pole of line {2, 514} with respect to the dual conic of Adams circle
X(62297) = pole of line {2, 514} with respect to the dual conic of Conway circle
X(62297) = pole of line {2, 514} with respect to the dual conic of incircle
X(62297) = pole of line {514, 3729} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62297) = pole of line {4033, 4391} with respect to the dual conic of Feuerbach hyperbola
X(62297) = pole of line {1577, 53545} with respect to the dual conic of Stammler hyperbola
X(62297) = pole of line {8, 244} with respect to the dual conic of Yff parabola
X(62297) = pole of line {661, 21950} with respect to the dual conic of Wallace hyperbola
X(62297) = pole of line {2, 514} with respect to the dual conic of Suppa-Cucoanes circle
X(62297) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4462)}}, {{A, B, C, X(8), X(52574)}}, {{A, B, C, X(9), X(47765)}}, {{A, B, C, X(312), X(514)}}, {{A, B, C, X(661), X(2321)}}, {{A, B, C, X(693), X(1266)}}, {{A, B, C, X(1149), X(3687)}}, {{A, B, C, X(1577), X(4052)}}, {{A, B, C, X(2415), X(4358)}}, {{A, B, C, X(3239), X(30693)}}, {{A, B, C, X(3452), X(48334)}}, {{A, B, C, X(3731), X(14350)}}, {{A, B, C, X(3762), X(4997)}}, {{A, B, C, X(3766), X(4087)}}, {{A, B, C, X(3835), X(4110)}}, {{A, B, C, X(3911), X(21129)}}, {{A, B, C, X(3912), X(23705)}}, {{A, B, C, X(4391), X(6557)}}, {{A, B, C, X(4468), X(27819)}}, {{A, B, C, X(4695), X(50457)}}, {{A, B, C, X(4801), X(16711)}}, {{A, B, C, X(5233), X(45247)}}, {{A, B, C, X(6018), X(14554)}}, {{A, B, C, X(6332), X(52406)}}, {{A, B, C, X(18743), X(30568)}}, {{A, B, C, X(30806), X(61186)}}, {{A, B, C, X(36800), X(45661)}}, {{A, B, C, X(56081), X(59779)}}
X(62297) = barycentric product X(i)*X(j) for these (i, j): {314, 4695}, {522, 61186}, {1149, 3596}, {1266, 8}, {1320, 20900}, {1878, 3718}, {2325, 52574}, {3264, 45247}, {3699, 4927}, {3880, 75}, {4358, 52140}, {16594, 4997}, {16610, 312}, {16711, 2321}, {18155, 61176}, {21129, 4582}, {23705, 693}, {23832, 35519}, {52871, 903}
X(62297) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8686}, {8, 1120}, {9, 40400}, {78, 1811}, {312, 36805}, {513, 37627}, {519, 56642}, {522, 23836}, {1149, 56}, {1266, 7}, {1878, 34}, {2325, 52556}, {3699, 6079}, {3880, 1}, {4695, 65}, {4927, 3676}, {5151, 1877}, {5854, 61483}, {6018, 1149}, {6085, 43924}, {16594, 3911}, {16610, 57}, {16711, 1434}, {17109, 1417}, {17460, 1319}, {20972, 1404}, {21041, 40663}, {21129, 30725}, {23205, 603}, {23705, 100}, {23832, 109}, {45247, 106}, {52140, 88}, {52871, 519}, {61176, 4551}, {61186, 664}, {61484, 43081}
X(62297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30568, 56078}, {2, 3161, 59779}, {2, 4054, 24199}, {2, 8055, 30568}, {11, 4009, 3717}, {190, 37758, 3911}, {312, 5233, 2321}, {726, 11814, 5121}, {908, 4358, 3912}, {1997, 56084, 57}, {2321, 3452, 5233}, {2321, 5233, 3687}, {3210, 27130, 45204}, {3705, 4903, 4082}, {3952, 26015, 4899}, {4052, 4373, 2}, {4052, 8056, 28655}, {4358, 30566, 908}, {4871, 21093, 24231}, {5205, 17777, 516}, {28526, 50535, 1054}, {30568, 59779, 3161}


X(62298) = INVERSE OF X(2) IN DUAL CONIC OF 1ST BROCARD CIRCLE

Barycentrics    (b^2-c^2)^4*(b^2+c^2)+a^6*(b^4+4*b^2*c^2+c^4)-a^4*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)-a^2*(b^8-2*b^6*c^2-4*b^4*c^4-2*b^2*c^6+c^8) : :

X(62298) lies on circumconic {{A, B, C, X(34289), X(60863)}} and on these lines: {2, 99}, {22, 38730}, {23, 23698}, {25, 38733}, {98, 16063}, {114, 5169}, {147, 31099}, {323, 542}, {427, 51872}, {850, 2525}, {858, 2782}, {1370, 5986}, {1648, 57257}, {1916, 34289}, {1994, 41672}, {1995, 6321}, {2794, 5189}, {3291, 62356}, {3580, 5969}, {5025, 58846}, {5026, 14389}, {5094, 13188}, {5133, 61575}, {5477, 11004}, {6033, 31133}, {6036, 7496}, {6054, 31105}, {6103, 14590}, {6636, 38736}, {6721, 7570}, {7391, 10722}, {7485, 38739}, {7492, 38738}, {7493, 13172}, {7495, 33813}, {7519, 10723}, {8288, 36790}, {9464, 32458}, {9830, 40112}, {10754, 37644}, {10992, 52300}, {11284, 38732}, {11646, 15066}, {12188, 31152}, {12355, 47597}, {14645, 37779}, {14651, 46336}, {14928, 59771}, {14981, 31857}, {15092, 37990}, {16042, 38734}, {17702, 36173}, {19577, 39652}, {23699, 57616}, {34383, 51428}, {37454, 61561}, {38224, 40916}, {43957, 61560}, {44420, 57607}, {51383, 53493}

X(62298) = midpoint of X(i) and X(j) for these {i,j}: {5189, 5987}
X(62298) = inverse of X(52036) in orthoptic circle of the Steiner Inellipse
X(62298) = perspector of circumconic {{A, B, C, X(327), X(892)}}
X(62298) = pole of line {2793, 52036} with respect to the orthoptic circle of the Steiner Inellipse
X(62298) = pole of line {10311, 14273} with respect to the polar circle
X(62298) = pole of line {187, 19140} with respect to the Stammler hyperbola
X(62298) = pole of line {690, 1352} with respect to the Steiner circumellipse
X(62298) = pole of line {690, 24206} with respect to the Steiner inellipse
X(62298) = pole of line {2, 1637} with respect to the dual conic of 1st Brocard circle
X(62298) = pole of line {32, 14417} with respect to the dual conic of 1st Droz-Farny circle
X(62298) = pole of line {2, 1637} with respect to the dual conic of 1st Lemoine circle
X(62298) = pole of line {2799, 3734} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62298) = pole of line {23878, 52628} with respect to the dual conic of Stammler hyperbola
X(62298) = pole of line {1648, 3288} with respect to the dual conic of Wallace hyperbola
X(62298) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5189, 5987, 2794}


X(62299) = INVERSE OF X(2) IN DUAL CONIC OF COSINE CIRCLE

Barycentrics    -b^6-10*a^2*b^2*c^2+5*b^4*c^2+5*b^2*c^4-c^6+a^4*(b^2+c^2) : :
X(62299) =

X(62299) lies on these lines: {2, 2418}, {22, 5866}, {23, 47350}, {30, 5971}, {99, 7426}, {125, 51397}, {126, 538}, {141, 59773}, {316, 47314}, {325, 523}, {381, 56435}, {403, 34336}, {524, 9146}, {698, 32525}, {1995, 32815}, {2373, 16386}, {3564, 38940}, {3580, 50567}, {4045, 30749}, {4576, 51438}, {5133, 57518}, {6031, 8703}, {6340, 30744}, {7664, 59634}, {7799, 30786}, {7813, 39602}, {7840, 39356}, {7853, 59768}, {9464, 30739}, {9745, 34511}, {10513, 40996}, {11336, 22253}, {12036, 52231}, {15302, 15491}, {15589, 46336}, {15993, 45672}, {22110, 42008}, {26276, 47313}, {31125, 33228}, {31128, 35297}, {31133, 32827}, {34229, 40916}, {37636, 59535}, {46818, 56430}, {51371, 57425}, {59765, 62301}

X(62299) = midpoint of X(i) and X(j) for these {i,j}: {2, 62309}, {5971, 14360}
X(62299) = reflection of X(i) in X(j) for these {i,j}: {23, 47350}, {5913, 126}, {52231, 12036}, {62311, 2}, {9870, 16317}
X(62299) = isotomic conjugate of X(9084)
X(62299) = complement of X(9870)
X(62299) = anticomplement of X(16317)
X(62299) = perspector of circumconic {{A, B, C, X(76), X(35179)}}
X(62299) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 9084}, {16317, 16317}
X(62299) = pole of line {599, 3124} with respect to the Kiepert hyperbola
X(62299) = pole of line {525, 9146} with respect to the Kiepert parabola
X(62299) = pole of line {1384, 1576} with respect to the Stammler hyperbola
X(62299) = pole of line {69, 1499} with respect to the Steiner circumellipse
X(62299) = pole of line {141, 1499} with respect to the Steiner inellipse
X(62299) = pole of line {110, 1992} with respect to the Wallace hyperbola
X(62299) = pole of line {2, 523} with respect to the dual conic of cosine circle
X(62299) = pole of line {99, 35188} with respect to the dual conic of orthocentroidal circle
X(62299) = pole of line {512, 6791} with respect to the dual conic of Wallace hyperbola
X(62299) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(523), X(9027)}}, {{A, B, C, X(850), X(5485)}}, {{A, B, C, X(858), X(53961)}}, {{A, B, C, X(2418), X(3266)}}, {{A, B, C, X(7426), X(52232)}}, {{A, B, C, X(9084), X(16317)}}, {{A, B, C, X(18019), X(52496)}}
X(62299) = barycentric product X(i)*X(j) for these (i, j): {76, 9027}, {3266, 52152}
X(62299) = barycentric quotient X(i)/X(j) for these (i, j): {2, 9084}, {9027, 6}, {47286, 52453}, {52152, 111}
X(62299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52229, 62311}, {2, 62309, 52229}, {2, 9870, 16317}, {126, 538, 5913}, {3266, 62310, 858}, {5971, 14360, 30}, {16317, 52229, 9870}


X(62300) = INVERSE OF X(2) IN DUAL CONIC OF EXCIRCLES-RADICAL CIRCLE

Barycentrics    a^3-a^2*(b+c)+b*c*(b+c)+a*(-2*b^2+3*b*c-2*c^2) : :
X(62300) =

X(62300) lies on these lines: {2, 2415}, {9, 24620}, {57, 1999}, {63, 17349}, {75, 17595}, {86, 3666}, {88, 4358}, {99, 37791}, {145, 3339}, {171, 49472}, {173, 16018}, {190, 16610}, {192, 3306}, {193, 2094}, {239, 514}, {244, 3685}, {269, 51355}, {335, 51567}, {345, 53665}, {516, 5211}, {519, 20098}, {537, 56009}, {545, 51415}, {553, 17778}, {726, 1054}, {740, 18201}, {894, 4850}, {903, 27751}, {908, 4440}, {940, 17393}, {982, 32932}, {1086, 32851}, {1120, 3880}, {1150, 17117}, {1155, 32922}, {1266, 3911}, {1357, 35104}, {1465, 40862}, {2093, 20037}, {2226, 46795}, {2796, 50533}, {3008, 32106}, {3187, 23958}, {3638, 37795}, {3639, 37794}, {3662, 17740}, {3687, 26840}, {3689, 24841}, {3699, 28582}, {3711, 49501}, {3717, 26073}, {3750, 42053}, {3752, 17351}, {3756, 28530}, {3757, 17596}, {3879, 4031}, {3891, 9352}, {3913, 34860}, {3935, 17154}, {3980, 17591}, {3996, 21342}, {4003, 5263}, {4190, 50582}, {4359, 5235}, {4360, 37520}, {4398, 17720}, {4413, 49447}, {4414, 16823}, {4427, 7292}, {4552, 37789}, {4652, 19851}, {4860, 49470}, {5121, 17777}, {5212, 5850}, {5233, 17276}, {5241, 17258}, {5256, 37677}, {5435, 30699}, {5437, 41839}, {5718, 7321}, {5853, 58371}, {6154, 49695}, {7081, 17155}, {7283, 24046}, {7360, 44311}, {7613, 30741}, {8051, 42360}, {9369, 24440}, {10453, 18193}, {11246, 33071}, {11512, 19582}, {14829, 42051}, {14996, 29584}, {16815, 30563}, {16817, 24176}, {16826, 26627}, {16830, 46901}, {17011, 26860}, {17012, 17120}, {17063, 32934}, {17067, 26070}, {17147, 27003}, {17235, 30832}, {17259, 19804}, {17260, 24589}, {17262, 30829}, {17266, 32849}, {17268, 50105}, {17283, 50104}, {17288, 33077}, {17291, 32779}, {17319, 37633}, {17484, 20092}, {17593, 24325}, {18141, 42049}, {19796, 37646}, {20880, 26632}, {24004, 52206}, {24169, 33167}, {24174, 56311}, {24178, 56313}, {24191, 25510}, {24216, 28580}, {24621, 37555}, {25599, 29614}, {25728, 54390}, {26015, 62392}, {27130, 56084}, {30811, 48629}, {30867, 33151}, {32913, 49685}, {32943, 42040}, {32945, 42038}, {33116, 40688}, {33129, 51583}, {35466, 37756}, {36263, 60731}, {37758, 43055}, {42055, 60714}, {49455, 56010}, {59477, 59574}, {62305, 62327}

X(62300) = reflection of X(i) in X(j) for these {i,j}: {17777, 5121}, {5205, 1054}
X(62300) = anticomplement of X(62297)
X(62300) = perspector of circumconic {{A, B, C, X(86), X(53647)}}
X(62300) = X(i)-isoconjugate-of-X(j) for these {i, j}: {101, 23835}
X(62300) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 23835}, {62297, 62297}
X(62300) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1120, 21286}, {8686, 69}, {37627, 150}, {40400, 3436}
X(62300) = pole of line {101, 33628} with respect to the Stammler hyperbola
X(62300) = pole of line {1, 3667} with respect to the Steiner circumellipse
X(62300) = pole of line {1125, 3667} with respect to the Steiner inellipse
X(62300) = pole of line {513, 3699} with respect to the Yff parabola
X(62300) = pole of line {190, 1999} with respect to the Wallace hyperbola
X(62300) = pole of line {2, 514} with respect to the dual conic of excircles-radical circle
X(62300) = pole of line {3669, 24562} with respect to the dual conic of Fuhrmann circle
X(62300) = pole of line {514, 30568} with respect to the dual conic of incircle
X(62300) = pole of line {514, 3663} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62300) = pole of line {2, 514} with respect to the dual conic of Spieker circle
X(62300) = pole of line {25268, 47796} with respect to the dual conic of Feuerbach hyperbola
X(62300) = pole of line {8, 3120} with respect to the dual conic of Yff parabola
X(62300) = pole of line {4024, 21950} with respect to the dual conic of Wallace hyperbola
X(62300) = pole of line {514, 56078} with respect to the dual conic of Suppa-Cucoanes circle
X(62300) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(4498)}}, {{A, B, C, X(514), X(4052)}}, {{A, B, C, X(1019), X(8056)}}, {{A, B, C, X(1021), X(56279)}}, {{A, B, C, X(2415), X(16704)}}, {{A, B, C, X(3986), X(14351)}}, {{A, B, C, X(4373), X(7192)}}, {{A, B, C, X(4560), X(6557)}}, {{A, B, C, X(4786), X(27483)}}, {{A, B, C, X(6650), X(17951)}}, {{A, B, C, X(8055), X(42360)}}, {{A, B, C, X(18206), X(23831)}}
X(62300) = barycentric product X(i)*X(j) for these (i, j): {1921, 45142}, {23831, 693}
X(62300) = barycentric quotient X(i)/X(j) for these (i, j): {513, 23835}, {23831, 100}, {45142, 292}
X(62300) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 3875, 37684}, {75, 17595, 24627}, {726, 1054, 5205}, {1266, 3911, 37759}, {3210, 37684, 3875}, {3218, 17495, 239}, {3752, 32939, 27064}, {3875, 37684, 1999}, {5121, 28526, 17777}, {17596, 24165, 3757}, {24175, 56078, 2}, {30577, 37759, 3911}


X(62301) = INVERSE OF X(2) IN DUAL CONIC OF GALLATLY CIRCLE

Barycentrics    2*b^4*c^4*(b^2+c^2)-a^4*(b^2+c^2)*(b^4+c^4)+a^6*(b^4-b^2*c^2+c^4)+a^2*(-2*b^6*c^2+3*b^4*c^4-2*b^2*c^6) : :

X(62301) lies on these lines: {2, 59535}, {69, 35524}, {316, 512}, {698, 13518}, {3231, 9146}, {7998, 54189}, {9998, 48439}, {11673, 25332}, {15107, 56442}, {30736, 46303}, {59765, 62299}


X(62302) = INVERSE OF X(2) IN DUAL CONIC OF TANGENTIAL CIRCLE

Barycentrics    a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2-a^8*(3*b^4+4*b^2*c^2+3*c^4)+2*a^6*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)+2*a^4*(b^8-b^6*c^2-2*b^4*c^4-b^2*c^6+c^8)-3*a^2*(b^10-b^8*c^2-b^2*c^8+c^10) : :

X(62302) lies on these lines: {2, 6}, {403, 12358}, {525, 55228}, {858, 13416}, {1503, 37978}, {9545, 26879}, {11591, 13160}, {22467, 44158}, {33533, 52069}, {34138, 52512}, {35296, 54075}, {38534, 44452}


X(62303) = INVERSE OF X(2) IN DUAL CONIC OF BROCARD INELLIPSE

Barycentrics    -(b^6*c^6)+a^4*b^2*c^2*(b^4-b^2*c^2+c^4) : :

X(62303) lies on these lines: {2, 2998}, {316, 512}, {670, 3231}, {689, 1691}, {698, 4609}, {1916, 35528}, {1978, 21830}, {2211, 6331}, {3124, 14603}, {3981, 40362}, {9488, 41259}, {16890, 18901}, {18024, 51404}, {20023, 43448}, {20081, 39468}, {25332, 49122}, {30736, 34087}


X(62304) = INVERSE OF X(2) IN DUAL CONIC OF DELONGCHAMPS ELLIPSE

Barycentrics    b*c*(a^2*(b-c)^2-b*c*(b+c)^2+a*(b+c)*(b^2+c^2)) : :

X(62304) lies on these lines: {2, 18040}, {141, 321}, {312, 31017}, {495, 52353}, {514, 661}, {668, 37680}, {899, 61174}, {3218, 29537}, {3264, 39994}, {3963, 4359}, {3995, 18136}, {4033, 17495}, {4671, 18144}, {4723, 24222}, {4850, 17786}, {14996, 60861}, {16610, 59519}, {17147, 18739}, {18133, 31035}, {18143, 31025}, {20432, 31647}, {20887, 60578}, {27065, 29509}, {27793, 44417}, {33146, 59761}, {39995, 39997}, {41242, 44139}, {60097, 60244}


X(62305) = INVERSE OF X(2) IN DUAL CONIC OF EXCENTRAL-HEXYL ELLIPSE

Barycentrics    b*c*(b+c)*(a^3-a*b*c+(b-c)^2*(b+c)) : :

X(62305) lies on these lines: {2, 17861}, {75, 5235}, {80, 758}, {92, 1172}, {149, 44661}, {297, 525}, {312, 20896}, {313, 321}, {536, 20887}, {740, 1109}, {1733, 4427}, {1959, 17174}, {1962, 17725}, {2292, 37716}, {2294, 31019}, {3006, 23690}, {3218, 8680}, {3617, 4647}, {3666, 20886}, {3743, 42005}, {3760, 21421}, {3936, 16732}, {3944, 4137}, {3948, 27709}, {3977, 24209}, {3995, 6358}, {4016, 33151}, {4080, 60091}, {4358, 17895}, {4671, 18697}, {4858, 17495}, {4980, 28297}, {5146, 15906}, {5554, 17164}, {5905, 21270}, {8287, 51465}, {10528, 23555}, {11330, 32118}, {14206, 16704}, {14213, 17147}, {17184, 26176}, {17257, 28605}, {17778, 30690}, {17863, 29833}, {17871, 32929}, {17874, 27804}, {18151, 37680}, {18359, 37759}, {19789, 27509}, {20919, 32911}, {20944, 30940}, {21020, 33165}, {22010, 56326}, {23689, 26230}, {26222, 26223}, {26227, 49512}, {31053, 53036}, {33131, 40973}, {33935, 40089}, {40149, 43675}, {41809, 42708}, {62300, 62327}

X(62305) = perspector of circumconic {{A, B, C, X(264), X(27808)}}
X(62305) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 39439}, {34079, 39166}
X(62305) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 39439}, {31845, 6}, {33129, 37783}, {35069, 39166}
X(62305) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14616, 38938}, {36804, 1577}
X(62305) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {759, 4329}, {1411, 2897}, {1474, 6224}, {2161, 52364}, {2341, 52366}, {6187, 3151}, {24624, 1370}, {34079, 20}, {36069, 6563}, {57736, 6527}
X(62305) = pole of line {6, 43925} with respect to the polar circle
X(62305) = pole of line {321, 338} with respect to the Kiepert hyperbola
X(62305) = pole of line {4, 6003} with respect to the Steiner circumellipse
X(62305) = pole of line {5, 6003} with respect to the Steiner inellipse
X(62305) = pole of line {593, 4558} with respect to the Wallace hyperbola
X(62305) = pole of line {2, 1577} with respect to the dual conic of 2nd Brocard circle
X(62305) = pole of line {2, 1577} with respect to the dual conic of circumcircle
X(62305) = pole of line {2, 1577} with respect to the dual conic of 2nd Droz-Farny circle
X(62305) = pole of line {1577, 17776} with respect to the dual conic of incircle
X(62305) = pole of line {394, 7254} with respect to the dual conic of polar circle
X(62305) = pole of line {4560, 9965} with respect to the dual conic of Spieker circle
X(62305) = pole of line {2, 1577} with respect to the dual conic of Stammler circle
X(62305) = pole of line {2, 525} with respect to the dual conic of excentral-hexyl ellipse
X(62305) = pole of line {525, 1086} with respect to the dual conic of Stammler hyperbola
X(62305) = pole of line {6734, 24176} with respect to the dual conic of Yff parabola
X(62305) = pole of line {647, 1015} with respect to the dual conic of Wallace hyperbola
X(62305) = pole of line {1577, 33113} with respect to the dual conic of Suppa-Cucoanes circle
X(62305) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(76), X(38938)}}, {{A, B, C, X(297), X(13589)}}, {{A, B, C, X(313), X(46107)}}, {{A, B, C, X(321), X(5146)}}, {{A, B, C, X(525), X(39700)}}, {{A, B, C, X(594), X(2501)}}, {{A, B, C, X(850), X(2997)}}, {{A, B, C, X(1172), X(1731)}}, {{A, B, C, X(4080), X(11604)}}, {{A, B, C, X(4391), X(43675)}}, {{A, B, C, X(5485), X(56600)}}, {{A, B, C, X(10015), X(15906)}}, {{A, B, C, X(14618), X(28654)}}, {{A, B, C, X(30117), X(56810)}}, {{A, B, C, X(30713), X(46110)}}, {{A, B, C, X(40571), X(56559)}}
X(62305) = barycentric product X(i)*X(j) for these (i, j): {321, 33129}, {1731, 349}, {4033, 47680}, {13589, 850}, {14616, 31845}, {15906, 57984}, {20336, 5146}, {30117, 313}, {35550, 38938}
X(62305) = barycentric quotient X(i)/X(j) for these (i, j): {4, 39439}, {758, 39166}, {1731, 284}, {5146, 28}, {5497, 5127}, {13589, 110}, {15906, 859}, {30117, 58}, {31845, 758}, {33129, 81}, {38938, 759}, {47680, 1019}, {56600, 53903}
X(62305) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {321, 53510, 26580}


X(62306) = INVERSE OF X(2) IN DUAL CONIC OF FEUERBACH HYPERBOLA

Barycentrics    (b-c)*(a*(a-b)^3*(a+b)-(a-b)*(2*a^3+a^2*b-b^3)*c+b*(a^2-4*a*b+b^2)*c^2+(2*a^2+a*b+b^2)*c^3-(a+b)*c^4) : :
X(62306) = -3*X[38025]+2*X[45322], -3*X[38060]+2*X[52873]

X(62306) lies on these lines: {1, 522}, {2, 650}, {9, 514}, {86, 4560}, {190, 644}, {192, 17496}, {344, 4391}, {347, 3669}, {348, 24002}, {513, 5698}, {885, 1001}, {905, 4000}, {968, 23811}, {2550, 3126}, {3309, 43161}, {4130, 56937}, {4382, 46396}, {4423, 42454}, {4978, 56320}, {6930, 8760}, {11124, 59572}, {17077, 47796}, {20075, 30613}, {21120, 26671}, {21297, 46397}, {23880, 31325}, {30719, 34488}, {31605, 34059}, {32008, 56322}, {35167, 53210}, {38025, 45322}, {38060, 52873}, {44550, 50101}, {54414, 57049}

X(62306) = midpoint of X(i) and X(j) for these {i,j}: {60476, 60477}
X(62306) = reflection of X(i) in X(j) for these {i,j}: {2550, 3126}, {885, 1001}
X(62306) = perspector of circumconic {{A, B, C, X(2481), X(4998)}}
X(62306) = X(i)-complementary conjugate of X(j) for these {i, j}: {2149, 52873}
X(62306) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {840, 150}, {32739, 39363}, {37131, 21293}, {59021, 20347}
X(62306) = pole of line {60448, 60453} with respect to the anticomplementary circle
X(62306) = pole of line {1785, 5089} with respect to the polar circle
X(62306) = pole of line {75, 53335} with respect to the Kiepert parabola
X(62306) = pole of line {100, 518} with respect to the Steiner circumellipse
X(62306) = pole of line {518, 3035} with respect to the Steiner inellipse
X(62306) = pole of line {8, 3762} with respect to the Yff parabola
X(62306) = pole of line {190, 37787} with respect to the dual conic of incircle
X(62306) = pole of line {190, 25257} with respect to the dual conic of nine-point circle
X(62306) = pole of line {25083, 26932} with respect to the dual conic of polar circle
X(62306) = pole of line {37788, 52043} with respect to the dual conic of DeLongchamps ellipse
X(62306) = pole of line {2, 918} with respect to the dual conic of Feuerbach hyperbola
X(62306) = pole of line {1447, 6516} with respect to the dual conic of Orthic inconic
X(62306) = pole of line {24290, 55195} with respect to the dual conic of Wallace hyperbola
X(62306) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(36819)}}, {{A, B, C, X(190), X(43728)}}, {{A, B, C, X(522), X(2397)}}, {{A, B, C, X(644), X(28132)}}, {{A, B, C, X(650), X(2284)}}, {{A, B, C, X(664), X(2401)}}, {{A, B, C, X(693), X(883)}}, {{A, B, C, X(918), X(40166)}}, {{A, B, C, X(1332), X(37628)}}, {{A, B, C, X(4552), X(60479)}}, {{A, B, C, X(4559), X(55261)}}, {{A, B, C, X(32008), X(36944)}}, {{A, B, C, X(35167), X(46792)}}
X(62306) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 26641, 28834}, {60476, 60477, 918}


X(62307) = INVERSE OF X(2) IN DUAL CONIC OF JERABEK HYPERBOLA

Barycentrics    (b-c)*(b+c)*(a^2*(a^2-b^2)^3*(a^2+b^2)-(a-b)*(a+b)*(2*a^6+a^4*b^2-b^6)*c^2+b^2*(a^4-4*a^2*b^2+b^4)*c^4+(2*a^4+a^2*b^2+b^4)*c^6-(a^2+b^2)*c^8) : :
X(62307) = -3*X[38064]+2*X[45321]

X(62307) lies on these lines: {2, 647}, {3, 523}, {4, 33752}, {5, 47256}, {6, 525}, {83, 2394}, {95, 14977}, {99, 112}, {182, 879}, {381, 47002}, {512, 46264}, {542, 35909}, {669, 15652}, {690, 9970}, {804, 6033}, {842, 2697}, {1352, 41167}, {1995, 47258}, {2138, 57071}, {2411, 60013}, {2433, 37648}, {2485, 3767}, {2489, 41361}, {2492, 41079}, {2793, 22664}, {3267, 7630}, {3906, 31958}, {4232, 47442}, {5169, 57127}, {6389, 52584}, {7493, 47004}, {8552, 35522}, {9517, 32233}, {14618, 17907}, {14998, 54395}, {22687, 23870}, {22689, 23871}, {22716, 54029}, {22718, 54028}, {23105, 37742}, {25406, 33754}, {30209, 49669}, {30739, 47248}, {32216, 46983}, {37645, 52743}, {38064, 45321}, {40691, 52600}, {40697, 52613}, {44210, 47175}, {44212, 47261}, {46142, 53200}, {46245, 54124}, {46336, 47250}, {47001, 47597}, {51798, 59775}

X(62307) = midpoint of X(i) and X(j) for these {i,j}: {14273, 41077}, {50944, 50945}
X(62307) = reflection of X(i) in X(j) for these {i,j}: {1352, 41167}, {23105, 37742}, {3267, 7630}, {35522, 8552}, {4, 33752}, {41079, 2492}, {850, 7624}, {879, 182}
X(62307) = anticomplement of X(18312)
X(62307) = perspector of circumconic {{A, B, C, X(290), X(2373)}}
X(62307) = X(i)-Dao conjugate of X(j) for these {i, j}: {18312, 18312}, {36189, 2493}
X(62307) = X(i)-Ceva conjugate of X(j) for these {i, j}: {5649, 2}
X(62307) = X(i)-complementary conjugate of X(j) for these {i, j}: {60590, 21253}
X(62307) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {842, 21294}, {5649, 6327}, {6035, 21275}
X(62307) = pole of line {39842, 46450} with respect to the anticomplementary circle
X(62307) = pole of line {30, 53273} with respect to the circumcircle
X(62307) = pole of line {316, 3153} with respect to the DeLongchamps circle
X(62307) = pole of line {114, 2072} with respect to the 1st Droz-Farny circle
X(62307) = pole of line {6033, 18403} with respect to the circumcircle of the Johnson triangle
X(62307) = pole of line {858, 51389} with respect to the orthoptic circle of the Steiner Inellipse
X(62307) = pole of line {115, 232} with respect to the polar circle
X(62307) = pole of line {69, 526} with respect to the Kiepert parabola
X(62307) = pole of line {2072, 30737} with respect to the MacBeath inconic
X(62307) = pole of line {647, 14966} with respect to the Stammler hyperbola
X(62307) = pole of line {23, 110} with respect to the Steiner circumellipse
X(62307) = pole of line {468, 511} with respect to the Steiner inellipse
X(62307) = pole of line {1330, 53336} with respect to the Yff parabola
X(62307) = pole of line {525, 2421} with respect to the Wallace hyperbola
X(62307) = pole of line {36212, 62375} with respect to the dual conic of anticomplementary circle
X(62307) = pole of line {51481, 62376} with respect to the dual conic of circumcircle
X(62307) = pole of line {36212, 62377} with respect to the dual conic of 1st Droz-Farny circle
X(62307) = pole of line {51481, 62378} with respect to the dual conic of 2nd Droz-Farny circle
X(62307) = pole of line {340, 3978} with respect to the dual conic of Gallatly circle
X(62307) = pole of line {36212, 62380} with respect to the dual conic of circumcircle of the Johnson triangle
X(62307) = pole of line {524, 14570} with respect to the dual conic of nine-point circle
X(62307) = pole of line {35520, 62381} with respect to the dual conic of orthocentroidal circle
X(62307) = pole of line {538, 3580} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62307) = pole of line {15526, 36212} with respect to the dual conic of polar circle
X(62307) = pole of line {340, 3978} with respect to the dual conic of Brocard inellipse
X(62307) = pole of line {2, 1637} with respect to the dual conic of Jerabek hyperbola
X(62307) = pole of line {99, 186} with respect to the dual conic of Orthic inconic
X(62307) = pole of line {3569, 32312} with respect to the dual conic of Wallace hyperbola
X(62307) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(15462)}}, {{A, B, C, X(6), X(52672)}}, {{A, B, C, X(83), X(15454)}}, {{A, B, C, X(95), X(52145)}}, {{A, B, C, X(99), X(15421)}}, {{A, B, C, X(112), X(2395)}}, {{A, B, C, X(523), X(16237)}}, {{A, B, C, X(647), X(14966)}}, {{A, B, C, X(648), X(15328)}}, {{A, B, C, X(850), X(877)}}, {{A, B, C, X(2394), X(41676)}}, {{A, B, C, X(2407), X(4580)}}, {{A, B, C, X(2697), X(46786)}}, {{A, B, C, X(4235), X(15412)}}, {{A, B, C, X(4558), X(53173)}}, {{A, B, C, X(5661), X(40799)}}, {{A, B, C, X(14570), X(14977)}}, {{A, B, C, X(14590), X(15470)}}, {{A, B, C, X(16083), X(46142)}}, {{A, B, C, X(39986), X(60013)}}, {{A, B, C, X(44155), X(54124)}}
X(62307) = barycentric product X(i)*X(j) for these (i, j): {3268, 53768}, {15462, 850}, {36189, 99}, {41253, 525}
X(62307) = barycentric quotient X(i)/X(j) for these (i, j): {15462, 110}, {36189, 523}, {41253, 648}, {53768, 476}, {60513, 60502}
X(62307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2407, 4235, 14966}, {7624, 23878, 850}, {14273, 41077, 2799}


X(62308) = INVERSE OF X(2) IN DUAL CONIC OF JOHNSON CIRCUMCONIC

Barycentrics    -(b^2*c^2*(b^2-c^2)^4)+a^10*(b^2+c^2)-4*a^8*(b^4+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)+3*a^6*(b^2+c^2)*(2*b^4-3*b^2*c^2+2*c^4)-a^4*(b^2-c^2)^2*(4*b^4+7*b^2*c^2+4*c^4) : :

X(62308) lies on these lines: {2, 216}, {20, 1216}, {30, 44715}, {323, 401}, {511, 44003}, {852, 35360}, {2071, 47084}, {2972, 32428}, {3153, 14731}, {3580, 46788}, {5059, 57451}, {5189, 34186}, {7998, 42329}, {11064, 14570}, {13409, 30506}, {14918, 15526}, {15066, 20477}, {17484, 44354}, {37779, 39352}, {40884, 41676}, {41678, 51358}, {41724, 44004}, {44252, 46818}, {54114, 56266}


X(62309) = INVERSE OF X(2) IN DUAL CONIC OF LEMOINE INELLIPSE

Barycentrics    (a^2+b^2-3*b*c+c^2)*(a^2+b^2+3*b*c+c^2)*(a^2-2*(b^2+c^2)) : :

X(62309) lies on these lines: {2, 2418}, {23, 2936}, {99, 51541}, {523, 7840}, {524, 14360}, {538, 10717}, {543, 5971}, {599, 9464}, {671, 3266}, {698, 9169}, {1383, 11164}, {7620, 56435}, {8859, 31128}, {9146, 62295}, {9872, 20385}, {11054, 11580}, {11160, 16063}, {14588, 22329}, {14762, 39389}, {22110, 31644}, {30745, 52232}, {37909, 47350}, {39785, 42008}, {44555, 50639}


X(62310) = INVERSE OF X(2) IN DUAL CONIC OF ORTHIC INCONIC

Barycentrics    (a^2-b^2-c^2)*(b^4-4*b^2*c^2+c^4+a^2*(b^2+c^2)) : :

X(62310) lies on these lines: {2, 1975}, {5, 11059}, {23, 5866}, {69, 55977}, {76, 30739}, {99, 468}, {125, 6393}, {126, 3291}, {140, 11056}, {183, 46336}, {230, 14588}, {305, 1368}, {315, 31152}, {316, 46517}, {325, 523}, {427, 7752}, {543, 40350}, {671, 44182}, {732, 14467}, {1007, 52284}, {1078, 43957}, {1312, 46813}, {1313, 46810}, {1503, 56430}, {1799, 10691}, {1995, 32819}, {2374, 5203}, {2396, 57607}, {3055, 59555}, {3564, 4563}, {3580, 4576}, {3785, 7386}, {3926, 16051}, {4176, 23291}, {4558, 10717}, {4590, 16315}, {5025, 30793}, {5094, 7763}, {5159, 6390}, {5189, 5971}, {5939, 54092}, {6331, 6530}, {6656, 30749}, {6677, 16276}, {7667, 33651}, {7750, 16063}, {7764, 15820}, {7767, 10300}, {7769, 37454}, {7773, 31099}, {7782, 44210}, {7799, 47097}, {7809, 47311}, {7836, 30777}, {8681, 52881}, {8788, 34573}, {9133, 41133}, {9146, 41724}, {9182, 47242}, {9723, 37688}, {10418, 47287}, {10607, 17008}, {11064, 12215}, {11185, 11284}, {11336, 40126}, {11634, 56685}, {16316, 33799}, {18906, 37648}, {20080, 39127}, {21243, 59535}, {26276, 37900}, {30769, 32831}, {30771, 34254}, {30775, 32837}, {31644, 44377}, {31998, 47155}, {32216, 32833}, {32815, 40132}, {34336, 37981}, {41586, 51438}, {47296, 59548}

X(62310) = isotomic conjugate of X(2374)
X(62310) = perspector of circumconic {{A, B, C, X(76), X(35136)}}
X(62310) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 2374}, {1973, 41909}
X(62310) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 2374}, {126, 25}, {3291, 468}, {6337, 41909}, {6390, 524}, {34158, 32740}, {47286, 38294}, {52881, 34161}, {55271, 5139}
X(62310) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 55271}, {671, 69}
X(62310) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56007, 8}
X(62310) = X(i)-cross conjugate of X(j) for these {i, j}: {8681, 47286}
X(62310) = pole of line {22, 55271} with respect to the circumcircle
X(62310) = pole of line {2, 57071} with respect to the DeLongchamps circle
X(62310) = pole of line {2, 56739} with respect to the nine-point circle
X(62310) = pole of line {25, 57071} with respect to the polar circle
X(62310) = pole of line {69, 3124} with respect to the Kiepert hyperbola
X(62310) = pole of line {525, 4563} with respect to the Kiepert parabola
X(62310) = pole of line {2, 57071} with respect to the MacBeath inconic
X(62310) = pole of line {5254, 58882} with respect to the Orthic inconic
X(62310) = pole of line {1576, 3053} with respect to the Stammler hyperbola
X(62310) = pole of line {69, 3566} with respect to the Steiner circumellipse
X(62310) = pole of line {141, 3566} with respect to the Steiner inellipse
X(62310) = pole of line {1995, 55271} with respect to the Yff hyperbola
X(62310) = pole of line {110, 193} with respect to the Wallace hyperbola
X(62310) = pole of line {2501, 3978} with respect to the dual conic of 2nd Brocard circle
X(62310) = pole of line {76, 2501} with respect to the dual conic of circumcircle
X(62310) = pole of line {2, 2501} with respect to the dual conic of cosine circle
X(62310) = pole of line {5305, 14341} with respect to the dual conic of DeLongchamps circle
X(62310) = pole of line {1975, 6563} with respect to the dual conic of nine-point circle
X(62310) = pole of line {3, 669} with respect to the dual conic of polar circle
X(62310) = pole of line {76, 2501} with respect to the dual conic of Brocard inellipse
X(62310) = pole of line {6563, 55271} with respect to the dual conic of Lemoine inellipse
X(62310) = pole of line {2, 523} with respect to the dual conic of Orthic inconic
X(62310) = pole of line {523, 2971} with respect to the dual conic of Stammler hyperbola
X(62310) = pole of line {512, 6388} with respect to the dual conic of Wallace hyperbola
X(62310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(44182)}}, {{A, B, C, X(126), X(30786)}}, {{A, B, C, X(305), X(523)}}, {{A, B, C, X(468), X(55271)}}, {{A, B, C, X(525), X(56740)}}, {{A, B, C, X(693), X(16756)}}, {{A, B, C, X(850), X(2996)}}, {{A, B, C, X(858), X(11634)}}, {{A, B, C, X(2374), X(57087)}}, {{A, B, C, X(2514), X(45201)}}, {{A, B, C, X(3005), X(3933)}}, {{A, B, C, X(3260), X(53367)}}, {{A, B, C, X(3265), X(60839)}}, {{A, B, C, X(3266), X(9133)}}, {{A, B, C, X(3267), X(6340)}}, {{A, B, C, X(6530), X(57988)}}, {{A, B, C, X(30735), X(36874)}}
X(62310) = barycentric product X(i)*X(j) for these (i, j): {76, 8681}, {126, 30786}, {305, 3291}, {525, 53367}, {4563, 9134}, {11634, 3267}, {16756, 20336}, {18023, 47412}, {36874, 6393}, {47286, 69}, {52881, 671}, {56685, 62382}
X(62310) = barycentric quotient X(i)/X(j) for these (i, j): {2, 2374}, {69, 41909}, {126, 468}, {895, 15387}, {3291, 25}, {5140, 2207}, {6390, 34161}, {6393, 36892}, {8681, 6}, {9134, 2501}, {11634, 112}, {14263, 8753}, {16756, 28}, {30786, 44182}, {36874, 6531}, {47286, 4}, {47412, 187}, {52881, 524}, {53367, 648}, {53782, 14908}, {55271, 14273}, {56685, 60133}, {57087, 57071}, {62382, 56579}
X(62310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 59766, 11059}, {99, 37803, 468}, {305, 1368, 45201}, {858, 3266, 325}, {858, 62299, 3266}, {3580, 4576, 51374}, {5159, 6390, 37804}, {6340, 19583, 2}, {30749, 59768, 6656}, {30786, 37804, 5159}


X(62311) = INVERSE OF X(2) IN DUAL CONIC OF ANTI-ARTZT CIRCLE

Barycentrics    4*a^6-9*a^4*(b^2+c^2)+(b^2+c^2)^3-6*a^2*(2*b^4-5*b^2*c^2+2*c^4) : :
X(62311) = -3*X[37907]+2*X[47350]

X(62311) lies on these lines: {2, 2418}, {30, 11258}, {111, 524}, {351, 523}, {538, 9172}, {543, 5913}, {597, 9465}, {671, 858}, {1992, 1995}, {2482, 3291}, {3124, 41146}, {5512, 38951}, {5969, 9127}, {6032, 20112}, {6791, 62293}, {7495, 8860}, {7615, 9745}, {7618, 20481}, {7665, 8859}, {7840, 54104}, {9146, 37745}, {9829, 13468}, {11054, 52141}, {11580, 27088}, {13608, 14262}, {17968, 35133}, {18775, 32236}, {23055, 47596}, {24855, 42008}, {26255, 53351}, {31372, 44367}, {37907, 47350}, {45294, 53374}, {47313, 51224}

X(62311) = midpoint of X(i) and X(j) for these {i,j}: {2, 9870}, {9872, 34898}
X(62311) = reflection of X(i) in X(j) for these {i,j}: {2, 16317}, {38951, 5512}, {62293, 6791}, {62299, 2}, {858, 52232}, {9146, 37745}
X(62311) = complement of X(62309)
X(62311) = perspector of circumconic {{A, B, C, X(598), X(35179)}}
X(62311) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11054, 524}, {52141, 2}
X(62311) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {923, 11160}, {2408, 21294}, {2444, 21221}, {36142, 1499}, {36277, 14360}, {52141, 6327}
X(62311) = pole of line {599, 8288} with respect to the Kiepert hyperbola
X(62311) = pole of line {1296, 1499} with respect to the Kiepert parabola
X(62311) = pole of line {1384, 9145} with respect to the Stammler hyperbola
X(62311) = pole of line {1499, 1992} with respect to the Steiner circumellipse
X(62311) = pole of line {597, 1499} with respect to the Steiner inellipse
X(62311) = pole of line {1992, 9146} with respect to the Wallace hyperbola
X(62311) = pole of line {3906, 6791} with respect to the dual conic of Wallace hyperbola
X(62311) = pole of line {2, 523} with respect to the dual conic of anti-Artzt circle
X(62311) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(111), X(13492)}}, {{A, B, C, X(524), X(39157)}}, {{A, B, C, X(671), X(34166)}}, {{A, B, C, X(2418), X(6082)}}, {{A, B, C, X(4232), X(11148)}}, {{A, B, C, X(5485), X(8599)}}, {{A, B, C, X(9084), X(52229)}}, {{A, B, C, X(11167), X(59927)}}, {{A, B, C, X(21448), X(46001)}}, {{A, B, C, X(23287), X(34898)}}
X(62311) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52229, 62299}, {2, 9870, 52229}, {9872, 34898, 524}, {11165, 21448, 2}


X(62312) = INVERSE OF X(1) IN 2ND BROCARD CIRCLE

Barycentrics    a^2*(-(a^3*b*c*(b+c))+a^4*(b^2+c^2)+a*b*c*(b+c)*(b^2+c^2)-a^2*(b^4+b^2*c^2+c^4)+b*c*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)) : :

X(62312) lies on these lines: {1, 3}, {513, 3795}, {519, 38521}, {535, 7833}, {874, 4485}, {3099, 51928}, {3814, 5025}, {4436, 13174}, {5080, 6655}, {6681, 7907}, {7841, 31160}, {7887, 31263}, {9037, 44453}, {20067, 33260}, {24259, 52908}, {59234, 59238}


X(62313) = INVERSE OF X(1) IN COSINE CIRCLE

Barycentrics    a^2*(a^4-2*a^3*(b+c)-2*a*(b-c)^2*(b+c)+(b^2+c^2)*(b^2-3*b*c+c^2)+a^2*(2*b^2+b*c+2*c^2)) : :

X(62313) lies on these lines: {1, 6}, {193, 41785}, {294, 24231}, {572, 51622}, {1438, 15382}, {2991, 3912}, {3309, 20980}, {5272, 57656}, {5540, 34381}, {18193, 30706}, {20455, 40910}


X(62314) = INVERSE OF X(1) IN DELONGCHAMPS CIRCLE

Barycentrics    a^6-a^5*(b+c)-a*(b-c)^2*(b+c)*(b^2+c^2)-a^2*(b^2+c^2)^2+a^4*(b^2-b*c+c^2)-(b^2-c^2)^2*(b^2-b*c+c^2)+2*a^3*(b^3+c^3) : :
X(62314) = -3*X[2]+2*X[242]

X(62314) lies on these lines: {1, 7}, {2, 242}, {3, 17086}, {8, 51840}, {21, 31917}, {22, 51621}, {150, 29016}, {511, 17950}, {514, 16086}, {653, 44704}, {664, 1503}, {927, 1297}, {1214, 37443}, {1305, 2700}, {1308, 39435}, {1330, 21078}, {1370, 6360}, {1441, 7379}, {1655, 18666}, {1897, 46552}, {1959, 4645}, {3151, 31308}, {3177, 26939}, {3210, 26929}, {3732, 51366}, {3784, 26840}, {5134, 24051}, {5921, 53997}, {7396, 29641}, {13727, 41007}, {14853, 60856}, {17927, 37165}, {24701, 30273}, {26050, 52082}, {27542, 45917}, {39444, 53928}

X(62314) = reflection of X(i) in X(j) for these {i,j}: {3732, 51366}
X(62314) = inverse of X(1) in DeLongchamps circle
X(62314) = anticomplement of X(242)
X(62314) = X(i)-Dao conjugate of X(j) for these {i, j}: {242, 242}
X(62314) = X(i)-Ceva conjugate of X(j) for these {i, j}: {337, 2}
X(62314) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3, 17794}, {48, 33888}, {63, 20345}, {69, 20554}, {184, 30667}, {228, 39367}, {291, 4}, {292, 5905}, {295, 8}, {334, 11442}, {335, 21270}, {337, 6327}, {660, 20293}, {741, 3868}, {813, 4391}, {1808, 3869}, {1911, 193}, {1922, 21216}, {2196, 2}, {2311, 92}, {4584, 850}, {4589, 21300}, {7077, 5942}, {7116, 30668}, {17970, 21226}, {18268, 3187}, {18827, 20242}, {22383, 39362}, {34067, 25259}, {36214, 4388}, {37128, 17220}, {51858, 30694}, {57738, 17135}, {57987, 17138}
X(62314) = pole of line {1, 514} with respect to the DeLongchamps circle
X(62314) = pole of line {1842, 48062} with respect to the polar circle
X(62314) = pole of line {306, 4025} with respect to the Steiner circumellipse
X(62314) = pole of line {7658, 20106} with respect to the Steiner inellipse
X(62314) = pole of line {525, 3732} with respect to the Yff parabola
X(62314) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1297), X(1458)}}, {{A, B, C, X(2700), X(4306)}}, {{A, B, C, X(38459), X(39435)}}


X(62315) = INVERSE OF X(1) IN 2ND DROZ-FARNY CIRCLE

Barycentrics    a*(-4*a^7*b*c+6*a^3*b^2*(b-c)^2*c^2+a^8*(b+c)-2*a^6*(b-c)^2*(b+c)-(b-c)^4*(b+c)^3*(b^2+c^2)-2*a*b*c*(b^2-c^2)^2*(b^2+c^2)+6*a^5*b*c*(b^2-b*c+c^2)+2*a^2*(b-c)^2*(b+c)*(b^2-b*c+c^2)*(b^2+3*b*c+c^2)-2*a^4*b*c*(b+c)*(3*b^2-5*b*c+3*c^2)) : :

X(62315) lies on these lines: {1, 3}, {535, 52069}, {1737, 2817}, {1872, 10483}, {1878, 37197}, {4351, 37305}, {9037, 44439}, {16072, 31160}, {44425, 44662}, {44438, 52851}, {44452, 61521}


X(62316) = INVERSE OF X(1) IN INCENTRAL CIRCLE

Barycentrics    a^2*(a^8+a^6*(-4*b^2+b*c-4*c^2)+(b^2-c^2)^2*(b^4+b^3*c+4*b^2*c^2+b*c^3+c^4)+a^4*(6*b^4-b^3*c+b^2*c^2-b*c^3+6*c^4)+a^2*(-4*b^6-b^5*c+b^4*c^2+3*b^3*c^3+b^2*c^4-b*c^5-4*c^6)) : :

X(62316) lies on circumconic {{A, B, C, X(501), X(52639)}} and on these lines: {1, 399}, {11, 10208}, {35, 110}, {36, 5663}, {56, 12308}, {74, 59319}, {80, 502}, {146, 10483}, {498, 20125}, {499, 12317}, {611, 56568}, {1469, 52098}, {1479, 14683}, {1511, 59325}, {1986, 54428}, {2948, 5697}, {3024, 3746}, {3299, 12375}, {3301, 12376}, {3336, 11670}, {3448, 7741}, {3583, 32423}, {3737, 8043}, {4324, 34153}, {5010, 32609}, {5280, 46301}, {5299, 14901}, {5353, 10658}, {5357, 10657}, {5563, 10091}, {5655, 12903}, {7280, 10620}, {9638, 12281}, {9904, 37572}, {10535, 10628}, {11399, 12165}, {11441, 15096}, {11720, 24926}, {12374, 23236}, {12896, 24981}, {12902, 18514}, {13146, 22136}, {13392, 52793}, {13605, 37735}, {14874, 22461}, {15063, 18968}, {18513, 38789}, {19140, 32286}, {21842, 33535}, {35193, 35204}, {37718, 45923}

X(62316) = reflection of X(i) in X(j) for these {i,j}: {54078, 110}
X(62316) = inverse of X(1) in incentral circle
X(62316) = pole of line {1, 8674} with respect to the incentral circle
X(62316) = pole of line {8674, 17637} with respect to the Suppa-Cucoanes circle
X(62316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 7727, 35}, {399, 7343, 6126}, {10091, 14094, 19470}, {10091, 19470, 5563}


X(62317) = INVERSE OF X(1) IN ORTHOCENTROIDAL CIRCLE

Barycentrics    a^6*(b+c)+2*a^4*b*c*(b+c)+2*(b-c)^4*(b+c)^3-a*(b^2-c^2)^2*(b^2-6*b*c+c^2)-a^5*(b^2+3*b*c+c^2)-a^2*(b-c)^2*(b+c)*(3*b^2+4*b*c+3*c^2)+a^3*(2*b^4-3*b^3*c+b^2*c^2-3*b*c^3+2*c^4) : :

X(62317) lies on these lines: {1, 381}, {8, 36909}, {1532, 11809}, {1995, 51623}, {4926, 15079}, {5697, 13756}, {5903, 35015}, {7741, 51889}, {10774, 11717}, {18340, 21842}, {18514, 33649}, {23869, 37720}


X(62318) = INVERSE OF X(1) IN STAMMLER CIRCLE

Barycentrics    a^2*((a-b)^3*(a+b)^2-(a-b)*(a+b)*(a^2-3*a*b+5*b^2)*c-2*(a-b)*(a^2+3*a*b-2*b^2)*c^2+(2*a^2-3*a*b-4*b^2)*c^3+(a+5*b)*c^4-c^5) : :
X(62318) = -4*X[1532]+3*X[38755], -7*X[3526]+8*X[61521], -8*X[3814]+9*X[5055], -16*X[6681]+15*X[15694], -21*X[15703]+20*X[31263], -5*X[19709]+4*X[31160], -4*X[52851]+5*X[62023]

X(62318) lies on these lines: {1, 3}, {8, 37251}, {30, 149}, {100, 50910}, {104, 28174}, {140, 45977}, {381, 956}, {399, 38586}, {411, 1483}, {519, 18524}, {529, 10742}, {535, 3830}, {758, 22560}, {952, 62359}, {953, 8701}, {958, 11813}, {962, 32153}, {993, 3656}, {1006, 10283}, {1376, 34718}, {1457, 23071}, {1464, 37496}, {1484, 6840}, {1532, 38755}, {1621, 28443}, {1878, 18535}, {2802, 62395}, {2975, 3648}, {3149, 12645}, {3526, 61521}, {3534, 34611}, {3623, 6876}, {3813, 33961}, {3814, 5055}, {3851, 10894}, {3881, 33858}, {3884, 16139}, {3897, 37292}, {4413, 38066}, {4973, 12515}, {5057, 37234}, {5127, 38576}, {5251, 51709}, {5253, 61524}, {5258, 9955}, {5260, 61272}, {5274, 6928}, {5284, 5901}, {5288, 18480}, {5330, 37308}, {5603, 7489}, {5690, 45976}, {5762, 53055}, {5790, 22753}, {5841, 10738}, {5842, 48694}, {5844, 6905}, {5855, 48713}, {5899, 54081}, {6681, 15694}, {6763, 13465}, {6863, 8164}, {6909, 28212}, {6911, 59503}, {6915, 61510}, {6924, 12245}, {6946, 38112}, {6971, 10589}, {6980, 10590}, {6985, 18526}, {6986, 51700}, {8168, 11499}, {8666, 12699}, {9037, 44456}, {10074, 15326}, {11194, 18515}, {12114, 48661}, {12513, 18525}, {12747, 54154}, {13391, 38568}, {15170, 28460}, {15703, 31263}, {16117, 34773}, {18491, 50798}, {18990, 47032}, {19540, 33142}, {19709, 31160}, {19914, 60782}, {22583, 35455}, {22936, 26088}, {24390, 37230}, {28178, 51529}, {28186, 38669}, {28224, 36002}, {37510, 54333}, {38954, 45926}, {52851, 62023}

X(62318) = reflection of X(i) in X(j) for these {i,j}: {12331, 6905}, {12515, 4973}, {12702, 484}, {12747, 54154}, {12773, 54391}, {3, 22765}, {35000, 36}, {35457, 1}, {35459, 1319}, {35460, 1155}, {40, 41347}, {5180, 22791}, {5537, 23961}, {5538, 1385}, {6840, 1484}
X(62318) = inverse of X(13624) in circumcircle
X(62318) = inverse of X(942) in mixtilinear incircles radical circle
X(62318) = inverse of X(1) in Stammler circle
X(62318) = X(i)-vertex conjugate of X(j) for these {i, j}: {513, 13624}
X(62318) = pole of line {513, 13624} with respect to the circumcircle
X(62318) = pole of line {513, 942} with respect to the mixtilinear incircles radical circle
X(62318) = pole of line {1, 513} with respect to the Stammler circle
X(62318) = pole of line {53280, 60609} with respect to the Kiepert parabola
X(62318) = pole of line {21, 12773} with respect to the Stammler hyperbola
X(62318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(59), X(13624)}}, {{A, B, C, X(102), X(5131)}}, {{A, B, C, X(942), X(1318)}}, {{A, B, C, X(945), X(3336)}}, {{A, B, C, X(953), X(32636)}}, {{A, B, C, X(1320), X(35457)}}, {{A, B, C, X(1391), X(2646)}}, {{A, B, C, X(2716), X(3746)}}, {{A, B, C, X(2745), X(31663)}}, {{A, B, C, X(29374), X(37563)}}
X(62318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 517, 35457}, {3, 12001, 37624}, {30, 54391, 12773}, {36, 517, 35000}, {484, 517, 12702}, {517, 1155, 35460}, {517, 1319, 35459}, {517, 1385, 5538}, {517, 23961, 5537}, {517, 41347, 40}, {1381, 1382, 13624}, {1482, 12702, 5697}, {2975, 22791, 13743}, {5844, 6905, 12331}, {7688, 37602, 1385}, {7982, 26286, 11849}, {8666, 12699, 26321}, {10222, 11012, 37621}, {10680, 22770, 3}, {10680, 35252, 26437}, {22765, 35000, 36}, {22765, 35457, 41345}


X(62319) = INVERSE OF X(1) IN BROCARD INELLIPSE

Barycentrics    a^2*(a^2*b^4-2*a*b^3*(a+b)*c+b^2*(4*a^2+b^2)*c^2-2*a^2*b*c^3+(a-b)^2*c^4) : :

X(62319) lies on these lines: {1, 39}, {194, 32020}, {330, 668}, {667, 6373}, {1107, 40533}, {1475, 20457}, {1909, 27076}, {2241, 8671}, {5283, 27195}, {6377, 24625}, {9263, 53675}, {9359, 40610}, {16589, 40479}, {16604, 17793}, {23524, 23643}


X(62320) = INVERSE OF X(1) IN EXCENTRAL-HEXYL ELLIPSE

Barycentrics    a*(a*b*(a^2-b^2)^2+(a-b)*(a+b)*(a^3-8*a^2*b-b^3)*c-a*b*(a+b)^2*c^2-(2*a^3-7*a^2*b+a*b^2+2*b^3)*c^3+(a+b)*c^5) : :

X(62320) lies on circumconic {{A, B, C, X(7373), X(54972)}} and on these lines: {1, 3}, {20, 3216}, {30, 5400}, {140, 52524}, {386, 3522}, {500, 33923}, {515, 31855}, {516, 49997}, {529, 61222}, {548, 22392}, {550, 37732}, {580, 37403}, {581, 3528}, {899, 28164}, {978, 50702}, {991, 10304}, {995, 9778}, {1149, 28228}, {1150, 4915}, {1193, 12512}, {1201, 5493}, {1724, 37022}, {1742, 5313}, {1765, 3973}, {3146, 17749}, {3293, 4297}, {3530, 48903}, {3667, 4040}, {4256, 7411}, {4487, 4882}, {4551, 15326}, {5396, 8703}, {5453, 58190}, {5736, 7274}, {6888, 24902}, {6905, 33810}, {6909, 13329}, {8580, 59669}, {8583, 19284}, {9589, 21214}, {10164, 56191}, {10574, 50599}, {12571, 28257}, {15489, 48883}, {15705, 48855}, {16528, 34463}, {17194, 17549}, {19645, 23511}, {19767, 21734}, {20780, 51637}, {21363, 37331}, {27627, 51118}, {28158, 49992}, {28174, 32486}, {28236, 62325}, {33575, 44307}, {36004, 61220}, {37424, 37693}, {44245, 48916}, {48927, 62087}

X(62320) = inverse of X(1) in excentral-hexyl ellipse
X(62320) = pole of line {513, 35633} with respect to the Conway circle
X(62320) = pole of line {513, 6744} with respect to the incircle
X(62320) = pole of line {513, 6744} with respect to the DeLongchamps ellipse
X(62320) = pole of line {1, 3667} with respect to the excentral-hexyl ellipse
X(62320) = pole of line {513, 6738} with respect to the Suppa-Cucoanes circle
X(62320) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1482, 14131}, {3, 37537, 37522}, {6909, 13329, 52680}


X(62321) = INVERSE OF X(1) IN JERABEK HYPERBOLA

Barycentrics    a*(b+c)*(a^2-b^2-c^2)*(a^6+a^4*b*c+a^5*(b+c)-a^2*(b^2-c^2)^2+b*c*(b^2-c^2)^2-a*(b-c)^2*(b+c)*(b^2+c^2)) : :

X(62321) lies on these lines: {1, 125}, {33, 429}, {43, 46}, {60, 5622}, {78, 1060}, {184, 3216}, {185, 33811}, {227, 4849}, {386, 1899}, {581, 26937}, {603, 656}, {1181, 3149}, {1409, 21857}, {1425, 4551}, {2594, 26955}, {5400, 43831}, {9817, 30436}, {13198, 17104}, {13851, 52524}, {19348, 51340}, {19360, 36742}, {19361, 36750}, {19362, 37509}, {19456, 22156}, {19459, 36741}, {19767, 23291}, {21147, 36195}, {21663, 48897}, {27553, 54295}


X(62322) = INVERSE OF X(1) IN KIEPERT HYPERBOLA

Barycentrics    (b+c)*(a^3+a*b*c+a^2*(b+c)-2*(b-c)^2*(b+c)) : :
X(62322) = -3*X[2]+X[62400]

X(62322) lies on circumconic {{A, B, C, X(6757), X(17768)}} and on these lines: {1, 115}, {2, 62400}, {5, 58036}, {9, 46}, {12, 1018}, {85, 1577}, {145, 62396}, {381, 16783}, {519, 23942}, {625, 4754}, {661, 10129}, {857, 16831}, {1509, 9166}, {2140, 4129}, {2475, 35342}, {2476, 16552}, {3091, 32431}, {3178, 3947}, {3294, 3822}, {3496, 61703}, {3632, 10026}, {3633, 53426}, {3661, 31023}, {3679, 23897}, {3697, 21873}, {4006, 4053}, {4115, 27690}, {4251, 17577}, {4253, 5141}, {4659, 44396}, {5030, 7504}, {5084, 24937}, {5254, 37693}, {6173, 8287}, {6537, 19875}, {6701, 21921}, {7719, 37982}, {9336, 16613}, {10585, 17732}, {10895, 16788}, {11263, 21044}, {13881, 37522}, {14061, 17103}, {17151, 27556}, {17175, 17669}, {17232, 31276}, {17244, 31057}, {17284, 20337}, {17300, 50570}, {17742, 37346}, {21075, 21675}, {21372, 27068}, {21604, 33933}, {23905, 25055}, {23947, 29573}, {24044, 27558}, {24075, 27571}, {24275, 25669}, {24512, 39565}, {25590, 46826}, {25639, 45751}, {26794, 28742}, {29383, 41324}, {37014, 52015}, {37350, 50260}, {43291, 49745}

X(62322) = inverse of X(1) in Kiepert hyperbola
X(62322) = complement of X(62400)
X(62322) = perspector of circumconic {{A, B, C, X(6742), X(60055)}}
X(62322) = pole of line {1, 3255} with respect to the Kiepert hyperbola
X(62322) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5949, 8818, 9}


X(62323) = INVERSE OF X(1) IN KIEPERT PARABOLA

Barycentrics    (b-c)*(2*a^4+b*c*(b+c)^2-a^2*(b^2+c^2)+a*(b+c)*(b^2-4*b*c+c^2)) : :
X(62323) = -3*X[4448]+X[24457]

X(62323) lies on these lines: {1, 523}, {10, 513}, {100, 190}, {191, 28217}, {514, 4670}, {522, 3159}, {661, 17369}, {1125, 55244}, {1220, 4581}, {1329, 31946}, {2490, 50198}, {2827, 11698}, {2975, 3733}, {3579, 3667}, {3878, 4132}, {3993, 4777}, {4017, 5433}, {4364, 27929}, {4369, 34824}, {4444, 4472}, {4448, 24457}, {4665, 40459}, {4761, 49725}, {4784, 30564}, {4833, 5263}, {5690, 6003}, {6006, 15481}, {6161, 49998}, {6789, 51991}, {9013, 49524}, {9458, 28602}, {10022, 28840}, {11814, 24959}, {21135, 24095}, {24342, 28209}, {24885, 24920}, {30608, 55246}, {30990, 48183}, {35025, 35043}, {35155, 35173}, {47694, 57052}

X(62323) = midpoint of X(i) and X(j) for these {i,j}: {47694, 57052}
X(62323) = reflection of X(i) in X(j) for these {i,j}: {4364, 27929}, {4444, 4472}, {55244, 1125}
X(62323) = inverse of X(1) in Kiepert parabola
X(62323) = perspector of circumconic {{A, B, C, X(1016), X(24624)}}
X(62323) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14513, 952}
X(62323) = pole of line {100, 859} with respect to the circumcircle
X(62323) = pole of line {30, 4694} with respect to the incircle
X(62323) = pole of line {3814, 24003} with respect to the nine-point circle
X(62323) = pole of line {860, 2969} with respect to the polar circle
X(62323) = pole of line {1, 900} with respect to the Kiepert parabola
X(62323) = pole of line {190, 16704} with respect to the Steiner circumellipse
X(62323) = pole of line {4358, 4422} with respect to the Steiner inellipse
X(62323) = pole of line {2, 59737} with respect to the Yff parabola
X(62323) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1220), X(56950)}}, {{A, B, C, X(2758), X(61479)}}, {{A, B, C, X(4427), X(23836)}}, {{A, B, C, X(4581), X(17780)}}, {{A, B, C, X(23345), X(53280)}}, {{A, B, C, X(23832), X(50344)}}


X(62324) = INVERSE OF X(1) IN YFF PARABOLA

Barycentrics    (b-c)*(a^4+2*b^2*c^2-a*b*c*(b+c)+a^2*(b^2-3*b*c+c^2)) : :
X(62324) = -5*X[1698]+4*X[25381]

X(62324) lies on these lines: {1, 514}, {190, 646}, {274, 1019}, {513, 4363}, {649, 4384}, {870, 4817}, {875, 6372}, {1022, 27922}, {1698, 25381}, {3249, 48144}, {3661, 20295}, {3679, 4785}, {3766, 24623}, {3835, 17284}, {4063, 16552}, {4083, 56542}, {4129, 27040}, {4670, 23345}, {5220, 6008}, {6002, 48883}, {10436, 21143}, {16831, 52745}, {17318, 57051}, {17494, 31036}, {18822, 35172}, {21211, 25590}, {23596, 48086}, {24491, 46894}, {24594, 47762}, {26798, 29587}, {27013, 29628}, {27091, 47793}, {27138, 29629}, {31183, 31286}, {47660, 53359}

X(62324) = reflection of X(i) in X(j) for these {i,j}: {1, 4375}, {17318, 57051}, {23345, 4670}, {48320, 4817}
X(62324) = inverse of X(1) in Yff parabola
X(62324) = perspector of circumconic {{A, B, C, X(673), X(7035)}}
X(62324) = pole of line {4360, 50343} with respect to the Kiepert parabola
X(62324) = pole of line {54353, 57129} with respect to the Stammler hyperbola
X(62324) = pole of line {239, 3952} with respect to the Steiner circumellipse
X(62324) = pole of line {3008, 24003} with respect to the Steiner inellipse
X(62324) = pole of line {1, 812} with respect to the Yff parabola
X(62324) = intersection, other than A, B, C, of circumconics {{A, B, C, X(190), X(1027)}}, {{A, B, C, X(646), X(885)}}, {{A, B, C, X(870), X(36816)}}, {{A, B, C, X(4817), X(23891)}}
X(62324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 4375, 1}, {649, 14433, 4384}


X(62325) = INVERSE OF X(1) IN DUAL CONIC OF 1ST YFF-MOSES HYPERBOLA

Barycentrics    a*(a^2*(b+c)-5*b*c*(b+c)+a*(b^2+6*b*c+c^2)) : :

X(62325) lies on these lines: {1, 2}, {44, 1018}, {513, 3245}, {518, 4674}, {668, 17160}, {740, 4738}, {1739, 3999}, {1757, 5541}, {2802, 21805}, {3953, 21896}, {4259, 9039}, {4277, 9331}, {4424, 49515}, {4551, 36920}, {4742, 59669}, {5400, 28234}, {5754, 11278}, {8168, 37610}, {9260, 48282}, {17151, 44147}, {20331, 45751}, {28236, 62320}, {34790, 49981}, {37598, 49982}, {39949, 56018}, {48696, 52680}


X(62326) = INVERSE OF X(1) IN DUAL CONIC OF DELONGCHAMPS CIRCLE

Barycentrics    a*(a-b-c)*(a^5*(b+c)-2*a^3*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)-2*a^2*(b-c)^2*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^4*(b^2-4*b*c+c^2)) : :

X(62326) lies on these lines: {1, 6}, {2, 46017}, {5, 5908}, {10, 12233}, {198, 37837}, {210, 11436}, {268, 1741}, {281, 2262}, {282, 2270}, {389, 5044}, {391, 62391}, {521, 3239}, {578, 31445}, {610, 9942}, {674, 14717}, {856, 2245}, {936, 9786}, {1192, 5438}, {1837, 53994}, {2182, 6001}, {2183, 34591}, {3008, 23982}, {3452, 13567}, {3683, 11429}, {5053, 8558}, {5087, 46100}, {5273, 11427}, {5328, 37643}, {5745, 23292}, {5836, 54283}, {6834, 38015}, {8756, 58894}, {8811, 40838}, {10374, 57534}, {11425, 31424}, {11433, 18228}, {12241, 12572}, {13568, 57284}, {14524, 18634}, {19366, 25917}, {23058, 61695}, {24471, 56445}, {26668, 52385}, {26932, 34371}, {26958, 30827}, {27509, 43216}

X(62326) = complement of X(62402)
X(62326) = perspector of circumconic {{A, B, C, X(100), X(280)}}
X(62326) = X(i)-complementary conjugate of X(j) for these {i, j}: {33, 119}, {104, 34822}, {607, 52659}, {663, 10017}, {909, 17073}, {1309, 17072}, {2212, 23980}, {2250, 18642}, {2299, 34586}, {2342, 3}, {3939, 42769}, {14776, 522}, {16082, 17046}, {18344, 57434}, {32702, 7658}, {34234, 18639}, {34858, 17102}, {36110, 3900}, {36123, 2886}, {43933, 17059}, {51565, 1368}, {52663, 18589}
X(62326) = pole of line {196, 17924} with respect to the polar circle
X(62326) = pole of line {20317, 41883} with respect to the Spieker circle
X(62326) = pole of line {55, 4081} with respect to the Feuerbach hyperbola
X(62326) = pole of line {1854, 15313} with respect to the Orthic inconic
X(62326) = pole of line {281, 650} with respect to the Steiner inellipse
X(62326) = pole of line {1, 521} with respect to the dual conic of DeLongchamps circle
X(62326) = pole of line {27383, 57091} with respect to the dual conic of incircle
X(62326) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(59), X(46355)}}, {{A, B, C, X(521), X(7078)}}, {{A, B, C, X(2324), X(3239)}}, {{A, B, C, X(7003), X(22124)}}
X(62326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20262, 20263, 15849}


X(62327) = INVERSE OF X(1) IN DUAL CONIC OF EXCIRCLES-RADICAL CIRCLE

Barycentrics    b*c*(b+c)*(a^5+b*(b-c)^2*c*(b+c)+a^3*(-2*b^2+3*b*c-2*c^2)+a*(b-c)^2*(b^2+c^2)) : :

X(62327) lies on these lines: {1, 75}, {850, 4025}, {1441, 3754}, {4032, 40564}, {4858, 8680}, {17861, 24443}, {17862, 25080}, {20320, 56839}, {20905, 25081}, {21207, 41804}, {62300, 62305}


X(62328) = INVERSE OF X(1) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    (a^2-b^2-c^2)*(-4*a^2*b^2*c^2+a^5*(b+c)-a*(b-c)^2*(b+c)^3+a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)) : :

X(62328) lies on these lines: {1, 69}, {9, 28419}, {44, 11064}, {307, 7183}, {343, 17237}, {394, 4643}, {656, 4025}, {1743, 28708}, {1785, 3260}, {3912, 62382}, {4416, 20806}, {5750, 28421}, {17023, 41614}, {17353, 28408}, {26626, 53021}, {37669, 54280}


X(62329) = INVERSE OF X(1) IN DUAL CONIC OF WALLACE HYPERBOLA

Barycentrics    (b-c)*(b+c)^2*(a^5+a*b^2*c^2+a^2*(b-c)^2*(b+c)-a^3*(b^2+c^2)-(b-c)^2*(b+c)*(b^2+c^2)) : :

X(62329) lies on these lines: {1, 523}, {2, 62397}, {9, 45801}, {44, 1640}, {525, 4643}, {1109, 2632}, {4064, 20653}, {7952, 18808}, {8068, 62364}, {14792, 62173}, {14793, 46616}, {14977, 17316}, {17023, 18311}, {17284, 18310}, {46608, 59334}, {53374, 54280}, {56814, 62172}


X(62330) = INVERSE OF X(3) IN EXCIRCLES-RADICAL CIRCLE

Barycentrics    a^6*(b+c)+a^2*(b-c)^2*(b+c)^3-2*a*b*c*(b^2-c^2)^2-a^4*(b+c)*(b^2+c^2)-(b-c)^2*(b+c)^3*(b^2+c^2)+2*a^5*(b^2+b*c+c^2)-2*a^3*(b^4+c^4) : :

X(62330) lies on these lines: {2, 62342}, {3, 10}, {4, 14453}, {43, 3465}, {46, 1899}, {386, 45272}, {429, 1785}, {517, 34455}, {522, 4129}, {970, 43703}, {5130, 11507}, {5179, 49637}, {6001, 34459}, {19763, 57530}, {31653, 50933}, {32778, 62393}, {44662, 51414}


X(62331) = INVERSE OF X(3) IN GALLATLY CIRCLE

Barycentrics    a^2*(b^8+2*b^6*c^2+2*b^2*c^6+c^8+a^6*(b^2+c^2)-a^4*(b^2+c^2)^2+a^2*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)) : :

X(62331) lies on these lines: {3, 6}, {325, 732}, {538, 6034}, {542, 62355}, {625, 41622}, {694, 36212}, {698, 44380}, {1180, 33873}, {1503, 12830}, {1916, 12215}, {4048, 10349}, {5103, 5254}, {5207, 7774}, {5969, 59634}, {7748, 32429}, {7832, 45804}, {7895, 14994}, {7905, 32451}, {16068, 48445}, {36214, 41517}, {44534, 44771}, {47638, 60667}


X(62332) = INVERSE OF X(3) IN STEINER CIRCLE

Barycentrics    a^8*(b^2+c^2)+10*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+2*a^2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)-2*a^6*(b^4+9*b^2*c^2+c^4) : :
X(62332) = -3*X[3580]+4*X[20379], -2*X[5609]+3*X[40112], -3*X[13857]+2*X[16534], -7*X[15057]+3*X[15107], -3*X[15061]+2*X[32269], -4*X[15448]+5*X[38794], -4*X[20397]+3*X[32225], -3*X[32113]+4*X[40107], -2*X[32237]+3*X[38793], -6*X[47491]+7*X[61282], -6*X[47545]+7*X[53092], -2*X[47584]+3*X[57307]

X(62332) lies on these lines: {2, 3}, {39, 47322}, {511, 16003}, {1503, 23236}, {3258, 44437}, {3564, 37496}, {3580, 20379}, {3581, 29181}, {5013, 47275}, {5160, 37722}, {5319, 16306}, {5480, 40280}, {5609, 40112}, {6247, 37484}, {7286, 15888}, {7796, 58846}, {8705, 13340}, {8717, 61743}, {9605, 16303}, {9606, 16308}, {9722, 15655}, {10564, 29012}, {10625, 11649}, {11645, 30714}, {13339, 32217}, {13348, 18488}, {13857, 16534}, {14805, 44882}, {14915, 15063}, {14961, 52945}, {15030, 52101}, {15057, 15107}, {15061, 32269}, {15069, 37483}, {15448, 38794}, {19924, 20417}, {20126, 25328}, {20397, 32225}, {29317, 32110}, {31401, 47169}, {32111, 51391}, {32113, 40107}, {32237, 38793}, {34514, 54040}, {35002, 45921}, {36749, 47549}, {37470, 48901}, {37471, 51733}, {39242, 48898}, {40115, 53419}, {43090, 52056}, {44413, 45967}, {47491, 61282}, {47545, 53092}, {47584, 57307}, {49116, 61665}

X(62332) = midpoint of X(i) and X(j) for these {i,j}: {5189, 7464}
X(62332) = reflection of X(i) in X(j) for these {i,j}: {11799, 858}, {18323, 7574}, {18325, 10297}, {23, 15122}, {32111, 51391}, {5899, 10257}
X(62332) = inverse of X(5055) in nine-point circle
X(62332) = inverse of X(40916) in orthoptic circle of the Steiner Inellipse
X(62332) = inverse of X(3) in Steiner circle
X(62332) = inverse of X(5055) in MacBeath inconic
X(62332) = complement of X(37946)
X(62332) = anticomplement of X(16619)
X(62332) = perspector of circumconic {{A, B, C, X(648), X(59763)}}
X(62332) = X(i)-Dao conjugate of X(j) for these {i, j}: {16619, 16619}
X(62332) = pole of line {523, 5055} with respect to the nine-point circle
X(62332) = pole of line {523, 40916} with respect to the orthoptic circle of the Steiner Inellipse
X(62332) = pole of line {3, 523} with respect to the Steiner circle
X(62332) = pole of line {6, 5609} with respect to the Kiepert hyperbola
X(62332) = pole of line {523, 5055} with respect to the MacBeath inconic
X(62332) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2693), X(7514)}}, {{A, B, C, X(7530), X(15318)}}, {{A, B, C, X(10301), X(41522)}}, {{A, B, C, X(18317), X(47313)}}, {{A, B, C, X(40916), X(60590)}}
X(62332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 14790, 382}, {20, 3520, 548}, {30, 10257, 5899}, {30, 10297, 18325}, {30, 15122, 23}, {30, 7574, 18323}, {30, 858, 11799}, {382, 3526, 1598}, {858, 11799, 2072}, {1312, 1313, 5055}, {2041, 2042, 7530}, {5189, 7464, 30}


X(62333) = INVERSE OF X(3) IN FEUERBACH HYPERBOLA

Barycentrics    a*(a-b-c)*(a^5+2*b*(b-c)^2*c*(b+c)+a*(b^2-c^2)^2-2*a^3*(b^2-b*c+c^2)) : :
X(62333) =

X(62333) lies on these lines: {1, 90}, {2, 26476}, {3, 11}, {4, 37579}, {5, 8069}, {6, 14749}, {8, 4571}, {9, 56278}, {10, 55}, {12, 6913}, {20, 37578}, {21, 497}, {25, 1852}, {30, 7742}, {31, 2654}, {32, 62372}, {34, 8758}, {35, 6883}, {36, 4333}, {47, 60691}, {56, 946}, {65, 11496}, {72, 7082}, {100, 54361}, {104, 5553}, {105, 46964}, {197, 13724}, {224, 1001}, {355, 11508}, {382, 41345}, {388, 6912}, {390, 16865}, {404, 10589}, {411, 5225}, {474, 25639}, {496, 6914}, {498, 10958}, {515, 11510}, {519, 10965}, {748, 22072}, {855, 22654}, {915, 7040}, {920, 24474}, {952, 61559}, {954, 60910}, {956, 2098}, {958, 3057}, {976, 7069}, {993, 10966}, {997, 41559}, {999, 3649}, {1006, 4294}, {1125, 22768}, {1158, 18838}, {1210, 11509}, {1319, 12114}, {1376, 17606}, {1387, 32153}, {1388, 11715}, {1399, 41344}, {1406, 1777}, {1420, 11372}, {1456, 41402}, {1466, 17728}, {1470, 3086}, {1478, 37234}, {1486, 13733}, {1519, 59366}, {1617, 7354}, {1621, 3486}, {1697, 5251}, {1699, 37583}, {1709, 34489}, {1724, 61397}, {1728, 37569}, {1737, 11248}, {1776, 3868}, {1839, 2178}, {1857, 41227}, {1864, 12260}, {1898, 18446}, {1936, 54354}, {2078, 5691}, {2241, 53561}, {2886, 37248}, {2915, 9673}, {2933, 37366}, {2975, 5698}, {3058, 16418}, {3085, 6920}, {3145, 36501}, {3149, 5172}, {3271, 40944}, {3295, 7489}, {3303, 37740}, {3304, 5542}, {3428, 12701}, {3445, 6129}, {3583, 6985}, {3586, 10902}, {3601, 3646}, {3660, 34862}, {3746, 5727}, {3925, 37244}, {3962, 5048}, {4185, 23383}, {4186, 23843}, {4189, 5274}, {4293, 21669}, {4423, 19520}, {4428, 34700}, {4995, 16857}, {4999, 15845}, {5047, 5218}, {5204, 37022}, {5234, 9898}, {5258, 7962}, {5281, 16859}, {5289, 44782}, {5326, 16853}, {5432, 11108}, {5570, 24467}, {5587, 11501}, {5603, 26437}, {5722, 11507}, {5886, 22766}, {6735, 8668}, {6767, 37734}, {6824, 26481}, {6893, 10321}, {6905, 10591}, {6909, 7288}, {6911, 7741}, {6918, 7173}, {6924, 10593}, {6929, 10523}, {6930, 10629}, {6950, 47743}, {7004, 28082}, {7078, 7299}, {7083, 40980}, {7280, 50444}, {7580, 12953}, {7743, 26286}, {7952, 45946}, {9580, 59320}, {9614, 11012}, {9817, 37552}, {10056, 10955}, {10072, 28444}, {10094, 10269}, {10122, 16141}, {10246, 30538}, {10267, 10572}, {10306, 40663}, {10310, 24914}, {10385, 16858}, {10391, 51715}, {10396, 61663}, {10573, 10679}, {10826, 11499}, {10832, 13730}, {10947, 24390}, {10953, 11113}, {10959, 15868}, {11019, 41565}, {11238, 16370}, {11249, 30384}, {11365, 37227}, {11373, 22767}, {11379, 13462}, {11434, 24005}, {11998, 16781}, {12019, 32141}, {12332, 20118}, {12589, 36740}, {12625, 58328}, {12699, 59317}, {12736, 40256}, {12775, 12832}, {13464, 18967}, {13732, 37577}, {14793, 37720}, {14882, 61717}, {15171, 40292}, {15325, 40293}, {15446, 16173}, {15622, 37391}, {16132, 21842}, {17516, 53279}, {18761, 45287}, {19283, 21321}, {20066, 45043}, {20988, 37052}, {26332, 40271}, {31231, 59326}, {31424, 54408}, {33857, 34471}, {34772, 42843}, {37300, 52367}, {37302, 48482}, {37492, 39873}, {37618, 50528}, {40950, 57530}, {42385, 54394}, {52428, 59305}

X(62333) = midpoint of X(i) and X(j) for these {i,j}: {1, 90}
X(62333) = reflection of X(i) in X(j) for these {i,j}: {10, 58415}, {41540, 1125}
X(62333) = inverse of X(3) in Feuerbach hyperbola
X(62333) = X(i)-Dao conjugate of X(j) for these {i, j}: {8735, 17924}
X(62333) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1332, 650}
X(62333) = pole of line {34948, 55126} with respect to the circumcircle
X(62333) = pole of line {7649, 15313} with respect to the incircle
X(62333) = pole of line {3, 63} with respect to the Feuerbach hyperbola
X(62333) = pole of line {3193, 37579} with respect to the Stammler hyperbola
X(62333) = pole of line {222, 24789} with respect to the dual conic of Yff parabola
X(62333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(90), X(24179)}}, {{A, B, C, X(912), X(7040)}}, {{A, B, C, X(915), X(3157)}}, {{A, B, C, X(1751), X(56278)}}, {{A, B, C, X(2218), X(45393)}}, {{A, B, C, X(41506), X(43740)}}
X(62333) = barycentric product X(i)*X(j) for these (i, j): {24179, 9}
X(62333) = barycentric quotient X(i)/X(j) for these (i, j): {24179, 85}
X(62333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 30223, 1858}, {1, 45632, 41537}, {1, 90, 912}, {21, 497, 26357}, {35, 9581, 11502}, {496, 6914, 8071}, {499, 10058, 3}, {993, 12053, 10966}, {1006, 4294, 37601}, {1728, 37569, 41538}, {3086, 6906, 1470}, {3583, 36152, 6985}, {4314, 54430, 55}, {5172, 10896, 3149}, {5450, 44675, 56}, {7741, 59334, 6911}, {10826, 32760, 11499}, {11496, 57278, 65}, {15558, 22837, 2098}


X(62334) = INVERSE OF X(3) IN JOHNSON CIRCUMCONIC

Barycentrics    a^2*(a^2-b^2-c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8+3*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4-b^2*c^2+3*c^4)) : :

X(62334) lies on these lines: {2, 3}, {216, 14845}, {265, 43918}, {520, 34983}, {1154, 36831}, {1568, 23181}, {1624, 18400}, {2055, 18350}, {2972, 13391}, {5654, 23158}, {6000, 43919}, {6760, 37477}, {10095, 42441}, {13364, 61378}, {13376, 18114}, {14059, 37484}, {14128, 31388}, {14157, 38999}, {16186, 48914}, {18874, 46025}, {19210, 43598}, {36245, 43821}


X(62335) = INVERSE OF X(3) IN ORTHIC INCONIC

Barycentrics    a^2*(a^10*(b^2+c^2)-5*a^8*(b^4+c^4)-(b^2-c^2)^4*(b^4+c^4)+2*a^6*(b^2+c^2)*(5*b^4-6*b^2*c^2+5*c^4)+a^2*(b^2-c^2)^2*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6)+2*a^4*(-5*b^8+2*b^6*c^2+2*b^4*c^4+2*b^2*c^6-5*c^8)) : :

X(62335) lies on these lines: {3, 6}, {115, 62361}, {924, 2501}, {5254, 61714}, {5449, 9722}, {5562, 46262}, {6000, 53416}, {9220, 44870}, {9721, 36253}, {13567, 34827}, {13754, 16310}, {52000, 52418}


X(62336) = INVERSE OF X(3) IN ANTI-ARTZT CIRCLE

Barycentrics    (a^2-2*(b^2+c^2))*(2*a^8+2*a^4*b^2*c^2-b^2*c^2*(b^2-c^2)^2-2*a^6*(b^2+c^2)) : :

X(62336) lies on these lines: {3, 67}, {98, 3431}, {99, 11593}, {110, 3734}, {115, 61743}, {690, 3288}, {1511, 15819}, {3016, 56967}, {5026, 37283}, {7622, 9140}, {11676, 57268}, {15035, 52770}, {35933, 62295}


X(62337) = INVERSE OF X(3) IN DUAL CONIC OF DELONGCHAMPS CIRCLE

Barycentrics    a^2*(a^10*(b^2+c^2)+10*a^6*(b^2-c^2)^2*(b^2+c^2)+a^8*(-5*b^4+8*b^2*c^2-5*c^4)-(b^2-c^2)^4*(b^4+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(5*b^4+6*b^2*c^2+5*c^4)-2*a^4*(b^2-c^2)^2*(5*b^4+12*b^2*c^2+5*c^4)) : :

X(62337) lies on these lines: {2, 62347}, {3, 6}, {185, 40138}, {340, 11433}, {393, 11381}, {520, 6587}, {1033, 34469}, {1249, 6241}, {1990, 6000}, {3917, 61301}, {5650, 61307}, {5702, 5890}, {5876, 59657}, {6749, 10110}, {8745, 14642}, {9781, 40065}, {10219, 52704}, {13382, 61714}, {14641, 42459}, {15291, 52000}, {18877, 52952}, {20199, 26958}, {34854, 34980}, {46847, 61315}


X(62338) = INVERSE OF X(3) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    (a^2-b^2-c^2)*(a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4-b^2*c^2+c^4)) : :
X(62338) =

X(62338) lies on these lines: {2, 14836}, {3, 69}, {5, 44135}, {8, 41808}, {30, 1272}, {50, 524}, {67, 43705}, {76, 60130}, {99, 340}, {141, 566}, {157, 46442}, {183, 7495}, {264, 847}, {290, 57679}, {297, 14570}, {305, 57819}, {311, 13160}, {316, 38680}, {317, 6240}, {325, 523}, {328, 2072}, {338, 44388}, {394, 62360}, {401, 44363}, {403, 44138}, {441, 22151}, {491, 13430}, {492, 13441}, {599, 59211}, {1007, 5094}, {1300, 57760}, {1494, 7799}, {1654, 22377}, {1975, 5877}, {1993, 52350}, {2071, 44402}, {2407, 56021}, {3003, 3580}, {3589, 41335}, {3631, 59555}, {4590, 57651}, {5201, 23181}, {5965, 22463}, {6148, 44280}, {6340, 36889}, {6389, 20806}, {6394, 43754}, {6503, 45794}, {6527, 37444}, {7763, 37118}, {7776, 14791}, {7796, 44133}, {7871, 14615}, {8905, 11412}, {10607, 40341}, {11064, 11079}, {12225, 20477}, {13371, 44136}, {14264, 61188}, {15526, 36212}, {15993, 47406}, {16063, 37668}, {16789, 37184}, {18122, 53474}, {19583, 31152}, {20208, 28408}, {32000, 37119}, {32001, 35471}, {34827, 53416}, {34990, 62376}, {35298, 47558}, {37636, 52032}, {37638, 52703}, {39099, 47526}, {39352, 40888}, {40353, 51227}, {41359, 54092}, {41716, 42353}, {41770, 56017}, {44174, 51458}, {44377, 44529}, {44886, 60518}, {49116, 51397}

X(62338) = midpoint of X(i) and X(j) for these {i,j}: {1272, 52149}
X(62338) = reflection of X(i) in X(j) for these {i,j}: {53416, 34827}, {60053, 11064}
X(62338) = isotomic conjugate of X(1300)
X(62338) = anticomplement of X(16310)
X(62338) = trilinear pole of line {686, 6334}
X(62338) = perspector of circumconic {{A, B, C, X(76), X(4563)}}
X(62338) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 14910}, {25, 36053}, {31, 1300}, {512, 36114}, {661, 32708}, {687, 798}, {1096, 5504}, {1395, 56103}, {1924, 57932}, {1973, 2986}, {2159, 51965}, {2173, 40388}, {15328, 32676}, {24019, 61216}
X(62338) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1300}, {6, 14910}, {113, 25}, {394, 15478}, {2088, 47230}, {3003, 1990}, {3163, 51965}, {3580, 186}, {6334, 35235}, {6337, 2986}, {6338, 57829}, {6503, 5504}, {6505, 36053}, {9428, 57932}, {11064, 30}, {15526, 15328}, {16178, 58757}, {16310, 16310}, {31998, 687}, {34834, 4}, {35071, 61216}, {35588, 34952}, {36830, 32708}, {36896, 40388}, {39005, 512}, {39019, 35361}, {39021, 2501}, {39054, 36114}, {39174, 40352}, {40604, 38936}, {52032, 60035}, {56399, 1989}
X(62338) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1494, 69}, {7799, 11064}, {20573, 343}
X(62338) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1299, 5905}, {43709, 21221}, {43756, 8}
X(62338) = X(i)-cross conjugate of X(j) for these {i, j}: {131, 2}, {13754, 3580}, {60342, 4558}
X(62338) = pole of line {22, 3566} with respect to the circumcircle
X(62338) = pole of line {2, 38380} with respect to the DeLongchamps circle
X(62338) = pole of line {6644, 44680} with respect to the 1st Droz-Farny circle
X(62338) = pole of line {3566, 44440} with respect to the 2nd Droz-Farny circle
X(62338) = pole of line {2, 44680} with respect to the nine-point circle
X(62338) = pole of line {25, 34952} with respect to the polar circle
X(62338) = pole of line {3566, 44457} with respect to the Stammler circle
X(62338) = pole of line {3124, 13881} with respect to the Kiepert hyperbola
X(62338) = pole of line {525, 4558} with respect to the Kiepert parabola
X(62338) = pole of line {3049, 23128} with respect to the MacBeath circumconic
X(62338) = pole of line {2, 38380} with respect to the MacBeath inconic
X(62338) = pole of line {25, 1576} with respect to the Stammler hyperbola
X(62338) = pole of line {69, 6563} with respect to the Steiner circumellipse
X(62338) = pole of line {141, 30511} with respect to the Steiner inellipse
X(62338) = pole of line {4, 110} with respect to the Wallace hyperbola
X(62338) = pole of line {3, 523} with respect to the dual conic of polar circle
X(62338) = pole of line {2, 525} with respect to the dual conic of Orthic inconic
X(62338) = pole of line {523, 2970} with respect to the dual conic of Stammler hyperbola
X(62338) = pole of line {36841, 44769} with respect to the dual conic of Yff hyperbola
X(62338) = pole of line {512, 8754} with respect to the dual conic of Wallace hyperbola
X(62338) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(57760)}}, {{A, B, C, X(3), X(403)}}, {{A, B, C, X(50), X(51847)}}, {{A, B, C, X(67), X(3564)}}, {{A, B, C, X(69), X(850)}}, {{A, B, C, X(70), X(6193)}}, {{A, B, C, X(113), X(20123)}}, {{A, B, C, X(131), X(1300)}}, {{A, B, C, X(253), X(40697)}}, {{A, B, C, X(264), X(6563)}}, {{A, B, C, X(265), X(18781)}}, {{A, B, C, X(305), X(30474)}}, {{A, B, C, X(328), X(3268)}}, {{A, B, C, X(332), X(35519)}}, {{A, B, C, X(684), X(57679)}}, {{A, B, C, X(686), X(9148)}}, {{A, B, C, X(693), X(1444)}}, {{A, B, C, X(858), X(15329)}}, {{A, B, C, X(1491), X(2315)}}, {{A, B, C, X(1725), X(2517)}}, {{A, B, C, X(1792), X(4397)}}, {{A, B, C, X(1986), X(5504)}}, {{A, B, C, X(2072), X(22115)}}, {{A, B, C, X(3005), X(20775)}}, {{A, B, C, X(3260), X(18878)}}, {{A, B, C, X(3261), X(17206)}}, {{A, B, C, X(3265), X(3964)}}, {{A, B, C, X(3267), X(3926)}}, {{A, B, C, X(3933), X(23285)}}, {{A, B, C, X(5962), X(44665)}}, {{A, B, C, X(6334), X(6390)}}, {{A, B, C, X(6337), X(36889)}}, {{A, B, C, X(6776), X(30735)}}, {{A, B, C, X(12215), X(14295)}}, {{A, B, C, X(16237), X(30737)}}, {{A, B, C, X(19459), X(44084)}}, {{A, B, C, X(19588), X(58882)}}, {{A, B, C, X(19597), X(56739)}}, {{A, B, C, X(20794), X(23301)}}, {{A, B, C, X(22152), X(59568)}}, {{A, B, C, X(22369), X(50538)}}, {{A, B, C, X(39899), X(56403)}}, {{A, B, C, X(41298), X(44180)}}, {{A, B, C, X(41665), X(46138)}}, {{A, B, C, X(45279), X(61209)}}, {{A, B, C, X(47236), X(51611)}}
X(62338) = barycentric product X(i)*X(j) for these (i, j): {328, 34834}, {394, 44138}, {525, 61188}, {670, 686}, {1725, 304}, {2315, 561}, {3003, 305}, {3580, 69}, {3926, 403}, {4563, 55121}, {6334, 99}, {13754, 76}, {15329, 3267}, {16237, 3265}, {18609, 20336}, {21731, 52608}, {34333, 40832}, {39170, 7799}, {41512, 45792}, {52437, 57486}, {52451, 6393}, {52504, 9723}, {52617, 61209}
X(62338) = barycentric quotient X(i)/X(j) for these (i, j): {2, 1300}, {3, 14910}, {30, 51965}, {63, 36053}, {69, 2986}, {74, 40388}, {99, 687}, {110, 32708}, {113, 1990}, {131, 16310}, {305, 40832}, {323, 38936}, {328, 40427}, {343, 60035}, {345, 56103}, {394, 5504}, {403, 393}, {520, 61216}, {525, 15328}, {662, 36114}, {670, 57932}, {686, 512}, {1725, 19}, {1986, 52418}, {2315, 31}, {3003, 25}, {3265, 15421}, {3580, 4}, {3926, 57829}, {4558, 10420}, {4563, 18878}, {6334, 523}, {6368, 35361}, {6503, 15478}, {8552, 15470}, {9723, 52505}, {11064, 15454}, {12824, 8744}, {12825, 15262}, {12827, 5523}, {12828, 60428}, {13754, 6}, {14264, 8749}, {14919, 10419}, {15329, 112}, {16237, 107}, {18609, 28}, {21731, 2489}, {22115, 52557}, {34333, 3003}, {34834, 186}, {37638, 58942}, {39170, 1989}, {43756, 57636}, {44084, 2207}, {44138, 2052}, {44427, 14222}, {44436, 51895}, {46085, 53416}, {47236, 58757}, {47405, 1495}, {51821, 40354}, {52000, 8745}, {52451, 6531}, {52504, 847}, {53568, 16318}, {53785, 18877}, {53958, 58959}, {55121, 2501}, {56403, 18384}, {57482, 39375}, {57486, 6344}, {60342, 47230}, {60498, 8753}, {61188, 648}, {61209, 32713}, {62361, 14593}
X(62338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 40697, 9723}, {69, 44180, 41008}, {69, 50572, 40697}, {69, 52347, 1238}, {566, 18375, 141}, {1272, 52149, 30}, {1273, 3260, 325}, {1273, 35520, 3260}, {3964, 40995, 69}


X(62339) = INVERSE OF X(3) IN DUAL CONIC OF WALLACE HYPERBOLA

Barycentrics    (b-c)*(b+c)*(b^2*(a^2-b^2)^4*(a^2+b^2)+(a^2-b^2)^3*(a^4+a^2*b^2+3*b^4)*c^2+(-3*a^8+3*a^6*b^2+6*a^4*b^4-5*a^2*b^6+3*b^8)*c^4+(2*a^6-7*a^4*b^2-5*a^2*b^4-2*b^6)*c^6+(2*a^4+8*a^2*b^2+3*b^4)*c^8-3*(a^2+b^2)*c^10+c^12) : :

X(62339) lies on these lines: {3, 523}, {4, 43709}, {125, 136}, {185, 924}, {254, 18808}, {5466, 60256}, {6368, 23105}, {8029, 36190}, {10412, 56272}, {20184, 34563}, {43088, 51254}


X(62340) = INVERSE OF X(4) IN BEVAN CIRCLE

Barycentrics    a*(a^8+a^7*(b+c)-a*(b-c)^2*(b+c)^3*(b^2+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^2*(b^2-c^2)^2*(2*b^2-b*c+2*c^2)-a^6*(2*b^2+3*b*c+2*c^2)-a^5*(b+c)*(3*b^2-4*b*c+3*c^2)+a^4*b*c*(3*b^2+2*b*c+3*c^2)+a^3*(b-c)^2*(b+c)*(3*b^2+2*b*c+3*c^2)) : :

X(62340) lies on these lines: {1, 20838}, {3, 18161}, {4, 9}, {46, 3468}, {57, 20277}, {185, 2939}, {484, 56910}, {517, 51621}, {1155, 43058}, {1726, 9572}, {2114, 13329}, {2717, 15439}, {2947, 15496}, {2954, 22080}, {5074, 61122}, {6769, 54070}, {7112, 54404}, {37551, 47621}, {39596, 41338}


X(62341) = INVERSE OF X(4) IN 1ST BROCARD CIRCLE

Barycentrics    a^2*(a^2*(a^2-b^2)^3*(a^4+a^2*b^2+b^4)-(2*a^10-3*a^6*b^4+a^4*b^6-a^2*b^8+b^10)*c^2+(a^8+3*a^6*b^2-5*a^4*b^4-b^8)*c^4-(a^6+a^4*b^2-4*b^6)*c^6+(2*a^4+a^2*b^2-b^4)*c^8-(a^2+b^2)*c^10) : :

X(62341) lies on these lines: {3, 56980}, {4, 83}, {6, 38525}, {39, 2715}, {54, 826}, {74, 53767}, {110, 15000}, {512, 33695}, {575, 38680}, {1316, 5012}, {1614, 15920}, {1656, 15541}, {1971, 49124}, {2698, 3398}, {3520, 54057}, {5489, 39495}, {6241, 20968}, {6785, 33753}, {10991, 12192}, {11638, 20190}, {14885, 48262}, {15462, 22265}, {18304, 18338}, {43598, 47049}, {47388, 51244}


X(62342) = INVERSE OF X(4) IN CONWAY CIRCLE

Barycentrics    a^7+3*a^5*b*c+a^6*(b+c)-a^4*b*c*(b+c)-b*(b-c)^2*c*(b+c)^3-a*b*c*(b^2-c^2)^2-a^2*(b-c)^2*(b+c)*(b^2+c^2)-a^3*(b^4+2*b^3*c-2*b^2*c^2+2*b*c^3+c^4) : :

X(62342) lies on these lines: {1, 4}, {2, 62330}, {36, 1733}, {522, 1019}, {1324, 11337}, {1610, 41013}, {2723, 13395}, {3741, 52121}, {3757, 35996}, {4362, 39596}, {4975, 45765}, {9798, 20220}, {10479, 50368}, {10538, 16049}, {30273, 40292}, {35645, 39552}


X(62343) = INVERSE OF X(4) IN EXCIRCLES-RADICAL CIRCLE

Barycentrics    3*a^5*(b+c)-a*(b-c)^2*(b+c)^3-2*a^2*(b^2-c^2)^2+a^4*(b^2+c^2)-2*a^3*(b+c)*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2) : :

X(62343) lies on these lines: {4, 9}, {43, 223}, {181, 46017}, {386, 51775}, {514, 656}, {517, 51366}, {610, 6776}, {910, 1503}, {970, 52097}, {1439, 4260}, {1490, 18913}, {1738, 16609}, {1848, 21912}, {1899, 15496}, {3033, 9436}, {3198, 13567}, {3684, 5847}, {3687, 11347}, {5088, 9534}, {5929, 18641}, {5930, 9255}, {5932, 14189}, {6353, 7070}, {6354, 59658}, {8808, 56161}, {12410, 13737}, {43213, 43219}


X(62344) = INVERSE OF X(4) IN STEINER CIRCLE

Barycentrics    a^8*(b^2+c^2)-8*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-9*b^2*c^2+c^4)+2*a^2*(b^2-c^2)^2*(b^4-5*b^2*c^2+c^4) : :
X(62344) = -5*X[5734]+6*X[47471], -3*X[9158]+X[38678], -3*X[10519]+4*X[47449], -2*X[11362]+3*X[47321], -5*X[15034]+6*X[35266], -3*X[15035]+4*X[15448], -X[15054]+3*X[15360], -4*X[16534]+3*X[40112], -2*X[20417]+3*X[32225], -2*X[23236]+3*X[46818], -2*X[46984]+3*X[47263]

X(62344) lies on these lines: {2, 3}, {74, 32269}, {141, 16261}, {325, 46993}, {343, 11455}, {511, 1533}, {524, 14094}, {691, 47584}, {850, 46996}, {1072, 11809}, {1181, 47549}, {1514, 29181}, {1531, 29317}, {3564, 12112}, {3580, 14915}, {5013, 47169}, {5160, 9628}, {5254, 47322}, {5286, 16303}, {5523, 52945}, {5648, 10706}, {5734, 47471}, {6000, 41586}, {7286, 37722}, {8262, 15738}, {8705, 14867}, {8718, 12241}, {9019, 16105}, {9158, 38678}, {9607, 16308}, {10519, 47449}, {11064, 43576}, {11271, 48669}, {11362, 47321}, {11456, 32220}, {11459, 32113}, {11594, 12505}, {11649, 45186}, {11820, 26869}, {12022, 44490}, {12279, 41587}, {14981, 44437}, {15030, 40107}, {15034, 35266}, {15035, 15448}, {15054, 15360}, {16163, 32237}, {16194, 37636}, {16534, 40112}, {16654, 41171}, {16657, 32217}, {18911, 35237}, {19924, 38791}, {20417, 32225}, {23236, 46818}, {32110, 50434}, {32224, 39646}, {32247, 47558}, {37477, 46817}, {38526, 39263}, {38675, 38677}, {44518, 47275}, {46261, 54040}, {46984, 47263}, {47491, 61288}, {47544, 53093}, {51733, 61134}

X(62344) = reflection of X(i) in X(j) for these {i,j}: {10295, 23}, {16163, 32237}, {16386, 2070}, {3, 16619}, {325, 46993}, {32111, 1533}, {32247, 47558}, {37477, 46817}, {43576, 11064}, {550, 12105}, {5189, 10297}, {50434, 32110}, {691, 47584}, {74, 32269}, {7464, 468}, {850, 46996}, {858, 11799}
X(62344) = inverse of X(3545) in nine-point circle
X(62344) = inverse of X(11284) in orthoptic circle of the Steiner Inellipse
X(62344) = inverse of X(1597) in polar circle
X(62344) = inverse of X(4) in Steiner circle
X(62344) = inverse of X(3545) in MacBeath inconic
X(62344) = pole of line {523, 3545} with respect to the nine-point circle
X(62344) = pole of line {523, 11284} with respect to the orthoptic circle of the Steiner Inellipse
X(62344) = pole of line {523, 1597} with respect to the polar circle
X(62344) = pole of line {4, 523} with respect to the Steiner circle
X(62344) = pole of line {6, 14094} with respect to the Kiepert hyperbola
X(62344) = pole of line {523, 3545} with respect to the MacBeath inconic
X(62344) = pole of line {69, 16003} with respect to the Wallace hyperbola
X(62344) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(523), X(1597)}}, {{A, B, C, X(2697), X(46336)}}, {{A, B, C, X(11284), X(60590)}}, {{A, B, C, X(16104), X(31861)}}, {{A, B, C, X(47314), X(54512)}}
X(62344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16619, 7426}, {20, 3089, 631}, {20, 382, 18560}, {20, 3832, 6643}, {23, 30, 10295}, {30, 10297, 5189}, {30, 11799, 858}, {30, 12105, 550}, {30, 16619, 3}, {30, 2070, 16386}, {30, 468, 7464}, {382, 7387, 20}, {511, 1533, 32111}, {858, 11799, 403}, {1312, 1313, 3545}


X(62345) = INVERSE OF X(4) IN JOHNSON CIRCUMCONIC

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8-b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2+c^2)^3+a^4*(3*b^4+7*b^2*c^2+3*c^4)) : :

X(62345) lies on these lines: {2, 3}, {324, 5891}, {511, 52661}, {520, 6761}, {1093, 11412}, {1154, 35360}, {1568, 39569}, {2052, 11459}, {5562, 13450}, {5890, 15466}, {5907, 44732}, {8884, 43598}, {9705, 38808}, {10170, 40684}, {11591, 60828}, {13391, 34334}, {13754, 46106}, {14128, 14978}, {14363, 14531}, {14640, 61378}, {14831, 59529}, {14918, 36831}, {15045, 52147}, {16080, 54615}, {19174, 41171}, {35311, 50461}, {43752, 43767}, {51031, 61134}, {54082, 61217}, {56292, 56298}

X(62345) = inverse of X(14894) in polar circle
X(62345) = inverse of X(4) in Johnson circumconic
X(62345) = isogonal conjugate of X(43918)
X(62345) = isotomic conjugate of X(43767)
X(62345) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 43918}, {31, 43767}, {48, 43766}, {2169, 43917}
X(62345) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43767}, {3, 43918}, {1249, 43766}, {14363, 43917}
X(62345) = X(i)-Ceva conjugate of X(j) for these {i, j}: {74, 56303}
X(62345) = pole of line {523, 14216} with respect to the anticomplementary circle
X(62345) = pole of line {523, 56303} with respect to the circumcircle
X(62345) = pole of line {523, 18383} with respect to the circumcircle of the Johnson triangle
X(62345) = pole of line {389, 523} with respect to the polar circle
X(62345) = pole of line {185, 56303} with respect to the Jerabek hyperbola
X(62345) = pole of line {4, 520} with respect to the Johnson circumconic
X(62345) = pole of line {3, 43918} with respect to the Stammler hyperbola
X(62345) = pole of line {324, 525} with respect to the Steiner circumellipse
X(62345) = pole of line {69, 43767} with respect to the Wallace hyperbola
X(62345) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(43574)}}, {{A, B, C, X(30), X(54615)}}, {{A, B, C, X(235), X(13450)}}, {{A, B, C, X(311), X(15760)}}, {{A, B, C, X(381), X(17500)}}, {{A, B, C, X(417), X(5562)}}, {{A, B, C, X(477), X(36179)}}, {{A, B, C, X(523), X(14894)}}, {{A, B, C, X(546), X(40449)}}, {{A, B, C, X(852), X(53174)}}, {{A, B, C, X(868), X(39569)}}, {{A, B, C, X(1263), X(43893)}}, {{A, B, C, X(1568), X(1650)}}, {{A, B, C, X(1907), X(36809)}}, {{A, B, C, X(5627), X(34093)}}, {{A, B, C, X(6823), X(27356)}}, {{A, B, C, X(7480), X(35360)}}, {{A, B, C, X(14618), X(52280)}}, {{A, B, C, X(15329), X(36831)}}, {{A, B, C, X(15761), X(56272)}}, {{A, B, C, X(25043), X(61750)}}, {{A, B, C, X(32162), X(57128)}}, {{A, B, C, X(43767), X(44715)}}, {{A, B, C, X(44227), X(60517)}}
X(62345) = barycentric product X(i)*X(j) for these (i, j): {324, 43574}
X(62345) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43767}, {4, 43766}, {6, 43918}, {53, 43917}, {3134, 53576}, {43574, 97}, {43753, 46089}
X(62345) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5562, 13450, 56303}


X(62346) = INVERSE OF X(4) IN DUAL CONIC OF DELONGCHAMPS CIRCLE

Barycentrics    (3*a^4-(b^2-c^2)^2-2*a^2*(b^2+c^2))*(2*a^10-8*a^6*(b^2-c^2)^2-a^8*(b^2+c^2)+10*a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)) : :

X(62346) lies on these lines: {4, 6}, {2060, 3344}, {2323, 55063}, {3284, 39020}, {3346, 31944}, {6587, 8057}, {11064, 48373}, {15384, 23590}, {15905, 51347}, {20207, 23292}, {34569, 39008}, {59657, 59659}


X(62347) = INVERSE OF X(4) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    a^2*(-a^2+b^2+c^2)^2*(a^6*(b^2+c^2)+3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+4*b^2*c^2-3*c^4)-(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4)) : :

X(62347) lies on these lines: {2, 62337}, {4, 69}, {99, 44874}, {394, 3284}, {520, 3265}, {3964, 14379}, {5447, 41008}, {6527, 12279}, {11695, 45198}, {13754, 40996}, {34783, 40995}, {34854, 46185}, {40647, 41005}, {51394, 52437}


X(62348) = INVERSE OF X(4) IN DUAL CONIC OF ORTHIC INCONIC

Barycentrics    2*a^8-4*a^6*(b^2+c^2)+(b^4+c^4)^2+a^4*(5*b^4+4*b^2*c^2+5*c^4)-2*a^2*(2*b^6+b^4*c^2+b^2*c^4+2*c^6) : :

X(62348) lies on circumconic {{A, B, C, X(114), X(47389)}} and on these lines: {3, 32458}, {4, 99}, {39, 620}, {69, 34473}, {76, 6036}, {98, 3926}, {115, 1975}, {147, 32831}, {148, 32972}, {182, 38748}, {183, 38737}, {315, 38749}, {325, 2794}, {542, 5152}, {543, 33228}, {641, 48785}, {642, 48784}, {1003, 2482}, {1569, 8149}, {1692, 14645}, {1916, 7891}, {2023, 7789}, {2024, 59695}, {2396, 47200}, {2489, 2799}, {2782, 6390}, {3933, 12042}, {5026, 59552}, {5969, 59548}, {5984, 32841}, {5989, 14981}, {6054, 32837}, {6055, 32833}, {6721, 7769}, {6722, 7874}, {7750, 38747}, {7757, 60093}, {7773, 39838}, {7776, 38741}, {7782, 38736}, {7787, 10352}, {7803, 33189}, {7834, 31274}, {7835, 18906}, {9744, 21166}, {9862, 32818}, {9888, 43449}, {10722, 32816}, {10991, 32821}, {11185, 23514}, {11623, 32820}, {14061, 32955}, {14639, 32815}, {14651, 32817}, {15561, 37071}, {16925, 36849}, {19687, 35022}, {20094, 32980}, {23342, 41359}, {33191, 41134}, {36521, 50280}, {50640, 52997}

X(62348) = pole of line {3767, 55122} with respect to the polar circle
X(62348) = pole of line {5027, 9306} with respect to the Steiner inellipse
X(62348) = pole of line {3564, 6033} with respect to the Wallace hyperbola
X(62348) = pole of line {647, 2396} with respect to the dual conic of Jerabek hyperbola
X(62348) = pole of line {4, 2799} with respect to the dual conic of Orthic inconic
X(62348) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 7763, 114}, {99, 8781, 4}, {6337, 46236, 99}, {9862, 32818, 54103}


X(62349) = INVERSE OF X(4) IN DUAL CONIC OF YFF PARABOLA

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+2*a^2*(b^2-4*b*c+c^2)-(b-c)^2*(3*b^2-2*b*c+3*c^2)) : :

X(62349) lies on these lines: {4, 1086}, {7, 40065}, {19, 57}, {281, 4859}, {459, 54284}, {4346, 26003}, {5222, 5702}, {6173, 34231}, {37276, 40688}, {42697, 52288}, {48629, 55393}


X(62350) = INVERSE OF X(4) IN DUAL CONIC OF WALLACE HYPERBOLA

Barycentrics    (b-c)*(b+c)*(-a^2+b^2+c^2)*(-2*a^10+2*a^8*(b^2+c^2)-7*a^4*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)+a^6*(5*b^4-12*b^2*c^2+5*c^4)) : :

X(62350) lies on these lines: {3, 2416}, {4, 523}, {6, 55269}, {24, 46612}, {122, 125}, {185, 520}, {378, 46613}, {526, 17854}, {1649, 47194}, {6368, 34563}, {6587, 40138}, {6776, 9007}, {8675, 19161}, {8798, 43083}, {9003, 9409}, {11123, 57592}, {14809, 53255}, {31873, 58263}, {38401, 58378}, {39201, 46616}, {51475, 61462}


X(62351) = INVERSE OF X(5) IN 2ND BROCARD CIRCLE

Barycentrics    a^2*(a^10*(b^2+c^2)+9*a^6*b^2*c^2*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^4-4*b^2*c^2+c^4)-a^8*(2*b^4+7*b^2*c^2+2*c^4)-a^2*(b^2+c^2)*(b^8-2*b^6*c^2+b^4*c^4-2*b^2*c^6+c^8)+a^4*(2*b^8-5*b^6*c^2-5*b^4*c^4-5*b^2*c^6+2*c^8)) : :

X(62351) lies on these lines: {2, 3}, {6, 38582}, {523, 32519}, {691, 11842}, {1154, 38523}, {1634, 2453}, {2882, 39562}, {5476, 14811}, {10568, 13754}, {11649, 44453}, {11935, 32463}, {12188, 53273}, {20794, 47285}, {32447, 53793}, {38528, 48673}


X(62352) = INVERSE OF X(5) IN EXCIRCLES-RADICAL CIRCLE

Barycentrics    a^2*(a^3*(b+c)^2+a^2*(b+c)*(b^2+c^2)-(b+c)*(b^4-b^2*c^2+c^4)-a*(b^4+2*b^3*c+2*b*c^3+c^4)) : :
X(62352) = -3*X[2]+X[38474]

X(62352) lies on these lines: {2, 38474}, {3, 31760}, {5, 10}, {21, 58474}, {35, 31757}, {36, 386}, {43, 484}, {143, 33862}, {181, 1319}, {513, 50493}, {515, 34458}, {519, 3032}, {573, 2077}, {936, 38483}, {1155, 2392}, {1324, 37510}, {1575, 5164}, {1682, 5048}, {2245, 23628}, {3060, 5010}, {3216, 28268}, {3567, 59331}, {3634, 22076}, {3647, 58497}, {4260, 5122}, {4640, 15049}, {4973, 8679}, {5080, 9534}, {5172, 19763}, {5180, 59296}, {5183, 10822}, {5267, 15489}, {5530, 53615}, {5752, 25440}, {6681, 50362}, {6796, 31732}, {6924, 31738}, {9566, 35000}, {9567, 22765}, {10199, 35645}, {10263, 26086}, {13391, 35203}, {18180, 58404}, {20962, 52680}, {23156, 37582}, {23157, 32636}, {31160, 48852}, {31751, 37251}, {35016, 58493}, {36754, 39582}, {37502, 41345}, {37603, 50593}

X(62352) = midpoint of X(i) and X(j) for these {i,j}: {36, 56878}
X(62352) = reflection of X(i) in X(j) for these {i,j}: {3814, 38472}, {50362, 6681}
X(62352) = inverse of X(10) in Apollonius circle
X(62352) = inverse of X(5) in excircles-radical circle
X(62352) = inverse of X(39583) in nine-point circle
X(62352) = inverse of X(39564) in Spieker circle
X(62352) = complement of X(38474)
X(62352) = pole of line {10, 513} with respect to the Apollonius circle
X(62352) = pole of line {5, 513} with respect to the excircles-radical circle
X(62352) = pole of line {513, 39583} with respect to the nine-point circle
X(62352) = pole of line {513, 39564} with respect to the Spieker circle
X(62352) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {517, 38472, 3814}, {2540, 2541, 39505}, {5752, 25440, 31737}, {22300, 34466, 25639}


X(62353) = INVERSE OF X(5) IN 1ST LEMOINE CIRCLE

Barycentrics    a^2*(a^14-2*a^12*(b^2+c^2)-3*a^8*b^2*c^2*(b^2+c^2)+a^10*(b^4+b^2*c^2+c^4)+a^4*(b^2+c^2)*(b^4+c^4)*(2*b^4-3*b^2*c^2+2*c^4)-2*b^2*c^2*(b^2-c^2)^2*(b^6+c^6)-a^6*(b^8-3*b^6*c^2+2*b^4*c^4-3*b^2*c^6+c^8)-a^2*(b^2-c^2)^2*(b^8-2*b^6*c^2-4*b^4*c^4-2*b^2*c^6+c^8)) : :

X(62353) lies on these lines: {5, 182}, {32, 6403}, {115, 19128}, {511, 14676}, {525, 39518}, {1691, 2079}, {2456, 45016}, {3398, 5938}, {3734, 19131}, {5034, 34137}, {6248, 19129}, {10358, 62368}, {10359, 60467}, {37912, 41274}


X(62354) = INVERSE OF X(5) IN FUHRMANN CIRCLE

Barycentrics    a^7+3*a^5*b*c-2*a^6*(b+c)+3*a^2*b*(b-c)^2*c*(b+c)-(b-c)^4*(b+c)^3+a*(b^2-c^2)^2*(2*b^2-3*b*c+2*c^2)+a^4*(b+c)*(3*b^2-5*b*c+3*c^2)+a^3*(-3*b^4+4*b^2*c^2-3*c^4) : :
X(62354) = -3*X[2]+2*X[22935], -4*X[140]+3*X[15015], -3*X[381]+2*X[21635], -5*X[1656]+6*X[59419], -5*X[1698]+4*X[61562], -3*X[3576]+4*X[61566], -3*X[3655]+4*X[11715], -3*X[3656]+2*X[10698], -3*X[5657]+X[20095], -4*X[6702]+3*X[38752]

X(62354) lies on circumconic {{A, B, C, X(1807), X(11604)}} and on these lines: {1, 5}, {2, 22935}, {3, 10265}, {4, 2771}, {8, 6902}, {10, 12331}, {30, 1768}, {100, 1006}, {104, 411}, {140, 15015}, {149, 517}, {153, 6583}, {214, 5794}, {381, 21635}, {392, 37162}, {498, 41541}, {515, 12747}, {516, 48680}, {528, 3654}, {938, 58587}, {944, 6960}, {946, 48667}, {1001, 5790}, {1385, 5086}, {1454, 12832}, {1478, 17660}, {1479, 17638}, {1482, 21630}, {1656, 59419}, {1698, 61562}, {1737, 5172}, {1836, 11571}, {2475, 5885}, {2476, 39778}, {2551, 58659}, {2800, 10738}, {2801, 5805}, {2802, 19914}, {2829, 5787}, {2932, 57287}, {2949, 6598}, {2950, 33899}, {3576, 61566}, {3579, 13199}, {3583, 14988}, {3585, 24475}, {3652, 37290}, {3655, 11715}, {3656, 10698}, {5046, 5694}, {5047, 38665}, {5289, 12645}, {5450, 35451}, {5499, 13146}, {5506, 34352}, {5541, 5690}, {5657, 20095}, {5728, 45043}, {5791, 51506}, {5812, 12691}, {5840, 12515}, {5844, 12653}, {5851, 31672}, {5902, 56790}, {6259, 12761}, {6702, 38752}, {6713, 10609}, {6797, 18391}, {6842, 33858}, {6850, 45084}, {6882, 44669}, {6911, 61717}, {6914, 46816}, {6917, 10044}, {6923, 60896}, {6924, 14804}, {6928, 49168}, {6929, 10051}, {6971, 22836}, {7548, 33592}, {9802, 12245}, {9945, 38760}, {9963, 34474}, {10058, 12743}, {10074, 18976}, {10090, 20118}, {10176, 15863}, {10246, 33337}, {10525, 17654}, {10526, 12649}, {10572, 37564}, {10573, 17636}, {10728, 13243}, {10916, 22560}, {10941, 18517}, {11015, 26086}, {11219, 12119}, {11499, 57278}, {11570, 13273}, {12248, 28160}, {12332, 12616}, {12532, 58798}, {12551, 48899}, {12611, 59391}, {12758, 13274}, {12767, 41869}, {12877, 22936}, {13226, 38761}, {13253, 22791}, {13911, 35882}, {13973, 35883}, {14795, 18395}, {15694, 50844}, {17661, 18516}, {18341, 36154}, {18525, 22753}, {19925, 38755}, {22938, 34789}, {24914, 38722}, {31673, 38756}, {31870, 37230}, {33812, 37624}, {33814, 59331}, {35004, 52367}, {35852, 35857}, {35853, 35856}, {38133, 38762}, {52835, 54159}, {54304, 59339}

X(62354) = midpoint of X(i) and X(j) for these {i,j}: {4, 9803}, {80, 49176}, {149, 12247}, {944, 20085}, {5881, 7993}, {6264, 9897}, {9802, 12245}, {10728, 13243}, {12747, 12773}, {12767, 41869}
X(62354) = reflection of X(i) in X(j) for these {i,j}: {1, 1484}, {100, 12619}, {119, 12019}, {153, 18480}, {1482, 21630}, {10609, 6713}, {10742, 6246}, {11698, 61553}, {12119, 38602}, {12331, 10}, {12332, 12616}, {12699, 10738}, {12737, 37726}, {12738, 119}, {13146, 5499}, {13199, 3579}, {13253, 22791}, {16128, 4}, {16159, 11604}, {18481, 104}, {2950, 33899}, {22560, 10916}, {22791, 61601}, {3, 10265}, {355, 80}, {381, 50889}, {3656, 10707}, {34789, 22938}, {37727, 12737}, {38756, 31673}, {38761, 13226}, {48667, 946}, {5531, 11698}, {5541, 5690}, {6224, 1385}, {6259, 12761}, {6265, 11}, {6326, 5}
X(62354) = inverse of X(5) in Fuhrmann circle
X(62354) = anticomplement of X(22935)
X(62354) = X(i)-Dao conjugate of X(j) for these {i, j}: {22935, 22935}
X(62354) = pole of line {5, 900} with respect to the Fuhrmann circle
X(62354) = pole of line {8674, 44428} with respect to the polar circle
X(62354) = pole of line {900, 8068} with respect to the Suppa-Cucoanes circle
X(62354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 2771, 16128}, {4, 9803, 2771}, {5, 952, 6326}, {11, 10073, 5722}, {11, 6265, 5886}, {11, 952, 6265}, {80, 10073, 11}, {80, 12750, 10057}, {80, 37702, 37718}, {80, 53616, 1837}, {80, 952, 355}, {100, 12619, 26446}, {119, 952, 12738}, {149, 12247, 517}, {355, 61287, 5252}, {952, 11698, 5531}, {952, 12019, 119}, {952, 12737, 37727}, {952, 1484, 1}, {952, 37726, 12737}, {2771, 11604, 16159}, {2800, 10738, 12699}, {2801, 6246, 10742}, {5531, 5587, 11698}, {5533, 12740, 11373}, {5881, 7993, 952}, {6326, 37718, 5}, {8068, 12739, 11374}, {10057, 12750, 1317}, {11219, 12119, 38602}, {11570, 13273, 57282}, {11698, 61553, 5587}, {12019, 12738, 61261}, {12747, 12773, 515}, {16173, 19907, 61276}, {48667, 51517, 946}


X(62355) = INVERSE OF X(5) IN GALLATLY CIRCLE

Barycentrics    -(b^4*c^4*(b^2-c^2)^2)+a^10*(b^2+c^2)-a^8*(b^2+c^2)^2+a^6*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)+a^2*(b^2+c^2)*(b^8-3*b^6*c^2+6*b^4*c^4-3*b^2*c^6+c^8)-2*a^4*(b^8+b^6*c^2+b^2*c^6+c^8) : :

X(62355) lies on these lines: {5, 39}, {32, 1916}, {98, 32452}, {542, 62331}, {1692, 51828}, {2021, 32456}, {2548, 32528}, {3199, 32527}, {5013, 35464}, {5939, 46305}, {5976, 7749}, {7756, 38642}, {11152, 18546}, {12042, 46283}, {12829, 46313}, {23698, 62366}, {31981, 46236}


X(62356) = INVERSE OF X(5) IN MOSES CIRCLE

Barycentrics    -4*a^4*b^2*c^2+(b^2-c^2)^4+a^6*(b^2+c^2)-a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(62356) = -3*X[14568]+X[39652]

X(62356) lies on these lines: {5, 39}, {6, 38732}, {30, 10631}, {32, 6321}, {98, 7748}, {99, 7746}, {148, 3552}, {187, 23698}, {542, 1570}, {543, 5215}, {546, 12830}, {574, 38224}, {620, 59635}, {671, 3407}, {2241, 13183}, {2242, 13182}, {2549, 14651}, {2854, 61339}, {3053, 38733}, {3291, 62298}, {5007, 38734}, {5028, 11646}, {5034, 6034}, {5149, 11185}, {5186, 27371}, {5206, 38730}, {5286, 32528}, {5305, 61600}, {5475, 14639}, {5477, 5480}, {5939, 19687}, {6036, 37512}, {7739, 41135}, {7747, 12829}, {7749, 33813}, {7756, 12042}, {7802, 36864}, {7864, 14061}, {8588, 38731}, {8589, 38737}, {8724, 18362}, {9651, 10069}, {9664, 10053}, {9880, 14537}, {11632, 11648}, {12188, 43183}, {13188, 13881}, {14568, 39652}, {15513, 38738}, {15515, 38739}, {20398, 31652}, {27376, 32527}, {35464, 44531}, {36523, 39593}, {43448, 43449}

X(62356) = midpoint of X(i) and X(j) for these {i,j}: {148, 5152}
X(62356) = inverse of X(5) in Moses circle
X(62356) = inverse of X(39565) in nine-point circle
X(62356) = pole of line {5, 804} with respect to the Moses circle
X(62356) = pole of line {804, 39565} with respect to the nine-point circle
X(62356) = pole of line {511, 22515} with respect to the Kiepert hyperbola
X(62356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {114, 115, 39565}, {115, 1506, 61576}, {115, 1569, 5}, {115, 7765, 2023}, {12829, 22515, 7747}


X(62357) = INVERSE OF X(5) IN SPIEKER CIRCLE

Barycentrics    a*(a^5*(b+c)-(b-c)^2*(b+c)^4-a^4*(b^2+4*b*c+c^2)-2*a^3*(b^3+c^3)+a*(b+c)*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4)+2*a^2*(b^4+3*b^3*c+3*b*c^3+c^4)) : :
X(62357) = -3*X[2]+X[5570], -5*X[1698]+X[53615], X[3660]+2*X[3678], -X[5048]+5*X[25917]

X(62357) lies on these lines: {2, 5570}, {3, 32159}, {5, 10}, {9, 2077}, {36, 936}, {72, 18838}, {210, 956}, {484, 8580}, {515, 46694}, {518, 15325}, {519, 51380}, {535, 58699}, {912, 3035}, {1698, 53615}, {1737, 51379}, {3660, 3678}, {3880, 11545}, {4662, 33956}, {5048, 25917}, {5122, 15481}, {5193, 57279}, {5440, 51506}, {5538, 30393}, {5705, 31263}, {5777, 18232}, {5887, 37828}, {6001, 18254}, {10199, 12915}, {11260, 25405}, {12447, 58636}, {12514, 13528}, {13750, 27529}, {14454, 31659}, {14740, 44675}, {17647, 58631}, {17658, 45700}, {18229, 38474}, {18839, 24954}, {18857, 32153}, {24433, 60415}, {28204, 58659}, {28534, 58634}, {30384, 51378}, {31777, 58637}, {31803, 58660}, {31835, 47742}, {32760, 42012}, {35459, 51572}, {40663, 41389}, {44547, 59719}

X(62357) = midpoint of X(i) and X(j) for these {i,j}: {36, 17615}, {72, 18838}, {1737, 51379}, {3678, 6681}, {5044, 58641}, {14740, 44675}, {25405, 34790}, {30384, 51378}, {40663, 41389}
X(62357) = reflection of X(i) in X(j) for these {i,j}: {3660, 6681}
X(62357) = inverse of X(5) in Spieker circle
X(62357) = complement of X(5570)
X(62357) = pole of line {5, 513} with respect to the Spieker circle
X(62357) = pole of line {4391, 17776} with respect to the Steiner inellipse
X(62357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {960, 3740, 3820}, {1329, 2886, 60769}, {5044, 58630, 960}, {5044, 58641, 517}, {5044, 58648, 10176}, {5044, 58649, 10}


X(62358) = INVERSE OF X(5) IN TANGENTIAL CIRCLE

Barycentrics    a^2*((a^2-b^2)^5*(a^2+b^2)^2-3*(a^2-b^2)^3*(a^6+2*a^4*b^2+2*a^2*b^4+b^6)*c^2+(a-b)*(a+b)*(a^8+4*a^6*b^2+2*a^4*b^4+4*a^2*b^6+3*b^8)*c^4+(5*a^8+2*a^4*b^4+2*a^2*b^6+b^8)*c^6+(-5*a^6-3*a^4*b^2-a^2*b^4+b^6)*c^8-(a^4+3*a^2*b^2+3*b^4)*c^10+3*(a^2+b^2)*c^12-c^14) : :

X(62358) lies on these lines: {2, 3}, {2079, 62369}, {2917, 6102}, {5012, 7730}, {9920, 45731}, {10117, 15101}, {12899, 45044}, {14157, 15100}, {15112, 19651}, {19468, 32136}, {39522, 48914}, {43845, 44515}


X(62359) = INVERSE OF X(5) IN EXCENTRAL-HEXYL ELLIPSE

Barycentrics    a*(a^6-a^5*(b+c)+2*b*c*(b^2-c^2)^2-a*(b-c)^2*(b+c)*(b^2+c^2)+a^2*(b^2+c^2)*(b^2-b*c+c^2)-a^4*(2*b^2+b*c+2*c^2)+2*a^3*(b^3+c^3)) : :
X(62359) = -2*X[5080]+3*X[38755]

X(62359) lies on these lines: {2, 3}, {11, 41345}, {35, 17605}, {36, 28160}, {40, 33539}, {55, 18393}, {56, 36975}, {100, 5180}, {104, 28186}, {399, 34465}, {515, 12747}, {516, 35000}, {517, 3689}, {529, 48713}, {581, 45931}, {946, 37621}, {952, 62318}, {962, 32141}, {970, 12162}, {971, 60989}, {1155, 1727}, {1376, 10176}, {1437, 37472}, {1465, 18455}, {1482, 11500}, {1490, 37532}, {1621, 38034}, {1699, 32613}, {1745, 23070}, {1768, 41347}, {1864, 37582}, {1936, 23071}, {2077, 15017}, {2078, 7743}, {2320, 14496}, {2635, 52407}, {2771, 5535}, {2829, 35451}, {2949, 5777}, {3065, 5131}, {3216, 52100}, {3336, 61722}, {3337, 26201}, {3428, 5659}, {3521, 34435}, {3582, 41341}, {3583, 5172}, {3585, 37564}, {3652, 31871}, {3683, 5506}, {3746, 4870}, {3913, 4930}, {4265, 48901}, {4428, 50806}, {4833, 6003}, {4996, 22799}, {5080, 38755}, {5096, 29012}, {5204, 15446}, {5206, 44542}, {5251, 38140}, {5260, 61259}, {5284, 61269}, {5396, 45923}, {5537, 28198}, {5538, 22935}, {5691, 26286}, {5720, 37584}, {5752, 18436}, {5806, 24299}, {5841, 10742}, {5842, 10738}, {5885, 16132}, {6265, 35457}, {6796, 11849}, {7082, 58887}, {7680, 59382}, {7688, 11231}, {7965, 21155}, {8069, 9668}, {8071, 9655}, {8715, 34647}, {9342, 61614}, {9654, 26357}, {9669, 37579}, {9955, 10902}, {9956, 59320}, {10090, 15326}, {10246, 22753}, {10267, 18493}, {10620, 33811}, {10680, 18526}, {10724, 38722}, {10896, 36152}, {11012, 18480}, {11230, 15931}, {11248, 48661}, {11249, 18525}, {11491, 22791}, {11499, 12702}, {11502, 36279}, {12433, 57283}, {12645, 18518}, {12684, 56889}, {12943, 14793}, {12953, 59334}, {13465, 31803}, {13474, 15489}, {16139, 20117}, {17080, 37729}, {18481, 37535}, {20085, 28224}, {23961, 28168}, {24703, 25440}, {26200, 37563}, {26285, 41869}, {28178, 33814}, {28182, 34474}, {28190, 38602}, {31479, 40292}, {31828, 48668}, {31870, 33858}, {33596, 40262}, {34466, 46623}, {34486, 51709}, {34707, 34741}, {36750, 37530}, {37509, 37732}, {37524, 61709}, {37533, 52026}, {37612, 41854}, {37623, 40263}, {38039, 40273}, {38588, 56423}, {38945, 51236}, {39565, 44517}, {40266, 59318}, {45924, 45944}, {60922, 61011}

X(62359) = reflection of X(i) in X(j) for these {i,j}: {1768, 41347}, {12331, 18524}, {12773, 22765}, {18524, 44425}, {3, 6905}, {35457, 6265}, {38753, 15326}, {5538, 22935}, {6840, 5}
X(62359) = inverse of X(5) in excentral-hexyl ellipse
X(62359) = pole of line {5, 6003} with respect to the excentral-hexyl ellipse
X(62359) = pole of line {185, 13743} with respect to the Jerabek hyperbola
X(62359) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(28), X(34431)}}, {{A, B, C, X(68), X(6903)}}, {{A, B, C, X(265), X(6840)}}, {{A, B, C, X(1105), X(13743)}}, {{A, B, C, X(2475), X(3521)}}, {{A, B, C, X(3520), X(34435)}}, {{A, B, C, X(4846), X(6951)}}, {{A, B, C, X(6853), X(34800)}}, {{A, B, C, X(6952), X(43724)}}, {{A, B, C, X(14861), X(37163)}}
X(62359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 16408, 15720}, {3, 381, 7489}, {3, 3830, 1012}, {3, 3843, 3560}, {3, 3851, 405}, {3, 4, 13743}, {3, 5055, 6883}, {3, 6918, 3526}, {4, 6888, 16160}, {4, 6960, 5}, {4, 6962, 6862}, {4, 6980, 381}, {5, 30, 6840}, {140, 16160, 6888}, {140, 3651, 3}, {517, 18524, 12331}, {517, 44425, 18524}, {1532, 6909, 6913}, {3149, 7580, 6911}, {3428, 18491, 5790}, {3651, 6915, 140}, {3845, 7508, 6912}, {3850, 5428, 6920}, {5691, 26286, 26321}, {6796, 12699, 11849}, {6848, 6869, 6928}, {6849, 6988, 6861}, {6851, 6927, 6958}, {6911, 6985, 7580}, {6946, 7411, 549}, {12747, 22775, 12773}, {14782, 14783, 6884}, {14784, 14785, 6903}, {18518, 22770, 12645}


X(62360) = INVERSE OF X(5) IN MACBEATH CIRCUMCONIC

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10-3*a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^2*(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)+a^6*(4*b^4+5*b^2*c^2+4*c^4)-4*a^4*(b^6+c^6)) : :

X(62360) lies on these lines: {5, 6}, {49, 216}, {50, 13754}, {53, 14516}, {110, 11062}, {195, 9222}, {394, 62338}, {523, 32320}, {539, 1989}, {566, 1147}, {577, 18436}, {1993, 41244}, {2931, 18578}, {3003, 41615}, {3284, 22146}, {5201, 52170}, {6288, 36412}, {8553, 19908}, {9220, 9927}, {11063, 32661}, {11411, 46262}, {17845, 17849}, {19357, 36751}, {23236, 52945}, {41335, 41597}, {44665, 53416}, {45793, 57875}, {50433, 50461}, {52703, 54375}, {56308, 61363}

X(62360) = inverse of X(5) in MacBeath circumconic
X(62360) = perspector of circumconic {{A, B, C, X(925), X(40448)}}
X(62360) = X(i)-Dao conjugate of X(j) for these {i, j}: {22115, 323}
X(62360) = X(i)-Ceva conjugate of X(j) for these {i, j}: {94, 3}, {39431, 418}
X(62360) = pole of line {418, 34952} with respect to the circumcircle
X(62360) = pole of line {3566, 34965} with respect to the nine-point circle
X(62360) = pole of line {52280, 57065} with respect to the polar circle
X(62360) = pole of line {512, 34985} with respect to the Johnson circumconic
X(62360) = pole of line {5, 523} with respect to the MacBeath circumconic
X(62360) = pole of line {38401, 56290} with respect to the Steiner circumellipse
X(62360) = pole of line {523, 14896} with respect to the dual conic of DeLongchamps circle
X(62360) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(44174)}}, {{A, B, C, X(2165), X(34433)}}
X(62360) = barycentric quotient X(i)/X(j) for these (i, j): {56308, 6801}
X(62360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10665, 10666, 14852}


X(62361) = INVERSE OF X(5) IN ORTHIC INCONIC

Barycentrics    (a^4+b^4-2*(a^2+b^2)*c^2+c^4)*(a^4-2*a^2*b^2+(b^2-c^2)^2)*(a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4-b^2*c^2+c^4)) : :

X(62361) lies on these lines: {5, 6}, {96, 12241}, {115, 62335}, {154, 39111}, {187, 52975}, {297, 30450}, {343, 39116}, {570, 43817}, {686, 2501}, {925, 32269}, {1879, 12162}, {3003, 39021}, {3580, 52504}, {5392, 13567}, {5962, 18877}, {8906, 17834}, {12301, 60775}, {14593, 17810}, {18374, 32734}, {22466, 57703}, {26958, 52350}, {32132, 37498}, {32692, 53930}, {37802, 47296}


X(62362) = INVERSE OF X(5) IN WALLACE HYPERBOLA

Barycentrics    3*a^4+2*b^4-b^2*c^2+2*c^4-5*a^2*(b^2+c^2) : :
X(62362) = -4*X[1125]+3*X[38222], -4*X[3589]+3*X[38232], -4*X[3628]+3*X[38231]

X(62362) lies on these lines: {2, 7765}, {3, 7809}, {5, 99}, {17, 630}, {18, 629}, {20, 7694}, {39, 16984}, {54, 69}, {76, 3526}, {83, 620}, {140, 7799}, {183, 55863}, {298, 22845}, {299, 22844}, {302, 33387}, {303, 33386}, {315, 15717}, {316, 548}, {325, 3530}, {382, 7782}, {384, 41134}, {492, 9680}, {524, 51237}, {532, 37008}, {533, 37007}, {538, 16923}, {543, 51238}, {549, 7768}, {574, 7899}, {597, 7807}, {632, 32820}, {671, 32967}, {1007, 3528}, {1125, 38222}, {1657, 48913}, {1975, 5070}, {2482, 16044}, {2549, 33277}, {3096, 33258}, {3523, 7811}, {3525, 32833}, {3589, 38232}, {3618, 39142}, {3628, 38231}, {3663, 17322}, {3785, 61816}, {3788, 7876}, {3855, 34803}, {3926, 55864}, {3933, 61837}, {5013, 7919}, {5023, 7926}, {5024, 7942}, {5032, 32989}, {5054, 32821}, {5067, 6337}, {5319, 7857}, {6179, 15534}, {6390, 16239}, {6673, 44032}, {6674, 44030}, {6680, 51860}, {6683, 16896}, {6787, 58211}, {7486, 11185}, {7603, 52886}, {7618, 14063}, {7622, 7883}, {7750, 44682}, {7757, 33233}, {7758, 33206}, {7759, 33274}, {7760, 7907}, {7764, 33259}, {7767, 61821}, {7771, 7917}, {7773, 15696}, {7775, 33014}, {7776, 61799}, {7783, 14061}, {7786, 24256}, {7788, 15720}, {7790, 33248}, {7797, 31274}, {7801, 33015}, {7803, 33222}, {7812, 32964}, {7816, 17005}, {7818, 33022}, {7821, 33273}, {7824, 7849}, {7827, 12040}, {7828, 9607}, {7829, 9167}, {7832, 12055}, {7835, 16898}, {7839, 58448}, {7843, 33276}, {7846, 31400}, {7847, 44377}, {7856, 32970}, {7858, 12156}, {7870, 11285}, {7871, 61818}, {7877, 21843}, {7878, 11288}, {7880, 10159}, {7884, 22332}, {7885, 8589}, {7891, 31455}, {7900, 8588}, {7901, 31652}, {7910, 53095}, {7911, 7925}, {7912, 15515}, {7934, 15815}, {7941, 15513}, {7945, 15482}, {7947, 32027}, {8176, 14066}, {8357, 41133}, {9166, 33249}, {9765, 10997}, {9772, 10486}, {10303, 32837}, {11184, 33235}, {12006, 51383}, {12150, 16925}, {14043, 44562}, {14062, 34504}, {14064, 52691}, {14144, 16626}, {14145, 16627}, {14558, 37814}, {14568, 59546}, {14869, 37671}, {14907, 61138}, {14981, 52034}, {18354, 40410}, {18553, 37334}, {18972, 22904}, {18973, 22859}, {20399, 37336}, {21734, 32816}, {22843, 44666}, {22848, 44029}, {22860, 22910}, {22862, 31705}, {22865, 22905}, {22890, 44667}, {22892, 44031}, {22906, 31706}, {23234, 37243}, {26686, 31462}, {31173, 33267}, {31407, 32973}, {31467, 60855}, {31470, 32954}, {32006, 62066}, {32815, 32871}, {32825, 61820}, {32831, 61842}, {32832, 61867}, {32836, 61856}, {32887, 61788}, {33000, 34511}, {33024, 52695}, {37688, 61853}, {40341, 55813}, {46951, 61863}, {48154, 59635}, {51581, 53109}, {52250, 53142}, {55729, 55806}, {55731, 55804}, {55733, 55803}, {55734, 55802}, {55743, 55799}, {55744, 55798}, {55746, 55797}, {55749, 55794}, {55753, 55793}, {55755, 55792}, {55757, 55791}, {55759, 55789}, {55772, 55787}, {55773, 55786}, {55774, 55784}, {55776, 55782}, {55778, 55780}, {55810, 55825}, {55815, 55819}

X(62362) = midpoint of X(i) and X(j) for these {i,j}: {627, 628}, {12815, 51587}
X(62362) = reflection of X(i) in X(j) for these {i,j}: {17, 630}, {18, 629}, {43676, 50570}, {50570, 12815}
X(62362) = inverse of X(5) in Wallace hyperbola
X(62362) = complement of X(50570)
X(62362) = anticomplement of X(12815)
X(62362) = X(i)-isoconjugate-of-X(j) for these {i, j}: {923, 13412}
X(62362) = X(i)-Dao conjugate of X(j) for these {i, j}: {2482, 13412}, {12815, 12815}
X(62362) = pole of line {3552, 32478} with respect to the 1st Brocard circle
X(62362) = pole of line {3631, 5111} with respect to the Kiepert hyperbola
X(62362) = pole of line {51, 35007} with respect to the Stammler hyperbola
X(62362) = pole of line {32478, 41298} with respect to the Steiner circumellipse
X(62362) = pole of line {14610, 32478} with respect to the Steiner inellipse
X(62362) = pole of line {5, 3629} with respect to the Wallace hyperbola
X(62362) = pole of line {7809, 60597} with respect to the dual conic of Orthic inconic
X(62362) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(5965)}}, {{A, B, C, X(54), X(5966)}}, {{A, B, C, X(95), X(43676)}}
X(62362) = barycentric product X(i)*X(j) for these (i, j): {55038, 76}
X(62362) = barycentric quotient X(i)/X(j) for these (i, j): {524, 13412}, {55038, 6}
X(62362) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 50570, 12815}, {2, 51587, 43676}, {620, 9698, 33225}, {627, 628, 5965}, {631, 7763, 7796}, {631, 7796, 1078}, {3788, 31457, 7876}, {5013, 7940, 7919}, {5319, 33262, 7857}, {7622, 7888, 33004}, {7786, 33217, 55767}, {7824, 7909, 31168}, {7888, 33004, 7883}, {7925, 37512, 7911}, {9698, 33225, 83}, {31492, 33217, 7786}


X(62363) = INVERSE OF X(5) IN DUAL CONIC OF STAMMLER HYPERBOLA

Barycentrics    (b-c)*(b+c)*(a^2*b^2*(a^2-b^2)^4+(a^2-b^2)^2*(a^6+b^6)*c^2+(-4*a^8+a^6*b^2+a^2*b^6+2*b^8)*c^4+(6*a^6+a^4*b^2+a^2*b^4-6*b^6)*c^6+2*(-2*a^4-a^2*b^2+b^4)*c^8+(a^2+b^2)*c^10) : :

X(62363) lies on these lines: {2, 525}, {5, 850}, {76, 3265}, {264, 523}, {339, 2972}, {458, 53173}, {647, 52289}, {4230, 42733}, {14380, 44134}, {37688, 40550}


X(62364) = INVERSE OF X(5) IN DUAL CONIC OF WALLACE HYPERBOLA

Barycentrics    (b-c)*(b+c)*(-(b^2*c^2*(b^2-c^2)^4)+a^10*(b^2+c^2)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)-2*a^8*(2*b^4+b^2*c^2+2*c^4)+a^6*(6*b^6+b^4*c^2+b^2*c^4+6*c^6)-a^4*(4*b^8+b^6*c^2-4*b^4*c^4+b^2*c^6+4*c^8)) : :

X(62364) lies on these lines: {2, 46616}, {4, 46608}, {5, 523}, {30, 14809}, {54, 57210}, {125, 526}, {140, 62173}, {520, 5449}, {924, 20299}, {1209, 57128}, {1510, 18488}, {1594, 62172}, {8057, 20302}, {8068, 62329}, {8675, 24206}, {9003, 20301}, {9033, 33547}, {9722, 45801}, {11585, 38401}, {16171, 25641}, {16868, 18808}, {20300, 39511}, {39509, 55121}


X(62365) = INVERSE OF X(6) IN 2ND DROZ-FARNY CIRCLE

Barycentrics    a^2*(a^10*(b^2+c^2)-(b^4-c^4)^2*(b^4+c^4)-2*a^6*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)+2*a^4*(b^4+c^4)*(b^4-4*b^2*c^2+c^4)-a^8*(b^4+4*b^2*c^2+c^4)+a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4+4*b^2*c^2+c^4)) : :

X(62365) lies on these lines: {3, 6}, {132, 403}, {230, 53795}, {441, 11746}, {3849, 52069}, {5140, 37197}, {5148, 9627}, {7505, 38227}, {8721, 12283}, {10991, 34146}, {13417, 52144}, {13558, 42671}, {14693, 44452}, {14981, 34382}, {16072, 31173}, {31726, 38953}, {35282, 44084}, {47336, 53793}


X(62366) = INVERSE OF X(6) IN GALLATLY CIRCLE

Barycentrics    a^2*(a^8*(b^2+c^2)-4*a^6*(b^2+c^2)^2+2*a^4*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)-2*a^2*(b^8-b^4*c^4+c^8)+(b^2+c^2)*(b^8-2*b^6*c^2+4*b^4*c^4-2*b^2*c^6+c^8)) : :
X(62366) = -3*X[262]+X[316], -3*X[15561]+2*X[51373], -3*X[15819]+4*X[58448], -3*X[26613]+X[33706], -X[32521]+3*X[38230]

X(62366) lies on circumconic {{A, B, C, X(249), X(35424)}} and on these lines: {3, 6}, {5, 39266}, {30, 38642}, {76, 37466}, {114, 736}, {237, 57257}, {262, 316}, {538, 8724}, {1513, 2782}, {1916, 11676}, {2023, 15980}, {3399, 7824}, {3849, 44422}, {5167, 32484}, {5969, 37461}, {5976, 6390}, {6234, 16068}, {6248, 32189}, {6656, 11272}, {7697, 37071}, {7709, 37182}, {7807, 14693}, {12176, 39089}, {12251, 16925}, {13449, 37243}, {15561, 51373}, {15819, 58448}, {23698, 62355}, {26613, 33706}, {32520, 35700}, {32521, 38230}, {36212, 47638}, {37450, 40108}, {37927, 53793}

X(62366) = midpoint of X(i) and X(j) for these {i,j}: {1916, 11676}, {2080, 3095}
X(62366) = reflection of X(i) in X(j) for these {i,j}: {13354, 2030}, {15980, 2023}, {18860, 13334}, {2456, 2024}, {3, 2021}, {39266, 5}, {49111, 14693}, {5188, 47113}, {5976, 37459}
X(62366) = inverse of X(35424) in circumcircle
X(62366) = inverse of X(6) in Gallatly circle
X(62366) = inverse of X(50685) in Stammler circle
X(62366) = X(i)-vertex conjugate of X(j) for these {i, j}: {512, 35424}
X(62366) = pole of line {512, 35424} with respect to the circumcircle
X(62366) = pole of line {6, 512} with respect to the Gallatly circle
X(62366) = pole of line {512, 50685} with respect to the Stammler circle
X(62366) = pole of line {2, 12176} with respect to the Stammler hyperbola
X(62366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 32447, 3094}, {511, 13334, 18860}, {511, 2024, 2456}, {511, 2030, 13354}, {511, 47113, 5188}, {1351, 32447, 3095}, {1379, 1380, 35424}, {2026, 2027, 6}, {2080, 3095, 511}, {5024, 9301, 35002}, {13334, 55674, 21163}, {18860, 52992, 3}, {32515, 37459, 5976}, {38596, 38597, 50685}


X(62367) = INVERSE OF X(6) IN HALF MOSES CIRCLE

Barycentrics    5*a^6*(b^2+c^2)-2*a^4*(2*b^4+3*b^2*c^2+2*c^4)+a^2*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4) : :
X(62367) = -3*X[2023]+X[53419]

X(62367) lies on these lines: {2, 54751}, {3, 6}, {76, 32970}, {99, 39095}, {194, 32989}, {230, 538}, {232, 2971}, {316, 7736}, {625, 3815}, {2023, 53419}, {2275, 5194}, {2276, 5148}, {2548, 13449}, {2782, 10011}, {3054, 3934}, {3055, 6683}, {3148, 44116}, {3229, 59559}, {3231, 36212}, {3291, 9155}, {3849, 8354}, {5106, 59707}, {5167, 43718}, {5184, 9575}, {5215, 11165}, {5286, 38227}, {5305, 14693}, {5969, 32459}, {6248, 43620}, {7709, 9743}, {7735, 7757}, {7737, 44422}, {7786, 14064}, {7813, 15993}, {7867, 44540}, {7913, 31275}, {9466, 37637}, {10008, 32451}, {11257, 43448}, {11672, 39010}, {14712, 37665}, {14981, 53475}, {16306, 40544}, {21849, 41278}, {34511, 41622}, {35298, 39024}, {45141, 58309}, {47406, 52067}

X(62367) = midpoint of X(i) and X(j) for these {i,j}: {39, 2021}
X(62367) = reflection of X(i) in X(j) for these {i,j}: {187, 50370}
X(62367) = inverse of X(35439) in Gallatly circle
X(62367) = inverse of X(6) in half Moses circle
X(62367) = pole of line {512, 35439} with respect to the Gallatly circle
X(62367) = pole of line {6, 512} with respect to the half Moses circle
X(62367) = pole of line {647, 5652} with respect to the Steiner inellipse
X(62367) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(54751)}}, {{A, B, C, X(32), X(60263)}}, {{A, B, C, X(111), X(2031)}}, {{A, B, C, X(512), X(5033)}}, {{A, B, C, X(3431), X(35387)}}, {{A, B, C, X(5028), X(41440)}}, {{A, B, C, X(10542), X(17042)}}, {{A, B, C, X(31884), X(41517)}}
X(62367) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 187, 2031}, {39, 2021, 511}, {39, 21163, 3094}, {39, 5052, 32447}, {187, 2021, 50370}, {187, 5107, 9301}, {511, 50370, 187}, {574, 5033, 3}, {1691, 5013, 18860}, {1692, 5033, 2030}, {2021, 2024, 13357}, {2026, 2027, 35439}, {2080, 9605, 1570}


X(62368) = INVERSE OF X(6) IN CIRCUMCIRCLE OF THE JOHNSON TRIANGLE

Barycentrics    a^14-a^12*(b^2+c^2)-(b-c)^4*(b+c)^4*(b^2+c^2)*(b^4+c^4)+a^2*(b-c)^2*(b+c)^2*(b^4+c^4)^2-a^6*(b^2+c^2)^2*(b^4-3*b^2*c^2+c^4)-a^10*(b^4-b^2*c^2+c^4)+a^8*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^4*(b^10-b^6*c^4-b^4*c^6+c^10) : :

X(62368) lies on these lines: {4, 6}, {297, 56924}, {325, 3153}, {381, 5938}, {2794, 10317}, {3095, 31724}, {6033, 18403}, {7574, 35002}, {7778, 18531}, {10358, 62353}, {15760, 54060}, {18434, 54124}, {18438, 54393}, {39118, 54076}, {41613, 53569}, {45158, 58312}, {45921, 47339}


X(62369) = INVERSE OF X(6) IN TANGENTIAL CIRCLE

Barycentrics    a^2*((a^2-b^2)^5*(a^2+b^2)^2-(a-b)^3*(a+b)^3*(a^2+b^2)*(3*a^4+2*a^2*b^2+3*b^4)*c^2+(a^10+a^8*b^2+3*a^6*b^4-a^4*b^6+a^2*b^8-3*b^10)*c^4+(5*a^8-a^4*b^4+b^8)*c^6+(-5*a^6-a^4*b^2+a^2*b^4+b^6)*c^8-(a^2+b^2)*(a^2+3*b^2)*c^10+3*(a^2+b^2)*c^12-c^14) : :

X(62369) lies on these lines: {6, 26}, {22, 6032}, {24, 50718}, {111, 62291}, {112, 37932}, {115, 2070}, {1560, 21284}, {2079, 62358}, {2937, 7747}, {2963, 21394}, {5023, 21397}, {7575, 49123}, {9697, 44515}


X(62370) = INVERSE OF X(6) IN DELONGCHAMPS ELLIPSE

Barycentrics    a*(a^2*(b+c)-(b-c)^2*(b+c)+2*a*(b^2-3*b*c+c^2)) : :
X(62370) =

X(62370) lies on these lines: {1, 6}, {32, 24928}, {39, 9957}, {101, 47622}, {106, 5011}, {115, 7743}, {169, 54319}, {172, 20323}, {187, 5126}, {230, 44675}, {517, 1015}, {665, 4083}, {910, 9259}, {999, 1572}, {1149, 2170}, {1201, 41015}, {1319, 1415}, {1385, 2241}, {1420, 3053}, {1500, 31792}, {1575, 3880}, {1697, 5013}, {2242, 51788}, {2275, 3057}, {2276, 5919}, {3295, 9619}, {3304, 54382}, {3684, 47623}, {3767, 11373}, {3815, 31397}, {3912, 25125}, {3959, 52541}, {4051, 16605}, {5024, 31433}, {5119, 31443}, {5252, 9599}, {5254, 12053}, {5836, 16604}, {5903, 9336}, {6647, 53602}, {7032, 11997}, {7187, 41774}, {7738, 9785}, {7745, 10106}, {9574, 9819}, {9580, 44526}, {9592, 31393}, {9597, 12701}, {9614, 44518}, {9651, 22793}, {9665, 18480}, {10987, 37600}, {13881, 50443}, {15815, 61763}, {17316, 30829}, {18156, 30090}, {18161, 28022}, {21138, 57033}, {22332, 31426}, {27918, 43037}, {31434, 31489}, {31436, 31492}, {33854, 38460}, {33891, 59513}, {33930, 41793}, {33946, 41794}, {34371, 57037}, {35445, 53095}, {37542, 54317}

X(62370) = midpoint of X(i) and X(j) for these {i,j}: {33946, 41794}
X(62370) = reflection of X(i) in X(j) for these {i,j}: {21138, 57033}
X(62370) = inverse of X(6) in DeLongchamps ellipse
X(62370) = perspector of circumconic {{A, B, C, X(100), X(9309)}}
X(62370) = X(i)-Dao conjugate of X(j) for these {i, j}: {5121, 40875}
X(62370) = pole of line {667, 7083} with respect to the circumcircle
X(62370) = pole of line {6, 4083} with respect to the DeLongchamps ellipse
X(62370) = pole of line {55, 23196} with respect to the Feuerbach hyperbola
X(62370) = pole of line {650, 2275} with respect to the Steiner inellipse
X(62370) = pole of line {100, 48329} with respect to the Hutson-Moses hyperbola
X(62370) = pole of line {142, 58467} with respect to the dual conic of Yff parabola
X(62370) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5121)}}, {{A, B, C, X(8), X(34807)}}
X(62370) = barycentric product X(i)*X(j) for these (i, j): {1, 5121}
X(62370) = barycentric quotient X(i)/X(j) for these (i, j): {5121, 75}
X(62370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1149, 2170, 3290}, {2087, 3230, 43065}, {4051, 21214, 16605}, {9592, 31393, 31477}, {30556, 30557, 34807}, {40133, 45219, 2176}


X(62371) = INVERSE OF X(6) IN EXCENTRAL-HEXYL ELLIPSE

Barycentrics    a^2*(a^3*(b-c)^2-a^2*(b+c)*(b^2+c^2)+(b-c)^2*(b+c)*(b^2+c^2)-a*(b^2+c^2)*(b^2-4*b*c+c^2)) : :

X(62371) lies on these lines: {2, 54821}, {3, 6}, {30, 34460}, {36, 13006}, {37, 10165}, {40, 2275}, {104, 5291}, {115, 6882}, {140, 16589}, {172, 37561}, {214, 6184}, {232, 37305}, {355, 1574}, {515, 1575}, {517, 1015}, {604, 22071}, {631, 5283}, {672, 7117}, {946, 16604}, {952, 52959}, {992, 1765}, {1107, 6684}, {1155, 43039}, {1158, 39248}, {1194, 19649}, {1196, 16434}, {1385, 1500}, {1450, 37575}, {1506, 6842}, {1572, 3359}, {1573, 26446}, {1737, 53561}, {1766, 17053}, {1914, 2077}, {1939, 41006}, {2238, 58036}, {2241, 11248}, {2242, 10269}, {2276, 3576}, {2548, 6850}, {2549, 6827}, {3148, 44121}, {3767, 6891}, {3815, 6907}, {4129, 6002}, {4426, 5450}, {5088, 43063}, {5254, 6922}, {5277, 6940}, {5286, 6926}, {5299, 59326}, {5475, 6923}, {5537, 16784}, {5657, 16975}, {5731, 17756}, {5882, 20691}, {6825, 31401}, {6863, 31455}, {6865, 7738}, {6908, 31400}, {6909, 33854}, {6916, 7736}, {6928, 7748}, {6948, 7737}, {6958, 7746}, {6971, 39565}, {6978, 43620}, {6980, 7603}, {6982, 31415}, {7491, 7756}, {7745, 31775}, {7753, 28458}, {8962, 16440}, {9331, 30392}, {9336, 11531}, {9346, 44414}, {9575, 37560}, {9592, 30503}, {9620, 37611}, {9651, 10526}, {9665, 10525}, {9698, 37401}, {10267, 31451}, {10268, 31421}, {10306, 16781}, {10310, 16502}, {11362, 17448}, {11998, 40663}, {14936, 43065}, {15048, 37364}, {21477, 25934}, {21495, 36212}, {21868, 47745}, {22055, 52426}, {22132, 52410}, {22350, 52635}, {24598, 37416}, {25002, 26960}, {25066, 59579}, {26487, 31501}, {28245, 51558}, {31406, 37424}, {31429, 61122}, {37586, 52428}, {43053, 45270}, {54382, 59333}

X(62371) = inverse of X(6) in excentral-hexyl ellipse
X(62371) = pole of line {2092, 4129} with respect to the excircles-radical circle
X(62371) = pole of line {512, 23668} with respect to the Moses circle
X(62371) = pole of line {512, 23668} with respect to the Brocard inellipse
X(62371) = pole of line {6, 6002} with respect to the excentral-hexyl ellipse
X(62371) = pole of line {5, 17197} with respect to the Kiepert hyperbola
X(62371) = pole of line {647, 2292} with respect to the Steiner inellipse
X(62371) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(26020)}}, {{A, B, C, X(6), X(54821)}}, {{A, B, C, X(3431), X(47038)}}
X(62371) = barycentric product X(i)*X(j) for these (i, j): {26020, 3}
X(62371) = barycentric quotient X(i)/X(j) for these (i, j): {26020, 264}
X(62371) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {570, 5124, 18591}, {572, 50650, 2092}


X(62372) = INVERSE OF X(6) IN FEUERBACH HYPERBOLA

Barycentrics    a*(a-b-c)*(a^5+2*a^3*b*c-2*b*(b-c)^2*c*(b+c)-a*(b^2-c^2)^2) : :

X(62372) lies on these lines: {6, 11}, {9, 1936}, {19, 25}, {32, 62333}, {41, 2654}, {171, 1709}, {172, 22760}, {212, 59207}, {218, 10395}, {219, 3686}, {220, 21677}, {222, 226}, {333, 27540}, {350, 28934}, {497, 5276}, {607, 46835}, {946, 56913}, {999, 11998}, {1012, 1415}, {1107, 10966}, {1837, 54416}, {2238, 61397}, {2242, 53561}, {2276, 11502}, {2286, 51424}, {2548, 26476}, {3509, 24430}, {4136, 4513}, {4254, 14749}, {5218, 37675}, {5280, 9581}, {5282, 7069}, {5283, 26357}, {5299, 50443}, {5727, 16785}, {5781, 35326}, {5783, 30818}, {5816, 22132}, {6911, 13006}, {9596, 10958}, {10589, 33854}, {11376, 16502}, {14942, 56899}, {16412, 45270}, {16517, 54408}, {16870, 47042}, {16973, 18839}, {17756, 60782}, {22753, 43039}, {28052, 28070}, {28806, 37664}, {28808, 28920}, {37540, 41166}

X(62372) = midpoint of X(i) and X(j) for these {i,j}: {7133, 42013}
X(62372) = inverse of X(6) in Feuerbach hyperbola
X(62372) = perspector of circumconic {{A, B, C, X(929), X(1783)}}
X(62372) = pole of line {4025, 11934} with respect to the incircle
X(62372) = pole of line {6, 12723} with respect to the Feuerbach hyperbola
X(62372) = pole of line {197, 851} with respect to the Kiepert hyperbola
X(62372) = pole of line {34975, 56324} with respect to the MacBeath circumconic
X(62372) = pole of line {2509, 21186} with respect to the Steiner inellipse
X(62372) = pole of line {56, 20269} with respect to the dual conic of Yff parabola
X(62372) = intersection, other than A, B, C, of circumconics {{A, B, C, X(25), X(28942)}}, {{A, B, C, X(33), X(13478)}}, {{A, B, C, X(219), X(15624)}}, {{A, B, C, X(222), X(3185)}}, {{A, B, C, X(281), X(44670)}}, {{A, B, C, X(1824), X(40160)}}, {{A, B, C, X(23050), X(56225)}}
X(62372) = barycentric product X(i)*X(j) for these (i, j): {28942, 37}
X(62372) = barycentric quotient X(i)/X(j) for these (i, j): {28942, 274}
X(62372) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {19, 46344, 53413}, {7133, 42013, 44670}


X(62373) = INVERSE OF X(6) IN LEMOINE INELLIPSE

Barycentrics    4*a^8-9*a^6*(b^2+c^2)+a^4*(-7*b^4+20*b^2*c^2-7*c^4)-(b^4-c^4)^2+a^2*(b^2+c^2)*(5*b^4-6*b^2*c^2+5*c^4) : :

X(62373) lies on these lines: {2, 6}, {1499, 23287}, {2030, 15303}, {2770, 47169}, {3291, 47280}, {5477, 43913}, {8352, 20381}, {10418, 32113}, {16511, 30516}, {32740, 34806}, {34169, 53416}, {38951, 53418}


X(62374) = INVERSE OF X(6) IN HUTSON-MOSES HYPERBOLA

Barycentrics    (a-b)*(a-c)*(a^5+6*a^3*b*c-2*a^4*(b+c)-2*a^2*b*c*(b+c)-b*(b-c)^2*c*(b+c)+a*b*c*(3*b^2-5*b*c+3*c^2)) : :

X(62374) lies on these lines: {2, 6163}, {6, 5375}, {8, 54230}, {100, 190}, {145, 6630}, {765, 4448}, {956, 9266}, {1016, 30583}, {3257, 36848}, {6161, 11607}, {6546, 39185}, {16997, 40860}


X(62375) = INVERSE OF X(6) IN DUAL CONIC OF ANTICOMPLEMENTARY CIRCLE

Barycentrics    2*a^8-3*a^4*(b^2-c^2)^2-a^6*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^2+c^2)+(b^4-c^4)^2 : :
X(62375) = X[67]+2*X[15471], -X[1495]+4*X[47454], -X[5095]+4*X[47460], 2*X[5159]+X[53777], -X[5181]+4*X[37911], 2*X[6698]+X[47549], 2*X[6699]+X[47571], 2*X[11735]+X[47506], 5*X[15059]+X[32220], X[21639]+3*X[61691], 2*X[32257]+X[47546], 2*X[45311]+X[47545]

X(62375) lies on these lines: {2, 6}, {4, 10249}, {25, 23327}, {51, 51744}, {66, 19118}, {67, 15471}, {125, 44102}, {140, 50649}, {182, 15760}, {297, 53507}, {338, 1990}, {378, 5480}, {389, 25555}, {403, 1503}, {419, 45279}, {427, 19136}, {441, 3003}, {460, 53569}, {468, 2393}, {511, 10257}, {525, 2485}, {542, 51425}, {1177, 15128}, {1495, 47454}, {1634, 59651}, {1899, 19153}, {1974, 11550}, {2071, 29181}, {2781, 16227}, {2929, 38402}, {3147, 34787}, {3542, 8549}, {3548, 44492}, {3549, 44503}, {3564, 44911}, {3567, 37118}, {5038, 58455}, {5095, 47460}, {5116, 35928}, {5159, 53777}, {5181, 37911}, {5476, 11438}, {5486, 52292}, {5621, 15311}, {5946, 18583}, {5972, 8681}, {6034, 44650}, {6128, 44216}, {6467, 58437}, {6593, 12827}, {6623, 23324}, {6677, 29959}, {6698, 47549}, {6699, 47571}, {6776, 61701}, {7527, 13568}, {7542, 44479}, {7687, 11645}, {8541, 10169}, {8550, 18912}, {9019, 11746}, {9818, 14561}, {10018, 15073}, {10020, 15074}, {10151, 36201}, {10168, 11430}, {10602, 37453}, {11511, 16789}, {11585, 44470}, {11735, 47506}, {12241, 43651}, {12294, 51734}, {13160, 43815}, {13403, 20190}, {14984, 44452}, {15059, 32220}, {15069, 59659}, {15116, 41616}, {15448, 19596}, {15462, 44665}, {15465, 16619}, {15526, 40135}, {15583, 20987}, {16310, 23583}, {16657, 51739}, {18533, 23049}, {18919, 38282}, {19459, 31267}, {20300, 45179}, {20975, 44887}, {21639, 61691}, {23291, 41719}, {23326, 41585}, {25328, 38851}, {26926, 41593}, {32257, 47546}, {32284, 43839}, {32366, 58450}, {32740, 37801}, {34380, 46114}, {37073, 40825}, {37077, 50959}, {37487, 54131}, {37765, 41254}, {37855, 53419}, {39571, 54215}, {41257, 44440}, {41587, 44469}, {45311, 47545}, {49672, 54169}, {50979, 61619}, {53094, 61113}, {60133, 60428}

X(62375) = midpoint of X(i) and X(j) for these {i,j}: {6, 62376}, {125, 44102}, {403, 5622}, {3580, 22151}, {37784, 62382}
X(62375) = reflection of X(i) in X(j) for these {i,j}: {19596, 15448}, {44102, 47457}, {62376, 47296}
X(62375) = complement of X(62382)
X(62375) = perspector of circumconic {{A, B, C, X(99), X(13575)}}
X(62375) = X(i)-complementary conjugate of X(j) for these {i, j}: {19, 15116}, {1177, 18589}, {1973, 1560}, {10423, 4369}, {36095, 512}, {60133, 2887}
X(62375) = pole of line {1499, 8549} with respect to the cosine circle
X(62375) = pole of line {2501, 41361} with respect to the polar circle
X(62375) = pole of line {5095, 6467} with respect to the Jerabek hyperbola
X(62375) = pole of line {2, 112} with respect to the Kiepert hyperbola
X(62375) = pole of line {66, 3566} with respect to the Orthic inconic
X(62375) = pole of line {6, 41673} with respect to the Stammler hyperbola
X(62375) = pole of line {523, 7500} with respect to the Steiner circumellipse
X(62375) = pole of line {25, 523} with respect to the Steiner inellipse
X(62375) = pole of line {6, 525} with respect to the dual conic of anticomplementary circle
X(62375) = pole of line {141, 525} with respect to the dual conic of DeLongchamps circle
X(62375) = pole of line {525, 6515} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62375) = pole of line {525, 28419} with respect to the dual conic of polar circle
X(62375) = pole of line {115, 47125} with respect to the dual conic of Wallace hyperbola
X(62375) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(83), X(54347)}}, {{A, B, C, X(141), X(44549)}}, {{A, B, C, X(525), X(28419)}}, {{A, B, C, X(8749), X(52058)}}, {{A, B, C, X(20806), X(41511)}}
X(62375) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37784, 62382}, {2, 41614, 141}, {2, 6, 54347}, {67, 47458, 15471}, {403, 5622, 1503}, {524, 47296, 62376}, {597, 13567, 6}, {597, 3589, 37649}, {3580, 22151, 524}, {3618, 5422, 597}, {10602, 37453, 61683}, {11511, 61646, 16789}, {13567, 47296, 44569}, {23292, 47296, 62378}, {23292, 62378, 11064}


X(62376) = INVERSE OF X(6) IN DUAL CONIC OF CIRCUMCIRCLE

Barycentrics    a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+(b^4-c^4)^2-a^4*(b^4+c^4) : :
X(62376) = X[67]+2*X[468], -4*X[140]+X[54215], X[265]+2*X[47569], 5*X[631]+X[54162], -X[858]+4*X[6698], -2*X[1495]+5*X[47452], -2*X[5095]+5*X[47458], -4*X[5159]+X[10510], X[7575]+2*X[61543], X[9140]+2*X[47556], X[10295]+2*X[32274], -13*X[10303]+X[54216] and many others

X(62376) lies on these lines: {2, 6}, {5, 37473}, {24, 34118}, {25, 34177}, {50, 441}, {66, 20987}, {67, 468}, {125, 2393}, {140, 54215}, {186, 1503}, {265, 47569}, {297, 338}, {403, 2781}, {427, 9971}, {511, 2072}, {525, 23285}, {542, 44214}, {631, 54162}, {858, 6698}, {1030, 18642}, {1350, 18531}, {1352, 6644}, {1368, 16789}, {1495, 47452}, {1576, 44887}, {1609, 20208}, {1620, 6247}, {1691, 41255}, {1843, 6697}, {1899, 61683}, {1989, 44216}, {2076, 15013}, {2450, 53575}, {2892, 37777}, {3003, 15526}, {3153, 29181}, {3564, 15462}, {3818, 38321}, {5095, 47458}, {5133, 16776}, {5159, 10510}, {5181, 8681}, {5480, 7577}, {5523, 46105}, {5891, 18388}, {6128, 45312}, {6389, 8553}, {6403, 20300}, {6639, 44480}, {6640, 44469}, {7505, 34117}, {7550, 12241}, {7575, 61543}, {7687, 19924}, {8550, 26879}, {9140, 47556}, {9973, 23300}, {10264, 18579}, {10295, 32274}, {10298, 44882}, {10303, 54216}, {10516, 18420}, {10606, 18533}, {11178, 11438}, {11188, 23293}, {11416, 15059}, {11457, 15581}, {11477, 41587}, {11645, 44265}, {11646, 54074}, {11799, 49116}, {12233, 14789}, {12359, 12420}, {12367, 47449}, {12585, 43839}, {13169, 47544}, {15000, 23200}, {15073, 26917}, {15116, 35370}, {15118, 21639}, {15471, 16176}, {15579, 43607}, {15582, 34224}, {15812, 15818}, {16310, 44334}, {16581, 18637}, {17821, 35486}, {18324, 46264}, {18390, 50977}, {18755, 22366}, {18876, 41336}, {19136, 61645}, {19153, 37453}, {19510, 41586}, {21243, 29959}, {21500, 36743}, {21637, 58450}, {21663, 36201}, {23296, 47552}, {23332, 41585}, {26869, 32621}, {26926, 58437}, {31833, 43689}, {32127, 32282}, {32238, 47321}, {32244, 47549}, {32245, 41724}, {32257, 53777}, {32269, 37980}, {32298, 51725}, {34146, 51403}, {34163, 60428}, {34477, 48906}, {34990, 62338}, {37118, 51739}, {37487, 47353}, {37765, 48540}, {37778, 50188}, {37990, 40670}, {38282, 41719}, {39231, 47526}, {40107, 50649}, {41254, 53507}, {41599, 58494}, {43817, 44479}, {44102, 47455}, {44324, 44439}, {44754, 50008}, {51425, 56568}, {51733, 52417}

X(62376) = midpoint of X(i) and X(j) for these {i,j}: {67, 18374}, {69, 37784}, {3580, 62382}, {11416, 41721}
X(62376) = reflection of X(i) in X(j) for these {i,j}: {15462, 44452}, {18374, 468}, {21639, 15118}, {47280, 21639}, {47455, 61691}, {56568, 51425}, {6, 62375}, {62375, 47296}, {62381, 62382}, {62382, 141}
X(62376) = complement of X(22151)
X(62376) = perspector of circumconic {{A, B, C, X(99), X(18018)}}
X(62376) = X(i)-Dao conjugate of X(j) for these {i, j}: {15116, 6}
X(62376) = X(i)-complementary conjugate of X(j) for these {i, j}: {19, 6593}, {67, 18589}, {661, 38971}, {798, 55048}, {935, 4369}, {2157, 3}, {3455, 1214}, {8791, 10}, {11605, 21247}, {36128, 52533}, {37221, 11574}, {46105, 2887}
X(62376) = pole of line {669, 2353} with respect to the circumcircle
X(62376) = pole of line {2501, 8743} with respect to the polar circle
X(62376) = pole of line {1205, 6467} with respect to the Jerabek hyperbola
X(62376) = pole of line {2, 339} with respect to the Kiepert hyperbola
X(62376) = pole of line {99, 38861} with respect to the Kiepert parabola
X(62376) = pole of line {3566, 23300} with respect to the Orthic inconic
X(62376) = pole of line {523, 7391} with respect to the Steiner circumellipse
X(62376) = pole of line {427, 523} with respect to the Steiner inellipse
X(62376) = pole of line {2, 4611} with respect to the Wallace hyperbola
X(62376) = pole of line {6, 525} with respect to the dual conic of circumcircle
X(62376) = pole of line {525, 3589} with respect to the dual conic of DeLongchamps circle
X(62376) = pole of line {525, 3050} with respect to the dual conic of orthocentroidal circle
X(62376) = pole of line {525, 1993} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62376) = pole of line {525, 20806} with respect to the dual conic of polar circle
X(62376) = pole of line {141, 525} with respect to the dual conic of tangential circle
X(62376) = pole of line {338, 33294} with respect to the dual conic of Stammler hyperbola
X(62376) = pole of line {525, 3050} with respect to the dual conic of Yff hyperbola
X(62376) = pole of line {115, 2485} with respect to the dual conic of Wallace hyperbola
X(62376) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37981)}}, {{A, B, C, X(66), X(28408)}}, {{A, B, C, X(67), X(15116)}}, {{A, B, C, X(86), X(18694)}}, {{A, B, C, X(525), X(20806)}}, {{A, B, C, X(1177), X(22151)}}, {{A, B, C, X(2421), X(34138)}}, {{A, B, C, X(3589), X(44549)}}, {{A, B, C, X(5523), X(18374)}}, {{A, B, C, X(9517), X(38851)}}, {{A, B, C, X(11064), X(60527)}}, {{A, B, C, X(14910), X(52058)}}, {{A, B, C, X(28419), X(56473)}}, {{A, B, C, X(35370), X(36952)}}
X(62376) = barycentric product X(i)*X(j) for these (i, j): {1, 18694}, {15116, 2373}, {18019, 40949}, {37981, 69}
X(62376) = barycentric quotient X(i)/X(j) for these (i, j): {15116, 858}, {18694, 75}, {35370, 1995}, {37981, 4}, {40949, 23}
X(62376) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 13567, 54347}, {141, 343, 599}, {141, 3580, 62381}, {141, 524, 62382}, {297, 338, 53416}, {343, 44569, 3580}, {524, 47296, 62375}, {599, 3763, 17811}, {1368, 16789, 54334}, {3564, 44452, 15462}, {3580, 37636, 62377}, {3580, 62382, 524}, {5159, 47558, 10510}, {6698, 8262, 858}, {13567, 54347, 6}, {15116, 35370, 37981}, {23300, 41584, 9973}, {44569, 47296, 26958}, {47296, 62378, 2}, {62302, 62377, 37636}


X(62377) = INVERSE OF X(6) IN DUAL CONIC OF 1ST DROZ-FARNY CIRCLE

Barycentrics    a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2+2*a^4*(b^4+c^4)*(b^4-5*b^2*c^2+c^4)+2*a^6*(b^2+c^2)*(b^4+3*b^2*c^2+c^4)-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(3*b^4-4*b^2*c^2+3*c^4)-a^8*(3*b^4+4*b^2*c^2+3*c^4) : :

X(62377) lies on these lines: {2, 6}, {403, 1112}, {511, 12827}, {858, 14984}, {2071, 3448}, {2072, 45237}, {3564, 16387}, {5622, 41724}, {7426, 20772}, {14918, 37778}, {15122, 48362}, {32111, 54037}, {32220, 41612}, {32263, 45780}


X(62378) = INVERSE OF X(6) IN DUAL CONIC OF 2ND DROZ-FARNY CIRCLE

Barycentrics    2*a^12-5*a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2-a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-12*b^2*c^2+c^4)-4*a^4*(b^2-c^2)^2*(b^4+5*b^2*c^2+c^4)+a^8*(b^4+18*b^2*c^2+c^4)+6*a^6*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :

X(62378) lies on these lines: {2, 6}, {186, 10117}, {403, 15131}, {468, 2781}, {525, 46425}, {541, 18579}, {1503, 40114}, {2072, 37477}, {5655, 44214}, {5925, 37460}, {5972, 13754}, {6644, 61507}, {10605, 61680}, {12163, 59659}, {12828, 61691}, {15462, 41615}, {16252, 35486}, {20127, 44265}, {29181, 37980}, {41618, 47457}


X(62379) = INVERSE OF X(6) IN DUAL CONIC OF INCIRCLE

Barycentrics    (a-b-c)*(a^5-2*a^3*(b-c)^2-5*a*b^2*c^2-a^4*(b+c)+2*a^2*b*c*(b+c)+b^2*c^2*(b+c)) : :

X(62379) lies on these lines: {6, 644}, {8, 34807}, {55, 3699}, {56, 190}, {528, 36926}, {900, 4057}, {2796, 62297}, {3550, 30568}, {3756, 44416}, {4422, 56313}, {4432, 37588}, {9372, 56277}, {17261, 37617}, {17339, 26727}, {17777, 29243}, {24820, 56276}


X(62380) = INVERSE OF X(6) IN DUAL CONIC OF CIRCUMCIRCLE OF THE JOHNSON TRIANGLE

Barycentrics    2*a^12-5*a^10*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2+6*a^6*(b^2+c^2)*(b^4-4*b^2*c^2+c^4)+a^8*(b^4+18*b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(b^6-5*b^4*c^2-5*b^2*c^4+c^6)-4*a^4*(b^8-5*b^4*c^4+c^8) : :

X(62380) lies on these lines: {2, 6}, {403, 14643}, {858, 41615}, {2986, 53507}, {3292, 12827}, {10257, 46114}, {10272, 47332}, {14920, 37778}, {18436, 37118}, {20127, 54995}, {35265, 52403}, {44440, 47391}


X(62381) = INVERSE OF X(6) IN DUAL CONIC OF ORTHOCENTROIDAL CIRCLE

Barycentrics    a^6*(b^2+c^2)+(b^4-c^4)^2-a^4*(b^4+8*b^2*c^2+c^4)-a^2*(b^6-5*b^4*c^2-5*b^2*c^4+c^6) : :
X(62381) = -4*X[5972]+3*X[47455], -3*X[14643]+2*X[47581], -3*X[25320]+5*X[30745], -4*X[32223]+5*X[47452], -2*X[32269]+3*X[47450], -2*X[47549]+3*X[52699]

X(62381) lies on these lines: {2, 6}, {30, 5648}, {67, 3564}, {113, 511}, {125, 9027}, {338, 1236}, {340, 41253}, {525, 35522}, {542, 10564}, {625, 49123}, {858, 2854}, {1352, 31861}, {1503, 2892}, {2072, 61665}, {2393, 32114}, {3260, 53416}, {3431, 51737}, {3581, 47569}, {3793, 41336}, {3933, 18375}, {4846, 54173}, {5505, 47097}, {5650, 16511}, {5965, 32257}, {5972, 47455}, {6096, 40347}, {6390, 36883}, {6393, 36792}, {6593, 32220}, {7813, 14961}, {7845, 45312}, {8262, 41670}, {8263, 9971}, {8542, 61743}, {8547, 16063}, {9145, 47526}, {9730, 40107}, {10295, 33851}, {10510, 13248}, {13352, 34507}, {14643, 47581}, {14984, 51391}, {15069, 37497}, {15118, 32127}, {15360, 47556}, {18860, 41359}, {19130, 29959}, {23061, 41721}, {25320, 30745}, {31670, 58885}, {32223, 47452}, {32227, 41613}, {32269, 47450}, {34380, 47558}, {37470, 50977}, {44791, 47468}, {47322, 51389}, {47334, 47473}, {47449, 47582}, {47549, 52699}, {51371, 52881}, {55977, 61735}

X(62381) = midpoint of X(i) and X(j) for these {i,j}: {69, 323}, {23061, 41721}, {32114, 51360}
X(62381) = reflection of X(i) in X(j) for these {i,j}: {125, 19510}, {10295, 33851}, {11579, 15122}, {15360, 47556}, {3580, 141}, {3581, 47569}, {31670, 58885}, {32113, 5181}, {32127, 15118}, {32220, 6593}, {47322, 51389}, {47582, 47449}, {53777, 5972}, {6, 11064}, {62376, 62382}
X(62381) = complement of X(41617)
X(62381) = X(i)-complementary conjugate of X(j) for these {i, j}: {2696, 4369}, {55973, 2887}
X(62381) = pole of line {2501, 59928} with respect to the polar circle
X(62381) = pole of line {2, 44468} with respect to the Kiepert hyperbola
X(62381) = pole of line {6, 12824} with respect to the Stammler hyperbola
X(62381) = pole of line {523, 16063} with respect to the Steiner circumellipse
X(62381) = pole of line {523, 30739} with respect to the Steiner inellipse
X(62381) = pole of line {2, 19220} with respect to the Wallace hyperbola
X(62381) = pole of line {525, 599} with respect to the dual conic of circumcircle
X(62381) = pole of line {6, 525} with respect to the dual conic of orthocentroidal circle
X(62381) = pole of line {525, 15066} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62381) = pole of line {525, 41614} with respect to the dual conic of polar circle
X(62381) = pole of line {6, 525} with respect to the dual conic of Yff hyperbola
X(62381) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(18880)}}, {{A, B, C, X(67), X(3580)}}, {{A, B, C, X(525), X(41614)}}, {{A, B, C, X(5504), X(22151)}}, {{A, B, C, X(5505), X(41617)}}, {{A, B, C, X(5913), X(40347)}}, {{A, B, C, X(5971), X(18019)}}, {{A, B, C, X(6096), X(37784)}}, {{A, B, C, X(44569), X(60527)}}, {{A, B, C, X(57466), X(61198)}}
X(62381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 323, 524}, {141, 3580, 62376}, {141, 524, 3580}, {511, 5181, 32113}, {524, 11064, 6}, {3564, 15122, 11579}, {3580, 62382, 141}, {5972, 53777, 47455}, {9027, 19510, 125}, {22151, 28419, 11064}, {32114, 51360, 2393}


X(62382) = INVERSE OF X(6) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    (a^2-b^2-c^2)*(b^2*(a^4-b^4)+(a^2-b^2)^2*c^2+b^2*c^4-c^6) : :
X(62382) = -X[895]+4*X[5159], X[3292]+2*X[32257], -4*X[5972]+X[32220], -4*X[6723]+X[32127], -X[15107]+4*X[47449], X[23061]+2*X[47558], X[33878]+2*X[58885]

X(62382) lies on these lines: {2, 6}, {22, 61683}, {30, 49125}, {53, 44136}, {67, 58357}, {76, 60266}, {110, 16387}, {125, 8681}, {249, 15388}, {287, 43755}, {297, 3260}, {311, 53481}, {316, 37855}, {378, 1352}, {403, 511}, {427, 8263}, {441, 4558}, {525, 3267}, {542, 51394}, {858, 2393}, {895, 5159}, {1092, 34507}, {1236, 5523}, {1350, 44440}, {1444, 18642}, {1503, 2071}, {1531, 19924}, {2072, 14984}, {2892, 37929}, {2979, 16789}, {3098, 44458}, {3292, 32257}, {3564, 5622}, {3912, 62328}, {3964, 20208}, {5133, 29959}, {5207, 15014}, {5562, 40107}, {5972, 32220}, {6148, 40884}, {6247, 53050}, {6389, 9723}, {6390, 34897}, {6403, 45179}, {6623, 51212}, {6640, 8548}, {6723, 32127}, {6776, 47391}, {7505, 44492}, {8550, 9545}, {9019, 32113}, {9813, 61743}, {9925, 25738}, {10018, 44470}, {10169, 11443}, {10249, 15069}, {10602, 30771}, {11179, 49672}, {11442, 61737}, {11585, 15073}, {11645, 16163}, {12272, 23300}, {12379, 14982}, {14060, 51611}, {14516, 34118}, {15074, 37452}, {15107, 47449}, {15121, 30739}, {15131, 41743}, {15462, 52416}, {15526, 36212}, {15531, 26913}, {15559, 43130}, {15760, 23039}, {16386, 36201}, {16977, 41615}, {18537, 40330}, {18583, 61711}, {18911, 32621}, {19121, 58437}, {21243, 61667}, {22468, 36794}, {23061, 47558}, {23327, 30744}, {26869, 53019}, {27365, 61664}, {29181, 51998}, {32269, 37962}, {32284, 43817}, {33314, 45279}, {33878, 58885}, {34380, 44911}, {34777, 40317}, {34787, 37444}, {34828, 44180}, {35928, 60702}, {37077, 47354}, {37804, 41511}, {37990, 61676}, {42313, 57819}, {45921, 53575}, {52262, 61545}, {53022, 61690}, {54075, 56473}

X(62382) = midpoint of X(i) and X(j) for these {i,j}: {69, 22151}, {62376, 62381}
X(62382) = reflection of X(i) in X(j) for these {i,j}: {22151, 11064}, {3580, 62376}, {32220, 44102}, {37784, 62375}, {44102, 5972}, {5622, 10257}, {62376, 141}
X(62382) = inverse of X(20806) in MacBeath circumconic
X(62382) = isotomic conjugate of X(60133)
X(62382) = complement of X(37784)
X(62382) = anticomplement of X(62375)
X(62382) = perspector of circumconic {{A, B, C, X(99), X(305)}}
X(62382) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 1177}, {31, 60133}, {512, 36095}, {661, 10423}, {923, 51823}, {1096, 18876}, {1973, 2373}, {1974, 37220}, {32676, 60040}
X(62382) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60133}, {6, 1177}, {468, 60428}, {858, 8744}, {2482, 51823}, {5181, 6}, {5976, 52486}, {6337, 2373}, {6503, 18876}, {14357, 8791}, {14961, 468}, {15526, 60040}, {36830, 10423}, {38971, 2501}, {39054, 36095}, {61067, 25}, {62375, 62375}
X(62382) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1236, 858}, {30786, 51253}, {37804, 6390}
X(62382) = X(i)-complementary conjugate of X(j) for these {i, j}: {661, 48317}, {2157, 39169}, {40347, 10}, {41521, 226}, {53895, 4369}
X(62382) = X(i)-cross conjugate of X(j) for these {i, j}: {5181, 69}, {14961, 858}
X(62382) = pole of line {2207, 2501} with respect to the polar circle
X(62382) = pole of line {6467, 32285} with respect to the Jerabek hyperbola
X(62382) = pole of line {2, 40347} with respect to the Kiepert hyperbola
X(62382) = pole of line {99, 250} with respect to the Kiepert parabola
X(62382) = pole of line {525, 20806} with respect to the MacBeath circumconic
X(62382) = pole of line {6563, 41009} with respect to the MacBeath inconic
X(62382) = pole of line {6, 1112} with respect to the Stammler hyperbola
X(62382) = pole of line {523, 1370} with respect to the Steiner circumellipse
X(62382) = pole of line {523, 1368} with respect to the Steiner inellipse
X(62382) = pole of line {2, 112} with respect to the Wallace hyperbola
X(62382) = pole of line {69, 525} with respect to the dual conic of circumcircle
X(62382) = pole of line {525, 20806} with respect to the dual conic of nine-point circle
X(62382) = pole of line {525, 3049} with respect to the dual conic of orthocentroidal circle
X(62382) = pole of line {394, 525} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(62382) = pole of line {6, 525} with respect to the dual conic of polar circle
X(62382) = pole of line {14615, 57082} with respect to the dual conic of Brocard inellipse
X(62382) = pole of line {3265, 3926} with respect to the dual conic of Orthic inconic
X(62382) = pole of line {338, 2501} with respect to the dual conic of Stammler hyperbola
X(62382) = pole of line {525, 3049} with respect to the dual conic of Yff hyperbola
X(62382) = pole of line {115, 2489} with respect to the dual conic of Wallace hyperbola
X(62382) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(858)}}, {{A, B, C, X(6), X(525)}}, {{A, B, C, X(67), X(15116)}}, {{A, B, C, X(69), X(1236)}}, {{A, B, C, X(76), X(41614)}}, {{A, B, C, X(81), X(15413)}}, {{A, B, C, X(86), X(17172)}}, {{A, B, C, X(183), X(57819)}}, {{A, B, C, X(193), X(56579)}}, {{A, B, C, X(230), X(47138)}}, {{A, B, C, X(249), X(20806)}}, {{A, B, C, X(287), X(3580)}}, {{A, B, C, X(323), X(45792)}}, {{A, B, C, X(325), X(57829)}}, {{A, B, C, X(333), X(20884)}}, {{A, B, C, X(394), X(4143)}}, {{A, B, C, X(524), X(5181)}}, {{A, B, C, X(597), X(3521)}}, {{A, B, C, X(599), X(19510)}}, {{A, B, C, X(895), X(37784)}}, {{A, B, C, X(966), X(21017)}}, {{A, B, C, X(1184), X(14580)}}, {{A, B, C, X(1560), X(24855)}}, {{A, B, C, X(1992), X(34403)}}, {{A, B, C, X(2287), X(15416)}}, {{A, B, C, X(2303), X(18669)}}, {{A, B, C, X(2421), X(6393)}}, {{A, B, C, X(3231), X(42665)}}, {{A, B, C, X(5304), X(21459)}}, {{A, B, C, X(7735), X(52672)}}, {{A, B, C, X(13567), X(41603)}}, {{A, B, C, X(14376), X(39269)}}, {{A, B, C, X(14977), X(37778)}}, {{A, B, C, X(15066), X(42313)}}, {{A, B, C, X(15126), X(26958)}}, {{A, B, C, X(26206), X(31360)}}, {{A, B, C, X(34211), X(60053)}}, {{A, B, C, X(37643), X(42287)}}, {{A, B, C, X(40708), X(56430)}}, {{A, B, C, X(47296), X(60527)}}
X(62382) = barycentric product X(i)*X(j) for these (i, j): {69, 858}, {1236, 3}, {2393, 305}, {3265, 61181}, {3267, 61198}, {3926, 5523}, {4563, 47138}, {12827, 57829}, {14961, 76}, {17172, 306}, {17206, 21017}, {18669, 304}, {20806, 52512}, {20884, 63}, {21109, 4561}, {22151, 57476}, {30786, 5181}, {41603, 57800}, {42665, 670}, {44146, 51253}, {46592, 52617}, {52672, 6393}, {56579, 62310}, {59422, 6390}
X(62382) = barycentric quotient X(i)/X(j) for these (i, j): {2, 60133}, {3, 1177}, {69, 2373}, {110, 10423}, {304, 37220}, {305, 46140}, {325, 52486}, {394, 18876}, {524, 51823}, {525, 60040}, {662, 36095}, {858, 4}, {895, 10422}, {1236, 264}, {1370, 61489}, {1560, 60428}, {2393, 25}, {3266, 58078}, {3933, 46165}, {5181, 468}, {5523, 393}, {12827, 403}, {14580, 2207}, {14961, 6}, {15116, 37981}, {15126, 37197}, {17172, 27}, {18669, 19}, {19510, 5094}, {20806, 52513}, {20884, 92}, {21017, 1826}, {21109, 7649}, {22151, 60002}, {34158, 32740}, {36212, 36823}, {41603, 235}, {42665, 512}, {46592, 32713}, {47138, 2501}, {47426, 44102}, {51253, 895}, {52512, 43678}, {52672, 6531}, {56579, 2374}, {57476, 46105}, {57485, 8753}, {59422, 17983}, {60499, 8749}, {61181, 107}, {61198, 112}, {61454, 32741}, {61456, 34207}, {62310, 56685}
X(62382) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 37784, 62375}, {2, 69, 41614}, {6, 141, 26156}, {69, 28408, 6}, {69, 28708, 193}, {141, 3631, 59778}, {141, 524, 62376}, {141, 54347, 2}, {141, 599, 37636}, {141, 62381, 3580}, {394, 11064, 40112}, {394, 599, 69}, {427, 8263, 11188}, {524, 11064, 22151}, {524, 62375, 37784}, {2063, 41614, 20806}, {3564, 10257, 5622}, {3619, 41617, 47296}, {5181, 19510, 858}, {15526, 36212, 62338}, {33314, 53350, 45279}, {62376, 62381, 524}


X(62383) = INVERSE OF X(6) IN DUAL CONIC OF YFF PARABOLA

Barycentrics    a^4-2*b*(b-c)^2*c-2*a*(b-c)^2*(b+c)+a^2*(b^2+c^2) : :

X(62383) lies on these lines: {2, 17747}, {3, 142}, {4, 21258}, {6, 7}, {9, 3739}, {40, 6706}, {45, 51052}, {46, 24774}, {55, 30949}, {75, 50995}, {85, 27000}, {86, 14953}, {101, 57521}, {116, 381}, {141, 2550}, {144, 17277}, {220, 17682}, {238, 4312}, {277, 4295}, {390, 4648}, {518, 4361}, {528, 17313}, {910, 40719}, {954, 5132}, {958, 17050}, {999, 17761}, {1376, 20335}, {1418, 42309}, {1478, 4904}, {1836, 51400}, {1890, 37396}, {2082, 4059}, {2099, 9317}, {2170, 7223}, {3207, 4209}, {3243, 4852}, {3295, 17758}, {3434, 51384}, {3616, 59607}, {3662, 20172}, {3671, 52542}, {3817, 62388}, {3826, 17327}, {3946, 5542}, {4292, 24181}, {4335, 45223}, {4429, 38185}, {4459, 60910}, {4513, 20244}, {4649, 59372}, {4851, 5853}, {4916, 12630}, {5088, 34522}, {5223, 49483}, {5263, 59412}, {5603, 17044}, {5698, 34824}, {5710, 26978}, {5737, 56509}, {6172, 49727}, {6173, 16503}, {6284, 26101}, {6666, 61344}, {7225, 9454}, {7228, 51144}, {7232, 24699}, {7770, 24190}, {7991, 59615}, {10431, 45226}, {12047, 20269}, {12513, 20257}, {15970, 29181}, {16371, 25532}, {16466, 24790}, {16593, 17265}, {16777, 27475}, {16885, 60960}, {17045, 38053}, {17067, 30424}, {17095, 27183}, {17220, 25878}, {17234, 20533}, {17239, 38200}, {17296, 49460}, {17300, 20162}, {17302, 20131}, {17306, 38052}, {17318, 51058}, {17321, 20135}, {17349, 20059}, {17369, 18230}, {17579, 26140}, {17605, 30742}, {17675, 24045}, {18166, 29775}, {18634, 38150}, {20179, 48629}, {20195, 25498}, {20328, 28174}, {20347, 24596}, {21239, 42356}, {21255, 32941}, {23151, 24588}, {24352, 40131}, {24393, 28634}, {24784, 37692}, {25521, 37499}, {27384, 51418}, {28639, 38316}, {31657, 37474}, {37510, 60922}, {39542, 52826}, {42871, 49472}, {46922, 59375}, {47357, 49738}, {50081, 51102}, {50098, 50996}, {50112, 51099}, {50128, 50997}, {52511, 60955}, {57537, 57792}

X(62383) = midpoint of X(i) and X(j) for these {i,j}: {7, 5819}
X(62383) = complement of X(41325)
X(62383) = perspector of circumconic {{A, B, C, X(927), X(43190)}}
X(62383) = X(i)-Ceva conjugate of X(j) for these {i, j}: {9057, 514}
X(62383) = pole of line {514, 8638} with respect to the circumcircle
X(62383) = pole of line {21185, 43042} with respect to the incircle
X(62383) = pole of line {4184, 42316} with respect to the Stammler hyperbola
X(62383) = pole of line {676, 4025} with respect to the Steiner inellipse
X(62383) = pole of line {29616, 33297} with respect to the Wallace hyperbola
X(62383) = pole of line {6, 516} with respect to the dual conic of Yff parabola
X(62383) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(14377), X(56783)}}, {{A, B, C, X(15320), X(55937)}}, {{A, B, C, X(17747), X(59259)}}, {{A, B, C, X(39063), X(57792)}}, {{A, B, C, X(56900), X(57537)}}
X(62383) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 37800, 39063}, {7, 379, 5781}, {7, 4000, 51150}, {7, 51190, 17365}, {7, 5819, 5845}, {7, 5838, 4644}, {7, 673, 6}, {142, 1001, 15668}, {379, 5228, 5792}, {1001, 11495, 8053}, {2140, 17729, 55161}, {4209, 55082, 3207}, {14377, 55161, 17729}, {17729, 55161, 3}


X(62384) = INVERSE OF X(6) IN DUAL CONIC OF WALLACE HYPERBOLA

Barycentrics    (b-c)*(b+c)*(-b^8+b^6*c^2+b^2*c^6-c^8+a^6*(b^2+c^2)-a^4*(b^2+c^2)^2+a^2*(b^6+c^6)) : :

X(62384) lies on these lines: {6, 523}, {53, 55275}, {115, 127}, {183, 33294}, {187, 18556}, {216, 2485}, {525, 2549}, {574, 5664}, {1632, 60504}, {2165, 34212}, {2394, 43448}, {2501, 53266}, {3018, 60510}, {3265, 7778}, {5254, 5489}, {6587, 37637}, {7610, 44552}, {7735, 53383}, {8704, 22682}, {9479, 39232}, {14566, 43620}, {14977, 52450}, {23881, 42554}, {42733, 53419}, {53418, 58346}


X(62385) = INVERSE OF X(7) IN CONWAY CIRCLE

Barycentrics    a^7-a^6*(b+c)+a^4*(b-2*c)*(2*b-c)*(b+c)-b*(b-c)^4*c*(b+c)-a^2*(b-c)^2*(b+c)*(b^2-4*b*c+c^2)-a^5*(2*b^2+b*c+2*c^2)+a*b*(b-c)^2*c*(3*b^2+2*b*c+3*c^2)+a^3*(b^4-2*b^3*c+10*b^2*c^2-2*b*c^3+c^4) : :

X(62385) lies on these lines: {1, 7}, {151, 52160}, {1434, 9943}, {1490, 36854}, {1764, 5011}, {1999, 18663}, {5074, 10478}, {5144, 10882}, {5199, 18229}, {6996, 43065}, {10429, 10432}, {30806, 36002}


X(62386) = INVERSE OF X(7) IN DELONGCHAMPS CIRCLE

Barycentrics    a^7-a^6*(b+c)-b*(b-c)^4*c*(b+c)+a^5*(-2*b^2+3*b*c-2*c^2)-a*b*c*(b^2-c^2)^2-a^2*(b-c)^2*(b+c)*(b^2+c^2)+a^4*(b+c)*(2*b^2-b*c+2*c^2)+a^3*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4) : :

X(62386) lies on these lines: {1, 7}, {22, 54070}, {85, 11496}, {242, 405}, {514, 40863}, {664, 6001}, {927, 1295}, {1305, 2717}, {1441, 6912}, {1465, 6996}, {1730, 3101}, {3732, 51376}, {4872, 5842}, {5074, 40677}, {5144, 7520}, {9312, 12705}, {10310, 40702}, {11112, 41007}, {13397, 53183}, {56078, 56943}


X(62387) = INVERSE OF X(7) IN MACBEATH CIRCUMCONIC

Barycentrics    a^2*(a+b-c)*(a-b+c)*(a^6-2*a^5*(b+c)+2*a^3*b*c*(b+c)+a^4*(b+c)^2-a^2*(b^2+b*c+c^2)^2-(b^3-c^3)^2+2*a*(b^5+c^5)) : :

X(62387) lies on these lines: {6, 7}, {219, 36101}, {934, 22144}, {1456, 2836}, {2002, 16554}, {2801, 3100}, {2876, 32735}, {3002, 32624}, {3160, 22131}, {17100, 44717}, {22122, 34028}, {26932, 37659}, {27509, 37781}, {39470, 57167}


X(62388) = INVERSE OF X(7) IN STEINER INELLIPSE

Barycentrics    2*a^4-a^2*(b-c)^2-a^3*(b+c)-3*a*(b-c)^2*(b+c)+(b-c)^2*(3*b^2+2*b*c+3*c^2) : :
X(62388) = X[910]+3*X[61673], -X[5179]+5*X[31273], 3*X[17078]+5*X[31640], 7*X[29607]+X[39353]

X(62388) lies on these lines: {2, 7}, {8, 59610}, {103, 1541}, {116, 515}, {141, 20103}, {200, 53996}, {279, 23058}, {348, 41006}, {499, 24181}, {516, 6712}, {519, 17044}, {522, 676}, {728, 28756}, {760, 3812}, {910, 61673}, {1125, 21258}, {1146, 1323}, {1210, 20269}, {1565, 2391}, {1861, 36122}, {2348, 31192}, {3008, 23972}, {3634, 6706}, {3693, 16578}, {3817, 62383}, {3946, 11019}, {4682, 13405}, {4904, 44675}, {5074, 28194}, {5179, 31273}, {5199, 40483}, {5845, 53579}, {5853, 50441}, {6684, 34847}, {6745, 36956}, {8727, 21239}, {10481, 46835}, {11231, 20328}, {13411, 24784}, {14377, 18483}, {15325, 40555}, {17046, 57284}, {17062, 19868}, {17078, 31640}, {17355, 25355}, {17729, 28150}, {21314, 42048}, {24856, 36620}, {24982, 27006}, {26001, 43035}, {29607, 39353}, {34050, 57440}, {37780, 40510}, {38326, 40536}, {58466, 62398}

X(62388) = midpoint of X(i) and X(j) for these {i,j}: {103, 1541}, {116, 51775}, {1146, 1323}, {1565, 8074}, {3008, 35094}, {9436, 40869}, {34050, 57440}
X(62388) = reflection of X(i) in X(j) for these {i,j}: {5199, 40483}
X(62388) = inverse of X(20059) in Steiner circumellipse
X(62388) = inverse of X(7) in Steiner inellipse
X(62388) = complement of X(40869)
X(62388) = perspector of circumconic {{A, B, C, X(664), X(10405)}}
X(62388) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2398, 918}
X(62388) = X(i)-complementary conjugate of X(j) for these {i, j}: {56, 39063}, {57, 118}, {103, 3452}, {604, 23972}, {677, 20317}, {911, 9}, {1815, 34823}, {2424, 26932}, {18025, 21244}, {24016, 4885}, {32668, 522}, {36039, 4521}, {36101, 1329}, {36122, 41883}, {43736, 141}, {52156, 2887}, {52213, 120}, {60581, 21252}
X(62388) = pole of line {1699, 3676} with respect to the incircle
X(62388) = pole of line {1376, 4521} with respect to the Spieker circle
X(62388) = pole of line {522, 20059} with respect to the Steiner circumellipse
X(62388) = pole of line {7, 522} with respect to the Steiner inellipse
X(62388) = pole of line {14837, 46835} with respect to the dual conic of DeLongchamps circle
X(62388) = pole of line {1, 1146} with respect to the dual conic of Yff parabola
X(62388) = pole of line {21044, 55285} with respect to the dual conic of Wallace hyperbola
X(62388) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(36956)}}, {{A, B, C, X(9), X(40510)}}, {{A, B, C, X(144), X(522)}}, {{A, B, C, X(1025), X(56718)}}, {{A, B, C, X(1275), X(20059)}}, {{A, B, C, X(6745), X(45293)}}, {{A, B, C, X(7658), X(38254)}}, {{A, B, C, X(40869), X(52156)}}
X(62388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 9436, 40869}, {116, 51775, 515}, {1210, 20269, 52542}, {1565, 8074, 2391}, {9436, 40869, 527}


X(62389) = INVERSE OF X(7) IN WALLACE HYPERBOLA

Barycentrics    (a+b)*(a-b-c)*(a+c)*((a-b)^2*(4*a-b)*(a+b)-a*(5*a^2+2*a*b+b^2)*c-(3*a-2*b)*(a+b)*c^2+5*a*c^3-c^4) : :

X(62389) lies on these lines: {7, 99}, {8, 21}, {20, 25650}, {643, 3241}, {962, 56833}, {3161, 7259}, {4234, 35578}, {5550, 52360}, {5748, 7424}, {17558, 25446}, {27690, 57287}, {56951, 59387}


X(62390) = INVERSE OF X(7) IN DUAL CONIC OF INCIRCLE

Barycentrics    2*a^4-4*a^3*(b+c)+(b^2+c^2)^2-2*a*(b+c)*(2*b^2-b*c+2*c^2)+a^2*(5*b^2+4*b*c+5*c^2) : :

X(62390) lies on these lines: {7, 190}, {9, 4437}, {37, 3589}, {44, 49783}, {335, 17339}, {346, 673}, {528, 3685}, {545, 41310}, {668, 3039}, {918, 3669}, {1001, 27549}, {1016, 5854}, {1086, 3729}, {1279, 4899}, {3912, 5845}, {4078, 4432}, {4370, 4795}, {4473, 17379}, {4568, 40534}, {6354, 30568}, {7227, 17357}, {14947, 36798}, {17280, 26582}, {17354, 24349}, {17359, 25357}, {26007, 42720}, {26685, 32029}, {27191, 31995}, {38314, 41138}, {43736, 56076}

X(62390) = pole of line {659, 1376} with respect to the Steiner inellipse
X(62390) = pole of line {918, 17353} with respect to the dual conic of anticomplementary circle
X(62390) = pole of line {7, 918} with respect to the dual conic of incircle
X(62390) = pole of line {650, 42720} with respect to the dual conic of Feuerbach hyperbola
X(62390) = pole of line {3306, 4453} with respect to the dual conic of Suppa-Cucoanes circle
X(62390) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4076), X(16593)}}, {{A, B, C, X(35160), X(39714)}}, {{A, B, C, X(36807), X(48070)}}, {{A, B, C, X(39979), X(43760)}}
X(62390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {190, 344, 16593}, {190, 36807, 7}, {3161, 52157, 190}, {17755, 25101, 4422}


X(62391) = INVERSE OF X(7) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    a*(a-b-c)*(a^2-b^2-c^2)*(a^4*(b+c)-(b-c)^2*(b+c)^3-2*a^3*(b^2-b*c+c^2)+2*a*(b-c)^2*(b^2+b*c+c^2)) : :

X(62391) lies on these lines: {7, 8}, {78, 20765}, {200, 394}, {268, 271}, {318, 48878}, {343, 4847}, {391, 62326}, {521, 6332}, {914, 2968}, {3717, 23983}, {5231, 37638}, {5423, 44189}, {5562, 34790}, {6745, 11064}


X(62392) = INVERSE OF X(7) IN DUAL CONIC OF SPIEKER CIRCLE

Barycentrics    a^3+a*b*c-2*a^2*(b+c)-(b+c)*(b^2-3*b*c+c^2) : :
X(62392) = -2*X[1279]+3*X[37756], -5*X[3617]+4*X[3717], -4*X[3823]+3*X[17264], -16*X[17067]+13*X[46934]

X(62392) lies on these lines: {1, 26806}, {2, 968}, {4, 29327}, {7, 145}, {8, 726}, {10, 9791}, {100, 1284}, {149, 5211}, {190, 28530}, {192, 2550}, {238, 17764}, {239, 516}, {256, 4642}, {319, 49468}, {320, 28581}, {329, 59295}, {335, 740}, {497, 17490}, {518, 4440}, {519, 32857}, {522, 17950}, {528, 32922}, {536, 32850}, {537, 49707}, {752, 4716}, {894, 3755}, {899, 17777}, {962, 20036}, {1279, 37756}, {1458, 38460}, {1463, 3880}, {1469, 14923}, {1654, 3696}, {1757, 2796}, {1770, 20077}, {1916, 5992}, {2113, 39362}, {2325, 5296}, {2475, 56291}, {3187, 20101}, {3210, 3434}, {3242, 4398}, {3416, 49502}, {3474, 37683}, {3617, 3717}, {3622, 15839}, {3662, 3886}, {3706, 33068}, {3744, 19796}, {3751, 31300}, {3782, 3996}, {3823, 17264}, {3836, 4693}, {3883, 17117}, {3888, 35104}, {3891, 49719}, {3896, 17778}, {3931, 26051}, {3980, 29837}, {4026, 28604}, {4080, 52925}, {4294, 19851}, {4295, 20018}, {4307, 4393}, {4312, 17364}, {4331, 12649}, {4334, 36846}, {4335, 19860}, {4349, 29584}, {4356, 16826}, {4358, 26073}, {4365, 32948}, {4388, 32860}, {4392, 21283}, {4402, 30332}, {4427, 33139}, {4429, 5695}, {4514, 42051}, {4649, 4743}, {4651, 33100}, {4655, 49459}, {4685, 33099}, {4695, 36926}, {4732, 24697}, {4734, 26098}, {4753, 28546}, {4772, 39581}, {4780, 20090}, {4862, 49451}, {4899, 17132}, {4970, 33109}, {5014, 50106}, {5260, 45705}, {5263, 17302}, {5524, 21093}, {5686, 20073}, {5698, 17349}, {5846, 17160}, {5847, 20016}, {5880, 17300}, {5905, 20012}, {7321, 49478}, {9802, 62401}, {10030, 52164}, {10528, 26125}, {12053, 30037}, {16610, 26139}, {16704, 19642}, {16706, 49484}, {17067, 46934}, {17135, 26840}, {17147, 33110}, {17151, 33869}, {17163, 33083}, {17244, 38052}, {17276, 49450}, {17315, 49461}, {17316, 59412}, {17324, 19868}, {17350, 24280}, {17483, 20011}, {17484, 19998}, {17593, 21242}, {17766, 50015}, {17767, 49712}, {17768, 20072}, {17770, 50016}, {17784, 30699}, {17869, 26178}, {17889, 29839}, {19785, 29838}, {19789, 20075}, {20045, 20095}, {21282, 32842}, {21949, 33116}, {24364, 59512}, {24821, 49697}, {24836, 44669}, {25269, 27549}, {25903, 58327}, {26015, 62300}, {26109, 37593}, {28508, 50018}, {28522, 32847}, {28526, 49772}, {28542, 49693}, {28582, 49698}, {29575, 51100}, {29586, 50302}, {29591, 32784}, {29615, 49630}, {29626, 38204}, {32845, 33136}, {32865, 32934}, {32926, 34612}, {32941, 33149}, {32945, 33145}, {32950, 37653}, {34772, 42289}, {37652, 44447}, {44419, 55095}, {48643, 60714}, {49466, 53594}, {50086, 50308}, {50281, 50301}, {50298, 60710}

X(62392) = reflection of X(i) in X(j) for these {i,j}: {24821, 49697}, {3685, 1738}, {4645, 24715}, {4693, 3836}, {49704, 32922}, {6542, 4645}
X(62392) = anticomplement of X(3685)
X(62392) = X(i)-Dao conjugate of X(j) for these {i, j}: {3685, 3685}
X(62392) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7233, 2}
X(62392) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7, 20554}, {56, 17794}, {57, 20345}, {291, 3436}, {292, 329}, {295, 52366}, {335, 21286}, {604, 33888}, {741, 3869}, {813, 4462}, {875, 39351}, {876, 33650}, {1397, 30667}, {1402, 39367}, {1911, 144}, {1922, 3177}, {2196, 56943}, {2311, 18750}, {3572, 37781}, {4876, 54113}, {7175, 25332}, {7233, 6327}, {14598, 21218}, {18268, 63}, {34067, 4468}, {37128, 20245}, {51858, 30695}, {51866, 30807}, {52205, 56883}, {57181, 39362}
X(62392) = pole of line {29324, 40950} with respect to the polar circle
X(62392) = pole of line {226, 3676} with respect to the Steiner circumellipse
X(62392) = pole of line {28846, 58463} with respect to the Steiner inellipse
X(62392) = pole of line {7, 522} with respect to the dual conic of Spieker circle
X(62392) = pole of line {4384, 4862} with respect to the dual conic of Yff parabola
X(62392) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1916), X(10029)}}, {{A, B, C, X(3551), X(9505)}}, {{A, B, C, X(3879), X(4076)}}, {{A, B, C, X(4373), X(56102)}}, {{A, B, C, X(24378), X(27818)}}
X(62392) = barycentric product X(i)*X(j) for these (i, j): {10, 24378}
X(62392) = barycentric quotient X(i)/X(j) for these (i, j): {24378, 86}
X(62392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 24248, 6646}, {100, 37759, 37764}, {100, 4442, 37759}, {149, 17495, 5211}, {528, 32922, 49704}, {740, 24715, 4645}, {740, 4645, 6542}, {1738, 28580, 3685}, {1738, 3685, 2}, {3210, 3434, 29840}, {3696, 24723, 1654}, {3875, 50289, 145}, {3896, 20292, 17778}, {4312, 49495, 17364}, {4429, 5695, 17280}, {4660, 49474, 8}, {5880, 49470, 17300}, {17135, 33102, 26840}, {19998, 44006, 17484}, {32860, 33094, 4388}


X(62393) = INVERSE OF X(8) IN BEVAN CIRCLE

Barycentrics    a*(a^6+a^5*(b+c)+2*a^3*b*c*(b+c)-(b^2-c^2)^2*(b^2-b*c+c^2)-a^4*(b^2+b*c+c^2)-a*(b-c)^2*(b+c)*(b^2+4*b*c+c^2)+a^2*(b^4-6*b^2*c^2+c^4)) : :

X(62393) lies on these lines: {1, 1324}, {8, 20}, {10, 60448}, {57, 49487}, {522, 4498}, {976, 1697}, {986, 8192}, {1046, 16980}, {1706, 36568}, {1710, 37710}, {1726, 3679}, {1763, 3465}, {1785, 7713}, {1829, 5255}, {2222, 38882}, {2270, 40968}, {3220, 45269}, {3576, 54090}, {3579, 35455}, {3877, 52092}, {4362, 39596}, {5176, 21368}, {6211, 6735}, {16560, 40663}, {21370, 29673}, {32778, 62330}


X(62394) = INVERSE OF X(8) IN EXCIRCLES-RADICAL CIRCLE

Barycentrics    3*a^3*(b+c)-a*(b-3*c)*(3*b-c)*(b+c)+(b+c)^2*(b^2-4*b*c+c^2)-a^2*(b^2+4*b*c+c^2) : :

X(62394) lies on these lines: {1, 2}, {341, 4848}, {516, 36926}, {517, 62297}, {1997, 7962}, {2899, 7991}, {3030, 3880}, {3596, 39126}, {3667, 4391}, {3717, 40663}, {4358, 51433}, {4723, 4899}, {5657, 56078}, {6762, 42020}, {11362, 46937}, {17777, 28228}, {24391, 44720}, {30568, 59417}, {43174, 56311}


X(62395) = INVERSE OF X(8) IN STAMMLER CIRCLE

Barycentrics    a^2*((a-b)^5*(a+b)^3-2*(a-b)^3*(a+b)^2*(a^2-3*a*b+b^2)*c-(a-b)*(a+b)*(2*a^4+4*a^3*b-7*a^2*b^2+4*b^4)*c^2+2*(3*a^5-7*a^4*b+2*a^3*b^2+3*a*b^4-b^5)*c^3+b*(14*a^3-11*a^2*b+6*a*b^2-6*b^3)*c^4-2*(3*a^3-2*a^2*b+b^3)*c^5+2*(a^2-4*a*b+2*b^2)*c^6+2*(a+b)*c^7-c^8) : :
X(62395) = -9*X[5055]+8*X[39692]

X(62395) lies on these lines: {3, 8}, {35, 3065}, {55, 45764}, {149, 37251}, {1470, 34748}, {1484, 45976}, {2771, 35000}, {2802, 62318}, {3754, 12737}, {3925, 57298}, {4995, 10058}, {5055, 39692}, {5531, 26285}, {5563, 13143}, {6264, 37535}, {6326, 11849}, {6690, 38752}, {6915, 61601}, {7993, 32612}, {8069, 53616}, {10526, 38756}, {11698, 13743}, {12738, 12937}, {13205, 22836}, {13621, 45767}, {14882, 41689}, {18516, 38755}, {21669, 61605}, {22935, 37621}, {29137, 53873}, {37820, 51517}

X(62395) = reflection of X(i) in X(j) for these {i,j}: {35451, 17100}
X(62395) = inverse of X(61524) in circumcircle
X(62395) = inverse of X(8) in Stammler circle
X(62395) = X(i)-vertex conjugate of X(j) for these {i, j}: {900, 61524}
X(62395) = pole of line {900, 61524} with respect to the circumcircle
X(62395) = pole of line {8, 900} with respect to the Stammler circle
X(62395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 104, 61524}, {952, 17100, 35451}, {12331, 12773, 8}, {17100, 35451, 3}


X(62396) = INVERSE OF X(8) IN KIEPERT HYPERBOLA

Barycentrics    (b+c)*(a^3-a*(b^2+b*c+c^2)+(b+c)*(4*b^2-9*b*c+4*c^2)) : :

X(62396) lies on these lines: {8, 115}, {45, 1213}, {145, 62322}, {148, 62400}, {3616, 23903}, {3813, 36637}, {3832, 32431}, {4058, 20653}, {10026, 20053}, {17058, 62403}, {17316, 31031}, {19877, 51586}, {20050, 53426}, {23947, 29627}, {31644, 36223}


X(62397) = INVERSE OF X(8) IN KIEPERT PARABOLA

Barycentrics    (b-c)*(b+c)*(a^6+2*b^6+2*a^4*b*c-b^4*c^2+2*b^3*c^3-b^2*c^4+2*c^6-a^2*(3*b^4+2*b^3*c-3*b^2*c^2+2*b*c^3+3*c^4)) : :

X(62397) lies on these lines: {2, 62329}, {8, 523}, {318, 18808}, {525, 4644}, {643, 4427}, {3178, 4064}, {3661, 14977}, {3758, 53374}, {4086, 6757}, {4996, 46616}, {5222, 18311}, {5749, 45801}, {17360, 53378}, {42005, 52356}


X(62398) = INVERSE OF X(8) IN STEINER INELLIPSE

Barycentrics    2*a^2+3*b^2-2*b*c+3*c^2-3*a*(b+c) : :
X(62398) = X[1266]+3*X[17264], 3*X[1738]+X[4693], -5*X[3618]+X[49783], 3*X[3717]+X[24841], -3*X[3848]+X[58628], -5*X[4473]+X[4480], 5*X[4687]+3*X[27487], 3*X[24231]+X[24821], 7*X[47355]+X[49752]

X(62398) lies on these lines: {1, 2}, {7, 59579}, {9, 21255}, {45, 50092}, {141, 6666}, {142, 4363}, {144, 15828}, {190, 4887}, {226, 24796}, {241, 24036}, {344, 3663}, {345, 24175}, {346, 4859}, {514, 4521}, {515, 19512}, {516, 3836}, {524, 6687}, {527, 3834}, {536, 17067}, {599, 3707}, {742, 4698}, {942, 39589}, {1001, 21529}, {1086, 2325}, {1266, 17264}, {1376, 52015}, {1445, 59682}, {1574, 4515}, {1738, 4693}, {1743, 4869}, {2223, 44304}, {2321, 17119}, {2345, 20195}, {3161, 4862}, {3452, 34847}, {3618, 49783}, {3628, 29331}, {3662, 25101}, {3664, 3758}, {3672, 4098}, {3673, 18743}, {3686, 17231}, {3717, 24841}, {3739, 58433}, {3752, 3991}, {3763, 5257}, {3772, 21096}, {3817, 7402}, {3823, 5853}, {3848, 58628}, {3879, 17241}, {3911, 36954}, {3934, 6706}, {3943, 28313}, {3946, 17243}, {3950, 4000}, {3973, 21296}, {3975, 30866}, {3986, 17306}, {4021, 16706}, {4029, 17301}, {4035, 37679}, {4072, 17151}, {4078, 4353}, {4297, 7397}, {4357, 17263}, {4358, 20432}, {4395, 17133}, {4405, 50084}, {4416, 17232}, {4431, 17268}, {4465, 19593}, {4473, 4480}, {4488, 4902}, {4643, 60986}, {4667, 17313}, {4675, 50115}, {4687, 27487}, {4700, 17374}, {4708, 20582}, {4758, 49738}, {4851, 4856}, {4896, 50127}, {4909, 17317}, {4967, 17285}, {4982, 50125}, {4997, 6549}, {5248, 21514}, {5249, 41242}, {5316, 30811}, {5745, 18214}, {5750, 17245}, {5847, 31289}, {5850, 49676}, {6173, 54389}, {6554, 30827}, {6692, 21258}, {6996, 28164}, {6999, 28158}, {7232, 60942}, {7377, 12571}, {10171, 30825}, {11814, 30837}, {12436, 37326}, {12512, 36698}, {12572, 30810}, {16594, 30823}, {16814, 48632}, {17060, 24685}, {17227, 50093}, {17258, 31333}, {17259, 61001}, {17272, 18230}, {17280, 24199}, {17290, 41313}, {17296, 37650}, {17298, 26685}, {17345, 61000}, {17351, 60980}, {17354, 50116}, {17358, 27147}, {17359, 34824}, {17381, 49754}, {17398, 49756}, {17675, 30826}, {17776, 24177}, {17789, 30829}, {17861, 20946}, {18139, 41241}, {18250, 30847}, {18840, 56226}, {19815, 23537}, {20337, 30860}, {21542, 25524}, {21629, 43151}, {24170, 33116}, {24192, 32851}, {24209, 37788}, {24231, 24821}, {24778, 27514}, {25093, 44307}, {25351, 28580}, {25440, 37272}, {25498, 50013}, {25568, 59686}, {25590, 60996}, {25957, 40998}, {27384, 59725}, {27475, 49479}, {27484, 49504}, {28526, 53600}, {28639, 51126}, {30818, 49757}, {30819, 43040}, {31647, 62297}, {32935, 43180}, {33144, 59732}, {35094, 35111}, {37075, 48863}, {37169, 48835}, {37269, 49553}, {38059, 50295}, {38186, 49529}, {38204, 50314}, {39564, 50394}, {42697, 50118}, {47355, 49752}, {48932, 58441}, {49491, 51057}, {49536, 59405}, {58466, 62388}

X(62398) = midpoint of X(i) and X(j) for these {i,j}: {2, 41141}, {10, 49768}, {141, 49775}, {190, 4887}, {239, 49765}, {1086, 2325}, {1125, 49769}, {3008, 3912}, {3686, 49776}, {3834, 4422}, {4700, 17374}, {6542, 50019}, {35094, 40869}, {49764, 50022}, {49766, 50023}
X(62398) = reflection of X(i) in X(j) for these {i,j}: {10529, 34747}, {17067, 40480}
X(62398) = inverse of X(3621) in Steiner circumellipse
X(62398) = inverse of X(8) in Steiner inellipse
X(62398) = complement of X(3008)
X(62398) = perspector of circumconic {{A, B, C, X(190), X(4373)}}
X(62398) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53337, 918}
X(62398) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 40609}, {41, 35111}, {513, 5519}, {667, 61074}, {1280, 141}, {1477, 142}, {1810, 18589}, {3433, 56796}, {6078, 513}, {35160, 17046}, {35355, 116}, {36807, 2887}, {37626, 17059}, {43760, 2886}, {56643, 17060}
X(62398) = pole of line {6546, 31197} with respect to the 1st Yff-Moses hyperbola
X(62398) = pole of line {4057, 36641} with respect to the circumcircle
X(62398) = pole of line {3667, 10443} with respect to the excircles-radical circle
X(62398) = pole of line {3667, 4862} with respect to the incircle
X(62398) = pole of line {23305, 44316} with respect to the nine-point circle
X(62398) = pole of line {3667, 53583} with respect to the orthoptic circle of the Steiner Inellipse
X(62398) = pole of line {9, 3667} with respect to the Spieker circle
X(62398) = pole of line {3057, 36639} with respect to the Feuerbach hyperbola
X(62398) = pole of line {1213, 17058} with respect to the Kiepert hyperbola
X(62398) = pole of line {514, 3621} with respect to the Steiner circumellipse
X(62398) = pole of line {8, 514} with respect to the Steiner inellipse
X(62398) = pole of line {190, 4962} with respect to the Yff parabola
X(62398) = pole of line {86, 31191} with respect to the Wallace hyperbola
X(62398) = pole of line {4025, 44416} with respect to the dual conic of anticomplementary circle
X(62398) = pole of line {3239, 3772} with respect to the dual conic of DeLongchamps circle
X(62398) = pole of line {3239, 6545} with respect to the dual conic of incircle
X(62398) = pole of line {3239, 51780} with respect to the dual conic of Longuet-Higgins circle
X(62398) = pole of line {2, 1280} with respect to the dual conic of Yff parabola
X(62398) = pole of line {3120, 14321} with respect to the dual conic of Wallace hyperbola
X(62398) = pole of line {3239, 21204} with respect to the dual conic of Suppa-Cucoanes circle
X(62398) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4864)}}, {{A, B, C, X(2), X(43948)}}, {{A, B, C, X(7), X(31189)}}, {{A, B, C, X(8), X(36954)}}, {{A, B, C, X(75), X(31183)}}, {{A, B, C, X(86), X(31191)}}, {{A, B, C, X(145), X(514)}}, {{A, B, C, X(310), X(31199)}}, {{A, B, C, X(335), X(29607)}}, {{A, B, C, X(596), X(16020)}}, {{A, B, C, X(1016), X(3621)}}, {{A, B, C, X(1268), X(31211)}}, {{A, B, C, X(3008), X(36807)}}, {{A, B, C, X(3617), X(18840)}}, {{A, B, C, X(3911), X(20042)}}, {{A, B, C, X(4358), X(20058)}}, {{A, B, C, X(4521), X(15519)}}, {{A, B, C, X(6384), X(31200)}}, {{A, B, C, X(6630), X(20014)}}, {{A, B, C, X(7081), X(27831)}}, {{A, B, C, X(16834), X(52209)}}, {{A, B, C, X(20049), X(35168)}}, {{A, B, C, X(29572), X(40098)}}, {{A, B, C, X(45677), X(52907)}}
X(62398) = barycentric product X(i)*X(j) for these (i, j): {4864, 75}
X(62398) = barycentric quotient X(i)/X(j) for these (i, j): {4864, 1}
X(62398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 31191}, {1, 29600, 29606}, {1, 29627, 29600}, {2, 10, 31211}, {2, 10453, 31200}, {2, 145, 31189}, {2, 17135, 31199}, {2, 17230, 29628}, {2, 17244, 17023}, {2, 17266, 3912}, {2, 17292, 24603}, {2, 29569, 29630}, {2, 29571, 1125}, {2, 29572, 17367}, {2, 29579, 4384}, {2, 29587, 16815}, {2, 29596, 29604}, {2, 29599, 17397}, {2, 29604, 3634}, {2, 29611, 16832}, {2, 29627, 1}, {2, 29629, 29596}, {2, 30813, 11019}, {2, 30821, 3741}, {2, 30822, 3840}, {2, 30833, 8}, {2, 3912, 3008}, {2, 5308, 29598}, {2, 6542, 29607}, {2, 8, 31183}, {8, 31145, 19877}, {8, 3632, 51068}, {8, 60374, 60421}, {9, 21255, 53598}, {9, 53665, 21255}, {10, 49458, 3626}, {10, 49768, 519}, {10, 551, 36479}, {142, 17279, 17355}, {239, 3912, 49765}, {344, 17282, 3663}, {344, 3663, 59585}, {346, 4859, 53594}, {519, 34747, 10529}, {536, 40480, 17067}, {1086, 2325, 17132}, {1125, 3621, 20050}, {1125, 4678, 53620}, {3008, 49765, 239}, {3008, 50019, 41140}, {3617, 3621, 51093}, {3617, 3625, 56797}, {3617, 3636, 9780}, {3624, 29815, 26047}, {3625, 4668, 3621}, {3626, 34595, 3617}, {3626, 53614, 20014}, {3834, 4422, 527}, {3912, 17266, 41141}, {3912, 29607, 50019}, {3912, 41140, 6542}, {3912, 49770, 17310}, {4357, 17263, 25072}, {4384, 29579, 29594}, {4393, 29582, 29601}, {4678, 46933, 38098}, {4701, 53619, 31145}, {5222, 29573, 3244}, {5297, 51615, 28257}, {5308, 29598, 551}, {16831, 16832, 24331}, {16832, 17284, 29611}, {16832, 29611, 10}, {16833, 29616, 3625}, {17014, 29602, 51071}, {17020, 29605, 29627}, {17230, 29628, 50095}, {17231, 17337, 3686}, {17232, 17338, 4416}, {17234, 17341, 17353}, {17234, 17353, 3664}, {17241, 17352, 3879}, {17243, 17356, 3946}, {17245, 17357, 5750}, {17263, 17283, 4357}, {17264, 27191, 1266}, {17265, 17279, 142}, {17267, 17278, 2321}, {17310, 29590, 49770}, {17367, 29572, 29574}, {20053, 56798, 52907}, {20582, 31285, 4708}, {21267, 31145, 20053}, {29632, 60423, 6745}, {31243, 41310, 1086}


X(62399) = INVERSE OF X(8) IN YFF PARABOLA

Barycentrics    (b-c)*((a-b)^2*(a^2+a*b+2*b^2)-(a^3-3*a^2*b+a*b^2+b^3)*c+(a^2-a*b+2*b^2)*c^2-(3*a+b)*c^3+2*c^4) : :

X(62399) lies on these lines: {8, 514}, {85, 4391}, {190, 644}, {318, 53150}, {522, 4454}, {824, 48304}, {905, 26690}, {2345, 21133}, {3239, 29627}, {4025, 5222}, {4384, 53362}, {4444, 52085}, {4560, 40403}, {4779, 30573}, {5749, 21202}, {6332, 56937}, {7192, 24632}, {7658, 31189}, {7985, 30519}, {17316, 25259}, {18821, 35158}, {21296, 23730}, {28734, 47796}, {28840, 50215}, {28898, 49499}, {31995, 42462}, {42697, 60479}, {54019, 60902}, {60480, 60481}


X(62400) = INVERSE OF X(8) IN WALLACE HYPERBOLA

Barycentrics    (a+b)*(a+c)*(4*a^2-(b-c)^2-3*a*(b+c)) : :
X(62400) = -3*X[2]+2*X[62322]

X(62400) lies on these lines: {2, 62322}, {7, 21}, {8, 99}, {145, 6629}, {148, 62396}, {191, 17136}, {261, 31995}, {329, 40592}, {543, 23942}, {662, 6172}, {1019, 3730}, {1414, 3160}, {1509, 38314}, {1931, 5222}, {2185, 28610}, {3177, 4560}, {3241, 32004}, {4299, 56984}, {4393, 18206}, {4419, 16702}, {4488, 27958}, {4616, 36888}, {4622, 36887}, {4921, 35935}, {5051, 59538}, {5267, 20347}, {5296, 59631}, {5550, 32014}, {5744, 24624}, {6626, 9780}, {11037, 37029}, {14588, 36223}, {14828, 17574}, {14953, 55868}, {16887, 17539}, {17151, 27368}, {17190, 20078}, {17343, 45017}, {17731, 20050}, {18600, 52680}, {25278, 55243}, {27040, 59625}, {29579, 31059}, {36521, 50276}, {46707, 52695}, {50215, 59634}

X(62400) = inverse of X(8) in Wallace hyperbola
X(62400) = anticomplement of X(62322)
X(62400) = X(i)-Dao conjugate of X(j) for these {i, j}: {62322, 62322}
X(62400) = pole of line {8, 12943} with respect to the Wallace hyperbola
X(62400) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16133)}}, {{A, B, C, X(2), X(41807)}}, {{A, B, C, X(7), X(35141)}}, {{A, B, C, X(8), X(17768)}}, {{A, B, C, X(56), X(28471)}}, {{A, B, C, X(3649), X(5558)}}, {{A, B, C, X(7677), X(15446)}}, {{A, B, C, X(8543), X(56027)}}, {{A, B, C, X(36588), X(41804)}}
X(62400) = barycentric product X(i)*X(j) for these (i, j): {60942, 86}
X(62400) = barycentric quotient X(i)/X(j) for these (i, j): {60942, 10}
X(62400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21, 1434, 17201}, {1434, 17201, 17169}


X(62401) = INVERSE OF X(8) IN DUAL CONIC OF 1ST YFF-MOSES HYPERBOLA

Barycentrics    3*a^3*(b+c)-b*c*(b+c)^2+2*a^2*(b^2-4*b*c+c^2)-a*(b+c)*(b^2-3*b*c+c^2) : :

X(62401) lies on these lines: {1, 2}, {513, 4922}, {517, 50002}, {518, 41683}, {740, 17460}, {960, 49981}, {1284, 1317}, {1320, 32922}, {1757, 9457}, {2802, 17495}, {3701, 45219}, {3877, 49447}, {3880, 4706}, {3898, 3995}, {3899, 20068}, {3902, 49468}, {4080, 61476}, {5919, 49462}, {6224, 49704}, {9263, 20072}, {9802, 62392}


X(62402) = INVERSE OF X(8) IN DUAL CONIC OF POLAR CIRCLE

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2-b^2-c^2)*(-2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(62402) lies on these lines: {2, 46017}, {3, 77}, {7, 8}, {46, 269}, {57, 394}, {59, 1155}, {222, 22123}, {226, 343}, {241, 2245}, {273, 10446}, {279, 51497}, {296, 31637}, {347, 14110}, {407, 5929}, {511, 1876}, {517, 22464}, {521, 4025}, {651, 2182}, {653, 1944}, {908, 21452}, {912, 52392}, {914, 51368}, {934, 2745}, {942, 5562}, {1092, 37582}, {1214, 56553}, {1352, 1892}, {1425, 37613}, {1426, 10441}, {1440, 6890}, {1442, 2646}, {1445, 14524}, {1813, 6510}, {1875, 17139}, {1893, 48902}, {2252, 3942}, {2262, 37800}, {3101, 34035}, {3664, 13750}, {3911, 11064}, {3912, 23983}, {4341, 59317}, {4511, 14203}, {4605, 29069}, {5122, 51394}, {5219, 37638}, {5224, 53821}, {5435, 37669}, {5719, 44683}, {5932, 6836}, {6001, 36918}, {6505, 7011}, {6917, 10400}, {7289, 19350}, {7352, 41004}, {7386, 10360}, {8807, 37185}, {9119, 26540}, {10374, 10431}, {15803, 35602}, {16091, 56869}, {17080, 46330}, {18607, 40152}, {20245, 57810}, {20744, 52610}, {22097, 37755}, {23101, 36279}, {24611, 34042}, {28739, 43216}, {33645, 59813}, {33949, 53818}, {36589, 44663}, {37374, 51364}, {40576, 41339}, {41673, 59817}, {45919, 50336}, {53997, 55119}

X(62402) = anticomplement of X(62326)
X(62402) = perspector of circumconic {{A, B, C, X(348), X(4554)}}
X(62402) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 2342}, {19, 52663}, {25, 51565}, {33, 104}, {41, 16082}, {55, 36123}, {281, 909}, {318, 34858}, {522, 14776}, {607, 34234}, {663, 1309}, {1096, 1809}, {1172, 2250}, {1783, 61238}, {1795, 1857}, {1973, 36795}, {2212, 18816}, {2299, 38955}, {3064, 32641}, {3239, 32702}, {3900, 36110}, {3939, 43933}, {7008, 15501}, {7079, 34051}, {8750, 43728}, {14936, 39294}, {18344, 36037}, {23615, 59103}, {40437, 52427}
X(62402) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 52663}, {223, 36123}, {226, 38955}, {908, 5081}, {1145, 7046}, {3160, 16082}, {3259, 18344}, {3911, 38462}, {6337, 36795}, {6503, 1809}, {6505, 51565}, {16586, 318}, {23980, 281}, {25640, 1857}, {26932, 43728}, {36033, 2342}, {39004, 3900}, {39006, 61238}, {40613, 33}, {40617, 43933}, {46398, 44426}, {57293, 53549}, {60339, 1146}, {62326, 62326}
X(62402) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17139, 22464}, {34401, 26611}, {56666, 16586}
X(62402) = pole of line {222, 3669} with respect to the incircle
X(62402) = pole of line {1857, 18344} with respect to the polar circle
X(62402) = pole of line {1864, 2194} with respect to the Stammler hyperbola
X(62402) = pole of line {347, 693} with respect to the Steiner circumellipse
X(62402) = pole of line {4885, 17073} with respect to the Steiner inellipse
X(62402) = pole of line {21, 1809} with respect to the Wallace hyperbola
X(62402) = pole of line {8, 521} with respect to the dual conic of polar circle
X(62402) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(8)}}, {{A, B, C, X(7), X(7053)}}, {{A, B, C, X(65), X(1410)}}, {{A, B, C, X(69), X(1804)}}, {{A, B, C, X(75), X(77)}}, {{A, B, C, X(85), X(7177)}}, {{A, B, C, X(296), X(518)}}, {{A, B, C, X(320), X(1797)}}, {{A, B, C, X(322), X(908)}}, {{A, B, C, X(377), X(859)}}, {{A, B, C, X(388), X(1457)}}, {{A, B, C, X(912), X(52407)}}, {{A, B, C, X(1155), X(35014)}}, {{A, B, C, X(1439), X(1441)}}, {{A, B, C, X(1459), X(43947)}}, {{A, B, C, X(1769), X(51661)}}, {{A, B, C, X(1795), X(2323)}}, {{A, B, C, X(2182), X(14203)}}, {{A, B, C, X(2183), X(2550)}}, {{A, B, C, X(3059), X(22079)}}, {{A, B, C, X(3310), X(57031)}}, {{A, B, C, X(4511), X(46974)}}, {{A, B, C, X(7056), X(42697)}}, {{A, B, C, X(17102), X(52344)}}, {{A, B, C, X(22123), X(41389)}}, {{A, B, C, X(39126), X(56972)}}
X(62402) = barycentric product X(i)*X(j) for these (i, j): {77, 908}, {222, 3262}, {279, 51379}, {348, 517}, {1014, 51367}, {1214, 17139}, {1231, 859}, {1275, 35014}, {1457, 304}, {1465, 69}, {1785, 7183}, {1813, 36038}, {1875, 3926}, {2183, 7182}, {4554, 8677}, {4569, 52307}, {6735, 7177}, {10015, 6516}, {14571, 7055}, {15413, 23981}, {16586, 52392}, {22350, 85}, {22464, 63}, {23706, 30805}, {24029, 4025}, {27832, 51433}, {30682, 51380}, {46974, 56666}
X(62402) = barycentric quotient X(i)/X(j) for these (i, j): {3, 52663}, {7, 16082}, {48, 2342}, {57, 36123}, {63, 51565}, {69, 36795}, {73, 2250}, {77, 34234}, {222, 104}, {348, 18816}, {394, 1809}, {517, 281}, {603, 909}, {651, 1309}, {859, 1172}, {905, 43728}, {908, 318}, {1214, 38955}, {1231, 57984}, {1361, 14571}, {1415, 14776}, {1457, 19}, {1459, 61238}, {1461, 36110}, {1465, 4}, {1769, 3064}, {1813, 36037}, {1875, 393}, {2183, 33}, {2427, 56183}, {3262, 7017}, {3310, 18344}, {3669, 43933}, {4091, 37628}, {6516, 13136}, {6735, 7101}, {7011, 15501}, {7045, 39294}, {7053, 34051}, {7125, 1795}, {7335, 14578}, {8677, 650}, {10015, 44426}, {14571, 1857}, {16586, 5081}, {17139, 31623}, {21801, 53008}, {22128, 56757}, {22350, 9}, {22464, 92}, {23220, 3063}, {23788, 57215}, {23981, 1783}, {24029, 1897}, {35014, 1146}, {36038, 46110}, {36059, 32641}, {42753, 8735}, {51367, 3701}, {51379, 346}, {52307, 3900}, {52411, 34858}, {52659, 38462}, {53530, 8756}, {53548, 5089}, {56973, 2182}, {57478, 1320}, {60000, 36121}
X(62402) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {77, 7013, 1804}, {40152, 44708, 18607}


X(62403) = INVERSE OF X(8) IN DUAL CONIC OF YFF PARABOLA

Barycentrics    a^2+7*b^2-18*b*c+7*c^2 : :
X(62403) = -5*X[3616]+2*X[4779]

X(62403) lies on these lines: {2, 2415}, {7, 1992}, {8, 599}, {519, 7613}, {524, 4402}, {597, 4000}, {903, 6172}, {1266, 29627}, {2796, 16020}, {3241, 5853}, {3616, 4779}, {4346, 50093}, {4371, 22165}, {4385, 60143}, {4398, 60996}, {4452, 29573}, {4454, 17067}, {4644, 20583}, {4675, 20057}, {4740, 27474}, {4869, 17133}, {4887, 24599}, {4912, 37650}, {5222, 50128}, {5550, 41311}, {5564, 50994}, {5749, 49727}, {7222, 47352}, {7263, 17293}, {7321, 59373}, {9776, 50102}, {9779, 50533}, {10005, 50092}, {11160, 17363}, {14475, 44551}, {16834, 59375}, {17058, 62396}, {17301, 38314}, {18230, 49748}, {21356, 32087}, {26806, 31313}, {27184, 41926}, {27818, 40617}, {28530, 31139}, {31183, 31722}, {36588, 36807}, {41140, 60984}, {50101, 59374}

X(62403) = midpoint of X(i) and X(j) for these {i,j}: {2, 4373}
X(62403) = reflection of X(i) in X(j) for these {i,j}: {2, 4859}, {3161, 2}
X(62403) = pole of line {3667, 47871} with respect to the Steiner circumellipse
X(62403) = pole of line {3667, 45677} with respect to the Steiner inellipse
X(62403) = pole of line {8, 17132} with respect to the dual conic of Yff parabola
X(62403) = intersection, other than A, B, C, of circumconics {{A, B, C, X(17132), X(27818)}}, {{A, B, C, X(47636), X(60143)}}
X(62403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17132, 3161}, {2, 24175, 28655}, {2, 28655, 4052}, {2, 4373, 17132}, {3161, 4052, 4373}, {4454, 17067, 31189}, {4859, 17132, 2}


X(62404) = X(1113)X(3414)∩X(1114)X(3413)

Barycentrics    a*(b*c*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) + a*(a^2 - b^2 - c^2)*Sqrt[(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)]) : :

X(62404) lies on the circumcircle and these lines: {3, 67}, {4, 13870}, {111, 2470}, {1113, 3414}, {1114, 3413}, {1340, 13414}, {1341, 13415}, {1344, 31862}, {1345, 31863}, {1379, 2575}, {1380, 2574}

X(62404) = reflection of X(4) in X(13870)
X(62404) = reflection of X(62407) in X(3)
X(62404) = Collings transform of X(13870)
X(62404) = {X(35607),X(35609)}-harmonic conjugate of X(2470)


X(62405) = X(1113)X(3308)∩X(1114)X(3307)

Barycentrics    a^2*(b*c*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + a^3*b^2*c - 2*a*b^4*c - a^4*c^2 + a^3*b*c^2 - 2*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + a*b^2*c^3 + 2*a^2*c^4 - 2*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) + (a^2 - b^2 - c^2)*Sqrt[a*b*c*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)]) : :

X(62405) lies on the circumcircle and these lines: {3, 191}, {1113, 3308}, {1114, 3307}, {1381, 2575}, {1382, 2574}

X(62405) = reflection of X(62408) in X(3)


X(62406) = X(1379)X(3308)∩X(1380)X(3307)

Barycentrics    a*(a*(a^2 - b^2 - c^2)*Sqrt[a*b*c*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)] + b*c*(a^5*b - a^3*b^3 + a^5*c - 2*a^4*b*c + a^2*b^3*c + a*b^4*c - b^5*c - a*b^3*c^2 - a^3*c^3 + a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 - b*c^5)) : :

X(62406) lies on the circumcircle and these lines: {3, 2783}, {1379, 3308}, {1380, 3307}, {1381, 3414}, {1382, 3413}

X(62406) = reflection of X(62409) in X(3)


X(62407) = X(1113)X(3413)∩X(1114)X(3414)

Barycentrics    a*(b*c*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) - a*(a^2 - b^2 - c^2)*Sqrt[(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)]) : :

X(62407) lies on the circumcircle and these lines: {2, 13870}, {3, 67}, {111, 2469}, {1113, 3413}, {1114, 3414}, {1340, 13415}, {1341, 13414}, {1344, 31863}, {1345, 31862}, {1379, 2574}, {1380, 2575}

X(62407) = reflection of X(62404) in X(3)
X(62407) = anticomplement of X(13870)
X(62407) = {X(14899),X(35608)}-harmonic conjugate of X(2469)


X(62408) = X(1113)X(3307)∩X(1114)X(3308)

Barycentrics    a^2*(b*c*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + a^3*b^2*c - 2*a*b^4*c - a^4*c^2 + a^3*b*c^2 - 2*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + a*b^2*c^3 + 2*a^2*c^4 - 2*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) - (a^2 - b^2 - c^2)*Sqrt[a*b*c*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - a^4*c^2 + 3*a^2*b^2*c^2 - b^4*c^2 - a^2*c^4 - b^2*c^4 + c^6)]) : :

X(62408) lies on the circumcircle and these lines: {3, 191}, {1113, 3307}, {1114, 3308}, {1381, 2574}, {1382, 2575}

X(62408) = reflection of X(62405) in X(3)


X(62409) = X(1379)X(3307)∩X(1380)X(3308)

Barycentrics    a*(a*(a^2 - b^2 - c^2)*Sqrt[a*b*c*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 3*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4)] - b*c*(a^5*b - a^3*b^3 + a^5*c - 2*a^4*b*c + a^2*b^3*c + a*b^4*c - b^5*c - a*b^3*c^2 - a^3*c^3 + a^2*b*c^3 - a*b^2*c^3 + 2*b^3*c^3 + a*b*c^4 - b*c^5)) : :

X(62409) lies on the circumcircle and these lines: {3, 2783}, {1379, 3307}, {1380, 3308}, {1381, 3413}, {1382, 3414}

X(62409) = reflection of X(62406) in X(3)


X(62410) = CROSSSUM OF PU(217)

Barycentrics    (a - b)*(a + b)*(a - c)*(a + c)*(a^4*b^4 - 3*a^4*b^2*c^2 + a^2*b^4*c^2 + a^4*c^4 + a^2*b^2*c^4 - b^4*c^4) : :

X(62410) lies on these lines: {99, 669}, {110, 53621}, {385, 3291}, {647, 18829}, {799, 53624}, {805, 3222}, {1078, 2142}, {1799, 37880}, {9514, 17941}, {14607, 57150}, {35060, 56430}

X(62410) = isogonal conjugate of the isotomic conjugate of X(9428)
X(62410) = X(6)-Ceva conjugate of X(99)
X(62410) = X(798)-isoconjugate of X(46274)
X(62410) = X(i)-Dao conjugate of X(j) for these (i,j): {670, 76}, {31998, 46274}
X(62410) = trilinear pole of line {9431, 25054}
X(62410) = crossdifference of every pair of points on line {1645, 14824}
X(62410) = barycentric product X(i)*X(j) for these {i,j}: {6, 9428}, {99, 25054}, {670, 9431}, {799, 39337}, {6331, 23180}, {34537, 38237}
X(62410) = barycentric quotient X(i)/X(j) for these {i,j}: {99, 46274}, {9428, 76}, {9431, 512}, {23180, 647}, {25054, 523}, {38237, 3124}, {39337, 661}
X(62410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {669, 34537, 99}, {9150, 34537, 669}


X(62411) = MIDPOINT OF PU(105)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(3*a^6 - 5*a^4*b^2 + a^2*b^4 - 5*a^4*c^2 + 9*a^2*b^2*c^2 - 2*b^4*c^2 + a^2*c^4 - 2*b^2*c^4) : :

X(62411) lies on these lines: {2, 23356}, {3, 5106}, {115, 11176}, {351, 865}, {2502, 6786}, {7600, 9130}, {9151, 32472}, {9828, 10418}, {35078, 45317}

X(62411) = circumcircle-inverse of X(20998)
X(62411) = Parry-circle-inverse of X(3124)
X(62411) = crossdifference of every pair of points on line {99, 11176}
X(62411) = X(i)-line conjugate of X(j) for these (i,j): {2, 23356}, {115, 11176}


X(62412) = IDEAL POINT OF PU(107)

Barycentrics    a^2*(b - c)*(b + c)*(a^2 - 2*b^2 - 2*c^2)*(2*a^2 - b^2 - c^2) : :

X(62412) lies on these lines: {6, 9208}, {30, 511}, {351, 39689}, {575, 11621}, {576, 11622}, {892, 13170}, {1641, 6786}, {1648, 6784}, {2679, 41177}, {3569, 9171}, {5113, 9188}, {9178, 39232}, {45336, 45690}, {53347, 53365}

X(62412) = crossdifference of every pair of points on line {6, 598}
X(62412) = X(i)-lineconjugate of X(j) for these (i,j): {30, 9830}, {9208, 6}
X(62412) = barycentric quotient X(52751)/X(28163)


X(62413) = CEVAPOINT OF PU(219)

Barycentrics    (a^2 - 7*a*b + b^2 + 5*a*c + 5*b*c - 5*c^2)*(a^2 + 5*a*b - 5*b^2 - 7*a*c + 5*b*c + c^2) : :
X(62413) = X[17487] + 2 X[39349], X[4440] - 4 X[35168]

X(62413) lies on these lines: {2, 9460}, {519, 4480}, {545, 6630}, {2726, 53634}, {4358, 49779}, {4440, 35168}, {8046, 42026}, {34764, 44009}, {35092, 54974}

X(62413) = reflection of X(54974) in X(35092)
X(62413) = isogonal conjugate of X(21781)
X(62413) = isotomic conjugate of X(17487)
X(62413) = anticomplement of X(9460)
X(62413) = antitomic conjugate of X(54974)
X(62413) = isotomic conjugate of the anticomplement of X(903)
X(62413) = X(9325)-anticomplementary conjugate of X(21282)
X(62413) = X(i)-isoconjugate of X(j) for these (i,j): {1, 21781}, {6, 9324}, {19, 23081}, {31, 17487}, {44, 41461}, {58, 21885}, {101, 9269}, {902, 9326}, {1960, 9272}, {2251, 9460}
X(62413) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 17487}, {3, 21781}, {6, 23081}, {9, 9324}, {10, 21885}, {1015, 9269}, {40594, 9326}, {40595, 41461}
X(62413) = cevapoint of X(514) and X(35092)
X(62413) = trilinear pole of line {900, 4928}
X(62413) = barycentric product X(i)*X(j) for these {i,j}: {75, 9325}, {693, 9271}
X(62413) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 9324}, {2, 17487}, {3, 23081}, {6, 21781}, {37, 21885}, {88, 9326}, {106, 41461}, {513, 9269}, {903, 9460}, {3257, 9272}, {9271, 100}, {9325, 1}, {53634, 901}


X(62414) = BICENTRIC SUM OF PU(222)

Barycentrics    a^2*(b - c)^2*(b^2 + b*c + c^2)^2 : :

X(62414) lies on the Brocard inellipse and these lines: {6, 753}, {8, 32452}, {115, 34387}, {574, 4996}, {1015, 23646}, {1491, 53823}, {1916, 56660}, {1977, 20974}, {2092, 3033}, {2968, 41172}, {3124, 6377}, {7087, 9233}, {9427, 20982}, {9561, 59800}, {16975, 32454}, {20860, 39686}

X(62414) = isogonal conjugate of the isotomic conjugate of X(61065)
X(62414) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 3250}, {75, 50549}, {1916, 4486}, {7087, 8630}, {8852, 58864}, {34250, 58862}
X(62414) = X(i)-isoconjugate of X(j) for these (i,j): {789, 825}, {1492, 4586}, {5384, 14621}, {34069, 37133}
X(62414) = X(i)-Dao conjugate of X(j) for these (i,j): {788, 32}, {824, 76}, {3805, 6645}, {27481, 5388}, {30665, 4366}, {33568, 35548}, {38995, 4586}, {55049, 1492}, {61065, 37133}
X(62414) = crossdifference of every pair of points on line {4586, 33904}
X(62414) = barycentric product X(i)*X(j) for these {i,j}: {6, 61065}, {11, 12837}, {824, 3250}, {984, 4475}, {1491, 1491}, {1502, 55049}, {3120, 4476}, {3125, 4469}, {4486, 30671}, {8630, 30870}
X(62414) = barycentric quotient X(i)/X(j) for these {i,j}: {788, 1492}, {824, 37133}, {869, 5384}, {1491, 789}, {3250, 4586}, {3661, 5388}, {4469, 4601}, {4475, 870}, {4476, 4600}, {8630, 34069}, {12837, 4998}, {30671, 37207}, {46386, 825}, {55049, 32}, {61065, 76}


X(62415) = TRILINEAR PRODUCT OF PU(223)

Barycentrics    b*(b - c)*c*(b^2 + b*c + c^2) : :
X(62415) = 3 X[4379] - X[54253]

X(62415) lies on these lines: {75, 29370}, {313, 3261}, {512, 50452}, {513, 18160}, {514, 661}, {522, 4357}, {649, 24287}, {667, 26248}, {668, 36236}, {768, 8061}, {814, 7255}, {816, 1919}, {826, 850}, {832, 21304}, {834, 18076}, {885, 48172}, {900, 50450}, {1491, 30639}, {1734, 4467}, {2517, 4374}, {2787, 58862}, {3004, 21051}, {3126, 47808}, {4025, 17072}, {4086, 4509}, {4369, 24601}, {4379, 54253}, {4453, 29212}, {4705, 45746}, {4951, 33931}, {4985, 23794}, {6004, 21303}, {7192, 21301}, {7199, 50334}, {14431, 44435}, {15419, 48246}, {16892, 21053}, {17217, 50331}, {18072, 18133}, {20245, 46402}, {20295, 48267}, {20948, 35559}, {21261, 50454}, {21302, 53335}, {23829, 50337}, {24290, 25259}, {26580, 47790}, {27575, 47667}, {27610, 49282}, {28372, 30060}, {29017, 35519}, {29070, 58864}, {29324, 57244}, {30709, 47780}, {47129, 48044}, {47655, 47709}, {47656, 47708}, {47657, 47706}, {48274, 48400}, {50350, 57214}

X(62415) = reflection of X(i) in X(j) for these {i,j}: {1919, 8060}, {8061, 21262}, {50454, 21261}
X(62415) = isogonal conjugate of X(34069)
X(62415) = isotomic conjugate of X(1492)
X(62415) = isotomic conjugate of the anticomplement of X(55061)
X(62415) = isotomic conjugate of the isogonal conjugate of X(1491)
X(62415) = isogonal conjugate of the isotomic conjugate of X(30870)
X(62415) = X(3415)-anticomplementary conjugate of X(4440)
X(62415) = X(i)-Ceva conjugate of X(j) for these (i,j): {327, 34387}, {789, 75}, {4505, 33931}, {27475, 20901}, {52611, 20234}
X(62415) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34069}, {6, 825}, {31, 1492}, {32, 4586}, {101, 40746}, {163, 40747}, {560, 789}, {667, 5384}, {692, 985}, {1415, 2344}, {1501, 37133}, {1576, 40718}, {1917, 46132}, {2206, 4613}, {2210, 30664}, {3778, 58111}, {4817, 23990}, {7122, 30670}, {9233, 52611}, {14599, 37207}, {14621, 32739}, {18892, 41072}, {33514, 40935}
X(62415) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 1492}, {3, 34069}, {9, 825}, {115, 40747}, {824, 1491}, {1015, 40746}, {1086, 985}, {1146, 2344}, {3789, 692}, {4858, 40718}, {6374, 789}, {6376, 4586}, {6627, 40751}, {6631, 5384}, {10335, 3888}, {19584, 101}, {27481, 100}, {38995, 31}, {40603, 4613}, {40619, 14621}, {40624, 52133}, {55049, 32}, {61065, 1}
X(62415) = cevapoint of X(824) and X(4522)
X(62415) = crossdifference of every pair of points on line {31, 1501}
X(62415) = barycentric product X(i)*X(j) for these {i,j}: {6, 30870}, {75, 824}, {76, 1491}, {85, 4522}, {274, 4122}, {313, 4481}, {334, 4486}, {350, 23596}, {514, 33931}, {561, 3250}, {693, 3661}, {788, 1502}, {789, 61065}, {850, 40773}, {984, 3261}, {1086, 4505}, {1111, 3807}, {1577, 30966}, {1916, 30639}, {1928, 46386}, {1978, 4475}, {2276, 40495}, {3736, 20948}, {3773, 7199}, {3790, 24002}, {3799, 23989}, {3805, 44187}, {4391, 7179}, {4818, 40023}, {4951, 20569}, {7087, 30872}, {7146, 35519}, {7204, 52622}, {8630, 40362}, {14208, 31909}, {16603, 18155}, {18891, 30671}, {18895, 30665}, {20906, 51837}, {44170, 58864}
X(62415) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 825}, {2, 1492}, {6, 34069}, {75, 4586}, {76, 789}, {190, 5384}, {257, 30670}, {321, 4613}, {334, 37207}, {335, 30664}, {513, 40746}, {514, 985}, {522, 2344}, {523, 40747}, {561, 37133}, {693, 14621}, {788, 32}, {824, 1}, {869, 32739}, {984, 101}, {1111, 4817}, {1469, 1415}, {1491, 6}, {1502, 46132}, {1577, 40718}, {1928, 52611}, {2276, 692}, {3250, 31}, {3261, 870}, {3314, 3888}, {3661, 100}, {3736, 163}, {3773, 1018}, {3775, 35342}, {3781, 906}, {3786, 5546}, {3790, 644}, {3792, 1983}, {3797, 3573}, {3799, 1252}, {3805, 172}, {3807, 765}, {3862, 34067}, {3864, 813}, {4122, 37}, {4374, 40745}, {4391, 52133}, {4439, 1023}, {4475, 649}, {4481, 58}, {4486, 238}, {4505, 1016}, {4522, 9}, {4818, 1449}, {4951, 45}, {6386, 5388}, {7146, 109}, {7179, 651}, {7204, 1461}, {8630, 1501}, {14436, 9459}, {16603, 4551}, {17415, 21751}, {18895, 41072}, {20444, 43289}, {20906, 52136}, {21196, 40751}, {23596, 291}, {27474, 54440}, {30639, 385}, {30654, 1933}, {30665, 1914}, {30671, 1911}, {30870, 76}, {30872, 40365}, {30966, 662}, {31909, 162}, {33904, 2243}, {33931, 190}, {35519, 52652}, {38810, 33514}, {40773, 110}, {45782, 34071}, {45882, 7122}, {46386, 560}, {46503, 61206}, {50451, 40722}, {50549, 16584}, {51837, 932}, {52029, 919}, {56784, 33946}, {58864, 14599}, {61065, 1491}
X(62415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 4391, 3766}, {2517, 15413, 4374}, {4036, 48084, 3261}, {4086, 4509, 20906}, {18072, 18158, 20954}, {18158, 20954, 50327}


X(62416) = CROSSSSUM OF PU(224)

Barycentrics    a^2*(a^8 - a^4*b^4 - b^8 - a^4*c^4 + 3*b^4*c^4 - c^8) : :

X(62416) lies on these lines: {3, 35214}, {6, 755}, {32, 14370}, {39, 9480}, {99, 15588}, {148, 13519}, {574, 2936}, {1979, 23402}, {2353, 33786}, {3499, 46272}, {5113, 20998}, {5938, 51983}, {7669, 9431}, {9259, 16873}, {9482, 52696}, {10000, 24273}

X(62416) = isogonal conjugate of the isotomic conjugate of X(39346)
X(62416) = tangential-isogonal conjugate of X(9494)
X(62416) = crosspoint of PU(231)
X(62416) = X(3005)-Ceva conjugate of X(6)
X(62416) = X(4577)-Dao conjugate of X(689)
X(62416) = crossdifference of every pair of points on line {32193, 33907}
X(62416) = barycentric product X(i)*X(j) for these {i,j}: {1, 39336}, {6, 39346}
X(62416) = barycentric quotient X(i)/X(j) for these {i,j}: {39336, 75}, {39346, 76}


X(62417) = CROSSSSUM OF PU(225)

Barycentrics    a^2*(b - c)^2*(b + c)^2*(b^2 + c^2)^2 : :

X(62417) lies on the Brocard axis and these lines: {6, 755}, {76, 51982}, {115, 826}, {187, 9482}, {512, 24973}, {688, 59801}, {732, 45803}, {1977, 23646}, {3124, 5113}, {5104, 9019}, {5210, 33976}, {7772, 9480}, {8061, 55043}, {9408, 31390}, {9419, 42442}, {9427, 20975}, {9697, 42444}, {11205, 39689}, {14370, 59996}, {14913, 23642}, {19627, 56915}, {47421, 59804}

X(62417) = reflection of X(9482) in X(187)
X(62417) = isogonal conjugate of X(57545)
X(62417) = reflection of X(24973) in the Brocard axis
X(62417) = isogonal conjugate of the isotomic conjugate of X(15449)
X(62417) = X(i)-Ceva conjugate of X(j) for these (i,j): {6, 3005}, {2353, 9494}, {8041, 57132}, {14370, 512}, {39691, 15449}, {40362, 23285}, {59995, 2528}
X(62417) = X(i)-isoconjugate of X(j) for these (i,j): {1, 57545}, {662, 52936}, {689, 34072}, {827, 4593}, {4577, 4599}, {4630, 37204}, {24037, 59996}, {24041, 52395}, {56982, 59026}
X(62417) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 57545}, {339, 42371}, {512, 59996}, {688, 1501}, {826, 76}, {1084, 52936}, {3005, 52395}, {3124, 4577}, {6665, 34537}, {15449, 689}, {52042, 249}, {55043, 4593}, {55050, 827}
X(62417) = crossdifference of every pair of points on line {4577, 4630}
X(62417) = barycentric product X(i)*X(j) for these {i,j}: {6, 15449}, {39, 39691}, {115, 8041}, {338, 59994}, {512, 2528}, {523, 57132}, {688, 23285}, {826, 3005}, {850, 2531}, {1084, 59995}, {2353, 55070}, {2971, 4175}, {3124, 7794}, {8061, 8061}, {40362, 55050}, {41178, 56977}
X(62417) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 57545}, {512, 52936}, {688, 827}, {826, 689}, {882, 59026}, {1084, 59996}, {2084, 4599}, {2528, 670}, {2531, 110}, {3005, 4577}, {3124, 52395}, {7794, 34537}, {8041, 4590}, {8061, 4593}, {9494, 4630}, {15449, 76}, {23285, 42371}, {39691, 308}, {41178, 56976}, {55050, 1501}, {55070, 40073}, {57132, 99}, {59994, 249}, {59995, 44168}, {61052, 41284}


X(62418) = TRILINEAR PRODUCT OF PU(226)

Barycentrics    b*(b - c)*c*(b + c)*(b^2 + c^2) : :

X(62418) lies on these lines: {514, 661}, {799, 2644}, {818, 1980}, {826, 21125}, {850, 28654}, {2517, 48077}, {2533, 50496}, {3700, 4415}, {4010, 50486}, {4036, 4088}, {4086, 47700}, {4509, 47673}, {4724, 50327}, {4815, 47702}, {4985, 48032}, {7650, 47972}, {8060, 39179}, {8061, 16892}, {15413, 47971}, {18070, 18071}, {18136, 18155}, {20948, 33315}, {21108, 48278}, {21828, 27731}, {23731, 48152}, {24459, 55210}, {24719, 50329}, {30591, 47701}, {30870, 35553}, {35518, 47886}, {47937, 48109}, {48023, 50334}

X(62418) = reflection of X(39179) in X(8060)
X(62418) = isogonal conjugate of X(34072)
X(62418) = isotomic conjugate of X(4599)
X(62418) = isotomic conjugate of the isogonal conjugate of X(8061)
X(62418) = X(52123)-complementary conjugate of X(53564)
X(62418) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 20902}, {561, 1109}, {799, 20898}, {811, 23665}, {1577, 8061}, {4033, 21425}, {4593, 75}, {4602, 21424}, {36036, 2236}, {46244, 17879}, {48084, 826}, {55239, 1930}
X(62418) = X(i)-isoconjugate of X(j) for these (i,j): {1, 34072}, {2, 4630}, {6, 827}, {22, 58113}, {31, 4599}, {32, 4577}, {58, 4628}, {82, 163}, {83, 1576}, {99, 46288}, {110, 251}, {112, 1176}, {184, 42396}, {206, 53657}, {249, 18105}, {308, 14574}, {560, 4593}, {648, 10547}, {662, 46289}, {688, 57545}, {689, 1501}, {692, 52376}, {733, 56980}, {783, 51320}, {805, 56975}, {1101, 55240}, {1110, 39179}, {1634, 59996}, {1799, 61206}, {1917, 37204}, {2715, 51862}, {3051, 52936}, {3565, 33632}, {4563, 61383}, {4580, 57655}, {8265, 33515}, {8627, 58112}, {8793, 56008}, {9233, 42371}, {10329, 59076}, {11636, 58761}, {14586, 17500}, {14602, 41209}, {17938, 56976}, {18070, 23995}, {20859, 58114}, {23357, 58784}, {23963, 52618}, {23964, 58353}, {28724, 32713}, {32085, 32661}, {32676, 34055}, {32729, 52898}, {32739, 52394}, {33514, 43977}, {39287, 61194}, {41295, 43357}, {46228, 46970}, {46639, 51508}, {46765, 52915}, {51906, 59152}, {56915, 59026}, {57421, 61211}, {59004, 60587}
X(62418) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 4599}, {3, 34072}, {9, 827}, {10, 4628}, {39, 662}, {115, 82}, {141, 163}, {244, 251}, {339, 75}, {514, 39179}, {523, 55240}, {826, 8061}, {1084, 46289}, {1086, 52376}, {3124, 31}, {4858, 83}, {4988, 18108}, {6374, 4593}, {6376, 4577}, {6741, 56245}, {15449, 1}, {15526, 34055}, {18314, 18070}, {32664, 4630}, {34591, 1176}, {35078, 56971}, {35088, 3405}, {36901, 3112}, {38986, 46288}, {39691, 17469}, {40585, 110}, {40619, 52394}, {40938, 162}, {41178, 51903}, {47413, 2172}, {53983, 19}, {55043, 6}, {55050, 560}, {55065, 18098}, {55066, 10547}, {55070, 17453}, {61063, 56982}
X(62418) = crossdifference of every pair of points on line {31, 1917}
X(62418) = barycentric product X(i)*X(j) for these {i,j}: {1, 23285}, {10, 48084}, {38, 850}, {39, 20948}, {75, 826}, {76, 8061}, {92, 2525}, {115, 55239}, {141, 1577}, {313, 2530}, {321, 16892}, {427, 14208}, {523, 1930}, {525, 20883}, {561, 3005}, {656, 1235}, {661, 8024}, {688, 1928}, {693, 15523}, {798, 52568}, {799, 39691}, {1109, 4576}, {1441, 48278}, {1502, 2084}, {1634, 23994}, {1964, 44173}, {2236, 56981}, {2528, 3112}, {3261, 3954}, {3267, 17442}, {3665, 4086}, {3703, 4077}, {3933, 24006}, {4024, 16703}, {4036, 16887}, {4064, 16747}, {4553, 21207}, {4568, 16732}, {4593, 15449}, {7794, 18070}, {14378, 18076}, {14424, 46277}, {15413, 21016}, {16696, 52623}, {17879, 46151}, {18833, 57132}, {20336, 21108}, {20898, 31065}, {20902, 41676}, {20910, 42551}, {21035, 40495}, {21123, 27801}, {23989, 35309}, {55240, 59995}
X(62418) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 827}, {2, 4599}, {6, 34072}, {31, 4630}, {37, 4628}, {38, 110}, {39, 163}, {75, 4577}, {76, 4593}, {92, 42396}, {115, 55240}, {141, 662}, {338, 18070}, {427, 162}, {512, 46289}, {514, 52376}, {523, 82}, {525, 34055}, {561, 689}, {656, 1176}, {661, 251}, {688, 560}, {693, 52394}, {732, 56982}, {782, 51904}, {798, 46288}, {804, 56971}, {810, 10547}, {826, 1}, {850, 3112}, {1086, 39179}, {1109, 58784}, {1235, 811}, {1502, 37204}, {1577, 83}, {1634, 1101}, {1843, 32676}, {1923, 14574}, {1928, 42371}, {1930, 99}, {1934, 41209}, {1964, 1576}, {2084, 32}, {2156, 58113}, {2236, 56980}, {2525, 63}, {2528, 38}, {2530, 58}, {2531, 1923}, {2618, 17500}, {2632, 58353}, {2643, 18105}, {2799, 3405}, {3005, 31}, {3112, 52936}, {3120, 18108}, {3404, 2715}, {3665, 1414}, {3700, 56245}, {3703, 643}, {3917, 4575}, {3933, 4592}, {3954, 101}, {4020, 32661}, {4024, 18098}, {4036, 18082}, {4444, 39276}, {4553, 4570}, {4568, 4567}, {4576, 24041}, {4593, 57545}, {7813, 23889}, {8024, 799}, {8061, 6}, {9479, 34054}, {9494, 1917}, {14208, 1799}, {14424, 896}, {15449, 8061}, {15523, 100}, {16030, 36134}, {16696, 4556}, {16703, 4610}, {16732, 10566}, {16887, 52935}, {16892, 81}, {17442, 112}, {17457, 61211}, {17957, 46970}, {18070, 52395}, {18715, 52630}, {20021, 36084}, {20883, 648}, {20898, 10330}, {20902, 4580}, {20948, 308}, {21016, 1783}, {21035, 692}, {21037, 61173}, {21108, 28}, {21123, 1333}, {21125, 7191}, {21425, 33951}, {21814, 32739}, {23285, 75}, {23881, 1760}, {23994, 52618}, {24006, 32085}, {24018, 28724}, {27376, 24019}, {31125, 36085}, {33299, 5546}, {33907, 2244}, {35309, 1252}, {35366, 37132}, {38847, 33515}, {39691, 661}, {39725, 59076}, {42554, 18062}, {43534, 36081}, {44173, 18833}, {46147, 36034}, {46151, 24000}, {46154, 36142}, {46160, 36069}, {48084, 86}, {48278, 21}, {50521, 2206}, {52568, 4602}, {52623, 56186}, {55239, 4590}, {55240, 59996}, {56977, 37134}, {57132, 1964}, {58335, 2328}, {59995, 55239}
X(62418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1577, 14208, 661}, {18072, 18074, 18071}


X(62419) = CROSSPOINT OF PU(227)

Barycentrics    b*c*(2*a^2 - a*b - a*c + b*c)*(a*b - a*c + b*c)*(-(a*b) + a*c + b*c) : :

X(62419) lies on the cubic K970 and these lines: {1, 53679}, {7, 350}, {9, 4598}, {75, 87}, {192, 40881}, {304, 3494}, {330, 1278}, {536, 32033}, {894, 2162}, {1966, 9312}, {3551, 32020}, {3758, 21759}, {4110, 39354}, {6376, 49537}, {8026, 53678}, {16571, 33784}, {16606, 38262}, {17289, 27341}, {17754, 56657}, {20936, 24343}, {23493, 31997}, {25918, 51974}, {27424, 54120}, {27439, 27443}, {33681, 53146}, {56053, 56934}, {59518, 59676}

X(62419) = isotomic conjugate of the isogonal conjugate of X(17105)
X(62419) = crosssum of PU(234)
X(62419) = X(32020)-Ceva conjugate of X(40881)
X(62419) = X(2209)-isoconjugate of X(3551)
X(62419) = X(3662)-Dao conjugate of X(41886)
X(62419) = barycentric product X(i)*X(j) for these {i,j}: {76, 17105}, {87, 59518}, {330, 24524}, {3550, 6383}, {6384, 17350}, {7033, 27502}, {18830, 31286}
X(62419) = barycentric quotient X(i)/X(j) for these {i,j}: {330, 3551}, {3550, 2176}, {4090, 20691}, {17105, 6}, {17350, 43}, {23472, 8640}, {24524, 192}, {27502, 982}, {31286, 4083}, {41771, 41886}, {48330, 20979}, {57235, 25142}, {59518, 6376}
X(62419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {87, 18830, 75}, {192, 53677, 40881}


X(62420) = BARYCENTRIC PRODUCT OF PU(228)

Barycentrics    a^4*(a*b + a*c - b*c) : :

X(62420) lies on these lines: {6, 22199}, {9, 983}, {10, 25616}, {31, 32}, {43, 51319}, {55, 21838}, {63, 8624}, {81, 2242}, {101, 1613}, {560, 40736}, {626, 27259}, {746, 20641}, {1196, 51436}, {1252, 6632}, {1260, 14974}, {1397, 1922}, {1402, 23543}, {1403, 6377}, {1501, 32739}, {1621, 2241}, {2175, 7104}, {2176, 20760}, {2220, 21793}, {2240, 6327}, {3185, 16584}, {3981, 41323}, {5019, 16778}, {5291, 37652}, {6378, 34247}, {9447, 14599}, {9448, 14602}, {9455, 62194}, {9620, 54373}, {17137, 27632}, {21285, 28357}, {21760, 51949}, {52963, 61316}

X(62420) = isogonal conjugate of X(6383)
X(62420) = isogonal conjugate of the isotomic conjugate of X(2176)
X(62420) = X(560)-Ceva conjugate of X(32)
X(62420) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6383}, {2, 6384}, {7, 27424}, {8, 7209}, {75, 330}, {76, 87}, {85, 7155}, {86, 60244}, {192, 53679}, {274, 42027}, {310, 16606}, {334, 39914}, {514, 18830}, {561, 2162}, {693, 4598}, {870, 51837}, {871, 52655}, {932, 3261}, {1111, 5383}, {1240, 27455}, {1502, 7121}, {1577, 56053}, {1909, 27447}, {1969, 23086}, {1978, 43931}, {2053, 20567}, {2319, 6063}, {3123, 57577}, {3596, 7153}, {4373, 27496}, {6376, 53677}, {6378, 57992}, {6382, 53678}, {6385, 23493}, {15373, 18022}, {18299, 27436}, {18895, 34252}, {20906, 32039}, {34071, 40495}, {40418, 61417}, {40827, 45197}, {41283, 57264}, {44172, 51321}, {60812, 61413}
X(62420) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 6383}, {75, 1928}, {206, 330}, {798, 1111}, {3835, 23989}, {32664, 6384}, {40368, 2162}, {40598, 1502}, {40600, 60244}, {40610, 40495}
X(62420) = crossdifference of every pair of points on line {693, 3777}
X(62420) = barycentric product X(i)*X(j) for these {i,j}: {1, 2209}, {6, 2176}, {9, 41526}, {25, 20760}, {31, 43}, {32, 192}, {41, 1423}, {42, 38832}, {55, 1403}, {100, 8640}, {101, 20979}, {110, 50491}, {163, 21834}, {213, 27644}, {560, 6376}, {604, 3208}, {667, 52923}, {692, 4083}, {765, 38986}, {893, 51319}, {904, 51902}, {983, 56806}, {1016, 21762}, {1018, 57074}, {1110, 3123}, {1252, 6377}, {1333, 20691}, {1397, 27538}, {1402, 56181}, {1501, 6382}, {1576, 21051}, {1914, 51973}, {1918, 33296}, {1919, 4595}, {1924, 36860}, {1973, 22370}, {1980, 36863}, {2162, 53145}, {2175, 3212}, {2205, 31008}, {2206, 3971}, {2210, 41531}, {3835, 32739}, {4557, 16695}, {4567, 21835}, {7104, 17752}, {7109, 7304}, {7121, 53676}, {8750, 22090}, {9233, 40367}, {9447, 30545}, {9456, 52964}, {14408, 32665}, {14426, 32718}, {14599, 40848}, {15742, 22386}, {21138, 23990}, {21793, 60663}, {34071, 57050}, {34247, 57505}, {40728, 52136}, {45216, 57399}
X(62420) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6383}, {31, 6384}, {32, 330}, {41, 27424}, {43, 561}, {192, 1502}, {213, 60244}, {560, 87}, {604, 7209}, {692, 18830}, {1197, 61417}, {1403, 6063}, {1423, 20567}, {1501, 2162}, {1576, 56053}, {1917, 7121}, {1918, 42027}, {1980, 43931}, {2175, 7155}, {2176, 76}, {2205, 16606}, {2209, 75}, {3208, 28659}, {3212, 41283}, {4083, 40495}, {6376, 1928}, {6377, 23989}, {6382, 40362}, {7104, 27447}, {7121, 53679}, {8640, 693}, {9447, 2319}, {9448, 2053}, {14575, 23086}, {14599, 39914}, {16695, 52619}, {18892, 34252}, {18894, 51321}, {18900, 45782}, {20691, 27801}, {20760, 305}, {20979, 3261}, {21051, 44173}, {21762, 1086}, {21834, 20948}, {21835, 16732}, {22370, 40364}, {22386, 1565}, {23990, 5383}, {27538, 40363}, {27644, 6385}, {32739, 4598}, {38832, 310}, {38986, 1111}, {40367, 40359}, {40728, 51837}, {40848, 44170}, {41526, 85}, {41531, 44172}, {50491, 850}, {51319, 1920}, {51973, 18895}, {52923, 6386}, {53145, 6382}, {53675, 40367}, {56181, 40072}, {56806, 33930}, {57074, 7199}
X(62420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 23853, 22199}, {31, 41, 1197}, {31, 2205, 32}


X(62421) = TRILINEAR POLE OF LINE P(228)U(228)

Barycentrics    a*(a*b + a*c - b*c)*(a^2*b + a*b^2 - a^2*c - b^2*c)*(a^2*b - a^2*c - a*c^2 + b*c^2) : :

X(62421) lies on the cubic K774 and these lines: {1, 727}, {6, 190}, {81, 17459}, {100, 36288}, {213, 56011}, {239, 56012}, {894, 23561}, {904, 3903}, {1258, 32020}, {1914, 34077}, {2176, 4595}, {2209, 52923}, {3230, 8709}, {8026, 32911}, {16969, 43115}, {18793, 50581}, {21760, 57535}, {27644, 36860}

X(62421) = isogonal conjugate of X(40881)
X(62421) = isogonal conjugate of the isotomic conjugate of X(40844)
X(62421) = X(727)-Ceva conjugate of X(20332)
X(62421) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40881}, {75, 51864}, {87, 1575}, {292, 56663}, {330, 3009}, {726, 2162}, {1463, 2319}, {2053, 43040}, {3837, 34071}, {4598, 6373}, {5383, 52633}, {6384, 21760}, {7121, 52043}, {16606, 18792}, {34252, 52656}, {39914, 40155}
X(62421) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 40881}, {75, 35538}, {206, 51864}, {798, 52633}, {6377, 20908}, {19557, 56663}, {33678, 6384}, {40598, 52043}, {40610, 3837}
X(62421) = cevapoint of X(3550) and X(21760)
X(62421) = trilinear pole of line {43, 8640}
X(62421) = barycentric product X(i)*X(j) for these {i,j}: {6, 40844}, {43, 3226}, {192, 20332}, {238, 33680}, {727, 6376}, {1423, 36799}, {2176, 32020}, {3212, 8851}, {3253, 41531}, {4083, 8709}, {6382, 34077}, {8640, 54985}, {18793, 33296}, {23355, 36863}, {27644, 27809}
X(62421) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 40881}, {32, 51864}, {43, 726}, {192, 52043}, {238, 56663}, {727, 87}, {1403, 1463}, {1423, 43040}, {2176, 1575}, {2209, 3009}, {3123, 21140}, {3226, 6384}, {3835, 20908}, {4083, 3837}, {6376, 35538}, {8640, 6373}, {8709, 18830}, {8851, 7155}, {18793, 42027}, {20332, 330}, {21834, 21053}, {23355, 43931}, {27809, 60244}, {32020, 6383}, {33680, 334}, {34077, 2162}, {36799, 27424}, {38832, 18792}, {38986, 52633}, {40844, 76}, {51973, 52656}, {52923, 23354}


X(62422) = CEVAPOINT OF PU(229)

Barycentrics    a*(a*b + a*c - b*c)*(a*b - 2*b^2 - a*c + b*c)*(a*b - a*c - b*c + 2*c^2) : :

X(62422) lies on the cubic K971 and these lines: {1, 8851}, {8, 726}, {65, 39969}, {982, 2319}, {3057, 7220}, {3679, 20899}, {4083, 14823}, {6382, 25280}, {21337, 40780}, {24524, 40844}, {27538, 40598}

X(62422) = isogonal conjugate of X(17105)
X(62422) = X(i)-isoconjugate of X(j) for these (i,j): {1, 17105}, {87, 3550}, {932, 48330}, {2162, 17350}, {4598, 23472}, {7121, 24524}, {31286, 34071}, {57235, 58958}
X(62422) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 17105}, {75, 59518}, {3061, 41771}, {3840, 59676}, {40598, 24524}, {40610, 31286}, {52657, 27502}
X(62422) = barycentric product X(192)*X(3551)
X(62422) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 17105}, {43, 17350}, {192, 24524}, {982, 27502}, {2176, 3550}, {3551, 330}, {4083, 31286}, {6376, 59518}, {8640, 23472}, {20691, 4090}, {20979, 48330}, {25142, 57235}, {41886, 41771}


X(62423) = BICENTRIC DIFFERENCE OF EVERY PAIR OF POINTS ON LINE P(231)U(231)

Barycentrics    (b - c)*(b^3 - a*b*c + b^2*c + b*c^2 + c^3) : :
Barycentrics    a b c (b - c) - b^4 + c^4 : :

X(62423) lies on these lines: {1, 49279}, {2, 48171}, {30, 511}, {313, 3261}, {649, 48103}, {650, 48056}, {659, 48094}, {693, 4122}, {764, 49278}, {1491, 4088}, {1635, 47885}, {1638, 47807}, {1639, 47799}, {1734, 4808}, {2254, 47700}, {2484, 54253}, {2509, 21348}, {2530, 48272}, {2533, 47707}, {2977, 17069}, {3004, 48030}, {3700, 23770}, {3776, 3837}, {3777, 48278}, {3801, 4391}, {3835, 18004}, {4010, 25259}, {4024, 47704}, {4025, 9508}, {4079, 48031}, {4086, 20908}, {4170, 47717}, {4367, 48300}, {4369, 48405}, {4378, 47682}, {4448, 47798}, {4453, 47809}, {4458, 4874}, {4467, 48408}, {4490, 21124}, {4724, 48083}, {4775, 47727}, {4776, 48174}, {4782, 47890}, {4784, 47971}, {4789, 48238}, {4804, 47705}, {4806, 48270}, {4809, 47804}, {4810, 48266}, {4813, 47924}, {4818, 48427}, {4824, 45746}, {4841, 47964}, {4922, 47728}, {4951, 6545}, {4957, 7336}, {4979, 48146}, {4988, 47928}, {6133, 21187}, {6546, 48226}, {6586, 31947}, {6590, 54265}, {7192, 47693}, {7265, 47716}, {7662, 48271}, {10196, 48214}, {15413, 20906}, {17148, 21225}, {20295, 47688}, {20504, 50541}, {21104, 48098}, {21115, 47812}, {21119, 42462}, {21146, 47676}, {21192, 50504}, {21204, 48198}, {21834, 48033}, {23731, 48599}, {24719, 47652}, {24720, 58375}, {28374, 50545}, {28602, 47830}, {30565, 47797}, {36848, 47808}, {44429, 48422}, {44551, 45691}, {45323, 45344}, {45666, 47800}, {46403, 49302}, {47123, 49286}, {47653, 47945}, {47673, 47934}, {47677, 47975}, {47687, 49301}, {47689, 48108}, {47692, 48080}, {47694, 49273}, {47695, 49275}, {47699, 47946}, {47701, 48024}, {47702, 48021}, {47703, 48143}, {47708, 48265}, {47711, 50352}, {47712, 48267}, {47720, 48279}, {47726, 48320}, {47754, 47802}, {47760, 48192}, {47761, 48219}, {47762, 48236}, {47765, 48555}, {47770, 47803}, {47772, 47821}, {47782, 48176}, {47784, 48194}, {47788, 48221}, {47810, 47877}, {47824, 48208}, {47825, 47894}, {47827, 47886}, {47829, 47882}, {47833, 47874}, {47834, 47870}, {47841, 57066}, {47879, 48206}, {47902, 48019}, {47919, 47951}, {47923, 47968}, {47925, 47943}, {47931, 48020}, {47938, 48076}, {47950, 48617}, {47960, 47999}, {47961, 47990}, {47967, 48402}, {47972, 48078}, {47973, 48077}, {47983, 48038}, {47988, 48611}, {47989, 48621}, {47998, 48028}, {48002, 48404}, {48006, 48040}, {48007, 48039}, {48029, 48048}, {48032, 48113}, {48055, 48614}, {48089, 49299}, {48095, 48615}, {48096, 48124}, {48101, 48140}, {48102, 48604}, {48127, 48274}, {48134, 48397}, {48166, 48179}, {48175, 48434}, {48232, 48245}, {48269, 49295}, {48290, 48344}, {48295, 49290}, {48298, 49274}, {48299, 48330}, {48321, 50351}, {48332, 49280}, {48388, 53257}, {48392, 55282}, {50333, 50335}

X(62423) = crossdifference of every pair of points on line {6, 7295}
X(62423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 48171, 48185}, {2, 48185, 48199}, {2, 48227, 48215}, {2, 48241, 48227}, {649, 48118, 48103}, {650, 48088, 48056}, {1638, 47807, 48216}, {1639, 47799, 48197}, {3004, 48047, 48030}, {3700, 23770, 48090}, {3776, 4522, 3837}, {4024, 47704, 48120}, {4025, 48062, 9508}, {4088, 16892, 1491}, {4122, 48326, 693}, {4453, 47809, 47823}, {4453, 48188, 48217}, {4724, 48117, 48083}, {4776, 48174, 48552}, {4782, 48097, 47890}, {4813, 47924, 47944}, {7265, 47716, 48273}, {21104, 48396, 48098}, {25259, 47691, 4010}, {30565, 47797, 47822}, {30565, 48224, 48195}, {45746, 47698, 4824}, {47676, 47690, 21146}, {47692, 48080, 48349}, {47692, 49272, 48080}, {47700, 47930, 2254}, {47701, 48082, 48024}, {47702, 48112, 48021}, {47727, 49276, 4775}, {47772, 48203, 47821}, {47797, 47822, 48195}, {47809, 47823, 48217}, {47821, 48203, 48177}, {47822, 48224, 47797}, {47823, 48188, 47809}, {47824, 48208, 48235}, {47833, 58372, 47887}, {47874, 47887, 47833}, {47923, 48023, 47968}, {47960, 48027, 47999}, {47961, 48026, 47990}, {47971, 48106, 4784}, {47973, 48077, 50328}, {47998, 48046, 48028}, {48029, 48087, 48048}, {48083, 50340, 4724}, {48103, 50342, 649}, {48171, 48227, 48199}, {48171, 48241, 2}, {48185, 48227, 2}, {48185, 48241, 48215}, {48197, 48212, 47799}, {48199, 48215, 2}, {48201, 48216, 47807}, {48208, 48571, 47824}, {48604, 50358, 48102}, {50333, 50348, 50335}


X(62424) = BARYCENTRIC PRODUCT OF PU(233)

Barycentrics    (a + 2*b - 3*c)*(a - 3*b + 2*c) : :
X(62424) = 18 X[2] - 7 X[190], 4 X[2] + 7 X[903], 3 X[2] - 14 X[1086], 25 X[2] - 14 X[4370], 9 X[2] + 2 X[4409], 39 X[2] - 28 X[4422], 15 X[2] + 7 X[4440], 57 X[2] - 35 X[4473], 29 X[2] - 7 X[17487], 24 X[2] - 35 X[27191], 61 X[2] - 28 X[36522], 5 X[2] + 28 X[36525], 45 X[2] - 56 X[40480], 32 X[2] - 21 X[41138], and many others

X(62424) lies on these lines: {2, 45}, {320, 50019}, {335, 4726}, {548, 24833}, {673, 60962}, {1268, 17235}, {1743, 39707}, {2321, 39710}, {3625, 24841}, {3627, 24813}, {3630, 32029}, {3635, 24715}, {4384, 17329}, {4555, 31647}, {4659, 17285}, {4691, 53601}, {4700, 37756}, {4727, 17297}, {4862, 17335}, {7263, 32025}, {15684, 24827}, {17160, 49761}, {17273, 17275}, {21735, 29243}, {24131, 33910}, {24817, 61817}, {24844, 61903}, {29587, 48631}, {52714, 59373}

X(62424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4409, 190}, {903, 1086, 27191}, {1086, 36525, 4440}, {4440, 40480, 190}, {27191, 52885, 2}


X(62425) = BARYCENTRIC PRODUCT OF PU(234)

Barycentrics    (a^2 - a*b - b^2 + a*c + b*c)*(a^2 + a*b - a*c + b*c - c^2) : :

X(62425) lies on these lines: {56, 17205}, {106, 17753}, {995, 1434}, {996, 24170}, {1015, 14377}, {4056, 17213}, {7176, 24046}, {16781, 17729}, {17081, 24159}


X(62426) = BARYCENTRIC PRODUCT OF PU(235)

Barycentrics    (a^2 + a*b - b^2 - a*c - b*c)*(a^2 - a*b + a*c - b*c - c^2) : :

X(62426) lies on these lines: {10, 31448}, {76, 55161}, {101, 27523}, {116, 3926}, {519, 14974}, {574, 21025}, {956, 21070}, {996, 1500}, {1107, 48863}, {1975, 14377}, {3985, 30144}, {4037, 53165}, {4115, 5730}, {7781, 20255}, {8666, 21071}, {16552, 49492}, {16788, 26770}, {21024, 31456}, {24170, 31859}, {30128, 49518}, {31449, 50605}, {35092, 57506}, {53561, 56146}

X(62426) = {X(1975),X(30109)}-harmonic conjugate of X(14377)


X(62427) = BARYCENTRIC PRODUCT OF PU(237)

Barycentrics    (a^2 + 2*b^2 - 3*c^2)*(a^2 - 3*b^2 + 2*c^2) : :
X(62427) = 18 X[2] - 7 X[99], 3 X[2] - 14 X[115], 15 X[2] + 7 X[148], 39 X[2] - 28 X[620], 4 X[2] + 7 X[671], 25 X[2] - 14 X[2482], 17 X[2] - 28 X[5461], 45 X[2] - 56 X[6722], 29 X[2] - 7 X[8591], 37 X[2] + 7 X[8596], 10 X[2] - 21 X[9166], 53 X[2] - 42 X[9167], 24 X[2] - 35 X[14061], 31 X[2] - 42 X[14971], and many others

X(62427) lies on these lines: {2, 99}, {98, 3627}, {183, 7910}, {316, 15480}, {542, 61973}, {548, 6321}, {892, 31644}, {1657, 10723}, {1916, 33289}, {2782, 5072}, {3053, 53105}, {3329, 15031}, {3625, 7983}, {3630, 10754}, {3635, 13178}, {3793, 14568}, {3843, 12188}, {3850, 52090}, {3933, 43676}, {4691, 11599}, {5007, 53109}, {6033, 23046}, {6034, 45018}, {6036, 61138}, {6054, 61948}, {6055, 46333}, {7771, 44518}, {7809, 32457}, {7854, 7911}, {7861, 10159}, {8724, 61917}, {8781, 60209}, {9180, 42553}, {9862, 62011}, {9880, 62029}, {10722, 38335}, {11606, 60146}, {11623, 50691}, {11632, 14893}, {11646, 32455}, {12108, 21166}, {12117, 15706}, {12243, 61959}, {12812, 23235}, {12829, 53107}, {13172, 38735}, {13188, 61903}, {14044, 41755}, {14093, 38733}, {14443, 42345}, {14651, 33703}, {14830, 62031}, {14891, 38739}, {14892, 51872}, {15684, 22515}, {15686, 61560}, {15689, 49102}, {15712, 38224}, {17538, 34473}, {20398, 61807}, {20774, 23956}, {21735, 23698}, {23234, 61922}, {32458, 32878}, {33813, 61840}, {34127, 61849}, {38664, 61964}, {38730, 45759}, {38736, 62058}, {38737, 61783}, {38738, 58188}, {38749, 62161}, {43535, 54646}, {60103, 60630}, {61575, 61931}, {61576, 61919}

X(62427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 9166, 6722}, {115, 148, 9166}, {115, 671, 14061}, {115, 36523, 148}, {148, 6722, 99}, {620, 41154, 115}, {9166, 36523, 671}, {14061, 52886, 2}, {31274, 35369, 99}


X(62428) = ISOGONAL CONJUGATE OF X(52604)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + 2*a^2*c^2 + b^2*c^2 - c^4) : :
X(62428) = 3 X[36900] - 4 X[58796]

X(62428) lies on these lines: {2, 17434}, {95, 5888}, {97, 2525}, {275, 43673}, {323, 401}, {340, 520}, {933, 2867}, {3265, 15414}, {4576, 15958}, {6080, 52779}, {6333, 58308}, {6368, 23061}, {8795, 43701}, {11427, 16040}, {11433, 14346}, {15422, 33294}, {16077, 18831}, {17708, 18315}, {23616, 59183}, {35360, 41208}, {36900, 58796}, {39469, 58784}, {55253, 57875}

X(62428) = reflection of X(31296) in X(32320)
X(62428) = isogonal conjugate of X(52604)
X(62428) = isotomic conjugate of X(35360)
X(62428) = anticomplement of X(17434)
X(62428) = polar conjugate of X(61193)
X(62428) = anticomplement of the isogonal conjugate of X(16813)
X(62428) = anticomplement of the isotomic conjugate of X(42405)
X(62428) = isotomic conjugate of the anticomplement of X(2972)
X(62428) = isotomic conjugate of the complement of X(44003)
X(62428) = isotomic conjugate of the isogonal conjugate of X(23286)
X(62428) = isotomic conjugate of the polar conjugate of X(15412)
X(62428) = polar conjugate of the isotomic conjugate of X(15414)
X(62428) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {823, 2888}, {933, 6360}, {2167, 34186}, {2190, 39352}, {8795, 21294}, {8884, 21221}, {16813, 8}, {18831, 4329}, {24019, 17035}, {36134, 46717}, {40440, 13219}, {42405, 6327}, {52779, 21270}, {61362, 21220}
X(62428) = X(30102)-complementary conjugate of X(21253)
X(62428) = X(i)-Ceva conjugate of X(j) for these (i,j): {18831, 95}, {34386, 53576}, {42405, 2}, {52939, 59183}, {54950, 276}, {57765, 339}
X(62428) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52604}, {5, 32676}, {19, 1625}, {25, 2617}, {31, 35360}, {48, 61193}, {51, 162}, {53, 163}, {92, 61194}, {107, 62266}, {110, 2181}, {112, 1953}, {216, 24019}, {217, 823}, {418, 36126}, {648, 2179}, {662, 3199}, {799, 61346}, {811, 40981}, {933, 62259}, {1096, 23181}, {1101, 51513}, {1973, 14570}, {2189, 35307}, {2313, 53708}, {2618, 57655}, {4575, 14569}, {8750, 18180}, {11062, 32678}, {14213, 61206}, {14560, 51801}, {14574, 62273}, {14576, 36145}, {14577, 36148}, {15451, 24000}, {23290, 23995}, {24021, 58305}, {27371, 34072}, {32713, 44706}, {36046, 51363}, {36131, 52945}, {36134, 62261}, {52926, 60685}
X(62428) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35360}, {3, 52604}, {6, 1625}, {115, 53}, {125, 51}, {136, 14569}, {137, 62261}, {233, 35318}, {244, 2181}, {338, 60828}, {520, 58305}, {523, 51513}, {525, 6368}, {647, 12077}, {1084, 3199}, {1249, 61193}, {2972, 61378}, {5522, 6755}, {6337, 14570}, {6388, 41588}, {6503, 23181}, {6505, 2617}, {7668, 27370}, {8901, 47328}, {11792, 53386}, {14401, 14391}, {15449, 27371}, {15450, 62260}, {15526, 5}, {17423, 40981}, {18314, 23290}, {18334, 11062}, {22391, 61194}, {23285, 18314}, {26932, 18180}, {33504, 51363}, {34591, 1953}, {34836, 61195}, {35071, 216}, {35088, 39569}, {35441, 57195}, {35442, 3078}, {36901, 324}, {38985, 62266}, {38996, 61346}, {39008, 52945}, {39013, 14576}, {39018, 14577}, {39019, 36412}, {39020, 42459}, {40618, 17167}, {43961, 6117}, {43962, 6116}, {46093, 418}, {53575, 15897}, {53576, 389}, {55066, 2179}
X(62428) = cevapoint of X(i) and X(j) for these (i,j): {2, 44003}, {520, 525}, {523, 52585}
X(62428) = trilinear pole of line {8552, 15526}
X(62428) = crossdifference of every pair of points on line {51, 217}
X(62428) = barycentric product X(i)*X(j) for these {i,j}: {4, 15414}, {54, 3267}, {69, 15412}, {76, 23286}, {95, 525}, {97, 850}, {99, 53576}, {275, 3265}, {276, 520}, {304, 2616}, {305, 2623}, {339, 18315}, {523, 34386}, {647, 34384}, {656, 62276}, {905, 56189}, {933, 36793}, {1141, 45792}, {1232, 39181}, {1502, 58308}, {1577, 62277}, {2167, 14208}, {2169, 20948}, {2525, 39287}, {2972, 42405}, {3933, 39182}, {4025, 56246}, {4143, 8884}, {4176, 15422}, {4563, 8901}, {6563, 57875}, {8552, 46138}, {8795, 52613}, {8882, 52617}, {14533, 44173}, {14638, 38808}, {15413, 56254}, {15415, 46089}, {15526, 18831}, {15958, 23962}, {18022, 46088}, {20975, 55218}, {24018, 40440}, {32320, 57844}, {34385, 52584}, {34767, 43768}, {35071, 54950}, {35442, 52939}, {39177, 57807}, {39201, 57790}
X(62428) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35360}, {3, 1625}, {4, 61193}, {6, 52604}, {54, 112}, {63, 2617}, {69, 14570}, {95, 648}, {97, 110}, {115, 51513}, {125, 12077}, {140, 35318}, {184, 61194}, {201, 35307}, {275, 107}, {276, 6528}, {338, 23290}, {339, 18314}, {394, 23181}, {512, 3199}, {520, 216}, {523, 53}, {525, 5}, {526, 11062}, {647, 51}, {656, 1953}, {661, 2181}, {669, 61346}, {810, 2179}, {822, 62266}, {826, 27371}, {850, 324}, {879, 60517}, {905, 18180}, {924, 14576}, {933, 23964}, {1298, 53708}, {1510, 14577}, {1650, 14391}, {2148, 32676}, {2167, 162}, {2169, 163}, {2190, 24019}, {2501, 14569}, {2616, 19}, {2623, 25}, {2799, 39569}, {2972, 17434}, {3049, 40981}, {3265, 343}, {3267, 311}, {3268, 14918}, {3269, 15451}, {3917, 35319}, {4025, 17167}, {4064, 21011}, {4091, 44709}, {4131, 16697}, {4143, 52347}, {4466, 21102}, {4580, 17500}, {6333, 60524}, {6368, 36412}, {6563, 467}, {8057, 42459}, {8552, 1154}, {8611, 7069}, {8795, 15352}, {8882, 32713}, {8884, 6529}, {8901, 2501}, {9033, 52945}, {11077, 14560}, {12077, 62261}, {14208, 14213}, {14417, 41586}, {14533, 1576}, {14586, 57655}, {14618, 13450}, {14919, 36831}, {15412, 4}, {15414, 69}, {15421, 60035}, {15422, 6524}, {15451, 62260}, {15526, 6368}, {15958, 23357}, {16030, 35325}, {16035, 61204}, {16186, 2081}, {16813, 32230}, {17434, 61378}, {18314, 60828}, {18315, 250}, {18831, 23582}, {19166, 41678}, {19180, 1624}, {19189, 58070}, {19210, 32661}, {20902, 2618}, {20948, 62273}, {20975, 55219}, {23286, 6}, {23616, 35442}, {23870, 6117}, {23871, 6116}, {23872, 52671}, {23873, 52670}, {23878, 39530}, {24018, 44706}, {31296, 30506}, {31617, 33513}, {32320, 418}, {32679, 51801}, {33629, 57153}, {34384, 6331}, {34385, 30450}, {34386, 99}, {34980, 42293}, {35071, 58305}, {35441, 3078}, {35442, 57195}, {38808, 57219}, {39177, 270}, {39180, 59142}, {39181, 1173}, {39182, 32085}, {39201, 217}, {39287, 42396}, {39469, 52967}, {40440, 823}, {41077, 1568}, {41298, 14129}, {43718, 52926}, {43768, 4240}, {44173, 62274}, {45792, 1273}, {46088, 184}, {46089, 14586}, {46090, 32640}, {46138, 46456}, {46832, 61195}, {47122, 6755}, {50463, 32662}, {51255, 61203}, {51268, 36309}, {51275, 36306}, {51444, 26714}, {51664, 1393}, {52584, 52}, {52585, 14363}, {52590, 15897}, {52591, 27370}, {52613, 5562}, {52617, 28706}, {52779, 34538}, {53173, 53174}, {53576, 523}, {54034, 61206}, {54950, 57556}, {55232, 21807}, {55253, 14593}, {55280, 53386}, {56189, 6335}, {56246, 1897}, {56254, 1783}, {57195, 23607}, {57703, 32734}, {57765, 38342}, {57875, 925}, {58305, 46394}, {58306, 34859}, {58308, 32}, {58756, 2207}, {59183, 35311}, {62270, 14574}, {62276, 811}, {62277, 662}


X(62429) = ISOTOMIC CONJUGATE OF X(5377)

Barycentrics    b*(b - c)^2*c*(-(a*b) + b^2 - a*c + c^2) : :

X(62429) lies on these lines: {7, 8}, {528, 57036}, {874, 20924}, {918, 1086}, {1233, 20890}, {1358, 4081}, {1565, 17463}, {1642, 17369}, {2284, 4363}, {2886, 21436}, {2968, 40615}, {3004, 42753}, {3665, 23581}, {3673, 45276}, {3932, 23102}, {4025, 53525}, {4089, 34896}, {4124, 43921}, {4437, 20431}, {7046, 40154}, {7187, 24515}, {7795, 17279}, {14505, 23100}, {17278, 24774}, {17280, 25244}, {20445, 52157}, {20901, 23989}, {22011, 22025}, {23612, 40216}, {23773, 53583}, {24279, 24401}, {25493, 25586}, {26544, 26567}, {32922, 40724}

X(62429) = isotomic conjugate of X(5377)
X(62429) = isotomic conjugate of the isogonal conjugate of X(3675)
X(62429) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {3446, 20533}, {8047, 20552}
X(62429) = X(i)-complementary conjugate of X(j) for these (i,j): {1438, 17115}, {59133, 21232}
X(62429) = X(i)-Ceva conjugate of X(j) for these (i,j): {335, 48084}, {2481, 693}, {23989, 35094}, {40216, 3126}, {40704, 918}
X(62429) = X(i)-isoconjugate of X(j) for these (i,j): {31, 5377}, {59, 2195}, {100, 32666}, {101, 919}, {105, 1110}, {109, 52927}, {294, 2149}, {663, 59101}, {666, 32739}, {673, 23990}, {692, 36086}, {1252, 1438}, {1416, 6065}, {2175, 39293}, {3939, 32735}, {4570, 56853}, {4628, 46163}, {6066, 56783}, {6559, 23979}, {9454, 57536}, {24027, 28071}, {32724, 54440}, {35185, 57250}, {43929, 59149}
X(62429) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 5377}, {11, 52927}, {514, 105}, {522, 28071}, {650, 294}, {661, 1438}, {665, 1914}, {676, 41339}, {918, 518}, {1015, 919}, {1086, 36086}, {1577, 14942}, {3126, 55}, {4458, 20715}, {4988, 18785}, {6184, 1252}, {6615, 2195}, {8054, 32666}, {17435, 2284}, {17755, 765}, {27918, 3573}, {33675, 57536}, {35094, 100}, {35509, 650}, {36905, 4564}, {38980, 101}, {38989, 692}, {39046, 1110}, {39063, 59}, {40593, 39293}, {40609, 6065}, {40615, 36146}, {40617, 32735}, {40619, 666}, {40624, 36802}, {50330, 56853}, {52304, 11124}
X(62429) = trilinear pole of line {35094, 42770}
X(62429) = crossdifference of every pair of points on line {692, 3063}
X(62429) = barycentric product X(i)*X(j) for these {i,j}: {11, 40704}, {76, 3675}, {241, 34387}, {518, 23989}, {665, 40495}, {693, 918}, {883, 40166}, {1026, 23100}, {1086, 3263}, {1111, 3912}, {1565, 46108}, {1577, 23829}, {2254, 3261}, {2481, 35094}, {2973, 25083}, {3120, 18157}, {3323, 36796}, {3932, 16727}, {4088, 7199}, {4391, 43042}, {4554, 52305}, {4858, 9436}, {4939, 10029}, {5236, 17880}, {6063, 17435}, {6384, 23773}, {16732, 30941}, {18206, 21207}, {18816, 42770}, {18895, 38989}, {23978, 34855}, {24002, 50333}, {24290, 52619}, {35519, 53544}
X(62429) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 5377}, {11, 294}, {85, 39293}, {241, 59}, {244, 1438}, {513, 919}, {514, 36086}, {518, 1252}, {649, 32666}, {650, 52927}, {651, 59101}, {665, 692}, {672, 1110}, {693, 666}, {764, 43929}, {883, 31615}, {918, 100}, {1026, 59149}, {1086, 105}, {1111, 673}, {1146, 28071}, {1358, 1462}, {1458, 2149}, {1565, 1814}, {1566, 41339}, {1876, 7115}, {2170, 2195}, {2223, 23990}, {2254, 101}, {2481, 57536}, {2530, 46163}, {2969, 8751}, {2973, 54235}, {3120, 18785}, {3125, 56853}, {3126, 2284}, {3261, 51560}, {3263, 1016}, {3323, 241}, {3669, 32735}, {3675, 6}, {3676, 36146}, {3693, 6065}, {3912, 765}, {3937, 32658}, {3942, 36057}, {4088, 1018}, {4391, 36802}, {4858, 14942}, {4925, 57192}, {5236, 7012}, {6545, 1027}, {9436, 4564}, {15149, 5379}, {15634, 9503}, {16732, 13576}, {16892, 35333}, {17435, 55}, {18157, 4600}, {18206, 4570}, {21132, 1024}, {23773, 43}, {23829, 662}, {23989, 2481}, {24002, 927}, {24026, 6559}, {24290, 4557}, {30941, 4567}, {34387, 36796}, {34855, 1262}, {35094, 518}, {35505, 2223}, {38989, 1914}, {40166, 885}, {40217, 5378}, {40495, 36803}, {40704, 4998}, {41353, 4619}, {42455, 28132}, {42720, 57731}, {42753, 51987}, {42754, 54364}, {42758, 2427}, {42770, 517}, {43042, 651}, {43921, 41934}, {46108, 15742}, {50333, 644}, {52304, 17435}, {52305, 650}, {52621, 34085}, {52626, 52902}, {53538, 1416}, {53539, 1415}, {53544, 109}, {53550, 906}, {53551, 4559}, {53555, 1983}, {53583, 1026}, {57468, 32641}, {61056, 52635}


X(62430) = X(69)X(513)∩X(75)X(2400)

Barycentrics    b*(b - c)*c*(-(a*b) + b^2 - a*c + c^2)^2 : :

X(62430) lies on these lines: {69, 513}, {75, 2400}, {76, 42455}, {312, 693}, {313, 3261}, {918, 4437}, {1211, 14208}, {1233, 35519}, {1234, 20948}, {2509, 17279}, {4131, 13577}, {4391, 39749}, {18037, 27855}, {21202, 23874}, {22275, 50487}, {32828, 33528}

X(62430) = isotomic conjugate of the isogonal conjugate of X(3126)
X(62430) = X(34183)-anticomplementary conjugate of X(4440)
X(62430) = X(668)-Ceva conjugate of X(3263)
X(62430) = X(i)-isoconjugate of X(j) for these (i,j): {101, 41934}, {105, 32666}, {692, 51838}, {919, 1438}, {1416, 52927}, {1919, 57536}, {2195, 32735}, {6185, 32739}
X(62430) = X(i)-Dao conjugate of X(j) for these (i,j): {518, 692}, {918, 513}, {1015, 41934}, {1086, 51838}, {3126, 884}, {6184, 919}, {9296, 57536}, {17435, 6}, {17755, 36086}, {35094, 105}, {36905, 36146}, {38980, 1438}, {39046, 32666}, {39063, 32735}, {40609, 52927}, {40619, 6185}
X(62430) = barycentric product X(i)*X(j) for these {i,j}: {75, 53583}, {76, 3126}, {646, 3323}, {668, 35094}, {693, 4437}, {850, 16728}, {918, 3263}, {3261, 4712}, {4088, 18157}, {6184, 40495}, {6386, 35505}, {15413, 34337}, {40704, 50333}
X(62430) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 32735}, {513, 41934}, {514, 51838}, {518, 919}, {668, 57536}, {672, 32666}, {693, 6185}, {918, 105}, {1362, 1415}, {2254, 1438}, {3126, 6}, {3263, 666}, {3323, 3669}, {3675, 43929}, {3693, 52927}, {3912, 36086}, {4088, 18785}, {4437, 100}, {4712, 101}, {6184, 692}, {9436, 36146}, {16728, 110}, {17060, 1633}, {17435, 884}, {23102, 2284}, {24290, 56853}, {33570, 60722}, {34337, 1783}, {35094, 513}, {35505, 667}, {40495, 57537}, {40704, 927}, {42079, 32739}, {42720, 5377}, {42758, 51987}, {43042, 1462}, {50333, 294}, {53544, 1416}, {53550, 32658}, {53583, 1}, {57469, 32644}, {61056, 57181}


X(62431) = ISOTOMIC CONJUGATE OF X(57742)

Barycentrics    b^2*(b - c)^2*c^2*(b + c)^2*(-(a^2*b^2) + b^4 - a^2*c^2 + c^4) : :

X(62431) lies on these lines: {2, 34349}, {4, 69}, {94, 18019}, {115, 127}, {183, 37930}, {290, 57452}, {325, 14356}, {850, 34765}, {880, 40074}, {2970, 36793}, {3134, 3265}, {3734, 14966}, {6563, 16186}, {14967, 18546}, {15630, 53347}, {23977, 37778}, {30737, 52145}, {31635, 34218}, {34138, 57504}, {34336, 36789}, {34854, 52486}, {36471, 38970}, {41760, 45280}, {43665, 43673}, {45198, 45943}, {51481, 60869}, {52629, 58263}

X(62431) = isotomic conjugate of X(57742)
X(62431) = anticomplement of X(34349)
X(62431) = isotomic conjugate of the isogonal conjugate of X(868)
X(62431) = X(i)-Ceva conjugate of X(j) for these (i,j): {290, 850}, {23962, 35088}, {44132, 2799}, {56981, 23105}
X(62431) = X(i)-isoconjugate of X(j) for these (i,j): {31, 57742}, {98, 23995}, {163, 2715}, {293, 57655}, {560, 57991}, {1101, 1976}, {1576, 36084}, {1821, 23963}, {1910, 23357}, {4575, 32696}, {9247, 60179}, {9417, 57562}, {14574, 36036}, {14601, 24041}, {32661, 36104}, {32676, 43754}
X(62431) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 57742}, {115, 2715}, {132, 57655}, {136, 32696}, {523, 1976}, {525, 17974}, {647, 248}, {868, 61213}, {2491, 14602}, {2508, 34137}, {2679, 14574}, {2799, 511}, {3005, 14601}, {4858, 36084}, {5664, 14355}, {5976, 249}, {6374, 57991}, {11672, 23357}, {15526, 43754}, {18314, 98}, {23285, 287}, {34990, 47635}, {35088, 110}, {36901, 2966}, {38970, 112}, {38987, 1576}, {39000, 32661}, {39040, 1101}, {39058, 57562}, {40601, 23963}, {41167, 184}, {41172, 14966}, {55267, 6}
X(62431) = crossdifference of every pair of points on line {1576, 3049}
X(62431) = barycentric product X(i)*X(j) for these {i,j}: {76, 868}, {125, 44132}, {290, 35088}, {297, 339}, {325, 338}, {511, 23962}, {850, 2799}, {1109, 46238}, {1502, 44114}, {1959, 23994}, {2396, 23105}, {2679, 44160}, {2970, 6393}, {3267, 16230}, {3569, 44173}, {6333, 14618}, {6530, 36793}, {16732, 42703}, {18022, 41172}, {18023, 51429}, {18024, 59805}, {18312, 34765}, {20902, 40703}, {40362, 58260}
X(62431) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 57742}, {76, 57991}, {115, 1976}, {125, 248}, {232, 57655}, {237, 23963}, {264, 60179}, {290, 57562}, {297, 250}, {325, 249}, {338, 98}, {339, 287}, {511, 23357}, {523, 2715}, {525, 43754}, {684, 32661}, {850, 2966}, {868, 6}, {877, 47443}, {1109, 1910}, {1577, 36084}, {1755, 23995}, {1959, 1101}, {2396, 59152}, {2491, 14574}, {2501, 32696}, {2679, 14602}, {2799, 110}, {2970, 6531}, {3124, 14601}, {3267, 17932}, {3569, 1576}, {6333, 4558}, {6530, 23964}, {8029, 2422}, {8430, 32729}, {8754, 57260}, {14223, 53691}, {14618, 685}, {15526, 17974}, {16230, 112}, {17994, 61206}, {18022, 41174}, {18312, 34761}, {20902, 293}, {20948, 36036}, {20975, 14600}, {23105, 2395}, {23962, 290}, {23994, 1821}, {24006, 36104}, {31953, 46249}, {32112, 32640}, {34765, 5649}, {34854, 41937}, {35088, 511}, {36212, 47390}, {36471, 37183}, {36793, 6394}, {39691, 51869}, {41167, 14966}, {41172, 184}, {41181, 52144}, {42703, 4567}, {43665, 41173}, {44114, 32}, {44132, 18020}, {44173, 43187}, {46052, 41167}, {46238, 24041}, {51429, 187}, {52628, 5967}, {53569, 11610}, {55267, 61213}, {55275, 2445}, {56981, 39291}, {57430, 42671}, {58260, 1501}, {58261, 35906}, {59805, 237}, {61339, 15630}
X(62431) = {X(76),X(264)}-harmonic conjugate of X(44155)


X(62432) = X(4)X(2820)∩X(40)X(812)

Barycentrics    b*(b - c)*c*(-2*a^4 + 5*a^3*b - 3*a^2*b^2 - a*b^3 + b^4 + 5*a^3*c - 2*a^2*b*c + a*b^2*c - 3*a^2*c^2 + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4) : :
X(62432) = 2 X[946] - 3 X[4728], 3 X[4728] - X[38329], X[962] - 3 X[21297], 3 X[1635] - 4 X[6684], 6 X[4763] - 7 X[31423], 6 X[4928] - 5 X[8227], 3 X[9147] - 4 X[58392], 4 X[38327] - 3 X[47776], 2 X[39212] - 3 X[47816]

X(62432) lies on these lines: {2, 38324}, {3, 53284}, {4, 2820}, {40, 812}, {693, 28292}, {900, 14304}, {946, 4728}, {962, 21297}, {1577, 3309}, {1635, 6684}, {2517, 3667}, {2814, 46403}, {2821, 4010}, {2826, 3762}, {3085, 43050}, {3887, 49176}, {4763, 31423}, {4928, 8227}, {4978, 28473}, {9147, 58392}, {10265, 38325}, {15599, 29033}, {21620, 53544}, {38327, 47776}, {39212, 47816}

X(62432) = reflection of X(i) in X(j) for these {i,j}: {38325, 10265}, {38329, 946}
X(62432) = anticomplement of X(38324)
X(62432) = {X(4728),X(38329)}-harmonic conjugate of X(946)


X(62433) = X(3)X(804)∩X(4)X(2780)

Barycentrics    b^2*(b^2 - c^2)*c^2*(6*a^4 - 3*a^2*b^2 + b^4 - 3*a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(62433) = X[4] - 3 X[53365], 2 X[5] - 3 X[9148], 4 X[5] - 3 X[19912], 4 X[140] - 3 X[351], 2 X[550] - 3 X[61776], 5 X[631] - 3 X[9147], 5 X[631] - 6 X[16235], 4 X[23105] - 3 X[41079], 5 X[1656] - 6 X[45689], 3 X[3268] - 2 X[8151], 7 X[3523] - 6 X[9126], 7 X[3526] - 6 X[11176], 7 X[3528] - 9 X[62177], 3 X[4928] - 2 X[58383], 3 X[9131] - 4 X[32204], 3 X[9979] - 4 X[10279], 3 X[19902] - 4 X[20417], 4 X[20379] - 3 X[36255]

X(62433) lies on these lines: {2, 11615}, {3, 804}, {4, 2780}, {5, 9148}, {76, 43667}, {140, 351}, {338, 15357}, {523, 62332}, {525, 30735}, {550, 61776}, {631, 9147}, {690, 16003}, {850, 1499}, {1595, 17994}, {1598, 47206}, {1656, 45689}, {2793, 14278}, {3268, 8151}, {3523, 9126}, {3526, 11176}, {3528, 62177}, {3541, 47230}, {3566, 18314}, {4928, 58383}, {7404, 44817}, {7824, 13306}, {9131, 32204}, {9979, 10279}, {11006, 58272}, {14295, 45807}, {19902, 20417}, {20379, 36255}, {21731, 53567}, {21733, 43665}, {23285, 32472}, {39235, 45147}, {44813, 53272}

X(62433) = reflection of X(i) in X(j) for these {i,j}: {9147, 16235}, {19912, 9148}, {21731, 53567}, {53272, 44813}
X(62433) = anticomplement of X(11615)


X(62434) = X(4)X(49276)∩X(40)X(30565)

Barycentrics    (b - c)*(-2*a^5*b + a^4*b^2 + 4*a^3*b^3 - 2*a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 4*a^4*b*c - a^3*b^2*c - a^2*b^3*c - a*b^4*c + b^5*c + a^4*c^2 - a^3*b*c^2 - 2*a^2*b^2*c^2 + 3*a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 - a^2*b*c^3 + 3*a*b^2*c^3 - 2*b^3*c^3 - 2*a^2*c^4 - a*b*c^4 - b^2*c^4 - 2*a*c^5 + b*c^5 + c^6) : :
X(62434) = X[40] - 3 X[30565], X[962] + 3 X[47772], 3 X[1639] - 2 X[6684], 3 X[4453] - 5 X[8227], 3 X[10196] - 2 X[38327]

X(62434) lies on these lines: {4, 49276}, {40, 30565}, {918, 946}, {962, 47772}, {1639, 6684}, {2786, 38324}, {2821, 18004}, {3762, 23104}, {4453, 8227}, {8760, 49288}, {10196, 38327}, {28292, 48270}

X(62434) lies on these lines: midpoint of X(4) and X(49276)


X(62435) = X(1)X(4453)∩X(10)X(918)

Barycentrics    (b - c)*(-2*a^2*b + a*b^2 + b^3 - 2*a^2*c + a*c^2 + c^3) : :
X(62435) = X[1] - 3 X[4453], X[8] + 3 X[48571], 2 X[676] - 3 X[21181], 2 X[1125] - 3 X[1638], 3 X[1639] - 4 X[3634], 5 X[1698] - 3 X[30565], 3 X[2457] - X[4985], X[3762] - 3 X[30574], 2 X[3881] - 3 X[30704], 4 X[4015] - 3 X[30700], X[4775] - 3 X[48227], 3 X[4809] - X[6161], X[5592] - 3 X[45674], and many others

X(62435) lies on these lines: {1, 4453}, {2, 49276}, {8, 48571}, {10, 918}, {513, 50453}, {514, 4818}, {525, 50337}, {676, 21181}, {690, 3837}, {764, 23888}, {891, 58375}, {905, 29304}, {926, 3874}, {1125, 1638}, {1639, 3634}, {1698, 30565}, {2254, 4707}, {2457, 4985}, {2610, 3454}, {2785, 3960}, {2786, 44314}, {2826, 23795}, {3309, 20517}, {3676, 48295}, {3762, 30574}, {3776, 29350}, {3810, 48075}, {3881, 30704}, {3887, 4458}, {3910, 23789}, {4015, 30700}, {4025, 29066}, {4142, 42325}, {4467, 47724}, {4729, 47716}, {4730, 48326}, {4761, 16892}, {4775, 48227}, {4807, 29288}, {4809, 6161}, {4885, 49288}, {4992, 32478}, {5592, 45674}, {7178, 8714}, {7659, 29132}, {9508, 29102}, {9511, 25440}, {9780, 47772}, {10015, 50357}, {11263, 46397}, {14837, 59672}, {17069, 48284}, {17072, 23875}, {18004, 53571}, {18006, 53539}, {19862, 44902}, {21051, 29252}, {21192, 29051}, {21222, 53356}, {21260, 29200}, {21385, 49301}, {23755, 48409}, {23815, 29284}, {23876, 24720}, {23877, 48018}, {23879, 50352}, {24391, 55133}, {28292, 48285}, {29160, 48069}, {44429, 49277}, {45326, 51073}, {47680, 50343}, {47682, 47824}, {47726, 48252}, {47727, 48241}, {47797, 48352}, {47823, 49279}, {47887, 48339}, {48059, 59629}, {48244, 50351}, {48245, 48290}, {48300, 48573}, {49300, 50356}, {50326, 59737}
X(62435) = midpoint of X(i) and X(j) for these {i,j}: {2254, 4707}, {4467, 47724}, {4729, 47716}, {4730, 48326}, {4761, 16892}, {10015, 50357}, {21385, 49301}, {23755, 48409}, {47680, 50343}, {49300, 50356}
X(62435) = reflection of X(i) in X(j) for these {i,j}: {18004, 53571}, {48284, 17069}, {48286, 4458}, {48295, 3676}, {49288, 4885}, {50326, 59737}, {59672, 14837}
X(62435) = complement of X(49276)


X(62436) = X(3)X(4750)∩X(4)X(2786)

Barycentrics    (b - c)*(-2*a^5*b + 3*a^4*b^2 + 2*a^3*b^3 - 4*a^2*b^4 + b^6 - 2*a^5*c + 2*a^4*b*c + 2*a^3*b^2*c - 2*a^2*b^3*c + 3*a^4*c^2 + 2*a^3*b*c^2 - b^4*c^2 + 2*a^3*c^3 - 2*a^2*b*c^3 - 4*a^2*c^4 - b^2*c^4 + c^6) : :
X(62436) = 2 X[3] - 3 X[4750], 4 X[5] - 3 X[4120], X[20] - 3 X[53333], 5 X[631] - 6 X[45674], 7 X[3090] - 6 X[45661], 5 X[3091] - 3 X[53339]

X(62436) lies on these lines: {3, 4750}, {4, 2786}, {5, 4120}, {20, 53333}, {631, 45674}, {684, 690}, {3090, 45661}, {3091, 53339}, {8760, 47971}, {38324, 49276}, {44410, 57243}

X(62436) = reflection of X(49276) in X(38324)


X(62437) = X(3)X(2788)∩X(4)X(2830)

Barycentrics    b*(b - c)*c*(4*a^4 - a^2*b^2 + b^4 + 2*a^2*b*c - 2*a*b^2*c - a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + c^4) : :
X(62437) = 3 X[14404] - 4 X[34466]

X(62437) lies on these lines: {3, 2788}, {4, 2830}, {693, 28475}, {764, 2826}, {1577, 28533}, {2793, 14278}, {3309, 21146}, {4077, 39545}, {4801, 28569}, {4978, 28481}, {7212, 37592}, {14404, 34466}, {19547, 53281}, {26546, 30234}


X(62438) = X(3)X(2789)∩X(4)X(9979)

Barycentrics    (b^2 - c^2)*(-2*a^8 + 3*a^6*b^2 + a^4*b^4 - 3*a^2*b^6 + b^8 + 3*a^6*c^2 - 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 + 2*b^4*c^4 - 3*a^2*c^6 - 2*b^2*c^6 + c^8) : :
X(62438) = 2 X[3] - 3 X[44202], X[4] - 3 X[9979], 2 X[4] - 3 X[44203], 2 X[5] - 3 X[1637], 4 X[140] - 3 X[14417], 2 X[546] - 3 X[44204], 5 X[631] - 3 X[3268], X[684] - 3 X[42731], 5 X[1656] - 6 X[44564], 2 X[8151] - 3 X[45687], 3 X[9126] - 2 X[32204], 3 X[9134] - 4 X[10279], 3 X[14697] - 2 X[16534]

X(62438) lies on these lines: {3, 2799}, {4, 9979}, {5, 1637}, {26, 42659}, {52, 39469}, {140, 14417}, {546, 44204}, {631, 3268}, {684, 42731}, {690, 16003}, {1499, 50548}, {1656, 44564}, {1657, 9529}, {5926, 50553}, {6130, 6334}, {7529, 53318}, {8151, 45687}, {8673, 57065}, {9033, 12790}, {9126, 32204}, {9134, 10279}, {9517, 16230}, {14270, 57154}, {14697, 16534}, {30209, 33294}, {44427, 53345}

X(62438) = midpoint of X(44427) and X(53345)
X(62438) = reflection of X(i) in X(j) for these {i,j}: {6334, 6130}, {16230, 24978}, {44203, 9979}, {50553, 5926}, {57154, 14270}




leftri  Centers related to PU(217)-PU(237): X(62439) - X(62488)  rightri

Centers X(62439)-X(62488) were contributed by César Eliud Lozada, April 5, 2024.

underbar

X(62439) = CEVAPOINT OF PU(217)

Barycentrics    a^2*(b^2-c^2)*((b^4+b^2*c^2-c^4)*a^4-(3*b^2-c^2)*b^2*c^2*a^2+b^4*c^4)*((b^4-b^2*c^2-c^4)*a^4-(b^2-3*c^2)*b^2*c^2*a^2-b^4*c^4) : :
X(62439) = 4*X(1084)-3*X(38237)

X(62439) lies on these lines: {512, 25054}, {888, 36950}, {1084, 38237}

X(62439) = isotomic conjugate of X(9428)
X(62439) = isogonal conjugate of X(62410)
X(62439) = cevapoint of X(2) and X(46274)
X(62439) = crossdifference of every pair of points on the line X(9431)X(25054)
X(62439) = X(2)-cross conjugate of-X(512)
X(62439) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 9428), (512, 38237), (1084, 25054), (17423, 23180), (38986, 39337), (38996, 9431)
X(62439) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 9428}, {99, 39337}, {662, 25054}, {799, 9431}, {811, 23180}, {24037, 38237}
X(62439) = X(512)-line conjugate of-X(25054)
X(62439) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 9428), (512, 25054), (669, 9431), (798, 39337), (1084, 38237), (3049, 23180), (46274, 670)
X(62439) = trilinear pole of the line {1645, 14824} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62439) = pole of the line {9428, 62410} with respect to the Steiner-Wallace hyperbola
X(62439) = barycentric product X(512)*X(46274)
X(62439) = trilinear product X(798)*X(46274)
X(62439) = trilinear quotient X(i)/X(j) for these (i, j): (75, 9428), (512, 39337), (661, 25054), (798, 9431), (810, 23180), (46274, 799)


X(62440) = CEVAPOINT OF PU(218)

Barycentrics    (2*a^2-b^2-c^2)*(a^4+(5*b^2-7*c^2)*a^2-5*b^4+5*b^2*c^2+c^4)*(a^4-(7*b^2-5*c^2)*a^2+b^4+5*b^2*c^2-5*c^4) : :
X(62440) = X(671)-3*X(14444) = 4*X(2482)-3*X(38239) = X(11053)-2*X(51226)

X(62440) lies on the cubic K103 and these lines: {67, 14833}, {524, 8591}, {597, 41498}, {671, 14444}, {690, 5461}, {2482, 38239}, {5095, 8787}, {11053, 51226}

X(62440) = reflection of X(11053) in X(51226)
X(62440) = isotomic conjugate of X(39061)
X(62440) = isogonal conjugate of X(41404)
X(62440) = cevapoint of X(i) and X(j) for these {i, j}: {2, 46275}, {690, 14444}
X(62440) = crosssum of X(187) and X(41449)
X(62440) = X(2)-cross conjugate of-X(524)
X(62440) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 39061), (524, 38239), (2482, 8591), (6593, 46276)
X(62440) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 39061}, {111, 39339}, {897, 46276}, {923, 8591}
X(62440) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 39061), (187, 46276), (524, 8591), (896, 39339), (2482, 38239), (46275, 671), (52678, 111)
X(62440) = pole of the line {23992, 46275} with respect to the Kiepert circumhyperbola
X(62440) = pole of the line {41404, 46276} with respect to the Stammler hyperbola
X(62440) = pole of the line {1649, 8596} with respect to the Steiner circumellipse
X(62440) = pole of the line {8591, 39061} with respect to the Steiner-Wallace hyperbola
X(62440) = barycentric product X(i)*X(j) for these {i, j}: {524, 46275}, {3266, 52678}
X(62440) = trilinear product X(i)*X(j) for these {i, j}: {896, 46275}, {14210, 52678}
X(62440) = trilinear quotient X(i)/X(j) for these (i, j): (75, 39061), (524, 39339), (896, 46276), (14210, 8591), (24038, 38239), (46275, 897), (52678, 923)


X(62441) = CEVAPOINT OF PU(220)

Barycentrics    (2*a-b-c)*(a^2+(5*b-7*c)*a-5*b^2+5*b*c+c^2)*(a^2-(7*b-5*c)*a+b^2+5*b*c-5*c^2) : :

X(62441) lies on these lines: {519, 4480}, {551, 41529}, {900, 4928}, {3679, 36936}, {9271, 61478}, {39445, 53634}

X(62441) = isotomic conjugate of X(9460)
X(62441) = isogonal conjugate of X(41461)
X(62441) = cevapoint of X(2) and X(62413)
X(62441) = X(2)-cross conjugate of-X(519)
X(62441) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 9460), (9, 9326), (214, 9324), (4370, 17487), (5375, 9272), (38979, 9269)
X(62441) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 9326}, {31, 9460}, {88, 21781}, {106, 9324}, {649, 9272}, {901, 9269}, {9456, 17487}, {23081, 36125}
X(62441) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 9326), (2, 9460), (44, 9324), (100, 9272), (519, 17487), (902, 21781), (1635, 9269), (9271, 3257), (9325, 88), (21805, 21885), (22356, 23081), (53634, 4638), (62413, 903)
X(62441) = pole of the line {35092, 54974} with respect to the circumhyperbola dual of Yff parabola
X(62441) = pole of the line {9460, 41461} with respect to the Steiner-Wallace hyperbola
X(62441) = barycentric product X(i)*X(j) for these {i, j}: {519, 62413}, {3762, 9271}, {4358, 9325}, {52627, 53634}
X(62441) = trilinear product X(i)*X(j) for these {i, j}: {44, 62413}, {519, 9325}, {900, 9271}
X(62441) = trilinear quotient X(i)/X(j) for these (i, j): (2, 9326), (44, 21781), (75, 9460), (190, 9272), (519, 9324), (900, 9269), (3943, 21885), (4358, 17487), (5440, 23081), (9271, 901), (9325, 106), (62413, 88)


X(62442) = CEVAPOINT OF PU(221)

Barycentrics    (a^6+(b^3-3*c^3)*a^3-b^6+b^3*c^3+c^6)*(a^6-(3*b^3-c^3)*a^3+b^6+b^3*c^3-c^6) : :

X(62442) lies on these lines: {2, 62443}, {824, 39345}

X(62442) = cyclocevian conjugate of the anticomplement of X(38995)
X(62442) = isotomic conjugate of X(39345)
X(62442) = antitomic conjugate of the isotomic conjugate of X(61065)
X(62442) = antitomic conjugate of the isogonal conjugate of X(62414)
X(62442) = anticomplement of X(62443)
X(62442) = isogonal conjugate of X(62444)
X(62442) = antigonal conjugate of the isogonal conjugate of X(62445)
X(62442) = anticomplementary conjugate of the anticomplement of X(62447)
X(62442) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (62447, 8), (62449, 6327)
X(62442) = X(62449)-Ceva conjugate of-X(2)
X(62442) = X(4586)-cross conjugate of-X(2)
X(62442) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 39345), (9, 39335), (62443, 62443)
X(62442) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 39335}, {31, 39345}, {788, 62443}, {1491, 62450}
X(62442) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 39335), (2, 39345), (825, 62450), (4586, 62443), (62447, 3250), (62449, 824)
X(62442) = trilinear pole of the line {33904, 62449} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62442) = perspector of the inconic with center X(4586)
X(62442) = pole of the the tripolar of X(62449) with respect to the Steiner circumellipse
X(62442) = pole of the line {39345, 62444} with respect to the Steiner-Wallace hyperbola
X(62442) = barycentric product X(i)*X(j) for these {i, j}: {4586, 62449}, {37133, 62447}
X(62442) = trilinear product X(i)*X(j) for these {i, j}: {789, 62447}, {1492, 62449}
X(62442) = trilinear quotient X(i)/X(j) for these (i, j): (2, 39335), (75, 39345), (789, 62443), (1492, 62450)


X(62443) = CROSSPOINT OF PU(221)

Barycentrics    (a-b)*(a-c)*(a^2+b*a+b^2)*(a^2+c*a+c^2)*(a^6-(b^3+c^3)*a^3-b^6+3*b^3*c^3-c^6) : :

X(62443) lies on these lines: {2, 62442}, {824, 4586}

X(62443) = complement of X(62442)
X(62443) = complementary conjugate of the complement of X(62444)
X(62443) = isogonal conjugate of X(62447)
X(62443) = isotomic conjugate of X(62449)
X(62443) = crosspoint of X(2) and X(39345)
X(62443) = X(2)-Ceva conjugate of-X(4586)
X(62443) = X(i)-complementary conjugate of X(j) for these (i, j): (31, 4586), (39335, 141), (39345, 2887), (62444, 10), (62450, 4874)
X(62443) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62449), (4586, 2)
X(62443) = X(824)-hirst inverse of-X(4586)
X(62443) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 62449}, {788, 62442}
X(62443) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 62449), (4586, 62442), (39335, 1491), (39345, 824), (62444, 3250), (62450, 6)
X(62443) = center of: the circumconic with perspector X(4586), the inconic with perspector X(39345)
X(62443) = perspector of the circumconic with center X(4586)
X(62443) = pole of the the tripolar of X(39345) with respect to the Steiner inellipse
X(62443) = pole of the line {62447, 62449} with respect to the Steiner-Wallace hyperbola
X(62443) = barycentric product X(i)*X(j) for these {i, j}: {76, 62450}, {789, 39335}, {4586, 39345}, {37133, 62444}
X(62443) = trilinear product X(i)*X(j) for these {i, j}: {75, 62450}, {789, 62444}, {1492, 39345}, {4586, 39335}
X(62443) = trilinear quotient X(i)/X(j) for these (i, j): (75, 62449), (789, 62442), (39335, 3250), (39345, 1491)


X(62444) = CROSSSUM OF PU(221)

Barycentrics    a^2*(a^6-(b^3+c^3)*a^3-b^6+3*b^3*c^3-c^6) : :

X(62444) lies on these lines: {3, 62445}, {6, 753}, {1979, 20999}, {2932, 21781}, {3250, 62447}, {7087, 21776}, {9259, 23402}, {9431, 21004}, {20998, 23860}, {33801, 38301}

X(62444) = isogonal conjugate of X(62442)
X(62444) = crossdifference of every pair of points on the line X(33904)X(62449)
X(62444) = X(3250)-Ceva conjugate of-X(6)
X(62444) = X(62450)-cross conjugate of-X(6)
X(62444) = X(i)-Dao conjugate of X(j) for these (i, j): (4586, 37133), (38995, 62449)
X(62444) = X(6)-hirst inverse of-X(62414)
X(62444) = X(i)-isoconjugate of X(j) for these {i, j}: {789, 62447}, {1492, 62449}
X(62444) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3250, 62449), (39335, 75), (39345, 76), (46386, 62447), (62443, 37133), (62450, 4586)
X(62444) = X(i)-vertex conjugate of X(j) for these {i, j}: {62414, 62448}, {62445, 62446}, {62447, 62447}
X(62444) = inverse of X(62445) in circumcircle
X(62444) = pole of the line {62414, 62445} with respect to the circumcircle
X(62444) = barycentric product X(i)*X(j) for these {i, j}: {1, 39335}, {6, 39345}, {824, 62450}, {3250, 62443}
X(62444) = trilinear product X(i)*X(j) for these {i, j}: {6, 39335}, {31, 39345}, {788, 62443}, {1491, 62450}
X(62444) = trilinear quotient X(i)/X(j) for these (i, j): (788, 62447), (1491, 62449), (39335, 2), (39345, 75)
X(62444) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (753, 825, 62414), (825, 62414, 6)


X(62445) = MIDPOINT OF PU(222)

Barycentrics    a^2*(b-c)^2*(b^2+b*c+c^2)*((b+c)*a^9+2*(b^2+b*c+c^2)*a^8-3*(b^4+c^4+b*c*(b^2+b*c+c^2))*a^6-2*(b^3+c^3)*(b^2+b*c+c^2)*a^5+(b+c)*(b^6+c^6+b^2*c^2*(3*b^2+4*b*c+3*c^2))*a^3+2*(b^2+b*c+c^2)*b^3*c^3*a^2-(b^6+c^6+(2*b^4+2*c^4+b*c*(2*b^2+b*c+2*c^2))*b*c)*b^2*c^2) : :

X(62445) lies on these lines: {3, 62444}, {62414, 62446}

X(62445) = isogonal conjugate of the antigonal conjugate of X(62442)
X(62445) = X(62444)-vertex conjugate of-X(62446)
X(62445) = inverse of X(62444) in circumcircle
X(62445) = pole of the line {62444, 62446} with respect to the circumcircle


X(62446) = IDEAL POINT OF PU(222)

Barycentrics    a^2*(b^3-c^3)*((b^2+c^2)*a^3-b^3*c^2-b^2*c^3) : :

X(62446) lies on these lines: {30, 511}, {4728, 30640}, {14402, 14407}, {14404, 30655}, {62414, 62445}

X(62446) = crossdifference of every pair of points on the line X(6)X(4586)
X(62446) = X(i)-complementary conjugate of X(j) for these (i, j): (731, 53823), (43096, 55061)
X(62446) = X(38995)-Dao conjugate of-X(43096)
X(62446) = X(i)-isoconjugate of X(j) for these {i, j}: {731, 789}, {1492, 43096}
X(62446) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (730, 37133), (2235, 789), (3250, 43096), (8622, 4586), (35539, 52611), (46386, 731)
X(62446) = X(62444)-vertex conjugate of-X(62445)
X(62446) = infinite point of the tripolar of X(i) for these i: {3250, 8622}
X(62446) = perspector of the circumconic through X(2) and X(3250)
X(62446) = barycentric product X(i)*X(j) for these {i, j}: {730, 3250}, {824, 8622}, {1491, 2235}, {35539, 46386}
X(62446) = trilinear product X(i)*X(j) for these {i, j}: {730, 788}, {1491, 8622}, {2235, 3250}, {8630, 35539}
X(62446) = trilinear quotient X(i)/X(j) for these (i, j): (730, 789), (788, 731), (1491, 43096), (2235, 4586), (8622, 1492), (35539, 46132)


X(62447) = CEVAPOINT OF PU(222)

Barycentrics    a^2*(b^3-c^3)*(a^6+(b^3-3*c^3)*a^3-b^6+b^3*c^3+c^6)*(a^6-(3*b^3-c^3)*a^3+b^6+b^3*c^3-c^6) : :

X(62447) lies on these lines: {3250, 62444}

X(62447) = isogonal conjugate of X(62443)
X(62447) = X(6)-cross conjugate of-X(3250)
X(62447) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 62450), (38995, 39345), (55049, 39335)
X(62447) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 62450}, {789, 62444}, {1492, 39345}, {4586, 39335}
X(62447) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 62450), (788, 39335), (3250, 39345), (46386, 62444), (62442, 37133), (62449, 76)
X(62447) = 1st Saragossa point of X(62444)
X(62447) = pole of the line {62443, 62450} with respect to the Stammler hyperbola
X(62447) = barycentric product X(i)*X(j) for these {i, j}: {6, 62449}, {3250, 62442}
X(62447) = trilinear product X(i)*X(j) for these {i, j}: {31, 62449}, {788, 62442}
X(62447) = trilinear quotient X(i)/X(j) for these (i, j): (31, 62450), (788, 62444), (1491, 39345), (3250, 39335)


X(62448) = BICENTRIC DIFFERENCE OF PU(222)

Barycentrics    a^2*(b^3-c^3)*(2*a^3-b^3-c^3) : :

X(62448) lies on these lines: {187, 237}, {900, 4364}, {29058, 62415}, {62414, 62445}

X(62448) = isogonal conjugate of the isotomic conjugate of X(33904)
X(62448) = crossdifference of every pair of points on the line X(2)X(4586)
X(62448) = crosspoint of X(753) and X(825)
X(62448) = crosssum of X(i) and X(j) for these {i, j}: {2, 33904}, {752, 824}
X(62448) = X(753)-Ceva conjugate of-X(62414)
X(62448) = X(38995)-Dao conjugate of-X(43097)
X(62448) = X(i)-isoconjugate of X(j) for these {i, j}: {753, 789}, {1492, 43097}, {5386, 14621}
X(62448) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (752, 37133), (869, 5386), (2243, 789), (3250, 43097), (8626, 4586), (14402, 1), (14438, 870), (30655, 350), (30656, 1909), (33568, 35548), (33904, 76), (35548, 52611), (46386, 753), (52957, 1492)
X(62448) = X(62414)-vertex conjugate of-X(62444)
X(62448) = perspector of the circumconic through X(6) and X(3250)
X(62448) = pole of the line {6, 753} with respect to the circumcircle
X(62448) = pole of the line {6, 753} with respect to the Brocard inellipse
X(62448) = barycentric product X(i)*X(j) for these {i, j}: {6, 33904}, {75, 14402}, {256, 30656}, {291, 30655}, {752, 3250}, {753, 33568}, {824, 8626}, {984, 14438}, {1491, 2243}, {2276, 4809}, {8630, 30874}, {35548, 46386}, {52957, 62415}
X(62448) = trilinear product X(i)*X(j) for these {i, j}: {2, 14402}, {31, 33904}, {292, 30655}, {752, 788}, {824, 52957}, {869, 4809}, {893, 30656}, {1491, 8626}, {2243, 3250}, {2276, 14438}, {8630, 35548}
X(62448) = trilinear quotient X(i)/X(j) for these (i, j): (752, 789), (788, 753), (1491, 43097), (2243, 4586), (2276, 5386), (4809, 870), (8626, 1492), (14402, 6), (14438, 14621), (30655, 239), (30656, 894), (30874, 52611), (33904, 75), (35548, 46132), (52957, 825)
X(62448) = center of circle {{X(15), X(16), X(753)}}


X(62449) = CEVAPOINT OF PU(223)

Barycentrics    (b^3-c^3)*(a^6+(b^3-3*c^3)*a^3-b^6+b^3*c^3+c^6)*(a^6-(3*b^3-c^3)*a^3+b^6+b^3*c^3-c^6) : :

X(62449) lies on these lines: {824, 39345}

X(62449) = isotomic conjugate of X(62443)
X(62449) = isogonal conjugate of X(62450)
X(62449) = cevapoint of X(2) and X(62442)
X(62449) = X(2)-cross conjugate of-X(824)
X(62449) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62443), (38995, 62444), (61065, 39345)
X(62449) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 62443}, {825, 39335}, {1492, 62444}, {34069, 39345}
X(62449) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 62443), (824, 39345), (1491, 39335), (3250, 62444), (62442, 4586), (62447, 6)
X(62449) = pole of the line {62443, 62450} with respect to the Steiner-Wallace hyperbola
X(62449) = barycentric product X(i)*X(j) for these {i, j}: {76, 62447}, {824, 62442}
X(62449) = trilinear product X(i)*X(j) for these {i, j}: {75, 62447}, {1491, 62442}
X(62449) = trilinear quotient X(i)/X(j) for these (i, j): (75, 62443), (824, 39335), (1491, 62444), (62415, 39345)


X(62450) = CROSSSUM OF PU(223)

Barycentrics    a^2*(a-b)*(a-c)*(a^2+b*a+b^2)*(a^2+c*a+c^2)*(a^6-(b^3+c^3)*a^3-b^6+3*b^3*c^3-c^6) : :

X(62450) lies on these lines: {825, 3250}

X(62450) = isogonal conjugate of X(62449)
X(62450) = crosspoint of X(6) and X(62444)
X(62450) = crosssum of X(2) and X(62442)
X(62450) = X(6)-Ceva conjugate of-X(825)
X(62450) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 62447), (4586, 76)
X(62450) = X(825)-hirst inverse of-X(3250)
X(62450) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 62447}, {1491, 62442}
X(62450) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 62447), (825, 62442), (39335, 62415), (62443, 76), (62444, 824)
X(62450) = pole of the the tripolar of X(62444) with respect to the Brocard inellipse
X(62450) = pole of the line {62447, 62449} with respect to the Stammler hyperbola
X(62450) = barycentric product X(i)*X(j) for these {i, j}: {6, 62443}, {825, 39345}, {1492, 39335}, {4586, 62444}
X(62450) = trilinear product X(i)*X(j) for these {i, j}: {31, 62443}, {825, 39335}, {1492, 62444}, {34069, 39345}
X(62450) = trilinear quotient X(i)/X(j) for these (i, j): (31, 62447), (1492, 62442), (39335, 824), (39345, 62415)


X(62451) = CEVAPOINT OF PU(224)

Barycentrics    (a^8+(b^4-3*c^4)*a^4-b^8+b^4*c^4+c^8)*(a^8-(3*b^4-c^4)*a^4+b^8+b^4*c^4-c^8) : :

X(62451) lies on these lines: {2, 62452}, {826, 39346}, {14712, 52906}

X(62451) = cyclocevian conjugate of X(4576)
X(62451) = isotomic conjugate of X(39346)
X(62451) = antitomic conjugate of X(57545)
X(62451) = isogonal conjugate of X(62416)
X(62451) = anticomplement of X(62452)
X(62451) = antigonal conjugate of the isogonal conjugate of X(62453)
X(62451) = anticomplementary conjugate of the anticomplement of X(62455)
X(62451) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (62455, 8), (62457, 6327)
X(62451) = X(62457)-Ceva conjugate of-X(2)
X(62451) = X(4577)-cross conjugate of-X(2)
X(62451) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 39346), (9, 39336), (62452, 62452)
X(62451) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 39336}, {31, 39346}, {2084, 62452}, {8061, 62458}
X(62451) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 39336), (2, 39346), (827, 62458), (4577, 62452), (62455, 3005), (62457, 826)
X(62451) = trilinear pole of the line {32193, 33907} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62451) = perspector of the inconic with center X(4577)
X(62451) = pole of the the tripolar of X(62457) with respect to the Steiner circumellipse
X(62451) = pole of the line {39346, 62416} with respect to the Steiner-Wallace hyperbola
X(62451) = barycentric product X(i)*X(j) for these {i, j}: {689, 62455}, {4577, 62457}
X(62451) = trilinear product X(i)*X(j) for these {i, j}: {4593, 62455}, {4599, 62457}
X(62451) = trilinear quotient X(i)/X(j) for these (i, j): (2, 39336), (75, 39346), (4593, 62452), (4599, 62458)


X(62452) = CROSSPOINT OF PU(224)

Barycentrics    (a^4-b^4)*(a^4-c^4)*(a^8-(b^4+c^4)*a^4-(b^4-b^2*c^2-c^4)*(b^4+b^2*c^2-c^4)) : :
X(62452) = X(4577)-2*X(57545)

X(62452) lies on these lines: {2, 62451}, {316, 40850}, {826, 4577}, {18828, 53657}

X(62452) = reflection of X(4577) in X(57545)
X(62452) = complementary conjugate of the complement of X(62416)
X(62452) = complement of X(62451)
X(62452) = isogonal conjugate of X(62455)
X(62452) = isotomic conjugate of X(62457)
X(62452) = crosspoint of X(2) and X(39346)
X(62452) = X(2)-Ceva conjugate of-X(4577)
X(62452) = X(i)-complementary conjugate of X(j) for these (i, j): (31, 4577), (39336, 141), (39346, 2887), (62416, 10), (62458, 8060)
X(62452) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62457), (4577, 2)
X(62452) = X(826)-hirst inverse of-X(4577)
X(62452) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 62457}, {2084, 62451}
X(62452) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 62457), (4577, 62451), (39336, 8061), (39346, 826), (62416, 3005), (62458, 6)
X(62452) = center of: the circumconic with perspector X(4577), the inconic with perspector X(39346)
X(62452) = perspector of the circumconic with center X(4577)
X(62452) = pole of the the tripolar of X(39346) with respect to the Steiner inellipse
X(62452) = pole of the line {62455, 62457} with respect to the Steiner-Wallace hyperbola
X(62452) = barycentric product X(i)*X(j) for these {i, j}: {76, 62458}, {689, 62416}, {4577, 39346}, {4593, 39336}
X(62452) = trilinear product X(i)*X(j) for these {i, j}: {75, 62458}, {4577, 39336}, {4593, 62416}, {4599, 39346}
X(62452) = trilinear quotient X(i)/X(j) for these (i, j): (75, 62457), (4593, 62451), (39336, 3005), (39346, 8061), (62416, 2084)


X(62453) = MIDPOINT OF PU(225)

Barycentrics    a^2*(b^2+c^2)*(b^2-c^2)^2*(a^12+2*(b^2+c^2)*a^10-3*(b^4+b^2*c^2+c^4)*a^8-2*(b^2+c^2)*(b^4+c^4)*a^6+(b^8+c^8+b^2*c^2*(3*b^4+7*b^2*c^2+3*c^4))*a^4+2*(b^2+c^2)*b^4*c^4*a^2-(b^8+c^8+b^2*c^2*(2*b^4+b^2*c^2+2*c^4))*b^2*c^2) : :

X(62453) lies on these lines: {3, 35214}, {5113, 35971}, {41178, 62417}

X(62453) = isogonal conjugate of the antigonal conjugate of X(62451)
X(62453) = X(62416)-vertex conjugate of-X(62454)
X(62453) = inverse of X(62416) in circumcircle
X(62453) = pole of the line {62416, 62454} with respect to the circumcircle


X(62454) = IDEAL POINT OF PU(225)

Barycentrics    a^2*(b^2+c^2)*(b^4-c^4)*(a^4-b^2*c^2) : :

X(62454) lies on these lines: {6, 17997}, {30, 511}, {351, 11205}, {2531, 57132}, {10191, 11176}, {14406, 14424}, {41178, 62417}

X(62454) = isogonal conjugate of X(59026)
X(62454) = circumtangential-isogonal conjugate of X(59026)
X(62454) = crossdifference of every pair of points on the line X(6)X(4577)
X(62454) = crosspoint of X(i) and X(j) for these {i, j}: {882, 3005}, {4576, 56978}, {8623, 56980}
X(62454) = crosssum of X(i) and X(j) for these {i, j}: {2, 18010}, {4577, 17941}, {18105, 56976}
X(62454) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (41209, 21289), (43763, 39346), (59026, 8)
X(62454) = X(i)-Ceva conjugate of X(j) for these (i, j): (6, 39079), (732, 41178), (882, 3005), (4576, 61063), (14970, 35971), (20021, 15449), (27375, 2679), (56980, 8623)
X(62454) = X(i)-complementary conjugate of X(j) for these (i, j): (82, 39079), (4599, 61063), (41209, 21249), (43763, 15449), (52936, 19563), (59026, 10)
X(62454) = X(i)-Dao conjugate of X(j) for these (i, j): (141, 41209), (732, 880), (826, 56981), (3124, 14970), (5113, 18010), (19576, 52936), (36213, 4577), (41178, 56979), (52042, 805), (55050, 733), (61063, 689)
X(62454) = X(2531)-hirst inverse of-X(57132)
X(62454) = X(i)-isoconjugate of X(j) for these {i, j}: {82, 41209}, {733, 4593}, {1581, 52936}, {4577, 43763}, {4599, 14970}, {37134, 52395}
X(62454) = X(17997)-line conjugate of-X(6)
X(62454) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (39, 41209), (688, 733), (732, 689), (1691, 52936), (2084, 43763), (2236, 4593), (2528, 18896), (2531, 694), (3005, 14970), (5027, 52395), (8041, 18829), (8623, 4577), (15449, 56981), (21752, 36081), (35540, 42371), (39079, 18010), (41178, 58784), (56915, 827), (56980, 57545), (57132, 1916), (59994, 805), (61063, 880)
X(62454) = X(62416)-vertex conjugate of-X(62453)
X(62454) = infinite point of the tripolar of X(i) for these i: {3005, 8041, 8623, 16587, 35540, 59262}
X(62454) = pedal antipodal perspector of X(59026)
X(62454) = center of the central inconic through X(880) and X(56981)
X(62454) = perspector of the circumconic through X(2) and X(3005)
X(62454) = barycentric product X(i)*X(j) for these {i, j}: {385, 57132}, {688, 35540}, {732, 3005}, {804, 8041}, {826, 8623}, {882, 61063}, {1691, 2528}, {2236, 8061}, {2531, 3978}, {4576, 41178}, {5027, 7794}, {14295, 59994}, {15449, 56980}, {17941, 62417}, {23285, 56915}
X(62454) = trilinear product X(i)*X(j) for these {i, j}: {732, 2084}, {1580, 57132}, {1933, 2528}, {1966, 2531}, {2236, 3005}, {8061, 8623}, {16587, 46387}, {56915, 62418}, {56982, 62417}
X(62454) = trilinear quotient X(i)/X(j) for these (i, j): (38, 41209), (732, 4593), (1580, 52936), (2084, 733), (2236, 4577), (2528, 1934), (2531, 1967), (3005, 43763), (8041, 37134), (8061, 14970), (8623, 4599), (35540, 37204), (40936, 36081), (41178, 55240), (56915, 34072), (56982, 57545), (57132, 1581)


X(62455) = CEVAPOINT OF PU(225)

Barycentrics    a^2*(b^4-c^4)*(a^8+(b^4-3*c^4)*a^4-b^8+b^4*c^4+c^8)*(a^8-(3*b^4-c^4)*a^4+b^8+b^4*c^4-c^8) : :

X(62455) lies on these lines: {3005, 62416}

X(62455) = isogonal conjugate of X(62452)
X(62455) = X(6)-cross conjugate of-X(3005)
X(62455) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 62458), (3124, 39346), (55050, 62416)
X(62455) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 62458}, {4577, 39336}, {4593, 62416}, {4599, 39346}
X(62455) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 62458), (688, 62416), (2084, 39336), (3005, 39346), (62451, 689), (62457, 76)
X(62455) = 1st Saragossa point of X(62416)
X(62455) = pole of the line {62452, 62458} with respect to the Stammler hyperbola
X(62455) = barycentric product X(i)*X(j) for these {i, j}: {6, 62457}, {3005, 62451}
X(62455) = trilinear product X(i)*X(j) for these {i, j}: {31, 62457}, {2084, 62451}
X(62455) = trilinear quotient X(i)/X(j) for these (i, j): (31, 62458), (2084, 62416), (3005, 39336), (8061, 39346)


X(62456) = BICENTRIC DIFFERENCE OF PU(225)

Barycentrics    a^2*(b^4-c^4)*(2*a^4-b^4-c^4) : :

X(62456) lies on these lines: {76, 35558}, {187, 237}, {690, 6292}, {827, 17997}, {2896, 18010}, {39079, 59801}, {41178, 62417}

X(62456) = midpoint of X(2896) and X(18010)
X(62456) = isotomic conjugate of the isogonal conjugate of X(14403)
X(62456) = isogonal conjugate of the isotomic conjugate of X(33907)
X(62456) = Gibert-circumtangential conjugate of X(58112)
X(62456) = crossdifference of every pair of points on the line X(2)X(4577)
X(62456) = crosspoint of X(i) and X(j) for these {i, j}: {6, 58112}, {755, 827}, {14420, 14428}
X(62456) = crosssum of X(i) and X(j) for these {i, j}: {2, 33907}, {754, 826}
X(62456) = X(i)-Ceva conjugate of X(j) for these (i, j): (755, 62417), (14420, 33907), (14428, 14403), (58112, 6)
X(62456) = X(33666)-complementary conjugate of-X(21253)
X(62456) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 58112), (3124, 43098), (55050, 755), (61064, 689)
X(62456) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 58112}, {755, 4593}, {4599, 43098}, {5389, 52394}
X(62456) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 58112), (688, 755), (754, 689), (2244, 4593), (3005, 43098), (8627, 4577), (14403, 6), (14420, 308), (14428, 83), (21814, 5389), (33907, 76), (35549, 42371), (52906, 670), (52958, 827)
X(62456) = X(62416)-vertex conjugate of-X(62417)
X(62456) = perspector of the circumconic through X(6) and X(3005)
X(62456) = pole of the line {574, 9480} with respect to the 1st Brocard circle
X(62456) = pole of the line {6, 755} with respect to the circumcircle
X(62456) = pole of the line {3613, 43098} with respect to the nine-point circle
X(62456) = pole of the line {6, 755} with respect to the Brocard inellipse
X(62456) = pole of the line {669, 2916} with respect to the Kiepert parabola
X(62456) = pole of the line {99, 2528} with respect to the Stammler hyperbola
X(62456) = pole of the line {39, 33666} with respect to the Steiner inellipse
X(62456) = barycentric product X(i)*X(j) for these {i, j}: {6, 33907}, {39, 14420}, {76, 14403}, {141, 14428}, {512, 52906}, {688, 35549}, {754, 3005}, {826, 8627}, {2244, 8061}, {4156, 21123}, {23285, 52958}, {52979, 57132}
X(62456) = trilinear product X(i)*X(j) for these {i, j}: {31, 33907}, {38, 14428}, {75, 14403}, {754, 2084}, {798, 52906}, {1964, 14420}, {2244, 3005}, {4156, 50521}, {8061, 8627}, {52958, 62418}
X(62456) = trilinear quotient X(i)/X(j) for these (i, j): (31, 58112), (754, 4593), (2084, 755), (2244, 4577), (8061, 43098), (8627, 4599), (14403, 31), (14420, 3112), (14428, 82), (21035, 5389), (33907, 75), (35549, 37204), (52906, 799), (52958, 34072)
X(62456) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {15, 16, 755}, {2896, 8290, 18010}


X(62457) = CEVAPOINT OF PU(226)

Barycentrics    (b^4-c^4)*(a^8+(b^4-3*c^4)*a^4-b^8+b^4*c^4+c^8)*(a^8-(3*b^4-c^4)*a^4+b^8+b^4*c^4-c^8) : :

X(62457) lies on these lines: {826, 39346}, {32193, 33907}

X(62457) = isotomic conjugate of X(62452)
X(62457) = isogonal conjugate of X(62458)
X(62457) = cevapoint of X(2) and X(62451)
X(62457) = X(2)-cross conjugate of-X(826)
X(62457) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62452), (3124, 62416), (15449, 39346), (55043, 39336)
X(62457) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 62452}, {827, 39336}, {4599, 62416}, {34072, 39346}
X(62457) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 62452), (826, 39346), (3005, 62416), (8061, 39336), (62451, 4577), (62455, 6)
X(62457) = pole of the line {62452, 62458} with respect to the Steiner-Wallace hyperbola
X(62457) = barycentric product X(i)*X(j) for these {i, j}: {76, 62455}, {826, 62451}
X(62457) = trilinear product X(i)*X(j) for these {i, j}: {75, 62455}, {8061, 62451}
X(62457) = trilinear quotient X(i)/X(j) for these (i, j): (75, 62452), (826, 39336), (8061, 62416), (62418, 39346)


X(62458) = CROSSSUM OF PU(226)

Barycentrics    a^2*(a^4-b^4)*(a^4-c^4)*(a^8-(b^4+c^4)*a^4-(b^4-c^4)^2+b^4*c^4) : :

X(62458) lies on these lines: {23, 46228}, {783, 58113}, {827, 3005}, {4630, 46970}

X(62458) = isogonal conjugate of X(62457)
X(62458) = crosspoint of X(6) and X(62416)
X(62458) = crosssum of X(2) and X(62451)
X(62458) = X(6)-Ceva conjugate of-X(827)
X(62458) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 62455), (4577, 76)
X(62458) = X(827)-hirst inverse of-X(3005)
X(62458) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 62455}, {8061, 62451}
X(62458) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 62455), (827, 62451), (39336, 62418), (39346, 23285), (62416, 826), (62452, 76)
X(62458) = pole of the the tripolar of X(62416) with respect to the Brocard inellipse
X(62458) = pole of the line {62455, 62457} with respect to the Stammler hyperbola
X(62458) = barycentric product X(i)*X(j) for these {i, j}: {6, 62452}, {827, 39346}, {4577, 62416}, {4599, 39336}
X(62458) = trilinear product X(i)*X(j) for these {i, j}: {31, 62452}, {827, 39336}, {4599, 62416}, {34072, 39346}
X(62458) = trilinear quotient X(i)/X(j) for these (i, j): (31, 62455), (4599, 62451), (39336, 826), (39346, 62418), (62416, 8061)


X(62459) = MIDPOINT OF PU(228)

Barycentrics    a^3*((b+c)*a-b*c)*((b^2-c^2)*(b-c)*a^4-(b-c)^2*b*c*a^3-(b+c)*(b^4+c^4-b*c*(3*b^2-5*b*c+3*c^2))*a^2-(2*b-c)*(b-2*c)*b^2*c^2*a+b^2*c^2*(b+c)*(b^2-3*b*c+c^2)) : :

X(62459) lies on these lines: {43, 8640}, {5143, 14823}, {15624, 59565}


X(62460) = IDEAL POINT OF PU(228)

Barycentrics    a*(b-c)*((b+c)*a-b*c)*((b-c)^2*a^3+(b+c)*(b^2+c^2)*a^2+b^2*c^2*a-b^2*c^2*(b+c)) : :

X(62460) lies on these lines: {30, 511}, {43, 8640}, {10453, 50516}, {20012, 20983}

X(62460) = crossdifference of every pair of points on the line X(6)X(40881)
X(62460) = crosssum of X(8640) and X(17754)
X(62460) = X(56142)-complementary conjugate of-X(5518)
X(62460) = X(932)-isoconjugate of-X(56142)
X(62460) = X(20979)-reciprocal conjugate of-X(56142)
X(62460) = infinite point of the tripolar of X(62421)
X(62460) = perspector of the circumconic through X(2) and X(62421)
X(62460) = trilinear quotient X(4083)/X(56142)


X(62461) = CEVAPOINT OF PU(228)

Barycentrics    a^3*((b+c)*a-b*c)*((b-c)*a-2*b^2+b*c)*((b-c)*a-b*c+2*c^2) : :

X(62461) lies on these lines: {55, 3009}, {100, 56357}, {192, 56180}, {2177, 17459}, {3550, 62421}, {7032, 23561}, {7035, 8026}, {17594, 21337}, {56181, 62422}

X(62461) = isogonal conjugate of X(62419)
X(62461) = X(i)-cross conjugate of X(j) for these (i, j): (21760, 62421), (56806, 2209)
X(62461) = X(206)-Dao conjugate of-X(17105)
X(62461) = X(i)-isoconjugate of X(j) for these {i, j}: {75, 17105}, {87, 24524}, {330, 17350}, {2162, 59518}, {3550, 6384}, {4598, 31286}, {17743, 27502}, {18830, 48330}, {32039, 57235}
X(62461) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 17105), (43, 59518), (2176, 24524), (2209, 17350), (3551, 6383), (7032, 27502), (8640, 31286), (56806, 41771), (62420, 3550), (62422, 76)
X(62461) = pole of the line {17105, 62419} with respect to the Stammler hyperbola
X(62461) = barycentric product X(i)*X(j) for these {i, j}: {6, 62422}, {2176, 3551}
X(62461) = trilinear product X(i)*X(j) for these {i, j}: {31, 62422}, {2209, 3551}
X(62461) = trilinear quotient X(i)/X(j) for these (i, j): (31, 17105), (43, 24524), (192, 59518), (2176, 17350), (2209, 3550), (2275, 27502), (3551, 6384), (8640, 48330), (20284, 41771), (20979, 31286), (57050, 57235), (62422, 75)


X(62462) = CROSSSUM OF PU(230)

Barycentrics    a^2*(a^8+2*b*c*a^6-(b+c)*b*c*a^5-(b^4-b^2*c^2+c^4)*a^4-(b+c)*b^2*c^2*a^3-(b^4+c^4+b*c*(b^2-3*b*c+c^2))*b*c*a^2-(b+c)*(2*b^4+2*c^4-5*b*c*(b^2-b*c+c^2))*b*c*a-(b^4-b^2*c^2-c^4)*(b^4+b^2*c^2-c^4)) : :

X(62462) lies on these lines: {6, 29018}


X(62463) = BICENTRIC SUM OF PU(230)

Barycentrics    2*a^4+2*b*c*a^2-(b+c)*b*c*a-b^4-c^4 : :

X(62463) lies on these lines: {2, 172}, {30, 511}, {4396, 5080}, {4400, 20060}, {4479, 11361}, {4799, 49487}, {5291, 20541}, {7267, 33864}, {7750, 20691}, {7759, 8666}, {7762, 17448}, {7767, 25102}, {7823, 17144}, {7843, 24387}, {7893, 24524}, {8667, 11236}, {8716, 34620}, {9766, 11194}, {11237, 47037}, {17251, 48832}, {24699, 60353}, {25383, 50759}, {29584, 50068}, {29615, 50048}, {34505, 34739}, {41312, 48814}, {48801, 48825}, {48848, 50124}, {49711, 49777}, {50056, 50073}

X(62463) = infinite point of the tripolar of X(62464)
X(62463) = perspector of the circumconic through X(2) and X(62464)


X(62464) = BARYCENTRIC PRODUCT OF PU(230)

Barycentrics    (a-b)*(a-c)*(a^3+b*a^2+(b+c)*b*a+b^3)*(a^3+c*a^2+(b+c)*c*a+c^3) : :

X(62464) lies on the Steiner circumellipse and these lines: {99, 29018}, {100, 57969}, {668, 4579}, {903, 56065}

X(62464) = isotomic conjugate of X(29017)
X(62464) = isogonal conjugate of the Gibert-circumtangential conjugate of X(29018)
X(62464) = cevapoint of X(i) and X(j) for these {i, j}: {2, 29017}, {514, 29645}
X(62464) = crosssum of X(6) and X(62462)
X(62464) = X(29017)-cross conjugate of-X(2)
X(62464) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 29017), (6631, 32778), (39054, 35623)
X(62464) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 29017}, {512, 35623}, {667, 32778}
X(62464) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 29017), (190, 32778), (662, 35623), (29018, 6), (56065, 514), (62465, 75)
X(62464) = trilinear pole of the line {2, 172} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62464) = perspector of the inconic with center X(29017)
X(62464) = barycentric product X(i)*X(j) for these {i, j}: {1, 62465}, {76, 29018}, {190, 56065}
X(62464) = trilinear product X(i)*X(j) for these {i, j}: {6, 62465}, {75, 29018}, {100, 56065}
X(62464) = trilinear quotient X(i)/X(j) for these (i, j): (75, 29017), (99, 35623), (668, 32778), (29018, 31), (56065, 513)


X(62465) = TRILINEAR PRODUCT OF PU(230)

Barycentrics    (a-b)*(a-c)*(a^3+b*a^2+(b+c)*b*a+b^3)*(a^3+c*a^2+(b+c)*c*a+c^3)/a : :

X(62465) lies on these lines: {668, 4579}, {789, 29018}, {1978, 18047}, {31002, 56065}

X(62465) = X(i)-Dao conjugate of X(j) for these (i, j): (6376, 29017), (9296, 32778), (31998, 35623)
X(62465) = X(i)-isoconjugate of X(j) for these {i, j}: {32, 29017}, {798, 35623}, {1919, 32778}
X(62465) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (75, 29017), (99, 35623), (668, 32778), (29018, 31), (56065, 513), (62464, 1)
X(62465) = trilinear pole of the line {75, 171} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62465) = pole of the the tripolar of X(35623) with respect to the Steiner-Wallace hyperbola
X(62465) = barycentric product X(i)*X(j) for these {i, j}: {75, 62464}, {561, 29018}, {668, 56065}
X(62465) = trilinear product X(i)*X(j) for these {i, j}: {2, 62464}, {76, 29018}, {190, 56065}
X(62465) = trilinear quotient X(i)/X(j) for these (i, j): (76, 29017), (799, 35623), (1978, 32778), (29018, 32), (56065, 649)


X(62466) = CROSSSUM OF PU(231)

Barycentrics    a^2*(a^8-2*b*c*a^6+(b+c)*b*c*a^5-(b^4-b^2*c^2+c^4)*a^4-(b+c)*b^2*c^2*a^3+(b^4+c^4-b*c*(b^2-3*b*c+c^2))*b*c*a^2+(b+c)*(2*b^4+2*c^4-5*b*c*(b^2-b*c+c^2))*b*c*a-(b^4-b^2*c^2-c^4)*(b^4+b^2*c^2-c^4)) : :

X(62466) lies on these lines: {9259, 20839}


X(62467) = BICENTRIC SUM OF PU(231)

Barycentrics    2*a^4-2*b*c*a^2+(b+c)*b*c*a-b^4-c^4 : :

X(62467) lies on these lines: {1, 24699}, {2, 1914}, {30, 511}, {141, 53602}, {149, 4396}, {1279, 25357}, {3006, 4760}, {3011, 25383}, {3744, 25345}, {3829, 13468}, {3938, 4799}, {4376, 5014}, {4400, 52367}, {4421, 9766}, {4450, 24690}, {4690, 49484}, {4708, 19868}, {4797, 29673}, {4805, 37610}, {7745, 25102}, {7750, 17448}, {7759, 8715}, {7762, 20691}, {7780, 24387}, {7823, 24524}, {7893, 17144}, {8667, 11235}, {8716, 34626}, {17251, 48805}, {17281, 17346}, {17301, 17378}, {17330, 17359}, {17382, 17392}, {17738, 49752}, {24358, 32850}, {24724, 32856}, {31140, 47037}, {34505, 34706}, {41312, 49746}, {41842, 50030}, {48810, 50297}, {48821, 50299}, {48829, 50301}, {50074, 50107}, {50101, 50133}, {51922, 56855}

X(62467) = infinite point of the tripolar of X(62468)
X(62467) = perspector of the circumconic through X(2) and X(62468)


X(62468) = BARYCENTRIC PRODUCT OF PU(231)

Barycentrics    (a-b)*(a-c)*(a^3+b*a^2+(b-c)*b*a+b^3)*(a^3+c*a^2-(b-c)*c*a+c^3) : :

X(62468) lies on the Steiner circumellipse and these lines: {58, 18827}, {101, 4562}, {668, 3573}, {903, 55970}, {1492, 41072}, {3732, 35148}, {4586, 33951}, {18895, 39029}

X(62468) = isotomic conjugate of X(62423)
X(62468) = cevapoint of X(2) and X(62423)
X(62468) = crosssum of X(6) and X(62466)
X(62468) = X(62423)-cross conjugate of-X(2)
X(62468) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 62423), (9, 50454), (5375, 49509), (6631, 29674), (10001, 36482), (31998, 30965)
X(62468) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 50454}, {31, 62423}, {649, 49509}, {667, 29674}, {798, 30965}, {3063, 36482}
X(62468) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 50454), (2, 62423), (99, 30965), (100, 49509), (190, 29674), (664, 36482), (55970, 514), (62469, 75)
X(62468) = X(4589)-vertex conjugate of-X(32739)
X(62468) = X(43)-zayin conjugate of-X(50454)
X(62468) = trilinear pole of the line {2, 1914} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62468) = perspector of the inconic with center X(62423)
X(62468) = pole of the the tripolar of X(30965) with respect to the Steiner-Wallace hyperbola
X(62468) = barycentric product X(i)*X(j) for these {i, j}: {1, 62469}, {190, 55970}
X(62468) = trilinear product X(i)*X(j) for these {i, j}: {6, 62469}, {100, 55970}
X(62468) = trilinear quotient X(i)/X(j) for these (i, j): (2, 50454), (75, 62423), (190, 49509), (668, 29674), (799, 30965), (4554, 36482), (55970, 513)


X(62469) = TRILINEAR PRODUCT OF PU(231)

Barycentrics    (a-b)*(a-c)*(a^3+b*a^2+(b-c)*b*a+b^3)*(a^3+c*a^2-(b-c)*c*a+c^3)/a : :

X(62469) lies on these lines: {81, 40017}, {100, 4583}, {668, 3573}, {1978, 3570}, {6654, 18031}, {31002, 55970}

X(62469) = isotomic conjugate of X(50454)
X(62469) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 50454), (6376, 62423), (6631, 49509), (9296, 29674)
X(62469) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 50454}, {32, 62423}, {667, 49509}, {669, 30965}, {1919, 29674}
X(62469) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 50454), (75, 62423), (190, 49509), (668, 29674), (799, 30965), (4554, 36482), (55970, 513), (62468, 1)
X(62469) = X(1740)-zayin conjugate of-X(50454)
X(62469) = trilinear pole of the line {75, 238} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62469) = barycentric product X(i)*X(j) for these {i, j}: {75, 62468}, {668, 55970}
X(62469) = trilinear product X(i)*X(j) for these {i, j}: {2, 62468}, {190, 55970}
X(62469) = trilinear quotient X(i)/X(j) for these (i, j): (75, 50454), (76, 62423), (668, 49509), (670, 30965), (1978, 29674), (4572, 36482), (55970, 649)


X(62470) = CEVAPOINT OF PU(232)

Barycentrics    (9*a^2+(5*b-23*c)*a-5*b^2+5*b*c+9*c^2)*(9*a^2-(23*b-5*c)*a+9*b^2+5*b*c-5*c^2) : :

X(62470) lies on these lines: {2, 62471}

X(62470) = isotomic conjugate of the anticomplement of X(52885)
X(62470) = anticomplement of X(62471)
X(62470) = isogonal conjugate of X(62472)
X(62470) = X(52885)-cross conjugate of-X(2)
X(62470) = X(62471)-Dao conjugate of-X(62471)
X(62470) = X(52885)-reciprocal conjugate of-X(62471)
X(62470) = perspector of the inconic with center X(52885)


X(62471) = CROSSPOINT OF PU(232)

Barycentrics    (3*a-2*b-c)*(3*a-2*c-b)*(5*a^2-5*(b+c)*a-9*b^2+23*b*c-9*c^2) : :

X(62471) lies on these lines: {2, 62470}, {4409, 62474}

X(62471) = complement of X(62470)
X(62471) = complementary conjugate of the complement of X(62472)
X(62471) = X(2)-Ceva conjugate of-X(52885)
X(62471) = X(i)-complementary conjugate of X(j) for these (i, j): (31, 52885), (62472, 10)
X(62471) = X(52885)-Dao conjugate of-X(2)
X(62471) = X(52885)-reciprocal conjugate of-X(62470)
X(62471) = center of the circumconic with perspector X(52885)
X(62471) = perspector of the circumconic with center X(52885)


X(62472) = CROSSSUM OF PU(232)

Barycentrics    a^2*(5*a^2-5*(b+c)*a-9*b^2+23*b*c-9*c^2) : :

X(62472) lies on these lines: {6, 101}, {5029, 62483}

X(62472) = isogonal conjugate of X(62470)
X(62472) = pole of the line {16704, 62470} with respect to the Stammler hyperbola
X(62472) = (X(1015), X(9259))-harmonic conjugate of X(21781)


X(62473) = TRILINEAR PRODUCT OF PU(232)

Barycentrics    (3*a-2*b-c)*(3*a-2*c-b)/a : :

X(62473) lies on these lines: {75, 537}, {3626, 32018}

X(62473) = X(62471)-Dao conjugate of-X(1)
X(62473) = X(52885)-reciprocal conjugate of-X(1)
X(62473) = barycentric product X(75)*X(52885)
X(62473) = trilinear product X(2)*X(52885)
X(62473) = trilinear quotient X(52885)/X(6)
X(62473) = (X(668), X(4986))-harmonic conjugate of X(20568)


X(62474) = CROSSPOINT OF PU(233)

Barycentrics    (a+2*b-3*c)*(a-3*b+2*c)*(13*a^2-13*(b+c)*a-b^2+15*b*c-c^2) : :

X(62474) lies on these lines: {4409, 62471}

X(62474) = complement of the isogonal conjugate of X(62475)
X(62474) = X(2)-Ceva conjugate of-X(62424)
X(62474) = X(i)-complementary conjugate of X(j) for these (i, j): (31, 62424), (62475, 10)
X(62474) = X(62424)-Dao conjugate of-X(2)
X(62474) = center of the circumconic with perspector X(62424)
X(62474) = perspector of the circumconic with center X(62424)


X(62475) = CROSSSUM OF PU(233)

Barycentrics    a^2*(13*a^2-13*(b+c)*a-b^2+15*b*c-c^2) : :

X(62475) lies on these lines: {6, 101}, {5029, 62487}

X(62475) = isogonal conjugate of the anticomplement of X(62474)


X(62476) = TRILINEAR PRODUCT OF PU(233)

Barycentrics    (a+2*b-3*c)*(a-3*b+2*c)/a : :

X(62476) lies on these lines: {75, 537}

X(62476) = X(62474)-Dao conjugate of-X(1)
X(62476) = X(62424)-reciprocal conjugate of-X(1)
X(62476) = barycentric product X(75)*X(62424)
X(62476) = trilinear product X(2)*X(62424)
X(62476) = trilinear quotient X(62424)/X(6)


X(62477) = TRILINEAR POLE OF LINE P(234)U(234)

Barycentrics    (a^4+(b+c)*a^3-(3*b^2-b*c+c^2)*a^2-(2*b+c)*(b-c)*c*a+(b-c)*(b^3-c^3+b*c*(b-2*c)))*(a^4+(b+c)*a^3-(b^2-b*c+3*c^2)*a^2+(b+2*c)*(b-c)*b*a+(b-c)*(b^3-c^3+b*c*(2*b-c))) : :

X(62477) lies on these lines: {}

X(62477) = isogonal conjugate of X(62478)
X(62477) = trilinear pole of the line {4977, 17365} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line


X(62478) = CROSSDIFFERENCE OF PU(234)

Barycentrics    a^2*(a^4-(3*b^2+2*b*c+3*c^2)*a^2+(b+c)*(b^2+c^2)*a+b^4+c^4+b*c*(b^2-b*c+c^2)) : :

X(62478) lies on these lines: {6, 595}, {101, 37510}, {926, 58160}, {34545, 40586}

X(62478) = isogonal conjugate of X(62477)
X(62478) = crossdifference of every pair of points on the line X(4977)X(17365)
X(62478) = pole of the line {8025, 62477} with respect to the Stammler hyperbola
X(62478) = pole of the line {52572, 62477} with respect to the Steiner-Wallace hyperbola


X(62479) = TRILINEAR PRODUCT OF PU(234)

Barycentrics    (a^2+(b-c)*a+(b-c)*c)*(a^2-(b-c)*a-(b-c)*b)/a : :

X(62479) lies on these lines: {57, 16727}, {4850, 57785}, {7196, 33146}

X(62479) = X(62425)-reciprocal conjugate of-X(1)
X(62479) = barycentric product X(75)*X(62425)
X(62479) = trilinear product X(2)*X(62425)
X(62479) = trilinear quotient X(62425)/X(6)


X(62480) = TRILINEAR POLE OF LINE P(235)U(235)

Barycentrics    (a^4-(b+c)*a^3-(3*b^2-3*b*c+c^2)*a^2+(2*b^2+3*b*c-c^2)*c*a+(b+c)*(b^3+c^3-b*c*(b+2*c)))*(a^4-(b+c)*a^3-(b^2-3*b*c+3*c^2)*a^2-(b^2-3*b*c-2*c^2)*b*a+(b+c)*(b^3+c^3-(2*b+c)*b*c)) : :

X(62480) lies on these lines: {121, 1016}, {3911, 11814}

X(62480) = isogonal conjugate of X(62481)
X(62480) = trilinear pole of the line {900, 17362} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line


X(62481) = CROSSDIFFERENCE OF PU(235)

Barycentrics    a^2*(a^4-(3*b^2-2*b*c+3*c^2)*a^2-(b+c)*(b^2-4*b*c+c^2)*a+b^4+c^4-b*c*(b^2+b*c+c^2)) : :

X(62481) lies on these lines: {6, 101}, {58, 20958}, {238, 47622}, {6371, 58179}, {8699, 28527}, {22350, 23579}

X(62481) = isogonal conjugate of X(62480)
X(62481) = crossdifference of every pair of points on the line X(900)X(17362)
X(62481) = pole of the line {16704, 62480} with respect to the Stammler hyperbola


X(62482) = TRILINEAR PRODUCT OF PU(235)

Barycentrics    (a^2+(b-c)*a-(b+c)*b)*(a^2-(b-c)*a-(b+c)*c)/a : :

X(62482) lies on these lines: {997, 4723}, {4358, 39594}, {29872, 30473}

X(62482) = X(62426)-reciprocal conjugate of-X(1)
X(62482) = barycentric product X(75)*X(62426)
X(62482) = trilinear product X(2)*X(62426)
X(62482) = trilinear quotient X(62426)/X(6)


X(62483) = CROSSSUM OF PU(236)

Barycentrics    a^2*(5*a^4-5*(b^2+c^2)*a^2-9*b^4+23*b^2*c^2-9*c^4) : :

X(62483) lies on these lines: {6, 110}, {5029, 62472}, {5351, 14705}, {5352, 14704}, {10329, 22112}, {16187, 34481}, {31652, 41273}, {40915, 50989}


X(62484) = TRILINEAR PRODUCT OF PU(236)

Barycentrics    (3*a^2-2*b^2-c^2)*(3*a^2-2*c^2-b^2)/a : :

X(62484) lies on these lines: {75, 799}

X(62484) = X(52886)-reciprocal conjugate of-X(1)
X(62484) = barycentric product X(75)*X(52886)
X(62484) = trilinear product X(2)*X(52886)
X(62484) = trilinear quotient X(52886)/X(6)
X(62484) = (X(799), X(20903))-harmonic conjugate of X(46277)


X(62485) = CROSSPOINT OF PU(237)

Barycentrics    (a^2+2*b^2-3*c^2)*(a^2-3*b^2+2*c^2)*(13*a^4-13*(b^2+c^2)*a^2-b^4+15*b^2*c^2-c^4) : :

X(62485) lies on these lines: {2, 62486}, {9165, 40429}

X(62485) = complement of X(62486)
X(62485) = complementary conjugate of the complement of X(62487)
X(62485) = X(2)-Ceva conjugate of-X(62427)
X(62485) = X(i)-complementary conjugate of X(j) for these (i, j): (31, 62427), (62487, 10)
X(62485) = X(62427)-Dao conjugate of-X(2)
X(62485) = X(62427)-reciprocal conjugate of-X(62486)
X(62485) = center of the circumconic with perspector X(62427)
X(62485) = perspector of the circumconic with center X(62427)


X(62486) = CEVAPOINT OF PU(237)

Barycentrics    (a^4+(13*b^2-15*c^2)*a^2-13*b^4+13*b^2*c^2+c^4)*(a^4-(15*b^2-13*c^2)*a^2+b^4+13*b^2*c^2-13*c^4) : :

X(62486) lies on these lines: {2, 62485}

X(62486) = isotomic conjugate of the anticomplement of X(62427)
X(62486) = anticomplement of X(62485)
X(62486) = isogonal conjugate of X(62487)
X(62486) = X(62427)-cross conjugate of-X(2)
X(62486) = X(62485)-Dao conjugate of-X(62485)
X(62486) = X(62427)-reciprocal conjugate of-X(62485)
X(62486) = perspector of the inconic with center X(62427)


X(62487) = CROSSSUM OF PU(237)

Barycentrics    a^2*(13*a^4-13*(b^2+c^2)*a^2-b^4+15*b^2*c^2-c^4) : :

X(62487) lies on these lines: {6, 110}, {5029, 62475}

X(62487) = isogonal conjugate of X(62486)
X(62487) = pole of the line {524, 62486} with respect to the Stammler hyperbola
X(62487) = pole of the line {3266, 62486} with respect to the Steiner-Wallace hyperbola


X(62488) = TRILINEAR PRODUCT OF PU(237)

Barycentrics    (a^2+2*b^2-3*c^2)*(a^2-3*b^2+2*c^2)/a : :

X(62488) lies on these lines: {75, 799}, {1821, 14211}

X(62488) = X(62485)-Dao conjugate of-X(1)
X(62488) = X(62427)-reciprocal conjugate of-X(1)
X(62488) = barycentric product X(75)*X(62427)
X(62488) = trilinear product X(2)*X(62427)
X(62488) = trilinear quotient X(62427)/X(6)





leftri   Infinity bisectors: X(62489) - X(62510)  rightri

Contributed by Clark Kimberling and Peter Moses, April 5, 2024.

Let O denote the circumcenter, (O) the circumcircle, and L the line at infinity. Suppose that P = p:q:r and U = u:v:w are points on (O) and that P, O, U are noncollinear. Let L1 be the tangent to (O) at P and L2 the tangent to (O) at U. Let D = L1∩L2 and M = OD∩L. As the line OM bisects the angle between L1 and L2, the point M is here named the (P,U)-infinity bisector. Barycentrics for the (P,U)-infinity bisector are given by

(a2 - b2 + c2)(q u - p v) - (a2 + b2 - c2)(r u - p w) - 2a2(r v - q w) : :

The appearance of {{i,j},k} in the following lists means that X(k) = {X(i),X(j)}-infinity bisector.

{{74,98},542}, {{74,99},690}, {{74,100},8674}, {{74,101},2774}, {{74,102},2779}, {{74,103},2772}, {{74,104},2771}, {{74,105},2836}, {{74,106},2842}, {{74,107},9033}, {{74,108},2850}, {{74,109},2773}, {{74,110},526}, {{74,111},2854}, {{74,112},9517}, {{74,476},523}, {{74,477},30},

{{98,99},804}, {{98,100},2787}, {{98,101},2786}, {{98,102},2792}, {{98,103},2784}, {{98,104},2783}, {{98,105},2795}, {{98,106},2796}, {{98,107},2797}, {{98,108},2798}, {{98,109},2785}, {{98,110},690}, {{98,111},543}, {{98,112},2799}, {{98,476},62489}, {{98,477},62490},

{{99,100},2783}, {{99,101},2784}, {{99,102},2785}, {{99,103},2786}, {{99,104},2787}, {{99,105},2788}, {{99,106},2789}, {{99,107},2790}, {{99,108},2791}, {{99,109},2792}, {{99,110},542}, {{99,111},2793}, {{99,112},2794},

{{100,101},2801}, {{100,102},3738}, {{100,103},3887}, {{100,104},900}, {{100,105},2826}, {{100,106},2827}, {{100,107},2828}, {{100,108},2829}, {{100,109},2800}, {{100,110},2771}, {{100,111},2830}, {{100,112},2831}, {{100,476},62491}, {{100,477},62492},

{{101,102},928}, {{101,103},926}, {{101,104},3887}, {{101,105},2820}, {{101,106},2821}, {{101,107},2822}, {{101,108},2823}, {{101,109},2807}, {{101,110},2772}, {{101,111},2824}, {{101,112},2825}, {{101,476},62493}, {{101,477},62494},

{{102,103},2807}, {{102,104},2800}, {{102,105},2835}, {{102,106},2841}, {{102,107},2846}, {{102,108},2849}, {{102,109},8677}, {{102,110},2773}, {{102,111},2852}, {{102,112},2853}, {{102,476},62495}, {{102,477},62496},

{{103,104},2801}, {{103,105},2809}, {{103,106},2810}, {{103,107},2811}, {{103,108},2812}, {{103,109},928}, {{103,110},2774}, {{103,111},2813}, {{103,112},9518}, {{103,675},544},

{{104,105},528}, {{104,106},2802}, {{104,107},2803}, {{104,108},2804}, {{104,109},3738}, {{104,110},8674}, {{104,111},2805}, {{104,112},2806},

{{105,106},9519}, {{105,107},9520}, {{105,108},9521}, {{105,109},2814}, {{105,110},2775}, {{105,111},9522}, {{105,112},9523}, {{105,476},62497}, {{105,477},62498},

{{106,107},9524}, {{106,108},9525}, {{106,109},2815}, {{106,110},2776}, {{106,111},9526}, {{106,112},9527}, {{106,476},62499}, {{106,477},62500},

{{107,108},9528}, {{107,109},2816}, {{107,110},2777}, {{107,111},9529}, {{107,112},9530}, {{107,476},62501}, {{107,477},62502},

{{108,109},2817}, {{108,110},2778}, {{108,111},9531}, {{108,112},{62503}, {{108,476},62504}, {{107,477},62505},

{{109,110},2779}, {{109,111},2819}, {{109,112},9532},

{{110,111},2780}, {{110,112},2781}, {{110,476},30}, {{110,477},523},

{{111,112},{62506}, {{111,476},62507}, {{111,477},62508},

{{112,476},62509}, {{112,477},62510},

{{476,477},16171}

The line PU is the polar of D with respect to the circumcircle and OD is perpendicular to PU. Then M, the infinite bisector of {P,U}, is the orthopoint of the point at infinity of the line PU. (César Lozada, April 7, 2024)

underbar



X(62489) = {X(98),X(476)}-INFINITY BISECTOR

Barycentrics    (b^2 - c^2)*(-a^8 + 2*a^6*b^2 - a^4*b^4 + 2*a^6*c^2 - 3*a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 - a^4*c^4 + a^2*b^2*c^4 - 2*b^4*c^4 + b^2*c^6) : :

X(62489) lies on these lines: {2, 44814}, {3, 23105}, {5, 39482}, {13, 57123}, {14, 57122}, {23, 4108}, {24, 46371}, {30, 511}, {98, 477}, {99, 476}, {114, 25641}, {115, 647}, {140, 59741}, {147, 34193}, {148, 14731}, {186, 14618}, {187, 47229}, {237, 31953}, {381, 34291}, {403, 16229}, {460, 47627}, {620, 22104}, {671, 9213}, {691, 48951}, {805, 53869}, {842, 43654}, {935, 53692}, {1116, 10278}, {1316, 8723}, {1649, 57618}, {2070, 39537}, {2072, 39503}, {2394, 15111}, {2395, 2549}, {2453, 56957}, {2482, 31174}, {2528, 24974}, {2697, 53931}, {2698, 53868}, {2970, 55383}, {3023, 33965}, {3027, 33964}, {3154, 15359}, {5186, 14052}, {5254, 8574}, {5309, 6041}, {5461, 44560}, {5466, 9159}, {5664, 15475}, {5996, 10989}, {6036, 31379}, {6070, 15357}, {6130, 39477}, {6132, 39509}, {6321, 20957}, {6722, 40485}, {7464, 30735}, {7471, 53735}, {7753, 10567}, {7771, 52632}, {8651, 47173}, {9137, 9147}, {9171, 50149}, {9179, 53736}, {9180, 55957}, {9828, 16092}, {10097, 44526}, {10412, 62173}, {10421, 20774}, {10722, 14989}, {10723, 44967}, {11007, 45692}, {11123, 42733}, {11182, 36194}, {11799, 46953}, {12028, 15470}, {12042, 38610}, {12052, 58518}, {12188, 38581}, {13188, 38580}, {14223, 18316}, {14270, 41079}, {14480, 15342}, {14809, 56373}, {14849, 14851}, {14850, 14993}, {14907, 53347}, {14934, 53725}, {15421, 18531}, {15535, 16340}, {15561, 57305}, {15915, 52728}, {15928, 58263}, {16315, 47475}, {16316, 47501}, {16319, 42654}, {16535, 45681}, {18312, 46609}, {18319, 51872}, {18333, 34175}, {21166, 38700}, {23235, 38677}, {23323, 44918}, {24472, 59825}, {31274, 31277}, {32112, 34150}, {33813, 38609}, {34094, 45693}, {34290, 36163}, {34473, 38701}, {34964, 37938}, {36164, 53709}, {36177, 40550}, {37019, 47270}, {37991, 43665}, {38224, 57306}, {38664, 38678}, {39834, 58310}, {42660, 47620}, {44227, 47214}, {45690, 50147}, {46632, 53710}, {46634, 47079}, {47001, 47159}, {47175, 47504}, {47219, 50707}, {47248, 47505}, {47258, 47324}, {59815, 59823}

X(62489) = isogonal conjugate of X(9160)
X(62489) = isotomic conjugate of X(53192)
X(62489) = Thomson-isogonal conjugate of X(9161)
X(62489) = crossdifference of every pair of points on line {6, 15329}
X(62489) = barycentric quotient X(41004)/X(56671)
X(62489) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {99, 476, 53738}, {16229, 47221, 403}, {53266, 53275, 3}


X(62490) = {X(98),X(477)}-INFINITY BISECTOR

Barycentrics    a^10*b^2 - 3*a^8*b^4 + 3*a^6*b^6 - a^4*b^8 + a^10*c^2 - b^10*c^2 - 3*a^8*c^4 + 4*b^8*c^4 + 3*a^6*c^6 - 6*b^6*c^6 - a^4*c^8 + 4*b^4*c^8 - b^2*c^10 : :

X(62490) lies on these lines: {2, 9158}, {3, 2453}, {4, 16237}, {5, 38393}, {20, 15112}, {23, 94}, {30, 511}, {99, 477}, {110, 36188}, {114, 858}, {115, 3003}, {125, 47348}, {147, 5189}, {148, 34193}, {182, 1316}, {186, 30716}, {187, 46633}, {250, 41204}, {323, 14480}, {373, 46868}, {376, 15111}, {381, 46127}, {389, 36160}, {401, 40866}, {403, 23514}, {450, 1304}, {468, 6036}, {576, 2452}, {620, 15122}, {691, 11676}, {805, 53868}, {842, 5999}, {935, 53931}, {1350, 47284}, {1352, 36163}, {1495, 7471}, {1513, 16188}, {1531, 46045}, {1533, 16278}, {1553, 32111}, {1561, 32271}, {2023, 16308}, {2030, 48721}, {2070, 30715}, {2071, 21166}, {2072, 36519}, {2697, 53692}, {2698, 53869}, {3001, 6033}, {3023, 7286}, {3027, 5160}, {3098, 47285}, {3109, 48894}, {3292, 14611}, {3580, 6070}, {3819, 47509}, {4226, 52772}, {5092, 36177}, {5099, 15980}, {5159, 6721}, {5201, 12188}, {5461, 47334}, {5462, 10223}, {5467, 34810}, {5476, 50149}, {5520, 15974}, {5613, 36186}, {5617, 36185}, {5943, 34093}, {5972, 16319}, {5984, 20063}, {6054, 10989}, {6055, 7426}, {6108, 11549}, {6109, 11537}, {6248, 36165}, {6321, 18325}, {6770, 44462}, {6771, 32460}, {6773, 44466}, {6774, 32461}, {6776, 36181}, {7480, 46106}, {7575, 12042}, {7684, 58912}, {7685, 58913}, {9179, 53726}, {9306, 36192}, {9729, 14894}, {9828, 36166}, {9840, 47270}, {9861, 37972}, {10168, 34094}, {10295, 38749}, {10296, 10722}, {10564, 14934}, {10723, 14989}, {11005, 17511}, {11007, 24206}, {11063, 59251}, {11064, 47148}, {11177, 37901}, {11178, 36194}, {11179, 46124}, {11257, 36182}, {11563, 38229}, {11623, 16619}, {11646, 47275}, {11657, 32223}, {11710, 51693}, {12052, 58517}, {12091, 18323}, {12112, 15342}, {13188, 35001}, {13334, 36157}, {13335, 36156}, {13349, 16182}, {13350, 16181}, {13586, 38702}, {13860, 59227}, {14120, 46993}, {14221, 45772}, {14356, 57603}, {14849, 14993}, {14850, 14851}, {14981, 62332}, {15329, 58261}, {15535, 34209}, {15561, 57306}, {15646, 45847}, {15915, 22712}, {15919, 36207}, {15971, 38514}, {16303, 47581}, {16312, 47468}, {16313, 47568}, {16315, 47584}, {16316, 47570}, {16320, 16760}, {16331, 47567}, {16334, 47569}, {16978, 41665}, {17986, 45278}, {18279, 34104}, {18332, 36193}, {18572, 22505}, {18860, 46634}, {20299, 51451}, {21243, 36190}, {22463, 51456}, {22510, 36211}, {22511, 36210}, {22515, 44267}, {23235, 38678}, {24472, 59823}, {25338, 61560}, {25559, 37975}, {25560, 37974}, {32110, 46632}, {32237, 47351}, {32269, 47146}, {33813, 37950}, {33971, 36176}, {34127, 44282}, {35021, 37897}, {35265, 60605}, {36158, 48919}, {36164, 53710}, {36173, 43460}, {36179, 46850}, {36180, 46981}, {36187, 54393}, {37459, 40544}, {37527, 57589}, {37903, 38654}, {37915, 39646}, {37918, 42329}, {37922, 38634}, {37927, 38642}, {37928, 39828}, {37946, 38664}, {37967, 51523}, {37985, 44436}, {37988, 39486}, {38224, 57305}, {38383, 41658}, {38737, 44214}, {38745, 47341}, {38747, 47335}, {39120, 52403}, {39530, 57583}, {39806, 47143}, {39809, 62288}, {39825, 45171}, {41070, 41634}, {41071, 41644}, {41202, 57011}, {43976, 54094}, {44084, 47179}, {44266, 49102}, {44961, 61576}, {46155, 52056}, {46999, 51258}, {47153, 58481}, {47272, 48939}, {47273, 48883}, {47274, 48909}, {47283, 52987}, {47323, 62344}, {47365, 53162}, {47366, 53163}, {47385, 60594}, {48931, 52200}, {48947, 57616}, {48980, 61102}, {50146, 50977}, {52472, 57611}, {57588, 58445}, {58639, 58661}, {59815, 59825}

X(62490) = isogonal conjugate of X(9161)
X(62490) = Thomson-isogonal conjugate of X(9160)
X(62490) = crossdifference of every pair of points on line {6, 46616}
X(62490) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 476, 47327}, {98, 476, 53728}, {858, 47324, 3258}, {1316, 6795, 182}, {2452, 60696, 576}, {2453, 59231, 3}, {11064, 47148, 55308}, {16320, 56370, 16760}, {36180, 46981, 47113}, {53267, 53274, 3}


X(62491) = {X(100),X(476)}-INFINITY BISECTOR

Barycentrics    a^9*b - 3*a^7*b^3 + 3*a^5*b^5 - a^3*b^7 + a^9*c - 2*a^8*b*c + a^7*b^2*c + 2*a^6*b^3*c - 4*a^5*b^4*c + a^4*b^5*c + a^3*b^6*c + a*b^8*c - b^9*c + a^7*b*c^2 + 2*a^5*b^3*c^2 - 2*a^3*b^5*c^2 - a*b^7*c^2 - 3*a^7*c^3 + 2*a^6*b*c^3 + 2*a^5*b^2*c^3 - 4*a^4*b^3*c^3 + 2*a^3*b^4*c^3 - 3*a*b^6*c^3 + 4*b^7*c^3 - 4*a^5*b*c^4 + 2*a^3*b^3*c^4 + 3*a*b^5*c^4 + 3*a^5*c^5 + a^4*b*c^5 - 2*a^3*b^2*c^5 + 3*a*b^4*c^5 - 6*b^5*c^5 + a^3*b*c^6 - 3*a*b^3*c^6 - a^3*c^7 - a*b^2*c^7 + 4*b^3*c^7 + a*b*c^8 - b*c^9 : :

X(62491) lies on these lines: {3, 47270}, {4, 18115}, {11, 25641}, {23, 39572}, {30, 511}, {36, 46636}, {40, 47273}, {100, 477}, {104, 476}, {119, 3258}, {149, 34193}, {153, 14731}, {355, 36154}, {944, 36171}, {946, 52200}, {1290, 6905}, {1317, 33965}, {1385, 3109}, {1482, 47274}, {1484, 18319}, {1532, 42422}, {1985, 39485}, {2077, 46635}, {2453, 56960}, {2687, 6909}, {2689, 53932}, {2695, 53927}, {3035, 31379}, {3579, 36158}, {3654, 50145}, {5083, 59825}, {5520, 6882}, {6265, 7424}, {6713, 22104}, {6906, 38570}, {7471, 51420}, {7574, 45916}, {8143, 15888}, {8758, 11799}, {9158, 9978}, {9179, 53754}, {9956, 36155}, {10222, 13869}, {10711, 34312}, {10724, 14989}, {10728, 44967}, {10742, 20957}, {10767, 36172}, {12052, 58522}, {12331, 38581}, {12619, 36195}, {12736, 59823}, {12738, 36026}, {12773, 38580}, {13265, 37919}, {13587, 38711}, {14934, 53743}, {16173, 50148}, {23961, 47402}, {33814, 38610}, {33862, 47401}, {34474, 38701}, {34789, 51883}, {36164, 53711}, {37964, 45766}, {38588, 56423}, {38602, 38609}, {38665, 38678}, {38669, 38677}, {38693, 38700}, {38752, 57306}, {46632, 53715}, {47327, 51635}, {53722, 53728}, {53733, 53738}, {57298, 57305}


X(62492) = {X(100),X(477)}-INFINITY BISECTOR

Barycentrics    (b - c)*(-a^7 + 2*a^5*b^2 - a^3*b^4 + 2*a^5*b*c - 2*a^4*b^2*c - a^3*b^3*c + a^2*b^4*c - a*b^5*c + b^6*c + 2*a^5*c^2 - 2*a^4*b*c^2 - a^3*b^2*c^2 + a^2*b^3*c^2 + b^5*c^2 - a^3*b*c^3 + a^2*b^2*c^3 + 2*a*b^3*c^3 - 2*b^4*c^3 - a^3*c^4 + a^2*b*c^4 - 2*b^3*c^4 - a*b*c^5 + b^2*c^5 + b*c^6) : :

X(62492) lies on these lines: {5, 39483}, {11, 3258}, {23, 47804}, {30, 511}, {80, 57099}, {100, 476}, {104, 477}, {119, 25641}, {149, 14731}, {153, 34193}, {186, 44426}, {403, 16228}, {851, 47833}, {858, 47802}, {859, 48391}, {1290, 53611}, {1317, 33964}, {1464, 48292}, {2070, 48383}, {2072, 59973}, {2453, 56958}, {2687, 43655}, {2689, 53927}, {2695, 53932}, {3035, 22104}, {5083, 59823}, {5189, 48164}, {6713, 31379}, {7426, 47803}, {7471, 53743}, {9158, 9980}, {9179, 53744}, {10707, 34312}, {10724, 44967}, {10728, 14989}, {10738, 20957}, {10778, 17511}, {10989, 44429}, {11698, 18319}, {12052, 58475}, {12331, 38580}, {12736, 59825}, {12773, 38581}, {13744, 47270}, {14934, 53753}, {14956, 47825}, {18859, 48390}, {23323, 44923}, {33814, 38609}, {34474, 38700}, {36164, 53715}, {37370, 47829}, {37901, 47805}, {38602, 38610}, {38665, 38677}, {38669, 38678}, {38693, 38701}, {38752, 57305}, {46521, 47827}, {46611, 52356}, {46632, 53711}, {46635, 47081}, {47098, 47500}, {47199, 47327}, {53720, 53728}, {53729, 53738}, {57298, 57306}

X(62491) = barycentric quotient X(i)/X(j) for these {i,j}: {9597, 14079}, {58140, 41016}


X(62493) = {X(101),X(476)}-INFINITY BISECTOR

Barycentrics    2*a^9 - a^8*b - 2*a^7*b^2 - a^6*b^3 - a^5*b^4 + 4*a^4*b^5 - a^2*b^7 + a*b^8 - b^9 - a^8*c + 3*a^6*b^2*c - 3*a^4*b^4*c + a^2*b^6*c - 2*a^7*c^2 + 3*a^6*b*c^2 + 4*a^5*b^2*c^2 - 2*a^4*b^3*c^2 - 2*a^2*b^5*c^2 - 4*a*b^6*c^2 + 3*b^7*c^2 - a^6*c^3 - 2*a^4*b^2*c^3 + 2*a^2*b^4*c^3 + b^6*c^3 - a^5*c^4 - 3*a^4*b*c^4 + 2*a^2*b^3*c^4 + 6*a*b^4*c^4 - 3*b^5*c^4 + 4*a^4*c^5 - 2*a^2*b^2*c^5 - 3*b^4*c^5 + a^2*b*c^6 - 4*a*b^2*c^6 + b^3*c^6 - a^2*c^7 + 3*b^2*c^7 + a*c^8 - c^9 : :

X(62493) lies on these lines: {10, 36158}, {20, 47270}, {30, 511}, {101, 477}, {103, 476}, {116, 25641}, {118, 3258}, {150, 18661}, {152, 14731}, {382, 18119}, {962, 47274}, {1290, 36002}, {1362, 33965}, {1544, 46045}, {2453, 49130}, {2688, 53880}, {2690, 36028}, {2692, 53933}, {3007, 10296}, {3012, 11809}, {3022, 33964}, {3109, 4297}, {3146, 38514}, {4301, 13869}, {5520, 37374}, {5691, 36154}, {6710, 31379}, {6712, 22104}, {6905, 38711}, {7471, 18653}, {8756, 10295}, {10710, 34312}, {10725, 14989}, {10727, 44967}, {10741, 20957}, {11028, 59823}, {12052, 58521}, {14934, 53747}, {19925, 36155}, {22793, 52200}, {23854, 37924}, {30808, 39488}, {36164, 53712}, {36167, 44425}, {38572, 38581}, {38574, 38580}, {38599, 38610}, {38601, 38609}, {38666, 38678}, {38668, 38677}, {38690, 38701}, {38692, 38700}, {38764, 57306}, {46632, 53714}, {53732, 53738}, {57297, 57305}, {59813, 59825}

X(62493) = barycentric quotient X(40144)/X(7549)


X(62494) = {X(101),X(477)}-INFINITY BISECTOR

Barycentrics    (b - c)*(-a^6 + 2*a^5*b - a^3*b^3 - a*b^5 + b^6 + 2*a^5*c - 2*a^4*b*c - a^3*b^2*c + a^2*b^3*c - a*b^4*c + b^5*c - a^3*b*c^2 + a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 - a^3*c^3 + a^2*b*c^3 + 2*a*b^2*c^3 - 2*b^3*c^3 - a*b*c^4 - b^2*c^4 - a*c^5 + b*c^5 + c^6) : :

X(62494) lies on these lines: {23, 47771}, {30, 511}, {101, 476}, {103, 477}, {116, 3258}, {118, 25641}, {150, 14731}, {152, 34193}, {186, 48386}, {693, 38019}, {857, 47782}, {858, 47757}, {1362, 33964}, {1375, 47788}, {1725, 4041}, {1834, 21203}, {2070, 48387}, {2071, 39476}, {2690, 53880}, {2758, 53933}, {3022, 33965}, {3091, 39489}, {4794, 5160}, {5189, 48156}, {6710, 22104}, {6712, 31379}, {7426, 47766}, {7471, 53747}, {10149, 48294}, {10151, 39532}, {10708, 34312}, {10725, 44967}, {10727, 14989}, {10739, 20957}, {10989, 44435}, {11028, 59825}, {11809, 47123}, {12052, 58519}, {14838, 47176}, {14934, 53751}, {14953, 47792}, {18859, 44408}, {23775, 36154}, {36164, 53714}, {37009, 47270}, {37901, 47773}, {38572, 38580}, {38574, 38581}, {38599, 38609}, {38601, 38610}, {38666, 38677}, {38668, 38678}, {38690, 38700}, {38692, 38701}, {38764, 57305}, {44432, 47097}, {46632, 53712}, {53721, 53728}, {53730, 53738}, {57297, 57306}, {59813, 59823}


X(62495) = {X(102),X(476)}-INFINITY BISECTOR

Barycentrics    (b - c)*(a^7 + a^6*b - 2*a^5*b^2 - a^4*b^3 + a^3*b^4 - a^2*b^5 + b^7 + a^6*c - 2*a^5*b*c + a^4*b^2*c + a^3*b^3*c - 2*a^2*b^4*c + a*b^5*c - 2*a^5*c^2 + a^4*b*c^2 + a^3*b^2*c^2 + 2*a^2*b^3*c^2 - 2*b^5*c^2 - a^4*c^3 + a^3*b*c^3 + 2*a^2*b^2*c^3 - 2*a*b^3*c^3 + b^4*c^3 + a^3*c^4 - 2*a^2*b*c^4 + b^3*c^4 - a^2*c^5 + a*b*c^5 - 2*b^2*c^5 + c^7) : :

X(62495) lies on these lines: {23, 47798}, {30, 511}, {102, 477}, {109, 476}, {117, 25641}, {124, 3258}, {151, 34193}, {186, 39226}, {403, 54239}, {858, 47806}, {1290, 53927}, {1361, 33964}, {1364, 33965}, {2070, 39199}, {2687, 53932}, {2689, 53612}, {2695, 53870}, {4086, 14206}, {4458, 47224}, {4973, 21187}, {5189, 48169}, {6711, 31379}, {6718, 22104}, {7426, 47800}, {7471, 53758}, {9179, 53759}, {10716, 34312}, {10726, 14989}, {10732, 44967}, {10747, 20957}, {10989, 47808}, {12016, 59825}, {12052, 58526}, {14731, 33650}, {14934, 53749}, {18593, 47176}, {36164, 53713}, {37043, 47270}, {37901, 48239}, {38573, 38581}, {38579, 38580}, {38600, 38610}, {38607, 38609}, {38667, 38678}, {38674, 38677}, {38691, 38701}, {38697, 38700}, {38776, 57306}, {43940, 44426}, {46632, 53717}, {53724, 53728}, {53734, 53738}, {57303, 57305}, {59816, 59823}


X(62496) = {X(102),X(477)}-INFINITY BISECTOR

Barycentrics    2*a^10 - a^9*b - 3*a^8*b^2 + 3*a^7*b^3 - 2*a^6*b^4 - 3*a^5*b^5 + 4*a^4*b^6 + a^3*b^7 - b^10 - a^9*c + 2*a^8*b*c - a^7*b^2*c - 2*a^6*b^3*c + 4*a^5*b^4*c - a^4*b^5*c - a^3*b^6*c - a*b^8*c + b^9*c - 3*a^8*c^2 - a^7*b*c^2 + 10*a^6*b^2*c^2 - 2*a^5*b^3*c^2 - 5*a^4*b^4*c^2 + 2*a^3*b^5*c^2 - 5*a^2*b^6*c^2 + a*b^7*c^2 + 3*b^8*c^2 + 3*a^7*c^3 - 2*a^6*b*c^3 - 2*a^5*b^2*c^3 + 4*a^4*b^3*c^3 - 2*a^3*b^4*c^3 + 3*a*b^6*c^3 - 4*b^7*c^3 - 2*a^6*c^4 + 4*a^5*b*c^4 - 5*a^4*b^2*c^4 - 2*a^3*b^3*c^4 + 10*a^2*b^4*c^4 - 3*a*b^5*c^4 - 2*b^6*c^4 - 3*a^5*c^5 - a^4*b*c^5 + 2*a^3*b^2*c^5 - 3*a*b^4*c^5 + 6*b^5*c^5 + 4*a^4*c^6 - a^3*b*c^6 - 5*a^2*b^2*c^6 + 3*a*b^3*c^6 - 2*b^4*c^6 + a^3*c^7 + a*b^2*c^7 - 4*b^3*c^7 - a*b*c^8 + 3*b^2*c^8 + b*c^9 - c^10 : :

X(62496) lies on these lines: {3, 45934}, {4, 47270}, {20, 38514}, {30, 511}, {36, 29008}, {40, 36154}, {102, 476}, {109, 477}, {117, 3258}, {124, 25641}, {151, 14731}, {411, 38570}, {944, 47274}, {946, 3109}, {962, 36171}, {1290, 6909}, {1361, 33965}, {1364, 33964}, {1385, 52200}, {1532, 5520}, {1558, 46045}, {2077, 36167}, {2453, 56959}, {2687, 6905}, {2689, 53870}, {2690, 36027}, {2695, 37420}, {5535, 10771}, {5691, 47273}, {5882, 13869}, {6684, 36155}, {6711, 22104}, {6718, 31379}, {6882, 42422}, {7464, 45917}, {7471, 51382}, {10295, 11809}, {10709, 34312}, {10726, 44967}, {10732, 14989}, {10740, 20957}, {11700, 15326}, {12016, 59823}, {12052, 58520}, {14934, 53758}, {31673, 47272}, {31730, 36158}, {33650, 34193}, {36164, 53717}, {38573, 38580}, {38579, 38581}, {38600, 38609}, {38607, 38610}, {38667, 38677}, {38674, 38678}, {38691, 38700}, {38697, 38701}, {38776, 57305}, {46632, 53713}, {53731, 53738}, {57303, 57306}, {59816, 59825}


X(62497) = {X(105),X(476)}-INFINITY BISECTOR

Barycentrics    (b - c)*(-a^9 + 2*a^8*b + a^7*b^2 - 4*a^6*b^3 + a^5*b^4 + 2*a^4*b^5 - a^3*b^6 + 2*a^8*c + 2*a^7*b*c - 6*a^6*b^2*c + a^5*b^3*c + a^4*b^4*c - 2*a^3*b^5*c + 2*a^2*b^6*c - a*b^7*c + b^8*c + a^7*c^2 - 6*a^6*b*c^2 + 3*a^5*b^2*c^2 + 5*a^4*b^3*c^2 - 2*a^3*b^4*c^2 - b^7*c^2 - 4*a^6*c^3 + a^5*b*c^3 + 5*a^4*b^2*c^3 - 2*a^2*b^4*c^3 + a*b^5*c^3 - 3*b^6*c^3 + a^5*c^4 + a^4*b*c^4 - 2*a^3*b^2*c^4 - 2*a^2*b^3*c^4 + 3*b^5*c^4 + 2*a^4*c^5 - 2*a^3*b*c^5 + a*b^3*c^5 + 3*b^4*c^5 - a^3*c^6 + 2*a^2*b*c^6 - 3*b^3*c^6 - a*b*c^7 - b^2*c^7 + b*c^8) : :

X(62497) lies on these lines: {30, 511}, {105, 477}, {120, 25641}, {476, 1292}, {1358, 33965}, {3021, 33964}, {3258, 5511}, {6714, 31379}, {10729, 14989}, {14731, 34547}, {14934, 53756}, {15521, 20957}, {20344, 34193}, {37989, 39536}, {38575, 38581}, {38580, 38589}, {38603, 38610}, {38609, 38619}, {38670, 38678}, {38677, 38684}, {38694, 38701}, {38700, 38712}, {39227, 51635}, {44967, 44983}, {57299, 57306}, {57305, 57327}, {59814, 59823}


X(62498) = {X(105),X(477)}-INFINITY BISECTOR

Barycentrics    a^8*b - a^7*b^2 - 2*a^6*b^3 + 2*a^5*b^4 + a^4*b^5 - a^3*b^6 + a^8*c + 2*a^4*b^4*c - 2*a^2*b^6*c - b^8*c - a^7*c^2 - 2*a^4*b^3*c^2 + 2*a*b^6*c^2 + b^7*c^2 - 2*a^6*c^3 - 2*a^4*b^2*c^3 + 2*a^2*b^4*c^3 + 3*b^6*c^3 + 2*a^5*c^4 + 2*a^4*b*c^4 + 2*a^2*b^3*c^4 - 4*a*b^4*c^4 - 3*b^5*c^4 + a^4*c^5 - 3*b^4*c^5 - a^3*c^6 - 2*a^2*b*c^6 + 2*a*b^2*c^6 + 3*b^3*c^6 + b^2*c^7 - b*c^8 : :

X(62498) lies on these lines: {30, 511}, {105, 476}, {120, 3258}, {377, 38514}, {405, 2453}, {477, 1292}, {1290, 36003}, {1316, 51743}, {1358, 33964}, {3021, 33965}, {3109, 51715}, {5302, 47272}, {5511, 25641}, {5520, 52254}, {6714, 22104}, {7471, 53756}, {8609, 11809}, {10712, 34312}, {10729, 44967}, {10743, 20957}, {14731, 20344}, {14989, 44983}, {34193, 34547}, {37426, 59231}, {38575, 38580}, {38581, 38589}, {38603, 38609}, {38610, 38619}, {38670, 38677}, {38678, 38684}, {38694, 38700}, {38701, 38712}, {41229, 47273}, {44229, 45954}, {57299, 57305}, {57306, 57327}, {59814, 59825}


X(62499) = {X(106),X(476)}-INFINITY BISECTOR

Barycentrics    (b - c)*(3*a^7 + a^6*b - 6*a^5*b^2 - a^4*b^3 + 3*a^3*b^4 - a^2*b^5 + b^7 + a^6*c - 6*a^5*b*c + 5*a^4*b^2*c + 3*a^3*b^3*c - 4*a^2*b^4*c + 3*a*b^5*c - 2*b^6*c - 6*a^5*c^2 + 5*a^4*b*c^2 + 3*a^3*b^2*c^2 - 4*b^5*c^2 - a^4*c^3 + 3*a^3*b*c^3 - 6*a*b^3*c^3 + 5*b^4*c^3 + 3*a^3*c^4 - 4*a^2*b*c^4 + 5*b^3*c^4 - a^2*c^5 + 3*a*b*c^5 - 4*b^2*c^5 - 2*b*c^6 + c^7) : :

X(62499) lies on these lines: {2, 39490}, {23, 39225}, {30, 511}, {106, 477}, {121, 25641}, {468, 16231}, {476, 1293}, {858, 39508}, {1357, 33965}, {2688, 53933}, {3258, 5510}, {4049, 36158}, {4057, 37924}, {6018, 33964}, {6715, 31379}, {7649, 10295}, {10296, 20294}, {10297, 20315}, {10730, 14989}, {14731, 34548}, {15522, 20957}, {21290, 34193}, {38576, 38581}, {38580, 38590}, {38604, 38610}, {38609, 38620}, {38671, 38678}, {38677, 38685}, {38695, 38701}, {38700, 38713}, {44967, 44984}, {47313, 47801}, {47314, 48545}, {57300, 57306}, {57305, 57328}, {59812, 59823}

X(62499) = barycentric product X(18129)*X(22252)


X(62500) = {X(106),X(477)}-INFINITY BISECTOR

Barycentrics    2*a^7 - a^6*b - 2*a^5*b^2 + 4*a^4*b^3 + a^3*b^4 - 2*a^2*b^5 - a*b^6 - b^7 - a^6*c - 2*a^4*b^2*c + a^2*b^4*c + 2*b^6*c - 2*a^5*c^2 - 2*a^4*b*c^2 + a*b^4*c^2 + 4*b^5*c^2 + 4*a^4*c^3 - 5*b^4*c^3 + a^3*c^4 + a^2*b*c^4 + a*b^2*c^4 - 5*b^3*c^4 - 2*a^2*c^5 + 4*b^2*c^5 - a*c^6 + 2*b*c^6 - c^7 : :

X(62500) lies on these lines: {2, 38514}, {10, 47272}, {30, 511}, {106, 476}, {121, 3258}, {381, 18120}, {477, 1293}, {551, 3109}, {1290, 13587}, {1316, 48867}, {1357, 33964}, {2453, 11354}, {2690, 53933}, {3006, 10989}, {3011, 7426}, {3241, 36171}, {3679, 36154}, {3828, 36155}, {4973, 50755}, {5298, 39751}, {5510, 25641}, {5520, 17533}, {6018, 33965}, {6715, 22104}, {6740, 50921}, {7473, 52954}, {10713, 34312}, {10730, 44967}, {10744, 20957}, {12052, 58523}, {13869, 51071}, {14731, 21290}, {14989, 44984}, {16272, 47495}, {16304, 47488}, {16309, 47496}, {16322, 47493}, {17549, 38570}, {20045, 37901}, {30117, 61432}, {34193, 34548}, {36158, 50808}, {36163, 48834}, {38576, 38580}, {38581, 38590}, {38604, 38609}, {38610, 38620}, {38671, 38677}, {38678, 38685}, {38695, 38700}, {38701, 38713}, {47097, 50752}, {47146, 47563}, {47284, 48862}, {47285, 48863}, {51709, 52200}, {57300, 57305}, {57306, 57328}, {59812, 59825}

X(62500) = barycentric quotient X(52279)/X(14487)
X(62500) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3679, 47273, 50145}, {36154, 50145, 3679}


X(62501) = {X(107),X(476)}-INFINITY BISECTOR

Barycentrics    a^14*b^2 - 5*a^12*b^4 + 10*a^10*b^6 - 10*a^8*b^8 + 5*a^6*b^10 - a^4*b^12 + a^14*c^2 + 4*a^12*b^2*c^2 - 7*a^10*b^4*c^2 - 8*a^8*b^6*c^2 + 12*a^6*b^8*c^2 + a^4*b^10*c^2 - 2*a^2*b^12*c^2 - b^14*c^2 - 5*a^12*c^4 - 7*a^10*b^2*c^4 + 34*a^8*b^4*c^4 - 17*a^6*b^6*c^4 - 17*a^4*b^8*c^4 + 6*a^2*b^10*c^4 + 6*b^12*c^4 + 10*a^10*c^6 - 8*a^8*b^2*c^6 - 17*a^6*b^4*c^6 + 34*a^4*b^6*c^6 - 4*a^2*b^8*c^6 - 15*b^10*c^6 - 10*a^8*c^8 + 12*a^6*b^2*c^8 - 17*a^4*b^4*c^8 - 4*a^2*b^6*c^8 + 20*b^8*c^8 + 5*a^6*c^10 + a^4*b^2*c^10 + 6*a^2*b^4*c^10 - 15*b^6*c^10 - a^4*c^12 - 2*a^2*b^2*c^12 + 6*b^4*c^12 - b^2*c^14 : :

X(62501) lies on these lines: {3, 53319}, {4, 15111}, {23, 38672}, {30, 511}, {107, 186}, {122, 2072}, {133, 403}, {389, 36179}, {476, 1294}, {1559, 18809}, {1597, 2453}, {1650, 18279}, {2070, 14703}, {3134, 52546}, {3146, 15112}, {3153, 34186}, {3184, 12091}, {3324, 33965}, {3357, 36162}, {4240, 7740}, {5667, 13619}, {5899, 14673}, {6716, 31379}, {7158, 10149}, {7464, 38677}, {7471, 51394}, {7575, 51532}, {9159, 10304}, {10110, 14894}, {10152, 10421}, {10257, 22104}, {10295, 52057}, {10745, 18403}, {11202, 37926}, {11251, 59370}, {11430, 36178}, {11657, 24930}, {11718, 51701}, {11749, 43893}, {12052, 58530}, {13598, 36160}, {13851, 34150}, {14731, 34549}, {14934, 51393}, {15329, 23097}, {15646, 38605}, {17511, 50435}, {18319, 37938}, {18859, 38580}, {18870, 23325}, {20957, 22337}, {21663, 36164}, {22115, 36193}, {23239, 37941}, {31378, 59648}, {34152, 38609}, {36192, 37480}, {37948, 38700}, {44234, 61569}, {44911, 58431}, {44967, 44985}, {46031, 61592}, {46585, 58261}, {47096, 47324}, {47146, 55319}, {47207, 50401}, {47347, 51403}, {51425, 55308}, {57301, 57306}, {57305, 57329}, {57471, 57472}, {58511, 58551}, {59823, 59824}


X(62502) = {X(107),X(477)}-INFINITY BISECTOR

Barycentrics    (b^2 - c^2)*(-a^12 + 4*a^10*b^2 - 6*a^8*b^4 + 4*a^6*b^6 - a^4*b^8 + 4*a^10*c^2 - 5*a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 6*a^4*b^6*c^2 + 3*a^2*b^8*c^2 + b^10*c^2 - 6*a^8*c^4 + 3*a^6*b^2*c^4 + 10*a^4*b^4*c^4 - 3*a^2*b^6*c^4 - 4*b^8*c^4 + 4*a^6*c^6 - 6*a^4*b^2*c^6 - 3*a^2*b^4*c^6 + 6*b^6*c^6 - a^4*c^8 + 3*a^2*b^2*c^8 - 4*b^4*c^8 + b^2*c^10) : :

X(62502) lies on these lines: {3, 53320}, {30, 511}, {107, 476}, {122, 3258}, {133, 25641}, {382, 14380}, {477, 1294}, {550, 57128}, {647, 52945}, {852, 47004}, {2453, 56961}, {2485, 47322}, {3324, 33964}, {5667, 57120}, {6716, 22104}, {7158, 33965}, {7471, 53757}, {9158, 47263}, {10152, 44967}, {10714, 34312}, {10745, 20957}, {12052, 58524}, {14220, 20127}, {14731, 34186}, {14809, 18039}, {14989, 44985}, {15112, 18808}, {16303, 62176}, {18403, 40494}, {23239, 38700}, {31379, 34842}, {34193, 34549}, {35241, 53235}, {38577, 38580}, {38581, 38591}, {38605, 38609}, {38610, 38621}, {38672, 38677}, {38678, 38686}, {38701, 38714}, {46632, 53716}, {47221, 47324}, {53723, 53728}, {57135, 62345}, {57301, 57305}, {57306, 57329}, {59824, 59825}

X(62502) = {X(3),X(53320)}-harmonic conjugate of X(58263)


X(62503) = {X(108),X(112)}-INFINITY BISECTOR

Barycentrics    a*(a^10*b - a^8*b^3 - 2*a^6*b^5 + 2*a^4*b^7 + a^2*b^9 - b^11 + a^10*c - 2*a^9*b*c + a^7*b^3*c + a^6*b^4*c + a^5*b^5*c - 5*a^4*b^6*c + 3*a^3*b^7*c + 2*a^2*b^8*c - 3*a*b^9*c + b^10*c + a^6*b^3*c^2 + a^4*b^5*c^2 - 5*a^2*b^7*c^2 + 3*b^9*c^2 - a^8*c^3 + a^7*b*c^3 + a^6*b^2*c^3 - 2*a^5*b^3*c^3 + 2*a^4*b^4*c^3 - 3*a^3*b^5*c^3 + a^2*b^6*c^3 + 4*a*b^7*c^3 - 3*b^8*c^3 + a^6*b*c^4 + 2*a^4*b^3*c^4 + a^2*b^5*c^4 - 4*b^7*c^4 - 2*a^6*c^5 + a^5*b*c^5 + a^4*b^2*c^5 - 3*a^3*b^3*c^5 + a^2*b^4*c^5 - 2*a*b^5*c^5 + 4*b^6*c^5 - 5*a^4*b*c^6 + a^2*b^3*c^6 + 4*b^5*c^6 + 2*a^4*c^7 + 3*a^3*b*c^7 - 5*a^2*b^2*c^7 + 4*a*b^3*c^7 - 4*b^4*c^7 + 2*a^2*b*c^8 - 3*b^3*c^8 + a^2*c^9 - 3*a*b*c^9 + 3*b^2*c^9 + b*c^10 - c^11) : :

X(6249) lies on these lines: {3, 53323}, {30, 511}, {92, 12384}, {108, 1214}, {112, 1295}, {123, 132}, {127, 25640}, {1359, 6020}, {2941, 13221}, {3318, 3320}, {6717, 34841}, {10702, 13099}, {10731, 44988}, {10735, 44986}, {10746, 12918}, {10749, 33566}, {11719, 12265}, {12784, 50917}, {13115, 38578}, {13219, 34550}, {13310, 38592}, {38506, 38519}, {38510, 38517}, {38564, 38571}, {38606, 38624}, {38608, 38622}, {38673, 38689}, {38676, 38687}, {38696, 38717}, {38699, 38715}, {49154, 49207}, {57302, 57332}, {57304, 57330}, {58049, 58063}, {58050, 58064}, {58425, 58430}, {58525, 58529}, {61584, 61591}


X(62504) = {X(108),X(476)}-INFINITY BISECTOR

Barycentrics    a^12*b - a^11*b^2 - 4*a^10*b^3 + 4*a^9*b^4 + 6*a^8*b^5 - 6*a^7*b^6 - 4*a^6*b^7 + 4*a^5*b^8 + a^4*b^9 - a^3*b^10 + a^12*c + 2*a^10*b^2*c - 9*a^8*b^4*c + 6*a^6*b^6*c + a^4*b^8*c - b^12*c - a^11*c^2 + 2*a^10*b*c^2 - 4*a^9*b^2*c^2 + 4*a^8*b^3*c^2 + 5*a^7*b^4*c^2 - 10*a^6*b^5*c^2 + 4*a^5*b^6*c^2 + a^4*b^7*c^2 - 2*a^3*b^8*c^2 + 2*a^2*b^9*c^2 - 2*a*b^10*c^2 + b^11*c^2 - 4*a^10*c^3 + 4*a^8*b^2*c^3 + 8*a^6*b^4*c^3 - 11*a^4*b^6*c^3 - 2*a^2*b^8*c^3 + 5*b^10*c^3 + 4*a^9*c^4 - 9*a^8*b*c^4 + 5*a^7*b^2*c^4 + 8*a^6*b^3*c^4 - 16*a^5*b^4*c^4 + 8*a^4*b^5*c^4 + 3*a^3*b^6*c^4 - 6*a^2*b^7*c^4 + 8*a*b^8*c^4 - 5*b^9*c^4 + 6*a^8*c^5 - 10*a^6*b^2*c^5 + 8*a^4*b^4*c^5 + 6*a^2*b^6*c^5 - 10*b^8*c^5 - 6*a^7*c^6 + 6*a^6*b*c^6 + 4*a^5*b^2*c^6 - 11*a^4*b^3*c^6 + 3*a^3*b^4*c^6 + 6*a^2*b^5*c^6 - 12*a*b^6*c^6 + 10*b^7*c^6 - 4*a^6*c^7 + a^4*b^2*c^7 - 6*a^2*b^4*c^7 + 10*b^6*c^7 + 4*a^5*c^8 + a^4*b*c^8 - 2*a^3*b^2*c^8 - 2*a^2*b^3*c^8 + 8*a*b^4*c^8 - 10*b^5*c^8 + a^4*c^9 + 2*a^2*b^2*c^9 - 5*b^4*c^9 - a^3*c^10 - 2*a*b^2*c^10 + 5*b^3*c^10 + b^2*c^11 - b*c^12 : :

X(62504) lies on these lines: {30, 511}, {108, 477}, {123, 25641}, {476, 1295}, {1012, 47270}, {1359, 33965}, {1709, 47273}, {3258, 25640}, {3318, 33964}, {6717, 31379}, {6925, 38514}, {10731, 14989}, {14731, 34550}, {20957, 33566}, {22104, 44906}, {34188, 34193}, {38578, 38581}, {38580, 38592}, {38606, 38610}, {38609, 38622}, {38673, 38678}, {38677, 38687}, {38696, 38701}, {38700, 38715}, {44967, 44986}, {54064, 54095}, {57302, 57306}, {57305, 57330}, {59820, 59823}

barycentric product X(i)*X(j) for these {i,j}: {3201, 53556}, {11607, 22833}


X(62505) = {X(108),X(477)}-INFINITY BISECTOR

Barycentrics    (b - c)*(-a^10 + a^9*b + 3*a^8*b^2 - 3*a^7*b^3 - 3*a^6*b^4 + 3*a^5*b^5 + a^4*b^6 - a^3*b^7 + a^9*c + 2*a^8*b*c - 3*a^7*b^2*c - a^6*b^3*c + 3*a^5*b^4*c - 3*a^4*b^5*c - a^3*b^6*c + a^2*b^7*c + b^9*c + 3*a^8*c^2 - 3*a^7*b*c^2 - a^6*b^2*c^2 + a^5*b^3*c^2 - 2*a^2*b^6*c^2 + 2*a*b^7*c^2 - 3*a^7*c^3 - a^6*b*c^3 + a^5*b^2*c^3 + 6*a^4*b^3*c^3 - a^2*b^5*c^3 + 2*a*b^6*c^3 - 4*b^7*c^3 - 3*a^6*c^4 + 3*a^5*b*c^4 + 4*a^2*b^4*c^4 - 4*a*b^5*c^4 + 3*a^5*c^5 - 3*a^4*b*c^5 - a^2*b^3*c^5 - 4*a*b^4*c^5 + 6*b^5*c^5 + a^4*c^6 - a^3*b*c^6 - 2*a^2*b^2*c^6 + 2*a*b^3*c^6 - a^3*c^7 + a^2*b*c^7 + 2*a*b^2*c^7 - 4*b^3*c^7 + b*c^9) : :

X(62505) lies on these lines: {30, 511}, {108, 476}, {123, 3258}, {477, 1295}, {1359, 33964}, {3318, 33965}, {6129, 11809}, {6717, 22104}, {10715, 34312}, {10731, 44967}, {10746, 20957}, {12052, 58525}, {14731, 34188}, {14989, 44986}, {23224, 37976}, {25640, 25641}, {34193, 34550}, {38578, 38580}, {38581, 38592}, {38606, 38609}, {38610, 38622}, {38673, 38677}, {38678, 38687}, {38696, 38700}, {38701, 38715}, {44238, 57095}, {57302, 57305}, {57306, 57330}, {59820, 59825}


X(62506) = {X(111),X(112)}-INFINITY BISECTOR

Barycentrics    a^2*(b^2 - c^2)*(a^8 - 2*a^4*b^4 + b^8 - a^4*b^2*c^2 + 6*a^2*b^4*c^2 - 5*b^6*c^2 - 2*a^4*c^4 + 6*a^2*b^2*c^4 - 5*b^2*c^6 + c^8) : :

X(62506) lies on these lines: {3, 2492}, {4, 35522}, {5, 44813}, {30, 511}, {111, 1297}, {112, 1296}, {126, 132}, {127, 5512}, {1350, 3569}, {3048, 58064}, {3320, 6019}, {3325, 6020}, {5085, 14398}, {5480, 24284}, {6132, 46609}, {6719, 34841}, {6720, 40556}, {8430, 18860}, {8552, 33752}, {9126, 11622}, {9156, 9157}, {9178, 61776}, {9869, 58047}, {10704, 13099}, {10734, 44988}, {10735, 44987}, {10748, 12918}, {10749, 22338}, {11258, 13115}, {11568, 13238}, {11569, 13249}, {11615, 11616}, {11721, 12265}, {12253, 14654}, {12384, 14360}, {12624, 13994}, {12784, 50924}, {13310, 38593}, {14650, 38624}, {14688, 28343}, {14689, 38805}, {15566, 40080}, {18310, 44203}, {19901, 51240}, {23350, 35911}, {38509, 38519}, {38510, 38518}, {38524, 38529}, {38608, 38623}, {38675, 38689}, {38676, 38688}, {38698, 38717}, {38699, 38716}, {38796, 57332}, {38800, 48681}, {39232, 53097}, {40340, 61591}, {41184, 41187}, {41186, 41188}, {45336, 54169}, {51212, 53331}, {52584, 59843}, {57304, 57331}, {58049, 58059}, {58427, 58430}, {58527, 58529}

X(62506) = Thomson-isogonal conjugate of X(53186)
X(62506) = crossdifference of every pair of points on line {6, 35282}
X(62506) = barycentric product X(22882)*X(47012)
X(62506) = barycentric quotient X(22889)/X(6283)
X(62506) = {X(3),X(2492)}-harmonic conjugate of X(44820)


X(62507) = {X(111),X(476)}-INFINITY BISECTOR

Barycentrics    (b^2 - c^2)*(7*a^8 - 12*a^6*b^2 + 4*a^4*b^4 + b^8 - 12*a^6*c^2 + 19*a^4*b^2*c^2 - 5*a^2*b^4*c^2 - 6*b^6*c^2 + 4*a^4*c^4 - 5*a^2*b^2*c^4 + 10*b^4*c^4 - 6*b^2*c^6 + c^8) : :

X(62507) lies on these lines: {2, 39492}, {3, 8371}, {4, 9168}, {20, 16220}, {23, 5926}, {30, 511}, {111, 477}, {126, 25641}, {376, 5466}, {381, 1649}, {382, 8151}, {399, 30219}, {468, 39533}, {476, 1296}, {550, 10279}, {669, 37924}, {858, 39511}, {1513, 47323}, {1551, 10717}, {2453, 57594}, {2501, 10295}, {3258, 5512}, {3325, 33965}, {3534, 8029}, {3543, 44010}, {3830, 11123}, {3845, 10190}, {6019, 33964}, {6055, 18007}, {6563, 10296}, {6719, 31379}, {7426, 19901}, {8703, 10278}, {9123, 19912}, {9126, 9189}, {9129, 14934}, {9156, 9158}, {10189, 12100}, {10734, 14989}, {11258, 38581}, {11568, 53938}, {12121, 13291}, {14360, 30474}, {14650, 38610}, {14731, 36174}, {19918, 47335}, {20957, 22338}, {21732, 59231}, {22104, 40556}, {25338, 44451}, {31861, 46609}, {33532, 44823}, {34312, 36196}, {34752, 62039}, {36164, 53718}, {36180, 47327}, {37934, 41357}, {37984, 47217}, {38580, 38593}, {38609, 38623}, {38675, 38678}, {38677, 38688}, {38698, 38701}, {38700, 38716}, {38796, 57306}, {44822, 49671}, {44967, 44987}, {45681, 53275}, {46981, 53728}, {46987, 53736}, {46991, 47216}, {47190, 47332}, {57305, 57331}, {59819, 59823}

X(62507) = Thomson-isogonal conjugate of X(9184)
X(62507) = barycentric quotient X(36500)/X(10128)


X(62508) = {X(111),X(477)}-INFINITY BISECTOR

Barycentrics    2*a^8 - 3*a^6*b^2 + 5*a^4*b^4 - 3*a^2*b^6 - b^8 - 3*a^6*c^2 - 4*a^4*b^2*c^2 + 2*a^2*b^4*c^2 + 6*b^6*c^2 + 5*a^4*c^4 + 2*a^2*b^2*c^4 - 10*b^4*c^4 - 3*a^2*c^6 + 6*b^2*c^6 - c^8 : :

X(62508) lies on these lines: {2, 2453}, {3, 53328}, {4, 14214}, {23, 7669}, {30, 511}, {111, 230}, {126, 3258}, {141, 36194}, {186, 62237}, {325, 1272}, {376, 40879}, {381, 18122}, {385, 20099}, {468, 8754}, {477, 1296}, {549, 44386}, {597, 1316}, {599, 36163}, {691, 8598}, {858, 10717}, {1641, 33928}, {1976, 6094}, {1990, 7473}, {1992, 36181}, {2452, 8584}, {3325, 33964}, {3534, 36207}, {3589, 34094}, {3830, 30233}, {4226, 9214}, {5099, 37350}, {5189, 7840}, {5480, 16279}, {5512, 25641}, {5642, 47148}, {6019, 33965}, {6054, 48539}, {6719, 22104}, {6795, 51737}, {7471, 9129}, {7472, 44397}, {7575, 34010}, {7799, 33799}, {8262, 47165}, {8370, 38526}, {8591, 57616}, {8859, 37909}, {9123, 58856}, {9142, 11632}, {9832, 11168}, {10256, 57306}, {10734, 44967}, {10748, 20957}, {11007, 20582}, {11162, 32113}, {11258, 38580}, {11568, 32229}, {11721, 47495}, {12052, 58527}, {13619, 38294}, {13745, 47270}, {14650, 18579}, {14662, 44266}, {14666, 44265}, {14989, 44987}, {14993, 15362}, {14995, 24975}, {15112, 38323}, {15303, 51431}, {15560, 44214}, {15993, 47275}, {16303, 28662}, {16312, 44395}, {16315, 37904}, {16326, 47541}, {16334, 47556}, {16619, 51535}, {18487, 23967}, {20063, 44367}, {22165, 47283}, {23991, 39563}, {26613, 57539}, {27088, 47326}, {30716, 37765}, {31379, 40556}, {32225, 47146}, {32456, 40553}, {32459, 53736}, {34990, 47213}, {36177, 50983}, {36188, 40112}, {36196, 44398}, {37785, 44466}, {37786, 44462}, {37897, 47238}, {37907, 47243}, {38514, 50171}, {38581, 38593}, {38610, 38623}, {38675, 38677}, {38678, 38688}, {38698, 38700}, {38701, 38716}, {38796, 57305}, {39022, 53163}, {39023, 53162}, {41139, 47246}, {44569, 47348}, {46127, 57618}, {46632, 53718}, {46981, 47333}, {46982, 47310}, {46994, 47031}, {47154, 47311}, {47155, 47312}, {47241, 47316}, {47272, 49728}, {47273, 49723}, {47290, 51224}, {47349, 52232}, {49724, 50145}, {50772, 50924}, {53726, 53728}, {59819, 59825}

X(62508) = isogonal conjugate of X(9184)
X(62508) = crossdifference of every pair of points on line {6, 44814}
X(62508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {111, 476, 9179}, {468, 46980, 44401}, {476, 9158, 7426}, {858, 53136, 22110}, {1316, 50149, 597}, {4226, 9214, 45331}, {7426, 16092, 230}, {11537, 11549, 230}, {14995, 45662, 24975}, {14995, 53274, 45662}, {16315, 37904, 46998}, {16316, 47097, 46986}, {22110, 47245, 53136}, {34094, 50147, 3589}, {36194, 47285, 50146}, {36194, 50146, 141}, {46980, 46992, 468}, {46986, 47097, 44377}


X(62509) = {X(112),X(476)}-INFINITY BISECTOR

Barycentrics    2*a^12 - 3*a^10*b^2 + a^8*b^4 - 4*a^6*b^6 + 6*a^4*b^8 - a^2*b^10 - b^12 - 3*a^10*c^2 + 4*a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 6*a^4*b^6*c^2 - 2*a^2*b^8*c^2 + 4*b^10*c^2 + a^8*c^4 + 3*a^6*b^2*c^4 + 3*a^2*b^6*c^4 - 7*b^8*c^4 - 4*a^6*c^6 - 6*a^4*b^2*c^6 + 3*a^2*b^4*c^6 + 8*b^6*c^6 + 6*a^4*c^8 - 2*a^2*b^2*c^8 - 7*b^4*c^8 - a^2*c^10 + 4*b^2*c^10 - c^12 : :

X(62509) lies on these lines: {3, 18121}, {4, 2453}, {20, 2407}, {23, 12384}, {30, 511}, {50, 112}, {98, 47242}, {107, 47152}, {125, 47146}, {127, 10297}, {132, 468}, {186, 3447}, {230, 36166}, {250, 44704}, {325, 36173}, {376, 45331}, {476, 858}, {597, 16279}, {691, 53931}, {842, 1513}, {935, 53871}, {1316, 5480}, {1350, 36163}, {1495, 47148}, {1514, 46045}, {1529, 42426}, {1551, 22110}, {1650, 53319}, {2072, 57305}, {2452, 8550}, {3154, 11657}, {3320, 33965}, {3580, 17511}, {3589, 36177}, {5159, 22104}, {5894, 36162}, {6020, 33964}, {6720, 31379}, {6795, 44882}, {7422, 52472}, {7426, 34312}, {7464, 12253}, {7471, 11064}, {7574, 13115}, {7575, 34217}, {7576, 15111}, {7745, 38525}, {9157, 9158}, {9753, 37930}, {10011, 16760}, {10110, 14896}, {10192, 37926}, {10296, 13219}, {10735, 14989}, {10749, 18323}, {11641, 37924}, {11745, 14894}, {11749, 14676}, {11799, 12918}, {12052, 58529}, {12413, 37928}, {12784, 47321}, {13200, 56369}, {13310, 38581}, {13442, 47270}, {13568, 36179}, {13619, 41204}, {14480, 46818}, {14560, 37477}, {14649, 44265}, {14687, 18122}, {14689, 47308}, {14900, 47172}, {14934, 53760}, {15122, 38609}, {15448, 16319}, {15562, 37967}, {15577, 37921}, {15980, 38953}, {16188, 56370}, {16224, 16227}, {16303, 28343}, {16308, 38652}, {16312, 47474}, {18319, 18572}, {18325, 48658}, {18571, 61573}, {18870, 23332}, {19160, 47336}, {19164, 37900}, {22463, 38608}, {23292, 36178}, {31510, 47166}, {32217, 32738}, {32269, 47348}, {32274, 47165}, {32459, 46987}, {33851, 51389}, {34369, 53505}, {35278, 51228}, {35297, 38704}, {36164, 53719}, {36170, 44377}, {36176, 37813}, {36181, 51212}, {36194, 54169}, {36990, 47284}, {37182, 59227}, {37459, 38613}, {37911, 58430}, {37931, 47158}, {38227, 47243}, {38514, 48890}, {38676, 38678}, {38677, 38689}, {38699, 38701}, {38700, 38717}, {40121, 47342}, {44214, 57304}, {44967, 44988}, {46631, 54075}, {46869, 61680}, {47354, 50146}, {48981, 53419}, {50147, 50983}, {50149, 51737}, {59821, 59823}

X(62509) = isogonal conjugate of X(53188)
X(62509) = Thomson-isogonal conjugate of X(53187)
X(62509) = barycentric product X(i)*X(j) for these {i,j}: {5653, 37113}, {14257, 42681}
X(62509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 14731, 47324}, {842, 1513, 16320}, {1529, 47177, 42426}, {3154, 11657, 47296}, {3258, 47327, 468}, {16319, 47351, 15448}, {36170, 47570, 44377}, {46045, 47347, 1514}


X(62510) = {X(112),X(477)}-INFINITY BISECTOR

Barycentrics    (b^2 - c^2)*(3*a^8 - 4*a^6*b^2 + b^8 - 4*a^6*c^2 + 7*a^4*b^2*c^2 - a^2*b^4*c^2 - 2*b^6*c^2 - a^2*b^2*c^4 + 2*b^4*c^4 - 2*b^2*c^6 + c^8) : :

X(62510) lies on these lines: {2, 18556}, {3, 45681}, {4, 39491}, {30, 511}, {112, 476}, {127, 3258}, {132, 25641}, {186, 39228}, {297, 47324}, {376, 5664}, {381, 14566}, {382, 5489}, {403, 39510}, {441, 47004}, {477, 1297}, {647, 58351}, {669, 11641}, {691, 53692}, {842, 53931}, {1316, 45327}, {2070, 39201}, {2394, 3543}, {2453, 40856}, {2697, 53871}, {2966, 47290}, {3320, 33964}, {3830, 42733}, {5926, 19165}, {6020, 33965}, {6130, 44204}, {6563, 13219}, {6720, 14341}, {7426, 9209}, {7471, 53760}, {7737, 62384}, {9158, 13114}, {9179, 50381}, {9409, 24978}, {10297, 54260}, {10718, 34312}, {10735, 44967}, {10749, 20957}, {10989, 30474}, {11563, 59745}, {11799, 47194}, {12052, 58528}, {12384, 34193}, {13115, 38581}, {13310, 38580}, {14401, 46869}, {14689, 46997}, {14830, 42738}, {14989, 44988}, {16230, 44202}, {18310, 44649}, {18317, 35911}, {18859, 22089}, {18870, 38240}, {23582, 30716}, {31379, 34841}, {34360, 47284}, {36181, 53374}, {37045, 47270}, {38401, 58263}, {38608, 38609}, {38610, 38624}, {38676, 38677}, {38678, 38689}, {38699, 38700}, {38701, 38717}, {41079, 47323}, {44216, 47219}, {46632, 53719}, {46637, 47085}, {46981, 61446}, {47225, 52584}, {47293, 48954}, {47327, 52144}, {48985, 60508}, {53727, 53728}, {53737, 53738}, {57304, 57305}, {57306, 57332}, {59231, 62307}, {59821, 59825}

X(62510) = isogonal conjugate of X(53187)
X(62510) = Thomson-isogonal conjugate of X(53188)
X(62510) = crossdifference of every pair of points on line {6, 16186}





leftri  Centers related to PU(202)-PU(212): X(62511) - X(62529)  rightri

Centers X(62511)-X(62529) were contributed by César Eliud Lozada, April 7, 2024.

underbar

X(62511) = CROSSSUM OF PU(202)

Barycentrics    a^2*(a^12-4*(b^2+c^2)*a^10+(5*b^4+13*b^2*c^2+5*c^4)*a^8-(b^2+c^2)*(2*b^4+9*b^2*c^2+2*c^4)*a^6+(b^8+c^8-b^2*c^2*(3*b^4-14*b^2*c^2+3*c^4))*a^4-(b^4-c^4)*(b^2-c^2)*(b^2-2*c^2)*(2*b^2-c^2)*a^2+(b^8-4*b^4*c^4+c^8)*(b^2-c^2)^2) : :

X(62511) lies on these lines: {6, 110}, {1205, 38653}, {2931, 19189}, {3448, 56290}, {12383, 41204}, {15920, 32251}, {17702, 33971}, {21649, 46866}


X(62512) = BARYCENTRIC PRODUCT OF PU(202)

Barycentrics    (a^6-b^2*a^4+2*(b^2-c^2)*c^2*a^2+(b^2-c^2)^2*c^2)*(a^6-c^2*a^4-2*(b^2-c^2)*b^2*a^2+(b^2-c^2)^2*b^2) : :

X(62512) lies on these lines: {25, 115}, {111, 6037}, {112, 436}, {4240, 60517}, {6103, 37070}, {47230, 62519}

X(62512) = X(62513)-reciprocal conjugate of-X(75)
X(62512) = barycentric product X(1)*X(62513)
X(62512) = trilinear product X(6)*X(62513)


X(62513) = TRILINEAR PRODUCT OF PU(202)

Barycentrics    (a^6-b^2*a^4+2*(b^2-c^2)*c^2*a^2+(b^2-c^2)^2*c^2)*(a^6-c^2*a^4-2*(b^2-c^2)*b^2*a^2+(b^2-c^2)^2*b^2)/a : :

X(62513) lies on these lines: {19, 1109}, {162, 9252}

X(62513) = X(62512)-reciprocal conjugate of-X(1)
X(62513) = barycentric product X(75)*X(62512)
X(62513) = trilinear product X(2)*X(62512)


X(62514) = CEVAPOINT OF PU(207)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8+3*(b^2-3*c^2)*a^6-(5*b^2-8*c^2)*(b^2+2*c^2)*a^4-(3*b^6+9*c^6-2*b^2*c^2*(5*b^2-c^2))*a^2+(b^4-c^4)*(b^2-c^2)*(4*b^2+c^2))*(a^8-3*(3*b^2-c^2)*a^6+(8*b^2-5*c^2)*(2*b^2+c^2)*a^4-(9*b^6+3*c^6+2*b^2*c^2*(b^2-5*c^2))*a^2+(b^4-c^4)*(b^2-c^2)*(b^2+4*c^2)) : :

X(62514) lies on these lines: {4, 62515}, {524, 10295}, {648, 51541}, {40826, 59762}, {48539, 56369}

X(62514) = polar conjugate of X(50187)
X(62514) = isogonal conjugate of X(62516)
X(62514) = X(1249)-Dao conjugate of-X(50187)
X(62514) = X(48)-isoconjugate of-X(50187)
X(62514) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 50187), (8791, 46338), (62517, 62515)
X(62514) = trilinear pole of the line {690, 5094} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62514) = pole of the the tripolar of X(50187) with respect to the polar circle
X(62514) = trilinear quotient X(92)/X(50187)


X(62515) = CROSSPOINT OF PU(207)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*((4*a^2-2*b^2-2*c^2)*S+3*(-a^2+b^2+c^2)*(b^2-c^2))*((4*a^2-2*b^2-2*c^2)*S-3*(-a^2+b^2+c^2)*(b^2-c^2))*(4*a^8-3*(b^2+c^2)*a^6-5*(b^2-c^2)^2*a^4+(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^2+(b^2-c^2)^2*(b^2+3*b*c+c^2)*(b^2-3*b*c+c^2)) : :

X(62515) lies on these lines: {4, 62514}, {2393, 32250}

X(62515) = X(62517)-reciprocal conjugate of-X(62514)


X(62516) = CROSSSUM OF PU(207)

Barycentrics    a^2*(-a^2+b^2+c^2)*(4*a^8-3*(b^2+c^2)*a^6-5*(b^2-c^2)^2*a^4+(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^2+(b^2-c^2)^2*(b^2+3*b*c+c^2)*(b^2-3*b*c+c^2)) : :
X(62516) = 5*X(37760)-X(52191)

X(62516) lies on these lines: {2, 32233}, {3, 15738}, {5, 5642}, {6, 110}, {23, 2781}, {24, 14094}, {25, 9970}, {67, 7493}, {125, 13394}, {154, 16010}, {343, 32275}, {468, 542}, {511, 40291}, {575, 12099}, {647, 9517}, {1352, 32227}, {1495, 5663}, {1498, 15054}, {1511, 5651}, {1658, 51522}, {2777, 47340}, {2782, 3233}, {3292, 14984}, {3448, 35260}, {3575, 38791}, {4232, 11061}, {5609, 6102}, {5972, 35283}, {6146, 36253}, {6639, 15027}, {6676, 61543}, {6698, 7495}, {7426, 8262}, {7503, 15020}, {7530, 15132}, {7542, 20397}, {8542, 41612}, {8780, 32254}, {9306, 12584}, {10113, 61743}, {10297, 11064}, {10301, 32271}, {10510, 37980}, {11284, 15462}, {11579, 26864}, {12041, 35268}, {12824, 14002}, {13857, 18572}, {15021, 38444}, {15063, 37458}, {15066, 33851}, {15131, 31099}, {15303, 20192}, {16003, 34351}, {16510, 19136}, {20190, 45311}, {26255, 34319}, {32269, 47558}, {37760, 52191}, {41424, 51941}, {44210, 49116}, {44321, 55679}, {53725, 58416}

X(62516) = midpoint of X(1495) and X(32235)
X(62516) = isogonal conjugate of X(62514)
X(62516) = crossdifference of every pair of points on the line X(690)X(5094)
X(62516) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (46338, 46105), (50187, 264)
X(62516) = perspector of the circumconic through X(691) and X(43697)
X(62516) = pole of the line {351, 19153} with respect to the circumcircle
X(62516) = pole of the line {2781, 58267} with respect to the Moses circles radical circle
X(62516) = pole of the line {858, 58267} with respect to the Kiepert circumhyperbola
X(62516) = pole of the line {524, 10295} with respect to the Stammler hyperbola
X(62516) = pole of the line {3266, 62514} with respect to the Steiner-Wallace hyperbola
X(62516) = pole of the line {1511, 3292} with respect to the Thomson-Gibert-Moses hyperbola
X(62516) = barycentric product X(i)*X(j) for these {i, j}: {3, 50187}, {22151, 46338}
X(62516) = trilinear product X(48)*X(50187)
X(62516) = trilinear quotient X(50187)/X(92)
X(62516) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (110, 1995, 6593), (2930, 38851, 6593), (5609, 12106, 25711), (14002, 57271, 12824)


X(62517) = BARYCENTRIC PRODUCT OF PU(207)

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*((4*a^2-2*b^2-2*c^2)*S+3*(-a^2+b^2+c^2)*(b^2-c^2))*((4*a^2-2*b^2-2*c^2)*S-3*(-a^2+b^2+c^2)*(b^2-c^2)) : :

X(62517) lies on these lines: {25, 115}, {232, 47334}, {403, 3018}, {1560, 43620}, {6103, 37984}, {14273, 58757}


X(62518) = IDEAL POINT OF PU(210)

Barycentrics    (b^2-c^2)*((b^2+c^2)*a^10-4*b^2*c^2*a^8-(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)*a^6+7*(b^6-c^6)*(b^2-c^2)*a^4-(b^4-c^4)*(b^2-c^2)*(4*b^4-3*b^2*c^2+4*c^4)*a^2+(b^6-c^6)*(b^2-c^2)^3) : :

X(62518) lies on these lines: {30, 511}, {115, 51513}, {39481, 39854}, {39512, 39845}, {39832, 58756}

X(62518) = crossdifference of every pair of points on the line X(6)X(62523)
X(62518) = infinite point of the tripolar of X(62519)
X(62518) = perspector of the circumconic through X(2) and X(62519)


X(62519) = TRILINEAR POLE OF LINE P(210)U(210)

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^2*a^6-(2*b^4-c^4)*a^4+(b^2-c^2)*(b^4+b^2*c^2+2*c^4)*a^2+(b^2-c^2)^2*c^4)*(c^2*a^6+(b^4-2*c^4)*a^4-(b^2-c^2)*(2*b^4+b^2*c^2+c^4)*a^2+(b^2-c^2)^2*b^4) : :

X(62519) lies on these lines: {53, 523}, {324, 850}, {393, 55219}, {476, 53708}, {685, 58070}, {892, 53205}, {1987, 15328}, {2395, 17994}, {2501, 14569}, {6747, 12077}, {14593, 55253}, {18121, 51960}, {47230, 62512}, {62520, 62521}

X(62519) = polar conjugate of the isotomic conjugate of X(60036)
X(62519) = isogonal conjugate of X(62523)
X(62519) = cevapoint of X(17994) and X(55219)
X(62519) = X(i)-Dao conjugate of X(j) for these (i, j): (136, 401), (5139, 1971)
X(62519) = X(i)-isoconjugate of X(j) for these {i, j}: {401, 4575}, {1955, 4558}, {1971, 4592}
X(62519) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1956, 4592), (1972, 4563), (1987, 4558), (2489, 1971), (2501, 401), (8754, 6130), (14618, 44137), (17994, 52128), (51513, 32428), (53149, 32545), (53175, 1092), (53205, 4590), (53708, 249), (58757, 41204), (60036, 69)
X(62519) = trilinear pole of the line {115, 51513} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62519) = pole of the line {401, 1971} with respect to the polar circle
X(62519) = barycentric product X(i)*X(j) for these {i, j}: {4, 60036}, {115, 53205}, {338, 53708}, {1298, 23290}, {1956, 24006}, {1972, 2501}, {1987, 14618}, {41208, 41221}
X(62519) = trilinear product X(i)*X(j) for these {i, j}: {19, 60036}, {1109, 53708}, {1956, 2501}, {1987, 24006}, {2643, 53205}, {6521, 53175}
X(62519) = trilinear quotient X(i)/X(j) for these (i, j): (1956, 4558), (1972, 4592), (1987, 4575), (2501, 1955), (24006, 401), (51513, 2313), (53175, 4100), (53205, 24041), (53708, 1101), (60036, 63)


X(62520) = CEVAPOINT OF PU(210)

Barycentrics    (b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^2*a^6-(2*b^4+c^4)*a^4+(b^2+2*c^2)*(b^2-c^2)^2*a^2-(b^2-c^2)^2*c^4)*(c^2*a^6-(b^4+2*c^4)*a^4+(2*b^2+c^2)*(b^2-c^2)^2*a^2-(b^2-c^2)^2*b^4) : :

X(62520) lies on these lines: {2501, 59745}, {9290, 60338}, {20031, 61204}, {62519, 62521}

X(62520) = isogonal conjugate of X(62522)
X(62520) = X(i)-Dao conjugate of X(j) for these (i, j): (136, 56290), (5139, 1970)
X(62520) = X(i)-isoconjugate of X(j) for these {i, j}: {1954, 4558}, {1970, 4592}, {4575, 56290}
X(62520) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2489, 1970), (2501, 56290), (2970, 42331), (9251, 4592), (9290, 4563), (15422, 21449), (58757, 436), (62524, 62521)
X(62520) = pole of the line {1970, 56290} with respect to the polar circle
X(62520) = barycentric product X(i)*X(j) for these {i, j}: {1303, 2970}, {2501, 9290}, {9251, 24006}, {57855, 58757}
X(62520) = trilinear product X(2501)*X(9251)
X(62520) = trilinear quotient X(i)/X(j) for these (i, j): (2501, 1954), (9251, 4558), (9290, 4592), (24006, 56290)


X(62521) = CROSSPOINT OF PU(210)

Barycentrics    1/a^2*(b^2-c^2)*(a^8-2*(b^2+c^2)*a^6+(b^4+3*b^2*c^2+c^4)*a^4-(b^2-c^2)^2*b^2*c^2)*(a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2 : :

X(62521) lies on these lines: {403, 523}, {879, 57677}, {1093, 51513}, {41365, 58756}, {62519, 62520}

X(62521) = X(42401)-Ceva conjugate of-X(393)
X(62521) = X(i)-Dao conjugate of X(j) for these (i, j): (136, 57686), (6523, 1303)
X(62521) = X(i)-isoconjugate of X(j) for these {i, j}: {255, 1303}, {4575, 57686}
X(62521) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (393, 1303), (436, 4558), (2501, 57686), (9252, 4592), (9291, 4563), (14618, 57855), (27359, 23181), (42331, 3926), (42401, 57759), (62524, 62520)
X(62521) = pole of the line {3, 57686} with respect to the polar circle
X(62521) = barycentric product X(i)*X(j) for these {i, j}: {130, 42401}, {393, 42331}, {436, 14618}, {2501, 9291}, {9252, 24006}, {21449, 23290}
X(62521) = trilinear product X(i)*X(j) for these {i, j}: {436, 24006}, {1096, 42331}, {2501, 9252}
X(62521) = trilinear quotient X(i)/X(j) for these (i, j): (158, 1303), (436, 4575), (9252, 4558), (9291, 4592), (24006, 57686), (42331, 326)


X(62522) = CROSSSUM OF PU(210)

Barycentrics    a^2*(a^2-b^2)*(a^2-c^2)*(-a^2+b^2+c^2)*(a^8-2*(b^2+c^2)*a^6+(b^4+3*b^2*c^2+c^4)*a^4-(b^2-c^2)^2*b^2*c^2) : :

X(62522) lies on these lines: {99, 62523}, {4558, 8552}, {14570, 18831}

X(62522) = isogonal conjugate of X(62520)
X(62522) = X(2501)-isoconjugate of-X(9251)
X(62522) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1954, 24006), (1970, 2501), (4558, 9290), (4575, 9251), (47390, 1303), (56290, 14618)
X(62522) = pole of the line {6641, 9723} with respect to the Kiepert parabola
X(62522) = pole of the line {2501, 59745} with respect to the Stammler hyperbola
X(62522) = pole of the line {14618, 62520} with respect to the Steiner-Wallace hyperbola
X(62522) = barycentric product X(i)*X(j) for these {i, j}: {1954, 4592}, {1970, 4563}, {4558, 56290}, {42331, 47390}
X(62522) = trilinear product X(i)*X(j) for these {i, j}: {1954, 4558}, {1970, 4592}, {4575, 56290}
X(62522) = trilinear quotient X(i)/X(j) for these (i, j): (1954, 2501), (4558, 9251), (4592, 9290), (56290, 24006)


X(62523) = CROSSDIFFERENCE OF PU(210)

Barycentrics    a^2*(a^2-b^2)*(a^2-c^2)*(-a^2+b^2+c^2)*(a^8-2*(b^2+c^2)*a^6+(b^4+b^2*c^2+c^4)*a^4+(b^2-c^2)^2*b^2*c^2) : :

X(62523) lies on these lines: {97, 394}, {99, 62522}, {110, 351}, {2407, 47443}, {10411, 52613}, {17932, 53173}, {23357, 34211}, {36433, 57008}

X(62523) = isogonal conjugate of X(62519)
X(62523) = crossdifference of every pair of points on the line X(115)X(51513)
X(62523) = crosssum of X(17994) and X(55219)
X(62523) = X(i)-Dao conjugate of X(j) for these (i, j): (6, 60036), (38974, 2970), (39038, 24006), (39045, 2501), (39081, 14618), (52128, 12077)
X(62523) = X(i)-isoconjugate of X(j) for these {i, j}: {19, 60036}, {1109, 53708}, {1956, 2501}, {1987, 24006}, {2643, 53205}, {6521, 53175}
X(62523) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3, 60036), (249, 53205), (401, 14618), (1955, 24006), (1971, 2501), (4558, 1972), (4575, 1956), (6130, 2970), (15958, 1298), (23357, 53708), (23606, 53175), (32428, 23290), (32661, 1987), (52128, 16230), (58311, 58757)
X(62523) = pole of the line {3, 57009} with respect to the Kiepert parabola
X(62523) = pole of the line {53, 523} with respect to the Stammler hyperbola
X(62523) = pole of the line {14570, 47390} with respect to the Steiner circumellipse
X(62523) = pole of the line {324, 850} with respect to the Steiner-Wallace hyperbola
X(62523) = barycentric product X(i)*X(j) for these {i, j}: {401, 4558}, {1955, 4592}, {1971, 4563}, {17932, 52128}, {32661, 44137}
X(62523) = trilinear product X(i)*X(j) for these {i, j}: {401, 4575}, {1955, 4558}, {1971, 4592}
X(62523) = trilinear quotient X(i)/X(j) for these (i, j): (63, 60036), (401, 24006), (1101, 53708), (1955, 2501), (2313, 51513), (4100, 53175), (4558, 1956), (4575, 1987), (4592, 1972), (24041, 53205)


X(62524) = BARYCENTRIC PRODUCT OF PU(210)

Barycentrics    (b^2-c^2)^2*(a^2+b^2-c^2)^3*(a^2-b^2+c^2)^3/a^2 : :

X(62524) lies on these lines: {1093, 15352}, {2970, 41221}, {2974, 30450}, {6524, 18384}

X(62524) = X(i)-Dao conjugate of X(j) for these (i, j): (512, 23606), (523, 3964), (2489, 10607), (3005, 1092), (15259, 47390), (18314, 4176)
X(62524) = X(i)-isoconjugate of X(j) for these {i, j}: {249, 6507}, {326, 47390}, {1092, 24041}, {1101, 3964}, {1102, 23357}, {4100, 4590}, {4176, 23995}, {23606, 24037}, {47389, 52430}
X(62524) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (115, 3964), (338, 4176), (1084, 23606), (1093, 4590), (1109, 1102), (2052, 47389), (2207, 47390), (2643, 6507), (2970, 3926), (2971, 577), (3124, 1092), (5139, 10607), (6520, 24041), (6521, 24037), (6524, 249), (6529, 59152), (8029, 52613), (8754, 394), (15352, 31614), (22260, 32320), (23105, 4143), (23216, 36433), (36434, 250), (42068, 14585), (52439, 23357), (58757, 4558), (61339, 2972)
X(62524) = barycentric product X(i)*X(j) for these {i, j}: {115, 1093}, {338, 6524}, {339, 36434}, {393, 2970}, {1109, 6520}, {2052, 8754}, {2643, 6521}, {2971, 18027}, {6529, 23105}, {8029, 15352}, {8794, 41221}, {14618, 58757}, {15422, 23290}, {23962, 52439}
X(62524) = trilinear product X(i)*X(j) for these {i, j}: {115, 6520}, {158, 8754}, {1093, 2643}, {1096, 2970}, {1109, 6524}, {2971, 57806}, {3124, 6521}, {8029, 36126}, {20902, 36434}, {23994, 52439}, {24006, 58757}
X(62524) = trilinear quotient X(i)/X(j) for these (i, j): (115, 6507), (338, 1102), (1093, 24041), (1096, 47390), (1109, 3964), (2643, 1092), (2970, 326), (2971, 52430), (3124, 4100), (6520, 249), (6521, 4590), (6524, 1101), (8754, 255), (23994, 4176), (36126, 59152), (52439, 23995), (57806, 47389), (58757, 4575), (61339, 37754)


X(62525) = TRILINEAR POLE OF LINE P(211)U(211)

Barycentrics    (a^4+5*(b-2*c)*a^3-(13*b^2-11*b*c-10*c^2)*a^2+(11*b^3-10*c^3-b*c*(16*b-11*c))*a-(b-c)*(4*b^3+c^3-b*c*(7*b-6*c)))*(a^4-5*(2*b-c)*a^3+(10*b^2+11*b*c-13*c^2)*a^2-(10*b^3-11*c^3-b*c*(11*b-16*c))*a+(b-c)*(b^3+4*c^3+b*c*(6*b-7*c))) : :
X(62525) = X(27818)-2*X(40621)

X(62525) lies on these lines: {145, 3021}, {27818, 40621}, {53647, 56081}

X(62525) = reflection of X(27818) in X(40621)
X(62525) = antitomic conjugate of X(27818)
X(62525) = isogonal conjugate of X(62528)
X(62525) = cevapoint of X(6084) and X(40621)
X(62525) = X(35160)-cross conjugate of-X(673)
X(62525) = trilinear pole of the line {3667, 4859} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line


X(62526) = CROSSSUM OF PU(211)

Barycentrics    a^2*(5*a^4-13*(b+c)*a^3+(9*b^2+28*b*c+9*c^2)*a^2-(3*b+c)*(b+3*c)*(b+c)*a+2*b^4+2*c^4-2*b*c*(3*b^2-8*b*c+3*c^2)) : :

X(62526) lies on these lines: {6, 31}, {40151, 62527}

X(62526) = crosssum of X(2487) and X(40621)


X(62527) = CROSSDIFFERENCE OF PU(211)

Barycentrics    a^2*(4*a^4-11*(b+c)*a^3+(13*b^2+16*b*c+13*c^2)*a^2-(b+c)*(5*b^2+6*b*c+5*c^2)*a-b^4-c^4+10*b*c*(b^2-b*c+c^2)) : :

X(62527) lies on these lines: {6, 1201}, {672, 1477}, {39309, 53552}, {40151, 62526}

X(62527) = isogonal conjugate of X(62525)
X(62527) = crossdifference of every pair of points on the line X(3667)X(4859)
X(62527) = crosssum of X(6084) and X(40621)
X(62527) = X(8647)-Ceva conjugate of-X(672)
X(62527) = pole of the line {41629, 62525} with respect to the Stammler hyperbola


X(62528) = TRILINEAR PRODUCT OF PU(211)

Barycentrics    (a+b-c)*(a-b+c)*(a+b-3*c)*(a-3*b+c)/a : :

X(62528) lies on these lines: {75, 16078}, {85, 5226}, {1088, 4373}, {3680, 42311}, {4052, 10029}, {8056, 27829}, {19604, 57785}, {24392, 35160}

X(62528) = isotomic conjugate of X(3158)
X(62528) = polar conjugate of the isogonal conjugate of X(27832)
X(62528) = cevapoint of X(i) and X(j) for these {i, j}: {75, 40014}, {522, 21139}, {3680, 27819}, {4373, 27818}, {19604, 27832}
X(62528) = X(i)-cross conjugate of X(j) for these (i, j): (75, 85), (4373, 40014), (24386, 2), (26563, 57792)
X(62528) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 3158), (223, 3052), (1086, 4162), (1214, 4849), (1577, 4953), (3160, 1743), (3161, 4936), (4858, 44729), (6374, 44720), (6376, 3161), (9296, 30720), (10001, 57192), (17113, 1420), (24151, 55), (34021, 52352), (40593, 145), (40615, 4394), (40617, 8643), (40619, 4521), (40622, 4729), (40624, 4546)
X(62528) = X(i)-isoconjugate of X(j) for these {i, j}: {31, 3158}, {32, 3161}, {41, 1743}, {55, 3052}, {145, 2175}, {560, 44720}, {604, 4936}, {607, 20818}, {692, 4162}, {1253, 1420}, {1334, 33628}, {1397, 6555}, {1501, 44723}, {1576, 44729}, {1918, 52352}, {1919, 30720}, {1974, 44722}, {2194, 4849}, {2212, 4855}, {3063, 57192}, {3756, 6066}, {3939, 8643}, {3950, 57657}, {4521, 32739}, {4534, 23990}, {5435, 14827}, {9407, 44727}, {9447, 18743}, {14575, 44721}, {14601, 44728}
X(62528) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 3158), (7, 1743), (8, 4936), (57, 3052), (75, 3161), (76, 44720), (77, 20818), (85, 145), (226, 4849), (274, 52352), (279, 1420), (304, 44722), (312, 6555), (348, 4855), (349, 52353), (514, 4162), (561, 44723), (664, 57192), (668, 30720), (693, 4521), (1014, 33628), (1088, 5435), (1111, 4534), (1231, 52354), (1434, 16948), (1441, 3950), (1446, 4848), (1577, 44729), (1969, 44721), (3445, 41), (3669, 8643), (3676, 4394), (3680, 220), (4052, 210), (4077, 14321), (4373, 9), (4391, 4546), (4462, 4943), (4554, 43290), (4858, 4953), (5382, 6065), (6063, 18743), (6556, 728), (6557, 200), (7178, 4729), (8056, 55), (10029, 518), (16078, 8056), (16079, 38266), (16945, 32)
X(62528) = trilinear pole of the line {4462, 10029} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62528) = perspector of the inconic with center X(24386)
X(62528) = barycentric product X(i)*X(j) for these {i, j}: {7, 40014}, {75, 27818}, {76, 19604}, {85, 4373}, {264, 27832}, {561, 40151}, {1088, 6557}, {1502, 16945}, {2481, 10029}, {3445, 20567}, {3680, 57792}, {4052, 57785}, {4572, 58794}, {6063, 8056}, {6556, 23062}, {16078, 18743}, {24002, 53647}, {27829, 32023}, {27834, 52621}, {27836, 35174}
X(62528) = trilinear product X(i)*X(j) for these {i, j}: {2, 27818}, {7, 4373}, {57, 40014}, {75, 19604}, {76, 40151}, {85, 8056}, {92, 27832}, {145, 16078}, {279, 6557}, {479, 6556}, {561, 16945}, {655, 27836}, {673, 10029}, {1088, 3680}, {1293, 52621}, {1434, 4052}, {3261, 38828}, {3445, 6063}, {3676, 53647}, {4554, 58794}
X(62528) = trilinear quotient X(i)/X(j) for these (i, j): (7, 3052), (75, 3158), (76, 3161), (85, 1743), (305, 44722), (310, 52352), (312, 4936), (348, 20818), (349, 3950), (561, 44720), (693, 4162), (850, 44729), (1088, 1420), (1434, 33628), (1441, 4849), (1502, 44723), (1978, 30720), (3261, 4521), (3445, 2175), (3596, 6555)
X(62528) = (X(27818), X(40014))-harmonic conjugate of X(85)


X(62529) = BICENTRIC DIFFERENCE OF PU(212)

Barycentrics    a*(b-c)*(-a+b+c)*((b+c)*a^4+(b^2-6*b*c+c^2)*a^3-(b+c)*(3*b^2-7*b*c+3*c^2)*a^2+(b^2-c^2)^2*a-(b^2-c^2)*(b-c)*b*c) : :

X(62529) lies on these lines: {9, 884}, {657, 21039}, {8641, 15837}




leftri   Centers associated with unary operations: X(62530) - X(60550), X(62721)-X(62733), X(63216)-X(63224),   rightri

Contributed by Clark Kimberling and Peter Moses, April 2024.

A unary operation on homogeneous coordinates x : y : z (barycentric or trilinear) is a mapping that takes the point x:y:z to the point f(x:y:z} : f(y,z,x) : f(z,x,y) for some homoeneous function f. Introduced here are several examples:

u1(x:y:z) = (y-z)/x : (z-x)/y : (x-y)/z
u2(x:y:z) = x/(y-z) : y/(z-x) : z/(x-y)
u3(x:y:z) = (-2x+y+z)/x : (-2y+z+x)/y : (-2z+x+y)/z
u4(x:y:z) = x/(-2x+y+z) : y/(-2y+z+x) : z/(-2z+x+y)
u5(x:y:z) = (y-z)/(y+z) : (z-x)/(z+x) : (x-y)/(x+y)
u6(x:y:z) = (y+z)/(y-z) : (z+x)/(z-x) : (x+y)/(x-y)
u7(x:y:z) = (-2x+y+z)/(y+z) : (-2y+z+x)/(z+x) : (-2z+x+y)/(x+y)
u8(x:y:z) = (y+z)/(-2x+y+z) : (z+x)/(-2y+z+x) : (x+y)/(-2z+x+y)
u9(x:y:z) = (yz-zx-xy)/(y^2-z^2) : (zx-xy-yz)/(z^2-x^2) : (xy-yz-zx)/(x^2-y^2)
u10(x:y:z) = (y^2-z^2)/(yz-zx-xy) : (z^2-x^2)/(zx-xy-yz) : (x^2-y^2)/(xy-yz-zx)
u11(x:y:z) = (yz-zx-xy)/(y^2+z^2) : (zx-xy-yz)/(z^2+x^2) : (xy-yz-zx)/(x^2+y^2)
u12(x:y:z) = (y^2+z^2)/(yz-zx-xy) : (z^2+x^2)/(zx-xy-yz) : (x^2y^2)/(xy-yz-zx)

In that list above, the 12 unary operations are indexed so that for n = 1,2,3,4,5,6, u2n(X) is the isotomic conjugate of u2n-1(X) when the coordinates are barycentric, and the isogonal conjugate when the coordinates are trilinear. In addition to the notations "un(x:y:z)" and "un(X)" the notation "unary(n) of X" will be useful. In the naming of triangle centers "unary(n) of X" is used when the underlying coordinates are barycentric, and "trilinear unary(n) of X" when the coordinates of trilinear. For examples of such points, see X(63202-X(63205) and X(62734)-X(62750).

In the next table, column 1 represents the triangle centers X(1), X(3), X(4), ..., X(11). The appearance of k in (row r, column n) means that ur(X(n)) = X(k). In this table, it is assumed that the coordinates used to define the unary operations are barycentric coordinates

n u1 u2 u3 u4 u5 u6 u7 u8
1 693 100 4358 88 7192 3952 16704 4080
3 850 110 46106 14919 62428 35360 43768 62722
4 3265 107 11064 16080 850 110 46106 14919
5 62428 35360 53768 62722 62724 35311 62927 62730
6 850 110 3266 111 58784 4576 52898 31125
7 3239 658 6745 62723 693 100 37780 41798
8 3676 3699 3911 4997 693 100 4358 88
9 693 100 37780 41798 62725 35312 62728 62731
10 7192 3952 16704 4080 4608 4427 31011 62732
11 883 885 62721 60491 62726 35313 62729 62733

In the next table, column 1 represents the triangle centers X(2), X(3), X(4), ..., X(11). The appearance of k in (row r, column n) means that ur(X(n)) = X(k). Here it is assumed that the coordinates used to define the unary operations are trilinear coordinates

n u1 u2 u3 u4 u5 u6 u7 u8
2 667 668 3230 3227 1019 1018 62755 62763
3 3064 1813 23710 60047 1021 1020 62756 62764
4 36054 54240 62736 62742 1021 1020 62757 62765
5 62734 62735 62737 62743 62746 63202 62958 62766
6 514 101 519 106 1014 1018 52680 4674
7 57180 36838 62738 62744 62747 62303 62659 62767
8 57181 646 62739 36798 62748 21362 62760 62768
9 3669 644 1319 1320 514 101 519 106
10 57129 4033 62740 41683 62749 3882 62761 62769
11 1983 60074 62741 62745 62750 62304 62762 63205

For n = 1,2,3,4,5,6,7,8, and a triangle center X, there are formally two triangle centers P such that Un = X; the twoness of inverses and other properties of unary operations will be published elsewhere during 2024, and this preamble will soon thereafter be updated.

underbar



X(62530) = UNARY(9) OF X(1)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a*b + a*c - b*c) : :

X(62530) lies on these lines: {2, 21341}}, {43, 7304}}, {99, 100}}, {101, 3222}}, {110, 4600}}, {149, 30992}}, {190, 24052}}, {261, 17270}}, {645, 3570}}, {648, 57969}}, {662, 4598}}, {670, 4557}}, {750, 1509}}, {789, 931}}, {874, 53280}}, {899, 56431}}, {1054, 18827}}, {1078, 1150}}, {1376, 8033}}, {2668, 17122}}, {2669, 56009}}, {3961, 32010}}, {4413, 51314}}, {4551, 4573}}, {4563, 17934}}, {4576, 17780}}, {4615, 52925}}, {4633, 35339}}, {5205, 52137}}, {5235, 17292}}, {5546, 17941}}, {6382, 20760}}, {6745, 51370}}, {7192, 25310}}, {8708, 59093}}, {9263, 27665}}, {9342, 33779}}, {16598, 35960}}, {17103, 56010}}, {18829, 37137}}, {23824, 33296}}, {27666, 31002}}, {28841, 53631}}, {30610, 57216}}, {31008, 56181}}, {31343, 51563}}, {32038, 35136}}, {33770, 37633}}, {36860, 36863}}, {39915, 60714}}, {43359, 59094}}, {53655, 54986}}

> X(62530) = X(i)-Ceva conjugate of X(j) for these (i,j): {662, 99}}, {4600, 38832}}
X(62530) = X(i)-isoconjugate of X(j) for these (i,j): {42, 43931}}, {87, 512}}, {330, 798}}, {513, 23493}}, {514, 21759}}, {523, 7121}}, {649, 16606}}, {661, 2162}}, {667, 42027}}, {669, 6384}}, {932, 3122}}, {1019, 6378}}, {1919, 60244}}, {1924, 6383}}, {2053, 4017}}, {2319, 7180}}, {2501, 15373}}, {3121, 4598}}, {3125, 34071}}, {3709, 7153}}, {3733, 7148}}, {7155, 51641}}, {7178, 57264}}, {7649, 22381}}, {16592, 58981}}, {21834, 53146}}, {21835, 32039}}, {50491, 53678}}, {51974, 57234}}
X(62530) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 1577}}, {192, 59521}}, {3835, 8034}}, {5375, 16606}}, {6377, 3120}}, {6631, 42027}}, {9296, 60244}}, {9428, 6383}}, {31998, 330}}, {34961, 2053}}, {36830, 2162}}, {39026, 23493}}, {39054, 87}}, {40592, 43931}}, {40598, 523}}, {40610, 3125}}, {55062, 4516}}
X(62530) = cevapoint of X(i) and X(j) for these (i,j): {43, 18197}}, {192, 21051}}, {3741, 48008}}, {3835, 4970}}, {4595, 52923}}, {16695, 27644}}, {17217, 33296}}, {20979, 45216}}, {27527, 56181}}
X(62530) = trilinear pole of line {192, 2176}}
X(62530) = crossdifference of every pair of points on line {3121, 4128}}
X(62530) = barycentric product X(i)*X(j) for these {i,j}}: {1, 36860}}, {43, 799}}, {81, 36863}}, {86, 4595}}, {99, 192}}, {100, 31008}}, {110, 6382}}, {190, 33296}}, {274, 52923}}, {643, 30545}}, {645, 3212}}, {662, 6376}}, {668, 27644}}, {670, 2176}}, {811, 22370}}, {1016, 17217}}, {1414, 4110}}, {1423, 7257}}, {1576, 40367}}, {1978, 38832}}, {2209, 4602}}, {3208, 4625}}, {3835, 4600}}, {3952, 7304}}, {3971, 4610}}, {4083, 4601}}, {4147, 4620}}, {4554, 56181}}, {4567, 20906}}, {4573, 27538}}, {4590, 21051}}, {4594, 17752}}, {4603, 41318}}, {4609, 62420}}, {4623, 20691}}, {4632, 4970}}, {4633, 4734}}, {4634, 52964}}, {4998, 27527}}, {6331, 20760}}, {6632, 23824}}, {7035, 18197}}, {7260, 51902}}, {16695, 31625}}, {16742, 57950}}, {21834, 24037}}, {34537, 50491}}, {53675, 56053}}
X(62530) = barycentric quotient X(i)/X(j) for these {i,j}}: {43, 661}}, {81, 43931}}, {99, 330}}, {100, 16606}}, {101, 23493}}, {110, 2162}}, {163, 7121}}, {190, 42027}}, {192, 523}}, {643, 2319}}, {645, 7155}}, {662, 87}}, {668, 60244}}, {670, 6383}}, {692, 21759}}, {799, 6384}}, {906, 22381}}, {1018, 7148}}, {1403, 7180}}, {1414, 7153}}, {1423, 4017}}, {2176, 512}}, {2209, 798}}, {3208, 4041}}, {3212, 7178}}, {3835, 3120}}, {3882, 45197}}, {3971, 4024}}, {4083, 3125}}, {4110, 4086}}, {4147, 21044}}, {4557, 6378}}, {4558, 23086}}, {4567, 932}}, {4570, 34071}}, {4575, 15373}}, {4590, 56053}}, {4594, 27447}}, {4595, 10}}, {4600, 4598}}, {4601, 18830}}, {4625, 7209}}, {4734, 4841}}, {4970, 4988}}, {5546, 2053}}, {6376, 1577}}, {6377, 8034}}, {6382, 850}}, {7257, 27424}}, {7304, 7192}}, {8640, 3121}}, {16695, 1015}}, {16742, 764}}, {17217, 1086}}, {17752, 2533}}, {17921, 2969}}, {18197, 244}}, {20691, 4705}}, {20760, 647}}, {20906, 16732}}, {20979, 3122}}, {21051, 115}}, {21834, 2643}}, {22370, 656}}, {23092, 3937}}, {23824, 6545}}, {24533, 16592}}, {25098, 18210}}, {25312, 21025}}, {27346, 53566}}, {27527, 11}}, {27538, 3700}}, {27644, 513}}, {30545, 4077}}, {31008, 693}}, {33296, 514}}, {33890, 3801}}, {36860, 75}}, {36863, 321}}, {38832, 649}}, {40367, 44173}}, {40598, 59521}}, {40848, 35352}}, {41526, 51641}}, {43051, 53540}}, {45216, 40627}}, {50491, 3124}}, {51319, 7234}}, {51902, 57234}}, {52923, 37}}, {52964, 4730}}, {53145, 50491}}, {53280, 45218}}, {53675, 21051}}, {53676, 21834}}, {56053, 53677}}, {56181, 650}}, {57074, 3248}}, {62420, 669}}
X(62530) = {X(i),X(j)}}-harmonic conjugate of X(k) for these (i,j,k): {100, 799, 99}}, {662, 57150, 56053}}


X(62531) = UNARY(9) OF X(6)

Barycentrics    (a^2 - b^2)*(a^2 + b^2)*(a^2 - c^2)*(a^2 + c^2)*(a^2*b^2 + a^2*c^2 - b^2*c^2) : :

X(62531) lies on these lines: {110, 670}}, {827, 3222}}, {2056, 38817}}, {4598, 4599}}, {5651, 59249}}, {7931, 10130}}, {14970, 20998}}, {18020, 35325}}, {53657, 57967}}

X(62531) = X(827)-Ceva conjugate of X(4577)
X(62531) = X(i)-isoconjugate of X(j) for these (i,j): {688, 18832}}, {798, 42551}}, {826, 34248}}, {1577, 19606}}, {2084, 2998}}, {3005, 3223}}, {3224, 8061}}, {51951, 62418}}
X(62531) = X(i)-Dao conjugate of X(j) for these (i,j): {76, 23285}}, {31998, 42551}}, {32746, 826}}, {62452, 2998}}
X(62531) = trilinear pole of line {194, 38834}}
X(62531) = barycentric product X(i)*X(j) for these {i,j}}: {83, 57150}}, {194, 4577}}, {670, 38834}}, {689, 1613}}, {827, 6374}}, {1740, 4593}}, {4599, 17149}}, {18837, 34072}}, {37204, 56836}}
X(62531) = barycentric quotient X(i)/X(j) for these {i,j}}: {99, 42551}}, {194, 826}}, {689, 40162}}, {827, 3224}}, {1576, 19606}}, {1613, 3005}}, {1740, 8061}}, {4577, 2998}}, {4593, 18832}}, {4599, 3223}}, {4630, 51951}}, {6374, 23285}}, {17149, 62418}}, {23301, 39691}}, {34072, 34248}}, {38834, 512}}, {56836, 2084}}, {57150, 141}}
X(62531) = {X(110),X(689)}}-harmonic conjugate of X(4577)


X(62532) = UNARY(9) OF X(7)

Barycentrics    (a - b)*b*(a - c)*(3*a - b - c)*(a + b - c)^2*c*(a - b + c)^2 : :

X(62532) lies on these lines: {85, 31190}}, {190, 658}}, {664, 61222}}, {665, 30610}}, {668, 934}}, {799, 4616}}, {1275, 4617}}, {1461, 3570}}, {4566, 61187}}, {4939, 39126}}, {6376, 17106}}, {7177, 18140}}, {27833, 36838}}, {34085, 61240}}

X(62532) =X(36838)-Ceva conjugate of X(4569)
X(62532) =X(i)-isoconjugate of X(j) for these (i,j): {657, 3445}}, {1253, 58794}}, {1293, 14936}}, {1919, 6556}}, {2310, 34080}}, {3022, 38828}}, {3063, 3680}}, {3900, 38266}}, {4105, 40151}}, {4130, 16945}}, {8056, 8641}}, {19604, 57180}}, {58334, 60806}}
X(62532) =X(i)-Dao conjugate of X(j) for these (i,j): {8, 4130}}, {3756, 3119}}, {9296, 6556}}, {10001, 3680}}, {17113, 58794}}, {40621, 2310}}, {45036, 657}}
X(62532) =cevapoint of X(4462) and X(39126)
X(62532) =trilinear pole of line {145, 39126}}
X(62532) =barycentric product X(i)*X(j) for these {i,j}}: {145, 4569}}, {658, 18743}}, {664, 39126}}, {1088, 43290}}, {1275, 4462}}, {1420, 4572}}, {1743, 46406}}, {3158, 52937}}, {3161, 36838}}, {3950, 4635}}, {4546, 24011}}, {4554, 5435}}, {4616, 52353}}, {4617, 44723}}, {4625, 4848}}, {4626, 44720}}, {23062, 30720}}, {44724, 59941}}, {57192, 57792}}
X(62532) =barycentric quotient X(i)/X(j) for these {i,j}}: {145, 3900}}, {279, 58794}}, {658, 8056}}, {664, 3680}}, {668, 6556}}, {934, 3445}}, {1262, 34080}}, {1275, 27834}}, {1420, 663}}, {1461, 38266}}, {1743, 657}}, {3052, 8641}}, {3158, 4105}}, {3161, 4130}}, {3667, 2310}}, {3950, 4171}}, {4162, 3022}}, {4394, 14936}}, {4404, 52335}}, {4462, 1146}}, {4487, 4528}}, {4521, 3119}}, {4546, 24010}}, {4554, 6557}}, {4566, 56174}}, {4569, 4373}}, {4617, 40151}}, {4626, 19604}}, {4848, 4041}}, {4849, 4524}}, {4855, 57108}}, {4881, 53285}}, {4884, 58335}}, {4939, 23615}}, {4998, 31343}}, {5435, 650}}, {6049, 4162}}, {6614, 16945}}, {7045, 1293}}, {7196, 27831}}, {14321, 36197}}, {16948, 21789}}, {18743, 3239}}, {25737, 34524}}, {30719, 2170}}, {30720, 728}}, {36838, 27818}}, {39126, 522}}, {41629, 1021}}, {43290, 200}}, {44720, 4163}}, {44724, 4578}}, {46406, 40014}}, {51656, 3271}}, {52352, 58329}}, {53579, 46392}}, {57192, 220}}
X(62532) ={X(658),X(4554)}}-harmonic conjugate of X(4569)


X(62533) = UNARY(9) OF X(8)

Barycentrics    (a - b)*b*(a - c)*c*(3*a^2 - 2*a*b - b^2 - 2*a*c + 2*b*c - c^2) : :

X(62533) lies on these lines: {646, 42719}}, {664, 668}}, {4569, 4578}}, {4571, 4998}}, {7035, 57928}}, {7256, 55241}}, {17143, 28808}}, {21580, 43290}}, {25268, 30610}}, {31343, 51560}}

X(62533) = X(646)-Ceva conjugate of X(668)
X(62533) = X(i)-isoconjugate of X(j) for these (i,j): {649, 11051}}, {657, 61380}}, {667, 3062}}, {1919, 10405}}, {1980, 44186}}, {3271, 53622}}, {19605, 57181}}
X(62533) = X(i)-Dao conjugate of X(j) for these (i,j): {7, 3669}}, {5375, 11051}}, {6631, 3062}}, {9296, 10405}}, {13609, 244}}
X(62533) = cevapoint of X(7658) and X(21060)
X(62533) = trilinear pole of line {144, 16284}}
X(62533) = barycentric product X(i)*X(j) for these {i,j}}: {144, 668}}, {165, 1978}}, {190, 16284}}, {644, 50560}}, {646, 3160}}, {670, 21872}}, {799, 21060}}, {3207, 6386}}, {3699, 31627}}, {4601, 55285}}, {6558, 50561}}, {7035, 7658}}, {7256, 50562}}
X(62533) = barycentric quotient X(i)/X(j) for these {i,j}}: {100, 11051}}, {144, 513}}, {165, 649}}, {190, 3062}}, {668, 10405}}, {934, 61380}}, {1419, 43924}}, {1978, 44186}}, {3160, 3669}}, {3207, 667}}, {3699, 19605}}, {4554, 36620}}, {4564, 53622}}, {4569, 60831}}, {4601, 55284}}, {4998, 61240}}, {7658, 244}}, {9533, 43932}}, {16284, 514}}, {21060, 661}}, {21872, 512}}, {22117, 22383}}, {30610, 60813}}, {31627, 3676}}, {42720, 56718}}, {50560, 24002}}, {50561, 58817}}, {50563, 51664}}, {55285, 3125}}, {57064, 2310}}, {58835, 14936}}
X(62533) = {X(3699),X(4554)}}-harmonic conjugate of X(668)


X(62534) = UNARY(9) OF X(75)

Barycentrics    (a^2 - b^2)*b^2*(a^2 - c^2)*(a - b - c)*c^2 : :

X(62534) lies on these lines: {8, 7063}}, {76, 30811}}, {99, 8707}}, {110, 17935}}, {190, 670}}, {274, 30818}}, {305, 30840}}, {310, 30821}}, {312, 18021}}, {314, 4519}}, {333, 36799}}, {345, 40363}}, {645, 4631}}, {668, 61172}}, {689, 59120}}, {874, 53280}}, {3699, 7257}}, {3971, 59643}}, {4554, 4602}}, {4563, 4601}}, {4576, 41314}}, {4609, 36803}}, {4633, 52612}}, {4639, 21610}}, {4997, 28660}}, {5205, 14195}}, {6331, 6335}}, {7256, 36802}}, {7260, 21604}}, {8033, 59518}}, {15455, 55209}}, {17777, 19643}}, {18149, 18827}}, {18155, 36801}}, {21580, 55239}}, {31625, 36804}}, {35159, 55060}}, {36796, 40072}}, {36797, 55233}}, {39915, 41318}}, {44327, 55202}}, {53654, 57965}}

X(62534) = isotomic conjugate of X(7180)
X(62534) = isotomic conjugate of the isogonal conjugate of X(645)
X(62534) = X(4602)-Ceva conjugate of X(670)
X(62534) = X(i)-isoconjugate of X(j) for these (i,j): {6, 51641}}, {7, 1924}}, {31, 7180}}, {32, 4017}}, {34, 3049}}, {41, 7250}}, {42, 57181}}, {56, 798}}, {57, 669}}, {65, 1919}}, {77, 57204}}, {85, 9426}}, {109, 3121}}, {163, 61052}}, {181, 57129}}, {184, 55208}}, {213, 43924}}, {226, 1980}}, {512, 604}}, {560, 7178}}, {603, 2489}}, {608, 810}}, {647, 1395}}, {649, 1402}}, {661, 1397}}, {662, 1356}}, {667, 1400}}, {822, 7337}}, {1014, 53581}}, {1018, 61048}}, {1019, 61364}}, {1042, 3063}}, {1084, 1414}}, {1106, 3709}}, {1408, 4079}}, {1412, 50487}}, {1415, 3122}}, {1417, 14407}}, {1501, 4077}}, {1577, 41280}}, {1918, 3669}}, {1974, 51664}}, {1977, 4551}}, {2149, 8034}}, {2175, 7216}}, {2200, 43923}}, {2203, 55234}}, {2205, 3676}}, {2206, 57185}}, {2207, 51640}}, {2422, 51651}}, {3248, 4559}}, {4041, 52410}}, {4117, 4573}}, {4524, 7366}}, {4625, 9427}}, {4637, 7063}}, {4705, 16947}}, {7109, 7203}}, {7212, 14598}}, {8641, 62192}}, {8809, 62175}}, {20948, 41281}}, {21755, 29055}}, {22383, 57652}}, {32669, 42752}}, {32739, 53540}}
X(62534) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 798}}, {2, 7180}}, {9, 51641}}, {11, 3121}}, {115, 61052}}, {650, 8034}}, {1084, 1356}}, {1146, 3122}}, {3160, 7250}}, {3161, 512}}, {5375, 1402}}, {5452, 669}}, {6374, 7178}}, {6376, 4017}}, {6552, 3709}}, {6626, 43924}}, {6631, 1400}}, {6739, 14398}}, {6741, 3124}}, {7952, 2489}}, {9296, 65}}, {9428, 7}}, {10001, 1042}}, {11517, 3049}}, {18277, 7212}}, {31998, 56}}, {34021, 3669}}, {34261, 8639}}, {34961, 32}}, {36830, 1397}}, {36901, 1365}}, {39052, 1395}}, {39054, 604}}, {39060, 1426}}, {39062, 608}}, {40582, 667}}, {40592, 57181}}, {40593, 7216}}, {40599, 50487}}, {40602, 1919}}, {40603, 57185}}, {40605, 649}}, {40608, 1084}}, {40619, 53540}}, {40620, 1357}}, {40624, 3125}}, {40625, 1015}}, {50440, 2491}}, {52871, 14407}}, {55062, 21835}}, {55067, 3248}}, {55153, 42752}}, {59577, 4079}}
X(62534) = cevapoint of X(i) and X(j) for these (i,j): {8, 3709}}, {312, 18155}}, {314, 4560}}, {650, 3706}}, {799, 55241}}, {3666, 4106}}, {3700, 3703}}, {7257, 7258}}
X(62534) = trilinear pole of line {8, 314}}
X(62534) = barycentric product X(i)*X(j) for these {i,j}}: {8, 670}}, {9, 4602}}, {21, 6386}}, {55, 4609}}, {75, 7257}}, {76, 645}}, {78, 57968}}, {85, 7258}}, {92, 55207}}, {99, 3596}}, {100, 40072}}, {110, 40363}}, {190, 28660}}, {200, 55213}}, {261, 27808}}, {274, 646}}, {281, 52608}}, {305, 36797}}, {306, 55233}}, {310, 3699}}, {312, 799}}, {314, 668}}, {318, 55202}}, {321, 4631}}, {333, 1978}}, {341, 4625}}, {345, 6331}}, {561, 643}}, {644, 6385}}, {648, 57919}}, {662, 28659}}, {689, 3703}}, {811, 3718}}, {850, 6064}}, {1043, 4572}}, {1264, 6528}}, {1502, 5546}}, {1576, 44159}}, {2321, 52612}}, {3688, 42371}}, {3700, 34537}}, {3701, 4623}}, {3709, 44168}}, {3710, 55229}}, {3712, 53080}}, {3719, 57973}}, {3786, 46132}}, {3948, 36806}}, {3952, 18021}}, {3975, 4639}}, {4033, 52379}}, {4069, 57992}}, {4076, 52619}}, {4086, 24037}}, {4087, 4589}}, {4391, 4601}}, {4560, 31625}}, {4561, 44130}}, {4563, 7017}}, {4571, 57796}}, {4573, 59761}}, {4600, 35519}}, {4610, 30713}}, {4612, 27801}}, {4620, 52622}}, {4634, 4723}}, {4635, 30693}}, {4997, 55262}}, {6063, 7256}}, {7035, 18155}}, {7101, 55205}}, {7259, 20567}}, {7260, 17787}}, {16749, 42380}}, {23978, 55194}}, {27424, 36860}}, {27853, 36800}}, {28654, 55196}}, {33299, 37204}}, {34404, 55241}}, {36795, 55258}}, {36796, 55260}}, {40499, 59146}}, {42033, 55209}}
X(62534) = barycentric quotient X(i)/X(j) for these {i,j}}: {1, 51641}}, {2, 7180}}, {7, 7250}}, {8, 512}}, {9, 798}}, {11, 8034}}, {21, 667}}, {41, 1924}}, {55, 669}}, {75, 4017}}, {76, 7178}}, {78, 810}}, {81, 57181}}, {85, 7216}}, {86, 43924}}, {92, 55208}}, {99, 56}}, {100, 1402}}, {107, 7337}}, {110, 1397}}, {162, 1395}}, {190, 1400}}, {210, 50487}}, {219, 3049}}, {261, 3733}}, {274, 3669}}, {281, 2489}}, {284, 1919}}, {286, 43923}}, {304, 51664}}, {305, 17094}}, {306, 55234}}, {310, 3676}}, {312, 661}}, {314, 513}}, {321, 57185}}, {326, 51640}}, {332, 1459}}, {333, 649}}, {341, 4041}}, {345, 647}}, {346, 3709}}, {391, 4832}}, {497, 50490}}, {512, 1356}}, {522, 3122}}, {523, 61052}}, {561, 4077}}, {607, 57204}}, {643, 31}}, {644, 213}}, {645, 6}}, {646, 37}}, {648, 608}}, {650, 3121}}, {658, 62192}}, {662, 604}}, {664, 1042}}, {668, 65}}, and many others
X(62534) = {X(i),X(j)}}-harmonic conjugate of X(k) for these (i,j,k): {799, 1978, 670}}, {799, 7258, 55207}}, {1978, 55262, 799}}, {55241, 55254, 55224}}


X(62535) = UNARY(9) OF X(86)

Barycentrics    a*(a - b)*(a + b)^2*(a - c)*(a + c)^2*(a + 2*b + c)*(a + b + 2*c) : :

X(62535) lies on on Mandart circumellipse, the curve CC9, and these lines: {100, 4596}}, {190, 4610}}, {660, 8701}}, {897, 40438}}, {1171, 37128}}, {4556, 37211}}, {4573, 38340}}, {4608, 60055}}, {4631, 37218}}, {8052, 55237}}, {24041, 37135}}, {24624, 32014}}, {36085, 47947}}, {37129, 52558}}, {37142, 57685}}, {37202, 57854}}, {50344, 60057}}

X(62535) = X(i)-isoconjugate of X(j) for these (i,j): {2, 8663}}, {6, 6367}}, {37, 4983}}, {42, 4988}}, {115, 35327}}, {181, 4976}}, {213, 30591}}, {430, 647}}, {512, 1213}}, {513, 21816}}, {523, 20970}}, {594, 50512}}, {649, 8013}}, {661, 1962}}, {669, 1230}}, {756, 4979}}, {798, 4647}}, {872, 4978}}, {1100, 4705}}, {1125, 4079}}, {1269, 53581}}, {1500, 4977}}, {1839, 55230}}, {1919, 52576}}, {2308, 4024}}, {2355, 55232}}, {2422, 51417}}, {2489, 41014}}, {2501, 22080}}, {2643, 35342}}, {3049, 44143}}, {3121, 61174}}, {3122, 4115}}, {3124, 4427}}, {3649, 3709}}, {3683, 57185}}, {4046, 7180}}, {4092, 36075}}, {4359, 50487}}, {4516, 61170}}, {4992, 6378}}, {7064, 30724}}, {8025, 58289}}, {8040, 58294}}, {30729, 61052}}
X(62535) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 6367}}, {5375, 8013}}, {6626, 30591}}, {9296, 52576}}, {31998, 4647}}, {32664, 8663}}, {36830, 1962}}, {39026, 21816}}, {39052, 430}}, {39054, 1213}}, {40589, 4983}}, {40592, 4988}}
X(62535) = cevapoint of X(i) and X(j) for these (i,j): {662, 52935}}, {4467, 41809}}, {4596, 4629}}, {40438, 47947}}
X(62535) = trilinear pole of line {1, 757}}
X(62535) = barycentric product X(i)*X(j) for these {i,j}}: {75, 6578}}, {81, 4632}}, {86, 4596}}, {99, 40438}}, {162, 57854}}, {274, 4629}}, {662, 32014}}, {668, 52558}}, {757, 6540}}, {799, 1171}}, {811, 57685}}, {873, 8701}}, {1126, 4623}}, {1255, 4610}}, {1268, 52935}}, {1509, 37212}}, {1796, 55231}}, {4556, 32018}}, {4590, 47947}}, {4608, 24041}}, {24037, 50344}}, {28615, 52612}}
X(62535) = barycentric quotient X(i)/X(j) for these {i,j}}: {1, 6367}}, {31, 8663}}, {58, 4983}}, {81, 4988}}, {86, 30591}}, {99, 4647}}, {100, 8013}}, {101, 21816}}, {110, 1962}}, {162, 430}}, {163, 20970}}, {249, 35342}}, {261, 4985}}, {593, 4979}}, {643, 4046}}, {662, 1213}}, {668, 52576}}, {757, 4977}}, {799, 1230}}, {811, 44143}}, {849, 50512}}, {1098, 4990}}, {1101, 35327}}, {1126, 4705}}, {1171, 661}}, {1255, 4024}}, {1268, 4036}}, {1414, 3649}}, {1509, 4978}}, {1796, 55232}}, {2185, 4976}}, {4556, 1100}}, {4558, 3958}}, {4567, 4115}}, {4575, 22080}}, {4592, 41014}}, {4596, 10}}, {4600, 61174}}, {4608, 1109}}, {4610, 4359}}, {4612, 3686}}, {4623, 1269}}, {4629, 37}}, {4632, 321}}, {4636, 3683}}, {6540, 1089}}, {6578, 1}}, {8701, 756}}, {24041, 4427}}, {28615, 4079}}, {30576, 4984}}, {30581, 53587}}, {32014, 1577}}, {32018, 52623}}, {37212, 594}}, {40438, 523}}, {47947, 115}}, {50344, 2643}}, {52378, 61170}}, {52558, 513}}, {52935, 1125}}, {57685, 656}}, {57854, 14208}}, {58294, 21833}}
X(62535) = {X(4596),X(52935)}}-harmonic conjugate of X(6578)


X(62536) = UNARY(9) OF X(190)

Barycentrics    (a - b)^2*(a + b - 2*c)*(a - c)^2*(a - 2*b + c) : :

X(62536) lies on the circumeconic {{A,B,C,X(2),X(7)}} and these lines: {2, 1016}}, {7, 4998}}, {75, 7035}}, {86, 4600}}, {88, 335}}, {106, 31002}}, {190, 6544}}, {673, 4997}}, {675, 6551}}, {750, 765}}, {899, 5378}}, {901, 8709}}, {903, 1644}}, {1252, 60873}}, {2400, 57928}}, {3257, 3570}}, {4076, 36588}}, {4080, 6650}}, {4555, 4618}}, {4582, 42720}}, {4589, 4615}}, {4945, 27931}}, {6631, 14475}}, {10196, 32106}}, {16099, 57990}}, {31227, 36807}}, {31625, 58027}}, {31992, 32028}}, {32094, 45684}}, {55243, 55258}}

X(62536) = isotomic conjugate of X(1647)
on ABCGGe
X(62536) = isotomic conjugate of the complement of X(17780)
X(62536) = isotomic conjugate of the isogonal conjugate of X(9268)
X(62536) = X(i)-Ceva conjugate of X(j) for these (i,j): {6635, 4555}}, {42372, 6635}}, {57564, 1016}}
X(62536) = X(i)-isoconjugate of X(j) for these (i,j): {6, 2087}}, {31, 1647}}, {44, 1015}}, {100, 8661}}, {106, 42084}}, {244, 902}}, {513, 1960}}, {519, 3248}}, {604, 4530}}, {649, 1635}}, {663, 53528}}, {667, 900}}, {678, 43922}}, {692, 6550}}, {764, 23344}}, {875, 4448}}, {1019, 14407}}, {1023, 21143}}, {1086, 2251}}, {1110, 24188}}, {1111, 9459}}, {1319, 3271}}, {1320, 61062}}, {1357, 3689}}, {1404, 2170}}, {1415, 52338}}, {1417, 4542}}, {1639, 57181}}, {1919, 3762}}, {1977, 4358}}, {2969, 23202}}, {3063, 30725}}, {3121, 16704}}, {3122, 52680}}, {3124, 30576}}, {3125, 3285}}, {3249, 24004}}, {3251, 23345}}, {3259, 34858}}, {3733, 4730}}, {4120, 57129}}, {4618, 14637}}, {4723, 61048}}, {4817, 14436}}, {4895, 43924}}, {5440, 42067}}, {6591, 22086}}, {8027, 17780}}, {9456, 35092}}, {14437, 23892}}, {14442, 32665}}, {14835, 59150}}, {16726, 52963}}, {22096, 38462}}, {23349, 30583}}
X(62536) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 1647}}, {9, 2087}}, {214, 42084}}, {514, 24188}}, {1086, 6550}}, {1146, 52338}}, {1647, 46050}}, {3161, 4530}}, {4370, 35092}}, {5375, 1635}}, {6631, 900}}, {8054, 8661}}, {9296, 3762}}, {9460, 1086}}, {10001, 30725}}, {16586, 3259}}, {35092, 14442}}, {39026, 1960}}, {40594, 244}}, {40595, 1015}}, {52659, 14027}}, {52871, 4542}}
X(62536) = cevapoint of X(i) and X(j) for these (i,j): {2, 17780}}, {100, 37680}}, {106, 3257}}, {190, 519}}, {514, 24188}}, {900, 45213}}, {903, 4555}}, {1647, 6546}}, {2397, 51984}}, {3699, 32851}}
X(62536) = trilinear pole of line {190, 514}}
X(62536) = barycentric product X(i)*X(j) for these {i,j}}: {75, 5376}}, {76, 9268}}, {88, 7035}}, {106, 31625}}, {190, 4555}}, {514, 6635}}, {519, 57564}}, {664, 4582}}, {668, 3257}}, {765, 20568}}, {901, 1978}}, {903, 1016}}, {1018, 4634}}, {1022, 57950}}, {1086, 42372}}, {1252, 57995}}, {3261, 6551}}, {3952, 4615}}, {4013, 4590}}, {4033, 4622}}, {4080, 4600}}, {4572, 5548}}, {4591, 27808}}, {4601, 4674}}, {4618, 24004}}, {4997, 4998}}, {5381, 52755}}, {6386, 32665}}, {6548, 6632}}
X(62536) = barycentric quotient X(i)/X(j) for these {i,j}}: {1, 2087}}, {2, 1647}}, {8, 4530}}, {44, 42084}}, {59, 1404}}, {88, 244}}, {100, 1635}}, {101, 1960}}, {106, 1015}}, {190, 900}}, {514, 6550}}, {519, 35092}}, {522, 52338}}, {644, 4895}}, {646, 4768}}, {649, 8661}}, {651, 53528}}, {664, 30725}}, {668, 3762}}, {765, 44}}, {900, 14442}}, {901, 649}}, {903, 1086}}, {908, 3259}}, {1016, 519}}, {1018, 4730}}, {1022, 764}}, {1023, 3251}}, {1086, 24188}}, {1110, 2251}}, {1252, 902}}, {1320, 2170}}, {1331, 22086}}, {1332, 53532}}, and many others
X(62536) = {X(i),X(j)}}-harmonic conjugate of X(k) for these (i,j,k): {2, 6634, 6632}}, {17780, 34762, 4555}}


X(62537) = UNARY(11) OF X(1)

Barycentrics    (a^2 + b^2)*(a*b + a*c - b*c)*(a^2 + c^2) : :

X(62537) lies on these lines: {57, 6649}}, {82, 34252}}, {83, 213}}, {192, 62420}}, {251, 27809}}, {2176, 6382}}, {2210, 32928}}, {2240, 21217}}, {3570, 3961}}, {3891, 7760}}, {4577, 35143}}, {4685, 18082}}, {7109, 56660}}, {27494, 52394}}, {39694, 52376}}

X(62537) = X(82)-Ceva conjugate of X(83)
X(62537) = X(i)-isoconjugate of X(j) for these (i,j): {38, 2162}}, {39, 87}}, {141, 7121}}, {330, 1964}}, {427, 15373}}, {932, 21123}}, {1401, 2319}}, {1923, 6383}}, {2084, 56053}}, {2530, 34071}}, {3051, 6384}}, {3665, 57264}}, {3688, 7153}}, {4598, 50521}}, {16606, 17187}}, {16696, 23493}}, {16887, 21759}}, {17171, 22381}}, {17442, 23086}}, {43931, 46148}}
X(62537) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 1930}}, {6377, 16892}}, {40598, 141}}, {40610, 2530}}, {41884, 330}}, {62452, 56053}}
X(62537) = cevapoint of X(192) and X(2176)
X(62537) = trilinear pole of line {18107, 21051}}
X(62537) = barycentric product X(i)*X(j) for these {i,j}}: {43, 3112}}, {82, 6376}}, {83, 192}}, {190, 18107}}, {251, 6382}}, {308, 2176}}, {689, 50491}}, {2209, 18833}}, {3971, 52394}}, {4577, 21051}}, {4593, 21834}}, {4595, 10566}}, {7304, 61405}}, {18082, 33296}}, {18098, 31008}}, {18108, 36863}}, {20760, 46104}}, {27644, 56186}}, {30545, 56245}}, {36860, 55240}}, {38832, 56251}}, {40016, 62420}}, {40367, 46288}}
X(62537) = barycentric quotient X(i)/X(j) for these {i,j}}: {43, 38}}, {82, 87}}, {83, 330}}, {192, 141}}, {251, 2162}}, {308, 6383}}, {1176, 23086}}, {1403, 1401}}, {2176, 39}}, {2209, 1964}}, {3112, 6384}}, {3208, 33299}}, {3212, 3665}}, {3835, 16892}}, {3971, 15523}}, {4083, 2530}}, {4147, 48278}}, {4577, 56053}}, {4595, 4568}}, {4628, 34071}}, {6376, 1930}}, {6382, 8024}}, {7304, 61407}}, {8640, 50521}}, {17752, 16720}}, {18082, 42027}}, {18098, 16606}}, {18107, 514}}, {18108, 43931}}, {20691, 3954}}, {20760, 3917}}, {20906, 48084}}, {20979, 21123}}, {21051, 826}}, {21834, 8061}}, {27538, 3703}}, {27644, 16696}}, {31008, 16703}}, {33296, 16887}}, {36860, 55239}}, {38832, 17187}}, {40367, 52568}}, {46289, 7121}}, {50491, 3005}}, {52923, 4553}}, {56186, 60244}}, {56245, 2319}}, {62420, 3051}}
X(62537) = {X(3112),X(18098)}}-harmonic conjugate of X(83)


X(62538) = UNARY(11) OF X(7)

Barycentrics    (3*a - b - c)*(a + b - c)^2*(a - b + c)^2*(a^2 - 2*a*b + b^2 + c^2)*(a^2 + b^2 - 2*a*c + c^2) : :

X(62538) lies on these lines: {69, 200}}, {1407, 4437}}, {3928, 7131}}

X(62538) = X(i)-isoconjugate of X(j) for these (i,j): {1293, 17115}}, {3445, 4319}}, {3680, 7083}}, {4012, 16945}}, {6554, 38266}}, {8056, 30706}}, {28070, 40151}}
X(62538) = X(i)-Dao conjugate of X(j) for these (i,j): {8, 4012}}, {45036, 4319}}
X(62538) = barycentric product X(i)*X(j) for these {i,j}}: {145, 30705}}, {4462, 8269}}, {5435, 8817}}, {7131, 39126}}, {18743, 56359}}
X(62538) = barycentric quotient X(i)/X(j) for these {i,j}}: {145, 6554}}, {1420, 2082}}, {1743, 4319}}, {3052, 30706}}, {3158, 28070}}, {3161, 4012}}, {4394, 17115}}, {5435, 497}}, {7131, 3680}}, {8269, 27834}}, {8817, 6557}}, {30701, 6556}}, {30705, 4373}}, {56359, 8056}}
X(62538) = {X(8817),X(56359)}}-harmonic conjugate of X(30705)


X(62539) = UNARY(11) OF X(75)

Barycentrics    b^2*(a^2 + b^2)*c^2*(-a + b + c)*(a^2 + c^2) : :

X(62539) lies on these lines: {8, 40363}}, {42, 308}}, {55, 3596}}, {65, 18033}}, {83, 41232}}, {210, 4087}}, {561, 18043}}, {607, 7017}}, {689, 28471}}, {1334, 3975}}, {1799, 57984}}, {1824, 40717}}, {3175, 56186}}, {4366, 28654}}, {4494, 39250}}, {13576, 40016}}, {18021, 56154}}, {27853, 33938}}, {52394, 58027}}

X(62539) = isotomic conjugate of X(1401)
X(62539) = X(18833)-Ceva conjugate of X(308)
X(62539) = X(i)-isoconjugate of X(j) for these (i,j): {7, 1923}}, {31, 1401}}, {34, 20775}}, {38, 1397}}, {39, 604}}, {56, 1964}}, {57, 3051}}, {77, 27369}}, {85, 41331}}, {109, 50521}}, {560, 3665}}, {603, 1843}}, {608, 4020}}, {667, 46153}}, {688, 1414}}, {1014, 41267}}, {1106, 3688}}, {1395, 3917}}, {1402, 17187}}, {1407, 40972}}, {1408, 21035}}, {1412, 21814}}, {1415, 21123}}, {1424, 19606}}, {1634, 51641}}, {1930, 41280}}, {2084, 4565}}, {3954, 16947}}, {4625, 9494}}, {7366, 61316}}, {17442, 52411}}, {33299, 52410}}, {41272, 51653}}, {46148, 57181}}, {51651, 51869}}, {51664, 61218}}
X(62539) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 1964}}, {2, 1401}}, {11, 50521}}, {1146, 21123}}, {3161, 39}}, {5452, 3051}}, {6374, 3665}}, {6552, 3688}}, {6631, 46153}}, {6741, 3005}}, {7952, 1843}}, {11517, 20775}}, {24771, 40972}}, {40599, 21814}}, {40605, 17187}}, {40608, 688}}, {40624, 2530}}, {41884, 56}}, {55064, 2084}}, {59577, 21035}}, {62452, 4565}}
X(62539) = cevapoint of X(8) and X(3596)
X(62539) = trilinear pole of line {3709, 47793}}
X(62539) = barycentric product X(i)*X(j) for these {i,j}}: {8, 308}}, {9, 18833}}, {55, 40016}}, {82, 28659}}, {83, 3596}}, {251, 40363}}, {312, 3112}}, {314, 56186}}, {333, 56251}}, {345, 46104}}, {561, 56245}}, {645, 52618}}, {689, 3700}}, {1799, 7017}}, {3115, 4178}}, {3709, 42371}}, {4041, 37204}}, {4086, 4593}}, {7257, 18070}}, {18021, 61405}}, {18082, 28660}}, {18098, 40072}}, {18101, 31625}}, {30713, 52394}}, {32085, 57919}}, {44159, 46288}}
X(62539) = barycentric quotient X(i)/X(j) for these {i,j}}: {2, 1401}}, {8, 39}}, {9, 1964}}, {41, 1923}}, {55, 3051}}, {76, 3665}}, {78, 4020}}, {82, 604}}, {83, 56}}, {190, 46153}}, {200, 40972}}, {210, 21814}}, {219, 20775}}, {251, 1397}}, {281, 1843}}, {308, 7}}, {312, 38}}, {314, 16696}}, {318, 17442}}, {333, 17187}}, {341, 33299}}, {345, 3917}}, {346, 3688}}, {522, 21123}}, {607, 27369}}, {645, 1634}}, {646, 4553}}, {650, 50521}}, {689, 4573}}, and many others
X(62539) = {X(3112),X(56251)}}-harmonic conjugate of X(308)


X(62540) = UNARY(11) OF X(190)

Barycentrics    (a - b)*(a - c)*(a^2 - 2*a*b + 2*b^2 - 2*b*c + c^2)*(a^2 + b^2 - 2*a*c - 2*b*c + 2*c^2) : :

X(62540) lies on these lines: {2, 32028}}, {190, 6545}}, {514, 6632}}, {903, 40468}}, {4756, 58373}}, {6550, 6634}}, {21204, 32106}}, {36872, 46972}}

X(62540) = isotomic conjugate of X(6546)
X(62540) = isotomic conjugate of the anticomplement of X(21204)
X(62540) = X(i)-isoconjugate of X(j) for these (i,j): {6, 6161}}, {31, 6546}}, {649, 3722}}, {667, 4422}}, {692, 6547}}, {1015, 46973}}, {1415, 55376}}, {1862, 22383}}, {1919, 4986}}, {3248, 32094}}, {9456, 33905}}
X(62540) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6546}}, {9, 6161}}, {1086, 6547}}, {1146, 55376}}, {4370, 33905}}, {5375, 3722}}, {6631, 4422}}, {9296, 4986}}
X(62540) = cevapoint of X(190) and X(514)
X(62540) = trilinear pole of line {519, 1738}}
X(62540) = barycentric product X(i)*X(j) for these {i,j}}: {668, 46972}}, {7035, 58373}}
X(62540) = barycentric quotient X(i)/X(j) for these {i,j}}: {1, 6161}}, {2, 6546}}, {100, 3722}}, {190, 4422}}, {514, 6547}}, {519, 33905}}, {522, 55376}}, {668, 4986}}, {765, 46973}}, {1016, 32094}}, {1897, 1862}}, {46972, 513}}, {58373, 244}}


X(62541) = UNARY(12) OF X(1)

Barycentrics    (a*b - a*c - b*c)*(a*b - a*c + b*c)*(b^2 + c^2) : :

X(62541) lies on these lines: {38, 16720}}, {81, 330}}, {312, 335}}, {536, 13476}}, {698, 982}}, {732, 1401}}, {984, 59564}}, {3752, 16606}}, {4670, 4906}}, {6383, 6385}}, {9055, 24691}}, {27447, 40038}}, {30520, 43931}}, {35525, 61417}}, {40013, 60244}}, {46180, 52211}}

X(62541) = X(i)-isoconjugate of X(j) for these (i,j): {43, 251}}, {82, 2176}}, {83, 2209}}, {192, 46289}}, {692, 18107}}, {827, 21834}}, {1403, 56245}}, {3112, 62420}}, {4083, 4628}}, {4599, 50491}}, {6376, 46288}}, {18098, 38832}}, {21051, 34072}}
X(62541) = X(i)-Dao conjugate of X(j) for these (i,j): {39, 192}}, {141, 2176}}, {1086, 18107}}, {3124, 50491}}, {15449, 21051}}, {34452, 62420}}, {40585, 43}}, {55043, 21834}}
X(62541) = barycentric product X(i)*X(j) for these {i,j}}: {38, 6384}}, {39, 6383}}, {87, 1930}}, {141, 330}}, {826, 56053}}, {932, 48084}}, {1235, 23086}}, {2162, 8024}}, {2530, 18830}}, {3665, 7155}}, {4598, 16892}}, {7209, 33299}}, {16606, 16703}}, {16696, 60244}}, {16720, 27447}}, {16887, 42027}}
X(62541) = barycentric quotient X(i)/X(j) for these {i,j}}: {38, 43}}, {39, 2176}}, {87, 82}}, {141, 192}}, {330, 83}}, {514, 18107}}, {826, 21051}}, {1401, 1403}}, {1930, 6376}}, {1964, 2209}}, {2162, 251}}, {2319, 56245}}, {2530, 4083}}, {3005, 50491}}, {3051, 62420}}, {3665, 3212}}, {3703, 27538}}, {3917, 20760}}, {3954, 20691}}, {4553, 52923}}, {4568, 4595}}, {6383, 308}}, {6384, 3112}}, {7121, 46289}}, {8024, 6382}}, {8061, 21834}}, {15523, 3971}}, {16606, 18098}}, {16696, 27644}}, {16703, 31008}}, {16720, 17752}}, {16887, 33296}}, {16892, 3835}}, {17187, 38832}}, {21123, 20979}}, {23086, 1176}}, {33299, 3208}}, {34071, 4628}}, {42027, 18082}}, {43931, 18108}}, {48084, 20906}}, {48278, 4147}}, {50521, 8640}}, {52568, 40367}}, {55239, 36860}}, {56053, 4577}}, {60244, 56186}}, {61407, 7304}}


X(62542) = UNARY(12) OF X(4)

Barycentrics    (a^2 + b^2 - 3*c^2)*(a^2 - b^2 - c^2)^2*(a^2 - 3*b^2 + c^2)*(a^4 + b^4 - 2*b^2*c^2 + c^4) : :

X(62542) lies on these lines: {66, 524}}, {287, 6340}}, {2052, 2996}}, {8770, 26958}}, {52350, 60839}}, {53173, 60834}}

X(62542) = X(1707)-isoconjugate of X(56364)
X(62542) = X(i)-Dao conjugate of X(j) for these (i,j): {3767, 193}}, {53848, 3167}}
X(62542) = barycentric product X(i)*X(j) for these {i,j}}: {1899, 6340}}, {2996, 6389}}, {6391, 41009}}, {34208, 44141}}, {41760, 60839}}
X(62542) = barycentric quotient X(i)/X(j) for these {i,j}}: {426, 3167}}, {1899, 6353}}, {6340, 34405}}, {6389, 193}}, {6391, 56307}}, {8770, 56364}}, {34208, 57684}}, {39643, 3053}}, {40947, 19118}}, {41009, 54412}}, {41760, 21447}}, {44141, 6337}}, {60839, 56004}}, {61360, 62194}}


X(62543) = UNARY(12) OF X(7)

Barycentrics    (a + b - 3*c)*(a - b - c)^2*(a - 3*b + c)*(a^2 + b^2 - 2*b*c + c^2) : :

X(62543) lies on these lines: {4, 519}}, {341, 6556}}, {1088, 4373}}, {1738, 8056}}, {6557, 14942}}, {10563, 30286}}, {24392, 53594}}

X(62543) = X(i)-isoconjugate of X(j) for these (i,j): {1037, 1420}}, {3052, 56359}}, {8269, 8643}}
X(62543) = X(i)-Dao conjugate of X(j) for these (i,j): {4000, 145}}, {14936, 4394}}, {24151, 56359}}, {59619, 39126}}
X(62543) = barycentric product X(i)*X(j) for these {i,j}}: {497, 6557}}, {4000, 6556}}, {4012, 27818}}, {4319, 40014}}, {4373, 6554}}
X(62543) = barycentric quotient X(i)/X(j) for these {i,j}}: {497, 5435}}, {2082, 1420}}, {3680, 7131}}, {4012, 3161}}, {4319, 1743}}, {4373, 30705}}, {6554, 145}}, {6556, 30701}}, {6557, 8817}}, {8056, 56359}}, {17115, 4394}}, {27834, 8269}}, {28070, 3158}}, {30706, 3052}}


X(62544) = UNARY(12) OF X(8)

Barycentrics    (a^2 - 2*a*b + b^2 + 2*a*c + 2*b*c - 3*c^2)*(a^2 + b^2 - 2*b*c + c^2)*(a^2 + 2*a*b - 3*b^2 - 2*a*c + 2*b*c + c^2) : :

X(62544) lies on these lines: {312, 10405}}, {527, 3062}}, {673, 2898}}, {19605, 30827}}, {23062, 60831}}

X(62544) = X(i)-isoconjugate of X(j) for these (i,j): {144, 7084}}, {165, 7123}}, {3207, 56179}}
X(62544) = X(i)-Dao conjugate of X(j) for these (i,j): {6554, 144}}, {14936, 58835}}, {15487, 165}}, {18589, 21872}}
X(62544) = barycentric product X(i)*X(j) for these {i,j}}: {497, 36620}}, {614, 44186}}, {3062, 3673}}, {4000, 10405}}, {6554, 60831}}, {48403, 55284}}
X(62544) = barycentric quotient X(i)/X(j) for these {i,j}}: {614, 165}}, {1473, 22117}}, {3062, 56179}}, {3673, 16284}}, {3914, 21060}}, {4000, 144}}, {7195, 3160}}, {10405, 30701}}, {11051, 7123}}, {16502, 3207}}, {16583, 21872}}, {17115, 58835}}, {19605, 56243}}, {28017, 1419}}, {36620, 8817}}, {44186, 57925}}, {48398, 7658}}, {48403, 55285}}, {60831, 30705}}


X(62545) = UNARY(12) OF X(69)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 3*c^4)*(a^4 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + 2*a^2*b^2 - 3*b^4 - 2*a^2*c^2 + 2*b^2*c^2 + c^4) : :

X(62545) lies on these lines: {30, 64}}, {98, 459}}, {253, 305}}, {1073, 30771}}, {1093, 6526}}, {13854, 41489}}

X(62545) = X(610)-isoconjugate of X(56004)
X(62545) = X(i)-Dao conjugate of X(j) for these (i,j): {6389, 20}}, {14092, 56004}}, {14713, 154}}, {40839, 34405}}
X(62545) = barycentric product X(i)*X(j) for these {i,j}}: {64, 41760}}, {253, 3767}}, {459, 1899}}, {1632, 58759}}, {2184, 17871}}, {6389, 6526}}, {34403, 41762}}, {40947, 52581}}, {41009, 41489}}, {41530, 42295}}
X(62545) = barycentric quotient X(i)/X(j) for these {i,j}}: {64, 56004}}, {253, 42407}}, {459, 34405}}, {1632, 36841}}, {1899, 37669}}, {3767, 20}}, {17871, 18750}}, {39643, 35602}}, {40947, 15905}}, {41489, 56307}}, {41760, 14615}}, {41762, 1249}}, {42295, 154}}, {44326, 42297}}, {61349, 56364}}


X(62546) = UNARY(12) OF X(76)

Barycentrics    a^4*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(b^4 + c^4) : :

X(62546) lies on these lines: {4, 18022}}, {25, 694}}, {51, 460}}, {343, 5167}}, {427, 5103}}, {428, 524}}, {1974, 17409}}, {3051, 3080}}, {3852, 3981}}, {4173, 20859}}, {5140, 52281}}, {8265, 23209}}, {10551, 19130}}, {20965, 46522}}, {27369, 61346}}, {33728, 52967}}, {37894, 49122}}, {40368, 44162}}, {58260, 61334}}

X(62546) = polar conjugate of X(44165)
X(62546) = polar conjugate of the isotomic conjugate of X(8265)
X(62546) = polar conjugate of the isogonal conjugate of X(44164)
X(62546) = X(i)-isoconjugate of X(j) for these (i,j): {48, 44165}}, {63, 38830}}, {69, 38847}}, {304, 40416}}, {9247, 44163}}, {38826, 40364}}
X(62546) = X(i)-Dao conjugate of X(j) for these (i,j): {626, 69}}, {1249, 44165}}, {3162, 38830}}, {8265, 40050}}
X(62546) = crossdifference of every pair of points on line {22159, 23148}}
X(62546) = barycentric product X(i)*X(j) for these {i,j}}: {4, 8265}}, {19, 2085}}, {25, 20859}}, {264, 44164}}, {393, 4173}}, {626, 1974}}, {1824, 16717}}, {1973, 4118}}, {2052, 23209}}, {2207, 20819}}, {3118, 32085}}, {4121, 36417}}, {8023, 18022}}, {16890, 27369}}, {16893, 61383}}, {40016, 46509}}, {44162, 44166}}, {46288, 46508}}
X(62546) = barycentric quotient X(i)/X(j) for these {i,j}}: {4, 44165}}, {25, 38830}}, {264, 44163}}, {626, 40050}}, {1973, 38847}}, {1974, 40416}}, {2085, 304}}, {3118, 3933}}, {4118, 40364}}, {4173, 3926}}, {8023, 184}}, {8265, 69}}, {8743, 38842}}, {20859, 305}}, {23209, 394}}, {44162, 38826}}, {44164, 3}}, {44166, 40360}}, {46508, 52568}}, {46509, 3051}}


X(62547) = UNARY(12) OF X(85)

Barycentrics    a^2*(a - b - c)^3*(a^2*b^2 - 2*a*b^3 + b^4 + 2*a*b^2*c - 2*b^3*c + a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2 - 2*a*c^3 - 2*b*c^3 + c^4) : :

X(62547) lies on these lines: {8, 6063}}, {72, 12397}}, {200, 14943}}, {210, 52562}}, {527, 3059}}, {3022, 28070}}, {4012, 4111}}

X(62547) = X(21258)-Dao conjugate of X(7)
X(62547) = barycentric product X(i)*X(j) for these {i,j}}: {346, 39789}}, {480, 21258}}, {728, 21346}}, {5423, 23653}}, {6602, 21436}}
X(62547) = barycentric quotient X(i)/X(j) for these {i,j}}: {21258, 57880}}, {21346, 23062}}, {22440, 30682}}, {23653, 479}}, {39789, 279}}


X(62548) = UNARY(12) OF X(86)

Barycentrics    b*c*(b + c)^2*(2*a^2 + 2*a*b + b^2 + 2*a*c + c^2) : :
X(62548) = 3 X[17163] - X[33090]

X(62548) lies on these lines: {10, 42710}}, {75, 873}}, {321, 1109}}, {519, 2650}}, {740, 3920}}, {1089, 6538}}, {2643, 15523}}, {3263, 4967}}, {3720, 57040}}, {4101, 42005}}, {4418, 6043}}, {6757, 60139}}, {17015, 49598}}, {17163, 33090}}, {17441, 20902}}, {20360, 33081}}, {20627, 33935}}, {20911, 33145}}, {23944, 25957}}, {50312, 56564}}

X(62548) = reflection of X(17015) in X(49598)
X(62548) = X(i)-Dao conjugate of X(j) for these (i,j): {6537, 757}}, {17045, 1}}
X(62548) = barycentric product X(i)*X(j) for these {i,j}}: {75, 6537}}, {274, 21705}}, {313, 6155}}, {321, 6536}}, {561, 61324}}, {1089, 17045}}, {6358, 41002}}
X(62548) = barycentric quotient X(i)/X(j) for these {i,j}}: {6155, 58}}, {6536, 81}}, {6537, 1}}, {17045, 757}}, {21705, 37}}, {41002, 2185}}, {61324, 31}}


X(62549) = UNARY(12) OF X(264)

Barycentrics    a^4*(a^2 - b^2 - c^2)^3*(a^4*b^4 - 2*a^2*b^6 + b^8 + 2*a^2*b^4*c^2 - 2*b^6*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + 2*b^4*c^4 - 2*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(62549) lies on these lines: {30, 5562}}, {69, 8795}}, {394, 6638}}, {426, 34980}}, {1092, 19210}}, {3917, 41008}}, {6752, 13409}}, {37671, 62347}}, {45200, 52463}}

X(62549) = barycentric product X(i)*X(j) for these {i,j}}: {394, 13409}}, {3926, 6752}}, {4176, 61334}}
X(62549) = barycentric quotient X(i)/X(j) for these {i,j}}: {6752, 393}}, {13409, 2052}}, {21638, 8794}}, {61334, 6524}}


X(62550) = UNARY(20) OF X(274)

Barycentrics    a^3*(b + c)^2*(a^2*b^2 + 2*a*b^2*c + a^2*c^2 + 2*a*b*c^2 + 2*b^2*c^2) : :

X(62550) lies on these lines: {1, 873}}, {42, 2107}}, {536, 2667}}, {1962, 3009}}


X(62551) = X(2)-CEVA CONJUGATE OF X(5664)

Barycentrics    (b^2 - c^2)^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2) : :
X(62551) = 2 X[2407] - 3 X[45331], 4 X[24975] - 3 X[45331], 3 X[868] - 2 X[38393], 2 X[35345] - 3 X[45662]

X(62551) lies on these lines: {2, 6}, {3, 5877}, {4, 2453}, {25, 47150}, {30, 53274}, {50, 340}, {67, 98}, {76, 18375}, {114, 5181}, {115, 127}, {125, 9003}, {147, 2930}, {187, 45312}, {264, 9220}, {297, 16237}, {381, 50146}, {403, 35908}, {468, 23347}, {511, 57603}, {523, 868}, {526, 53132}, {635, 59161}, {636, 59160}, {648, 60739}, {895, 30789}, {1494, 1989}, {1503, 7422}, {1513, 32113}, {1514, 52488}, {1561, 53568}, {1632, 10722}, {1634, 51872}, {1650, 38401}, {2076, 50436}, {2088, 5664}, {2794, 41359}, {2966, 51894}, {3134, 12079}, {3258, 16186}, {3260, 34827}, {3454, 18120}, {3564, 52772}, {5099, 57604}, {5648, 6054}, {5984, 25335}, {6036, 32257}, {6791, 12037}, {7202, 8287}, {7417, 16320}, {7669, 9862}, {7737, 40856}, {7908, 52036}, {9140, 48984}, {9204, 30465}, {9205, 30468}, {9717, 16319}, {9971, 9993}, {10257, 39371}, {10718, 48981}, {11007, 46127}, {11646, 48982}, {12367, 43460}, {14165, 57487}, {14357, 47326}, {14694, 46986}, {14731, 18867}, {16080, 34568}, {16303, 44216}, {16310, 40996}, {16321, 50707}, {18311, 23992}, {18320, 44769}, {18907, 44649}, {20975, 53575}, {21906, 45212}, {23288, 51258}, {25328, 31127}, {26451, 44673}, {29181, 57611}, {31173, 46067}, {32269, 57627}, {32458, 36792}, {33228, 52756}, {33927, 47348}, {34212, 60040}, {35345, 45662}, {35442, 53577}, {35520, 54395}, {35923, 44526}, {40885, 47275}, {44576, 58875}, {47228, 50188}, {53161, 62508}, {53329, 56962}, {53348, 53493}, {54837, 59145}, {62335, 62347}

X(62551) = midpoint of X(i) and X(j) for these {i,j}: {1494, 51228}, {35520, 54395}
X(62551) = reflection of X(i) in X(j) for these {i,j}: {2407, 24975}, {45331, 2}
X(62551) = isotomic conjugate of X(39295)
X(62551) = complement of X(2407)
X(62551) = anticomplement of X(24975)
X(62551) = complement of the isogonal conjugate of X(2433)
X(62551) = complement of the isotomic conjugate of X(2394)
X(62551) = isotomic conjugate of the isogonal conjugate of X(2088)
X(62551) = isotomic conjugate of the polar conjugate of X(35235)
X(62551) = polar conjugate of the isogonal conjugate of X(16186)
X(62551) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 57128}, {31, 5664}, {74, 4369}, {163, 31945}, {213, 57046}, {661, 113}, {798, 3163}, {1400, 57095}, {1402, 57228}, {1494, 42327}, {1973, 14401}, {2159, 523}, {2349, 512}, {2394, 2887}, {2433, 10}, {2624, 31378}, {3708, 16177}, {8749, 8062}, {12079, 21253}, {14380, 18589}, {16080, 21259}, {18808, 20305}, {32640, 16598}, {32695, 23998}, {32715, 16599}, {33805, 23301}, {36034, 620}, {36119, 30476}, {36131, 5972}, {40352, 14838}, {40354, 16612}, {44769, 21254}
X(62551) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 5664}, {95, 62173}, {323, 41078}, {340, 526}, {1494, 523}, {2986, 525}, {3260, 55121}, {3936, 32679}, {7799, 3268}, {9141, 690}, {11078, 23871}, {11092, 23870}, {14165, 44427}, {20573, 850}, {37802, 8552}, {41804, 6370}, {54837, 2394}, {55032, 512}, {57829, 15470}, {60251, 57066}
X(62551) = X(i)-isoconjugate of X(j) for these (i,j): {31, 39295}, {94, 23995}, {110, 32678}, {112, 36061}, {162, 32662}, {163, 476}, {661, 58979}, {662, 14560}, {1101, 1989}, {1576, 32680}, {2166, 23357}, {2173, 15395}, {6149, 23588}, {6742, 32671}, {8818, 9274}, {11060, 24041}, {14559, 36142}, {24000, 50433}, {32661, 36129}, {32676, 60053}, {34072, 46155}, {36034, 41392}
X(62551) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 39295}, {115, 476}, {125, 32662}, {244, 32678}, {523, 1989}, {526, 50}, {647, 265}, {1084, 14560}, {1637, 30}, {1649, 56395}, {2088, 15329}, {2501, 52415}, {3005, 11060}, {3258, 41392}, {3268, 7809}, {3700, 6740}, {4858, 32680}, {5664, 2}, {6334, 3580}, {8287, 37140}, {8552, 11064}, {8562, 56404}, {10413, 47053}, {11597, 23357}, {14401, 51254}, {14838, 24624}, {14993, 23588}, {15295, 23966}, {15449, 46155}, {15526, 60053}, {16221, 112}, {17433, 1625}, {18314, 94}, {18334, 110}, {23285, 328}, {23870, 11092}, {23871, 11078}, {23992, 14559}, {34544, 1101}, {34591, 36061}, {35443, 14}, {35444, 13}, {36830, 58979}, {36896, 15395}, {36901, 35139}, {38993, 5994}, {38994, 5995}, {39021, 41512}, {40604, 249}, {43961, 23896}, {43962, 23895}, {47230, 403}, {47898, 36309}, {47899, 36306}, {52584, 18883}, {55071, 14966}, {55267, 14356}, {57295, 56399}, {60342, 6}
X(62551) = cevapoint of X(2088) and X(16186)
X(62551) = trilinear pole of line {3258, 53132}
X(62551) = crossdifference of every pair of points on line {512, 1576}
X(62551) = barycentric product X(i)*X(j) for these {i,j}: {50, 23962}, {69, 35235}, {76, 2088}, {115, 7799}, {125, 340}, {186, 339}, {264, 16186}, {298, 30468}, {299, 30465}, {300, 52343}, {301, 52342}, {320, 21054}, {323, 338}, {523, 3268}, {525, 44427}, {526, 850}, {758, 17886}, {1273, 8901}, {1494, 3258}, {1577, 32679}, {1989, 23965}, {2394, 5664}, {2501, 45792}, {2610, 18160}, {2611, 35550}, {2624, 20948}, {2970, 52437}, {3260, 56792}, {3267, 47230}, {3936, 8287}, {4089, 7206}, {4467, 6370}, {4707, 7265}, {5466, 45808}, {5641, 53132}, {6148, 12079}, {6149, 23994}, {6741, 41804}, {7202, 61410}, {8552, 14618}, {9213, 35522}, {10411, 23105}, {11078, 43961}, {11092, 43962}, {14165, 15526}, {14270, 44173}, {14355, 62431}, {14918, 53576}, {15412, 41078}, {16221, 57829}, {16732, 42701}, {18334, 20573}, {20902, 52414}, {20924, 21824}, {23870, 23871}, {34767, 62172}, {36793, 52418}, {39495, 56981}, {44814, 52632}
X(62551) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 39295}, {50, 23357}, {74, 15395}, {110, 58979}, {115, 1989}, {125, 265}, {136, 52415}, {186, 250}, {323, 249}, {338, 94}, {339, 328}, {340, 18020}, {512, 14560}, {523, 476}, {525, 60053}, {526, 110}, {647, 32662}, {656, 36061}, {661, 32678}, {690, 14559}, {826, 46155}, {850, 35139}, {868, 14356}, {1109, 2166}, {1577, 32680}, {1637, 41392}, {1640, 23968}, {1648, 56395}, {1650, 51254}, {1989, 23588}, {2081, 1625}, {2088, 6}, {2394, 39290}, {2411, 30528}, {2605, 36069}, {2611, 759}, {2624, 163}, {2970, 6344}, {3124, 11060}, {3258, 30}, {3268, 99}, {3269, 50433}, {5489, 43083}, {5664, 2407}, {6070, 34209}, {6137, 5994}, {6138, 5995}, {6149, 1101}, {6370, 6742}, {6741, 6740}, {7265, 47318}, {7799, 4590}, {8029, 15475}, {8287, 24624}, {8552, 4558}, {8562, 47053}, {8754, 18384}, {8901, 1141}, {9213, 691}, {10411, 59152}, {10413, 56404}, {11060, 23966}, {11078, 57579}, {11092, 57580}, {12079, 5627}, {14165, 23582}, {14270, 1576}, {14355, 57742}, {14590, 47443}, {14618, 46456}, {14838, 37140}, {14998, 23969}, {15453, 35189}, {15470, 10420}, {16186, 3}, {16221, 403}, {17104, 9274}, {17886, 14616}, {18334, 50}, {18593, 35049}, {19223, 20123}, {19627, 23963}, {20573, 57546}, {20975, 52153}, {20982, 34079}, {21054, 80}, {21824, 2161}, {22094, 57736}, {22115, 47390}, {23105, 10412}, {23108, 62173}, {23283, 36839}, {23284, 36840}, {23870, 23896}, {23871, 23895}, {23962, 20573}, {23965, 7799}, {24006, 36129}, {30460, 36211}, {30463, 36210}, {30465, 14}, {30467, 30469}, {30468, 13}, {30470, 30466}, {32679, 662}, {34397, 57655}, {35235, 4}, {36189, 53768}, {39495, 56980}, {40214, 9273}, {41078, 14570}, {42701, 4567}, {43961, 11092}, {43962, 11078}, {44427, 648}, {44814, 5467}, {45792, 4563}, {45808, 5468}, {47230, 112}, {47414, 3284}, {51663, 26700}, {52342, 16}, {52343, 15}, {52418, 23964}, {52628, 43084}, {52743, 2420}, {53132, 542}, {53524, 52380}, {53527, 13486}, {55071, 47049}, {55121, 41512}, {55130, 7471}, {56792, 74}, {58261, 14254}, {60009, 38414}, {60010, 38413}, {60342, 15329}, {60777, 2715}, {62172, 4240}, {62173, 52603}
X(62551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 40879}, {2, 2407, 24975}, {141, 18122, 2}, {2407, 24975, 45331}


X(62552) = X(2)-CEVA CONJUGATE OF X(27918)

Barycentrics    (b - c)*(-a^2 + b*c)*(-(a*b) + b^2 - a*c + c^2) : :
2 X[4444] - 3 X[36848], 4 X[25381] - 3 X[36848], 2 X[4375] - 3 X[4448], 3 X[4448] - 4 X[27929]

X(62552) lies on these lines: {2, 650}, {10, 514}, {120, 2977}, {348, 3669}, {513, 3789}, {524, 53535}, {649, 56509}, {659, 812}, {661, 1211}, {824, 24326}, {884, 1001}, {905, 2275}, {918, 2254}, {1577, 16589}, {1643, 17023}, {1734, 12782}, {2526, 47945}, {3004, 4988}, {3177, 4462}, {3452, 3835}, {3496, 4063}, {3762, 6184}, {4140, 21225}, {4148, 43041}, {4364, 24457}, {4380, 50452}, {4391, 6376}, {4560, 16705}, {4728, 6009}, {4776, 31992}, {4777, 24357}, {4785, 50358}, {4804, 50347}, {5257, 23810}, {5698, 6008}, {6002, 37425}, {6548, 47880}, {6554, 20317}, {7212, 27951}, {8760, 36474}, {9015, 55969}, {9318, 24410}, {9320, 56542}, {14077, 36479}, {14475, 47784}, {16751, 18601}, {17080, 43051}, {17496, 21226}, {17920, 17924}, {20949, 23739}, {20954, 21960}, {21204, 48399}, {21530, 52599}, {22325, 50487}, {24141, 42462}, {24331, 48295}, {27345, 52358}, {27918, 39786}, {28651, 47675}, {28840, 49717}, {28846, 50359}, {28859, 47946}, {28878, 48073}, {28882, 47885}, {28894, 47693}, {28898, 49447}, {29066, 36480}, {30520, 50335}, {35092, 35094}, {36531, 47724}, {36534, 47729}, {40627, 48131}, {44009, 48548}, {45666, 48090}, {47666, 48095}, {47831, 48226}, {48094, 50454}, {48098, 48191}, {51989, 62324}

X(62552) = reflection of X(i) in X(j) for these {i,j}: {4010, 4486}, {4375, 27929}, {4444, 25381}, {24457, 4364}
X(62552) = complement of the isogonal conjugate of X(2284)
X(62552) = complement of the isotomic conjugate of X(42720)
X(62552) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2113, 150}, {18264, 39362}, {18783, 149}, {41528, 4440}
X(62552) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 27918}, {41, 17435}, {100, 20335}, {101, 518}, {190, 20544}, {241, 17059}, {518, 116}, {672, 11}, {692, 3008}, {883, 17046}, {1025, 2886}, {1026, 141}, {1110, 918}, {1252, 3716}, {1458, 4904}, {2149, 676}, {2223, 1086}, {2283, 142}, {2284, 10}, {2340, 26932}, {2428, 4847}, {3286, 17761}, {3693, 124}, {3912, 21252}, {3930, 125}, {3932, 21253}, {3939, 34852}, {4238, 34830}, {4564, 926}, {4570, 24285}, {7084, 62429}, {9454, 1015}, {9455, 6377}, {14439, 3259}, {18206, 53564}, {20683, 8287}, {20752, 2968}, {32739, 3290}, {39258, 115}, {41353, 21258}, {42079, 35094}, {42720, 2887}, {46388, 46101}, {52635, 3756}, {53552, 5519}, {54325, 2}, {54353, 3739}
X(62552) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 27918}, {257, 17435}, {274, 62429}, {514, 918}, {668, 518}, {693, 4010}, {4554, 350}, {30610, 33891}, {32041, 3797}, {54118, 4037}
X(62552) = X(i)-isoconjugate of X(j) for these (i,j): {100, 51866}, {101, 52030}, {105, 813}, {291, 919}, {292, 36086}, {335, 32666}, {660, 1438}, {666, 1911}, {673, 34067}, {692, 52209}, {927, 51858}, {1415, 33676}, {1922, 51560}, {3572, 5377}, {4584, 56853}, {4876, 32735}, {5378, 43929}, {7077, 36146}, {14598, 36803}, {18265, 34085}
X(62552) = X(i)-Dao conjugate of X(j) for these (i,j): {665, 513}, {1015, 52030}, {1086, 52209}, {1146, 33676}, {2238, 100}, {3716, 650}, {3912, 190}, {6184, 660}, {6651, 666}, {8054, 51866}, {17435, 22116}, {17755, 4562}, {18277, 36803}, {19557, 36086}, {27918, 2}, {35094, 335}, {35119, 673}, {38980, 291}, {38989, 292}, {39014, 7077}, {39028, 51560}, {39029, 919}, {39046, 813}, {40623, 105}
X(62552) = crossdifference of every pair of points on line {292, 1438}
X(62552) = barycentric product X(i)*X(j) for these {i,j}: {239, 918}, {350, 2254}, {514, 17755}, {518, 3766}, {522, 39775}, {659, 3263}, {665, 1921}, {668, 38989}, {693, 8299}, {740, 23829}, {812, 3912}, {874, 3675}, {883, 4124}, {926, 18033}, {1447, 50333}, {3573, 62429}, {3685, 43042}, {3716, 9436}, {3717, 43041}, {3975, 53544}, {4010, 30941}, {4087, 53539}, {4088, 33295}, {4375, 40217}, {4391, 34253}, {4435, 40704}, {4444, 27919}, {6654, 53583}, {15149, 24459}, {18157, 21832}, {20778, 46107}, {22116, 27855}, {24290, 30940}, {27918, 42720}, {27951, 40781}, {35519, 51329}, {39786, 55260}, {40717, 53550}
X(62552) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 36086}, {239, 666}, {350, 51560}, {513, 52030}, {514, 52209}, {518, 660}, {522, 33676}, {649, 51866}, {659, 105}, {665, 292}, {672, 813}, {812, 673}, {918, 335}, {926, 7077}, {1026, 5378}, {1428, 32735}, {1429, 36146}, {1447, 927}, {1914, 919}, {1921, 36803}, {2210, 32666}, {2223, 34067}, {2254, 291}, {3126, 22116}, {3263, 4583}, {3573, 5377}, {3675, 876}, {3685, 36802}, {3716, 14942}, {3717, 36801}, {3766, 2481}, {3912, 4562}, {4010, 13576}, {4088, 43534}, {4124, 885}, {4148, 6559}, {4375, 6654}, {4435, 294}, {4455, 56853}, {4839, 14625}, {8299, 100}, {8632, 1438}, {8638, 18265}, {10030, 34085}, {14433, 36816}, {17755, 190}, {18033, 46135}, {18157, 4639}, {18206, 4584}, {20778, 1331}, {21832, 18785}, {22384, 36057}, {23829, 18827}, {27846, 1027}, {27919, 3570}, {30665, 52029}, {30941, 4589}, {34253, 651}, {38989, 513}, {39775, 664}, {39786, 55261}, {43041, 56783}, {43042, 7233}, {46388, 51858}, {50333, 4518}, {51329, 109}, {53550, 295}, {53553, 18787}, {53583, 40217}
X(62552) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1491, 48103, 4824}, {1491, 48143, 48007}, {4375, 27929, 4448}, {4444, 25381, 36848}


X(62553) = X(2)-CEVA CONJUGATE OF X(3948)

Barycentrics    b*c*(-a^2 + b*c)*(-(a*b^2) + b^2*c - a*c^2 + b*c^2) : :

X(62553) lies on the cubic K996 and these lines: {2, 1978}, {8, 52658}, {10, 38995}, {39, 40034}, {75, 141}, {192, 646}, {239, 1966}, {244, 3741}, {304, 30054}, {321, 20433}, {350, 56655}, {668, 33888}, {670, 37128}, {700, 2228}, {726, 52043}, {740, 20356}, {812, 3766}, {874, 4366}, {1368, 2968}, {1575, 35538}, {1921, 3797}, {1999, 19816}, {3125, 30026}, {3666, 59570}, {3739, 26979}, {3912, 20501}, {4087, 33891}, {4699, 10472}, {4858, 18697}, {5515, 20551}, {6374, 24598}, {6376, 27481}, {6383, 24621}, {6651, 39044}, {16586, 27951}, {17760, 20899}, {17793, 20681}, {18149, 19804}, {20332, 24502}, {20335, 20440}, {20345, 41842}, {20431, 20432}, {20484, 20542}, {20496, 53600}, {20892, 20895}, {20936, 41771}, {21248, 30179}, {21433, 52882}, {21435, 29960}, {21830, 27044}, {23688, 59565}, {27076, 27808}, {29974, 33939}, {31348, 62234}, {34021, 40773}

X(62553) = midpoint of X(75) and X(4033)
X(62553) = complement of X(27809)
X(62553) = isotomic conjugate of the isogonal conjugate of X(17475)
X(62553) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3948}, {58, 20530}, {81, 20340}, {86, 20549}, {662, 6373}, {726, 21245}, {1333, 726}, {1463, 17052}, {1575, 3454}, {3009, 1211}, {3837, 21253}, {6373, 8287}, {17475, 45162}, {18268, 40533}, {18792, 141}, {20663, 46842}, {20777, 440}, {20785, 21530}, {20908, 53575}, {21760, 1213}, {22092, 34846}, {51864, 21024}, {57129, 27846}
X(62553) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3948}, {75, 726}, {670, 6373}, {1978, 3766}
X(62553) = X(i)-isoconjugate of X(j) for these (i,j): {291, 34077}, {292, 727}, {813, 23355}, {1911, 20332}, {1922, 3226}, {3253, 51856}, {14598, 32020}, {18268, 18793}
X(62553) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 33680}, {726, 52656}, {1575, 1}, {1966, 3253}, {3837, 1015}, {3948, 2}, {6651, 20332}, {17793, 292}, {18277, 32020}, {19557, 727}, {20532, 291}, {22116, 52205}, {27846, 649}, {35068, 18793}, {39028, 3226}, {39029, 34077}, {40623, 23355}
X(62553) = barycentric product X(i)*X(j) for these {i,j}: {75, 17793}, {76, 17475}, {238, 35538}, {239, 52043}, {310, 20681}, {350, 726}, {561, 20663}, {874, 3837}, {1463, 4087}, {1575, 1921}, {1969, 20750}, {3009, 18891}, {3570, 20908}, {3596, 8850}, {3766, 23354}, {3975, 43040}, {6376, 56663}, {18277, 40782}, {18792, 35544}, {21760, 44169}, {52656, 56660}
X(62553) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 727}, {239, 20332}, {350, 3226}, {659, 23355}, {726, 291}, {740, 18793}, {874, 8709}, {1575, 292}, {1914, 34077}, {1921, 32020}, {3009, 1911}, {3685, 8851}, {3837, 876}, {3948, 27809}, {3975, 36799}, {6373, 875}, {6376, 33680}, {8850, 56}, {17475, 6}, {17793, 1}, {18792, 741}, {19579, 40755}, {20532, 52656}, {20663, 31}, {20681, 42}, {20750, 48}, {20785, 2196}, {20908, 4444}, {21760, 1922}, {23354, 660}, {35538, 334}, {38367, 1919}, {39044, 3253}, {52043, 335}, {52656, 52205}, {56663, 87}, {59724, 40794}
X(62553) = {X(1921),X(3797)}-harmonic conjugate of X(3948)


X(62554) = X(2)-CEVA CONJUGATE OF X(105)

Barycentrics    a*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^5 - a^4*b + 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 - b^5 - a^4*c + a^3*b*c - 2*a^2*b^2*c + a*b^3*c + b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 - 2*a^2*c^3 + a*b*c^3 + a*c^4 + b*c^4 - c^5) : :

X(62554) lies on these lines: {2, 56899}, {105, 910}, {294, 3008}, {650, 57116}, {666, 3263}, {4071, 40869}, {5089, 8751}, {5276, 9318}, {5452, 51961}, {10712, 35113}, {16588, 36258}, {56900, 57494}

X(62554) = complement of the isogonal conjugate of X(20468)
X(62554) = complement of the isotomic conjugate of X(20344)
X(62554) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 105}, {16550, 141}, {20344, 2887}, {20445, 626}, {20468, 10}, {20495, 21245}, {20516, 21252}, {20714, 3454}, {20740, 18589}
X(62554) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 105}, {56899, 294}
X(62554) = X(3912)-isoconjugate of X(34183)
X(62554) = X(105)-Dao conjugate of X(2)
X(62554) = barycentric product X(i)*X(j) for these {i,j}: {105, 20344}, {673, 16550}, {1438, 20445}, {2481, 20468}, {20516, 36086}, {20740, 54235}
X(62554) = barycentric quotient X(i)/X(j) for these {i,j}: {16550, 3912}, {20344, 3263}, {20468, 518}, {20714, 3932}, {20740, 25083}
X(62554) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3290, 41934, 105}, {3290, 51922, 41934}


X(62555) = X(99)-CEVA CONJUGATE OF X(325)

Barycentrics    (b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)^2 : :

X(62555) lies on the Kiepert parabola and these lines: {2, 2419}, {22, 669}, {69, 523}, {76, 5489}, {99, 6035}, {141, 62384}, {297, 55275}, {311, 3267}, {316, 58346}, {325, 23350}, {525, 2395}, {850, 2528}, {868, 62431}, {877, 2396}, {1225, 15415}, {1649, 3268}, {2394, 52713}, {2407, 18311}, {2799, 3569}, {3233, 5468}, {5466, 60201}, {5664, 6390}, {8371, 30474}, {9168, 38918}, {9479, 19571}, {9723, 57069}, {10190, 58766}, {11185, 42733}, {15589, 53383}, {20403, 24974}, {23642, 23881}, {41298, 42052}, {44010, 46944}

X(62555) = reflection of X(62384) in X(141)
X(62555) = isotomic conjugate of X(41173)
X(62555) = isotomic conjugate of the isogonal conjugate of X(41167)
X(62555) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {9473, 21294}, {34130, 21221}
X(62555) = X(i)-Ceva conjugate of X(j) for these (i,j): {99, 325}, {32458, 35088}
X(62555) = X(i)-isoconjugate of X(j) for these (i,j): {31, 41173}, {163, 41932}, {248, 36104}, {293, 32696}, {798, 57562}, {1910, 2715}, {1933, 18858}, {1976, 36084}, {14601, 36036}, {32676, 47388}, {36132, 51542}
X(62555) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 41173}, {115, 41932}, {132, 32696}, {230, 60504}, {338, 60594}, {441, 60506}, {511, 1576}, {868, 51820}, {2679, 14601}, {2799, 523}, {5976, 2966}, {11672, 2715}, {15526, 47388}, {31998, 57562}, {34349, 45801}, {35088, 98}, {36901, 34536}, {38970, 6531}, {38987, 1976}, {39000, 248}, {39009, 51542}, {39039, 36104}, {39040, 36084}, {41167, 878}, {41172, 6}, {55267, 2395}, {57294, 14575}, {62431, 41760}
X(62555) = trilinear pole of line {35088, 59805}
X(62555) = crossdifference of every pair of points on line {1692, 1976}
X(62555) = barycentric product X(i)*X(j) for these {i,j}: {76, 41167}, {99, 35088}, {297, 6333}, {325, 2799}, {338, 15631}, {523, 32458}, {670, 59805}, {684, 44132}, {850, 36790}, {868, 2396}, {1502, 58262}, {2421, 62431}, {2967, 3267}, {3265, 36426}, {6393, 16230}, {11672, 44173}, {20948, 23996}, {46052, 57991}, {46888, 56981}, {51334, 52617}
X(62555) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 41173}, {99, 57562}, {114, 60504}, {232, 32696}, {240, 36104}, {297, 685}, {325, 2966}, {511, 2715}, {523, 41932}, {525, 47388}, {684, 248}, {850, 34536}, {868, 2395}, {877, 60179}, {1916, 18858}, {1959, 36084}, {2396, 57991}, {2421, 57742}, {2491, 14601}, {2799, 98}, {2967, 112}, {3569, 1976}, {6333, 287}, {6393, 17932}, {6530, 20031}, {9419, 14574}, {11672, 1576}, {15595, 60506}, {15631, 249}, {16230, 6531}, {17994, 57260}, {18314, 60594}, {23098, 14966}, {23996, 163}, {32458, 99}, {33569, 34396}, {35088, 523}, {36212, 43754}, {36426, 107}, {36790, 110}, {39469, 14600}, {41167, 6}, {41172, 878}, {44114, 2422}, {44132, 22456}, {44173, 57541}, {46052, 868}, {46238, 36036}, {46787, 53691}, {46807, 6037}, {46888, 56980}, {51334, 32713}, {51429, 52038}, {51543, 32716}, {55267, 51820}, {58262, 32}, {59805, 512}, {62431, 43665}


X(62556) = X(190)-CEVA CONJUGATE OF X(3006)

Barycentrics    (b - c)*(a*b^2 - b^3 + a*c^2 - c^3)^2 : :

X(62556) lies on the Yff parabola and these lines: {69, 514}, {649, 1759}, {3239, 21201}, {4024, 21070}, {4707, 53583}, {23757, 53582}

X(62556) = X(190)-Ceva conjugate of X(3006)
X(62556) = X(2224)-isoconjugate of X(32682)
X(62556) = X(i)-Dao conjugate of X(j) for these (i,j): {674, 32739}, {23887, 514}
X(62556) = barycentric product X(3006)*X(23887)
X(62556) = barycentric quotient X(i)/X(j) for these {i,j}: {674, 32682}, {23887, 675}, {57015, 36087}


X(62557) = X(2)-CEVA CONJUGATE OF X(335)

Barycentrics    (b^2 - a*c)*(a*b - c^2)*(-(a^3*b) + a^2*b^2 + a*b^3 - a^3*c - a^2*b*c + a*b^2*c - b^3*c + a^2*c^2 + a*b*c^2 - b^2*c^2 + a*c^3 - b*c^3) : :

X(62557) lies on these lines: {2, 40794}, {239, 292}, {291, 6542}, {334, 3948}, {335, 726}, {1911, 3507}, {1931, 4589}, {3252, 19584}, {3661, 22116}, {4583, 52043}, {6651, 9470}, {17230, 40217}, {17266, 52209}, {27481, 52656}, {29674, 52085}, {31349, 35123}

X(62557) = complement of the isogonal conjugate of X(52127)
X(62557) = complement of the isotomic conjugate of X(33888)
X(62557) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 335}, {2108, 141}, {20797, 18589}, {25381, 21252}, {27920, 20542}, {33888, 2887}, {52127, 10}, {52151, 626}
X(62557) = X(2)-Ceva conjugate of X(335)
X(62557) = X(238)-isoconjugate of X(2109)
X(62557) = X(i)-Dao conjugate of X(j) for these (i,j): {335, 2}, {9470, 2109}
X(62557) = barycentric product X(i)*X(j) for these {i,j}: {291, 52151}, {334, 2108}, {335, 33888}, {4562, 25381}, {18895, 52127}, {27920, 40098}, {33679, 52656}
X(62557) = barycentric quotient X(i)/X(j) for these {i,j}: {292, 2109}, {2108, 238}, {20797, 7193}, {25381, 812}, {27920, 4366}, {33888, 239}, {52127, 1914}, {52151, 350}
X(62557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3797, 30663, 335}, {3912, 40098, 335}


X(62558) = X(2)-CEVA CONJUGATE OF X(27846)

Barycentrics    a*(b - c)*(a^2 - b*c)*(a*b^2 - b^2*c + a*c^2 - b*c^2) : :
X(62558) = 2 X[3572] - 3 X[52745], 3 X[14433] - 4 X[27854], 3 X[14433] - 2 X[27855]

X(62558) lies on these lines: {2, 649}, {9, 20979}, {37, 513}, {192, 9294}, {238, 59488}, {514, 27481}, {661, 21838}, {798, 1213}, {812, 3766}, {1125, 3249}, {1281, 39059}, {1635, 14434}, {1646, 38979}, {3662, 21191}, {3768, 4370}, {4010, 46387}, {4063, 22224}, {4164, 8632}, {4368, 40614}, {4790, 38238}, {4979, 8027}, {5513, 20551}, {6373, 20681}, {16593, 20343}, {16738, 17217}, {16779, 23472}, {17458, 49509}, {20954, 24732}, {23892, 25055}, {24719, 46386}, {26979, 42327}, {27846, 38989}, {28470, 57050}, {44008, 48544}, {45882, 48050}

X(62558) = reflection of X(27855) in X(27854)
X(62558) = complement of the isotomic conjugate of X(23354)
X(62558) = isotomic conjugate of the isogonal conjugate of X(38367)
X(62558) = X(18795)-anticomplementary conjugate of X(150)
X(62558) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 27846}, {100, 20340}, {101, 20530}, {190, 20549}, {692, 726}, {726, 21252}, {765, 6373}, {1463, 17059}, {1575, 116}, {3009, 11}, {18792, 53564}, {20663, 38989}, {20777, 2968}, {21760, 1086}, {21830, 8287}, {23354, 2887}, {34067, 40533}, {54325, 22116}
X(62558) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 27846}, {190, 726}, {513, 6373}, {649, 21832}, {4598, 239}, {53648, 3783}
X(62558) = X(i)-isoconjugate of X(j) for these (i,j): {292, 8709}, {660, 20332}, {727, 4562}, {813, 3226}, {1922, 54985}, {4583, 34077}, {4584, 18793}, {32020, 34067}, {33680, 34071}
X(62558) = X(i)-Dao conjugate of X(j) for these (i,j): {1575, 668}, {3837, 514}, {3948, 1978}, {17793, 4562}, {19557, 8709}, {20532, 4583}, {27846, 2}, {35119, 32020}, {39028, 54985}, {40610, 33680}, {40623, 3226}
X(62558) = crossdifference of every pair of points on line {238, 660}
X(62558) = X(59488)-line conjugate of X(238)
X(62558) = barycentric product X(i)*X(j) for these {i,j}: {76, 38367}, {238, 3837}, {350, 6373}, {513, 17793}, {514, 17475}, {522, 8850}, {649, 62553}, {659, 726}, {693, 20663}, {812, 1575}, {874, 52633}, {1463, 3716}, {1914, 20908}, {3009, 3766}, {3573, 21140}, {4010, 18792}, {4083, 56663}, {4375, 52656}, {4435, 43040}, {4448, 36814}, {7192, 20681}, {8632, 52043}, {17924, 20750}, {23354, 27846}, {27855, 40155}
X(62558) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 8709}, {350, 54985}, {659, 3226}, {726, 4583}, {812, 32020}, {1575, 4562}, {3009, 660}, {3837, 334}, {4083, 33680}, {4435, 36799}, {4455, 18793}, {6373, 291}, {8632, 20332}, {8850, 664}, {17475, 190}, {17793, 668}, {18792, 4589}, {20663, 100}, {20681, 3952}, {20750, 1332}, {20908, 18895}, {21760, 813}, {21832, 27809}, {38367, 6}, {52633, 876}, {56663, 18830}, {62553, 1978}
X(62558) = {X(27854),X(27855)}-harmonic conjugate of X(14433)


X(62559) = X(2)-CEVA CONJUGATE OF X(21129)

Barycentrics    (3*a - b - c)*(b - c)^2*(a*b + b^2 + a*c - 4*b*c + c^2) : :

X(62559) lies on these lines: {2, 2415}, {1086, 1358}, {2885, 24443}, {3120, 5510}, {5516, 16185}, {12640, 23536}

X(62559) = complement of X(2415)
X(62559) = complement of the isogonal conjugate of X(2441)
X(62559) = complement of the isotomic conjugate of X(2403)
X(62559) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 21129}, {2403, 2887}, {2441, 10}, {4394, 121}, {8643, 16594}, {9456, 3667}, {23345, 21255}, {31227, 21260}, {32719, 25097}
X(62559) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 21129}, {903, 3667}, {3264, 55138}
X(62559) = X(6079)-isoconjugate of X(34080)
X(62559) = X(i)-Dao conjugate of X(j) for these (i,j): {4521, 1120}, {14425, 519}, {16594, 5382}, {21129, 2}, {40621, 6079}
X(62559) = crossdifference of every pair of points on line {3939, 8643}
X(62559) = barycentric product X(i)*X(j) for these {i,j}: {903, 5516}, {1266, 3756}, {2403, 21129}, {3667, 4927}, {16711, 21950}, {23764, 61186}, {40617, 62297}
X(62559) = barycentric quotient X(i)/X(j) for these {i,j}: {3667, 6079}, {3756, 1120}, {4927, 53647}, {5516, 519}, {6085, 1293}, {16610, 5382}, {21129, 2415}, {23764, 23836}


X(62560) = X(2)-CEVA CONJUGATE OF X(6190)

Barycentrics    (2*a^2-b^2-c^2)*sqrt(-3*S^2+SW^2)+7*a^4-7*(b^2+c^2)*a^2+b^4+5*b^2*c^2+c^4 : :
X(62560) = 2 X[99] + X[6190], 4 X[2482] - X[6189], X[8591] + 2 X[39022]

X(62560) lies on on the Kiepert circumhyperbola of the medial triangle, the cubic K559, and these lines: {3, 47368}, {39, 51492}, {99, 1379}, {114, 6039}, {524, 2076}, {618, 47362}, {619, 47364}, {1649, 30508}, {2482, 6189}, {3414, 41134}, {8290, 51878}, {8591, 39022}, {38998, 46600}

X(62560) = midpoint of X(99) and X(57576)
X(62560) = reflection of X(6190) in X(57576)
X(62560) = complement of the isotomic conjugate of X(39366)
X(62560) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6190}, {39366, 2887}
X(62560) = X(2)-Ceva conjugate of X(6190)
X(62560) = X(6190)-Dao conjugate of X(2)
X(62560) = barycentric product X(6190)*X(39366)
X(62560) = barycentric quotient X(39366)/X(3413)


X(62561) = X(2)-CEVA CONJUGATE OF X(6189)

Barycentrics    2*a^8 - a^6*b^2 + a^4*b^4 - a^2*b^6 - a^6*c^2 - a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 + a^4*c^4 - a^2*b^2*c^4 + b^4*c^4 - a^2*c^6 + b^2*c^6 - Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]*(2*a^6 - a^2*b^4 - 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4) : :
X(62561) = 2 X[99] + X[6189], 4 X[2482] - X[6190], X[8591] + 2 X[39023]

X(62561) lies on the Kiepert circumhyperbola of the medial triangle, the cubic K559, and these lines: {3, 47367}, {39, 51493}, {99, 1380}, {114, 6040}, {524, 2076}, {618, 47361}, {619, 47363}, {1649, 30509}, {2482, 6190}, {3413, 41134}, {8290, 51876}, {8591, 39023}, {38998, 46601}

X(62561) = midpoint of X(99) and X(57575)
X(62561) = reflection of X(6189) in X(57575)
X(62561) = complement of the isotomic conjugate of X(39365)
X(62561) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6189}, {39365, 2887}
X(62561) = X(2)-Ceva conjugate of X(6189)
X(62561) = X(6189)-Dao conjugate of X(2)
X(62561) = barycentric product X(6189)*X(39365)
X(62561) = barycentric quotient X(39365)/X(3414)


X(62562) = X(2)-CEVA CONJUGATE OF X(2395)

Barycentrics    (b^2 - c^2)^2*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 + 3*a^6*c^2 + a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 3*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + 3*b^2*c^6) : :

X(62562) lies on these lines: {2, 14265}, {98, 4226}, {290, 2396}, {868, 879}, {1316, 34156}, {5050, 5967}, {5652, 56788}, {15271, 36822}, {20021, 53166}, {35922, 36874}, {36163, 56688}, {40820, 46512}

X(62562) = complement of X(46606)
X(62562) = X(31)-complementary conjugate of X(2395)
X(62562) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 2395}, {14265, 879}
X(62562) = X(i)-isoconjugate of X(j) for these (i,j): {662, 43942}, {23997, 46606}
X(62562) = X(i)-Dao conjugate of X(j) for these (i,j): {1084, 43942}, {2395, 2}
X(62562) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 43942}, {2395, 46606}


X(62563) = X(2)-CEVA CONJUGATE OF X(18311)

Barycentrics    (b^2 - c^2)^2*(a^2 - b^2 - c^2)*(a^4 - b^4 + b^2*c^2 - c^4) : :

X(62563) lies on these lines: {2, 3}, {98, 10749}, {113, 15595}, {115, 127}, {122, 5512}, {125, 14672}, {265, 287}, {316, 10317}, {399, 40867}, {625, 14961}, {671, 34897}, {1648, 45327}, {2373, 8791}, {2394, 43673}, {3284, 31173}, {5099, 18311}, {5103, 14965}, {5139, 53822}, {5664, 35088}, {6033, 40866}, {7773, 22120}, {7825, 10316}, {9862, 48681}, {11161, 32272}, {11641, 39842}, {11656, 32275}, {12358, 55071}, {14639, 57332}, {14689, 39838}, {14977, 51258}, {15359, 45321}, {17413, 39691}, {19662, 32257}, {23293, 38523}, {24975, 56389}, {31275, 40349}, {34217, 39847}, {34334, 36426}, {34981, 47413}, {35071, 35132}, {35968, 53992}, {37801, 60002}, {37804, 57481}, {39845, 53273}, {44821, 53570}, {53419, 54075}

X(62563) = midpoint of X(671) and X(52094)
X(62563) = reflection of X(54380) in X(5)
X(62563) = complement of X(4235)
X(62563) = orthocentroidal-circle-inverse of X(40856)
X(62563) = polar-circle-inverse of X(46619)
X(62563) = complement of the isogonal conjugate of X(10097)
X(62563) = complement of the isotomic conjugate of X(14977)
X(62563) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 18311}, {48, 1649}, {111, 8062}, {647, 16597}, {656, 126}, {661, 5181}, {671, 21259}, {810, 2482}, {895, 4369}, {897, 30476}, {923, 525}, {1577, 34517}, {3708, 5099}, {5466, 20305}, {9178, 226}, {10097, 10}, {14908, 14838}, {14977, 2887}, {23894, 5}, {30786, 42327}, {32729, 16599}, {32740, 16612}, {36060, 523}, {36128, 520}, {36142, 5972}, {51258, 21253}
X(62563) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 18311}, {83, 57203}, {316, 9517}, {671, 525}, {2373, 523}, {9141, 9033}, {37765, 9979}, {37801, 2492}, {40410, 57127}
X(62563) = X(i)-isoconjugate of X(j) for these (i,j): {163, 935}, {250, 2157}, {656, 58980}, {1101, 8791}, {17708, 32676}, {23995, 46105}, {36142, 60503}
X(62563) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 935}, {523, 8791}, {525, 34897}, {647, 67}, {2492, 468}, {5099, 112}, {9517, 10317}, {14417, 524}, {15526, 17708}, {18311, 2}, {18314, 46105}, {23285, 18019}, {23992, 60503}, {38971, 60507}, {40583, 250}, {40596, 58980}, {47138, 858}, {55048, 110}, {57295, 60496}
X(62563) = crossdifference of every pair of points on line {647, 1576}
X(62563) = barycentric product X(i)*X(j) for these {i,j}: {23, 339}, {115, 37804}, {125, 316}, {127, 37801}, {338, 22151}, {525, 9979}, {850, 9517}, {2373, 38971}, {2492, 3267}, {3708, 20944}, {4064, 21205}, {4466, 21094}, {5099, 30786}, {6333, 52076}, {6390, 10555}, {7664, 51258}, {8744, 36793}, {10317, 23962}, {10561, 45807}, {14977, 18311}, {15526, 37765}, {16568, 20902}, {18023, 47415}, {20975, 40074}, {35140, 57426}, {42659, 44173}, {52628, 57481}
X(62563) = barycentric quotient X(i)/X(j) for these {i,j}: {23, 250}, {112, 58980}, {115, 8791}, {125, 67}, {316, 18020}, {338, 46105}, {339, 18019}, {523, 935}, {525, 17708}, {690, 60503}, {2492, 112}, {3708, 2157}, {5099, 468}, {8744, 23964}, {9517, 110}, {9979, 648}, {10317, 23357}, {10555, 17983}, {15526, 34897}, {18311, 4235}, {18374, 57655}, {20944, 46254}, {20975, 3455}, {22151, 249}, {30491, 58953}, {33752, 4230}, {37765, 23582}, {37801, 44183}, {37804, 4590}, {38971, 858}, {42659, 1576}, {47138, 60507}, {47415, 187}, {51258, 10415}, {52076, 685}, {52628, 57496}, {52630, 47443}, {53569, 11605}, {55048, 10317}, {55142, 7473}, {55226, 55270}, {57426, 1503}, {58357, 47390}
X(62563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 40856}, {2, 35923, 3}, {2, 37350, 46067}, {115, 127, 339}, {381, 11799, 11251}, {441, 37350, 10297}, {868, 1650, 37987}, {868, 3150, 57606}, {868, 14120, 57604}, {868, 36189, 35235}, {1650, 37987, 57606}, {2454, 2455, 37987}, {3150, 37987, 1650}, {5000, 5001, 57632}, {14041, 15013, 18403}, {14063, 28405, 18404}, {28407, 32966, 10255}, {28697, 33229, 18563}, {47612, 47613, 57607}


X(62564) = X(2)-CEVA CONJUGATE OF X(306)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(-a^3 - a^2*b - a^2*c + b^2*c + b*c^2) : :

X(62564) lies on these lines: {2, 3670}, {9, 321}, {27, 190}, {37, 5294}, {63, 20336}, {71, 52369}, {72, 306}, {333, 42714}, {464, 1265}, {1213, 4054}, {1331, 1999}, {1453, 11346}, {1724, 2901}, {1759, 15487}, {3151, 16086}, {3159, 40940}, {3161, 3995}, {3175, 4370}, {3198, 49991}, {3219, 56564}, {3294, 40181}, {3701, 56803}, {3717, 4463}, {3977, 3998}, {4115, 5513}, {5256, 41249}, {5295, 11113}, {11679, 35615}, {17755, 19791}, {17776, 22021}, {21061, 42707}, {22001, 61410}, {26941, 56189}, {27540, 38015}, {32777, 56541}

X(62564) = complement of X(39700)
X(62564) = complement of the isogonal conjugate of X(5301)
X(62564) = complement of the isotomic conjugate of X(3187)
X(62564) = isotomic conjugate of the polar conjugate of X(2901)
X(62564) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 306}, {32, 46838}, {692, 29013}, {1724, 141}, {2901, 21245}, {3187, 2887}, {5301, 10}, {18147, 626}, {29013, 21252}, {32739, 43060}, {42463, 18589}, {50329, 21253}
X(62564) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 306}, {190, 29013}
X(62564) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15376}, {2203, 39700}, {29014, 57200}
X(62564) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15376}, {306, 2}
X(62564) = barycentric product X(i)*X(j) for these {i,j}: {69, 2901}, {72, 18147}, {190, 52599}, {306, 3187}, {313, 42463}, {1724, 20336}, {4561, 50329}, {5301, 40071}, {29013, 52609}
X(62564) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15376}, {306, 39700}, {1724, 28}, {2901, 4}, {3187, 27}, {3695, 56282}, {4574, 29014}, {5301, 1474}, {18147, 286}, {29013, 17925}, {42463, 58}, {50329, 7649}, {52599, 514}
X(62564) = {X(72),X(42706)}-harmonic conjugate of X(306)


X(62565) = X(2)-CEVA CONJUGATE OF X(307)

Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2)*(a^5 - a^4*b - a^3*b^2 + a^2*b^3 - a^4*c + b^4*c - a^3*c^2 - b^3*c^2 + a^2*c^3 - b^2*c^3 + b*c^4) : :

X(62565) lies on these lines: {1, 1441}, {29, 664}, {65, 50441}, {72, 307}, {78, 1231}, {223, 27413}, {224, 40719}, {226, 26605}, {1214, 22070}, {1813, 7176}, {3152, 16091}, {3160, 27382}, {6332, 59504}, {6505, 9312}, {8558, 46713}, {17056, 21049}, {40942, 59605}

X(62565) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 307}, {1754, 141}, {2175, 46839}, {3188, 17046}
X(62565) = X(2)-Ceva conjugate of X(307)
X(62565) = X(19)-isoconjugate of X(15393)
X(62565) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15393}, {307, 2}
X(62565) = barycentric product X(i)*X(j) for these {i,j}: {306, 3188}, {1231, 1754}
X(62565) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15393}, {1754, 1172}, {3188, 27}


X(62566) = X(2)-CEVA CONJUGATE OF X(21044)

Barycentrics    (a - b - c)*(b^2 - c^2)*(2*a^2 + a*b - b^2 + a*c + 2*b*c - c^2) : :
X(62566) = 2 X[7253] - 3 X[14432], 4 X[656] - 3 X[30574], 2 X[4036] - 3 X[14429], 3 X[11125] - 4 X[31947], 2 X[21186] - 3 X[47828], 4 X[14353] - 3 X[47887], X[23755] + 2 X[30604]

X(62566) lies on these lines: {2, 56321}, {513, 53562}, {520, 51659}, {522, 663}, {523, 656}, {647, 4024}, {2610, 4988}, {3005, 53558}, {3120, 38982}, {3738, 21106}, {4036, 14429}, {4516, 7336}, {4620, 35154}, {4777, 6129}, {4814, 8058}, {6089, 50330}, {6362, 6615}, {6591, 48277}, {6608, 42337}, {7658, 21186}, {14353, 47887}, {17420, 21132}, {21044, 57463}, {21118, 21189}, {23755, 30604}, {23757, 28183}, {33525, 42462}, {35091, 53560}, {42768, 60342}, {48264, 57158}

X(62566) = reflection of X(i) in X(j) for these {i,j}: {21118, 21189}, {21132, 17420}, {23752, 53527}, {48264, 57158}, {48278, 20294}, {55282, 4017}
X(62566) = complement of X(56321)
X(62566) = complement of the isogonal conjugate of X(53324)
X(62566) = complement of the isotomic conjugate of X(17136)
X(62566) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {9398, 33650}, {9399, 3448}
X(62566) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 21044}, {1333, 24224}, {1415, 58463}, {1576, 25081}, {2646, 124}, {2650, 125}, {3664, 21252}, {17056, 21253}, {17136, 2887}, {18698, 53575}, {21748, 26932}, {22003, 21245}, {22361, 123}, {53324, 10}, {53388, 1329}
X(62566) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 21044}, {6354, 53560}, {22003, 21811}, {41501, 3120}, {55091, 11}
X(62566) = X(i)-isoconjugate of X(j) for these (i,j): {108, 57668}, {109, 40430}, {110, 17097}, {162, 40442}, {1415, 60235}
X(62566) = X(i)-Dao conjugate of X(j) for these (i,j): {11, 40430}, {125, 40442}, {244, 17097}, {1146, 60235}, {5745, 664}, {17056, 99}, {21044, 2}, {24224, 55096}, {37836, 109}, {38983, 57668}, {40626, 57833}, {59602, 4573}
X(62566) = crossdifference of every pair of points on line {284, 1400}
X(62566) = barycentric product X(i)*X(j) for these {i,j}: {8, 23755}, {11, 22003}, {407, 6332}, {514, 21677}, {522, 17056}, {523, 5745}, {525, 40950}, {650, 18698}, {693, 21811}, {850, 21748}, {1577, 2646}, {2650, 4391}, {3664, 3700}, {3737, 42708}, {4560, 21674}, {6737, 7178}, {14618, 22361}, {16732, 53388}, {17136, 21044}, {30604, 30608}, {35154, 41182}
X(62566) = barycentric quotient X(i)/X(j) for these {i,j}: {407, 653}, {522, 60235}, {647, 40442}, {650, 40430}, {652, 57668}, {661, 17097}, {2646, 662}, {2650, 651}, {3664, 4573}, {5745, 99}, {6332, 57833}, {6737, 645}, {17056, 664}, {17136, 4620}, {18698, 4554}, {21044, 56321}, {21674, 4552}, {21677, 190}, {21748, 110}, {21811, 100}, {22003, 4998}, {22361, 4558}, {23755, 7}, {30604, 5219}, {40950, 648}, {41182, 2785}, {53324, 52378}, {53388, 4567}


X(62567) = X(2)-CEVA CONJUGATE OF X(21950)

Barycentrics    (3*a - b - c)*(b^2 - c^2)*(2*a^2 - a*b - 3*b^2 - a*c + 2*b*c - 3*c^2) : :

X(62567) lies on these lines: {523, 14429}, {647, 4120}, {3667, 4881}, {4778, 60493}, {4926, 31947}, {21196, 30764}

X(62567) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 21950}, {53598, 21252}
X(62567) = X(2)-Ceva conjugate of X(21950)
X(62567) = X(21950)-Dao conjugate of X(2)
X(62567) = crossdifference of every pair of points on line {7419, 17945}
X(62567) = barycentric product X(14321)*X(53598)


X(62568) = X(2)-CEVA CONJUGATE OF X(6791)

Barycentrics    (b^2 - c^2)*(a^2 - 2*b^2 - 2*c^2)*(5*a^2 - b^2 - c^2) : :
X(62568) = 2 X[8599] - 3 X[47587], 3 X[17414] - X[17436]

X(62568) lies on these lines: {2, 8599}, {125, 17416}, {512, 1649}, {523, 7625}, {647, 690}, {1499, 4786}, {2408, 11059}, {3258, 46657}, {3906, 4141}, {5094, 23288}, {5466, 42011}, {5996, 9168}, {8371, 55267}, {8562, 46953}, {9123, 13306}, {9185, 44560}, {9191, 23878}, {11156, 35275}, {23287, 31772}, {31654, 35133}, {32228, 32231}, {32473, 59927}, {34206, 52236}

X(62568) = midpoint of X(5996) and X(9168)
X(62568) = reflection of X(i) in X(j) for these {i,j}: {8644, 9125}, {9185, 44560}, {47587, 2}
X(62568) = complement of X(8599)
X(62568) = complement of the isogonal conjugate of X(9145)
X(62568) = complement of the isotomic conjugate of X(9146)
X(62568) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6791}, {163, 597}, {574, 8287}, {599, 21253}, {1101, 3906}, {3908, 3454}, {9145, 10}, {9146, 2887}, {17414, 24040}, {32583, 4892}, {36263, 125}
X(62568) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 6791}, {523, 3906}
X(62568) = X(i)-isoconjugate of X(j) for these (i,j): {1296, 55927}, {1383, 37216}, {11636, 55923}, {36045, 51541}
X(62568) = X(i)-Dao conjugate of X(j) for these (i,j): {599, 99}, {6791, 2}, {8542, 1296}, {11147, 35138}, {11165, 35179}, {17413, 21448}, {17416, 5485}, {31654, 51541}, {35133, 598}
X(62568) = crossdifference of every pair of points on line {1383, 1384}
X(62568) = barycentric product X(i)*X(j) for these {i,j}: {523, 11165}, {599, 1499}, {1992, 3906}, {2408, 39785}, {6791, 9146}, {8644, 9464}, {9125, 42008}, {11059, 17414}, {14207, 36263}, {23288, 27088}
X(62568) = barycentric quotient X(i)/X(j) for these {i,j}: {574, 1296}, {599, 35179}, {1384, 11636}, {1499, 598}, {1992, 35138}, {2408, 18818}, {3906, 5485}, {6791, 8599}, {8644, 1383}, {9125, 51541}, {11165, 99}, {17414, 21448}, {36263, 37216}, {39785, 2418}, {50729, 35356}, {62412, 57467}


X(62569) = X(2)-CEVA CONJUGATE OF X(11064)

Barycentrics    (a^2 - b^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(62569) lies on on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 2986}, {3, 125}, {39, 6388}, {69, 14919}, {99, 16080}, {113, 34104}, {114, 468}, {115, 58416}, {122, 41673}, {235, 15665}, {343, 6509}, {542, 40352}, {684, 1649}, {686, 6334}, {1272, 46808}, {1553, 11799}, {1560, 14966}, {1637, 5664}, {1648, 47406}, {2407, 14920}, {2482, 39021}, {3003, 3580}, {3265, 50567}, {3284, 11064}, {5642, 51457}, {5976, 62310}, {6337, 37643}, {6503, 26958}, {7493, 7710}, {7752, 43462}, {11165, 59211}, {12827, 15329}, {13567, 34990}, {15819, 30739}, {16238, 34835}, {18607, 26932}, {32227, 52169}, {36190, 53569}

X(62569) = midpoint of X(99) and X(54925)
X(62569) = isogonal conjugate of X(40388)
X(62569) = complement of X(2986)
X(62569) = complement of the isogonal conjugate of X(3003)
X(62569) = complement of the isotomic conjugate of X(3580)
X(62569) = isotomic conjugate of the isogonal conjugate of X(47405)
X(62569) = isotomic conjugate of the polar conjugate of X(113)
X(62569) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 13754}, {31, 11064}, {48, 10257}, {163, 55121}, {403, 20305}, {661, 3134}, {686, 34846}, {798, 2088}, {1725, 141}, {1755, 47049}, {1973, 16310}, {2148, 14156}, {2159, 6699}, {2173, 52010}, {2315, 3}, {2624, 56792}, {3003, 10}, {3580, 2887}, {9406, 56399}, {13754, 18589}, {15329, 4369}, {16237, 21259}, {18609, 3741}, {21731, 8287}, {44084, 226}, {51821, 18593}, {55121, 21253}, {60498, 4892}, {61188, 42327}, {61209, 8062}, {61372, 16577}, {62361, 34825}
X(62569) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 11064}, {69, 13754}, {99, 55121}, {4558, 41077}, {6148, 16163}
X(62569) = X(i)-isoconjugate of X(j) for these (i,j): {1, 40388}, {19, 10419}, {1300, 2159}, {1973, 40423}, {2433, 36114}, {8749, 36053}, {14910, 36119}, {15328, 36131}
X(62569) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 40388}, {6, 10419}, {30, 51965}, {113, 8749}, {1511, 14910}, {3003, 4}, {3163, 1300}, {3284, 38936}, {3580, 57487}, {6337, 40423}, {6699, 6128}, {11064, 2}, {16310, 56686}, {34834, 16080}, {38999, 61216}, {39005, 2433}, {39008, 15328}, {39021, 18808}, {39174, 40353}, {56399, 5627}
X(62569) = crossdifference of every pair of points on line {21731, 40352}
X(62569) = X(542)-line conjugate of X(40352)
X(62569) = barycentric product X(i)*X(j) for these {i,j}: {30, 62338}, {69, 113}, {76, 47405}, {2315, 46234}, {2407, 6334}, {3260, 13754}, {3580, 11064}, {4563, 55265}, {6148, 39170}, {9033, 61188}, {16237, 41077}, {34104, 57829}, {34333, 52552}, {34834, 57482}, {40697, 59497}, {44138, 51394}
X(62569) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 10419}, {6, 40388}, {30, 1300}, {69, 40423}, {113, 4}, {131, 56686}, {686, 2433}, {1511, 38936}, {1531, 58942}, {1568, 60035}, {1636, 61216}, {1725, 36119}, {2315, 2159}, {2407, 687}, {2420, 32708}, {2931, 40392}, {3003, 8749}, {3163, 51965}, {3284, 14910}, {3580, 16080}, {4563, 55264}, {5504, 39379}, {6334, 2394}, {9033, 15328}, {11064, 2986}, {12825, 38937}, {13754, 74}, {14391, 35361}, {15329, 1304}, {16163, 15454}, {16237, 15459}, {34104, 403}, {34333, 14264}, {34834, 57487}, {39170, 5627}, {40948, 51895}, {41077, 15421}, {47405, 6}, {51254, 12028}, {51394, 5504}, {55121, 18808}, {55265, 2501}, {57482, 40427}, {58940, 22455}, {59497, 254}, {61188, 16077}, {61209, 32695}, {62172, 14222}, {62338, 1494}
X(62569) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12827, 15329, 53568}, {40709, 40710, 6699}


X(62570) = X(2)-CEVA CONJUGATE OF X(1441)

Barycentrics    b*(-a + b - c)*(a + b - c)*c*(b + c)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - b^4*c - a^3*c^2 - 2*a*b^2*c^2 + b^3*c^2 - a^2*c^3 + b^2*c^3 + a*c^4 - b*c^4) : :

X(62570) lies on these lines: {21, 18026}, {226, 17451}, {307, 1210}, {331, 2476}, {349, 20880}, {442, 1441}, {2275, 3772}, {2475, 16090}, {2478, 6604}, {2973, 6842}, {3160, 59508}, {3721, 4415}, {17080, 44737}, {20621, 56827}, {52673, 58798}, {59575, 59603}

X(62570) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1441}, {18738, 626}, {22027, 21245}, {23171, 18589}, {23806, 21252}
X(62570) = X(2)-Ceva conjugate of X(1441)
X(62570) = X(1441)-Dao conjugate of X(2)
X(62570) = barycentric product X(i)*X(j) for these {i,j}: {85, 22027}, {226, 18738}, {23171, 52575}
X(62570) = barycentric quotient X(i)/X(j) for these {i,j}: {18738, 333}, {22027, 9}, {23171, 2193}, {23806, 3737}


X(62571) = X(2)-CEVA CONJUGATE OF X(4358)

Barycentrics    b*c*(-2*a + b + c)*(-(a^2*b) - a*b^2 - a^2*c + 2*a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(62571) lies on these lines: {2, 4033}, {10, 244}, {75, 4080}, {88, 668}, {120, 3006}, {321, 3452}, {899, 17793}, {1086, 1211}, {1150, 61235}, {1635, 3762}, {1647, 4783}, {2968, 21530}, {3264, 3943}, {3687, 40624}, {3752, 40603}, {4010, 14434}, {4728, 62553}, {4850, 6376}, {6377, 16589}, {6554, 17740}, {13466, 52043}, {16610, 59519}, {17495, 26844}, {18150, 19804}, {20235, 21432}, {20888, 40619}, {24593, 25298}, {24620, 40598}, {29576, 60288}, {31271, 36805}, {39028, 62234}, {39044, 42721}, {39996, 42026}, {46722, 57023}, {59736, 59737}

X(62571) = complement of X(39698)
X(62571) = complement of the isotomic conjugate of X(17495)
X(62571) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 49993}, {31, 4358}, {604, 1739}, {17495, 2887}, {23169, 18589}, {39995, 626}, {49997, 141}
X(62571) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 4358}, {4033, 3762}
X(62571) = X(4358)-Dao conjugate of X(2)
X(62571) = barycentric product X(i)*X(j) for these {i,j}: {75, 34587}, {519, 39995}, {3264, 49997}, {4358, 17495}
X(62571) = barycentric quotient X(i)/X(j) for these {i,j}: {3264, 40039}, {4358, 39698}, {17495, 88}, {17780, 53685}, {23169, 36058}, {34587, 1}, {39995, 903}, {49997, 106}, {52680, 59072}
X(62571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16594, 36791, 4358}, {16610, 59712, 62304}, {24589, 39994, 24183}


X(62572) = X(2)-CEVA CONJUGATE OF X(3268)

Barycentrics    (b^2 - c^2)^2*(-a^2 + b^2 - b*c + c^2)*(-a^2 + b^2 + b*c + c^2)*(-a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - b^2*c^2 + 2*c^4) : :

X(62572) lies on these lines: {325, 3233}, {339, 850}, {476, 5641}, {3258, 3268}, {3580, 44576}, {7809, 15107}, {9979, 35088}, {10545, 36831}, {14921, 41887}, {14922, 41888}, {23285, 36901}

X(62572) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3268}, {661, 51360}, {7809, 42327}, {15107, 4369}, {18722, 512}, {38393, 21253}
X(62572) = X(2)-Ceva conjugate of X(3268)
X(62572) = X(3268)-Dao conjugate of X(2)
X(62572) = barycentric product X(i)*X(j) for these {i,j}: {7799, 38393}, {7809, 62551}
X(62572) = barycentric quotient X(i)/X(j) for these {i,j}: {7809, 39295}, {38393, 1989}
X(62572) = {X(3258),X(23965)}-harmonic conjugate of X(3268)


X(62573) = X(2)-CEVA CONJUGATE OF X(3265)

Barycentrics    (b^2 - c^2)^2*(-a^2 + b^2 + c^2)^2*(-a^4 + b^4 + c^4) : :

X(62573) lies on these lines: {2, 44766}, {69, 110}, {107, 35140}, {122, 3265}, {125, 339}, {127, 18187}, {136, 62431}, {343, 14994}, {394, 4121}, {3066, 15394}, {5976, 45201}, {11064, 51371}, {14580, 34138}, {15526, 55047}, {41673, 50567}

X(62573) = complement of X(44766)
X(62573) = complement of the isogonal conjugate of X(2485)
X(62573) = complement of the isotomic conjugate of X(33294)
X(62573) = isotomic conjugate of the isogonal conjugate of X(47413)
X(62573) = isotomic conjugate of the polar conjugate of X(127)
X(62573) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 8673}, {22, 4369}, {31, 3265}, {206, 14838}, {315, 42327}, {512, 16580}, {523, 16607}, {649, 40959}, {661, 427}, {798, 32}, {822, 53852}, {1577, 6697}, {1760, 512}, {1973, 47125}, {2172, 523}, {2485, 10}, {4017, 18636}, {4150, 21260}, {4456, 513}, {4463, 3835}, {4611, 21254}, {7210, 17066}, {8673, 18589}, {8743, 8062}, {16757, 3741}, {17186, 31947}, {17409, 16612}, {17453, 647}, {17907, 21259}, {20641, 23301}, {21034, 650}, {21122, 3666}, {21178, 21240}, {32676, 6720}, {33294, 2887}, {38356, 34846}, {40073, 21263}, {46289, 23881}, {53569, 21253}, {55240, 9969}, {59932, 20305}
X(62573) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3265}, {69, 8673}, {76, 23881}, {315, 57069}, {34254, 58359}, {35140, 55129}, {40421, 3267}
X(62573) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15388}, {1289, 32676}, {1973, 44183}, {2156, 23964}, {2353, 24000}, {23999, 40146}
X(62573) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15388}, {32, 41937}, {127, 32713}, {525, 66}, {647, 13854}, {2485, 4}, {3265, 2}, {6337, 44183}, {8673, 206}, {15526, 1289}, {17434, 60495}, {23285, 43678}, {47125, 41361}, {55047, 112}, {58359, 1370}
X(62573) = barycentric product X(i)*X(j) for these {i,j}: {22, 36793}, {69, 127}, {76, 47413}, {125, 34254}, {305, 38356}, {315, 15526}, {339, 20806}, {525, 57069}, {850, 58359}, {1760, 17879}, {2485, 52617}, {2632, 20641}, {3265, 33294}, {3267, 8673}, {3269, 40073}, {3926, 53569}, {4143, 59932}, {4150, 17216}, {4563, 55273}, {5489, 55225}, {7068, 17076}, {18187, 20336}, {23107, 52915}, {23974, 52448}, {40421, 55047}
X(62573) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15388}, {22, 23964}, {69, 44183}, {125, 13854}, {127, 4}, {206, 41937}, {315, 23582}, {339, 43678}, {525, 1289}, {1760, 24000}, {2485, 32713}, {2632, 2156}, {2972, 60495}, {3265, 44766}, {3269, 2353}, {4563, 55272}, {8673, 112}, {10316, 57655}, {14396, 23347}, {15526, 66}, {16757, 52920}, {17907, 32230}, {18187, 28}, {20641, 23999}, {20806, 250}, {21178, 52919}, {23881, 46151}, {33294, 107}, {34254, 18020}, {36793, 18018}, {38356, 25}, {47413, 6}, {52448, 23590}, {52915, 59153}, {53569, 393}, {53822, 41361}, {55047, 206}, {55129, 23977}, {55273, 2501}, {57069, 648}, {58353, 58113}, {58359, 110}, {59932, 6529}
X(62573) = {X(122),X(23974)}-harmonic conjugate of X(3265)


X(62574) = X(2)-CEVA CONJUGATE OF X(330)

Barycentrics    (a*b - a*c - b*c)*(a*b - a*c + b*c)*(a^2*b^2 - 2*a^2*b*c + 2*a*b^2*c + a^2*c^2 + 2*a*b*c^2 - 3*b^2*c^2) : :

X(62574) lies on these lines: {2, 62419}, {75, 330}, {87, 4699}, {192, 18830}, {1278, 40881}, {2162, 23428}, {3551, 3662}, {4598, 17350}, {4740, 32033}, {10436, 40720}, {20258, 27429}, {23493, 25528}, {26135, 51575}

X(62574) = isotomic conjugate of X(43115)
X(62574) = complement of the isogonal conjugate of X(21780)
X(62574) = complement of the isotomic conjugate of X(21219)
X(62574) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 330}, {21219, 2887}, {21780, 10}, {21884, 3454}, {23080, 18589}, {43114, 20255}
X(62574) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 330}, {43114, 21219}, {62419, 7155}
X(62574) = X(31)-isoconjugate of X(43115)
X(62574) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 43115}, {330, 2}
X(62574) = barycentric product X(i)*X(j) for these {i,j}: {75, 43114}, {330, 21219}, {6383, 21780}
X(62574) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 43115}, {21219, 192}, {21780, 2176}, {21884, 20691}, {23080, 20760}, {43114, 1}
X(62574) = {X(75),X(53677)}-harmonic conjugate of X(330)


X(62575) = X(2)-CEVA CONJUGATE OF X(4373)

Barycentrics    (a + b - 3*c)*(a - 3*b + c)*(7*a^2 - 10*a*b - b^2 - 10*a*c + 14*b*c - c^2) : :

X(62575) lies on these lines: {8, 4373}, {145, 27828}, {3617, 27818}, {3622, 27813}, {4875, 16602}, {11530, 19604}, {24599, 27830}, {27820, 46932}, {30712, 39123}, {30827, 30833}, {32105, 47636}

X(62575) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 4373}, {604, 26718}
X(62575) = X(2)-Ceva conjugate of X(4373)
X(62575) = X(4373)-Dao conjugate of X(2)
X(62575) = {X(27828),X(53647)}-harmonic conjugate of X(145)


X(62576) = X(2)-CEVA CONJUGATE OF X(264)

Barycentrics    b^2*c^2*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-(a^6*b^2) + 2*a^4*b^4 - a^2*b^6 - a^6*c^2 - a^4*b^2*c^2 + a^2*b^4*c^2 + b^6*c^2 + 2*a^4*c^4 + a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + b^2*c^6) : :

X(62576) lies on the cubic K512 and these lines: {2, 9291}, {3, 6528}, {4, 16089}, {5, 264}, {76, 39604}, {95, 13855}, {132, 14249}, {276, 1656}, {297, 3981}, {317, 39571}, {327, 52581}, {381, 54100}, {1969, 17866}, {1975, 6331}, {2052, 9290}, {3168, 57008}, {3224, 6531}, {3767, 17907}, {5055, 55079}, {6523, 40680}, {13881, 16081}, {14618, 39575}, {15265, 52289}, {17861, 24046}, {18022, 59635}, {18817, 39170}, {18831, 61753}, {20207, 34861}, {22456, 32545}, {30450, 60501}, {41371, 44137}, {44231, 47392}, {46394, 47383}, {59527, 59528}

X(62576) = reflection of X(46033) in X(5)
X(62576) = isotomic conjugate of X(40800)
X(62576) = complement of X(54114)
X(62576) = polar conjugate of X(1988)
X(62576) = complement of the isogonal conjugate of X(32445)
X(62576) = complement of the isotomic conjugate of X(3164)
X(62576) = isotomic conjugate of the isogonal conjugate of X(3168)
X(62576) = polar conjugate of the isogonal conjugate of X(3164)
X(62576) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 264}, {3164, 2887}, {3168, 20305}, {6638, 18589}, {26887, 21231}, {32445, 10}, {59745, 21253}
X(62576) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 264}, {9291, 58732}
X(62576) = X(i)-isoconjugate of X(j) for these (i,j): {31, 40800}, {48, 1988}, {810, 44828}, {9247, 54114}, {43710, 52430}
X(62576) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 40800}, {264, 2}, {1249, 1988}, {3164, 38283}, {3168, 31382}, {39062, 44828}
X(62576) = cevapoint of X(3164) and X(3168)
X(62576) = barycentric product X(i)*X(j) for these {i,j}: {76, 3168}, {264, 3164}, {276, 42453}, {2052, 57008}, {6331, 59745}, {6638, 18027}, {18022, 32445}, {26887, 62274}
X(62576) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 40800}, {4, 1988}, {264, 54114}, {648, 44828}, {2052, 43710}, {3164, 3}, {3168, 6}, {6638, 577}, {18027, 60819}, {26887, 14533}, {32445, 184}, {42453, 216}, {57008, 394}, {59745, 647}
X(62576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 18027, 264}, {6530, 40822, 264}, {59527, 59529, 59528}


X(62577) = X(2)-CEVA CONJUGATE OF X(52628)

Barycentrics    b^2*(b^2 - c^2)*c^2*(-2*a^2 + b^2 + c^2)*(-(a^4*b^2) + b^6 - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(62577) lies on these lines: {2, 2485}, {126, 1560}, {141, 525}, {523, 1368}, {850, 14977}, {2780, 18309}, {3741, 21187}, {6389, 52584}, {8675, 52658}, {9035, 39080}, {15116, 41167}, {21248, 23285}, {35073, 61067}

X(62577) = complement of X(60040)
X(62577) = complement of the isogonal conjugate of X(61198)
X(62577) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 52628}, {163, 468}, {662, 2393}, {858, 21253}, {2393, 8287}, {4575, 54075}, {14961, 34846}, {17172, 21252}, {18669, 125}, {20884, 53575}, {32676, 62375}, {32678, 12099}, {36142, 15118}, {36145, 60774}, {46592, 226}, {61181, 20305}, {61198, 10}
X(62577) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 52628}, {670, 2393}, {3267, 35522}
X(62577) = X(i)-isoconjugate of X(j) for these (i,j): {163, 10422}, {1177, 36142}, {10423, 36060}, {14908, 36095}, {32676, 41511}
X(62577) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 10422}, {468, 112}, {1560, 10423}, {14961, 110}, {15526, 41511}, {23992, 1177}, {38971, 111}, {52628, 2}, {61067, 32729}
X(62577) = crossdifference of every pair of points on line {14908, 18374}
X(62577) = barycentric product X(i)*X(j) for these {i,j}: {690, 1236}, {850, 5181}, {858, 35522}, {1560, 3267}, {3266, 47138}, {5523, 45807}, {18311, 57476}, {44173, 47426}, {52629, 59422}
X(62577) = barycentric quotient X(i)/X(j) for these {i,j}: {468, 10423}, {523, 10422}, {525, 41511}, {690, 1177}, {858, 691}, {1236, 892}, {1560, 112}, {2393, 32729}, {5181, 110}, {14417, 18876}, {18311, 60002}, {18669, 36142}, {19510, 32583}, {20884, 36085}, {35522, 2373}, {42665, 14908}, {47138, 111}, {47426, 1576}, {52628, 60040}, {57466, 35188}, {59422, 34574}


X(62578) = X(2)-CEVA CONJUGATE OF X(22329)

Barycentrics    (a^4 + 2*a^2*b^2 - 2*b^4 + 2*a^2*c^2 - b^2*c^2 - 2*c^4)*(4*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 4*b^2*c^2 + c^4) : :
X(62578) = 3 X[8592] + X[43535], 3 X[41134] - X[55164], 5 X[5976] + 4 X[12830], X[10033] - 3 X[23234], X[14537] + 2 X[36521]

X(62578) lies on on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 353}, {3, 6054}, {39, 543}, {99, 598}, {114, 11645}, {115, 14762}, {147, 21356}, {183, 8593}, {325, 2482}, {385, 8787}, {512, 12093}, {524, 5976}, {542, 15819}, {620, 15810}, {671, 11174}, {690, 38381}, {804, 1649}, {1003, 19911}, {1125, 44317}, {2030, 18800}, {4027, 8859}, {5104, 7840}, {5152, 55801}, {5182, 9877}, {5569, 44773}, {5664, 59775}, {5969, 10335}, {6055, 20190}, {6292, 9167}, {6337, 7785}, {7606, 19120}, {7610, 39560}, {7736, 8591}, {7851, 9166}, {7868, 52088}, {7925, 8786}, {8724, 9744}, {8860, 11167}, {9773, 10807}, {10033, 23234}, {10352, 44536}, {10488, 15271}, {11057, 51589}, {11173, 50639}, {11184, 51580}, {13586, 39100}, {14537, 36521}, {14764, 35133}, {14971, 32992}, {15483, 35955}, {15814, 44377}, {16508, 52674}, {16924, 41135}, {19687, 51587}, {19924, 38383}, {22566, 43460}, {28562, 51578}, {33208, 51579}, {39091, 41136}, {53144, 62356}

X(62578) = midpoint of X(i) and X(j) for these {i,j}: {2, 8592}, {99, 598}, {6054, 9774}
X(62578) = reflection of X(i) in X(j) for these {i,j}: {115, 14762}, {15810, 620}
X(62578) = complement of X(43535)
X(62578) = complement of the isogonal conjugate of X(5104)
X(62578) = complement of the isotomic conjugate of X(7840)
X(62578) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 22329}, {5104, 10}, {7840, 2887}, {9208, 8287}
X(62578) = X(2)-Ceva conjugate of X(22329)
X(62578) = X(22329)-Dao conjugate of X(2)
X(62578) = barycentric product X(7840)*X(22329)
X(62578) = barycentric quotient X(i)/X(j) for these {i,j}: {7840, 5503}, {18800, 60864}, {22329, 43535}
X(62578) = {X(2),X(51798)}-harmonic conjugate of X(5939)


X(62579) = X(2)-CEVA CONJUGATE OF X(33573)

Barycentrics    (a - b - c)*(b - c)*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)^2 : :
X(62579) = X[4105] + 8 X[7658], 4 X[2] - X[23615], 3 X[2] + X[45290], 3 X[14476] + 2 X[45290], 3 X[23615] + 4 X[45290], 8 X[650] + X[57252], 2 X[1638] + X[14392], 2 X[14414] + X[30574], X[6545] + 2 X[11124]

X(62579) lies on the cubic K219 and these lines: {1, 4105}, {2, 522}, {223, 43924}, {650, 1212}, {656, 17056}, {663, 61230}, {676, 23757}, {1155, 42762}, {1214, 47887}, {1638, 6174}, {1648, 57463}, {2254, 10427}, {3160, 3676}, {3752, 6129}, {4453, 36905}, {4543, 51402}, {6505, 57241}, {6544, 52305}, {6545, 11124}, {6745, 38376}, {10017, 46415}, {31844, 53839}, {33573, 35091}, {44902, 50441}

X(62579) = reflection of X(i) in X(j) for these {i,j}: {14476, 2}, {23615, 14476}
X(62579) = complement of the isogonal conjugate of X(23346)
X(62579) = complement of the isotomic conjugate of X(56543)
X(62579) = tripolar centroid of X(527)
X(62579) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 33573}, {109, 5087}, {692, 5199}, {1055, 26932}, {1155, 124}, {1323, 21252}, {1415, 527}, {2149, 45326}, {6610, 116}, {14413, 46100}, {23346, 10}, {23890, 141}, {24027, 6366}, {32656, 60426}, {42082, 46415}, {56543, 2887}
X(62579) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 33573}, {522, 6366}, {664, 527}, {6068, 3328}, {35110, 35091}
X(62579) = X(i)-isoconjugate of X(j) for these (i,j): {1121, 36141}, {1156, 14733}, {1415, 57565}, {2291, 37139}, {3063, 57563}, {18889, 60487}, {34068, 35157}
X(62579) = X(i)-Dao conjugate of X(j) for these (i,j): {527, 664}, {1146, 57565}, {6366, 522}, {10001, 57563}, {33573, 2}, {35091, 1121}, {35110, 35157}, {52870, 60487}
X(62579) = trilinear pole of line {3328, 35091}
X(62579) = crossdifference of every pair of points on line {1055, 2078}
X(62579) = barycentric product X(i)*X(j) for these {i,j}: {190, 3328}, {514, 6068}, {522, 35110}, {527, 6366}, {664, 35091}, {1638, 6745}, {3239, 3321}, {4391, 42082}, {14392, 37780}, {14414, 37805}, {33573, 56543}, {35519, 59798}
X(62579) = barycentric quotient X(i)/X(j) for these {i,j}: {522, 57565}, {527, 35157}, {664, 57563}, {1055, 14733}, {1155, 37139}, {1323, 60487}, {3321, 658}, {3328, 514}, {6068, 190}, {6139, 2291}, {6366, 1121}, {14392, 41798}, {14413, 34056}, {35091, 522}, {35110, 664}, {42082, 651}, {52333, 42462}, {52334, 60579}, {59798, 109}


X(62580) = X(2)-CEVA CONJUGATE OF X(8115)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 - b^2 - c^2)*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 - 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 7*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 + 3*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 - 7*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 + b^2*c^2*(2*a^6 - 2*a^4*b^2 + 3*a^2*b^4 - b^6 - 2*a^4*c^2 - 4*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*J) : :

X(62580) lies on on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 13580}, {99, 2592}, {114, 1114}, {1649, 53384}, {3580, 5866}, {4558, 8115}, {5664, 50944}, {8116, 34834}, {46811, 54439}

X(62580) = complement of X(13580)
X(62580) = X(31)-complementary conjugate of X(8115)
X(62580) = X(2)-Ceva conjugate of X(8115)
X(62580) = X(8115)-Dao conjugate of X(2)
X(62580) = barycentric quotient X(8115)/X(13580)


X(62581) = X(2)-CEVA CONJUGATE OF X(8116)

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2 - b^2 - c^2)*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 - 2*a^6*b^2*c^2 + 3*a^4*b^4*c^2 - 7*a^2*b^6*c^2 + 3*b^8*c^2 - 2*a^6*c^4 + 3*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 - 7*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 - b^2*c^2*(2*a^6 - 2*a^4*b^2 + 3*a^2*b^4 - b^6 - 2*a^4*c^2 - 4*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6)*J) : :

X(62581) lies on on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 13581}, {99, 2593}, {114, 1113}, {1649, 53385}, {3580, 5866}, {4558, 8116}, {5664, 50945}, {8115, 34834}, {46814, 54439}

X(62581) = complement of X(13581)
X(62581) = X(31)-complementary conjugate of X(8116)
X(62581) = X(2)-Ceva conjugate of X(8116)
X(62581) = X(8116)-Dao conjugate of X(2)
X(62581) = barycentric quotient X(8116)/X(13581)


X(62582) = X(2)-CEVA CONJUGATE OF X(4997)

Barycentrics    (a + b - 2*c)*(a - b - c)*(a - 2*b + c)*(3*a^3 - 2*a^2*b - 4*a*b^2 + b^3 - 2*a^2*c + 7*a*b*c - 4*a*c^2 + c^3) : :

X(62582) lies on these lines: {88, 3936}, {106, 519}, {903, 27751}, {2325, 4582}, {3911, 4555}, {6631, 43055}, {14190, 59581}, {16610, 31227}, {35121, 41802}, {40587, 56938}, {40594, 51583}, {52140, 59779}

X(62582) = complement of the isotomic conjugate of X(30577)
X(62582) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 4997}, {604, 26727}, {30577, 2887}
X(62582) = X(2)-Ceva conjugate of X(4997)
X(62582) = X(604)-isoconjugate of X(36936)
X(62582) = X(i)-Dao conjugate of X(j) for these (i,j): {3161, 36936}, {4997, 2}
X(62582) = barycentric product X(i)*X(j) for these {i,j}: {4555, 59997}, {4997, 30577}
X(62582) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 36936}, {30577, 3911}, {59997, 900}


X(62583) = X(2)-CEVA CONJUGATE OF X(44436)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8 + a^6*c^2 + 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - 2*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 + 6*b^4*c^4 + 3*a^2*c^6 - 2*b^2*c^6 - c^8) : :

X(62583) lies on these lines: {2, 648}, {3, 47204}, {5, 113}, {20, 107}, {30, 16240}, {98, 40132}, {110, 6716}, {112, 51968}, {122, 35360}, {132, 858}, {133, 40948}, {297, 39008}, {343, 20207}, {402, 5642}, {1637, 5664}, {3134, 12828}, {3767, 6388}, {5181, 6130}, {5249, 6708}, {6053, 58431}, {6644, 52153}, {6720, 41392}, {6734, 7358}, {6793, 11064}, {8754, 57592}, {11657, 47084}, {14401, 15595}, {14611, 40557}, {14847, 15774}, {15018, 15816}, {16238, 47201}, {16310, 47296}, {18883, 56399}, {22104, 51456}, {26611, 57046}, {30739, 47202}, {30789, 58430}, {31378, 44452}, {31945, 37911}, {32750, 39081}, {34310, 34840}, {34810, 47200}, {36435, 44578}, {41679, 46927}, {44334, 44569}, {44436, 51358}, {46106, 52945}, {46147, 53832}, {47050, 49669}, {47203, 57095}, {47327, 47335}, {51964, 56577}

X(62583) = complement of X(14919)
X(62583) = complement of the isogonal conjugate of X(1990)
X(62583) = complement of the isotomic conjugate of X(46106)
X(62583) = isotomic conjugate of the isogonal conjugate of X(47433)
X(62583) = isotomic conjugate of the polar conjugate of X(133)
X(62583) = polar conjugate of the isogonal conjugate of X(40948)
X(62583) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 30}, {25, 18593}, {30, 18589}, {31, 44436}, {34, 18644}, {661, 1650}, {1096, 47296}, {1495, 1214}, {1637, 34846}, {1784, 141}, {1973, 3003}, {1990, 10}, {2173, 3}, {2181, 14918}, {2631, 122}, {4240, 4369}, {6357, 34822}, {7359, 34823}, {9406, 216}, {9409, 16595}, {14206, 1368}, {14398, 16573}, {14399, 2968}, {14400, 123}, {14581, 37}, {23347, 14838}, {24001, 512}, {24019, 9033}, {32676, 8552}, {32678, 38401}, {36035, 127}, {36128, 45311}, {46106, 2887}, {51654, 17073}, {52661, 20305}, {52949, 34851}, {52954, 3739}, {52955, 1125}, {52956, 960}, {56829, 523}
X(62583) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 44436}, {69, 30}, {6528, 9033}, {23582, 2404}, {44181, 4240}, {56577, 6000}
X(62583) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15404}, {1294, 2159}, {1973, 57762}, {36119, 59499}, {36131, 43701}
X(62583) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15404}, {1511, 59499}, {1990, 4}, {3003, 56683}, {3163, 1294}, {6000, 51964}, {6337, 57762}, {14345, 122}, {38999, 2430}, {39008, 43701}, {44436, 2}, {50937, 8749}
X(62583) = cevapoint of X(i) and X(j) for these (i,j): {3163, 3184}, {40948, 47433}
X(62583) = crossdifference of every pair of points on line {9409, 40352}
X(62583) = barycentric product X(i)*X(j) for these {i,j}: {69, 133}, {76, 47433}, {113, 56577}, {264, 40948}, {2404, 41077}, {3260, 6000}, {4563, 55276}, {11064, 51358}, {18020, 57424}, {36789, 57488}, {44436, 46106}, {52661, 62347}
X(62583) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15404}, {30, 1294}, {69, 57762}, {113, 56683}, {133, 4}, {1559, 10152}, {1636, 2430}, {2404, 15459}, {2442, 32695}, {3260, 54988}, {3284, 59499}, {6000, 74}, {9033, 43701}, {16163, 53789}, {34334, 58085}, {40948, 3}, {41077, 2416}, {44436, 14919}, {46587, 1304}, {47433, 6}, {51358, 16080}, {51895, 10419}, {51964, 40353}, {55276, 2501}, {56577, 40423}, {57424, 125}, {57448, 2777}, {57488, 40384}


X(62584) = X(2)-CEVA CONJUGATE OF X(345)

Barycentrics    (a - b - c)*(a^2 - b^2 - c^2)*(a^3 + a^2*b + a*b^2 + b^3 + a^2*c - 3*b^2*c + a*c^2 - 3*b*c^2 + c^3) : :

X(62584) lies on these lines: {2, 39696}, {10, 24159}, {120, 3699}, {278, 668}, {312, 6554}, {345, 3694}, {1332, 1997}, {3452, 3686}, {3940, 21530}, {4437, 26958}, {6552, 62208}, {17793, 33137}, {19785, 40603}, {19786, 44720}

X(62584) = complement of X(39696)
X(62584) = complement of the isotomic conjugate of X(30699)
X(62584) = isotomic conjugate of the polar conjugate of X(2899)
X(62584) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 345}, {604, 11512}, {1722, 141}, {2899, 21244}, {8897, 1368}, {28039, 2886}, {30699, 2887}, {31598, 17046}, {42461, 18589}
X(62584) = X(2)-Ceva conjugate of X(345)
X(62584) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15375}, {608, 39946}, {1395, 39696}
X(62584) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15375}, {345, 2}
X(62584) = barycentric product X(i)*X(j) for these {i,j}: {69, 2899}, {312, 8897}, {345, 30699}, {1265, 31598}, {1722, 3718}, {3596, 42461}, {28039, 52406}
X(62584) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15375}, {78, 39946}, {345, 39696}, {1259, 42469}, {1265, 56277}, {1722, 34}, {2899, 4}, {4571, 53629}, {8897, 57}, {28039, 1435}, {30699, 278}, {31598, 1119}, {42461, 56}
X(62584) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3718, 23600, 345}, {27509, 52406, 345}


X(62585) = X(2)-CEVA CONJUGATE OF X(312)

Barycentrics    b*c*(-a + b + c)*(-(a^2*b) - a*b^2 - a^2*c + a*b*c + b^2*c - a*c^2 + b*c^2) : :

X(62585) lies on these lines: {2, 17786}, {8, 21334}, {10, 982}, {43, 3699}, {57, 668}, {75, 1211}, {120, 29641}, {239, 19806}, {306, 20923}, {312, 2321}, {329, 40875}, {333, 2319}, {341, 3703}, {345, 3975}, {646, 30568}, {940, 24524}, {3210, 21857}, {3264, 4417}, {3666, 6376}, {3752, 30473}, {3789, 59296}, {3873, 61174}, {4033, 16594}, {4046, 4673}, {4052, 34258}, {4119, 38406}, {4359, 17238}, {4361, 19803}, {4397, 14434}, {4783, 33141}, {4850, 40603}, {4886, 19807}, {5739, 19811}, {5905, 19809}, {9534, 19792}, {13466, 18136}, {14555, 17787}, {16602, 59519}, {17149, 39028}, {17490, 40598}, {17748, 33092}, {17788, 19799}, {18134, 30090}, {18141, 42020}, {20182, 30963}, {20196, 32017}, {20254, 21530}, {21086, 52657}, {24589, 28651}, {25278, 37655}, {25287, 37676}, {25298, 37683}, {25306, 53338}, {26772, 28606}, {35518, 62552}, {35519, 59522}, {40493, 57518}, {46716, 57037}

X(62585) = complement of X(39694)
X(62585) = complement of the isogonal conjugate of X(21769)
X(62585) = complement of the isotomic conjugate of X(3210)
X(62585) = isotomic conjugate of the isogonal conjugate of X(3169)
X(62585) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 46827}, {31, 312}, {604, 24174}, {978, 141}, {3169, 1329}, {3210, 2887}, {19582, 21244}, {20805, 18589}, {21769, 10}, {21857, 3454}
X(62585) = X(2)-Ceva conjugate of X(312)
X(62585) = X(i)-isoconjugate of X(j) for these (i,j): {604, 979}, {1106, 56279}, {1397, 39694}, {52410, 56276}, {53625, 57181}
X(62585) = X(i)-Dao conjugate of X(j) for these (i,j): {312, 2}, {3161, 979}, {6552, 56279}, {16614, 513}
X(62585) = barycentric product X(i)*X(j) for these {i,j}: {75, 19582}, {76, 3169}, {312, 3210}, {668, 59971}, {978, 3596}, {21769, 28659}, {21857, 28660}, {27835, 44720}
X(62585) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 979}, {312, 39694}, {341, 56276}, {346, 56279}, {978, 56}, {3169, 6}, {3210, 57}, {3596, 58019}, {3699, 53625}, {19582, 1}, {20805, 603}, {21769, 604}, {21857, 1400}, {27835, 19604}, {44720, 39701}, {59971, 513}
X(62585) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3452, 59761, 312}, {3596, 3687, 312}, {5233, 30713, 312}, {44723, 62297, 312}


X(62586) = X(2)-CEVA CONJUGATE OF X(28606)

Barycentrics    (a + 2*b + 2*c)*(a*b + b^2 + a*c + b*c + c^2) : :

X(62586) lies on these lines: {2, 319}, {10, 3681}, {43, 52786}, {75, 30603}, {81, 17270}, {120, 29679}, {312, 27081}, {321, 6376}, {464, 5273}, {594, 42044}, {966, 33157}, {1051, 41930}, {1211, 5949}, {1213, 32858}, {1255, 17294}, {1698, 4658}, {2895, 17303}, {3187, 32025}, {3219, 17251}, {3305, 5540}, {3617, 19785}, {3661, 16589}, {3739, 28651}, {3758, 43990}, {3775, 3873}, {3969, 17248}, {3995, 48630}, {4357, 50106}, {4359, 17238}, {4445, 17019}, {4654, 43260}, {4690, 37685}, {4733, 33131}, {4760, 21221}, {4798, 41819}, {4967, 33146}, {5123, 56878}, {5224, 28606}, {5232, 9965}, {5235, 56948}, {5743, 16594}, {6539, 42029}, {6554, 31042}, {7705, 17182}, {8013, 32784}, {8025, 17360}, {11679, 31247}, {13466, 27184}, {16704, 19827}, {17011, 17327}, {17147, 17250}, {17252, 32933}, {17293, 27065}, {17295, 41817}, {17301, 41821}, {17308, 32911}, {17322, 20017}, {17391, 41818}, {17400, 45222}, {17793, 31330}, {18139, 29576}, {18150, 19804}, {18601, 30966}, {19684, 29610}, {19856, 32852}, {25440, 40592}, {26037, 30965}, {26223, 41816}, {26738, 31037}, {28595, 30985}, {28604, 32859}, {28605, 30596}, {28634, 33150}, {29647, 42334}, {32776, 50312}, {33072, 48809}, {36912, 51066}, {47666, 48095}

X(62586) = reflection of X(25417) in X(41850)
X(62586) = complement of X(25417)
X(62586) = anticomplement of X(41850)
X(62586) = complement of the isogonal conjugate of X(16777)
X(62586) = complement of the isotomic conjugate of X(28605)
X(62586) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 19862}, {19, 6147}, {31, 28606}, {55, 5325}, {100, 4932}, {101, 4802}, {1698, 141}, {2177, 30563}, {3715, 3452}, {3927, 18589}, {4007, 1329}, {4066, 21245}, {4654, 2886}, {4658, 3739}, {4716, 20333}, {4727, 121}, {4756, 3835}, {4802, 116}, {4813, 11}, {4820, 124}, {4823, 21252}, {4826, 115}, {4834, 1086}, {4838, 125}, {4840, 17761}, {4877, 960}, {4898, 2885}, {4938, 126}, {4949, 5510}, {4958, 3259}, {4960, 53564}, {5221, 142}, {5333, 3741}, {16777, 10}, {28605, 2887}, {30589, 21242}, {30596, 626}, {31902, 34830}, {36074, 522}, {48005, 8287}, {53585, 53834}, {58290, 16592}, {61358, 2}
X(62586) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 28606}, {662, 23883}, {668, 4802}, {32018, 42714}
X(62586) = X(i)-isoconjugate of X(j) for these (i,j): {2214, 56343}, {34819, 43531}
X(62586) = X(i)-Dao conjugate of X(j) for these (i,j): {28606, 2}, {41849, 30598}, {51572, 2214}, {53167, 43927}
X(62586) = barycentric product X(i)*X(j) for these {i,j}: {386, 30596}, {1698, 5224}, {4007, 33949}, {4658, 42714}, {4756, 45746}, {4802, 33948}, {5333, 56810}, {16777, 33935}, {28605, 28606}
X(62586) = barycentric quotient X(i)/X(j) for these {i,j}: {386, 56343}, {1698, 43531}, {3876, 56203}, {4756, 835}, {4802, 43927}, {5224, 30598}, {5333, 56047}, {14349, 48074}, {16777, 2214}, {28606, 25417}, {30596, 57824}, {33948, 32042}, {56810, 60203}, {56926, 28625}
X(62586) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25417, 41850}, {2, 30562, 30598}, {5224, 56810, 28606}, {30562, 30598, 25056}


X(62587) = X(2)-CEVA CONJUGATE OF X(3263)

Barycentrics    b*c*(-(a*b) + b^2 - a*c + c^2)*(-(a^3*b) - a*b^3 - a^3*c + 2*a^2*b*c + b^3*c - a*c^3 + b*c^3) : :

X(62587) lies on these lines: {10, 4986}, {105, 668}, {120, 3263}, {339, 1228}, {1211, 3124}, {3452, 51861}, {3789, 49688}, {6376, 26242}, {7664, 26231}, {14434, 62430}, {26274, 40598}, {31073, 42721}, {39998, 40619}

X(62587) = X(31)-complementary conjugate of X(3263)
X(62587) = X(2)-Ceva conjugate of X(3263)
X(62587) = X(3263)-Dao conjugate of X(2)


X(62588) = X(2)-CEVA CONJUGATE OF X(4359)

Barycentrics    b*c*(b + c)*(2*a + b + c)*(-a^2 - a*b - a*c + b*c) : :

X(62588) lies on these lines: {2, 3770}, {10, 321}, {37, 27041}, {75, 28651}, {312, 27081}, {668, 1255}, {1211, 4358}, {1213, 1230}, {1962, 61174}, {2895, 25660}, {3452, 3936}, {3720, 5625}, {3789, 3966}, {3995, 56249}, {4205, 4696}, {4980, 53478}, {5084, 5739}, {6376, 18059}, {16589, 52043}, {16594, 17056}, {17776, 27039}, {18140, 32911}, {18743, 31037}, {20905, 25003}, {21530, 30807}, {26771, 31035}, {26772, 28606}, {29399, 32939}, {30044, 53476}, {30599, 41817}, {30830, 32782}, {30939, 43990}, {40598, 41839}, {44307, 62304}, {48226, 50327}, {56186, 56213}, {58361, 62552}

X(62588) = complement of X(39747)
X(62588) = complement of the isotomic conjugate of X(3995)
X(62588) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 4359}, {101, 4132}, {213, 594}, {595, 3739}, {1018, 44316}, {1333, 6532}, {1400, 24390}, {2205, 21827}, {2220, 1125}, {3293, 141}, {3871, 21246}, {3995, 2887}, {4057, 17761}, {4063, 53564}, {4075, 21245}, {4129, 21252}, {4132, 116}, {4222, 34830}, {4360, 21240}, {32911, 3741}, {51650, 4904}, {56249, 626}, {57096, 244}, {58288, 11}
X(62588) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 4359}, {668, 4132}, {16709, 4647}
X(62588) = X(i)-isoconjugate of X(j) for these (i,j): {1171, 40148}, {3733, 59014}, {28615, 39949}
X(62588) = X(i)-Dao conjugate of X(j) for these (i,j): {1125, 39798}, {1213, 39949}, {4359, 2}
X(62588) = barycentric product X(i)*X(j) for these {i,j}: {75, 4065}, {321, 45222}, {1125, 56249}, {1213, 18140}, {1230, 32911}, {1269, 3293}, {1962, 40087}, {3995, 4359}, {4075, 16709}, {4115, 20949}, {4360, 4647}, {20295, 61174}
X(62588) = barycentric quotient X(i)/X(j) for these {i,j}: {1018, 59014}, {1125, 39949}, {1213, 39798}, {1230, 40013}, {1962, 40148}, {3293, 1126}, {3649, 20615}, {3995, 1255}, {4065, 1}, {4129, 47947}, {4132, 50344}, {4359, 39747}, {4360, 40438}, {4427, 34594}, {4647, 596}, {18140, 32014}, {30591, 40086}, {32911, 1171}, {45222, 81}, {56249, 1268}, {61174, 8050}
X(62588) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 18133, 40013}, {1213, 1230, 4359}, {3948, 41809, 321}


X(62589) = X(2)-CEVA CONJUGATE OF X(37636)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 - 2*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6) : :

X(62589) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 1225}, {3, 54}, {99, 40393}, {114, 137}, {216, 41628}, {288, 57647}, {566, 45794}, {570, 1238}, {641, 56502}, {642, 56501}, {1994, 2965}, {2482, 39018}, {5422, 6503}, {6292, 36212}, {6504, 9221}, {7391, 7710}, {10115, 15848}, {14389, 52032}, {14788, 31376}, {15869, 22051}, {23292, 34834}, {33364, 56505}, {33365, 56503}, {34545, 34990}, {41578, 50947}, {45968, 50648}

X(62589) = complement of X(11140)
X(62589) = complement of the isogonal conjugate of X(2965)
X(62589) = complement of the isotomic conjugate of X(1994)
X(62589) = isotomic conjugate of the polar conjugate of X(6152)
X(62589) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 34826}, {31, 37636}, {48, 37452}, {49, 18589}, {163, 1510}, {662, 39512}, {1510, 21253}, {1994, 2887}, {2148, 32142}, {2179, 34520}, {2964, 141}, {2965, 10}, {3518, 20305}, {7769, 21235}, {9247, 22052}, {25044, 21231}
X(62589) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 37636}, {99, 1510}, {1225, 41590}
X(62589) = X(i)-isoconjugate of X(j) for these (i,j): {2216, 2963}, {36148, 50946}
X(62589) = X(i)-Dao conjugate of X(j) for these (i,j): {570, 25043}, {1209, 2963}, {37636, 2}, {39018, 50946}
X(62589) = barycentric product X(i)*X(j) for these {i,j}: {69, 6152}, {570, 7769}, {1216, 32002}, {1225, 25044}, {1238, 3518}, {1594, 44180}, {1994, 37636}, {41298, 50947}, {51255, 57805}
X(62589) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 40441}, {143, 40449}, {570, 2963}, {1209, 25043}, {1216, 3519}, {1510, 50946}, {1594, 93}, {1994, 40393}, {2964, 2216}, {3518, 1179}, {6152, 4}, {6153, 31392}, {7769, 57903}, {23195, 51477}, {25044, 1166}, {37636, 11140}, {41677, 38342}, {50947, 930}, {51255, 252}, {57805, 59137}, {58828, 20577}
X(62589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1493, 15345, 34833}, {11126, 11127, 1493}, {55566, 55567, 32046}


X(62590) = X(2)-CEVA CONJUGATE OF X(36212)

Barycentrics    (a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(62590) lies on these lines: {2, 2987}, {6, 46184}, {69, 248}, {99, 40867}, {114, 51335}, {125, 343}, {126, 3580}, {141, 9722}, {193, 36841}, {297, 51374}, {394, 4121}, {511, 2450}, {526, 5181}, {542, 54085}, {670, 16081}, {877, 36426}, {2794, 38873}, {2799, 3569}, {3564, 52144}, {3620, 41254}, {3739, 26543}, {4001, 40618}, {5976, 46235}, {6072, 41586}, {6374, 40814}, {6393, 36212}, {7752, 47740}, {11672, 60596}, {12036, 44569}, {14981, 25046}, {21248, 37636}, {35073, 55152}, {40107, 52658}, {40708, 42313}, {47200, 57258}

X(62590) = midpoint of X(69) and X(4558)
X(62590) = reflection of X(6) in X(46184)
X(62590) = complement of X(2987)
X(62590) = complement of the isogonal conjugate of X(230)
X(62590) = complement of the isotomic conjugate of X(51481)
X(62590) = isotomic conjugate of the isogonal conjugate of X(47406)
X(62590) = isotomic conjugate of the polar conjugate of X(114)
X(62590) = medial-isogonal conjugate of X(44377)
X(62590) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 44377}, {19, 3564}, {31, 36212}, {163, 6132}, {230, 10}, {460, 226}, {661, 868}, {662, 55122}, {896, 47047}, {1692, 37}, {1733, 141}, {1755, 52006}, {1910, 6036}, {2173, 34810}, {2247, 47082}, {2312, 34156}, {3564, 18589}, {4226, 4369}, {5477, 16597}, {8772, 2}, {12829, 19563}, {17462, 114}, {32676, 44817}, {36142, 37742}, {42663, 16592}, {44099, 16583}, {44145, 20305}, {51335, 16591}, {51481, 2887}, {51820, 16609}, {52144, 1214}, {52450, 4892}, {55122, 8287}, {60519, 34825}, {61213, 14838}
X(62590) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 36212}, {69, 3564}, {670, 55122}, {4563, 6333}, {56574, 511}
X(62590) = X(i)-isoconjugate of X(j) for these (i,j): {19, 2065}, {1910, 3563}, {1973, 40428}, {2422, 36105}, {6531, 36051}, {8773, 57260}, {32654, 36120}, {35364, 36104}
X(62590) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 2065}, {114, 6531}, {230, 4}, {325, 47736}, {868, 2501}, {5976, 35142}, {6337, 40428}, {11672, 3563}, {34156, 41932}, {35067, 98}, {35088, 60338}, {36212, 2}, {39000, 35364}, {39001, 2422}, {39072, 57260}, {41181, 879}, {46094, 32654}, {55152, 53149}
X(62590) = crossdifference of every pair of points on line {1976, 17994}
X(62590) = barycentric product X(i)*X(j) for these {i,j}: {69, 114}, {76, 47406}, {230, 6393}, {304, 17462}, {305, 51335}, {325, 3564}, {2974, 52091}, {4226, 6333}, {4563, 55267}, {4590, 41181}, {31842, 56574}, {36212, 51481}, {44145, 51386}
X(62590) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 2065}, {69, 40428}, {114, 4}, {230, 6531}, {325, 35142}, {511, 3563}, {684, 35364}, {1692, 57260}, {1733, 36120}, {2421, 32697}, {2799, 60338}, {2974, 14265}, {3289, 32654}, {3564, 98}, {4226, 685}, {4563, 55266}, {5976, 47736}, {6393, 8781}, {17462, 19}, {31842, 56688}, {36212, 2987}, {36790, 57493}, {41181, 115}, {47406, 6}, {51335, 25}, {51386, 43705}, {51481, 16081}, {52144, 1976}, {53783, 47388}, {55122, 53149}, {55267, 2501}, {56389, 2715}, {60595, 14593}, {61213, 32696}
X(62590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15595, 36790, 51389}, {15595, 50567, 36790}


X(62591) = X(2)-CEVA CONJUGATE OF X(26006)

Barycentrics    (a^2 - b^2 - c^2)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3)*(a^3*b^2 - a^2*b^3 - a*b^4 + b^5 + a^3*c^2 + 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - b^2*c^3 - a*c^4 + c^5) : :

X(62591) lies on these lines: {2, 1331}, {9, 25000}, {37, 25019}, {69, 1815}, {125, 440}, {190, 52781}, {306, 7358}, {307, 26932}, {343, 40618}, {1736, 48381}, {3234, 5513}, {6388, 21838}, {13567, 23988}, {15487, 21361}, {17755, 26001}, {26006, 51366}, {26531, 27481}, {26611, 57046}, {28739, 38015}

X(62591) = complement of X(2989)
X(62591) = complement of the isogonal conjugate of X(8608)
X(62591) = complement of the isotomic conjugate of X(48381)
X(62591) = isotomic conjugate of the isogonal conjugate of X(47407)
X(62591) = isotomic conjugate of the polar conjugate of X(118)
X(62591) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 916}, {31, 26006}, {661, 3138}, {692, 55125}, {911, 6712}, {916, 18589}, {1736, 141}, {2253, 3}, {4243, 4369}, {8608, 10}, {46388, 56787}, {48381, 2887}, {55125, 21252}, {56742, 513}
X(62591) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 26006}, {69, 916}, {190, 55125}
X(62591) = X(i)-isoconjugate of X(j) for these (i,j): {19, 15380}, {911, 917}, {1973, 57752}, {2424, 36107}
X(62591) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15380}, {6337, 57752}, {8608, 4}, {23972, 917}, {26006, 2}, {39003, 2424}
X(62591) = barycentric product X(i)*X(j) for these {i,j}: {69, 118}, {76, 47407}, {916, 35517}, {26006, 48381}
X(62591) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15380}, {69, 57752}, {118, 4}, {516, 917}, {916, 103}, {1736, 36122}, {2253, 911}, {2426, 32699}, {26006, 2989}, {34335, 54232}, {35517, 57997}, {47407, 6}, {48381, 52781}, {55125, 53150}, {56742, 40116}


X(62592) = X(2)-CEVA CONJUGATE OF X(46811)

Barycentrics    2*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 - a^4*b^2*c^2 + 2*b^4*c^4 + 2*a^2*c^6 - c^8) + (a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 - 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + c^8)*J : :

X(62592) lies on these lines: {2, 6}, {67, 15461}, {125, 1312}, {297, 15164}, {338, 2593}, {403, 31955}, {441, 57026}, {468, 13415}, {511, 1313}, {858, 25408}, {1113, 1503}, {1114, 32269}, {1344, 1352}, {1345, 61506}, {1346, 45303}, {1347, 5480}, {2393, 46166}, {2574, 5181}, {2583, 26932}, {2592, 36789}, {3564, 13414}, {6393, 46813}, {8105, 15595}, {10264, 13626}, {14807, 15163}, {15167, 15526}, {17421, 34593}, {20406, 47582}, {22339, 36790}, {24650, 46698}, {34153, 35231}, {46815, 51358}

X(62592) = midpoint of X(69) and X(8115)
X(62592) = isogonal conjugate of X(41942)
X(62592) = complement of X(8116)
X(62592) = complement of the isogonal conjugate of X(8106)
X(62592) = complement of the isotomic conjugate of X(2593)
X(62592) = isotomic conjugate of the isogonal conjugate of X(15167)
X(62592) = isotomic conjugate of the polar conjugate of X(1312)
X(62592) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 2575}, {31, 46811}, {649, 34592}, {661, 1313}, {798, 15166}, {1113, 4369}, {1973, 8106}, {2575, 18589}, {2576, 523}, {2579, 3}, {2580, 512}, {2583, 1368}, {2585, 6389}, {2586, 30476}, {2589, 141}, {2593, 2887}, {8106, 10}, {15164, 42327}, {39241, 21253}, {39298, 21254}, {42667, 1214}, {44123, 14838}, {46815, 21259}
X(62592) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 46811}, {69, 2575}, {76, 22340}, {8115, 525}, {15164, 523}, {22340, 23110}, {46813, 3265}
X(62592) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41942}, {19, 15460}, {162, 52132}, {163, 53153}, {560, 57544}, {1114, 2577}, {2581, 44124}, {2587, 57025}, {15166, 24000}, {24019, 53385}, {32676, 50945}
X(62592) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 41942}, {6, 15460}, {115, 53153}, {125, 52132}, {647, 1313}, {2575, 6}, {6374, 57544}, {8106, 4}, {14401, 14499}, {15167, 1114}, {15526, 50945}, {35071, 53385}, {46811, 2}
X(62592) = trilinear pole of line {5489, 14500}
X(62592) = crossdifference of every pair of points on line {512, 44124}
X(62592) = X(468)-line conjugate of X(44124)
X(62592) = barycentric product X(i)*X(j) for these {i,j}: {69, 1312}, {76, 15167}, {305, 44125}, {339, 15461}, {525, 50944}, {850, 53384}, {1494, 14500}, {2575, 22340}, {2583, 2583}, {2593, 46811}, {3265, 53154}, {3267, 52131}, {3269, 57543}, {15165, 23110}, {36793, 41941}
X(62592) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15460}, {6, 41942}, {76, 57544}, {125, 1313}, {520, 53385}, {523, 53153}, {525, 50945}, {647, 52132}, {1312, 4}, {1650, 14499}, {2575, 1114}, {2579, 2577}, {2583, 2581}, {2585, 1823}, {2589, 2587}, {2593, 46812}, {3269, 15166}, {8115, 39299}, {14500, 30}, {15167, 6}, {15461, 250}, {20975, 44126}, {22340, 15165}, {23110, 2575}, {41941, 23964}, {42667, 44124}, {44125, 25}, {46811, 8116}, {50944, 648}, {52131, 112}, {53154, 107}, {53384, 110}
X(62592) = {X(2),X(8115)}-harmonic conjugate of X(11064)


X(62593) = X(2)-CEVA CONJUGATE OF X(46814)

Barycentrics    2*(a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8 - 2*a^6*c^2 - a^4*b^2*c^2 + 2*b^4*c^4 + 2*a^2*c^6 - c^8) - (a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 - 4*a^4*b^2*c^2 - 3*a^2*b^4*c^2 - a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 - a^2*c^6 + c^8)*J : :

X(62593) lies on these lines: {2, 6}, {67, 15460}, {125, 1313}, {297, 15165}, {338, 2592}, {403, 31954}, {441, 57025}, {468, 13414}, {511, 1312}, {858, 25407}, {1113, 32269}, {1114, 1503}, {1344, 61506}, {1345, 1352}, {1346, 5480}, {1347, 45303}, {2393, 46167}, {2575, 5181}, {2582, 26932}, {2593, 36789}, {3564, 13415}, {6393, 46810}, {8106, 15595}, {10264, 13627}, {14808, 15162}, {15166, 15526}, {17421, 34592}, {20405, 47582}, {22340, 36790}, {24651, 46699}, {34153, 35232}, {46812, 51358}

X(62593) = midpoint of X(69) and X(8116)
X(62593) = isogonal conjugate of X(41941)
X(62593) = complement of X(8115)
X(62593) = complement of the isogonal conjugate of X(8105)
X(62593) = complement of the isotomic conjugate of X(2592)
X(62593) = isotomic conjugate of the isogonal conjugate of X(15166)
X(62593) = isotomic conjugate of the polar conjugate of X(1313)
X(62593) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 2574}, {31, 46814}, {649, 34593}, {661, 1312}, {798, 15167}, {1114, 4369}, {1973, 8105}, {2574, 18589}, {2577, 523}, {2578, 3}, {2581, 512}, {2582, 1368}, {2584, 6389}, {2587, 30476}, {2588, 141}, {2592, 2887}, {8105, 10}, {15165, 42327}, {39240, 21253}, {39299, 21254}, {42668, 1214}, {44124, 14838}, {46812, 21259}
X(62593) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 46814}, {69, 2574}, {76, 22339}, {8116, 525}, {15165, 523}, {22339, 23109}, {46810, 3265}
X(62593) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41941}, {19, 15461}, {162, 52131}, {163, 53154}, {560, 57543}, {1113, 2576}, {2580, 44123}, {2586, 57026}, {15167, 24000}, {24019, 53384}, {32676, 50944}
X(62593) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 41941}, {6, 15461}, {115, 53154}, {125, 52131}, {647, 1312}, {2574, 6}, {6374, 57543}, {8105, 4}, {14401, 14500}, {15166, 1113}, {15526, 50944}, {35071, 53384}, {46814, 2}
X(62593) = trilinear pole of line {5489, 14499}
X(62593) = crossdifference of every pair of points on line {512, 44123}
X(62593) = X(468)-line conjugate of X(44123)
X(62593) = barycentric product X(i)*X(j) for these {i,j}: {69, 1313}, {76, 15166}, {305, 44126}, {339, 15460}, {525, 50945}, {850, 53385}, {1494, 14499}, {2574, 22339}, {2582, 2582}, {2592, 46814}, {3265, 53153}, {3267, 52132}, {3269, 57544}, {15164, 23109}, {36793, 41942}
X(62593) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15461}, {6, 41941}, {76, 57543}, {125, 1312}, {520, 53384}, {523, 53154}, {525, 50944}, {647, 52131}, {1313, 4}, {1650, 14500}, {2574, 1113}, {2578, 2576}, {2582, 2580}, {2584, 1822}, {2588, 2586}, {2592, 46815}, {3269, 15167}, {8116, 39298}, {14499, 30}, {15166, 6}, {15460, 250}, {20975, 44125}, {22339, 15164}, {23109, 2574}, {41942, 23964}, {42668, 44123}, {44126, 25}, {46814, 8115}, {50945, 648}, {52132, 112}, {53153, 107}, {53385, 110}
X(62593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8116, 11064}


X(62594) = X(2)-CEVA CONJUGATE OF X(14417)

Barycentrics    (b^2 - c^2)^2*(-2*a^2 + b^2 + c^2)*(-a^2 + b^2 + c^2)*(-a^4 + b^4 - b^2*c^2 + c^4) : :

X(62594) lies on these lines: {2, 17708}, {125, 525}, {468, 524}, {647, 15526}, {1637, 35088}, {1648, 52628}, {2799, 3258}, {3291, 62376}, {3580, 15595}, {5099, 32313}, {6070, 23878}, {6077, 51397}, {6388, 52588}, {6587, 6791}, {15357, 57425}, {22151, 37804}, {44334, 44569}, {48946, 51938}, {52881, 62382}

X(62594) = complement of X(17708)
X(62594) = complement of the isogonal conjugate of X(2492)
X(62594) = complement of the isotomic conjugate of X(9979)
X(62594) = isotomic conjugate of the isogonal conjugate of X(47415)
X(62594) = isotomic conjugate of the polar conjugate of X(5099)
X(62594) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 9517}, {23, 4369}, {31, 14417}, {316, 42327}, {512, 16581}, {523, 21234}, {661, 858}, {798, 187}, {923, 18310}, {1973, 47138}, {2492, 10}, {4017, 18637}, {8744, 8062}, {9517, 18589}, {9979, 2887}, {10561, 4892}, {16568, 512}, {18374, 14838}, {20944, 23301}, {21094, 21260}, {21205, 21240}, {23894, 6698}, {36142, 40544}, {37765, 21259}, {40074, 21263}, {42659, 1214}, {52630, 21254}, {55240, 9019}
X(62594) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 14417}, {69, 9517}, {5641, 55142}, {14364, 523}
X(62594) = X(935)-isoconjugate of X(36142)
X(62594) = X(i)-Dao conjugate of X(j) for these (i,j): {187, 250}, {647, 10415}, {1648, 60503}, {1649, 8791}, {2492, 4}, {14417, 2}, {18311, 671}, {23992, 935}, {47138, 59422}, {55048, 691}
X(62594) = crossdifference of every pair of points on line {10097, 32729}
X(62594) = barycentric product X(i)*X(j) for these {i,j}: {69, 5099}, {76, 47415}, {125, 7664}, {339, 6593}, {525, 18311}, {1648, 37804}, {2492, 45807}, {9517, 35522}, {9979, 14417}, {22151, 52628}
X(62594) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 10415}, {690, 935}, {1648, 8791}, {1649, 60503}, {5099, 4}, {6593, 250}, {7664, 18020}, {9517, 691}, {10097, 39413}, {14417, 17708}, {18311, 648}, {32313, 7473}, {37804, 52940}, {38971, 59422}, {39474, 53232}, {42659, 32729}, {47415, 6}, {52628, 46105}, {55142, 53155}, {57481, 34539}, {61207, 58980}


X(62595) = X(2)-CEVA CONJUGATE OF X(297)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8 - 2*a^6*b^2 + a^4*b^4 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + a^4*c^4 - 2*b^4*c^4 + b^2*c^6) : :
X(62595) = 3 X[2] + X[57254], X[40867] + 3 X[47740]

X(62595) lies on the cubic K357 and these lines: {2, 1972}, {3, 61100}, {4, 40867}, {6, 264}, {112, 39078}, {129, 136}, {216, 23583}, {233, 14767}, {297, 511}, {384, 1941}, {394, 55227}, {401, 32428}, {427, 38383}, {441, 59661}, {542, 39530}, {877, 36790}, {1196, 23591}, {1249, 3164}, {1560, 51358}, {1993, 53848}, {2052, 9419}, {3162, 56296}, {3163, 40884}, {6330, 11331}, {6528, 59698}, {8956, 8968}, {9530, 35937}, {9979, 14401}, {14165, 59805}, {22401, 59528}, {25555, 42873}, {28723, 56298}, {32000, 39352}, {35941, 42329}, {36901, 40684}, {37125, 56303}, {38652, 40938}, {38987, 44893}, {40601, 60516}, {40896, 45245}, {40940, 44311}, {43188, 57493}, {52282, 54131}

X(62595) = midpoint of X(i) and X(j) for these {i,j}: {264, 648}, {1972, 57254}
X(62595) = reflection of X(i) in X(j) for these {i,j}: {216, 23583}, {15526, 14767}
X(62595) = complement of X(1972)
X(62595) = complement of the isogonal conjugate of X(1971)
X(62595) = complement of the isotomic conjugate of X(401)
X(62595) = polar conjugate of the isogonal conjugate of X(52128)
X(62595) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 297}, {401, 2887}, {1933, 14382}, {1955, 141}, {1971, 10}, {2148, 32428}, {2313, 1209}, {6130, 21253}, {9247, 46841}, {41204, 20305}, {44137, 21235}, {58311, 226}
X(62595) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 297}, {264, 32428}, {2967, 39931}
X(62595) = X(i)-isoconjugate of X(j) for these (i,j): {248, 1956}, {293, 1987}, {1821, 52177}, {1910, 14941}
X(62595) = X(i)-Dao conjugate of X(j) for these (i,j): {132, 1987}, {232, 51960}, {297, 2}, {6130, 3269}, {11672, 14941}, {38970, 60036}, {38974, 879}, {39038, 293}, {39039, 1956}, {39045, 248}, {39081, 287}, {40601, 52177}
X(62595) = crossdifference of every pair of points on line {39469, 52177}
X(62595) = barycentric product X(i)*X(j) for these {i,j}: {232, 44137}, {264, 52128}, {297, 401}, {325, 41204}, {511, 16089}, {877, 6130}, {1955, 40703}, {1971, 44132}
X(62595) = barycentric quotient X(i)/X(j) for these {i,j}: {132, 51960}, {232, 1987}, {237, 52177}, {240, 1956}, {297, 1972}, {401, 287}, {511, 14941}, {1955, 293}, {1971, 248}, {2967, 40804}, {6130, 879}, {16089, 290}, {16230, 60036}, {19189, 1298}, {32428, 53174}, {32545, 47388}, {38974, 3269}, {39469, 53175}, {41204, 98}, {44137, 57799}, {51324, 32542}, {52128, 3}, {58070, 53708}, {58311, 1976}
X(62595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 57254, 1972}, {15595, 36426, 297}


X(62596) = X(2)-CEVA CONJUGATE OF X(33559)

Barycentrics    a^2*(b^2 - c^2)^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :
X(62596) = 4 X[2] - X[23611]

X(62596) lies on the cubic K219 and these lines: {2, 51}, {125, 46656}, {868, 2679}, {1649, 55143}, {2972, 3124}, {6784, 45321}, {14966, 22112}, {33569, 39009}, {36901, 62431}, {38987, 44114}, {55070, 55073}

X(62596) = tripolar centroid of X(23878)
X(62596) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 33569}, {1821, 54262}, {1910, 23878}, {2395, 16603}, {3288, 16591}, {46806, 4369}, {51542, 14838}, {60685, 41167}
X(62596) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 33569}, {290, 23878}
X(62596) = X(i)-Dao conjugate of X(j) for these (i,j): {23878, 290}, {33569, 2}, {38997, 6037}
X(62596) = crossdifference of every pair of points on line {3288, 6037}
X(62596) = barycentric product X(i)*X(j) for these {i,j}: {290, 39009}, {325, 59804}, {6784, 51373}
X(62596) = barycentric quotient X(i)/X(j) for these {i,j}: {3288, 6037}, {9420, 26714}, {23878, 53196}, {39009, 511}, {59804, 98}


X(62597) = X(2)-CEVA CONJUGATE OF X(9979)

Barycentrics    (b^2 - c^2)^2*(-a^4 + b^4 - b^2*c^2 + c^4)*(a^4 - 3*a^2*b^2 + 2*b^4 - 3*a^2*c^2 + b^2*c^2 + 2*c^4) : :

X(62597) lies on these lines: {297, 9141}, {338, 850}, {858, 41133}, {2972, 37987}, {3268, 35088}, {5641, 17708}, {7883, 14246}, {15526, 41298}, {18314, 36901}, {44311, 44317}

X(62597) = complement of the isogonal conjugate of X(39232)
X(62597) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 9979}, {661, 41586}, {10562, 4892}, {23061, 4369}, {39231, 14838}, {39232, 10}
X(62597) = X(2)-Ceva conjugate of X(9979)
X(62597) = X(9979)-Dao conjugate of X(2)
X(62597) = barycentric product X(850)*X(57127)
X(62597) = barycentric quotient X(57127)/X(110)


X(62598) = X(2)-CEVA CONJUGATE OF X(41079)

Barycentrics    b^2*(b^2 - c^2)^2*c^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 + 3*a^6*c^2 - 7*a^4*b^2*c^2 + 3*a^2*b^4*c^2 + b^6*c^2 - 3*a^4*c^4 + 3*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + b^2*c^6) : :

X(62598) lies on these lines: {264, 35910}, {338, 525}, {511, 34334}, {523, 2972}, {1990, 3260}, {14254, 15067}, {15526, 18314}, {21187, 44311}, {34834, 62308}, {36901, 42331}, {41167, 58263}

X(62598) = midpoint of X(3260) and X(46106)
X(62598) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 41079}, {3134, 21253}, {43574, 4369}
X(62598) = X(2)-Ceva conjugate of X(41079)
X(62598) = X(i)-Dao conjugate of X(j) for these (i,j): {41079, 2}, {57128, 18877}
X(62598) = barycentric product X(i)*X(j) for these {i,j}: {850, 57128}, {3134, 3260}
X(62598) = barycentric quotient X(i)/X(j) for these {i,j}: {3134, 74}, {57128, 110}, {58261, 43917}


X(62599) = X(2)-CEVA CONJUGATE OF X(673)

Barycentrics    (a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(a^4 + a^3*b - 2*a^2*b^2 + a*b^3 - b^4 + a^3*c - 3*a^2*b*c + a*b^2*c + b^3*c - 2*a^2*c^2 + a*b*c^2 + a*c^3 + b*c^3 - c^4) : :

X(62599) lies on the cubic K251 and these lines: {1, 27942}, {2, 2115}, {9, 56897}, {105, 17798}, {238, 516}, {239, 14942}, {241, 292}, {294, 857}, {666, 2338}, {927, 43035}, {1966, 36796}, {3975, 51560}, {5222, 6654}, {16588, 24499}, {20672, 52160}, {20731, 23694}, {26003, 36124}

X(62599) = complement of the isogonal conjugate of X(20672)
X(62599) = complement of the isotomic conjugate of X(20533)
X(62599) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 673}, {1282, 141}, {2114, 2886}, {20533, 2887}, {20672, 10}, {20692, 3454}, {20761, 18589}, {27945, 20542}, {52160, 17046}
X(62599) = X(2)-Ceva conjugate of X(673)
X(62599) = X(i)-isoconjugate of X(j) for these (i,j): {241, 2115}, {518, 9500}, {672, 9499}
X(62599) = X(i)-Dao conjugate of X(j) for these (i,j): {673, 2}, {62554, 9499}
X(62599) = cevapoint of X(20533) and X(27945)
X(62599) = barycentric product X(i)*X(j) for these {i,j}: {673, 20533}, {1282, 2481}, {2114, 36796}, {14942, 52160}, {18031, 20672}, {27945, 52209}
X(62599) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 9499}, {1282, 518}, {1438, 9500}, {2114, 241}, {2195, 2115}, {20533, 3912}, {20672, 672}, {20692, 3930}, {20761, 1818}, {27945, 17755}, {52160, 9436}
X(62599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 56639, 56895}, {3008, 6185, 673}, {3008, 61477, 6185}


X(62600) = X(2)-CEVA CONJUGATE OF X(302)

Barycentrics    (a^2 - b^2 - c^2 - 2*Sqrt[3]*S)*(3*a^2 - b^2 - c^2 + 2*Sqrt[3]*S) : :

X(62600) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 53463}, {3, 303}, {6, 7907}, {13, 7782}, {15, 7752}, {17, 99}, {61, 302}, {76, 32465}, {114, 5981}, {183, 43238}, {194, 62198}, {299, 618}, {316, 5238}, {325, 16772}, {396, 30472}, {398, 37647}, {619, 11303}, {627, 44361}, {630, 51265}, {641, 33351}, {642, 33352}, {1975, 16644}, {3391, 60196}, {3392, 60194}, {3412, 62362}, {3933, 42124}, {5352, 7802}, {6337, 11488}, {6680, 22848}, {6779, 34509}, {7750, 42945}, {7763, 42152}, {7773, 36836}, {7799, 41943}, {7839, 62200}, {7858, 41407}, {9763, 33274}, {10616, 33259}, {11296, 33618}, {15031, 42581}, {16923, 62197}, {16925, 61332}, {19781, 20088}, {23302, 59541}, {32819, 42598}, {32839, 42999}, {34835, 46754}, {37668, 43479}, {44029, 51272}, {49106, 51388}

X(62600) = complement of X(54115)
X(62600) = X(31)-complementary conjugate of X(302)
X(62600) = X(2)-Ceva conjugate of X(302)
X(62600) = X(302)-Dao conjugate of X(2)
X(62600) = barycentric quotient X(302)/X(54115)
X(62600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {61, 7769, 302}, {6671, 11132, 302}, {23302, 59541, 59635}


X(62601) = X(2)-CEVA CONJUGATE OF X(303)

Barycentrics    (3*a^2 - b^2 - c^2 - 2*Sqrt[3]*S)*(a^2 - b^2 - c^2 + 2*Sqrt[3]*S) : :

X(62601) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 53452}, {3, 302}, {6, 7907}, {14, 7782}, {16, 7752}, {18, 99}, {62, 303}, {76, 32466}, {83, 36785}, {114, 5980}, {183, 43239}, {194, 62197}, {298, 619}, {316, 5237}, {325, 16773}, {395, 30471}, {397, 37647}, {618, 11304}, {628, 44362}, {629, 51272}, {641, 33353}, {642, 33350}, {1975, 16645}, {3366, 60196}, {3367, 60194}, {3411, 62362}, {3933, 42121}, {5351, 7802}, {6337, 11489}, {6680, 22892}, {6780, 34508}, {7750, 42944}, {7763, 42149}, {7773, 36843}, {7799, 41944}, {7839, 62199}, {7858, 41406}, {9761, 33274}, {10617, 33259}, {11295, 33619}, {15031, 42580}, {16923, 62198}, {16925, 61331}, {19780, 20088}, {23303, 59542}, {32819, 42599}, {32839, 42998}, {34835, 46753}, {37668, 43480}, {44031, 51265}, {49105, 51387}

X(62601) = complement of X(54116)
X(62601) = X(31)-complementary conjugate of X(303)
X(62601) = X(2)-Ceva conjugate of X(303)
X(62601) = X(303)-Dao conjugate of X(2)
X(62601) = barycentric quotient X(303)/X(54116)
X(62601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {62, 7769, 303}, {6672, 11133, 303}, {23303, 59542, 59635}


X(62602) = X(2)-CEVA CONJUGATE OF X(273)

Barycentrics    b*(-a + b - c)*(a + b - c)*c*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^7*b - 2*a^6*b^2 - a^5*b^3 + 4*a^4*b^4 - a^3*b^5 - 2*a^2*b^6 + a*b^7 + a^7*c - a^6*b*c - a^5*b^2*c + a^4*b^3*c - a^3*b^4*c + a^2*b^5*c + a*b^6*c - b^7*c - 2*a^6*c^2 - a^5*b*c^2 - 2*a^4*b^2*c^2 + 2*a^3*b^3*c^2 + 2*a^2*b^4*c^2 - a*b^5*c^2 + 2*b^6*c^2 - a^5*c^3 + a^4*b*c^3 + 2*a^3*b^2*c^3 - 2*a^2*b^3*c^3 - a*b^4*c^3 + b^5*c^3 + 4*a^4*c^4 - a^3*b*c^4 + 2*a^2*b^2*c^4 - a*b^3*c^4 - 4*b^4*c^4 - a^3*c^5 + a^2*b*c^5 - a*b^2*c^5 + b^3*c^5 - 2*a^2*c^6 + a*b*c^6 + 2*b^2*c^6 + a*c^7 - b*c^7) : :

X(62602) lies on these lines: {78, 18026}, {158, 273}, {226, 37448}, {342, 442}, {1745, 36118}, {3362, 60041}, {6734, 40701}, {6796, 58993}, {13149, 34059}

X(62602) = polar conjugate of the isogonal conjugate of X(51969)
X(62602) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 273}, {2947, 141}, {51969, 2886}, {56299, 20305}
X(62602) = X(2)-Ceva conjugate of X(273)
X(62602) = X(273)-Dao conjugate of X(2)
X(62602) = barycentric product X(i)*X(j) for these {i,j}: {85, 56299}, {264, 51969}, {331, 2947}
X(62602) = barycentric quotient X(i)/X(j) for these {i,j}: {2947, 219}, {51969, 3}, {56299, 9}


X(62603) = X(2)-CEVA CONJUGATE OF X(95)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^8 - a^6*b^2 - 2*a^4*b^4 + 3*a^2*b^6 - b^8 - a^6*c^2 + a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 3*b^6*c^2 - 2*a^4*c^4 - 3*a^2*b^2*c^4 - 4*b^4*c^4 + 3*a^2*c^6 + 3*b^2*c^6 - c^8) : :

X(62603) lies on these lines: {3, 57010}, {5, 18831}, {54, 52128}, {95, 140}, {264, 3463}, {275, 401}, {276, 339}, {632, 31617}, {4993, 14920}, {9225, 19188}, {9291, 42405}, {11539, 55080}, {24160, 24202}, {36794, 57274}

X(62603) = complement of the isotomic conjugate of X(17035)
X(62603) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 95}, {17035, 2887}
X(62603) = X(2)-Ceva conjugate of X(95)
X(62603) = X(95)-Dao conjugate of X(2)
X(62603) = barycentric product X(i)*X(j) for these {i,j}: {95, 17035}, {97, 58732}
X(62603) = barycentric quotient X(i)/X(j) for these {i,j}: {17035, 5}, {38833, 59142}, {58732, 324}


X(62604) = X(2)-CEVA CONJUGATE OF X(305)

Barycentrics    b^2*c^2*(-a^2 + b^2 + c^2)*(-(a^4*b^2) - a^2*b^4 - a^4*c^2 + a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4) : :

X(62604) lies on these lines: {25, 670}, {76, 21248}, {126, 57518}, {141, 3981}, {305, 1368}, {1194, 6374}, {1196, 59560}, {1370, 16084}, {1613, 4563}, {1799, 3504}, {3741, 24172}, {6389, 34254}, {7392, 36895}, {7938, 39998}, {32746, 35524}

X(62604) = isotomic conjugate of the polar conjugate of X(47846)
X(62604) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 305}, {19597, 18589}, {47846, 21235}, {56739, 21253}
X(62604) = X(2)-Ceva conjugate of X(305)
X(62604) = X(19)-isoconjugate of X(15371)
X(62604) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15371}, {305, 2}
X(62604) = barycentric product X(i)*X(j) for these {i,j}: {69, 47846}, {1502, 19597}, {52608, 56739}
X(62604) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15371}, {19597, 32}, {47846, 4}, {56739, 2489}
X(62604) = {X(40050),X(45201)}-harmonic conjugate of X(305)


X(62605) = X(2)-CEVA CONJUGATE OF X(92)

Barycentrics    b*c*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(-(a^5*b) + 2*a^3*b^3 - a*b^5 - a^5*c - a^4*b*c + a*b^4*c + b^5*c + 2*a^3*c^3 - 2*b^3*c^3 + a*b*c^4 - a*c^5 + b*c^5) : :

X(62605) lies on these lines: {2, 1947}, {63, 18026}, {92, 226}, {223, 54240}, {264, 5249}, {318, 442}, {324, 31019}, {908, 15466}, {1210, 1785}, {1214, 34287}, {1629, 51687}, {1896, 9612}, {1948, 5905}, {3452, 52147}, {3772, 17923}, {4054, 7017}, {6260, 14249}, {6335, 56082}, {6349, 7952}, {6350, 40837}, {6521, 37755}, {7108, 53417}, {16608, 52280}, {18667, 39036}, {21258, 37873}, {27186, 40684}, {27287, 46835}, {31053, 46106}, {31266, 31623}, {34048, 56296}, {36949, 56297}, {41883, 51358}, {44360, 46717}

X(62605) = complement of X(7361)
X(62605) = polar conjugate of X(3362)
X(62605) = complement of the isogonal conjugate of X(21767)
X(62605) = complement of the isotomic conjugate of X(6360)
X(62605) = polar conjugate of the isotomic conjugate of X(18749)
X(62605) = polar conjugate of the isogonal conjugate of X(1745)
X(62605) = X(i)-complementary conjugate of X(j) for these (i,j): {6, 14058}, {31, 92}, {1148, 20305}, {1745, 141}, {1816, 21246}, {6360, 2887}, {18749, 626}, {20764, 18589}, {21767, 10}, {21854, 3454}, {42456, 21245}
X(62605) = X(2)-Ceva conjugate of X(92)
X(62605) = X(i)-isoconjugate of X(j) for these (i,j): {3, 8761}, {48, 3362}, {184, 7361}, {577, 7049}, {4100, 60801}, {40165, 52430}
X(62605) = X(i)-Dao conjugate of X(j) for these (i,j): {92, 2}, {1249, 3362}, {36103, 8761}, {47601, 652}
X(62605) = barycentric product X(i)*X(j) for these {i,j}: {4, 18749}, {75, 1148}, {92, 6360}, {264, 1745}, {286, 42456}, {1816, 57809}, {1969, 21767}, {20764, 57806}, {21854, 44129}
X(62605) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 3362}, {19, 8761}, {92, 7361}, {158, 7049}, {1093, 60801}, {1148, 1}, {1745, 3}, {1816, 283}, {2052, 40165}, {6360, 63}, {18749, 69}, {20764, 255}, {21767, 48}, {21854, 71}, {42456, 72}
X(62605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {226, 2052, 92}, {226, 52982, 2052}


X(62606) = X(2)-CEVA CONJUGATE OF X(14919)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + a^4*b^2*c^2 + a^2*b^4*c^2 + 2*b^6*c^2 + 6*a^4*c^4 + a^2*b^2*c^4 - 6*b^4*c^4 - 4*a^2*c^6 + 2*b^2*c^6 + c^8) : :
X(62606) = X[399] - 3 X[457]

X(62606) lies on the cubic K856 and these lines: {2, 54837}, {30, 74}, {323, 3284}, {399, 457}, {1494, 37779}, {2349, 3218}, {4550, 53785}, {11004, 57487}, {13582, 14918}, {15066, 57488}, {16077, 46106}, {16253, 38937}, {34834, 36896}, {54439, 58872}

X(62606) = isogonal conjugate of X(11070)
X(62606) = complement of the isogonal conjugate of X(52166)
X(62606) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 10264}, {31, 14919}, {399, 18589}, {1973, 1989}, {19303, 3}, {52166, 10}, {58900, 34846}
X(62606) = X(2)-Ceva conjugate of X(14919)
X(62606) = X(i)-isoconjugate of X(j) for these (i,j): {1, 11070}, {19, 20123}, {75, 40356}, {1138, 2173}, {2166, 59500}, {9406, 40705}, {42074, 54837}
X(62606) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 11070}, {6, 20123}, {206, 40356}, {1989, 14254}, {9410, 40705}, {11597, 59500}, {14919, 2}, {36896, 1138}
X(62606) = crossdifference of every pair of points on line {42656, 52743}
X(62606) = barycentric product X(i)*X(j) for these {i,j}: {74, 1272}, {340, 50467}, {399, 1494}, {7799, 11074}, {11064, 40391}, {14566, 44769}, {19303, 33805}
X(62606) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 20123}, {6, 11070}, {32, 40356}, {50, 59500}, {74, 1138}, {399, 30}, {1272, 3260}, {1494, 40705}, {3470, 14451}, {11074, 1989}, {14264, 18781}, {14566, 41079}, {14993, 14254}, {15766, 10272}, {15790, 38246}, {16186, 19223}, {19303, 2173}, {40384, 54837}, {40391, 16080}, {42656, 58346}, {46036, 34297}, {50467, 265}, {52166, 1990}, {58900, 1637}
X(62606) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {323, 40384, 14919}, {323, 46788, 40384}, {3581, 50464, 74}, {40384, 44769, 323}, {44769, 46788, 14919}


X(62607) = X(2)-CEVA CONJUGATE OF X(30786)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - b^2 - c^2)*(a^2 - 2*b^2 + c^2)*(3*a^6 - 2*a^4*b^2 - 4*a^2*b^4 + b^6 - 2*a^4*c^2 + 7*a^2*b^2*c^2 - 4*a^2*c^4 + c^6) : :

X(62607) lies on these lines: {99, 31655}, {468, 892}, {523, 10416}, {524, 9225}, {858, 16093}, {5159, 6390}, {7664, 15899}, {7752, 57491}, {10418, 31998}, {24240, 50755}, {34158, 35923}

X(62607) = complement of the isotomic conjugate of X(7665)
X(62607) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 30786}, {7665, 2887}
X(62607) = X(2)-Ceva conjugate of X(30786)
X(62607) = X(19)-isoconjugate of X(15390)
X(62607) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15390}, {30786, 2}
X(62607) = barycentric product X(7665)*X(30786)
X(62607) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 15390}, {7665, 468}
X(62607) = {X(15398),X(37804)}-harmonic conjugate of X(30786)


X(62608) = X(2)-CEVA CONJUGATE OF X(3616)

Barycentrics    (a - 3*b - 3*c)*(3*a + b + c) : :
X(62608) = X[8] - 4 X[15593], X[1278] - 9 X[31352]

X(62608) lies on these lines: {2, 1743}, {6, 5550}, {7, 4751}, {8, 37}, {9, 5128}, {10, 3161}, {144, 24603}, {145, 3986}, {190, 5936}, {344, 31144}, {346, 36911}, {391, 1449}, {440, 41809}, {573, 9812}, {1213, 5749}, {1278, 27481}, {1654, 5308}, {2345, 4370}, {3241, 3686}, {3247, 20050}, {3617, 3731}, {3621, 16673}, {3629, 28641}, {3634, 3973}, {3644, 32087}, {3679, 4072}, {3832, 10443}, {3950, 4678}, {4000, 49731}, {4007, 51072}, {4034, 20053}, {4098, 4668}, {4364, 4402}, {4419, 4739}, {4440, 4699}, {4488, 50093}, {4687, 32099}, {4708, 37650}, {4748, 17259}, {4813, 6544}, {4898, 20052}, {5222, 17248}, {5224, 16593}, {5232, 29627}, {5839, 20057}, {6557, 18229}, {7229, 29576}, {8055, 26044}, {9708, 38869}, {10453, 56236}, {15492, 26039}, {16590, 17303}, {16667, 46934}, {16668, 37654}, {16671, 52706}, {16884, 17330}, {17255, 36525}, {17258, 52709}, {17260, 29611}, {17262, 28635}, {17263, 41848}, {17273, 59374}, {17289, 61023}, {17306, 31189}, {17332, 35578}, {17355, 31722}, {17756, 21838}, {19875, 59579}, {20080, 29578}, {26125, 32098}, {28626, 46922}, {29612, 51170}, {39581, 49448}, {40999, 60995}, {46196, 52087}, {52422, 60941}

X(62608) = reflection of X(30712) in X(31312)
X(62608) = complement of X(30712)
X(62608) = anticomplement of X(31312)
X(62608) = complement of the isotomic conjugate of X(3617)
X(62608) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3616}, {55, 5837}, {692, 28161}, {3340, 2886}, {3617, 2887}, {3731, 141}, {3984, 1368}, {4058, 21245}, {5226, 17046}, {28161, 21252}, {42034, 626}, {48338, 11}, {62218, 1329}
X(62608) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3616}, {190, 28161}
X(62608) = X(i)-isoconjugate of X(j) for these (i,j): {2334, 39980}, {28162, 47915}
X(62608) = X(i)-Dao conjugate of X(j) for these (i,j): {3616, 2}, {11530, 25430}, {18231, 41825}, {51576, 39980}, {62221, 514}
X(62608) = barycentric product X(i)*X(j) for these {i,j}: {391, 5226}, {1449, 42034}, {3340, 4673}, {3616, 3617}, {3731, 19804}, {3984, 5342}, {4058, 42028}
X(62608) = barycentric quotient X(i)/X(j) for these {i,j}: {391, 56201}, {1449, 39980}, {3616, 30712}, {3617, 5936}, {3731, 25430}, {4058, 60267}, {5226, 57826}, {5257, 56226}, {28161, 58860}, {37593, 31503}, {42034, 40023}, {62218, 4866}
X(62608) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30712, 31312}, {2, 41913, 56226}, {391, 5257, 3616}, {966, 5296, 8}, {1213, 5749, 19877}, {41913, 56226, 30708}


X(62609) = X(2)-CEVA CONJUGATE OF X(44396)

Barycentrics    (a^3 + a*b*c - b^2*c - b*c^2)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c + a^2*c^2 - a*c^3 - c^4) : :

X(62609) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 3125}, {3, 2783}, {99, 321}, {114, 517}, {115, 44417}, {190, 6626}, {536, 2482}, {620, 3666}, {712, 5976}, {1125, 21254}, {2787, 17989}, {4858, 52531}, {4975, 8299}, {5006, 19623}, {5026, 9022}, {5164, 41179}, {22325, 58662}, {33939, 36860}, {34064, 40605}, {34377, 50567}

X(62609) = midpoint of X(99) and X(321)
X(62609) = reflection of X(i) in X(j) for these {i,j}: {115, 44417}, {3666, 620}, {22325, 58662}
X(62609) = complement of X(11611)
X(62609) = complement of the isogonal conjugate of X(5006)
X(62609) = complement of the isotomic conjugate of X(19623)
X(62609) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44396}, {163, 2787}, {422, 20305}, {1919, 57462}, {2206, 57039}, {2787, 21253}, {5006, 10}, {5040, 8287}, {5061, 17052}, {5209, 626}, {5291, 3454}, {17763, 21245}, {17935, 21262}, {17944, 3835}, {19623, 2887}, {32739, 2511}
X(62609) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 44396}, {99, 2787}
X(62609) = X(17954)-isoconjugate of X(53686)
X(62609) = X(i)-Dao conjugate of X(j) for these (i,j): {35079, 60043}, {44396, 2}
X(62609) = crossdifference of every pair of points on line {5040, 17961}
X(62609) = barycentric product X(i)*X(j) for these {i,j}: {4601, 41179}, {19623, 44396}
X(62609) = barycentric quotient X(i)/X(j) for these {i,j}: {2787, 60043}, {5291, 53686}, {41179, 3125}, {44396, 11611}


X(62610) = X(2)-CEVA CONJUGATE OF X(3978)

Barycentrics    b^2*c^2*(-a^2 + b*c)*(a^2 + b*c)*(a^4*b^4 + a^4*b^2*c^2 - a^2*b^4*c^2 + a^4*c^4 - a^2*b^2*c^4 - b^4*c^4) : :

X(62610) lies on these lines: {2, 19590}, {76, 25332}, {141, 308}, {702, 35073}, {732, 3978}, {1368, 57799}, {1920, 56558}, {1921, 19581}, {3051, 41297}, {3117, 6374}, {3741, 56660}, {8623, 19585}, {8783, 21248}, {19562, 62604}, {25327, 33769}, {27890, 40790}, {40876, 44137}

X(62610) = midpoint of X(308) and X(670)
X(62610) = complement of X(39939)
X(62610) = complement of the isogonal conjugate of X(51983)
X(62610) = complement of the isotomic conjugate of X(40858)
X(62610) = isotomic conjugate of the isogonal conjugate of X(38382)
X(62610) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3978}, {1923, 9496}, {40858, 2887}, {51325, 19563}, {51983, 10}
X(62610) = X(2)-Ceva conjugate of X(3978)
X(62610) = X(i)-isoconjugate of X(j) for these (i,j): {1927, 39939}, {1967, 51326}, {9468, 51934}
X(62610) = X(i)-Dao conjugate of X(j) for these (i,j): {325, 51249}, {3978, 2}, {8290, 51326}, {39044, 51934}
X(62610) = barycentric product X(i)*X(j) for these {i,j}: {76, 38382}, {1502, 51325}, {3978, 40858}, {14603, 51983}
X(62610) = barycentric quotient X(i)/X(j) for these {i,j}: {385, 51326}, {880, 53621}, {1966, 51934}, {3978, 39939}, {5976, 51249}, {8870, 34238}, {38382, 6}, {40858, 694}, {51325, 32}, {51983, 9468}


X(62611) = X(2)-CEVA CONJUGATE OF X(1645)

Barycentrics    a^2*(b^2 - c^2)*(a^2*b^2 + a^2*c^2 - 2*b^2*c^2)^2 : :
X(62611) = 4 X[2] - X[23610], 5 X[2] - 2 X[38237], 3 X[2] + X[44007], 5 X[23610] - 8 X[38237], 3 X[23610] + 4 X[44007], 6 X[38237] + 5 X[44007], 4 X[38237] - 5 X[52721], 2 X[44007] + 3 X[52721], 2 X[9148] + X[14406]

X(62611) lies on the cubic K219 and these lines: {2, 512}, {141, 9009}, {850, 6374}, {865, 58344}, {888, 6786}, {1645, 39010}, {1646, 38978}, {1648, 2679}, {2086, 38988}, {3005, 22260}, {3221, 7998}, {3231, 38366}, {3569, 21905}, {7192, 34021}, {8034, 40627}, {9171, 45914}, {9402, 27812}, {39080, 45689}, {52617, 62604}

X(62611) = reflection of X(i) in X(j) for these {i,j}: {23610, 52721}, {52721, 2}
X(62611) = complement of the isogonal conjugate of X(23342)
X(62611) = tripolar centroid of X(538)
X(62611) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1645}, {538, 8287}, {662, 538}, {799, 59765}, {2234, 115}, {3231, 16592}, {5118, 37}, {9148, 24040}, {23342, 10}, {24037, 888}, {24041, 11176}, {30736, 21253}, {30938, 116}, {52893, 6627}
X(62611) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1645}, {512, 888}, {670, 538}, {35073, 39010}
X(62611) = X(i)-isoconjugate of X(j) for these (i,j): {662, 57540}, {1924, 57571}, {3228, 36133}, {9150, 37132}
X(62611) = X(i)-Dao conjugate of X(j) for these (i,j): {538, 670}, {888, 512}, {1084, 57540}, {1645, 2}, {9428, 57571}, {35073, 886}, {38998, 9150}, {39010, 3228}
X(62611) = crossdifference of every pair of points on line {729, 3231}
X(62611) = X(38366)-line conjugate of X(3231)
X(62611) = barycentric product X(i)*X(j) for these {i,j}: {512, 35073}, {523, 52067}, {538, 888}, {670, 39010}, {887, 30736}, {3231, 9148}, {23342, 52625}
X(62611) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 57540}, {538, 886}, {670, 57571}, {887, 729}, {888, 3228}, {3231, 9150}, {9148, 34087}, {14406, 46156}, {30736, 57993}, {33875, 32717}, {35073, 670}, {39010, 512}, {52067, 99}, {52625, 60028}


X(62612) = X(2)-CEVA CONJUGATE OF X(57606)

Barycentrics    (b^2 - c^2)*(-a^4 + b^4 + a^2*b*c - b^3*c - b*c^3 + c^4)*(-a^4 + b^4 - a^2*b*c + b^3*c + b*c^3 + c^4)*(-2*a^6 + a^4*b^2 + b^6 + a^4*c^2 - b^4*c^2 - b^2*c^4 + c^6) : :

X(62612) lies on these lines: {2, 2419}, {6, 8057}, {132, 1560}, {216, 2485}, {523, 1249}, {647, 40938}, {648, 39297}, {2395, 34156}, {2409, 23977}, {2489, 14091}, {2501, 3162}, {3163, 23976}, {15595, 39473}, {54267, 62595}, {57201, 59551}

X(62612) = complement of X(2419)
X(62612) = complement of the isogonal conjugate of X(2445)
X(62612) = complement of the isotomic conjugate of X(2409)
X(62612) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 57606}, {2312, 127}, {2409, 2887}, {2445, 10}, {8766, 55069}, {16318, 21253}, {23977, 20305}, {24024, 21243}, {32676, 1503}, {42671, 34846}, {51437, 8287}
X(62612) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 57606}, {648, 1503}, {3267, 55129}
X(62612) = X(i)-Dao conjugate of X(j) for these (i,j): {23976, 2867}, {57606, 2}
X(62612) = crossdifference of every pair of points on line {34146, 42671}
X(62612) = barycentric product X(i)*X(j) for these {i,j}: {648, 33504}, {2409, 57606}, {2881, 30737}, {3267, 56794}
X(62612) = barycentric quotient X(i)/X(j) for these {i,j}: {1503, 2867}, {2409, 39297}, {2881, 1297}, {33504, 525}, {56794, 112}, {57606, 2419}


X(62613) = X(2)-CEVA CONJUGATE OF X(2407)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^8 - 3*a^6*b^2 - 2*a^4*b^4 + 5*a^2*b^6 - 2*b^8 - 3*a^6*c^2 + 10*a^4*b^2*c^2 - 6*a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 - 6*a^2*b^2*c^4 + 2*b^4*c^4 + 5*a^2*c^6 + b^2*c^6 - 2*c^8) : :

X(62613) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 12066}, {99, 2394}, {114, 7422}, {1649, 3233}, {2407, 2420}, {2482, 6148}, {6337, 14588}, {14570, 15421}

X(62613) = complement of X(12066)
X(62613) = X(31)-complementary conjugate of X(2407)
X(62613) = X(2)-Ceva conjugate of X(2407)
X(62613) = X(2159)-isoconjugate of X(12065)
X(62613) = X(i)-Dao conjugate of X(j) for these (i,j): {2407, 2}, {3163, 12065}
X(62613) = barycentric product X(99)*X(31945)
X(62613) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 12065}, {2407, 12066}, {31945, 523}


X(62614) = X(2)-CEVA CONJUGATE OF X(20336)

Barycentrics    b*c*(b + c)*(-a^2 + b^2 + c^2)*(a^4*b + a^3*b^2 + a^2*b^3 + a*b^4 + a^4*c - b^4*c + a^3*c^2 - 2*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - b^2*c^3 + a*c^4 - b*c^4) : :

X(62614) lies on these lines: {10, 24162}, {28, 668}, {120, 57808}, {306, 18671}, {1211, 3721}, {3695, 20235}, {16085, 52364}, {56282, 60197}

X(62614) = X(31)-complementary conjugate of X(20336)
X(62614) = X(2)-Ceva conjugate of X(20336)
X(62614) = X(19)-isoconjugate of X(15408)
X(62614) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 15408}, {20336, 2}
X(62614) = barycentric quotient X(3)/X(15408)


X(62615) = X(2)-CEVA CONJUGATE OF X(6384)

Barycentrics    b*c*(a*b - a*c + b*c)*(a*b - a*c - b*c)*(a^3*b^3 - a^3*b^2*c + a^2*b^3*c - a^3*b*c^2 + 2*a^2*b^2*c^2 - a*b^3*c^2 + a^3*c^3 + a^2*b*c^3 - a*b^2*c^3 - b^3*c^3) : :

X(62615) lies on these lines: {43, 18830}, {75, 2998}, {76, 3840}, {87, 23429}, {8026, 32453}, {18152, 33789}, {20258, 27428}, {51575, 62419}

X(62615) = isotomic conjugate of X(15967)
X(62615) = complement of the isotomic conjugate of X(41840)
X(62615) = isotomic conjugate of the isogonal conjugate of X(15966)
X(62615) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 6384}, {15966, 20255}, {23177, 18589}, {39467, 626}, {41840, 2887}
X(62615) = X(2)-Ceva conjugate of X(6384)
X(62615) = X(31)-isoconjugate of X(15967)
X(62615) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 15967}, {6384, 2}
X(62615) = barycentric product X(i)*X(j) for these {i,j}: {76, 15966}, {330, 39467}, {6384, 41840}
X(62615) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 15967}, {15966, 6}, {39467, 192}, {41840, 43}


X(62616) = 21st TRAN VIET HUNG-LOZADA CENTER

Barycentrics    4*a^4-4*a^3*(b+c)+4*a*(b-c)^2*(b+c)-3*(b^2-c^2)^2-a^2*(b^2-6*b*c+c^2) : :
X(62616) = 2*X(1)-3*X(11) = X(1)-3*X(80) = 4*X(1)-3*X(1317) = 5*X(1)-6*X(1387) = 5*X(1)-3*X(7972) = X(1)+3*X(9897) = X(1)-2*X(12019) = 7*X(1)-6*X(12735) = 7*X(1)-9*X(16173) = 5*X(1)-9*X(37718) = 2*X(8)-X(13996) = 4*X(8)-3*X(50842) = X(8)-3*X(50890) = 4*X(10)-3*X(6174) = 2*X(10)-X(10609) = 8*X(10)-9*X(38099) = X(11)-2*X(80) = 2*X(11)-X(1317) = 5*X(11)-4*X(1387) = 5*X(11)-2*X(7972) = X(11)+2*X(9897) = 3*X(11)-4*X(12019) = 7*X(11)-4*X(12735) = 7*X(11)-6*X(16173) = 5*X(11)-6*X(37718) = 4*X(80)-X(1317) = 5*X(80)-2*X(1387) = 5*X(80)-X(7972) = 3*X(80)-2*X(12019) = 7*X(80)-2*X(12735) = 7*X(80)-3*X(16173) = 5*X(80)-3*X(37718) = 3*X(119)-4*X(18357) = 2*X(119)-3*X(38156) = 3*X(355)-X(12738) = 2*X(355)-X(37725) = 3*X(1156)-X(30332) = 5*X(1317)-8*X(1387) = 5*X(1317)-4*X(7972) = X(1317)+4*X(9897) = 3*X(1317)-8*X(12019) = 7*X(1317)-8*X(12735) = 2*X(1387)-X(7972) = 2*X(1387)+5*X(9897) = 3*X(1387)-5*X(12019) = 7*X(1387)-5*X(12735) = 2*X(1387)-3*X(37718) = 3*X(1484)-X(61295) = 4*X(5220)-3*X(6068) = 2*X(13996)-3*X(50842)

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 10, 2024.

X(62616) lies on these lines: {1, 5}, {4, 12762}, {8, 190}, {10, 6174}, {30, 3245}, {35, 51525}, {36, 11545}, {55, 38665}, {56, 38669}, {65, 2801}, {72, 2802}, {100, 958}, {104, 5204}, {145, 10707}, {149, 3436}, {150, 1358}, {153, 5229}, {214, 3634}, {388, 18221}, {484, 28186}, {499, 18526}, {515, 1155}, {516, 36920}, {517, 33519}, {519, 51409}, {529, 62235}, {546, 11009}, {550, 43731}, {900, 21112}, {944, 5433}, {950, 45081}, {956, 48713}, {997, 44847}, {1125, 50843}, {1145, 3626}, {1146, 2246}, {1159, 1478}, {1259, 13205}, {1319, 28236}, {1320, 7319}, {1385, 7294}, {1388, 54361}, {1479, 12645}, {1537, 6246}, {1697, 51768}, {1737, 5126}, {1768, 5128}, {1862, 5130}, {1898, 10914}, {2099, 38757}, {2771, 50193}, {2800, 12688}, {2829, 6253}, {3035, 6224}, {3057, 18908}, {3058, 12647}, {3065, 16139}, {3149, 48694}, {3214, 15232}, {3244, 50846}, {3303, 53055}, {3322, 60579}, {3474, 50864}, {3476, 61717}, {3579, 24466}, {3583, 5844}, {3616, 10031}, {3622, 59377}, {3628, 24926}, {3632, 12701}, {3633, 50891}, {3636, 11274}, {3649, 12831}, {3679, 35445}, {3880, 17615}, {3897, 31260}, {3935, 5176}, {3999, 53614}, {4088, 6366}, {4152, 49998}, {4302, 59503}, {4420, 55016}, {4663, 51198}, {4677, 9580}, {4691, 50841}, {4792, 10777}, {4860, 5434}, {5010, 38112}, {5080, 5855}, {5083, 9850}, {5183, 28164}, {5221, 9803}, {5326, 37525}, {5432, 5790}, {5441, 61622}, {5541, 41229}, {5550, 6667}, {5690, 10993}, {5691, 41687}, {5791, 9945}, {5795, 6594}, {5812, 14217}, {5818, 20400}, {5840, 11827}, {5851, 12943}, {5882, 17606}, {6595, 12937}, {6668, 51683}, {6690, 59416}, {6702, 19862}, {6738, 38055}, {6797, 11570}, {7354, 10573}, {7508, 38129}, {8148, 10526}, {9613, 52783}, {9668, 51515}, {9955, 38077}, {10039, 10543}, {10058, 12331}, {10090, 12773}, {10106, 41556}, {10265, 37605}, {10427, 38202}, {10522, 13271}, {10708, 43057}, {10711, 10895}, {10742, 18517}, {10767, 12372}, {10768, 12183}, {10769, 13181}, {10778, 13214}, {10780, 13295}, {10866, 15558}, {10894, 59391}, {10953, 13274}, {11011, 19925}, {11015, 32157}, {11041, 61716}, {11219, 24914}, {11224, 51792}, {11238, 47744}, {11280, 40273}, {11544, 56790}, {11715, 33597}, {11929, 51517}, {12119, 35242}, {12245, 12953}, {12513, 13279}, {12619, 13624}, {12641, 33576}, {12648, 34699}, {12677, 46435}, {12736, 17660}, {12776, 22753}, {12832, 18976}, {12933, 32454}, {13143, 17501}, {13405, 50801}, {13901, 35788}, {13958, 35789}, {14872, 45288}, {15228, 28190}, {15808, 59419}, {16615, 24298}, {17160, 21277}, {17605, 50796}, {18395, 34773}, {18492, 50908}, {19878, 38104}, {20014, 50894}, {21077, 21630}, {21859, 53561}, {24028, 53524}, {25440, 51636}, {25485, 38038}, {25557, 38095}, {26487, 57298}, {31272, 46934}, {32557, 33812}, {33814, 38128}, {34458, 58772}, {37080, 41553}, {37556, 51767}, {37572, 38761}, {38177, 61562}, {38192, 51157}, {38602, 59319}, {44840, 51782}, {50191, 58587}

X(62616) = midpoint of X(i) and X(j) for these (i, j): {80, 9897}, {100, 20085}, {149, 12531}, {5881, 49176}, {12747, 19914}, {37006, 41684}
X(62616) = reflection of X(i) in X(j) for these (i, j): (1, 12019), (11, 80), (36, 11545), (100, 3036), (944, 20418), (1145, 15863), (1317, 11), (1537, 6246), (1768, 9952), (3322, 60579), (6154, 1145), (6224, 3035), (7972, 1387), (10031, 45310), (10609, 10), (10993, 5690), (11570, 6797), (13996, 8), (15326, 40663), (17660, 12736), (19907, 61553), (25416, 21630), (27778, 11570), (33337, 6702), (37725, 355), (51525, 61510)
X(62616) = X(i)-beth conjugate of X(j) for these (i, j): (8, 10609), (6740, 12019)
X(62616) = inverse of X(5252) in Fuhrmann circle
X(62616) = inverse of X(12019) in Feuerbach circumhyperbola
X(62616) = pole of the line {900, 5252} with respect to the Fuhrmann circle
X(62616) = pole of the line {900, 14413} with respect to the incircle
X(62616) = pole of the line {517, 11545} with respect to the Feuerbach circumhyperbola
X(62616) = pole of the line {10015, 45326} with respect to the Steiner inellipse
X(62616) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 12019, 11), (1, 18357, 3614), (8, 13996, 50842), (10, 10609, 6174), (11, 37725, 12), (80, 49176, 1837), (149, 3436, 13272), (214, 34122, 31235), (355, 10950, 12), (1387, 37718, 11), (1484, 39692, 11), (1537, 6246, 59390), (5727, 37712, 5252), (6224, 59415, 3035), (6702, 33337, 34123), (7972, 37718, 1387), (10573, 18525, 7354), (10593, 61295, 1), (10950, 37725, 1317), (13996, 34606, 6068), (23477, 23517, 7951), (37525, 38042, 5326), (37728, 38138, 7951), (37734, 38157, 12), (38669, 60782, 56)


X(62617) = 22nd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    8*a^4-8*a^3*(b+c)+8*a*(b-c)^2*(b+c)+a^2*(-5*b^2+18*b*c-5*c^2)-3*(b^2-c^2)^2 : :
X(62617) = 4*X(1)-3*X(11) = 5*X(1)-3*X(80) = 2*X(1)-3*X(1317) = 7*X(1)-6*X(1387) = X(1)-3*X(7972) = 7*X(1)-3*X(9897) = 3*X(1)-2*X(12019) = 5*X(1)-6*X(12735) = 11*X(1)-9*X(16173) = 13*X(1)-9*X(37718) = 2*X(8)-3*X(6174) = X(8)-3*X(10031) = 2*X(10)-3*X(50843) = 5*X(11)-4*X(80) = X(11)-2*X(1317) = 7*X(11)-8*X(1387) = X(11)-4*X(7972) = 7*X(11)-4*X(9897) = 9*X(11)-8*X(12019) = 5*X(11)-8*X(12735) = 2*X(80)-5*X(1317) = 7*X(80)-10*X(1387) = X(80)-5*X(7972) = 7*X(80)-5*X(9897) = 9*X(80)-10*X(12019) = X(80)-2*X(12735) = 3*X(100)-X(3621) = 3*X(119)-2*X(37705) = 2*X(145)-3*X(50846) = 5*X(145)-3*X(50894) = 3*X(214)-2*X(3626) = 2*X(1125)-3*X(11274) = 10*X(1125)-9*X(38104) = 3*X(1145)-2*X(3625) = X(1145)-2*X(33337) = 7*X(1317)-4*X(1387) = X(1317)-2*X(7972) = 7*X(1317)-2*X(9897) = 9*X(1317)-4*X(12019) = 5*X(1317)-4*X(12735) = 11*X(1317)-6*X(16173) = 13*X(1317)-6*X(37718) = 2*X(1387)-7*X(7972) = 2*X(1387)-X(9897) = 9*X(1387)-7*X(12019) = 5*X(1387)-7*X(12735) = 2*X(1483)-X(37726) = X(6174)-2*X(10031) = 2*X(10609)-X(13996) = 5*X(11274)-3*X(38104)

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 10, 2024.

X(62617) lies on these lines: {1, 5}, {8, 6174}, {10, 50843}, {35, 51529}, {36, 51525}, {55, 38669}, {56, 38665}, {100, 3621}, {104, 5217}, {145, 528}, {149, 5229}, {153, 5225}, {214, 3626}, {519, 1155}, {900, 21105}, {944, 15338}, {1125, 11274}, {1145, 3625}, {1156, 3486}, {1159, 5434}, {1320, 5556}, {1537, 31673}, {1697, 51767}, {1698, 38099}, {1768, 9845}, {1836, 51093}, {2246, 4534}, {2646, 41553}, {2800, 12680}, {2801, 3057}, {2802, 3555}, {3032, 58772}, {3035, 3617}, {3036, 9780}, {3058, 50818}, {3189, 5854}, {3244, 12831}, {3245, 5844}, {3296, 24297}, {3304, 60782}, {3476, 4860}, {3585, 61597}, {3616, 50890}, {3622, 45310}, {3623, 10707}, {3632, 50842}, {3634, 15863}, {3635, 50892}, {3935, 38455}, {4152, 6790}, {4668, 50893}, {4701, 50841}, {4746, 50844}, {4816, 15015}, {4995, 12647}, {5048, 28236}, {5083, 17636}, {5126, 40663}, {5128, 5541}, {5298, 41684}, {5326, 10246}, {5432, 7967}, {5433, 12645}, {5550, 59415}, {5840, 8148}, {5851, 12730}, {5855, 62235}, {5882, 37600}, {5919, 33519}, {6284, 18526}, {6594, 6737}, {6667, 46934}, {6702, 15808}, {6797, 50192}, {7294, 38763}, {8715, 51636}, {9848, 15558}, {10039, 32900}, {10074, 12331}, {10087, 12773}, {10106, 43180}, {10543, 45065}, {10698, 52836}, {10711, 10896}, {11500, 12776}, {11570, 39777}, {11715, 41541}, {12116, 12762}, {12702, 24466}, {16191, 51790}, {17605, 51071}, {18483, 25485}, {18493, 38077}, {18965, 35842}, {18966, 35843}, {19862, 34122}, {19914, 21154}, {20119, 30340}, {20400, 59388}, {33814, 59319}, {37556, 51768}, {38602, 59325}, {49515, 51062}

X(62617) = reflection of X(i) in X(j) for these (i, j): (11, 1317), (80, 12735), (1145, 33337), (1317, 7972), (6154, 6224), (6174, 10031), (9897, 1387), (12531, 3035), (13996, 10609), (15863, 33812), (17636, 5083), (33519, 5919), (37726, 1483), (52836, 10698)
X(62617) = pole of the line {900, 23057} with respect to the incircle
X(62617) = pole of the line {517, 15683} with respect to the Feuerbach circumhyperbola
X(62617) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 37705, 7173), (12, 37726, 11), (1483, 37707, 12), (15863, 33812, 34123)


X(62618) = X(2)X(520)∩X(264)X(525)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(a^6*b^2 - 2*a^4*b^4 + a^2*b^6 - 2*a^6*c^2 - a^4*b^2*c^2 + 2*a^2*b^4*c^2 + b^6*c^2 + 4*a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 - 2*a^2*c^6 + b^2*c^6)*(-2*a^6*b^2 + 4*a^4*b^4 - 2*a^2*b^6 + a^6*c^2 - a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 + 2*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + b^2*c^6) : :

There are two points X such that (unary(4) of X) = X(8523); they are X(264) and X(62618).

X(62618) lies on these lines: {2, 520}, {69, 52613}, {264, 525}, {305, 4143}, {1494, 54973}, {1972, 9033}, {2373, 26717}, {2435, 6330}, {9007, 42313}, {14417, 57864}, {23878, 36889}, {42308, 44769}, {52744, 57981}

X(62618) = X(i)-isoconjugate of X(j) for these (i,j): {162, 3331}, {852, 24019}, {36139, 52066}
X(62618) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 3331}, {525, 52744}, {35071, 852}
X(62618) = cevapoint of X(525) and X(52744)
X(62618) = trilinear pole of line {525, 2972}
X(62618) = barycentric product X(i)*X(j) for these {i,j}: {520, 57981}, {525, 54973}, {3265, 57732}, {3267, 26717}
X(62618) = barycentric quotient X(i)/X(j) for these {i,j}: {520, 852}, {647, 3331}, {15526, 52744}, {26717, 112}, {34767, 52766}, {54973, 648}, {57732, 107}, {57981, 6528}


X(62619) = X(2)X(513)∩X(75)X(514)

Barycentrics    (b - c)*(a*b - 2*a*c + b*c)*(-2*a*b + a*c + b*c) : :
X(62619) = X[75] + 2 X[21143], X[75] - 4 X[21211], X[21143] + 2 X[21211], 2 X[14437] - 3 X[51488]

X(62619) lies on the circumconic {{A,B,C,X(2),X(7)}} and these lines: {2, 513}, {7, 3669}, {27, 57200}, {75, 514}, {86, 1019}, {239, 23345}, {310, 7199}, {335, 876}, {536, 53376}, {649, 3758}, {650, 56163}, {661, 56169}, {673, 1027}, {675, 739}, {798, 32011}, {812, 903}, {871, 4828}, {889, 3572}, {898, 1308}, {1088, 58817}, {1268, 47947}, {3257, 3570}, {3768, 4763}, {4373, 17496}, {4375, 41847}, {4664, 52745}, {4675, 20295}, {4728, 30997}, {4762, 36588}, {4777, 27494}, {4785, 39704}, {5936, 47915}, {6006, 27475}, {6384, 20954}, {6548, 27918}, {14437, 51488}, {14621, 23349}, {17217, 39734}, {17250, 25381}, {19954, 44314}, {21191, 40027}, {27483, 28209}, {28650, 48587}, {28840, 55955}, {28898, 56124}, {29350, 51055}, {29570, 57051}, {30598, 48074}, {34075, 36146}, {35355, 36798}, {39179, 52394}, {40039, 60288}, {46782, 57542}, {48070, 57925}, {48551, 56061}

X(62619) = reflection of X(i) in X(j) for these {i,j}: {3768, 4763}, {4664, 52745}
X(62619) = isotomic conjugate of X(23891)
on ABCGGe
X(62619) = isotomic conjugate of the isogonal conjugate of X(23892)
X(62619) = X(i)-Ceva conjugate of X(j) for these (i,j): {889, 41683}, {4607, 3227}
X(62619) = X(i)-isoconjugate of X(j) for these (i,j): {6, 23343}, {31, 23891}, {32, 41314}, {59, 4526}, {100, 3230}, {101, 899}, {110, 52959}, {163, 3994}, {536, 692}, {765, 3768}, {890, 1016}, {891, 1252}, {898, 59797}, {1110, 4728}, {1415, 4009}, {1646, 57731}, {2149, 14430}, {2284, 52902}, {2427, 45145}, {3939, 52896}, {4465, 34067}, {4557, 52897}, {4567, 14404}, {4574, 52890}, {4706, 34074}, {4937, 34073}, {6381, 32739}, {9268, 14437}, {13466, 32718}, {19945, 59149}, {23344, 52900}, {32641, 61672}, {34075, 42083}, {36816, 54325}, {40614, 59071}
X(62619) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 23891}, {9, 23343}, {115, 3994}, {244, 52959}, {513, 3768}, {514, 4728}, {650, 14430}, {661, 891}, {1015, 899}, {1086, 536}, {1146, 4009}, {4988, 14431}, {6376, 41314}, {6544, 30583}, {6615, 4526}, {8054, 3230}, {35119, 4465}, {39011, 42083}, {40615, 43037}, {40617, 52896}, {40619, 6381}, {40627, 14404}, {61073, 4937}, {62552, 14433}
X(62619) = cevapoint of X(i) and X(j) for these (i,j): {514, 4728}, {19945, 21143}
X(62619) = trilinear pole of line {244, 514}
X(62619) = barycentric product X(i)*X(j) for these {i,j}: {75, 43928}, {76, 23892}, {86, 35353}, {244, 889}, {513, 31002}, {514, 3227}, {561, 23349}, {693, 37129}, {739, 3261}, {898, 1111}, {1019, 60288}, {1086, 4607}, {3248, 57994}, {3676, 36798}, {4728, 57542}, {5381, 6545}, {6548, 36872}, {7192, 41683}, {23989, 34075}
X(62619) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 23343}, {2, 23891}, {11, 14430}, {75, 41314}, {244, 891}, {513, 899}, {514, 536}, {522, 4009}, {523, 3994}, {649, 3230}, {661, 52959}, {693, 6381}, {739, 101}, {764, 19945}, {812, 4465}, {889, 7035}, {891, 42083}, {898, 765}, {1015, 3768}, {1019, 52897}, {1022, 52900}, {1027, 52902}, {1086, 4728}, {1647, 30583}, {1769, 61672}, {2087, 14437}, {2170, 4526}, {3120, 14431}, {3122, 14404}, {3123, 14426}, {3227, 190}, {3248, 890}, {3261, 35543}, {3669, 52896}, {3676, 43037}, {3768, 59797}, {4607, 1016}, {4728, 13466}, {4777, 4937}, {4778, 4706}, {5381, 6632}, {6545, 52626}, {6548, 52755}, {16507, 38349}, {19945, 14434}, {21143, 1646}, {23349, 31}, {23892, 6}, {27918, 14433}, {31002, 668}, {32718, 1110}, {34075, 1252}, {35353, 10}, {36798, 3699}, {36872, 17780}, {37129, 100}, {41683, 3952}, {42754, 42764}, {43928, 1}, {52768, 56811}, {57200, 52890}, {57542, 4607}, {60288, 4033}
X(62619) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {889, 46780, 24004}, {21143, 21211, 75}


X(62620) = X(1)X(2)∩X(88)X(320)

Barycentrics    (2*a - b - c)*(a*b + b^2 + a*c - b*c + c^2) : :

X(62620) lies on these lines: {1, 2}, {44, 51583}, {75, 37651}, {88, 320}, {100, 49709}, {321, 37663}, {345, 26688}, {350, 30990}, {524, 24593}, {536, 30566}, {678, 49700}, {900, 1491}, {908, 1266}, {1054, 32843}, {1071, 34466}, {1404, 3911}, {1465, 41804}, {1575, 4144}, {2183, 3218}, {3210, 27131}, {3264, 3943}, {3306, 31034}, {3452, 17147}, {3662, 30991}, {3689, 49699}, {3707, 30564}, {3752, 5741}, {3816, 3896}, {3834, 3936}, {4023, 46909}, {4029, 5316}, {4359, 37662}, {4383, 56520}, {4389, 4850}, {4395, 37691}, {4413, 33070}, {4442, 4706}, {4480, 30579}, {4675, 24594}, {4693, 24709}, {4865, 9350}, {4893, 48321}, {4997, 17160}, {5718, 24589}, {5748, 19789}, {6550, 47781}, {9342, 33073}, {16602, 18139}, {16666, 58414}, {17119, 30824}, {17145, 24216}, {17278, 30834}, {17290, 27739}, {17484, 20092}, {17490, 31053}, {17740, 54389}, {19515, 29331}, {19742, 59491}, {20068, 21060}, {20073, 30680}, {21130, 23888}, {21805, 49701}, {24003, 32848}, {24184, 24620}, {24277, 49778}, {24627, 37656}, {25529, 33129}, {26136, 37759}, {27002, 32863}, {27489, 49447}, {30867, 33155}, {31227, 46638}, {32844, 56009}, {32851, 37680}, {33113, 37679}, {33116, 37687}, {50289, 61156}, {62227, 62297}

X(62620) = reflection of X(24593) in X(43055)
X(62620) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {34446, 30578}, {36596, 21286}, {59068, 513}
X(62620) = X(39974)-complementary conjugate of X(121)
X(62620) = X(i)-Ceva conjugate of X(j) for these (i,j): {903, 17461}, {58029, 1145}
X(62620) = X(i)-isoconjugate of X(j) for these (i,j): {106, 40401}, {513, 32686}, {649, 36091}, {996, 9456}, {59124, 61179}
X(62620) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 40401}, {4370, 996}, {4850, 4945}, {5375, 36091}, {39026, 32686}, {52659, 60085}
X(62620) = crossdifference of every pair of points on line {649, 2242}
X(62620) = barycentric product X(i)*X(j) for these {i,j}: {44, 33934}, {190, 23888}, {519, 4389}, {900, 61187}, {995, 3264}, {3911, 5233}, {3943, 16712}, {4358, 4850}, {4424, 30939}, {16704, 26580}, {17780, 44435}, {24004, 48335}, {48350, 55243}
X(62620) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 40401}, {100, 36091}, {101, 32686}, {519, 996}, {995, 106}, {3264, 58027}, {3877, 1320}, {3911, 60085}, {4266, 2316}, {4389, 903}, {4424, 4674}, {4850, 88}, {5233, 4997}, {9002, 23345}, {16704, 55942}, {17461, 4792}, {17780, 9059}, {21130, 23598}, {23206, 36058}, {23888, 514}, {26580, 4080}, {33934, 20568}, {44435, 6548}, {48335, 1022}, {48350, 55244}, {50453, 4049}, {61187, 4555}
X(62620) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17012, 29833}, {2, 20017, 30567}, {2, 45222, 39595}, {306, 45204, 2}, {908, 1266, 4080}, {3752, 5741, 17184}, {3834, 16610, 24183}, {3936, 24183, 3834}, {3943, 16594, 4358}, {3943, 51415, 16594}, {4080, 17495, 1266}, {4358, 62571, 3264}, {4706, 5087, 4442}, {4850, 5233, 26580}, {5205, 32842, 50000}, {5212, 26015, 19998}, {5718, 34824, 30588}, {6745, 49987, 20045}, {20072, 30577, 3218}, {24589, 30588, 34824}, {24594, 31179, 4675}, {37794, 37795, 38460}


X(62621) = X(1)X(2)∩X(44)X(16594)

Barycentrics    (2*a - b - c)*(a^2 - b^2 + 4*b*c - c^2) : :

X(62621) lies on these lines: {1, 2}, {44, 16594}, {63, 1997}, {88, 1266}, {320, 908}, {321, 6692}, {345, 31224}, {527, 24593}, {536, 43055}, {900, 4786}, {1150, 3707}, {2325, 3911}, {3218, 4480}, {3306, 4054}, {3452, 4001}, {3699, 49714}, {3834, 37691}, {3879, 37651}, {3932, 61649}, {4080, 4887}, {4152, 49702}, {4395, 8610}, {4434, 49700}, {4552, 43068}, {4675, 30824}, {4702, 6174}, {4791, 47779}, {4873, 17740}, {4969, 51415}, {5233, 17360}, {5294, 37634}, {5435, 56082}, {5739, 20196}, {6550, 47789}, {6557, 9965}, {6687, 35466}, {8055, 25734}, {8056, 19789}, {9039, 61176}, {11814, 49710}, {17067, 24183}, {17119, 31202}, {17160, 31227}, {17290, 17720}, {17369, 30818}, {17776, 31231}, {18141, 30852}, {18743, 59491}, {19811, 32017}, {20068, 59732}, {23888, 47766}, {24216, 32927}, {24277, 50027}, {27130, 37683}, {27747, 34824}, {30608, 30829}, {31201, 41310}, {31271, 37680}, {32943, 59593}, {46938, 56078}

X(62621) = midpoint of X(24593) and X(30566)
X(62621) = X(55993)-anticomplementary conjugate of X(21290)
X(62621) = X(i)-complementary conjugate of X(j) for these (i,j): {32686, 513}, {36091, 3835}, {40401, 121}
X(62621) = X(30608)-Ceva conjugate of X(51583)
X(62621) = X(i)-isoconjugate of X(j) for these (i,j): {88, 34446}, {513, 59068}, {604, 36596}, {1000, 9456}, {1417, 36916}
X(62621) = X(i)-Dao conjugate of X(j) for these (i,j): {45, 4792}, {3161, 36596}, {4370, 1000}, {36913, 5219}, {39026, 59068}, {52148, 2316}, {52871, 36916}
X(62621) = crossdifference of every pair of points on line {649, 34446}
X(62621) = barycentric product X(i)*X(j) for these {i,j}: {44, 20925}, {519, 42697}, {999, 3264}, {1227, 56426}, {2325, 17079}, {3306, 4358}, {3753, 30939}, {3911, 28808}, {4054, 16704}, {17780, 21183}, {22129, 46109}, {30608, 36914}, {36919, 39704}
X(62621) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 36596}, {101, 59068}, {519, 1000}, {902, 34446}, {999, 106}, {2325, 36916}, {3264, 58029}, {3306, 88}, {3689, 52429}, {3753, 4674}, {3872, 1320}, {3977, 30680}, {4054, 4080}, {17780, 51564}, {20925, 20568}, {21183, 6548}, {22129, 1797}, {28808, 4997}, {35281, 901}, {36914, 5219}, {36919, 3679}, {40587, 4792}, {42697, 903}, {55432, 2316}, {56426, 1168}
X(62621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3187, 45204}, {2, 30567, 306}, {320, 4997, 908}, {320, 37758, 4997}, {2325, 3911, 51583}, {2325, 51583, 3977}, {3218, 30578, 4480}, {3306, 28808, 4054}, {3911, 4358, 3977}, {3912, 41140, 6633}, {4152, 51463, 49702}, {4358, 51583, 2325}, {4395, 58413, 16610}, {4480, 62297, 30578}, {5121, 17763, 49987}, {5205, 26015, 49991}, {6745, 29824, 50744}, {29824, 37762, 6745}, {30818, 58414, 17369}


X(62622) = X(2)X(210)∩X(81)X(6605)

Barycentrics    (a*b - b^2 + 2*a*c + b*c)*(a*b - b^2 + a*c - c^2)*(2*a*b + a*c + b*c - c^2) : :

X(62622) lies on these lines: {2, 210}, {81, 6605}, {200, 24602}, {239, 1280}, {321, 6063}, {693, 918}, {926, 47762}, {2862, 8693}, {2991, 57754}, {3263, 4437}, {3661, 59255}, {3693, 16728}, {3870, 60673}, {3912, 4712}, {3930, 9436}, {3935, 37138}, {4998, 24593}, {6542, 52164}, {8817, 42290}, {10025, 36101}, {16826, 60709}, {17310, 18821}, {17316, 24635}, {20533, 40868}, {26593, 40216}, {29616, 51351}, {31038, 32023}, {39712, 60677}, {48423, 52305}, {53214, 53227}, {55937, 56088}

X(62622) = X(i)-isoconjugate of X(j) for these (i,j): {105, 2280}, {294, 1471}, {673, 60722}, {919, 4724}, {1001, 1438}, {1416, 37658}, {2195, 5228}, {4762, 32666}, {32735, 45755}, {43929, 54440}, {56853, 60721}
X(62622) = X(i)-Dao conjugate of X(j) for these (i,j): {6184, 1001}, {17755, 4384}, {35094, 4762}, {36905, 40719}, {38980, 4724}, {39046, 2280}, {39063, 5228}, {40609, 37658}, {62587, 4441}
X(62622) = trilinear pole of line {918, 3126}
X(62622) = barycentric product X(i)*X(j) for these {i,j}: {518, 59255}, {918, 32041}, {1002, 3263}, {3126, 53227}, {3912, 27475}, {4088, 51563}, {9436, 60668}, {18157, 60677}, {34855, 59260}, {40704, 40779}, {42310, 51384}
X(62622) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 5228}, {518, 1001}, {672, 2280}, {918, 4762}, {1002, 105}, {1026, 54440}, {1458, 1471}, {2223, 60722}, {2254, 4724}, {2279, 1438}, {3263, 4441}, {3693, 37658}, {3717, 3886}, {3912, 4384}, {3930, 59207}, {3932, 3696}, {4088, 4804}, {8693, 919}, {9436, 40719}, {15149, 31926}, {18157, 60735}, {18206, 60721}, {25083, 23151}, {27475, 673}, {32041, 666}, {34855, 59242}, {37138, 36086}, {40704, 60720}, {40779, 294}, {42290, 1462}, {59255, 2481}, {59269, 28071}, {60668, 14942}, {60673, 2195}, {60677, 18785}
X(62622) = {X(27475),X(60668)}-harmonic conjugate of X(2)


X(62623) = X(2)X(900)∩X(514)X(900)

Barycentrics    (b - c)*(a^2 - 4*a*b + b^2 + 2*a*c + 2*b*c - 2*c^2)*(-a^2 - 2*a*b + 2*b^2 + 4*a*c - 2*b*c - c^2) : :
X(62623) = X[903] + 2 X[14442], 5 X[27191] + 4 X[42555], 3 X[41138] - 4 X[45684]

X(62623) lies on the circumconic {{A,B,C,X(2),X(7)}} and these lines: {2, 900}, {7, 6009}, {75, 3762}, {190, 6544}, {335, 4777}, {514, 903}, {545, 31992}, {665, 24874}, {673, 6006}, {675, 2384}, {812, 39704}, {918, 36588}, {1086, 6548}, {2786, 55955}, {4440, 44009}, {6650, 28209}, {14475, 57567}, {27191, 42555}, {41138, 45684}

X(62623) = midpoint of X(4440) and X(44009)
X(62623) = reflection of X(i) in X(j) for these {i,j}: {190, 6544}, {6548, 1086}
X(62623) = isotomic conjugate of X(6633)
X(62623) = antitomic conjugate of X(6548)
X(62623) = X(i)-isoconjugate of X(j) for these (i,j): {31, 6633}, {100, 8649}, {545, 692}, {1110, 14475}, {1252, 14421}, {1644, 32665}, {2251, 34762}, {4588, 52966}, {23344, 51908}, {27921, 34067}
X(62623) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6633}, {514, 14475}, {661, 14421}, {1086, 545}, {6544, 33920}, {8054, 8649}, {9460, 34762}, {35092, 1644}, {35119, 27921}, {40615, 43038}, {55045, 52966}
X(62623) = cevapoint of X(514) and X(14475)
X(62623) = trilinear pole of line {514, 1647}
X(62623) = barycentric product X(i)*X(j) for these {i,j}: {514, 35168}, {903, 34764}, {2384, 3261}, {14475, 57567}, {20568, 52225}
X(62623) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 6633}, {244, 14421}, {514, 545}, {649, 8649}, {812, 27921}, {900, 1644}, {903, 34762}, {1022, 51908}, {1086, 14475}, {1647, 33920}, {2384, 101}, {3676, 43038}, {4893, 52966}, {14475, 35121}, {34764, 519}, {35168, 190}, {52225, 44}


X(62624) = X(2)X(9033)∩X(69)X(41077))

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(a^8 + 2*a^6*b^2 - 6*a^4*b^4 + 2*a^2*b^6 + b^8 - 4*a^6*c^2 + 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 - 4*b^6*c^2 + 3*a^4*c^4 - 8*a^2*b^2*c^4 + 3*b^4*c^4 + 2*a^2*c^6 + 2*b^2*c^6 - 2*c^8)*(-a^8 + 4*a^6*b^2 - 3*a^4*b^4 - 2*a^2*b^6 + 2*b^8 - 2*a^6*c^2 - 4*a^4*b^2*c^2 + 8*a^2*b^4*c^2 - 2*b^6*c^2 + 6*a^4*c^4 - 4*a^2*b^2*c^4 - 3*b^4*c^4 - 2*a^2*c^6 + 4*b^2*c^6 - c^8) : :

X(62624) lies on these lines: {2, 9033}, {69, 41077}, {264, 41079}, {287, 9007}, {328, 18557}, {525, 1494}, {648, 14401}, {1650, 42307}, {2799, 36889}, {14977, 46459}, {15526, 34767}, {39352, 45292}, {41433, 60591}

X(62624) = midpoint of X(39352) and X(45292)
X(62624) = reflection of X(i) in X(j) for these {i,j}: {648, 14401}, {16075, 47071}, {34767, 15526}
X(62624) = antitomic conjugate of X(34767)
X(62624) = X(i)-isoconjugate of X(j) for these (i,j): {163, 47204}, {1651, 36131}
X(62624) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 47204}, {525, 52720}, {647, 42733}, {39008, 1651}
X(62624) = cevapoint of X(525) and X(52720)
X(62624) = trilinear pole of line {525, 1650}
X(62624) = barycentric product X(i)*X(j) for these {i,j}: {525, 53201}, {1494, 47071}, {16075, 34767}
X(62624) = barycentric quotient X(i)/X(j) for these {i,j}: {125, 42733}, {523, 47204}, {9033, 1651}, {15526, 52720}, {16075, 4240}, {34767, 16076}, {41433, 1304}, {47071, 30}, {53201, 648}


X(62625) = X(2)X(740)∩X(239)X(4368)

Barycentrics    (a^2 - b*c)*(2*a*b + b^2 + a*c + 2*b*c)*(a*b + 2*a*c + 2*b*c + c^2) : :

X(62625) lies on these lines: {2, 740}, {239, 4368}, {812, 4979}, {870, 4393}, {873, 8025}, {1002, 27494}, {4155, 47792}, {4366, 33295}, {4418, 17027}, {6542, 13576}, {6650, 30941}, {6654, 27926}, {9073, 28841}, {17493, 32010}, {17759, 27809}, {17794, 20016}, {18822, 40891}, {21454, 30662}, {27919, 40725}, {33888, 54456}, {39717, 60676}, {41527, 60675}, {55940, 60671}

X(62625) = X(40748)-anticomplementary conjugate of X(20345)
X(62625) = X(i)-isoconjugate of X(j) for these (i,j): {291, 60697}, {292, 4649}, {741, 60724}, {813, 4784}, {1911, 16826}, {1922, 60706}, {2196, 60699}, {3842, 18268}, {7077, 60715}, {14598, 60719}, {18265, 60732}, {28840, 34067}, {51858, 60717}
X(62625) = X(i)-Dao conjugate of X(j) for these (i,j): {6651, 16826}, {8299, 60724}, {18277, 60719}, {19557, 4649}, {35068, 3842}, {35119, 28840}, {39028, 60706}, {39029, 60697}, {40623, 4784}, {62553, 60736}
X(62625) = cevapoint of X(30665) and X(39786)
X(62625) = barycentric product X(i)*X(j) for these {i,j}: {238, 60678}, {239, 27483}, {350, 30571}, {1921, 25426}, {3948, 60680}, {10030, 60675}, {18891, 60671}, {30940, 60676}, {33295, 59261}
X(62625) = barycentric quotient X(i)/X(j) for these {i,j}: {238, 4649}, {239, 16826}, {242, 60699}, {350, 60706}, {659, 4784}, {740, 3842}, {812, 28840}, {1429, 60715}, {1447, 60717}, {1914, 60697}, {1921, 60719}, {2238, 60724}, {3684, 60711}, {3685, 60731}, {3716, 4913}, {3783, 40774}, {3797, 27495}, {3948, 60736}, {3975, 60730}, {4010, 4824}, {4366, 20142}, {4432, 4753}, {4800, 4948}, {4810, 4963}, {4974, 5625}, {5009, 59243}, {7193, 60703}, {10030, 60732}, {20769, 60701}, {25426, 292}, {27483, 335}, {28841, 813}, {30571, 291}, {30940, 51314}, {31905, 31904}, {33295, 51356}, {59261, 43534}, {60671, 1911}, {60675, 4876}, {60678, 334}, {60680, 37128}
X(62625) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {27483, 30571, 2}, {30571, 56658, 27483}


X(62626) = X(2)X(523)∩X(86)X(514)

Barycentrics    (b - c)*(a^2 + b^2 - 2*c^2)*(-a^2 + 2*b^2 - c^2) : :
X(62626) = X[86] + 2 X[21131], 5 X[86] - 2 X[21135], X[86] - 4 X[21200], 5 X[21131] + X[21135], X[21131] + 2 X[21200], X[21135] - 10 X[21200]

X(62626) lies on these lines: {2, 523}, {7, 7178}, {27, 4786}, {75, 1577}, {86, 514}, {111, 675}, {310, 3261}, {335, 35352}, {671, 903}, {673, 897}, {691, 2690}, {892, 35148}, {895, 2989}, {900, 6650}, {1246, 10097}, {1268, 31010}, {4750, 21205}, {4777, 27483}, {7434, 48983}, {10566, 52394}, {17983, 52781}, {19975, 36848}, {28179, 60669}, {28209, 59267}, {28840, 39704}, {30786, 30788}, {31002, 46277}, {31125, 31129}, {40164, 57059}, {43926, 43927}, {52632, 57824}
on ABCGGe

X(62626) = X(i)-isoconjugate of X(j) for these (i,j): {32, 42721}, {37, 5467}, {42, 23889}, {72, 61207}, {100, 187}, {101, 896}, {110, 21839}, {163, 4062}, {190, 922}, {213, 5468}, {228, 4235}, {351, 4567}, {468, 906}, {524, 692}, {668, 14567}, {1110, 4750}, {1252, 14419}, {1262, 58331}, {1332, 44102}, {1415, 3712}, {1576, 42713}, {1783, 3292}, {1918, 24039}, {2149, 14432}, {2642, 4570}, {3939, 51653}, {4557, 16702}, {4760, 34067}, {4831, 34074}, {4933, 34073}, {5380, 39689}, {6335, 23200}, {14210, 32739}, {36142, 52068}
X(62626) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 4062}, {244, 21839}, {514, 4750}, {650, 14432}, {661, 14419}, {1015, 896}, {1086, 524}, {1146, 3712}, {4858, 42713}, {4988, 690}, {5190, 468}, {6376, 42721}, {6626, 5468}, {8054, 187}, {15477, 32739}, {15899, 101}, {16592, 7267}, {23992, 52068}, {34021, 24039}, {35119, 4760}, {39006, 3292}, {39061, 190}, {40589, 5467}, {40592, 23889}, {40615, 7181}, {40617, 51653}, {40618, 6390}, {40619, 14210}, {40620, 6629}, {40627, 351}, {50330, 2642}, {53167, 4938}, {55053, 922}, {61073, 4933}, {62607, 4561}
X(62626) = cevapoint of X(i) and X(j) for these (i,j): {514, 4750}, {5466, 23894}, {6629, 17199}
X(62626) = trilinear pole of line {514, 3120}
X(62626) = crossdifference of every pair of points on line {187, 922}
X(62626) = barycentric product X(i)*X(j) for these {i,j}: {27, 14977}, {58, 52632}, {86, 5466}, {111, 3261}, {274, 23894}, {310, 9178}, {313, 43926}, {513, 46277}, {514, 671}, {649, 18023}, {667, 57999}, {691, 21207}, {693, 897}, {892, 3120}, {895, 46107}, {923, 40495}, {1111, 5380}, {1459, 46111}, {3122, 53080}, {4025, 17983}, {4750, 57539}, {5547, 52621}, {6548, 52747}, {7316, 35519}, {7649, 30786}, {10097, 44129}, {10415, 21205}, {10566, 31125}, {15413, 36128}, {16732, 36085}, {21131, 52940}, {52764, 60479}
X(62626) = barycentric quotient X(i)/X(j) for these {i,j}: {11, 14432}, {27, 4235}, {58, 5467}, {75, 42721}, {81, 23889}, {86, 5468}, {111, 101}, {244, 14419}, {274, 24039}, {513, 896}, {514, 524}, {522, 3712}, {523, 4062}, {649, 187}, {661, 21839}, {667, 922}, {671, 190}, {690, 52068}, {691, 4570}, {693, 14210}, {812, 4760}, {892, 4600}, {895, 1331}, {897, 100}, {923, 692}, {1019, 16702}, {1086, 4750}, {1459, 3292}, {1474, 61207}, {1577, 42713}, {1919, 14567}, {2310, 58331}, {3120, 690}, {3122, 351}, {3125, 2642}, {3261, 3266}, {3669, 51653}, {3676, 7181}, {3798, 32459}, {4025, 6390}, {4107, 5026}, {4369, 7267}, {4466, 14417}, {4608, 31013}, {4750, 2482}, {4777, 4933}, {4778, 4831}, {4786, 27088}, {4802, 4938}, {5380, 765}, {5466, 10}, {5547, 3939}, {6548, 52759}, {7192, 6629}, {7199, 16741}, {7316, 109}, {7649, 468}, {8753, 8750}, {9178, 42}, {10097, 71}, {10566, 52898}, {11125, 5642}, {14419, 42081}, {14432, 7067}, {14908, 32656}, {14977, 306}, {16892, 7813}, {17983, 1897}, {18023, 1978}, {21102, 41586}, {21109, 5181}, {21131, 1648}, {21200, 11053}, {21205, 7664}, {21207, 35522}, {23894, 37}, {30786, 4561}, {31125, 4568}, {32740, 32739}, {36060, 906}, {36085, 4567}, {36128, 1783}, {42754, 42760}, {43926, 58}, {46107, 44146}, {46154, 46148}, {46277, 668}, {48060, 3793}, {51258, 4064}, {52632, 313}, {52747, 17780}, {53521, 9155}, {57999, 6386}
X(62626) = {X(21131),X(21200)}-harmonic conjugate of X(86)


X(62627) = X(2)X(37)∩X(693)X(891)

Barycentrics    b*c*(2*a^2 + b*c)*(-(a*b) - a*c + 2*b*c) : :

X(62627) lies on these lines: {2, 37}, {693, 891}, {899, 35543}, {3761, 32931}, {3809, 46897}, {3896, 59518}, {4406, 47762}, {4495, 9458}, {4651, 59523}, {6686, 20889}

X(62627) = X(i)-Dao conjugate of X(j) for these (i,j): {13466, 4492}, {52882, 57725}
X(62627) = barycentric product X(i)*X(j) for these {i,j}: {3758, 6381}, {4406, 23891}, {17126, 35543}, {41314, 47762}
X(62627) = barycentric quotient X(i)/X(j) for these {i,j}: {536, 4492}, {3758, 37129}, {6381, 57725}, {17126, 739}, {35543, 30635}, {47762, 43928}


X(62628) = X(2)X(3)∩X(323)X(15262)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + 4*b^2*c^2 + c^4) : :

X(62628) lies on these lines: {2, 3}, {323, 15262}, {324, 53415}, {338, 62378}, {340, 687}, {511, 47204}, {648, 40112}, {1990, 3260}, {1993, 46927}, {3284, 62583}, {5913, 6531}, {6110, 41888}, {6111, 41887}, {6749, 37648}, {10546, 16264}, {14389, 34289}, {14918, 47296}, {15066, 44134}, {16240, 51360}, {30474, 46229}, {37645, 40138}, {54864, 60138}

X(62628) = reflection of X(i) in X(j) for these {i,j}: {4240, 15144}, {44892, 402}
X(62628) = polar conjugate of X(60119)
X(62628) = polar conjugate of the isogonal conjugate of X(10564)
X(62628) = X(43530)-Ceva conjugate of X(14920)
X(62628) = X(i)-isoconjugate of X(j) for these (i,j): {48, 60119}, {647, 36083}, {656, 32681}, {2159, 4846}, {2631, 52933}, {14380, 36149}, {34288, 35200}
X(62628) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 34288}, {1249, 60119}, {3163, 4846}, {16253, 40385}, {39052, 36083}, {40596, 32681}, {53993, 2433}
X(62628) = barycentric product X(i)*X(j) for these {i,j}: {30, 44134}, {264, 10564}, {378, 3260}, {648, 46229}, {1990, 32833}, {4240, 30474}, {5891, 43752}, {15066, 46106}
X(62628) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 60119}, {30, 4846}, {112, 32681}, {162, 36083}, {378, 74}, {1304, 52933}, {1990, 34288}, {3260, 57819}, {4240, 1302}, {5063, 18877}, {5891, 44715}, {8675, 14380}, {10564, 3}, {15066, 14919}, {18533, 40387}, {23347, 32738}, {30474, 34767}, {40138, 40385}, {44080, 40352}, {44134, 1494}, {46106, 34289}, {46229, 525}, {56829, 36149}
X(62628) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {297, 458, 37855}, {297, 8352, 37174}, {340, 16080, 3580}, {470, 471, 403}, {1990, 11064, 14920}, {14920, 46106, 1990}, {15262, 51968, 51358}


X(62629) = X(2)X(523)∩X(111)X(2857)

Barycentrics    (b^2 - c^2)*(a^2 + b^2 - 2*c^2)*(-a^2 + 2*b^2 - c^2)*(-(a^2*b^2) + b^4 - a^2*c^2 + c^4) : :
X(62629) = 2 X[14417] - 3 X[41133]

X(62629) lies on these lines: {2, 523}, {111, 2857}, {297, 16230}, {325, 2799}, {327, 52632}, {338, 850}, {524, 9141}, {525, 671}, {648, 892}, {690, 8352}, {691, 53692}, {1637, 22329}, {3268, 22110}, {3906, 18007}, {6563, 10562}, {8599, 20380}, {8753, 59932}, {9134, 33919}, {9154, 9476}, {9209, 52141}, {10097, 54124}, {10561, 13485}, {14417, 41133}, {14932, 41720}, {30474, 42008}, {34163, 57065}, {36166, 48983}, {39182, 39287}, {45327, 52038}, {46245, 51258}, {52035, 52076}, {52450, 53374}

X(62629) = reflection of X(i) in X(j) for these {i,j}: {3268, 22110}, {22329, 1637}, {52038, 45327}
X(62629) = isotomic conjugate of the isogonal conjugate of X(8430)
X(62629) = X(i)-isoconjugate of X(j) for these (i,j): {163, 5967}, {187, 36084}, {293, 61207}, {896, 2715}, {922, 2966}, {1101, 52038}, {1910, 5467}, {1976, 23889}, {2642, 57742}, {3292, 36104}, {14567, 36036}, {14601, 24039}
X(62629) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 5967}, {132, 61207}, {523, 52038}, {868, 5477}, {2679, 14567}, {5976, 5468}, {11672, 5467}, {15899, 2715}, {35088, 524}, {36901, 52145}, {38970, 468}, {38987, 187}, {39000, 3292}, {39040, 23889}, {39061, 2966}, {41172, 9155}, {55267, 690}, {62595, 4235}, {62607, 17932}
X(62629) = cevapoint of X(3569) and X(33752)
X(62629) = trilinear pole of line {868, 2799}
X(62629) = barycentric product X(i)*X(j) for these {i,j}: {76, 8430}, {297, 14977}, {325, 5466}, {511, 52632}, {671, 2799}, {684, 46111}, {691, 62431}, {850, 5968}, {868, 892}, {877, 51258}, {3569, 18023}, {6333, 17983}, {9154, 62555}, {10097, 44132}, {16092, 34765}, {16230, 30786}, {23894, 46238}, {41172, 59762}, {44114, 53080}, {44173, 51980}
X(62629) = barycentric quotient X(i)/X(j) for these {i,j}: {111, 2715}, {115, 52038}, {232, 61207}, {297, 4235}, {325, 5468}, {511, 5467}, {523, 5967}, {671, 2966}, {684, 3292}, {691, 57742}, {850, 52145}, {868, 690}, {892, 57991}, {895, 43754}, {897, 36084}, {1959, 23889}, {2491, 14567}, {2799, 524}, {3569, 187}, {5466, 98}, {5968, 110}, {6333, 6390}, {8430, 6}, {8753, 32696}, {9154, 41173}, {9178, 1976}, {9213, 14355}, {10097, 248}, {10555, 52076}, {14356, 14559}, {14977, 287}, {16092, 34761}, {16230, 468}, {17983, 685}, {17994, 44102}, {18023, 43187}, {23894, 1910}, {30786, 17932}, {32112, 9717}, {33752, 6593}, {34765, 52094}, {36128, 36104}, {39469, 23200}, {41167, 9155}, {42703, 42721}, {44114, 351}, {46111, 22456}, {46238, 24039}, {46277, 36036}, {48983, 43113}, {51258, 879}, {51429, 1649}, {51980, 1576}, {52450, 60504}, {52632, 290}, {55267, 5477}, {58351, 58347}, {59762, 41174}, {62431, 35522}, {62555, 50567}


X(62630) = X(1)X(2)∩X(100)X(11814)

Barycentrics    (2*a - b - c)*(a^2 - a*b - b^2 - a*c + 3*b*c - c^2) : :
X(62630) = 5 X[2] + X[8028], 3 X[2] + X[17780], 9 X[2] - X[20042], 15 X[2] + X[20058], 3 X[1644] + X[1647], 5 X[1644] - X[8028], 3 X[1644] - X[17780], 9 X[1644] + X[20042], 15 X[1644] - X[20058], 5 X[1647] + 3 X[8028], 3 X[1647] - X[20042], 5 X[1647] + X[20058], 3 X[8028] - 5 X[17780], 9 X[8028] + 5 X[20042], 3 X[8028] - X[20058], 3 X[17780] + X[20042], 5 X[17780] - X[20058], 5 X[20042] + 3 X[20058], X[4440] - 3 X[24131], 9 X[6544] - X[40472], 3 X[24188] - 5 X[27191]

X(62630) lies on these lines: {1, 2}, {88, 53601}, {100, 11814}, {121, 214}, {515, 19515}, {527, 27921}, {537, 43055}, {867, 3814}, {900, 3035}, {908, 23831}, {1054, 4440}, {1266, 27922}, {2796, 30566}, {3030, 38484}, {3550, 27130}, {3836, 30823}, {4011, 24410}, {4413, 24693}, {4432, 6174}, {4434, 51415}, {4643, 24318}, {4997, 24715}, {6544, 40472}, {6549, 34762}, {6550, 10196}, {6681, 59669}, {9360, 39786}, {17122, 23812}, {17132, 24407}, {17719, 24188}, {17724, 58467}, {17725, 31233}, {19736, 43531}, {22102, 59997}, {24025, 55134}, {24428, 62297}, {24821, 30577}, {24841, 31227}, {25079, 47742}, {25351, 37691}, {25440, 52242}, {34764, 36954}, {36220, 54389}, {36936, 61478}, {37758, 56009}, {42372, 62536}, {49693, 61649}

X(62630) = midpoint of X(i) and X(j) for these {i,j}: {2, 1644}, {1647, 17780}
X(62630) = reflection of X(14028) in X(1125)
X(62630) = complement of X(1647)
X(62630) = complement of the isogonal conjugate of X(9268)
X(62630) = complement of the isotomic conjugate of X(62536)
X(62630) = X(i)-complementary conjugate of X(j) for these (i,j): {59, 1145}, {100, 3259}, {110, 34590}, {692, 35092}, {765, 121}, {901, 11}, {1110, 4370}, {1252, 16594}, {1320, 46100}, {3257, 116}, {4555, 21252}, {4570, 34587}, {4591, 17761}, {4622, 53564}, {5376, 141}, {5548, 26932}, {6099, 56761}, {6551, 513}, {6635, 21260}, {9268, 10}, {9456, 6547}, {32665, 1086}, {32719, 1015}, {52925, 15614}, {62536, 2887}
X(62630) = X(i)-Ceva conjugate of X(j) for these (i,j): {900, 519}, {6635, 514}, {62536, 6634}
X(62630) = X(i)-isoconjugate of X(j) for these (i,j): {106, 9282}, {513, 53682}, {901, 6164}, {3257, 9262}, {6630, 9456}, {32665, 42555}
X(62630) = X(i)-Dao conjugate of X(j) for these (i,j): {190, 4555}, {214, 9282}, {4370, 6630}, {24188, 6550}, {35092, 42555}, {38979, 6164}, {39026, 53682}, {39065, 3257}, {55055, 9262}
X(62630) = crossdifference of every pair of points on line {649, 9259}
X(62630) = barycentric product X(i)*X(j) for these {i,j}: {44, 18159}, {312, 14122}, {519, 4440}, {900, 6631}, {1016, 24131}, {1054, 4358}, {1647, 6634}, {2325, 17089}, {3264, 9259}, {3762, 6163}, {4998, 54270}, {16704, 21093}, {17780, 21204}, {21888, 30939}, {22148, 46109}
X(62630) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 9282}, {101, 53682}, {519, 6630}, {900, 42555}, {1054, 88}, {1635, 6164}, {1960, 9262}, {4440, 903}, {4919, 1320}, {6163, 3257}, {6631, 4555}, {6634, 62536}, {9259, 106}, {14122, 57}, {18159, 20568}, {21093, 4080}, {21204, 6548}, {21888, 4674}, {22148, 1797}, {24131, 1086}, {27912, 27922}, {41405, 901}, {54270, 11}, {58368, 2316}
X(62630) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 25377}, {2, 9458, 10}, {2, 17780, 1647}, {2, 52908, 4871}, {100, 30855, 24709}, {1644, 1647, 17780}, {4413, 30824, 24693}, {4871, 6745, 50748}, {6174, 16594, 4432}, {6745, 50535, 4871}, {17780, 20058, 8028}, {24693, 30824, 25385}, {24709, 30855, 11814}


X(62631) = X(2)X(20579)∩X(299)X(523)

Barycentrics    (b^2 - c^2)*(Sqrt[3]*b^2 + 2*S)*(Sqrt[3]*c^2 + 2*S) : :

X(62631) lies on these lines: {2, 20579}, {299, 523}, {300, 10412}, {471, 2501}, {476, 10409}, {826, 34290}, {2395, 2981}, {5466, 40707}, {11078, 14446}, {11117, 43092}, {18808, 38428}, {19779, 23871}

X(62631) = isogonal conjugate of X(35329)
X(62631) = isotomic conjugate of X(35314)
X(62631) = anticomplement of X(35443)
X(62631) = on X-parabola of ABC (see X(12065))
X(62631) = isotomic conjugate of the anticomplement of X(30465)
X(62631) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {11119, 21294}, {16459, 21221}
X(62631) = X(i)-isoconjugate of X(j) for these (i,j): {1, 35329}, {31, 35314}, {163, 396}, {463, 4575}, {9115, 36142}, {19294, 32678}, {32676, 52194}
X(62631) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35314}, {3, 35329}, {115, 396}, {136, 463}, {619, 35345}, {1125, 35343}, {15526, 52194}, {15610, 52972}, {18334, 19294}, {23992, 9115}, {35088, 51388}, {35444, 14446}, {36901, 41000}, {43961, 618}, {43962, 532}, {47899, 23714}, {62572, 14922}
X(62631) = cevapoint of X(523) and X(23870)
X(62631) = trilinear pole of line {115, 23871}
X(62631) = barycentric product X(i)*X(j) for these {i,j}: {338, 10409}, {523, 40707}, {525, 38428}, {850, 2981}, {3267, 51446}, {11117, 23871}, {11119, 23870}
X(62631) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35314}, {6, 35329}, {395, 35345}, {523, 396}, {525, 52194}, {526, 19294}, {690, 9115}, {850, 41000}, {1213, 35343}, {2380, 5994}, {2501, 463}, {2799, 51388}, {2981, 110}, {3268, 14922}, {10409, 249}, {11084, 14560}, {11117, 23896}, {11119, 23895}, {14446, 30462}, {16459, 5995}, {20578, 8014}, {20579, 61371}, {23870, 618}, {23871, 532}, {23872, 6671}, {27551, 41620}, {30465, 35443}, {30468, 14446}, {34321, 16806}, {38403, 17402}, {38428, 648}, {40707, 99}, {47481, 38414}, {51446, 112}, {55199, 36304}


X(62632) = X(2)X(20578)∩X(298)X(523)

Barycentrics    (b^2 - c^2)*(Sqrt[3]*b^2 - 2*S)*(Sqrt[3]*c^2 - 2*S) : :

X(62632) lies on these lines: {2, 20578}, {298, 523}, {301, 10412}, {470, 2501}, {476, 10410}, {826, 34290}, {2395, 6151}, {5466, 40706}, {11092, 14447}, {11118, 43091}, {18808, 38427}, {19778, 23870}

X(62632) = isogonal conjugate of X(35330)
X(62632) = isotomic conjugate of X(35315)
X(62632) = anticomplement of X(35444)
X(62632) = on the X-parabola of ABC (see X(12065))
X(62632) = isotomic conjugate of the anticomplement of X(30468)
X(62632) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {11120, 21294}, {16460, 21221}
X(62632) = X(i)-isoconjugate of X(j) for these (i,j): {1, 35330}, {31, 35315}, {163, 395}, {462, 4575}, {9117, 36142}, {19295, 32678}, {32676, 52193}
X(62632) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35315}, {3, 35330}, {115, 395}, {136, 462}, {618, 35345}, {1125, 35344}, {15526, 52193}, {15609, 52971}, {18334, 19295}, {23992, 9117}, {35088, 51387}, {35443, 14447}, {36901, 41001}, {43961, 533}, {43962, 619}, {47898, 23715}, {62572, 14921}
X(62632) = cevapoint of X(523) and X(23871)
X(62632) = trilinear pole of line {115, 23870}
X(62632) = barycentric product X(i)*X(j) for these {i,j}: {338, 10410}, {523, 40706}, {525, 38427}, {850, 6151}, {3267, 51447}, {11118, 23870}, {11120, 23871}
X(62632) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35315}, {6, 35330}, {396, 35345}, {523, 395}, {525, 52193}, {526, 19295}, {690, 9117}, {850, 41001}, {1213, 35344}, {2381, 5995}, {2501, 462}, {2799, 51387}, {3268, 14921}, {6151, 110}, {10410, 249}, {11089, 14560}, {11118, 23895}, {11120, 23896}, {14447, 30459}, {16460, 5994}, {20578, 61370}, {20579, 8015}, {23870, 533}, {23871, 619}, {23873, 6672}, {27550, 41621}, {30465, 14447}, {30468, 35444}, {34322, 16807}, {38404, 17403}, {38427, 648}, {40706, 99}, {47482, 38413}, {51447, 112}, {55201, 36305}


X(62633) = X(1)X(2)∩X(214)X(52871)

Barycentrics    (2*a - b - c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 5*a*b*c + 3*b^2*c - a*c^2 + 3*b*c^2 - c^3) : :
X(62633) = X[1] - 3 X[1644], X[8] + 3 X[17780], 4 X[1125] - 3 X[14028], 3 X[1647] - 5 X[1698], 3 X[20042] - 11 X[46933], 2 X[1145] + X[36945]

X(62633) lies on these lines: {1, 2}, {214, 52871}, {1145, 4152}, {1317, 43938}, {2325, 4169}, {3689, 36919}, {4370, 36912}, {4738, 41529}, {4873, 61730}, {4997, 21630}, {5541, 21087}, {24004, 58254}, {33337, 43290}, {33922, 45666}

X(62633) = midpoint of X(3679) and X(8028)
X(62633) = X(i)-Ceva conjugate of X(j) for these (i,j): {4738, 519}, {36909, 21087}, {51583, 2325}
X(62633) = X(i)-isoconjugate of X(j) for these (i,j): {667, 53656}, {8046, 9456}
X(62633) = X(i)-Dao conjugate of X(j) for these (i,j): {88, 679}, {519, 41529}, {4370, 8046}, {6631, 53656}, {21198, 4089}
X(62633) = barycentric product X(i)*X(j) for these {i,j}: {44, 20937}, {519, 30578}, {2325, 41803}, {3196, 3264}, {4358, 5541}, {4738, 40594}, {16704, 21087}, {17780, 21198}, {22141, 46109}, {36791, 39148}, {36909, 51583}
X(62633) = barycentric quotient X(i)/X(j) for these {i,j}: {190, 53656}, {519, 8046}, {3196, 106}, {4370, 41529}, {5541, 88}, {20937, 20568}, {21087, 4080}, {21198, 6548}, {22141, 1797}, {30578, 903}, {39148, 2226}, {40594, 679}
X(62633) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1145, 4152, 36923}, {43290, 50914, 33337}


X(62634) = X(1)X(523)∩X(2)X(514)

Barycentrics    (b - c)*(3*a^3 - a^2*b - 2*a*b^2 + 2*b^3 - a^2*c - a*b*c - 2*a*c^2 + 2*c^3) : :

X(62634) = X[1] + 2 X[50351], X[47681] - 4 X[47682], X[47681] + 2 X[47683], 2 X[47682] + X[47683], X[47726] + 2 X[48288], 3 X[6544] - 2 X[21198], 3 X[6546] - X[21129], 4 X[21198] - 3 X[23598], 3 X[31992] - X[60480], 4 X[1125] - X[49303], 2 X[3904] + X[21385], 3 X[19875] - 4 X[28602]

X(62634) lies on the Kiepert circumhyperbola of the anticomplementary triangle and these lines: {1, 523}, {2, 514}, {6, 57076}, {20, 3667}, {63, 1019}, {147, 2789}, {194, 21225}, {512, 3899}, {513, 5692}, {650, 21130}, {690, 2948}, {764, 28195}, {918, 16554}, {1023, 2397}, {1125, 49303}, {1577, 18743}, {1635, 23884}, {1764, 4063}, {2457, 24882}, {2786, 8591}, {2826, 6326}, {3061, 48335}, {3251, 4777}, {3904, 21385}, {3906, 24286}, {3960, 21115}, {4120, 30578}, {4129, 27131}, {4369, 30608}, {4560, 17147}, {4707, 30577}, {4778, 45085}, {4802, 14421}, {4926, 6161}, {4927, 47680}, {6002, 54035}, {6084, 45341}, {6194, 28565}, {6332, 52025}, {6370, 53390}, {6788, 21105}, {7178, 31231}, {7192, 30564}, {8782, 41190}, {9269, 28151}, {10015, 14425}, {14422, 58372}, {16552, 21390}, {19875, 28602}, {23887, 44433}, {25057, 31148}, {28199, 41923}, {28294, 50333}, {28882, 60346}, {29066, 48187}, {29126, 31142}, {29240, 48182}, {29272, 47893}, {30579, 49274}, {39349, 39368}, {47825, 50287}, {48200, 50764}, {48208, 50286}

X(62634) = midpoint of X(i) and X(j) for these {i,j}: {3904, 47892}, {30580, 50351}, {49274, 53333}
X(62634) = reflection of X(i) in X(j) for these {i,j}: {1, 30580}, {4707, 45674}, {10015, 14425}, {21115, 3960}, {21130, 650}, {21385, 47892}, {23598, 6544}, {47680, 4927}, {50764, 48200}, {58372, 14422}
X(62634) = anticomplement of X(4049)
X(62634) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {44, 3448}, {110, 320}, {163, 519}, {519, 21294}, {662, 21282}, {902, 21221}, {1023, 1330}, {1101, 53333}, {1333, 20042}, {1576, 17495}, {2251, 148}, {3285, 149}, {4556, 17145}, {4570, 21297}, {4575, 3007}, {4622, 32032}, {5440, 13219}, {5546, 5176}, {9459, 21220}, {16704, 21293}, {17780, 21287}, {23202, 39352}, {23344, 2895}, {23703, 2893}, {24041, 53368}, {36034, 53380}, {36142, 53372}, {46541, 21270}, {52680, 150}, {55243, 315}, {55262, 21275}, {61210, 2475}
X(62634) = X(101)-isoconjugate of X(56223)
X(62634) = X(1015)-Dao conjugate of X(56223)
X(62634) = crossdifference of every pair of points on line {902, 2245}
X(62634) = barycentric quotient X(513)/X(56223)
X(62634) = {X(47682),X(47683)}-harmonic conjugate of X(47681)


X(62635) = X(1)X(514)∩X(2)X(650)

Barycentrics    (b - c)*(a^2 + b^2 - a*c - b*c)*(-a^2 + a*b + b*c - c^2) : :
X(62635) = 3 X[14413] - 4 X[28843]

X(62635) lies on the circumconic {{A,B,C,X(1),X(2)}} and these lines: {1, 514}, {2, 650}, {9, 23810}, {28, 17925}, {57, 649}, {81, 6654}, {88, 673}, {89, 47763}, {105, 659}, {274, 4560}, {277, 905}, {278, 6591}, {279, 3669}, {291, 812}, {294, 10015}, {330, 17496}, {513, 1002}, {522, 4659}, {523, 1390}, {525, 56137}, {527, 23838}, {666, 4555}, {764, 14267}, {874, 4583}, {875, 52030}, {891, 52029}, {900, 55935}, {918, 1280}, {919, 927}, {959, 8712}, {961, 29162}, {985, 4817}, {1019, 39950}, {1022, 6549}, {1170, 7178}, {1219, 23880}, {1255, 4608}, {1257, 3910}, {1432, 48334}, {1438, 2224}, {1462, 2423}, {1577, 27040}, {1643, 5222}, {1647, 35348}, {1814, 2990}, {2006, 43050}, {2284, 53337}, {2481, 3227}, {3063, 57167}, {3287, 23744}, {3572, 46051}, {3709, 42310}, {3762, 34892}, {3904, 31637}, {3960, 34578}, {4063, 39797}, {4382, 56165}, {4391, 30701}, {4419, 24457}, {4435, 20507}, {4448, 7662}, {4462, 30694}, {4498, 39970}, {4667, 14812}, {4777, 56151}, {4789, 31992}, {4932, 39980}, {6008, 47685}, {6546, 6590}, {7132, 57171}, {7658, 8056}, {10099, 51223}, {14296, 39925}, {14413, 28843}, {14475, 39963}, {14838, 42326}, {15474, 16757}, {16082, 54235}, {18031, 32020}, {18197, 53083}, {18785, 21385}, {20089, 38247}, {20317, 27541}, {20950, 53370}, {21202, 23760}, {21297, 56170}, {21390, 23798}, {23791, 29673}, {23882, 59760}, {24098, 56897}, {24331, 48284}, {25381, 47828}, {25417, 47651}, {26146, 37887}, {26267, 26277}, {26964, 39724}, {27789, 47662}, {27929, 30571}, {28742, 32019}, {28840, 50257}, {28894, 47692}, {29066, 36479}, {29126, 57664}, {29659, 47724}, {30520, 47131}, {30725, 34056}, {32675, 36146}, {36086, 37143}, {36122, 36124}, {36534, 48304}, {36603, 59612}, {36796, 36805}, {36803, 57994}, {36848, 48089}, {36871, 48321}, {39047, 56900}, {39948, 48141}, {39954, 47800}, {41792, 56355}, {43921, 43928}, {47070, 52209}, {47965, 56217}, {48572, 60666}, {52338, 60479}, {53362, 62599}, {60813, 62544}

X(62635) = reflection of X(i) in X(j) for these {i,j}: {4419, 24457}, {14812, 4667}
X(62635) = isogonal conjugate of X(2284)
X(62635) = isotomic conjugate of X(42720)
X(62635) = anticomplement of X(62552)
X(62635) = isotomic conjugate of the anticomplement of X(27918)
X(62635) = isotomic conjugate of the isogonal conjugate of X(43929)
X(62635) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {660, 20552}, {666, 20554}, {813, 20344}, {919, 17794}, {1911, 39353}, {32666, 33888}, {34067, 20533}, {36086, 20345}, {51858, 14732}, {51866, 149}, {52030, 150}, {52209, 21293}
X(62635) = X(i)-Ceva conjugate of X(j) for these (i,j): {666, 673}, {927, 105}, {2481, 43921}, {6185, 1086}, {36086, 53241}, {36803, 2481}, {51560, 13576}, {53227, 52029}
X(62635) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2284}, {2, 54325}, {6, 1026}, {9, 2283}, {31, 42720}, {37, 54353}, {41, 883}, {55, 1025}, {71, 4238}, {99, 39258}, {100, 672}, {101, 518}, {109, 3693}, {110, 3930}, {163, 3932}, {190, 2223}, {220, 41353}, {241, 3939}, {644, 1458}, {651, 2340}, {662, 20683}, {665, 765}, {666, 42079}, {668, 9454}, {677, 9502}, {692, 3912}, {813, 8299}, {901, 14439}, {906, 1861}, {918, 1110}, {919, 4712}, {926, 4564}, {1018, 3286}, {1023, 34230}, {1252, 2254}, {1331, 5089}, {1332, 2356}, {1415, 3717}, {1783, 1818}, {1876, 4587}, {1897, 20752}, {1918, 55260}, {1978, 9455}, {2149, 50333}, {2414, 21059}, {2427, 36819}, {2428, 3870}, {3252, 3573}, {3263, 32739}, {3570, 40730}, {3675, 59149}, {3699, 52635}, {4437, 32666}, {4557, 18206}, {4570, 24290}, {4574, 54407}, {4684, 34074}, {4899, 34080}, {4998, 46388}, {5548, 53531}, {6065, 53544}, {6078, 53552}, {6184, 36086}, {7045, 52614}, {8750, 25083}, {17755, 34067}, {23704, 56643}, {32656, 46108}, {36039, 50441}, {39686, 51560}, {52985, 61480}
X(62635) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 42720}, {3, 2284}, {9, 1026}, {11, 3693}, {115, 3932}, {223, 1025}, {244, 3930}, {478, 2283}, {513, 665}, {514, 918}, {650, 50333}, {661, 2254}, {1015, 518}, {1084, 20683}, {1086, 3912}, {1146, 3717}, {1566, 50441}, {3160, 883}, {4521, 4925}, {4988, 4088}, {5190, 1861}, {5521, 5089}, {8054, 672}, {17115, 52614}, {17435, 23102}, {26932, 25083}, {32664, 54325}, {33675, 668}, {34021, 55260}, {34467, 20752}, {35076, 4966}, {35094, 4437}, {35119, 17755}, {38979, 14439}, {38980, 4712}, {38986, 39258}, {38989, 6184}, {38991, 2340}, {39006, 1818}, {40589, 54353}, {40615, 9436}, {40617, 241}, {40619, 3263}, {40620, 30941}, {40621, 4899}, {40623, 8299}, {46398, 51390}, {50330, 24290}, {55053, 2223}, {61074, 16593}, {62554, 100}, {62599, 190}
X(62635) = cevapoint of X(i) and X(j) for these (i,j): {513, 665}, {514, 812}, {650, 53523}, {1024, 1027}
X(62635) = trilinear pole of line {513, 1086}
X(62635) = crossdifference of every pair of points on line {672, 2223}
X(62635) = barycentric product X(i)*X(j) for these {i,j}: {7, 885}, {8, 43930}, {11, 927}, {75, 1027}, {76, 43929}, {85, 1024}, {105, 693}, {244, 51560}, {273, 23696}, {274, 55261}, {277, 2402}, {279, 28132}, {286, 10099}, {294, 24002}, {513, 2481}, {514, 673}, {522, 56783}, {649, 18031}, {650, 34018}, {665, 57537}, {666, 1086}, {668, 43921}, {812, 52209}, {884, 6063}, {905, 54235}, {918, 6185}, {919, 23989}, {1015, 36803}, {1111, 36086}, {1358, 36802}, {1416, 35519}, {1438, 3261}, {1462, 4391}, {1814, 17924}, {2170, 34085}, {2195, 52621}, {2400, 56639}, {2440, 57791}, {3271, 46135}, {3669, 36796}, {3676, 14942}, {3766, 52030}, {4014, 14727}, {4025, 36124}, {4444, 6654}, {4858, 36146}, {6559, 58817}, {7192, 13576}, {7199, 18785}, {7649, 31637}, {8751, 15413}, {10015, 55943}, {20907, 51845}, {21132, 39293}, {23770, 57754}, {28071, 59941}, {32735, 34387}, {33676, 43041}, {36057, 46107}, {52619, 56853}, {53241, 56322}, {56896, 60481}, {56900, 60581}
X(62635) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 1026}, {2, 42720}, {6, 2284}, {7, 883}, {11, 50333}, {28, 4238}, {31, 54325}, {56, 2283}, {57, 1025}, {58, 54353}, {105, 100}, {244, 2254}, {269, 41353}, {274, 55260}, {277, 2414}, {294, 644}, {512, 20683}, {513, 518}, {514, 3912}, {522, 3717}, {523, 3932}, {649, 672}, {650, 3693}, {659, 8299}, {661, 3930}, {663, 2340}, {665, 6184}, {666, 1016}, {667, 2223}, {673, 190}, {676, 50441}, {693, 3263}, {764, 3675}, {798, 39258}, {812, 17755}, {875, 40730}, {876, 22116}, {884, 55}, and many others X(62635) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4435, 20507, 53357}, {4724, 47123, 47694}


X(62636) =X(1)X(596)∩X(2)X(39)

Barycentrics    (a + b)*(a + c)*(a*b^2 - b^2*c + a*c^2 - b*c^2) : :

X(62636) lies on these lines: {1, 596}, {2, 39}, {8, 24464}, {37, 16709}, {63, 36857}, {75, 16696}, {81, 330}, {86, 192}, {99, 9111}, {145, 56984}, {190, 52897}, {239, 514}, {306, 24215}, {312, 16700}, {313, 27102}, {314, 1278}, {321, 16720}, {333, 16722}, {350, 27166}, {385, 19308}, {536, 16726}, {698, 19682}, {714, 2234}, {726, 3009}, {730, 20352}, {869, 17165}, {894, 54308}, {1014, 56019}, {1015, 26821}, {1043, 17480}, {1045, 25295}, {1107, 4359}, {1266, 17197}, {1269, 26971}, {1575, 27044}, {1740, 17157}, {1931, 2109}, {1964, 17142}, {1975, 11320}, {2176, 32933}, {2223, 20045}, {2664, 3952}, {2669, 33888}, {2998, 39952}, {3006, 23682}, {3219, 16827}, {3227, 46722}, {3286, 32922}, {3661, 16887}, {3663, 17202}, {3736, 24349}, {3747, 4427}, {3770, 24530}, {3786, 31302}, {3797, 18157}, {3875, 18164}, {3891, 21010}, {3912, 17205}, {3933, 37096}, {3963, 26764}, {3995, 16826}, {4001, 59303}, {4190, 20018}, {4358, 16753}, {4360, 18166}, {4361, 29767}, {4373, 60679}, {4440, 17139}, {4446, 21278}, {4452, 26818}, {4475, 18204}, {4562, 6542}, {4639, 19565}, {4699, 27164}, {5051, 50177}, {5211, 14956}, {5235, 24620}, {5333, 29595}, {6360, 16049}, {6650, 17493}, {7754, 11329}, {9263, 20016}, {9534, 56782}, {9965, 20036}, {10455, 17116}, {10471, 27163}, {12263, 46908}, {14839, 20044}, {15149, 41676}, {16050, 25242}, {16367, 31859}, {16412, 22253}, {16714, 17280}, {16736, 18743}, {16742, 26982}, {16755, 21225}, {16823, 17588}, {16830, 17589}, {16831, 31035}, {16919, 37685}, {17000, 19237}, {17002, 21508}, {17143, 18171}, {17144, 18172}, {17150, 20985}, {17151, 18186}, {17160, 18198}, {17169, 17316}, {17179, 17310}, {17184, 24214}, {17189, 25252}, {17195, 28301}, {17207, 58788}, {17208, 31027}, {17210, 29610}, {17230, 30965}, {17350, 27644}, {17448, 42051}, {17521, 19851}, {18046, 39798}, {18133, 46838}, {18144, 27095}, {18169, 21352}, {18208, 27241}, {18645, 25250}, {18723, 20769}, {19522, 32515}, {20055, 33297}, {20068, 56542}, {20891, 27017}, {20963, 45222}, {21216, 56834}, {21796, 26799}, {23354, 40155}, {24688, 46905}, {25257, 31059}, {25470, 27320}, {25508, 27268}, {26019, 47286}, {26756, 44139}, {26816, 53543}, {26979, 53478}, {27272, 32849}, {28606, 31997}, {29593, 30966}, {29985, 53476}, {31126, 46515}, {31999, 42028}, {32095, 42025}, {32939, 34063}, {35058, 39950}, {35978, 37590}, {36279, 56018}, {37870, 39740}, {39995, 57039}, {40776, 54117}, {46716, 54098}, {50023, 52680}, {62314, 62392}

X(62636) = reflection of X(i) in X(j) for these {i,j}: {30939, 16726}, {53338, 2234}
X(62636) = isotomic conjugate of X(27809)
X(62636) = anticomplement of X(3948)
X(62636) = anticomplement of the isogonal conjugate of X(18268)
X(62636) = anticomplement of the isotomic conjugate of X(37128)
X(62636) = isotomic conjugate of the anticomplement of X(62553)
X(62636) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {32, 39367}, {58, 20345}, {81, 20554}, {291, 21287}, {292, 1330}, {741, 69}, {875, 21221}, {876, 21294}, {1333, 17794}, {1911, 2895}, {1922, 1654}, {2196, 52364}, {2206, 33888}, {2311, 3436}, {3572, 3448}, {4584, 21301}, {4589, 21304}, {9506, 20558}, {14598, 1655}, {17938, 661}, {18263, 20536}, {18268, 8}, {18827, 315}, {36066, 17217}, {37128, 6327}, {39276, 21278}, {40017, 21275}, {46159, 1369}, {56154, 21286}
X(62636) = X(i)-Ceva conjugate of X(j) for these (i,j): {4639, 7192}, {30940, 30941}, {37128, 2}
X(62636) = X(i)-isoconjugate of X(j) for these (i,j): {6, 18793}, {10, 34077}, {31, 27809}, {37, 727}, {42, 20332}, {213, 3226}, {798, 8709}, {1018, 23355}, {1400, 8851}, {1402, 36799}, {1918, 32020}, {1924, 54985}, {23493, 62421}
X(62636) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 27809}, {9, 18793}, {1575, 740}, {3837, 39786}, {6626, 3226}, {9428, 54985}, {17793, 37}, {20530, 20688}, {20532, 10}, {27846, 21832}, {31998, 8709}, {34021, 32020}, {40582, 8851}, {40589, 727}, {40592, 20332}, {40605, 36799}
X(62636) = cevapoint of X(726) and X(1575)
X(62636) = trilinear pole of line {3837, 6373}
X(62636) = crossdifference of every pair of points on line {42, 669}
X(62636) = barycentric product X(i)*X(j) for these {i,j}: {58, 35538}, {75, 18792}, {81, 52043}, {86, 726}, {99, 3837}, {274, 1575}, {310, 3009}, {314, 1463}, {333, 43040}, {662, 20908}, {670, 6373}, {4600, 21140}, {4610, 21053}, {4639, 62558}, {6331, 22092}, {6385, 21760}, {7192, 23354}, {17475, 40017}, {17793, 18827}, {20777, 57796}, {20785, 44129}, {27044, 39747}, {30939, 36814}, {30940, 52656}, {31008, 40881}, {37128, 62553}
X(62636) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 18793}, {2, 27809}, {21, 8851}, {58, 727}, {81, 20332}, {86, 3226}, {99, 8709}, {274, 32020}, {333, 36799}, {670, 54985}, {726, 10}, {1333, 34077}, {1463, 65}, {1575, 37}, {3009, 42}, {3733, 23355}, {3837, 523}, {6373, 512}, {8850, 1284}, {16704, 60865}, {17475, 2238}, {17793, 740}, {18792, 1}, {20663, 3747}, {20671, 21830}, {20777, 228}, {20785, 71}, {20908, 1577}, {21053, 4024}, {21140, 3120}, {21760, 213}, {21830, 1500}, {22092, 647}, {23354, 3952}, {24816, 40663}, {27044, 3995}, {27644, 62421}, {31008, 40844}, {33295, 3253}, {35538, 313}, {36814, 4674}, {40881, 16606}, {43040, 226}, {51864, 21759}, {52043, 321}, {52633, 3122}, {59724, 6541}, {62553, 3948}, {62558, 21832}
X(62636) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 76, 31026}, {2, 194, 31036}, {2, 20081, 31060}, {39, 20913, 2}, {75, 16696, 16738}, {76, 24598, 2}, {81, 33296, 4393}, {86, 56023, 192}, {192, 16710, 86}, {194, 24621, 2}, {239, 18206, 16704}, {274, 40773, 2}, {330, 3210, 4393}, {1278, 17178, 314}, {1575, 52043, 27044}, {3770, 24530, 26772}, {16826, 25264, 3995}, {17147, 39747, 8025}


X(62637) = X(1)X(40725)∩X(2)X(40794)

Barycentrics    (a^3*b + a^2*b^2 - a*b^3 - a^3*c + a^2*b*c - a*b^2*c - b^3*c - a^2*c^2 + a*b*c^2 + b^2*c^2 - a*c^3 + b*c^3)*(a^3*b + a^2*b^2 + a*b^3 - a^3*c - a^2*b*c - a*b^2*c - b^3*c - a^2*c^2 + a*b*c^2 - b^2*c^2 + a*c^3 + b*c^3) : :

X(62637) lies on the cubic K766 and these lines: {1, 40725}, {2, 40794}, {239, 726}, {350, 6542}, {870, 40740}, {1447, 43040}, {1931, 2109}, {2113, 6650}, {4393, 6654}, {9073, 39420}, {17794, 20016}, {27922, 29570}, {35119, 40098}

X(62637) = isogonal conjugate of X(52127)
X(62637) = isotomic conjugate of X(33888)
X(62637) = anticomplement of X(62557)
X(62637) = isotomic conjugate of the anticomplement of X(335)
X(62637) = isotomic conjugate of the isogonal conjugate of X(2109)
X(62637) = X(2109)-anticomplementary conjugate of X(4645)
X(62637) = X(i)-isoconjugate of X(j) for these (i,j): {1, 52127}, {6, 2108}, {19, 20797}, {31, 33888}, {32, 52151}, {692, 25381}, {1911, 27920}, {2210, 62557}
X(62637) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 33888}, {3, 52127}, {6, 20797}, {9, 2108}, {1086, 25381}, {6376, 52151}, {6651, 27920}
X(62637) = cevapoint of X(514) and X(35119)
X(62637) = trilinear pole of line {812, 3837}
X(62637) = barycentric product X(76)*X(2109)
X(62637) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 2108}, {2, 33888}, {3, 20797}, {6, 52127}, {75, 52151}, {239, 27920}, {335, 62557}, {514, 25381}, {2109, 6}, {32020, 33679}, {39420, 813}


X(62638) = X(2)X(649)∩X(75)X(513)

Barycentrics    (b - c)*(-(a^2*b) - a*b^2 + a^2*c + b^2*c)*(a^2*b - a^2*c - a*c^2 + b*c^2) : :

X(62638) lies on the circumconic {{A,B,C,X(2),X(7)}} and these lines: {2, 649}, {7, 43924}, {27, 17921}, {75, 513}, {86, 3253}, {273, 43923}, {310, 7192}, {335, 812}, {514, 27494}, {522, 56124}, {523, 56130}, {660, 874}, {673, 20332}, {675, 727}, {693, 6384}, {798, 26772}, {889, 54985}, {901, 8709}, {903, 3226}, {1088, 43932}, {1240, 4581}, {1268, 50344}, {1278, 9294}, {4106, 38238}, {4107, 6650}, {4373, 20091}, {4444, 46051}, {6008, 27475}, {6373, 40844}, {6548, 43922}, {8851, 51567}, {17350, 20979}, {17940, 17941}, {20954, 40010}, {21297, 31002}, {23794, 57187}, {24533, 32011}, {27011, 39746}, {27483, 27854}, {32735, 39293}, {36799, 36807}, {43927, 57824}, {48079, 56212}, {57535, 59488}

X(62638) = isotomic conjugate of X(23354)
X(62638) = anticomplement of X(62558)
X(62638) = isotomic conjugate of the anticomplement of X(27846)
X(62638) = isotomic conjugate of the isogonal conjugate of X(23355)
X(62638) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {660, 20355}, {727, 39362}, {813, 39354}, {8709, 20345}
X(62638) = X(i)-Ceva conjugate of X(j) for these (i,j): {8709, 3226}, {54985, 32020}
X(62638) = X(i)-isoconjugate of X(j) for these (i,j): {31, 23354}, {100, 3009}, {101, 1575}, {190, 21760}, {660, 20663}, {662, 21830}, {692, 726}, {765, 6373}, {813, 17475}, {1110, 3837}, {1463, 3939}, {1783, 20785}, {1897, 20777}, {3573, 40155}, {4557, 18792}, {4595, 51864}, {17793, 34067}, {20908, 23990}, {23344, 36814}, {32739, 52043}, {52633, 57731}
X(62638) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 23354}, {513, 6373}, {514, 3837}, {1015, 1575}, {1084, 21830}, {1086, 726}, {4988, 21053}, {8054, 3009}, {33678, 190}, {34467, 20777}, {35080, 59724}, {35119, 17793}, {39006, 20785}, {40615, 43040}, {40617, 1463}, {40619, 52043}, {40623, 17475}, {55053, 21760}
X(62638) = cevapoint of X(i) and X(j) for these (i,j): {513, 812}, {514, 3837}
X(62638) = trilinear pole of line {514, 1015}
X(62638) = crossdifference of every pair of points on line {3009, 20663}
X(62638) = barycentric product X(i)*X(j) for these {i,j}: {76, 23355}, {83, 35367}, {513, 32020}, {514, 3226}, {693, 20332}, {727, 3261}, {1015, 54985}, {1086, 8709}, {3253, 4444}, {3676, 36799}, {3837, 57535}, {6548, 60865}, {7192, 27809}, {7199, 18793}, {8851, 24002}, {34077, 40495}, {40844, 43931}
X(62638) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 23354}, {512, 21830}, {513, 1575}, {514, 726}, {649, 3009}, {659, 17475}, {667, 21760}, {693, 52043}, {727, 101}, {812, 17793}, {876, 52656}, {1015, 6373}, {1019, 18792}, {1022, 36814}, {1086, 3837}, {1111, 20908}, {1459, 20785}, {2786, 59724}, {3120, 21053}, {3226, 190}, {3253, 3570}, {3261, 35538}, {3572, 40155}, {3669, 1463}, {3676, 43040}, {3766, 62553}, {3837, 20532}, {3937, 22092}, {6373, 20671}, {6545, 21140}, {8632, 20663}, {8709, 1016}, {8851, 644}, {18793, 1018}, {20295, 27044}, {20332, 100}, {21143, 52633}, {21832, 20681}, {22092, 20759}, {22383, 20777}, {22384, 20750}, {23355, 6}, {27809, 3952}, {27846, 62558}, {30725, 24816}, {32020, 668}, {34077, 692}, {35367, 141}, {36799, 3699}, {40844, 36863}, {42754, 42766}, {43931, 40881}, {54985, 31625}, {57535, 8709}, {60865, 17780}, {62421, 52923}


X(62639) = X(2)X(6)∩X(30)X(36875)

Barycentrics    2*a^8 - 3*a^6*b^2 - 2*a^4*b^4 + 5*a^2*b^6 - 2*b^8 - 3*a^6*c^2 + 10*a^4*b^2*c^2 - 6*a^2*b^4*c^2 + b^6*c^2 - 2*a^4*c^4 - 6*a^2*b^2*c^4 + 2*b^4*c^4 + 5*a^2*c^6 + b^2*c^6 - 2*c^8 : :
X(62639) = 9 X[2] - 8 X[24975], 5 X[2] - 4 X[45331], 3 X[2] - 4 X[62551], 3 X[2407] - 4 X[24975], 5 X[2407] - 6 X[45331], 10 X[24975] - 9 X[45331], 2 X[24975] - 3 X[62551], 3 X[45331] - 5 X[62551], 3 X[9214] - 4 X[38393]

X(62639) lies on these lines: {2, 6}, {30, 36875}, {98, 32244}, {148, 2799}, {340, 16237}, {382, 47283}, {511, 57611}, {868, 53351}, {895, 31127}, {2394, 12066}, {3146, 62509}, {3448, 9003}, {3564, 7422}, {5965, 52772}, {6033, 53350}, {7845, 52628}, {9214, 38393}, {14380, 45289}, {14731, 55130}, {34380, 57603}, {35511, 50942}, {39356, 39359}, {39358, 51228}

X(62639) = reflection of X(i) in X(j) for these {i,j}: {2407, 62551}, {39358, 51228}, {53351, 868}
X(62639) = isotomic conjugate of X(12066)
X(62639) = anticomplement of X(2407)
X(62639) = anticomplement of the isogonal conjugate of X(2433)
X(62639) = anticomplement of the isotomic conjugate of X(2394)
X(62639) = isotomic conjugate of the anticomplement of X(62613)
X(62639) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {74, 7192}, {163, 14611}, {661, 146}, {798, 39358}, {1494, 17217}, {1973, 45292}, {2159, 523}, {2349, 512}, {2394, 6327}, {2433, 8}, {8749, 7253}, {12079, 21294}, {14380, 4329}, {16080, 21300}, {18808, 21270}, {32640, 6758}, {32678, 41512}, {33805, 44445}, {35200, 6563}, {36034, 99}, {36119, 850}, {36131, 110}, {40352, 4560}, {40354, 17498}, {44769, 21295}, {55240, 25045}
X(62639) = X(2394)-Ceva conjugate of X(2)
X(62639) = X(i)-isoconjugate of X(j) for these (i,j): {31, 12066}, {163, 12065}
X(62639) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 12066}, {115, 12065}, {31945, 115}
X(62639) = barycentric product X(i)*X(j) for these {i,j}: {1494, 31945}, {2394, 62613}
X(62639) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 12066}, {523, 12065}, {31945, 30}, {62613, 2407}
X(62639) = {X(2407),X(62551)}-harmonic conjugate of X(2)


X(62640) = X(2)X(62560)∩X(115)X(57576)

Barycentrics    (2*a^2 + 2*b^2 - 4*c^2 + Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4])*(2*a^2 - 4*b^2 + 2*c^2 + Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :
X(62640) = 2 X[148] + X[39366], 4 X[671] - X[39365], 2 X[6189] + X[8596], 7 X[8591] - 16 X[22245], X[20094] - 4 X[39023]

X(62640) lies on the Kiepert circumhyperbola and these lines: {2, 62560}, {115, 57576}, {148, 3413}, {524, 31372}, {543, 57575}, {671, 39365}, {3414, 41135}, {5466, 45296}, {6178, 51899}, {6189, 8596}, {8591, 22245}, {14632, 31862}, {14633, 51492}, {20094, 39023}

X(62640) = reflection of X(57576) in X(115)
X(62640) = isotomic conjugate of X(39366)
X(62640) = anticomplement of X(62560)
X(62640) = antigonal image of X(57576)
X(62640) = antitomic conjugate of X(57576)
X(62640) = isotomic conjugate of the anticomplement of X(6190)
X(62640) = X(31)-isoconjugate of X(39366)
X(62640) = X(2)-Dao conjugate of X(39366)
X(62640) = cevapoint of X(115) and X(3414)
X(62640) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 39366}, {6190, 62560}


X(62641) = X(2)X(62561)∩X(115)X(57575)

Barycentrics    (2*a^2 + 2*b^2 - 4*c^2 - Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4])*(2*a^2 - 4*b^2 + 2*c^2 - Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : :
X(62641) = 2 X[148] + X[39365], 4 X[671] - X[39366], 2 X[6190] + X[8596], 7 X[8591] - 16 X[22244], X[20094] - 4 X[39022]

X(62641) lies on the Kiepert circumhyperbola and these lines: {2, 62561}, {115, 57575}, {148, 3414}, {524, 31372}, {543, 57576}, {671, 39366}, {3413, 41135}, {5466, 45297}, {6177, 51898}, {6190, 8596}, {8591, 22244}, {14632, 51493}, {14633, 31863}, {20094, 39022}

X(62641) = reflection of X(57575) in X(115)
X(62641) = isotomic conjugate of X(39365)
X(62641) = anticomplement of X(62561)
X(62641) = antigonal image of X(57575)
X(62641) = antitomic conjugate of X(57575)
X(62641) = isotomic conjugate of the anticomplement of X(6189)
X(62641) = X(31)-isoconjugate of X(39365)
X(62641) = X(2)-Dao conjugate of X(39365)
X(62641) = cevapoint of X(115) and X(3413)
X(62641) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 39365}, {6189, 62561}


X(62642) = X(2)X(647)∩X(69)X(523)

Barycentrics    (b^2 - c^2)*(-a^8 + 3*a^6*b^2 - 3*a^4*b^4 + a^2*b^6 + 3*a^6*c^2 + a^4*b^2*c^2 - 3*a^2*b^4*c^2 + 3*b^6*c^2 - 3*a^4*c^4 - 3*a^2*b^2*c^4 - 2*b^4*c^4 + a^2*c^6 + 3*b^2*c^6) : :
X(62642) = 5 X[2] - 4 X[45329], 5 X[2395] - 6 X[45329], 2 X[10097] - 3 X[32986], 3 X[32836] - 4 X[52629]

X(62642) lies on these lines: {2, 647}, {69, 523}, {75, 16755}, {99, 53695}, {147, 2793}, {525, 55267}, {804, 25046}, {1007, 34291}, {1272, 35522}, {1316, 47256}, {1369, 41298}, {1370, 6563}, {2396, 46606}, {2419, 56687}, {2501, 37187}, {2799, 40867}, {3265, 11123}, {3267, 40697}, {5466, 60212}, {5468, 14611}, {5652, 59770}, {6333, 55122}, {8029, 41927}, {9168, 30474}, {9473, 34765}, {10097, 32986}, {14731, 55142}, {15589, 53347}, {17135, 17161}, {23105, 32828}, {23285, 45799}, {32815, 62489}, {32836, 52629}, {34229, 53266}, {37667, 47229}, {39355, 39361}, {39356, 39359}

X(62642) = isotomic conjugate of X(46606)
X(62642) = anticomplement of X(2395)
X(62642) = anticomplement of the isogonal conjugate of X(2421)
X(62642) = anticomplement of the isotomic conjugate of X(2396)
X(62642) = isotomic conjugate of the anticomplement of X(62562)
X(62642) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {162, 51481}, {163, 385}, {237, 21220}, {325, 21294}, {511, 21221}, {662, 511}, {799, 14957}, {877, 21270}, {1101, 2799}, {1755, 148}, {1959, 3448}, {2396, 6327}, {2421, 8}, {3405, 25051}, {4230, 5905}, {4567, 53336}, {4575, 401}, {4592, 30737}, {9417, 25054}, {14966, 192}, {17209, 149}, {23996, 39359}, {23997, 2}, {24037, 14295}, {24041, 53331}, {36036, 290}, {36085, 53346}, {36133, 46303}, {36142, 10754}, {37134, 20021}, {42717, 1330}, {46254, 39469}, {51369, 150}, {51370, 21293}
X(62642) = X(2396)-Ceva conjugate of X(2)
X(62642) = X(i)-isoconjugate of X(j) for these (i,j): {31, 46606}, {1910, 43942}
X(62642) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 46606}, {11672, 43942}
X(62642) = crossdifference of every pair of points on line {237, 1692}
X(62642) = barycentric product X(2396)*X(62562)
X(62642) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 46606}, {511, 43942}, {62562, 2395}


X(62643) = X(2)X(37)∩X(99)X(110)

Barycentrics    (a - b)*(a - c)*(a^3*b + a^2*b^2 - a*b^3 - b^4 + a^3*c + a^2*c^2 - a*c^3 - c^4) : :

X(62643) lies on these lines: {2, 37}, {99, 110}, {799, 6758}, {850, 55258}, {5977, 9978}, {16598, 20903}, {17161, 17780}, {17935, 60043}, {18015, 35147}, {60042, 62536}

X(62643) = isotomic conjugate of X(60043)
X(62643) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2703, 21221}, {17929, 150}, {17939, 4440}, {35147, 21294}
X(62643) = X(i)-isoconjugate of X(j) for these (i,j): {31, 60043}, {649, 53686}
X(62643) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 60043}, {5375, 53686}, {41179, 1015}, {44396, 2787}, {62609, 523}
X(62643) = cevapoint of X(2787) and X(44378)
X(62643) = trilinear pole of line {5164, 41179}
X(62643) = crossdifference of every pair of points on line {667, 3124}
X(62643) = barycentric product X(i)*X(j) for these {i,j}: {99, 44396}, {424, 4563}, {670, 5164}, {35147, 62609}
X(62643) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 60043}, {100, 53686}, {424, 2501}, {4558, 57682}, {4563, 57849}, {5164, 512}, {44396, 523}, {62609, 2787}
X(62643) = {X(30508),X(30509)}-harmonic conjugate of X(53332)


X(62644) = X(1)X(2)∩X(99)X(110)

Barycentrics    (a - b)*(a - c)*(2*a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*c^2 - c^3) : :

X(62644) lies on these lines: {1, 2}, {99, 110}, {100, 46369}, {523, 53341}, {662, 21295}, {850, 55256}, {1023, 4115}, {1316, 25253}, {1654, 24348}, {2759, 53942}, {3570, 18014}, {3952, 18047}, {5376, 60043}, {5988, 24809}, {7983, 24617}, {8691, 9070}, {11711, 31059}, {13178, 31057}, {17166, 53358}, {17467, 21254}, {17934, 60042}, {24714, 42081}, {38940, 38941}, {50886, 53372}

X(62644) = isogonal conjugate of X(60050)
X(62644) = isotomic conjugate of X(60042)
X(62644) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {163, 39368}, {249, 20538}, {1101, 13174}, {2702, 21221}, {4590, 20560}, {17930, 21293}, {17940, 149}, {24041, 20351}, {35148, 21294}, {37135, 3448}
X(62644) = X(17934)-Ceva conjugate of X(3570)
X(62644) = X(i)-isoconjugate of X(j) for these (i,j): {1, 60050}, {31, 60042}, {513, 28482}, {667, 35162}
X(62644) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 60042}, {3, 60050}, {6631, 35162}, {10026, 2786}, {35114, 514}, {39026, 28482}, {41180, 1086}, {51578, 523}
X(62644) = cevapoint of X(2786) and X(44379)
X(62644) = trilinear pole of line {10026, 17770}
X(62644) = crossdifference of every pair of points on line {649, 3124}
X(62644) = barycentric product X(i)*X(j) for these {i,j}: {99, 10026}, {190, 17770}, {670, 20666}, {4427, 31064}, {4623, 20685}, {6331, 20754}, {35148, 51578}
X(62644) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 60042}, {6, 60050}, {101, 28482}, {190, 35162}, {10026, 523}, {17770, 514}, {20666, 512}, {20685, 4705}, {20754, 647}, {31064, 4608}, {51578, 2786}
X(62644) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30508, 30509, 4427}


X(62645) = X(2)X(2501)∩X(69)X(523)

Barycentrics    (b^2 - c^2)*(a^4 - a^2*b^2 + 2*b^4 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + 2*c^4) : :
X(62645) = 4 X[2395] - 3 X[53374]

X(62645) lies on the X-parabola of ABC (see X(12065)) and these lines: {2, 2501}, {69, 523}, {287, 2395}, {305, 850}, {306, 4024}, {328, 10412}, {476, 5468}, {525, 56267}, {685, 877}, {1494, 18808}, {1799, 41298}, {1972, 62519}, {2373, 3563}, {3265, 6340}, {3267, 20563}, {3268, 5466}, {4036, 20336}, {4581, 57853}, {4608, 57854}, {6333, 34290}, {8599, 9168}, {8773, 57985}, {9204, 20579}, {9205, 20578}, {10603, 52476}, {12079, 34767}, {14775, 40412}, {14977, 62551}, {15328, 43705}, {16237, 32697}, {22339, 39240}, {22340, 39241}, {31065, 57852}, {34765, 40428}, {40711, 55201}, {40712, 55199}, {46052, 53173}, {46512, 47736}, {55253, 57875}, {56321, 57833}, {56360, 57071}, {57849, 60043}

X(62645) = isogonal conjugate of X(61213)
X(62645) = isotomic conjugate of X(4226)
X(62645) = anticomplement of X(55267)
X(62645) = anticomplement of the isotomic conjugate of X(55266)
X(62645) = isotomic conjugate of the anticomplement of X(868)
X(62645) = isotomic conjugate of the isogonal conjugate of X(35364)
X(62645) = isotomic conjugate of the polar conjugate of X(60338)
X(62645) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2065, 21221}, {36051, 39359}, {40428, 21294}, {55266, 6327}
X(62645) = X(55266)-Ceva conjugate of X(2)
X(62645) = X(i)-isoconjugate of X(j) for these (i,j): {1, 61213}, {19, 56389}, {31, 4226}, {110, 8772}, {162, 52144}, {163, 230}, {460, 4575}, {662, 1692}, {922, 52035}, {1101, 55122}, {1576, 1733}, {1755, 60504}, {2715, 17462}, {3564, 32676}, {4592, 44099}, {5477, 36142}, {23997, 51820}, {24041, 42663}, {36034, 51431}, {36084, 51335}, {36104, 47406}
X(62645) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 4226}, {3, 61213}, {6, 56389}, {115, 230}, {125, 52144}, {136, 460}, {244, 8772}, {523, 55122}, {1084, 1692}, {3005, 42663}, {3258, 51431}, {4858, 1733}, {5139, 44099}, {15526, 3564}, {23992, 5477}, {35078, 12829}, {35088, 114}, {36471, 39072}, {36899, 60504}, {36901, 51481}, {38987, 51335}, {39000, 47406}, {39061, 52035}, {41181, 35067}, {43961, 6782}, {43962, 6783}, {52584, 57154}, {62562, 51820}
X(62645) = cevapoint of X(i) and X(j) for these (i,j): {511, 34990}, {523, 2799}, {22260, 41172}
X(62645) = trilinear pole of line {115, 525}
X(62645) = crossdifference of every pair of points on line {1692, 51335}
X(62645) = barycentric product X(i)*X(j) for these {i,j}: {69, 60338}, {76, 35364}, {338, 10425}, {339, 32697}, {523, 8781}, {525, 35142}, {850, 2987}, {868, 55266}, {1577, 8773}, {2394, 36891}, {2501, 57872}, {2799, 40428}, {3267, 3563}, {14618, 43705}, {20902, 36105}, {20948, 36051}, {32654, 44173}, {43665, 52091}, {43673, 56572}
X(62645) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 4226}, {3, 56389}, {6, 61213}, {98, 60504}, {115, 55122}, {512, 1692}, {523, 230}, {525, 3564}, {647, 52144}, {661, 8772}, {671, 52035}, {684, 47406}, {690, 5477}, {804, 12829}, {850, 51481}, {868, 55267}, {1577, 1733}, {1637, 51431}, {2065, 2715}, {2394, 36875}, {2395, 51820}, {2489, 44099}, {2501, 460}, {2799, 114}, {2987, 110}, {3124, 42663}, {3563, 112}, {3569, 51335}, {5466, 52450}, {5503, 54965}, {6333, 62590}, {8773, 662}, {8781, 99}, {9479, 12830}, {10425, 249}, {14223, 34174}, {14618, 44145}, {23870, 6782}, {23871, 6783}, {32654, 1576}, {32697, 250}, {34157, 14966}, {35142, 648}, {35364, 6}, {36051, 163}, {36891, 2407}, {40428, 2966}, {42065, 32661}, {43665, 14265}, {43673, 56687}, {43705, 4558}, {46040, 46039}, {52091, 2421}, {52476, 60428}, {52515, 7468}, {53173, 53783}, {55266, 57991}, {56109, 5546}, {56572, 34211}, {57493, 4230}, {57872, 4563}, {60338, 4}


X(62646) = X(2)X(2350)∩X(37)X(42)

Barycentrics    a*(b + c)*(a^2 - a*b - a*c - b*c)*(a*b + a*c + 2*b*c) : :

X(62646) lies on these lines: {2, 2350}, {9, 4418}, {10, 40586}, {37, 42}, {649, 59624}, {672, 1213}, {899, 21838}, {966, 6818}, {1211, 16593}, {2245, 16590}, {3136, 38930}, {3161, 59296}, {3294, 4651}, {3691, 3720}, {3741, 40614}, {3948, 24592}, {4359, 17755}, {4974, 14751}, {6651, 27065}, {14752, 22184}, {17147, 27481}, {17259, 36808}, {17277, 18152}, {21020, 61163}, {23447, 28352}, {27033, 27035}, {27040, 31330}, {37674, 56208}, {39056, 46148}, {52538, 59306}, {58288, 62558}

X(62646) = complement of X(39734)
X(62646) = complement of the isotomic conjugate of X(4651)
X(62646) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 3720}, {42, 3925}, {213, 17245}, {692, 4151}, {1621, 3741}, {1918, 1500}, {3294, 141}, {4040, 53564}, {4043, 626}, {4151, 21252}, {4251, 3739}, {4557, 50337}, {4651, 2887}, {17277, 21240}, {20616, 17052}, {21007, 17761}, {21727, 125}, {40607, 3454}, {55086, 3742}
X(62646) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 3720}, {190, 4151}, {17175, 2667}, {17277, 29773}
X(62646) = X(i)-isoconjugate of X(j) for these (i,j): {2350, 40439}, {13476, 40408}, {39734, 57397}, {39950, 40433}
X(62646) = X(i)-Dao conjugate of X(j) for these (i,j): {2486, 514}, {3720, 2}, {3739, 17758}, {16589, 40004}
X(62646) = crossdifference of every pair of points on line {1019, 50520}
X(62646) = barycentric product X(i)*X(j) for these {i,j}: {37, 29773}, {1621, 21020}, {2667, 17143}, {3294, 3739}, {3720, 4651}, {3996, 39793}, {4043, 20963}, {4111, 55082}, {4151, 4436}, {4251, 53478}, {16589, 17277}, {17175, 40607}, {17494, 61163}, {18152, 21753}
X(62646) = barycentric quotient X(i)/X(j) for these {i,j}: {1621, 40439}, {2667, 13476}, {3294, 32009}, {3720, 39734}, {3739, 40004}, {4111, 55076}, {4251, 40408}, {4436, 53649}, {16589, 17758}, {20963, 39950}, {21020, 40216}, {21753, 2350}, {29773, 274}, {61163, 54118}
X(62646) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16552, 2350}, {2, 40007, 17758}, {16589, 21753, 3720}


X(62647) = X(2)X(24179)∩X(9)X(2478)

Barycentrics    a*(a - b - c)*(a^2 - b^2 - c^2)*(a^4 - 2*a^3*b + 2*a*b^3 - b^4 - 2*a^3*c - 2*a^2*b*c + 2*b^2*c^2 + 2*a*c^3 - c^4) : :

X(62647) lies on these lines: {2, 24179}, {9, 2478}, {19, 61233}, {37, 37549}, {63, 440}, {78, 219}, {190, 273}, {198, 51629}, {224, 3211}, {307, 28420}, {573, 15487}, {644, 27396}, {938, 3161}, {1210, 59595}, {1331, 1743}, {1445, 16593}, {1723, 12649}, {2287, 35193}, {5513, 35341}, {6261, 38875}, {6544, 57057}, {17755, 20171}, {27382, 27522}, {30568, 62564}, {37282, 59689}, {42018, 51379}

X(62647) = complement of X(39695)
X(62647) = complement of the isotomic conjugate of X(12649)
X(62647) = isotomic conjugate of the polar conjugate of X(2900)
X(62647) = X(i)-complementary conjugate of X(j) for these (i,j): {25, 10395}, {31, 78}, {224, 1368}, {604, 24779}, {1723, 141}, {2900, 1329}, {3211, 18589}, {12649, 2887}, {34489, 2886}
X(62647) = X(2)-Ceva conjugate of X(78)
X(62647) = X(i)-isoconjugate of X(j) for these (i,j): {34, 39947}, {57, 41505}, {278, 34430}, {604, 57794}, {608, 39695}, {1435, 56278}
X(62647) = X(i)-Dao conjugate of X(j) for these (i,j): {78, 2}, {3161, 57794}, {5452, 41505}, {11517, 39947}
X(62647) = barycentric product X(i)*X(j) for these {i,j}: {8, 224}, {69, 2900}, {78, 12649}, {312, 3211}, {345, 1723}, {1265, 34489}, {1809, 51432}
X(62647) = barycentric quotient X(i)/X(j) for these {i,j}: {8, 57794}, {55, 41505}, {78, 39695}, {212, 34430}, {219, 39947}, {224, 7}, {1260, 56278}, {1723, 278}, {2900, 4}, {3211, 57}, {4571, 53652}, {12649, 273}, {34489, 1119}


X(62648) = X(1)X(1213)∩X(2)X(2321)

Barycentrics    (3*a + b + c)*(a + 2*b + 2*c) : :

X(626) lies on these lines: {1, 1213}, {2, 2321}, {6, 16590}, {7, 36834}, {9, 1125}, {37, 3624}, {75, 31336}, {86, 17329}, {144, 4758}, {145, 4545}, {190, 30598}, {391, 1449}, {440, 17073}, {551, 966}, {573, 9624}, {1086, 31312}, {1108, 25086}, {1698, 4007}, {1778, 28620}, {2171, 31231}, {2178, 5259}, {2324, 52818}, {2345, 4098}, {3161, 5550}, {3589, 51002}, {3622, 3686}, {3633, 46845}, {3634, 17314}, {3636, 5839}, {3664, 28641}, {3679, 3723}, {3731, 4370}, {3894, 21873}, {3950, 19878}, {4058, 31253}, {4060, 46933}, {4085, 38200}, {4364, 28640}, {4440, 6651}, {4472, 55998}, {4654, 4877}, {4657, 16593}, {4670, 60977}, {4687, 17755}, {4698, 29598}, {4851, 25358}, {4859, 41311}, {4873, 16673}, {5105, 28352}, {5224, 29597}, {5275, 16488}, {5296, 16670}, {5513, 29826}, {6173, 15668}, {6544, 6590}, {6707, 25590}, {7110, 56847}, {11522, 37499}, {15487, 16547}, {16826, 17238}, {16831, 17234}, {16832, 17045}, {16884, 52706}, {17053, 21838}, {17155, 24067}, {17239, 29602}, {17240, 17308}, {17248, 20090}, {17270, 29570}, {17272, 28639}, {17282, 29578}, {17284, 25498}, {17299, 19875}, {17321, 24199}, {17326, 29595}, {17327, 29573}, {17330, 51110}, {17355, 19883}, {17368, 41841}, {17393, 31248}, {17754, 40586}, {19701, 28609}, {19876, 50113}, {23058, 38015}, {24275, 48818}, {25457, 32104}, {25579, 30827}, {26039, 59585}, {26107, 31996}, {27268, 27481}, {27783, 56037}, {28194, 41456}, {29648, 40131}, {31162, 37508}, {32431, 50811}, {37654, 51108}, {43267, 56696}

X(62648) = complement of X(5936)
X(62648) = complement of the isotomic conjugate of X(3616)
X(62648) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 1698}, {41, 18228}, {101, 4940}, {391, 21244}, {604, 4648}, {667, 62221}, {692, 4778}, {1397, 4646}, {1449, 141}, {1919, 53543}, {2194, 18249}, {2206, 6051}, {2208, 4295}, {3361, 2886}, {3616, 2887}, {4258, 3452}, {4512, 1329}, {4652, 1368}, {4778, 21252}, {4790, 116}, {4815, 53575}, {4822, 125}, {4832, 8287}, {4841, 21253}, {5257, 21245}, {5338, 5}, {5342, 21243}, {19804, 626}, {21454, 17046}, {32739, 47965}, {37593, 3454}, {42028, 21240}, {44100, 20262}, {58140, 11}
X(62648) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 1698}, {190, 4778}, {6742, 4843}
X(62648) = X(i)-isoconjugate of X(j) for these (i,j): {2334, 25417}, {5936, 34819}, {8652, 47915}, {8694, 48074}, {25430, 56343}, {28625, 56048}, {56203, 57663}
X(62648) = X(i)-Dao conjugate of X(j) for these (i,j): {1698, 2}, {51572, 25430}, {51576, 25417}, {53167, 58860}, {62608, 30598}
X(62648) = crossdifference of every pair of points on line {48340, 58140}
X(62648) = barycentric product X(i)*X(j) for these {i,j}: {8, 5586}, {391, 4654}, {1449, 28605}, {1698, 3616}, {3927, 5342}, {4007, 21454}, {4101, 31902}, {4673, 5221}, {4756, 4778}, {5257, 5333}, {16777, 19804}
X(62648) = barycentric quotient X(i)/X(j) for these {i,j}: {391, 42030}, {1449, 25417}, {1698, 5936}, {3616, 30598}, {3715, 4866}, {4007, 56086}, {4512, 56203}, {4654, 57826}, {4658, 56048}, {4756, 53658}, {4790, 48074}, {4802, 58860}, {4813, 47915}, {4877, 56204}, {5257, 60203}, {5586, 7}, {16777, 25430}, {28605, 40023}, {37593, 56221}, {61358, 2334}
X(62648) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1213, 4034}, {2, 3247, 59772}, {144, 28626, 4758}, {1698, 16777, 4007}, {3616, 5257, 1449}, {3646, 47299, 9}, {4700, 5257, 62608}, {6707, 41312, 25590}, {16673, 17303, 4873}, {16673, 34595, 17303}, {16831, 17322, 17306}


X(62649) = X(2)X(669)∩X(39)X(512)

Barycentrics    a^2*(b^2 - c^2)*(a^2 - b*c)*(a^2 + b*c)*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4) : :

X(62649) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 669}, {3, 9491}, {39, 512}, {114, 58850}, {351, 62611}, {523, 10335}, {804, 5976}, {878, 47643}, {887, 2482}, {1645, 38988}, {2086, 2679}, {3804, 38237}, {6292, 9494}, {6337, 22089}, {6626, 16695}, {8664, 23610}, {9429, 59802}, {9489, 15810}, {11165, 32524}, {15819, 32472}, {23864, 40605}, {24734, 57082}, {39091, 44822}, {46094, 52727}

X(62649) = complement of the isogonal conjugate of X(41337)
X(62649) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 2086}, {163, 698}, {698, 21253}, {2227, 125}, {3229, 8287}, {23997, 40810}, {24037, 9429}, {32748, 16592}, {41337, 10}, {51907, 115}, {51912, 2679}
X(62649) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 2086}, {99, 698}, {512, 9429}, {3222, 385}
X(62649) = X(i)-isoconjugate of X(j) for these (i,j): {799, 51992}, {3225, 37134}, {18829, 43761}
X(62649) = X(i)-Dao conjugate of X(j) for these (i,j): {2086, 2}, {3229, 670}, {35540, 4609}, {38996, 51992}, {39080, 18829}
X(62649) = crossdifference of every pair of points on line {385, 3225}
X(62649) = barycentric product X(i)*X(j) for these {i,j}: {512, 39080}, {523, 51322}, {647, 52462}, {661, 51912}, {698, 5027}, {804, 3229}, {3978, 9429}, {11183, 36821}, {14295, 32748}, {24284, 52460}
X(62649) = barycentric quotient X(i)/X(j) for these {i,j}: {669, 51992}, {3229, 18829}, {5027, 3225}, {9429, 694}, {32540, 39291}, {32748, 805}, {39080, 670}, {41337, 39292}, {51322, 99}, {51907, 37134}, {51912, 799}, {52462, 6331}


X(62650) = X12)X(2896)∩X(2)X(54120)

Barycentrics    (a^2 + b*c)*(a^2 - a*b - b^2 - a*c + b*c - c^2) : :

X(62650) lies on these lines: {1, 2896}, {2, 54120}, {9, 41771}, {37, 14949}, {239, 3752}, {257, 664}, {330, 16822}, {894, 2329}, {1212, 17260}, {1214, 38000}, {1909, 27954}, {2170, 33826}, {3160, 17257}, {3294, 16820}, {3510, 25838}, {5291, 41805}, {6505, 27184}, {6651, 59512}, {7824, 21232}, {9259, 33944}, {9317, 26801}, {16586, 24627}, {16720, 17741}, {16826, 17056}, {16827, 39928}, {17044, 26558}, {17136, 26759}, {17254, 35110}, {17261, 59515}, {17499, 30132}, {17743, 25918}, {18755, 49779}, {20955, 21008}, {26132, 29570}, {26563, 27912}, {26580, 40612}, {29580, 50063}, {30798, 53839}, {30867, 52659}, {31004, 39046}, {59524, 59700}

X(62650) = complement of X(54120)
X(62650) = complement of the isogonal conjugate of X(21008)
X(62650) = complement of the isotomic conjugate of X(6646)
X(62650) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 894}, {6646, 2887}, {17596, 141}, {20955, 626}, {21008, 10}, {21212, 21252}, {22161, 18589}
X(62650) = X(2)-Ceva conjugate of X(894)
X(62650) = X(904)-isoconjugate of X(54120)
X(62650) = X(894)-Dao conjugate of X(2)
X(62650) = barycentric product X(i)*X(j) for these {i,j}: {171, 20955}, {894, 6646}, {1909, 17596}, {1920, 21008}, {18047, 21212}
X(62650) = barycentric quotient X(i)/X(j) for these {i,j}: {894, 54120}, {6646, 257}, {17596, 256}, {20955, 7018}, {21008, 893}, {22161, 7015}
X(62650) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2329, 7187, 894}, {6645, 59509, 894}, {6647, 59509, 6645}, {16720, 18047, 17741}


X(62651) = X(2)X(690)∩X(3)X(2793)

Barycentrics    (b^2 - c^2)*(-2*a^4 + 2*a^2*b^2 + b^4 + 2*a^2*c^2 - 4*b^2*c^2 + c^4)*(5*a^4 - 5*a^2*b^2 + 2*b^4 - 5*a^2*c^2 + b^2*c^2 + 2*c^4) : :
X(62651) = X[8029] + 2 X[36521], X[9168] - 3 X[41134], 2 X[9183] - 3 X[14971], 2 X[10278] + X[15300], X[14443] - 4 X[22247]

X(62651) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 690}, {3, 2793}, {39, 2492}, {99, 5466}, {114, 1499}, {512, 12093}, {523, 2482}, {543, 8371}, {618, 27550}, {619, 27551}, {620, 1649}, {804, 15810}, {2799, 11165}, {3906, 5976}, {7472, 53738}, {8029, 36521}, {8290, 12073}, {9168, 41134}, {9181, 9182}, {9183, 14971}, {9880, 39492}, {10278, 15300}, {11147, 55122}, {14443, 22247}, {15819, 16235}, {19598, 44010}, {34013, 44823}, {41177, 44398}, {51579, 57087}, {53735, 62613}

X(62651) = midpoint of X(i) and X(j) for these {i,j}: {99, 5466}, {11006, 14932}, {45294, 51226}
X(62651) = reflection of X(i) in X(j) for these {i,j}: {1649, 620}, {9880, 39492}, {18007, 8371}, {19598, 44010}
X(62651) = complement of X(9180)
X(62651) = complement of the isogonal conjugate of X(9181)
X(62651) = complement of the isotomic conjugate of X(9182)
X(62651) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 44398}, {163, 543}, {543, 21253}, {922, 41176}, {2502, 8287}, {9171, 24040}, {9181, 10}, {9182, 2887}, {23348, 4892}, {34760, 21256}
X(62651) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 44398}, {99, 543}, {5466, 33921}
X(62651) = X(i)-Dao conjugate of X(j) for these (i,j): {8371, 523}, {44398, 2}
X(62651) = crossdifference of every pair of points on line {2502, 40282}
X(62651) = barycentric product X(i)*X(j) for these {i,j}: {543, 9168}, {892, 41177}, {8371, 41134}, {9182, 44398}
X(62651) = barycentric quotient X(i)/X(j) for these {i,j}: {9168, 18823}, {17964, 53687}, {41134, 9170}, {41177, 690}, {44398, 9180}


X(62652) = X(2)X(1762)∩X(27)X(190)

Barycentrics    a*(a^3 + b^3 - a*b*c - b^2*c - b*c^2 + c^3)*(a^4 - a^3*b + a*b^3 - b^4 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + a*b*c^2 + a*c^3 - b*c^3 - c^4) : :
X(62652) = X[3151] - 5 X[4473], 3 X[21162] - X[24813], X[31153] - 3 X[41138]

X(62652) lies on these lines: {2, 1762}, {9, 37098}, {19, 61233}, {27, 190}, {30, 4370}, {37, 101}, {45, 20834}, {440, 4422}, {537, 51697}, {900, 57046}, {1086, 6678}, {1731, 30117}, {2173, 37311}, {3151, 4473}, {3161, 16561}, {8680, 17755}, {9055, 51731}, {15762, 29243}, {21162, 24813}, {31153, 41138}, {34701, 36911}

X(62652) = midpoint of X(27) and X(190)
X(62652) = reflection of X(i) in X(j) for these {i,j}: {440, 4422}, {1086, 6678}
X(62652) = complement of X(16099)
X(62652) = complement of the isotomic conjugate of X(16086)
X(62652) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 30117}, {16086, 2887}, {42662, 11}, {42709, 626}, {51643, 17059}, {56830, 34830}, {56919, 942}
X(62652) = X(2)-Ceva conjugate of X(30117)
X(62652) = X(i)-Dao conjugate of X(j) for these (i,j): {867, 514}, {30117, 2}
X(62652) = crossdifference of every pair of points on line {42662, 43693}
X(62652) = barycentric product X(16086)*X(30117)
X(62652) = barycentric quotient X(i)/X(j) for these {i,j}: {13589, 35169}, {30117, 16099}, {56919, 39439}


X(62653) = X(2)X(59383)∩X(18)X(39)

Barycentrics    (3*a^4 - 3*a^2*b^2 + 2*b^4 - 3*a^2*c^2 - 4*b^2*c^2 + 2*c^4 - 2*Sqrt[3]*a^2*S)*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4 + 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :

X(62653) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 59383}, {5, 62601}, {18, 39}, {99, 54572}, {618, 44667}, {619, 5617}, {621, 61561}, {628, 62600}, {629, 16627}, {2482, 50855}, {5965, 22892}, {5976, 5983}, {6115, 14139}, {6292, 49105}, {6298, 59404}, {6337, 16628}, {7697, 42673}, {8724, 40672}, {11603, 16967}, {13188, 18581}, {14145, 30472}, {15819, 16653}, {20425, 38227}, {22114, 44029}, {22843, 51581}, {22846, 22848}, {30471, 52650}, {38431, 40604}, {41042, 51584}, {41054, 51579}, {42937, 46054}, {44031, 61516}

X(62653) = midpoint of X(99) and X(54572)
X(62653) = complement of the isogonal conjugate of X(5611)
X(62653) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 62198}, {5611, 10}
X(62653) = X(2)-Ceva conjugate of X(62198)
X(62653) = X(62198)-Dao conjugate of X(2)


X(62654) = X(2)X(59384)∩X(17)X(39)

Barycentrics    (3*a^4 - 3*a^2*b^2 + 2*b^4 - 3*a^2*c^2 - 4*b^2*c^2 + 2*c^4 + 2*Sqrt[3]*a^2*S)*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 2*b^2*c^2 + 3*c^4 - 2*Sqrt[3]*(a^2 - b^2 - c^2)*S) : :

X(62654) lies on the Kiepert circumhyperbola of the medial triangle and these lines: {2, 59384}, {5, 62600}, {17, 39}, {99, 54571}, {618, 5613}, {619, 44666}, {622, 61561}, {627, 62601}, {630, 16626}, {2482, 50858}, {5965, 22848}, {5976, 5982}, {6114, 14138}, {6292, 49106}, {6299, 59403}, {6337, 16629}, {7697, 42672}, {8724, 40671}, {11602, 16966}, {13188, 18582}, {14144, 30471}, {15819, 16652}, {20426, 38227}, {22113, 44031}, {22890, 51581}, {22891, 22892}, {30472, 44223}, {38432, 40604}, {41043, 51584}, {41055, 51579}, {42936, 46053}, {44029, 61515}

X(62654) = midpoint of X(99) and X(54571)
X(62654) = complement of the isogonal conjugate of X(5615)
X(62654) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 62197}, {5615, 10}
X(62654) = X(2)-Ceva conjugate of X(62197)
X(62654) = X(62197)-Dao conjugate of X(2)


X(62655) = X(115)X(1649)∩X(523)X(1648)

Barycentrics    (b - c)^2*(b + c)^2*(-2*a^4 + 2*a^2*b^2 + b^4 + 2*a^2*c^2 - 4*b^2*c^2 + c^4)*(5*a^4 - 5*a^2*b^2 + 2*b^4 - 5*a^2*c^2 + b^2*c^2 + 2*c^4) : :

X(62655) lies on these lines: {115, 1649}, {523, 1648}, {543, 1641}, {671, 9170}, {868, 62568}, {5108, 44526}, {6791, 55267}, {8371, 41176}, {9168, 44398}, {10190, 40469}, {11123, 23992}, {15048, 31945}

X(62655) = complement of the isotomic conjugate of X(9168)
X(62655) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 8371}, {798, 14971}, {9168, 2887}, {41134, 42327}, {44398, 21253}
X(62655) = X(2)-Ceva conjugate of X(8371)
X(62655) = X(i)-Dao conjugate of X(j) for these (i,j): {8371, 2}, {44398, 99}
X(62655) = barycentric product X(i)*X(j) for these {i,j}: {543, 44398}, {671, 41177}, {8371, 9168}
X(62655) = barycentric quotient X(i)/X(j) for these {i,j}: {9168, 9170}, {17993, 53687}, {41177, 524}, {44398, 18823}


X(62656) = X(2)X(6)∩X(126)X(52881)

Barycentrics    (2*a^2 - b^2 - c^2)^2*(a^2*b^2 + b^4 + a^2*c^2 - 4*b^2*c^2 + c^4) : :
X(62656) = 2 X[6] - 3 X[1641], 3 X[6] - 4 X[38304], 4 X[141] - 3 X[1648], X[193] - 3 X[5468], 9 X[1641] - 8 X[38304], 5 X[3618] - 6 X[11053]

X(62656) lies on these lines: {2, 6}, {126, 52881}, {468, 2434}, {690, 32114}, {7813, 9177}, {14263, 47286}, {14444, 50567}, {21905, 55271}, {22260, 33921}, {52629, 58780}

X(62656) = reflection of X(i) in X(j) for these {i,j}: {1992, 38239}, {14444, 50567}, {44915, 69}
X(62656) = X(i)-Ceva conjugate of X(j) for these (i,j): {468, 2482}, {47286, 126}, {53367, 55271}
X(62656) = X(i)-isoconjugate of X(j) for these (i,j): {897, 15387}, {923, 44182}
X(62656) = X(i)-Dao conjugate of X(j) for these (i,j): {126, 10630}, {524, 41909}, {2482, 44182}, {3291, 671}, {6390, 30786}, {6593, 15387}, {21906, 9178}
X(62656) = crossdifference of every pair of points on line {512, 15387}
X(62656) = barycentric product X(i)*X(j) for these {i,j}: {126, 524}, {468, 52881}, {1649, 53367}, {2482, 47286}, {3291, 36792}, {5095, 62310}, {5468, 55271}, {8681, 34336}, {11634, 52629}, {14210, 17466}, {14263, 23106}, {44146, 47412}
X(62656) = barycentric quotient X(i)/X(j) for these {i,j}: {126, 671}, {187, 15387}, {524, 44182}, {2482, 41909}, {3291, 10630}, {5095, 2374}, {8030, 34161}, {8681, 15398}, {11634, 34574}, {17466, 897}, {21905, 9178}, {47286, 57539}, {47412, 895}, {52881, 30786}, {55271, 5466}


X(62657) = X(2)X(6)∩X(3)X(8566)

Barycentrics    a^2*(a^2 - 2*b^2 - 2*c^2)*(2*a^2 - b^2 - c^2) : :
X(62657) = 3 X[1648] - 4 X[24855]

X(62657) lies on these lines: {2, 6}, {3, 8566}, {23, 46276}, {110, 5104}, {111, 8586}, {184, 8588}, {187, 3292}, {353, 33884}, {511, 2502}, {574, 33981}, {576, 8585}, {690, 3288}, {2030, 20976}, {3049, 33915}, {3098, 40251}, {3124, 5107}, {3167, 15655}, {3291, 44496}, {3917, 8589}, {6090, 11173}, {8288, 13857}, {9213, 39232}, {9716, 39560}, {9872, 10510}, {10485, 11422}, {10553, 14712}, {13192, 20998}, {15826, 46783}, {17414, 62412}, {23200, 59175}, {30219, 33921}, {32135, 48654}, {32320, 39474}, {32515, 35606}, {37477, 45723}

X(62657) = isogonal conjugate of X(18818)
X(62657) = isogonal conjugate of the isotomic conjugate of X(39785)
X(62657) = X(i)-Ceva conjugate of X(j) for these (i,j): {2434, 351}, {6082, 669}, {9516, 2482}, {32583, 17414}, {41909, 11165}, {42007, 574}
X(62657) = X(i)-isoconjugate of X(j) for these (i,j): {1, 18818}, {598, 897}, {671, 55927}, {923, 40826}, {1383, 46277}, {8599, 36085}, {23894, 35138}
X(62657) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 18818}, {2482, 40826}, {6593, 598}, {8542, 671}, {11165, 18023}, {17413, 5466}, {17416, 52632}, {38988, 8599}
X(62657) = crossdifference of every pair of points on line {512, 598}
X(62657) = barycentric product X(i)*X(j) for these {i,j}: {6, 39785}, {99, 62412}, {187, 599}, {351, 9146}, {524, 574}, {690, 9145}, {896, 36263}, {1649, 32583}, {2434, 62568}, {2482, 42007}, {3292, 5094}, {3906, 5467}, {3908, 14419}, {5468, 17414}, {6390, 8541}, {7813, 58761}, {9464, 14567}, {9717, 13857}, {10510, 14357}, {11165, 57467}, {39689, 42008}
X(62657) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 18818}, {187, 598}, {351, 8599}, {524, 40826}, {574, 671}, {599, 18023}, {922, 55927}, {3906, 52632}, {5094, 46111}, {5467, 35138}, {8541, 17983}, {9145, 892}, {9146, 53080}, {10510, 52551}, {14357, 10512}, {14567, 1383}, {17414, 5466}, {23200, 43697}, {35507, 21906}, {36263, 46277}, {39689, 51541}, {39785, 76}, {42007, 57539}, {54274, 23287}, {59175, 10511}, {62412, 523}
X(62657) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 352, 3231}, {111, 8586, 20977}, {111, 23061, 8586}, {187, 3292, 39689}, {187, 39689, 14567}, {323, 352, 6}, {1993, 20481, 6}, {7708, 11004, 6}, {8586, 9225, 111}, {9225, 23061, 20977}, {9872, 10510, 42007}, {15993, 40112, 41939}


X(62658) = X(2)X(6)∩X(620)X(17199)

Barycentrics    (2*a^2 - b^2 - c^2)*(2*a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :
X(62658) = 4 X[2] - 5 X[1641], 6 X[2] - 5 X[1648], 3 X[2] - 5 X[5468], 2 X[2] - 5 X[8030], 9 X[2] - 10 X[11053], 7 X[2] - 10 X[38239], 9 X[2] - 5 X[45291], 3 X[1641] - 2 X[1648], 3 X[1641] - 4 X[5468], 9 X[1641] - 8 X[11053], 7 X[1641] - 8 X[38239], 9 X[1641] - 4 X[45291], X[1648] - 3 X[8030], 3 X[1648] - 4 X[11053], 7 X[1648] - 12 X[38239], 3 X[1648] - 2 X[45291], 8 X[3631] - 5 X[44915], 2 X[5468] - 3 X[8030], 3 X[5468] - 2 X[11053], 7 X[5468] - 6 X[38239], 3 X[5468] - X[45291], 9 X[8030] - 4 X[11053], 7 X[8030] - 4 X[38239], 9 X[8030] - 2 X[45291], 7 X[11053] - 9 X[38239], 18 X[38239] - 7 X[45291], 5 X[14444] - 8 X[35022]

X(62658) lies on these lines: {2, 6}, {620, 17199}, {690, 24981}, {868, 7845}, {2502, 14645}, {3793, 47047}, {5026, 10552}, {5477, 45672}, {5965, 57607}, {7813, 45662}, {7855, 15000}, {11123, 21135}, {14444, 35022}, {17131, 57618}, {39689, 50567}

X(62658) = reflection of X(i) in X(j) for these {i,j}: {1641, 8030}, {1648, 5468}, {45291, 11053}
X(62658) = X(i)-Ceva conjugate of X(j) for these (i,j): {523, 2482}, {31614, 1649}, {61190, 11123}
X(62658) = X(i)-isoconjugate of X(j) for these (i,j): {798, 14728}, {897, 57728}, {923, 40429}, {36142, 42345}
X(62658) = X(i)-Dao conjugate of X(j) for these (i,j): {2482, 40429}, {6593, 57728}, {23991, 671}, {23992, 42345}, {31998, 14728}, {40469, 5466}
X(62658) = crossdifference of every pair of points on line {512, 39024}
X(62658) = barycentric product X(i)*X(j) for these {i,j}: {99, 33906}, {524, 620}, {690, 14588}, {896, 20903}, {1649, 61190}, {3266, 20976}, {4062, 17199}, {5468, 11123}, {6629, 21047}, {14210, 17467}, {22085, 44146}
X(62658) = barycentric quotient X(i)/X(j) for these {i,j}: {99, 14728}, {187, 57728}, {524, 40429}, {620, 671}, {690, 42345}, {11123, 5466}, {14588, 892}, {17467, 897}, {20903, 46277}, {20976, 111}, {22085, 895}, {33906, 523}
X(62658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1648, 5468, 1641}, {1648, 8030, 5468}, {5468, 45291, 11053}, {11053, 45291, 1648}


X(62659) = X(1)X(2)∩X(100)X(4693)

Barycentrics    (2*a - b - c)*(a^2 + 2*b*c) : :

X(62659) lies on these lines: {1, 2}, {100, 4693}, {171, 41242}, {190, 4937}, {537, 24593}, {649, 900}, {660, 43757}, {678, 4702}, {742, 27921}, {750, 4363}, {752, 30566}, {896, 4009}, {902, 4358}, {1155, 3994}, {1376, 4365}, {2239, 4465}, {2308, 41241}, {3035, 32848}, {3218, 24821}, {3699, 32919}, {3758, 32931}, {3943, 6174}, {3989, 32918}, {3995, 59679}, {4080, 24692}, {4090, 37639}, {4141, 4439}, {4378, 4379}, {4413, 17119}, {4447, 40109}, {4671, 24344}, {4682, 31264}, {4722, 59596}, {4767, 49712}, {4969, 12035}, {7238, 32856}, {8616, 46938}, {17449, 24841}, {24616, 51297}, {24709, 49709}, {26738, 27777}, {28503, 43055}, {28808, 33104}, {31161, 37520}, {32844, 37758}, {33162, 37634}, {47771, 49278}, {49474, 61156}

X(62659) = X(4510)-Ceva conjugate of X(4363)
X(62659) = X(i)-isoconjugate of X(j) for these (i,j): {88, 30650}, {106, 751}
X(62659) = X(i)-Dao conjugate of X(j) for these (i,j): {214, 751}, {62571, 57948}
X(62659) = crossdifference of every pair of points on line {649, 995}
X(62659) = X(i)-line conjugate of X(j) for these (i,j): {1, 995}, {900, 649}
X(62659) = barycentric product X(i)*X(j) for these {i,j}: {1, 4506}, {44, 3761}, {519, 4363}, {750, 4358}, {900, 4482}, {1023, 4411}, {1319, 4494}, {2242, 3264}, {2325, 7223}, {3679, 29908}, {4370, 4510}, {4377, 52680}, {4378, 24004}, {4379, 17780}, {4432, 7245}
X(62659) = barycentric quotient X(i)/X(j) for these {i,j}: {44, 751}, {750, 88}, {902, 30650}, {2242, 106}, {3761, 20568}, {4358, 57948}, {4363, 903}, {4378, 1022}, {4379, 6548}, {4390, 1320}, {4396, 27922}, {4403, 6549}, {4474, 60480}, {4482, 4555}, {4506, 75}, {4510, 54974}, {29908, 39704}
X(62659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 5205, 9458}, {239, 9458, 899}, {899, 17763, 50756}, {4358, 4434, 902}, {4439, 51583, 4141}, {5205, 17763, 899}, {6745, 49990, 4062}, {9458, 17763, 239}


X(62660) = X(1)X(2)∩X(650)X(900)

Barycentrics    (2*a - b - c)*(a^2 - 2*a*b - b^2 - 2*a*c + 2*b*c - c^2) : :

X(62660) lies on these lines: {1, 2}, {44, 6174}, {226, 9350}, {518, 43055}, {650, 900}, {748, 59584}, {750, 4667}, {908, 24715}, {1376, 41011}, {2177, 5316}, {3689, 51415}, {3911, 21805}, {3943, 12035}, {4023, 4690}, {4413, 4675}, {4702, 16594}, {4954, 30855}, {17337, 52638}, {24188, 24198}, {24216, 62236}, {28580, 30566}, {31197, 37703}, {32911, 59593}, {33113, 59684}, {39782, 56159}, {47757, 48332}, {50307, 61156}

X(62660) = X(4363)-Dao conjugate of X(4510)
X(62660) = crossdifference of every pair of points on line {649, 999}
X(62660) = barycentric product X(i)*X(j) for these {i,j}: {519, 4419}, {17780, 47757}, {24004, 48332}
X(62660) = barycentric quotient X(i)/X(j) for these {i,j}: {4419, 903}, {47757, 6548}, {48332, 1022}
X(62660) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 54309, 49772}, {899, 6745, 3011}, {3935, 5121, 49989}, {5212, 17763, 49986}


X(62661) = X(2)X(6)∩X(67)X(30786)

Barycentrics    (2*a^2 - b^2 - c^2)^2*(a^4 - b^4 + b^2*c^2 - c^4) : :
X(62661) = 3 X[2] - 4 X[38304], X[69] - 3 X[5468], 2 X[141] - 3 X[1641], 3 X[1641] - X[44915], 3 X[1648] - 4 X[3589], 5 X[3763] - 6 X[11053], 3 X[45291] - 7 X[51171]

X(62661) lies on these lines: {2, 6}, {67, 30786}, {99, 34319}, {316, 10510}, {690, 14928}, {2482, 20380}, {2930, 10553}, {4563, 36883}, {4576, 25329}, {5026, 14444}, {5095, 34336}, {5467, 6390}, {6593, 7664}, {9146, 41720}, {11061, 14360}, {15303, 50567}, {17708, 61494}, {33915, 45808}, {34574, 55838}, {39296, 55846}, {52629, 54274}

X(62661) = reflection of X(i) in X(j) for these {i,j}: {599, 38239}, {14444, 5026}, {44915, 141}
X(62661) = X(i)-Ceva conjugate of X(j) for these (i,j): {316, 7664}, {3266, 2482}, {55226, 18311}
X(62661) = X(i)-isoconjugate of X(j) for these (i,j): {661, 39413}, {923, 10415}, {2157, 10630}
X(62661) = X(i)-Dao conjugate of X(j) for these (i,j): {187, 111}, {524, 67}, {2482, 10415}, {14417, 51258}, {36830, 39413}, {40583, 10630}, {62563, 5466}
X(62661) = barycentric product X(i)*X(j) for these {i,j}: {23, 36792}, {316, 2482}, {524, 7664}, {1649, 55226}, {3266, 6593}, {5095, 37804}, {5468, 18311}, {7067, 17088}, {8030, 52551}, {14246, 23106}, {16568, 24038}, {20944, 42081}, {22151, 34336}, {39689, 40074}, {52629, 52630}
X(62661) = barycentric quotient X(i)/X(j) for these {i,j}: {23, 10630}, {110, 39413}, {316, 57539}, {524, 10415}, {2482, 67}, {5095, 8791}, {6593, 111}, {7664, 671}, {8030, 14357}, {18311, 5466}, {18374, 41936}, {20380, 10511}, {22151, 15398}, {34336, 46105}, {36792, 18019}, {39689, 3455}, {42081, 2157}, {52630, 34574}, {62594, 51258}


X(62662) = X(2)X(523)∩X(5)X(1499)

Barycentrics    (b^2 - c^2)*(-5*a^4 + 5*a^2*b^2 + b^4 + 5*a^2*c^2 - 7*b^2*c^2 + c^4) : :
X(62662) = 3 X[2] + X[5466], 5 X[2] + X[8029], 5 X[2] - X[9168], X[2] + 2 X[10189], 4 X[2] - X[10190], 2 X[2] + X[10278], 7 X[2] - X[11123], 16 X[2] - X[34752], 9 X[2] - X[44010], 5 X[1649] + 3 X[8029], X[1649] + 3 X[8371], 5 X[1649] - 3 X[9168], X[1649] + 6 X[10189], 4 X[1649] - 3 X[10190], and many others

X(62662) lies on these lines: {2, 523}, {5, 1499}, {30, 39492}, {125, 35582}, {402, 40542}, {512, 14762}, {525, 16509}, {549, 62507}, {632, 10280}, {661, 21921}, {669, 16042}, {690, 5461}, {804, 9189}, {1637, 2023}, {1640, 6587}, {1656, 16220}, {1995, 44821}, {2482, 18007}, {2501, 52293}, {2793, 6036}, {3566, 61735}, {3906, 3934}, {5094, 41357}, {5652, 14924}, {6130, 9003}, {6669, 27551}, {6670, 27550}, {6704, 12073}, {6722, 13187}, {7471, 60606}, {8151, 48154}, {8704, 10173}, {9125, 9134}, {9148, 9185}, {9180, 9293}, {9182, 52940}, {9191, 9479}, {9194, 46858}, {9195, 46859}, {9200, 22893}, {9201, 22847}, {10279, 55856}, {11053, 33921}, {11284, 44823}, {13291, 15059}, {14277, 23287}, {15000, 47252}, {22104, 36597}, {22112, 39495}, {23951, 27714}, {25423, 59927}, {26235, 56740}, {32204, 55859}, {36255, 53567}, {40916, 44822}, {47217, 52292}

X(62662) = midpoint of X(i) and X(j) for these {i,j}: {2, 8371}, {1649, 5466}, {2408, 55271}, {2482, 18007}, {8029, 9168}, {9125, 9134}, {9148, 9185}, {14277, 23287}, {18311, 23288}
X(62662) = reflection of X(i) in X(j) for these {i,j}: {8371, 10189}, {9183, 5461}, {9293, 9180}, {10278, 8371}, {14610, 9125}
X(62662) = complement of X(1649)
X(62662) = Hutson-Parry-circle-inverse of X(1649)
X(62662) = complement of the isogonal conjugate of X(34574)
X(62662) = X(i)-complementary conjugate of X(j) for these (i,j): {691, 16597}, {897, 5099}, {923, 23992}, {10630, 8287}, {15398, 34846}, {34539, 4369}, {34574, 10}, {36085, 126}, {36142, 2482}, {39413, 16581}, {41936, 16592}, {57539, 21253}, {57552, 42327}
X(62662) = X(i)-Ceva conjugate of X(j) for these (i,j): {690, 523}, {44564, 6587}, {45661, 661}, {45689, 23301}
X(62662) = X(i)-isoconjugate of X(j) for these (i,j): {163, 46275}, {662, 52678}, {36142, 62440}
X(62662) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 46275}, {671, 892}, {1084, 52678}, {23992, 62440}
X(62662) = crossdifference of every pair of points on line {187, 9225}
X(62662) = barycentric product X(i)*X(j) for these {i,j}: {523, 8591}, {690, 39061}, {850, 46276}, {1577, 39339}, {5466, 38239}, {35522, 41404}
X(62662) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 52678}, {523, 46275}, {690, 62440}, {8591, 99}, {38239, 5468}, {39061, 892}, {39339, 662}, {41404, 691}, {46276, 110}
X(62662) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5466, 1649}, {2, 10189, 10278}, {2, 10278, 10190}, {1649, 8371, 5466}, {40916, 53327, 44822}, {44564, 45689, 32193}
X(62662) = Steiner-inellipse-inverse of X(17948)
X(62662) = perspector of circumconic {{A, B, C, X(671), X(8591)}}
X(62662) = pole of line {67, 524} with respect to the nine-point circle
X(62662) = pole of line {2, 2452} with respect to the orthocentroidal circle
X(62662) = pole of line {30, 148} with respect to the orthoptic circle of the Steiner inellipse
X(62662) = pole of line {468, 8859} with respect to the polar circle
X(62662) = pole of line {1648, 1649} with respect to the Kiepert hyperbola
X(62662) = pole of line {690, 14610} with respect to the Kiepert parabola
X(62662) = pole of line {8352, 8785} with respect to the Lemoine inellipse
X(62662) = pole of line {524, 8596} with respect to the Steiner circumellipse
X(62662) = pole of line {316, 524} with respect to the Steiner inellipse
X(62662) = pole of line {47286, 53375} with respect to the dual conic of circumcircle
X(62662) = pole of line {37911, 43291} with respect to the dual conic of DeLongchamps circle
X(62662) = pole of line {41136, 62309} with respect to the dual conic of Lemoine inellipse
X(62711) = {X(1641),X(44915)}-harmonic conjugate of X(141)
X(62711) = pole of line {690, 5461} with respect to the dual conic of Wallace hyperbola
X(62711) = center of mutual polar conic of ABC and X(148)-circumconcevian triangle of X(2)
X(62711) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8591)}}, {{A, B, C, X(5968), X(46276)}}, {{A, B, C, X(8371), X(9293)}}, {{A, B, C, X(9180), X(10278)}}, {{A, B, C, X(17948), X(39061)}}, {{A, B, C, X(34763), X(44010)}}, {{A, B, C, X(41404), X(46783)}}


X(62663) = X(2)X(523)∩X(4)X(14163)

Barycentrics    (b^2 - c^2)*(a^4 - a^2*b^2 + 2*b^4 - a^2*c^2 - 3*b^2*c^2 + 2*c^4) : :
X(62663) = 7 X[2] - 6 X[1649], 2 X[2] - 3 X[5466], 5 X[2] - 6 X[8371], 4 X[2] - 3 X[9168], 7 X[2] - 8 X[10189], 5 X[2] - 4 X[10190], 3 X[2] - 4 X[10278], 9 X[2] - 4 X[34752], 5 X[2] - 3 X[44010], 4 X[1649] - 7 X[5466], 3 X[1649] - 7 X[8029], 5 X[1649] - 7 X[8371], 8 X[1649] - 7 X[9168], 3 X[1649] - 4 X[10189], and m,any others

X(62663) lies on these lines: {2, 523}, {4, 14163}, {99, 12076}, {110, 57221}, {115, 42345}, {148, 42553}, {251, 2395}, {305, 850}, {376, 16220}, {512, 3060}, {631, 10279}, {826, 34290}, {892, 31614}, {1499, 15682}, {1637, 9131}, {1640, 3800}, {2501, 6353}, {2799, 53365}, {3090, 8151}, {3268, 9134}, {3525, 32204}, {4024, 21085}, {4036, 42710}, {4226, 14884}, {4427, 12078}, {4467, 36642}, {4581, 60043}, {4608, 60042}, {5067, 10280}, {5652, 7927}, {6636, 44823}, {7192, 12072}, {7391, 44445}, {7950, 11182}, {8030, 45294}, {8599, 61345}, {9143, 13291}, {9147, 9979}, {9180, 36523}, {11001, 62507}, {12071, 17166}, {12073, 12156}, {12075, 41298}, {13187, 20094}, {13595, 53327}, {14061, 19598}, {14443, 41135}, {15246, 46609}, {15543, 53275}, {27550, 36330}, {27551, 35752}, {31065, 61418}, {31632, 61190}, {31644, 40469}, {38282, 47627}, {39492, 61932}, {42348, 61339}, {51820, 52076}

X(62663) = reflection of X(i) in X(j) for these {i,j}: {2, 8029}, {376, 16220}, {3268, 9134}, {9131, 1637}, {9143, 13291}, {9147, 9979}, {9168, 5466}, {11123, 10278}, {44010, 8371}, {53275, 15543}
X(62663) = anticomplement of X(11123)
X(62663) = isotomic conjugate of the anticomplement of X(40469)
X(62663) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {14728, 21298}, {40429, 21294}, {57728, 21221}
X(62663) = X(i)-Ceva conjugate of X(j) for these (i,j): {4590, 115}, {14061, 31644}, {33799, 14061}
X(62663) = X(i)-isoconjugate of X(j) for these (i,j): {163, 36953}, {1101, 36955}, {4575, 14052}
X(62663) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 36953}, {136, 14052}, {523, 36955}, {31644, 6722}, {61339, 115}
X(62663) = cevapoint of X(523) and X(12076)
X(62663) = trilinear pole of line {31644, 34953}
X(62663) = barycentric product X(i)*X(j) for these {i,j}: {99, 31644}, {115, 33799}, {338, 33803}, {523, 14061}, {648, 34953}, {850, 39024}, {2643, 33809}, {5466, 45291}, {14060, 14618}, {19598, 40429}
X(62663) = barycentric quotient X(i)/X(j) for these {i,j}: {115, 36955}, {523, 36953}, {2501, 14052}, {14060, 4558}, {14061, 99}, {19598, 620}, {31644, 523}, {33799, 4590}, {33803, 249}, {33809, 24037}, {34953, 525}, {39024, 110}, {40469, 11123}, {45291, 5468}
X(62663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8029, 5466}, {2, 44010, 10190}, {1649, 10189, 2}, {8029, 11123, 10278}, {8371, 10190, 2}, {10278, 11123, 2}


X(62664) = X(2)X(6)∩X(110)X(36883)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^6 + a^4*b^2 - a^2*b^4 - b^6 + a^4*c^2 - 5*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 + 3*b^2*c^4 - c^6) : :
X(62664) = X[6] - 3 X[1641], X[69] + 3 X[5468], 3 X[599] - X[44915], 3 X[1641] - 2 X[38304], 3 X[1648] - 5 X[3763], 2 X[3589] - 3 X[11053], 3 X[8030] + X[44915]

X(62664) lies on these lines: {2, 6}, {110, 36883}, {2930, 14360}, {5181, 10417}, {5648, 9146}, {6082, 55846}, {6390, 9177}, {6593, 38020}, {7664, 36792}, {22254, 52551}, {25328, 30786}, {25329, 57216}, {33915, 45693}

X(62664) = midpoint of X(599) and X(8030)
X(62664) = reflection of X(6) in X(38304)
X(62664) = X(i)-Ceva conjugate of X(j) for these (i,j): {7664, 6390}, {36792, 524}
X(62664) = X(i)-isoconjugate of X(j) for these (i,j): {897, 22259}, {923, 13574}
X(62664) = X(i)-Dao conjugate of X(j) for these (i,j): {111, 10630}, {524, 41498}, {2482, 13574}, {6593, 22259}, {34897, 10415}
X(62664) = crossdifference of every pair of points on line {512, 22259}
X(62664) = barycentric product X(i)*X(j) for these {i,j}: {524, 14360}, {2930, 3266}, {5468, 18310}, {14210, 16563}, {15899, 36792}, {23106, 61499}
X(62664) = barycentric quotient X(i)/X(j) for these {i,j}: {187, 22259}, {524, 13574}, {2482, 41498}, {2930, 111}, {14360, 671}, {15899, 10630}, {16563, 897}, {18310, 5466}
X(62664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1641, 38304}, {5468, 38940, 8030}


X(62665) = X(2)X(525)∩X(3)X(520)

Barycentrics    a^2*(b^2 - c^2)*(a^2 - b^2 - c^2)^2*(a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :
X(62665) = X[2394] - 3 X[34767], 2 X[14566] - 3 X[52720], 3 X[3] - 2 X[58345]

X(62665) lies on these lines: {2, 525}, {3, 520}, {6, 52600}, {74, 1297}, {394, 52613}, {512, 35450}, {1073, 52584}, {1217, 18808}, {1304, 2764}, {1494, 54973}, {1510, 34225}, {1636, 8552}, {2420, 14590}, {2799, 34579}, {3269, 35911}, {3926, 4143}, {4230, 36831}, {8057, 18556}, {8675, 10249}, {9007, 54173}, {9033, 18317}, {11472, 30209}, {14489, 41167}, {14941, 44715}, {16077, 53205}, {16080, 41079}, {17434, 55982}, {18876, 18877}, {20580, 52350}, {32320, 56266}, {34897, 39473}, {37638, 52624}, {45807, 57799}, {46808, 52744}

X(62665) = reflection of X(1636) in X(8552)
X(62665) = polar conjugate of X(58071)
X(62665) = isotomic conjugate of the polar conjugate of X(14380)
X(62665) = isogonal conjugate of the polar conjugate of X(34767)
X(62665) = X(i)-Ceva conjugate of X(j) for these (i,j): {16077, 44715}, {34767, 14380}, {44769, 14919}
X(62665) = X(i)-isoconjugate of X(j) for these (i,j): {4, 56829}, {19, 4240}, {25, 24001}, {30, 24019}, {48, 58071}, {92, 23347}, {107, 2173}, {108, 52956}, {112, 1784}, {158, 2420}, {162, 1990}, {163, 52661}, {811, 14581}, {823, 1495}, {1096, 2407}, {1099, 32695}, {1636, 24021}, {1637, 24000}, {1783, 52954}, {1897, 52955}, {2631, 32230}, {3284, 36126}, {6528, 9406}, {6793, 36092}, {9407, 57973}, {14206, 32713}, {14398, 23999}, {15459, 42074}, {23964, 36035}, {24022, 41077}, {24024, 51937}, {32676, 46106}, {34334, 36131}, {36043, 47433}, {36127, 52949}, {36129, 39176}
X(62665) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 4240}, {115, 52661}, {125, 1990}, {520, 1636}, {525, 41079}, {1147, 2420}, {1249, 58071}, {2972, 52945}, {3269, 51403}, {6503, 2407}, {6505, 24001}, {9410, 6528}, {14401, 58263}, {15526, 46106}, {17423, 14581}, {17434, 9033}, {22391, 23347}, {34467, 52955}, {34591, 1784}, {35071, 30}, {35579, 47433}, {36033, 56829}, {36896, 107}, {38983, 52956}, {38985, 2173}, {38999, 3163}, {39006, 52954}, {39008, 34334}, {39174, 61209}, {46093, 3284}, {62573, 3260}, {62606, 648}
X(62665) = cevapoint of X(i) and X(j) for these (i,j): {520, 1636}, {14380, 61215}
X(62665) = trilinear pole of line {520, 2972}
X(62665) = crossdifference of every pair of points on line {1495, 1990}
X(62665) = barycentric product X(i)*X(j) for these {i,j}: {3, 34767}, {69, 14380}, {74, 3265}, {394, 2394}, {520, 1494}, {525, 14919}, {822, 33805}, {1636, 31621}, {2349, 24018}, {2416, 57488}, {2433, 3926}, {2972, 16077}, {3267, 18877}, {3268, 50464}, {3964, 18808}, {4143, 8749}, {6394, 32112}, {11079, 45792}, {14208, 35200}, {14638, 15291}, {15526, 44769}, {16080, 52613}, {17879, 36034}, {23974, 32695}, {32640, 36793}, {34403, 61215}, {35910, 53173}, {35911, 51227}, {40352, 52617}, {40384, 41077}, {44715, 62428}
X(62665) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 4240}, {4, 58071}, {48, 56829}, {63, 24001}, {74, 107}, {184, 23347}, {394, 2407}, {520, 30}, {523, 52661}, {525, 46106}, {577, 2420}, {647, 1990}, {652, 52956}, {656, 1784}, {822, 2173}, {1304, 32230}, {1459, 52954}, {1494, 6528}, {1636, 3163}, {1650, 58263}, {2159, 24019}, {2349, 823}, {2394, 2052}, {2433, 393}, {2435, 52485}, {2632, 36035}, {2972, 9033}, {3049, 14581}, {3265, 3260}, {3269, 1637}, {3998, 42716}, {4091, 18653}, {5489, 58261}, {8552, 14920}, {8749, 6529}, and many others


X(62666) = X(1)X(2)∩X(764)X(33920)

Barycentrics    (2*a - b - c)^2*(a*b + b^2 + a*c - 4*b*c + c^2) : :
X(62666) = 2 X[1] - 3 X[1644], 4 X[10] - 3 X[1647], X[145] - 3 X[17780], 7 X[3624] - 6 X[14028], 7 X[4678] - 3 X[20042], 5 X[20052] + 3 X[20058]

X(62666) lies on these lines: {1, 2}, {764, 33920}, {900, 13996}, {1120, 31227}, {1266, 52574}, {3880, 61176}, {3911, 56642}, {3943, 4530}, {4370, 36924}, {4543, 39771}, {4738, 36791}, {9457, 30577}, {16594, 17460}, {30583, 33922}, {36920, 49703}

X(62666) = X(i)-Ceva conjugate of X(j) for these (i,j): {519, 17460}, {1266, 16594}, {3911, 4370}, {24004, 6544}, {61186, 21129}
X(62666) = X(i)-isoconjugate of X(j) for these (i,j): {1318, 8686}, {2226, 40400}, {36805, 41935}
X(62666) = X(i)-Dao conjugate of X(j) for these (i,j): {519, 1120}, {1647, 23836}, {2087, 1022}, {2325, 4997}, {16594, 679}, {16610, 903}, {62559, 6548}
X(62666) = barycentric product X(i)*X(j) for these {i,j}: {44, 20900}, {519, 16594}, {1149, 36791}, {1266, 4370}, {1317, 62297}, {3264, 20972}, {3911, 52871}, {3943, 17195}, {3977, 5151}, {4358, 17460}, {4695, 16729}, {4738, 16610}, {4927, 53582}, {6544, 61186}, {8028, 52574}, {16704, 21041}, {17780, 21129}, {22082, 46109}, {23832, 52627}, {52206, 58254}
X(62666) = barycentric quotient X(i)/X(j) for these {i,j}: {678, 40400}, {1149, 2226}, {1266, 54974}, {4370, 1120}, {4695, 30575}, {4738, 36805}, {5151, 6336}, {6544, 23836}, {8028, 52556}, {16594, 903}, {16610, 679}, {17460, 88}, {20900, 20568}, {20972, 106}, {21041, 4080}, {21129, 6548}, {22082, 1797}, {23832, 4638}, {52206, 59150}, {52871, 4997}, {53582, 6079}
X(62666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17460, 52871, 21041}


X(62667) = X(1)X(2)∩X(900)X(3004)

Barycentrics    (2*a - b - c)*(a^2 + a*b + 2*b^2 + a*c - b*c + 2*c^2) : :

X(62667) lies on these lines: {1, 2}, {900, 3004}, {982, 20290}, {1266, 53372}, {3752, 28599}, {3764, 4392}, {4141, 4759}, {4472, 17726}, {4675, 33070}, {4690, 46909}, {4781, 49709}, {5846, 43055}, {10707, 17160}, {17140, 33071}, {17146, 31034}, {17154, 32843}, {17354, 33089}, {17495, 21282}, {17598, 31037}, {17722, 31025}, {17725, 27141}, {24593, 28538}, {28503, 30566}, {47775, 48288}

X(62667) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {751, 21290}, {30650, 30578}
X(62667) = barycentric product X(i)*X(j) for these {i,j}: {519, 17305}, {17780, 48156}
X(62667) = barycentric quotient X(i)/X(j) for these {i,j}: {17305, 903}, {48156, 6548}
X(62667) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5211, 32842, 29824}, {17495, 32844, 21282}


X(62668) = X(1)X(2)∩X(678)X(4439)

Barycentrics    (2*a - b - c)*(2*a^2 - a*b + b^2 - a*c + b*c + c^2) : :

X(62668) lies on these lines: {1, 2}, {678, 4439}, {900, 4380}, {4358, 53534}, {4767, 49709}, {9041, 24593}, {9053, 43055}, {24709, 49708}, {24715, 32927}, {30615, 56520}, {47771, 48324}

X(62668) = barycentric product X(i)*X(j) for these {i,j}: {519, 17354}, {17780, 47771}, {24004, 48324}
X(62668) = barycentric quotient X(i)/X(j) for these {i,j}: {17354, 903}, {47771, 6548}, {48324, 1022}


X(62669) = X(1)X(30196)∩X(2)X(7)

Barycentrics    (a - b)*(a - c)*(2*a - b - c)*(a + b - c)*(a - b + c) : :

X(62669) lies on these lines: {1, 30196}, {2, 7}, {8, 24410}, {10, 60718}, {59, 3573}, {72, 37043}, {77, 25728}, {100, 51564}, {109, 3952}, {190, 644}, {223, 25734}, {519, 52746}, {522, 2398}, {545, 5723}, {645, 4565}, {653, 27834}, {655, 3257}, {666, 28132}, {900, 23344}, {927, 6017}, {1156, 14942}, {1319, 36872}, {1331, 61185}, {1404, 60865}, {1415, 30729}, {1421, 17154}, {1441, 17351}, {1442, 17261}, {1757, 24402}, {1813, 55996}, {1935, 56318}, {2003, 3995}, {2006, 4080}, {2099, 16506}, {2222, 59096}, {2265, 5773}, {2283, 23343}, {2401, 2427}, {2407, 47318}, {3758, 5701}, {4318, 62222}, {4358, 40218}, {4370, 41801}, {4391, 42718}, {4427, 4551}, {4432, 53531}, {4440, 37771}, {4480, 22464}, {4488, 54425}, {4511, 36819}, {4756, 14594}, {5548, 54953}, {6068, 50441}, {6163, 53358}, {6540, 6648}, {6632, 31615}, {7176, 16820}, {7253, 54353}, {7269, 17120}, {8850, 61049}, {9809, 27542}, {12034, 24618}, {14543, 21362}, {14628, 16704}, {17332, 40999}, {17487, 41803}, {17780, 23703}, {23067, 57151}, {23832, 23836}, {24004, 30731}, {24465, 24988}, {30566, 43043}, {31633, 62540}, {32038, 32042}, {32933, 34048}, {36037, 43728}, {40663, 52747}, {41772, 62402}, {51583, 52659}

X(62669) = reflection of X(i) in X(j) for these {i,j}: {5773, 2265}, {46791, 4370}
X(62669) = isotomic conjugate of X(60480)
X(62669) = antitomic conjugate of X(46791)
X(62669) = isotomic conjugate of the isogonal conjugate of X(61210)
X(62669) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {655, 21293}, {2149, 6224}, {2222, 150}, {9274, 18654}, {24027, 41803}, {32675, 149}, {46649, 21277}, {52377, 69}
X(62669) = X(i)-Ceva conjugate of X(j) for these (i,j): {655, 4552}, {1275, 41801}, {4998, 1317}, {46102, 52659}, {54953, 100}
X(62669) = X(i)-isoconjugate of X(j) for these (i,j): {6, 23838}, {9, 23345}, {11, 32665}, {21, 55263}, {31, 60480}, {41, 6548}, {55, 1022}, {58, 61179}, {88, 663}, {106, 650}, {244, 5548}, {284, 55244}, {513, 2316}, {521, 8752}, {522, 9456}, {644, 43922}, {649, 1320}, {652, 36125}, {654, 1168}, {657, 56049}, {667, 4997}, {692, 60578}, {901, 2170}, {903, 3063}, {1024, 34230}, {1318, 1635}, {1417, 3239}, {1797, 18344}, {1946, 6336}, {2194, 4049}, {2226, 4895}, {2364, 23352}, {2441, 3680}, {3064, 36058}, {3248, 4582}, {3257, 3271}, {4516, 4591}, {4534, 36042}, {4674, 7252}, {4768, 41935}, {4858, 32719}, {4939, 32645}, {10428, 46393}, {14260, 61238}, {21758, 36590}, {32659, 44426}
X(62669) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 60480}, {9, 23838}, {10, 61179}, {44, 3738}, {214, 650}, {223, 1022}, {478, 23345}, {519, 1639}, {900, 52338}, {1086, 60578}, {1214, 4049}, {1647, 4530}, {3160, 6548}, {3911, 10015}, {3936, 3904}, {4370, 522}, {5375, 1320}, {5516, 4534}, {6544, 21132}, {6631, 4997}, {10001, 903}, {20619, 3064}, {35092, 11}, {36668, 54023}, {36669, 54021}, {36912, 4944}, {36914, 23884}, {38979, 2170}, {39026, 2316}, {39053, 6336}, {40590, 55244}, {40611, 55263}, {40615, 6549}, {51402, 1146}, {52659, 514}, {52871, 3239}, {52872, 3700}, {52877, 3709}, {53985, 8735}, {55055, 3271}, {62571, 4391}
X(62669) = cevapoint of X(i) and X(j) for these (i,j): {44, 900}, {514, 37691}, {519, 1639}, {650, 15558}, {758, 21894}, {1023, 23703}, {2427, 23832}, {3911, 30725}, {23884, 27751}
X(62669) = trilinear pole of line {214, 519}
X(62669) = crossdifference of every pair of points on line {663, 3271}
X(62669) = barycentric product X(i)*X(j) for these {i,j}: {7, 17780}, {44, 4554}, {57, 24004}, {65, 55243}, {75, 23703}, {76, 61210}, {85, 1023}, {99, 40663}, {109, 3264}, {190, 3911}, {214, 35174}, {274, 61171}, {279, 30731}, {307, 46541}, {519, 664}, {651, 4358}, {653, 3977}, {655, 51583}, {658, 2325}, {668, 1319}, {900, 4998}, {902, 4572}, {934, 4723}, {1016, 30725}, {1145, 54953}, {1227, 2222}, {1275, 1639}, {1317, 4555}, {1332, 37790}, {1400, 55262}, {1404, 1978}, {1414, 3992}, {1434, 4169}, {1813, 46109}, {1877, 4561}, {2397, 40218}, {2415, 5435}, {3689, 4569}, {3762, 4564}, {3943, 4573}, {4120, 4620}, {4528, 59457}, {4551, 30939}, {4552, 16704}, {4585, 14628}, {4597, 36920}, {4600, 30572}, {4605, 30606}, {4624, 4700}, {4625, 21805}, {4768, 7045}, {5298, 6540}, {5440, 18026}, {6063, 23344}, {6174, 35157}, {6516, 38462}, {6606, 51463}, {6635, 14027}, {7035, 53528}, {8709, 24816}, {13136, 52659}, {13149, 52978}, {14439, 34085}, {17455, 46405}, {22356, 46404}, {35156, 41541}, {35171, 41553}, {39771, 62536}, {41801, 51562}, {51560, 53531}, {52746, 56543}, {53529, 57928}, {56642, 61186}
X(62669) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 23838}, {2, 60480}, {7, 6548}, {37, 61179}, {44, 650}, {56, 23345}, {57, 1022}, {59, 901}, {65, 55244}, {100, 1320}, {101, 2316}, {108, 36125}, {109, 106}, {190, 4997}, {214, 3738}, {226, 4049}, {514, 60578}, {519, 522}, {651, 88}, {653, 6336}, {664, 903}, {678, 4895}, {900, 11}, {901, 1318}, {902, 663}, and many others X(62669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 28966, 28741}, {9, 28968, 17077}, {190, 651, 4552}, {190, 1332, 25268}, {190, 4585, 2397}, {3257, 57456, 60480}, {60476, 60477, 4552}


X(62670) = X(2)X(17190)∩X(27)X(18688)

Barycentrics    (a + b)*(a + c)*(2*a^3 + a^2*b + a*b^2 + 2*b^3 + a^2*c + a*b*c + b^2*c - 2*a*c^2 - 2*b*c^2 - c^3)*(2*a^3 + a^2*b - 2*a*b^2 - b^3 + a^2*c + a*b*c - 2*b^2*c + a*c^2 + b*c^2 + 2*c^3) : :

X(62670) lies on the circumconic {{A,B,C,X(2),X(7)}} and these lines: {2, 17190}, {27, 18688}, {75, 18661}, {86, 37369}, {1268, 5260}, {3875, 39769}, {4373, 6629}, {14953, 27483}, {17209, 27494}, {31904, 52781}, {39710, 56935}, {44135, 57824}

X(62670) = isotomic conjugate of X(27558)
on ABCGGe
X(62670) = X(i)-isoconjugate of X(j) for these (i,j): {6, 24048}, {31, 27558}, {37, 37508}, {42, 11684}
X(62670) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 27558}, {9, 24048}, {40589, 37508}, {40592, 11684}
X(62670) = barycentric product X(i)*X(j) for these {i,j}: {81, 26734}, {86, 60172}
X(62670) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 24048}, {2, 27558}, {58, 37508}, {81, 11684}, {26734, 321}, {60172, 10}


X(62671) = X(2)X(2453)∩X(671)X(3448)

Barycentrics    (a^6 + a^4*b^2 + a^2*b^4 + b^6 - 3*a^4*c^2 - 5*a^2*b^2*c^2 - 3*b^4*c^2 + 5*a^2*c^4 + 5*b^2*c^4 - 3*c^6)*(a^6 - 3*a^4*b^2 + 5*a^2*b^4 - 3*b^6 + a^4*c^2 - 5*a^2*b^2*c^2 + 5*b^4*c^2 + a^2*c^4 - 3*b^2*c^4 + c^6) : :

X(62671) lies on the Kiepert circumhyperbola and these lines: {2, 2453}, {671, 3448}, {2970, 46105}, {2996, 45291}, {3543, 54651}, {3839, 54819}, {5466, 45801}, {5485, 53161}, {6776, 54738}, {7417, 7612}, {9214, 54607}, {18841, 46512}, {31857, 60234}, {36181, 39295}, {43542, 57596}, {43543, 57597}, {52551, 52940}

X(62671) = isotomic conjugate of X(38940)
X(62671) = isotomic conjugate of the anticomplement of X(6792)
X(62671) = X(i)-isoconjugate of X(j) for these (i,j): {31, 38940}, {1101, 15357}, {4575, 47627}
X(62671) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 38940}, {136, 47627}, {523, 15357}
X(62671) = cevapoint of X(523) and X(15357)
X(62671) = trilinear pole of line {523, 43291}
X(62671) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 38940}, {115, 15357}, {2501, 47627}


X(62672) = X(99)X(5466)∩X(523)X(5468)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(2*a^4 - 5*a^2*b^2 + 5*b^4 + a^2*c^2 - 5*b^2*c^2 + 2*c^4)*(2*a^4 + a^2*b^2 + 2*b^4 - 5*a^2*c^2 - 5*b^2*c^2 + 5*c^4) : :

X(62672) lies on the X-parabola of ABC (see X(12065)) and these lines: {99, 5466}, {523, 5468}, {543, 51226}, {892, 31614}, {2395, 35356}, {2501, 4235}, {4036, 42721}, {4226, 8599}, {4576, 34246}, {7804, 14608}, {9168, 9170}, {12079, 36194}, {18823, 54607}, {26235, 52145}, {34245, 58784}

X(62672) = isotomic conjugate of X(9168)
X(62672) = isotomic conjugate of the anticomplement of X(8371)
X(62672) = X(i)-isoconjugate of X(j) for these (i,j): {31, 9168}, {163, 44398}, {798, 41134}
X(62672) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 9168}, {115, 44398}, {31998, 41134}
X(62672) = cevapoint of X(i) and X(j) for these (i,j): {523, 543}, {2482, 33921}
X(62672) = trilinear pole of line {115, 524}
X(62672) = barycentric product X(3266)*X(53687)
X(62672) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 9168}, {99, 41134}, {523, 44398}, {33921, 41177}, {53687, 111}


X(62673) = X(1)X(2)∩X(120)X(124)

Barycentrics    a^2*b + b^3 + a^2*c - 4*a*b*c + b^2*c + b*c^2 + c^3 : :
X(62673) = 3 X[2] + X[10327], 9 X[2] - X[19993], 3 X[614] - X[19993], 3 X[10327] + X[19993]

X(62673) lies on these lines: {1, 2}, {25, 25440}, {72, 59685}, {81, 59408}, {120, 124}, {121, 53837}, {141, 3740}, {142, 1215}, {165, 21629}, {171, 17353}, {210, 20455}, {226, 3836}, {305, 6381}, {312, 1738}, {321, 17888}, {325, 25140}, {344, 17594}, {354, 49529}, {427, 1878}, {515, 16434}, {516, 4011}, {553, 32935}, {726, 4082}, {750, 5294}, {756, 54311}, {846, 25101}, {908, 4138}, {946, 25079}, {958, 16419}, {982, 3717}, {993, 7484}, {1054, 33164}, {1086, 3967}, {1155, 59544}, {1196, 1575}, {1211, 61686}, {1329, 1368}, {1376, 1486}, {1707, 26685}, {1861, 6353}, {2321, 3290}, {2325, 32934}, {2886, 3823}, {3035, 6676}, {3159, 42715}, {3263, 3663}, {3305, 26034}, {3306, 33163}, {3416, 37679}, {3589, 4682}, {3610, 40941}, {3662, 27538}, {3666, 4078}, {3673, 18153}, {3681, 49505}, {3699, 33124}, {3701, 17674}, {3703, 16610}, {3710, 24443}, {3742, 49524}, {3745, 38049}, {3751, 18141}, {3752, 3932}, {3769, 17352}, {3782, 4009}, {3790, 17490}, {3817, 21241}, {3821, 4656}, {3826, 44417}, {3834, 59596}, {3844, 5743}, {3846, 5316}, {3873, 49536}, {3883, 17123}, {3911, 4438}, {3914, 4358}, {3925, 30818}, {3944, 62297}, {3950, 4970}, {3980, 17355}, {4066, 19835}, {4090, 49676}, {4133, 32860}, {4147, 44432}, {4188, 5345}, {4220, 10164}, {4297, 19649}, {4304, 25494}, {4310, 5423}, {4339, 37024}, {4357, 21590}, {4383, 5847}, {4385, 24178}, {4387, 28580}, {4413, 32777}, {4415, 59506}, {4416, 33085}, {4422, 4640}, {4429, 18743}, {4431, 26274}, {4457, 4923}, {4514, 25531}, {4660, 40998}, {4696, 23675}, {4697, 50115}, {4734, 17242}, {4780, 32915}, {4849, 4966}, {4854, 50091}, {4901, 5573}, {4906, 9053}, {5089, 25078}, {5249, 25961}, {5267, 7485}, {5275, 5750}, {5927, 59688}, {5943, 17792}, {6057, 42051}, {6327, 26688}, {6376, 57518}, {6677, 47742}, {6684, 19544}, {7308, 50295}, {8889, 46878}, {9342, 32779}, {9350, 33156}, {10175, 37360}, {10691, 57288}, {12512, 50698}, {12572, 26052}, {13161, 33833}, {13742, 37552}, {14019, 21075}, {15254, 44419}, {17061, 17356}, {17063, 33165}, {17064, 28808}, {17122, 33159}, {17124, 26061}, {17125, 33074}, {17272, 30393}, {17282, 33144}, {17283, 33126}, {17596, 56078}, {17597, 30615}, {17598, 49527}, {17742, 30677}, {17776, 59547}, {17781, 33067}, {18236, 26932}, {19725, 43531}, {19799, 23537}, {19925, 26118}, {20262, 41796}, {20344, 51769}, {20544, 37355}, {20888, 40022}, {21060, 21255}, {21077, 59666}, {21242, 61031}, {23789, 47771}, {24025, 34337}, {24163, 24168}, {24165, 24175}, {24231, 32937}, {24248, 30568}, {24325, 53663}, {24388, 59584}, {25351, 48643}, {25514, 57284}, {25568, 53665}, {25639, 37439}, {25959, 27131}, {25992, 37539}, {26040, 50314}, {26073, 32932}, {27003, 33166}, {27064, 50307}, {27065, 33086}, {28164, 50699}, {28526, 56082}, {30566, 48646}, {30757, 31897}, {30771, 60427}, {30792, 53574}, {30829, 32773}, {31130, 53594}, {31151, 33096}, {31252, 33130}, {32911, 51196}, {32918, 54357}, {33075, 37687}, {33078, 37680}, {33083, 35595}, {33115, 59491}, {33134, 46938}, {33158, 56009}, {33849, 59675}, {33937, 57925}, {37527, 38118}, {37674, 38047}, {42056, 50092}, {44307, 50290}, {47766, 50337}, {49463, 59477}, {49484, 49732}

X(62673) = midpoint of X(i) and X(j) for these {i,j}: {614, 10327}, {4082, 24177}, {17597, 30615}
X(62673) = complement of X(614)
X(62673) = complement of the isogonal conjugate of X(56179)
X(62673) = complement of the isotomic conjugate of X(57925)
X(62673) = X(i)-complementary conjugate of X(j) for these (i,j): {100, 17115}, {1037, 1}, {1041, 1210}, {7084, 37}, {7123, 2}, {7131, 142}, {8269, 3900}, {8817, 2886}, {14935, 46101}, {30701, 141}, {30705, 21258}, {40403, 3739}, {40411, 34830}, {48070, 116}, {52778, 513}, {54967, 21260}, {56179, 10}, {56243, 3452}, {56260, 1211}, {56359, 11019}, {57386, 40940}, {57925, 2887}, {59128, 21172}, {59133, 676}
X(62673) = X(54967)-Ceva conjugate of X(514)
X(62673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8, 5272}, {2, 612, 1125}, {2, 3705, 5121}, {2, 7172, 16020}, {2, 10327, 614}, {2, 29641, 24239}, {2, 33091, 7292}, {2, 60459, 7191}, {10, 3840, 4847}, {10, 11019, 29673}, {10, 46827, 1210}, {43, 3912, 4028}, {141, 3740, 4104}, {899, 29687, 306}, {908, 25957, 4138}, {1376, 17279, 59692}, {2887, 24003, 3452}, {3701, 17674, 23536}, {3821, 59517, 4656}, {3836, 59511, 226}, {3844, 58451, 5743}, {3971, 24169, 3663}, {4429, 18743, 24210}, {4871, 29673, 11019}, {6686, 49769, 29671}, {13405, 62398, 29642}, {16569, 29674, 3687}, {17123, 33079, 3883}, {21060, 21255, 33064}, {21255, 59686, 21060}, {25961, 32931, 5249}, {30957, 33117, 26015}, {33833, 46937, 13161}, {49511, 59684, 210}


X(62674) = X(1)X(1146)∩X(2)X(11)

Barycentrics    2*a^5 - 2*a^4*b + a^3*b^2 - 3*a^2*b^3 + a*b^4 + b^5 - 2*a^4*c + 3*a^2*b^2*c - 2*a*b^3*c + b^4*c + a^3*c^2 + 3*a^2*b*c^2 + 2*a*b^2*c^2 - 2*b^3*c^2 - 3*a^2*c^3 - 2*a*b*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5 : :
X(62674) = 3 X[2] + X[14942], 9 X[2] - X[52164], 3 X[14942] + X[52164], 3 X[50441] - X[52164], X[8] - 5 X[31640], X[664] - 5 X[3616], X[1121] + 3 X[38314], X[1282] - 3 X[51406], 7 X[3622] + X[39351], X[10695] + 3 X[61730], 3 X[25055] - X[35110]

X(62674) lies on these lines: {1, 1146}, {2, 11}, {5, 52015}, {7, 1360}, {8, 31640}, {10, 40483}, {30, 5144}, {108, 461}, {230, 1279}, {281, 36122}, {514, 11726}, {516, 6712}, {518, 3041}, {519, 40540}, {664, 3616}, {676, 918}, {946, 6696}, {952, 11712}, {1086, 35031}, {1121, 38314}, {1125, 6706}, {1282, 51406}, {1386, 11019}, {1387, 6366}, {1421, 10582}, {1456, 51364}, {1486, 21239}, {1566, 61436}, {2785, 11725}, {3246, 59999}, {3622, 39351}, {3923, 25355}, {4472, 25375}, {4518, 62390}, {4712, 24433}, {4858, 24014}, {5572, 40942}, {5750, 58608}, {5845, 51435}, {5852, 10025}, {6708, 13405}, {7290, 37646}, {7359, 57022}, {8580, 61222}, {8727, 23304}, {9436, 17768}, {10695, 61730}, {14667, 20835}, {15726, 44356}, {16608, 56144}, {17757, 45765}, {19868, 58679}, {20262, 30621}, {21258, 48900}, {25055, 35110}, {25557, 40719}, {26001, 41339}, {26932, 36056}, {35094, 61477}, {36949, 43672}, {40560, 53564}

X(62674) = midpoint of X(i) and X(j) for these {i,j}: {1, 1146}, {1566, 61436}, {14942, 50441}, {35094, 61477}
X(62674) = reflection of X(i) in X(j) for these {i,j}: {10, 40483}, {17044, 1125}
X(62674) = complement of X(50441)
X(62674) = X(i)-complementary conjugate of X(j) for these (i,j): {103, 120}, {105, 118}, {911, 16593}, {1438, 39063}, {9503, 141}, {36039, 62552}, {36101, 20540}
X(62674) = X(2398)-Ceva conjugate of X(522)
X(62674) = crossdifference of every pair of points on line {665, 20672}
X(62674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14942, 50441}


X(62675) = X(2)X(846)∩X(10)X(335)

Barycentrics    a^3*b + 2*a*b^3 + b^4 + a^3*c - 2*a^2*b*c - 3*a*b^2*c + b^3*c - 3*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + b*c^3 + c^4 : :
X(62675) = 3 X[2] + X[6650], X[335] + 3 X[27483], X[86] - 5 X[27191], X[190] - 5 X[31248]

X(62675) lies on these lines: {2, 846}, {10, 335}, {86, 142}, {190, 5257}, {239, 49676}, {274, 18037}, {334, 20496}, {524, 31138}, {740, 1738}, {1086, 1213}, {1125, 4366}, {1654, 3662}, {3008, 17770}, {3125, 25468}, {3616, 41845}, {3634, 16908}, {3755, 29574}, {3844, 4437}, {4359, 40563}, {4401, 30187}, {4440, 17248}, {4655, 20154}, {4684, 49770}, {4728, 24183}, {4743, 31342}, {4967, 9055}, {4987, 33295}, {5222, 20090}, {5249, 44312}, {6653, 16826}, {6707, 17384}, {10868, 22174}, {12579, 16912}, {13161, 30063}, {16593, 31336}, {16831, 20533}, {17050, 49612}, {17244, 31308}, {17308, 52157}, {20681, 25823}, {23536, 30030}, {23537, 29968}, {24161, 33828}, {24178, 30038}, {24200, 31348}, {24586, 24789}, {24602, 33129}, {24628, 35466}, {24631, 40688}, {24699, 49711}, {24715, 50290}, {27147, 29603}, {29576, 33888}, {31144, 50092}, {31310, 31351}, {32029, 42334}, {32096, 50114}

X(62675) = midpoint of X(i) and X(j) for these {i,j}: {1086, 1213}, {6650, 6651}
X(62675) = reflection of X(i) in X(j) for these {i,j}: {6707, 40480}, {20142, 3008}
X(62675) = complement of X(6651)
X(62675) = complement of the isogonal conjugate of X(9506)
X(62675) = X(i)-complementary conjugate of X(j) for these (i,j): {741, 20529}, {875, 35080}, {876, 46668}, {1911, 6651}, {1929, 20333}, {2054, 46842}, {6650, 20542}, {9278, 45162}, {9505, 141}, {9506, 10}, {17962, 17793}, {18263, 37}, {18268, 51578}, {18827, 20548}, {37128, 20339}, {37135, 27854}
X(62675) = X(3570)-Ceva conjugate of X(514)
X(62675) = barycentric product X(75)*X(9507)
X(62675) = barycentric quotient X(9507)/X(1)
X(62675) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6650, 6651}, {1086, 25357, 4357}, {25354, 53600, 6651}


X(62676) = X(2)X(7)∩X(519)X(34232)

Barycentrics    2*a^5 - 3*a^4*b + 2*a^2*b^3 - 2*a*b^4 + b^5 - 3*a^4*c + 6*a^3*b*c - 3*a^2*b^2*c + a*b^3*c - b^4*c - 3*a^2*b*c^2 + 2*a*b^2*c^2 + 2*a^2*c^3 + a*b*c^3 - 2*a*c^4 - b*c^4 + c^5 : :

X(62676) lies on these lines: {2, 7}, {519, 34232}, {522, 24980}, {918, 3960}, {1125, 24433}, {1738, 24402}, {2325, 2397}, {3912, 4585}, {4089, 38326}, {6510, 41310}, {6594, 50441}, {6718, 24003}, {12034, 30858}, {21198, 40536}, {25968, 46694}, {36954, 46781}, {37043, 57284}, {57456, 60578}, {58403, 59639}

X(62676) = X(i)-complementary conjugate of X(j) for these (i,j): {655, 21252}, {692, 46398}, {1415, 51402}, {2149, 214}, {2161, 46100}, {2222, 116}, {32675, 11}, {32739, 35128}, {46649, 21237}, {52377, 141}
X(62676) = X(4453)-Ceva conjugate of X(519)
X(62676) = crossdifference of every pair of points on line {663, 16686}
X(62676) = {X(4422),X(36949)}-harmonic conjugate of X(16578)


X(62677) = X(2)X(2140)∩X(42)X(17758)

Barycentrics    a^3*b^3 - a^2*b^4 + a^3*b^2*c + a^2*b^3*c - 2*a*b^4*c + a^3*b*c^2 + 4*a^2*b^2*c^2 + 2*a*b^3*c^2 - b^4*c^2 + a^3*c^3 + a^2*b*c^3 + 2*a*b^2*c^3 + 2*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 : :
X(62677) = 3 X[2] + X[8049]

X(62677) lies on these lines: {2, 2140}, {42, 17758}, {43, 4859}, {116, 3136}, {142, 16056}, {165, 24220}, {310, 30109}, {1011, 14377}, {1086, 21838}, {1215, 3739}, {2388, 3741}, {3263, 22013}, {3666, 14746}, {3720, 17761}, {3835, 3838}, {4184, 17729}, {4191, 55161}, {4359, 27478}, {5249, 44312}, {6707, 34830}, {12609, 15497}, {16058, 62383}, {17205, 23632}, {20257, 42057}, {20888, 29976}, {20891, 21416}, {21258, 47514}, {26978, 59315}, {27191, 40418}, {39046, 50189}

X(62677) = midpoint of X(8049) and X(40586)
X(62677) = complement of X(40586)
X(62677) = X(i)-complementary conjugate of X(j) for these (i,j): {81, 40586}, {8049, 1211}, {34444, 16589}, {39735, 3454}, {39797, 1213}, {40005, 21245}, {40504, 6537}, {53651, 4129}
X(62677) = X(4557)-Ceva conjugate of X(514)
X(62677) = {X(2),X(8049)}-harmonic conjugate of X(40586)


X(62678) = X(2)X(24179)∩X(78)X(24779)

Barycentrics    a^7*b - 3*a^6*b^2 + a^5*b^3 + 5*a^4*b^4 - 5*a^3*b^5 - a^2*b^6 + 3*a*b^7 - b^8 + a^7*c + 2*a^6*b*c - 3*a^5*b^2*c + 3*a^3*b^4*c - 6*a^2*b^5*c - a*b^6*c + 4*b^7*c - 3*a^6*c^2 - 3*a^5*b*c^2 - 2*a^4*b^2*c^2 + 2*a^3*b^3*c^2 + a^2*b^4*c^2 - 7*a*b^5*c^2 - 4*b^6*c^2 + a^5*c^3 + 2*a^3*b^2*c^3 + 12*a^2*b^3*c^3 + 5*a*b^4*c^3 - 4*b^5*c^3 + 5*a^4*c^4 + 3*a^3*b*c^4 + a^2*b^2*c^4 + 5*a*b^3*c^4 + 10*b^4*c^4 - 5*a^3*c^5 - 6*a^2*b*c^5 - 7*a*b^2*c^5 - 4*b^3*c^5 - a^2*c^6 - a*b*c^6 - 4*b^2*c^6 + 3*a*c^7 + 4*b*c^7 - c^8 : :
X(62678) = 3 X[2] + X[39695]

X(62678) lies on these lines: {2, 24179}, {78, 24779}, {142, 474}, {226, 6678}, {936, 4859}, {1210, 16608}, {1229, 17877}, {3739, 24181}, {15497, 24220}, {27191, 40424}

X(62678) = X(i)-complementary conjugate of X(j) for these (i,j): {39947, 34823}, {41505, 3452}, {57794, 21244}
X(62678) = X(4571)-Ceva conjugate of X(514)


X(62679) = X(2)X(24181)∩X(142)X(1376)

Barycentrics    a^5*b - 5*a^4*b^2 + 10*a^3*b^3 - 10*a^2*b^4 + 5*a*b^5 - b^6 + a^5*c + 2*a^4*b*c - 6*a^3*b^2*c + 8*a^2*b^3*c - 11*a*b^4*c + 6*b^5*c - 5*a^4*c^2 - 6*a^3*b*c^2 + 4*a^2*b^2*c^2 + 6*a*b^3*c^2 - 15*b^4*c^2 + 10*a^3*c^3 + 8*a^2*b*c^3 + 6*a*b^2*c^3 + 20*b^3*c^3 - 10*a^2*c^4 - 11*a*b*c^4 - 15*b^2*c^4 + 5*a*c^5 + 6*b*c^5 - c^6 : :
X(62679) = 3 X[2] + X[42361]

X(62679) lies on these lines: {2, 24181}, {142, 1376}, {200, 277}, {518, 15493}, {946, 15497}, {4847, 4904}, {4859, 8580}, {11019, 21258}, {27191, 56026}, {56331, 61008}

X(62679) = midpoint of X(24771) and X(42361)
X(62679) = complement of X(24771)
X(62679) = X(1407)-complementary conjugate of X(24771)
X(62679) = X(4578)-Ceva conjugate of X(514)
X(62679) = {X(2),X(42361)}-harmonic conjugate of X(24771)


X(62680) = X(2)X(1931)∩X(5)X(572)

Barycentrics    (b + c)*(-2*a^3 - 3*a^2*b - a*b^2 + b^3 - 3*a^2*c - 4*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + c^3) : :
X(62680) = 3 X[2] + X[6625]

X(62680) lies on these lines: {1, 23897}, {2, 1931}, {5, 572}, {6, 25446}, {10, 10026}, {44, 1213}, {115, 1125}, {409, 21004}, {442, 19557}, {594, 21081}, {661, 21921}, {1107, 16592}, {1211, 29610}, {1509, 44379}, {1738, 61341}, {3589, 33033}, {3616, 23903}, {3622, 23942}, {3624, 62322}, {3720, 23917}, {3754, 5164}, {3912, 17056}, {3934, 17245}, {3936, 29591}, {3943, 24044}, {4037, 27577}, {4129, 46192}, {4364, 53501}, {4472, 44396}, {6543, 19936}, {6707, 33034}, {7380, 9756}, {9166, 55083}, {13881, 15668}, {14061, 32014}, {14949, 29578}, {16589, 24036}, {16826, 23947}, {17303, 34528}, {17381, 33045}, {18755, 26051}, {20271, 52651}, {21057, 27714}, {21674, 21711}, {23918, 26102}, {24070, 55343}, {27966, 33943}, {31253, 51586}, {49743, 50252}, {50302, 53424}, {58463, 59602}

X(62680) = midpoint of X(6625) and X(6626)
X(62680) = complement of X(6626)
X(62680) = X(i)-complementary conjugate of X(j) for these (i,j): {213, 6626}, {2248, 3739}, {6625, 21240}, {13610, 3741}, {15377, 18589}, {18757, 1125}, {52208, 141}, {53628, 52601}, {58301, 21709}
X(62680) = X(4610)-Ceva conjugate of X(523)
X(62680) = X(21043)-Dao conjugate of X(4024)
X(62680) = barycentric product X(i)*X(j) for these {i,j}: {10, 23812}, {86, 23934}, {514, 22033}
X(62680) = barycentric quotient X(i)/X(j) for these {i,j}: {22033, 190}, {23812, 86}, {23934, 10}
X(62680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 23897, 53426}, {2, 6625, 6626}, {115, 1125, 23905}, {3634, 6537, 1213}, {3912, 61342, 21024}, {5949, 17398, 56954}, {24937, 56903, 17398}


X(62681) = X(2)X(2321)∩X(10)X(4478)

Barycentrics    4*a^2 + 11*a*b + 5*b^2 + 11*a*c + 14*b*c + 5*c^2 : :
X(62681) = 3 X[2] + X[5936]

X(62681) lies on these lines: {2, 2321}, {10, 4478}, {141, 51004}, {142, 3634}, {190, 5257}, {551, 28633}, {1125, 28634}, {1268, 17315}, {1654, 4667}, {1698, 4648}, {3626, 28640}, {3739, 28555}, {3828, 15668}, {3879, 60710}, {4000, 19872}, {4361, 19878}, {4399, 15808}, {4472, 60942}, {4657, 31253}, {4699, 31351}, {4708, 60962}, {4751, 27478}, {4852, 19883}, {4859, 26104}, {4916, 51066}, {6666, 41325}, {17234, 28650}, {17296, 46932}, {17303, 25072}, {17326, 41844}, {17381, 24603}, {17385, 61001}, {19877, 60731}, {25055, 28635}, {25358, 53594}, {27191, 56061}, {30598, 49770}, {41848, 50115}

X(62681) = X(i)-complementary conjugate of X(j) for these (i,j): {2334, 62586}, {47915, 53834}, {57663, 41862}
X(62681) = X(4756)-Ceva conjugate of X(514)


X(62682) = X(2)X(44)∩X(86)X(16724))

Barycentrics    4*a^2 + 11*a*b - 2*b^2 + 11*a*c + 14*b*c - 2*c^2 : :
X(62682) = 9 X[2] - X[17488], 3 X[2] + X[39704], 7 X[2] - 3 X[41848], 3 X[16590] - X[17488], 7 X[16590] - 9 X[41848], X[17488] + 3 X[39704], 7 X[17488] - 27 X[41848], 7 X[39704] + 9 X[41848], 11 X[3739] - 2 X[4399], 8 X[3739] + X[4889], 7 X[3739] + 2 X[17390], X[3739] + 2 X[49738], 16 X[4399] + 11 X[4889], 7 X[4399] + 11 X[17390], X[4399] + 11 X[49738], 7 X[4889] - 16 X[17390], X[4889] - 16 X[49738], X[17390] - 7 X[49738], 5 X[4688] + X[50121], 10 X[4698] - X[17334], 2 X[4698] + X[50116], X[17334] + 5 X[50116], 5 X[4699] + X[50123], 2 X[4739] + X[50113], 7 X[4751] - X[50082], X[24452] + 3 X[25055], X[17378] + 5 X[31238]

X(62682) lies on these lines: {2, 44}, {86, 16724}, {141, 51004}, {142, 5122}, {519, 3739}, {536, 27478}, {545, 4755}, {551, 34824}, {903, 29578}, {4363, 36911}, {4395, 51103}, {4472, 41141}, {4648, 28633}, {4688, 50121}, {4698, 17334}, {4699, 50123}, {4725, 31306}, {4739, 50113}, {4751, 50082}, {4859, 15668}, {6707, 28558}, {10022, 29571}, {16610, 39974}, {16723, 17175}, {16831, 31139}, {17067, 51108}, {17239, 17313}, {17310, 55955}, {17378, 31238}, {24220, 28198}, {25498, 31312}, {28301, 49733}, {28322, 51488}, {28329, 31329}, {28639, 38314}, {29614, 43287}, {36591, 40434}, {50013, 51006}

X(62682) = midpoint of X(16590) and X(39704)
X(62682) = complement of X(16590)
X(62682) = X(40434)-complementary conjugate of X(21251)
X(62682) = X(4781)-Ceva conjugate of X(514)
X(62682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30588, 27751}, {2, 31138, 4708}, {2, 39704, 16590}


X(62683) = X(2)X(5375)∩X(11)X(4885)

Barycentrics    (b - c)^2*(a^4 - 2*a^3*b + 2*a^2*b^2 - 2*a*b^3 + b^4 - 2*a^3*c + 5*a^2*b*c - 3*a*b^2*c + 2*a^2*c^2 - 3*a*b*c^2 + 2*b^2*c^2 - 2*a*c^3 + c^4) : :
X(62683) = 3 X[2] + X[8047]

X(62683) lies on these lines: {2, 5375}, {11, 4885}, {116, 4369}, {141, 9458}, {650, 35094}, {1086, 3700}, {1146, 21104}, {1565, 47890}, {3035, 38310}, {3834, 51400}, {3911, 36954}, {4413, 52304}, {4521, 26932}, {4904, 7658}, {5137, 29632}, {5432, 18214}, {6174, 17060}, {6745, 36956}, {31250, 46101}, {47767, 61673}, {48125, 52946}

X(62683) = midpoint of X(5375) and X(8047)
X(62683) = reflection of X(38310) in X(3035)
X(62683) = complement of X(5375)
X(62683) = X(i)-complementary conjugate of X(j) for these (i,j): {649, 5375}, {3446, 514}, {8047, 3835}, {42552, 3452}
X(62683) = X(5377)-Ceva conjugate of X(918)
X(62683) = {X(2),X(8047)}-harmonic conjugate of X(5375)


X(62684) = X(2)X(54120)∩X(10)X(82)

Barycentrics    a^3*b + 2*a*b^3 - b^4 + a^3*c + 2*a^2*b*c - a*b^2*c + b^3*c - a*b*c^2 + 2*b^2*c^2 + 2*a*c^3 + b*c^3 - c^4 : :
X(62684) = 3 X[2] + X[54120]

X(62684) lies on these lines: {2, 54120}, {10, 82}, {1146, 59509}, {1220, 31640}, {3912, 21025}, {4357, 17062}, {10436, 23058}, {17739, 49711}, {17755, 21965}, {21044, 26965}, {21198, 28855}, {24603, 25434}, {29576, 56519}, {29968, 41877}

X(62684) = X(6649)-Ceva conjugate of X(522)
X(62684) = {X(17062),X(25994)}-harmonic conjugate of X(4357)


X(62685) = X(2)X(525)∩X(141)X(9007)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(-5*a^8 + 5*a^6*b^2 + 6*a^4*b^4 - 7*a^2*b^6 + b^8 + 5*a^6*c^2 - 17*a^4*b^2*c^2 + 7*a^2*b^4*c^2 + 5*b^6*c^2 + 6*a^4*c^4 + 7*a^2*b^2*c^4 - 12*b^4*c^4 - 7*a^2*c^6 + 5*b^2*c^6 + c^8) : :
X(62685) = 5 X[2] + X[23616], 3 X[2] + X[34767], 2 X[2] + X[38240], 9 X[2] - X[45292], 5 X[14401] + 3 X[23616], 2 X[14401] + 3 X[38240], 3 X[14401] - X[45292], X[14401] + 3 X[52720], 3 X[23616] - 5 X[34767], 2 X[23616] - 5 X[38240], 9 X[23616] + 5 X[45292], X[23616] - 5 X[52720], 2 X[34767] - 3 X[38240], 3 X[34767] + X[45292], X[34767] - 3 X[52720], 9 X[38240] + 2 X[45292], X[45292] + 9 X[52720], 3 X[42307] + X[42308]

X(62685) lies on these lines: {2, 525}, {141, 9007}, {520, 15082}, {1651, 39491}, {6699, 24284}, {9033, 11049}, {11053, 39474}, {14767, 30476}, {15526, 42306}, {20208, 40920}, {42307, 42308}

X(62685) = midpoint of X(i) and X(j) for these {i,j}: {2, 52720}, {14401, 34767}
X(62685) = reflection of X(38240) in X(52720)
X(62685) = complement of X(14401)
X(62685) = complement of the isogonal conjugate of X(34568)
X(62685) = X(i)-complementary conjugate of X(j) for these (i,j): {2159, 39008}, {2349, 16177}, {34568, 10}, {36131, 3163}, {40353, 16573}, {40384, 34846}, {57570, 21259}
X(62685) = X(9033)-Ceva conjugate of X(525)
X(62685) = X(32676)-isoconjugate of X(46270)
X(62685) = X(i)-Dao conjugate of X(j) for these (i,j): {1494, 16077}, {15526, 46270}
X(62685) = crossdifference of every pair of points on line {1495, 9412}
X(62685) = barycentric product X(i)*X(j) for these {i,j}: {525, 39358}, {3267, 9412}, {9033, 9410}, {34582, 34767}
X(62685) = barycentric quotient X(i)/X(j) for these {i,j}: {525, 46270}, {9410, 16077}, {9412, 112}, {34582, 4240}, {39358, 648}
X(62685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34767, 14401}, {14401, 52720, 34767}


X(62686) = X(2)X(3)∩X(114)X(38608)

Barycentrics    2*a^10 - 3*a^8*b^2 + 2*a^4*b^6 - 2*a^2*b^8 + b^10 - 3*a^8*c^2 + 6*a^6*b^2*c^2 - 3*a^4*b^4*c^2 + a^2*b^6*c^2 - b^8*c^2 - 3*a^4*b^2*c^4 + 2*a^2*b^4*c^4 + 2*a^4*c^6 + a^2*b^2*c^6 - 2*a^2*c^8 - b^2*c^8 + c^10 : :
X(62686) = 3 X[2] + X[4235]

X(62686) lies on these lines: {2, 3}, {114, 38608}, {230, 52628}, {287, 10264}, {325, 52630}, {620, 2492}, {1511, 15595}, {2967, 61573}, {6716, 9529}, {10272, 38551}, {14357, 47242}, {18310, 40544}, {19163, 38749}, {40866, 51872}

X(62686) = midpoint of X(i) and X(j) for these {i,j}: {3, 54380}, {4235, 62563}
X(62686) = complement of X(62563)
X(62686) = X(i)-complementary conjugate of X(j) for these (i,j): {163, 38971}, {935, 21253}, {32676, 62594}, {58980, 8062}
X(62686) = X(9979)-Ceva conjugate of X(524)
X(62686) = crossdifference of every pair of points on line {647, 7669}
X(62686) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4235, 62563}, {2, 40856, 5}, {140, 44338, 2}, {2454, 2455, 7473}


X(62687) = X(2)X(13582)∩X(5)X(49)

Barycentrics    a^10*b^2 - 5*a^8*b^4 + 10*a^6*b^6 - 10*a^4*b^8 + 5*a^2*b^10 - b^12 + a^10*c^2 - 3*a^6*b^4*c^2 + 8*a^4*b^6*c^2 - 12*a^2*b^8*c^2 + 6*b^10*c^2 - 5*a^8*c^4 - 3*a^6*b^2*c^4 - 2*a^4*b^4*c^4 + 7*a^2*b^6*c^4 - 15*b^8*c^4 + 10*a^6*c^6 + 8*a^4*b^2*c^6 + 7*a^2*b^4*c^6 + 20*b^6*c^6 - 10*a^4*c^8 - 12*a^2*b^2*c^8 - 15*b^4*c^8 + 5*a^2*c^10 + 6*b^2*c^10 - c^12 : :
X(62687) = 3 X[2] + X[13582]

X(62687) lies on these lines: {2, 13582}, {5, 49}, {94, 18122}, {115, 34834}, {858, 6036}, {2986, 14061}, {3268, 14566}, {3580, 34827}, {3634, 8068}, {5169, 9756}, {5461, 40112}, {5972, 10276}, {6106, 6670}, {6107, 6669}, {10277, 40685}, {13881, 15066}, {18301, 53495}, {26879, 34101}, {34836, 62583}, {36255, 53567}, {37636, 54461}, {37645, 39143}, {47324, 61576}

X(62687) = midpoint of X(13582) and X(40604)
X(62687) = complement of X(40604)
X(62687) = nine-point-circle-inverse of X(34308)
X(62687) = complement of the isogonal conjugate of X(11071)
X(62687) = X(i)-complementary conjugate of X(j) for these (i,j): {11071, 10}, {15392, 18589}
X(62687) = X(10411)-Ceva conjugate of X(523)
X(62687) = crossdifference of every pair of points on line {2081, 6140}
X(62687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 13582, 40604}, {8836, 8838, 10272}, {51268, 51275, 27423}


X(62688) = X(2)X(647)∩X(183)X(6041)

Barycentrics    (b^2 - c^2)*(-a^8 + a^2*b^6 + a^4*b^2*c^2 - 2*b^4*c^4 + a^2*c^6) : :
X(62688) = 3 X[2] + X[2395], X[2395] - 3 X[45329], 3 X[1640] + X[62555], X[10097] + 3 X[11286]

X(62688) lies on these lines: {2, 647}, {183, 6041}, {264, 2489}, {512, 7804}, {523, 3589}, {804, 5113}, {1316, 52471}, {1640, 62555}, {2485, 6375}, {2793, 6036}, {2799, 14316}, {3267, 9230}, {3329, 10567}, {3818, 11182}, {3934, 8574}, {4045, 62489}, {5466, 60215}, {6677, 10189}, {7792, 47229}, {7834, 23105}, {7884, 52632}, {8029, 47128}, {8430, 60863}, {9175, 15928}, {9832, 47442}, {10097, 11286}, {10278, 12075}, {15482, 44814}, {16989, 53347}, {18310, 24975}, {22104, 47218}, {22260, 46778}, {59561, 60341}

X(62688) = midpoint of X(i) and X(j) for these {i,j}: {2, 45329}, {22260, 46778}, {24284, 54267}
X(62688) = complement of the isotomic conjugate of X(39291)
X(62688) = X(i)-complementary conjugate of X(j) for these (i,j): {163, 46840}, {1581, 36471}, {1910, 2679}, {1967, 35088}, {2715, 19563}, {15391, 34846}, {17938, 16591}, {34238, 8287}, {36084, 39080}, {36897, 21253}, {39291, 2887}
X(62688) = X(14295)-Ceva conjugate of X(512)
X(62688) = X(662)-isoconjugate of X(34214)
X(62688) = X(i)-Dao conjugate of X(j) for these (i,j): {1084, 34214}, {9468, 805}, {35078, 9469}
X(62688) = crossdifference of every pair of points on line {237, 2076}
X(62688) = barycentric product X(i)*X(j) for these {i,j}: {523, 5989}, {850, 3506}, {9467, 14295}
X(62688) = barycentric quotient X(i)/X(j) for these {i,j}: {512, 34214}, {804, 9469}, {3506, 110}, {5989, 99}, {9467, 805}


X(62689) = X(2)X(6)∩X(9)X(28657)

Barycentrics    2*a^3 - 2*a^2*b - 3*a*b^2 + b^3 - 2*a^2*c - 4*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + c^3 : :
X(62689) = 3 X[2] + X[333], 9 X[2] - X[17778], 3 X[333] + X[17778], 3 X[17056] - X[17778], X[17947] - 5 X[31640]

X(62689) lies on these lines: {2, 6}, {9, 28657}, {10, 6675}, {21, 49734}, {57, 34824}, {63, 7228}, {75, 59583}, {226, 17332}, {306, 4478}, {345, 4665}, {440, 4288}, {442, 49728}, {594, 33116}, {846, 28530}, {958, 28258}, {1086, 38000}, {1146, 39035}, {1375, 16832}, {1376, 8731}, {1714, 16343}, {1834, 11110}, {2490, 4369}, {2886, 37370}, {3550, 49725}, {3634, 6693}, {3666, 4395}, {3712, 21020}, {3739, 5745}, {3757, 9053}, {3772, 4364}, {3826, 32916}, {3925, 32917}, {3943, 55095}, {4023, 29678}, {4026, 33138}, {4035, 4690}, {4205, 24880}, {4252, 37153}, {4359, 62305}, {4363, 5273}, {4384, 21965}, {4399, 5271}, {4422, 44417}, {4425, 17070}, {4643, 25525}, {4656, 49737}, {4667, 56226}, {4698, 39595}, {4733, 33160}, {4981, 17724}, {4999, 34831}, {5249, 7238}, {5292, 16844}, {5325, 17351}, {5432, 26037}, {6354, 60705}, {6692, 6706}, {7227, 31993}, {7413, 29181}, {9780, 56778}, {10022, 56523}, {10180, 50755}, {11679, 17243}, {14838, 21198}, {16054, 59625}, {17045, 40940}, {17069, 21209}, {17239, 20106}, {17253, 26132}, {17279, 18229}, {17303, 56519}, {17323, 62208}, {17514, 25441}, {17557, 24883}, {17768, 59624}, {17947, 31640}, {18253, 49598}, {20083, 50409}, {21242, 49736}, {23681, 49741}, {24342, 59574}, {24603, 25434}, {24609, 59545}, {24953, 31339}, {26064, 31254}, {26363, 60691}, {33105, 41002}, {33141, 49740}, {37265, 59697}, {50169, 52680}, {50205, 50605}, {50314, 59580}

X(62689) = midpoint of X(i) and X(j) for these {i,j}: {333, 17056}, {1146, 39035}
X(62689) = complement of X(17056)
X(62689) = complement of the isotomic conjugate of X(60235)
X(62689) = X(i)-complementary conjugate of X(j) for these (i,j): {163, 62566}, {17097, 17052}, {40430, 141}, {40442, 18642}, {56321, 21253}, {57668, 18589}, {60235, 2887}
X(62689) = X(17136)-Ceva conjugate of X(522)
X(62689) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 333, 17056}, {2, 1654, 41878}, {2, 5235, 1211}, {2, 5278, 5718}, {2, 5737, 141}, {2, 6703, 6707}, {2, 14829, 17245}, {2, 17277, 37662}, {2, 19732, 5743}, {2, 24597, 19701}, {2, 26044, 30832}, {2, 35466, 6703}, {2, 37642, 15668}, {1211, 5235, 49730}, {3925, 32917, 44419}, {5743, 19732, 49731}, {11110, 25446, 1834}, {19744, 31187, 2}, {31993, 44416, 7227}, {31993, 54357, 44416}, {39022, 39023, 40882}


X(62690) = X(2)X(14)∩X(5)X(113)

Barycentrics    a^4*b^2 - 2*a^2*b^4 + b^6 + a^4*c^2 + 8*a^2*b^2*c^2 - b^4*c^2 - 2*a^2*c^4 - b^2*c^4 + c^6 - 2*Sqrt[3]*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*S : :
X(62690) = 3 X[2] + X[16771]

X(62690) lies on these lines: {2, 14}, {5, 113}, {18, 2986}, {141, 16537}, {381, 1525}, {395, 6128}, {470, 36794}, {473, 11476}, {624, 3580}, {629, 40604}, {858, 7685}, {3066, 41040}, {3258, 58913}, {5479, 36185}, {5640, 7684}, {5972, 20416}, {6116, 46106}, {6774, 32460}, {8838, 15018}, {11064, 11543}, {11120, 36311}, {11304, 40709}, {11306, 37638}, {13349, 37975}, {15066, 34508}, {18122, 43961}, {18315, 51268}, {22104, 32461}, {23722, 37853}, {32553, 40855}, {33481, 47027}, {34509, 37644}, {36252, 54395}, {37340, 46833}, {37645, 40694}, {38432, 44666}, {42153, 59767}, {45311, 46859}

X(62690) = midpoint of X(11130) and X(16771)
X(62690) = complement of X(11130)
X(62690) = complement of the isogonal conjugate of X(11085)
X(62690) = isotomic conjugate of the polar conjugate of X(35715)
X(62690) = X(i)-complementary conjugate of X(j) for these (i,j): {2154, 619}, {10218, 18589}, {11085, 10}, {36840, 4369}, {57580, 21254}
X(62690) = X(17403)-Ceva conjugate of X(23872)
X(62690) = barycentric product X(i)*X(j) for these {i,j}: {69, 35715}, {301, 14817}
X(62690) = barycentric quotient X(i)/X(j) for these {i,j}: {14817, 16}, {35715, 4}
X(62690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14, 41888}, {2, 11092, 619}, {2, 16771, 11130}, {2, 40710, 46834}, {2, 41477, 6671}, {624, 3580, 33530}


X(62691) = X(4)X(6)∩X(9)X(21)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(a^4-2*a^3*(b+c)+2*a*(b-c)^2*(b+c)-(b^2-c^2)^2) : :

In a triangle ABC, let 𝒞 be a circumconic with perspector P and Q a point on its plane. Let A', B', C' be the intersections, other than Q, of 𝒞 and AQ, BQ, CQ, respectively. The triangle A'B'C' is the P-circumconcevian triangle of Q or the circumconcevian triangle of Q with respect to P. (Elias M. Hagos, Euclid 4585.) (See below for the first occurrence of this term in ETC.)

X(62691) lies on these lines: {4, 6}, {9, 21}, {28, 2182}, {58, 1490}, {81, 226}, {219, 3486}, {329, 40571}, {380, 12514}, {411, 579}, {572, 1713}, {672, 35981}, {950, 2323}, {965, 6857}, {1005, 4266}, {1006, 2278}, {1010, 45039}, {1108, 21740}, {1175, 1903}, {1396, 34032}, {1400, 27653}, {1474, 2261}, {1708, 1817}, {1743, 1780}, {1778, 2193}, {1858, 2264}, {1864, 2194}, {2245, 3651}, {2257, 6261}, {2285, 46884}, {2303, 25516}, {2322, 53994}, {2328, 10382}, {2360, 10396}, {2893, 15988}, {2900, 56182}, {3485, 54358}, {4254, 37284}, {4282, 16948}, {5729, 36017}, {5747, 6828}, {5778, 6824}, {6869, 57286}, {6875, 37504}, {6876, 37500}, {8229, 40129}, {8557, 18446}, {8804, 10572}, {8822, 60950}, {12047, 40963}, {12848, 14953}, {15556, 16548}, {16054, 60987}, {17139, 41610}, {18391, 19350}, {33854, 37330}, {40937, 45230}, {47512, 54417}

X(62691) = perspector of circumconic {{A, B, C, X(107), X(643)}}
X(62691) = X(i)-isoconjugate-of-X(j) for these {i, j}: {73, 55963}, {1427, 56101}
X(62691) = X(i)-Dao conjugate of X(j) for these {i, j}: {38957, 525}
X(62691) = pole of line {1859, 3683} with respect to the Feuerbach hyperbola
X(62691) = pole of line {57, 394} with respect to the Stammler hyperbola
X(62691) = pole of line {6587, 21180} with respect to the Steiner inellipse
X(62691) = pole of line {85, 3926} with respect to the Wallace hyperbola
X(62691) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(4); for a definition of "circumconcevian triangle", see note above
X(62691) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(78)}}, {{A, B, C, X(6), X(2289)}}, {{A, B, C, X(9), X(393)}}, {{A, B, C, X(21), X(8747)}}, {{A, B, C, X(41), X(2207)}}, {{A, B, C, X(90), X(56864)}}, {{A, B, C, X(284), X(5317)}}, {{A, B, C, X(1156), X(41228)}}, {{A, B, C, X(1175), X(1819)}}, {{A, B, C, X(2003), X(52418)}}, {{A, B, C, X(2287), X(8748)}}, {{A, B, C, X(6530), X(44694)}}, {{A, B, C, X(7675), X(34919)}}, {{A, B, C, X(23617), X(27396)}}, {{A, B, C, X(27376), X(33299)}}
X(62691) = barycentric product X(i)*X(j) for these (i, j): {333, 8557}, {522, 54442}, {1172, 6350}, {2287, 54366}, {18391, 21}, {18446, 29}, {19350, 31623}
X(62691) = barycentric quotient X(i)/X(j) for these (i, j): {1172, 55963}, {2328, 56101}, {6350, 1231}, {8557, 226}, {18391, 1441}, {18446, 307}, {19350, 1214}, {54366, 1446}, {54442, 664}
X(62691) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5776, 5746}, {1864, 2194, 4183}


X(62692) = X(3)X(6)∩X(37)X(86)

Barycentrics    a^2*(a+b)*(a+c)*(-b^3-b^2*c+b*(a-c)*c-c^3) : :

X(62692) lies on these lines: {3, 6}, {9, 18792}, {21, 2275}, {37, 86}, {81, 2276}, {191, 40986}, {333, 1575}, {346, 17178}, {672, 17187}, {741, 4476}, {1010, 1107}, {1015, 4653}, {1043, 17448}, {1212, 16716}, {1444, 1778}, {1500, 4658}, {1761, 17799}, {1911, 21035}, {1914, 4184}, {2260, 2309}, {2345, 16738}, {3290, 16700}, {3730, 52564}, {3941, 20985}, {4386, 13588}, {4649, 56926}, {4877, 17053}, {5283, 25526}, {6626, 28244}, {8822, 28358}, {9574, 18163}, {9599, 14956}, {10458, 24512}, {11110, 16604}, {16502, 17524}, {16704, 17756}, {16972, 54308}, {17277, 46838}, {17303, 27164}, {17735, 38832}, {17754, 18169}, {18171, 33953}, {18185, 31477}, {18601, 26242}, {19259, 31449}, {20142, 24530}, {20691, 56018}, {21838, 40750}, {25508, 51314}, {27109, 27185}, {30940, 32453}, {34830, 53590}, {60697, 61409}

X(62692) = perspector of circumconic {{A, B, C, X(110), X(4589)}}
X(62692) = X(i)-isoconjugate-of-X(j) for these {i, j}: {37, 55970}, {661, 62468}
X(62692) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 62468}, {39054, 62469}, {40589, 55970}
X(62692) = pole of line {512, 54253} with respect to the Moses circle
X(62692) = pole of line {512, 54253} with respect to the Brocard inellipse
X(62692) = pole of line {5, 20337} with respect to the Kiepert hyperbola
X(62692) = pole of line {2, 1914} with respect to the Stammler hyperbola
X(62692) = pole of line {31296, 50343} with respect to the Steiner circumellipse
X(62692) = pole of line {647, 9508} with respect to the Steiner inellipse
X(62692) = pole of line {76, 239} with respect to the Wallace hyperbola
X(62692) = pole of line {3267, 24459} with respect to the dual conic of polar circle
X(62692) = pole of line {34830, 49676} with respect to the dual conic of Yff parabola
X(62692) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(6)
X(62692) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(337)}}, {{A, B, C, X(6), X(335)}}, {{A, B, C, X(32), X(292)}}, {{A, B, C, X(37), X(41333)}}, {{A, B, C, X(58), X(18827)}}, {{A, B, C, X(86), X(5009)}}, {{A, B, C, X(284), X(36800)}}, {{A, B, C, X(386), X(29674)}}, {{A, B, C, X(511), X(62423)}}, {{A, B, C, X(579), X(36482)}}, {{A, B, C, X(894), X(1691)}}, {{A, B, C, X(1333), X(37128)}}, {{A, B, C, X(2245), X(50454)}}, {{A, B, C, X(3433), X(37507)}}
X(62692) = barycentric product X(i)*X(j) for these (i, j): {110, 62423}, {284, 36482}, {29674, 58}, {30965, 6}, {49509, 81}, {50454, 662}
X(62692) = barycentric quotient X(i)/X(j) for these (i, j): {58, 55970}, {110, 62468}, {662, 62469}, {29674, 313}, {30965, 76}, {36482, 349}, {49509, 321}, {50454, 1577}, {62423, 850}
X(62692) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1030, 41333}, {6, 3286, 1333}, {579, 5145, 6}


X(62693) = X(6)X(7)∩X(19)X(208)

Barycentrics    a^4-2*a^3*(b+c)-2*a*(b-c)^2*(b+c)-(b^2-c^2)^2 : :

X(62693) lies on these lines: {4, 16583}, {6, 7}, {8, 3721}, {9, 1738}, {19, 208}, {20, 16968}, {37, 2550}, {45, 1213}, {75, 966}, {169, 5286}, {198, 1284}, {213, 4295}, {256, 24341}, {329, 2238}, {344, 26582}, {346, 62392}, {388, 41015}, {391, 4346}, {497, 3290}, {516, 16970}, {579, 20605}, {910, 3772}, {938, 20271}, {941, 43740}, {962, 2176}, {986, 26036}, {992, 41828}, {1212, 7738}, {1423, 2270}, {1458, 3554}, {1469, 2262}, {1714, 1759}, {1743, 32857}, {1861, 24005}, {1863, 2310}, {2082, 23536}, {2271, 3487}, {2549, 49758}, {2551, 16605}, {3008, 33869}, {3087, 54293}, {3125, 18391}, {3230, 30305}, {3434, 26242}, {3509, 33137}, {3553, 42289}, {3616, 21008}, {3663, 16517}, {3684, 33144}, {3726, 36845}, {3752, 7736}, {3782, 37658}, {3914, 40131}, {4251, 24159}, {4307, 16972}, {4310, 16973}, {4339, 16974}, {4364, 20181}, {4446, 35026}, {4452, 49756}, {5179, 43448}, {5254, 6554}, {5257, 50314}, {5276, 19785}, {5304, 62208}, {5703, 18755}, {5839, 32922}, {5905, 37657}, {6361, 14974}, {6650, 17350}, {6904, 54317}, {7102, 40973}, {7613, 36404}, {9776, 24512}, {9778, 17735}, {9785, 16969}, {10030, 40702}, {16706, 41847}, {16782, 17170}, {17275, 49515}, {17314, 32850}, {17321, 20172}, {17330, 49747}, {17435, 53994}, {17680, 21216}, {17737, 26258}, {18228, 37673}, {20179, 26626}, {24231, 51194}, {26685, 41842}, {26978, 41826}, {31405, 37592}, {36744, 41230}, {37654, 37756}, {45039, 60586}

X(62693) = perspector of circumconic {{A, B, C, X(927), X(36127)}}
X(62693) = pole of line {8, 857} with respect to the Kiepert hyperbola
X(62693) = pole of line {44449, 47695} with respect to the Steiner circumellipse
X(62693) = pole of line {676, 14321} with respect to the Steiner inellipse
X(62693) = pole of line {516, 16825} with respect to the dual conic of Yff parabola
X(62693) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(19)
X(62693) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(1814)}}, {{A, B, C, X(393), X(673)}}, {{A, B, C, X(1118), X(40028)}}, {{A, B, C, X(1462), X(39721)}}
X(62693) = barycentric product X(i)*X(j) for these (i, j): {51210, 92}
X(62693) = barycentric quotient X(i)/X(j) for these (i, j): {51210, 63}
X(62693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {910, 3772, 7735}, {4000, 5819, 6}, {17257, 39721, 75}


X(62694) = X(6)X(13)∩X(9)X(1021)

Barycentrics    (a+b)*(a-b-c)*(a+c)*(a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(2*a^4-(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(62694) lies on cubic K220 and on these lines: {6, 13}, {7, 24624}, {9, 1021}, {281, 2326}, {1781, 40979}, {2173, 18486}, {52949, 56645}

X(62694) = perspector of circumconic {{A, B, C, X(476), X(6740)}}
X(62694) = X(i)-isoconjugate-of-X(j) for these {i, j}: {74, 18593}, {1464, 2349}, {1835, 14919}, {2159, 41804}, {14385, 43682}, {32679, 36064}, {35049, 56792}, {44769, 51663}, {52390, 57487}
X(62694) = X(i)-Dao conjugate of X(j) for these {i, j}: {3163, 41804}, {6739, 3936}
X(62694) = X(i)-Ceva conjugate of X(j) for these {i, j}: {24624, 30}
X(62694) = X(i)-cross conjugate of X(j) for these {i, j}: {2173, 2341}, {6062, 30}
X(62694) = pole of line {1637, 7359} with respect to the Steiner inellipse
X(62694) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(30)
X(62694) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(57046)}}, {{A, B, C, X(6), X(2173)}}, {{A, B, C, X(7), X(30)}}, {{A, B, C, X(9), X(14147)}}, {{A, B, C, X(265), X(6740)}}, {{A, B, C, X(268), X(56948)}}, {{A, B, C, X(281), X(3700)}}, {{A, B, C, X(381), X(18486)}}, {{A, B, C, X(399), X(35193)}}, {{A, B, C, X(1021), X(2326)}}, {{A, B, C, X(14254), X(45926)}}, {{A, B, C, X(15454), X(57095)}}
X(62694) = barycentric product X(i)*X(j) for these (i, j): {30, 6740}, {1784, 1793}, {14206, 2341}, {14254, 35193}, {14400, 47318}, {18359, 52949}, {18653, 36910}, {18815, 58337}, {24624, 7359}, {41392, 57066}, {41502, 57482}, {51382, 80}, {51420, 52409}, {52351, 52956}, {56645, 8}
X(62694) = barycentric quotient X(i)/X(j) for these (i, j): {30, 41804}, {1495, 1464}, {2173, 18593}, {2341, 2349}, {6062, 6739}, {6740, 1494}, {7359, 3936}, {14400, 4707}, {14560, 36064}, {14583, 52382}, {18653, 17078}, {41392, 38340}, {41502, 57487}, {51382, 320}, {51420, 1443}, {52949, 3218}, {52956, 17923}, {56645, 7}, {58337, 4511}


X(62695) = X(1)X(88)∩X(6)X(57)

Barycentrics    a*(a^2-3*(b-c)^2-2*a*(b+c)) : :

X(62695) lies on these lines: {1, 88}, {2, 2415}, {3, 16485}, {6, 57}, {9, 16610}, {31, 53056}, {38, 8580}, {40, 16483}, {42, 10980}, {43, 18193}, {45, 31197}, {46, 5315}, {55, 5573}, {63, 3973}, {77, 37789}, {81, 36603}, {165, 614}, {171, 16491}, {190, 31233}, {200, 982}, {329, 45204}, {347, 5435}, {899, 5223}, {908, 4862}, {936, 3670}, {978, 12526}, {986, 8583}, {988, 24174}, {991, 11407}, {995, 2093}, {998, 2163}, {1086, 5219}, {1122, 51413}, {1149, 9819}, {1150, 16833}, {1155, 7290}, {1191, 5128}, {1193, 3339}, {1201, 7991}, {1266, 28808}, {1279, 35445}, {1323, 5222}, {1376, 3677}, {1449, 37520}, {1453, 37582}, {1480, 3359}, {1646, 36258}, {1697, 16486}, {1698, 23536}, {1708, 26741}, {1738, 5231}, {1739, 9623}, {1743, 3218}, {1764, 41418}, {1817, 33628}, {2098, 15839}, {2226, 52031}, {2275, 14936}, {2347, 5575}, {3008, 5744}, {3085, 24171}, {3120, 7988}, {3125, 9592}, {3158, 17597}, {3210, 27002}, {3216, 54422}, {3230, 37555}, {3242, 46917}, {3243, 3999}, {3247, 3666}, {3290, 9574}, {3338, 16474}, {3361, 54310}, {3601, 17054}, {3620, 3687}, {3679, 24223}, {3723, 37674}, {3742, 37553}, {3751, 18201}, {3772, 31231}, {3782, 30827}, {3811, 24167}, {3877, 46943}, {3911, 4000}, {3924, 7987}, {3928, 4383}, {3929, 15492}, {3951, 8951}, {3953, 6765}, {3987, 12629}, {4003, 4413}, {4031, 4644}, {4255, 11518}, {4257, 7520}, {4310, 6745}, {4314, 28080}, {4346, 5328}, {4358, 55998}, {4359, 18229}, {4384, 24615}, {4398, 37758}, {4415, 20196}, {4419, 5316}, {4421, 4906}, {4512, 5272}, {4640, 8692}, {4654, 37662}, {4659, 30818}, {4666, 9335}, {4689, 38316}, {4695, 4915}, {4853, 24440}, {4902, 31164}, {4929, 49991}, {5024, 37597}, {5119, 16489}, {5121, 24248}, {5205, 49446}, {5233, 17274}, {5256, 14996}, {5268, 17591}, {5438, 37549}, {5718, 6173}, {5919, 41436}, {7248, 23638}, {7292, 35258}, {7308, 16602}, {8649, 9620}, {9350, 42038}, {10319, 16488}, {10582, 16484}, {10856, 37508}, {11430, 55310}, {11679, 17117}, {12575, 28016}, {13462, 49487}, {15728, 42315}, {15737, 53525}, {16469, 21747}, {16490, 51816}, {16498, 37552}, {16569, 56508}, {16667, 17012}, {16669, 54281}, {16674, 25430}, {16700, 18163}, {16704, 18186}, {16832, 24589}, {16834, 37684}, {17020, 23958}, {17151, 17495}, {17276, 31142}, {17282, 32851}, {17284, 17740}, {17352, 56523}, {17567, 34937}, {17720, 31190}, {18078, 34020}, {19740, 26627}, {19861, 45047}, {20367, 54981}, {21446, 43063}, {23675, 51784}, {24168, 54318}, {24210, 31249}, {24216, 31146}, {24217, 50080}, {24598, 51304}, {25065, 26635}, {25525, 40688}, {25734, 26688}, {26724, 55867}, {26745, 37685}, {28011, 53053}, {28018, 51785}, {28609, 37663}, {29639, 38052}, {30117, 30282}, {30305, 51295}, {30852, 33146}, {31183, 54357}, {31224, 33133}, {32860, 35613}, {32911, 33795}, {37612, 51340}, {38000, 41834}, {42304, 60806}, {43068, 54366}

X(62695) = isogonal conjugate of X(55993)
X(62695) = perspector of circumconic {{A, B, C, X(934), X(3257)}}
X(62695) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 55993}, {5328, 30829}, {54389, 4737}
X(62695) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4346, 7962}
X(62695) = pole of line {650, 53392} with respect to the Bevan circle
X(62695) = pole of line {4491, 8641} with respect to the circumcircle
X(62695) = pole of line {8641, 23650} with respect to the Brocard inellipse
X(62695) = pole of line {2287, 3973} with respect to the Stammler hyperbola
X(62695) = pole of line {3667, 21222} with respect to the Steiner circumellipse
X(62695) = pole of line {3667, 3960} with respect to the Steiner inellipse
X(62695) = pole of line {20942, 30939} with respect to the Wallace hyperbola
X(62695) = pole of line {514, 3310} with respect to the dual conic of excircles-radical circle
X(62695) = pole of line {8, 908} with respect to the dual conic of Yff parabola
X(62695) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(57)
circumconcevian X(62695) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(1320)}}, {{A, B, C, X(88), X(269)}}, {{A, B, C, X(100), X(2415)}}, {{A, B, C, X(106), X(1407)}}, {{A, B, C, X(998), X(4792)}}, {{A, B, C, X(1427), X(4052)}}, {{A, B, C, X(3911), X(35262)}}, {{A, B, C, X(3977), X(4855)}}, {{A, B, C, X(9311), X(62297)}}, {{A, B, C, X(31995), X(52803)}}, {{A, B, C, X(39776), X(52031)}}
X(62695) = barycentric product X(i)*X(j) for these (i, j): {1, 4346}, {7, 7962}, {5328, 57}
X(62695) = barycentric quotient X(i)/X(j) for these (i, j): {6, 55993}, {4346, 75}, {5328, 312}, {7962, 8}
X(62695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 24177, 23681}, {2, 62300, 3729}, {57, 1465, 269}, {57, 36636, 1407}, {57, 3752, 2999}, {63, 37680, 3973}, {88, 4850, 3306}, {165, 16487, 902}, {614, 902, 16487}, {982, 56009, 16496}, {986, 11512, 8583}, {3306, 4850, 1}, {3666, 5437, 17022}, {3973, 23511, 37680}, {4003, 4413, 7174}, {5272, 17596, 4512}, {7292, 35258, 60846}, {16496, 56009, 200}, {16610, 17595, 9}, {17063, 17594, 10582}, {17720, 43055, 31190}, {24620, 24627, 4384}


X(62696) = X(2)X(308)∩X(6)X(22)

Barycentrics    a^2*(a^2+b^2)*(a^2+c^2)*(b^4+b^2*c^2+c^4) : :

X(62696) lies on these lines: {2, 308}, {3, 38834}, {6, 22}, {25, 45211}, {39, 83}, {183, 9465}, {232, 32085}, {325, 16890}, {385, 1194}, {427, 10549}, {570, 39095}, {689, 707}, {1627, 8266}, {2491, 18010}, {2998, 37876}, {3094, 18899}, {3117, 3314}, {3589, 62301}, {3778, 8022}, {3815, 34294}, {4577, 57943}, {5007, 39674}, {6031, 7766}, {6375, 16987}, {6636, 41331}, {7736, 17500}, {7774, 20022}, {7777, 45093}, {7779, 59994}, {7786, 52570}, {7859, 52536}, {8041, 51983}, {8267, 33769}, {9076, 9087}, {9418, 34945}, {10547, 14885}, {11174, 18092}, {16584, 20234}, {37665, 42299}, {38862, 41328}, {39089, 41296}, {44090, 61383}, {46303, 46906}, {46505, 56920}

X(62696) = isogonal conjugate of X(14617)
X(62696) = trilinear pole of line {9006, 50549}
X(62696) = perspector of circumconic {{A, B, C, X(827), X(41209)}}
X(62696) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14617}, {38, 3407}, {39, 3113}, {1930, 18898}, {1964, 3114}, {3051, 46281}, {3404, 8840}, {8061, 33514}, {20883, 43722}, {58111, 62418}
X(62696) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14617}, {3117, 14994}, {3314, 59213}, {10335, 8024}, {19602, 141}, {41884, 3114}, {52658, 39}
X(62696) = X(i)-cross conjugate of X(j) for these {i, j}: {3094, 62699}, {3117, 43977}
X(62696) = pole of line {5103, 5133} with respect to the Kiepert hyperbola
X(62696) = pole of line {141, 8623} with respect to the Stammler hyperbola
X(62696) = pole of line {688, 4580} with respect to the Steiner circumellipse
X(62696) = pole of line {688, 5113} with respect to the Steiner inellipse
X(62696) = pole of line {732, 3051} with respect to the Wallace hyperbola
X(62696) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(6)
X(62696) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(707)}}, {{A, B, C, X(6), X(1502)}}, {{A, B, C, X(22), X(5117)}}, {{A, B, C, X(39), X(9865)}}, {{A, B, C, X(83), X(56975)}}, {{A, B, C, X(99), X(56980)}}, {{A, B, C, X(251), X(14970)}}, {{A, B, C, X(308), X(733)}}, {{A, B, C, X(384), X(385)}}, {{A, B, C, X(512), X(7804)}}, {{A, B, C, X(702), X(9006)}}, {{A, B, C, X(1297), X(19121)}}, {{A, B, C, X(2275), X(2276)}}, {{A, B, C, X(3108), X(5012)}}, {{A, B, C, X(3329), X(60667)}}, {{A, B, C, X(8039), X(20859)}}, {{A, B, C, X(8627), X(50549)}}, {{A, B, C, X(9087), X(30530)}}, {{A, B, C, X(19222), X(60694)}}, {{A, B, C, X(41295), X(42288)}}, {{A, B, C, X(43528), X(61098)}}, {{A, B, C, X(45914), X(58779)}}
X(62696) = barycentric product X(i)*X(j) for these (i, j): {6, 62699}, {251, 3314}, {308, 3117}, {733, 9865}, {1176, 5117}, {1799, 56920}, {3094, 83}, {3112, 3116}, {4577, 50549}, {10335, 51450}, {16889, 3736}, {17415, 689}, {18899, 40016}, {34055, 46507}, {42061, 56979}, {42299, 52658}, {42371, 9006}, {43977, 76}, {46289, 56784}, {51836, 82}
X(62696) = barycentric quotient X(i)/X(j) for these (i, j): {6, 14617}, {82, 3113}, {83, 3114}, {251, 3407}, {689, 9063}, {827, 33514}, {3094, 141}, {3112, 46281}, {3116, 38}, {3117, 39}, {3314, 8024}, {4630, 58111}, {5117, 1235}, {9006, 688}, {9865, 35540}, {10335, 59213}, {10547, 43722}, {17415, 3005}, {18899, 3051}, {41209, 41073}, {42061, 56978}, {43977, 6}, {46288, 18898}, {46505, 27369}, {46507, 20883}, {50549, 826}, {51836, 1930}, {51862, 8840}, {52658, 14994}, {56920, 427}, {62699, 76}
X(62696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 52637, 35540}, {3, 52580, 38834}, {6, 10329, 56915}, {6, 51862, 251}, {251, 1176, 56975}, {251, 46228, 46288}, {1194, 45210, 385}, {11174, 18092, 39668}


X(62697) = X(1)X(85)∩X(2)X(37)

Barycentrics    b*c*(3*a^2+(b-c)^2) : :

X(62697) lies on these lines: {1, 85}, {2, 37}, {4, 7247}, {6, 10025}, {7, 354}, {8, 17158}, {9, 24600}, {11, 7179}, {33, 273}, {44, 51352}, {45, 60709}, {55, 1447}, {69, 4514}, {76, 39731}, {86, 2191}, {92, 1886}, {100, 26229}, {145, 16284}, {150, 5722}, {171, 24283}, {200, 3875}, {239, 37658}, {269, 56309}, {286, 41083}, {304, 33940}, {314, 16739}, {322, 3870}, {331, 1895}, {341, 18135}, {347, 17093}, {348, 14986}, {390, 3598}, {461, 54314}, {496, 17181}, {516, 10520}, {518, 30946}, {672, 51052}, {673, 40131}, {693, 53361}, {870, 40028}, {938, 6604}, {942, 17753}, {946, 33949}, {982, 3663}, {984, 60668}, {986, 24172}, {999, 5088}, {1058, 17170}, {1210, 33298}, {1434, 3333}, {1441, 10578}, {1479, 4911}, {1621, 26246}, {1837, 56928}, {2201, 18162}, {2280, 6654}, {2352, 7411}, {3057, 3212}, {3086, 17095}, {3116, 3123}, {3177, 40133}, {3241, 30806}, {3304, 7176}, {3501, 17048}, {3583, 7272}, {3596, 18153}, {3616, 20880}, {3662, 26590}, {3665, 37722}, {3674, 12053}, {3677, 7182}, {3729, 24631}, {3760, 4385}, {3869, 20247}, {3873, 20347}, {3945, 4883}, {3946, 40869}, {3957, 17393}, {3974, 32087}, {3976, 24214}, {3999, 4346}, {4003, 62704}, {4008, 49563}, {4021, 13405}, {4056, 4857}, {4059, 17609}, {4073, 4357}, {4353, 59200}, {4356, 60734}, {4373, 56074}, {4389, 26015}, {4406, 21183}, {4673, 20911}, {4712, 49447}, {4713, 49481}, {4734, 20895}, {4737, 6381}, {4860, 60717}, {4875, 27288}, {4957, 17395}, {5222, 30854}, {5224, 25006}, {5256, 20921}, {5262, 20914}, {5542, 54668}, {5880, 20539}, {5919, 43037}, {6284, 7198}, {6376, 40609}, {6706, 27253}, {6744, 58816}, {7282, 11393}, {7322, 57815}, {8580, 17151}, {8758, 37757}, {9311, 45241}, {10180, 18698}, {10436, 10582}, {10481, 21625}, {10521, 12575}, {10934, 20835}, {11269, 30988}, {11376, 17084}, {12699, 33865}, {12701, 33867}, {14189, 59242}, {14256, 56929}, {16503, 24333}, {16572, 32024}, {16601, 31269}, {17014, 30807}, {17026, 49516}, {17027, 49496}, {17144, 33944}, {17220, 43915}, {17228, 26593}, {17274, 31146}, {17276, 40868}, {17282, 30813}, {17353, 56085}, {17380, 20927}, {17394, 29817}, {17681, 17742}, {17747, 51150}, {18136, 44153}, {18156, 21605}, {19868, 33945}, {20335, 51058}, {20345, 24524}, {20894, 52716}, {21049, 26531}, {21073, 33838}, {21185, 57247}, {24249, 56530}, {24338, 53208}, {24398, 27942}, {25237, 26690}, {25244, 27146}, {27475, 30949}, {27829, 47636}, {28594, 56127}, {29571, 59255}, {29835, 39995}, {31058, 31071}, {31169, 43065}, {31225, 37597}, {33095, 33869}, {33937, 46937}, {34791, 36854}, {39959, 49446}, {42361, 58001}, {51567, 58028}, {52428, 60716}

X(62697) = isotomic conjugate of X(39959)
X(62697) = anticomplement of X(44798)
X(62697) = trilinear pole of line {14330, 30804}
X(62697) = perspector of circumconic {{A, B, C, X(668), X(34085)}}
X(62697) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 39959}, {32, 39749}, {41, 21446}, {55, 52013}, {667, 37223}, {2175, 56264}, {4105, 58998}, {7084, 21450}, {8638, 41075}
X(62697) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39959}, {223, 52013}, {2550, 28043}, {3160, 21446}, {5222, 5223}, {6376, 39749}, {6554, 21450}, {6631, 37223}, {17284, 3242}, {30854, 24349}, {40593, 56264}, {44798, 44798}
X(62697) = X(i)-cross conjugate of X(j) for these {i, j}: {390, 30854}, {3755, 5222}
X(62697) = pole of line {650, 812} with respect to the incircle
X(62697) = pole of line {28475, 45695} with respect to the orthoptic circle of the Steiner Inellipse
X(62697) = pole of line {6591, 6608} with respect to the polar circle
X(62697) = pole of line {7, 3056} with respect to the Feuerbach hyperbola
X(62697) = pole of line {1333, 21059} with respect to the Stammler hyperbola
X(62697) = pole of line {513, 53357} with respect to the Steiner circumellipse
X(62697) = pole of line {513, 21195} with respect to the Steiner inellipse
X(62697) = pole of line {81, 3870} with respect to the Wallace hyperbola
X(62697) = pole of line {10, 85} with respect to the dual conic of Yff parabola
X(62697) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(7)
X(62697) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3693)}}, {{A, B, C, X(2), X(479)}}, {{A, B, C, X(7), X(346)}}, {{A, B, C, X(33), X(354)}}, {{A, B, C, X(37), X(2191)}}, {{A, B, C, X(75), X(23062)}}, {{A, B, C, X(85), X(3263)}}, {{A, B, C, X(86), X(344)}}, {{A, B, C, X(269), X(25067)}}, {{A, B, C, X(273), X(1229)}}, {{A, B, C, X(309), X(46738)}}, {{A, B, C, X(312), X(1088)}}, {{A, B, C, X(345), X(7056)}}, {{A, B, C, X(664), X(42720)}}, {{A, B, C, X(870), X(30758)}}, {{A, B, C, X(903), X(47386)}}, {{A, B, C, X(1997), X(53645)}}, {{A, B, C, X(2345), X(7197)}}, {{A, B, C, X(4358), X(30804)}}, {{A, B, C, X(4373), X(4461)}}, {{A, B, C, X(6654), X(39775)}}, {{A, B, C, X(7018), X(42034)}}, {{A, B, C, X(7033), X(18743)}}, {{A, B, C, X(9311), X(9312)}}, {{A, B, C, X(10580), X(28057)}}, {{A, B, C, X(17263), X(30598)}}, {{A, B, C, X(17264), X(39704)}}, {{A, B, C, X(17740), X(51567)}}, {{A, B, C, X(20570), X(46747)}}, {{A, B, C, X(20946), X(58001)}}, {{A, B, C, X(27475), X(40719)}}, {{A, B, C, X(33931), X(40028)}}, {{A, B, C, X(35280), X(42723)}}, {{A, B, C, X(37658), X(43751)}}, {{A, B, C, X(37788), X(58028)}}, {{A, B, C, X(39959), X(44798)}}, {{A, B, C, X(40875), X(53219)}}, {{A, B, C, X(41527), X(60668)}}, {{A, B, C, X(56088), X(60327)}}, {{A, B, C, X(56245), X(56330)}}
X(62697) = barycentric product X(i)*X(j) for these (i, j): {190, 30804}, {274, 3755}, {312, 3598}, {390, 85}, {3261, 35280}, {5222, 75}, {7290, 76}, {14330, 4569}, {23062, 28057}, {30854, 7}, {32018, 4989}
X(62697) = barycentric quotient X(i)/X(j) for these (i, j): {2, 39959}, {7, 21446}, {57, 52013}, {75, 39749}, {85, 56264}, {190, 37223}, {390, 9}, {3598, 57}, {3755, 37}, {4000, 21450}, {4617, 58998}, {4989, 1100}, {5222, 1}, {7290, 6}, {10580, 32560}, {14330, 3900}, {28057, 728}, {30804, 514}, {30854, 8}, {34085, 41075}, {35280, 101}, {43042, 58748}
X(62697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3673, 85}, {1, 40719, 14828}, {1, 7264, 3673}, {2, 192, 3693}, {2, 20173, 312}, {6, 24352, 10025}, {7, 10580, 14548}, {7, 31526, 34855}, {7, 497, 4872}, {75, 18743, 3263}, {75, 30963, 30758}, {3662, 31038, 51384}, {3663, 44735, 39126}, {3672, 17863, 75}, {30758, 30963, 30829}, {31627, 39126, 9436}


X(62698) = X(2)X(216)∩X(3)X(76)

Barycentrics    b^2*c^2*(-a^2+b^2+c^2)*(3*a^4+(b^2-c^2)^2) : :

X(62698) lies on these lines: {2, 216}, {3, 76}, {20, 54412}, {22, 46724}, {25, 20477}, {30, 58782}, {32, 28723}, {69, 305}, {75, 34822}, {83, 28695}, {95, 7485}, {127, 7934}, {132, 14249}, {185, 57008}, {187, 35952}, {194, 22401}, {230, 34828}, {253, 59756}, {262, 30258}, {286, 26118}, {311, 7494}, {315, 6643}, {316, 18531}, {317, 1370}, {325, 1368}, {327, 59256}, {338, 37637}, {340, 16063}, {350, 1040}, {376, 44146}, {385, 577}, {401, 10311}, {427, 45198}, {441, 7792}, {631, 1235}, {850, 53383}, {1007, 3260}, {1038, 1909}, {1513, 40822}, {1799, 2351}, {3090, 44142}, {3186, 51412}, {3266, 37668}, {3284, 7766}, {3314, 15526}, {3329, 5158}, {3523, 26166}, {3537, 52713}, {3546, 7763}, {3547, 32832}, {3548, 7769}, {3734, 35928}, {3785, 28706}, {3934, 37186}, {3972, 15013}, {5159, 37647}, {6179, 10316}, {6340, 40032}, {6353, 44131}, {6376, 34823}, {6676, 37688}, {6823, 59635}, {7391, 32002}, {7400, 32828}, {7410, 44143}, {7493, 44138}, {7496, 52712}, {7710, 9747}, {7735, 37188}, {7750, 12362}, {7752, 11585}, {7757, 14961}, {7760, 23115}, {7786, 28407}, {7788, 40995}, {7802, 12605}, {7803, 28406}, {7814, 37452}, {7828, 28405}, {7832, 14376}, {7834, 28433}, {7835, 54075}, {7857, 28697}, {7868, 20208}, {7894, 22120}, {7919, 37073}, {7998, 53348}, {8024, 15589}, {8667, 36748}, {9306, 57275}, {9744, 44137}, {9993, 44231}, {10300, 40996}, {10691, 37671}, {11511, 39099}, {14614, 15905}, {15271, 36751}, {15574, 33651}, {16096, 41530}, {16275, 44128}, {16992, 25907}, {17984, 37182}, {18019, 57822}, {18022, 26905}, {18437, 43460}, {18589, 20923}, {18906, 52520}, {19196, 34386}, {24245, 34392}, {24246, 34391}, {26155, 27376}, {26164, 32973}, {26179, 32964}, {26214, 32990}, {26870, 44144}, {26895, 36901}, {30758, 35516}, {30786, 57819}, {31829, 32819}, {32216, 34336}, {32815, 61113}, {34254, 40697}, {34803, 44136}, {36899, 57490}, {37667, 51481}, {40698, 57904}, {44134, 46336}, {44145, 58883}, {45201, 52347}, {46850, 59527}, {51426, 59561}

X(62698) = isotomic conjugate of X(40801)
X(62698) = perspector of circumconic {{A, B, C, X(6528), X(43187)}}
X(62698) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 40799}, {31, 40801}, {92, 40823}, {560, 55972}, {1973, 40802}
X(62698) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 40801}, {6, 40799}, {1352, 3148}, {6337, 40802}, {6374, 55972}, {7710, 25}, {7735, 45141}, {22391, 40823}, {37188, 1351}
X(62698) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40822, 40814}
X(62698) = X(i)-complementary conjugate of X(j) for these {i, j}: {48, 19602}, {19222, 20305}, {47643, 226}
X(62698) = X(i)-cross conjugate of X(j) for these {i, j}: {6776, 40814}, {42353, 37188}
X(62698) = pole of line {647, 17994} with respect to the polar circle
X(62698) = pole of line {69, 43711} with respect to the Jerabek hyperbola
X(62698) = pole of line {13567, 53475} with respect to the Kiepert hyperbola
X(62698) = pole of line {850, 47122} with respect to the MacBeath inconic
X(62698) = pole of line {2519, 16229} with respect to the Orthic inconic
X(62698) = pole of line {237, 577} with respect to the Stammler hyperbola
X(62698) = pole of line {520, 53331} with respect to the Steiner circumellipse
X(62698) = pole of line {520, 24284} with respect to the Steiner inellipse
X(62698) = pole of line {25, 394} with respect to the Wallace hyperbola
X(62698) = pole of line {512, 684} with respect to the dual conic of polar circle
X(62698) = pole of line {868, 8754} with respect to the dual conic of Stammler hyperbola
X(62698) = pole of line {2971, 3269} with respect to the dual conic of Wallace hyperbola
X(62698) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(69)
X(62698) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4176)}}, {{A, B, C, X(3), X(232)}}, {{A, B, C, X(69), X(98)}}, {{A, B, C, X(95), X(17907)}}, {{A, B, C, X(183), X(42313)}}, {{A, B, C, X(216), X(42353)}}, {{A, B, C, X(253), X(43981)}}, {{A, B, C, X(262), X(43711)}}, {{A, B, C, X(264), X(40822)}}, {{A, B, C, X(290), X(305)}}, {{A, B, C, X(324), X(18018)}}, {{A, B, C, X(325), X(1975)}}, {{A, B, C, X(1297), X(15355)}}, {{A, B, C, X(1368), X(56372)}}, {{A, B, C, X(1799), X(11547)}}, {{A, B, C, X(2351), X(3917)}}, {{A, B, C, X(5481), X(22240)}}, {{A, B, C, X(6620), X(7386)}}, {{A, B, C, X(7607), X(58728)}}, {{A, B, C, X(11574), X(40825)}}, {{A, B, C, X(14265), X(30735)}}, {{A, B, C, X(15466), X(59756)}}, {{A, B, C, X(21447), X(40032)}}, {{A, B, C, X(37765), X(57822)}}, {{A, B, C, X(37778), X(52145)}}
X(62698) = barycentric product X(i)*X(j) for these (i, j): {3, 40822}, {264, 37188}, {276, 42353}, {304, 4008}, {305, 7735}, {1513, 57799}, {3267, 35278}, {3926, 43976}, {6776, 76}, {30735, 4563}, {40050, 40825}, {40814, 69}, {47194, 6331}
X(62698) = barycentric quotient X(i)/X(j) for these (i, j): {2, 40801}, {3, 40799}, {69, 40802}, {76, 55972}, {184, 40823}, {305, 40824}, {1513, 232}, {4008, 19}, {4563, 35575}, {6620, 2207}, {6776, 6}, {7710, 45141}, {7735, 25}, {9289, 43727}, {9752, 59229}, {9755, 10311}, {30735, 2501}, {35278, 112}, {37188, 3}, {40814, 4}, {40822, 264}, {40825, 1974}, {42313, 40803}, {42353, 216}, {43187, 41074}, {43976, 393}, {47194, 647}, {56372, 1968}
X(62698) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 30737, 264}, {2, 3164, 232}, {3, 41009, 76}, {264, 16089, 2052}, {311, 34229, 40022}, {1368, 41005, 325}, {8024, 15589, 44149}


X(62699) = X(2)X(32)∩X(141)X(308)

Barycentrics    (a^2+b^2)*(a^2+c^2)*(b^4+b^2*c^2+c^4) : :

X(62699) lies on these lines: {2, 32}, {4, 14134}, {76, 19562}, {141, 308}, {237, 7832}, {297, 46104}, {689, 737}, {695, 3978}, {1176, 36213}, {1613, 7879}, {2887, 16889}, {3051, 7768}, {3117, 3314}, {3229, 7849}, {3619, 17500}, {3763, 18092}, {5117, 52658}, {7784, 11338}, {7790, 20023}, {7794, 40858}, {7831, 14096}, {7835, 37184}, {7859, 20965}, {7868, 11328}, {7892, 41278}, {7911, 14957}, {7934, 37988}, {7937, 41259}, {9208, 18010}, {10000, 46546}, {10159, 30505}, {10333, 14602}, {11007, 39092}, {18096, 33172}, {21459, 44134}, {23642, 40035}, {34290, 58784}, {42371, 57935}, {52289, 58853}

X(62699) = isotomic conjugate of X(14617)
X(62699) = complement of X(52083)
X(62699) = trilinear pole of line {9865, 17415}
X(62699) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 14617}, {38, 18898}, {1923, 3114}, {1964, 3407}, {2084, 33514}, {3051, 3113}, {8061, 58111}, {17442, 43722}, {41331, 46281}
X(62699) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 14617}, {3117, 14096}, {3314, 32449}, {10335, 141}, {19602, 39}, {41884, 3407}, {52658, 3051}, {62452, 33514}, {62696, 24273}
X(62699) = X(i)-cross conjugate of X(j) for these {i, j}: {3094, 62696}
X(62699) = pole of line {308, 3589} with respect to the Kiepert hyperbola
X(62699) = pole of line {39, 56915} with respect to the Stammler hyperbola
X(62699) = pole of line {826, 42291} with respect to the Steiner inellipse
X(62699) = pole of line {141, 8623} with respect to the Wallace hyperbola
X(62699) = pole of line {3005, 9479} with respect to the dual conic of circumcircle
X(62699) = pole of line {35971, 39691} with respect to the dual conic of Wallace hyperbola
X(62699) = center of mutual polar conic of ABC and X(1)-circumconcevian triangle of X(76)
X(62699) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2887)}}, {{A, B, C, X(4), X(7787)}}, {{A, B, C, X(32), X(76)}}, {{A, B, C, X(141), X(8623)}}, {{A, B, C, X(251), X(14970)}}, {{A, B, C, X(308), X(56976)}}, {{A, B, C, X(670), X(17941)}}, {{A, B, C, X(671), X(12150)}}, {{A, B, C, X(1078), X(10159)}}, {{A, B, C, X(1627), X(31630)}}, {{A, B, C, X(3661), X(3662)}}, {{A, B, C, X(3978), X(9229)}}, {{A, B, C, X(7753), X(54841)}}, {{A, B, C, X(7793), X(18840)}}, {{A, B, C, X(7808), X(43527)}}, {{A, B, C, X(7815), X(60278)}}, {{A, B, C, X(8023), X(20859)}}, {{A, B, C, X(8840), X(51582)}}, {{A, B, C, X(9865), X(42006)}}, {{A, B, C, X(17415), X(35526)}}, {{A, B, C, X(26233), X(55032)}}, {{A, B, C, X(30505), X(59180)}}, {{A, B, C, X(33651), X(35140)}}, {{A, B, C, X(33734), X(46505)}}, {{A, B, C, X(39287), X(45093)}}, {{A, B, C, X(40162), X(56920)}}, {{A, B, C, X(42299), X(60860)}}, {{A, B, C, X(42313), X(52658)}}
X(62699) = barycentric product X(i)*X(j) for these (i, j): {308, 3094}, {1502, 43977}, {1799, 5117}, {3112, 51836}, {3117, 40016}, {3314, 83}, {14970, 9865}, {16889, 30966}, {17415, 42371}, {18833, 3116}, {20024, 45093}, {50549, 689}, {56784, 82}, {62696, 76}
X(62699) = barycentric quotient X(i)/X(j) for these (i, j): {2, 14617}, {83, 3407}, {251, 18898}, {308, 3114}, {827, 58111}, {1176, 43722}, {3094, 39}, {3112, 3113}, {3116, 1964}, {3117, 3051}, {3314, 141}, {4577, 33514}, {5117, 427}, {9006, 9494}, {9865, 732}, {10335, 32449}, {16889, 40718}, {17415, 688}, {18833, 46281}, {18899, 41331}, {20022, 8840}, {42371, 9063}, {43977, 32}, {45093, 20025}, {46507, 17442}, {50549, 3005}, {51836, 38}, {52658, 14096}, {56784, 1930}, {56920, 1843}, {62696, 6}
X(62699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20022, 83}, {2, 2896, 8623}, {83, 1799, 56976}, {83, 40850, 251}, {141, 16890, 308}


X(62700) = X(1)X(19)∩X(5)X(6)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(a^4+2*a^2*b*c-(b^2-c^2)^2) : :

X(62700) lies on these lines: {1, 19}, {5, 6}, {9, 283}, {12, 22123}, {21, 4282}, {37, 2193}, {58, 7330}, {81, 226}, {219, 21677}, {579, 7549}, {1333, 8609}, {1437, 2182}, {1444, 16566}, {1812, 11679}, {1901, 13408}, {2194, 40962}, {2278, 50317}, {2286, 56819}, {2287, 2323}, {4266, 5276}, {4267, 27802}, {4858, 28942}, {5802, 7557}, {8755, 41364}, {11103, 54283}, {12047, 52413}, {16049, 16548}, {21965, 60691}, {33178, 37277}, {37594, 54417}, {40635, 52143}, {41608, 59681}, {46882, 54399}, {47156, 57591}, {54972, 60112}

X(62700) = perspector of circumconic {{A, B, C, X(162), X(925)}}
X(62700) = X(i)-isoconjugate-of-X(j) for these {i, j}: {65, 55936}, {226, 3422}, {525, 36076}, {1061, 1214}, {18532, 18588}
X(62700) = X(i)-Dao conjugate of X(j) for these {i, j}: {38964, 1577}, {40602, 55936}
X(62700) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1302, 21789}
X(62700) = pole of line {21789, 34952} with respect to the circumcircle
X(62700) = pole of line {1577, 57065} with respect to the polar circle
X(62700) = pole of line {21761, 34952} with respect to the Brocard inellipse
X(62700) = pole of line {63, 1993} with respect to the Stammler hyperbola
X(62700) = pole of line {2501, 16612} with respect to the Steiner inellipse
X(62700) = pole of line {304, 7763} with respect to the Wallace hyperbola
X(62700) = pole of line {36, 24780} with respect to the dual conic of Yff parabola
X(62700) = center of mutual polar conic of ABC and X(3)-circumconcevian triangle of X(1)
X(62700) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(68)}}, {{A, B, C, X(19), X(2006)}}, {{A, B, C, X(28), X(3615)}}, {{A, B, C, X(48), X(55549)}}, {{A, B, C, X(1172), X(24624)}}, {{A, B, C, X(1844), X(6734)}}, {{A, B, C, X(1973), X(60501)}}, {{A, B, C, X(2003), X(2323)}}, {{A, B, C, X(2287), X(41502)}}, {{A, B, C, X(2301), X(2338)}}, {{A, B, C, X(2332), X(2341)}}, {{A, B, C, X(5292), X(51503)}}, {{A, B, C, X(7073), X(62361)}}, {{A, B, C, X(51288), X(56892)}}, {{A, B, C, X(54368), X(54972)}}, {{A, B, C, X(54405), X(56457)}}
X(62700) = barycentric product X(i)*X(j) for these (i, j): {1, 11103}, {1060, 29}, {1172, 56457}, {1478, 21}, {4351, 6740}, {54283, 81}
X(62700) = barycentric quotient X(i)/X(j) for these (i, j): {284, 55936}, {1060, 307}, {1478, 1441}, {2194, 3422}, {2299, 1061}, {4351, 41804}, {11103, 75}, {32676, 36076}, {54283, 321}, {56457, 1231}
X(62700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1172, 2303, 284}, {2287, 3193, 2323}


X(62701) = X(2)X(648)∩X(5)X(53)

Barycentrics    (4*a^4+(b^2-c^2)^2-5*a^2*(b^2+c^2))*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :

X(62701) lies on these lines: {2, 648}, {4, 62196}, {5, 53}, {6, 3411}, {20, 10979}, {115, 566}, {140, 3284}, {231, 41335}, {382, 36751}, {393, 7486}, {547, 18487}, {548, 6748}, {549, 6749}, {570, 7765}, {577, 631}, {632, 15860}, {1249, 61881}, {1506, 3003}, {1656, 52703}, {1990, 3628}, {3087, 15717}, {3090, 61314}, {3530, 22052}, {5056, 61315}, {5067, 33630}, {5071, 36430}, {5702, 61870}, {6128, 50660}, {6709, 56290}, {7493, 10314}, {10303, 62213}, {11063, 34864}, {14627, 22268}, {15022, 62195}, {15851, 55866}, {15905, 55863}, {16003, 50678}, {26899, 47525}, {31401, 33871}, {36427, 61846}, {36748, 61811}, {38292, 61849}, {41219, 61378}, {41373, 52102}, {41586, 59208}, {44264, 47157}, {45198, 58454}, {50433, 51269}, {55864, 61301}, {59649, 61894}, {59657, 61876}, {61306, 61889}, {61307, 61856}

X(62701) = perspector of circumconic {{A, B, C, X(16077), X(20189)}}
X(62701) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2148, 55958}, {2167, 14483}, {2190, 55982}
X(62701) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 55982}, {216, 55958}, {549, 4993}, {40588, 14483}
X(62701) = pole of line {1637, 15412} with respect to the polar circle
X(62701) = pole of line {389, 3628} with respect to the Kiepert hyperbola
X(62701) = pole of line {97, 3284} with respect to the Stammler hyperbola
X(62701) = pole of line {9033, 17434} with respect to the Steiner inellipse
X(62701) = pole of line {11064, 34386} with respect to the Wallace hyperbola
X(62701) = pole of line {15414, 41077} with respect to the dual conic of polar circle
X(62701) = center of mutual polar conic of ABC and X(5)-circumconcevian triangle of X(5)
X(62701) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(52945)}}, {{A, B, C, X(5), X(549)}}, {{A, B, C, X(53), X(6749)}}, {{A, B, C, X(216), X(14919)}}, {{A, B, C, X(3199), X(8749)}}, {{A, B, C, X(8887), X(36809)}}, {{A, B, C, X(11062), X(57487)}}, {{A, B, C, X(14576), X(44109)}}, {{A, B, C, X(39530), X(44148)}}
X(62701) = barycentric product X(i)*X(j) for these (i, j): {5, 549}, {311, 44109}, {343, 6749}, {44148, 51}
X(62701) = barycentric quotient X(i)/X(j) for these (i, j): {5, 55958}, {51, 14483}, {216, 55982}, {549, 95}, {6749, 275}, {44109, 54}, {44148, 34384}
X(62701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 216, 52945}, {5, 52704, 233}, {216, 233, 36412}, {216, 52704, 5}, {577, 631, 61312}, {631, 61312, 36422}, {51269, 51276, 58447}


X(62702) = X(6)X(110)∩X(25)X(32)

Barycentrics    a^6-3*a^2*(b^2-c^2)^2-2*a^4*(b^2+c^2) : :

X(62702) lies on these lines: {2, 1975}, {3, 3291}, {6, 110}, {22, 1611}, {23, 3053}, {25, 32}, {39, 11284}, {50, 26283}, {115, 5094}, {154, 14567}, {183, 26257}, {230, 7493}, {232, 34809}, {251, 36616}, {394, 3981}, {468, 3767}, {543, 11336}, {574, 21448}, {599, 62311}, {858, 44518}, {1194, 5020}, {1350, 3231}, {1368, 15075}, {1370, 40326}, {1460, 21813}, {1495, 40825}, {1613, 33586}, {1692, 26864}, {1990, 4232}, {2374, 9307}, {2549, 16317}, {3051, 17810}, {3796, 39560}, {4239, 5275}, {5024, 8585}, {5028, 6090}, {5038, 10601}, {5169, 9745}, {5210, 7492}, {5286, 40132}, {5297, 31477}, {5305, 44212}, {5306, 26255}, {5309, 47597}, {5354, 14002}, {5359, 13595}, {5913, 16063}, {5941, 35901}, {6353, 41361}, {6388, 26869}, {6531, 37070}, {7392, 31404}, {7418, 10605}, {7426, 16306}, {7484, 37512}, {7495, 37637}, {7496, 20481}, {7737, 10301}, {7748, 31152}, {7772, 30734}, {7887, 37804}, {8556, 10130}, {8617, 21766}, {8667, 19221}, {8743, 37777}, {9306, 44499}, {9464, 9870}, {11059, 31859}, {11318, 30747}, {11477, 20977}, {11648, 32216}, {14263, 15398}, {14898, 59227}, {15271, 26235}, {15302, 22332}, {15815, 39576}, {16051, 24855}, {17811, 20859}, {30785, 33219}, {31099, 53419}, {32237, 41412}, {33979, 62191}, {34158, 51819}, {34417, 40130}, {34811, 53264}, {37454, 43620}, {37638, 53475}, {39238, 40673}, {39691, 61735}, {40135, 45141}, {41936, 57485}

X(62702) = perspector of circumconic {{A, B, C, X(691), X(32713)}}
X(62702) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 10604}, {63, 10603}
X(62702) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 10604}, {3162, 10603}, {16051, 11059}
X(62702) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43448, 10602}
X(62702) = pole of line {351, 2485} with respect to the circumcircle
X(62702) = pole of line {9148, 14272} with respect to the orthocentroidal circle
X(62702) = pole of line {3267, 57071} with respect to the polar circle
X(62702) = pole of line {351, 62176} with respect to the Brocard inellipse
X(62702) = pole of line {10568, 21639} with respect to the Jerabek hyperbola
X(62702) = pole of line {69, 858} with respect to the Kiepert hyperbola
X(62702) = pole of line {4563, 11634} with respect to the Kiepert parabola
X(62702) = pole of line {524, 3053} with respect to the Stammler hyperbola
X(62702) = pole of line {2492, 3566} with respect to the Steiner inellipse
X(62702) = pole of line {193, 3266} with respect to the Wallace hyperbola
X(62702) = pole of line {9517, 14341} with respect to the dual conic of DeLongchamps circle
X(62702) = pole of line {6388, 36793} with respect to the dual conic of Wallace hyperbola
X(62702) = center of mutual polar conic of ABC and X(6)-circumconcevian triangle of X(25)
X(62702) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(24855)}}, {{A, B, C, X(25), X(895)}}, {{A, B, C, X(32), X(60839)}}, {{A, B, C, X(111), X(2207)}}, {{A, B, C, X(512), X(35259)}}, {{A, B, C, X(1975), X(2374)}}, {{A, B, C, X(5968), X(34854)}}, {{A, B, C, X(6337), X(45810)}}, {{A, B, C, X(8770), X(32740)}}, {{A, B, C, X(9307), X(62310)}}, {{A, B, C, X(36616), X(46154)}}
X(62702) = barycentric product X(i)*X(j) for these (i, j): {111, 24855}, {10602, 4}, {16051, 25}, {43448, 6}
X(62702) = barycentric quotient X(i)/X(j) for these (i, j): {4, 10604}, {25, 10603}, {10602, 69}, {16051, 305}, {24855, 3266}, {43448, 76}
X(62702) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 20998, 35259}, {25, 1196, 1184}, {25, 14580, 2207}, {32, 1196, 40126}, {32, 34481, 40350}, {111, 44420, 20998}, {111, 9465, 1995}, {1196, 34481, 25}, {1196, 40350, 32}, {1995, 9465, 6}


X(62703) = X(1)X(88)∩X(3)X(901)

Barycentrics    a^2*(a+b-2*c)*(a-b-c)*(a-2*b+c)*(a^2-b^2+b*c-c^2) : :

X(62703) lies on cubic K259 and on these lines: {1, 88}, {2, 36590}, {3, 901}, {5, 38950}, {8, 51402}, {21, 3737}, {35, 61476}, {36, 16944}, {41, 2316}, {54, 37535}, {55, 1318}, {56, 59}, {60, 4636}, {104, 52005}, {220, 5548}, {528, 56421}, {758, 46820}, {903, 55082}, {956, 52925}, {999, 1391}, {1078, 4555}, {1168, 37525}, {1385, 52478}, {1417, 34880}, {1443, 52553}, {1870, 4242}, {2267, 40595}, {2275, 9456}, {3160, 36887}, {3417, 32612}, {3576, 47645}, {3616, 40450}, {3937, 38604}, {4080, 5397}, {4193, 18340}, {4511, 53525}, {4638, 59234}, {4861, 56938}, {5010, 39148}, {5552, 51984}, {6224, 14584}, {7280, 32899}, {7412, 36125}, {10269, 10428}, {11114, 19634}, {13587, 23703}, {14190, 37600}, {15950, 19636}, {27529, 56143}, {34586, 56751}, {37300, 57478}, {37561, 38541}, {38697, 44759}, {41343, 54391}, {50828, 52753}, {51631, 56749}, {60480, 60570}

X(62703) = isogonal conjugate of X(14584)
X(62703) = trilinear pole of line {654, 2323}
X(62703) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14584}, {6, 14628}, {7, 40172}, {44, 2006}, {56, 51975}, {65, 56950}, {80, 1319}, {519, 1411}, {655, 1635}, {759, 40663}, {900, 2222}, {902, 18815}, {1168, 1317}, {1404, 18359}, {1647, 52377}, {1807, 1877}, {1960, 35174}, {2161, 3911}, {3285, 60091}, {3762, 32675}, {17455, 34535}, {37168, 52391}, {37790, 52431}, {40437, 53530}, {51562, 53528}, {52383, 52680}, {57788, 61047}, {60074, 61210}
X(62703) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 51975}, {3, 14584}, {9, 14628}, {2245, 52659}, {3738, 51402}, {6149, 214}, {34586, 40663}, {35128, 3762}, {35204, 519}, {38984, 900}, {40584, 3911}, {40594, 18815}, {40595, 2006}, {40602, 56950}, {45247, 56416}, {57434, 4768}
X(62703) = X(i)-Ceva conjugate of X(j) for these {i, j}: {52553, 40215}
X(62703) = X(i)-complementary conjugate of X(j) for these {i, j}: {2743, 53574}
X(62703) = X(i)-cross conjugate of X(j) for these {i, j}: {2361, 2316}, {3025, 3738}, {53285, 5548}
X(62703) = pole of line {14584, 23703} with respect to the Stammler hyperbola
X(62703) = pole of line {14584, 30939} with respect to the Wallace hyperbola
X(62703) = center of mutual polar conic of ABC and X(6)-circumconcevian triangle of X(36)
X(62703) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36)}}, {{A, B, C, X(2), X(16586)}}, {{A, B, C, X(7), X(12736)}}, {{A, B, C, X(8), X(2802)}}, {{A, B, C, X(9), X(5541)}}, {{A, B, C, X(21), X(100)}}, {{A, B, C, X(41), X(2177)}}, {{A, B, C, X(55), X(678)}}, {{A, B, C, X(56), X(244)}}, {{A, B, C, X(88), X(40215)}}, {{A, B, C, X(102), X(52377)}}, {{A, B, C, X(104), X(10090)}}, {{A, B, C, X(106), X(16944)}}, {{A, B, C, X(214), X(2320)}}, {{A, B, C, X(220), X(53285)}}, {{A, B, C, X(252), X(15446)}}, {{A, B, C, X(277), X(3960)}}, {{A, B, C, X(314), X(35636)}}, {{A, B, C, X(404), X(17515)}}, {{A, B, C, X(758), X(3754)}}, {{A, B, C, X(943), X(10087)}}, {{A, B, C, X(1036), X(3722)}}, {{A, B, C, X(1320), X(9268)}}, {{A, B, C, X(1464), X(4642)}}, {{A, B, C, X(1772), X(44428)}}, {{A, B, C, X(2316), X(4792)}}, {{A, B, C, X(2757), X(25440)}}, {{A, B, C, X(3025), X(51402)}}, {{A, B, C, X(3218), X(3306)}}, {{A, B, C, X(3445), X(53314)}}, {{A, B, C, X(3478), X(17460)}}, {{A, B, C, X(3680), X(12653)}}, {{A, B, C, X(4256), X(4282)}}, {{A, B, C, X(4674), X(23838)}}, {{A, B, C, X(4850), X(32851)}}, {{A, B, C, X(4855), X(4881)}}, {{A, B, C, X(5081), X(14923)}}, {{A, B, C, X(5558), X(18240)}}, {{A, B, C, X(5563), X(46820)}}, {{A, B, C, X(7952), X(34913)}}, {{A, B, C, X(14584), X(34431)}}, {{A, B, C, X(19619), X(39963)}}, {{A, B, C, X(24028), X(34586)}}, {{A, B, C, X(25438), X(45393)}}, {{A, B, C, X(30513), X(39776)}}, {{A, B, C, X(32577), X(52440)}}, {{A, B, C, X(35012), X(45950)}}, {{A, B, C, X(41501), X(53527)}}, {{A, B, C, X(41801), X(55432)}}, {{A, B, C, X(54286), X(55961)}}
X(62703) = barycentric product X(i)*X(j) for these (i, j): {36, 4997}, {106, 32851}, {1318, 51583}, {1320, 3218}, {1797, 5081}, {2316, 320}, {2323, 903}, {3257, 3738}, {3904, 901}, {4453, 5548}, {4511, 88}, {4555, 654}, {4582, 53314}, {4615, 53562}, {16944, 312}, {20568, 2361}, {23838, 4585}, {34544, 57788}, {40215, 8}, {52031, 56757}, {52426, 57995}, {52553, 9}, {53525, 5376}
X(62703) = barycentric quotient X(i)/X(j) for these (i, j): {1, 14628}, {6, 14584}, {9, 51975}, {36, 3911}, {41, 40172}, {88, 18815}, {106, 2006}, {215, 17455}, {284, 56950}, {654, 900}, {901, 655}, {1168, 34535}, {1320, 18359}, {1797, 52392}, {1870, 37790}, {1983, 23703}, {2245, 40663}, {2316, 80}, {2323, 519}, {2361, 44}, {3257, 35174}, {3738, 3762}, {4282, 52680}, {4511, 4358}, {4555, 46405}, {4674, 60091}, {4996, 51583}, {4997, 20566}, {5081, 46109}, {5548, 51562}, {7113, 1319}, {8648, 1635}, {9456, 1411}, {14260, 52212}, {16944, 57}, {17455, 1317}, {21758, 53528}, {21828, 30572}, {23838, 60074}, {32665, 2222}, {32719, 32675}, {32851, 3264}, {34544, 214}, {34586, 52659}, {35128, 51402}, {40215, 7}, {52413, 1877}, {52426, 902}, {52427, 8756}, {52434, 1404}, {52553, 85}, {53046, 23757}, {53285, 1639}, {53314, 30725}, {53562, 4120}, {57174, 53535}, {58328, 2325}
X(62703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 14260, 901}, {214, 52537, 1}


X(62704) = X(2)X(85)∩X(9)X(658)

Barycentrics    b*(-a+b-c)*(a+b-c)*c*(-5*a^2+(b-c)^2+4*a*(b+c)) : :

X(62704) lies on these lines: {2, 85}, {7, 4679}, {9, 658}, {75, 4554}, {200, 25716}, {210, 31526}, {1005, 6516}, {2898, 26040}, {3740, 59601}, {4003, 62697}, {4358, 59200}, {4389, 9436}, {4413, 14189}, {4423, 9446}, {5437, 33765}, {6172, 47374}, {6745, 16284}, {7056, 18228}, {7182, 18743}, {8580, 56309}, {10580, 32003}, {10582, 21453}, {17158, 26015}, {17181, 37374}, {17860, 44186}, {18230, 23062}, {19804, 61413}, {30806, 62710}, {30829, 40704}, {34018, 39963}, {40719, 41847}, {42034, 52421}, {56310, 58634}

X(62704) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 55922}, {657, 58109}, {2175, 55948}, {14827, 56274}
X(62704) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 55922}, {6173, 34522}, {40593, 55948}
X(62704) = X(i)-cross conjugate of X(j) for these {i, j}: {62705, 47374}
X(62704) = pole of line {14414, 57055} with respect to the dual conic of polar circle
X(62704) = center of mutual polar conic of ABC and X(7)-circumconcevian triangle of X(2)
X(62704) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6172)}}, {{A, B, C, X(75), X(37780)}}, {{A, B, C, X(241), X(35445)}}, {{A, B, C, X(1088), X(47374)}}, {{A, B, C, X(14942), X(42048)}}, {{A, B, C, X(17079), X(52156)}}, {{A, B, C, X(44664), X(60668)}}, {{A, B, C, X(56074), X(59181)}}
X(62704) = barycentric product X(i)*X(j) for these (i, j): {4554, 46919}, {6172, 85}, {35445, 6063}, {47374, 8}, {62705, 75}
X(62704) = barycentric quotient X(i)/X(j) for these (i, j): {7, 55922}, {85, 55948}, {934, 58109}, {1088, 56274}, {6172, 9}, {8545, 25411}, {23056, 3022}, {35445, 55}, {46919, 650}, {47374, 7}, {62705, 1}
X(62704) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 31627, 1088}, {2, 348, 37757}, {2, 37780, 85}, {85, 31627, 37780}, {30796, 30988, 30854}


X(62705) = X(1)X(7)∩X(2)X(664)

Barycentrics    (a+b-c)*(a-b+c)*(5*a^2-(b-c)^2-4*a*(b+c)) : :

X(62705) lies on these lines: {1, 7}, {2, 664}, {8, 25716}, {10, 25718}, {37, 43064}, {55, 934}, {85, 3622}, {144, 6603}, {145, 348}, {220, 61006}, {241, 4850}, {319, 20007}, {354, 23839}, {479, 10389}, {738, 37556}, {883, 1642}, {948, 26738}, {1000, 43736}, {1100, 60939}, {1125, 31994}, {1170, 56043}, {1212, 26669}, {1214, 37666}, {1319, 3598}, {1334, 34497}, {1388, 7195}, {1565, 7967}, {1697, 7177}, {1813, 2301}, {1996, 56274}, {2124, 58836}, {2256, 34028}, {3008, 31188}, {3212, 5265}, {3241, 9436}, {3244, 32003}, {3304, 38859}, {3485, 57826}, {3601, 14256}, {3616, 9312}, {3617, 17095}, {3621, 33298}, {3623, 6604}, {3676, 30573}, {3911, 5222}, {4262, 23890}, {4464, 9797}, {4561, 6555}, {4566, 5281}, {4678, 41807}, {4869, 17086}, {5219, 5308}, {5228, 14996}, {5232, 53997}, {5252, 39587}, {5261, 17084}, {5435, 50114}, {5436, 59605}, {5703, 34059}, {5919, 34855}, {6610, 60998}, {6666, 59610}, {7179, 48856}, {8555, 37423}, {9780, 25719}, {10405, 46835}, {10520, 53058}, {10578, 56309}, {13405, 31527}, {14421, 43930}, {15730, 60946}, {16572, 60947}, {16667, 60941}, {17078, 51351}, {17106, 53053}, {17136, 17784}, {17158, 32105}, {17756, 43062}, {18230, 52705}, {20075, 42064}, {24558, 26563}, {24599, 31225}, {25082, 28981}, {25720, 59296}, {25721, 26038}, {26228, 37761}, {28967, 56937}, {31018, 34526}, {31397, 51364}, {33925, 38900}, {37635, 43066}, {37681, 43065}, {38314, 40719}, {41436, 43038}, {42082, 56933}, {43983, 55082}, {46934, 52422}, {54425, 61015}

X(62705) = perspector of circumconic {{A, B, C, X(658), X(35157)}}
X(62705) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 55948}, {55, 55922}, {1253, 56274}, {3900, 58109}
X(62705) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 55922}, {3160, 55948}, {6172, 62710}, {6173, 5231}, {17113, 56274}
X(62705) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1996, 12848}, {62704, 6172}
X(62705) = X(i)-cross conjugate of X(j) for these {i, j}: {35445, 6172}
X(62705) = pole of line {4025, 6366} with respect to the Steiner circumellipse
X(62705) = pole of line {6366, 7658} with respect to the Steiner inellipse
X(62705) = pole of line {7, 7988} with respect to the dual conic of Yff parabola
X(62705) = center of mutual polar conic of ABC and X(7)-circumconcevian triangle of X(7)
X(62705) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(15731)}}, {{A, B, C, X(2), X(1323)}}, {{A, B, C, X(4), X(30424)}}, {{A, B, C, X(7), X(1121)}}, {{A, B, C, X(9), X(30353)}}, {{A, B, C, X(21), X(8544)}}, {{A, B, C, X(80), X(4312)}}, {{A, B, C, X(269), X(34056)}}, {{A, B, C, X(516), X(1000)}}, {{A, B, C, X(943), X(43178)}}, {{A, B, C, X(1458), X(41436)}}, {{A, B, C, X(2320), X(18450)}}, {{A, B, C, X(3000), X(40779)}}, {{A, B, C, X(3296), X(43180)}}, {{A, B, C, X(4292), X(55964)}}, {{A, B, C, X(4336), X(42064)}}, {{A, B, C, X(5542), X(18490)}}, {{A, B, C, X(5558), X(30340)}}, {{A, B, C, X(7320), X(30332)}}, {{A, B, C, X(10481), X(56043)}}, {{A, B, C, X(20121), X(56348)}}, {{A, B, C, X(21314), X(56274)}}, {{A, B, C, X(31721), X(56331)}}
X(62705) = barycentric product X(i)*X(j) for these (i, j): {1, 62704}, {6172, 7}, {35445, 85}, {46919, 664}, {47374, 9}
X(62705) = barycentric quotient X(i)/X(j) for these (i, j): {7, 55948}, {57, 55922}, {279, 56274}, {1461, 58109}, {6172, 8}, {23056, 3119}, {35445, 9}, {37541, 25411}, {46919, 522}, {47374, 85}, {62704, 75}
X(62705) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10481, 5543}, {1, 11200, 390}, {1, 1323, 7}, {1, 3160, 279}, {1, 53617, 53014}, {1, 5527, 4336}, {1, 77, 38459}, {7, 3160, 1323}, {7, 31721, 1}, {347, 1442, 3945}, {3638, 3639, 4312}, {6603, 42050, 144}, {9312, 25723, 3616}


X(62706) = X(2)X(45)∩X(8)X(9)

Barycentrics    (a-b-c)*(5*a-b-c) : :

X(62706) lies on these lines: {1, 61330}, {2, 45}, {6, 3623}, {7, 4480}, {8, 9}, {37, 3622}, {44, 145}, {55, 4152}, {69, 51144}, {142, 4488}, {144, 320}, {192, 37681}, {347, 28966}, {374, 14923}, {527, 29627}, {536, 24599}, {644, 55432}, {672, 30947}, {883, 1642}, {966, 17340}, {1125, 3731}, {1219, 31435}, {1229, 56085}, {1265, 11106}, {1698, 5296}, {1743, 3244}, {2161, 20075}, {2256, 23617}, {2287, 52352}, {2320, 30727}, {2324, 56387}, {2345, 16814}, {2899, 18231}, {2975, 59221}, {3219, 37655}, {3241, 4029}, {3616, 16676}, {3617, 17281}, {3621, 3943}, {3672, 17261}, {3683, 7172}, {3729, 18230}, {3758, 29624}, {3912, 6172}, {3945, 17350}, {3986, 34595}, {4000, 6687}, {4081, 28131}, {4126, 10385}, {4373, 17278}, {4384, 61023}, {4395, 4452}, {4402, 55998}, {4416, 60983}, {4427, 50198}, {4461, 17277}, {4512, 5423}, {4644, 29621}, {4659, 60986}, {4664, 17014}, {4676, 39587}, {4678, 17330}, {4700, 20050}, {4704, 51171}, {4718, 32105}, {4727, 5839}, {4747, 5308}, {4748, 17359}, {4899, 8236}, {4908, 31145}, {4969, 16885}, {5032, 29588}, {5232, 17280}, {5273, 30568}, {5281, 27538}, {5303, 38869}, {5328, 59779}, {5698, 39570}, {5745, 8055}, {6666, 31995}, {6745, 59216}, {7359, 27508}, {8165, 56313}, {9776, 25734}, {11038, 62222}, {16561, 17784}, {16832, 50118}, {17132, 31183}, {17234, 20059}, {17257, 17292}, {17264, 17360}, {17276, 31243}, {17296, 61000}, {17298, 60957}, {17303, 46930}, {17333, 29579}, {17334, 45789}, {17335, 50107}, {17691, 32034}, {18139, 20214}, {18228, 56078}, {19297, 37307}, {20052, 50087}, {20072, 29583}, {21296, 60942}, {24280, 40333}, {24708, 56714}, {26258, 37762}, {27108, 27544}, {27382, 27385}, {27522, 27525}, {27757, 31018}, {28808, 30608}, {29396, 44147}, {29571, 35578}, {29611, 50093}, {30833, 41310}, {32007, 60939}, {34820, 52549}, {36474, 61621}, {36798, 40779}, {37666, 41839}, {40869, 62710}, {46931, 52706}, {50316, 51297}, {54409, 59239}

X(62706) = perspector of circumconic {{A, B, C, X(3699), X(4555)}}
X(62706) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 39963}, {57, 41436}, {604, 36588}, {1106, 56075}, {1397, 40029}, {1407, 4900}, {1412, 56159}, {1417, 36915}, {3669, 6014}, {53659, 57181}
X(62706) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 39963}, {3161, 36588}, {3241, 31188}, {3679, 5219}, {5452, 41436}, {6552, 56075}, {24771, 4900}, {40599, 56159}, {52593, 1358}, {52871, 36915}
X(62706) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30608, 8}, {30829, 3241}
X(62706) = pole of line {3621, 3936} with respect to the Kiepert hyperbola
X(62706) = pole of line {1412, 3285} with respect to the Stammler hyperbola
X(62706) = pole of line {900, 4468} with respect to the Steiner circumellipse
X(62706) = pole of line {900, 2516} with respect to the Steiner inellipse
X(62706) = pole of line {644, 17780} with respect to the Yff parabola
X(62706) = pole of line {4585, 43290} with respect to the Hutson-Moses hyperbola
X(62706) = pole of line {1434, 16704} with respect to the Wallace hyperbola
X(62706) = pole of line {522, 3904} with respect to the dual conic of incircle
X(62706) = pole of line {519, 4402} with respect to the dual conic of Yff parabola
X(62706) = pole of line {3904, 47785} with respect to the dual conic of Suppa-Cucoanes circle
X(62706) = center of mutual polar conic of ABC and X(8)-circumconcevian triangle of X(8)
X(62706) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2325)}}, {{A, B, C, X(8), X(903)}}, {{A, B, C, X(9), X(88)}}, {{A, B, C, X(21), X(3895)}}, {{A, B, C, X(55), X(52206)}}, {{A, B, C, X(190), X(30731)}}, {{A, B, C, X(346), X(4997)}}, {{A, B, C, X(391), X(52549)}}, {{A, B, C, X(1000), X(4346)}}, {{A, B, C, X(1016), X(4454)}}, {{A, B, C, X(1086), X(4530)}}, {{A, B, C, X(1697), X(13462)}}, {{A, B, C, X(2321), X(4029)}}, {{A, B, C, X(2347), X(34820)}}, {{A, B, C, X(3161), X(31227)}}, {{A, B, C, X(3685), X(27922)}}, {{A, B, C, X(3686), X(4982)}}, {{A, B, C, X(3707), X(42026)}}, {{A, B, C, X(3886), X(36798)}}, {{A, B, C, X(4152), X(16594)}}, {{A, B, C, X(4873), X(4945)}}, {{A, B, C, X(5853), X(6006)}}, {{A, B, C, X(23073), X(57478)}}, {{A, B, C, X(31722), X(56201)}}, {{A, B, C, X(34762), X(36802)}}, {{A, B, C, X(40779), X(52900)}}
X(62706) = barycentric product X(i)*X(j) for these (i, j): {333, 4029}, {3241, 8}, {3699, 6006}, {4102, 4982}, {13462, 341}, {16236, 56094}, {16670, 312}, {21870, 314}, {23073, 7017}, {30608, 36911}, {30829, 9}
X(62706) = barycentric quotient X(i)/X(j) for these (i, j): {8, 36588}, {9, 39963}, {55, 41436}, {200, 4900}, {210, 56159}, {312, 40029}, {346, 56075}, {2325, 36915}, {3241, 7}, {3699, 53659}, {3939, 6014}, {4029, 226}, {4152, 36924}, {4982, 553}, {6006, 3676}, {8656, 43924}, {13462, 269}, {16670, 57}, {21870, 65}, {23073, 222}, {30829, 85}, {36911, 5219}, {52593, 43052}
X(62706) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 190, 4454}, {2, 20073, 4346}, {8, 2325, 346}, {8, 3161, 2325}, {8, 31722, 9}, {9, 346, 391}, {9, 4873, 3707}, {45, 4370, 54389}, {144, 344, 4869}, {390, 27549, 10005}, {2325, 3707, 4873}, {3161, 31722, 8}, {3731, 59579, 5749}, {3943, 37654, 3621}, {4029, 16670, 3241}, {4419, 4422, 2}, {4644, 41313, 29621}, {4727, 5839, 20054}, {4969, 17314, 20014}, {5308, 50127, 4747}, {15828, 59585, 1743}, {16670, 36911, 4029}, {16676, 50115, 3616}, {17261, 26685, 3672}, {17262, 37650, 4452}, {17264, 54280, 29616}, {17334, 53665, 45789}, {25101, 25728, 7}


X(62707) = X(9)X(21)∩X(37)X(86)

Barycentrics    a*(a+b)*(a-b-c)*(a+c)*(-b^3-c^3+a*(b^2+3*b*c+c^2)) : :

X(62707) lies on these lines: {9, 21}, {37, 86}, {198, 16876}, {274, 25242}, {314, 346}, {333, 3693}, {672, 5208}, {1010, 16601}, {1043, 1212}, {1045, 40977}, {1757, 59733}, {1778, 41610}, {2276, 25059}, {3685, 40937}, {3694, 60731}, {3991, 56018}, {4195, 5283}, {4261, 17352}, {4653, 24036}, {6910, 27397}, {8804, 29967}, {10477, 52241}, {11103, 27415}, {11110, 25066}, {13588, 40131}, {16053, 25083}, {16589, 26051}, {16699, 52352}, {16749, 25237}, {16970, 27644}, {17139, 41325}, {17194, 59216}, {17524, 56536}, {24342, 25081}, {25058, 26065}, {29380, 46502}, {54356, 55337}, {56020, 60960}

X(62707) = perspector of circumconic {{A, B, C, X(643), X(4589)}}
X(62707) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1400, 55967}, {1402, 55946}
X(62707) = X(i)-Dao conjugate of X(j) for these {i, j}: {40582, 55967}, {40605, 55946}
X(62707) = pole of line {57, 1914} with respect to the Stammler hyperbola
X(62707) = pole of line {85, 239} with respect to the Wallace hyperbola
X(62707) = center of mutual polar conic of ABC and X(8)-circumconcevian triangle of X(9)
X(62707) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(335)}}, {{A, B, C, X(21), X(18827)}}, {{A, B, C, X(41), X(292)}}, {{A, B, C, X(78), X(337)}}, {{A, B, C, X(284), X(37128)}}, {{A, B, C, X(2287), X(36800)}}
X(62707) = barycentric product X(i)*X(j) for these (i, j): {333, 51058}
X(62707) = barycentric quotient X(i)/X(j) for these (i, j): {21, 55967}, {333, 55946}, {51058, 226}


X(62708) = X(2)X(6)∩X(4)X(5972)

Barycentrics    (a^2-b^2-c^2)*(7*a^4-5*(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :

X(62708) lies on these lines: {2, 6}, {4, 5972}, {20, 61680}, {110, 15113}, {146, 11598}, {316, 52283}, {376, 1531}, {441, 30227}, {468, 51212}, {511, 21971}, {801, 60137}, {858, 14927}, {1092, 5067}, {1351, 37911}, {1503, 30769}, {1568, 3524}, {2071, 40196}, {3091, 53050}, {3146, 15448}, {3167, 40920}, {3260, 52147}, {3526, 44683}, {3533, 5562}, {3543, 41424}, {3545, 51394}, {3818, 8889}, {4232, 51538}, {5056, 35602}, {5159, 6776}, {5642, 30775}, {5646, 55864}, {5650, 41716}, {5654, 6699}, {5921, 61735}, {6090, 52293}, {6340, 60872}, {6353, 31670}, {6640, 18917}, {6643, 43839}, {6696, 32605}, {6815, 22555}, {7396, 10192}, {7714, 48895}, {7763, 34403}, {9306, 52299}, {9820, 18909}, {10272, 18281}, {10300, 33750}, {10565, 48881}, {11002, 41673}, {11185, 52288}, {11331, 32006}, {13857, 54170}, {15466, 37878}, {15740, 16196}, {16051, 25406}, {16165, 31105}, {18383, 25712}, {18918, 47391}, {21850, 21968}, {21970, 54132}, {22647, 22973}, {23291, 39899}, {23332, 59551}, {26864, 47097}, {30744, 32064}, {30771, 48906}, {30786, 36894}, {31188, 62402}, {32223, 38282}, {32237, 33703}, {32267, 62042}, {32269, 53857}, {32827, 44216}, {35259, 51537}, {37188, 40349}, {37453, 47582}, {40132, 61743}, {41465, 51391}, {44136, 46106}, {44441, 46817}, {45311, 50974}, {58378, 61607}, {62391, 62710}

X(62708) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 43713}, {2155, 33702}
X(62708) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 43713}, {376, 40138}, {45245, 33702}
X(62708) = pole of line {6, 11410} with respect to the Stammler hyperbola
X(62708) = pole of line {523, 8142} with respect to the Steiner inellipse
X(62708) = pole of line {2, 5702} with respect to the Wallace hyperbola
X(62708) = pole of line {525, 14345} with respect to the dual conic of polar circle
X(62708) = pole of line {3265, 9033} with respect to the dual conic of Orthic inconic
X(62708) = center of mutual polar conic of ABC and X(20)-circumconcevian triangle of X(2)
X(62708) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3543)}}, {{A, B, C, X(4), X(47296)}}, {{A, B, C, X(6), X(41424)}}, {{A, B, C, X(69), X(44877)}}, {{A, B, C, X(193), X(60872)}}, {{A, B, C, X(287), X(11160)}}, {{A, B, C, X(394), X(37878)}}, {{A, B, C, X(524), X(42287)}}, {{A, B, C, X(2407), X(44326)}}, {{A, B, C, X(4846), X(59767)}}, {{A, B, C, X(6340), X(7788)}}, {{A, B, C, X(11064), X(34403)}}, {{A, B, C, X(13567), X(60137)}}, {{A, B, C, X(15066), X(55982)}}, {{A, B, C, X(26958), X(56346)}}, {{A, B, C, X(30786), X(37668)}}, {{A, B, C, X(37643), X(43530)}}
X(62708) = barycentric product X(i)*X(j) for these (i, j): {305, 41424}, {3543, 69}
X(62708) = barycentric quotient X(i)/X(j) for these (i, j): {3, 43713}, {20, 33702}, {3543, 4}, {41424, 25}
X(62708) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 11064, 69}, {2, 193, 47296}, {2, 23292, 18928}, {2, 37645, 37643}, {69, 11064, 37669}, {858, 35260, 14927}, {5642, 30775, 51023}, {35259, 52284, 51537}, {37643, 37645, 1992}


X(62709) = X(2)X(39)∩X(86)X(799)

Barycentrics    b*(a+b)*c*(a+c)*(-(b*c)+2*a*(b+c)) : :

X(62709) lies on these lines: {2, 39}, {37, 1978}, {42, 25280}, {86, 799}, {99, 35983}, {350, 30970}, {668, 29822}, {751, 17250}, {873, 25507}, {899, 33296}, {1125, 62234}, {1962, 51863}, {3741, 58814}, {4653, 52908}, {4687, 6385}, {4871, 16887}, {5226, 57785}, {5235, 17028}, {5275, 11339}, {5333, 8033}, {6536, 7018}, {7304, 27643}, {10180, 18059}, {14009, 30992}, {16355, 16992}, {16739, 18743}, {16741, 30965}, {17144, 31330}, {17210, 29827}, {17322, 44154}, {18157, 30829}, {25508, 34022}, {27811, 53363}, {28606, 40087}, {29824, 33297}, {30588, 30990}, {30941, 30947}, {30961, 30988}, {32104, 59312}, {56052, 59306}

X(62709) = isotomic conjugate of X(56158)
X(62709) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 56158}, {32, 56125}, {213, 55919}, {669, 37209}, {798, 29351}, {1402, 56116}, {1918, 36871}
X(62709) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56158}, {6376, 56125}, {6626, 55919}, {31998, 29351}, {34021, 36871}, {40605, 56116}
X(62709) = pole of line {6, 750} with respect to the Wallace hyperbola
X(62709) = center of mutual polar conic of ABC and X(75)-circumconcevian triangle of X(2)
X(62709) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(751)}}, {{A, B, C, X(37), X(2229)}}, {{A, B, C, X(76), X(31002)}}, {{A, B, C, X(194), X(39738)}}, {{A, B, C, X(538), X(29350)}}, {{A, B, C, X(3948), X(4776)}}, {{A, B, C, X(4997), X(28809)}}, {{A, B, C, X(5283), X(54981)}}, {{A, B, C, X(16748), X(56052)}}, {{A, B, C, X(21838), X(56236)}}, {{A, B, C, X(30964), X(56129)}}
X(62709) = barycentric product X(i)*X(j) for these (i, j): {274, 4664}, {310, 3240}, {4776, 799}, {29350, 670}, {54981, 6385}
X(62709) = barycentric quotient X(i)/X(j) for these (i, j): {2, 56158}, {75, 56125}, {86, 55919}, {99, 29351}, {274, 36871}, {314, 56077}, {333, 56116}, {799, 37209}, {3240, 42}, {4664, 37}, {4776, 661}, {29350, 512}, {54981, 213}
X(62709) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1655, 2229}, {2, 31008, 310}


X(62710) = X(1)X(2)∩X(7)X(3035)

Barycentrics    (a-b-c)*(7*a^2-5*(b-c)^2-2*a*(b+c)) : :

X(62710) lies on these lines: {1, 2}, {7, 3035}, {100, 9779}, {140, 5815}, {165, 46873}, {480, 61158}, {518, 31188}, {1260, 9342}, {1376, 8543}, {1385, 5828}, {3091, 59587}, {3533, 34790}, {4323, 37828}, {4679, 5218}, {5057, 5748}, {5087, 30332}, {5219, 59412}, {5226, 5880}, {5274, 59584}, {5281, 30827}, {5432, 18228}, {5744, 38122}, {5775, 11231}, {6172, 44785}, {9812, 30852}, {10164, 60905}, {10303, 21075}, {10609, 59387}, {11024, 47742}, {11037, 13747}, {11038, 31190}, {11227, 11678}, {11681, 37374}, {12527, 61820}, {12536, 17606}, {17757, 54445}, {17860, 46938}, {30806, 62704}, {33993, 60959}, {40269, 46694}, {40869, 62706}, {41228, 61686}, {45310, 50839}, {55864, 57279}, {58328, 61156}, {61023, 61035}, {62391, 62708}

X(62710) = X(i)-Dao conjugate of X(j) for these {i, j}: {6172, 62705}
X(62710) = pole of line {3239, 6366} with respect to the dual conic of incircle
X(62710) = center of mutual polar conic of ABC and X(144)-circumconcevian triangle of X(2)
X(62710) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(60984)}}, {{A, B, C, X(4997), X(29616)}}, {{A, B, C, X(6557), X(17294)}}, {{A, B, C, X(14942), X(31145)}}, {{A, B, C, X(50095), X(56201)}}
X(62710) = barycentric product X(i)*X(j) for these (i, j): {60984, 8}
X(62710) = barycentric quotient X(i)/X(j) for these (i, j): {60984, 7}
X(62710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1125, 27525, 8}, {5218, 5328, 52653}, {27383, 27529, 9780}


X(62711) = X(1)X(2)∩X(9)X(1054)

Barycentrics    a*(-5*b*c+a*(b+c)) : :

X(62711) lies on these lines: {1, 2}, {6, 9332}, {9, 1054}, {31, 9342}, {35, 16373}, {40, 19546}, {44, 17754}, {45, 1575}, {56, 16421}, {75, 24003}, {87, 4598}, {88, 36263}, {100, 15485}, {165, 19647}, {171, 37679}, {210, 3999}, {238, 4413}, {244, 49448}, {291, 39963}, {391, 25572}, {518, 31197}, {726, 24620}, {740, 30829}, {748, 3550}, {750, 16468}, {756, 17591}, {846, 7308}, {896, 56507}, {902, 61156}, {982, 3740}, {984, 4003}, {1001, 56009}, {1011, 59325}, {1155, 47522}, {1376, 8616}, {1458, 31188}, {1468, 17535}, {1621, 9350}, {1738, 5316}, {1740, 17259}, {1742, 5400}, {1757, 3306}, {2229, 46196}, {2234, 24517}, {2238, 16670}, {2239, 36277}, {2276, 16676}, {2356, 52290}, {3035, 17337}, {3210, 59517}, {3305, 17596}, {3452, 17889}, {3526, 37699}, {3579, 19540}, {3614, 47514}, {3628, 37529}, {3697, 3976}, {3711, 49675}, {3731, 17756}, {3750, 8167}, {3752, 58451}, {3786, 18173}, {3795, 60690}, {3816, 32865}, {3826, 17717}, {3836, 5233}, {3848, 4849}, {3911, 4334}, {3952, 49532}, {3971, 17490}, {4009, 49493}, {4023, 33087}, {4038, 37682}, {4191, 59319}, {4192, 35242}, {4335, 6666}, {4358, 49474}, {4365, 46938}, {4383, 16477}, {4414, 35595}, {4418, 26688}, {4423, 60714}, {4465, 4659}, {4519, 50086}, {4660, 26073}, {4679, 24715}, {4699, 53676}, {4706, 49452}, {4724, 47778}, {4860, 49712}, {4887, 30946}, {5044, 24174}, {5047, 37574}, {5204, 16059}, {5217, 16058}, {5220, 18201}, {5225, 6822}, {5229, 6821}, {5235, 18792}, {5241, 32784}, {5247, 16408}, {5302, 50199}, {5437, 32913}, {5741, 25961}, {5743, 33174}, {7173, 37355}, {7998, 20962}, {8056, 30393}, {9324, 35445}, {9330, 46901}, {9548, 19549}, {10440, 35621}, {11284, 37576}, {11525, 13541}, {12045, 39543}, {14555, 33085}, {15254, 17601}, {16239, 37698}, {16405, 54354}, {16571, 17260}, {16842, 37573}, {16862, 37607}, {17064, 20196}, {17119, 41144}, {17124, 32911}, {17160, 30963}, {17278, 17719}, {17348, 24661}, {17349, 25528}, {17495, 49445}, {17531, 37608}, {17594, 51780}, {18228, 33099}, {19804, 59511}, {21093, 48627}, {21342, 58629}, {21760, 62713}, {21780, 23417}, {21805, 49498}, {21904, 62212}, {23352, 48213}, {24165, 27538}, {24216, 24393}, {24440, 25917}, {24589, 32931}, {24988, 25760}, {25440, 35992}, {25531, 32941}, {26040, 33109}, {27318, 56025}, {30811, 31252}, {31018, 32857}, {32011, 56212}, {33101, 40688}, {33111, 37663}, {33784, 43114}, {35983, 52680}, {37365, 61261}, {37678, 41847}, {40976, 52299}, {42056, 49447}, {44304, 46917}, {47829, 50349}, {49457, 58467}, {55919, 55933}, {56166, 56169}

X(62711) = isogonal conjugate of X(55933)
X(62711) = complement of X(30947)
X(62711) = X(i)-Ceva conjugate of X(j) for these {i, j}: {55919, 1}
X(62711) = X(i)-complementary conjugate of X(j) for these {i, j}: {56163, 2887}
X(62711) = pole of line {3057, 49503} with respect to the Feuerbach hyperbola
X(62711) = pole of line {1213, 29827} with respect to the Kiepert hyperbola
X(62711) = pole of line {58, 55933} with respect to the Stammler hyperbola
X(62711) = pole of line {514, 4526} with respect to the Steiner inellipse
X(62711) = pole of line {86, 55933} with respect to the Wallace hyperbola
X(62711) = pole of line {2, 56163} with respect to the dual conic of Yff parabola
X(62711) = center of mutual polar conic of ABC and X(192)-circumconcevian triangle of X(2) (See c.)
X(62711) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(4740)}}, {{A, B, C, X(43), X(37129)}}, {{A, B, C, X(57), X(29584)}}, {{A, B, C, X(75), X(4871)}}, {{A, B, C, X(87), X(899)}}, {{A, B, C, X(88), X(4393)}}, {{A, B, C, X(239), X(39963)}}, {{A, B, C, X(291), X(3241)}}, {{A, B, C, X(519), X(52654)}}, {{A, B, C, X(1268), X(29827)}}, {{A, B, C, X(3240), X(55933)}}, {{A, B, C, X(3840), X(56212)}}, {{A, B, C, X(4598), X(23891)}}, {{A, B, C, X(8056), X(16834)}}, {{A, B, C, X(16829), X(56051)}}, {{A, B, C, X(17389), X(56165)}}, {{A, B, C, X(25430), X(29580)}}, {{A, B, C, X(25502), X(40418)}}, {{A, B, C, X(26102), X(32011)}}, {{A, B, C, X(29570), X(40434)}}, {{A, B, C, X(30571), X(38314)}}, {{A, B, C, X(30942), X(56169)}}, {{A, B, C, X(30947), X(56163)}}, {{A, B, C, X(30950), X(56166)}}, {{A, B, C, X(39740), X(54098)}}, {{A, B, C, X(39798), X(49988)}}, {{A, B, C, X(49997), X(56142)}}
X(62711) = barycentric product X(i)*X(j) for these (i, j): {1, 4740}
X(62711) = barycentric quotient X(i)/X(j) for these (i, j): {6, 55933}, {4740, 75}
X(62711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16569, 899}, {1, 51068, 936}, {1, 899, 43}, {2, 10, 29827}, {2, 26038, 3741}, {2, 3240, 30950}, {2, 3741, 31242}, {2, 42, 25502}, {2, 43, 26102}, {2, 4651, 30957}, {2, 59295, 26103}, {2, 59296, 3840}, {2, 59297, 25501}, {2, 59298, 43223}, {2, 8, 4871}, {8, 4871, 31137}, {10, 21214, 59310}, {10, 5121, 29676}, {43, 26102, 42042}, {100, 17125, 15485}, {210, 3999, 49503}, {238, 4413, 56010}, {750, 37680, 16468}, {899, 30950, 3240}, {1376, 17123, 8616}, {1376, 21000, 9337}, {1698, 3624, 19871}, {3740, 16602, 982}, {3811, 5529, 54319}, {3826, 51415, 17717}, {4871, 43223, 26111}, {5268, 23511, 29821}, {5272, 46943, 56804}, {5272, 8580, 3961}, {9342, 37687, 31}, {11519, 29821, 23511}, {12629, 47623, 46943}, {15808, 50575, 1}, {16569, 25502, 36634}, {16610, 61686, 984}, {17063, 49503, 3999}, {17124, 32911, 37604}, {19871, 50581, 59311}, {25502, 36634, 42}, {26103, 59295, 42057}, {27625, 46932, 10459}


X(62712) = X(2)X(6)∩X(3)X(5106)

Barycentrics    a^2*(-5*b^2*c^2+a^2*(b^2+c^2)) : :

X(62712) lies on these lines: {2, 6}, {3, 5106}, {32, 16187}, {39, 15082}, {76, 52067}, {100, 16969}, {110, 39560}, {111, 12149}, {182, 9225}, {187, 11328}, {237, 5210}, {373, 13330}, {574, 3229}, {694, 21448}, {729, 1078}, {732, 11059}, {748, 2162}, {750, 2176}, {1197, 25502}, {1384, 8623}, {1495, 20885}, {1621, 21780}, {1691, 5651}, {1915, 41412}, {1995, 2076}, {2056, 43650}, {2177, 3009}, {2211, 52290}, {2235, 30829}, {2502, 15080}, {3050, 30542}, {3053, 37338}, {3094, 3291}, {3117, 5024}, {3124, 7998}, {3230, 56010}, {3288, 34290}, {3306, 16514}, {3360, 33004}, {3787, 6688}, {3819, 3981}, {4074, 35294}, {4413, 21788}, {4423, 21792}, {4598, 41396}, {4850, 16515}, {5013, 5646}, {5017, 11284}, {5023, 37465}, {5033, 9306}, {5038, 22112}, {5104, 8585}, {5116, 32526}, {5585, 37184}, {5972, 7749}, {6195, 15482}, {6388, 40107}, {7467, 55646}, {7484, 10329}, {7815, 33786}, {8041, 44299}, {8586, 22111}, {8627, 10546}, {9465, 33879}, {9998, 21766}, {10485, 44109}, {11173, 62209}, {11333, 60707}, {12045, 44500}, {12212, 31885}, {13331, 40130}, {13881, 53577}, {14096, 33979}, {14810, 40350}, {15448, 38297}, {15513, 32237}, {15815, 46948}, {16525, 16610}, {17123, 23538}, {17475, 24620}, {18573, 33927}, {18906, 35288}, {20977, 33884}, {21531, 43620}, {21760, 62712}, {21843, 44215}, {24256, 35275}, {26864, 46276}, {30739, 53475}, {31859, 41143}, {32445, 44535}, {33589, 41423}, {35325, 52292}, {36808, 39966}, {37190, 53419}, {40022, 59563}, {41238, 44530}, {43843, 55858}, {46154, 52152}, {48262, 55863}

X(62712) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54413, 6}
X(62712) = pole of line {888, 14824} with respect to the 2nd Brocard circle
X(62712) = pole of line {669, 888} with respect to the circumcircle
X(62712) = pole of line {3124, 32447} with respect to the Parry circle
X(62712) = pole of line {6, 13586} with respect to the Stammler hyperbola
X(62712) = center of mutual polar conic of ABC and X(194)-circumconcevian triangle of X(2)
X(62712) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(76), X(59765)}}, {{A, B, C, X(111), X(7766)}}, {{A, B, C, X(263), X(5032)}}, {{A, B, C, X(385), X(21448)}}, {{A, B, C, X(524), X(52660)}}, {{A, B, C, X(694), X(1992)}}, {{A, B, C, X(729), X(1613)}}, {{A, B, C, X(3222), X(23342)}}, {{A, B, C, X(3224), X(3231)}}, {{A, B, C, X(5468), X(25424)}}, {{A, B, C, X(8770), X(14614)}}, {{A, B, C, X(32748), X(59051)}}, {{A, B, C, X(59373), X(60667)}}
X(62712) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21001, 1613}, {2, 3231, 6}, {2, 69, 59765}, {2, 8617, 3231}, {3124, 7998, 44453}, {3231, 8617, 21001}, {3291, 5650, 3094}, {7998, 39576, 3124}


X(62713) = 23rd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    (-a+b+c)*(a+b)^2*(a+c)^2*(a^2-b*a+b^2-c^2)^2*(a^2-c*a-b^2+c^2)^2 : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 16, 2024.

X(62713) lies on these lines: {1, 14480}, {30, 24624}, {60, 3109}, {80, 5127}, {476, 759}, {1325, 14194}, {5627, 56402}, {6740, 44669}, {36069, 43655}, {36154, 41501}, {47270, 54313}

X(62713) = isogonal conjugate of X(3028)
X(62713) = cevapoint of X(i) and X(j) for these {i, j}: {55, 2341}, {759, 56645}
X(62713) = X(i)-cross conjugate of X(j) for these (i, j): (55, 2341), (62694, 24624)
X(62713) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 4736), (206, 61060), (5452, 35069)
X(62713) = X(i)-isoconjugate of X(j) for these {i, j}: {56, 4736}, {57, 35069}, {75, 61060}, {758, 1464}, {1089, 41282}, {1254, 4996}, {2245, 18593}, {3724, 41804}, {4605, 57174}, {6354, 34544}, {6358, 52059}
X(62713) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (9, 4736), (32, 61060), (55, 35069), (759, 18593), (2341, 758), (6740, 3936), (7054, 4996), (23588, 55017), (24624, 41804), (34079, 1464), (52371, 4053), (52380, 3218), (52409, 61410), (57555, 6063), (60571, 4453), (62694, 6739)
X(62713) = X(56)-vertex conjugate of-X(55017)
X(62713) = perspector of the central inconic through X(55) and X(4092)
X(62713) = pole of the line {3028, 61060} with respect to the Stammler hyperbola
X(62713) = barycentric product X(i)*X(j) for these {i,j}: {55, 57555}, {1098, 34535}, {2341, 14616}, {6740, 24624}, {7054, 57645}, {18359, 52380}, {26856, 46649}, {37140, 52356}, {51562, 60571}
X(62713) = trilinear product X(i)*X(j) for these {i,j}: {41, 57555}, {80, 52380}, {759, 6740}, {2341, 24624}, {7054, 34535}, {36069, 52356}
X(62713) = trilinear quotient X(i)/X(j) for these (i,j): (8, 4736), (9, 35069), (31, 61060), (759, 1464), (849, 41282), (1098, 4996), (2150, 52059), (2341, 2245), (6740, 758), (7054, 34544), (14616, 41804), (24624, 18593), (34535, 6354), (36910, 4053), (52356, 6370), (52380, 36), (56950, 53537), (57555, 85), (60571, 3960)


X(62714) = 24th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(-a+b+c)*(a+b)^2*(a+c)^2*(b*a-c^2)^2*(c*a-b^2)^2 : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 16, 2024.

X(62714) lies on these lines: {1, 14509}, {511, 37128}, {741, 805}, {1326, 1911}, {1509, 3110}, {1691, 18268}, {35104, 56154}

X(62714) = isogonal conjugate of X(3027)
X(62714) = cevapoint of X(55) and X(2311)
X(62714) = X(55)-cross conjugate of-X(2311)
X(62714) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 61059), (5452, 35068), (9470, 7235), (40602, 4368)
X(62714) = X(i)-isoconjugate of X(j) for these {i, j}: {7, 4094}, {12, 8300}, {57, 35068}, {65, 4368}, {75, 61059}, {181, 39044}, {238, 7235}, {740, 1284}, {1089, 12835}, {1429, 4037}, {2171, 4366}, {2238, 16609}, {4375, 21859}, {6358, 51328}
X(62714) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (32, 61059), (41, 4094), (55, 35068), (60, 4366), (261, 56660), (284, 4368), (292, 7235), (741, 16609), (2150, 8300), (2185, 39044), (2311, 740), (7077, 4037), (18268, 1284), (30657, 7211), (30663, 6358), (36800, 35544), (40098, 34388), (51856, 181), (52205, 12), (56154, 3948), (57554, 6063), (61053, 35078)
X(62714) = X(56)-vertex conjugate of-X(55018)
X(62714) = perspector of the central inconic through X(55) and X(7063)
X(62714) = pole of the line {3027, 4154} with respect to the Stammler hyperbola
X(62714) = barycentric product X(i)*X(j) for these {i,j}: {55, 57554}, {60, 40098}, {261, 52205}, {741, 36800}, {875, 36806}, {2185, 30663}, {2311, 18827}, {18021, 51856}, {37128, 56154}, {57558, 61053}
X(62714) = trilinear product X(i)*X(j) for these {i,j}: {41, 57554}, {60, 30663}, {741, 56154}, {2150, 40098}, {2185, 52205}, {2311, 37128}, {18021, 18267}, {18268, 36800}, {51856, 52379}
X(62714) = trilinear quotient X(i)/X(j) for these (i,j): (9, 35068), (21, 4368), (31, 61059), (55, 4094), (60, 8300), (261, 39044), (291, 7235), (741, 1284), (849, 12835), (2150, 51328), (2185, 4366), (2311, 2238), (4876, 4037), (18267, 61364), (30663, 12), (36800, 3948), (36806, 27853), (37128, 16609), (40098, 6358), (52205, 2171)


X(62715) = 25th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    (-a+b+c)*(a^2-b*a-c*(b-c))^2*(a^2-c*a+b*(b-c))^2 : :
X(62715) = X(390)+2*X(52946) = X(673)+2*X(61477)

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 23, 2024.

X(62715) lies on these lines: {1, 60065}, {7, 56639}, {9, 33676}, {105, 927}, {142, 40724}, {238, 516}, {242, 52480}, {294, 52507}, {390, 52946}, {518, 666}, {528, 57536}, {885, 52305}, {1001, 56667}, {1279, 56896}, {2481, 7112}, {3271, 52030}, {3684, 5853}, {3685, 28058}, {3717, 6559}, {5138, 51832}, {9453, 51929}, {9499, 52209}, {9501, 60960}, {9503, 39757}, {16503, 56852}, {18786, 61434}, {38048, 60857}

X(62715) = isogonal conjugate of X(1362)
X(62715) = cevapoint of X(i) and X(j) for these {i, j}: {11, 885}, {55, 294}, {100, 35313}, {105, 56639}, {40565, 40566}
X(62715) = X(i)-cross conjugate of X(j) for these (i, j): (11, 885), (55, 294), (497, 2481), (650, 666), (56900, 673)
X(62715) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 4712), (11, 3126), (206, 61055), (513, 61056), (514, 3323), (650, 35094), (1146, 53583), (3161, 4437), (5452, 6184), (7952, 34337), (33675, 40704), (40582, 16728), (40609, 23102), (40624, 62430), (56900, 16593), (62554, 241), (62599, 9436)
X(62715) = X(673)-hirst inverse of-X(6185)
X(62715) = X(i)-isoconjugate of X(j) for these {i, j}: {7, 42079}, {56, 4712}, {57, 6184}, {75, 61055}, {77, 42071}, {85, 39686}, {109, 3126}, {241, 672}, {273, 20776}, {518, 1458}, {603, 34337}, {604, 4437}, {665, 1025}, {765, 61056}, {926, 41353}, {1026, 53539}, {1110, 3323}, {1400, 16728}, {1415, 53583}, {1416, 23102}, {1818, 1876}, {2149, 35094}, {2223, 9436}, {2254, 2283}, {2284, 53544}, {2340, 34855}, {3252, 34253}, {3912, 52635}, {4564, 35505}, {5236, 20752}, {9454, 40704}, {9502, 52213}, {22116, 51329}, {23612, 56783}, {34230, 53531}, {36819, 53548}, {39775, 40730}, {43042, 54325}, {53551, 54353}, {53552, 56643}
X(62715) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8, 4437), (9, 4712), (11, 35094), (21, 16728), (32, 61055), (41, 42079), (55, 6184), (105, 241), (281, 34337), (294, 518), (497, 17060), (522, 53583), (607, 42071), (650, 3126), (666, 883), (673, 9436), (884, 665), (885, 918), (919, 2283), (1015, 61056), (1024, 2254), (1027, 53544), (1086, 3323), (1438, 1458), (1462, 34855), (2175, 39686), (2195, 672), (2481, 40704), (3271, 35505), (3693, 23102), (4391, 62430), (6185, 7), (6559, 3717), (6654, 39775), (8751, 1876), (14942, 3912), (28071, 3693), (28132, 50333), (33676, 40217), (36086, 1025), (36124, 5236), (36146, 41353), (36796, 3263), (36802, 42720), (41934, 56), (43929, 53539), (51838, 57), (51987, 53548), (52425, 20776), (52927, 2284)
X(62715) = X(56)-vertex conjugate of-X(59457)
X(62715) = X(52084)-zayin conjugate of-X(672)
X(62715) = trilinear pole of the line {294, 885} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(62715) = perspector of the central inconic through X(11) and X(55)
X(62715) = pole of the line {1362, 61055} with respect to the Stammler hyperbola
X(62715) = barycentric product X(i)*X(j) for these {i,j}: {8, 6185}, {11, 57536}, {55, 57537}, {105, 36796}, {294, 2481}, {312, 51838}, {666, 885}, {673, 14942}, {884, 36803}, {927, 28132}, {1024, 51560}, {2195, 18031}, {3596, 41934}, {6559, 56783}, {6654, 33676}, {28071, 34018}, {36802, 62635}
X(62715) = trilinear product X(i)*X(j) for these {i,j}: {8, 51838}, {9, 6185}, {41, 57537}, {105, 14942}, {294, 673}, {312, 41934}, {666, 1024}, {884, 51560}, {885, 36086}, {1027, 36802}, {1438, 36796}, {1462, 6559}, {2170, 57536}, {2195, 2481}, {9503, 56900}, {28071, 56783}, {28132, 36146}
X(62715) = trilinear quotient X(i)/X(j) for these (i,j): (8, 4712), (9, 6184), (31, 61055), (33, 42071), (41, 39686), (55, 42079), (105, 1458), (212, 20776), (244, 61056), (294, 672), (312, 4437), (318, 34337), (333, 16728), (522, 3126), (666, 1025), (673, 241), (885, 2254), (927, 41353), (1024, 665), (1027, 53539)
X(62715) = (X(105), X(14197))-harmonic conjugate of X(927)


X(62716) = 26th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(3*a^4-4*b*a^3+(b^2+4*b*c-6*c^2)*a^2+2*(2*b^2-3*b*c+2*c^2)*b*a-(b^2-c^2)*(4*b^2-4*b*c+3*c^2))*(3*a^4-4*c*a^3-(6*b^2-4*b*c-c^2)*a^2+2*(2*b^2-3*b*c+2*c^2)*c*a+(b^2-c^2)*(3*b^2-4*b*c+4*c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 23, 2024.

X(62716) lies on these lines: {1055, 2323}, {1155, 4511}, {1870, 5126}, {5204, 62703}, {12019, 40437}

X(62716) = isogonal conjugate of X(62616)
X(62716) = X(i)-vertex conjugate of X(j) for these {i, j}: {59, 34431}, {513, 1318}


X(62717) = 27th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(a^4-3*b*a^3+(2*b-c)*(b+2*c)*a^2+(3*b^2-7*b*c+3*c^2)*b*a-(b^2-c^2)*(3*b^2-3*b*c+c^2))*(a^4-3*c*a^3-(b-2*c)*(2*b+c)*a^2+(3*b^2-7*b*c+3*c^2)*c*a+(b^2-c^2)*(b^2-3*b*c+3*c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 23, 2024.

X(62717) lies on these lines: {35, 61476}, {36, 53800}, {1319, 56844}, {2802, 4511}, {3615, 56950}, {16173, 40437}, {37735, 56143}

X(62717) = isogonal conjugate of X(7972)
X(62717) = X(i)-vertex conjugate of X(j) for these {i, j}: {36, 56}, {513, 32899}, {517, 44759}


X(62718) = 28th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(3*a^4-8*b*a^3+(5*b^2+8*b*c-6*c^2)*a^2+2*(4*b^2-9*b*c+4*c^2)*b*a-(b^2-c^2)*(8*b^2-8*b*c+3*c^2))*(3*a^4-8*c*a^3-(6*b^2-8*b*c-5*c^2)*a^2+2*(4*b^2-9*b*c+4*c^2)*c*a+(b^2-c^2)*(3*b^2-8*b*c+8*c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry - Apr 23, 2024.

X(62718) lies on these lines: {36, 38682}, {5217, 62703}

X(62718) = isogonal conjugate of X(62617)
X(62718) = X(10428)-vertex conjugate of-X(32899)


X(62719) = X(2)-ISOCONJUGATE OF X(2971)

Barycentrics    a*(a^2 - b^2)^2*(a^2 - c^2)^2*(a^2 - b^2 - c^2) : :

X(62719) lies on these lines: {656, 4592}, {896, 1101}, {4590, 4620}, {24037, 46238}

X(62719) = isotomic conjugate of the polar conjugate of X(24041)
X(62719) = isogonal conjugate of the polar conjugate of X(24037)
X(62719) = X(24037)-Ceva conjugate of X(24041)
X(62719) = X(i)-cross conjugate of X(j) for these (i,j): {63, 4592}, {326, 55202}, {9247, 4575}, {22434, 3}
X(62719) = X(i)-isoconjugate of X(j) for these (i,j): {2, 2971}, {4, 3124}, {6, 8754}, {19, 2643}, {25, 115}, {28, 21833}, {32, 2970}, {76, 42068}, {112, 8029}, {125, 2207}, {136, 60501}, {181, 8735}, {232, 51441}, {250, 61339}, {264, 1084}, {281, 61052}, {297, 15630}, {331, 7063}, {338, 1974}, {339, 36417}, {393, 20975}, {427, 51906}, {512, 2501}, {523, 2489}, {577, 62524}, {594, 42067}, {607, 1365}, {608, 4092}, {647, 58757}, {648, 22260}, {669, 14618}, {798, 24006}, {850, 57204}, {868, 57260}, {1015, 7140}, {1096, 3708}, {1109, 1973}, {1356, 7017}, {1426, 36197}, {1474, 21043}, {1500, 2969}, {1562, 61349}, {1648, 8753}, {1824, 3125}, {1826, 3122}, {1843, 34294}, {1880, 4516}, {1969, 4117}, {1977, 7141}, {2088, 18384}, {2333, 3120}, {2395, 17994}, {2422, 16230}, {2623, 51513}, {2972, 36434}, {2973, 7109}, {3121, 41013}, {3199, 8901}, {3269, 6524}, {3271, 8736}, {3569, 53149}, {4017, 55206}, {4041, 55208}, {4079, 7649}, {4705, 6591}, {5139, 8770}, {6331, 23099}, {6388, 14248}, {6531, 44114}, {8739, 30452}, {8740, 30453}, {8750, 21131}, {8882, 41221}, {9178, 14273}, {9427, 18022}, {11060, 35235}, {12077, 58756}, {12079, 14581}, {14398, 18808}, {14593, 47421}, {15422, 15451}, {15475, 47230}, {15526, 52439}, {16081, 58260}, {17924, 50487}, {17925, 58289}, {17983, 21906}, {18027, 23216}, {18344, 57185}, {21044, 57652}, {23105, 61206}, {23962, 44162}, {32734, 55278}, {34208, 47430}, {34854, 51404}, {40354, 58261}, {42663, 60338}, {46107, 53581}, {52065, 57796}, {58825, 58865}, {58827, 58867}
X(62719) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 2643}, {9, 8754}, {69, 17876}, {6337, 1109}, {6338, 20902}, {6376, 2970}, {6503, 3708}, {6505, 115}, {26932, 21131}, {31998, 24006}, {32664, 2971}, {34591, 8029}, {34961, 55206}, {36033, 3124}, {39052, 58757}, {39054, 2501}, {40591, 21833}, {51574, 21043}, {55066, 22260}, {62604, 23994}, {62647, 4092}
X(62719) = cevapoint of X(i) and X(j) for these (i,j): {3, 23139}, {63, 4592}, {163, 1707}, {662, 44179}, {4575, 9247}
X(62719) = trilinear pole of line {4575, 4592}
X(62719) = barycentric product X(i)*X(j) for these {i,j}: {1, 47389}, {3, 24037}, {48, 34537}, {63, 4590}, {69, 24041}, {77, 6064}, {78, 7340}, {99, 4592}, {110, 55202}, {163, 52608}, {249, 304}, {305, 1101}, {326, 18020}, {394, 46254}, {561, 47390}, {656, 31614}, {662, 4563}, {670, 4575}, {799, 4558}, {906, 52612}, {1102, 23582}, {1331, 4623}, {1332, 4610}, {1444, 4600}, {1790, 4601}, {1812, 4620}, {1813, 4631}, {3964, 23999}, {4176, 24000}, {4561, 52935}, {4565, 55207}, {4567, 17206}, {4602, 32661}, {5546, 55205}, {9247, 44168}, {14208, 59152}, {23357, 40364}, {23995, 40050}, {24018, 55270}, {44179, 57763}, {44717, 52379}
X(62719) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 8754}, {3, 2643}, {31, 2971}, {48, 3124}, {63, 115}, {69, 1109}, {71, 21833}, {72, 21043}, {75, 2970}, {77, 1365}, {78, 4092}, {99, 24006}, {158, 62524}, {162, 58757}, {163, 2489}, {249, 19}, {250, 1096}, {255, 20975}, {283, 4516}, {293, 51441}, {304, 338}, {305, 23994}, {326, 125}, {394, 3708}, {560, 42068}, {603, 61052}, {656, 8029}, {662, 2501}, {757, 2969}, {765, 7140}, {799, 14618}, {810, 22260}, {849, 42067}, {873, 2973}, {905, 21131}, {906, 4079}, {1098, 42069}, {1101, 25}, {1102, 15526}, {1331, 4705}, {1332, 4024}, {1437, 3122}, {1444, 3120}, {1707, 5139}, {1790, 3125}, {1792, 52335}, {1812, 21044}, {1813, 57185}, {2185, 8735}, {2327, 36197}, {2617, 51513}, {3708, 61339}, {3926, 20902}, {3955, 21725}, {3964, 2632}, {3998, 21046}, {4131, 21134}, {4176, 17879}, {4556, 6591}, {4558, 661}, {4561, 4036}, {4563, 1577}, {4564, 8736}, {4565, 55208}, {4567, 1826}, {4570, 1824}, {4575, 512}, {4590, 92}, {4592, 523}, {4600, 41013}, {4610, 17924}, {4612, 3064}, {4620, 40149}, {4623, 46107}, {4631, 46110}, {4636, 18344}, {4998, 56285}, {5546, 55206}, {6064, 318}, {6337, 17876}, {6507, 3269}, {6514, 53560}, {7035, 7141}, {7340, 273}, {9247, 1084}, {14208, 23105}, {14575, 4117}, {14587, 62268}, {17206, 16732}, {18020, 158}, {23357, 1973}, {23582, 6520}, {23889, 14273}, {23995, 1974}, {23997, 17994}, {23999, 1093}, {24000, 6524}, {24037, 264}, {24041, 4}, {31614, 811}, {32656, 50487}, {32661, 798}, {34055, 34294}, {34537, 1969}, {36061, 15475}, {36084, 53149}, {36134, 58756}, {40364, 23962}, {44179, 136}, {44706, 41221}, {44717, 2171}, {46254, 2052}, {47389, 75}, {47390, 31}, {47443, 24019}, {52378, 1880}, {52608, 20948}, {52935, 7649}, {55196, 57215}, {55202, 850}, {55249, 57065}, {55270, 823}, {57763, 91}, {57991, 36120}, {59152, 162}, {62277, 8901}


X(62720) = X(2)-ISOCONJUGATE OF X(878)

Barycentrics    a*(a^2 - b^2)*(a^2 - c^2)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4) : :

X(62720) lies on these lines: {19, 27}, {99, 58976}, {162, 662}, {648, 4603}, {799, 823}, {4230, 42717}, {4592, 24019}, {23889, 56829}, {36104, 36105}

X(62720) = polar conjugate of the isogonal conjugate of X(23997)
X(62720) = X(36105)-Ceva conjugate of X(162)
X(62720) = X(i)-isoconjugate of X(j) for these (i,j): {2, 878}, {3, 2395}, {6, 879}, {25, 53173}, {69, 2422}, {98, 647}, {110, 51404}, {115, 43754}, {125, 2715}, {184, 43665}, {248, 523}, {265, 60777}, {287, 512}, {290, 3049}, {293, 661}, {336, 798}, {394, 53149}, {520, 6531}, {525, 1976}, {656, 1910}, {669, 57799}, {684, 41932}, {685, 3269}, {804, 15391}, {810, 1821}, {822, 36120}, {850, 14600}, {895, 52038}, {2197, 60568}, {2433, 35912}, {2435, 51963}, {2489, 6394}, {2501, 17974}, {2623, 53174}, {2632, 36104}, {2966, 20975}, {2972, 20031}, {3124, 17932}, {3265, 57260}, {3267, 14601}, {3569, 47388}, {3708, 36084}, {4558, 51441}, {4563, 15630}, {4574, 43920}, {4580, 51869}, {5967, 10097}, {14355, 14582}, {14380, 35906}, {14533, 61196}, {15526, 32696}, {16081, 39201}, {23286, 60517}, {24284, 34238}, {34156, 34212}, {34369, 35909}, {34536, 39469}, {38352, 53701}, {41172, 41173}, {52451, 61216}, {53245, 58308}, {58310, 60199}
X(62720) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 879}, {132, 661}, {244, 51404}, {5976, 14208}, {6505, 53173}, {11672, 656}, {31998, 336}, {32664, 878}, {35088, 20902}, {36103, 2395}, {36830, 293}, {38970, 1109}, {38987, 3708}, {39000, 2632}, {39039, 523}, {39040, 525}, {39052, 98}, {39054, 287}, {39062, 1821}, {40596, 1910}, {40601, 810}, {46094, 822}, {50440, 8611}, {62590, 24018}, {62595, 1577}, {62605, 43665}
X(62720) = crosssum of X(1755) and X(17468)
X(62720) = trilinear pole of line {240, 1959}
X(62720) = crossdifference of every pair of points on line {810, 3708}
X(62720) = barycentric product X(i)*X(j) for these {i,j}: {1, 877}, {19, 2396}, {27, 42717}, {75, 4230}, {92, 2421}, {99, 240}, {110, 40703}, {112, 46238}, {114, 36105}, {162, 325}, {163, 44132}, {232, 799}, {237, 57968}, {264, 23997}, {297, 662}, {304, 58070}, {511, 811}, {648, 1959}, {670, 57653}, {684, 23999}, {823, 36212}, {1755, 6331}, {1783, 51370}, {1897, 51369}, {1969, 14966}, {2211, 4602}, {2967, 36036}, {3289, 57973}, {3405, 41676}, {3569, 46254}, {4592, 6530}, {5360, 55229}, {6333, 24000}, {6335, 17209}, {6393, 24019}, {15631, 36120}, {16230, 24041}, {17875, 44770}, {17994, 24037}, {18829, 56679}, {22456, 23996}, {24001, 35910}, {32458, 36104}, {34854, 55202}, {34859, 40364}, {36126, 51386}, {36129, 51383}, {37134, 39931}
X(62720) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 879}, {19, 2395}, {31, 878}, {63, 53173}, {92, 43665}, {99, 336}, {107, 36120}, {110, 293}, {112, 1910}, {162, 98}, {163, 248}, {232, 661}, {237, 810}, {240, 523}, {250, 36084}, {270, 60568}, {297, 1577}, {325, 14208}, {511, 656}, {648, 1821}, {661, 51404}, {662, 287}, {684, 2632}, {799, 57799}, {811, 290}, {823, 16081}, {877, 75}, {1096, 53149}, {1101, 43754}, {1755, 647}, {1959, 525}, {1973, 2422}, {2211, 798}, {2396, 304}, {2421, 63}, {2617, 53174}, {2799, 20902}, {3289, 822}, {3405, 4580}, {3569, 3708}, {4230, 1}, {4575, 17974}, {4592, 6394}, {5360, 55230}, {6331, 46273}, {6333, 17879}, {6530, 24006}, {9417, 3049}, {14966, 48}, {15143, 17478}, {16230, 1109}, {17209, 905}, {17994, 2643}, {18020, 36036}, {19189, 2616}, {23964, 36104}, {23996, 684}, {23997, 3}, {23999, 22456}, {24000, 685}, {24001, 60869}, {24019, 6531}, {24024, 52641}, {24041, 17932}, {32676, 1976}, {34859, 1973}, {35325, 3404}, {36084, 47388}, {36104, 41932}, {36105, 40428}, {36212, 24018}, {39569, 2618}, {40703, 850}, {42075, 39469}, {42717, 306}, {43034, 51664}, {44132, 20948}, {44694, 52355}, {44704, 17898}, {46238, 3267}, {46254, 43187}, {51369, 4025}, {51370, 15413}, {53521, 18210}, {56679, 804}, {56829, 35906}, {57200, 43920}, {57653, 512}, {57968, 18024}, {57973, 60199}, {58070, 19}, {59734, 8611}


X(62721) = UNARY(3) OF X(11)

Barycentrics    (a - b)^2*(a - c)^2*(a + b - c)*(a - b + c)*(2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c + b^2*c + a*c^2 + b*c^2 - c^3) : :

X(62721) lies on these lines: {2, 1252}, {7, 4564}, {8, 765}, {190, 644}, {279, 1275}, {346, 1016}, {390, 5377}, {4567, 16713}, {6955, 61106}, {20344, 59101}, {28420, 44717}, {43978, 61155}

X(62721) = isotomic conjugate of X(60491)
X(62721) = X(39755)-cross conjugate of X(927)
X(62721) = X(i)-isoconjugate of X(j) for these (i,j): {31, 60491}, {840, 2170}, {884, 52228}, {3271, 37131}
X(62721) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 60491}, {528, 52946}, {5723, 57442}, {35113, 11}, {52884, 650}
X(62721) = cevapoint of X(528) and X(52985)
X(62721) = barycentric product X(i)*X(j) for these {i,j}: {528, 4998}, {651, 42722}, {1016, 5723}, {4554, 52985}
X(62721) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 60491}, {59, 840}, {528, 11}, {1025, 52228}, {1642, 17435}, {2246, 2170}, {4564, 37131}, {4998, 18821}, {5723, 1086}, {35113, 52946}, {42722, 4391}, {46790, 60578}, {52227, 1024}, {52969, 14936}, {52985, 650}, {59101, 59021}
X(62721) = {X(31615),X(31633)}-harmonic conjugate of X(2)


X(62722) = UNARY(4) OF X(5)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :

X(62722) lies on these lines: {2, 648}, {5, 35360}, {20, 68}, {23, 17986}, {94, 2394}, {110, 44004}, {125, 44003}, {343, 14570}, {401, 44555}, {467, 13157}, {631, 60007}, {655, 2349}, {858, 12079}, {1304, 37760}, {1656, 31846}, {1972, 34767}, {2071, 40630}, {2986, 62639}, {3153, 5627}, {3164, 18301}, {3470, 58805}, {3580, 46788}, {3832, 18855}, {5169, 35908}, {6515, 18877}, {7493, 36875}, {9140, 45289}, {10152, 17578}, {10296, 34150}, {11078, 61473}, {11092, 61475}, {11794, 35910}, {11799, 52493}, {14380, 53345}, {14391, 41078}, {14918, 52945}, {15459, 37766}, {16076, 40885}, {16077, 40853}, {16770, 19774}, {16771, 19775}, {18027, 23962}, {19772, 19778}, {19773, 19779}, {25053, 37644}, {30529, 39290}, {31610, 34836}, {31621, 44577}, {33529, 44713}, {33530, 44714}, {34329, 50435}, {35520, 62569}, {36831, 41586}, {37779, 43768}, {40996, 62628}, {50009, 52130}, {52247, 52766}

X(62722) =unary(8) of X(3)
X(62722) =isotomic conjugate of X(43768)
X(62722) =anticomplement of X(14920)
X(62722) =anticomplement of the isogonal conjugate of X(11079)
X(62722) =isotomic conjugate of the anticomplement of X(14918)
X(62722) =polar conjugate of the isogonal conjugate of X(44715)
X(62722) =X(i)-anticomplementary conjugate of X(j) for these (i,j): {2159, 12383}, {5627, 21270}, {11079, 8}, {35200, 1272}, {39290, 21300}, {40355, 5905}, {50464, 4329}
X(62722) =X(i)-Ceva conjugate of X(j) for these (i,j): {1494, 44715}, {44769, 2394}
X(62722) =X(i)-cross conjugate of X(j) for these (i,j): {14391, 35360}, {14918, 2}, {41078, 14570}, {52945, 5}
X(62722) =X(i)-isoconjugate of X(j) for these (i,j): {30, 2148}, {31, 43768}, {54, 2173}, {95, 9406}, {933, 2631}, {1495, 2167}, {1637, 36134}, {1784, 14533}, {1990, 2169}, {2168, 51393}, {2190, 3284}, {2420, 2616}, {3260, 62269}, {3471, 19306}, {9247, 43752}, {9407, 62276}, {11064, 62268}, {11077, 35201}, {14206, 54034}, {14573, 46234}, {14581, 62277}, {14586, 36035}, {23286, 56829}, {24001, 58308}, {46106, 62267}
X(62722) =X(i)-Dao conjugate of X(j) for these (i,j): {2, 43768}, {5, 3284}, {137, 1637}, {216, 30}, {338, 41079}, {570, 51392}, {2972, 1636}, {6663, 52945}, {9410, 95}, {14363, 1990}, {15450, 9409}, {17433, 52743}, {18402, 39176}, {35441, 1650}, {36896, 54}, {39019, 9033}, {40588, 1495}, {52032, 11064}, {52869, 3163}, {60596, 51389}, {62576, 43752}, {62606, 97}
X(62722) =cevapoint of X(i) and X(j) for these (i,j): {5, 52945}, {216, 1154}, {14391, 35442}, {33529, 33530}, {39019, 55132}
X(62722) =trilinear pole of line {5, 6368}
X(62722) =crossdifference of every pair of points on line {9409, 14397}
X(62722) =barycentric product X(i)*X(j) for these {i,j}: {5, 1494}, {74, 311}, {264, 44715}, {324, 14919}, {343, 16080}, {850, 36831}, {1263, 46751}, {1273, 5627}, {1953, 33805}, {2159, 62272}, {2349, 14213}, {2394, 14570}, {6368, 16077}, {8749, 28706}, {15415, 32640}, {15459, 60597}, {18314, 44769}, {18695, 36119}, {18877, 62274}, {31621, 52945}, {33529, 36308}, {33530, 36311}, {34767, 35360}, {35200, 62273}, {35442, 42308}, {35910, 53245}, {39290, 41078}, {40352, 62278}
X(62722) =barycentric quotient X(i)/X(j) for these {i,j}: {2, 43768}, {5, 30}, {51, 1495}, {52, 51393}, {53, 1990}, {74, 54}, {216, 3284}, {264, 43752}, {311, 3260}, {324, 46106}, {343, 11064}, {1154, 1511}, {1209, 51392}, {1263, 3471}, {1273, 6148}, {1304, 933}, {1393, 51654}, {1494, 95}, {1568, 16163}, {1625, 2420}, {1953, 2173}, {2081, 52743}, {2159, 2148}, {2179, 9406}, {2349, 2167}, {2394, 15412}, {2433, 2623}, {2618, 36035}, {3199, 14581}, {3470, 1157}, {5562, 51394}, {5627, 1141}, {5891, 10564}, {6116, 6111}, {6117, 6110}, {6368, 9033}, {8439, 47304}, {8749, 8882}, {8798, 11589}, {10152, 38808}, {11062, 39176}, {11079, 11077}, {12077, 1637}, {12079, 8901}, {13450, 52661}, {14213, 14206}, {14380, 23286}, {14391, 14401}, {14570, 2407}, {14576, 52952}, {14918, 14920}, {14919, 97}, {15291, 33629}, {15451, 9409}, {15459, 16813}, {16077, 18831}, {16080, 275}, {16243, 40634}, {17167, 18653}, {17434, 1636}, {18180, 51420}, {18314, 41079}, {18877, 14533}, {21102, 11125}, {21230, 46114}, {32640, 14586}, {33529, 41887}, {33530, 41888}, {33805, 62276}, {34767, 62428}, {35200, 2169}, {35360, 4240}, {35442, 1650}, {35908, 19189}, {36034, 36134}, {36119, 2190}, {36308, 51275}, {36311, 51268}, {36412, 52945}, {36831, 110}, {38933, 3484}, {40352, 54034}, {40354, 62271}, {40981, 9407}, {41078, 5664}, {41586, 5642}, {41587, 51425}, {44693, 44687}, {44715, 3}, {44769, 18315}, {46090, 46089}, {46147, 16030}, {46808, 4993}, {50464, 50463}, {51363, 6793}, {51801, 35201}, {51821, 61372}, {52317, 14397}, {52604, 23347}, {52945, 3163}, {53174, 35912}, {53245, 60869}, {55219, 14398}, {57195, 14391}, {59197, 51372}, {60035, 15454}, {60517, 35906}, {60524, 51389}, {60597, 41077}, {62272, 46234}
X(62722) ={X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1494, 16080, 14919}, {1494, 46808, 2}, {14919, 16080, 2}, {14919, 46808, 16080}


X(62723) = UNARY(4) OF X(7)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(a^2 + a*b - 2*b^2 - 2*a*c + b*c + c^2) : :

X(62723) lies on the circumconic {{A,B,C,X(2),X(7)}} and these lines: {2, 664}, {7, 11}, {75, 4554}, {86, 4573}, {234, 55329}, {273, 13149}, {279, 56274}, {319, 40424}, {348, 56665}, {673, 927}, {675, 14733}, {883, 4997}, {903, 9436}, {1088, 1111}, {1223, 6666}, {1323, 37757}, {1638, 60479}, {1647, 56783}, {2400, 4453}, {4624, 5936}, {4845, 11019}, {4847, 56026}, {5195, 37374}, {5219, 27475}, {6548, 43042}, {10580, 56331}, {10707, 56543}, {14008, 39734}, {14189, 61649}, {14548, 36918}, {14942, 39293}, {15511, 55937}, {17093, 36620}, {17728, 33765}, {17923, 52781}, {24213, 40451}, {26007, 31188}, {26015, 51567}, {28808, 39749}, {31249, 56074}, {31272, 35312}, {31527, 38254}, {34018, 35348}, {36588, 52746}, {36807, 37758}, {37780, 38468}, {39704, 40719}, {53878, 59105}, {60041, 60047}

X(62723) = isotomic conjugate of X(6745)
X(62723) = polar conjugate of X(60431)
X(62723) = isotomic conjugate of the complement of X(26015)
X(62723) = X(60487)-Ceva conjugate of X(60479)
X(62723) = X(i)-cross conjugate of X(j) for these (i,j): {1156, 1121}, {1323, 7}, {1638, 658}, {2826, 190}, {11219, 34234}, {30379, 85}, {34578, 43762}, {35348, 37139}, {37757, 21453}, {60479, 60487}, {60579, 60479}
X(62723) = X(i)-isoconjugate of X(j) for these (i,j): {6, 6603}, {9, 1055}, {31, 6745}, {41, 527}, {48, 60431}, {55, 1155}, {100, 6139}, {109, 14392}, {198, 56763}, {212, 23710}, {220, 6610}, {228, 52891}, {607, 6510}, {657, 23890}, {692, 6366}, {1253, 1323}, {2149, 33573}, {2175, 30806}, {2195, 35293}, {3900, 23346}, {3939, 14413}, {4845, 42082}, {6068, 34068}, {8641, 56543}, {8750, 14414}, {14827, 37780}, {18889, 35110}, {24685, 51858}, {37805, 52425}, {41798, 59798}
X(62723) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6745}, {9, 6603}, {11, 14392}, {223, 1155}, {478, 1055}, {650, 33573}, {1086, 6366}, {1212, 61035}, {1249, 60431}, {3160, 527}, {8054, 6139}, {17113, 1323}, {26932, 14414}, {35110, 6068}, {39063, 35293}, {40593, 30806}, {40615, 1638}, {40617, 14413}, {40622, 30574}, {40629, 62579}, {40837, 23710}, {52659, 6174}, {52870, 35110}, {52879, 42082}, {62602, 37805}
X(62723) = cevapoint of X(i) and X(j) for these (i,j): {1, 37787}, {2, 26015}, {7, 1323}, {11, 1638}, {1156, 34056}, {60479, 60579}
X(62723) = trilinear pole of line {7, 514}
X(62723) = barycentric product X(i)*X(j) for these {i,j}: {7, 1121}, {75, 34056}, {85, 1156}, {309, 61493}, {331, 60047}, {514, 35157}, {522, 60487}, {664, 60479}, {693, 37139}, {1088, 41798}, {1275, 60579}, {1323, 57565}, {2291, 6063}, {3261, 14733}, {4554, 35348}, {4569, 23893}, {4845, 57792}, {20567, 34068}, {23351, 46406}, {36141, 40495}, {43762, 56665}
X(62723) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 6603}, {2, 6745}, {4, 60431}, {7, 527}, {11, 33573}, {27, 52891}, {56, 1055}, {57, 1155}, {77, 6510}, {84, 56763}, {85, 30806}, {142, 61035}, {241, 35293}, {269, 6610}, {273, 37805}, {278, 23710}, {279, 1323}, {514, 6366}, {527, 6068}, {649, 6139}, {650, 14392}, {658, 56543}, {905, 14414}, {934, 23890}, {1088, 37780}, {1121, 8}, {1156, 9}, {1323, 35110}, {1447, 24685}, {1461, 23346}, {1638, 62579}, {1847, 38461}, {2291, 55}, {3669, 14413}, {3676, 1638}, {3911, 6174}, {4845, 220}, {6173, 44785}, {6610, 42082}, {7176, 6647}, {7178, 30574}, {14733, 101}, {15727, 5528}, {15734, 42064}, {18889, 1253}, {21132, 52334}, {23351, 657}, {23893, 3900}, {30379, 10427}, {30565, 38376}, {30725, 30573}, {32728, 32739}, {34050, 51408}, {34056, 1}, {34068, 41}, {35157, 190}, {35340, 14589}, {35348, 650}, {36141, 692}, {37139, 100}, {37787, 6594}, {38459, 15730}, {41798, 200}, {52746, 2325}, {59105, 4619}, {60047, 219}, {60479, 522}, {60487, 664}, {60579, 1146}, {61493, 40}


X(62724) = UNARY(5) OF X(5)

Barycentrics    (b - c)*(b + c)*(-a^2 + b^2 + c^2)*(a^4 - 3*a^2*b^2 + 2*b^4 - 2*a^2*c^2 - 3*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*c^2 - 3*b^2*c^2 + 2*c^4) : :
X(62724) = 2 X[41298] - 3 X[62428]

X(62724) lies on these lines: {2, 35441}, {525, 15340}, {3265, 39180}, {6368, 23061}, {10330, 17932}, {16077, 33513}, {17708, 41677}, {31626, 53173}, {34767, 40410}, {39284, 43673}

X(62724) = isotomic conjugate of X(35311)
X(62724) = anticomplement of X(35441)
X(62724) = polar conjugate of X(61217)
X(62724) = isotomic conjugate of the anticomplement of X(35442)
X(62724) = isotomic conjugate of the complement of X(44004)
X(62724) = isotomic conjugate of the isogonal conjugate of X(39180)
X(62724) = isotomic conjugate of the polar conjugate of X(39183)
X(62724) = X(39286)-anticomplementary conjugate of X(21294)
X(62724) = X(i)-Ceva conjugate of X(j) for these (i,j): {33513, 40410}, {55279, 31626}
X(62724) = X(i)-cross conjugate of X(j) for these (i,j): {35442, 2}, {39180, 39183}
X(62724) = X(i)-isoconjugate of X(j) for these (i,j): {19, 35324}, {31, 35311}, {48, 61217}, {112, 17438}, {140, 32676}, {162, 13366}, {163, 6748}, {2148, 35318}, {20879, 61206}, {22052, 24019}, {36126, 61355}, {36134, 53386}
X(62724) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35311}, {6, 35324}, {115, 6748}, {125, 13366}, {137, 53386}, {216, 35318}, {338, 14978}, {647, 55280}, {1249, 61217}, {2972, 32078}, {15526, 140}, {34591, 17438}, {35071, 22052}, {36901, 40684}, {39019, 233}, {40618, 17168}, {46093, 61355}
X(62724) = cevapoint of X(i) and X(j) for these (i,j): {2, 44004}, {525, 6368}
X(62724) = crosspoint of X(33513) and X(40410)
X(62724) = crosssum of X(15451) and X(34565)
X(62724) = trilinear pole of line {15526, 39019}
X(62724) = barycentric product X(i)*X(j) for these {i,j}: {69, 39183}, {76, 39180}, {125, 55279}, {311, 39181}, {525, 40410}, {850, 31626}, {1173, 3267}, {2525, 39289}, {3265, 39284}, {6368, 31617}, {15415, 20574}, {15526, 33513}, {31610, 62428}, {33631, 52617}, {39286, 60597}
X(62724) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35311}, {3, 35324}, {4, 61217}, {5, 35318}, {125, 55280}, {288, 933}, {520, 22052}, {523, 6748}, {525, 140}, {647, 13366}, {656, 17438}, {850, 40684}, {1173, 112}, {3267, 1232}, {4025, 17168}, {4064, 21012}, {4466, 21103}, {6368, 233}, {12077, 53386}, {14208, 20879}, {14618, 44732}, {17434, 32078}, {18314, 14978}, {20574, 14586}, {31610, 35360}, {31617, 18831}, {31626, 110}, {32320, 61355}, {33513, 23582}, {33631, 32713}, {35442, 35441}, {39180, 6}, {39181, 54}, {39183, 4}, {39284, 107}, {39286, 16813}, {39289, 42396}, {40410, 648}, {55279, 18020}, {57195, 3078}, {59142, 52604}, {62428, 59183}


X(62725) = UNARY(5) OF X(9)

Barycentrics    (b - c)*(-a + b + c)*(a^2 - 2*a*b + b^2 - a*c - b*c)*(-a^2 + a*b + 2*a*c + b*c - c^2) : :
X(62725) = 6 X[14392] - 5 X[26777], 3 X[31150] - 4 X[58835]

X(62725) lies on these lines: {2, 6608}, {522, 3935}, {693, 3900}, {850, 17163}, {885, 4524}, {926, 7192}, {1309, 53243}, {2346, 43728}, {2400, 4467}, {3239, 28058}, {3700, 6605}, {3952, 36802}, {6182, 20295}, {6362, 62236}, {6606, 35157}, {7253, 50333}, {14392, 26777}, {17931, 55281}, {31150, 58835}, {42337, 56321}, {44426, 48172}, {52356, 56157}, {56118, 56284}

X(62725) = reflection of X(17494) in X(4105)
X(62725) = isotomic conjugate of X(35312)
X(62725) = anticomplement of X(6608)
X(62725) = isotomic conjugate of the anticomplement of X(3119)
X(62725) = isotomic conjugate of the complement of X(44005)
X(62725) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {658, 2890}, {1170, 37781}, {6606, 3436}, {10509, 150}, {21453, 33650}, {40443, 34188}, {42311, 21293}, {53243, 144}, {61373, 149}
X(62725) = X(6606)-Ceva conjugate of X(32008)
X(62725) = X(i)-cross conjugate of X(j) for these (i,j): {3119, 2}, {4858, 8}, {52064, 56265}
X(62725) = X(i)-isoconjugate of X(j) for these (i,j): {31, 35312}, {41, 61241}, {56, 35338}, {57, 35326}, {59, 48151}, {100, 61376}, {101, 1418}, {108, 22053}, {109, 354}, {142, 1415}, {163, 52023}, {651, 1475}, {658, 20229}, {692, 10481}, {934, 2293}, {1212, 1461}, {1262, 21127}, {1407, 35341}, {1412, 35310}, {1414, 52020}, {2149, 21104}, {2488, 7045}, {3059, 6614}, {4559, 18164}, {4565, 21808}, {4617, 8012}, {4637, 21795}, {6362, 24027}, {6516, 40983}, {6607, 24013}, {6608, 7339}, {17194, 53321}, {22079, 36118}, {23599, 23990}, {32656, 53237}, {32739, 59181}, {36040, 51424}, {43076, 43915}
X(62725) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 35338}, {2, 35312}, {11, 354}, {115, 52023}, {522, 6362}, {650, 21104}, {1015, 1418}, {1086, 10481}, {1146, 142}, {2968, 4847}, {3160, 61241}, {3900, 6607}, {4904, 15185}, {5452, 35326}, {6615, 48151}, {6741, 3925}, {8054, 61376}, {10017, 51424}, {14714, 2293}, {17115, 2488}, {17761, 43915}, {24771, 35341}, {35508, 1212}, {38966, 1827}, {38983, 22053}, {38991, 1475}, {40599, 35310}, {40608, 52020}, {40619, 59181}, {40624, 20880}, {40625, 17169}, {51402, 51463}, {55062, 61034}, {55064, 21808}, {55067, 18164}, {55068, 17194}, {62566, 55282}
X(62725) = cevapoint of X(i) and X(j) for these (i,j): {2, 44005}, {513, 52596}, {522, 3900}
X(62725) = crosspoint of X(i) and X(j) for these (i,j): {4569, 32015}, {6606, 32008}
X(62725) = crosssum of X(1475) and X(2488)
X(62725) = trilinear pole of line {1146, 35508}
X(62725) = crossdifference of every pair of points on line {1475, 20229}
X(62725) = barycentric product X(i)*X(j) for these {i,j}: {8, 56322}, {312, 58322}, {514, 56118}, {522, 32008}, {650, 57815}, {693, 6605}, {1016, 56284}, {1146, 6606}, {1170, 4397}, {1174, 35519}, {2346, 4391}, {3239, 21453}, {3261, 10482}, {3737, 56127}, {3900, 31618}, {4130, 42311}, {4163, 10509}, {4560, 56157}, {7253, 60229}, {18155, 56255}, {21044, 55281}, {23978, 53243}, {40495, 59141}, {46110, 47487}
X(62725) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35312}, {7, 61241}, {9, 35338}, {11, 21104}, {55, 35326}, {200, 35341}, {210, 35310}, {513, 1418}, {514, 10481}, {522, 142}, {523, 52023}, {649, 61376}, {650, 354}, {652, 22053}, {657, 2293}, {663, 1475}, {693, 59181}, {885, 53241}, {1021, 17194}, {1111, 23599}, {1146, 6362}, {1170, 934}, {1174, 109}, {1639, 51463}, {2170, 48151}, {2310, 21127}, {2346, 651}, {3022, 10581}, {3119, 6608}, {3239, 4847}, {3700, 3925}, {3709, 52020}, {3737, 18164}, {3900, 1212}, {4041, 21808}, {4105, 8012}, {4130, 3059}, {4163, 51972}, {4171, 21039}, {4391, 20880}, {4397, 1229}, {4524, 21795}, {4560, 17169}, {6605, 100}, {6606, 1275}, {7253, 16713}, {8641, 20229}, {10482, 101}, {10509, 4626}, {14936, 2488}, {17924, 53237}, {18155, 16708}, {21044, 55282}, {21453, 658}, {24002, 53242}, {31618, 4569}, {32008, 664}, {33299, 35335}, {35508, 6607}, {35519, 1233}, {42311, 36838}, {45755, 59217}, {47487, 1813}, {50333, 51384}, {53243, 1262}, {55281, 4620}, {56118, 190}, {56157, 4552}, {56255, 4551}, {56284, 1086}, {56322, 7}, {57815, 4554}, {58322, 57}, {59141, 692}, {60229, 4566}, {60480, 53240}, {60577, 53239}, {61373, 4617}


X(62726) = UNARY(5) OF X(11)

Barycentrics    (b - c)*(-(a*b) + b^2 - a*c + c^2)*(a^3 - a^2*b - 2*a*b^2 + 2*b^3 - a^2*c + 4*a*b*c - 2*b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 4*a*b*c - b^2*c - 2*a*c^2 - 2*b*c^2 + 2*c^3) : :

X(62726) lies on these lines: {883, 52305}, {918, 4440}

X(62726) = isotomic conjugate of X(35313)
X(62726) = isotomic conjugate of the anticomplement of X(52304)
X(62726) = X(52304)-cross conjugate of X(2)
X(62726) = X(i)-isoconjugate of X(j) for these (i,j): {31, 35313}, {919, 17439}, {1438, 14589}, {3035, 32666}, {20958, 36086}
X(62726) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 35313}, {3126, 11124}, {6184, 14589}, {35094, 3035}, {35509, 46101}, {38980, 17439}, {38989, 20958}
X(62726) = cevapoint of X(918) and X(52305)
X(62726) = trilinear pole of line {35094, 35509}
X(62726) = barycentric product X(i)*X(j) for these {i,j}: {883, 31611}, {918, 56365}, {31619, 52305}, {31628, 62429}
X(62726) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 35313}, {518, 14589}, {665, 20958}, {918, 3035}, {2254, 17439}, {4088, 21013}, {17435, 11124}, {18771, 919}, {23829, 18645}, {31611, 885}, {31628, 5377}, {38809, 59101}, {52305, 46101}, {53550, 22055}, {56365, 666}


X(62727) = UNARY(5) OF X(5)

Barycentrics    (2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 3*a^2*b^2 + 2*b^4 - 2*a^2*c^2 - 3*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*c^2 - 3*b^2*c^2 + 2*c^4) : :

X(62727) lies on these lines: {2, 10979}, {297, 40512}, {401, 46115}, {525, 15340}, {1173, 3146}, {2697, 20063}, {5059, 18850}, {5189, 60590}, {16251, 50692}, {32002, 56302}, {33513, 53201}, {43768, 52945}

X(62727) = X(14391)-cross conjugate of X(4240)
X(62727) = X(i)-isoconjugate of X(j) for these (i,j): {74, 17438}, {140, 2159}, {2349, 13366}, {6748, 35200}, {20879, 40352}, {22052, 36119}, {36034, 55280}
X(62727) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 6748}, {1511, 22052}, {3163, 140}, {3258, 55280}, {52869, 233}
X(62727) = cevapoint of X(30) and X(52945)
X(62727) = trilinear pole of line {9033, 10272}
X(62727) = barycentric product X(i)*X(j) for these {i,j}: {30, 40410}, {1173, 3260}, {1568, 39286}, {1637, 55279}, {2407, 39183}, {9033, 33513}, {11064, 39284}, {31610, 43768}, {31617, 52945}, {31626, 46106}, {39289, 51360}
X(62727) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 140}, {1173, 74}, {1495, 13366}, {1637, 55280}, {1990, 6748}, {2173, 17438}, {2420, 35324}, {3260, 1232}, {3284, 22052}, {4240, 35311}, {11125, 21103}, {14206, 20879}, {14391, 35441}, {18653, 17168}, {20574, 46090}, {31626, 14919}, {33513, 16077}, {33631, 8749}, {39180, 14380}, {39183, 2394}, {39284, 16080}, {40410, 1494}, {43768, 59183}, {46106, 40684}, {52661, 44732}, {52945, 233}
X(62727) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {31610, 31626, 2}, {31626, 39284, 31610}


X(62728) = UNARY(7) OF X(9)

Barycentrics    (a^2 - 2*a*b + b^2 - a*c - b*c)*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)*(a^2 - a*b - 2*a*c - b*c + c^2) : :

X(62728) lies on these lines: {2, 220}, {63, 56255}, {89, 42310}, {144, 2346}, {329, 1174}, {522, 3935}, {1252, 1275}, {3870, 25237}, {4461, 56118}, {6603, 37780}, {6606, 53212}, {9436, 36956}, {9965, 61373}, {10405, 20015}, {10509, 20059}, {20078, 40443}, {28605, 57815}, {40510, 40869}, {44005, 62236}, {58809, 60984}

X(62728) = X(14392)-cross conjugate of X(56543)
X(62728) = X(i)-isoconjugate of X(j) for these (i,j): {142, 34068}, {354, 2291}, {1156, 1475}, {1418, 4845}, {2293, 34056}, {2488, 37139}, {6362, 36141}, {10481, 18889}, {14733, 21127}, {35326, 35348}, {41798, 61376}
X(62728) = X(i)-Dao conjugate of X(j) for these (i,j): {6594, 1212}, {6603, 61030}, {35091, 6362}, {35110, 142}, {40629, 21104}, {43065, 41555}, {52870, 10481}, {52879, 1418}
X(62728) = cevapoint of X(527) and X(6603)
X(62728) = trilinear pole of line {6366, 6594}
X(62728) = crossdifference of every pair of points on line {1475, 2488}
X(62728) = barycentric product X(i)*X(j) for these {i,j}: {527, 32008}, {1155, 57815}, {1323, 56118}, {2346, 30806}, {6366, 6606}, {6603, 31618}, {6605, 37780}, {6745, 21453}, {30574, 55281}, {59475, 61035}
X(62728) = barycentric quotient X(i)/X(j) for these {i,j}: {527, 142}, {1055, 1475}, {1155, 354}, {1170, 34056}, {1174, 2291}, {1323, 10481}, {1638, 21104}, {2346, 1156}, {6068, 61035}, {6139, 2488}, {6174, 51463}, {6366, 6362}, {6594, 61030}, {6603, 1212}, {6605, 41798}, {6606, 35157}, {6610, 1418}, {6745, 4847}, {10427, 41555}, {10482, 4845}, {14392, 6608}, {14413, 48151}, {30574, 55282}, {30806, 20880}, {32008, 1121}, {36887, 53240}, {37780, 59181}, {38461, 53237}, {47487, 60047}, {51408, 51424}, {53243, 14733}, {56322, 60479}, {56543, 35312}, {58322, 35348}, {59141, 18889}, {60431, 1855}, {61035, 6067}
X(62728) = {X(6605),X(21453)}-harmonic conjugate of X(2)


X(62729) = UNARY(7) OF X(11)

Barycentrics    (2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c + b^2*c + a*c^2 + b*c^2 - c^3)*(a^3 - a^2*b - 2*a*b^2 + 2*b^3 - a^2*c + 4*a*b*c - 2*b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 4*a*b*c - b^2*c - 2*a*c^2 - 2*b*c^2 + 2*c^3) : :

X(62729) lies on these lines: {2, 31611}, {918, 4440}

X(62729) = X(i)-isoconjugate of X(j) for these (i,j): {840, 17439}, {20958, 37131}
X(62729) = X(i)-Dao conjugate of X(j) for these (i,j): {35113, 3035}, {52873, 46101}, {52884, 14589}
X(62729) = cevapoint of X(528) and X(52946)
X(62729) = barycentric product X(i)*X(j) for these {i,j}: {528, 56365}, {31619, 52946}
X(62729) = barycentric quotient X(i)/X(j) for these {i,j}: {528, 3035}, {2246, 17439}, {18771, 840}, {31611, 60491}, {52946, 46101}, {52985, 14589}, {56365, 18821}
X(62729) = {X(31611),X(31628)}-harmonic conjugate of X(2)


X(62730) = UNARY(8) OF X(5)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(2*a^4 - 3*a^2*b^2 + b^4 - 3*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4) : :

X(62730) lies on these lines: {2, 648}, {4, 6662}, {74, 3522}, {140, 35311}, {340, 62308}, {2394, 13582}, {2972, 44004}, {3525, 46452}, {5189, 17986}, {7533, 35908}, {9717, 16243}, {10152, 50690}, {12079, 30745}, {16063, 36875}, {16076, 44651}, {18301, 45278}, {36890, 51350}, {37779, 46788}

X(62730) = X(i)-isoconjugate of X(j) for these (i,j): {1173, 2173}, {9406, 40410}, {39180, 56829}
X(62730) = X(i)-Dao conjugate of X(j) for these (i,j): {140, 52945}, {233, 30}, {1493, 3284}, {9410, 40410}, {11792, 1637}, {33549, 1990}, {35442, 14391}, {36896, 1173}, {62606, 31626}
X(62730) = barycentric product X(i)*X(j) for these {i,j}: {74, 1232}, {140, 1494}, {2349, 20879}, {14919, 40684}, {17438, 33805}, {34767, 35311}
X(62730) = barycentric quotient X(i)/X(j) for these {i,j}: {74, 1173}, {140, 30}, {233, 52945}, {1232, 3260}, {1494, 40410}, {2394, 39183}, {6748, 1990}, {8749, 33631}, {13366, 1495}, {14380, 39180}, {14919, 31626}, {16077, 33513}, {16080, 39284}, {17168, 18653}, {17438, 2173}, {20879, 14206}, {21103, 11125}, {22052, 3284}, {35311, 4240}, {35324, 2420}, {35441, 14391}, {40684, 46106}, {44732, 52661}, {46090, 20574}, {55280, 1637}, {59183, 43768}


X(62731) = UNARY(8) OF X(9)

Barycentrics    (a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(a*b - b^2 + a*c + 2*b*c - c^2)*(a^2 + a*b - 2*b^2 - 2*a*c + b*c + c^2) : :

X(62731) lies on these lines: {2, 664}, {11, 44005}, {142, 35312}, {144, 149}, {908, 31058}, {2291, 5744}, {3177, 56665}, {4845, 36845}, {5942, 43190}, {10707, 45293}, {23893, 53357}, {23989, 52937}, {26015, 53382}, {35157, 40868}, {48571, 60479}, {48628, 54118}

X(62731) = X(62731) = X(15734)-anticomplementary conjugate of X(69)
X(62731) = X(41555)-cross conjugate of X(20880)
X(62731) = X(i)-isoconjugate of X(j) for these (i,j): {1055, 2346}, {1155, 1174}, {1323, 59141}, {6610, 10482}
X(62731) = X(i)-Dao conjugate of X(j) for these (i,j): {142, 6603}, {1212, 527}, {3119, 14392}, {40606, 1155}
X(62731) = cevapoint of X(1212) and X(61030)
X(62731) = trilinear pole of line {142, 6362}
X(62731) = barycentric product X(i)*X(j) for these {i,j}: {142, 1121}, {1156, 20880}, {1229, 34056}, {1233, 2291}, {6362, 35157}, {41798, 59181}, {52746, 53240}
X(62731) = barycentric quotient X(i)/X(j) for these {i,j}: {142, 527}, {354, 1155}, {1121, 32008}, {1156, 2346}, {1212, 6603}, {1418, 6610}, {1475, 1055}, {1855, 60431}, {2291, 1174}, {2488, 6139}, {4845, 10482}, {4847, 6745}, {6067, 61035}, {6362, 6366}, {6608, 14392}, {10481, 1323}, {14733, 53243}, {18889, 59141}, {20880, 30806}, {21104, 1638}, {34056, 1170}, {35157, 6606}, {35312, 56543}, {35348, 58322}, {41555, 10427}, {41798, 6605}, {48151, 14413}, {51424, 51408}, {51463, 6174}, {53237, 38461}, {53240, 36887}, {55282, 30574}, {59181, 37780}, {60047, 47487}, {60479, 56322}, {61030, 6594}, {61035, 6068}


X(62732) = UNARY(8) OF X(10)

Barycentrics    (a + b - 2*c)*(a - 2*b + c)*(2*a + b + c) : :
X(62732) =3 X[2] - 4 X[24183]

X(62732) lies on these lines: {2, 45}, {7, 46480}, {8, 596}, {106, 3622}, {145, 4792}, {149, 19636}, {239, 6549}, {244, 24429}, {320, 17495}, {553, 4982}, {901, 9108}, {941, 30589}, {1125, 4427}, {1168, 20067}, {1320, 3296}, {1509, 4610}, {1647, 53372}, {1698, 4013}, {1731, 3218}, {1797, 5773}, {2316, 9965}, {4049, 53333}, {4198, 36125}, {4359, 4410}, {4393, 36887}, {4395, 16704}, {4555, 20016}, {4707, 21739}, {4750, 6548}, {4887, 62620}, {5222, 60868}, {6542, 46795}, {8046, 39699}, {11851, 20014}, {17333, 24184}, {17483, 52031}, {17780, 53601}, {17960, 24200}, {20042, 24715}, {20058, 24841}, {20072, 51908}, {20090, 52553}, {20568, 30590}, {24004, 39994}, {24692, 62667}, {26792, 52140}, {26840, 43990}, {26842, 55090}, {27757, 62300}, {27791, 31144}, {29586, 52759}, {29590, 35596}, {29824, 43922}, {31061, 46722}, {40215, 52393}, {50343, 55244}, {56660, 57995}

X(62732) = isotomic conjugate of X(31011)
X(62732) = anticomplement of the isogonal conjugate of X(60809)
X(62732) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {106, 39996}, {39982, 21290}, {60809, 8}
X(62732) = X(4615)-Ceva conjugate of X(6548)
X(62732) = X(i)-cross conjugate of X(j) for these (i,j): {4969, 1125}, {4984, 4427}
X(62732) = X(i)-isoconjugate of X(j) for these (i,j): {31, 31011}, {44, 1126}, {519, 28615}, {902, 1255}, {1023, 50344}, {1171, 21805}, {1268, 2251}, {1319, 33635}, {1404, 32635}, {1635, 8701}, {1960, 37212}, {4596, 14407}, {4629, 4730}, {9459, 32018}, {23344, 47947}, {40438, 52963}, {52555, 52680}
X(62732) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 31011}, {1125, 3943}, {1213, 519}, {3120, 4120}, {3647, 44}, {9460, 1268}, {35076, 900}, {40594, 1255}, {40595, 1126}, {56846, 3911}, {59592, 2325}, {62582, 4102}, {62588, 4358}
X(62732) = cevapoint of X(i) and X(j) for these (i,j): {1100, 4973}, {1125, 4969}
X(62732) = crosssum of X(902) and X(52963)
X(62732) = trilinear pole of line {1125, 4977}
X(62732) = barycentric product X(i)*X(j) for these {i,j}: {88, 4359}, {106, 1269}, {553, 4997}, {679, 4975}, {903, 1125}, {1100, 20568}, {2308, 57995}, {3257, 4978}, {3702, 56049}, {4001, 6336}, {4013, 30593}, {4080, 8025}, {4427, 6548}, {4555, 4977}, {4582, 30724}, {4615, 4988}, {4622, 30591}, {4634, 4983}, {4674, 16709}, {4969, 54974}, {4973, 57788}
X(62732) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 31011}, {88, 1255}, {106, 1126}, {553, 3911}, {901, 8701}, {903, 1268}, {1022, 47947}, {1100, 44}, {1125, 519}, {1213, 3943}, {1269, 3264}, {1320, 32635}, {1797, 1796}, {1839, 8756}, {1962, 21805}, {2308, 902}, {2316, 33635}, {3257, 37212}, {3649, 40663}, {3683, 3689}, {3686, 2325}, {3702, 4723}, {3775, 4439}, {3916, 5440}, {4001, 3977}, {4013, 6538}, {4049, 31010}, {4080, 6539}, {4115, 4169}, {4359, 4358}, {4410, 4506}, {4427, 17780}, {4555, 6540}, {4591, 4629}, {4615, 4632}, {4622, 4596}, {4647, 3992}, {4697, 4434}, {4870, 36920}, {4969, 4370}, {4973, 214}, {4974, 4432}, {4975, 4738}, {4976, 1639}, {4977, 900}, {4978, 3762}, {4979, 1635}, {4983, 4730}, {4984, 6544}, {4985, 4768}, {4988, 4120}, {4990, 4528}, {4991, 4759}, {4997, 4102}, {5298, 1317}, {5625, 4753}, {6533, 4975}, {6548, 4608}, {8025, 16704}, {9456, 28615}, {16709, 30939}, {20568, 32018}, {20970, 52963}, {22054, 22356}, {23201, 23202}, {23345, 50344}, {30581, 30576}, {30592, 30583}, {30724, 30725}, {30729, 30731}, {31900, 37168}, {32636, 1319}, {35327, 23344}, {35342, 1023}, {36075, 61210}, {41542, 41541}, {44730, 36925}, {50512, 1960}, {51409, 1145}, {52759, 31013}, {53587, 4984}, {55263, 58294}, {56875, 38462}, {61170, 61171}, {61225, 23703}
X(62732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20092, 30579}, {88, 903, 4080}, {88, 4080, 2}, {88, 4945, 31227}, {239, 6549, 17953}, {903, 42026, 2}, {4080, 42026, 88}


X(62733) = UNARY(8) OF X(11)

Barycentrics    (a^3 - a^2*b - a*b^2 + b^3 - a^2*c - b^2*c + 2*a*c^2 + 2*b*c^2 - 2*c^3)*(2*a^3 - 2*a^2*b - a*b^2 + b^3 - 2*a^2*c + 4*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)*(a^3 - a^2*b + 2*a*b^2 - 2*b^3 - a^2*c + 2*b^2*c - a*c^2 - b*c^2 + c^3) : :

X(62733) lies on these lines: {2, 666}, {144, 37131}, {149, 43974}, {3035, 35313}

X(62733) = X(2246)-isoconjugate of X(18771)
X(62733) = X(i)-Dao conjugate of X(j) for these (i,j): {3035, 52946}, {46101, 528}, {52304, 14393}
X(62733) = barycentric product X(i)*X(j) for these {i,j}: {3035, 18821}, {20881, 37131}
X(62733) = barycentric quotient X(i)/X(j) for these {i,j}: {840, 18771}, {3035, 528}, {14589, 52985}, {17439, 2246}, {18821, 56365}, {46101, 52946}, {60491, 31611}


X(62734) = TRILINEAR UNARY(1) OF X(5)

Barycentrics    a^3*(a - b - c)*(b - c)*(a^2 - b^2 + b*c - c^2)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(62734) lies on these lines: {50, 647}, {2600, 2602}, {2610, 2616}

X(62734) = X(2624)-cross conjugate of X(654)
X(62734) = X(i)-isoconjugate of X(j) for these (i,j): {5, 655}, {51, 46405}, {311, 32675}, {1393, 36804}, {1953, 35174}, {2222, 14213}, {2599, 32680}, {2617, 60091}, {6369, 23592}, {14570, 52383}, {14616, 35307}, {36078, 45793}
X(62734) = X(i)-Dao conjugate of X(j) for these (i,j): {13999, 324}, {35128, 311}, {38984, 14213}
X(62734) = crosssum of X(5) and X(2600)
X(62734) = crossdifference of every pair of points on line {5, 1087}
X(62734) = barycentric product X(i)*X(j) for these {i,j}: {54, 3738}, {95, 8648}, {654, 2167}, {2148, 3904}, {2169, 44428}, {2245, 39177}, {4282, 15412}, {17515, 23286}, {35196, 53527}, {44687, 53314}, {58313, 62277}
X(62734) = barycentric quotient X(i)/X(j) for these {i,j}: {54, 35174}, {654, 14213}, {2148, 655}, {2167, 46405}, {2600, 45793}, {2623, 60091}, {3738, 311}, {3904, 62272}, {4282, 14570}, {8648, 5}, {14270, 2599}, {44428, 62273}, {54034, 2222}, {58308, 52391}, {62269, 32675}


X(62735) = TRILINEAR UNARY(2) OF X(5)

Barycentrics    (a - b)*b*(a - c)*(a + b - c)*c*(a - b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4) : :

X(62735) lies on these lines: {5, 41218}, {94, 60091}, {648, 35174}, {655, 24029}, {925, 2222}, {14628, 31053}

X(62735) = X(32680)-Ceva conjugate of X(655)
X(62735) = X(2600)-cross conjugate of X(5)
X(62735) = X(i)-isoconjugate of X(j) for these (i,j): {54, 654}, {97, 58313}, {2148, 3738}, {2167, 8648}, {2616, 4282}, {3724, 39177}, {3904, 54034}, {14533, 44428}, {21758, 44687}, {21828, 35196}, {35128, 36078}
X(62735) = X(i)-Dao conjugate of X(j) for these (i,j): {216, 3738}, {6663, 2600}, {16577, 32679}, {40588, 8648}
X(62735) = cevapoint of X(5) and X(2600)
X(62735) = trilinear pole of line {5, 1087}
X(62735) = barycentric product X(i)*X(j) for these {i,j}: {5, 35174}, {311, 2222}, {655, 14213}, {1953, 46405}, {2599, 35139}, {2600, 57568}, {14570, 60091}, {32675, 62272}
X(62735) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 3738}, {51, 8648}, {655, 2167}, {1087, 6369}, {1393, 53314}, {1625, 4282}, {1953, 654}, {2181, 58313}, {2222, 54}, {2599, 526}, {2600, 35128}, {7069, 53285}, {14213, 3904}, {21102, 53525}, {21807, 53562}, {24624, 39177}, {30493, 22379}, {32675, 2148}, {35174, 95}, {35307, 2245}, {35360, 17515}, {36412, 2600}, {46405, 62276}, {51562, 44687}, {52383, 2616}, {52391, 23286}, {60091, 15412}


X(62736) = TRILINEAR UNARY(3) OF X(4)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c + a^2*b^2*c - 2*b^4*c - a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62736) lies on these lines: {1, 3}, {11, 51368}, {109, 10535}, {228, 20277}, {243, 24032}, {296, 60047}, {416, 648}, {519, 856}, {520, 647}, {553, 43165}, {851, 23710}, {895, 57683}, {2318, 46831}, {2655, 9394}, {2968, 51463}, {3475, 6349}, {3827, 53322}, {4413, 55118}, {6912, 60681}, {11436, 56549}, {15888, 18641}, {17073, 17718}, {20324, 23846}, {23204, 26934}, {23711, 33305}, {32856, 42761}, {39796, 52373}, {40152, 44707}, {51361, 53321}

X(62736) = X(52889)-Ceva conjugate of X(2635)
X(62736) = X(i)-isoconjugate of X(j) for these (i,j): {4, 23707}, {92, 32726}, {264, 34078}, {4391, 36140}, {32727, 35519}
X(62736) = X(i)-Dao conjugate of X(j) for these (i,j): {22391, 32726}, {36033, 23707}
X(62736) = crossdifference of every pair of points on line {4, 650}
X(62736) = barycentric product X(i)*X(j) for these {i,j}: {63, 2635}, {255, 52982}, {664, 2637}, {1214, 52889}, {1332, 30691}, {33572, 55346}
X(62736) = barycentric quotient X(i)/X(j) for these {i,j}: {48, 23707}, {184, 32726}, {2635, 92}, {2637, 522}, {9247, 34078}, {30691, 17924}, {33572, 2968}, {52889, 31623}, {52982, 57806}
X(62736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 20764, 22341}, {1, 22341, 40946}, {55, 7011, 53847}, {1214, 23171, 23207}, {7011, 38288, 55}, {20764, 38284, 1}


X(62737) = TRILINEAR UNARY(3) OF X(5)

Barycentrics    a^2*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - 2*a^2*c^2 - b^2*c^2 + c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - 2*a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 4*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + a*b*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62737) lies on these lines: {1, 54}, {50, 647}

X(62737) = crossdifference of every pair of points on line {5, 2600}
X(62737) = barycentric product X(2167)*X(45885)
X(62737) = barycentric quotient X(45885)/X(14213)


X(62738) = TRILINEAR UNARY(3) OF X(7)

Barycentrics    a^2*(a - b - c)*(a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c + 2*a^2*b*c - a*b^2*c - 2*b^3*c - 2*a^2*c^2 - a*b*c^2 + 4*b^2*c^2 + a*c^3 - 2*b*c^3) : :

X(62738) lies on these lines: {1, 3}, {170, 34497}, {657, 663}, {672, 3022}, {956, 28053}, {1475, 39789}, {1721, 20793}, {3010, 52635}, {4336, 22079}, {4845, 52001}, {4907, 36635}, {9327, 10482}, {14189, 24011}, {20752, 46177}, {28071, 54391}, {37787, 52509}, {52507, 53055}

X(62738) = crosspoint of X(3000) and X(52888)
X(62738) = crossdifference of every pair of points on line {7, 650}
X(62738) = barycentric product X(i)*X(j) for these {i,j}: {1, 52888}, {9, 3000}, {55, 44664}, {1253, 52980}
X(62738) = barycentric quotient X(i)/X(j) for these {i,j}: {3000, 85}, {44664, 6063}, {52888, 75}


X(62739) = TRILINEAR UNARY(3) OF X(8)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a*b + a*c - 2*b*c) : :

X(62739) lies on these lines: {1, 3}, {7, 56166}, {42, 1401}, {73, 17114}, {100, 62300}, {108, 29348}, {109, 1428}, {181, 61412}, {226, 24169}, {228, 36570}, {649, 854}, {750, 7225}, {899, 52896}, {1279, 23845}, {1284, 3911}, {1357, 1458}, {1376, 49483}, {1397, 9316}, {1405, 2225}, {1447, 3263}, {1463, 4551}, {1465, 53540}, {1722, 20805}, {1908, 20963}, {2276, 41264}, {2635, 4014}, {3665, 25599}, {3752, 20967}, {3924, 22344}, {4413, 25590}, {4706, 43037}, {4848, 28386}, {5121, 15507}, {5260, 38000}, {5261, 59299}, {5435, 30947}, {5440, 50002}, {5687, 28037}, {6745, 21320}, {7294, 19847}, {8543, 61018}, {15621, 21342}, {16610, 53280}, {20760, 28039}, {22345, 24443}, {23844, 52541}, {24046, 28109}, {24175, 28250}, {24309, 36509}, {24390, 28036}, {25440, 36508}, {33125, 36503}, {35992, 36798}, {51329, 61047}

X(62739) = isogonal conjugate of X(36798)
X(62739) = isogonal conjugate of the isotomic conjugate of X(43037)
X(62739) = X(i)-Ceva conjugate of X(j) for these (i,j): {56, 61049}, {52896, 3230}
X(62739) = X(61049)-cross conjugate of X(56)
X(62739) = X(i)-isoconjugate of X(j) for these (i,j): {1, 36798}, {8, 37129}, {9, 3227}, {21, 41683}, {55, 31002}, {284, 60288}, {312, 739}, {522, 898}, {643, 35353}, {644, 62619}, {646, 23892}, {650, 4607}, {663, 889}, {1320, 36872}, {2170, 5381}, {3699, 43928}, {4391, 34075}, {32718, 35519}, {44693, 52754}
X(62739) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 36798}, {223, 31002}, {478, 3227}, {13466, 3596}, {14434, 11}, {39011, 4391}, {40590, 60288}, {40611, 41683}, {40614, 312}, {52875, 3701}, {52882, 28659}, {55060, 35353}
X(62739) = cevapoint of X(890) and X(1646)
X(62739) = crosssum of X(i) and X(j) for these (i,j): {8, 4009}, {3271, 4526}
X(62739) = trilinear pole of line {3768, 61049}
X(62739) = crossdifference of every pair of points on line {8, 650}
X(62739) = barycentric product X(i)*X(j) for these {i,j}: {1, 52896}, {6, 43037}, {7, 3230}, {56, 536}, {57, 899}, {59, 52626}, {65, 52897}, {109, 4728}, {241, 52902}, {604, 6381}, {651, 891}, {664, 3768}, {739, 61078}, {890, 4554}, {934, 4526}, {1014, 52959}, {1214, 52890}, {1319, 52900}, {1397, 35543}, {1404, 52755}, {1407, 4009}, {1412, 3994}, {1458, 36816}, {1461, 14430}, {1465, 45145}, {1646, 4998}, {2099, 52901}, {2720, 42764}, {3227, 61049}, {3669, 23343}, {4564, 19945}, {4565, 14431}, {4573, 14404}, {4706, 57663}, {5381, 47016}, {23891, 43924}, {34051, 61672}, {41314, 57181}
X(62739) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 36798}, {56, 3227}, {57, 31002}, {59, 5381}, {65, 60288}, {109, 4607}, {536, 3596}, {604, 37129}, {651, 889}, {890, 650}, {891, 4391}, {899, 312}, {1397, 739}, {1400, 41683}, {1404, 36872}, {1415, 898}, {1646, 11}, {3230, 8}, {3768, 522}, {3994, 30713}, {4009, 59761}, {4465, 4087}, {4526, 4397}, {4554, 57994}, {4728, 35519}, {6381, 28659}, {7180, 35353}, {14404, 3700}, {14430, 52622}, {14437, 4768}, {19945, 4858}, {23343, 646}, {35543, 40363}, {43037, 76}, {43924, 62619}, {45145, 36795}, {47016, 52626}, {52626, 34387}, {52890, 31623}, {52896, 75}, {52897, 314}, {52902, 36796}, {52959, 3701}, {57181, 43928}, {59797, 4009}, {61049, 536}, {61078, 35543}
X(62739) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {42, 59173, 1401}, {57, 1403, 1402}, {1429, 9364, 5061}


X(62740) = TRILINEAR UNARY(3) OF X(10)

Barycentrics    a^2*(a + b)*(a + c)*(a*b + a*c - 2*b*c) : :

X(62740) lies on these lines: {1, 21}, {6, 16373}, {35, 52564}, {42, 18185}, {55, 17187}, {86, 750}, {100, 18792}, {110, 2382}, {171, 8025}, {238, 16704}, {333, 748}, {386, 19292}, {582, 37536}, {614, 18163}, {649, 834}, {715, 898}, {741, 901}, {765, 4600}, {859, 1149}, {899, 52897}, {902, 3286}, {1054, 16753}, {1155, 16726}, {1201, 4267}, {1279, 18191}, {1412, 9316}, {1918, 18166}, {2106, 9361}, {2177, 3736}, {2225, 16782}, {2239, 30941}, {2280, 4273}, {3011, 17197}, {3231, 41333}, {3315, 18173}, {3445, 52150}, {3924, 18178}, {4225, 32577}, {4279, 37633}, {4414, 16696}, {4603, 61385}, {4921, 31137}, {5156, 14996}, {5235, 17125}, {5278, 50605}, {5333, 17124}, {5651, 16946}, {9351, 62420}, {11115, 37588}, {14964, 16784}, {16687, 40148}, {16690, 29767}, {16738, 32917}, {17126, 26860}, {17139, 32856}, {17167, 33127}, {17173, 33130}, {17174, 17719}, {17202, 32775}, {17596, 18601}, {17751, 32864}, {18180, 28082}, {24888, 28754}, {25652, 35466}, {27163, 32916}, {27660, 56018}, {28273, 41014}, {28375, 33136}, {30940, 56431}, {30984, 31134}, {32845, 62636}, {41423, 62692}, {46904, 54308}, {52890, 52896}, {61358, 61409}

X(62740) = isogonal conjugate of X(41683)
X(62740) = X(715)-Ceva conjugate of X(31)
X(62740) = X(3230)-cross conjugate of X(52897)
X(62740) = X(i)-isoconjugate of X(j) for these (i,j): {1, 41683}, {6, 60288}, {10, 37129}, {37, 3227}, {42, 31002}, {65, 36798}, {100, 35353}, {321, 739}, {512, 889}, {523, 898}, {661, 4607}, {669, 57994}, {850, 32718}, {1018, 62619}, {1577, 34075}, {3125, 5381}, {3952, 43928}, {4033, 23892}, {4674, 36872}, {23349, 27808}, {52959, 57542}
X(62740) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 41683}, {9, 60288}, {2229, 35532}, {8054, 35353}, {13466, 313}, {14434, 3120}, {36830, 4607}, {39011, 1577}, {39054, 889}, {40589, 3227}, {40592, 31002}, {40602, 36798}, {40614, 321}, {52875, 1089}, {52882, 27801}
X(62740) = crosspoint of X(765) and X(59071)
X(62740) = crosssum of X(i) and X(j) for these (i,j): {10, 3994}, {37, 44671}
X(62740) = crossdifference of every pair of points on line {10, 661}
X(62740) = barycentric product X(i)*X(j) for these {i,j}: {1, 52897}, {21, 52896}, {58, 536}, {63, 52890}, {81, 899}, {86, 3230}, {99, 3768}, {110, 4728}, {284, 43037}, {593, 3994}, {662, 891}, {741, 4465}, {757, 52959}, {799, 890}, {1019, 23343}, {1333, 6381}, {1412, 4009}, {1414, 4526}, {1646, 4600}, {2206, 35543}, {3285, 52755}, {3286, 36816}, {3733, 23891}, {4556, 14431}, {4565, 14430}, {4567, 19945}, {4570, 52626}, {4591, 30583}, {4610, 14404}, {4622, 14437}, {4629, 30592}, {4653, 52901}, {18206, 52902}, {41314, 57129}, {52680, 52900}
X(62740) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 60288}, {6, 41683}, {58, 3227}, {81, 31002}, {110, 4607}, {163, 898}, {284, 36798}, {536, 313}, {649, 35353}, {662, 889}, {799, 57994}, {890, 661}, {891, 1577}, {899, 321}, {1333, 37129}, {1576, 34075}, {1646, 3120}, {2206, 739}, {3230, 10}, {3285, 36872}, {3733, 62619}, {3768, 523}, {3994, 28654}, {4009, 30713}, {4465, 35544}, {4526, 4086}, {4570, 5381}, {4728, 850}, {6381, 27801}, {14404, 4024}, {14431, 52623}, {19945, 16732}, {23343, 4033}, {23891, 27808}, {43037, 349}, {52626, 21207}, {52890, 92}, {52896, 1441}, {52897, 75}, {52959, 1089}, {57129, 43928}, {59797, 3994}
X(62740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 1621, 18169}, {81, 38832, 31}, {1914, 26884, 5161}, {18185, 40153, 42}


X(62741) = TRILINEAR UNARY(3) OF X(11)

Barycentrics    a^2*(a - b)^2*(a - c)^2*(a + b - c)*(a - b + c)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - 2*a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 4*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + a*b*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62741) lies on these lines: {1, 59}, {101, 109}, {993, 4564}, {7012, 54368}

X(62741) = crossdifference of every pair of points on line {11, 46384}
X(62741) = barycentric product X(4564)*X(45885)
X(62741) = barycentric quotient X(45885)/X(4858)


X(62742) = TRILINEAR UNARY(4) OF X(4)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c + 2*a^2*b^2*c - b^4*c + a^3*c^2 - a^2*b*c^2 - a*b^2*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^2*b^2*c + b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(62742) lies on the Feuerbach circumhyperbola and these lines: {1, 653}, {4, 3270}, {7, 1364}, {8, 6335}, {9, 1897}, {21, 648}, {107, 1172}, {243, 1156}, {314, 6331}, {468, 43746}, {885, 54235}, {1075, 38249}, {1896, 15352}, {1937, 23710}, {1981, 60047}, {3296, 56887}, {6336, 23838}, {16080, 47203}, {16082, 43728}, {40138, 40779}, {43735, 51939}, {43737, 53353}, {51282, 55934}, {55924, 60681}

X(62742) = polar conjugate of the isogonal conjugate of X(32726)
X(62742) = X(i)-isoconjugate of X(j) for these (i,j): {3, 2635}, {73, 52889}, {577, 52982}, {651, 2637}, {1331, 30691}, {7128, 33572}
X(62742) = X(i)-Dao conjugate of X(j) for these (i,j): {5521, 30691}, {36103, 2635}, {38966, 30692}, {38991, 2637}
X(62742) = trilinear pole of line {4, 650}
X(62742) = barycentric product X(i)*X(j) for these {i,j}: {92, 23707}, {264, 32726}, {1969, 34078}, {35519, 36140}
X(62742) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 2635}, {158, 52982}, {663, 2637}, {1172, 52889}, {3270, 33572}, {6591, 30691}, {23707, 63}, {32726, 3}, {32727, 1415}, {34078, 48}, {36140, 109}


X(62743) = TRILINEAR UNARY(4) OF X(5)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c - a^3*b*c + 4*a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c - 2*a*b^3*c + b^4*c + 2*a^3*c^2 - 4*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(62743) lies on these lines: {1, 655}, {5, 41218}, {648, 17515}

X(62743) = X(54)-isoconjugate of X(45885)
X(62743) = trilinear pole of line {5, 2600}
X(62743) = barycentric quotient X(1953)/X(45885)


X(62744) = TRILINEAR UNARY(4) OF X(7)

Barycentrics    (a + b - c)*(a - b + c)*(2*a^3*b - 4*a^2*b^2 + 2*a*b^3 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + 2*a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3)*(a^3*b - 2*a^2*b^2 + a*b^3 - 2*a^3*c - a^2*b*c + 2*a*b^2*c + b^3*c + 4*a^2*c^2 - a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + b*c^3) : :

X(62744) lies on the Feuerbach circumhyperbola and these lines: {1, 658}, {4, 13149}, {7, 3022}, {8, 4554}, {9, 664}, {21, 4573}, {294, 927}, {885, 34018}, {1156, 14189}, {1323, 9442}, {3296, 56929}, {4624, 4866}, {5665, 50392}, {7707, 55329}, {23893, 62723}, {40779, 62705}, {42309, 55922}, {56077, 59200}

X(62744) = X(i)-isoconjugate of X(j) for these (i,j): {6, 52888}, {41, 44664}, {55, 3000}, {14827, 52980}
X(62744) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 52888}, {223, 3000}, {3160, 44664}
X(62744) = trilinear pole of line {7, 650}
X(62744) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 52888}, {7, 44664}, {57, 3000}, {1088, 52980}


X(62745) = TRILINEAR UNARY(4) OF X(11)

Barycentrics    (b - c)^2*(-a + b + c)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c - 2*a*b^3*c + b^4*c + 2*a^3*c^2 - 4*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4)*(-2*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 - 2*a*b^4 + a^4*c + a^3*b*c - 4*a^2*b^2*c + a*b^3*c + b^4*c - a^3*c^2 + 2*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 2*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4) : :

X(62745) lies on the Moses-Feuerbach circumhyperbola and these lines: {1, 655}, {11, 52303}, {514, 53525}, {666, 993}, {4089, 24002}, {5692, 50039}

X(62745) = X(59)-isoconjugate of X(45885)
X(62745) = X(6615)-Dao conjugate of X(45885)
X(62745) = trilinear pole of line {11, 46384}
X(62745) = barycentric quotient X(2170)/X(45885)


X(62746) = TRILINEAR UNARY(5) OF X(5)

Barycentrics    a*(a + b)*(a - b - c)^2*(b - c)*(a + c)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + b*c - c^2)*(a^2 - b^2 + a*c + c^2) : :

X(62746) lies on these lines: {1, 2081}, {654, 1021}, {1983, 2610}, {2600, 2602}

X(62746) = X(32680)-Ceva conjugate of X(3615)
X(62746) = X(41218)-cross conjugate of X(1)
X(62746) = X(i)-isoconjugate of X(j) for these (i,j): {526, 23592}, {655, 2594}, {1020, 56422}, {2222, 16577}, {14270, 57568}, {21741, 35174}, {32675, 40999}, {41226, 53321}
X(62746) = X(i)-Dao conjugate of X(j) for these (i,j): {3738, 32679}, {35128, 40999}, {38984, 16577}, {55068, 41226}, {57434, 3969}
X(62746) = cevapoint of X(654) and X(2600)
X(62746) = crosspoint of X(3615) and X(32680)
X(62746) = crosssum of X(i) and X(j) for these (i,j): {2290, 2605}, {2594, 2624}
X(62746) = crossdifference of every pair of points on line {2594, 2599}
X(62746) = barycentric product X(i)*X(j) for these {i,j}: {1789, 44428}, {3615, 3738}, {7253, 56844}, {32680, 35128}
X(62746) = barycentric quotient X(i)/X(j) for these {i,j}: {654, 16577}, {1021, 41226}, {3615, 35174}, {3738, 40999}, {8648, 2594}, {21789, 56422}, {32678, 23592}, {32680, 57568}, {35128, 32679}, {41211, 55132}, {46384, 8287}, {53285, 3678}, {56844, 4566}, {58313, 1825}


X(62747) = TRILINEAR UNARY(5) OF X(7)

Barycentrics    a*(a - b - c)*(b - c)*(a^2 - 2*a*b + b^2 - a*c - b*c)*(a^2 - a*b - 2*a*c - b*c + c^2) : :

X(62747) lies on these lines: {1, 10581}, {9, 6362}, {514, 657}, {650, 1734}, {1019, 46388}, {1170, 14838}, {1174, 61238}, {1577, 32008}, {2346, 23893}, {2730, 53244}, {3064, 14330}, {3239, 28058}, {4041, 10482}, {4151, 28132}, {4560, 38379}, {6065, 35341}, {21044, 44012}, {21127, 30295}, {28588, 46919}, {46392, 48003}, {53243, 61237}, {59457, 60065}
on K1074

X(62747) = X(56322)-Ceva conjugate of X(58322)
X(62747) = X(i)-cross conjugate of X(j) for these (i,j): {11, 9}, {650, 56322}, {3022, 1}, {3887, 23893}, {36639, 3680}
X(62747) = X(i)-isoconjugate of X(j) for these (i,j): {6, 35312}, {7, 35326}, {55, 61241}, {57, 35338}, {59, 21104}, {100, 1418}, {101, 10481}, {109, 142}, {110, 52023}, {190, 61376}, {269, 35341}, {354, 651}, {653, 22053}, {658, 2293}, {664, 1475}, {692, 59181}, {906, 53237}, {934, 1212}, {1014, 35310}, {1020, 17194}, {1110, 23599}, {1262, 6362}, {1275, 2488}, {1414, 21808}, {1415, 20880}, {1461, 4847}, {2283, 53241}, {3059, 4617}, {3925, 4565}, {4551, 18164}, {4559, 17169}, {4564, 48151}, {4569, 20229}, {4573, 52020}, {4616, 21795}, {4626, 8012}, {4637, 21039}, {6607, 23586}, {6614, 51972}, {7045, 21127}, {10581, 59457}, {13149, 22079}, {13156, 57118}, {16713, 53321}, {18087, 46153}, {23067, 53238}, {23346, 62731}, {32735, 51384}, {52378, 55282}, {53240, 61210}
X(62747) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 35312}, {11, 142}, {223, 61241}, {244, 52023}, {514, 23599}, {1015, 10481}, {1086, 59181}, {1146, 20880}, {2968, 1229}, {3119, 6067}, {5190, 53237}, {5452, 35338}, {6600, 35341}, {6615, 21104}, {8054, 1418}, {14714, 1212}, {17115, 21127}, {35508, 4847}, {38966, 1855}, {38991, 354}, {39025, 1475}, {40608, 21808}, {40615, 53242}, {40624, 1233}, {40625, 16708}, {55053, 61376}, {55064, 3925}, {55067, 17169}, {55068, 16713}
X(62747) = cevapoint of X(i) and X(j) for these (i,j): {11, 56284}, {650, 657}
X(62747) = crosspoint of X(i) and X(j) for these (i,j): {100, 1223}, {56322, 62725}
X(62747) = crosssum of X(i) and X(j) for these (i,j): {354, 21127}, {513, 1202}, {657, 3748}, {1475, 48151}, {21104, 52023}
X(62747) = trilinear pole of line {2310, 24012}
X(62747) = crossdifference of every pair of points on line {354, 1418}
X(62747) = barycentric product X(i)*X(j) for these {i,j}: {1, 62725}, {8, 58322}, {9, 56322}, {513, 56118}, {514, 6605}, {522, 2346}, {650, 32008}, {657, 31618}, {663, 57815}, {693, 10482}, {765, 56284}, {1021, 60229}, {1170, 3239}, {1174, 4391}, {2310, 6606}, {3261, 59141}, {3737, 56157}, {3900, 21453}, {4105, 42311}, {4130, 10509}, {4163, 61373}, {4516, 55281}, {4560, 56255}, {6608, 59475}, {7252, 56127}, {23893, 62728}, {24026, 53243}, {42310, 45755}, {44426, 47487}
X(62747) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 35312}, {41, 35326}, {55, 35338}, {57, 61241}, {220, 35341}, {513, 10481}, {514, 59181}, {522, 20880}, {649, 1418}, {650, 142}, {657, 1212}, {661, 52023}, {663, 354}, {667, 61376}, {1021, 16713}, {1024, 53241}, {1086, 23599}, {1170, 658}, {1174, 651}, {1334, 35310}, {1946, 22053}, {2170, 21104}, {2310, 6362}, {2346, 664}, {3022, 6608}, {3063, 1475}, {3239, 1229}, {3271, 48151}, {3676, 53242}, {3688, 35335}, {3709, 21808}, {3737, 17169}, {3900, 4847}, {4041, 3925}, {4105, 3059}, {4130, 51972}, {4391, 1233}, {4516, 55282}, {4524, 21039}, {4560, 16708}, {4895, 51463}, {6605, 190}, {6608, 6067}, {7252, 18164}, {7649, 53237}, {8641, 2293}, {10482, 100}, {10509, 36838}, {14392, 61035}, {14936, 21127}, {18155, 53236}, {21453, 4569}, {21789, 17194}, {23838, 53240}, {23893, 62731}, {24012, 6607}, {31618, 46406}, {32008, 4554}, {42311, 52937}, {47487, 6516}, {53243, 7045}, {56118, 668}, {56255, 4552}, {56284, 1111}, {56322, 85}, {57180, 8012}, {57815, 4572}, {58322, 7}, {59141, 101}, {61373, 4626}, {62725, 75}
X(62747) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {650, 57180, 4040}, {657, 14282, 21390}


X(62748) = TRILINEAR UNARY(5) OF X(8)

Barycentrics    a*(b - c)*(a^2 - 2*a*b + b^2 + a*c + b*c)*(a^2 + a*b - 2*a*c + b*c + c^2) : :

X(62748) lies on these lines: {9, 2490}, {57, 47890}, {514, 37789}, {649, 3239}, {650, 9364}, {657, 31182}, {661, 23617}, {667, 3900}, {813, 8706}, {875, 56190}, {1018, 32665}, {1019, 3762}, {1021, 1635}, {1222, 23892}, {1476, 23893}, {1781, 47767}, {2743, 59095}, {3306, 47652}, {3451, 61238}, {4369, 40420}, {4998, 21362}, {17424, 21348}, {47761, 58324}

X(62748) = isogonal conjugate of X(21362)
X(62748) = isotomic conjugate of X(21580)
X(62748) = isogonal conjugate of the anticomplement of X(24237)
X(62748) = X(i)-Ceva conjugate of X(j) for these (i,j): {1476, 40528}, {8706, 56190}, {40420, 40451}, {59095, 9}
X(62748) = X(i)-cross conjugate of X(j) for these (i,j): {3271, 1}, {4081, 84}, {4534, 9}, {40528, 1476}, {45743, 21}, {48322, 513}, {61048, 979}
X(62748) = X(i)-isoconjugate of X(j) for these (i,j): {1, 21362}, {2, 23845}, {3, 17906}, {4, 23113}, {6, 21272}, {31, 21580}, {56, 25268}, {57, 61222}, {59, 21120}, {81, 61166}, {99, 21796}, {100, 3752}, {101, 3663}, {109, 3452}, {110, 4415}, {190, 1201}, {644, 1122}, {651, 3057}, {653, 22072}, {662, 4642}, {664, 2347}, {668, 20228}, {692, 26563}, {765, 48334}, {901, 51415}, {1016, 6363}, {1262, 42337}, {1293, 45204}, {1332, 1828}, {1414, 21809}, {1415, 20895}, {1461, 6736}, {3699, 59173}, {3939, 52563}, {4551, 18163}, {4557, 18600}, {4559, 17183}, {4564, 6615}, {4565, 21031}, {6335, 22344}, {12640, 38828}, {18086, 46153}, {27499, 52923}, {27834, 45219}, {30720, 46367}, {55362, 56188}
X(62748) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 25268}, {2, 21580}, {3, 21362}, {9, 21272}, {11, 3452}, {244, 4415}, {513, 48334}, {1015, 3663}, {1084, 4642}, {1086, 26563}, {1146, 20895}, {5452, 61222}, {6615, 21120}, {8054, 3752}, {32664, 23845}, {35508, 6736}, {36033, 23113}, {36103, 17906}, {38979, 51415}, {38986, 21796}, {38991, 3057}, {39025, 2347}, {40586, 61166}, {40608, 21809}, {40617, 52563}, {55053, 1201}, {55064, 21031}, {55067, 17183}
X(62748) = cevapoint of X(i) and X(j) for these (i,j): {513, 4449}, {649, 650}, {657, 4162}
X(62748) = crosspoint of X(56323) and X(60482)
X(62748) = crosssum of X(i) and X(j) for these (i,j): {649, 20323}, {2347, 6615}, {3752, 48334}, {4415, 21120}, {6363, 21796}
X(62748) = trilinear pole of line {2310, 3248}
X(62748) = crossdifference of every pair of points on line {1201, 3057}
X(62748) = barycentric product X(i)*X(j) for these {i,j}: {1, 56323}, {9, 60482}, {100, 40451}, {244, 8706}, {513, 1222}, {514, 23617}, {521, 40446}, {522, 1476}, {649, 32017}, {650, 40420}, {664, 40528}, {693, 51476}, {1019, 56258}, {1261, 3676}, {2310, 6613}, {3451, 4391}, {3669, 52549}, {3737, 56173}, {6615, 59478}, {7192, 56190}, {24026, 59123}
X(62748) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 21272}, {2, 21580}, {6, 21362}, {9, 25268}, {19, 17906}, {31, 23845}, {42, 61166}, {48, 23113}, {55, 61222}, {512, 4642}, {513, 3663}, {514, 26563}, {522, 20895}, {649, 3752}, {650, 3452}, {661, 4415}, {663, 3057}, {667, 1201}, {798, 21796}, {1015, 48334}, {1019, 18600}, {1222, 668}, {1261, 3699}, {1476, 664}, {1635, 51415}, {1919, 20228}, {1946, 22072}, {2170, 21120}, {2310, 42337}, {3063, 2347}, {3248, 6363}, {3271, 6615}, {3451, 651}, {3669, 52563}, {3709, 21809}, {3737, 17183}, {3900, 6736}, {4041, 21031}, {4162, 12640}, {4394, 45204}, {4449, 59507}, {7252, 18163}, {8643, 45219}, {8706, 7035}, {23617, 190}, {32017, 1978}, {40420, 4554}, {40446, 18026}, {40451, 693}, {40528, 522}, {43924, 1122}, {51476, 100}, {52549, 646}, {56190, 3952}, {56258, 4033}, {56323, 75}, {57181, 59173}, {59095, 5382}, {59123, 7045}, {60482, 85}, {61048, 42336}
X(62748) = {X(649),X(43061)}-harmonic conjugate of X(21390)


X(62749) = TRILINEAR UNARY(5) OF X(10)

Barycentrics    a*(b - c)*(a^2 + b^2 + a*c + b*c)*(a^2 + a*b + b*c + c^2) : :

X(62749) lies on these lines: {513, 5061}, {514, 15420}, {522, 649}, {612, 50496}, {650, 667}, {661, 3737}, {798, 1021}, {813, 8707}, {875, 50510}, {961, 35348}, {1019, 1577}, {1220, 23892}, {2222, 8687}, {2298, 4979}, {2363, 23894}, {2484, 3239}, {2500, 58139}, {3676, 28094}, {3776, 48320}, {3882, 4600}, {4063, 47681}, {4367, 7180}, {4444, 14534}, {4841, 48288}, {6648, 53208}, {21099, 26080}, {24601, 30024}, {28024, 48149}, {29142, 48276}, {32665, 35342}, {36086, 36098}, {48150, 58322}, {48322, 57159}, {50353, 52326}, {58982, 59088}

X(62749) = isogonal conjugate of X(3882)
X(62749) = isogonal conjugate of the anticomplement of X(17197)
X(62749) = X(36147)-Ceva conjugate of X(2298)
X(62749) = X(i)-cross conjugate of X(j) for these (i,j): {663, 57161}, {3122, 1}, {21003, 1027}, {21043, 267}, {21044, 19}, {21725, 13610}, {48022, 514}, {50523, 513}, {57162, 4581}, {58842, 661}
X(62749) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3882}, {2, 53280}, {6, 53332}, {57, 61223}, {59, 3910}, {63, 61226}, {69, 61205}, {81, 61172}, {86, 61168}, {99, 2092}, {100, 3666}, {101, 4357}, {109, 3687}, {110, 1211}, {163, 18697}, {190, 1193}, {429, 4558}, {644, 24471}, {648, 22076}, {651, 960}, {662, 2292}, {664, 2269}, {668, 2300}, {692, 20911}, {765, 48131}, {799, 3725}, {906, 54314}, {934, 3965}, {1016, 6371}, {1018, 54308}, {1020, 46877}, {1110, 4509}, {1228, 1576}, {1252, 3004}, {1262, 57158}, {1331, 1848}, {1332, 1829}, {1414, 21033}, {1634, 27067}, {1682, 6648}, {1813, 46878}, {1897, 22097}, {2354, 4561}, {2720, 51407}, {3674, 3939}, {3699, 61412}, {3704, 4565}, {3903, 28369}, {3952, 40153}, {4267, 4552}, {4551, 17185}, {4554, 20967}, {4556, 20653}, {4557, 16705}, {4563, 44092}, {4564, 17420}, {4566, 46889}, {4567, 50330}, {4570, 21124}, {4573, 40966}, {4590, 42661}, {4606, 4719}, {4612, 52567}, {4631, 59174}, {4998, 52326}, {5546, 41003}, {6010, 39774}, {6335, 22345}, {18026, 22074}, {18235, 37137}, {21810, 52935}, {27455, 52923}, {29143, 51571}, {31625, 57157}, {41600, 46640}, {45218, 62530}
X(62749) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3882}, {9, 53332}, {11, 3687}, {115, 18697}, {244, 1211}, {513, 48131}, {514, 4509}, {661, 3004}, {1015, 4357}, {1084, 2292}, {1086, 20911}, {3162, 61226}, {4858, 1228}, {5190, 54314}, {5452, 61223}, {5521, 1848}, {6615, 3910}, {8054, 3666}, {14714, 3965}, {32664, 53280}, {34467, 22097}, {38981, 51407}, {38986, 2092}, {38991, 960}, {38996, 3725}, {39025, 2269}, {40586, 61172}, {40600, 61168}, {40608, 21033}, {40617, 3674}, {40620, 16739}, {40622, 45196}, {40627, 50330}, {50330, 21124}, {55053, 1193}, {55064, 3704}, {55066, 22076}
X(62749) = cevapoint of X(i) and X(j) for these (i,j): {513, 4367}, {649, 661}, {663, 798}
X(62749) = crosspoint of X(i) and X(j) for these (i,j): {1169, 8687}, {2298, 36147}, {8707, 14534}
X(62749) = crosssum of X(i) and X(j) for these (i,j): {650, 8240}, {661, 10459}, {1211, 3910}, {2092, 6371}, {2269, 17420}, {3666, 48131}, {61168, 61172}
X(62749) = trilinear pole of line {2170, 2643}
X(62749) = crossdifference of every pair of points on line {960, 1193}
X(62749) = barycentric product X(i)*X(j) for these {i,j}: {1, 4581}, {11, 36098}, {19, 15420}, {65, 57161}, {86, 57162}, {244, 8707}, {513, 1220}, {514, 2298}, {522, 961}, {523, 2363}, {649, 30710}, {661, 14534}, {663, 31643}, {667, 1240}, {798, 40827}, {1019, 14624}, {1086, 36147}, {1109, 58982}, {1111, 32736}, {1169, 1577}, {1791, 7649}, {1798, 24006}, {2170, 6648}, {2359, 17924}, {3737, 60086}, {4858, 8687}, {21186, 40454}, {24026, 52928}, {35334, 61404}, {54229, 57690}, {57129, 60264}
X(62749) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 53332}, {6, 3882}, {25, 61226}, {31, 53280}, {42, 61172}, {55, 61223}, {213, 61168}, {244, 3004}, {512, 2292}, {513, 4357}, {514, 20911}, {523, 18697}, {649, 3666}, {650, 3687}, {657, 3965}, {661, 1211}, {663, 960}, {667, 1193}, {669, 3725}, {798, 2092}, {810, 22076}, {961, 664}, {1015, 48131}, {1019, 16705}, {1086, 4509}, {1169, 662}, {1220, 668}, {1240, 6386}, {1577, 1228}, {1791, 4561}, {1798, 4592}, {1919, 2300}, {1973, 61205}, {2170, 3910}, {2298, 190}, {2310, 57158}, {2359, 1332}, {2363, 99}, {3063, 2269}, {3122, 50330}, {3125, 21124}, {3248, 6371}, {3271, 17420}, {3669, 3674}, {3709, 21033}, {3733, 54308}, {4017, 41003}, {4041, 3704}, {4079, 21810}, {4367, 59509}, {4581, 75}, {4705, 20653}, {4729, 4918}, {6591, 1848}, {7178, 45196}, {7192, 16739}, {7252, 17185}, {7649, 54314}, {8687, 4564}, {8707, 7035}, {14534, 799}, {14624, 4033}, {15420, 304}, {18344, 46878}, {20981, 28369}, {21789, 46877}, {22383, 22097}, {30710, 1978}, {31643, 4572}, {32736, 765}, {35334, 61406}, {36098, 4998}, {36147, 1016}, {40827, 4602}, {42661, 6042}, {43924, 24471}, {46393, 51407}, {48022, 51571}, {52928, 7045}, {55240, 27067}, {57129, 40153}, {57161, 314}, {57162, 10}, {57181, 61412}, {57234, 27697}, {57853, 55202}, {58140, 4719}, {58982, 24041}, {59159, 4579}
X(62749) = {X(649),X(6590)}-harmonic conjugate of X(21389)


X(62750) = TRILINEAR UNARY(5) OF X(11)

Barycentrics    a*(a - b - c)*(b - c)*(a^2 - b^2 + b*c - c^2)*(a^4 - a^3*b - a*b^3 + b^4 - a^3*c + 2*a^2*b*c + 2*a*b^2*c - b^3*c - a^2*c^2 - 2*a*b*c^2 - b^2*c^2 + a*c^3 + b*c^3)*(a^4 - a^3*b - a^2*b^2 + a*b^3 - a^3*c + 2*a^2*b*c - 2*a*b^2*c + b^3*c + 2*a*b*c^2 - b^2*c^2 - a*c^3 - b*c^3 + c^4) : :

X(62750) lies on these lines: {654, 1768}, {1983, 46384}

X(62750) = X(i)-cross conjugate of X(j) for these (i,j): {215, 3737}, {52303, 1}
X(62750) = X(i)-isoconjugate of X(j) for these (i,j): {2222, 16578}, {21742, 35174}
X(62750) = X(38984)-Dao conjugate of X(16578)
X(62750) = cevapoint of X(654) and X(46384)
X(62750) = barycentric product X(3738)*X(40450)
X(62750) = barycentric quotient X(i)/X(j) for these {i,j}: {654, 16578}, {40450, 35174}, {53285, 14740}, {53314, 59813}, {58313, 1830}


X(62751) = CROSSSUM OF X(522) AND X(1946)

Barycentrics    a^2*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2*b^2 - b^4 - a^2*b*c + b^3*c + a^2*c^2 + b*c^3 - c^4) : :

X(62751) lies on these lines: {65, 16732}, {109, 15440}, {23363, 46153}

X(62751) = X(4391)-isoconjugate of X(57405)
X(62751) = X(20305)-Dao conjugate of X(521)
X(62751) = crosspoint of X(109) and X(18026)
X(62751) = crosssum of X(522) and X(1946)
X(62751) = barycentric product X(i)*X(j) for these {i,j}: {59, 21117}, {109, 20305}, {651, 21318}, {653, 22069}, {664, 23619}, {1020, 24430}, {1415, 17864}, {4551, 18161}, {4552, 26892}, {4559, 17181}, {4565, 21028}, {18083, 46153}
X(62751) = barycentric quotient X(i)/X(j) for these {i,j}: {18161, 18155}, {20305, 35519}, {21117, 34387}, {21318, 4391}, {22069, 6332}, {23619, 522}, {26892, 4560}


X(62752) = CROSSSUM OF X(521) AND X(663)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(b + c)*(a^2 + b^2 - 2*b*c + c^2) : :

X(62752) lies on these lines: {108, 32691}, {109, 13397}, {513, 61202}, {516, 51655}, {651, 3573}, {664, 54982}, {1020, 4017}, {1576, 57200}, {2356, 3012}, {3952, 4069}, {6129, 53288}, {17136, 35338}, {17906, 47136}, {46152, 61205}

X(62752) = X(48403)-cross conjugate of X(614)
X(62752) = X(i)-isoconjugate of X(j) for these (i,j): {99, 14935}, {284, 48070}, {650, 40403}, {652, 40411}, {1019, 56243}, {1021, 7131}, {1037, 7253}, {1041, 57081}, {3737, 56179}, {4560, 7123}, {6332, 57386}, {7084, 18155}, {7252, 30701}, {8817, 21789}, {18191, 52778}, {23145, 30688}, {56359, 58329}
X(62752) = X(i)-Dao conjugate of X(j) for these (i,j): {6554, 18155}, {15487, 4560}, {16583, 35518}, {18589, 522}, {38986, 14935}, {40590, 48070}
X(62752) = crosspoint of X(108) and X(664)
X(62752) = crosssum of X(i) and X(j) for these (i,j): {521, 663}, {3737, 58329}, {7253, 21300}
X(62752) = trilinear pole of line {16583, 23620}
X(62752) = barycentric product X(i)*X(j) for these {i,j}: {7, 61160}, {65, 3732}, {108, 18589}, {109, 53510}, {190, 40961}, {226, 1633}, {497, 1020}, {614, 4552}, {651, 3914}, {653, 17441}, {658, 40965}, {664, 16583}, {1018, 7195}, {1040, 52607}, {2082, 4566}, {3673, 4559}, {3952, 28017}, {4000, 4551}, {4554, 40934}, {4564, 48403}, {4572, 21750}, {4605, 5324}, {4625, 21813}, {6516, 52577}, {7012, 21107}, {7289, 61178}, {18026, 23620}, {18084, 46152}, {20235, 32674}, {22057, 54240}, {22363, 46404}
X(62752) = barycentric quotient X(i)/X(j) for these {i,j}: {65, 48070}, {108, 40411}, {109, 40403}, {614, 4560}, {798, 14935}, {1020, 8817}, {1040, 15411}, {1633, 333}, {1851, 57215}, {2082, 7253}, {3732, 314}, {3914, 4391}, {4000, 18155}, {4551, 30701}, {4552, 57925}, {4557, 56243}, {4559, 56179}, {7083, 1021}, {7124, 57081}, {7195, 7199}, {8020, 18344}, {16502, 3737}, {16583, 522}, {17441, 6332}, {18589, 35518}, {21107, 17880}, {21750, 663}, {21813, 4041}, {22363, 652}, {23620, 521}, {28017, 7192}, {30706, 58329}, {40934, 650}, {40961, 514}, {40965, 3239}, {40987, 17926}, {48403, 4858}, {50490, 2170}, {52577, 44426}, {53321, 7131}, {53510, 35519}, {61160, 8}


X(62753) = CROSSSUM OF X(514) AND X(667)

Barycentrics    a^2*(a - b)*(a - c)*(b + c)*(b^2 - b*c + c^2) : :
X(62753) = 4 X[24036] - 3 X[24494]

X(62753) lies on these lines: {72, 22310}, {100, 815}, {101, 825}, {190, 57965}, {512, 1018}, {660, 3903}, {668, 46132}, {692, 57217}, {766, 57015}, {2170, 9016}, {2275, 3116}, {2276, 14945}, {2284, 16680}, {3056, 7237}, {3721, 4531}, {3808, 3888}, {3952, 22319}, {4083, 21272}, {4553, 53332}, {4557, 4559}, {5360, 20715}, {5508, 26893}, {7170, 18787}, {17164, 22328}, {20713, 22301}, {20863, 21331}, {22280, 61166}, {24036, 24494}, {35335, 48131}, {40501, 50487}, {46148, 46177}

X(62753) = midpoint of X(1018) and X(7287)
X(62753) = isogonal conjugate of X(7255)
X(62753) = X(4570)-anticomplementary conjugate of X(23371)
X(62753) = X(3888)-Ceva conjugate of X(7239)
X(62753) = X(i)-isoconjugate of X(j) for these (i,j): {1, 7255}, {513, 40415}, {523, 7305}, {649, 38810}, {693, 38813}, {798, 7307}, {983, 7192}, {1019, 17743}, {1980, 59146}, {3407, 4481}, {3733, 7033}, {3737, 56358}, {4475, 33514}, {4560, 7132}, {4621, 16726}, {7203, 56180}, {8632, 40834}, {20981, 40835}
X(62753) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 7255}, {2887, 513}, {3271, 18191}, {5375, 38810}, {16584, 3261}, {19563, 3766}, {19564, 4374}, {31998, 7307}, {39026, 40415}, {41771, 52619}, {41886, 18155}, {52657, 7199}
X(62753) = crosspoint of X(101) and X(668)
X(62753) = crosssum of X(i) and X(j) for these (i,j): {514, 667}, {3733, 18199}, {3737, 18197}
X(62753) = trilinear pole of line {3778, 16584}
X(62753) = crossdifference of every pair of points on line {17197, 44312}
X(62753) = barycentric product X(i)*X(j) for these {i,j}: {1, 7239}, {37, 3888}, {42, 33946}, {100, 3721}, {101, 2887}, {109, 4136}, {110, 16886}, {190, 3778}, {226, 40499}, {660, 18904}, {662, 7237}, {664, 20684}, {668, 16584}, {670, 21815}, {692, 20234}, {982, 1018}, {1020, 4073}, {1252, 3801}, {1897, 20727}, {1978, 40935}, {2275, 3952}, {3056, 4552}, {3061, 4551}, {3094, 4613}, {3662, 4557}, {3705, 4559}, {3794, 21859}, {3865, 61164}, {3903, 18905}, {3939, 16888}, {4033, 7032}, {4069, 41777}, {4531, 4554}, {5388, 17415}, {6386, 21751}, {7184, 56257}, {7248, 30730}, {16889, 46148}
X(62753) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 7255}, {99, 7307}, {100, 38810}, {101, 40415}, {163, 7305}, {660, 40834}, {982, 7199}, {1018, 7033}, {1978, 59146}, {2275, 7192}, {2887, 3261}, {3056, 4560}, {3061, 18155}, {3116, 4481}, {3662, 52619}, {3721, 693}, {3777, 16727}, {3778, 514}, {3784, 15419}, {3801, 23989}, {3888, 274}, {3903, 40835}, {4033, 7034}, {4136, 35519}, {4531, 650}, {4557, 17743}, {4559, 56358}, {4613, 3114}, {4787, 47683}, {5388, 9063}, {7032, 1019}, {7184, 16737}, {7186, 16755}, {7237, 1577}, {7239, 75}, {7248, 17096}, {8022, 1919}, {16584, 513}, {16886, 850}, {16888, 52621}, {18904, 3766}, {18905, 4374}, {20234, 40495}, {20284, 17217}, {20665, 3737}, {20684, 522}, {20727, 4025}, {21751, 667}, {21815, 512}, {22364, 22383}, {32739, 38813}, {33946, 310}, {40499, 333}, {40935, 649}, {50514, 16726}, {56806, 18197}
X(62753) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {660, 3903, 18047}, {46148, 46177, 53268}


X(62754) = CROSSSUM OF X(663) AND X(3900)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a*b + b^2 + a*c - 2*b*c + c^2) : :

X(62754) lies on these lines: {1, 1565}, {57, 1015}, {77, 17274}, {100, 6571}, {109, 934}, {223, 31142}, {514, 61224}, {651, 23704}, {664, 668}, {905, 61237}, {927, 29055}, {1019, 1625}, {1111, 32486}, {1201, 52563}, {1275, 6613}, {1323, 1457}, {1414, 4622}, {1415, 23890}, {1461, 57061}, {3160, 10571}, {3669, 4559}, {3676, 4566}, {4552, 25272}, {6516, 23703}, {7117, 53409}, {17136, 35338}, {21272, 61222}, {21362, 23113}, {23706, 36118}, {26700, 29279}, {34497, 39686}, {35350, 61221}, {43037, 49997}, {53530, 59813}

X(62754) = X(i)-Ceva conjugate of X(j) for these (i,j): {664, 21272}, {1275, 57}, {23971, 223}
X(62754) = X(i)-cross conjugate of X(j) for these (i,j): {6363, 57}, {6615, 3752}, {23845, 21362}, {42336, 59173}, {48334, 52563}
X(62754) = X(i)-isoconjugate of X(j) for these (i,j): {55, 56323}, {100, 40528}, {220, 60482}, {513, 1261}, {522, 51476}, {649, 52549}, {650, 23617}, {657, 40420}, {663, 1222}, {1476, 3900}, {3022, 6613}, {3063, 32017}, {3239, 3451}, {3271, 8706}, {3737, 56190}, {3939, 40451}, {4081, 59123}, {4534, 59095}, {7252, 56258}, {21789, 56173}, {40446, 57108}
X(62754) = X(i)-Dao conjugate of X(j) for these (i,j): {223, 56323}, {2170, 1146}, {3452, 522}, {3752, 4397}, {5375, 52549}, {8054, 40528}, {10001, 32017}, {12640, 4163}, {24237, 34589}, {39026, 1261}, {40617, 40451}, {59507, 4391}
X(62754) = cevapoint of X(i) and X(j) for these (i,j): {1201, 48334}, {3752, 6615}, {42336, 59173}
X(62754) = crosspoint of X(664) and X(934)
X(62754) = crosssum of X(663) and X(3900)
X(62754) = trilinear pole of line {1122, 2347}
X(62754) = crossdifference of every pair of points on line {3119, 38991}
X(62754) = barycentric product X(i)*X(j) for these {i,j}: {7, 21362}, {56, 21580}, {57, 21272}, {77, 17906}, {85, 23845}, {100, 52563}, {109, 26563}, {190, 1122}, {269, 25268}, {273, 23113}, {279, 61222}, {651, 3663}, {658, 3057}, {664, 3752}, {668, 59173}, {934, 3452}, {1020, 17183}, {1201, 4554}, {1275, 6615}, {1414, 4415}, {1434, 61166}, {1461, 20895}, {2347, 4569}, {4551, 18600}, {4566, 18163}, {4572, 20228}, {4573, 4642}, {4616, 21809}, {4617, 6736}, {4625, 21796}, {4637, 21031}, {4998, 48334}, {7045, 21120}, {13149, 22072}, {22344, 46404}, {31625, 42336}, {43290, 45205}
X(62754) = barycentric quotient X(i)/X(j) for these {i,j}: {57, 56323}, {100, 52549}, {101, 1261}, {109, 23617}, {269, 60482}, {649, 40528}, {651, 1222}, {664, 32017}, {934, 40420}, {1020, 56173}, {1122, 514}, {1201, 650}, {1415, 51476}, {1461, 1476}, {1828, 3064}, {2347, 3900}, {3057, 3239}, {3452, 4397}, {3663, 4391}, {3669, 40451}, {3752, 522}, {4415, 4086}, {4551, 56258}, {4559, 56190}, {4564, 8706}, {4642, 3700}, {6363, 2170}, {6615, 1146}, {17906, 318}, {18163, 7253}, {18600, 18155}, {20228, 663}, {20895, 52622}, {21120, 24026}, {21272, 312}, {21362, 8}, {21580, 3596}, {21796, 4041}, {22072, 57055}, {22344, 652}, {23113, 78}, {23845, 9}, {25268, 341}, {26563, 35519}, {32714, 40446}, {42336, 1015}, {45219, 4521}, {46367, 58794}, {48334, 11}, {51415, 4768}, {52563, 693}, {59173, 513}, {61166, 2321}, {61222, 346}


X(62755) = TRILINEAR UNARY(7) OF X(2)

Barycentrics    (a + b)*(a + c)*(a*b + a*c - 2*b*c) : :
X(62755) = 3 X[16711] - 2 X[17205], 3 X[16711] - X[30941], 3 X[17179] - 4 X[17205], 3 X[17179] - 2 X[30941]

X(62755) lies on these lines: {1, 75}, {2, 60276}, {8, 16887}, {9, 56023}, {10, 16705}, {39, 29433}, {42, 16748}, {43, 310}, {76, 3216}, {78, 16749}, {81, 16834}, {99, 2382}, {145, 17169}, {194, 16552}, {200, 16750}, {213, 17351}, {239, 514}, {330, 39950}, {333, 16833}, {350, 49997}, {385, 35342}, {386, 34284}, {519, 16711}, {536, 3230}, {538, 2238}, {596, 17141}, {668, 31855}, {889, 18826}, {899, 6381}, {978, 3760}, {980, 37660}, {994, 55945}, {995, 4441}, {1018, 17759}, {1107, 29773}, {1193, 20888}, {1211, 50178}, {1213, 50179}, {1266, 17139}, {1434, 3339}, {1500, 29383}, {1574, 29375}, {1575, 16742}, {1655, 46196}, {1714, 3926}, {1724, 1975}, {1909, 3293}, {2275, 29742}, {2664, 7035}, {3210, 17185}, {3241, 17180}, {3247, 25508}, {3294, 16827}, {3632, 33297}, {3673, 46877}, {3679, 16712}, {3684, 18723}, {3729, 27644}, {3786, 49446}, {3912, 16752}, {3914, 17203}, {3959, 18167}, {4051, 18176}, {4256, 37670}, {4262, 17002}, {4352, 5232}, {4361, 16696}, {4373, 17753}, {4384, 4850}, {4393, 26860}, {4402, 16713}, {4452, 17183}, {4555, 4589}, {4706, 43037}, {4754, 20970}, {4771, 35102}, {4852, 16971}, {5195, 62392}, {5256, 30599}, {5283, 17259}, {5333, 29597}, {5540, 50029}, {5692, 49518}, {5936, 19853}, {6390, 35466}, {6740, 51568}, {7200, 8682}, {7260, 18786}, {8025, 29584}, {9361, 40874}, {11115, 17200}, {13571, 60149}, {14956, 49987}, {16549, 17033}, {16569, 31008}, {16589, 29460}, {16604, 29750}, {16703, 32860}, {16707, 32924}, {16710, 17207}, {16727, 30806}, {16728, 43065}, {16737, 48282}, {16738, 16829}, {16744, 29438}, {16746, 29557}, {16826, 31025}, {16891, 33131}, {17135, 17208}, {17136, 39766}, {17167, 19789}, {17182, 30699}, {17211, 23537}, {17294, 30965}, {17448, 18171}, {17499, 40908}, {17749, 18135}, {17751, 24170}, {18148, 29765}, {20011, 39734}, {20018, 56999}, {20247, 24166}, {20691, 29699}, {21029, 30170}, {21070, 27097}, {21816, 59633}, {22253, 37658}, {23891, 52959}, {24214, 53598}, {24215, 59302}, {24621, 37684}, {24790, 29960}, {25399, 25700}, {26752, 26813}, {26852, 53675}, {27162, 50605}, {27643, 56082}, {40153, 42051}, {44146, 61226}, {45962, 48837}, {46913, 50155}, {51561, 60488}, {56051, 56066}, {56191, 60706}, {62709, 62711}

X(62755) = reflection of X(i) in X(j) for these {i,j}: {17179, 16711}, {30941, 17205}
X(62755) = isotomic conjugate of X(41683)
X(62755) = X(18826)-Ceva conjugate of X(1)
X(62755) = X(i)-cross conjugate of X(j) for these (i,j): {891, 23891}, {899, 52897}, {38349, 190}
X(62755) = X(i)-isoconjugate of X(j) for these (i,j): {31, 41683}, {32, 60288}, {37, 739}, {42, 37129}, {213, 3227}, {512, 898}, {523, 32718}, {661, 34075}, {669, 889}, {692, 35353}, {798, 4607}, {1018, 23892}, {1402, 36798}, {1918, 31002}, {3121, 5381}, {3952, 23349}, {4557, 43928}, {9426, 57994}
X(62755) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 41683}, {536, 3994}, {899, 44671}, {1086, 35353}, {2229, 714}, {6376, 60288}, {6626, 3227}, {13466, 10}, {14434, 3122}, {31998, 4607}, {34021, 31002}, {36830, 34075}, {39011, 661}, {39054, 898}, {40589, 739}, {40592, 37129}, {40605, 36798}, {40614, 37}, {40620, 62619}, {52875, 756}, {52882, 321}
X(62755) = cevapoint of X(i) and X(j) for these (i,j): {536, 899}, {2229, 44671}, {30592, 52626}
X(62755) = crosssum of X(37) and X(2229)
X(62755) = trilinear pole of line {3768, 4465}
X(62755) = crossdifference of every pair of points on line {42, 798}
X(62755) = X(16748)-line conjugate of X(42)
X(62755) = barycentric product X(i)*X(j) for these {i,j}: {58, 35543}, {75, 52897}, {81, 6381}, {86, 536}, {99, 4728}, {274, 899}, {304, 52890}, {310, 3230}, {314, 52896}, {333, 43037}, {670, 3768}, {799, 891}, {873, 52959}, {890, 4602}, {1019, 41314}, {1434, 4009}, {1509, 3994}, {4465, 18827}, {4526, 4625}, {4573, 14430}, {4589, 14433}, {4600, 52626}, {4601, 19945}, {4610, 14431}, {4615, 30583}, {4632, 30592}, {4634, 14437}, {7192, 23891}, {7199, 23343}, {14404, 52612}, {16704, 52755}, {18157, 52902}, {30939, 52900}, {30941, 36816}, {45338, 51563}
X(62755) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 41683}, {58, 739}, {75, 60288}, {81, 37129}, {86, 3227}, {99, 4607}, {110, 34075}, {163, 32718}, {274, 31002}, {333, 36798}, {514, 35353}, {536, 10}, {662, 898}, {799, 889}, {890, 798}, {891, 661}, {899, 37}, {1019, 43928}, {1646, 3122}, {3230, 42}, {3733, 23892}, {3768, 512}, {3994, 594}, {4009, 2321}, {4465, 740}, {4526, 4041}, {4600, 5381}, {4602, 57994}, {4706, 5257}, {4728, 523}, {6381, 321}, {6629, 52757}, {7192, 62619}, {13466, 3994}, {14404, 4079}, {14426, 21834}, {14430, 3700}, {14431, 4024}, {14433, 4010}, {14437, 4730}, {16704, 36872}, {18653, 52754}, {19945, 3125}, {23343, 1018}, {23891, 3952}, {28603, 4931}, {30583, 4120}, {30592, 4988}, {35543, 313}, {36816, 13576}, {40614, 44671}, {41314, 4033}, {42083, 52959}, {43037, 226}, {45145, 2250}, {45338, 4804}, {52626, 3120}, {52755, 4080}, {52890, 19}, {52896, 65}, {52897, 1}, {52900, 4674}, {52901, 53114}, {52902, 18785}, {52959, 756}, {57129, 23349}, {61672, 21801}
X(62755) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 274, 17175}, {8, 18600, 16887}, {10, 16705, 17210}, {75, 54308, 10455}, {86, 3875, 58788}, {99, 33295, 52680}, {239, 62636, 18206}, {274, 33296, 1}, {2669, 30940, 18792}, {16711, 30941, 17205}, {16827, 25264, 3294}, {17143, 34063, 1}, {17205, 30941, 17179}, {17759, 40859, 1018}


X(62756) = TRILINEAR UNARY(7) OF X(3)

Barycentrics    a*(a + b)*(a - b - c)*(a + c)*(2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2) : :
X(62756) = 2 X[46549] - 3 X[61221]

X(62756) lies on these lines: {1, 21}, {2, 5733}, {27, 5735}, {29, 55956}, {40, 1437}, {110, 2717}, {155, 6985}, {165, 1790}, {184, 1764}, {200, 1812}, {323, 61220}, {333, 5231}, {394, 1004}, {474, 17811}, {511, 46549}, {521, 650}, {524, 33305}, {527, 23710}, {542, 46484}, {648, 15146}, {851, 3292}, {1018, 17977}, {1020, 17975}, {1092, 1715}, {1155, 6510}, {1697, 54417}, {1730, 9306}, {1758, 4570}, {1800, 58887}, {1806, 31432}, {1819, 15803}, {1998, 40571}, {2078, 3286}, {2194, 18163}, {2308, 40998}, {3011, 33864}, {3191, 52408}, {3679, 11103}, {4192, 34986}, {5292, 6919}, {5642, 46554}, {5707, 11108}, {5709, 41608}, {5713, 6856}, {6357, 17768}, {7580, 37672}, {7982, 37227}, {7991, 16049}, {8021, 18185}, {8715, 35995}, {13589, 23061}, {13857, 46486}, {14544, 39767}, {16435, 17809}, {16704, 26015}, {16833, 28942}, {17156, 19607}, {17182, 29658}, {17524, 34486}, {17589, 24987}, {18191, 18839}, {20367, 26884}, {20718, 53324}, {22139, 37527}, {31146, 41629}, {39949, 41487}, {40112, 46488}, {41586, 46555}, {54323, 61763}

X(62756) = midpoint of X(14544) and X(39767)
X(62756) = X(1155)-cross conjugate of X(52891)
X(62756) = X(i)-isoconjugate of X(j) for these (i,j): {37, 34056}, {42, 62723}, {65, 1156}, {225, 60047}, {226, 2291}, {512, 35157}, {523, 14733}, {661, 37139}, {850, 32728}, {1020, 23893}, {1121, 1400}, {1427, 41798}, {1441, 34068}, {1446, 18889}, {1577, 36141}, {1903, 61493}, {3668, 4845}, {3709, 60487}, {4551, 35348}, {4559, 60479}, {4566, 23351}
X(62756) = X(i)-Dao conjugate of X(j) for these (i,j): {6510, 51608}, {6594, 10}, {35091, 1577}, {35110, 1441}, {36830, 37139}, {39054, 35157}, {40582, 1121}, {40589, 34056}, {40592, 62723}, {40602, 1156}, {40629, 4077}, {52870, 1446}, {52879, 3668}, {52880, 307}, {55067, 60479}
X(62756) = crossdifference of every pair of points on line {65, 661}
X(62756) = barycentric product X(i)*X(j) for these {i,j}: {21, 527}, {29, 6510}, {63, 52891}, {81, 6745}, {86, 6603}, {283, 37805}, {284, 30806}, {314, 1055}, {333, 1155}, {643, 1638}, {645, 14413}, {648, 14414}, {662, 6366}, {799, 6139}, {1021, 56543}, {1043, 6610}, {1323, 2287}, {1444, 60431}, {1812, 23710}, {2327, 38461}, {2328, 37780}, {4573, 14392}, {4612, 30574}, {7253, 23890}, {8822, 56763}, {17194, 62728}, {24685, 56154}
X(62756) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 1121}, {58, 34056}, {81, 62723}, {110, 37139}, {163, 14733}, {284, 1156}, {527, 1441}, {662, 35157}, {1055, 65}, {1155, 226}, {1323, 1446}, {1414, 60487}, {1576, 36141}, {1638, 4077}, {2193, 60047}, {2194, 2291}, {2328, 41798}, {2360, 61493}, {3737, 60479}, {6139, 661}, {6366, 1577}, {6510, 307}, {6603, 10}, {6610, 3668}, {6745, 321}, {7252, 35348}, {14392, 3700}, {14413, 7178}, {14414, 525}, {17194, 62731}, {21789, 23893}, {23346, 1020}, {23710, 40149}, {23890, 4566}, {30806, 349}, {37805, 57809}, {52880, 51608}, {52891, 92}, {56763, 39130}, {57657, 34068}, {60431, 41013}
X(62756) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {81, 2328, 17194}, {283, 3193, 1}, {17975, 41349, 1020}


X(62757) = TRILINEAR UNARY(7) OF X(4)

Barycentrics    (a + b)*(a - b - c)*(a + c)*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c + a^2*b^2*c - 2*b^4*c - a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62757) lies on these lines: {1, 29}, {27, 30304}, {243, 522}, {286, 4328}, {459, 57719}, {648, 15146}, {1075, 1715}, {1730, 3168}, {1754, 56296}, {1990, 33305}, {2635, 52982}, {2655, 24032}, {16056, 59529}, {17194, 31623}, {37790, 54407}, {41204, 61221}, {46106, 61220}, {46554, 47204}

X(62757) = X(2635)-cross conjugate of X(52889)
X(62757) = X(i)-isoconjugate of X(j) for these (i,j): {73, 23707}, {307, 34078}, {1214, 32726}, {3265, 32727}, {24018, 36140}
X(62757) = crossdifference of every pair of points on line {73, 822}
X(62757) = barycentric product X(i)*X(j) for these {i,j}: {21, 52982}, {92, 52889}, {2635, 31623}, {2637, 6528}
X(62757) = barycentric quotient X(i)/X(j) for these {i,j}: {1172, 23707}, {2204, 34078}, {2299, 32726}, {2635, 1214}, {2637, 520}, {30691, 51664}, {30692, 8611}, {32713, 36140}, {52889, 63}, {52982, 1441}


X(62758) = TRILINEAR UNARY(7) OF X(5)

Barycentrics    (a + b)*(a - b - c)*(a + c)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 + a*c + c^2)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - 2*a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 4*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + a*b*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62758) lies on these lines: {1, 564}, {654, 1021}

X(62758) = crossdifference of every pair of points on line {2594, 2624}
X(62758) = barycentric quotient X(45885)/X(16577)


X(62759) = TRILINEAR UNARY(7) OF X(7)

Barycentrics    (a + b - c)*(a - b + c)*(a^2 - 2*a*b + b^2 - a*c - b*c)*(a^2 - a*b - 2*a*c - b*c + c^2)*(a^3*b - 2*a^2*b^2 + a*b^3 + a^3*c + 2*a^2*b*c - a*b^2*c - 2*b^3*c - 2*a^2*c^2 - a*b*c^2 + 4*b^2*c^2 + a*c^3 - 2*b*c^3) : :

X(62759) lies on these lines: {1, 1088}, {514, 657}, {1170, 34059}, {3160, 60229}, {4915, 57815}, {7671, 42309}, {9312, 31169}, {10509, 30330}

X(62759) = barycentric product X(i)*X(j) for these {i,j}: {2346, 52980}, {3000, 31618}, {21453, 44664}, {42311, 52888}
X(62759) = barycentric quotient X(i)/X(j) for these {i,j}: {3000, 1212}, {44664, 4847}, {52888, 3059}, {52980, 20880}


X(62760) = TRILINEAR UNARY(7) OF X(8)

Barycentrics    (a*b + a*c - 2*b*c)*(a^2 - 2*a*b + b^2 + a*c + b*c)*(a^2 + a*b - 2*a*c + b*c + c^2) : :

X(62760) lies on these lines: {1, 341}, {649, 3239}, {1261, 1621}, {2051, 6557}, {2382, 8706}, {3731, 52549}, {4871, 40451}

X(62760) = X(4526)-cross conjugate of X(23891)
X(62760) = X(i)-isoconjugate of X(j) for these (i,j): {739, 3752}, {898, 6363}, {1201, 37129}, {3227, 20228}, {21272, 23349}, {21362, 23892}, {23845, 43928}, {34075, 48334}
X(62760) = X(i)-Dao conjugate of X(j) for these (i,j): {13466, 3663}, {39011, 48334}, {40614, 3752}, {52875, 4642}, {52882, 26563}
X(62760) = cevapoint of X(899) and X(4009)
X(62760) = barycentric product X(i)*X(j) for these {i,j}: {536, 1222}, {899, 32017}, {4009, 40420}, {4728, 8706}, {6381, 23617}, {23891, 56323}, {35543, 51476}, {43037, 52549}
X(62760) = barycentric quotient X(i)/X(j) for these {i,j}: {536, 3663}, {891, 48334}, {899, 3752}, {1222, 3227}, {3230, 1201}, {3768, 6363}, {3994, 4415}, {4009, 3452}, {4526, 6615}, {6381, 26563}, {8706, 4607}, {14430, 21120}, {23343, 21362}, {23617, 37129}, {23891, 21272}, {32017, 31002}, {41314, 21580}, {43037, 52563}, {51476, 739}, {52549, 36798}, {52896, 1122}, {52959, 4642}, {56258, 41683}, {56323, 62619}


X(62761) = TRILINEAR UNARY(7) OF X(10)

Barycentrics    (a*b + a*c - 2*b*c)*(a^2 + b^2 + a*c + b*c)*(a^2 + a*b + b*c + c^2) : :

X(62761) lies on these lines: {1, 312}, {43, 60264}, {522, 649}, {961, 55952}, {1240, 3875}, {2298, 56077}, {2363, 56281}, {2382, 8707}, {3230, 4009}, {3247, 14624}, {3340, 60086}, {3677, 30942}, {6648, 53220}, {26242, 29828}

X(62761) = X(i)-isoconjugate of X(j) for these (i,j): {739, 3666}, {889, 57157}, {898, 6371}, {1193, 37129}, {2300, 3227}, {3004, 32718}, {3882, 23892}, {23349, 53332}, {34075, 48131}, {43928, 53280}
X(62761) = X(i)-Dao conjugate of X(j) for these (i,j): {13466, 4357}, {39011, 48131}, {40614, 3666}, {52875, 2292}, {52882, 20911}
X(62761) = cevapoint of X(899) and X(3994)
X(62761) = trilinear pole of line {3768, 14430}
X(62761) = barycentric product X(i)*X(j) for these {i,j}: {536, 1220}, {899, 30710}, {1240, 3230}, {2298, 6381}, {3994, 14534}, {4581, 23891}, {4728, 8707}, {6648, 14430}
X(62761) = barycentric quotient X(i)/X(j) for these {i,j}: {536, 4357}, {891, 48131}, {899, 3666}, {1220, 3227}, {2298, 37129}, {3230, 1193}, {3768, 6371}, {3994, 1211}, {4009, 3687}, {4526, 17420}, {4581, 62619}, {4728, 3004}, {6381, 20911}, {8707, 4607}, {14430, 3910}, {14431, 21124}, {14624, 41683}, {23343, 3882}, {23891, 53332}, {30710, 31002}, {32736, 34075}, {36147, 898}, {43037, 3674}, {52896, 24471}, {52897, 54308}, {52959, 2292}


X(62762) = TRILINEAR UNARY(7) OF X(11)

Barycentrics    (a^4 - a^3*b - a*b^3 + b^4 - a^3*c + 2*a^2*b*c + 2*a*b^2*c - b^3*c - a^2*c^2 - 2*a*b*c^2 - b^2*c^2 + a*c^3 + b*c^3)*(a^4 - a^3*b - a^2*b^2 + a*b^3 - a^3*c + 2*a^2*b*c - 2*a*b^2*c + b^3*c + 2*a*b*c^2 - b^2*c^2 - a*c^3 - b*c^3 + c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - 2*a^3*b*c + 2*a^2*b^2*c + a*b^3*c - 2*b^4*c - a^3*c^2 + 2*a^2*b*c^2 - 4*a*b^2*c^2 + 2*b^3*c^2 - a^2*c^3 + a*b*c^3 + 2*b^2*c^3 + a*c^4 - 2*b*c^4) : :

X(62762) lies on these lines: {1, 1090}, {654, 1768}

X(62762) = barycentric quotient X(45885)/X(16578)


X(62763) = TRILINEAR UNARY(8) OF X(2)

Barycentrics    a^2*(b + c)*(2*a*b - a*c - b*c)*(a*b - 2*a*c + b*c) : :

X(62763) lies on these lines: {1, 190}, {9, 36873}, {31, 101}, {42, 1018}, {213, 4557}, {292, 875}, {741, 898}, {889, 18826}, {923, 34075}, {1015, 24494}, {1020, 1042}, {1023, 1911}, {1402, 4559}, {1973, 8750}, {2107, 52894}, {2108, 5313}, {2296, 26102}, {2664, 4607}, {3223, 16569}, {3294, 23493}, {4628, 46289}, {18169, 40439}, {18793, 31855}, {35353, 60135}, {37854, 38891}, {40718, 56191}, {49997, 52768}

X(62763) = isogonal conjugate of the isotomic conjugate of X(41683)
X(62763) = X(898)-Ceva conjugate of X(23892)
X(62763) = X(i)-isoconjugate of X(j) for these (i,j): {2, 52897}, {21, 43037}, {58, 6381}, {69, 52890}, {81, 536}, {86, 899}, {99, 891}, {274, 3230}, {333, 52896}, {662, 4728}, {670, 890}, {715, 52882}, {757, 3994}, {799, 3768}, {1014, 4009}, {1019, 23891}, {1333, 35543}, {1414, 14430}, {1509, 52959}, {1646, 4601}, {3733, 41314}, {4465, 37128}, {4526, 4573}, {4567, 52626}, {4584, 14433}, {4596, 30592}, {4600, 19945}, {4615, 14437}, {4622, 30583}, {4623, 14404}, {4706, 56048}, {5235, 52901}, {7192, 23343}, {14426, 56053}, {14431, 52935}, {16704, 52900}, {17139, 45145}, {18206, 36816}, {30941, 52902}, {52680, 52755}
X(62763) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 6381}, {37, 35543}, {1084, 4728}, {32664, 52897}, {38986, 891}, {38996, 3768}, {40586, 536}, {40600, 899}, {40607, 3994}, {40608, 14430}, {40611, 43037}, {40627, 52626}, {50497, 19945}
X(62763) = cevapoint of X(37) and X(2229)
X(62763) = crosspoint of X(739) and X(37129)
X(62763) = crosssum of X(i) and X(j) for these (i,j): {536, 899}, {2229, 44671}, {30592, 52626}
X(62763) = trilinear pole of line {42, 798}
X(62763) = crossdifference of every pair of points on line {3768, 4465}
X(62763) = barycentric product X(i)*X(j) for these {i,j}: {6, 41683}, {10, 739}, {31, 60288}, {37, 37129}, {42, 3227}, {101, 35353}, {213, 31002}, {512, 4607}, {523, 34075}, {661, 898}, {798, 889}, {1018, 43928}, {1400, 36798}, {1577, 32718}, {1924, 57994}, {3122, 5381}, {3952, 23892}, {4033, 23349}, {4557, 62619}
X(62763) = barycentric quotient X(i)/X(j) for these {i,j}: {10, 35543}, {31, 52897}, {37, 6381}, {42, 536}, {213, 899}, {512, 4728}, {669, 3768}, {739, 86}, {798, 891}, {872, 52959}, {889, 4602}, {898, 799}, {1018, 41314}, {1334, 4009}, {1400, 43037}, {1402, 52896}, {1500, 3994}, {1918, 3230}, {1924, 890}, {1973, 52890}, {2229, 52882}, {3121, 19945}, {3122, 52626}, {3227, 310}, {3709, 14430}, {3747, 4465}, {3997, 62627}, {4079, 14431}, {4455, 14433}, {4557, 23891}, {4607, 670}, {14407, 30583}, {23349, 1019}, {23892, 7192}, {31002, 6385}, {32718, 662}, {34075, 99}, {35353, 3261}, {36798, 28660}, {37129, 274}, {41683, 76}, {43928, 7199}, {53581, 14404}, {56853, 36816}, {60288, 561}, {62619, 52619}


X(62764) = TRILINEAR UNARY(8) OF X(3)

Barycentrics    a*(a + b - c)*(a - b + c)*(b + c)*(a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(a^2 + a*b - 2*b^2 - 2*a*c + b*c + c^2) : :

X(62764) lies on these lines: {1, 651}, {10, 4552}, {19, 108}, {37, 4551}, {65, 1020}, {75, 4554}, {158, 54240}, {225, 52607}, {596, 45700}, {676, 2006}, {759, 14733}, {897, 1758}, {921, 58887}, {969, 4328}, {1054, 8769}, {1121, 31359}, {1420, 2217}, {1910, 36141}, {1937, 23893}, {2218, 34068}, {2219, 2257}, {3086, 24225}, {3120, 3668}, {3678, 56259}, {7201, 13476}, {8557, 18889}, {12709, 31503}, {15932, 57419}, {18827, 35157}, {42285, 46480}, {42289, 53114}, {52382, 57285}, {53551, 55244}, {60479, 60574}

X(62764) = X(14733)-Ceva conjugate of X(35348)
X(62764) = X(i)-isoconjugate of X(j) for these (i,j): {3, 52891}, {21, 1155}, {58, 6745}, {81, 6603}, {99, 6139}, {110, 6366}, {162, 14414}, {283, 23710}, {284, 527}, {333, 1055}, {643, 14413}, {1021, 23890}, {1172, 6510}, {1323, 2328}, {1414, 14392}, {1638, 5546}, {1790, 60431}, {1817, 56763}, {2193, 37805}, {2194, 30806}, {2287, 6610}, {2311, 24685}, {4636, 30574}, {7253, 23346}, {21789, 56543}, {33573, 52378}
X(62764) = X(i)-Dao conjugate of X(j) for these (i,j): {10, 6745}, {125, 14414}, {244, 6366}, {1214, 30806}, {36103, 52891}, {36908, 1323}, {38986, 6139}, {40586, 6603}, {40590, 527}, {40608, 14392}, {40611, 1155}, {47345, 37805}, {55060, 14413}, {59608, 37780}
X(62764) = crosspoint of X(34056) and X(62723)
X(62764) = trilinear pole of line {65, 661}
X(62764) = barycentric product X(i)*X(j) for these {i,j}: {10, 34056}, {37, 62723}, {65, 1121}, {226, 1156}, {349, 34068}, {523, 37139}, {661, 35157}, {850, 36141}, {1441, 2291}, {1446, 4845}, {1577, 14733}, {3668, 41798}, {4041, 60487}, {4551, 60479}, {4552, 35348}, {4566, 23893}, {20948, 32728}, {39130, 61493}, {40149, 60047}
X(62764) = barycentric quotient X(i)/X(j) for these {i,j}: {19, 52891}, {37, 6745}, {42, 6603}, {65, 527}, {73, 6510}, {225, 37805}, {226, 30806}, {647, 14414}, {661, 6366}, {798, 6139}, {1020, 56543}, {1042, 6610}, {1121, 314}, {1156, 333}, {1284, 24685}, {1400, 1155}, {1402, 1055}, {1427, 1323}, {1824, 60431}, {1880, 23710}, {2291, 21}, {2357, 56763}, {3668, 37780}, {3709, 14392}, {4017, 1638}, {4516, 33573}, {4845, 2287}, {7180, 14413}, {14733, 662}, {18889, 2328}, {21808, 61035}, {23351, 1021}, {23893, 7253}, {32728, 163}, {34056, 86}, {34068, 284}, {35157, 799}, {35348, 4560}, {36141, 110}, {37139, 99}, {41798, 1043}, {53321, 23890}, {57185, 30574}, {60047, 1812}, {60479, 18155}, {60487, 4625}, {61493, 8822}, {62723, 274}


X(62765) = TRILINEAR UNARY(8) OF X(4)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - c^2)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c + 2*a^2*b^2*c - b^4*c + a^3*c^2 - a^2*b*c^2 - a*b^2*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^2*b^2*c + b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(62765) lies on these lines: {1, 653}, {48, 109}, {73, 1020}, {255, 1813}, {580, 19614}, {3990, 23067}, {22341, 52610}, {41087, 61229}

X(62765) = X(i)-isoconjugate of X(j) for these (i,j): {4, 52889}, {29, 2635}, {284, 52982}, {823, 2637}, {30691, 36797}
X(62765) = X(i)-Dao conjugate of X(j) for these (i,j): {36033, 52889}, {40590, 52982}
X(62765) = trilinear pole of line {73, 822}
X(62765) = barycentric product X(i)*X(j) for these {i,j}: {307, 32726}, {1214, 23707}, {1231, 34078}, {3265, 36140}
X(62765) = barycentric quotient X(i)/X(j) for these {i,j}: {48, 52889}, {65, 52982}, {1409, 2635}, {23707, 31623}, {32726, 29}, {32727, 24019}, {34078, 1172}, {36140, 107}, {39201, 2637}


X(62766) = TRILINEAR UNARY(8) OF X(5)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(b + c)*(a^2 - b^2 - b*c - c^2)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c - a^3*b*c + 4*a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c - 2*a*b^3*c + b^4*c + 2*a^3*c^2 - 4*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(62766) lies on these lines: {1, 655}, {1020, 1464}

X(62766) = X(3615)-isoconjugate of X(45885)
X(62766) = trilinear pole of line {2594, 2624}
X(62766) = barycentric quotient X(21741)/X(45885)


X(62767) = TRILINEAR UNARY(8) OF X(7)

Barycentrics    a^2*(a - b - c)*(a*b - b^2 + a*c + 2*b*c - c^2)*(2*a^3*b - 4*a^2*b^2 + 2*a*b^3 - a^3*c + a^2*b*c + a*b^2*c - b^3*c + 2*a^2*c^2 - 2*a*b*c^2 + 2*b^2*c^2 - a*c^3 - b*c^3)*(a^3*b - 2*a^2*b^2 + a*b^3 - 2*a^3*c - a^2*b*c + 2*a*b^2*c + b^3*c + 4*a^2*c^2 - a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + b*c^3) : :

X(62767) lies on these lines: {1, 658}, {101, 1253}, {2293, 14519}

X(62767) = X(i)-isoconjugate of X(j) for these (i,j): {1170, 44664}, {1174, 52980}, {3000, 21453}, {10509, 52888}
X(62767) = X(40606)-Dao conjugate of X(52980)
X(62767) = barycentric quotient X(i)/X(j) for these {i,j}: {354, 52980}, {2293, 44664}, {20229, 3000}


X(62768) = TRILINEAR UNARY(8) OF X(8)

Barycentrics    a^2*(2*a*b - a*c - b*c)*(a*b - 2*a*c + b*c)*(a*b + b^2 + a*c - 2*b*c + c^2) : :

X(62768) lies on these lines: {1, 190}, {572, 739}, {1106, 1461}, {1201, 21362}, {4591, 5009}, {8054, 23524}, {9432, 23892}, {20228, 23845}

X(62768) = X(i)-isoconjugate of X(j) for these (i,j): {536, 23617}, {891, 8706}, {899, 1222}, {1261, 43037}, {1476, 4009}, {3230, 32017}, {6381, 51476}, {23343, 56323}, {52549, 52896}, {52897, 56258}
X(62768) = X(i)-Dao conjugate of X(j) for these (i,j): {3452, 6381}, {59507, 35543}
X(62768) = crosssum of X(899) and X(4009)
X(62768) = barycentric product X(i)*X(j) for these {i,j}: {739, 3663}, {898, 48334}, {1201, 3227}, {3752, 37129}, {4607, 6363}, {20228, 31002}, {21272, 23892}, {21362, 43928}, {21580, 23349}, {23845, 62619}, {36798, 59173}
X(62768) = barycentric quotient X(i)/X(j) for these {i,j}: {739, 1222}, {1201, 536}, {2347, 4009}, {3663, 35543}, {3752, 6381}, {6363, 4728}, {20228, 899}, {21362, 41314}, {21796, 3994}, {23845, 23891}, {23892, 56323}, {34075, 8706}, {37129, 32017}, {59173, 43037}


X(62769) = TRILINEAR UNARY(8) OF X(10)

Barycentrics    a^2*(2*a*b - a*c - b*c)*(a*b - 2*a*c + b*c)*(a*b + b^2 + a*c + c^2) : :

X(62769) lies on these lines: {1, 190}, {109, 604}, {849, 4556}, {1178, 4603}, {1193, 3882}, {2300, 53280}, {17954, 23892}

X(62769) = X(i)-isoconjugate of X(j) for these (i,j): {536, 2298}, {891, 8707}, {899, 1220}, {961, 4009}, {2363, 3994}, {3230, 30710}, {4526, 6648}, {4581, 23343}, {4728, 36147}, {14430, 36098}, {14534, 52959}, {14624, 52897}
X(62769) = X(i)-Dao conjugate of X(j) for these (i,j): {960, 3994}, {1211, 6381}, {38992, 14430}, {39015, 4728}, {52087, 536}, {59509, 35543}
X(62769) = crosssum of X(899) and X(3994)
X(62769) = crossdifference of every pair of points on line {3768, 14430}
X(62769) = barycentric product X(i)*X(j) for these {i,j}: {739, 4357}, {898, 48131}, {1193, 3227}, {2300, 31002}, {3004, 34075}, {3666, 37129}, {3882, 43928}, {4509, 32718}, {4607, 6371}, {23892, 53332}, {36798, 61412}, {40153, 41683}, {53280, 62619}
X(62769) = barycentric quotient X(i)/X(j) for these {i,j}: {739, 1220}, {1193, 536}, {2092, 3994}, {2269, 4009}, {2300, 899}, {3227, 1240}, {3666, 6381}, {3725, 52959}, {3882, 41314}, {4357, 35543}, {6371, 4728}, {23892, 4581}, {32718, 36147}, {34075, 8707}, {37129, 30710}, {41683, 60264}, {52326, 14430}, {53280, 23891}, {57157, 3768}, {61412, 43037}



leftri

Perspectors related to PTC triangles: X(62770)-X(63195)

rightri

This preamble and centers X(62770)-X(63195) were contributed by Ivan Pavlov on Apr 26, 2024.

For a triangle ABC, and arbitrary points P, Q, and R not on its sides, let A' be the intersection of AP and the perpendicular through Q to BC and similarly define B' and C'. Let A'' be the intersection of RA' and BC and similarly define B'' and C''. Below, we denote with PTC(P,Q,R) the triangle A''B''C''. If P, Q, and R are triangle centers then PTC(P,Q,R) is a central triangle.

If in barycentrics P=u:v:w, Q=p:q:r, and R=l:m:n then the A-vertex of PTC(P,Q,R) is:

0 : (b^2 - c^2) (-l (q + r) v + m p (v + w)) - a^2 ((l (-q + r) + m (p + 2 r)) v - m (p + 2 q) w) : (b^2 - c^2) (-l (q + r) w + n p (v + w)) - a^2 (n (p + 2 r) v + (-n (p + 2 q) + l (-q + r)) w)


X(62770) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1876), X(1), X(3))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^5+b^5+2*a^3*b*c-b^4*c-b*c^4+c^5-a^4*(b+c)-2*a^2*b*c*(b+c)-a*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4)) : :

X(62770) lies on these lines: {1, 7503}, {2, 7}, {3, 1876}, {5, 1892}, {6, 62402}, {19, 37800}, {34, 37231}, {40, 4318}, {46, 2263}, {56, 20275}, {65, 36741}, {77, 572}, {208, 2478}, {241, 1804}, {273, 6996}, {342, 37086}, {608, 1465}, {651, 2261}, {942, 7395}, {1040, 1041}, {1119, 7397}, {1210, 6816}, {1398, 37613}, {1426, 37415}, {1435, 57477}, {1452, 19372}, {1462, 56287}, {1766, 22464}, {1813, 53996}, {2961, 4319}, {3338, 4327}, {3586, 52069}, {3601, 14118}, {4292, 6815}, {4307, 59335}, {5222, 55015}, {5314, 8270}, {5722, 34664}, {7183, 40704}, {7190, 26215}, {7282, 7377}, {7291, 54425}, {7399, 57282}, {9612, 13160}, {10319, 17080}, {10601, 46017}, {15803, 17928}, {16452, 54320}, {17437, 24231}, {17700, 50307}, {18629, 34050}, {21484, 37532}, {22122, 52424}, {24612, 57810}, {24929, 54994}

X(62770) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57773, 77}
X(62770) = pole of line {1, 6815} with respect to the dual conic of Yff parabola
X(62770) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56445)}}, {{A, B, C, X(81), X(55905)}}, {{A, B, C, X(8056), X(20266)}}, {{A, B, C, X(9436), X(56287)}}, {{A, B, C, X(26685), X(52377)}}


X(62771) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5738), X(1), X(3))

Barycentrics    (a+b-c)*(a-b+c)*(a^3-b^3-b^2*c-b*c^2-c^3+3*a^2*(b+c)+a*(b+c)^2) : :

X(62771) lies on these lines: {2, 7}, {3, 5738}, {4, 5740}, {6, 24580}, {46, 4329}, {56, 4966}, {69, 404}, {77, 386}, {86, 6910}, {241, 4261}, {269, 3216}, {273, 14018}, {347, 387}, {377, 10432}, {388, 40999}, {391, 24632}, {631, 5736}, {857, 57286}, {1038, 1442}, {1210, 18655}, {1246, 7318}, {1418, 46838}, {1434, 5224}, {1441, 1788}, {1714, 3668}, {1732, 40530}, {1804, 54300}, {2305, 28078}, {2478, 8822}, {2893, 4190}, {3086, 17220}, {3188, 5932}, {3212, 7105}, {3523, 3945}, {3524, 15936}, {3670, 3672}, {3879, 4855}, {4193, 58786}, {4293, 21270}, {5022, 25964}, {5221, 41003}, {5232, 17580}, {5292, 22464}, {5323, 54429}, {5802, 14953}, {6857, 8814}, {6890, 10446}, {7176, 9534}, {10519, 15982}, {14021, 18635}, {14552, 57866}, {15803, 18650}, {17134, 18391}, {18147, 39126}, {19766, 41808}, {25932, 26540}, {27395, 56020}, {36279, 41007}, {37538, 57818}, {37582, 41004}, {54426, 60786}

X(62771) = pole of line {333, 2478} with respect to the Wallace hyperbola
X(62771) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(9), X(7105)}}, {{A, B, C, X(1246), X(5905)}}, {{A, B, C, X(7318), X(27339)}}, {{A, B, C, X(17184), X(57825)}}, {{A, B, C, X(51223), X(54405)}}
X(62771) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {46, 53596, 4329}, {57, 307, 7}, {5933, 17081, 1442}


X(62772) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5803), X(1), X(3))

Barycentrics    a^5+b^5+2*a^3*b*c-b^4*c-b*c^4+c^5+a^4*(b+c)-2*a^2*(b-c)^2*(b+c)-a*(b^2-c^2)^2 : :

X(62772) lies on these lines: {2, 7}, {3, 5803}, {6, 1375}, {19, 53596}, {32, 28078}, {36, 26130}, {46, 18589}, {56, 16608}, {58, 7521}, {65, 17073}, {140, 5760}, {141, 474}, {284, 5738}, {348, 18726}, {377, 17052}, {379, 5740}, {386, 51775}, {499, 34830}, {549, 15939}, {631, 4648}, {856, 6389}, {940, 7536}, {1014, 26540}, {1068, 4000}, {1210, 14018}, {1246, 43694}, {1478, 20305}, {1714, 24174}, {1723, 40530}, {1781, 24316}, {1901, 30808}, {2099, 17043}, {2893, 37274}, {3870, 59641}, {4032, 54283}, {4657, 5439}, {4851, 5440}, {5019, 17058}, {5120, 25964}, {5221, 18644}, {5438, 17296}, {5706, 18643}, {5736, 24581}, {5742, 37075}, {5802, 24604}, {5821, 17582}, {5902, 24780}, {6510, 58800}, {6833, 24220}, {7483, 15668}, {17327, 17529}, {17758, 60154}, {18642, 37538}, {24435, 49168}, {24882, 51223}, {30809, 57286}, {30810, 37500}, {37102, 40979}

X(62772) = pole of line {17056, 30808} with respect to the Kiepert hyperbola
X(62772) = pole of line {522, 23724} with respect to the Steiner inellipse
X(62772) = pole of line {1, 1826} with respect to the dual conic of Yff parabola
X(62772) = intersection, other than A, B, C, of circumconics {{A, B, C, X(85), X(5747)}}, {{A, B, C, X(1246), X(16091)}}
X(62772) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5746, 25651}, {2, 7, 5747}, {579, 24884, 2}, {5738, 24580, 284}


X(62773) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5804), X(1), X(3))

Barycentrics    3*a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(-3*b^2+10*b*c-3*c^2) : :
X(62773) = 4*X[5]+X[2096], X[20]+4*X[7682], 4*X[140]+X[2095], X[962]+4*X[3359], 4*X[1125]+X[2093], 4*X[1376]+X[36845], X[2097]+4*X[3589], -7*X[3090]+2*X[37822], X[3474]+4*X[3816], -X[3476]+6*X[40726], -7*X[3523]+2*X[6282], -7*X[3622]+2*X[7962] and many others

X(62773) lies on these lines: {1, 26062}, {2, 7}, {3, 5804}, {5, 2096}, {8, 474}, {20, 7682}, {88, 19785}, {100, 10580}, {140, 2095}, {145, 5438}, {189, 6612}, {354, 59572}, {377, 5704}, {388, 5123}, {404, 938}, {452, 9843}, {516, 31249}, {517, 631}, {940, 43055}, {942, 17567}, {950, 37267}, {962, 3359}, {1125, 2093}, {1155, 26105}, {1210, 5175}, {1375, 5826}, {1376, 36845}, {1621, 6244}, {1788, 25524}, {1997, 32939}, {2097, 3589}, {2550, 17728}, {2551, 32636}, {3035, 3475}, {3085, 58405}, {3090, 37822}, {3241, 5440}, {3262, 19804}, {3333, 7080}, {3340, 24558}, {3361, 8582}, {3421, 5828}, {3474, 3816}, {3476, 40726}, {3485, 6691}, {3487, 13747}, {3488, 16371}, {3523, 6282}, {3600, 24982}, {3618, 34371}, {3622, 7962}, {3681, 58650}, {3742, 5218}, {3812, 7288}, {3820, 17529}, {3873, 17658}, {3916, 17559}, {4000, 37634}, {4188, 4313}, {4292, 6919}, {4295, 10200}, {4308, 5193}, {4339, 28074}, {4413, 24477}, {4421, 17051}, {4644, 37663}, {4652, 5129}, {4666, 5281}, {4860, 25568}, {5045, 59591}, {5084, 37582}, {5122, 11111}, {5177, 12436}, {5255, 28016}, {5260, 19521}, {5265, 19860}, {5432, 38053}, {5433, 28629}, {5550, 7483}, {5552, 11037}, {5703, 6921}, {5705, 37436}, {5708, 52264}, {5731, 6905}, {5739, 24593}, {5741, 21296}, {5758, 6967}, {5768, 6911}, {5809, 35990}, {5811, 6983}, {5880, 10589}, {6223, 6953}, {6349, 7536}, {6505, 17012}, {6705, 15239}, {6734, 17580}, {6745, 10980}, {6848, 37534}, {6852, 9782}, {6900, 18516}, {6915, 9799}, {6927, 9940}, {6944, 37612}, {6957, 54052}, {6970, 10202}, {7956, 9812}, {7961, 33133}, {7994, 10164}, {8055, 32933}, {8056, 40940}, {8102, 8126}, {8125, 13098}, {9335, 26228}, {9352, 9778}, {9581, 37435}, {9779, 10584}, {9785, 10586}, {10430, 19541}, {10527, 11024}, {10569, 51380}, {10578, 12915}, {10601, 17074}, {11019, 17784}, {11036, 27385}, {11679, 41915}, {11680, 59412}, {12433, 17573}, {12649, 17572}, {15934, 17564}, {16408, 34753}, {16413, 17740}, {16610, 37642}, {17527, 37545}, {18231, 24564}, {20015, 46917}, {20057, 51577}, {21151, 54179}, {26047, 33114}, {28080, 37552}, {29627, 33113}, {30577, 41839}, {31246, 52783}, {32918, 39581}, {34619, 51816}, {37278, 40836}, {37421, 37526}, {37541, 54348}, {37543, 40399}, {37611, 54445}, {39595, 62695}, {40555, 61493}, {40998, 53056}, {41539, 58623}, {44794, 56230}, {44841, 59584}, {56054, 56062}

X(62773) = midpoint of X(i) and X(j) for these {i,j}: {57, 20196}
X(62773) = anticomplement of X(20196)
X(62773) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 56038}
X(62773) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 56038}
X(62773) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56029, 69}
X(62773) = pole of line {333, 1997} with respect to the Wallace hyperbola
X(62773) = pole of line {1, 5748} with respect to the dual conic of Yff parabola
X(62773) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(57), X(15179)}}, {{A, B, C, X(85), X(5748)}}, {{A, B, C, X(92), X(5328)}}, {{A, B, C, X(189), X(3452)}}, {{A, B, C, X(329), X(40420)}}, {{A, B, C, X(673), X(60934)}}, {{A, B, C, X(3305), X(56201)}}, {{A, B, C, X(3306), X(40399)}}, {{A, B, C, X(3911), X(56218)}}, {{A, B, C, X(5437), X(56230)}}, {{A, B, C, X(6612), X(59173)}}, {{A, B, C, X(8545), X(39962)}}, {{A, B, C, X(18228), X(34234)}}, {{A, B, C, X(18230), X(56062)}}, {{A, B, C, X(21446), X(60965)}}, {{A, B, C, X(28968), X(39716)}}, {{A, B, C, X(29007), X(42318)}}, {{A, B, C, X(30827), X(50442)}}, {{A, B, C, X(31142), X(34546)}}, {{A, B, C, X(31266), X(56054)}}, {{A, B, C, X(60615), X(60936)}}
X(62773) = barycentric product X(i)*X(j) for these (i, j): {61762, 75}
X(62773) = barycentric quotient X(i)/X(j) for these (i, j): {1, 56038}, {61762, 1}
X(62773) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 21454, 908}, {2, 26688, 4031}, {2, 3218, 18228}, {2, 3306, 9776}, {2, 5435, 5744}, {2, 57, 329}, {2, 5905, 5328}, {2, 7, 5748}, {2, 9965, 3452}, {57, 20196, 527}, {57, 329, 2094}, {57, 3452, 9965}, {631, 5439, 3616}, {3911, 5437, 2}, {6983, 26877, 5811}, {7682, 21164, 20}, {10584, 20292, 9779}, {17658, 58577, 3873}


X(62774) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5808), X(1), X(3))

Barycentrics    (a+b-c)*(a-b+c)*(2*a^3-b^3-b^2*c-b*c^2-c^3+a^2*(b+c)+2*a*(b^2+b*c+c^2)) : :

X(62774) lies on these lines: {2, 7}, {3, 5808}, {10, 41245}, {39, 241}, {56, 3912}, {65, 17023}, {77, 5105}, {171, 4349}, {239, 4848}, {388, 17308}, {604, 3879}, {950, 37416}, {982, 4353}, {1210, 6996}, {1319, 29574}, {1376, 1460}, {1402, 8299}, {1420, 17316}, {1427, 39979}, {1449, 5933}, {1466, 11343}, {1788, 4384}, {1999, 9451}, {2050, 5824}, {2999, 60786}, {3008, 24174}, {3212, 43035}, {3339, 29598}, {3340, 26626}, {3361, 17284}, {3476, 17294}, {3485, 29603}, {3600, 29611}, {3649, 31221}, {3661, 10106}, {4292, 7377}, {4298, 29604}, {4308, 29616}, {4315, 29594}, {5221, 31230}, {5228, 17750}, {5256, 8270}, {5265, 5308}, {5269, 5281}, {5323, 24632}, {6691, 30812}, {7146, 43054}, {7288, 16831}, {7406, 9581}, {8258, 31191}, {9746, 26098}, {11679, 24477}, {13462, 29573}, {15803, 36698}, {16435, 37581}, {17081, 59215}, {18193, 33152}, {19512, 34753}, {21495, 37583}, {24541, 24583}, {24603, 24914}, {24612, 24982}, {26001, 56861}, {26959, 44350}, {29596, 32636}, {37676, 52635}, {37738, 49761}, {40663, 50095}, {41687, 49770}

X(62774) = pole of line {3676, 48042} with respect to the incircle
X(62774) = pole of line {1, 7377} with respect to the dual conic of Yff parabola
X(62774) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(49476)}}, {{A, B, C, X(9), X(39979)}}, {{A, B, C, X(291), X(56509)}}, {{A, B, C, X(8056), X(56518)}}, {{A, B, C, X(41264), X(57663)}}
X(62774) = barycentric product X(i)*X(j) for these (i, j): {49476, 7}
X(62774) = barycentric quotient X(i)/X(j) for these (i, j): {49476, 8}


X(62775) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5809), X(1), X(3))

Barycentrics    (a+b-c)*(a-b+c)*(3*a^3-7*a^2*(b+c)-(b-c)^2*(b+c)+a*(5*b^2+2*b*c+5*c^2)) : :

X(62775) lies on these lines: {2, 7}, {3, 5809}, {8, 7677}, {46, 38037}, {56, 38057}, {77, 37681}, {104, 54051}, {241, 37650}, {273, 42318}, {347, 3008}, {348, 17352}, {390, 1210}, {392, 4323}, {480, 24477}, {516, 10591}, {518, 7288}, {631, 5728}, {936, 5265}, {938, 3295}, {948, 17337}, {954, 5771}, {956, 4308}, {971, 5825}, {1000, 15933}, {1001, 1788}, {1108, 5222}, {1170, 5543}, {1420, 24393}, {1436, 11349}, {1698, 12573}, {1737, 43161}, {1996, 10509}, {2256, 5308}, {2346, 10580}, {2550, 24914}, {3059, 59572}, {3149, 36991}, {3160, 43065}, {3161, 20946}, {3358, 6848}, {3474, 42356}, {3475, 59476}, {3523, 7675}, {3579, 5704}, {3616, 7672}, {3618, 31225}, {3622, 11526}, {3668, 31183}, {4311, 38154}, {4313, 6986}, {4326, 10164}, {4328, 25072}, {4402, 4552}, {4848, 38316}, {5045, 5703}, {5122, 31672}, {5218, 5572}, {5223, 6700}, {5433, 38053}, {5705, 40333}, {5729, 21151}, {5759, 6922}, {5766, 31658}, {5805, 6956}, {5817, 6918}, {6049, 20007}, {6600, 36845}, {6604, 17263}, {6734, 59413}, {6831, 52682}, {6855, 61266}, {6921, 41228}, {6988, 10394}, {7670, 58708}, {7674, 26015}, {7678, 9812}, {7679, 15844}, {7717, 37432}, {8074, 14189}, {10578, 11025}, {11038, 13411}, {12560, 38059}, {12630, 12649}, {14986, 61122}, {15006, 35445}, {15837, 17728}, {17552, 37544}, {17625, 58635}, {17784, 24389}, {18391, 52769}, {24928, 38126}, {26127, 52653}, {29627, 56927}, {30284, 54445}, {30312, 59412}, {34028, 37680}, {34753, 38113}, {36640, 37771}, {37206, 60832}, {37582, 38108}, {38318, 57282}, {41539, 58564}, {41573, 47375}, {50203, 57283}, {50700, 52027}, {57090, 59921}

X(62775) = X(i)-Dao conjugate of X(j) for these {i, j}: {36845, 56937}
X(62775) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(20015)}}, {{A, B, C, X(63), X(42318)}}, {{A, B, C, X(104), X(60968)}}, {{A, B, C, X(142), X(56217)}}, {{A, B, C, X(273), X(51351)}}, {{A, B, C, X(673), X(9965)}}, {{A, B, C, X(1000), X(20195)}}, {{A, B, C, X(1156), X(60965)}}, {{A, B, C, X(1170), X(60938)}}, {{A, B, C, X(3306), X(56028)}}, {{A, B, C, X(10307), X(60933)}}, {{A, B, C, X(27818), X(61019)}}
X(62775) = barycentric product X(i)*X(j) for these (i, j): {20015, 7}
X(62775) = barycentric quotient X(i)/X(j) for these (i, j): {20015, 8}
X(62775) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 3911, 8732}, {57, 6666, 8232}, {142, 12848, 7}, {241, 37650, 54425}, {1210, 21153, 390}, {3911, 5744, 5435}, {5433, 41712, 38053}


X(62776) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9844), X(1), X(3))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^3+b^3+5*b^2*c+5*b*c^2+c^3-a^2*(b+c)-a*(b^2+8*b*c+c^2)) : :

X(62776) lies on these lines: {2, 7}, {3, 9844}, {40, 5274}, {46, 3817}, {56, 3740}, {65, 8167}, {77, 4383}, {78, 1319}, {200, 7677}, {223, 37680}, {241, 37679}, {390, 33995}, {484, 6943}, {748, 60786}, {936, 1476}, {938, 11362}, {956, 58650}, {1210, 5119}, {1420, 62218}, {1467, 3876}, {1471, 5268}, {1723, 45204}, {1728, 6962}, {1743, 17074}, {1788, 5250}, {2099, 54392}, {2263, 17123}, {2886, 24914}, {2900, 4855}, {3008, 57477}, {3149, 5122}, {3339, 3833}, {3523, 10396}, {3587, 6865}, {3681, 30318}, {3692, 30567}, {3742, 41712}, {3748, 61660}, {3878, 18421}, {3895, 34699}, {3951, 37566}, {3984, 34489}, {4321, 30393}, {4662, 51773}, {4666, 11526}, {5265, 57279}, {5287, 52424}, {5729, 11227}, {5740, 21363}, {5927, 8544}, {6766, 18220}, {6894, 51790}, {6895, 51792}, {6915, 15803}, {6922, 37584}, {6986, 30282}, {7131, 43053}, {7190, 44307}, {7269, 25430}, {7288, 25568}, {7320, 51779}, {7672, 10582}, {7994, 53055}, {10164, 15299}, {10178, 60910}, {10394, 10857}, {11495, 17604}, {12640, 12649}, {12855, 12875}, {13411, 51816}, {14151, 14740}, {15934, 31837}, {16842, 37544}, {17080, 23511}, {18743, 55337}, {19861, 58648}, {21153, 31508}, {24928, 58688}, {34059, 36638}, {46684, 51768}, {53056, 54370}

X(62776) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1255), X(9776)}}, {{A, B, C, X(1476), X(21454)}}, {{A, B, C, X(3452), X(4866)}}, {{A, B, C, X(5257), X(56190)}}, {{A, B, C, X(5744), X(39962)}}, {{A, B, C, X(9965), X(55995)}}, {{A, B, C, X(28609), X(33576)}}
X(62776) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {57, 3305, 8545}, {4666, 41539, 11526}


X(62777) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9960), X(1), X(3))

Barycentrics    a*(a-b-c)*(a^4-2*a*b*c*(b+c)+(b-c)^2*(b^2+b*c+c^2)-a^2*(2*b^2+b*c+2*c^2)) : :

X(62777) lies on these lines: {2, 7}, {3, 9960}, {8, 3719}, {10, 6839}, {20, 1709}, {21, 60}, {46, 4208}, {55, 41228}, {72, 37306}, {81, 40937}, {100, 58648}, {165, 5785}, {191, 4292}, {219, 28606}, {222, 24635}, {224, 4189}, {238, 11031}, {281, 37181}, {377, 3474}, {390, 42012}, {394, 1442}, {958, 3868}, {993, 18444}, {997, 5267}, {1001, 11020}, {1006, 1071}, {1125, 54302}, {1146, 49724}, {1158, 37108}, {1212, 4641}, {1214, 34035}, {1259, 3876}, {1441, 54107}, {1443, 18607}, {1621, 16465}, {1697, 12536}, {1723, 37666}, {1728, 5129}, {1731, 18163}, {1737, 18250}, {1762, 7291}, {1936, 40967}, {2323, 16579}, {2328, 3100}, {2551, 10522}, {2895, 45206}, {2975, 17625}, {3061, 54419}, {3101, 15830}, {3160, 47848}, {3715, 11502}, {3730, 21375}, {3869, 37228}, {4197, 26066}, {4313, 5250}, {4512, 7675}, {4640, 5784}, {5044, 6905}, {5088, 53043}, {5204, 37300}, {5234, 54318}, {5235, 6708}, {5251, 18389}, {5259, 10122}, {5686, 20588}, {5698, 10431}, {5709, 6843}, {5791, 6829}, {5794, 59355}, {5837, 20066}, {6826, 26921}, {6840, 12572}, {6858, 37532}, {6884, 21616}, {6916, 14646}, {6987, 7330}, {6993, 8165}, {7964, 15587}, {8025, 46885}, {8580, 60912}, {8822, 52361}, {9964, 51506}, {10394, 13615}, {10883, 24703}, {15296, 25568}, {16585, 22128}, {18227, 60782}, {18391, 41229}, {18652, 41808}, {19843, 55109}, {20182, 62245}, {20880, 32939}, {23144, 55406}, {24554, 37543}, {26064, 46878}, {26635, 55399}, {28916, 33950}, {30223, 52653}, {41549, 44256}, {44425, 58699}, {45039, 50695}, {50295, 59674}, {50701, 55104}, {56440, 56948}

X(62777) = perspector of circumconic {{A, B, C, X(664), X(4612)}}
X(62777) = X(i)-Dao conjugate of X(j) for these {i, j}: {52544, 40937}
X(62777) = X(i)-complementary conjugate of X(j) for these {i, j}: {15910, 141}, {39630, 4885}
X(62777) = pole of line {21, 14100} with respect to the Feuerbach hyperbola
X(62777) = pole of line {65, 284} with respect to the Stammler hyperbola
X(62777) = pole of line {333, 1441} with respect to the Wallace hyperbola
X(62777) = pole of line {1, 2894} with respect to the dual conic of Yff parabola
X(62777) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1098)}}, {{A, B, C, X(7), X(2185)}}, {{A, B, C, X(9), X(6061)}}, {{A, B, C, X(21), X(226)}}, {{A, B, C, X(57), X(60)}}, {{A, B, C, X(307), X(1812)}}, {{A, B, C, X(1400), X(2194)}}, {{A, B, C, X(2982), X(52819)}}, {{A, B, C, X(5273), X(55965)}}, {{A, B, C, X(5750), X(52663)}}, {{A, B, C, X(42030), X(60951)}}, {{A, B, C, X(52544), X(54417)}}, {{A, B, C, X(54357), X(56204)}}
X(62777) = barycentric product X(i)*X(j) for these (i, j): {314, 52544}, {25080, 333}, {40661, 86}
X(62777) = barycentric quotient X(i)/X(j) for these (i, j): {25080, 226}, {40661, 10}, {52544, 65}
X(62777) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 63, 5273}, {63, 5249, 3218}, {997, 31424, 37106}, {1762, 22097, 7291}, {2323, 16579, 17011}, {3683, 10391, 21}, {4640, 5784, 7411}


X(62778) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(59386), X(1), X(3))

Barycentrics    a^2-3*(b-c)^2+2*a*(b+c) : :
X(62778) = 3*X[2]+2*X[7], -X[3]+6*X[38111], X[4]+4*X[31657], 4*X[5]+X[36996], X[8]+4*X[5542], 2*X[10]+3*X[59372], X[20]+4*X[5805], -X[40]+6*X[38123], X[55]+4*X[33558], X[69]+4*X[51150], -X[80]+6*X[38207], -X[104]+6*X[38124] and many others

X(62778) lies on these lines: {1, 7613}, {2, 7}, {3, 38111}, {4, 31657}, {5, 36996}, {8, 5542}, {10, 59372}, {20, 5805}, {37, 4346}, {40, 38123}, {55, 33558}, {69, 51150}, {75, 4869}, {80, 38207}, {81, 62244}, {85, 10004}, {86, 14953}, {104, 38124}, {140, 21168}, {145, 2550}, {149, 10427}, {192, 4373}, {193, 24599}, {241, 24554}, {279, 34522}, {320, 391}, {330, 27431}, {344, 4454}, {346, 17234}, {354, 15587}, {355, 38172}, {373, 58534}, {376, 31671}, {381, 38080}, {382, 38137}, {390, 2646}, {404, 954}, {443, 11036}, {516, 3522}, {518, 3617}, {594, 31139}, {599, 51195}, {631, 5762}, {673, 17379}, {938, 37161}, {940, 62208}, {942, 4208}, {944, 38030}, {950, 50725}, {962, 38036}, {966, 7232}, {971, 3091}, {1001, 4189}, {1002, 61034}, {1056, 40587}, {1086, 3672}, {1100, 3945}, {1119, 37448}, {1125, 4312}, {1156, 38205}, {1278, 29583}, {1320, 38055}, {1351, 38164}, {1418, 24635}, {1449, 17067}, {1482, 38041}, {1621, 11495}, {1656, 5843}, {1698, 5850}, {1699, 43182}, {1742, 59217}, {1743, 4896}, {1992, 38086}, {1995, 60897}, {2140, 27171}, {2320, 15909}, {2321, 52709}, {2345, 3834}, {2951, 9812}, {2999, 41825}, {3008, 4888}, {3059, 3873}, {3060, 58472}, {3062, 3817}, {3068, 60914}, {3069, 60913}, {3085, 60924}, {3086, 60923}, {3090, 5779}, {3146, 5732}, {3174, 3957}, {3241, 38024}, {3243, 3621}, {3254, 20095}, {3296, 31419}, {3434, 8255}, {3475, 3689}, {3487, 17580}, {3523, 5759}, {3525, 59381}, {3526, 51514}, {3533, 38113}, {3543, 18482}, {3544, 38139}, {3545, 60901}, {3586, 50737}, {3600, 28629}, {3618, 4747}, {3619, 50995}, {3623, 5853}, {3624, 51090}, {3628, 51516}, {3632, 38201}, {3648, 13159}, {3663, 5308}, {3664, 4859}, {3679, 38094}, {3681, 58634}, {3711, 26040}, {3720, 4335}, {3729, 29627}, {3731, 4887}, {3739, 5232}, {3742, 5274}, {3751, 38187}, {3763, 4470}, {3812, 5261}, {3826, 5686}, {3832, 36991}, {3839, 31672}, {3854, 59389}, {3868, 37436}, {3879, 4402}, {3912, 4461}, {4059, 27288}, {4060, 17296}, {4232, 7717}, {4292, 11106}, {4310, 39587}, {4321, 19860}, {4326, 4666}, {4328, 25930}, {4343, 29814}, {4361, 28337}, {4363, 53665}, {4371, 17374}, {4384, 21296}, {4389, 41325}, {4419, 16675}, {4430, 34784}, {4440, 16593}, {4452, 17316}, {4488, 25101}, {4644, 16669}, {4652, 5550}, {4661, 40659}, {4678, 17287}, {4740, 51057}, {4748, 31238}, {4772, 31329}, {4788, 29589}, {4847, 15841}, {4851, 28329}, {4862, 29571}, {5056, 5817}, {5059, 52835}, {5067, 61511}, {5129, 57282}, {5177, 5728}, {5218, 60919}, {5220, 10585}, {5221, 18231}, {5223, 9780}, {5228, 37659}, {5265, 28628}, {5418, 60916}, {5420, 60915}, {5572, 25722}, {5586, 18249}, {5691, 38151}, {5696, 20116}, {5703, 12436}, {5704, 10398}, {5712, 40688}, {5722, 50736}, {5729, 6933}, {5735, 15717}, {5794, 18221}, {5819, 16706}, {5838, 17367}, {5839, 17376}, {5851, 31272}, {5883, 18412}, {6006, 26798}, {6067, 33108}, {6147, 17582}, {6349, 30561}, {6353, 60879}, {6356, 25932}, {6601, 33110}, {6690, 36971}, {6776, 38115}, {6843, 10202}, {6871, 10394}, {7056, 17113}, {7171, 37434}, {7222, 17279}, {7228, 17265}, {7229, 17284}, {7238, 17259}, {7263, 17313}, {7269, 53996}, {7288, 60883}, {7486, 38108}, {7585, 60920}, {7586, 60887}, {7671, 17668}, {7675, 37435}, {7676, 36003}, {7682, 54179}, {7793, 60882}, {8125, 45708}, {8126, 45707}, {8236, 17396}, {8728, 54398}, {9778, 43151}, {9782, 60895}, {9785, 51723}, {10005, 49499}, {10248, 43181}, {10303, 31658}, {10481, 52705}, {10583, 60900}, {10584, 16112}, {10586, 60925}, {10587, 60926}, {10588, 60909}, {10589, 60910}, {10707, 38095}, {10724, 38152}, {10738, 38173}, {10755, 38188}, {10865, 17625}, {11024, 21620}, {11025, 15733}, {11160, 51002}, {11491, 38125}, {11518, 20008}, {12245, 38121}, {12531, 38202}, {12560, 19861}, {12609, 14986}, {12645, 38170}, {14996, 54358}, {15590, 49527}, {15668, 48631}, {15674, 17768}, {16020, 50307}, {16053, 58786}, {16738, 27172}, {16816, 20080}, {16832, 53598}, {16845, 24470}, {17092, 40937}, {17116, 29579}, {17169, 17207}, {17241, 50107}, {17263, 62706}, {17267, 49727}, {17275, 31138}, {17280, 30833}, {17293, 49733}, {17297, 42696}, {17301, 46845}, {17317, 50101}, {17321, 48629}, {17323, 49738}, {17337, 62223}, {17352, 61330}, {17365, 37650}, {17373, 31145}, {17398, 26104}, {17451, 41777}, {18483, 41865}, {18635, 31043}, {19876, 50834}, {20015, 41548}, {20049, 51102}, {20070, 59340}, {20073, 52714}, {20085, 45043}, {20212, 56873}, {20330, 35514}, {21153, 61820}, {21169, 30557}, {21195, 45755}, {21255, 25590}, {21258, 26540}, {21346, 24341}, {23062, 59181}, {23730, 53362}, {24349, 39570}, {24789, 37666}, {25001, 39126}, {26039, 34573}, {26816, 27192}, {27268, 51052}, {27304, 45751}, {27804, 58385}, {28605, 56086}, {28626, 36834}, {28641, 41311}, {28653, 48637}, {29573, 53594}, {29574, 62403}, {29590, 51170}, {29600, 55998}, {30311, 34919}, {30331, 38314}, {30332, 38316}, {30695, 32086}, {31313, 41845}, {31391, 58608}, {31418, 41861}, {32021, 32023}, {32098, 56054}, {33709, 51768}, {35010, 38037}, {36004, 47357}, {36640, 59215}, {37710, 38208}, {37781, 39063}, {38046, 51192}, {38057, 46932}, {38067, 61846}, {38075, 61927}, {38082, 61888}, {38143, 51212}, {38186, 51171}, {38318, 46935}, {39567, 50289}, {46875, 62650}, {47355, 51144}, {51706, 54286}, {53034, 58398}, {55856, 61596}, {56044, 56335}, {58678, 61686}, {61035, 62236}

X(62778) = midpoint of X(i) and X(j) for these {i,j}: {7, 18230}, {30340, 40333}
X(62778) = reflection of X(i) in X(j) for these {i,j}: {18230, 20195}, {20195, 142}, {3617, 40333}
X(62778) = complement of X(61006)
X(62778) = anticomplement of X(18230)
X(62778) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 56331}, {650, 58106}
X(62778) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 56331}
X(62778) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56054, 2}
X(62778) = X(i)-complementary conjugate of X(j) for these {i, j}: {31507, 141}
X(62778) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56, 41918}, {10390, 69}, {34821, 7}, {56054, 6327}, {56348, 21285}, {58103, 693}
X(62778) = pole of line {23865, 48323} with respect to the circumcircle
X(62778) = pole of line {3873, 14100} with respect to the Feuerbach hyperbola
X(62778) = pole of line {17056, 46873} with respect to the Kiepert hyperbola
X(62778) = pole of line {284, 42316} with respect to the Stammler hyperbola
X(62778) = pole of line {522, 21104} with respect to the Steiner circumellipse
X(62778) = pole of line {522, 59612} with respect to the Steiner inellipse
X(62778) = pole of line {333, 29616} with respect to the Wallace hyperbola
X(62778) = pole of line {1, 144} with respect to the dual conic of Yff parabola
X(62778) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(10405)}}, {{A, B, C, X(57), X(10980)}}, {{A, B, C, X(85), X(144)}}, {{A, B, C, X(226), X(55937)}}, {{A, B, C, X(279), X(52819)}}, {{A, B, C, X(673), X(5226)}}, {{A, B, C, X(1223), X(60996)}}, {{A, B, C, X(2320), X(60970)}}, {{A, B, C, X(2346), X(60947)}}, {{A, B, C, X(3254), X(20195)}}, {{A, B, C, X(3255), X(60977)}}, {{A, B, C, X(3305), X(56086)}}, {{A, B, C, X(3928), X(21446)}}, {{A, B, C, X(3929), X(36101)}}, {{A, B, C, X(4373), X(40719)}}, {{A, B, C, X(5219), X(15909)}}, {{A, B, C, X(5435), X(27475)}}, {{A, B, C, X(6172), X(42483)}}, {{A, B, C, X(6601), X(6666)}}, {{A, B, C, X(9436), X(30712)}}, {{A, B, C, X(10509), X(60975)}}, {{A, B, C, X(17257), X(56335)}}, {{A, B, C, X(17758), X(60992)}}, {{A, B, C, X(20059), X(23618)}}, {{A, B, C, X(20905), X(45203)}}, {{A, B, C, X(23062), X(60939)}}, {{A, B, C, X(31507), X(57826)}}, {{A, B, C, X(34919), X(60942)}}, {{A, B, C, X(37787), X(56028)}}, {{A, B, C, X(43971), X(61000)}}, {{A, B, C, X(56043), X(60941)}}
X(62778) = barycentric product X(i)*X(j) for these (i, j): {10980, 75}
X(62778) = barycentric quotient X(i)/X(j) for these (i, j): {7, 56331}, {109, 58106}, {10980, 1}
X(62778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20059, 9}, {2, 7, 144}, {3, 61509, 59386}, {5, 59380, 36996}, {7, 18230, 527}, {7, 9, 20059}, {140, 60922, 21168}, {142, 527, 20195}, {142, 6173, 7}, {344, 7321, 4454}, {354, 15587, 30628}, {390, 38053, 3622}, {527, 20195, 18230}, {1086, 4648, 3672}, {2550, 11038, 145}, {2550, 25557, 11038}, {3059, 58563, 3873}, {3243, 59413, 3621}, {3620, 4699, 3617}, {3664, 4859, 5222}, {3672, 4648, 29624}, {3826, 5686, 46933}, {3912, 31995, 4461}, {3945, 4000, 17014}, {4000, 4675, 3945}, {4373, 29621, 192}, {4644, 17278, 37681}, {5223, 38204, 9780}, {5732, 59385, 3146}, {5759, 38122, 3523}, {5779, 38171, 3090}, {5805, 21151, 20}, {5817, 61595, 5056}, {5880, 38053, 390}, {7228, 17265, 54389}, {7232, 34824, 966}, {7263, 17313, 17314}, {10004, 60831, 50561}, {17077, 25521, 2}, {17298, 24199, 8}, {17316, 48627, 4452}, {21255, 25590, 29611}, {24599, 32093, 193}, {30340, 40333, 518}, {31657, 38107, 4}, {36991, 38150, 3832}, {38024, 51100, 3241}, {38086, 51151, 1992}, {38111, 61509, 3}, {38150, 43177, 36991}, {38151, 43176, 5691}, {38186, 51190, 51171}, {60887, 60921, 7586}


X(62779) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(273), X(1), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(62779) lies on these lines: {1, 7}, {6, 60932}, {37, 41857}, {57, 15474}, {69, 17079}, {75, 44133}, {81, 553}, {85, 307}, {86, 17078}, {142, 17092}, {226, 56232}, {229, 1014}, {241, 17245}, {270, 757}, {273, 1088}, {527, 37659}, {651, 52819}, {942, 41492}, {948, 1445}, {1100, 43066}, {1111, 53596}, {1119, 7177}, {1125, 41808}, {1243, 1439}, {1358, 2836}, {1418, 30379}, {1419, 60982}, {1422, 56050}, {1427, 5718}, {1441, 4967}, {1446, 5740}, {2324, 5905}, {2911, 6180}, {3008, 60948}, {3247, 4654}, {3649, 15569}, {3731, 61027}, {3875, 30614}, {4000, 60938}, {4059, 41003}, {4357, 24564}, {4360, 32007}, {5249, 16585}, {5434, 49465}, {6046, 34855}, {6735, 20930}, {9312, 56927}, {10509, 47487}, {16713, 24199}, {17023, 17075}, {17116, 40892}, {17276, 60952}, {17863, 53597}, {18623, 21454}, {18625, 40940}, {24177, 37666}, {25930, 61010}, {25964, 44664}, {29571, 61013}, {31017, 56559}, {31995, 36595}, {34028, 43035}, {36589, 53598}, {37578, 59242}, {40704, 57807}, {51302, 61019}, {53996, 61011}, {54425, 60939}

X(62779) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 2259}, {33, 1794}, {41, 40435}, {55, 943}, {210, 1175}, {220, 2982}, {1253, 60041}, {1802, 40573}, {2175, 40422}, {3694, 40570}, {3900, 15439}, {4105, 36048}, {4130, 32651}, {8641, 54952}, {40395, 52370}, {40447, 52425}
X(62779) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 943}, {442, 200}, {478, 2259}, {942, 2318}, {3160, 40435}, {5249, 4420}, {15607, 4105}, {16585, 8}, {16732, 4086}, {17113, 60041}, {18591, 9}, {39007, 57108}, {40593, 40422}, {40615, 56320}, {40937, 2321}, {59608, 60188}, {62602, 40447}
X(62779) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1414, 3676}
X(62779) = X(i)-cross conjugate of X(j) for these {i, j}: {942, 5249}
X(62779) = pole of line {2318, 2328} with respect to the Stammler hyperbola
X(62779) = pole of line {1043, 3710} with respect to the Wallace hyperbola
X(62779) = pole of line {7, 79} with respect to the dual conic of Yff parabola
X(62779) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(270)}}, {{A, B, C, X(4), X(4294)}}, {{A, B, C, X(7), X(5249)}}, {{A, B, C, X(57), X(4341)}}, {{A, B, C, X(75), X(7190)}}, {{A, B, C, X(77), X(757)}}, {{A, B, C, X(79), X(1770)}}, {{A, B, C, X(81), X(1442)}}, {{A, B, C, X(347), X(56050)}}, {{A, B, C, X(442), X(3671)}}, {{A, B, C, X(991), X(46882)}}, {{A, B, C, X(1434), X(56382)}}, {{A, B, C, X(1440), X(3945)}}, {{A, B, C, X(1458), X(2260)}}, {{A, B, C, X(1841), X(2263)}}, {{A, B, C, X(1844), X(4354)}}, {{A, B, C, X(2293), X(14547)}}, {{A, B, C, X(2294), X(42289)}}, {{A, B, C, X(3668), X(52374)}}, {{A, B, C, X(4313), X(51978)}}, {{A, B, C, X(5224), X(15467)}}, {{A, B, C, X(5543), X(5936)}}, {{A, B, C, X(7269), X(18815)}}, {{A, B, C, X(10308), X(31938)}}, {{A, B, C, X(18650), X(52392)}}, {{A, B, C, X(43178), X(55922)}}
X(62779) = barycentric product X(i)*X(j) for these (i, j): {85, 942}, {279, 6734}, {331, 4303}, {1088, 40937}, {1231, 46883}, {1234, 1412}, {1434, 442}, {1446, 54356}, {1838, 348}, {1841, 7182}, {2260, 6063}, {2294, 57785}, {4554, 50354}, {5249, 7}, {14547, 57792}, {14597, 57787}, {17078, 45926}, {18607, 273}, {20567, 40956}, {21675, 552}, {23595, 6516}, {23752, 4573}, {24002, 61220}, {33525, 52937}, {39791, 44129}, {52621, 61197}, {55010, 86}, {59941, 61233}
X(62779) = barycentric quotient X(i)/X(j) for these (i, j): {7, 40435}, {56, 2259}, {57, 943}, {85, 40422}, {222, 1794}, {269, 2982}, {273, 40447}, {279, 60041}, {442, 2321}, {500, 52405}, {658, 54952}, {942, 9}, {1119, 40573}, {1234, 30713}, {1412, 1175}, {1434, 40412}, {1461, 15439}, {1838, 281}, {1841, 33}, {1859, 7079}, {1865, 53008}, {2260, 55}, {2294, 210}, {3668, 60188}, {3676, 56320}, {3824, 4007}, {4303, 219}, {4306, 40572}, {4617, 36048}, {5249, 8}, {6614, 32651}, {6734, 346}, {14547, 220}, {14597, 212}, {16585, 4420}, {18591, 2318}, {18607, 78}, {21675, 6057}, {23207, 1802}, {23595, 44426}, {23752, 3700}, {33525, 4105}, {37992, 21675}, {39791, 71}, {40937, 200}, {40952, 1334}, {40956, 41}, {40967, 4515}, {41393, 3949}, {45926, 36910}, {46882, 2328}, {46883, 1172}, {46884, 4183}, {46890, 2299}, {50354, 650}, {52306, 57108}, {52374, 57710}, {54356, 2287}, {55010, 10}, {56839, 3694}, {61161, 4069}, {61197, 3939}, {61220, 644}, {61233, 4578}, {61236, 56183}
X(62779) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1443, 3664}, {7, 279, 77}, {7, 347, 7190}, {241, 52023, 21617}, {481, 482, 1770}, {3668, 10481, 7}


X(62780) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(903), X(1), X(7))

Barycentrics    (a-2*(b+c))*(a+b-c)^2*(a-b+c)^2 : :

X(62780) lies on these lines: {1, 7}, {6, 14564}, {44, 61007}, {45, 5219}, {57, 1020}, {69, 25719}, {85, 17274}, {225, 1119}, {226, 4419}, {241, 6173}, {283, 58786}, {307, 5705}, {320, 9312}, {348, 50116}, {527, 948}, {553, 7365}, {903, 1088}, {1074, 2093}, {1254, 5290}, {1266, 6604}, {1418, 8609}, {1419, 17365}, {1427, 4654}, {1441, 17272}, {1445, 4859}, {1446, 60079}, {1699, 2310}, {1736, 38150}, {1743, 37800}, {1758, 4389}, {1996, 5231}, {2078, 38530}, {2323, 6180}, {3008, 12848}, {3011, 3598}, {3120, 60365}, {3339, 23537}, {3361, 24159}, {3679, 36589}, {3731, 21617}, {3973, 41563}, {4000, 52819}, {4357, 52422}, {4373, 12649}, {4384, 17950}, {4452, 41575}, {4492, 7204}, {4552, 29573}, {4644, 43035}, {4675, 59215}, {4792, 16236}, {5222, 60975}, {5228, 60982}, {5665, 50065}, {5723, 16670}, {5903, 62402}, {6356, 54320}, {6610, 62223}, {6734, 31995}, {7023, 18967}, {7053, 26437}, {7273, 10404}, {7290, 60883}, {9578, 49515}, {9612, 44706}, {10398, 53599}, {10436, 17095}, {13462, 26728}, {16586, 31164}, {17151, 56927}, {17276, 52023}, {17304, 41246}, {17378, 25716}, {18421, 48837}, {18623, 62240}, {25726, 50133}, {26015, 51351}, {29571, 30275}, {30181, 49300}, {30379, 51302}, {31183, 37787}, {36971, 41339}, {37583, 59247}, {37650, 61014}, {37771, 60951}, {41803, 51093}, {46136, 53211}, {49168, 53594}

X(62780) = isotomic conjugate of X(56094)
X(62780) = trilinear pole of line {4893, 43052}
X(62780) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 2364}, {31, 56094}, {41, 30608}, {55, 2320}, {89, 220}, {200, 2163}, {346, 28607}, {650, 5549}, {657, 4604}, {1253, 39704}, {2287, 28658}, {2328, 53114}, {3239, 34073}, {3900, 4588}, {4597, 8641}, {5385, 14936}, {7079, 55979}, {14827, 20569}
X(62780) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 56094}, {223, 2320}, {478, 2364}, {3160, 30608}, {6609, 2163}, {17113, 39704}, {36908, 53114}, {36911, 346}, {40587, 200}, {55045, 3900}, {59608, 30588}, {61073, 3239}
X(62780) = X(i)-cross conjugate of X(j) for these {i, j}: {2099, 5219}
X(62780) = pole of line {7658, 53522} with respect to the Steiner inellipse
X(62780) = pole of line {1043, 56094} with respect to the Wallace hyperbola
X(62780) = pole of line {7, 515} with respect to the dual conic of Yff parabola
X(62780) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(45)}}, {{A, B, C, X(4), X(5731)}}, {{A, B, C, X(7), X(2006)}}, {{A, B, C, X(9), X(30284)}}, {{A, B, C, X(57), X(1443)}}, {{A, B, C, X(75), X(3664)}}, {{A, B, C, X(79), X(4293)}}, {{A, B, C, X(84), X(18444)}}, {{A, B, C, X(86), X(4888)}}, {{A, B, C, X(225), X(3671)}}, {{A, B, C, X(390), X(3254)}}, {{A, B, C, X(516), X(4777)}}, {{A, B, C, X(991), X(4273)}}, {{A, B, C, X(1086), X(4089)}}, {{A, B, C, X(1323), X(43052)}}, {{A, B, C, X(1405), X(1458)}}, {{A, B, C, X(1476), X(18467)}}, {{A, B, C, X(2177), X(2293)}}, {{A, B, C, X(3000), X(4893)}}, {{A, B, C, X(3010), X(4775)}}, {{A, B, C, X(3427), X(36922)}}, {{A, B, C, X(3663), X(39707)}}, {{A, B, C, X(3672), X(4671)}}, {{A, B, C, X(3711), X(4326)}}, {{A, B, C, X(3940), X(10884)}}, {{A, B, C, X(3945), X(4373)}}, {{A, B, C, X(4313), X(4720)}}, {{A, B, C, X(4346), X(4945)}}, {{A, B, C, X(4867), X(7284)}}, {{A, B, C, X(4887), X(36594)}}, {{A, B, C, X(4896), X(39704)}}, {{A, B, C, X(4944), X(45275)}}, {{A, B, C, X(5088), X(46136)}}, {{A, B, C, X(5561), X(21578)}}, {{A, B, C, X(11038), X(34917)}}, {{A, B, C, X(15909), X(43161)}}, {{A, B, C, X(16236), X(36920)}}, {{A, B, C, X(18450), X(55922)}}, {{A, B, C, X(21314), X(56783)}}, {{A, B, C, X(22464), X(52212)}}, {{A, B, C, X(23598), X(38941)}}, {{A, B, C, X(23681), X(52393)}}
X(62780) = barycentric product X(i)*X(j) for these (i, j): {269, 4671}, {279, 3679}, {479, 4873}, {1088, 45}, {1405, 6063}, {1446, 4653}, {1847, 3940}, {2006, 36589}, {2099, 85}, {2177, 57792}, {3668, 5235}, {4566, 47683}, {4569, 4893}, {4616, 4931}, {4626, 4944}, {4635, 4770}, {4752, 59941}, {4767, 58817}, {4777, 658}, {4791, 934}, {4957, 7045}, {5219, 7}, {23062, 3711}, {36118, 49280}, {36838, 4814}, {43052, 664}, {46406, 4775}, {55245, 7216}
X(62780) = barycentric quotient X(i)/X(j) for these (i, j): {2, 56094}, {7, 30608}, {45, 200}, {56, 2364}, {57, 2320}, {109, 5549}, {269, 89}, {279, 39704}, {658, 4597}, {934, 4604}, {1042, 28658}, {1088, 20569}, {1106, 28607}, {1405, 55}, {1407, 2163}, {1427, 53114}, {1461, 4588}, {2099, 9}, {2177, 220}, {3668, 30588}, {3679, 346}, {3711, 728}, {3940, 3692}, {4273, 2328}, {4653, 2287}, {4671, 341}, {4752, 4578}, {4767, 6558}, {4770, 4171}, {4774, 4529}, {4775, 657}, {4777, 3239}, {4791, 4397}, {4800, 4148}, {4814, 4130}, {4833, 1021}, {4870, 3686}, {4873, 5423}, {4893, 3900}, {4944, 4163}, {4957, 24026}, {5219, 8}, {5235, 1043}, {7045, 5385}, {7053, 55979}, {7216, 55246}, {16236, 62706}, {36589, 32851}, {36595, 28808}, {36920, 2325}, {39782, 3707}, {43052, 522}, {47683, 7253}, {55245, 7258}, {58817, 52620}
X(62780) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 347, 3664}, {7, 3663, 4328}, {7, 3668, 269}, {7, 77, 4888}, {481, 482, 4293}, {4887, 10481, 7}, {17276, 52023, 60937}, {37800, 41572, 1743}, {43035, 61021, 4644}


X(62781) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1268), X(1), X(7))

Barycentrics    (a+b-c)^2*(a-b+c)^2*(a+2*(b+c)) : :

X(62781) lies on these lines: {1, 7}, {57, 2160}, {241, 20195}, {319, 9312}, {738, 6046}, {948, 6666}, {1088, 1268}, {1108, 23681}, {1119, 17106}, {1418, 43044}, {1419, 7277}, {1427, 5219}, {1449, 43066}, {2911, 61007}, {3553, 56848}, {3624, 41808}, {3911, 7365}, {4357, 17079}, {4464, 6604}, {4654, 16777}, {4658, 5586}, {4859, 17092}, {5252, 7273}, {5722, 41492}, {6180, 52405}, {6510, 60933}, {7204, 7241}, {9436, 42696}, {10436, 17078}, {16667, 60932}, {16673, 41857}, {17075, 29598}, {17272, 41804}, {17365, 33633}, {24471, 47444}, {24564, 43983}, {37800, 51302}, {43038, 58800}, {52023, 59215}

X(62781) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 42030}, {55, 56203}, {200, 56343}, {220, 25417}, {346, 34819}, {657, 37211}, {1253, 30598}, {2287, 28625}, {2328, 56221}, {3900, 8652}, {7079, 56070}, {8641, 32042}
X(62781) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 56203}, {3160, 42030}, {6609, 56343}, {17113, 30598}, {36908, 56221}, {51572, 200}, {53167, 3239}, {59608, 60203}, {62648, 346}
X(62781) = X(i)-cross conjugate of X(j) for these {i, j}: {5221, 4654}
X(62781) = pole of line {7, 16127} with respect to the dual conic of Yff parabola
X(62781) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1268)}}, {{A, B, C, X(7), X(4654)}}, {{A, B, C, X(20), X(31902)}}, {{A, B, C, X(57), X(1442)}}, {{A, B, C, X(75), X(4021)}}, {{A, B, C, X(80), X(4294)}}, {{A, B, C, X(267), X(4354)}}, {{A, B, C, X(390), X(4007)}}, {{A, B, C, X(516), X(4802)}}, {{A, B, C, X(1770), X(5561)}}, {{A, B, C, X(2293), X(61358)}}, {{A, B, C, X(3000), X(4813)}}, {{A, B, C, X(3010), X(4834)}}, {{A, B, C, X(3062), X(43178)}}, {{A, B, C, X(3663), X(30596)}}, {{A, B, C, X(3671), X(5586)}}, {{A, B, C, X(3672), X(28605)}}, {{A, B, C, X(3715), X(4326)}}, {{A, B, C, X(3927), X(10884)}}, {{A, B, C, X(3945), X(5333)}}, {{A, B, C, X(4820), X(45275)}}, {{A, B, C, X(4877), X(7675)}}, {{A, B, C, X(4960), X(5088)}}
X(62781) = barycentric product X(i)*X(j) for these (i, j): {269, 28605}, {1088, 16777}, {1407, 30596}, {1446, 4658}, {1698, 279}, {1847, 3927}, {3668, 5333}, {4007, 479}, {4566, 4960}, {4569, 4813}, {4616, 4838}, {4626, 4820}, {4635, 48005}, {4654, 7}, {4756, 58817}, {4802, 658}, {4823, 934}, {5221, 85}, {5586, 57826}, {23062, 3715}, {31902, 56382}, {36074, 52621}, {46406, 4834}, {57792, 61358}
X(62781) = barycentric quotient X(i)/X(j) for these (i, j): {7, 42030}, {57, 56203}, {269, 25417}, {279, 30598}, {658, 32042}, {934, 37211}, {1042, 28625}, {1106, 34819}, {1407, 56343}, {1427, 56221}, {1461, 8652}, {1698, 346}, {3668, 60203}, {3715, 728}, {3927, 3692}, {4007, 5423}, {4654, 8}, {4658, 2287}, {4756, 6558}, {4802, 3239}, {4810, 4148}, {4813, 3900}, {4820, 4163}, {4823, 4397}, {4826, 4524}, {4834, 657}, {4840, 1021}, {4877, 56182}, {4898, 6555}, {4949, 4546}, {4958, 4528}, {4960, 7253}, {5221, 9}, {5333, 1043}, {5586, 391}, {7053, 56070}, {16777, 200}, {28605, 341}, {30589, 56094}, {30596, 59761}, {31902, 2322}, {36074, 3939}, {43932, 48074}, {48005, 4171}, {61358, 220}
X(62781) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 347, 4021}, {279, 3668, 269}, {347, 10481, 4328}, {3638, 3639, 4294}, {4021, 10481, 7}


X(62782) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1440), X(1), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b^2-6*b*c+c^2)) : :

X(62782) lies on these lines: {1, 7}, {2, 17092}, {37, 60967}, {57, 54425}, {75, 17079}, {85, 57810}, {219, 9965}, {222, 21454}, {241, 8232}, {273, 11546}, {348, 17322}, {553, 1449}, {651, 60939}, {948, 1418}, {1014, 3598}, {1088, 1440}, {1119, 7497}, {1419, 60945}, {1434, 16714}, {1441, 43983}, {1446, 60157}, {1804, 38859}, {3474, 30621}, {4667, 33633}, {5222, 60938}, {5308, 41857}, {6180, 12848}, {6604, 17377}, {7175, 28079}, {7289, 24604}, {7365, 17720}, {8271, 17784}, {9436, 17270}, {14256, 61121}, {16662, 52419}, {16663, 52420}, {17078, 17321}, {17334, 60934}, {18625, 62208}, {20015, 51351}, {20212, 26871}, {20880, 54303}, {25889, 30946}, {26818, 53238}, {30275, 52023}, {32093, 41801}, {37681, 60948}, {43035, 60955}, {56348, 60041}

X(62782) = X(i)-isoconjugate-of-X(j) for these {i, j}: {55, 7160}
X(62782) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 7160}, {7308, 4882}
X(62782) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1059, 329}
X(62782) = X(i)-cross conjugate of X(j) for these {i, j}: {3333, 9776}
X(62782) = pole of line {2328, 6600} with respect to the Stammler hyperbola
X(62782) = pole of line {7, 9614} with respect to the dual conic of Yff parabola
X(62782) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1440)}}, {{A, B, C, X(2), X(7190)}}, {{A, B, C, X(4), X(10624)}}, {{A, B, C, X(7), X(9776)}}, {{A, B, C, X(77), X(30679)}}, {{A, B, C, X(273), X(3672)}}, {{A, B, C, X(347), X(1088)}}, {{A, B, C, X(1014), X(4350)}}, {{A, B, C, X(3000), X(14300)}}, {{A, B, C, X(3668), X(40154)}}, {{A, B, C, X(3671), X(34244)}}, {{A, B, C, X(5543), X(28626)}}, {{A, B, C, X(7269), X(7318)}}
X(62782) = barycentric product X(i)*X(j) for these (i, j): {7, 9776}, {3333, 85}, {14300, 4569}
X(62782) = barycentric quotient X(i)/X(j) for these (i, j): {57, 7160}, {3333, 9}, {9776, 8}, {14300, 3900}
X(62782) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1443, 3945}, {7, 279, 347}, {7, 3160, 7190}, {269, 10481, 7}, {948, 1418, 8732}


X(62783) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(4373), X(1), X(7))

Barycentrics    (a-3*(b+c))*(a+b-c)^2*(a-b+c)^2 : :

X(62783) lies on these lines: {1, 7}, {2, 6354}, {6, 60975}, {57, 40968}, {75, 1446}, {85, 24547}, {144, 948}, {241, 24554}, {278, 37666}, {391, 17950}, {984, 1254}, {1014, 37227}, {1088, 4373}, {1119, 14018}, {1407, 14996}, {1419, 61021}, {1427, 28606}, {1441, 5232}, {1736, 3091}, {3008, 60941}, {3731, 5226}, {3946, 60982}, {4000, 60939}, {4419, 52023}, {4451, 56264}, {4452, 6604}, {4859, 5435}, {4907, 9812}, {5222, 52819}, {5307, 60167}, {6180, 20059}, {7365, 19785}, {9312, 21296}, {9436, 31995}, {12848, 37681}, {17151, 32003}, {17272, 31994}, {17276, 60998}, {20214, 55466}, {23839, 24471}, {24993, 40702}, {41572, 54425}, {43983, 45789}, {57826, 60321}

X(62783) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 56201}, {220, 39980}, {1253, 30712}, {2328, 31503}, {3900, 28162}, {8641, 58132}
X(62783) = X(i)-Dao conjugate of X(j) for these {i, j}: {3160, 56201}, {11530, 200}, {17113, 30712}, {36908, 31503}, {59608, 56226}
X(62783) = X(i)-cross conjugate of X(j) for these {i, j}: {3340, 5226}
X(62783) = pole of line {7, 5691} with respect to the dual conic of Yff parabola
X(62783) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3340)}}, {{A, B, C, X(2), X(3664)}}, {{A, B, C, X(4), X(4297)}}, {{A, B, C, X(7), X(5226)}}, {{A, B, C, X(75), X(3945)}}, {{A, B, C, X(253), X(17134)}}, {{A, B, C, X(390), X(4451)}}, {{A, B, C, X(516), X(28161)}}, {{A, B, C, X(903), X(3672)}}, {{A, B, C, X(2051), X(43172)}}, {{A, B, C, X(2293), X(60817)}}, {{A, B, C, X(3010), X(48338)}}, {{A, B, C, X(3296), X(12563)}}, {{A, B, C, X(3663), X(36606)}}, {{A, B, C, X(3671), X(60321)}}, {{A, B, C, X(3984), X(10884)}}, {{A, B, C, X(4058), X(4356)}}, {{A, B, C, X(4308), X(35160)}}, {{A, B, C, X(4319), X(62543)}}, {{A, B, C, X(4326), X(62218)}}, {{A, B, C, X(4346), X(39707)}}, {{A, B, C, X(4888), X(30712)}}, {{A, B, C, X(5542), X(60108)}}, {{A, B, C, X(6049), X(39126)}}, {{A, B, C, X(7176), X(56264)}}, {{A, B, C, X(7271), X(56348)}}, {{A, B, C, X(8049), X(10446)}}, {{A, B, C, X(10307), X(43176)}}, {{A, B, C, X(10444), X(45100)}}, {{A, B, C, X(18655), X(58003)}}, {{A, B, C, X(33869), X(39720)}}, {{A, B, C, X(42309), X(60831)}}
X(62783) = barycentric product X(i)*X(j) for these (i, j): {269, 42034}, {279, 3617}, {1088, 3731}, {1275, 62221}, {1847, 3984}, {3340, 85}, {5226, 7}, {10509, 61031}, {23062, 62218}, {28161, 658}, {46406, 48338}
X(62783) = barycentric quotient X(i)/X(j) for these (i, j): {7, 56201}, {269, 39980}, {279, 30712}, {658, 58132}, {1427, 31503}, {1461, 28162}, {3340, 9}, {3617, 346}, {3668, 56226}, {3731, 200}, {3984, 3692}, {4058, 4082}, {5226, 8}, {14350, 4546}, {28161, 3239}, {42034, 341}, {48338, 657}, {61031, 51972}, {62218, 728}, {62221, 1146}
X(62783) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 3160, 3664}, {7, 347, 3945}, {7, 3668, 279}, {4373, 51351, 39126}, {4862, 10481, 7}


X(62784) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9436), X(1), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(b*(-b+c)+a*(b+2*c))*((b-c)*c+a*(2*b+c)) : :

X(62784) lies on these lines: {1, 1434}, {7, 37}, {10, 85}, {19, 42302}, {57, 2279}, {65, 279}, {225, 1847}, {269, 10509}, {1014, 3941}, {1323, 53114}, {1441, 46772}, {2218, 5323}, {2369, 8693}, {3160, 31503}, {3212, 27818}, {3668, 23062}, {3672, 58563}, {4059, 24797}, {4674, 21314}, {5228, 40747}, {7146, 60677}, {7179, 60676}, {7209, 39126}, {7271, 23618}, {9278, 52160}, {17078, 48830}, {17103, 40430}, {17158, 34860}, {20121, 56134}, {22290, 40504}, {29573, 32041}, {29616, 51351}, {31225, 40719}, {33765, 56359}, {37138, 43762}, {42314, 60733}, {43037, 56159}, {56221, 58816}

X(62784) = isotomic conjugate of X(3886)
X(62784) = trilinear pole of line {661, 3676}
X(62784) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 28044}, {6, 37658}, {8, 60722}, {9, 2280}, {31, 3886}, {32, 28809}, {41, 4384}, {55, 1001}, {101, 45755}, {200, 1471}, {220, 5228}, {284, 59207}, {480, 59242}, {607, 23151}, {663, 54440}, {1253, 40719}, {1334, 60721}, {2175, 4441}, {2194, 3696}, {2328, 42289}, {3939, 4724}, {4044, 57657}, {6602, 42309}, {9447, 21615}, {10482, 59217}, {14827, 60720}, {31926, 52370}, {40732, 52133}
X(62784) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 3886}, {9, 37658}, {223, 1001}, {478, 2280}, {1015, 45755}, {1214, 3696}, {3160, 4384}, {6376, 28809}, {6609, 1471}, {17113, 40719}, {36103, 28044}, {36908, 42289}, {40590, 59207}, {40593, 4441}, {40615, 4762}, {40617, 4724}, {40622, 4804}, {52659, 4702}, {62570, 4044}
X(62784) = X(i)-cross conjugate of X(j) for these {i, j}: {1002, 27475}, {3755, 2}, {7146, 85}
X(62784) = pole of line {5542, 54668} with respect to the dual conic of Yff parabola
X(62784) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10)}}, {{A, B, C, X(2), X(5308)}}, {{A, B, C, X(4), X(4229)}}, {{A, B, C, X(6), X(9442)}}, {{A, B, C, X(7), X(85)}}, {{A, B, C, X(27), X(13577)}}, {{A, B, C, X(57), X(241)}}, {{A, B, C, X(86), X(277)}}, {{A, B, C, X(92), X(4608)}}, {{A, B, C, X(103), X(57660)}}, {{A, B, C, X(257), X(4373)}}, {{A, B, C, X(269), X(1418)}}, {{A, B, C, X(273), X(1170)}}, {{A, B, C, X(278), X(21453)}}, {{A, B, C, X(294), X(56147)}}, {{A, B, C, X(309), X(1246)}}, {{A, B, C, X(312), X(39741)}}, {{A, B, C, X(479), X(56348)}}, {{A, B, C, X(514), X(55983)}}, {{A, B, C, X(522), X(42317)}}, {{A, B, C, X(552), X(24803)}}, {{A, B, C, X(903), X(4419)}}, {{A, B, C, X(1002), X(40757)}}, {{A, B, C, X(1014), X(17092)}}, {{A, B, C, X(1268), X(56217)}}, {{A, B, C, X(1323), X(43052)}}, {{A, B, C, X(2051), X(44186)}}, {{A, B, C, X(2296), X(58013)}}, {{A, B, C, X(2481), X(9311)}}, {{A, B, C, X(3008), X(29573)}}, {{A, B, C, X(3212), X(39126)}}, {{A, B, C, X(3598), X(51351)}}, {{A, B, C, X(3755), X(3886)}}, {{A, B, C, X(3875), X(17158)}}, {{A, B, C, X(4675), X(34578)}}, {{A, B, C, X(5222), X(29616)}}, {{A, B, C, X(5228), X(7146)}}, {{A, B, C, X(6063), X(44733)}}, {{A, B, C, X(6185), X(18821)}}, {{A, B, C, X(7179), X(60717)}}, {{A, B, C, X(7249), X(62528)}}, {{A, B, C, X(8056), X(56074)}}, {{A, B, C, X(9445), X(11051)}}, {{A, B, C, X(9503), X(53209)}}, {{A, B, C, X(10429), X(58009)}}, {{A, B, C, X(17276), X(18032)}}, {{A, B, C, X(22464), X(30181)}}, {{A, B, C, X(23839), X(34056)}}, {{A, B, C, X(27475), X(59255)}}, {{A, B, C, X(29606), X(31183)}}, {{A, B, C, X(30598), X(42326)}}, {{A, B, C, X(36620), X(44794)}}, {{A, B, C, X(37523), X(37544)}}, {{A, B, C, X(42304), X(57785)}}, {{A, B, C, X(56026), X(56218)}}, {{A, B, C, X(57664), X(58023)}}
X(62784) = barycentric product X(i)*X(j) for these (i, j): {57, 59255}, {279, 60668}, {349, 51443}, {1002, 85}, {1088, 40779}, {1441, 42302}, {2279, 6063}, {10481, 42310}, {23062, 59269}, {24002, 37138}, {27475, 7}, {32041, 3676}, {42290, 75}, {51563, 7178}, {52621, 8693}, {53227, 53544}, {56783, 62622}, {57785, 60677}, {57792, 60673}, {59181, 59193}, {59260, 738}
X(62784) = barycentric quotient X(i)/X(j) for these (i, j): {1, 37658}, {2, 3886}, {7, 4384}, {19, 28044}, {56, 2280}, {57, 1001}, {65, 59207}, {75, 28809}, {77, 23151}, {85, 4441}, {226, 3696}, {269, 5228}, {279, 40719}, {479, 42309}, {513, 45755}, {604, 60722}, {651, 54440}, {738, 59242}, {1002, 9}, {1014, 60721}, {1088, 60720}, {1407, 1471}, {1418, 59217}, {1427, 42289}, {1441, 4044}, {1446, 60734}, {2279, 55}, {3669, 4724}, {3676, 4762}, {3911, 4702}, {6063, 21615}, {7146, 3789}, {7178, 4804}, {7179, 27474}, {7204, 40784}, {8693, 3939}, {27475, 8}, {32041, 3699}, {36138, 52927}, {37138, 644}, {40779, 200}, {42290, 1}, {42302, 21}, {42310, 56118}, {51443, 284}, {51563, 645}, {56556, 40732}, {57785, 60735}, {59181, 59202}, {59193, 6605}, {59255, 312}, {59260, 30693}, {59269, 728}, {60668, 346}, {60673, 220}, {60677, 210}, {62622, 3717}


X(62785) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14621), X(1), X(7))

Barycentrics    (a+b-c)^2*(a-b+c)^2*(a^2-b*c) : :

X(62785) lies on these lines: {1, 7}, {57, 20459}, {83, 1446}, {85, 894}, {238, 1447}, {239, 10030}, {348, 3662}, {608, 1847}, {738, 7153}, {927, 9453}, {934, 14665}, {1016, 1275}, {1019, 17096}, {1088, 1407}, {1244, 1439}, {1427, 33765}, {1434, 40432}, {1456, 56783}, {1462, 6185}, {1738, 52160}, {1876, 36118}, {1943, 7243}, {3212, 3751}, {3500, 7177}, {3685, 39775}, {4569, 35172}, {4645, 9436}, {6604, 50289}, {7204, 60717}, {9312, 24349}, {9316, 9446}, {14256, 28079}, {17079, 50128}, {17095, 17291}, {17368, 52422}, {34018, 52635}, {34855, 52030}

X(62785) = trilinear pole of line {659, 43041}
X(62785) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 51858}, {9, 7077}, {41, 4518}, {55, 4876}, {200, 292}, {210, 2311}, {220, 291}, {295, 7079}, {312, 18265}, {334, 14827}, {335, 1253}, {341, 1922}, {346, 1911}, {657, 660}, {741, 4515}, {813, 3900}, {875, 6558}, {1334, 56154}, {2196, 7046}, {3063, 36801}, {3239, 34067}, {3252, 28071}, {3572, 4578}, {4082, 18268}, {4524, 4584}, {4562, 8641}, {5378, 14936}, {6559, 40730}, {6602, 7233}, {14598, 59761}, {52205, 58327}
X(62785) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 4876}, {478, 7077}, {3160, 4518}, {6609, 292}, {6651, 346}, {8299, 4515}, {10001, 36801}, {16591, 2321}, {17113, 335}, {18277, 59761}, {19557, 200}, {35068, 4082}, {35119, 3239}, {39028, 341}, {39029, 220}, {40615, 60577}, {40623, 3900}, {59608, 43534}, {62552, 1146}, {62558, 2310}
X(62785) = X(i)-cross conjugate of X(j) for these {i, j}: {1429, 1447}, {27918, 43041}
X(62785) = pole of line {514, 10521} with respect to the incircle
X(62785) = pole of line {1043, 4515} with respect to the Wallace hyperbola
X(62785) = pole of line {7, 43747} with respect to the dual conic of Yff parabola
X(62785) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(83)}}, {{A, B, C, X(2), X(4310)}}, {{A, B, C, X(7), X(1447)}}, {{A, B, C, X(20), X(31905)}}, {{A, B, C, X(57), X(4334)}}, {{A, B, C, X(85), X(7185)}}, {{A, B, C, X(242), X(516)}}, {{A, B, C, X(269), X(1275)}}, {{A, B, C, X(274), X(24215)}}, {{A, B, C, X(292), X(20459)}}, {{A, B, C, X(335), X(24231)}}, {{A, B, C, X(350), X(3672)}}, {{A, B, C, X(390), X(3685)}}, {{A, B, C, X(659), X(3000)}}, {{A, B, C, X(740), X(4356)}}, {{A, B, C, X(894), X(7184)}}, {{A, B, C, X(991), X(5009)}}, {{A, B, C, X(1284), X(42289)}}, {{A, B, C, X(1323), X(43041)}}, {{A, B, C, X(1428), X(1458)}}, {{A, B, C, X(1431), X(41350)}}, {{A, B, C, X(1434), X(7176)}}, {{A, B, C, X(1914), X(2293)}}, {{A, B, C, X(1921), X(3663)}}, {{A, B, C, X(2162), X(20665)}}, {{A, B, C, X(2201), X(4319)}}, {{A, B, C, X(3010), X(8632)}}, {{A, B, C, X(3332), X(34856)}}, {{A, B, C, X(3668), X(58817)}}, {{A, B, C, X(3671), X(16609)}}, {{A, B, C, X(3674), X(18033)}}, {{A, B, C, X(3684), X(4326)}}, {{A, B, C, X(3716), X(45275)}}, {{A, B, C, X(3945), X(33295)}}, {{A, B, C, X(3975), X(9785)}}, {{A, B, C, X(4089), X(20924)}}, {{A, B, C, X(4335), X(18786)}}, {{A, B, C, X(4346), X(27922)}}, {{A, B, C, X(5542), X(55090)}}, {{A, B, C, X(10884), X(20769)}}, {{A, B, C, X(24248), X(40725)}}, {{A, B, C, X(27846), X(40872)}}, {{A, B, C, X(28017), X(39930)}}, {{A, B, C, X(40758), X(54251)}}, {{A, B, C, X(41352), X(56661)}}
X(62785) = barycentric product X(i)*X(j) for these (i, j): {239, 279}, {242, 7056}, {269, 350}, {552, 7235}, {658, 812}, {1088, 238}, {1106, 18891}, {1275, 27918}, {1284, 57785}, {1407, 1921}, {1427, 30940}, {1428, 6063}, {1429, 85}, {1434, 16609}, {1447, 7}, {1847, 20769}, {1914, 57792}, {3570, 58817}, {3573, 59941}, {3685, 479}, {3716, 4626}, {3766, 934}, {3975, 738}, {4010, 4616}, {4087, 7023}, {4124, 59457}, {4569, 659}, {4573, 7212}, {10030, 57}, {18033, 56}, {21832, 4635}, {23062, 3684}, {31905, 56382}, {33295, 3668}, {34018, 34253}, {36838, 4435}, {39775, 56783}, {40717, 7053}, {43041, 664}, {43932, 874}, {44169, 52410}, {46406, 8632}
X(62785) = barycentric quotient X(i)/X(j) for these (i, j): {7, 4518}, {56, 7077}, {57, 4876}, {238, 200}, {239, 346}, {242, 7046}, {269, 291}, {279, 335}, {350, 341}, {479, 7233}, {604, 51858}, {658, 4562}, {659, 3900}, {664, 36801}, {740, 4082}, {812, 3239}, {934, 660}, {1014, 56154}, {1088, 334}, {1106, 1911}, {1284, 210}, {1397, 18265}, {1407, 292}, {1412, 2311}, {1428, 55}, {1429, 9}, {1434, 36800}, {1447, 8}, {1461, 813}, {1874, 53008}, {1914, 220}, {1921, 59761}, {2201, 7079}, {2210, 1253}, {2238, 4515}, {3570, 6558}, {3573, 4578}, {3668, 43534}, {3676, 60577}, {3684, 728}, {3685, 5423}, {3716, 4163}, {3766, 4397}, {3975, 30693}, {4107, 4529}, {4124, 4081}, {4164, 4477}, {4375, 4148}, {4435, 4130}, {4448, 4528}, {4455, 4524}, {4569, 4583}, {4616, 4589}, {4635, 4639}, {4637, 4584}, {5009, 2328}, {6654, 6559}, {7045, 5378}, {7053, 295}, {7056, 337}, {7099, 2196}, {7193, 1260}, {7204, 3864}, {7212, 3700}, {7235, 6057}, {8300, 58327}, {8632, 657}, {10030, 312}, {14599, 14827}, {15507, 51380}, {16609, 2321}, {18033, 3596}, {20769, 3692}, {21832, 4171}, {22384, 57108}, {27846, 2310}, {27918, 1146}, {31905, 2322}, {33295, 1043}, {34253, 3693}, {34855, 22116}, {39775, 3717}, {39786, 36197}, {43041, 522}, {43932, 876}, {50456, 1021}, {51329, 2340}, {52410, 1922}, {53580, 4546}, {56783, 33676}, {56805, 4073}, {57654, 7071}, {57792, 18895}, {58817, 4444}
X(62785) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 3160, 4310}


X(62786) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(27475), X(1), X(7))

Barycentrics    (a+b-c)^2*(a-b+c)^2*(-b^2-c^2+a*(b+c)) : :
X(62786) = -4*X[5199]+7*X[60996]

X(62786) lies on these lines: {1, 7}, {2, 479}, {9, 348}, {55, 30623}, {57, 7056}, {85, 142}, {144, 26658}, {226, 1088}, {241, 39063}, {242, 1119}, {284, 1434}, {497, 56309}, {514, 7216}, {518, 1362}, {527, 1275}, {553, 33765}, {658, 3911}, {664, 5853}, {673, 9503}, {883, 4899}, {908, 37780}, {927, 1477}, {934, 2725}, {971, 1565}, {1358, 59808}, {1418, 51150}, {1419, 51190}, {1427, 39957}, {1439, 4260}, {1445, 4253}, {1446, 5179}, {1447, 9499}, {1697, 56929}, {1699, 2898}, {1996, 5219}, {2321, 59200}, {2550, 9312}, {3243, 6604}, {3328, 52870}, {3452, 31627}, {3599, 5281}, {3660, 40615}, {3665, 8581}, {3687, 7182}, {3816, 59601}, {3912, 40704}, {3928, 50559}, {4554, 62297}, {4569, 10030}, {5011, 60938}, {5074, 41857}, {5144, 38859}, {5199, 60996}, {5249, 59181}, {5274, 31527}, {5316, 62704}, {5435, 9533}, {5728, 14520}, {5845, 6610}, {6173, 17079}, {6666, 17095}, {7053, 37507}, {7175, 9454}, {7183, 60974}, {7197, 10436}, {7671, 14519}, {8074, 8732}, {8270, 56359}, {9311, 41777}, {9446, 13405}, {10029, 16593}, {11019, 31526}, {11246, 42386}, {15634, 43672}, {15726, 55370}, {17044, 51418}, {17081, 17106}, {18734, 20618}, {20195, 52422}, {21151, 55288}, {24199, 60720}, {24393, 33298}, {25723, 42819}, {26015, 35312}, {27818, 60831}, {31994, 40333}, {36740, 38046}, {37136, 43762}, {38053, 40719}, {39790, 58563}, {43042, 52305}, {47374, 61022}, {52156, 62388}, {56509, 62192}, {60487, 60578}

X(62786) = midpoint of X(i) and X(j) for these {i,j}: {7, 14189}
X(62786) = reflection of X(i) in X(j) for these {i,j}: {14189, 1323}, {51418, 17044}
X(62786) = inverse of X(42309) in Adams circle
X(62786) = inverse of X(10481) in incircle
X(62786) = isotomic conjugate of X(6559)
X(62786) = trilinear pole of line {2254, 43042}
X(62786) = perspector of circumconic {{A, B, C, X(658), X(1088)}}
X(62786) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 28071}, {9, 2195}, {31, 6559}, {41, 14942}, {55, 294}, {105, 220}, {200, 1438}, {480, 1462}, {644, 884}, {650, 52927}, {657, 36086}, {666, 8641}, {673, 1253}, {692, 28132}, {728, 1416}, {919, 3900}, {927, 57180}, {1024, 3939}, {1260, 8751}, {1802, 36124}, {1814, 7071}, {2175, 36796}, {2287, 56853}, {2328, 18785}, {2481, 14827}, {3063, 36802}, {3239, 32666}, {4105, 36146}, {4130, 32735}, {4578, 43929}, {5377, 14936}, {6602, 56783}, {7046, 32658}, {7079, 36057}, {51866, 58327}
X(62786) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6559}, {9, 28071}, {223, 294}, {241, 40869}, {478, 2195}, {1086, 28132}, {2238, 58327}, {3126, 3119}, {3160, 14942}, {6184, 200}, {6609, 1438}, {9436, 28058}, {10001, 36802}, {17060, 28070}, {17113, 673}, {17755, 346}, {20621, 7079}, {27918, 4148}, {35094, 3239}, {35509, 23615}, {36905, 8}, {36908, 18785}, {38980, 3900}, {38989, 657}, {39014, 4105}, {39046, 220}, {39063, 9}, {39066, 4513}, {39077, 51418}, {40593, 36796}, {40609, 728}, {40615, 885}, {40617, 1024}, {59608, 13576}, {62587, 341}
X(62786) = X(i)-cross conjugate of X(j) for these {i, j}: {241, 9436}, {39063, 7}, {51400, 3912}, {53544, 41353}
X(62786) = pole of line {514, 42309} with respect to the Adams circle
X(62786) = pole of line {514, 10481} with respect to the incircle
X(62786) = pole of line {2328, 8012} with respect to the Stammler hyperbola
X(62786) = pole of line {4025, 36845} with respect to the Steiner circumellipse
X(62786) = pole of line {7658, 11019} with respect to the Steiner inellipse
X(62786) = pole of line {1043, 6559} with respect to the Wallace hyperbola
X(62786) = pole of line {7, 2310} with respect to the dual conic of Yff parabola
X(62786) = pole of line {4171, 52335} with respect to the dual conic of Wallace hyperbola
X(62786) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(85)}}, {{A, B, C, X(2), X(390)}}, {{A, B, C, X(7), X(1275)}}, {{A, B, C, X(9), X(4319)}}, {{A, B, C, X(20), X(15149)}}, {{A, B, C, X(57), X(1876)}}, {{A, B, C, X(87), X(1742)}}, {{A, B, C, X(104), X(18461)}}, {{A, B, C, X(142), X(284)}}, {{A, B, C, X(226), X(42289)}}, {{A, B, C, X(242), X(17755)}}, {{A, B, C, X(269), X(23062)}}, {{A, B, C, X(277), X(2724)}}, {{A, B, C, X(279), X(57880)}}, {{A, B, C, X(331), X(17753)}}, {{A, B, C, X(348), X(17170)}}, {{A, B, C, X(516), X(673)}}, {{A, B, C, X(527), X(52305)}}, {{A, B, C, X(665), X(3010)}}, {{A, B, C, X(883), X(927)}}, {{A, B, C, X(948), X(59405)}}, {{A, B, C, X(962), X(46108)}}, {{A, B, C, X(991), X(3286)}}, {{A, B, C, X(1025), X(30379)}}, {{A, B, C, X(1042), X(7216)}}, {{A, B, C, X(1088), X(42309)}}, {{A, B, C, X(1323), X(43042)}}, {{A, B, C, X(1362), X(1458)}}, {{A, B, C, X(1434), X(10481)}}, {{A, B, C, X(1721), X(3062)}}, {{A, B, C, X(1847), X(4350)}}, {{A, B, C, X(2254), X(3000)}}, {{A, B, C, X(2297), X(3693)}}, {{A, B, C, X(2414), X(2737)}}, {{A, B, C, X(2717), X(61086)}}, {{A, B, C, X(2723), X(43161)}}, {{A, B, C, X(2951), X(56718)}}, {{A, B, C, X(3100), X(7112)}}, {{A, B, C, X(3160), X(27818)}}, {{A, B, C, X(3263), X(3672)}}, {{A, B, C, X(3663), X(23618)}}, {{A, B, C, X(3668), X(10509)}}, {{A, B, C, X(3932), X(4356)}}, {{A, B, C, X(3945), X(30941)}}, {{A, B, C, X(4089), X(17078)}}, {{A, B, C, X(4253), X(15378)}}, {{A, B, C, X(4310), X(40217)}}, {{A, B, C, X(4318), X(43760)}}, {{A, B, C, X(4336), X(43971)}}, {{A, B, C, X(4899), X(16593)}}, {{A, B, C, X(5088), X(23829)}}, {{A, B, C, X(5731), X(56753)}}, {{A, B, C, X(6168), X(60992)}}, {{A, B, C, X(6548), X(37780)}}, {{A, B, C, X(7056), X(23603)}}, {{A, B, C, X(8056), X(12652)}}, {{A, B, C, X(10390), X(57469)}}, {{A, B, C, X(10884), X(25083)}}, {{A, B, C, X(12560), X(44733)}}, {{A, B, C, X(14189), X(34018)}}, {{A, B, C, X(22464), X(43762)}}, {{A, B, C, X(30332), X(42318)}}, {{A, B, C, X(34578), X(53617)}}, {{A, B, C, X(39734), X(59181)}}, {{A, B, C, X(42770), X(45947)}}, {{A, B, C, X(45275), X(50333)}}, {{A, B, C, X(46793), X(55002)}}, {{A, B, C, X(56379), X(57581)}}
X(62786) = barycentric product X(i)*X(j) for these (i, j): {7, 9436}, {241, 85}, {269, 3263}, {279, 3912}, {348, 5236}, {658, 918}, {1025, 24002}, {1026, 59941}, {1088, 518}, {1427, 18157}, {1446, 18206}, {1458, 6063}, {1847, 25083}, {1861, 7056}, {1876, 7182}, {2254, 4569}, {2283, 52621}, {2340, 57880}, {3323, 39293}, {3676, 883}, {3717, 479}, {4088, 4616}, {4554, 53544}, {4572, 53539}, {4625, 53551}, {4626, 50333}, {10029, 5435}, {10509, 51384}, {15149, 56382}, {20567, 52635}, {23062, 3693}, {23829, 4566}, {24290, 4635}, {30705, 51400}, {30941, 3668}, {32023, 41355}, {34855, 75}, {39063, 52156}, {39775, 7233}, {40704, 57}, {41353, 693}, {42309, 62622}, {42720, 58817}, {43035, 56668}, {43042, 664}, {46108, 7177}, {46406, 665}, {50561, 56718}, {52937, 926}, {55260, 7216}, {57792, 672}, {62429, 7045}
X(62786) = barycentric quotient X(i)/X(j) for these (i, j): {1, 28071}, {2, 6559}, {7, 14942}, {56, 2195}, {57, 294}, {85, 36796}, {109, 52927}, {241, 9}, {269, 105}, {279, 673}, {479, 56783}, {514, 28132}, {518, 200}, {658, 666}, {664, 36802}, {665, 657}, {672, 220}, {738, 1462}, {883, 3699}, {918, 3239}, {926, 4105}, {934, 36086}, {1025, 644}, {1026, 4578}, {1042, 56853}, {1088, 2481}, {1119, 36124}, {1362, 2340}, {1407, 1438}, {1427, 18785}, {1435, 8751}, {1458, 55}, {1461, 919}, {1818, 1260}, {1847, 54235}, {1861, 7046}, {1876, 33}, {2223, 1253}, {2254, 3900}, {2283, 3939}, {2340, 480}, {2356, 7071}, {3263, 341}, {3286, 2328}, {3668, 13576}, {3669, 1024}, {3675, 2310}, {3676, 885}, {3693, 728}, {3717, 5423}, {3912, 346}, {3930, 4515}, {3932, 4082}, {4569, 51560}, {4617, 36146}, {4626, 927}, {4899, 6555}, {4925, 4546}, {5089, 7079}, {5236, 281}, {6168, 4513}, {6614, 32735}, {7023, 1416}, {7045, 5377}, {7053, 36057}, {7056, 31637}, {7099, 32658}, {7177, 1814}, {7204, 52029}, {7216, 55261}, {7233, 33676}, {7289, 23601}, {8299, 58327}, {9436, 8}, {9454, 14827}, {9502, 51418}, {10029, 6557}, {15149, 2322}, {17093, 31638}, {17435, 3119}, {18206, 2287}, {20752, 1802}, {23062, 34018}, {23829, 7253}, {24290, 4171}, {25083, 3692}, {30941, 1043}, {34253, 3684}, {34855, 1}, {36838, 34085}, {36905, 28058}, {39063, 40869}, {39775, 3685}, {40704, 312}, {41353, 100}, {41355, 1376}, {42720, 6558}, {43035, 56900}, {43042, 522}, {43924, 884}, {43932, 1027}, {46108, 7101}, {46388, 57180}, {46406, 36803}, {50333, 4163}, {51384, 51972}, {51400, 6554}, {52213, 2338}, {52305, 23615}, {52635, 41}, {52937, 46135}, {53531, 3689}, {53539, 663}, {53544, 650}, {53547, 41339}, {53550, 57108}, {53551, 4041}, {53553, 4477}, {53555, 53285}, {54407, 4183}, {55260, 7258}, {57792, 18031}, {58817, 62635}, {59151, 59101}, {59457, 39293}, {62429, 24026}, {62552, 4148}
X(62786) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 14189, 516}, {7, 3160, 390}, {7, 7176, 12573}, {279, 10004, 7}, {516, 1323, 14189}, {658, 37757, 3911}, {7056, 17093, 57}


X(62787) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(30712), X(1), X(7))

Barycentrics    (3*a-b-c)*(a+b-c)^2*(a-b+c)^2 : :

X(62787) lies on these lines: {1, 7}, {2, 1407}, {37, 60998}, {57, 2347}, {69, 38866}, {85, 24993}, {144, 241}, {145, 39126}, {193, 34253}, {222, 37666}, {238, 1106}, {253, 2370}, {346, 40862}, {479, 19604}, {651, 8732}, {664, 4452}, {738, 2137}, {859, 1014}, {934, 7023}, {1088, 30712}, {1119, 36118}, {1122, 3598}, {1275, 44724}, {1418, 4644}, {1419, 5222}, {1427, 4850}, {1439, 57705}, {1446, 38298}, {1449, 61022}, {1743, 5435}, {2726, 24016}, {4000, 6610}, {4667, 60955}, {4747, 41246}, {4869, 17060}, {5232, 40999}, {5281, 9316}, {5308, 60937}, {5658, 41004}, {6555, 62538}, {7674, 35338}, {8581, 39587}, {9312, 31995}, {9436, 21296}, {10307, 43736}, {12848, 17092}, {17080, 53020}, {17093, 32093}, {17151, 25718}, {17272, 20103}, {17365, 60975}, {18623, 62208}, {18624, 23681}, {20211, 54284}, {24213, 51364}, {25570, 52161}, {25590, 31994}, {27649, 38859}, {28079, 53538}, {30379, 54425}, {33633, 43035}, {41426, 52803}, {41801, 56927}, {51302, 60941}, {56180, 56264}, {56783, 60831}, {57826, 60086}, {59215, 60961}

X(62787) = isotomic conjugate of X(6556)
X(62787) = trilinear pole of line {4394, 30719}
X(62787) = perspector of circumconic {{A, B, C, X(658), X(6613)}}
X(62787) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 6556}, {41, 6557}, {55, 3680}, {200, 3445}, {220, 8056}, {346, 38266}, {480, 19604}, {657, 27834}, {663, 31343}, {728, 40151}, {1253, 4373}, {1293, 3900}, {2328, 56174}, {3158, 33963}, {3239, 34080}, {4130, 38828}, {4528, 36042}, {5382, 14936}, {5423, 16945}, {6602, 27818}, {7084, 62543}, {8641, 53647}, {14827, 40014}
X(62787) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6556}, {8, 5423}, {223, 3680}, {3160, 6557}, {3667, 4953}, {3669, 11}, {3756, 4163}, {4521, 1146}, {5516, 4528}, {6554, 62543}, {6609, 3445}, {17113, 4373}, {36908, 56174}, {40621, 3239}, {45036, 200}, {59608, 4052}, {62567, 52335}
X(62787) = X(i)-Ceva conjugate of X(j) for these {i, j}: {479, 279}, {4998, 934}, {62538, 145}
X(62787) = X(i)-cross conjugate of X(j) for these {i, j}: {1420, 5435}, {3756, 30719}, {5435, 279}, {45219, 57}
X(62787) = pole of line {4025, 42337} with respect to the Steiner circumellipse
X(62787) = pole of line {7658, 42337} with respect to the Steiner inellipse
X(62787) = pole of line {1043, 6556} with respect to the Wallace hyperbola
X(62787) = pole of line {7, 11522} with respect to the dual conic of Yff parabola
X(62787) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(145)}}, {{A, B, C, X(2), X(3663)}}, {{A, B, C, X(4), X(4301)}}, {{A, B, C, X(7), X(5435)}}, {{A, B, C, X(20), X(2370)}}, {{A, B, C, X(57), X(7271)}}, {{A, B, C, X(75), X(4346)}}, {{A, B, C, X(77), X(56049)}}, {{A, B, C, X(86), X(3672)}}, {{A, B, C, X(105), X(12652)}}, {{A, B, C, X(253), X(3007)}}, {{A, B, C, X(269), X(62538)}}, {{A, B, C, X(390), X(3161)}}, {{A, B, C, X(516), X(2726)}}, {{A, B, C, X(991), X(33628)}}, {{A, B, C, X(1122), X(6180)}}, {{A, B, C, X(1323), X(30719)}}, {{A, B, C, X(1440), X(22464)}}, {{A, B, C, X(1458), X(51656)}}, {{A, B, C, X(2293), X(3052)}}, {{A, B, C, X(2347), X(3445)}}, {{A, B, C, X(2403), X(38941)}}, {{A, B, C, X(3000), X(4394)}}, {{A, B, C, X(3010), X(8643)}}, {{A, B, C, X(3158), X(4326)}}, {{A, B, C, X(3160), X(56783)}}, {{A, B, C, X(3296), X(12577)}}, {{A, B, C, X(3664), X(40154)}}, {{A, B, C, X(3671), X(4848)}}, {{A, B, C, X(3674), X(57826)}}, {{A, B, C, X(3676), X(4887)}}, {{A, B, C, X(3945), X(39704)}}, {{A, B, C, X(3950), X(4356)}}, {{A, B, C, X(4297), X(48257)}}, {{A, B, C, X(4308), X(44301)}}, {{A, B, C, X(4313), X(52352)}}, {{A, B, C, X(4319), X(6555)}}, {{A, B, C, X(4345), X(56090)}}, {{A, B, C, X(4373), X(4862)}}, {{A, B, C, X(4462), X(8048)}}, {{A, B, C, X(4521), X(45275)}}, {{A, B, C, X(4855), X(10884)}}, {{A, B, C, X(7185), X(56264)}}, {{A, B, C, X(9785), X(44720)}}, {{A, B, C, X(10446), X(60167)}}, {{A, B, C, X(13478), X(43172)}}, {{A, B, C, X(17753), X(20028)}}, {{A, B, C, X(34855), X(41355)}}, {{A, B, C, X(44724), X(58858)}}, {{A, B, C, X(53623), X(55989)}}
X(62787) = barycentric product X(i)*X(j) for these (i, j): {145, 279}, {513, 62532}, {1088, 1743}, {1275, 3756}, {1420, 85}, {1434, 4848}, {1446, 16948}, {1847, 4855}, {3052, 57792}, {3161, 479}, {3667, 658}, {3668, 41629}, {4000, 62538}, {4248, 56382}, {4394, 4569}, {4404, 4637}, {4462, 934}, {4521, 4626}, {4534, 59457}, {4554, 51656}, {4635, 4729}, {5435, 7}, {14256, 56940}, {14321, 4616}, {18743, 269}, {23062, 3158}, {23586, 4953}, {27818, 6049}, {30719, 664}, {36838, 4162}, {39126, 57}, {40617, 4998}, {43290, 58817}, {44720, 738}, {44723, 7023}, {46406, 8643}, {57192, 59941}
X(62787) = barycentric quotient X(i)/X(j) for these (i, j): {2, 6556}, {7, 6557}, {57, 3680}, {145, 346}, {269, 8056}, {279, 4373}, {479, 27818}, {651, 31343}, {658, 53647}, {738, 19604}, {934, 27834}, {1088, 40014}, {1106, 38266}, {1407, 3445}, {1420, 9}, {1427, 56174}, {1461, 1293}, {1743, 200}, {3052, 220}, {3158, 728}, {3161, 5423}, {3667, 3239}, {3668, 4052}, {3756, 1146}, {3950, 4082}, {4000, 62543}, {4162, 4130}, {4248, 2322}, {4350, 27819}, {4394, 3900}, {4462, 4397}, {4504, 4529}, {4521, 4163}, {4534, 4081}, {4729, 4171}, {4848, 2321}, {4849, 4515}, {4855, 3692}, {4953, 23970}, {5435, 8}, {6049, 3161}, {6614, 38828}, {7023, 40151}, {7045, 5382}, {7366, 16945}, {8643, 657}, {14425, 4528}, {16948, 2287}, {18743, 341}, {20818, 1260}, {21950, 52335}, {23062, 62528}, {23764, 42462}, {30719, 522}, {31182, 4546}, {33628, 2328}, {39126, 312}, {40151, 33963}, {40617, 11}, {40621, 4953}, {41629, 1043}, {43290, 6558}, {43932, 58794}, {44301, 56076}, {44720, 30693}, {44722, 30681}, {45204, 6736}, {51656, 650}, {53580, 4148}, {57192, 4578}, {58811, 14284}, {58858, 4521}, {59123, 59095}, {61079, 4534}, {62532, 668}, {62538, 30701}
X(62787) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1443, 347}, {7, 269, 279}, {7, 3160, 3663}, {7, 347, 4346}, {7, 5543, 7274}, {7, 77, 3672}, {269, 4341, 1443}, {1418, 4644, 60939}, {1419, 60992, 5222}, {3598, 34855, 9533}, {3664, 7271, 7}, {4307, 4334, 3600}


X(62788) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(36620), X(1), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(a^2-3*(b-c)^2+2*a*(b+c)) : :

X(62788) lies on these lines: {1, 7}, {2, 41929}, {8, 17079}, {44, 60941}, {85, 9780}, {220, 60957}, {241, 5226}, {348, 5550}, {479, 4860}, {553, 17014}, {664, 32098}, {948, 5435}, {1088, 36620}, {1155, 3599}, {1212, 17092}, {1358, 5221}, {1446, 5704}, {2124, 60955}, {3212, 27818}, {3241, 32007}, {3616, 17078}, {3617, 9436}, {3621, 9312}, {4415, 5308}, {4654, 29624}, {5204, 59242}, {5222, 24608}, {5556, 43736}, {5708, 14256}, {6604, 20050}, {7195, 32636}, {7223, 24797}, {16572, 60948}, {16670, 60939}, {21454, 43035}, {23839, 50193}, {31269, 56054}, {33298, 52715}, {40719, 46934}, {42050, 59374}, {51846, 53241}, {55922, 56275}, {56331, 56348}, {59610, 60933}

X(62788) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1253, 56331}, {3900, 58106}
X(62788) = X(i)-Dao conjugate of X(j) for these {i, j}: {17113, 56331}
X(62788) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56348, 7}
X(62788) = pole of line {7, 31507} with respect to the dual conic of Yff parabola
X(62788) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10980)}}, {{A, B, C, X(2), X(5543)}}, {{A, B, C, X(8), X(30331)}}, {{A, B, C, X(277), X(58816)}}, {{A, B, C, X(390), X(7319)}}, {{A, B, C, X(516), X(5556)}}, {{A, B, C, X(1088), X(3160)}}, {{A, B, C, X(1156), X(4326)}}, {{A, B, C, X(1434), X(10004)}}, {{A, B, C, X(2951), X(55922)}}, {{A, B, C, X(4304), X(10429)}}, {{A, B, C, X(4312), X(43733)}}, {{A, B, C, X(4323), X(7249)}}, {{A, B, C, X(5542), X(57880)}}, {{A, B, C, X(5551), X(59372)}}, {{A, B, C, X(5936), X(7190)}}, {{A, B, C, X(27818), X(42309)}}, {{A, B, C, X(30332), X(61770)}}, {{A, B, C, X(31721), X(56274)}}, {{A, B, C, X(42289), X(56174)}}, {{A, B, C, X(43166), X(55924)}}
X(62788) = barycentric product X(i)*X(j) for these (i, j): {10980, 85}
X(62788) = barycentric quotient X(i)/X(j) for these (i, j): {279, 56331}, {1461, 58106}, {10980, 9}
X(62788) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 279, 3160}, {7, 3160, 5543}, {279, 10481, 7}, {9312, 51351, 32003}, {9436, 43983, 31994}


X(62789) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(39704), X(1), X(7))

Barycentrics    (2*a-b-c)*(a+b-c)^2*(a-b+c)^2 : :

X(62789) lies on these lines: {1, 7}, {2, 55993}, {6, 60992}, {37, 60961}, {44, 3911}, {57, 2183}, {69, 6736}, {75, 18811}, {85, 50116}, {142, 6180}, {222, 40940}, {223, 24177}, {226, 1407}, {241, 527}, {307, 6700}, {320, 765}, {348, 17274}, {513, 676}, {514, 52316}, {519, 41801}, {553, 1427}, {651, 3008}, {664, 1266}, {751, 7204}, {934, 2718}, {942, 13598}, {948, 6173}, {1014, 13370}, {1020, 52896}, {1037, 24309}, {1086, 6610}, {1088, 39704}, {1106, 1125}, {1119, 19604}, {1122, 1439}, {1168, 6549}, {1253, 43151}, {1319, 53529}, {1358, 3319}, {1418, 14564}, {1419, 4000}, {1429, 1461}, {1446, 60078}, {1447, 5121}, {1737, 36918}, {1743, 8732}, {1785, 56869}, {1996, 40719}, {2006, 34050}, {2734, 36079}, {3731, 60934}, {3879, 39126}, {3912, 40862}, {3982, 6354}, {4357, 17095}, {4419, 59215}, {4552, 17132}, {4569, 18822}, {4605, 43040}, {4648, 60937}, {4654, 7365}, {4667, 5228}, {4859, 54425}, {5236, 32714}, {5308, 60998}, {5575, 28079}, {5723, 17067}, {6260, 41004}, {7053, 41426}, {7080, 21296}, {7288, 15601}, {8545, 29571}, {8582, 10436}, {8609, 43047}, {8679, 20617}, {8809, 10305}, {9028, 52610}, {9312, 42697}, {9316, 13405}, {10309, 43744}, {12848, 51302}, {14525, 20470}, {15634, 24016}, {16870, 60062}, {17074, 39595}, {17092, 41572}, {17151, 53997}, {17320, 25723}, {17355, 28968}, {18623, 23681}, {21255, 28739}, {24558, 45789}, {24708, 40998}, {25072, 29007}, {25716, 50101}, {26001, 37781}, {26651, 59646}, {26932, 44356}, {30617, 60689}, {30725, 52338}, {31225, 50093}, {33645, 59813}, {34956, 58576}, {37541, 59242}, {41011, 61376}, {49772, 51766}, {56544, 59336}, {61021, 62223}

X(62789) = trilinear pole of line {1635, 30725}
X(62789) = perspector of circumconic {{A, B, C, X(279), X(658)}}
X(62789) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 2316}, {41, 4997}, {55, 1320}, {88, 220}, {106, 200}, {346, 9456}, {480, 56049}, {650, 5548}, {657, 3257}, {901, 3900}, {903, 1253}, {1168, 58328}, {1260, 36125}, {1318, 3689}, {1417, 5423}, {1797, 7079}, {1802, 6336}, {2310, 9268}, {2328, 4674}, {2361, 36590}, {3063, 4582}, {3239, 32665}, {3692, 8752}, {3939, 23838}, {4171, 4591}, {4397, 32719}, {4524, 4622}, {4546, 36042}, {4555, 8641}, {4578, 23345}, {4638, 14427}, {5376, 14936}, {5546, 61179}, {7046, 36058}, {7101, 32659}, {7259, 55263}, {10428, 51380}, {14827, 20568}, {28071, 34230}, {34858, 51984}, {36596, 52428}, {52371, 62703}
X(62789) = X(i)-Dao conjugate of X(j) for these {i, j}: {214, 200}, {223, 1320}, {478, 2316}, {1647, 4528}, {3160, 4997}, {3911, 6735}, {4370, 346}, {5516, 4546}, {6544, 1146}, {6609, 106}, {10001, 4582}, {16586, 51984}, {17113, 903}, {20619, 7046}, {35092, 3239}, {36908, 4674}, {38979, 3900}, {40615, 60480}, {40617, 23838}, {51402, 4163}, {52659, 8}, {52871, 5423}, {52872, 4082}, {55055, 657}, {59608, 4080}, {62571, 341}
X(62789) = X(i)-cross conjugate of X(j) for these {i, j}: {1319, 3911}, {1647, 30725}, {3259, 514}, {51422, 40218}, {53530, 57}
X(62789) = pole of line {1617, 44408} with respect to the circumcircle
X(62789) = pole of line {514, 12555} with respect to the Conway circle
X(62789) = pole of line {57, 514} with respect to the incircle
X(62789) = pole of line {4546, 7046} with respect to the polar circle
X(62789) = pole of line {4025, 4452} with respect to the Steiner circumellipse
X(62789) = pole of line {4000, 7658} with respect to the Steiner inellipse
X(62789) = pole of line {1043, 6736} with respect to the Wallace hyperbola
X(62789) = pole of line {514, 2093} with respect to the Suppa-Cucoanes circle
X(62789) = pole of line {7, 104} with respect to the dual conic of Yff parabola
X(62789) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(44)}}, {{A, B, C, X(2), X(4346)}}, {{A, B, C, X(4), X(36925)}}, {{A, B, C, X(7), X(3676)}}, {{A, B, C, X(8), X(4345)}}, {{A, B, C, X(9), X(45824)}}, {{A, B, C, X(20), X(2734)}}, {{A, B, C, X(75), X(4862)}}, {{A, B, C, X(77), X(19604)}}, {{A, B, C, X(86), X(3264)}}, {{A, B, C, X(106), X(2183)}}, {{A, B, C, X(269), X(7045)}}, {{A, B, C, X(279), X(1275)}}, {{A, B, C, X(320), X(4089)}}, {{A, B, C, X(347), X(37790)}}, {{A, B, C, X(390), X(2325)}}, {{A, B, C, X(514), X(38941)}}, {{A, B, C, X(516), X(676)}}, {{A, B, C, X(527), X(62635)}}, {{A, B, C, X(902), X(2293)}}, {{A, B, C, X(903), X(4887)}}, {{A, B, C, X(962), X(7661)}}, {{A, B, C, X(991), X(3285)}}, {{A, B, C, X(1042), X(7250)}}, {{A, B, C, X(1145), X(46435)}}, {{A, B, C, X(1266), X(62536)}}, {{A, B, C, X(1323), X(30725)}}, {{A, B, C, X(1404), X(1458)}}, {{A, B, C, X(1413), X(4306)}}, {{A, B, C, X(1443), X(34051)}}, {{A, B, C, X(1635), X(3000)}}, {{A, B, C, X(1639), X(45275)}}, {{A, B, C, X(1647), X(6745)}}, {{A, B, C, X(1785), X(44675)}}, {{A, B, C, X(1960), X(3010)}}, {{A, B, C, X(2006), X(22464)}}, {{A, B, C, X(2191), X(61086)}}, {{A, B, C, X(2499), X(4343)}}, {{A, B, C, X(2520), X(4336)}}, {{A, B, C, X(2951), X(17427)}}, {{A, B, C, X(2976), X(53534)}}, {{A, B, C, X(3062), X(43166)}}, {{A, B, C, X(3259), X(45947)}}, {{A, B, C, X(3660), X(23703)}}, {{A, B, C, X(3667), X(15742)}}, {{A, B, C, X(3671), X(40663)}}, {{A, B, C, X(3672), X(4358)}}, {{A, B, C, X(3689), X(4326)}}, {{A, B, C, X(3943), X(4356)}}, {{A, B, C, X(3945), X(16704)}}, {{A, B, C, X(3977), X(18650)}}, {{A, B, C, X(4304), X(56950)}}, {{A, B, C, X(4318), X(9372)}}, {{A, B, C, X(4319), X(17115)}}, {{A, B, C, X(4329), X(21174)}}, {{A, B, C, X(4723), X(9785)}}, {{A, B, C, X(4902), X(39707)}}, {{A, B, C, X(5440), X(10884)}}, {{A, B, C, X(5731), X(36944)}}, {{A, B, C, X(6049), X(58858)}}, {{A, B, C, X(14191), X(18450)}}, {{A, B, C, X(15314), X(46109)}}, {{A, B, C, X(17134), X(23724)}}, {{A, B, C, X(17220), X(23723)}}, {{A, B, C, X(17221), X(23725)}}, {{A, B, C, X(18656), X(23783)}}, {{A, B, C, X(18657), X(23784)}}, {{A, B, C, X(21578), X(41529)}}, {{A, B, C, X(24004), X(57033)}}, {{A, B, C, X(30305), X(51975)}}, {{A, B, C, X(30332), X(52746)}}, {{A, B, C, X(33302), X(46541)}}, {{A, B, C, X(34855), X(41353)}}, {{A, B, C, X(40154), X(40218)}}, {{A, B, C, X(53535), X(61435)}}, {{A, B, C, X(54517), X(62182)}}
X(62789) = barycentric product X(i)*X(j) for these (i, j): {269, 4358}, {279, 519}, {658, 900}, {1023, 59941}, {1088, 44}, {1119, 3977}, {1275, 1647}, {1319, 85}, {1404, 6063}, {1407, 3264}, {1427, 30939}, {1434, 40663}, {1443, 14628}, {1446, 52680}, {1635, 4569}, {1639, 4626}, {1847, 5440}, {1877, 348}, {1960, 46406}, {2006, 41801}, {2325, 479}, {3676, 62669}, {3762, 934}, {3911, 7}, {4120, 4616}, {4530, 59457}, {4554, 53528}, {4617, 4768}, {4635, 4730}, {4723, 738}, {7056, 8756}, {10509, 51463}, {13149, 53532}, {14256, 56939}, {14584, 17078}, {16704, 3668}, {17780, 58817}, {22464, 40218}, {23062, 3689}, {23703, 24002}, {24004, 43932}, {30572, 4573}, {30573, 60487}, {30606, 6046}, {30725, 664}, {34018, 53531}, {36838, 4895}, {37168, 56382}, {37790, 77}, {38462, 7177}, {41556, 43762}, {46109, 7053}, {52156, 53529}, {52621, 61210}, {55243, 7216}, {55262, 7250}, {57792, 902}
X(62789) = barycentric quotient X(i)/X(j) for these (i, j): {7, 4997}, {44, 200}, {56, 2316}, {57, 1320}, {109, 5548}, {269, 88}, {279, 903}, {519, 346}, {658, 4555}, {664, 4582}, {738, 56049}, {900, 3239}, {902, 220}, {908, 51984}, {934, 3257}, {1023, 4578}, {1088, 20568}, {1106, 9456}, {1119, 6336}, {1262, 9268}, {1275, 62536}, {1317, 2325}, {1319, 9}, {1358, 60578}, {1398, 8752}, {1404, 55}, {1407, 106}, {1427, 4674}, {1435, 36125}, {1461, 901}, {1635, 3900}, {1639, 4163}, {1647, 1146}, {1877, 281}, {1960, 657}, {2006, 36590}, {2087, 2310}, {2251, 1253}, {2325, 5423}, {3251, 14427}, {3264, 59761}, {3285, 2328}, {3668, 4080}, {3669, 23838}, {3676, 60480}, {3689, 728}, {3762, 4397}, {3911, 8}, {3943, 4082}, {3977, 1265}, {4017, 61179}, {4358, 341}, {4448, 4148}, {4530, 4081}, {4616, 4615}, {4619, 6551}, {4635, 4634}, {4637, 4622}, {4723, 30693}, {4730, 4171}, {4895, 4130}, {4922, 4529}, {4984, 4990}, {5298, 3686}, {5440, 3692}, {6354, 4013}, {6544, 4528}, {6550, 42462}, {7045, 5376}, {7053, 1797}, {7099, 36058}, {7216, 55244}, {7250, 55263}, {7366, 1417}, {8756, 7046}, {9459, 14827}, {14027, 4530}, {14122, 4919}, {14407, 4524}, {14425, 4546}, {14584, 36910}, {14628, 52409}, {16704, 1043}, {17455, 58328}, {17780, 6558}, {21805, 4515}, {22086, 57108}, {22356, 1260}, {23202, 1802}, {23703, 644}, {30572, 3700}, {30576, 1098}, {30725, 522}, {36920, 4873}, {37168, 2322}, {37789, 56938}, {37790, 318}, {38462, 7101}, {39771, 1639}, {40218, 51565}, {40663, 2321}, {41801, 32851}, {43932, 1022}, {51415, 6736}, {51463, 51972}, {52338, 23615}, {52659, 6735}, {52680, 2287}, {53528, 650}, {53529, 40869}, {53531, 3693}, {53532, 57055}, {55243, 7258}, {57792, 57995}, {58817, 6548}, {61171, 4069}, {61210, 3939}, {62669, 3699}
X(62789) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 269, 3668}, {7, 3160, 4346}, {7, 347, 4862}, {7, 3945, 4328}, {7, 77, 3663}, {175, 176, 4345}, {1086, 6610, 43035}, {1418, 17365, 52819}, {4667, 61022, 5228}, {4888, 7271, 7}


X(62790) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(39741), X(1), X(7))

Barycentrics    (a+b-c)^2*(a-b+c)^2*(a^2*(b+c)-b*c*(b+c)-a*(b^2+3*b*c+c^2)) : :

X(62790) lies on these lines: {1, 7}, {4, 43750}, {8, 6063}, {40, 9446}, {56, 33765}, {57, 27000}, {65, 1088}, {79, 38250}, {85, 960}, {226, 27129}, {348, 28629}, {388, 56239}, {479, 7143}, {658, 5221}, {938, 2898}, {942, 31526}, {959, 34018}, {1001, 10509}, {1191, 56783}, {1446, 3212}, {1788, 1996}, {3303, 21453}, {3485, 17093}, {3812, 31627}, {3869, 59181}, {7177, 60717}, {7320, 30494}, {7365, 46574}, {9312, 11523}, {9710, 33298}, {11246, 38285}, {11375, 37757}, {11518, 56309}, {19582, 21609}, {20244, 51351}, {20347, 43983}, {55082, 59242}

X(62790) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3900, 59135}
X(62790) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39741)}}, {{A, B, C, X(4), X(1742)}}, {{A, B, C, X(7), X(26125)}}, {{A, B, C, X(8), X(2293)}}, {{A, B, C, X(77), X(43750)}}, {{A, B, C, X(269), X(42311)}}, {{A, B, C, X(959), X(1458)}}, {{A, B, C, X(1442), X(38250)}}, {{A, B, C, X(3000), X(5556)}}, {{A, B, C, X(6063), X(10481)}}, {{A, B, C, X(7271), X(30494)}}
X(62790) = barycentric product X(i)*X(j) for these (i, j): {279, 59296}, {26125, 7}
X(62790) = barycentric quotient X(i)/X(j) for these (i, j): {1461, 59135}, {26125, 8}, {59296, 346}
X(62790) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {175, 176, 2293}, {1446, 23839, 3212}


X(62791) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(40418), X(1), X(7))

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(-(b*c)+a*(b+c)) : :

X(62791) lies on these lines: {1, 7}, {43, 3212}, {57, 893}, {65, 7204}, {85, 59509}, {241, 3061}, {651, 54329}, {664, 3905}, {727, 934}, {738, 7143}, {995, 10521}, {1088, 40418}, {1201, 3598}, {1254, 23839}, {1407, 1429}, {1423, 2176}, {1424, 51919}, {1427, 7146}, {1446, 60109}, {1447, 21214}, {1457, 7195}, {1909, 6063}, {1973, 32714}, {2114, 16968}, {2329, 6180}, {3224, 16782}, {3665, 24806}, {3669, 54275}, {4569, 53641}, {5256, 40180}, {6384, 39919}, {7179, 59311}, {9315, 17106}, {9436, 21281}, {10571, 52563}, {17081, 56805}, {17084, 26102}, {17754, 28391}, {18156, 39775}, {21384, 43059}, {34497, 52635}, {37608, 60716}, {37694, 43037}, {39930, 56025}, {56928, 59310}

X(62791) = trilinear pole of line {20979, 43051}
X(62791) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8, 2053}, {9, 2319}, {41, 27424}, {55, 7155}, {87, 200}, {220, 330}, {312, 57264}, {341, 7121}, {346, 2162}, {657, 4598}, {728, 7153}, {932, 3900}, {1043, 23493}, {1098, 7148}, {1253, 6384}, {1261, 52195}, {2287, 16606}, {2328, 42027}, {3239, 34071}, {4524, 56053}, {4529, 58981}, {4578, 43931}, {5383, 14936}, {6378, 7058}, {6383, 14827}, {6602, 7209}, {7046, 23086}, {7101, 15373}, {8641, 18830}
X(62791) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 59761}, {223, 7155}, {478, 2319}, {798, 14936}, {3160, 27424}, {3835, 2310}, {6377, 4397}, {6609, 87}, {15267, 7148}, {17113, 6384}, {36908, 42027}, {40598, 341}, {40610, 3239}, {55062, 4163}, {59608, 60244}
X(62791) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1407, 269}
X(62791) = X(i)-cross conjugate of X(j) for these {i, j}: {1403, 1423}, {3123, 43051}
X(62791) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(43)}}, {{A, B, C, X(7), X(1423)}}, {{A, B, C, X(34), X(5018)}}, {{A, B, C, X(56), X(4334)}}, {{A, B, C, X(57), X(7176)}}, {{A, B, C, X(87), X(1909)}}, {{A, B, C, X(192), X(3672)}}, {{A, B, C, X(390), X(3208)}}, {{A, B, C, X(516), X(4083)}}, {{A, B, C, X(604), X(41350)}}, {{A, B, C, X(959), X(3600)}}, {{A, B, C, X(1044), X(51686)}}, {{A, B, C, X(1323), X(43051)}}, {{A, B, C, X(1438), X(1742)}}, {{A, B, C, X(1458), X(41526)}}, {{A, B, C, X(1462), X(41354)}}, {{A, B, C, X(1911), X(56806)}}, {{A, B, C, X(1973), X(3010)}}, {{A, B, C, X(2209), X(2293)}}, {{A, B, C, X(3000), X(20979)}}, {{A, B, C, X(3007), X(20906)}}, {{A, B, C, X(3062), X(43173)}}, {{A, B, C, X(3500), X(18299)}}, {{A, B, C, X(3663), X(6376)}}, {{A, B, C, X(3674), X(30545)}}, {{A, B, C, X(3945), X(27644)}}, {{A, B, C, X(4310), X(41531)}}, {{A, B, C, X(4313), X(56181)}}, {{A, B, C, X(4352), X(31008)}}, {{A, B, C, X(4356), X(20691)}}, {{A, B, C, X(5088), X(18197)}}, {{A, B, C, X(6063), X(7185)}}, {{A, B, C, X(6384), X(24215)}}, {{A, B, C, X(9575), X(51902)}}, {{A, B, C, X(9785), X(27538)}}, {{A, B, C, X(10884), X(20760)}}, {{A, B, C, X(13610), X(54382)}}, {{A, B, C, X(14621), X(17752)}}, {{A, B, C, X(16781), X(53676)}}, {{A, B, C, X(18650), X(22370)}}, {{A, B, C, X(24248), X(62422)}}, {{A, B, C, X(24728), X(43747)}}, {{A, B, C, X(27891), X(59509)}}, {{A, B, C, X(38252), X(62461)}}, {{A, B, C, X(41318), X(61325)}}
X(62791) = barycentric product X(i)*X(j) for these (i, j): {192, 269}, {279, 43}, {1020, 17217}, {1042, 31008}, {1088, 2176}, {1106, 6382}, {1119, 22370}, {1254, 7304}, {1275, 3123}, {1403, 85}, {1407, 6376}, {1423, 7}, {1427, 33296}, {1446, 38832}, {1461, 20906}, {1847, 20760}, {2209, 57792}, {3208, 479}, {3212, 57}, {3835, 934}, {4083, 658}, {4110, 7023}, {4147, 4617}, {4635, 50491}, {10509, 61034}, {13149, 22090}, {18197, 4566}, {20979, 4569}, {21051, 4637}, {21138, 7045}, {21834, 4616}, {25098, 36118}, {27538, 738}, {27644, 3668}, {30545, 56}, {36860, 7250}, {41526, 6063}, {43051, 664}, {43932, 4595}, {46406, 8640}, {52136, 7204}, {52923, 58817}, {62530, 7216}
X(62791) = barycentric quotient X(i)/X(j) for these (i, j): {7, 27424}, {43, 346}, {56, 2319}, {57, 7155}, {192, 341}, {269, 330}, {279, 6384}, {479, 7209}, {604, 2053}, {658, 18830}, {934, 4598}, {1042, 16606}, {1088, 6383}, {1106, 2162}, {1397, 57264}, {1403, 9}, {1407, 87}, {1423, 8}, {1427, 42027}, {1461, 932}, {2176, 200}, {2209, 220}, {3123, 1146}, {3208, 5423}, {3212, 312}, {3668, 60244}, {3835, 4397}, {4083, 3239}, {4637, 56053}, {6376, 59761}, {6377, 2310}, {7023, 7153}, {7045, 5383}, {7099, 23086}, {7204, 51837}, {8640, 657}, {14408, 4528}, {16695, 1021}, {18197, 7253}, {20284, 4073}, {20691, 4082}, {20760, 3692}, {20906, 52622}, {20979, 3900}, {21138, 24026}, {22090, 57055}, {22370, 1265}, {23092, 57081}, {24533, 4529}, {27538, 30693}, {27644, 1043}, {30545, 3596}, {38832, 2287}, {38986, 14936}, {41526, 55}, {43051, 522}, {50491, 4171}, {52410, 7121}, {52923, 6558}, {57074, 21789}, {59173, 52195}, {61034, 51972}, {62420, 1253}, {62530, 7258}
X(62791) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {279, 1042, 269}


X(62792) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51567), X(1), X(7))

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(a^2+b^2+4*b*c+c^2-2*a*(b+c)) : :

X(62792) lies on these lines: {1, 7}, {6, 43064}, {33, 36118}, {57, 934}, {65, 7177}, {78, 1446}, {85, 19861}, {220, 60966}, {241, 3306}, {348, 19860}, {664, 1088}, {738, 3340}, {908, 948}, {936, 31994}, {938, 34060}, {1319, 59242}, {1411, 63150}, {1420, 38859}, {1427, 5287}, {1445, 43065}, {2078, 38900}, {2099, 34855}, {2999, 18624}, {3339, 17106}, {3577, 43736}, {3599, 7994}, {3872, 9436}, {4666, 17093}, {5222, 34050}, {5256, 7365}, {5691, 60468}, {6180, 6603}, {6354, 6505}, {6604, 36846}, {6765, 25718}, {7960, 41572}, {12629, 32003}, {18391, 51364}, {18593, 59215}, {25415, 59813}, {28125, 60786}, {31391, 56741}, {34492, 52819}, {37789, 51302}, {38460, 51351}, {42064, 56359}, {43035, 56418}, {54364, 56783}

X(62792) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 55984}, {55, 34919}, {3900, 14074}
X(62792) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 34919}, {3160, 55984}
X(62792) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1996, 8545}
X(62792) = X(i)-cross conjugate of X(j) for these {i, j}: {37541, 8545}
X(62792) = pole of line {354, 56741} with respect to the Feuerbach hyperbola
X(62792) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2291)}}, {{A, B, C, X(7), X(8545)}}, {{A, B, C, X(57), X(1323)}}, {{A, B, C, X(84), X(43177)}}, {{A, B, C, X(347), X(61493)}}, {{A, B, C, X(390), X(1320)}}, {{A, B, C, X(516), X(3577)}}, {{A, B, C, X(969), X(3672)}}, {{A, B, C, X(1002), X(11200)}}, {{A, B, C, X(1170), X(3160)}}, {{A, B, C, X(1411), X(2263)}}, {{A, B, C, X(4319), X(42064)}}, {{A, B, C, X(4326), X(42470)}}, {{A, B, C, X(4356), X(53114)}}, {{A, B, C, X(5732), X(30500)}}, {{A, B, C, X(7675), X(56101)}}, {{A, B, C, X(22464), X(30181)}}, {{A, B, C, X(25411), X(30353)}}, {{A, B, C, X(30513), X(60925)}}, {{A, B, C, X(34485), X(60895)}}, {{A, B, C, X(38459), X(56359)}}, {{A, B, C, X(42317), X(45275)}}, {{A, B, C, X(46435), X(60896)}}
X(62792) = barycentric product X(i)*X(j) for these (i, j): {1, 1996}, {7, 8545}, {269, 50107}, {1323, 46644}, {10509, 61028}, {14077, 658}, {25411, 47374}, {30181, 651}, {37541, 85}, {47386, 9}, {47787, 934}
X(62792) = barycentric quotient X(i)/X(j) for these (i, j): {7, 55984}, {57, 34919}, {1461, 14074}, {1996, 75}, {8545, 8}, {14077, 3239}, {30181, 4391}, {37541, 9}, {47386, 85}, {47787, 4397}, {50107, 341}, {61028, 51972}
X(62792) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1323, 77}, {1, 279, 4350}, {1, 5527, 4319}, {934, 23839, 57}, {1323, 3668, 279}


X(62793) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(56026), X(1), X(7))

Barycentrics    a*(a+b-c)^2*(a-b+c)^2*(a^2+b^2+6*b*c+c^2-2*a*(b+c)) : :

X(62793) lies on these lines: {1, 7}, {6, 2124}, {57, 7955}, {65, 738}, {85, 8583}, {200, 1088}, {220, 36973}, {241, 5437}, {934, 3361}, {936, 1446}, {948, 3452}, {1420, 59242}, {1427, 17022}, {1804, 59323}, {2297, 27340}, {2324, 59610}, {2999, 7365}, {3061, 21446}, {3212, 59617}, {3339, 7177}, {3340, 34855}, {4853, 9436}, {5836, 7204}, {8580, 31994}, {9446, 36638}, {10582, 17093}, {11019, 34060}, {11519, 32003}, {13462, 38859}, {14522, 31391}, {19861, 43983}, {21454, 56043}, {34488, 52819}, {36846, 51351}, {42050, 60972}, {43736, 62178}

X(62793) = X(i)-isoconjugate-of-X(j) for these {i, j}: {220, 56043}, {1253, 56074}
X(62793) = X(i)-Dao conjugate of X(j) for these {i, j}: {17113, 56074}
X(62793) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8580)}}, {{A, B, C, X(7), X(31994)}}, {{A, B, C, X(57), X(3160)}}, {{A, B, C, X(65), X(4356)}}, {{A, B, C, X(269), X(61380)}}, {{A, B, C, X(347), X(42872)}}, {{A, B, C, X(390), X(3680)}}, {{A, B, C, X(516), X(62178)}}, {{A, B, C, X(3062), X(16284)}}, {{A, B, C, X(3672), X(4461)}}, {{A, B, C, X(3945), X(24557)}}, {{A, B, C, X(7271), X(56783)}}, {{A, B, C, X(8917), X(15856)}}, {{A, B, C, X(56380), X(57641)}}
X(62793) = barycentric product X(i)*X(j) for these (i, j): {269, 4461}, {279, 8580}, {24557, 3668}, {31994, 57}, {60937, 7}
X(62793) = barycentric quotient X(i)/X(j) for these (i, j): {269, 56043}, {279, 56074}, {4461, 341}, {8580, 346}, {24557, 1043}, {31994, 312}, {60937, 8}
X(62793) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 279, 269}, {1, 7274, 5543}, {7177, 23839, 3339}


X(62794) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(56348), X(1), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(a^2+3*(b-c)^2-4*a*(b+c)) : :

X(62794) lies on these lines: {1, 7}, {2, 32015}, {44, 60939}, {85, 3617}, {145, 17079}, {220, 20059}, {277, 37681}, {320, 20007}, {348, 46934}, {553, 5222}, {948, 21454}, {1088, 56348}, {1170, 6180}, {1266, 9797}, {1434, 16948}, {3598, 24796}, {3621, 6604}, {3622, 17078}, {3625, 32003}, {3626, 31994}, {3982, 59215}, {4059, 24797}, {4373, 17158}, {4654, 5308}, {4860, 9533}, {4869, 25242}, {5204, 38859}, {5217, 59242}, {5221, 7195}, {5226, 51302}, {5228, 37685}, {5550, 40719}, {7196, 30948}, {9312, 20050}, {9436, 9780}, {10005, 33933}, {10404, 39587}, {16572, 60938}, {16601, 17092}, {16670, 60945}, {17067, 60955}, {21258, 30695}, {25257, 29583}, {42050, 59375}, {43733, 43736}, {46931, 52422}

X(62794) = X(i)-cross conjugate of X(j) for these {i, j}: {44841, 60996}
X(62794) = pole of line {1043, 10005} with respect to the Wallace hyperbola
X(62794) = pole of line {7, 30350} with respect to the dual conic of Yff parabola
X(62794) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(44841)}}, {{A, B, C, X(2), X(58816)}}, {{A, B, C, X(4), X(30331)}}, {{A, B, C, X(7), X(32015)}}, {{A, B, C, X(390), X(5556)}}, {{A, B, C, X(516), X(43733)}}, {{A, B, C, X(4326), X(55922)}}, {{A, B, C, X(4373), X(7274)}}, {{A, B, C, X(5542), X(5551)}}, {{A, B, C, X(7319), X(8236)}}, {{A, B, C, X(30284), X(55921)}}, {{A, B, C, X(31721), X(56275)}}, {{A, B, C, X(42289), X(56237)}}, {{A, B, C, X(42309), X(57826)}}, {{A, B, C, X(43179), X(43734)}}
X(62794) = barycentric product X(i)*X(j) for these (i, j): {44841, 85}, {60996, 7}
X(62794) = barycentric quotient X(i)/X(j) for these (i, j): {44841, 9}, {60996, 8}
X(62794) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 10481, 279}


X(62795) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44), X(3), X(1))

Barycentrics    a*(2*a^2-b^2+b*c-c^2+a*(b+c)) : :

X(62795) lies on these lines: {1, 21}, {2, 44}, {6, 2243}, {7, 24597}, {8, 51668}, {9, 37633}, {37, 14996}, {42, 4650}, {43, 4722}, {45, 940}, {57, 88}, {69, 32779}, {75, 16704}, {100, 3751}, {109, 7672}, {171, 3681}, {193, 17740}, {209, 2979}, {214, 2163}, {222, 1443}, {226, 60247}, {244, 16468}, {304, 16741}, {312, 37639}, {319, 31303}, {321, 37683}, {354, 3246}, {518, 17126}, {524, 33077}, {527, 33151}, {553, 17067}, {593, 4558}, {678, 3550}, {750, 1757}, {752, 33120}, {756, 37604}, {894, 1150}, {899, 50003}, {902, 49490}, {948, 21454}, {982, 2308}, {984, 9347}, {990, 13243}, {1155, 3240}, {1279, 30653}, {1376, 54309}, {1386, 4392}, {1445, 57658}, {1708, 17074}, {1743, 3306}, {1754, 11220}, {1836, 33142}, {1936, 10394}, {1999, 32933}, {2003, 17080}, {2094, 5222}, {2225, 4253}, {2260, 28395}, {2307, 37772}, {2911, 15066}, {3052, 3957}, {3101, 37567}, {3187, 17160}, {3210, 32005}, {3315, 7290}, {3416, 33170}, {3579, 37482}, {3617, 7270}, {3634, 25961}, {3664, 54357}, {3666, 5332}, {3683, 29814}, {3720, 7262}, {3722, 49498}, {3744, 4430}, {3745, 7226}, {3752, 23958}, {3759, 17495}, {3769, 17165}, {3772, 17483}, {3782, 61661}, {3791, 17155}, {3876, 37522}, {3879, 3977}, {3911, 37651}, {3916, 19767}, {3923, 32919}, {3928, 5256}, {3929, 5287}, {3935, 37540}, {3936, 17364}, {3937, 4260}, {3951, 37554}, {3980, 32864}, {4001, 32782}, {4003, 17025}, {4038, 60690}, {4189, 54387}, {4234, 49687}, {4252, 34772}, {4274, 45048}, {4346, 9965}, {4358, 17350}, {4359, 16816}, {4362, 32940}, {4383, 27003}, {4389, 29833}, {4414, 4649}, {4418, 32853}, {4427, 49470}, {4438, 32949}, {4440, 50102}, {4453, 22086}, {4514, 20064}, {4640, 17018}, {4645, 33114}, {4655, 29631}, {4671, 17351}, {4672, 30942}, {4676, 29824}, {4683, 29635}, {4684, 35263}, {4697, 31330}, {4703, 29845}, {4782, 8027}, {4792, 49494}, {4851, 32849}, {4860, 7292}, {4887, 33146}, {4896, 5249}, {4921, 5271}, {4973, 5313}, {5014, 20101}, {5016, 20077}, {5021, 26690}, {5035, 28936}, {5057, 11269}, {5220, 5297}, {5229, 60156}, {5235, 10436}, {5253, 54386}, {5276, 56511}, {5278, 16815}, {5294, 29596}, {5348, 52371}, {5361, 31993}, {5372, 44417}, {5437, 37687}, {5708, 7535}, {5712, 55868}, {5718, 7277}, {5791, 26131}, {5847, 33089}, {5852, 17602}, {5880, 33139}, {5905, 33133}, {6327, 33121}, {6542, 50105}, {6679, 33069}, {7248, 27655}, {7291, 36279}, {9326, 47056}, {9330, 15481}, {9780, 37153}, {10129, 24725}, {11246, 33131}, {11680, 41011}, {12528, 37530}, {14829, 26223}, {14997, 16610}, {15485, 17450}, {16477, 18201}, {16672, 17019}, {16753, 27644}, {16885, 35595}, {17011, 62212}, {17014, 42050}, {17022, 39980}, {17024, 21342}, {17120, 24627}, {17121, 62300}, {17147, 30579}, {17276, 33155}, {17277, 26627}, {17301, 35596}, {17328, 27081}, {17336, 31035}, {17347, 26580}, {17349, 24589}, {17361, 31017}, {17365, 31019}, {17374, 50104}, {17378, 27754}, {17394, 26860}, {17449, 21747}, {17484, 17720}, {17596, 61358}, {17717, 61707}, {17763, 32935}, {17768, 33134}, {17770, 25760}, {17771, 33065}, {17776, 29583}, {17778, 26070}, {17781, 39595}, {18134, 56520}, {18198, 40153}, {18601, 61409}, {18735, 26934}, {19684, 38000}, {19742, 19804}, {19808, 62586}, {20045, 49499}, {20086, 33168}, {20292, 33137}, {20331, 37676}, {21805, 56010}, {24231, 61647}, {24723, 29829}, {24789, 26842}, {24883, 57282}, {24892, 33097}, {25083, 37589}, {25453, 33067}, {25525, 31204}, {25934, 61012}, {26061, 33085}, {26065, 29579}, {26242, 56513}, {26635, 62216}, {26840, 32774}, {26877, 36754}, {27065, 37674}, {27131, 37634}, {29576, 50163}, {29591, 37653}, {29601, 56078}, {29649, 32938}, {29658, 32856}, {29662, 33096}, {29683, 33101}, {29834, 50285}, {29861, 31134}, {31034, 32851}, {31053, 37646}, {31300, 37759}, {32777, 32863}, {32780, 33080}, {32845, 49488}, {32846, 33161}, {32852, 33167}, {32857, 33128}, {32858, 44416}, {32860, 50018}, {32862, 49766}, {32946, 33119}, {33078, 33163}, {33086, 38047}, {33098, 33135}, {33108, 50307}, {33116, 62230}, {34050, 41572}, {36087, 37131}, {37264, 37582}, {37572, 50578}, {39767, 44735}, {40269, 51361}, {41242, 50127}, {42058, 49709}, {49478, 61155}, {49493, 50756}

X(62795) = perspector of circumconic {{A, B, C, X(662), X(4597)}}
X(62795) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60079}
X(62795) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60079}
X(62795) = pole of line {100, 46962} with respect to the Kiepert parabola
X(62795) = pole of line {1, 4273} with respect to the Stammler hyperbola
X(62795) = pole of line {4560, 4777} with respect to the Steiner circumellipse
X(62795) = pole of line {4777, 14838} with respect to the Steiner inellipse
X(62795) = pole of line {3882, 4781} with respect to the Yff parabola
X(62795) = pole of line {101, 46962} with respect to the Hutson-Moses hyperbola
X(62795) = pole of line {75, 5235} with respect to the Wallace hyperbola
X(62795) = pole of line {14208, 49280} with respect to the dual conic of polar circle
X(62795) = pole of line {551, 4304} with respect to the dual conic of Yff parabola
X(62795) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30588)}}, {{A, B, C, X(2), X(4653)}}, {{A, B, C, X(21), X(88)}}, {{A, B, C, X(31), X(28658)}}, {{A, B, C, X(44), X(1405)}}, {{A, B, C, X(57), X(52680)}}, {{A, B, C, X(58), X(89)}}, {{A, B, C, X(81), X(17378)}}, {{A, B, C, X(283), X(1797)}}, {{A, B, C, X(2316), X(2328)}}, {{A, B, C, X(2349), X(3869)}}, {{A, B, C, X(4658), X(30589)}}, {{A, B, C, X(13476), X(54352)}}, {{A, B, C, X(18206), X(47755)}}, {{A, B, C, X(24624), X(51290)}}, {{A, B, C, X(37520), X(40426)}}, {{A, B, C, X(40434), X(40436)}}
X(62795) = barycentric product X(i)*X(j) for these (i, j): {1, 17378}, {100, 47755}, {4257, 75}, {27754, 89}
X(62795) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60079}, {4257, 1}, {17378, 75}, {27754, 4671}, {47755, 693}
X(62795) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32913, 54352}, {1, 54352, 3873}, {2, 89, 37520}, {6, 17595, 17012}, {7, 24597, 33129}, {31, 54352, 1}, {45, 940, 17021}, {63, 81, 28606}, {1046, 1468, 3869}, {1155, 4663, 3240}, {1743, 3306, 37680}, {1999, 32933, 42044}, {3187, 32939, 50106}, {3218, 17012, 17595}, {3219, 17021, 45}, {3666, 16666, 17013}, {3929, 5287, 33761}, {4430, 30652, 3744}, {4641, 37520, 44}, {5905, 37642, 33133}, {9965, 37666, 19785}, {16610, 16669, 14997}, {17012, 17595, 4850}, {17013, 37685, 16666}, {17365, 35466, 31019}, {17595, 54281, 3218}, {24593, 41241, 2}, {24725, 33140, 10129}, {32939, 41629, 3187}


X(62796) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(45), X(3), X(1))

Barycentrics    a*(a^2-2*b^2-b*c-2*c^2-a*(b+c)) : :

X(62796) lies on these lines: {1, 21}, {2, 45}, {6, 17013}, {8, 37038}, {9, 4850}, {10, 32845}, {37, 2666}, {42, 49712}, {43, 51297}, {44, 3219}, {55, 7226}, {57, 16676}, {75, 5235}, {89, 940}, {100, 753}, {141, 32849}, {171, 3989}, {192, 1150}, {210, 54309}, {238, 46901}, {321, 38000}, {333, 17147}, {345, 32782}, {678, 3961}, {726, 32917}, {748, 17591}, {756, 17596}, {899, 17593}, {982, 5284}, {986, 5260}, {991, 13243}, {1001, 3315}, {1054, 51294}, {1125, 26729}, {1155, 5297}, {1211, 33168}, {1214, 1443}, {1320, 16499}, {1465, 29007}, {1757, 46904}, {1836, 29664}, {2094, 5308}, {2177, 49448}, {2239, 40774}, {2243, 5276}, {2256, 22129}, {2308, 17600}, {2323, 25094}, {2886, 33100}, {3006, 24723}, {3052, 29815}, {3101, 35998}, {3187, 4921}, {3210, 5278}, {3240, 5220}, {3242, 61155}, {3246, 3683}, {3305, 54390}, {3306, 3731}, {3337, 27784}, {3617, 17676}, {3621, 14552}, {3634, 24169}, {3661, 50105}, {3663, 33129}, {3670, 5047}, {3672, 24597}, {3681, 17594}, {3685, 46909}, {3703, 33083}, {3712, 33175}, {3720, 60690}, {3741, 32936}, {3752, 27065}, {3772, 31204}, {3821, 33115}, {3920, 4640}, {3925, 33102}, {3927, 19767}, {3928, 5287}, {3929, 5256}, {3932, 33086}, {3935, 4689}, {3936, 6646}, {3969, 37653}, {3971, 32918}, {3977, 4357}, {3993, 32919}, {3995, 14829}, {4003, 7292}, {4026, 33170}, {4358, 17261}, {4359, 16815}, {4360, 16704}, {4413, 9330}, {4425, 33119}, {4427, 5263}, {4438, 32776}, {4641, 16666}, {4643, 31143}, {4650, 5311}, {4655, 29643}, {4656, 59491}, {4671, 17262}, {4683, 29671}, {4687, 26627}, {4693, 31136}, {4703, 29849}, {4704, 37684}, {4756, 32931}, {4854, 33142}, {4884, 33090}, {4887, 5249}, {4954, 50075}, {4970, 32864}, {4981, 32932}, {5057, 29639}, {5217, 36559}, {5251, 54315}, {5262, 31445}, {5268, 9352}, {5271, 50106}, {5273, 19785}, {5283, 36283}, {5325, 26723}, {5333, 41847}, {5708, 16290}, {5712, 20078}, {5718, 17334}, {5737, 28605}, {5745, 33133}, {6147, 24936}, {6181, 41798}, {6682, 32930}, {6685, 32938}, {6690, 33153}, {7174, 35258}, {7262, 17017}, {7523, 37582}, {8025, 18198}, {8167, 9335}, {9324, 42041}, {9326, 47058}, {9458, 42056}, {9780, 16062}, {10707, 29676}, {11679, 42044}, {14996, 16777}, {14997, 16885}, {15315, 32635}, {15670, 39544}, {16484, 17449}, {16577, 17074}, {16610, 16814}, {16687, 16694}, {16858, 30117}, {16859, 17054}, {16865, 37549}, {17056, 17483}, {17067, 26724}, {17127, 17599}, {17184, 33116}, {17237, 50104}, {17246, 33155}, {17255, 30811}, {17257, 17740}, {17258, 26580}, {17260, 24589}, {17273, 31017}, {17274, 27754}, {17276, 31019}, {17277, 17495}, {17318, 24616}, {17320, 29833}, {17332, 37656}, {17347, 31034}, {17365, 37635}, {17377, 31303}, {17392, 35596}, {17536, 24046}, {17549, 30115}, {17592, 32912}, {17763, 49456}, {17768, 33112}, {17776, 29579}, {18073, 18136}, {18139, 26840}, {18201, 30950}, {19270, 56318}, {19732, 30563}, {19786, 56520}, {20182, 37685}, {21342, 29817}, {21810, 42701}, {21811, 36572}, {22002, 60615}, {23958, 37674}, {24167, 25542}, {24248, 33108}, {24431, 52371}, {24492, 37129}, {24703, 29680}, {24725, 29657}, {24821, 31161}, {24883, 50067}, {24892, 33154}, {25083, 37599}, {25939, 60969}, {26034, 32862}, {26227, 49447}, {26242, 56511}, {26690, 31429}, {26738, 31164}, {26747, 28352}, {26792, 37662}, {27003, 44307}, {27184, 30831}, {29596, 33157}, {29638, 50285}, {29640, 32856}, {29641, 32950}, {29653, 33067}, {29661, 33103}, {29678, 33101}, {29682, 33097}, {29688, 33096}, {29690, 33095}, {29820, 42038}, {30576, 56934}, {30653, 38315}, {31008, 33764}, {31018, 37651}, {31330, 32934}, {32781, 33164}, {32784, 33161}, {32848, 33082}, {32914, 59624}, {32916, 32925}, {32927, 49520}, {32940, 43223}, {33078, 49766}, {33080, 33092}, {33089, 50295}, {33091, 44419}, {33098, 33111}, {33099, 33105}, {33138, 33145}, {34064, 37639}, {34772, 54387}, {37595, 39260}, {37783, 38814}, {39962, 39963}, {40087, 55262}, {43676, 60203}, {46897, 62222}, {55872, 62215}

X(62796) = perspector of circumconic {{A, B, C, X(662), X(4555)}}
X(62796) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60078}
X(62796) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60078}
X(62796) = pole of line {3733, 48244} with respect to the circumcircle
X(62796) = pole of line {4927, 6003} with respect to the incircle
X(62796) = pole of line {2646, 3246} with respect to the Feuerbach hyperbola
X(62796) = pole of line {3936, 5949} with respect to the Kiepert hyperbola
X(62796) = pole of line {100, 13396} with respect to the Kiepert parabola
X(62796) = pole of line {1, 3285} with respect to the Stammler hyperbola
X(62796) = pole of line {900, 4560} with respect to the Steiner circumellipse
X(62796) = pole of line {900, 14838} with respect to the Steiner inellipse
X(62796) = pole of line {3882, 17780} with respect to the Yff parabola
X(62796) = pole of line {101, 4585} with respect to the Hutson-Moses hyperbola
X(62796) = pole of line {75, 16704} with respect to the Wallace hyperbola
X(62796) = pole of line {3904, 55212} with respect to the dual conic of Conway circle
X(62796) = pole of line {3904, 49273} with respect to the dual conic of incircle
X(62796) = pole of line {519, 5249} with respect to the dual conic of Yff parabola
X(62796) = pole of line {3904, 16892} with respect to the dual conic of Suppa-Cucoanes circle
X(62796) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4080)}}, {{A, B, C, X(2), X(52680)}}, {{A, B, C, X(21), X(4997)}}, {{A, B, C, X(44), X(17369)}}, {{A, B, C, X(57), X(42026)}}, {{A, B, C, X(58), X(88)}}, {{A, B, C, X(81), X(903)}}, {{A, B, C, X(89), X(15315)}}, {{A, B, C, X(1016), X(41242)}}, {{A, B, C, X(1255), X(4653)}}, {{A, B, C, X(2349), X(2975)}}, {{A, B, C, X(4658), X(43676)}}, {{A, B, C, X(16948), X(31227)}}, {{A, B, C, X(18206), X(47894)}}, {{A, B, C, X(55930), X(62235)}}
X(62796) = barycentric product X(i)*X(j) for these (i, j): {1, 17271}, {100, 47894}, {4256, 75}
X(62796) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60078}, {4256, 1}, {17271, 75}, {47894, 693}
X(62796) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 17595, 88}, {2, 190, 41242}, {2, 4419, 33151}, {9, 4850, 37680}, {37, 37520, 17021}, {38, 846, 1621}, {44, 3666, 17012}, {45, 17595, 2}, {63, 28606, 81}, {940, 54281, 89}, {984, 4414, 100}, {1001, 4392, 3315}, {2177, 49448, 62236}, {2243, 16521, 5276}, {3218, 17021, 37520}, {3219, 17012, 44}, {3219, 3666, 32911}, {3663, 54357, 33129}, {3977, 4357, 32779}, {4003, 15254, 7292}, {4643, 33077, 31143}, {5718, 17334, 17484}, {16499, 17461, 1320}, {16610, 16814, 35595}, {16672, 54281, 940}, {17021, 37520, 37633}, {17246, 35466, 33155}, {17258, 32851, 26580}, {17260, 62300, 24589}, {17262, 37660, 4671}, {27184, 33113, 30831}, {54311, 56078, 33157}


X(62797) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(218), X(3), X(1))

Barycentrics    a*(a^4+b*(b-c)^2*c-a^3*(b+c)+a*(b-c)^2*(b+c)-a^2*(b^2+3*b*c+c^2)) : :

X(62797) lies on these lines: {1, 21}, {2, 218}, {6, 7}, {27, 8049}, {37, 61024}, {41, 57}, {42, 7411}, {44, 60981}, {48, 1014}, {65, 7291}, {72, 56775}, {75, 41610}, {89, 5549}, {105, 60722}, {171, 2340}, {172, 241}, {219, 3945}, {220, 940}, {222, 279}, {238, 59217}, {239, 20880}, {333, 17137}, {404, 20769}, {553, 52542}, {607, 37102}, {644, 17316}, {757, 4558}, {942, 4223}, {949, 24580}, {990, 12669}, {1002, 3423}, {1004, 3240}, {1055, 60715}, {1108, 7269}, {1155, 60713}, {1212, 4641}, {1332, 17378}, {1429, 1475}, {1449, 60990}, {1723, 24554}, {1783, 37448}, {1951, 38459}, {2003, 34035}, {2177, 51300}, {2257, 7190}, {2260, 18162}, {2268, 44421}, {2280, 37555}, {2287, 10436}, {2323, 4667}, {2346, 21059}, {2911, 4648}, {3008, 5249}, {3218, 21511}, {3219, 16601}, {3664, 37659}, {3668, 34028}, {3672, 54358}, {3713, 7229}, {3751, 28043}, {4209, 21454}, {4251, 20367}, {4304, 16474}, {4663, 5784}, {5279, 54344}, {5337, 6184}, {5526, 29571}, {5706, 9799}, {5711, 39587}, {5738, 27509}, {5746, 21279}, {6916, 44414}, {7175, 21748}, {7179, 40129}, {7201, 40968}, {7672, 39273}, {7959, 10429}, {7960, 9965}, {9440, 61399}, {9776, 17683}, {10391, 41339}, {10481, 62240}, {10883, 11269}, {11036, 16466}, {14021, 54416}, {14996, 29624}, {15988, 17364}, {17018, 20835}, {17103, 56439}, {17141, 32939}, {17245, 56534}, {17392, 17796}, {17549, 60701}, {17579, 50282}, {17754, 25940}, {18412, 36101}, {20090, 20742}, {20245, 56020}, {20347, 37086}, {21285, 37445}, {22458, 36015}, {23089, 28383}, {23124, 56000}, {23146, 46402}, {24181, 26723}, {25083, 34772}, {26006, 53597}, {26065, 33819}, {26223, 26634}, {26643, 40571}, {26738, 31183}, {27304, 37652}, {28610, 42050}, {32657, 43736}, {33299, 36483}, {37323, 51505}, {37522, 56809}, {37543, 37666}, {40940, 58816}, {40952, 46501}, {41239, 56509}

X(62797) = perspector of circumconic {{A, B, C, X(662), X(927)}}
X(62797) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60227}
X(62797) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60227}
X(62797) = pole of line {3733, 8638} with respect to the circumcircle
X(62797) = pole of line {6003, 43042} with respect to the incircle
X(62797) = pole of line {8638, 20981} with respect to the Brocard inellipse
X(62797) = pole of line {857, 5949} with respect to the Kiepert hyperbola
X(62797) = pole of line {100, 43349} with respect to the Kiepert parabola
X(62797) = pole of line {7192, 23090} with respect to the MacBeath circumconic
X(62797) = pole of line {1, 16699} with respect to the Stammler hyperbola
X(62797) = pole of line {4560, 45695} with respect to the Steiner circumellipse
X(62797) = pole of line {676, 14838} with respect to the Steiner inellipse
X(62797) = pole of line {101, 17136} with respect to the Hutson-Moses hyperbola
X(62797) = pole of line {75, 25255} with respect to the Wallace hyperbola
X(62797) = pole of line {516, 1621} with respect to the dual conic of Yff parabola
X(62797) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(7), X(18206)}}, {{A, B, C, X(21), X(673)}}, {{A, B, C, X(57), X(17194)}}, {{A, B, C, X(58), X(1462)}}, {{A, B, C, X(63), X(8049)}}, {{A, B, C, X(81), X(14828)}}, {{A, B, C, X(279), X(54356)}}, {{A, B, C, X(283), X(1803)}}, {{A, B, C, X(294), X(1174)}}, {{A, B, C, X(651), X(54353)}}, {{A, B, C, X(948), X(1002)}}, {{A, B, C, X(3423), X(5228)}}, {{A, B, C, X(4512), X(14625)}}, {{A, B, C, X(13476), X(52023)}}, {{A, B, C, X(20618), X(56839)}}
X(62797) = barycentric product X(i)*X(j) for these (i, j): {1, 14828}, {37389, 63}
X(62797) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60227}, {14828, 75}, {37389, 92}
X(62797) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 4644, 651}, {6, 5228, 5222}, {41, 57, 11349}, {220, 940, 5308}, {1580, 11031, 21}, {3008, 17745, 32911}


X(62798) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(219), X(3), X(1))

Barycentrics    a*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a^3*(2*b^2+b*c+2*c^2)+a*(b^4+b^3*c+b*c^3+c^4)) : :

X(62798) lies on these lines: {1, 21}, {2, 219}, {6, 329}, {7, 394}, {8, 5706}, {27, 17220}, {28, 42463}, {41, 54373}, {48, 1817}, {57, 2289}, {75, 1812}, {92, 1172}, {97, 1214}, {100, 1754}, {101, 1730}, {144, 37685}, {145, 7538}, {175, 55409}, {176, 55410}, {189, 1814}, {209, 5137}, {222, 347}, {226, 2323}, {278, 651}, {323, 17483}, {387, 3436}, {404, 3682}, {469, 21270}, {497, 45728}, {517, 3101}, {527, 2003}, {580, 3191}, {644, 17776}, {908, 32911}, {916, 4219}, {940, 2256}, {962, 1498}, {1005, 14547}, {1014, 6507}, {1108, 4641}, {1170, 25930}, {1181, 5758}, {1332, 18134}, {1407, 2094}, {1429, 28274}, {1442, 18607}, {1714, 11681}, {1746, 22000}, {1762, 1953}, {1783, 17902}, {1818, 35977}, {1848, 9028}, {1944, 17862}, {1992, 54113}, {1994, 17484}, {2194, 41230}, {2257, 56545}, {2287, 5271}, {2947, 36002}, {3100, 16465}, {3211, 7490}, {3219, 40937}, {3332, 3434}, {3421, 44414}, {3452, 52423}, {3616, 19716}, {3666, 10315}, {3668, 22128}, {3719, 55391}, {3759, 20921}, {3781, 37261}, {3870, 7070}, {3875, 20223}, {3935, 56178}, {3998, 4511}, {4220, 26893}, {4223, 26885}, {4224, 7193}, {4341, 6505}, {4360, 18662}, {4383, 5748}, {4435, 24115}, {4847, 33075}, {4850, 54369}, {5080, 5721}, {5228, 9776}, {5249, 37659}, {5273, 55466}, {5278, 27287}, {5422, 31018}, {5435, 55437}, {5698, 61398}, {5811, 10982}, {6147, 22136}, {6172, 55438}, {6180, 37672}, {6198, 14054}, {6603, 25091}, {6604, 37669}, {7058, 17143}, {7074, 63168}, {7291, 40658}, {7959, 9800}, {9436, 18652}, {9549, 52092}, {10601, 18228}, {11220, 30265}, {11347, 20818}, {11427, 28739}, {11433, 27540}, {11441, 55109}, {12528, 57276}, {12704, 15836}, {14213, 37783}, {14552, 23151}, {14997, 46873}, {15988, 27184}, {16054, 22126}, {16056, 17976}, {16466, 60751}, {17019, 60970}, {17221, 53043}, {17781, 54444}, {17896, 36054}, {17923, 56559}, {18162, 22097}, {18623, 23144}, {18636, 28422}, {18698, 20879}, {18750, 41610}, {19649, 26889}, {20074, 50697}, {20086, 37781}, {20111, 55912}, {20245, 61409}, {20718, 20986}, {22127, 37274}, {22129, 28610}, {22153, 24604}, {22464, 34035}, {24514, 56046}, {25252, 32933}, {25525, 62246}, {25568, 61397}, {25878, 62243}, {26015, 40960}, {26540, 56456}, {26635, 55869}, {26669, 55871}, {26792, 34545}, {27383, 36745}, {28780, 37649}, {28951, 54284}, {30852, 37680}, {31053, 37695}, {33172, 55900}, {34234, 37639}, {35645, 43149}, {37279, 52673}, {37312, 51574}, {37528, 56288}, {37633, 59491}, {41083, 56001}, {41227, 45038}, {46400, 57042}, {48381, 52412}, {54348, 55086}

X(62798) = anticomplement of X(26942)
X(62798) = perspector of circumconic {{A, B, C, X(662), X(54952)}}
X(62798) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 57719}, {32, 57910}, {57, 41509}, {65, 43729}, {523, 59010}
X(62798) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 57719}, {5452, 41509}, {6376, 57910}, {26942, 26942}, {40602, 43729}
X(62798) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44717, 651}, {46103, 2}
X(62798) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {28, 2893}, {29, 21287}, {58, 2897}, {60, 4329}, {250, 21272}, {270, 69}, {284, 52364}, {593, 52365}, {849, 347}, {1172, 1330}, {1333, 3152}, {1474, 2475}, {1973, 56291}, {2150, 20}, {2185, 1370}, {2189, 8}, {2194, 3151}, {2203, 17778}, {2204, 1654}, {2206, 18667}, {2212, 46707}, {2299, 2895}, {2326, 3436}, {3737, 13219}, {7054, 52366}, {23964, 61185}, {36420, 12649}, {46103, 6327}, {52914, 20295}, {52920, 46400}, {57655, 4552}, {57657, 18666}, {57779, 315}, {59482, 21286}
X(62798) = X(i)-cross conjugate of X(j) for these {i, j}: {41342, 37279}, {45038, 52673}
X(62798) = pole of line {2646, 41230} with respect to the Feuerbach hyperbola
X(62798) = pole of line {100, 1305} with respect to the Kiepert parabola
X(62798) = pole of line {10015, 17925} with respect to the MacBeath circumconic
X(62798) = pole of line {1, 15656} with respect to the Stammler hyperbola
X(62798) = pole of line {4560, 14024} with respect to the Steiner circumellipse
X(62798) = pole of line {14838, 44815} with respect to the Steiner inellipse
X(62798) = pole of line {101, 1305} with respect to the Hutson-Moses hyperbola
X(62798) = pole of line {75, 18662} with respect to the Wallace hyperbola
X(62798) = pole of line {404, 5249} with respect to the dual conic of Yff parabola
X(62798) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3191)}}, {{A, B, C, X(2), X(54356)}}, {{A, B, C, X(21), X(2167)}}, {{A, B, C, X(58), X(580)}}, {{A, B, C, X(63), X(2997)}}, {{A, B, C, X(81), X(60041)}}, {{A, B, C, X(92), X(3868)}}, {{A, B, C, X(97), X(283)}}, {{A, B, C, X(189), X(18206)}}, {{A, B, C, X(226), X(18389)}}, {{A, B, C, X(1172), X(40572)}}, {{A, B, C, X(1214), X(44706)}}, {{A, B, C, X(2184), X(54422)}}, {{A, B, C, X(2292), X(15443)}}, {{A, B, C, X(11520), X(56033)}}, {{A, B, C, X(13138), X(54353)}}, {{A, B, C, X(16585), X(40999)}}, {{A, B, C, X(26872), X(43740)}}, {{A, B, C, X(26942), X(45038)}}, {{A, B, C, X(37543), X(46887)}}, {{A, B, C, X(46885), X(56927)}}
X(62798) = barycentric product X(i)*X(j) for these (i, j): {21, 52673}, {333, 41342}, {580, 75}, {3191, 86}, {15443, 261}, {37279, 63}, {40412, 45038}, {40422, 46887}, {41227, 69}, {57089, 6516}
X(62798) = barycentric quotient X(i)/X(j) for these (i, j): {1, 57719}, {55, 41509}, {75, 57910}, {163, 59010}, {284, 43729}, {580, 1}, {3191, 10}, {15443, 12}, {37279, 92}, {41227, 4}, {41342, 226}, {45038, 442}, {46887, 942}, {52673, 1441}, {57089, 44426}, {58318, 18344}
X(62798) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1780, 1612}, {1, 2328, 1621}, {2, 20110, 26872}, {48, 24310, 1817}, {144, 37685, 55400}, {219, 37543, 2}, {1754, 3190, 100}, {1993, 5905, 651}, {3193, 3868, 3562}, {4360, 54107, 18662}, {5228, 17811, 9776}, {18662, 39767, 54107}, {55397, 55398, 3868}


X(62799) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(220), X(3), X(1))

Barycentrics    a*(a^4+b*(b-c)^2*c-a^3*(b+c)-a^2*(b^2+b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :
X(62799) = -3*X[35280]+2*X[40910]

X(62799) lies on these lines: {1, 21}, {2, 220}, {6, 144}, {7, 219}, {8, 13727}, {9, 7190}, {37, 60970}, {41, 37555}, {44, 60935}, {57, 6602}, {69, 20110}, {71, 18162}, {75, 2287}, {77, 60990}, {88, 5548}, {92, 31926}, {100, 2340}, {101, 11349}, {105, 20358}, {142, 52405}, {150, 857}, {189, 6764}, {218, 329}, {222, 3160}, {239, 294}, {241, 1252}, {279, 394}, {320, 1332}, {323, 43066}, {333, 17152}, {347, 23144}, {379, 17753}, {404, 56809}, {448, 525}, {517, 7291}, {518, 677}, {524, 37781}, {527, 651}, {604, 44421}, {644, 3912}, {672, 1429}, {674, 1633}, {894, 24547}, {908, 3008}, {940, 29624}, {948, 5905}, {990, 41228}, {1086, 17796}, {1212, 3219}, {1323, 22128}, {1443, 6510}, {1444, 18042}, {1445, 2324}, {1721, 25722}, {1743, 60966}, {1802, 38859}, {1812, 32939}, {1993, 20078}, {2256, 3945}, {2329, 56509}, {2911, 4000}, {2990, 34056}, {3101, 7957}, {3173, 34035}, {3177, 4393}, {3187, 17158}, {3190, 7411}, {3191, 6986}, {3501, 25940}, {3509, 9502}, {3663, 60979}, {3681, 28043}, {3690, 37261}, {3713, 4461}, {3875, 45738}, {3928, 17074}, {3946, 61003}, {4319, 30628}, {4360, 41610}, {4383, 62208}, {4511, 25083}, {4513, 29616}, {4641, 40133}, {5091, 20683}, {5176, 49772}, {5249, 58816}, {5273, 5543}, {5278, 27142}, {5284, 59217}, {5303, 60701}, {5308, 5744}, {5698, 45728}, {5706, 54398}, {5723, 17484}, {5748, 37687}, {5773, 6996}, {5783, 7229}, {5839, 5942}, {6172, 55432}, {6180, 20059}, {6184, 21495}, {6225, 7959}, {6608, 58322}, {6646, 15988}, {6999, 20096}, {7225, 27626}, {7269, 40937}, {8158, 23089}, {8822, 56000}, {9318, 16609}, {9436, 26006}, {10436, 24557}, {11683, 21273}, {12669, 30265}, {13243, 47621}, {14964, 46502}, {15251, 51409}, {15730, 16586}, {16367, 40779}, {16560, 21801}, {16572, 56545}, {16578, 60989}, {16601, 33761}, {16670, 36973}, {16834, 30625}, {17043, 41808}, {17092, 53996}, {17147, 40571}, {17350, 23617}, {17366, 56534}, {17745, 17781}, {17811, 21454}, {18228, 52424}, {20007, 37537}, {20016, 39351}, {20223, 50106}, {20245, 27644}, {20347, 56783}, {20905, 27420}, {21371, 38869}, {22129, 62705}, {24181, 26724}, {24264, 56542}, {24540, 27334}, {25000, 27547}, {25001, 41246}, {25091, 45227}, {25242, 32933}, {26001, 40869}, {26540, 27509}, {26651, 39126}, {26872, 32782}, {27093, 55907}, {27396, 55391}, {27944, 53337}, {28813, 51390}, {29571, 59491}, {30295, 35338}, {30806, 40863}, {30852, 31183}, {33172, 55905}, {33854, 56555}, {34524, 61026}, {35110, 35596}, {35280, 40910}, {35977, 56813}, {36002, 38666}, {36003, 56808}, {36087, 36100}, {36483, 39244}, {37679, 46873}, {37685, 55406}, {37774, 48381}, {37800, 61010}, {50200, 53241}, {54109, 56019}, {60933, 62246}

X(62799) = reflection of X(i) in X(j) for these {i,j}: {651, 2323}
X(62799) = perspector of circumconic {{A, B, C, X(662), X(6606)}}
X(62799) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43672}, {523, 59067}
X(62799) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 43672}
X(62799) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39293, 100}
X(62799) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {21, 20552}, {105, 2893}, {284, 20344}, {294, 1330}, {884, 21221}, {885, 21294}, {1024, 3448}, {1333, 52164}, {1438, 2475}, {2194, 20533}, {2195, 2895}, {14942, 21287}, {23696, 13219}, {32658, 3152}, {36057, 2897}, {57657, 39350}
X(62799) = pole of line {1865, 24006} with respect to the polar circle
X(62799) = pole of line {105, 2646} with respect to the Feuerbach hyperbola
X(62799) = pole of line {5949, 20533} with respect to the Kiepert hyperbola
X(62799) = pole of line {100, 693} with respect to the Kiepert parabola
X(62799) = pole of line {81, 23090} with respect to the MacBeath circumconic
X(62799) = pole of line {1, 61197} with respect to the Stammler hyperbola
X(62799) = pole of line {21, 884} with respect to the Steiner circumellipse
X(62799) = pole of line {6362, 6675} with respect to the Steiner inellipse
X(62799) = pole of line {101, 514} with respect to the Hutson-Moses hyperbola
X(62799) = pole of line {75, 16713} with respect to the Wallace hyperbola
X(62799) = pole of line {81, 17498} with respect to the dual conic of nine-point circle
X(62799) = pole of line {100, 5249} with respect to the dual conic of Yff parabola
X(62799) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56320)}}, {{A, B, C, X(2), X(17194)}}, {{A, B, C, X(21), X(4564)}}, {{A, B, C, X(58), X(1170)}}, {{A, B, C, X(75), X(24635)}}, {{A, B, C, X(81), X(7045)}}, {{A, B, C, X(92), X(3873)}}, {{A, B, C, X(283), X(44717)}}, {{A, B, C, X(518), X(30807)}}, {{A, B, C, X(525), X(56839)}}, {{A, B, C, X(666), X(677)}}, {{A, B, C, X(1252), X(2328)}}, {{A, B, C, X(1275), X(59195)}}, {{A, B, C, X(1621), X(2167)}}, {{A, B, C, X(2338), X(2989)}}, {{A, B, C, X(2349), X(62235)}}, {{A, B, C, X(2481), X(18206)}}, {{A, B, C, X(2982), X(58322)}}, {{A, B, C, X(4467), X(16585)}}, {{A, B, C, X(4560), X(54356)}}, {{A, B, C, X(6608), X(52818)}}
X(62799) = barycentric product X(i)*X(j) for these (i, j): {100, 53357}, {13329, 75}, {26003, 63}, {53308, 668}
X(62799) = barycentric quotient X(i)/X(j) for these (i, j): {1, 43672}, {163, 59067}, {13329, 1}, {26003, 92}, {53308, 513}, {53357, 693}
X(62799) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63, 24635}, {7, 219, 37659}, {9, 7190, 24554}, {63, 11682, 51304}, {63, 52134, 2975}, {101, 20367, 11349}, {218, 5222, 32911}, {220, 5228, 2}, {239, 10025, 30807}, {347, 23144, 34028}, {527, 2323, 651}, {1445, 2324, 26669}, {2340, 9441, 100}, {7269, 61024, 40937}, {27509, 56927, 26540}, {53996, 60968, 17092}, {55397, 55398, 3873}


X(62800) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(954), X(3), X(1))

Barycentrics    a*(a^5+a^3*b*c-2*a^4*(b+c)-b*(b-c)^2*c*(b+c)-a*(b-c)^2*(b^2+3*b*c+c^2)+a^2*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)) : :

X(62800) lies on these lines: {1, 21}, {2, 954}, {3, 11036}, {7, 55}, {20, 1056}, {42, 9440}, {75, 56182}, {100, 5249}, {105, 20967}, {144, 13615}, {145, 37228}, {210, 60981}, {226, 36002}, {228, 11349}, {354, 7677}, {377, 3871}, {388, 59355}, {390, 10431}, {404, 5703}, {405, 54398}, {411, 3487}, {442, 2894}, {495, 6839}, {496, 6884}, {497, 8543}, {651, 14547}, {938, 5047}, {942, 943}, {999, 37106}, {1001, 5273}, {1005, 5905}, {1006, 15934}, {1012, 6767}, {1014, 2352}, {1058, 6837}, {1210, 17536}, {1259, 3616}, {1385, 10569}, {1462, 3666}, {1476, 34471}, {1617, 11038}, {1709, 12669}, {1736, 33761}, {1836, 16133}, {1864, 29007}, {2094, 17549}, {2476, 43740}, {2900, 60964}, {3085, 4197}, {3190, 37659}, {3218, 11018}, {3219, 5728}, {3303, 3476}, {3488, 6912}, {3622, 37248}, {3651, 6147}, {3681, 15298}, {3683, 5572}, {3690, 29957}, {3746, 4292}, {3748, 10391}, {3870, 41228}, {3957, 16465}, {4208, 5687}, {4223, 20760}, {4304, 36975}, {4428, 28610}, {4666, 54348}, {5259, 6744}, {5260, 6738}, {5281, 37541}, {5284, 11019}, {5440, 10855}, {5536, 58626}, {5542, 15931}, {5704, 17534}, {5719, 6905}, {6909, 10167}, {6915, 11374}, {6916, 10679}, {6920, 12433}, {6993, 8164}, {7070, 7190}, {7071, 37104}, {7489, 15935}, {7589, 11889}, {7671, 30223}, {7675, 10389}, {8076, 11890}, {8545, 10382}, {8958, 15889}, {9799, 11496}, {9965, 20835}, {10306, 37108}, {10310, 12260}, {10595, 37302}, {10860, 10884}, {10980, 52769}, {11406, 37102}, {11507, 35976}, {11518, 54430}, {12563, 59320}, {12915, 29817}, {13411, 17531}, {15171, 37433}, {15172, 37447}, {15823, 34791}, {15888, 59356}, {15933, 16858}, {16202, 59345}, {17483, 35989}, {17560, 22458}, {17625, 30284}, {19520, 20007}, {20880, 32932}, {21319, 33849}, {21482, 38288}, {22117, 37685}, {25568, 42885}, {26105, 42843}, {26842, 36003}, {27186, 35985}, {28071, 34018}, {30424, 41853}, {30621, 37593}, {30628, 42012}, {31019, 35990}, {33557, 57282}, {42460, 63174}, {60782, 61648}

X(62800) = pole of line {6003, 21104} with respect to the incircle
X(62800) = pole of line {2646, 5572} with respect to the Feuerbach hyperbola
X(62800) = pole of line {100, 43344} with respect to the Kiepert parabola
X(62800) = pole of line {101, 43344} with respect to the Hutson-Moses hyperbola
X(62800) = pole of line {75, 11020} with respect to the Wallace hyperbola
X(62800) = pole of line {5249, 58816} with respect to the dual conic of Yff parabola
X(62800) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(17194)}}, {{A, B, C, X(10), X(12564)}}, {{A, B, C, X(21), X(21453)}}, {{A, B, C, X(58), X(61373)}}, {{A, B, C, X(75), X(11020)}}, {{A, B, C, X(81), X(10509)}}, {{A, B, C, X(283), X(40443)}}, {{A, B, C, X(2328), X(2346)}}, {{A, B, C, X(6061), X(59475)}}
X(62800) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 191, 12564}, {1, 63, 11020}, {7, 55, 7411}, {55, 3474, 7676}, {63, 1621, 21}


X(62801) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1100), X(3), X(1))

Barycentrics    a*(2*a^2+b^2+3*b*c+c^2+3*a*(b+c)) : :

X(62801) lies on these lines: {1, 21}, {2, 319}, {6, 17019}, {9, 1255}, {37, 37685}, {42, 9347}, {75, 8025}, {86, 3187}, {92, 26734}, {145, 19822}, {222, 7269}, {226, 54735}, {304, 16707}, {312, 19717}, {321, 17379}, {394, 24554}, {497, 60156}, {593, 5301}, {894, 42044}, {940, 4850}, {1386, 29814}, {1442, 37543}, {1449, 5287}, {1961, 61358}, {1963, 40214}, {1999, 19684}, {2185, 2214}, {3210, 31999}, {3218, 20182}, {3219, 16777}, {3240, 4682}, {3247, 33761}, {3305, 16667}, {3550, 21806}, {3578, 17248}, {3622, 14552}, {3664, 33146}, {3666, 10987}, {3681, 4649}, {3723, 4641}, {3742, 17025}, {3745, 17018}, {3752, 17013}, {3758, 3995}, {3769, 29822}, {3772, 37635}, {3780, 28251}, {3791, 5625}, {3879, 32782}, {3920, 41711}, {3936, 29841}, {3940, 16843}, {3945, 19785}, {3969, 17389}, {4038, 17017}, {4359, 4393}, {4360, 42028}, {4383, 17021}, {4418, 50281}, {4643, 20086}, {4648, 26724}, {4657, 32863}, {4670, 28605}, {4675, 33150}, {4687, 19742}, {4883, 17024}, {4909, 40940}, {4966, 29648}, {4991, 25501}, {5256, 5437}, {5262, 19285}, {5271, 5333}, {5278, 16826}, {5284, 16475}, {5294, 29574}, {5440, 19767}, {5564, 20046}, {5712, 26738}, {5750, 50292}, {6510, 33129}, {6703, 33077}, {9345, 29821}, {9352, 37604}, {10436, 42025}, {15569, 17127}, {16666, 44307}, {17012, 37674}, {17022, 37680}, {17023, 33172}, {17126, 37593}, {17147, 17393}, {17184, 17378}, {17300, 32774}, {17301, 26842}, {17316, 33157}, {17319, 32933}, {17320, 62230}, {17328, 50277}, {17363, 41809}, {17377, 56810}, {17390, 32858}, {17391, 18139}, {17392, 27186}, {17483, 50068}, {17776, 29585}, {18134, 29833}, {19716, 34772}, {19738, 27064}, {19743, 31035}, {19804, 45222}, {19808, 20017}, {19810, 25303}, {19812, 31017}, {19834, 20553}, {20090, 32859}, {20970, 29612}, {21020, 43997}, {21454, 62705}, {24524, 40603}, {24598, 59301}, {26037, 49489}, {26044, 29592}, {26223, 34064}, {26893, 61728}, {27184, 42045}, {27754, 56520}, {29570, 37652}, {29576, 41818}, {29586, 37653}, {29644, 32919}, {29647, 32846}, {29815, 49478}, {29816, 49490}, {29817, 38315}, {29829, 33073}, {29837, 33070}, {31019, 37631}, {31330, 50293}, {32915, 33682}, {33075, 50284}, {33155, 41819}, {34830, 57722}, {37672, 60969}, {37677, 41839}, {39737, 46971}, {41229, 55103}, {50302, 59261}, {54358, 60981}

X(62801) = perspector of circumconic {{A, B, C, X(662), X(32042)}}
X(62801) = pole of line {4132, 48030} with respect to the DeLongchamps ellipse
X(62801) = pole of line {4560, 4802} with respect to the Steiner circumellipse
X(62801) = pole of line {4802, 14838} with respect to the Steiner inellipse
X(62801) = pole of line {75, 5333} with respect to the Wallace hyperbola
X(62801) = pole of line {5249, 19862} with respect to the dual conic of Yff parabola
X(62801) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60203)}}, {{A, B, C, X(2), X(4658)}}, {{A, B, C, X(21), X(42030)}}, {{A, B, C, X(31), X(28625)}}, {{A, B, C, X(58), X(25417)}}, {{A, B, C, X(63), X(26734)}}, {{A, B, C, X(81), X(30598)}}, {{A, B, C, X(92), X(11684)}}, {{A, B, C, X(1962), X(2214)}}, {{A, B, C, X(3743), X(59261)}}, {{A, B, C, X(4653), X(30590)}}, {{A, B, C, X(28606), X(40438)}}, {{A, B, C, X(48110), X(52680)}}, {{A, B, C, X(54336), X(58380)}}
X(62801) = barycentric product X(i)*X(j) for these (i, j): {190, 48110}
X(62801) = barycentric quotient X(i)/X(j) for these (i, j): {48110, 514}
X(62801) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4658, 3868}, {1, 81, 28606}, {2, 25417, 1100}, {2, 319, 62586}, {940, 16884, 17011}, {940, 17011, 4850}, {1100, 37595, 2}, {1449, 5287, 32911}, {5712, 33133, 26738}, {37604, 46904, 9352}, {55397, 55398, 11684}


X(62802) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1104), X(3), X(1))

Barycentrics    a*(2*a^3+b^3+a*b*c+c^3+a^2*(b+c)) : :

X(62802) lies on these lines: {1, 21}, {2, 1104}, {3, 4850}, {4, 33133}, {6, 26690}, {7, 26729}, {8, 5266}, {12, 29665}, {20, 19785}, {22, 56}, {34, 7466}, {36, 59354}, {37, 16865}, {46, 54315}, {55, 17016}, {65, 17126}, {75, 11115}, {77, 1420}, {78, 1453}, {82, 2217}, {100, 37552}, {145, 345}, {171, 3924}, {172, 16974}, {229, 51687}, {244, 37608}, {270, 14015}, {312, 11319}, {320, 1279}, {321, 4195}, {377, 33129}, {388, 26228}, {394, 1191}, {443, 26724}, {464, 4313}, {518, 36565}, {609, 16600}, {612, 5260}, {614, 5253}, {759, 54336}, {902, 37598}, {936, 37680}, {938, 27407}, {958, 3920}, {960, 17127}, {975, 5047}, {976, 3681}, {988, 5303}, {999, 13730}, {1043, 3187}, {1100, 5165}, {1125, 25760}, {1149, 50003}, {1193, 16478}, {1201, 28395}, {1203, 22836}, {1220, 26227}, {1333, 17521}, {1385, 19262}, {1386, 2646}, {1455, 3600}, {1475, 16787}, {1724, 3876}, {1743, 3984}, {1791, 37325}, {1837, 54355}, {1870, 14017}, {1999, 50412}, {2189, 13739}, {2214, 40430}, {2218, 2363}, {2298, 5336}, {2352, 4225}, {2475, 3772}, {2999, 4855}, {3052, 37614}, {3061, 21764}, {3218, 4252}, {3240, 56176}, {3295, 17015}, {3315, 3333}, {3419, 24883}, {3434, 4339}, {3550, 4642}, {3601, 5256}, {3616, 4388}, {3666, 4189}, {3670, 4257}, {3672, 17576}, {3727, 21793}, {3752, 4188}, {3769, 17751}, {3885, 15955}, {3976, 16498}, {4000, 4190}, {4201, 32774}, {4234, 50106}, {4255, 17012}, {4292, 33146}, {4308, 18623}, {4358, 17697}, {4359, 19851}, {4360, 52352}, {4362, 54331}, {4511, 16466}, {4676, 25253}, {4719, 17025}, {4918, 59580}, {4999, 29680}, {5046, 17720}, {5086, 5230}, {5178, 33137}, {5222, 37280}, {5251, 30142}, {5255, 14923}, {5258, 30145}, {5269, 19860}, {5276, 16968}, {5280, 25082}, {5287, 5436}, {5301, 7054}, {5315, 30144}, {5484, 29838}, {5563, 30148}, {5903, 49682}, {6284, 33134}, {7283, 42044}, {7290, 19861}, {7292, 25524}, {7354, 17061}, {7538, 17863}, {7672, 55101}, {7735, 27068}, {8669, 32931}, {9347, 59305}, {9352, 24443}, {10371, 33175}, {10404, 33148}, {10459, 17716}, {10571, 51657}, {11015, 48837}, {11375, 33107}, {11415, 60751}, {12536, 56178}, {12649, 37642}, {13726, 19767}, {14986, 27505}, {15677, 50068}, {15678, 50066}, {15680, 33155}, {16049, 41230}, {16454, 16817}, {16485, 37554}, {16610, 17572}, {16679, 18610}, {16687, 23361}, {16706, 56782}, {16858, 54287}, {16859, 44307}, {17001, 25994}, {17011, 19765}, {17013, 54387}, {17018, 37080}, {17024, 18607}, {17054, 27003}, {17074, 34489}, {17080, 37583}, {17147, 17539}, {17301, 37299}, {17525, 50069}, {17526, 33157}, {17579, 23537}, {17602, 57288}, {17676, 19786}, {17776, 20009}, {18444, 36746}, {18743, 56983}, {19284, 19804}, {19879, 33074}, {20077, 32859}, {21935, 29658}, {24477, 36579}, {24554, 37228}, {24589, 56768}, {24953, 29664}, {25466, 29681}, {25568, 36578}, {26234, 31997}, {26723, 57284}, {27385, 37651}, {27678, 50591}, {28082, 37607}, {28605, 50054}, {28628, 33112}, {29473, 30105}, {29814, 51715}, {29841, 40984}, {30117, 37522}, {30143, 37559}, {30435, 33950}, {31019, 49745}, {32851, 56781}, {33121, 36500}, {33150, 37256}, {33151, 34937}, {33854, 54317}, {35973, 36103}, {35974, 54293}, {37106, 37528}, {37435, 62208}, {37525, 50599}, {37542, 38460}, {37548, 61155}, {37574, 46904}, {37579, 54292}, {40940, 57287}, {41839, 56989}, {45230, 61398}, {49687, 56018}, {50067, 57002}, {50102, 51678}

X(62802) = pole of line {3733, 16754} with respect to the circumcircle
X(62802) = pole of line {2646, 28606} with respect to the Feuerbach hyperbola
X(62802) = pole of line {4560, 47684} with respect to the Steiner circumellipse
X(62802) = pole of line {101, 4571} with respect to the Hutson-Moses hyperbola
X(62802) = pole of line {75, 16749} with respect to the Wallace hyperbola
X(62802) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(977)}}, {{A, B, C, X(38), X(2217)}}, {{A, B, C, X(58), X(56003)}}, {{A, B, C, X(65), X(49454)}}, {{A, B, C, X(81), X(40436)}}, {{A, B, C, X(82), X(3869)}}, {{A, B, C, X(758), X(54336)}}, {{A, B, C, X(969), X(11520)}}, {{A, B, C, X(2214), X(2650)}}, {{A, B, C, X(2218), X(2292)}}, {{A, B, C, X(2363), X(3868)}}, {{A, B, C, X(5016), X(15314)}}, {{A, B, C, X(28606), X(40430)}}
X(62802) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 49454}, {1, 1468, 3873}, {1, 21, 28606}, {1, 31, 3869}, {1, 37817, 21}, {1, 3915, 3890}, {1, 5429, 1468}, {1, 54354, 2292}, {1, 54421, 34195}, {1, 58, 3868}, {1, 595, 3877}, {3, 5262, 4850}, {8, 37176, 32779}, {78, 1453, 32911}, {172, 16974, 26242}, {1104, 37539, 2}, {4252, 37549, 3218}, {15680, 33155, 50065}, {15955, 37610, 3885}, {16485, 37554, 54392}, {17526, 54433, 33157}, {24443, 37603, 9352}, {37554, 54392, 37633}


X(62803) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1107), X(3), X(1))

Barycentrics    a*(a^2*(b^2+c^2)+b*c*(b^2+b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(62803) lies on these lines: {1, 21}, {2, 330}, {10, 24598}, {37, 3758}, {39, 3661}, {75, 16696}, {194, 321}, {239, 980}, {274, 561}, {312, 31036}, {319, 4261}, {333, 34063}, {604, 56547}, {757, 2214}, {869, 3681}, {982, 21352}, {984, 3009}, {1015, 17397}, {1500, 17389}, {1573, 29576}, {1575, 29593}, {1654, 2277}, {1740, 3728}, {1964, 4469}, {2092, 17363}, {2176, 3219}, {2276, 6542}, {2304, 40214}, {3187, 33296}, {3662, 30034}, {3666, 4393}, {3752, 16816}, {3809, 20683}, {3920, 21010}, {4016, 18041}, {4110, 26764}, {4277, 62231}, {4352, 19785}, {4357, 28395}, {4359, 24621}, {4386, 19308}, {4392, 20358}, {4687, 27078}, {5069, 17289}, {5224, 27641}, {5249, 24215}, {5255, 60701}, {5278, 16827}, {5283, 11342}, {5301, 56934}, {7179, 43034}, {8025, 18172}, {9369, 16830}, {14552, 20036}, {16367, 31449}, {16517, 26669}, {16589, 29612}, {16687, 23393}, {16700, 20945}, {16706, 27303}, {16726, 41847}, {16753, 52716}, {16998, 26242}, {17019, 19714}, {17030, 20913}, {17038, 25528}, {17053, 17248}, {17143, 50106}, {17144, 17147}, {17236, 28358}, {17238, 27633}, {17250, 57039}, {17275, 24530}, {17331, 21796}, {17377, 56926}, {18133, 25505}, {20055, 20691}, {20146, 27268}, {20769, 37617}, {20889, 32092}, {20923, 27145}, {20943, 31026}, {21384, 32911}, {21838, 31028}, {22343, 40783}, {23682, 33108}, {24214, 33146}, {24555, 25935}, {24625, 29598}, {24944, 28640}, {25083, 36534}, {25092, 29574}, {25264, 42044}, {26636, 48381}, {27017, 30090}, {27166, 30963}, {27248, 33157}, {27285, 31996}, {27646, 37673}, {28371, 59207}, {29592, 39367}, {29595, 44307}, {29960, 33172}, {30038, 54311}, {37128, 50302}

X(62803) = perspector of circumconic {{A, B, C, X(662), X(18830)}}
X(62803) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60109}
X(62803) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60109}
X(62803) = pole of line {20981, 23464} with respect to the Brocard inellipse
X(62803) = pole of line {2646, 23497} with respect to the Feuerbach hyperbola
X(62803) = pole of line {4083, 4560} with respect to the Steiner circumellipse
X(62803) = pole of line {4083, 14838} with respect to the Steiner inellipse
X(62803) = pole of line {3882, 61183} with respect to the Yff parabola
X(62803) = pole of line {75, 27644} with respect to the Wallace hyperbola
X(62803) = pole of line {14208, 25098} with respect to the dual conic of polar circle
X(62803) = pole of line {3840, 5249} with respect to the dual conic of Yff parabola
X(62803) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60244)}}, {{A, B, C, X(2), X(38832)}}, {{A, B, C, X(21), X(27424)}}, {{A, B, C, X(31), X(16606)}}, {{A, B, C, X(58), X(330)}}, {{A, B, C, X(81), X(6384)}}, {{A, B, C, X(92), X(11688)}}, {{A, B, C, X(256), X(3765)}}, {{A, B, C, X(561), X(28606)}}, {{A, B, C, X(2995), X(52134)}}, {{A, B, C, X(3915), X(27432)}}, {{A, B, C, X(8616), X(27438)}}, {{A, B, C, X(16948), X(27496)}}, {{A, B, C, X(17038), X(59212)}}, {{A, B, C, X(18169), X(61417)}}, {{A, B, C, X(31997), X(55971)}}
X(62803) = barycentric product X(i)*X(j) for these (i, j): {5145, 75}
X(62803) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60109}, {5145, 1}
X(62803) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40773, 28606}, {2, 21226, 3765}, {2, 41838, 59212}, {239, 980, 4850}, {980, 16975, 239}, {1107, 37596, 2}, {3666, 17448, 4393}, {16738, 17148, 75}, {31641, 31642, 60244}, {55397, 55398, 11688}


X(62804) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1191), X(3), X(1))

Barycentrics    a*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b^2-b*c+c^2)) : :

X(62804) lies on these lines: {1, 21}, {2, 1191}, {6, 145}, {7, 34040}, {8, 13740}, {10, 5315}, {11, 54355}, {12, 33107}, {35, 50604}, {40, 4850}, {42, 35992}, {56, 17126}, {65, 7191}, {82, 34434}, {86, 17152}, {100, 1193}, {105, 1258}, {110, 2363}, {149, 1834}, {171, 1201}, {221, 3600}, {222, 4308}, {238, 5260}, {386, 3871}, {404, 995}, {517, 5262}, {519, 1203}, {551, 37559}, {644, 5280}, {651, 10106}, {748, 59311}, {750, 21214}, {940, 1616}, {942, 3315}, {946, 33133}, {957, 37034}, {958, 17127}, {960, 3920}, {962, 19785}, {999, 7428}, {1043, 20040}, {1125, 32918}, {1149, 37607}, {1255, 6051}, {1265, 20020}, {1320, 15955}, {1386, 2330}, {1420, 17074}, {1449, 37556}, {1453, 3872}, {1457, 57283}, {1480, 6361}, {1483, 36750}, {1697, 5256}, {1718, 13375}, {2176, 5276}, {2295, 33854}, {2298, 2300}, {2303, 16685}, {2329, 21764}, {2654, 53055}, {3052, 4189}, {3086, 26092}, {3187, 4673}, {3240, 3913}, {3241, 13735}, {3295, 16287}, {3303, 17018}, {3485, 26228}, {3616, 5711}, {3617, 4383}, {3623, 37685}, {3636, 16489}, {3649, 33148}, {3671, 26729}, {3681, 54386}, {3704, 32842}, {3744, 34772}, {3745, 58679}, {3812, 7292}, {3813, 33142}, {3962, 49465}, {3997, 5299}, {4188, 37540}, {4195, 20037}, {4201, 4450}, {4252, 30652}, {4295, 33146}, {4315, 34043}, {4323, 37543}, {4344, 37659}, {4358, 41261}, {4385, 41242}, {4413, 27625}, {4511, 5266}, {4642, 29821}, {4646, 17012}, {4649, 22343}, {4678, 14997}, {4696, 27064}, {4719, 37568}, {4853, 16469}, {4868, 37563}, {5047, 30116}, {5057, 13161}, {5230, 11680}, {5263, 27644}, {5269, 19861}, {5284, 59305}, {5297, 25917}, {5303, 37617}, {5312, 25439}, {5313, 8715}, {5484, 28369}, {5552, 37651}, {5692, 30145}, {5707, 10595}, {5712, 10587}, {5844, 37509}, {5902, 30148}, {5903, 54315}, {6767, 57523}, {7290, 19860}, {7504, 17734}, {7677, 37558}, {7967, 36742}, {8236, 54358}, {9342, 27627}, {9575, 26690}, {9780, 37687}, {9957, 17015}, {10283, 45931}, {10529, 37642}, {11009, 49682}, {11115, 40153}, {11375, 29665}, {11415, 33151}, {12245, 36754}, {12635, 36507}, {12701, 33134}, {14923, 54418}, {14986, 27506}, {14996, 16486}, {16468, 59310}, {16478, 49487}, {16679, 18612}, {16687, 23846}, {16794, 17676}, {16796, 49709}, {17011, 37548}, {17017, 37598}, {17024, 37549}, {17122, 28352}, {17164, 32922}, {17448, 60697}, {17531, 49997}, {17536, 56191}, {17541, 30114}, {17589, 52897}, {17686, 40859}, {17751, 32942}, {19649, 31785}, {19765, 61155}, {20070, 37537}, {20292, 23536}, {21935, 33106}, {23559, 23660}, {23675, 50307}, {24390, 24883}, {25253, 32926}, {25466, 33112}, {25524, 28370}, {26066, 29680}, {26242, 54382}, {27003, 52541}, {28040, 61687}, {28628, 29681}, {30133, 46899}, {31318, 40434}, {32577, 37608}, {32945, 59303}, {33119, 49613}, {34605, 50303}, {34937, 51423}, {36534, 51556}, {36745, 59417}, {37592, 56288}, {37614, 38315}, {37674, 46934}, {37679, 46933}, {37731, 50749}, {40952, 58535}, {41696, 49686}, {49482, 54331}, {49527, 52354}

X(62804) = perspector of circumconic {{A, B, C, X(662), X(8706)}}
X(62804) = pole of line {2646, 3920} with respect to the Feuerbach hyperbola
X(62804) = pole of line {100, 646} with respect to the Kiepert parabola
X(62804) = pole of line {1, 19531} with respect to the Stammler hyperbola
X(62804) = pole of line {4560, 47890} with respect to the Steiner circumellipse
X(62804) = pole of line {2490, 14838} with respect to the Steiner inellipse
X(62804) = pole of line {101, 3699} with respect to the Hutson-Moses hyperbola
X(62804) = pole of line {75, 18600} with respect to the Wallace hyperbola
X(62804) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56258)}}, {{A, B, C, X(21), X(52549)}}, {{A, B, C, X(38), X(34434)}}, {{A, B, C, X(58), X(23617)}}, {{A, B, C, X(81), X(1222)}}, {{A, B, C, X(82), X(2975)}}, {{A, B, C, X(105), X(18169)}}, {{A, B, C, X(985), X(18192)}}, {{A, B, C, X(1258), X(18206)}}, {{A, B, C, X(2298), X(10457)}}, {{A, B, C, X(2363), X(54391)}}, {{A, B, C, X(3881), X(53114)}}, {{A, B, C, X(4696), X(24471)}}, {{A, B, C, X(8666), X(54336)}}, {{A, B, C, X(52680), X(57155)}}, {{A, B, C, X(54353), X(59102)}}
X(62804) = barycentric product X(i)*X(j) for these (i, j): {190, 57155}
X(62804) = barycentric quotient X(i)/X(j) for these (i, j): {57155, 514}
X(62804) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 2975}, {1, 37817, 3897}, {1, 3915, 1621}, {1, 5250, 28606}, {1, 54421, 3873}, {1, 57280, 81}, {1, 58, 54391}, {1, 595, 21}, {1, 8616, 10448}, {6, 37542, 145}, {8, 16466, 32911}, {31, 2975, 16948}, {238, 10459, 5260}, {940, 1616, 3622}, {1386, 3057, 17016}, {3616, 5711, 37633}, {5711, 16483, 3616}


X(62805) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1203), X(3), X(1))

Barycentrics    a*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b+c)^2) : :

X(62805) lies on these lines: {1, 21}, {2, 1203}, {4, 29046}, {5, 45892}, {6, 10}, {7, 34043}, {8, 37685}, {35, 17126}, {40, 572}, {42, 5264}, {46, 5256}, {55, 19762}, {56, 50604}, {65, 1397}, {72, 3745}, {87, 1126}, {100, 5312}, {145, 16474}, {165, 61130}, {171, 386}, {181, 50594}, {206, 942}, {219, 18249}, {221, 3671}, {222, 4298}, {239, 28612}, {261, 17394}, {333, 19858}, {354, 30148}, {355, 36750}, {387, 4307}, {388, 2003}, {404, 5313}, {495, 5849}, {515, 36742}, {516, 5706}, {517, 13323}, {518, 30145}, {519, 5710}, {551, 1191}, {553, 1406}, {581, 3072}, {602, 52769}, {612, 3678}, {614, 58565}, {651, 5290}, {750, 3216}, {940, 1125}, {946, 5707}, {950, 61398}, {960, 37594}, {975, 10176}, {978, 37604}, {986, 12194}, {988, 4973}, {991, 37570}, {994, 2363}, {995, 37607}, {997, 37554}, {999, 15654}, {1064, 37530}, {1089, 26223}, {1100, 2241}, {1104, 30143}, {1150, 19863}, {1193, 37522}, {1451, 37558}, {1453, 54318}, {1460, 39582}, {1469, 23156}, {1498, 21628}, {1509, 31997}, {1698, 32911}, {1714, 3841}, {1724, 2308}, {1737, 16472}, {1754, 4300}, {1759, 21840}, {1788, 52423}, {1836, 36250}, {1993, 24987}, {2218, 53114}, {2274, 52564}, {2287, 19859}, {2298, 45032}, {2304, 4251}, {2361, 54430}, {2653, 9257}, {2887, 20083}, {2901, 3923}, {3085, 54301}, {3157, 4667}, {3187, 4647}, {3194, 39585}, {3293, 61358}, {3295, 8053}, {3336, 4850}, {3361, 17074}, {3436, 54444}, {3454, 32946}, {3550, 33771}, {3616, 5315}, {3624, 37633}, {3632, 55103}, {3634, 4383}, {3636, 16483}, {3661, 41822}, {3664, 51706}, {3670, 17017}, {3682, 10460}, {3746, 17018}, {3754, 54418}, {3758, 4385}, {3765, 52576}, {3772, 11263}, {3791, 49598}, {3811, 5269}, {3822, 5230}, {3876, 9347}, {3920, 5904}, {3947, 34048}, {3997, 54416}, {4065, 50281}, {4078, 59639}, {4252, 5267}, {4256, 37603}, {4259, 31737}, {4276, 5331}, {4297, 36746}, {4315, 34046}, {4386, 20970}, {4646, 5114}, {4649, 5145}, {4663, 34790}, {4682, 5044}, {4719, 37582}, {4906, 50192}, {5192, 49999}, {5247, 30116}, {5259, 17127}, {5260, 56343}, {5262, 5902}, {5263, 56018}, {5276, 39586}, {5278, 16828}, {5283, 60697}, {5285, 51223}, {5287, 27784}, {5292, 25639}, {5396, 6796}, {5422, 24982}, {5492, 50558}, {5687, 50587}, {5690, 39523}, {5697, 17015}, {5708, 24167}, {5712, 10198}, {5716, 49168}, {5799, 29207}, {5883, 16475}, {5886, 45931}, {5903, 17016}, {6051, 37595}, {6126, 33148}, {6147, 17061}, {6533, 26627}, {6684, 36754}, {6757, 17871}, {7078, 13405}, {7186, 50599}, {7191, 18398}, {7741, 33107}, {7951, 54355}, {7959, 9949}, {8193, 44094}, {8258, 29671}, {8270, 12432}, {8582, 10601}, {8614, 10404}, {9346, 17448}, {9370, 51782}, {9798, 37492}, {10039, 16473}, {10056, 56535}, {10164, 36745}, {10479, 32772}, {10571, 54339}, {11019, 14058}, {11269, 24387}, {11358, 59304}, {11362, 44414}, {12435, 37399}, {12512, 37537}, {12527, 55400}, {12609, 40940}, {12699, 45923}, {13332, 35775}, {13333, 35774}, {14450, 33155}, {14552, 19866}, {14621, 17034}, {14997, 19877}, {15066, 24564}, {15932, 17080}, {16201, 30621}, {16408, 49992}, {16470, 50295}, {16478, 30117}, {16490, 20057}, {16600, 16972}, {16608, 58459}, {16667, 54286}, {16783, 21764}, {16874, 29350}, {17011, 56288}, {17019, 27785}, {17021, 31318}, {17120, 41261}, {17122, 17749}, {17155, 43993}, {17200, 24549}, {17363, 41814}, {17717, 45939}, {17768, 50067}, {18250, 55432}, {18481, 51340}, {19714, 43223}, {19717, 26115}, {19742, 19874}, {19754, 39583}, {19843, 37666}, {19853, 37652}, {19854, 24597}, {19862, 37674}, {19872, 37687}, {19881, 33172}, {20132, 27255}, {20963, 49488}, {21616, 39595}, {22154, 50337}, {22383, 29066}, {22836, 37539}, {23071, 50749}, {23525, 23660}, {23537, 50307}, {24025, 59335}, {24046, 29821}, {24068, 32935}, {24160, 29658}, {24391, 45728}, {24806, 55101}, {24880, 33111}, {24883, 33112}, {25005, 34545}, {25441, 25760}, {25466, 49743}, {25496, 50605}, {25526, 31339}, {26363, 37642}, {26446, 37509}, {27644, 43997}, {28628, 50757}, {29645, 56949}, {29665, 37731}, {30171, 33070}, {30172, 33073}, {31359, 56974}, {35633, 49482}, {36602, 41434}, {37523, 55086}, {37538, 49553}, {37550, 45126}, {37679, 51073}, {43220, 60722}, {44105, 49542}, {48861, 49732}, {50018, 50028}, {50293, 58386}

X(62805) = midpoint of X(i) and X(j) for these {i,j}: {1, 54421}
X(62805) = perspector of circumconic {{A, B, C, X(662), X(835)}}
X(62805) = pole of line {3733, 8637} with respect to the circumcircle
X(62805) = pole of line {23876, 24006} with respect to the polar circle
X(62805) = pole of line {8637, 20981} with respect to the Brocard inellipse
X(62805) = pole of line {905, 4132} with respect to the DeLongchamps ellipse
X(62805) = pole of line {2646, 51692} with respect to the Feuerbach hyperbola
X(62805) = pole of line {4205, 5949} with respect to the Kiepert hyperbola
X(62805) = pole of line {23090, 23874} with respect to the MacBeath circumconic
X(62805) = pole of line {1, 27660} with respect to the Stammler hyperbola
X(62805) = pole of line {4560, 47659} with respect to the Steiner circumellipse
X(62805) = pole of line {6590, 14838} with respect to the Steiner inellipse
X(62805) = pole of line {101, 4756} with respect to the Hutson-Moses hyperbola
X(62805) = pole of line {75, 19858} with respect to the Wallace hyperbola
X(62805) = pole of line {4657, 5249} with respect to the dual conic of Yff parabola
X(62805) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10), X(28606)}}, {{A, B, C, X(21), X(54336)}}, {{A, B, C, X(58), X(2214)}}, {{A, B, C, X(63), X(60089)}}, {{A, B, C, X(81), X(19684)}}, {{A, B, C, X(82), X(5248)}}, {{A, B, C, X(759), X(10448)}}, {{A, B, C, X(977), X(35637)}}, {{A, B, C, X(985), X(10458)}}, {{A, B, C, X(993), X(2363)}}, {{A, B, C, X(994), X(2292)}}, {{A, B, C, X(1126), X(38832)}}, {{A, B, C, X(1962), X(7148)}}, {{A, B, C, X(2218), X(4653)}}, {{A, B, C, X(3743), X(31359)}}, {{A, B, C, X(3868), X(53114)}}, {{A, B, C, X(3881), X(39739)}}, {{A, B, C, X(17185), X(45032)}}, {{A, B, C, X(39737), X(58380)}}
X(62805) = barycentric product X(i)*X(j) for these (i, j): {1, 19684}, {4275, 75}
X(62805) = barycentric quotient X(i)/X(j) for these (i, j): {4275, 1}, {19684, 75}
X(62805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12514, 3743}, {1, 1468, 8666}, {1, 191, 28606}, {1, 31, 5248}, {1, 37817, 35016}, {1, 49500, 2292}, {1, 52680, 10448}, {1, 54354, 4653}, {1, 54421, 758}, {1, 58, 993}, {1, 968, 58380}, {6, 5711, 10}, {10, 33682, 43531}, {42, 5264, 8715}, {72, 3745, 30142}, {221, 37543, 3671}, {595, 4658, 1}, {940, 16466, 1125}, {1754, 4300, 12511}, {2308, 59305, 1724}


X(62806) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1279), X(3), X(1))

Barycentrics    a*(2*a^2+b^2-b*c+c^2-a*(b+c)) : :

X(62806) lies on these lines: {1, 21}, {2, 1279}, {6, 3957}, {8, 13742}, {11, 29665}, {33, 53055}, {35, 30148}, {37, 5332}, {42, 17715}, {43, 3722}, {44, 4661}, {55, 4850}, {57, 3315}, {88, 5573}, {100, 614}, {145, 1104}, {149, 3772}, {200, 16487}, {210, 3246}, {238, 3681}, {244, 3550}, {312, 20045}, {320, 20064}, {341, 56983}, {344, 20020}, {345, 19993}, {354, 17126}, {390, 19785}, {497, 26228}, {516, 33146}, {518, 17127}, {519, 32862}, {528, 33131}, {612, 5284}, {748, 3961}, {750, 29820}, {752, 33069}, {756, 15485}, {902, 982}, {905, 30613}, {934, 56359}, {940, 29817}, {960, 36565}, {1001, 3920}, {1125, 25961}, {1155, 4906}, {1191, 34772}, {1255, 39958}, {1319, 7248}, {1334, 16787}, {1376, 7292}, {1386, 3748}, {1616, 17811}, {1617, 4318}, {1738, 49719}, {1836, 33148}, {1914, 26242}, {2078, 17080}, {2177, 29821}, {2308, 49490}, {2550, 26724}, {2886, 29681}, {2887, 29638}, {3011, 11680}, {3052, 3218}, {3058, 17061}, {3219, 3242}, {3295, 5262}, {3303, 17016}, {3305, 60846}, {3416, 33173}, {3434, 33129}, {3616, 5266}, {3622, 37539}, {3662, 4450}, {3666, 17024}, {3677, 35258}, {3683, 7226}, {3685, 3891}, {3699, 26688}, {3715, 8692}, {3720, 9347}, {3726, 21793}, {3745, 29814}, {3750, 17017}, {3757, 24552}, {3759, 20011}, {3769, 29824}, {3771, 32844}, {3836, 29853}, {3846, 29848}, {3870, 7290}, {3872, 16485}, {3883, 32782}, {3914, 34611}, {3923, 32923}, {3924, 14923}, {3935, 4383}, {3936, 40984}, {3966, 33175}, {3979, 61358}, {3999, 23958}, {4000, 20075}, {4011, 32927}, {4026, 29648}, {4030, 29679}, {4085, 29852}, {4184, 18601}, {4188, 52541}, {4257, 4694}, {4295, 26729}, {4310, 44447}, {4362, 32943}, {4388, 33122}, {4392, 4640}, {4414, 17598}, {4423, 5297}, {4428, 17599}, {4430, 4641}, {4432, 32925}, {4434, 30957}, {4511, 16483}, {4650, 17449}, {4657, 21289}, {4660, 33123}, {4666, 5269}, {4676, 17165}, {4696, 17697}, {4722, 49498}, {4849, 14997}, {4863, 33139}, {4865, 29632}, {4883, 14996}, {4981, 36534}, {5057, 33144}, {5119, 54315}, {5253, 28011}, {5255, 28082}, {5256, 10389}, {5259, 30145}, {5274, 51361}, {5287, 38316}, {5294, 49466}, {5299, 25082}, {5311, 16484}, {5692, 49686}, {5716, 10587}, {5846, 32858}, {5853, 26723}, {6327, 33124}, {6679, 33120}, {6690, 29680}, {6767, 17015}, {7050, 16486}, {7123, 16502}, {7174, 33761}, {7411, 61086}, {7672, 55086}, {7677, 8270}, {7951, 50749}, {8027, 48330}, {10129, 33106}, {11700, 40215}, {13588, 16753}, {14942, 26246}, {15287, 37309}, {15523, 49506}, {16602, 61156}, {16687, 18613}, {16707, 39731}, {16825, 32945}, {17011, 38315}, {17150, 49470}, {17279, 33091}, {17450, 37604}, {17592, 29819}, {17595, 21000}, {17602, 49736}, {17718, 33107}, {17722, 29678}, {17724, 31053}, {17765, 33117}, {17766, 25957}, {18139, 50289}, {19742, 49450}, {19786, 29831}, {20015, 37681}, {21764, 51058}, {24167, 37572}, {24217, 29683}, {24542, 29641}, {24597, 36845}, {24703, 33153}, {24789, 33110}, {24943, 33076}, {25760, 29656}, {26098, 26738}, {26128, 29836}, {26227, 32942}, {26230, 32773}, {26237, 54291}, {26669, 54348}, {27003, 37540}, {28370, 59691}, {28395, 40934}, {28605, 49484}, {29637, 33074}, {29642, 33072}, {29651, 32772}, {29652, 32917}, {29660, 32781}, {29668, 32918}, {29670, 32944}, {29673, 49696}, {29675, 33105}, {29677, 33079}, {29686, 32784}, {29689, 33111}, {29830, 33073}, {29832, 33116}, {29839, 33070}, {29840, 33113}, {29844, 33119}, {29854, 50288}, {29860, 31237}, {30117, 37610}, {31330, 49473}, {32771, 49482}, {32777, 33090}, {32854, 33158}, {32860, 50023}, {32864, 49458}, {32866, 33156}, {32912, 49675}, {32914, 32941}, {32920, 32930}, {32922, 32929}, {32936, 49455}, {33064, 49705}, {33075, 33171}, {33089, 59692}, {33093, 49681}, {33094, 33147}, {33095, 33143}, {33104, 33130}, {33118, 49695}, {33166, 49688}, {37608, 46190}, {37685, 49478}

X(62806) = reflection of X(i) in X(j) for these {i,j}: {25957, 29672}
X(62806) = pole of line {3733, 50358} with respect to the circumcircle
X(62806) = pole of line {2646, 36565} with respect to the Feuerbach hyperbola
X(62806) = pole of line {100, 52778} with respect to the Kiepert parabola
X(62806) = pole of line {4560, 30520} with respect to the Steiner circumellipse
X(62806) = pole of line {14838, 30520} with respect to the Steiner inellipse
X(62806) = pole of line {101, 52778} with respect to the Hutson-Moses hyperbola
X(62806) = pole of line {5249, 31191} with respect to the dual conic of Yff parabola
X(62806) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(39955)}}, {{A, B, C, X(81), X(17352)}}, {{A, B, C, X(82), X(3873)}}, {{A, B, C, X(2363), X(3889)}}, {{A, B, C, X(3881), X(54336)}}, {{A, B, C, X(18206), X(47663)}}, {{A, B, C, X(48111), X(52680)}}
X(62806) = barycentric product X(i)*X(j) for these (i, j): {1, 17352}, {100, 47663}, {190, 48111}
X(62806) = barycentric quotient X(i)/X(j) for these (i, j): {17352, 75}, {47663, 693}, {48111, 514}
X(62806) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1621, 28606}, {1, 31, 3873}, {1, 37817, 54391}, {1, 3915, 3869}, {1, 40091, 3877}, {1, 58, 3889}, {1, 595, 3868}, {1, 8616, 38}, {2, 49704, 5014}, {55, 7191, 4850}, {244, 3550, 9352}, {497, 26228, 33133}, {902, 29818, 982}, {1279, 3744, 2}, {1386, 3748, 17018}, {3052, 17597, 3218}, {3058, 17061, 33134}, {3683, 49465, 7226}, {3685, 3891, 42044}, {3720, 17716, 9347}, {3745, 42819, 29814}, {3870, 7290, 32911}, {4430, 30653, 4641}, {4641, 4864, 4430}, {4666, 5269, 37633}, {5269, 35227, 4666}, {17024, 61155, 3666}, {28011, 37552, 5253}, {29836, 32947, 26128}, {32922, 32929, 50106}, {33106, 33127, 10129}, {33124, 49709, 6327}


X(62807) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1386), X(3), X(1))

Barycentrics    a*(2*a^2+b^2+b*c+c^2+a*(b+c)) : :

X(62807) lies on these lines: {1, 21}, {2, 1386}, {6, 3681}, {8, 37037}, {37, 17127}, {42, 3795}, {55, 17011}, {75, 16707}, {82, 2214}, {100, 5256}, {141, 29648}, {171, 4850}, {238, 5311}, {244, 37604}, {354, 7712}, {387, 5178}, {518, 29815}, {612, 16475}, {614, 16491}, {748, 1961}, {749, 1100}, {750, 29821}, {752, 32776}, {756, 16468}, {894, 3891}, {902, 17592}, {940, 7191}, {982, 29819}, {984, 2308}, {1001, 17019}, {1002, 3748}, {1125, 33172}, {1203, 3876}, {1279, 29814}, {1280, 39948}, {1376, 17012}, {1442, 1617}, {1449, 3870}, {1453, 5260}, {1836, 33155}, {1999, 24552}, {2108, 3722}, {2887, 29636}, {3052, 20182}, {3083, 11370}, {3084, 11371}, {3187, 5263}, {3218, 17599}, {3241, 50105}, {3295, 44094}, {3305, 16469}, {3415, 36740}, {3434, 4344}, {3550, 46904}, {3589, 29679}, {3616, 37594}, {3618, 10327}, {3623, 30614}, {3666, 17126}, {3672, 44447}, {3683, 30653}, {3740, 14997}, {3752, 17025}, {3755, 49719}, {3757, 19684}, {3758, 17165}, {3759, 4651}, {3772, 33112}, {3791, 31330}, {3836, 29852}, {3846, 29847}, {3896, 4393}, {3923, 32928}, {3936, 29634}, {3938, 4649}, {3941, 4184}, {3961, 61358}, {3980, 32924}, {3989, 7262}, {3995, 4676}, {4003, 23958}, {4104, 51005}, {4188, 4719}, {4307, 19785}, {4318, 37543}, {4349, 5249}, {4360, 32929}, {4362, 32772}, {4383, 5297}, {4413, 17020}, {4414, 17600}, {4418, 32921}, {4423, 17021}, {4430, 49465}, {4514, 29829}, {4640, 30652}, {4641, 7226}, {4645, 32774}, {4650, 46901}, {4657, 33083}, {4661, 4663}, {4672, 32925}, {4685, 4991}, {4697, 17155}, {4722, 49448}, {4851, 33173}, {4865, 29631}, {4972, 50289}, {4974, 26037}, {4981, 37652}, {5012, 47373}, {5086, 5716}, {5253, 37554}, {5262, 5711}, {5266, 19767}, {5268, 37680}, {5276, 16972}, {5278, 16830}, {5284, 5287}, {5294, 32862}, {5332, 36409}, {5371, 26242}, {5710, 14923}, {5712, 26228}, {5718, 29665}, {5846, 29667}, {5847, 32782}, {5880, 33150}, {6198, 44105}, {6327, 19786}, {6536, 50296}, {6679, 29643}, {7109, 16525}, {7292, 37674}, {9345, 29820}, {9350, 17779}, {9538, 12710}, {9539, 14100}, {10129, 26098}, {10389, 41423}, {10394, 61398}, {10578, 26872}, {13476, 56034}, {13577, 14548}, {14828, 26246}, {16478, 59305}, {16667, 62236}, {16678, 16679}, {16703, 31997}, {16884, 17735}, {17014, 17784}, {17056, 29681}, {17061, 31019}, {17280, 20069}, {17301, 33102}, {17302, 20101}, {17320, 42058}, {17393, 27804}, {17394, 30941}, {17602, 31053}, {17717, 29683}, {17720, 33107}, {17722, 29662}, {17726, 29680}, {17763, 25496}, {17778, 29838}, {18059, 52138}, {18134, 26230}, {19649, 38029}, {19717, 20045}, {20020, 59406}, {20064, 24723}, {20110, 30621}, {24280, 50071}, {24725, 33152}, {24943, 32846}, {25453, 33072}, {25760, 29645}, {25957, 29654}, {26061, 32847}, {26128, 29834}, {26223, 32926}, {26237, 37632}, {26738, 33127}, {27538, 41241}, {29633, 33074}, {29635, 32844}, {29644, 32917}, {29646, 32781}, {29647, 33076}, {29649, 32944}, {29650, 32918}, {29652, 32919}, {29658, 33105}, {29663, 33079}, {29664, 35466}, {29684, 33174}, {29685, 49506}, {29686, 33087}, {29823, 37639}, {29831, 33124}, {29832, 33121}, {29833, 32773}, {29842, 32775}, {29859, 31237}, {29874, 30811}, {30628, 54358}, {30965, 50293}, {31034, 33126}, {32771, 33682}, {32777, 33093}, {32779, 33088}, {32780, 32854}, {32783, 32852}, {32860, 49477}, {32864, 36480}, {32914, 50302}, {32915, 49482}, {32930, 50300}, {32940, 49455}, {32945, 49488}, {33090, 49681}, {33091, 38047}, {33097, 33143}, {33100, 50068}, {33101, 61707}, {33104, 33135}, {33108, 40940}, {33109, 33128}, {33117, 50288}, {33146, 50307}, {33151, 41011}, {33171, 50284}, {33774, 56934}, {33889, 37677}, {37593, 61155}, {37683, 46909}, {45398, 56427}, {45399, 56384}, {50308, 62586}

X(62807) = midpoint of X(i) and X(j) for these {i,j}: {29815, 37685}
X(62807) = pole of line {4132, 8665} with respect to the DeLongchamps ellipse
X(62807) = pole of line {100, 30730} with respect to the Kiepert parabola
X(62807) = pole of line {4560, 28894} with respect to the Steiner circumellipse
X(62807) = pole of line {14838, 28894} with respect to the Steiner inellipse
X(62807) = pole of line {101, 4069} with respect to the Hutson-Moses hyperbola
X(62807) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(38), X(2214)}}, {{A, B, C, X(58), X(30651)}}, {{A, B, C, X(81), X(749)}}, {{A, B, C, X(82), X(28606)}}, {{A, B, C, X(1002), X(4658)}}, {{A, B, C, X(1621), X(56034)}}, {{A, B, C, X(3873), X(40438)}}, {{A, B, C, X(18206), X(49282)}}, {{A, B, C, X(25417), X(60721)}}
X(62807) = barycentric product X(i)*X(j) for these (i, j): {1, 17381}, {100, 49282}
X(62807) = barycentric quotient X(i)/X(j) for these (i, j): {17381, 75}, {49282, 693}
X(62807) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 28606}, {1, 57280, 3869}, {1, 81, 3873}, {1, 8616, 1962}, {2, 3745, 9347}, {2, 51192, 33075}, {171, 17017, 4850}, {171, 4850, 9352}, {612, 16475, 32911}, {940, 38315, 7191}, {1100, 3744, 17018}, {1279, 37595, 29814}, {1386, 3745, 2}, {3923, 32928, 42044}, {3989, 21747, 7262}, {4307, 19785, 20292}, {14996, 17024, 354}, {17302, 20101, 32950}, {17726, 37646, 29680}, {26098, 33133, 10129}, {29834, 32949, 26128}, {29842, 32946, 32775}


X(62808) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1449), X(3), X(1))

Barycentrics    a*(3*a^2+b^2+4*b*c+c^2+4*a*(b+c)) : :

X(62808) lies on these lines: {1, 21}, {2, 1449}, {6, 3305}, {9, 17019}, {19, 40438}, {57, 1442}, {75, 42028}, {77, 37543}, {78, 19716}, {86, 5271}, {189, 10580}, {200, 9347}, {222, 7190}, {226, 55944}, {312, 46922}, {321, 58787}, {333, 17394}, {394, 54358}, {519, 19822}, {612, 4649}, {614, 4038}, {894, 58820}, {940, 1100}, {942, 37408}, {969, 2214}, {1051, 16569}, {1255, 3731}, {1386, 4666}, {1419, 18624}, {1479, 60156}, {1963, 8771}, {1999, 17379}, {2003, 8545}, {2221, 16781}, {2345, 50292}, {2352, 18185}, {2999, 37633}, {3101, 11529}, {3160, 21454}, {3187, 8025}, {3210, 29584}, {3219, 3247}, {3243, 29815}, {3434, 4349}, {3554, 55870}, {3616, 14552}, {3664, 19785}, {3666, 16884}, {3720, 16475}, {3745, 3870}, {3751, 5311}, {3758, 34064}, {3772, 37631}, {3875, 26860}, {3945, 5249}, {3969, 29605}, {3995, 50127}, {4001, 17321}, {4021, 62240}, {4356, 44447}, {4358, 19738}, {4359, 16834}, {4383, 16666}, {4389, 62230}, {4641, 16777}, {4648, 26723}, {4650, 9332}, {4654, 18625}, {4664, 25734}, {4667, 5905}, {4697, 50281}, {4698, 19723}, {4855, 19767}, {4883, 38315}, {4888, 33146}, {4889, 50052}, {4909, 24597}, {5268, 61358}, {5269, 17018}, {5272, 9345}, {5278, 16831}, {5284, 16469}, {5294, 17316}, {5314, 44094}, {5393, 13963}, {5405, 13905}, {5437, 17012}, {5573, 17025}, {5712, 31266}, {5737, 37869}, {6173, 33150}, {7058, 33770}, {7290, 29814}, {7308, 17021}, {9776, 17014}, {11679, 19684}, {14213, 44735}, {14548, 18652}, {14969, 17599}, {14997, 51780}, {16416, 54392}, {16496, 29816}, {16667, 17022}, {16670, 25430}, {16673, 33761}, {16826, 37652}, {17013, 27003}, {17024, 44841}, {17120, 41839}, {17126, 37553}, {17156, 50302}, {17298, 32774}, {17306, 32863}, {17327, 41850}, {17365, 50068}, {17377, 19808}, {17378, 19786}, {17388, 50048}, {17390, 32777}, {17392, 24789}, {17393, 32939}, {17396, 26840}, {17397, 37653}, {17474, 28274}, {17776, 29574}, {17778, 29841}, {18134, 56522}, {19722, 44417}, {19732, 28639}, {19789, 50116}, {19805, 20924}, {19827, 50132}, {19830, 39704}, {19833, 50088}, {20090, 27184}, {25525, 37635}, {25527, 29833}, {25935, 37669}, {26044, 29612}, {26626, 54311}, {26627, 45222}, {27064, 37677}, {29573, 33157}, {29598, 33172}, {30852, 39595}, {31019, 41819}, {32772, 39594}, {32853, 50293}, {32864, 39586}, {35258, 37593}, {37582, 52495}, {37642, 55867}, {37666, 54357}, {37674, 62212}, {55400, 60966}

X(62808) = perspector of circumconic {{A, B, C, X(662), X(58135)}}
X(62808) = pole of line {2512, 4132} with respect to the DeLongchamps ellipse
X(62808) = pole of line {1, 1778} with respect to the Stammler hyperbola
X(62808) = pole of line {4560, 28147} with respect to the Steiner circumellipse
X(62808) = pole of line {14838, 28147} with respect to the Steiner inellipse
X(62808) = pole of line {75, 25507} with respect to the Wallace hyperbola
X(62808) = pole of line {3624, 5249} with respect to the dual conic of Yff parabola
X(62808) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60243)}}, {{A, B, C, X(19), X(1962)}}, {{A, B, C, X(21), X(6994)}}, {{A, B, C, X(57), X(4658)}}, {{A, B, C, X(58), X(39948)}}, {{A, B, C, X(63), X(40438)}}, {{A, B, C, X(81), X(28626)}}, {{A, B, C, X(92), X(12526)}}, {{A, B, C, X(283), X(56070)}}, {{A, B, C, X(968), X(2214)}}, {{A, B, C, X(969), X(28606)}}, {{A, B, C, X(3869), X(56033)}}
X(62808) = barycentric product X(i)*X(j) for these (i, j): {63, 6994}
X(62808) = barycentric quotient X(i)/X(j) for these (i, j): {6994, 92}
X(62808) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 1962}, {1, 81, 63}, {6, 37595, 5287}, {6, 5287, 3305}, {940, 1100, 5256}, {940, 5256, 3306}, {3187, 8025, 10436}, {14996, 17011, 57}, {14996, 25417, 17011}, {16667, 17022, 32911}, {19767, 37554, 4855}, {55397, 55398, 12526}


X(62809) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1453), X(3), X(1))

Barycentrics    a*(3*a^3+b^3+b^2*c+b*c^2+c^3+3*a^2*(b+c)+a*(b^2+4*b*c+c^2)) : :

X(62809) lies on these lines: {1, 21}, {2, 1453}, {3, 5256}, {6, 78}, {7, 1394}, {8, 5269}, {10, 24597}, {19, 270}, {29, 204}, {34, 54339}, {40, 17016}, {42, 37552}, {55, 54337}, {56, 77}, {57, 4296}, {92, 44698}, {171, 24440}, {172, 16972}, {193, 4101}, {223, 57283}, {279, 39958}, {306, 37176}, {377, 40940}, {386, 4855}, {387, 57287}, {394, 16466}, {404, 2999}, {405, 5287}, {443, 26723}, {579, 1449}, {612, 5247}, {614, 16478}, {750, 1722}, {936, 32911}, {938, 27402}, {940, 1104}, {942, 37052}, {958, 3745}, {964, 11679}, {969, 2218}, {975, 1724}, {976, 3751}, {988, 17017}, {997, 1203}, {999, 37260}, {1010, 5271}, {1038, 1445}, {1039, 1395}, {1100, 19765}, {1125, 32946}, {1193, 7032}, {1220, 3769}, {1467, 17074}, {1697, 17015}, {1743, 3876}, {1782, 11529}, {1935, 8545}, {1999, 4195}, {2215, 4269}, {2308, 54386}, {2352, 4267}, {2478, 39595}, {3008, 37462}, {3052, 37548}, {3187, 11115}, {3306, 37522}, {3333, 7191}, {3339, 54315}, {3522, 17014}, {3600, 18623}, {3616, 3945}, {3666, 4252}, {3702, 58787}, {3710, 20009}, {3772, 49745}, {3870, 5266}, {3872, 5710}, {3895, 5255}, {3912, 17526}, {3920, 57279}, {3931, 35258}, {3951, 4641}, {3984, 30115}, {4188, 17012}, {4189, 17011}, {4292, 19785}, {4313, 7070}, {4321, 34028}, {4340, 5249}, {4384, 16454}, {4646, 37540}, {4719, 5204}, {4850, 15803}, {4868, 59316}, {4999, 17723}, {5047, 17022}, {5192, 30567}, {5222, 6904}, {5235, 19859}, {5260, 9347}, {5294, 54433}, {5295, 16394}, {5323, 41230}, {5398, 55104}, {5587, 54355}, {5711, 19860}, {5716, 6734}, {5905, 34937}, {7296, 36404}, {7675, 54358}, {8227, 33107}, {8270, 55101}, {8583, 16469}, {9612, 33133}, {9778, 35658}, {10404, 17061}, {10884, 36746}, {11240, 50294}, {13738, 37609}, {14986, 37054}, {14996, 16485}, {16393, 16834}, {16491, 54310}, {16679, 23361}, {16859, 17021}, {16865, 17019}, {17013, 17548}, {17020, 17572}, {17054, 37520}, {17127, 31435}, {17531, 23511}, {17535, 54390}, {17676, 29833}, {18446, 36742}, {18506, 21669}, {18607, 21982}, {20077, 27184}, {21620, 26228}, {24570, 25935}, {25525, 26131}, {25930, 37244}, {26117, 29841}, {27368, 50314}, {29571, 31259}, {29821, 37608}, {30142, 41229}, {30148, 51816}, {32943, 39584}, {33134, 41869}, {33774, 37032}, {33945, 52716}, {34255, 56986}, {34772, 37685}, {35468, 59301}, {36565, 41863}, {36750, 37700}, {37300, 54369}, {37550, 54292}, {37559, 54318}, {37583, 45126}, {37618, 50604}, {46877, 56000}, {47373, 55098}, {50070, 61661}, {50127, 56318}, {54387, 62212}, {54416, 55337}, {56519, 57808}

X(62809) = pole of line {3733, 48136} with respect to the circumcircle
X(62809) = pole of line {1, 47512} with respect to the Stammler hyperbola
X(62809) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(2292)}}, {{A, B, C, X(21), X(4198)}}, {{A, B, C, X(56), X(44119)}}, {{A, B, C, X(63), X(2363)}}, {{A, B, C, X(82), X(5250)}}, {{A, B, C, X(270), X(17185)}}, {{A, B, C, X(968), X(2218)}}, {{A, B, C, X(969), X(3868)}}, {{A, B, C, X(1036), X(2328)}}, {{A, B, C, X(1039), X(3965)}}, {{A, B, C, X(1468), X(2215)}}, {{A, B, C, X(2214), X(54421)}}, {{A, B, C, X(12514), X(54336)}}, {{A, B, C, X(12559), X(53114)}}
X(62809) = barycentric product X(i)*X(j) for these (i, j): {4198, 63}
X(62809) = barycentric quotient X(i)/X(j) for these (i, j): {4198, 92}
X(62809) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 2292}, {1, 31, 5250}, {1, 31424, 28606}, {1, 54354, 968}, {1, 58, 63}, {405, 37594, 5287}, {940, 1104, 54392}, {975, 1724, 3305}, {1038, 1451, 1445}, {1386, 36740, 56328}, {1449, 3601, 19767}, {1453, 37554, 2}, {3616, 54429, 4357}, {16478, 37607, 614}, {16948, 28606, 31424}


X(62810) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1728), X(3), X(1))

Barycentrics    a*(a^6-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+a^4*(-3*b^2+2*b*c-3*c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(b-c)^2*(3*b^2+4*b*c+3*c^2)) : :

X(62810) lies on these lines: {1, 21}, {2, 1728}, {3, 1708}, {4, 57}, {6, 1741}, {7, 90}, {9, 6857}, {10, 59335}, {19, 40979}, {20, 46}, {27, 158}, {33, 37530}, {35, 7675}, {36, 10884}, {40, 3486}, {56, 1071}, {65, 1012}, {78, 18397}, {224, 37300}, {226, 6824}, {268, 9119}, {377, 1737}, {404, 55871}, {405, 15823}, {411, 1445}, {474, 5729}, {497, 12704}, {498, 54357}, {499, 5249}, {515, 37550}, {580, 1040}, {581, 54320}, {601, 8270}, {610, 62691}, {937, 36100}, {938, 3218}, {942, 3560}, {946, 30223}, {950, 5709}, {954, 61005}, {958, 50195}, {997, 22766}, {999, 5887}, {1001, 16193}, {1013, 3075}, {1038, 37469}, {1062, 5398}, {1074, 1714}, {1155, 37426}, {1182, 34851}, {1214, 36746}, {1256, 56972}, {1259, 3811}, {1420, 21740}, {1451, 7004}, {1452, 37395}, {1454, 1837}, {1490, 41562}, {1617, 12675}, {1709, 4295}, {1715, 36984}, {1729, 2082}, {1735, 54418}, {1736, 37522}, {1765, 2285}, {1768, 3339}, {1770, 10431}, {1776, 3333}, {1777, 2263}, {1785, 5292}, {1788, 6916}, {1836, 16141}, {1864, 3149}, {1895, 3559}, {1898, 32636}, {1905, 42467}, {1944, 25513}, {2352, 20803}, {2476, 3306}, {3073, 34036}, {3085, 5273}, {3176, 37379}, {3219, 5703}, {3220, 14017}, {3336, 59355}, {3337, 10883}, {3358, 52819}, {3359, 4848}, {3361, 9960}, {3423, 44178}, {3428, 12711}, {3523, 37787}, {3576, 45230}, {3601, 6875}, {3612, 37106}, {3668, 53592}, {3911, 6825}, {3916, 5728}, {3928, 11111}, {3929, 50739}, {4189, 55873}, {4252, 46974}, {4293, 9799}, {4294, 41338}, {4298, 12617}, {4305, 59340}, {4313, 5119}, {4641, 7078}, {4652, 10399}, {5047, 55870}, {5173, 11496}, {5219, 6852}, {5324, 41227}, {5358, 54368}, {5435, 6838}, {5437, 6856}, {5441, 59324}, {5557, 55960}, {5691, 15932}, {5698, 60990}, {5704, 6871}, {5708, 37234}, {5722, 7491}, {5735, 9614}, {5832, 24390}, {6001, 37252}, {6147, 16617}, {6826, 10395}, {6828, 9612}, {6839, 10826}, {6841, 57282}, {6842, 37612}, {6853, 31231}, {6866, 18540}, {6869, 7171}, {6884, 37692}, {6985, 37582}, {6988, 37526}, {7082, 11375}, {7091, 55964}, {7183, 53597}, {7411, 58887}, {7554, 56299}, {7952, 37642}, {8822, 44735}, {8886, 52037}, {9965, 11415}, {10039, 17699}, {10072, 39599}, {10310, 41539}, {10321, 21077}, {10430, 50695}, {10573, 54286}, {11018, 31445}, {11023, 21454}, {11036, 51816}, {11507, 20835}, {11509, 37287}, {12520, 59317}, {12528, 57283}, {13750, 37228}, {15297, 25681}, {15298, 61024}, {15556, 37531}, {15656, 25516}, {16865, 55872}, {17576, 56288}, {18238, 59366}, {18444, 37618}, {18446, 37583}, {19843, 42012}, {19854, 60923}, {21482, 54369}, {24430, 54339}, {24929, 26921}, {30274, 54392}, {30384, 55109}, {31397, 57279}, {31434, 31446}, {34753, 37406}, {34862, 37544}, {36742, 37565}, {36754, 60415}, {37149, 56518}, {37260, 40660}, {37724, 59347}, {37730, 59318}, {39598, 49128}, {41547, 41854}, {41697, 44238}

X(62810) = perspector of circumconic {{A, B, C, X(662), X(43346)}}
X(62810) = X(i)-Dao conjugate of X(j) for these {i, j}: {15836, 3085}
X(62810) = pole of line {6003, 21172} with respect to the incircle
X(62810) = pole of line {8058, 24006} with respect to the polar circle
X(62810) = pole of line {1012, 2646} with respect to the Feuerbach hyperbola
X(62810) = pole of line {1, 1819} with respect to the Stammler hyperbola
X(62810) = pole of line {6003, 21186} with respect to the Suppa-Cucoanes circle
X(62810) = pole of line {77, 278} with respect to the dual conic of Yff parabola
X(62810) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(15836)}}, {{A, B, C, X(7), X(3193)}}, {{A, B, C, X(21), X(7318)}}, {{A, B, C, X(63), X(8808)}}, {{A, B, C, X(81), X(55110)}}, {{A, B, C, X(84), X(283)}}, {{A, B, C, X(90), X(2328)}}, {{A, B, C, X(158), X(12514)}}, {{A, B, C, X(4292), X(56972)}}, {{A, B, C, X(23602), X(42467)}}
X(62810) = barycentric product X(i)*X(j) for these (i, j): {15836, 189}
X(62810) = barycentric quotient X(i)/X(j) for these (i, j): {15836, 329}
X(62810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 54432, 63}, {1, 920, 12514}, {7, 6837, 12047}, {57, 10396, 1210}, {57, 84, 4292}, {90, 12047, 54370}, {774, 1468, 1}, {1071, 37302, 6261}, {1259, 16465, 3811}, {3338, 15299, 3086}, {3486, 59345, 4304}, {3486, 7098, 40}


X(62811) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1736), X(3), X(1))

Barycentrics    a*(b^5-b^4*c-b*c^4+c^5-a^2*(b-c)^2*(b+c)+a^3*(b^2-b*c+c^2)-a*(b-c)^2*(b^2+b*c+c^2)) : :

X(62811) lies on these lines: {1, 21}, {2, 1736}, {6, 8558}, {10, 52346}, {33, 57}, {37, 11018}, {42, 18412}, {43, 24025}, {56, 45272}, {84, 1448}, {106, 43347}, {201, 3601}, {226, 24430}, {241, 10167}, {244, 23681}, {269, 30304}, {386, 17102}, {511, 20254}, {580, 1062}, {581, 37565}, {614, 15299}, {938, 3670}, {950, 37591}, {971, 1427}, {982, 3663}, {984, 13405}, {986, 6738}, {991, 1214}, {1040, 1708}, {1042, 15071}, {1060, 37469}, {1071, 4306}, {1074, 1737}, {1210, 1785}, {1254, 5691}, {1393, 9581}, {1451, 33178}, {1465, 1864}, {1699, 2310}, {1709, 2263}, {1726, 4224}, {1735, 18391}, {1745, 41562}, {1754, 3100}, {1768, 9316}, {1779, 56553}, {1782, 13730}, {1836, 53524}, {1837, 38945}, {1858, 10571}, {2003, 20277}, {2968, 13567}, {2999, 10398}, {3086, 24159}, {3190, 16465}, {3220, 26934}, {3286, 23171}, {3666, 5728}, {3675, 7248}, {3731, 31324}, {3953, 14986}, {3999, 17626}, {4257, 46974}, {4319, 41338}, {4320, 10085}, {4328, 10980}, {4383, 5729}, {4392, 10580}, {4695, 30286}, {4845, 56359}, {5219, 7069}, {5292, 7952}, {5358, 41227}, {5398, 18455}, {6198, 37530}, {6354, 8727}, {7009, 13478}, {7226, 10578}, {7273, 10864}, {8555, 36742}, {9371, 41539}, {10393, 54320}, {10394, 17080}, {11374, 35194}, {11436, 35014}, {12915, 21342}, {15252, 37646}, {17594, 56098}, {17597, 42884}, {17718, 24431}, {17728, 53525}, {17860, 26013}, {17861, 24218}, {18210, 26892}, {18397, 22350}, {21933, 42459}, {22001, 30943}, {24477, 57022}, {25091, 56809}, {26702, 59005}, {26728, 44675}, {30116, 50195}, {30117, 57278}, {30223, 34036}, {41861, 46901}, {44311, 54284}, {45924, 57282}

X(62811) = X(i)-Dao conjugate of X(j) for these {i, j}: {3270, 57108}
X(62811) = pole of line {3733, 53299} with respect to the circumcircle
X(62811) = pole of line {3835, 6003} with respect to the incircle
X(62811) = pole of line {24006, 48303} with respect to the polar circle
X(62811) = pole of line {991, 1456} with respect to the Feuerbach hyperbola
X(62811) = pole of line {14838, 21195} with respect to the Steiner inellipse
X(62811) = pole of line {85, 92} with respect to the dual conic of Yff parabola
X(62811) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(32023)}}, {{A, B, C, X(81), X(26540)}}, {{A, B, C, X(103), X(283)}}, {{A, B, C, X(158), X(59074)}}, {{A, B, C, X(596), X(1496)}}, {{A, B, C, X(2975), X(56153)}}, {{A, B, C, X(3869), X(26702)}}
X(62811) = barycentric product X(i)*X(j) for these (i, j): {1, 26540}, {37372, 63}
X(62811) = barycentric quotient X(i)/X(j) for these (i, j): {26540, 75}, {37372, 92}
X(62811) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 54432, 255}, {1, 6763, 1496}, {1040, 1708, 13329}, {11020, 28606, 1}, {17102, 44547, 386}


X(62812) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1743), X(3), X(1))

Barycentrics    a*(3*a^2-(b-c)^2+2*a*(b+c)) : :

X(62812) lies on these lines: {1, 21}, {2, 1743}, {6, 57}, {7, 23681}, {9, 940}, {10, 4340}, {19, 1396}, {37, 3929}, {40, 36746}, {42, 165}, {44, 7308}, {45, 25430}, {48, 1412}, {56, 20967}, {65, 1394}, {72, 37554}, {75, 41629}, {77, 54369}, {84, 5706}, {89, 8056}, {144, 4656}, {171, 200}, {172, 14827}, {189, 18391}, {193, 3687}, {212, 10383}, {218, 17811}, {226, 4644}, {238, 10582}, {312, 50127}, {320, 25527}, {326, 757}, {329, 39595}, {333, 10436}, {345, 3879}, {354, 7290}, {380, 18163}, {386, 4303}, {387, 4292}, {518, 5269}, {553, 4000}, {572, 10856}, {579, 22097}, {580, 8726}, {601, 6769}, {612, 5223}, {614, 2308}, {750, 4722}, {894, 10456}, {903, 19830}, {936, 37522}, {942, 1453}, {982, 16475}, {990, 30304}, {999, 23089}, {1103, 59335}, {1104, 11518}, {1111, 19788}, {1150, 18229}, {1193, 3361}, {1203, 3338}, {1214, 15905}, {1279, 44841}, {1364, 11435}, {1376, 4663}, {1386, 3677}, {1409, 34044}, {1416, 1814}, {1422, 2982}, {1429, 9575}, {1445, 17074}, {1448, 3339}, {1449, 3666}, {1451, 1467}, {1458, 10460}, {1473, 44094}, {1475, 20665}, {1490, 37530}, {1572, 9346}, {1698, 33085}, {1699, 11269}, {1724, 19716}, {1754, 5732}, {1757, 5268}, {1760, 33766}, {1762, 54424}, {1766, 12555}, {1834, 9579}, {1936, 10382}, {1997, 55993}, {1999, 3729}, {2093, 3101}, {2094, 50114}, {2177, 9340}, {2221, 5299}, {2257, 4328}, {2258, 2274}, {2263, 34033}, {2279, 5364}, {2282, 39950}, {2285, 21370}, {2334, 37568}, {2956, 4295}, {3008, 9776}, {3052, 10389}, {3158, 37540}, {3185, 16878}, {3187, 17151}, {3210, 16834}, {3218, 5256}, {3219, 3731}, {3220, 37538}, {3243, 3744}, {3247, 37595}, {3305, 3973}, {3306, 23511}, {3333, 16466}, {3359, 44414}, {3474, 3755}, {3585, 60156}, {3601, 4252}, {3663, 9965}, {3668, 18623}, {3672, 28610}, {3679, 19822}, {3721, 39253}, {3745, 7174}, {3749, 49490}, {3758, 14829}, {3761, 19810}, {3772, 4654}, {3782, 60933}, {3784, 4260}, {3870, 17126}, {3875, 32939}, {3912, 26065}, {3914, 4312}, {3923, 39594}, {3927, 37594}, {3931, 54290}, {3945, 5273}, {3955, 5138}, {3957, 30652}, {3995, 25734}, {4007, 50048}, {4038, 7262}, {4183, 8765}, {4253, 28274}, {4257, 30282}, {4264, 60974}, {4307, 4847}, {4355, 23536}, {4359, 16833}, {4383, 5437}, {4384, 37652}, {4418, 17156}, {4423, 15601}, {4445, 50052}, {4640, 37553}, {4643, 6703}, {4646, 5128}, {4649, 4650}, {4652, 19767}, {4666, 17127}, {4667, 5712}, {4670, 5737}, {4675, 41867}, {4682, 5220}, {4697, 32853}, {4849, 46917}, {4851, 44416}, {4856, 20043}, {4859, 26723}, {4860, 5573}, {4862, 19785}, {4883, 38316}, {4888, 5249}, {4902, 33146}, {4924, 20015}, {4929, 20020}, {4936, 17316}, {5119, 16474}, {5219, 7277}, {5222, 10481}, {5230, 5290}, {5231, 26098}, {5234, 59305}, {5264, 6765}, {5266, 41863}, {5271, 16704}, {5272, 16468}, {5276, 56518}, {5278, 16832}, {5285, 36740}, {5292, 9612}, {5294, 17284}, {5312, 58887}, {5315, 51816}, {5320, 26884}, {5324, 51687}, {5393, 39314}, {5398, 18443}, {5536, 61356}, {5707, 7330}, {5709, 36742}, {5710, 6762}, {5711, 57279}, {5716, 24391}, {5749, 37655}, {5791, 49743}, {6173, 24789}, {6282, 37469}, {6646, 29841}, {7058, 17103}, {7070, 10391}, {7365, 52819}, {7957, 35658}, {7988, 29662}, {8583, 23151}, {8769, 13610}, {8915, 20070}, {9841, 37537}, {10388, 52428}, {10396, 41344}, {10442, 19645}, {10857, 13329}, {10888, 13478}, {10900, 17745}, {11018, 22117}, {11523, 37539}, {13388, 18991}, {13389, 18992}, {13462, 54310}, {15934, 16485}, {16472, 17437}, {16473, 17700}, {16477, 17063}, {16487, 21747}, {16491, 17598}, {16496, 17716}, {16552, 19734}, {16602, 16671}, {16666, 54281}, {16669, 37679}, {16673, 17019}, {16884, 39948}, {16970, 60697}, {17012, 23958}, {17018, 35258}, {17064, 33097}, {17106, 52373}, {17121, 17490}, {17255, 50063}, {17270, 19808}, {17271, 19827}, {17273, 19812}, {17274, 19786}, {17296, 32777}, {17304, 26840}, {17308, 37653}, {17350, 30568}, {17353, 18141}, {17355, 34255}, {17378, 33116}, {17379, 38000}, {17720, 28609}, {17754, 37676}, {17770, 29635}, {17776, 29573}, {18134, 56519}, {18164, 40153}, {18193, 29821}, {18421, 49487}, {18506, 45923}, {18725, 26934}, {18750, 44735}, {19742, 26627}, {19806, 44139}, {19859, 25526}, {19875, 48868}, {20064, 29835}, {20086, 33077}, {20090, 59779}, {20367, 54373}, {20760, 37609}, {20769, 37608}, {20963, 37555}, {21342, 38315}, {21786, 53396}, {22034, 49721}, {24210, 24695}, {25083, 37552}, {25525, 35466}, {25728, 41839}, {25939, 37672}, {26223, 37639}, {26889, 44104}, {26892, 40952}, {27064, 30567}, {29598, 54311}, {29817, 30653}, {29855, 33069}, {29857, 32949}, {30435, 37597}, {30827, 37634}, {31146, 50303}, {31164, 33133}, {31190, 37663}, {31224, 37651}, {31231, 37662}, {31303, 56810}, {32919, 35613}, {32932, 49495}, {32933, 55998}, {33113, 42045}, {33137, 50307}, {36745, 37526}, {36750, 37532}, {36754, 37534}, {37492, 37581}, {37501, 37551}, {37509, 37612}, {37559, 41229}, {37574, 60701}, {37584, 51340}, {37669, 53597}, {39273, 60786}, {40154, 42315}, {41572, 57477}, {41930, 42025}, {50103, 60963}, {53056, 61358}, {54358, 60990}, {54408, 61398}, {59372, 61647}

X(62812) = perspector of circumconic {{A, B, C, X(662), X(934)}}
X(62812) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 43533}, {9, 5665}, {37, 63157}, {523, 59079}, {4105, 50392}
X(62812) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 43533}, {478, 5665}, {5273, 42029}, {40589, 63157}
X(62812) = X(i)-Ceva conjugate of X(j) for these {i, j}: {969, 1}, {3945, 3601}
X(62812) = pole of line {3733, 8641} with respect to the circumcircle
X(62812) = pole of line {8641, 20981} with respect to the Brocard inellipse
X(62812) = pole of line {1019, 23090} with respect to the MacBeath circumconic
X(62812) = pole of line {1, 2287} with respect to the Stammler hyperbola
X(62812) = pole of line {4560, 5214} with respect to the Steiner circumellipse
X(62812) = pole of line {6129, 14838} with respect to the Steiner inellipse
X(62812) = pole of line {525, 3239} with respect to the dual conic of excircles-radical circle
X(62812) = pole of line {14208, 15416} with respect to the dual conic of polar circle
X(62812) = pole of line {20, 946} with respect to the dual conic of Yff parabola
X(62812) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1427)}}, {{A, B, C, X(6), X(2328)}}, {{A, B, C, X(19), X(4512)}}, {{A, B, C, X(21), X(57)}}, {{A, B, C, X(58), X(1407)}}, {{A, B, C, X(63), X(1439)}}, {{A, B, C, X(65), X(12526)}}, {{A, B, C, X(81), X(269)}}, {{A, B, C, X(89), X(16948)}}, {{A, B, C, X(92), X(11682)}}, {{A, B, C, X(222), X(283)}}, {{A, B, C, X(223), X(2982)}}, {{A, B, C, X(846), X(8769)}}, {{A, B, C, X(1170), X(2999)}}, {{A, B, C, X(1171), X(56840)}}, {{A, B, C, X(1418), X(17194)}}, {{A, B, C, X(1422), X(54356)}}, {{A, B, C, X(1707), X(13610)}}, {{A, B, C, X(1780), X(56343)}}, {{A, B, C, X(1869), X(12514)}}, {{A, B, C, X(2003), X(35193)}}, {{A, B, C, X(2184), X(3869)}}, {{A, B, C, X(2221), X(42315)}}, {{A, B, C, X(3193), X(56848)}}, {{A, B, C, X(3794), X(41777)}}, {{A, B, C, X(3868), X(57661)}}, {{A, B, C, X(4653), X(8056)}}, {{A, B, C, X(5208), X(21446)}}, {{A, B, C, X(7204), X(40773)}}, {{A, B, C, X(10461), X(44178)}}, {{A, B, C, X(17185), X(24471)}}, {{A, B, C, X(18206), X(34855)}}, {{A, B, C, X(34042), X(57418)}}, {{A, B, C, X(44119), X(57656)}}, {{A, B, C, X(44794), X(62695)}}, {{A, B, C, X(59242), X(60721)}}
X(62812) = barycentric product X(i)*X(j) for these (i, j): {1, 3945}, {63, 7490}, {1444, 1869}, {3601, 7}, {4252, 75}, {5273, 57}, {10436, 45784}, {20007, 269}, {28627, 51223}
X(62812) = barycentric quotient X(i)/X(j) for these (i, j): {1, 43533}, {56, 5665}, {58, 63157}, {163, 59079}, {1869, 41013}, {3601, 8}, {3945, 75}, {4252, 1}, {4617, 50392}, {5273, 312}, {7490, 92}, {20007, 341}, {28627, 44140}, {45784, 31359}
X(62812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 12526}, {1, 16570, 846}, {1, 1707, 4512}, {2, 4001, 17272}, {6, 57, 2999}, {7, 37666, 40940}, {9, 940, 17022}, {44, 37674, 7308}, {57, 1419, 1427}, {57, 2003, 223}, {57, 222, 269}, {57, 2999, 62695}, {614, 2308, 16469}, {894, 37683, 11679}, {1427, 62207, 1419}, {1449, 3928, 3666}, {1468, 54421, 1}, {1757, 37604, 5268}, {3052, 49478, 10389}, {3218, 37685, 5256}, {3219, 14996, 5287}, {3219, 5287, 3731}, {3306, 32911, 23511}, {3772, 17365, 4654}, {4383, 37520, 5437}, {4644, 37642, 226}, {4649, 4650, 17594}, {4667, 5745, 5712}, {4682, 5220, 7322}, {4697, 32853, 50314}, {5256, 37685, 16667}, {5437, 16670, 4383}, {10980, 16469, 614}, {11269, 41011, 1699}, {37607, 54386, 8583}, {40940, 62240, 7}, {55397, 55398, 11682}


X(62813) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2176), X(3), X(1))

Barycentrics    a*(b^2*c^2+a^3*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(62813) lies on these lines: {1, 21}, {2, 1258}, {6, 190}, {8, 1008}, {75, 27644}, {83, 213}, {86, 16685}, {88, 60871}, {100, 731}, {171, 3009}, {194, 32933}, {238, 21352}, {274, 33764}, {350, 41233}, {701, 932}, {894, 2300}, {940, 16969}, {992, 28604}, {995, 24598}, {1107, 3219}, {1203, 49477}, {1333, 18042}, {1821, 54121}, {1909, 40886}, {1914, 40744}, {2171, 56547}, {2210, 12194}, {2239, 40790}, {2303, 16520}, {3051, 18278}, {3187, 17144}, {3218, 37596}, {3230, 16826}, {3666, 51319}, {3765, 24514}, {3780, 20016}, {3891, 33737}, {3948, 41232}, {3997, 17023}, {4359, 16827}, {4383, 16816}, {4384, 37680}, {4386, 40733}, {4503, 17254}, {4559, 41245}, {4641, 17448}, {4699, 27623}, {4713, 31060}, {4749, 25048}, {4850, 37555}, {5255, 20769}, {5264, 56800}, {5276, 16514}, {5283, 33761}, {5294, 30038}, {5315, 50023}, {5337, 27950}, {6542, 37676}, {6646, 28369}, {7191, 20358}, {8624, 21511}, {10800, 60722}, {14621, 40728}, {14974, 16367}, {16466, 37100}, {16815, 37687}, {16834, 42044}, {16971, 23475}, {17050, 26724}, {17120, 20228}, {17126, 21010}, {17137, 30965}, {17147, 33296}, {17260, 61036}, {17277, 27078}, {17379, 21769}, {17397, 17750}, {17752, 52043}, {17753, 33146}, {17868, 40977}, {18139, 27272}, {19308, 21008}, {20132, 21788}, {20257, 26723}, {20292, 23682}, {20913, 40859}, {20963, 23566}, {21785, 37677}, {22344, 37609}, {23151, 36534}, {23538, 37685}, {24512, 29586}, {24547, 37659}, {26806, 28350}, {27248, 33172}, {27678, 28358}, {29595, 36647}, {29960, 33157}, {32095, 58820}, {32939, 34063}, {37617, 60701}, {54382, 56517}, {55940, 57397}, {57944, 62468}, {60071, 60135}

X(62813) = perspector of circumconic {{A, B, C, X(662), X(8709)}}
X(62813) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60090}
X(62813) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60090}, {3250, 4475}
X(62813) = pole of line {5949, 27042} with respect to the Kiepert hyperbola
X(62813) = pole of line {100, 789} with respect to the Kiepert parabola
X(62813) = pole of line {659, 4560} with respect to the Steiner circumellipse
X(62813) = pole of line {3882, 23354} with respect to the Yff parabola
X(62813) = pole of line {101, 668} with respect to the Hutson-Moses hyperbola
X(62813) = pole of line {75, 16696} with respect to the Wallace hyperbola
X(62813) = pole of line {918, 7192} with respect to the dual conic of nine-point circle
X(62813) = pole of line {5249, 6685} with respect to the dual conic of Yff parabola
X(62813) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(27809)}}, {{A, B, C, X(2), X(18169)}}, {{A, B, C, X(21), X(36799)}}, {{A, B, C, X(31), X(18098)}}, {{A, B, C, X(38), X(321)}}, {{A, B, C, X(57), X(18192)}}, {{A, B, C, X(58), X(83)}}, {{A, B, C, X(81), X(3112)}}, {{A, B, C, X(213), X(1923)}}, {{A, B, C, X(701), X(38832)}}, {{A, B, C, X(993), X(60135)}}, {{A, B, C, X(1255), X(10458)}}, {{A, B, C, X(1469), X(3765)}}, {{A, B, C, X(1821), X(2975)}}, {{A, B, C, X(1959), X(54121)}}, {{A, B, C, X(2167), X(11688)}}, {{A, B, C, X(18089), X(55940)}}, {{A, B, C, X(20985), X(40747)}}, {{A, B, C, X(39717), X(40773)}}, {{A, B, C, X(52680), X(60865)}}
X(62813) = barycentric product X(i)*X(j) for these (i, j): {1, 37678}, {4279, 75}
X(62813) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60090}, {4279, 1}, {37678, 75}, {38995, 4475}
X(62813) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3747, 1621}, {1, 40749, 20985}, {213, 239, 32911}, {213, 54282, 239}, {940, 16969, 29570}, {1580, 2292, 11688}, {16514, 40747, 5276}, {32939, 34063, 62636}


X(62814) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3242), X(3), X(1))

Barycentrics    a*(a^2+2*b^2-b*c+2*c^2-a*(b+c)) : :

X(62814) lies on these lines: {1, 21}, {2, 1280}, {6, 4430}, {8, 30614}, {11, 33153}, {36, 49686}, {37, 29817}, {42, 17598}, {43, 62236}, {55, 4392}, {56, 36559}, {69, 19993}, {88, 1376}, {100, 982}, {141, 33090}, {145, 37549}, {149, 3782}, {171, 17449}, {190, 20068}, {210, 4906}, {223, 30318}, {238, 29818}, {244, 3961}, {354, 3920}, {388, 36579}, {404, 3953}, {497, 33151}, {518, 7191}, {519, 24169}, {528, 33102}, {537, 32930}, {614, 3681}, {726, 32943}, {748, 49448}, {756, 29820}, {940, 29815}, {976, 3976}, {984, 5284}, {1001, 7226}, {1002, 1255}, {1054, 42040}, {1086, 33110}, {1279, 3219}, {1961, 17450}, {1993, 12595}, {2177, 17591}, {2886, 33148}, {3006, 33124}, {3056, 23155}, {3058, 33100}, {3100, 17642}, {3218, 3744}, {3240, 41711}, {3243, 5256}, {3434, 4310}, {3555, 5262}, {3617, 17054}, {3623, 37614}, {3662, 5014}, {3666, 3957}, {3670, 3871}, {3677, 3870}, {3703, 33173}, {3705, 30831}, {3722, 17596}, {3726, 5276}, {3741, 32923}, {3742, 5297}, {3750, 46901}, {3752, 3935}, {3757, 46909}, {3840, 32927}, {3886, 50106}, {3891, 10453}, {3936, 29840}, {3944, 10707}, {3966, 31143}, {3979, 46904}, {3989, 16484}, {3996, 17495}, {3999, 27003}, {4011, 4756}, {4030, 33086}, {4038, 29816}, {4318, 17625}, {4360, 30941}, {4383, 4661}, {4413, 9335}, {4414, 17715}, {4418, 42055}, {4438, 29638}, {4450, 26840}, {4484, 27670}, {4514, 17184}, {4649, 29819}, {4666, 7174}, {4694, 30115}, {4847, 33129}, {4849, 17020}, {4863, 33131}, {4865, 33069}, {4883, 17019}, {4884, 32849}, {4966, 33093}, {4981, 16823}, {5083, 17074}, {5178, 23536}, {5211, 5741}, {5260, 28082}, {5263, 17140}, {5287, 44841}, {5422, 12594}, {5604, 56384}, {5605, 56427}, {5846, 32863}, {5904, 30148}, {6679, 29836}, {7288, 36578}, {7373, 44094}, {8167, 9330}, {9053, 33091}, {9342, 17063}, {9352, 18193}, {9997, 10699}, {11220, 61086}, {11240, 60751}, {11680, 33144}, {11681, 36574}, {14552, 39567}, {14829, 20045}, {15570, 37593}, {15600, 37553}, {16299, 19767}, {16703, 17143}, {16973, 26242}, {17011, 49478}, {17016, 34791}, {17017, 49490}, {17018, 17599}, {17061, 33142}, {17135, 24643}, {17145, 17150}, {17154, 32939}, {17155, 32941}, {17165, 24841}, {17718, 29680}, {17721, 31053}, {17725, 29662}, {17765, 32948}, {17766, 33067}, {18059, 60683}, {18134, 29832}, {18141, 20020}, {18398, 30145}, {18419, 60689}, {19785, 36845}, {19786, 29835}, {20292, 24231}, {23958, 37540}, {24165, 32945}, {24210, 49989}, {24222, 59416}, {24248, 34611}, {24349, 24552}, {24430, 53055}, {24477, 26228}, {24943, 33169}, {25006, 26724}, {25568, 37651}, {25760, 29844}, {26015, 33133}, {26061, 29660}, {26128, 33120}, {26223, 49499}, {26230, 33121}, {27065, 49515}, {29637, 33162}, {29652, 32771}, {29655, 32775}, {29656, 33119}, {29666, 38047}, {29668, 32931}, {29672, 33115}, {29673, 33123}, {29676, 33127}, {29677, 33165}, {29679, 49688}, {29681, 31204}, {29686, 32780}, {29690, 33130}, {29824, 32926}, {30142, 50190}, {30942, 32920}, {32772, 49479}, {32776, 50285}, {32844, 33064}, {32854, 33087}, {32856, 33106}, {32860, 49458}, {32864, 50023}, {32866, 33081}, {32915, 49455}, {32928, 42057}, {32940, 49482}, {33068, 49695}, {33070, 50615}, {33072, 49676}, {33075, 49511}, {33080, 49506}, {33089, 33171}, {33103, 33104}, {33136, 33147}, {33141, 33143}, {33854, 49509}, {37685, 38315}, {39697, 56149}, {42044, 49446}, {42051, 49467}, {46902, 50028}, {49466, 54311}, {49498, 61358}

X(62814) = reflection of X(i) in X(j) for these {i,j}: {32911, 7191}
X(62814) = pole of line {3733, 58374} with respect to the circumcircle
X(62814) = pole of line {4132, 8664} with respect to the DeLongchamps ellipse
X(62814) = pole of line {100, 6012} with respect to the Kiepert parabola
X(62814) = pole of line {4560, 6084} with respect to the Steiner circumellipse
X(62814) = pole of line {6084, 14838} with respect to the Steiner inellipse
X(62814) = pole of line {101, 6012} with respect to the Hutson-Moses hyperbola
X(62814) = pole of line {5249, 41242} with respect to the dual conic of Yff parabola
X(62814) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(1280)}}, {{A, B, C, X(81), X(17283)}}, {{A, B, C, X(1255), X(60721)}}, {{A, B, C, X(5014), X(30617)}}, {{A, B, C, X(13476), X(17469)}}, {{A, B, C, X(18206), X(49302)}}, {{A, B, C, X(39697), X(49480)}}, {{A, B, C, X(40091), X(56149)}}
X(62814) = barycentric product X(i)*X(j) for these (i, j): {1, 17283}, {100, 49302}
X(62814) = barycentric quotient X(i)/X(j) for these (i, j): {17283, 75}, {49302, 693}
X(62814) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32913, 17469}, {1, 38, 1621}, {1, 3873, 81}, {1, 3874, 57280}, {2, 17597, 3315}, {210, 4906, 7292}, {210, 7292, 37687}, {354, 3920, 37633}, {354, 49465, 3920}, {518, 7191, 32911}, {614, 3681, 37680}, {976, 3976, 5253}, {982, 3938, 100}, {1001, 7226, 33761}, {3242, 17597, 2}, {3434, 4310, 33146}, {3666, 4864, 3957}, {3677, 3870, 4850}, {3705, 33122, 30831}, {3744, 21342, 3218}, {4430, 17024, 6}, {17061, 51463, 33142}, {17165, 32942, 41242}, {17598, 49675, 42}, {17599, 42871, 17018}, {24841, 32942, 17165}, {42055, 49473, 4418}, {42057, 49464, 32928}


X(62815) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3243), X(3), X(1))

Barycentrics    a*(a^2+3*b^2-4*b*c+3*c^2-4*a*(b+c)) : :

X(62815) lies on these lines: {1, 21}, {2, 3243}, {8, 17706}, {9, 4430}, {55, 15570}, {57, 3957}, {78, 5045}, {100, 10980}, {145, 9776}, {149, 4654}, {200, 9342}, {226, 30318}, {354, 1376}, {474, 50191}, {497, 31164}, {518, 3305}, {553, 20075}, {612, 49675}, {614, 49490}, {908, 10580}, {940, 4864}, {1002, 56507}, {1260, 7373}, {1445, 61033}, {1449, 17024}, {1482, 10167}, {2094, 7962}, {2177, 18193}, {2999, 3315}, {3158, 27003}, {3218, 10389}, {3219, 38316}, {3240, 5573}, {3241, 11529}, {3242, 4883}, {3244, 11045}, {3333, 4855}, {3340, 3623}, {3434, 5542}, {3436, 6744}, {3475, 26015}, {3555, 9708}, {3616, 3984}, {3622, 11523}, {3677, 17018}, {3681, 10582}, {3711, 3848}, {3720, 16496}, {3742, 41711}, {3748, 35258}, {3811, 50190}, {3872, 15934}, {3879, 19993}, {3886, 17140}, {3895, 5902}, {3928, 61155}, {3935, 5437}, {4011, 49535}, {4312, 34611}, {4359, 49451}, {4392, 37553}, {4413, 58560}, {4661, 7308}, {4863, 25557}, {4917, 18398}, {5014, 17298}, {5223, 5284}, {5249, 11038}, {5256, 17597}, {5268, 17450}, {5269, 15600}, {5572, 60966}, {5687, 50192}, {5904, 36946}, {6173, 33110}, {6767, 24473}, {7174, 29814}, {7675, 17642}, {7982, 9778}, {8162, 44663}, {8236, 9965}, {8580, 62236}, {9580, 17483}, {10569, 17624}, {10578, 59491}, {10584, 11019}, {10587, 24391}, {10860, 16200}, {11037, 57287}, {11220, 43166}, {11274, 12653}, {11415, 40270}, {11530, 20052}, {11680, 31146}, {16475, 29818}, {17127, 35227}, {17146, 32929}, {17296, 33090}, {17449, 17594}, {17609, 19861}, {19860, 34791}, {20060, 37723}, {20292, 59372}, {23051, 39739}, {23958, 35445}, {24392, 31019}, {24477, 55867}, {25006, 38053}, {25415, 51071}, {25527, 29835}, {26098, 49989}, {29820, 49498}, {30331, 44447}, {30614, 49476}, {32923, 39594}, {32942, 51055}, {33121, 56521}, {33124, 56522}, {33163, 49768}, {35262, 51816}, {36846, 58609}, {49499, 56082}, {56179, 58562}

X(62815) = reflection of X(i) in X(j) for these {i,j}: {3305, 4666}
X(62815) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1412, 41918}, {10390, 1330}, {34821, 2475}, {56054, 21287}
X(62815) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 11682}, {1, 3873, 63}, {1, 3874, 5250}, {354, 3870, 3306}, {354, 42871, 3870}, {518, 4666, 3305}, {3242, 4883, 5287}, {3243, 44841, 2}, {3475, 26015, 31266}, {11038, 36845, 5249}, {17597, 49478, 5256}


X(62816) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3247), X(3), X(1))

Barycentrics    a*(a^2+3*b^2+4*b*c+3*c^2+4*a*(b+c)) : :

X(62816) lies on these lines: {1, 21}, {2, 2321}, {9, 17011}, {37, 3305}, {42, 37819}, {57, 7269}, {75, 25507}, {165, 9347}, {306, 17321}, {333, 17393}, {536, 19701}, {612, 17592}, {614, 17600}, {940, 3723}, {966, 50306}, {1125, 19822}, {1203, 31320}, {1211, 41312}, {1214, 7190}, {1255, 4850}, {1445, 16577}, {1449, 3219}, {1613, 16526}, {1743, 33761}, {2999, 16673}, {3101, 9538}, {3210, 16826}, {3240, 7322}, {3241, 14552}, {3306, 3666}, {3434, 4356}, {3672, 5249}, {3677, 29814}, {3710, 19766}, {3729, 19684}, {3731, 32911}, {3745, 35258}, {3749, 29816}, {3751, 3989}, {3758, 25734}, {3870, 37593}, {3886, 27804}, {3920, 37553}, {3928, 14996}, {3929, 37685}, {3969, 17308}, {3984, 19767}, {3993, 29644}, {3998, 54392}, {4021, 19785}, {4349, 44447}, {4359, 16831}, {4360, 5271}, {4363, 37869}, {4641, 16884}, {4652, 37594}, {4654, 37635}, {4664, 56082}, {4666, 4906}, {4667, 20078}, {4704, 27064}, {4852, 19732}, {4909, 62240}, {4981, 49495}, {5268, 9350}, {5278, 16834}, {5294, 26626}, {5296, 20043}, {5308, 24181}, {5311, 17594}, {5333, 25590}, {5437, 17021}, {5543, 21454}, {5712, 31164}, {7174, 17018}, {7308, 17012}, {8545, 45126}, {9345, 18193}, {9776, 20244}, {10180, 32921}, {10389, 29815}, {10436, 17147}, {10578, 56943}, {15668, 42051}, {16672, 44307}, {16674, 37679}, {16676, 17013}, {17020, 51780}, {17023, 17776}, {17024, 38316}, {17045, 32777}, {17056, 50068}, {17064, 29682}, {17156, 50281}, {17247, 17778}, {17270, 20017}, {17276, 37631}, {17304, 18139}, {17306, 32858}, {17316, 54311}, {17318, 31993}, {17320, 18134}, {17351, 19722}, {17381, 42033}, {17389, 37653}, {17391, 26840}, {17394, 32939}, {17395, 24789}, {17398, 50048}, {17595, 39260}, {19717, 50127}, {19734, 54282}, {19744, 50120}, {19747, 49721}, {19750, 50124}, {19786, 56522}, {20879, 44735}, {23051, 39737}, {25525, 33155}, {26044, 29617}, {26102, 60688}, {29573, 33172}, {29584, 37652}, {29598, 33157}, {29603, 41820}, {29833, 56519}, {30811, 50063}, {32860, 39586}, {32934, 50293}, {32945, 48854}, {33088, 50290}, {33116, 56521}, {33150, 41867}, {38000, 58820}, {39592, 47299}, {49472, 58381}, {52423, 60947}, {54358, 55466}

X(62816) = perspector of circumconic {{A, B, C, X(662), X(53658)}}
X(62816) = pole of line {3733, 48027} with respect to the circumcircle
X(62816) = pole of line {4560, 4778} with respect to the Steiner circumellipse
X(62816) = pole of line {4778, 14838} with respect to the Steiner inellipse
X(62816) = pole of line {3882, 4756} with respect to the Yff parabola
X(62816) = pole of line {75, 42028} with respect to the Wallace hyperbola
X(62816) = pole of line {1698, 5249} with respect to the dual conic of Yff parabola
X(62816) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(60267)}}, {{A, B, C, X(21), X(27789)}}, {{A, B, C, X(58), X(25430)}}, {{A, B, C, X(81), X(5936)}}, {{A, B, C, X(1255), X(16948)}}, {{A, B, C, X(2167), X(12526)}}, {{A, B, C, X(2321), X(4512)}}, {{A, B, C, X(2975), X(56033)}}, {{A, B, C, X(48091), X(52680)}}
X(62816) = barycentric product X(i)*X(j) for these (i, j): {190, 48091}
X(62816) = barycentric quotient X(i)/X(j) for these (i, j): {48091, 514}
X(62816) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 28606, 63}, {1, 3743, 5250}, {37, 20182, 5256}, {37, 5256, 3305}, {1255, 4850, 17022}, {3666, 16777, 5287}, {3666, 5287, 3306}, {5333, 50106, 25590}, {15569, 17599, 4666}


X(62817) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3294), X(3), X(1))

Barycentrics    a*(a^3*(b+c)-b*c*(b^2+c^2)-a*(b^3+2*b^2*c+2*b*c^2+c^3)) : :

X(62817) lies on these lines: {1, 21}, {2, 2140}, {9, 75}, {10, 24259}, {19, 31926}, {35, 20769}, {36, 60701}, {37, 16574}, {40, 13727}, {46, 39586}, {55, 23151}, {57, 16831}, {71, 4357}, {101, 21511}, {192, 21061}, {213, 3666}, {220, 11343}, {239, 3219}, {241, 4520}, {274, 32939}, {333, 17143}, {484, 36531}, {573, 17257}, {579, 17321}, {583, 17045}, {672, 17023}, {869, 4414}, {940, 14974}, {960, 25083}, {980, 2176}, {1018, 3661}, {1026, 4517}, {1107, 29529}, {1174, 2339}, {1334, 3912}, {1500, 37676}, {1655, 41232}, {1697, 49451}, {1730, 16819}, {1759, 56517}, {1764, 38000}, {1796, 37312}, {2183, 50093}, {2223, 4640}, {2245, 4364}, {2269, 4416}, {2664, 17596}, {3190, 37175}, {3207, 16436}, {3208, 17294}, {3218, 16826}, {3230, 37596}, {3305, 16832}, {3496, 20602}, {3501, 17308}, {3663, 28287}, {3683, 20358}, {3690, 37329}, {3691, 50095}, {3731, 21371}, {3882, 4643}, {3916, 37609}, {3928, 29597}, {3929, 16834}, {4253, 26626}, {4266, 54280}, {4271, 17332}, {4286, 57039}, {4393, 45751}, {4465, 30819}, {4641, 20963}, {4648, 29747}, {5271, 32104}, {5278, 29773}, {5283, 19731}, {5294, 16818}, {5325, 20257}, {5337, 17735}, {6376, 29511}, {6381, 60737}, {6604, 37169}, {7262, 16476}, {8025, 39950}, {8053, 56537}, {10436, 25508}, {14552, 56936}, {15830, 27509}, {16368, 55466}, {16685, 16696}, {16814, 29380}, {16815, 27065}, {16830, 56288}, {16833, 50106}, {16972, 28615}, {17056, 29788}, {17144, 18163}, {17159, 21390}, {17161, 53362}, {17234, 29812}, {17245, 29749}, {17272, 22370}, {17276, 29382}, {17279, 29492}, {17284, 56508}, {17304, 27626}, {17324, 27678}, {17333, 21362}, {17334, 29698}, {17394, 18164}, {17754, 29603}, {18042, 56934}, {19835, 62564}, {20172, 20605}, {20672, 21981}, {21273, 25255}, {21477, 42316}, {21495, 24047}, {21746, 45705}, {23958, 29595}, {24598, 49997}, {24603, 59207}, {25940, 41423}, {26840, 27272}, {27003, 29578}, {27093, 27248}, {29381, 52043}, {29561, 34023}, {29576, 46196}, {29598, 56507}, {29764, 41681}, {29960, 56078}, {30847, 51390}, {33761, 33792}, {49495, 57279}, {50075, 53397}, {51194, 61005}, {52029, 54440}, {56098, 56153}

X(62817) = perspector of circumconic {{A, B, C, X(662), X(51560)}}
X(62817) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60617}
X(62817) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60617}, {24512, 24325}
X(62817) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39717, 1}
X(62817) = pole of line {6003, 23798} with respect to the incircle
X(62817) = pole of line {4040, 4560} with respect to the Steiner circumellipse
X(62817) = pole of line {3716, 8714} with respect to the Steiner inellipse
X(62817) = pole of line {1026, 3882} with respect to the Yff parabola
X(62817) = pole of line {75, 18206} with respect to the Wallace hyperbola
X(62817) = pole of line {42, 1738} with respect to the dual conic of Yff parabola
X(62817) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(40515)}}, {{A, B, C, X(21), X(32009)}}, {{A, B, C, X(31), X(18785)}}, {{A, B, C, X(58), X(673)}}, {{A, B, C, X(75), X(18206)}}, {{A, B, C, X(81), X(2481)}}, {{A, B, C, X(190), X(54353)}}, {{A, B, C, X(1174), X(44119)}}, {{A, B, C, X(2328), X(6559)}}, {{A, B, C, X(2339), X(17194)}}, {{A, B, C, X(3873), X(39700)}}, {{A, B, C, X(16549), X(16552)}}
X(62817) = barycentric product X(i)*X(j) for these (i, j): {5132, 75}
X(62817) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60617}, {5132, 1}
X(62817) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63, 18206}, {9, 37555, 4384}, {9, 53391, 17335}, {38, 3747, 1}, {239, 3219, 16552}, {1334, 56509, 3912}, {3294, 20367, 2}


X(62818) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3731), X(3), X(1))

Barycentrics    a*(a^2-3*b^2-2*b*c-3*c^2-2*a*(b+c)) : :

X(62818) lies on these lines: {1, 21}, {2, 2415}, {6, 3929}, {9, 2999}, {37, 57}, {42, 5223}, {43, 40774}, {45, 3752}, {55, 3220}, {84, 37528}, {165, 612}, {192, 11679}, {200, 984}, {222, 2256}, {226, 4419}, {269, 1214}, {306, 17272}, {321, 18229}, {333, 3875}, {345, 4357}, {380, 1762}, {518, 37553}, {519, 14552}, {527, 5712}, {536, 5737}, {553, 4648}, {614, 46901}, {750, 53056}, {756, 8580}, {899, 30393}, {936, 3998}, {940, 3247}, {966, 42049}, {975, 15803}, {982, 10582}, {988, 8583}, {991, 30304}, {1001, 3677}, {1074, 31434}, {1086, 41867}, {1334, 61412}, {1376, 7322}, {1407, 59215}, {1427, 60937}, {1449, 4641}, {1453, 31445}, {1469, 40966}, {1696, 37269}, {1698, 19822}, {1699, 29639}, {1714, 31446}, {1730, 5283}, {1743, 3219}, {1766, 10856}, {2093, 30116}, {2177, 42039}, {2221, 5280}, {2276, 61316}, {2324, 55869}, {3101, 61763}, {3158, 4689}, {3175, 37660}, {3210, 4384}, {3214, 4866}, {3218, 5287}, {3242, 10389}, {3295, 23089}, {3305, 4850}, {3333, 6051}, {3338, 27785}, {3339, 59305}, {3403, 18078}, {3624, 24159}, {3644, 55095}, {3664, 9965}, {3670, 54287}, {3672, 5273}, {3679, 48837}, {3683, 7290}, {3687, 17257}, {3705, 9791}, {3720, 10980}, {3730, 28274}, {3750, 16496}, {3751, 17592}, {3757, 49446}, {3760, 19810}, {3772, 17246}, {3782, 25525}, {3870, 7226}, {3916, 37554}, {3920, 35258}, {3931, 57279}, {3945, 28610}, {3946, 5325}, {3950, 34255}, {3951, 19767}, {3973, 32911}, {3980, 39586}, {3993, 39594}, {4003, 4423}, {4034, 49724}, {4183, 23052}, {4199, 50614}, {4300, 7992}, {4359, 16832}, {4364, 59583}, {4389, 25527}, {4392, 4666}, {4415, 5219}, {4417, 17258}, {4424, 9623}, {4428, 49465}, {4640, 5269}, {4654, 17056}, {4657, 44416}, {4659, 31993}, {4664, 14829}, {4688, 19744}, {4734, 60731}, {4853, 37598}, {4862, 5249}, {4898, 50292}, {5231, 24210}, {5234, 54418}, {5235, 50106}, {5268, 17596}, {5270, 60156}, {5271, 17147}, {5272, 17591}, {5278, 16833}, {5294, 29598}, {5308, 21454}, {5436, 37549}, {5437, 16676}, {5711, 54290}, {5718, 28609}, {5744, 39595}, {5791, 50067}, {6703, 41312}, {6762, 37548}, {6857, 34937}, {7004, 10383}, {7191, 60846}, {7262, 16475}, {7264, 19788}, {7291, 53053}, {7613, 61029}, {7991, 10459}, {8025, 18186}, {8545, 17080}, {8769, 17038}, {9337, 17601}, {9776, 29571}, {9778, 39587}, {10382, 24430}, {10436, 25507}, {10888, 29069}, {11523, 19765}, {13097, 31394}, {14555, 50093}, {14996, 27789}, {16418, 16485}, {16469, 17017}, {16569, 51294}, {16610, 51780}, {16667, 17011}, {16677, 37682}, {16687, 16688}, {16814, 37679}, {16834, 37652}, {16970, 41269}, {17021, 23958}, {17023, 26065}, {17064, 33154}, {17182, 30035}, {17260, 17490}, {17262, 44417}, {17274, 18134}, {17284, 17776}, {17286, 42033}, {17294, 37653}, {17298, 26840}, {17306, 32777}, {17319, 37683}, {17320, 56523}, {17327, 50052}, {17393, 41629}, {17449, 30350}, {17597, 38316}, {18065, 18136}, {18193, 26102}, {18506, 37584}, {19732, 42051}, {19785, 54357}, {19786, 56519}, {20059, 41825}, {20171, 20882}, {20195, 40688}, {20769, 37574}, {21342, 44841}, {21370, 54359}, {23151, 37573}, {24310, 54424}, {24627, 30567}, {24697, 32855}, {25055, 26728}, {25091, 37597}, {25308, 60929}, {25728, 27064}, {25734, 26223}, {26109, 50128}, {26242, 56518}, {28634, 49730}, {29657, 33099}, {29664, 33100}, {29670, 49520}, {29682, 33098}, {29826, 32930}, {29828, 32925}, {29857, 32776}, {30115, 30282}, {31142, 37662}, {31266, 33151}, {31397, 56943}, {31435, 37592}, {32865, 50080}, {32915, 35613}, {32916, 49456}, {32921, 59624}, {32934, 50314}, {33104, 50865}, {33133, 55867}, {35466, 50068}, {37608, 60701}, {41011, 60905}, {50048, 59772}, {50063, 59769}, {50777, 59679}, {59297, 62222}

X(62818) = perspector of circumconic {{A, B, C, X(662), X(53647)}}
X(62818) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60077}
X(62818) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60077}
X(62818) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1333, 41920}
X(62818) = pole of line {2646, 7290} with respect to the Feuerbach hyperbola
X(62818) = pole of line {1, 33628} with respect to the Stammler hyperbola
X(62818) = pole of line {3667, 4560} with respect to the Steiner circumellipse
X(62818) = pole of line {3667, 14838} with respect to the Steiner inellipse
X(62818) = pole of line {3699, 3882} with respect to the Yff parabola
X(62818) = pole of line {75, 41629} with respect to the Wallace hyperbola
X(62818) = pole of line {514, 23792} with respect to the dual conic of Conway circle
X(62818) = pole of line {8, 4208} with respect to the dual conic of Yff parabola
X(62818) = pole of line {1109, 21950} with respect to the dual conic of Wallace hyperbola
X(62818) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4052)}}, {{A, B, C, X(2), X(16948)}}, {{A, B, C, X(21), X(6557)}}, {{A, B, C, X(37), X(4512)}}, {{A, B, C, X(58), X(4255)}}, {{A, B, C, X(81), X(4373)}}, {{A, B, C, X(1707), X(17038)}}, {{A, B, C, X(2167), X(11682)}}, {{A, B, C, X(2184), X(2975)}}, {{A, B, C, X(2328), X(34820)}}, {{A, B, C, X(24199), X(42304)}}
X(62818) = barycentric product X(i)*X(j) for these (i, j): {1, 5232}, {4255, 75}
X(62818) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60077}, {4255, 1}, {5232, 75}
X(62818) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 846, 4512}, {2, 17261, 30568}, {2, 3663, 23681}, {2, 8056, 47636}, {9, 3666, 2999}, {37, 37674, 25430}, {38, 968, 1}, {45, 3752, 7308}, {57, 25430, 37674}, {612, 4414, 165}, {3219, 5256, 1743}, {3247, 3928, 940}, {3305, 4850, 23511}, {3403, 31008, 18078}, {3672, 5273, 40940}, {3683, 17599, 7290}, {3945, 28610, 62240}, {3989, 4414, 612}, {4003, 4423, 5573}, {4389, 33116, 25527}, {4641, 20182, 1449}, {4850, 33761, 3305}, {5271, 17147, 17151}, {5437, 16676, 44307}, {7262, 17600, 16475}, {17056, 17276, 4654}, {17595, 44307, 5437}, {17776, 54311, 17284}, {18229, 55998, 321}, {24175, 25072, 2}, {25430, 37674, 17022}, {47636, 62695, 8056}


X(62819) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3751), X(3), X(1))

Barycentrics    a*(a^2-(b-c)^2+2*a*(b+c)) : :

X(62819) lies on these lines: {1, 21}, {2, 3751}, {6, 354}, {7, 3914}, {9, 3720}, {19, 13476}, {33, 1430}, {34, 44105}, {42, 57}, {43, 3306}, {44, 4423}, {55, 22060}, {56, 228}, {65, 1407}, {75, 969}, {78, 37607}, {145, 32932}, {165, 2177}, {171, 3870}, {200, 750}, {210, 37674}, {222, 2263}, {226, 11269}, {238, 4666}, {244, 1282}, {320, 32773}, {321, 39594}, {386, 3338}, {387, 23536}, {497, 4644}, {516, 62240}, {518, 612}, {519, 3980}, {524, 3966}, {553, 3755}, {581, 12704}, {748, 1743}, {756, 5223}, {894, 10453}, {899, 5437}, {902, 10389}, {942, 54418}, {975, 5904}, {976, 37554}, {982, 4649}, {984, 4038}, {988, 19767}, {991, 41338}, {995, 51816}, {999, 20760}, {1001, 4641}, {1054, 42043}, {1100, 17599}, {1126, 24046}, {1191, 17609}, {1193, 3333}, {1203, 50190}, {1253, 10383}, {1280, 3722}, {1281, 50635}, {1376, 37520}, {1386, 17597}, {1394, 4332}, {1401, 28017}, {1416, 5083}, {1428, 44104}, {1445, 20964}, {1449, 3509}, {1453, 28082}, {1455, 2099}, {1456, 62207}, {1469, 40952}, {1473, 37580}, {1475, 5364}, {1572, 16971}, {1698, 33172}, {1699, 24725}, {1714, 51706}, {1721, 11220}, {1757, 3305}, {1766, 10439}, {1834, 10404}, {1836, 17365}, {1951, 2242}, {1961, 49448}, {1999, 24349}, {2003, 34036}, {2082, 20229}, {2171, 21328}, {2214, 23051}, {2285, 10473}, {2286, 17441}, {2308, 7290}, {2334, 4646}, {2663, 21371}, {3011, 3475}, {3052, 3748}, {3083, 45426}, {3084, 45427}, {3086, 27287}, {3099, 17591}, {3120, 4654}, {3187, 17140}, {3218, 17018}, {3219, 29814}, {3240, 27003}, {3242, 3745}, {3243, 3938}, {3244, 30614}, {3247, 3989}, {3337, 5312}, {3339, 4642}, {3403, 18059}, {3434, 50307}, {3550, 3979}, {3555, 5711}, {3576, 54310}, {3616, 54386}, {3660, 52424}, {3664, 4847}, {3679, 33078}, {3681, 5268}, {3702, 39584}, {3703, 4851}, {3705, 17778}, {3706, 4363}, {3724, 16878}, {3726, 16972}, {3729, 32915}, {3739, 4042}, {3742, 4383}, {3744, 42871}, {3749, 3957}, {3750, 4650}, {3752, 4860}, {3757, 37683}, {3758, 32942}, {3769, 51055}, {3779, 3917}, {3811, 37522}, {3875, 17155}, {3879, 33088}, {3886, 4418}, {3912, 33163}, {3920, 4430}, {3923, 42057}, {3924, 11518}, {3925, 4675}, {3927, 6051}, {3928, 4414}, {3944, 31164}, {3961, 37604}, {3974, 49990}, {4001, 50295}, {4028, 17740}, {4131, 23687}, {4133, 50043}, {4252, 37080}, {4255, 32636}, {4257, 59337}, {4307, 36845}, {4312, 33094}, {4319, 10391}, {4327, 17625}, {4343, 60990}, {4362, 49479}, {4365, 4659}, {4384, 32864}, {4387, 4891}, {4388, 17364}, {4392, 17011}, {4413, 4849}, {4514, 62230}, {4651, 26627}, {4652, 37573}, {4656, 5850}, {4661, 5297}, {4667, 24333}, {4684, 33171}, {4697, 32941}, {4703, 17771}, {4734, 62300}, {4850, 18193}, {4854, 17276}, {4855, 37608}, {4862, 33145}, {4884, 17390}, {4888, 33136}, {4966, 32777}, {4981, 39586}, {5045, 16466}, {5049, 16483}, {5219, 29662}, {5220, 44307}, {5230, 21620}, {5231, 33105}, {5247, 54392}, {5249, 33137}, {5271, 24325}, {5272, 32911}, {5276, 51194}, {5290, 21935}, {5292, 13407}, {5310, 36740}, {5311, 7174}, {5322, 22769}, {5542, 40940}, {5706, 12675}, {5710, 34791}, {5712, 24477}, {5739, 34379}, {5902, 16474}, {5905, 24210}, {6327, 29835}, {6762, 10459}, {7013, 22069}, {7074, 17603}, {7078, 16193}, {7081, 37684}, {7191, 16475}, {7226, 17019}, {7262, 16484}, {7293, 37576}, {7308, 30950}, {7373, 22149}, {7672, 17074}, {7957, 37501}, {7964, 50677}, {8580, 17124}, {9335, 17020}, {9575, 17474}, {10025, 10580}, {10202, 44414}, {10327, 49529}, {10436, 30941}, {10477, 19714}, {11037, 23675}, {11038, 37666}, {11529, 49487}, {11679, 32771}, {13373, 36754}, {13610, 39742}, {14547, 54408}, {14552, 39581}, {14829, 29828}, {15523, 17296}, {16468, 29820}, {16469, 30350}, {16491, 17024}, {16572, 59217}, {16703, 32092}, {16707, 52716}, {16741, 32104}, {16823, 37652}, {16834, 32924}, {16974, 39253}, {17064, 31019}, {17127, 29817}, {17135, 50314}, {17146, 17150}, {17184, 29829}, {17187, 18164}, {17234, 33118}, {17274, 32776}, {17282, 29850}, {17284, 26061}, {17298, 25957}, {17300, 29641}, {17306, 29647}, {17321, 60729}, {17378, 33073}, {17483, 33134}, {17596, 42042}, {17716, 49675}, {17718, 37646}, {17728, 37662}, {17782, 31508}, {18134, 29857}, {18139, 33114}, {18141, 59406}, {18839, 61398}, {19645, 39553}, {19684, 46909}, {19785, 24231}, {19993, 49684}, {20090, 29840}, {20358, 54382}, {21020, 25590}, {21334, 54359}, {21746, 26892}, {21747, 35227}, {22163, 54358}, {23681, 33128}, {24165, 49488}, {24169, 50287}, {24217, 33096}, {24392, 33104}, {24627, 59297}, {24789, 25557}, {24892, 25525}, {25453, 49676}, {25527, 29631}, {26015, 26098}, {26223, 29824}, {26227, 37639}, {26842, 33131}, {27002, 59298}, {27184, 29837}, {27186, 33139}, {29632, 56519}, {29635, 33064}, {29640, 55867}, {29652, 33682}, {29655, 32946}, {29659, 33085}, {29664, 37635}, {29667, 32863}, {29685, 33080}, {29815, 56512}, {29830, 56520}, {29845, 33065}, {29855, 33124}, {29856, 56522}, {29858, 56521}, {30340, 62208}, {30567, 32931}, {30568, 32938}, {30965, 59312}, {31266, 33140}, {32780, 33087}, {32846, 33169}, {32858, 33170}, {32860, 49495}, {32920, 49491}, {32921, 42055}, {32926, 49499}, {32928, 49446}, {32930, 50127}, {32934, 49471}, {32935, 56082}, {32939, 49470}, {32945, 49451}, {32949, 33120}, {33070, 42045}, {33097, 33141}, {33098, 60933}, {33102, 50080}, {33103, 33135}, {33771, 58887}, {34064, 49447}, {34489, 55101}, {37469, 37569}, {37532, 37698}, {37537, 58567}, {37542, 58609}, {37581, 54312}, {37682, 61686}, {39793, 51645}, {41839, 62222}, {42051, 49486}, {42053, 49489}, {52423, 61357}, {57279, 59305}

X(62819) = reflection of X(i) in X(j) for these {i,j}: {612, 940}
X(62819) = anticomplement of X(4104)
X(62819) = perspector of circumconic {{A, B, C, X(662), X(1292)}}
X(62819) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 32022}
X(62819) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 32022}, {4104, 4104}, {4648, 4673}, {17259, 32104}
X(62819) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39739, 1}
X(62819) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56044, 21287}
X(62819) = pole of line {4724, 50520} with respect to the Bevan circle
X(62819) = pole of line {3733, 7659} with respect to the circumcircle
X(62819) = pole of line {24006, 58361} with respect to the polar circle
X(62819) = pole of line {8642, 20981} with respect to the Brocard inellipse
X(62819) = pole of line {647, 4132} with respect to the DeLongchamps ellipse
X(62819) = pole of line {2646, 4319} with respect to the Feuerbach hyperbola
X(62819) = pole of line {1, 41610} with respect to the Stammler hyperbola
X(62819) = pole of line {4560, 17212} with respect to the Steiner circumellipse
X(62819) = pole of line {75, 968} with respect to the Wallace hyperbola
X(62819) = pole of line {5249, 14021} with respect to the dual conic of Yff parabola
X(62819) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(58013)}}, {{A, B, C, X(19), X(1621)}}, {{A, B, C, X(21), X(1002)}}, {{A, B, C, X(31), X(969)}}, {{A, B, C, X(57), X(60721)}}, {{A, B, C, X(58), X(5021)}}, {{A, B, C, X(63), X(13476)}}, {{A, B, C, X(65), X(5250)}}, {{A, B, C, X(75), X(968)}}, {{A, B, C, X(81), X(2191)}}, {{A, B, C, X(846), X(39742)}}, {{A, B, C, X(2328), X(60673)}}, {{A, B, C, X(2428), X(54353)}}, {{A, B, C, X(8616), X(13610)}}, {{A, B, C, X(18206), X(49296)}}, {{A, B, C, X(23051), X(28606)}}
X(62819) = barycentric product X(i)*X(j) for these (i, j): {1, 4648}, {100, 49296}, {4196, 63}, {5021, 75}, {13476, 17687}
X(62819) = barycentric quotient X(i)/X(j) for these (i, j): {1, 32022}, {4196, 92}, {4648, 75}, {5021, 1}, {17687, 17143}, {49296, 693}
X(62819) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 5250}, {1, 1707, 1621}, {1, 32913, 63}, {1, 54422, 2292}, {1, 63, 968}, {6, 354, 614}, {65, 34046, 4320}, {171, 49490, 3870}, {222, 5173, 2263}, {244, 61358, 2999}, {497, 4644, 41011}, {518, 940, 612}, {748, 17450, 10582}, {748, 4722, 1743}, {756, 9345, 17022}, {982, 4649, 5256}, {984, 4038, 5287}, {1100, 21342, 17599}, {1449, 3677, 17017}, {1757, 26102, 3305}, {2334, 5221, 4646}, {2999, 10980, 244}, {3218, 17018, 17594}, {3243, 5269, 3938}, {3475, 37642, 3011}, {3681, 37633, 5268}, {3742, 4663, 4383}, {3889, 57280, 1}, {3920, 4430, 16496}, {3928, 37553, 4414}, {3957, 17126, 3749}, {4430, 14996, 3920}, {5045, 16466, 28011}, {5223, 17022, 756}, {5712, 24477, 29639}, {7191, 37685, 16475}, {7672, 17074, 60786}, {17017, 17449, 3677}, {17124, 21805, 8580}, {17625, 37543, 4327}, {18134, 33121, 29857}, {22769, 37538, 5322}, {24325, 32853, 5271}, {29631, 33069, 25527}, {31019, 33142, 17064}, {32771, 32919, 11679}, {32915, 32940, 3729}, {37554, 41863, 976}


X(62820) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3973), X(3), X(1))

Barycentrics    a*(5*a^2-3*b^2+2*b*c-3*c^2+2*a*(b+c)) : :

X(62820) lies on these lines: {1, 21}, {2, 3973}, {6, 3928}, {9, 37674}, {43, 5756}, {44, 5437}, {56, 23089}, {57, 1122}, {89, 27065}, {144, 39595}, {165, 1350}, {171, 5223}, {189, 10573}, {200, 32912}, {218, 1407}, {238, 10980}, {320, 56519}, {333, 25590}, {354, 60846}, {474, 8951}, {527, 37642}, {553, 4859}, {799, 18078}, {894, 18229}, {940, 3731}, {982, 16469}, {1699, 24695}, {1723, 7274}, {1754, 30304}, {1757, 8580}, {1764, 44421}, {1999, 55998}, {2094, 24177}, {2279, 53129}, {2999, 3218}, {3008, 21454}, {3052, 3243}, {3219, 17022}, {3306, 37687}, {3339, 5247}, {3361, 54386}, {3663, 28610}, {3664, 5273}, {3666, 16667}, {3679, 14552}, {3729, 37683}, {3742, 15601}, {3752, 16670}, {3772, 60933}, {3875, 41629}, {3923, 35613}, {3927, 37554}, {3966, 4831}, {4252, 11523}, {4253, 61412}, {4312, 33137}, {4415, 60977}, {4644, 5745}, {4648, 5325}, {4654, 35466}, {4862, 9965}, {4887, 62208}, {4902, 23681}, {4906, 7290}, {5231, 41011}, {5526, 17811}, {7283, 35629}, {7308, 37520}, {7988, 33096}, {8692, 58560}, {9776, 31183}, {12555, 21375}, {14829, 50127}, {14997, 26745}, {15492, 37682}, {16468, 18193}, {16485, 24473}, {16833, 37652}, {16878, 53280}, {16885, 51780}, {17122, 30393}, {17151, 32939}, {17276, 61661}, {17296, 44416}, {17350, 30567}, {17355, 37655}, {17365, 25525}, {17778, 59779}, {18134, 56523}, {18186, 40153}, {19875, 48834}, {20106, 21296}, {20323, 52181}, {22149, 37609}, {23151, 37608}, {24175, 37681}, {24210, 60905}, {28609, 37646}, {29573, 56078}, {30568, 37684}, {31142, 37634}, {32636, 45047}, {32911, 33795}, {33141, 50865}, {36846, 58793}, {37573, 51576}, {37639, 56082}

X(62820) = X(i)-Dao conjugate of X(j) for these {i, j}: {391, 4673}
X(62820) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {63169, 21287}
X(62820) = pole of line {6003, 43932} with respect to the incircle
X(62820) = pole of line {2646, 4907} with respect to the Feuerbach hyperbola
X(62820) = pole of line {100, 53647} with respect to the Kiepert parabola
X(62820) = pole of line {101, 27834} with respect to the Hutson-Moses hyperbola
X(62820) = pole of line {3622, 4313} with respect to the dual conic of Yff parabola
X(62820) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(8056)}}, {{A, B, C, X(57), X(16948)}}, {{A, B, C, X(58), X(40151)}}, {{A, B, C, X(81), X(19604)}}, {{A, B, C, X(2184), X(11682)}}, {{A, B, C, X(11520), X(57661)}}
X(62820) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 62240, 4888}, {57, 4383, 8056}, {57, 4641, 1743}, {940, 3929, 3731}, {1468, 12526, 1}, {1743, 8056, 4383}, {3731, 39980, 940}, {4383, 8056, 23511}, {28610, 37666, 3663}


X(62821) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(4649), X(3), X(1))

Barycentrics    a*(a^2+2*b*c+2*a*(b+c)) : :

X(62821) lies on these lines: {1, 21}, {2, 3775}, {6, 748}, {7, 33145}, {8, 56988}, {9, 4722}, {37, 32912}, {42, 750}, {43, 9342}, {48, 354}, {55, 14969}, {56, 19760}, {57, 46904}, {75, 873}, {82, 39739}, {86, 31330}, {100, 37604}, {105, 28148}, {141, 29647}, {145, 32945}, {171, 2177}, {192, 32940}, {222, 42289}, {238, 29814}, {244, 5256}, {320, 32776}, {518, 5311}, {572, 10439}, {604, 10473}, {614, 1449}, {741, 43356}, {756, 3751}, {894, 32915}, {899, 37674}, {964, 35633}, {976, 37594}, {982, 17011}, {984, 17019}, {985, 17598}, {991, 41853}, {1001, 2308}, {1125, 4101}, {1126, 1698}, {1150, 43223}, {1185, 20963}, {1193, 19734}, {1197, 16971}, {1206, 1613}, {1386, 4883}, {1401, 7225}, {1458, 37543}, {1475, 36808}, {1914, 16884}, {1958, 1963}, {1961, 3681}, {1993, 25885}, {1999, 32771}, {2205, 2242}, {2214, 13476}, {2217, 31503}, {2268, 21334}, {2296, 2668}, {2886, 37631}, {2887, 29829}, {3187, 24325}, {3218, 17592}, {3240, 9350}, {3242, 29816}, {3304, 23361}, {3315, 8300}, {3333, 54373}, {3416, 29685}, {3452, 61652}, {3550, 17782}, {3589, 29677}, {3616, 37652}, {3629, 41002}, {3664, 3914}, {3703, 17390}, {3706, 4670}, {3722, 5269}, {3741, 19684}, {3745, 3938}, {3750, 17126}, {3758, 32930}, {3846, 31034}, {3879, 32852}, {3891, 49479}, {3896, 3980}, {3912, 26061}, {3917, 52020}, {3920, 49490}, {3925, 17392}, {3936, 29635}, {3945, 33136}, {3957, 17716}, {3961, 9347}, {3989, 16777}, {3993, 32933}, {3995, 32935}, {4001, 50290}, {4026, 33080}, {4042, 15668}, {4336, 10391}, {4356, 62240}, {4359, 49488}, {4360, 17155}, {4363, 4365}, {4383, 30950}, {4388, 20090}, {4392, 17600}, {4393, 32924}, {4414, 37593}, {4417, 29845}, {4418, 49470}, {4425, 32859}, {4641, 15569}, {4643, 6536}, {4651, 49497}, {4663, 44307}, {4666, 16475}, {4667, 41011}, {4683, 17364}, {4697, 32929}, {4851, 15523}, {4854, 17365}, {4865, 29835}, {4966, 24943}, {5047, 55103}, {5161, 37549}, {5197, 5425}, {5223, 42041}, {5228, 61376}, {5249, 33128}, {5251, 48855}, {5263, 42028}, {5268, 21805}, {5284, 16468}, {5333, 59312}, {5650, 53005}, {5712, 11269}, {5718, 29662}, {5791, 27577}, {6679, 29830}, {7304, 33770}, {8025, 17135}, {9332, 61155}, {9340, 35258}, {9708, 19282}, {10371, 27714}, {10430, 53014}, {10436, 17156}, {10453, 17379}, {10582, 16667}, {10980, 42040}, {15988, 24551}, {16454, 59302}, {16474, 30116}, {16484, 17127}, {16678, 18185}, {17012, 17063}, {17022, 30393}, {17027, 20132}, {17056, 24892}, {17125, 26102}, {17140, 32921}, {17147, 50281}, {17187, 18166}, {17234, 29850}, {17300, 25957}, {17316, 33163}, {17317, 29854}, {17378, 31134}, {17391, 29641}, {17394, 33295}, {17483, 33154}, {17593, 23958}, {17594, 21806}, {17597, 29819}, {17718, 29683}, {17778, 25760}, {17871, 44735}, {18134, 29631}, {18139, 25453}, {18524, 37698}, {19701, 30970}, {19715, 59308}, {19717, 25496}, {19730, 28247}, {19735, 28360}, {19767, 37607}, {19786, 33069}, {19858, 28619}, {20131, 24592}, {20148, 27158}, {20182, 46901}, {20961, 37516}, {22126, 59217}, {24210, 24725}, {24217, 33107}, {24239, 26282}, {24349, 32928}, {24552, 33682}, {24596, 50114}, {24703, 61707}, {24723, 62230}, {25502, 37680}, {26128, 29833}, {26842, 33149}, {26860, 32941}, {27186, 33132}, {27804, 32934}, {29633, 33172}, {29636, 33124}, {29643, 33121}, {29644, 46909}, {29645, 33122}, {29649, 46897}, {29653, 33114}, {29655, 33070}, {29659, 33078}, {29661, 35466}, {29667, 32846}, {29678, 37646}, {29687, 38047}, {29815, 49675}, {29818, 38315}, {29822, 32916}, {29841, 32775}, {29843, 32844}, {29847, 33126}, {29863, 30811}, {31019, 33135}, {31339, 56018}, {32774, 49676}, {32780, 32858}, {32784, 32863}, {32917, 37683}, {32918, 37684}, {32925, 34064}, {32938, 41839}, {32942, 46922}, {32946, 42045}, {33073, 33120}, {33092, 33170}, {33093, 33169}, {33094, 50307}, {33097, 33134}, {33103, 33155}, {33110, 50301}, {33111, 33142}, {33112, 33141}, {37522, 59301}, {37559, 48696}, {39247, 54382}, {40735, 55940}, {41423, 60724}, {42025, 43997}, {49990, 53663}, {50516, 57096}, {50524, 57129}, {54981, 57397}

X(62821) = reflection of X(i) in X(j) for these {i,j}: {5311, 37595}
X(62821) = isogonal conjugate of X(39737)
X(62821) = perspector of circumconic {{A, B, C, X(662), X(6013)}}
X(62821) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39737}, {2, 39961}
X(62821) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39737}, {32664, 39961}
X(62821) = pole of line {3733, 8655} with respect to the circumcircle
X(62821) = pole of line {8655, 20981} with respect to the Brocard inellipse
X(62821) = pole of line {650, 4132} with respect to the DeLongchamps ellipse
X(62821) = pole of line {2646, 4336} with respect to the Feuerbach hyperbola
X(62821) = pole of line {23090, 45755} with respect to the MacBeath circumconic
X(62821) = pole of line {1, 39737} with respect to the Stammler hyperbola
X(62821) = pole of line {75, 1962} with respect to the Wallace hyperbola
X(62821) = pole of line {5249, 40690} with respect to the dual conic of Yff parabola
X(62821) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32092)}}, {{A, B, C, X(6), X(39673)}}, {{A, B, C, X(21), X(1889)}}, {{A, B, C, X(31), X(40438)}}, {{A, B, C, X(38), X(39739)}}, {{A, B, C, X(75), X(1962)}}, {{A, B, C, X(81), X(10013)}}, {{A, B, C, X(968), X(969)}}, {{A, B, C, X(985), X(4658)}}, {{A, B, C, X(1621), X(2214)}}, {{A, B, C, X(2296), X(40749)}}, {{A, B, C, X(3573), X(43356)}}, {{A, B, C, X(3869), X(31503)}}, {{A, B, C, X(13476), X(28606)}}, {{A, B, C, X(18206), X(39948)}}, {{A, B, C, X(25417), X(40773)}}, {{A, B, C, X(28148), X(54353)}}
X(62821) = barycentric product X(i)*X(j) for these (i, j): {1, 15668}, {100, 48141}, {1889, 63}, {4042, 57}, {32092, 6}, {59306, 81}
X(62821) = barycentric quotient X(i)/X(j) for these (i, j): {6, 39737}, {31, 39961}, {1889, 92}, {4042, 312}, {15668, 75}, {32092, 76}, {48141, 693}, {59306, 321}
X(62821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1468, 10448}, {1, 32913, 28606}, {1, 63, 1962}, {1, 81, 31}, {2, 4038, 9345}, {2, 4649, 61358}, {6, 3720, 748}, {42, 940, 750}, {43, 37633, 17124}, {354, 1100, 17017}, {518, 37595, 5311}, {3751, 5287, 756}, {4038, 4649, 2}, {4042, 15668, 59306}, {5712, 11269, 33105}, {8025, 17135, 50302}, {10436, 17156, 21020}, {10453, 17379, 32772}, {14996, 17018, 171}, {17317, 33118, 29854}, {17378, 32773, 32949}, {18134, 29631, 31237}, {19717, 29824, 25496}, {24349, 58820, 32928}, {28606, 32913, 36263}, {29814, 37685, 238}, {29822, 37639, 32916}, {33142, 37635, 33111}, {33682, 42057, 24552}


X(62822) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(4867), X(3), X(1))

Barycentrics    a*(a^3+2*b^3-b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2+c^2)) : :
X(62822) = -3*X[3679]+5*X[31266], -3*X[5049]+2*X[58578], -4*X[5719]+3*X[10197], -3*X[10247]+X[22758], -9*X[25055]+7*X[55867], -9*X[38314]+5*X[55868]

X(62822) lies on these lines: {1, 21}, {2, 4867}, {3, 4084}, {6, 49682}, {8, 3822}, {10, 3940}, {36, 23958}, {41, 21372}, {46, 4757}, {57, 214}, {65, 5440}, {72, 30147}, {78, 3754}, {80, 31053}, {145, 1478}, {226, 519}, {355, 51518}, {382, 515}, {392, 44840}, {474, 33815}, {495, 5855}, {516, 54133}, {517, 25439}, {518, 50194}, {527, 30331}, {529, 37728}, {535, 3241}, {551, 4930}, {759, 56439}, {912, 10222}, {940, 53114}, {942, 30144}, {946, 45630}, {952, 18407}, {958, 4067}, {960, 30143}, {997, 5437}, {1125, 5730}, {1159, 1376}, {1319, 24473}, {1320, 5561}, {1389, 5881}, {1483, 5841}, {2098, 3635}, {2646, 4018}, {2800, 37533}, {2801, 3243}, {2802, 3870}, {2842, 26892}, {3218, 37525}, {3333, 51714}, {3338, 56387}, {3340, 3811}, {3452, 14563}, {3485, 25639}, {3550, 53115}, {3555, 11011}, {3576, 4973}, {3655, 35457}, {3656, 21630}, {3671, 17647}, {3678, 19860}, {3679, 31266}, {3711, 4745}, {3750, 17461}, {3814, 5748}, {3885, 11280}, {3984, 4015}, {4127, 41229}, {4134, 9708}, {4363, 25697}, {4393, 24630}, {4511, 5902}, {4525, 5220}, {4669, 40587}, {4677, 62236}, {4744, 36279}, {4848, 59719}, {5049, 58578}, {5313, 54315}, {5692, 27065}, {5709, 51717}, {5719, 10197}, {5722, 11813}, {5794, 11263}, {5903, 8715}, {6224, 17483}, {6702, 30852}, {6737, 12609}, {6738, 21616}, {6796, 37733}, {7308, 10176}, {7982, 18446}, {7983, 49470}, {8257, 30329}, {8680, 49471}, {9028, 49684}, {9352, 15015}, {9623, 58699}, {10247, 22758}, {10474, 17733}, {10483, 14450}, {10609, 11246}, {11041, 25568}, {11274, 14151}, {11552, 17579}, {12047, 41575}, {12563, 51706}, {12649, 24387}, {12650, 16204}, {12831, 25416}, {13464, 49627}, {14804, 45392}, {15935, 49736}, {16137, 25466}, {17063, 45763}, {17184, 48808}, {17451, 21373}, {18412, 60935}, {18421, 54286}, {18540, 31803}, {19861, 58565}, {20060, 37706}, {21740, 37625}, {22791, 44258}, {24474, 40257}, {24475, 46920}, {24929, 44663}, {25055, 55867}, {25525, 36922}, {25698, 41242}, {26223, 48826}, {28234, 49626}, {29046, 50284}, {29069, 49455}, {29148, 48333}, {31224, 58453}, {31458, 54398}, {31794, 59691}, {31870, 45770}, {33596, 40256}, {34377, 49465}, {37549, 50604}, {37571, 56288}, {37614, 59301}, {37724, 58798}, {38314, 55868}, {39542, 44669}, {41389, 61663}, {50193, 56176}, {50811, 60933}, {52769, 60989}, {54335, 60116}, {60089, 60261}, {61278, 61539}

X(62822) = midpoint of X(i) and X(j) for these {i,j}: {145, 1478}, {3870, 25415}, {7982, 18446}, {12831, 25416}, {31164, 51093}, {37727, 37826}
X(62822) = reflection of X(i) in X(j) for these {i,j}: {18389, 3881}, {51755, 13464}, {61539, 61278}, {8, 3822}, {993, 1}
X(62822) = anticomplement of X(54288)
X(62822) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60247}
X(62822) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60247}, {54288, 54288}
X(62822) = pole of line {3733, 39226} with respect to the circumcircle
X(62822) = pole of line {2646, 5439} with respect to the Feuerbach hyperbola
X(62822) = pole of line {5249, 17595} with respect to the dual conic of Yff parabola
X(62822) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(60079)}}, {{A, B, C, X(58), X(15173)}}, {{A, B, C, X(81), X(30834)}}, {{A, B, C, X(596), X(3897)}}, {{A, B, C, X(2650), X(60116)}}, {{A, B, C, X(5561), X(52680)}}, {{A, B, C, X(31359), X(35016)}}, {{A, B, C, X(34860), X(51111)}}
X(62822) = barycentric product X(i)*X(j) for these (i, j): {1, 30834}
X(62822) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60247}, {30834, 75}
X(62822) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 3881}, {1, 11682, 3884}, {1, 12514, 35016}, {1, 12559, 3874}, {1, 16126, 3868}, {1, 3868, 8666}, {1, 3869, 5248}, {1, 3894, 54391}, {1, 3899, 1621}, {1, 3901, 2975}, {1, 6763, 3897}, {1, 758, 993}, {65, 22836, 25440}, {758, 3881, 18389}, {997, 11529, 5883}, {1159, 1376, 3919}, {3485, 49168, 25639}, {4867, 5425, 2}, {5289, 15934, 551}, {5722, 34647, 11813}, {5903, 34772, 8715}, {37727, 37826, 515}


X(62823) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5223), X(3), X(1))

Barycentrics    a*(a^2-3*b^2+2*b*c-3*c^2+2*a*(b+c)) : :
X(62823) = -4*X[3452]+5*X[31249], -4*X[3816]+3*X[31142]

X(62823) lies on these lines: {1, 21}, {2, 5223}, {3, 41863}, {6, 3677}, {7, 4847}, {8, 3339}, {9, 354}, {10, 9776}, {11, 28609}, {40, 3555}, {43, 18193}, {46, 6765}, {55, 3243}, {56, 1260}, {57, 200}, {65, 4853}, {72, 3333}, {75, 57785}, {78, 3361}, {84, 12651}, {100, 53056}, {144, 10580}, {145, 4297}, {149, 50865}, {165, 3218}, {171, 16496}, {210, 4860}, {218, 38876}, {226, 5231}, {244, 23511}, {321, 35613}, {329, 5850}, {345, 4684}, {377, 4355}, {388, 24391}, {390, 28610}, {452, 6744}, {497, 527}, {516, 9965}, {517, 7171}, {519, 2093}, {529, 5727}, {553, 2550}, {614, 1743}, {672, 59216}, {726, 39594}, {748, 3973}, {899, 8056}, {908, 10584}, {936, 3338}, {938, 12527}, {940, 7174}, {942, 9708}, {956, 11529}, {958, 11518}, {962, 7992}, {982, 2999}, {984, 17022}, {1001, 3929}, {1002, 56509}, {1040, 8271}, {1071, 12565}, {1155, 3158}, {1320, 12767}, {1401, 3779}, {1420, 12635}, {1445, 20588}, {1449, 17599}, {1458, 3190}, {1473, 40910}, {1490, 12704}, {1617, 58328}, {1697, 34791}, {1698, 50393}, {1699, 5905}, {1706, 5221}, {1708, 5083}, {1709, 43166}, {1750, 2801}, {1757, 5272}, {1836, 24392}, {1998, 5536}, {1999, 35621}, {2003, 45728}, {2136, 37567}, {2340, 51302}, {2886, 4654}, {2900, 17660}, {2951, 11220}, {3052, 4864}, {3059, 60955}, {3062, 9812}, {3174, 60968}, {3185, 23391}, {3187, 17154}, {3210, 49495}, {3219, 4666}, {3241, 9819}, {3242, 5269}, {3244, 4305}, {3295, 54290}, {3304, 3962}, {3306, 3681}, {3340, 12513}, {3434, 4312}, {3452, 31249}, {3474, 5853}, {3475, 5745}, {3509, 51194}, {3600, 6737}, {3616, 3951}, {3620, 39597}, {3622, 30343}, {3632, 17647}, {3633, 36977}, {3640, 13389}, {3641, 13388}, {3679, 33085}, {3683, 38316}, {3703, 17296}, {3706, 4659}, {3715, 51780}, {3717, 18141}, {3720, 3731}, {3726, 16970}, {3729, 10453}, {3742, 5220}, {3749, 4650}, {3769, 24841}, {3784, 9052}, {3811, 15803}, {3816, 31142}, {3817, 30326}, {3872, 18421}, {3885, 12127}, {3886, 32939}, {3911, 25568}, {3913, 5128}, {3914, 4862}, {3922, 11530}, {3925, 6173}, {3927, 5045}, {3935, 23958}, {3955, 43149}, {3957, 35258}, {3976, 54386}, {3984, 5253}, {3989, 16673}, {3999, 4383}, {4018, 7982}, {4188, 53057}, {4301, 7995}, {4307, 62240}, {4310, 40940}, {4318, 34033}, {4326, 10391}, {4328, 54344}, {4334, 54383}, {4392, 5256}, {4413, 62218}, {4428, 15570}, {4511, 13462}, {4533, 16862}, {4640, 10389}, {4641, 7290}, {4661, 27003}, {4851, 4884}, {4863, 11246}, {4866, 9780}, {4880, 5119}, {4891, 17262}, {4902, 33136}, {4930, 25405}, {5082, 9953}, {5173, 12560}, {5176, 30286}, {5234, 54392}, {5249, 5785}, {5268, 49448}, {5271, 17140}, {5273, 11038}, {5285, 22769}, {5287, 7226}, {5290, 6734}, {5435, 6745}, {5438, 32636}, {5493, 56936}, {5534, 18524}, {5557, 41859}, {5574, 52888}, {5691, 12649}, {5692, 51816}, {5696, 17616}, {5705, 13407}, {5708, 10855}, {5729, 17626}, {5730, 61762}, {5732, 16465}, {5744, 13405}, {5815, 8582}, {5852, 24703}, {5902, 9623}, {5903, 10042}, {6604, 50559}, {6646, 29843}, {6743, 6904}, {7056, 9436}, {7191, 16469}, {7322, 37674}, {7354, 12625}, {7957, 9841}, {7962, 44663}, {7987, 34772}, {7988, 31053}, {8167, 15481}, {8226, 38036}, {8726, 12005}, {8769, 39742}, {8951, 27627}, {9312, 33765}, {9345, 42039}, {9352, 62236}, {9577, 37782}, {9580, 17768}, {9588, 10528}, {9612, 10916}, {9613, 49168}, {9614, 49627}, {9779, 52665}, {9797, 20070}, {9814, 60984}, {9851, 20008}, {10164, 11407}, {10270, 26877}, {10382, 54408}, {10383, 60974}, {10396, 50196}, {10483, 41709}, {10529, 11522}, {10591, 38271}, {11018, 38399}, {11021, 21061}, {11025, 60949}, {11037, 54398}, {11108, 50192}, {11194, 13384}, {11224, 38460}, {11240, 51423}, {11415, 51785}, {11519, 14923}, {11531, 36846}, {11679, 24349}, {11680, 31164}, {12650, 37625}, {14829, 49499}, {15299, 56545}, {15326, 34701}, {15490, 35341}, {15590, 50754}, {15733, 30353}, {16475, 17598}, {16487, 17127}, {16667, 17017}, {16833, 24596}, {17063, 49712}, {17064, 33103}, {17122, 49503}, {17145, 32929}, {17149, 18078}, {17151, 17155}, {17187, 18186}, {17188, 56020}, {17274, 32773}, {17282, 33118}, {17284, 33163}, {17298, 29641}, {17364, 29840}, {17594, 49490}, {17596, 49498}, {17728, 30827}, {17770, 29844}, {18229, 32771}, {18398, 41229}, {18452, 28236}, {18515, 37533}, {18519, 24474}, {18839, 30223}, {19789, 50758}, {20012, 62300}, {20060, 37714}, {20067, 34628}, {20076, 41575}, {20078, 60905}, {20991, 23089}, {23681, 24231}, {24393, 26040}, {24430, 57022}, {25006, 38052}, {25527, 33121}, {25557, 41867}, {25590, 31330}, {29670, 49535}, {29824, 56082}, {29839, 59779}, {29857, 33069}, {30567, 32937}, {30568, 62222}, {31140, 60963}, {32853, 42055}, {32915, 55998}, {32916, 49491}, {32932, 49451}, {32942, 50127}, {33124, 56519}, {34690, 37708}, {34716, 37740}, {34784, 60938}, {35892, 44421}, {37551, 58567}, {37553, 49478}, {37556, 58609}, {37569, 52027}, {37618, 41696}, {37704, 51409}, {37723, 57288}, {41573, 61010}, {42014, 60953}, {42038, 61358}, {45729, 52423}, {47375, 60989}, {52511, 59181}, {53053, 56288}, {58629, 61158}, {60980, 61031}, {61005, 61033}

X(62823) = midpoint of X(i) and X(j) for these {i,j}: {9965, 36845}
X(62823) = reflection of X(i) in X(j) for these {i,j}: {200, 57}, {329, 11019}
X(62823) = anticomplement of X(21060)
X(62823) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60092}
X(62823) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60092}, {21060, 21060}
X(62823) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1412, 31527}, {3062, 1330}, {10405, 21287}, {11051, 2895}, {55284, 21301}
X(62823) = pole of line {6003, 48042} with respect to the Conway circle
X(62823) = pole of line {2646, 4326} with respect to the Feuerbach hyperbola
X(62823) = pole of line {4560, 17218} with respect to the Steiner circumellipse
X(62823) = pole of line {75, 4512} with respect to the Wallace hyperbola
X(62823) = pole of line {5249, 5308} with respect to the dual conic of Yff parabola
X(62823) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(39959)}}, {{A, B, C, X(58), X(5022)}}, {{A, B, C, X(75), X(4512)}}, {{A, B, C, X(81), X(4869)}}, {{A, B, C, X(596), X(31424)}}, {{A, B, C, X(1707), X(39742)}}, {{A, B, C, X(2328), X(42015)}}, {{A, B, C, X(8616), X(8769)}}, {{A, B, C, X(9812), X(32003)}}
X(62823) = barycentric product X(i)*X(j) for these (i, j): {1, 4869}, {5022, 75}, {57534, 63}
X(62823) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60092}, {4869, 75}, {5022, 1}, {57534, 92}
X(62823) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16570, 8616}, {1, 54422, 12526}, {1, 63, 4512}, {1, 6763, 31424}, {6, 21342, 3677}, {9, 354, 10582}, {43, 18193, 62695}, {57, 17625, 4321}, {57, 518, 200}, {72, 3333, 8583}, {144, 10580, 40998}, {210, 4860, 5437}, {226, 24477, 5231}, {614, 32912, 1743}, {956, 24473, 11529}, {982, 3751, 2999}, {2975, 11520, 1}, {3218, 4430, 3870}, {3243, 3928, 55}, {3306, 3681, 8580}, {3338, 5904, 936}, {3742, 5220, 7308}, {3927, 5045, 31435}, {3929, 44841, 1001}, {3999, 4383, 5573}, {4640, 42871, 10389}, {4641, 17597, 7290}, {4650, 49675, 3749}, {5208, 18206, 17194}, {5223, 10980, 2}, {5850, 11019, 329}, {5905, 26015, 1699}, {9965, 36845, 516}, {15185, 60990, 4326}, {15481, 58560, 8167}, {17155, 17156, 17151}, {17449, 32912, 614}, {24231, 33137, 23681}, {24392, 60933, 1836}, {37674, 49515, 7322}


X(62824) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5234), X(3), X(1))

Barycentrics    a*(3*a^3+a^2*(b+c)-(b+c)^3+a*(-3*b^2+2*b*c-3*c^2)) : :
X(62824) =

X(62824) lies on these lines: {1, 21}, {2, 3361}, {3, 200}, {4, 5231}, {8, 165}, {9, 56}, {10, 4293}, {20, 4847}, {35, 6765}, {36, 936}, {40, 956}, {46, 5258}, {55, 6762}, {57, 958}, {65, 3928}, {72, 3576}, {78, 5223}, {84, 3428}, {92, 31903}, {100, 4882}, {104, 55104}, {144, 3616}, {145, 8275}, {172, 16517}, {210, 5204}, {219, 34046}, {220, 52635}, {226, 30478}, {238, 41772}, {329, 1125}, {348, 17106}, {354, 5436}, {388, 5745}, {392, 61762}, {404, 8580}, {405, 3333}, {452, 11019}, {517, 54290}, {518, 3601}, {519, 4305}, {527, 3485}, {529, 9578}, {553, 28629}, {604, 15479}, {610, 23361}, {612, 56777}, {631, 21075}, {728, 42316}, {908, 3624}, {944, 10268}, {950, 24477}, {960, 1420}, {988, 2999}, {997, 37313}, {999, 31435}, {1012, 12651}, {1104, 3677}, {1155, 1706}, {1193, 1743}, {1203, 55400}, {1259, 15931}, {1260, 8273}, {1319, 15829}, {1329, 31231}, {1385, 3927}, {1388, 31165}, {1434, 10436}, {1453, 37592}, {1467, 55869}, {1478, 5705}, {1490, 11012}, {1697, 4640}, {1698, 3436}, {1699, 10527}, {1722, 62695}, {1788, 5795}, {1791, 7131}, {1998, 20846}, {2136, 37568}, {2184, 36017}, {2242, 31442}, {2551, 3911}, {2646, 11523}, {2886, 9579}, {3086, 12572}, {3158, 5217}, {3174, 37601}, {3218, 3339}, {3219, 13462}, {3243, 37080}, {3304, 3683}, {3305, 5253}, {3306, 5260}, {3338, 5251}, {3421, 6684}, {3452, 7288}, {3476, 5837}, {3486, 24391}, {3523, 5815}, {3524, 59587}, {3555, 16370}, {3586, 10916}, {3600, 5273}, {3612, 5904}, {3622, 5558}, {3632, 59316}, {3649, 60933}, {3671, 9965}, {3679, 17647}, {3681, 4855}, {3697, 16371}, {3730, 4936}, {3731, 54310}, {3811, 5267}, {3813, 9580}, {3870, 4189}, {3871, 31508}, {3872, 7991}, {3876, 12059}, {3895, 11519}, {3913, 35445}, {3935, 17548}, {3940, 13624}, {3951, 4511}, {3962, 34471}, {4005, 45036}, {4091, 58339}, {4188, 4866}, {4190, 25006}, {4209, 4384}, {4252, 5269}, {4292, 19843}, {4314, 17576}, {4315, 18249}, {4317, 31446}, {4327, 5279}, {4334, 28287}, {4355, 5249}, {4428, 58609}, {4533, 35271}, {4647, 20220}, {4654, 28628}, {4662, 46917}, {4666, 16865}, {4861, 11531}, {4863, 15338}, {4996, 5531}, {4999, 5219}, {5045, 16418}, {5080, 7989}, {5082, 31730}, {5084, 31249}, {5119, 5288}, {5122, 9709}, {5128, 5836}, {5131, 5176}, {5175, 28164}, {5220, 59691}, {5225, 24386}, {5227, 22769}, {5259, 51816}, {5265, 18228}, {5268, 19314}, {5271, 14953}, {5272, 16048}, {5285, 22654}, {5291, 9593}, {5298, 24954}, {5302, 7308}, {5433, 30827}, {5435, 8582}, {5437, 32636}, {5441, 41709}, {5450, 6282}, {5563, 56545}, {5584, 9841}, {5657, 10270}, {5687, 35242}, {5691, 6734}, {5692, 37618}, {5696, 5732}, {5698, 12053}, {5709, 22758}, {5720, 26286}, {5726, 20060}, {5731, 6737}, {5748, 19862}, {5791, 18990}, {5905, 24541}, {6067, 52835}, {6173, 52783}, {6284, 24392}, {6502, 31438}, {6691, 20196}, {6735, 9588}, {6769, 6906}, {6857, 21620}, {6872, 26015}, {7080, 10164}, {7171, 35239}, {7174, 37539}, {7330, 11249}, {7580, 10864}, {7677, 60949}, {7719, 37245}, {7962, 11260}, {8171, 12128}, {8227, 58798}, {8572, 16885}, {9436, 24570}, {9581, 57288}, {9589, 44447}, {9592, 54406}, {9612, 26363}, {9614, 45700}, {9624, 51409}, {9708, 37582}, {9780, 53057}, {9819, 36846}, {10106, 34610}, {10382, 26357}, {10389, 34791}, {10404, 24953}, {10434, 22345}, {10529, 51785}, {10580, 11106}, {10624, 34625}, {10860, 34862}, {10882, 21061}, {10944, 34716}, {10966, 30223}, {10980, 54392}, {11037, 17558}, {11111, 31146}, {11240, 50836}, {11375, 28609}, {11415, 11522}, {11512, 54390}, {11679, 37416}, {11691, 55168}, {12125, 13587}, {12127, 53052}, {12436, 19855}, {12512, 17784}, {12520, 30304}, {12560, 60990}, {12609, 31458}, {12635, 13384}, {12705, 22770}, {13279, 51768}, {13738, 16552}, {14740, 38693}, {14872, 52026}, {14986, 40998}, {15015, 46685}, {15174, 36867}, {15254, 36973}, {15325, 25522}, {15950, 60977}, {16466, 55406}, {16475, 43216}, {16823, 30625}, {16832, 17683}, {16833, 24633}, {17022, 37607}, {17151, 27368}, {17169, 20245}, {17528, 31776}, {17609, 38316}, {17658, 58637}, {17691, 24600}, {17742, 37246}, {17757, 31423}, {17781, 25055}, {18395, 31515}, {19582, 25728}, {19784, 55905}, {19836, 55910}, {19880, 32781}, {19881, 55902}, {20076, 24987}, {20223, 54335}, {21060, 27383}, {21384, 37575}, {22129, 34043}, {22759, 37550}, {22760, 54408}, {23085, 37619}, {24390, 41869}, {24703, 50443}, {24914, 34606}, {24929, 41863}, {25253, 25734}, {25512, 27287}, {25681, 31142}, {26264, 51301}, {26321, 37584}, {26921, 32153}, {27627, 45047}, {28011, 60846}, {30392, 56387}, {30567, 56311}, {30852, 34595}, {31330, 56984}, {31422, 52959}, {31429, 54416}, {31436, 49626}, {31453, 51842}, {32577, 46943}, {32919, 35629}, {34772, 53054}, {35252, 40263}, {35657, 48883}, {36476, 36540}, {36483, 36529}, {36498, 36572}, {36504, 36560}, {37600, 47375}, {37617, 54386}, {38053, 61003}, {44841, 51715}, {53270, 53400}, {59372, 60979}, {61834, 62710}

X(62824) = reflection of X(i) in X(j) for these {i,j}: {9578, 26066}, {9612, 26363}
X(62824) = anticomplement of X(3947)
X(62824) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 53088}, {6, 45100}
X(62824) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 45100}, {3947, 3947}, {32664, 53088}
X(62824) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2150, 41930}, {30711, 21287}, {39948, 2893}
X(62824) = pole of line {3733, 58329} with respect to the circumcircle
X(62824) = pole of line {100, 59125} with respect to the Kiepert parabola
X(62824) = pole of line {101, 59125} with respect to the Hutson-Moses hyperbola
X(62824) = pole of line {75, 12526} with respect to the Wallace hyperbola
X(62824) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(2297)}}, {{A, B, C, X(58), X(963)}}, {{A, B, C, X(75), X(12526)}}, {{A, B, C, X(81), X(7091)}}, {{A, B, C, X(596), X(54422)}}, {{A, B, C, X(1696), X(53089)}}, {{A, B, C, X(2184), X(28606)}}, {{A, B, C, X(7131), X(17185)}}
X(62824) = barycentric product X(i)*X(j) for these (i, j): {1, 37655}
X(62824) = barycentric quotient X(i)/X(j) for these (i, j): {1, 45100}, {31, 53088}, {37655, 75}
X(62824) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31424, 4512}, {1, 63, 12526}, {1, 6763, 54422}, {3, 57279, 200}, {8, 4652, 165}, {9, 5120, 2297}, {9, 56, 8583}, {36, 41229, 936}, {46, 5258, 9623}, {63, 11682, 11684}, {84, 3428, 12565}, {145, 35258, 53053}, {210, 5204, 5438}, {405, 3333, 10582}, {529, 26066, 9578}, {944, 21165, 10268}, {956, 3916, 40}, {960, 11194, 1420}, {988, 5247, 2999}, {999, 31445, 31435}, {1420, 3929, 960}, {3218, 19860, 3339}, {3361, 5234, 2}, {3436, 59491, 1698}, {3681, 5303, 4855}, {3811, 5267, 30282}, {3872, 56288, 7991}, {4640, 12513, 1697}, {4855, 5303, 58221}, {4882, 16192, 100}, {5119, 5288, 12629}, {5223, 7987, 78}, {5250, 54391, 1}, {5302, 25524, 7308}, {10085, 59320, 5732}, {10404, 24953, 25525}, {11522, 60905, 11415}, {17576, 36845, 4314}, {20076, 55868, 24987}, {26921, 32153, 37611}, {51576, 53053, 35258}


X(62825) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5288), X(3), X(1))

Barycentrics    a*(a^3-b*c*(b+c)-a*(b^2-4*b*c+c^2)) : :
X(62825) = -2*X[1329]+3*X[10199]

X(62825) lies on these lines: {1, 21}, {2, 5288}, {3, 3244}, {8, 5563}, {9, 9327}, {10, 999}, {35, 3241}, {36, 145}, {40, 4973}, {44, 9351}, {46, 2802}, {55, 3635}, {56, 519}, {65, 22837}, {72, 20323}, {100, 3633}, {104, 7982}, {106, 978}, {149, 10483}, {171, 50637}, {198, 4856}, {214, 1420}, {226, 18967}, {238, 29696}, {354, 30147}, {388, 25639}, {404, 3632}, {405, 3636}, {474, 3626}, {484, 3885}, {495, 6668}, {496, 529}, {515, 10680}, {518, 24928}, {527, 42886}, {535, 1479}, {551, 958}, {759, 39702}, {942, 11260}, {946, 18761}, {956, 1125}, {960, 51788}, {982, 15955}, {988, 4868}, {996, 3831}, {997, 6762}, {1001, 61000}, {1014, 17151}, {1056, 26363}, {1058, 34610}, {1149, 1724}, {1319, 3555}, {1320, 61769}, {1329, 10199}, {1376, 3625}, {1385, 34791}, {1476, 3361}, {1478, 10529}, {1482, 4084}, {1483, 26286}, {1788, 5193}, {2170, 17736}, {2217, 39697}, {2242, 17448}, {2801, 12776}, {3086, 3814}, {3149, 28236}, {3208, 5030}, {3216, 32577}, {3218, 5697}, {3243, 52769}, {3295, 5267}, {3306, 3918}, {3333, 5883}, {3336, 14923}, {3338, 3754}, {3421, 10200}, {3434, 4317}, {3436, 3825}, {3476, 49168}, {3582, 11681}, {3585, 34605}, {3600, 34625}, {3616, 5258}, {3622, 5251}, {3623, 3746}, {3656, 26321}, {3678, 19861}, {3679, 5253}, {3726, 53165}, {3813, 18990}, {3822, 10527}, {3870, 37618}, {3871, 7280}, {3880, 37582}, {3895, 58887}, {3911, 10915}, {3916, 5919}, {3919, 5708}, {3924, 4694}, {3950, 5120}, {3953, 49487}, {3957, 37571}, {4018, 5048}, {4067, 5289}, {4188, 20050}, {4189, 20057}, {4253, 56530}, {4257, 37588}, {4292, 49600}, {4297, 22770}, {4301, 12114}, {4315, 17647}, {4324, 34611}, {4413, 4691}, {4430, 41696}, {4640, 31792}, {4669, 9709}, {4757, 25415}, {4849, 15854}, {4860, 33815}, {4861, 5902}, {4982, 37503}, {4999, 10197}, {5045, 30143}, {5080, 37720}, {5126, 56176}, {5259, 38314}, {5260, 25055}, {5264, 54310}, {5265, 34619}, {5270, 11680}, {5322, 19993}, {5433, 34749}, {5434, 24390}, {5493, 8158}, {5525, 26690}, {5552, 6681}, {5587, 45977}, {5691, 38669}, {5731, 12511}, {5841, 32214}, {5844, 32612}, {5850, 42884}, {5882, 11249}, {5903, 38460}, {6684, 16203}, {6736, 58405}, {6765, 13462}, {6796, 22765}, {6905, 61296}, {6906, 16200}, {6909, 11531}, {6911, 47745}, {6914, 33179}, {6915, 37712}, {6918, 38155}, {6920, 61275}, {6986, 30392}, {7283, 38475}, {7288, 45701}, {7489, 61277}, {7508, 61281}, {7741, 20060}, {7967, 11012}, {8256, 34753}, {9310, 45751}, {9336, 33854}, {9655, 11235}, {9708, 19862}, {9797, 59323}, {10056, 58404}, {10106, 10916}, {10176, 57279}, {10179, 31445}, {10222, 32153}, {10269, 11362}, {10475, 17733}, {10573, 36977}, {10707, 18514}, {10912, 36279}, {10914, 32636}, {11011, 24473}, {11108, 15808}, {11322, 50001}, {11329, 49770}, {11373, 11813}, {11491, 61291}, {12001, 13464}, {12005, 61146}, {12245, 37561}, {12577, 51706}, {12607, 15325}, {12699, 12773}, {15571, 32935}, {15888, 31260}, {16417, 34641}, {16453, 50588}, {16499, 59305}, {16788, 17474}, {17100, 26726}, {18481, 62318}, {18483, 18519}, {19297, 50131}, {19704, 51095}, {19860, 51816}, {20066, 34719}, {20470, 49497}, {21077, 44675}, {21477, 49765}, {21495, 29605}, {21669, 60933}, {21842, 34772}, {22560, 33337}, {22769, 49684}, {23340, 40256}, {23675, 50759}, {23958, 41702}, {24443, 49494}, {24929, 58609}, {26015, 45287}, {28228, 37022}, {31053, 37735}, {32613, 61286}, {33895, 50193}, {34620, 34649}, {35239, 51705}, {36205, 50023}, {37251, 61244}, {37576, 49771}, {37609, 49458}, {37621, 61284}, {46684, 49163}

X(62825) = midpoint of X(i) and X(j) for these {i,j}: {46, 36846}, {1479, 20076}, {3555, 41538}, {10573, 36977}
X(62825) = reflection of X(i) in X(j) for these {i,j}: {21075, 1125}, {25440, 56}, {30144, 24928}, {3436, 3825}, {6736, 58405}, {8256, 34753}
X(62825) = pole of line {3733, 6006} with respect to the circumcircle
X(62825) = pole of line {4132, 59972} with respect to the DeLongchamps ellipse
X(62825) = pole of line {2646, 17622} with respect to the Feuerbach hyperbola
X(62825) = pole of line {100, 58123} with respect to the Kiepert parabola
X(62825) = pole of line {101, 58123} with respect to the Hutson-Moses hyperbola
X(62825) = pole of line {75, 3884} with respect to the Wallace hyperbola
X(62825) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3890)}}, {{A, B, C, X(21), X(56145)}}, {{A, B, C, X(58), X(15180)}}, {{A, B, C, X(75), X(3884)}}, {{A, B, C, X(596), X(3877)}}, {{A, B, C, X(758), X(39702)}}, {{A, B, C, X(2217), X(40091)}}, {{A, B, C, X(3869), X(39697)}}, {{A, B, C, X(3878), X(34860)}}, {{A, B, C, X(3898), X(31359)}}, {{A, B, C, X(39969), X(52680)}}
X(62825) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12514, 3898}, {1, 191, 3890}, {1, 2975, 5248}, {1, 54391, 8666}, {1, 63, 3884}, {1, 6763, 3877}, {1, 8666, 993}, {3, 3244, 25439}, {36, 145, 8715}, {46, 36846, 2802}, {56, 519, 25440}, {388, 45700, 25639}, {518, 24928, 30144}, {956, 3304, 1125}, {958, 7373, 551}, {997, 61762, 51714}, {999, 12513, 10}, {1319, 3555, 22836}, {1420, 3811, 214}, {1478, 10529, 24387}, {1479, 20076, 535}, {3338, 3872, 3754}, {3361, 12629, 54286}, {3436, 10072, 3825}, {3632, 37587, 404}, {3892, 51111, 1}, {5248, 8666, 2975}, {5258, 37602, 3616}, {5267, 51071, 3295}, {6762, 61762, 997}, {7280, 51093, 3871}, {7741, 34690, 20060}, {12001, 22758, 13464}, {19860, 51816, 58565}, {22765, 37727, 6796}


X(62826) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5289), X(3), X(1))

Barycentrics    a*(a^3+2*b^3-b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2-3*b*c+c^2)) : :
X(62826) = -2*X[1155]+3*X[4881], -4*X[1737]+5*X[31272], -2*X[11545]+3*X[17533], -2*X[15228]+3*X[36005]

X(62826) lies on these lines: {1, 21}, {2, 2099}, {5, 8}, {10, 5443}, {11, 5855}, {30, 5180}, {40, 54192}, {56, 18419}, {65, 5253}, {72, 1173}, {78, 6915}, {80, 519}, {86, 21273}, {92, 49687}, {100, 517}, {101, 21372}, {104, 14988}, {144, 42871}, {145, 497}, {149, 44669}, {200, 11224}, {214, 484}, {244, 47623}, {314, 54121}, {320, 3007}, {329, 3241}, {392, 5284}, {404, 5903}, {411, 40257}, {515, 5057}, {518, 5048}, {523, 4833}, {527, 14151}, {529, 1317}, {535, 10031}, {551, 5425}, {644, 57015}, {664, 20347}, {912, 38669}, {932, 59017}, {944, 7491}, {946, 5086}, {952, 5080}, {956, 7489}, {960, 5260}, {962, 37468}, {995, 54315}, {997, 25415}, {999, 19525}, {1000, 11239}, {1149, 3315}, {1155, 4881}, {1319, 3218}, {1385, 5303}, {1617, 18467}, {1737, 31272}, {1739, 45763}, {1761, 17438}, {1904, 11396}, {1953, 2287}, {2093, 9352}, {2096, 5731}, {2320, 16370}, {2800, 6909}, {2802, 45764}, {2886, 14527}, {3057, 34772}, {3177, 32095}, {3219, 31165}, {3243, 7671}, {3306, 18421}, {3337, 4757}, {3340, 5437}, {3419, 3656}, {3421, 6965}, {3434, 6839}, {3476, 5905}, {3509, 17439}, {3616, 7483}, {3621, 10912}, {3634, 38410}, {3635, 12527}, {3679, 30852}, {3681, 3872}, {3753, 9342}, {3754, 17531}, {3811, 3885}, {3814, 41684}, {3870, 7962}, {3871, 5697}, {3880, 3935}, {3891, 20037}, {3916, 15178}, {3930, 4919}, {3936, 60452}, {3957, 5919}, {3962, 11260}, {3984, 4853}, {4018, 24928}, {4067, 5288}, {4084, 5563}, {4188, 37567}, {4189, 34471}, {4193, 10573}, {4225, 23846}, {4301, 57287}, {4318, 6510}, {4323, 47516}, {4345, 36845}, {4360, 20245}, {4393, 24612}, {4420, 10914}, {4462, 48333}, {4645, 47624}, {4694, 47622}, {4695, 5529}, {4720, 14213}, {4723, 4767}, {4855, 7991}, {4863, 34640}, {4915, 16191}, {4996, 19907}, {5047, 30147}, {5082, 6900}, {5123, 36920}, {5178, 6737}, {5239, 7052}, {5240, 33655}, {5252, 31053}, {5267, 24926}, {5315, 49682}, {5434, 17483}, {5538, 13253}, {5552, 6949}, {5687, 8148}, {5690, 27529}, {5724, 33107}, {5744, 15934}, {5837, 24541}, {5904, 22837}, {6001, 9964}, {6603, 57192}, {6734, 13464}, {6735, 28234}, {6745, 51433}, {6852, 10527}, {6882, 12247}, {6906, 46920}, {6940, 35004}, {6979, 7080}, {7308, 15829}, {7508, 10246}, {7672, 8257}, {7677, 45234}, {7951, 59416}, {7971, 9961}, {8543, 61004}, {8822, 17221}, {10025, 10699}, {10032, 50824}, {10179, 29817}, {10306, 38901}, {10453, 37354}, {10609, 28174}, {10944, 20060}, {11014, 31806}, {11362, 27385}, {11523, 36846}, {11545, 17533}, {11691, 55173}, {12053, 41575}, {12530, 61086}, {12532, 12737}, {12648, 25568}, {12649, 26475}, {13384, 35258}, {14008, 17135}, {14450, 18990}, {14882, 37293}, {14942, 61184}, {15228, 36005}, {16474, 54444}, {16483, 55399}, {16486, 55405}, {16561, 21801}, {16826, 24633}, {17054, 28370}, {17097, 24987}, {17100, 35000}, {17377, 21286}, {17541, 30136}, {17549, 37525}, {17577, 18393}, {17614, 50193}, {17751, 51870}, {17768, 20067}, {17781, 51071}, {19784, 55904}, {20042, 45247}, {20057, 50241}, {20078, 34610}, {21770, 56000}, {22791, 37230}, {23140, 34040}, {23675, 26729}, {24473, 51788}, {24583, 29586}, {24703, 37740}, {25005, 25681}, {25722, 43166}, {26286, 45392}, {26610, 30826}, {26792, 34606}, {28452, 49719}, {30076, 32923}, {30305, 34611}, {30331, 60979}, {30446, 41014}, {30566, 36926}, {31141, 34743}, {31145, 46873}, {31948, 56877}, {32911, 49487}, {33337, 36975}, {33595, 51787}, {34434, 41723}, {34758, 37535}, {34932, 50898}, {35102, 60692}, {36534, 56882}, {36565, 37542}, {37311, 54081}, {37680, 60353}, {37727, 58798}, {37734, 57288}, {40587, 53620}, {41348, 45036}, {42819, 60970}, {43216, 49465}, {45955, 56878}, {50015, 56883}, {50601, 50637}, {54398, 59350}

X(62826) = midpoint of X(i) and X(j) for these {i,j}: {962, 54193}, {5180, 6224}, {5538, 13253}, {35457, 48667}
X(62826) = reflection of X(i) in X(j) for these {i,j}: {100, 4511}, {11684, 48698}, {12247, 6882}, {12531, 5176}, {22765, 19907}, {3218, 1319}, {36920, 5123}, {36975, 33337}, {38460, 5048}, {40, 54192}, {484, 214}, {41684, 3814}, {5057, 51423}, {5080, 51409}, {5176, 908}, {50890, 31160}, {51433, 6745}, {54154, 946}, {54391, 1}, {6905, 6265}, {8, 17757}, {80, 11813}
X(62826) = anticomplement of X(40663)
X(62826) = perspector of circumconic {{A, B, C, X(662), X(31628)}}
X(62826) = X(i)-Dao conjugate of X(j) for these {i, j}: {40663, 40663}
X(62826) = X(i)-Ceva conjugate of X(j) for these {i, j}: {52377, 100}
X(62826) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {21, 21290}, {88, 2893}, {106, 2475}, {284, 30578}, {1320, 1330}, {1333, 30577}, {1797, 2897}, {2150, 30579}, {2194, 17487}, {2316, 2895}, {4591, 693}, {4622, 21302}, {4997, 21287}, {9268, 3909}, {9456, 17778}, {23838, 3448}, {32659, 18667}, {36058, 3152}, {60480, 21294}
X(62826) = pole of line {3733, 4225} with respect to the circumcircle
X(62826) = pole of line {6003, 14284} with respect to the incircle
X(62826) = pole of line {407, 24006} with respect to the polar circle
X(62826) = pole of line {100, 2646} with respect to the Feuerbach hyperbola
X(62826) = pole of line {100, 522} with respect to the Kiepert parabola
X(62826) = pole of line {1, 47483} with respect to the Stammler hyperbola
X(62826) = pole of line {333, 4560} with respect to the Steiner circumellipse
X(62826) = pole of line {14838, 21198} with respect to the Steiner inellipse
X(62826) = pole of line {101, 650} with respect to the Hutson-Moses hyperbola
X(62826) = pole of line {75, 17136} with respect to the Wallace hyperbola
X(62826) = pole of line {88, 5249} with respect to the dual conic of Yff parabola
X(62826) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56321)}}, {{A, B, C, X(10), X(51111)}}, {{A, B, C, X(21), X(36590)}}, {{A, B, C, X(58), X(953)}}, {{A, B, C, X(80), X(52479)}}, {{A, B, C, X(320), X(5176)}}, {{A, B, C, X(523), X(2650)}}, {{A, B, C, X(758), X(4013)}}, {{A, B, C, X(952), X(22935)}}, {{A, B, C, X(1385), X(61510)}}, {{A, B, C, X(3897), X(31359)}}, {{A, B, C, X(4945), X(36100)}}, {{A, B, C, X(38832), X(59017)}}, {{A, B, C, X(40430), X(51683)}}
X(62826) = barycentric product X(i)*X(j) for these (i, j): {45260, 4567}
X(62826) = barycentric quotient X(i)/X(j) for these (i, j): {45260, 16732}
X(62826) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11682, 3869}, {1, 12514, 3897}, {1, 12559, 3889}, {1, 16126, 3881}, {1, 191, 51111}, {1, 21, 51683}, {1, 3869, 2975}, {1, 3877, 1621}, {1, 3878, 21}, {1, 3899, 993}, {1, 758, 54391}, {5, 1482, 1389}, {8, 5603, 11680}, {10, 5443, 7504}, {72, 10222, 4861}, {78, 7982, 14923}, {80, 11813, 37375}, {145, 5046, 10950}, {214, 484, 13587}, {515, 51423, 5057}, {517, 4511, 100}, {517, 6265, 6905}, {518, 5048, 38460}, {519, 11813, 80}, {519, 31160, 50890}, {519, 5176, 12531}, {519, 908, 5176}, {952, 51409, 5080}, {1319, 44663, 3218}, {1320, 4867, 62236}, {1385, 56288, 5303}, {1482, 5730, 8}, {2093, 35262, 9352}, {2098, 12635, 145}, {2099, 5289, 2}, {2975, 3869, 11684}, {3476, 5905, 34605}, {3811, 30323, 3885}, {3814, 41684, 59415}, {3962, 33176, 11260}, {4757, 51714, 3337}, {5252, 34647, 31053}, {5697, 22836, 3871}, {5903, 30144, 404}, {10179, 44840, 29817}, {25681, 41687, 25005}, {35457, 48667, 30}


X(62827) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5302), X(3), X(1))

Barycentrics    a*(2*a^3-b^3-2*b^2*c-2*b*c^2-c^3+a^2*(b+c)+a*(-2*b^2+b*c-2*c^2)) : :

X(62827) lies on these lines: {1, 21}, {2, 5302}, {3, 3681}, {8, 376}, {9, 5253}, {10, 9352}, {20, 5178}, {36, 3876}, {40, 32634}, {44, 2277}, {56, 3219}, {57, 5260}, {72, 3431}, {75, 18661}, {78, 5303}, {92, 31900}, {100, 4652}, {104, 26921}, {144, 15254}, {145, 4640}, {210, 4188}, {329, 5550}, {354, 16865}, {388, 55868}, {404, 7284}, {443, 3436}, {474, 51572}, {518, 4189}, {527, 24541}, {756, 37608}, {908, 19862}, {956, 12702}, {958, 3218}, {988, 32911}, {1104, 4392}, {1125, 17781}, {1155, 3617}, {1201, 7262}, {1698, 4973}, {1776, 10966}, {1791, 55985}, {1836, 20084}, {3177, 32005}, {3189, 3621}, {3296, 3616}, {3305, 3361}, {3306, 5234}, {3333, 5284}, {3338, 5047}, {3428, 9961}, {3485, 20078}, {3576, 3951}, {3578, 35203}, {3622, 3683}, {3626, 37572}, {3634, 11681}, {3648, 12699}, {3650, 22791}, {3655, 22937}, {3656, 22936}, {3678, 7280}, {3697, 5122}, {3705, 48939}, {3714, 5372}, {3740, 17572}, {3742, 16859}, {3811, 17549}, {3812, 23958}, {3872, 54290}, {3885, 5288}, {3920, 4252}, {3927, 4511}, {3928, 19860}, {3929, 19861}, {3935, 5217}, {3983, 61156}, {3984, 7987}, {4067, 37525}, {4195, 46909}, {4201, 33114}, {4292, 33108}, {4298, 54357}, {4427, 4673}, {4430, 37080}, {4462, 4782}, {4650, 10459}, {4661, 17548}, {4816, 12531}, {4850, 5247}, {4855, 5223}, {4861, 8148}, {4863, 20066}, {4870, 28645}, {4880, 30147}, {4917, 31508}, {4996, 12738}, {4999, 31053}, {5057, 10527}, {5080, 6900}, {5086, 6869}, {5204, 5220}, {5267, 5904}, {5282, 26690}, {5290, 55867}, {5325, 24564}, {5433, 27131}, {5434, 18253}, {5534, 59421}, {5686, 37267}, {5698, 10529}, {5905, 30478}, {6601, 30332}, {6734, 31673}, {6762, 35258}, {6872, 24477}, {6912, 12704}, {7098, 22759}, {7226, 37539}, {7288, 31018}, {7292, 19724}, {7411, 10085}, {7677, 61005}, {7964, 50693}, {8720, 32860}, {9778, 34862}, {9965, 15823}, {10032, 31162}, {10129, 26363}, {10269, 26878}, {10371, 33168}, {10394, 26357}, {10916, 11114}, {11012, 12528}, {11220, 59320}, {11375, 17484}, {11512, 37687}, {11680, 18483}, {11691, 55171}, {12520, 13243}, {12675, 37106}, {15485, 46190}, {15489, 61640}, {15601, 25731}, {16397, 50075}, {16815, 24612}, {16816, 24633}, {17162, 56945}, {17483, 28628}, {17574, 59337}, {17676, 33121}, {17728, 37162}, {17733, 42044}, {18357, 28452}, {18601, 27660}, {19278, 46897}, {19784, 55906}, {19836, 55911}, {19843, 20292}, {19881, 55916}, {20060, 26066}, {20077, 33070}, {20245, 41847}, {22076, 23155}, {22769, 59359}, {24953, 31019}, {24987, 34605}, {25005, 34606}, {25306, 48936}, {25524, 27065}, {25681, 26792}, {25722, 43178}, {26446, 56880}, {27186, 52783}, {27368, 50106}, {27577, 48825}, {29664, 49745}, {31730, 49719}, {32157, 34689}, {32933, 39552}, {33075, 54429}, {33118, 56782}, {33126, 56781}, {33142, 50065}, {34046, 55466}, {34773, 44255}, {34791, 61155}, {37248, 61024}, {37313, 45120}, {37623, 59387}, {43180, 60979}, {48668, 52126}, {50617, 53542}, {58798, 61268}

X(62827) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 54586}
X(62827) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 54586}
X(62827) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2150, 30562}, {25417, 2893}, {34819, 17778}, {42030, 21287}, {56070, 2897}, {56203, 1330}, {56343, 2475}
X(62827) = pole of line {101, 61225} with respect to the Hutson-Moses hyperbola
X(62827) = pole of line {75, 11684} with respect to the Wallace hyperbola
X(62827) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(26734)}}, {{A, B, C, X(58), X(3431)}}, {{A, B, C, X(72), X(18477)}}, {{A, B, C, X(75), X(11684)}}, {{A, B, C, X(2349), X(28606)}}, {{A, B, C, X(3296), X(4658)}}, {{A, B, C, X(3654), X(12702)}}, {{A, B, C, X(17185), X(55985)}}, {{A, B, C, X(55986), X(60721)}}
X(62827) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54586}
X(62827) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11684, 3869}, {1, 63, 11684}, {191, 8666, 3877}, {956, 56288, 14923}, {993, 6763, 3868}, {2975, 11684, 1}, {3296, 17561, 3616}, {4652, 57279, 100}, {4661, 17548, 56176}, {5302, 32636, 2}, {12514, 54391, 3890}, {12527, 59491, 11681}


X(62828) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5315), X(3), X(1))

Barycentrics    a*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b^2+c^2)) : :
X(62828) = -X[69]+3*X[48803], -5*X[3618]+3*X[48831], -X[17276]+3*X[48819]

X(62828) lies on these lines: {1, 21}, {2, 5315}, {3, 50604}, {6, 519}, {8, 1203}, {10, 3966}, {36, 17126}, {42, 25439}, {69, 48803}, {72, 30145}, {82, 994}, {100, 5313}, {171, 995}, {182, 517}, {213, 36480}, {221, 4298}, {222, 4315}, {238, 30116}, {386, 5255}, {392, 3745}, {484, 4850}, {528, 48847}, {535, 50303}, {540, 28369}, {551, 940}, {612, 10176}, {614, 5883}, {748, 56191}, {750, 49997}, {752, 16796}, {942, 4906}, {960, 30142}, {979, 1126}, {985, 60871}, {997, 5269}, {999, 18613}, {1036, 39582}, {1100, 5042}, {1104, 30147}, {1125, 1191}, {1193, 5264}, {1201, 37522}, {1449, 2267}, {1469, 2392}, {1480, 3946}, {1572, 16972}, {1616, 3636}, {1698, 37687}, {1722, 3918}, {1724, 10459}, {2003, 3476}, {2099, 49682}, {2214, 16685}, {2238, 48809}, {2363, 17104}, {2802, 5150}, {2999, 54286}, {3017, 33141}, {3216, 9350}, {3240, 48696}, {3241, 16474}, {3244, 37542}, {3245, 17025}, {3295, 52139}, {3550, 4256}, {3579, 4719}, {3600, 34043}, {3616, 37559}, {3618, 48831}, {3655, 51340}, {3656, 45923}, {3671, 34040}, {3678, 54386}, {3679, 32911}, {3746, 19767}, {3822, 26098}, {3828, 37679}, {3833, 5272}, {3871, 5312}, {3913, 50587}, {3920, 5692}, {4084, 37549}, {4257, 37617}, {4301, 5706}, {4392, 4880}, {4413, 49992}, {4424, 17017}, {4655, 16794}, {4660, 48843}, {4692, 26223}, {4723, 41241}, {4868, 5119}, {5180, 33155}, {5221, 24167}, {5230, 25639}, {5251, 17127}, {5262, 5903}, {5266, 22836}, {5276, 48854}, {5292, 24387}, {5299, 36479}, {5493, 37537}, {5526, 48856}, {5697, 17016}, {5707, 13464}, {5718, 10197}, {5844, 39523}, {5882, 36742}, {5902, 7191}, {6126, 9143}, {7290, 54318}, {7741, 54355}, {7798, 17351}, {7951, 33107}, {8258, 49613}, {8692, 16857}, {9623, 16469}, {10199, 37634}, {10974, 50621}, {11362, 36754}, {11552, 33146}, {11813, 17720}, {12511, 37570}, {12699, 36250}, {13462, 17074}, {14621, 40859}, {14974, 25092}, {14996, 16489}, {14997, 53620}, {15934, 53114}, {16484, 48855}, {16486, 51103}, {16499, 21747}, {16600, 54382}, {16784, 48830}, {16788, 21764}, {16975, 60697}, {17054, 33815}, {17061, 39542}, {17276, 48819}, {17602, 51409}, {17716, 30115}, {17717, 17734}, {17718, 50749}, {18393, 33133}, {19867, 33074}, {19875, 37680}, {22383, 48285}, {24512, 48822}, {24586, 30106}, {24806, 55086}, {25055, 37633}, {25430, 27784}, {26725, 29681}, {27631, 59305}, {27643, 31339}, {28234, 44414}, {28368, 50226}, {28594, 54406}, {29665, 37701}, {30144, 37539}, {30331, 54358}, {32935, 59717}, {33854, 48851}, {34048, 51782}, {34434, 54336}, {34625, 37666}, {36565, 41696}, {36598, 41434}, {36745, 43174}, {36750, 37727}, {37594, 58679}, {37642, 45700}, {37657, 48802}, {37676, 50311}, {41329, 50617}, {45931, 61276}, {50302, 52897}, {50625, 56018}, {50759, 61647}, {52424, 60689}, {56034, 56149}

X(62828) = reflection of X(i) in X(j) for these {i,j}: {4660, 48843}, {48826, 50300}, {48863, 49482}
X(62828) = perspector of circumconic {{A, B, C, X(662), X(9059)}}
X(62828) = pole of line {4132, 48332} with respect to the DeLongchamps ellipse
X(62828) = pole of line {2646, 30142} with respect to the Feuerbach hyperbola
X(62828) = pole of line {5949, 16052} with respect to the Kiepert hyperbola
X(62828) = pole of line {9031, 23090} with respect to the MacBeath circumconic
X(62828) = pole of line {4560, 47773} with respect to the Steiner circumellipse
X(62828) = pole of line {14838, 47766} with respect to the Steiner inellipse
X(62828) = pole of line {101, 4767} with respect to the Hutson-Moses hyperbola
X(62828) = pole of line {75, 16712} with respect to the Wallace hyperbola
X(62828) = pole of line {5249, 17290} with respect to the dual conic of Yff parabola
X(62828) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(38), X(994)}}, {{A, B, C, X(58), X(4290)}}, {{A, B, C, X(81), X(996)}}, {{A, B, C, X(82), X(993)}}, {{A, B, C, X(2321), X(3877)}}, {{A, B, C, X(2363), X(8666)}}, {{A, B, C, X(2975), X(54336)}}, {{A, B, C, X(3873), X(53114)}}, {{A, B, C, X(3892), X(39739)}}, {{A, B, C, X(20985), X(36873)}}, {{A, B, C, X(28606), X(42285)}}, {{A, B, C, X(40773), X(60871)}}, {{A, B, C, X(49480), X(56034)}}
X(62828) = barycentric product X(i)*X(j) for these (i, j): {4290, 75}
X(62828) = barycentric quotient X(i)/X(j) for these (i, j): {4290, 1}
X(62828) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 993}, {1, 49500, 38}, {1, 5250, 3743}, {1, 54421, 3874}, {1, 58, 8666}, {1, 595, 5248}, {1, 8616, 4653}, {386, 5255, 8715}, {519, 49482, 48863}, {519, 50300, 48826}, {595, 4653, 8616}, {940, 16483, 551}, {1191, 5711, 1125}, {3241, 37685, 16474}, {5119, 5256, 4868}, {5710, 16466, 10}, {48863, 49482, 48811}


X(62829) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5436), X(3), X(1))

Barycentrics    a*(3*a^3+b^3-3*b^2*c-3*b*c^2+c^3-a^2*(b+c)-a*(3*b^2+4*b*c+3*c^2)) : :

X(62829) lies on these lines: {1, 21}, {2, 950}, {3, 3306}, {4, 31266}, {7, 1420}, {8, 4917}, {9, 3984}, {10, 31452}, {11, 47516}, {12, 37358}, {19, 2326}, {20, 946}, {33, 54343}, {34, 1013}, {35, 37300}, {36, 37285}, {40, 37106}, {46, 30143}, {55, 5836}, {56, 4666}, {57, 4189}, {65, 35258}, {72, 16418}, {75, 28627}, {78, 405}, {84, 2320}, {86, 18655}, {142, 4190}, {145, 5273}, {149, 41864}, {200, 5260}, {208, 37295}, {224, 1001}, {226, 6872}, {228, 28383}, {326, 63158}, {329, 11106}, {377, 1125}, {379, 16831}, {392, 56387}, {404, 30282}, {409, 8771}, {452, 908}, {497, 24541}, {515, 6837}, {551, 4292}, {612, 25494}, {614, 37090}, {631, 31224}, {936, 5047}, {938, 59491}, {942, 4652}, {943, 56101}, {954, 60966}, {958, 3870}, {960, 16465}, {988, 28082}, {997, 5259}, {1004, 25524}, {1005, 57283}, {1006, 37531}, {1012, 1385}, {1043, 5271}, {1071, 10246}, {1104, 5256}, {1201, 37819}, {1210, 6910}, {1259, 3295}, {1388, 10179}, {1453, 19767}, {1490, 6912}, {1697, 61155}, {1699, 59355}, {1817, 63157}, {1836, 11281}, {1837, 6690}, {2475, 25525}, {2476, 3586}, {2478, 13411}, {2886, 44256}, {3057, 4428}, {3091, 52026}, {3158, 3617}, {3188, 40719}, {3189, 25006}, {3218, 11518}, {3219, 11523}, {3241, 54398}, {3243, 61024}, {3247, 5279}, {3303, 36846}, {3304, 42819}, {3338, 5267}, {3361, 5303}, {3419, 6675}, {3434, 4314}, {3436, 13405}, {3486, 24987}, {3487, 11111}, {3488, 6734}, {3522, 9776}, {3560, 18446}, {3624, 4197}, {3632, 31446}, {3653, 37429}, {3671, 44447}, {3681, 5234}, {3683, 12635}, {3698, 4421}, {3720, 37175}, {3742, 5204}, {3746, 3895}, {3748, 12513}, {3749, 10459}, {3754, 59316}, {3811, 5251}, {3812, 5217}, {3816, 25962}, {3824, 50239}, {3838, 12953}, {3871, 9623}, {3876, 16858}, {3916, 15934}, {3924, 17594}, {3940, 16866}, {3951, 19526}, {3957, 6762}, {4188, 5437}, {4198, 39579}, {4208, 5550}, {4255, 54387}, {4297, 10431}, {4299, 51706}, {4302, 12609}, {4423, 59691}, {4511, 31435}, {4654, 15677}, {4853, 51786}, {4861, 31393}, {4862, 26729}, {4881, 37435}, {4995, 37828}, {5046, 5219}, {5084, 27385}, {5119, 30147}, {5129, 27383}, {5176, 51784}, {5218, 24982}, {5253, 7411}, {5262, 16485}, {5284, 8583}, {5285, 59359}, {5287, 16368}, {5289, 15823}, {5314, 37246}, {5428, 37584}, {5440, 11108}, {5587, 6884}, {5603, 59345}, {5691, 10883}, {5709, 6875}, {5719, 50241}, {5720, 6920}, {5722, 7483}, {5731, 37434}, {5732, 24644}, {5745, 12649}, {5754, 22083}, {5791, 15670}, {5794, 10543}, {5795, 10528}, {5880, 15338}, {5881, 59350}, {5883, 58887}, {5886, 37468}, {6173, 37299}, {6245, 6974}, {6282, 6986}, {6284, 28628}, {6666, 50398}, {6839, 8227}, {6871, 58463}, {6883, 33596}, {6906, 18443}, {6909, 8726}, {6913, 33597}, {6914, 37615}, {6916, 10531}, {6921, 9843}, {6934, 55108}, {6950, 37534}, {6962, 7682}, {7078, 54444}, {7160, 56106}, {7174, 36565}, {7290, 28287}, {7308, 16859}, {7489, 37700}, {7508, 37532}, {7741, 38410}, {7952, 55963}, {8822, 17394}, {9352, 16192}, {9579, 15680}, {9612, 11114}, {9858, 19520}, {9963, 15015}, {10106, 10587}, {10165, 37112}, {10197, 10827}, {10198, 10572}, {10267, 37302}, {10269, 37287}, {10391, 34471}, {10436, 11115}, {10451, 10882}, {10470, 19645}, {10584, 19862}, {10585, 19925}, {11036, 38314}, {11113, 11374}, {11194, 17609}, {11220, 30392}, {11240, 40270}, {11376, 49736}, {11529, 56288}, {12539, 55175}, {12572, 31156}, {12625, 15674}, {12699, 44238}, {13369, 28444}, {13464, 55109}, {13624, 37426}, {13725, 52025}, {14021, 17023}, {14923, 53053}, {15803, 17549}, {16049, 51687}, {16062, 56522}, {16475, 54383}, {16788, 55337}, {16857, 33595}, {17016, 37553}, {17282, 56782}, {17321, 18650}, {17521, 54405}, {17522, 40131}, {17544, 35595}, {17548, 27003}, {17557, 19859}, {17570, 51780}, {17579, 25055}, {17614, 37606}, {17676, 25527}, {17718, 57288}, {18481, 37447}, {19535, 37582}, {19753, 37065}, {20846, 37583}, {20880, 52716}, {21165, 24474}, {21669, 41854}, {22128, 36746}, {24391, 55868}, {24590, 36016}, {25011, 59572}, {25019, 25905}, {25522, 26127}, {25917, 56177}, {26015, 30478}, {26102, 37467}, {26116, 27287}, {27064, 56989}, {27186, 37256}, {28011, 37617}, {28466, 37585}, {29634, 37443}, {30115, 54287}, {30223, 45230}, {30811, 50050}, {30827, 37162}, {31231, 37291}, {31775, 38028}, {32633, 53057}, {32929, 62389}, {35290, 37102}, {37108, 54445}, {37306, 55870}, {37533, 55104}, {37547, 54337}, {37552, 59305}, {37556, 38460}, {37573, 54418}, {44675, 51724}, {46917, 46933}, {50586, 50603}, {52241, 56507}, {52653, 60979}, {57002, 57282}, {59347, 61276}

X(62829) = pole of line {63, 2646} with respect to the Feuerbach hyperbola
X(62829) = pole of line {75, 11520} with respect to the Wallace hyperbola
X(62829) = pole of line {4888, 5249} with respect to the dual conic of Yff parabola
X(62829) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10), X(12559)}}, {{A, B, C, X(19), X(2650)}}, {{A, B, C, X(21), X(7518)}}, {{A, B, C, X(63), X(40430)}}, {{A, B, C, X(75), X(11520)}}, {{A, B, C, X(84), X(4653)}}, {{A, B, C, X(2218), X(54421)}}, {{A, B, C, X(31424), X(40431)}}, {{A, B, C, X(54356), X(56101)}}
X(62829) = barycentric product X(i)*X(j) for these (i, j): {63, 7518}
X(62829) = barycentric quotient X(i)/X(j) for these (i, j): {7518, 92}
X(62829) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12526, 34195}, {1, 1707, 2650}, {1, 191, 12559}, {1, 21, 63}, {1, 31424, 3868}, {1, 4512, 3869}, {1, 5248, 5250}, {1, 5250, 11682}, {1, 54354, 54421}, {1, 63, 11520}, {2, 3601, 4855}, {2, 4313, 57287}, {3, 54392, 3306}, {8, 17558, 54357}, {20, 3616, 5249}, {21, 3868, 31424}, {56, 51715, 4666}, {78, 405, 3305}, {452, 5703, 908}, {942, 16370, 4652}, {958, 37080, 3870}, {1001, 2646, 19861}, {1012, 1385, 10884}, {1104, 19765, 5256}, {1125, 3612, 35262}, {1125, 4304, 377}, {1420, 38316, 3622}, {1621, 51683, 3890}, {2478, 13411, 30852}, {2646, 37228, 224}, {3560, 24299, 18446}, {3601, 5436, 2}, {3622, 17576, 7}, {3869, 11020, 39772}, {3890, 51683, 1}, {5719, 50241, 58798}, {6734, 6857, 55867}, {7987, 10582, 5253}, {15680, 31019, 9579}, {15934, 17571, 3916}, {16865, 34772, 9}, {54354, 54421, 36277}


X(62830) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5730), X(3), X(1))

Barycentrics    a*(a^3+2*b^3-b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2-b*c+c^2)) : :
X(62830) = -2*X[40]+3*X[59421], -5*X[631]+6*X[38033], -5*X[1656]+6*X[38045], -5*X[1698]+6*X[38062], -4*X[2646]+3*X[17549], -5*X[3091]+6*X[38039], -5*X[3616]+4*X[4999], -5*X[3618]+6*X[38051], -5*X[4668]+6*X[38214], -11*X[5550]+10*X[31260], -3*X[5657]+4*X[31659], -3*X[5731]+2*X[30264] and many others

X(62830) lies on these lines: {1, 21}, {2, 4930}, {4, 145}, {8, 12}, {9, 56030}, {10, 4867}, {36, 4084}, {40, 59421}, {46, 13587}, {56, 4996}, {57, 56387}, {65, 404}, {72, 50194}, {78, 1706}, {100, 5903}, {104, 46920}, {214, 3336}, {355, 1389}, {390, 5857}, {411, 517}, {474, 1159}, {516, 11015}, {518, 4861}, {519, 5086}, {529, 2098}, {631, 38033}, {944, 5841}, {946, 41575}, {950, 51423}, {960, 5047}, {962, 5842}, {997, 17531}, {1005, 3957}, {1014, 44179}, {1125, 5425}, {1156, 1392}, {1193, 54315}, {1203, 49682}, {1319, 7098}, {1325, 1610}, {1385, 3218}, {1442, 54344}, {1476, 56100}, {1483, 7491}, {1630, 56948}, {1656, 38045}, {1698, 38062}, {1776, 33176}, {1788, 17566}, {1837, 34647}, {1858, 5048}, {2093, 4855}, {2475, 39542}, {2646, 17549}, {2800, 20612}, {2802, 11280}, {3057, 45230}, {3091, 38039}, {3243, 10384}, {3244, 5057}, {3295, 20846}, {3339, 35262}, {3419, 46870}, {3555, 5887}, {3560, 4430}, {3616, 4999}, {3617, 3940}, {3618, 38051}, {3621, 6871}, {3622, 6857}, {3623, 6872}, {3632, 10129}, {3656, 52269}, {3680, 55924}, {3811, 14923}, {3812, 17535}, {3870, 3885}, {3872, 11523}, {3876, 19860}, {3895, 11531}, {3935, 10914}, {3984, 9623}, {4067, 5258}, {4188, 36279}, {4193, 18391}, {4295, 17579}, {4305, 44447}, {4360, 17139}, {4420, 5836}, {4640, 17574}, {4652, 13384}, {4668, 38214}, {4673, 49687}, {4678, 40587}, {4848, 27385}, {4880, 24926}, {4881, 37582}, {5014, 50624}, {5046, 37730}, {5080, 10950}, {5081, 56827}, {5082, 20013}, {5176, 21077}, {5180, 6284}, {5253, 5902}, {5260, 5692}, {5284, 30143}, {5303, 37525}, {5440, 50193}, {5550, 31260}, {5554, 11041}, {5603, 6828}, {5657, 31659}, {5690, 6853}, {5698, 5852}, {5731, 30264}, {5734, 10883}, {5790, 6874}, {5794, 6175}, {5818, 38109}, {5844, 6842}, {5849, 51192}, {5901, 6852}, {6224, 7354}, {6668, 9780}, {6738, 41012}, {6767, 37284}, {6824, 10529}, {6825, 10528}, {6867, 59388}, {6868, 7967}, {6869, 20075}, {6870, 20008}, {6873, 18493}, {6875, 10246}, {6876, 12702}, {6906, 14988}, {6915, 45770}, {6932, 12648}, {6946, 61541}, {6985, 8148}, {6988, 59417}, {7411, 14110}, {7504, 11375}, {7705, 30852}, {7962, 10393}, {7971, 9960}, {8068, 10573}, {8229, 29840}, {9613, 31164}, {9708, 32635}, {9812, 52837}, {9965, 59345}, {10031, 34605}, {10474, 60321}, {10609, 37256}, {10680, 52270}, {10861, 12560}, {10912, 20050}, {11111, 51112}, {11236, 50890}, {11529, 19861}, {11680, 49168}, {11813, 37702}, {11826, 54193}, {12114, 13243}, {12127, 16191}, {12645, 51518}, {12672, 16465}, {12699, 52841}, {13464, 26015}, {14009, 17135}, {15185, 17622}, {15829, 54392}, {16200, 36846}, {16858, 31165}, {17098, 56091}, {17134, 58786}, {17483, 18990}, {17484, 37728}, {17534, 25917}, {17536, 54318}, {17548, 37606}, {17557, 31359}, {17614, 27003}, {17647, 20292}, {18041, 41610}, {18230, 38061}, {18444, 31786}, {19767, 37614}, {20066, 28174}, {20067, 34773}, {20247, 24203}, {21669, 40266}, {24473, 24928}, {24703, 37724}, {25055, 51113}, {26088, 31937}, {27529, 40663}, {28628, 31254}, {30128, 46899}, {31157, 38314}, {31272, 38063}, {34123, 34753}, {35459, 37403}, {37290, 61597}, {37567, 56177}, {37603, 53115}, {37625, 40257}, {37714, 38162}, {37739, 58798}, {38100, 51072}, {38105, 51066}, {38206, 40333}, {44669, 52367}, {44840, 58679}, {48080, 48333}, {50619, 50637}, {50695, 56936}, {50747, 56318}, {51433, 59722}, {52665, 54370}, {54313, 56439}

X(62830) = midpoint of X(i) and X(j) for these {i,j}: {145, 20060}, {11009, 41696}
X(62830) = reflection of X(i) in X(j) for these {i,j}: {11491, 37733}, {2975, 1}, {3871, 34772}, {411, 21740}, {4861, 11011}, {5086, 12047}, {56288, 2646}, {6763, 51111}, {8, 12}
X(62830) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1389, 1330}
X(62830) = pole of line {3733, 39478} with respect to the circumcircle
X(62830) = pole of line {900, 24006} with respect to the polar circle
X(62830) = pole of line {404, 2646} with respect to the Feuerbach hyperbola
X(62830) = pole of line {100, 33637} with respect to the Kiepert parabola
X(62830) = pole of line {4560, 10015} with respect to the Steiner circumellipse
X(62830) = pole of line {101, 33637} with respect to the Hutson-Moses hyperbola
X(62830) = pole of line {75, 3897} with respect to the Wallace hyperbola
X(62830) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(52680)}}, {{A, B, C, X(12), X(2650)}}, {{A, B, C, X(58), X(17097)}}, {{A, B, C, X(63), X(4080)}}, {{A, B, C, X(75), X(3897)}}, {{A, B, C, X(81), X(6336)}}, {{A, B, C, X(283), X(1320)}}, {{A, B, C, X(596), X(51111)}}, {{A, B, C, X(993), X(56254)}}, {{A, B, C, X(11682), X(40457)}}, {{A, B, C, X(16948), X(55924)}}, {{A, B, C, X(35016), X(42285)}}
X(62830) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 3889}, {1, 11682, 3877}, {1, 12559, 3873}, {1, 16126, 3874}, {1, 3868, 54391}, {1, 3869, 21}, {1, 3878, 1621}, {1, 3899, 5248}, {1, 3901, 8666}, {1, 63, 3897}, {1, 6763, 51111}, {1, 758, 2975}, {1, 993, 51683}, {8, 12, 59416}, {8, 3485, 2476}, {12, 5855, 8}, {65, 4511, 404}, {145, 1482, 1320}, {145, 20060, 952}, {214, 4757, 3336}, {517, 21740, 411}, {517, 34772, 3871}, {517, 37733, 11491}, {518, 11011, 4861}, {519, 12047, 5086}, {758, 51111, 6763}, {1385, 4018, 3218}, {1482, 48667, 22791}, {2099, 3485, 17097}, {2646, 44663, 56288}, {3241, 11415, 3486}, {3486, 11415, 11114}, {3555, 10222, 38460}, {3811, 25415, 14923}, {3870, 7982, 3885}, {5086, 12047, 17577}, {5692, 30147, 5260}, {5902, 30144, 5253}, {5903, 22836, 100}, {6224, 14450, 7354}, {10573, 11681, 59415}, {10912, 41711, 20050}, {11009, 41696, 519}, {11684, 51683, 993}, {17614, 31794, 27003}


X(62831) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6051), X(3), X(1))

Barycentrics    a*(b^3+2*b^2*c+2*b*c^2+c^3+a^2*(b+c)+a*(2*b^2+5*b*c+2*c^2)) : :

X(62831) lies on these lines: {1, 21}, {2, 3702}, {8, 37}, {10, 27785}, {25, 3295}, {29, 31324}, {34, 8543}, {40, 5287}, {42, 3876}, {46, 37633}, {55, 11337}, {65, 15569}, {72, 17018}, {78, 37553}, {92, 4194}, {100, 975}, {145, 13736}, {192, 4968}, {201, 7672}, {221, 1442}, {227, 5226}, {312, 26115}, {390, 4198}, {404, 17594}, {405, 17016}, {442, 33134}, {495, 1904}, {496, 29680}, {517, 61109}, {593, 37029}, {612, 3871}, {740, 31339}, {756, 50581}, {940, 56288}, {942, 29814}, {958, 17015}, {960, 19767}, {962, 37419}, {964, 3685}, {969, 56048}, {976, 3750}, {978, 46904}, {986, 3720}, {991, 9961}, {994, 5697}, {1001, 5262}, {1010, 32929}, {1039, 2346}, {1125, 4850}, {1169, 5301}, {1191, 20182}, {1193, 17592}, {1255, 5119}, {1402, 16452}, {1697, 3247}, {1698, 4868}, {1706, 25430}, {1722, 17536}, {1836, 26131}, {1870, 57530}, {2177, 5293}, {2334, 5220}, {2476, 24210}, {3178, 25760}, {3187, 41813}, {3240, 5044}, {3244, 31320}, {3340, 16577}, {3485, 17080}, {3555, 7226}, {3616, 3666}, {3622, 37592}, {3634, 31318}, {3672, 20880}, {3695, 29667}, {3697, 9330}, {3701, 41839}, {3721, 5710}, {3746, 30142}, {3752, 5550}, {3885, 10459}, {3895, 16673}, {3896, 9534}, {3914, 4197}, {3976, 46901}, {3995, 4385}, {4068, 23381}, {4193, 5530}, {4335, 10861}, {4340, 44447}, {4343, 41228}, {4356, 24554}, {4392, 5045}, {4414, 37607}, {4511, 19765}, {4646, 9780}, {4682, 37568}, {4687, 19874}, {4854, 25466}, {5046, 5725}, {5047, 54418}, {5255, 5311}, {5256, 31435}, {5260, 54287}, {5264, 9347}, {5266, 61155}, {5297, 5687}, {5312, 10176}, {5453, 40266}, {5692, 59301}, {5703, 27379}, {5711, 17019}, {5712, 11415}, {5791, 33142}, {6685, 25591}, {8143, 18481}, {8728, 33131}, {9331, 28594}, {9370, 29007}, {9812, 15852}, {9957, 28376}, {10198, 33133}, {10371, 26064}, {11110, 25060}, {12699, 33112}, {13407, 33151}, {14005, 50314}, {14923, 30116}, {15829, 16579}, {16454, 32932}, {16466, 17011}, {16484, 28082}, {16705, 18156}, {16753, 28620}, {16830, 26242}, {17064, 31254}, {17126, 37594}, {17320, 33930}, {17321, 20911}, {17557, 25059}, {17733, 32917}, {17748, 25960}, {18601, 28619}, {18743, 26030}, {19582, 59297}, {19784, 33157}, {19861, 26635}, {20070, 29624}, {21384, 39247}, {24161, 29661}, {24174, 30950}, {24390, 29664}, {24443, 26102}, {24936, 28628}, {25092, 26690}, {25253, 29822}, {25512, 28612}, {26878, 44414}, {27577, 33111}, {29837, 56313}, {31035, 46937}, {31327, 59306}, {31330, 58386}, {32773, 57808}, {33100, 57282}, {33146, 51706}, {33761, 41229}, {35258, 37554}, {37598, 59305}, {39587, 56936}, {50582, 50620}, {54315, 54392}

X(62831) = pole of line {24006, 50334} with respect to the polar circle
X(62831) = pole of line {2646, 19767} with respect to the Feuerbach hyperbola
X(62831) = pole of line {4560, 47666} with respect to the Steiner circumellipse
X(62831) = pole of line {14838, 47997} with respect to the Steiner inellipse
X(62831) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(39737)}}, {{A, B, C, X(37), X(1468)}}, {{A, B, C, X(58), X(941)}}, {{A, B, C, X(81), X(31359)}}, {{A, B, C, X(993), X(56221)}}, {{A, B, C, X(994), X(4658)}}, {{A, B, C, X(1039), X(17194)}}
X(62831) = barycentric product X(i)*X(j) for these (i, j): {4270, 75}
X(62831) = barycentric quotient X(i)/X(j) for these (i, j): {4270, 1}
X(62831) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10448, 3897}, {1, 11533, 49454}, {1, 12514, 81}, {1, 2292, 3868}, {1, 3743, 28606}, {1, 38, 3889}, {1, 49500, 4658}, {1, 5250, 57280}, {1, 774, 11020}, {1, 846, 1468}, {1, 968, 21}, {960, 37593, 19767}, {3878, 58380, 1}, {3931, 6051, 2}, {31359, 49470, 8}


X(62832) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6762), X(3), X(1))

Barycentrics    a*(a^3-b^3-b^2*c-b*c^2-c^3+a^2*(b+c)-a*(b^2-8*b*c+c^2)) : :
X(62832) =

X(62832) lies on these lines: {1, 21}, {2, 6762}, {8, 3306}, {9, 3622}, {10, 51816}, {19, 39702}, {40, 3241}, {46, 3244}, {55, 58609}, {56, 3870}, {57, 145}, {65, 10912}, {72, 7373}, {78, 999}, {84, 54199}, {100, 3361}, {149, 9579}, {200, 5253}, {224, 15185}, {226, 10529}, {354, 12513}, {388, 26015}, {391, 47299}, {392, 3951}, {404, 6765}, {405, 5049}, {518, 3304}, {519, 3338}, {551, 41229}, {553, 21627}, {738, 51351}, {908, 14986}, {912, 12001}, {942, 3872}, {946, 11240}, {950, 20076}, {956, 5045}, {958, 4666}, {1056, 6734}, {1149, 54386}, {1158, 16200}, {1201, 3751}, {1219, 34255}, {1317, 1454}, {1420, 1445}, {1434, 17158}, {1435, 5174}, {1476, 7672}, {1478, 49627}, {1482, 24473}, {1483, 37532}, {1616, 4641}, {1697, 3218}, {1706, 3621}, {1768, 16189}, {1998, 57283}, {1999, 17480}, {2093, 3885}, {2094, 9841}, {2260, 3692}, {2263, 9363}, {2334, 4719}, {2475, 24392}, {2646, 42871}, {3086, 30852}, {3158, 4188}, {3214, 11512}, {3295, 4652}, {3303, 35258}, {3305, 3616}, {3336, 51093}, {3337, 3633}, {3339, 14923}, {3340, 38460}, {3434, 4298}, {3436, 11019}, {3452, 10586}, {3475, 24541}, {3476, 41575}, {3600, 36845}, {3601, 3957}, {3617, 5437}, {3635, 5119}, {3656, 16138}, {3677, 17016}, {3681, 8583}, {3811, 5563}, {3813, 10404}, {3871, 15803}, {3880, 5221}, {3911, 10528}, {3913, 32636}, {3916, 6767}, {3921, 16863}, {3928, 37556}, {3935, 5438}, {3976, 54418}, {4084, 30323}, {4189, 10389}, {4190, 5853}, {4253, 55337}, {4301, 10085}, {4321, 30628}, {4355, 20292}, {4430, 11523}, {4511, 41863}, {4642, 18193}, {4696, 30567}, {4847, 12577}, {4848, 12648}, {4853, 10980}, {4860, 5836}, {4861, 11529}, {4973, 59316}, {5057, 51785}, {5234, 5284}, {5247, 28011}, {5249, 11037}, {5260, 10582}, {5265, 63168}, {5272, 46190}, {5288, 50190}, {5290, 11680}, {5436, 29817}, {5484, 29843}, {5506, 51110}, {5535, 61288}, {5552, 31224}, {5691, 31146}, {5708, 10914}, {5709, 7967}, {5720, 45977}, {5730, 51788}, {5734, 12705}, {5745, 10587}, {5794, 51463}, {5844, 37612}, {5882, 12704}, {5904, 37602}, {5905, 12053}, {6604, 7177}, {6684, 11239}, {6764, 6904}, {6766, 9778}, {6871, 24386}, {6921, 59722}, {7091, 21454}, {7293, 12410}, {7308, 46934}, {7330, 10595}, {7995, 13243}, {8158, 10167}, {8236, 17576}, {8271, 55101}, {8582, 56879}, {9310, 51194}, {9312, 20247}, {9327, 54330}, {9581, 20060}, {9785, 9965}, {9797, 17784}, {9812, 10864}, {10072, 21077}, {10106, 12649}, {10246, 55104}, {10247, 24467}, {10384, 20059}, {10527, 21620}, {10597, 51755}, {10680, 18446}, {10884, 22770}, {11115, 18164}, {11194, 37080}, {12245, 37534}, {12527, 21625}, {12563, 42012}, {12575, 44447}, {12607, 17728}, {12635, 20323}, {12687, 55109}, {13407, 45700}, {14450, 31162}, {15680, 41864}, {16202, 21165}, {16834, 24590}, {16865, 38316}, {17572, 46917}, {18653, 56945}, {20052, 51781}, {20057, 31393}, {20588, 53058}, {21342, 37614}, {23675, 33137}, {24477, 24987}, {24928, 56387}, {25439, 58887}, {26877, 49163}, {26892, 58535}, {26921, 28451}, {28017, 50289}, {28234, 59333}, {31053, 50443}, {31156, 51724}, {31435, 38314}, {32049, 34749}, {32214, 37826}, {34690, 37702}, {37526, 59417}, {37552, 54310}, {41426, 41539}, {41711, 59691}, {42045, 48883}, {42886, 62333}, {50198, 54385}, {50237, 61031}, {50582, 58371}, {59318, 61287}

X(62832) = reflection of X(i) in X(j) for these {i,j}: {19861, 3304}, {3984, 19861}, {56879, 8582}
X(62832) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7091, 1330}, {63164, 21287}
X(62832) = pole of line {6003, 58858} with respect to the incircle
X(62832) = pole of line {4560, 7203} with respect to the Steiner circumellipse
X(62832) = pole of line {3882, 4606} with respect to the Yff parabola
X(62832) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(21), X(6553)}}, {{A, B, C, X(58), X(1059)}}, {{A, B, C, X(63), X(39702)}}, {{A, B, C, X(81), X(8051)}}, {{A, B, C, X(3884), X(56136)}}, {{A, B, C, X(5250), X(34860)}}, {{A, B, C, X(12514), X(39697)}}, {{A, B, C, X(16948), X(44301)}}
X(62832) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12526, 3890}, {1, 3868, 11682}, {1, 3873, 11520}, {1, 54422, 3877}, {8, 3333, 3306}, {56, 34791, 3870}, {56, 3870, 4855}, {354, 12513, 19860}, {518, 3304, 19861}, {956, 5045, 54392}, {958, 17609, 4666}, {1420, 3243, 34772}, {3218, 3623, 1697}, {3337, 3633, 54286}, {3600, 36845, 57287}, {3616, 57279, 3305}, {3621, 27003, 1706}, {3811, 5563, 35262}, {3889, 54391, 1}, {5288, 50190, 54318}, {10527, 21620, 31266}, {20057, 56288, 31393}


X(62833) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7174), X(3), X(1))

Barycentrics    a*(a^2+3*(b^2+c^2)) : :

X(62833) lies on these lines: {1, 21}, {2, 3677}, {8, 54311}, {9, 7191}, {19, 17471}, {37, 4666}, {42, 16496}, {46, 30145}, {55, 7293}, {56, 5314}, {57, 3920}, {75, 16750}, {77, 17625}, {78, 37592}, {92, 23052}, {200, 4850}, {244, 5268}, {321, 49446}, {354, 5287}, {498, 55901}, {499, 55903}, {518, 5256}, {519, 26034}, {537, 25496}, {612, 982}, {613, 54444}, {614, 984}, {672, 3247}, {726, 29652}, {748, 42039}, {750, 18193}, {756, 5272}, {922, 19555}, {940, 21342}, {950, 36579}, {975, 3953}, {976, 988}, {999, 7085}, {1125, 33163}, {1193, 3984}, {1215, 29826}, {1255, 30350}, {1376, 4003}, {1449, 5282}, {1473, 3295}, {1698, 33162}, {1699, 33151}, {2239, 42042}, {2308, 16491}, {2887, 50285}, {2999, 3681}, {3006, 25527}, {3011, 55867}, {3085, 55900}, {3086, 55902}, {3218, 5269}, {3219, 7290}, {3242, 3666}, {3243, 17018}, {3315, 4712}, {3338, 30142}, {3340, 61412}, {3403, 18064}, {3434, 3663}, {3601, 36565}, {3616, 5294}, {3622, 26065}, {3624, 26061}, {3632, 33074}, {3672, 36845}, {3679, 32781}, {3706, 49453}, {3720, 56507}, {3729, 24552}, {3731, 5284}, {3741, 49455}, {3744, 21000}, {3749, 4414}, {3751, 17017}, {3875, 17135}, {3883, 19993}, {3886, 17147}, {3891, 11679}, {3895, 4424}, {3896, 49451}, {3928, 17126}, {3929, 17127}, {3938, 17594}, {3951, 16466}, {3957, 37553}, {3961, 17591}, {3971, 29668}, {3999, 37674}, {4000, 25006}, {4001, 51192}, {4008, 20879}, {4011, 49520}, {4310, 5249}, {4344, 9965}, {4353, 4847}, {4362, 49464}, {4383, 49515}, {4384, 4981}, {4387, 49523}, {4388, 50614}, {4389, 4514}, {4415, 17721}, {4423, 4906}, {4425, 29844}, {4430, 17011}, {4438, 29855}, {4641, 38315}, {4652, 5266}, {4654, 33112}, {4661, 17012}, {4676, 25734}, {4682, 4860}, {4862, 20292}, {4883, 16777}, {4884, 32777}, {4901, 29679}, {4970, 49458}, {4972, 17304}, {5173, 7190}, {5219, 29680}, {5223, 32911}, {5231, 33133}, {5262, 57279}, {5271, 32922}, {5297, 5437}, {5311, 17449}, {5484, 50582}, {5745, 26228}, {6327, 17274}, {6682, 29828}, {6762, 17016}, {7292, 7308}, {8056, 9342}, {8545, 34036}, {9330, 51780}, {9580, 33100}, {9623, 54315}, {9776, 39587}, {9850, 15832}, {10056, 55915}, {10072, 55916}, {10327, 49527}, {10436, 17140}, {10527, 34937}, {10980, 37633}, {11518, 28274}, {14555, 49987}, {14986, 55910}, {15430, 51783}, {16475, 29819}, {16517, 26242}, {16973, 41269}, {17064, 29690}, {17124, 42040}, {17125, 42041}, {17149, 60683}, {17155, 50314}, {17156, 32921}, {17184, 29832}, {17272, 33075}, {17284, 32862}, {17296, 33093}, {17306, 29667}, {17445, 19591}, {17592, 49675}, {17600, 49490}, {17722, 33101}, {17859, 19611}, {18068, 20889}, {19767, 41863}, {19822, 19868}, {19860, 37549}, {19861, 25091}, {20068, 26223}, {20182, 49478}, {21840, 51194}, {22060, 37590}, {23681, 33108}, {24165, 36480}, {24171, 37462}, {24239, 30852}, {24392, 33134}, {25525, 29664}, {26098, 31164}, {26102, 56510}, {26128, 29857}, {26230, 56519}, {26840, 50289}, {27064, 31302}, {27184, 29840}, {28609, 33107}, {29639, 31266}, {29644, 49479}, {29648, 33170}, {29660, 33164}, {29666, 33166}, {29676, 33152}, {29686, 33161}, {29821, 49448}, {29831, 56520}, {29843, 58371}, {30115, 35262}, {30393, 37687}, {30614, 49466}, {32853, 49472}, {32928, 39594}, {32932, 36534}, {32934, 49473}, {32942, 49447}, {33079, 49534}, {33088, 49511}, {36846, 37614}, {37593, 42871}, {40960, 60926}, {42055, 50302}, {49686, 59337}

X(62833) = reflection of X(i) in X(j) for these {i,j}: {5256, 17599}
X(62833) = anticomplement of X(53663)
X(62833) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 18841}, {523, 58102}
X(62833) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 18841}, {53663, 53663}
X(62833) = pole of line {100, 25272} with respect to the Kiepert parabola
X(62833) = pole of line {5249, 17284} with respect to the dual conic of Yff parabola
X(62833) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(17469)}}, {{A, B, C, X(21), X(7378)}}, {{A, B, C, X(31), X(23051)}}, {{A, B, C, X(58), X(9605)}}, {{A, B, C, X(81), X(3619)}}, {{A, B, C, X(2167), X(51304)}}, {{A, B, C, X(7716), X(44119)}}, {{A, B, C, X(52134), X(56033)}}
X(62833) = barycentric product X(i)*X(j) for these (i, j): {1, 3619}, {63, 7378}, {75, 9605}, {304, 7716}
X(62833) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18841}, {163, 58102}, {3619, 75}, {7378, 92}, {7716, 19}, {9605, 1}
X(62833) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 17469}, {1, 38, 63}, {1, 54422, 57280}, {37, 17597, 4666}, {38, 17469, 36263}, {518, 17599, 5256}, {612, 982, 3306}, {614, 984, 3305}, {976, 988, 4855}, {984, 17598, 614}, {3218, 29815, 5269}, {3219, 17024, 7290}, {3242, 3666, 3870}, {3247, 44841, 29814}, {3677, 7174, 2}, {3677, 7322, 5573}, {3891, 46909, 11679}, {3920, 4392, 57}, {3938, 46901, 17594}, {4353, 4847, 19785}, {4438, 29855, 56521}, {5573, 7174, 7322}, {6682, 32920, 29828}, {17469, 36263, 1707}, {20068, 29823, 26223}, {26128, 29857, 56522}, {29639, 33144, 31266}, {29664, 33148, 25525}, {29680, 33153, 5219}, {29690, 33143, 17064}, {29819, 32912, 16475}


X(62834) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7290), X(3), X(1))

Barycentrics    a*(3*a^2+b^2+c^2) : :

X(62834) lies on these lines: {1, 21}, {2, 3883}, {6, 3692}, {8, 1453}, {9, 3920}, {19, 82}, {40, 5262}, {42, 3749}, {43, 56510}, {55, 1386}, {56, 7293}, {57, 4318}, {77, 1617}, {78, 5266}, {92, 204}, {100, 2999}, {145, 26065}, {165, 4850}, {171, 614}, {200, 16469}, {226, 26228}, {228, 37590}, {238, 612}, {293, 56033}, {306, 51192}, {345, 35263}, {390, 7070}, {498, 55903}, {499, 55901}, {516, 19785}, {519, 33163}, {611, 54444}, {672, 1449}, {674, 16798}, {748, 5268}, {750, 5272}, {752, 26128}, {902, 16491}, {940, 1279}, {976, 3984}, {995, 35262}, {997, 5315}, {999, 1473}, {1001, 3745}, {1040, 52428}, {1096, 60685}, {1104, 5710}, {1125, 26034}, {1191, 2221}, {1193, 4855}, {1203, 3811}, {1215, 50300}, {1394, 3600}, {1420, 61412}, {1445, 8270}, {1471, 60786}, {1582, 8771}, {1619, 7177}, {1697, 17016}, {1698, 33074}, {1699, 33133}, {1739, 5264}, {1743, 3681}, {1748, 23052}, {1754, 61086}, {1824, 12722}, {1836, 17061}, {1914, 16972}, {1927, 3401}, {1961, 15485}, {1964, 19591}, {1965, 18056}, {2078, 45126}, {2093, 54315}, {2239, 26102}, {2308, 3751}, {2550, 26723}, {2887, 29855}, {3006, 56519}, {3011, 26098}, {3052, 3666}, {3085, 55902}, {3086, 55900}, {3112, 3403}, {3158, 3240}, {3185, 16687}, {3187, 3886}, {3218, 3677}, {3219, 7174}, {3242, 4641}, {3246, 4423}, {3247, 5282}, {3295, 7085}, {3315, 10980}, {3338, 30148}, {3434, 40940}, {3522, 35658}, {3550, 29821}, {3601, 28274}, {3612, 50604}, {3616, 37554}, {3624, 32781}, {3632, 33162}, {3662, 20101}, {3663, 44447}, {3679, 26061}, {3703, 49681}, {3706, 48805}, {3717, 20020}, {3720, 56508}, {3722, 61358}, {3729, 3891}, {3752, 37540}, {3755, 20075}, {3759, 3996}, {3769, 32942}, {3791, 17156}, {3875, 17150}, {3895, 37610}, {3896, 16834}, {3928, 4392}, {3929, 7226}, {3941, 16678}, {3957, 37685}, {3961, 16468}, {3980, 50023}, {4008, 14213}, {4030, 38047}, {4184, 16688}, {4264, 37325}, {4307, 5249}, {4312, 33146}, {4321, 34033}, {4339, 57287}, {4362, 49482}, {4365, 50126}, {4388, 29634}, {4414, 29819}, {4425, 29842}, {4428, 37593}, {4450, 32774}, {4640, 17599}, {4649, 17715}, {4650, 17598}, {4652, 37592}, {4654, 33148}, {4660, 29654}, {4663, 41711}, {4672, 32920}, {4676, 32926}, {4689, 21000}, {4719, 5217}, {4847, 24597}, {4860, 4906}, {4865, 6679}, {4901, 33166}, {4907, 9539}, {4917, 50581}, {5219, 29665}, {5222, 17784}, {5255, 16478}, {5263, 5271}, {5276, 16970}, {5280, 55337}, {5284, 9347}, {5297, 7308}, {5310, 5329}, {5322, 7295}, {5332, 36404}, {5437, 7292}, {5573, 27003}, {5711, 54392}, {5716, 24987}, {5846, 32777}, {5847, 33171}, {6327, 25527}, {6690, 17723}, {7322, 15601}, {8580, 37680}, {9342, 54390}, {9352, 62695}, {9580, 33134}, {9581, 54355}, {10056, 55916}, {10072, 55915}, {10327, 17353}, {10582, 16487}, {11415, 34937}, {11523, 36565}, {11679, 24552}, {14986, 55905}, {14996, 29817}, {16496, 21747}, {16679, 18611}, {16968, 21332}, {16973, 60697}, {16974, 21331}, {17011, 37553}, {17015, 31393}, {17025, 35445}, {17064, 33104}, {17121, 20012}, {17165, 50127}, {17184, 20064}, {17242, 20069}, {17274, 42058}, {17284, 33078}, {17296, 33173}, {17304, 32950}, {17306, 29648}, {17468, 36060}, {17472, 19555}, {17602, 24703}, {17697, 41261}, {17721, 37646}, {17725, 33096}, {17766, 25453}, {17776, 49476}, {20045, 26223}, {20292, 23681}, {20835, 21002}, {23051, 56034}, {23853, 40956}, {24391, 36579}, {24392, 33142}, {25415, 49682}, {25496, 29828}, {25525, 29681}, {25734, 49447}, {25958, 29874}, {25959, 29871}, {26015, 37642}, {26246, 40719}, {26724, 38052}, {27184, 29838}, {28011, 37607}, {28609, 33153}, {29636, 32947}, {29638, 32949}, {29639, 55867}, {29645, 49705}, {29651, 33682}, {29656, 32946}, {29658, 33106}, {29660, 33085}, {29666, 33086}, {29686, 33080}, {29814, 38316}, {29820, 37604}, {29826, 32916}, {29832, 56520}, {29834, 32776}, {29836, 33069}, {29848, 32843}, {29852, 32948}, {30145, 41229}, {31164, 33144}, {32773, 49709}, {32780, 49506}, {32853, 49473}, {32914, 50314}, {32933, 49446}, {32934, 49472}, {32943, 39594}, {33088, 49684}, {33137, 61647}, {36845, 37666}, {36846, 37542}, {37485, 56328}, {37502, 54327}, {37619, 38029}, {39337, 51912}, {40962, 61720}, {44416, 51147}, {47041, 51788}, {50104, 51000}, {51423, 60751}

X(62834) = isogonal conjugate of X(23051)
X(62834) = perspector of circumconic {{A, B, C, X(662), X(52778)}}
X(62834) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 23051}, {2, 39951}, {3, 8801}, {4, 34817}, {6, 18840}, {57, 56207}, {512, 54971}, {523, 907}, {14259, 43726}, {22334, 51830}, {39978, 40182}, {40178, 40189}, {40187, 52223}
X(62834) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 23051}, {9, 18840}, {5452, 56207}, {32664, 39951}, {36033, 34817}, {36103, 8801}, {39054, 54971}
X(62834) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56034, 1}
X(62834) = pole of line {24006, 62418} with respect to the polar circle
X(62834) = pole of line {100, 6558} with respect to the Kiepert parabola
X(62834) = pole of line {1, 23051} with respect to the Stammler hyperbola
X(62834) = pole of line {101, 4578} with respect to the Hutson-Moses hyperbola
X(62834) = pole of line {75, 16750} with respect to the Wallace hyperbola
X(62834) = pole of line {5249, 29598} with respect to the dual conic of Yff parabola
X(62834) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39731)}}, {{A, B, C, X(19), X(38)}}, {{A, B, C, X(21), X(6995)}}, {{A, B, C, X(58), X(7123)}}, {{A, B, C, X(63), X(82)}}, {{A, B, C, X(81), X(3618)}}, {{A, B, C, X(92), X(51304)}}, {{A, B, C, X(283), X(3796)}}, {{A, B, C, X(758), X(3800)}}, {{A, B, C, X(969), X(3873)}}, {{A, B, C, X(1959), X(56033)}}, {{A, B, C, X(2156), X(36263)}}, {{A, B, C, X(3223), X(60686)}}, {{A, B, C, X(3747), X(3804)}}, {{A, B, C, X(3803), X(52680)}}, {{A, B, C, X(7050), X(44119)}}, {{A, B, C, X(18206), X(48060)}}, {{A, B, C, X(40022), X(40773)}}
X(62834) = barycentric product X(i)*X(j) for these (i, j): {1, 3618}, {19, 3785}, {31, 40022}, {38, 42037}, {63, 6995}, {82, 8362}, {100, 48060}, {101, 48109}, {190, 3803}, {1582, 3866}, {3793, 897}, {3796, 92}, {3800, 662}, {3804, 799}, {3806, 4599}, {30435, 75}, {34055, 3867}, {39731, 6}
X(62834) = barycentric quotient X(i)/X(j) for these (i, j): {1, 18840}, {6, 23051}, {19, 8801}, {31, 39951}, {48, 34817}, {55, 56207}, {163, 907}, {662, 54971}, {1496, 40187}, {3618, 75}, {3785, 304}, {3793, 14210}, {3796, 63}, {3800, 1577}, {3803, 514}, {3804, 661}, {3806, 62418}, {3866, 9239}, {3867, 20883}, {6995, 92}, {8362, 1930}, {30435, 1}, {39731, 76}, {40022, 561}, {42037, 3112}, {48060, 693}, {48109, 3261}
X(62834) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 38}, {1, 31, 63}, {1, 4512, 28606}, {1, 54421, 11520}, {1, 595, 5250}, {1, 8616, 968}, {6, 3744, 3870}, {31, 17469, 1}, {31, 38, 1707}, {31, 63, 36277}, {55, 1386, 5256}, {171, 614, 3306}, {200, 16469, 32911}, {238, 17716, 612}, {238, 612, 3305}, {902, 17017, 17594}, {940, 1279, 4666}, {1001, 3745, 5287}, {1191, 37539, 19861}, {1191, 7050, 17811}, {1449, 10389, 17018}, {1965, 52138, 18056}, {2308, 3938, 3751}, {2887, 29855, 56522}, {3011, 26098, 31266}, {3052, 38315, 3666}, {3218, 17024, 3677}, {3219, 29815, 7174}, {3246, 4682, 4423}, {3749, 16475, 42}, {3791, 32941, 17156}, {4865, 6679, 29857}, {5255, 16478, 54418}, {5269, 7290, 2}, {5284, 9347, 17022}, {6327, 26230, 25527}, {6679, 29857, 56521}, {7191, 17126, 57}, {7322, 15601, 27065}, {8270, 55086, 1445}, {16491, 17594, 17017}, {17011, 61155, 37553}, {17022, 60846, 5284}, {17024, 30652, 3218}, {17150, 32929, 3875}, {20064, 29831, 17184}, {29648, 33083, 17306}, {29681, 33112, 25525}, {33144, 41011, 31164}, {33144, 50303, 41011}, {49684, 59692, 33088}, {55397, 55398, 51304}


X(62835) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(10179), X(3), X(1))

Barycentrics    a*(-b^3-9*a*b*c-c^3+a^2*(b+c)) : :
X(62835) = 2*X[72]+7*X[20057], X[145]+2*X[210], 2*X[392]+X[3241], 4*X[960]+5*X[3623], 8*X[1125]+X[3885], 2*X[3057]+7*X[3622], 4*X[3244]+5*X[3876], X[3436]+8*X[20789], -5*X[3616]+2*X[3753], -X[3621]+4*X[4711], -7*X[3624]+4*X[3968], -X[3632]+4*X[3956] and many others

X(62835) lies on these lines: {1, 21}, {2, 3880}, {8, 3921}, {55, 4881}, {72, 20057}, {100, 31393}, {145, 210}, {392, 3241}, {496, 38058}, {517, 3524}, {518, 5032}, {960, 3623}, {1001, 38460}, {1056, 5057}, {1058, 5086}, {1125, 3885}, {1149, 4850}, {1150, 38475}, {1319, 61155}, {1320, 54318}, {1616, 17016}, {1697, 5253}, {2099, 29817}, {2177, 47623}, {2320, 25405}, {2802, 25055}, {3057, 3622}, {3158, 19861}, {3244, 3876}, {3303, 8668}, {3306, 9819}, {3436, 20789}, {3616, 3753}, {3621, 4711}, {3624, 3968}, {3632, 3956}, {3635, 4134}, {3636, 3919}, {3697, 20053}, {3740, 31145}, {3833, 51110}, {3870, 51779}, {3872, 5284}, {3957, 5289}, {3983, 20052}, {4189, 20323}, {4197, 49600}, {4313, 17616}, {4342, 5249}, {4430, 31165}, {4511, 6767}, {4646, 28370}, {4662, 20014}, {4666, 7962}, {4673, 17163}, {4694, 17461}, {4696, 4903}, {4744, 18398}, {5044, 20050}, {5048, 15837}, {5119, 9352}, {5260, 36846}, {5303, 61762}, {5550, 10914}, {5692, 51071}, {5694, 61282}, {5734, 31786}, {5836, 46934}, {5882, 61705}, {5883, 51105}, {5902, 51103}, {6049, 12709}, {7191, 16486}, {7320, 56089}, {7373, 56288}, {8236, 15733}, {8580, 51786}, {9311, 25261}, {9961, 45776}, {10129, 30384}, {10176, 51093}, {10197, 16173}, {10283, 38033}, {11260, 16865}, {12528, 13607}, {12640, 25011}, {12648, 26105}, {13384, 15558}, {15064, 61294}, {16483, 17015}, {16969, 46907}, {20039, 31035}, {20117, 61288}, {20292, 30305}, {21627, 24564}, {24386, 24987}, {25005, 45081}, {25722, 30331}, {31272, 31434}, {32049, 37162}, {38027, 61273}, {41228, 43179}, {50839, 61028}, {54447, 59377}

X(62835) = reflection of X(i) in X(j) for these {i,j}: {8, 3921}
X(62835) = anticomplement of X(4731)
X(62835) = X(i)-Dao conjugate of X(j) for these {i, j}: {4731, 4731}
X(62835) = pole of line {2646, 3623} with respect to the Feuerbach hyperbola
X(62835) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3877, 3873}, {1, 3878, 3889}, {1, 3884, 3868}, {1, 3890, 3869}, {1, 3898, 3877}, {1, 3899, 3892}, {3616, 9957, 14923}, {3868, 3877, 3899}, {3877, 3898, 3890}, {3892, 3898, 3884}, {5289, 8162, 3957}, {5919, 10179, 2}


X(62836) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(10396), X(3), X(1))

Barycentrics    a*(a^6-4*a^3*b*c*(b+c)+4*a*b*(b-c)^2*c*(b+c)+a^4*(-3*b^2+4*b*c-3*c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-4*b^3*c-6*b^2*c^2-4*b*c^3+3*c^4)) : :

X(62836) lies on these lines: {1, 21}, {2, 10396}, {3, 1445}, {7, 84}, {9, 5703}, {20, 57}, {27, 1895}, {29, 1712}, {33, 54339}, {40, 4313}, {46, 4304}, {56, 10391}, {77, 36746}, {78, 16465}, {224, 22766}, {226, 6837}, {241, 37501}, {354, 62333}, {377, 1210}, {405, 11018}, {411, 10382}, {474, 9858}, {936, 10398}, {942, 1012}, {954, 31445}, {975, 1736}, {999, 1071}, {1001, 15823}, {1040, 1451}, {1106, 21346}, {1125, 15299}, {1158, 11529}, {1259, 3870}, {1420, 18444}, {1449, 1741}, {1476, 30500}, {1479, 3338}, {1490, 10394}, {1708, 3601}, {1709, 3671}, {1728, 3305}, {1730, 19752}, {2082, 23443}, {2096, 10531}, {2257, 36413}, {2894, 24392}, {3085, 54357}, {3086, 5249}, {3176, 55478}, {3218, 17576}, {3361, 5732}, {3428, 12710}, {3485, 30223}, {3486, 37550}, {3487, 7330}, {3488, 5709}, {3586, 59355}, {3600, 9799}, {3646, 60981}, {3811, 18412}, {3813, 5832}, {3911, 37112}, {3928, 15933}, {3984, 18397}, {4208, 5437}, {4298, 10085}, {4314, 41338}, {4321, 12669}, {4357, 10432}, {4652, 20835}, {4666, 16193}, {4855, 10399}, {5044, 5729}, {5045, 42884}, {5219, 6884}, {5256, 17102}, {5273, 57279}, {5435, 37108}, {5436, 55869}, {5438, 8257}, {5714, 18540}, {5722, 37468}, {5735, 51785}, {5738, 7013}, {5758, 41572}, {5784, 25524}, {5809, 50700}, {5837, 6762}, {5886, 38056}, {6769, 7672}, {6839, 9581}, {6846, 21617}, {6916, 37534}, {6986, 10383}, {7008, 52248}, {7091, 10429}, {7171, 60938}, {7183, 14548}, {7411, 15803}, {8886, 41081}, {9579, 37433}, {9612, 10883}, {9844, 19541}, {10072, 18224}, {10393, 37583}, {10573, 17699}, {11041, 49163}, {12053, 55109}, {12433, 37532}, {12609, 60923}, {12671, 22753}, {12705, 54199}, {13405, 41229}, {13462, 51717}, {14547, 54320}, {14563, 40256}, {15656, 54385}, {15934, 24467}, {16845, 60958}, {18391, 57287}, {18446, 37302}, {18655, 37422}, {19860, 50195}, {24929, 55104}, {25513, 27413}, {27003, 37435}, {31446, 51784}, {31775, 37612}, {37022, 37544}, {37113, 40979}, {37228, 54392}, {37426, 37582}, {37447, 57282}, {37787, 61122}, {40257, 61762}, {41712, 58637}, {54295, 55101}

X(62836) = pole of line {6003, 14837} with respect to the incircle
X(62836) = pole of line {2646, 10884} with respect to the Feuerbach hyperbola
X(62836) = pole of line {6003, 47136} with respect to the Suppa-Cucoanes circle
X(62836) = pole of line {269, 5249} with respect to the dual conic of Yff parabola
X(62836) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(21), X(1440)}}, {{A, B, C, X(84), X(2328)}}, {{A, B, C, X(283), X(56972)}}, {{A, B, C, X(969), X(3562)}}
X(62836) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 18389, 11520}, {21, 11020, 1}, {56, 10391, 10884}, {84, 3333, 7}, {3487, 7330, 8545}, {10394, 57283, 1490}, {12514, 54302, 63}


X(62837) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(12513), X(3), X(1))

Barycentrics    a*(a^3-b*c*(b+c)-a*(b^2-5*b*c+c^2)) : :
X(62837) =

X(62837) lies on these lines: {1, 21}, {2, 3304}, {3, 3241}, {4, 10707}, {6, 38869}, {8, 474}, {10, 17535}, {11, 20060}, {12, 52795}, {20, 34611}, {35, 3635}, {36, 3244}, {43, 32577}, {46, 3885}, {55, 3623}, {56, 100}, {57, 1476}, {65, 33895}, {72, 51788}, {78, 61762}, {88, 24440}, {104, 1392}, {105, 7766}, {106, 3216}, {149, 7354}, {153, 7681}, {218, 57192}, {354, 11260}, {355, 45977}, {377, 31420}, {388, 6871}, {404, 519}, {405, 19738}, {411, 5882}, {496, 5080}, {497, 20076}, {517, 26877}, {518, 20323}, {528, 37256}, {529, 5046}, {535, 4857}, {551, 5047}, {631, 11239}, {644, 4253}, {664, 20247}, {750, 59310}, {932, 28583}, {934, 6604}, {942, 4861}, {944, 6985}, {952, 37251}, {956, 3616}, {958, 3622}, {961, 3891}, {962, 2096}, {1001, 37677}, {1004, 4308}, {1006, 15178}, {1012, 5734}, {1014, 3875}, {1056, 6856}, {1125, 5288}, {1145, 34753}, {1149, 5247}, {1201, 32911}, {1210, 5176}, {1280, 7132}, {1319, 34772}, {1320, 5903}, {1325, 47274}, {1376, 3621}, {1420, 3870}, {1434, 20244}, {1444, 17393}, {1475, 56530}, {1483, 11491}, {1610, 17150}, {1617, 6049}, {1724, 56804}, {1743, 38266}, {1788, 12648}, {1999, 10475}, {2094, 37022}, {2217, 39702}, {2329, 17474}, {2475, 3813}, {2476, 45700}, {2551, 10586}, {2646, 3957}, {2802, 3336}, {3057, 3218}, {3058, 15680}, {3086, 6931}, {3219, 58679}, {3227, 7760}, {3243, 7677}, {3295, 19535}, {3303, 4189}, {3306, 4853}, {3315, 3924}, {3333, 3872}, {3338, 13375}, {3361, 9352}, {3428, 37105}, {3434, 3600}, {3436, 6919}, {3445, 4383}, {3476, 12649}, {3555, 4511}, {3617, 9342}, {3633, 25440}, {3636, 5251}, {3651, 3655}, {3656, 21669}, {3679, 17531}, {3681, 6762}, {3746, 17549}, {3780, 9259}, {3880, 32636}, {3895, 15803}, {3916, 31792}, {3935, 59691}, {3953, 15955}, {3976, 49487}, {4187, 56880}, {4190, 49719}, {4193, 10072}, {4203, 42057}, {4208, 33108}, {4298, 20292}, {4315, 57287}, {4317, 17579}, {4321, 25722}, {4358, 9369}, {4360, 17221}, {4385, 57664}, {4392, 37614}, {4413, 4678}, {4420, 17614}, {4421, 37307}, {4430, 12635}, {4482, 29438}, {4641, 45219}, {4652, 31393}, {4677, 36006}, {4720, 50625}, {4742, 7283}, {4756, 19582}, {4757, 11280}, {4848, 5193}, {4855, 13462}, {4866, 8583}, {4881, 56176}, {4973, 11010}, {4996, 12735}, {5057, 12053}, {5083, 20612}, {5086, 10106}, {5141, 11237}, {5154, 11236}, {5221, 10912}, {5249, 12577}, {5255, 54310}, {5263, 17178}, {5270, 17577}, {5276, 17448}, {5290, 10129}, {5323, 34860}, {5435, 41426}, {5450, 16200}, {5550, 9708}, {5558, 19520}, {5603, 12001}, {5657, 16203}, {5687, 17573}, {5731, 22770}, {5836, 27003}, {5844, 37535}, {5881, 6915}, {5902, 22837}, {6284, 20067}, {6742, 52375}, {6765, 35262}, {6796, 61291}, {6866, 10532}, {6872, 34610}, {6876, 7967}, {6905, 37727}, {6906, 10222}, {6909, 7982}, {6912, 13464}, {6920, 61276}, {6921, 34619}, {6924, 38665}, {6950, 37622}, {6972, 20418}, {6979, 37725}, {7280, 25439}, {7288, 10528}, {7419, 18613}, {7489, 61278}, {7504, 37719}, {7673, 60968}, {8158, 9778}, {8168, 20054}, {8715, 13587}, {9327, 16552}, {9657, 11235}, {9671, 34739}, {9780, 16863}, {9785, 44447}, {9840, 42045}, {9957, 56288}, {10031, 48713}, {10247, 32153}, {10269, 12245}, {10453, 16405}, {10459, 37633}, {10573, 12531}, {10587, 30478}, {10595, 22758}, {11012, 13607}, {11014, 12005}, {11015, 21578}, {11116, 39766}, {11246, 13463}, {11248, 38693}, {11329, 50129}, {11344, 15933}, {11349, 16834}, {11376, 31053}, {11522, 31164}, {11849, 61597}, {12029, 53685}, {12127, 51786}, {12437, 35977}, {12625, 35990}, {12632, 37267}, {12642, 29840}, {12773, 13126}, {13266, 24097}, {13869, 38570}, {14151, 58744}, {14511, 31849}, {15170, 57002}, {15325, 27529}, {15326, 20066}, {15556, 41554}, {16117, 34773}, {16284, 26229}, {16408, 53620}, {16452, 48858}, {16474, 50604}, {16691, 53268}, {16858, 51103}, {16861, 51105}, {16884, 38871}, {16998, 31999}, {17015, 37592}, {17100, 25416}, {17126, 37542}, {17135, 35983}, {17310, 21540}, {17389, 21495}, {17536, 25055}, {17547, 51110}, {17566, 45701}, {17572, 31145}, {17728, 25005}, {17778, 28386}, {18391, 36977}, {18524, 61295}, {18990, 52367}, {19314, 48856}, {20041, 37639}, {20052, 61156}, {21214, 37680}, {21511, 29584}, {22760, 42886}, {23675, 33129}, {23958, 37567}, {24046, 49494}, {24222, 45939}, {25303, 37670}, {25946, 29617}, {26241, 39567}, {26286, 59421}, {27958, 53341}, {28071, 38285}, {28234, 37561}, {28352, 37687}, {30147, 50190}, {31146, 36002}, {31226, 41785}, {31494, 50207}, {32613, 61284}, {33557, 50811}, {34471, 42871}, {34606, 37162}, {34690, 37375}, {34699, 36004}, {34716, 37723}, {34719, 36005}, {34740, 50242}, {34894, 63163}, {35258, 37556}, {37522, 50637}, {37621, 61283}, {41574, 51463}, {41863, 56387}, {42842, 51099}, {45287, 49627}, {48820, 56970}, {50310, 56774}, {59221, 61330}, {59235, 61302}, {59331, 61285}

X(62837) = reflection of X(i) in X(j) for these {i,j}: {404, 5563}, {4420, 17614}, {5046, 37722}, {5330, 1}, {56880, 4187}
X(62837) = anticomplement of X(21031)
X(62837) = X(i)-Dao conjugate of X(j) for these {i, j}: {21031, 21031}
X(62837) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1476, 1330}, {3451, 2895}, {40420, 21287}, {60482, 21294}
X(62837) = pole of line {3733, 39386} with respect to the circumcircle
X(62837) = pole of line {4132, 59836} with respect to the DeLongchamps ellipse
X(62837) = pole of line {100, 1293} with respect to the Kiepert parabola
X(62837) = pole of line {4560, 18199} with respect to the Steiner circumellipse
X(62837) = pole of line {101, 1293} with respect to the Hutson-Moses hyperbola
X(62837) = pole of line {75, 3890} with respect to the Wallace hyperbola
X(62837) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(3898)}}, {{A, B, C, X(21), X(1120)}}, {{A, B, C, X(58), X(8686)}}, {{A, B, C, X(75), X(3890)}}, {{A, B, C, X(283), X(1811)}}, {{A, B, C, X(596), X(3884)}}, {{A, B, C, X(1280), X(3794)}}, {{A, B, C, X(1476), X(16948)}}, {{A, B, C, X(3680), X(55330)}}, {{A, B, C, X(3869), X(39702)}}, {{A, B, C, X(3877), X(34860)}}, {{A, B, C, X(3878), X(39697)}}, {{A, B, C, X(4512), X(55372)}}, {{A, B, C, X(8616), X(53707)}}, {{A, B, C, X(12029), X(52375)}}, {{A, B, C, X(14923), X(39126)}}, {{A, B, C, X(17185), X(39694)}}, {{A, B, C, X(18206), X(38247)}}, {{A, B, C, X(23831), X(34594)}}, {{A, B, C, X(28583), X(38832)}}, {{A, B, C, X(29227), X(54353)}}, {{A, B, C, X(52680), X(56642)}}
X(62837) = barycentric product X(i)*X(j) for these (i, j): {1434, 55372}
X(62837) = barycentric quotient X(i)/X(j) for these (i, j): {55330, 6736}, {55372, 2321}
X(62837) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 191, 3898}, {1, 2975, 1621}, {1, 3873, 34195}, {1, 54391, 2975}, {1, 63, 3890}, {1, 6763, 3884}, {1, 758, 5330}, {1, 8666, 21}, {8, 999, 5253}, {21, 54391, 8666}, {36, 3244, 3871}, {56, 3913, 4188}, {57, 36846, 14923}, {145, 4188, 3913}, {388, 10529, 11680}, {519, 5563, 404}, {551, 5258, 5047}, {956, 3616, 5260}, {956, 7373, 3616}, {958, 3622, 5284}, {1319, 34791, 34772}, {1483, 22765, 11491}, {2646, 58609, 3957}, {3086, 11681, 31272}, {3303, 11194, 4189}, {3304, 12513, 2}, {3445, 4383, 28370}, {3476, 26437, 57283}, {3617, 25524, 9342}, {3633, 37587, 25440}, {3813, 5434, 2475}, {3881, 39772, 3873}, {3913, 4188, 100}, {3953, 15955, 54315}, {5270, 24387, 17577}, {5288, 37602, 1125}, {10106, 26015, 5086}, {17728, 32049, 25005}


X(62838) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15254), X(3), X(1))

Barycentrics    a*(2*a^2-b^2-b*c-c^2-a*(b+c)) : :

X(62838) lies on these lines: {1, 21}, {2, 1155}, {3, 9961}, {4, 2355}, {8, 11111}, {9, 100}, {10, 11114}, {35, 3876}, {37, 9347}, {40, 5260}, {42, 7262}, {44, 751}, {45, 2243}, {46, 5047}, {55, 1776}, {57, 5284}, {60, 37029}, {65, 16865}, {75, 4427}, {88, 39954}, {90, 32635}, {92, 52891}, {105, 56511}, {110, 56934}, {165, 3305}, {190, 26227}, {238, 4414}, {244, 15485}, {320, 29830}, {333, 32929}, {345, 33075}, {392, 5126}, {405, 36279}, {411, 10860}, {497, 55868}, {516, 10883}, {518, 61155}, {612, 33761}, {678, 51297}, {693, 30988}, {748, 17596}, {752, 27754}, {756, 3550}, {899, 17601}, {902, 984}, {908, 51090}, {958, 14923}, {960, 4189}, {997, 17549}, {1001, 3218}, {1004, 15346}, {1054, 17125}, {1098, 37032}, {1150, 3685}, {1158, 6986}, {1159, 16418}, {1211, 59580}, {1260, 4420}, {1279, 4392}, {1376, 27065}, {1386, 30653}, {1423, 30359}, {1633, 7465}, {1698, 17577}, {1699, 55867}, {1709, 7411}, {1748, 4183}, {1757, 2177}, {1768, 52769}, {1770, 4197}, {1977, 16525}, {2094, 3616}, {2108, 62711}, {2173, 35981}, {2225, 3730}, {2308, 17592}, {2346, 61005}, {2398, 31169}, {2476, 3634}, {3011, 33151}, {3052, 3920}, {3060, 22276}, {3185, 4184}, {3245, 5251}, {3246, 4003}, {3416, 32849}, {3434, 5273}, {3475, 20078}, {3485, 5265}, {3486, 3621}, {3556, 59359}, {3560, 12702}, {3612, 17574}, {3617, 5086}, {3626, 10572}, {3648, 57282}, {3650, 6147}, {3662, 24542}, {3666, 17025}, {3689, 15481}, {3706, 5361}, {3711, 61153}, {3712, 33077}, {3715, 4421}, {3720, 4650}, {3722, 49448}, {3742, 23958}, {3744, 7226}, {3745, 30652}, {3748, 4430}, {3750, 32912}, {3757, 32933}, {3758, 29822}, {3769, 3995}, {3771, 4683}, {3772, 33100}, {3782, 29681}, {3809, 52963}, {3812, 16859}, {3870, 3929}, {3871, 41229}, {3883, 3977}, {3885, 5258}, {3896, 37652}, {3923, 32917}, {3928, 4666}, {3952, 17336}, {3957, 4428}, {3966, 33168}, {3989, 17716}, {4011, 32918}, {4124, 16816}, {4188, 25917}, {4294, 5178}, {4357, 35263}, {4362, 32936}, {4388, 33113}, {4389, 26230}, {4413, 35595}, {4415, 29665}, {4419, 26228}, {4423, 27003}, {4432, 30942}, {4438, 32947}, {4448, 4782}, {4450, 29641}, {4511, 16370}, {4588, 11712}, {4641, 17018}, {4643, 4760}, {4652, 5253}, {4654, 10032}, {4655, 29632}, {4660, 33115}, {4702, 24616}, {4703, 29846}, {4722, 42042}, {4756, 25728}, {4781, 17335}, {4847, 34611}, {4921, 17156}, {4973, 25055}, {5010, 10176}, {5016, 56313}, {5046, 26066}, {5217, 20846}, {5218, 31018}, {5221, 7098}, {5223, 62236}, {5224, 20291}, {5231, 10707}, {5235, 50314}, {5249, 30424}, {5278, 32932}, {5282, 60711}, {5303, 19861}, {5325, 25006}, {5428, 40266}, {5432, 27131}, {5537, 60912}, {5550, 6857}, {5657, 6930}, {5720, 59421}, {5729, 13615}, {5730, 17571}, {5744, 52653}, {5745, 11680}, {5791, 52367}, {5794, 15680}, {5852, 37703}, {5887, 6875}, {6001, 37106}, {6139, 30565}, {6172, 34919}, {6261, 32633}, {6284, 18253}, {6327, 33116}, {6646, 33122}, {6666, 30311}, {6679, 32776}, {6684, 6932}, {6690, 31053}, {6828, 18483}, {6852, 61268}, {6871, 46931}, {6876, 31937}, {6914, 35459}, {6920, 59318}, {6992, 14647}, {7074, 55438}, {7292, 17595}, {7308, 9342}, {7474, 24346}, {7491, 18357}, {7495, 40560}, {8053, 53280}, {8583, 51576}, {9330, 16814}, {9340, 37604}, {9965, 30340}, {10404, 45065}, {10430, 59345}, {10902, 12528}, {11113, 12019}, {11115, 31359}, {11220, 15931}, {11246, 27186}, {11248, 26878}, {11340, 15494}, {11681, 12572}, {12047, 19862}, {12617, 59355}, {12699, 22937}, {12738, 32613}, {13405, 17781}, {14996, 15569}, {15017, 46684}, {15507, 30944}, {15670, 39542}, {15672, 41542}, {15674, 28628}, {15726, 35986}, {15823, 17576}, {15837, 61006}, {16468, 46904}, {16704, 49470}, {16741, 18156}, {16815, 24596}, {16825, 32845}, {16858, 54318}, {17002, 49514}, {17064, 31204}, {17139, 41847}, {17257, 35261}, {17275, 46918}, {17276, 33148}, {17279, 33086}, {17289, 52786}, {17334, 17724}, {17338, 24988}, {17350, 46897}, {17354, 26251}, {17394, 27811}, {17484, 17718}, {17531, 58887}, {17548, 59691}, {17594, 32911}, {17613, 31658}, {17768, 31019}, {17776, 33078}, {18235, 25306}, {18249, 57287}, {18259, 37292}, {18391, 31156}, {18481, 22936}, {20045, 49447}, {20064, 33073}, {20073, 26245}, {20117, 59331}, {22080, 41809}, {22267, 26689}, {24248, 33129}, {24465, 60988}, {24552, 38000}, {24593, 30947}, {24624, 36815}, {24710, 30823}, {24725, 26738}, {24789, 33102}, {24850, 31339}, {24892, 33095}, {24914, 37162}, {24922, 24955}, {25681, 37291}, {26034, 33157}, {29642, 33067}, {29651, 32940}, {29661, 33097}, {29667, 44416}, {29670, 32938}, {29675, 32856}, {29678, 33096}, {29679, 44419}, {29689, 33103}, {29828, 41242}, {29832, 49709}, {29835, 49746}, {29836, 50285}, {29839, 32859}, {29862, 31134}, {30295, 35985}, {30628, 61024}, {31164, 60905}, {31330, 59624}, {32773, 56520}, {32777, 33083}, {32779, 50295}, {32782, 59692}, {32862, 56078}, {32914, 32934}, {32916, 32930}, {33074, 33164}, {33076, 33161}, {33080, 33158}, {33082, 33156}, {33094, 33138}, {33098, 33130}, {33099, 33127}, {33134, 35466}, {37297, 40660}, {37541, 37787}, {37593, 37685}, {37730, 57003}, {38027, 51409}, {40998, 59491}, {41228, 58328}, {41869, 52269}, {43997, 53034}, {44425, 60911}, {49452, 50756}, {50587, 50619}, {51786, 53052}, {52155, 56508}, {53055, 54408}, {54290, 54392}, {56543, 62704}, {61156, 61686}

X(62838) = reflection of X(i) in X(j) for these {i,j}: {33108, 54357}
X(62838) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60083}
X(62838) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60083}
X(62838) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55920, 1330}, {55954, 21287}
X(62838) = pole of line {28537, 48219} with respect to the orthoptic circle of the Steiner Inellipse
X(62838) = pole of line {4802, 24006} with respect to the polar circle
X(62838) = pole of line {2646, 10394} with respect to the Feuerbach hyperbola
X(62838) = pole of line {100, 14074} with respect to the Kiepert parabola
X(62838) = pole of line {4560, 28898} with respect to the Steiner circumellipse
X(62838) = pole of line {14838, 28898} with respect to the Steiner inellipse
X(62838) = pole of line {101, 14074} with respect to the Hutson-Moses hyperbola
X(62838) = pole of line {75, 62235} with respect to the Wallace hyperbola
X(62838) = pole of line {5249, 50114} with respect to the dual conic of Yff parabola
X(62838) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(4658)}}, {{A, B, C, X(21), X(41798)}}, {{A, B, C, X(58), X(2291)}}, {{A, B, C, X(63), X(60203)}}, {{A, B, C, X(75), X(62235)}}, {{A, B, C, X(81), X(751)}}, {{A, B, C, X(88), X(56834)}}, {{A, B, C, X(283), X(56203)}}, {{A, B, C, X(758), X(59261)}}, {{A, B, C, X(1155), X(41423)}}, {{A, B, C, X(2349), X(24635)}}, {{A, B, C, X(3193), X(32635)}}, {{A, B, C, X(4653), X(32631)}}, {{A, B, C, X(5220), X(5880)}}, {{A, B, C, X(18206), X(27486)}}, {{A, B, C, X(20292), X(34409)}}, {{A, B, C, X(24624), X(51311)}}, {{A, B, C, X(39954), X(52680)}}
X(62838) = barycentric product X(i)*X(j) for these (i, j): {1, 17346}, {100, 27486}, {101, 50450}, {4262, 75}
X(62838) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60083}, {4262, 1}, {17346, 75}, {27486, 693}, {50450, 3261}
X(62838) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44447, 20292}, {2, 5057, 10129}, {2, 5698, 5057}, {9, 35258, 100}, {21, 12514, 3869}, {31, 846, 28606}, {37, 17126, 9347}, {44, 4689, 3240}, {45, 37540, 5297}, {55, 1776, 10394}, {55, 5220, 3935}, {63, 1621, 3873}, {63, 4512, 1621}, {165, 54370, 36002}, {191, 5248, 3868}, {238, 4414, 4850}, {516, 54357, 33108}, {968, 1707, 81}, {1155, 15254, 2}, {1155, 3683, 15254}, {2975, 5250, 3890}, {3219, 3935, 5220}, {3883, 3977, 33089}, {3935, 5220, 3681}, {3966, 59536, 33168}, {4362, 32936, 42044}, {4640, 15254, 1155}, {4652, 31435, 5253}, {5250, 31424, 2975}, {5302, 37568, 3617}, {24725, 29640, 26738}, {32914, 32934, 50106}, {37572, 41872, 3634}


X(62839) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15299), X(3), X(1))

Barycentrics    a*(a^5-b^5-2*a^3*(b-c)^2+b^4*c+b*c^4-c^5-a^4*(b+c)+a*(b^2-c^2)^2+2*a^2*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(62839) lies on these lines: {1, 21}, {2, 15299}, {3, 12710}, {6, 51376}, {7, 1709}, {9, 13405}, {10, 10396}, {40, 3488}, {46, 938}, {55, 1708}, {56, 10167}, {57, 497}, {84, 4298}, {90, 13407}, {100, 55871}, {165, 1445}, {200, 10398}, {210, 5729}, {226, 30223}, {354, 42884}, {388, 12617}, {390, 41338}, {612, 1736}, {942, 1158}, {950, 37550}, {954, 3683}, {999, 6001}, {1001, 11018}, {1040, 55086}, {1058, 12704}, {1210, 59335}, {1260, 3811}, {1376, 8257}, {1451, 54295}, {1617, 10391}, {1712, 39585}, {1728, 3085}, {1737, 17699}, {1741, 54358}, {1754, 4319}, {1768, 10980}, {1776, 3475}, {1779, 5738}, {2257, 59645}, {2999, 24025}, {3086, 9776}, {3218, 10580}, {3219, 10578}, {3304, 10569}, {3306, 11680}, {3333, 3671}, {3338, 4295}, {3339, 12651}, {3361, 12565}, {3600, 10085}, {3673, 33765}, {3870, 18412}, {3928, 47357}, {3941, 23171}, {4293, 10430}, {4313, 59340}, {4321, 30304}, {4640, 5572}, {4860, 17626}, {5045, 24467}, {5249, 60923}, {5253, 12529}, {5281, 37787}, {5284, 55870}, {5722, 5842}, {5857, 24703}, {5927, 60910}, {6769, 12432}, {6988, 12875}, {7008, 39531}, {7082, 17718}, {7091, 9949}, {7262, 9440}, {7330, 21620}, {7580, 14100}, {7587, 12715}, {7588, 12716}, {7675, 15931}, {8270, 52428}, {8758, 45126}, {9316, 21346}, {9371, 52424}, {9612, 12558}, {10383, 52769}, {10393, 37579}, {10596, 26877}, {10855, 18251}, {11041, 12703}, {12433, 59318}, {12511, 15803}, {15587, 37271}, {16201, 31445}, {17102, 22119}, {17706, 40256}, {17784, 18391}, {18249, 57279}, {22117, 30621}, {35258, 41861}, {42842, 58578}, {50195, 54318}, {55873, 61155}

X(62839) = pole of line {954, 2646} with respect to the Feuerbach hyperbola
X(62839) = pole of line {14282, 14838} with respect to the Steiner inellipse
X(62839) = pole of line {948, 4350} with respect to the dual conic of Yff parabola
X(62839) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {56, 12711, 12520}, {63, 4512, 12514}, {226, 30223, 54370}, {1621, 11020, 1}, {3219, 10578, 15298}, {3333, 12705, 3671}


X(62840) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15569), X(3), X(1))

Barycentrics    a*(b^2+3*b*c+c^2+3*a*(b+c)) : :

X(62840) lies on these lines: {1, 21}, {2, 3696}, {8, 57007}, {37, 3681}, {43, 21806}, {55, 9347}, {75, 27804}, {86, 32929}, {92, 461}, {100, 5287}, {145, 4981}, {312, 29822}, {551, 4970}, {612, 1255}, {756, 42042}, {1001, 17011}, {1100, 17127}, {1125, 32860}, {1215, 50111}, {1376, 17021}, {1617, 7269}, {1836, 37635}, {1961, 2177}, {2355, 11363}, {3210, 3622}, {3240, 44307}, {3247, 3870}, {3616, 4359}, {3636, 24165}, {3666, 29814}, {3683, 37685}, {3685, 19684}, {3720, 4850}, {3723, 3744}, {3745, 61155}, {3748, 29815}, {3750, 5311}, {3751, 33761}, {3876, 27785}, {3891, 17319}, {3920, 5275}, {3944, 26738}, {3945, 44447}, {3961, 60688}, {3989, 49490}, {3993, 32771}, {4026, 32858}, {4038, 4414}, {4068, 16678}, {4085, 29854}, {4113, 20048}, {4343, 25722}, {4356, 5249}, {4358, 59297}, {4392, 4883}, {4423, 17012}, {4424, 48855}, {4438, 27754}, {4511, 16344}, {4640, 14996}, {4651, 4687}, {4657, 33173}, {4664, 17165}, {4675, 33102}, {4676, 19717}, {4719, 46934}, {4734, 24589}, {4849, 9330}, {4851, 33083}, {4854, 31019}, {5057, 5712}, {5235, 17156}, {5256, 5284}, {5312, 27784}, {5333, 50314}, {5724, 48846}, {6051, 19767}, {6536, 33084}, {7191, 20182}, {7226, 49478}, {7672, 16577}, {8167, 17020}, {8543, 45126}, {9345, 17596}, {9352, 17594}, {9791, 32859}, {10129, 24210}, {10180, 31330}, {12699, 32167}, {14923, 37548}, {16133, 56848}, {16484, 17017}, {16672, 46907}, {16673, 62236}, {16703, 18156}, {17024, 42819}, {17045, 29648}, {17056, 33134}, {17126, 37595}, {17135, 27811}, {17150, 17393}, {17157, 58400}, {17243, 29679}, {17275, 59218}, {17300, 32950}, {17316, 33078}, {17450, 17591}, {17599, 29817}, {17715, 29816}, {17784, 29624}, {18059, 20945}, {19786, 29830}, {20012, 27268}, {20068, 51055}, {21020, 49469}, {22277, 26911}, {24217, 29688}, {24325, 50106}, {24331, 32924}, {24554, 25941}, {25417, 30653}, {26102, 46904}, {26227, 34064}, {28605, 49462}, {29644, 32943}, {29647, 33158}, {29651, 32928}, {29661, 33135}, {29682, 33141}, {29685, 33092}, {29829, 33116}, {29837, 33113}, {32782, 50290}, {32914, 50281}, {32915, 43223}, {33148, 50068}, {33163, 48830}, {37869, 49484}, {41839, 46897}, {42039, 49498}, {49459, 59306}, {50298, 62586}, {53034, 59312}

X(62840) = pole of line {3733, 48024} with respect to the circumcircle
X(62840) = pole of line {100, 30729} with respect to the Kiepert parabola
X(62840) = pole of line {4560, 4827} with respect to the Steiner circumellipse
X(62840) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(39961)}}, {{A, B, C, X(81), X(39737)}}, {{A, B, C, X(1255), X(56834)}}, {{A, B, C, X(18206), X(47667)}}, {{A, B, C, X(48081), X(52680)}}
X(62840) = barycentric product X(i)*X(j) for these (i, j): {100, 47667}, {190, 48081}
X(62840) = barycentric quotient X(i)/X(j) for these (i, j): {47667, 693}, {48081, 514}
X(62840) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1962, 28606}, {1, 28606, 3873}, {1, 3743, 3868}, {1, 968, 81}, {55, 17019, 9347}, {3720, 17592, 4850}, {3993, 32771, 42044}, {5287, 37553, 100}, {15569, 37593, 2}, {17594, 37633, 9352}


X(62841) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16468), X(3), X(1))

Barycentrics    a*(2*a^2+b*c+a*(b+c)) : :

X(62841) lies on these lines: {1, 21}, {2, 2308}, {3, 1695}, {6, 43}, {7, 33147}, {8, 51674}, {9, 1961}, {10, 37652}, {19, 13610}, {35, 19762}, {37, 7262}, {40, 13323}, {42, 3097}, {44, 4682}, {46, 54373}, {55, 4649}, {57, 985}, {69, 32783}, {75, 3791}, {82, 39742}, {100, 28523}, {105, 10980}, {165, 572}, {172, 62420}, {182, 20368}, {213, 1613}, {222, 4334}, {226, 29658}, {238, 940}, {239, 3980}, {261, 51356}, {312, 4672}, {320, 26128}, {333, 50302}, {345, 50284}, {386, 37603}, {497, 50303}, {518, 17716}, {524, 33084}, {560, 757}, {609, 2205}, {612, 1757}, {727, 43350}, {739, 6013}, {741, 931}, {748, 25502}, {750, 9342}, {752, 32773}, {756, 9347}, {873, 52716}, {893, 23543}, {894, 4362}, {902, 17018}, {942, 16478}, {978, 1203}, {982, 1386}, {984, 3745}, {1001, 4038}, {1054, 2999}, {1100, 4640}, {1126, 8715}, {1150, 32772}, {1185, 2664}, {1193, 37608}, {1215, 3758}, {1220, 59313}, {1258, 7121}, {1449, 1914}, {1460, 37492}, {1471, 17074}, {1698, 5278}, {1699, 13478}, {1702, 13332}, {1703, 13333}, {1711, 2257}, {1716, 16470}, {1724, 19734}, {1742, 1754}, {1743, 5268}, {1758, 45126}, {1836, 33135}, {1922, 18787}, {1936, 61398}, {1977, 18794}, {1999, 3923}, {2185, 59243}, {2214, 17038}, {2309, 23460}, {2663, 18900}, {2886, 61661}, {2887, 29856}, {3052, 3750}, {3072, 36742}, {3073, 5707}, {3187, 4418}, {3210, 49477}, {3218, 17017}, {3219, 5311}, {3338, 26884}, {3416, 32780}, {3509, 16972}, {3589, 33174}, {3624, 19334}, {3632, 32945}, {3652, 50558}, {3662, 29654}, {3666, 4650}, {3670, 38904}, {3677, 16491}, {3679, 32864}, {3681, 4722}, {3683, 37595}, {3687, 51196}, {3720, 14996}, {3740, 16669}, {3741, 37683}, {3744, 49490}, {3749, 3979}, {3751, 3961}, {3771, 17778}, {3772, 33097}, {3835, 23568}, {3840, 37684}, {3871, 55103}, {3879, 59692}, {3891, 32940}, {3920, 32912}, {3925, 50301}, {3938, 49498}, {3944, 41011}, {3955, 19133}, {3971, 17350}, {3993, 58820}, {3996, 49497}, {4259, 7186}, {4307, 33109}, {4335, 54358}, {4360, 32934}, {4383, 16477}, {4388, 29635}, {4392, 29819}, {4393, 4970}, {4414, 17011}, {4425, 29841}, {4438, 33073}, {4447, 7296}, {4644, 33144}, {4645, 25453}, {4654, 61225}, {4655, 19786}, {4660, 20101}, {4667, 25353}, {4851, 33158}, {4865, 33121}, {4974, 19804}, {5233, 58443}, {5247, 5711}, {5249, 61647}, {5256, 10789}, {5263, 32853}, {5264, 17977}, {5271, 24342}, {5272, 16469}, {5284, 9345}, {5294, 29674}, {5329, 36740}, {5361, 30970}, {5372, 31241}, {5527, 10860}, {5563, 15654}, {5710, 59310}, {5712, 29640}, {5745, 29657}, {5846, 33169}, {5847, 32778}, {5880, 33132}, {5905, 33152}, {6043, 33760}, {6210, 37527}, {6327, 29631}, {6679, 18134}, {6693, 29984}, {7081, 7766}, {7226, 29816}, {7277, 17725}, {7290, 29820}, {7295, 37538}, {7301, 20988}, {7304, 17103}, {8053, 18185}, {8932, 22148}, {8941, 19004}, {8945, 19003}, {9306, 60722}, {9340, 46904}, {9346, 24264}, {9364, 52424}, {9440, 22117}, {9902, 41233}, {10180, 17394}, {10436, 33295}, {10453, 49482}, {11246, 33149}, {11269, 33106}, {12194, 37555}, {14534, 50314}, {14621, 17026}, {14829, 25496}, {16058, 36635}, {16192, 61130}, {16466, 21214}, {16474, 37610}, {16666, 17601}, {16690, 18166}, {16704, 31330}, {16779, 21764}, {17024, 17449}, {17025, 23958}, {17027, 24259}, {17061, 17365}, {17063, 37520}, {17123, 37674}, {17124, 37680}, {17150, 17155}, {17184, 29636}, {17300, 29642}, {17363, 21085}, {17364, 29634}, {17367, 24169}, {17379, 43223}, {17474, 23415}, {17483, 33143}, {17598, 38315}, {17602, 33101}, {17715, 49478}, {17717, 37646}, {17720, 33096}, {17763, 26223}, {17767, 62229}, {17768, 33154}, {17770, 27184}, {17784, 50282}, {17889, 40940}, {18197, 56242}, {18513, 54735}, {18524, 36750}, {18792, 61409}, {19684, 32917}, {19742, 26037}, {19767, 37574}, {19785, 32857}, {19808, 50308}, {20012, 49685}, {20064, 29829}, {20086, 33175}, {20090, 29839}, {20284, 23533}, {20292, 33128}, {20760, 21010}, {20967, 37609}, {21387, 40747}, {22086, 24462}, {23538, 23660}, {23570, 24533}, {24231, 62240}, {24552, 32919}, {24597, 33138}, {24627, 29650}, {24695, 33099}, {24725, 33133}, {24892, 33112}, {24943, 32863}, {25527, 29859}, {25528, 27644}, {25572, 28369}, {25958, 29863}, {25959, 29867}, {26034, 29633}, {26061, 33078}, {26065, 33164}, {26098, 33140}, {26230, 33069}, {26580, 29847}, {26825, 27313}, {27064, 29649}, {27259, 30103}, {28605, 50756}, {29643, 56520}, {29644, 38000}, {29646, 54311}, {29647, 33083}, {29661, 37635}, {29662, 33107}, {29663, 33086}, {29673, 50289}, {29683, 31053}, {29814, 30653}, {29825, 32916}, {29833, 32776}, {29846, 31034}, {29862, 56519}, {30942, 37639}, {31137, 32942}, {32774, 33067}, {32775, 32859}, {32777, 32846}, {32779, 32852}, {32847, 33163}, {32854, 33170}, {32866, 51192}, {32921, 32939}, {32926, 32935}, {32928, 32933}, {32929, 49469}, {32932, 49488}, {33070, 33119}, {33072, 33114}, {33079, 38047}, {33088, 33167}, {33092, 44416}, {33093, 33161}, {33098, 33155}, {33104, 33142}, {33111, 35466}, {33124, 62230}, {36746, 37570}, {37540, 60714}, {37554, 54386}, {37576, 44094}, {37677, 59297}, {39253, 54382}, {40790, 54329}, {50114, 53617}, {50293, 59624}

X(62841) = reflection of X(i) in X(j) for these {i,j}: {27184, 29645}
X(62841) = isogonal conjugate of X(17038)
X(62841) = perspector of circumconic {{A, B, C, X(662), X(932)}}
X(62841) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17038}, {2, 39967}, {6, 56210}, {37, 56066}, {42, 56052}, {523, 43359}, {28621, 56926}
X(62841) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17038}, {9, 56210}, {5224, 33935}, {32664, 39967}, {40589, 56066}, {40592, 56052}
X(62841) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2214, 1}
X(62841) = pole of line {1491, 29807} with respect to the Bevan circle
X(62841) = pole of line {3733, 8640} with respect to the circumcircle
X(62841) = pole of line {8640, 20981} with respect to the Brocard inellipse
X(62841) = pole of line {100, 58117} with respect to the Kiepert parabola
X(62841) = pole of line {1, 3728} with respect to the Stammler hyperbola
X(62841) = pole of line {14838, 21348} with respect to the Steiner inellipse
X(62841) = pole of line {101, 58117} with respect to the Hutson-Moses hyperbola
X(62841) = pole of line {75, 17038} with respect to the Wallace hyperbola
X(62841) = pole of line {5249, 17397} with respect to the dual conic of Yff parabola
X(62841) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16606)}}, {{A, B, C, X(6), X(38832)}}, {{A, B, C, X(19), X(846)}}, {{A, B, C, X(21), X(985)}}, {{A, B, C, X(31), X(21759)}}, {{A, B, C, X(38), X(39742)}}, {{A, B, C, X(43), X(1258)}}, {{A, B, C, X(57), X(40773)}}, {{A, B, C, X(58), X(2162)}}, {{A, B, C, X(63), X(13610)}}, {{A, B, C, X(81), X(87)}}, {{A, B, C, X(82), X(8616)}}, {{A, B, C, X(739), X(39673)}}, {{A, B, C, X(741), X(1468)}}, {{A, B, C, X(757), X(18169)}}, {{A, B, C, X(931), X(3573)}}, {{A, B, C, X(969), X(32913)}}, {{A, B, C, X(1197), X(7121)}}, {{A, B, C, X(1397), X(40736)}}, {{A, B, C, X(2258), X(3747)}}, {{A, B, C, X(2292), X(59261)}}, {{A, B, C, X(4658), X(43531)}}, {{A, B, C, X(4932), X(18206)}}, {{A, B, C, X(5018), X(56838)}}, {{A, B, C, X(5208), X(7194)}}, {{A, B, C, X(9277), X(25058)}}, {{A, B, C, X(10458), X(56329)}}, {{A, B, C, X(14534), X(51311)}}, {{A, B, C, X(17038), X(28606)}}, {{A, B, C, X(28162), X(54353)}}, {{A, B, C, X(35623), X(56328)}}, {{A, B, C, X(38275), X(40747)}}, {{A, B, C, X(54336), X(54354)}}
X(62841) = barycentric product X(i)*X(j) for these (i, j): {1, 17379}, {100, 4932}, {2214, 41849}, {13610, 17689}, {31997, 6}, {43223, 81}
X(62841) = barycentric quotient X(i)/X(j) for these (i, j): {1, 56210}, {6, 17038}, {31, 39967}, {58, 56066}, {81, 56052}, {163, 43359}, {4932, 693}, {17379, 75}, {17689, 17762}, {31997, 76}, {41849, 33935}, {43223, 321}
X(62841) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12526, 11533}, {1, 1707, 846}, {1, 31, 8616}, {2, 2308, 16468}, {6, 171, 43}, {6, 2162, 1197}, {42, 17126, 3550}, {43, 171, 56010}, {55, 4649, 42042}, {57, 16475, 29821}, {58, 81, 18169}, {81, 39673, 10458}, {100, 61358, 42043}, {238, 940, 26102}, {333, 50302, 59312}, {748, 37633, 25502}, {1100, 4640, 17592}, {1203, 37522, 978}, {1468, 57280, 1}, {3218, 17017, 17591}, {3720, 21747, 17127}, {3745, 4641, 984}, {3751, 5269, 3961}, {3758, 3769, 1215}, {4307, 33137, 33109}, {4307, 37666, 33137}, {5247, 5711, 59311}, {5263, 41629, 32853}, {6679, 18134, 29858}, {10458, 39673, 52680}, {14829, 25496, 29827}, {14996, 17127, 3720}, {16468, 37604, 2}, {16477, 17122, 4383}, {17018, 30652, 902}, {17061, 17365, 33103}, {17126, 37685, 42}, {17770, 29645, 27184}, {20064, 29829, 32947}, {26098, 37642, 33140}, {29683, 61707, 31053}, {32928, 32933, 49445}


X(62842) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16469), X(3), X(1))

Barycentrics    a*(5*a^2+2*a*(b+c)+(b+c)^2) : :

X(62842) lies on these lines: {1, 21}, {2, 4349}, {6, 200}, {7, 34033}, {9, 3745}, {42, 16667}, {44, 7322}, {55, 1449}, {57, 1386}, {154, 3333}, {165, 5256}, {171, 2999}, {210, 16670}, {222, 4321}, {238, 17022}, {610, 20986}, {612, 1743}, {750, 23511}, {756, 3973}, {936, 1203}, {940, 7290}, {982, 16491}, {999, 20991}, {1100, 3052}, {1397, 19133}, {1453, 5711}, {1964, 2258}, {1965, 18078}, {2257, 42012}, {3185, 16679}, {3190, 10460}, {3247, 3683}, {3305, 9347}, {3339, 4347}, {3474, 3946}, {3475, 4667}, {3624, 33085}, {3677, 38315}, {3720, 60846}, {3731, 5311}, {3749, 4649}, {3751, 17716}, {3791, 50314}, {3870, 37685}, {3920, 5223}, {3928, 17599}, {3974, 50115}, {4307, 40940}, {4310, 62240}, {4312, 19785}, {4326, 7070}, {4344, 4847}, {4353, 9965}, {4418, 17151}, {4428, 39948}, {4641, 7174}, {4654, 17061}, {4666, 14996}, {4682, 7308}, {4850, 53056}, {4853, 5710}, {4883, 35227}, {4936, 54416}, {5231, 37642}, {5268, 16468}, {5271, 27812}, {5272, 37604}, {5280, 7123}, {5287, 17127}, {5297, 30393}, {5423, 61330}, {5534, 36750}, {5573, 37520}, {5706, 12651}, {7191, 10980}, {7988, 33107}, {7989, 54355}, {7991, 17016}, {8580, 32911}, {8583, 16466}, {9778, 17014}, {9819, 17015}, {10382, 61398}, {10434, 40956}, {11370, 13389}, {11371, 13388}, {12560, 37543}, {12573, 18623}, {14552, 19868}, {15254, 25430}, {15601, 44307}, {16517, 60697}, {16834, 32932}, {17011, 30652}, {17018, 35270}, {17019, 30653}, {17122, 54390}, {17364, 29838}, {17602, 28609}, {17770, 29842}, {18229, 32772}, {20064, 29833}, {20967, 21010}, {21000, 62212}, {23565, 23660}, {23681, 50307}, {24210, 50303}, {24552, 35613}, {25590, 32914}, {26034, 29598}, {26065, 49476}, {26723, 38052}, {29821, 62695}, {29855, 32949}, {31146, 50294}, {31435, 37594}, {32926, 50127}, {32928, 55998}, {33073, 56519}, {33134, 50865}, {35658, 37537}, {39594, 49482}, {40910, 44094}, {41422, 55405}, {50284, 59692}

X(62842) = perspector of circumconic {{A, B, C, X(662), X(6574)}}
X(62842) = pole of line {3733, 8662} with respect to the circumcircle
X(62842) = pole of line {8662, 20981} with respect to the Brocard inellipse
X(62842) = pole of line {2646, 3247} with respect to the Feuerbach hyperbola
X(62842) = pole of line {75, 18078} with respect to the Wallace hyperbola
X(62842) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(39958)}}, {{A, B, C, X(58), X(7050)}}, {{A, B, C, X(81), X(2297)}}, {{A, B, C, X(82), X(4512)}}, {{A, B, C, X(2258), X(3915)}}, {{A, B, C, X(31424), X(54336)}}
X(62842) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 4512}, {6, 5269, 200}, {171, 16475, 2999}, {612, 2308, 1743}, {940, 7290, 10582}, {1100, 3052, 37553}, {16466, 37554, 8583}


X(62843) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16471), X(3), X(1))

Barycentrics    a*(a+b)*(a+c)*(a^4-2*a^2*(b+c)^2+(b^2-c^2)^2) : :

X(62843) lies on these lines: {1, 21}, {2, 16471}, {4, 6}, {8, 40571}, {10, 2287}, {27, 4295}, {28, 65}, {29, 18391}, {40, 284}, {42, 35981}, {46, 1817}, {57, 2360}, {60, 16049}, {171, 3682}, {219, 2303}, {221, 1396}, {278, 14016}, {333, 19843}, {386, 411}, {388, 3173}, {394, 4340}, {431, 44097}, {611, 56020}, {937, 16667}, {940, 6857}, {942, 7193}, {959, 27652}, {960, 47512}, {990, 9960}, {1010, 1812}, {1014, 4341}, {1043, 56439}, {1193, 27653}, {1203, 12047}, {1210, 17188}, {1214, 7098}, {1330, 15988}, {1333, 37528}, {1412, 52218}, {1437, 5323}, {1714, 2476}, {1734, 57227}, {1778, 40937}, {1819, 59335}, {1836, 31902}, {1838, 41011}, {1858, 2906}, {2003, 5930}, {2099, 40980}, {2174, 38856}, {2263, 46883}, {2323, 5717}, {3017, 52269}, {3085, 26872}, {3157, 4644}, {3176, 59187}, {3190, 5264}, {3428, 4267}, {3485, 16466}, {3553, 55104}, {3559, 41083}, {3651, 52544}, {3668, 34043}, {3736, 37570}, {3811, 56182}, {3812, 17581}, {4183, 44547}, {4220, 10974}, {4221, 14110}, {4225, 59317}, {4252, 6875}, {4255, 6876}, {4273, 4646}, {4276, 59320}, {4278, 15931}, {4307, 56000}, {4383, 6856}, {5135, 37431}, {5138, 10441}, {5173, 5324}, {5235, 19854}, {5276, 37149}, {5292, 6828}, {5698, 54358}, {5707, 6824}, {6825, 36754}, {6837, 37666}, {6841, 45923}, {6842, 37509}, {6852, 37646}, {6853, 37662}, {6868, 36742}, {6872, 37685}, {6988, 36745}, {7070, 10393}, {7466, 54426}, {7491, 36750}, {11111, 49739}, {11114, 48870}, {11263, 37887}, {12705, 40979}, {13588, 14868}, {13750, 37277}, {14009, 33137}, {14017, 37538}, {17164, 19848}, {17560, 18165}, {17869, 31623}, {19349, 37383}, {19767, 20846}, {20292, 23604}, {22136, 49743}, {24982, 27412}, {27174, 56288}, {30143, 63157}, {30733, 41503}, {34625, 41629}, {36279, 52012}, {36746, 59345}, {37328, 50597}, {37402, 54323}, {41610, 51192}, {48837, 59355}, {50600, 50619}, {54340, 54418}

X(62843) = perspector of circumconic {{A, B, C, X(107), X(662)}}
X(62843) = X(i)-isoconjugate-of-X(j) for these {i, j}: {72, 55105}, {228, 55106}, {523, 58992}, {3990, 55107}, {24018, 58965}
X(62843) = X(i)-Dao conjugate of X(j) for these {i, j}: {31653, 525}, {49183, 10}
X(62843) = X(i)-cross conjugate of X(j) for these {i, j}: {37550, 37383}
X(62843) = pole of line {3733, 39201} with respect to the circumcircle
X(62843) = pole of line {525, 24006} with respect to the polar circle
X(62843) = pole of line {20981, 39201} with respect to the Brocard inellipse
X(62843) = pole of line {28, 1859} with respect to the Feuerbach hyperbola
X(62843) = pole of line {4, 5949} with respect to the Kiepert hyperbola
X(62843) = pole of line {100, 1632} with respect to the Kiepert parabola
X(62843) = pole of line {8057, 23090} with respect to the MacBeath circumconic
X(62843) = pole of line {1, 394} with respect to the Stammler hyperbola
X(62843) = pole of line {4560, 33294} with respect to the Steiner circumellipse
X(62843) = pole of line {6587, 14838} with respect to the Steiner inellipse
X(62843) = pole of line {101, 59097} with respect to the Hutson-Moses hyperbola
X(62843) = pole of line {75, 3926} with respect to the Wallace hyperbola
X(62843) = pole of line {4143, 14208} with respect to the dual conic of polar circle
X(62843) = pole of line {23994, 36793} with respect to the dual conic of Stammler hyperbola
X(62843) = pole of line {1817, 5249} with respect to the dual conic of Yff parabola
X(62843) = pole of line {1109, 15526} with respect to the dual conic of Wallace hyperbola
X(62843) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(393)}}, {{A, B, C, X(4), X(63)}}, {{A, B, C, X(6), X(255)}}, {{A, B, C, X(10), X(25080)}}, {{A, B, C, X(21), X(8748)}}, {{A, B, C, X(28), X(54356)}}, {{A, B, C, X(31), X(2207)}}, {{A, B, C, X(38), X(27376)}}, {{A, B, C, X(47), X(8745)}}, {{A, B, C, X(53), X(44706)}}, {{A, B, C, X(57), X(56864)}}, {{A, B, C, X(58), X(5317)}}, {{A, B, C, X(65), X(56839)}}, {{A, B, C, X(79), X(54302)}}, {{A, B, C, X(81), X(8747)}}, {{A, B, C, X(82), X(1612)}}, {{A, B, C, X(90), X(31424)}}, {{A, B, C, X(283), X(1172)}}, {{A, B, C, X(896), X(60428)}}, {{A, B, C, X(1170), X(24635)}}, {{A, B, C, X(1496), X(55415)}}, {{A, B, C, X(1959), X(6530)}}, {{A, B, C, X(3561), X(40396)}}, {{A, B, C, X(3868), X(17097)}}, {{A, B, C, X(6149), X(52418)}}, {{A, B, C, X(10002), X(51304)}}, {{A, B, C, X(15946), X(34800)}}, {{A, B, C, X(17098), X(54422)}}, {{A, B, C, X(23997), X(58070)}}, {{A, B, C, X(28606), X(40399)}}, {{A, B, C, X(33971), X(52134)}}, {{A, B, C, X(51223), X(54289)}}
X(62843) = barycentric product X(i)*X(j) for these (i, j): {27, 55104}, {162, 60494}, {333, 37550}, {377, 40575}, {3085, 81}, {3553, 86}, {19349, 31623}, {26872, 28}, {37383, 63}
X(62843) = barycentric quotient X(i)/X(j) for these (i, j): {27, 55106}, {163, 58992}, {1474, 55105}, {3085, 321}, {3553, 10}, {8747, 55107}, {14017, 56723}, {19349, 1214}, {26872, 20336}, {32713, 58965}, {37383, 92}, {37550, 226}, {40575, 57818}, {55104, 306}, {60494, 14208}
X(62843) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 56839}, {1, 1780, 21}, {1, 191, 25080}, {1, 31, 1612}, {6, 5706, 387}, {21, 46441, 81}, {65, 2194, 28}, {1172, 3194, 8747}, {1498, 5706, 3332}, {37538, 57659, 14017}


X(62844) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16474), X(3), X(1))

Barycentrics    a*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b^2+6*b*c+c^2)) : :
X(62844) =

X(62844) lies on these lines: {1, 21}, {2, 16474}, {6, 551}, {10, 37674}, {36, 17018}, {37, 9346}, {56, 59301}, {57, 4868}, {99, 17393}, {101, 1449}, {106, 29199}, {145, 37559}, {171, 25439}, {474, 2334}, {519, 940}, {759, 39739}, {978, 1126}, {995, 4649}, {999, 20470}, {1010, 50625}, {1100, 2242}, {1125, 4104}, {1203, 3622}, {1386, 5049}, {1509, 17144}, {1759, 39247}, {2099, 53114}, {2163, 17549}, {2214, 39697}, {3241, 14996}, {3244, 5711}, {3293, 9350}, {3304, 50604}, {3555, 30142}, {3624, 37687}, {3635, 5710}, {3636, 16466}, {3655, 45923}, {3656, 51340}, {3671, 34046}, {3679, 37633}, {3750, 4257}, {3751, 10176}, {3813, 49743}, {3822, 11269}, {3945, 34625}, {4038, 30116}, {4256, 42042}, {4301, 36746}, {4315, 37543}, {4323, 34043}, {4363, 4717}, {4680, 29835}, {4694, 17017}, {4714, 26627}, {4906, 5045}, {4973, 17594}, {4975, 26223}, {5251, 29814}, {5253, 5312}, {5256, 51816}, {5262, 50190}, {5315, 37685}, {5493, 37501}, {5563, 19767}, {5707, 5882}, {5712, 45700}, {5717, 49627}, {5902, 17015}, {8715, 37522}, {9345, 56191}, {10165, 44414}, {10197, 37646}, {10199, 37662}, {10404, 36250}, {13464, 36742}, {15934, 49682}, {16483, 51103}, {17016, 18398}, {17056, 48823}, {17074, 18421}, {17124, 31855}, {17609, 30148}, {17750, 49764}, {18141, 48831}, {18166, 32941}, {19276, 49460}, {19714, 42057}, {19858, 25507}, {19883, 37679}, {20963, 24331}, {24512, 50311}, {25055, 32911}, {25430, 57279}, {25440, 37607}, {27784, 41229}, {30115, 49490}, {30145, 34791}, {32943, 48811}, {33104, 49744}, {33109, 48868}, {33141, 48825}, {33771, 37608}, {36750, 61276}, {37676, 48822}, {37727, 45931}, {38028, 39523}, {41193, 50629}, {41434, 56010}, {42871, 49686}, {43531, 50608}, {47040, 51071}, {49564, 49613}, {49768, 54416}, {49997, 61358}, {50023, 50028}, {54418, 58565}

X(62844) = reflection of X(i) in X(j) for these {i,j}: {4104, 1125}
X(62844) = pole of line {3733, 4794} with respect to the circumcircle
X(62844) = pole of line {14838, 47883} with respect to the Steiner inellipse
X(62844) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(19870)}}, {{A, B, C, X(758), X(39739)}}, {{A, B, C, X(2214), X(40091)}}, {{A, B, C, X(3743), X(34860)}}, {{A, B, C, X(3877), X(53114)}}, {{A, B, C, X(28606), X(39697)}}, {{A, B, C, X(39972), X(52680)}}
X(62844) = barycentric product X(i)*X(j) for these (i, j): {19870, 81}
X(62844) = barycentric quotient X(i)/X(j) for these (i, j): {19870, 321}
X(62844) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1468, 5248}, {1, 54421, 3884}, {474, 2334, 50587}, {34791, 37594, 30145}, {37685, 38314, 5315}


X(62845) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16475), X(3), X(1))

Barycentrics    a*(3*a^2+2*a*(b+c)+(b+c)^2) : :

X(62845) lies on these lines: {1, 21}, {2, 5847}, {6, 210}, {9, 2308}, {19, 2203}, {33, 44105}, {42, 1449}, {55, 1100}, {57, 17017}, {65, 4348}, {82, 969}, {154, 354}, {165, 46904}, {171, 5256}, {184, 19133}, {200, 16667}, {222, 4327}, {228, 21010}, {238, 5287}, {306, 50284}, {519, 51591}, {614, 940}, {748, 16469}, {750, 2999}, {756, 1743}, {902, 37553}, {975, 1203}, {1001, 37595}, {1002, 10389}, {1051, 42043}, {1107, 39253}, {1193, 37554}, {1397, 2285}, {1453, 59305}, {1698, 33078}, {1699, 29046}, {1961, 3305}, {2194, 54385}, {2258, 40148}, {2261, 40635}, {2263, 37543}, {2279, 36808}, {2293, 7070}, {2330, 44104}, {2352, 16679}, {3011, 5712}, {3052, 16884}, {3056, 40952}, {3097, 42042}, {3185, 18614}, {3187, 17163}, {3247, 21747}, {3304, 20991}, {3306, 29821}, {3475, 9028}, {3624, 33172}, {3677, 29819}, {3683, 16777}, {3685, 58820}, {3715, 16669}, {3720, 7290}, {3729, 32928}, {3749, 17018}, {3751, 3920}, {3753, 5711}, {3757, 17379}, {3758, 32926}, {3769, 29828}, {3790, 20069}, {3791, 5271}, {3870, 4649}, {3875, 4418}, {3879, 33171}, {3880, 5710}, {3914, 4307}, {3928, 46901}, {3929, 3989}, {3938, 36483}, {3966, 6703}, {3980, 49477}, {4008, 17874}, {4034, 8013}, {4038, 4666}, {4061, 4856}, {4134, 30142}, {4312, 33145}, {4328, 34033}, {4340, 23536}, {4349, 40940}, {4353, 62240}, {4362, 33682}, {4383, 4682}, {4388, 29841}, {4393, 32932}, {4640, 20182}, {4650, 17600}, {4654, 33143}, {4672, 56082}, {4676, 34064}, {4697, 32921}, {4722, 5223}, {4849, 16668}, {4903, 27064}, {4981, 48854}, {5049, 35273}, {5219, 29683}, {5230, 5717}, {5263, 17156}, {5268, 9347}, {5272, 37633}, {5278, 39586}, {5310, 37538}, {5320, 16972}, {5322, 36740}, {5725, 38058}, {5739, 51196}, {5849, 17718}, {6327, 29833}, {7050, 57656}, {7174, 29816}, {7191, 14996}, {7221, 10391}, {7322, 16670}, {8040, 62648}, {8581, 62207}, {9332, 17598}, {9345, 10582}, {9778, 11200}, {10436, 32914}, {11246, 17301}, {11269, 24386}, {11679, 32772}, {14829, 29826}, {15601, 25430}, {15733, 20741}, {16466, 37594}, {16472, 54401}, {16478, 54392}, {16496, 29815}, {16703, 52716}, {16707, 32092}, {16830, 37652}, {16834, 32860}, {17011, 17126}, {17019, 17127}, {17023, 26034}, {17025, 27003}, {17064, 33112}, {17120, 32937}, {17121, 59296}, {17124, 23511}, {17282, 29852}, {17296, 24943}, {17298, 33123}, {17304, 33067}, {17306, 33080}, {17378, 33124}, {17380, 33068}, {17592, 35258}, {17723, 37646}, {17768, 50068}, {17778, 29634}, {18134, 29855}, {19717, 26227}, {19738, 46897}, {19767, 37552}, {19785, 50307}, {20020, 49529}, {20090, 29838}, {22383, 54271}, {24552, 39594}, {24661, 56441}, {25417, 61155}, {25431, 41872}, {25527, 29636}, {25568, 61652}, {25734, 49456}, {26118, 39870}, {26885, 60722}, {28526, 50071}, {28570, 50063}, {28609, 61707}, {29598, 32781}, {29639, 37642}, {29643, 56519}, {29645, 32946}, {29646, 33085}, {29648, 32863}, {29657, 55867}, {29658, 31266}, {29681, 37635}, {29818, 44841}, {29834, 33069}, {29842, 33064}, {29847, 32843}, {29857, 33073}, {29859, 56522}, {29862, 56521}, {30567, 32944}, {30965, 41930}, {31164, 33152}, {32925, 50127}, {32940, 49446}, {32945, 49495}, {33122, 42045}, {33132, 50301}, {33163, 49476}, {35262, 46908}, {37521, 38029}, {37539, 56177}, {39980, 42038}, {44085, 47373}, {44669, 50070}

X(62845) = pole of line {3733, 4790} with respect to the circumcircle
X(62845) = pole of line {2646, 7221} with respect to the Feuerbach hyperbola
X(62845) = pole of line {1, 63158} with respect to the Stammler hyperbola
X(62845) = pole of line {5249, 29603} with respect to the dual conic of Yff parabola
X(62845) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56192)}}, {{A, B, C, X(19), X(28606)}}, {{A, B, C, X(38), X(969)}}, {{A, B, C, X(42), X(3915)}}, {{A, B, C, X(58), X(61375)}}, {{A, B, C, X(63), X(2214)}}, {{A, B, C, X(81), X(39956)}}, {{A, B, C, X(82), X(968)}}, {{A, B, C, X(210), X(5250)}}, {{A, B, C, X(595), X(2258)}}, {{A, B, C, X(1468), X(40148)}}, {{A, B, C, X(11520), X(31503)}}, {{A, B, C, X(18206), X(49293)}}, {{A, B, C, X(39948), X(60721)}}, {{A, B, C, X(50515), X(52680)}}
X(62845) = barycentric product X(i)*X(j) for these (i, j): {100, 49293}, {190, 50515}
X(62845) = barycentric quotient X(i)/X(j) for these (i, j): {49293, 693}, {50515, 514}
X(62845) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 28606}, {1, 31, 968}, {1, 4512, 1962}, {6, 3745, 612}, {31, 1962, 4512}, {200, 16667, 61358}, {940, 1386, 614}, {1449, 5269, 42}, {3052, 16884, 37593}, {3791, 50302, 5271}, {3920, 37685, 3751}, {4649, 17716, 3870}, {9347, 32911, 5268}, {29636, 32949, 25527}, {29816, 32912, 7174}


X(62846) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16477), X(3), X(1))

Barycentrics    a*(3*a^2+2*b*c+2*a*(b+c)) : :

X(62846) lies on these lines: {1, 21}, {2, 16477}, {6, 750}, {42, 4421}, {45, 60697}, {88, 8300}, {89, 985}, {105, 28170}, {171, 3240}, {238, 9332}, {244, 16475}, {320, 29636}, {612, 4722}, {748, 940}, {752, 29829}, {902, 61159}, {1001, 21747}, {1100, 4414}, {1150, 33682}, {1155, 2278}, {1206, 2162}, {1386, 3999}, {1405, 5061}, {1449, 46904}, {1757, 9347}, {1914, 62212}, {2177, 4649}, {2239, 16786}, {3011, 4667}, {3187, 4697}, {3617, 32864}, {3621, 32945}, {3634, 5278}, {3664, 61647}, {3745, 32912}, {3750, 30652}, {3758, 17763}, {3771, 42045}, {3775, 31303}, {3879, 33156}, {3920, 49503}, {3994, 50127}, {4003, 17017}, {4023, 32455}, {4038, 17127}, {4307, 33136}, {4363, 50756}, {4364, 4831}, {4393, 32845}, {4427, 50281}, {4641, 5311}, {4644, 32856}, {4650, 17011}, {4655, 29833}, {4683, 29841}, {4706, 50124}, {4860, 26884}, {4921, 59312}, {4974, 26627}, {5138, 52434}, {5161, 17595}, {5217, 19759}, {5235, 43997}, {5276, 16670}, {5422, 25938}, {6685, 19738}, {7262, 17019}, {7277, 17602}, {7290, 17450}, {9340, 17594}, {9780, 37652}, {14621, 17029}, {16468, 17125}, {16484, 30653}, {16671, 61686}, {16704, 50302}, {17013, 17593}, {17120, 32931}, {17124, 32911}, {17281, 49995}, {17364, 32775}, {17365, 33143}, {17378, 29632}, {17379, 32917}, {17449, 38315}, {17451, 39253}, {17720, 61707}, {17782, 42042}, {19717, 32916}, {19998, 50283}, {20086, 33084}, {21746, 61670}, {21806, 35258}, {24892, 61661}, {25496, 37639}, {29631, 31134}, {29645, 32859}, {29661, 37631}, {29824, 50300}, {29847, 33066}, {31237, 32949}, {31330, 41629}, {32772, 37683}, {32848, 50284}, {32936, 58820}, {32944, 37684}, {33069, 62230}, {33105, 37642}, {33128, 50307}, {33139, 50301}, {33295, 41847}, {39980, 42040}, {47359, 49996}, {48805, 50001}, {48867, 49999}, {49985, 50131}, {49987, 51005}, {49989, 50294}, {49990, 50115}, {50000, 50313}, {50581, 55103}

X(62846) = perspector of circumconic {{A, B, C, X(662), X(29351)}}
X(62846) = pole of line {75, 62709} with respect to the Wallace hyperbola
X(62846) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52716)}}, {{A, B, C, X(21), X(56116)}}, {{A, B, C, X(81), X(55919)}}, {{A, B, C, X(89), X(40773)}}, {{A, B, C, X(985), X(4653)}}, {{A, B, C, X(2162), X(39673)}}, {{A, B, C, X(18206), X(48577)}}, {{A, B, C, X(28170), X(54353)}}
X(62846) = barycentric product X(i)*X(j) for these (i, j): {100, 48577}, {52716, 6}
X(62846) = barycentric quotient X(i)/X(j) for these (i, j): {48577, 693}, {52716, 76}
X(62846) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {171, 37685, 61358}, {238, 14996, 9345}, {238, 9332, 14996}, {4649, 17126, 2177}, {32911, 37604, 17124}


X(62847) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16478), X(3), X(1))

Barycentrics    a*(2*a^3+b^3+b^2*c+b*c^2+c^3+2*a^2*(b+c)+a*(b+c)^2) : :

X(62847) lies on these lines: {1, 21}, {2, 16478}, {3, 17017}, {5, 29683}, {6, 976}, {8, 3791}, {10, 61647}, {32, 21840}, {35, 46904}, {41, 16972}, {42, 1009}, {56, 1631}, {57, 4348}, {71, 583}, {72, 2308}, {73, 51657}, {78, 16475}, {82, 2363}, {145, 33170}, {171, 5262}, {244, 37522}, {404, 29821}, {405, 5311}, {612, 1453}, {614, 37554}, {748, 975}, {756, 1724}, {902, 3931}, {940, 16356}, {964, 4362}, {986, 17126}, {1010, 32914}, {1038, 1471}, {1089, 48866}, {1104, 3745}, {1125, 18139}, {1193, 1386}, {1201, 1245}, {1203, 30115}, {1330, 32775}, {1394, 4327}, {1449, 4284}, {1706, 4695}, {1770, 33145}, {1930, 17200}, {1961, 5047}, {2214, 2218}, {2241, 39247}, {2354, 11363}, {2476, 29658}, {3011, 5717}, {3304, 3556}, {3337, 42040}, {3522, 11200}, {3616, 17300}, {3702, 49482}, {3720, 16850}, {3811, 61358}, {3876, 16468}, {3916, 46901}, {3920, 5247}, {3924, 5711}, {3976, 17024}, {3989, 31445}, {4005, 16669}, {4101, 51196}, {4188, 17025}, {4202, 29654}, {4252, 17599}, {4267, 16687}, {4283, 19767}, {4332, 37543}, {4434, 26030}, {4447, 50717}, {4642, 5264}, {4647, 49683}, {4672, 56318}, {4680, 20083}, {4722, 5904}, {4850, 37603}, {4999, 17726}, {5015, 29631}, {5045, 29818}, {5051, 29645}, {5192, 29649}, {5230, 5716}, {5255, 17016}, {5256, 21495}, {5263, 27368}, {5293, 32911}, {5295, 50756}, {5300, 25453}, {5710, 49487}, {5794, 50070}, {6675, 29682}, {6679, 57808}, {6693, 30171}, {7191, 24164}, {7283, 32928}, {7483, 29688}, {10404, 51654}, {11115, 17150}, {11415, 50303}, {12053, 50294}, {13738, 21010}, {13740, 17763}, {14996, 16498}, {15523, 17698}, {16062, 29636}, {16342, 29644}, {16454, 16825}, {16519, 60697}, {16826, 16927}, {16973, 39253}, {16974, 21808}, {17011, 37573}, {17015, 37588}, {17019, 19237}, {17061, 49745}, {17147, 24850}, {17442, 17520}, {17460, 37542}, {17733, 24552}, {18134, 36505}, {19784, 33074}, {19846, 21026}, {20456, 59301}, {24161, 33112}, {24851, 33155}, {26131, 33130}, {28096, 37634}, {29473, 30126}, {29671, 56778}, {29684, 56734}, {29819, 37592}, {29847, 52258}, {29852, 33833}, {30117, 37559}, {30148, 46190}, {33088, 37176}, {33135, 52367}, {33143, 57282}, {34860, 56034}, {34937, 41011}, {35293, 37282}, {36565, 37685}, {37595, 51715}, {37717, 54355}

X(62847) = pole of line {3733, 48131} with respect to the circumcircle
X(62847) = pole of line {4132, 50350} with respect to the DeLongchamps ellipse
X(62847) = pole of line {2646, 21333} with respect to the Feuerbach hyperbola
X(62847) = pole of line {4560, 47673} with respect to the Steiner circumellipse
X(62847) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(37398)}}, {{A, B, C, X(38), X(2363)}}, {{A, B, C, X(82), X(2292)}}, {{A, B, C, X(595), X(1245)}}, {{A, B, C, X(2214), X(3868)}}, {{A, B, C, X(2218), X(28606)}}, {{A, B, C, X(3915), X(56034)}}, {{A, B, C, X(17108), X(17185)}}, {{A, B, C, X(40148), X(44119)}}
X(62847) = barycentric product X(i)*X(j) for these (i, j): {37398, 63}
X(62847) = barycentric quotient X(i)/X(j) for these (i, j): {37398, 92}
X(62847) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 2292}, {1, 37817, 10448}, {1, 5248, 1962}, {1, 5429, 2975}, {1, 54354, 28606}, {1, 54421, 49454}, {1, 58, 38}, {1104, 3745, 59305}, {1386, 37539, 1193}, {1724, 30142, 756}


X(62848) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16483), X(3), X(1))

Barycentrics    a*(a^3+2*a^2*(b+c)+b*c*(b+c)+a*(b^2-3*b*c+c^2)) : :

X(62848) lies on these lines: {1, 21}, {2, 16483}, {6, 644}, {8, 1191}, {10, 37687}, {56, 42338}, {65, 4906}, {78, 1261}, {100, 995}, {105, 10800}, {145, 16466}, {171, 1149}, {213, 50028}, {221, 4308}, {239, 3902}, {376, 1480}, {392, 3920}, {404, 1201}, {474, 28370}, {495, 33107}, {496, 54355}, {517, 7191}, {519, 5315}, {551, 16489}, {603, 1476}, {651, 3476}, {902, 17549}, {940, 16486}, {956, 17127}, {978, 9350}, {983, 1320}, {999, 17126}, {1104, 4861}, {1178, 3903}, {1193, 3871}, {1203, 3244}, {1319, 17074}, {1386, 5919}, {1449, 51779}, {1453, 36846}, {1482, 13732}, {1572, 26242}, {1616, 3616}, {1724, 50637}, {1999, 4742}, {2176, 36534}, {2298, 21769}, {2999, 3895}, {3057, 5262}, {3230, 5276}, {3303, 19767}, {3315, 5902}, {3550, 13587}, {3600, 34040}, {3622, 5711}, {3623, 56989}, {3636, 37559}, {3679, 37680}, {3744, 4511}, {3745, 10179}, {3746, 50604}, {3753, 7292}, {3782, 5180}, {3813, 24883}, {3872, 7290}, {3885, 54418}, {3997, 16784}, {4360, 53332}, {4692, 41242}, {4720, 27644}, {4850, 5119}, {4867, 49686}, {4881, 37589}, {5047, 10459}, {5253, 5264}, {5256, 31393}, {5263, 52897}, {5284, 30116}, {5299, 49771}, {5313, 25439}, {5435, 60689}, {5603, 26228}, {5706, 5734}, {5730, 36565}, {5886, 29665}, {5903, 30148}, {6049, 34046}, {6175, 33104}, {6767, 16058}, {7677, 24806}, {9575, 25082}, {9709, 27625}, {9802, 17366}, {9957, 17016}, {11240, 37642}, {11319, 20041}, {14997, 31145}, {15485, 16861}, {15988, 50629}, {16418, 41453}, {16474, 51071}, {16679, 16680}, {17519, 60685}, {17531, 21214}, {17535, 28352}, {17536, 59311}, {17541, 17752}, {17577, 33106}, {17678, 21282}, {19785, 30305}, {20037, 49492}, {20057, 55103}, {21764, 56530}, {24597, 34625}, {28174, 33102}, {28368, 50171}, {28369, 49735}, {30384, 33133}, {31165, 49465}, {32577, 37603}, {32782, 48803}, {33148, 39542}, {33153, 51409}, {33854, 50310}, {34611, 48837}, {36006, 56010}, {36750, 61286}, {37311, 41346}, {37375, 37716}, {37522, 56804}, {37539, 45219}, {37651, 45701}, {37679, 53620}, {37701, 50749}, {37717, 59416}, {41819, 48823}, {45931, 61278}, {50824, 51340}

X(62848) = reflection of X(i) in X(j) for these {i,j}: {32911, 5315}, {54315, 7191}
X(62848) = perspector of circumconic {{A, B, C, X(662), X(6079)}}
X(62848) = pole of line {3733, 8660} with respect to the circumcircle
X(62848) = pole of line {8660, 20981} with respect to the Brocard inellipse
X(62848) = pole of line {100, 9059} with respect to the Kiepert parabola
X(62848) = pole of line {23090, 39472} with respect to the MacBeath circumconic
X(62848) = pole of line {4560, 47892} with respect to the Steiner circumellipse
X(62848) = pole of line {14425, 14838} with respect to the Steiner inellipse
X(62848) = pole of line {3882, 30731} with respect to the Yff parabola
X(62848) = pole of line {101, 9059} with respect to the Hutson-Moses hyperbola
X(62848) = pole of line {75, 16711} with respect to the Wallace hyperbola
X(62848) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(58), X(40400)}}, {{A, B, C, X(81), X(1120)}}, {{A, B, C, X(82), X(54391)}}, {{A, B, C, X(983), X(52556)}}, {{A, B, C, X(1320), X(3794)}}, {{A, B, C, X(3892), X(53114)}}, {{A, B, C, X(16948), X(55991)}}, {{A, B, C, X(18206), X(60871)}}
X(62848) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 31, 54391}, {1, 3915, 21}, {1, 40091, 1621}, {1, 54421, 3889}, {1, 595, 2975}, {517, 7191, 54315}, {519, 5315, 32911}, {940, 16486, 38314}, {1386, 5919, 17015}, {1616, 5710, 3616}, {38832, 40091, 3915}


X(62849) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16484), X(3), X(1))

Barycentrics    a*(a^2-2*b*c-2*a*(b+c)) : :

X(62849) lies on these lines: {1, 21}, {2, 2177}, {8, 56990}, {11, 29678}, {37, 2280}, {42, 748}, {43, 5284}, {45, 41711}, {55, 750}, {57, 17450}, {82, 39737}, {100, 17124}, {105, 612}, {106, 51105}, {145, 32864}, {149, 33111}, {171, 9345}, {192, 32923}, {238, 17018}, {244, 4666}, {278, 60712}, {321, 29651}, {354, 4414}, {390, 37109}, {497, 33105}, {519, 5278}, {551, 19336}, {614, 37553}, {727, 53635}, {756, 3870}, {899, 4423}, {902, 940}, {976, 6051}, {982, 29817}, {984, 3957}, {985, 27789}, {988, 46190}, {1149, 19530}, {1150, 42057}, {1185, 3230}, {1193, 19518}, {1201, 19765}, {1206, 2176}, {1211, 49740}, {1279, 17017}, {1334, 36808}, {1376, 30950}, {1617, 42289}, {1914, 16777}, {2205, 2241}, {2209, 45223}, {2886, 29661}, {2887, 29830}, {2895, 50296}, {3058, 17056}, {3187, 49471}, {3214, 11108}, {3219, 49490}, {3240, 17123}, {3241, 37652}, {3242, 3989}, {3247, 5276}, {3295, 59305}, {3303, 10459}, {3305, 21805}, {3315, 17591}, {3475, 32856}, {3550, 37633}, {3616, 37573}, {3622, 32577}, {3624, 33771}, {3666, 4906}, {3681, 3979}, {3683, 32912}, {3685, 32771}, {3731, 42041}, {3742, 4689}, {3744, 5311}, {3746, 61699}, {3749, 5287}, {3757, 32915}, {3772, 29689}, {3883, 32852}, {3886, 21020}, {3891, 3993}, {3896, 16825}, {3912, 33074}, {3920, 17715}, {3924, 37548}, {3931, 28082}, {3966, 4062}, {3995, 32920}, {3996, 26037}, {4011, 46897}, {4026, 24943}, {4030, 17243}, {4038, 17126}, {4104, 50744}, {4255, 28352}, {4256, 25055}, {4358, 29670}, {4359, 24331}, {4366, 17032}, {4390, 61316}, {4415, 37703}, {4425, 33122}, {4429, 29851}, {4432, 26223}, {4438, 29835}, {4514, 29643}, {4640, 4883}, {4642, 54392}, {4648, 10385}, {4649, 17127}, {4657, 29686}, {4660, 18139}, {4693, 28605}, {4702, 31993}, {4850, 29820}, {4854, 33143}, {4966, 33080}, {4972, 29642}, {4981, 49458}, {5014, 29653}, {5047, 50581}, {5249, 33094}, {5253, 37574}, {5256, 21806}, {5263, 25507}, {5283, 50028}, {5425, 17461}, {5712, 47357}, {5718, 49736}, {5737, 31136}, {6048, 17536}, {6679, 29829}, {6690, 29662}, {7191, 17592}, {7226, 49675}, {7986, 10246}, {8056, 10582}, {9337, 17122}, {10180, 49473}, {10453, 32917}, {10987, 40750}, {11680, 29640}, {15485, 32911}, {16064, 23379}, {16342, 50608}, {16370, 54310}, {16496, 42039}, {16497, 29584}, {16499, 51071}, {16706, 29853}, {16823, 32860}, {16884, 60697}, {16968, 39247}, {16998, 17319}, {17019, 17716}, {17024, 17600}, {17103, 40439}, {17140, 32934}, {17150, 50281}, {17234, 32948}, {17245, 34612}, {17393, 33295}, {17597, 46901}, {17599, 29818}, {17601, 27003}, {17721, 29688}, {17776, 33162}, {18134, 31134}, {19291, 30116}, {19684, 49482}, {19701, 48805}, {19717, 50300}, {19723, 49680}, {19732, 49460}, {19742, 49497}, {19786, 29638}, {20162, 24592}, {20182, 29819}, {23506, 57096}, {24210, 33127}, {24325, 32929}, {24349, 32936}, {24512, 41423}, {24542, 25453}, {24552, 43223}, {24596, 29571}, {24715, 27186}, {24723, 33069}, {25439, 56191}, {25496, 29822}, {25760, 29839}, {26884, 34471}, {27804, 32921}, {29632, 31237}, {29655, 33113}, {29659, 33157}, {29667, 33158}, {29672, 32774}, {29675, 33133}, {29681, 33135}, {29685, 32777}, {29824, 32916}, {29843, 33119}, {29854, 32850}, {30615, 41313}, {31019, 33095}, {31161, 56082}, {31393, 54373}, {32776, 33124}, {32784, 33173}, {32788, 41421}, {32849, 33169}, {32858, 33076}, {32914, 49470}, {32927, 41839}, {32933, 49479}, {32944, 59297}, {32950, 49676}, {33081, 50295}, {33083, 33087}, {33090, 33092}, {33093, 49506}, {33100, 33103}, {33109, 34611}, {33116, 33120}, {33130, 33134}, {33148, 33154}, {33761, 49448}, {34869, 37549}, {37617, 38314}, {37680, 42043}, {49768, 54311}

X(62849) = isogonal conjugate of X(39739)
X(62849) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39739}, {2, 39965}
X(62849) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39739}, {32664, 39965}
X(62849) = pole of line {3733, 4724} with respect to the circumcircle
X(62849) = pole of line {4132, 7659} with respect to the DeLongchamps ellipse
X(62849) = pole of line {1253, 2646} with respect to the Feuerbach hyperbola
X(62849) = pole of line {100, 29199} with respect to the Kiepert parabola
X(62849) = pole of line {1, 39739} with respect to the Stammler hyperbola
X(62849) = pole of line {4560, 28851} with respect to the Steiner circumellipse
X(62849) = pole of line {14838, 28851} with respect to the Steiner inellipse
X(62849) = pole of line {101, 29199} with respect to the Hutson-Moses hyperbola
X(62849) = pole of line {75, 39739} with respect to the Wallace hyperbola
X(62849) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(32104)}}, {{A, B, C, X(37), X(3873)}}, {{A, B, C, X(38), X(39737)}}, {{A, B, C, X(81), X(17259)}}, {{A, B, C, X(8616), X(40439)}}, {{A, B, C, X(8694), X(54353)}}, {{A, B, C, X(18206), X(25430)}}, {{A, B, C, X(27789), X(40773)}}, {{A, B, C, X(48351), X(52680)}}
X(62849) = barycentric product X(i)*X(j) for these (i, j): {1, 17259}, {100, 47926}, {190, 48351}, {32104, 6}
X(62849) = barycentric quotient X(i)/X(j) for these (i, j): {6, 39739}, {31, 39965}, {17259, 75}, {32104, 76}, {47926, 693}, {48351, 514}
X(62849) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1621, 31}, {1, 5248, 1468}, {1, 5250, 2650}, {1, 846, 3873}, {1, 8616, 81}, {1, 968, 38}, {2, 3750, 2177}, {2, 60714, 9350}, {37, 3748, 3938}, {43, 5284, 17125}, {55, 3720, 750}, {81, 1621, 8616}, {100, 26102, 17124}, {171, 29814, 9345}, {238, 17018, 61358}, {612, 10389, 3722}, {614, 37553, 46904}, {846, 3873, 36263}, {940, 4428, 902}, {1279, 37593, 17017}, {2177, 9350, 60714}, {3058, 17056, 33104}, {3683, 49478, 32912}, {3744, 15569, 5311}, {3750, 16484, 2}, {4666, 17594, 244}, {15485, 42042, 32911}, {17124, 17782, 100}, {17776, 36479, 33162}, {18134, 49746, 32947}, {29632, 32773, 31237}, {29814, 61155, 171}, {37548, 51715, 3924}, {37553, 38316, 614}


X(62850) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16496), X(3), X(1))

Barycentrics    a*(a^2+3*b^2-2*b*c+3*c^2-2*a*(b+c)) : :

X(62850) lies on these lines: {1, 21}, {2, 16496}, {8, 23675}, {33, 18839}, {42, 3243}, {55, 4864}, {57, 3938}, {72, 28011}, {78, 3976}, {100, 18193}, {165, 3722}, {200, 244}, {220, 57656}, {223, 53531}, {312, 24841}, {354, 612}, {497, 49989}, {518, 614}, {519, 24177}, {537, 56082}, {599, 4914}, {748, 5223}, {750, 10980}, {756, 10582}, {899, 5573}, {902, 3928}, {940, 49465}, {975, 50190}, {976, 3333}, {982, 3870}, {984, 4666}, {997, 4694}, {1002, 3720}, {1015, 61316}, {1043, 34860}, {1086, 4863}, {1193, 41863}, {1201, 11523}, {1211, 47358}, {1376, 3999}, {1449, 29819}, {1616, 3962}, {1647, 30827}, {1699, 32856}, {2082, 50028}, {2177, 42038}, {2263, 17625}, {3011, 24477}, {3058, 17276}, {3120, 24392}, {3187, 17145}, {3218, 3749}, {3304, 44094}, {3305, 29820}, {3306, 3961}, {3315, 3681}, {3434, 24231}, {3475, 29639}, {3555, 54418}, {3632, 33078}, {3666, 42871}, {3679, 33172}, {3705, 58371}, {3726, 16973}, {3729, 32943}, {3731, 42039}, {3751, 4430}, {3752, 41711}, {3772, 51463}, {3811, 3953}, {3875, 30941}, {3886, 17155}, {3891, 39594}, {3914, 4310}, {3924, 6762}, {3929, 35227}, {3957, 4392}, {3979, 17591}, {3984, 21214}, {4319, 17642}, {4327, 5173}, {4348, 34046}, {4387, 28582}, {4414, 10389}, {4420, 11512}, {4423, 49515}, {4432, 25734}, {4654, 33104}, {4661, 7292}, {4684, 33088}, {4722, 16469}, {4862, 33094}, {4901, 29687}, {5083, 8270}, {5231, 33127}, {5256, 17598}, {5310, 22769}, {5712, 51099}, {5739, 49505}, {5815, 28080}, {5847, 19993}, {6765, 24443}, {7226, 29817}, {7290, 29818}, {7322, 30950}, {8583, 46190}, {9041, 30615}, {9337, 18201}, {9580, 33098}, {10459, 11518}, {11220, 12652}, {11679, 32923}, {13476, 23051}, {14151, 17080}, {14555, 50999}, {16475, 17024}, {16486, 31165}, {16491, 37685}, {16703, 32104}, {17022, 17450}, {17064, 33148}, {17123, 49503}, {17140, 50314}, {17154, 32929}, {17156, 32922}, {17274, 32947}, {17282, 33117}, {17284, 33162}, {17296, 32854}, {17298, 33072}, {17306, 29685}, {17375, 50576}, {17435, 28070}, {17599, 49478}, {17715, 35258}, {17776, 49768}, {17778, 50612}, {21075, 28074}, {21805, 23511}, {23681, 33136}, {24165, 49458}, {24600, 62622}, {25496, 49491}, {25525, 29690}, {25527, 33120}, {26015, 33144}, {26034, 49466}, {26242, 51194}, {27785, 36946}, {28082, 57279}, {29638, 56519}, {29652, 49479}, {29675, 55867}, {29676, 31266}, {29821, 49498}, {29844, 33064}, {29855, 33121}, {29857, 33124}, {29860, 56521}, {29861, 56522}, {30115, 51816}, {30567, 32927}, {31164, 33106}, {32860, 49451}, {32915, 49446}, {32924, 49495}, {32941, 42055}, {32942, 49499}, {34791, 37549}, {36479, 54311}, {37553, 46901}, {37614, 58609}, {37653, 50310}, {39697, 56136}, {42040, 62695}, {42051, 49460}, {42057, 49455}

X(62850) = reflection of X(i) in X(j) for these {i,j}: {4383, 4906}, {614, 17597}
X(62850) = X(i)-Dao conjugate of X(j) for these {i, j}: {53665, 17158}
X(62850) = pole of line {3804, 4132} with respect to the DeLongchamps ellipse
X(62850) = pole of line {2191, 2646} with respect to the Feuerbach hyperbola
X(62850) = pole of line {5249, 30568} with respect to the dual conic of Yff parabola
X(62850) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(24797)}}, {{A, B, C, X(81), X(53665)}}, {{A, B, C, X(969), X(17469)}}, {{A, B, C, X(1280), X(16948)}}, {{A, B, C, X(1621), X(23051)}}, {{A, B, C, X(25430), X(60721)}}, {{A, B, C, X(37817), X(39697)}}, {{A, B, C, X(40091), X(56136)}}
X(62850) = barycentric product X(i)*X(j) for these (i, j): {1, 53665}, {24797, 9}
X(62850) = barycentric quotient X(i)/X(j) for these (i, j): {24797, 85}, {53665, 75}
X(62850) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 38, 968}, {1, 3874, 54421}, {1, 54422, 3915}, {200, 8056, 9350}, {244, 9350, 8056}, {354, 3242, 612}, {518, 4906, 4383}, {982, 49675, 3870}, {3243, 3677, 42}, {3315, 3681, 5272}, {3726, 16973, 40131}, {3938, 17449, 57}, {3957, 4392, 17594}, {4310, 36845, 3914}, {4383, 17597, 4906}, {4383, 4906, 614}, {4430, 7191, 3751}, {4864, 21342, 55}, {7174, 44841, 3720}, {17022, 30350, 17450}, {17598, 49490, 5256}, {29818, 32912, 7290}, {29820, 49448, 3305}


X(62851) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16777), X(3), X(1))

Barycentrics    a*(a^2+2*b^2+3*b*c+2*c^2+3*a*(b+c)) : :

X(62851) lies on these lines: {1, 21}, {2, 594}, {6, 33761}, {8, 37039}, {37, 17011}, {57, 56037}, {75, 5333}, {86, 17147}, {88, 27789}, {100, 5311}, {190, 19717}, {192, 19684}, {226, 54648}, {321, 17319}, {536, 37869}, {940, 23958}, {1051, 51294}, {1056, 60156}, {1100, 3219}, {1125, 32924}, {1150, 58820}, {1185, 16515}, {1214, 7269}, {1961, 46904}, {1963, 40592}, {2895, 4364}, {3101, 37080}, {3187, 5235}, {3210, 29570}, {3218, 37595}, {3247, 3930}, {3305, 16673}, {3315, 8299}, {3616, 19822}, {3623, 14552}, {3634, 25431}, {3651, 50558}, {3666, 3723}, {3672, 33146}, {3720, 17600}, {3750, 29816}, {3752, 17021}, {3782, 37635}, {3896, 16830}, {3920, 37593}, {3940, 16848}, {3946, 26724}, {3961, 21806}, {3989, 4649}, {3993, 32772}, {3995, 41242}, {4021, 5249}, {4026, 33093}, {4038, 46901}, {4068, 16687}, {4359, 16826}, {4383, 16672}, {4393, 5278}, {4418, 50293}, {4423, 17025}, {4657, 32858}, {4664, 26223}, {4716, 59306}, {4850, 5287}, {4854, 33112}, {5224, 20017}, {5257, 50306}, {5259, 56221}, {5263, 27804}, {5284, 17017}, {5712, 33151}, {6536, 32861}, {6646, 42045}, {6703, 33168}, {7191, 15569}, {8025, 32939}, {9345, 17591}, {9347, 17594}, {10180, 32914}, {10436, 50106}, {14997, 16674}, {16484, 29819}, {16568, 20595}, {16685, 61409}, {16884, 37685}, {17012, 37687}, {17018, 41711}, {17023, 33157}, {17056, 33155}, {17150, 27811}, {17152, 29585}, {17160, 25507}, {17184, 17320}, {17246, 17483}, {17247, 32859}, {17262, 19722}, {17277, 45222}, {17301, 27186}, {17302, 18139}, {17316, 33172}, {17318, 19701}, {17321, 32782}, {17322, 56810}, {17350, 19738}, {17365, 41819}, {17379, 32933}, {17390, 32863}, {17392, 26842}, {17394, 42025}, {17395, 33150}, {17396, 32774}, {17776, 26626}, {18140, 40603}, {20016, 26044}, {20166, 45223}, {24051, 24059}, {25430, 40434}, {25590, 41930}, {26131, 50067}, {27754, 56519}, {28639, 42051}, {29574, 54311}, {29588, 37653}, {29592, 41818}, {29644, 32915}, {29647, 33092}, {29682, 33135}, {29821, 60688}, {29822, 32926}, {29833, 33116}, {29841, 33113}, {30581, 56934}, {31019, 50068}, {31143, 41312}, {31247, 33077}, {31330, 50281}, {32928, 43223}, {32936, 33682}, {33075, 50290}, {33133, 58463}, {41850, 50052}, {42042, 62236}

X(62851) = perspector of circumconic {{A, B, C, X(662), X(6540)}}
X(62851) = pole of line {3733, 27675} with respect to the circumcircle
X(62851) = pole of line {5949, 26792} with respect to the Kiepert hyperbola
X(62851) = pole of line {100, 33948} with respect to the Kiepert parabola
X(62851) = pole of line {4560, 4840} with respect to the Steiner circumellipse
X(62851) = pole of line {4977, 14838} with respect to the Steiner inellipse
X(62851) = pole of line {75, 8025} with respect to the Wallace hyperbola
X(62851) = pole of line {3634, 5249} with respect to the dual conic of Yff parabola
X(62851) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6539)}}, {{A, B, C, X(21), X(4102)}}, {{A, B, C, X(31), X(52555)}}, {{A, B, C, X(58), X(1255)}}, {{A, B, C, X(81), X(1268)}}, {{A, B, C, X(594), X(1962)}}, {{A, B, C, X(2167), X(11684)}}, {{A, B, C, X(3647), X(3969)}}, {{A, B, C, X(4658), X(43260)}}, {{A, B, C, X(27789), X(31011)}}
X(62851) = barycentric product X(i)*X(j) for these (i, j): {190, 48085}
X(62851) = barycentric quotient X(i)/X(j) for these (i, j): {48085, 514}
X(62851) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1962, 1621}, {1, 28606, 81}, {1, 3743, 57280}, {2, 16777, 1255}, {37, 17011, 32911}, {3666, 17019, 37633}, {3666, 3723, 17019}, {5311, 17592, 100}, {16777, 20182, 2}, {17246, 37631, 17483}, {17599, 29814, 3315}


X(62852) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(18412), X(3), X(1))

Barycentrics    a*(a^4*(b+c)-a^2*b*c*(b+c)-2*a^3*(b^2+c^2)+2*a*(b-c)^2*(b^2+b*c+c^2)-(b-c)^2*(b^3+c^3)) : :
X(62852) = -3*X[3681]+7*X[55867], -3*X[3742]+2*X[58463], -X[8545]+5*X[11025]

X(62852) lies on these lines: {1, 21}, {2, 18412}, {3, 12432}, {5, 58566}, {7, 15909}, {11, 118}, {42, 24025}, {57, 30329}, {65, 4297}, {140, 58569}, {165, 7672}, {496, 40259}, {497, 60895}, {498, 4015}, {515, 942}, {516, 5173}, {518, 5745}, {519, 50195}, {527, 5572}, {535, 5570}, {544, 40460}, {912, 5045}, {938, 1478}, {1071, 3671}, {1125, 16193}, {1210, 3822}, {1260, 22836}, {1699, 10394}, {1708, 52769}, {1735, 4868}, {1736, 3720}, {1737, 3833}, {2646, 15556}, {2792, 39543}, {2800, 50194}, {2810, 58491}, {3086, 10399}, {3256, 46684}, {3333, 18446}, {3340, 10860}, {3434, 60923}, {3485, 31803}, {3678, 13411}, {3681, 55867}, {3742, 58463}, {3754, 13750}, {3812, 10855}, {3911, 61663}, {3918, 10573}, {3947, 14872}, {3988, 41686}, {4293, 5902}, {4295, 10430}, {4301, 12711}, {4305, 5903}, {4312, 11220}, {4321, 10980}, {4347, 36746}, {4423, 5729}, {4430, 10578}, {4438, 58697}, {4666, 15299}, {4847, 16465}, {5219, 15064}, {5226, 40269}, {5281, 15104}, {5425, 11570}, {5665, 10864}, {5703, 5904}, {5841, 6583}, {5883, 9776}, {5884, 12114}, {5905, 10580}, {6147, 33592}, {6284, 18977}, {6744, 50196}, {7675, 41338}, {8255, 61030}, {8545, 11025}, {8680, 13476}, {8715, 59335}, {10164, 17603}, {10176, 18397}, {10398, 10582}, {10473, 32118}, {10589, 61718}, {12016, 53114}, {12047, 31871}, {12560, 30304}, {12575, 12710}, {12858, 16125}, {13478, 35612}, {14100, 51783}, {14563, 15528}, {14986, 37735}, {15931, 30284}, {15934, 22758}, {15950, 61722}, {17102, 59301}, {17154, 25254}, {17642, 30331}, {18238, 18241}, {19907, 46681}, {20117, 37737}, {20122, 59816}, {21620, 51755}, {22126, 25088}, {24415, 42055}, {24470, 26201}, {24473, 34646}, {24953, 40661}, {26332, 45636}, {26740, 53525}, {27065, 41700}, {31397, 54288}, {37544, 58567}, {45230, 51717}, {51424, 55010}

X(62852) = midpoint of X(i) and X(j) for these {i,j}: {1, 18389}, {993, 3874}, {4847, 16465}, {5173, 10391}, {14100, 61021}
X(62852) = reflection of X(i) in X(j) for these {i,j}: {13405, 11018}, {226, 58626}, {3822, 58565}, {5745, 58578}
X(62852) = anticomplement of X(58699)
X(62852) = X(i)-Dao conjugate of X(j) for these {i, j}: {58699, 58699}
X(62852) = pole of line {2254, 6003} with respect to the incircle
X(62852) = pole of line {4132, 39199} with respect to the DeLongchamps ellipse
X(62852) = pole of line {516, 2646} with respect to the Feuerbach hyperbola
X(62852) = pole of line {241, 5249} with respect to the dual conic of Yff parabola
X(62852) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(43672)}}, {{A, B, C, X(2328), X(15909)}}
X(62852) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10122, 12564}, {1, 18389, 758}, {1, 44706, 3743}, {226, 354, 58626}, {354, 11019, 18240}, {354, 17625, 5542}, {354, 5728, 11019}, {518, 11018, 13405}, {518, 58578, 5745}, {942, 12675, 4298}, {942, 37730, 31870}, {2801, 58626, 226}, {3873, 11020, 1}, {5173, 10391, 516}, {12047, 41562, 31871}, {16193, 44547, 1125}, {17603, 41539, 10164}, {18391, 30274, 5883}


X(62853) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(21384), X(3), X(1))

Barycentrics    a*(3*a^2*b*c+a^3*(b+c)-a*(b-c)^2*(b+c)-b*c*(b^2+c^2)) : :

X(62853) lies on these lines: {1, 21}, {2, 1475}, {6, 21371}, {9, 16826}, {19, 648}, {43, 20456}, {46, 49488}, {48, 41610}, {55, 60701}, {56, 20769}, {57, 239}, {69, 2260}, {78, 37609}, {192, 44421}, {193, 1400}, {194, 1999}, {274, 5271}, {313, 29763}, {333, 31997}, {518, 21010}, {553, 20257}, {579, 3879}, {583, 4851}, {604, 1445}, {614, 16476}, {672, 17316}, {869, 3751}, {940, 1107}, {980, 5256}, {999, 23151}, {1014, 1958}, {1018, 29605}, {1108, 54344}, {1150, 3306}, {1334, 29585}, {1423, 17364}, {1449, 16574}, {1740, 37128}, {1790, 2304}, {1992, 2183}, {2176, 4641}, {2223, 3870}, {2275, 37676}, {2279, 62622}, {2280, 21511}, {2347, 51170}, {3009, 32912}, {3187, 62636}, {3208, 17389}, {3218, 4393}, {3219, 29570}, {3229, 23543}, {3294, 29597}, {3305, 16552}, {3333, 16823}, {3338, 16825}, {3501, 6542}, {3555, 25083}, {3661, 17754}, {3684, 11329}, {3729, 58787}, {3730, 29574}, {3760, 29769}, {3875, 17148}, {3912, 4253}, {3928, 29584}, {3929, 29580}, {3941, 16728}, {3945, 28287}, {3946, 29747}, {3948, 56025}, {5263, 42302}, {5283, 5287}, {5294, 27248}, {5437, 16815}, {7308, 29578}, {9776, 27304}, {10436, 16738}, {11679, 20436}, {14829, 20449}, {16549, 17294}, {16816, 27003}, {16827, 37652}, {16830, 57279}, {16834, 20367}, {16998, 39252}, {17023, 56508}, {17026, 20913}, {17144, 32939}, {17260, 20146}, {17282, 27303}, {17284, 56510}, {17298, 30034}, {17300, 27626}, {17375, 27678}, {17474, 26626}, {17736, 20602}, {17778, 27659}, {18141, 29988}, {18172, 40153}, {19785, 24214}, {20245, 26818}, {20271, 49760}, {20917, 37686}, {21296, 28402}, {22389, 50661}, {23682, 33137}, {24215, 40940}, {24310, 33296}, {24331, 51816}, {24591, 41245}, {27065, 29595}, {32092, 39950}, {34063, 41629}, {35167, 54953}, {50016, 54286}

X(62853) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 56161}, {42, 55968}
X(62853) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 56161}, {37673, 49474}, {40592, 55968}
X(62853) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56164, 21287}
X(62853) = pole of line {20981, 23465} with respect to the Brocard inellipse
X(62853) = pole of line {100, 25310} with respect to the Kiepert parabola
X(62853) = pole of line {4449, 4560} with respect to the Steiner circumellipse
X(62853) = pole of line {14838, 48295} with respect to the Steiner inellipse
X(62853) = pole of line {3882, 4499} with respect to the Yff parabola
X(62853) = pole of line {75, 24424} with respect to the Wallace hyperbola
X(62853) = pole of line {3944, 5249} with respect to the dual conic of Yff parabola
X(62853) = intersection, other than A, B, C, of circumconics {{A, B, C, X(19), X(3747)}}, {{A, B, C, X(21), X(330)}}, {{A, B, C, X(57), X(38832)}}, {{A, B, C, X(58), X(7153)}}, {{A, B, C, X(63), X(18827)}}, {{A, B, C, X(81), X(30962)}}, {{A, B, C, X(648), X(3573)}}, {{A, B, C, X(2319), X(2328)}}, {{A, B, C, X(28606), X(40216)}}, {{A, B, C, X(39273), X(40773)}}
X(62853) = barycentric product X(i)*X(j) for these (i, j): {1, 30962}, {37507, 75}
X(62853) = barycentric quotient X(i)/X(j) for these (i, j): {1, 56161}, {81, 55968}, {30962, 75}, {37507, 1}
X(62853) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1707, 3747}, {1, 18206, 63}, {81, 2975, 54419}, {330, 37683, 239}, {579, 3879, 22370}, {980, 20963, 5256}, {3218, 4393, 37555}, {3684, 60715, 11329}, {3912, 4253, 56507}, {16552, 16831, 3305}, {17474, 56509, 26626}


X(62854) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(34791), X(3), X(1))

Barycentrics    a*(-b^3+7*a*b*c-c^3+a^2*(b+c)) : :
X(62854) = -3*X[2]+2*X[3983], 2*X[65]+5*X[3623], -2*X[72]+9*X[38314], X[145]+6*X[354], -6*X[210]+13*X[46934], -12*X[551]+5*X[3876], 4*X[942]+3*X[3241], 4*X[950]+3*X[34605], 4*X[960]+3*X[4430], 2*X[1071]+5*X[5734], 2*X[3243]+5*X[11025], 2*X[3244]+5*X[18398] and many others

X(62854) lies on these lines: {1, 21}, {2, 3983}, {8, 4002}, {43, 46190}, {56, 3957}, {65, 3623}, {72, 38314}, {100, 3333}, {145, 354}, {149, 10404}, {200, 30343}, {210, 46934}, {404, 51816}, {517, 3528}, {518, 3622}, {519, 50190}, {551, 3876}, {908, 12125}, {936, 62236}, {938, 5176}, {942, 3241}, {950, 34605}, {958, 29817}, {960, 4430}, {1002, 54123}, {1056, 5086}, {1058, 5057}, {1071, 5734}, {1201, 49490}, {1420, 7672}, {1864, 18220}, {2334, 17012}, {2476, 49627}, {2646, 15570}, {3218, 3303}, {3240, 52541}, {3243, 11025}, {3244, 18398}, {3304, 34772}, {3315, 54418}, {3337, 25439}, {3338, 3871}, {3434, 11037}, {3436, 10580}, {3475, 10529}, {3487, 11240}, {3555, 3616}, {3617, 3742}, {3621, 3812}, {3632, 58565}, {3633, 5883}, {3635, 3885}, {3636, 5904}, {3689, 17572}, {3698, 31145}, {3722, 37608}, {3748, 4189}, {3753, 20050}, {3754, 51093}, {3813, 31019}, {3833, 4668}, {3848, 46932}, {3870, 5253}, {3913, 27003}, {3935, 25524}, {3968, 4816}, {3976, 4850}, {4292, 34611}, {4301, 11220}, {4308, 5173}, {4317, 11015}, {4323, 17625}, {4345, 12711}, {4353, 12530}, {4392, 37548}, {4511, 7373}, {4661, 25917}, {4666, 5260}, {4673, 17140}, {4849, 27625}, {4853, 30350}, {4861, 15934}, {4864, 36565}, {5175, 12128}, {5178, 36845}, {5284, 57279}, {5288, 36946}, {5542, 25722}, {5550, 34790}, {5558, 9776}, {5603, 40263}, {5694, 61279}, {5784, 11038}, {5903, 51071}, {6583, 61287}, {6767, 56288}, {9612, 10707}, {9961, 12675}, {10129, 13407}, {10394, 51099}, {10586, 25568}, {10587, 24477}, {10914, 50192}, {11019, 11681}, {11518, 36846}, {11680, 21620}, {12001, 21740}, {12005, 16200}, {12245, 13373}, {12528, 13464}, {12529, 12563}, {12531, 18240}, {12537, 18241}, {12577, 57287}, {12645, 58561}, {12701, 17483}, {13476, 39702}, {16474, 30148}, {16865, 42819}, {17016, 17597}, {17051, 21031}, {17147, 34860}, {17221, 17393}, {17449, 37598}, {17450, 59311}, {17474, 26690}, {19860, 44841}, {20009, 30614}, {20070, 58567}, {20085, 58611}, {22294, 59301}, {22836, 37602}, {23958, 37568}, {24473, 31792}, {25006, 51723}, {25253, 49499}, {26877, 37622}, {28011, 32911}, {28018, 37651}, {30947, 52353}, {31053, 37722}, {31164, 51785}, {31302, 58620}, {31870, 61291}, {49450, 58571}, {49707, 58627}

X(62854) = midpoint of X(i) and X(j) for these {i,j}: {3555, 4533}
X(62854) = reflection of X(i) in X(j) for these {i,j}: {8, 4002}
X(62854) = anticomplement of X(3983)
X(62854) = X(i)-Dao conjugate of X(j) for these {i, j}: {3983, 3983}
X(62854) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {5558, 1330}
X(62854) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(18490)}}, {{A, B, C, X(1621), X(39702)}}, {{A, B, C, X(54123), X(60721)}}
X(62854) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12559, 5330}, {1, 3868, 3890}, {1, 3873, 3869}, {1, 3874, 3877}, {1, 3881, 3868}, {1, 3889, 3873}, {1, 3892, 3889}, {1, 3894, 3884}, {1, 3901, 3898}, {354, 58609, 145}, {3304, 42871, 34772}, {3338, 3871, 9352}, {3555, 5049, 3616}, {3868, 3889, 3881}, {4666, 6762, 5260}, {5558, 9797, 9776}, {17609, 34791, 2}


X(62855) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(38315), X(3), X(1))

Barycentrics    a*(3*a^2+2*b^2+b*c+2*c^2+a*(b+c)) : :

X(62855) lies on these lines: {1, 21}, {2, 5846}, {6, 4661}, {8, 37036}, {100, 17017}, {145, 3969}, {171, 29819}, {210, 1386}, {238, 29816}, {354, 6030}, {612, 16491}, {614, 9347}, {902, 17600}, {940, 3315}, {1001, 1255}, {1100, 3693}, {1125, 33078}, {1203, 4134}, {1279, 17019}, {1280, 25417}, {1376, 17025}, {1449, 3930}, {2214, 56034}, {2887, 29834}, {3158, 5256}, {3242, 37685}, {3416, 29648}, {3589, 33091}, {3616, 33172}, {3618, 20020}, {3622, 41820}, {3681, 16475}, {3742, 3745}, {3744, 17011}, {3753, 5262}, {3880, 17016}, {3919, 54315}, {3936, 29838}, {3966, 31247}, {3996, 45222}, {4038, 29818}, {4307, 33146}, {4344, 19785}, {4389, 20064}, {4418, 49472}, {4450, 17302}, {4514, 29833}, {4682, 7292}, {4850, 5269}, {4865, 29636}, {4881, 37539}, {5260, 16478}, {5263, 17150}, {5276, 46907}, {5284, 5311}, {5297, 37687}, {6767, 44094}, {8299, 17018}, {10247, 28464}, {11038, 11206}, {14829, 29823}, {14996, 17597}, {16298, 19767}, {16707, 17143}, {16884, 60724}, {17061, 33112}, {17126, 17599}, {17127, 33761}, {17602, 33107}, {17722, 29683}, {17723, 29665}, {18134, 29831}, {20057, 30614}, {20182, 61155}, {25760, 29842}, {26230, 33073}, {27798, 32914}, {29634, 30831}, {29645, 32844}, {29646, 33074}, {29647, 49506}, {29654, 33072}, {29664, 31204}, {29667, 49681}, {29684, 33079}, {29686, 32846}, {29817, 37595}, {29850, 50288}, {31143, 47356}, {32774, 50289}, {32782, 51192}, {32923, 33682}, {32925, 50300}, {32926, 41242}, {32928, 49482}, {32940, 49464}, {32945, 49477}, {33075, 49684}, {33090, 51147}, {33157, 49476}, {61358, 62236}

X(62855) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(28505)}}, {{A, B, C, X(1280), X(4658)}}, {{A, B, C, X(28606), X(56034)}}
X(62855) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17469, 1621}, {940, 17024, 3315}, {1386, 3920, 32911}, {3745, 7191, 37633}, {17017, 17716, 100}


X(62856) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(38316), X(3), X(1))

Barycentrics    a*(3*a^2+b^2-4*b*c+c^2-4*a*(b+c)) : :
X(62856) = X[4309]+2*X[51706]

X(62856) lies on these lines: {1, 21}, {2, 3158}, {8, 17554}, {9, 3957}, {10, 4917}, {55, 3306}, {57, 29817}, {100, 10582}, {142, 20075}, {145, 5436}, {149, 25525}, {200, 5284}, {210, 1001}, {354, 4428}, {390, 5249}, {497, 31266}, {551, 35262}, {612, 16484}, {614, 3750}, {908, 10578}, {950, 10587}, {1260, 3872}, {1279, 5256}, {1420, 4323}, {1708, 11526}, {2177, 5272}, {2346, 42470}, {2475, 41864}, {2478, 51724}, {3052, 4883}, {3189, 24564}, {3218, 44841}, {3219, 3243}, {3247, 29815}, {3295, 3753}, {3303, 3880}, {3434, 30331}, {3475, 31164}, {3576, 9778}, {3601, 3622}, {3612, 3636}, {3616, 4855}, {3646, 4420}, {3683, 42871}, {3689, 8167}, {3720, 3749}, {3722, 5268}, {3744, 5287}, {3886, 17163}, {3895, 54318}, {3913, 4731}, {3919, 5119}, {3921, 11108}, {3929, 4430}, {3935, 7308}, {3968, 25439}, {3979, 15485}, {3984, 31435}, {4190, 51723}, {4309, 51706}, {4423, 58451}, {4450, 17298}, {4652, 5045}, {4847, 43179}, {5047, 6765}, {5049, 16370}, {5218, 31224}, {5269, 29814}, {5278, 49451}, {5438, 46934}, {5542, 44447}, {5722, 38058}, {5886, 38027}, {6762, 16865}, {7191, 35227}, {7290, 17018}, {7411, 43166}, {7675, 17616}, {9352, 31508}, {9580, 31019}, {9623, 51786}, {10167, 10246}, {10247, 28451}, {10382, 53055}, {10385, 38053}, {10431, 43175}, {10527, 40270}, {10580, 59491}, {10855, 24929}, {13405, 30852}, {14450, 41870}, {14555, 50744}, {15015, 51110}, {15254, 41711}, {16485, 17015}, {16783, 55337}, {16831, 24596}, {17064, 29689}, {17619, 31480}, {17718, 49736}, {17776, 49466}, {17781, 52653}, {18230, 20015}, {19732, 49467}, {19861, 37080}, {21000, 37520}, {24703, 37703}, {25734, 49499}, {26015, 55867}, {26034, 49768}, {27003, 35445}, {27798, 32941}, {28011, 37573}, {29835, 56519}, {32773, 56522}, {32911, 60846}, {33110, 41867}, {33124, 49746}, {33595, 35272}, {35595, 62218}, {36845, 54357}, {38052, 49719}, {38460, 51779}, {58565, 59316}

X(62856) = pole of line {2646, 42871} with respect to the Feuerbach hyperbola
X(62856) = pole of line {5249, 31183} with respect to the dual conic of Yff parabola
X(62856) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(56088)}}, {{A, B, C, X(58), X(60666)}}, {{A, B, C, X(81), X(42318)}}, {{A, B, C, X(17194), X(42470)}}, {{A, B, C, X(24635), X(56033)}}
X(62856) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1621, 63}, {1, 31424, 3889}, {1, 4512, 3873}, {1, 5250, 11520}, {55, 42819, 4666}, {55, 4666, 3306}, {551, 59337, 35262}, {1001, 3748, 3870}, {1001, 3870, 3305}, {1621, 3873, 4512}, {3303, 51715, 19860}, {10389, 38316, 2}, {16484, 17715, 612}, {29817, 61155, 57}, {35227, 37553, 7191}


X(62857) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(40937), X(3), X(1))

Barycentrics    a*(b^5+a^3*b*c-b^3*c^2-b^2*c^3+c^5+a^4*(b+c)-a*b*c*(b+c)^2-a^2*(2*b^3+b^2*c+b*c^2+2*c^3)) : :

X(62857) lies on these lines: {1, 21}, {2, 92}, {3, 3101}, {7, 18607}, {8, 3998}, {9, 16577}, {19, 1817}, {27, 17134}, {33, 1005}, {37, 329}, {48, 1762}, {57, 16579}, {75, 18662}, {77, 34035}, {86, 54107}, {189, 31359}, {219, 1993}, {241, 9776}, {306, 27396}, {321, 25252}, {394, 1442}, {405, 1870}, {411, 57276}, {440, 41007}, {452, 34231}, {464, 4329}, {572, 1726}, {914, 32782}, {958, 54292}, {1011, 21318}, {1060, 37306}, {1108, 3666}, {1172, 1748}, {1212, 25091}, {1630, 1790}, {1723, 32911}, {1812, 44179}, {1824, 37400}, {1829, 61109}, {1838, 2476}, {1953, 24310}, {2170, 54373}, {2184, 41082}, {2256, 55406}, {2257, 5256}, {2335, 26872}, {2339, 55987}, {2982, 55873}, {2999, 25065}, {3100, 20835}, {3185, 53035}, {3190, 3681}, {3218, 37543}, {3305, 26669}, {3332, 44447}, {3668, 5249}, {3682, 3876}, {3719, 55392}, {4184, 20243}, {4296, 37228}, {4300, 12529}, {4687, 20921}, {4847, 33089}, {4850, 40940}, {5175, 15852}, {5294, 26690}, {5706, 56288}, {5739, 42700}, {5748, 44307}, {5930, 24987}, {6198, 37284}, {6505, 37659}, {6508, 18675}, {6857, 37565}, {7070, 35258}, {7146, 28274}, {7308, 16578}, {7411, 30265}, {8021, 23171}, {8144, 37292}, {8731, 20254}, {9895, 37264}, {10436, 20223}, {10478, 22001}, {10601, 37787}, {13615, 38288}, {13725, 52366}, {13726, 41340}, {14213, 18698}, {14829, 28936}, {16368, 26215}, {16586, 55867}, {17011, 54358}, {17077, 54284}, {17189, 18601}, {17220, 53043}, {17394, 39767}, {17776, 25082}, {17862, 27339}, {18161, 22097}, {18593, 25525}, {18663, 26125}, {18721, 18750}, {18734, 26871}, {19822, 19843}, {20182, 55405}, {20879, 50106}, {20928, 28803}, {22002, 54035}, {22134, 56001}, {23372, 23846}, {24779, 26724}, {26044, 39351}, {26587, 27338}, {27287, 30807}, {31019, 55010}, {33157, 55902}, {36706, 52365}, {36845, 49470}, {37107, 62314}, {37265, 41083}, {37277, 41227}, {51574, 56810}, {52423, 60994}, {55466, 61024}, {56848, 60964}, {62570, 62605}

X(62857) = isogonal conjugate of X(2219)
X(62857) = perspector of circumconic {{A, B, C, X(662), X(18026)}}
X(62857) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2219}, {6, 54972}, {32, 57911}, {523, 58987}
X(62857) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2219}, {9, 54972}, {581, 15656}, {6376, 57911}, {15830, 37529}
X(62857) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {2215, 2475}, {2335, 1330}, {36077, 46400}, {51223, 2893}
X(62857) = pole of line {650, 24006} with respect to the polar circle
X(62857) = pole of line {100, 13395} with respect to the Kiepert parabola
X(62857) = pole of line {1, 1744} with respect to the Stammler hyperbola
X(62857) = pole of line {521, 4560} with respect to the Steiner circumellipse
X(62857) = pole of line {521, 14838} with respect to the Steiner inellipse
X(62857) = pole of line {3882, 61185} with respect to the Yff parabola
X(62857) = pole of line {101, 13395} with respect to the Hutson-Moses hyperbola
X(62857) = pole of line {75, 1812} with respect to the Wallace hyperbola
X(62857) = pole of line {14837, 17896} with respect to the dual conic of Conway circle
X(62857) = pole of line {651, 6517} with respect to the dual conic of Feuerbach hyperbola
X(62857) = pole of line {1210, 2476} with respect to the dual conic of Yff parabola
X(62857) = pole of line {1109, 53560} with respect to the dual conic of Wallace hyperbola
X(62857) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(40149)}}, {{A, B, C, X(2), X(283)}}, {{A, B, C, X(21), X(92)}}, {{A, B, C, X(31), X(1880)}}, {{A, B, C, X(58), X(278)}}, {{A, B, C, X(63), X(1441)}}, {{A, B, C, X(81), X(273)}}, {{A, B, C, X(255), X(1214)}}, {{A, B, C, X(281), X(2328)}}, {{A, B, C, X(377), X(26872)}}, {{A, B, C, X(1073), X(17073)}}, {{A, B, C, X(1468), X(52384)}}, {{A, B, C, X(2167), X(3868)}}, {{A, B, C, X(2184), X(31424)}}, {{A, B, C, X(3193), X(40399)}}, {{A, B, C, X(5127), X(37799)}}, {{A, B, C, X(17185), X(54314)}}, {{A, B, C, X(35193), X(52412)}}, {{A, B, C, X(37790), X(52680)}}, {{A, B, C, X(54356), X(56041)}}
X(62857) = barycentric product X(i)*X(j) for these (i, j): {581, 75}, {15830, 85}
X(62857) = barycentric quotient X(i)/X(j) for these (i, j): {1, 54972}, {6, 2219}, {75, 57911}, {163, 58987}, {377, 56727}, {581, 1}, {15830, 9}
X(62857) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 25080, 28606}, {1, 56839, 3868}, {2, 6360, 1441}, {57, 16579, 26635}, {63, 16585, 24635}, {278, 1214, 17080}, {1214, 40937, 2}, {1723, 54369, 32911}, {17011, 60970, 55399}, {24635, 28606, 63}, {55397, 55398, 21}


X(62858) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41229), X(3), X(1))

Barycentrics    a*(a^3-b^3-a*(b-c)^2-b^2*c-b*c^2-c^3+a^2*(b+c)) : :
X(62858) = -3*X[165]+X[6765], -5*X[631]+3*X[25568], -2*X[1385]+3*X[11194], -3*X[1699]+4*X[24387], -3*X[3158]+5*X[35242], -3*X[3576]+X[11523], -3*X[4421]+4*X[31663], -3*X[4930]+5*X[37624], -3*X[5770]+2*X[12616], -4*X[5901]+3*X[34647], X[6764]+3*X[9778], -X[6769]+3*X[52027]

X(62858) lies on these lines: {1, 21}, {2, 3338}, {3, 518}, {4, 10916}, {6, 37592}, {7, 12609}, {8, 46}, {9, 1125}, {10, 57}, {11, 58798}, {19, 596}, {20, 10085}, {32, 16973}, {35, 3870}, {36, 78}, {37, 5021}, {40, 376}, {44, 52541}, {55, 3555}, {56, 72}, {65, 956}, {75, 17206}, {84, 516}, {90, 10529}, {100, 58887}, {104, 56278}, {105, 52018}, {106, 39946}, {144, 14986}, {145, 4305}, {165, 6765}, {169, 3509}, {200, 4973}, {210, 474}, {219, 1741}, {226, 26363}, {238, 3976}, {267, 39711}, {329, 1728}, {354, 405}, {355, 529}, {386, 988}, {392, 3304}, {404, 3681}, {442, 10404}, {484, 3632}, {495, 26066}, {496, 24703}, {497, 49627}, {498, 59491}, {499, 908}, {515, 5709}, {517, 1158}, {524, 48882}, {527, 946}, {535, 5536}, {537, 16560}, {540, 46483}, {551, 3929}, {573, 34379}, {579, 5227}, {580, 34378}, {583, 17698}, {603, 8270}, {612, 37522}, {613, 43216}, {614, 1724}, {631, 25568}, {672, 17742}, {674, 37482}, {726, 1766}, {891, 53403}, {912, 6261}, {936, 1445}, {942, 958}, {950, 54408}, {952, 59318}, {960, 999}, {962, 1709}, {964, 46909}, {970, 2810}, {975, 984}, {978, 1757}, {982, 5247}, {995, 54386}, {1001, 5045}, {1015, 39248}, {1054, 6048}, {1058, 5698}, {1071, 3428}, {1103, 24025}, {1104, 21342}, {1150, 4968}, {1155, 5687}, {1193, 32912}, {1210, 10629}, {1214, 34046}, {1247, 39742}, {1259, 7742}, {1276, 49566}, {1277, 49568}, {1319, 3962}, {1330, 3705}, {1376, 9858}, {1385, 11194}, {1394, 4347}, {1401, 10822}, {1420, 4067}, {1423, 56949}, {1444, 54323}, {1451, 54305}, {1453, 3677}, {1454, 5252}, {1458, 3682}, {1465, 9370}, {1466, 41539}, {1469, 10974}, {1470, 41538}, {1473, 8193}, {1475, 5282}, {1478, 6734}, {1479, 26015}, {1482, 11260}, {1490, 2801}, {1571, 20691}, {1572, 17448}, {1697, 3244}, {1698, 3306}, {1699, 24387}, {1706, 3626}, {1714, 23536}, {1722, 18193}, {1723, 4310}, {1727, 30323}, {1737, 3436}, {1738, 29747}, {1759, 2082}, {1760, 32922}, {1761, 32921}, {1762, 42055}, {1765, 39553}, {1768, 2802}, {1770, 3434}, {1836, 24390}, {1858, 10966}, {1935, 34036}, {2057, 14740}, {2093, 4853}, {2095, 7686}, {2099, 4018}, {2217, 56136}, {2245, 41014}, {2256, 4047}, {2257, 4353}, {2275, 54406}, {2279, 3294}, {2285, 21061}, {2304, 22099}, {2348, 56527}, {2550, 60968}, {2771, 22560}, {2784, 24469}, {2836, 32270}, {2886, 57282}, {2900, 3651}, {2901, 39594}, {2945, 49603}, {2960, 50106}, {3008, 24171}, {3017, 48818}, {3085, 5744}, {3149, 14872}, {3158, 35242}, {3185, 22458}, {3187, 26830}, {3219, 3616}, {3220, 49553}, {3242, 4252}, {3295, 4640}, {3305, 3624}, {3336, 3679}, {3339, 3754}, {3340, 4084}, {3359, 11362}, {3419, 7354}, {3452, 10200}, {3474, 5082}, {3475, 6857}, {3476, 7098}, {3496, 49477}, {3501, 49560}, {3576, 11523}, {3579, 3913}, {3587, 12437}, {3600, 54398}, {3601, 5267}, {3612, 34772}, {3617, 23958}, {3625, 5128}, {3633, 3895}, {3634, 5437}, {3650, 16141}, {3652, 3656}, {3655, 16139}, {3670, 54418}, {3683, 17609}, {3694, 37500}, {3697, 4413}, {3702, 32933}, {3706, 50044}, {3720, 54287}, {3731, 27784}, {3740, 16408}, {3742, 5302}, {3746, 35258}, {3753, 5221}, {3779, 50597}, {3812, 5708}, {3813, 12699}, {3820, 34753}, {3822, 5290}, {3838, 31493}, {3841, 4355}, {3848, 16853}, {3871, 59316}, {3872, 4880}, {3875, 6629}, {3876, 5253}, {3879, 54404}, {3880, 12702}, {3886, 50625}, {3893, 5183}, {3911, 21075}, {3923, 44421}, {3925, 52783}, {3940, 59691}, {3951, 5563}, {3954, 54317}, {3956, 4866}, {3961, 37603}, {3966, 49716}, {3984, 35262}, {3991, 42316}, {4015, 8580}, {4050, 41322}, {4127, 13462}, {4138, 28039}, {4187, 17728}, {4188, 4420}, {4189, 4430}, {4202, 33114}, {4251, 51194}, {4255, 37599}, {4257, 16496}, {4259, 16799}, {4292, 4847}, {4294, 36845}, {4295, 9965}, {4299, 57287}, {4301, 12705}, {4311, 6737}, {4341, 52385}, {4362, 21370}, {4385, 14829}, {4392, 5262}, {4421, 31663}, {4511, 37618}, {4641, 16466}, {4650, 5255}, {4654, 11263}, {4659, 42031}, {4662, 9709}, {4663, 4719}, {4666, 5259}, {4694, 28011}, {4746, 51781}, {4757, 18421}, {4855, 7280}, {4860, 5439}, {4861, 25415}, {4867, 21842}, {4882, 53056}, {4930, 37624}, {4975, 25734}, {4981, 16454}, {4996, 59339}, {4999, 11374}, {5011, 36643}, {5022, 25066}, {5044, 5220}, {5080, 10826}, {5083, 51506}, {5178, 17579}, {5204, 5440}, {5217, 41711}, {5231, 9612}, {5234, 10980}, {5249, 19854}, {5251, 18398}, {5258, 5902}, {5260, 55870}, {5265, 37787}, {5269, 30145}, {5271, 24632}, {5273, 11037}, {5287, 25431}, {5289, 24928}, {5292, 13161}, {5293, 37608}, {5294, 19836}, {5325, 51723}, {5398, 9021}, {5434, 21677}, {5435, 5815}, {5438, 60989}, {5450, 37531}, {5493, 10860}, {5506, 27782}, {5525, 55337}, {5534, 6796}, {5535, 5881}, {5550, 27065}, {5584, 10167}, {5587, 6900}, {5657, 10805}, {5686, 17580}, {5690, 32049}, {5696, 8544}, {5697, 36846}, {5703, 15298}, {5719, 15296}, {5722, 57288}, {5731, 59340}, {5732, 12511}, {5745, 10198}, {5752, 8679}, {5758, 60950}, {5770, 12616}, {5777, 22753}, {5791, 25466}, {5794, 18990}, {5836, 36279}, {5839, 54420}, {5847, 7289}, {5852, 5886}, {5853, 7171}, {5854, 12515}, {5855, 37727}, {5880, 24470}, {5887, 10680}, {5901, 34647}, {5905, 10527}, {5974, 16575}, {6001, 22770}, {6147, 28628}, {6191, 49610}, {6192, 49611}, {6210, 17770}, {6211, 8669}, {6212, 49624}, {6213, 49625}, {6284, 51463}, {6684, 37534}, {6700, 21060}, {6736, 59336}, {6757, 52393}, {6764, 9778}, {6766, 28228}, {6767, 58609}, {6769, 52027}, {6846, 61010}, {6883, 13373}, {6905, 17857}, {6906, 37569}, {6913, 13374}, {6918, 58631}, {7004, 54295}, {7082, 11376}, {7091, 12447}, {7131, 56809}, {7174, 30142}, {7183, 9436}, {7283, 10453}, {7290, 30148}, {7293, 37557}, {7308, 19862}, {7373, 58679}, {7483, 17718}, {7580, 12680}, {7681, 37822}, {7701, 31162}, {7957, 37022}, {7982, 22837}, {8148, 33895}, {8227, 28609}, {8557, 34937}, {8583, 10176}, {8668, 35448}, {8951, 45047}, {8953, 30556}, {9310, 54330}, {9548, 17748}, {9776, 19855}, {9780, 27003}, {9798, 37581}, {9843, 18250}, {9954, 58649}, {9956, 11236}, {9961, 13243}, {10039, 17700}, {10072, 17781}, {10090, 46685}, {10106, 37550}, {10107, 40587}, {10164, 37526}, {10165, 60994}, {10199, 25522}, {10269, 31837}, {10393, 14054}, {10396, 11019}, {10436, 16887}, {10477, 19762}, {10572, 12649}, {10625, 34372}, {10827, 20060}, {10864, 28164}, {10884, 59320}, {10902, 21165}, {10914, 37567}, {11012, 18446}, {11038, 17558}, {11235, 22793}, {11365, 24320}, {11495, 12516}, {11500, 37623}, {11512, 17749}, {11517, 37578}, {11518, 30143}, {11529, 30147}, {11813, 50443}, {11826, 34742}, {11827, 34695}, {12005, 18443}, {12053, 30223}, {12116, 45632}, {12248, 12625}, {12541, 34632}, {12565, 30304}, {12577, 18249}, {12607, 26446}, {12682, 14450}, {12684, 15726}, {12717, 28526}, {13323, 43149}, {13369, 35239}, {13624, 56177}, {15079, 31160}, {15104, 59326}, {15325, 25681}, {15486, 29054}, {15733, 43178}, {15829, 61762}, {15932, 54288}, {16062, 33121}, {16370, 37080}, {16418, 51715}, {16465, 40292}, {16472, 54444}, {16478, 17598}, {16552, 17736}, {16566, 49446}, {16767, 34747}, {16823, 56517}, {16830, 56511}, {16833, 24590}, {16846, 28600}, {16857, 58560}, {16862, 61686}, {16863, 51572}, {16975, 54382}, {17064, 29788}, {17102, 55405}, {17134, 51607}, {17155, 17209}, {17449, 28082}, {17484, 23708}, {17535, 32635}, {17582, 38057}, {17596, 50581}, {17619, 31141}, {17687, 27475}, {17689, 31314}, {17757, 24914}, {17766, 61087}, {18201, 24174}, {18481, 37584}, {18483, 18540}, {18493, 28645}, {18839, 62333}, {19288, 39586}, {19763, 37575}, {19784, 54311}, {19874, 26627}, {19878, 51780}, {20077, 29840}, {20323, 31165}, {20805, 23853}, {21147, 37591}, {21181, 53407}, {21625, 51090}, {21627, 28194}, {22654, 37547}, {22758, 24474}, {22765, 45770}, {22781, 26286}, {22791, 28646}, {23051, 54336}, {23537, 33137}, {24159, 24231}, {24161, 33103}, {24310, 32853}, {24325, 50198}, {24392, 41869}, {24575, 45989}, {24593, 52353}, {24850, 32941}, {24851, 33141}, {25005, 56880}, {25092, 31429}, {25438, 46684}, {25439, 61763}, {25591, 32938}, {26131, 29664}, {26332, 51755}, {26470, 37826}, {27626, 49676}, {27659, 33064}, {27661, 33069}, {28234, 40256}, {28534, 48661}, {29069, 35635}, {29472, 45939}, {29633, 56508}, {29637, 56507}, {30115, 56525}, {30117, 56524}, {30340, 60981}, {30557, 35768}, {31053, 37692}, {31136, 50049}, {31397, 59335}, {31806, 37611}, {32537, 59503}, {33118, 33833}, {33122, 56778}, {33863, 49509}, {34377, 36742}, {34749, 45081}, {35599, 38876}, {36754, 45729}, {36975, 59324}, {37244, 45120}, {37525, 41696}, {37555, 49488}, {37556, 51071}, {37560, 43174}, {37563, 51093}, {37572, 48696}, {37573, 49490}, {37574, 49498}, {37609, 56542}, {37704, 60977}, {38047, 56734}, {38052, 60938}, {40266, 62318}, {42467, 44662}, {44675, 56545}, {46179, 49187}, {48819, 61661}, {50196, 57278}, {50589, 51192}, {50739, 51099}, {51785, 60905}, {56219, 57748}, {56737, 59406}, {60911, 60965}, {60912, 61122}, {60924, 60979}

X(62858) = midpoint of X(i) and X(j) for these {i,j}: {1, 54422}, {40, 6762}, {7991, 12629}, {28610, 34625}
X(62858) = reflection of X(i) in X(j) for these {i,j}: {1, 8666}, {1158, 24467}, {1482, 11260}, {11500, 37623}, {11523, 22836}, {12635, 1385}, {12699, 3813}, {25438, 46684}, {3811, 3}, {3913, 3579}, {32049, 5690}, {37531, 5450}, {37700, 26286}, {4, 10916}, {49163, 40256}, {49168, 24391}, {49169, 11362}, {5534, 6796}, {6261, 11249}, {6765, 8715}, {60965, 60911}, {7982, 22837}, {8148, 33895}, {962, 49600}
X(62858) = anticomplement of X(21077)
X(62858) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 57706}, {6, 60155}, {25, 57878}
X(62858) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60155}, {4383, 3875}, {6505, 57878}, {21077, 21077}, {36033, 57706}
X(62858) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34860, 1}
X(62858) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {90, 1330}, {1069, 52364}, {2164, 2895}, {2994, 21287}
X(62858) = pole of line {3667, 6211} with respect to the Bevan circle
X(62858) = pole of line {3309, 3733} with respect to the circumcircle
X(62858) = pole of line {4129, 16231} with respect to the polar circle
X(62858) = pole of line {2646, 9848} with respect to the Feuerbach hyperbola
X(62858) = pole of line {100, 49301} with respect to the Kiepert parabola
X(62858) = pole of line {1, 4228} with respect to the Stammler hyperbola
X(62858) = pole of line {4560, 26639} with respect to the Steiner circumellipse
X(62858) = pole of line {4765, 14838} with respect to the Steiner inellipse
X(62858) = pole of line {75, 12514} with respect to the Wallace hyperbola
X(62858) = pole of line {4648, 5249} with respect to the dual conic of Yff parabola
X(62858) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10), X(5250)}}, {{A, B, C, X(19), X(595)}}, {{A, B, C, X(21), X(475)}}, {{A, B, C, X(58), X(3433)}}, {{A, B, C, X(63), X(596)}}, {{A, B, C, X(75), X(12514)}}, {{A, B, C, X(81), X(3296)}}, {{A, B, C, X(84), X(54236)}}, {{A, B, C, X(191), X(39711)}}, {{A, B, C, X(388), X(57748)}}, {{A, B, C, X(1046), X(39742)}}, {{A, B, C, X(1247), X(8616)}}, {{A, B, C, X(2217), X(37817)}}, {{A, B, C, X(3743), X(6757)}}, {{A, B, C, X(3811), X(26703)}}, {{A, B, C, X(3869), X(56136)}}, {{A, B, C, X(7131), X(60721)}}, {{A, B, C, X(28606), X(42715)}}, {{A, B, C, X(39946), X(52680)}}, {{A, B, C, X(44105), X(44119)}}
X(62858) = barycentric product X(i)*X(j) for these (i, j): {304, 44105}, {475, 63}, {36743, 75}, {42715, 58}
X(62858) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60155}, {48, 57706}, {63, 57878}, {475, 92}, {36743, 1}, {42715, 313}, {44105, 19}
X(62858) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12526, 3878}, {1, 1707, 595}, {1, 191, 5250}, {1, 31424, 5248}, {1, 3868, 12559}, {1, 3894, 11520}, {1, 54422, 758}, {1, 63, 12514}, {1, 6763, 63}, {3, 518, 3811}, {4, 24477, 10916}, {7, 19843, 12609}, {8, 20076, 45287}, {8, 3218, 46}, {8, 4293, 17647}, {8, 46, 54286}, {9, 47299, 3986}, {36, 5904, 78}, {40, 6762, 519}, {40, 9841, 12512}, {56, 72, 997}, {63, 5250, 191}, {145, 56288, 5119}, {165, 6765, 8715}, {200, 15803, 25440}, {210, 32636, 474}, {515, 24391, 49168}, {517, 24467, 1158}, {631, 25568, 59719}, {912, 11249, 6261}, {942, 958, 54318}, {946, 7330, 54370}, {962, 34625, 49600}, {984, 37607, 975}, {988, 3751, 386}, {999, 3927, 960}, {1071, 3428, 12520}, {1319, 3962, 5730}, {1621, 3889, 1}, {1698, 3337, 3306}, {1722, 18193, 24046}, {1724, 3953, 614}, {1759, 45751, 2082}, {1788, 3421, 10}, {2975, 34195, 3897}, {3242, 4252, 5266}, {3296, 16845, 38053}, {3338, 41229, 2}, {3339, 9623, 3754}, {3361, 5223, 936}, {3509, 21384, 169}, {3555, 3916, 55}, {3576, 11523, 22836}, {3633, 11010, 3895}, {3742, 5302, 11108}, {3813, 17768, 12699}, {3868, 3897, 34195}, {3870, 4652, 35}, {3911, 21075, 26364}, {3928, 6762, 40}, {4640, 34791, 3295}, {4880, 5288, 5903}, {4973, 25440, 15803}, {5022, 50995, 25066}, {5045, 31445, 1001}, {5220, 25524, 5044}, {5231, 9612, 25639}, {5251, 18398, 54392}, {5258, 5902, 19860}, {5259, 50190, 4666}, {5290, 5705, 3822}, {5563, 5692, 19861}, {5657, 26877, 59333}, {5708, 9708, 3812}, {5745, 21620, 10198}, {5905, 10527, 12047}, {7174, 37554, 30142}, {7991, 12629, 2802}, {10085, 41338, 20}, {10461, 18206, 58}, {10529, 11415, 30384}, {10529, 20078, 11415}, {11194, 12635, 1385}, {11260, 44663, 1482}, {16552, 17736, 40131}, {16845, 38053, 1125}, {16863, 51572, 58451}, {24470, 31419, 5880}, {28234, 40256, 49163}, {34790, 37582, 1376}, {37608, 49448, 5293}


X(62859) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41686), X(3), X(1))

Barycentrics    a*(a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2-b*c+c^2)-a^3*(2*b^3+b^2*c+b*c^2+2*c^3)+a^2*(2*b^4-b^3*c-b*c^3+2*c^4)+a*(b^5-b^3*c^2-b^2*c^3+c^5)) : :
X(62859) = -3*X[354]+2*X[37737], -5*X[1698]+4*X[58636], -4*X[3812]+3*X[38058], -4*X[3918]+3*X[38214], -4*X[5044]+5*X[31260], -5*X[5439]+4*X[6668], -4*X[9940]+3*X[21155], -3*X[10202]+2*X[31659], -4*X[13373]+3*X[38033], -4*X[13374]+3*X[38039], -4*X[18240]+3*X[38063], -3*X[38027]+4*X[58560] and many others

X(62859) lies on these lines: {1, 21}, {2, 41686}, {10, 37636}, {11, 6583}, {12, 942}, {36, 12005}, {46, 11491}, {56, 22457}, {65, 952}, {72, 4999}, {79, 24298}, {80, 31870}, {354, 37737}, {388, 5902}, {496, 61722}, {498, 5904}, {499, 3487}, {517, 15338}, {518, 10039}, {519, 20612}, {529, 24473}, {912, 12047}, {944, 3474}, {971, 52837}, {1071, 1770}, {1210, 8068}, {1698, 58636}, {1772, 3293}, {1788, 15867}, {1858, 10959}, {2800, 11009}, {2801, 3585}, {3057, 61597}, {3336, 12432}, {3337, 10090}, {3555, 5855}, {3583, 41562}, {3584, 51113}, {3614, 56762}, {3649, 13852}, {3754, 41684}, {3811, 17700}, {3812, 38058}, {3918, 38214}, {4333, 11220}, {4973, 14792}, {4996, 34772}, {5044, 31260}, {5083, 5563}, {5087, 5570}, {5439, 6668}, {5443, 20117}, {5445, 38134}, {5692, 30478}, {5694, 15950}, {5728, 5852}, {5841, 10572}, {5849, 24476}, {5883, 18395}, {5885, 40663}, {7098, 14798}, {7676, 11010}, {9940, 21155}, {10085, 25415}, {10202, 31659}, {10222, 12758}, {10591, 61709}, {10629, 18412}, {10826, 59392}, {10944, 13375}, {11011, 14988}, {11571, 38669}, {12675, 21578}, {13373, 38033}, {13374, 38039}, {13751, 15325}, {14800, 54192}, {15171, 17637}, {15326, 26201}, {15528, 26877}, {16193, 31157}, {17606, 61512}, {18240, 38063}, {18391, 20060}, {18393, 31803}, {24914, 59382}, {30329, 59372}, {31806, 37525}, {38027, 58560}, {38045, 58561}, {38051, 58562}, {38056, 58563}, {38061, 58564}, {38062, 58565}, {40249, 44425}, {40591, 54427}, {41345, 41697}, {41863, 59335}, {44663, 51112}, {45288, 50194}, {58887, 59421}

X(62859) = midpoint of X(i) and X(j) for these {i,j}: {2975, 3868}
X(62859) = reflection of X(i) in X(j) for these {i,j}: {12, 942}, {10039, 13750}, {72, 4999}
X(62859) = pole of line {6003, 53314} with respect to the incircle
X(62859) = pole of line {2646, 5901} with respect to the Feuerbach hyperbola
X(62859) = pole of line {5249, 16577} with respect to the dual conic of Yff parabola
X(62859) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(91), X(5248)}}, {{A, B, C, X(24298), X(35193)}}
X(62859) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 17660, 18990}, {65, 24475, 11570}, {518, 13750, 10039}, {2975, 3868, 758}, {3868, 3873, 12559}, {3874, 18389, 1}, {3874, 47319, 3881}, {5904, 30274, 498}, {12005, 15556, 36}, {18397, 18398, 499}, {18398, 37701, 58566}


X(62860) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41696), X(3), X(1))

Barycentrics    a*(a^3+2*b^3-b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(b+c)^2) : :
X(62860) = 3*X[3241]+X[4295], -5*X[3623]+X[4294], -3*X[5603]+2*X[12558], -3*X[10247]+X[11496], 3*X[11224]+X[12565], -X[12651]+5*X[16189]

X(62860) lies on these lines: {1, 21}, {2, 41696}, {8, 3841}, {9, 4127}, {10, 3711}, {40, 4757}, {55, 4084}, {65, 8715}, {72, 30143}, {78, 5883}, {200, 3918}, {214, 3338}, {354, 30144}, {405, 4067}, {516, 1482}, {517, 12511}, {518, 30147}, {519, 5794}, {535, 3486}, {551, 5730}, {936, 3833}, {938, 3825}, {942, 22836}, {946, 18544}, {997, 11518}, {1125, 5791}, {1159, 3913}, {1320, 43732}, {1376, 33815}, {1389, 61296}, {1483, 5842}, {1706, 3754}, {2098, 4314}, {2099, 3244}, {2646, 24473}, {2802, 3340}, {2886, 16137}, {3218, 37571}, {3241, 4295}, {3419, 11263}, {3485, 24387}, {3487, 3822}, {3612, 4973}, {3616, 4867}, {3623, 4294}, {3625, 41711}, {3634, 3940}, {3636, 5289}, {3678, 11523}, {3689, 4004}, {3715, 4537}, {3723, 4047}, {3919, 5687}, {3957, 5697}, {4018, 37080}, {4189, 4880}, {4393, 53591}, {4430, 5288}, {4511, 18398}, {4647, 49687}, {4668, 62236}, {4701, 40587}, {4744, 37567}, {4930, 51103}, {5048, 12711}, {5290, 17097}, {5312, 54315}, {5450, 24475}, {5542, 5832}, {5603, 12558}, {5703, 58404}, {5708, 56177}, {5710, 49686}, {5711, 53114}, {5884, 37533}, {5902, 25440}, {5903, 25439}, {6001, 10222}, {6147, 44669}, {6737, 51706}, {6738, 21077}, {7982, 12520}, {9845, 16200}, {9846, 12560}, {10176, 54392}, {10198, 54288}, {10247, 11496}, {10483, 17483}, {10609, 52783}, {10698, 12705}, {11011, 12709}, {11041, 49169}, {11224, 12565}, {11551, 57287}, {12444, 36867}, {12617, 13464}, {12649, 25639}, {12651, 16189}, {12704, 51717}, {13407, 41575}, {15570, 31792}, {15733, 33895}, {15955, 49490}, {20008, 31418}, {22837, 34791}, {23958, 59319}, {31019, 47033}, {31053, 37702}, {31794, 56176}, {31806, 37615}, {31870, 37700}, {37612, 54192}, {37816, 56439}, {39552, 43159}, {49675, 50637}, {51714, 51816}

X(62860) = midpoint of X(i) and X(j) for these {i,j}: {1, 12559}, {3244, 3671}, {7982, 12520}
X(62860) = reflection of X(i) in X(j) for these {i,j}: {12609, 12563}, {12617, 13464}, {18249, 3636}, {5248, 1}, {8, 3841}
X(62860) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {15173, 1330}
X(62860) = pole of line {3733, 39476} with respect to the circumcircle
X(62860) = pole of line {75, 35016} with respect to the Wallace hyperbola
X(62860) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(75), X(35016)}}, {{A, B, C, X(3897), X(39697)}}, {{A, B, C, X(10448), X(56149)}}, {{A, B, C, X(39702), X(51111)}}, {{A, B, C, X(43732), X(52680)}}
X(62860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 3874}, {1, 11682, 3898}, {1, 12559, 758}, {1, 16126, 3869}, {1, 3868, 993}, {1, 3874, 8666}, {1, 3894, 2975}, {1, 3901, 21}, {1, 54421, 49480}, {1, 63, 35016}, {1, 758, 5248}, {72, 44840, 30143}, {519, 12563, 12609}, {997, 11518, 58565}, {3487, 49168, 3822}, {3811, 11529, 3754}, {12635, 15934, 1125}, {31806, 37615, 52769}, {51816, 56387, 51714}


X(62861) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41863), X(3), X(1))

Barycentrics    a*(a^3+3*b^3-b^2*c-b*c^2+3*c^3-3*a^2*(b+c)-a*(b^2+8*b*c+c^2)) : :

X(62861) lies on these lines: {1, 21}, {2, 41863}, {8, 142}, {10, 50393}, {40, 3957}, {65, 3895}, {72, 4666}, {78, 354}, {145, 8000}, {377, 5542}, {388, 30318}, {404, 10980}, {452, 61003}, {474, 50192}, {518, 54392}, {553, 3241}, {942, 3870}, {950, 60926}, {988, 17449}, {997, 50190}, {999, 11517}, {1001, 3951}, {1056, 41575}, {1125, 3984}, {1220, 51055}, {1449, 33950}, {1467, 7672}, {1479, 31164}, {1482, 13369}, {1697, 30284}, {2099, 58609}, {2478, 6744}, {3244, 11046}, {3295, 24473}, {3303, 15570}, {3304, 56387}, {3305, 5904}, {3306, 3811}, {3333, 34772}, {3338, 4855}, {3339, 3871}, {3475, 6734}, {3487, 26015}, {3555, 15934}, {3616, 11523}, {3623, 5731}, {3635, 4311}, {3677, 19767}, {3751, 28082}, {3812, 41711}, {3872, 34791}, {3876, 10582}, {3879, 41826}, {3885, 18421}, {3922, 8168}, {3999, 4255}, {4005, 8167}, {4018, 6767}, {4355, 17579}, {4393, 27000}, {4420, 5437}, {4430, 57279}, {4533, 16853}, {4652, 37080}, {4654, 52367}, {4848, 11239}, {4860, 56176}, {4864, 5710}, {4917, 54286}, {5045, 19861}, {5047, 5223}, {5049, 5730}, {5080, 37723}, {5300, 17298}, {5325, 15829}, {5554, 17706}, {5717, 36579}, {5734, 7971}, {6668, 17718}, {6743, 37462}, {6894, 38036}, {7962, 20057}, {8583, 30350}, {9580, 14450}, {9961, 43166}, {10389, 56288}, {10580, 41012}, {10916, 31266}, {11024, 20015}, {11036, 36845}, {11220, 12651}, {11525, 20014}, {12005, 37569}, {12513, 44840}, {12635, 17609}, {12649, 21620}, {16496, 59305}, {16834, 24588}, {17051, 24954}, {17483, 41869}, {17534, 30393}, {19765, 21342}, {19877, 62218}, {21808, 51194}, {22836, 51816}, {23958, 35242}, {25992, 47359}, {26066, 37703}, {26127, 31142}, {28628, 51463}, {29817, 31435}, {30323, 51071}, {31019, 41870}, {31224, 59719}, {36565, 37554}, {37549, 49478}, {41228, 42015}, {41861, 60966}, {41864, 60933}, {42885, 60947}, {49490, 54418}, {51058, 55337}, {54290, 61155}

X(62861) = pole of line {3731, 5249} with respect to the dual conic of Yff parabola
X(62861) = intersection, other than A, B, C, of circumconics {{A, B, C, X(58), X(10390)}}, {{A, B, C, X(81), X(56054)}}
X(62861) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12559, 11682}, {1, 3868, 5250}, {1, 3874, 63}, {1, 3894, 12514}, {1, 54422, 1621}, {3243, 11518, 8}, {3333, 34772, 35262}, {3555, 15934, 19860}, {3811, 18398, 3306}, {11520, 11682, 12559}, {11523, 44841, 3616}


X(62862) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(42819), X(3), X(1))

Barycentrics    a*(2*a^2+b^2-3*b*c+c^2-3*a*(b+c)) : :

X(62862) lies on circumconic {{A, B, C, X(4653), X(18490)}} and on these lines: {1, 21}, {2, 3689}, {8, 17552}, {55, 9352}, {78, 12521}, {100, 4666}, {142, 49719}, {145, 50398}, {200, 36835}, {214, 51105}, {354, 23958}, {390, 20292}, {497, 10129}, {528, 27186}, {748, 3979}, {1001, 3681}, {1054, 17782}, {1260, 4861}, {1279, 17018}, {1319, 21454}, {1385, 3528}, {2094, 2320}, {2177, 29820}, {2346, 8257}, {3058, 31019}, {3158, 9342}, {3218, 4428}, {3219, 42871}, {3303, 14923}, {3305, 62236}, {3315, 17594}, {3434, 8236}, {3475, 5057}, {3550, 17450}, {3616, 5082}, {3622, 17784}, {3683, 4430}, {3720, 17715}, {3722, 26102}, {3744, 9347}, {3749, 37633}, {3750, 4850}, {3848, 61156}, {3870, 5284}, {3885, 30143}, {3935, 4423}, {3938, 16484}, {3969, 50310}, {4085, 29853}, {4189, 17609}, {4514, 29830}, {4661, 15254}, {4662, 17570}, {4702, 28605}, {4864, 7226}, {4883, 17126}, {4995, 17051}, {5086, 10587}, {5249, 30331}, {5256, 35227}, {5748, 10578}, {5905, 47357}, {6767, 50204}, {7671, 61004}, {8162, 38460}, {9049, 26911}, {9776, 24929}, {10167, 15178}, {10569, 25405}, {10707, 31266}, {11025, 60989}, {11038, 44447}, {11680, 58463}, {11716, 29597}, {15569, 29815}, {16496, 33761}, {16826, 24596}, {16865, 34791}, {17024, 37593}, {17127, 49478}, {17184, 49746}, {17549, 51816}, {17592, 29818}, {17765, 29854}, {18230, 56028}, {20075, 38053}, {20078, 51099}, {24331, 32945}, {25960, 50748}, {26738, 33106}, {29651, 32943}, {29689, 33141}, {30147, 41702}, {30628, 60981}, {31053, 37703}, {31146, 55867}, {32862, 49466}, {32923, 42044}, {33108, 43179}, {33157, 36479}, {33172, 49768}, {35258, 44841}, {37525, 51103}, {37574, 46190}, {41553, 59377}, {42058, 62230}, {46934, 56176}

X(62862) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56028, 1330}, {56060, 21287}
X(62862) = pole of line {2646, 15570} with respect to the Feuerbach hyperbola
X(62862) = pole of line {101, 61232} with respect to the Hutson-Moses hyperbola
X(62862) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1621, 3873}, {1, 5248, 3889}, {1001, 41711, 27065}, {3683, 15570, 4430}, {3744, 29814, 9347}, {3748, 42819, 2}, {3870, 38316, 5284}, {3957, 27065, 41711}, {4666, 10389, 100}, {5249, 30331, 34611}, {37703, 49736, 31053}


X(62863) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(42871), X(3), X(1))

Barycentrics    a*(a^2+2*b^2-3*b*c+2*c^2-3*a*(b+c)) : :

X(62863) lies on these lines: {1, 21}, {2, 3711}, {7, 34611}, {8, 17529}, {42, 3315}, {55, 23958}, {88, 60714}, {100, 354}, {226, 10707}, {244, 3979}, {333, 17145}, {404, 50190}, {518, 5284}, {528, 26842}, {548, 1482}, {748, 49498}, {1001, 4430}, {1125, 36946}, {1320, 5425}, {1389, 61286}, {2099, 21454}, {2346, 60989}, {3058, 17483}, {3218, 3748}, {3219, 42819}, {3241, 9776}, {3242, 29814}, {3243, 3681}, {3244, 32924}, {3306, 30350}, {3434, 11038}, {3475, 11680}, {3488, 34605}, {3555, 5260}, {3616, 3940}, {3623, 17784}, {3689, 58560}, {3720, 49675}, {3742, 3935}, {3750, 17449}, {3870, 5437}, {3871, 18398}, {3920, 4864}, {3938, 37633}, {3961, 17450}, {3995, 24841}, {4015, 17546}, {4393, 24596}, {4423, 4661}, {4511, 5049}, {4649, 29818}, {4684, 33075}, {4863, 27186}, {4867, 51103}, {4906, 17012}, {4966, 33090}, {5045, 5253}, {5180, 15170}, {5303, 37080}, {5542, 20292}, {5572, 60935}, {5719, 38027}, {5734, 10430}, {5748, 10580}, {5905, 51099}, {7191, 49478}, {8042, 48337}, {8236, 44447}, {8257, 11025}, {9347, 15600}, {9352, 10980}, {10167, 10222}, {10569, 50194}, {10699, 29584}, {11019, 31272}, {11112, 58813}, {11518, 14923}, {14450, 15172}, {15185, 60981}, {16484, 33761}, {16490, 49682}, {17018, 17597}, {17019, 49465}, {17146, 32939}, {17297, 28599}, {17316, 30614}, {17484, 49736}, {17609, 34772}, {17642, 30284}, {17660, 41695}, {20066, 52783}, {20078, 47357}, {21453, 35312}, {25542, 32635}, {25557, 33110}, {26015, 58463}, {26223, 51055}, {29655, 30831}, {29689, 31204}, {29820, 37680}, {29835, 33124}, {29843, 33122}, {31146, 31266}, {32911, 49490}, {32923, 42057}, {32930, 49491}, {32938, 49535}, {32943, 49479}, {33078, 49466}, {33108, 36845}, {33157, 49768}, {33172, 36479}, {38460, 44840}, {59181, 60733}

X(62863) = reflection of X(i) in X(j) for these {i,j}: {5284, 29817}
X(62863) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {32015, 21287}
X(62863) = pole of line {101, 14722} with respect to the Hutson-Moses hyperbola
X(62863) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 3890}, {1, 3873, 1621}, {1, 3881, 21}, {1, 3889, 2975}, {1, 3892, 54391}, {354, 15570, 3957}, {518, 29817, 5284}, {3742, 3935, 9342}, {4864, 4883, 3920}, {5425, 51071, 1320}


X(62864) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44547), X(3), X(1))

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-a^4*(b^2-b*c+c^2)-(b^2-c^2)^2*(b^2-b*c+c^2)-2*a^3*(b^3+b^2*c+b*c^2+c^3)+2*a^2*(b^4-b^3*c-2*b^2*c^2-b*c^3+c^4)) : :

X(62864) lies on these lines: {1, 21}, {2, 44547}, {4, 7}, {8, 16465}, {9, 31324}, {10, 18412}, {11, 9964}, {20, 65}, {34, 34035}, {40, 7672}, {46, 7411}, {55, 7098}, {56, 18444}, {57, 411}, {60, 13739}, {72, 5273}, {75, 51978}, {84, 5884}, {100, 59335}, {165, 12432}, {224, 404}, {226, 6828}, {354, 1858}, {377, 5086}, {390, 12710}, {497, 55109}, {517, 4313}, {518, 54398}, {581, 17080}, {912, 3487}, {943, 26921}, {954, 3927}, {960, 17558}, {962, 5173}, {999, 21740}, {1013, 41344}, {1155, 37105}, {1210, 2476}, {1231, 51893}, {1259, 34772}, {1445, 8726}, {1708, 6986}, {1728, 5047}, {1729, 4251}, {1737, 4197}, {1788, 37112}, {1836, 17637}, {1837, 6839}, {1864, 3091}, {1870, 36742}, {1905, 4198}, {2294, 15656}, {2646, 37106}, {2801, 5290}, {2894, 5832}, {3085, 3681}, {3100, 5706}, {3188, 23839}, {3218, 20846}, {3333, 6261}, {3339, 5732}, {3488, 6868}, {3523, 17603}, {3560, 15934}, {3600, 12675}, {3601, 15556}, {3616, 16193}, {3671, 15071}, {3678, 31446}, {3754, 9859}, {3812, 4208}, {3876, 13411}, {3918, 30286}, {3945, 52385}, {4292, 5902}, {4295, 9961}, {4296, 36746}, {4304, 5493}, {4323, 12672}, {4511, 37248}, {4654, 52269}, {5045, 5887}, {5057, 5570}, {5218, 41538}, {5226, 5777}, {5261, 14872}, {5262, 54343}, {5274, 13374}, {5312, 24025}, {5435, 6988}, {5439, 5704}, {5542, 12617}, {5558, 55964}, {5572, 5698}, {5707, 6198}, {5708, 6985}, {5714, 6866}, {5729, 11108}, {5794, 8261}, {5883, 10861}, {5904, 13405}, {5907, 42447}, {6001, 37434}, {6147, 6841}, {6744, 41861}, {6825, 10202}, {6838, 37566}, {6852, 11374}, {6869, 13369}, {6872, 9965}, {6875, 24929}, {6876, 37582}, {6884, 11375}, {6912, 11518}, {6916, 34339}, {6991, 10395}, {6993, 54361}, {7491, 12433}, {7548, 9581}, {7686, 12671}, {7992, 12560}, {8144, 45923}, {8227, 58566}, {8543, 11025}, {9352, 17700}, {9579, 52841}, {9612, 41562}, {9942, 50700}, {9962, 24248}, {10167, 37544}, {10396, 54392}, {10429, 51512}, {10444, 32118}, {10580, 11415}, {10883, 11019}, {10914, 12536}, {11037, 17625}, {11041, 37562}, {11111, 15933}, {11507, 37285}, {11570, 13243}, {11678, 21077}, {12572, 60979}, {12848, 37423}, {14547, 37591}, {17102, 19767}, {17626, 31937}, {18165, 37113}, {18221, 18238}, {18446, 57283}, {19860, 20612}, {20116, 30330}, {20243, 41723}, {20254, 48909}, {20835, 56288}, {21454, 50695}, {22766, 37300}, {25255, 45038}, {25557, 31936}, {25722, 60923}, {30478, 58578}, {31803, 58626}, {32047, 51340}, {36279, 37426}, {37254, 40660}, {37399, 39598}, {37428, 60951}, {37447, 39542}, {37468, 37730}, {37721, 59356}, {37729, 45931}, {41084, 52037}, {44238, 54161}, {44663, 50742}, {50399, 52457}, {53597, 56382}, {54405, 62691}

X(62864) = perspector of circumconic {{A, B, C, X(662), X(13149)}}
X(62864) = pole of line {905, 6003} with respect to the incircle
X(62864) = pole of line {3900, 24006} with respect to the polar circle
X(62864) = pole of line {20, 1836} with respect to the Feuerbach hyperbola
X(62864) = pole of line {5949, 53422} with respect to the Kiepert hyperbola
X(62864) = pole of line {4560, 17896} with respect to the Steiner circumellipse
X(62864) = pole of line {75, 1792} with respect to the Wallace hyperbola
X(62864) = pole of line {1734, 6003} with respect to the Suppa-Cucoanes circle
X(62864) = pole of line {3668, 5249} with respect to the dual conic of Yff parabola
X(62864) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(2328)}}, {{A, B, C, X(7), X(283)}}, {{A, B, C, X(21), X(273)}}, {{A, B, C, X(31), X(1426)}}, {{A, B, C, X(58), X(1119)}}, {{A, B, C, X(81), X(1847)}}, {{A, B, C, X(255), X(1439)}}, {{A, B, C, X(342), X(17097)}}, {{A, B, C, X(1496), X(13476)}}, {{A, B, C, X(3869), X(40431)}}, {{A, B, C, X(7103), X(44119)}}, {{A, B, C, X(7282), X(35193)}}, {{A, B, C, X(17194), X(53237)}}
X(62864) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10122, 11020}, {1, 18389, 3868}, {1, 32913, 1496}, {1, 44706, 28606}, {4, 1071, 9960}, {21, 3868, 3869}, {57, 10393, 411}, {65, 10391, 20}, {72, 11018, 5703}, {354, 1858, 3485}, {942, 1071, 7}, {942, 5728, 938}, {1071, 9799, 12669}, {3812, 5784, 4208}, {3868, 3889, 11520}, {4292, 10572, 59355}, {5173, 12711, 962}, {5261, 40269, 14872}, {10122, 18389, 1}, {10399, 30274, 1210}


X(62865) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49448), X(3), X(1))

Barycentrics    a*(-2*b^2+b*c-2*c^2+a*(b+c)) : :
X(62865) = -3*X[2]+2*X[4090], -5*X[31242]+4*X[59511]

X(62865) lies on these lines: {1, 21}, {2, 4090}, {6, 17598}, {7, 33109}, {8, 24165}, {9, 3726}, {11, 33101}, {42, 4392}, {43, 518}, {44, 4906}, {55, 49675}, {57, 3961}, {65, 59310}, {69, 32866}, {72, 3976}, {75, 39742}, {88, 9350}, {141, 33169}, {145, 4970}, {149, 33098}, {165, 53552}, {171, 3242}, {192, 42057}, {200, 1054}, {210, 3999}, {223, 51766}, {226, 29676}, {238, 17597}, {244, 3681}, {291, 56165}, {312, 537}, {320, 4865}, {321, 49532}, {333, 18173}, {335, 17026}, {354, 984}, {497, 33099}, {519, 3210}, {614, 1757}, {726, 10453}, {748, 3315}, {756, 25502}, {894, 29652}, {899, 4661}, {942, 59311}, {976, 37608}, {978, 3953}, {986, 3555}, {988, 41863}, {1086, 32865}, {1150, 32923}, {1215, 29827}, {1279, 7262}, {1376, 18201}, {1401, 9052}, {1449, 41269}, {1647, 27131}, {1698, 4981}, {1743, 26242}, {1961, 7174}, {1999, 49455}, {2308, 17024}, {2886, 33103}, {3006, 33069}, {3056, 25572}, {3175, 49517}, {3218, 3550}, {3219, 15485}, {3243, 3979}, {3338, 5293}, {3434, 32857}, {3452, 24216}, {3475, 29640}, {3509, 16973}, {3632, 32860}, {3633, 3896}, {3662, 29673}, {3666, 42042}, {3670, 50581}, {3677, 3751}, {3679, 4359}, {3687, 49505}, {3703, 33087}, {3705, 33064}, {3706, 49493}, {3720, 7226}, {3731, 30350}, {3741, 24349}, {3742, 49515}, {3744, 4650}, {3749, 3928}, {3750, 42871}, {3782, 33141}, {3814, 31520}, {3840, 32937}, {3870, 17596}, {3891, 32919}, {3920, 37604}, {3944, 26015}, {3951, 28011}, {3952, 30957}, {3957, 4414}, {3971, 31302}, {3989, 29814}, {3995, 51035}, {4011, 62222}, {4084, 50637}, {4096, 30829}, {4257, 49686}, {4310, 33137}, {4334, 17625}, {4335, 15185}, {4383, 49712}, {4388, 29844}, {4415, 24217}, {4416, 26274}, {4425, 29843}, {4438, 29858}, {4514, 4655}, {4640, 4864}, {4649, 17599}, {4660, 26840}, {4674, 4677}, {4685, 17490}, {4694, 5692}, {4741, 23633}, {4847, 17889}, {4850, 42038}, {4860, 17122}, {4863, 24715}, {4871, 27538}, {4880, 37610}, {4884, 4966}, {4891, 49523}, {4899, 62673}, {4903, 30948}, {5014, 33067}, {5121, 21060}, {5220, 17123}, {5223, 5272}, {5268, 10980}, {5282, 16779}, {5294, 29660}, {5425, 16499}, {5745, 29675}, {5905, 33106}, {6048, 24046}, {6377, 24528}, {6682, 29825}, {6685, 49535}, {7191, 16468}, {8056, 55935}, {9055, 24691}, {9941, 37555}, {11269, 33152}, {11680, 32856}, {12652, 30304}, {13476, 17038}, {13541, 51811}, {13610, 23051}, {14829, 24841}, {14996, 29816}, {16667, 21840}, {16670, 46907}, {17018, 46901}, {17080, 53531}, {17127, 29818}, {17135, 17154}, {17140, 25294}, {17145, 17147}, {17157, 36862}, {17165, 30942}, {17184, 33120}, {17227, 28595}, {17272, 26234}, {17276, 33095}, {17334, 49736}, {17364, 50613}, {17450, 42039}, {17461, 51071}, {17483, 33104}, {17592, 49478}, {17595, 41711}, {17716, 49465}, {17721, 33096}, {17725, 37646}, {17754, 49509}, {17755, 30822}, {18743, 42054}, {18839, 24430}, {19786, 50285}, {19804, 42053}, {20068, 29824}, {20284, 22199}, {21330, 53676}, {21384, 49758}, {21805, 36634}, {23154, 50617}, {24174, 34790}, {24177, 49772}, {24248, 36845}, {24325, 25123}, {24443, 59294}, {24462, 30704}, {24477, 33140}, {24552, 32940}, {24586, 32029}, {24620, 49504}, {24627, 29670}, {24661, 56537}, {24821, 56082}, {24892, 33148}, {24943, 33170}, {25527, 29861}, {26128, 29856}, {27064, 29668}, {27065, 51297}, {27184, 29655}, {27287, 36542}, {28599, 46150}, {28605, 31136}, {29637, 33163}, {29638, 56520}, {29641, 49676}, {29651, 38000}, {29659, 54311}, {29662, 33153}, {29677, 33166}, {29690, 31019}, {29819, 37685}, {29832, 32949}, {29835, 32776}, {29840, 32946}, {29860, 56519}, {30947, 49508}, {30962, 49521}, {31028, 33888}, {31178, 31993}, {31197, 58629}, {31242, 59511}, {32771, 46909}, {32778, 49511}, {32844, 32859}, {32853, 32922}, {32854, 32863}, {32915, 49445}, {32932, 49458}, {32933, 32943}, {32935, 32942}, {32939, 32941}, {33079, 49688}, {33080, 33090}, {33081, 33089}, {33114, 33123}, {33119, 33122}, {33136, 33146}, {33142, 33143}, {33161, 33173}, {33162, 33172}, {33167, 33171}, {33174, 49524}, {34791, 37598}, {35652, 49513}, {36283, 50028}, {37652, 50023}, {39594, 49446}, {41839, 49520}, {42051, 49459}, {49510, 59296}, {49768, 56078}

X(62865) = reflection of X(i) in X(j) for these {i,j}: {32937, 3840}, {43, 982}, {982, 21342}
X(62865) = anticomplement of X(4090)
X(62865) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3551, 1330}
X(62865) = pole of line {75, 8616} with respect to the Wallace hyperbola
X(62865) = pole of line {5249, 17244} with respect to the dual conic of Yff parabola
X(62865) = intersection, other than A, B, C, of circumconics {{A, B, C, X(31), X(39742)}}, {{A, B, C, X(75), X(8616)}}, {{A, B, C, X(81), X(17232)}}, {{A, B, C, X(596), X(54354)}}, {{A, B, C, X(846), X(23051)}}, {{A, B, C, X(1621), X(17038)}}, {{A, B, C, X(16948), X(55935)}}
X(62865) = barycentric product X(i)*X(j) for these (i, j): {1, 17232}
X(62865) = barycentric quotient X(i)/X(j) for these (i, j): {17232, 75}
X(62865) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63, 8616}, {1, 6763, 54354}, {42, 4392, 17591}, {42, 4430, 49498}, {57, 16496, 3961}, {57, 3961, 56010}, {72, 3976, 21214}, {200, 18193, 1054}, {210, 3999, 17063}, {354, 984, 26102}, {518, 21342, 982}, {518, 982, 43}, {2292, 3889, 1}, {3218, 3938, 3550}, {3243, 17594, 3979}, {3666, 49490, 42042}, {3677, 3751, 29821}, {3782, 51463, 33141}, {3953, 5904, 978}, {4310, 33137, 33147}, {4388, 58371, 29844}, {4438, 33124, 29858}, {4640, 4864, 17715}, {4847, 24231, 17889}, {4884, 4966, 33092}, {7191, 32912, 16468}, {17063, 49503, 210}, {17135, 17154, 17155}, {17135, 17155, 49474}, {17591, 49498, 42}, {17595, 41711, 60714}, {18743, 49501, 42054}, {20068, 29824, 32925}, {24477, 33144, 33140}, {26128, 33121, 29856}, {42053, 49457, 19804}


X(62866) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49478), X(3), X(1))

Barycentrics    a*(-b^2+3*b*c-c^2+3*a*(b+c)) : :

X(62866) lies on circumconic {{A, B, C, X(1621), X(39739)}} and on these lines: {1, 21}, {2, 4849}, {6, 29817}, {37, 4430}, {42, 17063}, {43, 17450}, {145, 4359}, {244, 42042}, {354, 4850}, {518, 29814}, {750, 3979}, {756, 49498}, {940, 3957}, {1100, 17024}, {1255, 7174}, {1279, 37685}, {2177, 9352}, {3210, 3623}, {3240, 3742}, {3241, 3896}, {3242, 17019}, {3243, 5287}, {3244, 32860}, {3315, 5256}, {3475, 33133}, {3616, 4981}, {3681, 3720}, {3722, 37604}, {3726, 16884}, {3744, 14996}, {3745, 15570}, {3748, 17126}, {3751, 5284}, {3848, 21870}, {3870, 37633}, {3920, 42871}, {3935, 37674}, {3936, 29843}, {3938, 4038}, {3961, 9345}, {3995, 49499}, {3996, 26627}, {4365, 31178}, {4392, 37593}, {4661, 44307}, {4664, 20068}, {4666, 32911}, {4671, 4891}, {4675, 33110}, {4684, 32782}, {4689, 23958}, {4722, 15485}, {4851, 33090}, {4864, 29815}, {4906, 17025}, {4966, 29667}, {4970, 51071}, {5014, 17300}, {5045, 19767}, {5268, 62236}, {5297, 41711}, {5311, 49675}, {5542, 33146}, {7226, 15569}, {9335, 58560}, {10582, 37680}, {11038, 19785}, {11680, 26738}, {13476, 39739}, {15934, 17015}, {16484, 32912}, {16703, 39731}, {17011, 17597}, {17127, 42819}, {17135, 27812}, {17140, 49470}, {17146, 27804}, {17155, 49471}, {17165, 51055}, {17449, 17592}, {17591, 21806}, {18134, 29835}, {19804, 20011}, {19993, 26234}, {20012, 24589}, {20064, 62230}, {21746, 23155}, {21805, 25502}, {24331, 32864}, {24349, 42044}, {25557, 33131}, {26724, 38053}, {29651, 32919}, {29664, 51463}, {29665, 37703}, {29685, 33087}, {29820, 61358}, {29829, 33124}, {29830, 33121}, {29837, 33122}, {30148, 36946}, {31137, 31264}, {31503, 39702}, {32771, 42057}, {32915, 49479}, {32925, 49491}, {33078, 36479}, {34611, 50307}, {46907, 62212}, {50190, 59301}

X(62866) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2650, 3890}, {1, 3873, 28606}, {3938, 4038, 9347}, {4864, 37595, 29815}, {4883, 49478, 2}


X(62867) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49490), X(3), X(1))

Barycentrics    a*(-(b-c)^2+2*a*(b+c)) : :

X(62867) lies on these lines: {1, 21}, {2, 17145}, {7, 33094}, {37, 42039}, {42, 244}, {57, 2177}, {65, 4322}, {75, 39739}, {100, 3979}, {141, 29685}, {145, 32860}, {149, 33097}, {165, 17782}, {171, 3722}, {200, 17124}, {210, 30950}, {226, 53531}, {238, 4722}, {312, 31161}, {320, 32947}, {321, 42057}, {386, 50190}, {497, 24725}, {512, 8042}, {518, 756}, {519, 4359}, {537, 3995}, {612, 3243}, {614, 44841}, {678, 37520}, {740, 17140}, {748, 3751}, {750, 3870}, {872, 58571}, {894, 32943}, {899, 3742}, {902, 3748}, {940, 3938}, {942, 4642}, {982, 17018}, {984, 4430}, {1001, 32912}, {1015, 21814}, {1100, 3726}, {1125, 4981}, {1149, 5049}, {1150, 29651}, {1193, 5045}, {1201, 17609}, {1203, 36946}, {1215, 29824}, {1279, 2308}, {1386, 29818}, {1407, 2099}, {1449, 26242}, {1458, 5173}, {1647, 37662}, {1757, 5284}, {1999, 32923}, {2170, 16971}, {2171, 52635}, {2293, 17642}, {2334, 17054}, {2350, 39258}, {2667, 13476}, {2887, 29835}, {2999, 30350}, {3058, 17365}, {3210, 3241}, {3214, 5439}, {3218, 3750}, {3219, 16484}, {3240, 17063}, {3242, 5311}, {3244, 3896}, {3293, 58565}, {3315, 29821}, {3337, 33771}, {3475, 11269}, {3555, 59305}, {3635, 4970}, {3666, 17449}, {3681, 26102}, {3685, 32940}, {3706, 50001}, {3711, 37682}, {3721, 39247}, {3744, 15570}, {3745, 4864}, {3757, 32919}, {3780, 21921}, {3829, 17775}, {3833, 31855}, {3840, 46897}, {3879, 26234}, {3912, 33162}, {3914, 5542}, {3920, 4038}, {3930, 24512}, {3935, 17122}, {3936, 29655}, {3953, 59301}, {3961, 37633}, {3968, 62325}, {3969, 49764}, {3971, 49535}, {3976, 19767}, {3989, 15569}, {3994, 17165}, {4128, 62550}, {4332, 34046}, {4365, 49483}, {4392, 17592}, {4438, 29830}, {4514, 32949}, {4641, 42819}, {4649, 7191}, {4650, 61155}, {4667, 23634}, {4675, 4863}, {4684, 33081}, {4685, 24589}, {4695, 5883}, {4850, 42040}, {4851, 32854}, {4914, 17374}, {4933, 33168}, {4938, 32861}, {4966, 15523}, {4968, 35633}, {4972, 49676}, {5249, 33136}, {5278, 24331}, {5287, 16496}, {5294, 49768}, {5425, 16490}, {5437, 9350}, {5524, 9342}, {6682, 29822}, {8679, 20961}, {10453, 32771}, {10459, 34791}, {10582, 17125}, {11038, 33128}, {11526, 60786}, {14547, 18839}, {14996, 17716}, {15934, 49487}, {16474, 30117}, {16602, 21870}, {16610, 58560}, {16666, 46907}, {16823, 32864}, {16884, 41269}, {17011, 17598}, {17017, 17597}, {17051, 37663}, {17056, 29690}, {17126, 17715}, {17135, 21020}, {17146, 17147}, {17154, 27804}, {17155, 49470}, {17234, 33117}, {17300, 33072}, {17460, 39697}, {17483, 33095}, {17495, 42053}, {17601, 23958}, {17625, 42289}, {17718, 29662}, {17724, 29683}, {17778, 32844}, {18059, 20889}, {18134, 33120}, {18139, 21026}, {18398, 24443}, {19684, 29652}, {19822, 50316}, {19993, 50284}, {20068, 49456}, {20963, 21808}, {20964, 61033}, {21342, 37593}, {21620, 21935}, {24210, 32856}, {24217, 31053}, {24231, 33145}, {24349, 32915}, {24403, 50257}, {24593, 59679}, {24715, 26842}, {24841, 34064}, {24929, 54310}, {25368, 49749}, {25501, 49510}, {25760, 29843}, {26015, 33105}, {26037, 49450}, {26128, 29829}, {27003, 60714}, {27065, 49712}, {27186, 32865}, {28605, 31178}, {29631, 33124}, {29632, 33121}, {29635, 33122}, {29642, 33114}, {29659, 33172}, {29667, 33087}, {29677, 38047}, {29687, 49524}, {29689, 35466}, {29816, 37595}, {29820, 32911}, {29837, 32775}, {29839, 33119}, {29844, 33070}, {29845, 33126}, {29851, 33118}, {30004, 41240}, {30331, 62240}, {30942, 31264}, {31019, 33141}, {31035, 42054}, {31136, 31993}, {32773, 33069}, {32780, 33173}, {32846, 33090}, {32858, 33169}, {32863, 33076}, {32925, 49499}, {33074, 36479}, {33103, 33134}, {33130, 33142}, {33135, 33148}, {33158, 33170}, {37646, 37703}, {37674, 41711}, {42041, 49448}, {42044, 49532}, {42051, 49475}, {43223, 46909}, {48847, 58813}, {49469, 50106}, {49709, 62230}, {50315, 56810}, {54416, 57656}

X(62867) = reflection of X(i) in X(j) for these {i,j}: {3720, 4883}, {756, 3720}
X(62867) = X(i)-Dao conjugate of X(j) for these {i, j}: {17245, 17143}
X(62867) = pole of line {659, 4093} with respect to the DeLongchamps ellipse
X(62867) = pole of line {5249, 37111} with respect to the dual conic of Yff parabola
X(62867) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(31), X(39739)}}, {{A, B, C, X(81), X(17245)}}, {{A, B, C, X(1621), X(13476)}}, {{A, B, C, X(4653), X(39697)}}, {{A, B, C, X(10448), X(39702)}}, {{A, B, C, X(17469), X(40438)}}, {{A, B, C, X(40091), X(53114)}}
X(62867) = barycentric product X(i)*X(j) for these (i, j): {1, 17245}
X(62867) = barycentric quotient X(i)/X(j) for these (i, j): {17245, 75}
X(62867) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32913, 1621}, {1, 38, 1962}, {1, 3873, 38}, {1, 3874, 2292}, {1, 81, 17469}, {42, 354, 244}, {354, 49478, 42}, {518, 3720, 756}, {518, 4883, 3720}, {940, 42871, 3938}, {982, 17018, 46904}, {1100, 3726, 21840}, {1621, 32913, 896}, {3244, 24165, 3896}, {3666, 17449, 42038}, {4038, 49675, 3920}, {4430, 29814, 984}, {17056, 51463, 29690}, {17135, 24325, 21020}, {17146, 17147, 42055}, {17450, 49490, 21805}, {21342, 37593, 46901}, {21806, 42038, 3666}, {37595, 49465, 29816}, {42055, 49471, 17147}


X(62868) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49515), X(3), X(1))

Barycentrics    a*(-3*b^2+b*c-3*c^2+a*(b+c)) : :

X(62868) lies on circumconic {{A, B, C, X(39959), X(52680)}} and on these lines: {1, 21}, {2, 3999}, {9, 3315}, {43, 42038}, {44, 26242}, {45, 3726}, {75, 16727}, {88, 37223}, {100, 16496}, {149, 17276}, {244, 49448}, {312, 20068}, {320, 29832}, {335, 17028}, {354, 7226}, {518, 3240}, {537, 30942}, {899, 982}, {984, 17449}, {3210, 3621}, {3218, 3242}, {3219, 17597}, {3617, 4359}, {3625, 32860}, {3626, 24165}, {3666, 4430}, {3677, 32911}, {3740, 9335}, {3752, 4661}, {3758, 29823}, {3786, 16753}, {3876, 3953}, {3896, 20050}, {3935, 17595}, {3952, 49501}, {3961, 9352}, {3994, 31137}, {4005, 27625}, {4310, 33129}, {4358, 30948}, {4389, 29835}, {4414, 49675}, {4641, 17024}, {4663, 17025}, {4666, 33761}, {4671, 28582}, {4683, 29844}, {4847, 33146}, {4860, 5297}, {4863, 33102}, {4864, 61155}, {4871, 49508}, {4884, 32858}, {4981, 9780}, {5014, 26840}, {5220, 7292}, {5221, 28037}, {5223, 37680}, {5282, 16786}, {5573, 37687}, {6646, 58371}, {7174, 37633}, {7262, 29818}, {10129, 29676}, {10453, 42044}, {13243, 61086}, {16477, 17598}, {16569, 42040}, {16666, 41269}, {17126, 49465}, {17135, 50106}, {17145, 49470}, {17227, 31079}, {17484, 17721}, {17495, 49450}, {19843, 26729}, {20331, 49509}, {22323, 48639}, {24231, 33108}, {24325, 53039}, {24349, 46909}, {24477, 33133}, {24802, 59812}, {24841, 26227}, {25502, 42041}, {26015, 33151}, {26037, 42053}, {26102, 42039}, {26738, 29639}, {27754, 29830}, {29631, 50285}, {29652, 32940}, {29668, 32938}, {29690, 33103}, {29822, 51055}, {29824, 49447}, {29827, 31161}, {29840, 32859}, {30957, 42054}, {30970, 31178}, {31136, 49493}, {31330, 42055}, {32845, 49458}, {32919, 49455}, {33086, 49688}, {33089, 49511}, {33134, 51463}, {33175, 47358}, {35445, 53552}, {35596, 50130}, {46901, 49490}, {46904, 49498}, {49452, 50001}

X(62868) = reflection of X(i) in X(j) for these {i,j}: {3240, 4003}, {4850, 4392}
X(62868) = pole of line {5249, 29600} with respect to the dual conic of Yff parabola
X(62868) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {38, 3873, 28606}, {518, 4003, 3240}, {982, 49503, 899}, {3240, 4003, 4850}, {3240, 4392, 4003}, {3999, 49515, 2}, {21342, 49515, 3999}, {29676, 32856, 10129}


X(62869) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49675), X(3), X(1))

Barycentrics    a*(a^2-2*a*(b+c)+2*(b^2-b*c+c^2)) : :

X(62869) lies on these lines: {1, 21}, {2, 49675}, {6, 29818}, {8, 25961}, {42, 17597}, {43, 3315}, {55, 17449}, {57, 3722}, {78, 46190}, {145, 32924}, {149, 33103}, {226, 49989}, {238, 4430}, {244, 3870}, {354, 750}, {497, 32856}, {518, 748}, {612, 17450}, {614, 3243}, {756, 4666}, {899, 41711}, {976, 5045}, {982, 2177}, {984, 29817}, {1279, 32912}, {2099, 7248}, {2280, 3726}, {3058, 33098}, {3218, 17715}, {3242, 3720}, {3244, 24177}, {3271, 61678}, {3475, 33105}, {3555, 28082}, {3666, 15570}, {3677, 46904}, {3681, 17125}, {3748, 4414}, {3750, 4392}, {3891, 42057}, {3920, 9345}, {3924, 34791}, {3935, 9350}, {3936, 29844}, {3961, 17124}, {3979, 4850}, {4038, 29815}, {4310, 33145}, {4359, 49458}, {4514, 31134}, {4649, 17024}, {4661, 17123}, {4684, 32852}, {4722, 7290}, {4883, 5311}, {4966, 32854}, {4981, 24331}, {5014, 49676}, {5083, 9316}, {5272, 21805}, {5284, 49448}, {5332, 16884}, {7191, 49490}, {7226, 16484}, {8027, 48333}, {9335, 56009}, {10453, 32923}, {11246, 53534}, {16569, 62236}, {17017, 49478}, {17018, 17598}, {17140, 32941}, {17145, 32853}, {17154, 32934}, {17460, 25415}, {17594, 42038}, {17596, 17782}, {17724, 29662}, {20064, 49700}, {24217, 33153}, {24231, 33094}, {24349, 32943}, {24552, 49479}, {24841, 32925}, {24892, 51463}, {26015, 33127}, {26128, 29835}, {26223, 49491}, {27065, 49503}, {28011, 41863}, {29638, 33121}, {29651, 46909}, {29655, 33122}, {29668, 46897}, {29672, 33114}, {29677, 49524}, {29678, 37703}, {29687, 49688}, {29824, 32920}, {29839, 58371}, {29843, 32775}, {29853, 33118}, {31237, 33120}, {32577, 34772}, {32781, 36479}, {32857, 34611}, {32863, 49506}, {32911, 49498}, {32929, 42055}, {32930, 49499}, {33074, 49466}, {33087, 33090}, {33136, 36845}, {33141, 33148}, {33169, 33173}, {34036, 53531}, {41696, 56804}, {48303, 53555}

X(62869) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(81), X(17265)}}, {{A, B, C, X(17469), X(39739)}}
X(62869) = barycentric product X(i)*X(j) for these (i, j): {1, 17265}
X(62869) = barycentric quotient X(i)/X(j) for these (i, j): {17265, 75}
X(62869) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3873, 31}, {1, 3874, 3915}, {1, 3881, 1468}, {1, 3894, 40091}, {31, 3873, 54352}, {354, 3938, 750}, {354, 4864, 3938}, {612, 44841, 17450}, {982, 3957, 2177}, {3681, 29820, 17125}, {3748, 21342, 4414}, {4514, 33069, 31134}, {4666, 16496, 756}, {4883, 49465, 5311}, {7191, 49490, 61358}, {17597, 42871, 42}, {33120, 33124, 31237}


X(62870) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51715), X(3), X(1))

Barycentrics    a*(2*a^3+b^3-2*b^2*c-2*b*c^2+c^3-a^2*(b+c)-a*(2*b^2+5*b*c+2*c^2)) : :

X(62870) lies on these lines: {1, 21}, {2, 3189}, {3, 58561}, {8, 16845}, {35, 9352}, {37, 36565}, {55, 37301}, {56, 29817}, {65, 61155}, {78, 3646}, {100, 54392}, {145, 3748}, {149, 28628}, {210, 16859}, {224, 25722}, {244, 37574}, {354, 4189}, {376, 962}, {390, 2646}, {404, 59337}, {405, 3681}, {443, 1058}, {518, 16865}, {551, 34611}, {950, 52255}, {958, 3957}, {988, 3315}, {1001, 30628}, {1104, 17018}, {1125, 33108}, {1279, 27637}, {1319, 24803}, {1420, 7225}, {1479, 10129}, {1482, 28466}, {1834, 29681}, {2136, 10389}, {2320, 3296}, {2346, 56278}, {3058, 11281}, {3241, 17561}, {3295, 14923}, {3303, 10912}, {3333, 5303}, {3338, 17549}, {3436, 10578}, {3475, 6872}, {3486, 10587}, {3487, 5057}, {3488, 5086}, {3584, 7705}, {3601, 4666}, {3636, 10624}, {3689, 46933}, {3722, 59311}, {3740, 17570}, {3742, 4188}, {3746, 30143}, {3750, 3924}, {3811, 5047}, {3870, 5260}, {3871, 54318}, {3876, 5259}, {3885, 30147}, {3896, 19851}, {3920, 19725}, {4004, 51787}, {4134, 41872}, {4255, 7292}, {4294, 20292}, {4314, 5249}, {4420, 11108}, {4661, 5302}, {4850, 28082}, {4855, 10582}, {4861, 6767}, {5010, 58565}, {5016, 29839}, {5046, 17718}, {5154, 61648}, {5217, 27003}, {5266, 9347}, {5267, 50190}, {5440, 5550}, {5603, 6869}, {5703, 26129}, {5886, 6900}, {5901, 28452}, {6284, 31019}, {6361, 13151}, {6601, 8236}, {6744, 59491}, {6950, 13373}, {6986, 37569}, {7191, 19765}, {7270, 29830}, {9961, 11496}, {10197, 37702}, {10394, 62333}, {10404, 15680}, {10459, 17715}, {11036, 44447}, {11038, 17576}, {11114, 13407}, {11518, 35258}, {11681, 13405}, {12437, 24564}, {12672, 15178}, {12700, 26287}, {15338, 25557}, {15934, 56288}, {16503, 26690}, {16783, 25082}, {16823, 19288}, {16858, 41229}, {17220, 17394}, {17450, 37608}, {17545, 51572}, {17548, 32636}, {17579, 51706}, {17676, 33124}, {17697, 46897}, {17728, 37291}, {19861, 38316}, {20075, 28629}, {21935, 29675}, {22935, 32558}, {24248, 26729}, {25011, 59584}, {25431, 30142}, {26117, 33122}, {27811, 42443}, {28444, 37624}, {29651, 54331}, {29814, 37539}, {30389, 43166}, {33116, 36500}, {33148, 50065}, {37552, 37633}, {37703, 57288}, {37721, 59416}, {38057, 50398}, {41012, 51724}, {46909, 56769}, {46934, 59691}, {51105, 51714}, {52541, 54387}

X(62870) = pole of line {2646, 3873} with respect to the Feuerbach hyperbola
X(62870) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3296), X(4653)}}, {{A, B, C, X(3873), X(40430)}}, {{A, B, C, X(17194), X(56278)}}
X(62870) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1621, 3869}, {1, 21, 3873}, {1, 35016, 3897}, {1, 4512, 11520}, {1, 5248, 3868}, {1, 5250, 34195}, {1, 5426, 8666}, {1, 8616, 2650}, {1, 993, 3889}, {1621, 34195, 5250}, {2646, 42819, 3622}, {3601, 4666, 5253}, {3622, 4190, 38053}, {3870, 5436, 5260}, {4512, 11520, 11684}, {11496, 18444, 9961}, {28082, 37573, 4850}, {37080, 51715, 2}


X(62871) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54287), X(3), X(1))

Barycentrics    a*(a^3-a^2*(b+c)-(b+c)^3-a*(3*b^2+4*b*c+3*c^2)) : :

X(62871) lies on these lines: {1, 21}, {2, 7283}, {3, 37}, {6, 31442}, {9, 386}, {10, 345}, {19, 4276}, {22, 35}, {33, 14017}, {36, 27785}, {40, 19262}, {42, 41229}, {45, 4255}, {46, 4414}, {48, 54323}, {55, 8190}, {56, 6051}, {57, 13726}, {72, 19765}, {75, 11110}, {84, 991}, {169, 5283}, {192, 56769}, {200, 33771}, {219, 15823}, {226, 54320}, {312, 19270}, {321, 16342}, {344, 56737}, {387, 5273}, {405, 3666}, {442, 50065}, {464, 4292}, {474, 44307}, {498, 1074}, {581, 7330}, {614, 5259}, {750, 58887}, {936, 3731}, {940, 3916}, {956, 37548}, {958, 3931}, {969, 56221}, {976, 3989}, {984, 3811}, {986, 54318}, {988, 1125}, {995, 31435}, {1001, 37592}, {1012, 37528}, {1038, 16577}, {1040, 54430}, {1089, 29828}, {1104, 16418}, {1214, 1448}, {1247, 17038}, {1479, 29639}, {1575, 16846}, {1698, 21935}, {1709, 4300}, {1714, 54357}, {1721, 12511}, {1724, 5256}, {1834, 5791}, {1935, 45126}, {1961, 37603}, {2049, 50054}, {2256, 36746}, {2276, 16850}, {2352, 17524}, {2363, 37029}, {2901, 11679}, {2944, 7987}, {3085, 27505}, {3100, 59352}, {3175, 16351}, {3210, 16817}, {3216, 3305}, {3219, 19767}, {3247, 4257}, {3290, 16849}, {3295, 22458}, {3338, 3720}, {3361, 4328}, {3487, 4419}, {3601, 30115}, {3616, 26728}, {3624, 23681}, {3670, 54392}, {3672, 17558}, {3683, 16466}, {3693, 16851}, {3739, 16844}, {3749, 30145}, {3751, 59301}, {3752, 11108}, {3771, 59723}, {3772, 6675}, {3781, 50597}, {3876, 33761}, {3914, 19854}, {3920, 59344}, {3928, 48855}, {3953, 4666}, {3976, 16484}, {3993, 17733}, {3995, 16347}, {3998, 16346}, {4000, 16845}, {4251, 16517}, {4252, 16777}, {4253, 31429}, {4261, 16848}, {4278, 54385}, {4415, 11374}, {4424, 19860}, {4640, 5711}, {4643, 41014}, {4646, 9708}, {4652, 5287}, {4656, 13411}, {4657, 17698}, {4675, 24470}, {4687, 56766}, {4689, 5687}, {4698, 56767}, {4719, 15254}, {4850, 5047}, {4854, 24953}, {5010, 59354}, {5016, 49735}, {5051, 33113}, {5119, 10459}, {5247, 17592}, {5251, 54418}, {5262, 16865}, {5264, 35258}, {5268, 25440}, {5292, 5745}, {5293, 37574}, {5295, 5737}, {5325, 48857}, {5436, 30117}, {5438, 16676}, {5439, 17595}, {5716, 11111}, {5718, 58798}, {5725, 57288}, {5814, 49728}, {6147, 17276}, {6846, 53599}, {7270, 37038}, {7308, 17749}, {7483, 17720}, {7982, 17461}, {10198, 13161}, {10393, 24430}, {10449, 38000}, {10470, 21375}, {11496, 61086}, {12436, 29571}, {12579, 29671}, {12609, 24248}, {13728, 32777}, {14015, 37816}, {15670, 50068}, {15673, 50069}, {15674, 33155}, {15803, 17022}, {16062, 33116}, {16343, 31993}, {16349, 19791}, {16350, 42706}, {16370, 37539}, {16478, 17600}, {16499, 36846}, {16602, 16853}, {16610, 16842}, {16843, 40941}, {16852, 31448}, {16855, 31197}, {17056, 57282}, {17064, 36250}, {17147, 17588}, {17189, 28627}, {17278, 50205}, {17279, 56734}, {17303, 50409}, {17308, 52782}, {17314, 50606}, {17357, 56736}, {17384, 56735}, {17490, 56990}, {17525, 50070}, {17553, 50106}, {17560, 41230}, {17593, 24174}, {17596, 37030}, {17676, 57808}, {17740, 37314}, {18193, 58565}, {19273, 44417}, {19278, 41839}, {19279, 35652}, {19310, 19845}, {19333, 31025}, {19520, 25091}, {19521, 25067}, {19758, 25083}, {19764, 59681}, {19766, 26065}, {19804, 37035}, {19808, 37039}, {19822, 19857}, {19853, 32932}, {19858, 50314}, {20083, 56519}, {21165, 37530}, {21370, 22345}, {24161, 33154}, {24210, 26363}, {24467, 50317}, {24850, 50302}, {24851, 33111}, {24936, 31019}, {25524, 37599}, {25650, 27184}, {25939, 37224}, {26064, 33077}, {26066, 37715}, {26234, 32092}, {26242, 56775}, {27268, 56768}, {28082, 46901}, {29664, 52367}, {30127, 59557}, {30142, 37552}, {31393, 50637}, {31461, 44798}, {31468, 40133}, {31805, 50677}, {32851, 52258}, {32934, 49598}, {34862, 37501}, {37553, 57279}, {37582, 37674}, {37584, 48903}, {39580, 39954}, {40430, 56136}, {42463, 54417}, {43531, 50412}, {50052, 50410}, {50104, 51677}, {52495, 62212}, {54286, 59311}

X(62871) = pole of line {3733, 8678} with respect to the circumcircle
X(62871) = pole of line {2646, 16466} with respect to the Feuerbach hyperbola
X(62871) = pole of line {1, 27174} with respect to the Stammler hyperbola
X(62871) = pole of line {2522, 3798} with respect to the Steiner inellipse
X(62871) = pole of line {75, 56018} with respect to the Wallace hyperbola
X(62871) = pole of line {14208, 20315} with respect to the dual conic of polar circle
X(62871) = pole of line {69, 5249} with respect to the dual conic of Yff parabola
X(62871) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10), X(54421)}}, {{A, B, C, X(21), X(56225)}}, {{A, B, C, X(37), X(12514)}}, {{A, B, C, X(58), X(46010)}}, {{A, B, C, X(81), X(60206)}}, {{A, B, C, X(345), X(23602)}}, {{A, B, C, X(968), X(56221)}}, {{A, B, C, X(969), X(4658)}}, {{A, B, C, X(1046), X(17038)}}, {{A, B, C, X(1780), X(57662)}}, {{A, B, C, X(2650), X(56136)}}, {{A, B, C, X(3874), X(23051)}}, {{A, B, C, X(11520), X(56149)}}, {{A, B, C, X(37817), X(40430)}}
X(62871) = barycentric product X(i)*X(j) for these (i, j): {54423, 75}
X(62871) = barycentric quotient X(i)/X(j) for these (i, j): {54423, 1}
X(62871) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 191, 54421}, {1, 21, 37817}, {1, 31424, 58}, {1, 4512, 595}, {1, 846, 12514}, {3, 37, 975}, {345, 13725, 10}, {984, 37573, 3811}, {1125, 3663, 24159}, {1468, 1962, 1}, {4252, 16777, 37594}, {4414, 59305, 46}, {4652, 5287, 37522}, {6675, 50067, 3772}, {16343, 50044, 31993}, {17321, 37176, 1125}


X(62872) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(56542), X(3), X(1))

Barycentrics    a*(-(b*c*(b^2-b*c+c^2))+a^2*(b^2+b*c+c^2)-a*(b^3+c^3)) : :
X(62872) = -3*X[2]+2*X[20683], -3*X[3799]+4*X[3912], -2*X[4553]+3*X[17297]

X(62872) lies on these lines: {1, 21}, {2, 20683}, {8, 20913}, {72, 16823}, {86, 13476}, {100, 20367}, {190, 57024}, {192, 35892}, {209, 33124}, {210, 16815}, {213, 7191}, {239, 335}, {244, 2664}, {274, 17140}, {310, 2388}, {314, 17142}, {320, 674}, {354, 16826}, {512, 7192}, {524, 25048}, {527, 4499}, {668, 20352}, {693, 9320}, {726, 38485}, {869, 982}, {942, 16830}, {980, 4392}, {984, 20703}, {1002, 26626}, {1086, 9054}, {1654, 17049}, {2171, 35617}, {2176, 17597}, {2223, 3218}, {2481, 20347}, {2890, 3434}, {3009, 17449}, {3056, 17364}, {3271, 20072}, {3294, 5284}, {3662, 3779}, {3681, 4384}, {3688, 17300}, {3717, 29988}, {3720, 58287}, {3726, 16514}, {3742, 29578}, {3786, 24325}, {3789, 29576}, {3799, 3912}, {3870, 37555}, {3930, 24578}, {3948, 17794}, {4210, 40638}, {4310, 54383}, {4393, 4430}, {4440, 6007}, {4517, 17244}, {4520, 4883}, {4553, 17297}, {4645, 9052}, {4661, 16816}, {4981, 16819}, {5283, 7226}, {5692, 24331}, {5883, 36531}, {5902, 36480}, {5903, 49458}, {5904, 16825}, {6327, 7768}, {6542, 14839}, {6646, 21746}, {7176, 17625}, {9038, 62231}, {9049, 32850}, {9263, 40858}, {9791, 39543}, {10477, 24349}, {12530, 30628}, {14923, 49451}, {16476, 32912}, {16571, 39742}, {16706, 22277}, {17050, 25006}, {17154, 62636}, {17160, 44671}, {17285, 21865}, {17288, 17792}, {17298, 25279}, {17302, 52020}, {17307, 22279}, {17445, 24437}, {17798, 27950}, {20044, 31061}, {20068, 31036}, {20456, 24625}, {20706, 24727}, {21278, 44139}, {21296, 25304}, {21342, 37596}, {22294, 62236}, {23151, 26241}, {23682, 24231}, {27846, 40796}, {28600, 29609}, {29814, 52963}, {32004, 39915}, {34772, 37575}, {42325, 48114}, {43993, 49488}

X(62872) = reflection of X(i) in X(j) for these {i,j}: {190, 57024}, {239, 20358}, {20072, 3271}, {3888, 320}
X(62872) = anticomplement of X(20683)
X(62872) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58, 39350}, {81, 20533}, {86, 20344}, {105, 1654}, {274, 20552}, {673, 2895}, {1014, 52164}, {1019, 39353}, {1027, 148}, {1438, 1655}, {1462, 17778}, {1814, 3151}, {2481, 1330}, {3737, 14732}, {18031, 21287}, {18785, 46707}, {31637, 52364}, {34018, 2893}, {36057, 18666}, {36086, 31290}, {39293, 3909}, {43929, 21220}, {52394, 25050}, {56783, 2475}, {62635, 21221}
X(62872) = pole of line {2646, 14942} with respect to the Feuerbach hyperbola
X(62872) = pole of line {100, 17494} with respect to the Kiepert parabola
X(62872) = pole of line {274, 4560} with respect to the Steiner circumellipse
X(62872) = pole of line {14838, 36812} with respect to the Steiner inellipse
X(62872) = pole of line {101, 4040} with respect to the Hutson-Moses hyperbola
X(62872) = pole of line {75, 4436} with respect to the Wallace hyperbola
X(62872) = pole of line {5249, 53600} with respect to the dual conic of Yff parabola
X(62872) = pole of line {1109, 50538} with respect to the dual conic of Wallace hyperbola
X(62872) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(40005)}}, {{A, B, C, X(21), X(33676)}}, {{A, B, C, X(31), X(8049)}}, {{A, B, C, X(58), X(52030)}}, {{A, B, C, X(75), X(23407)}}, {{A, B, C, X(81), X(52209)}}, {{A, B, C, X(335), X(18206)}}, {{A, B, C, X(660), X(54353)}}, {{A, B, C, X(1621), X(39717)}}, {{A, B, C, X(13476), X(20985)}}, {{A, B, C, X(17469), X(40747)}}
X(62872) = barycentric product X(i)*X(j) for these (i, j): {16693, 76}
X(62872) = barycentric quotient X(i)/X(j) for these (i, j): {16693, 6}
X(62872) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32913, 20985}, {1, 38, 40773}, {1, 40749, 17469}, {1, 63, 23407}, {320, 674, 3888}, {13476, 56537, 86}, {20456, 56805, 24625}


X(62873) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57278), X(3), X(1))

Barycentrics    a*(a^6-a^5*(b+c)+2*a^3*(b-c)^2*(b+c)-a*(b-c)^4*(b+c)+a^4*(-2*b^2+3*b*c-2*c^2)-b*c*(b^2-c^2)^2+a^2*(b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+c^4)) : :

X(62873) lies on these lines: {1, 21}, {2, 57278}, {3, 938}, {4, 57283}, {7, 104}, {8, 37248}, {11, 6839}, {12, 6884}, {20, 56}, {28, 1895}, {35, 6738}, {36, 4304}, {55, 37106}, {57, 6909}, {78, 10396}, {84, 1476}, {100, 8069}, {112, 2326}, {145, 1259}, {226, 6912}, {280, 8886}, {377, 3086}, {388, 6837}, {390, 3428}, {404, 1210}, {405, 5703}, {411, 950}, {474, 5704}, {496, 37468}, {499, 4197}, {613, 54383}, {759, 53683}, {942, 6906}, {944, 37302}, {954, 6172}, {956, 5273}, {958, 17558}, {997, 15299}, {1006, 5728}, {1013, 34231}, {1014, 18655}, {1056, 22758}, {1058, 11249}, {1071, 24928}, {1074, 33129}, {1156, 61705}, {1261, 51284}, {1319, 10391}, {1420, 7125}, {1445, 6282}, {1457, 34035}, {1470, 38693}, {1478, 10883}, {1479, 59355}, {1610, 23383}, {1617, 5731}, {1728, 3876}, {1735, 54315}, {1736, 30115}, {1785, 33133}, {2654, 54339}, {2894, 3813}, {3085, 5260}, {3188, 3673}, {3304, 11036}, {3333, 5450}, {3476, 33925}, {3485, 62333}, {3486, 37579}, {3487, 3560}, {3576, 7671}, {3586, 36002}, {3600, 12114}, {3601, 6986}, {3616, 37228}, {3871, 51433}, {3940, 5729}, {4134, 41700}, {4198, 11399}, {4208, 25524}, {4221, 44735}, {4292, 5563}, {4293, 10431}, {4294, 59317}, {4305, 7742}, {4308, 9799}, {4314, 59320}, {4511, 16465}, {5047, 13411}, {5080, 37358}, {5172, 59421}, {5175, 37229}, {5204, 37105}, {5226, 6913}, {5249, 44675}, {5251, 13405}, {5262, 17102}, {5265, 37108}, {5267, 6744}, {5274, 22753}, {5303, 8071}, {5533, 10072}, {5687, 12536}, {5714, 37234}, {5719, 7489}, {5722, 6905}, {5732, 13462}, {5809, 54051}, {5902, 10058}, {6147, 13743}, {6888, 15844}, {6907, 37797}, {6914, 15934}, {6915, 9581}, {6916, 10269}, {6920, 11374}, {6925, 54366}, {6993, 10589}, {7288, 22768}, {7354, 37433}, {7373, 32153}, {7508, 15935}, {7672, 37569}, {7676, 7688}, {7952, 54343}, {8171, 30283}, {8544, 58808}, {8758, 54292}, {9785, 22770}, {9963, 10090}, {9964, 12740}, {10074, 13243}, {10321, 11681}, {10394, 18446}, {10538, 17862}, {10580, 20835}, {10679, 11041}, {11015, 35976}, {11018, 37306}, {11194, 47357}, {11373, 45977}, {11491, 37730}, {12512, 59323}, {12513, 54398}, {12739, 61722}, {13738, 19752}, {13739, 41227}, {14547, 60682}, {15171, 44238}, {15446, 50190}, {15823, 58679}, {15888, 59350}, {15933, 16370}, {17010, 17549}, {17074, 37469}, {17863, 36029}, {18412, 51506}, {18990, 37447}, {21669, 57282}, {22350, 32911}, {24806, 52428}, {25513, 27410}, {25875, 27383}, {26437, 55109}, {30304, 53058}, {30330, 52769}, {31397, 54357}, {31775, 37535}, {34772, 44547}, {35973, 51359}, {37253, 40836}, {37258, 44695}, {37403, 37582}, {37437, 57285}, {37720, 59356}, {41084, 55117}, {60782, 61717}

X(62873) = pole of line {6003, 10015} with respect to the incircle
X(62873) = pole of line {2646, 18444} with respect to the Feuerbach hyperbola
X(62873) = pole of line {6003, 21119} with respect to the Suppa-Cucoanes circle
X(62873) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(104), X(2328)}}, {{A, B, C, X(1496), X(2217)}}, {{A, B, C, X(2363), X(3562)}}
X(62873) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 58, 3562}, {21, 54391, 63}, {36, 4304, 7411}, {950, 37583, 411}, {999, 1012, 7}, {1319, 10391, 18444}, {3086, 22766, 5253}, {8069, 18391, 100}, {12564, 35016, 1}


X(62874) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57279), X(3), X(1))

Barycentrics    a*(a^3-b^3-b^2*c-b*c^2-c^3+a^2*(b+c)-a*(b^2-4*b*c+c^2)) : :
X(62874) = -2*X[1329]+3*X[17728], -3*X[10072]+2*X[21616]

X(62874) lies on these lines: {1, 21}, {2, 3333}, {3, 3555}, {4, 26015}, {7, 54303}, {8, 57}, {9, 1475}, {10, 3306}, {19, 31903}, {20, 36845}, {36, 3811}, {40, 145}, {41, 51194}, {42, 988}, {46, 519}, {55, 4652}, {56, 78}, {65, 3872}, {72, 999}, {75, 1434}, {77, 34046}, {84, 962}, {100, 6765}, {104, 37531}, {149, 41869}, {165, 3871}, {169, 17736}, {172, 16973}, {200, 404}, {208, 5081}, {210, 25524}, {224, 59317}, {226, 10527}, {238, 28011}, {239, 4209}, {244, 1722}, {280, 55119}, {306, 37280}, {329, 10396}, {354, 958}, {377, 4298}, {388, 6734}, {390, 60990}, {392, 3927}, {405, 4666}, {411, 1998}, {443, 25006}, {452, 10580}, {474, 34790}, {484, 3633}, {496, 58798}, {499, 21077}, {515, 12649}, {516, 10085}, {517, 36846}, {527, 11240}, {529, 1837}, {579, 3692}, {602, 1331}, {612, 19314}, {614, 3976}, {672, 55337}, {674, 41682}, {748, 46190}, {899, 11512}, {908, 3086}, {912, 10680}, {936, 3681}, {942, 956}, {944, 5709}, {946, 5905}, {952, 37532}, {960, 3304}, {963, 35987}, {976, 16496}, {978, 20456}, {982, 54418}, {997, 3984}, {1001, 17609}, {1015, 54406}, {1054, 59294}, {1056, 24987}, {1071, 22770}, {1104, 17597}, {1106, 60786}, {1125, 3305}, {1155, 3913}, {1158, 7982}, {1191, 4641}, {1193, 3751}, {1201, 32912}, {1210, 3436}, {1259, 1617}, {1319, 12635}, {1320, 1768}, {1329, 17728}, {1376, 32636}, {1385, 55104}, {1394, 4318}, {1400, 4101}, {1420, 1708}, {1435, 5125}, {1447, 36854}, {1453, 7191}, {1454, 10944}, {1458, 54383}, {1473, 12410}, {1478, 10916}, {1479, 49627}, {1482, 4018}, {1697, 3241}, {1709, 4301}, {1724, 4694}, {1728, 44675}, {1753, 1897}, {1754, 15954}, {1757, 21214}, {1766, 49446}, {1788, 6735}, {1813, 52218}, {1836, 3813}, {1999, 10476}, {2082, 3509}, {2093, 12629}, {2098, 44663}, {2099, 11260}, {2136, 5128}, {2257, 5279}, {2260, 5227}, {2285, 24349}, {2339, 17599}, {2360, 40571}, {2363, 23051}, {2476, 5231}, {2478, 11019}, {2550, 60938}, {2646, 11194}, {2801, 13279}, {2886, 10404}, {3085, 59491}, {3146, 10864}, {3187, 14953}, {3219, 3622}, {3242, 37539}, {3243, 3601}, {3244, 5119}, {3295, 3916}, {3303, 4640}, {3336, 3632}, {3337, 3679}, {3339, 4853}, {3340, 4861}, {3359, 12245}, {3419, 18990}, {3421, 24982}, {3428, 10884}, {3434, 4292}, {3475, 30478}, {3476, 37550}, {3485, 8545}, {3486, 34610}, {3487, 24541}, {3523, 63168}, {3576, 4430}, {3617, 27003}, {3621, 23958}, {3623, 31393}, {3646, 27065}, {3671, 42012}, {3677, 5262}, {3680, 55921}, {3685, 44421}, {3693, 5022}, {3697, 16408}, {3701, 30567}, {3702, 3729}, {3726, 16968}, {3744, 4252}, {3753, 5708}, {3755, 29747}, {3812, 4860}, {3875, 17134}, {3876, 5223}, {3880, 37567}, {3883, 54429}, {3885, 7991}, {3911, 5552}, {3920, 37554}, {3924, 17449}, {3929, 38314}, {3935, 4188}, {3938, 37552}, {3940, 17614}, {3947, 6933}, {3957, 4189}, {3961, 37608}, {3962, 5289}, {3979, 37574}, {3999, 17054}, {4004, 40587}, {4084, 22837}, {4253, 17526}, {4293, 57287}, {4295, 34625}, {4297, 41338}, {4314, 34646}, {4315, 6737}, {4317, 17647}, {4320, 9363}, {4321, 41228}, {4383, 52541}, {4384, 17683}, {4392, 17016}, {4413, 4662}, {4420, 5438}, {4423, 5302}, {4645, 28017}, {4646, 17595}, {4650, 37588}, {4673, 32939}, {4866, 17535}, {4880, 5697}, {4917, 4973}, {4968, 11679}, {4996, 37736}, {4999, 17718}, {5047, 5234}, {5049, 31445}, {5057, 9614}, {5080, 9581}, {5083, 34489}, {5086, 9613}, {5204, 41711}, {5220, 25917}, {5221, 5836}, {5249, 19843}, {5251, 50190}, {5256, 11343}, {5258, 18398}, {5265, 27383}, {5267, 59337}, {5271, 16054}, {5282, 17474}, {5288, 5902}, {5296, 47299}, {5303, 30282}, {5434, 5794}, {5435, 7080}, {5436, 44841}, {5437, 9780}, {5439, 9708}, {5450, 37569}, {5534, 6905}, {5535, 61296}, {5550, 7308}, {5584, 58567}, {5587, 20060}, {5603, 7330}, {5657, 37534}, {5687, 37582}, {5690, 37612}, {5730, 24928}, {5732, 30628}, {5850, 15299}, {5853, 60968}, {5855, 37738}, {5880, 52783}, {6210, 17364}, {6361, 7171}, {6604, 7183}, {6684, 10528}, {6745, 6921}, {6764, 17784}, {6766, 10860}, {6769, 6909}, {6910, 13405}, {6918, 18908}, {7013, 56927}, {7082, 34647}, {7177, 9436}, {7190, 54344}, {7198, 47595}, {7284, 43745}, {7288, 25568}, {7289, 51192}, {7293, 8193}, {7354, 51463}, {7675, 15185}, {7992, 13243}, {8192, 37581}, {8227, 31053}, {8544, 15733}, {8580, 17531}, {8897, 33088}, {9579, 24392}, {9588, 35010}, {9612, 11680}, {9778, 9797}, {9785, 28610}, {9845, 20008}, {9850, 37229}, {9961, 30304}, {10025, 26116}, {10072, 21616}, {10198, 55867}, {10246, 26921}, {10267, 21165}, {10436, 17169}, {10532, 51755}, {10573, 17437}, {10586, 31018}, {10587, 55868}, {10624, 44447}, {10914, 36279}, {10943, 37826}, {11010, 51093}, {11114, 31146}, {11220, 12565}, {11236, 17606}, {11249, 14054}, {11269, 13161}, {11362, 12648}, {11372, 20059}, {11373, 51409}, {11518, 55869}, {11522, 54370}, {12047, 31164}, {12515, 25416}, {12595, 34377}, {12607, 24914}, {12647, 17700}, {12650, 38669}, {12701, 17768}, {12703, 40256}, {13110, 46179}, {13278, 46684}, {13407, 26363}, {13462, 20588}, {14450, 60933}, {14872, 22753}, {15888, 26066}, {16203, 31837}, {16215, 42884}, {16560, 24841}, {16574, 19767}, {16667, 55103}, {16823, 21384}, {16830, 56518}, {16865, 29817}, {17135, 56984}, {17206, 39731}, {17448, 54382}, {17480, 37683}, {17484, 37704}, {17660, 22560}, {17676, 29835}, {18193, 24443}, {18201, 24440}, {18220, 60965}, {18839, 22760}, {19582, 62222}, {19765, 49478}, {19854, 51706}, {20015, 37267}, {20043, 39592}, {20057, 37556}, {20075, 31730}, {20220, 20223}, {20367, 49495}, {21222, 53395}, {21342, 37549}, {21343, 53403}, {21625, 40998}, {21842, 41696}, {22345, 23853}, {22765, 37700}, {22769, 37485}, {22836, 37618}, {23536, 33137}, {24159, 50759}, {24216, 28074}, {24333, 36547}, {24390, 57282}, {24393, 60985}, {24468, 50811}, {24475, 61146}, {24593, 51284}, {24703, 37722}, {25439, 59316}, {25522, 27131}, {26029, 27002}, {26060, 38200}, {26117, 29843}, {26364, 31224}, {27529, 31231}, {28609, 50443}, {29637, 56510}, {30223, 51423}, {30393, 32635}, {31776, 50239}, {31795, 50242}, {32049, 40663}, {32153, 37533}, {32915, 39584}, {32946, 49613}, {34498, 56940}, {34690, 37710}, {34773, 37584}, {37080, 42871}, {37524, 48696}, {37560, 59417}, {37605, 56177}, {37684, 41261}, {37727, 59318}, {38053, 60958}, {38316, 61005}, {38455, 41687}, {41426, 51379}, {45287, 49168}, {49509, 54317}, {50559, 56929}, {51433, 59336}, {52419, 57266}, {52420, 57267}, {54445, 61122}, {59412, 60955}

X(62874) = midpoint of X(i) and X(j) for these {i,j}: {12649, 20076}
X(62874) = reflection of X(i) in X(j) for these {i,j}: {1479, 49627}, {11415, 12053}, {11682, 1}, {3436, 1210}, {5687, 37582}, {5730, 24928}, {56179, 36741}, {58798, 496}, {60966, 15299}, {78, 56}, {8, 4848}
X(62874) = anticomplement of X(21075)
X(62874) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 60107}
X(62874) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 60107}, {21075, 21075}, {37679, 17151}
X(62874) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39702, 1}
X(62874) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {58, 6223}, {84, 1330}, {189, 21287}, {285, 3436}, {1333, 20211}, {1412, 5932}, {1413, 2475}, {1422, 2893}, {1433, 52364}, {1436, 2895}, {2193, 55114}, {2208, 1654}, {4565, 20297}, {7341, 20221}, {32652, 31290}, {55117, 2897}, {55211, 21304}
X(62874) = pole of line {3733, 48329} with respect to the circumcircle
X(62874) = pole of line {2646, 10866} with respect to the Feuerbach hyperbola
X(62874) = pole of line {1, 5324} with respect to the Stammler hyperbola
X(62874) = pole of line {14838, 28984} with respect to the Steiner inellipse
X(62874) = pole of line {75, 5250} with respect to the Wallace hyperbola
X(62874) = pole of line {5249, 17022} with respect to the dual conic of Yff parabola
X(62874) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(19), X(3915)}}, {{A, B, C, X(21), X(1219)}}, {{A, B, C, X(58), X(1037)}}, {{A, B, C, X(63), X(34860)}}, {{A, B, C, X(75), X(5250)}}, {{A, B, C, X(81), X(5558)}}, {{A, B, C, X(596), X(12514)}}, {{A, B, C, X(969), X(57280)}}, {{A, B, C, X(2292), X(23051)}}, {{A, B, C, X(3878), X(56136)}}, {{A, B, C, X(13476), X(54421)}}, {{A, B, C, X(16948), X(55921)}}
X(62874) = barycentric product X(i)*X(j) for these (i, j): {1, 18141}, {4200, 63}, {5120, 75}
X(62874) = barycentric quotient X(i)/X(j) for these (i, j): {1, 60107}, {4200, 92}, {5120, 1}, {18141, 75}
X(62874) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12526, 3877}, {1, 1707, 3915}, {1, 31424, 1621}, {1, 32913, 54421}, {1, 3874, 11520}, {1, 3894, 12559}, {1, 54422, 3869}, {1, 63, 5250}, {1, 6763, 12514}, {1, 758, 11682}, {3, 3555, 3870}, {10, 3338, 3306}, {21, 3889, 1}, {36, 3811, 4855}, {40, 145, 3895}, {56, 518, 78}, {56, 78, 35262}, {72, 999, 19861}, {145, 3218, 40}, {200, 3361, 404}, {329, 14986, 41012}, {354, 958, 54392}, {405, 5045, 4666}, {499, 21077, 30852}, {518, 36741, 56179}, {527, 12053, 11415}, {942, 956, 19860}, {1125, 41229, 3305}, {1201, 32912, 54386}, {1420, 11523, 4511}, {1697, 3928, 56288}, {2093, 12629, 14923}, {3219, 3622, 31435}, {3241, 56288, 1697}, {3295, 3916, 35258}, {3333, 57279, 2}, {3336, 3632, 54286}, {3428, 12675, 10884}, {3576, 41863, 34772}, {3681, 5253, 936}, {3927, 7373, 392}, {3976, 5247, 614}, {4084, 22837, 25415}, {4298, 4847, 377}, {4430, 34772, 41863}, {4640, 58609, 3303}, {4973, 8715, 58887}, {5086, 34605, 9613}, {5204, 41711, 56176}, {5223, 8583, 3876}, {5231, 5290, 2476}, {5234, 10582, 5047}, {5258, 18398, 54318}, {5563, 5904, 997}, {5905, 10529, 946}, {6763, 12514, 63}, {6765, 15803, 100}, {6766, 10860, 20070}, {9579, 24392, 52367}, {9778, 9797, 56936}, {10106, 24391, 8}, {11019, 12527, 2478}, {11240, 11415, 12053}, {12245, 26877, 3359}, {12649, 20076, 515}, {13407, 26363, 31266}, {17736, 45751, 169}, {27065, 46934, 3646}, {41229, 51816, 1125}


X(62875) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60846), X(3), X(1))

Barycentrics    a*(5*a^2+(b-c)^2-2*a*(b+c)) : :

X(62875) lies on these lines: {1, 21}, {2, 60846}, {6, 10389}, {8, 39589}, {9, 3744}, {10, 56987}, {42, 16469}, {55, 2999}, {57, 1279}, {109, 53623}, {165, 614}, {171, 10582}, {200, 238}, {210, 15601}, {212, 10388}, {223, 2078}, {244, 53056}, {269, 1617}, {354, 35227}, {390, 40940}, {516, 23681}, {517, 16485}, {602, 6769}, {610, 5301}, {748, 8580}, {940, 38316}, {995, 30282}, {1001, 4682}, {1103, 11508}, {1104, 1697}, {1149, 13462}, {1155, 5573}, {1191, 3601}, {1201, 7987}, {1376, 3246}, {1386, 4428}, {1407, 1420}, {1416, 60786}, {1449, 60711}, {1453, 3295}, {1458, 34033}, {1699, 3011}, {1724, 6765}, {1743, 3870}, {1754, 43166}, {1834, 41864}, {1914, 14827}, {2093, 30117}, {2176, 20229}, {2352, 23404}, {3008, 17784}, {3120, 50865}, {3158, 4383}, {3242, 3929}, {3243, 4641}, {3339, 28082}, {3361, 28011}, {3550, 5272}, {3576, 16483}, {3632, 33164}, {3677, 4640}, {3681, 3973}, {3683, 7174}, {3731, 3920}, {3740, 8692}, {3750, 16475}, {3751, 17715}, {3752, 21000}, {3755, 10385}, {3771, 49705}, {3772, 9580}, {3924, 7991}, {3928, 17597}, {3938, 5223}, {3941, 16878}, {3957, 30653}, {3977, 19993}, {4188, 45047}, {4420, 8951}, {4438, 49700}, {4514, 56519}, {4656, 52653}, {4666, 17126}, {4853, 37588}, {4862, 44447}, {4936, 54329}, {5128, 17054}, {5256, 61155}, {5266, 31435}, {5268, 15485}, {5290, 28027}, {5315, 59337}, {5436, 5710}, {5437, 37540}, {5452, 60360}, {7191, 35258}, {7262, 16496}, {7292, 8056}, {7322, 15254}, {7963, 28370}, {7994, 13329}, {8236, 37666}, {8273, 35658}, {8583, 37552}, {9623, 37610}, {9778, 24177}, {9819, 49487}, {10246, 41453}, {10383, 52428}, {11038, 62240}, {12651, 37570}, {14974, 16780}, {15839, 37605}, {16491, 17592}, {16667, 17018}, {16678, 16688}, {16694, 23391}, {16784, 57656}, {17020, 61157}, {17151, 32929}, {17298, 20101}, {17339, 20056}, {17724, 28609}, {18229, 24552}, {20045, 56082}, {20075, 26723}, {21059, 55086}, {21760, 23565}, {21769, 52635}, {23372, 23392}, {24392, 35466}, {26065, 49466}, {29817, 30652}, {29840, 59779}, {29855, 32947}, {30332, 62208}, {32943, 35613}, {35262, 46943}, {37652, 49451}, {37679, 46917}, {39254, 46907}, {53053, 54418}

X(62875) = pole of line {3733, 7203} with respect to the circumcircle
X(62875) = pole of line {2646, 7174} with respect to the Feuerbach hyperbola
X(62875) = pole of line {100, 30720} with respect to the Kiepert parabola
X(62875) = pole of line {101, 53630} with respect to the Hutson-Moses hyperbola
X(62875) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17158)}}, {{A, B, C, X(21), X(2137)}}, {{A, B, C, X(81), X(37681)}}, {{A, B, C, X(17185), X(56085)}}, {{A, B, C, X(18153), X(40773)}}, {{A, B, C, X(22040), X(28606)}}
X(62875) = barycentric product X(i)*X(j) for these (i, j): {1, 37681}, {56, 56085}, {101, 23819}, {17158, 6}, {18153, 31}, {22040, 58}
X(62875) = barycentric quotient X(i)/X(j) for these (i, j): {17158, 76}, {18153, 561}, {22040, 313}, {23819, 3261}, {37681, 75}, {56085, 3596}
X(62875) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 8616, 4512}, {55, 7290, 2999}, {165, 16487, 614}, {165, 614, 62695}, {614, 902, 165}, {1001, 5269, 17022}, {1279, 3052, 57}, {1386, 4428, 37553}, {3870, 17127, 1743}, {3941, 18613, 16878}, {37817, 40091, 1}


X(62876) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(395), X(3), X(2))

Barycentrics    -2*a^4+b^4-5*b^2*c^2+c^4-5*a^2*(b^2+c^2)+2*sqrt(3)*(2*a^2+b^2+c^2)*S : :

X(62876) lies on the Kiepert hyperbola and on these lines: {2, 47069}, {5, 54847}, {6, 40706}, {13, 7884}, {14, 3972}, {18, 3642}, {76, 395}, {98, 48655}, {299, 7949}, {302, 47005}, {303, 56056}, {381, 54561}, {618, 43538}, {621, 43543}, {3618, 43542}, {3818, 54485}, {5309, 11122}, {5460, 54590}, {5981, 42975}, {7786, 60319}, {7814, 44382}, {9761, 10302}, {11057, 53441}, {11489, 60252}, {14137, 43539}, {16645, 33220}, {22490, 54490}, {22714, 60126}, {22796, 55009}, {22848, 33246}, {37641, 60253}, {42062, 47352}, {43953, 59398}, {48666, 54937}

X(62876) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(395)}}, {{A, B, C, X(249), X(16257)}}, {{A, B, C, X(299), X(40416)}}, {{A, B, C, X(618), X(60858)}}, {{A, B, C, X(3489), X(56004)}}, {{A, B, C, X(6151), X(51446)}}, {{A, B, C, X(10218), X(60872)}}, {{A, B, C, X(42313), X(52204)}}


X(62877) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(396), X(3), X(2))

Barycentrics    2*a^4-b^4+5*b^2*c^2-c^4+5*a^2*(b^2+c^2)+2*sqrt(3)*(2*a^2+b^2+c^2)*S : :

X(62877) lies on the Kiepert hyperbola and on these lines: {2, 47067}, {5, 54848}, {6, 40707}, {13, 3972}, {14, 7884}, {17, 3643}, {76, 396}, {98, 48656}, {298, 7949}, {302, 56055}, {303, 47005}, {381, 54562}, {619, 43539}, {622, 43542}, {3618, 43543}, {3818, 54484}, {5309, 11121}, {5459, 54589}, {5980, 42974}, {7786, 60318}, {7814, 44383}, {9763, 10302}, {11057, 53429}, {11488, 60253}, {14136, 43538}, {16644, 33220}, {22489, 54489}, {22715, 60126}, {22797, 55009}, {22892, 33246}, {37640, 60252}, {37641, 60222}, {42063, 47352}, {43954, 59397}, {48665, 54938}

X(62877) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(396)}}, {{A, B, C, X(249), X(16258)}}, {{A, B, C, X(298), X(40416)}}, {{A, B, C, X(619), X(60859)}}, {{A, B, C, X(2981), X(51447)}}, {{A, B, C, X(3490), X(56004)}}, {{A, B, C, X(10217), X(60872)}}, {{A, B, C, X(42313), X(52203)}}


X(62878) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1213), X(3), X(2))

Barycentrics    (2*a*(b+c)+b*(b+2*c))*(2*a*(b+c)+c*(2*b+c)) : :

X(62878) lies on the Kiepert hyperbola and on these lines: {2, 20970}, {4, 48886}, {5, 54883}, {6, 32014}, {10, 4687}, {76, 1213}, {83, 17259}, {226, 24603}, {274, 40030}, {321, 21816}, {966, 58012}, {1268, 3730}, {1500, 6539}, {1698, 40718}, {1751, 16053}, {3661, 60203}, {3828, 60624}, {3912, 60243}, {4417, 56226}, {4444, 50449}, {5224, 17758}, {5742, 58011}, {7786, 60090}, {7857, 62689}, {9780, 13576}, {10159, 17327}, {12782, 34475}, {14007, 17277}, {14534, 19732}, {16589, 56210}, {16900, 51586}, {17337, 43527}, {19744, 60235}, {21240, 30588}, {31322, 33941}, {41809, 57722}

X(62878) = isotomic conjugate of X(15668)
X(62878) = trilinear pole of line {8663, 25259}
X(62878) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 15668}, {32, 32092}, {48, 1889}, {604, 4042}, {692, 48141}, {1333, 59306}
X(62878) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 15668}, {37, 59306}, {1086, 48141}, {1249, 1889}, {3161, 4042}, {6376, 32092}
X(62878) = X(i)-cross conjugate of X(j) for these {i, j}: {47656, 190}
X(62878) = pole of line {4751, 17592} with respect to the dual conic of Yff parabola
X(62878) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(27483)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(48886)}}, {{A, B, C, X(6), X(1213)}}, {{A, B, C, X(8), X(24603)}}, {{A, B, C, X(75), X(4687)}}, {{A, B, C, X(141), X(17259)}}, {{A, B, C, X(257), X(20569)}}, {{A, B, C, X(264), X(1268)}}, {{A, B, C, X(274), X(9311)}}, {{A, B, C, X(330), X(9328)}}, {{A, B, C, X(334), X(28650)}}, {{A, B, C, X(335), X(39708)}}, {{A, B, C, X(405), X(26023)}}, {{A, B, C, X(469), X(14007)}}, {{A, B, C, X(514), X(39736)}}, {{A, B, C, X(596), X(39738)}}, {{A, B, C, X(941), X(40408)}}, {{A, B, C, X(965), X(5742)}}, {{A, B, C, X(994), X(56066)}}, {{A, B, C, X(1016), X(59760)}}, {{A, B, C, X(1211), X(19732)}}, {{A, B, C, X(1218), X(56186)}}, {{A, B, C, X(1224), X(17743)}}, {{A, B, C, X(1509), X(39721)}}, {{A, B, C, X(1698), X(3661)}}, {{A, B, C, X(3589), X(17327)}}, {{A, B, C, X(3613), X(55078)}}, {{A, B, C, X(3634), X(29593)}}, {{A, B, C, X(3763), X(17337)}}, {{A, B, C, X(3828), X(17230)}}, {{A, B, C, X(3912), X(9780)}}, {{A, B, C, X(3948), X(50449)}}, {{A, B, C, X(4359), X(25417)}}, {{A, B, C, X(5125), X(16053)}}, {{A, B, C, X(5224), X(17277)}}, {{A, B, C, X(5241), X(37660)}}, {{A, B, C, X(5278), X(41809)}}, {{A, B, C, X(5737), X(5743)}}, {{A, B, C, X(5936), X(30701)}}, {{A, B, C, X(10009), X(12782)}}, {{A, B, C, X(14013), X(52258)}}, {{A, B, C, X(16815), X(29659)}}, {{A, B, C, X(17038), X(39970)}}, {{A, B, C, X(17056), X(19744)}}, {{A, B, C, X(17244), X(19875)}}, {{A, B, C, X(17251), X(49731)}}, {{A, B, C, X(17307), X(17352)}}, {{A, B, C, X(18832), X(56212)}}, {{A, B, C, X(24931), X(27709)}}, {{A, B, C, X(25352), X(29591)}}, {{A, B, C, X(26037), X(27255)}}, {{A, B, C, X(27475), X(32018)}}, {{A, B, C, X(29571), X(46933)}}, {{A, B, C, X(29594), X(46932)}}, {{A, B, C, X(29610), X(29674)}}, {{A, B, C, X(29667), X(30107)}}, {{A, B, C, X(30598), X(60678)}}, {{A, B, C, X(32023), X(56052)}}, {{A, B, C, X(36954), X(39729)}}, {{A, B, C, X(39735), X(56127)}}, {{A, B, C, X(39957), X(56237)}}, {{A, B, C, X(49560), X(60710)}}, {{A, B, C, X(52572), X(60680)}}
X(62878) = barycentric product X(i)*X(j) for these (i, j): {39737, 75}, {39961, 76}
X(62878) = barycentric quotient X(i)/X(j) for these (i, j): {2, 15668}, {4, 1889}, {8, 4042}, {10, 59306}, {75, 32092}, {514, 48141}, {39737, 1}, {39961, 6}


X(62879) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1812), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-b^2*c^2-a*b*c*(b+c)-a^2*(2*b^2+b*c+c^2))*(a^4-b^2*c^2+c^4-a*b*c*(b+c)-a^2*(b^2+b*c+2*c^2)) : :

X(62879) lies on the Kiepert hyperbola and on these lines: {2, 2193}, {4, 2194}, {6, 40149}, {10, 212}, {25, 45964}, {27, 60071}, {48, 226}, {76, 1812}, {219, 321}, {222, 1446}, {262, 4231}, {381, 54555}, {427, 60080}, {469, 24624}, {860, 43531}, {1172, 2052}, {1724, 57719}, {3191, 56282}, {4185, 60321}, {6830, 40448}, {6844, 60618}, {6905, 13599}, {7116, 60245}, {14534, 36794}, {31363, 50701}, {34258, 44734}, {37181, 60155}, {37381, 54972}, {43675, 56269}, {46103, 60235}, {52431, 60091}

X(62879) = trilinear pole of line {1946, 523}
X(62879) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 2476}, {283, 56908}
X(62879) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 2476}
X(62879) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(48)}}, {{A, B, C, X(27), X(5136)}}, {{A, B, C, X(29), X(40573)}}, {{A, B, C, X(34), X(40574)}}, {{A, B, C, X(57), X(19607)}}, {{A, B, C, X(278), X(40950)}}, {{A, B, C, X(458), X(4231)}}, {{A, B, C, X(469), X(860)}}, {{A, B, C, X(475), X(37181)}}, {{A, B, C, X(1039), X(56231)}}, {{A, B, C, X(1214), X(57671)}}, {{A, B, C, X(1246), X(57985)}}, {{A, B, C, X(1724), X(3191)}}, {{A, B, C, X(4185), X(44734)}}, {{A, B, C, X(6830), X(52280)}}, {{A, B, C, X(11347), X(46009)}}, {{A, B, C, X(36023), X(59187)}}, {{A, B, C, X(38955), X(57876)}}, {{A, B, C, X(39748), X(39947)}}, {{A, B, C, X(40394), X(56220)}}
X(62879) = barycentric quotient X(i)/X(j) for these (i, j): {4, 2476}, {1880, 56908}


X(62880) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3054), X(3), X(2))

Barycentrics    (4*a^4+4*b^4-5*b^2*c^2+3*c^4-a^2*(4*b^2+5*c^2))*(4*a^4+3*b^4-5*b^2*c^2+4*c^4-a^2*(5*b^2+4*c^2)) : :

X(62880) lies on the Kiepert hyperbola and on these lines: {3, 60189}, {4, 47113}, {6, 60198}, {76, 3054}, {183, 56064}, {230, 60178}, {598, 7857}, {671, 7782}, {2996, 7746}, {3564, 7607}, {3618, 53098}, {3788, 60285}, {3972, 54482}, {5395, 31415}, {5485, 6337}, {7749, 54872}, {7786, 60126}, {7792, 11669}, {7801, 60628}, {7836, 60639}, {7870, 60143}, {7940, 18840}, {8598, 17503}, {8781, 37637}, {10008, 60262}, {10153, 15814}, {11174, 53108}, {12829, 60073}, {14061, 54475}, {14645, 42010}, {17006, 43529}, {23698, 60176}, {32479, 35287}, {34507, 60123}, {37809, 39590}, {44381, 60093}, {44401, 60211}, {51584, 60632}, {53141, 60625}

X(62880) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60178}
X(62880) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(47113)}}, {{A, B, C, X(6), X(3054)}}, {{A, B, C, X(230), X(14384)}}, {{A, B, C, X(264), X(57926)}}, {{A, B, C, X(599), X(41139)}}, {{A, B, C, X(2165), X(41909)}}, {{A, B, C, X(2963), X(9516)}}, {{A, B, C, X(3564), X(42313)}}, {{A, B, C, X(7610), X(44401)}}, {{A, B, C, X(7746), X(57518)}}, {{A, B, C, X(7778), X(44381)}}, {{A, B, C, X(7782), X(52145)}}, {{A, B, C, X(7806), X(17006)}}, {{A, B, C, X(7857), X(10130)}}, {{A, B, C, X(7940), X(40022)}}, {{A, B, C, X(8598), X(52292)}}, {{A, B, C, X(12829), X(50731)}}, {{A, B, C, X(14659), X(60501)}}, {{A, B, C, X(21448), X(56004)}}, {{A, B, C, X(30542), X(40511)}}, {{A, B, C, X(31360), X(53864)}}, {{A, B, C, X(35287), X(52290)}}, {{A, B, C, X(36615), X(60526)}}, {{A, B, C, X(36953), X(52154)}}, {{A, B, C, X(40429), X(57822)}}, {{A, B, C, X(44182), X(57763)}}, {{A, B, C, X(45838), X(56057)}}


X(62881) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3055), X(3), X(2))

Barycentrics    (2*a^4+3*b^4-7*b^2*c^2+2*c^4-a^2*(7*b^2+8*c^2))*(2*a^4+2*b^4-7*b^2*c^2+3*c^4-a^2*(8*b^2+7*c^2)) : :

X(62881) lies on the Kiepert hyperbola and on these lines: {3, 54868}, {5, 54869}, {76, 3055}, {83, 44535}, {187, 5395}, {575, 7612}, {671, 5013}, {1153, 54639}, {1351, 7608}, {2996, 31401}, {3618, 60123}, {3815, 60248}, {5034, 60128}, {5171, 11170}, {7748, 41895}, {7786, 20398}, {7792, 11668}, {7857, 60239}, {7881, 10302}, {11171, 60619}, {11174, 53104}, {13330, 60096}, {14492, 40248}, {15491, 60093}, {31489, 60101}, {33748, 43537}, {34511, 60200}, {35955, 45103}, {37647, 60099}, {39560, 54906}, {44531, 60280}

X(62881) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(3055)}}, {{A, B, C, X(187), X(5013)}}, {{A, B, C, X(575), X(1351)}}, {{A, B, C, X(3815), X(31489)}}, {{A, B, C, X(5034), X(13330)}}, {{A, B, C, X(5171), X(11171)}}, {{A, B, C, X(7778), X(15491)}}, {{A, B, C, X(9771), X(42849)}}, {{A, B, C, X(11174), X(37647)}}, {{A, B, C, X(31360), X(56057)}}, {{A, B, C, X(31401), X(57518)}}, {{A, B, C, X(35955), X(52293)}}, {{A, B, C, X(40248), X(52289)}}, {{A, B, C, X(41909), X(56067)}}


X(62882) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5718), X(3), X(2))

Barycentrics    (2*a^2*(b+c)+a*(b^2+2*c^2)+b*(-b^2+b*c+2*c^2))*(2*a^2*(b+c)+c*(2*b^2+b*c-c^2)+a*(2*b^2+c^2)) : :

X(62882) lies on the Kiepert hyperbola and on these lines: {2, 4274}, {10, 5233}, {76, 5718}, {86, 60085}, {226, 4389}, {386, 60079}, {3616, 60086}, {3618, 55962}, {3662, 30588}, {3687, 60267}, {4257, 19270}, {4383, 60235}, {4417, 60084}, {4997, 30116}, {6685, 60624}, {9534, 54786}, {9535, 45098}, {10159, 30811}, {16594, 60288}, {16705, 57826}, {17056, 40012}, {17244, 60244}, {18840, 30828}, {19684, 60615}, {25529, 60135}, {29657, 43534}, {29825, 40718}, {30824, 41232}, {30964, 40030}, {34258, 37662}, {37038, 60078}, {37651, 60097}, {41832, 56210}

X(62882) = isogonal conjugate of X(5114)
X(62882) = isotomic conjugate of X(37660)
X(62882) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5114}, {31, 37660}
X(62882) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37660}, {3, 5114}
X(62882) = pole of line {5114, 37660} with respect to the Wallace hyperbola
X(62882) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(4274)}}, {{A, B, C, X(43), X(17244)}}, {{A, B, C, X(86), X(3596)}}, {{A, B, C, X(88), X(994)}}, {{A, B, C, X(181), X(39966)}}, {{A, B, C, X(239), X(29657)}}, {{A, B, C, X(312), X(37870)}}, {{A, B, C, X(386), X(4257)}}, {{A, B, C, X(469), X(19270)}}, {{A, B, C, X(940), X(37662)}}, {{A, B, C, X(1220), X(50040)}}, {{A, B, C, X(1255), X(34523)}}, {{A, B, C, X(2006), X(14621)}}, {{A, B, C, X(2296), X(32023)}}, {{A, B, C, X(3589), X(30811)}}, {{A, B, C, X(3616), X(3687)}}, {{A, B, C, X(3618), X(30828)}}, {{A, B, C, X(3644), X(30829)}}, {{A, B, C, X(3661), X(29825)}}, {{A, B, C, X(3662), X(5219)}}, {{A, B, C, X(4383), X(17056)}}, {{A, B, C, X(5212), X(5308)}}, {{A, B, C, X(5241), X(15668)}}, {{A, B, C, X(5741), X(19684)}}, {{A, B, C, X(5743), X(19701)}}, {{A, B, C, X(6063), X(40418)}}, {{A, B, C, X(6685), X(17230)}}, {{A, B, C, X(16594), X(52900)}}, {{A, B, C, X(17381), X(30832)}}, {{A, B, C, X(27475), X(36805)}}, {{A, B, C, X(29614), X(32778)}}, {{A, B, C, X(30710), X(34860)}}, {{A, B, C, X(30830), X(30964)}}, {{A, B, C, X(37633), X(37651)}}, {{A, B, C, X(37663), X(37674)}}, {{A, B, C, X(39694), X(55090)}}, {{A, B, C, X(39700), X(56058)}}, {{A, B, C, X(41683), X(58020)}}, {{A, B, C, X(46880), X(59761)}}, {{A, B, C, X(56166), X(59255)}}, {{A, B, C, X(56224), X(59759)}}
X(62882) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37660}, {6, 5114}


X(62883) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5736), X(3), X(2))

Barycentrics    (a+b)*(a+c)*(a^4-a^3*b-2*a^2*c*(b+c)-a*b*(b+c)^2+(b^2-c^2)^2)*(a^4-a^3*c-2*a^2*b*(b+c)-a*c*(b+c)^2+(b^2-c^2)^2) : :

X(62883) lies on the Kiepert hyperbola and on these lines: {1, 43683}, {2, 1098}, {4, 2326}, {10, 2287}, {21, 226}, {29, 40149}, {76, 5736}, {86, 1446}, {285, 8808}, {321, 1043}, {411, 2051}, {442, 1175}, {1751, 2476}, {2185, 6895}, {3449, 25466}, {3615, 43682}, {5327, 60321}, {5703, 62389}, {6061, 47510}, {6734, 46441}, {6740, 60091}, {6828, 13478}, {6870, 60167}, {6871, 60168}, {6872, 60170}, {6988, 45098}, {11114, 54928}, {12514, 60116}, {17188, 63157}, {17577, 54676}, {20846, 60071}, {25526, 56226}, {27412, 60243}, {27418, 54739}, {37149, 60108}, {45100, 50695}, {52269, 60172}

X(62883) = isogonal conjugate of X(52544)
X(62883) = trilinear pole of line {1021, 523}
X(62883) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 52544}, {6, 25080}, {56, 40661}
X(62883) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 40661}, {3, 52544}, {9, 25080}
X(62883) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1175)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(5736)}}, {{A, B, C, X(8), X(40412)}}, {{A, B, C, X(21), X(29)}}, {{A, B, C, X(34), X(1169)}}, {{A, B, C, X(78), X(57668)}}, {{A, B, C, X(81), X(8747)}}, {{A, B, C, X(85), X(37202)}}, {{A, B, C, X(90), X(56141)}}, {{A, B, C, X(282), X(56280)}}, {{A, B, C, X(307), X(18123)}}, {{A, B, C, X(411), X(11109)}}, {{A, B, C, X(937), X(1171)}}, {{A, B, C, X(1010), X(54340)}}, {{A, B, C, X(1170), X(37128)}}, {{A, B, C, X(1219), X(51512)}}, {{A, B, C, X(1220), X(1257)}}, {{A, B, C, X(1222), X(56030)}}, {{A, B, C, X(1441), X(54125)}}, {{A, B, C, X(2476), X(5125)}}, {{A, B, C, X(2886), X(25466)}}, {{A, B, C, X(3812), X(43946)}}, {{A, B, C, X(4420), X(54392)}}, {{A, B, C, X(5136), X(20846)}}, {{A, B, C, X(5703), X(41575)}}, {{A, B, C, X(5794), X(28628)}}, {{A, B, C, X(6734), X(11604)}}, {{A, B, C, X(6828), X(17555)}}, {{A, B, C, X(6857), X(7518)}}, {{A, B, C, X(6872), X(7498)}}, {{A, B, C, X(7466), X(13740)}}, {{A, B, C, X(8229), X(25988)}}, {{A, B, C, X(8615), X(34079)}}, {{A, B, C, X(11281), X(44669)}}, {{A, B, C, X(11341), X(37149)}}, {{A, B, C, X(23604), X(51501)}}, {{A, B, C, X(24537), X(37258)}}, {{A, B, C, X(25015), X(37371)}}, {{A, B, C, X(26725), X(47033)}}, {{A, B, C, X(34800), X(52389)}}, {{A, B, C, X(39130), X(54454)}}, {{A, B, C, X(39695), X(59760)}}, {{A, B, C, X(40424), X(55924)}}, {{A, B, C, X(54457), X(58008)}}, {{A, B, C, X(56104), X(56143)}}, {{A, B, C, X(57659), X(60038)}}
X(62883) = barycentric quotient X(i)/X(j) for these (i, j): {1, 25080}, {6, 52544}, {9, 40661}


X(62884) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5743), X(3), X(2))

Barycentrics    b*c*(b*(b+c)+a*(b+4*c))*(c*(b+c)+a*(4*b+c)) : :

X(62884) lies on the Kiepert hyperbola and on these lines: {2, 4263}, {4, 15489}, {10, 4673}, {75, 4052}, {76, 5743}, {83, 37679}, {226, 5233}, {274, 57826}, {312, 60267}, {333, 60085}, {1211, 40012}, {1446, 33934}, {3617, 32017}, {4383, 14534}, {4417, 17758}, {5241, 34258}, {5278, 60615}, {5739, 60169}, {5741, 57722}, {13478, 17277}, {13576, 26038}, {14555, 60076}, {16569, 40718}, {17259, 60235}, {17749, 43531}, {30830, 56210}, {32782, 39994}, {37680, 60082}, {45204, 56226}, {48816, 60078}

X(62884) = isogonal conjugate of X(5042)
X(62884) = isotomic conjugate of X(37674)
X(62884) = trilinear pole of line {4462, 4811}
X(62884) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5042}, {31, 37674}, {32, 25590}, {48, 4214}, {692, 48341}
X(62884) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37674}, {3, 5042}, {1086, 48341}, {1249, 4214}, {6376, 25590}
X(62884) = X(i)-cross conjugate of X(j) for these {i, j}: {5141, 264}
X(62884) = pole of line {5042, 37674} with respect to the Wallace hyperbola
X(62884) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(15489)}}, {{A, B, C, X(6), X(4263)}}, {{A, B, C, X(75), X(18743)}}, {{A, B, C, X(92), X(20569)}}, {{A, B, C, X(141), X(37679)}}, {{A, B, C, X(257), X(8056)}}, {{A, B, C, X(264), X(34282)}}, {{A, B, C, X(274), X(312)}}, {{A, B, C, X(333), X(5233)}}, {{A, B, C, X(469), X(56766)}}, {{A, B, C, X(561), X(56169)}}, {{A, B, C, X(593), X(995)}}, {{A, B, C, X(596), X(39703)}}, {{A, B, C, X(940), X(5241)}}, {{A, B, C, X(966), X(46952)}}, {{A, B, C, X(1211), X(4383)}}, {{A, B, C, X(3452), X(55076)}}, {{A, B, C, X(3617), X(26563)}}, {{A, B, C, X(3661), X(16569)}}, {{A, B, C, X(3666), X(60871)}}, {{A, B, C, X(3705), X(4384)}}, {{A, B, C, X(3912), X(26038)}}, {{A, B, C, X(4417), X(17277)}}, {{A, B, C, X(5278), X(5741)}}, {{A, B, C, X(5718), X(19732)}}, {{A, B, C, X(5737), X(37662)}}, {{A, B, C, X(6063), X(57948)}}, {{A, B, C, X(6557), X(24199)}}, {{A, B, C, X(6686), X(29593)}}, {{A, B, C, X(7017), X(30608)}}, {{A, B, C, X(7018), X(56212)}}, {{A, B, C, X(9307), X(50577)}}, {{A, B, C, X(17056), X(17259)}}, {{A, B, C, X(17749), X(56810)}}, {{A, B, C, X(30710), X(34523)}}, {{A, B, C, X(32008), X(59759)}}, {{A, B, C, X(32009), X(44733)}}, {{A, B, C, X(32021), X(40028)}}, {{A, B, C, X(32782), X(37680)}}, {{A, B, C, X(33141), X(37887)}}, {{A, B, C, X(33172), X(37687)}}, {{A, B, C, X(37660), X(37663)}}, {{A, B, C, X(39700), X(40434)}}, {{A, B, C, X(39721), X(56218)}}, {{A, B, C, X(39738), X(55090)}}, {{A, B, C, X(39966), X(52651)}}, {{A, B, C, X(40026), X(42034)}}, {{A, B, C, X(40027), X(60678)}}, {{A, B, C, X(40422), X(58017)}}, {{A, B, C, X(56067), X(58020)}}, {{A, B, C, X(57815), X(57923)}}
X(62884) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37674}, {4, 4214}, {6, 5042}, {75, 25590}, {514, 48341}


X(62885) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6329), X(3), X(2))

Barycentrics    (6*a^2+6*b^2+c^2)*(6*a^2+b^2+6*c^2) : :

X(62885) lies on the Kiepert hyperbola and on these lines: {2, 55727}, {3, 55782}, {4, 55695}, {5, 60323}, {6, 60210}, {76, 6329}, {98, 5079}, {262, 3530}, {316, 60145}, {381, 54852}, {382, 54890}, {546, 60326}, {547, 60175}, {550, 60329}, {632, 11669}, {1916, 14038}, {2996, 60855}, {3407, 33284}, {3589, 53102}, {3618, 60219}, {3629, 60642}, {3851, 54857}, {3855, 60325}, {5054, 60192}, {5070, 53104}, {5286, 60635}, {6656, 60649}, {7608, 61855}, {7745, 60283}, {7770, 60250}, {7803, 41895}, {7827, 54637}, {7859, 18842}, {7878, 11008}, {7894, 60639}, {7918, 53109}, {7937, 18841}, {8370, 60630}, {8703, 54643}, {14067, 60231}, {14458, 38071}, {14484, 62097}, {14488, 62044}, {14492, 15681}, {15692, 54521}, {15710, 60127}, {19709, 54608}, {32006, 54616}, {32450, 43688}, {33229, 53107}, {33698, 47352}, {46936, 60102}, {54477, 61977}, {54520, 62037}, {54582, 62022}, {54734, 61786}, {54866, 61924}, {54891, 61946}, {55864, 60333}, {60142, 62074}, {60150, 61928}, {60331, 61820}, {60336, 61914}

X(62885) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(55695)}}, {{A, B, C, X(6), X(6329)}}, {{A, B, C, X(297), X(5079)}}, {{A, B, C, X(419), X(14038)}}, {{A, B, C, X(458), X(3530)}}, {{A, B, C, X(981), X(39984)}}, {{A, B, C, X(3224), X(46123)}}, {{A, B, C, X(3618), X(11008)}}, {{A, B, C, X(5117), X(33284)}}, {{A, B, C, X(11331), X(38071)}}, {{A, B, C, X(13602), X(17743)}}, {{A, B, C, X(14387), X(57823)}}, {{A, B, C, X(15681), X(52289)}}, {{A, B, C, X(32450), X(41259)}}, {{A, B, C, X(33229), X(52298)}}, {{A, B, C, X(35022), X(60863)}}, {{A, B, C, X(44557), X(55075)}}, {{A, B, C, X(52281), X(61855)}}, {{A, B, C, X(52288), X(62097)}}, {{A, B, C, X(57894), X(59256)}}


X(62886) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6515), X(3), X(2))

Barycentrics    (a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)-a^2*(b^4+6*b^2*c^2-3*c^4))*(a^6-(b^2-c^2)^3-a^4*(3*b^2+c^2)+a^2*(3*b^4-6*b^2*c^2-c^4)) : :

X(62886) lies on the Kiepert hyperbola and on these lines: {2, 1609}, {3, 60162}, {4, 5422}, {5, 60159}, {6, 6504}, {20, 60174}, {76, 6515}, {96, 7401}, {98, 6997}, {262, 1370}, {275, 17907}, {324, 43678}, {377, 60164}, {443, 60173}, {458, 52583}, {459, 6819}, {597, 54792}, {631, 60163}, {801, 37645}, {1993, 60114}, {1994, 60255}, {2051, 7381}, {2475, 60157}, {2478, 60154}, {2986, 11427}, {3090, 60160}, {3091, 60166}, {3316, 6806}, {3317, 6805}, {3424, 7394}, {3539, 34091}, {3540, 34089}, {3545, 54498}, {3580, 60221}, {3618, 40393}, {3839, 54844}, {5046, 60158}, {5067, 43666}, {5071, 54500}, {5189, 60118}, {5392, 11433}, {5462, 14593}, {6643, 57718}, {6815, 40448}, {6816, 13599}, {6820, 14389}, {7382, 13478}, {7386, 14494}, {7391, 14484}, {7392, 7612}, {7533, 47586}, {7608, 46336}, {8370, 54558}, {11001, 54827}, {11140, 37644}, {13567, 60256}, {13579, 34545}, {14039, 54829}, {15066, 60237}, {16063, 53099}, {16277, 17500}, {18537, 60130}, {18840, 37636}, {18928, 34289}, {32983, 54843}, {32986, 54529}, {36851, 55028}, {37201, 45300}, {37349, 60147}, {37643, 42410}, {40178, 41761}, {41099, 54942}, {44442, 60127}, {51171, 60161}, {54886, 61985}, {54913, 59373}, {55871, 60249}

X(62886) = trilinear pole of line {37971, 523}
X(62886) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 3541}
X(62886) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 3541}
X(62886) = X(i)-cross conjugate of X(j) for these {i, j}: {7403, 264}, {10601, 2}
X(62886) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(36752)}}, {{A, B, C, X(5), X(37192)}}, {{A, B, C, X(6), X(1609)}}, {{A, B, C, X(7), X(56352)}}, {{A, B, C, X(8), X(56041)}}, {{A, B, C, X(20), X(6819)}}, {{A, B, C, X(51), X(40799)}}, {{A, B, C, X(54), X(56361)}}, {{A, B, C, X(69), X(5422)}}, {{A, B, C, X(79), X(56354)}}, {{A, B, C, X(97), X(15740)}}, {{A, B, C, X(251), X(6524)}}, {{A, B, C, X(297), X(6997)}}, {{A, B, C, X(324), X(17500)}}, {{A, B, C, X(343), X(40449)}}, {{A, B, C, X(394), X(4846)}}, {{A, B, C, X(458), X(1370)}}, {{A, B, C, X(467), X(7401)}}, {{A, B, C, X(1031), X(34287)}}, {{A, B, C, X(1073), X(3521)}}, {{A, B, C, X(1147), X(5462)}}, {{A, B, C, X(1993), X(11433)}}, {{A, B, C, X(1994), X(37644)}}, {{A, B, C, X(2339), X(2994)}}, {{A, B, C, X(3091), X(6820)}}, {{A, B, C, X(3580), X(11427)}}, {{A, B, C, X(3618), X(10550)}}, {{A, B, C, X(5561), X(56230)}}, {{A, B, C, X(5905), X(7131)}}, {{A, B, C, X(6643), X(52253)}}, {{A, B, C, X(6815), X(52280)}}, {{A, B, C, X(6818), X(54372)}}, {{A, B, C, X(7381), X(11109)}}, {{A, B, C, X(7382), X(17555)}}, {{A, B, C, X(7391), X(52288)}}, {{A, B, C, X(7392), X(37174)}}, {{A, B, C, X(7394), X(52283)}}, {{A, B, C, X(8797), X(55553)}}, {{A, B, C, X(10318), X(27375)}}, {{A, B, C, X(13567), X(37645)}}, {{A, B, C, X(13575), X(15574)}}, {{A, B, C, X(14542), X(43756)}}, {{A, B, C, X(14919), X(31371)}}, {{A, B, C, X(15066), X(18928)}}, {{A, B, C, X(15077), X(55982)}}, {{A, B, C, X(18022), X(39289)}}, {{A, B, C, X(19174), X(23297)}}, {{A, B, C, X(31610), X(62274)}}, {{A, B, C, X(34545), X(45794)}}, {{A, B, C, X(40358), X(52448)}}, {{A, B, C, X(40802), X(43726)}}, {{A, B, C, X(46336), X(52281)}}
X(62886) = barycentric quotient X(i)/X(j) for these (i, j): {4, 3541}


X(62887) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7735), X(3), X(2))

Barycentrics    (3*a^4+2*a^2*b^2+3*b^4+c^4)*(3*a^4+b^4+2*a^2*c^2+3*c^4) : :

X(62887) lies on the Kiepert hyperbola and on these lines: {2, 40825}, {4, 7792}, {6, 40824}, {69, 60213}, {76, 7735}, {83, 14064}, {183, 14069}, {230, 60212}, {262, 3618}, {376, 60614}, {381, 54565}, {384, 2996}, {385, 60232}, {459, 56867}, {598, 16041}, {631, 3399}, {671, 14033}, {1916, 16989}, {3090, 3406}, {3329, 60234}, {3424, 13862}, {3545, 55009}, {5025, 5395}, {5207, 60215}, {5304, 60201}, {5485, 14039}, {5490, 13758}, {5491, 13638}, {5503, 46236}, {5976, 33191}, {5999, 14484}, {6353, 37892}, {7736, 8781}, {7774, 43529}, {7806, 54122}, {7828, 53015}, {7857, 10159}, {7875, 60190}, {7892, 37667}, {7901, 60647}, {10583, 60151}, {11174, 14494}, {11361, 41895}, {14035, 38259}, {14036, 60200}, {14037, 43681}, {14041, 53101}, {14046, 54639}, {14061, 54800}, {14063, 18845}, {15682, 54583}, {17008, 42006}, {18841, 32951}, {18842, 33285}, {18843, 33292}, {18906, 60180}, {22329, 60143}, {26282, 60242}, {32952, 60183}, {33283, 60145}, {34229, 60099}, {34803, 56064}, {35930, 54488}, {37665, 60262}, {37689, 60259}, {40162, 40821}, {41099, 54584}, {42850, 60277}, {43450, 60093}, {47352, 60268}, {51171, 60260}

X(62887) = trilinear pole of line {50547, 523}
X(62887) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60212}
X(62887) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(7735)}}, {{A, B, C, X(25), X(14001)}}, {{A, B, C, X(32), X(13357)}}, {{A, B, C, X(66), X(44558)}}, {{A, B, C, X(69), X(7792)}}, {{A, B, C, X(182), X(13354)}}, {{A, B, C, X(183), X(3618)}}, {{A, B, C, X(230), X(7736)}}, {{A, B, C, X(251), X(56004)}}, {{A, B, C, X(384), X(6353)}}, {{A, B, C, X(385), X(16989)}}, {{A, B, C, X(427), X(14064)}}, {{A, B, C, X(468), X(14033)}}, {{A, B, C, X(1249), X(56867)}}, {{A, B, C, X(2987), X(14495)}}, {{A, B, C, X(3228), X(39453)}}, {{A, B, C, X(3329), X(17008)}}, {{A, B, C, X(4232), X(14039)}}, {{A, B, C, X(4846), X(51454)}}, {{A, B, C, X(5025), X(8889)}}, {{A, B, C, X(5032), X(61304)}}, {{A, B, C, X(5094), X(16041)}}, {{A, B, C, X(5976), X(51510)}}, {{A, B, C, X(5999), X(52288)}}, {{A, B, C, X(6339), X(57408)}}, {{A, B, C, X(6340), X(7851)}}, {{A, B, C, X(6995), X(14069)}}, {{A, B, C, X(7378), X(32951)}}, {{A, B, C, X(7408), X(32952)}}, {{A, B, C, X(7409), X(32953)}}, {{A, B, C, X(7714), X(7892)}}, {{A, B, C, X(7774), X(7806)}}, {{A, B, C, X(7857), X(59180)}}, {{A, B, C, X(7875), X(16990)}}, {{A, B, C, X(9229), X(16774)}}, {{A, B, C, X(9515), X(39644)}}, {{A, B, C, X(9516), X(34288)}}, {{A, B, C, X(11174), X(34229)}}, {{A, B, C, X(11175), X(34238)}}, {{A, B, C, X(11361), X(52290)}}, {{A, B, C, X(13862), X(52283)}}, {{A, B, C, X(14035), X(38282)}}, {{A, B, C, X(14063), X(52299)}}, {{A, B, C, X(14486), X(40802)}}, {{A, B, C, X(14621), X(57726)}}, {{A, B, C, X(15014), X(40132)}}, {{A, B, C, X(17743), X(57727)}}, {{A, B, C, X(17974), X(37188)}}, {{A, B, C, X(21765), X(25322)}}, {{A, B, C, X(22329), X(59373)}}, {{A, B, C, X(24597), X(26282)}}, {{A, B, C, X(29180), X(30541)}}, {{A, B, C, X(30701), X(56358)}}, {{A, B, C, X(31360), X(34285)}}, {{A, B, C, X(33285), X(52284)}}, {{A, B, C, X(37665), X(37689)}}, {{A, B, C, X(37667), X(51171)}}, {{A, B, C, X(40405), X(52223)}}, {{A, B, C, X(41909), X(52187)}}, {{A, B, C, X(42287), X(57799)}}, {{A, B, C, X(42332), X(52717)}}, {{A, B, C, X(42407), X(52395)}}, {{A, B, C, X(42850), X(47352)}}, {{A, B, C, X(45857), X(56360)}}, {{A, B, C, X(51316), X(56067)}}, {{A, B, C, X(54413), X(60526)}}


X(62888) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7736), X(3), X(2))

Barycentrics    (a^4+b^4+4*b^2*c^2-c^4+a^2*(6*b^2+4*c^2))*(a^4-b^4+4*b^2*c^2+c^4+a^2*(4*b^2+6*c^2)) : :

X(62888) lies on the Kiepert hyperbola and on these lines: {4, 11174}, {6, 60212}, {69, 60099}, {76, 7736}, {83, 14907}, {98, 3618}, {262, 51212}, {275, 37187}, {325, 18840}, {376, 54826}, {381, 54856}, {597, 11172}, {598, 32986}, {671, 32983}, {1007, 60213}, {1370, 30505}, {2996, 16924}, {3329, 54122}, {3524, 54724}, {3545, 54678}, {3815, 40824}, {5071, 9302}, {5395, 7791}, {6655, 18845}, {6997, 55028}, {7612, 7792}, {7710, 60115}, {7735, 60101}, {7774, 42006}, {7777, 60232}, {7857, 60100}, {7868, 60183}, {9744, 60619}, {9770, 10302}, {11163, 60143}, {11167, 59373}, {14039, 54822}, {14484, 37182}, {16044, 38259}, {16989, 60128}, {18841, 32960}, {32975, 61333}, {32984, 54752}, {33016, 41895}, {33017, 53101}, {33020, 43681}, {33021, 60145}, {33224, 54841}, {33238, 53109}, {34229, 60187}, {37125, 52583}, {37665, 60259}, {40236, 43951}, {45018, 60280}, {47061, 54804}, {51216, 54519}

X(62888) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(5), X(37187)}}, {{A, B, C, X(6), X(7736)}}, {{A, B, C, X(25), X(32968)}}, {{A, B, C, X(69), X(11174)}}, {{A, B, C, X(325), X(3618)}}, {{A, B, C, X(427), X(16043)}}, {{A, B, C, X(468), X(32983)}}, {{A, B, C, X(597), X(9770)}}, {{A, B, C, X(1000), X(40738)}}, {{A, B, C, X(1007), X(7792)}}, {{A, B, C, X(1031), X(16774)}}, {{A, B, C, X(1239), X(39978)}}, {{A, B, C, X(1370), X(37125)}}, {{A, B, C, X(3108), X(56004)}}, {{A, B, C, X(3329), X(7774)}}, {{A, B, C, X(3425), X(30535)}}, {{A, B, C, X(3815), X(7735)}}, {{A, B, C, X(5094), X(32986)}}, {{A, B, C, X(6353), X(16924)}}, {{A, B, C, X(6655), X(52299)}}, {{A, B, C, X(6995), X(32957)}}, {{A, B, C, X(7249), X(30701)}}, {{A, B, C, X(7378), X(32960)}}, {{A, B, C, X(7386), X(37337)}}, {{A, B, C, X(7777), X(16989)}}, {{A, B, C, X(7791), X(8889)}}, {{A, B, C, X(8801), X(31360)}}, {{A, B, C, X(9462), X(38005)}}, {{A, B, C, X(10014), X(60526)}}, {{A, B, C, X(11163), X(59373)}}, {{A, B, C, X(14621), X(57727)}}, {{A, B, C, X(14907), X(23297)}}, {{A, B, C, X(15740), X(57799)}}, {{A, B, C, X(16044), X(38282)}}, {{A, B, C, X(17040), X(35511)}}, {{A, B, C, X(17743), X(57726)}}, {{A, B, C, X(17980), X(39951)}}, {{A, B, C, X(33016), X(52290)}}, {{A, B, C, X(34816), X(43726)}}, {{A, B, C, X(36948), X(40416)}}, {{A, B, C, X(37182), X(52288)}}, {{A, B, C, X(39389), X(53974)}}, {{A, B, C, X(40405), X(52224)}}, {{A, B, C, X(40425), X(42407)}}, {{A, B, C, X(40826), X(44556)}}, {{A, B, C, X(41909), X(52188)}}, {{A, B, C, X(44144), X(51212)}}, {{A, B, C, X(52223), X(56067)}}


X(62889) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7766), X(3), X(2))

Barycentrics    (2*a^4+b^2*(2*b^2+c^2)+a^2*(3*b^2+c^2))*(2*a^4+c^2*(b^2+2*c^2)+a^2*(b^2+3*c^2)) : :

X(62889) lies on the Kiepert hyperbola and on these lines: {2, 42421}, {6, 43688}, {32, 10159}, {76, 5007}, {83, 7825}, {147, 54731}, {182, 14492}, {194, 15870}, {262, 5092}, {381, 54614}, {597, 54737}, {671, 4027}, {1078, 56059}, {1691, 60129}, {1916, 5026}, {3329, 60177}, {3399, 9821}, {3618, 60105}, {5503, 10352}, {5984, 9302}, {7736, 35005}, {7779, 60232}, {7792, 60184}, {7793, 55738}, {7808, 60100}, {7897, 60213}, {7934, 43527}, {8782, 10290}, {10302, 12150}, {10334, 60202}, {10358, 54846}, {10359, 60633}, {10796, 60614}, {11606, 16989}, {12212, 54748}, {14458, 48889}, {16898, 18840}, {18842, 33251}, {22505, 55009}, {22521, 60126}, {31173, 60239}, {33223, 54616}, {33255, 39091}, {39141, 60180}, {40016, 59180}, {44367, 60143}, {59373, 60271}, {60183, 60728}

X(62889) = X(i)-vertex conjugate of X(j) for these {i, j}: {32, 60129}
X(62889) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(699)}}, {{A, B, C, X(25), X(51450)}}, {{A, B, C, X(32), X(5007)}}, {{A, B, C, X(182), X(5092)}}, {{A, B, C, X(251), X(3224)}}, {{A, B, C, X(308), X(44000)}}, {{A, B, C, X(427), X(7933)}}, {{A, B, C, X(733), X(1383)}}, {{A, B, C, X(1691), X(11175)}}, {{A, B, C, X(2980), X(40425)}}, {{A, B, C, X(2998), X(42421)}}, {{A, B, C, X(3108), X(47643)}}, {{A, B, C, X(3398), X(9821)}}, {{A, B, C, X(4027), X(5026)}}, {{A, B, C, X(6995), X(16898)}}, {{A, B, C, X(7409), X(33221)}}, {{A, B, C, X(7779), X(16989)}}, {{A, B, C, X(7792), X(7897)}}, {{A, B, C, X(7805), X(10014)}}, {{A, B, C, X(7913), X(31125)}}, {{A, B, C, X(10353), X(40820)}}, {{A, B, C, X(16995), X(33854)}}, {{A, B, C, X(27366), X(61418)}}, {{A, B, C, X(30542), X(39968)}}, {{A, B, C, X(33251), X(52284)}}, {{A, B, C, X(44367), X(59373)}}, {{A, B, C, X(52898), X(57540)}}


X(62890) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7837), X(3), X(2))

Barycentrics    (2*a^4+2*b^4+2*b^2*c^2-c^4+a^2*(5*b^2+2*c^2))*(2*a^4-b^4+2*b^2*c^2+2*c^4+a^2*(2*b^2+5*c^2)) : :

X(62890) lies on the Kiepert hyperbola and on these lines: {4, 51860}, {6, 60214}, {30, 60633}, {76, 7753}, {83, 7842}, {262, 29317}, {385, 60217}, {597, 54539}, {626, 60278}, {671, 39593}, {1916, 9300}, {3329, 14492}, {3830, 54904}, {3845, 54566}, {3849, 60238}, {5395, 33278}, {6033, 9302}, {6034, 11606}, {7608, 37455}, {7785, 18840}, {7787, 55007}, {7788, 54748}, {7806, 60175}, {7809, 7849}, {7876, 11057}, {7889, 60644}, {8592, 60271}, {9774, 54643}, {10033, 54851}, {11645, 54477}, {14458, 19130}, {14976, 60616}, {16989, 60150}, {18841, 19569}, {33269, 60285}, {35005, 39091}, {37671, 42006}, {39784, 40344}, {51171, 54519}, {53489, 55009}, {54582, 55177}

X(62890) = isogonal conjugate of X(12055)
X(62890) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(7837)}}, {{A, B, C, X(75), X(17368)}}, {{A, B, C, X(251), X(7753)}}, {{A, B, C, X(290), X(3329)}}, {{A, B, C, X(385), X(9300)}}, {{A, B, C, X(427), X(7924)}}, {{A, B, C, X(458), X(60651)}}, {{A, B, C, X(512), X(3108)}}, {{A, B, C, X(1031), X(1494)}}, {{A, B, C, X(1989), X(52395)}}, {{A, B, C, X(3266), X(39593)}}, {{A, B, C, X(5064), X(7876)}}, {{A, B, C, X(5641), X(9477)}}, {{A, B, C, X(7714), X(33269)}}, {{A, B, C, X(7785), X(42037)}}, {{A, B, C, X(7788), X(14387)}}, {{A, B, C, X(7809), X(52618)}}, {{A, B, C, X(7838), X(34572)}}, {{A, B, C, X(8889), X(33278)}}, {{A, B, C, X(14537), X(23297)}}, {{A, B, C, X(18023), X(44571)}}, {{A, B, C, X(23878), X(29317)}}, {{A, B, C, X(27375), X(51450)}}, {{A, B, C, X(30537), X(40416)}}, {{A, B, C, X(35510), X(51171)}}, {{A, B, C, X(37455), X(52281)}}, {{A, B, C, X(40043), X(46026)}}, {{A, B, C, X(40829), X(42286)}}, {{A, B, C, X(51860), X(57852)}}


X(62891) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7875), X(3), X(2))

Barycentrics    (2*a^4+2*b^4+2*b^2*c^2+c^4+a^2*(3*b^2+2*c^2))*(2*a^4+b^4+2*b^2*c^2+2*c^4+a^2*(2*b^2+3*c^2)) : :

X(62891) lies on the Kiepert hyperbola and on these lines: {76, 5355}, {83, 7843}, {262, 58445}, {385, 10159}, {626, 43527}, {671, 5149}, {1916, 3589}, {3329, 60213}, {3399, 32521}, {3407, 44000}, {3618, 60232}, {3815, 60231}, {6034, 60271}, {7753, 60239}, {7785, 18841}, {7792, 42006}, {7806, 60099}, {7809, 60238}, {7944, 60100}, {8289, 11606}, {11174, 43529}, {14488, 19130}, {16984, 60101}, {16986, 60278}, {16988, 56059}, {16989, 18840}, {16990, 60183}, {24256, 43688}, {47355, 60129}, {48889, 60132}

X(62891) = trilinear pole of line {50542, 523}
X(62891) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(7875)}}, {{A, B, C, X(25), X(16895)}}, {{A, B, C, X(39), X(699)}}, {{A, B, C, X(141), X(16987)}}, {{A, B, C, X(251), X(7889)}}, {{A, B, C, X(385), X(3589)}}, {{A, B, C, X(427), X(7948)}}, {{A, B, C, X(626), X(39668)}}, {{A, B, C, X(733), X(56789)}}, {{A, B, C, X(3108), X(7829)}}, {{A, B, C, X(3228), X(44571)}}, {{A, B, C, X(3329), X(7792)}}, {{A, B, C, X(3618), X(16989)}}, {{A, B, C, X(3815), X(16984)}}, {{A, B, C, X(5355), X(11060)}}, {{A, B, C, X(7806), X(11174)}}, {{A, B, C, X(7853), X(23297)}}, {{A, B, C, X(7920), X(39951)}}, {{A, B, C, X(9473), X(40410)}}, {{A, B, C, X(9477), X(40425)}}, {{A, B, C, X(15491), X(17006)}}, {{A, B, C, X(16986), X(47355)}}, {{A, B, C, X(16988), X(51126)}}, {{A, B, C, X(46806), X(58445)}}


X(62892) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(8556), X(3), X(2))

Barycentrics    (3*a^4+3*b^4-5*b^2*c^2-a^2*(2*b^2+5*c^2))*(3*a^4-5*b^2*c^2+3*c^4-a^2*(5*b^2+2*c^2)) : :

X(62892) lies on the Kiepert hyperbola and on these lines: {32, 18845}, {76, 8556}, {99, 54750}, {182, 53103}, {183, 60180}, {230, 54906}, {262, 5093}, {671, 8353}, {1078, 2996}, {1992, 54523}, {5182, 60073}, {5306, 54905}, {5395, 12150}, {5503, 37671}, {7610, 60218}, {7815, 60639}, {7837, 10484}, {8667, 60095}, {8859, 54539}, {8860, 60175}, {9166, 54872}, {9766, 60211}, {11163, 54645}, {11168, 60217}, {14492, 22329}, {23055, 60150}, {34473, 43532}, {37667, 54889}, {39663, 54868}, {41624, 60192}, {51224, 54718}, {58765, 60136}

X(62892) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 54906}, {42288, 60184}
X(62892) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(8556)}}, {{A, B, C, X(32), X(15815)}}, {{A, B, C, X(95), X(3228)}}, {{A, B, C, X(182), X(5093)}}, {{A, B, C, X(183), X(3225)}}, {{A, B, C, X(251), X(20251)}}, {{A, B, C, X(468), X(8353)}}, {{A, B, C, X(524), X(13468)}}, {{A, B, C, X(729), X(8716)}}, {{A, B, C, X(1799), X(47389)}}, {{A, B, C, X(7610), X(9766)}}, {{A, B, C, X(9300), X(11168)}}, {{A, B, C, X(9462), X(40405)}}, {{A, B, C, X(22329), X(37671)}}, {{A, B, C, X(30542), X(41909)}}, {{A, B, C, X(34285), X(56067)}}, {{A, B, C, X(35146), X(40428)}}, {{A, B, C, X(40829), X(57539)}}, {{A, B, C, X(43098), X(55958)}}


X(62893) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9300), X(3), X(2))

Barycentrics    (2*a^4+2*b^4+5*b^2*c^2-c^4+a^2*(8*b^2+5*c^2))*(2*a^4-b^4+5*b^2*c^2+2*c^4+a^2*(5*b^2+8*c^2)) : :

X(62893) lies on the Kiepert hyperbola and on these lines: {6, 60217}, {76, 9300}, {83, 11057}, {381, 54858}, {597, 60218}, {2996, 7739}, {3329, 60214}, {3618, 60150}, {3849, 54639}, {3972, 54724}, {5395, 14537}, {7612, 38317}, {7786, 60633}, {7790, 54716}, {7792, 60175}, {7814, 10159}, {7837, 42006}, {7857, 60644}, {9766, 10302}, {9774, 54582}, {10033, 54608}, {11174, 14492}, {14458, 48906}, {14762, 60628}, {19569, 60145}, {31670, 60127}, {37671, 60099}, {40344, 60647}, {47352, 54906}, {54477, 55177}, {54616, 55164}

X(62893) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(9300)}}, {{A, B, C, X(597), X(9766)}}, {{A, B, C, X(3329), X(7837)}}, {{A, B, C, X(3589), X(45090)}}, {{A, B, C, X(7739), X(57518)}}, {{A, B, C, X(8770), X(43950)}}, {{A, B, C, X(11057), X(23297)}}, {{A, B, C, X(11058), X(42286)}}, {{A, B, C, X(11174), X(37671)}}, {{A, B, C, X(13468), X(42849)}}, {{A, B, C, X(34288), X(56067)}}, {{A, B, C, X(39951), X(44557)}}, {{A, B, C, X(39968), X(57822)}}, {{A, B, C, X(40405), X(52188)}}, {{A, B, C, X(48906), X(60872)}}


X(62894) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11174), X(3), X(2))

Barycentrics    (a^4+b^4+3*b^2*c^2+a^2*(4*b^2+3*c^2))*(a^4+3*b^2*c^2+c^4+a^2*(3*b^2+4*c^2)) : :

X(62894) lies on the Kiepert hyperbola and on these lines: {2, 5039}, {4, 4045}, {6, 60099}, {32, 18841}, {76, 9605}, {83, 7750}, {98, 3589}, {182, 3424}, {230, 60187}, {262, 1350}, {325, 10159}, {381, 54716}, {598, 11287}, {1078, 43527}, {3055, 56064}, {3329, 14994}, {3618, 60212}, {3815, 60213}, {5182, 43535}, {5395, 33202}, {5485, 7739}, {6054, 9302}, {6683, 60633}, {7608, 15491}, {7736, 7794}, {7787, 60647}, {7792, 60101}, {7804, 9751}, {7868, 60278}, {7875, 60128}, {8357, 53109}, {9770, 60629}, {10185, 44381}, {10352, 11606}, {11163, 60277}, {11167, 47352}, {12150, 60239}, {13571, 60285}, {14096, 42288}, {14458, 42534}, {14484, 31670}, {14532, 14535}, {16987, 43528}, {17005, 60231}, {18845, 33025}, {22681, 60115}, {23234, 54731}, {30505, 39668}, {33210, 53101}, {43460, 54858}, {47355, 60215}

X(62894) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60187}, {251, 42346}
X(62894) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37479)}}, {{A, B, C, X(6), X(5039)}}, {{A, B, C, X(25), X(10014)}}, {{A, B, C, X(32), X(9605)}}, {{A, B, C, X(39), X(17980)}}, {{A, B, C, X(182), X(1350)}}, {{A, B, C, X(308), X(57408)}}, {{A, B, C, X(325), X(3589)}}, {{A, B, C, X(393), X(3618)}}, {{A, B, C, X(427), X(7794)}}, {{A, B, C, X(592), X(3563)}}, {{A, B, C, X(597), X(6094)}}, {{A, B, C, X(729), X(39389)}}, {{A, B, C, X(733), X(3108)}}, {{A, B, C, X(1016), X(40738)}}, {{A, B, C, X(1078), X(39668)}}, {{A, B, C, X(1390), X(14665)}}, {{A, B, C, X(1494), X(42286)}}, {{A, B, C, X(1799), X(7808)}}, {{A, B, C, X(1989), X(44571)}}, {{A, B, C, X(2980), X(24861)}}, {{A, B, C, X(3815), X(7792)}}, {{A, B, C, X(4045), X(30786)}}, {{A, B, C, X(4590), X(36897)}}, {{A, B, C, X(5094), X(11287)}}, {{A, B, C, X(7739), X(11059)}}, {{A, B, C, X(7750), X(33665)}}, {{A, B, C, X(7777), X(7875)}}, {{A, B, C, X(7831), X(23297)}}, {{A, B, C, X(7868), X(47355)}}, {{A, B, C, X(7931), X(16987)}}, {{A, B, C, X(8791), X(18907)}}, {{A, B, C, X(8842), X(10007)}}, {{A, B, C, X(8889), X(33202)}}, {{A, B, C, X(9516), X(11169)}}, {{A, B, C, X(11163), X(47352)}}, {{A, B, C, X(14486), X(61131)}}, {{A, B, C, X(15491), X(37688)}}, {{A, B, C, X(16984), X(17005)}}, {{A, B, C, X(22253), X(39236)}}, {{A, B, C, X(32085), X(34816)}}, {{A, B, C, X(33025), X(52299)}}, {{A, B, C, X(39716), X(57727)}}, {{A, B, C, X(44326), X(59136)}}, {{A, B, C, X(46123), X(46316)}}, {{A, B, C, X(55075), X(60526)}}


X(62895) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11184), X(3), X(2))

Barycentrics    (a^4+4*b^4-7*b^2*c^2+c^4-a^2*(7*b^2+10*c^2))*(a^4+b^4-7*b^2*c^2+4*c^4-a^2*(10*b^2+7*c^2)) : :

X(62895) lies on the Kiepert hyperbola and on these lines: {4, 52691}, {6, 60220}, {30, 54868}, {76, 11184}, {83, 26613}, {98, 50979}, {262, 40248}, {381, 54869}, {524, 60101}, {597, 60103}, {598, 11155}, {671, 3815}, {1007, 60143}, {1506, 2996}, {1916, 9877}, {2549, 41895}, {3329, 8587}, {7610, 60248}, {7612, 59373}, {7736, 11172}, {7778, 60277}, {7792, 10153}, {8781, 9771}, {9166, 43532}, {9770, 60212}, {10302, 22110}, {11163, 11167}, {11170, 55801}, {11272, 60619}, {12150, 60148}, {14494, 20423}, {17005, 42010}, {25555, 60123}, {31489, 60211}, {41133, 60213}, {41134, 60072}, {47352, 60093}, {53101, 62203}

X(62895) = isotomic conjugate of X(11168)
X(62895) = X(i)-cross conjugate of X(j) for these {i, j}: {8704, 99}
X(62895) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(11184)}}, {{A, B, C, X(230), X(9771)}}, {{A, B, C, X(249), X(9831)}}, {{A, B, C, X(458), X(40248)}}, {{A, B, C, X(524), X(3815)}}, {{A, B, C, X(597), X(22110)}}, {{A, B, C, X(599), X(42849)}}, {{A, B, C, X(842), X(20251)}}, {{A, B, C, X(1007), X(59373)}}, {{A, B, C, X(3055), X(15597)}}, {{A, B, C, X(3613), X(36882)}}, {{A, B, C, X(5094), X(35955)}}, {{A, B, C, X(7610), X(31489)}}, {{A, B, C, X(7736), X(9770)}}, {{A, B, C, X(7778), X(47352)}}, {{A, B, C, X(7792), X(41133)}}, {{A, B, C, X(8859), X(17005)}}, {{A, B, C, X(9877), X(60863)}}, {{A, B, C, X(11169), X(18823)}}, {{A, B, C, X(23054), X(39453)}}, {{A, B, C, X(23297), X(26613)}}, {{A, B, C, X(30786), X(52691)}}, {{A, B, C, X(46142), X(55958)}}, {{A, B, C, X(50979), X(56925)}}, {{A, B, C, X(52395), X(57927)}}


X(62896) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11427), X(3), X(2))

Barycentrics    (3*a^6+(b^2-c^2)^2*(3*b^2+c^2)-a^4*(3*b^2+5*c^2)+a^2*(-3*b^4-6*b^2*c^2+c^4))*(3*a^6+(b^2-c^2)^2*(b^2+3*c^2)-a^4*(5*b^2+3*c^2)+a^2*(b^4-6*b^2*c^2-3*c^4)) : :

X(62896) lies on the Kiepert hyperbola and on these lines: {4, 3796}, {6, 60221}, {22, 14484}, {76, 11427}, {96, 3090}, {262, 7494}, {275, 63155}, {311, 54636}, {381, 54870}, {394, 18840}, {459, 10601}, {467, 60161}, {631, 57718}, {2052, 3618}, {2996, 41231}, {3424, 5133}, {3547, 60174}, {5395, 41237}, {5422, 60256}, {6504, 14389}, {6515, 60225}, {7404, 60166}, {7495, 53099}, {7500, 43951}, {7503, 31363}, {7558, 60162}, {8796, 52253}, {11064, 60237}, {11433, 60241}, {11547, 54703}, {13160, 60618}, {14033, 54824}, {14492, 34608}, {16080, 18928}, {23292, 60114}, {33190, 54730}, {34603, 54520}, {37156, 60077}, {37648, 38253}, {41099, 54879}, {43678, 52288}, {47352, 54771}

X(62896) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37476)}}, {{A, B, C, X(6), X(11427)}}, {{A, B, C, X(22), X(52288)}}, {{A, B, C, X(69), X(37649)}}, {{A, B, C, X(288), X(55999)}}, {{A, B, C, X(343), X(15077)}}, {{A, B, C, X(394), X(1176)}}, {{A, B, C, X(458), X(7494)}}, {{A, B, C, X(467), X(3090)}}, {{A, B, C, X(631), X(52253)}}, {{A, B, C, X(1993), X(13472)}}, {{A, B, C, X(3547), X(6819)}}, {{A, B, C, X(5133), X(52283)}}, {{A, B, C, X(5422), X(37645)}}, {{A, B, C, X(6353), X(41231)}}, {{A, B, C, X(6515), X(14389)}}, {{A, B, C, X(6820), X(7404)}}, {{A, B, C, X(8797), X(34405)}}, {{A, B, C, X(8889), X(41237)}}, {{A, B, C, X(10601), X(37669)}}, {{A, B, C, X(11064), X(18928)}}, {{A, B, C, X(11433), X(23292)}}, {{A, B, C, X(11547), X(34208)}}, {{A, B, C, X(15740), X(52350)}}, {{A, B, C, X(30535), X(56347)}}, {{A, B, C, X(34384), X(36948)}}, {{A, B, C, X(34608), X(52289)}}, {{A, B, C, X(37872), X(39968)}}, {{A, B, C, X(39109), X(39951)}}, {{A, B, C, X(40410), X(55031)}}, {{A, B, C, X(41891), X(56364)}}


X(62897) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11433), X(3), X(2))

Barycentrics    (a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)-a^2*(b^4+10*b^2*c^2-3*c^4))*(a^6-(b^2-c^2)^3-a^4*(3*b^2+c^2)+a^2*(3*b^4-10*b^2*c^2-c^4)) : :

X(62897) lies on the Kiepert hyperbola and on these lines: {2, 8573}, {3, 60174}, {4, 10601}, {5, 60166}, {6, 60114}, {76, 11433}, {98, 7392}, {262, 7386}, {275, 3618}, {343, 18840}, {377, 60157}, {381, 54844}, {394, 60237}, {443, 60164}, {459, 37648}, {485, 6806}, {486, 6805}, {597, 54784}, {631, 60162}, {801, 11427}, {1370, 14484}, {2052, 6819}, {2478, 60158}, {3090, 60159}, {3316, 3540}, {3317, 3539}, {3424, 6997}, {3525, 60163}, {3538, 63154}, {3839, 54886}, {5067, 60160}, {5071, 54498}, {5084, 60154}, {5189, 60328}, {5422, 6504}, {6803, 40448}, {6804, 13599}, {6815, 60618}, {6816, 31363}, {7381, 45100}, {7382, 60167}, {7391, 43951}, {7394, 60147}, {7533, 60324}, {8257, 60249}, {8370, 54779}, {10996, 45300}, {13567, 60221}, {13579, 15018}, {14361, 43678}, {14492, 44442}, {16063, 60118}, {17582, 60173}, {19708, 54827}, {26333, 60634}, {34545, 60255}, {37192, 60161}, {37349, 60327}, {37643, 60241}, {37649, 56346}, {41106, 54942}, {43666, 60781}, {43670, 51171}, {46336, 53099}, {52288, 52583}, {54500, 61899}, {54774, 59373}

X(62897) = trilinear pole of line {47093, 523}
X(62897) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 3088}
X(62897) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 3088}
X(62897) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(6819)}}, {{A, B, C, X(5), X(6820)}}, {{A, B, C, X(6), X(6524)}}, {{A, B, C, X(7), X(56354)}}, {{A, B, C, X(69), X(10601)}}, {{A, B, C, X(79), X(56230)}}, {{A, B, C, X(189), X(30513)}}, {{A, B, C, X(263), X(10318)}}, {{A, B, C, X(297), X(7392)}}, {{A, B, C, X(343), X(3618)}}, {{A, B, C, X(394), X(15740)}}, {{A, B, C, X(458), X(7386)}}, {{A, B, C, X(1000), X(56041)}}, {{A, B, C, X(1032), X(31371)}}, {{A, B, C, X(1073), X(4846)}}, {{A, B, C, X(1370), X(52288)}}, {{A, B, C, X(3090), X(37192)}}, {{A, B, C, X(3296), X(56352)}}, {{A, B, C, X(3431), X(56361)}}, {{A, B, C, X(4176), X(43711)}}, {{A, B, C, X(5046), X(37276)}}, {{A, B, C, X(5422), X(6515)}}, {{A, B, C, X(5905), X(8257)}}, {{A, B, C, X(6340), X(39289)}}, {{A, B, C, X(6803), X(52280)}}, {{A, B, C, X(6822), X(54372)}}, {{A, B, C, X(6997), X(52283)}}, {{A, B, C, X(8797), X(18022)}}, {{A, B, C, X(11427), X(13567)}}, {{A, B, C, X(13472), X(56002)}}, {{A, B, C, X(14361), X(52448)}}, {{A, B, C, X(14542), X(56345)}}, {{A, B, C, X(14593), X(39951)}}, {{A, B, C, X(14861), X(36609)}}, {{A, B, C, X(15018), X(45794)}}, {{A, B, C, X(17040), X(30535)}}, {{A, B, C, X(23292), X(37643)}}, {{A, B, C, X(34545), X(37644)}}, {{A, B, C, X(37648), X(37669)}}, {{A, B, C, X(38008), X(46331)}}, {{A, B, C, X(42287), X(52350)}}, {{A, B, C, X(44442), X(52289)}}, {{A, B, C, X(47633), X(52452)}}
X(62897) = barycentric quotient X(i)/X(j) for these (i, j): {4, 3088}


X(62898) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(13468), X(3), X(2))

Barycentrics    (4*a^4+4*b^4-3*a^2*c^2-3*b^2*c^2+c^4)*(4*a^4-3*a^2*b^2+b^4-3*b^2*c^2+4*c^4) : :

X(62898) lies on the Kiepert hyperbola and on these lines: {76, 13468}, {98, 48662}, {230, 60218}, {262, 59399}, {381, 54873}, {439, 43681}, {1352, 53103}, {2996, 14568}, {3767, 38259}, {3830, 54767}, {5306, 60095}, {5395, 7828}, {5466, 15724}, {5485, 26613}, {5503, 14614}, {6055, 54978}, {7607, 10011}, {7610, 60217}, {7792, 54773}, {7806, 54539}, {7837, 42010}, {7930, 60183}, {7942, 18841}, {8556, 10302}, {8667, 60202}, {8781, 9766}, {8859, 60214}, {9166, 54659}, {9300, 60211}, {10159, 33233}, {11057, 54916}, {18845, 39590}, {22329, 60180}, {32988, 60647}, {32989, 60285}, {33235, 43676}, {33249, 43527}, {33250, 60209}, {39656, 60189}, {52250, 60145}, {54523, 59373}, {54889, 61304}

X(62898) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60218}
X(62898) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(13468)}}, {{A, B, C, X(25), X(249)}}, {{A, B, C, X(230), X(9766)}}, {{A, B, C, X(428), X(33233)}}, {{A, B, C, X(597), X(8556)}}, {{A, B, C, X(755), X(8770)}}, {{A, B, C, X(2353), X(36616)}}, {{A, B, C, X(5064), X(33249)}}, {{A, B, C, X(5306), X(8667)}}, {{A, B, C, X(6353), X(35927)}}, {{A, B, C, X(7610), X(9300)}}, {{A, B, C, X(7714), X(32989)}}, {{A, B, C, X(7837), X(8859)}}, {{A, B, C, X(10011), X(52282)}}, {{A, B, C, X(14568), X(57518)}}, {{A, B, C, X(14614), X(22329)}}, {{A, B, C, X(15724), X(51541)}}, {{A, B, C, X(26613), X(61345)}}, {{A, B, C, X(34138), X(48662)}}, {{A, B, C, X(40416), X(56067)}}, {{A, B, C, X(40428), X(59256)}}


X(62899) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14389), X(3), X(2))

Barycentrics    (2*a^6+2*b^6-3*b^4*c^2+c^6-a^4*(2*b^2+3*c^2)-2*a^2*(b^4+2*b^2*c^2))*(2*a^6+b^6-3*b^2*c^4+2*c^6-a^4*(3*b^2+2*c^2)-2*a^2*(2*b^2*c^2+c^4)) : :

X(62899) lies on the Kiepert hyperbola and on these lines: {4, 15080}, {6, 60225}, {22, 14492}, {76, 14389}, {96, 1656}, {140, 57718}, {262, 7495}, {381, 54879}, {384, 54824}, {458, 54685}, {467, 60120}, {598, 41237}, {671, 41231}, {3091, 54870}, {3589, 34289}, {3618, 60256}, {5133, 14458}, {5392, 37649}, {5422, 60241}, {6656, 54730}, {7387, 54736}, {7403, 54909}, {7494, 60127}, {7500, 54520}, {7503, 60121}, {7512, 54912}, {7566, 54945}, {7770, 54513}, {9818, 60119}, {10159, 15066}, {10601, 42410}, {11064, 59763}, {13160, 60122}, {14488, 37900}, {14920, 46105}, {18840, 37645}, {34603, 54582}, {37156, 60078}, {37231, 54693}, {39284, 52253}, {40112, 60277}, {43678, 52289}, {47096, 54741}, {47352, 58268}, {52069, 54585}

X(62899) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37513)}}, {{A, B, C, X(6), X(14389)}}, {{A, B, C, X(22), X(52289)}}, {{A, B, C, X(140), X(52253)}}, {{A, B, C, X(264), X(55032)}}, {{A, B, C, X(458), X(7495)}}, {{A, B, C, X(467), X(1656)}}, {{A, B, C, X(468), X(41231)}}, {{A, B, C, X(1176), X(14919)}}, {{A, B, C, X(1993), X(37649)}}, {{A, B, C, X(3108), X(61362)}}, {{A, B, C, X(3589), X(15066)}}, {{A, B, C, X(3618), X(37645)}}, {{A, B, C, X(5094), X(41237)}}, {{A, B, C, X(5133), X(11331)}}, {{A, B, C, X(5422), X(23292)}}, {{A, B, C, X(9476), X(37801)}}, {{A, B, C, X(14920), X(60869)}}, {{A, B, C, X(15018), X(59771)}}, {{A, B, C, X(18018), X(39287)}}, {{A, B, C, X(30535), X(43756)}}, {{A, B, C, X(34801), X(53024)}}, {{A, B, C, X(37636), X(38433)}}, {{A, B, C, X(40112), X(47352)}}, {{A, B, C, X(42021), X(57875)}}


X(62900) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14614), X(3), X(2))

Barycentrics    (3*a^4+b^2*(3*b^2+c^2)+a^2*(4*b^2+c^2))*(3*a^4+c^2*(b^2+3*c^2)+a^2*(b^2+4*c^2)) : :

X(62900) lies on the Kiepert hyperbola and on these lines: {2, 41412}, {4, 7829}, {6, 33685}, {32, 18840}, {76, 11286}, {83, 33184}, {98, 42421}, {182, 14484}, {262, 5085}, {597, 14492}, {1078, 60278}, {1916, 5182}, {2996, 7787}, {3399, 5188}, {5306, 60181}, {5503, 9300}, {7608, 37450}, {7792, 54906}, {7819, 10159}, {7866, 43527}, {8556, 60099}, {10302, 37671}, {10352, 35005}, {18841, 33196}, {22329, 60217}, {33180, 60647}, {33198, 60285}, {33200, 60145}, {33692, 60619}, {40016, 42037}, {41624, 60202}, {42849, 54645}, {47352, 54773}, {48913, 60239}, {51171, 54889}, {55732, 60183}

X(62900) = X(i)-vertex conjugate of X(j) for these {i, j}: {42288, 60187}
X(62900) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(14614)}}, {{A, B, C, X(25), X(11286)}}, {{A, B, C, X(32), X(30435)}}, {{A, B, C, X(67), X(44571)}}, {{A, B, C, X(182), X(5085)}}, {{A, B, C, X(251), X(729)}}, {{A, B, C, X(427), X(33184)}}, {{A, B, C, X(428), X(7819)}}, {{A, B, C, X(597), X(37671)}}, {{A, B, C, X(699), X(34572)}}, {{A, B, C, X(3108), X(5970)}}, {{A, B, C, X(3224), X(42288)}}, {{A, B, C, X(3228), X(52395)}}, {{A, B, C, X(3398), X(5188)}}, {{A, B, C, X(3618), X(34285)}}, {{A, B, C, X(4027), X(36811)}}, {{A, B, C, X(5064), X(7866)}}, {{A, B, C, X(5182), X(40820)}}, {{A, B, C, X(5306), X(41624)}}, {{A, B, C, X(7378), X(33196)}}, {{A, B, C, X(7714), X(33198)}}, {{A, B, C, X(7787), X(47733)}}, {{A, B, C, X(7829), X(57852)}}, {{A, B, C, X(8556), X(11174)}}, {{A, B, C, X(9300), X(22329)}}, {{A, B, C, X(9462), X(32085)}}, {{A, B, C, X(10014), X(47643)}}, {{A, B, C, X(11636), X(40173)}}, {{A, B, C, X(14860), X(34129)}}, {{A, B, C, X(37450), X(52281)}}, {{A, B, C, X(40416), X(45857)}}, {{A, B, C, X(57540), X(57545)}}


X(62901) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14828), X(3), X(2))

Barycentrics    (a^4-a^3*(b+c)+b*(b-c)^2*(b+c)-a^2*c*(3*b+c)-a*(b^3+3*b^2*c+b*c^2-c^3))*(a^4-a^3*(b+c)+(b-c)^2*c*(b+c)-a^2*b*(b+3*c)+a*(b^3-b^2*c-3*b*c^2-c^3)) : :

X(62901) lies on the Kiepert hyperbola and on these lines: {1, 60265}, {4, 16783}, {6, 60227}, {10, 218}, {76, 14828}, {142, 3423}, {226, 1001}, {321, 3870}, {381, 54882}, {405, 17758}, {442, 60075}, {452, 17201}, {1005, 60071}, {1174, 2550}, {1446, 4350}, {1477, 38053}, {1751, 51743}, {2051, 7580}, {2140, 36907}, {5177, 60092}, {8226, 13478}, {11113, 60083}, {14022, 60085}, {14554, 37240}, {17532, 60094}, {24624, 52255}, {25496, 56226}, {35990, 60087}, {36721, 54526}, {36722, 54516}, {45100, 50696}, {48944, 60634}, {54739, 58035}

X(62901) = trilinear pole of line {45755, 523}
X(62901) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(218)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(14828)}}, {{A, B, C, X(7), X(12573)}}, {{A, B, C, X(9), X(86)}}, {{A, B, C, X(29), X(200)}}, {{A, B, C, X(72), X(16783)}}, {{A, B, C, X(142), X(2550)}}, {{A, B, C, X(274), X(55941)}}, {{A, B, C, X(405), X(3294)}}, {{A, B, C, X(452), X(461)}}, {{A, B, C, X(860), X(52255)}}, {{A, B, C, X(996), X(1280)}}, {{A, B, C, X(1005), X(5136)}}, {{A, B, C, X(1065), X(56273)}}, {{A, B, C, X(1220), X(5665)}}, {{A, B, C, X(2296), X(56153)}}, {{A, B, C, X(2297), X(60041)}}, {{A, B, C, X(2321), X(57858)}}, {{A, B, C, X(2344), X(26702)}}, {{A, B, C, X(3615), X(40998)}}, {{A, B, C, X(3616), X(17201)}}, {{A, B, C, X(3676), X(57726)}}, {{A, B, C, X(3755), X(4648)}}, {{A, B, C, X(4847), X(43740)}}, {{A, B, C, X(5177), X(57534)}}, {{A, B, C, X(5853), X(38053)}}, {{A, B, C, X(6598), X(40415)}}, {{A, B, C, X(6605), X(56146)}}, {{A, B, C, X(7110), X(58001)}}, {{A, B, C, X(7580), X(11109)}}, {{A, B, C, X(8226), X(17555)}}, {{A, B, C, X(10056), X(26015)}}, {{A, B, C, X(10528), X(11019)}}, {{A, B, C, X(10570), X(56098)}}, {{A, B, C, X(12649), X(13405)}}, {{A, B, C, X(14621), X(34018)}}, {{A, B, C, X(16053), X(16831)}}, {{A, B, C, X(17743), X(42310)}}, {{A, B, C, X(22021), X(51743)}}, {{A, B, C, X(24703), X(56074)}}, {{A, B, C, X(25985), X(36652)}}, {{A, B, C, X(28629), X(57284)}}, {{A, B, C, X(34917), X(39704)}}, {{A, B, C, X(39958), X(56783)}}, {{A, B, C, X(40419), X(56164)}}, {{A, B, C, X(41239), X(56542)}}, {{A, B, C, X(42361), X(59760)}}, {{A, B, C, X(52133), X(57785)}}


X(62902) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16984), X(3), X(2))

Barycentrics    (3*a^4+a^2*b^2+3*b^4+2*c^4)*(3*a^4+2*b^4+a^2*c^2+3*c^4) : :

X(62902) lies on the Kiepert hyperbola and on these lines: {6, 60231}, {76, 14043}, {83, 14065}, {384, 53105}, {549, 60614}, {598, 14046}, {671, 14036}, {3399, 3526}, {3406, 3628}, {3534, 54583}, {3589, 60233}, {5025, 53109}, {5055, 55009}, {5066, 54584}, {5999, 14488}, {7792, 43529}, {7806, 60213}, {7862, 43527}, {7875, 8781}, {7892, 43676}, {7901, 53102}, {10159, 17004}, {11178, 60175}, {11361, 33698}, {13862, 60132}, {14001, 60219}, {14032, 53106}, {14033, 54720}, {14039, 60631}, {14041, 54494}, {14064, 18843}, {14067, 60210}, {14069, 60636}, {16987, 60096}, {18845, 33287}, {33289, 53107}, {37453, 37892}, {54565, 61936}

X(62902) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(16984)}}, {{A, B, C, X(25), X(14043)}}, {{A, B, C, X(230), X(7875)}}, {{A, B, C, X(384), X(37453)}}, {{A, B, C, X(427), X(14065)}}, {{A, B, C, X(468), X(14036)}}, {{A, B, C, X(3589), X(17004)}}, {{A, B, C, X(5094), X(14046)}}, {{A, B, C, X(7792), X(7806)}}, {{A, B, C, X(7862), X(39668)}}, {{A, B, C, X(13623), X(51454)}}, {{A, B, C, X(14032), X(52297)}}, {{A, B, C, X(15271), X(16987)}}, {{A, B, C, X(33287), X(52299)}}, {{A, B, C, X(33289), X(52298)}}, {{A, B, C, X(39389), X(57260)}}, {{A, B, C, X(40416), X(44558)}}


X(62903) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16989), X(3), X(2))

Barycentrics    (3*a^4+3*b^4+2*b^2*c^2+c^4+2*a^2*(2*b^2+c^2))*(3*a^4+b^4+2*b^2*c^2+3*c^4+2*a^2*(b^2+2*c^2)) : :

X(62903) lies on the Kiepert hyperbola and on these lines: {4, 7875}, {6, 60232}, {76, 5319}, {385, 18840}, {598, 33251}, {1007, 60231}, {1916, 3618}, {2548, 43527}, {3329, 40824}, {3399, 6194}, {3545, 54614}, {3589, 60190}, {5304, 60285}, {5395, 7933}, {7612, 16984}, {7735, 42006}, {7736, 43529}, {7752, 60100}, {7774, 60213}, {7792, 54122}, {7806, 60212}, {7846, 10159}, {7899, 60182}, {10335, 14001}, {11174, 60234}, {14492, 14561}, {16986, 60183}, {16987, 18841}, {17008, 60099}, {18842, 33223}, {33006, 54806}, {51171, 60201}

X(62903) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(16989)}}, {{A, B, C, X(25), X(16898)}}, {{A, B, C, X(69), X(7875)}}, {{A, B, C, X(385), X(3618)}}, {{A, B, C, X(1007), X(16984)}}, {{A, B, C, X(2165), X(40425)}}, {{A, B, C, X(2548), X(39668)}}, {{A, B, C, X(2998), X(39453)}}, {{A, B, C, X(3108), X(5319)}}, {{A, B, C, X(3329), X(7735)}}, {{A, B, C, X(3589), X(16990)}}, {{A, B, C, X(3619), X(16987)}}, {{A, B, C, X(5094), X(33251)}}, {{A, B, C, X(5304), X(51171)}}, {{A, B, C, X(6340), X(7923)}}, {{A, B, C, X(7378), X(33221)}}, {{A, B, C, X(7736), X(7806)}}, {{A, B, C, X(7774), X(7792)}}, {{A, B, C, X(7846), X(59180)}}, {{A, B, C, X(7933), X(8889)}}, {{A, B, C, X(8797), X(9473)}}, {{A, B, C, X(9516), X(44571)}}, {{A, B, C, X(11174), X(17008)}}, {{A, B, C, X(21765), X(52395)}}, {{A, B, C, X(33223), X(52284)}}, {{A, B, C, X(39716), X(40738)}}, {{A, B, C, X(39968), X(44658)}}, {{A, B, C, X(41932), X(42349)}}, {{A, B, C, X(47643), X(60667)}}


X(62904) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17006), X(3), X(2))

Barycentrics    (3*a^4+3*b^4-4*b^2*c^2+2*c^4-a^2*(3*b^2+4*c^2))*(3*a^4+2*b^4-4*b^2*c^2+3*c^4-a^2*(4*b^2+3*c^2)) : :

X(62904) lies on the Kiepert hyperbola and on these lines: {3, 60176}, {4, 14693}, {5, 54482}, {76, 16923}, {230, 60233}, {262, 10486}, {385, 60178}, {671, 7746}, {1916, 37637}, {2996, 33206}, {3054, 60128}, {3314, 56064}, {3329, 11669}, {3788, 10302}, {5395, 33270}, {7608, 7806}, {7777, 60198}, {7801, 60638}, {7836, 60143}, {7870, 60286}, {7940, 60277}, {8781, 17004}, {8859, 42011}, {8860, 42010}, {9855, 17503}, {10104, 60148}, {10155, 16989}, {10185, 34507}, {11170, 32134}, {15271, 60231}, {16984, 60096}, {32006, 54833}, {33208, 41895}, {33268, 53106}, {33276, 53105}, {37461, 54903}, {37688, 43529}, {44401, 54487}

X(62904) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60233}
X(62904) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(14565)}}, {{A, B, C, X(6), X(17006)}}, {{A, B, C, X(25), X(16923)}}, {{A, B, C, X(230), X(17004)}}, {{A, B, C, X(385), X(37637)}}, {{A, B, C, X(458), X(10486)}}, {{A, B, C, X(468), X(33274)}}, {{A, B, C, X(2165), X(9227)}}, {{A, B, C, X(2963), X(40826)}}, {{A, B, C, X(2980), X(42332)}}, {{A, B, C, X(3054), X(7777)}}, {{A, B, C, X(3266), X(7746)}}, {{A, B, C, X(3788), X(26235)}}, {{A, B, C, X(4590), X(52154)}}, {{A, B, C, X(6353), X(33206)}}, {{A, B, C, X(7806), X(37688)}}, {{A, B, C, X(7875), X(58446)}}, {{A, B, C, X(8859), X(8860)}}, {{A, B, C, X(8889), X(33270)}}, {{A, B, C, X(9462), X(42349)}}, {{A, B, C, X(9855), X(52292)}}, {{A, B, C, X(15271), X(16984)}}, {{A, B, C, X(18023), X(45838)}}, {{A, B, C, X(30542), X(40429)}}, {{A, B, C, X(33208), X(52290)}}, {{A, B, C, X(33268), X(52297)}}, {{A, B, C, X(33276), X(37453)}}, {{A, B, C, X(40103), X(55999)}}, {{A, B, C, X(42286), X(53864)}}


X(62905) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17008), X(3), X(2))

Barycentrics    (3*a^4+3*b^4-2*a^2*c^2-2*b^2*c^2+c^4)*(3*a^4-2*a^2*b^2+b^4-2*b^2*c^2+3*c^4) : :

X(62905) lies on the Kiepert hyperbola and on these lines: {4, 7806}, {6, 60234}, {32, 60072}, {69, 43529}, {76, 2021}, {83, 31415}, {183, 60232}, {193, 60262}, {230, 54122}, {262, 16989}, {385, 40824}, {598, 7828}, {631, 60126}, {671, 3767}, {1352, 7607}, {1916, 7735}, {1992, 42010}, {2996, 3552}, {3090, 60148}, {3329, 14494}, {3545, 54805}, {3618, 60098}, {3832, 54894}, {5304, 60260}, {5395, 32966}, {5485, 8859}, {6055, 54675}, {6658, 38259}, {7736, 60233}, {7745, 54833}, {7766, 35005}, {7774, 8781}, {7787, 11170}, {7792, 60190}, {7795, 10302}, {7797, 60614}, {7832, 60277}, {7930, 60131}, {7942, 60239}, {9873, 54659}, {10484, 59373}, {14002, 62671}, {14568, 60228}, {16990, 60213}, {17004, 60212}, {17503, 52942}, {18840, 32970}, {18841, 32969}, {18842, 32984}, {18845, 32993}, {31411, 60196}, {32959, 60183}, {33239, 60219}, {33280, 53105}, {34229, 42006}, {37667, 60201}, {51171, 53099}, {53143, 60626}, {59363, 60140}

X(62905) = trilinear pole of line {47549, 523}
X(62905) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 54122}
X(62905) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(17008)}}, {{A, B, C, X(25), X(16925)}}, {{A, B, C, X(32), X(2021)}}, {{A, B, C, X(66), X(18023)}}, {{A, B, C, X(69), X(7806)}}, {{A, B, C, X(111), X(2353)}}, {{A, B, C, X(183), X(16989)}}, {{A, B, C, X(193), X(37689)}}, {{A, B, C, X(230), X(7774)}}, {{A, B, C, X(385), X(7735)}}, {{A, B, C, X(393), X(9227)}}, {{A, B, C, X(427), X(32961)}}, {{A, B, C, X(468), X(33007)}}, {{A, B, C, X(755), X(40103)}}, {{A, B, C, X(1031), X(8797)}}, {{A, B, C, X(1302), X(55270)}}, {{A, B, C, X(1383), X(14659)}}, {{A, B, C, X(1992), X(8859)}}, {{A, B, C, X(2165), X(40416)}}, {{A, B, C, X(2710), X(14565)}}, {{A, B, C, X(2868), X(10603)}}, {{A, B, C, X(2980), X(25322)}}, {{A, B, C, X(3224), X(46316)}}, {{A, B, C, X(3266), X(3767)}}, {{A, B, C, X(3329), X(34229)}}, {{A, B, C, X(3552), X(6353)}}, {{A, B, C, X(4232), X(32985)}}, {{A, B, C, X(4235), X(59098)}}, {{A, B, C, X(4590), X(34288)}}, {{A, B, C, X(5094), X(33006)}}, {{A, B, C, X(5304), X(37667)}}, {{A, B, C, X(5486), X(57926)}}, {{A, B, C, X(5970), X(9292)}}, {{A, B, C, X(6658), X(38282)}}, {{A, B, C, X(6995), X(32970)}}, {{A, B, C, X(7378), X(32969)}}, {{A, B, C, X(7408), X(32959)}}, {{A, B, C, X(7409), X(32958)}}, {{A, B, C, X(7736), X(17004)}}, {{A, B, C, X(7792), X(16990)}}, {{A, B, C, X(7795), X(26235)}}, {{A, B, C, X(7828), X(9464)}}, {{A, B, C, X(8889), X(32966)}}, {{A, B, C, X(9229), X(34285)}}, {{A, B, C, X(9740), X(61304)}}, {{A, B, C, X(14387), X(40428)}}, {{A, B, C, X(21765), X(42349)}}, {{A, B, C, X(23297), X(31415)}}, {{A, B, C, X(32984), X(52284)}}, {{A, B, C, X(32993), X(52299)}}, {{A, B, C, X(33280), X(37453)}}, {{A, B, C, X(34161), X(37809)}}, {{A, B, C, X(35511), X(44556)}}, {{A, B, C, X(36953), X(45819)}}, {{A, B, C, X(42286), X(45838)}}, {{A, B, C, X(52223), X(56360)}}, {{A, B, C, X(52292), X(52942)}}


X(62906) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17307), X(3), X(2))

Barycentrics    (a^2+2*b^2+b*c+c^2+a*(b+c))*(a^2+b^2+b*c+2*c^2+a*(b+c)) : :

X(62906) lies on the Kiepert hyperbola and on these lines: {10, 3946}, {76, 17307}, {83, 5224}, {98, 24931}, {141, 43531}, {226, 10521}, {321, 3760}, {966, 18841}, {1213, 60075}, {1330, 60077}, {3008, 60243}, {3619, 58012}, {3763, 17758}, {4384, 60203}, {7683, 14484}, {12699, 54668}, {13634, 14458}, {14377, 32781}, {17234, 32014}, {17277, 43527}, {17352, 60100}, {21358, 55949}, {26244, 60215}, {27095, 60230}, {30761, 60096}, {31090, 60129}, {31144, 60239}, {31247, 60087}, {50058, 60079}, {50068, 60267}

X(62906) = isotomic conjugate of X(17381)
X(62906) = trilinear pole of line {4382, 23729}
X(62906) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 17381}, {692, 49282}
X(62906) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17381}, {1086, 49282}
X(62906) = pole of line {17303, 17599} with respect to the dual conic of Yff parabola
X(62906) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17308)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(17307)}}, {{A, B, C, X(8), X(29604)}}, {{A, B, C, X(75), X(4657)}}, {{A, B, C, X(79), X(40023)}}, {{A, B, C, X(85), X(1224)}}, {{A, B, C, X(86), X(17327)}}, {{A, B, C, X(141), X(5224)}}, {{A, B, C, X(257), X(996)}}, {{A, B, C, X(274), X(32921)}}, {{A, B, C, X(277), X(3946)}}, {{A, B, C, X(469), X(50318)}}, {{A, B, C, X(514), X(59760)}}, {{A, B, C, X(673), X(39708)}}, {{A, B, C, X(870), X(1268)}}, {{A, B, C, X(903), X(25503)}}, {{A, B, C, X(966), X(3619)}}, {{A, B, C, X(1016), X(39729)}}, {{A, B, C, X(1126), X(56165)}}, {{A, B, C, X(1213), X(17234)}}, {{A, B, C, X(1220), X(57725)}}, {{A, B, C, X(1434), X(39711)}}, {{A, B, C, X(1509), X(27494)}}, {{A, B, C, X(1698), X(4384)}}, {{A, B, C, X(3008), X(9780)}}, {{A, B, C, X(3296), X(44572)}}, {{A, B, C, X(3763), X(17277)}}, {{A, B, C, X(7241), X(39950)}}, {{A, B, C, X(7868), X(26244)}}, {{A, B, C, X(11331), X(13634)}}, {{A, B, C, X(14621), X(32018)}}, {{A, B, C, X(15271), X(30761)}}, {{A, B, C, X(16738), X(27095)}}, {{A, B, C, X(16825), X(29610)}}, {{A, B, C, X(16986), X(31090)}}, {{A, B, C, X(17244), X(48809)}}, {{A, B, C, X(17259), X(17283)}}, {{A, B, C, X(17292), X(36480)}}, {{A, B, C, X(17352), X(34573)}}, {{A, B, C, X(18032), X(28634)}}, {{A, B, C, X(18785), X(39983)}}, {{A, B, C, X(19804), X(50068)}}, {{A, B, C, X(19868), X(29611)}}, {{A, B, C, X(21358), X(31144)}}, {{A, B, C, X(23051), X(40188)}}, {{A, B, C, X(23493), X(30495)}}, {{A, B, C, X(25007), X(26363)}}, {{A, B, C, X(26037), X(30107)}}, {{A, B, C, X(29400), X(31241)}}, {{A, B, C, X(30701), X(42285)}}, {{A, B, C, X(30832), X(37660)}}, {{A, B, C, X(31191), X(46933)}}, {{A, B, C, X(31359), X(56081)}}, {{A, B, C, X(33172), X(41809)}}, {{A, B, C, X(33937), X(33944)}}, {{A, B, C, X(34860), X(34914)}}, {{A, B, C, X(39722), X(56145)}}, {{A, B, C, X(39736), X(62637)}}, {{A, B, C, X(40071), X(57876)}}, {{A, B, C, X(41791), X(55076)}}, {{A, B, C, X(52781), X(55105)}}
X(62906) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17381}, {514, 49282}


X(62907) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17313), X(3), X(2))

Barycentrics    (a^2+b^2+2*b*c-2*c^2+2*a*(b+c))*(a^2-2*b^2+2*b*c+c^2+2*a*(b+c)) : :

X(62907) lies on the Kiepert hyperbola and on these lines: {10, 320}, {69, 54786}, {76, 17313}, {85, 60091}, {86, 60078}, {94, 26541}, {226, 17078}, {274, 60097}, {321, 17310}, {381, 54884}, {671, 17392}, {1509, 24624}, {2051, 16712}, {4049, 28855}, {4080, 29569}, {7199, 60074}, {15936, 54745}, {17297, 60276}, {17378, 60079}, {18135, 40021}, {18140, 39994}, {18145, 40013}, {18146, 40012}, {29578, 30588}, {32022, 37654}, {32833, 60254}, {37631, 54686}, {42028, 54676}, {46895, 59261}, {46922, 60094}, {48838, 60261}

X(62907) = isotomic conjugate of X(17330)
X(62907) = trilinear pole of line {4453, 47780}
X(62907) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 17330}, {41, 15950}
X(62907) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17330}, {3160, 15950}
X(62907) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5385)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(17313)}}, {{A, B, C, X(7), X(20569)}}, {{A, B, C, X(80), X(32013)}}, {{A, B, C, X(85), X(320)}}, {{A, B, C, X(86), X(17271)}}, {{A, B, C, X(274), X(903)}}, {{A, B, C, X(279), X(4896)}}, {{A, B, C, X(519), X(28855)}}, {{A, B, C, X(524), X(17392)}}, {{A, B, C, X(1016), X(27475)}}, {{A, B, C, X(1434), X(40833)}}, {{A, B, C, X(1494), X(57906)}}, {{A, B, C, X(3241), X(29601)}}, {{A, B, C, X(3679), X(29578)}}, {{A, B, C, X(4648), X(37654)}}, {{A, B, C, X(6173), X(40862)}}, {{A, B, C, X(7799), X(26541)}}, {{A, B, C, X(14621), X(31151)}}, {{A, B, C, X(17297), X(46922)}}, {{A, B, C, X(17330), X(49738)}}, {{A, B, C, X(18135), X(18146)}}, {{A, B, C, X(18140), X(18145)}}, {{A, B, C, X(30092), X(48838)}}, {{A, B, C, X(30575), X(37633)}}, {{A, B, C, X(30598), X(40029)}}, {{A, B, C, X(32009), X(35170)}}, {{A, B, C, X(32018), X(55955)}}, {{A, B, C, X(34384), X(43093)}}, {{A, B, C, X(34386), X(56382)}}, {{A, B, C, X(39724), X(43972)}}, {{A, B, C, X(39971), X(47947)}}, {{A, B, C, X(46895), X(51314)}}, {{A, B, C, X(55926), X(56170)}}, {{A, B, C, X(55958), X(57905)}}
X(62907) = barycentric quotient X(i)/X(j) for these (i, j): {2, 17330}, {7, 15950}


X(62908) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17778), X(3), X(2))

Barycentrics    (a^3+b^3+2*b^2*c-c^3+2*a^2*(b+c)+a*b*(2*b+c))*(a^3-b^3+2*b*c^2+c^3+2*a^2*(b+c)+a*c*(b+2*c)) : :

X(62908) lies on the Kiepert hyperbola and on these lines: {2, 2305}, {6, 54119}, {10, 4388}, {30, 54722}, {76, 17778}, {226, 17086}, {262, 37443}, {321, 17788}, {381, 54677}, {1029, 19717}, {5046, 60086}, {5057, 60321}, {5712, 60257}, {5739, 56210}, {6539, 37656}, {6625, 19684}, {8025, 60258}, {8808, 41246}, {17182, 17758}, {17300, 40013}, {17353, 60243}, {17379, 60156}, {17777, 26098}, {26044, 56902}, {26109, 57722}, {26117, 43531}, {32911, 60149}, {37652, 60206}, {37653, 60084}, {51171, 60168}

X(62908) = isogonal conjugate of X(5110)
X(62908) = isotomic conjugate of X(37653)
X(62908) = trilinear pole of line {4142, 523}
X(62908) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5110}, {31, 37653}
X(62908) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37653}, {3, 5110}
X(62908) = pole of line {5110, 37653} with respect to the Wallace hyperbola
X(62908) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(34527)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(2305)}}, {{A, B, C, X(7), X(3112)}}, {{A, B, C, X(65), X(57749)}}, {{A, B, C, X(79), X(30710)}}, {{A, B, C, X(80), X(37870)}}, {{A, B, C, X(81), X(54120)}}, {{A, B, C, X(92), X(1031)}}, {{A, B, C, X(251), X(57652)}}, {{A, B, C, X(256), X(1255)}}, {{A, B, C, X(329), X(41246)}}, {{A, B, C, X(335), X(56224)}}, {{A, B, C, X(350), X(41839)}}, {{A, B, C, X(458), X(37443)}}, {{A, B, C, X(469), X(26117)}}, {{A, B, C, X(1168), X(6630)}}, {{A, B, C, X(1654), X(19684)}}, {{A, B, C, X(2296), X(7261)}}, {{A, B, C, X(2339), X(17947)}}, {{A, B, C, X(2895), X(19717)}}, {{A, B, C, X(2985), X(55090)}}, {{A, B, C, X(4192), X(54372)}}, {{A, B, C, X(5278), X(26109)}}, {{A, B, C, X(5558), X(42360)}}, {{A, B, C, X(5712), X(37652)}}, {{A, B, C, X(5739), X(17379)}}, {{A, B, C, X(6354), X(52395)}}, {{A, B, C, X(7224), X(40418)}}, {{A, B, C, X(8025), X(37656)}}, {{A, B, C, X(15474), X(33109)}}, {{A, B, C, X(17300), X(32911)}}, {{A, B, C, X(17743), X(56184)}}, {{A, B, C, X(17777), X(40725)}}, {{A, B, C, X(18359), X(56047)}}, {{A, B, C, X(19701), X(26044)}}, {{A, B, C, X(19741), X(43990)}}, {{A, B, C, X(19742), X(37635)}}, {{A, B, C, X(27475), X(55988)}}, {{A, B, C, X(30479), X(30712)}}, {{A, B, C, X(30690), X(39724)}}, {{A, B, C, X(31034), X(37685)}}, {{A, B, C, X(32012), X(56228)}}, {{A, B, C, X(39700), X(39722)}}, {{A, B, C, X(44733), X(56046)}}
X(62908) = barycentric product X(i)*X(j) for these (i, j): {45987, 76}
X(62908) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37653}, {6, 5110}, {45987, 6}


X(62909) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(18928), X(3), X(2))

Barycentrics    (a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)-a^2*(b^4+18*b^2*c^2-3*c^4))*(a^6-(b^2-c^2)^3-a^4*(3*b^2+c^2)+a^2*(3*b^4-18*b^2*c^2-c^4)) : :

X(62909) lies on the Kiepert hyperbola and on these lines: {4, 17825}, {6, 60237}, {69, 59764}, {76, 18928}, {381, 54886}, {443, 60157}, {485, 3540}, {486, 3539}, {631, 60174}, {801, 3618}, {1131, 6806}, {1132, 6805}, {1370, 43951}, {3090, 60166}, {3424, 7392}, {3525, 60162}, {3545, 54844}, {3589, 56346}, {5067, 60159}, {5084, 60158}, {6515, 59763}, {6803, 60618}, {6804, 31363}, {6819, 8796}, {6820, 60161}, {6997, 60147}, {7386, 14484}, {7391, 54706}, {7394, 60327}, {10601, 60114}, {13567, 18840}, {16063, 60328}, {17559, 60154}, {17582, 60164}, {37648, 60221}, {44442, 54520}, {46336, 60118}, {54498, 61899}, {54500, 61888}, {54827, 61822}, {54942, 61932}, {60160, 60781}, {60163, 61867}

X(62909) = trilinear pole of line {47094, 523}
X(62909) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(18928)}}, {{A, B, C, X(7), X(56230)}}, {{A, B, C, X(69), X(17825)}}, {{A, B, C, X(329), X(21446)}}, {{A, B, C, X(631), X(6819)}}, {{A, B, C, X(1032), X(4846)}}, {{A, B, C, X(1073), X(15740)}}, {{A, B, C, X(2478), X(37276)}}, {{A, B, C, X(3090), X(6820)}}, {{A, B, C, X(3296), X(56354)}}, {{A, B, C, X(3618), X(13567)}}, {{A, B, C, X(5067), X(37192)}}, {{A, B, C, X(6524), X(39951)}}, {{A, B, C, X(7386), X(52288)}}, {{A, B, C, X(7392), X(52283)}}, {{A, B, C, X(10601), X(11433)}}, {{A, B, C, X(10603), X(39287)}}, {{A, B, C, X(11427), X(37648)}}, {{A, B, C, X(11578), X(34525)}}, {{A, B, C, X(15466), X(42330)}}, {{A, B, C, X(18490), X(56352)}}, {{A, B, C, X(30513), X(34546)}}, {{A, B, C, X(34919), X(55987)}}, {{A, B, C, X(37643), X(37649)}}, {{A, B, C, X(55110), X(56218)}}


X(62910) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(20583), X(3), X(2))

Barycentrics    (14*a^2+14*b^2-c^2)*(14*a^2-b^2+14*c^2) : :

X(62910) lies on the Kiepert hyperbola and on these lines: {76, 20583}, {98, 61933}, {262, 34200}, {316, 60648}, {381, 54891}, {597, 53105}, {6329, 60626}, {7607, 61900}, {7608, 55863}, {7878, 43681}, {7918, 18843}, {7937, 60645}, {10109, 60175}, {10302, 40341}, {11539, 11669}, {14458, 61963}, {14484, 62153}, {14492, 62046}, {15693, 60192}, {15703, 53104}, {15705, 60331}, {15721, 60333}, {19710, 54643}, {53099, 61798}, {53489, 60287}, {54521, 62094}, {54608, 61950}, {54866, 61938}, {60102, 61906}, {60142, 62134}, {60143, 60855}, {60323, 61942}, {60329, 62164}, {60336, 61927}

X(62910) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(20583)}}, {{A, B, C, X(297), X(61933)}}, {{A, B, C, X(458), X(34200)}}, {{A, B, C, X(597), X(40341)}}, {{A, B, C, X(11331), X(61963)}}, {{A, B, C, X(52281), X(55863)}}, {{A, B, C, X(52282), X(61900)}}, {{A, B, C, X(52288), X(62153)}}, {{A, B, C, X(52289), X(62046)}}


X(62911) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(20806), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-a^4*b^2+b^6-b^2*c^4-a^2*(b^2+c^2)^2)*(a^6-a^4*c^2-b^4*c^2+c^6-a^2*(b^2+c^2)^2) : :

X(62911) lies on the Kiepert hyperbola and on these lines: {2, 10312}, {4, 206}, {6, 43678}, {24, 262}, {76, 20806}, {94, 41253}, {98, 1594}, {112, 10548}, {297, 40393}, {340, 10159}, {381, 54610}, {427, 10547}, {458, 5392}, {1289, 42442}, {2052, 8743}, {3147, 14494}, {3399, 60693}, {3839, 54931}, {5523, 54703}, {6531, 60520}, {7487, 14484}, {7509, 13599}, {7565, 54632}, {7576, 14492}, {7607, 52296}, {7608, 10018}, {7745, 60133}, {7762, 42410}, {7841, 54684}, {8370, 54871}, {9290, 28723}, {9381, 41254}, {14788, 40448}, {18840, 40065}, {27376, 54685}, {28704, 60212}, {28724, 37125}, {31636, 60199}, {46767, 52583}, {52281, 54666}, {52288, 60221}, {52289, 60225}

X(62911) = trilinear pole of line {21284, 523}
X(62911) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 5133}, {63, 9969}, {17442, 51252}, {34055, 42442}, {44706, 60589}
X(62911) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 5133}, {3162, 9969}
X(62911) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(206)}}, {{A, B, C, X(24), X(458)}}, {{A, B, C, X(54), X(287)}}, {{A, B, C, X(70), X(42313)}}, {{A, B, C, X(75), X(4911)}}, {{A, B, C, X(252), X(42351)}}, {{A, B, C, X(276), X(1300)}}, {{A, B, C, X(290), X(53485)}}, {{A, B, C, X(297), X(1594)}}, {{A, B, C, X(315), X(18018)}}, {{A, B, C, X(340), X(44142)}}, {{A, B, C, X(427), X(11605)}}, {{A, B, C, X(436), X(28723)}}, {{A, B, C, X(1061), X(17743)}}, {{A, B, C, X(1063), X(14621)}}, {{A, B, C, X(1166), X(34536)}}, {{A, B, C, X(1179), X(16081)}}, {{A, B, C, X(3431), X(34386)}}, {{A, B, C, X(3574), X(60597)}}, {{A, B, C, X(5286), X(41370)}}, {{A, B, C, X(5523), X(7745)}}, {{A, B, C, X(6145), X(36952)}}, {{A, B, C, X(6531), X(8882)}}, {{A, B, C, X(6618), X(28717)}}, {{A, B, C, X(7487), X(52288)}}, {{A, B, C, X(7576), X(52289)}}, {{A, B, C, X(8791), X(27376)}}, {{A, B, C, X(8880), X(8881)}}, {{A, B, C, X(8884), X(42330)}}, {{A, B, C, X(10018), X(52281)}}, {{A, B, C, X(10548), X(15412)}}, {{A, B, C, X(14376), X(14542)}}, {{A, B, C, X(14618), X(14860)}}, {{A, B, C, X(14788), X(52280)}}, {{A, B, C, X(15321), X(53024)}}, {{A, B, C, X(15388), X(15391)}}, {{A, B, C, X(20563), X(54124)}}, {{A, B, C, X(20572), X(35142)}}, {{A, B, C, X(23964), X(57421)}}, {{A, B, C, X(30535), X(57387)}}, {{A, B, C, X(32708), X(43187)}}, {{A, B, C, X(38936), X(41253)}}, {{A, B, C, X(40009), X(44175)}}, {{A, B, C, X(40402), X(43717)}}, {{A, B, C, X(42346), X(57655)}}, {{A, B, C, X(44177), X(59256)}}, {{A, B, C, X(46115), X(61133)}}, {{A, B, C, X(51032), X(58759)}}, {{A, B, C, X(52282), X(52296)}}
X(62911) = barycentric quotient X(i)/X(j) for these (i, j): {4, 5133}, {25, 9969}, {1176, 51252}, {1843, 42442}, {8882, 60589}


X(62912) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(22329), X(3), X(2))

Barycentrics    (4*a^4+4*b^4-b^2*c^2+c^4+a^2*(2*b^2-c^2))*(4*a^4+b^4-b^2*c^2+4*c^4-a^2*(b^2-2*c^2)) : :

X(62912) lies on the Kiepert hyperbola and on these lines: {2, 2030}, {4, 7817}, {6, 5503}, {76, 8369}, {83, 11318}, {98, 47353}, {183, 10302}, {230, 11167}, {262, 597}, {381, 60140}, {598, 7792}, {599, 60213}, {671, 3972}, {1916, 11150}, {1992, 40824}, {2996, 61304}, {3329, 10484}, {3399, 61132}, {3545, 54859}, {3618, 60268}, {3815, 42011}, {4108, 5466}, {5306, 60180}, {5395, 7932}, {5461, 10033}, {5475, 18842}, {5476, 14484}, {5485, 7735}, {7607, 44401}, {7608, 42849}, {7736, 60240}, {7757, 10290}, {7806, 43535}, {7840, 43529}, {7852, 18841}, {7915, 60183}, {8176, 54616}, {8361, 43527}, {8781, 11163}, {8860, 60101}, {9993, 54713}, {10159, 32954}, {10796, 14485}, {11168, 60099}, {12150, 60072}, {13638, 60224}, {13758, 60223}, {14494, 52669}, {14614, 60202}, {18553, 43537}, {18840, 33197}, {22712, 60126}, {23055, 60212}, {33181, 60285}, {33199, 60647}, {33201, 43681}, {37667, 60628}, {43688, 62204}, {47352, 54509}, {54747, 55177}

X(62912) = trilinear pole of line {9135, 523}
X(62912) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 11167}
X(62912) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(2030)}}, {{A, B, C, X(25), X(8369)}}, {{A, B, C, X(66), X(46645)}}, {{A, B, C, X(183), X(597)}}, {{A, B, C, X(193), X(61304)}}, {{A, B, C, X(230), X(11163)}}, {{A, B, C, X(264), X(13377)}}, {{A, B, C, X(305), X(7817)}}, {{A, B, C, X(427), X(11318)}}, {{A, B, C, X(428), X(32954)}}, {{A, B, C, X(468), X(11159)}}, {{A, B, C, X(599), X(7792)}}, {{A, B, C, X(1992), X(7735)}}, {{A, B, C, X(3618), X(42850)}}, {{A, B, C, X(3815), X(8860)}}, {{A, B, C, X(3972), X(4108)}}, {{A, B, C, X(5064), X(8361)}}, {{A, B, C, X(5094), X(37350)}}, {{A, B, C, X(5306), X(14614)}}, {{A, B, C, X(5939), X(45329)}}, {{A, B, C, X(5967), X(37860)}}, {{A, B, C, X(5970), X(44557)}}, {{A, B, C, X(6094), X(9516)}}, {{A, B, C, X(6995), X(33197)}}, {{A, B, C, X(7714), X(33181)}}, {{A, B, C, X(7736), X(23055)}}, {{A, B, C, X(7766), X(62204)}}, {{A, B, C, X(7806), X(7840)}}, {{A, B, C, X(9307), X(18823)}}, {{A, B, C, X(9487), X(41932)}}, {{A, B, C, X(11168), X(11174)}}, {{A, B, C, X(14356), X(47353)}}, {{A, B, C, X(14906), X(21448)}}, {{A, B, C, X(22486), X(51510)}}, {{A, B, C, X(30541), X(53890)}}, {{A, B, C, X(30542), X(44571)}}, {{A, B, C, X(34154), X(39951)}}, {{A, B, C, X(34581), X(61345)}}, {{A, B, C, X(34892), X(56358)}}, {{A, B, C, X(34898), X(45819)}}, {{A, B, C, X(34914), X(52133)}}, {{A, B, C, X(37688), X(42849)}}, {{A, B, C, X(46316), X(54413)}}


X(62913) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(23055), X(3), X(2))

Barycentrics    (11*a^4+11*b^4-8*b^2*c^2+5*c^4-2*a^2*(b^2+4*c^2))*(11*a^4+5*b^4-8*b^2*c^2+11*c^4-2*a^2*(4*b^2+c^2)) : :

X(62913) lies on the Kiepert hyperbola and on these lines: {6, 60240}, {76, 23055}, {230, 5485}, {381, 54894}, {597, 14494}, {1992, 8781}, {2996, 32985}, {5395, 32984}, {5461, 54659}, {5503, 7735}, {6055, 60140}, {7610, 60143}, {7612, 11180}, {7736, 42011}, {7792, 60268}, {8860, 60212}, {10155, 42849}, {10159, 32959}, {10302, 34229}, {10484, 16989}, {11168, 18840}, {15271, 60629}, {15702, 60126}, {16925, 43681}, {18845, 33006}, {22329, 40824}, {23053, 60101}, {26255, 62671}, {32958, 43527}, {32961, 60145}, {32969, 60647}, {32970, 60285}, {33007, 38259}, {35005, 62204}, {37809, 60189}, {42850, 60213}, {52942, 60113}, {54805, 61932}, {59373, 60211}, {60148, 61899}, {60260, 61304}

X(62913) = trilinear pole of line {47541, 523}
X(62913) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 5485}
X(62913) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(23055)}}, {{A, B, C, X(230), X(1992)}}, {{A, B, C, X(428), X(32959)}}, {{A, B, C, X(524), X(44556)}}, {{A, B, C, X(597), X(34229)}}, {{A, B, C, X(1007), X(44401)}}, {{A, B, C, X(3618), X(11168)}}, {{A, B, C, X(3815), X(23053)}}, {{A, B, C, X(5064), X(32958)}}, {{A, B, C, X(6353), X(32985)}}, {{A, B, C, X(7610), X(59373)}}, {{A, B, C, X(7714), X(32970)}}, {{A, B, C, X(7735), X(22329)}}, {{A, B, C, X(7736), X(8860)}}, {{A, B, C, X(7792), X(42850)}}, {{A, B, C, X(8889), X(32984)}}, {{A, B, C, X(10603), X(53186)}}, {{A, B, C, X(23054), X(52154)}}, {{A, B, C, X(33006), X(52299)}}, {{A, B, C, X(33007), X(38282)}}, {{A, B, C, X(36889), X(40428)}}, {{A, B, C, X(36953), X(39453)}}, {{A, B, C, X(37667), X(61304)}}


X(62914) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(26540), X(3), X(2))

Barycentrics    b*c*(a^3*(b-c)-a*(b-c)^2*(b+c)+b*(b-c)^2*(b+c)+a^2*(-b^2+b*c+2*c^2))*(a^3*(-b+c)-a*(b-c)^2*(b+c)+(b-c)^2*c*(b+c)+a^2*(2*b^2+b*c-c^2)) : :

X(62914) lies on the Kiepert hyperbola and on these lines: {2, 16699}, {10, 774}, {76, 26540}, {81, 801}, {83, 26678}, {98, 4223}, {169, 60135}, {226, 17451}, {321, 13567}, {379, 13478}, {495, 52345}, {857, 2051}, {1446, 20905}, {1837, 13576}, {4391, 23581}, {5179, 40515}, {6554, 60229}, {11113, 54508}, {17577, 54900}, {17758, 44150}, {17862, 43675}, {18928, 60155}, {19684, 56216}, {21049, 59206}, {25002, 60227}, {25015, 57719}, {26005, 60097}, {26607, 34258}, {28809, 60254}, {30031, 60320}, {30809, 45098}, {31042, 45100}, {33172, 59764}, {37275, 40448}

X(62914) = isotomic conjugate of X(37659)
X(62914) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 37659}, {48, 4219}, {101, 44408}, {109, 57237}, {651, 57175}, {1262, 14714}, {2206, 45744}, {32739, 46402}
X(62914) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37659}, {11, 57237}, {1015, 44408}, {1249, 4219}, {38991, 57175}, {40603, 45744}, {40619, 46402}
X(62914) = X(i)-cross conjugate of X(j) for these {i, j}: {2310, 693}, {8226, 264}, {21931, 40216}, {25964, 2}
X(62914) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1736)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(26540)}}, {{A, B, C, X(7), X(25019)}}, {{A, B, C, X(8), X(331)}}, {{A, B, C, X(21), X(1952)}}, {{A, B, C, X(27), X(25017)}}, {{A, B, C, X(75), X(25001)}}, {{A, B, C, X(79), X(2989)}}, {{A, B, C, X(81), X(774)}}, {{A, B, C, X(85), X(318)}}, {{A, B, C, X(86), X(25000)}}, {{A, B, C, X(92), X(341)}}, {{A, B, C, X(169), X(26546)}}, {{A, B, C, X(257), X(294)}}, {{A, B, C, X(274), X(26592)}}, {{A, B, C, X(297), X(4223)}}, {{A, B, C, X(346), X(10405)}}, {{A, B, C, X(379), X(17555)}}, {{A, B, C, X(427), X(26678)}}, {{A, B, C, X(857), X(11109)}}, {{A, B, C, X(948), X(26563)}}, {{A, B, C, X(1220), X(52781)}}, {{A, B, C, X(1441), X(58024)}}, {{A, B, C, X(1837), X(17743)}}, {{A, B, C, X(1855), X(6554)}}, {{A, B, C, X(2340), X(26531)}}, {{A, B, C, X(3701), X(40011)}}, {{A, B, C, X(4185), X(26607)}}, {{A, B, C, X(5179), X(17911)}}, {{A, B, C, X(6605), X(21258)}}, {{A, B, C, X(7178), X(57666)}}, {{A, B, C, X(9311), X(24002)}}, {{A, B, C, X(15466), X(52345)}}, {{A, B, C, X(15988), X(26530)}}, {{A, B, C, X(17776), X(17862)}}, {{A, B, C, X(17825), X(33172)}}, {{A, B, C, X(18026), X(23581)}}, {{A, B, C, X(18738), X(57809)}}, {{A, B, C, X(23529), X(56044)}}, {{A, B, C, X(25015), X(37279)}}, {{A, B, C, X(25964), X(37659)}}, {{A, B, C, X(26005), X(37633)}}, {{A, B, C, X(26529), X(36010)}}, {{A, B, C, X(30690), X(40447)}}, {{A, B, C, X(36624), X(55948)}}, {{A, B, C, X(37275), X(52280)}}, {{A, B, C, X(37695), X(56416)}}, {{A, B, C, X(44150), X(58361)}}
X(62914) = barycentric product X(i)*X(j) for these (i, j): {53683, 850}
X(62914) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37659}, {4, 4219}, {321, 45744}, {513, 44408}, {650, 57237}, {663, 57175}, {693, 46402}, {2310, 14714}, {53683, 110}


X(62915) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(26543), X(3), X(2))

Barycentrics    b*c*(a^3*(b-2*c)-a^2*b*(b+c)+b*(b-c)^2*(b+c)-a*(b^3+b*c^2+2*c^3))*(a^3*(-2*b+c)-a^2*c*(b+c)+(b-c)^2*c*(b+c)-a*(2*b^3+b^2*c+c^3)) : :

X(62915) lies on the Kiepert hyperbola and on these lines: {10, 4008}, {76, 26543}, {98, 405}, {226, 3061}, {262, 442}, {274, 40824}, {321, 40814}, {452, 3424}, {458, 40395}, {1446, 3662}, {2051, 37445}, {5175, 13576}, {5177, 14484}, {7612, 16845}, {7841, 54692}, {8370, 54729}, {11113, 14458}, {13478, 37086}, {13740, 54972}, {14492, 17532}, {16062, 57719}, {17677, 54516}, {18135, 60259}, {18140, 60212}, {18146, 60217}, {25985, 60141}, {34284, 60201}, {37224, 60081}, {47510, 60108}, {50741, 60127}

X(62915) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(26543)}}, {{A, B, C, X(9), X(257)}}, {{A, B, C, X(72), X(42313)}}, {{A, B, C, X(85), X(26735)}}, {{A, B, C, X(86), X(57922)}}, {{A, B, C, X(274), X(4008)}}, {{A, B, C, X(290), X(57831)}}, {{A, B, C, X(297), X(405)}}, {{A, B, C, X(327), X(57877)}}, {{A, B, C, X(331), X(1220)}}, {{A, B, C, X(335), X(5665)}}, {{A, B, C, X(442), X(458)}}, {{A, B, C, X(452), X(52283)}}, {{A, B, C, X(1231), X(42287)}}, {{A, B, C, X(1244), X(51499)}}, {{A, B, C, X(1268), X(57924)}}, {{A, B, C, X(1441), X(59256)}}, {{A, B, C, X(5175), X(46108)}}, {{A, B, C, X(5177), X(52288)}}, {{A, B, C, X(6063), X(18299)}}, {{A, B, C, X(6598), X(17743)}}, {{A, B, C, X(7522), X(25988)}}, {{A, B, C, X(7770), X(25985)}}, {{A, B, C, X(11109), X(37445)}}, {{A, B, C, X(11113), X(11331)}}, {{A, B, C, X(11341), X(47510)}}, {{A, B, C, X(16062), X(37279)}}, {{A, B, C, X(16845), X(37174)}}, {{A, B, C, X(17532), X(52289)}}, {{A, B, C, X(17555), X(37086)}}, {{A, B, C, X(17924), X(59760)}}, {{A, B, C, X(24540), X(25000)}}, {{A, B, C, X(26526), X(41276)}}, {{A, B, C, X(31359), X(40739)}}, {{A, B, C, X(34917), X(56042)}}, {{A, B, C, X(35140), X(57818)}}, {{A, B, C, X(38271), X(57725)}}, {{A, B, C, X(40412), X(54124)}}, {{A, B, C, X(40802), X(57689)}}, {{A, B, C, X(45965), X(50040)}}, {{A, B, C, X(55972), X(57858)}}, {{A, B, C, X(56044), X(57792)}}


X(62916) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(28408), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^4*(-b^2+c^2)+(b^2-c^2)*(b^2+c^2)^2-a^2*(b^4+4*b^2*c^2+c^4))*(a^6+a^4*(b^2-c^2)-(b^2-c^2)*(b^2+c^2)^2-a^2*(b^4+4*b^2*c^2+c^4)) : :

X(62916) lies on the Kiepert hyperbola and on these lines: {2, 22120}, {4, 15577}, {76, 28408}, {98, 37119}, {262, 7505}, {340, 43527}, {381, 54704}, {451, 60153}, {458, 13579}, {3088, 60147}, {3089, 43951}, {3091, 54705}, {3424, 3541}, {3542, 14484}, {3545, 54640}, {5286, 46105}, {6143, 7612}, {6504, 52288}, {7383, 31363}, {8889, 40178}, {11538, 37174}, {11606, 37337}, {14494, 14940}, {34621, 54923}, {35482, 54845}, {37125, 54122}, {37804, 40831}, {37943, 60127}, {41770, 43679}, {52252, 60152}, {52281, 54762}, {52282, 54765}, {52289, 60255}

X(62916) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 7394}
X(62916) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 7394}
X(62916) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(20987)}}, {{A, B, C, X(54), X(14376)}}, {{A, B, C, X(70), X(36952)}}, {{A, B, C, X(297), X(37119)}}, {{A, B, C, X(420), X(37337)}}, {{A, B, C, X(458), X(7505)}}, {{A, B, C, X(847), X(42330)}}, {{A, B, C, X(1235), X(34405)}}, {{A, B, C, X(3431), X(3926)}}, {{A, B, C, X(3541), X(52283)}}, {{A, B, C, X(3542), X(52288)}}, {{A, B, C, X(5286), X(8744)}}, {{A, B, C, X(6143), X(37174)}}, {{A, B, C, X(13418), X(56267)}}, {{A, B, C, X(14528), X(34897)}}, {{A, B, C, X(19222), X(41769)}}, {{A, B, C, X(40421), X(44175)}}, {{A, B, C, X(41361), X(56363)}}
X(62916) = barycentric quotient X(i)/X(j) for these (i, j): {4, 7394}


X(62917) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(28419), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+a^4*(-b^2+c^2)+(b^2-c^2)*(b^2+c^2)^2-a^2*(b^4+6*b^2*c^2+c^4))*(a^6+a^4*(b^2-c^2)-(b^2-c^2)*(b^2+c^2)^2-a^2*(b^4+6*b^2*c^2+c^4)) : :

X(62917) lies on the Kiepert hyperbola and on these lines: {2, 23115}, {4, 159}, {6, 52583}, {10, 54293}, {76, 28419}, {83, 317}, {98, 3541}, {262, 3542}, {381, 54640}, {406, 60153}, {427, 40178}, {458, 6504}, {475, 60152}, {1235, 5392}, {2052, 41361}, {3088, 3424}, {3089, 14484}, {3832, 54705}, {3839, 54704}, {5286, 43678}, {6143, 53103}, {7383, 13599}, {7400, 31363}, {7505, 14494}, {7612, 37119}, {7754, 60256}, {10155, 14940}, {14376, 40185}, {18841, 40065}, {34254, 40831}, {35482, 60322}, {36907, 56445}, {37125, 60212}, {37337, 54122}, {37943, 54523}, {41770, 60159}, {52252, 60165}, {52281, 54761}, {52282, 54764}, {52288, 60114}

X(62917) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 6997}
X(62917) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 6997}
X(62917) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(159)}}, {{A, B, C, X(34), X(54293)}}, {{A, B, C, X(54), X(3926)}}, {{A, B, C, X(66), X(36952)}}, {{A, B, C, X(254), X(276)}}, {{A, B, C, X(297), X(3541)}}, {{A, B, C, X(317), X(1235)}}, {{A, B, C, X(427), X(46701)}}, {{A, B, C, X(458), X(3542)}}, {{A, B, C, X(525), X(14542)}}, {{A, B, C, X(1061), X(30701)}}, {{A, B, C, X(1093), X(42330)}}, {{A, B, C, X(2082), X(28409)}}, {{A, B, C, X(3088), X(52283)}}, {{A, B, C, X(3089), X(52288)}}, {{A, B, C, X(3431), X(56339)}}, {{A, B, C, X(5254), X(41370)}}, {{A, B, C, X(5286), X(8743)}}, {{A, B, C, X(6618), X(28425)}}, {{A, B, C, X(7763), X(34756)}}, {{A, B, C, X(14618), X(18855)}}, {{A, B, C, X(28739), X(41791)}}, {{A, B, C, X(34897), X(43908)}}, {{A, B, C, X(36612), X(42298)}}, {{A, B, C, X(37119), X(37174)}}, {{A, B, C, X(40050), X(53477)}}, {{A, B, C, X(42287), X(45011)}}, {{A, B, C, X(42300), X(59757)}}, {{A, B, C, X(43717), X(46952)}}
X(62917) = barycentric product X(i)*X(j) for these (i, j): {264, 43725}
X(62917) = barycentric quotient X(i)/X(j) for these (i, j): {4, 6997}, {43725, 3}


X(62918) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(28754), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-c^4+a^2*b*(-2*b+c)+a*b*c*(b+c))*(a^4-b^4+a^2*(b-2*c)*c+c^4+a*b*c*(b+c)) : :

X(62918) lies on the Kiepert hyperbola and on these lines: {6, 60246}, {10, 1870}, {27, 55027}, {76, 28754}, {278, 60091}, {321, 17923}, {381, 54932}, {406, 60077}, {451, 43531}, {469, 1029}, {475, 43533}, {2051, 17171}, {3541, 60158}, {3542, 60157}, {4212, 13576}, {4213, 60617}, {5125, 13583}, {6353, 60153}, {6833, 31363}, {6834, 60618}, {6949, 40448}, {6952, 13599}, {7490, 60155}, {7505, 60164}, {7537, 57719}, {8889, 60152}, {14940, 60173}, {15149, 60149}, {17925, 60074}, {28738, 60254}, {37119, 60154}, {37382, 60092}, {37388, 60168}, {37943, 54727}, {52299, 60165}

X(62918) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 5046}
X(62918) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 5046}
X(62918) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(28754)}}, {{A, B, C, X(27), X(52252)}}, {{A, B, C, X(54), X(1214)}}, {{A, B, C, X(57), X(1063)}}, {{A, B, C, X(278), X(1870)}}, {{A, B, C, X(451), X(469)}}, {{A, B, C, X(475), X(7490)}}, {{A, B, C, X(1041), X(8056)}}, {{A, B, C, X(1061), X(25430)}}, {{A, B, C, X(1246), X(57865)}}, {{A, B, C, X(2006), X(40397)}}, {{A, B, C, X(2982), X(52381)}}, {{A, B, C, X(3088), X(37276)}}, {{A, B, C, X(4212), X(15149)}}, {{A, B, C, X(6557), X(43742)}}, {{A, B, C, X(6949), X(52280)}}, {{A, B, C, X(7537), X(37279)}}, {{A, B, C, X(8814), X(57832)}}, {{A, B, C, X(28738), X(37642)}}, {{A, B, C, X(37382), X(57534)}}, {{A, B, C, X(39798), X(57390)}}, {{A, B, C, X(39979), X(57388)}}
X(62918) = barycentric quotient X(i)/X(j) for these (i, j): {4, 5046}


X(62919) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(30828), X(3), X(2))

Barycentrics    (a+b-c)*(a-b+c)*(a^2+b^2-2*b*c-3*c^2-2*a*(2*b+c))*(a^2-3*b^2-2*b*c+c^2-2*a*(b+2*c)) : :

X(62919) lies on the Kiepert hyperbola and on these lines: {4, 5718}, {6, 55962}, {7, 30588}, {10, 3340}, {21, 60077}, {57, 56226}, {76, 30828}, {226, 4419}, {321, 5226}, {376, 54679}, {388, 60089}, {631, 5397}, {1434, 58012}, {2476, 43533}, {3090, 60112}, {3545, 54528}, {4417, 60206}, {4648, 60085}, {5233, 32022}, {5712, 13478}, {6824, 60157}, {6825, 60158}, {6852, 60164}, {6853, 60154}, {6855, 57719}, {6857, 43531}, {6988, 54972}, {7402, 54739}, {8229, 14484}, {11111, 60078}, {11114, 54623}, {12047, 60634}, {13576, 52659}, {14555, 60235}, {17056, 60076}, {18840, 30811}, {24597, 60247}, {27739, 54786}, {30834, 60242}, {30943, 60617}, {37662, 60107}, {50739, 54624}

X(62919) = trilinear pole of line {43052, 47271}
X(62919) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(36100)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(30828)}}, {{A, B, C, X(7), X(2006)}}, {{A, B, C, X(21), X(6557)}}, {{A, B, C, X(27), X(6856)}}, {{A, B, C, X(57), X(3340)}}, {{A, B, C, X(69), X(5718)}}, {{A, B, C, X(278), X(1434)}}, {{A, B, C, X(469), X(6857)}}, {{A, B, C, X(1000), X(18359)}}, {{A, B, C, X(1013), X(30809)}}, {{A, B, C, X(1214), X(19765)}}, {{A, B, C, X(1255), X(55936)}}, {{A, B, C, X(1441), X(8814)}}, {{A, B, C, X(2476), X(7490)}}, {{A, B, C, X(2990), X(14497)}}, {{A, B, C, X(3618), X(30811)}}, {{A, B, C, X(4417), X(5712)}}, {{A, B, C, X(4419), X(4997)}}, {{A, B, C, X(4648), X(5233)}}, {{A, B, C, X(5328), X(60937)}}, {{A, B, C, X(6838), X(37276)}}, {{A, B, C, X(6855), X(37279)}}, {{A, B, C, X(7249), X(40154)}}, {{A, B, C, X(8056), X(17098)}}, {{A, B, C, X(8229), X(52288)}}, {{A, B, C, X(14555), X(17056)}}, {{A, B, C, X(14628), X(56642)}}, {{A, B, C, X(18141), X(37662)}}, {{A, B, C, X(21617), X(54366)}}, {{A, B, C, X(24597), X(30834)}}, {{A, B, C, X(39948), X(56030)}}, {{A, B, C, X(39963), X(55924)}}, {{A, B, C, X(40434), X(55918)}}, {{A, B, C, X(41003), X(57858)}}, {{A, B, C, X(52212), X(56666)}}, {{A, B, C, X(55963), X(56218)}}, {{A, B, C, X(55964), X(56217)}}


X(62920) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(30834), X(3), X(2))

Barycentrics    (a^3+2*b^3-b^2*c-2*b*c^2+c^3-2*a^2*(b+c)-a*(b^2+2*c^2))*(a^3+b^3-2*b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(2*b^2+c^2)) : :

X(62920) lies on the Kiepert hyperbola and on these lines: {3, 54679}, {4, 45944}, {5, 54528}, {6, 60247}, {10, 4867}, {21, 60078}, {76, 30834}, {140, 5397}, {321, 27757}, {411, 54526}, {1656, 60112}, {2476, 60079}, {3218, 30588}, {5219, 60091}, {5270, 60089}, {5718, 24624}, {5741, 60235}, {6824, 54757}, {6825, 54758}, {6828, 54516}, {6837, 54726}, {6838, 54688}, {6842, 54698}, {6852, 54727}, {6855, 54787}, {6856, 54786}, {6857, 54624}, {6872, 54623}, {6912, 54511}, {6932, 54696}, {6988, 54790}, {6996, 54630}, {7377, 54691}, {8229, 14492}, {10883, 54687}, {17056, 60615}, {30831, 60084}, {36002, 54517}, {37651, 60075}, {37662, 57721}, {40013, 41878}, {46487, 54648}, {47683, 60074}, {56226, 59491}

X(62920) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3218)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(30834)}}, {{A, B, C, X(12), X(3936)}}, {{A, B, C, X(21), X(4997)}}, {{A, B, C, X(81), X(6336)}}, {{A, B, C, X(85), X(37222)}}, {{A, B, C, X(88), X(17097)}}, {{A, B, C, X(189), X(5226)}}, {{A, B, C, X(495), X(52659)}}, {{A, B, C, X(1255), X(2167)}}, {{A, B, C, X(2006), X(5557)}}, {{A, B, C, X(3519), X(45944)}}, {{A, B, C, X(4084), X(14996)}}, {{A, B, C, X(5559), X(18359)}}, {{A, B, C, X(5741), X(17056)}}, {{A, B, C, X(7320), X(50442)}}, {{A, B, C, X(8229), X(52289)}}, {{A, B, C, X(11374), X(37695)}}, {{A, B, C, X(11375), X(17720)}}, {{A, B, C, X(15950), X(37691)}}, {{A, B, C, X(17098), X(39963)}}, {{A, B, C, X(17234), X(37651)}}, {{A, B, C, X(18139), X(37662)}}, {{A, B, C, X(25430), X(55936)}}, {{A, B, C, X(31281), X(37660)}}, {{A, B, C, X(32015), X(55924)}}, {{A, B, C, X(32851), X(56143)}}, {{A, B, C, X(32911), X(41878)}}, {{A, B, C, X(39962), X(55938)}}, {{A, B, C, X(44733), X(52393)}}


X(62921) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(30962), X(3), X(2))

Barycentrics    (3*a^2*b*c+a^3*(b+c)+b*c*(b^2-c^2)+a*(b^3+3*b^2*c+b*c^2-c^3))*(3*a^2*b*c-b^3*c+b*c^3+a^3*(b+c)+a*(-b^3+b^2*c+3*b*c^2+c^3)) : :

X(62921) lies on the Kiepert hyperbola and on these lines: {2, 37507}, {4, 24512}, {6, 56161}, {10, 4253}, {58, 60075}, {69, 40024}, {76, 30962}, {226, 4334}, {321, 3873}, {376, 54728}, {377, 60149}, {381, 54793}, {443, 32022}, {572, 56144}, {991, 2051}, {1056, 8299}, {2478, 6625}, {3545, 54497}, {3600, 52241}, {3618, 56167}, {4052, 5542}, {4260, 34258}, {4307, 13576}, {5019, 60081}, {5084, 58012}, {6817, 60155}, {6818, 60156}, {6821, 60107}, {6822, 60076}, {7736, 56171}, {18840, 30945}, {30943, 60071}, {31006, 60242}, {33682, 60624}, {33930, 60197}, {36672, 60157}, {39966, 53425}, {43533, 52245}, {52786, 60203}

X(62921) = isogonal conjugate of X(37502)
X(62921) = trilinear pole of line {523, 54249}
X(62921) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(10453)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(30962)}}, {{A, B, C, X(7), X(87)}}, {{A, B, C, X(8), X(26102)}}, {{A, B, C, X(42), X(57705)}}, {{A, B, C, X(58), X(1002)}}, {{A, B, C, X(65), X(39966)}}, {{A, B, C, X(69), X(24512)}}, {{A, B, C, X(79), X(39741)}}, {{A, B, C, X(261), X(6601)}}, {{A, B, C, X(286), X(56238)}}, {{A, B, C, X(310), X(59760)}}, {{A, B, C, X(377), X(4212)}}, {{A, B, C, X(388), X(33930)}}, {{A, B, C, X(406), X(6818)}}, {{A, B, C, X(443), X(4196)}}, {{A, B, C, X(475), X(6817)}}, {{A, B, C, X(572), X(991)}}, {{A, B, C, X(672), X(955)}}, {{A, B, C, X(1042), X(2350)}}, {{A, B, C, X(1220), X(6384)}}, {{A, B, C, X(1244), X(39951)}}, {{A, B, C, X(1246), X(39798)}}, {{A, B, C, X(1826), X(57877)}}, {{A, B, C, X(2344), X(15168)}}, {{A, B, C, X(2478), X(4213)}}, {{A, B, C, X(3600), X(10481)}}, {{A, B, C, X(3618), X(30945)}}, {{A, B, C, X(4194), X(6822)}}, {{A, B, C, X(4200), X(6821)}}, {{A, B, C, X(4207), X(5084)}}, {{A, B, C, X(4260), X(5019)}}, {{A, B, C, X(5136), X(30943)}}, {{A, B, C, X(5557), X(36602)}}, {{A, B, C, X(5561), X(56163)}}, {{A, B, C, X(7490), X(52245)}}, {{A, B, C, X(8049), X(43733)}}, {{A, B, C, X(8299), X(56850)}}, {{A, B, C, X(24597), X(31006)}}, {{A, B, C, X(28626), X(55035)}}, {{A, B, C, X(29814), X(50625)}}, {{A, B, C, X(30941), X(48108)}}, {{A, B, C, X(32021), X(39954)}}, {{A, B, C, X(39276), X(39952)}}, {{A, B, C, X(39703), X(56138)}}, {{A, B, C, X(39967), X(57666)}}


X(62922) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(31489), X(3), X(2))

Barycentrics    (a^4+2*b^4-5*b^2*c^2+c^4-a^2*(5*b^2+6*c^2))*(a^4+b^4-5*b^2*c^2+2*c^4-a^2*(6*b^2+5*c^2)) : :

X(62922) lies on the Kiepert hyperbola and on these lines: {6, 60248}, {76, 31489}, {83, 15491}, {325, 60187}, {2549, 38259}, {2996, 31400}, {3055, 8781}, {3589, 60073}, {3618, 53103}, {3815, 60101}, {5395, 43459}, {7607, 11174}, {7615, 60625}, {7747, 18845}, {7786, 60619}, {7790, 54488}, {7792, 53104}, {7857, 18841}, {7909, 18840}, {8353, 45103}, {9771, 10302}, {9877, 60271}, {10159, 44377}, {14061, 43532}, {17005, 42006}, {20423, 54523}, {37647, 60213}, {41895, 52691}, {42849, 60220}, {51176, 60150}

X(62922) = isotomic conjugate of X(58446)
X(62922) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(31489)}}, {{A, B, C, X(141), X(15491)}}, {{A, B, C, X(230), X(3055)}}, {{A, B, C, X(597), X(9771)}}, {{A, B, C, X(3329), X(17005)}}, {{A, B, C, X(3425), X(20251)}}, {{A, B, C, X(3589), X(44377)}}, {{A, B, C, X(3618), X(34803)}}, {{A, B, C, X(5481), X(32901)}}, {{A, B, C, X(7792), X(37647)}}, {{A, B, C, X(8353), X(52293)}}, {{A, B, C, X(11169), X(40826)}}, {{A, B, C, X(11184), X(42849)}}, {{A, B, C, X(30537), X(41909)}}, {{A, B, C, X(31400), X(57518)}}, {{A, B, C, X(35511), X(45857)}}, {{A, B, C, X(39968), X(40410)}}, {{A, B, C, X(40425), X(42332)}}, {{A, B, C, X(42346), X(60526)}}, {{A, B, C, X(46952), X(56067)}}, {{A, B, C, X(57895), X(57926)}}


X(62923) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(32911), X(3), X(2))

Barycentrics    (a^3+a*b*(b-c)+a^2*(b+c)+b^2*(b+c))*(a^3+a*c*(-b+c)+a^2*(b+c)+c^2*(b+c)) : :

X(62923) lies on the Kiepert hyperbola and on these lines: {2, 2220}, {6, 40013}, {10, 748}, {76, 32911}, {81, 40012}, {226, 7225}, {262, 19649}, {321, 4361}, {940, 39994}, {3434, 56172}, {3589, 50320}, {3618, 60156}, {4052, 50102}, {4080, 19785}, {4202, 43531}, {5278, 60084}, {5739, 18840}, {10159, 32782}, {14484, 50699}, {17017, 43534}, {17259, 60203}, {17352, 57721}, {17758, 19684}, {26243, 60099}, {26668, 60237}, {28741, 60188}, {29663, 40718}, {31143, 60277}, {34258, 37680}, {37522, 60790}, {37659, 59764}, {37679, 60097}, {37685, 40021}, {41241, 60265}

X(62923) = isogonal conjugate of X(5069)
X(62923) = isotomic conjugate of X(33172)
X(62923) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 5069}, {31, 33172}
X(62923) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 33172}, {3, 5069}
X(62923) = pole of line {5069, 33172} with respect to the Wallace hyperbola
X(62923) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(55990)}}, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(2220)}}, {{A, B, C, X(27), X(5192)}}, {{A, B, C, X(57), X(37610)}}, {{A, B, C, X(81), X(2334)}}, {{A, B, C, X(88), X(56046)}}, {{A, B, C, X(89), X(2985)}}, {{A, B, C, X(92), X(5014)}}, {{A, B, C, X(239), X(17017)}}, {{A, B, C, X(312), X(32774)}}, {{A, B, C, X(458), X(19649)}}, {{A, B, C, X(469), X(4202)}}, {{A, B, C, X(593), X(60871)}}, {{A, B, C, X(673), X(24552)}}, {{A, B, C, X(748), X(1255)}}, {{A, B, C, X(940), X(37680)}}, {{A, B, C, X(981), X(3108)}}, {{A, B, C, X(996), X(39747)}}, {{A, B, C, X(1016), X(25417)}}, {{A, B, C, X(1170), X(40406)}}, {{A, B, C, X(1509), X(27789)}}, {{A, B, C, X(1824), X(39798)}}, {{A, B, C, X(2989), X(56230)}}, {{A, B, C, X(3112), X(55970)}}, {{A, B, C, X(3216), X(37522)}}, {{A, B, C, X(3306), X(28996)}}, {{A, B, C, X(3589), X(32782)}}, {{A, B, C, X(3618), X(5739)}}, {{A, B, C, X(3661), X(29663)}}, {{A, B, C, X(4358), X(19785)}}, {{A, B, C, X(4359), X(59760)}}, {{A, B, C, X(4894), X(18359)}}, {{A, B, C, X(5142), X(50320)}}, {{A, B, C, X(5249), X(28741)}}, {{A, B, C, X(5333), X(17259)}}, {{A, B, C, X(6557), X(46103)}}, {{A, B, C, X(7033), X(52394)}}, {{A, B, C, X(7035), X(56065)}}, {{A, B, C, X(7875), X(31089)}}, {{A, B, C, X(8056), X(55942)}}, {{A, B, C, X(11174), X(26243)}}, {{A, B, C, X(14377), X(35058)}}, {{A, B, C, X(14997), X(37685)}}, {{A, B, C, X(17277), X(19684)}}, {{A, B, C, X(17352), X(18139)}}, {{A, B, C, X(17367), X(32854)}}, {{A, B, C, X(17381), X(41809)}}, {{A, B, C, X(17825), X(37659)}}, {{A, B, C, X(18743), X(50102)}}, {{A, B, C, X(18928), X(26668)}}, {{A, B, C, X(25430), X(56047)}}, {{A, B, C, X(31143), X(47352)}}, {{A, B, C, X(32012), X(37870)}}, {{A, B, C, X(34527), X(39724)}}, {{A, B, C, X(37633), X(37679)}}, {{A, B, C, X(37646), X(37651)}}, {{A, B, C, X(37674), X(37687)}}, {{A, B, C, X(39694), X(52393)}}, {{A, B, C, X(39980), X(46638)}}, {{A, B, C, X(40415), X(56166)}}, {{A, B, C, X(40425), X(58020)}}, {{A, B, C, X(43758), X(56058)}}, {{A, B, C, X(50699), X(52288)}}, {{A, B, C, X(56037), X(56042)}}
X(62923) = barycentric quotient X(i)/X(j) for these (i, j): {2, 33172}, {6, 5069}


X(62924) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37643), X(3), X(2))

Barycentrics    (a^6+a^4*(b^2-c^2)+(b^2-c^2)^2*(3*b^2+c^2)-a^2*(5*b^4-14*b^2*c^2+c^4))*(a^6+a^4*(-b^2+c^2)+(b^2-c^2)^2*(b^2+3*c^2)-a^2*(b^4-14*b^2*c^2+5*c^4)) : :

X(62924) lies on the Kiepert hyperbola and on these lines: {4, 3066}, {76, 37643}, {98, 40132}, {262, 16051}, {275, 18928}, {343, 60237}, {381, 54941}, {801, 11433}, {858, 14484}, {1995, 3424}, {3090, 60130}, {3545, 60119}, {3546, 60174}, {3618, 43530}, {5395, 41238}, {10601, 56346}, {13567, 60114}, {16080, 52710}, {17928, 60618}, {18840, 37638}, {26958, 60221}, {31099, 43951}, {31133, 54520}, {36789, 55973}, {37649, 60137}, {43981, 56270}, {44569, 60143}, {51968, 52288}, {52283, 60266}, {60193, 62628}

X(62924) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37475)}}, {{A, B, C, X(6), X(37643)}}, {{A, B, C, X(69), X(37648)}}, {{A, B, C, X(297), X(40132)}}, {{A, B, C, X(343), X(18928)}}, {{A, B, C, X(458), X(16051)}}, {{A, B, C, X(858), X(52288)}}, {{A, B, C, X(895), X(3066)}}, {{A, B, C, X(1249), X(52516)}}, {{A, B, C, X(1995), X(52283)}}, {{A, B, C, X(3260), X(52710)}}, {{A, B, C, X(3546), X(6819)}}, {{A, B, C, X(3618), X(37638)}}, {{A, B, C, X(6340), X(46104)}}, {{A, B, C, X(8797), X(57775)}}, {{A, B, C, X(8889), X(41238)}}, {{A, B, C, X(9214), X(36789)}}, {{A, B, C, X(10603), X(54124)}}, {{A, B, C, X(10630), X(52496)}}, {{A, B, C, X(11427), X(26958)}}, {{A, B, C, X(11433), X(13567)}}, {{A, B, C, X(11738), X(15066)}}, {{A, B, C, X(18852), X(46106)}}, {{A, B, C, X(31626), X(56068)}}, {{A, B, C, X(37188), X(57532)}}, {{A, B, C, X(42313), X(56268)}}, {{A, B, C, X(43981), X(52147)}}, {{A, B, C, X(44569), X(59373)}}, {{A, B, C, X(55976), X(55982)}}


X(62925) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37644), X(3), X(2))

Barycentrics    (a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)-a^2*(b^4+8*b^2*c^2-3*c^4))*(a^6-(b^2-c^2)^3-a^4*(3*b^2+c^2)+a^2*(3*b^4-8*b^2*c^2-c^4)) : :

X(62925) lies on the Kiepert hyperbola and on these lines: {4, 15018}, {5, 54498}, {6, 60255}, {76, 37644}, {140, 60163}, {262, 16063}, {376, 54827}, {377, 54727}, {381, 54942}, {1370, 60127}, {1656, 60160}, {1994, 60114}, {2475, 54757}, {3090, 54500}, {3424, 7533}, {3522, 60174}, {3523, 60162}, {3618, 7578}, {3832, 54844}, {5046, 54758}, {5056, 60159}, {5068, 60166}, {5189, 14484}, {5422, 13579}, {6504, 34545}, {6805, 54597}, {6806, 43536}, {6815, 54660}, {6816, 54763}, {6818, 54885}, {6819, 54710}, {6997, 60150}, {7381, 54689}, {7382, 54587}, {7386, 54523}, {7391, 14492}, {7392, 60185}, {7394, 14458}, {7528, 54486}, {7791, 54529}, {11140, 11433}, {14001, 54829}, {14494, 46336}, {14790, 54912}, {14957, 54826}, {16924, 54843}, {18316, 18420}, {32971, 54558}, {32979, 54779}, {33016, 54733}, {37162, 60154}, {37190, 54724}, {37191, 54722}, {37192, 54531}, {37349, 54519}, {37462, 60173}, {43666, 61886}, {44442, 54707}, {44555, 60143}, {50689, 54886}, {55957, 59373}

X(62925) = trilinear pole of line {11615, 16619}
X(62925) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(18384)}}, {{A, B, C, X(68), X(55982)}}, {{A, B, C, X(69), X(15018)}}, {{A, B, C, X(394), X(14861)}}, {{A, B, C, X(458), X(16063)}}, {{A, B, C, X(1994), X(11433)}}, {{A, B, C, X(2987), X(38005)}}, {{A, B, C, X(3108), X(14593)}}, {{A, B, C, X(3522), X(6819)}}, {{A, B, C, X(4846), X(14919)}}, {{A, B, C, X(5056), X(37192)}}, {{A, B, C, X(5068), X(6820)}}, {{A, B, C, X(5189), X(52288)}}, {{A, B, C, X(5422), X(45794)}}, {{A, B, C, X(5486), X(30535)}}, {{A, B, C, X(5557), X(56352)}}, {{A, B, C, X(5559), X(56041)}}, {{A, B, C, X(6515), X(34545)}}, {{A, B, C, X(6524), X(39955)}}, {{A, B, C, X(7391), X(52289)}}, {{A, B, C, X(7394), X(11331)}}, {{A, B, C, X(7533), X(52283)}}, {{A, B, C, X(8797), X(20572)}}, {{A, B, C, X(14528), X(56361)}}, {{A, B, C, X(15740), X(56266)}}, {{A, B, C, X(21739), X(30513)}}, {{A, B, C, X(22336), X(40802)}}, {{A, B, C, X(31626), X(42021)}}, {{A, B, C, X(34567), X(56002)}}, {{A, B, C, X(37643), X(59771)}}, {{A, B, C, X(41896), X(54124)}}, {{A, B, C, X(43732), X(56354)}}, {{A, B, C, X(44555), X(59373)}}


X(62926) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37645), X(3), X(2))

Barycentrics    (3*a^6+(b^2-c^2)^2*(3*b^2+c^2)-a^4*(3*b^2+5*c^2)+a^2*(-3*b^4-2*b^2*c^2+c^4))*(3*a^6+(b^2-c^2)^2*(b^2+3*c^2)-a^4*(5*b^2+3*c^2)+a^2*(b^4-2*b^2*c^2-3*c^4)) : :

X(62926) lies on the Kiepert hyperbola and on these lines: {4, 6800}, {6, 60256}, {23, 14484}, {69, 60225}, {76, 37645}, {94, 41625}, {96, 4993}, {262, 7493}, {317, 43530}, {381, 54943}, {459, 5422}, {631, 9221}, {1993, 60221}, {3090, 54969}, {3424, 5169}, {3545, 18316}, {3549, 60162}, {3618, 34289}, {5392, 11427}, {6504, 23292}, {6515, 60241}, {7519, 43951}, {7565, 54870}, {11433, 42410}, {14033, 54899}, {14118, 31363}, {15066, 18840}, {15682, 54809}, {34254, 60202}, {37077, 54941}, {40112, 60143}, {46105, 52288}, {51171, 56270}, {52300, 53099}, {58268, 59373}, {59771, 60255}

X(62926) = trilinear pole of line {523, 62438}
X(62926) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(37506)}}, {{A, B, C, X(6), X(37645)}}, {{A, B, C, X(23), X(52288)}}, {{A, B, C, X(69), X(14389)}}, {{A, B, C, X(317), X(4993)}}, {{A, B, C, X(394), X(40441)}}, {{A, B, C, X(458), X(7493)}}, {{A, B, C, X(1993), X(11427)}}, {{A, B, C, X(2990), X(56179)}}, {{A, B, C, X(3618), X(15066)}}, {{A, B, C, X(5169), X(52283)}}, {{A, B, C, X(5422), X(37669)}}, {{A, B, C, X(6515), X(23292)}}, {{A, B, C, X(6800), X(14919)}}, {{A, B, C, X(9214), X(14920)}}, {{A, B, C, X(13575), X(14387)}}, {{A, B, C, X(18852), X(40427)}}, {{A, B, C, X(34385), X(36948)}}, {{A, B, C, X(34834), X(41625)}}, {{A, B, C, X(36889), X(55032)}}, {{A, B, C, X(37644), X(59771)}}, {{A, B, C, X(40112), X(59373)}}


X(62927) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37648), X(3), X(2))

Barycentrics    b^2*c^2*(a^4+(b^2-c^2)^2+2*a^2*(5*b^2-c^2))*(a^4-2*a^2*(b^2-5*c^2)+(b^2-c^2)^2) : :

X(62927) lies on the Kiepert hyperbola and on these lines: {2, 44133}, {4, 373}, {30, 54741}, {76, 37648}, {98, 11284}, {262, 30739}, {264, 56270}, {275, 17825}, {343, 59764}, {381, 54944}, {671, 36789}, {801, 10601}, {2052, 37873}, {3266, 60201}, {3580, 59763}, {3589, 43530}, {5466, 58263}, {5485, 40814}, {8796, 15466}, {10159, 37638}, {11059, 40824}, {11433, 60237}, {14488, 46517}, {14492, 31152}, {18840, 37643}, {18928, 60114}, {26235, 60259}, {44569, 60277}, {51481, 60200}, {57518, 60202}

X(62927) = isogonal conjugate of X(33871)
X(62927) = trilinear pole of line {523, 62344}
X(62927) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 33871}, {48, 1597}, {560, 32836}, {9247, 52710}
X(62927) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 33871}, {1249, 1597}, {6374, 32836}, {52187, 46945}, {62576, 52710}
X(62927) = X(i)-cross conjugate of X(j) for these {i, j}: {3545, 264}
X(62927) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(16836)}}, {{A, B, C, X(6), X(37648)}}, {{A, B, C, X(264), X(44133)}}, {{A, B, C, X(287), X(54012)}}, {{A, B, C, X(290), X(46326)}}, {{A, B, C, X(297), X(11284)}}, {{A, B, C, X(305), X(14387)}}, {{A, B, C, X(343), X(17825)}}, {{A, B, C, X(373), X(42286)}}, {{A, B, C, X(458), X(30739)}}, {{A, B, C, X(3266), X(34536)}}, {{A, B, C, X(3589), X(37638)}}, {{A, B, C, X(3618), X(37643)}}, {{A, B, C, X(10601), X(13567)}}, {{A, B, C, X(11059), X(40814)}}, {{A, B, C, X(11433), X(18928)}}, {{A, B, C, X(15045), X(43574)}}, {{A, B, C, X(16081), X(46328)}}, {{A, B, C, X(18359), X(57792)}}, {{A, B, C, X(26958), X(37649)}}, {{A, B, C, X(30690), X(59761)}}, {{A, B, C, X(31152), X(52289)}}, {{A, B, C, X(36789), X(43084)}}, {{A, B, C, X(37873), X(51030)}}, {{A, B, C, X(38830), X(57518)}}, {{A, B, C, X(40826), X(42298)}}, {{A, B, C, X(44569), X(47352)}}, {{A, B, C, X(46104), X(59756)}}
X(62927) = barycentric product X(i)*X(j) for these (i, j): {52187, 76}
X(62927) = barycentric quotient X(i)/X(j) for these (i, j): {4, 1597}, {6, 33871}, {76, 32836}, {264, 52710}, {52187, 6}


X(62928) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37656), X(3), X(2))

Barycentrics    (a^3+a^2*(b+c)+(b-c)*(b+c)^2+a*(b^2-3*b*c-c^2))*(a^3+a^2*(b+c)-(b-c)*(b+c)^2+a*(-b^2-3*b*c+c^2)) : :

X(62928) lies on the Kiepert hyperbola and on these lines: {2, 54409}, {3, 54727}, {4, 14997}, {6, 60258}, {10, 149}, {20, 54757}, {69, 40021}, {76, 37656}, {140, 51339}, {226, 17012}, {321, 18151}, {377, 54624}, {381, 54947}, {1029, 32911}, {2475, 60078}, {2478, 54786}, {2895, 40013}, {3091, 54758}, {3146, 54726}, {3522, 60157}, {3523, 60164}, {3832, 54688}, {3839, 54789}, {4080, 40594}, {4383, 55027}, {5046, 60079}, {5056, 60154}, {5068, 60158}, {6834, 54498}, {6835, 54790}, {6836, 54787}, {6839, 54679}, {6840, 54528}, {6894, 54526}, {6895, 54516}, {6949, 54500}, {6996, 54719}, {6999, 54497}, {7377, 54695}, {7381, 54759}, {7382, 54760}, {7384, 54728}, {7406, 54755}, {10431, 54712}, {13729, 54698}, {14492, 37456}, {14996, 60169}, {16063, 60153}, {16706, 30588}, {17758, 37635}, {19542, 54499}, {21739, 61708}, {26118, 60127}, {31034, 60236}, {32842, 43534}, {32863, 40012}, {34007, 54932}, {37681, 55944}, {37685, 60076}, {51558, 54677}

X(62928) = trilinear pole of line {3743, 21201}
X(62928) = X(i)-cross conjugate of X(j) for these {i, j}: {21864, 1}, {37680, 2}
X(62928) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(34857)}}, {{A, B, C, X(7), X(35595)}}, {{A, B, C, X(8), X(89)}}, {{A, B, C, X(27), X(37162)}}, {{A, B, C, X(57), X(37563)}}, {{A, B, C, X(67), X(39979)}}, {{A, B, C, X(69), X(14997)}}, {{A, B, C, X(79), X(40434)}}, {{A, B, C, X(80), X(88)}}, {{A, B, C, X(81), X(5559)}}, {{A, B, C, X(149), X(673)}}, {{A, B, C, X(239), X(32842)}}, {{A, B, C, X(278), X(4857)}}, {{A, B, C, X(312), X(33150)}}, {{A, B, C, X(662), X(3952)}}, {{A, B, C, X(1156), X(55995)}}, {{A, B, C, X(1214), X(14861)}}, {{A, B, C, X(1255), X(5506)}}, {{A, B, C, X(1824), X(3108)}}, {{A, B, C, X(2006), X(34529)}}, {{A, B, C, X(2895), X(32911)}}, {{A, B, C, X(2994), X(26745)}}, {{A, B, C, X(3120), X(7332)}}, {{A, B, C, X(3296), X(56039)}}, {{A, B, C, X(3854), X(37276)}}, {{A, B, C, X(4383), X(32863)}}, {{A, B, C, X(4671), X(16706)}}, {{A, B, C, X(4997), X(11604)}}, {{A, B, C, X(5558), X(27789)}}, {{A, B, C, X(5560), X(39963)}}, {{A, B, C, X(6650), X(39698)}}, {{A, B, C, X(7261), X(8047)}}, {{A, B, C, X(7320), X(25417)}}, {{A, B, C, X(14555), X(37685)}}, {{A, B, C, X(16704), X(36936)}}, {{A, B, C, X(17277), X(37635)}}, {{A, B, C, X(17349), X(31034)}}, {{A, B, C, X(22336), X(39957)}}, {{A, B, C, X(25430), X(43732)}}, {{A, B, C, X(31018), X(60948)}}, {{A, B, C, X(31019), X(61017)}}, {{A, B, C, X(33155), X(40001)}}, {{A, B, C, X(34434), X(59265)}}, {{A, B, C, X(34527), X(39747)}}, {{A, B, C, X(37456), X(52289)}}, {{A, B, C, X(37509), X(51339)}}, {{A, B, C, X(39700), X(55988)}}, {{A, B, C, X(39706), X(54120)}}, {{A, B, C, X(39723), X(57815)}}, {{A, B, C, X(43724), X(55982)}}, {{A, B, C, X(43740), X(56075)}}, {{A, B, C, X(43745), X(56050)}}


X(62929) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37660), X(3), X(2))

Barycentrics    (a^3-a^2*(b+c)+b*(b^2-b*c-2*c^2)-a*(b^2+2*c^2))*(a^3-a^2*(b+c)-a*(2*b^2+c^2)+c*(-2*b^2-b*c+c^2)) : :

X(62929) lies on the Kiepert hyperbola and on these lines: {2, 5114}, {10, 4256}, {58, 60078}, {75, 60091}, {76, 37660}, {83, 35466}, {141, 60251}, {226, 320}, {261, 24624}, {321, 38000}, {333, 2051}, {993, 30608}, {1150, 60071}, {3597, 9567}, {4049, 21212}, {4080, 6646}, {5235, 60097}, {5278, 60087}, {5737, 34258}, {6539, 33168}, {10474, 60321}, {14534, 37646}, {14554, 17277}, {14555, 45098}, {16821, 54933}, {18155, 60074}, {30588, 37633}, {33140, 40718}, {37038, 60079}, {43531, 45939}

X(62929) = isogonal conjugate of X(4274)
X(62929) = isotomic conjugate of X(5718)
X(62929) = trilinear pole of line {3904, 21343}
X(62929) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 4274}, {31, 5718}, {48, 1894}
X(62929) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5718}, {3, 4274}, {1249, 1894}
X(62929) = pole of line {4274, 5718} with respect to the Wallace hyperbola
X(62929) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(5114)}}, {{A, B, C, X(27), X(19270)}}, {{A, B, C, X(57), X(38000)}}, {{A, B, C, X(58), X(88)}}, {{A, B, C, X(75), X(95)}}, {{A, B, C, X(87), X(9325)}}, {{A, B, C, X(141), X(35466)}}, {{A, B, C, X(257), X(2006)}}, {{A, B, C, X(274), X(34234)}}, {{A, B, C, X(310), X(40419)}}, {{A, B, C, X(314), X(58014)}}, {{A, B, C, X(333), X(1222)}}, {{A, B, C, X(594), X(2963)}}, {{A, B, C, X(940), X(5737)}}, {{A, B, C, X(993), X(5385)}}, {{A, B, C, X(1211), X(37646)}}, {{A, B, C, X(1220), X(43759)}}, {{A, B, C, X(2652), X(39957)}}, {{A, B, C, X(3661), X(33140)}}, {{A, B, C, X(3911), X(6646)}}, {{A, B, C, X(3943), X(17330)}}, {{A, B, C, X(4359), X(33168)}}, {{A, B, C, X(4384), X(5205)}}, {{A, B, C, X(4792), X(5235)}}, {{A, B, C, X(5019), X(45988)}}, {{A, B, C, X(5361), X(5372)}}, {{A, B, C, X(5743), X(37634)}}, {{A, B, C, X(8056), X(36602)}}, {{A, B, C, X(9567), X(13323)}}, {{A, B, C, X(17292), X(29861)}}, {{A, B, C, X(19732), X(37674)}}, {{A, B, C, X(30811), X(31187)}}, {{A, B, C, X(32008), X(36805)}}, {{A, B, C, X(32017), X(40435)}}, {{A, B, C, X(37222), X(39706)}}, {{A, B, C, X(40394), X(56058)}}, {{A, B, C, X(40412), X(57824)}}, {{A, B, C, X(43757), X(55942)}}, {{A, B, C, X(45939), X(56810)}}, {{A, B, C, X(46638), X(55953)}}, {{A, B, C, X(55952), X(56353)}}, {{A, B, C, X(56062), X(59759)}}, {{A, B, C, X(56365), X(57948)}}
X(62929) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5718}, {4, 1894}, {6, 4274}


X(62930) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37667), X(3), X(2))

Barycentrics    (5*a^4+5*b^4-2*b^2*c^2+c^4+2*a^2*(b^2-c^2))*(5*a^4+b^4-2*b^2*c^2+5*c^4-2*a^2*(b^2-c^2)) : :

X(62930) lies on the Kiepert hyperbola and on these lines: {6, 60260}, {76, 32973}, {83, 32972}, {183, 60285}, {193, 40824}, {262, 51171}, {385, 60201}, {671, 61304}, {1003, 5485}, {1916, 5304}, {2996, 7735}, {3091, 60117}, {3329, 53099}, {3424, 7806}, {3543, 54713}, {3620, 60213}, {3839, 54659}, {5032, 5503}, {5395, 7792}, {5490, 6424}, {5491, 6423}, {7612, 37071}, {7774, 60262}, {7807, 18840}, {7887, 18841}, {14484, 16989}, {14494, 56370}, {15589, 60232}, {17008, 60259}, {18842, 33228}, {19687, 60219}, {22329, 60200}, {33189, 60183}, {33191, 60143}, {33231, 60629}, {35940, 60266}, {37665, 60234}, {37668, 43529}, {37689, 54122}, {43118, 45101}, {43119, 45102}

X(62930) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(37667)}}, {{A, B, C, X(25), X(32973)}}, {{A, B, C, X(66), X(56334)}}, {{A, B, C, X(183), X(51171)}}, {{A, B, C, X(193), X(7735)}}, {{A, B, C, X(251), X(6423)}}, {{A, B, C, X(385), X(5304)}}, {{A, B, C, X(393), X(40416)}}, {{A, B, C, X(427), X(32972)}}, {{A, B, C, X(524), X(61304)}}, {{A, B, C, X(1003), X(4232)}}, {{A, B, C, X(1995), X(35940)}}, {{A, B, C, X(2987), X(14486)}}, {{A, B, C, X(3425), X(56362)}}, {{A, B, C, X(3620), X(7792)}}, {{A, B, C, X(4590), X(52187)}}, {{A, B, C, X(5032), X(22329)}}, {{A, B, C, X(5481), X(43118)}}, {{A, B, C, X(6339), X(32085)}}, {{A, B, C, X(6353), X(32981)}}, {{A, B, C, X(6995), X(7807)}}, {{A, B, C, X(7378), X(7887)}}, {{A, B, C, X(7408), X(33189)}}, {{A, B, C, X(7409), X(32955)}}, {{A, B, C, X(7774), X(37689)}}, {{A, B, C, X(7806), X(37668)}}, {{A, B, C, X(8889), X(32980)}}, {{A, B, C, X(15589), X(16989)}}, {{A, B, C, X(17008), X(37665)}}, {{A, B, C, X(33191), X(52301)}}, {{A, B, C, X(33228), X(52284)}}, {{A, B, C, X(36953), X(38005)}}, {{A, B, C, X(37071), X(37174)}}, {{A, B, C, X(39453), X(41909)}}, {{A, B, C, X(44571), X(45838)}}, {{A, B, C, X(46952), X(52395)}}, {{A, B, C, X(54123), X(56358)}}


X(62931) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37689), X(3), X(2))

Barycentrics    (7*a^4+7*b^4-2*b^2*c^2+3*c^4+2*a^2*(b^2-c^2))*(7*a^4+3*b^4-2*b^2*c^2+7*c^4-2*a^2*(b^2-c^2)) : :

X(62931) lies on the Kiepert hyperbola and on these lines: {5, 54859}, {6, 60262}, {76, 33181}, {83, 33199}, {193, 43529}, {230, 60259}, {671, 32826}, {2996, 7806}, {3091, 60140}, {3618, 53099}, {5304, 40824}, {5485, 8369}, {7607, 40330}, {7735, 60201}, {7792, 14484}, {7857, 10302}, {8361, 18841}, {8781, 37665}, {8859, 60628}, {10583, 54915}, {11159, 32532}, {11174, 60333}, {11318, 18842}, {15589, 60213}, {16989, 60260}, {17008, 60285}, {18840, 32954}, {33195, 60183}, {33197, 60143}, {37350, 60281}, {37667, 60232}, {51171, 60234}

X(62931) = isogonal conjugate of X(10542)
X(62931) = X(i)-vertex conjugate of X(j) for these {i, j}: {25, 60259}
X(62931) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(37689)}}, {{A, B, C, X(25), X(33181)}}, {{A, B, C, X(193), X(7806)}}, {{A, B, C, X(230), X(37665)}}, {{A, B, C, X(253), X(40416)}}, {{A, B, C, X(393), X(9516)}}, {{A, B, C, X(427), X(33199)}}, {{A, B, C, X(1383), X(56004)}}, {{A, B, C, X(4232), X(8369)}}, {{A, B, C, X(5304), X(7735)}}, {{A, B, C, X(6353), X(33201)}}, {{A, B, C, X(6995), X(32954)}}, {{A, B, C, X(7378), X(8361)}}, {{A, B, C, X(7408), X(33195)}}, {{A, B, C, X(7792), X(15589)}}, {{A, B, C, X(8801), X(56057)}}, {{A, B, C, X(11159), X(53857)}}, {{A, B, C, X(11318), X(52284)}}, {{A, B, C, X(16989), X(37667)}}, {{A, B, C, X(17008), X(51171)}}, {{A, B, C, X(33197), X(52301)}}, {{A, B, C, X(36953), X(52188)}}, {{A, B, C, X(41909), X(52223)}}, {{A, B, C, X(44571), X(44658)}}


X(62932) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37690), X(3), X(2))

Barycentrics    (3*a^4+5*b^4-4*b^2*c^2+3*c^4-2*a^2*(2*b^2+3*c^2))*(3*a^4+3*b^4-4*b^2*c^2+5*c^4-2*a^2*(3*b^2+2*c^2)) : :

X(62932) lies on the Kiepert hyperbola and on these lines: {4, 32829}, {6, 60263}, {20, 54894}, {39, 54751}, {69, 7607}, {76, 32969}, {83, 32970}, {98, 1007}, {99, 54475}, {183, 53103}, {194, 54750}, {262, 34803}, {305, 54636}, {325, 7612}, {598, 7769}, {671, 7763}, {1992, 10153}, {2052, 11059}, {2996, 32831}, {3266, 5392}, {3524, 54805}, {3525, 60148}, {3552, 18845}, {3618, 60186}, {3619, 60187}, {3788, 54916}, {3926, 5485}, {5067, 60126}, {5395, 16925}, {5466, 6563}, {6337, 60189}, {6393, 60262}, {7735, 60073}, {7736, 60093}, {7752, 60140}, {7774, 60104}, {7778, 60212}, {7799, 60228}, {7925, 54122}, {9464, 11140}, {9770, 60103}, {9771, 60268}, {10302, 32832}, {10511, 56435}, {11172, 22110}, {14494, 37647}, {17005, 60190}, {18840, 32838}, {18841, 32884}, {18842, 32839}, {23234, 54767}, {31401, 54915}, {32006, 60117}, {32458, 56064}, {32816, 54859}, {32828, 60143}, {32830, 60200}, {32833, 60216}, {32834, 60628}, {32835, 33006}, {32836, 60627}, {32837, 54637}, {32840, 43681}, {32841, 60635}, {32867, 60629}, {32872, 60639}, {32873, 60113}, {32883, 60643}, {32885, 60641}, {32887, 54720}, {32898, 54639}, {32966, 38259}, {33007, 53101}, {33239, 53109}, {34229, 53104}, {34254, 54922}, {37668, 60102}, {37688, 60123}, {37804, 54774}, {40824, 44377}, {43461, 54873}, {46951, 60637}, {51373, 60180}, {52942, 54642}

X(62932) = trilinear pole of line {47552, 523}
X(62932) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(37690)}}, {{A, B, C, X(25), X(32969)}}, {{A, B, C, X(69), X(18023)}}, {{A, B, C, X(183), X(34803)}}, {{A, B, C, X(305), X(32829)}}, {{A, B, C, X(325), X(1007)}}, {{A, B, C, X(427), X(32970)}}, {{A, B, C, X(468), X(32984)}}, {{A, B, C, X(842), X(55999)}}, {{A, B, C, X(1502), X(36948)}}, {{A, B, C, X(1992), X(41133)}}, {{A, B, C, X(2165), X(25322)}}, {{A, B, C, X(3266), X(6563)}}, {{A, B, C, X(3552), X(52299)}}, {{A, B, C, X(3926), X(11059)}}, {{A, B, C, X(4590), X(36889)}}, {{A, B, C, X(5094), X(32985)}}, {{A, B, C, X(5486), X(56057)}}, {{A, B, C, X(6353), X(32961)}}, {{A, B, C, X(6393), X(42287)}}, {{A, B, C, X(6464), X(21448)}}, {{A, B, C, X(6995), X(32958)}}, {{A, B, C, X(7378), X(32959)}}, {{A, B, C, X(7735), X(44377)}}, {{A, B, C, X(7736), X(7778)}}, {{A, B, C, X(7769), X(9464)}}, {{A, B, C, X(7774), X(7925)}}, {{A, B, C, X(8797), X(40826)}}, {{A, B, C, X(8889), X(16925)}}, {{A, B, C, X(9227), X(34208)}}, {{A, B, C, X(9770), X(22110)}}, {{A, B, C, X(9771), X(42850)}}, {{A, B, C, X(10603), X(18027)}}, {{A, B, C, X(16990), X(17005)}}, {{A, B, C, X(26235), X(32832)}}, {{A, B, C, X(32831), X(57518)}}, {{A, B, C, X(32838), X(40022)}}, {{A, B, C, X(32966), X(38282)}}, {{A, B, C, X(33006), X(52290)}}, {{A, B, C, X(34229), X(37647)}}, {{A, B, C, X(34288), X(40511)}}, {{A, B, C, X(36611), X(38262)}}, {{A, B, C, X(40429), X(44556)}}, {{A, B, C, X(40803), X(46310)}}, {{A, B, C, X(44558), X(44658)}}, {{A, B, C, X(45857), X(56334)}}


X(62933) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37785), X(3), X(2))

Barycentrics    1 / (-a^2 + 5*b^2 + 5*c^2 - 2*Sqrt[3]*S) : :

X(62933) lies on the Kiepert hyperbola and on these lines: {2, 41407}, {6, 42036}, {13, 597}, {14, 11296}, {17, 11306}, {18, 37341}, {76, 37785}, {98, 5460}, {298, 10302}, {381, 54570}, {395, 42035}, {396, 55951}, {671, 12155}, {1992, 60253}, {3618, 54618}, {5461, 54490}, {5463, 43538}, {5475, 47352}, {5485, 37641}, {5503, 36775}, {6694, 43447}, {7608, 45879}, {8360, 53464}, {11121, 22574}, {11603, 31695}, {16645, 55950}, {16809, 54590}, {22491, 43543}, {22579, 43539}, {36450, 42024}, {36467, 42023}, {37786, 40706}, {48353, 60858}

X(62933) = trilinear pole of line {13305, 523}
X(62933) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(41407)}}, {{A, B, C, X(15), X(30535)}}, {{A, B, C, X(298), X(597)}}, {{A, B, C, X(395), X(9164)}}, {{A, B, C, X(1081), X(34892)}}, {{A, B, C, X(7026), X(34914)}}, {{A, B, C, X(9515), X(21461)}}, {{A, B, C, X(14358), X(14621)}}


X(62934) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37786), X(3), X(2))

Barycentrics    1 / (-a^2 + 5*b^2 + 5*c^2 + 2*Sqrt[3]*S) : :

X(62934) lies on the Kiepert hyperbola and on these lines: {2, 41406}, {6, 42035}, {13, 11295}, {14, 597}, {17, 37340}, {18, 11305}, {76, 37786}, {98, 5459}, {299, 10302}, {381, 54569}, {395, 55950}, {396, 42036}, {671, 12154}, {1992, 60252}, {3618, 54617}, {5461, 54489}, {5464, 43539}, {5475, 47352}, {5485, 37640}, {6695, 43446}, {7608, 45880}, {8360, 53453}, {11122, 22573}, {11602, 31696}, {16644, 55951}, {16808, 54589}, {22492, 43542}, {22580, 43538}, {36449, 42023}, {36468, 42024}, {37785, 40707}, {48355, 60859}

X(62934) = trilinear pole of line {13304, 523}
X(62934) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(41406)}}, {{A, B, C, X(16), X(30535)}}, {{A, B, C, X(299), X(597)}}, {{A, B, C, X(396), X(9164)}}, {{A, B, C, X(554), X(34892)}}, {{A, B, C, X(7043), X(34914)}}, {{A, B, C, X(9515), X(21462)}}, {{A, B, C, X(14359), X(14621)}}


X(62935) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37894), X(3), X(2))

Barycentrics    (a^4-a^2*b^2+b^4)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-a^2*c^2+c^4) : :

X(62935) lies on the Kiepert hyperbola and on these lines: {2, 37893}, {4, 1915}, {6, 37892}, {25, 1916}, {30, 54828}, {76, 419}, {83, 5117}, {381, 54551}, {427, 3407}, {428, 54540}, {458, 60151}, {468, 43529}, {1968, 51951}, {1974, 40162}, {2996, 6620}, {3148, 9290}, {3504, 11325}, {5064, 54539}, {5094, 43528}, {5200, 54127}, {6353, 40824}, {7576, 54824}, {13599, 37334}, {16277, 38829}, {18559, 54899}, {37446, 40448}, {37453, 60231}, {37943, 54829}, {43665, 57206}, {52282, 54872}, {52291, 54126}, {55008, 60121}

X(62935) = isogonal conjugate of X(50666)
X(62935) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 50666}, {48, 5025}, {63, 3981}
X(62935) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 50666}, {1249, 5025}, {3162, 3981}, {40938, 40379}
X(62935) = X(i)-cross conjugate of X(j) for these {i, j}: {9426, 112}, {44451, 107}
X(62935) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(1915)}}, {{A, B, C, X(25), X(419)}}, {{A, B, C, X(66), X(40708)}}, {{A, B, C, X(251), X(60694)}}, {{A, B, C, X(305), X(43696)}}, {{A, B, C, X(427), X(5117)}}, {{A, B, C, X(436), X(3148)}}, {{A, B, C, X(1073), X(47388)}}, {{A, B, C, X(1613), X(1691)}}, {{A, B, C, X(1799), X(19222)}}, {{A, B, C, X(1899), X(57864)}}, {{A, B, C, X(1974), X(41293)}}, {{A, B, C, X(1976), X(9306)}}, {{A, B, C, X(1988), X(15391)}}, {{A, B, C, X(2450), X(52249)}}, {{A, B, C, X(2706), X(18532)}}, {{A, B, C, X(6353), X(6620)}}, {{A, B, C, X(6524), X(10603)}}, {{A, B, C, X(6531), X(40413)}}, {{A, B, C, X(8789), X(40146)}}, {{A, B, C, X(8791), X(18022)}}, {{A, B, C, X(9307), X(34412)}}, {{A, B, C, X(11325), X(11380)}}, {{A, B, C, X(13854), X(34405)}}, {{A, B, C, X(37446), X(52280)}}, {{A, B, C, X(39287), X(39951)}}, {{A, B, C, X(42295), X(56430)}}, {{A, B, C, X(44167), X(57655)}}, {{A, B, C, X(51992), X(56364)}}, {{A, B, C, X(57206), X(58306)}}, {{A, B, C, X(57386), X(59019)}}
X(62935) = barycentric product X(i)*X(j) for these (i, j): {1235, 38829}
X(62935) = barycentric quotient X(i)/X(j) for these (i, j): {4, 5025}, {6, 50666}, {25, 3981}, {427, 40379}, {27369, 14820}, {38829, 1176}


X(62936) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41152), X(3), X(2))

Barycentrics    (10*a^2+10*b^2-17*c^2)*(10*a^2-17*b^2+10*c^2) : :

X(62936) lies on the Kiepert hyperbola and on these lines: {76, 41152}, {98, 62040}, {262, 3860}, {316, 60625}, {547, 60144}, {671, 51187}, {1916, 41147}, {1992, 54647}, {3830, 54857}, {3845, 60329}, {5054, 10185}, {7607, 8703}, {7608, 19709}, {7612, 62135}, {7841, 60640}, {7937, 60629}, {8352, 60209}, {8587, 36523}, {11054, 60219}, {11185, 60643}, {11317, 60146}, {11668, 61823}, {11669, 61918}, {12101, 60326}, {14030, 43528}, {15681, 60334}, {15692, 53859}, {15719, 60123}, {17503, 41149}, {33291, 43529}, {33699, 60323}, {38071, 60332}, {41153, 60283}, {43448, 60648}, {43537, 62160}, {44518, 56059}, {47586, 62030}, {50989, 60216}, {53098, 61915}, {53099, 61958}, {53100, 62022}, {53103, 61777}, {53104, 61797}, {53419, 60626}, {54890, 61993}, {60142, 61977}, {60325, 62009}, {60337, 62052}

X(62936) = isotomic conjugate of X(51188)
X(62936) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(41152)}}, {{A, B, C, X(297), X(62040)}}, {{A, B, C, X(458), X(3860)}}, {{A, B, C, X(524), X(51187)}}, {{A, B, C, X(8584), X(50989)}}, {{A, B, C, X(8703), X(52282)}}, {{A, B, C, X(10630), X(36616)}}, {{A, B, C, X(15533), X(41149)}}, {{A, B, C, X(19709), X(52281)}}, {{A, B, C, X(21399), X(44731)}}, {{A, B, C, X(37174), X(62135)}}, {{A, B, C, X(41147), X(60863)}}, {{A, B, C, X(41153), X(50993)}}


X(62937) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41896), X(3), X(2))

Barycentrics    a^6+a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4-8*b^2*c^2+c^4) : :

X(62937) lies on these lines: {2, 3}, {6, 25488}, {17, 54362}, {18, 54363}, {51, 34507}, {67, 12824}, {69, 7693}, {110, 14561}, {111, 31415}, {146, 18489}, {184, 25555}, {193, 15435}, {262, 60255}, {264, 41896}, {315, 26235}, {323, 14853}, {373, 3818}, {612, 4857}, {614, 5270}, {1352, 5640}, {1383, 2963}, {1478, 7292}, {1479, 5297}, {1495, 38317}, {1899, 11451}, {1994, 14826}, {2493, 7736}, {2548, 9465}, {2549, 15302}, {3014, 16989}, {3066, 3580}, {3220, 56459}, {3266, 11185}, {3291, 5475}, {3292, 5476}, {3410, 11433}, {3434, 60459}, {3448, 14982}, {3589, 6800}, {3618, 7605}, {3619, 48912}, {4846, 16261}, {5050, 46818}, {5095, 9813}, {5285, 56465}, {5304, 16310}, {5422, 8550}, {5480, 15066}, {5486, 11188}, {5642, 32273}, {5650, 48901}, {5651, 19130}, {5800, 14997}, {5888, 43621}, {5943, 11442}, {5986, 11623}, {5987, 14651}, {6103, 10314}, {6504, 53099}, {6593, 9143}, {6688, 11550}, {6776, 15018}, {7603, 40350}, {7608, 13579}, {7612, 60191}, {7735, 13338}, {7768, 40022}, {7998, 31670}, {8262, 21356}, {8585, 43457}, {9225, 53504}, {9815, 12111}, {10185, 54765}, {10545, 61506}, {11178, 41586}, {11538, 60123}, {13394, 41257}, {13574, 43084}, {13582, 14494}, {13585, 53098}, {14216, 15028}, {14389, 35259}, {14639, 62298}, {14683, 14912}, {15082, 48895}, {15484, 40126}, {15805, 16659}, {15899, 52483}, {16187, 51360}, {17008, 17500}, {17810, 37636}, {18122, 47245}, {18312, 47254}, {18382, 61680}, {18581, 37776}, {18582, 37775}, {20423, 23061}, {20481, 53418}, {21766, 29181}, {22112, 29012}, {23234, 39120}, {23332, 41736}, {24206, 34417}, {24981, 39561}, {26233, 32832}, {26276, 53127}, {26869, 62209}, {33090, 56879}, {33752, 47250}, {33884, 51212}, {35264, 37649}, {35268, 58445}, {35595, 50861}, {37648, 61700}, {38072, 40112}, {38331, 55029}, {40178, 60647}, {40684, 52448}, {41462, 48873}, {48910, 59776}, {52058, 62213}, {52141, 52189}, {53859, 54764}, {54704, 60138}, {54762, 60144}, {60111, 60190}, {60114, 60118}, {60153, 60258}, {60237, 60328}

X(62937) = inverse of X(16063) in orthocentroidal circle
X(62937) = inverse of X(16619) in orthoptic circle of the Steiner Inellipse
X(62937) = inverse of X(16063) in Yff hyperbola
X(62937) = anticomplement of X(40916)
X(62937) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {38005, 8}
X(62937) = pole of line {523, 16063} with respect to the orthocentroidal circle
X(62937) = pole of line {523, 11615} with respect to the orthoptic circle of the Steiner Inellipse
X(62937) = pole of line {6, 16063} with respect to the Kiepert hyperbola
X(62937) = pole of line {523, 16063} with respect to the Yff hyperbola
X(62937) = pole of line {69, 7496} with respect to the Wallace hyperbola
X(62937) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(41896)}}, {{A, B, C, X(25), X(22336)}}, {{A, B, C, X(69), X(7496)}}, {{A, B, C, X(186), X(13574)}}, {{A, B, C, X(264), X(16063)}}, {{A, B, C, X(458), X(60255)}}, {{A, B, C, X(1383), X(3518)}}, {{A, B, C, X(1907), X(22261)}}, {{A, B, C, X(2697), X(62332)}}, {{A, B, C, X(2963), X(5094)}}, {{A, B, C, X(3088), X(47586)}}, {{A, B, C, X(3089), X(60118)}}, {{A, B, C, X(3541), X(43537)}}, {{A, B, C, X(3542), X(53099)}}, {{A, B, C, X(3839), X(54705)}}, {{A, B, C, X(3845), X(54704)}}, {{A, B, C, X(4846), X(33532)}}, {{A, B, C, X(5169), X(8797)}}, {{A, B, C, X(6143), X(60123)}}, {{A, B, C, X(7505), X(7608)}}, {{A, B, C, X(7607), X(37119)}}, {{A, B, C, X(10603), X(52300)}}, {{A, B, C, X(12083), X(40801)}}, {{A, B, C, X(13575), X(15246)}}, {{A, B, C, X(13579), X(52281)}}, {{A, B, C, X(14494), X(37943)}}, {{A, B, C, X(14940), X(53098)}}, {{A, B, C, X(16619), X(60590)}}, {{A, B, C, X(18019), X(46336)}}, {{A, B, C, X(31105), X(55958)}}, {{A, B, C, X(31106), X(57830)}}, {{A, B, C, X(35482), X(60337)}}, {{A, B, C, X(37174), X(60191)}}, {{A, B, C, X(41099), X(54640)}}, {{A, B, C, X(46511), X(60190)}}
X(62937) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1352, 5640, 37644}, {7605, 11003, 3618}, {10314, 61327, 6103}


X(62938) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(45794), X(3), X(2))

Barycentrics    (a^6+(b^2-c^2)^3-a^4*(b^2+3*c^2)-a^2*(b^4+4*b^2*c^2-3*c^4))*(a^6-(b^2-c^2)^3-a^4*(3*b^2+c^2)+a^2*(3*b^4-4*b^2*c^2-c^4)) : :

X(62938) lies on the Kiepert hyperbola and on these lines: {2, 8553}, {3, 60163}, {4, 34545}, {5, 60160}, {6, 13579}, {20, 60162}, {76, 45794}, {94, 11433}, {96, 7544}, {98, 7394}, {262, 7391}, {323, 60114}, {377, 60173}, {381, 54498}, {1370, 14494}, {1993, 60255}, {1994, 6504}, {2475, 60164}, {3090, 43666}, {3091, 60159}, {3146, 60174}, {3424, 37349}, {3539, 60316}, {3540, 60315}, {3545, 54500}, {3832, 60166}, {3845, 54942}, {5046, 60154}, {5189, 53099}, {5392, 37644}, {6515, 11140}, {6805, 34091}, {6806, 34089}, {6819, 38253}, {6820, 60137}, {6997, 7612}, {7381, 45098}, {7386, 10155}, {7392, 53103}, {7533, 43537}, {7608, 16063}, {9221, 18531}, {14033, 54829}, {15682, 54827}, {18420, 54969}, {24042, 60634}, {33016, 54843}, {33017, 54529}, {34007, 60618}, {37192, 56346}, {37444, 57718}, {37765, 60120}, {41761, 55028}, {44442, 54523}, {46336, 53098}, {54663, 59373}, {54844, 61985}, {54886, 61992}

X(62938) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 37119}, {1973, 45795}
X(62938) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 37119}, {6337, 45795}
X(62938) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(36753)}}, {{A, B, C, X(6), X(8553)}}, {{A, B, C, X(66), X(30535)}}, {{A, B, C, X(68), X(31626)}}, {{A, B, C, X(69), X(34545)}}, {{A, B, C, X(79), X(56352)}}, {{A, B, C, X(80), X(56041)}}, {{A, B, C, X(97), X(4846)}}, {{A, B, C, X(251), X(14593)}}, {{A, B, C, X(297), X(7394)}}, {{A, B, C, X(323), X(11433)}}, {{A, B, C, X(324), X(40449)}}, {{A, B, C, X(327), X(39289)}}, {{A, B, C, X(394), X(3521)}}, {{A, B, C, X(458), X(7391)}}, {{A, B, C, X(467), X(7544)}}, {{A, B, C, X(1031), X(40815)}}, {{A, B, C, X(1073), X(18550)}}, {{A, B, C, X(1173), X(56002)}}, {{A, B, C, X(1383), X(6524)}}, {{A, B, C, X(1993), X(37644)}}, {{A, B, C, X(1994), X(6515)}}, {{A, B, C, X(2987), X(43726)}}, {{A, B, C, X(3091), X(37192)}}, {{A, B, C, X(3146), X(6819)}}, {{A, B, C, X(3832), X(6820)}}, {{A, B, C, X(5561), X(56354)}}, {{A, B, C, X(6997), X(37174)}}, {{A, B, C, X(8797), X(18817)}}, {{A, B, C, X(15740), X(56338)}}, {{A, B, C, X(16063), X(52281)}}, {{A, B, C, X(17500), X(31610)}}, {{A, B, C, X(31371), X(56266)}}, {{A, B, C, X(32533), X(55982)}}, {{A, B, C, X(34529), X(56050)}}, {{A, B, C, X(37349), X(52283)}}, {{A, B, C, X(37444), X(52253)}}, {{A, B, C, X(41896), X(44175)}}, {{A, B, C, X(44176), X(54124)}}, {{A, B, C, X(52448), X(52513)}}, {{A, B, C, X(52449), X(60002)}}
X(62938) = barycentric quotient X(i)/X(j) for these (i, j): {4, 37119}, {69, 45795}


X(62939) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(48310), X(3), X(2))

Barycentrics    (8*a^2+8*b^2+5*c^2)*(8*a^2+5*b^2+8*c^2) : :

X(62939) lies on the Kiepert hyperbola and on these lines: {2, 55742}, {3, 55761}, {4, 55679}, {6, 60279}, {76, 48310}, {98, 15703}, {262, 11539}, {316, 60284}, {524, 60278}, {597, 60131}, {671, 47355}, {1916, 9167}, {3424, 61906}, {3589, 60277}, {3618, 60643}, {5055, 54891}, {6722, 43535}, {7607, 48154}, {7608, 55858}, {7790, 60630}, {7827, 43681}, {7850, 60646}, {7859, 38259}, {7878, 60182}, {7879, 60100}, {7937, 60283}, {10109, 14458}, {10159, 47352}, {12040, 60180}, {12108, 60329}, {14484, 15721}, {14488, 34200}, {14492, 15693}, {14762, 54901}, {15689, 54890}, {15705, 43951}, {19710, 54582}, {21358, 56059}, {23334, 60650}, {45103, 60855}, {51126, 60239}, {53100, 61900}, {54477, 61950}, {54519, 61938}, {54520, 62094}, {54706, 62129}, {54717, 62046}, {54857, 61911}, {54917, 61957}, {55863, 60142}, {59373, 60183}, {60118, 61848}, {60132, 61933}, {60147, 61927}, {60326, 61942}, {60328, 61816}

X(62939) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(55679)}}, {{A, B, C, X(6), X(48310)}}, {{A, B, C, X(297), X(15703)}}, {{A, B, C, X(458), X(11539)}}, {{A, B, C, X(524), X(47355)}}, {{A, B, C, X(3589), X(47352)}}, {{A, B, C, X(9167), X(60863)}}, {{A, B, C, X(10109), X(11331)}}, {{A, B, C, X(12040), X(60866)}}, {{A, B, C, X(15693), X(52289)}}, {{A, B, C, X(15721), X(52288)}}, {{A, B, C, X(21358), X(51126)}}, {{A, B, C, X(35146), X(40507)}}, {{A, B, C, X(36616), X(57421)}}, {{A, B, C, X(40506), X(53200)}}, {{A, B, C, X(48154), X(52282)}}, {{A, B, C, X(52281), X(55858)}}, {{A, B, C, X(52283), X(61906)}}


X(62940) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51127), X(3), X(2))

Barycentrics    (6*a^2+6*b^2+5*c^2)*(6*a^2+5*b^2+6*c^2) : :

X(62940) lies on the Kiepert hyperbola and on these lines: {2, 34571}, {3, 55751}, {4, 55670}, {5, 54917}, {76, 51127}, {98, 55857}, {262, 16239}, {5395, 7937}, {5485, 7859}, {6683, 43688}, {7803, 60200}, {7827, 60627}, {7918, 53106}, {7942, 60181}, {7943, 60214}, {12100, 54582}, {12812, 60326}, {14458, 15699}, {14484, 61863}, {14488, 14869}, {14492, 15694}, {15685, 54813}, {15688, 54717}, {15708, 54520}, {18845, 60855}, {39784, 54823}, {43951, 61842}, {47355, 56059}, {51126, 60278}, {54477, 61920}, {54519, 61912}, {54706, 61804}, {54815, 61930}, {54890, 61811}, {60127, 61866}, {60132, 61905}, {60150, 61884}

X(62940) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(55670)}}, {{A, B, C, X(6), X(34571)}}, {{A, B, C, X(297), X(55857)}}, {{A, B, C, X(458), X(16239)}}, {{A, B, C, X(6664), X(47355)}}, {{A, B, C, X(6683), X(41259)}}, {{A, B, C, X(7859), X(11059)}}, {{A, B, C, X(11331), X(15699)}}, {{A, B, C, X(15694), X(52289)}}, {{A, B, C, X(21448), X(57421)}}, {{A, B, C, X(52288), X(61863)}}
X(62940) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34571, 55747}


X(62941) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51128), X(3), X(2))

Barycentrics    (4*a^2+5*b^2+4*c^2)*(4*a^2+4*b^2+5*c^2) : :

X(62941) lies on the Kiepert hyperbola and on these lines: {2, 41940}, {3, 54477}, {4, 42786}, {5, 54582}, {6, 60182}, {76, 51128}, {98, 46219}, {140, 14458}, {141, 60644}, {262, 55856}, {316, 18844}, {381, 54813}, {458, 54791}, {632, 54851}, {1656, 14492}, {3096, 53102}, {3424, 61856}, {3522, 54815}, {3523, 54519}, {3525, 54612}, {3526, 54608}, {3533, 60150}, {3628, 54643}, {3763, 60100}, {3851, 54717}, {5056, 54520}, {5067, 54707}, {5070, 54734}, {5395, 7860}, {6656, 17503}, {7375, 60308}, {7376, 60307}, {7388, 43563}, {7389, 43562}, {7395, 54512}, {7399, 54585}, {7509, 54879}, {7760, 60279}, {7768, 18841}, {7769, 60259}, {7770, 45103}, {7803, 60639}, {7827, 60628}, {7841, 54478}, {7859, 60285}, {7877, 34573}, {7878, 60238}, {7892, 54539}, {7901, 54540}, {7930, 54122}, {7937, 53107}, {7942, 60232}, {11289, 12816}, {11290, 12817}, {11303, 54480}, {11304, 54479}, {11331, 39284}, {14484, 46935}, {14488, 35018}, {14789, 54809}, {15712, 60326}, {15720, 31268}, {16045, 60281}, {32532, 32956}, {32971, 54642}, {32974, 54896}, {33190, 54647}, {33923, 54917}, {41254, 46220}, {52289, 60120}, {52292, 60125}, {52293, 60141}, {54644, 61875}, {54645, 61877}, {54852, 61832}, {54890, 61919}, {54934, 61855}, {55859, 60175}, {55860, 60192}, {60127, 61886}, {60146, 60855}, {60147, 61834}, {60185, 61873}, {60327, 61791}

X(62941) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(55653)}}, {{A, B, C, X(6), X(41940)}}, {{A, B, C, X(140), X(11331)}}, {{A, B, C, X(297), X(46219)}}, {{A, B, C, X(458), X(55856)}}, {{A, B, C, X(1656), X(52289)}}, {{A, B, C, X(3519), X(42786)}}, {{A, B, C, X(3763), X(34573)}}, {{A, B, C, X(6531), X(46223)}}, {{A, B, C, X(6656), X(52292)}}, {{A, B, C, X(7770), X(52293)}}, {{A, B, C, X(9289), X(48920)}}, {{A, B, C, X(14841), X(36952)}}, {{A, B, C, X(18018), X(40045)}}, {{A, B, C, X(21448), X(59996)}}, {{A, B, C, X(32956), X(53857)}}, {{A, B, C, X(46935), X(52288)}}, {{A, B, C, X(52283), X(61856)}}
X(62941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41940, 55753}


X(62942) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51142), X(3), X(2))

Barycentrics    (8*a^2+8*b^2-19*c^2)*(8*a^2-19*b^2+8*c^2) : :

X(62942) lies on the Kiepert hyperbola and on these lines: {76, 51142}, {98, 15685}, {262, 61956}, {316, 60631}, {671, 51188}, {7607, 12100}, {7608, 61920}, {7612, 62077}, {7620, 60648}, {10185, 15694}, {11054, 38259}, {11055, 60177}, {11185, 60616}, {11668, 61845}, {11737, 60332}, {12101, 54917}, {15534, 54478}, {15688, 60334}, {15697, 43537}, {15699, 60144}, {15708, 53859}, {33288, 43529}, {34505, 60210}, {36523, 42010}, {41147, 43535}, {42011, 51123}, {47286, 60630}, {47586, 62051}, {51189, 60216}, {53098, 61902}, {53099, 61943}, {53100, 62039}, {53104, 61828}, {54857, 62025}, {60123, 61838}, {60142, 61969}

X(62942) = isotomic conjugate of X(51187)
X(62942) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(51142)}}, {{A, B, C, X(297), X(15685)}}, {{A, B, C, X(458), X(61956)}}, {{A, B, C, X(524), X(51188)}}, {{A, B, C, X(8584), X(51189)}}, {{A, B, C, X(12100), X(52282)}}, {{A, B, C, X(37174), X(62077)}}, {{A, B, C, X(41149), X(50989)}}, {{A, B, C, X(52281), X(61920)}}


X(62943) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51185), X(3), X(2))

Barycentrics    (11*a^2+11*b^2+2*c^2)*(11*a^2+2*b^2+11*c^2) : :

X(62943) lies on the Kiepert hyperbola and on these lines: {2, 55728}, {3, 55781}, {4, 55694}, {6, 60286}, {76, 51185}, {98, 10109}, {262, 15693}, {597, 60216}, {3424, 61938}, {3589, 60282}, {3618, 54637}, {5066, 54891}, {7607, 15703}, {7608, 11539}, {7762, 56059}, {7790, 60113}, {7883, 60644}, {7911, 60649}, {8584, 10302}, {10159, 50991}, {10185, 48154}, {14458, 61950}, {14484, 62094}, {14488, 62046}, {14492, 19710}, {15533, 60277}, {15689, 60329}, {15705, 60118}, {15721, 53099}, {17503, 47352}, {32027, 60183}, {34200, 60142}, {43537, 61906}, {43951, 62168}, {47586, 61927}, {50990, 60629}, {51186, 60131}, {53100, 61933}, {54857, 61942}, {54890, 62031}, {55858, 60144}, {55863, 60332}, {59373, 60637}, {60127, 62055}, {60132, 61963}, {60328, 62129}, {60334, 61900}, {60626, 60855}

X(62943) = isotomic conjugate of X(51143)
X(62943) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(55694)}}, {{A, B, C, X(6), X(51185)}}, {{A, B, C, X(297), X(10109)}}, {{A, B, C, X(458), X(15693)}}, {{A, B, C, X(597), X(8584)}}, {{A, B, C, X(729), X(46123)}}, {{A, B, C, X(3589), X(50991)}}, {{A, B, C, X(11331), X(61950)}}, {{A, B, C, X(11539), X(52281)}}, {{A, B, C, X(15533), X(47352)}}, {{A, B, C, X(15703), X(52282)}}, {{A, B, C, X(18818), X(40425)}}, {{A, B, C, X(19710), X(52289)}}, {{A, B, C, X(52283), X(61938)}}, {{A, B, C, X(52288), X(62094)}}


X(62944) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51188), X(3), X(2))

Barycentrics    (17*a^2+17*b^2-10*c^2)*(17*a^2-10*b^2+17*c^2) : :

X(62944) lies on the Kiepert hyperbola and on these lines: {76, 51188}, {98, 3860}, {262, 62040}, {547, 10185}, {3830, 60329}, {3845, 54857}, {5054, 60144}, {7607, 19709}, {7608, 8703}, {7790, 60650}, {7812, 60636}, {8352, 60146}, {8370, 60640}, {10155, 61777}, {10302, 51142}, {11317, 60209}, {11669, 61797}, {12101, 54890}, {14030, 43529}, {14494, 62135}, {15681, 60332}, {15719, 53098}, {33291, 43528}, {38071, 60334}, {43537, 61958}, {51189, 60286}, {53099, 62160}, {53100, 61977}, {53104, 61918}, {53108, 61823}, {53859, 61924}, {60118, 62030}, {60123, 61915}, {60142, 62022}, {60323, 61974}, {60325, 61987}, {60326, 61993}, {60330, 62052}

X(62944) = isotomic conjugate of X(41152)
X(62944) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(51188)}}, {{A, B, C, X(297), X(3860)}}, {{A, B, C, X(458), X(62040)}}, {{A, B, C, X(597), X(51142)}}, {{A, B, C, X(8703), X(52281)}}, {{A, B, C, X(10630), X(34572)}}, {{A, B, C, X(19709), X(52282)}}, {{A, B, C, X(41152), X(41153)}}, {{A, B, C, X(51185), X(51189)}}


X(62945) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51189), X(3), X(2))

Barycentrics    (11*a^2+11*b^2-16*c^2)*(11*a^2-16*b^2+11*c^2) : :

X(62945) lies on the Kiepert hyperbola and on these lines: {30, 60334}, {76, 51189}, {98, 33699}, {262, 61974}, {381, 60332}, {549, 10185}, {3534, 7607}, {3830, 53100}, {3845, 60142}, {3860, 54920}, {5055, 60144}, {5066, 7608}, {7612, 62165}, {7790, 60616}, {7841, 60642}, {7877, 60219}, {7883, 60639}, {8352, 43676}, {8584, 54478}, {10302, 53419}, {10304, 53859}, {11317, 53102}, {11668, 61797}, {11669, 61929}, {12101, 60132}, {14488, 61993}, {15640, 43537}, {15682, 60337}, {15698, 60123}, {15759, 53104}, {41099, 60330}, {41147, 60271}, {41154, 60136}, {43448, 60650}, {44518, 60649}, {47586, 62018}, {51142, 60638}, {51188, 60228}, {52519, 61987}, {53098, 61926}, {53099, 61966}, {53103, 62090}, {53108, 61918}, {54845, 62009}, {54857, 62010}, {60322, 62019}, {60329, 61986}, {60335, 62040}

X(62945) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(51189)}}, {{A, B, C, X(297), X(33699)}}, {{A, B, C, X(458), X(61974)}}, {{A, B, C, X(3534), X(52282)}}, {{A, B, C, X(5066), X(52281)}}, {{A, B, C, X(15534), X(51188)}}, {{A, B, C, X(21399), X(43713)}}, {{A, B, C, X(37174), X(62165)}}


X(62946) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51384), X(3), X(2))

Barycentrics    b*(-a+b-c)*(a+b-c)*c*(b*(b-c)-a*(b+2*c))*((b-c)*c+a*(2*b+c)) : :

X(62946) lies on the Kiepert hyperbola and on these lines: {2, 42290}, {4, 14520}, {7, 1002}, {10, 85}, {76, 51384}, {226, 1088}, {274, 32022}, {279, 27253}, {321, 6063}, {991, 14828}, {1358, 12837}, {1434, 4253}, {1446, 57880}, {1751, 42302}, {3674, 60677}, {4052, 10029}, {4260, 56161}, {4334, 40718}, {5542, 54668}, {6180, 63148}, {7196, 30822}, {7223, 43671}, {8033, 60235}, {16750, 60155}, {17079, 32041}, {17093, 60188}, {17671, 17758}, {18153, 40012}, {30588, 37780}, {31627, 56226}, {33949, 40515}, {34284, 43533}, {37507, 60081}, {51351, 60720}, {51443, 60080}, {52023, 57792}, {59200, 60734}

X(62946) = isotomic conjugate of X(37658)
X(62946) = trilinear pole of line {24002, 43042}
X(62946) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 60722}, {31, 37658}, {32, 3886}, {41, 1001}, {48, 28044}, {55, 2280}, {220, 1471}, {560, 28809}, {692, 45755}, {1253, 5228}, {2175, 4384}, {2194, 59207}, {2212, 23151}, {2344, 40732}, {3063, 54440}, {3696, 57657}, {4441, 9447}, {6602, 59242}, {9448, 21615}, {14827, 40719}, {59141, 59217}
X(62946) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37658}, {223, 2280}, {478, 60722}, {1086, 45755}, {1214, 59207}, {1249, 28044}, {3160, 1001}, {6374, 28809}, {6376, 3886}, {10001, 54440}, {17113, 5228}, {40593, 4384}, {40615, 4724}, {59608, 42289}, {62570, 3696}
X(62946) = X(i)-cross conjugate of X(j) for these {i, j}: {7179, 6063}, {27475, 59255}, {61673, 693}
X(62946) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(14520)}}, {{A, B, C, X(6), X(51384)}}, {{A, B, C, X(7), X(1275)}}, {{A, B, C, X(69), X(14548)}}, {{A, B, C, X(79), X(55941)}}, {{A, B, C, X(85), X(1088)}}, {{A, B, C, X(86), X(57791)}}, {{A, B, C, X(92), X(57996)}}, {{A, B, C, X(264), X(39735)}}, {{A, B, C, X(273), X(31618)}}, {{A, B, C, X(279), X(10481)}}, {{A, B, C, X(286), X(57773)}}, {{A, B, C, X(331), X(21453)}}, {{A, B, C, X(335), X(39959)}}, {{A, B, C, X(673), X(42409)}}, {{A, B, C, X(693), X(59259)}}, {{A, B, C, X(1231), X(57873)}}, {{A, B, C, X(1280), X(40403)}}, {{A, B, C, X(1362), X(52013)}}, {{A, B, C, X(3261), X(58007)}}, {{A, B, C, X(3596), X(40025)}}, {{A, B, C, X(3912), X(56164)}}, {{A, B, C, X(4260), X(37507)}}, {{A, B, C, X(4847), X(27253)}}, {{A, B, C, X(5228), X(39792)}}, {{A, B, C, X(5542), X(10004)}}, {{A, B, C, X(7018), X(40014)}}, {{A, B, C, X(7179), X(40719)}}, {{A, B, C, X(14004), X(17671)}}, {{A, B, C, X(16750), X(41788)}}, {{A, B, C, X(18031), X(32023)}}, {{A, B, C, X(18135), X(18153)}}, {{A, B, C, X(20567), X(58008)}}, {{A, B, C, X(21704), X(52651)}}, {{A, B, C, X(27475), X(40739)}}, {{A, B, C, X(36101), X(56153)}}
X(62946) = barycentric product X(i)*X(j) for these (i, j): {349, 42302}, {479, 59260}, {1002, 6063}, {1088, 60668}, {4077, 51563}, {20567, 2279}, {24002, 32041}, {27475, 85}, {34018, 62622}, {37138, 52621}, {40779, 57792}, {42290, 76}, {42310, 59181}, {43042, 53227}, {57880, 59269}, {59255, 7}
X(62946) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37658}, {4, 28044}, {7, 1001}, {56, 60722}, {57, 2280}, {75, 3886}, {76, 28809}, {85, 4384}, {226, 59207}, {269, 1471}, {279, 5228}, {348, 23151}, {349, 4044}, {479, 59242}, {514, 45755}, {664, 54440}, {1002, 55}, {1088, 40719}, {1434, 60721}, {1441, 3696}, {1469, 40732}, {2279, 41}, {3668, 42289}, {3676, 4724}, {4077, 4804}, {6063, 4441}, {7179, 3789}, {10481, 59217}, {20567, 21615}, {23062, 42309}, {24002, 4762}, {27475, 9}, {32041, 644}, {37138, 3939}, {40779, 220}, {42290, 6}, {42302, 284}, {42310, 6605}, {51443, 2194}, {51563, 643}, {53227, 36802}, {57792, 60720}, {59193, 10482}, {59255, 8}, {59260, 5423}, {59269, 480}, {60668, 200}, {60673, 1253}, {60677, 1334}, {62622, 3693}


X(62947) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51967), X(3), X(2))

Barycentrics    a^8*(b^2+c^2)+2*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(-2*b^4+b^2*c^2-2*c^4)+a^2*(b^2-c^2)^2*(2*b^4-3*b^2*c^2+2*c^4) : :

X(62947) lies on these lines: {2, 3}, {110, 18390}, {113, 5890}, {115, 15355}, {125, 15305}, {146, 10605}, {156, 43821}, {264, 51967}, {1181, 43816}, {1352, 37784}, {1568, 3060}, {1994, 5654}, {2888, 17814}, {3410, 14852}, {3448, 18451}, {3567, 5448}, {3818, 5622}, {5012, 61747}, {5449, 15058}, {5480, 62382}, {5504, 15033}, {5640, 12827}, {5946, 61574}, {5972, 61744}, {6000, 26913}, {6241, 43817}, {7687, 10546}, {7699, 32263}, {7735, 49123}, {9306, 50435}, {9307, 14356}, {9544, 12022}, {9545, 12241}, {9703, 10272}, {9704, 43575}, {9927, 43598}, {10516, 41614}, {10539, 34799}, {10574, 61749}, {11002, 62377}, {11438, 34796}, {11439, 20299}, {11442, 15052}, {11449, 13403}, {11454, 44673}, {12162, 26917}, {12236, 13364}, {14644, 18474}, {15019, 15029}, {15030, 23293}, {15038, 15046}, {15043, 18504}, {15053, 18418}, {15059, 23329}, {15072, 51403}, {15081, 61702}, {15111, 25641}, {15317, 43891}, {16261, 23515}, {16534, 61713}, {18394, 45286}, {18396, 35264}, {18912, 43605}, {18933, 40914}, {20300, 51537}, {22647, 35602}, {22802, 43601}, {22955, 34148}, {23315, 61721}, {25739, 46261}, {32139, 43808}, {37779, 58891}, {38792, 61712}, {40234, 50718}, {53415, 54040}

X(62947) = inverse of X(37950) in 1st DrozFarny circle
X(62947) = inverse of X(62288) in nine-point circle
X(62947) = inverse of X(2071) in orthocentroidal circle
X(62947) = inverse of X(62288) in MacBeath inconic
X(62947) = inverse of X(2071) in Yff hyperbola
X(62947) = pole of line {523, 14634} with respect to the 1st DrozFarny circle
X(62947) = pole of line {523, 62288} with respect to the nine-point circle
X(62947) = pole of line {523, 2071} with respect to the orthocentroidal circle
X(62947) = pole of line {6, 2071} with respect to the Kiepert hyperbola
X(62947) = pole of line {523, 62288} with respect to the MacBeath inconic
X(62947) = pole of line {523, 2071} with respect to the Yff hyperbola
X(62947) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(51967)}}, {{A, B, C, X(6), X(37917)}}, {{A, B, C, X(186), X(9307)}}, {{A, B, C, X(262), X(37777)}}, {{A, B, C, X(264), X(2071)}}, {{A, B, C, X(847), X(45172)}}, {{A, B, C, X(1593), X(18575)}}, {{A, B, C, X(2070), X(34233)}}, {{A, B, C, X(3520), X(60130)}}, {{A, B, C, X(3548), X(18855)}}, {{A, B, C, X(3613), X(10151)}}, {{A, B, C, X(7505), X(43891)}}, {{A, B, C, X(14356), X(15143)}}, {{A, B, C, X(15317), X(43809)}}, {{A, B, C, X(16837), X(35488)}}, {{A, B, C, X(31726), X(57747)}}, {{A, B, C, X(37077), X(55958)}}, {{A, B, C, X(37928), X(40801)}}
X(62947) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 403, 2}, {12022, 51425, 9544}, {15043, 18504, 43831}, {18451, 61701, 3448}


X(62948) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54303), X(3), X(2))

Barycentrics    (a^5+a^4*(b+c)+(b-c)^2*(b+c)^3-2*a^3*(b^2-4*b*c+c^2)-2*a^2*(b^3+b^2*c+b*c^2+c^3)+a*(b^4+8*b^3*c-2*b^2*c^2-8*b*c^3+c^4))*(a^5+a^4*(b+c)+(b-c)^2*(b+c)^3-2*a^3*(b^2-4*b*c+c^2)-2*a^2*(b^3+b^2*c+b*c^2+c^3)+a*(b^4-8*b^3*c-2*b^2*c^2+8*b*c^3+c^4)) : :

X(62948) lies on the Kiepert hyperbola and on these lines: {2, 37501}, {20, 60107}, {76, 54303}, {226, 11037}, {381, 54788}, {406, 60137}, {459, 4200}, {475, 38253}, {1029, 50689}, {1751, 37421}, {2051, 37434}, {2478, 60237}, {3088, 60246}, {3091, 60076}, {3146, 60155}, {3543, 54759}, {3832, 60156}, {3839, 54760}, {3854, 60258}, {4052, 34625}, {4194, 56346}, {5046, 60114}, {5068, 60169}, {5704, 8808}, {5706, 54688}, {6838, 55962}, {6847, 45098}, {7407, 60165}, {11372, 60634}, {17578, 55027}, {34621, 54719}, {35514, 56172}, {37108, 60075}, {50687, 54766}, {54756, 61985}, {54794, 62005}

X(62948) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(39975)}}, {{A, B, C, X(6), X(37501)}}, {{A, B, C, X(7), X(11037)}}, {{A, B, C, X(8), X(1440)}}, {{A, B, C, X(9), X(11546)}}, {{A, B, C, X(20), X(4200)}}, {{A, B, C, X(40), X(88)}}, {{A, B, C, X(64), X(39956)}}, {{A, B, C, X(65), X(52224)}}, {{A, B, C, X(80), X(50443)}}, {{A, B, C, X(81), X(61121)}}, {{A, B, C, X(84), X(1219)}}, {{A, B, C, X(104), X(6553)}}, {{A, B, C, X(145), X(34625)}}, {{A, B, C, X(279), X(937)}}, {{A, B, C, X(280), X(1156)}}, {{A, B, C, X(281), X(33576)}}, {{A, B, C, X(346), X(38271)}}, {{A, B, C, X(406), X(3832)}}, {{A, B, C, X(451), X(50689)}}, {{A, B, C, X(475), X(3146)}}, {{A, B, C, X(596), X(10307)}}, {{A, B, C, X(941), X(52518)}}, {{A, B, C, X(979), X(9442)}}, {{A, B, C, X(1067), X(56088)}}, {{A, B, C, X(1220), X(10429)}}, {{A, B, C, X(1224), X(62180)}}, {{A, B, C, X(1257), X(56273)}}, {{A, B, C, X(2475), X(3088)}}, {{A, B, C, X(3062), X(59760)}}, {{A, B, C, X(3089), X(5046)}}, {{A, B, C, X(3091), X(4194)}}, {{A, B, C, X(3532), X(39982)}}, {{A, B, C, X(4373), X(10309)}}, {{A, B, C, X(5125), X(37421)}}, {{A, B, C, X(5553), X(36606)}}, {{A, B, C, X(5704), X(7080)}}, {{A, B, C, X(5817), X(39585)}}, {{A, B, C, X(6846), X(7518)}}, {{A, B, C, X(7318), X(7319)}}, {{A, B, C, X(7541), X(27530)}}, {{A, B, C, X(11109), X(37434)}}, {{A, B, C, X(15749), X(57878)}}, {{A, B, C, X(17578), X(52252)}}, {{A, B, C, X(22334), X(39798)}}, {{A, B, C, X(31371), X(57832)}}, {{A, B, C, X(45011), X(54454)}}, {{A, B, C, X(51502), X(57705)}}, {{A, B, C, X(52223), X(57666)}}, {{A, B, C, X(56043), X(57748)}}


X(62949) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(55033), X(3), X(2))

Barycentrics    2*a^4*b^2*c^2-b^2*c^2*(b^2-c^2)^2+a^6*(b^2+c^2)-a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :

X(62949) lies on these lines: {2, 3}, {6, 17500}, {51, 6248}, {76, 3060}, {83, 5012}, {184, 10358}, {211, 315}, {263, 1352}, {264, 46151}, {311, 9969}, {316, 11673}, {324, 34854}, {338, 16776}, {598, 60111}, {3051, 7745}, {3117, 5475}, {3229, 39590}, {3231, 53418}, {3260, 29959}, {3583, 40790}, {3585, 56805}, {3620, 44443}, {3818, 20021}, {5106, 43457}, {5254, 20965}, {5422, 39646}, {5640, 40814}, {6033, 22735}, {6038, 7792}, {7746, 41278}, {7747, 8623}, {7760, 53863}, {7774, 42359}, {7785, 40858}, {8570, 43449}, {9302, 60191}, {9463, 45938}, {10545, 41254}, {10550, 12220}, {10796, 34396}, {11185, 20023}, {11188, 53350}, {12251, 62187}, {13449, 47638}, {13582, 54724}, {14265, 60523}, {15018, 61102}, {15019, 38664}, {15080, 60855}, {15107, 62699}, {16276, 45093}, {19121, 32085}, {19130, 36213}, {34236, 48889}, {34290, 44445}, {34845, 35222}, {35142, 54105}, {36412, 36425}, {36794, 52915}, {46818, 53489}, {48901, 52658}, {52367, 56802}, {54826, 60255}

X(62949) = inverse of X(14957) in orthocentroidal circle
X(62949) = inverse of X(14957) in Yff hyperbola
X(62949) = anticomplement of X(14096)
X(62949) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {82, 6194}, {262, 21289}, {263, 21217}, {2186, 2896}, {3402, 52637}, {39283, 21271}, {42288, 192}, {42299, 8}
X(62949) = pole of line {8723, 31296} with respect to the 1st Brocard circle
X(62949) = pole of line {523, 14957} with respect to the orthocentroidal circle
X(62949) = pole of line {6, 14957} with respect to the Kiepert hyperbola
X(62949) = pole of line {3, 3203} with respect to the Stammler hyperbola
X(62949) = pole of line {525, 52618} with respect to the Steiner circumellipse
X(62949) = pole of line {523, 14957} with respect to the Yff hyperbola
X(62949) = pole of line {69, 41328} with respect to the Wallace hyperbola
X(62949) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(55033)}}, {{A, B, C, X(25), X(30505)}}, {{A, B, C, X(76), X(37125)}}, {{A, B, C, X(264), X(14957)}}, {{A, B, C, X(427), X(55028)}}, {{A, B, C, X(458), X(42354)}}, {{A, B, C, X(598), X(46511)}}, {{A, B, C, X(2996), X(37337)}}, {{A, B, C, X(5094), X(60111)}}, {{A, B, C, X(27369), X(27375)}}, {{A, B, C, X(37943), X(54724)}}
X(62949) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 237, 2}


X(62950) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(56267), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4+b^4-6*b^2*c^2+c^4-4*a^2*(b^2+c^2)) : :

X(62950) lies on these lines: {2, 3}, {6, 43981}, {33, 26639}, {53, 3618}, {69, 6748}, {76, 40684}, {83, 8796}, {99, 39662}, {141, 63155}, {193, 264}, {275, 2996}, {287, 14853}, {317, 3620}, {324, 40814}, {343, 32006}, {393, 30535}, {459, 18845}, {524, 52710}, {598, 56270}, {648, 5032}, {671, 14920}, {1249, 56022}, {1351, 43999}, {1785, 26626}, {1990, 59373}, {1992, 6749}, {1993, 6392}, {2052, 5395}, {2207, 5422}, {3260, 53021}, {3785, 59197}, {5254, 11427}, {5304, 6531}, {5640, 34854}, {6103, 61304}, {6248, 14826}, {6776, 39530}, {7745, 11433}, {8743, 34545}, {9308, 40065}, {9476, 52485}, {10159, 54892}, {10311, 37667}, {10601, 61346}, {11160, 44134}, {14977, 62172}, {16080, 53101}, {17316, 56814}, {20080, 27377}, {23292, 44518}, {23583, 61315}, {29585, 34231}, {32815, 33843}, {32827, 60524}, {33748, 41204}, {37643, 53418}, {37669, 37873}, {37765, 62195}, {38259, 56346}, {39284, 60647}, {41370, 60516}, {41895, 43530}, {42287, 42854}, {43527, 54893}, {43681, 54531}, {53346, 62595}, {54033, 58782}, {54867, 60145}, {54896, 60138}, {60120, 60285}

X(62950) = inverse of X(37174) in orthocentroidal circle
X(62950) = inverse of X(37174) in Yff hyperbola
X(62950) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 14494}, {656, 59115}
X(62950) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 14494}, {40596, 59115}
X(62950) = X(i)-cross conjugate of X(j) for these {i, j}: {5050, 34229}
X(62950) = pole of line {523, 37174} with respect to the orthocentroidal circle
X(62950) = pole of line {523, 47279} with respect to the polar circle
X(62950) = pole of line {6, 37174} with respect to the Kiepert hyperbola
X(62950) = pole of line {525, 62438} with respect to the Steiner circumellipse
X(62950) = pole of line {523, 37174} with respect to the Yff hyperbola
X(62950) = pole of line {69, 36751} with respect to the Wallace hyperbola
X(62950) = pole of line {15422, 31296} with respect to the dual conic of Johnson circumconic
X(62950) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(34229)}}, {{A, B, C, X(3), X(5050)}}, {{A, B, C, X(4), X(42298)}}, {{A, B, C, X(5), X(2996)}}, {{A, B, C, X(6), X(52277)}}, {{A, B, C, X(20), X(18845)}}, {{A, B, C, X(25), X(47735)}}, {{A, B, C, X(30), X(53101)}}, {{A, B, C, X(76), X(3090)}}, {{A, B, C, X(83), X(631)}}, {{A, B, C, X(97), X(26865)}}, {{A, B, C, X(140), X(60647)}}, {{A, B, C, X(262), X(58883)}}, {{A, B, C, X(264), X(37174)}}, {{A, B, C, X(275), X(6353)}}, {{A, B, C, X(290), X(37067)}}, {{A, B, C, X(376), X(598)}}, {{A, B, C, X(381), X(41895)}}, {{A, B, C, X(427), X(8796)}}, {{A, B, C, X(428), X(54892)}}, {{A, B, C, X(459), X(52299)}}, {{A, B, C, X(468), X(60193)}}, {{A, B, C, X(547), X(60628)}}, {{A, B, C, X(549), X(54639)}}, {{A, B, C, X(671), X(3545)}}, {{A, B, C, X(1513), X(14484)}}, {{A, B, C, X(1656), X(60285)}}, {{A, B, C, X(2052), X(8889)}}, {{A, B, C, X(2986), X(40132)}}, {{A, B, C, X(3091), X(38259)}}, {{A, B, C, X(3424), X(13860)}}, {{A, B, C, X(3523), X(60145)}}, {{A, B, C, X(3524), X(18842)}}, {{A, B, C, X(3525), X(18841)}}, {{A, B, C, X(3528), X(18843)}}, {{A, B, C, X(3529), X(53109)}}, {{A, B, C, X(3533), X(43527)}}, {{A, B, C, X(3543), X(54476)}}, {{A, B, C, X(3544), X(60219)}}, {{A, B, C, X(3830), X(54642)}}, {{A, B, C, X(3839), X(60113)}}, {{A, B, C, X(3845), X(54896)}}, {{A, B, C, X(3855), X(53105)}}, {{A, B, C, X(5020), X(43670)}}, {{A, B, C, X(5054), X(60648)}}, {{A, B, C, X(5055), X(60200)}}, {{A, B, C, X(5056), X(43681)}}, {{A, B, C, X(5064), X(54893)}}, {{A, B, C, X(5066), X(60632)}}, {{A, B, C, X(5067), X(18840)}}, {{A, B, C, X(5071), X(5485)}}, {{A, B, C, X(5094), X(56270)}}, {{A, B, C, X(6504), X(7392)}}, {{A, B, C, X(6677), X(41899)}}, {{A, B, C, X(6879), X(54739)}}, {{A, B, C, X(6969), X(54821)}}, {{A, B, C, X(6997), X(13579)}}, {{A, B, C, X(6998), X(60077)}}, {{A, B, C, X(7380), X(43533)}}, {{A, B, C, X(7391), X(11538)}}, {{A, B, C, X(7394), X(13585)}}, {{A, B, C, X(7410), X(43531)}}, {{A, B, C, X(7413), X(60168)}}, {{A, B, C, X(7486), X(60639)}}, {{A, B, C, X(7493), X(7578)}}, {{A, B, C, X(7494), X(40393)}}, {{A, B, C, X(7714), X(60120)}}, {{A, B, C, X(8801), X(57533)}}, {{A, B, C, X(9476), X(40884)}}, {{A, B, C, X(10011), X(51481)}}, {{A, B, C, X(10159), X(61886)}}, {{A, B, C, X(10299), X(53102)}}, {{A, B, C, X(10302), X(61895)}}, {{A, B, C, X(10304), X(60650)}}, {{A, B, C, X(11001), X(60281)}}, {{A, B, C, X(11676), X(34536)}}, {{A, B, C, X(14033), X(54872)}}, {{A, B, C, X(14064), X(60151)}}, {{A, B, C, X(15682), X(45103)}}, {{A, B, C, X(15698), X(60282)}}, {{A, B, C, X(15702), X(54616)}}, {{A, B, C, X(15709), X(60239)}}, {{A, B, C, X(15719), X(60283)}}, {{A, B, C, X(16051), X(34289)}}, {{A, B, C, X(16063), X(60191)}}, {{A, B, C, X(17503), X(41099)}}, {{A, B, C, X(17538), X(18844)}}, {{A, B, C, X(19708), X(60284)}}, {{A, B, C, X(21554), X(60092)}}, {{A, B, C, X(21735), X(60146)}}, {{A, B, C, X(26118), X(55027)}}, {{A, B, C, X(32532), X(41106)}}, {{A, B, C, X(32985), X(54833)}}, {{A, B, C, X(32986), X(54753)}}, {{A, B, C, X(33190), X(54915)}}, {{A, B, C, X(33698), X(61980)}}, {{A, B, C, X(33703), X(53107)}}, {{A, B, C, X(35937), X(54124)}}, {{A, B, C, X(37071), X(60260)}}, {{A, B, C, X(37119), X(52583)}}, {{A, B, C, X(37182), X(60105)}}, {{A, B, C, X(38282), X(56346)}}, {{A, B, C, X(41237), X(56334)}}, {{A, B, C, X(43530), X(52290)}}, {{A, B, C, X(43676), X(61921)}}, {{A, B, C, X(44442), X(54764)}}, {{A, B, C, X(52282), X(55972)}}, {{A, B, C, X(53106), X(61964)}}, {{A, B, C, X(54478), X(61987)}}, {{A, B, C, X(54493), X(61983)}}, {{A, B, C, X(54494), X(62017)}}, {{A, B, C, X(54565), X(55008)}}, {{A, B, C, X(54637), X(61932)}}, {{A, B, C, X(54646), X(62011)}}, {{A, B, C, X(54647), X(61979)}}, {{A, B, C, X(54720), X(61967)}}, {{A, B, C, X(60100), X(61870)}}, {{A, B, C, X(60127), X(60657)}}, {{A, B, C, X(60131), X(61884)}}, {{A, B, C, X(60143), X(61899)}}, {{A, B, C, X(60183), X(60781)}}, {{A, B, C, X(60216), X(61915)}}, {{A, B, C, X(60228), X(61926)}}, {{A, B, C, X(60238), X(61859)}}, {{A, B, C, X(60277), X(61889)}}, {{A, B, C, X(60278), X(61881)}}, {{A, B, C, X(60287), X(61838)}}, {{A, B, C, X(60616), X(61861)}}, {{A, B, C, X(60625), X(61936)}}, {{A, B, C, X(60626), X(61928)}}, {{A, B, C, X(60627), X(61913)}}, {{A, B, C, X(60629), X(61888)}}, {{A, B, C, X(60630), X(61951)}}, {{A, B, C, X(60631), X(61947)}}, {{A, B, C, X(60635), X(61924)}}, {{A, B, C, X(60637), X(61904)}}, {{A, B, C, X(60638), X(61902)}}, {{A, B, C, X(60645), X(61866)}}, {{A, B, C, X(60646), X(61865)}}, {{A, B, C, X(60649), X(61807)}}
X(62950) = barycentric product X(i)*X(j) for these (i, j): {264, 5050}, {34229, 4}
X(62950) = barycentric quotient X(i)/X(j) for these (i, j): {4, 14494}, {112, 59115}, {5050, 3}, {34229, 69}
X(62950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 458, 2}, {264, 3087, 193}, {393, 36794, 51171}, {648, 62213, 5032}, {9308, 40065, 51170}, {27377, 32000, 20080}


X(62951) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(59771), X(3), X(2))

Barycentrics    (2*a^6+2*b^6-3*b^4*c^2+c^6-a^2*b^2*(2*b^2+c^2)-a^4*(2*b^2+3*c^2))*(2*a^6+b^6-3*b^2*c^4+2*c^6-a^2*c^2*(b^2+2*c^2)-a^4*(3*b^2+2*c^2)) : :

X(62951) lies on the Kiepert hyperbola and on these lines: {4, 7712}, {5, 18316}, {23, 14492}, {26, 54912}, {30, 54809}, {76, 59771}, {94, 14389}, {140, 9221}, {262, 52300}, {323, 60225}, {384, 54899}, {1656, 54969}, {1994, 60241}, {3091, 54943}, {5169, 14458}, {5576, 54486}, {7493, 60127}, {7519, 54520}, {7527, 60119}, {7552, 54827}, {7565, 54879}, {7607, 45943}, {8370, 54483}, {9381, 14920}, {11140, 23292}, {14118, 60121}, {14918, 43530}, {15018, 16080}, {34545, 42410}, {46105, 52289}

X(62951) = isogonal conjugate of X(41335)
X(62951) = trilinear pole of line {523, 52738}
X(62951) = X(i)-cross conjugate of X(j) for these {i, j}: {13413, 264}
X(62951) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(3), X(14805)}}, {{A, B, C, X(5), X(4993)}}, {{A, B, C, X(6), X(59771)}}, {{A, B, C, X(23), X(52289)}}, {{A, B, C, X(54), X(323)}}, {{A, B, C, X(93), X(14165)}}, {{A, B, C, X(97), X(10610)}}, {{A, B, C, X(458), X(52300)}}, {{A, B, C, X(1994), X(23292)}}, {{A, B, C, X(3471), X(14920)}}, {{A, B, C, X(5169), X(11331)}}, {{A, B, C, X(7712), X(43697)}}, {{A, B, C, X(11064), X(15018)}}, {{A, B, C, X(14919), X(40441)}}, {{A, B, C, X(21400), X(37638)}}, {{A, B, C, X(34567), X(43756)}}, {{A, B, C, X(34802), X(53024)}}, {{A, B, C, X(37644), X(45011)}}, {{A, B, C, X(43689), X(55982)}}
X(62951) = barycentric quotient X(i)/X(j) for these (i, j): {6, 41335}, {45993, 3534}


X(62952) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(62708), X(3), X(2))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(7*a^4+7*b^4-2*b^2*c^2-5*c^4-2*a^2*(7*b^2+c^2))*(7*a^4-5*b^4-2*b^2*c^2+7*c^4-2*a^2*(b^2+7*c^2)) : :

X(62952) lies on the Kiepert hyperbola and on these lines: {4, 15448}, {20, 54923}, {25, 54520}, {76, 62708}, {140, 31363}, {262, 52290}, {297, 53101}, {376, 54585}, {378, 54941}, {406, 54726}, {420, 54826}, {427, 54519}, {451, 54757}, {458, 41895}, {459, 40138}, {461, 54687}, {468, 14484}, {470, 43541}, {471, 43540}, {472, 54581}, {473, 54580}, {475, 54688}, {598, 52283}, {631, 60121}, {671, 52288}, {1249, 56270}, {1327, 3536}, {1328, 3535}, {1585, 43567}, {1586, 43566}, {1594, 54870}, {1656, 60618}, {2478, 54932}, {2996, 52289}, {3088, 54886}, {3090, 60122}, {3091, 54552}, {3424, 5094}, {3524, 54838}, {3525, 54763}, {3533, 13599}, {3541, 54844}, {3545, 54512}, {4212, 54862}, {4213, 54532}, {4232, 43951}, {5067, 54660}, {5071, 54667}, {5117, 54565}, {5133, 54931}, {5395, 11331}, {5702, 6793}, {6143, 54498}, {6353, 14492}, {6622, 54550}, {6749, 56346}, {6819, 54761}, {6820, 54764}, {6856, 54555}, {6997, 54704}, {7378, 54815}, {7392, 54640}, {7490, 54586}, {7498, 54516}, {7521, 54693}, {7577, 54943}, {7714, 54582}, {8889, 14458}, {14001, 54828}, {14064, 54551}, {14401, 43673}, {14920, 58268}, {15682, 54924}, {16045, 54898}, {16845, 54559}, {17555, 54623}, {18840, 59767}, {23292, 38253}, {32956, 54682}, {37174, 54476}, {37188, 54732}, {37192, 54765}, {37276, 54759}, {37448, 54622}, {37453, 54521}, {38282, 60127}, {40065, 43530}, {40132, 54919}, {40448, 61886}, {43537, 52293}, {52252, 54758}, {52253, 54781}, {52280, 54892}, {52281, 54896}, {52282, 54642}, {52284, 60147}, {52292, 53099}, {52297, 54522}, {52299, 60150}, {52301, 54706}, {53025, 60241}, {53857, 60118}, {54517, 57534}, {54542, 55569}, {54543, 55573}

X(62952) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 3839}, {63, 31860}
X(62952) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 3839}, {3162, 31860}
X(62952) = X(i)-cross conjugate of X(j) for these {i, j}: {62213, 4}
X(62952) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4)}}, {{A, B, C, X(6), X(41424)}}, {{A, B, C, X(394), X(57713)}}, {{A, B, C, X(458), X(52290)}}, {{A, B, C, X(468), X(52288)}}, {{A, B, C, X(1073), X(14528)}}, {{A, B, C, X(1249), X(40138)}}, {{A, B, C, X(1990), X(5702)}}, {{A, B, C, X(2963), X(40065)}}, {{A, B, C, X(3431), X(14919)}}, {{A, B, C, X(3613), X(35515)}}, {{A, B, C, X(3618), X(59767)}}, {{A, B, C, X(5094), X(52283)}}, {{A, B, C, X(5486), X(42287)}}, {{A, B, C, X(6353), X(52289)}}, {{A, B, C, X(6793), X(14401)}}, {{A, B, C, X(8889), X(11331)}}, {{A, B, C, X(11270), X(55982)}}, {{A, B, C, X(17040), X(60872)}}, {{A, B, C, X(35512), X(53024)}}, {{A, B, C, X(37638), X(43949)}}, {{A, B, C, X(38808), X(40170)}}, {{A, B, C, X(39951), X(56363)}}, {{A, B, C, X(39963), X(40396)}}, {{A, B, C, X(52280), X(61886)}}, {{A, B, C, X(52717), X(57684)}}
X(62952) = barycentric quotient X(i)/X(j) for these (i, j): {4, 3839}, {25, 31860}


X(62953) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(275), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^8-2*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4+4*b^2*c^2+3*c^4)) : :

X(62953) lies on these lines: {2, 3}, {6, 275}, {51, 42374}, {53, 11547}, {92, 34048}, {107, 17810}, {154, 1629}, {184, 33971}, {264, 394}, {317, 343}, {324, 1993}, {393, 11427}, {459, 60161}, {578, 8887}, {847, 57875}, {1073, 34287}, {1075, 11432}, {1093, 10982}, {1184, 6531}, {1498, 51031}, {1947, 55399}, {1948, 55400}, {2351, 23295}, {3087, 11433}, {3168, 9777}, {3567, 4994}, {5422, 46106}, {5480, 52448}, {6515, 27377}, {6524, 14853}, {6747, 61743}, {6748, 13567}, {7592, 44732}, {8796, 56346}, {8884, 19357}, {9306, 39530}, {10601, 15466}, {11402, 41204}, {11426, 56298}, {11464, 58785}, {14361, 40065}, {14569, 41371}, {15066, 40684}, {15653, 19172}, {16080, 60120}, {16264, 31383}, {17821, 19169}, {17825, 52147}, {17907, 37649}, {19188, 37872}, {20477, 46832}, {21447, 55413}, {26898, 42329}, {26958, 43462}, {32002, 37638}, {35719, 61753}, {35884, 61645}, {36748, 46760}, {36749, 60828}, {37543, 62605}, {37645, 56022}, {37648, 46927}, {37873, 53415}, {39284, 43530}, {40814, 55446}, {41679, 58416}, {54531, 56270}, {54867, 60193}

X(62953) = inverse of X(52280) in orthocentroidal circle
X(62953) = inverse of X(52280) in Yff hyperbola
X(62953) = anticomplement of X(26906)
X(62953) = perspector of circumconic {{A, B, C, X(648), X(52779)}}
X(62953) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 13599}, {656, 6570}, {9247, 57909}, {37872, 62266}
X(62953) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 13599}, {26906, 26906}, {40596, 6570}, {62576, 57909}
X(62953) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63154, 56296}
X(62953) = pole of line {523, 50460} with respect to the orthocentroidal circle
X(62953) = pole of line {523, 17434} with respect to the polar circle
X(62953) = pole of line {185, 33971} with respect to the Jerabek hyperbola
X(62953) = pole of line {6, 11547} with respect to the Kiepert hyperbola
X(62953) = pole of line {14618, 32320} with respect to the MacBeath circumconic
X(62953) = pole of line {525, 57120} with respect to the Steiner circumellipse
X(62953) = pole of line {523, 50460} with respect to the Yff hyperbola
X(62953) = pole of line {69, 46832} with respect to the Wallace hyperbola
X(62953) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8795)}}, {{A, B, C, X(3), X(275)}}, {{A, B, C, X(4), X(8794)}}, {{A, B, C, X(5), X(2052)}}, {{A, B, C, X(6), X(418)}}, {{A, B, C, X(20), X(34287)}}, {{A, B, C, X(25), X(40402)}}, {{A, B, C, X(30), X(60120)}}, {{A, B, C, X(54), X(26876)}}, {{A, B, C, X(64), X(26897)}}, {{A, B, C, X(76), X(7399)}}, {{A, B, C, X(83), X(7395)}}, {{A, B, C, X(140), X(43530)}}, {{A, B, C, X(264), X(52280)}}, {{A, B, C, X(376), X(54531)}}, {{A, B, C, X(381), X(39284)}}, {{A, B, C, X(394), X(19170)}}, {{A, B, C, X(417), X(19180)}}, {{A, B, C, X(459), X(3090)}}, {{A, B, C, X(467), X(59139)}}, {{A, B, C, X(598), X(34664)}}, {{A, B, C, X(631), X(37872)}}, {{A, B, C, X(852), X(56345)}}, {{A, B, C, X(1513), X(60141)}}, {{A, B, C, X(1656), X(16080)}}, {{A, B, C, X(1751), X(7567)}}, {{A, B, C, X(2986), X(17928)}}, {{A, B, C, X(3091), X(8796)}}, {{A, B, C, X(3149), X(40395)}}, {{A, B, C, X(3523), X(60193)}}, {{A, B, C, X(3525), X(60137)}}, {{A, B, C, X(3543), X(54892)}}, {{A, B, C, X(3545), X(54867)}}, {{A, B, C, X(3613), X(34965)}}, {{A, B, C, X(3830), X(54791)}}, {{A, B, C, X(3839), X(54893)}}, {{A, B, C, X(5056), X(56270)}}, {{A, B, C, X(5067), X(38253)}}, {{A, B, C, X(5071), X(54710)}}, {{A, B, C, X(5392), X(13160)}}, {{A, B, C, X(6504), X(6815)}}, {{A, B, C, X(6803), X(60114)}}, {{A, B, C, X(6830), X(40149)}}, {{A, B, C, X(6949), X(60246)}}, {{A, B, C, X(7503), X(40393)}}, {{A, B, C, X(7549), X(60082)}}, {{A, B, C, X(7578), X(14118)}}, {{A, B, C, X(8613), X(39286)}}, {{A, B, C, X(13585), X(34007)}}, {{A, B, C, X(13860), X(60125)}}, {{A, B, C, X(14788), X(43678)}}, {{A, B, C, X(14789), X(46105)}}, {{A, B, C, X(16072), X(54629)}}, {{A, B, C, X(37446), X(37892)}}, {{A, B, C, X(38323), X(54913)}}, {{A, B, C, X(46219), X(60138)}}, {{A, B, C, X(56341), X(57528)}}
X(62953) = barycentric product X(i)*X(j) for these (i, j): {264, 578}, {275, 63175}, {8887, 95}, {41365, 69}, {45062, 8797}
X(62953) = barycentric quotient X(i)/X(j) for these (i, j): {4, 13599}, {112, 6570}, {264, 57909}, {275, 37872}, {578, 3}, {8887, 5}, {41365, 4}, {45062, 631}, {63175, 343}
X(62953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 436, 25}, {6, 2052, 56296}, {53, 23292, 11547}, {184, 42400, 33971}, {275, 2052, 6}, {275, 8795, 19170}, {324, 1993, 9308}, {393, 11427, 56297}, {394, 41244, 264}, {470, 471, 1656}, {472, 473, 381}, {578, 8887, 41365}, {1585, 1586, 5}, {3168, 60693, 9777}, {15466, 36794, 10601}, {41365, 45062, 578}


X(62954) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1916), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-b^6-c^6+a^2*(b^4+3*b^2*c^2+c^4)) : :

X(62954) lies on these lines: {2, 3}, {53, 325}, {76, 27371}, {115, 58782}, {147, 33971}, {194, 27376}, {232, 7777}, {262, 39569}, {264, 3314}, {275, 3407}, {287, 11550}, {305, 60524}, {317, 385}, {318, 30179}, {324, 8024}, {343, 18906}, {393, 7774}, {394, 5207}, {625, 33842}, {648, 7837}, {1627, 57260}, {1916, 2052}, {1968, 7823}, {1972, 18018}, {1990, 41624}, {1993, 8878}, {1994, 41363}, {2207, 7785}, {3087, 16989}, {3172, 20088}, {3199, 7752}, {3329, 17907}, {4366, 11393}, {6645, 11392}, {6748, 7792}, {7735, 63155}, {7766, 16318}, {7779, 9308}, {7790, 33843}, {7806, 10311}, {7812, 14581}, {7839, 41361}, {7875, 36794}, {7897, 56022}, {7921, 8743}, {8796, 40824}, {11427, 15437}, {11794, 57493}, {13306, 47230}, {16080, 54540}, {37668, 43981}, {39284, 43529}, {43528, 60120}, {43530, 54539}, {44434, 44704}, {47151, 60695}, {54872, 60124}, {56297, 56867}, {58853, 59180}, {59771, 61207}, {60141, 60151}

X(62954) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 3406}, {3408, 43722}
X(62954) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 3406}
X(62954) = pole of line {6, 57275} with respect to the Kiepert hyperbola
X(62954) = pole of line {14316, 32320} with respect to the MacBeath circumconic
X(62954) = pole of line {69, 58354} with respect to the Wallace hyperbola
X(62954) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(20025)}}, {{A, B, C, X(3), X(1916)}}, {{A, B, C, X(5), X(3407)}}, {{A, B, C, X(22), X(1972)}}, {{A, B, C, X(30), X(54540)}}, {{A, B, C, X(98), X(37446)}}, {{A, B, C, X(140), X(43529)}}, {{A, B, C, X(237), X(46807)}}, {{A, B, C, X(262), X(37334)}}, {{A, B, C, X(275), X(5117)}}, {{A, B, C, X(381), X(54539)}}, {{A, B, C, X(401), X(18018)}}, {{A, B, C, X(419), X(2052)}}, {{A, B, C, X(458), X(18022)}}, {{A, B, C, X(631), X(40824)}}, {{A, B, C, X(1656), X(43528)}}, {{A, B, C, X(3108), X(37457)}}, {{A, B, C, X(3409), X(17517)}}, {{A, B, C, X(3526), X(60231)}}, {{A, B, C, X(4226), X(11794)}}, {{A, B, C, X(6620), X(8796)}}, {{A, B, C, X(7484), X(59758)}}, {{A, B, C, X(7770), X(60151)}}, {{A, B, C, X(7841), X(54872)}}, {{A, B, C, X(8024), X(14096)}}, {{A, B, C, X(14492), X(55008)}}, {{A, B, C, X(34664), X(54828)}}, {{A, B, C, X(37336), X(60105)}}, {{A, B, C, X(37345), X(54487)}}
X(62954) = barycentric product X(i)*X(j) for these (i, j): {264, 3095}, {427, 45093}, {20025, 5117}
X(62954) = barycentric quotient X(i)/X(j) for these (i, j): {4, 3406}, {3095, 3}, {5117, 20024}, {45093, 1799}, {46507, 3408}
X(62954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {297, 427, 2}, {1585, 1586, 419}, {16318, 27377, 7766}


X(62955) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5485), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+5*b^4-2*b^2*c^2+5*c^4-6*a^2*(b^2+c^2)) : :

X(62955) lies on these lines: {2, 3}, {53, 599}, {76, 54867}, {83, 54531}, {193, 33630}, {232, 9770}, {264, 21356}, {275, 18842}, {281, 50093}, {316, 37669}, {317, 1249}, {340, 50992}, {343, 52713}, {393, 524}, {459, 671}, {597, 3087}, {598, 56346}, {1785, 29573}, {1853, 46034}, {1990, 15534}, {1993, 8744}, {2052, 5485}, {2207, 37672}, {2996, 54710}, {3618, 32002}, {3620, 56022}, {5032, 27377}, {5523, 14361}, {5641, 56601}, {6330, 41145}, {6515, 54395}, {6530, 54132}, {6748, 47352}, {6749, 51185}, {7046, 29615}, {7282, 35578}, {7788, 55972}, {7790, 18928}, {7952, 29574}, {8584, 40138}, {8796, 60143}, {9308, 11160}, {10002, 54131}, {10192, 53017}, {10718, 60875}, {11180, 33971}, {11547, 57219}, {13449, 59543}, {13567, 43448}, {13637, 55473}, {13757, 55479}, {15466, 58782}, {15595, 51212}, {16080, 32532}, {17907, 40065}, {18800, 20774}, {18840, 39284}, {18841, 60120}, {20423, 39569}, {21969, 34854}, {22110, 59229}, {22165, 62195}, {23334, 60428}, {26958, 53419}, {32818, 60524}, {32823, 36212}, {37756, 55393}, {38253, 41895}, {41204, 50974}, {41361, 61658}, {43530, 60281}, {43678, 54930}, {44134, 50990}, {44704, 51028}, {46105, 54778}, {50962, 59661}, {50994, 52710}, {52583, 54785}, {53101, 60137}, {54412, 60516}, {54616, 60161}, {54637, 56270}, {54685, 60221}, {54771, 60266}, {54784, 60133}, {54893, 60183}, {60193, 60284}

X(62955) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 43537}
X(62955) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 43537}
X(62955) = pole of line {523, 47464} with respect to the polar circle
X(62955) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(5485)}}, {{A, B, C, X(5), X(18842)}}, {{A, B, C, X(20), X(671)}}, {{A, B, C, X(22), X(54930)}}, {{A, B, C, X(23), X(54778)}}, {{A, B, C, X(25), X(54867)}}, {{A, B, C, X(30), X(32532)}}, {{A, B, C, X(76), X(3523)}}, {{A, B, C, X(83), X(5056)}}, {{A, B, C, X(140), X(18840)}}, {{A, B, C, X(275), X(52284)}}, {{A, B, C, X(376), X(54637)}}, {{A, B, C, X(381), X(60281)}}, {{A, B, C, X(382), X(54720)}}, {{A, B, C, X(419), X(42377)}}, {{A, B, C, X(427), X(54531)}}, {{A, B, C, X(441), X(5641)}}, {{A, B, C, X(459), X(468)}}, {{A, B, C, X(549), X(60637)}}, {{A, B, C, X(550), X(60219)}}, {{A, B, C, X(598), X(3091)}}, {{A, B, C, X(631), X(60143)}}, {{A, B, C, X(858), X(54784)}}, {{A, B, C, X(1370), X(54785)}}, {{A, B, C, X(1513), X(60150)}}, {{A, B, C, X(1656), X(18841)}}, {{A, B, C, X(1995), X(54771)}}, {{A, B, C, X(2052), X(4232)}}, {{A, B, C, X(2996), X(3522)}}, {{A, B, C, X(3090), X(54616)}}, {{A, B, C, X(3146), X(41895)}}, {{A, B, C, X(3153), X(54817)}}, {{A, B, C, X(3524), X(60627)}}, {{A, B, C, X(3525), X(60629)}}, {{A, B, C, X(3526), X(60643)}}, {{A, B, C, X(3529), X(60631)}}, {{A, B, C, X(3533), X(60183)}}, {{A, B, C, X(3543), X(17503)}}, {{A, B, C, X(3545), X(60284)}}, {{A, B, C, X(3628), X(60646)}}, {{A, B, C, X(3830), X(54647)}}, {{A, B, C, X(3832), X(53101)}}, {{A, B, C, X(3839), X(45103)}}, {{A, B, C, X(3851), X(18843)}}, {{A, B, C, X(3854), X(18845)}}, {{A, B, C, X(4235), X(53639)}}, {{A, B, C, X(5054), X(60641)}}, {{A, B, C, X(5059), X(38259)}}, {{A, B, C, X(5067), X(60616)}}, {{A, B, C, X(5068), X(5395)}}, {{A, B, C, X(5094), X(56346)}}, {{A, B, C, X(5133), X(54772)}}, {{A, B, C, X(5169), X(54792)}}, {{A, B, C, X(5189), X(13579)}}, {{A, B, C, X(6353), X(54710)}}, {{A, B, C, X(6504), X(16063)}}, {{A, B, C, X(6636), X(54776)}}, {{A, B, C, X(6833), X(54695)}}, {{A, B, C, X(6834), X(54719)}}, {{A, B, C, X(6844), X(54630)}}, {{A, B, C, X(6847), X(54754)}}, {{A, B, C, X(6848), X(54755)}}, {{A, B, C, X(6995), X(39284)}}, {{A, B, C, X(6997), X(54797)}}, {{A, B, C, X(6998), X(54786)}}, {{A, B, C, X(7378), X(60120)}}, {{A, B, C, X(7379), X(54770)}}, {{A, B, C, X(7380), X(54624)}}, {{A, B, C, X(7390), X(60079)}}, {{A, B, C, X(7391), X(54761)}}, {{A, B, C, X(7394), X(54764)}}, {{A, B, C, X(7396), X(54496)}}, {{A, B, C, X(7398), X(54629)}}, {{A, B, C, X(7400), X(54558)}}, {{A, B, C, X(7407), X(60078)}}, {{A, B, C, X(7408), X(54893)}}, {{A, B, C, X(7409), X(54892)}}, {{A, B, C, X(7486), X(60239)}}, {{A, B, C, X(7487), X(54685)}}, {{A, B, C, X(7492), X(54782)}}, {{A, B, C, X(7495), X(60221)}}, {{A, B, C, X(7500), X(54666)}}, {{A, B, C, X(7519), X(54927)}}, {{A, B, C, X(8796), X(52301)}}, {{A, B, C, X(9476), X(44335)}}, {{A, B, C, X(10159), X(61856)}}, {{A, B, C, X(10299), X(60636)}}, {{A, B, C, X(10302), X(10303)}}, {{A, B, C, X(10304), X(60228)}}, {{A, B, C, X(13860), X(60127)}}, {{A, B, C, X(14037), X(60151)}}, {{A, B, C, X(14063), X(54872)}}, {{A, B, C, X(15022), X(54639)}}, {{A, B, C, X(15683), X(60632)}}, {{A, B, C, X(15692), X(60216)}}, {{A, B, C, X(15708), X(60638)}}, {{A, B, C, X(15717), X(60200)}}, {{A, B, C, X(15721), X(60286)}}, {{A, B, C, X(16044), X(54753)}}, {{A, B, C, X(16080), X(53857)}}, {{A, B, C, X(17578), X(60113)}}, {{A, B, C, X(20062), X(54801)}}, {{A, B, C, X(21554), X(54831)}}, {{A, B, C, X(21734), X(60635)}}, {{A, B, C, X(26118), X(54760)}}, {{A, B, C, X(27088), X(44146)}}, {{A, B, C, X(30771), X(54812)}}, {{A, B, C, X(31099), X(54913)}}, {{A, B, C, X(32964), X(54750)}}, {{A, B, C, X(32966), X(54833)}}, {{A, B, C, X(32971), X(54915)}}, {{A, B, C, X(32973), X(54751)}}, {{A, B, C, X(32974), X(54916)}}, {{A, B, C, X(33698), X(50688)}}, {{A, B, C, X(35142), X(52283)}}, {{A, B, C, X(35486), X(46105)}}, {{A, B, C, X(37349), X(54765)}}, {{A, B, C, X(37434), X(54780)}}, {{A, B, C, X(37456), X(54756)}}, {{A, B, C, X(38253), X(52290)}}, {{A, B, C, X(43527), X(46935)}}, {{A, B, C, X(43676), X(62067)}}, {{A, B, C, X(43681), X(61791)}}, {{A, B, C, X(45662), X(56601)}}, {{A, B, C, X(46336), X(60114)}}, {{A, B, C, X(46936), X(60238)}}, {{A, B, C, X(49135), X(53105)}}, {{A, B, C, X(49140), X(60630)}}, {{A, B, C, X(50687), X(54896)}}, {{A, B, C, X(50689), X(54476)}}, {{A, B, C, X(50691), X(53106)}}, {{A, B, C, X(50693), X(60625)}}, {{A, B, C, X(50698), X(54744)}}, {{A, B, C, X(50699), X(54775)}}, {{A, B, C, X(50700), X(54692)}}, {{A, B, C, X(50701), X(54691)}}, {{A, B, C, X(52288), X(55972)}}, {{A, B, C, X(52300), X(60256)}}, {{A, B, C, X(52404), X(54779)}}, {{A, B, C, X(54478), X(62007)}}, {{A, B, C, X(54494), X(61982)}}, {{A, B, C, X(54642), X(61985)}}, {{A, B, C, X(54777), X(59349)}}, {{A, B, C, X(55864), X(60277)}}, {{A, B, C, X(58883), X(60185)}}, {{A, B, C, X(60131), X(61863)}}, {{A, B, C, X(60209), X(62110)}}, {{A, B, C, X(60250), X(61783)}}, {{A, B, C, X(60282), X(61936)}}, {{A, B, C, X(60283), X(61924)}}, {{A, B, C, X(60285), X(61834)}}, {{A, B, C, X(60287), X(61912)}}, {{A, B, C, X(60626), X(62097)}}, {{A, B, C, X(60628), X(61820)}}, {{A, B, C, X(60648), X(61914)}}
X(62955) = barycentric product X(i)*X(j) for these (i, j): {11477, 264}
X(62955) = barycentric quotient X(i)/X(j) for these (i, j): {4, 43537}, {11477, 3}
X(62955) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {317, 37765, 1992}, {393, 32001, 56013}, {1992, 37765, 1249}, {17907, 63155, 40065}


X(62956) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(10194), X(3), X(4))

Barycentrics    3*(a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)-2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*S : :

X(62956) lies on these lines: {2, 3}, {53, 32789}, {125, 45407}, {275, 10194}, {317, 32807}, {340, 492}, {393, 32785}, {459, 3590}, {485, 16080}, {486, 43530}, {491, 44134}, {590, 1990}, {615, 6749}, {637, 11064}, {638, 37638}, {648, 13637}, {1249, 8972}, {1328, 60138}, {1587, 37643}, {1659, 52412}, {2052, 10195}, {3068, 40138}, {3069, 62213}, {3070, 47296}, {3087, 32786}, {3305, 55460}, {3306, 55431}, {3316, 56270}, {3317, 60193}, {3591, 56346}, {3593, 32001}, {3595, 32000}, {5418, 14165}, {5420, 43462}, {5437, 55396}, {5702, 7585}, {5870, 35260}, {6103, 13638}, {6748, 32790}, {7308, 55395}, {8796, 43564}, {8960, 8968}, {8976, 51358}, {10601, 55444}, {12322, 62708}, {13386, 17917}, {13748, 61680}, {13749, 61735}, {13941, 40065}, {14121, 17923}, {16032, 38808}, {17825, 55412}, {23710, 55876}, {32791, 55428}, {32792, 55429}, {32795, 55393}, {32796, 55394}, {32803, 55458}, {32804, 55459}, {32805, 55473}, {32806, 52710}, {32812, 55479}, {32813, 55480}, {38253, 60291}, {43565, 60161}, {60137, 60292}

X(62956) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 1327}, {656, 59110}
X(62956) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 1327}, {40596, 59110}
X(62956) = X(i)-cross conjugate of X(j) for these {i, j}: {6200, 32808}
X(62956) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(6200)}}, {{A, B, C, X(5), X(10194)}}, {{A, B, C, X(17), X(2043)}}, {{A, B, C, X(18), X(2044)}}, {{A, B, C, X(20), X(3590)}}, {{A, B, C, X(30), X(485)}}, {{A, B, C, X(264), X(60138)}}, {{A, B, C, X(376), X(3316)}}, {{A, B, C, X(381), X(486)}}, {{A, B, C, X(382), X(43570)}}, {{A, B, C, X(546), X(43571)}}, {{A, B, C, X(549), X(43558)}}, {{A, B, C, X(631), X(43564)}}, {{A, B, C, X(1131), X(3543)}}, {{A, B, C, X(1132), X(3839)}}, {{A, B, C, X(1327), X(3830)}}, {{A, B, C, X(1328), X(3845)}}, {{A, B, C, X(1585), X(16080)}}, {{A, B, C, X(1586), X(43530)}}, {{A, B, C, X(2041), X(50245)}}, {{A, B, C, X(3090), X(43565)}}, {{A, B, C, X(3091), X(3591)}}, {{A, B, C, X(3146), X(60291)}}, {{A, B, C, X(3156), X(58824)}}, {{A, B, C, X(3317), X(3545)}}, {{A, B, C, X(3366), X(36437)}}, {{A, B, C, X(3391), X(36455)}}, {{A, B, C, X(3524), X(34089)}}, {{A, B, C, X(3832), X(60292)}}, {{A, B, C, X(5055), X(43559)}}, {{A, B, C, X(5071), X(34091)}}, {{A, B, C, X(10304), X(60293)}}, {{A, B, C, X(11001), X(43536)}}, {{A, B, C, X(11091), X(55885)}}, {{A, B, C, X(12100), X(60297)}}, {{A, B, C, X(14226), X(41099)}}, {{A, B, C, X(14241), X(15682)}}, {{A, B, C, X(15640), X(60299)}}, {{A, B, C, X(15702), X(60315)}}, {{A, B, C, X(33699), X(60313)}}, {{A, B, C, X(33703), X(60303)}}, {{A, B, C, X(41106), X(54597)}}, {{A, B, C, X(43560), X(50687)}}, {{A, B, C, X(43561), X(61985)}}, {{A, B, C, X(43566), X(62007)}}, {{A, B, C, X(43567), X(61989)}}, {{A, B, C, X(54542), X(62002)}}, {{A, B, C, X(54595), X(62000)}}, {{A, B, C, X(54596), X(61997)}}, {{A, B, C, X(55569), X(60193)}}, {{A, B, C, X(55573), X(56270)}}, {{A, B, C, X(60289), X(62029)}}, {{A, B, C, X(60290), X(61973)}}, {{A, B, C, X(60294), X(61936)}}, {{A, B, C, X(60295), X(62018)}}, {{A, B, C, X(60298), X(61920)}}, {{A, B, C, X(60300), X(61966)}}, {{A, B, C, X(60301), X(62019)}}, {{A, B, C, X(60302), X(61979)}}, {{A, B, C, X(60304), X(61964)}}, {{A, B, C, X(60305), X(62017)}}, {{A, B, C, X(60306), X(61980)}}, {{A, B, C, X(60307), X(62009)}}, {{A, B, C, X(60308), X(61987)}}, {{A, B, C, X(60309), X(62011)}}, {{A, B, C, X(60310), X(61983)}}, {{A, B, C, X(60311), X(62120)}}, {{A, B, C, X(60312), X(61944)}}, {{A, B, C, X(60314), X(61974)}}, {{A, B, C, X(60316), X(61899)}}, {{A, B, C, X(60620), X(62042)}}, {{A, B, C, X(60621), X(61967)}}, {{A, B, C, X(60622), X(62160)}}, {{A, B, C, X(60623), X(61958)}}
X(62956) = barycentric product X(i)*X(j) for these (i, j): {264, 6200}, {32808, 4}
X(62956) = barycentric quotient X(i)/X(j) for these (i, j): {4, 1327}, {112, 59110}, {6200, 3}, {32808, 69}, {35472, 6396}, {58824, 6413}
X(62956) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1585, 1586}, {470, 471, 1585}


X(62957) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(10195), X(3), X(4))

Barycentrics    3*(a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)+2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*S : :

X(62957) lies on these lines: {2, 3}, {53, 32790}, {125, 45406}, {264, 32807}, {275, 10195}, {340, 491}, {393, 32786}, {459, 3591}, {485, 43530}, {486, 16080}, {492, 44134}, {590, 6749}, {615, 1990}, {637, 37638}, {638, 11064}, {648, 13757}, {1249, 13941}, {1327, 60138}, {1588, 37643}, {2052, 10194}, {3068, 62213}, {3069, 40138}, {3071, 47296}, {3087, 32785}, {3305, 55461}, {3306, 55430}, {3316, 60193}, {3317, 56270}, {3590, 56346}, {3593, 32000}, {3595, 32001}, {5418, 43462}, {5420, 14165}, {5437, 55395}, {5702, 7586}, {5871, 35260}, {6103, 13758}, {6748, 32789}, {7090, 17923}, {7308, 55396}, {8796, 43565}, {8972, 40065}, {10601, 55443}, {12323, 62708}, {13387, 17917}, {13390, 52412}, {13748, 61735}, {13749, 61680}, {13951, 51358}, {15466, 55477}, {16037, 38808}, {17825, 55411}, {23710, 55877}, {32791, 55459}, {32792, 55458}, {32795, 55394}, {32796, 55393}, {32803, 55429}, {32804, 55428}, {32805, 52710}, {32806, 55479}, {32812, 55474}, {32813, 55473}, {38253, 60292}, {43564, 60161}, {60137, 60291}

X(62957) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 1328}, {656, 59111}
X(62957) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 1328}, {40596, 59111}
X(62957) = X(i)-cross conjugate of X(j) for these {i, j}: {6396, 32809}
X(62957) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(6396)}}, {{A, B, C, X(5), X(10195)}}, {{A, B, C, X(17), X(2044)}}, {{A, B, C, X(18), X(2043)}}, {{A, B, C, X(20), X(3591)}}, {{A, B, C, X(30), X(486)}}, {{A, B, C, X(264), X(60138)}}, {{A, B, C, X(376), X(3317)}}, {{A, B, C, X(381), X(485)}}, {{A, B, C, X(382), X(43571)}}, {{A, B, C, X(546), X(43570)}}, {{A, B, C, X(549), X(43559)}}, {{A, B, C, X(631), X(43565)}}, {{A, B, C, X(1131), X(3839)}}, {{A, B, C, X(1132), X(3543)}}, {{A, B, C, X(1327), X(3845)}}, {{A, B, C, X(1328), X(3830)}}, {{A, B, C, X(1585), X(43530)}}, {{A, B, C, X(1586), X(16080)}}, {{A, B, C, X(3090), X(43564)}}, {{A, B, C, X(3091), X(3590)}}, {{A, B, C, X(3146), X(60292)}}, {{A, B, C, X(3155), X(58826)}}, {{A, B, C, X(3316), X(3545)}}, {{A, B, C, X(3367), X(36455)}}, {{A, B, C, X(3392), X(36437)}}, {{A, B, C, X(3524), X(34091)}}, {{A, B, C, X(3832), X(60291)}}, {{A, B, C, X(5055), X(43558)}}, {{A, B, C, X(5071), X(34089)}}, {{A, B, C, X(10304), X(60294)}}, {{A, B, C, X(11001), X(54597)}}, {{A, B, C, X(11090), X(55890)}}, {{A, B, C, X(12100), X(60298)}}, {{A, B, C, X(14226), X(15682)}}, {{A, B, C, X(14241), X(41099)}}, {{A, B, C, X(15640), X(60300)}}, {{A, B, C, X(15702), X(60316)}}, {{A, B, C, X(33699), X(60314)}}, {{A, B, C, X(33703), X(60304)}}, {{A, B, C, X(41106), X(43536)}}, {{A, B, C, X(43560), X(61985)}}, {{A, B, C, X(43561), X(50687)}}, {{A, B, C, X(43566), X(61989)}}, {{A, B, C, X(43567), X(62007)}}, {{A, B, C, X(54543), X(62002)}}, {{A, B, C, X(54595), X(61997)}}, {{A, B, C, X(54596), X(62000)}}, {{A, B, C, X(55569), X(56270)}}, {{A, B, C, X(55573), X(60193)}}, {{A, B, C, X(60289), X(61973)}}, {{A, B, C, X(60290), X(62029)}}, {{A, B, C, X(60293), X(61936)}}, {{A, B, C, X(60296), X(62018)}}, {{A, B, C, X(60297), X(61920)}}, {{A, B, C, X(60299), X(61966)}}, {{A, B, C, X(60301), X(61979)}}, {{A, B, C, X(60302), X(62019)}}, {{A, B, C, X(60303), X(61964)}}, {{A, B, C, X(60305), X(61980)}}, {{A, B, C, X(60306), X(62017)}}, {{A, B, C, X(60307), X(61987)}}, {{A, B, C, X(60308), X(62009)}}, {{A, B, C, X(60309), X(61983)}}, {{A, B, C, X(60310), X(62011)}}, {{A, B, C, X(60311), X(61944)}}, {{A, B, C, X(60312), X(62120)}}, {{A, B, C, X(60313), X(61974)}}, {{A, B, C, X(60315), X(61899)}}, {{A, B, C, X(60620), X(61967)}}, {{A, B, C, X(60621), X(62042)}}, {{A, B, C, X(60622), X(61958)}}, {{A, B, C, X(60623), X(62160)}}
X(62957) = barycentric product X(i)*X(j) for these (i, j): {264, 6396}, {32809, 4}
X(62957) = barycentric quotient X(i)/X(j) for these (i, j): {4, 1328}, {112, 59111}, {6396, 3}, {32809, 69}, {35472, 6200}, {58826, 6414}
X(62957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1586, 1585}, {470, 471, 1586}


X(62958) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11669), X(3), X(4))

Barycentrics    (2*a^2-3*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62958) lies on these lines: {2, 3}, {51, 47296}, {69, 11405}, {125, 11245}, {126, 53983}, {128, 53993}, {136, 31843}, {141, 8541}, {184, 23332}, {232, 3055}, {264, 37647}, {275, 53104}, {373, 15010}, {389, 15739}, {459, 60333}, {647, 59742}, {1112, 5943}, {1125, 12135}, {1194, 44467}, {1196, 47298}, {1216, 6746}, {1398, 10588}, {1495, 58434}, {1503, 44110}, {1506, 14581}, {1560, 46654}, {1829, 3634}, {1843, 34573}, {1862, 6667}, {1892, 31231}, {1899, 17809}, {1974, 51126}, {1986, 40685}, {2052, 11669}, {2501, 10189}, {2969, 52412}, {2970, 40684}, {3054, 10311}, {3108, 8791}, {3172, 31404}, {3448, 61655}, {3455, 39845}, {3564, 23293}, {3589, 44102}, {3618, 46444}, {3619, 12167}, {3624, 5090}, {3763, 41584}, {3815, 16318}, {3819, 47328}, {3867, 51128}, {5185, 58418}, {5186, 6722}, {5305, 53026}, {5326, 52427}, {5410, 32785}, {5411, 32786}, {5412, 32789}, {5413, 32790}, {5480, 61645}, {6103, 9300}, {6146, 32767}, {6331, 42394}, {6666, 60879}, {6683, 12143}, {6688, 44084}, {6696, 43831}, {6697, 26926}, {6721, 12131}, {7071, 10589}, {7140, 17923}, {7603, 60428}, {7713, 19872}, {7925, 38294}, {8252, 13937}, {8253, 13884}, {8739, 23303}, {8740, 23302}, {8893, 30749}, {9306, 45303}, {9777, 37643}, {9780, 11396}, {10169, 47277}, {10192, 11550}, {10632, 43103}, {10633, 43102}, {11064, 21243}, {11216, 47281}, {11363, 19862}, {11402, 23291}, {11427, 26869}, {11442, 59553}, {11473, 42583}, {11474, 42582}, {11542, 56515}, {11543, 56514}, {12079, 57487}, {12132, 22247}, {12133, 12900}, {12134, 43839}, {12137, 58453}, {12138, 58421}, {12145, 58430}, {12834, 15059}, {13148, 20397}, {13166, 58428}, {13363, 52000}, {13567, 15004}, {13857, 50982}, {14157, 61606}, {14389, 26913}, {14826, 62708}, {14975, 17123}, {15011, 54376}, {16080, 60192}, {17004, 27377}, {18402, 53832}, {18914, 23294}, {19504, 34545}, {19596, 58437}, {19878, 49542}, {20965, 35325}, {24206, 39871}, {24814, 40480}, {26864, 32064}, {27376, 31455}, {31383, 61680}, {31467, 41361}, {31655, 53987}, {34148, 61544}, {34336, 52787}, {35264, 39884}, {37680, 44097}, {37892, 60231}, {38253, 60331}, {39176, 53575}, {42400, 53506}, {42426, 46437}, {43530, 60175}, {44201, 51392}, {45689, 47230}, {45733, 57714}, {45968, 59771}, {47187, 59768}, {47582, 61646}, {51744, 62376}, {54608, 60138}, {56346, 60102}, {60100, 60125}, {60124, 60239}, {60137, 60336}, {60141, 60278}

X(62958) = inverse of X(37453) in orthocentroidal circle
X(62958) = inverse of X(13619) in orthoptic circle of the Steiner Inellipse
X(62958) = inverse of X(37760) in polar circle
X(62958) = inverse of X(37453) in Yff hyperbola
X(62958) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 53109}
X(62958) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 53109}
X(62958) = X(i)-cross conjugate of X(j) for these {i, j}: {37512, 3631}
X(62958) = pole of line {523, 37453} with respect to the orthocentroidal circle
X(62958) = pole of line {523, 13619} with respect to the orthoptic circle of the Steiner Inellipse
X(62958) = pole of line {523, 26777} with respect to the polar circle
X(62958) = pole of line {185, 44668} with respect to the Jerabek hyperbola
X(62958) = pole of line {6, 13622} with respect to the Kiepert hyperbola
X(62958) = pole of line {2501, 53365} with respect to the Orthic inconic
X(62958) = pole of line {523, 37453} with respect to the Yff hyperbola
X(62958) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3631)}}, {{A, B, C, X(3), X(11669)}}, {{A, B, C, X(5), X(53104)}}, {{A, B, C, X(20), X(60333)}}, {{A, B, C, X(23), X(3108)}}, {{A, B, C, X(30), X(60192)}}, {{A, B, C, X(83), X(33229)}}, {{A, B, C, X(98), X(546)}}, {{A, B, C, X(252), X(3090)}}, {{A, B, C, X(262), X(382)}}, {{A, B, C, X(264), X(37453)}}, {{A, B, C, X(381), X(60175)}}, {{A, B, C, X(384), X(60231)}}, {{A, B, C, X(428), X(8791)}}, {{A, B, C, X(523), X(37760)}}, {{A, B, C, X(547), X(45733)}}, {{A, B, C, X(550), X(7608)}}, {{A, B, C, X(842), X(37922)}}, {{A, B, C, X(1297), X(38448)}}, {{A, B, C, X(1916), X(14042)}}, {{A, B, C, X(3091), X(60102)}}, {{A, B, C, X(3146), X(60331)}}, {{A, B, C, X(3407), X(14062)}}, {{A, B, C, X(3424), X(61982)}}, {{A, B, C, X(3528), X(10155)}}, {{A, B, C, X(3529), X(14494)}}, {{A, B, C, X(3530), X(53108)}}, {{A, B, C, X(3543), X(54521)}}, {{A, B, C, X(3544), X(53103)}}, {{A, B, C, X(3563), X(47486)}}, {{A, B, C, X(3613), X(31074)}}, {{A, B, C, X(3830), X(54643)}}, {{A, B, C, X(3832), X(38443)}}, {{A, B, C, X(3839), X(54866)}}, {{A, B, C, X(3843), X(60323)}}, {{A, B, C, X(3845), X(54608)}}, {{A, B, C, X(3851), X(7607)}}, {{A, B, C, X(3855), X(7612)}}, {{A, B, C, X(3861), X(54891)}}, {{A, B, C, X(5079), X(11668)}}, {{A, B, C, X(6656), X(60100)}}, {{A, B, C, X(6676), X(30786)}}, {{A, B, C, X(7542), X(34483)}}, {{A, B, C, X(7714), X(13854)}}, {{A, B, C, X(7770), X(60278)}}, {{A, B, C, X(7841), X(60239)}}, {{A, B, C, X(8352), X(60282)}}, {{A, B, C, X(8370), X(10302)}}, {{A, B, C, X(8781), X(19687)}}, {{A, B, C, X(9909), X(39951)}}, {{A, B, C, X(10185), X(35018)}}, {{A, B, C, X(10299), X(53098)}}, {{A, B, C, X(11317), X(60228)}}, {{A, B, C, X(13619), X(60590)}}, {{A, B, C, X(13623), X(44249)}}, {{A, B, C, X(14034), X(43529)}}, {{A, B, C, X(14045), X(43528)}}, {{A, B, C, X(14269), X(14458)}}, {{A, B, C, X(14484), X(50688)}}, {{A, B, C, X(14488), X(62004)}}, {{A, B, C, X(14492), X(15687)}}, {{A, B, C, X(14893), X(54852)}}, {{A, B, C, X(15681), X(54645)}}, {{A, B, C, X(15720), X(60144)}}, {{A, B, C, X(18364), X(29011)}}, {{A, B, C, X(26255), X(40323)}}, {{A, B, C, X(32534), X(40801)}}, {{A, B, C, X(32979), X(60639)}}, {{A, B, C, X(33190), X(60646)}}, {{A, B, C, X(33234), X(60096)}}, {{A, B, C, X(33235), X(60178)}}, {{A, B, C, X(33256), X(60098)}}, {{A, B, C, X(33257), X(60233)}}, {{A, B, C, X(33279), X(60190)}}, {{A, B, C, X(33280), X(60234)}}, {{A, B, C, X(37454), X(52236)}}, {{A, B, C, X(37939), X(57714)}}, {{A, B, C, X(38071), X(54644)}}, {{A, B, C, X(40413), X(52297)}}, {{A, B, C, X(49135), X(53099)}}, {{A, B, C, X(49139), X(60332)}}, {{A, B, C, X(52285), X(60125)}}, {{A, B, C, X(54477), X(61997)}}, {{A, B, C, X(54519), X(61994)}}, {{A, B, C, X(54520), X(62003)}}, {{A, B, C, X(54522), X(62037)}}, {{A, B, C, X(54523), X(62042)}}, {{A, B, C, X(54582), X(62000)}}, {{A, B, C, X(54734), X(62022)}}, {{A, B, C, X(54851), X(61977)}}, {{A, B, C, X(54920), X(62044)}}, {{A, B, C, X(60123), X(61921)}}, {{A, B, C, X(60127), X(62017)}}, {{A, B, C, X(60142), X(62013)}}, {{A, B, C, X(60150), X(61980)}}, {{A, B, C, X(60185), X(61967)}}
X(62958) = barycentric product X(i)*X(j) for these (i, j): {264, 37512}, {3631, 4}
X(62958) = barycentric quotient X(i)/X(j) for these (i, j): {4, 53109}, {3631, 69}, {37512, 3}
X(62958) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 427, 468}, {125, 23292, 11245}, {427, 468, 428}, {12007, 23292, 61659}, {14389, 26913, 45298}


X(62959) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(18842), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(5*a^4+b^4-10*b^2*c^2+c^4-6*a^2*(b^2+c^2)) : :

X(62959) lies on these lines: {2, 3}, {53, 47352}, {76, 54531}, {83, 54867}, {154, 46034}, {264, 1992}, {273, 35578}, {275, 5485}, {317, 21356}, {340, 50990}, {393, 597}, {394, 52713}, {459, 598}, {524, 3087}, {599, 6748}, {671, 56346}, {1119, 50128}, {1249, 36794}, {1990, 51185}, {2052, 18842}, {3618, 37765}, {3619, 32002}, {5032, 9308}, {5395, 54710}, {5422, 8744}, {6749, 15534}, {7046, 29617}, {7620, 37873}, {8584, 62213}, {8796, 54616}, {9766, 47735}, {10002, 38072}, {11160, 27377}, {11179, 39530}, {11185, 37669}, {11433, 41254}, {13637, 55480}, {13757, 55474}, {14361, 41244}, {15595, 51537}, {16080, 60281}, {18840, 60120}, {18841, 39284}, {23292, 43448}, {23332, 53017}, {26958, 53418}, {29573, 56814}, {29574, 34231}, {32532, 43530}, {32822, 36212}, {33630, 51171}, {37756, 55394}, {38253, 53101}, {40814, 44142}, {41895, 60137}, {43678, 54772}, {43999, 60693}, {44134, 50992}, {46105, 54792}, {52583, 54797}, {54637, 60193}, {54647, 60138}, {54771, 60133}, {54784, 60266}, {54892, 60183}, {56270, 60284}, {60143, 60161}

X(62959) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 53099}
X(62959) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 53099}
X(62959) = pole of line {523, 47446} with respect to the polar circle
X(62959) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(18842)}}, {{A, B, C, X(5), X(5485)}}, {{A, B, C, X(20), X(598)}}, {{A, B, C, X(22), X(54772)}}, {{A, B, C, X(23), X(54792)}}, {{A, B, C, X(25), X(54531)}}, {{A, B, C, X(30), X(60281)}}, {{A, B, C, X(76), X(5056)}}, {{A, B, C, X(83), X(3523)}}, {{A, B, C, X(140), X(18841)}}, {{A, B, C, X(275), X(4232)}}, {{A, B, C, X(376), X(60284)}}, {{A, B, C, X(381), X(32532)}}, {{A, B, C, X(427), X(54867)}}, {{A, B, C, X(459), X(5094)}}, {{A, B, C, X(468), X(56346)}}, {{A, B, C, X(546), X(54720)}}, {{A, B, C, X(547), X(60641)}}, {{A, B, C, X(550), X(18843)}}, {{A, B, C, X(631), X(54616)}}, {{A, B, C, X(671), X(3091)}}, {{A, B, C, X(858), X(54771)}}, {{A, B, C, X(1370), X(54797)}}, {{A, B, C, X(1513), X(60127)}}, {{A, B, C, X(1656), X(18840)}}, {{A, B, C, X(1657), X(18844)}}, {{A, B, C, X(1995), X(54784)}}, {{A, B, C, X(2052), X(52284)}}, {{A, B, C, X(2996), X(5068)}}, {{A, B, C, X(3090), X(60143)}}, {{A, B, C, X(3146), X(53101)}}, {{A, B, C, X(3153), X(54818)}}, {{A, B, C, X(3522), X(5395)}}, {{A, B, C, X(3525), X(60616)}}, {{A, B, C, X(3526), X(60646)}}, {{A, B, C, X(3543), X(45103)}}, {{A, B, C, X(3545), X(54637)}}, {{A, B, C, X(3552), X(54833)}}, {{A, B, C, X(3628), X(60643)}}, {{A, B, C, X(3832), X(41895)}}, {{A, B, C, X(3839), X(17503)}}, {{A, B, C, X(3845), X(54647)}}, {{A, B, C, X(3851), X(60219)}}, {{A, B, C, X(3854), X(38259)}}, {{A, B, C, X(3855), X(60631)}}, {{A, B, C, X(5055), X(60637)}}, {{A, B, C, X(5059), X(18845)}}, {{A, B, C, X(5067), X(60629)}}, {{A, B, C, X(5071), X(60627)}}, {{A, B, C, X(5133), X(54930)}}, {{A, B, C, X(5169), X(54778)}}, {{A, B, C, X(6623), X(54825)}}, {{A, B, C, X(6655), X(54753)}}, {{A, B, C, X(6677), X(54812)}}, {{A, B, C, X(6833), X(54719)}}, {{A, B, C, X(6834), X(54695)}}, {{A, B, C, X(6844), X(54691)}}, {{A, B, C, X(6847), X(54755)}}, {{A, B, C, X(6848), X(54754)}}, {{A, B, C, X(6995), X(60120)}}, {{A, B, C, X(6997), X(54785)}}, {{A, B, C, X(6998), X(54624)}}, {{A, B, C, X(7378), X(39284)}}, {{A, B, C, X(7380), X(54786)}}, {{A, B, C, X(7385), X(54770)}}, {{A, B, C, X(7390), X(60078)}}, {{A, B, C, X(7391), X(54764)}}, {{A, B, C, X(7394), X(54761)}}, {{A, B, C, X(7396), X(54629)}}, {{A, B, C, X(7398), X(54496)}}, {{A, B, C, X(7407), X(60079)}}, {{A, B, C, X(7408), X(54892)}}, {{A, B, C, X(7409), X(54893)}}, {{A, B, C, X(7486), X(10302)}}, {{A, B, C, X(7519), X(54663)}}, {{A, B, C, X(7533), X(13579)}}, {{A, B, C, X(8889), X(54710)}}, {{A, B, C, X(10159), X(46935)}}, {{A, B, C, X(10303), X(60239)}}, {{A, B, C, X(10304), X(60282)}}, {{A, B, C, X(11166), X(37457)}}, {{A, B, C, X(13860), X(60150)}}, {{A, B, C, X(14035), X(54872)}}, {{A, B, C, X(15022), X(60200)}}, {{A, B, C, X(15692), X(60283)}}, {{A, B, C, X(15708), X(60287)}}, {{A, B, C, X(15717), X(54639)}}, {{A, B, C, X(17578), X(54476)}}, {{A, B, C, X(20062), X(54914)}}, {{A, B, C, X(26118), X(54759)}}, {{A, B, C, X(31099), X(54864)}}, {{A, B, C, X(32963), X(54750)}}, {{A, B, C, X(32971), X(54916)}}, {{A, B, C, X(32972), X(54751)}}, {{A, B, C, X(32974), X(54915)}}, {{A, B, C, X(33283), X(60151)}}, {{A, B, C, X(33698), X(61982)}}, {{A, B, C, X(37349), X(54762)}}, {{A, B, C, X(37353), X(54776)}}, {{A, B, C, X(37456), X(54766)}}, {{A, B, C, X(43527), X(61856)}}, {{A, B, C, X(43530), X(53857)}}, {{A, B, C, X(46936), X(60277)}}, {{A, B, C, X(49135), X(53109)}}, {{A, B, C, X(50687), X(54642)}}, {{A, B, C, X(50688), X(54494)}}, {{A, B, C, X(50689), X(60113)}}, {{A, B, C, X(50691), X(53107)}}, {{A, B, C, X(50693), X(60650)}}, {{A, B, C, X(50700), X(54729)}}, {{A, B, C, X(50701), X(54630)}}, {{A, B, C, X(52290), X(60137)}}, {{A, B, C, X(52301), X(60161)}}, {{A, B, C, X(53102), X(62067)}}, {{A, B, C, X(54478), X(61989)}}, {{A, B, C, X(54523), X(58883)}}, {{A, B, C, X(54896), X(61985)}}, {{A, B, C, X(55864), X(60238)}}, {{A, B, C, X(60145), X(61791)}}, {{A, B, C, X(60146), X(62110)}}, {{A, B, C, X(60183), X(61886)}}, {{A, B, C, X(60216), X(61924)}}, {{A, B, C, X(60228), X(61936)}}, {{A, B, C, X(60286), X(61906)}}, {{A, B, C, X(60628), X(61914)}}, {{A, B, C, X(60632), X(61954)}}, {{A, B, C, X(60636), X(61921)}}, {{A, B, C, X(60638), X(61912)}}, {{A, B, C, X(60645), X(61863)}}, {{A, B, C, X(60647), X(61834)}}, {{A, B, C, X(60648), X(61820)}}, {{A, B, C, X(60649), X(61783)}}
X(62959) = barycentric product X(i)*X(j) for these (i, j): {264, 53093}
X(62959) = barycentric quotient X(i)/X(j) for these (i, j): {4, 53099}, {53093, 3}
X(62959) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 40065, 56013}, {51171, 56022, 33630}


X(62960) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(53098), X(3), X(4))

Barycentrics    (5*a^2-7*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62960) lies on these lines: {2, 3}, {125, 14912}, {230, 62213}, {275, 60123}, {340, 34229}, {393, 3055}, {459, 7608}, {1007, 37803}, {1235, 11059}, {1249, 41358}, {1352, 62708}, {1843, 15082}, {1892, 31188}, {1990, 31489}, {2052, 53098}, {3054, 3087}, {3815, 40138}, {5095, 13169}, {5486, 18919}, {5650, 6403}, {5702, 6103}, {5972, 32250}, {6697, 19119}, {6723, 14561}, {6749, 37637}, {6776, 61735}, {7607, 56346}, {7612, 43530}, {7713, 31253}, {7717, 61001}, {7718, 19862}, {7777, 56013}, {8550, 23291}, {10155, 56270}, {10185, 54531}, {10219, 44079}, {11396, 46932}, {11427, 44111}, {12242, 32334}, {14494, 16080}, {14580, 15302}, {14853, 47296}, {14920, 30789}, {15059, 18947}, {15118, 32241}, {15131, 32247}, {15471, 47352}, {16187, 19124}, {18553, 59543}, {18841, 60124}, {18925, 32767}, {18928, 25555}, {18950, 23292}, {19128, 22112}, {23061, 51179}, {23293, 63174}, {32001, 37688}, {32223, 51538}, {32817, 37804}, {32835, 59766}, {34507, 37669}, {34803, 35520}, {37643, 44107}, {37645, 41724}, {38253, 53099}, {38294, 41133}, {40330, 59767}, {40920, 51171}, {43537, 60137}, {43542, 56515}, {43543, 56514}, {53103, 60193}, {54867, 60144}, {60138, 60150}

X(62960) = inverse of X(52290) in orthocentroidal circle
X(62960) = inverse of X(52290) in Yff hyperbola
X(62960) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 53101}
X(62960) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 53101}
X(62960) = pole of line {523, 52290} with respect to the orthocentroidal circle
X(62960) = pole of line {6, 52290} with respect to the Kiepert hyperbola
X(62960) = pole of line {523, 52290} with respect to the Yff hyperbola
X(62960) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(53095)}}, {{A, B, C, X(5), X(60123)}}, {{A, B, C, X(20), X(7608)}}, {{A, B, C, X(25), X(11405)}}, {{A, B, C, X(30), X(14494)}}, {{A, B, C, X(98), X(3839)}}, {{A, B, C, X(262), X(3543)}}, {{A, B, C, X(264), X(52290)}}, {{A, B, C, X(376), X(10155)}}, {{A, B, C, X(381), X(7612)}}, {{A, B, C, X(382), X(60330)}}, {{A, B, C, X(459), X(52281)}}, {{A, B, C, X(546), X(60337)}}, {{A, B, C, X(842), X(37957)}}, {{A, B, C, X(1297), X(38446)}}, {{A, B, C, X(3091), X(7607)}}, {{A, B, C, X(3146), X(53099)}}, {{A, B, C, X(3424), X(61985)}}, {{A, B, C, X(3523), X(60144)}}, {{A, B, C, X(3545), X(53103)}}, {{A, B, C, X(3830), X(60127)}}, {{A, B, C, X(3832), X(43537)}}, {{A, B, C, X(3845), X(60150)}}, {{A, B, C, X(4232), X(34208)}}, {{A, B, C, X(5056), X(10185)}}, {{A, B, C, X(5068), X(53859)}}, {{A, B, C, X(5485), X(11317)}}, {{A, B, C, X(6676), X(15464)}}, {{A, B, C, X(7378), X(60124)}}, {{A, B, C, X(7426), X(10415)}}, {{A, B, C, X(7841), X(18841)}}, {{A, B, C, X(8352), X(18842)}}, {{A, B, C, X(8370), X(18840)}}, {{A, B, C, X(8597), X(60268)}}, {{A, B, C, X(10159), X(32971)}}, {{A, B, C, X(10295), X(18852)}}, {{A, B, C, X(10304), X(11669)}}, {{A, B, C, X(10603), X(52292)}}, {{A, B, C, X(11361), X(40824)}}, {{A, B, C, X(11668), X(61924)}}, {{A, B, C, X(13574), X(37907)}}, {{A, B, C, X(14035), X(43529)}}, {{A, B, C, X(14063), X(43528)}}, {{A, B, C, X(14269), X(54845)}}, {{A, B, C, X(14458), X(61989)}}, {{A, B, C, X(14484), X(50687)}}, {{A, B, C, X(14488), X(62003)}}, {{A, B, C, X(14492), X(62007)}}, {{A, B, C, X(14893), X(60325)}}, {{A, B, C, X(15640), X(60192)}}, {{A, B, C, X(15682), X(54523)}}, {{A, B, C, X(15683), X(60333)}}, {{A, B, C, X(15687), X(52519)}}, {{A, B, C, X(15692), X(53108)}}, {{A, B, C, X(17578), X(60118)}}, {{A, B, C, X(18853), X(35486)}}, {{A, B, C, X(32133), X(37454)}}, {{A, B, C, X(32974), X(43527)}}, {{A, B, C, X(32979), X(60285)}}, {{A, B, C, X(32982), X(60647)}}, {{A, B, C, X(33006), X(60263)}}, {{A, B, C, X(33016), X(60212)}}, {{A, B, C, X(33192), X(60098)}}, {{A, B, C, X(33193), X(60233)}}, {{A, B, C, X(33272), X(60096)}}, {{A, B, C, X(33278), X(60129)}}, {{A, B, C, X(34621), X(60162)}}, {{A, B, C, X(35287), X(60198)}}, {{A, B, C, X(35927), X(60178)}}, {{A, B, C, X(37174), X(43530)}}, {{A, B, C, X(40801), X(55576)}}, {{A, B, C, X(41099), X(60185)}}, {{A, B, C, X(43951), X(62005)}}, {{A, B, C, X(47586), X(50689)}}, {{A, B, C, X(49135), X(60332)}}, {{A, B, C, X(50688), X(60142)}}, {{A, B, C, X(52282), X(56346)}}, {{A, B, C, X(53100), X(61982)}}, {{A, B, C, X(53104), X(61936)}}, {{A, B, C, X(54097), X(60145)}}, {{A, B, C, X(54520), X(62002)}}, {{A, B, C, X(54521), X(62018)}}, {{A, B, C, X(54522), X(62030)}}, {{A, B, C, X(54612), X(61987)}}, {{A, B, C, X(54644), X(61958)}}, {{A, B, C, X(54645), X(62160)}}, {{A, B, C, X(54707), X(62009)}}, {{A, B, C, X(54920), X(62037)}}, {{A, B, C, X(54921), X(61962)}}, {{A, B, C, X(60102), X(61954)}}, {{A, B, C, X(60132), X(61994)}}, {{A, B, C, X(60147), X(61992)}}, {{A, B, C, X(60175), X(61966)}}, {{A, B, C, X(60322), X(61980)}}, {{A, B, C, X(60331), X(62032)}}, {{A, B, C, X(60336), X(61972)}}
X(62960) = barycentric product X(i)*X(j) for these (i, j): {264, 53095}, {11405, 76}
X(62960) = barycentric quotient X(i)/X(j) for these (i, j): {4, 53101}, {11405, 6}, {53095, 3}
X(62960) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6103, 7736, 5702}


X(62961) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54498), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-3*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-4*b^2*c^2+3*c^4)) : :
X(62961) = -X[944]+4*X[51694], 2*X[1147]+X[54148], -5*X[3567]+8*X[58482], -5*X[10595]+8*X[51702], -X[11411]+4*X[33563], X[11441]+2*X[41587], X[11457]+2*X[26883], -X[12383]+4*X[20771]

X(62961) lies on these lines: {2, 3}, {13, 10642}, {14, 10641}, {33, 3584}, {34, 3582}, {51, 61747}, {154, 12022}, {155, 41628}, {193, 2914}, {232, 5309}, {254, 15424}, {317, 6148}, {393, 1989}, {539, 10539}, {542, 1974}, {597, 39588}, {944, 51694}, {1147, 54148}, {1495, 18390}, {1498, 26879}, {1503, 61701}, {1531, 18418}, {1614, 39571}, {1829, 51709}, {1843, 5476}, {1853, 16658}, {1870, 10072}, {1899, 14157}, {1902, 50821}, {1905, 4870}, {1986, 5655}, {1993, 51425}, {2052, 54498}, {3017, 3192}, {3060, 5654}, {3092, 13846}, {3093, 13847}, {3563, 59098}, {3567, 58482}, {3580, 18451}, {3656, 41722}, {3818, 44091}, {4846, 15053}, {5306, 8743}, {5412, 35823}, {5413, 35822}, {5475, 10985}, {5523, 59229}, {5642, 15463}, {5890, 61506}, {6000, 61645}, {6198, 10056}, {6403, 20423}, {6526, 59278}, {6759, 18912}, {6776, 18374}, {7592, 16252}, {7713, 38021}, {7716, 38072}, {7717, 38073}, {7718, 38074}, {7735, 8744}, {7737, 10986}, {7739, 39575}, {7753, 10311}, {7799, 54412}, {8739, 61719}, {8796, 54500}, {9544, 52417}, {9707, 12241}, {9752, 20410}, {9971, 14853}, {10168, 19124}, {10192, 16657}, {10595, 51702}, {10605, 32111}, {10632, 10654}, {10633, 10653}, {11179, 19128}, {11202, 61744}, {11237, 11399}, {11238, 11398}, {11363, 28204}, {11408, 42975}, {11409, 42974}, {11411, 33563}, {11433, 15032}, {11438, 51403}, {11441, 41587}, {11442, 46261}, {11456, 13567}, {11457, 26883}, {11475, 16241}, {11476, 16242}, {11547, 52661}, {12112, 37643}, {12131, 49102}, {12167, 14848}, {12290, 26937}, {12292, 20126}, {12294, 50977}, {12383, 20771}, {12828, 56567}, {14165, 47392}, {14216, 26917}, {14495, 51831}, {14831, 44079}, {14912, 19153}, {15030, 61646}, {15068, 45794}, {16080, 54942}, {16654, 23332}, {16880, 32605}, {18388, 34417}, {18400, 44082}, {18445, 37644}, {18951, 43605}, {19467, 26882}, {23329, 32062}, {25739, 31383}, {26869, 32063}, {28408, 31670}, {31948, 34631}, {32832, 44142}, {32833, 44146}, {34319, 41618}, {35264, 44665}, {35603, 61658}, {36749, 61608}, {37765, 43976}, {38253, 54844}, {39284, 60160}, {39871, 50979}, {40630, 52646}, {41770, 52472}, {43574, 59543}, {43666, 54893}, {44077, 61713}, {45701, 56316}, {52583, 60150}, {54531, 60162}, {54710, 60166}, {54758, 60246}, {54827, 60193}, {54867, 60159}, {60120, 60163}, {61606, 61690}

X(62961) = inverse of X(15122) in polar circle
X(62961) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60255}, {2169, 27353}
X(62961) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60255}, {14363, 27353}
X(62961) = pole of line {523, 7623} with respect to the polar circle
X(62961) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6344)}}, {{A, B, C, X(3), X(1989)}}, {{A, B, C, X(20), X(59278)}}, {{A, B, C, X(26), X(18355)}}, {{A, B, C, X(30), X(2980)}}, {{A, B, C, X(68), X(37452)}}, {{A, B, C, X(93), X(3541)}}, {{A, B, C, X(98), X(16063)}}, {{A, B, C, X(140), X(45195)}}, {{A, B, C, X(186), X(393)}}, {{A, B, C, X(253), X(44450)}}, {{A, B, C, X(254), X(3520)}}, {{A, B, C, X(441), X(43089)}}, {{A, B, C, X(523), X(15122)}}, {{A, B, C, X(631), X(36612)}}, {{A, B, C, X(847), X(37119)}}, {{A, B, C, X(1093), X(7505)}}, {{A, B, C, X(1138), X(2071)}}, {{A, B, C, X(1217), X(14865)}}, {{A, B, C, X(1300), X(35481)}}, {{A, B, C, X(1370), X(60150)}}, {{A, B, C, X(1656), X(60163)}}, {{A, B, C, X(1995), X(14495)}}, {{A, B, C, X(2072), X(5627)}}, {{A, B, C, X(2165), X(7514)}}, {{A, B, C, X(2475), X(54758)}}, {{A, B, C, X(2478), X(54727)}}, {{A, B, C, X(3146), X(54844)}}, {{A, B, C, X(3153), X(54943)}}, {{A, B, C, X(3424), X(5189)}}, {{A, B, C, X(3522), X(60166)}}, {{A, B, C, X(3523), X(60159)}}, {{A, B, C, X(3524), X(36611)}}, {{A, B, C, X(3526), X(43834)}}, {{A, B, C, X(3533), X(43666)}}, {{A, B, C, X(3542), X(15424)}}, {{A, B, C, X(3545), X(54827)}}, {{A, B, C, X(4226), X(59098)}}, {{A, B, C, X(5046), X(54757)}}, {{A, B, C, X(5056), X(60162)}}, {{A, B, C, X(5068), X(60174)}}, {{A, B, C, X(6526), X(16868)}}, {{A, B, C, X(6644), X(34288)}}, {{A, B, C, X(6815), X(54763)}}, {{A, B, C, X(6816), X(54660)}}, {{A, B, C, X(6817), X(54885)}}, {{A, B, C, X(6820), X(54710)}}, {{A, B, C, X(6997), X(60127)}}, {{A, B, C, X(7381), X(54587)}}, {{A, B, C, X(7382), X(54689)}}, {{A, B, C, X(7386), X(60185)}}, {{A, B, C, X(7391), X(14458)}}, {{A, B, C, X(7392), X(54523)}}, {{A, B, C, X(7394), X(14492)}}, {{A, B, C, X(7528), X(54912)}}, {{A, B, C, X(7533), X(14484)}}, {{A, B, C, X(7577), X(52487)}}, {{A, B, C, X(7612), X(46336)}}, {{A, B, C, X(7791), X(54843)}}, {{A, B, C, X(8884), X(35471)}}, {{A, B, C, X(9302), X(37190)}}, {{A, B, C, X(11738), X(37944)}}, {{A, B, C, X(14064), X(54829)}}, {{A, B, C, X(14457), X(50143)}}, {{A, B, C, X(14790), X(54486)}}, {{A, B, C, X(14957), X(54678)}}, {{A, B, C, X(16837), X(50137)}}, {{A, B, C, X(16924), X(54529)}}, {{A, B, C, X(17578), X(54886)}}, {{A, B, C, X(18316), X(18531)}}, {{A, B, C, X(18324), X(46204)}}, {{A, B, C, X(18855), X(52295)}}, {{A, B, C, X(18859), X(35372)}}, {{A, B, C, X(22261), X(52073)}}, {{A, B, C, X(31101), X(33565)}}, {{A, B, C, X(32974), X(54558)}}, {{A, B, C, X(32982), X(54779)}}, {{A, B, C, X(33017), X(54733)}}, {{A, B, C, X(36889), X(44441)}}, {{A, B, C, X(37162), X(60164)}}, {{A, B, C, X(37185), X(54499)}}, {{A, B, C, X(37191), X(54677)}}, {{A, B, C, X(37192), X(54867)}}, {{A, B, C, X(37201), X(54604)}}, {{A, B, C, X(37349), X(54520)}}, {{A, B, C, X(44440), X(60119)}}, {{A, B, C, X(44442), X(54612)}}, {{A, B, C, X(46450), X(54865)}}, {{A, B, C, X(52403), X(54941)}}
X(62961) = barycentric product X(i)*X(j) for these (i, j): {16080, 46817}, {18445, 2052}, {37644, 4}
X(62961) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60255}, {53, 27353}, {18445, 394}, {37644, 69}, {46817, 11064}
X(62961) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {468, 1596, 378}, {1594, 1598, 4}, {32062, 61691, 23329}, {46925, 46926, 393}


X(62962) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54550), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^6+16*a^2*b^2*c^2-3*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)) : :
X(62962) = -3*X[1699]+2*X[51719], -2*X[5890]+3*X[61657], X[6146]+2*X[13474], X[11381]+2*X[12241], X[12111]+2*X[13142], X[12134]+2*X[12897], X[12290]+2*X[18914], X[12370]+2*X[32137], 2*X[13292]+X[18439], 2*X[13403]+X[16655], 2*X[16621]+X[21659], -4*X[16656]+X[61139] and many others

X(62962) lies on these lines: {2, 3}, {19, 34618}, {33, 5434}, {34, 3058}, {51, 15311}, {146, 39562}, {148, 56022}, {275, 51892}, {395, 11476}, {396, 11475}, {511, 44935}, {519, 1902}, {524, 12294}, {528, 12138}, {541, 1112}, {542, 5186}, {543, 12131}, {597, 19124}, {1204, 15873}, {1503, 32062}, {1514, 18388}, {1699, 51719}, {1829, 28194}, {1870, 15170}, {1968, 5306}, {1974, 51737}, {2052, 54550}, {2207, 7739}, {2777, 12099}, {2883, 11424}, {3087, 15433}, {3527, 48672}, {3564, 15305}, {3574, 5893}, {5101, 15942}, {5130, 34746}, {5305, 18373}, {5309, 16318}, {5412, 41945}, {5413, 41946}, {5655, 15472}, {5656, 11402}, {5878, 10982}, {5890, 61657}, {6000, 11245}, {6128, 6748}, {6146, 13474}, {6746, 21849}, {7753, 33843}, {7811, 58782}, {8584, 11470}, {9530, 13166}, {10152, 57408}, {10606, 61506}, {10641, 42942}, {10642, 42943}, {10880, 52047}, {10881, 52048}, {11363, 51705}, {11381, 12241}, {11455, 12022}, {11471, 34612}, {11473, 32787}, {11474, 32788}, {11576, 13598}, {11648, 27376}, {12111, 13142}, {12132, 23698}, {12134, 12897}, {12135, 28204}, {12167, 54132}, {12290, 18914}, {12370, 32137}, {13093, 18916}, {13157, 39268}, {13202, 46026}, {13292, 18439}, {13380, 60120}, {13403, 16655}, {14569, 41372}, {15033, 32111}, {15053, 50434}, {15072, 45298}, {15152, 44110}, {15811, 19467}, {16194, 44665}, {16264, 21447}, {16621, 21659}, {16654, 18400}, {16656, 61139}, {21850, 40318}, {22802, 45089}, {23292, 51403}, {23327, 51745}, {23328, 61645}, {26879, 61540}, {27371, 39563}, {29181, 29959}, {32000, 32869}, {34634, 49542}, {37671, 54412}, {39284, 45300}, {41584, 54173}, {43577, 44863}, {43823, 58470}, {43846, 50476}, {46878, 49732}, {51548, 61619}, {54604, 60161}

X(62962) = midpoint of X(i) and X(j) for these {i,j}: {428, 1885}, {11455, 12022}, {12111, 41628}, {32062, 61744}
X(62962) = reflection of X(i) in X(j) for these {i,j}: {11245, 16657}, {15072, 45298}, {428, 4}, {41628, 13142}
X(62962) = pole of line {185, 1906} with respect to the Jerabek hyperbola
X(62962) = pole of line {6, 51403} with respect to the Kiepert hyperbola
X(62962) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(54550)}}, {{A, B, C, X(5), X(54658)}}, {{A, B, C, X(20), X(52187)}}, {{A, B, C, X(30), X(57408)}}, {{A, B, C, X(140), X(45300)}}, {{A, B, C, X(598), X(41235)}}, {{A, B, C, X(1105), X(1906)}}, {{A, B, C, X(1368), X(14492)}}, {{A, B, C, X(1559), X(40402)}}, {{A, B, C, X(1597), X(41489)}}, {{A, B, C, X(1656), X(13380)}}, {{A, B, C, X(3090), X(54604)}}, {{A, B, C, X(5020), X(14458)}}, {{A, B, C, X(5198), X(18848)}}, {{A, B, C, X(7396), X(54520)}}, {{A, B, C, X(7398), X(54519)}}, {{A, B, C, X(9825), X(54895)}}, {{A, B, C, X(16072), X(54585)}}, {{A, B, C, X(16263), X(18535)}}, {{A, B, C, X(21312), X(54741)}}, {{A, B, C, X(34609), X(54582)}}, {{A, B, C, X(44920), X(54620)}}, {{A, B, C, X(47315), X(54890)}}, {{A, B, C, X(50143), X(61133)}}
X(62962) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 4, 1906}, {4, 1593, 235}, {4, 1597, 427}, {4, 30, 428}, {4, 378, 1596}, {4, 436, 1559}, {378, 1596, 468}, {428, 1885, 30}, {12897, 46849, 12134}, {32062, 61744, 1503}


X(62963) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54632), X(3), X(4))

Barycentrics    2*a^6+a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(-2*b^4+3*b^2*c^2-2*c^4) : :
X(62963) = X[1]+2*X[34633], X[8]+2*X[34657], X[145]+2*X[34668], -7*X[3622]+4*X[34634], -7*X[4678]+4*X[34656], -7*X[9781]+4*X[43573], X[9939]+2*X[34661], -17*X[11465]+8*X[17712], -X[12220]+10*X[52789], 8*X[13419]+X[34799], X[34604]+2*X[34651], X[34605]+2*X[34653] and many others

X(62963) lies on these lines: {1, 34633}, {2, 3}, {8, 34657}, {51, 11645}, {94, 14458}, {98, 54927}, {110, 48901}, {145, 34668}, {146, 40909}, {251, 5309}, {262, 54663}, {323, 31670}, {373, 29323}, {394, 51024}, {524, 62187}, {541, 11455}, {542, 3060}, {671, 5986}, {1180, 7753}, {1194, 14537}, {1351, 14683}, {1383, 53419}, {1495, 48895}, {1501, 6034}, {1503, 11002}, {1993, 9143}, {1994, 20423}, {2052, 54632}, {2979, 19924}, {3058, 29815}, {3410, 33586}, {3424, 54778}, {3448, 36990}, {3527, 43838}, {3564, 16981}, {3580, 48912}, {3622, 34634}, {3796, 38072}, {3818, 15107}, {4678, 34656}, {5012, 5476}, {5032, 11216}, {5085, 7605}, {5306, 33886}, {5354, 7737}, {5422, 43273}, {5434, 17024}, {5480, 11003}, {5640, 29012}, {5651, 48904}, {5695, 33091}, {5987, 6321}, {6053, 36852}, {6403, 46682}, {6515, 51023}, {6800, 53023}, {7292, 10483}, {7578, 14492}, {7693, 48905}, {7703, 32223}, {7712, 14389}, {7747, 9465}, {7756, 15302}, {7802, 26235}, {7809, 16276}, {7811, 39998}, {7837, 8267}, {7998, 29317}, {8029, 25423}, {9140, 11550}, {9464, 32819}, {9781, 43573}, {9939, 34661}, {10511, 17503}, {10546, 51360}, {11004, 21850}, {11057, 40022}, {11061, 15534}, {11179, 34545}, {11180, 45794}, {11442, 44555}, {11465, 17712}, {11580, 43618}, {12220, 52789}, {13419, 34799}, {13567, 51022}, {14484, 54792}, {14614, 15356}, {15018, 46264}, {15066, 48910}, {15080, 19130}, {18019, 58782}, {18440, 37779}, {19106, 37775}, {19107, 37776}, {21766, 48872}, {21969, 27365}, {22112, 48896}, {23293, 32225}, {25155, 41022}, {25165, 41023}, {26913, 44106}, {29181, 33884}, {32271, 57271}, {32299, 40949}, {34320, 57491}, {34417, 48884}, {34604, 34651}, {34605, 34653}, {34607, 34655}, {34610, 34663}, {34611, 34666}, {36414, 36430}, {36969, 54362}, {36970, 54363}, {37636, 47354}, {37649, 50959}, {37671, 44135}, {39809, 62298}, {41462, 48880}, {41715, 61723}, {44445, 53327}, {46995, 59742}, {51026, 53415}, {54519, 60256}, {54680, 60125}, {54683, 60141}

X(62963) = inverse of X(44282) in orthoptic circle of the Steiner Inellipse
X(62963) = pole of line {523, 44282} with respect to the orthoptic circle of the Steiner Inellipse
X(62963) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54632)}}, {{A, B, C, X(94), X(11331)}}, {{A, B, C, X(186), X(14458)}}, {{A, B, C, X(297), X(54927)}}, {{A, B, C, X(458), X(54663)}}, {{A, B, C, X(3424), X(35486)}}, {{A, B, C, X(6656), X(54680)}}, {{A, B, C, X(7391), X(36889)}}, {{A, B, C, X(7545), X(40801)}}, {{A, B, C, X(7550), X(60122)}}, {{A, B, C, X(7577), X(14492)}}, {{A, B, C, X(7578), X(52289)}}, {{A, B, C, X(7770), X(54683)}}, {{A, B, C, X(10511), X(52292)}}, {{A, B, C, X(10989), X(18018)}}, {{A, B, C, X(13619), X(41513)}}, {{A, B, C, X(14789), X(60121)}}, {{A, B, C, X(15246), X(57822)}}, {{A, B, C, X(18019), X(31152)}}, {{A, B, C, X(18531), X(54704)}}, {{A, B, C, X(18533), X(54519)}}, {{A, B, C, X(18559), X(54477)}}, {{A, B, C, X(35473), X(39955)}}, {{A, B, C, X(35921), X(54610)}}, {{A, B, C, X(37353), X(55958)}}, {{A, B, C, X(37460), X(60147)}}, {{A, B, C, X(44282), X(60590)}}, {{A, B, C, X(52283), X(54778)}}, {{A, B, C, X(52288), X(54792)}}
X(62963) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {22, 381, 2}


X(62964) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54640), X(3), X(4))

Barycentrics    3*a^6+3*a^4*(b^2+c^2)-3*(b^2-c^2)^2*(b^2+c^2)+a^2*(-3*b^4+2*b^2*c^2-3*c^4) : :

X(62964) lies on these lines: {2, 3}, {98, 54761}, {262, 54764}, {316, 40123}, {343, 48910}, {459, 54704}, {597, 41256}, {671, 39842}, {1180, 15437}, {1184, 53419}, {1899, 21849}, {1992, 36851}, {1994, 39874}, {2052, 54640}, {3060, 32064}, {3424, 54785}, {3434, 42029}, {3920, 5229}, {5012, 14927}, {5032, 18935}, {5225, 7191}, {5359, 43448}, {6054, 39813}, {6504, 14458}, {6515, 11550}, {7612, 54762}, {8024, 32006}, {9140, 13203}, {10706, 12319}, {11002, 18950}, {11185, 16275}, {11442, 51212}, {11538, 54523}, {13579, 60150}, {13582, 54612}, {13585, 60185}, {14216, 14831}, {14484, 54797}, {14494, 54765}, {15360, 51029}, {18382, 34944}, {21243, 48904}, {29317, 43653}, {30737, 63155}, {31383, 37645}, {33586, 51163}, {35266, 51167}, {36990, 37672}, {37649, 48905}, {41624, 41761}, {41628, 54132}, {42104, 54362}, {42105, 54363}, {48895, 58470}, {53103, 54601}, {54131, 61658}, {54519, 60114}, {54705, 54710}, {54707, 60191}, {54756, 60152}, {54766, 60153}, {54815, 60237}

X(62964) = inverse of X(37900) in anticomplementary circle
X(62964) = pole of line {523, 8664} with respect to the anticomplementary circle
X(62964) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54640)}}, {{A, B, C, X(20), X(54704)}}, {{A, B, C, X(297), X(54761)}}, {{A, B, C, X(458), X(54764)}}, {{A, B, C, X(468), X(40178)}}, {{A, B, C, X(3088), X(54520)}}, {{A, B, C, X(3089), X(54519)}}, {{A, B, C, X(3522), X(54705)}}, {{A, B, C, X(3541), X(14492)}}, {{A, B, C, X(3542), X(14458)}}, {{A, B, C, X(3546), X(54919)}}, {{A, B, C, X(3547), X(54610)}}, {{A, B, C, X(6143), X(54523)}}, {{A, B, C, X(6504), X(11331)}}, {{A, B, C, X(7383), X(60122)}}, {{A, B, C, X(7505), X(60150)}}, {{A, B, C, X(9909), X(13575)}}, {{A, B, C, X(14940), X(60185)}}, {{A, B, C, X(18018), X(44442)}}, {{A, B, C, X(34603), X(36889)}}, {{A, B, C, X(37119), X(60127)}}, {{A, B, C, X(37174), X(54762)}}, {{A, B, C, X(37943), X(54612)}}, {{A, B, C, X(52283), X(54785)}}, {{A, B, C, X(52288), X(54797)}}, {{A, B, C, X(52404), X(54552)}}, {{A, B, C, X(54931), X(59349)}}
X(62964) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11550, 31670, 6515}, {32064, 51538, 3060}


X(62965) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54644), X(3), X(4))

Barycentrics    (5*a^2-2*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62965) lies on these lines: {2, 3}, {51, 61680}, {154, 26869}, {275, 54645}, {394, 32223}, {395, 11408}, {396, 11409}, {524, 19118}, {551, 11396}, {597, 12167}, {599, 1974}, {1184, 8792}, {1398, 5298}, {1452, 4870}, {1495, 26958}, {1611, 10418}, {1829, 25055}, {1843, 47352}, {1853, 44082}, {1899, 15448}, {1992, 41584}, {1993, 21970}, {2052, 54644}, {2374, 58098}, {3066, 58447}, {3167, 41628}, {3580, 8780}, {3582, 11398}, {3584, 11399}, {3679, 11363}, {3763, 44091}, {3828, 5090}, {4995, 7071}, {5093, 61655}, {5095, 51187}, {5140, 5215}, {5186, 41134}, {5306, 45141}, {5410, 32788}, {5411, 32787}, {5412, 13847}, {5413, 13846}, {5642, 19504}, {5972, 33586}, {6403, 14848}, {8541, 51185}, {8739, 49947}, {8740, 49948}, {8791, 36616}, {8907, 22550}, {9064, 20480}, {9166, 12132}, {9766, 44089}, {10192, 11402}, {10632, 42975}, {10633, 42974}, {10641, 16645}, {10642, 16644}, {10985, 31489}, {10986, 15484}, {11160, 46444}, {11216, 47455}, {11238, 52427}, {11245, 35260}, {11405, 41585}, {11550, 41424}, {11668, 39284}, {12135, 53620}, {12141, 22490}, {12142, 22489}, {13202, 41447}, {13567, 26864}, {13884, 19054}, {13937, 19053}, {14530, 26879}, {14614, 44090}, {15534, 44102}, {16080, 54851}, {17392, 44100}, {21969, 44084}, {24473, 41609}, {24814, 41138}, {31383, 47296}, {32225, 44077}, {32269, 59543}, {35259, 61646}, {35325, 36650}, {37487, 51403}, {37669, 47582}, {41611, 58560}, {43530, 54734}, {43653, 61507}, {53108, 60120}, {54522, 56346}, {54710, 54921}, {59374, 60879}, {60124, 60216}, {60125, 60277}, {60141, 60238}

X(62965) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60209}, {656, 58095}
X(62965) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60209}, {40596, 58095}
X(62965) = pole of line {185, 22829} with respect to the Jerabek hyperbola
X(62965) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6144)}}, {{A, B, C, X(3), X(54644)}}, {{A, B, C, X(5), X(54645)}}, {{A, B, C, X(23), X(36616)}}, {{A, B, C, X(30), X(54851)}}, {{A, B, C, X(98), X(1657)}}, {{A, B, C, X(111), X(37913)}}, {{A, B, C, X(140), X(11668)}}, {{A, B, C, X(376), X(20480)}}, {{A, B, C, X(381), X(54734)}}, {{A, B, C, X(382), X(54934)}}, {{A, B, C, X(548), X(60175)}}, {{A, B, C, X(550), X(60335)}}, {{A, B, C, X(842), X(34152)}}, {{A, B, C, X(1656), X(53108)}}, {{A, B, C, X(2374), X(37453)}}, {{A, B, C, X(2770), X(30745)}}, {{A, B, C, X(3091), X(54522)}}, {{A, B, C, X(3424), X(50691)}}, {{A, B, C, X(3425), X(43809)}}, {{A, B, C, X(3522), X(54921)}}, {{A, B, C, X(3523), X(59496)}}, {{A, B, C, X(3563), X(21844)}}, {{A, B, C, X(3627), X(14458)}}, {{A, B, C, X(3843), X(14492)}}, {{A, B, C, X(3851), X(54920)}}, {{A, B, C, X(5064), X(40413)}}, {{A, B, C, X(5072), X(60192)}}, {{A, B, C, X(5966), X(12107)}}, {{A, B, C, X(6636), X(8770)}}, {{A, B, C, X(6656), X(60277)}}, {{A, B, C, X(7485), X(21448)}}, {{A, B, C, X(7486), X(43834)}}, {{A, B, C, X(7607), X(15712)}}, {{A, B, C, X(7608), X(61919)}}, {{A, B, C, X(7612), X(21735)}}, {{A, B, C, X(7714), X(10603)}}, {{A, B, C, X(7770), X(60238)}}, {{A, B, C, X(7841), X(60216)}}, {{A, B, C, X(8370), X(60283)}}, {{A, B, C, X(8587), X(33268)}}, {{A, B, C, X(8791), X(38282)}}, {{A, B, C, X(11172), X(33247)}}, {{A, B, C, X(11634), X(58098)}}, {{A, B, C, X(11669), X(61907)}}, {{A, B, C, X(14040), X(43528)}}, {{A, B, C, X(14044), X(54540)}}, {{A, B, C, X(14066), X(54539)}}, {{A, B, C, X(14865), X(40801)}}, {{A, B, C, X(14893), X(54582)}}, {{A, B, C, X(15684), X(54608)}}, {{A, B, C, X(17538), X(60185)}}, {{A, B, C, X(19695), X(60218)}}, {{A, B, C, X(23046), X(54643)}}, {{A, B, C, X(32971), X(60648)}}, {{A, B, C, X(32974), X(60628)}}, {{A, B, C, X(32982), X(60635)}}, {{A, B, C, X(33190), X(60641)}}, {{A, B, C, X(33229), X(60626)}}, {{A, B, C, X(33286), X(43529)}}, {{A, B, C, X(33703), X(60150)}}, {{A, B, C, X(35488), X(40120)}}, {{A, B, C, X(37962), X(40144)}}, {{A, B, C, X(38335), X(54477)}}, {{A, B, C, X(43537), X(62110)}}, {{A, B, C, X(49140), X(54866)}}, {{A, B, C, X(53103), X(61817)}}, {{A, B, C, X(53104), X(61832)}}, {{A, B, C, X(54523), X(61945)}}, {{A, B, C, X(54612), X(62029)}}, {{A, B, C, X(54707), X(61973)}}, {{A, B, C, X(60102), X(61783)}}, {{A, B, C, X(60127), X(61964)}}
X(62965) = barycentric product X(i)*X(j) for these (i, j): {4, 6144}
X(62965) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60209}, {112, 58095}, {6144, 69}
X(62965) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44082, 61691, 1853}


X(62966) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54658), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+2*(b^2-c^2)^2*(b^2+c^2)+a^2*(-3*b^4+14*b^2*c^2-3*c^4)) : :
X(62966) = -X[185]+4*X[58483], 2*X[1351]+X[54164], -4*X[5480]+X[10602], X[5691]+2*X[51695], 2*X[8263]+X[51212], X[10733]+2*X[20772], -4*X[19130]+X[54183]

X(62966) lies on these lines: {2, 3}, {6, 51403}, {33, 11237}, {34, 11238}, {53, 34288}, {113, 44413}, {154, 61744}, {185, 58483}, {275, 54550}, {539, 18451}, {599, 12294}, {671, 12131}, {1112, 10706}, {1351, 54164}, {1398, 10072}, {1660, 11424}, {1699, 44662}, {1829, 31162}, {1843, 54131}, {1853, 32062}, {1862, 10711}, {1902, 3679}, {1974, 43273}, {1992, 39871}, {2052, 54658}, {2207, 5309}, {2393, 53023}, {2790, 14639}, {3092, 35822}, {3093, 35823}, {3172, 5306}, {3192, 48842}, {3199, 11648}, {3656, 11396}, {3867, 50959}, {5090, 50796}, {5185, 10710}, {5186, 6054}, {5480, 10602}, {5655, 19504}, {5656, 11245}, {5691, 51695}, {5890, 54039}, {6000, 26869}, {7071, 10056}, {7713, 50865}, {7716, 51024}, {7718, 50864}, {7739, 45141}, {7788, 54412}, {7809, 58782}, {8263, 51212}, {8796, 54604}, {9140, 12133}, {9308, 19570}, {10606, 61645}, {10641, 42154}, {10642, 42155}, {10653, 11409}, {10654, 11408}, {10707, 12138}, {10718, 12145}, {10733, 20772}, {10982, 61749}, {11179, 19118}, {11363, 50811}, {11402, 16657}, {11455, 61701}, {11470, 15534}, {11473, 13846}, {11474, 13847}, {11475, 16644}, {11476, 16645}, {11576, 12280}, {12022, 32063}, {12135, 34627}, {12164, 41628}, {12167, 20423}, {12174, 39571}, {12290, 26944}, {12315, 18912}, {13093, 26879}, {13157, 31942}, {13202, 31860}, {13380, 39284}, {13851, 19136}, {14486, 41521}, {14569, 36876}, {14848, 39588}, {14852, 16194}, {15311, 61506}, {16226, 44084}, {18440, 40318}, {19124, 47352}, {19130, 54183}, {22970, 37672}, {22971, 61721}, {32000, 32874}, {33842, 39563}, {33971, 34170}, {34648, 49542}, {36201, 52028}, {36424, 55415}, {41584, 50967}, {43462, 51892}, {44091, 48905}, {45300, 60120}, {46444, 50974}

X(62966) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54658)}}, {{A, B, C, X(5), X(54550)}}, {{A, B, C, X(20), X(34288)}}, {{A, B, C, X(140), X(13380)}}, {{A, B, C, X(378), X(41489)}}, {{A, B, C, X(631), X(54604)}}, {{A, B, C, X(671), X(41235)}}, {{A, B, C, X(1093), X(13488)}}, {{A, B, C, X(1368), X(14458)}}, {{A, B, C, X(1656), X(45300)}}, {{A, B, C, X(5020), X(14492)}}, {{A, B, C, X(5627), X(7464)}}, {{A, B, C, X(7396), X(54519)}}, {{A, B, C, X(7398), X(54520)}}, {{A, B, C, X(11403), X(14860)}}, {{A, B, C, X(14486), X(37777)}}, {{A, B, C, X(14490), X(37944)}}, {{A, B, C, X(15717), X(43834)}}, {{A, B, C, X(16072), X(54512)}}, {{A, B, C, X(18434), X(31101)}}, {{A, B, C, X(21312), X(54944)}}, {{A, B, C, X(21400), X(37452)}}, {{A, B, C, X(31180), X(54879)}}, {{A, B, C, X(31829), X(54820)}}, {{A, B, C, X(32085), X(44438)}}, {{A, B, C, X(34609), X(54477)}}, {{A, B, C, X(47315), X(60326)}}, {{A, B, C, X(54941), X(61113)}}
X(62966) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 1596, 25}, {4, 235, 1593}, {4, 403, 1597}


X(62967) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54705), X(3), X(4))

Barycentrics    a^6+a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4-b^2*c^2+c^4) : :

X(62967) lies on these lines: {2, 3}, {51, 48895}, {53, 52058}, {76, 1369}, {98, 13585}, {115, 1627}, {146, 11455}, {147, 11671}, {148, 8267}, {149, 3891}, {154, 59771}, {184, 48884}, {251, 7747}, {262, 11538}, {316, 8024}, {325, 18354}, {343, 51163}, {511, 3410}, {567, 61299}, {612, 18513}, {614, 18514}, {671, 8877}, {1180, 7748}, {1352, 15108}, {1478, 29815}, {1479, 17024}, {1498, 32346}, {1503, 1994}, {1853, 13203}, {1899, 11002}, {1993, 14683}, {2052, 54705}, {2979, 3818}, {3060, 3448}, {3108, 7753}, {3424, 13579}, {3583, 7191}, {3585, 3920}, {3917, 48889}, {4045, 39668}, {4056, 39728}, {4680, 5080}, {4894, 33090}, {5012, 29012}, {5254, 34482}, {5276, 53421}, {5354, 53419}, {5359, 44518}, {5422, 53023}, {5480, 34545}, {5986, 10722}, {5987, 39838}, {6504, 60147}, {6515, 16981}, {7272, 39723}, {7605, 43650}, {7607, 54601}, {7693, 11451}, {7703, 61646}, {7756, 38862}, {7837, 15356}, {7842, 8891}, {7843, 19568}, {7900, 40904}, {8029, 44445}, {9539, 11393}, {9544, 31383}, {9706, 45185}, {9781, 43816}, {11177, 39120}, {11216, 36851}, {11442, 31670}, {11606, 55028}, {11645, 13366}, {11810, 38227}, {13219, 18018}, {13419, 34148}, {13582, 14458}, {13598, 58922}, {14360, 57518}, {14492, 60191}, {15033, 44407}, {15107, 18427}, {15534, 32255}, {16275, 39998}, {16655, 43605}, {17500, 56916}, {18382, 32064}, {18550, 38006}, {18906, 33796}, {19121, 46026}, {21850, 45968}, {21969, 41724}, {22352, 29323}, {26881, 61743}, {26913, 34417}, {29181, 37636}, {30505, 60105}, {30737, 32002}, {31125, 52142}, {33586, 61700}, {33971, 46924}, {34796, 40909}, {35264, 59551}, {38259, 40178}, {41513, 52445}, {41917, 51860}, {43537, 54762}, {43621, 43653}, {45794, 51212}, {47586, 54761}, {53099, 54765}, {54519, 60255}, {54704, 56270}, {54764, 60118}, {54785, 60324}, {54797, 60328}, {60114, 60327}, {61715, 61752}

X(62967) = inverse of X(20063) in anticomplementary circle
X(62967) = inverse of X(37349) in orthocentroidal circle
X(62967) = inverse of X(44234) in orthoptic circle of the Steiner Inellipse
X(62967) = inverse of X(37349) in Yff hyperbola
X(62967) = anticomplement of X(6636)
X(62967) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3456, 192}, {14378, 21289}, {15321, 8}
X(62967) = pole of line {523, 20063} with respect to the anticomplementary circle
X(62967) = pole of line {523, 37349} with respect to the orthocentroidal circle
X(62967) = pole of line {523, 31667} with respect to the orthoptic circle of the Steiner Inellipse
X(62967) = pole of line {185, 48889} with respect to the Jerabek hyperbola
X(62967) = pole of line {6, 37349} with respect to the Kiepert hyperbola
X(62967) = pole of line {525, 57513} with respect to the Steiner circumellipse
X(62967) = pole of line {523, 37349} with respect to the Yff hyperbola
X(62967) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54705)}}, {{A, B, C, X(22), X(54459)}}, {{A, B, C, X(98), X(14940)}}, {{A, B, C, X(253), X(20062)}}, {{A, B, C, X(262), X(6143)}}, {{A, B, C, X(264), X(37349)}}, {{A, B, C, X(297), X(13585)}}, {{A, B, C, X(376), X(54704)}}, {{A, B, C, X(420), X(55028)}}, {{A, B, C, X(427), X(40046)}}, {{A, B, C, X(458), X(11538)}}, {{A, B, C, X(1297), X(2937)}}, {{A, B, C, X(2697), X(37938)}}, {{A, B, C, X(3088), X(54706)}}, {{A, B, C, X(3089), X(60327)}}, {{A, B, C, X(3424), X(7505)}}, {{A, B, C, X(3524), X(54640)}}, {{A, B, C, X(3541), X(43951)}}, {{A, B, C, X(3542), X(60147)}}, {{A, B, C, X(5189), X(18018)}}, {{A, B, C, X(7552), X(54632)}}, {{A, B, C, X(11331), X(13582)}}, {{A, B, C, X(11818), X(18850)}}, {{A, B, C, X(13575), X(37913)}}, {{A, B, C, X(13579), X(52283)}}, {{A, B, C, X(13621), X(40801)}}, {{A, B, C, X(14458), X(37943)}}, {{A, B, C, X(14484), X(37119)}}, {{A, B, C, X(14488), X(35482)}}, {{A, B, C, X(14489), X(22462)}}, {{A, B, C, X(21284), X(41513)}}, {{A, B, C, X(21400), X(47748)}}, {{A, B, C, X(35473), X(38006)}}, {{A, B, C, X(37125), X(60105)}}, {{A, B, C, X(38282), X(40178)}}, {{A, B, C, X(44234), X(60590)}}, {{A, B, C, X(52282), X(54601)}}, {{A, B, C, X(52289), X(60191)}}
X(62967) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 427, 2}, {148, 8878, 8267}, {3060, 11550, 3448}, {11442, 31670, 62187}, {11442, 62187, 37779}, {11550, 48901, 3060}


X(62968) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54857), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(5*a^2+2*(b^2+c^2)) : :

X(62968) lies on these lines: {2, 3}, {6, 22336}, {125, 31860}, {232, 13337}, {275, 60329}, {373, 48905}, {1112, 32234}, {1495, 53023}, {1829, 3633}, {1843, 6144}, {1853, 44106}, {1974, 51797}, {1990, 21765}, {2052, 54857}, {3066, 29012}, {3292, 54131}, {3625, 49542}, {3635, 11396}, {3796, 25555}, {4668, 7713}, {4691, 5090}, {5093, 46818}, {5102, 24981}, {5339, 54363}, {5340, 54362}, {5480, 26864}, {5650, 48872}, {5651, 48910}, {6090, 31670}, {6749, 45141}, {7716, 52789}, {7737, 40126}, {7747, 62702}, {8550, 9777}, {10311, 13338}, {11002, 39899}, {11383, 61154}, {11405, 15471}, {11566, 12165}, {11745, 12174}, {11747, 17824}, {12135, 20053}, {12167, 32455}, {14486, 18384}, {14580, 33842}, {15082, 48879}, {16080, 60326}, {16276, 32821}, {16318, 62195}, {18440, 41724}, {19140, 19504}, {21448, 43618}, {21970, 61700}, {22112, 59411}, {26869, 34417}, {26944, 38848}, {30714, 44413}, {32227, 46686}, {32250, 46682}, {33586, 34507}, {35259, 48901}, {35283, 48873}, {37638, 48889}, {37644, 48662}, {37775, 42127}, {37776, 42126}, {39874, 61657}, {40350, 62203}, {41424, 61743}, {41586, 47353}, {43530, 54890}, {53106, 60124}, {56270, 60325}, {60125, 60209}, {60141, 60146}, {60879, 60976}

X(62968) = inverse of X(47314) in polar circle
X(62968) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60277}
X(62968) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60277}
X(62968) = pole of line {523, 47314} with respect to the polar circle
X(62968) = pole of line {2501, 12073} with respect to the Orthic inconic
X(62968) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21765)}}, {{A, B, C, X(3), X(54857)}}, {{A, B, C, X(5), X(60329)}}, {{A, B, C, X(6), X(7496)}}, {{A, B, C, X(30), X(60326)}}, {{A, B, C, X(98), X(5054)}}, {{A, B, C, X(186), X(14486)}}, {{A, B, C, X(262), X(547)}}, {{A, B, C, X(376), X(60325)}}, {{A, B, C, X(381), X(54890)}}, {{A, B, C, X(523), X(47314)}}, {{A, B, C, X(549), X(60323)}}, {{A, B, C, X(632), X(7607)}}, {{A, B, C, X(842), X(37967)}}, {{A, B, C, X(3424), X(15692)}}, {{A, B, C, X(3426), X(33532)}}, {{A, B, C, X(3530), X(53100)}}, {{A, B, C, X(3534), X(54852)}}, {{A, B, C, X(3860), X(54582)}}, {{A, B, C, X(5070), X(7608)}}, {{A, B, C, X(5079), X(60142)}}, {{A, B, C, X(5094), X(32085)}}, {{A, B, C, X(6656), X(60209)}}, {{A, B, C, X(7570), X(14840)}}, {{A, B, C, X(7612), X(61859)}}, {{A, B, C, X(7770), X(60146)}}, {{A, B, C, X(7841), X(53106)}}, {{A, B, C, X(8352), X(54493)}}, {{A, B, C, X(8370), X(53107)}}, {{A, B, C, X(8703), X(14458)}}, {{A, B, C, X(10185), X(61875)}}, {{A, B, C, X(11317), X(54646)}}, {{A, B, C, X(11540), X(60175)}}, {{A, B, C, X(11668), X(41984)}}, {{A, B, C, X(11669), X(61879)}}, {{A, B, C, X(13574), X(37901)}}, {{A, B, C, X(14030), X(54539)}}, {{A, B, C, X(14047), X(43529)}}, {{A, B, C, X(14067), X(43528)}}, {{A, B, C, X(14484), X(61924)}}, {{A, B, C, X(14488), X(38071)}}, {{A, B, C, X(14492), X(19709)}}, {{A, B, C, X(14494), X(61889)}}, {{A, B, C, X(14528), X(45308)}}, {{A, B, C, X(15681), X(60132)}}, {{A, B, C, X(15710), X(54845)}}, {{A, B, C, X(15719), X(60150)}}, {{A, B, C, X(21734), X(60324)}}, {{A, B, C, X(33291), X(54540)}}, {{A, B, C, X(35404), X(54917)}}, {{A, B, C, X(40801), X(52294)}}, {{A, B, C, X(43537), X(55864)}}, {{A, B, C, X(43951), X(61944)}}, {{A, B, C, X(46936), X(53099)}}, {{A, B, C, X(47586), X(61820)}}, {{A, B, C, X(52297), X(60124)}}, {{A, B, C, X(52519), X(61928)}}, {{A, B, C, X(53103), X(61868)}}, {{A, B, C, X(53104), X(61872)}}, {{A, B, C, X(54477), X(62040)}}, {{A, B, C, X(54519), X(62160)}}, {{A, B, C, X(54520), X(61958)}}, {{A, B, C, X(54608), X(61797)}}, {{A, B, C, X(54612), X(61777)}}, {{A, B, C, X(54643), X(61918)}}, {{A, B, C, X(54644), X(61862)}}, {{A, B, C, X(54706), X(61962)}}, {{A, B, C, X(54717), X(61977)}}, {{A, B, C, X(54815), X(62030)}}, {{A, B, C, X(54851), X(61823)}}, {{A, B, C, X(54891), X(62068)}}, {{A, B, C, X(54934), X(61786)}}, {{A, B, C, X(60118), X(61914)}}, {{A, B, C, X(60127), X(61915)}}, {{A, B, C, X(60144), X(61877)}}, {{A, B, C, X(60147), X(62120)}}, {{A, B, C, X(60192), X(61891)}}, {{A, B, C, X(60327), X(62048)}}, {{A, B, C, X(60334), X(61855)}}
X(62968) = barycentric product X(i)*X(j) for these (i, j): {4, 47352}
X(62968) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60277}, {47352, 69}


X(62969) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(54932), X(3), X(4))

Barycentrics    3*a^4+a^2*b*c+a*b*c*(b+c)-3*(b^2-c^2)^2 : :
X(62969) = -4*X[12]+X[20066]

X(62969) lies on these lines: {2, 3}, {8, 4127}, {12, 20066}, {63, 51790}, {145, 5229}, {149, 1478}, {153, 34627}, {519, 3585}, {535, 31159}, {551, 3583}, {1029, 60079}, {1479, 38314}, {2052, 54932}, {2099, 20085}, {2800, 59387}, {3306, 51792}, {3419, 17484}, {3434, 31145}, {3586, 31019}, {3622, 5225}, {3679, 5080}, {3817, 4881}, {3829, 7354}, {4421, 10895}, {4428, 12953}, {4669, 56880}, {4857, 51103}, {5016, 42029}, {5032, 5800}, {5057, 31165}, {5086, 44663}, {5270, 51071}, {5276, 53419}, {5330, 40273}, {5362, 42102}, {5367, 42101}, {5434, 10707}, {5722, 26842}, {5840, 59392}, {5985, 39838}, {6224, 18393}, {6256, 50864}, {6504, 54688}, {7680, 10724}, {8164, 61157}, {10031, 10738}, {10526, 50810}, {10742, 50890}, {10896, 40726}, {11015, 33595}, {11194, 11680}, {11235, 34605}, {11236, 49719}, {11237, 34611}, {11538, 54727}, {12690, 63159}, {12761, 34697}, {12764, 59377}, {13271, 50894}, {13579, 54758}, {13582, 54947}, {13583, 54928}, {17330, 53421}, {17483, 24473}, {18492, 25005}, {18514, 25055}, {19883, 26127}, {21849, 58889}, {21969, 41723}, {22938, 50843}, {26131, 48855}, {28174, 59416}, {28178, 38058}, {31140, 34739}, {33102, 37717}, {33657, 51709}, {33854, 53418}, {34648, 41698}, {37821, 38074}, {41895, 60152}, {43531, 54794}, {43533, 54756}, {50889, 56790}, {53101, 60153}, {54623, 60155}, {54761, 60158}, {54762, 60154}, {54764, 60157}, {54765, 60164}, {54766, 60077}, {54789, 60255}, {54795, 60617}, {55027, 60078}, {60113, 60165}

X(62969) = reflection of X(i) in X(j) for these {i,j}: {11015, 33595}
X(62969) = anticomplement of X(17549)
X(62969) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(54932)}}, {{A, B, C, X(451), X(60079)}}, {{A, B, C, X(469), X(54794)}}, {{A, B, C, X(475), X(54623)}}, {{A, B, C, X(1494), X(37299)}}, {{A, B, C, X(3541), X(54726)}}, {{A, B, C, X(3542), X(54688)}}, {{A, B, C, X(6143), X(54727)}}, {{A, B, C, X(6847), X(54552)}}, {{A, B, C, X(6848), X(54923)}}, {{A, B, C, X(6852), X(54555)}}, {{A, B, C, X(6949), X(60121)}}, {{A, B, C, X(6952), X(60122)}}, {{A, B, C, X(7490), X(54756)}}, {{A, B, C, X(7505), X(54758)}}, {{A, B, C, X(7537), X(54526)}}, {{A, B, C, X(16370), X(54454)}}, {{A, B, C, X(26118), X(54704)}}, {{A, B, C, X(37119), X(54757)}}, {{A, B, C, X(37276), X(54785)}}, {{A, B, C, X(37943), X(54947)}}, {{A, B, C, X(52252), X(60078)}}, {{A, B, C, X(52290), X(60152)}}
X(62969) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3585, 52367, 20060}, {11680, 12943, 20067}


X(62970) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60076), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5-2*a^3*(b-c)^2+a^4*(b+c)+(b-c)^2*(b+c)^3-2*a^2*(b^3+b^2*c+b*c^2+c^3)+a*(b^4-4*b^3*c-2*b^2*c^2-4*b*c^3+c^4)) : :

X(62970) lies on these lines: {2, 3}, {7, 92}, {19, 22097}, {33, 1818}, {53, 37674}, {63, 281}, {69, 31623}, {77, 278}, {81, 1249}, {84, 39574}, {264, 18141}, {273, 9776}, {275, 60107}, {286, 15466}, {312, 55394}, {317, 14555}, {318, 34255}, {329, 7282}, {393, 940}, {394, 1172}, {459, 26540}, {1029, 38253}, {1785, 17022}, {1847, 59181}, {1857, 10391}, {1859, 5784}, {2052, 60076}, {2322, 14552}, {2326, 24553}, {2999, 56814}, {3087, 4383}, {3345, 5715}, {3945, 41083}, {4292, 39585}, {4340, 8747}, {5256, 34231}, {5273, 52412}, {5287, 7952}, {5307, 30686}, {5739, 32001}, {6504, 60246}, {6513, 55963}, {6748, 37679}, {7046, 41228}, {7675, 44695}, {14996, 33630}, {16080, 54760}, {18679, 37642}, {19804, 55393}, {24987, 54294}, {32911, 40065}, {36746, 56864}, {37669, 46103}, {43530, 54759}, {54284, 54314}, {54710, 60258}, {54788, 56270}, {54867, 60169}, {55027, 60137}, {55109, 56887}, {56014, 56296}, {56346, 60155}

X(62970) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60158}
X(62970) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60158}
X(62970) = pole of line {523, 14298} with respect to the polar circle
X(62970) = pole of line {69, 21482} with respect to the Wallace hyperbola
X(62970) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(36746)}}, {{A, B, C, X(4), X(56864)}}, {{A, B, C, X(5), X(60107)}}, {{A, B, C, X(7), X(1817)}}, {{A, B, C, X(20), X(60156)}}, {{A, B, C, X(21), X(189)}}, {{A, B, C, X(28), X(55110)}}, {{A, B, C, X(30), X(54760)}}, {{A, B, C, X(69), X(21482)}}, {{A, B, C, X(226), X(6908)}}, {{A, B, C, X(275), X(4200)}}, {{A, B, C, X(278), X(37383)}}, {{A, B, C, X(376), X(54788)}}, {{A, B, C, X(377), X(60114)}}, {{A, B, C, X(381), X(54759)}}, {{A, B, C, X(406), X(459)}}, {{A, B, C, X(443), X(60237)}}, {{A, B, C, X(451), X(38253)}}, {{A, B, C, X(475), X(56346)}}, {{A, B, C, X(1029), X(3146)}}, {{A, B, C, X(1751), X(6846)}}, {{A, B, C, X(2051), X(6848)}}, {{A, B, C, X(2052), X(4194)}}, {{A, B, C, X(2475), X(6504)}}, {{A, B, C, X(3091), X(60155)}}, {{A, B, C, X(3345), X(37418)}}, {{A, B, C, X(3522), X(60258)}}, {{A, B, C, X(3523), X(60169)}}, {{A, B, C, X(3542), X(60246)}}, {{A, B, C, X(3543), X(54756)}}, {{A, B, C, X(3559), X(55963)}}, {{A, B, C, X(3832), X(55027)}}, {{A, B, C, X(3839), X(54766)}}, {{A, B, C, X(4183), X(7003)}}, {{A, B, C, X(6824), X(55962)}}, {{A, B, C, X(6834), X(45098)}}, {{A, B, C, X(6837), X(24624)}}, {{A, B, C, X(6838), X(60071)}}, {{A, B, C, X(6847), X(13478)}}, {{A, B, C, X(6886), X(57721)}}, {{A, B, C, X(6890), X(60615)}}, {{A, B, C, X(6926), X(60085)}}, {{A, B, C, X(6953), X(60087)}}, {{A, B, C, X(6964), X(14554)}}, {{A, B, C, X(6998), X(60165)}}, {{A, B, C, X(7390), X(60152)}}, {{A, B, C, X(7407), X(60153)}}, {{A, B, C, X(8814), X(37263)}}, {{A, B, C, X(13576), X(36695)}}, {{A, B, C, X(17758), X(37407)}}, {{A, B, C, X(26647), X(56047)}}, {{A, B, C, X(34621), X(54754)}}, {{A, B, C, X(36672), X(56161)}}, {{A, B, C, X(37108), X(57826)}}, {{A, B, C, X(37112), X(57722)}}, {{A, B, C, X(37279), X(57874)}}, {{A, B, C, X(37413), X(46014)}}, {{A, B, C, X(37421), X(60170)}}, {{A, B, C, X(37427), X(60083)}}, {{A, B, C, X(37434), X(60167)}}, {{A, B, C, X(52252), X(60137)}}, {{A, B, C, X(54794), X(61985)}}
X(62970) = barycentric product X(i)*X(j) for these (i, j): {264, 36746}, {56864, 69}
X(62970) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60158}, {36746, 3}, {56864, 4}


X(62971) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60080), X(3), X(4))

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-a^3*(b+c)+a*(b-c)^2*(b+c)+b*c*(b^2+c^2)-a^2*(b^2-b*c+c^2)) : :

X(62971) lies on these lines: {2, 3}, {8, 11398}, {33, 1621}, {34, 2975}, {100, 1861}, {105, 243}, {108, 7677}, {232, 33854}, {264, 37670}, {275, 45964}, {318, 26227}, {901, 15344}, {1125, 54428}, {1252, 5089}, {1785, 3011}, {1841, 38871}, {1843, 15988}, {1870, 54391}, {1876, 3218}, {1890, 30687}, {1892, 31019}, {1897, 20045}, {1993, 44105}, {2052, 60080}, {2716, 9107}, {2752, 53612}, {3006, 5081}, {3192, 32911}, {3195, 17127}, {3616, 11399}, {3869, 57394}, {3871, 56876}, {4850, 54293}, {5260, 46878}, {5276, 10311}, {5338, 55478}, {5362, 10641}, {5367, 10642}, {5422, 44086}, {5554, 26378}, {5985, 12131}, {6748, 37661}, {7071, 61155}, {7713, 19860}, {7952, 26228}, {9308, 17002}, {10312, 56832}, {10985, 37675}, {11393, 11680}, {11427, 37538}, {20872, 25882}, {20989, 25968}, {24987, 49542}, {26703, 36067}, {29639, 56814}, {29828, 54368}, {34337, 60459}, {34545, 44097}, {37680, 61226}, {39572, 45766}, {50752, 51506}, {53611, 53956}, {53932, 53948}

X(62971) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 54739}
X(62971) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 54739}
X(62971) = pole of line {523, 53047} with respect to the orthoptic circle of the Steiner Inellipse
X(62971) = pole of line {523, 17874} with respect to the polar circle
X(62971) = pole of line {59, 32674} with respect to the Hutson-Moses hyperbola
X(62971) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(60080)}}, {{A, B, C, X(5), X(45964)}}, {{A, B, C, X(21), X(1252)}}, {{A, B, C, X(27), X(7012)}}, {{A, B, C, X(28), X(7115)}}, {{A, B, C, X(37), X(37315)}}, {{A, B, C, X(98), X(6905)}}, {{A, B, C, X(105), X(859)}}, {{A, B, C, X(111), X(33849)}}, {{A, B, C, X(251), X(4224)}}, {{A, B, C, X(262), X(6830)}}, {{A, B, C, X(901), X(4236)}}, {{A, B, C, X(1006), X(60081)}}, {{A, B, C, X(1156), X(14956)}}, {{A, B, C, X(1309), X(4238)}}, {{A, B, C, X(1383), X(37254)}}, {{A, B, C, X(1390), X(47515)}}, {{A, B, C, X(2346), X(7474)}}, {{A, B, C, X(2716), X(4221)}}, {{A, B, C, X(2752), X(3109)}}, {{A, B, C, X(3424), X(50701)}}, {{A, B, C, X(4231), X(60125)}}, {{A, B, C, X(4237), X(36087)}}, {{A, B, C, X(4244), X(36067)}}, {{A, B, C, X(6826), X(60152)}}, {{A, B, C, X(6827), X(60153)}}, {{A, B, C, X(6829), X(60108)}}, {{A, B, C, X(6844), X(14484)}}, {{A, B, C, X(6854), X(60165)}}, {{A, B, C, X(6879), X(14494)}}, {{A, B, C, X(6880), X(7612)}}, {{A, B, C, X(6996), X(24624)}}, {{A, B, C, X(7377), X(60071)}}, {{A, B, C, X(7397), X(55962)}}, {{A, B, C, X(7406), X(55944)}}, {{A, B, C, X(7452), X(36093)}}, {{A, B, C, X(7466), X(32085)}}, {{A, B, C, X(7475), X(53611)}}, {{A, B, C, X(7476), X(53612)}}, {{A, B, C, X(7497), X(14486)}}, {{A, B, C, X(8770), X(37366)}}, {{A, B, C, X(15149), X(16082)}}, {{A, B, C, X(15344), X(37168)}}, {{A, B, C, X(34664), X(54555)}}, {{A, B, C, X(35973), X(40413)}}, {{A, B, C, X(37960), X(53932)}}
X(62971) = barycentric quotient X(i)/X(j) for these (i, j): {4, 54739}
X(62971) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {24, 475, 404}, {1861, 52427, 100}


X(62972) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60081), X(3), X(4))

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-a^3*(b+c)+a*(b-c)^2*(b+c)-a^2*(b^2+c^2)+2*b*c*(b^2+c^2)) : :

X(62972) lies on these lines: {2, 3}, {9, 608}, {10, 11398}, {33, 1001}, {34, 958}, {55, 1861}, {63, 1876}, {105, 44695}, {108, 17917}, {197, 25968}, {238, 3195}, {264, 16992}, {275, 60108}, {281, 15288}, {317, 37664}, {318, 3757}, {342, 1447}, {394, 10477}, {607, 41239}, {614, 57278}, {954, 3920}, {956, 1870}, {1125, 11399}, {1260, 10327}, {1376, 52427}, {1398, 2975}, {1452, 3812}, {1621, 7071}, {1753, 11496}, {1824, 55472}, {1829, 19860}, {1890, 30686}, {1892, 5249}, {1902, 5250}, {1905, 54318}, {2052, 60081}, {2355, 55478}, {2356, 25941}, {2886, 11393}, {3192, 4383}, {3295, 56876}, {3624, 54428}, {3666, 54293}, {3744, 23050}, {4641, 42856}, {5081, 29641}, {5090, 24987}, {5275, 10311}, {5362, 11408}, {5367, 11409}, {5413, 31473}, {5422, 44097}, {5554, 11400}, {7717, 60959}, {9308, 16998}, {10601, 44086}, {11363, 19861}, {11392, 25466}, {11427, 44094}, {12167, 15988}, {17811, 54407}, {18344, 25901}, {23292, 37538}, {23710, 42842}, {24541, 26377}, {24982, 26378}, {25882, 37577}, {25885, 57652}, {30435, 56832}, {33854, 45141}, {37679, 61226}, {54394, 54396}

X(62972) = inverse of X(25985) in orthocentroidal circle
X(62972) = inverse of X(25985) in Yff hyperbola
X(62972) = pole of line {523, 25985} with respect to the orthocentroidal circle
X(62972) = pole of line {6, 25985} with respect to the Kiepert hyperbola
X(62972) = pole of line {523, 25985} with respect to the Yff hyperbola
X(62972) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(60081)}}, {{A, B, C, X(5), X(60108)}}, {{A, B, C, X(6), X(4224)}}, {{A, B, C, X(21), X(7123)}}, {{A, B, C, X(27), X(1041)}}, {{A, B, C, X(98), X(3149)}}, {{A, B, C, X(226), X(7377)}}, {{A, B, C, X(251), X(37254)}}, {{A, B, C, X(262), X(6831)}}, {{A, B, C, X(264), X(25985)}}, {{A, B, C, X(275), X(11341)}}, {{A, B, C, X(411), X(60080)}}, {{A, B, C, X(608), X(4211)}}, {{A, B, C, X(943), X(17560)}}, {{A, B, C, X(1751), X(6996)}}, {{A, B, C, X(1799), X(25947)}}, {{A, B, C, X(3424), X(50700)}}, {{A, B, C, X(3477), X(4228)}}, {{A, B, C, X(6828), X(45964)}}, {{A, B, C, X(6835), X(60152)}}, {{A, B, C, X(6836), X(60153)}}, {{A, B, C, X(6864), X(60165)}}, {{A, B, C, X(6927), X(7612)}}, {{A, B, C, X(6956), X(14494)}}, {{A, B, C, X(7406), X(60168)}}, {{A, B, C, X(7412), X(40801)}}, {{A, B, C, X(8770), X(33849)}}, {{A, B, C, X(13730), X(57689)}}, {{A, B, C, X(21448), X(37366)}}, {{A, B, C, X(28104), X(57666)}}, {{A, B, C, X(36652), X(60227)}}, {{A, B, C, X(37103), X(56229)}}, {{A, B, C, X(37362), X(60141)}}


X(62973) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60102), X(3), X(4))

Barycentrics    (7*a^2-3*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62973) lies on these lines: {2, 3}, {154, 37643}, {193, 19122}, {232, 37689}, {275, 60333}, {459, 60336}, {1301, 14572}, {1495, 23291}, {1829, 46934}, {1843, 11451}, {1974, 3620}, {2052, 60102}, {2374, 58097}, {2979, 44079}, {3060, 15010}, {3617, 11363}, {4351, 5272}, {4354, 5268}, {5090, 46932}, {5274, 52427}, {5412, 13941}, {5413, 8972}, {5550, 7713}, {5921, 35264}, {6525, 14165}, {6776, 44110}, {7665, 18287}, {7718, 46933}, {8541, 12834}, {8796, 53104}, {8854, 43430}, {8855, 43431}, {8879, 47187}, {9544, 19128}, {10192, 11433}, {10632, 42983}, {10633, 42982}, {11206, 15448}, {11216, 47454}, {11427, 61680}, {11669, 60161}, {13366, 61506}, {13394, 18928}, {13567, 35260}, {14826, 43150}, {14996, 44086}, {14997, 44105}, {15004, 61659}, {16080, 54866}, {17004, 43981}, {17810, 58434}, {18289, 35815}, {18290, 35814}, {18950, 26864}, {19118, 20080}, {19877, 49542}, {21001, 61346}, {21970, 59553}, {23332, 41424}, {26233, 40413}, {26883, 58378}, {29814, 40976}, {31383, 61691}, {32064, 47296}, {32223, 59543}, {32269, 37669}, {33522, 53415}, {37647, 63155}, {41357, 62663}, {41584, 51170}, {41585, 59373}, {43530, 54521}, {44084, 62187}, {56270, 60175}, {56346, 60331}, {60124, 60200}, {60192, 60193}

X(62973) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60219}, {656, 58096}
X(62973) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60219}, {40596, 58096}
X(62973) = pole of line {523, 39532} with respect to the orthoptic circle of the Steiner Inellipse
X(62973) = pole of line {7396, 44420} with respect to the Parry circle
X(62973) = pole of line {523, 31250} with respect to the polar circle
X(62973) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11008)}}, {{A, B, C, X(3), X(60102)}}, {{A, B, C, X(5), X(60333)}}, {{A, B, C, X(20), X(60336)}}, {{A, B, C, X(30), X(54866)}}, {{A, B, C, X(98), X(3529)}}, {{A, B, C, X(111), X(9909)}}, {{A, B, C, X(262), X(3855)}}, {{A, B, C, X(376), X(60175)}}, {{A, B, C, X(381), X(54521)}}, {{A, B, C, X(382), X(3424)}}, {{A, B, C, X(546), X(14484)}}, {{A, B, C, X(550), X(43537)}}, {{A, B, C, X(631), X(53104)}}, {{A, B, C, X(842), X(37948)}}, {{A, B, C, X(1995), X(39955)}}, {{A, B, C, X(2373), X(7396)}}, {{A, B, C, X(2374), X(38282)}}, {{A, B, C, X(2770), X(5159)}}, {{A, B, C, X(2996), X(33229)}}, {{A, B, C, X(3090), X(11669)}}, {{A, B, C, X(3091), X(60331)}}, {{A, B, C, X(3108), X(5020)}}, {{A, B, C, X(3528), X(7612)}}, {{A, B, C, X(3544), X(14494)}}, {{A, B, C, X(3545), X(60192)}}, {{A, B, C, X(3563), X(32534)}}, {{A, B, C, X(3851), X(53099)}}, {{A, B, C, X(5896), X(21312)}}, {{A, B, C, X(6995), X(10603)}}, {{A, B, C, X(7378), X(40413)}}, {{A, B, C, X(7607), X(10299)}}, {{A, B, C, X(7608), X(61921)}}, {{A, B, C, X(7841), X(60200)}}, {{A, B, C, X(8352), X(60632)}}, {{A, B, C, X(8357), X(60259)}}, {{A, B, C, X(8370), X(54639)}}, {{A, B, C, X(10302), X(33190)}}, {{A, B, C, X(11606), X(33279)}}, {{A, B, C, X(11634), X(58097)}}, {{A, B, C, X(13622), X(31255)}}, {{A, B, C, X(14064), X(60231)}}, {{A, B, C, X(14269), X(54520)}}, {{A, B, C, X(14458), X(62017)}}, {{A, B, C, X(14492), X(61980)}}, {{A, B, C, X(15682), X(54608)}}, {{A, B, C, X(15687), X(54519)}}, {{A, B, C, X(15710), X(54644)}}, {{A, B, C, X(15720), X(53859)}}, {{A, B, C, X(16045), X(60100)}}, {{A, B, C, X(18018), X(30769)}}, {{A, B, C, X(18349), X(61867)}}, {{A, B, C, X(18840), X(33232)}}, {{A, B, C, X(31152), X(40323)}}, {{A, B, C, X(32956), X(60278)}}, {{A, B, C, X(32974), X(60639)}}, {{A, B, C, X(33226), X(60128)}}, {{A, B, C, X(33230), X(60643)}}, {{A, B, C, X(33238), X(54122)}}, {{A, B, C, X(33254), X(60136)}}, {{A, B, C, X(33280), X(60184)}}, {{A, B, C, X(33292), X(40824)}}, {{A, B, C, X(33703), X(60323)}}, {{A, B, C, X(38071), X(54522)}}, {{A, B, C, X(40118), X(57584)}}, {{A, B, C, X(40801), X(55571)}}, {{A, B, C, X(41099), X(54643)}}, {{A, B, C, X(43951), X(61982)}}, {{A, B, C, X(47586), X(49135)}}, {{A, B, C, X(50688), X(60147)}}, {{A, B, C, X(52290), X(55023)}}, {{A, B, C, X(53103), X(61814)}}, {{A, B, C, X(54523), X(61947)}}, {{A, B, C, X(54645), X(61928)}}, {{A, B, C, X(54815), X(62003)}}, {{A, B, C, X(54851), X(62052)}}, {{A, B, C, X(54852), X(62011)}}, {{A, B, C, X(54891), X(62021)}}, {{A, B, C, X(54921), X(62097)}}, {{A, B, C, X(60123), X(61836)}}, {{A, B, C, X(60127), X(61967)}}, {{A, B, C, X(60150), X(62042)}}, {{A, B, C, X(60185), X(62130)}}
X(62973) = barycentric product X(i)*X(j) for these (i, j): {11008, 4}
X(62973) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60219}, {112, 58096}, {11008, 69}
X(62973) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15448, 26958, 11206}


X(62974) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60119), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+2*(b^2-c^2)^2*(b^2+c^2)+a^2*(-3*b^4+8*b^2*c^2-3*c^4)) : :
X(62974) = 2*X[155]+X[54163], -X[185]+4*X[58482], -X[944]+4*X[51702], -5*X[3567]+8*X[58559], -4*X[5448]+X[44752], X[5691]+2*X[51694], -X[6241]+4*X[52003], -X[6776]+4*X[51734], X[10733]+2*X[20771]

X(62974) lies on these lines: {2, 3}, {64, 26917}, {74, 26958}, {113, 1993}, {133, 14583}, {155, 54163}, {185, 58482}, {232, 11648}, {262, 54825}, {459, 54941}, {539, 11441}, {944, 51702}, {1514, 13567}, {1568, 2063}, {1853, 11455}, {1870, 11238}, {1899, 32111}, {1974, 11645}, {1986, 10706}, {2052, 60119}, {2777, 61645}, {2883, 18912}, {2904, 22970}, {3199, 39563}, {3426, 15081}, {3527, 43891}, {3531, 45972}, {3567, 58559}, {3818, 41614}, {5186, 22566}, {5306, 60428}, {5309, 8743}, {5448, 44752}, {5476, 39588}, {5622, 36990}, {5627, 48374}, {5691, 51694}, {5878, 26879}, {5890, 22971}, {6000, 61701}, {6198, 11237}, {6241, 52003}, {6403, 54131}, {6776, 51734}, {7592, 61749}, {7687, 11550}, {7788, 44146}, {7809, 54412}, {8739, 41107}, {8740, 41108}, {8753, 51926}, {8780, 12383}, {9140, 12292}, {9707, 13403}, {10311, 14537}, {10574, 22948}, {10632, 42154}, {10633, 42155}, {10641, 36970}, {10642, 36969}, {10733, 20771}, {10985, 62203}, {11178, 12294}, {11204, 61691}, {11216, 14853}, {11363, 28208}, {11456, 18390}, {11472, 23293}, {11475, 37832}, {11476, 37835}, {11704, 40686}, {12132, 22515}, {12174, 43808}, {12254, 14530}, {12300, 15058}, {12827, 46686}, {13884, 52047}, {13937, 52048}, {14157, 18396}, {14458, 60133}, {14492, 60266}, {14852, 15305}, {15083, 18555}, {15801, 45014}, {16194, 61700}, {16654, 23324}, {17702, 35264}, {18361, 37778}, {18440, 37784}, {18451, 50435}, {19128, 43273}, {19570, 56015}, {22750, 43572}, {23325, 32062}, {31162, 41722}, {31670, 62382}, {31948, 50805}, {35603, 61713}, {38789, 54037}, {39284, 60130}, {44091, 48884}, {44668, 53023}, {48913, 58782}, {49947, 56514}, {49948, 56515}, {53330, 59745}, {58885, 62377}, {61744, 61747}

X(62974) = pole of line {3, 12364} with respect to the Stammler hyperbola
X(62974) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(18361)}}, {{A, B, C, X(20), X(54941)}}, {{A, B, C, X(30), X(48374)}}, {{A, B, C, X(140), X(60130)}}, {{A, B, C, X(382), X(1179)}}, {{A, B, C, X(458), X(54825)}}, {{A, B, C, X(550), X(45195)}}, {{A, B, C, X(631), X(43891)}}, {{A, B, C, X(671), X(41238)}}, {{A, B, C, X(847), X(1885)}}, {{A, B, C, X(858), X(14458)}}, {{A, B, C, X(1093), X(18560)}}, {{A, B, C, X(1300), X(44438)}}, {{A, B, C, X(1995), X(14492)}}, {{A, B, C, X(2071), X(5627)}}, {{A, B, C, X(3426), X(18859)}}, {{A, B, C, X(3524), X(45972)}}, {{A, B, C, X(3527), X(43809)}}, {{A, B, C, X(7529), X(54736)}}, {{A, B, C, X(8749), X(35473)}}, {{A, B, C, X(8884), X(35490)}}, {{A, B, C, X(10299), X(18368)}}, {{A, B, C, X(10419), X(34152)}}, {{A, B, C, X(11058), X(37950)}}, {{A, B, C, X(11331), X(60133)}}, {{A, B, C, X(11413), X(54658)}}, {{A, B, C, X(14860), X(35502)}}, {{A, B, C, X(16051), X(60150)}}, {{A, B, C, X(16263), X(57584)}}, {{A, B, C, X(17703), X(37452)}}, {{A, B, C, X(17928), X(60121)}}, {{A, B, C, X(18434), X(37938)}}, {{A, B, C, X(23335), X(54909)}}, {{A, B, C, X(31099), X(54519)}}, {{A, B, C, X(31133), X(54477)}}, {{A, B, C, X(32085), X(35480)}}, {{A, B, C, X(38323), X(54585)}}, {{A, B, C, X(40132), X(60127)}}, {{A, B, C, X(50140), X(52154)}}, {{A, B, C, X(52071), X(54820)}}, {{A, B, C, X(52289), X(60266)}}, {{A, B, C, X(54664), X(57532)}}
X(62974) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 235, 24}, {4, 403, 378}, {546, 1906, 4}, {11455, 14644, 1853}, {18390, 51403, 11456}


X(62975) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60127), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2+5*(b^2+c^2)) : :

X(62975) lies on these lines: {2, 3}, {69, 46026}, {98, 54531}, {262, 54867}, {275, 60150}, {305, 32823}, {393, 9300}, {459, 14492}, {551, 7718}, {599, 3867}, {1351, 15431}, {1829, 53620}, {1843, 21356}, {1853, 14853}, {1899, 34565}, {2052, 60127}, {3087, 5306}, {3241, 5090}, {3574, 12324}, {3818, 37669}, {3828, 7713}, {5186, 41135}, {5447, 11387}, {5480, 23291}, {5485, 60141}, {6392, 8892}, {6459, 8280}, {6460, 8281}, {7612, 60120}, {7716, 20582}, {7717, 60986}, {7739, 27371}, {7752, 19583}, {7788, 32000}, {7837, 56013}, {8739, 49812}, {8740, 49813}, {8796, 54523}, {8801, 9766}, {9140, 18947}, {9306, 51537}, {9781, 43896}, {10155, 54893}, {10250, 14912}, {10385, 11393}, {11160, 12167}, {11180, 37672}, {11206, 44108}, {11396, 31145}, {11427, 11550}, {11547, 53027}, {11745, 58378}, {12132, 52695}, {12294, 21849}, {13854, 34572}, {14458, 56346}, {14484, 54710}, {14494, 39284}, {15583, 17040}, {16655, 43841}, {18840, 21248}, {18842, 60125}, {18928, 19130}, {21243, 51212}, {23332, 53023}, {25055, 49542}, {25712, 45286}, {32001, 37671}, {32002, 34229}, {32581, 42037}, {32822, 34254}, {33630, 37665}, {35764, 42602}, {35765, 42603}, {36634, 40976}, {38253, 54520}, {39588, 50974}, {41585, 50993}, {41628, 61700}, {45201, 52713}, {48889, 59543}, {53103, 54892}, {54519, 60137}, {54612, 60193}, {54707, 56270}, {54791, 60123}, {60124, 60281}, {60161, 60185}

X(62975) = inverse of X(7714) in orthocentroidal circle
X(62975) = inverse of X(37910) in polar circle
X(62975) = inverse of X(7714) in Yff hyperbola
X(62975) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60647}
X(62975) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60647}
X(62975) = pole of line {523, 7714} with respect to the orthocentroidal circle
X(62975) = pole of line {523, 37910} with respect to the polar circle
X(62975) = pole of line {6, 7714} with respect to the Kiepert hyperbola
X(62975) = pole of line {523, 7714} with respect to the Yff hyperbola
X(62975) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(60127)}}, {{A, B, C, X(5), X(60150)}}, {{A, B, C, X(20), X(14492)}}, {{A, B, C, X(22), X(34572)}}, {{A, B, C, X(98), X(5056)}}, {{A, B, C, X(140), X(14494)}}, {{A, B, C, X(262), X(3523)}}, {{A, B, C, X(264), X(7714)}}, {{A, B, C, X(297), X(54531)}}, {{A, B, C, X(376), X(54707)}}, {{A, B, C, X(458), X(54867)}}, {{A, B, C, X(459), X(52289)}}, {{A, B, C, X(523), X(37910)}}, {{A, B, C, X(550), X(52519)}}, {{A, B, C, X(598), X(32974)}}, {{A, B, C, X(631), X(54523)}}, {{A, B, C, X(671), X(32971)}}, {{A, B, C, X(1656), X(7612)}}, {{A, B, C, X(1916), X(14037)}}, {{A, B, C, X(3090), X(60185)}}, {{A, B, C, X(3091), X(14458)}}, {{A, B, C, X(3146), X(54520)}}, {{A, B, C, X(3407), X(33283)}}, {{A, B, C, X(3424), X(5068)}}, {{A, B, C, X(3522), X(14484)}}, {{A, B, C, X(3533), X(10155)}}, {{A, B, C, X(3543), X(54582)}}, {{A, B, C, X(3545), X(54612)}}, {{A, B, C, X(3832), X(54519)}}, {{A, B, C, X(3839), X(54477)}}, {{A, B, C, X(3851), X(54845)}}, {{A, B, C, X(3854), X(60147)}}, {{A, B, C, X(4232), X(60141)}}, {{A, B, C, X(5059), X(43951)}}, {{A, B, C, X(5485), X(7770)}}, {{A, B, C, X(5503), X(33181)}}, {{A, B, C, X(5627), X(47093)}}, {{A, B, C, X(6353), X(8801)}}, {{A, B, C, X(6656), X(18842)}}, {{A, B, C, X(6658), X(54737)}}, {{A, B, C, X(6995), X(34208)}}, {{A, B, C, X(6996), X(54689)}}, {{A, B, C, X(7377), X(54587)}}, {{A, B, C, X(7395), X(54763)}}, {{A, B, C, X(7399), X(54660)}}, {{A, B, C, X(7406), X(54586)}}, {{A, B, C, X(7485), X(39389)}}, {{A, B, C, X(7486), X(60175)}}, {{A, B, C, X(7576), X(18852)}}, {{A, B, C, X(7607), X(46935)}}, {{A, B, C, X(7608), X(61856)}}, {{A, B, C, X(7824), X(60268)}}, {{A, B, C, X(7841), X(60281)}}, {{A, B, C, X(7892), X(40824)}}, {{A, B, C, X(8370), X(32532)}}, {{A, B, C, X(8587), X(33270)}}, {{A, B, C, X(9909), X(36889)}}, {{A, B, C, X(10303), X(60192)}}, {{A, B, C, X(10304), X(54643)}}, {{A, B, C, X(10484), X(33206)}}, {{A, B, C, X(10594), X(18854)}}, {{A, B, C, X(11172), X(16921)}}, {{A, B, C, X(11317), X(54647)}}, {{A, B, C, X(11331), X(56346)}}, {{A, B, C, X(11479), X(54604)}}, {{A, B, C, X(13727), X(54712)}}, {{A, B, C, X(13740), X(54786)}}, {{A, B, C, X(13854), X(52285)}}, {{A, B, C, X(14035), X(54540)}}, {{A, B, C, X(14063), X(54539)}}, {{A, B, C, X(14488), X(49135)}}, {{A, B, C, X(15022), X(54866)}}, {{A, B, C, X(15692), X(54734)}}, {{A, B, C, X(15717), X(54521)}}, {{A, B, C, X(15720), X(60330)}}, {{A, B, C, X(16045), X(60143)}}, {{A, B, C, X(16062), X(54624)}}, {{A, B, C, X(17681), X(54831)}}, {{A, B, C, X(18853), X(37122)}}, {{A, B, C, X(32956), X(54616)}}, {{A, B, C, X(32962), X(43535)}}, {{A, B, C, X(32965), X(54487)}}, {{A, B, C, X(32970), X(60240)}}, {{A, B, C, X(32972), X(54906)}}, {{A, B, C, X(32973), X(60095)}}, {{A, B, C, X(32979), X(41895)}}, {{A, B, C, X(32981), X(54889)}}, {{A, B, C, X(32982), X(53101)}}, {{A, B, C, X(32987), X(60218)}}, {{A, B, C, X(32990), X(54905)}}, {{A, B, C, X(32993), X(54901)}}, {{A, B, C, X(33020), X(54122)}}, {{A, B, C, X(33021), X(60190)}}, {{A, B, C, X(33190), X(60284)}}, {{A, B, C, X(33198), X(60180)}}, {{A, B, C, X(33202), X(54773)}}, {{A, B, C, X(33269), X(60214)}}, {{A, B, C, X(34007), X(54704)}}, {{A, B, C, X(34664), X(54838)}}, {{A, B, C, X(35018), X(60337)}}, {{A, B, C, X(36652), X(54690)}}, {{A, B, C, X(36670), X(54657)}}, {{A, B, C, X(37162), X(60152)}}, {{A, B, C, X(37174), X(60120)}}, {{A, B, C, X(40801), X(55578)}}, {{A, B, C, X(41231), X(54930)}}, {{A, B, C, X(41237), X(54772)}}, {{A, B, C, X(41238), X(54771)}}, {{A, B, C, X(46219), X(53098)}}, {{A, B, C, X(46936), X(54644)}}, {{A, B, C, X(50688), X(54717)}}, {{A, B, C, X(50689), X(54815)}}, {{A, B, C, X(50690), X(54706)}}, {{A, B, C, X(50691), X(54890)}}, {{A, B, C, X(52284), X(60125)}}, {{A, B, C, X(52288), X(54710)}}, {{A, B, C, X(53099), X(61834)}}, {{A, B, C, X(53103), X(61886)}}, {{A, B, C, X(54097), X(54476)}}, {{A, B, C, X(54522), X(61820)}}, {{A, B, C, X(54608), X(61936)}}, {{A, B, C, X(54645), X(55864)}}, {{A, B, C, X(54813), X(62007)}}, {{A, B, C, X(54851), X(61924)}}, {{A, B, C, X(55856), X(60123)}}, {{A, B, C, X(60118), X(61791)}}, {{A, B, C, X(60142), X(62067)}}, {{A, B, C, X(60322), X(61921)}}, {{A, B, C, X(60328), X(62124)}}, {{A, B, C, X(60329), X(62110)}}
X(62975) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60647}
X(62975) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {427, 1907, 1368}, {11427, 11550, 39874}


X(62976) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60132), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^2+2*(b^2+c^2)) : :

X(62976) lies on these lines: {2, 3}, {6, 52789}, {51, 36990}, {184, 53023}, {275, 14488}, {394, 48901}, {612, 12953}, {614, 12943}, {1180, 15484}, {1184, 7747}, {1196, 33880}, {1503, 9777}, {1619, 18382}, {1824, 22034}, {1829, 3632}, {1843, 40341}, {1853, 34417}, {1890, 5101}, {1892, 3982}, {2052, 60132}, {2207, 8792}, {2549, 15433}, {2979, 40912}, {3060, 18440}, {3244, 11396}, {3527, 34224}, {3567, 34780}, {3626, 5090}, {3629, 12167}, {3631, 41585}, {3796, 19130}, {3818, 33586}, {3819, 48904}, {3867, 6329}, {3917, 48910}, {3920, 9668}, {5310, 10895}, {5322, 10896}, {5480, 11402}, {5943, 48884}, {5986, 38732}, {6154, 11406}, {6515, 39884}, {6688, 48942}, {6747, 42854}, {6748, 45141}, {7191, 9655}, {7717, 60983}, {7718, 20057}, {7773, 16276}, {8796, 54845}, {9306, 48895}, {9786, 13399}, {9971, 54384}, {10311, 52433}, {10601, 29012}, {10982, 13419}, {11179, 52719}, {11405, 20583}, {11432, 16659}, {11550, 17810}, {11898, 62187}, {12131, 20774}, {12135, 20050}, {12143, 47847}, {12144, 52787}, {12174, 16621}, {14826, 51538}, {14929, 41916}, {15069, 21969}, {15153, 15873}, {16194, 40909}, {16264, 52448}, {16620, 22334}, {19504, 24981}, {21970, 23293}, {22481, 22845}, {22482, 22844}, {26958, 44106}, {27365, 54164}, {31467, 38862}, {31860, 61645}, {33698, 60124}, {34775, 41580}, {39284, 53100}, {42093, 54363}, {42094, 54362}, {43530, 54717}, {43650, 48905}, {43823, 43837}, {45968, 48662}, {50251, 62237}, {52519, 60161}, {53105, 60125}, {53109, 60141}, {54791, 60332}, {54892, 60330}, {54893, 60337}, {60120, 60142}, {60879, 60957}

X(62976) = inverse of X(52285) in orthocentroidal circle
X(62976) = inverse of X(52285) in Yff hyperbola
X(62976) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60278}, {656, 58121}
X(62976) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60278}, {40596, 58121}
X(62976) = pole of line {523, 52285} with respect to the orthocentroidal circle
X(62976) = pole of line {523, 47650} with respect to the polar circle
X(62976) = pole of line {185, 53023} with respect to the Jerabek hyperbola
X(62976) = pole of line {6, 52285} with respect to the Kiepert hyperbola
X(62976) = pole of line {2501, 7927} with respect to the Orthic inconic
X(62976) = pole of line {523, 52285} with respect to the Yff hyperbola
X(62976) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(47355)}}, {{A, B, C, X(3), X(60132)}}, {{A, B, C, X(5), X(14488)}}, {{A, B, C, X(6), X(15246)}}, {{A, B, C, X(98), X(3526)}}, {{A, B, C, X(140), X(53100)}}, {{A, B, C, X(251), X(7492)}}, {{A, B, C, X(262), X(3628)}}, {{A, B, C, X(264), X(52285)}}, {{A, B, C, X(305), X(10300)}}, {{A, B, C, X(381), X(54717)}}, {{A, B, C, X(393), X(7409)}}, {{A, B, C, X(428), X(47847)}}, {{A, B, C, X(548), X(60326)}}, {{A, B, C, X(549), X(14458)}}, {{A, B, C, X(631), X(54845)}}, {{A, B, C, X(632), X(60335)}}, {{A, B, C, X(842), X(37947)}}, {{A, B, C, X(1093), X(16198)}}, {{A, B, C, X(1656), X(60142)}}, {{A, B, C, X(1916), X(14065)}}, {{A, B, C, X(2980), X(7571)}}, {{A, B, C, X(3090), X(52519)}}, {{A, B, C, X(3407), X(14043)}}, {{A, B, C, X(3424), X(10303)}}, {{A, B, C, X(3425), X(13564)}}, {{A, B, C, X(3518), X(14486)}}, {{A, B, C, X(3522), X(16620)}}, {{A, B, C, X(3525), X(60322)}}, {{A, B, C, X(3527), X(7516)}}, {{A, B, C, X(3533), X(60337)}}, {{A, B, C, X(3534), X(54477)}}, {{A, B, C, X(5054), X(54934)}}, {{A, B, C, X(5055), X(14492)}}, {{A, B, C, X(5064), X(32085)}}, {{A, B, C, X(5066), X(54582)}}, {{A, B, C, X(5070), X(54920)}}, {{A, B, C, X(5072), X(54890)}}, {{A, B, C, X(6656), X(53105)}}, {{A, B, C, X(7486), X(14484)}}, {{A, B, C, X(7525), X(14495)}}, {{A, B, C, X(7607), X(55859)}}, {{A, B, C, X(7608), X(55860)}}, {{A, B, C, X(7612), X(61870)}}, {{A, B, C, X(7770), X(53109)}}, {{A, B, C, X(7841), X(33698)}}, {{A, B, C, X(8370), X(54494)}}, {{A, B, C, X(8770), X(16042)}}, {{A, B, C, X(8791), X(52299)}}, {{A, B, C, X(10304), X(54519)}}, {{A, B, C, X(11285), X(60280)}}, {{A, B, C, X(11540), X(54851)}}, {{A, B, C, X(13854), X(52284)}}, {{A, B, C, X(14036), X(54539)}}, {{A, B, C, X(14046), X(54540)}}, {{A, B, C, X(14494), X(61881)}}, {{A, B, C, X(14953), X(48138)}}, {{A, B, C, X(15022), X(43951)}}, {{A, B, C, X(15683), X(54815)}}, {{A, B, C, X(15704), X(54917)}}, {{A, B, C, X(15706), X(54852)}}, {{A, B, C, X(15709), X(60150)}}, {{A, B, C, X(15717), X(60147)}}, {{A, B, C, X(16045), X(18843)}}, {{A, B, C, X(16661), X(22334)}}, {{A, B, C, X(32956), X(60219)}}, {{A, B, C, X(33190), X(54720)}}, {{A, B, C, X(33230), X(60631)}}, {{A, B, C, X(34484), X(40801)}}, {{A, B, C, X(37453), X(60125)}}, {{A, B, C, X(39951), X(40916)}}, {{A, B, C, X(46219), X(60334)}}, {{A, B, C, X(47598), X(60175)}}, {{A, B, C, X(50693), X(60327)}}, {{A, B, C, X(54520), X(61936)}}, {{A, B, C, X(54608), X(61843)}}, {{A, B, C, X(54612), X(61833)}}, {{A, B, C, X(54643), X(61898)}}, {{A, B, C, X(54644), X(61872)}}, {{A, B, C, X(54645), X(61879)}}, {{A, B, C, X(54707), X(61904)}}, {{A, B, C, X(54734), X(61891)}}, {{A, B, C, X(54813), X(61974)}}, {{A, B, C, X(54857), X(61832)}}, {{A, B, C, X(54891), X(61826)}}, {{A, B, C, X(55856), X(60332)}}, {{A, B, C, X(60127), X(61895)}}, {{A, B, C, X(60185), X(61865)}}, {{A, B, C, X(60192), X(61883)}}, {{A, B, C, X(60323), X(61852)}}, {{A, B, C, X(60325), X(61807)}}, {{A, B, C, X(60329), X(61907)}}, {{A, B, C, X(60330), X(61886)}}
X(62976) = barycentric product X(i)*X(j) for these (i, j): {4, 47355}, {1897, 48138}
X(62976) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60278}, {112, 58121}, {47355, 69}, {48138, 4025}
X(62976) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 428, 25}


X(62977) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60142), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^2+4*(b^2+c^2)) : :

X(62977) lies on these lines: {2, 3}, {6, 41358}, {115, 15433}, {125, 53023}, {275, 53100}, {394, 18553}, {399, 10294}, {614, 9628}, {1351, 41724}, {1853, 9777}, {1892, 4031}, {1993, 45034}, {2052, 60142}, {3244, 5090}, {3292, 47353}, {3448, 5093}, {3531, 15081}, {3574, 12174}, {3631, 3867}, {3632, 11396}, {3818, 6090}, {5095, 11405}, {5480, 26869}, {6293, 58492}, {7736, 62195}, {7737, 47298}, {8796, 60330}, {9140, 48679}, {10516, 51360}, {11216, 47466}, {11383, 61152}, {11402, 11550}, {12135, 20057}, {12167, 40341}, {12295, 32227}, {14488, 16080}, {14580, 33843}, {14982, 24981}, {15106, 32274}, {15302, 33885}, {15808, 49542}, {15820, 62702}, {16318, 62213}, {18424, 21448}, {19124, 34397}, {19504, 32234}, {23049, 41603}, {23061, 50955}, {26864, 36990}, {31670, 45303}, {31860, 61691}, {32255, 53019}, {33971, 53027}, {34417, 61735}, {35259, 48889}, {37638, 48901}, {37645, 39884}, {38743, 62298}, {39284, 60332}, {40343, 52152}, {41586, 54131}, {43530, 60132}, {43676, 60141}, {45835, 63181}, {47355, 52789}, {47582, 51538}, {48910, 61644}, {52519, 56270}, {53102, 60125}, {53109, 60124}, {54845, 60193}, {60120, 60334}, {60161, 60337}, {60879, 60983}

X(62977) = inverse of X(10301) in orthocentroidal circle
X(62977) = inverse of X(47313) in polar circle
X(62977) = inverse of X(10301) in Yff hyperbola
X(62977) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60239}
X(62977) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60239}, {51588, 69}
X(62977) = pole of line {523, 10301} with respect to the orthocentroidal circle
X(62977) = pole of line {523, 47313} with respect to the polar circle
X(62977) = pole of line {185, 9971} with respect to the Jerabek hyperbola
X(62977) = pole of line {6, 10301} with respect to the Kiepert hyperbola
X(62977) = pole of line {2501, 3906} with respect to the Orthic inconic
X(62977) = pole of line {523, 10301} with respect to the Yff hyperbola
X(62977) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(21358)}}, {{A, B, C, X(3), X(60142)}}, {{A, B, C, X(5), X(53100)}}, {{A, B, C, X(6), X(7492)}}, {{A, B, C, X(30), X(14488)}}, {{A, B, C, X(98), X(5055)}}, {{A, B, C, X(140), X(60332)}}, {{A, B, C, X(262), X(549)}}, {{A, B, C, X(264), X(10301)}}, {{A, B, C, X(376), X(52519)}}, {{A, B, C, X(381), X(60132)}}, {{A, B, C, X(523), X(47313)}}, {{A, B, C, X(547), X(60335)}}, {{A, B, C, X(548), X(60329)}}, {{A, B, C, X(631), X(60330)}}, {{A, B, C, X(842), X(12105)}}, {{A, B, C, X(1656), X(60334)}}, {{A, B, C, X(1916), X(14036)}}, {{A, B, C, X(3090), X(60337)}}, {{A, B, C, X(3407), X(14046)}}, {{A, B, C, X(3424), X(61936)}}, {{A, B, C, X(3426), X(49671)}}, {{A, B, C, X(3526), X(7608)}}, {{A, B, C, X(3531), X(37924)}}, {{A, B, C, X(3534), X(14492)}}, {{A, B, C, X(3545), X(54845)}}, {{A, B, C, X(3628), X(7607)}}, {{A, B, C, X(3830), X(54717)}}, {{A, B, C, X(4232), X(8801)}}, {{A, B, C, X(5054), X(54920)}}, {{A, B, C, X(5066), X(14458)}}, {{A, B, C, X(5071), X(60322)}}, {{A, B, C, X(5072), X(54857)}}, {{A, B, C, X(6336), X(31928)}}, {{A, B, C, X(6656), X(53102)}}, {{A, B, C, X(7409), X(13854)}}, {{A, B, C, X(7486), X(43537)}}, {{A, B, C, X(7525), X(43908)}}, {{A, B, C, X(7612), X(61895)}}, {{A, B, C, X(7770), X(43676)}}, {{A, B, C, X(7841), X(53109)}}, {{A, B, C, X(8352), X(54494)}}, {{A, B, C, X(8370), X(53105)}}, {{A, B, C, X(8791), X(52284)}}, {{A, B, C, X(10155), X(61865)}}, {{A, B, C, X(10185), X(55860)}}, {{A, B, C, X(10303), X(53099)}}, {{A, B, C, X(10304), X(14484)}}, {{A, B, C, X(10415), X(10989)}}, {{A, B, C, X(11317), X(33698)}}, {{A, B, C, X(11540), X(54645)}}, {{A, B, C, X(11668), X(61879)}}, {{A, B, C, X(11669), X(47598)}}, {{A, B, C, X(13574), X(37909)}}, {{A, B, C, X(14043), X(43529)}}, {{A, B, C, X(14065), X(43528)}}, {{A, B, C, X(14494), X(15709)}}, {{A, B, C, X(14495), X(37947)}}, {{A, B, C, X(15022), X(47586)}}, {{A, B, C, X(15246), X(39951)}}, {{A, B, C, X(15640), X(54520)}}, {{A, B, C, X(15683), X(43951)}}, {{A, B, C, X(15684), X(54890)}}, {{A, B, C, X(15698), X(60127)}}, {{A, B, C, X(15717), X(60118)}}, {{A, B, C, X(15759), X(54643)}}, {{A, B, C, X(16042), X(21448)}}, {{A, B, C, X(16051), X(45835)}}, {{A, B, C, X(18843), X(33190)}}, {{A, B, C, X(19709), X(54934)}}, {{A, B, C, X(23046), X(60326)}}, {{A, B, C, X(33699), X(54582)}}, {{A, B, C, X(40801), X(47485)}}, {{A, B, C, X(44543), X(60280)}}, {{A, B, C, X(50693), X(60328)}}, {{A, B, C, X(53098), X(61870)}}, {{A, B, C, X(53104), X(61883)}}, {{A, B, C, X(53108), X(61872)}}, {{A, B, C, X(54477), X(61974)}}, {{A, B, C, X(54519), X(61966)}}, {{A, B, C, X(54521), X(61805)}}, {{A, B, C, X(54523), X(61833)}}, {{A, B, C, X(54608), X(61929)}}, {{A, B, C, X(54644), X(61891)}}, {{A, B, C, X(54706), X(62032)}}, {{A, B, C, X(54707), X(62090)}}, {{A, B, C, X(54734), X(61797)}}, {{A, B, C, X(54851), X(61918)}}, {{A, B, C, X(54917), X(61978)}}, {{A, B, C, X(55859), X(60144)}}, {{A, B, C, X(60123), X(61881)}}, {{A, B, C, X(60147), X(61954)}}, {{A, B, C, X(60150), X(61926)}}, {{A, B, C, X(60175), X(61898)}}, {{A, B, C, X(60185), X(61904)}}, {{A, B, C, X(60192), X(61843)}}, {{A, B, C, X(60323), X(61922)}}, {{A, B, C, X(60325), X(61951)}}, {{A, B, C, X(60327), X(61972)}}, {{A, B, C, X(60331), X(61830)}}
X(62977) = barycentric product X(i)*X(j) for these (i, j): {21358, 4}
X(62977) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60239}, {21358, 69}
X(62977) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {36990, 61743, 26864}


X(62978) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60175), X(3), X(4))

Barycentrics    (4*a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :
X(62978) = -2*X[13607]+5*X[51694]

X(62978) lies on these lines: {2, 3}, {33, 4995}, {34, 5298}, {51, 10192}, {107, 5966}, {110, 41588}, {115, 12132}, {141, 44091}, {154, 11245}, {184, 12007}, {232, 5306}, {275, 60192}, {343, 32223}, {394, 47582}, {395, 10641}, {396, 10642}, {459, 54866}, {476, 23096}, {519, 11363}, {524, 1974}, {539, 41587}, {551, 1829}, {597, 1843}, {827, 2374}, {1112, 5642}, {1141, 9064}, {1287, 40119}, {1301, 13157}, {1302, 2383}, {1304, 53935}, {1353, 9544}, {1474, 17330}, {1495, 13567}, {1503, 44082}, {1611, 16317}, {1862, 6174}, {1992, 19118}, {2052, 60175}, {2482, 5186}, {2501, 45317}, {3058, 52427}, {3060, 59553}, {3192, 61661}, {3292, 59699}, {3563, 53957}, {3564, 35264}, {3584, 54428}, {3629, 41599}, {3679, 12135}, {3815, 10985}, {3828, 49542}, {3867, 48310}, {3917, 61507}, {4370, 24814}, {4428, 11383}, {5090, 19875}, {5354, 8792}, {5410, 19053}, {5411, 19054}, {5412, 13937}, {5413, 13884}, {5459, 12142}, {5460, 12141}, {5480, 44106}, {5943, 13394}, {6055, 12131}, {6173, 60879}, {6515, 8780}, {6800, 45298}, {7713, 25055}, {7716, 47352}, {7717, 59374}, {7718, 53620}, {7850, 45201}, {8550, 44110}, {8584, 41585}, {8739, 43228}, {8740, 43229}, {8854, 35815}, {8855, 35814}, {9060, 53930}, {9085, 26710}, {9107, 26707}, {9300, 10311}, {9306, 32269}, {9466, 12143}, {10056, 11399}, {10072, 11398}, {10169, 47455}, {10302, 60125}, {10418, 40326}, {10546, 37636}, {10986, 18907}, {11002, 61655}, {11062, 14836}, {11179, 39871}, {11202, 16657}, {11206, 26869}, {11216, 47459}, {11381, 43903}, {11396, 38314}, {11402, 35260}, {11408, 37641}, {11409, 37640}, {11433, 26864}, {11451, 38110}, {11473, 52045}, {11474, 52046}, {11550, 47296}, {11669, 60120}, {11694, 15463}, {12167, 59373}, {12294, 54169}, {13148, 56567}, {13367, 15873}, {13607, 51694}, {13622, 56918}, {13854, 36616}, {14530, 18916}, {14979, 53944}, {15344, 26711}, {15360, 50985}, {15471, 41149}, {16080, 54608}, {16166, 40118}, {16318, 59229}, {16654, 23329}, {17004, 56022}, {17409, 47187}, {17810, 51734}, {18289, 43430}, {18290, 43431}, {19124, 50983}, {19128, 50979}, {20192, 47328}, {21849, 44084}, {22479, 40726}, {23292, 34417}, {23293, 39884}, {23328, 32062}, {23332, 61691}, {26235, 52787}, {26613, 58309}, {26881, 48906}, {26882, 31804}, {26926, 31166}, {26958, 31383}, {32002, 37647}, {33586, 59543}, {35265, 45968}, {35266, 44077}, {35325, 61346}, {37497, 44935}, {39284, 53104}, {40413, 57852}, {40634, 57489}, {41624, 44089}, {43530, 54643}, {44108, 61712}, {45311, 46682}, {46026, 51126}, {51745, 58437}, {54412, 59634}, {54521, 56346}, {54531, 60333}, {54710, 60336}, {54867, 60102}, {58434, 61743}, {60124, 60228}, {60141, 60239}

X(62978) = midpoint of X(i) and X(j) for these {i,j}: {44082, 61645}
X(62978) = inverse of X(30745) in polar circle
X(62978) = X(i)-Dao conjugate of X(j) for these {i, j}: {51581, 69}
X(62978) = pole of line {44420, 52397} with respect to the Parry circle
X(62978) = pole of line {523, 7925} with respect to the polar circle
X(62978) = pole of line {185, 12007} with respect to the Jerabek hyperbola
X(62978) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3629)}}, {{A, B, C, X(3), X(5966)}}, {{A, B, C, X(4), X(53963)}}, {{A, B, C, X(5), X(60192)}}, {{A, B, C, X(20), X(54866)}}, {{A, B, C, X(22), X(36616)}}, {{A, B, C, X(30), X(32478)}}, {{A, B, C, X(98), X(550)}}, {{A, B, C, X(111), X(6636)}}, {{A, B, C, X(140), X(53104)}}, {{A, B, C, X(186), X(23096)}}, {{A, B, C, X(262), X(3851)}}, {{A, B, C, X(376), X(1141)}}, {{A, B, C, X(378), X(2383)}}, {{A, B, C, X(381), X(54643)}}, {{A, B, C, X(382), X(14458)}}, {{A, B, C, X(427), X(2374)}}, {{A, B, C, X(428), X(40413)}}, {{A, B, C, X(523), X(30745)}}, {{A, B, C, X(546), X(14492)}}, {{A, B, C, X(671), X(33229)}}, {{A, B, C, X(827), X(11634)}}, {{A, B, C, X(842), X(18859)}}, {{A, B, C, X(1368), X(57852)}}, {{A, B, C, X(1487), X(61886)}}, {{A, B, C, X(1594), X(41599)}}, {{A, B, C, X(1656), X(11669)}}, {{A, B, C, X(1657), X(60323)}}, {{A, B, C, X(1799), X(10691)}}, {{A, B, C, X(1916), X(14045)}}, {{A, B, C, X(2373), X(52397)}}, {{A, B, C, X(2770), X(5189)}}, {{A, B, C, X(3091), X(54521)}}, {{A, B, C, X(3146), X(15619)}}, {{A, B, C, X(3407), X(14034)}}, {{A, B, C, X(3424), X(49135)}}, {{A, B, C, X(3432), X(17928)}}, {{A, B, C, X(3459), X(3525)}}, {{A, B, C, X(3520), X(3563)}}, {{A, B, C, X(3522), X(60336)}}, {{A, B, C, X(3523), X(60102)}}, {{A, B, C, X(3528), X(60185)}}, {{A, B, C, X(3529), X(60150)}}, {{A, B, C, X(3530), X(54644)}}, {{A, B, C, X(3544), X(54523)}}, {{A, B, C, X(3627), X(54852)}}, {{A, B, C, X(3839), X(38305)}}, {{A, B, C, X(3855), X(60127)}}, {{A, B, C, X(4221), X(26707)}}, {{A, B, C, X(4226), X(53957)}}, {{A, B, C, X(4229), X(26708)}}, {{A, B, C, X(4236), X(26711)}}, {{A, B, C, X(4237), X(26710)}}, {{A, B, C, X(5056), X(60333)}}, {{A, B, C, X(5068), X(60331)}}, {{A, B, C, X(5079), X(54645)}}, {{A, B, C, X(6240), X(40120)}}, {{A, B, C, X(6656), X(10302)}}, {{A, B, C, X(7462), X(26709)}}, {{A, B, C, X(7464), X(14979)}}, {{A, B, C, X(7468), X(16166)}}, {{A, B, C, X(7485), X(8770)}}, {{A, B, C, X(7495), X(9084)}}, {{A, B, C, X(7607), X(15720)}}, {{A, B, C, X(7608), X(35018)}}, {{A, B, C, X(7612), X(10299)}}, {{A, B, C, X(7770), X(60239)}}, {{A, B, C, X(7841), X(60228)}}, {{A, B, C, X(7901), X(60231)}}, {{A, B, C, X(8357), X(60181)}}, {{A, B, C, X(8370), X(60282)}}, {{A, B, C, X(8587), X(33276)}}, {{A, B, C, X(8791), X(52297)}}, {{A, B, C, X(10257), X(15392)}}, {{A, B, C, X(10295), X(53930)}}, {{A, B, C, X(10301), X(60125)}}, {{A, B, C, X(11172), X(33226)}}, {{A, B, C, X(11668), X(61855)}}, {{A, B, C, X(13619), X(40118)}}, {{A, B, C, X(13854), X(38282)}}, {{A, B, C, X(14042), X(54539)}}, {{A, B, C, X(14062), X(54540)}}, {{A, B, C, X(14269), X(54582)}}, {{A, B, C, X(14494), X(61921)}}, {{A, B, C, X(15681), X(54851)}}, {{A, B, C, X(15687), X(54477)}}, {{A, B, C, X(16042), X(34572)}}, {{A, B, C, X(16045), X(60646)}}, {{A, B, C, X(16277), X(37900)}}, {{A, B, C, X(16419), X(21448)}}, {{A, B, C, X(18401), X(21312)}}, {{A, B, C, X(19307), X(54000)}}, {{A, B, C, X(19687), X(54906)}}, {{A, B, C, X(21284), X(40119)}}, {{A, B, C, X(32956), X(60643)}}, {{A, B, C, X(32971), X(54639)}}, {{A, B, C, X(32974), X(60200)}}, {{A, B, C, X(32979), X(60650)}}, {{A, B, C, X(32982), X(60625)}}, {{A, B, C, X(33190), X(60637)}}, {{A, B, C, X(33232), X(60143)}}, {{A, B, C, X(33234), X(60218)}}, {{A, B, C, X(33256), X(43535)}}, {{A, B, C, X(33643), X(35921)}}, {{A, B, C, X(35502), X(40801)}}, {{A, B, C, X(38071), X(54734)}}, {{A, B, C, X(39431), X(44239)}}, {{A, B, C, X(40102), X(46336)}}, {{A, B, C, X(43537), X(62067)}}, {{A, B, C, X(43657), X(44832)}}, {{A, B, C, X(44061), X(57599)}}, {{A, B, C, X(46590), X(58975)}}, {{A, B, C, X(47586), X(62149)}}, {{A, B, C, X(47847), X(52298)}}, {{A, B, C, X(49139), X(53100)}}, {{A, B, C, X(50688), X(54519)}}, {{A, B, C, X(52299), X(55023)}}, {{A, B, C, X(53103), X(61836)}}, {{A, B, C, X(54520), X(61982)}}, {{A, B, C, X(54612), X(62042)}}, {{A, B, C, X(54707), X(61967)}}, {{A, B, C, X(54813), X(61997)}}, {{A, B, C, X(54891), X(62036)}}, {{A, B, C, X(54934), X(62044)}}, {{A, B, C, X(60132), X(62013)}}, {{A, B, C, X(60334), X(61784)}}, {{A, B, C, X(60335), X(62074)}}
X(62978) = barycentric product X(i)*X(j) for these (i, j): {264, 35007}, {3629, 4}, {32478, 648}, {40393, 41599}
X(62978) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25, 428}, {2, 428, 427}, {51, 10192, 61690}, {428, 468, 2}, {1974, 41584, 46444}, {8780, 21970, 6515}, {26958, 41424, 31383}, {44082, 61645, 1503}


X(62979) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60185), X(3), X(4))

Barycentrics    (7*a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62979) lies on these lines: {2, 3}, {51, 35260}, {69, 44091}, {98, 54710}, {107, 43662}, {154, 14912}, {193, 8780}, {275, 54523}, {393, 36611}, {459, 60150}, {551, 7713}, {597, 7716}, {907, 2374}, {1184, 8744}, {1249, 5306}, {1285, 10986}, {1474, 37654}, {1495, 11433}, {1611, 46453}, {1829, 38314}, {1843, 58470}, {1890, 38025}, {1974, 1992}, {2052, 60185}, {2356, 42043}, {3241, 11363}, {3563, 59038}, {3679, 7718}, {5032, 19118}, {5140, 26613}, {5186, 52695}, {5412, 19053}, {5413, 19054}, {5651, 33522}, {6173, 7717}, {6403, 21849}, {7612, 54867}, {7735, 33630}, {7736, 10985}, {7754, 18287}, {9064, 45138}, {9143, 18947}, {9300, 40065}, {10056, 54428}, {10155, 60120}, {10192, 14853}, {10385, 52427}, {10641, 37641}, {10642, 37640}, {11160, 41584}, {11206, 18950}, {11427, 34417}, {11477, 59699}, {12132, 41135}, {12141, 59379}, {12142, 59378}, {13567, 39874}, {13886, 18289}, {13939, 18290}, {14458, 38253}, {14492, 60137}, {14494, 54531}, {14826, 32269}, {15073, 58483}, {15448, 17810}, {15534, 41585}, {16080, 54612}, {16621, 58378}, {18935, 20987}, {19128, 32267}, {19875, 49542}, {20423, 61681}, {23292, 31860}, {26276, 40123}, {31383, 37643}, {32002, 34803}, {32064, 61645}, {32833, 40413}, {35264, 41628}, {39284, 53103}, {40976, 42042}, {43530, 54707}, {51212, 59543}, {51336, 61305}, {53023, 58434}, {54616, 60141}, {54637, 60124}, {56346, 60127}, {59375, 60879}, {60125, 60143}

X(62979) = inverse of X(47629) in polar circle
X(62979) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 43681}, {656, 58093}
X(62979) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 43681}, {40596, 58093}
X(62979) = X(i)-cross conjugate of X(j) for these {i, j}: {22331, 51170}
X(62979) = pole of line {523, 47629} with respect to the polar circle
X(62979) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(36611)}}, {{A, B, C, X(3), X(22331)}}, {{A, B, C, X(5), X(54523)}}, {{A, B, C, X(20), X(60150)}}, {{A, B, C, X(30), X(54612)}}, {{A, B, C, X(98), X(3522)}}, {{A, B, C, X(111), X(7485)}}, {{A, B, C, X(140), X(53103)}}, {{A, B, C, X(262), X(5068)}}, {{A, B, C, X(297), X(54710)}}, {{A, B, C, X(376), X(45138)}}, {{A, B, C, X(381), X(54707)}}, {{A, B, C, X(393), X(38282)}}, {{A, B, C, X(427), X(55023)}}, {{A, B, C, X(477), X(47337)}}, {{A, B, C, X(523), X(47629)}}, {{A, B, C, X(550), X(60322)}}, {{A, B, C, X(598), X(32979)}}, {{A, B, C, X(671), X(32982)}}, {{A, B, C, X(842), X(37944)}}, {{A, B, C, X(907), X(11634)}}, {{A, B, C, X(1138), X(47090)}}, {{A, B, C, X(1300), X(60765)}}, {{A, B, C, X(1593), X(3563)}}, {{A, B, C, X(1656), X(10155)}}, {{A, B, C, X(1916), X(33290)}}, {{A, B, C, X(2374), X(6995)}}, {{A, B, C, X(2770), X(37900)}}, {{A, B, C, X(3091), X(60127)}}, {{A, B, C, X(3146), X(14458)}}, {{A, B, C, X(3407), X(14031)}}, {{A, B, C, X(3424), X(5059)}}, {{A, B, C, X(3523), X(7612)}}, {{A, B, C, X(3528), X(59278)}}, {{A, B, C, X(3832), X(14492)}}, {{A, B, C, X(3854), X(14484)}}, {{A, B, C, X(4226), X(59038)}}, {{A, B, C, X(5056), X(14494)}}, {{A, B, C, X(5067), X(36612)}}, {{A, B, C, X(5071), X(6344)}}, {{A, B, C, X(5189), X(40178)}}, {{A, B, C, X(5485), X(32974)}}, {{A, B, C, X(6656), X(60143)}}, {{A, B, C, X(6677), X(34288)}}, {{A, B, C, X(7383), X(54500)}}, {{A, B, C, X(7400), X(54498)}}, {{A, B, C, X(7406), X(54587)}}, {{A, B, C, X(7607), X(61834)}}, {{A, B, C, X(7714), X(40413)}}, {{A, B, C, X(7770), X(54616)}}, {{A, B, C, X(7841), X(54637)}}, {{A, B, C, X(8370), X(60284)}}, {{A, B, C, X(8770), X(16419)}}, {{A, B, C, X(11172), X(32965)}}, {{A, B, C, X(11331), X(38253)}}, {{A, B, C, X(11403), X(40801)}}, {{A, B, C, X(13854), X(52297)}}, {{A, B, C, X(14068), X(54539)}}, {{A, B, C, X(15022), X(60192)}}, {{A, B, C, X(15683), X(54608)}}, {{A, B, C, X(15717), X(60175)}}, {{A, B, C, X(16045), X(60616)}}, {{A, B, C, X(17578), X(54519)}}, {{A, B, C, X(18842), X(32971)}}, {{A, B, C, X(32956), X(60629)}}, {{A, B, C, X(32961), X(60240)}}, {{A, B, C, X(32962), X(60268)}}, {{A, B, C, X(32980), X(60095)}}, {{A, B, C, X(32981), X(54906)}}, {{A, B, C, X(32991), X(54905)}}, {{A, B, C, X(32995), X(54487)}}, {{A, B, C, X(32996), X(54540)}}, {{A, B, C, X(32997), X(43535)}}, {{A, B, C, X(33021), X(60212)}}, {{A, B, C, X(33023), X(60218)}}, {{A, B, C, X(33025), X(60181)}}, {{A, B, C, X(33190), X(60627)}}, {{A, B, C, X(33200), X(60180)}}, {{A, B, C, X(33229), X(60631)}}, {{A, B, C, X(33283), X(40824)}}, {{A, B, C, X(34208), X(52299)}}, {{A, B, C, X(34621), X(54942)}}, {{A, B, C, X(37174), X(54867)}}, {{A, B, C, X(37931), X(40118)}}, {{A, B, C, X(37977), X(40119)}}, {{A, B, C, X(41895), X(54097)}}, {{A, B, C, X(43537), X(61791)}}, {{A, B, C, X(46935), X(53098)}}, {{A, B, C, X(47586), X(62124)}}, {{A, B, C, X(49135), X(54845)}}, {{A, B, C, X(50687), X(54477)}}, {{A, B, C, X(50689), X(54520)}}, {{A, B, C, X(50690), X(60147)}}, {{A, B, C, X(50691), X(60325)}}, {{A, B, C, X(50693), X(54866)}}, {{A, B, C, X(52289), X(60137)}}, {{A, B, C, X(52301), X(60125)}}, {{A, B, C, X(53100), X(62149)}}, {{A, B, C, X(54582), X(61985)}}, {{A, B, C, X(54643), X(61954)}}, {{A, B, C, X(54644), X(61820)}}, {{A, B, C, X(54645), X(61914)}}, {{A, B, C, X(54734), X(61944)}}, {{A, B, C, X(54851), X(62120)}}, {{A, B, C, X(60123), X(61856)}}, {{A, B, C, X(60336), X(62060)}}, {{A, B, C, X(60337), X(62067)}}
X(62979) = barycentric product X(i)*X(j) for these (i, j): {4, 51170}, {22331, 264}
X(62979) = barycentric quotient X(i)/X(j) for these (i, j): {4, 43681}, {112, 58093}, {22331, 3}, {51170, 69}
X(62979) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44082, 61506, 11206}


X(62980) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60192), X(3), X(4))

Barycentrics    (a^2-4*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62980) lies on these lines: {2, 3}, {51, 61735}, {125, 9777}, {262, 51877}, {275, 60175}, {305, 52787}, {394, 43150}, {459, 54521}, {551, 5090}, {599, 12167}, {1184, 15820}, {1351, 23293}, {1398, 11237}, {1829, 19875}, {1843, 21358}, {1853, 11402}, {1862, 59377}, {1899, 12007}, {1902, 38021}, {1993, 7703}, {2052, 60192}, {2979, 41578}, {3167, 61700}, {3172, 7753}, {3527, 26917}, {3574, 40686}, {3679, 11396}, {3763, 46026}, {3867, 20582}, {4995, 11393}, {5186, 9166}, {5298, 11392}, {5410, 13846}, {5411, 13847}, {6032, 8792}, {7071, 11238}, {7713, 19876}, {8280, 35815}, {8281, 35814}, {8541, 15533}, {8739, 49906}, {8740, 49905}, {9140, 19504}, {9544, 48662}, {10302, 60141}, {10982, 32767}, {11405, 15534}, {11408, 16644}, {11409, 16645}, {11432, 23294}, {11550, 26864}, {11669, 39284}, {12131, 23234}, {12132, 41134}, {12135, 38314}, {12294, 38072}, {13561, 37493}, {13622, 34777}, {13668, 49786}, {13788, 49787}, {14378, 39951}, {16080, 54643}, {18362, 33843}, {19118, 47352}, {19124, 47353}, {19883, 49542}, {23332, 26869}, {31173, 58309}, {32064, 61690}, {38066, 41722}, {39588, 50955}, {41585, 51143}, {43530, 54608}, {53023, 61645}, {53104, 60120}, {54531, 60102}, {54710, 60331}, {54866, 56346}, {54867, 60333}, {60124, 60282}, {60125, 60239}, {60879, 61023}

X(62980) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 53102}
X(62980) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 53102}
X(62980) = pole of line {185, 9973} with respect to the Jerabek hyperbola
X(62980) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(53096)}}, {{A, B, C, X(5), X(60175)}}, {{A, B, C, X(6), X(37913)}}, {{A, B, C, X(20), X(54521)}}, {{A, B, C, X(30), X(54643)}}, {{A, B, C, X(98), X(3851)}}, {{A, B, C, X(140), X(11669)}}, {{A, B, C, X(262), X(550)}}, {{A, B, C, X(381), X(54608)}}, {{A, B, C, X(382), X(14492)}}, {{A, B, C, X(546), X(14458)}}, {{A, B, C, X(598), X(33229)}}, {{A, B, C, X(1656), X(53104)}}, {{A, B, C, X(1916), X(14034)}}, {{A, B, C, X(3091), X(54866)}}, {{A, B, C, X(3407), X(14045)}}, {{A, B, C, X(3522), X(60331)}}, {{A, B, C, X(3523), X(60333)}}, {{A, B, C, X(3528), X(54523)}}, {{A, B, C, X(3529), X(60127)}}, {{A, B, C, X(3530), X(54645)}}, {{A, B, C, X(3533), X(17711)}}, {{A, B, C, X(3544), X(60185)}}, {{A, B, C, X(3843), X(54852)}}, {{A, B, C, X(3855), X(60150)}}, {{A, B, C, X(5056), X(38433)}}, {{A, B, C, X(5068), X(60336)}}, {{A, B, C, X(5079), X(54644)}}, {{A, B, C, X(5900), X(15702)}}, {{A, B, C, X(6636), X(39951)}}, {{A, B, C, X(6656), X(60239)}}, {{A, B, C, X(7378), X(8791)}}, {{A, B, C, X(7408), X(13854)}}, {{A, B, C, X(7607), X(35018)}}, {{A, B, C, X(7608), X(15720)}}, {{A, B, C, X(7612), X(61921)}}, {{A, B, C, X(7770), X(10302)}}, {{A, B, C, X(7841), X(60282)}}, {{A, B, C, X(7892), X(60231)}}, {{A, B, C, X(8357), X(54773)}}, {{A, B, C, X(8362), X(14378)}}, {{A, B, C, X(8370), X(60228)}}, {{A, B, C, X(10155), X(61836)}}, {{A, B, C, X(10299), X(14494)}}, {{A, B, C, X(10301), X(60141)}}, {{A, B, C, X(10484), X(33276)}}, {{A, B, C, X(14002), X(36616)}}, {{A, B, C, X(14042), X(54540)}}, {{A, B, C, X(14062), X(54539)}}, {{A, B, C, X(14269), X(54477)}}, {{A, B, C, X(14484), X(49135)}}, {{A, B, C, X(14488), X(62013)}}, {{A, B, C, X(15681), X(54734)}}, {{A, B, C, X(15687), X(54582)}}, {{A, B, C, X(16045), X(60643)}}, {{A, B, C, X(19687), X(60095)}}, {{A, B, C, X(32956), X(60646)}}, {{A, B, C, X(32971), X(60200)}}, {{A, B, C, X(32974), X(54639)}}, {{A, B, C, X(32979), X(60625)}}, {{A, B, C, X(32982), X(60650)}}, {{A, B, C, X(33226), X(60268)}}, {{A, B, C, X(33232), X(54616)}}, {{A, B, C, X(33234), X(54905)}}, {{A, B, C, X(33256), X(54487)}}, {{A, B, C, X(34483), X(47525)}}, {{A, B, C, X(37353), X(45096)}}, {{A, B, C, X(38071), X(54851)}}, {{A, B, C, X(40801), X(44879)}}, {{A, B, C, X(43834), X(59351)}}, {{A, B, C, X(49139), X(60142)}}, {{A, B, C, X(50688), X(54520)}}, {{A, B, C, X(53099), X(62067)}}, {{A, B, C, X(53108), X(61855)}}, {{A, B, C, X(54519), X(61982)}}, {{A, B, C, X(54522), X(62097)}}, {{A, B, C, X(54612), X(61967)}}, {{A, B, C, X(54707), X(62042)}}, {{A, B, C, X(54717), X(62004)}}, {{A, B, C, X(54813), X(62000)}}, {{A, B, C, X(54891), X(61970)}}, {{A, B, C, X(54920), X(62074)}}, {{A, B, C, X(60118), X(62149)}}, {{A, B, C, X(60332), X(61784)}}
X(62980) = barycentric product X(i)*X(j) for these (i, j): {264, 53096}
X(62980) = barycentric quotient X(i)/X(j) for these (i, j): {4, 53102}, {53096, 3}
X(62980) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1853, 61743, 11402}


X(62981) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(60334), X(3), X(4))

Barycentrics    (7*a^2-2*(b^2+c^2))*(a^2+b^2-c^2)*(a^2-b^2+c^2) : :

X(62981) lies on these lines: {2, 3}, {107, 43656}, {110, 21970}, {125, 41424}, {275, 60332}, {1495, 26869}, {1974, 40341}, {2052, 60334}, {2374, 11636}, {3053, 10418}, {3066, 25555}, {3172, 47187}, {3629, 15471}, {3632, 11363}, {3636, 11396}, {5095, 5648}, {5640, 15074}, {5642, 11477}, {6090, 32269}, {6103, 59229}, {6329, 12167}, {7665, 7754}, {7699, 41448}, {7755, 62702}, {7776, 26276}, {8550, 15448}, {8585, 44535}, {9064, 13530}, {9777, 10192}, {10990, 37487}, {11008, 41584}, {11216, 47458}, {14488, 60138}, {15066, 40912}, {15069, 32225}, {16080, 53100}, {16534, 32227}, {18553, 37638}, {19504, 25556}, {20583, 41585}, {21969, 59551}, {26958, 44082}, {31860, 61743}, {32223, 34507}, {33885, 39576}, {34336, 54412}, {34397, 44490}, {34417, 61680}, {35264, 41724}, {35265, 39899}, {36990, 61691}, {37775, 42989}, {37776, 42988}, {40112, 55724}, {40119, 53950}, {43530, 60142}, {43676, 60124}, {53944, 53954}, {56270, 60337}, {60125, 60642}, {60193, 60330}

X(62981) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 60228}, {63, 40103}, {656, 33638}
X(62981) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 60228}, {3162, 40103}, {40596, 33638}, {51589, 69}
X(62981) = pole of line {523, 41133} with respect to the polar circle
X(62981) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(15534)}}, {{A, B, C, X(3), X(43656)}}, {{A, B, C, X(5), X(60332)}}, {{A, B, C, X(6), X(16042)}}, {{A, B, C, X(30), X(53100)}}, {{A, B, C, X(98), X(3534)}}, {{A, B, C, X(111), X(7492)}}, {{A, B, C, X(262), X(5066)}}, {{A, B, C, X(376), X(13530)}}, {{A, B, C, X(381), X(60142)}}, {{A, B, C, X(549), X(7607)}}, {{A, B, C, X(842), X(37950)}}, {{A, B, C, X(2374), X(5094)}}, {{A, B, C, X(2770), X(10989)}}, {{A, B, C, X(3424), X(15640)}}, {{A, B, C, X(3526), X(10185)}}, {{A, B, C, X(3545), X(60330)}}, {{A, B, C, X(3563), X(35473)}}, {{A, B, C, X(3628), X(60144)}}, {{A, B, C, X(3830), X(60132)}}, {{A, B, C, X(3845), X(14488)}}, {{A, B, C, X(5055), X(7608)}}, {{A, B, C, X(6236), X(57599)}}, {{A, B, C, X(6656), X(60642)}}, {{A, B, C, X(7464), X(53954)}}, {{A, B, C, X(7472), X(53950)}}, {{A, B, C, X(7612), X(15698)}}, {{A, B, C, X(7841), X(43676)}}, {{A, B, C, X(8352), X(53105)}}, {{A, B, C, X(8370), X(53102)}}, {{A, B, C, X(8703), X(60335)}}, {{A, B, C, X(8770), X(15246)}}, {{A, B, C, X(8791), X(52290)}}, {{A, B, C, X(9084), X(47596)}}, {{A, B, C, X(10155), X(61904)}}, {{A, B, C, X(10303), X(53859)}}, {{A, B, C, X(10304), X(43537)}}, {{A, B, C, X(11001), X(60322)}}, {{A, B, C, X(11317), X(53109)}}, {{A, B, C, X(11540), X(11668)}}, {{A, B, C, X(11634), X(11636)}}, {{A, B, C, X(11669), X(61898)}}, {{A, B, C, X(13596), X(40801)}}, {{A, B, C, X(14036), X(43528)}}, {{A, B, C, X(14046), X(43529)}}, {{A, B, C, X(14458), X(33699)}}, {{A, B, C, X(14484), X(61966)}}, {{A, B, C, X(14492), X(61974)}}, {{A, B, C, X(14494), X(61926)}}, {{A, B, C, X(15682), X(54845)}}, {{A, B, C, X(15683), X(47586)}}, {{A, B, C, X(15684), X(54857)}}, {{A, B, C, X(15709), X(60123)}}, {{A, B, C, X(15759), X(60175)}}, {{A, B, C, X(17983), X(52292)}}, {{A, B, C, X(19307), X(53098)}}, {{A, B, C, X(19709), X(54920)}}, {{A, B, C, X(21448), X(40916)}}, {{A, B, C, X(23046), X(60329)}}, {{A, B, C, X(35480), X(40120)}}, {{A, B, C, X(37969), X(40119)}}, {{A, B, C, X(40118), X(56369)}}, {{A, B, C, X(41099), X(52519)}}, {{A, B, C, X(53099), X(61936)}}, {{A, B, C, X(53103), X(61833)}}, {{A, B, C, X(53104), X(61843)}}, {{A, B, C, X(53108), X(61891)}}, {{A, B, C, X(54644), X(61797)}}, {{A, B, C, X(54645), X(61918)}}, {{A, B, C, X(54717), X(61993)}}, {{A, B, C, X(54890), X(61986)}}, {{A, B, C, X(54921), X(62054)}}, {{A, B, C, X(54934), X(62040)}}, {{A, B, C, X(60102), X(61805)}}, {{A, B, C, X(60118), X(61954)}}, {{A, B, C, X(60147), X(62018)}}, {{A, B, C, X(60150), X(62165)}}, {{A, B, C, X(60185), X(62090)}}, {{A, B, C, X(60192), X(61929)}}, {{A, B, C, X(60323), X(62157)}}, {{A, B, C, X(60324), X(62032)}}, {{A, B, C, X(60326), X(62010)}}, {{A, B, C, X(60328), X(61972)}}, {{A, B, C, X(60336), X(62099)}}
X(62981) = barycentric product X(i)*X(j) for these (i, j): {15534, 4}
X(62981) = barycentric quotient X(i)/X(j) for these (i, j): {4, 60228}, {25, 40103}, {112, 33638}, {15534, 69}
X(62981) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15448, 61506, 26864}


X(62982) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(63121), X(3), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6+2*(b^2-c^2)^2*(b^2+c^2)-a^2*(3*b^4+b^2*c^2+3*c^4)) : :
X(62982) = X[1614]+2*X[11572], 2*X[18402]+X[61441], -X[41482]+4*X[44516], 2*X[43394]+X[52863]

X(62982) lies on these lines: {2, 3}, {33, 38458}, {51, 10628}, {54, 18383}, {93, 14860}, {110, 15432}, {112, 14537}, {143, 12300}, {184, 7699}, {264, 48913}, {265, 1994}, {275, 1141}, {324, 6344}, {539, 56292}, {567, 52417}, {578, 18394}, {827, 32581}, {1235, 7809}, {1487, 36809}, {1568, 41171}, {1614, 11572}, {1843, 25561}, {2383, 53693}, {3459, 61110}, {3574, 52675}, {3656, 31948}, {3818, 22151}, {5475, 8744}, {5523, 9300}, {5562, 6242}, {5627, 58704}, {5655, 44795}, {5890, 23325}, {6152, 11591}, {6403, 11178}, {6748, 61656}, {7604, 19169}, {7706, 26913}, {7722, 9140}, {7837, 56016}, {8739, 41122}, {8740, 41121}, {9221, 39284}, {10169, 14912}, {10311, 18362}, {10632, 37832}, {10633, 37835}, {10985, 39601}, {11381, 43846}, {11550, 12112}, {11576, 14128}, {12022, 23324}, {12132, 61575}, {12233, 43808}, {12254, 41362}, {13352, 18392}, {13482, 15463}, {13567, 15081}, {13851, 15033}, {14492, 46105}, {15032, 18388}, {15358, 60693}, {15462, 48889}, {16080, 54809}, {16226, 43836}, {16337, 58886}, {18350, 22804}, {18376, 61743}, {18379, 37472}, {18402, 61441}, {18429, 44529}, {20191, 46027}, {22948, 32137}, {30522, 61711}, {33638, 53963}, {37892, 54899}, {39494, 39606}, {39588, 47353}, {39593, 53026}, {41107, 56515}, {41108, 56514}, {41482, 44516}, {43394, 52863}, {52000, 58470}, {54943, 56346}, {54969, 60120}

X(62982) = inverse of X(18559) in orthocentroidal circle
X(62982) = inverse of X(18559) in Yff hyperbola
X(62982) = pole of line {523, 18559} with respect to the orthocentroidal circle
X(62982) = pole of line {523, 52738} with respect to the polar circle
X(62982) = pole of line {6, 18559} with respect to the Kiepert hyperbola
X(62982) = pole of line {3, 15091} with respect to the Stammler hyperbola
X(62982) = pole of line {523, 18559} with respect to the Yff hyperbola
X(62982) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(11058)}}, {{A, B, C, X(5), X(18316)}}, {{A, B, C, X(23), X(14492)}}, {{A, B, C, X(26), X(54912)}}, {{A, B, C, X(30), X(38305)}}, {{A, B, C, X(140), X(9221)}}, {{A, B, C, X(262), X(52300)}}, {{A, B, C, X(264), X(18559)}}, {{A, B, C, X(381), X(1141)}}, {{A, B, C, X(384), X(54899)}}, {{A, B, C, X(546), X(15619)}}, {{A, B, C, X(1173), X(12107)}}, {{A, B, C, X(1487), X(3851)}}, {{A, B, C, X(1656), X(54969)}}, {{A, B, C, X(1657), X(13489)}}, {{A, B, C, X(1658), X(15620)}}, {{A, B, C, X(2070), X(5627)}}, {{A, B, C, X(2383), X(47485)}}, {{A, B, C, X(3091), X(3459)}}, {{A, B, C, X(3518), X(14860)}}, {{A, B, C, X(3613), X(46029)}}, {{A, B, C, X(5169), X(14458)}}, {{A, B, C, X(5189), X(53955)}}, {{A, B, C, X(5576), X(54486)}}, {{A, B, C, X(5966), X(14002)}}, {{A, B, C, X(6325), X(7495)}}, {{A, B, C, X(6344), X(7576)}}, {{A, B, C, X(6636), X(14388)}}, {{A, B, C, X(6756), X(15424)}}, {{A, B, C, X(7493), X(60127)}}, {{A, B, C, X(7519), X(54520)}}, {{A, B, C, X(7527), X(60119)}}, {{A, B, C, X(7552), X(54827)}}, {{A, B, C, X(7565), X(54879)}}, {{A, B, C, X(7575), X(14979)}}, {{A, B, C, X(8370), X(54483)}}, {{A, B, C, X(8801), X(35481)}}, {{A, B, C, X(10296), X(53959)}}, {{A, B, C, X(10298), X(18401)}}, {{A, B, C, X(14118), X(60121)}}, {{A, B, C, X(14483), X(37936)}}, {{A, B, C, X(15392), X(18403)}}, {{A, B, C, X(16063), X(34213)}}, {{A, B, C, X(18550), X(18561)}}, {{A, B, C, X(37907), X(53935)}}, {{A, B, C, X(46105), X(52289)}}, {{A, B, C, X(61133), X(61750)}}
X(62982) = barycentric product X(i)*X(j) for these (i, j): {264, 41335}
X(62982) = barycentric quotient X(i)/X(j) for these (i, j): {41335, 3}
X(62982) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {18388, 25739, 15032}


X(62983) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(302), X(3), X(6))

Barycentrics    -3*a^2+b^2+c^2+2*sqrt(3)*S : :

X(62983) lies on these lines: {2, 6}, {3, 22114}, {4, 5615}, {14, 148}, {16, 621}, {18, 624}, {62, 623}, {99, 5471}, {192, 37794}, {194, 627}, {376, 47611}, {381, 52647}, {383, 18440}, {398, 7783}, {470, 27377}, {471, 9308}, {472, 56022}, {473, 11409}, {530, 16809}, {531, 10646}, {532, 37835}, {533, 16242}, {576, 59397}, {618, 46708}, {619, 41944}, {620, 11129}, {622, 18581}, {633, 7793}, {635, 3411}, {1080, 21850}, {1351, 37463}, {1352, 59398}, {2996, 22237}, {3090, 22113}, {3146, 41038}, {3164, 19772}, {3364, 33393}, {3365, 33395}, {3412, 33404}, {3564, 37464}, {3642, 16963}, {3643, 16268}, {3793, 37341}, {3879, 5242}, {4363, 46176}, {5097, 59403}, {5617, 19130}, {5872, 52689}, {5980, 6782}, {6582, 6777}, {6655, 53440}, {6773, 46264}, {7665, 37775}, {7753, 40707}, {7754, 11290}, {7762, 11289}, {7813, 11133}, {7823, 22238}, {8588, 9886}, {8591, 33377}, {8595, 42035}, {9736, 36993}, {10617, 33259}, {10645, 13084}, {10754, 51010}, {11078, 51270}, {11086, 16771}, {11092, 59210}, {11122, 37171}, {11126, 17035}, {11128, 17131}, {11143, 11421}, {11295, 42816}, {11297, 22253}, {11299, 31859}, {11300, 42913}, {11303, 11486}, {11304, 11543}, {11306, 42818}, {12154, 52695}, {16530, 22687}, {16808, 51482}, {16940, 23018}, {16964, 33464}, {16967, 34509}, {17316, 30414}, {17362, 46175}, {17402, 19778}, {19569, 42510}, {22489, 43030}, {22491, 42086}, {22492, 42111}, {22493, 45880}, {22495, 42915}, {22598, 42232}, {22627, 42231}, {22844, 33412}, {22901, 22911}, {31296, 57122}, {34507, 59404}, {34604, 41406}, {34755, 50855}, {35931, 42117}, {35932, 42115}, {36368, 36967}, {36769, 42894}, {37147, 56018}, {37351, 42497}, {37352, 42634}, {40714, 48628}, {42085, 51483}, {42121, 52193}, {42152, 46710}, {42911, 51486}, {43133, 52401}, {43134, 52402}, {43200, 50860}, {44460, 52997}, {44718, 62690}, {49807, 49946}, {49855, 49901}

X(62983) = isotomic conjugate of X(54116)
X(62983) = complement of X(40901)
X(62983) = anticomplement of X(303)
X(62983) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54116}, {303, 303}
X(62983) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18, 2}
X(62983) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {18, 6327}, {31, 628}, {8742, 21270}, {16807, 7192}, {21462, 8}, {32037, 17217}, {32586, 4329}, {34390, 21275}, {55201, 21294}, {55222, 21305}, {58870, 21221}
X(62983) = pole of line {14824, 30216} with respect to the 2nd Brocard circle
X(62983) = pole of line {669, 30216} with respect to the circumcircle
X(62983) = pole of line {6, 10639} with respect to the Stammler hyperbola
X(62983) = pole of line {523, 14447} with respect to the Steiner circumellipse
X(62983) = pole of line {2, 53452} with respect to the Wallace hyperbola
X(62983) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(33259)}}, {{A, B, C, X(69), X(54115)}}, {{A, B, C, X(76), X(34541)}}, {{A, B, C, X(193), X(22237)}}, {{A, B, C, X(299), X(11121)}}, {{A, B, C, X(303), X(41897)}}, {{A, B, C, X(396), X(40416)}}, {{A, B, C, X(2165), X(62197)}}, {{A, B, C, X(34540), X(60222)}}, {{A, B, C, X(46952), X(61332)}}
X(62983) = barycentric product X(i)*X(j) for these (i, j): {18, 62601}, {10617, 40707}, {33259, 54115}
X(62983) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54116}, {10617, 396}, {62601, 303}
X(62983) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3181, 3180}, {6, 9761, 302}, {16, 34508, 621}, {18, 46711, 54116}, {298, 395, 2}, {616, 51487, 14}, {11543, 52194, 11304}, {13084, 22496, 51484}, {33350, 33353, 634}


X(62984) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(303), X(3), X(6))

Barycentrics    3*a^2-b^2-c^2+2*sqrt(3)*S : :

X(62984) lies on these lines: {2, 6}, {3, 22113}, {4, 5611}, {13, 148}, {15, 622}, {17, 623}, {61, 624}, {99, 5472}, {192, 37795}, {194, 628}, {376, 47610}, {381, 52648}, {383, 21850}, {397, 7783}, {470, 9308}, {471, 27377}, {472, 11408}, {473, 56022}, {530, 10645}, {531, 16808}, {532, 16241}, {533, 37832}, {576, 59398}, {618, 41943}, {619, 46709}, {620, 11128}, {621, 18582}, {634, 7793}, {636, 3412}, {1080, 18440}, {1351, 37464}, {1352, 59397}, {2996, 22235}, {3090, 22114}, {3146, 41039}, {3164, 19773}, {3389, 33394}, {3390, 33392}, {3411, 33405}, {3564, 37463}, {3642, 16267}, {3643, 16962}, {3793, 37340}, {3879, 5243}, {4363, 46175}, {5097, 59404}, {5613, 19130}, {5873, 52688}, {5981, 6783}, {6295, 6778}, {6655, 53428}, {6770, 46264}, {7665, 37776}, {7753, 40706}, {7754, 11289}, {7762, 11290}, {7813, 11132}, {7823, 22236}, {8588, 9885}, {8591, 33376}, {8594, 42036}, {9735, 36995}, {10616, 33259}, {10646, 13083}, {10754, 51013}, {11078, 59209}, {11081, 16770}, {11092, 51277}, {11121, 37170}, {11127, 17035}, {11129, 17131}, {11144, 11420}, {11296, 42815}, {11298, 22253}, {11299, 42912}, {11300, 31859}, {11303, 11542}, {11304, 11485}, {11305, 42817}, {12155, 52695}, {16529, 22689}, {16809, 51483}, {16941, 23024}, {16965, 33465}, {16966, 34508}, {17316, 30415}, {17362, 46176}, {17403, 19779}, {19569, 42511}, {22490, 43031}, {22491, 42114}, {22492, 42085}, {22494, 45879}, {22496, 42914}, {22600, 42234}, {22629, 42233}, {22845, 33413}, {22855, 22866}, {31296, 57123}, {34507, 59403}, {34604, 41407}, {34754, 50858}, {35931, 42116}, {35932, 42118}, {36366, 36968}, {37146, 56018}, {37351, 42633}, {37352, 42496}, {40713, 48628}, {42086, 51482}, {42124, 52194}, {42149, 46711}, {42895, 47867}, {42910, 51487}, {43133, 52402}, {43134, 52401}, {43199, 50859}, {44464, 52997}, {49808, 49945}, {49858, 49902}

X(62984) = isotomic conjugate of X(54115)
X(62984) = complement of X(40900)
X(62984) = anticomplement of X(302)
X(62984) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54115}, {302, 302}
X(62984) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17, 2}
X(62984) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {17, 6327}, {31, 627}, {8741, 21270}, {16806, 7192}, {21461, 8}, {32036, 17217}, {32585, 4329}, {34389, 21275}, {55199, 21294}, {55220, 21305}, {58869, 21221}
X(62984) = pole of line {14824, 30215} with respect to the 2nd Brocard circle
X(62984) = pole of line {669, 30215} with respect to the circumcircle
X(62984) = pole of line {6, 10640} with respect to the Stammler hyperbola
X(62984) = pole of line {523, 14446} with respect to the Steiner circumellipse
X(62984) = pole of line {2, 53463} with respect to the Wallace hyperbola
X(62984) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(33259)}}, {{A, B, C, X(69), X(54116)}}, {{A, B, C, X(76), X(34540)}}, {{A, B, C, X(193), X(22235)}}, {{A, B, C, X(298), X(11122)}}, {{A, B, C, X(302), X(41898)}}, {{A, B, C, X(395), X(40416)}}, {{A, B, C, X(2165), X(62198)}}, {{A, B, C, X(46952), X(61331)}}
X(62984) = barycentric product X(i)*X(j) for these (i, j): {17, 62600}, {10616, 40706}, {33259, 54116}
X(62984) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54115}, {10616, 395}, {62600, 302}
X(62984) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3180, 3181}, {6, 9763, 303}, {15, 34509, 622}, {299, 396, 2}, {617, 51486, 13}, {11542, 52193, 11303}, {13083, 22495, 51485}, {33351, 33352, 633}


X(62985) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(391), X(3), X(6))

Barycentrics    7*a^2-2*a*(b+c)-(b+c)^2 : :
X(62985) = -2*X[4902]+3*X[62403]

X(62985) lies on these lines: {2, 6}, {7, 24599}, {8, 1743}, {9, 145}, {20, 56527}, {37, 3623}, {44, 346}, {71, 19998}, {142, 32093}, {144, 239}, {192, 61006}, {200, 20978}, {344, 17386}, {374, 4430}, {452, 20019}, {518, 39567}, {519, 3161}, {527, 4373}, {572, 15717}, {573, 3522}, {579, 37267}, {672, 59295}, {1086, 33800}, {1125, 62608}, {1266, 60957}, {1449, 3622}, {1778, 17539}, {1999, 15479}, {2269, 20012}, {2270, 3218}, {2321, 31145}, {2322, 40065}, {2323, 10529}, {2324, 38460}, {2325, 20054}, {2345, 4678}, {2347, 20036}, {3008, 21296}, {3219, 20043}, {3241, 3731}, {3616, 16667}, {3617, 3686}, {3632, 59579}, {3633, 31722}, {3672, 3759}, {3692, 20015}, {3713, 23617}, {3739, 4747}, {3832, 32431}, {3875, 6172}, {3879, 18230}, {3950, 20050}, {3965, 26690}, {3986, 38314}, {4000, 17345}, {4034, 50115}, {4188, 5120}, {4189, 4254}, {4266, 17576}, {4310, 4974}, {4346, 17347}, {4361, 4454}, {4371, 17351}, {4393, 16517}, {4416, 5222}, {4460, 60983}, {4461, 17350}, {4487, 30693}, {4488, 17151}, {4644, 17348}, {4667, 30712}, {4779, 28581}, {4902, 62403}, {4916, 41313}, {4969, 16885}, {5068, 5816}, {5129, 56018}, {5227, 19993}, {5257, 46934}, {5686, 51192}, {5750, 46933}, {5819, 20059}, {5846, 10005}, {5847, 39570}, {6553, 6762}, {7229, 50095}, {7288, 38296}, {7390, 14912}, {7613, 17770}, {9312, 60941}, {9605, 37339}, {11106, 16552}, {12513, 38869}, {15492, 20049}, {15851, 25876}, {16020, 34379}, {16514, 54098}, {16572, 20007}, {16671, 17275}, {16673, 20057}, {16814, 50131}, {17014, 17121}, {17260, 29624}, {17261, 50129}, {17268, 17363}, {17296, 30833}, {17331, 26626}, {17339, 50079}, {17353, 32099}, {17362, 20052}, {17548, 36744}, {17786, 25296}, {19789, 20214}, {20037, 21061}, {20077, 56999}, {21076, 27708}, {21255, 31189}, {21734, 37499}, {25269, 40891}, {25525, 41913}, {25728, 49770}, {26003, 56013}, {27484, 49496}, {32087, 50127}, {32105, 60942}, {33066, 62208}, {36743, 37307}, {37176, 43136}, {37492, 56777}, {37508, 62063}, {37787, 53997}, {39587, 60731}, {39956, 39975}, {43983, 60939}, {44103, 52301}, {47357, 49680}, {48627, 60984}, {49495, 52653}, {50019, 55998}, {52714, 60962}, {54285, 61157}

X(62985) = reflection of X(i) in X(j) for these {i,j}: {3161, 3973}, {4373, 4402}
X(62985) = anticomplement of X(4869)
X(62985) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60092, 2}
X(62985) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60092, 6327}
X(62985) = pole of line {523, 8653} with respect to the Steiner circumellipse
X(62985) = pole of line {1125, 7613} with respect to the dual conic of Yff parabola
X(62985) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(37682)}}, {{A, B, C, X(81), X(55989)}}, {{A, B, C, X(86), X(7320)}}, {{A, B, C, X(333), X(56200)}}, {{A, B, C, X(941), X(37674)}}, {{A, B, C, X(4383), X(39975)}}, {{A, B, C, X(17375), X(38259)}}, {{A, B, C, X(18845), X(20090)}}, {{A, B, C, X(37646), X(52223)}}, {{A, B, C, X(37662), X(52224)}}, {{A, B, C, X(37677), X(60145)}}, {{A, B, C, X(37679), X(39956)}}
X(62985) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44, 5839, 346}, {144, 239, 4452}, {346, 5839, 3621}, {519, 3973, 3161}, {1449, 3707, 5296}, {1449, 5296, 3622}, {2345, 16669, 61330}, {3618, 5232, 2}, {3686, 16670, 5749}, {3686, 5749, 3617}, {3731, 4856, 3241}, {3759, 54280, 3672}, {3879, 18230, 29621}, {4969, 16885, 17314}, {4969, 62706, 20014}, {12513, 61037, 38869}, {16885, 17314, 62706}, {17121, 17257, 17014}


X(62986) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(491), X(3), X(6))

Barycentrics    3*a^2-b^2-c^2+2*S : :

X(62986) lies on these lines: {2, 6}, {3, 43133}, {4, 43134}, {8, 45427}, {20, 6462}, {23, 45429}, {76, 13707}, {99, 13640}, {145, 45714}, {148, 22630}, {192, 46421}, {194, 487}, {315, 1504}, {330, 31408}, {371, 638}, {372, 45509}, {390, 45471}, {393, 55473}, {485, 637}, {488, 7793}, {489, 3070}, {490, 1151}, {511, 45511}, {576, 45555}, {631, 45410}, {639, 8960}, {640, 6419}, {641, 35812}, {642, 6420}, {754, 62241}, {894, 56386}, {1131, 2996}, {1267, 5839}, {1351, 6813}, {1384, 35305}, {1585, 9308}, {1586, 5410}, {1588, 7785}, {2047, 56018}, {3087, 55480}, {3091, 6290}, {3146, 13749}, {3164, 26945}, {3186, 52291}, {3311, 7388}, {3312, 39388}, {3522, 12306}, {3523, 43118}, {3535, 56013}, {3553, 55457}, {3554, 55426}, {3564, 6811}, {3600, 45405}, {3617, 45445}, {3621, 49330}, {3622, 45399}, {3623, 45477}, {3663, 49620}, {3734, 61328}, {3832, 45441}, {3839, 45439}, {4371, 32797}, {4416, 5393}, {4558, 13441}, {4644, 5391}, {5062, 7763}, {5261, 45459}, {5274, 45461}, {5418, 45508}, {5491, 7921}, {5875, 36709}, {5921, 7374}, {5965, 45554}, {5984, 49310}, {6200, 32421}, {6221, 35949}, {6279, 61097}, {6351, 54280}, {6390, 35306}, {6396, 41491}, {6413, 11417}, {6417, 11314}, {6418, 11316}, {6422, 7791}, {6423, 16925}, {6459, 7823}, {6460, 7783}, {6564, 32419}, {6810, 12160}, {6812, 12164}, {6814, 13142}, {6995, 45401}, {7222, 32798}, {7389, 7583}, {7581, 11291}, {8412, 55819}, {8591, 33343}, {8596, 49312}, {8981, 39387}, {8982, 9738}, {9166, 13796}, {9541, 14712}, {9600, 33008}, {10528, 45425}, {10529, 45423}, {11315, 13903}, {11825, 48735}, {11916, 36655}, {12251, 21737}, {12313, 49087}, {12322, 31412}, {12962, 53479}, {12968, 32964}, {13428, 55886}, {13642, 50639}, {13654, 32244}, {13665, 47286}, {13766, 32451}, {13879, 42009}, {13925, 32491}, {14683, 49370}, {14907, 62206}, {14986, 45493}, {17035, 55891}, {17316, 30413}, {17363, 56385}, {18512, 22253}, {19042, 39931}, {19116, 32490}, {19569, 43257}, {20059, 60889}, {20070, 49324}, {20081, 49352}, {20084, 49340}, {20085, 49338}, {20088, 49354}, {20094, 49368}, {20095, 48704}, {22113, 42282}, {22114, 35732}, {22485, 42276}, {23311, 43879}, {26346, 36656}, {31465, 33258}, {31481, 32832}, {31859, 35948}, {32791, 62231}, {32961, 49221}, {33192, 53512}, {33351, 40693}, {33353, 40694}, {43120, 45524}, {43121, 45523}, {43981, 55573}, {44434, 49328}, {44475, 45510}, {44656, 51395}, {45488, 48773}, {49362, 62160}, {49364, 62007}

X(62986) = reflection of X(i) in X(j) for these {i,j}: {488, 49790}, {492, 590}
X(62986) = inverse of X(44392) in Steiner circumellipse
X(62986) = isotomic conjugate of X(54126)
X(62986) = anticomplement of X(492)
X(62986) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54126}, {492, 492}
X(62986) = X(i)-Ceva conjugate of X(j) for these {i, j}: {485, 2}, {637, 55883}
X(62986) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 488}, {485, 6327}, {6413, 4329}, {8577, 8}, {13455, 3436}, {34391, 21275}, {39383, 7192}, {41515, 21270}, {54031, 17217}, {58825, 21221}
X(62986) = pole of line {6, 8956} with respect to the Stammler hyperbola
X(62986) = pole of line {523, 17431} with respect to the Steiner circumellipse
X(62986) = pole of line {2, 53480} with respect to the Wallace hyperbola
X(62986) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(9228)}}, {{A, B, C, X(6), X(12968)}}, {{A, B, C, X(69), X(54127)}}, {{A, B, C, X(193), X(1131)}}, {{A, B, C, X(393), X(62201)}}, {{A, B, C, X(492), X(54126)}}, {{A, B, C, X(3068), X(9227)}}, {{A, B, C, X(14244), X(38262)}}, {{A, B, C, X(24244), X(35511)}}
X(62986) = barycentric product X(i)*X(j) for these (i, j): {12968, 76}, {32964, 54127}
X(62986) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54126}, {12968, 6}
X(62986) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1991, 491}, {485, 637, 32489}, {487, 1587, 11293}, {524, 590, 492}, {1270, 8972, 2}, {3068, 5861, 69}, {6144, 8253, 591}, {7585, 8972, 8975}, {9732, 45407, 20}, {13439, 55566, 55883}, {23249, 26289, 58804}, {45489, 49356, 4}


X(62987) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(492), X(3), X(6))

Barycentrics    3*a^2-b^2-c^2-2*S : :

X(62987) lies on these lines: {2, 6}, {3, 43134}, {4, 43133}, {8, 45426}, {20, 6463}, {23, 45428}, {76, 13827}, {99, 13760}, {145, 45713}, {148, 22601}, {192, 46422}, {194, 488}, {315, 1505}, {371, 45508}, {372, 637}, {390, 45470}, {393, 55479}, {486, 638}, {487, 7793}, {489, 1152}, {490, 3071}, {511, 45510}, {576, 45554}, {631, 45411}, {639, 6420}, {640, 58866}, {641, 6419}, {642, 35813}, {754, 62242}, {894, 56385}, {1132, 2996}, {1267, 4644}, {1351, 6811}, {1384, 35306}, {1585, 5411}, {1586, 9308}, {1587, 7785}, {3087, 55474}, {3091, 6289}, {3095, 21736}, {3146, 13748}, {3164, 26873}, {3186, 5200}, {3311, 39387}, {3312, 7389}, {3522, 12305}, {3523, 43119}, {3536, 56013}, {3553, 55427}, {3554, 55456}, {3564, 6813}, {3600, 45404}, {3617, 45444}, {3621, 49329}, {3622, 45398}, {3623, 45476}, {3663, 49621}, {3734, 61329}, {3832, 45440}, {3839, 45438}, {4371, 32798}, {4416, 5405}, {4558, 13430}, {5058, 7763}, {5261, 45458}, {5274, 45460}, {5391, 5839}, {5420, 45509}, {5490, 7921}, {5874, 36714}, {5921, 7000}, {5965, 45555}, {5984, 49309}, {6200, 41490}, {6280, 61096}, {6352, 54280}, {6390, 35305}, {6396, 32419}, {6398, 35948}, {6414, 11418}, {6417, 11315}, {6418, 11313}, {6421, 7791}, {6424, 16925}, {6459, 7783}, {6460, 7823}, {6565, 32421}, {6809, 12160}, {6812, 13142}, {6814, 12164}, {6995, 45400}, {7222, 32797}, {7388, 7584}, {7582, 11292}, {7858, 31411}, {8404, 55819}, {8591, 33342}, {8596, 49311}, {9166, 13676}, {9739, 26441}, {10528, 45424}, {10529, 45422}, {11316, 13961}, {11824, 48734}, {11917, 36656}, {12314, 49086}, {12323, 42561}, {12963, 32964}, {12969, 53480}, {13439, 55891}, {13647, 32451}, {13761, 50639}, {13774, 32244}, {13785, 47286}, {13933, 42060}, {13966, 39388}, {13993, 32490}, {14683, 49369}, {14712, 58804}, {14907, 62205}, {14986, 45492}, {17035, 55886}, {17316, 30412}, {17363, 56386}, {18510, 22253}, {19041, 39931}, {19117, 32491}, {19569, 43256}, {20059, 60888}, {20070, 49323}, {20081, 49351}, {20084, 49339}, {20085, 49337}, {20088, 49353}, {20094, 49367}, {20095, 48703}, {22113, 35732}, {22114, 42282}, {22484, 42275}, {23312, 43880}, {26336, 36655}, {31859, 35949}, {32792, 62231}, {32961, 49220}, {33192, 53515}, {33350, 40694}, {33352, 40693}, {43120, 45522}, {43121, 45525}, {43981, 55569}, {44434, 49327}, {44476, 45511}, {44657, 51401}, {45489, 48772}, {49361, 62007}, {49363, 62160}

X(62987) = reflection of X(i) in X(j) for these {i,j}: {487, 49791}, {491, 615}
X(62987) = inverse of X(44394) in Steiner circumellipse
X(62987) = isotomic conjugate of X(54127)
X(62987) = anticomplement of X(491)
X(62987) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54127}, {491, 491}
X(62987) = X(i)-Ceva conjugate of X(j) for these {i, j}: {486, 2}, {638, 55888}
X(62987) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 487}, {486, 6327}, {6414, 4329}, {8576, 8}, {34392, 21275}, {39384, 7192}, {41516, 21270}, {54030, 17217}, {58827, 21221}
X(62987) = pole of line {6, 10960} with respect to the Stammler hyperbola
X(62987) = pole of line {523, 17432} with respect to the Steiner circumellipse
X(62987) = pole of line {2, 53479} with respect to the Wallace hyperbola
X(62987) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(9228)}}, {{A, B, C, X(6), X(12963)}}, {{A, B, C, X(69), X(54126)}}, {{A, B, C, X(193), X(1132)}}, {{A, B, C, X(393), X(62202)}}, {{A, B, C, X(491), X(54127)}}, {{A, B, C, X(3069), X(9227)}}, {{A, B, C, X(14229), X(38262)}}, {{A, B, C, X(24243), X(35511)}}
X(62987) = barycentric product X(i)*X(j) for these (i, j): {12963, 76}, {32964, 54126}
X(62987) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54127}, {12963, 6}
X(62987) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 591, 492}, {372, 637, 11293}, {486, 638, 32488}, {488, 1588, 11294}, {524, 615, 491}, {1270, 7586, 2}, {3069, 5860, 69}, {6144, 8252, 1991}, {9733, 45406, 20}, {9733, 49317, 45406}, {13428, 55567, 55888}, {23259, 26288, 58803}, {45426, 49347, 8}, {45488, 49355, 4}


X(62988) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1007), X(3), X(6))

Barycentrics    a^4-3*b^4+2*b^2*c^2-3*c^4+6*a^2*(b^2+c^2) : :

X(62988) lies on these lines: {2, 6}, {3, 41400}, {4, 10983}, {5, 6392}, {20, 7785}, {32, 32829}, {39, 32816}, {51, 51426}, {76, 31404}, {83, 53033}, {114, 10754}, {148, 3839}, {192, 5274}, {194, 262}, {232, 37174}, {263, 51427}, {274, 33037}, {315, 31400}, {316, 33272}, {330, 5261}, {384, 5395}, {427, 43981}, {538, 31415}, {576, 9752}, {625, 7739}, {631, 7762}, {671, 25486}, {1285, 35297}, {1351, 58883}, {1384, 33216}, {1506, 7758}, {1587, 6463}, {1588, 6462}, {1655, 6919}, {1916, 14484}, {1975, 32979}, {2548, 3734}, {2549, 7775}, {3060, 51412}, {3090, 7754}, {3146, 7710}, {3164, 7396}, {3407, 60262}, {3424, 60234}, {3522, 7823}, {3523, 13335}, {3543, 43460}, {3545, 47286}, {3552, 51579}, {3729, 49554}, {3767, 32988}, {3785, 7759}, {3793, 5054}, {3933, 32968}, {3972, 7763}, {4208, 27318}, {4232, 44099}, {5013, 32006}, {5024, 32986}, {5026, 46236}, {5052, 10008}, {5056, 13571}, {5093, 10011}, {5254, 32980}, {5283, 33038}, {5286, 7752}, {5305, 32969}, {5319, 7862}, {5475, 32815}, {5503, 8591}, {5921, 13860}, {6337, 7745}, {6353, 27377}, {6390, 14033}, {6564, 9767}, {6565, 9768}, {6656, 32823}, {6721, 15520}, {6776, 58849}, {6781, 7618}, {6811, 12221}, {6813, 12222}, {7398, 17035}, {7737, 32456}, {7738, 7773}, {7751, 32838}, {7753, 32837}, {7757, 43448}, {7767, 31467}, {7770, 32818}, {7776, 16043}, {7781, 32826}, {7784, 9606}, {7787, 33181}, {7791, 7941}, {7793, 10303}, {7795, 32825}, {7796, 31407}, {7797, 33199}, {7798, 43620}, {7800, 7903}, {7803, 7814}, {7812, 35287}, {7813, 32836}, {7824, 55797}, {7830, 31450}, {7836, 33198}, {7838, 32839}, {7839, 32961}, {7864, 33200}, {7879, 32960}, {7881, 16045}, {7885, 33025}, {7890, 32867}, {7891, 33201}, {7893, 33001}, {7900, 32965}, {7905, 32832}, {7906, 16924}, {7912, 33180}, {7920, 33248}, {7921, 16925}, {7926, 14907}, {7929, 33258}, {7947, 16898}, {8165, 41838}, {8176, 32457}, {8370, 32817}, {8589, 47102}, {8716, 53418}, {8889, 9308}, {9605, 14064}, {9741, 11317}, {9751, 61798}, {9774, 15697}, {10002, 40887}, {10304, 14712}, {10583, 33183}, {10591, 25264}, {10996, 56339}, {14023, 31455}, {14035, 43450}, {14039, 53489}, {14482, 33285}, {14912, 56370}, {15048, 16041}, {16921, 32834}, {16922, 32870}, {16923, 32898}, {17037, 41925}, {17128, 32840}, {17129, 32999}, {17257, 24239}, {18907, 32985}, {19570, 61924}, {20073, 56555}, {20081, 32962}, {20088, 32964}, {20094, 35705}, {20105, 33024}, {22246, 33240}, {30435, 32970}, {31088, 31099}, {32451, 40330}, {32871, 33000}, {35940, 41370}, {37182, 61044}, {40333, 41836}, {43537, 60233}, {44543, 52713}, {44658, 52898}, {52299, 56013}, {52942, 53141}, {53099, 54122}, {54509, 60628}, {54522, 60214}, {54889, 60095}, {59229, 63155}, {60098, 60259}, {60128, 60333}, {60190, 60201}, {60200, 60268}, {60213, 60647}

X(62988) = anticomplement of X(34229)
X(62988) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14494, 2}
X(62988) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {14494, 6327}, {59115, 7192}
X(62988) = pole of line {6563, 47128} with respect to the DeLongchamps circle
X(62988) = pole of line {8371, 58882} with respect to the orthocentroidal circle
X(62988) = pole of line {1499, 8651} with respect to the orthoptic circle of the Steiner Inellipse
X(62988) = pole of line {11997, 25304} with respect to the Feuerbach hyperbola
X(62988) = pole of line {523, 47279} with respect to the Steiner circumellipse
X(62988) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(42377)}}, {{A, B, C, X(4), X(37667)}}, {{A, B, C, X(69), X(60260)}}, {{A, B, C, X(141), X(44658)}}, {{A, B, C, X(183), X(2996)}}, {{A, B, C, X(193), X(262)}}, {{A, B, C, X(385), X(14484)}}, {{A, B, C, X(1916), X(15589)}}, {{A, B, C, X(3314), X(60262)}}, {{A, B, C, X(3407), X(37689)}}, {{A, B, C, X(3424), X(17008)}}, {{A, B, C, X(3620), X(40824)}}, {{A, B, C, X(5032), X(60268)}}, {{A, B, C, X(5304), X(60190)}}, {{A, B, C, X(5395), X(7735)}}, {{A, B, C, X(7774), X(53099)}}, {{A, B, C, X(7777), X(60333)}}, {{A, B, C, X(7792), X(60647)}}, {{A, B, C, X(7837), X(54522)}}, {{A, B, C, X(8667), X(54889)}}, {{A, B, C, X(16990), X(60201)}}, {{A, B, C, X(17004), X(43537)}}, {{A, B, C, X(18842), X(61304)}}, {{A, B, C, X(22329), X(53101)}}, {{A, B, C, X(37665), X(60098)}}, {{A, B, C, X(37668), X(60234)}}, {{A, B, C, X(42850), X(60200)}}
X(62988) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7774, 193}, {32, 32829, 32989}, {39, 32816, 32974}, {76, 31404, 32987}, {194, 3091, 2996}, {315, 31400, 32990}, {325, 7736, 2}, {1506, 7758, 32828}, {2548, 3926, 32971}, {2549, 7775, 32827}, {3815, 9766, 69}, {5013, 32006, 33023}, {5286, 7752, 32972}, {5475, 34511, 32815}, {6337, 7745, 32981}, {6390, 15484, 14033}, {7736, 9770, 325}, {7767, 31467, 32978}, {7776, 31406, 16043}, {7778, 9300, 3618}, {7793, 10303, 55819}, {7903, 9698, 7800}


X(62989) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1654), X(3), X(6))

Barycentrics    3*a^2-b^2-b*c-c^2-a*(b+c) : :
X(62989) = -4*X[25072]+3*X[29575]

X(62989) lies on these lines: {1, 17331}, {2, 6}, {7, 16816}, {8, 1757}, {9, 6542}, {10, 17120}, {20, 48875}, {37, 29588}, {44, 319}, {45, 17377}, {75, 20072}, {144, 1278}, {145, 984}, {190, 17362}, {192, 5839}, {238, 50315}, {239, 3663}, {320, 17348}, {344, 17373}, {346, 20055}, {390, 3621}, {519, 17261}, {527, 17117}, {573, 31297}, {894, 3686}, {899, 7184}, {941, 40776}, {1100, 17256}, {1351, 7379}, {1353, 6998}, {1449, 17248}, {1743, 3661}, {2269, 3219}, {2271, 17689}, {2293, 3935}, {2322, 27377}, {2323, 27547}, {2345, 51353}, {3008, 17288}, {3019, 48888}, {3056, 3681}, {3161, 50079}, {3564, 7385}, {3617, 4307}, {3632, 25728}, {3662, 29590}, {3664, 16815}, {3707, 3879}, {3729, 29617}, {3731, 17389}, {3758, 17275}, {3759, 4643}, {3775, 16477}, {3783, 22343}, {3875, 17333}, {3946, 17254}, {3973, 17294}, {3986, 29580}, {4000, 4741}, {4034, 48628}, {4201, 7839}, {4263, 40773}, {4357, 4700}, {4360, 4969}, {4361, 4440}, {4371, 4740}, {4384, 4888}, {4388, 32864}, {4393, 17257}, {4422, 17295}, {4445, 17354}, {4454, 4821}, {4473, 16885}, {4641, 4886}, {4644, 4699}, {4651, 20101}, {4657, 17328}, {4672, 42334}, {4690, 16669}, {4708, 16668}, {4715, 7321}, {4725, 16814}, {4753, 33076}, {4772, 31317}, {4788, 20073}, {4851, 17335}, {4852, 17258}, {4856, 29584}, {4902, 16833}, {4909, 16826}, {5093, 7380}, {5222, 17236}, {5257, 29592}, {5296, 29570}, {5564, 17351}, {5749, 29593}, {5847, 60731}, {6172, 25269}, {6666, 17312}, {7155, 25291}, {7737, 48869}, {7760, 46707}, {7893, 56527}, {9534, 20077}, {9791, 49488}, {11245, 37107}, {13571, 34016}, {13740, 49718}, {15492, 17264}, {16569, 25572}, {16666, 17322}, {16667, 17397}, {16670, 17270}, {16671, 17239}, {16706, 17344}, {16823, 34379}, {16830, 51196}, {16834, 17247}, {17023, 17252}, {17116, 50095}, {17160, 17334}, {17220, 17484}, {17230, 26685}, {17240, 50076}, {17253, 17380}, {17263, 17374}, {17272, 17367}, {17273, 17366}, {17278, 17361}, {17279, 17360}, {17287, 17353}, {17296, 17338}, {17298, 29628}, {17299, 17336}, {17301, 17329}, {17310, 25101}, {17319, 50093}, {17324, 50114}, {17345, 37756}, {17355, 29615}, {17369, 32025}, {17386, 41313}, {17393, 50131}, {17487, 50088}, {17488, 50101}, {17787, 25298}, {18230, 29572}, {19998, 21035}, {20018, 50592}, {21226, 56185}, {21255, 29607}, {21303, 23650}, {21554, 34380}, {24130, 47776}, {24217, 32853}, {24697, 49489}, {25072, 29575}, {25278, 52662}, {25292, 56802}, {25719, 61014}, {26768, 27011}, {27268, 36409}, {27484, 51190}, {31011, 59140}, {41140, 53598}, {49448, 50015}, {49450, 49704}, {49497, 50296}, {49506, 49707}, {49509, 50030}, {49680, 49746}, {49681, 50075}, {49761, 59585}, {54409, 56934}

X(62989) = reflection of X(i) in X(j) for these {i,j}: {17315, 16814}
X(62989) = anticomplement of X(17300)
X(62989) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60149, 2}
X(62989) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60149, 6327}
X(62989) = pole of line {44445, 59629} with respect to the anticomplementary circle
X(62989) = pole of line {2501, 59629} with respect to the polar circle
X(62989) = pole of line {3740, 11997} with respect to the Feuerbach hyperbola
X(62989) = pole of line {523, 3716} with respect to the Steiner circumellipse
X(62989) = pole of line {4427, 18047} with respect to the Yff parabola
X(62989) = pole of line {2, 59627} with respect to the Wallace hyperbola
X(62989) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(20090)}}, {{A, B, C, X(86), X(54120)}}, {{A, B, C, X(940), X(40776)}}, {{A, B, C, X(941), X(40750)}}, {{A, B, C, X(2996), X(17375)}}, {{A, B, C, X(5395), X(37677)}}, {{A, B, C, X(8044), X(17378)}}, {{A, B, C, X(17343), X(43533)}}, {{A, B, C, X(30941), X(52442)}}
X(62989) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17363, 6542}, {44, 319, 17280}, {75, 20072, 31300}, {192, 5839, 20016}, {193, 391, 2}, {239, 4416, 6646}, {1449, 17248, 29586}, {2322, 27377, 54372}, {3707, 3879, 17260}, {3758, 17275, 28604}, {3759, 4643, 17302}, {3879, 17260, 29569}, {3973, 17294, 17339}, {4034, 50127, 48628}, {4357, 4700, 17121}, {4361, 17347, 4440}, {4384, 17364, 26806}, {4690, 16669, 17289}, {4725, 16814, 17315}, {4969, 17332, 4360}, {5839, 54280, 192}, {16670, 17270, 17368}, {16885, 17233, 4473}, {17270, 17368, 29591}, {17287, 17353, 29587}, {17351, 50082, 5564}, {26685, 32099, 17230}


X(62990) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1994), X(3), X(6))

Barycentrics    a^2*(2*a^4+2*b^4-3*b^2*c^2+2*c^4-4*a^2*(b^2+c^2)) : :

X(62990) lies on these lines: {2, 6}, {4, 13585}, {20, 1199}, {22, 5093}, {23, 11402}, {51, 9544}, {97, 5158}, {110, 15004}, {145, 16473}, {155, 5068}, {182, 62188}, {184, 11002}, {195, 3090}, {399, 41099}, {511, 44111}, {568, 10298}, {575, 2979}, {576, 5012}, {1173, 10539}, {1180, 1570}, {1181, 17578}, {1351, 6636}, {1353, 5133}, {1583, 6500}, {1584, 6501}, {1599, 6417}, {1600, 6418}, {1627, 39764}, {1899, 31857}, {2003, 23958}, {2987, 39955}, {3060, 5097}, {3091, 12161}, {3146, 7592}, {3292, 11451}, {3522, 36747}, {3523, 36753}, {3524, 15037}, {3529, 43845}, {3533, 15047}, {3543, 15032}, {3545, 15038}, {3564, 37353}, {3567, 9545}, {3622, 16472}, {3832, 18451}, {3839, 18445}, {3854, 11441}, {3917, 15516}, {4188, 37509}, {4189, 36750}, {5050, 15246}, {5056, 56292}, {5071, 50461}, {5169, 45968}, {5446, 11423}, {5640, 34565}, {5645, 61775}, {5651, 12834}, {5889, 37505}, {6419, 55567}, {6420, 55566}, {6504, 60191}, {7391, 14912}, {7394, 14683}, {7409, 39588}, {7485, 53091}, {7488, 37493}, {7496, 53092}, {7499, 61624}, {7571, 11898}, {7894, 51481}, {7998, 55713}, {8537, 44077}, {8780, 9777}, {8889, 19504}, {9143, 34155}, {9306, 9716}, {10255, 22051}, {10303, 16266}, {10546, 58470}, {10979, 56338}, {10982, 43605}, {11225, 23293}, {11245, 31074}, {11426, 14118}, {11432, 22467}, {11456, 50687}, {11538, 13579}, {11916, 13616}, {11917, 13617}, {12106, 55039}, {12112, 62007}, {13321, 47485}, {13472, 32046}, {14075, 54439}, {14853, 37349}, {15052, 61954}, {15068, 61936}, {15080, 21969}, {15135, 18950}, {15233, 19116}, {15234, 19117}, {15717, 36752}, {15805, 61848}, {15851, 37068}, {16881, 44879}, {16953, 39141}, {17548, 36742}, {17570, 22136}, {17810, 35265}, {18366, 56346}, {19708, 37496}, {21734, 37498}, {21849, 26881}, {22234, 23061}, {22352, 55716}, {26913, 61712}, {30435, 35296}, {30652, 61395}, {30653, 61396}, {32139, 61982}, {33004, 43843}, {33017, 39524}, {33192, 44415}, {33586, 53858}, {33884, 39561}, {34799, 45089}, {35237, 62168}, {36153, 37484}, {36754, 37307}, {37444, 43838}, {37483, 62063}, {37514, 61791}, {37990, 59399}, {39562, 51882}, {40693, 51264}, {40694, 51271}, {41462, 55712}, {41588, 52300}, {43136, 52275}, {46440, 51537}, {52719, 62217}, {54434, 61912}, {54601, 54762}, {61157, 61397}

X(62990) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57927, 3}
X(62990) = pole of line {6467, 15516} with respect to the Jerabek hyperbola
X(62990) = pole of line {6, 5070} with respect to the Stammler hyperbola
X(62990) = pole of line {523, 37936} with respect to the Steiner circumellipse
X(62990) = pole of line {523, 44900} with respect to the Steiner inellipse
X(62990) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(13585)}}, {{A, B, C, X(230), X(39955)}}, {{A, B, C, X(251), X(37637)}}, {{A, B, C, X(394), X(9704)}}, {{A, B, C, X(1383), X(3054)}}, {{A, B, C, X(2987), X(3763)}}, {{A, B, C, X(3108), X(31489)}}, {{A, B, C, X(6515), X(60191)}}, {{A, B, C, X(11004), X(40393)}}, {{A, B, C, X(11538), X(45794)}}, {{A, B, C, X(13579), X(15108)}}, {{A, B, C, X(30535), X(47355)}}, {{A, B, C, X(41628), X(55999)}}
X(62990) = barycentric product X(i)*X(j) for these (i, j): {264, 9704}
X(62990) = barycentric quotient X(i)/X(j) for these (i, j): {9704, 3}
X(62990) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 11422, 9544}, {51, 9544, 14002}, {184, 15520, 53863}, {184, 53863, 11002}, {323, 5422, 2}, {576, 5012, 62187}, {1199, 36749, 20}, {3060, 11003, 37913}, {3060, 13366, 11003}, {5012, 62187, 7492}, {5097, 13366, 3060}, {9306, 55038, 9716}, {10982, 43605, 50689}, {15019, 55038, 9306}, {15032, 39522, 3543}, {21849, 26881, 48912}, {21849, 44109, 26881}, {34565, 34986, 5640}


X(62991) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3051), X(3), X(6))

Barycentrics    a^2*(b^2*c^2+2*a^2*(b^2+c^2)) : :

X(62991) lies on these lines: {2, 6}, {4, 55028}, {32, 5012}, {39, 2979}, {51, 9465}, {182, 1627}, {184, 251}, {194, 40382}, {237, 11402}, {305, 46900}, {511, 1180}, {631, 43843}, {694, 20976}, {1186, 7787}, {1194, 3060}, {1196, 5640}, {1197, 3240}, {1207, 7793}, {1342, 41378}, {1343, 41379}, {1351, 7467}, {1501, 11003}, {1570, 33873}, {1692, 11673}, {1915, 9544}, {1977, 30652}, {2211, 6995}, {2235, 28605}, {3094, 11205}, {3098, 38862}, {3108, 11175}, {3117, 5007}, {3162, 39588}, {3291, 11451}, {3529, 48262}, {3787, 7998}, {3819, 15302}, {3978, 7894}, {3981, 11002}, {4048, 16953}, {4074, 9464}, {5008, 41278}, {5017, 6636}, {5034, 34095}, {5106, 14075}, {5286, 14957}, {5305, 37988}, {5943, 40130}, {6403, 40938}, {6688, 39576}, {7109, 23538}, {7386, 14965}, {7492, 10329}, {7494, 60587}, {7760, 20023}, {7762, 33734}, {7772, 8623}, {7791, 10339}, {7808, 38854}, {7877, 62699}, {7878, 60707}, {8024, 32451}, {8041, 13331}, {8267, 18906}, {8622, 61358}, {8878, 33796}, {8889, 35325}, {9605, 14096}, {9998, 36213}, {10312, 44077}, {10328, 16952}, {10792, 61350}, {10793, 61351}, {11328, 43136}, {11335, 22253}, {12215, 16949}, {13330, 20859}, {14003, 15135}, {14660, 52162}, {15004, 39024}, {15246, 50659}, {16981, 46906}, {17018, 21760}, {17127, 40728}, {18993, 61368}, {18994, 61369}, {20295, 23575}, {21281, 26810}, {22352, 41413}, {23660, 29814}, {37353, 53475}, {39951, 62217}, {40179, 40601}, {43977, 59180}, {44111, 47638}, {44586, 61352}, {44587, 61353}, {46453, 50678}, {52301, 61346}, {52580, 63174}, {53145, 61157}

X(62991) = isogonal conjugate of X(34816)
X(62991) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34816}, {75, 10014}
X(62991) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 34816}, {206, 10014}
X(62991) = pole of line {525, 58784} with respect to the MacBeath circumconic
X(62991) = pole of line {6, 3934} with respect to the Stammler hyperbola
X(62991) = pole of line {523, 9494} with respect to the Steiner circumellipse
X(62991) = pole of line {2, 34816} with respect to the Wallace hyperbola
X(62991) = pole of line {525, 58784} with respect to the dual conic of nine-point circle
X(62991) = pole of line {9489, 57082} with respect to the dual conic of Brocard inellipse
X(62991) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7786)}}, {{A, B, C, X(25), X(15271)}}, {{A, B, C, X(32), X(20965)}}, {{A, B, C, X(69), X(55028)}}, {{A, B, C, X(141), X(263)}}, {{A, B, C, X(183), X(251)}}, {{A, B, C, X(385), X(39955)}}, {{A, B, C, X(694), X(3763)}}, {{A, B, C, X(3108), X(11174)}}, {{A, B, C, X(3589), X(11175)}}, {{A, B, C, X(5422), X(56344)}}, {{A, B, C, X(14614), X(34572)}}, {{A, B, C, X(37678), X(39961)}}, {{A, B, C, X(37686), X(39965)}}, {{A, B, C, X(47355), X(60667)}}
X(62991) = barycentric product X(i)*X(j) for these (i, j): {6, 7786}, {141, 39674}
X(62991) = barycentric quotient X(i)/X(j) for these (i, j): {6, 34816}, {32, 10014}, {7786, 76}, {39674, 83}
X(62991) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3051, 9463}, {6, 1184, 5422}, {6, 3051, 2}, {184, 5039, 251}, {1194, 5052, 3060}, {1501, 14153, 11003}, {7109, 23538, 30653}, {12212, 14153, 1501}, {13330, 20859, 62187}


X(62992) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3054), X(3), X(6))

Barycentrics    5*a^4+3*(b^2-c^2)^2-4*a^2*(b^2+c^2) : :

X(62992) lies on these lines: {2, 6}, {3, 43291}, {4, 187}, {5, 1384}, {20, 5210}, {23, 8553}, {25, 41758}, {30, 15655}, {32, 3090}, {39, 3525}, {53, 4232}, {76, 32970}, {83, 32975}, {98, 5033}, {99, 33216}, {111, 925}, {115, 376}, {140, 5024}, {154, 53496}, {160, 53264}, {172, 10588}, {194, 33000}, {216, 3291}, {232, 33630}, {262, 53103}, {315, 2031}, {316, 32984}, {383, 16942}, {393, 468}, {439, 32819}, {497, 10987}, {498, 16785}, {499, 16784}, {547, 15484}, {570, 9465}, {574, 631}, {577, 13611}, {620, 32817}, {626, 32955}, {632, 9605}, {858, 9722}, {1078, 14064}, {1080, 16943}, {1249, 6103}, {1285, 5071}, {1316, 47240}, {1352, 2030}, {1383, 2963}, {1506, 61886}, {1513, 53015}, {1587, 8376}, {1588, 8375}, {1609, 1995}, {1627, 15437}, {1656, 21309}, {1657, 15603}, {1914, 10589}, {1968, 6622}, {1971, 32064}, {1975, 32989}, {1989, 40103}, {1990, 53857}, {2023, 6194}, {2076, 51538}, {2079, 10298}, {2241, 47743}, {2242, 8164}, {2452, 47237}, {2453, 47243}, {2482, 5485}, {2502, 35260}, {2548, 5008}, {2549, 3524}, {2550, 10988}, {2896, 33248}, {3003, 15355}, {3053, 3091}, {3087, 5094}, {3098, 6036}, {3146, 5023}, {3229, 43718}, {3316, 31411}, {3424, 60102}, {3522, 5585}, {3523, 5254}, {3526, 5305}, {3528, 7748}, {3529, 5206}, {3533, 7755}, {3544, 35007}, {3545, 7737}, {3552, 44530}, {3628, 30435}, {3723, 24363}, {3734, 33191}, {3785, 7887}, {3788, 32959}, {3818, 38010}, {3855, 7747}, {3926, 33233}, {3934, 14069}, {3972, 32983}, {4188, 44542}, {4189, 44517}, {5007, 60781}, {5013, 10303}, {5054, 15048}, {5055, 18907}, {5056, 7745}, {5058, 13939}, {5062, 13886}, {5104, 51212}, {5106, 36874}, {5159, 15905}, {5277, 6856}, {5309, 15702}, {5319, 11614}, {5334, 37464}, {5335, 37463}, {5346, 61873}, {5355, 14482}, {5421, 15302}, {5461, 8182}, {5471, 43543}, {5472, 43542}, {5477, 23234}, {5523, 35486}, {6055, 46264}, {6108, 42086}, {6109, 42085}, {6200, 13834}, {6248, 50370}, {6292, 33194}, {6337, 7907}, {6396, 13711}, {6531, 52283}, {6636, 44524}, {6640, 22121}, {6680, 16045}, {6748, 52284}, {6781, 15682}, {6811, 23249}, {6813, 23259}, {7000, 42283}, {7374, 42284}, {7386, 22052}, {7484, 34809}, {7492, 44533}, {7494, 10979}, {7505, 8744}, {7512, 44527}, {7603, 61899}, {7608, 33550}, {7617, 37809}, {7620, 27088}, {7739, 15709}, {7750, 32972}, {7751, 32818}, {7752, 32976}, {7753, 61895}, {7754, 32829}, {7756, 21735}, {7761, 33285}, {7763, 32977}, {7770, 32838}, {7771, 32986}, {7772, 61870}, {7773, 32988}, {7780, 32958}, {7783, 33206}, {7784, 33199}, {7785, 32998}, {7787, 32999}, {7789, 32834}, {7790, 33215}, {7793, 32006}, {7795, 33189}, {7797, 33001}, {7800, 7886}, {7803, 32978}, {7807, 32828}, {7815, 32956}, {7820, 33197}, {7822, 32952}, {7823, 32963}, {7828, 16043}, {7831, 33223}, {7832, 33222}, {7834, 32960}, {7844, 33190}, {7851, 32990}, {7857, 14001}, {7862, 14023}, {7864, 33012}, {7885, 33277}, {7891, 33262}, {7904, 33283}, {7923, 33258}, {7942, 33221}, {8289, 54122}, {8573, 11284}, {8585, 40132}, {8591, 11147}, {8722, 38740}, {8770, 51316}, {8889, 10311}, {9466, 33231}, {9540, 49221}, {9574, 58441}, {9575, 19862}, {9607, 61842}, {9609, 15246}, {9675, 23273}, {9752, 13860}, {9759, 56565}, {9877, 14928}, {10018, 41361}, {10155, 11668}, {10185, 53098}, {10304, 44526}, {10645, 36772}, {10646, 46854}, {11063, 14002}, {11172, 45018}, {11173, 14853}, {11185, 32985}, {11459, 50387}, {11648, 15698}, {11742, 50693}, {12017, 37451}, {12111, 15575}, {12815, 61921}, {12963, 42561}, {12968, 31412}, {13935, 49220}, {14061, 14907}, {14063, 39143}, {14075, 61881}, {14494, 53104}, {14537, 61932}, {14712, 33006}, {14912, 43461}, {15022, 22331}, {15513, 17538}, {15515, 61807}, {15602, 61817}, {15815, 61820}, {16063, 44529}, {16239, 31467}, {16310, 56633}, {16318, 37453}, {17131, 31274}, {17314, 37764}, {17548, 44520}, {18358, 37071}, {18472, 18531}, {18581, 41407}, {18582, 41406}, {18840, 33195}, {18841, 60187}, {19102, 35812}, {19105, 35813}, {19780, 42142}, {19781, 42139}, {20065, 32967}, {20423, 58831}, {21734, 44519}, {22111, 61506}, {22246, 31406}, {22332, 61848}, {22861, 41408}, {22907, 41409}, {25406, 53475}, {30775, 39602}, {31407, 48154}, {31470, 45760}, {32459, 34505}, {32585, 54362}, {32586, 54363}, {32815, 35297}, {32816, 33249}, {32826, 33235}, {32867, 32992}, {32870, 33198}, {32885, 33220}, {32953, 55732}, {32965, 44540}, {32968, 60855}, {32973, 59635}, {33014, 44539}, {33023, 55819}, {33226, 43459}, {33364, 53479}, {33365, 53480}, {33878, 56370}, {33884, 61675}, {33979, 61680}, {34208, 36898}, {34366, 35902}, {36163, 48721}, {36748, 47298}, {36751, 62702}, {37182, 44534}, {37188, 41254}, {37512, 61814}, {37907, 47322}, {37909, 47275}, {37911, 59657}, {38463, 58805}, {39563, 62130}, {39590, 61945}, {39601, 41106}, {40138, 52292}, {40248, 48906}, {40330, 40825}, {40824, 60073}, {41099, 62203}, {41410, 42274}, {41411, 42277}, {42125, 44219}, {42852, 58445}, {43136, 55857}, {43460, 60657}, {44541, 62063}, {45141, 52297}, {47246, 47284}, {48905, 60658}, {51023, 53499}, {51584, 54637}, {52293, 62213}, {52713, 58448}, {53099, 53859}, {53505, 54170}, {54644, 60150}, {54921, 60336}, {60093, 60212}, {60175, 60185}, {60334, 60337}

X(62992) = inverse of X(599) in Evans conic
X(62992) = perspector of circumconic {{A, B, C, X(99), X(54475)}}
X(62992) = X(i)-complementary conjugate of X(j) for these {i, j}: {43537, 2887}
X(62992) = pole of line {2501, 44564} with respect to the polar circle
X(62992) = pole of line {2, 8550} with respect to the Kiepert hyperbola
X(62992) = pole of line {6, 35302} with respect to the Stammler hyperbola
X(62992) = pole of line {523, 47464} with respect to the Steiner inellipse
X(62992) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(60263)}}, {{A, B, C, X(69), X(7607)}}, {{A, B, C, X(76), X(37690)}}, {{A, B, C, X(98), X(1007)}}, {{A, B, C, X(111), X(1993)}}, {{A, B, C, X(183), X(53103)}}, {{A, B, C, X(193), X(9227)}}, {{A, B, C, X(262), X(34803)}}, {{A, B, C, X(323), X(40103)}}, {{A, B, C, X(325), X(7612)}}, {{A, B, C, X(393), X(1992)}}, {{A, B, C, X(394), X(21448)}}, {{A, B, C, X(524), X(2165)}}, {{A, B, C, X(599), X(2963)}}, {{A, B, C, X(925), X(5468)}}, {{A, B, C, X(1383), X(1994)}}, {{A, B, C, X(1989), X(15534)}}, {{A, B, C, X(3618), X(60186)}}, {{A, B, C, X(3619), X(60187)}}, {{A, B, C, X(5032), X(52223)}}, {{A, B, C, X(5422), X(39389)}}, {{A, B, C, X(5485), X(41133)}}, {{A, B, C, X(6531), X(37689)}}, {{A, B, C, X(7735), X(60073)}}, {{A, B, C, X(7736), X(60093)}}, {{A, B, C, X(7774), X(60104)}}, {{A, B, C, X(7778), X(60212)}}, {{A, B, C, X(7925), X(54122)}}, {{A, B, C, X(8584), X(34288)}}, {{A, B, C, X(8770), X(37672)}}, {{A, B, C, X(9770), X(60103)}}, {{A, B, C, X(9771), X(60268)}}, {{A, B, C, X(10511), X(56435)}}, {{A, B, C, X(11008), X(14842)}}, {{A, B, C, X(11172), X(22110)}}, {{A, B, C, X(13854), X(61658)}}, {{A, B, C, X(14494), X(37647)}}, {{A, B, C, X(15533), X(52154)}}, {{A, B, C, X(17005), X(60190)}}, {{A, B, C, X(20582), X(46223)}}, {{A, B, C, X(21356), X(46217)}}, {{A, B, C, X(30537), X(51185)}}, {{A, B, C, X(34208), X(44369)}}, {{A, B, C, X(34229), X(53104)}}, {{A, B, C, X(37668), X(60102)}}, {{A, B, C, X(37688), X(60123)}}, {{A, B, C, X(40824), X(44377)}}, {{A, B, C, X(41149), X(46204)}}, {{A, B, C, X(46952), X(59373)}}
X(62992) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 230, 7735}, {2, 385, 1007}, {2, 5304, 3815}, {2, 7735, 7736}, {2, 7806, 3618}, {2, 8859, 1992}, {3, 43291, 43448}, {6, 3054, 2}, {98, 9754, 58883}, {115, 21843, 376}, {115, 8588, 43619}, {187, 18424, 43618}, {187, 7746, 43620}, {230, 3054, 6}, {590, 615, 599}, {631, 3767, 7738}, {1285, 5071, 5475}, {3526, 5305, 31400}, {3545, 46453, 7737}, {3628, 30435, 31404}, {3972, 53127, 32983}, {5210, 53419, 20}, {7612, 58883, 98}, {7612, 9754, 7710}, {7793, 32961, 32006}, {7800, 7886, 32951}, {7857, 32832, 14001}, {7862, 14023, 32823}, {14061, 14907, 16041}, {18424, 43618, 4}, {21843, 43619, 8588}, {32834, 33203, 7789}, {43618, 43620, 18424}


X(62993) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3055), X(3), X(6))

Barycentrics    a^4+3*(b^2-c^2)^2-8*a^2*(b^2+c^2) : :

X(62993) lies on these lines: {2, 6}, {3, 31404}, {4, 574}, {5, 5024}, {20, 53095}, {32, 3525}, {39, 3090}, {53, 52284}, {76, 32975}, {83, 32970}, {98, 10155}, {99, 32983}, {111, 43351}, {115, 5071}, {140, 1384}, {148, 33005}, {160, 34098}, {187, 631}, {194, 32999}, {216, 16051}, {232, 8889}, {233, 8585}, {262, 14494}, {315, 32978}, {316, 33215}, {376, 5475}, {383, 42134}, {393, 5094}, {468, 3087}, {497, 31497}, {498, 16784}, {499, 16785}, {549, 15484}, {570, 15302}, {620, 14039}, {625, 33190}, {626, 32960}, {632, 30435}, {946, 31428}, {1015, 8164}, {1056, 31476}, {1080, 42133}, {1249, 41358}, {1285, 7753}, {1370, 14806}, {1500, 47743}, {1504, 13939}, {1505, 13886}, {1596, 39662}, {1609, 40916}, {1656, 5286}, {1975, 32987}, {2023, 9772}, {2031, 32977}, {2165, 39389}, {2275, 10588}, {2276, 10589}, {2493, 13351}, {2549, 3545}, {3053, 10303}, {3086, 31460}, {3091, 5013}, {3146, 15815}, {3147, 10986}, {3247, 24239}, {3363, 53142}, {3523, 5210}, {3524, 7737}, {3526, 21309}, {3528, 7747}, {3529, 37512}, {3533, 5008}, {3544, 53096}, {3628, 9605}, {3634, 9575}, {3767, 5067}, {3788, 16045}, {3817, 9574}, {3832, 31492}, {3839, 44526}, {3855, 7748}, {3926, 32992}, {3934, 32818}, {3972, 33216}, {4045, 33285}, {4232, 6748}, {5007, 11614}, {5023, 61820}, {5054, 18907}, {5055, 15048}, {5056, 5254}, {5059, 11742}, {5068, 44518}, {5070, 5305}, {5092, 43450}, {5107, 38227}, {5116, 14927}, {5206, 61814}, {5218, 9599}, {5274, 31477}, {5309, 14482}, {5319, 61881}, {5334, 37463}, {5335, 37464}, {5355, 61888}, {5421, 9465}, {5585, 15717}, {5603, 31398}, {5657, 31441}, {5818, 9619}, {6036, 55710}, {6114, 42111}, {6115, 42114}, {6337, 16924}, {6353, 10985}, {6443, 42265}, {6444, 42262}, {6639, 22121}, {6680, 32959}, {6683, 32956}, {6749, 53857}, {6781, 19708}, {6811, 9600}, {6813, 23249}, {6859, 34460}, {6995, 52717}, {7000, 42284}, {7288, 9596}, {7374, 42283}, {7378, 59229}, {7386, 10979}, {7485, 15437}, {7486, 9606}, {7492, 15109}, {7494, 22052}, {7496, 8553}, {7581, 31481}, {7607, 33554}, {7612, 11669}, {7619, 37809}, {7710, 13860}, {7739, 61899}, {7746, 61886}, {7749, 61867}, {7752, 16043}, {7754, 32838}, {7757, 53127}, {7763, 32968}, {7769, 14001}, {7770, 32829}, {7772, 60781}, {7773, 32990}, {7783, 32962}, {7785, 33001}, {7786, 14064}, {7787, 33000}, {7789, 32835}, {7790, 32984}, {7793, 33003}, {7795, 32957}, {7797, 32998}, {7800, 32823}, {7803, 32969}, {7804, 33191}, {7807, 32839}, {7808, 14069}, {7823, 33012}, {7824, 32006}, {7828, 32976}, {7834, 32955}, {7846, 33222}, {7851, 32988}, {7862, 32951}, {7864, 32963}, {7885, 33258}, {7889, 32952}, {7891, 33269}, {7899, 33221}, {7923, 33277}, {8165, 31490}, {8227, 31396}, {8356, 32827}, {8368, 14535}, {8375, 9540}, {8376, 13935}, {8744, 37119}, {9592, 10175}, {9607, 61914}, {9608, 37126}, {9609, 13595}, {9744, 39874}, {9812, 31443}, {9993, 60657}, {10311, 38282}, {10519, 11173}, {10591, 31448}, {10593, 31461}, {10989, 47169}, {11001, 62203}, {11285, 32816}, {11648, 61932}, {12017, 56370}, {14002, 50660}, {14075, 61873}, {14484, 60333}, {14537, 15698}, {14826, 59558}, {15022, 22332}, {15301, 32822}, {15513, 61807}, {15515, 17538}, {15602, 31457}, {15603, 61811}, {15683, 44541}, {15709, 46453}, {15850, 44499}, {16318, 52298}, {17128, 33261}, {17570, 44517}, {17578, 44519}, {18362, 61913}, {18483, 31421}, {18840, 31239}, {18841, 33195}, {18842, 42011}, {19103, 35814}, {19104, 35815}, {20063, 47186}, {20065, 33015}, {21448, 46952}, {21850, 40248}, {22331, 61848}, {23267, 62205}, {23273, 62206}, {24206, 42852}, {26364, 31405}, {27318, 33052}, {30537, 40103}, {31274, 33231}, {31652, 61964}, {32815, 44543}, {32819, 32991}, {32871, 33181}, {32898, 33203}, {32953, 55774}, {33023, 55797}, {33630, 52299}, {33878, 37451}, {34511, 52713}, {36412, 59768}, {37118, 41370}, {39565, 61921}, {39601, 61926}, {40065, 52290}, {40138, 52293}, {40824, 60096}, {41361, 52296}, {41406, 42089}, {41407, 42092}, {42128, 44219}, {43136, 55858}, {43621, 58851}, {44535, 61856}, {47061, 55801}, {47154, 47285}, {48910, 60658}, {51212, 53484}, {52292, 62213}, {53103, 53108}, {54509, 60240}, {54523, 60192}, {54645, 60127}, {58265, 62701}, {60098, 60234}, {60123, 60144}, {60190, 60233}, {60198, 60263}, {60211, 60268}, {60330, 60332}

X(62993) = inverse of X(47352) in Evans conic
X(62993) = X(i)-complementary conjugate of X(j) for these {i, j}: {53099, 2887}
X(62993) = pole of line {2501, 41300} with respect to the polar circle
X(62993) = pole of line {2, 11477} with respect to the Kiepert hyperbola
X(62993) = pole of line {523, 47446} with respect to the Steiner inellipse
X(62993) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37688)}}, {{A, B, C, X(69), X(7608)}}, {{A, B, C, X(111), X(5422)}}, {{A, B, C, X(183), X(14494)}}, {{A, B, C, X(262), X(34229)}}, {{A, B, C, X(325), X(10155)}}, {{A, B, C, X(393), X(59373)}}, {{A, B, C, X(597), X(2165)}}, {{A, B, C, X(1007), X(11669)}}, {{A, B, C, X(1383), X(34545)}}, {{A, B, C, X(1989), X(51185)}}, {{A, B, C, X(1992), X(46952)}}, {{A, B, C, X(1993), X(39389)}}, {{A, B, C, X(2963), X(47352)}}, {{A, B, C, X(3054), X(60263)}}, {{A, B, C, X(5032), X(52224)}}, {{A, B, C, X(5468), X(43351)}}, {{A, B, C, X(7610), X(60268)}}, {{A, B, C, X(7735), X(60096)}}, {{A, B, C, X(8797), X(39099)}}, {{A, B, C, X(8860), X(18842)}}, {{A, B, C, X(10601), X(21448)}}, {{A, B, C, X(15018), X(40103)}}, {{A, B, C, X(15271), X(40824)}}, {{A, B, C, X(15534), X(30537)}}, {{A, B, C, X(15589), X(60333)}}, {{A, B, C, X(16990), X(60233)}}, {{A, B, C, X(17004), X(60190)}}, {{A, B, C, X(17008), X(60098)}}, {{A, B, C, X(21356), X(42011)}}, {{A, B, C, X(23055), X(54509)}}, {{A, B, C, X(34803), X(53108)}}, {{A, B, C, X(37690), X(60198)}}, {{A, B, C, X(42850), X(60211)}}, {{A, B, C, X(46223), X(48310)}}, {{A, B, C, X(51171), X(51316)}}, {{A, B, C, X(58446), X(60212)}}
X(62993) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3815, 7736}, {2, 5032, 8860}, {2, 7736, 7735}, {2, 7777, 69}, {5, 31400, 7738}, {5, 31467, 31400}, {6, 3055, 2}, {69, 7777, 9770}, {574, 1506, 31415}, {574, 43457, 43619}, {1285, 15702, 21843}, {1506, 31401, 4}, {1656, 31406, 5286}, {2549, 7603, 3545}, {3055, 3815, 6}, {5013, 18584, 53419}, {5475, 8589, 43618}, {7753, 21843, 1285}, {8589, 43618, 376}, {14494, 58883, 262}, {18584, 53419, 3091}, {31400, 43448, 5024}, {31401, 31415, 574}, {31415, 43619, 43457}, {53095, 53418, 20}


X(62994) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3329), X(3), X(6))

Barycentrics    2*a^4+b^2*c^2+3*a^2*(b^2+c^2) : :

X(62994) lies on these lines: {2, 6}, {3, 22521}, {4, 44090}, {5, 7920}, {23, 16329}, {32, 33004}, {39, 3552}, {76, 5041}, {83, 194}, {98, 39561}, {99, 12191}, {147, 14561}, {148, 7739}, {262, 575}, {305, 37875}, {384, 9605}, {538, 60855}, {574, 12150}, {576, 6194}, {598, 54737}, {625, 7884}, {748, 51902}, {750, 34252}, {1285, 33008}, {1351, 37455}, {1384, 33273}, {1506, 7856}, {1513, 59399}, {1916, 5026}, {2548, 7797}, {2998, 3108}, {3053, 33022}, {3095, 10359}, {3096, 7838}, {3114, 63170}, {3228, 31128}, {3407, 5038}, {3524, 9301}, {3529, 13111}, {3545, 12188}, {3758, 33891}, {3767, 33002}, {3832, 39646}, {3839, 61102}, {3920, 18194}, {3926, 19689}, {3933, 16895}, {3934, 7894}, {4027, 5034}, {4045, 7812}, {4393, 33889}, {5007, 7786}, {5008, 7771}, {5013, 33014}, {5024, 13586}, {5050, 5999}, {5097, 22712}, {5107, 22564}, {5182, 14931}, {5189, 32224}, {5254, 33018}, {5286, 16044}, {5305, 16921}, {5319, 54106}, {5395, 14068}, {5475, 7827}, {5476, 43460}, {5967, 36897}, {5984, 14912}, {5987, 52699}, {6179, 6683}, {6292, 7877}, {6390, 14036}, {6392, 33269}, {6656, 7900}, {6658, 7738}, {6704, 7890}, {6781, 52691}, {7492, 51862}, {7709, 10796}, {7737, 33264}, {7745, 7864}, {7752, 7829}, {7753, 7790}, {7757, 7804}, {7758, 46226}, {7759, 7859}, {7760, 7808}, {7762, 7876}, {7763, 10583}, {7764, 7846}, {7770, 7839}, {7773, 7923}, {7775, 7919}, {7776, 7948}, {7780, 34571}, {7785, 7803}, {7791, 9990}, {7795, 13571}, {7796, 7889}, {7809, 7913}, {7814, 7852}, {7819, 7906}, {7821, 7943}, {7822, 7905}, {7824, 30435}, {7831, 9939}, {7833, 18907}, {7834, 7858}, {7843, 7918}, {7845, 7937}, {7849, 7949}, {7850, 41750}, {7853, 7926}, {7857, 9698}, {7866, 7941}, {7871, 7915}, {7879, 16897}, {7881, 19694}, {7882, 39784}, {7893, 8362}, {7903, 7944}, {7907, 31406}, {7914, 7917}, {7947, 33217}, {8264, 41917}, {8596, 18842}, {8782, 10352}, {8787, 43535}, {9418, 11003}, {9751, 52987}, {9755, 53092}, {10358, 32467}, {10788, 11171}, {10997, 50659}, {11285, 43136}, {11286, 22246}, {11361, 15048}, {11606, 60190}, {12110, 32522}, {12156, 14976}, {13860, 53091}, {13862, 18583}, {13881, 33010}, {14002, 60514}, {14033, 14482}, {14041, 15484}, {14492, 48884}, {14494, 60136}, {14853, 40236}, {14907, 34604}, {14950, 15437}, {15483, 39652}, {15819, 22330}, {16477, 52133}, {16816, 52136}, {16923, 31467}, {17128, 20105}, {17368, 30179}, {17744, 30137}, {18170, 29815}, {18501, 32516}, {18845, 43951}, {19690, 32006}, {20065, 33021}, {21850, 60651}, {22120, 37186}, {29840, 33163}, {31400, 33259}, {32027, 55767}, {32447, 35925}, {32449, 44000}, {32994, 43620}, {33706, 55716}, {35524, 41259}, {37450, 51732}, {38262, 39951}, {39955, 39968}, {44422, 50664}, {46228, 60860}, {46313, 51827}, {48895, 55177}, {51510, 51992}, {51928, 61155}, {54487, 54901}, {55178, 55585}, {55710, 58851}, {59180, 62696}

X(62994) = anticomplement of X(16986)
X(62994) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60129, 2}
X(62994) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60129, 6327}
X(62994) = pole of line {8371, 59568} with respect to the orthocentroidal circle
X(62994) = pole of line {523, 14318} with respect to the Steiner circumellipse
X(62994) = pole of line {2, 32449} with respect to the Wallace hyperbola
X(62994) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(51450)}}, {{A, B, C, X(69), X(60105)}}, {{A, B, C, X(83), X(7766)}}, {{A, B, C, X(141), X(43688)}}, {{A, B, C, X(183), X(60184)}}, {{A, B, C, X(262), X(7897)}}, {{A, B, C, X(308), X(47355)}}, {{A, B, C, X(599), X(54737)}}, {{A, B, C, X(1613), X(3108)}}, {{A, B, C, X(2998), X(3589)}}, {{A, B, C, X(3228), X(47352)}}, {{A, B, C, X(3231), X(51992)}}, {{A, B, C, X(3314), X(60177)}}, {{A, B, C, X(3618), X(38262)}}, {{A, B, C, X(3763), X(39968)}}, {{A, B, C, X(7779), X(60190)}}, {{A, B, C, X(7840), X(36897)}}, {{A, B, C, X(11606), X(16990)}}, {{A, B, C, X(14970), X(16988)}}, {{A, B, C, X(18840), X(60728)}}, {{A, B, C, X(18842), X(44367)}}, {{A, B, C, X(20965), X(39955)}}, {{A, B, C, X(21001), X(39951)}}, {{A, B, C, X(21356), X(60271)}}, {{A, B, C, X(34229), X(60136)}}, {{A, B, C, X(41136), X(60268)}}
X(62994) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 7766}, {2, 7774, 7897}, {39, 7787, 3552}, {39, 7878, 7787}, {83, 7772, 194}, {325, 597, 7875}, {325, 7875, 2}, {3096, 7838, 7946}, {3934, 41940, 7894}, {5007, 7786, 7793}, {6329, 9300, 7792}, {6656, 7921, 7900}, {7745, 7864, 33019}, {7752, 7829, 7932}, {7759, 7859, 7938}, {7760, 7808, 31276}, {7764, 7846, 7945}, {7785, 51860, 7803}, {7785, 7803, 7933}, {7792, 9300, 7777}, {15048, 53489, 11361}


X(62995) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3629), X(3), X(6))

Barycentrics    9*a^2-b^2-c^2 : :
X(62995) = -3*X[2]+10*X[6], -X[4]+8*X[5097], X[20]+6*X[5102], X[23]+6*X[47465], -20*X[182]+13*X[10299], 3*X[376]+4*X[37517], -X[382]+15*X[5093], 2*X[546]+5*X[1353], 2*X[550]+5*X[1351], 20*X[576]+X[3529], -5*X[631]+12*X[39561], 5*X[895]+2*X[24981] and many others

X(62995) lies on these lines: {2, 6}, {4, 5097}, {20, 5102}, {23, 47465}, {182, 10299}, {239, 7222}, {315, 33232}, {344, 16670}, {376, 37517}, {382, 5093}, {389, 53050}, {487, 6418}, {488, 6417}, {511, 3528}, {518, 20057}, {542, 61980}, {546, 1353}, {550, 1351}, {575, 53860}, {576, 3529}, {625, 5319}, {631, 39561}, {648, 40065}, {894, 4371}, {895, 24981}, {1078, 55790}, {1249, 63155}, {1285, 7757}, {1350, 33748}, {1352, 3544}, {1449, 54280}, {1503, 50688}, {1570, 33238}, {1743, 29602}, {1974, 63156}, {3060, 32366}, {3087, 56022}, {3090, 5965}, {3098, 15710}, {3241, 17336}, {3244, 3751}, {3522, 55722}, {3523, 55711}, {3524, 50664}, {3530, 5050}, {3545, 51140}, {3564, 3851}, {3574, 15077}, {3626, 51196}, {3632, 49529}, {3636, 16475}, {3758, 7229}, {3759, 4402}, {3793, 9605}, {3818, 50964}, {3855, 15520}, {3926, 33242}, {4254, 21518}, {4644, 17121}, {4663, 20050}, {4681, 49502}, {4686, 49496}, {4856, 50127}, {4916, 17339}, {5008, 32985}, {5017, 33276}, {5028, 33226}, {5041, 16043}, {5052, 32450}, {5055, 51178}, {5071, 43150}, {5079, 18583}, {5085, 61788}, {5092, 15715}, {5095, 25320}, {5111, 7738}, {5120, 21524}, {5182, 35022}, {5207, 33292}, {5222, 48629}, {5286, 33229}, {5346, 32969}, {5355, 16041}, {5476, 61947}, {5480, 61982}, {5596, 11216}, {5702, 17907}, {5749, 48630}, {5839, 17120}, {6154, 10755}, {6172, 17393}, {6337, 30435}, {6749, 43981}, {7392, 34565}, {7581, 12322}, {7582, 12323}, {7665, 20976}, {7716, 15471}, {7790, 32006}, {7798, 14033}, {7800, 41940}, {7805, 32968}, {7813, 14001}, {7838, 14064}, {7839, 33257}, {7845, 33223}, {7850, 33230}, {7856, 32823}, {7871, 32952}, {7877, 32956}, {7905, 14069}, {7917, 33194}, {7926, 33285}, {8550, 14927}, {8573, 44180}, {8889, 11225}, {9308, 62213}, {9544, 56918}, {9545, 51730}, {9822, 61692}, {9969, 15531}, {9973, 11002}, {10008, 32887}, {10168, 51179}, {10301, 12167}, {10304, 51132}, {10519, 15720}, {10552, 39024}, {11179, 48880}, {11180, 38071}, {11206, 34777}, {11291, 35770}, {11292, 35771}, {11405, 46444}, {11411, 14627}, {11422, 35260}, {11477, 62097}, {11539, 51174}, {11737, 14848}, {11898, 61905}, {12017, 17504}, {12150, 32817}, {12220, 22829}, {12272, 58471}, {13330, 33254}, {14269, 39899}, {14482, 14907}, {14561, 55714}, {14683, 41595}, {14869, 34380}, {14897, 38262}, {15004, 63174}, {15516, 61836}, {15681, 48906}, {15688, 44456}, {15692, 55699}, {15698, 55691}, {15700, 55705}, {15705, 51138}, {15707, 50962}, {15708, 50973}, {15717, 55703}, {15749, 23047}, {15808, 34379}, {16051, 61712}, {16491, 50999}, {16666, 17257}, {16667, 17321}, {16668, 26626}, {16669, 17316}, {16671, 26685}, {16885, 29585}, {17014, 17347}, {17040, 43697}, {17233, 61330}, {17351, 50129}, {17710, 62187}, {18358, 61933}, {18843, 43676}, {18906, 41622}, {18909, 36749}, {18925, 37493}, {18935, 21639}, {19125, 37897}, {19459, 20850}, {19535, 37492}, {19708, 55594}, {20054, 49690}, {20125, 34155}, {20423, 39874}, {21296, 48637}, {21734, 55591}, {21735, 55587}, {22495, 43031}, {22496, 43030}, {25321, 32255}, {27191, 32093}, {27377, 40138}, {29181, 62149}, {31492, 55819}, {31670, 55715}, {32002, 33630}, {32099, 48640}, {32114, 52699}, {32217, 47466}, {32220, 46517}, {33464, 40693}, {33465, 40694}, {33698, 54720}, {33749, 48873}, {33750, 55584}, {33878, 34200}, {34747, 49684}, {35018, 40330}, {35019, 59409}, {36794, 52710}, {36851, 39125}, {37893, 62190}, {37900, 47464}, {38098, 51169}, {38110, 61850}, {38292, 40680}, {39707, 51002}, {40673, 58555}, {40814, 44136}, {41106, 42785}, {41716, 44495}, {43273, 62153}, {43542, 51487}, {43543, 51486}, {43621, 62052}, {44882, 62125}, {47462, 47629}, {47478, 50955}, {47599, 51182}, {48876, 55863}, {48881, 50976}, {48905, 62166}, {49685, 50303}, {49765, 49783}, {50588, 50600}, {50687, 51136}, {50958, 61930}, {50961, 61899}, {50966, 55586}, {50970, 62056}, {50981, 61827}, {50982, 61844}, {50985, 61864}, {50986, 61909}, {51027, 61954}, {51130, 61992}, {51141, 55712}, {51155, 53620}, {51166, 62148}, {51190, 60933}, {51194, 60942}, {51213, 54131}, {51732, 61853}, {52519, 60280}, {53093, 61798}, {53102, 60636}, {53109, 60219}, {54173, 55710}, {54174, 55646}, {54494, 60631}, {55603, 62066}, {55604, 62065}, {55607, 62063}, {55610, 62062}, {55612, 62061}, {55618, 58188}, {55622, 62060}, {55636, 62058}, {55639, 62057}, {55642, 62055}, {55678, 61779}, {55688, 61787}, {55695, 61138}, {55724, 62087}, {55727, 55787}, {55732, 55776}, {55741, 55763}, {55795, 55827}, {55800, 55821}, {55804, 55816}, {59405, 60980}

X(62995) = reflection of X(i) in X(j) for these {i,j}: {11180, 50957}, {3523, 55711}, {51177, 11179}, {51213, 54131}, {54170, 50969}, {69, 3619}
X(62995) = isotomic conjugate of X(60636)
X(62995) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53102, 2}
X(62995) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53102, 6327}
X(62995) = pole of line {11997, 51488} with respect to the Feuerbach hyperbola
X(62995) = pole of line {6467, 59373} with respect to the Jerabek hyperbola
X(62995) = pole of line {2, 55790} with respect to the Wallace hyperbola
X(62995) = pole of line {3265, 8644} with respect to the dual conic of Orthic inconic
X(62995) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(40341)}}, {{A, B, C, X(66), X(15533)}}, {{A, B, C, X(69), X(53105)}}, {{A, B, C, X(599), X(17040)}}, {{A, B, C, X(3629), X(18843)}}, {{A, B, C, X(3631), X(60219)}}, {{A, B, C, X(10513), X(57823)}}, {{A, B, C, X(11008), X(53109)}}, {{A, B, C, X(13622), X(60631)}}, {{A, B, C, X(18842), X(20583)}}, {{A, B, C, X(34898), X(51186)}}, {{A, B, C, X(40405), X(59373)}}, {{A, B, C, X(41909), X(51171)}}, {{A, B, C, X(50771), X(52519)}}
X(62995) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6329, 3618}, {6, 3629, 2}, {6, 6144, 597}, {193, 3618, 69}, {576, 14912, 51212}, {597, 6144, 3620}, {1353, 11482, 14853}, {1992, 3618, 193}, {5032, 8584, 1992}, {5102, 12007, 20}, {33749, 55717, 48873}


X(62996) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3630), X(3), X(6))

Barycentrics    11*a^2-3*(b^2+c^2) : :
X(62996) = -9*X[2]+14*X[6], -3*X[4]+8*X[55716], -28*X[182]+23*X[61807], -9*X[376]+4*X[55585], -2*X[548]+7*X[1353], -28*X[576]+13*X[61964], -3*X[631]+4*X[55710], -14*X[1350]+19*X[62083], -7*X[1351]+2*X[3627], -9*X[1352]+14*X[42785], -2*X[1657]+7*X[6776], -3*X[2979]+8*X[22829] and many others

X(62996) lies on these lines: {2, 6}, {4, 55716}, {182, 61807}, {317, 33630}, {376, 55585}, {487, 6395}, {488, 6199}, {511, 17538}, {542, 62011}, {548, 1353}, {576, 61964}, {631, 55710}, {648, 63155}, {1350, 62083}, {1351, 3627}, {1352, 42785}, {1384, 6337}, {1503, 50691}, {1657, 6776}, {2979, 22829}, {3087, 56021}, {3090, 15520}, {3098, 14912}, {3161, 50132}, {3247, 54280}, {3524, 55696}, {3525, 15516}, {3528, 55601}, {3529, 55720}, {3564, 3843}, {3625, 3751}, {3633, 51192}, {3818, 61973}, {3850, 14853}, {3879, 3973}, {3926, 21309}, {4254, 21517}, {4409, 32029}, {4644, 17117}, {4668, 5847}, {4718, 49496}, {4856, 50101}, {5008, 7758}, {5050, 12108}, {5072, 5093}, {5092, 61138}, {5102, 5921}, {5120, 21538}, {5207, 44496}, {5839, 17116}, {6392, 53418}, {7229, 50077}, {7392, 44107}, {7760, 32006}, {7762, 43448}, {7767, 22246}, {7795, 14075}, {7798, 43619}, {7805, 43620}, {7811, 14482}, {7838, 31415}, {7882, 33221}, {7890, 14001}, {7949, 32951}, {8550, 55582}, {8573, 52437}, {8586, 33271}, {10008, 32889}, {10299, 55689}, {10519, 55705}, {11173, 33250}, {11179, 50966}, {11180, 23046}, {11188, 58555}, {11438, 53050}, {11477, 14927}, {11482, 12812}, {11898, 61919}, {12007, 55676}, {12017, 15712}, {12221, 42284}, {12222, 42283}, {12289, 29012}, {12322, 23267}, {12323, 23273}, {14093, 55604}, {14848, 61922}, {14890, 50978}, {14891, 55678}, {14892, 50955}, {14893, 18440}, {15301, 33239}, {15492, 17316}, {15684, 39899}, {15689, 48906}, {15706, 50979}, {16491, 34379}, {16671, 29579}, {16677, 29585}, {17040, 56072}, {17295, 61330}, {17813, 20079}, {18424, 41750}, {18583, 61911}, {18844, 60250}, {19130, 61951}, {19708, 55634}, {20065, 33267}, {20423, 61983}, {21850, 38335}, {22113, 42139}, {22114, 42142}, {22330, 42786}, {28322, 50129}, {31670, 50974}, {32220, 37899}, {33636, 41005}, {33748, 55699}, {33749, 55658}, {33750, 55632}, {34417, 63174}, {35418, 50965}, {40065, 52710}, {41672, 52886}, {41748, 43457}, {41983, 50987}, {42696, 62231}, {45759, 50967}, {46264, 46333}, {47277, 47315}, {47279, 47316}, {47356, 51193}, {48876, 61832}, {48905, 51028}, {48910, 51132}, {49681, 51155}, {49684, 50952}, {49688, 51001}, {49690, 51124}, {49783, 50019}, {50664, 61817}, {50954, 51178}, {50956, 61959}, {51129, 51215}, {51137, 51179}, {51174, 51184}, {51190, 60977}, {51194, 60962}, {51216, 54131}, {53091, 61840}, {53092, 61852}, {54173, 55691}, {55590, 62092}, {55596, 62084}, {55646, 58188}, {55653, 62058}, {55672, 61780}, {55693, 61795}, {55706, 61814}, {55724, 62141}, {55732, 55779}

X(62996) = reflection of X(i) in X(j) for these {i,j}: {11180, 50963}, {3620, 6}, {40330, 11482}, {50966, 11179}, {51193, 47356}, {51216, 54131}, {54170, 50975}, {69, 3618}
X(62996) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53107, 2}
X(62996) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53107, 6327}
X(62996) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(6144)}}, {{A, B, C, X(69), X(60209)}}, {{A, B, C, X(3620), X(41909)}}, {{A, B, C, X(3763), X(17040)}}, {{A, B, C, X(7925), X(62486)}}, {{A, B, C, X(15480), X(60325)}}, {{A, B, C, X(16774), X(40341)}}, {{A, B, C, X(18844), X(32455)}}, {{A, B, C, X(34898), X(50989)}}
X(62996) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 6144}, {6, 3620, 3618}, {6, 3630, 2}, {6, 524, 3620}, {6, 6144, 3630}, {193, 1992, 69}, {193, 3629, 1992}, {37517, 39874, 51212}


X(62997) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3945), X(3), X(6))

Barycentrics    7*a^2-(b-c)^2+2*a*(b+c) : :

X(62997) lies on these lines: {1, 144}, {2, 6}, {7, 1419}, {8, 4349}, {9, 29624}, {20, 62183}, {37, 61006}, {75, 4747}, {77, 60939}, {145, 894}, {192, 3623}, {269, 5256}, {344, 61330}, {346, 3758}, {347, 60975}, {387, 37161}, {452, 56020}, {519, 7229}, {553, 33633}, {651, 54358}, {800, 26636}, {938, 5942}, {991, 3522}, {1002, 3056}, {1014, 4254}, {1100, 3672}, {1253, 17126}, {1278, 31314}, {1279, 20072}, {1351, 7390}, {1386, 11038}, {1418, 4850}, {1423, 17474}, {1442, 12848}, {1475, 27624}, {1743, 5308}, {2257, 60969}, {2263, 17016}, {2280, 7175}, {2293, 17018}, {2334, 12632}, {2345, 17372}, {2650, 20535}, {3019, 50687}, {3146, 3332}, {3160, 52819}, {3161, 29574}, {3241, 3729}, {3247, 6172}, {3564, 7407}, {3616, 4416}, {3617, 17363}, {3622, 7290}, {3662, 32093}, {3663, 60984}, {3664, 4859}, {3731, 4909}, {3751, 39587}, {3832, 5733}, {3873, 43216}, {3879, 5749}, {4000, 16666}, {4034, 5936}, {4208, 49743}, {4232, 44100}, {4266, 18164}, {4307, 4649}, {4340, 56999}, {4346, 17365}, {4360, 4454}, {4371, 50131}, {4373, 50128}, {4393, 4452}, {4402, 50116}, {4419, 7277}, {4431, 20050}, {4445, 26039}, {4460, 4659}, {4470, 17362}, {4488, 20057}, {4663, 5686}, {4670, 5839}, {4675, 16668}, {4678, 28604}, {4758, 62681}, {4795, 4852}, {4856, 25590}, {4888, 50114}, {4898, 50118}, {4916, 17281}, {4982, 52709}, {5218, 38293}, {5543, 60937}, {5716, 20008}, {5750, 32099}, {6738, 10405}, {6846, 36750}, {6964, 45931}, {6994, 41083}, {7190, 60998}, {7269, 60934}, {8557, 61025}, {9965, 17011}, {10394, 58906}, {11109, 56013}, {13329, 15717}, {15022, 45942}, {15851, 25932}, {16487, 38314}, {16670, 18230}, {16676, 60983}, {16834, 31995}, {16970, 29570}, {17015, 61086}, {17023, 21296}, {17116, 50129}, {17120, 17316}, {17121, 24599}, {17248, 46934}, {17253, 61302}, {17302, 45789}, {17312, 30833}, {17319, 50294}, {17321, 17329}, {17324, 17364}, {17333, 35227}, {17350, 29585}, {17390, 54389}, {17391, 26685}, {17394, 54280}, {19783, 20077}, {20019, 50408}, {20096, 44858}, {20110, 57280}, {20214, 25417}, {21002, 61155}, {21059, 30652}, {21734, 50677}, {22253, 48817}, {24554, 40133}, {27340, 45744}, {28635, 50082}, {29602, 59579}, {31145, 48628}, {31721, 61007}, {33148, 42082}, {36742, 37434}, {37254, 37492}, {39567, 49496}, {39581, 51196}, {39595, 46873}, {39878, 44431}, {40940, 41825}, {49745, 50725}, {50292, 56086}, {50577, 50596}, {59215, 60941}

X(62997) = anticomplement of X(5232)
X(62997) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60077, 2}
X(62997) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60077, 6327}
X(62997) = pole of line {523, 2527} with respect to the Steiner circumellipse
X(62997) = pole of line {1125, 4312} with respect to the dual conic of Yff parabola
X(62997) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(24557)}}, {{A, B, C, X(86), X(56043)}}, {{A, B, C, X(333), X(55937)}}, {{A, B, C, X(2287), X(42317)}}, {{A, B, C, X(5232), X(8814)}}, {{A, B, C, X(17343), X(38259)}}, {{A, B, C, X(37674), X(42290)}}
X(62997) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1449, 17014}, {86, 1992, 391}, {145, 894, 4461}, {1100, 4644, 3672}, {1449, 4667, 7}, {3618, 4869, 2}, {3664, 16667, 5222}, {3672, 4644, 20059}, {4795, 4852, 7222}, {17391, 26685, 29621}


X(62998) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(4417), X(3), X(6))

Barycentrics    a^3-b^3-a*b*c-c^3+2*a^2*(b+c) : :

X(62998) lies on these lines: {2, 6}, {3, 20077}, {4, 20018}, {5, 56018}, {7, 17490}, {8, 1215}, {27, 27377}, {41, 40597}, {42, 4388}, {43, 4645}, {44, 33116}, {51, 5208}, {57, 17364}, {63, 20072}, {100, 20101}, {145, 497}, {149, 20011}, {192, 329}, {194, 6999}, {200, 50289}, {210, 33073}, {226, 239}, {238, 29839}, {306, 17280}, {312, 3765}, {319, 44417}, {320, 3752}, {321, 17788}, {330, 43071}, {345, 17350}, {386, 1330}, {388, 20036}, {469, 9308}, {518, 29840}, {519, 33106}, {540, 4256}, {740, 33096}, {752, 60714}, {894, 3687}, {899, 32949}, {908, 1999}, {1046, 17748}, {1386, 29838}, {1449, 29841}, {1699, 49495}, {1724, 25650}, {1757, 29671}, {1836, 62392}, {1931, 40605}, {2308, 29846}, {2550, 59295}, {2975, 21321}, {2996, 45100}, {2999, 3662}, {3061, 17316}, {3151, 3164}, {3187, 17035}, {3210, 4440}, {3240, 6327}, {3434, 20012}, {3452, 3879}, {3487, 19851}, {3666, 6646}, {3681, 33070}, {3685, 4028}, {3705, 3751}, {3759, 3772}, {3769, 37764}, {3771, 16468}, {3779, 25306}, {3791, 17719}, {3832, 20019}, {3846, 4649}, {3870, 49704}, {3873, 5211}, {3875, 28609}, {3896, 5057}, {3944, 49488}, {3952, 33093}, {3969, 41242}, {3995, 4053}, {4001, 24627}, {4035, 17353}, {4054, 50306}, {4062, 32930}, {4080, 55027}, {4090, 32847}, {4104, 16830}, {4192, 56181}, {4263, 25059}, {4340, 56768}, {4358, 26791}, {4360, 4415}, {4365, 14459}, {4416, 38000}, {4418, 61707}, {4430, 58371}, {4473, 17776}, {4641, 32851}, {4651, 33112}, {4654, 48627}, {4656, 17319}, {4660, 42043}, {4661, 29832}, {4663, 33121}, {4671, 20017}, {4672, 33160}, {4683, 46904}, {4685, 33109}, {4700, 58463}, {4703, 9791}, {4716, 48643}, {4722, 33119}, {4734, 24248}, {4849, 32850}, {4850, 26840}, {4851, 18743}, {4886, 31993}, {4892, 33132}, {4970, 33099}, {4974, 33130}, {5222, 26132}, {5256, 17302}, {5435, 24685}, {5748, 26136}, {5813, 21216}, {5846, 20056}, {5847, 7081}, {6625, 34258}, {6630, 14628}, {6679, 16477}, {6685, 33082}, {6996, 7762}, {7308, 17244}, {7377, 7754}, {7384, 7785}, {8055, 39360}, {9534, 26051}, {10441, 50579}, {10446, 50577}, {11235, 49680}, {11523, 50582}, {11679, 17363}, {13571, 18206}, {13740, 41014}, {14547, 34772}, {16475, 29634}, {16602, 17376}, {16670, 56519}, {17011, 26580}, {17012, 17184}, {17017, 33065}, {17022, 17391}, {17027, 30961}, {17080, 17950}, {17121, 40940}, {17135, 33107}, {17147, 17484}, {17150, 33153}, {17165, 32842}, {17242, 30568}, {17298, 23511}, {17299, 42034}, {17314, 56084}, {17315, 35652}, {17362, 55095}, {17367, 25527}, {17373, 34255}, {17386, 20942}, {17389, 31142}, {17483, 17495}, {17491, 33102}, {17596, 17770}, {17677, 48847}, {17717, 32853}, {17777, 32915}, {17779, 24169}, {17793, 26139}, {18163, 29472}, {19270, 49716}, {19278, 54429}, {19542, 56020}, {19766, 37164}, {19767, 26117}, {19804, 26806}, {19998, 33110}, {20040, 20060}, {20043, 30699}, {20065, 37416}, {20171, 20921}, {20290, 33086}, {20533, 20537}, {20928, 26612}, {21060, 49476}, {21075, 41261}, {21076, 56810}, {21805, 33072}, {22020, 41232}, {22253, 36731}, {23958, 30577}, {24239, 34379}, {24599, 41913}, {24703, 49470}, {24725, 32860}, {24789, 29590}, {25496, 33084}, {25568, 51192}, {25760, 61358}, {26223, 33077}, {27003, 62620}, {27542, 61397}, {27547, 41883}, {27757, 56520}, {29474, 53391}, {29569, 44307}, {29588, 34064}, {29592, 37869}, {29628, 41867}, {29821, 33064}, {29844, 49498}, {29849, 32912}, {30867, 39595}, {31018, 41839}, {31300, 32939}, {31623, 54372}, {32846, 59511}, {32848, 32938}, {32852, 32931}, {32855, 32935}, {32856, 32924}, {32864, 33105}, {32920, 50015}, {32921, 33101}, {32932, 41011}, {32937, 33088}, {32944, 33081}, {33075, 46897}, {33135, 49489}, {33141, 49497}, {33152, 49477}, {33155, 45222}, {33157, 41241}, {37443, 54383}, {37467, 37502}, {37520, 62230}, {40744, 41243}, {48642, 49985}, {49496, 56555}, {49743, 56766}, {50017, 59730}, {50295, 59297}, {54119, 60071}, {60107, 60236}, {60155, 60257}

X(62998) = reflection of X(i) in X(j) for these {i,j}: {29840, 33071}
X(62998) = anticomplement of X(14829)
X(62998) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2051, 2}
X(62998) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 1764}, {2051, 6327}, {20028, 17137}, {34434, 69}, {40453, 314}, {51870, 21287}, {52150, 75}, {53083, 17135}, {54121, 315}, {56188, 21301}, {56194, 20295}, {56252, 21304}, {57905, 21275}, {59006, 7192}, {60817, 329}
X(62998) = pole of line {4897, 14284} with respect to the incircle
X(62998) = pole of line {5836, 11997} with respect to the Feuerbach hyperbola
X(62998) = pole of line {523, 1769} with respect to the Steiner circumellipse
X(62998) = pole of line {4763, 57066} with respect to the dual conic of incircle
X(62998) = pole of line {1125, 17596} with respect to the dual conic of Yff parabola
X(62998) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37683)}}, {{A, B, C, X(69), X(60261)}}, {{A, B, C, X(81), X(54120)}}, {{A, B, C, X(193), X(45100)}}, {{A, B, C, X(226), X(17300)}}, {{A, B, C, X(321), X(37653)}}, {{A, B, C, X(333), X(60149)}}, {{A, B, C, X(940), X(6625)}}, {{A, B, C, X(1029), X(37639)}}, {{A, B, C, X(1150), X(54119)}}, {{A, B, C, X(1654), X(34258)}}, {{A, B, C, X(2996), X(37655)}}, {{A, B, C, X(4080), X(32863)}}, {{A, B, C, X(5395), X(37666)}}, {{A, B, C, X(16704), X(55027)}}, {{A, B, C, X(17349), X(60107)}}, {{A, B, C, X(17778), X(60071)}}, {{A, B, C, X(18141), X(60236)}}, {{A, B, C, X(27644), X(43071)}}, {{A, B, C, X(37652), X(60155)}}, {{A, B, C, X(37684), X(60156)}}
X(62998) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5739, 1654}, {306, 27064, 17280}, {333, 5718, 2}, {386, 1330, 4201}, {518, 33071, 29840}, {1215, 32861, 8}, {1386, 33126, 29838}, {3187, 31053, 37759}, {3210, 5905, 4440}, {3666, 33066, 6646}, {3846, 4649, 29837}, {4703, 17592, 9791}, {4850, 32859, 26840}, {5256, 27184, 17302}


X(62999) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(4869), X(3), X(6))

Barycentrics    5*a^2-3*b^2+2*b*c-3*c^2+2*a*(b+c) : :

X(62999) lies on these lines: {1, 21296}, {2, 6}, {7, 145}, {8, 3664}, {9, 29621}, {20, 31774}, {75, 3621}, {77, 34772}, {85, 20008}, {142, 24599}, {144, 17261}, {192, 20059}, {269, 3870}, {319, 4678}, {320, 3623}, {344, 17387}, {345, 62230}, {346, 4644}, {377, 20019}, {519, 4888}, {536, 4916}, {894, 29616}, {1002, 17792}, {1014, 4188}, {1122, 34791}, {1444, 17548}, {1743, 29627}, {2321, 35578}, {2345, 4747}, {2550, 49680}, {3146, 10446}, {3161, 29573}, {3241, 3663}, {3244, 4862}, {3598, 29840}, {3616, 17272}, {3617, 5936}, {3622, 4357}, {3633, 53594}, {3662, 17014}, {3751, 39570}, {3873, 24471}, {3950, 4488}, {3973, 29600}, {3995, 20214}, {4000, 17376}, {4021, 20057}, {4029, 60977}, {4208, 56018}, {4307, 32941}, {4310, 49472}, {4328, 36846}, {4344, 4684}, {4346, 4360}, {4371, 4725}, {4402, 6173}, {4416, 5308}, {4419, 17390}, {4445, 4470}, {4454, 17314}, {4461, 6542}, {4667, 5749}, {4675, 5839}, {4700, 20195}, {4708, 28641}, {4748, 28639}, {4772, 31314}, {4795, 17229}, {4803, 48868}, {4856, 4859}, {4896, 17151}, {4898, 17132}, {4902, 51093}, {4909, 38314}, {5222, 17298}, {5564, 39704}, {6646, 29585}, {7190, 38460}, {7222, 17299}, {7229, 17294}, {7271, 32098}, {7277, 17311}, {7321, 20049}, {7613, 49488}, {7767, 37339}, {9797, 58816}, {9965, 18650}, {11038, 39567}, {11106, 20077}, {11679, 41825}, {14615, 26541}, {14929, 48813}, {16020, 51196}, {16284, 24993}, {16667, 21255}, {17024, 56328}, {17116, 50079}, {17120, 29579}, {17170, 20009}, {17243, 62706}, {17257, 17391}, {17270, 46933}, {17276, 50125}, {17279, 61330}, {17288, 26626}, {17312, 26685}, {17317, 54280}, {17321, 17361}, {17350, 29583}, {17353, 30833}, {17377, 20014}, {17386, 50107}, {17388, 62223}, {17389, 60984}, {19826, 20046}, {20018, 56999}, {20052, 42696}, {20054, 52709}, {20060, 21279}, {20072, 61006}, {20245, 36854}, {21454, 62300}, {25716, 36640}, {25728, 29601}, {26039, 48635}, {30340, 32922}, {30806, 44735}, {30939, 44147}, {31145, 32087}, {32841, 51612}, {34282, 34284}, {36606, 39707}, {37448, 56013}, {48627, 50129}, {48632, 62212}, {48830, 50304}, {48856, 49505}, {49495, 59412}, {49543, 62403}, {49681, 51099}, {50110, 60971}, {53014, 59688}

X(62999) = reflection of X(i) in X(j) for these {i,j}: {391, 4648}, {31995, 4888}
X(62999) = anticomplement of X(391)
X(62999) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57826, 2}
X(62999) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56, 41915}, {2334, 329}, {4624, 21301}, {4866, 54113}, {5545, 7192}, {5936, 21286}, {8694, 4462}, {25430, 3436}, {34074, 4468}, {47915, 33650}, {56048, 20245}, {57663, 8}, {57701, 4329}, {57826, 6327}
X(62999) = pole of line {4897, 30719} with respect to the incircle
X(62999) = pole of line {523, 3676} with respect to the Steiner circumellipse
X(62999) = pole of line {4427, 25736} with respect to the Yff parabola
X(62999) = pole of line {2, 49734} with respect to the Wallace hyperbola
X(62999) = pole of line {1125, 4862} with respect to the dual conic of Yff parabola
X(62999) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(7), X(41629)}}, {{A, B, C, X(81), X(19604)}}, {{A, B, C, X(86), X(27818)}}, {{A, B, C, X(333), X(4373)}}, {{A, B, C, X(2287), X(3680)}}, {{A, B, C, X(4417), X(35510)}}, {{A, B, C, X(8814), X(37681)}}, {{A, B, C, X(10029), X(30941)}}, {{A, B, C, X(10106), X(35577)}}, {{A, B, C, X(14555), X(54454)}}, {{A, B, C, X(17271), X(57825)}}, {{A, B, C, X(17343), X(43681)}}
X(62999) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 3875, 4373}, {7, 3879, 145}, {7, 4460, 1266}, {69, 86, 5232}, {145, 32093, 7}, {145, 32105, 4460}, {145, 4373, 3875}, {320, 3672, 45789}, {391, 4648, 2}, {519, 4888, 31995}, {524, 4648, 391}, {1266, 32105, 4452}, {1266, 4460, 32105}, {1270, 1271, 4417}, {3617, 30712, 10436}, {3623, 45789, 3672}, {3945, 5232, 86}, {4667, 17296, 5749}, {7277, 17311, 54389}, {10436, 32099, 3617}, {11038, 51192, 39567}, {17257, 17391, 29624}, {17314, 17365, 4454}


X(63000) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5032), X(3), X(6))

Barycentrics    23*a^2-b^2-c^2 : :
X(63000) = -X[2]+8*X[6], -8*X[5]+X[51215], X[20]+20*X[11482], X[23]+20*X[47462], -8*X[140]+X[51179], -X[145]+8*X[51005], -16*X[182]+9*X[15705], X[376]+6*X[5093], 2*X[382]+5*X[51176], 2*X[546]+5*X[51180], 2*X[550]+5*X[51172], -32*X[575]+11*X[15717] and many others

X(63000) lies on these lines: {2, 6}, {3, 51181}, {4, 51173}, {5, 51215}, {20, 11482}, {23, 47462}, {140, 51179}, {145, 51005}, {182, 15705}, {376, 5093}, {382, 51176}, {439, 5007}, {511, 62063}, {542, 3832}, {546, 51180}, {550, 51172}, {575, 15717}, {576, 3522}, {598, 60625}, {631, 50962}, {671, 18845}, {1199, 34621}, {1350, 62056}, {1351, 10304}, {1352, 61930}, {1353, 3545}, {1503, 62005}, {1570, 51224}, {1656, 50986}, {1698, 51197}, {2549, 61046}, {2996, 60650}, {3091, 14848}, {3098, 62054}, {3146, 20423}, {3523, 50988}, {3524, 53091}, {3525, 50978}, {3529, 51211}, {3543, 14912}, {3544, 50954}, {3564, 61936}, {3616, 50952}, {3617, 51001}, {3621, 47359}, {3623, 4663}, {3628, 51175}, {3751, 51089}, {3839, 39884}, {3854, 38072}, {3926, 34571}, {4678, 28538}, {5050, 15692}, {5054, 61624}, {5056, 50955}, {5059, 43273}, {5068, 25561}, {5071, 59399}, {5085, 61778}, {5097, 48873}, {5102, 54170}, {5319, 5461}, {5395, 34505}, {5476, 5921}, {5477, 41135}, {5480, 61992}, {5485, 53489}, {5550, 51004}, {5702, 37174}, {6339, 34572}, {6776, 50687}, {6995, 11405}, {7426, 47463}, {7486, 38079}, {7745, 38259}, {7812, 32982}, {8541, 52301}, {8550, 17578}, {8591, 32981}, {8787, 14068}, {10299, 50987}, {10519, 55713}, {11002, 40673}, {11179, 15520}, {11180, 61944}, {11416, 59343}, {11443, 34565}, {11451, 61692}, {11477, 21734}, {11645, 62018}, {11898, 61899}, {12007, 62032}, {12017, 61781}, {12272, 58470}, {14482, 35955}, {14561, 61927}, {14683, 15303}, {14853, 61985}, {15022, 25565}, {15516, 54173}, {15640, 21850}, {15698, 55705}, {15702, 34380}, {15709, 51732}, {15710, 55584}, {15715, 55697}, {16043, 51588}, {16239, 51183}, {16670, 29585}, {17121, 35578}, {18440, 61966}, {18583, 61924}, {18800, 20094}, {18842, 32971}, {19708, 44456}, {19924, 62132}, {20014, 51000}, {20049, 47356}, {20059, 51002}, {20095, 51008}, {22234, 38064}, {25406, 62129}, {25555, 50961}, {30435, 35287}, {31400, 55803}, {31670, 62051}, {32985, 43136}, {32991, 50570}, {33205, 50639}, {33750, 55717}, {33878, 62059}, {37517, 62072}, {37760, 47464}, {37901, 47545}, {37907, 47277}, {38089, 46932}, {38110, 61846}, {39561, 61806}, {39874, 62007}, {39899, 41099}, {41895, 53418}, {42998, 51483}, {42999, 51482}, {46264, 62168}, {46933, 50950}, {47353, 61962}, {47549, 60455}, {48662, 61983}, {48876, 61844}, {48891, 62145}, {48906, 62160}, {50118, 50129}, {50689, 51023}, {50690, 51164}, {50692, 51024}, {50693, 50976}, {50786, 51196}, {50789, 51192}, {50963, 61982}, {50965, 62078}, {50966, 55724}, {50970, 55684}, {50975, 62125}, {50977, 61834}, {50983, 61804}, {51132, 53093}, {51138, 53097}, {51174, 61863}, {51182, 61881}, {51184, 55863}, {51212, 62148}, {51214, 61816}, {51737, 61044}, {54131, 62048}, {54737, 60147}, {55580, 58188}, {55593, 62058}, {55602, 58186}, {55604, 62055}, {55629, 58184}, {55692, 61780}, {55701, 61788}, {55715, 62099}, {55726, 55785}, {55792, 55829}, {55794, 55825}, {55805, 55814}, {60145, 60200}, {60639, 60648}, {61545, 61889}

X(63000) = reflection of X(i) in X(j) for these {i,j}: {15698, 55705}, {20, 51177}, {3, 51181}, {3146, 51213}, {4, 51173}
X(63000) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54639, 2}
X(63000) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54639, 6327}
X(63000) = pole of line {2, 11742} with respect to the Kiepert hyperbola
X(63000) = pole of line {6, 12045} with respect to the Stammler hyperbola
X(63000) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(60113)}}, {{A, B, C, X(193), X(60650)}}, {{A, B, C, X(524), X(18845)}}, {{A, B, C, X(599), X(60625)}}, {{A, B, C, X(1611), X(34572)}}, {{A, B, C, X(3054), X(52223)}}, {{A, B, C, X(3055), X(52224)}}, {{A, B, C, X(3620), X(60635)}}, {{A, B, C, X(5032), X(60145)}}, {{A, B, C, X(6339), X(34573)}}, {{A, B, C, X(10513), X(54737)}}, {{A, B, C, X(11160), X(54476)}}, {{A, B, C, X(18842), X(51170)}}, {{A, B, C, X(20080), X(53101)}}, {{A, B, C, X(21356), X(43681)}}, {{A, B, C, X(30535), X(59777)}}, {{A, B, C, X(31489), X(52188)}}, {{A, B, C, X(37637), X(52187)}}, {{A, B, C, X(41136), X(60118)}}, {{A, B, C, X(42349), X(44401)}}
X(63000) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 54174, 15705}, {193, 5032, 8584}, {599, 1992, 193}, {599, 8584, 1992}, {3329, 9740, 2}, {5476, 5921, 61954}, {14848, 50974, 3091}, {51737, 61044, 62095}


X(63001) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5232), X(3), X(6))

Barycentrics    5*a^2-3*b^2-2*b*c-3*c^2-2*a*(b+c) : :

X(63001) lies on these lines: {2, 6}, {4, 49718}, {7, 3686}, {8, 144}, {9, 29616}, {20, 49716}, {37, 4916}, {75, 20059}, {145, 3883}, {192, 3621}, {319, 346}, {344, 17360}, {390, 49460}, {527, 4034}, {894, 3617}, {1100, 4748}, {1330, 5801}, {1351, 7407}, {1441, 60975}, {1655, 50577}, {1743, 29611}, {2321, 6172}, {2322, 32001}, {2325, 60983}, {2345, 4690}, {3161, 17294}, {3177, 45744}, {3219, 3692}, {3416, 5686}, {3522, 54429}, {3564, 7390}, {3622, 4684}, {3625, 55998}, {3662, 24599}, {3672, 4643}, {3679, 7229}, {3681, 25304}, {3707, 17296}, {3879, 5296}, {3965, 24635}, {3973, 29594}, {4000, 17344}, {4001, 21454}, {4007, 60942}, {4061, 9778}, {4346, 4361}, {4357, 17014}, {4371, 17276}, {4373, 17117}, {4384, 21296}, {4402, 17274}, {4419, 17362}, {4445, 54389}, {4452, 6646}, {4454, 17347}, {4470, 7277}, {4644, 17275}, {4659, 60957}, {4678, 20072}, {4700, 17306}, {4715, 7222}, {4741, 45789}, {4795, 28633}, {4873, 61000}, {4875, 24554}, {4882, 62181}, {4967, 35578}, {4969, 17253}, {5016, 30694}, {5177, 56020}, {5222, 17272}, {5271, 30711}, {5698, 49485}, {5749, 17270}, {5756, 9534}, {5814, 54398}, {5847, 39587}, {6392, 46707}, {7172, 56555}, {14615, 26592}, {15683, 50215}, {16284, 25001}, {16814, 50076}, {16831, 62608}, {16833, 53598}, {17233, 62706}, {17247, 50129}, {17252, 26626}, {17258, 50077}, {17260, 29621}, {17261, 50079}, {17287, 26685}, {17289, 61330}, {17314, 17332}, {17316, 17331}, {17321, 17328}, {17329, 50101}, {17333, 31145}, {17334, 62224}, {17338, 30833}, {17555, 56013}, {17558, 41014}, {17787, 25278}, {19611, 20211}, {20008, 27288}, {20019, 26117}, {20052, 20073}, {20214, 28605}, {21384, 27624}, {22253, 48813}, {24199, 59375}, {24695, 42334}, {28641, 52706}, {28809, 34282}, {31994, 52819}, {31995, 50095}, {32003, 60937}, {32831, 34016}, {34379, 39581}, {39570, 60731}, {49497, 50295}, {49688, 50835}, {52709, 60933}, {56082, 56086}

X(63001) = reflection of X(i) in X(j) for these {i,j}: {3945, 966}, {32087, 4034}, {7222, 28634}
X(63001) = anticomplement of X(3945)
X(63001) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43533, 2}
X(63001) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {5665, 3434}, {43533, 6327}, {59079, 7192}, {63157, 17135}
X(63001) = pole of line {4843, 6563} with respect to the DeLongchamps circle
X(63001) = pole of line {11997, 17604} with respect to the Feuerbach hyperbola
X(63001) = pole of line {523, 3239} with respect to the Steiner circumellipse
X(63001) = pole of line {664, 4427} with respect to the Yff parabola
X(63001) = pole of line {2, 59538} with respect to the Wallace hyperbola
X(63001) = pole of line {57064, 57066} with respect to the dual conic of incircle
X(63001) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(81), X(3062)}}, {{A, B, C, X(86), X(10405)}}, {{A, B, C, X(14548), X(54454)}}, {{A, B, C, X(17375), X(43681)}}, {{A, B, C, X(18845), X(37677)}}, {{A, B, C, X(20090), X(38259)}}, {{A, B, C, X(26818), X(59170)}}
X(63001) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 144, 4461}, {8, 4416, 144}, {8, 4488, 4431}, {144, 10405, 45738}, {144, 5942, 30695}, {193, 1654, 2}, {319, 54280, 346}, {346, 54280, 61006}, {524, 966, 3945}, {527, 4034, 32087}, {3707, 17296, 18230}, {3879, 5296, 29624}, {4643, 5839, 3672}, {4715, 28634, 7222}, {17257, 17363, 145}, {17276, 50082, 4371}, {17328, 62231, 17321}, {17347, 42696, 4454}


X(63002) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5233), X(3), X(6))

Barycentrics    a^3-b^3-3*a*b*c-c^3+2*a^2*(b+c) : :
X(63002) = -2*X[24216]+3*X[50533]

X(63002) lies on these lines: {2, 6}, {4, 9567}, {7, 24620}, {8, 21805}, {43, 4388}, {44, 26070}, {145, 2551}, {149, 19998}, {192, 31018}, {210, 33071}, {239, 908}, {306, 17268}, {312, 17299}, {319, 30818}, {320, 16610}, {329, 3210}, {386, 26117}, {404, 20077}, {497, 20012}, {516, 5212}, {518, 5211}, {519, 13541}, {527, 62300}, {661, 4560}, {740, 17777}, {748, 29839}, {752, 56009}, {899, 4645}, {1054, 17770}, {1193, 5484}, {1330, 3216}, {1376, 20101}, {1465, 17950}, {1999, 3452}, {2051, 32431}, {2183, 3218}, {2345, 4144}, {2478, 20018}, {2651, 37510}, {2999, 17304}, {3187, 27131}, {3306, 17364}, {3421, 20037}, {3434, 59295}, {3436, 20036}, {3666, 17258}, {3681, 29840}, {3687, 17355}, {3689, 49709}, {3699, 5846}, {3740, 33073}, {3752, 17345}, {3759, 17720}, {3821, 17779}, {3875, 31142}, {3879, 5316}, {3930, 18228}, {3935, 49704}, {3952, 32842}, {3973, 59779}, {3975, 4358}, {3984, 50582}, {4023, 5263}, {4054, 17117}, {4071, 59772}, {4080, 40594}, {4090, 32866}, {4187, 56018}, {4416, 24627}, {4440, 17484}, {4473, 32849}, {4514, 4849}, {4651, 33107}, {4679, 49470}, {4685, 33106}, {4850, 6646}, {4851, 30829}, {4886, 44417}, {4966, 25531}, {4969, 4997}, {4974, 17719}, {5057, 62392}, {5121, 34379}, {5205, 5847}, {5208, 5943}, {5222, 31056}, {5239, 37794}, {5240, 37795}, {5256, 17396}, {5524, 17766}, {5529, 38456}, {5839, 9599}, {5905, 17490}, {6625, 60097}, {6686, 33085}, {9596, 16816}, {9780, 21026}, {9791, 46904}, {13741, 41014}, {15828, 56078}, {16569, 32946}, {17012, 17302}, {17020, 17184}, {17086, 56418}, {17121, 30867}, {17147, 26792}, {17280, 33077}, {17298, 54390}, {17347, 17595}, {17350, 17740}, {17361, 31233}, {17373, 30861}, {17376, 31197}, {17386, 18743}, {17721, 49450}, {17722, 49457}, {17748, 56313}, {17771, 18201}, {17796, 28829}, {20016, 30566}, {20054, 56075}, {21282, 62296}, {23638, 35614}, {24003, 32846}, {24216, 50533}, {24217, 49497}, {24589, 26806}, {25446, 37693}, {25960, 29837}, {26034, 59298}, {26079, 50411}, {26098, 59296}, {26139, 29824}, {26688, 32858}, {27002, 45204}, {27130, 30567}, {27391, 40958}, {27489, 49496}, {27526, 51407}, {27538, 33088}, {29590, 33129}, {29639, 60731}, {30578, 62227}, {31164, 48627}, {32779, 41241}, {32861, 59511}, {32927, 50015}, {37758, 62231}, {60071, 60149}, {60107, 60257}, {60155, 60261}

X(63002) = reflection of X(i) in X(j) for these {i,j}: {58371, 5211}
X(63002) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14554, 2}
X(63002) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {14554, 6327}, {50039, 21301}
X(63002) = pole of line {523, 2292} with respect to the Steiner circumellipse
X(63002) = pole of line {523, 32212} with respect to the Steiner inellipse
X(63002) = pole of line {901, 4427} with respect to the Yff parabola
X(63002) = pole of line {190, 3910} with respect to the Hutson-Moses hyperbola
X(63002) = pole of line {6544, 57066} with respect to the dual conic of incircle
X(63002) = pole of line {1054, 1125} with respect to the dual conic of Yff parabola
X(63002) = pole of line {45684, 57066} with respect to the dual conic of Suppa-Cucoanes circle
X(63002) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37684)}}, {{A, B, C, X(81), X(6630)}}, {{A, B, C, X(86), X(54452)}}, {{A, B, C, X(1150), X(60149)}}, {{A, B, C, X(1654), X(60097)}}, {{A, B, C, X(2051), X(17778)}}, {{A, B, C, X(6625), X(37633)}}, {{A, B, C, X(14829), X(54119)}}, {{A, B, C, X(16704), X(36936)}}, {{A, B, C, X(17232), X(60242)}}, {{A, B, C, X(17300), X(60071)}}, {{A, B, C, X(18141), X(60257)}}, {{A, B, C, X(21290), X(30577)}}, {{A, B, C, X(34258), X(37653)}}, {{A, B, C, X(37639), X(55027)}}, {{A, B, C, X(37652), X(60107)}}, {{A, B, C, X(37683), X(60155)}}
X(63002) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {239, 908, 37759}, {518, 5211, 58371}, {899, 32843, 4645}, {899, 4645, 26073}, {3752, 33066, 26840}, {4383, 4417, 2}, {17012, 26580, 17302}, {17484, 17495, 4440}, {20072, 62620, 30577}, {25960, 61358, 29837}


X(63003) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5241), X(3), X(6))

Barycentrics    a^3-b^3-b^2*c-b*c^2-c^3+a^2*(b+c)-a*(b^2+6*b*c+c^2) : :

X(63003) lies on these lines: {2, 6}, {4, 34466}, {7, 24589}, {8, 392}, {9, 3977}, {75, 31018}, {210, 49688}, {219, 28794}, {306, 7308}, {312, 5564}, {316, 50361}, {319, 30829}, {321, 18228}, {329, 4359}, {344, 33077}, {345, 27065}, {373, 10477}, {386, 37314}, {474, 54429}, {487, 21492}, {488, 21553}, {497, 4651}, {612, 49684}, {614, 4104}, {899, 50295}, {908, 4384}, {1001, 4023}, {1330, 37462}, {1376, 41002}, {1765, 21363}, {2478, 9534}, {2550, 21282}, {3006, 38057}, {3161, 50105}, {3218, 54280}, {3305, 3687}, {3306, 4416}, {3416, 61686}, {3434, 6818}, {3452, 5271}, {3686, 5316}, {3696, 4679}, {3707, 3911}, {3740, 3966}, {3785, 21540}, {3816, 4042}, {3926, 21516}, {3933, 21496}, {4000, 26580}, {4001, 5437}, {4054, 31142}, {4239, 36741}, {4388, 26038}, {4395, 19824}, {4402, 50102}, {4415, 19789}, {4419, 17495}, {4643, 16610}, {4644, 26627}, {4656, 50071}, {4671, 42696}, {4850, 17257}, {4886, 18743}, {4980, 41915}, {5219, 56927}, {5297, 51192}, {5686, 26272}, {5744, 59681}, {5748, 26872}, {5749, 41241}, {5813, 51413}, {5905, 7321}, {6327, 26040}, {6390, 11343}, {6646, 24620}, {6863, 18917}, {6933, 25446}, {7174, 49987}, {7767, 21519}, {9330, 32842}, {9599, 17275}, {9776, 32859}, {15601, 35263}, {16020, 33122}, {16408, 49716}, {16569, 26034}, {16816, 37759}, {16842, 41014}, {17012, 17321}, {17123, 33171}, {17135, 26105}, {17272, 54390}, {17314, 31035}, {17328, 31233}, {17331, 24627}, {17332, 17595}, {17333, 62300}, {17335, 32851}, {17344, 31197}, {17348, 17720}, {17366, 19823}, {17484, 42697}, {19544, 48906}, {19822, 27064}, {20020, 49679}, {21480, 52193}, {21481, 52194}, {21484, 44683}, {21805, 36479}, {23511, 54311}, {24003, 50308}, {24199, 31164}, {25650, 31259}, {25960, 33137}, {26037, 26098}, {26064, 56737}, {26118, 31670}, {26132, 26724}, {26685, 30479}, {26688, 56810}, {27549, 33089}, {27776, 50101}, {28605, 56084}, {28795, 51407}, {30615, 58629}, {30711, 42339}, {32022, 60071}, {33082, 62711}, {34258, 60155}, {38059, 50753}, {38316, 50744}, {39581, 46897}, {41236, 53489}, {48836, 50055}, {48866, 51591}, {48881, 50699}, {48905, 50698}, {49718, 51559}, {50043, 56082}, {50095, 62297}, {50296, 56009}, {57721, 60254}, {60075, 60242}, {60087, 60206}

X(63003) = isotomic conjugate of X(60169)
X(63003) = pole of line {2, 60169} with respect to the Wallace hyperbola
X(63003) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37633)}}, {{A, B, C, X(6), X(37503)}}, {{A, B, C, X(69), X(60097)}}, {{A, B, C, X(81), X(1000)}}, {{A, B, C, X(321), X(18141)}}, {{A, B, C, X(940), X(60155)}}, {{A, B, C, X(1150), X(32022)}}, {{A, B, C, X(4648), X(60071)}}, {{A, B, C, X(5712), X(60087)}}, {{A, B, C, X(17234), X(60242)}}, {{A, B, C, X(17378), X(57818)}}, {{A, B, C, X(18139), X(60254)}}, {{A, B, C, X(24597), X(60075)}}, {{A, B, C, X(25507), X(42339)}}, {{A, B, C, X(37642), X(57721)}}, {{A, B, C, X(37674), X(60156)}}, {{A, B, C, X(37684), X(60149)}}
X(63003) = barycentric product X(i)*X(j) for these (i, j): {37503, 76}
X(63003) = barycentric quotient X(i)/X(j) for these (i, j): {2, 60169}, {37503, 6}
X(63003) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 391, 1150}, {3305, 3687, 17776}, {4383, 5743, 2}, {33077, 35595, 344}


X(63004) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5276), X(3), X(6))

Barycentrics    a*(2*a^3+b*c*(b+c)+a*(2*b^2+b*c+2*c^2)) : :

X(63004) lies on these lines: {1, 33950}, {2, 6}, {8, 5280}, {9, 3920}, {21, 30435}, {22, 4254}, {23, 37503}, {32, 4189}, {37, 5332}, {39, 4188}, {58, 56777}, {83, 18135}, {145, 54416}, {169, 5262}, {194, 16919}, {218, 39587}, {251, 941}, {274, 7894}, {294, 17014}, {346, 20020}, {386, 56776}, {404, 9605}, {405, 43136}, {612, 1743}, {614, 16667}, {672, 17126}, {894, 31130}, {910, 4850}, {1100, 17024}, {1107, 7296}, {1172, 6995}, {1180, 2092}, {1194, 4263}, {1383, 39974}, {1384, 17549}, {1386, 2348}, {1390, 5220}, {1449, 7191}, {1575, 61156}, {1627, 5019}, {1655, 7787}, {1914, 61155}, {2082, 17016}, {2220, 59344}, {2246, 17025}, {2280, 17018}, {2298, 7123}, {2345, 33091}, {2475, 5286}, {2476, 5305}, {2548, 5154}, {3053, 17548}, {3063, 47805}, {3108, 39956}, {3219, 16517}, {3240, 3684}, {3241, 16785}, {3263, 3758}, {3287, 48208}, {3290, 16666}, {3509, 4392}, {3616, 5299}, {3622, 16502}, {3686, 29667}, {3720, 16779}, {3759, 26234}, {3767, 5141}, {3997, 50286}, {4194, 8743}, {4195, 26770}, {4200, 56832}, {4209, 18600}, {4232, 45786}, {4251, 19767}, {4266, 35988}, {4270, 54341}, {4307, 20344}, {4386, 17756}, {4430, 16973}, {4441, 20179}, {4667, 51400}, {4881, 9592}, {5007, 5283}, {5013, 37307}, {5024, 13587}, {5120, 7485}, {5257, 29648}, {5266, 25082}, {5274, 62372}, {5277, 7772}, {5282, 7226}, {5296, 16470}, {5297, 16670}, {5526, 48856}, {5711, 39570}, {5749, 10327}, {5750, 29679}, {5819, 19785}, {5839, 33090}, {6636, 36744}, {7031, 25092}, {7050, 23617}, {7174, 39958}, {7492, 54409}, {7738, 37256}, {7754, 17686}, {7760, 34284}, {7762, 17550}, {7839, 16915}, {7878, 18140}, {7920, 33841}, {7921, 17669}, {8024, 34283}, {10339, 26843}, {10459, 54329}, {10789, 40774}, {11114, 18907}, {11319, 27523}, {15048, 17579}, {15246, 36743}, {15484, 37375}, {15851, 25947}, {16370, 21309}, {16417, 22246}, {16503, 29814}, {16589, 17570}, {16782, 29570}, {16784, 38314}, {16787, 21808}, {16913, 40908}, {17011, 56517}, {17350, 31087}, {17566, 31406}, {17744, 30145}, {18145, 60855}, {20088, 33824}, {20980, 48164}, {23649, 37608}, {24239, 40128}, {24549, 29986}, {25907, 38292}, {26690, 37539}, {31477, 61157}, {32026, 53680}, {33150, 62693}, {35973, 45141}, {37353, 50036}, {39521, 44429}, {39951, 39975}, {40179, 40582}, {52210, 56899}, {56527, 56775}

X(63004) = pole of line {6, 21514} with respect to the Stammler hyperbola
X(63004) = pole of line {190, 35280} with respect to the Hutson-Moses hyperbola
X(63004) = pole of line {1125, 56777} with respect to the dual conic of Yff parabola
X(63004) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(25), X(37674)}}, {{A, B, C, X(37), X(3763)}}, {{A, B, C, X(81), X(39955)}}, {{A, B, C, X(86), X(56034)}}, {{A, B, C, X(141), X(941)}}, {{A, B, C, X(251), X(940)}}, {{A, B, C, X(599), X(39974)}}, {{A, B, C, X(981), X(33854)}}, {{A, B, C, X(1383), X(37633)}}, {{A, B, C, X(3108), X(4383)}}, {{A, B, C, X(3407), X(17002)}}, {{A, B, C, X(3589), X(39956)}}, {{A, B, C, X(3618), X(39975)}}, {{A, B, C, X(5737), X(56229)}}, {{A, B, C, X(7123), X(40153)}}, {{A, B, C, X(8770), X(37682)}}, {{A, B, C, X(30941), X(47697)}}, {{A, B, C, X(37676), X(39961)}}, {{A, B, C, X(37679), X(39951)}}, {{A, B, C, X(39798), X(47355)}}, {{A, B, C, X(39982), X(47352)}}
X(63004) = barycentric product X(i)*X(j) for these (i, j): {100, 47697}
X(63004) = barycentric quotient X(i)/X(j) for these (i, j): {47697, 693}
X(63004) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5276, 2}, {9, 21764, 17127}, {1100, 26242, 17024}, {1449, 40131, 7191}, {1655, 7787, 16920}


X(63005) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5304), X(3), X(6))

Barycentrics    (3*a^2+(b-c)^2)*(3*a^2+(b+c)^2) : :

X(63005) lies on these lines: {2, 6}, {3, 14482}, {4, 43136}, {20, 1285}, {32, 3522}, {39, 15717}, {83, 32834}, {98, 60118}, {115, 3832}, {147, 41672}, {187, 62063}, {194, 33201}, {251, 13342}, {262, 60336}, {346, 3744}, {376, 21309}, {393, 7408}, {428, 33630}, {439, 13357}, {549, 22246}, {574, 15705}, {800, 1180}, {1249, 6995}, {1383, 52187}, {1384, 10304}, {1627, 5065}, {1743, 21060}, {2548, 5368}, {2549, 15683}, {3053, 21734}, {3087, 7409}, {3091, 5305}, {3108, 52224}, {3146, 5007}, {3424, 5480}, {3523, 9605}, {3543, 18907}, {3553, 29815}, {3554, 17024}, {3598, 5222}, {3622, 9575}, {3767, 5068}, {3926, 7894}, {4027, 20094}, {4232, 5702}, {5008, 7739}, {5013, 61791}, {5023, 62060}, {5024, 15692}, {5041, 31400}, {5052, 44434}, {5059, 44526}, {5210, 62056}, {5254, 17578}, {5269, 5749}, {5299, 14986}, {5309, 61985}, {5346, 7603}, {5355, 14075}, {5475, 61954}, {5819, 62208}, {5838, 40940}, {6392, 7787}, {6636, 8573}, {6776, 9748}, {6781, 62132}, {7000, 7582}, {7374, 7581}, {7378, 16318}, {7386, 38292}, {7392, 59657}, {7398, 40179}, {7494, 15851}, {7618, 61046}, {7710, 12007}, {7738, 50693}, {7745, 50689}, {7753, 61944}, {7754, 33198}, {7755, 31404}, {7760, 32830}, {7762, 33180}, {7772, 61820}, {7776, 33182}, {7789, 32879}, {7797, 33200}, {7803, 7936}, {7839, 32973}, {7856, 32816}, {7878, 32828}, {7920, 32974}, {7921, 32972}, {8588, 62054}, {9543, 12963}, {9607, 44541}, {10311, 40138}, {10313, 59343}, {10691, 33636}, {11606, 18845}, {11648, 62030}, {12150, 32815}, {14001, 32840}, {14039, 22253}, {14484, 47586}, {14537, 62002}, {14929, 33230}, {15603, 62058}, {15655, 62059}, {16303, 37901}, {16306, 60455}, {16470, 27508}, {17409, 42458}, {17474, 40131}, {18842, 40727}, {20063, 47322}, {20065, 33025}, {20088, 32982}, {20194, 25406}, {20423, 44839}, {21843, 61812}, {22331, 62078}, {22564, 62367}, {26242, 40133}, {31401, 41940}, {31406, 55864}, {31415, 61927}, {31467, 61863}, {32818, 33183}, {32841, 33181}, {32873, 32970}, {33205, 36849}, {33748, 37182}, {34569, 39602}, {34572, 51316}, {34608, 59649}, {39593, 43619}, {40814, 59256}, {41020, 42999}, {41021, 42998}, {43291, 61936}, {43537, 60331}, {43618, 62051}, {43620, 61930}, {46951, 60855}, {50979, 60658}, {53095, 61778}, {53099, 54921}, {53418, 61992}, {53419, 62005}, {54519, 54815}, {54632, 54923}, {54706, 60324}, {54901, 60113}

X(63005) = X(i)-isoconjugate-of-X(j) for these {i, j}: {21446, 53089}
X(63005) = X(i)-complementary conjugate of X(j) for these {i, j}: {60327, 2887}
X(63005) = pole of line {2, 50960} with respect to the Kiepert hyperbola
X(63005) = pole of line {1125, 44431} with respect to the dual conic of Yff parabola
X(63005) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(53663)}}, {{A, B, C, X(4), X(10513)}}, {{A, B, C, X(69), X(60147)}}, {{A, B, C, X(81), X(5269)}}, {{A, B, C, X(83), X(14930)}}, {{A, B, C, X(86), X(3598)}}, {{A, B, C, X(141), X(52223)}}, {{A, B, C, X(183), X(60336)}}, {{A, B, C, X(251), X(17811)}}, {{A, B, C, X(325), X(60118)}}, {{A, B, C, X(333), X(5222)}}, {{A, B, C, X(393), X(3763)}}, {{A, B, C, X(394), X(39955)}}, {{A, B, C, X(599), X(52187)}}, {{A, B, C, X(3108), X(17825)}}, {{A, B, C, X(3589), X(52224)}}, {{A, B, C, X(3600), X(30941)}}, {{A, B, C, X(3755), X(5232)}}, {{A, B, C, X(7779), X(18845)}}, {{A, B, C, X(15480), X(41932)}}, {{A, B, C, X(15589), X(47586)}}, {{A, B, C, X(21358), X(34288)}}, {{A, B, C, X(34572), X(37672)}}, {{A, B, C, X(34573), X(51316)}}, {{A, B, C, X(37668), X(43951)}}, {{A, B, C, X(39389), X(59777)}}, {{A, B, C, X(46952), X(47355)}}, {{A, B, C, X(47352), X(52188)}}
X(63005) = barycentric product X(i)*X(j) for these (i, j): {3598, 7172}, {3600, 390}, {5222, 5749}, {5269, 62697}
X(63005) = barycentric quotient X(i)/X(j) for these (i, j): {3600, 56264}, {5269, 39959}, {5749, 39749}
X(63005) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 10513}, {6, 5306, 7736}, {1285, 15048, 20}, {3068, 3069, 3763}, {3069, 8974, 2}, {7585, 7586, 69}, {15048, 30435, 1285}, {16318, 40065, 7378}


X(63006) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5306), X(3), X(6))

Barycentrics    7*a^4+(b^2-c^2)^2+4*a^2*(b^2+c^2) : :

X(63006) lies on these lines: {2, 6}, {4, 5007}, {22, 14836}, {25, 40138}, {30, 5286}, {32, 376}, {39, 3524}, {98, 60127}, {115, 14075}, {187, 19708}, {194, 33255}, {251, 33872}, {262, 60185}, {315, 7884}, {381, 5305}, {383, 42999}, {387, 48848}, {388, 7296}, {393, 428}, {427, 62213}, {497, 5332}, {538, 14039}, {547, 31404}, {549, 9605}, {551, 9575}, {574, 14482}, {631, 7772}, {754, 33190}, {1080, 42998}, {1180, 3003}, {1249, 7714}, {1285, 2549}, {1384, 8703}, {1503, 9748}, {1506, 61895}, {1627, 5063}, {1914, 10385}, {1989, 7394}, {1990, 6995}, {2031, 51224}, {2165, 34572}, {2271, 13634}, {2452, 47154}, {2548, 5071}, {3053, 10304}, {3087, 5064}, {3090, 7755}, {3163, 40179}, {3284, 7386}, {3424, 53023}, {3522, 9607}, {3525, 41940}, {3528, 35007}, {3529, 7765}, {3533, 9698}, {3534, 15048}, {3543, 5254}, {3545, 3767}, {3584, 31402}, {3598, 17366}, {3628, 31407}, {3830, 18907}, {3839, 7745}, {3926, 33220}, {4220, 37503}, {4251, 48857}, {5013, 15692}, {5017, 54170}, {5021, 13635}, {5023, 62063}, {5024, 12100}, {5039, 20423}, {5041, 15702}, {5054, 31400}, {5066, 15484}, {5120, 21487}, {5158, 7494}, {5206, 15710}, {5210, 62059}, {5280, 10056}, {5283, 17561}, {5299, 10072}, {5325, 16517}, {5355, 7737}, {5475, 41106}, {5585, 62054}, {5702, 6353}, {5984, 51537}, {6034, 11177}, {6036, 55714}, {6103, 8889}, {6128, 15437}, {6179, 16043}, {6194, 13331}, {6337, 7839}, {6661, 7754}, {6680, 32818}, {6749, 7378}, {6781, 62135}, {7172, 17369}, {7484, 61301}, {7576, 41361}, {7603, 61913}, {7612, 60192}, {7710, 9753}, {7746, 34571}, {7747, 62017}, {7748, 62042}, {7749, 61859}, {7751, 16045}, {7756, 46333}, {7757, 13357}, {7758, 7880}, {7759, 32951}, {7760, 14001}, {7762, 33219}, {7764, 33189}, {7768, 33221}, {7770, 46951}, {7780, 32960}, {7783, 33266}, {7787, 19570}, {7797, 32006}, {7798, 32817}, {7799, 7894}, {7803, 7811}, {7804, 52713}, {7807, 32837}, {7809, 7856}, {7812, 16041}, {7817, 33285}, {7818, 33196}, {7821, 32953}, {7823, 33278}, {7827, 11057}, {7829, 7865}, {7838, 32823}, {7843, 33292}, {7858, 32969}, {7864, 33263}, {7873, 33232}, {7878, 32968}, {7888, 33195}, {7889, 18840}, {7920, 7924}, {8588, 62055}, {8589, 61777}, {9465, 26255}, {9592, 50828}, {9606, 10303}, {9620, 50810}, {9744, 60657}, {9755, 14853}, {9993, 39874}, {10124, 31467}, {10128, 59657}, {10299, 53096}, {10313, 13345}, {10315, 34607}, {10594, 56865}, {10691, 15905}, {10989, 16306}, {11172, 54905}, {11482, 56370}, {12108, 31470}, {12150, 14033}, {12212, 51212}, {13356, 33215}, {13881, 61936}, {14484, 54866}, {14492, 60150}, {14494, 54644}, {14568, 32983}, {14830, 41675}, {15513, 62058}, {15515, 61780}, {15655, 15759}, {15694, 31406}, {15701, 22246}, {15705, 15815}, {15709, 31401}, {15715, 37512}, {15717, 22332}, {15719, 21843}, {16303, 47313}, {16308, 37909}, {17024, 62211}, {18424, 61961}, {18537, 52950}, {18842, 60181}, {19099, 61389}, {19100, 61388}, {19569, 33017}, {19661, 53142}, {19709, 43291}, {21793, 41325}, {23249, 49262}, {23259, 49261}, {25406, 60651}, {26035, 51591}, {26613, 62367}, {28721, 41009}, {29815, 62210}, {31415, 61926}, {31417, 61921}, {31450, 61814}, {31455, 61861}, {31457, 61817}, {31492, 61834}, {31652, 61138}, {32869, 33198}, {32973, 59634}, {32978, 55085}, {33008, 34870}, {33191, 34511}, {33205, 59546}, {35906, 36874}, {36427, 43957}, {37122, 41366}, {37451, 53092}, {39565, 61947}, {39590, 61973}, {39951, 52188}, {41406, 42510}, {41407, 42511}, {41410, 53130}, {41411, 53131}, {42215, 61308}, {42216, 61309}, {43450, 50974}, {43537, 54522}, {43618, 62049}, {43619, 62165}, {43620, 61932}, {44422, 44500}, {44518, 50687}, {44519, 62129}, {44526, 62160}, {44535, 61844}, {44541, 62099}, {46944, 55651}, {51926, 52450}, {53095, 61781}, {53418, 61989}, {53419, 62007}, {54523, 60175}, {54582, 54612}, {54707, 54851}, {54717, 54845}, {54815, 60147}, {59232, 60652}, {62009, 62203}

X(63006) = X(i)-complementary conjugate of X(j) for these {i, j}: {54519, 2887}
X(63006) = pole of line {2, 41424} with respect to the Kiepert hyperbola
X(63006) = pole of line {48329, 57066} with respect to the dual conic of incircle
X(63006) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7788)}}, {{A, B, C, X(69), X(14458)}}, {{A, B, C, X(141), X(34288)}}, {{A, B, C, X(183), X(60185)}}, {{A, B, C, X(251), X(15066)}}, {{A, B, C, X(323), X(39955)}}, {{A, B, C, X(325), X(60127)}}, {{A, B, C, X(393), X(3619)}}, {{A, B, C, X(394), X(43706)}}, {{A, B, C, X(1007), X(60192)}}, {{A, B, C, X(1989), X(3763)}}, {{A, B, C, X(1993), X(34572)}}, {{A, B, C, X(2165), X(34573)}}, {{A, B, C, X(3618), X(52188)}}, {{A, B, C, X(3620), X(52223)}}, {{A, B, C, X(6531), X(37665)}}, {{A, B, C, X(9770), X(54905)}}, {{A, B, C, X(10513), X(54815)}}, {{A, B, C, X(15589), X(54866)}}, {{A, B, C, X(18842), X(41624)}}, {{A, B, C, X(20582), X(46204)}}, {{A, B, C, X(21356), X(60181)}}, {{A, B, C, X(26206), X(34570)}}, {{A, B, C, X(30537), X(47355)}}, {{A, B, C, X(34229), X(54644)}}, {{A, B, C, X(37668), X(54520)}}, {{A, B, C, X(37671), X(60150)}}, {{A, B, C, X(41932), X(50251)}}
X(63006) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 7788}, {2, 5304, 5306}, {2, 5306, 7735}, {6, 7735, 7736}, {32, 7739, 376}, {315, 7884, 33223}, {376, 7739, 7738}, {395, 396, 3763}, {597, 8667, 2}, {2549, 5008, 1285}, {3068, 3069, 3619}, {3767, 7753, 3545}, {5007, 5319, 4}, {6034, 12829, 11177}, {7737, 11648, 15682}, {7829, 14023, 32956}, {9607, 22331, 3522}, {9753, 14912, 7710}, {9755, 14853, 53015}, {14482, 46453, 574}


X(63007) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5712), X(3), X(6))

Barycentrics    3*a^3+5*a^2*(b+c)-(b-c)^2*(b+c)+a*(b+c)^2 : :

X(63007) lies on these lines: {1, 329}, {2, 6}, {4, 41083}, {7, 223}, {8, 5717}, {20, 581}, {34, 17016}, {42, 4307}, {57, 4266}, {73, 3600}, {75, 20043}, {92, 34231}, {144, 28606}, {145, 321}, {200, 4349}, {212, 5281}, {226, 1449}, {306, 5749}, {345, 3758}, {346, 26223}, {347, 45126}, {386, 4340}, {387, 5177}, {390, 14547}, {443, 49743}, {580, 3523}, {612, 61652}, {941, 57744}, {942, 14557}, {948, 7247}, {999, 19256}, {1014, 11350}, {1051, 17889}, {1104, 3622}, {1212, 29624}, {1214, 12848}, {1215, 50284}, {1255, 56043}, {1285, 35935}, {1330, 19766}, {1386, 3475}, {1427, 4850}, {1451, 5265}, {1453, 3616}, {1475, 27659}, {1817, 4254}, {2094, 62240}, {2271, 37274}, {2285, 3101}, {2299, 4232}, {2650, 56882}, {2999, 3664}, {3085, 54301}, {3091, 5713}, {3194, 4194}, {3304, 28364}, {3305, 5308}, {3332, 50696}, {3623, 38496}, {3666, 4644}, {3672, 5905}, {3681, 39587}, {3745, 25568}, {3750, 50303}, {3772, 16666}, {3839, 45924}, {3870, 4344}, {3879, 34255}, {3946, 4654}, {4189, 54431}, {4190, 52544}, {4208, 26131}, {4220, 44094}, {4224, 37492}, {4251, 24604}, {4255, 37267}, {4294, 59301}, {4310, 17017}, {4346, 17013}, {4393, 30699}, {4415, 16884}, {4419, 20182}, {4454, 17147}, {4649, 26098}, {4653, 48870}, {4658, 6919}, {4888, 24177}, {5045, 57705}, {5056, 45933}, {5219, 5822}, {5222, 5249}, {5262, 5813}, {5269, 63168}, {5274, 33107}, {5287, 18228}, {5395, 60257}, {5396, 50701}, {5698, 37593}, {5706, 37421}, {5707, 6848}, {5711, 7080}, {5748, 39595}, {5752, 51223}, {5809, 40960}, {5839, 31993}, {6824, 36750}, {6847, 36742}, {6944, 45931}, {6989, 37509}, {7078, 26872}, {7172, 46897}, {7191, 11038}, {7222, 42051}, {7390, 40952}, {7413, 14912}, {8232, 34048}, {8732, 52424}, {9605, 37280}, {9777, 37367}, {15852, 20070}, {16474, 34625}, {16485, 38314}, {16667, 40940}, {16780, 26626}, {16968, 29570}, {17019, 31018}, {17025, 30340}, {17120, 26065}, {17127, 54321}, {17315, 42032}, {17316, 27064}, {17321, 33066}, {17474, 28387}, {17576, 19765}, {17592, 24695}, {17723, 24477}, {18679, 40138}, {19762, 37297}, {19783, 26117}, {19789, 45222}, {20018, 50408}, {20173, 49478}, {21226, 29585}, {21296, 54311}, {23681, 50114}, {24589, 30712}, {24609, 30435}, {25091, 61009}, {25590, 41915}, {27383, 37554}, {29574, 30568}, {29621, 41241}, {31019, 62208}, {32087, 50306}, {33073, 59406}, {33109, 50282}, {33146, 52023}, {33761, 61006}, {34064, 56084}, {35988, 37538}, {36754, 37407}, {37037, 41014}, {37262, 37502}, {37279, 40065}, {37384, 54349}, {37435, 49745}, {45100, 60156}, {57722, 60092}, {57826, 60155}, {60071, 60167}

X(63007) = pole of line {6, 16293} with respect to the Stammler hyperbola
X(63007) = pole of line {523, 60492} with respect to the Steiner circumellipse
X(63007) = pole of line {4786, 57066} with respect to the dual conic of incircle
X(63007) = pole of line {1125, 4295} with respect to the dual conic of Yff parabola
X(63007) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(14552)}}, {{A, B, C, X(69), X(60170)}}, {{A, B, C, X(81), X(937)}}, {{A, B, C, X(321), X(5232)}}, {{A, B, C, X(333), X(60168)}}, {{A, B, C, X(391), X(60155)}}, {{A, B, C, X(940), X(57744)}}, {{A, B, C, X(941), X(965)}}, {{A, B, C, X(1150), X(60167)}}, {{A, B, C, X(1255), X(24557)}}, {{A, B, C, X(1427), X(37674)}}, {{A, B, C, X(2996), X(37653)}}, {{A, B, C, X(3620), X(60257)}}, {{A, B, C, X(4869), X(57722)}}, {{A, B, C, X(5278), X(60092)}}, {{A, B, C, X(5361), X(55944)}}, {{A, B, C, X(5395), X(37652)}}, {{A, B, C, X(5739), X(45100)}}, {{A, B, C, X(8025), X(56043)}}, {{A, B, C, X(25417), X(26637)}}, {{A, B, C, X(37655), X(60156)}}, {{A, B, C, X(37666), X(60082)}}
X(63007) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2895, 5232}, {2999, 3664, 9776}, {3666, 4644, 9965}, {4383, 4648, 2}, {5222, 41825, 5249}, {5905, 17011, 3672}


X(63008) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5718), X(3), X(6))

Barycentrics    a^3+3*a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2+c^2) : :

X(63008) lies on these lines: {1, 908}, {2, 6}, {4, 5396}, {7, 1465}, {8, 5725}, {37, 27491}, {42, 3434}, {51, 35612}, {58, 6910}, {78, 5717}, {83, 60242}, {100, 4307}, {145, 5724}, {226, 3946}, {306, 17286}, {312, 17315}, {329, 7961}, {345, 26223}, {346, 41242}, {377, 386}, {387, 2476}, {404, 4340}, {443, 26131}, {469, 41083}, {474, 49743}, {497, 17018}, {500, 6899}, {518, 17723}, {581, 6836}, {631, 5398}, {851, 37502}, {894, 17740}, {902, 50303}, {942, 51413}, {1056, 34586}, {1100, 9599}, {1191, 10587}, {1203, 10198}, {1215, 33088}, {1386, 17718}, {1449, 5219}, {1479, 59301}, {1723, 3305}, {1743, 54357}, {1757, 29657}, {1834, 6871}, {1848, 52033}, {2051, 60156}, {2271, 37233}, {2285, 24611}, {2308, 29678}, {2331, 30687}, {2334, 3813}, {2345, 33077}, {2361, 5218}, {2550, 3240}, {2999, 4859}, {3002, 14021}, {3006, 59406}, {3011, 16475}, {3085, 57280}, {3090, 45944}, {3091, 5721}, {3216, 37462}, {3218, 4644}, {3242, 17726}, {3247, 31142}, {3306, 3664}, {3310, 46401}, {3315, 11038}, {3332, 36002}, {3452, 5287}, {3475, 7191}, {3485, 17016}, {3487, 5262}, {3545, 45926}, {3616, 33122}, {3663, 31164}, {3666, 5905}, {3672, 33151}, {3687, 19822}, {3751, 29639}, {3758, 32851}, {3765, 4358}, {3875, 4054}, {3911, 4667}, {3920, 25568}, {3931, 11415}, {3974, 33093}, {3977, 50127}, {3995, 56084}, {4000, 17012}, {4190, 4255}, {4344, 63168}, {4349, 6745}, {4388, 59297}, {4393, 37759}, {4414, 24695}, {4415, 20182}, {4419, 17484}, {4641, 55868}, {4649, 11269}, {4653, 31156}, {4658, 6931}, {4671, 17314}, {4675, 16610}, {4679, 15569}, {4699, 27476}, {4719, 10404}, {4851, 30818}, {4888, 62695}, {5051, 19766}, {5132, 35980}, {5222, 26738}, {5226, 33133}, {5230, 10585}, {5292, 6933}, {5308, 43065}, {5530, 54421}, {5552, 5711}, {5603, 17015}, {5706, 6838}, {5707, 6834}, {5710, 10528}, {5713, 6835}, {5716, 34772}, {5723, 17014}, {5749, 32779}, {5751, 34462}, {5847, 29828}, {6667, 14969}, {6685, 26034}, {6826, 34465}, {6833, 36742}, {6856, 24883}, {6862, 36750}, {6872, 19765}, {6889, 36754}, {6890, 36746}, {6921, 37522}, {6947, 50317}, {6959, 45931}, {6962, 37530}, {6966, 37469}, {7292, 38053}, {7465, 36741}, {7737, 24296}, {8229, 14853}, {9371, 60925}, {9535, 37419}, {9776, 41825}, {9780, 48647}, {10327, 33073}, {10459, 56879}, {10588, 54355}, {11239, 51390}, {12116, 37698}, {14554, 60169}, {15934, 51419}, {16468, 29640}, {16474, 45700}, {16753, 17169}, {16845, 24936}, {16980, 35620}, {17011, 31053}, {17013, 33155}, {17017, 33144}, {17019, 27131}, {17020, 27186}, {17021, 62216}, {17025, 33148}, {17139, 25060}, {17310, 50027}, {17317, 30829}, {17321, 26580}, {17324, 27184}, {17329, 33066}, {17339, 17776}, {17364, 24627}, {17365, 17595}, {17372, 44417}, {17380, 19823}, {17495, 42697}, {17526, 25650}, {17532, 48847}, {17592, 33096}, {17594, 41011}, {17600, 33101}, {17721, 49478}, {17722, 49490}, {17724, 38315}, {17763, 50284}, {18228, 40937}, {18991, 55877}, {18992, 55876}, {19270, 54429}, {19273, 49716}, {19278, 20077}, {19544, 44094}, {21241, 50287}, {21242, 49497}, {22134, 26872}, {24025, 60923}, {24248, 24725}, {24477, 29680}, {24620, 26806}, {24703, 37593}, {25385, 49488}, {25496, 33171}, {25525, 26723}, {26065, 33113}, {26104, 30991}, {26105, 29814}, {26132, 32774}, {26139, 30990}, {26227, 51192}, {26364, 37559}, {26627, 62620}, {26685, 41241}, {26727, 51381}, {27385, 37554}, {27747, 50131}, {28634, 31993}, {29560, 32957}, {29569, 41838}, {29574, 62297}, {29585, 30566}, {29586, 31056}, {29624, 34522}, {29650, 33064}, {29671, 33163}, {29688, 32912}, {29825, 33082}, {29826, 49511}, {29855, 38049}, {30588, 32022}, {30741, 33114}, {30852, 39595}, {30944, 37507}, {31025, 42696}, {31091, 49524}, {31264, 32852}, {31266, 40940}, {32843, 50295}, {32844, 36479}, {32849, 54389}, {33105, 33137}, {33106, 42042}, {33109, 42043}, {33136, 50282}, {34263, 44733}, {35996, 37538}, {36740, 37449}, {36745, 37112}, {37374, 62183}, {37527, 44104}, {37691, 62212}, {39974, 41846}, {40434, 56043}, {45098, 60615}, {45100, 60170}, {45126, 57477}, {48870, 52680}, {50128, 62300}, {50301, 56009}, {50752, 59408}, {53673, 59596}, {54358, 60943}, {54689, 60139}, {57722, 60107}, {58012, 60097}, {60076, 60087}, {60082, 60254}

X(63008) = anticomplement of X(37660)
X(63008) = pole of line {46, 1125} with respect to the dual conic of Yff parabola
X(63008) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(26637)}}, {{A, B, C, X(4), X(1150)}}, {{A, B, C, X(69), X(60071)}}, {{A, B, C, X(81), X(998)}}, {{A, B, C, X(83), X(24597)}}, {{A, B, C, X(141), X(60242)}}, {{A, B, C, X(333), X(30513)}}, {{A, B, C, X(966), X(60097)}}, {{A, B, C, X(1029), X(5372)}}, {{A, B, C, X(2051), X(5739)}}, {{A, B, C, X(3578), X(54689)}}, {{A, B, C, X(4648), X(30588)}}, {{A, B, C, X(5235), X(32022)}}, {{A, B, C, X(5278), X(60107)}}, {{A, B, C, X(5361), X(55027)}}, {{A, B, C, X(5741), X(45098)}}, {{A, B, C, X(6625), X(37684)}}, {{A, B, C, X(14552), X(45100)}}, {{A, B, C, X(14555), X(60087)}}, {{A, B, C, X(14829), X(60156)}}, {{A, B, C, X(18141), X(57722)}}, {{A, B, C, X(24557), X(40434)}}, {{A, B, C, X(26860), X(56043)}}, {{A, B, C, X(32782), X(60254)}}, {{A, B, C, X(37633), X(58012)}}, {{A, B, C, X(37642), X(60082)}}, {{A, B, C, X(37653), X(60261)}}, {{A, B, C, X(37655), X(60170)}}, {{A, B, C, X(56433), X(57818)}}
X(63008) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 1150}, {2, 391, 5235}, {6, 5718, 2}, {226, 5256, 19785}, {226, 56418, 37800}, {1386, 17718, 26228}, {4255, 49745, 4190}, {4414, 61707, 24695}, {4649, 17717, 11269}, {5713, 37732, 6835}, {6685, 32946, 26034}, {17012, 31019, 4000}, {17594, 41011, 44447}, {29639, 61652, 3751}, {33105, 61358, 33137}


X(63009) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5739), X(3), X(6))

Barycentrics    3*a^3-b^3-b^2*c-b*c^2-c^3+3*a^2*(b+c)-a*(b+c)^2 : :

X(63009) lies on these lines: {2, 6}, {8, 26223}, {20, 5752}, {44, 17776}, {63, 4266}, {72, 145}, {144, 17147}, {209, 17784}, {226, 4700}, {239, 5813}, {306, 1743}, {312, 62231}, {321, 5839}, {329, 3187}, {346, 20017}, {386, 54429}, {390, 20011}, {406, 44097}, {511, 50699}, {518, 19993}, {519, 56082}, {612, 51196}, {614, 34379}, {756, 50284}, {894, 19825}, {908, 5822}, {957, 35058}, {1285, 16046}, {1351, 26118}, {1353, 19544}, {1453, 4101}, {1699, 50758}, {1757, 33088}, {1763, 3218}, {1999, 31018}, {2203, 4232}, {2323, 27540}, {2478, 56018}, {2996, 55027}, {2999, 4001}, {3058, 49680}, {3060, 54383}, {3091, 5810}, {3210, 20072}, {3305, 3879}, {3617, 5814}, {3672, 45222}, {3681, 20020}, {3729, 50306}, {3758, 4886}, {3759, 19785}, {3782, 19824}, {3793, 16431}, {3875, 17781}, {3896, 5698}, {3966, 4663}, {3969, 54389}, {4000, 32859}, {4080, 60168}, {4190, 10974}, {4220, 14912}, {4239, 44094}, {4254, 27174}, {4307, 4651}, {4359, 4644}, {4361, 19826}, {4371, 4980}, {4416, 5256}, {4420, 56220}, {4430, 61669}, {4452, 20214}, {4545, 60267}, {4641, 17740}, {4656, 4856}, {4678, 6539}, {4703, 49489}, {4720, 48817}, {4753, 4865}, {4852, 50071}, {4914, 47359}, {5093, 37360}, {5120, 37312}, {5222, 17184}, {5294, 16670}, {5423, 50000}, {5435, 62620}, {5749, 56810}, {5847, 10327}, {6542, 27523}, {6776, 50698}, {6872, 20018}, {9965, 14557}, {11245, 26052}, {12632, 20047}, {14021, 56527}, {16434, 34380}, {16468, 33171}, {16477, 33084}, {16669, 32777}, {17011, 17257}, {17121, 19823}, {17316, 27065}, {17332, 20182}, {17351, 50043}, {17363, 27064}, {17484, 30699}, {17526, 41014}, {17548, 54371}, {19256, 54391}, {19766, 26064}, {20012, 20075}, {20036, 20076}, {20046, 62227}, {20051, 56936}, {20101, 59295}, {20109, 28605}, {21361, 45751}, {21874, 42707}, {24695, 32860}, {26065, 33077}, {26098, 32864}, {26685, 32858}, {27505, 57706}, {27549, 33093}, {28538, 30615}, {28606, 54280}, {28950, 53994}, {30568, 50292}, {32843, 33137}, {32861, 33163}, {32945, 50303}, {32947, 50282}, {33075, 59406}, {33849, 63174}, {34048, 56927}, {34772, 54305}, {35578, 41915}, {37781, 55907}, {40603, 41316}, {48847, 50055}, {48870, 51592}, {50295, 61358}, {54425, 56559}, {55944, 60261}

X(63009) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60155, 2}
X(63009) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {57706, 4329}, {60155, 6327}
X(63009) = pole of line {4132, 6563} with respect to the DeLongchamps circle
X(63009) = pole of line {523, 21185} with respect to the Steiner circumellipse
X(63009) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(57705)}}, {{A, B, C, X(193), X(55027)}}, {{A, B, C, X(2996), X(32863)}}, {{A, B, C, X(5232), X(6539)}}, {{A, B, C, X(5395), X(37685)}}, {{A, B, C, X(8025), X(60077)}}, {{A, B, C, X(16704), X(60168)}}, {{A, B, C, X(19742), X(60092)}}, {{A, B, C, X(26637), X(40406)}}, {{A, B, C, X(31034), X(45100)}}, {{A, B, C, X(37639), X(60167)}}, {{A, B, C, X(37674), X(56219)}}, {{A, B, C, X(37683), X(55944)}}
X(63009) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {144, 20043, 17147}, {239, 5905, 19789}, {3681, 51192, 20020}, {3758, 4886, 19822}, {3759, 33066, 19785}, {5278, 5712, 2}, {19998, 20064, 17784}


X(63010) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5741), X(3), X(6))

Barycentrics    a^3-b^3-2*a*b*c-c^3+2*a^2*(b+c) : :

X(63010) lies on these lines: {2, 6}, {4, 5754}, {8, 33107}, {43, 6327}, {44, 33113}, {57, 62620}, {100, 20064}, {145, 1058}, {149, 20012}, {192, 26792}, {210, 33070}, {239, 5826}, {312, 20017}, {329, 17147}, {386, 17676}, {497, 20011}, {748, 29830}, {899, 32946}, {908, 3187}, {1330, 56782}, {1743, 56520}, {1757, 29849}, {1999, 27131}, {2323, 28826}, {2999, 17184}, {3091, 5797}, {3210, 17484}, {3240, 4388}, {3434, 19998}, {3436, 20040}, {3550, 42058}, {3617, 5827}, {3662, 17020}, {3681, 29832}, {3687, 26223}, {3752, 32859}, {3759, 33133}, {3817, 50758}, {3846, 29829}, {3896, 24703}, {3912, 26688}, {3952, 33088}, {3966, 46897}, {3980, 61707}, {3995, 21078}, {4011, 4062}, {4080, 30699}, {4090, 32854}, {4188, 20077}, {4193, 56018}, {4430, 5211}, {4649, 25960}, {4651, 26098}, {4661, 29840}, {4685, 33104}, {4703, 46904}, {4734, 33100}, {4849, 5014}, {4850, 33066}, {4865, 21805}, {4974, 33127}, {4981, 17723}, {5046, 20018}, {5192, 41014}, {5208, 5640}, {5256, 26580}, {5905, 17495}, {6542, 26791}, {9535, 50697}, {11238, 49680}, {16468, 29846}, {16569, 32949}, {17012, 27184}, {17350, 33168}, {17364, 27003}, {17483, 17490}, {17717, 32864}, {17779, 33125}, {18228, 31035}, {20036, 20060}, {20045, 25568}, {21283, 33106}, {21442, 28605}, {24620, 26842}, {27064, 33077}, {27538, 33093}, {29664, 60731}, {29821, 33065}, {29831, 33126}, {31080, 49496}, {31264, 50308}, {32777, 41241}, {32842, 32937}, {32852, 59511}, {32855, 32938}, {32860, 33096}, {32861, 32931}, {32924, 33101}, {32944, 33084}, {32947, 42043}, {33086, 59298}, {33110, 59295}, {33112, 59296}, {50292, 62297}, {55027, 60261}, {56084, 62227}

X(63010) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60087, 2}
X(63010) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60087, 6327}
X(63010) = pole of line {44445, 58374} with respect to the anticomplementary circle
X(63010) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37639)}}, {{A, B, C, X(1029), X(37684)}}, {{A, B, C, X(2051), X(31034)}}, {{A, B, C, X(5361), X(60149)}}, {{A, B, C, X(5372), X(54119)}}, {{A, B, C, X(16704), X(60155)}}, {{A, B, C, X(19742), X(60107)}}, {{A, B, C, X(31017), X(60254)}}, {{A, B, C, X(32863), X(60261)}}, {{A, B, C, X(37683), X(55027)}}, {{A, B, C, X(50256), X(54689)}}
X(63010) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {43, 32843, 6327}, {3681, 33071, 29832}, {3846, 61358, 29829}, {3936, 4383, 2}


X(63011) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6329), X(3), X(6))

Barycentrics    11*a^2+b^2+c^2 : :
X(63011) = 3*X[2]+10*X[6], X[4]+12*X[39561], -X[20]+14*X[55711], -20*X[182]+7*X[3528], -3*X[376]+16*X[50664], -2*X[382]+15*X[14853], 8*X[546]+5*X[6776], -2*X[550]+15*X[5050], -40*X[575]+X[3529], 20*X[576]+19*X[61814], 5*X[631]+8*X[5097], -10*X[1350]+23*X[61788] and many others

X(63011) lies on these lines: {2, 6}, {4, 39561}, {20, 55711}, {83, 52713}, {182, 3528}, {264, 5702}, {344, 16667}, {376, 50664}, {382, 14853}, {487, 6427}, {488, 6428}, {511, 10299}, {542, 61947}, {546, 6776}, {550, 5050}, {575, 3529}, {576, 61814}, {598, 54720}, {631, 5097}, {1078, 55787}, {1350, 61788}, {1351, 3530}, {1352, 55713}, {1353, 35018}, {1386, 20057}, {1444, 21510}, {1449, 25101}, {1503, 61982}, {1692, 33226}, {2548, 39143}, {2916, 37827}, {3090, 43150}, {3091, 12007}, {3098, 15715}, {3244, 16475}, {3448, 40342}, {3522, 55703}, {3523, 5102}, {3524, 37517}, {3544, 14561}, {3564, 5079}, {3626, 51192}, {3632, 49684}, {3636, 3751}, {3758, 31995}, {3759, 32087}, {3818, 3855}, {3851, 18583}, {3972, 14482}, {4254, 21524}, {4360, 61330}, {4739, 49496}, {4846, 40196}, {5008, 33215}, {5034, 33239}, {5038, 33254}, {5041, 14001}, {5054, 51214}, {5067, 5965}, {5085, 62067}, {5092, 15710}, {5093, 15720}, {5120, 21518}, {5222, 7321}, {5286, 53489}, {5346, 32975}, {5355, 32983}, {5476, 39874}, {5480, 33748}, {5564, 5749}, {5596, 10169}, {5640, 32366}, {6337, 7772}, {6390, 33242}, {7494, 34565}, {7738, 33257}, {7786, 55827}, {7800, 34571}, {7803, 33232}, {7838, 33221}, {7850, 32956}, {7878, 11185}, {7894, 16045}, {7926, 33196}, {8550, 51537}, {10301, 19118}, {10304, 55699}, {10519, 11482}, {10541, 61044}, {10753, 35021}, {10754, 35022}, {10755, 35023}, {10756, 35024}, {11002, 17710}, {11003, 56918}, {11179, 48895}, {11180, 61933}, {11206, 41593}, {11291, 35771}, {11292, 35770}, {11477, 61798}, {11898, 61892}, {12017, 34200}, {12317, 34155}, {14269, 50979}, {14535, 46951}, {14848, 15687}, {15520, 61836}, {15681, 21850}, {15688, 55705}, {15692, 55582}, {15698, 55594}, {15699, 51178}, {15700, 44456}, {15705, 55607}, {15707, 50967}, {15708, 51132}, {15717, 55722}, {16666, 26685}, {16668, 17316}, {16669, 26626}, {16670, 17321}, {16671, 17257}, {17120, 42697}, {17121, 42696}, {17504, 33878}, {18358, 61925}, {18440, 38071}, {18445, 18489}, {18841, 60642}, {18842, 60626}, {18843, 53105}, {18906, 32450}, {18919, 21637}, {19130, 51023}, {19537, 37492}, {19708, 55691}, {20050, 49688}, {20054, 49679}, {20423, 48892}, {21735, 55695}, {22844, 37177}, {22845, 37178}, {24981, 32255}, {25320, 56565}, {29181, 62125}, {31304, 51996}, {32002, 40065}, {32068, 52299}, {32220, 47629}, {33238, 39764}, {33276, 50659}, {33522, 53863}, {33750, 55701}, {34380, 61853}, {34747, 49529}, {34777, 35260}, {35019, 51200}, {35020, 51203}, {35482, 44494}, {37897, 47459}, {37900, 47460}, {38064, 55716}, {38110, 55863}, {40330, 61905}, {41099, 42785}, {41985, 51182}, {42287, 57897}, {43273, 62037}, {43697, 43726}, {44111, 63174}, {44882, 62149}, {46264, 55712}, {46517, 47461}, {47598, 51174}, {48836, 48870}, {48873, 55708}, {48876, 61850}, {48881, 53093}, {48905, 49135}, {48910, 62166}, {49765, 50030}, {50588, 50636}, {50955, 61909}, {50961, 61889}, {50966, 55658}, {50973, 61844}, {50985, 61871}, {51027, 61930}, {51028, 55646}, {51130, 62032}, {51136, 61954}, {51138, 62120}, {51140, 61899}, {51166, 62095}, {51172, 55632}, {51190, 60980}, {51737, 62122}, {53102, 60219}, {54131, 62153}, {55587, 61138}, {55591, 61791}, {55603, 61787}, {55604, 61786}, {55610, 61784}, {55618, 61783}, {55636, 61780}, {55639, 61779}, {55642, 61777}, {55678, 62057}, {55685, 62061}, {55688, 62066}, {55697, 62074}, {55731, 55774}, {55732, 55772}, {55790, 55821}, {55795, 55816}, {55800, 55813}, {59405, 60933}, {61624, 61858}, {62213, 63155}

X(63011) = pole of line {2, 55787} with respect to the Wallace hyperbola
X(63011) = pole of line {3265, 32478} with respect to the dual conic of Orthic inconic
X(63011) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3631)}}, {{A, B, C, X(69), X(53109)}}, {{A, B, C, X(141), X(60636)}}, {{A, B, C, X(599), X(43726)}}, {{A, B, C, X(3619), X(60642)}}, {{A, B, C, X(3630), X(17040)}}, {{A, B, C, X(5275), X(39984)}}, {{A, B, C, X(6664), X(51143)}}, {{A, B, C, X(11008), X(53102)}}, {{A, B, C, X(15598), X(60322)}}, {{A, B, C, X(18843), X(40341)}}, {{A, B, C, X(21356), X(60626)}}, {{A, B, C, X(37668), X(57897)}}
X(63011) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 3631}, {6, 141, 5032}, {6, 3618, 1992}, {6, 597, 193}, {6, 6329, 2}, {193, 3763, 69}, {1992, 3618, 3619}, {3631, 6329, 597}, {11482, 51732, 10519}, {53092, 59399, 6776}


X(63012) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6515), X(3), X(6))

Barycentrics    3*a^6-7*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(5*b^4-6*b^2*c^2+5*c^4) : :

X(63012) lies on these lines: {2, 6}, {4, 13292}, {20, 52}, {22, 14912}, {25, 1353}, {51, 43130}, {68, 1173}, {94, 60161}, {143, 37122}, {324, 3087}, {371, 56500}, {372, 56499}, {393, 14129}, {427, 5093}, {428, 39899}, {467, 1249}, {568, 18533}, {569, 3523}, {575, 43653}, {576, 1899}, {858, 18950}, {973, 41713}, {1199, 3547}, {1209, 7486}, {1351, 1370}, {1352, 15004}, {1368, 61624}, {1568, 39571}, {1587, 13428}, {1588, 13439}, {1995, 63174}, {2979, 44479}, {3060, 6776}, {3089, 35603}, {3146, 6146}, {3311, 56498}, {3312, 56497}, {3448, 7378}, {3522, 17834}, {3541, 18951}, {3542, 12161}, {3543, 61713}, {3564, 6997}, {3567, 6193}, {3796, 12007}, {3832, 45089}, {3839, 18474}, {4232, 9544}, {5012, 44470}, {5020, 61657}, {5319, 60524}, {5395, 11140}, {5640, 14826}, {5921, 7394}, {5943, 54013}, {6417, 56506}, {6418, 56504}, {6419, 11090}, {6420, 11091}, {6636, 37488}, {6749, 41244}, {6815, 11432}, {6816, 12160}, {6819, 56013}, {6995, 11002}, {7383, 36753}, {7398, 61666}, {7484, 34380}, {7487, 52000}, {7493, 11402}, {7499, 53091}, {7519, 34751}, {7528, 32358}, {7539, 59399}, {7592, 59349}, {7667, 44456}, {7714, 46818}, {8550, 33586}, {8780, 26255}, {8796, 13579}, {9306, 61677}, {9827, 11271}, {9937, 44802}, {9967, 62188}, {10304, 37478}, {10565, 11003}, {10706, 61989}, {10897, 55893}, {10898, 55897}, {11206, 41729}, {11431, 15043}, {11442, 14853}, {11550, 20423}, {11750, 49135}, {11898, 37439}, {12824, 14683}, {13142, 37201}, {13345, 40697}, {14561, 34565}, {14791, 45969}, {15246, 62174}, {15520, 21243}, {15692, 37513}, {15717, 37476}, {16625, 19467}, {16981, 20062}, {17479, 41563}, {17809, 32269}, {18916, 36747}, {18917, 39522}, {19062, 55896}, {19131, 33748}, {21849, 31383}, {21969, 46264}, {27377, 37192}, {32068, 54012}, {34603, 39874}, {34796, 49670}, {34986, 61506}, {37174, 41361}, {38110, 52719}, {38282, 61655}, {39116, 56891}, {40065, 52253}, {40196, 50692}, {41730, 61715}, {41895, 54927}, {43957, 50962}, {44111, 61644}, {45298, 46336}, {49224, 55886}, {49225, 55891}, {52423, 56447}, {53101, 54782}, {54444, 56449}, {54666, 54781}, {54801, 54893}

X(63012) = reflection of X(i) in X(j) for these {i,j}: {6997, 9777}
X(63012) = pole of line {6467, 14561} with respect to the Jerabek hyperbola
X(63012) = pole of line {523, 37971} with respect to the Steiner circumellipse
X(63012) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(36612)}}, {{A, B, C, X(323), X(60161)}}, {{A, B, C, X(393), X(53414)}}, {{A, B, C, X(394), X(38260)}}, {{A, B, C, X(1173), X(1993)}}, {{A, B, C, X(1994), X(5395)}}, {{A, B, C, X(3620), X(11140)}}, {{A, B, C, X(8796), X(45794)}}, {{A, B, C, X(11160), X(54927)}}, {{A, B, C, X(13854), X(37637)}}, {{A, B, C, X(31610), X(39113)}}
X(63012) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 6515, 2}, {1351, 11245, 1370}, {3060, 6776, 7500}, {3564, 9777, 6997}, {11402, 41588, 7493}, {11442, 53863, 14853}, {13292, 37493, 4}, {18951, 36749, 3541}, {27377, 56296, 37192}


X(63013) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6703), X(3), X(6))

Barycentrics    3*a^3+b^3+b^2*c+b*c^2+c^3+3*a^2*(b+c)+a*(b^2+4*b*c+c^2) : :

X(63013) lies on these lines: {1, 345}, {2, 6}, {3, 19766}, {4, 1798}, {7, 19786}, {8, 3745}, {20, 5799}, {21, 37538}, {37, 26065}, {57, 348}, {58, 13725}, {63, 2260}, {83, 60076}, {85, 18623}, {145, 5835}, {222, 63152}, {278, 41234}, {312, 5749}, {319, 19827}, {320, 19812}, {326, 5256}, {329, 3758}, {344, 5287}, {346, 34064}, {354, 960}, {377, 54417}, {387, 1010}, {388, 41258}, {497, 29837}, {551, 56523}, {553, 17304}, {579, 17185}, {604, 41243}, {612, 59406}, {631, 970}, {894, 29841}, {980, 14001}, {1088, 39716}, {1098, 37314}, {1125, 54386}, {1249, 31623}, {1444, 16368}, {1449, 3687}, {1707, 50290}, {1714, 25526}, {1746, 36662}, {1751, 58012}, {1754, 36706}, {1792, 37065}, {1834, 50408}, {1909, 19806}, {1999, 2345}, {2094, 17399}, {2185, 37419}, {2275, 3666}, {3017, 50407}, {3086, 25519}, {3187, 19822}, {3247, 56078}, {3286, 37175}, {3306, 18652}, {3434, 29829}, {3475, 29634}, {3622, 17597}, {3664, 25527}, {3672, 32939}, {3742, 24476}, {3750, 48830}, {3772, 4670}, {3832, 60077}, {4189, 5347}, {4199, 37507}, {4220, 51212}, {4228, 35260}, {4307, 32773}, {4340, 16062}, {4344, 4514}, {4363, 30699}, {4389, 9965}, {4425, 24695}, {4438, 50293}, {4454, 62229}, {4641, 17257}, {4644, 27184}, {4656, 50127}, {4682, 38047}, {4697, 24248}, {4854, 24280}, {5218, 20359}, {5222, 19804}, {5253, 27655}, {5268, 59684}, {5272, 38049}, {5286, 41236}, {5292, 43531}, {5311, 33163}, {5324, 19310}, {5337, 16043}, {5393, 49623}, {5405, 49622}, {5439, 18732}, {5750, 11679}, {6353, 44092}, {6604, 37543}, {6776, 37360}, {6857, 34259}, {7229, 42029}, {7365, 41246}, {9347, 10327}, {9776, 16706}, {10436, 40940}, {10449, 37037}, {11206, 52143}, {11269, 32772}, {14826, 37315}, {14853, 19544}, {14927, 37456}, {16470, 30479}, {16777, 44416}, {16783, 36698}, {17011, 17740}, {17019, 17776}, {17022, 17353}, {17274, 62240}, {17276, 50063}, {17289, 34255}, {17299, 50052}, {17314, 58820}, {17316, 32777}, {17355, 42032}, {17394, 33116}, {17397, 38000}, {17567, 50633}, {17716, 36479}, {18841, 40012}, {19276, 48847}, {19765, 19783}, {19784, 37559}, {19785, 29833}, {19792, 34284}, {19796, 31995}, {19797, 32087}, {19820, 52709}, {19823, 33146}, {19832, 21296}, {20077, 37164}, {22276, 29822}, {23681, 50116}, {24580, 27162}, {24598, 25059}, {25101, 25430}, {25406, 26118}, {25524, 28250}, {26034, 29647}, {26098, 29635}, {26105, 30977}, {26223, 56084}, {26685, 44307}, {27407, 54356}, {27539, 55432}, {28808, 39595}, {29598, 53597}, {29633, 37604}, {29645, 33144}, {29842, 49479}, {29864, 33112}, {30568, 50115}, {32006, 33736}, {32778, 50284}, {32815, 50060}, {33137, 50302}, {33138, 43997}, {34404, 41084}, {36740, 59353}, {37280, 60721}, {37323, 63158}, {37522, 56737}, {37594, 54433}, {41718, 61643}, {41839, 54389}, {48837, 51668}, {48863, 51670}, {49488, 59628}, {50698, 51538}, {54113, 55400}, {54289, 54392}, {56518, 59405}, {60082, 60156}

X(63013) = pole of line {4313, 11997} with respect to the Feuerbach hyperbola
X(63013) = pole of line {6, 22076} with respect to the Stammler hyperbola
X(63013) = pole of line {2, 56019} with respect to the Wallace hyperbola
X(63013) = pole of line {513, 3265} with respect to the dual conic of Orthic inconic
X(63013) = pole of line {1125, 4138} with respect to the dual conic of Yff parabola
X(63013) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4198)}}, {{A, B, C, X(4), X(1211)}}, {{A, B, C, X(57), X(2303)}}, {{A, B, C, X(69), X(14534)}}, {{A, B, C, X(83), X(14555)}}, {{A, B, C, X(141), X(60076)}}, {{A, B, C, X(394), X(1798)}}, {{A, B, C, X(940), X(51223)}}, {{A, B, C, X(966), X(1751)}}, {{A, B, C, X(2287), X(2339)}}, {{A, B, C, X(3619), X(40012)}}, {{A, B, C, X(4383), X(18841)}}, {{A, B, C, X(5224), X(60206)}}, {{A, B, C, X(5232), X(58010)}}, {{A, B, C, X(5712), X(43531)}}, {{A, B, C, X(5737), X(55962)}}, {{A, B, C, X(5739), X(60082)}}, {{A, B, C, X(5743), X(60107)}}, {{A, B, C, X(18134), X(58012)}}, {{A, B, C, X(30832), X(60254)}}, {{A, B, C, X(32782), X(60156)}}, {{A, B, C, X(33172), X(60169)}}
X(63013) = barycentric product X(i)*X(j) for these (i, j): {4198, 69}
X(63013) = barycentric quotient X(i)/X(j) for these (i, j): {4198, 4}
X(63013) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 1211}, {2, 81, 69}, {6, 6703, 2}, {1714, 25526, 37153}, {3187, 19822, 42696}, {5287, 5294, 344}, {29635, 33682, 26098}, {32777, 37595, 17316}, {37543, 56367, 6604}


X(63014) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6707), X(3), X(6))

Barycentrics    3*a^2+b^2+4*b*c+c^2+4*a*(b+c) : :

X(63014) lies on these lines: {1, 4464}, {2, 6}, {3, 63158}, {4, 32014}, {7, 5550}, {8, 17394}, {10, 4909}, {37, 4798}, {75, 3616}, {77, 19372}, {142, 24609}, {192, 4470}, {229, 16865}, {261, 57007}, {269, 1996}, {274, 37037}, {286, 7498}, {306, 41930}, {319, 9780}, {326, 54392}, {332, 2049}, {344, 5750}, {347, 55096}, {387, 14007}, {405, 1444}, {511, 7410}, {551, 3875}, {572, 36662}, {594, 29585}, {631, 10446}, {894, 29612}, {941, 24530}, {969, 54386}, {988, 1125}, {1014, 5047}, {1268, 3617}, {1442, 57277}, {1449, 24603}, {1450, 7190}, {1698, 3879}, {1975, 56986}, {2047, 12322}, {2321, 29597}, {2345, 16826}, {3161, 51488}, {3241, 5564}, {3247, 50107}, {3306, 54404}, {3622, 4360}, {3624, 4357}, {3634, 17270}, {3662, 29609}, {3664, 19862}, {3672, 46934}, {3739, 26626}, {3758, 5296}, {3779, 28600}, {3785, 56734}, {3848, 24471}, {3926, 17698}, {3933, 56735}, {3964, 37244}, {3986, 50127}, {4000, 17397}, {4021, 15808}, {4340, 37039}, {4352, 16714}, {4371, 29584}, {4389, 52714}, {4472, 16777}, {4644, 17248}, {4664, 7229}, {4670, 17257}, {4675, 25498}, {4687, 5749}, {4698, 26685}, {4699, 29586}, {4747, 17347}, {4748, 17364}, {4751, 5222}, {4758, 5257}, {4902, 50116}, {4916, 29615}, {5249, 28627}, {5272, 56328}, {5308, 17289}, {5746, 16053}, {5839, 29576}, {5933, 24914}, {6359, 7056}, {6857, 17139}, {6910, 17183}, {6998, 51212}, {7222, 17247}, {7227, 16672}, {7379, 14927}, {7390, 51538}, {7407, 51537}, {7474, 35260}, {7738, 17688}, {7763, 55083}, {7767, 56736}, {8062, 15419}, {8583, 55391}, {8822, 17558}, {9723, 37248}, {10165, 10444}, {10585, 21277}, {11354, 32815}, {13725, 25526}, {13742, 17175}, {16052, 32827}, {16062, 32006}, {16458, 19766}, {16475, 39580}, {16677, 49726}, {16705, 17526}, {16709, 18147}, {16712, 32817}, {16844, 17206}, {17169, 31259}, {17189, 28618}, {17201, 37462}, {17229, 17303}, {17233, 29624}, {17250, 21296}, {17253, 25358}, {17258, 35578}, {17268, 29622}, {17272, 34595}, {17274, 19883}, {17280, 26039}, {17285, 29621}, {17293, 29583}, {17306, 36834}, {17312, 29608}, {17314, 28604}, {17317, 29611}, {17320, 31995}, {17368, 29578}, {17370, 60996}, {17371, 29627}, {17385, 29579}, {17391, 29610}, {17393, 32087}, {17555, 63155}, {18140, 44147}, {18650, 61725}, {19877, 32099}, {20017, 30562}, {20055, 43985}, {20477, 24565}, {21172, 57054}, {24655, 59572}, {24695, 25354}, {24789, 41850}, {25055, 25590}, {25503, 48632}, {25535, 26149}, {25917, 54344}, {25946, 36744}, {26126, 63152}, {27147, 29614}, {27268, 54389}, {28634, 50129}, {28635, 29617}, {29574, 59772}, {29580, 48628}, {29598, 31312}, {30022, 44154}, {32025, 46933}, {32829, 51612}, {33954, 56988}, {36672, 37474}, {39143, 62680}, {39586, 59406}, {43531, 58012}, {43997, 50295}, {45926, 57985}, {48636, 61313}, {49129, 61558}, {50099, 51105}, {57818, 57865}, {57832, 57858}

X(63014) = X(i)-Dao conjugate of X(j) for these {i, j}: {464, 387}
X(63014) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57825, 69}
X(63014) = pole of line {6367, 44445} with respect to the anticomplementary circle
X(63014) = pole of line {2501, 6367} with respect to the polar circle
X(63014) = pole of line {6, 22080} with respect to the Stammler hyperbola
X(63014) = pole of line {523, 48107} with respect to the Steiner circumellipse
X(63014) = pole of line {523, 3798} with respect to the Steiner inellipse
X(63014) = pole of line {2, 41014} with respect to the Wallace hyperbola
X(63014) = pole of line {525, 20315} with respect to the dual conic of polar circle
X(63014) = pole of line {514, 3265} with respect to the dual conic of Orthic inconic
X(63014) = pole of line {69, 1125} with respect to the dual conic of Yff parabola
X(63014) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6994)}}, {{A, B, C, X(4), X(1213)}}, {{A, B, C, X(7), X(5333)}}, {{A, B, C, X(69), X(32014)}}, {{A, B, C, X(75), X(25507)}}, {{A, B, C, X(81), X(28626)}}, {{A, B, C, X(95), X(37655)}}, {{A, B, C, X(333), X(30598)}}, {{A, B, C, X(394), X(57685)}}, {{A, B, C, X(966), X(43531)}}, {{A, B, C, X(1246), X(15668)}}, {{A, B, C, X(2287), X(56203)}}, {{A, B, C, X(2895), X(57818)}}, {{A, B, C, X(4417), X(8797)}}, {{A, B, C, X(5224), X(58012)}}, {{A, B, C, X(5739), X(57858)}}, {{A, B, C, X(8044), X(17251)}}, {{A, B, C, X(8814), X(17392)}}, {{A, B, C, X(14552), X(40412)}}, {{A, B, C, X(14829), X(36948)}}, {{A, B, C, X(17259), X(18841)}}, {{A, B, C, X(17327), X(18840)}}
X(63014) = barycentric product X(i)*X(j) for these (i, j): {69, 6994}
X(63014) = barycentric quotient X(i)/X(j) for these (i, j): {6994, 4}
X(63014) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 1213}, {2, 3945, 5224}, {2, 4648, 3619}, {2, 86, 69}, {6, 6707, 2}, {86, 5224, 3945}, {1125, 10436, 17321}, {1268, 17377, 3617}, {2345, 28641, 16826}, {4798, 28640, 37}, {5750, 16831, 344}, {10436, 17321, 42697}, {16709, 18147, 34284}, {17303, 28639, 17316}, {17322, 30598, 5550}, {17322, 41847, 7}, {28604, 29570, 17314}, {30598, 41847, 17322}, {32087, 38314, 17393}


X(63015) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7585), X(3), X(6))

Barycentrics    4*a^2+S : :

X(63015) lies on these lines: {2, 6}, {3, 9542}, {4, 6417}, {5, 6500}, {8, 19004}, {20, 3311}, {23, 19006}, {140, 6501}, {145, 18991}, {371, 3522}, {372, 9680}, {376, 6199}, {390, 19038}, {485, 5068}, {486, 15022}, {588, 52223}, {589, 52224}, {605, 30653}, {606, 30652}, {631, 6418}, {1033, 15186}, {1131, 3071}, {1132, 3854}, {1151, 21734}, {1152, 61791}, {1199, 6807}, {1249, 55573}, {1285, 26617}, {1327, 54543}, {1449, 30413}, {1587, 3146}, {1588, 3832}, {1589, 38292}, {1590, 15851}, {1702, 20070}, {3070, 17578}, {3090, 19116}, {3091, 6427}, {3299, 14986}, {3312, 3523}, {3316, 13951}, {3317, 6498}, {3524, 6395}, {3525, 13903}, {3526, 43517}, {3533, 13961}, {3543, 23267}, {3545, 18510}, {3590, 42582}, {3591, 60311}, {3592, 6460}, {3594, 43883}, {3600, 18996}, {3616, 19003}, {3617, 13883}, {3621, 19066}, {3622, 18992}, {3623, 7969}, {3758, 32794}, {3759, 32793}, {3839, 13665}, {3845, 43386}, {4232, 5411}, {4254, 21566}, {4678, 19065}, {5056, 7584}, {5058, 61308}, {5059, 6431}, {5067, 13925}, {5071, 45384}, {5120, 21567}, {5261, 19028}, {5265, 18995}, {5274, 19030}, {5281, 19037}, {5334, 42182}, {5335, 42181}, {5410, 6995}, {5412, 52301}, {5418, 61842}, {5420, 61848}, {5550, 13888}, {5875, 36664}, {5984, 19056}, {6200, 62063}, {6221, 10304}, {6351, 16669}, {6352, 16666}, {6396, 15705}, {6398, 15692}, {6407, 21735}, {6408, 61138}, {6409, 62060}, {6411, 41961}, {6412, 61778}, {6420, 9540}, {6425, 42637}, {6428, 8981}, {6432, 31454}, {6435, 23249}, {6436, 61825}, {6437, 41946}, {6438, 43259}, {6441, 62148}, {6445, 19708}, {6446, 15698}, {6447, 62083}, {6449, 62067}, {6450, 61788}, {6451, 52048}, {6452, 61781}, {6455, 58188}, {6456, 61783}, {6470, 42259}, {6472, 62074}, {6474, 62075}, {6480, 53131}, {6499, 42541}, {6560, 15683}, {6565, 43343}, {6776, 42833}, {7374, 14912}, {7486, 8976}, {7753, 61335}, {8596, 19058}, {8983, 46934}, {9541, 62120}, {9690, 34200}, {9691, 46853}, {9780, 49547}, {10109, 43536}, {10124, 43518}, {10528, 26465}, {10529, 26464}, {10586, 26459}, {10587, 26458}, {11292, 43136}, {11293, 51952}, {11417, 59343}, {11539, 43375}, {11916, 36703}, {12221, 19105}, {12222, 19103}, {13595, 19005}, {13893, 46932}, {13935, 35770}, {13936, 46933}, {13943, 16042}, {13947, 46931}, {13966, 31487}, {13993, 61886}, {14002, 44599}, {14226, 61943}, {14241, 60296}, {14482, 35948}, {14683, 19111}, {15640, 42225}, {15694, 43374}, {15697, 52047}, {15708, 35256}, {15715, 42643}, {15716, 17851}, {15905, 55893}, {16670, 30412}, {17504, 43415}, {18538, 61936}, {18762, 61924}, {18999, 61155}, {19064, 44434}, {19070, 22113}, {19072, 22114}, {19078, 20085}, {19080, 20084}, {19090, 20081}, {19092, 20088}, {19109, 20094}, {19113, 20095}, {19709, 43387}, {19877, 49618}, {20052, 49232}, {20059, 60887}, {21454, 51841}, {23259, 35822}, {23261, 31414}, {23269, 50688}, {23275, 61982}, {34089, 55860}, {34091, 55861}, {35786, 43802}, {35813, 42601}, {35823, 61944}, {40065, 55569}, {41945, 62129}, {41954, 61962}, {42226, 62160}, {42258, 62152}, {42260, 62125}, {42263, 62048}, {42270, 43377}, {42274, 61927}, {42275, 62051}, {42276, 43257}, {42277, 42604}, {42283, 43889}, {42284, 42540}, {42542, 43211}, {42638, 62102}, {42639, 61915}, {42640, 61904}, {43133, 51953}, {43256, 62132}, {43319, 43413}, {43407, 62149}, {43430, 58866}, {43566, 54542}, {43567, 60295}, {43798, 62003}, {43826, 43838}, {43881, 61885}, {43882, 47599}, {43890, 61952}, {44473, 45511}, {44590, 61157}, {45245, 55896}, {50690, 53518}, {52667, 62032}, {53130, 62099}, {54597, 61908}, {55881, 59657}, {61309, 62219}

X(63015) = pole of line {2, 42272} with respect to the Kiepert hyperbola
X(63015) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43560)}}, {{A, B, C, X(492), X(60292)}}, {{A, B, C, X(588), X(17811)}}, {{A, B, C, X(589), X(17825)}}, {{A, B, C, X(590), X(52223)}}, {{A, B, C, X(615), X(52224)}}
X(63015) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3068, 7586}, {631, 6418, 42523}, {1131, 3071, 50689}, {1132, 31412, 3854}, {1151, 43511, 21734}, {1271, 3618, 2}, {3068, 3069, 8253}, {3068, 8253, 8972}, {3070, 52666, 43507}, {3071, 50689, 43561}, {3311, 7581, 20}, {3312, 35255, 43510}, {3316, 13951, 46936}, {6398, 43509, 15692}, {6417, 19117, 4}, {6427, 7583, 7582}, {6460, 43512, 50693}, {7582, 7583, 3091}, {7584, 13886, 5056}, {7585, 7586, 3068}, {8976, 13939, 7486}, {13665, 23273, 3839}, {23267, 42215, 3543}, {35255, 43510, 3523}, {42284, 43508, 62005}, {42540, 62005, 42284}, {42604, 61930, 42277}, {43507, 52666, 17578}


X(63016) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7586), X(3), X(6))

Barycentrics    4*a^2-S : :

X(63016) lies on these lines: {2, 6}, {3, 9543}, {4, 6418}, {5, 6501}, {8, 19003}, {20, 3312}, {23, 19005}, {140, 6500}, {145, 18992}, {371, 9692}, {372, 3522}, {376, 6395}, {390, 19037}, {485, 15022}, {486, 5068}, {588, 52224}, {589, 52223}, {605, 30652}, {606, 30653}, {631, 6417}, {1033, 15189}, {1131, 3854}, {1132, 3070}, {1151, 61791}, {1152, 21734}, {1199, 6808}, {1249, 55569}, {1285, 26618}, {1328, 54542}, {1449, 30412}, {1587, 3832}, {1588, 3146}, {1589, 15851}, {1590, 38292}, {1703, 20070}, {3071, 17578}, {3090, 19117}, {3091, 6428}, {3301, 14986}, {3311, 3523}, {3316, 6499}, {3317, 8976}, {3524, 6199}, {3525, 13961}, {3526, 43518}, {3533, 13903}, {3543, 23273}, {3545, 18512}, {3590, 60312}, {3591, 42583}, {3592, 43884}, {3594, 6459}, {3600, 18995}, {3616, 19004}, {3617, 13936}, {3621, 19065}, {3622, 18991}, {3623, 7968}, {3758, 32793}, {3759, 32794}, {3839, 13785}, {3845, 43387}, {4232, 5410}, {4254, 21567}, {4678, 19066}, {5056, 7583}, {5059, 6432}, {5062, 61309}, {5067, 13993}, {5071, 45385}, {5120, 21566}, {5261, 19027}, {5265, 18996}, {5274, 19029}, {5281, 19038}, {5334, 42180}, {5335, 42179}, {5411, 6995}, {5413, 52301}, {5418, 61848}, {5420, 61842}, {5550, 13942}, {5874, 36665}, {5984, 19055}, {6200, 15705}, {6221, 15692}, {6351, 16666}, {6352, 16669}, {6396, 62063}, {6398, 10304}, {6407, 61138}, {6408, 21735}, {6410, 62060}, {6411, 61778}, {6412, 41962}, {6419, 13935}, {6426, 42638}, {6427, 10303}, {6431, 61816}, {6435, 61825}, {6436, 23259}, {6437, 43258}, {6438, 41945}, {6442, 62148}, {6445, 15698}, {6446, 19708}, {6448, 62083}, {6449, 61788}, {6450, 62067}, {6451, 61781}, {6452, 52047}, {6455, 61783}, {6456, 58188}, {6471, 42258}, {6473, 62074}, {6475, 62075}, {6481, 53130}, {6496, 9693}, {6498, 31487}, {6561, 15683}, {6564, 43342}, {6776, 42832}, {7000, 14912}, {7486, 13886}, {7753, 61336}, {8596, 19057}, {8960, 43431}, {8981, 55864}, {9540, 35771}, {9690, 17504}, {9691, 61792}, {9780, 49548}, {10109, 54597}, {10124, 43517}, {10528, 26459}, {10529, 26458}, {10586, 26465}, {10587, 26464}, {11291, 43136}, {11294, 51953}, {11418, 59343}, {11539, 43374}, {11917, 36701}, {12221, 19104}, {12222, 19102}, {13595, 19006}, {13883, 46933}, {13889, 16042}, {13893, 46931}, {13925, 61886}, {13947, 46932}, {13971, 46934}, {14002, 44598}, {14226, 60295}, {14241, 61943}, {14482, 35949}, {14683, 19110}, {15640, 42226}, {15694, 43375}, {15697, 52048}, {15708, 35255}, {15715, 42644}, {15905, 55897}, {16670, 30413}, {17851, 62073}, {18538, 61924}, {18762, 61936}, {19000, 61155}, {19063, 44434}, {19069, 22114}, {19071, 22113}, {19077, 20085}, {19079, 20084}, {19089, 20081}, {19091, 20088}, {19108, 20094}, {19112, 20095}, {19709, 43386}, {19877, 49619}, {20052, 49233}, {21454, 51842}, {23249, 35823}, {23251, 53520}, {23269, 61982}, {23275, 50688}, {26912, 33871}, {31414, 42270}, {34089, 55861}, {34091, 55860}, {34200, 43415}, {35787, 43801}, {35812, 42600}, {35822, 61944}, {40065, 55573}, {41946, 62129}, {41953, 61962}, {42225, 62160}, {42259, 62152}, {42261, 62125}, {42264, 62048}, {42273, 43376}, {42274, 42605}, {42275, 43256}, {42276, 62051}, {42277, 61927}, {42283, 42539}, {42284, 43890}, {42541, 43212}, {42637, 62102}, {42639, 61904}, {42640, 61915}, {43134, 51952}, {43257, 62132}, {43318, 43414}, {43408, 62149}, {43536, 61908}, {43566, 60296}, {43567, 54543}, {43797, 62003}, {43825, 43838}, {43881, 47599}, {43882, 61885}, {43889, 61952}, {44474, 45510}, {44591, 61157}, {45870, 48477}, {50690, 53519}, {52666, 62032}, {53131, 62099}, {55882, 59657}, {61308, 62220}

X(63016) = pole of line {2, 42271} with respect to the Kiepert hyperbola
X(63016) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43561)}}, {{A, B, C, X(491), X(60291)}}, {{A, B, C, X(588), X(17825)}}, {{A, B, C, X(589), X(17811)}}, {{A, B, C, X(590), X(52224)}}, {{A, B, C, X(615), X(52223)}}
X(63016) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3069, 7585}, {631, 6417, 42522}, {1131, 42561, 3854}, {1132, 3070, 50689}, {1152, 43512, 21734}, {1270, 3618, 2}, {3068, 3069, 8252}, {3070, 50689, 43560}, {3071, 52667, 43508}, {3311, 35256, 43509}, {3312, 7582, 20}, {3317, 8976, 46936}, {3524, 6199, 9542}, {3594, 6459, 43511}, {6221, 43510, 15692}, {6418, 19116, 4}, {6428, 7584, 7581}, {6459, 43511, 50693}, {7581, 7584, 3091}, {7585, 7586, 3069}, {13785, 23267, 3839}, {13886, 13951, 7486}, {23273, 42216, 3543}, {35256, 43509, 3523}, {42283, 43507, 62005}, {42539, 62005, 42283}, {42605, 61930, 42274}, {43508, 52667, 17578}


X(63017) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7774), X(3), X(6))

Barycentrics    3*a^4-b^4-c^4+4*a^2*(b^2+c^2) : :

X(63017) lies on these lines: {2, 6}, {4, 7839}, {20, 3095}, {32, 32964}, {39, 14907}, {76, 33269}, {83, 7758}, {99, 33187}, {114, 15520}, {145, 33889}, {147, 14853}, {194, 14035}, {263, 61101}, {315, 4045}, {316, 7739}, {384, 32817}, {576, 9744}, {1285, 13586}, {1351, 37182}, {1353, 13860}, {1513, 5093}, {1975, 14031}, {2456, 33748}, {2548, 7760}, {2549, 7812}, {2996, 33018}, {3098, 41623}, {3102, 43133}, {3103, 43134}, {3398, 3523}, {3424, 60177}, {3705, 17120}, {3767, 7858}, {3785, 33258}, {3839, 6033}, {3926, 7787}, {3933, 16898}, {3972, 34511}, {4232, 44089}, {4254, 56772}, {4393, 56555}, {4518, 50284}, {4644, 33891}, {5007, 7763}, {5024, 33008}, {5039, 10352}, {5041, 7759}, {5097, 9753}, {5120, 56771}, {5189, 16333}, {5254, 32996}, {5286, 7785}, {5305, 32961}, {5319, 7752}, {5355, 7775}, {5368, 7862}, {5395, 20105}, {5475, 32457}, {5749, 30179}, {5984, 38383}, {5987, 25321}, {5999, 14912}, {6179, 31401}, {6390, 33255}, {6392, 16044}, {6995, 56920}, {7179, 17121}, {7612, 10486}, {7737, 7757}, {7738, 7823}, {7745, 14068}, {7753, 7798}, {7754, 16924}, {7761, 41750}, {7762, 7791}, {7773, 33290}, {7783, 33244}, {7786, 14023}, {7793, 31400}, {7795, 7878}, {7797, 32816}, {7800, 7877}, {7804, 32833}, {7805, 32832}, {7807, 43136}, {7808, 7890}, {7827, 7926}, {7829, 7903}, {7834, 41940}, {7851, 33287}, {7859, 7949}, {7864, 32006}, {7889, 7916}, {7892, 32818}, {7893, 16043}, {7900, 32974}, {7901, 32823}, {7906, 14001}, {7920, 7941}, {7929, 33202}, {7938, 51860}, {7939, 32956}, {7945, 32825}, {7947, 14069}, {8370, 22253}, {10304, 35002}, {10349, 33198}, {10565, 60694}, {10583, 53033}, {11152, 20094}, {11159, 47287}, {11287, 22246}, {11606, 14484}, {14034, 32822}, {14482, 32986}, {14568, 31415}, {14712, 33207}, {15048, 33017}, {15484, 33016}, {15692, 26316}, {16896, 18841}, {16925, 30435}, {17129, 32968}, {17350, 29840}, {18907, 31859}, {20081, 32971}, {20423, 43460}, {21309, 35297}, {27377, 45141}, {31404, 33009}, {31406, 33001}, {31407, 32838}, {31450, 43459}, {31467, 33003}, {32480, 52943}, {32828, 33261}, {32829, 33262}, {32831, 33225}, {32834, 33020}, {33208, 34604}, {33274, 46453}, {35524, 63170}, {35540, 44152}, {37450, 53091}, {37451, 61624}, {38259, 43951}, {39955, 42407}, {41895, 54737}, {43621, 55177}, {53101, 60271}, {54520, 54823}, {59226, 59343}, {60184, 60260}

X(63017) = anticomplement of X(16990)
X(63017) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60190, 2}
X(63017) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60190, 6327}
X(63017) = pole of line {44445, 50545} with respect to the anticomplementary circle
X(63017) = pole of line {523, 50550} with respect to the Steiner circumellipse
X(63017) = pole of line {3265, 45317} with respect to the dual conic of Orthic inconic
X(63017) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(193), X(60105)}}, {{A, B, C, X(3620), X(43688)}}, {{A, B, C, X(3763), X(42407)}}, {{A, B, C, X(5395), X(7766)}}, {{A, B, C, X(7779), X(14484)}}, {{A, B, C, X(7897), X(60260)}}, {{A, B, C, X(9740), X(54901)}}, {{A, B, C, X(11160), X(54737)}}, {{A, B, C, X(11606), X(15589)}}, {{A, B, C, X(20080), X(43951)}}, {{A, B, C, X(37667), X(60184)}}, {{A, B, C, X(37668), X(60177)}}, {{A, B, C, X(37671), X(54124)}}, {{A, B, C, X(39955), X(42295)}}, {{A, B, C, X(44367), X(53101)}}
X(63017) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 9766, 7792}, {39, 20065, 32965}, {1007, 7806, 2}, {1992, 7736, 385}, {3329, 7837, 69}, {3629, 9300, 183}, {3926, 7787, 14037}, {5041, 7759, 7803}, {7772, 7838, 315}, {7793, 31400, 33012}, {7797, 32816, 33283}, {7858, 7894, 3767}, {7877, 55085, 7800}, {7878, 7905, 7795}, {7920, 7941, 14064}, {15484, 47286, 33016}, {18907, 31859, 33007}


X(63018) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7777), X(3), X(6))

Barycentrics    a^4-b^4+b^2*c^2-c^4+3*a^2*(b^2+c^2) : :

X(63018) lies on these lines: {2, 6}, {3, 7921}, {4, 32447}, {5, 7839}, {23, 20775}, {32, 33259}, {39, 316}, {51, 61101}, {76, 13571}, {83, 7764}, {99, 7753}, {147, 262}, {148, 5475}, {187, 34604}, {192, 9599}, {194, 2548}, {232, 32002}, {315, 33021}, {330, 9596}, {381, 61599}, {384, 6390}, {574, 7812}, {576, 43461}, {598, 8591}, {620, 12150}, {621, 3107}, {622, 3106}, {625, 7827}, {626, 55085}, {631, 11842}, {671, 43457}, {850, 10567}, {1078, 7838}, {1384, 33274}, {1506, 7760}, {1916, 35705}, {1995, 20794}, {2896, 7759}, {2996, 32995}, {3095, 43453}, {3096, 7903}, {3266, 9230}, {3407, 10353}, {3448, 52693}, {3788, 7878}, {3934, 7905}, {4045, 7809}, {5007, 7769}, {5013, 7823}, {5024, 7833}, {5025, 9605}, {5041, 7828}, {5097, 38227}, {5207, 13331}, {5254, 32993}, {5286, 32966}, {5305, 32967}, {5355, 14061}, {5395, 14031}, {5477, 58765}, {5968, 7533}, {5984, 13860}, {5987, 56565}, {5999, 48906}, {6054, 19130}, {6179, 31455}, {6292, 7917}, {6375, 32526}, {6392, 32962}, {6653, 17756}, {6656, 7941}, {6658, 7745}, {6683, 7768}, {7321, 33891}, {7494, 61355}, {7496, 22062}, {7603, 14568}, {7737, 33265}, {7738, 33019}, {7746, 7894}, {7750, 9606}, {7752, 7772}, {7754, 16921}, {7758, 31276}, {7761, 7926}, {7762, 7824}, {7763, 7787}, {7770, 7906}, {7773, 7864}, {7775, 7790}, {7776, 7876}, {7789, 19692}, {7791, 7900}, {7793, 31401}, {7796, 7808}, {7798, 19570}, {7799, 7804}, {7800, 7946}, {7801, 60855}, {7802, 53096}, {7803, 7912}, {7811, 15482}, {7814, 7834}, {7815, 7877}, {7819, 7947}, {7821, 7859}, {7822, 7871}, {7829, 7899}, {7831, 7845}, {7846, 7888}, {7854, 7949}, {7856, 7862}, {7881, 16895}, {7885, 19690}, {7886, 41940}, {7887, 7920}, {7889, 7909}, {7893, 11285}, {7907, 30435}, {7929, 16043}, {7933, 32816}, {7939, 8362}, {8589, 51224}, {8596, 11317}, {9744, 31670}, {9774, 48880}, {10346, 10349}, {11284, 22152}, {11318, 22246}, {11361, 15484}, {13586, 18907}, {14037, 32831}, {14041, 15048}, {14360, 31088}, {14482, 16041}, {14692, 22681}, {14881, 32476}, {14928, 14931}, {14971, 61046}, {15093, 61715}, {15355, 17035}, {16063, 44443}, {16898, 32818}, {16924, 20081}, {17129, 32992}, {17578, 53017}, {17741, 49613}, {18424, 41135}, {18872, 54130}, {19693, 59546}, {20063, 59227}, {20065, 31400}, {22253, 44543}, {22521, 37459}, {24629, 26806}, {29840, 32915}, {31125, 52551}, {31404, 33002}, {31407, 32828}, {31467, 33015}, {32480, 40246}, {32830, 33269}, {32834, 33261}, {33013, 47286}, {33089, 60446}, {33233, 43136}, {33239, 45017}, {33878, 60654}, {37182, 44434}, {37760, 60695}, {37907, 47282}, {38259, 60118}, {39091, 51580}, {40853, 43718}, {41296, 52898}, {43460, 44422}, {43688, 60190}, {54487, 60271}, {54823, 60127}, {60136, 60233}, {60184, 60234}

X(63018) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60098, 2}
X(63018) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60098, 6327}
X(63018) = pole of line {669, 13308} with respect to the circumcircle
X(63018) = pole of line {1499, 5113} with respect to the orthoptic circle of the Steiner Inellipse
X(63018) = pole of line {3265, 59740} with respect to the dual conic of Orthic inconic
X(63018) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(60177)}}, {{A, B, C, X(183), X(11606)}}, {{A, B, C, X(262), X(7779)}}, {{A, B, C, X(385), X(60105)}}, {{A, B, C, X(524), X(45108)}}, {{A, B, C, X(3314), X(35005)}}, {{A, B, C, X(7766), X(60190)}}, {{A, B, C, X(7897), X(60234)}}, {{A, B, C, X(8177), X(43726)}}, {{A, B, C, X(10484), X(41136)}}, {{A, B, C, X(16990), X(43688)}}, {{A, B, C, X(16996), X(60153)}}, {{A, B, C, X(17004), X(60136)}}, {{A, B, C, X(17008), X(60184)}}, {{A, B, C, X(18842), X(62204)}}, {{A, B, C, X(20080), X(60118)}}, {{A, B, C, X(44367), X(54487)}}
X(63018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7774, 7779}, {3, 7921, 20088}, {39, 7785, 6655}, {39, 7843, 7847}, {39, 7858, 7785}, {83, 7764, 7836}, {83, 7836, 19689}, {194, 2548, 16044}, {325, 3329, 2}, {325, 3589, 7931}, {325, 9300, 3329}, {574, 7812, 14712}, {3329, 7931, 3589}, {3788, 7878, 10583}, {5475, 7757, 148}, {6390, 53489, 384}, {7745, 7783, 6658}, {7752, 7772, 7797}, {7759, 7786, 2896}, {7763, 7787, 33225}, {7796, 7808, 46226}, {7845, 44562, 7831}, {15484, 31859, 11361}


X(63019) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7806), X(3), X(6))

Barycentrics    3*a^4+b^4-b^2*c^2+c^4+a^2*(b^2+c^2) : :

X(63019) lies on these lines: {2, 6}, {3, 7920}, {4, 11842}, {23, 40981}, {32, 6655}, {39, 33259}, {76, 5346}, {83, 7755}, {98, 19130}, {99, 5355}, {115, 12150}, {148, 3972}, {187, 7827}, {194, 5319}, {262, 60136}, {315, 7932}, {316, 5008}, {384, 5305}, {511, 43456}, {575, 38227}, {598, 18424}, {625, 5007}, {631, 32447}, {754, 7919}, {1003, 20094}, {1078, 7829}, {1285, 33017}, {1384, 7833}, {2549, 33265}, {2896, 6179}, {2996, 14031}, {3053, 7864}, {3407, 11606}, {3552, 5286}, {3734, 19570}, {3767, 7787}, {3788, 7894}, {3793, 6656}, {3818, 11177}, {3933, 14043}, {5024, 33274}, {5025, 20088}, {5041, 7769}, {5189, 60695}, {5254, 6658}, {5368, 6680}, {5395, 32995}, {5984, 9755}, {5999, 21850}, {6041, 31296}, {6103, 36794}, {6194, 52997}, {6392, 14037}, {7533, 17500}, {7665, 9465}, {7738, 33014}, {7745, 32993}, {7746, 7878}, {7749, 55085}, {7750, 7923}, {7751, 7846}, {7753, 14061}, {7754, 7892}, {7758, 7945}, {7759, 7942}, {7761, 7884}, {7762, 7901}, {7767, 7948}, {7768, 7852}, {7772, 7857}, {7775, 14075}, {7776, 14065}, {7780, 7859}, {7783, 32459}, {7786, 51860}, {7793, 7803}, {7798, 7835}, {7804, 14568}, {7805, 7832}, {7807, 7839}, {7811, 7913}, {7812, 7844}, {7819, 17129}, {7823, 7851}, {7826, 7944}, {7838, 7899}, {7841, 21309}, {7847, 35007}, {7854, 7943}, {7855, 7930}, {7858, 7886}, {7866, 7893}, {7867, 7877}, {7874, 7905}, {7881, 14067}, {7887, 7921}, {7890, 7909}, {7900, 14064}, {7906, 32954}, {7907, 9605}, {7933, 20065}, {7938, 14023}, {7939, 8363}, {7941, 8361}, {8588, 52691}, {8589, 26613}, {8782, 10336}, {9149, 35222}, {9166, 43457}, {9167, 61046}, {9753, 39750}, {9760, 43031}, {9762, 43030}, {9855, 19661}, {9865, 41622}, {9866, 41749}, {9993, 48884}, {10335, 39091}, {10796, 14651}, {10985, 37765}, {12017, 60654}, {12829, 43450}, {13586, 15048}, {13881, 33024}, {14001, 20081}, {14041, 18907}, {14482, 33216}, {15980, 22521}, {16318, 56022}, {16923, 31406}, {17128, 19692}, {18845, 47586}, {19576, 34396}, {19693, 32819}, {22253, 33220}, {22712, 44423}, {26316, 43453}, {31125, 40416}, {31859, 33246}, {32456, 39593}, {32480, 37809}, {32553, 61719}, {32931, 37764}, {33008, 46453}, {33013, 43291}, {35005, 60093}, {37909, 50149}, {39561, 43461}, {40246, 43618}, {46806, 52081}, {49111, 56789}, {50689, 53017}

X(63019) = anticomplement of X(7931)
X(63019) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43528, 2}
X(63019) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {43528, 6327}
X(63019) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7897)}}, {{A, B, C, X(69), X(60184)}}, {{A, B, C, X(183), X(60136)}}, {{A, B, C, X(325), X(60105)}}, {{A, B, C, X(524), X(40416)}}, {{A, B, C, X(598), X(41136)}}, {{A, B, C, X(3314), X(11606)}}, {{A, B, C, X(3407), X(7779)}}, {{A, B, C, X(7778), X(35005)}}, {{A, B, C, X(11160), X(45833)}}, {{A, B, C, X(16893), X(31125)}}, {{A, B, C, X(60099), X(60728)}}
X(63019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 7897}, {2, 5304, 7766}, {32, 7790, 14712}, {32, 7797, 6655}, {32, 7856, 7797}, {32, 7902, 7802}, {76, 10583, 19689}, {148, 3972, 19686}, {183, 7875, 2}, {193, 7897, 7779}, {316, 5008, 34604}, {3788, 7894, 13571}, {3972, 5309, 148}, {5007, 7828, 7785}, {5008, 7817, 316}, {5025, 30435, 20088}, {5306, 7792, 385}, {5368, 6680, 7760}, {6680, 7760, 7836}, {7750, 7923, 19690}, {7751, 7846, 46226}, {7766, 7897, 193}, {7793, 7803, 33021}, {7797, 14712, 7790}, {7887, 43136, 7921}, {9755, 13862, 5984}, {43291, 53489, 33013}


X(63020) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7875), X(3), X(6))

Barycentrics    3*a^4+b^4+b^2*c^2+c^4+3*a^2*(b^2+c^2) : :

X(63020) lies on these lines: {2, 6}, {5, 5984}, {23, 16314}, {32, 33021}, {39, 8782}, {83, 115}, {98, 25555}, {147, 575}, {148, 7804}, {182, 9993}, {194, 19689}, {251, 41884}, {384, 15048}, {631, 48673}, {756, 29838}, {1084, 62696}, {1285, 7791}, {1513, 51732}, {1975, 19692}, {2548, 7932}, {2549, 19686}, {2896, 5007}, {3398, 9862}, {3407, 53504}, {3767, 33020}, {3933, 19694}, {3972, 33265}, {4045, 12150}, {4672, 5992}, {5008, 7831}, {5012, 19558}, {5024, 33246}, {5025, 15484}, {5034, 10334}, {5038, 10353}, {5041, 7832}, {5050, 13862}, {5092, 60652}, {5309, 60855}, {5319, 31276}, {5355, 19570}, {5368, 6704}, {5395, 32996}, {5475, 7884}, {5476, 43456}, {5987, 15118}, {5999, 18583}, {6034, 8289}, {6114, 20395}, {6115, 20394}, {6194, 51829}, {6636, 40981}, {6655, 7737}, {6656, 20088}, {6658, 7864}, {6680, 36849}, {7603, 7828}, {7745, 7923}, {7753, 7919}, {7754, 16895}, {7759, 7943}, {7760, 7889}, {7761, 34604}, {7762, 7948}, {7767, 16897}, {7770, 7920}, {7772, 7836}, {7785, 7834}, {7786, 46313}, {7790, 62203}, {7808, 7856}, {7812, 7913}, {7817, 39601}, {7819, 7839}, {7822, 7894}, {7823, 19690}, {7838, 7944}, {7849, 34571}, {7851, 32993}, {7852, 7858}, {7865, 14075}, {7866, 7921}, {7876, 30435}, {7877, 7914}, {7892, 9605}, {7893, 43136}, {7905, 7915}, {7906, 33217}, {7924, 18907}, {7929, 32956}, {7939, 8364}, {7941, 8363}, {7947, 33185}, {9301, 60659}, {9865, 10336}, {10351, 16924}, {10997, 53505}, {11272, 38739}, {12017, 60651}, {14001, 14482}, {14036, 31859}, {14041, 53489}, {16898, 20081}, {17121, 30179}, {17500, 37349}, {18842, 54901}, {22564, 44562}, {23583, 40870}, {31406, 33245}, {32452, 33259}, {35005, 43528}, {35458, 37455}, {37450, 59399}, {37901, 50147}, {39998, 40035}, {43460, 50664}, {44571, 52979}, {46944, 61804}, {52395, 56975}, {56376, 60694}, {60098, 60136}, {60145, 60147}, {60184, 60190}

X(63020) = X(i)-complementary conjugate of X(j) for these {i, j}: {59266, 2887}
X(63020) = pole of line {2, 59266} with respect to the Kiepert hyperbola
X(63020) = pole of line {523, 50542} with respect to the Steiner circumellipse
X(63020) = intersection, other than A, B, C, of circumconics {{A, B, C, X(83), X(7779)}}, {{A, B, C, X(141), X(11606)}}, {{A, B, C, X(3314), X(60105)}}, {{A, B, C, X(7897), X(60190)}}, {{A, B, C, X(7931), X(35005)}}, {{A, B, C, X(10513), X(60145)}}, {{A, B, C, X(16990), X(60184)}}, {{A, B, C, X(21356), X(54901)}}, {{A, B, C, X(42006), X(60728)}}
X(63020) = barycentric product X(i)*X(j) for these (i, j): {10330, 31066}
X(63020) = barycentric quotient X(i)/X(j) for these (i, j): {31066, 31065}
X(63020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 7779}, {6, 7868, 7837}, {39, 10583, 33225}, {83, 7797, 16044}, {83, 7829, 7797}, {384, 15048, 20094}, {597, 7792, 3329}, {3329, 7792, 2}, {4045, 12150, 14712}, {5041, 7832, 13571}, {7760, 7889, 46226}, {7804, 7827, 148}, {7834, 7878, 7785}, {7915, 41940, 7905}, {10583, 51860, 39}


X(63021) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(7925), X(3), X(6))

Barycentrics    -2*b^4+b^2*c^2-2*c^4+3*a^2*(b^2+c^2) : :

X(63021) lies on these lines: {2, 6}, {3, 7900}, {4, 13188}, {5, 7906}, {39, 7814}, {51, 59571}, {76, 7603}, {83, 7888}, {99, 7775}, {114, 8782}, {115, 194}, {140, 7893}, {148, 34511}, {160, 37913}, {187, 7926}, {262, 9865}, {315, 33004}, {316, 33264}, {384, 15484}, {538, 39601}, {574, 7809}, {620, 7812}, {625, 7757}, {858, 16327}, {1078, 7903}, {1278, 11680}, {1285, 16925}, {1353, 40336}, {1506, 7796}, {1513, 44434}, {1655, 33061}, {1656, 17129}, {1916, 60177}, {1975, 33018}, {2452, 30745}, {2548, 7836}, {2896, 31401}, {3060, 51427}, {3095, 61575}, {3096, 9698}, {3266, 6032}, {3552, 5149}, {3705, 62226}, {3767, 13571}, {3788, 7787}, {3845, 47287}, {3926, 16044}, {3933, 16921}, {3934, 7871}, {4027, 8781}, {5007, 7940}, {5013, 7885}, {5024, 7924}, {5025, 15048}, {5041, 7942}, {5141, 40908}, {5206, 62362}, {5475, 7799}, {5503, 54737}, {5982, 47859}, {5983, 47860}, {6054, 14931}, {6194, 43461}, {6337, 6658}, {6390, 11361}, {6392, 32963}, {6655, 32816}, {6683, 7922}, {6781, 19569}, {6786, 11002}, {7745, 7891}, {7746, 7905}, {7747, 35022}, {7749, 7877}, {7750, 33022}, {7753, 7835}, {7754, 32967}, {7759, 7769}, {7760, 7862}, {7762, 7907}, {7767, 33015}, {7768, 31455}, {7770, 7947}, {7771, 7845}, {7772, 7899}, {7773, 7783}, {7776, 7824}, {7780, 7949}, {7782, 7843}, {7786, 7821}, {7791, 32823}, {7798, 14061}, {7804, 7870}, {7807, 7921}, {7808, 7909}, {7813, 32994}, {7815, 7917}, {7823, 33014}, {7838, 7857}, {7839, 7887}, {7860, 37512}, {7867, 55085}, {7874, 7878}, {7876, 31406}, {7879, 31467}, {7880, 60855}, {7883, 15482}, {7886, 7894}, {7901, 9605}, {7910, 31652}, {7911, 53096}, {7920, 8361}, {7937, 44562}, {7939, 11285}, {8589, 11057}, {8592, 10811}, {8596, 9741}, {8597, 11165}, {9737, 10722}, {9744, 52995}, {9983, 11272}, {10788, 15561}, {10997, 51580}, {11055, 32457}, {11059, 39602}, {11606, 60234}, {11681, 21219}, {13862, 38136}, {14035, 32831}, {14036, 53489}, {14041, 31859}, {14064, 14482}, {14148, 43457}, {15820, 35524}, {16808, 22666}, {16809, 22665}, {16924, 32818}, {17128, 32821}, {18896, 63170}, {18906, 53504}, {18907, 33246}, {19570, 43620}, {19686, 32837}, {19689, 53033}, {20065, 32829}, {20105, 33011}, {22486, 51397}, {30435, 33245}, {31074, 40896}, {31088, 31132}, {31173, 32480}, {31400, 33021}, {31404, 32825}, {31415, 32833}, {32006, 33260}, {32817, 33016}, {32830, 32962}, {32834, 33009}, {32835, 32964}, {32840, 32991}, {32841, 32979}, {32871, 33204}, {33005, 52713}, {33010, 59635}, {33060, 34284}, {33257, 45017}, {35060, 61745}, {35456, 37182}, {35951, 61561}, {37353, 40904}, {40246, 53142}, {40824, 60105}, {41750, 58448}, {43681, 60331}, {53418, 59634}

X(63021) = anticomplement of X(17004)
X(63021) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60233, 2}
X(63021) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60233, 6327}
X(63021) = pole of line {2, 13196} with respect to the Wallace hyperbola
X(63021) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(35005)}}, {{A, B, C, X(183), X(43688)}}, {{A, B, C, X(230), X(60184)}}, {{A, B, C, X(262), X(7766)}}, {{A, B, C, X(327), X(37647)}}, {{A, B, C, X(385), X(60177)}}, {{A, B, C, X(1502), X(3631)}}, {{A, B, C, X(3613), X(3629)}}, {{A, B, C, X(7735), X(60105)}}, {{A, B, C, X(7779), X(60234)}}, {{A, B, C, X(7897), X(8781)}}, {{A, B, C, X(8859), X(54901)}}, {{A, B, C, X(11606), X(17008)}}, {{A, B, C, X(16995), X(45964)}}, {{A, B, C, X(22329), X(54737)}}, {{A, B, C, X(41136), X(60240)}}, {{A, B, C, X(51170), X(60331)}}, {{A, B, C, X(54487), X(62204)}}
X(63021) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 325, 7897}, {2, 7774, 7766}, {39, 7814, 7912}, {39, 7912, 7933}, {83, 7888, 7945}, {194, 7752, 32966}, {325, 3815, 3314}, {574, 7809, 7898}, {1007, 7774, 2}, {1007, 9770, 7774}, {1078, 7903, 7946}, {1506, 7796, 31276}, {3314, 7777, 3815}, {3788, 7858, 7787}, {7752, 7764, 194}, {7759, 7769, 7793}, {7763, 7785, 3552}, {7771, 7845, 9939}, {7772, 7899, 7932}, {7773, 7783, 33019}, {7776, 7824, 7929}, {7786, 7821, 7938}, {20065, 32829, 33259}


X(63022) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(8584), X(3), X(6))

Barycentrics    17*a^2-b^2-c^2 : :
X(63022) = -X[2]+6*X[6], X[20]+14*X[53858], X[148]+4*X[8787], -12*X[182]+7*X[15698], X[376]+4*X[576], -2*X[549]+7*X[53092], -8*X[575]+3*X[3524], -X[631]+4*X[22234], X[671]+4*X[41672], 3*X[1351]+2*X[8703], -6*X[1352]+11*X[61932], 3*X[1353]+2*X[5066] and many others

X(63022) lies on these lines: {2, 6}, {4, 17503}, {20, 53858}, {30, 11482}, {39, 47061}, {83, 60637}, {148, 8787}, {182, 15698}, {376, 576}, {428, 11405}, {487, 6501}, {488, 6500}, {511, 19708}, {518, 51193}, {542, 41099}, {549, 53092}, {575, 3524}, {598, 54637}, {631, 22234}, {671, 41672}, {895, 15004}, {1351, 8703}, {1352, 61932}, {1353, 5066}, {1503, 51216}, {2271, 22351}, {2482, 14075}, {3098, 62055}, {3241, 4663}, {3525, 46267}, {3528, 55718}, {3529, 33749}, {3534, 5093}, {3543, 8550}, {3564, 19709}, {3751, 51071}, {3759, 35578}, {3818, 61961}, {3830, 6776}, {3845, 14853}, {3860, 18440}, {3972, 9741}, {4254, 21498}, {4669, 50953}, {4677, 51192}, {4745, 51196}, {4856, 50089}, {5007, 32985}, {5008, 7618}, {5021, 22355}, {5050, 12100}, {5085, 51132}, {5092, 61777}, {5095, 8889}, {5097, 11001}, {5102, 33748}, {5120, 21497}, {5182, 36521}, {5286, 8352}, {5309, 50280}, {5319, 32984}, {5476, 41106}, {5477, 36523}, {5480, 61989}, {5485, 60282}, {5749, 50077}, {5847, 51066}, {5921, 38072}, {5965, 61902}, {6337, 43136}, {6995, 15471}, {7394, 32255}, {7426, 47464}, {7714, 8541}, {7738, 34604}, {7739, 61046}, {7757, 44500}, {7772, 33215}, {7787, 12151}, {7801, 34571}, {7827, 32006}, {7894, 11054}, {8365, 32825}, {8539, 34607}, {8540, 10385}, {8542, 12834}, {8546, 37913}, {9027, 11451}, {9041, 51092}, {10109, 50955}, {10168, 61838}, {10299, 55708}, {10304, 11477}, {10516, 51215}, {10519, 15701}, {10541, 15705}, {10754, 15300}, {10989, 47549}, {11055, 18906}, {11147, 37809}, {11178, 61915}, {11188, 58470}, {11206, 11216}, {11402, 37904}, {11422, 26255}, {11432, 44273}, {11540, 50978}, {11645, 62019}, {11812, 61624}, {11898, 38079}, {12007, 14927}, {12017, 15711}, {12156, 14912}, {13366, 43697}, {14482, 52691}, {14561, 51140}, {14627, 18909}, {14711, 32451}, {14831, 44495}, {15069, 61936}, {15516, 38064}, {15685, 48906}, {15692, 53093}, {15693, 53091}, {15710, 52987}, {15713, 34380}, {15714, 55595}, {15715, 20190}, {15716, 55705}, {15719, 39561}, {15759, 33878}, {15826, 37901}, {16043, 41940}, {16475, 50999}, {16491, 51104}, {16496, 51107}, {16667, 50093}, {16668, 41312}, {16670, 29574}, {16671, 41313}, {16834, 28301}, {17504, 55701}, {18358, 61929}, {18553, 61947}, {18583, 61920}, {18842, 60216}, {19101, 60207}, {19704, 37492}, {19924, 62135}, {21735, 55721}, {21849, 40673}, {21850, 62040}, {22495, 37171}, {22496, 37170}, {22541, 60208}, {22579, 36327}, {22580, 35749}, {25320, 41720}, {25555, 61895}, {26615, 44501}, {26616, 44502}, {26685, 50125}, {27088, 30435}, {28313, 49543}, {28322, 50124}, {28538, 51072}, {29181, 62145}, {31166, 39125}, {31670, 62049}, {31884, 51138}, {32220, 47311}, {32532, 45103}, {33223, 41750}, {33591, 43908}, {33750, 62076}, {34200, 55724}, {34379, 51109}, {34507, 61899}, {34898, 39955}, {35276, 37503}, {35750, 51012}, {35752, 46855}, {36330, 46854}, {36331, 51015}, {36990, 62002}, {37493, 44261}, {37517, 62077}, {37760, 47466}, {37765, 63155}, {37907, 47280}, {38047, 51155}, {38110, 61847}, {38136, 61969}, {38315, 51124}, {38317, 50961}, {39024, 58854}, {39874, 62009}, {39884, 61977}, {39899, 61974}, {40107, 61859}, {40138, 52282}, {40330, 61910}, {41112, 47866}, {41113, 47865}, {41150, 49505}, {41895, 54642}, {41990, 50957}, {42510, 51206}, {42511, 51207}, {43273, 51211}, {44456, 62073}, {44496, 51224}, {44497, 51485}, {44498, 51484}, {44882, 62132}, {45759, 55580}, {46264, 62165}, {47313, 47545}, {47354, 61943}, {47465, 47544}, {48662, 61986}, {48876, 61843}, {49737, 62212}, {49859, 51208}, {49860, 51209}, {50950, 51069}, {50952, 51110}, {50970, 55673}, {50977, 55713}, {50983, 61805}, {50986, 61898}, {51001, 51068}, {51002, 60971}, {51005, 51093}, {51024, 62051}, {51136, 53023}, {51148, 59407}, {51166, 59411}, {51167, 62018}, {51178, 61908}, {51181, 55682}, {51190, 60963}, {51732, 61851}, {52281, 62213}, {53097, 62063}, {53101, 60632}, {54169, 55711}, {54478, 54647}, {54483, 54818}, {54616, 60286}, {55583, 62066}, {55584, 62065}, {55588, 62061}, {55602, 58187}, {55606, 62058}, {55614, 62056}, {55641, 58184}, {55684, 61778}, {55687, 61780}, {55697, 61786}, {55698, 61787}, {55704, 61138}, {55715, 62115}, {55716, 62090}, {55722, 62072}, {55726, 55786}, {55728, 55783}, {55794, 55826}, {55796, 55823}, {60143, 60287}, {60228, 60284}, {60283, 60627}, {61044, 62099}, {61545, 61890}

X(63022) = midpoint of X(i) and X(j) for these {i,j}: {1992, 3618}, {50975, 54132}
X(63022) = reflection of X(i) in X(j) for these {i,j}: {15692, 53093}, {3763, 597}, {47353, 51129}, {50956, 5476}, {50968, 51737}, {54132, 51172}, {54173, 51137}, {55595, 15714}
X(63022) = isotomic conjugate of X(60627)
X(63022) = anticomplement of X(50993)
X(63022) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60627}, {50993, 50993}
X(63022) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60283, 2}
X(63022) = X(i)-complementary conjugate of X(j) for these {i, j}: {54896, 2887}
X(63022) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60283, 6327}
X(63022) = pole of line {2, 54896} with respect to the Kiepert hyperbola
X(63022) = pole of line {6, 14924} with respect to the Stammler hyperbola
X(63022) = pole of line {2, 60627} with respect to the Wallace hyperbola
X(63022) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(15533)}}, {{A, B, C, X(69), X(17503)}}, {{A, B, C, X(141), X(60637)}}, {{A, B, C, X(251), X(20481)}}, {{A, B, C, X(524), X(60281)}}, {{A, B, C, X(599), X(54637)}}, {{A, B, C, X(671), X(50990)}}, {{A, B, C, X(1992), X(60282)}}, {{A, B, C, X(3054), X(34288)}}, {{A, B, C, X(3763), X(34898)}}, {{A, B, C, X(5485), X(50991)}}, {{A, B, C, X(8584), X(18842)}}, {{A, B, C, X(11160), X(54642)}}, {{A, B, C, X(11580), X(39955)}}, {{A, B, C, X(15534), X(60284)}}, {{A, B, C, X(21356), X(60216)}}, {{A, B, C, X(22165), X(32532)}}, {{A, B, C, X(40429), X(41133)}}, {{A, B, C, X(45103), X(50992)}}, {{A, B, C, X(50993), X(60627)}}, {{A, B, C, X(50994), X(60228)}}, {{A, B, C, X(51143), X(60641)}}, {{A, B, C, X(51185), X(54616)}}, {{A, B, C, X(51186), X(60143)}}, {{A, B, C, X(59373), X(60287)}}
X(63022) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5032, 8584}, {2, 8584, 1992}, {6, 8584, 2}, {524, 597, 3763}, {1353, 14848, 11180}, {1992, 3618, 524}, {5085, 51132, 54174}, {5093, 50979, 54132}, {5102, 51737, 51028}, {20423, 51176, 51029}, {33748, 51028, 51737}, {50979, 51172, 50975}, {50979, 54132, 25406}


X(63023) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(8972), X(3), X(6))

Barycentrics    4*a^2+3*S : :

X(63023) lies on these lines: {2, 6}, {4, 6199}, {20, 6221}, {32, 61335}, {140, 42523}, {145, 13883}, {371, 3146}, {372, 43315}, {376, 6445}, {390, 19030}, {485, 3832}, {486, 6435}, {550, 9690}, {588, 51316}, {631, 6395}, {632, 6501}, {1131, 6459}, {1132, 6441}, {1151, 43883}, {1152, 61804}, {1327, 60295}, {1384, 51953}, {1506, 61336}, {1585, 33630}, {1587, 3522}, {1588, 5068}, {3070, 5059}, {3071, 3854}, {3090, 6417}, {3091, 3311}, {3247, 30413}, {3312, 10303}, {3316, 7486}, {3523, 6398}, {3524, 6446}, {3525, 6418}, {3526, 43375}, {3529, 42643}, {3530, 43415}, {3534, 43386}, {3543, 13665}, {3545, 45384}, {3590, 60292}, {3592, 31412}, {3600, 19028}, {3616, 13888}, {3617, 18991}, {3621, 7969}, {3622, 8983}, {3623, 19066}, {3628, 6500}, {3758, 32800}, {3759, 32799}, {3839, 42215}, {3973, 5393}, {4232, 13884}, {4254, 21565}, {4678, 13911}, {5056, 7582}, {5067, 19116}, {5071, 18510}, {5120, 21568}, {5261, 18996}, {5265, 18965}, {5274, 19038}, {5281, 13901}, {5334, 42238}, {5335, 42237}, {5410, 7378}, {5412, 7408}, {5418, 61834}, {5420, 6436}, {5550, 19003}, {5921, 11447}, {6201, 48735}, {6351, 15492}, {6396, 9540}, {6407, 17538}, {6408, 61807}, {6409, 62078}, {6411, 6460}, {6412, 43511}, {6419, 15022}, {6420, 61848}, {6425, 62152}, {6427, 13939}, {6428, 61863}, {6431, 42561}, {6432, 43884}, {6433, 42259}, {6434, 41970}, {6438, 61816}, {6447, 49140}, {6449, 62097}, {6450, 61798}, {6451, 10304}, {6452, 15692}, {6453, 43407}, {6455, 62083}, {6468, 42638}, {6470, 42273}, {6472, 62134}, {6474, 62143}, {6476, 42267}, {6480, 6560}, {6481, 61806}, {6561, 50687}, {6564, 61985}, {6565, 42604}, {6636, 19006}, {6807, 15032}, {7374, 39874}, {9541, 15683}, {9584, 59420}, {9691, 12103}, {9780, 19004}, {10109, 43387}, {10145, 62119}, {10586, 45652}, {10587, 45650}, {11292, 21309}, {11539, 43517}, {12221, 13711}, {12222, 13651}, {13595, 13889}, {13770, 13921}, {13785, 61936}, {13834, 13879}, {13887, 61155}, {13893, 46933}, {13904, 14986}, {13935, 35812}, {13936, 46932}, {13937, 53857}, {13947, 46930}, {13951, 46935}, {13961, 61867}, {13966, 61856}, {13993, 60781}, {14241, 54542}, {14683, 46688}, {15640, 52047}, {15693, 17851}, {15708, 43510}, {15721, 35256}, {18992, 46934}, {19018, 45289}, {19709, 43536}, {19877, 49547}, {20014, 49232}, {20105, 49252}, {23251, 43376}, {23253, 43791}, {23269, 49135}, {31411, 62219}, {31414, 42258}, {33636, 55885}, {34089, 48154}, {34091, 61878}, {35369, 49266}, {35732, 42983}, {35823, 61927}, {36436, 42815}, {36454, 42816}, {37913, 44598}, {40330, 42833}, {41411, 43133}, {41945, 52667}, {41946, 61778}, {41957, 43380}, {41963, 42637}, {42196, 51727}, {42260, 62149}, {42263, 42540}, {42264, 62148}, {42282, 42982}, {42539, 61962}, {42558, 42603}, {42568, 42574}, {42602, 42605}, {42639, 61932}, {42644, 61836}, {43211, 61844}, {43242, 52400}, {43243, 52399}, {43256, 62099}, {43257, 62030}, {43316, 62037}, {43317, 61924}, {43318, 62095}, {43322, 62063}, {43336, 51911}, {43448, 62241}, {43508, 61992}, {43518, 61864}, {43787, 62110}, {43882, 55856}, {45385, 61899}, {52045, 62056}, {52048, 61796}, {52666, 62005}, {53130, 62132}, {54543, 60299}, {54597, 61898}, {60293, 60312}, {60296, 60622}, {60887, 61006}

X(63023) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(60291)}}, {{A, B, C, X(491), X(60311)}}, {{A, B, C, X(492), X(43561)}}, {{A, B, C, X(588), X(37672)}}, {{A, B, C, X(590), X(51316)}}
X(63023) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3068, 8972}, {1131, 17578, 43560}, {1131, 6459, 17578}, {3068, 7585, 2}, {3070, 43512, 5059}, {3070, 5059, 43519}, {3311, 18538, 23273}, {6221, 23267, 20}, {6221, 7583, 23267}, {6417, 13925, 3090}, {6431, 43879, 42561}, {7582, 8976, 5056}, {7585, 8972, 6}, {13886, 23273, 18538}, {18538, 23273, 3091}, {42216, 43509, 10304}, {42263, 43507, 62032}, {42540, 62032, 43507}


X(63024) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9300), X(3), X(6))

Barycentrics    5*a^4-(b^2-c^2)^2+8*a^2*(b^2+c^2) : :

X(63024) lies on these lines: {2, 6}, {4, 7739}, {25, 52188}, {30, 7738}, {32, 3524}, {39, 376}, {83, 32833}, {98, 54523}, {115, 41106}, {147, 6034}, {187, 15698}, {232, 7714}, {251, 5063}, {262, 14912}, {381, 5286}, {383, 42998}, {393, 5064}, {427, 40138}, {428, 3087}, {519, 9575}, {549, 30435}, {574, 1285}, {631, 5007}, {1080, 42999}, {1370, 3108}, {1384, 12100}, {1444, 21505}, {1506, 61899}, {1572, 50810}, {1587, 13674}, {1588, 13794}, {1627, 33872}, {1656, 31407}, {1990, 7378}, {2023, 11177}, {2031, 26613}, {2271, 13635}, {2276, 10385}, {2548, 3545}, {2549, 14482}, {3053, 15692}, {3090, 5319}, {3094, 54170}, {3146, 9607}, {3284, 7494}, {3424, 54521}, {3522, 22332}, {3523, 9606}, {3525, 9698}, {3528, 53096}, {3534, 18907}, {3543, 7745}, {3544, 31417}, {3598, 7277}, {3767, 5071}, {3830, 15048}, {3839, 5254}, {3845, 15484}, {3926, 6661}, {4253, 48870}, {4254, 21487}, {4969, 7172}, {5008, 15719}, {5013, 10304}, {5021, 13634}, {5023, 15705}, {5024, 8703}, {5039, 54173}, {5052, 33706}, {5054, 31406}, {5055, 5305}, {5067, 7755}, {5158, 7386}, {5206, 15715}, {5210, 61781}, {5218, 5332}, {5280, 10072}, {5299, 10056}, {5346, 61889}, {5355, 18362}, {5368, 61888}, {5395, 32819}, {5421, 22240}, {5475, 39593}, {5476, 43450}, {5485, 54773}, {5702, 8889}, {6103, 52299}, {6128, 6997}, {6179, 32978}, {6221, 61308}, {6292, 55774}, {6337, 7787}, {6398, 61309}, {6749, 6995}, {6781, 62115}, {7288, 7296}, {7499, 61301}, {7603, 61915}, {7612, 54645}, {7710, 14853}, {7737, 11001}, {7746, 61895}, {7747, 62042}, {7748, 62017}, {7749, 61861}, {7751, 32957}, {7754, 46951}, {7756, 62161}, {7757, 14033}, {7758, 16045}, {7759, 32956}, {7760, 32968}, {7763, 33224}, {7764, 14069}, {7770, 32836}, {7775, 33285}, {7783, 33187}, {7785, 33251}, {7798, 52713}, {7799, 7878}, {7803, 7809}, {7804, 32817}, {7811, 16043}, {7812, 32986}, {7818, 33230}, {7821, 33194}, {7822, 18841}, {7823, 33263}, {7826, 55732}, {7827, 16041}, {7829, 32951}, {7834, 32823}, {7838, 7865}, {7855, 18840}, {7856, 32969}, {7858, 7884}, {7864, 33278}, {7880, 32818}, {7888, 32952}, {7902, 33292}, {7905, 47005}, {7921, 7924}, {8588, 61777}, {8589, 62055}, {9574, 50808}, {9592, 51705}, {9593, 28194}, {9608, 37940}, {9753, 60657}, {10299, 31450}, {11173, 44839}, {11179, 44422}, {11205, 11206}, {11482, 37451}, {11539, 31467}, {12150, 13356}, {12156, 52691}, {13331, 25406}, {13357, 33215}, {13571, 16898}, {13881, 61924}, {14023, 32960}, {14039, 34511}, {14075, 61833}, {14458, 39874}, {14484, 36990}, {14494, 60175}, {14836, 15437}, {15513, 61780}, {15515, 62058}, {15559, 56865}, {15640, 44526}, {15655, 15711}, {15693, 21309}, {15702, 31401}, {15710, 37512}, {15712, 31470}, {15717, 22331}, {15815, 62063}, {15860, 16051}, {16063, 41335}, {16303, 47314}, {16308, 37901}, {16670, 24239}, {16924, 19570}, {17024, 62210}, {18842, 60180}, {19099, 35823}, {19100, 35822}, {19649, 37503}, {21735, 31652}, {21843, 61822}, {25066, 48824}, {29815, 62211}, {29840, 54389}, {30537, 39955}, {31428, 38068}, {31455, 34571}, {31457, 61807}, {31492, 61820}, {32450, 32822}, {32476, 33007}, {32815, 53489}, {32816, 33219}, {32825, 33217}, {32837, 33220}, {32885, 32992}, {33008, 34604}, {33201, 59546}, {39563, 61980}, {39590, 61983}, {39602, 46211}, {39951, 43957}, {40133, 48856}, {43291, 61920}, {43457, 61961}, {43509, 62219}, {43510, 62220}, {43618, 62165}, {43619, 62049}, {43620, 61926}, {44434, 60652}, {44518, 61985}, {44519, 62148}, {44535, 61846}, {51212, 60651}, {51224, 62367}, {52285, 62195}, {53092, 56370}, {53095, 62059}, {53101, 54889}, {53418, 62007}, {53419, 61989}, {54477, 54707}, {54522, 54866}, {54612, 54734}, {54823, 60105}, {60185, 60192}, {60190, 60214}, {60218, 60268}, {62019, 62203}

X(63024) = X(i)-complementary conjugate of X(j) for these {i, j}: {54520, 2887}
X(63024) = pole of line {3806, 44445} with respect to the anticomplementary circle
X(63024) = pole of line {2, 31860} with respect to the Kiepert hyperbola
X(63024) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37671)}}, {{A, B, C, X(69), X(14492)}}, {{A, B, C, X(183), X(60150)}}, {{A, B, C, X(325), X(54523)}}, {{A, B, C, X(1007), X(54645)}}, {{A, B, C, X(1989), X(47355)}}, {{A, B, C, X(1992), X(54773)}}, {{A, B, C, X(2165), X(51126)}}, {{A, B, C, X(3108), X(15066)}}, {{A, B, C, X(3589), X(34288)}}, {{A, B, C, X(3618), X(52187)}}, {{A, B, C, X(3619), X(46952)}}, {{A, B, C, X(3620), X(52224)}}, {{A, B, C, X(3763), X(30537)}}, {{A, B, C, X(5422), X(34572)}}, {{A, B, C, X(7788), X(60127)}}, {{A, B, C, X(7837), X(60190)}}, {{A, B, C, X(8556), X(11172)}}, {{A, B, C, X(8770), X(59777)}}, {{A, B, C, X(9766), X(60268)}}, {{A, B, C, X(14614), X(18842)}}, {{A, B, C, X(15018), X(39955)}}, {{A, B, C, X(15589), X(54519)}}, {{A, B, C, X(16990), X(60214)}}, {{A, B, C, X(21356), X(60180)}}, {{A, B, C, X(34229), X(60175)}}, {{A, B, C, X(37668), X(54521)}}, {{A, B, C, X(42850), X(60218)}}, {{A, B, C, X(46204), X(48310)}}
X(63024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7837, 69}, {2, 9300, 7736}, {2, 9740, 8556}, {6, 3815, 5304}, {6, 7736, 7735}, {262, 14912, 53015}, {2548, 5309, 3545}, {2549, 14537, 15682}, {3329, 7837, 2}, {7739, 7753, 4}, {7753, 7772, 7739}, {7803, 7809, 33223}, {18362, 31415, 61932}


X(63025) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(9771), X(3), X(6))

Barycentrics    a^4+7*b^4-10*b^2*c^2+7*c^4-16*a^2*(b^2+c^2) : :

X(63025) lies on these lines: {2, 6}, {4, 60211}, {39, 32984}, {83, 33197}, {114, 671}, {376, 9734}, {543, 31415}, {598, 11147}, {631, 7812}, {1285, 26613}, {1506, 34511}, {2482, 14033}, {2548, 32985}, {2549, 8176}, {3363, 11165}, {3524, 47113}, {3525, 7858}, {3849, 47061}, {3926, 59780}, {5024, 37350}, {5071, 7757}, {5077, 32827}, {5461, 7739}, {5475, 7618}, {5503, 60268}, {6055, 14912}, {6179, 61867}, {6337, 8370}, {6564, 13801}, {6565, 13681}, {7603, 7615}, {7608, 11172}, {7612, 58831}, {7619, 21843}, {7620, 31859}, {7622, 7737}, {7738, 33006}, {7745, 35287}, {7752, 33190}, {7753, 33216}, {7760, 61886}, {7764, 32975}, {7772, 32976}, {7775, 7830}, {7786, 33230}, {7801, 32968}, {7807, 31407}, {7810, 32978}, {7814, 32960}, {7817, 32969}, {7841, 31400}, {7878, 32959}, {7883, 32823}, {8359, 31467}, {8369, 32829}, {8591, 33016}, {8781, 18842}, {9606, 32972}, {9607, 52250}, {9698, 14064}, {9741, 11185}, {9760, 31709}, {9762, 31710}, {9939, 33001}, {10011, 14848}, {10155, 60220}, {11054, 53127}, {11159, 12040}, {11161, 25486}, {11317, 53142}, {11318, 31406}, {13860, 51023}, {14061, 14482}, {14568, 61899}, {14907, 55801}, {15484, 27088}, {15682, 58851}, {16509, 22253}, {18584, 20112}, {19662, 42852}, {20423, 58883}, {22332, 32980}, {23334, 35955}, {31173, 32986}, {31450, 33238}, {31492, 33023}, {32955, 55085}, {32991, 59546}, {33223, 44562}, {33240, 51588}, {33285, 39266}, {37451, 50967}, {40248, 54132}, {40824, 54509}, {42010, 60190}, {43461, 51212}, {44422, 60657}, {44658, 51541}, {49554, 50089}, {54487, 60234}, {54523, 60095}, {60096, 60143}

X(63025) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7610)}}, {{A, B, C, X(69), X(60211)}}, {{A, B, C, X(230), X(18842)}}, {{A, B, C, X(524), X(14494)}}, {{A, B, C, X(597), X(23054)}}, {{A, B, C, X(598), X(23055)}}, {{A, B, C, X(599), X(44658)}}, {{A, B, C, X(671), X(34229)}}, {{A, B, C, X(5485), X(11168)}}, {{A, B, C, X(5503), X(42850)}}, {{A, B, C, X(7608), X(9770)}}, {{A, B, C, X(7612), X(15597)}}, {{A, B, C, X(7735), X(54509)}}, {{A, B, C, X(8667), X(54523)}}, {{A, B, C, X(8781), X(21356)}}, {{A, B, C, X(8859), X(60190)}}, {{A, B, C, X(9740), X(53099)}}, {{A, B, C, X(9771), X(53098)}}, {{A, B, C, X(10155), X(11184)}}, {{A, B, C, X(11172), X(37688)}}, {{A, B, C, X(13468), X(60127)}}, {{A, B, C, X(15271), X(60143)}}, {{A, B, C, X(16990), X(42010)}}, {{A, B, C, X(17008), X(54487)}}, {{A, B, C, X(22329), X(60268)}}, {{A, B, C, X(23053), X(60103)}}, {{A, B, C, X(59373), X(60096)}}
X(63025) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 7610}, {2, 5032, 230}, {2, 7777, 9770}, {2, 9770, 69}, {3055, 7610, 2}, {3363, 11165, 32815}, {7775, 31401, 33215}, {7775, 33215, 32006}


X(63026) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11008), X(3), X(6))

Barycentrics    17*a^2-3*(b^2+c^2) : :
X(63026) = -9*X[2]+20*X[6], 3*X[20]+8*X[37517], -40*X[182]+29*X[61798], X[382]+10*X[1353], -4*X[546]+15*X[5093], -4*X[550]+15*X[14912], -40*X[576]+7*X[50688], 10*X[1351]+X[3529], -5*X[3091]+16*X[5097], -40*X[3098]+51*X[62067], -X[3146]+12*X[5102], -5*X[3522]+16*X[12007] and many others

X(63026) lies on these lines: {2, 6}, {20, 37517}, {32, 51579}, {182, 61798}, {382, 1353}, {511, 62097}, {542, 61994}, {546, 5093}, {550, 14912}, {576, 50688}, {1351, 3529}, {1743, 29601}, {2996, 7760}, {3091, 5097}, {3098, 62067}, {3146, 5102}, {3522, 12007}, {3523, 50664}, {3528, 33878}, {3530, 55705}, {3544, 11482}, {3564, 3855}, {3632, 51196}, {3751, 20050}, {3839, 51140}, {3973, 29602}, {5008, 32973}, {5050, 61814}, {5056, 5965}, {5092, 33748}, {5189, 47465}, {5395, 7754}, {6179, 55804}, {6776, 29323}, {7758, 14075}, {7805, 32987}, {7838, 32972}, {7839, 33253}, {7894, 32974}, {8550, 62149}, {8586, 33243}, {10299, 12017}, {10303, 39561}, {10304, 55594}, {10519, 55710}, {10565, 44109}, {11173, 33254}, {11179, 55723}, {11216, 20079}, {11477, 62125}, {11898, 35018}, {12221, 23267}, {12222, 23273}, {14269, 50974}, {14683, 40342}, {14826, 44107}, {14848, 61928}, {14869, 53091}, {15531, 58555}, {15687, 39899}, {15692, 55691}, {15705, 51214}, {15709, 51174}, {15710, 50979}, {15715, 55678}, {15717, 55699}, {15720, 34380}, {16496, 20057}, {16669, 29583}, {16814, 29585}, {17504, 50962}, {17574, 37492}, {18440, 61980}, {18581, 33465}, {18582, 33464}, {19119, 37900}, {20054, 51192}, {20423, 62003}, {21734, 55607}, {21850, 62017}, {22113, 42983}, {22114, 42982}, {22330, 40330}, {22491, 42895}, {22492, 42894}, {24981, 25321}, {27377, 33630}, {31670, 62037}, {32366, 62187}, {33750, 55601}, {34200, 54174}, {37897, 47281}, {41895, 54720}, {42998, 51209}, {42999, 51208}, {43150, 51178}, {46264, 62153}, {47463, 47629}, {47478, 50986}, {48876, 61836}, {48889, 55715}, {48906, 51028}, {50693, 55722}, {50961, 61906}, {50967, 55672}, {50973, 61812}, {50985, 61861}, {51027, 61962}, {51132, 62120}, {51136, 62032}, {51182, 61887}, {51194, 60957}, {51732, 61855}, {53101, 60626}, {54132, 62166}, {54173, 55702}, {55584, 62087}, {55587, 62083}, {55591, 62078}, {55632, 62062}, {55636, 58188}, {55642, 62059}, {55703, 61804}, {55711, 61820}, {55729, 55787}, {55731, 55780}, {55735, 55772}, {55797, 55827}, {59399, 61905}, {60642, 60647}, {61545, 61892}

X(63026) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18843, 2}
X(63026) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {18843, 6327}
X(63026) = pole of line {6467, 11451} with respect to the Jerabek hyperbola
X(63026) = intersection, other than A, B, C, of circumconics {{A, B, C, X(193), X(53109)}}, {{A, B, C, X(2996), X(3631)}}, {{A, B, C, X(3054), X(14842)}}, {{A, B, C, X(3620), X(60636)}}, {{A, B, C, X(6144), X(22336)}}, {{A, B, C, X(6339), X(21356)}}, {{A, B, C, X(11160), X(54720)}}
X(63026) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3629, 193}, {6, 193, 3620}, {6, 3630, 3618}, {69, 6329, 2}, {3620, 5032, 6}, {3629, 8584, 6329}


X(63027) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11160), X(3), X(6))

Barycentrics    19*a^2-5*(b^2+c^2) : :
X(63027) = -5*X[2]+8*X[6], 5*X[20]+4*X[55724], -X[23]+4*X[47541], -16*X[182]+13*X[61806], -X[376]+4*X[1353], X[381]+2*X[50986], -4*X[547]+X[51175], -4*X[549]+X[51179], -32*X[575]+23*X[61834], -16*X[576]+7*X[3832], 2*X[1350]+X[51214], -4*X[1351]+X[3543] and many others

X(63027) lies on these lines: {2, 6}, {4, 60625}, {20, 55724}, {23, 47541}, {182, 61806}, {194, 53141}, {376, 1353}, {381, 50986}, {439, 34511}, {511, 62120}, {542, 50687}, {547, 51175}, {549, 51179}, {575, 61834}, {576, 3832}, {598, 32979}, {648, 62195}, {671, 60113}, {1350, 51214}, {1351, 3543}, {1352, 51178}, {1503, 62032}, {2393, 16981}, {2996, 54476}, {3053, 11147}, {3060, 61692}, {3098, 62072}, {3146, 11645}, {3241, 50952}, {3522, 11179}, {3523, 55701}, {3524, 33748}, {3545, 5093}, {3564, 3839}, {3623, 47356}, {3679, 51197}, {3751, 31145}, {3793, 47061}, {3854, 15069}, {4663, 4678}, {4912, 50131}, {5050, 15708}, {5056, 11482}, {5059, 11477}, {5068, 5476}, {5071, 11898}, {5095, 9143}, {5097, 61927}, {5102, 61992}, {5189, 47546}, {5206, 7618}, {5477, 8591}, {5480, 61972}, {5485, 7754}, {5550, 50787}, {5921, 18392}, {5965, 61930}, {6392, 7620}, {6776, 15683}, {7409, 8541}, {7426, 47278}, {7492, 32621}, {7615, 41748}, {7617, 7838}, {7714, 46444}, {7747, 53143}, {7760, 32982}, {7775, 52250}, {7805, 8176}, {8182, 37512}, {8550, 50693}, {8593, 20094}, {8596, 10754}, {8681, 11002}, {9716, 44102}, {9741, 35927}, {10124, 51183}, {10168, 61842}, {10304, 14912}, {10519, 55706}, {10989, 47277}, {11001, 44456}, {11148, 33007}, {11165, 35287}, {11178, 15022}, {11405, 52284}, {12007, 55671}, {12017, 61796}, {12221, 23253}, {12222, 23263}, {12272, 21849}, {13330, 20105}, {14023, 15810}, {14645, 33684}, {14683, 41720}, {14810, 50967}, {14848, 61924}, {14853, 61954}, {14927, 51136}, {15531, 62187}, {15640, 39874}, {15681, 51176}, {15682, 39899}, {15687, 51172}, {15692, 50979}, {15697, 48906}, {15702, 50978}, {15705, 17508}, {15717, 20190}, {15718, 51181}, {15719, 55705}, {15721, 48876}, {15826, 60456}, {16676, 29585}, {17132, 50129}, {17578, 54131}, {18358, 61938}, {18440, 61989}, {18583, 61912}, {19661, 32973}, {19691, 33683}, {19708, 55632}, {19783, 49723}, {20049, 51155}, {20063, 47280}, {20065, 32480}, {20081, 22486}, {21734, 51737}, {21850, 62007}, {25406, 62095}, {31670, 62030}, {32220, 37901}, {32981, 34604}, {33626, 49824}, {33627, 49825}, {33749, 55652}, {33750, 55630}, {33878, 62094}, {34200, 51180}, {34379, 38314}, {34507, 61914}, {35752, 43400}, {36330, 43399}, {37517, 62051}, {37760, 47446}, {37907, 47447}, {38064, 61830}, {38079, 61897}, {38259, 41895}, {39061, 52450}, {39884, 61994}, {40330, 50961}, {40673, 62188}, {40891, 49783}, {41672, 50639}, {42522, 45078}, {42523, 45079}, {43273, 61044}, {46264, 62145}, {46933, 50781}, {47281, 47313}, {47353, 50689}, {47354, 61952}, {48662, 62011}, {48874, 51177}, {48901, 51216}, {49684, 51092}, {50954, 61947}, {50955, 61936}, {50969, 55587}, {50977, 55709}, {50987, 61809}, {51023, 62005}, {51027, 51537}, {51132, 51212}, {51173, 61973}, {51182, 61545}, {51184, 61829}, {51194, 60984}, {51201, 51482}, {51204, 51483}, {51211, 62042}, {51732, 61859}, {52281, 56013}, {53092, 55864}, {53093, 61816}, {53097, 62102}, {53101, 60635}, {54169, 61791}, {54639, 60639}, {55580, 62110}, {55586, 62099}, {55593, 62086}, {55604, 62077}, {55654, 62056}, {55658, 62054}, {55708, 61820}, {55716, 62002}, {55730, 55785}, {55801, 55825}, {55803, 55823}, {55812, 55814}, {59399, 61899}, {60145, 60628}, {60147, 60271}, {60200, 60650}

X(63027) = midpoint of X(i) and X(j) for these {i,j}: {193, 5032}
X(63027) = reflection of X(i) in X(j) for these {i,j}: {10304, 14912}, {2, 5032}, {3545, 5093}, {5032, 1992}
X(63027) = isotomic conjugate of X(60635)
X(63027) = X(i)-Ceva conjugate of X(j) for these {i, j}: {53101, 2}
X(63027) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {53101, 6327}
X(63027) = pole of line {2, 60635} with respect to the Wallace hyperbola
X(63027) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(60625)}}, {{A, B, C, X(193), X(54476)}}, {{A, B, C, X(524), X(60113)}}, {{A, B, C, X(598), X(51170)}}, {{A, B, C, X(599), X(43681)}}, {{A, B, C, X(1992), X(18845)}}, {{A, B, C, X(3631), X(6339)}}, {{A, B, C, X(5032), X(60650)}}, {{A, B, C, X(5486), X(50991)}}, {{A, B, C, X(10513), X(60271)}}, {{A, B, C, X(11160), X(38259)}}, {{A, B, C, X(15534), X(22336)}}, {{A, B, C, X(20080), X(41895)}}, {{A, B, C, X(21356), X(41909)}}, {{A, B, C, X(22110), X(46275)}}, {{A, B, C, X(44367), X(60147)}}, {{A, B, C, X(44377), X(57539)}}
X(63027) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 1992, 8584}, {193, 1992, 2}, {193, 3620, 6144}, {193, 5032, 524}, {524, 1992, 5032}, {1351, 50974, 3543}, {1353, 50962, 376}, {5921, 20423, 61985}, {6776, 51028, 15683}, {11179, 54174, 3522}, {43273, 61044, 62129}, {50952, 51196, 3241}, {50978, 53091, 15702}, {50986, 61624, 381}


X(63028) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11163), X(3), X(6))

Barycentrics    2*a^4-b^4+b^2*c^2-c^4+4*a^2*(b^2+c^2) : :
X(63028) = X[194]+2*X[8370], 8*X[6683]+X[7877], 4*X[7762]+5*X[7904], -5*X[7786]+2*X[7810], 2*X[8353]+X[19569], -4*X[8354]+X[14976], -8*X[8367]+5*X[31276], -X[9863]+4*X[37345]

X(63028) lies on these lines: {2, 6}, {3, 34604}, {30, 7709}, {32, 7622}, {39, 3849}, {83, 7801}, {98, 10484}, {147, 381}, {148, 11317}, {194, 8370}, {262, 542}, {384, 34511}, {511, 60654}, {526, 22734}, {530, 3106}, {531, 3107}, {543, 598}, {549, 11842}, {574, 51224}, {671, 5475}, {754, 55164}, {1003, 8290}, {1506, 7894}, {2482, 3972}, {2548, 7615}, {2549, 8597}, {3363, 47286}, {3407, 5182}, {3851, 51238}, {4045, 7926}, {4108, 54274}, {4387, 29840}, {5007, 5215}, {5012, 30534}, {5013, 20088}, {5024, 14712}, {5025, 7772}, {5041, 7752}, {5093, 40248}, {5097, 43461}, {5169, 14995}, {5286, 33006}, {5309, 8176}, {5319, 32967}, {5355, 5461}, {5476, 6054}, {5485, 32983}, {5569, 55801}, {5640, 34383}, {5939, 8787}, {5969, 10335}, {5976, 9731}, {5987, 34319}, {5996, 9171}, {5999, 11179}, {6179, 9698}, {6292, 7949}, {6390, 35954}, {6683, 7877}, {7426, 60695}, {7617, 14568}, {7618, 13586}, {7620, 33016}, {7737, 9855}, {7738, 33192}, {7739, 14041}, {7759, 7876}, {7760, 16921}, {7762, 7904}, {7764, 7870}, {7765, 14062}, {7770, 13571}, {7781, 14034}, {7783, 33007}, {7785, 7841}, {7786, 7810}, {7787, 7891}, {7790, 31173}, {7793, 31406}, {7796, 16895}, {7797, 11318}, {7798, 11054}, {7799, 14036}, {7803, 7941}, {7804, 39785}, {7808, 7905}, {7811, 15810}, {7813, 60855}, {7814, 7829}, {7836, 33237}, {7856, 10150}, {7859, 7903}, {7863, 14038}, {7866, 51860}, {7871, 7889}, {7885, 33190}, {7888, 14067}, {7912, 8360}, {7923, 32816}, {7946, 8362}, {8182, 33273}, {8289, 18800}, {8352, 15048}, {8353, 19569}, {8354, 14976}, {8366, 10583}, {8367, 31276}, {8587, 60211}, {8591, 11159}, {8598, 18907}, {8716, 11164}, {8724, 10796}, {9167, 32458}, {9185, 62412}, {9466, 14762}, {9606, 33004}, {9607, 33019}, {9741, 14033}, {9744, 20423}, {9760, 61719}, {9774, 19924}, {9863, 37345}, {10302, 60129}, {10352, 12150}, {10567, 23878}, {10788, 37461}, {10989, 50149}, {11147, 33266}, {11167, 60098}, {11171, 22503}, {11177, 13860}, {11645, 44422}, {12040, 19661}, {12830, 33683}, {13083, 36760}, {13084, 36759}, {13330, 22564}, {14484, 41895}, {14492, 54540}, {14537, 32479}, {14931, 51798}, {15520, 38227}, {16044, 34505}, {16279, 36173}, {16508, 39652}, {18842, 32817}, {19570, 40727}, {19689, 32821}, {20065, 33215}, {22332, 33260}, {23334, 33017}, {31125, 60867}, {31407, 32999}, {33257, 34504}, {33275, 53096}, {33889, 50121}, {33891, 50128}, {36523, 43457}, {37182, 54132}, {37455, 54173}, {37901, 59227}, {38383, 55008}, {38732, 40277}, {40236, 54131}, {40246, 44526}, {42011, 60104}, {42535, 58765}, {45141, 52282}, {50687, 53017}, {54122, 60268}, {54520, 54889}, {54539, 60095}, {54616, 60232}, {54639, 60201}, {54732, 54919}, {54901, 60177}, {54905, 60214}, {55812, 61830}, {60103, 60233}, {60105, 60271}

X(63028) = midpoint of X(i) and X(j) for these {i,j}: {598, 7757}, {1916, 8592}, {7812, 52691}, {15810, 41750}
X(63028) = reflection of X(i) in X(j) for these {i,j}: {11361, 598}, {15810, 44562}, {598, 7753}, {52691, 39}, {60651, 9774}, {60653, 11171}, {7811, 15810}, {7833, 52691}, {9466, 14762}
X(63028) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54509, 2}
X(63028) = X(i)-complementary conjugate of X(j) for these {i, j}: {54737, 2887}
X(63028) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54509, 6327}
X(63028) = pole of line {647, 8704} with respect to the Gallatly circle
X(63028) = pole of line {9185, 23301} with respect to the nine-point circle
X(63028) = pole of line {8371, 32193} with respect to the orthocentroidal circle
X(63028) = pole of line {1499, 9208} with respect to the orthoptic circle of the Steiner Inellipse
X(63028) = pole of line {2, 54737} with respect to the Kiepert hyperbola
X(63028) = pole of line {523, 11186} with respect to the Steiner circumellipse
X(63028) = intersection, other than A, B, C, of circumconics {{A, B, C, X(183), X(43535)}}, {{A, B, C, X(262), X(7840)}}, {{A, B, C, X(325), X(10484)}}, {{A, B, C, X(385), X(598)}}, {{A, B, C, X(524), X(54487)}}, {{A, B, C, X(597), X(60129)}}, {{A, B, C, X(599), X(1916)}}, {{A, B, C, X(1383), X(7708)}}, {{A, B, C, X(1992), X(60190)}}, {{A, B, C, X(3314), X(5503)}}, {{A, B, C, X(3407), X(22329)}}, {{A, B, C, X(5304), X(54639)}}, {{A, B, C, X(5485), X(16990)}}, {{A, B, C, X(7606), X(18818)}}, {{A, B, C, X(7610), X(8587)}}, {{A, B, C, X(7774), X(60268)}}, {{A, B, C, X(7837), X(54905)}}, {{A, B, C, X(7875), X(60238)}}, {{A, B, C, X(7925), X(42011)}}, {{A, B, C, X(8667), X(54539)}}, {{A, B, C, X(8860), X(60104)}}, {{A, B, C, X(9740), X(53101)}}, {{A, B, C, X(10302), X(16986)}}, {{A, B, C, X(11160), X(14484)}}, {{A, B, C, X(11163), X(60098)}}, {{A, B, C, X(11168), X(60128)}}, {{A, B, C, X(15589), X(41895)}}, {{A, B, C, X(16988), X(60131)}}, {{A, B, C, X(16989), X(54616)}}, {{A, B, C, X(17004), X(60103)}}, {{A, B, C, X(18872), X(62657)}}, {{A, B, C, X(22110), X(60233)}}, {{A, B, C, X(37671), X(54540)}}, {{A, B, C, X(42850), X(54122)}}, {{A, B, C, X(44367), X(60105)}}
X(63028) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 385}, {2, 597, 7875}, {2, 7774, 7840}, {2, 7779, 599}, {2, 7840, 3314}, {6, 7777, 7806}, {32, 7622, 26613}, {39, 3849, 52691}, {39, 7921, 7823}, {543, 598, 11361}, {543, 7753, 598}, {1003, 11165, 52695}, {1916, 8592, 543}, {1992, 7736, 2}, {5041, 7752, 7920}, {5461, 61046, 5355}, {5476, 6054, 13862}, {6179, 9698, 33015}, {7622, 26613, 33274}, {7759, 55085, 7876}, {7762, 8359, 9939}, {7764, 7878, 7892}, {7772, 7775, 7827}, {7772, 7858, 5025}, {7785, 9605, 7864}, {7786, 7838, 7893}, {7812, 52691, 3849}, {7814, 7829, 14065}, {7827, 7858, 7775}, {7833, 7921, 7812}, {9774, 19924, 60651}, {12040, 19661, 35297}, {41750, 44562, 7811}


X(63029) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11168), X(3), X(6))

Barycentrics    7*a^4+b^4-10*b^2*c^2+c^4-4*a^2*(b^2+c^2) : :
X(63029) = X[20]+2*X[34505], -5*X[631]+4*X[7622], -8*X[1153]+7*X[15702], -7*X[3090]+4*X[7775], -11*X[3525]+2*X[7758], -7*X[3528]+4*X[34504], -17*X[3533]+8*X[7764], -17*X[3544]+8*X[7843], -3*X[3839]+4*X[20112], -3*X[5054]+2*X[12040], -13*X[5067]+4*X[7759], -5*X[5071]+4*X[8176] and many others

X(63029) lies on these lines: {2, 6}, {3, 33850}, {4, 3849}, {20, 34505}, {30, 7620}, {76, 26613}, {98, 376}, {187, 52713}, {263, 61689}, {315, 32984}, {381, 16509}, {519, 49631}, {538, 3524}, {542, 7710}, {549, 11165}, {598, 32983}, {631, 7622}, {671, 11172}, {754, 3545}, {1003, 46951}, {1078, 7738}, {1153, 15702}, {1503, 60658}, {1506, 52718}, {1513, 11180}, {1975, 35287}, {2482, 17131}, {2782, 16508}, {3053, 32834}, {3090, 7775}, {3363, 3793}, {3525, 7758}, {3528, 34504}, {3533, 7764}, {3544, 7843}, {3564, 40248}, {3734, 37809}, {3767, 7810}, {3785, 7841}, {3839, 20112}, {4045, 55726}, {4396, 5218}, {4400, 7288}, {4419, 37764}, {5007, 32957}, {5054, 12040}, {5067, 7759}, {5071, 8176}, {5077, 43448}, {5201, 34098}, {5206, 32822}, {5215, 7801}, {5286, 8359}, {5309, 15810}, {5319, 32960}, {5503, 7612}, {5939, 8591}, {5969, 6194}, {5976, 11147}, {5999, 54170}, {6054, 58883}, {6055, 54173}, {6103, 52283}, {6108, 42035}, {6109, 42036}, {6179, 32968}, {6337, 17129}, {6680, 18840}, {7426, 16334}, {7493, 41359}, {7607, 60240}, {7619, 15709}, {7684, 22492}, {7685, 22491}, {7749, 32818}, {7755, 32956}, {7760, 32978}, {7762, 32838}, {7767, 11318}, {7768, 32969}, {7771, 11054}, {7781, 10299}, {7793, 33007}, {7794, 33189}, {7795, 33197}, {7796, 32977}, {7800, 7817}, {7811, 9166}, {7812, 32832}, {7818, 14971}, {7821, 32958}, {7826, 32823}, {7827, 16043}, {7834, 55732}, {7849, 32953}, {7854, 32951}, {7865, 33196}, {7869, 33195}, {7870, 32970}, {7873, 33292}, {7880, 33231}, {7883, 14064}, {7884, 55730}, {7885, 39143}, {7908, 22247}, {7946, 32998}, {8355, 14929}, {8367, 30435}, {8370, 32828}, {8588, 15300}, {8592, 36864}, {8598, 32815}, {8716, 11148}, {9149, 37184}, {9185, 55135}, {9466, 14039}, {9744, 50974}, {9748, 38072}, {9754, 23234}, {9830, 11177}, {9939, 32006}, {9993, 41099}, {10304, 53141}, {10554, 25314}, {11001, 32479}, {11164, 35927}, {11185, 51224}, {11286, 19661}, {12100, 51122}, {12251, 13085}, {13571, 33003}, {13860, 54132}, {14482, 15482}, {14568, 32986}, {14694, 36207}, {14712, 52942}, {15682, 18546}, {15693, 51123}, {15819, 38064}, {16092, 36163}, {16315, 36194}, {16924, 34604}, {19570, 32480}, {19708, 46893}, {20065, 33013}, {21732, 23878}, {24363, 28329}, {25319, 35288}, {25406, 60654}, {26245, 26273}, {30534, 43650}, {31173, 43620}, {32831, 44535}, {32833, 33216}, {32836, 35297}, {32885, 44543}, {33017, 41135}, {33279, 50570}, {34095, 46303}, {35955, 47286}, {36900, 53347}, {37187, 37765}, {37904, 47285}, {40824, 60103}, {42011, 53103}, {43535, 54122}, {46998, 50146}, {53143, 62130}, {53144, 62017}, {54616, 60099}, {59546, 61820}, {60101, 60268}, {60150, 60181}, {60180, 60185}, {60215, 60629}

X(63029) = midpoint of X(i) and X(j) for these {i,j}: {2, 9740}, {376, 5485}, {7610, 8667}, {7622, 7751}
X(63029) = reflection of X(i) in X(j) for these {i,j}: {11148, 8716}, {11165, 549}, {2, 7610}, {23334, 381}, {376, 8182}, {381, 16509}, {34511, 7622}, {4, 7615}, {53142, 3}, {7618, 5569}, {7620, 40727}, {7622, 34506}, {9740, 8667}, {9741, 7618}, {9766, 9771}, {9770, 2}
X(63029) = inverse of X(34014) in circumcircle
X(63029) = inverse of X(37746) in orthoptic circle of the Steiner Inellipse
X(63029) = anticomplement of X(11184)
X(63029) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60220, 2}
X(63029) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60220, 6327}
X(63029) = pole of line {8704, 44445} with respect to the anticomplementary circle
X(63029) = pole of line {669, 34014} with respect to the circumcircle
X(63029) = pole of line {1499, 37350} with respect to the orthoptic circle of the Steiner Inellipse
X(63029) = pole of line {2501, 8704} with respect to the polar circle
X(63029) = pole of line {2, 51438} with respect to the Wallace hyperbola
X(63029) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(11163)}}, {{A, B, C, X(69), X(11167)}}, {{A, B, C, X(98), X(1992)}}, {{A, B, C, X(325), X(5485)}}, {{A, B, C, X(524), X(11172)}}, {{A, B, C, X(598), X(7736)}}, {{A, B, C, X(599), X(60212)}}, {{A, B, C, X(671), X(9770)}}, {{A, B, C, X(1007), X(5503)}}, {{A, B, C, X(1296), X(2421)}}, {{A, B, C, X(2770), X(52231)}}, {{A, B, C, X(3815), X(60268)}}, {{A, B, C, X(7607), X(23055)}}, {{A, B, C, X(7612), X(22329)}}, {{A, B, C, X(7735), X(60103)}}, {{A, B, C, X(7774), X(43535)}}, {{A, B, C, X(7840), X(54122)}}, {{A, B, C, X(7868), X(60629)}}, {{A, B, C, X(8860), X(53103)}}, {{A, B, C, X(11174), X(54616)}}, {{A, B, C, X(14614), X(60185)}}, {{A, B, C, X(21448), X(46949)}}, {{A, B, C, X(22110), X(40824)}}, {{A, B, C, X(23053), X(53104)}}, {{A, B, C, X(34803), X(42011)}}, {{A, B, C, X(41624), X(60150)}}, {{A, B, C, X(42850), X(60101)}}, {{A, B, C, X(60136), X(62204)}}
X(63029) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 7736}, {2, 385, 1992}, {2, 524, 9770}, {2, 5304, 597}, {2, 7840, 1007}, {2, 9740, 524}, {3, 52229, 53142}, {30, 40727, 7620}, {230, 599, 2}, {376, 5485, 543}, {524, 8667, 9740}, {524, 9771, 9766}, {538, 7618, 9741}, {543, 8182, 376}, {3524, 55823, 5569}, {3524, 9741, 7618}, {3767, 7810, 33190}, {3849, 7615, 4}, {5569, 7618, 3524}, {7751, 34506, 34511}, {7800, 7817, 33230}, {9761, 9763, 141}, {9939, 33006, 32006}, {17131, 21843, 32817}, {18546, 47102, 15682}, {34506, 34511, 631}


X(63030) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11427), X(3), X(6))

Barycentrics    5*a^6+3*a^2*(b^2-c^2)^2-9*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2) : :

X(63030) lies on these lines: {2, 6}, {4, 11402}, {5, 63174}, {20, 578}, {32, 97}, {51, 4232}, {54, 7487}, {110, 7398}, {154, 52301}, {184, 6995}, {195, 14786}, {275, 393}, {371, 55897}, {372, 55893}, {389, 2979}, {390, 11429}, {427, 14912}, {631, 11432}, {1180, 47740}, {1192, 61791}, {1199, 2904}, {1285, 35937}, {1351, 7494}, {1368, 53091}, {1503, 7409}, {1585, 7582}, {1586, 7581}, {1587, 55569}, {1588, 55573}, {1589, 3312}, {1590, 3311}, {1853, 12007}, {1899, 52284}, {2003, 55905}, {2052, 40138}, {2323, 55910}, {2888, 5056}, {2996, 40393}, {3060, 10565}, {3087, 11547}, {3088, 7592}, {3091, 11422}, {3146, 12233}, {3167, 7392}, {3522, 11425}, {3546, 36753}, {3547, 36749}, {3549, 14627}, {3574, 18945}, {3600, 19365}, {3622, 44547}, {3796, 51212}, {3832, 12241}, {3839, 18388}, {5020, 59399}, {5050, 7386}, {5064, 39874}, {5093, 6676}, {5094, 18950}, {5133, 5921}, {5265, 19366}, {5281, 11436}, {5395, 6504}, {5480, 7408}, {5640, 27365}, {5702, 14361}, {6353, 9777}, {6392, 41231}, {6417, 55890}, {6418, 55885}, {6524, 42873}, {6636, 61044}, {6776, 7378}, {7396, 33748}, {7400, 36747}, {7404, 12161}, {7485, 40911}, {7500, 11003}, {7583, 55882}, {7584, 55881}, {7687, 61958}, {7714, 26864}, {8550, 32064}, {8573, 37068}, {8780, 14848}, {8889, 11245}, {9605, 37188}, {9786, 15717}, {10110, 34750}, {10303, 23061}, {10304, 11430}, {10574, 12058}, {10691, 55705}, {11002, 58550}, {11348, 20213}, {11428, 17784}, {11431, 55864}, {11438, 15692}, {11477, 33522}, {11482, 41588}, {11548, 11898}, {13352, 61113}, {13403, 50688}, {13568, 50693}, {14561, 14826}, {15004, 61659}, {15043, 46363}, {15135, 37119}, {15187, 19006}, {15188, 19005}, {15520, 58447}, {15705, 37487}, {16030, 37114}, {16051, 45298}, {16419, 51732}, {17810, 35260}, {18925, 45089}, {19116, 55887}, {19117, 55892}, {19161, 62188}, {21850, 34608}, {22128, 56460}, {22330, 61646}, {23291, 44111}, {26869, 52299}, {26906, 38292}, {27509, 54444}, {30679, 60974}, {31305, 32046}, {31383, 44109}, {34289, 41899}, {34565, 61506}, {34621, 44413}, {37453, 61657}, {37766, 53507}, {38110, 62217}, {39662, 39913}, {40065, 52280}, {40132, 59553}, {40684, 40814}, {41895, 54792}, {43650, 44489}, {43718, 61334}, {43981, 52253}, {44442, 48906}, {46760, 61301}, {50649, 62187}, {51579, 62589}, {52288, 56015}, {53101, 54913}, {54531, 54893}, {54892, 60120}

X(63030) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 18854}
X(63030) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 18854}
X(63030) = pole of line {6, 11793} with respect to the Stammler hyperbola
X(63030) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(60161)}}, {{A, B, C, X(193), X(40393)}}, {{A, B, C, X(343), X(8796)}}, {{A, B, C, X(394), X(43908)}}, {{A, B, C, X(2996), X(37636)}}, {{A, B, C, X(3620), X(6504)}}, {{A, B, C, X(5395), X(6515)}}, {{A, B, C, X(5422), X(60647)}}, {{A, B, C, X(11160), X(54792)}}, {{A, B, C, X(15066), X(41899)}}
X(63030) = barycentric quotient X(i)/X(j) for these (i, j): {4, 18854}
X(63030) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1994, 193}, {184, 14853, 6995}, {394, 3618, 2}, {3167, 18583, 7392}, {3796, 51212, 59343}, {5480, 11206, 7408}, {5480, 17809, 11206}, {5702, 56346, 14361}, {9777, 61690, 6353}, {12242, 39571, 43841}, {14561, 34986, 14826}, {39571, 43841, 5056}


X(63031) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11433), X(3), X(6))

Barycentrics    3*a^6+5*a^2*(b^2-c^2)^2-7*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2) : :

X(63031) lies on these lines: {2, 6}, {4, 3527}, {20, 389}, {25, 14912}, {51, 6776}, {54, 41599}, {95, 46952}, {97, 5065}, {143, 31305}, {145, 44547}, {154, 12007}, {182, 61677}, {184, 4232}, {275, 51990}, {324, 40814}, {371, 55893}, {372, 55897}, {390, 11436}, {427, 18950}, {428, 39874}, {441, 43136}, {459, 60193}, {574, 31626}, {576, 32068}, {578, 3523}, {631, 11426}, {1173, 11457}, {1192, 21734}, {1199, 3542}, {1249, 52280}, {1285, 35941}, {1351, 7386}, {1352, 11225}, {1353, 5020}, {1368, 5093}, {1503, 7408}, {1585, 7581}, {1586, 7582}, {1587, 55573}, {1588, 55569}, {1589, 3311}, {1590, 3312}, {1620, 62060}, {1629, 15258}, {1899, 7378}, {2052, 3087}, {2979, 40911}, {3088, 18916}, {3089, 7592}, {3091, 11442}, {3146, 12241}, {3167, 40132}, {3522, 9786}, {3546, 36749}, {3547, 36753}, {3548, 14627}, {3564, 7392}, {3567, 7487}, {3600, 19366}, {3832, 12233}, {3839, 18390}, {3917, 44495}, {4644, 54284}, {5012, 10565}, {5050, 7494}, {5056, 41724}, {5059, 13568}, {5085, 33522}, {5265, 19365}, {5281, 11429}, {5286, 37174}, {5392, 5395}, {5462, 6193}, {5480, 7409}, {5596, 58471}, {5640, 7398}, {5644, 11898}, {5878, 40240}, {5889, 46363}, {5921, 6997}, {5943, 14826}, {6353, 11402}, {6360, 12848}, {6417, 55885}, {6418, 55890}, {6523, 51031}, {6643, 37493}, {6676, 53091}, {6804, 12160}, {6819, 9308}, {6820, 27377}, {7396, 18911}, {7400, 36752}, {7401, 13292}, {7404, 18951}, {7485, 62174}, {7486, 43841}, {7500, 11002}, {7583, 55881}, {7584, 55882}, {7687, 61966}, {8550, 11206}, {8889, 26869}, {9119, 20110}, {9606, 41931}, {9730, 61113}, {9815, 10112}, {10110, 34781}, {10303, 37505}, {10304, 11438}, {10519, 43650}, {10691, 44456}, {10982, 18909}, {10996, 13142}, {11424, 18913}, {11425, 15717}, {11430, 15692}, {11435, 17784}, {11451, 54013}, {11482, 16051}, {11547, 40138}, {11550, 44107}, {11746, 14683}, {11818, 45969}, {11821, 14531}, {12225, 15741}, {12242, 46935}, {12250, 13382}, {13366, 61506}, {13403, 49135}, {13488, 54211}, {14361, 40065}, {15187, 19005}, {15188, 19006}, {15516, 61646}, {15721, 44673}, {15851, 26906}, {16419, 34380}, {16656, 52518}, {17809, 35260}, {18531, 45967}, {18662, 41563}, {19116, 55892}, {19117, 55887}, {19161, 61044}, {20211, 60939}, {21454, 46017}, {21849, 46264}, {21850, 44442}, {22234, 58447}, {23291, 34565}, {25406, 33586}, {26871, 52424}, {26872, 55432}, {26883, 34564}, {26913, 30769}, {30435, 37188}, {31304, 43838}, {32191, 34751}, {32971, 51481}, {34289, 43670}, {34608, 48906}, {35973, 44094}, {37186, 43843}, {37487, 62063}, {38282, 61690}, {39024, 40867}, {39284, 54893}, {41895, 54864}, {44111, 53857}, {45011, 52404}, {50649, 62188}, {52423, 55905}, {53101, 54778}, {54444, 56367}, {54867, 54892}

X(63031) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 18853}
X(63031) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 18853}
X(63031) = pole of line {6467, 14853} with respect to the Jerabek hyperbola
X(63031) = pole of line {3566, 47122} with respect to the Orthic inconic
X(63031) = pole of line {6, 11695} with respect to the Stammler hyperbola
X(63031) = pole of line {523, 47093} with respect to the Steiner circumellipse
X(63031) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(8796)}}, {{A, B, C, X(343), X(56270)}}, {{A, B, C, X(394), X(3527)}}, {{A, B, C, X(1993), X(5395)}}, {{A, B, C, X(3087), X(9777)}}, {{A, B, C, X(3620), X(5392)}}, {{A, B, C, X(11160), X(54864)}}, {{A, B, C, X(11282), X(54892)}}, {{A, B, C, X(14569), X(46952)}}, {{A, B, C, X(15066), X(43670)}}, {{A, B, C, X(37669), X(60193)}}, {{A, B, C, X(40318), X(56002)}}
X(63031) = barycentric product X(i)*X(j) for these (i, j): {19347, 264}
X(63031) = barycentric quotient X(i)/X(j) for these (i, j): {4, 18853}, {19347, 3}
X(63031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 6776, 6995}, {343, 3618, 2}, {1351, 45298, 7386}, {1353, 5020, 63174}, {1899, 14853, 7378}, {1899, 15004, 14853}, {3527, 18914, 4}, {5050, 41588, 7494}, {5480, 32064, 7409}, {6997, 45968, 5921}, {8550, 17810, 11206}, {10565, 33748, 5012}, {11206, 17810, 52301}, {15004, 61712, 1899}, {25406, 33586, 59343}


X(63032) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11488), X(3), X(6))

Barycentrics    2*a^2+sqrt(3)*S : :

X(63032) lies on these lines: {1, 30415}, {2, 6}, {3, 43869}, {4, 11408}, {5, 42816}, {13, 3543}, {14, 42114}, {15, 20}, {16, 3523}, {17, 5056}, {18, 46935}, {30, 42815}, {32, 22113}, {61, 3091}, {62, 10303}, {140, 42916}, {346, 37795}, {376, 42116}, {381, 42496}, {390, 10638}, {393, 2981}, {397, 3522}, {398, 5068}, {470, 1249}, {471, 40065}, {547, 42950}, {548, 42922}, {549, 43197}, {550, 52079}, {616, 9112}, {622, 41407}, {631, 11486}, {1080, 39874}, {1131, 42218}, {1132, 42220}, {1250, 5281}, {1285, 11299}, {1384, 37172}, {1449, 5243}, {1587, 42229}, {1588, 42230}, {1609, 11146}, {1656, 42627}, {1743, 30414}, {2043, 23267}, {2044, 23273}, {2045, 7581}, {2046, 7582}, {2307, 5261}, {3085, 5353}, {3086, 5357}, {3090, 11543}, {3098, 16941}, {3146, 5318}, {3524, 42115}, {3525, 42121}, {3526, 43464}, {3528, 42123}, {3529, 42122}, {3533, 43103}, {3545, 42125}, {3600, 7051}, {3628, 42818}, {3731, 53588}, {3830, 43477}, {3832, 5321}, {3839, 10654}, {3845, 42962}, {3850, 42923}, {3854, 5339}, {3855, 42135}, {3861, 43778}, {4232, 10642}, {5024, 37173}, {5059, 5340}, {5066, 42963}, {5067, 42129}, {5070, 42628}, {5071, 42143}, {5073, 43630}, {5129, 54379}, {5237, 61798}, {5238, 42091}, {5242, 16670}, {5265, 19373}, {5343, 42103}, {5344, 19106}, {5350, 43105}, {5352, 62083}, {5365, 42921}, {5366, 42105}, {5395, 54116}, {6151, 46952}, {6199, 18585}, {6353, 11409}, {6395, 15765}, {6446, 15764}, {6623, 56514}, {6771, 37517}, {6772, 43618}, {6774, 55712}, {6776, 21647}, {6782, 36763}, {6995, 10641}, {7378, 8740}, {7398, 54362}, {7486, 16966}, {7487, 10632}, {7583, 42201}, {7584, 42202}, {8703, 43481}, {9605, 37178}, {10299, 42924}, {10304, 10645}, {10565, 11421}, {10636, 17784}, {10643, 37775}, {10646, 15692}, {11001, 42145}, {11148, 36775}, {11206, 17826}, {11267, 31305}, {11481, 15717}, {11539, 43198}, {11624, 16981}, {13665, 36436}, {13785, 36454}, {14138, 40922}, {14912, 37463}, {14986, 54436}, {15022, 42095}, {15484, 37171}, {15640, 36969}, {15682, 42144}, {15683, 42097}, {15694, 42634}, {15696, 43631}, {15697, 41107}, {15698, 43493}, {15699, 42951}, {15702, 42913}, {15703, 42497}, {15705, 43428}, {15708, 16241}, {15715, 43111}, {15721, 41943}, {16239, 42917}, {16242, 61844}, {16268, 61897}, {16773, 61842}, {16961, 42488}, {16964, 42106}, {16967, 46936}, {17538, 42131}, {17558, 54378}, {17578, 42094}, {17827, 35260}, {18510, 36439}, {18512, 36457}, {18930, 19363}, {19107, 42162}, {19710, 43207}, {19781, 53458}, {21309, 37340}, {21466, 59209}, {21467, 51277}, {21734, 42148}, {22238, 61820}, {22892, 61319}, {22907, 43454}, {23249, 42185}, {23259, 42186}, {30328, 51976}, {30435, 37177}, {33416, 61863}, {33417, 42149}, {33602, 33699}, {33603, 61950}, {33604, 54581}, {33607, 42901}, {33703, 42130}, {36445, 42215}, {36463, 42216}, {36764, 41620}, {36771, 47863}, {36772, 47861}, {36836, 42088}, {36843, 61804}, {36967, 41112}, {36968, 49826}, {36970, 41119}, {37832, 42111}, {37835, 43031}, {41100, 61781}, {41101, 49811}, {41106, 43417}, {41108, 49860}, {41113, 49903}, {41120, 42520}, {41121, 49827}, {41621, 59379}, {41944, 43199}, {41973, 43227}, {42089, 42896}, {42093, 42166}, {42099, 42161}, {42101, 42516}, {42102, 42154}, {42104, 42435}, {42107, 42472}, {42108, 43473}, {42109, 43194}, {42151, 42779}, {42153, 61914}, {42155, 62120}, {42158, 42802}, {42163, 42473}, {42165, 62152}, {42192, 43376}, {42194, 43377}, {42274, 51855}, {42277, 51853}, {42415, 62004}, {42416, 62074}, {42419, 43246}, {42432, 44015}, {42475, 42479}, {42489, 43015}, {42490, 61816}, {42492, 43446}, {42493, 61878}, {42498, 42936}, {42500, 42517}, {42510, 42804}, {42529, 62112}, {42584, 42806}, {42585, 49138}, {42588, 62132}, {42589, 62002}, {42625, 62081}, {42626, 62129}, {42629, 62166}, {42630, 42635}, {42685, 61778}, {42687, 43495}, {42689, 46333}, {42693, 42940}, {42776, 43557}, {42781, 62149}, {42795, 43300}, {42888, 62008}, {42889, 49136}, {42893, 61846}, {42894, 49873}, {42898, 42943}, {42911, 42914}, {42918, 42991}, {42928, 58184}, {42932, 49875}, {42935, 58186}, {42939, 42990}, {42941, 62048}, {42945, 61791}, {42968, 62114}, {42973, 62037}, {42984, 61880}, {42989, 61886}, {43009, 44016}, {43024, 49859}, {43102, 61867}, {43104, 61927}, {43108, 62019}, {43109, 62077}, {43110, 61928}, {43193, 62102}, {43238, 61834}, {43252, 62095}, {43302, 61783}, {43306, 62121}, {43332, 61944}, {43401, 62051}, {43402, 62018}, {43418, 62153}, {43424, 43636}, {43447, 55856}, {43487, 49139}, {43494, 61838}, {43500, 43550}, {43511, 53462}, {43512, 53461}, {43554, 61895}, {43555, 61884}, {43634, 49134}, {43635, 62075}, {43640, 58187}, {43769, 62124}, {43777, 62100}, {44029, 51579}, {44466, 47141}, {44497, 59398}, {47857, 51482}, {49036, 50721}, {49037, 50722}, {49824, 49907}, {51924, 52399}

X(63032) = X(i)-complementary conjugate of X(j) for these {i, j}: {43556, 2887}
X(63032) = pole of line {2, 5340} with respect to the Kiepert hyperbola
X(63032) = pole of line {1125, 37830} with respect to the dual conic of Yff parabola
X(63032) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(22235)}}, {{A, B, C, X(298), X(43540)}}, {{A, B, C, X(302), X(22237)}}, {{A, B, C, X(393), X(396)}}, {{A, B, C, X(394), X(2981)}}, {{A, B, C, X(395), X(46952)}}, {{A, B, C, X(2996), X(34540)}}, {{A, B, C, X(3620), X(54116)}}, {{A, B, C, X(6151), X(10601)}}, {{A, B, C, X(46208), X(60273)}}
X(63032) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 34754, 42085}, {13, 3543, 43540}, {13, 42085, 42134}, {15, 16965, 42090}, {15, 40693, 5335}, {15, 42982, 43465}, {15, 5335, 20}, {16, 3523, 43870}, {17, 42999, 5056}, {61, 16960, 18582}, {61, 18582, 5334}, {303, 3618, 2}, {381, 42496, 43542}, {397, 11480, 42120}, {398, 42098, 42139}, {3068, 3069, 396}, {3523, 42152, 43479}, {3832, 5321, 43365}, {5056, 42983, 18581}, {5318, 22236, 42119}, {5318, 42119, 3146}, {5321, 42142, 3832}, {5321, 42156, 42142}, {5334, 18582, 3091}, {5335, 40693, 42982}, {5339, 42494, 3854}, {5340, 42087, 42141}, {5344, 42150, 49135}, {5366, 42157, 50691}, {10654, 16267, 43403}, {10654, 16808, 42133}, {10654, 43403, 3839}, {11480, 42120, 3522}, {11485, 11542, 4}, {11485, 42128, 42117}, {11485, 42988, 11542}, {11542, 42117, 42128}, {11542, 42925, 42138}, {11542, 42988, 42986}, {11543, 42132, 3090}, {18581, 42983, 22237}, {18581, 42999, 42983}, {18582, 42159, 42919}, {34754, 42134, 43243}, {36970, 61989, 43478}, {37832, 43404, 61924}, {41101, 49811, 49874}, {41101, 49874, 62007}, {41119, 42532, 49876}, {41119, 49876, 61989}, {41121, 49827, 61966}, {42085, 42134, 3543}, {42087, 42141, 5059}, {42094, 42140, 17578}, {42094, 42147, 42140}, {42098, 42139, 5068}, {42108, 43771, 43473}, {42116, 42118, 376}, {42116, 42974, 42118}, {42117, 42136, 42688}, {42118, 42912, 42116}, {42122, 42127, 3529}, {42125, 42146, 3545}, {42130, 42137, 33703}, {42133, 43403, 16808}, {42138, 42925, 42126}, {42150, 42992, 5344}, {42152, 42998, 3523}, {42496, 42633, 381}, {42506, 42511, 49825}, {42511, 49825, 15640}, {42516, 42777, 61985}, {43496, 43556, 50690}, {43496, 50690, 43770}, {43770, 43773, 43556}, {49824, 49907, 61938}


X(63033) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(11489), X(3), X(6))

Barycentrics    -2*a^2+sqrt(3)*S : :

X(63033) lies on these lines: {1, 30414}, {2, 6}, {3, 43870}, {4, 11409}, {5, 42815}, {13, 42111}, {14, 3543}, {15, 3523}, {16, 20}, {17, 46935}, {18, 5056}, {30, 42816}, {32, 22114}, {61, 10303}, {62, 3091}, {140, 42917}, {346, 37794}, {376, 42115}, {381, 42497}, {383, 39874}, {390, 1250}, {393, 6151}, {397, 5068}, {398, 3522}, {470, 40065}, {471, 1249}, {547, 42951}, {548, 42923}, {549, 43198}, {550, 52080}, {617, 9113}, {621, 41406}, {631, 11485}, {1131, 42217}, {1132, 42219}, {1285, 11300}, {1384, 37173}, {1449, 5242}, {1587, 42227}, {1588, 42228}, {1609, 11145}, {1656, 42628}, {1743, 30415}, {2043, 23273}, {2044, 23267}, {2045, 7582}, {2046, 7581}, {2981, 46952}, {3085, 5357}, {3086, 5353}, {3090, 11542}, {3098, 16940}, {3146, 5321}, {3524, 42116}, {3525, 42124}, {3526, 43463}, {3528, 42122}, {3529, 42123}, {3533, 43102}, {3545, 42128}, {3600, 19373}, {3628, 42817}, {3731, 53589}, {3830, 43478}, {3832, 5318}, {3839, 10653}, {3845, 42963}, {3850, 42922}, {3854, 5340}, {3855, 42138}, {3861, 43777}, {4232, 10641}, {5024, 37172}, {5059, 5339}, {5066, 42962}, {5067, 42132}, {5070, 42627}, {5071, 42146}, {5073, 43631}, {5129, 54378}, {5237, 42090}, {5238, 61798}, {5243, 16670}, {5265, 7051}, {5274, 7127}, {5281, 10638}, {5343, 19107}, {5344, 42106}, {5349, 43106}, {5351, 62083}, {5365, 42104}, {5366, 42920}, {5395, 54115}, {6199, 15765}, {6353, 11408}, {6395, 18585}, {6445, 15764}, {6623, 56515}, {6771, 55712}, {6774, 37517}, {6775, 43618}, {6776, 21648}, {6995, 10642}, {7378, 8739}, {7398, 54363}, {7486, 16967}, {7487, 10633}, {7583, 42199}, {7584, 42200}, {8703, 43482}, {9605, 37177}, {10299, 42925}, {10304, 10646}, {10565, 11420}, {10637, 17784}, {10644, 37776}, {10645, 15692}, {11001, 42144}, {11206, 17827}, {11268, 31305}, {11480, 15717}, {11539, 43197}, {11626, 16981}, {13665, 36454}, {13785, 36436}, {14139, 40921}, {14912, 37464}, {14986, 54435}, {15022, 42098}, {15484, 37170}, {15640, 36970}, {15682, 42145}, {15683, 42096}, {15694, 42633}, {15696, 43630}, {15697, 41108}, {15698, 43494}, {15699, 42950}, {15702, 42912}, {15703, 42496}, {15705, 43429}, {15708, 16242}, {15715, 43110}, {15721, 41944}, {16239, 42916}, {16241, 61844}, {16267, 61897}, {16772, 61842}, {16960, 42489}, {16965, 42103}, {16966, 46936}, {17538, 42130}, {17558, 54379}, {17578, 42093}, {17826, 35260}, {18510, 36457}, {18512, 36439}, {18929, 19364}, {19106, 42159}, {19710, 43208}, {19780, 53469}, {21309, 37341}, {21466, 51270}, {21467, 59210}, {21734, 42147}, {22236, 61820}, {22848, 61320}, {22861, 43455}, {23249, 42183}, {23259, 42184}, {30327, 51977}, {30435, 37178}, {33416, 42152}, {33417, 61863}, {33602, 61950}, {33603, 33699}, {33605, 54580}, {33606, 42900}, {33703, 42131}, {36445, 42216}, {36463, 42215}, {36836, 61804}, {36843, 42087}, {36967, 49827}, {36968, 41113}, {36969, 41120}, {37832, 43030}, {37835, 42114}, {39899, 44219}, {41100, 49810}, {41101, 61781}, {41106, 43416}, {41107, 49859}, {41112, 49904}, {41119, 42521}, {41122, 49826}, {41620, 59378}, {41943, 43200}, {41974, 43226}, {42092, 42897}, {42094, 42163}, {42100, 42160}, {42101, 42155}, {42102, 42517}, {42105, 42436}, {42108, 43193}, {42109, 43474}, {42110, 42473}, {42150, 42780}, {42154, 62120}, {42156, 61914}, {42157, 42801}, {42164, 62152}, {42166, 42472}, {42191, 43376}, {42193, 43377}, {42274, 51854}, {42277, 51852}, {42415, 62074}, {42416, 62004}, {42420, 43247}, {42431, 44016}, {42474, 42478}, {42488, 43014}, {42491, 61816}, {42492, 61878}, {42493, 43447}, {42499, 42937}, {42501, 42516}, {42511, 42803}, {42528, 62112}, {42584, 49138}, {42585, 42805}, {42588, 62002}, {42589, 62132}, {42625, 62129}, {42626, 62081}, {42629, 42636}, {42630, 62166}, {42684, 61778}, {42686, 43496}, {42688, 46333}, {42692, 42941}, {42775, 43556}, {42782, 62149}, {42796, 43301}, {42888, 49136}, {42889, 62008}, {42892, 61846}, {42895, 49874}, {42899, 42942}, {42910, 42915}, {42919, 42990}, {42929, 58184}, {42933, 49876}, {42934, 58186}, {42938, 42991}, {42940, 62048}, {42944, 61791}, {42969, 62114}, {42972, 62037}, {42985, 61880}, {42988, 61886}, {43008, 44015}, {43025, 49860}, {43101, 61927}, {43103, 61867}, {43108, 62077}, {43109, 62019}, {43111, 61928}, {43194, 62102}, {43239, 61834}, {43253, 62095}, {43303, 61783}, {43307, 62121}, {43333, 61944}, {43401, 62018}, {43402, 62051}, {43419, 62153}, {43425, 43637}, {43446, 55856}, {43488, 49139}, {43493, 61838}, {43499, 43551}, {43511, 53473}, {43512, 53472}, {43554, 61884}, {43555, 61895}, {43634, 62075}, {43635, 49134}, {43639, 58187}, {43770, 62124}, {43778, 62100}, {44031, 51579}, {44462, 47142}, {44498, 59397}, {47858, 51483}, {49034, 50721}, {49035, 50722}, {49825, 49908}, {51925, 52399}

X(63033) = X(i)-complementary conjugate of X(j) for these {i, j}: {43557, 2887}
X(63033) = pole of line {2, 5339} with respect to the Kiepert hyperbola
X(63033) = pole of line {1125, 37833} with respect to the dual conic of Yff parabola
X(63033) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(22237)}}, {{A, B, C, X(299), X(43541)}}, {{A, B, C, X(303), X(22235)}}, {{A, B, C, X(393), X(395)}}, {{A, B, C, X(394), X(6151)}}, {{A, B, C, X(396), X(46952)}}, {{A, B, C, X(2981), X(10601)}}, {{A, B, C, X(2996), X(34541)}}, {{A, B, C, X(3620), X(54115)}}, {{A, B, C, X(46208), X(60272)}}
X(63033) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 34755, 42086}, {14, 3543, 43541}, {14, 42086, 42133}, {15, 3523, 43869}, {16, 16964, 42091}, {16, 42983, 43466}, {16, 5334, 20}, {18, 42998, 5056}, {62, 18581, 5335}, {302, 3618, 2}, {381, 42497, 43543}, {397, 42095, 42142}, {398, 11481, 42119}, {3068, 3069, 395}, {3523, 42149, 43480}, {3832, 5318, 43364}, {5056, 42982, 18582}, {5067, 42986, 42132}, {5318, 42139, 3832}, {5318, 42153, 42139}, {5321, 22238, 42120}, {5321, 42120, 3146}, {5334, 40694, 42983}, {5335, 18581, 3091}, {5339, 42088, 42140}, {5340, 42495, 3854}, {5343, 42151, 49135}, {5365, 42158, 50691}, {10653, 16268, 43404}, {10653, 16809, 42134}, {10653, 43404, 3839}, {11481, 42119, 3522}, {11486, 11543, 4}, {11486, 42125, 42118}, {11486, 42127, 42924}, {11486, 42989, 11543}, {11542, 42129, 3090}, {11543, 42118, 42125}, {11543, 42924, 42135}, {11543, 42989, 42987}, {18581, 42162, 42918}, {18582, 42982, 22235}, {18582, 42998, 42982}, {34755, 42133, 43242}, {36969, 61989, 43477}, {37835, 43403, 61924}, {41100, 49810, 49873}, {41100, 49873, 62007}, {41120, 42533, 49875}, {41120, 49875, 61989}, {41122, 49826, 61966}, {42086, 42133, 3543}, {42088, 42140, 5059}, {42093, 42141, 17578}, {42093, 42148, 42141}, {42095, 42142, 5068}, {42109, 43772, 43474}, {42115, 42117, 376}, {42115, 42975, 42117}, {42117, 42913, 42115}, {42118, 42137, 42689}, {42123, 42126, 3529}, {42128, 42143, 3545}, {42131, 42136, 33703}, {42134, 43404, 16809}, {42135, 42924, 42127}, {42149, 42999, 3523}, {42151, 42993, 5343}, {42497, 42634, 381}, {42507, 42510, 49824}, {42510, 49824, 15640}, {42517, 42778, 61985}, {43495, 43557, 50690}, {43495, 50690, 43769}, {43769, 43774, 43557}, {49825, 49908, 61938}


X(63034) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(13468), X(3), X(6))

Barycentrics    7*a^4+b^4-6*b^2*c^2+c^4 : :
X(63034) = 2*X[3053]+X[6392]

X(63034) lies on these lines: {2, 6}, {4, 6179}, {25, 33974}, {32, 14033}, {76, 14039}, {98, 51212}, {99, 46453}, {115, 44678}, {315, 33285}, {376, 5171}, {538, 32985}, {631, 7760}, {648, 6353}, {671, 9862}, {754, 3767}, {1285, 11185}, {1384, 32815}, {1799, 40179}, {2549, 47101}, {2966, 36874}, {3053, 6392}, {3524, 7757}, {3545, 7812}, {3564, 9752}, {3785, 5305}, {3839, 9863}, {3926, 11288}, {3972, 52713}, {4558, 19583}, {5007, 32968}, {5067, 7858}, {5254, 33272}, {5286, 8356}, {5309, 32986}, {5319, 7780}, {5346, 7800}, {5485, 54906}, {6337, 7754}, {7615, 14537}, {7714, 32085}, {7737, 18546}, {7738, 7793}, {7739, 33215}, {7746, 41750}, {7750, 33210}, {7751, 14001}, {7755, 7818}, {7758, 32970}, {7759, 32969}, {7764, 32977}, {7765, 33226}, {7768, 32951}, {7772, 32978}, {7773, 39143}, {7796, 33189}, {7798, 21843}, {7801, 33224}, {7811, 33190}, {7814, 32958}, {7817, 33223}, {7846, 18840}, {7854, 33221}, {7856, 31168}, {7857, 32818}, {7859, 55732}, {7860, 33292}, {7870, 33231}, {7877, 32823}, {7878, 32957}, {7883, 33196}, {7884, 33230}, {7893, 14046}, {7909, 33195}, {7922, 32953}, {7936, 33232}, {7946, 33248}, {8369, 32836}, {8716, 35287}, {9741, 11055}, {9755, 25406}, {9769, 25320}, {9909, 40947}, {9939, 33251}, {11001, 43453}, {11172, 14492}, {11286, 46951}, {11648, 47102}, {12256, 49028}, {12257, 49029}, {13571, 33000}, {14036, 17129}, {14041, 20065}, {14645, 46236}, {14976, 33017}, {16326, 37904}, {18842, 60217}, {19569, 41135}, {19570, 33007}, {22253, 51123}, {22331, 32981}, {23698, 41400}, {25314, 63174}, {27088, 51122}, {30435, 32828}, {32040, 53646}, {32457, 43618}, {32820, 33205}, {32821, 33203}, {32827, 43291}, {32833, 33191}, {32892, 59780}, {33016, 34604}, {33216, 34511}, {33239, 35007}, {35021, 55720}, {36181, 47242}, {41394, 62299}, {46893, 47061}, {47735, 52281}, {50974, 60657}, {51538, 53015}, {54122, 54539}, {54523, 60220}, {54773, 60212}, {60095, 60185}

X(63034) = midpoint of X(i) and X(j) for these {i,j}: {6392, 35927}
X(63034) = reflection of X(i) in X(j) for these {i,j}: {16041, 3767}, {3926, 11288}, {32006, 16041}, {35927, 3053}
X(63034) = pole of line {2501, 45688} with respect to the polar circle
X(63034) = pole of line {3265, 45687} with respect to the dual conic of Orthic inconic
X(63034) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(9766)}}, {{A, B, C, X(69), X(60218)}}, {{A, B, C, X(141), X(34208)}}, {{A, B, C, X(193), X(32085)}}, {{A, B, C, X(524), X(60150)}}, {{A, B, C, X(1992), X(54906)}}, {{A, B, C, X(7612), X(13468)}}, {{A, B, C, X(7736), X(47735)}}, {{A, B, C, X(7774), X(54539)}}, {{A, B, C, X(8667), X(60185)}}, {{A, B, C, X(9300), X(18842)}}, {{A, B, C, X(9487), X(22110)}}, {{A, B, C, X(9770), X(14492)}}, {{A, B, C, X(11172), X(37671)}}, {{A, B, C, X(11184), X(54523)}}, {{A, B, C, X(15271), X(19222)}}, {{A, B, C, X(17811), X(40324)}}, {{A, B, C, X(20582), X(23054)}}, {{A, B, C, X(21356), X(60217)}}, {{A, B, C, X(35142), X(37668)}}, {{A, B, C, X(41136), X(54823)}}
X(63034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 9766}, {2, 5032, 9300}, {2, 7837, 9770}, {183, 5304, 3618}, {193, 230, 1007}, {230, 9766, 2}, {385, 7735, 69}, {754, 16041, 32006}, {754, 3767, 16041}, {5319, 7780, 16043}, {7755, 14023, 14064}, {9741, 26613, 11147}


X(63035) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(13941), X(3), X(6))

Barycentrics    4*a^2-3*S : :

X(63035) lies on these lines: {2, 6}, {4, 6395}, {20, 6398}, {32, 61336}, {140, 42522}, {145, 13936}, {371, 43314}, {372, 3146}, {376, 6446}, {390, 19029}, {485, 6436}, {486, 3832}, {549, 9542}, {550, 43415}, {589, 51316}, {631, 6199}, {632, 6500}, {1131, 6442}, {1132, 6460}, {1151, 61804}, {1152, 43884}, {1328, 60296}, {1384, 51952}, {1506, 61335}, {1586, 33630}, {1587, 5068}, {1588, 3522}, {3070, 3854}, {3071, 5059}, {3090, 6418}, {3091, 3312}, {3247, 30412}, {3311, 10303}, {3317, 7486}, {3523, 6221}, {3524, 6445}, {3525, 6417}, {3526, 43374}, {3529, 42644}, {3530, 9690}, {3534, 17851}, {3543, 13785}, {3545, 45385}, {3591, 60291}, {3594, 42284}, {3600, 19027}, {3616, 13942}, {3617, 18992}, {3621, 7968}, {3622, 13971}, {3623, 19065}, {3628, 6501}, {3758, 32799}, {3759, 32800}, {3839, 42216}, {3973, 5405}, {4232, 13937}, {4254, 21568}, {4678, 13973}, {5056, 7581}, {5067, 19117}, {5071, 18512}, {5120, 21565}, {5261, 18995}, {5265, 18966}, {5274, 19037}, {5281, 13958}, {5334, 42236}, {5335, 42235}, {5411, 7378}, {5413, 7408}, {5418, 6435}, {5420, 61834}, {5550, 19004}, {5921, 11448}, {6200, 9543}, {6202, 48734}, {6352, 15492}, {6407, 61807}, {6408, 17538}, {6410, 62078}, {6411, 43512}, {6412, 6459}, {6419, 61848}, {6420, 15022}, {6426, 62152}, {6427, 61863}, {6428, 13886}, {6431, 43883}, {6432, 31412}, {6433, 41969}, {6434, 42258}, {6437, 61816}, {6448, 49140}, {6449, 61798}, {6450, 62097}, {6451, 15692}, {6452, 10304}, {6454, 43408}, {6456, 62083}, {6469, 42637}, {6471, 42270}, {6473, 62134}, {6475, 62143}, {6477, 42266}, {6480, 61806}, {6481, 6561}, {6560, 50687}, {6564, 42605}, {6565, 61985}, {6636, 19005}, {6808, 15032}, {7000, 39874}, {8976, 46935}, {8981, 61856}, {9540, 35813}, {9541, 43323}, {9691, 61808}, {9780, 19003}, {10109, 43386}, {10146, 62119}, {10586, 45653}, {10587, 45651}, {11291, 21309}, {11539, 43518}, {12221, 13770}, {12222, 13834}, {13595, 13943}, {13651, 13880}, {13665, 61936}, {13711, 13933}, {13883, 46932}, {13884, 53857}, {13893, 46930}, {13903, 61867}, {13925, 60781}, {13940, 61155}, {13947, 46933}, {13962, 14986}, {14226, 54543}, {14683, 46689}, {15640, 52048}, {15683, 35823}, {15708, 43509}, {15721, 35255}, {18991, 46934}, {19017, 45289}, {19709, 54597}, {19877, 49548}, {20014, 49233}, {20105, 49253}, {23261, 43377}, {23263, 43792}, {23275, 49135}, {33636, 55890}, {34089, 61878}, {34091, 48154}, {35369, 49267}, {35732, 42982}, {35822, 61927}, {36436, 42816}, {36454, 42815}, {37913, 44599}, {40330, 42832}, {41410, 43134}, {41945, 61778}, {41946, 52666}, {41958, 43381}, {41964, 42638}, {42259, 43382}, {42261, 62149}, {42263, 62148}, {42264, 42539}, {42282, 42983}, {42540, 61962}, {42557, 42602}, {42569, 42575}, {42603, 42604}, {42640, 61932}, {42643, 61836}, {43212, 61844}, {43242, 52399}, {43243, 52400}, {43256, 62030}, {43257, 62099}, {43316, 61924}, {43317, 62037}, {43319, 62095}, {43337, 51910}, {43448, 62242}, {43507, 61992}, {43517, 61864}, {43536, 61898}, {43788, 62110}, {43881, 55856}, {45384, 61899}, {52046, 62056}, {52047, 61796}, {52667, 62005}, {53131, 62132}, {54542, 60300}, {60294, 60311}, {60295, 60623}

X(63035) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(60292)}}, {{A, B, C, X(491), X(43560)}}, {{A, B, C, X(492), X(60312)}}, {{A, B, C, X(589), X(37672)}}, {{A, B, C, X(615), X(51316)}}
X(63035) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1132, 17578, 43561}, {1132, 6460, 17578}, {3069, 7586, 2}, {3071, 43511, 5059}, {3071, 5059, 43520}, {3312, 18762, 23267}, {3317, 7583, 7486}, {6398, 23273, 20}, {6418, 13993, 3090}, {6432, 43880, 31412}, {7581, 13951, 5056}, {7582, 13966, 3523}, {13939, 23267, 18762}, {18762, 23267, 3091}, {42215, 43510, 10304}, {42264, 43508, 62032}, {42539, 62032, 43508}


X(63036) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14389), X(3), X(6))

Barycentrics    3*a^6-5*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-4*b^2*c^2+c^4) : :

X(63036) lies on these lines: {2, 6}, {4, 567}, {20, 37506}, {22, 21850}, {23, 14853}, {54, 7544}, {83, 60255}, {94, 41625}, {110, 14561}, {125, 39561}, {182, 16063}, {184, 7394}, {265, 3545}, {376, 14805}, {381, 46818}, {468, 59399}, {568, 631}, {569, 37444}, {575, 18911}, {858, 5050}, {1351, 7495}, {1352, 11422}, {1353, 37454}, {1493, 2888}, {1495, 5476}, {1589, 18459}, {1590, 18457}, {1899, 7703}, {1995, 18583}, {2003, 56461}, {2323, 56463}, {2904, 34115}, {3060, 58480}, {3091, 12022}, {3167, 37990}, {3292, 38317}, {3448, 14912}, {3523, 37489}, {3524, 3581}, {3796, 20062}, {3818, 44109}, {3832, 18396}, {4254, 21478}, {5012, 7391}, {5020, 61655}, {5021, 22377}, {5056, 14852}, {5094, 53091}, {5097, 61644}, {5133, 11402}, {5169, 6776}, {5182, 62298}, {5189, 25406}, {5446, 59351}, {5480, 6800}, {5640, 15073}, {5651, 25555}, {5943, 27365}, {6639, 8254}, {6997, 9544}, {7386, 19129}, {7401, 9545}, {7426, 14848}, {7492, 51212}, {7493, 11002}, {7494, 18438}, {7558, 36749}, {7566, 31804}, {7569, 13292}, {7570, 40330}, {8550, 61700}, {8836, 18582}, {8838, 18581}, {9306, 61659}, {9777, 21970}, {9813, 32114}, {9815, 11449}, {10201, 15038}, {11175, 18372}, {11179, 31105}, {11206, 18382}, {11245, 31236}, {11426, 13160}, {11442, 13366}, {11451, 59543}, {12007, 45303}, {12228, 12383}, {12236, 38794}, {13337, 34834}, {13353, 47528}, {13579, 40393}, {14002, 15582}, {14712, 58312}, {14786, 56292}, {15004, 58447}, {15019, 61506}, {15033, 44440}, {15037, 18281}, {15080, 31670}, {15087, 60763}, {15107, 20423}, {15520, 41586}, {18405, 50689}, {18430, 61964}, {18531, 61715}, {18842, 55957}, {20063, 51538}, {22128, 56459}, {22234, 61712}, {22352, 48880}, {24148, 54283}, {25321, 52191}, {26869, 53092}, {30529, 56408}, {30739, 51732}, {30744, 45298}, {31133, 48906}, {31152, 55705}, {31304, 45089}, {32227, 40132}, {33748, 52284}, {34565, 61646}, {38110, 40916}, {40684, 59156}, {41231, 47286}, {47582, 47596}, {52253, 56022}, {52288, 60502}, {52289, 56015}, {54531, 54914}, {54663, 54792}, {54769, 54772}, {55566, 56503}, {55567, 56505}, {55916, 62246}

X(63036) = pole of line {6, 23039} with respect to the Stammler hyperbola
X(63036) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(7578)}}, {{A, B, C, X(83), X(37644)}}, {{A, B, C, X(141), X(60255)}}, {{A, B, C, X(8791), X(31489)}}, {{A, B, C, X(11174), X(18372)}}, {{A, B, C, X(11175), X(18371)}}, {{A, B, C, X(13579), X(37636)}}, {{A, B, C, X(15018), X(18841)}}, {{A, B, C, X(18842), X(44555)}}, {{A, B, C, X(21356), X(55957)}}, {{A, B, C, X(40393), X(45794)}}, {{A, B, C, X(46262), X(46952)}}, {{A, B, C, X(54782), X(61116)}}
X(63036) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5480, 6800, 7519}, {18583, 61690, 1995}


X(63037) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14555), X(3), X(6))

Barycentrics    3*a^3-b^3-b^2*c-b*c^2-c^3+3*a^2*(b+c)-a*(b^2+4*b*c+c^2) : :

X(63037) lies on these lines: {2, 6}, {8, 989}, {20, 970}, {44, 345}, {51, 54383}, {63, 2347}, {78, 40958}, {144, 3210}, {145, 960}, {165, 5212}, {192, 20043}, {210, 51192}, {239, 329}, {306, 26685}, {312, 5839}, {321, 5395}, {390, 20012}, {452, 20018}, {519, 30568}, {1122, 21454}, {1743, 3687}, {1999, 18228}, {2323, 27539}, {2339, 3219}, {2345, 4886}, {2996, 60155}, {2999, 4416}, {3087, 31623}, {3187, 31018}, {3305, 3691}, {3452, 4700}, {3523, 13323}, {3617, 33075}, {3666, 54280}, {3793, 21539}, {3832, 5799}, {3868, 61669}, {3876, 20009}, {3879, 7308}, {3966, 59406}, {3973, 56078}, {4000, 33066}, {4104, 16475}, {4194, 44086}, {4217, 4720}, {4307, 59296}, {4371, 42029}, {4440, 20214}, {4644, 19804}, {4656, 16834}, {4661, 19993}, {4678, 5835}, {4974, 33144}, {5084, 56018}, {5222, 27184}, {5256, 17257}, {5268, 51196}, {5272, 34379}, {5847, 59684}, {6542, 39248}, {6872, 34259}, {6904, 20077}, {6995, 44092}, {9534, 50408}, {9776, 17364}, {9965, 17490}, {11345, 56182}, {12513, 28364}, {13736, 19767}, {13742, 41014}, {14912, 19544}, {17116, 41915}, {17147, 20073}, {17299, 42032}, {17363, 34255}, {17484, 19789}, {17495, 20078}, {17784, 25306}, {18743, 62231}, {19649, 62174}, {19783, 37314}, {19998, 20075}, {20015, 49704}, {20110, 37759}, {23681, 41140}, {24280, 32860}, {24599, 30617}, {25568, 26245}, {26064, 56995}, {26132, 26723}, {27549, 33088}, {28610, 62300}, {31145, 56086}, {33073, 38057}, {36698, 56527}, {37175, 37502}, {37339, 54429}, {37366, 63174}, {40998, 49495}, {41263, 54321}, {41717, 44545}, {45100, 54119}, {49680, 49736}, {49716, 56737}, {50000, 53673}, {50306, 56082}, {50699, 61044}, {54113, 55405}, {60092, 60257}, {60149, 60170}, {60168, 60261}

X(63037) = anticomplement of X(18141)
X(63037) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60107, 2}
X(63037) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60107, 6327}
X(63037) = pole of line {4139, 6563} with respect to the DeLongchamps circle
X(63037) = pole of line {523, 47921} with respect to the Steiner circumellipse
X(63037) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(989)}}, {{A, B, C, X(193), X(60155)}}, {{A, B, C, X(321), X(3620)}}, {{A, B, C, X(940), X(57666)}}, {{A, B, C, X(4869), X(60257)}}, {{A, B, C, X(14552), X(60149)}}, {{A, B, C, X(17300), X(60170)}}, {{A, B, C, X(17778), X(45100)}}, {{A, B, C, X(33172), X(60285)}}, {{A, B, C, X(37639), X(55944)}}, {{A, B, C, X(37652), X(60092)}}, {{A, B, C, X(37653), X(43533)}}, {{A, B, C, X(37655), X(54119)}}, {{A, B, C, X(37683), X(60168)}}, {{A, B, C, X(37684), X(60167)}}
X(63037) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 2895, 3620}, {239, 329, 30699}, {1211, 3618, 2}, {1743, 3687, 26065}, {17490, 20072, 9965}


X(63038) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14614), X(3), X(6))

Barycentrics    3*a^4-b^2*c^2+2*a^2*(b^2+c^2) : :
X(63038) = -4*X[7765]+X[33256], -X[7768]+4*X[7829], -4*X[7794]+7*X[19694]

X(63038) lies on these lines: {2, 6}, {30, 34604}, {32, 7757}, {39, 33273}, {51, 46303}, {76, 41748}, {83, 7805}, {98, 5097}, {99, 5008}, {147, 1353}, {148, 18907}, {182, 33706}, {194, 1003}, {251, 3228}, {262, 15520}, {308, 34572}, {315, 7920}, {316, 5355}, {384, 538}, {542, 35426}, {575, 37455}, {576, 5999}, {598, 18546}, {671, 12156}, {754, 7827}, {1078, 5041}, {1281, 49489}, {1627, 33875}, {1691, 22564}, {1916, 5052}, {2452, 60695}, {2782, 12191}, {3060, 13207}, {3225, 38382}, {3407, 5039}, {3424, 54889}, {3499, 9490}, {3534, 32480}, {3543, 39646}, {3552, 8716}, {3734, 14075}, {3767, 7921}, {3793, 8358}, {3830, 61102}, {3845, 12188}, {3849, 39593}, {3933, 10583}, {3934, 34571}, {3972, 7798}, {4027, 5969}, {4366, 5332}, {5025, 5319}, {5050, 6194}, {5077, 14976}, {5092, 55178}, {5093, 9755}, {5102, 44434}, {5182, 8290}, {5201, 6636}, {5254, 20088}, {5286, 7823}, {5305, 7785}, {5309, 7812}, {5346, 7752}, {5368, 7828}, {5480, 5984}, {5702, 37187}, {6179, 7772}, {6645, 7296}, {6680, 7905}, {7738, 33207}, {7739, 7833}, {7751, 7878}, {7753, 14568}, {7754, 7787}, {7755, 7858}, {7758, 7892}, {7759, 7856}, {7762, 7797}, {7764, 33245}, {7765, 33256}, {7768, 7829}, {7776, 7932}, {7780, 41940}, {7793, 9605}, {7794, 19694}, {7796, 14043}, {7803, 7893}, {7804, 14711}, {7807, 13571}, {7809, 7817}, {7818, 7884}, {7821, 14047}, {7826, 7859}, {7832, 7890}, {7834, 7877}, {7836, 8368}, {7843, 14045}, {7844, 7926}, {7845, 7919}, {7846, 7855}, {7850, 7913}, {7851, 7900}, {7852, 7917}, {7854, 16897}, {7860, 7902}, {7864, 20065}, {7866, 7946}, {7867, 7949}, {7876, 14023}, {7882, 7944}, {7891, 33191}, {7896, 7943}, {7903, 7942}, {7912, 33240}, {7916, 7930}, {8289, 10754}, {8353, 14712}, {8362, 51860}, {8370, 19570}, {8550, 40236}, {8597, 11648}, {8703, 9301}, {8782, 32449}, {9146, 31609}, {9149, 13595}, {9462, 16932}, {9607, 33260}, {9751, 55706}, {9865, 12151}, {9939, 11287}, {10352, 36859}, {10484, 60175}, {11179, 35431}, {11451, 61689}, {11482, 13860}, {12829, 58765}, {13111, 15687}, {14036, 32833}, {14458, 54540}, {14492, 43535}, {15819, 55713}, {16834, 52136}, {17121, 33891}, {17131, 60855}, {19661, 51123}, {21309, 31859}, {21445, 32447}, {22331, 33014}, {22332, 33022}, {22712, 39561}, {30179, 62231}, {31168, 41755}, {31173, 33291}, {32476, 46321}, {33246, 34511}, {33276, 35007}, {35279, 40130}, {38071, 51238}, {41895, 54519}, {42054, 51902}, {47101, 52691}, {51737, 60652}, {54487, 60218}, {54610, 54732}, {54823, 54901}, {55715, 58849}

X(63038) = midpoint of X(i) and X(j) for these {i,j}: {7760, 12150}
X(63038) = reflection of X(i) in X(j) for these {i,j}: {12150, 5007}, {384, 12150}, {7924, 7827}
X(63038) = pole of line {6, 52961} with respect to the Stammler hyperbola
X(63038) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(141), X(3228)}}, {{A, B, C, X(251), X(3231)}}, {{A, B, C, X(308), X(34573)}}, {{A, B, C, X(385), X(54906)}}, {{A, B, C, X(524), X(54539)}}, {{A, B, C, X(598), X(7837)}}, {{A, B, C, X(599), X(60214)}}, {{A, B, C, X(1383), X(8617)}}, {{A, B, C, X(2998), X(3619)}}, {{A, B, C, X(3051), X(34572)}}, {{A, B, C, X(3225), X(3329)}}, {{A, B, C, X(3314), X(60180)}}, {{A, B, C, X(3407), X(14614)}}, {{A, B, C, X(3620), X(38262)}}, {{A, B, C, X(3763), X(9462)}}, {{A, B, C, X(4577), X(23342)}}, {{A, B, C, X(7779), X(35146)}}, {{A, B, C, X(7788), X(54540)}}, {{A, B, C, X(7840), X(14492)}}, {{A, B, C, X(8556), X(60128)}}, {{A, B, C, X(8587), X(13468)}}, {{A, B, C, X(9463), X(39955)}}, {{A, B, C, X(9766), X(54487)}}, {{A, B, C, X(11160), X(54519)}}, {{A, B, C, X(32748), X(60672)}}, {{A, B, C, X(37668), X(54889)}}, {{A, B, C, X(37671), X(43535)}}, {{A, B, C, X(39968), X(51126)}}
X(63038) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 7837}, {2, 7837, 7840}, {6, 385, 3329}, {6, 7766, 385}, {32, 7757, 13586}, {32, 7894, 7839}, {83, 7805, 17129}, {315, 7920, 7923}, {538, 5007, 12150}, {671, 12156, 14537}, {754, 7827, 7924}, {3629, 7792, 7779}, {5007, 7760, 384}, {5304, 7774, 7806}, {5368, 7838, 7828}, {7753, 14568, 33013}, {7754, 43136, 7787}, {7754, 7787, 17128}, {7759, 7856, 7901}, {7768, 7829, 7948}, {7774, 7806, 7925}, {7779, 7792, 7931}, {7780, 41940, 55085}, {7803, 7893, 7928}, {7809, 7817, 14046}, {7817, 41750, 7809}, {7828, 7838, 7941}, {7839, 13586, 7757}


X(63039) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(14996), X(3), X(6))

Barycentrics    a*(4*a^2+3*b*c+4*a*(b+c)) : :

X(63039) lies on these lines: {1, 21747}, {2, 6}, {20, 51340}, {23, 37492}, {89, 4850}, {145, 16474}, {750, 9332}, {902, 17018}, {980, 5008}, {1203, 46934}, {1255, 16677}, {1384, 21508}, {1449, 3218}, {1743, 17021}, {1977, 30579}, {2177, 4649}, {2308, 15485}, {2906, 4198}, {2990, 56043}, {3091, 36750}, {3146, 36742}, {3187, 17116}, {3193, 11106}, {3219, 3247}, {3240, 56010}, {3301, 39314}, {3311, 21565}, {3312, 21568}, {3543, 45923}, {3621, 51674}, {3622, 5315}, {3623, 57280}, {3723, 4641}, {3731, 17019}, {3745, 4661}, {3758, 4671}, {3832, 5707}, {3973, 5287}, {4220, 44456}, {4256, 37307}, {4257, 17548}, {4260, 33884}, {4389, 20093}, {4430, 49465}, {4644, 33155}, {4663, 9347}, {4667, 31019}, {4678, 5711}, {5024, 21537}, {5056, 45931}, {5059, 5706}, {5138, 11003}, {5189, 5800}, {5256, 23958}, {5273, 62246}, {5280, 29583}, {5526, 29624}, {5710, 20014}, {6199, 16441}, {6221, 21566}, {6395, 16440}, {6398, 21567}, {6417, 21553}, {6418, 21492}, {6500, 21546}, {6501, 21549}, {6636, 44094}, {6846, 15068}, {6847, 15032}, {6872, 46441}, {6891, 15037}, {7277, 33151}, {7408, 44105}, {7492, 36740}, {9345, 16477}, {9690, 21573}, {10303, 37509}, {11002, 61670}, {11456, 37434}, {16484, 17127}, {16487, 29817}, {16491, 17024}, {16496, 29815}, {16667, 17012}, {16668, 37520}, {16670, 35595}, {16674, 33761}, {16785, 29585}, {16814, 37595}, {16981, 37516}, {17121, 26627}, {17364, 29833}, {19649, 55705}, {20059, 54358}, {21309, 21511}, {21477, 22246}, {21482, 33636}, {21516, 43136}, {21574, 43415}, {22383, 26824}, {25269, 58820}, {25417, 28606}, {25418, 30561}, {26864, 37254}, {29570, 54981}, {29864, 32946}, {29868, 32949}, {32774, 62230}, {33170, 50284}, {35986, 62183}, {36745, 61804}, {36746, 50693}, {36754, 61820}, {37108, 37483}, {37456, 39874}, {37501, 62078}, {37517, 37527}, {37521, 50664}, {37537, 62102}, {37538, 37913}, {37559, 46933}, {37610, 41434}, {40952, 62187}, {56009, 61358}

X(63039) = X(i)-Dao conjugate of X(j) for these {i, j}: {30561, 4671}, {30563, 28605}
X(63039) = X(i)-Ceva conjugate of X(j) for these {i, j}: {81, 25418}
X(63039) = pole of line {6, 16857} with respect to the Stammler hyperbola
X(63039) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(86), X(30597)}}, {{A, B, C, X(89), X(5235)}}, {{A, B, C, X(333), X(30607)}}, {{A, B, C, X(1383), X(5275)}}, {{A, B, C, X(2990), X(24557)}}, {{A, B, C, X(5333), X(25417)}}, {{A, B, C, X(14996), X(40408)}}, {{A, B, C, X(17251), X(40776)}}, {{A, B, C, X(21358), X(39957)}}
X(63039) = barycentric product X(i)*X(j) for these (i, j): {25417, 30561}, {30563, 89}
X(63039) = barycentric quotient X(i)/X(j) for these (i, j): {30561, 28605}, {30563, 4671}
X(63039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1449, 3218, 17013}


X(63040) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15018), X(3), X(6))

Barycentrics    a^2*(2*a^4+2*b^4-7*b^2*c^2+2*c^4-4*a^2*(b^2+c^2)) : :

X(63040) lies on these lines: {2, 6}, {3, 16981}, {4, 15037}, {22, 55705}, {23, 5050}, {51, 15080}, {61, 41478}, {62, 41477}, {110, 5645}, {155, 61914}, {182, 7492}, {184, 10545}, {195, 61886}, {373, 11422}, {376, 15038}, {399, 3545}, {567, 3431}, {575, 1495}, {576, 33884}, {578, 43584}, {631, 15047}, {858, 59399}, {1173, 13336}, {1181, 3854}, {1199, 5056}, {1351, 7496}, {1352, 7605}, {1383, 30535}, {1570, 15302}, {1599, 6395}, {1600, 6199}, {1976, 9999}, {1995, 53091}, {2979, 34565}, {3060, 5092}, {3066, 35265}, {3091, 15032}, {3098, 15004}, {3146, 35237}, {3292, 55713}, {3448, 14561}, {3524, 37496}, {3525, 14627}, {3527, 12087}, {3567, 37513}, {3617, 16472}, {3832, 11456}, {3839, 12112}, {3855, 43845}, {3917, 55715}, {4188, 51340}, {5012, 7712}, {5024, 35296}, {5034, 39024}, {5059, 10982}, {5068, 7592}, {5071, 15087}, {5093, 40916}, {5097, 7998}, {5102, 21766}, {5169, 18583}, {5189, 14853}, {5408, 6436}, {5409, 6435}, {5462, 11464}, {5643, 5651}, {5650, 22330}, {5943, 9544}, {5946, 10298}, {6636, 9777}, {6688, 44111}, {6776, 7533}, {6800, 31860}, {7394, 39874}, {7485, 44456}, {7486, 12161}, {7495, 51732}, {7544, 43838}, {7711, 57258}, {8627, 10485}, {9140, 25556}, {9143, 9976}, {9545, 15024}, {9730, 58871}, {10303, 36749}, {10304, 39522}, {10564, 15045}, {10657, 59378}, {10658, 59379}, {10989, 14848}, {11145, 11485}, {11146, 11486}, {11245, 37353}, {11402, 62209}, {11430, 15043}, {11438, 13434}, {11451, 13366}, {11550, 42785}, {13353, 38435}, {13472, 61753}, {13595, 26864}, {14683, 14912}, {15028, 37505}, {15033, 37470}, {15246, 33878}, {15520, 22112}, {15717, 37483}, {15805, 61834}, {15860, 44436}, {16042, 53092}, {16266, 61856}, {16473, 46934}, {16865, 37509}, {17572, 36750}, {18358, 45968}, {18445, 61936}, {18451, 61944}, {18911, 31857}, {20063, 25406}, {21849, 55696}, {21969, 55653}, {22246, 37344}, {22352, 55702}, {23293, 32068}, {23958, 54444}, {25555, 61712}, {26881, 58470}, {27065, 62246}, {31074, 45298}, {32210, 37481}, {33187, 44415}, {33255, 39524}, {33534, 62048}, {33586, 55699}, {33630, 46924}, {34155, 52171}, {35268, 55708}, {36747, 61820}, {37478, 43651}, {37498, 61804}, {37514, 50693}, {37517, 41462}, {37967, 53124}, {38317, 41724}, {39588, 52301}, {40132, 52124}, {44413, 62120}, {46728, 46865}, {46818, 50979}, {46936, 56292}, {50461, 61899}, {50678, 51350}, {51481, 60855}, {52099, 62135}

X(63040) = pole of line {6467, 55715} with respect to the Jerabek hyperbola
X(63040) = pole of line {6, 15694} with respect to the Stammler hyperbola
X(63040) = pole of line {523, 37967} with respect to the Steiner circumellipse
X(63040) = pole of line {525, 31072} with respect to the dual conic of Steiner circle
X(63040) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(33886)}}, {{A, B, C, X(69), X(60191)}}, {{A, B, C, X(83), X(11004)}}, {{A, B, C, X(111), X(31489)}}, {{A, B, C, X(599), X(30535)}}, {{A, B, C, X(1383), X(3815)}}, {{A, B, C, X(2987), X(47352)}}, {{A, B, C, X(3055), X(40103)}}, {{A, B, C, X(9300), X(39955)}}, {{A, B, C, X(37637), X(39389)}}
X(63040) = barycentric product X(i)*X(j) for these (i, j): {33886, 76}
X(63040) = barycentric quotient X(i)/X(j) for these (i, j): {33886, 6}
X(63040) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 15080, 48912}, {51, 50664, 15080}, {182, 11002, 7492}, {182, 15019, 11002}, {373, 15516, 11422}, {575, 5640, 11003}, {5012, 34417, 7712}, {5092, 44107, 3060}, {5640, 11003, 14002}, {5943, 44109, 10546}, {10546, 44109, 9544}, {15080, 48912, 37913}, {15520, 22112, 23061}, {34417, 55710, 5012}, {37517, 41462, 62188}, {37517, 43650, 41462}, {41462, 53863, 37517}, {51732, 61657, 7495}


X(63041) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15491), X(3), X(6))

Barycentrics    a^4-b^4+6*b^2*c^2-c^4+8*a^2*(b^2+c^2) : :

X(63041) lies on these lines: {2, 6}, {4, 7786}, {32, 32978}, {39, 32968}, {76, 32957}, {83, 631}, {114, 3090}, {148, 2023}, {262, 51212}, {315, 32960}, {316, 50370}, {344, 24239}, {376, 58851}, {439, 55797}, {574, 14033}, {620, 7808}, {625, 33223}, {1285, 7771}, {1506, 7913}, {2548, 6683}, {2549, 32983}, {2996, 9607}, {3096, 32823}, {3524, 3972}, {3533, 7857}, {3545, 7790}, {3767, 32975}, {3818, 50654}, {3926, 31406}, {4045, 16041}, {5013, 32971}, {5020, 20775}, {5024, 32815}, {5056, 7851}, {5067, 7828}, {5254, 32987}, {5286, 32992}, {5305, 32838}, {5475, 32986}, {6337, 7770}, {6353, 36794}, {6656, 31404}, {6680, 32977}, {7603, 32984}, {7710, 51537}, {7737, 15482}, {7745, 32990}, {7747, 33226}, {7752, 32956}, {7757, 52713}, {7758, 31239}, {7763, 16045}, {7768, 55732}, {7769, 14069}, {7773, 33202}, {7783, 33269}, {7787, 33001}, {7795, 9698}, {7796, 18840}, {7797, 32999}, {7800, 7845}, {7804, 32985}, {7816, 31450}, {7819, 31467}, {7823, 33258}, {7825, 31417}, {7827, 53127}, {7834, 32969}, {7846, 8781}, {7859, 32951}, {7864, 32962}, {7884, 61899}, {7899, 33194}, {7918, 33292}, {7923, 32963}, {7932, 32998}, {7934, 33230}, {7940, 32952}, {7942, 32958}, {7943, 32953}, {8359, 15484}, {8362, 32816}, {8369, 14535}, {8889, 17907}, {9605, 32828}, {9752, 18583}, {10155, 60093}, {10583, 33000}, {11287, 32827}, {11669, 60263}, {12150, 46453}, {13860, 25406}, {14039, 60855}, {14561, 58883}, {14853, 37451}, {15815, 32981}, {16419, 22062}, {17286, 49554}, {17749, 32022}, {20179, 59572}, {22253, 46951}, {26959, 31402}, {27091, 31405}, {31455, 32970}, {31492, 59545}, {32832, 55085}, {32839, 32954}, {32871, 33183}, {32991, 44518}, {33239, 37512}, {33272, 53418}, {35021, 55708}, {35927, 53095}, {37182, 51538}, {37187, 63155}, {43448, 44543}, {53098, 60073}, {54509, 60268}, {54616, 60211}, {60098, 60190}, {60129, 60234}, {60239, 60240}

X(63041) = pole of line {8371, 62642} with respect to the orthocentroidal circle
X(63041) = pole of line {3265, 47128} with respect to the dual conic of Orthic inconic
X(63041) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(15271)}}, {{A, B, C, X(69), X(60096)}}, {{A, B, C, X(83), X(34229)}}, {{A, B, C, X(141), X(14494)}}, {{A, B, C, X(193), X(11169)}}, {{A, B, C, X(230), X(18841)}}, {{A, B, C, X(3619), X(8781)}}, {{A, B, C, X(7610), X(54616)}}, {{A, B, C, X(7612), X(58446)}}, {{A, B, C, X(7778), X(10155)}}, {{A, B, C, X(11168), X(18842)}}, {{A, B, C, X(11669), X(37690)}}, {{A, B, C, X(16986), X(60234)}}, {{A, B, C, X(16990), X(60098)}}, {{A, B, C, X(17008), X(60129)}}, {{A, B, C, X(21358), X(60240)}}, {{A, B, C, X(23055), X(60239)}}, {{A, B, C, X(42850), X(54509)}}, {{A, B, C, X(44377), X(53098)}}
X(63041) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 325, 3619}, {2, 3329, 7735}, {2, 3815, 1007}, {2, 7736, 69}, {2548, 16043, 32006}, {2548, 6683, 16043}, {7808, 31401, 14001}, {18841, 33189, 7846}, {32951, 55774, 7859}


X(63042) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15589), X(3), X(6))

Barycentrics    7*a^4-b^4-6*b^2*c^2-c^4+2*a^2*(b^2+c^2) : :
X(63042) =

X(63042) lies on these lines: {2, 6}, {20, 7754}, {25, 56013}, {32, 32830}, {148, 2794}, {194, 3522}, {239, 3598}, {315, 33200}, {376, 3793}, {439, 4027}, {620, 7758}, {754, 43448}, {894, 7172}, {1352, 9748}, {1384, 32817}, {1506, 32897}, {1655, 11106}, {1916, 47586}, {2549, 41748}, {2996, 7823}, {3091, 7762}, {3164, 8267}, {3424, 51212}, {3543, 47286}, {3734, 32869}, {3767, 7845}, {3769, 51190}, {3785, 7760}, {3926, 6179}, {3933, 33181}, {3972, 32836}, {4232, 56021}, {4461, 20056}, {5068, 7785}, {5286, 7761}, {5305, 33180}, {5319, 7826}, {6054, 51178}, {6194, 32451}, {6390, 46453}, {6527, 10313}, {6995, 9308}, {7378, 27377}, {7390, 56018}, {7408, 43981}, {7487, 56015}, {7500, 56017}, {7620, 62203}, {7749, 32871}, {7751, 32834}, {7753, 32893}, {7767, 33202}, {7776, 33199}, {7780, 31400}, {7783, 21734}, {7793, 15717}, {7838, 31404}, {7839, 32990}, {7855, 53033}, {7857, 32825}, {7858, 32838}, {7877, 14061}, {7881, 33183}, {7890, 32835}, {7893, 32974}, {7900, 32980}, {7905, 32829}, {7906, 32989}, {7921, 32987}, {7941, 32988}, {8359, 14482}, {8598, 11148}, {8782, 20105}, {9993, 11180}, {10304, 31859}, {10754, 11177}, {11477, 53015}, {11606, 38259}, {13571, 61834}, {14039, 21309}, {14568, 32827}, {14712, 15683}, {14929, 33190}, {15655, 51123}, {16045, 43136}, {16318, 32001}, {16924, 32872}, {16925, 32841}, {17128, 32882}, {17129, 32971}, {17131, 32874}, {18533, 56016}, {18907, 52713}, {19569, 62030}, {19570, 50687}, {20081, 32981}, {20088, 32979}, {26274, 39567}, {30435, 33198}, {31415, 41750}, {32269, 38918}, {32457, 44678}, {32818, 33203}, {32840, 32973}, {33706, 41622}, {33748, 37455}, {37460, 41676}, {40248, 50986}, {43951, 54122}, {50698, 56019}, {50974, 60658}, {51224, 53141}, {54815, 60214}, {54901, 60635}, {54921, 60234}, {60128, 60331}, {60260, 60336}

X(63042) = reflection of X(i) in X(j) for these {i,j}: {32817, 1384}
X(63042) = anticomplement of X(37668)
X(63042) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3424, 2}
X(63042) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3424, 6327}, {58963, 7192}, {59256, 21275}, {60674, 4329}
X(63042) = pole of line {523, 47457} with respect to the Steiner circumellipse
X(63042) = pole of line {2, 59548} with respect to the Wallace hyperbola
X(63042) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(193), X(60147)}}, {{A, B, C, X(385), X(47586)}}, {{A, B, C, X(2996), X(10513)}}, {{A, B, C, X(3618), X(11169)}}, {{A, B, C, X(5395), X(14930)}}, {{A, B, C, X(7774), X(43951)}}, {{A, B, C, X(7777), X(60331)}}, {{A, B, C, X(7779), X(38259)}}, {{A, B, C, X(7788), X(54171)}}, {{A, B, C, X(7837), X(54815)}}, {{A, B, C, X(11606), X(20080)}}, {{A, B, C, X(17008), X(54921)}}, {{A, B, C, X(37667), X(60336)}}
X(63042) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 32830, 33201}, {193, 385, 2}, {2996, 7823, 17578}, {3629, 8667, 7736}, {3793, 22253, 376}, {6392, 20065, 3146}, {7805, 14023, 5286}


X(63043) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15993), X(3), X(6))

Barycentrics    a^6-7*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-2*b^2*c^2+3*c^4) : :

X(63043) lies on these lines: {2, 6}, {4, 11646}, {30, 11173}, {32, 5477}, {39, 22677}, {115, 19905}, {182, 21843}, {187, 11179}, {194, 50640}, {376, 5104}, {511, 2549}, {542, 7737}, {574, 54173}, {576, 3767}, {631, 5038}, {1285, 50974}, {1351, 15980}, {1352, 5052}, {1353, 37459}, {1383, 9143}, {1384, 37461}, {1609, 20775}, {1691, 14912}, {1915, 63174}, {1971, 41719}, {2056, 6353}, {2076, 25406}, {2452, 5112}, {2502, 26255}, {2548, 34507}, {3003, 5486}, {3053, 8550}, {3331, 54149}, {3545, 53504}, {3564, 18907}, {5017, 6776}, {5026, 32985}, {5028, 5355}, {5039, 5965}, {5107, 5309}, {5210, 51737}, {5254, 11477}, {5319, 44499}, {5476, 43620}, {6337, 39100}, {6781, 46264}, {7494, 14153}, {7738, 44453}, {7745, 15069}, {7758, 13357}, {7798, 14645}, {8546, 11063}, {8573, 20794}, {8705, 47275}, {9214, 42007}, {9225, 40132}, {9604, 19127}, {9743, 9744}, {9753, 10753}, {9974, 49220}, {9975, 49221}, {10329, 33522}, {10418, 61506}, {10519, 50659}, {11178, 31415}, {11185, 22486}, {11645, 43618}, {12151, 33191}, {13356, 14023}, {14482, 51179}, {14853, 53475}, {15483, 34511}, {15484, 50955}, {15531, 61101}, {15880, 21243}, {16280, 35906}, {16306, 47280}, {16308, 47276}, {18800, 19911}, {19924, 43619}, {23326, 53496}, {30516, 61644}, {31401, 40107}, {31859, 51438}, {32113, 47169}, {35432, 43460}, {37827, 44533}, {40330, 53484}, {41406, 51203}, {41407, 51200}, {41585, 59229}, {41672, 51140}, {43448, 53505}, {43454, 51207}, {43455, 51206}, {44541, 50965}, {47184, 47277}, {47186, 47448}, {47353, 53418}, {50967, 60653}, {52199, 56603}, {53095, 54169}, {53419, 54131}

X(63043) = X(i)-complementary conjugate of X(j) for these {i, j}: {54488, 2887}
X(63043) = pole of line {44445, 59775} with respect to the anticomplementary circle
X(63043) = pole of line {2501, 59775} with respect to the polar circle
X(63043) = pole of line {2, 52771} with respect to the Kiepert hyperbola
X(63043) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(39099)}}, {{A, B, C, X(69), X(43532)}}, {{A, B, C, X(183), X(5486)}}, {{A, B, C, X(393), X(17008)}}, {{A, B, C, X(1989), X(7610)}}, {{A, B, C, X(2165), X(37688)}}, {{A, B, C, X(3815), X(9516)}}, {{A, B, C, X(22329), X(34288)}}, {{A, B, C, X(30537), X(42849)}}, {{A, B, C, X(34229), X(44556)}}, {{A, B, C, X(41614), X(43718)}}, {{A, B, C, X(42286), X(58446)}}
X(63043) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 599, 3815}, {69, 1992, 7774}, {193, 7766, 1992}, {395, 396, 7610}, {1992, 7735, 6}, {5304, 7779, 7736}, {34507, 44500, 2548}, {43448, 54132, 53505}


X(63044) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16986), X(3), X(6))

Barycentrics    a^4-b^4-3*b^2*c^2-c^4-a^2*(b^2+c^2) : :

X(63044) lies on these lines: {2, 6}, {3, 5984}, {4, 7929}, {5, 7939}, {22, 8272}, {32, 19689}, {76, 148}, {83, 7826}, {98, 40107}, {99, 7810}, {115, 7883}, {140, 7947}, {147, 22712}, {194, 7800}, {251, 40000}, {315, 16044}, {316, 7848}, {319, 33891}, {384, 7767}, {538, 7831}, {620, 1078}, {621, 25167}, {622, 25157}, {626, 14061}, {1281, 49560}, {1352, 6194}, {1384, 14036}, {1447, 17287}, {1506, 7917}, {1513, 61545}, {1799, 46228}, {1975, 7904}, {2453, 20063}, {2548, 7946}, {3096, 7751}, {3528, 45017}, {3552, 3785}, {3564, 37455}, {3734, 7811}, {3767, 7938}, {3793, 6661}, {3818, 33706}, {3891, 20056}, {3917, 61101}, {3926, 33004}, {3933, 7824}, {3934, 7768}, {3978, 59213}, {4045, 31168}, {4372, 39724}, {4376, 17280}, {4441, 6653}, {4655, 5992}, {5025, 7879}, {5059, 46944}, {5077, 8596}, {5181, 5987}, {5254, 7928}, {5305, 7948}, {5309, 7937}, {5346, 7943}, {5475, 7850}, {5980, 32552}, {5981, 32553}, {5999, 48876}, {6033, 49111}, {6179, 7822}, {6292, 7760}, {6337, 33022}, {6390, 33273}, {6636, 22062}, {6646, 33889}, {6656, 17129}, {6658, 7750}, {6683, 7905}, {7081, 17288}, {7394, 44443}, {7484, 22152}, {7485, 20794}, {7737, 9939}, {7738, 20105}, {7746, 7922}, {7749, 7909}, {7752, 7896}, {7754, 7876}, {7755, 7944}, {7769, 7895}, {7770, 7893}, {7771, 7801}, {7773, 33024}, {7776, 16921}, {7780, 7832}, {7786, 7855}, {7787, 14023}, {7790, 7865}, {7791, 20081}, {7793, 7795}, {7796, 7815}, {7802, 17130}, {7804, 34604}, {7805, 7859}, {7808, 7877}, {7828, 7849}, {7833, 20094}, {7839, 8362}, {7853, 14568}, {7856, 7914}, {7857, 7869}, {7858, 7882}, {7863, 43459}, {7871, 31455}, {7881, 7907}, {7885, 32993}, {7889, 10159}, {7890, 55085}, {7894, 51860}, {7898, 11185}, {7900, 16924}, {7906, 11285}, {7912, 32832}, {7924, 47286}, {7941, 32992}, {8267, 40002}, {8354, 47287}, {8370, 14929}, {8591, 55164}, {9230, 39998}, {9855, 59780}, {9865, 14994}, {9866, 24256}, {9993, 11178}, {9996, 43453}, {10163, 37804}, {10357, 14880}, {10989, 47282}, {10997, 60702}, {11177, 50977}, {12251, 37336}, {14031, 60285}, {14046, 43291}, {14063, 32834}, {14458, 48880}, {14907, 33265}, {14931, 50567}, {14976, 43618}, {15246, 20775}, {15526, 40870}, {16895, 30435}, {16898, 18840}, {17192, 30167}, {17236, 26034}, {17565, 34284}, {17685, 18135}, {18440, 60651}, {19576, 60694}, {19691, 32819}, {20785, 56512}, {22240, 39352}, {26806, 32771}, {29840, 32852}, {31299, 46778}, {32006, 33018}, {32747, 41916}, {32815, 33264}, {32816, 33002}, {32817, 33008}, {32818, 33001}, {32822, 33253}, {32823, 32999}, {32828, 32966}, {32830, 32965}, {32831, 33012}, {32835, 33188}, {32869, 33263}, {32870, 33270}, {32872, 32980}, {32874, 33278}, {33017, 52713}, {33087, 52133}, {33769, 35540}, {34510, 38730}, {35005, 60128}, {35369, 44526}, {37898, 38909}, {37901, 50146}, {40416, 61418}, {41295, 52898}, {43150, 43460}, {43529, 60136}, {43688, 54122}, {46264, 60652}, {48892, 55178}, {50692, 60147}, {50955, 60654}, {54901, 60143}, {60177, 60212}, {60184, 60232}

X(63044) = isotomic conjugate of X(60105)
X(63044) = anticomplement of X(3329)
X(63044) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60105}, {3329, 3329}
X(63044) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42006, 2}
X(63044) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {42006, 6327}, {43357, 7192}, {59262, 21289}, {59273, 21217}, {60664, 69}, {60667, 8}, {60672, 192}
X(63044) = pole of line {2528, 6563} with respect to the DeLongchamps circle
X(63044) = pole of line {6, 20854} with respect to the Stammler hyperbola
X(63044) = pole of line {2, 2076} with respect to the Wallace hyperbola
X(63044) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(5116)}}, {{A, B, C, X(76), X(7779)}}, {{A, B, C, X(3329), X(60105)}}, {{A, B, C, X(3589), X(40416)}}, {{A, B, C, X(3763), X(44558)}}, {{A, B, C, X(6655), X(46228)}}, {{A, B, C, X(7736), X(60177)}}, {{A, B, C, X(7766), X(54122)}}, {{A, B, C, X(7774), X(43688)}}, {{A, B, C, X(7777), X(35005)}}, {{A, B, C, X(7806), X(60136)}}, {{A, B, C, X(7897), X(60232)}}, {{A, B, C, X(9473), X(39093)}}, {{A, B, C, X(10513), X(60639)}}, {{A, B, C, X(11172), X(62204)}}, {{A, B, C, X(14930), X(38259)}}, {{A, B, C, X(16893), X(61418)}}, {{A, B, C, X(16989), X(60184)}}, {{A, B, C, X(28667), X(40043)}}, {{A, B, C, X(30542), X(47355)}}, {{A, B, C, X(32748), X(51248)}}, {{A, B, C, X(34573), X(43458)}}, {{A, B, C, X(54901), X(59373)}}
X(63044) = barycentric product X(i)*X(j) for these (i, j): {5116, 76}
X(63044) = barycentric quotient X(i)/X(j) for these (i, j): {2, 60105}, {5116, 6}
X(63044) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 69, 7779}, {32, 46226, 19689}, {76, 7761, 148}, {76, 7854, 2896}, {76, 7936, 7748}, {141, 385, 2}, {148, 2896, 7761}, {148, 7761, 6655}, {183, 599, 3314}, {194, 7800, 33021}, {315, 31276, 16044}, {1078, 7794, 7836}, {1078, 7836, 33259}, {1352, 6194, 40236}, {1447, 17287, 30179}, {1975, 7904, 33260}, {3096, 7751, 7797}, {3734, 14712, 19686}, {3734, 7811, 14712}, {3934, 7768, 7785}, {3934, 7785, 33020}, {5254, 7928, 19690}, {6179, 7822, 10583}, {7750, 17128, 6658}, {7770, 7893, 20088}, {7786, 7855, 13571}, {7790, 17131, 19570}, {7793, 7795, 33225}, {7848, 9466, 316}, {7865, 17131, 7790}, {7868, 8667, 7806}, {7882, 31239, 7858}, {7885, 59635, 32993}, {9866, 24256, 60105}, {22712, 34507, 147}


X(63045) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16989), X(3), X(6))

Barycentrics    5*a^4+b^4+c^4+4*a^2*(b^2+c^2) : :

X(63045) lies on these lines: {2, 6}, {4, 7920}, {20, 3398}, {32, 32965}, {39, 32964}, {83, 5319}, {114, 22234}, {148, 4027}, {194, 14037}, {315, 7829}, {384, 32822}, {575, 9753}, {620, 7772}, {754, 14075}, {1285, 7833}, {1384, 33008}, {1513, 53091}, {2548, 7856}, {2549, 12150}, {3091, 5984}, {3095, 3523}, {3424, 60105}, {3767, 7878}, {3788, 41940}, {3926, 10583}, {3972, 7739}, {4232, 56920}, {4254, 56771}, {5007, 7761}, {5008, 14907}, {5041, 7763}, {5050, 37182}, {5093, 37450}, {5120, 56772}, {5254, 14068}, {5305, 16924}, {5346, 32832}, {5355, 11185}, {5368, 7808}, {5395, 11606}, {6656, 43136}, {6661, 22253}, {6995, 44089}, {7519, 45819}, {7737, 7827}, {7738, 33244}, {7745, 32996}, {7754, 16898}, {7758, 7846}, {7759, 34571}, {7773, 33287}, {7785, 33283}, {7790, 33278}, {7791, 30435}, {7793, 33258}, {7795, 7894}, {7797, 14063}, {7828, 33277}, {7834, 7845}, {7839, 14001}, {7851, 33290}, {7859, 14023}, {7864, 32997}, {7893, 32956}, {7900, 33180}, {7906, 14069}, {7921, 14064}, {7923, 32006}, {7932, 32816}, {7939, 33221}, {7941, 32951}, {8356, 21309}, {8782, 32973}, {9605, 16925}, {9744, 39561}, {9748, 40236}, {9755, 18583}, {9993, 11179}, {10304, 26316}, {10336, 39141}, {10486, 14494}, {11288, 22246}, {12251, 56789}, {13571, 53033}, {13860, 59399}, {13862, 14912}, {14036, 32817}, {14043, 32818}, {14065, 32823}, {14482, 32985}, {14484, 60184}, {14712, 33263}, {15048, 33007}, {15484, 33006}, {15692, 35002}, {16045, 17129}, {16896, 18840}, {18845, 60147}, {18907, 33017}, {19689, 32830}, {19692, 20105}, {20081, 33198}, {20088, 32974}, {31400, 33206}, {31401, 33204}, {31404, 33270}, {31406, 33000}, {31859, 33255}, {33005, 43291}, {33012, 46305}, {33016, 53489}, {33188, 55085}, {33273, 46453}, {37349, 41761}, {46944, 61791}, {53099, 60136}, {53101, 54901}

X(63045) = intersection, other than A, B, C, of circumconics {{A, B, C, X(141), X(45819)}}, {{A, B, C, X(3620), X(11606)}}, {{A, B, C, X(5395), X(7779)}}, {{A, B, C, X(7897), X(14484)}}, {{A, B, C, X(10513), X(18845)}}, {{A, B, C, X(15589), X(60184)}}, {{A, B, C, X(37668), X(60105)}}, {{A, B, C, X(42407), X(47355)}}
X(63045) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 7792, 7774}, {3329, 7735, 2}, {5007, 7803, 20065}, {5286, 7787, 14035}


X(63046) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(16990), X(3), X(6))

Barycentrics    3*a^4-b^4-4*b^2*c^2-c^4 : :
X(63046) = -2*X[31859]+3*X[33008]

X(63046) lies on these lines: {2, 6}, {4, 7893}, {20, 2782}, {23, 16331}, {32, 14037}, {39, 33258}, {76, 7737}, {99, 33208}, {115, 315}, {144, 33889}, {148, 9939}, {187, 32833}, {194, 3785}, {384, 1285}, {439, 32840}, {538, 14907}, {543, 52943}, {631, 7906}, {754, 11185}, {1003, 3793}, {1078, 7758}, {1278, 17784}, {1352, 9993}, {1384, 33255}, {1447, 17363}, {1513, 11898}, {1655, 33059}, {1975, 33244}, {2548, 7877}, {2549, 7811}, {2896, 5286}, {2996, 11606}, {3090, 7941}, {3091, 7900}, {3096, 5319}, {3146, 9863}, {3186, 6995}, {3424, 43688}, {3523, 12054}, {3534, 47287}, {3543, 34623}, {3552, 32830}, {3564, 37182}, {3767, 7768}, {3926, 4027}, {3933, 16925}, {4045, 41748}, {4190, 40908}, {5023, 32820}, {5206, 35022}, {5210, 59634}, {5305, 7879}, {5309, 7848}, {5346, 7849}, {5355, 7865}, {5368, 7914}, {5485, 8597}, {5839, 33891}, {5921, 40236}, {5965, 9744}, {6054, 50961}, {6179, 7795}, {6194, 6776}, {6392, 6655}, {6636, 40947}, {6661, 21309}, {7081, 17364}, {7500, 40896}, {7603, 7759}, {7738, 7904}, {7739, 7831}, {7746, 7882}, {7749, 7916}, {7750, 32997}, {7752, 33270}, {7754, 7767}, {7755, 7896}, {7760, 7800}, {7762, 15484}, {7763, 7780}, {7771, 34511}, {7775, 53127}, {7776, 32961}, {7785, 32828}, {7796, 33262}, {7798, 7810}, {7799, 21843}, {7803, 7805}, {7809, 43620}, {7815, 7890}, {7823, 14068}, {7839, 14482}, {7841, 14929}, {7845, 39601}, {7850, 14568}, {7856, 32027}, {7885, 33290}, {7898, 19570}, {7905, 31401}, {7907, 32818}, {7912, 33277}, {7920, 32956}, {7921, 32968}, {7926, 31415}, {7929, 32974}, {7939, 14064}, {7946, 32816}, {7947, 32970}, {8356, 22253}, {8588, 14148}, {9753, 34507}, {9755, 48876}, {10311, 44134}, {10352, 41672}, {11057, 43619}, {11177, 14931}, {11361, 52713}, {11594, 20063}, {13571, 31400}, {13586, 32817}, {13860, 34380}, {14031, 17128}, {14458, 43621}, {14712, 22564}, {14912, 37455}, {16044, 32834}, {16895, 18840}, {16898, 30435}, {16950, 41916}, {17252, 29634}, {19686, 32869}, {20088, 32971}, {20105, 33260}, {20885, 22152}, {30179, 32099}, {31276, 33269}, {31859, 33008}, {32006, 32996}, {32822, 33257}, {32823, 32967}, {32829, 33204}, {32831, 33259}, {32836, 33187}, {32872, 32991}, {32995, 59635}, {33017, 47286}, {33022, 34873}, {33058, 34284}, {33246, 46453}, {33706, 46264}, {35005, 43537}, {36432, 63195}, {36864, 46236}, {37187, 56013}, {37900, 47283}, {39091, 51579}, {39352, 40870}, {39874, 60651}, {40248, 51175}, {40897, 40904}, {41014, 56733}, {43681, 50690}, {45141, 56021}, {46944, 50693}, {50974, 60654}, {51215, 60658}, {53505, 54122}, {54901, 60200}, {59213, 63170}, {60105, 60259}, {60136, 60262}, {60184, 60201}

X(63046) = reflection of X(i) in X(j) for these {i,j}: {11185, 17131}, {7774, 183}
X(63046) = inverse of X(44380) in Steiner circumellipse
X(63046) = anticomplement of X(7774)
X(63046) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54122, 2}
X(63046) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54122, 6327}
X(63046) = pole of line {804, 6563} with respect to the DeLongchamps circle
X(63046) = pole of line {6467, 52658} with respect to the Jerabek hyperbola
X(63046) = pole of line {523, 24284} with respect to the Steiner circumellipse
X(63046) = pole of line {2, 59695} with respect to the Wallace hyperbola
X(63046) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(193), X(11606)}}, {{A, B, C, X(2996), X(7779)}}, {{A, B, C, X(3329), X(19222)}}, {{A, B, C, X(3424), X(7766)}}, {{A, B, C, X(3619), X(9229)}}, {{A, B, C, X(3763), X(13481)}}, {{A, B, C, X(4590), X(44380)}}, {{A, B, C, X(5032), X(54901)}}, {{A, B, C, X(5304), X(60184)}}, {{A, B, C, X(7837), X(43696)}}, {{A, B, C, X(7897), X(60201)}}, {{A, B, C, X(10513), X(43681)}}, {{A, B, C, X(14930), X(18845)}}, {{A, B, C, X(15993), X(35511)}}, {{A, B, C, X(37665), X(60105)}}, {{A, B, C, X(37668), X(43688)}}, {{A, B, C, X(37689), X(60136)}}, {{A, B, C, X(51170), X(60147)}}
X(63046) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10513, 7897}, {69, 7735, 3314}, {76, 14023, 20065}, {76, 20065, 14035}, {183, 524, 7774}, {183, 7774, 2}, {194, 3785, 32965}, {230, 3630, 7788}, {385, 3314, 7735}, {754, 17131, 11185}, {3631, 5306, 7868}, {3926, 7793, 32964}, {7751, 7826, 315}, {7754, 7767, 7791}, {7785, 32828, 32962}, {7805, 7854, 7803}, {7893, 17129, 4}, {7898, 19570, 43448}, {7898, 43448, 33278}, {9983, 12251, 20081}, {14712, 32815, 33193}


X(63047) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17004), X(3), X(6))

Barycentrics    3*a^4+b^4-3*b^2*c^2+c^4-a^2*(b^2+c^2) : :
X(63047) = X[8]+4*X[50775], 4*X[10]+X[50247], -X[20]+6*X[21445], X[23]+4*X[16315], X[145]+4*X[50254], -X[147]+6*X[38227], X[148]+4*X[187], 3*X[671]+2*X[6781], -X[858]+6*X[47237], 4*X[1513]+X[5984], 2*X[2080]+3*X[14651], 4*X[2966]+X[40853] and many others

X(63047) lies on these lines: {2, 6}, {5, 20088}, {8, 50775}, {10, 50247}, {20, 21445}, {23, 16315}, {32, 16044}, {76, 33225}, {98, 8784}, {99, 14658}, {115, 12191}, {140, 7839}, {145, 50254}, {147, 38227}, {148, 187}, {194, 33259}, {523, 26777}, {621, 22511}, {622, 22510}, {631, 32515}, {671, 6781}, {736, 19689}, {754, 14061}, {858, 47237}, {1078, 4045}, {1285, 33016}, {1384, 11361}, {1513, 5984}, {1656, 7921}, {1916, 60136}, {2080, 14651}, {2896, 7780}, {2966, 40853}, {2996, 33244}, {3053, 6658}, {3552, 32815}, {3767, 6655}, {3785, 7933}, {3793, 33228}, {3832, 39663}, {3933, 33245}, {3934, 10583}, {3994, 33889}, {4678, 50776}, {5189, 35727}, {5254, 33260}, {5286, 33004}, {5305, 7824}, {5309, 7771}, {5346, 7786}, {5355, 34506}, {5368, 55085}, {5475, 34604}, {5976, 39091}, {5992, 28546}, {6108, 25166}, {6109, 25156}, {6179, 7746}, {6194, 52996}, {6337, 20105}, {6392, 32964}, {6653, 17737}, {6680, 46226}, {6683, 51860}, {6722, 7809}, {7426, 47155}, {7612, 44434}, {7616, 15819}, {7738, 33022}, {7745, 33024}, {7749, 7760}, {7751, 7836}, {7754, 7907}, {7762, 32967}, {7765, 43459}, {7767, 7901}, {7768, 7886}, {7769, 7805}, {7787, 32832}, {7799, 58448}, {7800, 7932}, {7807, 17129}, {7810, 7919}, {7811, 7844}, {7815, 7856}, {7817, 7831}, {7823, 13881}, {7826, 7899}, {7835, 17131}, {7851, 7904}, {7854, 7942}, {7855, 7940}, {7862, 7877}, {7879, 14065}, {7887, 7893}, {7894, 31455}, {7900, 32961}, {7906, 33233}, {7912, 14023}, {7920, 11285}, {7929, 14064}, {7939, 8361}, {7941, 33249}, {8587, 60271}, {8591, 26613}, {8596, 8598}, {9301, 61560}, {9605, 33015}, {10104, 37336}, {10256, 61842}, {11054, 52695}, {11172, 54901}, {11177, 43460}, {11185, 19686}, {12042, 43453}, {13172, 38225}, {13188, 38230}, {13586, 20094}, {13595, 40981}, {14037, 32834}, {14041, 43291}, {14148, 41134}, {15048, 33273}, {16092, 37901}, {16316, 37907}, {16921, 30435}, {16925, 20081}, {18907, 33013}, {19691, 44518}, {20065, 32827}, {21309, 44543}, {27088, 47287}, {29838, 52135}, {31296, 47229}, {31859, 33274}, {32831, 33262}, {32870, 33261}, {33007, 46453}, {33255, 52713}, {33264, 43448}, {33801, 37913}, {34380, 40336}, {35005, 36859}, {35007, 50570}, {35078, 40858}, {36864, 44534}, {36899, 46806}, {37909, 46998}, {38259, 50692}, {40246, 41135}, {40429, 52898}, {42535, 60105}, {43456, 50977}, {46518, 51441}, {46933, 50250}, {46999, 52403}, {47244, 53136}, {47638, 61101}, {51862, 53264}, {54122, 60184}, {54823, 60185}

X(63047) = midpoint of X(i) and X(j) for these {i,j}: {385, 7925}
X(63047) = inverse of X(3629) in Steiner circumellipse
X(63047) = inverse of X(6329) in Steiner inellipse
X(63047) = isotomic conjugate of X(35005)
X(63047) = anticomplement of X(7925)
X(63047) = perspector of circumconic {{A, B, C, X(99), X(53109)}}
X(63047) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 35005}, {7925, 7925}
X(63047) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60104, 2}
X(63047) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60104, 6327}
X(63047) = pole of line {669, 10278} with respect to the circumcircle
X(63047) = pole of line {6563, 31176} with respect to the DeLongchamps circle
X(63047) = pole of line {546, 1499} with respect to the orthoptic circle of the Steiner Inellipse
X(63047) = pole of line {2501, 10189} with respect to the polar circle
X(63047) = pole of line {2, 36811} with respect to the Kiepert hyperbola
X(63047) = pole of line {99, 32478} with respect to the Kiepert parabola
X(63047) = pole of line {523, 3629} with respect to the Steiner circumellipse
X(63047) = pole of line {523, 6329} with respect to the Steiner inellipse
X(63047) = pole of line {2, 35005} with respect to the Wallace hyperbola
X(63047) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(14658)}}, {{A, B, C, X(98), X(7779)}}, {{A, B, C, X(141), X(40429)}}, {{A, B, C, X(251), X(45843)}}, {{A, B, C, X(325), X(11606)}}, {{A, B, C, X(385), X(60136)}}, {{A, B, C, X(523), X(3631)}}, {{A, B, C, X(1007), X(60177)}}, {{A, B, C, X(1989), X(56434)}}, {{A, B, C, X(2421), X(46970)}}, {{A, B, C, X(3629), X(4590)}}, {{A, B, C, X(3815), X(41932)}}, {{A, B, C, X(6329), X(36953)}}, {{A, B, C, X(7774), X(60184)}}, {{A, B, C, X(7777), X(60105)}}, {{A, B, C, X(7788), X(9473)}}, {{A, B, C, X(7897), X(54122)}}, {{A, B, C, X(7925), X(35005)}}, {{A, B, C, X(8587), X(44367)}}, {{A, B, C, X(9164), X(20583)}}, {{A, B, C, X(9770), X(54901)}}, {{A, B, C, X(20080), X(60336)}}, {{A, B, C, X(35511), X(40341)}}, {{A, B, C, X(37671), X(40428)}}, {{A, B, C, X(41136), X(43535)}}
X(63047) = barycentric product X(i)*X(j) for these (i, j): {35006, 76}
X(63047) = barycentric quotient X(i)/X(j) for these (i, j): {2, 35005}, {35006, 6}
X(63047) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 385, 7779}, {148, 187, 33265}, {183, 7806, 2}, {187, 14568, 148}, {385, 7925, 524}, {385, 8859, 230}, {1078, 7755, 7797}, {1078, 7797, 33021}, {3767, 7793, 6655}, {6179, 7746, 7785}, {6189, 6190, 3629}, {7751, 7857, 7836}, {7769, 7805, 13571}, {7780, 7828, 2896}, {7787, 32832, 33020}, {7851, 7904, 19690}, {13586, 47286, 20094}, {41135, 51224, 40246}


X(63048) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17008), X(3), X(6))

Barycentrics    5*a^4+b^4-4*b^2*c^2+c^4 : :

X(63048) lies on these lines: {2, 6}, {20, 2080}, {23, 40947}, {32, 11185}, {39, 33012}, {76, 14037}, {98, 31670}, {99, 33266}, {147, 9752}, {148, 33193}, {187, 33208}, {194, 2021}, {315, 7755}, {316, 3767}, {317, 6103}, {384, 52713}, {620, 41748}, {631, 7839}, {671, 43618}, {1078, 5319}, {1285, 11361}, {1384, 33007}, {1513, 39899}, {2548, 33009}, {2549, 33207}, {2980, 7519}, {2996, 6658}, {3053, 33244}, {3090, 7921}, {3091, 6287}, {3186, 4232}, {3424, 11606}, {3523, 11171}, {3543, 9862}, {3552, 6392}, {3785, 7797}, {3793, 7841}, {3818, 9753}, {3832, 9863}, {5007, 32832}, {5254, 32997}, {5286, 7793}, {5305, 7791}, {5309, 14907}, {5346, 7780}, {5368, 7815}, {5976, 41747}, {5999, 50685}, {6041, 53347}, {6055, 37517}, {6390, 7754}, {7737, 14568}, {7739, 7771}, {7745, 32995}, {7746, 33270}, {7751, 7820}, {7753, 53127}, {7757, 21843}, {7758, 7857}, {7759, 31275}, {7760, 33206}, {7762, 32961}, {7763, 7805}, {7776, 33248}, {7785, 32963}, {7787, 32828}, {7800, 7856}, {7812, 43620}, {7823, 32996}, {7828, 7850}, {7885, 33287}, {7893, 14064}, {7894, 31401}, {7900, 32972}, {7906, 32970}, {7920, 16043}, {7929, 33180}, {7939, 32951}, {7941, 32969}, {7947, 33189}, {8370, 21309}, {9605, 33001}, {9755, 37182}, {9983, 33198}, {11054, 37809}, {11148, 16508}, {12829, 35705}, {13571, 32829}, {13586, 46453}, {14001, 17129}, {14712, 33192}, {14928, 41412}, {14929, 33219}, {15048, 33008}, {15484, 33005}, {15717, 52771}, {16897, 55732}, {16924, 30435}, {17350, 37764}, {18840, 19694}, {18907, 33016}, {19570, 32815}, {20081, 32973}, {20094, 35927}, {22253, 35297}, {22331, 32819}, {22712, 50652}, {31400, 33188}, {31406, 33003}, {31407, 32883}, {32006, 33290}, {32816, 33277}, {32817, 33246}, {32818, 33245}, {32830, 33225}, {32992, 43136}, {33006, 43291}, {33689, 34604}, {34623, 61936}, {36859, 46236}, {37909, 50150}, {38259, 47586}, {38262, 46316}, {41769, 54459}, {43537, 60177}, {43619, 51224}, {46806, 51963}, {54823, 54866}, {60136, 60260}

X(63048) = pole of line {2501, 45689} with respect to the polar circle
X(63048) = pole of line {523, 47549} with respect to the Steiner circumellipse
X(63048) = pole of line {3265, 14610} with respect to the dual conic of Orthic inconic
X(63048) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(9227)}}, {{A, B, C, X(193), X(60184)}}, {{A, B, C, X(393), X(15993)}}, {{A, B, C, X(394), X(38279)}}, {{A, B, C, X(524), X(2980)}}, {{A, B, C, X(2996), X(7897)}}, {{A, B, C, X(3424), X(7779)}}, {{A, B, C, X(6094), X(15533)}}, {{A, B, C, X(9229), X(21356)}}, {{A, B, C, X(11606), X(37668)}}, {{A, B, C, X(20080), X(47586)}}, {{A, B, C, X(21001), X(46316)}}, {{A, B, C, X(37667), X(60136)}}, {{A, B, C, X(38262), X(39099)}}, {{A, B, C, X(40103), X(62191)}}, {{A, B, C, X(41136), X(41895)}}
X(63048) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 7735, 7806}, {385, 7806, 69}, {1384, 47286, 33007}, {1992, 8859, 2}, {3767, 6179, 20065}, {5346, 7780, 7803}, {7787, 32828, 33269}, {14712, 43448, 33192}


X(63049) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17346), X(3), X(6))

Barycentrics    5*a^2-b^2-b*c-c^2-a*(b+c) : :
X(63049) = -8*X[44]+5*X[4473], X[190]+2*X[4969], -2*X[320]+5*X[29590], X[4480]+2*X[50019], 2*X[49710]+X[50016], 2*X[49712]+X[50015]

X(63049) lies on these lines: {2, 6}, {8, 4672}, {9, 17389}, {44, 4473}, {45, 29588}, {144, 32105}, {145, 5220}, {190, 4969}, {192, 4460}, {239, 527}, {319, 16669}, {320, 29590}, {376, 48875}, {519, 1757}, {536, 17487}, {576, 7379}, {651, 40892}, {671, 54795}, {894, 50095}, {903, 28333}, {984, 3241}, {1449, 17331}, {1743, 17280}, {2094, 17490}, {2996, 54622}, {3661, 16670}, {3679, 50289}, {3686, 17120}, {3707, 16826}, {3751, 50310}, {3759, 6646}, {3879, 29575}, {3973, 17242}, {4360, 49742}, {4361, 31300}, {4370, 28337}, {4393, 54280}, {4402, 60971}, {4416, 17121}, {4464, 61000}, {4480, 50019}, {4560, 28840}, {4643, 17399}, {4644, 16816}, {4649, 50297}, {4664, 50131}, {4667, 16815}, {4690, 29591}, {4715, 37756}, {4716, 28542}, {4741, 5222}, {4856, 17319}, {5839, 17350}, {6173, 17364}, {7277, 49733}, {7380, 11482}, {9791, 49489}, {11111, 20018}, {11112, 20077}, {13634, 50979}, {15492, 17315}, {16468, 50311}, {16666, 17256}, {16667, 17248}, {16668, 17322}, {16671, 17289}, {16833, 50128}, {16834, 17333}, {16885, 17377}, {17117, 50119}, {17160, 28297}, {17261, 50110}, {17275, 43985}, {17281, 50077}, {17310, 49754}, {17316, 61023}, {17320, 50124}, {17335, 29569}, {17342, 50076}, {17347, 49747}, {17348, 26806}, {17351, 50085}, {17358, 32099}, {17360, 29587}, {17362, 49726}, {17369, 51353}, {17373, 26685}, {17495, 35596}, {20036, 34610}, {20055, 54389}, {24482, 44671}, {24599, 59375}, {26003, 56021}, {26048, 26975}, {26113, 27036}, {26139, 32919}, {26142, 26768}, {28313, 49770}, {28534, 62392}, {29584, 50093}, {29615, 50115}, {29617, 50127}, {29628, 38093}, {31317, 35578}, {33066, 50103}, {34604, 51678}, {36409, 51488}, {39974, 40776}, {41313, 50132}, {47356, 50075}, {48627, 60963}, {48850, 48870}, {49450, 50130}, {49495, 50836}, {49496, 51053}, {49543, 50090}, {49710, 50016}, {49712, 50015}, {49721, 50088}, {49748, 50120}, {50283, 50296}, {50291, 51196}, {50308, 53620}, {54119, 54648}, {60083, 60149}

X(63049) = midpoint of X(i) and X(j) for these {i,j}: {17264, 62231}
X(63049) = reflection of X(i) in X(j) for these {i,j}: {17264, 44}, {6542, 17264}
X(63049) = anticomplement of X(17297)
X(63049) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60094, 2}
X(63049) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60094, 6327}
X(63049) = pole of line {523, 1962} with respect to the Steiner circumellipse
X(63049) = pole of line {1016, 4427} with respect to the Yff parabola
X(63049) = pole of line {190, 4976} with respect to the Hutson-Moses hyperbola
X(63049) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(50133)}}, {{A, B, C, X(81), X(9282)}}, {{A, B, C, X(86), X(6630)}}, {{A, B, C, X(193), X(54622)}}, {{A, B, C, X(524), X(54795)}}, {{A, B, C, X(1963), X(4567)}}, {{A, B, C, X(6625), X(17392)}}, {{A, B, C, X(16704), X(45679)}}, {{A, B, C, X(17300), X(60083)}}, {{A, B, C, X(17346), X(60149)}}, {{A, B, C, X(17778), X(54648)}}, {{A, B, C, X(37633), X(40776)}}, {{A, B, C, X(39974), X(40750)}}, {{A, B, C, X(50256), X(54794)}}
X(63049) = barycentric product X(i)*X(j) for these (i, j): {190, 45679}
X(63049) = barycentric quotient X(i)/X(j) for these (i, j): {45679, 514}
X(63049) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44, 4725, 17264}, {44, 62231, 6542}, {44, 6542, 4473}, {190, 4969, 20016}, {239, 20072, 4440}, {1743, 17363, 17280}, {3686, 17120, 28604}, {3879, 60986, 29575}, {4416, 50114, 17254}, {6172, 50129, 192}, {16666, 17256, 29586}, {17121, 17254, 50114}, {17254, 50114, 17302}, {17264, 62231, 4725}


X(63050) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17349), X(3), X(6))

Barycentrics    4*a^2-b*c-a*(b+c) : :

X(63050) lies on these lines: {1, 49504}, {2, 6}, {7, 29590}, {8, 16468}, {9, 4393}, {20, 37510}, {31, 59295}, {43, 22343}, {44, 192}, {75, 16669}, {87, 899}, {100, 36635}, {145, 238}, {190, 4788}, {239, 1278}, {319, 17358}, {344, 4916}, {346, 20016}, {519, 17339}, {673, 20059}, {894, 4772}, {978, 23579}, {1001, 3623}, {1100, 17335}, {1449, 17260}, {1724, 20018}, {1757, 31302}, {1918, 19998}, {2176, 54098}, {2209, 17127}, {2271, 33063}, {2308, 59296}, {2309, 3240}, {2664, 23524}, {3008, 17364}, {3161, 50129}, {3241, 15485}, {3286, 37307}, {3617, 16477}, {3621, 49460}, {3622, 4649}, {3664, 29628}, {3686, 17368}, {3707, 17248}, {3731, 29584}, {3758, 4699}, {3791, 27538}, {3875, 25269}, {3879, 17338}, {3946, 17333}, {3973, 16834}, {3995, 20168}, {4000, 20072}, {4188, 37507}, {4189, 37502}, {4360, 16885}, {4361, 4821}, {4384, 17120}, {4402, 36588}, {4416, 17236}, {4422, 17377}, {4473, 17314}, {4641, 17490}, {4643, 17383}, {4664, 15492}, {4667, 27147}, {4676, 49485}, {4678, 5263}, {4687, 16666}, {4690, 17371}, {4700, 17230}, {4715, 48629}, {4725, 17240}, {4734, 7262}, {4740, 17351}, {4741, 16706}, {4759, 49469}, {4856, 17389}, {4909, 29622}, {4969, 17233}, {4974, 24349}, {5021, 33062}, {5093, 21554}, {5120, 19308}, {5132, 17548}, {5222, 6646}, {5247, 20036}, {5296, 29586}, {5839, 17280}, {6417, 21992}, {6418, 21909}, {6428, 21991}, {6542, 26685}, {6666, 17391}, {6687, 17241}, {6998, 53091}, {7155, 25277}, {7380, 59399}, {7385, 14912}, {7390, 33748}, {7804, 48869}, {7839, 17691}, {8053, 61157}, {9534, 51674}, {9605, 22267}, {9777, 37103}, {9780, 33682}, {11003, 44120}, {13634, 55705}, {13635, 44456}, {14942, 38293}, {15717, 37474}, {15828, 49543}, {16061, 43136}, {16475, 60731}, {16484, 50283}, {16503, 29585}, {16667, 16826}, {16668, 17394}, {16779, 17316}, {16786, 29583}, {16793, 29832}, {16814, 17393}, {16833, 17116}, {17023, 17331}, {17033, 21219}, {17117, 50127}, {17229, 50077}, {17247, 50114}, {17252, 29598}, {17272, 29630}, {17279, 17373}, {17298, 29607}, {17302, 54280}, {17315, 50131}, {17328, 17384}, {17329, 17382}, {17332, 17380}, {17341, 17374}, {17342, 17372}, {17344, 17370}, {17347, 17366}, {17354, 17362}, {17355, 29617}, {17356, 17361}, {17357, 17360}, {17386, 41310}, {17396, 50093}, {17495, 41834}, {17745, 27304}, {18230, 29569}, {19278, 50598}, {19877, 43997}, {20049, 49680}, {20179, 61330}, {20669, 27136}, {21940, 38292}, {23432, 24528}, {24766, 53676}, {25278, 52138}, {26039, 43985}, {26083, 50308}, {27065, 58820}, {27448, 39914}, {28604, 28635}, {29587, 32099}, {30948, 32919}, {31145, 32941}, {31191, 48633}, {32025, 61344}, {36598, 36634}, {37128, 39975}, {39952, 39956}, {40065, 54372}, {41140, 48627}, {46933, 50302}, {48628, 50115}, {48630, 50082}, {48850, 48866}, {49770, 59579}, {56145, 57400}

X(63050) = anticomplement of X(17232)
X(63050) = X(i)-Dao conjugate of X(j) for these {i, j}: {17232, 17232}, {21868, 4135}
X(63050) = pole of line {6, 16409} with respect to the Stammler hyperbola
X(63050) = pole of line {523, 48063} with respect to the Steiner circumellipse
X(63050) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(17375)}}, {{A, B, C, X(83), X(37677)}}, {{A, B, C, X(86), X(56353)}}, {{A, B, C, X(2238), X(39975)}}, {{A, B, C, X(4383), X(39952)}}, {{A, B, C, X(5395), X(20090)}}, {{A, B, C, X(17178), X(56145)}}, {{A, B, C, X(17343), X(60149)}}, {{A, B, C, X(27644), X(55933)}}, {{A, B, C, X(30941), X(36606)}}, {{A, B, C, X(37128), X(37679)}}, {{A, B, C, X(37673), X(39956)}}, {{A, B, C, X(37674), X(39971)}}, {{A, B, C, X(37686), X(38262)}}
X(63050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17121, 4393}, {9, 4393, 4704}, {44, 3759, 192}, {44, 4852, 17336}, {239, 17350, 1278}, {239, 1743, 17350}, {894, 16816, 4772}, {1100, 17335, 27268}, {1449, 17260, 29570}, {1654, 3618, 2}, {1724, 20018, 56989}, {3686, 17368, 29593}, {3758, 17348, 4699}, {3759, 17336, 4852}, {3879, 17338, 29572}, {3973, 16834, 17261}, {4416, 17367, 17236}, {4700, 17353, 17363}, {4856, 25101, 17389}, {6666, 17391, 29599}, {15485, 49685, 3241}, {16671, 17348, 3758}, {16814, 50124, 17393}, {17279, 62231, 17373}, {17353, 17363, 17230}, {36598, 36634, 36646}


X(63051) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17352), X(3), X(6))

Barycentrics    3*a^2+b^2-b*c+c^2-a*(b+c) : :

X(63051) lies on these lines: {1, 17338}, {2, 6}, {8, 4974}, {9, 17247}, {37, 49715}, {44, 6646}, {45, 17380}, {75, 29590}, {83, 60149}, {142, 17120}, {145, 3932}, {182, 7385}, {190, 17366}, {192, 3161}, {210, 29838}, {238, 4085}, {239, 2321}, {319, 17357}, {320, 16669}, {344, 4393}, {519, 17268}, {631, 48908}, {894, 3008}, {995, 27348}, {1086, 31300}, {1100, 6687}, {1125, 60731}, {1278, 54389}, {1449, 17244}, {1724, 4201}, {1743, 3662}, {1778, 21997}, {2183, 27678}, {2284, 26964}, {2322, 52289}, {2345, 16816}, {2999, 59779}, {3216, 10583}, {3616, 3842}, {3622, 5686}, {3623, 10005}, {3661, 4034}, {3685, 4780}, {3686, 17292}, {3707, 17252}, {3717, 4989}, {3731, 17396}, {3758, 17278}, {3759, 6542}, {3770, 29484}, {3834, 16671}, {3836, 16477}, {3875, 17339}, {3879, 17266}, {3912, 4856}, {3943, 59774}, {3946, 17261}, {3973, 17304}, {3986, 17023}, {4000, 4440}, {4054, 26723}, {4098, 17319}, {4193, 25459}, {4357, 29630}, {4360, 4422}, {4361, 17354}, {4384, 17368}, {4388, 29850}, {4389, 16885}, {4402, 4740}, {4416, 17291}, {4435, 27074}, {4545, 29615}, {4643, 17370}, {4644, 25357}, {4645, 16468}, {4649, 31289}, {4657, 17335}, {4676, 62392}, {4687, 29586}, {4698, 27495}, {4699, 5749}, {4763, 24118}, {4851, 17341}, {4852, 17264}, {4859, 50128}, {4898, 16834}, {4969, 17295}, {5021, 33825}, {5205, 61647}, {5211, 33114}, {5247, 28256}, {5257, 29614}, {5395, 60092}, {5435, 41777}, {5564, 17359}, {5750, 16815}, {5839, 17230}, {6625, 60075}, {6666, 16826}, {6998, 38110}, {7277, 40480}, {7290, 49704}, {7308, 29841}, {7379, 14561}, {8692, 49746}, {10436, 29628}, {11269, 26139}, {13635, 21850}, {13742, 20018}, {15485, 50287}, {15492, 17258}, {15828, 50090}, {16469, 50289}, {16491, 50286}, {16552, 51860}, {16666, 17317}, {16667, 17391}, {16670, 17282}, {16814, 17320}, {16830, 38049}, {16833, 48628}, {17020, 56520}, {17053, 24625}, {17086, 37787}, {17116, 50115}, {17117, 17355}, {17123, 29837}, {17126, 26073}, {17160, 17340}, {17231, 62231}, {17233, 20016}, {17236, 54280}, {17243, 29588}, {17248, 29598}, {17256, 17384}, {17257, 17383}, {17267, 17377}, {17270, 29613}, {17275, 17371}, {17284, 17363}, {17285, 17362}, {17286, 29617}, {17287, 29596}, {17289, 17348}, {17290, 17347}, {17293, 51353}, {17296, 29629}, {17299, 17342}, {17301, 17336}, {17305, 17332}, {17306, 17331}, {17312, 62398}, {17315, 41310}, {17324, 50093}, {17351, 37756}, {17365, 27191}, {17373, 29579}, {17386, 50131}, {17390, 29589}, {17393, 41313}, {17397, 62648}, {17490, 26065}, {17522, 36741}, {17554, 19783}, {17695, 18755}, {17728, 24738}, {17777, 33128}, {18164, 29439}, {18230, 26626}, {18583, 21554}, {18841, 56210}, {19766, 56990}, {20077, 33833}, {21143, 27013}, {24757, 29840}, {25269, 50101}, {26791, 33133}, {26799, 27011}, {26801, 27261}, {27147, 31183}, {29833, 35595}, {31638, 40754}, {33129, 41241}, {33165, 50015}, {33309, 48847}, {34893, 58371}, {36794, 54372}, {37107, 43650}, {37800, 60856}, {40133, 41774}, {40940, 62297}, {41138, 50112}, {43533, 60647}, {48627, 50127}, {50088, 53664}

X(63051) = anticomplement of X(17283)
X(63051) = pole of line {523, 48032} with respect to the Steiner circumellipse
X(63051) = pole of line {523, 53580} with respect to the Steiner inellipse
X(63051) = pole of line {812, 57066} with respect to the dual conic of incircle
X(63051) = pole of line {1635, 57066} with respect to the dual conic of Suppa-Cucoanes circle
X(63051) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17232)}}, {{A, B, C, X(83), X(17300)}}, {{A, B, C, X(141), X(60149)}}, {{A, B, C, X(1654), X(60075)}}, {{A, B, C, X(3619), X(56210)}}, {{A, B, C, X(3620), X(60092)}}, {{A, B, C, X(3945), X(60647)}}, {{A, B, C, X(4869), X(5395)}}, {{A, B, C, X(6625), X(17234)}}, {{A, B, C, X(17238), X(32022)}}, {{A, B, C, X(17379), X(18841)}}, {{A, B, C, X(33172), X(54119)}}, {{A, B, C, X(37653), X(57721)}}, {{A, B, C, X(53665), X(60236)}}
X(63051) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17367, 17302}, {44, 16706, 6646}, {192, 26685, 4473}, {239, 17353, 17280}, {319, 17357, 29587}, {1100, 17263, 29569}, {1100, 6687, 17263}, {1743, 3662, 20072}, {3758, 17278, 26806}, {3759, 17279, 6542}, {3973, 17304, 17333}, {4000, 17350, 4440}, {4384, 17368, 28604}, {4416, 31191, 17291}, {4974, 33159, 8}, {5222, 26685, 192}, {15492, 17382, 17258}, {16669, 17356, 320}, {16670, 17282, 17364}, {17120, 29607, 142}, {17275, 17371, 29591}, {18230, 26626, 27268}, {25101, 50114, 17319}


X(63052) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17378), X(3), X(6))

Barycentrics    5*a^2-b^2+b*c-c^2+a*(b+c) : :

X(63052) lies on these lines: {1, 17333}, {2, 6}, {44, 29569}, {75, 4795}, {89, 30577}, {144, 42871}, {145, 5695}, {190, 29588}, {192, 537}, {194, 51678}, {239, 4667}, {320, 16666}, {376, 48908}, {519, 894}, {527, 29584}, {545, 4360}, {551, 4416}, {576, 7385}, {648, 54372}, {742, 31314}, {752, 4649}, {903, 17365}, {1100, 4715}, {1266, 4982}, {1449, 17274}, {1743, 17391}, {2325, 29619}, {2996, 54623}, {3017, 56291}, {3623, 20073}, {3635, 4480}, {3662, 16667}, {3664, 17121}, {3679, 17363}, {3707, 29578}, {3729, 51093}, {3751, 50286}, {3758, 6542}, {3759, 26806}, {3879, 17120}, {4363, 20016}, {4370, 17390}, {4389, 62212}, {4393, 4440}, {4422, 29589}, {4430, 9020}, {4461, 20049}, {4473, 17316}, {4643, 29586}, {4645, 50287}, {4670, 50082}, {4675, 29590}, {4677, 48628}, {4700, 16815}, {4740, 35578}, {4741, 26626}, {4764, 4910}, {4798, 60710}, {4851, 17342}, {4856, 17117}, {4908, 17315}, {5749, 17373}, {6172, 51058}, {6625, 60079}, {7762, 17677}, {9268, 43986}, {10022, 17362}, {11109, 56021}, {11113, 56020}, {13635, 50979}, {16590, 28639}, {16668, 16706}, {16669, 17317}, {16670, 17244}, {16671, 17263}, {16696, 39974}, {16834, 50128}, {16884, 17347}, {17018, 42058}, {17086, 36589}, {17116, 50099}, {17243, 41138}, {17248, 25055}, {17256, 29592}, {17257, 17488}, {17264, 50125}, {17289, 50081}, {17312, 41141}, {17319, 50090}, {17351, 50123}, {17360, 29591}, {17374, 29587}, {17377, 50087}, {17383, 21296}, {17389, 50127}, {17494, 53535}, {18046, 39996}, {20018, 51668}, {20077, 37038}, {23345, 26853}, {26752, 26975}, {29570, 54280}, {29580, 50093}, {29583, 61330}, {29620, 60986}, {37150, 56018}, {37756, 50124}, {41772, 58609}, {42026, 52553}, {43985, 53620}, {47356, 49496}, {48849, 51001}, {48853, 51197}, {48854, 50952}, {48858, 48870}, {49543, 50119}, {49716, 51680}, {49721, 50121}, {49722, 50120}, {50283, 50301}, {50305, 51196}, {51099, 51190}, {54624, 56210}, {54795, 60083}

X(63052) = reflection of X(i) in X(j) for these {i,j}: {17320, 1100}, {6646, 17320}
X(63052) = anticomplement of X(17271)
X(63052) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60078, 2}
X(63052) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60078, 6327}
X(63052) = pole of line {523, 1635} with respect to the Steiner circumellipse
X(63052) = pole of line {523, 45675} with respect to the Steiner inellipse
X(63052) = pole of line {4427, 61186} with respect to the Yff parabola
X(63052) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(50074)}}, {{A, B, C, X(193), X(54623)}}, {{A, B, C, X(1654), X(60079)}}, {{A, B, C, X(6625), X(17378)}}, {{A, B, C, X(17330), X(60149)}}, {{A, B, C, X(17346), X(54795)}}, {{A, B, C, X(17379), X(54624)}}, {{A, B, C, X(50133), X(54770)}}
X(63052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 50131, 40891}, {1100, 4715, 17320}, {1449, 17364, 17302}, {3758, 50132, 17281}, {3879, 50115, 17310}, {4360, 7277, 31300}, {4393, 4644, 4440}, {4715, 17320, 6646}, {4795, 50131, 75}, {17120, 17310, 50115}, {17281, 50132, 6542}, {17310, 50115, 17280}, {17365, 50112, 903}, {50090, 51071, 17319}


X(63053) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17381), X(3), X(6))

Barycentrics    3*a^2+b^2+b*c+c^2+a*(b+c) : :

X(63053) lies on these lines: {1, 3790}, {2, 6}, {7, 17383}, {8, 49489}, {9, 17397}, {10, 17121}, {37, 4473}, {44, 17322}, {75, 36409}, {83, 6625}, {142, 29630}, {182, 7379}, {190, 17045}, {192, 5749}, {239, 4967}, {319, 16666}, {320, 17384}, {344, 29570}, {527, 17324}, {551, 25101}, {572, 6999}, {594, 20016}, {631, 48875}, {894, 3663}, {984, 3616}, {1014, 21516}, {1051, 21085}, {1100, 4889}, {1125, 1757}, {1203, 19865}, {1449, 3661}, {1743, 17248}, {2321, 29584}, {2345, 4393}, {3247, 17339}, {3662, 4888}, {3664, 17291}, {3686, 29610}, {3723, 17264}, {3729, 17396}, {3739, 29590}, {3758, 4657}, {3759, 17303}, {3770, 18046}, {3879, 17292}, {3912, 4909}, {3946, 17116}, {4195, 19766}, {4201, 7787}, {4352, 16898}, {4357, 17120}, {4360, 17369}, {4363, 17380}, {4388, 29647}, {4389, 31300}, {4416, 17326}, {4470, 4772}, {4643, 17400}, {4644, 17236}, {4645, 29633}, {4649, 50315}, {4667, 17288}, {4670, 16706}, {4672, 9791}, {4675, 17370}, {4687, 29592}, {4699, 5222}, {4704, 54389}, {4708, 16671}, {4740, 7229}, {4751, 4798}, {4758, 29607}, {4851, 17371}, {4902, 17304}, {4969, 32025}, {5050, 7380}, {5220, 11038}, {5257, 29609}, {5263, 20180}, {5395, 60077}, {5564, 40891}, {5723, 55096}, {5839, 29593}, {6666, 29578}, {6998, 18583}, {7227, 17160}, {7277, 17273}, {7321, 17382}, {7385, 14561}, {9277, 59628}, {9780, 50308}, {10436, 17367}, {10469, 41232}, {13634, 21850}, {13728, 20077}, {15485, 48822}, {16477, 50298}, {16491, 50310}, {16503, 20533}, {16556, 29684}, {16566, 56532}, {16667, 17308}, {16668, 17239}, {16669, 17256}, {16670, 17331}, {16777, 17354}, {16823, 38049}, {16826, 17353}, {16831, 17338}, {16834, 48628}, {16884, 17233}, {17084, 56547}, {17117, 50114}, {17243, 61302}, {17247, 50127}, {17258, 41311}, {17261, 50115}, {17263, 28639}, {17266, 49754}, {17267, 29589}, {17268, 29574}, {17270, 29608}, {17276, 17399}, {17278, 41847}, {17279, 17394}, {17281, 17393}, {17284, 17391}, {17285, 17390}, {17286, 17389}, {17287, 29604}, {17293, 17377}, {17296, 29613}, {17305, 17365}, {17306, 17364}, {17312, 29596}, {17315, 17359}, {17316, 17358}, {17317, 17357}, {17319, 17355}, {17320, 17351}, {17321, 17350}, {17325, 17347}, {17336, 41312}, {17348, 28653}, {17362, 51353}, {17373, 29611}, {17677, 53489}, {17689, 33863}, {17726, 60446}, {17907, 54372}, {18164, 29492}, {18841, 60236}, {19554, 41239}, {19783, 56986}, {20018, 37037}, {21035, 29822}, {21304, 23472}, {21554, 38110}, {22279, 25048}, {24217, 25496}, {24530, 39798}, {25303, 52662}, {26039, 42696}, {26051, 43531}, {26076, 26764}, {26139, 32944}, {26222, 37716}, {27058, 27290}, {27078, 27166}, {27547, 55432}, {28256, 37607}, {29617, 59772}, {29823, 58371}, {29833, 37759}, {31314, 49509}, {31333, 31334}, {32772, 33136}, {33159, 50293}, {33761, 41820}, {36484, 48908}, {38314, 50313}, {48640, 50076}, {50121, 53664}, {50318, 56018}, {57826, 60647}, {59408, 60731}

X(63053) = anticomplement of X(17307)
X(63053) = pole of line {523, 47932} with respect to the Steiner circumellipse
X(63053) = pole of line {523, 13246} with respect to the Steiner inellipse
X(63053) = pole of line {1125, 4645} with respect to the dual conic of Yff parabola
X(63053) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17238)}}, {{A, B, C, X(81), X(39977)}}, {{A, B, C, X(83), X(1654)}}, {{A, B, C, X(86), X(39722)}}, {{A, B, C, X(141), X(6625)}}, {{A, B, C, X(391), X(60647)}}, {{A, B, C, X(3619), X(60236)}}, {{A, B, C, X(3620), X(60077)}}, {{A, B, C, X(5224), X(60149)}}, {{A, B, C, X(5232), X(5395)}}, {{A, B, C, X(8044), X(17271)}}, {{A, B, C, X(17232), X(58012)}}, {{A, B, C, X(17300), X(43531)}}, {{A, B, C, X(17349), X(18841)}}, {{A, B, C, X(26044), X(57721)}}, {{A, B, C, X(32911), X(40776)}}, {{A, B, C, X(37653), X(60082)}}, {{A, B, C, X(39798), X(40750)}}
X(63053) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17368, 17280}, {2, 6, 1654}, {86, 3589, 2}, {239, 5750, 28604}, {319, 17385, 29591}, {894, 17023, 17302}, {894, 17302, 4440}, {1100, 17289, 6542}, {1743, 29603, 17248}, {3616, 26685, 27268}, {4357, 17120, 20072}, {4670, 16706, 26806}, {4851, 17371, 29587}, {5749, 26626, 192}, {16668, 17239, 62231}, {16669, 25498, 17256}, {16884, 17233, 29588}, {17120, 29614, 4357}, {17279, 17394, 29569}, {17293, 62212, 17377}


X(63054) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17392), X(3), X(6))

Barycentrics    5*a^2-(b-c)^2+2*a*(b+c) : :
X(63054) = -2*X[8]+5*X[4470], X[145]+2*X[4363], -8*X[1125]+5*X[4748], -5*X[1698]+8*X[4758], 2*X[3244]+X[4659], -5*X[3616]+2*X[4643], -5*X[3617]+8*X[4472], -X[3621]+4*X[4665], -7*X[3622]+4*X[4364], 5*X[3623]+X[4454], -2*X[4690]+5*X[4798], -8*X[4708]+11*X[5550] and many others

X(63054) lies on these lines: {1, 527}, {2, 6}, {4, 4658}, {7, 1100}, {8, 4470}, {11, 14969}, {30, 3332}, {37, 6172}, {44, 5308}, {45, 29624}, {58, 50739}, {75, 50129}, {77, 60932}, {142, 16667}, {144, 7277}, {145, 4363}, {190, 29585}, {238, 38025}, {269, 553}, {278, 1419}, {320, 17399}, {329, 37595}, {344, 17120}, {346, 17390}, {354, 34371}, {376, 991}, {377, 50186}, {387, 17528}, {518, 48856}, {519, 4349}, {528, 4307}, {534, 2263}, {536, 3241}, {538, 48817}, {544, 1056}, {551, 7290}, {573, 18164}, {651, 61027}, {671, 54770}, {674, 1002}, {752, 48830}, {754, 48813}, {894, 17314}, {941, 16696}, {1014, 36744}, {1086, 17014}, {1125, 4748}, {1279, 4715}, {1323, 60982}, {1418, 17080}, {1442, 60951}, {1449, 3664}, {1462, 41801}, {1698, 4758}, {1743, 60986}, {1834, 50736}, {2094, 3666}, {2214, 56927}, {2293, 10385}, {2321, 4916}, {2325, 29602}, {2334, 34720}, {2345, 3879}, {2550, 4649}, {3003, 26636}, {3008, 38093}, {3017, 50741}, {3019, 15682}, {3244, 4659}, {3247, 4909}, {3304, 24328}, {3475, 9028}, {3524, 13329}, {3545, 45942}, {3616, 4643}, {3617, 4472}, {3621, 4665}, {3622, 4364}, {3623, 4454}, {3661, 26039}, {3663, 60963}, {3672, 16884}, {3729, 50110}, {3751, 50291}, {3758, 17264}, {3772, 41825}, {3873, 34377}, {3875, 7222}, {3946, 4888}, {4021, 60933}, {4034, 28635}, {4038, 26105}, {4277, 16726}, {4328, 34488}, {4340, 11112}, {4346, 17395}, {4360, 49722}, {4361, 49733}, {4371, 25590}, {4393, 42697}, {4422, 29621}, {4428, 21002}, {4452, 7228}, {4460, 4686}, {4461, 17388}, {4488, 4681}, {4653, 47039}, {4657, 21296}, {4664, 49514}, {4675, 5222}, {4688, 50131}, {4690, 4798}, {4700, 16832}, {4708, 5550}, {4726, 4910}, {4741, 29586}, {4796, 20057}, {4851, 5749}, {4852, 31995}, {5158, 25932}, {5257, 28641}, {5296, 28639}, {5434, 56821}, {5485, 60078}, {5706, 37427}, {5711, 34619}, {5723, 30275}, {5839, 10436}, {5845, 11038}, {5847, 48851}, {6180, 60967}, {6510, 60987}, {6603, 60997}, {6604, 40892}, {6855, 45933}, {7190, 60952}, {7229, 17299}, {7232, 32093}, {7390, 11477}, {7407, 15069}, {7758, 37176}, {7967, 29069}, {8814, 57704}, {9741, 47040}, {9965, 20182}, {10022, 28337}, {10304, 50677}, {11200, 38454}, {11349, 37503}, {13634, 50967}, {13725, 50157}, {14023, 56737}, {14033, 48838}, {14482, 55162}, {15726, 53014}, {15933, 44664}, {16469, 25055}, {16475, 38053}, {16487, 51105}, {16668, 17278}, {16669, 18230}, {16670, 29571}, {16673, 60942}, {16675, 61006}, {16826, 54280}, {16834, 50116}, {16970, 29597}, {16972, 51190}, {17023, 26104}, {17126, 19624}, {17133, 51093}, {17224, 48805}, {17246, 20059}, {17254, 17321}, {17257, 17394}, {17276, 60971}, {17281, 50125}, {17303, 32099}, {17310, 49776}, {17317, 26685}, {17323, 45789}, {17325, 61302}, {17333, 29580}, {17354, 29583}, {17369, 29616}, {17374, 29611}, {17387, 29579}, {17483, 25417}, {18185, 37400}, {18643, 38292}, {20019, 49734}, {20072, 29570}, {20077, 51681}, {24441, 28333}, {24599, 34824}, {24691, 59297}, {24712, 42082}, {26003, 62213}, {26040, 61358}, {28538, 48849}, {28542, 50281}, {28619, 57007}, {29573, 50115}, {29574, 50127}, {29584, 50101}, {31156, 50184}, {32087, 50085}, {33682, 50311}, {34056, 60998}, {34231, 42048}, {34607, 42042}, {35227, 51103}, {37038, 50235}, {37153, 50228}, {37448, 40138}, {37604, 59572}, {37756, 39704}, {38073, 53599}, {39587, 50835}, {39974, 42290}, {41847, 62231}, {46845, 60957}, {48802, 50302}, {48822, 50295}, {48855, 48870}, {48857, 48868}, {49721, 50113}, {49727, 50120}, {50055, 50234}, {50079, 50132}, {50080, 50307}, {50160, 50407}, {50179, 50430}, {50232, 50428}, {50259, 51668}, {50260, 51665}, {50283, 50299}, {50310, 51192}, {53535, 62635}, {54586, 54788}, {54622, 57826}, {54624, 60276}, {54648, 60156}, {54756, 60139}, {54760, 54928}, {54786, 55949}, {54831, 60094}, {60975, 62705}

X(63054) = midpoint of X(i) and X(j) for these {i,j}: {3241, 35578}
X(63054) = reflection of X(i) in X(j) for these {i,j}: {35578, 4795}, {48802, 50302}, {50295, 48822}
X(63054) = anticomplement of X(17251)
X(63054) = pole of line {4897, 28292} with respect to the incircle
X(63054) = pole of line {11997, 17603} with respect to the Feuerbach hyperbola
X(63054) = pole of line {523, 27486} with respect to the Steiner circumellipse
X(63054) = pole of line {523, 46919} with respect to the Steiner inellipse
X(63054) = pole of line {1125, 5698} with respect to the dual conic of Yff parabola
X(63054) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17346)}}, {{A, B, C, X(69), X(60083)}}, {{A, B, C, X(278), X(25507)}}, {{A, B, C, X(333), X(34919)}}, {{A, B, C, X(391), X(54622)}}, {{A, B, C, X(524), X(54770)}}, {{A, B, C, X(598), X(37654)}}, {{A, B, C, X(1812), X(39948)}}, {{A, B, C, X(1992), X(60078)}}, {{A, B, C, X(3578), X(54756)}}, {{A, B, C, X(5224), X(8814)}}, {{A, B, C, X(5235), X(39721)}}, {{A, B, C, X(5485), X(17271)}}, {{A, B, C, X(5739), X(54648)}}, {{A, B, C, X(6625), X(50133)}}, {{A, B, C, X(16704), X(48574)}}, {{A, B, C, X(17297), X(54831)}}, {{A, B, C, X(17392), X(58012)}}, {{A, B, C, X(31144), X(54786)}}, {{A, B, C, X(32022), X(49731)}}, {{A, B, C, X(37633), X(42290)}}, {{A, B, C, X(37658), X(39974)}}, {{A, B, C, X(46922), X(54624)}}
X(63054) = barycentric product X(i)*X(j) for these (i, j): {190, 48574}
X(63054) = barycentric quotient X(i)/X(j) for these (i, j): {48574, 514}
X(63054) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 4644, 4419}, {1, 4667, 4644}, {1, 50303, 47357}, {6, 3945, 4648}, {8, 4670, 4470}, {86, 193, 966}, {145, 4747, 4363}, {536, 4795, 35578}, {894, 17389, 50107}, {1086, 62212, 17014}, {1449, 3664, 4000}, {1449, 6173, 50114}, {3241, 35578, 536}, {3241, 4344, 50130}, {3623, 4454, 17318}, {3664, 50114, 6173}, {3672, 60984, 49747}, {3758, 17316, 54389}, {4649, 50301, 50282}, {4675, 16666, 5222}, {4690, 4798, 9780}, {16884, 17365, 3672}, {17120, 17391, 344}, {17365, 49747, 60984}, {17389, 50107, 17314}, {29584, 50128, 50101}, {49478, 50130, 3241}


X(63055) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(17398), X(3), X(6))

Barycentrics    3*a^2+2*a*(b+c)+(b+c)^2 : :

X(63055) lies on these lines: {1, 2321}, {2, 6}, {4, 572}, {7, 4657}, {8, 1100}, {9, 1125}, {10, 1449}, {19, 28629}, {21, 36743}, {32, 56737}, {37, 2275}, {39, 37176}, {44, 5296}, {45, 46934}, {48, 41239}, {56, 38871}, {71, 17754}, {75, 4470}, {83, 58012}, {142, 610}, {144, 4364}, {145, 594}, {192, 29586}, {198, 25524}, {281, 1870}, {284, 443}, {320, 17400}, {329, 41850}, {344, 16826}, {346, 3622}, {348, 41246}, {374, 3848}, {377, 2278}, {387, 2049}, {388, 604}, {393, 11109}, {404, 36744}, {405, 5120}, {442, 5802}, {452, 1901}, {474, 4254}, {475, 1172}, {497, 2268}, {519, 59772}, {536, 7229}, {551, 3247}, {573, 631}, {577, 25876}, {579, 6857}, {584, 37462}, {661, 47845}, {894, 4419}, {941, 4261}, {1001, 41325}, {1010, 19766}, {1030, 4188}, {1043, 19783}, {1058, 55100}, {1212, 27382}, {1265, 16519}, {1285, 33628}, {1386, 39581}, {1400, 7288}, {1404, 10588}, {1412, 60076}, {1482, 59680}, {1503, 7407}, {1573, 46189}, {1575, 59297}, {1588, 2047}, {1621, 54285}, {1698, 3686}, {1724, 57007}, {1743, 3624}, {1766, 5603}, {1778, 5021}, {1781, 56532}, {1919, 44444}, {2178, 5253}, {2182, 28628}, {2191, 2297}, {2245, 6910}, {2262, 3812}, {2267, 25496}, {2269, 5218}, {2270, 5437}, {2271, 56766}, {2277, 16604}, {2280, 26040}, {2285, 3485}, {2294, 3061}, {2295, 21769}, {2300, 17750}, {2305, 19278}, {2317, 26063}, {2322, 40138}, {2323, 10198}, {2325, 16673}, {2475, 4287}, {2478, 3615}, {2549, 48817}, {2550, 4085}, {3053, 37339}, {3063, 48246}, {3087, 17555}, {3090, 5816}, {3094, 56733}, {3197, 58459}, {3216, 4270}, {3241, 17299}, {3244, 4007}, {3285, 56782}, {3287, 48209}, {3475, 5227}, {3523, 37499}, {3524, 37508}, {3545, 32431}, {3553, 19861}, {3554, 19860}, {3576, 10445}, {3617, 17362}, {3623, 17388}, {3633, 4060}, {3635, 4058}, {3636, 3950}, {3662, 26104}, {3663, 7222}, {3664, 17306}, {3665, 28079}, {3672, 4363}, {3679, 4545}, {3694, 25068}, {3707, 34595}, {3723, 17281}, {3731, 25055}, {3739, 4798}, {3758, 17257}, {3759, 28653}, {3770, 18135}, {3833, 61695}, {3836, 16786}, {3877, 21853}, {3879, 17308}, {3946, 25590}, {3958, 58386}, {3963, 41316}, {3965, 27383}, {3974, 5311}, {4000, 10436}, {4012, 28125}, {4021, 4659}, {4026, 4307}, {4189, 5124}, {4193, 50036}, {4195, 7738}, {4251, 17582}, {4258, 17580}, {4264, 37522}, {4265, 56776}, {4266, 17567}, {4271, 6921}, {4277, 46838}, {4286, 56781}, {4340, 13728}, {4346, 7228}, {4357, 4644}, {4361, 4472}, {4370, 16677}, {4371, 4967}, {4373, 49727}, {4393, 28604}, {4402, 4688}, {4416, 4748}, {4435, 26078}, {4452, 17118}, {4454, 17246}, {4461, 7227}, {4643, 25498}, {4667, 17272}, {4675, 17384}, {4687, 26685}, {4698, 18230}, {4704, 36494}, {4747, 17325}, {4780, 50314}, {4795, 17345}, {4851, 17385}, {4852, 32087}, {4877, 17561}, {4888, 50092}, {4909, 29594}, {4916, 17294}, {4969, 46933}, {5019, 13725}, {5022, 17558}, {5030, 50739}, {5035, 37314}, {5036, 37291}, {5043, 15674}, {5053, 5084}, {5096, 56777}, {5109, 26035}, {5114, 56903}, {5141, 5949}, {5153, 19767}, {5277, 16946}, {5280, 19836}, {5283, 13742}, {5286, 13740}, {5299, 19784}, {5308, 17279}, {5324, 16352}, {5334, 37144}, {5335, 37145}, {5436, 8804}, {5480, 7390}, {5564, 50129}, {5698, 50290}, {5745, 15479}, {5776, 6846}, {5778, 6887}, {5782, 14986}, {5783, 19843}, {5798, 6987}, {5838, 17356}, {5936, 28634}, {6337, 41849}, {6353, 44103}, {6539, 20046}, {6554, 40942}, {6685, 59572}, {6776, 7380}, {6856, 24937}, {6904, 37504}, {6998, 14853}, {7277, 17253}, {7321, 17399}, {7379, 25406}, {7397, 24220}, {7490, 17171}, {7498, 54407}, {7737, 48813}, {7739, 24275}, {8553, 37293}, {8557, 24541}, {9534, 56902}, {9605, 17698}, {9780, 16666}, {9843, 20262}, {10469, 30116}, {10578, 44798}, {10589, 29845}, {11038, 50995}, {11354, 15048}, {11359, 18907}, {15484, 16052}, {15808, 16676}, {15828, 51109}, {16367, 63158}, {16454, 54423}, {16491, 50305}, {16502, 34261}, {16517, 16831}, {16521, 29595}, {16522, 16816}, {16552, 17552}, {16668, 19877}, {16670, 19862}, {16671, 52706}, {16672, 17340}, {16675, 62706}, {16706, 41847}, {16779, 29633}, {16823, 16972}, {16830, 16973}, {16850, 37507}, {16852, 37492}, {16885, 61330}, {16919, 59631}, {17011, 19822}, {17073, 60987}, {17116, 17396}, {17120, 17248}, {17121, 29576}, {17233, 29585}, {17237, 21296}, {17239, 32099}, {17240, 17289}, {17242, 29580}, {17243, 29624}, {17255, 20059}, {17260, 29612}, {17266, 49756}, {17267, 29621}, {17276, 35578}, {17280, 29570}, {17285, 29583}, {17286, 29574}, {17287, 29608}, {17292, 17391}, {17293, 17390}, {17296, 29604}, {17301, 31995}, {17302, 42697}, {17304, 50116}, {17312, 29613}, {17317, 17371}, {17319, 50107}, {17324, 50128}, {17326, 17364}, {17335, 30598}, {17338, 29578}, {17351, 41312}, {17357, 29627}, {17358, 29569}, {17363, 29610}, {17373, 29591}, {17383, 26806}, {17455, 26074}, {17475, 26076}, {17531, 37503}, {17572, 54409}, {17590, 56527}, {17756, 29822}, {17758, 18841}, {17759, 20170}, {17786, 25303}, {18140, 34283}, {18591, 27407}, {18755, 56768}, {18842, 55949}, {19277, 48847}, {19542, 44736}, {19812, 26132}, {19853, 20963}, {20195, 31191}, {20980, 48165}, {21076, 27714}, {21764, 26034}, {21871, 58679}, {21904, 26038}, {23942, 53427}, {24661, 40790}, {24738, 61693}, {25660, 28809}, {25687, 33042}, {26052, 44081}, {26258, 61650}, {27147, 29630}, {27268, 29592}, {27318, 56696}, {27487, 29590}, {28633, 50124}, {28635, 50095}, {29584, 48628}, {30117, 51280}, {30147, 54283}, {30435, 56734}, {30712, 48632}, {31183, 31312}, {32014, 32022}, {32777, 37869}, {32933, 41820}, {32941, 48830}, {33682, 50295}, {33863, 56769}, {34255, 37595}, {36740, 56774}, {36741, 56775}, {37060, 44094}, {37146, 42999}, {37147, 42998}, {37305, 46019}, {37538, 47511}, {38057, 39586}, {38295, 56319}, {39521, 48181}, {39587, 49524}, {39975, 39983}, {40214, 60155}, {40825, 56732}, {43136, 56736}, {45789, 62223}, {47357, 48822}, {48630, 50079}, {48802, 49497}, {48809, 49685}, {48849, 49681}, {48851, 49684}, {48854, 49529}, {48856, 49688}, {50113, 53664}, {50131, 53620}, {54624, 60078}

X(63055) = complement of X(5232)
X(63055) = anticomplement of X(17327)
X(63055) = trilinear pole of line {49293, 50515}
X(63055) = X(i)-Dao conjugate of X(j) for these {i, j}: {17327, 17327}
X(63055) = X(i)-complementary conjugate of X(j) for these {i, j}: {60077, 2887}
X(63055) = pole of line {23879, 44445} with respect to the anticomplementary circle
X(63055) = pole of line {2501, 23879} with respect to the polar circle
X(63055) = pole of line {2, 4252} with respect to the Kiepert hyperbola
X(63055) = pole of line {523, 4380} with respect to the Steiner circumellipse
X(63055) = pole of line {523, 2527} with respect to the Steiner inellipse
X(63055) = pole of line {4427, 30730} with respect to the Yff parabola
X(63055) = pole of line {513, 57066} with respect to the dual conic of incircle
X(63055) = pole of line {1125, 4349} with respect to the dual conic of Yff parabola
X(63055) = pole of line {47762, 57066} with respect to the dual conic of Suppa-Cucoanes circle
X(63055) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(56123)}}, {{A, B, C, X(4), X(5224)}}, {{A, B, C, X(37), X(4383)}}, {{A, B, C, X(69), X(43531)}}, {{A, B, C, X(81), X(39956)}}, {{A, B, C, X(83), X(966)}}, {{A, B, C, X(86), X(3296)}}, {{A, B, C, X(141), X(58012)}}, {{A, B, C, X(394), X(57704)}}, {{A, B, C, X(940), X(39798)}}, {{A, B, C, X(941), X(32911)}}, {{A, B, C, X(1211), X(8818)}}, {{A, B, C, X(1213), X(32022)}}, {{A, B, C, X(1412), X(5105)}}, {{A, B, C, X(1474), X(61409)}}, {{A, B, C, X(2165), X(37662)}}, {{A, B, C, X(2297), X(41610)}}, {{A, B, C, X(2321), X(14555)}}, {{A, B, C, X(3619), X(17758)}}, {{A, B, C, X(4648), X(32014)}}, {{A, B, C, X(5232), X(60077)}}, {{A, B, C, X(6625), X(17238)}}, {{A, B, C, X(14494), X(30761)}}, {{A, B, C, X(16704), X(49293)}}, {{A, B, C, X(17271), X(54624)}}, {{A, B, C, X(17277), X(18841)}}, {{A, B, C, X(17307), X(18840)}}, {{A, B, C, X(17314), X(56224)}}, {{A, B, C, X(18842), X(31144)}}, {{A, B, C, X(21356), X(55949)}}, {{A, B, C, X(25507), X(27475)}}, {{A, B, C, X(31090), X(60190)}}, {{A, B, C, X(37642), X(46952)}}, {{A, B, C, X(37650), X(43527)}}, {{A, B, C, X(37666), X(52224)}}, {{A, B, C, X(37679), X(39983)}}, {{A, B, C, X(37685), X(39975)}}, {{A, B, C, X(41809), X(60155)}}, {{A, B, C, X(50515), X(52897)}}
X(63055) = barycentric product X(i)*X(j) for these (i, j): {190, 49293}, {50515, 668}
X(63055) = barycentric quotient X(i)/X(j) for these (i, j): {49293, 514}, {50515, 513}
X(63055) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2345, 17314}, {1, 5750, 2345}, {2, 193, 5224}, {2, 391, 1213}, {2, 3945, 141}, {2, 4869, 3763}, {2, 6, 966}, {2, 86, 4648}, {6, 1213, 391}, {9, 62648, 3986}, {10, 1449, 5839}, {10, 4856, 4034}, {37, 5749, 54389}, {346, 3622, 16777}, {551, 17355, 3247}, {594, 16884, 145}, {594, 61302, 16884}, {894, 17397, 17321}, {1125, 3986, 62648}, {1449, 4034, 4856}, {1743, 3624, 5257}, {2345, 5750, 26039}, {3616, 5749, 37}, {4363, 17045, 3672}, {4657, 4670, 7}, {4851, 17385, 29611}, {7228, 17323, 4346}, {10436, 17023, 4000}, {16826, 17368, 344}, {17116, 17396, 50101}, {17118, 17395, 4452}, {17120, 29609, 17248}, {17279, 28639, 5308}, {17289, 17394, 17316}


X(63056) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(18139), X(3), X(6))

Barycentrics    a^3-b^3+2*a*b*c-c^3+2*a^2*(b+c) : :

X(63056) lies on these lines: {1, 6327}, {2, 6}, {4, 48907}, {7, 17147}, {31, 29830}, {37, 32859}, {75, 20017}, {77, 56559}, {89, 59759}, {145, 377}, {192, 17483}, {239, 27186}, {304, 56564}, {306, 3664}, {312, 17387}, {320, 28606}, {321, 4851}, {329, 31035}, {354, 33070}, {445, 9308}, {464, 9965}, {894, 32858}, {964, 49743}, {980, 22425}, {1014, 37312}, {1029, 60257}, {1100, 32774}, {1621, 20064}, {1757, 29854}, {1961, 33065}, {1962, 4655}, {1999, 31019}, {2003, 28776}, {2064, 4671}, {2308, 29642}, {2549, 50183}, {2550, 20011}, {2887, 29829}, {2979, 5208}, {3187, 3879}, {3210, 26842}, {3219, 17364}, {3241, 48837}, {3475, 20045}, {3616, 30562}, {3617, 37153}, {3622, 13725}, {3662, 17011}, {3666, 17376}, {3687, 26627}, {3720, 32946}, {3734, 50181}, {3745, 33122}, {3758, 33157}, {3759, 26724}, {3782, 17390}, {3836, 61358}, {3846, 9345}, {3873, 4259}, {3896, 5880}, {3912, 26223}, {3948, 26099}, {3957, 50289}, {3969, 4363}, {3970, 3995}, {3977, 62240}, {3980, 4062}, {3993, 33098}, {4000, 45222}, {4011, 61707}, {4038, 25760}, {4080, 60156}, {4197, 56018}, {4261, 18601}, {4340, 11115}, {4359, 4675}, {4360, 33146}, {4388, 29814}, {4393, 33150}, {4430, 54383}, {4644, 17776}, {4645, 17018}, {4649, 25957}, {4667, 5294}, {4697, 33156}, {4720, 48816}, {4772, 41821}, {4966, 24552}, {4980, 17299}, {5014, 49478}, {5256, 17298}, {5287, 26580}, {5311, 33064}, {5437, 62620}, {5800, 20020}, {6539, 58012}, {6542, 20432}, {7222, 50043}, {7232, 20182}, {7321, 50106}, {7737, 50269}, {7761, 50178}, {7848, 50173}, {8616, 42058}, {9347, 33126}, {10436, 56810}, {10446, 50697}, {10449, 26131}, {10453, 33112}, {11038, 19993}, {14929, 50167}, {16454, 41014}, {16468, 29851}, {16865, 20077}, {17017, 49676}, {17019, 17391}, {17075, 47057}, {17126, 29839}, {17140, 33088}, {17150, 50284}, {17237, 37869}, {17244, 27065}, {17310, 49782}, {17312, 27064}, {17315, 42044}, {17317, 33066}, {17325, 41820}, {17347, 33761}, {17365, 32933}, {17374, 31993}, {17377, 20046}, {17386, 42029}, {17484, 41839}, {17588, 54429}, {17592, 33067}, {17679, 48847}, {18607, 40905}, {19767, 56782}, {19782, 46483}, {19785, 20553}, {20060, 37191}, {20101, 37175}, {20290, 50295}, {20292, 49470}, {20349, 33824}, {21283, 33109}, {21285, 41233}, {23812, 49560}, {24199, 50306}, {24248, 27804}, {24325, 32852}, {24349, 33093}, {24943, 33682}, {25527, 29833}, {25650, 56781}, {25958, 29837}, {26034, 29822}, {26098, 29824}, {26102, 32843}, {26132, 31029}, {27377, 57531}, {28599, 36479}, {28653, 62586}, {28951, 45206}, {29573, 56082}, {29621, 37169}, {29643, 32913}, {29653, 32912}, {29831, 33124}, {29846, 37604}, {30614, 51099}, {31145, 50428}, {32771, 32846}, {32772, 33087}, {32854, 49479}, {32915, 33097}, {32919, 33111}, {32928, 33103}, {32929, 50307}, {32940, 33092}, {32945, 50301}, {32948, 42042}, {32950, 37593}, {33072, 49490}, {33080, 43223}, {33081, 50302}, {33086, 59297}, {33094, 49471}, {33104, 42057}, {33116, 62230}, {33145, 50281}, {33151, 34064}, {33155, 58820}, {34255, 41825}, {38314, 48834}, {48813, 48820}, {48836, 51071}, {48863, 49744}, {49745, 50322}, {50102, 50125}, {55027, 60236}, {60258, 60261}, {61652, 62673}

X(63056) = anticomplement of X(5278)
X(63056) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57722, 2}
X(63056) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {56232, 3436}, {57722, 6327}, {57914, 21275}, {59012, 7192}
X(63056) = pole of line {4810, 44445} with respect to the anticomplementary circle
X(63056) = pole of line {523, 1734} with respect to the Steiner circumellipse
X(63056) = pole of line {525, 21182} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63056) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(19742)}}, {{A, B, C, X(226), X(31034)}}, {{A, B, C, X(333), X(39700)}}, {{A, B, C, X(966), X(6539)}}, {{A, B, C, X(1029), X(37652)}}, {{A, B, C, X(2895), X(60257)}}, {{A, B, C, X(4080), X(5739)}}, {{A, B, C, X(5235), X(59759)}}, {{A, B, C, X(6625), X(37685)}}, {{A, B, C, X(8025), X(58012)}}, {{A, B, C, X(16704), X(60156)}}, {{A, B, C, X(17349), X(55027)}}, {{A, B, C, X(30905), X(39703)}}, {{A, B, C, X(31037), X(60242)}}, {{A, B, C, X(32863), X(60236)}}, {{A, B, C, X(37639), X(60076)}}, {{A, B, C, X(37656), X(60261)}}, {{A, B, C, X(37683), X(60258)}}
X(63056) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 32949, 6327}, {2, 3945, 8025}, {3873, 33073, 29832}, {3879, 5249, 3187}, {4648, 5739, 2}, {5905, 17316, 3995}, {17391, 27184, 17019}


X(63057) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(18141), X(3), X(6))

Barycentrics    3*a^3-b^3-b^2*c-b*c^2-c^3+3*a^2*(b+c)-a*(b^2-4*b*c+c^2) : :

X(63057) lies on these lines: {2, 6}, {7, 1999}, {20, 5208}, {57, 3169}, {63, 1334}, {65, 145}, {89, 33168}, {144, 41839}, {189, 30694}, {192, 9965}, {239, 9776}, {312, 4644}, {329, 17364}, {344, 4641}, {345, 4851}, {354, 51192}, {390, 20101}, {404, 44094}, {443, 56018}, {452, 3794}, {553, 3875}, {894, 34255}, {980, 3785}, {982, 50284}, {1002, 20012}, {1038, 34772}, {1407, 6604}, {1458, 3870}, {1788, 10370}, {2094, 17389}, {2996, 60156}, {3218, 10319}, {3474, 49470}, {3475, 3769}, {3617, 10371}, {3623, 37614}, {3664, 11679}, {3672, 26840}, {3729, 62240}, {3772, 17376}, {3793, 21509}, {3868, 20009}, {3912, 26065}, {3917, 54383}, {3926, 5337}, {3995, 20073}, {4001, 5287}, {4038, 50295}, {4200, 44105}, {4220, 62174}, {4307, 10453}, {4340, 10449}, {4416, 17022}, {4419, 34064}, {4430, 20020}, {4658, 19766}, {4684, 5269}, {4856, 24175}, {4906, 47356}, {4916, 42049}, {5261, 10372}, {5268, 34379}, {5272, 51196}, {5294, 29579}, {5395, 40013}, {5839, 19804}, {5921, 26118}, {6776, 37521}, {6904, 20018}, {7222, 42029}, {8896, 55868}, {10401, 32093}, {10519, 37527}, {11269, 32949}, {13388, 57267}, {13389, 57266}, {13736, 54429}, {14912, 16434}, {15882, 37549}, {16834, 24177}, {17074, 56927}, {17170, 41251}, {17288, 29841}, {17298, 40940}, {17311, 44416}, {17314, 32939}, {17321, 37595}, {17351, 42032}, {17387, 33116}, {17391, 38000}, {17490, 20043}, {17696, 56834}, {17776, 29583}, {19767, 37339}, {19789, 26842}, {20019, 56999}, {20076, 41682}, {20109, 29624}, {21296, 27184}, {24271, 32836}, {24280, 32915}, {24477, 33073}, {25430, 50093}, {25571, 59309}, {26626, 54311}, {27549, 32912}, {28606, 29585}, {29573, 56078}, {29617, 41915}, {29621, 30618}, {36845, 50289}, {37109, 56154}, {37262, 56181}, {37276, 56013}, {39594, 50307}, {39703, 59263}, {44307, 54280}, {49680, 49732}, {49718, 56767}, {50698, 61044}, {54119, 57826}, {54281, 59583}, {60082, 60285}, {60167, 60257}, {60168, 60236}

X(63057) = anticomplement of X(14555)
X(63057) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60076, 2}
X(63057) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {59069, 7192}, {59760, 21286}, {60076, 6327}
X(63057) = pole of line {6563, 8672} with respect to the DeLongchamps circle
X(63057) = pole of line {4897, 51656} with respect to the incircle
X(63057) = pole of line {523, 3669} with respect to the Steiner circumellipse
X(63057) = intersection, other than A, B, C, of circumconics {{A, B, C, X(65), X(4383)}}, {{A, B, C, X(81), X(56155)}}, {{A, B, C, X(86), X(42304)}}, {{A, B, C, X(193), X(60156)}}, {{A, B, C, X(333), X(34860)}}, {{A, B, C, X(391), X(54119)}}, {{A, B, C, X(2996), X(5739)}}, {{A, B, C, X(3620), X(40013)}}, {{A, B, C, X(5395), X(32911)}}, {{A, B, C, X(17349), X(60168)}}, {{A, B, C, X(17778), X(57826)}}, {{A, B, C, X(19742), X(55944)}}, {{A, B, C, X(26668), X(41899)}}, {{A, B, C, X(28014), X(42290)}}, {{A, B, C, X(31089), X(60201)}}, {{A, B, C, X(31143), X(60200)}}, {{A, B, C, X(32782), X(60285)}}, {{A, B, C, X(37652), X(60167)}}, {{A, B, C, X(51171), X(60082)}}
X(63057) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1999, 30699}, {145, 21454, 3210}, {312, 62230, 4644}, {333, 4648, 2}, {3995, 20078, 20073}, {4001, 5287, 17257}, {4340, 10449, 50408}, {26840, 58820, 3672}


X(63058) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(19053), X(3), X(6))

Barycentrics    6*a^2-S : :

X(63058) lies on these lines: {2, 6}, {3, 9693}, {4, 6428}, {20, 6420}, {30, 6418}, {148, 19057}, {371, 15692}, {372, 10304}, {376, 3312}, {381, 1131}, {485, 60623}, {486, 60299}, {519, 19003}, {547, 13886}, {549, 6417}, {551, 19004}, {588, 52188}, {589, 52187}, {631, 6427}, {1132, 1327}, {1151, 15705}, {1152, 62063}, {1328, 23249}, {1505, 26617}, {1586, 5702}, {1588, 3543}, {1703, 34632}, {3070, 61985}, {3071, 50687}, {3090, 3591}, {3091, 35822}, {3241, 18992}, {3284, 55897}, {3311, 3524}, {3316, 13993}, {3317, 15699}, {3522, 3594}, {3523, 6419}, {3525, 43212}, {3533, 31487}, {3534, 43382}, {3545, 7584}, {3590, 7486}, {3592, 15717}, {3679, 49547}, {3758, 32797}, {3759, 32798}, {3830, 23273}, {3832, 43377}, {3845, 18510}, {3854, 31414}, {5054, 6500}, {5055, 13939}, {5062, 26618}, {5066, 14241}, {5071, 7583}, {5158, 55893}, {5411, 7714}, {5418, 61846}, {5420, 61844}, {6199, 12100}, {6200, 61781}, {6221, 15698}, {6351, 16668}, {6352, 16671}, {6395, 8703}, {6396, 62059}, {6398, 19708}, {6407, 14891}, {6408, 45759}, {6409, 61778}, {6410, 9543}, {6412, 62054}, {6425, 61791}, {6426, 21734}, {6431, 43888}, {6432, 6459}, {6436, 6561}, {6438, 62072}, {6445, 15711}, {6446, 15759}, {6447, 61138}, {6448, 21735}, {6449, 15715}, {6450, 15710}, {6451, 61777}, {6452, 62055}, {6453, 61788}, {6454, 62067}, {6455, 61780}, {6456, 62058}, {6460, 15683}, {6471, 42637}, {6481, 42525}, {6498, 43211}, {6499, 13951}, {6519, 61787}, {6522, 62066}, {6560, 15640}, {6564, 43889}, {6565, 43791}, {8591, 19108}, {8960, 46936}, {8976, 61895}, {8981, 15709}, {9143, 19110}, {9540, 15721}, {9541, 53131}, {9542, 61796}, {9681, 62083}, {9690, 61786}, {9692, 10299}, {10109, 45385}, {10124, 13903}, {10385, 19037}, {10576, 61897}, {11001, 42215}, {11002, 62247}, {11177, 19055}, {11179, 42832}, {11239, 26459}, {11240, 26458}, {11539, 13961}, {13662, 13988}, {13665, 41106}, {13785, 41099}, {13831, 49260}, {13925, 61887}, {13932, 44648}, {13935, 15708}, {13936, 53620}, {13942, 19883}, {13966, 15702}, {14269, 23269}, {14482, 26615}, {14848, 48677}, {15682, 42216}, {15687, 23275}, {15693, 43509}, {15719, 35256}, {16667, 30412}, {17120, 32793}, {17121, 32794}, {17487, 24818}, {18538, 61926}, {18762, 61932}, {18842, 54502}, {18991, 38314}, {19058, 41135}, {19065, 31145}, {19069, 51487}, {19071, 51486}, {19073, 51482}, {19074, 59378}, {19075, 51483}, {19076, 59379}, {19099, 33456}, {19101, 33457}, {19109, 52695}, {19875, 49548}, {19876, 49619}, {21567, 37503}, {23251, 61992}, {23253, 61994}, {23259, 43504}, {23261, 62005}, {23263, 62003}, {31412, 42572}, {31454, 61834}, {33699, 43522}, {35255, 61822}, {35774, 50872}, {35787, 43343}, {35812, 61863}, {35813, 43254}, {35814, 43255}, {35821, 62037}, {38064, 42833}, {40138, 55569}, {41963, 61816}, {41964, 61804}, {42225, 62165}, {42226, 62049}, {42246, 42998}, {42247, 42999}, {42258, 62129}, {42259, 62148}, {42260, 62112}, {42261, 62122}, {42262, 61930}, {42263, 42418}, {42264, 62051}, {42265, 61927}, {42267, 58204}, {42270, 61952}, {42272, 43520}, {42283, 62002}, {42417, 62132}, {42538, 62048}, {42540, 53520}, {42561, 61954}, {42603, 61906}, {42638, 62081}, {42639, 61908}, {43145, 49038}, {43210, 62145}, {43381, 61972}, {43383, 62099}, {43385, 43785}, {43407, 62166}, {43408, 62153}, {43415, 62065}, {43430, 60294}, {43505, 61874}, {43506, 61872}, {43560, 60296}, {43561, 54542}, {43563, 54599}, {43788, 62118}, {43798, 62154}, {43880, 61914}, {45384, 61910}, {52666, 62030}, {52667, 62018}, {54597, 60622}, {54598, 60308}, {55573, 62213}, {59375, 60887}, {61328, 61336}

X(63058) = X(i)-complementary conjugate of X(j) for these {i, j}: {54543, 2887}
X(63058) = pole of line {2, 42537} with respect to the Kiepert hyperbola
X(63058) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43567)}}, {{A, B, C, X(491), X(60299)}}, {{A, B, C, X(492), X(60623)}}, {{A, B, C, X(493), X(59777)}}, {{A, B, C, X(590), X(52188)}}, {{A, B, C, X(615), X(52187)}}, {{A, B, C, X(21356), X(54502)}}
X(63058) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 7586, 7585}, {597, 5860, 2}, {1328, 23249, 61989}, {1587, 35823, 3839}, {3839, 35823, 1132}, {5066, 18512, 14241}, {6398, 52047, 19708}, {6459, 41946, 62120}, {6501, 19116, 7581}, {6561, 43256, 62160}, {7586, 8972, 3069}, {9541, 53131, 62094}, {13935, 35771, 42522}, {23249, 61989, 43566}, {31414, 53516, 3854}, {41099, 43387, 13785}


X(63059) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(19054), X(3), X(6))

Barycentrics    6*a^2+S : :

X(63059) lies on these lines: {2, 6}, {3, 9692}, {4, 6427}, {20, 6419}, {30, 6417}, {148, 19058}, {371, 10304}, {372, 15692}, {376, 3311}, {381, 1132}, {485, 60300}, {486, 60622}, {519, 19004}, {547, 13939}, {549, 6418}, {551, 19003}, {588, 52187}, {589, 52188}, {631, 6428}, {1131, 1328}, {1151, 62063}, {1152, 15705}, {1327, 23259}, {1504, 26618}, {1585, 5702}, {1587, 3543}, {1702, 34632}, {3070, 50687}, {3071, 61985}, {3090, 3590}, {3091, 35823}, {3241, 18991}, {3284, 55893}, {3312, 3524}, {3316, 15699}, {3317, 13925}, {3522, 3592}, {3523, 6420}, {3525, 31487}, {3534, 43383}, {3545, 7583}, {3591, 7486}, {3594, 15717}, {3679, 49548}, {3758, 32798}, {3759, 32797}, {3830, 23267}, {3832, 43376}, {3845, 18512}, {3854, 53513}, {5054, 6501}, {5055, 13886}, {5058, 26617}, {5066, 14226}, {5071, 7584}, {5158, 55897}, {5410, 7714}, {5418, 61844}, {5420, 61846}, {6199, 8703}, {6200, 62059}, {6221, 19708}, {6351, 16671}, {6352, 16668}, {6395, 12100}, {6396, 9542}, {6398, 15698}, {6407, 45759}, {6408, 14891}, {6409, 62056}, {6410, 61778}, {6411, 62054}, {6425, 21734}, {6426, 61791}, {6431, 6460}, {6432, 43887}, {6435, 6560}, {6437, 62072}, {6445, 15759}, {6446, 15711}, {6447, 21735}, {6448, 61138}, {6449, 15710}, {6450, 15715}, {6451, 62055}, {6452, 61777}, {6453, 62067}, {6454, 61788}, {6455, 62058}, {6456, 61780}, {6459, 15683}, {6470, 42638}, {6480, 42524}, {6498, 8976}, {6499, 43212}, {6519, 62066}, {6522, 61787}, {6561, 15640}, {6564, 43792}, {6565, 43890}, {8591, 19109}, {8981, 15702}, {9143, 19111}, {9540, 15708}, {9541, 15697}, {9543, 42637}, {9680, 61798}, {9681, 62110}, {9690, 62065}, {9691, 62068}, {9693, 33923}, {10109, 45384}, {10124, 13961}, {10385, 19038}, {10577, 61897}, {11001, 42216}, {11002, 62248}, {11177, 19056}, {11179, 42833}, {11239, 26465}, {11240, 26464}, {11539, 13903}, {13342, 26912}, {13665, 41099}, {13782, 13848}, {13785, 41106}, {13832, 49263}, {13850, 44647}, {13883, 53620}, {13888, 19883}, {13935, 15721}, {13951, 61895}, {13966, 15709}, {13993, 61887}, {14269, 23275}, {14482, 26616}, {14848, 48678}, {15682, 42215}, {15687, 23269}, {15693, 43510}, {15719, 35255}, {16667, 30413}, {17120, 32794}, {17121, 32793}, {17487, 24819}, {18538, 61932}, {18762, 61926}, {18842, 54506}, {18992, 38314}, {19057, 41135}, {19066, 31145}, {19070, 51486}, {19072, 51487}, {19073, 59378}, {19074, 51482}, {19075, 59379}, {19076, 51483}, {19100, 33457}, {19108, 52695}, {19875, 49547}, {19876, 49618}, {21566, 37503}, {22541, 33456}, {23249, 43503}, {23251, 62005}, {23253, 62003}, {23261, 61992}, {23263, 61994}, {31412, 61954}, {31414, 50689}, {31454, 61820}, {33699, 43521}, {35256, 61822}, {35775, 50872}, {35786, 43342}, {35812, 43255}, {35813, 61863}, {35815, 43254}, {35820, 62037}, {38064, 42832}, {40138, 55573}, {41963, 61804}, {41964, 61816}, {42225, 62049}, {42226, 62165}, {42248, 42998}, {42249, 42999}, {42258, 62148}, {42259, 62129}, {42260, 62122}, {42261, 62112}, {42262, 61927}, {42263, 62051}, {42264, 42417}, {42265, 61930}, {42266, 58204}, {42271, 43519}, {42273, 61952}, {42284, 62002}, {42418, 62132}, {42537, 62048}, {42539, 53517}, {42561, 42573}, {42602, 61906}, {42640, 61908}, {43143, 49039}, {43209, 62145}, {43380, 61972}, {43382, 62099}, {43384, 43786}, {43407, 62153}, {43408, 62166}, {43415, 61786}, {43431, 60293}, {43505, 61872}, {43506, 61874}, {43536, 60623}, {43560, 54543}, {43561, 60295}, {43562, 54598}, {43787, 62118}, {43797, 62154}, {43879, 61914}, {45385, 61910}, {46936, 58866}, {52666, 62018}, {52667, 62030}, {53130, 62094}, {54599, 60307}, {55569, 62213}, {60887, 60984}, {61329, 61335}

X(63059) = X(i)-complementary conjugate of X(j) for these {i, j}: {54542, 2887}
X(63059) = pole of line {2, 42538} with respect to the Kiepert hyperbola
X(63059) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43566)}}, {{A, B, C, X(491), X(60622)}}, {{A, B, C, X(492), X(60300)}}, {{A, B, C, X(494), X(59777)}}, {{A, B, C, X(590), X(52187)}}, {{A, B, C, X(615), X(52188)}}, {{A, B, C, X(21356), X(54506)}}
X(63059) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 7585, 7586}, {597, 5861, 2}, {1327, 23259, 61989}, {1588, 35822, 3839}, {3839, 35822, 1131}, {5066, 18510, 14226}, {6221, 52048, 19708}, {6460, 41945, 62120}, {6500, 19117, 7582}, {6560, 43257, 62160}, {7585, 7586, 8972}, {9540, 35770, 42523}, {23259, 61989, 43567}, {41099, 43386, 13665}


X(63060) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(19723), X(3), X(6))

Barycentrics    3*a^3+2*a^2*(b+c)-b*c*(b+c)-a*(b+c)^2 : :

X(63060) lies on these lines: {2, 6}, {8, 11354}, {31, 4685}, {44, 3175}, {58, 19336}, {239, 11352}, {306, 4700}, {321, 1743}, {379, 41140}, {405, 3241}, {519, 1724}, {540, 17679}, {648, 57531}, {671, 54929}, {964, 3679}, {1316, 50145}, {1751, 28609}, {1757, 3891}, {3052, 19998}, {3219, 3759}, {3791, 4096}, {3938, 4753}, {3943, 20046}, {3969, 5839}, {3995, 16885}, {3996, 30653}, {4202, 48834}, {4252, 19770}, {4387, 17162}, {4393, 33761}, {4416, 32774}, {4669, 48866}, {4677, 48863}, {4722, 16825}, {4946, 17782}, {4969, 20017}, {4974, 32912}, {4980, 50127}, {4981, 16475}, {5220, 17150}, {5271, 16670}, {5283, 29584}, {6172, 50071}, {7739, 50166}, {9404, 36900}, {9534, 51669}, {11286, 50154}, {11287, 50267}, {11319, 31145}, {11320, 40891}, {11322, 62296}, {11342, 17310}, {11355, 49719}, {11357, 38314}, {11359, 50215}, {11679, 41241}, {13587, 19762}, {13745, 48861}, {16417, 19769}, {16468, 24552}, {16471, 34625}, {16477, 31330}, {16552, 16834}, {16669, 26223}, {16671, 31993}, {16783, 29574}, {16861, 48858}, {17019, 17335}, {17121, 28606}, {17347, 33150}, {17363, 33157}, {17364, 26724}, {17549, 19763}, {17676, 48845}, {17781, 50102}, {17809, 36007}, {19875, 43531}, {20072, 33146}, {23511, 24593}, {26723, 32859}, {29617, 48864}, {29829, 41002}, {32858, 62231}, {33094, 49710}, {34612, 42058}, {34641, 48865}, {42700, 43065}, {44217, 50234}, {47356, 51743}, {48815, 49716}, {48842, 50165}, {48857, 49735}, {48870, 50171}, {49723, 50321}, {49986, 59544}, {50043, 50060}, {50105, 50306}, {50115, 60082}, {50810, 56960}, {50864, 56959}, {54676, 54744}, {54686, 54735}, {54775, 60094}, {56527, 56963}

X(63060) = reflection of X(i) in X(j) for these {i,j}: {11346, 1724}
X(63060) = pole of line {6, 16297} with respect to the Stammler hyperbola
X(63060) = pole of line {1125, 19336} with respect to the dual conic of Yff parabola
X(63060) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(83), X(19738)}}, {{A, B, C, X(524), X(54929)}}, {{A, B, C, X(598), X(42045)}}, {{A, B, C, X(1751), X(4921)}}, {{A, B, C, X(17297), X(54775)}}, {{A, B, C, X(19723), X(57721)}}, {{A, B, C, X(27643), X(39970)}}, {{A, B, C, X(32782), X(60267)}}, {{A, B, C, X(42028), X(60082)}}
X(63060) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4921, 1150}, {519, 1724, 11346}, {3679, 48867, 964}, {11319, 31145, 48862}, {16468, 32864, 24552}


X(63061) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(20080), X(3), X(6))

Barycentrics    13*a^2-3*(b^2+c^2) : :
X(63061) = -9*X[2]+16*X[6], -X[4]+8*X[61624], -X[20]+8*X[1353], 3*X[23]+4*X[47281], -32*X[182]+25*X[61804], -8*X[576]+X[5921], -16*X[1350]+23*X[62078], -8*X[1351]+X[3146], -5*X[3091]+12*X[5093], -32*X[3098]+39*X[21734], -5*X[3522]+12*X[14912], -3*X[3524]+4*X[51181] and many others

X(63061) lies on these lines: {2, 6}, {4, 61624}, {20, 1353}, {23, 47281}, {145, 25269}, {182, 61804}, {439, 1384}, {511, 50693}, {542, 62005}, {576, 5921}, {1350, 62078}, {1351, 3146}, {1383, 6339}, {1503, 50690}, {1743, 29583}, {2996, 53418}, {3091, 5093}, {3098, 21734}, {3522, 14912}, {3523, 34380}, {3524, 51181}, {3543, 39899}, {3545, 50986}, {3552, 33684}, {3564, 3832}, {3621, 3751}, {3622, 34379}, {3623, 16496}, {3723, 54280}, {3731, 29585}, {3818, 61972}, {3839, 51173}, {3854, 14853}, {3926, 5008}, {3973, 17316}, {4678, 5847}, {4788, 49496}, {4856, 50108}, {5050, 61820}, {5052, 20081}, {5056, 11898}, {5059, 6776}, {5068, 18358}, {5092, 61791}, {5095, 14683}, {5189, 18935}, {5286, 7860}, {5477, 20094}, {6393, 32881}, {6462, 8375}, {6463, 8376}, {6467, 62187}, {6995, 46444}, {7408, 12167}, {7486, 59399}, {7492, 37491}, {7754, 32979}, {7760, 43448}, {7762, 32982}, {7798, 43618}, {7805, 31415}, {7838, 43620}, {7839, 33023}, {7890, 14075}, {7921, 32991}, {8550, 61044}, {8586, 33209}, {8596, 45018}, {9716, 19122}, {10303, 53091}, {10304, 50962}, {10519, 50664}, {10754, 35369}, {11002, 12272}, {11173, 33244}, {11179, 50969}, {11180, 50964}, {11477, 62152}, {11482, 15022}, {12007, 55646}, {12017, 15717}, {12221, 23249}, {12222, 23259}, {13595, 19588}, {14002, 63183}, {14848, 61927}, {15032, 52404}, {15520, 40330}, {15531, 16981}, {15688, 51180}, {15705, 50979}, {15708, 50981}, {16043, 22246}, {17117, 52709}, {17373, 61330}, {17578, 48901}, {18440, 61985}, {18583, 61914}, {19130, 61952}, {19459, 37913}, {20014, 51192}, {20016, 49783}, {20054, 49536}, {20059, 51194}, {20063, 32220}, {20095, 51198}, {20105, 32451}, {20423, 61992}, {21309, 32973}, {21850, 50687}, {22331, 51579}, {25406, 55582}, {29588, 61006}, {29590, 32093}, {30745, 47463}, {31492, 55825}, {31670, 51140}, {32827, 41750}, {33630, 37174}, {33636, 37188}, {35265, 53778}, {37760, 47279}, {37901, 47541}, {40065, 56021}, {43291, 52250}, {43621, 54132}, {46264, 51028}, {46932, 59408}, {46936, 61545}, {47546, 60455}, {48876, 61834}, {48905, 51132}, {48906, 51177}, {49529, 51001}, {49679, 51124}, {49688, 51155}, {50692, 51212}, {50955, 61930}, {50957, 51215}, {50967, 55653}, {50976, 54170}, {50978, 61844}, {50988, 61812}, {51172, 62017}, {51175, 61899}, {51176, 62153}, {51183, 61864}, {51197, 53620}, {51217, 54131}, {51732, 61856}, {53092, 61848}, {54173, 55696}, {54174, 55594}, {55584, 62097}, {55593, 62083}, {55632, 62067}, {55639, 62063}, {55672, 61778}, {55697, 61798}, {55723, 62129}, {55724, 62125}

X(63061) = reflection of X(i) in X(j) for these {i,j}: {11180, 50964}, {3619, 6}, {50969, 11179}, {51217, 54131}, {54170, 50976}
X(63061) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18845, 2}
X(63061) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1973, 41925}, {18845, 6327}
X(63061) = pole of line {6467, 6688} with respect to the Jerabek hyperbola
X(63061) = pole of line {523, 47316} with respect to the Steiner circumellipse
X(63061) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(263), X(36650)}}, {{A, B, C, X(599), X(6339)}}, {{A, B, C, X(1383), X(1611)}}, {{A, B, C, X(2998), X(8556)}}, {{A, B, C, X(3619), X(41909)}}, {{A, B, C, X(3629), X(38005)}}, {{A, B, C, X(8667), X(38262)}}, {{A, B, C, X(11160), X(16774)}}, {{A, B, C, X(34898), X(51189)}}, {{A, B, C, X(37637), X(51316)}}, {{A, B, C, X(42349), X(44381)}}, {{A, B, C, X(50248), X(60327)}}
X(63061) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3631, 3618}, {6, 524, 3619}, {6, 6144, 3631}, {193, 5032, 69}, {1992, 3629, 193}, {3631, 8584, 6}, {7585, 7586, 5306}, {12272, 58555, 11002}, {58555, 61692, 12272}


X(63062) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(20583), X(3), X(6))

Barycentrics    29*a^2-b^2-c^2 : :
X(63062) = -X[2]+10*X[6], -20*X[182]+11*X[15715], X[376]+8*X[5097], 8*X[547]+X[51178], 8*X[549]+X[51214], 2*X[550]+25*X[11482], -40*X[575]+13*X[10299], 20*X[576]+7*X[3528], 5*X[1351]+4*X[34200], -10*X[1352]+19*X[61928], 5*X[1353]+4*X[11737], -X[3524]+4*X[39561] and many others

X(63062) lies on these lines: {2, 6}, {4, 33698}, {182, 15715}, {376, 5097}, {511, 15710}, {542, 61967}, {547, 51178}, {549, 51214}, {550, 11482}, {575, 10299}, {576, 3528}, {598, 60219}, {1351, 34200}, {1352, 61928}, {1353, 11737}, {1503, 62003}, {3524, 39561}, {3529, 11179}, {3530, 53092}, {3543, 12007}, {3564, 61933}, {3851, 11180}, {3855, 5476}, {4558, 33881}, {4663, 20057}, {5007, 7618}, {5041, 33215}, {5050, 17504}, {5071, 51140}, {5093, 15688}, {5102, 10304}, {5319, 8176}, {5480, 61994}, {5485, 53102}, {5702, 37765}, {5965, 61899}, {6776, 15687}, {7737, 61046}, {7772, 8182}, {8550, 50688}, {9741, 12150}, {10124, 51174}, {10168, 61836}, {10301, 11405}, {10519, 61827}, {11054, 18842}, {11147, 19661}, {11477, 62067}, {11645, 14912}, {12017, 61779}, {14075, 37809}, {14269, 14853}, {14482, 51224}, {14848, 38071}, {14927, 20423}, {15303, 32255}, {15516, 61809}, {15520, 19924}, {15681, 50979}, {15692, 51132}, {15698, 50664}, {15700, 50967}, {15705, 55703}, {15721, 50973}, {15723, 50985}, {18440, 61963}, {18583, 61925}, {18843, 60626}, {19708, 37517}, {20050, 47356}, {21850, 62046}, {22234, 54173}, {22486, 32450}, {23334, 33229}, {30734, 53019}, {30775, 61712}, {31670, 62052}, {33253, 34604}, {33748, 62112}, {33878, 62057}, {34380, 61841}, {34641, 51192}, {34747, 51005}, {37897, 47462}, {37900, 47545}, {37907, 47465}, {38064, 55713}, {39899, 61969}, {43150, 61915}, {43273, 62166}, {44456, 62065}, {47478, 59399}, {47541, 47629}, {48889, 51023}, {48901, 51176}, {48906, 62163}, {49135, 54131}, {49536, 51146}, {50955, 61916}, {50958, 61927}, {50961, 61895}, {50962, 61829}, {50966, 55720}, {50970, 61778}, {50974, 61947}, {50982, 61846}, {51027, 61944}, {51130, 62005}, {51136, 61985}, {51138, 55722}, {51166, 62129}, {51181, 55629}, {51182, 61880}, {51538, 62037}, {51737, 53858}, {53093, 54174}, {53109, 60631}, {54169, 61798}, {54494, 54720}, {54616, 60210}, {55582, 62059}, {55587, 62058}, {55591, 62056}, {55594, 62055}, {55607, 62054}, {55618, 58184}, {55691, 61777}, {55695, 61780}, {55699, 61781}, {55701, 61784}, {55705, 61786}, {55724, 62062}, {55727, 55783}, {55737, 55769}, {55795, 55823}, {55801, 55816}, {61624, 61839}

X(63062) = reflection of X(i) in X(j) for these {i,j}: {15705, 55703}
X(63062) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(33698)}}, {{A, B, C, X(598), X(11008)}}, {{A, B, C, X(599), X(60219)}}, {{A, B, C, X(1992), X(53102)}}, {{A, B, C, X(3631), X(60631)}}, {{A, B, C, X(5486), X(50989)}}, {{A, B, C, X(6329), X(54616)}}, {{A, B, C, X(15533), X(22336)}}
X(63062) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 8584, 1992}, {51132, 55711, 15692}, {51138, 55722, 62063}


X(63063) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(20806), X(3), X(6))

Barycentrics    a^2*(a^6+b^6+c^6-a^4*(b^2+c^2)-a^2*(b^4+b^2*c^2+c^4)) : :

X(63063) lies on these lines: {2, 6}, {4, 19139}, {22, 19125}, {23, 206}, {24, 1351}, {32, 28710}, {39, 28724}, {50, 44180}, {52, 19128}, {54, 9967}, {66, 31074}, {110, 1843}, {155, 5921}, {159, 9544}, {182, 5889}, {184, 12220}, {194, 34137}, {195, 1353}, {287, 16039}, {311, 53485}, {317, 52418}, {384, 10548}, {427, 46442}, {458, 56017}, {511, 7488}, {571, 35296}, {575, 15801}, {576, 44802}, {577, 40681}, {858, 26926}, {895, 39125}, {1147, 6403}, {1154, 19129}, {1176, 3313}, {1199, 5050}, {1236, 7760}, {1370, 19119}, {1503, 43605}, {1594, 3564}, {1915, 31390}, {1974, 3060}, {2323, 28731}, {2854, 15140}, {2965, 34990}, {2979, 19126}, {2987, 8882}, {3043, 14984}, {3056, 9637}, {3146, 19149}, {3148, 23163}, {3167, 12167}, {3292, 14913}, {3410, 51744}, {3431, 33878}, {3448, 15141}, {3818, 7565}, {5012, 11574}, {5093, 6642}, {5133, 13562}, {5157, 15246}, {5504, 11557}, {5596, 7391}, {5622, 12219}, {5640, 19137}, {6243, 19154}, {6391, 11405}, {6467, 11416}, {6593, 56918}, {6643, 12161}, {6776, 37444}, {7393, 53091}, {7401, 36749}, {7405, 14627}, {7487, 36747}, {7542, 34380}, {7544, 14853}, {7576, 12383}, {7716, 35264}, {8362, 23133}, {8537, 34382}, {8541, 12272}, {8745, 37174}, {8869, 32583}, {9716, 34777}, {9969, 13595}, {10263, 19155}, {10510, 17710}, {10519, 44480}, {10733, 19140}, {11412, 19131}, {11422, 11511}, {11477, 23041}, {11513, 55567}, {11514, 55566}, {12086, 34146}, {12111, 19124}, {13353, 31810}, {14070, 44456}, {14096, 22138}, {14118, 41716}, {14575, 37183}, {14788, 18583}, {14965, 28723}, {15032, 48906}, {16238, 61624}, {18019, 40404}, {18445, 39874}, {19130, 50435}, {19132, 33586}, {19153, 62187}, {19161, 22467}, {19459, 26283}, {19504, 25321}, {20079, 31099}, {20987, 35265}, {21851, 51394}, {22120, 28696}, {26869, 30802}, {28728, 39141}, {31304, 34117}, {32002, 54395}, {33748, 44503}, {34155, 55716}, {34396, 50666}, {34470, 61692}, {36794, 51481}, {37485, 62188}, {37496, 44261}, {37498, 61044}, {37511, 43574}, {37517, 37940}, {39836, 41274}, {39871, 61607}, {39884, 45034}, {40673, 55038}, {41253, 44131}, {41584, 59553}, {41760, 46571}, {51882, 56565}

X(63063) = reflection of X(i) in X(j) for these {i,j}: {19121, 21637}
X(63063) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 53949}
X(63063) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 53949}
X(63063) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1235, 6636}
X(63063) = pole of line {5012, 6467} with respect to the Jerabek hyperbola
X(63063) = pole of line {2, 44523} with respect to the Kiepert hyperbola
X(63063) = pole of line {99, 53949} with respect to the Kiepert parabola
X(63063) = pole of line {525, 40889} with respect to the MacBeath circumconic
X(63063) = pole of line {6, 8280} with respect to the Stammler hyperbola
X(63063) = pole of line {523, 21284} with respect to the Steiner circumellipse
X(63063) = pole of line {525, 40889} with respect to the dual conic of nine-point circle
X(63063) = pole of line {3265, 44680} with respect to the dual conic of Orthic inconic
X(63063) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(55999)}}, {{A, B, C, X(230), X(8882)}}, {{A, B, C, X(343), X(2987)}}, {{A, B, C, X(1994), X(56006)}}, {{A, B, C, X(2421), X(16039)}}, {{A, B, C, X(3431), X(3620)}}, {{A, B, C, X(3580), X(57388)}}, {{A, B, C, X(3629), X(56007)}}, {{A, B, C, X(3630), X(5505)}}, {{A, B, C, X(14389), X(43756)}}, {{A, B, C, X(22151), X(40404)}}, {{A, B, C, X(30535), X(37649)}}, {{A, B, C, X(37636), X(56002)}}, {{A, B, C, X(37637), X(60775)}}
X(63063) = barycentric quotient X(i)/X(j) for these (i, j): {110, 53949}
X(63063) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1993, 193}, {155, 39588, 5921}, {511, 21637, 19121}, {1176, 3313, 6636}, {3060, 19122, 1974}, {3167, 12167, 63183}, {8541, 52016, 12272}, {14575, 50645, 37183}


X(63064) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(22165), X(3), X(6))

Barycentrics    13*a^2-5*(b^2+c^2) : :
X(63064) = -5*X[2]+6*X[6], -12*X[182]+11*X[15719], -5*X[376]+4*X[52987], -4*X[547]+5*X[11482], -10*X[549]+11*X[55701], -8*X[575]+7*X[15702], -4*X[576]+3*X[3545], -25*X[631]+28*X[55708], -6*X[1350]+7*X[62094], -3*X[1351]+2*X[3845], -6*X[1352]+7*X[41106], -3*X[1353]+2*X[12100] and many others

X(63064) lies on these lines: {2, 6}, {4, 11054}, {30, 55724}, {76, 60284}, {83, 60641}, {144, 50121}, {145, 49748}, {182, 15719}, {187, 11147}, {376, 52987}, {511, 11001}, {518, 50839}, {519, 24695}, {542, 10721}, {547, 11482}, {549, 55701}, {575, 15702}, {576, 3545}, {598, 52713}, {631, 55708}, {671, 32532}, {1350, 62094}, {1351, 3845}, {1352, 41106}, {1353, 12100}, {1503, 15640}, {2854, 62187}, {2987, 46204}, {2996, 54896}, {3060, 9027}, {3098, 62077}, {3163, 21972}, {3167, 47447}, {3416, 51068}, {3524, 20190}, {3528, 55617}, {3533, 22234}, {3534, 6776}, {3543, 11477}, {3564, 3830}, {3751, 4669}, {3793, 11165}, {3818, 61979}, {3839, 15069}, {4644, 29617}, {4663, 53620}, {4677, 5847}, {4715, 50129}, {4745, 50950}, {5050, 11812}, {5056, 53858}, {5066, 14853}, {5067, 22330}, {5071, 34507}, {5085, 61796}, {5093, 51175}, {5095, 6353}, {5097, 61913}, {5102, 47354}, {5206, 7890}, {5476, 50961}, {5477, 36521}, {5480, 61966}, {5485, 45103}, {5648, 25321}, {5839, 50128}, {5921, 54131}, {5965, 20423}, {6172, 50132}, {6337, 27088}, {7391, 32255}, {7426, 47446}, {7615, 50280}, {7738, 9939}, {7751, 31417}, {7754, 8352}, {7758, 32985}, {7759, 32984}, {7760, 33190}, {7762, 11317}, {7768, 33230}, {7796, 33197}, {7813, 37809}, {7865, 61046}, {7877, 32006}, {8355, 32816}, {8542, 53863}, {8550, 10304}, {8593, 14645}, {8681, 21969}, {8703, 25406}, {8787, 52695}, {9741, 51224}, {9830, 19569}, {9855, 20065}, {9925, 51519}, {10109, 14848}, {10299, 33749}, {10488, 20094}, {10516, 61938}, {10519, 15693}, {10541, 61806}, {10754, 44678}, {10989, 47280}, {11148, 53856}, {11161, 36523}, {11178, 61926}, {11179, 14810}, {11188, 21849}, {11206, 47313}, {11539, 53092}, {11645, 62049}, {11898, 19709}, {12007, 61805}, {12017, 19711}, {12101, 18440}, {12322, 23269}, {12323, 23275}, {13169, 25320}, {13650, 13769}, {13771, 13833}, {14023, 33215}, {14561, 61915}, {14711, 22486}, {14912, 15698}, {14927, 62160}, {15360, 35260}, {15685, 39899}, {15686, 55580}, {15690, 33878}, {15695, 48906}, {15697, 43273}, {15701, 48876}, {15708, 53093}, {15709, 40107}, {15710, 55652}, {16041, 41748}, {16475, 51004}, {16491, 51106}, {16496, 51091}, {16673, 50093}, {16676, 29574}, {17257, 46845}, {17503, 54637}, {18358, 61941}, {18553, 61967}, {18583, 61908}, {18842, 60638}, {18925, 44261}, {19924, 39874}, {21850, 61993}, {22493, 37170}, {22494, 37171}, {23291, 47277}, {23334, 47286}, {24206, 61902}, {25555, 61889}, {29012, 62052}, {29181, 62168}, {29585, 49737}, {31670, 62019}, {31884, 62072}, {32001, 37765}, {32220, 37904}, {32599, 35473}, {32983, 41750}, {33622, 51012}, {33624, 51015}, {33703, 55721}, {33748, 50983}, {33750, 62065}, {34379, 50999}, {34986, 43697}, {35302, 52437}, {35578, 42696}, {35751, 51201}, {36329, 51204}, {36768, 51011}, {36769, 42511}, {36990, 62018}, {37512, 47061}, {37517, 62009}, {37907, 47549}, {37909, 47276}, {38064, 55709}, {38072, 61943}, {38079, 61893}, {38110, 61854}, {38136, 50954}, {38191, 51168}, {39884, 62000}, {41112, 51206}, {41113, 51207}, {41134, 41672}, {41720, 44082}, {41982, 55620}, {42510, 47867}, {42697, 62231}, {43426, 47518}, {43427, 47520}, {44456, 62040}, {46264, 62135}, {46267, 61861}, {46332, 55629}, {47353, 51132}, {47358, 51155}, {47359, 51072}, {47451, 47545}, {48662, 62025}, {48865, 48870}, {49505, 51107}, {49511, 51110}, {49543, 50101}, {49684, 51097}, {49811, 59409}, {50783, 51124}, {50786, 50953}, {50790, 51148}, {50963, 61963}, {50965, 62099}, {50969, 55593}, {50971, 55591}, {50973, 51737}, {50975, 62109}, {50977, 55706}, {50984, 55703}, {51000, 51092}, {51005, 51105}, {51024, 62030}, {51027, 62002}, {51089, 51094}, {51093, 51192}, {51103, 51196}, {51136, 62132}, {51152, 59405}, {51172, 61977}, {51180, 61800}, {51183, 61851}, {52282, 56021}, {53091, 61847}, {53097, 62120}, {54169, 55671}, {55583, 62127}, {55586, 62115}, {55588, 62113}, {55595, 62098}, {55597, 62096}, {55601, 62090}, {55602, 62089}, {55606, 62086}, {55614, 62081}, {55632, 62073}, {55658, 62055}, {55668, 61777}, {55704, 61817}, {55705, 61819}, {55716, 61961}, {55722, 62051}, {55725, 55794}, {55726, 55791}, {55732, 55781}, {55807, 55823}, {56013, 63155}, {58470, 61667}, {59399, 61896}, {60143, 60283}, {60216, 60281}, {60282, 60637}, {61044, 62145}, {61545, 61898}

X(63064) = midpoint of X(i) and X(j) for these {i,j}: {51178, 54132}
X(63064) = reflection of X(i) in X(j) for these {i,j}: {10989, 47280}, {1992, 193}, {11180, 1351}, {20094, 10488}, {3543, 11477}, {47353, 51132}, {47358, 51155}, {599, 3629}, {50639, 5477}, {50783, 51124}, {50790, 51148}, {5921, 54131}, {50961, 5476}, {50973, 51737}, {51023, 54132}, {51179, 54173}, {51215, 47353}, {54132, 50962}, {54170, 6776}, {54173, 51140}, {54174, 43273}, {55580, 15686}, {69, 1992}, {7426, 47546}
X(63064) = isotomic conjugate of X(54637)
X(63064) = anticomplement of X(15533)
X(63064) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54637}, {15533, 15533}
X(63064) = X(i)-Ceva conjugate of X(j) for these {i, j}: {17503, 2}
X(63064) = X(i)-complementary conjugate of X(j) for these {i, j}: {60632, 2887}
X(63064) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {17503, 6327}
X(63064) = pole of line {6467, 62184} with respect to the Jerabek hyperbola
X(63064) = pole of line {2, 60632} with respect to the Kiepert hyperbola
X(63064) = pole of line {6, 30734} with respect to the Stammler hyperbola
X(63064) = pole of line {2, 47287} with respect to the Wallace hyperbola
X(63064) = pole of line {3265, 9125} with respect to the dual conic of Orthic inconic
X(63064) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(15534)}}, {{A, B, C, X(6), X(60284)}}, {{A, B, C, X(69), X(60228)}}, {{A, B, C, X(76), X(50994)}}, {{A, B, C, X(141), X(60641)}}, {{A, B, C, X(193), X(54896)}}, {{A, B, C, X(230), X(46204)}}, {{A, B, C, X(524), X(32532)}}, {{A, B, C, X(599), X(60627)}}, {{A, B, C, X(671), X(50992)}}, {{A, B, C, X(1992), X(45103)}}, {{A, B, C, X(5485), X(22165)}}, {{A, B, C, X(5486), X(21358)}}, {{A, B, C, X(8584), X(60281)}}, {{A, B, C, X(9164), X(41139)}}, {{A, B, C, X(9516), X(48310)}}, {{A, B, C, X(11160), X(41909)}}, {{A, B, C, X(15533), X(54637)}}, {{A, B, C, X(17040), X(47355)}}, {{A, B, C, X(18823), X(41133)}}, {{A, B, C, X(18840), X(51143)}}, {{A, B, C, X(21356), X(60638)}}, {{A, B, C, X(34898), X(40341)}}, {{A, B, C, X(50990), X(60216)}}, {{A, B, C, X(50991), X(60637)}}, {{A, B, C, X(50993), X(60143)}}, {{A, B, C, X(59373), X(60283)}}
X(63064) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 524, 1992}, {524, 1992, 69}, {524, 3629, 599}, {591, 1991, 9771}, {599, 5032, 3618}, {1992, 3618, 5032}, {3564, 50962, 54132}, {3564, 54132, 51023}, {5860, 5861, 9770}, {14912, 51179, 54173}, {33626, 33627, 41099}, {35578, 50077, 42696}, {35749, 36327, 15682}, {50973, 51737, 62174}, {50986, 51174, 50967}, {51023, 54132, 51538}, {51140, 54173, 14912}, {51178, 54132, 3564}


X(63065) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(22329), X(3), X(6))

Barycentrics    7*a^4+b^4-4*b^2*c^2+c^4+2*a^2*(b^2+c^2) : :
X(63065) = -X[315]+10*X[5346], -2*X[3933]+5*X[8366], -4*X[5254]+X[33192], -4*X[5305]+X[7841], X[7754]+2*X[8369], X[7801]+2*X[7805], -5*X[7881]+8*X[8365], -2*X[11164]+3*X[33187], X[32833]+2*X[41748]

X(63065) lies on these lines: {2, 6}, {4, 11177}, {23, 16333}, {30, 9755}, {32, 543}, {39, 5569}, {98, 20423}, {99, 37809}, {114, 51140}, {147, 50974}, {148, 1285}, {194, 9741}, {263, 46303}, {315, 5346}, {376, 2080}, {530, 43454}, {531, 43455}, {538, 33255}, {542, 9753}, {576, 6055}, {598, 7615}, {671, 7737}, {754, 33251}, {1003, 19661}, {1383, 6094}, {1384, 8598}, {2021, 7618}, {2452, 7426}, {2482, 7798}, {2549, 51224}, {2871, 11002}, {2896, 33230}, {3053, 33208}, {3407, 5485}, {3424, 41895}, {3524, 6194}, {3767, 7812}, {3785, 7920}, {3839, 9748}, {3849, 5309}, {3855, 51238}, {3933, 8366}, {3972, 11054}, {5007, 16924}, {5008, 11185}, {5097, 32414}, {5254, 33192}, {5286, 7833}, {5305, 7841}, {5319, 6179}, {5355, 14907}, {5368, 7803}, {5984, 51023}, {5999, 54132}, {7612, 10484}, {7617, 7753}, {7620, 11361}, {7739, 8182}, {7745, 20112}, {7751, 16898}, {7754, 8369}, {7755, 7775}, {7758, 7870}, {7759, 33248}, {7760, 16925}, {7762, 11318}, {7763, 9167}, {7765, 33253}, {7772, 33001}, {7783, 35287}, {7785, 32984}, {7793, 33215}, {7797, 9939}, {7801, 7805}, {7836, 33197}, {7839, 33274}, {7856, 7883}, {7858, 32998}, {7881, 8365}, {7946, 32951}, {8289, 8591}, {8370, 30435}, {8597, 43448}, {8716, 33266}, {8787, 35705}, {9214, 45819}, {9606, 33188}, {9774, 11179}, {9830, 12829}, {10335, 11147}, {10336, 32986}, {10788, 12191}, {11159, 21309}, {11164, 33187}, {11165, 35297}, {11167, 60190}, {11172, 54487}, {11180, 13862}, {11317, 18907}, {11606, 54901}, {13571, 32970}, {13586, 53142}, {14002, 33900}, {14035, 34505}, {14036, 32836}, {14041, 23334}, {15048, 35955}, {15692, 52771}, {16318, 52282}, {16509, 44543}, {22331, 33244}, {22712, 38064}, {26255, 44420}, {27088, 31859}, {32833, 41748}, {32960, 51860}, {33254, 34504}, {35906, 46806}, {35927, 53141}, {36523, 62203}, {36874, 60695}, {37909, 52692}, {39593, 47101}, {42006, 54616}, {42535, 42536}, {44526, 52943}, {45329, 53347}, {48830, 52133}, {51373, 52669}, {54540, 60150}, {54639, 60259}, {54866, 54889}, {55812, 61825}, {60103, 60234}, {60104, 60240}, {60128, 60268}, {60184, 60271}

X(63065) = reflection of X(i) in X(j) for these {i,j}: {1003, 19661}
X(63065) = pole of line {523, 9135} with respect to the Steiner circumellipse
X(63065) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7840)}}, {{A, B, C, X(69), X(43535)}}, {{A, B, C, X(111), X(62191)}}, {{A, B, C, X(352), X(1383)}}, {{A, B, C, X(524), X(45819)}}, {{A, B, C, X(598), X(7774)}}, {{A, B, C, X(599), X(6094)}}, {{A, B, C, X(1007), X(10484)}}, {{A, B, C, X(1992), X(3407)}}, {{A, B, C, X(3314), X(5485)}}, {{A, B, C, X(3329), X(54616)}}, {{A, B, C, X(3424), X(11160)}}, {{A, B, C, X(7777), X(60268)}}, {{A, B, C, X(7779), X(54901)}}, {{A, B, C, X(7897), X(60271)}}, {{A, B, C, X(7925), X(60240)}}, {{A, B, C, X(9770), X(54487)}}, {{A, B, C, X(11163), X(60190)}}, {{A, B, C, X(11167), X(16990)}}, {{A, B, C, X(15993), X(34288)}}, {{A, B, C, X(17008), X(60103)}}, {{A, B, C, X(18361), X(22165)}}, {{A, B, C, X(21356), X(44556)}}, {{A, B, C, X(22110), X(60234)}}, {{A, B, C, X(23055), X(60104)}}, {{A, B, C, X(37665), X(54639)}}, {{A, B, C, X(37668), X(41895)}}, {{A, B, C, X(41136), X(54737)}}, {{A, B, C, X(42850), X(60128)}}, {{A, B, C, X(44367), X(60184)}}
X(63065) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 7840}, {2, 1992, 7774}, {2, 7766, 1992}, {183, 597, 2}, {194, 52695, 9741}, {598, 14568, 7615}, {598, 7615, 33016}, {671, 7737, 52942}, {3767, 7812, 33006}, {5319, 6179, 7791}, {7739, 8182, 52691}, {7797, 9939, 33190}, {9741, 32985, 52695}, {11177, 41135, 43535}, {19661, 52229, 1003}


X(63066) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(24512), X(3), X(6))

Barycentrics    a*(3*a*b*c+2*a^2*(b+c)+b*c*(b+c)) : :

X(63066) lies on these lines: {1, 672}, {2, 6}, {4, 60617}, {7, 52635}, {8, 17750}, {9, 3720}, {21, 5021}, {31, 16503}, {37, 3873}, {39, 19767}, {41, 37607}, {42, 1449}, {43, 16667}, {58, 16783}, {83, 40030}, {89, 2243}, {145, 2295}, {171, 2280}, {213, 3616}, {218, 16845}, {284, 37262}, {350, 3758}, {354, 26242}, {387, 52245}, {404, 2271}, {551, 54981}, {572, 1754}, {579, 941}, {612, 51194}, {749, 1100}, {750, 3684}, {894, 4441}, {910, 37520}, {982, 21840}, {1009, 9605}, {1011, 5120}, {1172, 4196}, {1468, 41239}, {1575, 3240}, {1743, 26102}, {1914, 17126}, {2176, 3622}, {2235, 17029}, {2239, 16786}, {2278, 35980}, {2298, 6601}, {2345, 17135}, {2650, 3061}, {3063, 47824}, {3230, 38314}, {3241, 16971}, {3287, 47834}, {3617, 3780}, {3664, 30949}, {3686, 26037}, {3693, 49478}, {3750, 41423}, {3759, 60706}, {3789, 4663}, {3920, 16973}, {3930, 49490}, {3934, 29560}, {4071, 33120}, {4184, 36743}, {4188, 18755}, {4189, 33863}, {4191, 4254}, {4207, 44105}, {4210, 36744}, {4251, 37522}, {4307, 13576}, {4392, 36409}, {4393, 17759}, {4430, 49509}, {4644, 20347}, {4651, 5839}, {4657, 24690}, {4666, 16970}, {4667, 20335}, {4685, 4856}, {5019, 37175}, {5022, 19765}, {5282, 32913}, {5287, 16517}, {5291, 9346}, {5707, 36670}, {5710, 12632}, {5749, 10453}, {5750, 31330}, {5838, 20229}, {6817, 46882}, {7109, 21769}, {7191, 16972}, {7737, 14968}, {9599, 33107}, {9620, 17015}, {10436, 24592}, {10449, 26035}, {11038, 39686}, {11269, 17737}, {11355, 15048}, {14969, 44304}, {16474, 50316}, {16502, 57280}, {16514, 29570}, {16522, 17013}, {16523, 29585}, {16600, 18398}, {16668, 21904}, {16670, 30950}, {16779, 21764}, {16782, 26626}, {16784, 48830}, {16795, 29831}, {16884, 60724}, {16919, 17103}, {17034, 34284}, {17120, 24514}, {17127, 60697}, {17275, 33078}, {17355, 42057}, {17364, 31004}, {17368, 31027}, {17499, 18135}, {17526, 54416}, {17735, 61155}, {18152, 34283}, {20109, 26807}, {20195, 31199}, {20228, 59297}, {20331, 62212}, {20980, 47821}, {21384, 59305}, {21793, 30652}, {22199, 46189}, {26074, 31409}, {26234, 49496}, {30116, 45751}, {31130, 49481}, {31314, 33889}, {34016, 40408}, {34772, 54317}, {35270, 37553}, {37598, 39247}, {39521, 47822}, {39798, 39961}, {39967, 39975}, {40761, 52210}

X(63066) = perspector of circumconic {{A, B, C, X(99), X(37138)}}
X(63066) = pole of line {669, 54251} with respect to the Brocard inellipse
X(63066) = pole of line {2, 15447} with respect to the Kiepert hyperbola
X(63066) = pole of line {6, 60721} with respect to the Stammler hyperbola
X(63066) = pole of line {2, 60735} with respect to the Wallace hyperbola
X(63066) = pole of line {1125, 30949} with respect to the dual conic of Yff parabola
X(63066) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(56192)}}, {{A, B, C, X(37), X(17259)}}, {{A, B, C, X(42), X(4383)}}, {{A, B, C, X(69), X(60617)}}, {{A, B, C, X(81), X(2279)}}, {{A, B, C, X(83), X(37657)}}, {{A, B, C, X(86), X(749)}}, {{A, B, C, X(141), X(40030)}}, {{A, B, C, X(333), X(40779)}}, {{A, B, C, X(940), X(2350)}}, {{A, B, C, X(941), X(17277)}}, {{A, B, C, X(1185), X(45785)}}, {{A, B, C, X(1334), X(37658)}}, {{A, B, C, X(2298), X(41610)}}, {{A, B, C, X(2998), X(20148)}}, {{A, B, C, X(14377), X(25092)}}, {{A, B, C, X(15668), X(39798)}}, {{A, B, C, X(17379), X(39975)}}, {{A, B, C, X(20131), X(37128)}}, {{A, B, C, X(20132), X(39952)}}, {{A, B, C, X(20135), X(39981)}}, {{A, B, C, X(20140), X(54117)}}, {{A, B, C, X(20154), X(39971)}}, {{A, B, C, X(30941), X(48108)}}, {{A, B, C, X(32911), X(39961)}}, {{A, B, C, X(37674), X(39966)}}, {{A, B, C, X(37679), X(39967)}}, {{A, B, C, X(40153), X(57656)}}
X(63066) = barycentric product X(i)*X(j) for these (i, j): {100, 48108}
X(63066) = barycentric quotient X(i)/X(j) for these (i, j): {48108, 693}
X(63066) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 940, 5276}, {42, 17754, 17756}, {1100, 2276, 17018}, {1449, 17754, 42}


X(63067) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(24597), X(3), X(6))

Barycentrics    5*a^3+3*a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+c^2) : :

X(63067) lies on these lines: {2, 6}, {4, 55944}, {20, 5398}, {31, 20075}, {58, 4190}, {63, 3946}, {89, 277}, {144, 33155}, {145, 32849}, {387, 1780}, {390, 2361}, {452, 35193}, {902, 50282}, {908, 16670}, {1029, 60168}, {1203, 10527}, {1449, 54357}, {1453, 12649}, {1465, 17092}, {1723, 3219}, {1743, 31018}, {1999, 17339}, {2308, 33104}, {3146, 5721}, {3187, 26065}, {3218, 5222}, {3523, 5396}, {3751, 26228}, {3755, 36277}, {3759, 17740}, {3791, 33163}, {3839, 45926}, {3977, 16834}, {4035, 56521}, {4228, 44094}, {4232, 44113}, {4307, 33139}, {4340, 50237}, {4440, 19824}, {4641, 17276}, {4644, 33129}, {4678, 5724}, {4722, 33144}, {4859, 26723}, {5187, 5292}, {5256, 55868}, {5273, 17011}, {5287, 25072}, {5294, 17286}, {5315, 11240}, {5336, 58820}, {5435, 17020}, {5707, 6886}, {5725, 46933}, {5744, 17012}, {5839, 32779}, {5905, 40940}, {6646, 19823}, {6833, 37509}, {6871, 24883}, {6889, 36750}, {6890, 36754}, {7465, 37492}, {8229, 14912}, {9347, 38057}, {9965, 33150}, {10529, 16466}, {11269, 16468}, {12848, 37798}, {16469, 26015}, {16478, 36579}, {16669, 17720}, {17013, 62216}, {17014, 43065}, {17021, 18230}, {17257, 29833}, {17315, 17776}, {17328, 19832}, {17329, 19786}, {17372, 32777}, {17483, 62208}, {17495, 21216}, {17526, 56018}, {17588, 19783}, {17784, 30652}, {19003, 55877}, {19004, 55876}, {19822, 28634}, {20043, 33168}, {21454, 37800}, {24695, 33128}, {25453, 50304}, {28808, 41241}, {29828, 59408}, {29855, 34379}, {29857, 51196}, {30563, 46934}, {31091, 33114}, {33115, 50284}, {33136, 50303}, {35263, 49495}, {35980, 37507}, {36742, 37112}, {39947, 56050}, {40891, 50027}, {45944, 46936}, {48857, 52680}, {50124, 59769}, {55027, 60167}, {60092, 60258}

X(63067) = pole of line {6, 50204} with respect to the Stammler hyperbola
X(63067) = pole of line {523, 48327} with respect to the Steiner circumellipse
X(63067) = pole of line {1125, 4190} with respect to the dual conic of Yff parabola
X(63067) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(55944)}}, {{A, B, C, X(89), X(41610)}}, {{A, B, C, X(277), X(5235)}}, {{A, B, C, X(2895), X(60168)}}, {{A, B, C, X(2996), X(31017)}}, {{A, B, C, X(4869), X(60258)}}, {{A, B, C, X(5395), X(31034)}}, {{A, B, C, X(32863), X(60167)}}, {{A, B, C, X(37635), X(60077)}}, {{A, B, C, X(37656), X(60092)}}
X(63067) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1150, 3618, 2}, {4641, 19785, 20078}


X(63068) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(25934), X(3), X(6))

Barycentrics    a*(a^5-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(-2*b^2+b*c-2*c^2)+a*(b^4-b^3*c+4*b^2*c^2-b*c^3+c^4)) : :

X(63068) lies on these lines: {1, 26635}, {2, 6}, {8, 41344}, {21, 37469}, {28, 37536}, {31, 54348}, {43, 25938}, {57, 2289}, {63, 2324}, {78, 3562}, {88, 2990}, {92, 28951}, {100, 1818}, {110, 33852}, {140, 22136}, {144, 22129}, {155, 6891}, {171, 25941}, {184, 19649}, {219, 5744}, {222, 329}, {241, 1252}, {275, 40013}, {283, 6986}, {285, 27378}, {347, 34042}, {404, 3193}, {443, 5707}, {452, 36746}, {511, 33849}, {644, 3977}, {651, 908}, {894, 26591}, {991, 1005}, {1021, 14838}, {1038, 3869}, {1181, 6926}, {1191, 24558}, {1330, 24983}, {1332, 32851}, {1350, 35988}, {1396, 37279}, {1407, 9965}, {1437, 37431}, {1450, 5253}, {1465, 6510}, {1621, 52428}, {1754, 35977}, {1764, 1817}, {1809, 4511}, {1999, 17862}, {2000, 41228}, {2003, 3452}, {2187, 20368}, {2323, 3911}, {2975, 37523}, {2979, 35996}, {3075, 3682}, {3167, 16434}, {3187, 54284}, {3819, 37261}, {3917, 4220}, {4222, 37482}, {4223, 5651}, {4224, 9306}, {4358, 13136}, {4645, 23541}, {4966, 25968}, {5084, 36742}, {5406, 21567}, {5407, 21566}, {5408, 16440}, {5409, 16441}, {5435, 55399}, {5706, 6904}, {5748, 23140}, {5905, 7365}, {6180, 62244}, {6350, 28921}, {6505, 17080}, {6692, 52423}, {6700, 54301}, {6847, 17814}, {6848, 37498}, {6890, 11441}, {6909, 33810}, {6944, 36747}, {6959, 16266}, {6964, 10982}, {6967, 7592}, {7078, 27383}, {7465, 7998}, {7549, 11793}, {8728, 45931}, {9776, 37543}, {10449, 24537}, {11206, 50699}, {13614, 52676}, {14826, 26118}, {17021, 60969}, {17296, 53816}, {17484, 26611}, {17527, 36750}, {17567, 36754}, {17576, 37501}, {18228, 55400}, {19544, 62217}, {19861, 37554}, {21495, 36212}, {21537, 59211}, {22383, 26695}, {24635, 34526}, {24883, 25962}, {25011, 55103}, {25885, 26102}, {25939, 37520}, {26010, 32843}, {26013, 32919}, {26105, 61398}, {26639, 62370}, {26871, 27540}, {26942, 58460}, {28936, 44179}, {34035, 57477}, {34051, 56234}, {35259, 37254}, {36002, 61220}, {36918, 51365}, {37267, 37537}, {37306, 50317}, {37509, 52264}, {59572, 61397}, {60114, 60156}

X(63068) = anticomplement of X(26005)
X(63068) = X(i)-Dao conjugate of X(j) for these {i, j}: {26005, 26005}, {46393, 35015}
X(63068) = pole of line {525, 2401} with respect to the MacBeath circumconic
X(63068) = pole of line {6, 1012} with respect to the Stammler hyperbola
X(63068) = pole of line {190, 1813} with respect to the Hutson-Moses hyperbola
X(63068) = pole of line {55987, 57066} with respect to the dual conic of incircle
X(63068) = pole of line {525, 2401} with respect to the dual conic of nine-point circle
X(63068) = pole of line {525, 18697} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63068) = pole of line {1125, 51506} with respect to the dual conic of Yff parabola
X(63068) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37305)}}, {{A, B, C, X(81), X(1262)}}, {{A, B, C, X(86), X(7045)}}, {{A, B, C, X(89), X(26818)}}, {{A, B, C, X(275), X(32911)}}, {{A, B, C, X(333), X(4564)}}, {{A, B, C, X(343), X(40013)}}, {{A, B, C, X(1252), X(2287)}}, {{A, B, C, X(1812), X(44717)}}, {{A, B, C, X(2990), X(16704)}}, {{A, B, C, X(5739), X(60114)}}, {{A, B, C, X(10601), X(60082)}}, {{A, B, C, X(11433), X(60156)}}, {{A, B, C, X(36795), X(56234)}}, {{A, B, C, X(52897), X(53305)}}
X(63068) = barycentric product X(i)*X(j) for these (i, j): {37305, 69}, {53305, 668}
X(63068) = barycentric quotient X(i)/X(j) for these (i, j): {37305, 4}, {38981, 35015}, {53305, 513}
X(63068) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 33852, 37449}, {908, 22128, 651}, {1818, 1936, 100}, {3819, 37527, 37261}, {9306, 37521, 4224}


X(63069) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(26206), X(3), X(6))

Barycentrics    a^2*(a^6+b^6+c^6-a^4*(b^2+c^2)-a^2*(b^4-3*b^2*c^2+c^4)) : :

X(63069) lies on these lines: {2, 6}, {3, 56362}, {22, 19118}, {23, 1974}, {76, 26212}, {83, 26214}, {110, 6467}, {146, 40640}, {159, 35265}, {182, 1204}, {184, 19122}, {186, 18438}, {264, 46571}, {384, 14965}, {511, 22467}, {575, 45187}, {577, 35296}, {648, 53490}, {1176, 1177}, {1199, 7395}, {1351, 17928}, {1353, 56292}, {1368, 46444}, {1843, 11416}, {1986, 19129}, {1995, 12167}, {2207, 32982}, {2211, 6655}, {2987, 41890}, {3091, 39588}, {3098, 37941}, {3410, 13562}, {3448, 46442}, {3867, 37349}, {4563, 40405}, {5012, 21637}, {5025, 41363}, {5034, 26216}, {5050, 7503}, {5092, 10752}, {5480, 34007}, {5651, 11443}, {6090, 6391}, {6403, 8538}, {6636, 11574}, {6776, 43605}, {6800, 19132}, {6803, 36749}, {6804, 12161}, {6816, 14912}, {7399, 59399}, {7467, 44090}, {7488, 9967}, {7512, 19154}, {7592, 33748}, {7716, 14002}, {7760, 26164}, {7768, 26162}, {7841, 8744}, {8369, 22121}, {8541, 19137}, {8743, 32974}, {9019, 56918}, {9306, 12272}, {9308, 15262}, {9544, 19459}, {9822, 16042}, {9924, 35264}, {10539, 12283}, {10602, 63183}, {11003, 19125}, {11270, 55697}, {12086, 12294}, {13160, 18583}, {14001, 22120}, {14853, 44469}, {14913, 21639}, {15032, 34664}, {15052, 18440}, {15053, 21851}, {15072, 34779}, {15078, 33878}, {15081, 39562}, {15141, 25321}, {15246, 19126}, {15531, 52016}, {15905, 52275}, {16072, 39899}, {17710, 18374}, {17838, 18933}, {17907, 52418}, {19131, 37126}, {19150, 55713}, {19161, 43815}, {19504, 30739}, {21850, 38323}, {23115, 32973}, {23635, 37335}, {25406, 34117}, {26257, 56921}, {26998, 52413}, {29959, 39125}, {30535, 41891}, {30777, 35325}, {34137, 39141}, {34436, 43697}, {34883, 41336}, {34990, 44180}, {36794, 44138}, {37183, 50666}, {37344, 38292}, {37491, 62188}, {37496, 44273}, {37895, 40601}, {37978, 52238}, {38136, 45034}, {40802, 41894}, {41256, 41719}, {41714, 43811}, {44097, 59353}, {44492, 62174}, {54683, 54898}, {54994, 55705}

X(63069) = anticomplement of X(26156)
X(63069) = pole of line {6467, 19121} with respect to the Jerabek hyperbola
X(63069) = pole of line {6, 30771} with respect to the Stammler hyperbola
X(63069) = pole of line {523, 37928} with respect to the Steiner circumellipse
X(63069) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(56362)}}, {{A, B, C, X(141), X(1177)}}, {{A, B, C, X(230), X(41890)}}, {{A, B, C, X(599), X(34436)}}, {{A, B, C, X(1176), X(62382)}}, {{A, B, C, X(2987), X(13567)}}, {{A, B, C, X(3815), X(41891)}}, {{A, B, C, X(4630), X(61198)}}, {{A, B, C, X(5306), X(34570)}}, {{A, B, C, X(7735), X(41894)}}, {{A, B, C, X(23292), X(30535)}}, {{A, B, C, X(26156), X(57388)}}, {{A, B, C, X(26958), X(40802)}}, {{A, B, C, X(28408), X(43697)}}, {{A, B, C, X(37784), X(40405)}}, {{A, B, C, X(40318), X(56004)}}
X(63069) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1176, 52699, 41593}, {1974, 11511, 12220}, {1974, 12220, 23}, {9967, 19128, 7488}, {11574, 19121, 6636}, {11574, 44102, 19121}


X(63070) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(26543), X(3), X(6))

Barycentrics    a^5-b^5-2*a^3*(b-c)^2+b^4*c+b*c^4-c^5-a^4*(b+c)+a*(b^2+c^2)^2+2*a^2*(b^3+c^3) : :

X(63070) lies on these lines: {2, 6}, {7, 26538}, {8, 4008}, {21, 6776}, {110, 26256}, {125, 30776}, {182, 6910}, {287, 57818}, {314, 40814}, {377, 511}, {404, 10519}, {405, 3564}, {442, 1351}, {452, 5921}, {474, 48876}, {542, 31156}, {613, 10527}, {894, 56927}, {958, 39897}, {993, 39901}, {1001, 39873}, {1350, 4190}, {1352, 2478}, {1353, 6675}, {1444, 52275}, {1503, 6872}, {1723, 4416}, {1865, 37174}, {2193, 37188}, {2475, 51212}, {2476, 14853}, {2550, 25304}, {3056, 3434}, {3177, 6646}, {3416, 5554}, {3436, 12588}, {3448, 31106}, {3662, 37800}, {3751, 24987}, {3794, 26118}, {3877, 39898}, {4000, 26573}, {4189, 25406}, {4193, 40330}, {4512, 39878}, {4690, 25971}, {4851, 25099}, {5050, 7483}, {5187, 10516}, {5248, 39900}, {5396, 56737}, {5398, 37176}, {5480, 6871}, {5755, 37280}, {5847, 19860}, {5905, 43216}, {5965, 31259}, {6175, 54132}, {6857, 14912}, {6904, 62174}, {6931, 24206}, {6933, 14561}, {8728, 34380}, {9001, 26546}, {10387, 20075}, {11108, 11898}, {11111, 39874}, {11112, 33878}, {11113, 18440}, {12017, 37298}, {12167, 25985}, {14927, 15680}, {16370, 48906}, {16418, 39899}, {16475, 24541}, {17248, 24559}, {17257, 40937}, {17270, 25007}, {17314, 25245}, {17321, 26639}, {17344, 25887}, {17527, 61545}, {17528, 44456}, {17532, 21850}, {17556, 18358}, {17561, 50974}, {18663, 26840}, {19861, 25023}, {20270, 26626}, {20348, 56928}, {26065, 26872}, {26132, 37695}, {26526, 26651}, {26699, 54280}, {29012, 50244}, {29181, 31295}, {37228, 37492}, {37435, 61044}, {39891, 57288}, {41604, 41719}, {42287, 54454}, {44117, 63174}, {44140, 51481}, {45968, 59358}, {48874, 56998}, {51190, 60969}, {56267, 57858}

X(63070) = pole of line {11997, 20171} with respect to the Feuerbach hyperbola
X(63070) = pole of line {525, 650} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63070) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(15988)}}, {{A, B, C, X(325), X(57818)}}, {{A, B, C, X(1007), X(57858)}}, {{A, B, C, X(28754), X(42287)}}, {{A, B, C, X(37668), X(54454)}}


X(63071) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(31017), X(3), X(6))

Barycentrics    2*a^3-2*b^3-b^2*c-b*c^2-2*c^3+3*a^2*(b+c)-a*(b^2+c^2) : :
X(63071) =

X(63071) lies on these lines: {2, 6}, {8, 46895}, {42, 20290}, {145, 1330}, {319, 31025}, {320, 17495}, {321, 17372}, {514, 4024}, {518, 3909}, {519, 17953}, {740, 4938}, {1046, 27558}, {2475, 3621}, {3006, 34379}, {3120, 17162}, {3151, 20214}, {3218, 3882}, {3617, 26131}, {3622, 26064}, {3623, 26117}, {3722, 28498}, {3751, 31079}, {3770, 4671}, {3879, 26580}, {3935, 61220}, {3946, 17184}, {3948, 26145}, {3952, 32846}, {3995, 17315}, {4035, 56520}, {4062, 4427}, {4358, 17374}, {4645, 19998}, {4651, 32949}, {4653, 50215}, {4663, 48647}, {4678, 26051}, {4683, 27804}, {4720, 50172}, {4753, 21026}, {4850, 17361}, {4851, 31035}, {5847, 20045}, {5905, 20017}, {6327, 20011}, {6625, 27797}, {8013, 23812}, {8229, 34380}, {11115, 41014}, {14459, 32857}, {17011, 17324}, {17012, 17288}, {17013, 17236}, {17135, 32946}, {17140, 32861}, {17145, 20042}, {17147, 17276}, {17150, 33064}, {17154, 32842}, {17163, 33097}, {17165, 32852}, {17230, 17499}, {17231, 41241}, {17286, 26223}, {17295, 41242}, {17312, 35595}, {17329, 28606}, {17339, 32858}, {17363, 31019}, {17364, 33077}, {17376, 24589}, {17377, 33151}, {17449, 62667}, {17539, 20077}, {17588, 49716}, {17589, 49743}, {17771, 32848}, {17772, 32856}, {20016, 54102}, {20046, 30699}, {20058, 62236}, {20068, 33088}, {20072, 32849}, {20095, 46519}, {20956, 28605}, {21093, 49995}, {24271, 50269}, {24697, 27811}, {26141, 60446}, {26230, 51196}, {26251, 61652}, {27571, 56313}, {27812, 42334}, {29822, 33082}, {29823, 49511}, {29824, 32843}, {31029, 33129}, {31134, 49497}, {39349, 39699}, {49560, 61707}

X(63071) = reflection of X(i) in X(j) for these {i,j}: {17162, 3120}, {31301, 4427}, {4427, 4062}, {44006, 17491}
X(63071) = inverse of X(50773) in Steiner circumellipse
X(63071) = anticomplement of X(16704)
X(63071) = perspector of circumconic {{A, B, C, X(99), X(1268)}}
X(63071) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4080, 2}
X(63071) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 30579}, {37, 21290}, {42, 30578}, {88, 17135}, {106, 75}, {213, 17487}, {692, 62634}, {798, 39349}, {901, 7192}, {903, 17137}, {1168, 17139}, {1320, 20245}, {1402, 30577}, {1417, 3875}, {1797, 20243}, {2226, 17145}, {2316, 3869}, {3257, 512}, {4013, 21287}, {4049, 21293}, {4080, 6327}, {4555, 17217}, {4591, 17166}, {4618, 53368}, {4622, 17159}, {4674, 69}, {5376, 53338}, {6336, 20242}, {8752, 3868}, {9268, 53332}, {9456, 1}, {20568, 17138}, {30575, 21282}, {32659, 20222}, {32665, 523}, {32719, 4560}, {36042, 4897}, {36058, 17134}, {36125, 17220}, {55244, 150}, {55263, 149}, {56049, 20244}, {61179, 33650}, {62536, 53363}
X(63071) = pole of line {4897, 6563} with respect to the DeLongchamps circle
X(63071) = pole of line {4021, 4897} with respect to the incircle
X(63071) = pole of line {1839, 2501} with respect to the polar circle
X(63071) = pole of line {99, 17161} with respect to the Kiepert parabola
X(63071) = pole of line {10, 523} with respect to the Steiner circumellipse
X(63071) = pole of line {523, 3634} with respect to the Steiner inellipse
X(63071) = pole of line {523, 4427} with respect to the Yff parabola
X(63071) = pole of line {56078, 57066} with respect to the dual conic of incircle
X(63071) = pole of line {525, 17355} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63071) = pole of line {525, 4001} with respect to the dual conic of polar circle
X(63071) = pole of line {1125, 4427} with respect to the dual conic of Yff parabola
X(63071) = pole of line {115, 4988} with respect to the dual conic of Wallace hyperbola
X(63071) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(31010)}}, {{A, B, C, X(6), X(58294)}}, {{A, B, C, X(81), X(47947)}}, {{A, B, C, X(86), X(4608)}}, {{A, B, C, X(321), X(43990)}}, {{A, B, C, X(514), X(8025)}}, {{A, B, C, X(1213), X(4024)}}, {{A, B, C, X(1654), X(27797)}}, {{A, B, C, X(2996), X(31303)}}, {{A, B, C, X(3578), X(7265)}}, {{A, B, C, X(4590), X(50773)}}, {{A, B, C, X(5468), X(31013)}}, {{A, B, C, X(6539), X(57068)}}, {{A, B, C, X(6625), X(26860)}}, {{A, B, C, X(35511), X(39699)}}, {{A, B, C, X(41818), X(47678)}}
X(63071) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {740, 17491, 44006}, {1211, 8025, 2}, {4062, 17770, 4427}, {4427, 17770, 31301}, {6542, 17484, 62227}, {6542, 62227, 31011}


X(63072) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(31473), X(3), X(6))

Barycentrics    a*b*c*(a+b+c)+2*a^2*S : :

X(63072) lies on these lines: {2, 6}, {8, 1124}, {9, 3083}, {10, 3299}, {19, 55475}, {21, 372}, {37, 589}, {63, 31438}, {100, 2066}, {145, 3297}, {219, 13387}, {371, 404}, {377, 1588}, {405, 3312}, {442, 7584}, {443, 7582}, {474, 3311}, {485, 4193}, {486, 2476}, {493, 39956}, {494, 941}, {572, 16441}, {573, 16440}, {588, 39798}, {608, 13386}, {956, 31485}, {958, 18995}, {1001, 19037}, {1100, 56427}, {1125, 3301}, {1151, 4188}, {1152, 4189}, {1172, 1586}, {1329, 19028}, {1335, 3616}, {1376, 19038}, {1378, 9780}, {1449, 3084}, {1505, 5283}, {1583, 5120}, {1584, 4254}, {1587, 2478}, {1599, 36743}, {1600, 36744}, {1621, 5414}, {1703, 5250}, {2067, 5253}, {2323, 55876}, {2362, 3869}, {2475, 3071}, {2886, 19029}, {2975, 6502}, {3035, 13901}, {3070, 5046}, {3092, 4200}, {3093, 4194}, {3298, 3622}, {3306, 51841}, {3434, 31413}, {3436, 31408}, {3592, 17572}, {3594, 16865}, {3686, 6347}, {3816, 19030}, {3871, 35808}, {3877, 35774}, {4187, 7583}, {4190, 6459}, {4999, 18966}, {5047, 6420}, {5058, 5277}, {5084, 7581}, {5141, 42262}, {5154, 42265}, {5187, 31412}, {5296, 55410}, {5330, 35641}, {5412, 35973}, {5418, 17566}, {5554, 19047}, {5687, 31474}, {5750, 6348}, {5985, 49213}, {6175, 35823}, {6199, 16417}, {6200, 13587}, {6203, 55398}, {6204, 54377}, {6221, 16371}, {6395, 16418}, {6396, 17549}, {6398, 16370}, {6409, 37307}, {6410, 17548}, {6417, 16408}, {6418, 11108}, {6419, 17531}, {6427, 16862}, {6428, 16842}, {6432, 16859}, {6436, 17547}, {6449, 19537}, {6450, 19535}, {6451, 19705}, {6452, 19704}, {6454, 17574}, {6460, 6872}, {6500, 16863}, {6501, 16853}, {6560, 11114}, {6561, 17579}, {6564, 37375}, {6565, 17577}, {6690, 13958}, {6691, 18965}, {6856, 13939}, {6871, 42561}, {6910, 13935}, {6921, 9540}, {7483, 13966}, {7504, 10577}, {8582, 49548}, {8583, 19004}, {8728, 19116}, {8981, 13747}, {8983, 26465}, {9583, 35262}, {9646, 27529}, {10198, 13963}, {10200, 13904}, {11112, 42215}, {11113, 42216}, {11473, 35974}, {11680, 31484}, {11681, 31472}, {13665, 17556}, {13785, 17532}, {13883, 24982}, {13902, 19048}, {13905, 26364}, {13911, 25005}, {13936, 24987}, {13959, 19049}, {13962, 26363}, {13971, 24541}, {15233, 50036}, {15677, 41946}, {15680, 42259}, {16975, 31482}, {17525, 52048}, {17527, 19117}, {17528, 18510}, {17530, 18762}, {17533, 18538}, {17535, 35771}, {17536, 35770}, {17558, 42523}, {17576, 43511}, {17756, 31459}, {18991, 19861}, {18992, 19860}, {18996, 25524}, {19027, 25466}, {19050, 19065}, {21567, 37499}, {30413, 55432}, {35256, 37298}, {35769, 54391}, {35788, 59415}, {35789, 59416}, {37256, 42258}, {37267, 43512}, {39385, 56768}, {43407, 50244}

X(63072) = pole of line {6, 16432} with respect to the Stammler hyperbola
X(63072) = intersection, other than A, B, C, of circumconics {{A, B, C, X(37), X(615)}}, {{A, B, C, X(81), X(589)}}, {{A, B, C, X(493), X(4383)}}, {{A, B, C, X(494), X(940)}}, {{A, B, C, X(588), X(32911)}}, {{A, B, C, X(590), X(39798)}}, {{A, B, C, X(941), X(3069)}}, {{A, B, C, X(3068), X(39956)}}
X(63072) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2362, 30556, 3869}


X(63073) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(32455), X(3), X(6))

Barycentrics    13*a^2-b^2-c^2 : :
X(63073) = -3*X[2]+14*X[6], -X[4]+12*X[15520], -28*X[182]+17*X[61138], 3*X[376]+8*X[55716], 4*X[548]+7*X[1351], -56*X[575]+23*X[61807], 28*X[576]+5*X[17538], -5*X[631]+16*X[15516], -14*X[1350]+25*X[58188], 7*X[1353]+4*X[3850], X[1657]+21*X[5093], 3*X[3060]+8*X[22829] and many others

X(63073) lies on these lines: {2, 6}, {4, 15520}, {182, 61138}, {317, 5702}, {376, 55716}, {487, 6428}, {488, 6427}, {511, 21735}, {542, 61973}, {548, 1351}, {575, 61807}, {576, 17538}, {631, 15516}, {1249, 32002}, {1350, 58188}, {1353, 3850}, {1444, 21517}, {1570, 33247}, {1657, 5093}, {3060, 22829}, {3098, 62058}, {3524, 55710}, {3528, 55720}, {3564, 5072}, {3625, 51192}, {3627, 6776}, {3633, 49684}, {3635, 3751}, {3758, 32087}, {3759, 31995}, {3818, 22330}, {3843, 14853}, {4254, 21523}, {4558, 13342}, {4668, 59406}, {4726, 49496}, {4856, 50107}, {4982, 25728}, {5007, 6337}, {5050, 15712}, {5085, 61783}, {5092, 61780}, {5097, 14912}, {5102, 48881}, {5120, 21507}, {5305, 39143}, {5368, 32969}, {5476, 61951}, {5845, 62424}, {6390, 43136}, {7494, 44111}, {7738, 33267}, {7758, 34571}, {7760, 52713}, {7894, 11185}, {7949, 33194}, {8550, 50691}, {10299, 55706}, {10519, 12108}, {10553, 39024}, {11179, 46333}, {11180, 61948}, {11206, 53863}, {11477, 33748}, {11898, 61903}, {12007, 48905}, {12017, 14891}, {12812, 59399}, {14075, 34511}, {14093, 44456}, {14627, 18917}, {14848, 61942}, {15073, 21852}, {15531, 58471}, {15684, 21850}, {15686, 54132}, {15689, 50979}, {15698, 55696}, {15706, 50967}, {15710, 55601}, {15715, 55689}, {16667, 54280}, {16668, 17257}, {16670, 25101}, {16671, 17316}, {17120, 42696}, {17121, 42697}, {17377, 61330}, {18358, 61931}, {18386, 43699}, {18440, 23046}, {18583, 61919}, {18844, 60209}, {19119, 21639}, {19130, 50974}, {19708, 55585}, {20053, 49688}, {20079, 23326}, {20423, 62029}, {22491, 43030}, {22492, 43031}, {32220, 47315}, {32255, 56565}, {33749, 48879}, {33750, 55724}, {33878, 45759}, {34380, 61837}, {34565, 63174}, {37517, 54170}, {37899, 47463}, {38110, 61849}, {38282, 61677}, {39125, 41719}, {39561, 61817}, {39874, 48895}, {40138, 63155}, {40330, 61911}, {41672, 45018}, {41983, 51214}, {42786, 50961}, {43273, 58204}, {45757, 51178}, {45758, 51174}, {46264, 62161}, {47277, 47316}, {47464, 52238}, {48876, 61840}, {49761, 50030}, {50955, 61917}, {51023, 61983}, {51132, 55646}, {51190, 60962}, {51194, 61000}, {51732, 61852}, {53091, 61811}, {54173, 55712}, {54174, 55676}, {55590, 62066}, {55596, 62061}, {55634, 62055}, {55693, 61787}, {55711, 62174}, {55714, 61945}, {55732, 55775}, {55733, 55774}, {59405, 61020}

X(63073) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60649, 2}
X(63073) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60649, 6327}
X(63073) = pole of line {2, 31470} with respect to the Wallace hyperbola
X(63073) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3630)}}, {{A, B, C, X(69), X(53106)}}, {{A, B, C, X(3631), X(17040)}}, {{A, B, C, X(6144), X(18844)}}, {{A, B, C, X(15321), X(15533)}}, {{A, B, C, X(40341), X(43726)}}
X(63073) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 3630}, {6, 1992, 3618}, {69, 3589, 3619}, {193, 3589, 69}, {1992, 3619, 193}, {53092, 61624, 10519}


X(63074) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(32911), X(3), X(6))

Barycentrics    a*(2*a^2-b*c+2*a*(b+c)) : :

X(63074) lies on these lines: {1, 4134}, {2, 6}, {4, 37509}, {7, 52423}, {8, 1203}, {9, 17011}, {20, 36754}, {31, 3240}, {32, 21537}, {38, 17025}, {39, 21508}, {42, 8616}, {43, 2308}, {44, 17013}, {51, 37254}, {55, 30653}, {57, 17020}, {58, 4188}, {63, 16670}, {89, 8056}, {100, 30652}, {110, 44104}, {144, 55399}, {145, 16466}, {149, 61395}, {155, 6964}, {171, 9350}, {192, 45222}, {213, 3995}, {218, 17014}, {238, 17018}, {239, 26223}, {312, 41241}, {321, 3759}, {329, 33155}, {354, 5645}, {371, 21567}, {372, 21566}, {386, 4189}, {387, 5046}, {390, 61397}, {518, 17024}, {582, 37105}, {593, 5042}, {631, 36750}, {651, 21454}, {748, 4649}, {902, 42043}, {938, 54301}, {967, 39975}, {980, 5041}, {982, 4722}, {999, 19291}, {1029, 60155}, {1171, 39956}, {1191, 3623}, {1199, 6834}, {1255, 16884}, {1351, 19649}, {1386, 3681}, {1449, 3305}, {1453, 34772}, {1724, 4653}, {1743, 3219}, {1757, 7226}, {1864, 9539}, {1995, 44094}, {2003, 5435}, {2194, 11003}, {2221, 40400}, {2264, 9536}, {2295, 6539}, {2300, 31035}, {2323, 18228}, {2350, 39952}, {2999, 3218}, {3008, 27186}, {3052, 61157}, {3060, 4260}, {3063, 47759}, {3083, 19004}, {3084, 19003}, {3085, 16472}, {3086, 16473}, {3187, 4671}, {3193, 6919}, {3216, 17572}, {3241, 5315}, {3287, 46915}, {3311, 16440}, {3312, 16441}, {3522, 36745}, {3523, 36742}, {3524, 51340}, {3545, 45923}, {3550, 21747}, {3617, 57280}, {3622, 56990}, {3666, 16669}, {3740, 9347}, {3751, 4430}, {3752, 23958}, {3758, 4359}, {3780, 20055}, {3791, 32931}, {3832, 5706}, {3846, 29864}, {3870, 16469}, {3873, 4663}, {3896, 4676}, {3920, 16475}, {3946, 17781}, {3957, 7290}, {3969, 17354}, {3971, 4991}, {3997, 29617}, {4000, 17483}, {4038, 17125}, {4184, 37502}, {4210, 37507}, {4220, 5050}, {4224, 9777}, {4232, 44105}, {4252, 37307}, {4253, 17209}, {4255, 16948}, {4259, 62187}, {4268, 40214}, {4392, 29821}, {4427, 4734}, {4641, 4850}, {4644, 26842}, {4672, 32860}, {4678, 5710}, {4720, 11354}, {4852, 42044}, {4856, 50292}, {4974, 32771}, {5012, 5320}, {5021, 19308}, {5024, 35276}, {5056, 5707}, {5059, 37537}, {5067, 45931}, {5069, 16702}, {5093, 16434}, {5097, 37521}, {5105, 17190}, {5120, 11340}, {5141, 24883}, {5154, 5292}, {5192, 56018}, {5222, 5905}, {5247, 27631}, {5280, 26626}, {5281, 61398}, {5287, 16667}, {5294, 33077}, {5299, 17316}, {5311, 9330}, {5347, 37913}, {5396, 37106}, {5603, 39523}, {5640, 40952}, {5711, 46933}, {5744, 54444}, {5800, 7394}, {5847, 29679}, {6199, 21560}, {6347, 49548}, {6348, 49547}, {6395, 21559}, {6417, 16432}, {6418, 16433}, {6419, 21568}, {6420, 21565}, {6427, 21492}, {6428, 21553}, {6500, 21548}, {6501, 21547}, {6542, 50028}, {6636, 36741}, {6800, 44098}, {6825, 36753}, {6848, 7592}, {6856, 24898}, {6891, 36749}, {6908, 36752}, {6926, 36747}, {6944, 12161}, {6958, 14627}, {6983, 56292}, {6995, 44086}, {7262, 46904}, {7277, 40688}, {7308, 17021}, {7485, 37492}, {9544, 44085}, {9605, 21511}, {10982, 37434}, {11114, 48847}, {11319, 20018}, {11402, 33849}, {13595, 37538}, {14853, 37456}, {15246, 36740}, {15717, 36746}, {15851, 21482}, {15860, 18592}, {16431, 21309}, {16470, 26685}, {16474, 38314}, {16478, 36565}, {16502, 29585}, {16577, 60954}, {16666, 44307}, {16668, 37595}, {16706, 32859}, {16791, 29832}, {16834, 56082}, {16885, 20182}, {16910, 20349}, {16920, 31036}, {17016, 54386}, {17034, 31060}, {17147, 17350}, {17150, 32937}, {17184, 17367}, {17280, 20017}, {17351, 50106}, {17353, 32858}, {17355, 50306}, {17366, 33146}, {17368, 56810}, {17385, 62586}, {17484, 19785}, {17559, 22136}, {17716, 21805}, {17756, 60697}, {17770, 33125}, {17889, 61707}, {18991, 56384}, {18992, 56427}, {19238, 54391}, {19544, 53091}, {19877, 37559}, {20014, 37542}, {20077, 56782}, {20963, 29570}, {20980, 47763}, {21477, 43136}, {21487, 44456}, {21495, 30435}, {21509, 22246}, {21564, 35770}, {21569, 35771}, {21764, 56507}, {22122, 26872}, {22383, 27115}, {24695, 33102}, {24725, 33132}, {25286, 52138}, {25453, 25958}, {25496, 32864}, {25524, 27645}, {25527, 30991}, {25760, 29868}, {25959, 29850}, {26037, 33682}, {26061, 32861}, {26065, 33168}, {26098, 33139}, {26723, 31019}, {26910, 40649}, {27152, 27299}, {27625, 37607}, {27757, 56519}, {29584, 54981}, {29595, 30562}, {29648, 38049}, {29654, 33065}, {29663, 33082}, {29665, 61647}, {29666, 49511}, {29818, 49498}, {29819, 49448}, {29852, 33064}, {30615, 47356}, {31053, 40940}, {32774, 33066}, {32842, 33163}, {32852, 33159}, {32853, 32944}, {32915, 49489}, {32921, 32938}, {32924, 32935}, {32925, 49477}, {32930, 49488}, {32943, 49497}, {32945, 50300}, {32947, 50287}, {33070, 33118}, {33071, 33114}, {33075, 38047}, {33088, 33166}, {33090, 59406}, {33091, 51192}, {33096, 33128}, {33107, 33137}, {33131, 41011}, {35058, 60871}, {37108, 37514}, {37128, 39965}, {37360, 59399}, {37400, 37510}, {37501, 61791}, {37516, 62188}, {37527, 39561}, {37781, 55905}, {37787, 45126}, {39521, 47762}, {39955, 39979}, {39961, 39971}, {40603, 60861}, {40825, 56771}, {41083, 57531}, {41249, 56564}, {41872, 58380}, {45100, 55944}, {54766, 54794}, {55466, 61006}, {56848, 60948}, {60107, 60258}

X(63074) = anticomplement of X(33172)
X(63074) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 39711}
X(63074) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 39711}, {33172, 33172}
X(63074) = X(i)-cross conjugate of X(j) for these {i, j}: {50587, 17393}
X(63074) = pole of line {6, 16408} with respect to the Stammler hyperbola
X(63074) = pole of line {190, 4606} with respect to the Hutson-Moses hyperbola
X(63074) = pole of line {2, 16714} with respect to the Wallace hyperbola
X(63074) = pole of line {1125, 4188} with respect to the dual conic of Yff parabola
X(63074) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(42025)}}, {{A, B, C, X(2), X(50587)}}, {{A, B, C, X(4), X(32863)}}, {{A, B, C, X(57), X(4921)}}, {{A, B, C, X(69), X(55027)}}, {{A, B, C, X(83), X(37685)}}, {{A, B, C, X(86), X(17393)}}, {{A, B, C, X(89), X(41629)}}, {{A, B, C, X(333), X(26745)}}, {{A, B, C, X(941), X(17398)}}, {{A, B, C, X(966), X(39975)}}, {{A, B, C, X(967), X(37679)}}, {{A, B, C, X(1171), X(4383)}}, {{A, B, C, X(1213), X(39956)}}, {{A, B, C, X(1751), X(5361)}}, {{A, B, C, X(2238), X(39965)}}, {{A, B, C, X(2303), X(40400)}}, {{A, B, C, X(2350), X(37673)}}, {{A, B, C, X(2895), X(60155)}}, {{A, B, C, X(3108), X(5275)}}, {{A, B, C, X(3763), X(39979)}}, {{A, B, C, X(3936), X(48551)}}, {{A, B, C, X(5235), X(8056)}}, {{A, B, C, X(5333), X(25430)}}, {{A, B, C, X(5372), X(24624)}}, {{A, B, C, X(5737), X(57749)}}, {{A, B, C, X(6539), X(17238)}}, {{A, B, C, X(14996), X(60082)}}, {{A, B, C, X(15668), X(39971)}}, {{A, B, C, X(16704), X(48011)}}, {{A, B, C, X(17259), X(37128)}}, {{A, B, C, X(17277), X(39952)}}, {{A, B, C, X(17337), X(42290)}}, {{A, B, C, X(17381), X(40776)}}, {{A, B, C, X(18141), X(60258)}}, {{A, B, C, X(24512), X(39961)}}, {{A, B, C, X(25417), X(42028)}}, {{A, B, C, X(30941), X(48079)}}, {{A, B, C, X(31017), X(60261)}}, {{A, B, C, X(33172), X(57705)}}, {{A, B, C, X(33854), X(39955)}}, {{A, B, C, X(37655), X(55944)}}, {{A, B, C, X(37656), X(60107)}}, {{A, B, C, X(39957), X(47355)}}
X(63074) = barycentric product X(i)*X(j) for these (i, j): {1, 17393}, {100, 48079}, {190, 48011}, {48551, 662}, {50587, 86}
X(63074) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39711}, {17393, 75}, {48011, 514}, {48079, 693}, {48551, 1577}, {50587, 10}
X(63074) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 4383, 81}, {42, 16468, 17127}, {42, 17127, 61155}, {43, 2308, 17126}, {238, 61358, 17018}, {239, 26223, 28605}, {651, 52424, 21454}, {748, 4649, 29814}, {1386, 3681, 29815}, {1449, 17019, 25417}, {1449, 3305, 17019}, {1724, 19767, 16865}, {1757, 17017, 7226}, {3618, 5739, 2}, {3751, 7191, 4430}, {5222, 5905, 33150}, {16885, 20182, 33761}, {17121, 27064, 3187}, {25453, 32843, 25958}, {29821, 32912, 4392}


X(63075) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(33854), X(3), X(6))

Barycentrics    a*(2*a^3-b*c*(b+c)+a*(2*b^2-b*c+2*c^2)) : :

X(63075) lies on these lines: {2, 6}, {8, 5299}, {9, 7191}, {21, 9605}, {22, 5120}, {25, 39975}, {32, 4188}, {37, 17024}, {39, 4189}, {42, 16779}, {44, 26242}, {58, 56776}, {83, 34284}, {145, 16502}, {194, 16920}, {239, 31130}, {251, 5019}, {274, 7878}, {346, 19993}, {386, 56777}, {404, 30435}, {474, 43136}, {612, 16667}, {614, 1743}, {644, 16483}, {651, 3598}, {672, 17127}, {941, 3108}, {1100, 29815}, {1104, 26690}, {1172, 7378}, {1191, 39567}, {1201, 54329}, {1203, 39581}, {1383, 39982}, {1384, 13587}, {1449, 3920}, {1462, 51351}, {1575, 5332}, {1627, 16946}, {1914, 17756}, {2276, 61155}, {2280, 3240}, {2323, 26228}, {2345, 33090}, {2548, 5141}, {3053, 37307}, {3063, 48164}, {3172, 35974}, {3241, 16784}, {3263, 3759}, {3287, 48203}, {3290, 16669}, {3616, 5280}, {3622, 54416}, {3623, 16781}, {3686, 29679}, {3758, 26234}, {3767, 5154}, {3997, 50310}, {4193, 5305}, {4200, 8743}, {4253, 37254}, {4254, 7485}, {4386, 61156}, {4392, 5282}, {4393, 16782}, {4661, 16973}, {5007, 17572}, {5013, 17548}, {5022, 16948}, {5024, 17549}, {5041, 5283}, {5046, 5286}, {5053, 35988}, {5069, 59344}, {5105, 54341}, {5121, 40128}, {5257, 29666}, {5749, 16470}, {5750, 29667}, {5800, 60153}, {5839, 33091}, {6636, 36743}, {6995, 45786}, {7290, 39959}, {7292, 16670}, {7296, 16604}, {7496, 37503}, {7738, 15680}, {7754, 17541}, {7760, 18135}, {7762, 33840}, {7772, 16865}, {7787, 16919}, {7839, 16916}, {7894, 18140}, {7920, 17669}, {7921, 33841}, {9310, 28370}, {9599, 17737}, {11111, 14482}, {11114, 15048}, {15246, 36744}, {15484, 17577}, {15851, 25907}, {16020, 17745}, {16371, 21309}, {16418, 22246}, {16487, 59216}, {16503, 17018}, {16517, 27065}, {16589, 41940}, {16780, 34772}, {16783, 19767}, {16785, 38314}, {16787, 33299}, {16816, 31077}, {17012, 56511}, {17025, 21840}, {17126, 17754}, {17579, 18907}, {17691, 18600}, {17697, 26770}, {17744, 30148}, {20088, 33823}, {20331, 21793}, {20980, 47805}, {24621, 45785}, {25947, 38292}, {27523, 56983}, {31400, 37291}, {34283, 39998}, {34625, 38467}, {39521, 47804}, {39798, 39955}

X(63075) = pole of line {6, 21526} with respect to the Stammler hyperbola
X(63075) = pole of line {190, 37223} with respect to the Hutson-Moses hyperbola
X(63075) = pole of line {1125, 56776} with respect to the dual conic of Yff parabola
X(63075) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(25), X(37679)}}, {{A, B, C, X(37), X(47355)}}, {{A, B, C, X(69), X(39975)}}, {{A, B, C, X(141), X(39956)}}, {{A, B, C, X(251), X(4383)}}, {{A, B, C, X(599), X(39982)}}, {{A, B, C, X(940), X(3108)}}, {{A, B, C, X(941), X(3589)}}, {{A, B, C, X(1383), X(37680)}}, {{A, B, C, X(3407), X(17001)}}, {{A, B, C, X(3763), X(39798)}}, {{A, B, C, X(17007), X(60149)}}, {{A, B, C, X(21358), X(39960)}}, {{A, B, C, X(30941), X(47685)}}, {{A, B, C, X(32911), X(39955)}}, {{A, B, C, X(37674), X(39951)}}, {{A, B, C, X(37676), X(39965)}}, {{A, B, C, X(39974), X(47352)}}, {{A, B, C, X(39984), X(40341)}}
X(63075) = barycentric product X(i)*X(j) for these (i, j): {100, 47685}
X(63075) = barycentric quotient X(i)/X(j) for these (i, j): {47685, 693}
X(63075) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16787, 33299, 36565}, {17754, 21764, 17126}


X(63076) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(34545), X(3), X(6))

Barycentrics    a^2*(2*a^4+2*b^4-5*b^2*c^2+2*c^4-4*a^2*(b^2+c^2)) : :

X(63076) lies on these lines: {2, 6}, {4, 11538}, {20, 36753}, {22, 53091}, {23, 9777}, {49, 13472}, {51, 11003}, {143, 38435}, {145, 16472}, {155, 15022}, {182, 53863}, {184, 14002}, {195, 5067}, {251, 39764}, {376, 15037}, {399, 41106}, {567, 10298}, {574, 11588}, {575, 3060}, {576, 62188}, {577, 31626}, {578, 15053}, {588, 1505}, {589, 1504}, {631, 14627}, {1181, 50689}, {1199, 3091}, {1249, 46924}, {1351, 15246}, {1353, 37990}, {1383, 62194}, {1583, 6501}, {1584, 6500}, {1599, 6418}, {1600, 6417}, {2979, 5097}, {3090, 50461}, {3167, 16042}, {3410, 14561}, {3448, 34155}, {3522, 36752}, {3523, 36749}, {3525, 15047}, {3545, 15087}, {3552, 43843}, {3567, 18475}, {3622, 16473}, {3832, 7592}, {3839, 15032}, {3854, 43605}, {3917, 22330}, {4188, 36750}, {4189, 37509}, {5012, 11002}, {5050, 6636}, {5056, 12161}, {5093, 7485}, {5133, 59399}, {5169, 11245}, {5189, 44494}, {5462, 9545}, {5640, 9544}, {5645, 5651}, {5943, 11422}, {6776, 37349}, {6997, 14683}, {7394, 14912}, {7408, 39588}, {7486, 56292}, {7496, 11482}, {7500, 33748}, {7556, 13321}, {7577, 45967}, {7878, 51481}, {9306, 12834}, {9605, 35296}, {9704, 58531}, {9716, 61775}, {10982, 17578}, {11402, 13595}, {11424, 13445}, {11426, 22467}, {11432, 14118}, {11451, 34566}, {11456, 61985}, {12087, 58764}, {12112, 61989}, {13482, 37470}, {13579, 60191}, {15043, 37505}, {15052, 61944}, {15068, 61924}, {15080, 21849}, {15107, 55712}, {15233, 19117}, {15234, 19116}, {15520, 33884}, {15683, 44413}, {15698, 37496}, {15705, 37483}, {15717, 36747}, {15805, 61842}, {15860, 46832}, {16266, 55864}, {16952, 39141}, {17548, 36754}, {17809, 35265}, {18451, 61954}, {18583, 37353}, {19504, 52299}, {21734, 37514}, {21969, 50664}, {22246, 35302}, {23293, 61712}, {23958, 52423}, {26913, 32068}, {30529, 50433}, {30535, 39955}, {30652, 61396}, {30653, 61395}, {31101, 45298}, {32136, 46084}, {33007, 39524}, {33193, 44415}, {35237, 62051}, {35770, 55567}, {35771, 55566}, {36212, 41940}, {36742, 37307}, {37068, 38292}, {37126, 37493}, {37498, 61791}, {41334, 51350}, {44107, 48912}, {44109, 58470}, {54434, 61906}, {54601, 54764}, {61157, 61398}

X(63076) = pole of line {6467, 22330} with respect to the Jerabek hyperbola
X(63076) = pole of line {6, 11614} with respect to the Stammler hyperbola
X(63076) = pole of line {523, 37947} with respect to the Steiner circumellipse
X(63076) = pole of line {3265, 13152} with respect to the dual conic of Orthic inconic
X(63076) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(11588)}}, {{A, B, C, X(4), X(15108)}}, {{A, B, C, X(69), X(11538)}}, {{A, B, C, X(251), X(31489)}}, {{A, B, C, X(1383), X(3055)}}, {{A, B, C, X(2987), X(47355)}}, {{A, B, C, X(3108), X(37637)}}, {{A, B, C, X(3763), X(30535)}}, {{A, B, C, X(3815), X(39955)}}, {{A, B, C, X(45794), X(60191)}}
X(63076) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5422, 1994}, {182, 53863, 62187}, {575, 34565, 3060}, {1994, 5422, 2}, {5012, 11002, 37913}, {5012, 15004, 11002}, {5640, 13366, 9544}, {5943, 44111, 11422}, {15004, 39561, 5012}, {18583, 45968, 37353}


X(63077) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(34803), X(3), X(6))

Barycentrics    a^4+5*b^4-6*b^2*c^2+5*c^4-10*a^2*(b^2+c^2) : :

X(63077) lies on these lines: {2, 6}, {5, 2996}, {32, 32839}, {39, 32972}, {83, 31407}, {114, 148}, {140, 55819}, {194, 5056}, {262, 60260}, {384, 32835}, {439, 7745}, {485, 6463}, {486, 6462}, {547, 22253}, {574, 32827}, {620, 2548}, {1352, 9742}, {1353, 7612}, {1506, 3926}, {1916, 53099}, {1975, 32991}, {2023, 32963}, {3090, 6392}, {3164, 41925}, {3424, 60233}, {3523, 7785}, {3525, 7762}, {3543, 58851}, {3545, 31859}, {3734, 32837}, {3785, 7845}, {3793, 15694}, {3832, 7783}, {3933, 32975}, {3934, 32825}, {5013, 32982}, {5024, 16041}, {5067, 7754}, {5071, 47286}, {5087, 20073}, {5254, 52250}, {5286, 14061}, {5305, 32976}, {6337, 32979}, {6390, 32983}, {6823, 56339}, {7386, 8892}, {7392, 18287}, {7603, 34511}, {7618, 62203}, {7619, 55812}, {7737, 35287}, {7738, 32980}, {7749, 32884}, {7751, 32867}, {7752, 31400}, {7758, 32838}, {7761, 31401}, {7763, 31404}, {7764, 32828}, {7769, 32989}, {7773, 33023}, {7776, 32978}, {7787, 33203}, {7793, 55864}, {7813, 46951}, {7815, 55729}, {7816, 31417}, {7823, 15717}, {7825, 31450}, {7839, 32998}, {7881, 32957}, {7893, 33003}, {7900, 33012}, {7906, 32834}, {7907, 32871}, {7912, 33202}, {7913, 9698}, {7921, 32898}, {7941, 33001}, {8176, 41895}, {8589, 44678}, {8889, 43981}, {9308, 52299}, {9605, 32969}, {10303, 20065}, {11285, 32823}, {12040, 53101}, {12221, 12313}, {12222, 12314}, {13571, 46935}, {14035, 46236}, {14064, 31406}, {14484, 60234}, {14712, 15692}, {15048, 32984}, {15301, 31415}, {15484, 32985}, {16043, 31467}, {16921, 32830}, {16924, 32831}, {17128, 32841}, {17129, 32870}, {17131, 32885}, {18907, 33216}, {19569, 62059}, {19570, 61906}, {20081, 33009}, {20088, 33206}, {21850, 60657}, {27377, 38282}, {30435, 32977}, {32817, 44543}, {32818, 32992}, {32873, 33201}, {32981, 51579}, {33191, 53489}, {33221, 55780}, {37451, 62174}, {40248, 51028}, {43461, 61044}, {54122, 60333}, {60098, 60201}, {60190, 60262}

X(63077) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10155, 2}
X(63077) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {10155, 6327}
X(63077) = pole of line {523, 47278} with respect to the Steiner circumellipse
X(63077) = intersection, other than A, B, C, of circumconics {{A, B, C, X(183), X(60260)}}, {{A, B, C, X(193), X(14494)}}, {{A, B, C, X(230), X(5395)}}, {{A, B, C, X(262), X(37667)}}, {{A, B, C, X(385), X(53099)}}, {{A, B, C, X(2996), X(34229)}}, {{A, B, C, X(3424), X(17004)}}, {{A, B, C, X(3620), X(8781)}}, {{A, B, C, X(5304), X(60098)}}, {{A, B, C, X(7610), X(41895)}}, {{A, B, C, X(7774), X(60333)}}, {{A, B, C, X(9740), X(10484)}}, {{A, B, C, X(11160), X(60211)}}, {{A, B, C, X(11168), X(60200)}}, {{A, B, C, X(14484), X(17008)}}, {{A, B, C, X(15271), X(60285)}}, {{A, B, C, X(15589), X(60234)}}, {{A, B, C, X(16990), X(60262)}}, {{A, B, C, X(17006), X(60102)}}, {{A, B, C, X(23055), X(53101)}}, {{A, B, C, X(37668), X(60233)}}, {{A, B, C, X(37689), X(60190)}}, {{A, B, C, X(51171), X(60096)}}, {{A, B, C, X(54509), X(61304)}}
X(63077) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 325, 3620}, {1007, 3815, 2}, {1506, 3926, 32987}, {2548, 32829, 32973}, {2548, 32973, 5395}, {7752, 31400, 32974}, {7763, 31404, 32971}, {7906, 32999, 32834}, {31401, 32816, 32990}, {31401, 32990, 55797}


X(63078) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37634), X(3), X(6))

Barycentrics    3*a^3+a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2-4*b*c+c^2) : :

X(63078) lies on these lines: {1, 6910}, {2, 6}, {4, 60615}, {7, 33133}, {8, 5955}, {37, 55868}, {57, 16548}, {58, 2478}, {63, 4656}, {89, 17483}, {171, 3434}, {344, 56520}, {354, 26228}, {377, 5292}, {386, 6921}, {387, 404}, {388, 54355}, {443, 24883}, {452, 16948}, {497, 5348}, {581, 6962}, {631, 19767}, {750, 33137}, {938, 27407}, {967, 50400}, {1060, 5262}, {1191, 10586}, {1203, 10200}, {1214, 4850}, {1386, 17728}, {1449, 31231}, {1468, 3436}, {1714, 37462}, {1723, 55870}, {1751, 60169}, {1788, 17016}, {1834, 4190}, {1995, 5324}, {1999, 17740}, {2476, 4340}, {2550, 33142}, {2999, 6505}, {3086, 57280}, {3240, 59572}, {3306, 24175}, {3315, 51408}, {3474, 33134}, {3475, 29665}, {3600, 51421}, {3664, 31266}, {3772, 37520}, {3911, 5256}, {3920, 24477}, {3974, 33170}, {4000, 27003}, {4252, 6872}, {4307, 11680}, {4358, 26065}, {4387, 59574}, {4415, 20078}, {4641, 31018}, {4644, 31053}, {4860, 17061}, {5218, 17018}, {5230, 24591}, {5269, 26015}, {5272, 61647}, {5287, 5745}, {5294, 30567}, {5396, 6880}, {5398, 6947}, {5437, 26723}, {5657, 17015}, {5706, 6890}, {5707, 6833}, {5710, 10529}, {5711, 10527}, {5713, 6860}, {5744, 28606}, {5905, 17720}, {6354, 21454}, {6734, 37554}, {6834, 36742}, {6836, 37530}, {6838, 36746}, {6856, 26131}, {6862, 45931}, {6871, 49745}, {6925, 37469}, {6933, 45939}, {6959, 36750}, {6967, 36754}, {9776, 33129}, {9965, 33151}, {10327, 33121}, {10589, 33107}, {11679, 19822}, {12649, 37539}, {13478, 60156}, {14986, 27506}, {16045, 29560}, {16371, 48847}, {16434, 44094}, {16469, 31249}, {16474, 45701}, {16478, 28074}, {16670, 20196}, {17021, 62215}, {17022, 54357}, {17074, 54366}, {17127, 26105}, {17314, 33168}, {17316, 33113}, {17367, 27002}, {19825, 55095}, {20075, 37540}, {21255, 56522}, {23958, 33155}, {24210, 44447}, {24593, 32774}, {24624, 60076}, {24627, 29841}, {26034, 29635}, {26040, 33139}, {26098, 29662}, {26223, 28808}, {26363, 37559}, {26738, 41825}, {29590, 49777}, {29649, 33163}, {29681, 38053}, {29683, 33144}, {29845, 50295}, {29849, 50284}, {29864, 33086}, {31156, 52680}, {31164, 62240}, {32779, 34255}, {32853, 58443}, {33140, 37604}, {35996, 36740}, {36277, 40998}, {36404, 61688}, {37366, 37492}, {37449, 37538}, {37521, 40952}, {37543, 43043}, {39962, 56043}, {52258, 54429}, {54358, 61019}, {55962, 57722}, {60085, 60155}

X(63078) = pole of line {1125, 1478} with respect to the dual conic of Yff parabola
X(63078) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(5741)}}, {{A, B, C, X(57), X(26637)}}, {{A, B, C, X(69), X(60615)}}, {{A, B, C, X(3936), X(60076)}}, {{A, B, C, X(4417), X(60156)}}, {{A, B, C, X(5233), X(60155)}}, {{A, B, C, X(5278), X(55962)}}, {{A, B, C, X(5739), X(13478)}}, {{A, B, C, X(14555), X(24624)}}, {{A, B, C, X(15474), X(26638)}}, {{A, B, C, X(18134), X(60169)}}, {{A, B, C, X(24557), X(39962)}}, {{A, B, C, X(30828), X(57722)}}, {{A, B, C, X(37660), X(40160)}}
X(63078) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 5741}, {2, 5361, 966}


X(63079) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37640), X(3), X(6))

Barycentrics    2*sqrt(3)*a^2+S : :

X(63079) lies on these lines: {2, 6}, {3, 42633}, {4, 42974}, {5, 22237}, {13, 3839}, {14, 3091}, {15, 10304}, {16, 15692}, {17, 7486}, {18, 46936}, {20, 61}, {30, 42922}, {62, 3523}, {376, 11485}, {397, 3146}, {398, 3832}, {465, 38292}, {466, 15851}, {470, 5702}, {472, 40065}, {473, 1249}, {547, 42817}, {616, 41620}, {631, 42805}, {1080, 14912}, {1285, 35931}, {1587, 42244}, {1588, 42245}, {1656, 42497}, {1743, 53588}, {2043, 7581}, {2044, 7582}, {2307, 3600}, {2981, 52187}, {3090, 42988}, {3389, 42522}, {3390, 42523}, {3412, 42149}, {3522, 22236}, {3524, 11486}, {3528, 42924}, {3529, 42925}, {3534, 43481}, {3543, 5335}, {3545, 11542}, {3845, 42815}, {3854, 42166}, {3860, 33603}, {4232, 8739}, {5054, 42634}, {5055, 42496}, {5056, 37832}, {5059, 42147}, {5066, 42816}, {5067, 42989}, {5068, 42156}, {5071, 11543}, {5237, 61788}, {5238, 62067}, {5281, 7127}, {5286, 41746}, {5318, 50687}, {5319, 22114}, {5321, 43364}, {5339, 50689}, {5340, 17578}, {5343, 42162}, {5344, 16964}, {5351, 42435}, {5352, 58188}, {5365, 42813}, {5366, 42160}, {5395, 11122}, {5749, 40713}, {6151, 52188}, {6395, 15764}, {6417, 18585}, {6418, 15765}, {6770, 14853}, {6771, 15520}, {6773, 41070}, {6774, 22234}, {6995, 8740}, {7714, 11408}, {7787, 46709}, {9112, 51482}, {9113, 59379}, {9605, 37173}, {10124, 42916}, {10303, 16242}, {10645, 42510}, {10646, 61781}, {11001, 42118}, {11179, 16941}, {11480, 62063}, {11481, 15705}, {11539, 43464}, {12103, 43639}, {12816, 54581}, {12821, 42905}, {14136, 51200}, {14893, 42923}, {14986, 54402}, {15022, 42153}, {15640, 41107}, {15682, 42117}, {15683, 42119}, {15688, 52079}, {15694, 43463}, {15697, 36968}, {15698, 42115}, {15699, 42818}, {15702, 42124}, {15703, 42627}, {15708, 16962}, {15709, 42121}, {15713, 43197}, {15717, 22238}, {15719, 43493}, {15721, 16241}, {16267, 18581}, {16268, 16960}, {16667, 30415}, {16772, 61820}, {16773, 61834}, {16808, 41113}, {16809, 41119}, {16963, 42092}, {16965, 49135}, {16967, 61897}, {16981, 36978}, {18582, 42896}, {18586, 19116}, {18587, 19117}, {19106, 42799}, {19708, 42116}, {21309, 35304}, {21466, 40578}, {21467, 36298}, {21734, 36836}, {22491, 33560}, {22580, 44839}, {30435, 37172}, {33602, 54580}, {33748, 36757}, {34200, 52080}, {34754, 41100}, {34755, 61796}, {35434, 42888}, {36436, 42204}, {36454, 42203}, {36843, 61791}, {36970, 41112}, {37340, 43136}, {37795, 61330}, {37835, 43309}, {41099, 42128}, {41101, 42086}, {41106, 42125}, {41108, 42133}, {41120, 42506}, {41121, 49873}, {41122, 42114}, {41407, 51485}, {41621, 51483}, {41745, 61319}, {41943, 42089}, {41974, 42429}, {42087, 62148}, {42088, 62129}, {42090, 62122}, {42091, 62112}, {42093, 61992}, {42094, 62005}, {42095, 61927}, {42096, 62051}, {42097, 42588}, {42098, 42777}, {42099, 58204}, {42102, 62002}, {42103, 43419}, {42107, 42479}, {42110, 61952}, {42111, 49907}, {42113, 46335}, {42120, 42942}, {42122, 62130}, {42126, 62017}, {42127, 62042}, {42129, 61895}, {42130, 62161}, {42131, 46333}, {42132, 42987}, {42135, 43110}, {42136, 62011}, {42137, 62029}, {42138, 61980}, {42139, 42898}, {42140, 42941}, {42141, 62048}, {42142, 61954}, {42143, 61926}, {42144, 62049}, {42145, 43108}, {42146, 61932}, {42148, 42626}, {42151, 42529}, {42157, 49140}, {42159, 42992}, {42161, 50691}, {42163, 42494}, {42164, 50690}, {42165, 43770}, {42419, 62019}, {42420, 62077}, {42431, 43009}, {42434, 43646}, {42489, 43544}, {42501, 43238}, {42507, 42914}, {42517, 43297}, {42545, 43486}, {42589, 43402}, {42598, 42778}, {42625, 62095}, {42628, 61887}, {42775, 43557}, {42776, 43773}, {42792, 62054}, {42796, 58186}, {42806, 61795}, {42889, 62033}, {42891, 42966}, {42915, 49903}, {42917, 47598}, {42933, 42976}, {42936, 43200}, {42944, 61816}, {42945, 61804}, {42950, 61898}, {42951, 61896}, {42963, 43207}, {42968, 62041}, {42973, 62003}, {42984, 61879}, {42985, 43446}, {43033, 61994}, {43102, 61866}, {43103, 61865}, {43109, 62115}, {43193, 62124}, {43194, 43496}, {43198, 61851}, {43201, 43474}, {43208, 61918}, {43233, 61863}, {43239, 43428}, {43253, 61962}, {43310, 62166}, {43447, 55857}, {43473, 56616}, {43495, 62102}, {43553, 43556}, {43554, 61889}, {43555, 61886}, {43630, 62158}, {43631, 62137}, {43634, 62143}, {43635, 62107}, {43640, 62089}, {43777, 44903}, {43778, 62027}, {44017, 62110}, {44019, 49860}, {47857, 59378}

X(63079) = X(i)-complementary conjugate of X(j) for these {i, j}: {43552, 2887}
X(63079) = pole of line {2, 42088} with respect to the Kiepert hyperbola
X(63079) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43540)}}, {{A, B, C, X(298), X(43541)}}, {{A, B, C, X(299), X(22235)}}, {{A, B, C, X(395), X(52188)}}, {{A, B, C, X(396), X(52187)}}, {{A, B, C, X(3620), X(11122)}}
X(63079) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 42972, 42106}, {13, 5334, 3839}, {14, 40693, 43403}, {14, 43403, 3091}, {61, 42990, 42150}, {61, 42998, 20}, {299, 3618, 2}, {3091, 40693, 22235}, {3543, 10654, 43466}, {3839, 42982, 13}, {3839, 43541, 43365}, {3839, 5334, 43541}, {5335, 10654, 3543}, {5343, 42162, 61982}, {5344, 16964, 50688}, {10654, 61719, 5335}, {11486, 42912, 3524}, {11542, 42975, 3545}, {15697, 43242, 36968}, {16268, 16960, 42911}, {18582, 43404, 61936}, {36968, 49875, 43242}, {36970, 41112, 42134}, {36970, 42134, 62007}, {41101, 49826, 62160}, {41107, 49876, 15640}, {41108, 49825, 61989}, {41113, 49874, 61966}, {41119, 49824, 61958}, {41121, 49873, 61943}, {42119, 42155, 15683}, {42120, 42942, 62120}, {42128, 43417, 41099}, {42134, 49827, 36970}, {42134, 62007, 43477}, {42140, 42941, 62032}, {42162, 42991, 5343}, {42165, 43770, 50692}, {42511, 49875, 15697}, {42529, 42800, 42151}, {42779, 42991, 42162}, {42803, 62160, 43243}, {42983, 61936, 43404}, {42999, 43403, 14}, {43007, 43418, 16964}, {43194, 43769, 62152}, {43496, 62152, 43194}


X(63080) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37641), X(3), X(6))

Barycentrics    2*sqrt(3)*a^2-S : :

X(63080) lies on these lines: {2, 6}, {3, 42634}, {4, 42975}, {5, 22235}, {13, 3091}, {14, 3839}, {15, 15692}, {16, 10304}, {17, 46936}, {18, 7486}, {20, 62}, {30, 42923}, {61, 3523}, {376, 11486}, {383, 14912}, {390, 7127}, {397, 3832}, {398, 3146}, {465, 15851}, {466, 38292}, {471, 5702}, {472, 1249}, {473, 40065}, {547, 42818}, {617, 41621}, {631, 42806}, {1285, 35932}, {1587, 42242}, {1588, 42243}, {1656, 42496}, {1743, 53589}, {2043, 7582}, {2044, 7581}, {2307, 5265}, {2981, 52188}, {3090, 42989}, {3364, 42522}, {3365, 42523}, {3411, 42152}, {3522, 22238}, {3524, 11485}, {3528, 42925}, {3529, 42924}, {3534, 43482}, {3543, 5334}, {3545, 11543}, {3845, 42816}, {3854, 42163}, {3860, 33602}, {4232, 8740}, {5054, 42633}, {5055, 42497}, {5056, 37835}, {5059, 42148}, {5066, 42815}, {5067, 42988}, {5068, 42153}, {5071, 11542}, {5237, 62067}, {5238, 61788}, {5286, 41745}, {5318, 43365}, {5319, 22113}, {5321, 50687}, {5339, 17578}, {5340, 50689}, {5343, 16965}, {5344, 42159}, {5351, 58188}, {5352, 42436}, {5365, 42161}, {5366, 42814}, {5395, 11121}, {5749, 40714}, {6151, 52187}, {6199, 15764}, {6417, 15765}, {6418, 18585}, {6770, 41071}, {6771, 22234}, {6773, 14853}, {6774, 15520}, {6782, 59409}, {6995, 8739}, {7714, 11409}, {7787, 46708}, {9112, 59378}, {9113, 51483}, {9542, 51728}, {9605, 37172}, {10124, 42917}, {10303, 16241}, {10645, 61781}, {10646, 42511}, {11001, 42117}, {11179, 16940}, {11480, 15705}, {11481, 62063}, {11539, 43463}, {12103, 43640}, {12817, 54580}, {12820, 42904}, {14137, 51203}, {14893, 42922}, {14986, 54403}, {15022, 42156}, {15640, 41108}, {15682, 42118}, {15683, 42120}, {15688, 52080}, {15694, 43464}, {15697, 36967}, {15698, 42116}, {15699, 42817}, {15702, 42121}, {15703, 42628}, {15708, 16963}, {15709, 42124}, {15713, 43198}, {15717, 22236}, {15719, 43494}, {15721, 16242}, {16267, 16961}, {16268, 18582}, {16667, 30414}, {16772, 61834}, {16773, 61820}, {16808, 41120}, {16809, 41112}, {16962, 42089}, {16964, 49135}, {16966, 61897}, {16981, 36980}, {18581, 42897}, {18586, 19117}, {18587, 19116}, {19107, 42800}, {19708, 42115}, {21309, 35303}, {21466, 36299}, {21467, 40579}, {21734, 36843}, {22492, 33561}, {22579, 44839}, {30435, 37173}, {33603, 54581}, {33748, 36758}, {34200, 52079}, {34754, 61796}, {34755, 41101}, {35434, 42889}, {36436, 42205}, {36454, 42206}, {36836, 61791}, {36969, 41113}, {37341, 43136}, {37794, 61330}, {37832, 43308}, {41099, 42125}, {41100, 42085}, {41106, 42128}, {41107, 42134}, {41119, 42507}, {41121, 42111}, {41122, 49874}, {41406, 51484}, {41620, 51482}, {41746, 61320}, {41944, 42092}, {41973, 42430}, {42087, 62129}, {42088, 62148}, {42090, 62112}, {42091, 62122}, {42093, 62005}, {42094, 61992}, {42095, 42778}, {42096, 42589}, {42097, 62051}, {42098, 61927}, {42100, 58204}, {42101, 62002}, {42106, 43418}, {42107, 61952}, {42110, 42478}, {42112, 46334}, {42114, 49908}, {42119, 42943}, {42123, 62130}, {42126, 62042}, {42127, 62017}, {42129, 42986}, {42130, 46333}, {42131, 62161}, {42132, 61895}, {42135, 61980}, {42136, 62029}, {42137, 62011}, {42138, 43111}, {42139, 61954}, {42140, 62048}, {42141, 42940}, {42142, 42899}, {42143, 61932}, {42144, 43109}, {42145, 62049}, {42146, 61926}, {42147, 42625}, {42150, 42528}, {42158, 49140}, {42160, 50691}, {42162, 42993}, {42164, 43769}, {42165, 50690}, {42166, 42495}, {42419, 62077}, {42420, 62019}, {42432, 43008}, {42433, 43645}, {42488, 43545}, {42500, 43239}, {42506, 42915}, {42516, 43296}, {42546, 43485}, {42588, 43401}, {42599, 42777}, {42626, 62095}, {42627, 61887}, {42775, 43774}, {42776, 43556}, {42791, 62054}, {42795, 58186}, {42805, 61795}, {42888, 62033}, {42890, 42967}, {42914, 49904}, {42916, 47598}, {42932, 42977}, {42937, 43199}, {42944, 61804}, {42945, 61816}, {42950, 61896}, {42951, 61898}, {42962, 43208}, {42969, 62041}, {42972, 62003}, {42984, 43447}, {42985, 61879}, {43032, 61994}, {43102, 61865}, {43103, 61866}, {43108, 62115}, {43193, 43495}, {43194, 62124}, {43197, 61851}, {43202, 43473}, {43207, 61918}, {43232, 61863}, {43238, 43429}, {43252, 61962}, {43311, 62166}, {43446, 55857}, {43474, 56617}, {43496, 62102}, {43552, 43557}, {43554, 61886}, {43555, 61889}, {43630, 62137}, {43631, 62158}, {43634, 62107}, {43635, 62143}, {43639, 62089}, {43777, 62027}, {43778, 44903}, {44018, 62110}, {44020, 49859}, {47858, 59379}

X(63080) = X(i)-complementary conjugate of X(j) for these {i, j}: {43553, 2887}
X(63080) = pole of line {2, 42087} with respect to the Kiepert hyperbola
X(63080) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(43541)}}, {{A, B, C, X(298), X(22237)}}, {{A, B, C, X(299), X(43540)}}, {{A, B, C, X(395), X(52187)}}, {{A, B, C, X(396), X(52188)}}, {{A, B, C, X(3620), X(11121)}}
X(63080) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 40694, 43404}, {13, 43404, 3091}, {14, 42973, 42103}, {14, 5335, 3839}, {62, 42991, 42151}, {62, 42999, 20}, {298, 3618, 2}, {3091, 40694, 22237}, {3543, 10653, 43465}, {3839, 42983, 14}, {3839, 43540, 43364}, {3839, 5335, 43540}, {5334, 10653, 3543}, {5343, 16965, 50688}, {5344, 42159, 61982}, {11485, 42913, 3524}, {11543, 42974, 3545}, {15697, 43243, 36967}, {16267, 16961, 42910}, {18581, 43403, 61936}, {18581, 61719, 43403}, {36967, 49876, 43243}, {36969, 41113, 42133}, {36969, 42133, 62007}, {41100, 49827, 62160}, {41107, 49824, 61989}, {41108, 49875, 15640}, {41112, 49873, 61966}, {41120, 49825, 61958}, {41122, 49874, 61943}, {42119, 42943, 62120}, {42120, 42154, 15683}, {42125, 43416, 41099}, {42133, 49826, 36969}, {42133, 62007, 43478}, {42141, 42940, 62032}, {42159, 42990, 5344}, {42164, 43769, 50692}, {42510, 49876, 15697}, {42528, 42799, 42150}, {42780, 42990, 42159}, {42804, 43242, 41100}, {42804, 62160, 43242}, {42998, 43404, 13}, {43006, 43419, 16965}, {43193, 43770, 62152}, {43403, 61719, 42982}, {43495, 62152, 43193}


X(63081) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37643), X(3), X(6))

Barycentrics    a^6+7*a^2*(b^2-c^2)^2-5*a^4*(b^2+c^2)-3*(b^2-c^2)^2*(b^2+c^2) : :

X(63081) lies on these lines: {2, 6}, {4, 3426}, {20, 11438}, {25, 18950}, {51, 7378}, {74, 12828}, {111, 40867}, {125, 10752}, {146, 3839}, {185, 54039}, {373, 40330}, {376, 47582}, {389, 3091}, {393, 43462}, {399, 18932}, {441, 21309}, {459, 60161}, {468, 14912}, {578, 10303}, {1192, 50693}, {1285, 40884}, {1351, 16051}, {1368, 44456}, {1384, 37188}, {1494, 52187}, {1495, 4232}, {1503, 31860}, {1585, 23267}, {1586, 23273}, {1589, 6221}, {1590, 6398}, {1620, 62078}, {1853, 7409}, {1899, 6995}, {1986, 12099}, {1995, 5921}, {2052, 8796}, {2996, 34289}, {3060, 7396}, {3088, 26879}, {3089, 11456}, {3090, 11432}, {3146, 9786}, {3431, 35486}, {3448, 41737}, {3522, 12241}, {3523, 11430}, {3525, 11426}, {3542, 15032}, {3543, 18390}, {3549, 15037}, {3564, 40132}, {3617, 44547}, {3832, 61700}, {5068, 12233}, {5093, 5159}, {5094, 61657}, {5261, 19366}, {5274, 11436}, {5286, 14918}, {5334, 6110}, {5335, 6111}, {5395, 60256}, {5643, 43841}, {5644, 11548}, {5650, 44495}, {5651, 44489}, {5890, 6623}, {6193, 43586}, {6199, 55885}, {6200, 55893}, {6353, 11245}, {6395, 55890}, {6396, 55897}, {6676, 55705}, {6677, 63174}, {6723, 15520}, {7386, 33878}, {7392, 18358}, {7398, 10545}, {7400, 41587}, {7408, 17810}, {7486, 11431}, {7487, 18912}, {7494, 12017}, {7500, 48912}, {8550, 35260}, {8889, 9777}, {10008, 11059}, {10300, 55584}, {10304, 15360}, {10519, 41586}, {10565, 15080}, {10691, 55604}, {11002, 19161}, {11179, 32223}, {11206, 41424}, {11225, 59543}, {11402, 38282}, {11424, 58378}, {11425, 61820}, {11444, 46363}, {11746, 15431}, {12007, 61680}, {12022, 37460}, {12324, 15873}, {13192, 40853}, {13568, 17578}, {14165, 40138}, {14361, 52280}, {15068, 18951}, {15106, 18947}, {15708, 44673}, {16063, 61044}, {16080, 60193}, {16657, 18931}, {16981, 37473}, {18388, 61936}, {18538, 55881}, {18762, 55882}, {18952, 31305}, {20192, 51023}, {21970, 48906}, {22467, 45045}, {23249, 55573}, {23259, 55569}, {25406, 32269}, {26255, 46818}, {32068, 55710}, {32621, 47449}, {33522, 55646}, {33630, 56296}, {33884, 50649}, {34621, 35237}, {37122, 43808}, {37174, 40814}, {37470, 61113}, {37489, 41465}, {37505, 61863}, {37802, 56891}, {39899, 44212}, {40911, 46336}, {41715, 58483}, {41724, 54013}, {44109, 61645}, {47597, 50974}, {50664, 61646}, {51360, 54132}, {52290, 61690}, {53096, 55982}, {53101, 58268}, {53857, 61712}, {54710, 54893}, {55712, 58447}, {60225, 60647}

X(63081) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 18852}
X(63081) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 18852}
X(63081) = X(i)-complementary conjugate of X(j) for these {i, j}: {3531, 18589}
X(63081) = pole of line {9007, 44445} with respect to the anticomplementary circle
X(63081) = pole of line {2501, 9007} with respect to the polar circle
X(63081) = pole of line {6467, 32062} with respect to the Jerabek hyperbola
X(63081) = pole of line {3566, 9209} with respect to the Orthic inconic
X(63081) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(56270)}}, {{A, B, C, X(193), X(34289)}}, {{A, B, C, X(394), X(3426)}}, {{A, B, C, X(2996), X(15066)}}, {{A, B, C, X(3620), X(60256)}}, {{A, B, C, X(5395), X(37645)}}, {{A, B, C, X(11064), X(45088)}}, {{A, B, C, X(14389), X(60647)}}, {{A, B, C, X(37669), X(52452)}}, {{A, B, C, X(40112), X(53101)}}
X(63081) = barycentric quotient X(i)/X(j) for these (i, j): {4, 18852}
X(63081) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 23291, 7378}, {125, 14853, 52284}, {6776, 61506, 4232}, {17810, 32064, 7408}, {18358, 62209, 7392}, {41586, 54012, 10519}, {46336, 62174, 40911}


X(63082) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37645), X(3), X(6))

Barycentrics    5*a^6-9*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-2*b^2*c^2+3*c^4) : :

X(63082) lies on these lines: {2, 6}, {4, 43595}, {20, 54}, {23, 47571}, {49, 37122}, {94, 60193}, {110, 14853}, {113, 3839}, {146, 15472}, {184, 7500}, {427, 39899}, {468, 5093}, {568, 35486}, {576, 32223}, {858, 14912}, {1199, 3546}, {1351, 7493}, {1353, 5094}, {1370, 11402}, {1493, 34514}, {1495, 20423}, {1514, 50687}, {2003, 56448}, {2323, 56449}, {2914, 12317}, {2987, 7664}, {2996, 7578}, {3091, 5654}, {3146, 18925}, {3147, 37493}, {3167, 6997}, {3292, 14561}, {3448, 32234}, {3522, 37497}, {3523, 5447}, {3541, 12161}, {3542, 36749}, {3796, 48881}, {3818, 34986}, {3832, 14516}, {4232, 6403}, {5050, 46336}, {5097, 61506}, {5102, 32269}, {5133, 63174}, {5169, 5921}, {5395, 60255}, {5651, 44300}, {5702, 62628}, {5972, 15520}, {6090, 18583}, {6353, 61655}, {6776, 11422}, {6800, 51212}, {6816, 11426}, {6995, 9544}, {7383, 16266}, {7398, 7693}, {7404, 56292}, {7487, 9545}, {7492, 61044}, {7544, 12318}, {7739, 51372}, {8796, 46924}, {8889, 45968}, {9777, 59553}, {10304, 10564}, {10519, 23061}, {10565, 62187}, {11179, 51360}, {11284, 59399}, {11442, 55038}, {11477, 13394}, {11547, 32002}, {11898, 37454}, {12160, 44683}, {13579, 60161}, {14683, 14982}, {14920, 62213}, {15004, 59543}, {15087, 44441}, {15107, 54132}, {15692, 37470}, {15717, 37475}, {17086, 20078}, {17809, 48905}, {18533, 34397}, {18950, 30744}, {21850, 26864}, {22128, 56447}, {30739, 53091}, {31133, 39874}, {31383, 48895}, {31723, 55039}, {31857, 32125}, {31860, 35266}, {34787, 35260}, {35254, 37506}, {35265, 52301}, {36747, 59349}, {37174, 37766}, {37192, 56297}, {37511, 62188}, {39522, 46817}, {39561, 54012}, {40138, 46106}, {40911, 40913}, {41231, 52713}, {43957, 55705}, {44109, 46264}, {44210, 44456}, {52288, 56016}, {53101, 55957}, {54783, 54892}, {55566, 56499}, {55567, 56500}, {55911, 62246}

X(63082) = pole of line {6, 5891} with respect to the Stammler hyperbola
X(63082) = pole of line {523, 62438} with respect to the Steiner circumellipse
X(63082) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(54), X(15066)}}, {{A, B, C, X(193), X(7578)}}, {{A, B, C, X(323), X(60193)}}, {{A, B, C, X(343), X(4846)}}, {{A, B, C, X(3620), X(60255)}}, {{A, B, C, X(5395), X(37644)}}, {{A, B, C, X(15018), X(60647)}}, {{A, B, C, X(28708), X(60872)}}, {{A, B, C, X(44555), X(53101)}}, {{A, B, C, X(45794), X(60161)}}
X(63082) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1351, 61690, 7493}, {3292, 14561, 54013}


X(63083) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37647), X(3), X(6))

Barycentrics    a^4+3*b^4-4*b^2*c^2+3*c^4-6*a^2*(b^2+c^2) : :

X(63083) lies on these lines: {2, 6}, {4, 60233}, {5, 31859}, {32, 33000}, {39, 32961}, {76, 32999}, {99, 31415}, {140, 20065}, {148, 3545}, {192, 10589}, {194, 3090}, {262, 60234}, {274, 33052}, {315, 31455}, {316, 33008}, {330, 10588}, {384, 31404}, {538, 53127}, {574, 33017}, {576, 9754}, {620, 33255}, {625, 33251}, {631, 7785}, {1078, 33003}, {1506, 3734}, {1655, 6931}, {1656, 22253}, {1916, 14494}, {1975, 32962}, {2548, 3972}, {2549, 33006}, {2896, 32823}, {2996, 15022}, {3053, 33206}, {3091, 7783}, {3146, 8719}, {3523, 7823}, {3524, 14712}, {3525, 7793}, {3526, 7762}, {3628, 7754}, {3767, 32998}, {3785, 7941}, {3788, 16898}, {3793, 11539}, {3926, 16921}, {5013, 14063}, {5024, 33228}, {5025, 31400}, {5050, 40336}, {5055, 47286}, {5254, 32963}, {5283, 33053}, {5286, 32967}, {5395, 33205}, {5475, 32456}, {6337, 16044}, {6390, 44543}, {6392, 7486}, {6656, 31467}, {6721, 36849}, {6781, 7622}, {6856, 27318}, {7603, 11185}, {7608, 54122}, {7618, 52942}, {7738, 32966}, {7739, 14061}, {7745, 32964}, {7747, 33254}, {7750, 33012}, {7752, 7791}, {7757, 43620}, {7764, 17131}, {7773, 32965}, {7775, 14907}, {7782, 33280}, {7784, 33258}, {7787, 32970}, {7789, 33269}, {7797, 32969}, {7800, 7814}, {7803, 7862}, {7812, 21843}, {7824, 32816}, {7833, 32827}, {7836, 32968}, {7842, 31457}, {7847, 31450}, {7851, 9606}, {7864, 32972}, {7885, 32990}, {7887, 31406}, {7891, 32835}, {7898, 33215}, {7906, 16922}, {7907, 32839}, {7912, 16043}, {7921, 16923}, {7923, 33199}, {7932, 32955}, {7938, 32960}, {7945, 16045}, {8716, 18584}, {8781, 60190}, {9544, 19156}, {9605, 33249}, {9744, 58849}, {10155, 60128}, {10583, 33189}, {10754, 14561}, {11165, 47287}, {11288, 53489}, {11317, 12040}, {13571, 61886}, {13860, 39884}, {13881, 33270}, {14031, 59545}, {15484, 35297}, {15698, 19569}, {15815, 32997}, {16333, 30745}, {17128, 32831}, {17129, 32838}, {18841, 60231}, {19570, 61899}, {23333, 31074}, {27377, 37453}, {31276, 32818}, {31407, 33245}, {31417, 62362}, {32006, 33004}, {32459, 33187}, {32815, 33013}, {32819, 32995}, {32871, 32989}, {32957, 46226}, {33009, 59635}, {33193, 53418}, {33207, 53095}, {33253, 37512}, {34604, 46453}, {37182, 43461}, {40824, 60098}, {41622, 42786}, {42010, 60268}, {53099, 60260}, {54487, 60240}, {55819, 61848}, {60096, 60232}

X(63083) = X(i)-Ceva conjugate of X(j) for these {i, j}: {11669, 2}
X(63083) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {11669, 6327}
X(63083) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17004)}}, {{A, B, C, X(69), X(60233)}}, {{A, B, C, X(183), X(60234)}}, {{A, B, C, X(193), X(60333)}}, {{A, B, C, X(230), X(60190)}}, {{A, B, C, X(262), X(17008)}}, {{A, B, C, X(385), X(14494)}}, {{A, B, C, X(1916), X(34229)}}, {{A, B, C, X(3619), X(60231)}}, {{A, B, C, X(7608), X(7774)}}, {{A, B, C, X(7612), X(17006)}}, {{A, B, C, X(7735), X(60098)}}, {{A, B, C, X(7777), X(10155)}}, {{A, B, C, X(8587), X(23053)}}, {{A, B, C, X(8781), X(16990)}}, {{A, B, C, X(8859), X(60268)}}, {{A, B, C, X(15271), X(60232)}}, {{A, B, C, X(16984), X(18841)}}, {{A, B, C, X(16989), X(60096)}}, {{A, B, C, X(17005), X(53098)}}, {{A, B, C, X(18575), X(40341)}}, {{A, B, C, X(23055), X(54487)}}, {{A, B, C, X(37667), X(53099)}}, {{A, B, C, X(37688), X(54122)}}, {{A, B, C, X(42010), X(42850)}}
X(63083) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7777, 7774}, {99, 31415, 33016}, {183, 3055, 2}, {315, 31455, 33001}, {1506, 7763, 16924}, {2548, 7769, 16925}, {7603, 11185, 33005}, {7752, 31401, 7791}, {7803, 7862, 33248}, {7862, 9698, 7803}, {7906, 16922, 32828}, {31404, 32829, 384}, {32818, 32975, 31276}, {32823, 32978, 2896}, {32831, 32987, 17128}, {32835, 32971, 7891}


X(63084) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37648), X(3), X(6))

Barycentrics    a^6-3*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-10*b^2*c^2+3*c^4) : :

X(63084) lies on these lines: {2, 6}, {3, 47582}, {4, 4846}, {5, 18916}, {20, 16657}, {23, 25406}, {25, 45298}, {51, 1370}, {83, 60256}, {110, 14912}, {113, 3545}, {125, 9970}, {146, 974}, {182, 7493}, {265, 9826}, {275, 46927}, {316, 50387}, {317, 52147}, {324, 6819}, {373, 1352}, {376, 15053}, {389, 6816}, {458, 41370}, {459, 40393}, {468, 5050}, {511, 46336}, {569, 3147}, {631, 13352}, {858, 14853}, {914, 8257}, {1199, 18934}, {1351, 30739}, {1353, 6090}, {1368, 9777}, {1495, 11179}, {1503, 3066}, {1514, 3839}, {1531, 16226}, {1656, 18951}, {1899, 3818}, {1995, 6776}, {3060, 7386}, {3090, 5449}, {3091, 18909}, {3146, 11745}, {3153, 16227}, {3448, 14982}, {3523, 37497}, {3524, 10564}, {3542, 36752}, {3564, 11284}, {3567, 6643}, {3832, 12324}, {4232, 6800}, {4254, 21494}, {4993, 19166}, {5012, 6353}, {5015, 5554}, {5020, 11245}, {5034, 6388}, {5067, 11487}, {5085, 32269}, {5094, 18583}, {5133, 23291}, {5159, 59399}, {5169, 20300}, {5189, 51538}, {5395, 56270}, {5480, 31099}, {5645, 15131}, {5651, 61712}, {5702, 14920}, {5889, 6804}, {5890, 18537}, {5946, 18531}, {5965, 16187}, {5972, 39561}, {6225, 7729}, {6390, 37344}, {6504, 37874}, {6604, 17484}, {6639, 15047}, {6677, 11402}, {6688, 43150}, {6699, 12828}, {6803, 15028}, {6805, 13428}, {6806, 13439}, {6815, 39571}, {7321, 54284}, {7383, 15805}, {7392, 11442}, {7394, 7693}, {7395, 44683}, {7401, 15024}, {7404, 26879}, {7484, 41588}, {7500, 17810}, {7519, 14927}, {7527, 18931}, {7528, 15026}, {7533, 51537}, {7544, 43816}, {7739, 51389}, {8550, 35259}, {8889, 12834}, {9306, 32068}, {9729, 37201}, {9781, 34938}, {9969, 41256}, {10272, 19456}, {10519, 40916}, {10545, 39874}, {11002, 16063}, {11003, 35260}, {11185, 40814}, {11206, 13595}, {12007, 61507}, {12017, 21970}, {12325, 61881}, {12827, 18932}, {13366, 59543}, {13394, 53093}, {13575, 60872}, {14061, 39833}, {14826, 45968}, {14848, 47097}, {14918, 52283}, {15019, 16051}, {15055, 35483}, {15059, 18947}, {15069, 35283}, {15246, 33522}, {15466, 32002}, {17040, 40317}, {17483, 54113}, {17838, 40640}, {17907, 43462}, {18440, 62209}, {18582, 62690}, {18841, 60225}, {18842, 58268}, {18925, 44802}, {20192, 31860}, {20266, 54444}, {20423, 51360}, {20791, 35513}, {21290, 37999}, {21766, 62174}, {21850, 31152}, {22112, 41586}, {25972, 32946}, {26531, 36408}, {26864, 44212}, {26871, 27003}, {26872, 27065}, {26932, 56447}, {26942, 56450}, {31018, 56927}, {32225, 38064}, {33586, 48881}, {33878, 43957}, {33879, 44833}, {34417, 46264}, {35254, 37489}, {35486, 37506}, {36789, 61675}, {36851, 58494}, {36889, 40386}, {36890, 62606}, {37172, 41477}, {37173, 41478}, {37514, 59349}, {40384, 58875}, {40427, 51835}, {41253, 52288}, {41371, 57532}, {41896, 42287}, {45206, 55871}, {45972, 55980}, {47597, 50979}, {48895, 58470}, {51481, 52713}, {52423, 56456}, {52424, 56448}, {52451, 60869}, {52710, 53348}, {53091, 61690}, {54710, 54907}, {54771, 54864}, {54778, 54926}, {55432, 56449}, {55711, 61680}, {56404, 57482}, {62213, 62628}

X(63084) = reflection of X(i) in X(j) for these {i,j}: {46336, 54012}, {54013, 11284}
X(63084) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {52187, 8}
X(63084) = pole of line {8675, 44445} with respect to the anticomplementary circle
X(63084) = pole of line {2501, 8675} with respect to the polar circle
X(63084) = pole of line {6467, 31670} with respect to the Jerabek hyperbola
X(63084) = pole of line {6, 5892} with respect to the Stammler hyperbola
X(63084) = pole of line {523, 62344} with respect to the Steiner circumellipse
X(63084) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(15066)}}, {{A, B, C, X(69), X(34289)}}, {{A, B, C, X(83), X(37645)}}, {{A, B, C, X(141), X(60256)}}, {{A, B, C, X(394), X(4846)}}, {{A, B, C, X(459), X(37636)}}, {{A, B, C, X(3619), X(60225)}}, {{A, B, C, X(3620), X(56270)}}, {{A, B, C, X(5395), X(39263)}}, {{A, B, C, X(6504), X(17811)}}, {{A, B, C, X(6515), X(37874)}}, {{A, B, C, X(7788), X(13575)}}, {{A, B, C, X(10513), X(54459)}}, {{A, B, C, X(14389), X(18841)}}, {{A, B, C, X(18842), X(40112)}}, {{A, B, C, X(21356), X(58268)}}, {{A, B, C, X(28419), X(60872)}}, {{A, B, C, X(30535), X(41614)}}, {{A, B, C, X(31489), X(40347)}}, {{A, B, C, X(37643), X(45011)}}, {{A, B, C, X(37668), X(41896)}}, {{A, B, C, X(37669), X(40393)}}
X(63084) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {182, 61506, 7493}, {511, 54012, 46336}, {1899, 5943, 6997}, {3564, 11284, 54013}, {5640, 18911, 4}, {6819, 14361, 324}, {7392, 18950, 11442}, {11002, 16063, 51212}, {11442, 11451, 7392}, {12017, 21970, 44210}, {14912, 40132, 110}, {15024, 18912, 7401}, {15026, 18952, 7528}, {15805, 41587, 7383}, {16657, 37475, 20}, {30739, 61657, 1351}


X(63085) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37649), X(3), X(6))

Barycentrics    3*a^6-5*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-6*b^2*c^2+c^4) : :

X(63085) lies on these lines: {2, 6}, {4, 569}, {5, 11402}, {20, 37476}, {22, 14853}, {23, 51742}, {25, 18583}, {51, 7493}, {52, 631}, {54, 7401}, {68, 3090}, {83, 6504}, {97, 10316}, {110, 7392}, {140, 37493}, {143, 47525}, {161, 13595}, {182, 1370}, {184, 6997}, {219, 56450}, {222, 56447}, {275, 17907}, {324, 1249}, {371, 56497}, {372, 56498}, {373, 59543}, {376, 37513}, {393, 52253}, {427, 5050}, {458, 41361}, {467, 3087}, {487, 56501}, {488, 56502}, {567, 18420}, {575, 1899}, {576, 43653}, {578, 6815}, {598, 54792}, {973, 12226}, {1151, 56499}, {1152, 56500}, {1199, 11411}, {1209, 5067}, {1351, 7499}, {1352, 13366}, {1353, 11548}, {1368, 51732}, {1568, 6816}, {1589, 10898}, {1590, 10897}, {1656, 13292}, {1853, 41729}, {1990, 41244}, {2003, 55900}, {2323, 55902}, {3060, 7494}, {3066, 10192}, {3091, 6146}, {3147, 5462}, {3167, 37439}, {3311, 56504}, {3312, 56506}, {3523, 17834}, {3524, 15053}, {3525, 14156}, {3541, 35603}, {3545, 18474}, {3564, 7539}, {3796, 5480}, {5020, 61690}, {5064, 48906}, {5071, 61713}, {5094, 45298}, {5133, 6776}, {5169, 32064}, {5286, 41231}, {5319, 59197}, {5395, 60161}, {5421, 52032}, {5640, 6353}, {5643, 9926}, {5651, 61659}, {5943, 41714}, {6193, 14788}, {6337, 62589}, {6419, 11091}, {6420, 11090}, {6636, 51212}, {6640, 15047}, {6643, 43651}, {6676, 9777}, {6800, 6995}, {6803, 34148}, {7383, 36747}, {7386, 19131}, {7391, 25406}, {7394, 11003}, {7398, 35264}, {7399, 11426}, {7404, 7592}, {7484, 38110}, {7485, 37488}, {7528, 32046}, {7544, 18925}, {7571, 40330}, {7581, 13439}, {7582, 13428}, {7667, 12017}, {7714, 26881}, {8538, 15019}, {8889, 18911}, {9306, 25555}, {9729, 12058}, {9815, 13367}, {9820, 52077}, {9925, 11284}, {10576, 55477}, {10982, 59349}, {11126, 37177}, {11127, 37178}, {11179, 11550}, {11225, 22234}, {11245, 53091}, {11291, 55566}, {11292, 55567}, {11424, 37201}, {11442, 14912}, {11451, 40132}, {11487, 56292}, {11547, 36794}, {12086, 15740}, {12161, 14786}, {12834, 38282}, {13353, 14790}, {13394, 17810}, {13854, 30535}, {14787, 15087}, {14826, 37990}, {14848, 44210}, {15080, 34608}, {15436, 34116}, {15809, 19118}, {18533, 37506}, {18842, 54913}, {18916, 36753}, {18917, 60763}, {18950, 23293}, {19130, 31383}, {20062, 51538}, {20125, 61932}, {21243, 39561}, {22128, 56444}, {22352, 31670}, {23291, 31236}, {26869, 52719}, {26871, 56461}, {26872, 56463}, {26913, 52299}, {30506, 61348}, {31099, 53093}, {32140, 36153}, {32358, 53999}, {33522, 62187}, {33748, 61700}, {34289, 56346}, {34565, 61644}, {34609, 55705}, {34938, 61134}, {34986, 38317}, {37454, 53092}, {40684, 52288}, {43650, 44470}, {46443, 52296}, {46517, 55701}, {46717, 51860}, {52282, 53489}, {52423, 56457}, {54444, 56445}, {54531, 54907}, {54771, 54803}, {55399, 56449}, {55400, 56448}, {58447, 61506}

X(63085) = X(i)-isoconjugate-of-X(j) for these {i, j}: {661, 59100}
X(63085) = X(i)-Dao conjugate of X(j) for these {i, j}: {36830, 59100}
X(63085) = pole of line {99, 59100} with respect to the Kiepert parabola
X(63085) = pole of line {6, 1216} with respect to the Stammler hyperbola
X(63085) = pole of line {2, 1238} with respect to the Wallace hyperbola
X(63085) = pole of line {1510, 3265} with respect to the dual conic of Orthic inconic
X(63085) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1179)}}, {{A, B, C, X(4), X(37636)}}, {{A, B, C, X(69), X(40393)}}, {{A, B, C, X(83), X(6515)}}, {{A, B, C, X(141), X(6504)}}, {{A, B, C, X(343), X(40449)}}, {{A, B, C, X(394), X(40441)}}, {{A, B, C, X(599), X(54792)}}, {{A, B, C, X(1993), X(13472)}}, {{A, B, C, X(3620), X(60161)}}, {{A, B, C, X(3815), X(13854)}}, {{A, B, C, X(5422), X(18841)}}, {{A, B, C, X(15066), X(56346)}}, {{A, B, C, X(20806), X(30535)}}, {{A, B, C, X(21356), X(54913)}}
X(63085) = barycentric product X(i)*X(j) for these (i, j): {37122, 69}
X(63085) = barycentric quotient X(i)/X(j) for these (i, j): {110, 59100}, {37122, 4}
X(63085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1994, 69}, {2, 6, 6515}, {184, 14561, 6997}, {275, 17907, 37192}, {394, 3589, 2}, {569, 44077, 5012}, {3796, 5480, 7500}, {6676, 59399, 9777}, {7394, 11003, 11206}, {37476, 45089, 20}


X(63086) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37654), X(3), X(6))

Barycentrics    11*a^2-2*a*(b+c)-(b+c)^2 : :

X(63086) lies on these lines: {2, 6}, {7, 41140}, {8, 4700}, {9, 3241}, {44, 145}, {45, 3623}, {144, 3759}, {239, 4454}, {344, 50132}, {346, 519}, {374, 3873}, {527, 5838}, {545, 4452}, {551, 5296}, {572, 15692}, {573, 10304}, {671, 54622}, {903, 20059}, {1404, 5265}, {1405, 3600}, {1449, 38314}, {2264, 34744}, {2323, 11240}, {2325, 20050}, {2345, 16671}, {3616, 3707}, {3621, 4969}, {3622, 16666}, {3672, 17121}, {3679, 5749}, {3686, 53620}, {3731, 51071}, {3943, 20014}, {3950, 34747}, {3973, 4856}, {3986, 51105}, {4000, 4715}, {4029, 31722}, {4034, 51072}, {4189, 37503}, {4254, 17549}, {4346, 20072}, {4360, 61006}, {4370, 17314}, {4384, 4747}, {4419, 50112}, {4460, 25728}, {4461, 50088}, {4488, 28301}, {4644, 24599}, {4677, 17355}, {4678, 17369}, {4779, 49495}, {4795, 17348}, {4873, 20053}, {4898, 15828}, {4982, 16676}, {5120, 13587}, {5222, 17274}, {5298, 38296}, {5686, 50286}, {5702, 17555}, {5816, 61936}, {5819, 37756}, {5839, 16669}, {6172, 16834}, {7277, 31139}, {7772, 37339}, {8732, 41801}, {10005, 51192}, {10443, 34628}, {10445, 50864}, {11111, 56527}, {15492, 51092}, {16468, 50316}, {16517, 29584}, {16590, 16668}, {16833, 35578}, {16885, 50113}, {17014, 17320}, {17079, 60939}, {17278, 32093}, {17302, 17488}, {17310, 26685}, {17335, 29624}, {17342, 29616}, {17350, 40891}, {17366, 45789}, {17374, 30833}, {17377, 41138}, {17548, 54409}, {17784, 42058}, {19783, 51594}, {20018, 51606}, {20037, 20972}, {23730, 44551}, {29574, 61023}, {30652, 54351}, {32431, 61966}, {37150, 54786}, {37499, 62063}, {37508, 62059}, {39975, 39982}, {40127, 50533}, {41563, 41803}, {41895, 54795}, {43533, 60078}, {48856, 51005}, {50099, 50127}, {51068, 59772}, {54623, 60079}, {60963, 62403}

X(63086) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(55993)}}, {{A, B, C, X(524), X(54622)}}, {{A, B, C, X(3945), X(60078)}}, {{A, B, C, X(5232), X(54786)}}, {{A, B, C, X(11160), X(54795)}}, {{A, B, C, X(17271), X(43533)}}, {{A, B, C, X(17313), X(57826)}}, {{A, B, C, X(17378), X(54623)}}, {{A, B, C, X(37646), X(52187)}}, {{A, B, C, X(37654), X(60092)}}, {{A, B, C, X(37662), X(52188)}}, {{A, B, C, X(37674), X(39974)}}, {{A, B, C, X(37679), X(39982)}}, {{A, B, C, X(37680), X(39975)}}, {{A, B, C, X(50133), X(53101)}}
X(63086) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 16670, 61330}, {44, 145, 62706}, {4969, 54389, 3621}, {4982, 16676, 20057}


X(63087) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37658), X(3), X(6))

Barycentrics    a*(a^3-2*a^2*(b+c)+b*c*(b+c)+a*(b^2-b*c+c^2)) : :

X(63087) lies on these lines: {2, 6}, {3, 56527}, {7, 24596}, {8, 218}, {9, 1174}, {10, 17745}, {21, 4251}, {31, 200}, {32, 16948}, {37, 3957}, {41, 2975}, {44, 765}, {72, 33950}, {78, 16572}, {85, 1170}, {100, 672}, {101, 45751}, {105, 518}, {145, 220}, {149, 17747}, {169, 3868}, {192, 51352}, {219, 30619}, {239, 294}, {319, 26593}, {329, 5838}, {346, 20015}, {404, 4253}, {461, 44086}, {519, 644}, {573, 7411}, {579, 35977}, {651, 9436}, {660, 51866}, {661, 1021}, {673, 20347}, {739, 6079}, {748, 16779}, {758, 5540}, {910, 3218}, {1005, 4266}, {1043, 26770}, {1100, 29817}, {1172, 14004}, {1203, 19868}, {1212, 34772}, {1332, 62231}, {1449, 4666}, {1475, 5253}, {1757, 4712}, {1778, 2220}, {1783, 5081}, {1814, 62554}, {2082, 3869}, {2245, 36003}, {2246, 3509}, {2262, 41717}, {2298, 57397}, {2300, 38853}, {2323, 4700}, {2911, 5839}, {2991, 57754}, {3187, 20173}, {3217, 38869}, {3230, 50028}, {3290, 3315}, {3496, 11684}, {3621, 4513}, {3686, 4071}, {3691, 5260}, {3730, 3871}, {3731, 42041}, {3759, 62697}, {3811, 25082}, {3873, 40131}, {3877, 54330}, {3973, 8616}, {3991, 56244}, {4101, 5299}, {4188, 5022}, {4189, 4258}, {4254, 20835}, {4262, 17549}, {4264, 39673}, {4271, 35989}, {4420, 25066}, {4511, 43065}, {4534, 5855}, {4557, 16693}, {4661, 50995}, {4847, 32844}, {4969, 17796}, {5030, 13587}, {5047, 16783}, {5120, 37309}, {5222, 23151}, {5228, 24599}, {5284, 16503}, {5296, 54358}, {5305, 24883}, {5776, 50696}, {5781, 9965}, {5782, 61330}, {5819, 5905}, {5846, 40609}, {6180, 51351}, {6554, 12649}, {6603, 38460}, {6652, 40761}, {6654, 53337}, {6734, 27068}, {6765, 55337}, {6909, 58036}, {7677, 38980}, {9317, 35102}, {10176, 56532}, {10394, 56098}, {10582, 16667}, {11349, 18206}, {13329, 58035}, {16284, 26653}, {16517, 28606}, {16669, 44798}, {16973, 26242}, {17275, 20483}, {17355, 32945}, {17362, 56534}, {17451, 34195}, {17499, 17686}, {17536, 46196}, {17757, 26074}, {20043, 55466}, {20072, 40868}, {20075, 41325}, {21373, 63159}, {24477, 26258}, {25237, 32024}, {26793, 40997}, {33146, 62693}, {34379, 62313}, {35599, 56937}, {36037, 41798}, {37162, 38930}, {41006, 41575}, {55432, 63168}, {56530, 57192}

X(63087) = reflection of X(i) in X(j) for these {i,j}: {644, 5526}
X(63087) = anticomplement of X(51384)
X(63087) = perspector of circumconic {{A, B, C, X(99), X(39272)}}
X(63087) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1027, 40526}
X(63087) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {105, 2890}, {1174, 20344}, {2346, 20552}
X(63087) = pole of line {11997, 15837} with respect to the Feuerbach hyperbola
X(63087) = pole of line {525, 62399} with respect to the MacBeath circumconic
X(63087) = pole of line {6, 16726} with respect to the Stammler hyperbola
X(63087) = pole of line {523, 885} with respect to the Steiner circumellipse
X(63087) = pole of line {523, 25081} with respect to the Steiner inellipse
X(63087) = pole of line {190, 522} with respect to the Hutson-Moses hyperbola
X(63087) = pole of line {2, 16708} with respect to the Wallace hyperbola
X(63087) = pole of line {525, 62399} with respect to the dual conic of nine-point circle
X(63087) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(56190)}}, {{A, B, C, X(9), X(16713)}}, {{A, B, C, X(37), X(17245)}}, {{A, B, C, X(81), X(1174)}}, {{A, B, C, X(86), X(765)}}, {{A, B, C, X(333), X(1261)}}, {{A, B, C, X(661), X(17056)}}, {{A, B, C, X(666), X(6078)}}, {{A, B, C, X(672), X(51929)}}, {{A, B, C, X(941), X(4648)}}, {{A, B, C, X(1280), X(2481)}}, {{A, B, C, X(2298), X(18166)}}, {{A, B, C, X(3693), X(38980)}}, {{A, B, C, X(3930), X(51384)}}, {{A, B, C, X(17234), X(39735)}}, {{A, B, C, X(17337), X(39798)}}, {{A, B, C, X(17392), X(39974)}}, {{A, B, C, X(21805), X(51415)}}, {{A, B, C, X(26818), X(55989)}}, {{A, B, C, X(37650), X(39956)}}, {{A, B, C, X(37681), X(39975)}}, {{A, B, C, X(40153), X(57397)}}, {{A, B, C, X(40400), X(52897)}}
X(63087) = barycentric product X(i)*X(j) for these (i, j): {100, 53343}, {7677, 8}, {34085, 38379}, {53287, 668}
X(63087) = barycentric quotient X(i)/X(j) for these (i, j): {2284, 40526}, {7677, 7}, {53287, 513}, {53343, 693}
X(63087) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5276, 81}, {9, 2280, 1621}, {41, 21384, 2975}, {78, 16572, 26690}, {101, 45751, 54391}, {672, 3684, 100}, {3691, 41239, 5260}, {4251, 16552, 21}, {5030, 35342, 13587}, {16503, 59207, 5284}, {40131, 51194, 3873}


X(63088) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37659), X(3), X(6))

Barycentrics    a*(2*a^4-b*(b-c)^2*c-2*a^3*(b+c)+a^2*(-2*b^2+3*b*c-2*c^2)+2*a*(b^3+c^3)) : :

X(63088) lies on these lines: {1, 60969}, {2, 6}, {4, 22136}, {7, 2323}, {9, 1442}, {21, 62183}, {37, 61025}, {44, 26669}, {63, 1419}, {77, 60970}, {110, 35988}, {144, 219}, {155, 6908}, {218, 61009}, {220, 61006}, {239, 26651}, {269, 3218}, {329, 18624}, {346, 1332}, {511, 37254}, {527, 62246}, {604, 27624}, {611, 39587}, {883, 17350}, {991, 4189}, {1100, 24554}, {1181, 37108}, {1351, 4223}, {1376, 38293}, {1404, 27626}, {1418, 23958}, {1443, 60974}, {1456, 3869}, {1743, 25930}, {1943, 28950}, {2003, 5273}, {2092, 26636}, {2293, 61155}, {2324, 60935}, {2475, 3332}, {3157, 54398}, {3167, 4220}, {3193, 5177}, {3758, 25001}, {3759, 20905}, {3928, 33633}, {3990, 45744}, {4188, 13329}, {4349, 24987}, {4416, 26006}, {5408, 21566}, {5409, 21567}, {5686, 45729}, {5706, 37161}, {5744, 22128}, {5942, 27382}, {6090, 33849}, {6172, 52405}, {6180, 20059}, {6824, 16266}, {6846, 36747}, {6887, 36749}, {6889, 56292}, {6989, 12161}, {7078, 20007}, {7269, 60964}, {7592, 37407}, {7754, 26678}, {8551, 51352}, {9539, 58906}, {11038, 45728}, {11402, 37261}, {11441, 37421}, {11456, 37427}, {12160, 37275}, {16469, 19861}, {16473, 19855}, {16578, 60954}, {16669, 25067}, {16845, 36750}, {16970, 26699}, {17013, 26635}, {17074, 23140}, {17126, 61399}, {17127, 20978}, {17363, 48381}, {17548, 50677}, {17558, 36742}, {17580, 36754}, {17582, 37509}, {19649, 62217}, {20214, 40399}, {21454, 55399}, {21508, 36212}, {22139, 37400}, {25722, 41339}, {25885, 29814}, {26052, 63174}, {26592, 34283}, {26698, 52969}, {27509, 37781}, {30621, 30628}, {35973, 44100}, {35986, 61220}, {37434, 37498}, {37787, 53996}, {40905, 56003}, {43035, 60979}, {45923, 50741}, {50559, 57498}, {50739, 51340}, {55027, 60114}, {56355, 60966}, {59610, 61014}

X(63088) = anticomplement of X(26540)
X(63088) = pole of line {6, 19541} with respect to the Stammler hyperbola
X(63088) = pole of line {190, 53640} with respect to the Hutson-Moses hyperbola
X(63088) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(37441)}}, {{A, B, C, X(275), X(37685)}}, {{A, B, C, X(11433), X(55027)}}, {{A, B, C, X(32863), X(60114)}}, {{A, B, C, X(37646), X(42290)}}
X(63088) = barycentric product X(i)*X(j) for these (i, j): {37441, 69}
X(63088) = barycentric quotient X(i)/X(j) for these (i, j): {37441, 4}
X(63088) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44, 26669, 61026}, {219, 651, 144}, {1743, 25930, 61012}


X(63089) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37662), X(3), X(6))

Barycentrics    a^3+a*(b-c)^2+3*a^2*(b+c)-(b-c)^2*(b+c) : :

X(63089) lies on these lines: {1, 2551}, {2, 6}, {4, 386}, {5, 387}, {7, 3752}, {8, 4849}, {20, 4255}, {27, 3087}, {31, 5218}, {37, 18228}, {39, 36698}, {42, 497}, {43, 2550}, {44, 5273}, {57, 2183}, {58, 631}, {78, 5716}, {83, 60254}, {142, 23511}, {171, 59572}, {192, 56084}, {210, 17723}, {213, 31402}, {216, 464}, {223, 7365}, {226, 2999}, {278, 52033}, {312, 17314}, {329, 3666}, {345, 27064}, {376, 4256}, {381, 48847}, {388, 1193}, {393, 469}, {443, 3216}, {452, 19765}, {474, 4340}, {498, 1203}, {553, 62695}, {579, 21363}, {580, 6988}, {581, 6865}, {614, 3475}, {899, 10460}, {908, 3553}, {936, 5717}, {938, 34852}, {962, 4646}, {967, 46952}, {990, 5658}, {995, 1056}, {1100, 5328}, {1104, 5703}, {1108, 44307}, {1126, 47743}, {1249, 18686}, {1279, 10578}, {1285, 4262}, {1330, 56737}, {1352, 50595}, {1376, 4307}, {1449, 30827}, {1453, 13411}, {1468, 7288}, {1478, 5313}, {1479, 5312}, {1588, 2048}, {1699, 3755}, {1714, 6856}, {1722, 28629}, {1724, 6857}, {1743, 5745}, {1764, 4266}, {1778, 37265}, {1788, 54421}, {1834, 3091}, {1848, 2331}, {1999, 28808}, {2092, 9535}, {2177, 10385}, {2221, 55910}, {2257, 7308}, {2271, 6996}, {2276, 21856}, {2334, 37722}, {2345, 3687}, {2478, 19767}, {2548, 20970}, {3008, 25525}, {3017, 5071}, {3052, 5281}, {3085, 16466}, {3090, 5292}, {3240, 3434}, {3241, 6557}, {3293, 5082}, {3305, 8557}, {3332, 19541}, {3474, 41011}, {3485, 19372}, {3487, 26728}, {3523, 4252}, {3524, 4257}, {3545, 48857}, {3550, 50303}, {3554, 5287}, {3616, 33126}, {3663, 28609}, {3664, 5437}, {3668, 36636}, {3672, 4415}, {3686, 18229}, {3705, 59406}, {3729, 42049}, {3744, 63168}, {3750, 47357}, {3751, 24239}, {3772, 5222}, {3823, 26047}, {3839, 48842}, {3875, 42047}, {3879, 30567}, {3912, 9575}, {3973, 5325}, {3974, 32931}, {3975, 17316}, {4035, 17284}, {4192, 37502}, {4220, 36741}, {4251, 7397}, {4254, 16435}, {4261, 37419}, {4263, 10446}, {4270, 10478}, {4339, 56176}, {4349, 20103}, {4641, 5744}, {4645, 59298}, {4654, 24177}, {4656, 31142}, {4667, 6692}, {4675, 16602}, {4679, 37593}, {4850, 5905}, {4863, 21870}, {4888, 8056}, {5021, 31400}, {5055, 48861}, {5067, 45939}, {5132, 37400}, {5219, 26063}, {5230, 10588}, {5247, 30478}, {5264, 59591}, {5269, 6745}, {5272, 38053}, {5286, 7377}, {5308, 40133}, {5315, 10056}, {5316, 17022}, {5323, 37257}, {5347, 35988}, {5393, 18992}, {5396, 6827}, {5398, 6954}, {5405, 18991}, {5423, 59596}, {5530, 54386}, {5542, 5573}, {5552, 57280}, {5698, 17594}, {5706, 6848}, {5707, 6944}, {5710, 7080}, {5713, 6864}, {5714, 23537}, {5721, 6844}, {5746, 19542}, {5748, 17720}, {5839, 11679}, {5846, 7172}, {5943, 35612}, {6173, 24175}, {6554, 27411}, {6685, 50295}, {6700, 37554}, {6708, 18391}, {6748, 6994}, {6825, 36754}, {6836, 52544}, {6858, 45944}, {6863, 37509}, {6891, 36742}, {6904, 49745}, {6908, 36745}, {6926, 36746}, {6927, 37530}, {6933, 24883}, {6958, 36750}, {6986, 54431}, {6997, 54341}, {6999, 7738}, {7081, 51192}, {7174, 21060}, {7195, 28107}, {7290, 13405}, {7392, 54426}, {7406, 7745}, {7490, 40065}, {7536, 15905}, {8055, 35652}, {9776, 16610}, {9965, 17595}, {10072, 16474}, {10320, 16472}, {10327, 33070}, {10473, 23638}, {10580, 49478}, {10589, 11269}, {10595, 15955}, {11036, 17054}, {11037, 52541}, {11891, 61072}, {13478, 45098}, {13742, 25650}, {14554, 60076}, {15048, 36731}, {15484, 36728}, {15593, 30970}, {16434, 37492}, {16470, 56446}, {16478, 36573}, {16706, 26132}, {16736, 17169}, {17011, 27131}, {17012, 19785}, {17013, 62210}, {17014, 46873}, {17020, 31019}, {17025, 33153}, {17034, 32968}, {17139, 25059}, {17315, 20942}, {17365, 21454}, {17366, 62208}, {17490, 42697}, {17567, 37522}, {17582, 17749}, {17596, 24695}, {17609, 28016}, {17717, 33137}, {17721, 36845}, {17740, 26223}, {17779, 17889}, {18634, 20201}, {18755, 37416}, {19065, 56385}, {19066, 56386}, {19645, 54423}, {19649, 36740}, {19766, 52258}, {19808, 26039}, {20921, 53510}, {22124, 26942}, {23841, 35620}, {24248, 33096}, {24936, 31259}, {26034, 32843}, {26065, 32851}, {26131, 37462}, {26685, 33116}, {26723, 31266}, {26724, 26738}, {26791, 41839}, {26934, 56547}, {27383, 37539}, {27399, 54317}, {27539, 54416}, {28606, 31018}, {28830, 55112}, {29455, 32957}, {29571, 51780}, {29649, 50284}, {29821, 33144}, {29841, 30867}, {29849, 33163}, {30741, 33118}, {30818, 34255}, {31211, 56226}, {31497, 60697}, {32944, 33171}, {33106, 42043}, {33113, 41241}, {33141, 50282}, {33849, 37538}, {34607, 60714}, {34610, 37617}, {36406, 56558}, {37364, 62183}, {37365, 50598}, {37366, 44094}, {37367, 40952}, {37421, 37537}, {37543, 52659}, {37553, 40998}, {38000, 54280}, {48878, 50596}, {50087, 56086}, {50591, 51212}, {51190, 61018}, {52224, 57663}, {52424, 54366}, {54300, 61109}, {54586, 54689}, {60071, 60155}, {60087, 60156}

X(63089) = complement of X(37655)
X(63089) = X(i)-complementary conjugate of X(j) for these {i, j}: {45100, 2887}, {53088, 10}
X(63089) = pole of line {2, 37499} with respect to the Kiepert hyperbola
X(63089) = pole of line {523, 7661} with respect to the Steiner inellipse
X(63089) = pole of line {48559, 57066} with respect to the dual conic of incircle
X(63089) = pole of line {40, 631} with respect to the dual conic of Yff parabola
X(63089) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(14829)}}, {{A, B, C, X(69), X(2051)}}, {{A, B, C, X(83), X(37642)}}, {{A, B, C, X(86), X(56218)}}, {{A, B, C, X(141), X(60254)}}, {{A, B, C, X(226), X(18141)}}, {{A, B, C, X(333), X(60107)}}, {{A, B, C, X(391), X(52224)}}, {{A, B, C, X(966), X(46952)}}, {{A, B, C, X(967), X(10601)}}, {{A, B, C, X(1150), X(60155)}}, {{A, B, C, X(1171), X(5422)}}, {{A, B, C, X(1812), X(56231)}}, {{A, B, C, X(2165), X(17398)}}, {{A, B, C, X(4417), X(45098)}}, {{A, B, C, X(5372), X(55027)}}, {{A, B, C, X(5737), X(32022)}}, {{A, B, C, X(5739), X(60087)}}, {{A, B, C, X(14554), X(14555)}}, {{A, B, C, X(17825), X(57663)}}, {{A, B, C, X(26637), X(56352)}}, {{A, B, C, X(33172), X(60242)}}, {{A, B, C, X(37654), X(52188)}}, {{A, B, C, X(37655), X(45100)}}, {{A, B, C, X(37660), X(60206)}}, {{A, B, C, X(37674), X(58012)}}
X(63089) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 391, 5737}, {2, 5712, 4648}, {43, 26098, 2550}, {226, 2999, 4000}, {329, 3666, 4419}, {345, 27064, 54389}, {1449, 30827, 39595}, {1714, 37693, 6856}, {3664, 45204, 5437}, {4383, 5718, 2}, {5222, 5226, 3772}, {17012, 31053, 19785}


X(63090) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37663), X(3), X(6))

Barycentrics    a^3+3*a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2-4*b*c+c^2) : :

X(63090) lies on these lines: {1, 56879}, {2, 6}, {4, 60087}, {43, 3434}, {44, 55868}, {58, 6921}, {88, 21454}, {192, 26791}, {226, 17067}, {329, 4850}, {344, 26688}, {373, 35612}, {377, 3216}, {386, 2478}, {387, 4193}, {497, 3240}, {580, 6962}, {899, 26098}, {908, 2999}, {1191, 10528}, {1193, 3436}, {1203, 26364}, {1449, 20196}, {1453, 27385}, {1714, 6933}, {1724, 6910}, {1743, 59491}, {1834, 5187}, {2051, 60155}, {2550, 33107}, {3008, 31266}, {3090, 24883}, {3187, 28808}, {3306, 10900}, {3452, 5256}, {3475, 7292}, {3523, 16948}, {3666, 31018}, {3699, 20020}, {3740, 17723}, {3752, 5905}, {3944, 17779}, {3974, 32842}, {4000, 17020}, {4054, 19819}, {4104, 29826}, {4255, 6872}, {4340, 17531}, {4358, 61414}, {4388, 59298}, {4419, 26792}, {4644, 27003}, {4663, 17728}, {4734, 17777}, {4849, 17721}, {5084, 19767}, {5218, 17127}, {5219, 26723}, {5222, 5748}, {5226, 33129}, {5249, 23511}, {5287, 5316}, {5292, 6931}, {5315, 45701}, {5396, 6947}, {5398, 6880}, {5552, 16466}, {5706, 6953}, {5707, 6983}, {6686, 32946}, {6834, 36754}, {6835, 45924}, {6836, 37732}, {6838, 36745}, {6877, 45944}, {6959, 37509}, {6967, 36742}, {6988, 56840}, {7191, 25568}, {9599, 21904}, {10164, 36277}, {10327, 33071}, {10584, 11269}, {10589, 33142}, {11239, 16483}, {14554, 60156}, {16670, 31231}, {16862, 49743}, {17012, 27131}, {17013, 62239}, {17018, 26105}, {17126, 59572}, {17147, 56084}, {17316, 25298}, {17364, 27002}, {17552, 24936}, {17556, 48847}, {17582, 26131}, {17595, 20078}, {17740, 27064}, {17749, 37462}, {18228, 28606}, {24177, 31164}, {24624, 45098}, {26040, 33112}, {26065, 41241}, {26223, 62620}, {26685, 33113}, {29664, 38057}, {30852, 40940}, {31191, 56522}, {33088, 59511}, {33109, 36634}, {33168, 54389}, {33761, 34524}, {35996, 36741}, {36855, 59300}, {37419, 50650}, {52424, 52659}, {53661, 59596}, {56418, 57477}, {60071, 60107}

X(63090) = pole of line {1125, 5119} with respect to the dual conic of Yff parabola
X(63090) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(60087)}}, {{A, B, C, X(1150), X(60107)}}, {{A, B, C, X(3936), X(45098)}}, {{A, B, C, X(5739), X(14554)}}, {{A, B, C, X(14829), X(60155)}}, {{A, B, C, X(16704), X(44794)}}, {{A, B, C, X(18141), X(60071)}}, {{A, B, C, X(26637), X(56354)}}, {{A, B, C, X(33172), X(60254)}}
X(63090) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {908, 2999, 19785}, {5222, 5748, 33133}, {17020, 31053, 4000}


X(63091) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37668), X(3), X(6))

Barycentrics    5*a^4-3*b^4-2*b^2*c^2-3*c^4+6*a^2*(b^2+c^2) : :
X(63091) =

X(63091) lies on these lines: {2, 6}, {4, 22253}, {20, 7762}, {32, 32831}, {144, 29840}, {145, 56555}, {147, 10754}, {148, 50687}, {194, 3146}, {315, 33025}, {384, 32840}, {427, 56013}, {576, 9748}, {1285, 6390}, {1506, 32870}, {1916, 60147}, {2548, 7890}, {2996, 43951}, {3091, 7754}, {3522, 13571}, {3524, 3793}, {3598, 17364}, {3734, 7758}, {3785, 7877}, {3832, 6392}, {3839, 47286}, {3926, 3972}, {3933, 33198}, {4027, 33684}, {5007, 53033}, {5059, 7823}, {5286, 7759}, {5305, 32823}, {5319, 7903}, {5395, 17128}, {5921, 32451}, {6179, 32829}, {6781, 53142}, {6995, 27377}, {7172, 17363}, {7378, 9308}, {7407, 56018}, {7408, 8267}, {7409, 43981}, {7710, 11477}, {7737, 41750}, {7739, 7845}, {7749, 32898}, {7751, 31404}, {7753, 32869}, {7760, 32816}, {7764, 32835}, {7776, 33180}, {7783, 50693}, {7793, 52770}, {7798, 43448}, {7803, 7949}, {7812, 32815}, {7839, 32974}, {7858, 32828}, {7893, 32990}, {7900, 32982}, {7906, 32841}, {7907, 32873}, {7921, 32971}, {7926, 32827}, {7941, 32972}, {8878, 17037}, {9605, 33202}, {11148, 47287}, {11287, 14482}, {14023, 31400}, {14068, 20105}, {14069, 43136}, {14712, 62120}, {15048, 33210}, {15484, 52713}, {15683, 34624}, {17129, 32872}, {18845, 43688}, {18907, 32817}, {19569, 62168}, {19570, 61954}, {20020, 31080}, {20081, 32979}, {20088, 32981}, {21309, 33191}, {22120, 28425}, {30435, 32818}, {31125, 39358}, {32001, 45141}, {32456, 34511}, {33071, 51190}, {37071, 61624}, {41748, 43620}, {43460, 54132}, {43681, 60105}, {44431, 49495}, {47586, 60260}, {52284, 56021}, {54122, 60118}, {54737, 60625}, {60113, 60271}, {60234, 60336}

X(63091) = reflection of X(i) in X(j) for these {i,j}: {52713, 15484}
X(63091) = anticomplement of X(15589)
X(63091) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14484, 2}
X(63091) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 46944}, {14484, 6327}, {59114, 7192}
X(63091) = pole of line {523, 47449} with respect to the Steiner circumellipse
X(63091) = pole of line {2, 59552} with respect to the Wallace hyperbola
X(63091) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(193), X(43951)}}, {{A, B, C, X(385), X(60147)}}, {{A, B, C, X(1916), X(10513)}}, {{A, B, C, X(7766), X(18845)}}, {{A, B, C, X(7774), X(60118)}}, {{A, B, C, X(14614), X(42299)}}, {{A, B, C, X(14930), X(60190)}}, {{A, B, C, X(17008), X(60336)}}, {{A, B, C, X(37667), X(47586)}}, {{A, B, C, X(44367), X(60113)}}, {{A, B, C, X(51170), X(60105)}}
X(63091) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 7779, 10513}, {32, 32831, 33205}, {193, 7774, 2}, {325, 1992, 5304}, {3180, 3181, 5032}, {3629, 9766, 7735}, {5305, 32823, 33199}, {6392, 7785, 3832}, {7774, 7837, 193}, {17129, 32987, 32872}, {30435, 32818, 33181}


X(63092) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37669), X(3), X(6))

Barycentrics    5*a^6-9*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4+2*b^2*c^2+3*c^4) : :

X(63092) lies on these lines: {2, 6}, {4, 3167}, {20, 184}, {22, 61044}, {49, 31305}, {110, 6995}, {154, 51212}, {155, 3088}, {195, 3548}, {219, 55912}, {222, 55907}, {275, 2996}, {390, 9637}, {427, 5921}, {439, 59211}, {458, 6392}, {511, 10565}, {576, 59543}, {631, 12160}, {1032, 47439}, {1147, 7487}, {1351, 6353}, {1353, 18950}, {1368, 14912}, {1585, 12221}, {1586, 12222}, {1593, 11469}, {1660, 7500}, {2003, 27509}, {2052, 41899}, {2323, 56367}, {2883, 3146}, {2979, 52520}, {2986, 8796}, {3060, 4232}, {3089, 36747}, {3091, 3292}, {3193, 4200}, {3522, 3796}, {3523, 3917}, {3541, 56292}, {3543, 31383}, {3546, 12161}, {3547, 16266}, {3564, 8889}, {4176, 32831}, {5093, 6677}, {5102, 59551}, {5392, 60193}, {5395, 60114}, {5654, 6623}, {6090, 7392}, {6193, 18474}, {6504, 60161}, {6618, 44704}, {6622, 13142}, {6776, 7396}, {6800, 59343}, {6804, 11426}, {6820, 56297}, {7386, 11402}, {7391, 41735}, {7398, 9306}, {7493, 61655}, {7494, 61690}, {7714, 8780}, {7734, 55705}, {7754, 52288}, {7762, 52283}, {8892, 40867}, {9716, 31099}, {9777, 40132}, {10154, 44456}, {10192, 11477}, {10303, 15801}, {10304, 22352}, {10733, 62007}, {11002, 58483}, {11245, 16051}, {11442, 52284}, {11547, 37174}, {12086, 46373}, {13352, 41619}, {13366, 33748}, {13394, 33522}, {13568, 53050}, {14542, 57648}, {15246, 40911}, {15466, 40138}, {15741, 31802}, {15751, 22970}, {17578, 51998}, {17809, 25406}, {18287, 47740}, {18533, 52416}, {18911, 55038}, {18919, 53019}, {19347, 52398}, {19783, 37228}, {20018, 24565}, {22128, 55905}, {22129, 55909}, {22401, 46832}, {23291, 30769}, {26864, 34608}, {32000, 56346}, {32267, 54132}, {32973, 36212}, {33586, 35260}, {34609, 39874}, {34781, 43844}, {35264, 52301}, {36852, 62160}, {37460, 47391}, {37498, 52404}, {37517, 61681}, {38282, 41588}, {38292, 45200}, {38918, 44434}, {39588, 52077}, {41895, 54784}, {43133, 55894}, {43134, 55898}, {43574, 61113}, {44210, 54174}, {45979, 62187}, {51579, 52032}, {53101, 54774}, {55466, 55914}, {55566, 55897}, {55567, 55893}

X(63092) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32000, 3522}, {56346, 2}
X(63092) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 41914}, {14528, 4329}, {56346, 6327}
X(63092) = pole of line {6467, 9729} with respect to the Jerabek hyperbola
X(63092) = pole of line {6, 5907} with respect to the Stammler hyperbola
X(63092) = pole of line {523, 37931} with respect to the Steiner circumellipse
X(63092) = pole of line {2, 50572} with respect to the Wallace hyperbola
X(63092) = pole of line {3265, 14329} with respect to the dual conic of Orthic inconic
X(63092) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(43670)}}, {{A, B, C, X(193), X(275)}}, {{A, B, C, X(343), X(2996)}}, {{A, B, C, X(394), X(41899)}}, {{A, B, C, X(1993), X(60193)}}, {{A, B, C, X(3580), X(8796)}}, {{A, B, C, X(3620), X(60114)}}, {{A, B, C, X(5395), X(11433)}}, {{A, B, C, X(5422), X(43756)}}, {{A, B, C, X(6515), X(60161)}}, {{A, B, C, X(10601), X(60647)}}, {{A, B, C, X(11160), X(54784)}}, {{A, B, C, X(13567), X(14542)}}, {{A, B, C, X(14528), X(17811)}}, {{A, B, C, X(15066), X(56002)}}, {{A, B, C, X(15740), X(15741)}}, {{A, B, C, X(26206), X(56347)}}, {{A, B, C, X(37637), X(40323)}}, {{A, B, C, X(51170), X(56006)}}
X(63092) = barycentric product X(i)*X(j) for these (i, j): {31802, 95}
X(63092) = barycentric quotient X(i)/X(j) for these (i, j): {15741, 3091}, {31802, 5}
X(63092) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1993, 193}, {4, 61607, 32605}, {427, 63174, 5921}, {1351, 59553, 6353}, {1353, 30771, 18950}, {8780, 21850, 7714}, {9306, 14853, 7398}


X(63093) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37671), X(3), X(6))

Barycentrics    5*a^4-b^4-4*b^2*c^2-c^4+2*a^2*(b^2+c^2) : :
X(63093) = -2*X[1975]+3*X[33187], -2*X[3933]+3*X[33220], -4*X[5254]+3*X[33278], -4*X[5305]+3*X[33219], -5*X[5346]+2*X[7882]

X(63093) lies on these lines: {2, 6}, {4, 19570}, {25, 56021}, {30, 7754}, {32, 32833}, {147, 36859}, {148, 15682}, {192, 10385}, {194, 376}, {315, 5309}, {381, 7762}, {384, 32836}, {428, 9308}, {538, 33007}, {542, 36849}, {631, 13571}, {671, 44678}, {754, 11648}, {1655, 31156}, {1916, 11177}, {1975, 33187}, {2549, 11057}, {2871, 62187}, {2996, 50687}, {3053, 33266}, {3524, 7793}, {3534, 22253}, {3543, 6392}, {3545, 7785}, {3767, 7809}, {3785, 7839}, {3793, 8703}, {3830, 47286}, {3855, 50570}, {3926, 33246}, {3933, 33220}, {4254, 21505}, {5007, 16898}, {5064, 27377}, {5254, 33278}, {5286, 7893}, {5305, 33219}, {5319, 7768}, {5346, 7882}, {5368, 7896}, {5485, 54539}, {5965, 9753}, {5984, 51212}, {6179, 7758}, {6194, 14912}, {6661, 30435}, {6776, 60651}, {7391, 25051}, {7576, 56015}, {7714, 56013}, {7739, 7760}, {7750, 33263}, {7751, 7753}, {7755, 33248}, {7757, 33008}, {7759, 32961}, {7761, 39593}, {7763, 7890}, {7764, 33000}, {7780, 33001}, {7781, 33254}, {7783, 10304}, {7797, 33223}, {7798, 14907}, {7800, 7894}, {7803, 7826}, {7812, 33016}, {7836, 33224}, {7838, 32832}, {7855, 7880}, {7858, 32999}, {7906, 32837}, {7921, 32828}, {7926, 43620}, {7946, 14064}, {8598, 51122}, {8716, 33208}, {9755, 34380}, {9939, 32986}, {10335, 25406}, {11001, 14712}, {11054, 52942}, {11055, 51224}, {11179, 32451}, {11185, 14537}, {11606, 54823}, {14033, 34604}, {14458, 31670}, {14492, 20423}, {14568, 33006}, {16921, 32885}, {17128, 32869}, {17129, 46951}, {17499, 48870}, {18361, 52898}, {18559, 56016}, {19686, 20081}, {22331, 32820}, {25045, 25054}, {32825, 33245}, {32874, 32971}, {33005, 41750}, {33685, 51123}, {34603, 56017}, {34607, 41831}, {39955, 40002}, {41675, 46453}, {44434, 53015}, {54523, 60128}, {55819, 61825}, {60175, 60234}, {60190, 60217}

X(63093) = reflection of X(i) in X(j) for these {i,j}: {315, 5309}, {32833, 32}, {5309, 7805}, {7788, 5306}, {7855, 7880}
X(63093) = anticomplement of X(7788)
X(63093) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14458, 2}
X(63093) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {9211, 21305}, {14387, 21275}, {14458, 6327}, {43706, 4329}, {59136, 7192}
X(63093) = pole of line {523, 14398} with respect to the Steiner circumellipse
X(63093) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(7837)}}, {{A, B, C, X(69), X(60214)}}, {{A, B, C, X(141), X(18361)}}, {{A, B, C, X(193), X(54519)}}, {{A, B, C, X(385), X(60150)}}, {{A, B, C, X(1992), X(54539)}}, {{A, B, C, X(7774), X(14492)}}, {{A, B, C, X(7777), X(54523)}}, {{A, B, C, X(7779), X(54823)}}, {{A, B, C, X(9300), X(60190)}}, {{A, B, C, X(16990), X(60217)}}, {{A, B, C, X(17008), X(60175)}}, {{A, B, C, X(35146), X(39101)}}, {{A, B, C, X(37671), X(54122)}}
X(63093) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 7837}, {32, 32833, 33255}, {148, 19569, 15682}, {183, 9300, 2}, {193, 385, 7774}, {315, 5309, 33251}, {524, 5306, 7788}, {3053, 59634, 33266}, {3180, 3181, 69}, {6179, 7758, 16925}, {7739, 7811, 7791}, {7760, 7811, 7739}


X(63094) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37672), X(3), X(6))

Barycentrics    a^2*(3*a^4+3*b^4-2*b^2*c^2+3*c^4-6*a^2*(b^2+c^2)) : :
X(63094) = 2*X[578]+X[12160], -4*X[32046]+X[37486]

X(63094) lies on these lines: {2, 6}, {3, 13366}, {4, 54785}, {22, 11422}, {25, 576}, {26, 1493}, {30, 1181}, {32, 35302}, {49, 44078}, {51, 3167}, {52, 14070}, {54, 17834}, {97, 36751}, {110, 17810}, {154, 3060}, {155, 195}, {184, 1351}, {185, 54992}, {219, 54444}, {222, 55437}, {275, 9308}, {317, 56297}, {371, 5406}, {372, 5407}, {376, 7592}, {378, 13482}, {389, 35602}, {399, 61993}, {428, 20423}, {458, 7760}, {511, 3796}, {541, 19456}, {542, 5064}, {543, 39839}, {549, 16266}, {568, 45780}, {575, 7484}, {578, 12160}, {598, 54922}, {671, 39849}, {1092, 11432}, {1147, 37493}, {1151, 55567}, {1152, 55566}, {1154, 37506}, {1180, 10542}, {1192, 37941}, {1199, 3524}, {1350, 5012}, {1353, 1899}, {1370, 8550}, {1495, 21847}, {1498, 3543}, {1583, 6419}, {1584, 6420}, {1598, 43844}, {1599, 3592}, {1600, 3594}, {1853, 45968}, {1990, 37192}, {1995, 53858}, {2003, 3928}, {2056, 62702}, {2207, 7812}, {2323, 3929}, {2904, 7576}, {2979, 5085}, {2987, 20976}, {3066, 5097}, {3157, 24473}, {3173, 31164}, {3218, 62207}, {3219, 62245}, {3292, 5020}, {3299, 55410}, {3301, 55409}, {3306, 23140}, {3311, 5408}, {3312, 5409}, {3515, 16625}, {3520, 53860}, {3534, 15087}, {3545, 17814}, {3567, 43572}, {3679, 16473}, {3787, 39764}, {3819, 39561}, {3830, 18445}, {3839, 11441}, {3845, 18451}, {3917, 5050}, {4421, 61397}, {4428, 61398}, {5007, 37344}, {5039, 40802}, {5054, 36753}, {5055, 14627}, {5066, 15068}, {5133, 15069}, {5485, 54772}, {5562, 11426}, {5650, 34566}, {5651, 34565}, {5707, 17530}, {5889, 11425}, {5890, 37497}, {5943, 6090}, {6054, 39820}, {6179, 37067}, {6193, 45089}, {6427, 55579}, {6428, 55577}, {6461, 34511}, {6504, 54764}, {6510, 55871}, {6636, 53097}, {6776, 44442}, {6800, 62187}, {6819, 62213}, {6820, 40138}, {7395, 37505}, {7403, 9936}, {7485, 23061}, {7503, 15801}, {7507, 10112}, {7529, 41597}, {7539, 34507}, {7667, 11179}, {7757, 35941}, {8541, 53019}, {8549, 31133}, {8703, 37483}, {8745, 55413}, {8780, 34417}, {9140, 17847}, {9545, 17821}, {9704, 37956}, {9707, 37939}, {9716, 13595}, {9786, 15078}, {9876, 39846}, {10132, 45488}, {10133, 45489}, {10323, 11423}, {10541, 15246}, {10605, 13352}, {10607, 52032}, {10608, 41169}, {10691, 50979}, {10706, 17838}, {10983, 52144}, {11001, 15032}, {11002, 35264}, {11003, 55722}, {11126, 22236}, {11127, 22238}, {11225, 26869}, {11284, 22330}, {11412, 37476}, {11424, 12164}, {11456, 15682}, {11485, 52348}, {11486, 52349}, {11547, 27377}, {11550, 39899}, {11803, 18377}, {12112, 62019}, {12163, 37472}, {12310, 32226}, {12370, 18568}, {13579, 54762}, {13587, 36745}, {14528, 38444}, {14853, 63174}, {15037, 15701}, {15038, 61920}, {15047, 15723}, {15052, 61966}, {15135, 31152}, {15531, 17813}, {15685, 35237}, {15687, 32139}, {15688, 43845}, {15694, 15805}, {15695, 37496}, {15811, 43605}, {15905, 46832}, {16370, 36742}, {16371, 36754}, {16417, 37509}, {16418, 36750}, {16419, 53092}, {16472, 25055}, {16857, 22136}, {16936, 62129}, {17121, 54284}, {17549, 36746}, {18281, 19360}, {18324, 37489}, {18378, 44789}, {19118, 58555}, {19139, 52077}, {19149, 34603}, {19170, 47383}, {19346, 37474}, {19347, 45186}, {19362, 34726}, {19461, 32419}, {19462, 32421}, {19709, 50461}, {20850, 44110}, {20959, 54312}, {21850, 31383}, {21974, 61645}, {22128, 52424}, {22234, 52719}, {22331, 35296}, {22352, 33878}, {25417, 61025}, {26864, 55716}, {27003, 62244}, {27065, 62243}, {30435, 36212}, {31236, 41724}, {31884, 62188}, {32046, 37486}, {32320, 44552}, {33534, 62165}, {33884, 55703}, {34380, 43653}, {34570, 56345}, {34608, 54132}, {34966, 44212}, {37068, 52703}, {37475, 43574}, {37490, 37955}, {39284, 54496}, {39588, 50974}, {41427, 43601}, {41588, 61624}, {43273, 52397}, {43650, 44111}, {43957, 44503}, {44109, 44456}, {44210, 44492}, {44211, 44752}, {52124, 56568}, {54034, 61629}, {54434, 61915}, {54531, 54930}, {54629, 54774}, {54666, 54913}, {54769, 54801}, {54776, 54792}, {54783, 54927}, {54784, 54867}, {54798, 54911}, {59553, 61506}, {61644, 61659}, {61655, 61680}

X(63094) = midpoint of X(i) and X(j) for these {i,j}: {12160, 54994}
X(63094) = reflection of X(i) in X(j) for these {i,j}: {3796, 11402}, {54994, 578}
X(63094) = isotomic conjugate of X(54636)
X(63094) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 54636}, {36748, 631}, {36830, 53862}
X(63094) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8797, 3}, {63155, 3517}
X(63094) = X(i)-complementary conjugate of X(j) for these {i, j}: {54761, 2887}
X(63094) = pole of line {8371, 20184} with respect to the orthocentroidal circle
X(63094) = pole of line {5050, 6467} with respect to the Jerabek hyperbola
X(63094) = pole of line {2, 54761} with respect to the Kiepert hyperbola
X(63094) = pole of line {99, 53862} with respect to the Kiepert parabola
X(63094) = pole of line {525, 12077} with respect to the MacBeath circumconic
X(63094) = pole of line {6, 3090} with respect to the Stammler hyperbola
X(63094) = pole of line {523, 37940} with respect to the Steiner circumellipse
X(63094) = pole of line {2, 54636} with respect to the Wallace hyperbola
X(63094) = pole of line {525, 12077} with respect to the dual conic of nine-point circle
X(63094) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3517)}}, {{A, B, C, X(69), X(54785)}}, {{A, B, C, X(81), X(54402)}}, {{A, B, C, X(251), X(37689)}}, {{A, B, C, X(275), X(37672)}}, {{A, B, C, X(524), X(60120)}}, {{A, B, C, X(598), X(61658)}}, {{A, B, C, X(599), X(54922)}}, {{A, B, C, X(1992), X(54772)}}, {{A, B, C, X(2987), X(3620)}}, {{A, B, C, X(3054), X(8770)}}, {{A, B, C, X(3619), X(40802)}}, {{A, B, C, X(5304), X(34572)}}, {{A, B, C, X(6515), X(54764)}}, {{A, B, C, X(10601), X(56004)}}, {{A, B, C, X(14528), X(54636)}}, {{A, B, C, X(17811), X(56347)}}, {{A, B, C, X(36616), X(37637)}}, {{A, B, C, X(45794), X(54762)}}, {{A, B, C, X(47296), X(56345)}}
X(63094) = barycentric product X(i)*X(j) for these (i, j): {3, 63155}, {3517, 69}, {32829, 6}
X(63094) = barycentric quotient X(i)/X(j) for these (i, j): {2, 54636}, {110, 53862}, {3517, 4}, {32829, 76}, {63155, 264}
X(63094) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 1993, 394}, {22, 11422, 17809}, {51, 3167, 35259}, {154, 5102, 3060}, {155, 36749, 10982}, {184, 1351, 33586}, {184, 21969, 9909}, {195, 36749, 155}, {219, 54444, 55438}, {275, 9308, 41244}, {511, 11402, 3796}, {576, 34986, 25}, {1351, 9909, 21969}, {1993, 1994, 6}, {1993, 5422, 323}, {2003, 55399, 22129}, {2323, 55400, 55466}, {3167, 5093, 51}, {3292, 15004, 5020}, {5020, 11482, 15004}, {5097, 9306, 9777}, {9306, 9777, 3066}, {11477, 17809, 22}, {12161, 36747, 1181}, {43650, 44111, 53091}, {53091, 62217, 43650}


X(63095) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37685), X(3), X(6))

Barycentrics    a*(4*a^2+b*c+4*a*(b+c)) : :

X(63095) lies on these lines: {1, 4525}, {2, 6}, {20, 36750}, {23, 44094}, {37, 25417}, {42, 30652}, {58, 17548}, {63, 17013}, {89, 3752}, {144, 54444}, {195, 6887}, {386, 37307}, {593, 16946}, {1051, 4414}, {1199, 6847}, {1203, 3622}, {1255, 16885}, {1386, 4430}, {1449, 3219}, {1724, 17544}, {1743, 17019}, {2003, 21454}, {2308, 8616}, {3187, 17120}, {3311, 21566}, {3312, 21567}, {3522, 36742}, {3523, 37509}, {3621, 57280}, {3623, 56989}, {3751, 29815}, {3758, 28605}, {3774, 30651}, {3839, 45923}, {4220, 5093}, {4232, 44097}, {4260, 62188}, {4393, 25256}, {4641, 16668}, {4644, 33150}, {4649, 17127}, {4661, 4663}, {4667, 27186}, {4722, 7226}, {4991, 17155}, {5068, 5707}, {5222, 26842}, {5280, 29585}, {5320, 9544}, {5706, 17578}, {5710, 20052}, {6417, 16441}, {6418, 16440}, {6427, 21565}, {6428, 21568}, {6500, 16433}, {6501, 16432}, {6636, 37492}, {6825, 14627}, {6846, 12161}, {6871, 46441}, {6908, 36749}, {6926, 36753}, {7277, 33146}, {7486, 45931}, {7592, 37434}, {8056, 17020}, {9332, 17124}, {9605, 21537}, {10304, 51340}, {11002, 40952}, {11003, 44104}, {11402, 37254}, {14912, 37456}, {14986, 16472}, {15516, 37521}, {15520, 37527}, {15717, 36754}, {16431, 22246}, {16466, 55103}, {16468, 29814}, {16469, 29817}, {16475, 17024}, {16666, 28606}, {16667, 17011}, {16670, 25430}, {16671, 37595}, {16884, 33761}, {17012, 23958}, {17014, 20078}, {17025, 32913}, {17126, 60714}, {17554, 22136}, {17745, 29624}, {19003, 56384}, {19004, 56427}, {19649, 53091}, {19767, 52680}, {20016, 50028}, {21309, 35276}, {21503, 33636}, {21508, 30435}, {21511, 43136}, {21734, 36746}, {21747, 42042}, {22383, 26777}, {27649, 54349}, {29648, 34379}, {29665, 61652}, {29667, 51196}, {29679, 59408}, {29864, 32843}, {29868, 32946}, {32945, 50283}, {33166, 50284}, {33748, 50699}, {33766, 40214}, {35265, 44098}, {36745, 61791}, {36747, 37108}, {37501, 62060}, {37537, 62124}, {37559, 46932}, {39521, 47759}, {39523, 59417}, {39952, 39961}, {41241, 46938}, {44105, 52301}, {54358, 61006}, {56203, 58380}, {56343, 59301}

X(63095) = pole of line {6, 16853} with respect to the Stammler hyperbola
X(63095) = pole of line {523, 4401} with respect to the Steiner circumellipse
X(63095) = pole of line {1125, 17548} with respect to the dual conic of Yff parabola
X(63095) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(89), X(4921)}}, {{A, B, C, X(967), X(37682)}}, {{A, B, C, X(1171), X(37674)}}, {{A, B, C, X(5235), X(26745)}}, {{A, B, C, X(5275), X(39955)}}, {{A, B, C, X(5333), X(27789)}}, {{A, B, C, X(15668), X(39952)}}, {{A, B, C, X(17327), X(40776)}}, {{A, B, C, X(17398), X(39975)}}, {{A, B, C, X(25417), X(42025)}}, {{A, B, C, X(37673), X(39961)}}, {{A, B, C, X(41819), X(60077)}}
X(63095) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2308, 17018, 30653}


X(63096) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37687), X(3), X(6))

Barycentrics    a*(2*a^2-5*b*c+2*a*(b+c)) : :

X(63096) lies on these lines: {2, 6}, {9, 17020}, {31, 61156}, {43, 61155}, {56, 27645}, {89, 54390}, {210, 17024}, {239, 26688}, {371, 21569}, {372, 21564}, {386, 16859}, {614, 4661}, {748, 3240}, {756, 17025}, {899, 3550}, {902, 36634}, {1191, 4678}, {1203, 19877}, {1255, 56039}, {1376, 30653}, {1616, 20014}, {1714, 5154}, {1724, 4188}, {1743, 27003}, {2003, 31188}, {2308, 62711}, {2999, 27065}, {3008, 31053}, {3090, 24898}, {3187, 46938}, {3216, 4189}, {3218, 23511}, {3305, 16676}, {3311, 21555}, {3312, 21552}, {3533, 36750}, {3749, 54309}, {3832, 36745}, {4000, 26792}, {4104, 29666}, {4260, 11451}, {4430, 7292}, {5056, 36754}, {5067, 37509}, {5096, 37913}, {5206, 21537}, {5247, 27625}, {5256, 16673}, {5315, 53620}, {5347, 14002}, {5706, 15022}, {5707, 46936}, {5711, 46931}, {6030, 35988}, {6199, 21563}, {6395, 21556}, {6417, 21551}, {6418, 21544}, {6449, 16440}, {6450, 16441}, {6453, 21568}, {6454, 21565}, {6472, 21577}, {6473, 21570}, {7308, 17011}, {7381, 55027}, {9330, 17017}, {9335, 32912}, {9347, 58451}, {9690, 21561}, {13595, 36741}, {15702, 51340}, {16042, 37538}, {16434, 55584}, {16466, 46933}, {16477, 17124}, {16483, 31145}, {16569, 17126}, {16610, 23958}, {16816, 54282}, {17018, 17123}, {17021, 25417}, {17125, 29814}, {17544, 19765}, {17570, 19767}, {17572, 17749}, {18228, 33155}, {19544, 55697}, {19649, 55610}, {19804, 41241}, {20064, 26073}, {21309, 21533}, {21487, 55632}, {21508, 37512}, {21527, 43136}, {21558, 43415}, {25960, 29868}, {26685, 33168}, {26723, 27131}, {26791, 29590}, {29870, 31289}, {30578, 30699}, {31018, 33150}, {36742, 55864}, {36746, 61834}, {37254, 44106}, {37501, 61816}, {37521, 55718}, {37527, 55708}, {37537, 50689}, {44086, 52284}, {44097, 52299}, {44307, 46845}, {45931, 60781}, {46873, 55399}, {46932, 57280}

X(63096) = pole of line {6, 17573} with respect to the Stammler hyperbola
X(63096) = pole of line {190, 30732} with respect to the Hutson-Moses hyperbola
X(63096) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(5361), X(60075)}}, {{A, B, C, X(5372), X(57721)}}, {{A, B, C, X(8025), X(56039)}}, {{A, B, C, X(18141), X(55027)}}, {{A, B, C, X(32863), X(60107)}}, {{A, B, C, X(39979), X(40341)}}


X(63097) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37689), X(3), X(6))

Barycentrics    11*a^4+3*(b^2-c^2)^2+2*a^2*(b^2+c^2) : :

X(63097) lies on these lines: {2, 6}, {4, 21309}, {20, 1384}, {23, 8573}, {25, 33630}, {32, 3146}, {39, 61820}, {98, 9748}, {111, 23591}, {115, 61985}, {140, 22246}, {187, 3522}, {194, 33205}, {251, 51316}, {262, 54921}, {393, 1383}, {549, 14482}, {574, 5319}, {800, 9465}, {910, 62208}, {1104, 27541}, {1249, 4232}, {1285, 3543}, {1368, 33636}, {1609, 7492}, {2031, 32982}, {2548, 14075}, {2549, 62120}, {3053, 50693}, {3087, 6103}, {3089, 8744}, {3090, 43136}, {3091, 30435}, {3098, 10336}, {3424, 60147}, {3523, 5024}, {3546, 22121}, {3767, 3832}, {3785, 7856}, {3793, 33190}, {3839, 18907}, {3854, 7745}, {3933, 33183}, {5007, 15022}, {5013, 61804}, {5023, 62078}, {5059, 5254}, {5068, 7755}, {5210, 7738}, {5309, 15683}, {5355, 8588}, {5368, 61834}, {5475, 61944}, {5476, 44839}, {5585, 62060}, {5702, 53857}, {6392, 33201}, {6781, 62145}, {6995, 16318}, {7000, 23273}, {7374, 23267}, {7408, 10311}, {7612, 60331}, {7737, 39563}, {7739, 8589}, {7753, 61927}, {7754, 32840}, {7760, 32831}, {7762, 33199}, {7770, 32872}, {7772, 61848}, {7797, 33025}, {7805, 53033}, {7807, 32841}, {7839, 32989}, {7857, 32835}, {7878, 32838}, {7894, 32829}, {7920, 32990}, {7921, 32988}, {9575, 46934}, {9605, 10303}, {9755, 39874}, {9756, 14484}, {10304, 15048}, {10312, 51509}, {10565, 40179}, {10986, 41361}, {10989, 47184}, {11648, 62168}, {13341, 15302}, {13345, 36415}, {13357, 20081}, {13595, 34809}, {14929, 33196}, {14986, 16784}, {15484, 61936}, {15603, 21735}, {16051, 38292}, {16303, 37909}, {16306, 20063}, {16509, 18842}, {17578, 53419}, {20065, 33200}, {20088, 32980}, {21843, 61806}, {22253, 33191}, {22331, 62152}, {23976, 41254}, {31400, 61842}, {31406, 61856}, {32522, 50370}, {32828, 60855}, {35007, 62125}, {36961, 42133}, {36962, 42134}, {37809, 53141}, {38259, 60184}, {39389, 52224}, {39593, 62072}, {40065, 52284}, {40103, 52187}, {40126, 45245}, {40132, 59657}, {40138, 58265}, {41394, 46336}, {43457, 61954}, {43537, 60118}, {44212, 59655}, {44518, 50690}, {44526, 62148}, {47804, 54250}, {48906, 60658}, {50689, 53418}, {53095, 61791}, {54815, 60150}, {62002, 62203}

X(63097) = X(i)-complementary conjugate of X(j) for these {i, j}: {60324, 2887}
X(63097) = pole of line {2501, 55188} with respect to the polar circle
X(63097) = pole of line {2, 55684} with respect to the Kiepert hyperbola
X(63097) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(47586)}}, {{A, B, C, X(111), X(17811)}}, {{A, B, C, X(141), X(51316)}}, {{A, B, C, X(183), X(54921)}}, {{A, B, C, X(251), X(37672)}}, {{A, B, C, X(325), X(43951)}}, {{A, B, C, X(393), X(599)}}, {{A, B, C, X(394), X(1383)}}, {{A, B, C, X(524), X(52223)}}, {{A, B, C, X(597), X(52224)}}, {{A, B, C, X(1007), X(60331)}}, {{A, B, C, X(1989), X(50993)}}, {{A, B, C, X(2165), X(21358)}}, {{A, B, C, X(3424), X(10513)}}, {{A, B, C, X(5468), X(59038)}}, {{A, B, C, X(7897), X(38259)}}, {{A, B, C, X(15533), X(34288)}}, {{A, B, C, X(15534), X(52187)}}, {{A, B, C, X(15589), X(60336)}}, {{A, B, C, X(17825), X(39389)}}, {{A, B, C, X(20080), X(60184)}}, {{A, B, C, X(21356), X(46208)}}, {{A, B, C, X(37668), X(60147)}}, {{A, B, C, X(41136), X(54476)}}, {{A, B, C, X(41932), X(50771)}}, {{A, B, C, X(46952), X(47352)}}, {{A, B, C, X(51185), X(52188)}}
X(63097) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3054, 7736}, {193, 7806, 2}, {3068, 3069, 599}, {5306, 7735, 5304}, {7585, 7586, 1992}, {15048, 46453, 10304}


X(63098) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(37690), X(3), X(6))

Barycentrics    a^4+5*b^4-2*b^2*c^2+5*c^4-6*a^2*(b^2+c^2) : :

X(63098) lies on these lines: {2, 6}, {3, 32823}, {4, 6390}, {5, 32818}, {20, 316}, {23, 9723}, {32, 33203}, {39, 33180}, {76, 5056}, {95, 26233}, {99, 3543}, {114, 31670}, {140, 32871}, {147, 3424}, {194, 32972}, {253, 30769}, {262, 60201}, {264, 3266}, {311, 9464}, {315, 3523}, {317, 4232}, {340, 53857}, {381, 32817}, {439, 7823}, {468, 32001}, {546, 32822}, {547, 32893}, {625, 34511}, {626, 31400}, {631, 7776}, {671, 11148}, {858, 6527}, {1078, 32839}, {1285, 11288}, {1916, 60260}, {1975, 3832}, {1995, 3964}, {2023, 41747}, {2482, 23334}, {2548, 7820}, {2996, 32966}, {3060, 51386}, {3090, 3933}, {3091, 3926}, {3146, 6337}, {3522, 32006}, {3525, 7767}, {3628, 32897}, {3705, 32087}, {3767, 31275}, {3785, 7769}, {3788, 33181}, {3839, 7799}, {3854, 32820}, {5013, 33025}, {5024, 33190}, {5054, 14929}, {5055, 32874}, {5067, 32870}, {5068, 32821}, {5071, 32869}, {5094, 32000}, {5159, 40995}, {5286, 7764}, {5297, 55392}, {5305, 32955}, {5395, 14037}, {5976, 44434}, {6054, 14928}, {6392, 7906}, {6995, 32002}, {7179, 31995}, {7292, 55391}, {7398, 34254}, {7486, 7796}, {7492, 44180}, {7620, 18424}, {7710, 48905}, {7738, 33200}, {7745, 33201}, {7750, 15717}, {7754, 32969}, {7758, 7862}, {7759, 58448}, {7762, 32970}, {7768, 61856}, {7771, 15708}, {7783, 32982}, {7785, 32973}, {7795, 31404}, {7801, 31415}, {7802, 62097}, {7803, 33182}, {7808, 31407}, {7809, 10304}, {7811, 15721}, {7813, 43620}, {7821, 31401}, {7836, 32971}, {7839, 33248}, {7845, 21843}, {7858, 33183}, {7860, 62067}, {7871, 32832}, {7879, 32978}, {7881, 32968}, {7885, 33023}, {7891, 32981}, {7893, 33000}, {7900, 32964}, {7912, 32974}, {7917, 61863}, {7929, 33012}, {7935, 31450}, {7939, 33001}, {7941, 16925}, {7947, 16924}, {8352, 53141}, {8596, 41895}, {9605, 32951}, {9741, 37350}, {9748, 37071}, {9759, 32114}, {10484, 60200}, {10519, 43461}, {11057, 62059}, {11059, 14615}, {13862, 14484}, {14001, 53489}, {14002, 52437}, {14039, 15484}, {14360, 31099}, {14494, 60259}, {14712, 35287}, {14853, 51371}, {14907, 15692}, {14927, 59552}, {14981, 46034}, {15022, 59635}, {15048, 33285}, {15246, 15574}, {15355, 36212}, {16041, 31859}, {16051, 41005}, {16981, 51383}, {17128, 32991}, {17129, 32998}, {17578, 32881}, {18907, 33191}, {20065, 32989}, {20081, 32963}, {20423, 51397}, {23234, 50567}, {26235, 44149}, {29641, 30740}, {30435, 33189}, {30737, 57518}, {31173, 43619}, {31406, 32956}, {31467, 32960}, {32456, 44678}, {32819, 50689}, {32826, 61982}, {32833, 61936}, {32836, 61924}, {32838, 46935}, {32885, 61897}, {32887, 61788}, {32889, 62110}, {32895, 50693}, {32896, 61938}, {32984, 47286}, {33244, 51579}, {33258, 55797}, {35705, 46236}, {39899, 56370}, {42140, 59539}, {42141, 59540}, {46951, 53127}, {48913, 62007}, {50572, 62310}, {50687, 59634}, {50961, 58831}, {50967, 51396}, {51028, 51438}, {51439, 62187}, {51538, 59548}, {52301, 63155}, {52718, 55856}, {53016, 54996}, {53859, 60198}, {54521, 60202}, {60098, 60285}, {60102, 60178}, {60212, 60333}

X(63098) = isotomic conjugate of X(43537)
X(63098) = pole of line {6563, 12077} with respect to the DeLongchamps circle
X(63098) = pole of line {2501, 8644} with respect to the polar circle
X(63098) = pole of line {6563, 13400} with respect to the MacBeath inconic
X(63098) = pole of line {523, 47552} with respect to the Steiner circumellipse
X(63098) = pole of line {2, 8550} with respect to the Wallace hyperbola
X(63098) = pole of line {3265, 9979} with respect to the dual conic of Orthic inconic
X(63098) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(37689)}}, {{A, B, C, X(6), X(11477)}}, {{A, B, C, X(69), X(60262)}}, {{A, B, C, X(95), X(21356)}}, {{A, B, C, X(183), X(60201)}}, {{A, B, C, X(193), X(60234)}}, {{A, B, C, X(230), X(3424)}}, {{A, B, C, X(253), X(524)}}, {{A, B, C, X(262), X(5304)}}, {{A, B, C, X(264), X(1992)}}, {{A, B, C, X(385), X(60260)}}, {{A, B, C, X(1494), X(50992)}}, {{A, B, C, X(1916), X(37667)}}, {{A, B, C, X(2996), X(17008)}}, {{A, B, C, X(3054), X(53859)}}, {{A, B, C, X(3618), X(40410)}}, {{A, B, C, X(3620), X(43529)}}, {{A, B, C, X(5032), X(10484)}}, {{A, B, C, X(5306), X(54521)}}, {{A, B, C, X(5395), X(7806)}}, {{A, B, C, X(5468), X(44326)}}, {{A, B, C, X(5503), X(9740)}}, {{A, B, C, X(5641), X(41133)}}, {{A, B, C, X(6515), X(41896)}}, {{A, B, C, X(7735), X(14484)}}, {{A, B, C, X(7736), X(60333)}}, {{A, B, C, X(8781), X(37668)}}, {{A, B, C, X(8797), X(59373)}}, {{A, B, C, X(8859), X(41895)}}, {{A, B, C, X(9473), X(44377)}}, {{A, B, C, X(11008), X(57897)}}, {{A, B, C, X(11160), X(35510)}}, {{A, B, C, X(14494), X(37665)}}, {{A, B, C, X(15589), X(40824)}}, {{A, B, C, X(20080), X(52443)}}, {{A, B, C, X(30786), X(37669)}}, {{A, B, C, X(34229), X(60259)}}, {{A, B, C, X(37637), X(60102)}}, {{A, B, C, X(45794), X(54459)}}, {{A, B, C, X(50990), X(57822)}}, {{A, B, C, X(51171), X(60098)}}, {{A, B, C, X(54487), X(61304)}}
X(63098) = barycentric product X(i)*X(j) for these (i, j): {11477, 76}
X(63098) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43537}, {11477, 6}
X(63098) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10513, 183}, {2, 7774, 5304}, {2, 7840, 9740}, {2, 7897, 3620}, {5, 32818, 32830}, {99, 32827, 3543}, {302, 303, 3618}, {315, 32829, 3523}, {325, 1007, 2}, {491, 492, 1992}, {625, 34511, 43448}, {626, 31400, 33202}, {1078, 32839, 55864}, {2548, 53033, 33198}, {2548, 7888, 53033}, {3090, 3933, 32834}, {3785, 7769, 10303}, {3832, 32841, 1975}, {3926, 7752, 3091}, {6337, 7773, 3146}, {7763, 32816, 20}, {7763, 7814, 32816}, {7906, 32961, 6392}, {32827, 32837, 99}


X(63099) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(40750), X(3), X(6))

Barycentrics    a*(a^3+a^2*(b+c)+b*c*(b+c)+a*(b+c)^2) : :

X(63099) lies on these lines: {1, 32}, {2, 6}, {4, 23903}, {9, 1961}, {31, 37}, {39, 37522}, {42, 4386}, {48, 354}, {55, 60724}, {58, 5283}, {105, 28895}, {171, 2276}, {194, 17103}, {199, 36744}, {284, 35612}, {350, 14621}, {386, 5277}, {572, 37521}, {573, 37527}, {583, 36808}, {741, 5145}, {750, 1575}, {894, 33931}, {941, 2248}, {964, 21024}, {975, 54406}, {981, 18268}, {1030, 5347}, {1107, 1468}, {1197, 4362}, {1206, 32914}, {1333, 10458}, {1386, 3290}, {1449, 5573}, {1475, 22065}, {1500, 5264}, {1509, 7760}, {1621, 16777}, {1724, 16589}, {1922, 43534}, {2162, 2298}, {2176, 57280}, {2235, 17763}, {2268, 20359}, {2271, 19329}, {2273, 29653}, {2275, 37607}, {2295, 3695}, {2300, 29644}, {2308, 59207}, {2323, 29657}, {3053, 19765}, {3247, 8616}, {3304, 20471}, {3684, 4649}, {3720, 21764}, {3750, 10987}, {3758, 20947}, {3821, 4987}, {3868, 16519}, {3920, 49509}, {3923, 4037}, {3954, 30142}, {3959, 17016}, {3985, 4672}, {4038, 5332}, {4119, 50288}, {4203, 39967}, {4251, 4658}, {4264, 38832}, {4289, 33325}, {4307, 20539}, {4340, 5286}, {4426, 59305}, {4754, 7754}, {4771, 49489}, {5007, 16783}, {5019, 18169}, {5042, 18192}, {5254, 49745}, {5262, 20271}, {5280, 17750}, {5291, 30116}, {5299, 29646}, {5305, 49743}, {5309, 49744}, {5320, 16972}, {5371, 26242}, {5707, 36674}, {6654, 40754}, {7296, 41239}, {7746, 37693}, {7755, 34829}, {7808, 29438}, {7817, 50266}, {7841, 50263}, {9346, 45751}, {9455, 47373}, {16523, 17475}, {16693, 21010}, {16825, 20963}, {16884, 17597}, {16915, 33296}, {16974, 21808}, {17025, 62212}, {17027, 20179}, {17126, 17735}, {17200, 25497}, {17275, 32864}, {17299, 32945}, {17314, 20069}, {17366, 24596}, {17716, 51058}, {17737, 33112}, {17754, 37604}, {18755, 19767}, {18900, 20964}, {19133, 44120}, {20228, 29650}, {20472, 54409}, {21904, 61358}, {21951, 54418}, {26085, 53423}, {31477, 37540}, {34252, 52655}, {34283, 51857}, {36659, 36742}, {36730, 51340}, {37554, 54317}, {40761, 56899}, {43531, 52538}, {50036, 57525}, {61398, 62372}

X(63099) = perspector of circumconic {{A, B, C, X(99), X(1492)}}
X(63099) = pole of line {2268, 4336} with respect to the Feuerbach hyperbola
X(63099) = pole of line {6, 40773} with respect to the Stammler hyperbola
X(63099) = pole of line {190, 35327} with respect to the Hutson-Moses hyperbola
X(63099) = pole of line {1125, 25497} with respect to the dual conic of Yff parabola
X(63099) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30966)}}, {{A, B, C, X(2), X(40747)}}, {{A, B, C, X(31), X(61409)}}, {{A, B, C, X(37), X(5224)}}, {{A, B, C, X(81), X(40746)}}, {{A, B, C, X(86), X(985)}}, {{A, B, C, X(172), X(56441)}}, {{A, B, C, X(333), X(2344)}}, {{A, B, C, X(335), X(41269)}}, {{A, B, C, X(940), X(2248)}}, {{A, B, C, X(941), X(1654)}}, {{A, B, C, X(981), X(2238)}}, {{A, B, C, X(2109), X(52897)}}, {{A, B, C, X(2162), X(40153)}}, {{A, B, C, X(2298), X(27644)}}, {{A, B, C, X(3314), X(3721)}}, {{A, B, C, X(8624), X(52205)}}, {{A, B, C, X(17327), X(39983)}}, {{A, B, C, X(17346), X(39974)}}, {{A, B, C, X(17381), X(39798)}}, {{A, B, C, X(41809), X(60676)}}
X(63099) = barycentric product X(i)*X(j) for these (i, j): {1, 50302}
X(63099) = barycentric quotient X(i)/X(j) for these (i, j): {50302, 75}
X(63099) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3509, 41269}, {1, 54382, 3727}, {6, 5275, 2238}, {81, 5276, 6}, {5280, 37559, 17750}, {5282, 5311, 37}, {5711, 54416, 2295}, {16777, 21793, 1621}, {16972, 40131, 46907}


X(63100) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(41809), X(3), X(6))

Barycentrics    a^3-b^3-2*b^2*c-2*b*c^2-c^3-2*a*(b+c)^2 : :

X(63100) lies on these lines: {2, 6}, {4, 3617}, {8, 2901}, {9, 56810}, {10, 6327}, {37, 20017}, {45, 3969}, {144, 19825}, {145, 37314}, {321, 17275}, {329, 31025}, {573, 3219}, {748, 3775}, {756, 50308}, {1255, 17377}, {1278, 41821}, {1698, 32949}, {3060, 3786}, {3187, 3686}, {3305, 17270}, {3622, 57007}, {3661, 21373}, {3679, 32947}, {3707, 5294}, {3739, 32859}, {3842, 32852}, {3876, 5752}, {3923, 8013}, {3966, 4981}, {4001, 26627}, {4104, 26227}, {4270, 17011}, {4277, 4886}, {4359, 4643}, {4371, 50071}, {4384, 17184}, {4651, 50295}, {4671, 56745}, {4690, 44307}, {4699, 17483}, {4703, 21020}, {4720, 48814}, {4732, 33094}, {4741, 26842}, {4914, 51034}, {4967, 17781}, {4980, 28634}, {5271, 26580}, {5564, 42044}, {5816, 31018}, {5905, 17746}, {6536, 49488}, {6542, 49758}, {7322, 50000}, {9534, 17676}, {10478, 27131}, {16454, 49716}, {16668, 41850}, {16815, 27186}, {16816, 33150}, {16865, 54313}, {17019, 17363}, {17147, 17257}, {17258, 50106}, {17260, 32858}, {17289, 62586}, {17321, 45222}, {17328, 19804}, {17332, 32933}, {17335, 33157}, {17348, 32774}, {17362, 20046}, {18147, 62588}, {19257, 54391}, {19284, 54429}, {19822, 54280}, {21879, 61408}, {24296, 50222}, {24552, 41002}, {24697, 32860}, {24725, 27798}, {25006, 48888}, {25894, 26526}, {26037, 33082}, {26038, 33086}, {26793, 29593}, {27785, 41814}, {28605, 33941}, {29667, 60731}, {29829, 32864}, {29830, 33084}, {30564, 55868}, {30590, 53854}, {30599, 34283}, {31330, 33106}, {32843, 59312}, {32915, 42334}, {32945, 50296}, {32946, 59306}, {33083, 59296}, {34048, 40999}, {37869, 52706}, {50298, 61358}, {55027, 56210}

X(63100) = pole of line {4977, 44445} with respect to the anticomplementary circle
X(63100) = pole of line {2501, 4977} with respect to the polar circle
X(63100) = pole of line {523, 47959} with respect to the Steiner circumellipse
X(63100) = pole of line {1125, 32929} with respect to the dual conic of Yff parabola
X(63100) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(8025)}}, {{A, B, C, X(69), X(6539)}}, {{A, B, C, X(1213), X(7140)}}, {{A, B, C, X(1812), X(32635)}}, {{A, B, C, X(14996), X(54119)}}, {{A, B, C, X(17379), X(55027)}}, {{A, B, C, X(19717), X(60155)}}, {{A, B, C, X(19742), X(32022)}}, {{A, B, C, X(31034), X(34258)}}, {{A, B, C, X(32863), X(56210)}}, {{A, B, C, X(37635), X(60261)}}, {{A, B, C, X(37639), X(60206)}}, {{A, B, C, X(37685), X(60149)}}
X(63100) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 8025}, {1150, 5743, 2}, {3966, 4981, 29832}, {4886, 17256, 28606}, {9534, 26064, 17676}


X(63101) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(42849), X(3), X(6))

Barycentrics    2*a^4-b^4+4*b^2*c^2-c^4+7*a^2*(b^2+c^2) : :
X(63101) = -X[76]+4*X[8367], 8*X[6683]+X[7762], 2*X[7745]+X[7833], -X[7750]+10*X[7786], 5*X[7921]+X[9939], X[8353]+2*X[14537], -4*X[8358]+X[11057], -4*X[11272]+X[37345]

X(63101) lies on these lines: {2, 6}, {4, 60268}, {5, 6054}, {30, 262}, {32, 5569}, {39, 543}, {76, 8367}, {83, 5503}, {98, 50979}, {140, 7878}, {147, 47354}, {232, 52281}, {373, 12093}, {376, 52771}, {381, 9744}, {384, 9606}, {427, 37765}, {530, 22691}, {531, 22692}, {538, 14762}, {542, 51829}, {549, 2080}, {574, 8598}, {575, 6055}, {671, 3363}, {754, 15810}, {858, 50147}, {1003, 7618}, {1285, 55794}, {1506, 7817}, {1513, 5476}, {1975, 9741}, {2021, 3849}, {2023, 9830}, {2482, 7804}, {2548, 7841}, {2549, 11317}, {3407, 10484}, {3628, 7856}, {3839, 7710}, {3845, 43460}, {3972, 27088}, {4045, 31173}, {5007, 34506}, {5013, 33007}, {5024, 11159}, {5077, 15484}, {5215, 7619}, {5254, 20112}, {5309, 7617}, {5459, 6114}, {5460, 6115}, {5461, 7603}, {5475, 8352}, {5939, 18800}, {5968, 57618}, {5984, 51136}, {5999, 51737}, {6094, 10717}, {6390, 60855}, {6656, 7775}, {6683, 7762}, {6786, 34236}, {7608, 60103}, {7615, 7739}, {7620, 32983}, {7622, 35297}, {7737, 35955}, {7745, 7833}, {7750, 7786}, {7752, 8360}, {7757, 52229}, {7763, 33237}, {7765, 47617}, {7770, 32820}, {7772, 32992}, {7773, 33190}, {7787, 33274}, {7790, 37350}, {7801, 7808}, {7803, 11318}, {7807, 9167}, {7814, 8364}, {7819, 7870}, {7824, 34604}, {7829, 33249}, {7846, 8365}, {7851, 31404}, {7858, 7883}, {7921, 9939}, {8176, 33228}, {8353, 14537}, {8358, 11057}, {8550, 11177}, {8597, 53418}, {9189, 62412}, {9605, 40727}, {9607, 16044}, {9742, 61906}, {9751, 17504}, {9753, 14848}, {9885, 35942}, {9886, 35943}, {10168, 37450}, {10796, 37461}, {11164, 14033}, {11165, 11286}, {11167, 60096}, {11169, 52141}, {11179, 13860}, {11272, 37345}, {11361, 32480}, {11645, 50652}, {14035, 22332}, {14041, 43450}, {14064, 31407}, {14492, 54905}, {14568, 16509}, {14869, 51237}, {15815, 33208}, {16042, 33900}, {16045, 32821}, {16924, 34505}, {16925, 50571}, {18583, 43461}, {18907, 51224}, {19687, 34504}, {19924, 44422}, {22331, 33012}, {22724, 32421}, {22725, 32419}, {23234, 38079}, {23334, 32986}, {31400, 32985}, {31450, 33235}, {31492, 32964}, {31652, 33250}, {32816, 33230}, {32829, 33197}, {32967, 51860}, {33891, 49727}, {34094, 53136}, {37182, 54131}, {37455, 54169}, {38227, 59399}, {40824, 54616}, {42008, 52758}, {42011, 60093}, {43535, 60098}, {44526, 52942}, {51412, 58470}, {54639, 60260}, {54773, 60095}, {54906, 60192}, {60213, 60238}

X(63101) = midpoint of X(i) and X(j) for these {i,j}: {598, 52691}, {7812, 55164}, {11361, 32480}
X(63101) = reflection of X(i) in X(j) for these {i,j}: {55164, 8359}, {7750, 55164}
X(63101) = perspector of circumconic {{A, B, C, X(99), X(54840)}}
X(63101) = X(i)-complementary conjugate of X(j) for these {i, j}: {54487, 2887}
X(63101) = pole of line {1499, 17414} with respect to the orthoptic circle of the Steiner Inellipse
X(63101) = pole of line {2, 5104} with respect to the Kiepert hyperbola
X(63101) = pole of line {523, 9208} with respect to the Steiner inellipse
X(63101) = pole of line {2, 42852} with respect to the Wallace hyperbola
X(63101) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(42850)}}, {{A, B, C, X(69), X(60268)}}, {{A, B, C, X(83), X(22329)}}, {{A, B, C, X(98), X(11168)}}, {{A, B, C, X(141), X(5503)}}, {{A, B, C, X(183), X(598)}}, {{A, B, C, X(262), X(599)}}, {{A, B, C, X(352), X(39389)}}, {{A, B, C, X(524), X(11169)}}, {{A, B, C, X(597), X(6094)}}, {{A, B, C, X(3314), X(10484)}}, {{A, B, C, X(7608), X(22110)}}, {{A, B, C, X(7735), X(54616)}}, {{A, B, C, X(7778), X(42011)}}, {{A, B, C, X(7792), X(60238)}}, {{A, B, C, X(7840), X(60098)}}, {{A, B, C, X(8556), X(14458)}}, {{A, B, C, X(8667), X(54773)}}, {{A, B, C, X(8860), X(60093)}}, {{A, B, C, X(10153), X(15597)}}, {{A, B, C, X(11163), X(60096)}}, {{A, B, C, X(11167), X(15271)}}, {{A, B, C, X(15589), X(54171)}}, {{A, B, C, X(15993), X(30537)}}, {{A, B, C, X(20582), X(60213)}}, {{A, B, C, X(23053), X(60263)}}, {{A, B, C, X(37667), X(54639)}}, {{A, B, C, X(37671), X(54905)}}, {{A, B, C, X(37688), X(60103)}}, {{A, B, C, X(44401), X(60186)}}, {{A, B, C, X(44571), X(47352)}}, {{A, B, C, X(60647), X(61304)}}
X(63101) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 183}, {2, 3329, 597}, {2, 597, 7792}, {2, 7735, 8860}, {2, 7774, 599}, {2, 7840, 141}, {597, 3815, 2}, {598, 52691, 30}, {2482, 7804, 35954}, {3055, 6329, 7806}, {3363, 15048, 671}, {5254, 20112, 41135}, {7786, 7812, 8359}, {7812, 8359, 7750}, {8369, 12040, 41134}, {12150, 26613, 19661}, {12150, 55801, 26613}, {14033, 53142, 11164}, {14848, 40248, 9753}, {26613, 55801, 549}, {33013, 41135, 20112}


X(63102) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(43228), X(3), X(6))

Barycentrics    3*sqrt(3)*a^2-S : :

X(63102) lies on these lines: {2, 6}, {3, 43002}, {4, 12817}, {13, 33605}, {14, 33602}, {15, 15698}, {16, 19708}, {17, 61895}, {18, 61899}, {20, 56614}, {30, 42589}, {61, 3524}, {62, 376}, {381, 42776}, {397, 3839}, {398, 3543}, {472, 40138}, {473, 62213}, {547, 42989}, {631, 16963}, {3090, 16267}, {3106, 36347}, {3107, 36323}, {3311, 15764}, {3411, 3525}, {3412, 3533}, {3529, 42991}, {3534, 42119}, {3544, 42992}, {3545, 40694}, {3830, 5334}, {3845, 5335}, {3855, 42993}, {3860, 42125}, {5007, 37173}, {5066, 42142}, {5071, 16268}, {5237, 15710}, {5238, 15715}, {5318, 43772}, {5321, 62007}, {5339, 50687}, {5340, 43201}, {5343, 15687}, {5344, 14269}, {5349, 62003}, {5350, 61994}, {5351, 62058}, {5352, 61780}, {5365, 38335}, {5366, 14893}, {6427, 15765}, {6428, 18585}, {6772, 35750}, {6774, 55714}, {6775, 36327}, {7127, 10385}, {7714, 8739}, {7772, 37172}, {8703, 11486}, {9113, 47866}, {9605, 35304}, {10299, 42636}, {10304, 22238}, {10645, 61777}, {10646, 62055}, {10653, 15682}, {10654, 11001}, {11480, 61781}, {11481, 42791}, {11485, 12100}, {11542, 61920}, {11543, 19709}, {11648, 33623}, {11812, 42633}, {12101, 42133}, {12154, 35695}, {12155, 35690}, {12816, 33603}, {14482, 49901}, {15640, 42140}, {15681, 42924}, {15683, 42148}, {15685, 42117}, {15688, 42925}, {15692, 22236}, {15693, 42516}, {15695, 42419}, {15697, 42943}, {15699, 42988}, {15701, 42912}, {15702, 16962}, {15705, 36836}, {15708, 16773}, {15709, 41944}, {15711, 42116}, {15719, 42977}, {15721, 16772}, {15759, 42115}, {16241, 43233}, {16242, 42976}, {16670, 53589}, {16809, 61961}, {16961, 42911}, {16964, 42514}, {16965, 62017}, {17578, 43253}, {18581, 41121}, {18582, 33607}, {19099, 36400}, {19100, 36401}, {19101, 36397}, {22235, 61930}, {22237, 42166}, {22541, 36396}, {30435, 35303}, {33416, 43232}, {33604, 33606}, {33699, 42689}, {34755, 62077}, {35749, 41745}, {35752, 41620}, {36318, 51200}, {36319, 51203}, {36329, 41621}, {36331, 41746}, {36436, 42233}, {36448, 42214}, {36454, 42234}, {36466, 42212}, {36843, 62063}, {36967, 62115}, {36968, 43482}, {36969, 43031}, {36970, 62019}, {37177, 41940}, {37832, 42953}, {37835, 42506}, {41973, 49138}, {41974, 62028}, {42085, 43481}, {42086, 62049}, {42087, 42509}, {42088, 62145}, {42090, 42799}, {42093, 62002}, {42094, 43541}, {42098, 42502}, {42103, 43418}, {42118, 42420}, {42121, 61843}, {42122, 62109}, {42124, 61847}, {42126, 62039}, {42127, 62022}, {42128, 61956}, {42129, 42496}, {42131, 62157}, {42132, 61896}, {42134, 43417}, {42135, 43111}, {42136, 62025}, {42138, 61969}, {42143, 43246}, {42147, 62120}, {42151, 62130}, {42153, 42494}, {42154, 62160}, {42156, 61924}, {42157, 46333}, {42158, 62161}, {42159, 42973}, {42160, 62029}, {42161, 62011}, {42162, 42780}, {42163, 42775}, {42164, 62048}, {42165, 62032}, {42430, 56616}, {42473, 42503}, {42478, 61958}, {42488, 61884}, {42490, 43480}, {42491, 61825}, {42497, 61910}, {42508, 62168}, {42513, 43554}, {42515, 43110}, {42518, 42598}, {42519, 42777}, {42528, 43007}, {42529, 52080}, {42532, 61822}, {42587, 62152}, {42599, 42898}, {42626, 62099}, {42628, 61890}, {42632, 62090}, {42683, 43474}, {42693, 43237}, {42779, 61928}, {42800, 62052}, {42813, 61973}, {42814, 61983}, {42815, 61950}, {42816, 43416}, {42817, 61893}, {42818, 61901}, {42910, 49860}, {42920, 61959}, {42921, 61951}, {42922, 61998}, {42923, 62043}, {42936, 61868}, {42940, 43465}, {42941, 62018}, {42942, 51944}, {42944, 61806}, {42945, 61812}, {42955, 43490}, {42983, 61966}, {42994, 62171}, {42995, 62096}, {43008, 43776}, {43100, 43238}, {43107, 55864}, {43193, 62148}, {43194, 62129}, {43235, 44018}, {43239, 61844}, {43252, 61972}, {43294, 43494}, {43466, 62051}, {43471, 54574}, {43476, 43501}, {43477, 54580}, {43553, 54578}, {43633, 62169}

X(63102) = midpoint of X(i) and X(j) for these {i,j}: {49827, 49875}
X(63102) = reflection of X(i) in X(j) for these {i,j}: {42589, 49827}
X(63102) = X(i)-complementary conjugate of X(j) for these {i, j}: {54580, 2887}
X(63102) = pole of line {2, 42096} with respect to the Kiepert hyperbola
X(63102) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(12817)}}, {{A, B, C, X(299), X(33602)}}
X(63102) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 5863}, {13, 41120, 41106}, {14, 41112, 41099}, {16, 42511, 19708}, {30, 49827, 42589}, {62, 41101, 42510}, {597, 5858, 2}, {3534, 49876, 42119}, {3845, 42975, 49824}, {5066, 42974, 49874}, {5334, 49826, 3830}, {5335, 49824, 3845}, {5340, 61985, 43201}, {10653, 15682, 42588}, {10653, 41108, 15682}, {10654, 41100, 11001}, {11001, 41100, 42120}, {11481, 42791, 62059}, {11481, 62059, 43003}, {15682, 42588, 42141}, {16268, 40693, 5071}, {18581, 41121, 61932}, {18582, 49810, 49908}, {18582, 49908, 61926}, {19107, 43006, 10653}, {19708, 42521, 42517}, {40694, 41119, 41122}, {40694, 61719, 3545}, {41101, 42510, 376}, {41106, 41120, 42139}, {41107, 41113, 4}, {41121, 42507, 18581}, {41122, 61719, 41119}, {42085, 46334, 62165}, {42117, 43109, 15685}, {42143, 43246, 61929}, {42159, 42973, 61980}, {42506, 49859, 61915}, {42974, 43404, 42142}, {42998, 49873, 49825}, {42999, 49875, 49827}, {43100, 43238, 61846}, {43404, 49874, 5066}, {43481, 62165, 46334}, {49810, 49908, 43543}, {49811, 49904, 61913}, {49825, 49873, 381}, {49827, 49875, 30}


X(63103) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(43229), X(3), X(6))

Barycentrics    3*sqrt(3)*a^2+S : :

X(63103) lies on these lines: {2, 6}, {3, 43003}, {4, 12816}, {13, 33603}, {14, 33604}, {15, 19708}, {16, 15698}, {17, 61899}, {18, 61895}, {20, 56615}, {30, 42588}, {61, 376}, {62, 3524}, {381, 42775}, {397, 3543}, {398, 3839}, {472, 62213}, {473, 40138}, {547, 42988}, {631, 16962}, {3090, 16268}, {3106, 36322}, {3107, 36345}, {3312, 15764}, {3411, 3533}, {3412, 3525}, {3529, 42990}, {3534, 42120}, {3544, 42993}, {3545, 40693}, {3830, 5335}, {3845, 5334}, {3855, 42992}, {3860, 42128}, {5007, 37172}, {5066, 42139}, {5071, 16267}, {5237, 15715}, {5238, 15710}, {5318, 62007}, {5321, 43771}, {5339, 43202}, {5340, 50687}, {5343, 14269}, {5344, 15687}, {5349, 61994}, {5350, 62003}, {5351, 61780}, {5352, 62058}, {5365, 14893}, {5366, 38335}, {6427, 18585}, {6428, 15765}, {6770, 59409}, {6771, 55714}, {6772, 35749}, {6775, 36331}, {7714, 8740}, {7772, 37173}, {8703, 11485}, {9112, 47865}, {9605, 35303}, {10299, 42635}, {10304, 22236}, {10645, 62055}, {10646, 61777}, {10653, 11001}, {10654, 15682}, {11480, 42792}, {11481, 61781}, {11486, 12100}, {11542, 19709}, {11543, 61920}, {11648, 33625}, {11812, 42634}, {12101, 42134}, {12154, 35694}, {12155, 35691}, {12817, 33602}, {14482, 49902}, {15640, 42141}, {15681, 42925}, {15683, 42147}, {15685, 42118}, {15688, 42924}, {15692, 22238}, {15693, 42517}, {15695, 42420}, {15697, 42942}, {15699, 42989}, {15701, 42913}, {15702, 16963}, {15705, 36843}, {15708, 16772}, {15709, 41943}, {15711, 42115}, {15719, 42976}, {15721, 16773}, {15759, 42116}, {16241, 42977}, {16242, 43232}, {16670, 53588}, {16808, 61961}, {16960, 42910}, {16964, 62017}, {16965, 42515}, {17578, 43252}, {18581, 33606}, {18582, 41122}, {19099, 36396}, {19100, 36397}, {19101, 36401}, {22235, 42163}, {22237, 61930}, {22541, 36400}, {30435, 35304}, {33417, 43233}, {33605, 33607}, {33699, 42688}, {34754, 62077}, {35750, 41745}, {35751, 41620}, {36320, 51203}, {36327, 41746}, {36330, 41621}, {36344, 51200}, {36436, 42232}, {36448, 42211}, {36454, 42231}, {36466, 42213}, {36836, 62063}, {36967, 43481}, {36968, 62115}, {36969, 62019}, {36970, 43030}, {37178, 41940}, {37832, 42507}, {37835, 42952}, {41973, 62028}, {41974, 49138}, {42085, 62049}, {42086, 43482}, {42087, 62145}, {42088, 42508}, {42091, 42800}, {42093, 43540}, {42094, 62002}, {42095, 42503}, {42106, 43419}, {42117, 42419}, {42121, 61847}, {42123, 62109}, {42124, 61843}, {42125, 61956}, {42126, 62022}, {42127, 62039}, {42129, 61896}, {42130, 62157}, {42132, 42497}, {42133, 43416}, {42135, 61969}, {42137, 62025}, {42138, 43110}, {42146, 43247}, {42148, 62120}, {42150, 62130}, {42153, 61924}, {42155, 62160}, {42156, 42495}, {42157, 62161}, {42158, 46333}, {42159, 42779}, {42160, 62011}, {42161, 62029}, {42162, 42972}, {42164, 62032}, {42165, 62048}, {42166, 42776}, {42429, 56617}, {42472, 42502}, {42479, 61958}, {42489, 61884}, {42490, 61825}, {42491, 43479}, {42496, 61910}, {42509, 62168}, {42512, 43555}, {42514, 43111}, {42518, 42778}, {42519, 42599}, {42528, 52079}, {42529, 43006}, {42533, 61822}, {42586, 62152}, {42598, 42899}, {42625, 62099}, {42627, 61890}, {42631, 62090}, {42682, 43473}, {42692, 43236}, {42780, 61928}, {42799, 62052}, {42813, 61983}, {42814, 61973}, {42815, 43417}, {42816, 61950}, {42817, 61901}, {42818, 61893}, {42911, 49859}, {42920, 61951}, {42921, 61959}, {42922, 62043}, {42923, 61998}, {42937, 61868}, {42940, 62018}, {42941, 43466}, {42943, 51945}, {42944, 61812}, {42945, 61806}, {42954, 43489}, {42982, 61966}, {42994, 62096}, {42995, 62171}, {43009, 43775}, {43100, 55864}, {43107, 43239}, {43193, 62129}, {43194, 62148}, {43234, 44017}, {43238, 61844}, {43253, 61972}, {43295, 43493}, {43465, 62051}, {43472, 54575}, {43475, 43502}, {43478, 54581}, {43552, 54579}, {43632, 62169}

X(63103) = midpoint of X(i) and X(j) for these {i,j}: {49826, 49876}
X(63103) = reflection of X(i) in X(j) for these {i,j}: {42588, 49826}
X(63103) = X(i)-complementary conjugate of X(j) for these {i, j}: {54581, 2887}
X(63103) = pole of line {2, 42097} with respect to the Kiepert hyperbola
X(63103) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(12816)}}, {{A, B, C, X(298), X(33603)}}
X(63103) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 5862}, {13, 41113, 41099}, {14, 41119, 41106}, {15, 42510, 19708}, {30, 49826, 42588}, {597, 5859, 2}, {3534, 49875, 42120}, {3845, 42974, 49825}, {5066, 42975, 49873}, {5334, 49825, 3845}, {5335, 49827, 3830}, {5339, 61985, 43202}, {10653, 41101, 11001}, {10654, 15682, 42589}, {10654, 41107, 15682}, {11001, 41101, 42119}, {11480, 42792, 62059}, {11480, 62059, 43002}, {15682, 42589, 42140}, {16267, 40694, 5071}, {18581, 49811, 49907}, {18581, 49907, 61926}, {18582, 41122, 61932}, {19106, 43007, 10654}, {19708, 42520, 42516}, {40693, 41120, 41121}, {41100, 42511, 376}, {41106, 41119, 42142}, {41108, 41112, 4}, {41108, 61719, 41112}, {41120, 41121, 3545}, {41122, 42506, 18582}, {42086, 46335, 62165}, {42118, 43108, 15685}, {42146, 43247, 61929}, {42162, 42972, 61980}, {42507, 49860, 61915}, {42975, 43403, 42139}, {42986, 43543, 37832}, {42991, 61719, 42973}, {42998, 49876, 49826}, {42999, 49874, 49824}, {43107, 43239, 61846}, {43403, 49873, 5066}, {43482, 62165, 46335}, {49810, 49903, 61913}, {49811, 49907, 43542}, {49824, 49874, 381}, {49826, 49876, 30}


X(63104) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44381), X(3), X(6))

Barycentrics    7*a^4+5*b^4-6*b^2*c^2+5*c^4-4*a^2*(b^2+c^2) : :

X(63104) lies on these lines: {2, 6}, {4, 6036}, {5, 39647}, {32, 32969}, {39, 32977}, {76, 33189}, {83, 5067}, {98, 60263}, {115, 32985}, {148, 16925}, {187, 16041}, {315, 32955}, {316, 46453}, {439, 44518}, {620, 3767}, {631, 7828}, {1078, 32951}, {1352, 7612}, {1384, 32827}, {1513, 14927}, {1975, 33203}, {2452, 37911}, {2548, 32976}, {2549, 33216}, {2996, 59545}, {3053, 32972}, {3090, 54393}, {3096, 32953}, {3523, 7851}, {3524, 7790}, {3525, 7803}, {3533, 7786}, {3545, 3972}, {3552, 44531}, {3734, 33224}, {3785, 8361}, {5020, 44200}, {5023, 32982}, {5206, 33238}, {5210, 33272}, {5254, 32989}, {5286, 33233}, {5305, 32829}, {6055, 51023}, {6118, 60204}, {6119, 60205}, {6179, 32823}, {6353, 41762}, {6680, 32968}, {6722, 7737}, {6776, 10011}, {7738, 7907}, {7745, 32988}, {7746, 14001}, {7749, 7913}, {7750, 33199}, {7752, 32958}, {7761, 7886}, {7763, 32959}, {7771, 33190}, {7783, 33262}, {7787, 32998}, {7793, 33248}, {7795, 33222}, {7797, 33000}, {7802, 33292}, {7815, 33221}, {7819, 32838}, {7823, 33277}, {7831, 33196}, {7832, 33195}, {7834, 32978}, {7835, 33231}, {7844, 21843}, {7846, 32957}, {7847, 10299}, {7861, 33226}, {7864, 33206}, {7884, 15709}, {7887, 32006}, {7923, 33012}, {7930, 18840}, {7932, 33001}, {7940, 32818}, {7942, 32956}, {7944, 55732}, {9605, 32839}, {9723, 34809}, {9751, 9754}, {9752, 51212}, {9756, 51537}, {10583, 32999}, {11185, 33191}, {11288, 32815}, {13449, 41400}, {13881, 32973}, {14033, 43620}, {14069, 32832}, {14568, 32817}, {14907, 33285}, {14971, 37809}, {15513, 33247}, {17907, 38282}, {18841, 60248}, {22253, 32837}, {25406, 58883}, {31274, 34511}, {31467, 32884}, {32819, 33205}, {32828, 32954}, {32990, 44535}, {33181, 59635}, {35287, 44526}, {35296, 44524}, {35297, 43448}, {35927, 53419}, {36163, 47239}, {36794, 52299}, {37466, 61560}, {40428, 51963}, {40809, 44556}, {46264, 60657}, {60096, 60123}, {60186, 60212}

X(63104) = pole of line {8371, 62645} with respect to the orthocentroidal circle
X(63104) = pole of line {3265, 55122} with respect to the dual conic of Orthic inconic
X(63104) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(44377)}}, {{A, B, C, X(69), X(60073)}}, {{A, B, C, X(83), X(34803)}}, {{A, B, C, X(98), X(37690)}}, {{A, B, C, X(141), X(53103)}}, {{A, B, C, X(193), X(44556)}}, {{A, B, C, X(325), X(60263)}}, {{A, B, C, X(1007), X(60093)}}, {{A, B, C, X(3619), X(60248)}}, {{A, B, C, X(7612), X(7778)}}, {{A, B, C, X(7736), X(60186)}}, {{A, B, C, X(9771), X(54616)}}, {{A, B, C, X(15271), X(60123)}}, {{A, B, C, X(18841), X(31489)}}, {{A, B, C, X(20080), X(56360)}}
X(63104) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 230, 69}, {2, 7735, 1007}, {2, 7806, 7736}, {1007, 7735, 1992}, {2549, 58448, 33216}, {3767, 32970, 6337}, {7735, 9770, 7766}, {9752, 56370, 51212}, {33231, 52713, 7835}


X(63105) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44382), X(3), X(6))

Barycentrics    sqrt(3)*(a^2-b^2-c^2)+4*S : :

X(63105) lies on these lines: {2, 6}, {4, 617}, {13, 60253}, {14, 16805}, {15, 21360}, {16, 50860}, {17, 33411}, {76, 43542}, {99, 51482}, {316, 43482}, {376, 622}, {381, 52193}, {383, 51212}, {466, 40680}, {470, 52710}, {472, 63155}, {487, 18585}, {488, 15765}, {533, 18581}, {616, 3524}, {618, 42092}, {619, 6337}, {620, 41745}, {621, 3545}, {623, 42911}, {624, 10654}, {627, 3525}, {630, 42149}, {631, 634}, {633, 3090}, {635, 47518}, {636, 37177}, {1351, 52263}, {1444, 21475}, {2043, 12323}, {2044, 12322}, {3105, 25187}, {3642, 18582}, {3643, 37172}, {3785, 37340}, {3926, 37341}, {5054, 52194}, {5335, 11300}, {5464, 22492}, {5490, 6304}, {5491, 6300}, {5873, 47611}, {5979, 6770}, {5981, 51023}, {6670, 40694}, {6771, 51010}, {6772, 32986}, {7763, 11128}, {7775, 41746}, {7776, 42633}, {8797, 36301}, {9214, 19776}, {9885, 47061}, {11080, 36891}, {11122, 54116}, {11132, 32833}, {11179, 51018}, {11296, 32815}, {11297, 42912}, {11298, 11542}, {11301, 42124}, {11302, 32837}, {11303, 43403}, {11304, 32006}, {11305, 32828}, {11306, 32816}, {11308, 42998}, {11485, 37351}, {16809, 36388}, {17321, 53588}, {20423, 51013}, {22113, 30472}, {22580, 50567}, {22893, 39143}, {30471, 42120}, {31694, 32827}, {32819, 43540}, {32829, 42913}, {32885, 42132}, {33405, 61867}, {33561, 41113}, {33609, 33612}, {33610, 62090}, {33611, 62049}, {34508, 42910}, {36298, 36889}, {36948, 40712}, {36967, 50858}, {37178, 40693}, {37352, 46951}, {40707, 43554}, {40713, 42696}, {41001, 44135}, {42062, 60143}, {42139, 51265}, {42142, 53431}, {42495, 44032}, {43544, 60222}, {44219, 54132}, {52713, 59378}

X(63105) = isotomic conjugate of X(43543)
X(63105) = anticomplement of X(16645)
X(63105) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43543}, {16645, 16645}
X(63105) = pole of line {2, 11485} with respect to the Wallace hyperbola
X(63105) = pole of line {3265, 23871} with respect to the dual conic of Orthic inconic
X(63105) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(395)}}, {{A, B, C, X(6), X(11486)}}, {{A, B, C, X(17), X(44556)}}, {{A, B, C, X(230), X(11080)}}, {{A, B, C, X(298), X(60253)}}, {{A, B, C, X(299), X(36889)}}, {{A, B, C, X(302), X(36948)}}, {{A, B, C, X(303), X(8797)}}
X(63105) = barycentric product X(i)*X(j) for these (i, j): {11486, 76}
X(63105) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43543}, {11486, 6}
X(63105) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 395}, {2, 299, 69}, {299, 303, 2}, {395, 5859, 193}, {619, 10653, 37173}, {619, 34509, 10653}, {624, 10654, 37171}, {636, 42152, 37177}, {3642, 18582, 37170}


X(63106) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44383), X(3), X(6))

Barycentrics    sqrt(3)*(a^2-b^2-c^2)-4*S : :

X(63106) lies on these lines: {2, 6}, {4, 616}, {13, 16804}, {14, 60252}, {15, 50859}, {16, 21359}, {18, 33410}, {61, 36770}, {76, 43543}, {99, 51483}, {316, 43481}, {376, 621}, {381, 52194}, {465, 40680}, {471, 52710}, {473, 63155}, {487, 15765}, {488, 18585}, {532, 18582}, {617, 3524}, {618, 6337}, {619, 42089}, {620, 41746}, {622, 3545}, {623, 10653}, {624, 42910}, {628, 3525}, {629, 42152}, {631, 633}, {634, 3090}, {635, 37178}, {636, 47520}, {1080, 51212}, {1351, 52266}, {1444, 21476}, {2043, 12322}, {2044, 12323}, {3104, 25183}, {3642, 37173}, {3643, 18581}, {3785, 37341}, {3926, 37340}, {5054, 52193}, {5334, 11299}, {5463, 22491}, {5490, 6305}, {5491, 6301}, {5872, 47610}, {5978, 6773}, {5980, 51023}, {6669, 40693}, {6774, 51013}, {6775, 32986}, {7763, 11129}, {7775, 41745}, {7776, 42634}, {8797, 36300}, {9214, 19777}, {9886, 47061}, {11085, 36891}, {11121, 54115}, {11133, 32833}, {11179, 51016}, {11295, 32815}, {11297, 11543}, {11298, 42913}, {11301, 32837}, {11302, 42121}, {11303, 32006}, {11304, 43404}, {11305, 32816}, {11306, 32828}, {11307, 42999}, {11486, 37352}, {16808, 36386}, {17321, 53589}, {20423, 51010}, {22114, 30471}, {22579, 50567}, {22847, 39143}, {30472, 42119}, {31693, 32827}, {32819, 43541}, {32829, 42912}, {32885, 42129}, {33404, 61867}, {33560, 41112}, {33608, 33613}, {33610, 62049}, {33611, 62090}, {34509, 42911}, {36299, 36889}, {36948, 40711}, {36968, 50855}, {37177, 40694}, {37351, 46951}, {40334, 61719}, {40706, 43555}, {40714, 42696}, {41000, 44135}, {42063, 60143}, {42139, 53443}, {42142, 51272}, {42494, 44030}, {52713, 59379}

X(63106) = isotomic conjugate of X(43542)
X(63106) = anticomplement of X(16644)
X(63106) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43542}, {16644, 16644}
X(63106) = pole of line {2, 11486} with respect to the Wallace hyperbola
X(63106) = pole of line {3265, 23870} with respect to the dual conic of Orthic inconic
X(63106) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(396)}}, {{A, B, C, X(6), X(11485)}}, {{A, B, C, X(18), X(44556)}}, {{A, B, C, X(230), X(11085)}}, {{A, B, C, X(298), X(36889)}}, {{A, B, C, X(299), X(60252)}}, {{A, B, C, X(302), X(8797)}}, {{A, B, C, X(303), X(36948)}}
X(63106) = barycentric product X(i)*X(j) for these (i, j): {11485, 76}
X(63106) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43542}, {11485, 6}
X(63106) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 396}, {2, 298, 69}, {298, 302, 2}, {396, 5858, 193}, {618, 10654, 37172}, {618, 34508, 10654}, {623, 10653, 37170}, {635, 42149, 37178}, {3643, 18581, 37171}


X(63107) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(44401), X(3), X(6))

Barycentrics    13*a^4+7*b^4-10*b^2*c^2+7*c^4-4*a^2*(b^2+c^2) : :
X(63107) = -4*X[11318]+X[32006]

X(63107) lies on these lines: {2, 6}, {4, 6055}, {30, 9752}, {32, 14971}, {76, 33197}, {98, 51023}, {114, 50974}, {115, 37809}, {376, 26613}, {381, 19661}, {543, 3767}, {598, 3545}, {631, 7827}, {1003, 7620}, {1078, 33230}, {1285, 14061}, {1384, 37350}, {3524, 9734}, {3525, 7856}, {3785, 8360}, {3839, 9756}, {3849, 16041}, {5007, 32976}, {5071, 12150}, {5215, 5309}, {5254, 35287}, {5305, 12040}, {5319, 32977}, {5459, 54618}, {5460, 54617}, {5461, 7737}, {5476, 32414}, {5485, 14568}, {5503, 60263}, {5569, 7817}, {6036, 20423}, {6179, 32955}, {6337, 7857}, {6353, 37765}, {6721, 51140}, {7607, 60268}, {7615, 14033}, {7617, 32983}, {7622, 7739}, {7738, 33274}, {7751, 33222}, {7755, 9167}, {7760, 32959}, {7775, 32969}, {7798, 22247}, {7828, 33190}, {7870, 33189}, {7873, 14064}, {7878, 61886}, {7883, 32951}, {8182, 32986}, {8355, 32827}, {8367, 32838}, {8368, 46951}, {8369, 40727}, {8598, 43448}, {9214, 44556}, {9774, 25406}, {9830, 44534}, {11054, 32817}, {11147, 35297}, {11148, 59634}, {11159, 43291}, {11179, 58883}, {11180, 37071}, {11286, 16509}, {11288, 52229}, {11318, 32006}, {13681, 35822}, {13801, 35823}, {13881, 20112}, {15682, 58849}, {15702, 55801}, {15709, 15819}, {16043, 34506}, {16925, 52695}, {18842, 60220}, {21843, 47061}, {22331, 32980}, {23334, 33228}, {32828, 33237}, {32833, 33231}, {32961, 34604}, {32973, 34505}, {32989, 50571}, {33006, 39143}, {33007, 41135}, {34809, 35302}, {36163, 46998}, {36251, 37172}, {36252, 37173}, {37465, 53264}, {46453, 51224}, {47238, 50146}, {47239, 50149}, {47241, 50147}, {51237, 61814}, {54132, 56370}, {54616, 60101}, {54901, 60136}, {54906, 60185}, {55085, 61867}, {60073, 60240}

X(63107) = pole of line {1499, 44203} with respect to the orthoptic circle of the Steiner Inellipse
X(63107) = pole of line {2793, 3265} with respect to the dual conic of Orthic inconic
X(63107) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(22110)}}, {{A, B, C, X(69), X(60103)}}, {{A, B, C, X(524), X(44556)}}, {{A, B, C, X(598), X(1007)}}, {{A, B, C, X(599), X(7612)}}, {{A, B, C, X(1992), X(60093)}}, {{A, B, C, X(3815), X(54616)}}, {{A, B, C, X(5485), X(7778)}}, {{A, B, C, X(5503), X(37690)}}, {{A, B, C, X(7607), X(42850)}}, {{A, B, C, X(11168), X(53103)}}, {{A, B, C, X(11184), X(18842)}}, {{A, B, C, X(18841), X(42849)}}, {{A, B, C, X(21356), X(60220)}}, {{A, B, C, X(22329), X(60263)}}, {{A, B, C, X(23055), X(60073)}}, {{A, B, C, X(44377), X(60240)}}
X(63107) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 1992, 1007}, {2, 7735, 1992}, {5215, 5309, 7618}, {5215, 7618, 33216}, {7792, 8860, 2}, {9166, 60103, 6055}, {9741, 41134, 6337}, {35297, 53142, 11147}


X(63108) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(46922), X(3), X(6))

Barycentrics    6*a^2+b*c+a*(b+c) : :
X(63108) = -X[4741]+4*X[17023], -4*X[17369]+X[20055]

X(63108) lies on these lines: {1, 4759}, {2, 6}, {8, 50283}, {9, 29580}, {44, 29570}, {75, 16668}, {87, 42043}, {145, 48805}, {190, 62212}, {192, 1449}, {238, 38314}, {536, 3758}, {551, 16468}, {673, 59375}, {894, 4740}, {1051, 4734}, {1100, 4664}, {1278, 50120}, {1351, 13634}, {1384, 22351}, {1386, 51055}, {1743, 27268}, {2309, 42042}, {2663, 23524}, {3241, 4649}, {3524, 37510}, {3616, 16477}, {3679, 33682}, {3707, 29612}, {3759, 4688}, {3828, 43997}, {3879, 17358}, {3923, 51054}, {4360, 49721}, {4366, 17487}, {4389, 28333}, {4428, 36635}, {4440, 17014}, {4473, 29585}, {4663, 50075}, {4667, 17367}, {4670, 16816}, {4677, 49685}, {4687, 16671}, {4699, 16833}, {4700, 29576}, {4704, 16884}, {4715, 17399}, {4741, 17023}, {4755, 16669}, {4795, 37756}, {4856, 48628}, {4991, 51060}, {5007, 22267}, {5024, 22355}, {5050, 13635}, {5263, 31145}, {5749, 50079}, {6172, 16503}, {6427, 21909}, {6428, 21992}, {6625, 33031}, {6998, 11482}, {7277, 17380}, {10304, 37474}, {13366, 37103}, {13587, 37502}, {14621, 35578}, {14969, 25531}, {15485, 51103}, {16394, 20018}, {16396, 56181}, {16670, 16826}, {16779, 17333}, {16786, 20072}, {17289, 50076}, {17335, 29595}, {17342, 50125}, {17353, 29582}, {17359, 50132}, {17364, 17383}, {17368, 17373}, {17369, 20055}, {17377, 50097}, {17389, 50115}, {17391, 29600}, {17393, 25269}, {17549, 37507}, {19308, 37503}, {19326, 37492}, {20077, 51665}, {21554, 53092}, {21937, 30435}, {26039, 51353}, {29586, 54280}, {29588, 54389}, {29593, 62231}, {29622, 60986}, {32921, 51056}, {39703, 39948}, {39952, 39974}, {40138, 54372}, {41895, 54623}, {48816, 48861}, {48858, 48867}, {49482, 51093}, {49489, 50086}, {49722, 50112}, {49726, 50121}, {50114, 50128}, {50302, 53620}, {50310, 51005}, {54770, 54795}

X(63108) = pole of line {523, 48578} with respect to the Steiner circumellipse
X(63108) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(55933)}}, {{A, B, C, X(598), X(50074)}}, {{A, B, C, X(11160), X(54623)}}, {{A, B, C, X(17238), X(60276)}}, {{A, B, C, X(25507), X(39703)}}, {{A, B, C, X(30966), X(36588)}}, {{A, B, C, X(37633), X(39952)}}, {{A, B, C, X(37673), X(39974)}}, {{A, B, C, X(50133), X(60078)}}
X(63108) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {894, 16834, 4740}, {1449, 17120, 192}, {1449, 50127, 29584}, {3758, 16666, 4393}, {4649, 50300, 3241}, {17120, 29584, 50127}


X(63109) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(48310), X(3), X(6))

Barycentrics    11*a^2+5*(b^2+c^2) : :
X(63109) = X[1]+6*X[38089], 5*X[2]+2*X[6], X[3]+6*X[38079], 5*X[4]+16*X[20190], X[7]+6*X[38088], X[8]+6*X[38023], X[20]+6*X[38072], X[100]+6*X[38090], 4*X[140]+3*X[14848], X[144]+6*X[38086], X[145]+6*X[38087], 4*X[182]+3*X[3545] and many others

X(63109) lies on these lines: {1, 38089}, {2, 6}, {3, 38079}, {4, 20190}, {5, 50957}, {7, 38088}, {8, 38023}, {10, 51169}, {20, 38072}, {76, 60616}, {83, 18842}, {100, 38090}, {140, 14848}, {144, 38086}, {145, 38087}, {182, 3545}, {376, 10168}, {381, 25406}, {382, 50975}, {458, 62195}, {511, 15702}, {542, 3090}, {546, 50987}, {547, 5050}, {549, 14853}, {550, 50963}, {551, 59406}, {574, 11147}, {575, 5067}, {576, 3533}, {598, 54616}, {631, 20423}, {671, 7803}, {1078, 55768}, {1125, 50999}, {1285, 55164}, {1350, 15708}, {1351, 11539}, {1352, 55709}, {1353, 47599}, {1386, 53620}, {1503, 61936}, {1656, 50979}, {1698, 51005}, {2482, 14001}, {2975, 38091}, {3091, 43273}, {3098, 15719}, {3146, 50959}, {3241, 38047}, {3244, 50953}, {3316, 44657}, {3317, 44656}, {3363, 14535}, {3522, 51024}, {3523, 55626}, {3524, 5476}, {3525, 50977}, {3529, 51029}, {3543, 5085}, {3544, 50956}, {3564, 15703}, {3616, 47359}, {3617, 51000}, {3621, 50951}, {3622, 9041}, {3626, 51153}, {3628, 50955}, {3632, 51146}, {3634, 50950}, {3655, 38167}, {3679, 38049}, {3751, 19883}, {3818, 61932}, {3828, 16475}, {3832, 10541}, {3839, 14927}, {3845, 12017}, {4254, 21533}, {4669, 16491}, {4772, 17225}, {5026, 41135}, {5054, 18583}, {5055, 6776}, {5056, 47354}, {5059, 50971}, {5071, 11179}, {5092, 11001}, {5093, 15723}, {5097, 61868}, {5120, 21515}, {5182, 5461}, {5206, 33215}, {5237, 37172}, {5238, 37173}, {5343, 11303}, {5344, 11304}, {5395, 60648}, {5463, 37177}, {5464, 37178}, {5480, 10304}, {5485, 60238}, {5544, 10602}, {5550, 51003}, {5642, 25320}, {5749, 37756}, {5847, 19876}, {5921, 61906}, {6034, 7738}, {6172, 38186}, {6337, 33237}, {6453, 11291}, {6454, 11292}, {6666, 50996}, {6688, 11188}, {6722, 11161}, {6723, 13169}, {7392, 44110}, {7486, 8550}, {7492, 38402}, {7786, 55794}, {7812, 32956}, {7817, 32968}, {7834, 32984}, {7846, 33197}, {7859, 32006}, {7889, 34511}, {7894, 60277}, {8365, 32829}, {8366, 31400}, {8541, 52290}, {8593, 14971}, {9167, 10754}, {9780, 28538}, {10109, 18440}, {10124, 59399}, {10219, 61667}, {10299, 51137}, {10302, 60646}, {10303, 51028}, {10488, 33002}, {10516, 61912}, {10519, 15694}, {10711, 38119}, {10759, 38069}, {10989, 47455}, {11178, 14912}, {11465, 44479}, {11477, 55864}, {11482, 16239}, {11645, 41106}, {11812, 33878}, {11898, 61882}, {12815, 32975}, {14061, 18800}, {14064, 31417}, {14762, 43620}, {14787, 18909}, {15022, 51138}, {15059, 15303}, {15069, 46936}, {15671, 51747}, {15681, 33750}, {15682, 19130}, {15683, 53023}, {15686, 55682}, {15690, 55678}, {15692, 54131}, {15693, 21850}, {15697, 48910}, {15698, 19924}, {15699, 40330}, {15706, 48874}, {15709, 54173}, {15710, 48873}, {15715, 55663}, {15717, 50965}, {15721, 54169}, {16043, 35007}, {16226, 41716}, {16496, 51108}, {16673, 17353}, {16676, 17023}, {16706, 35578}, {16858, 36741}, {16924, 51798}, {17014, 50121}, {17286, 49543}, {17305, 61330}, {18230, 51002}, {18358, 61908}, {18840, 60645}, {19127, 31105}, {19153, 53843}, {19708, 31670}, {19709, 48906}, {19711, 55639}, {19875, 51192}, {19877, 51001}, {19878, 51004}, {20014, 51145}, {20049, 59407}, {20059, 51195}, {20095, 51199}, {21167, 61825}, {22247, 31401}, {23327, 35260}, {23334, 53489}, {24206, 61889}, {25315, 45672}, {25318, 35073}, {26039, 29590}, {26626, 41313}, {26685, 41312}, {29012, 61980}, {29181, 62063}, {29579, 50125}, {29598, 50093}, {29611, 50077}, {29630, 50128}, {30775, 54012}, {31145, 38315}, {31162, 38118}, {31166, 32064}, {31173, 33223}, {31189, 41847}, {31272, 51008}, {31884, 61806}, {31886, 60874}, {32300, 41720}, {32982, 53101}, {32985, 37512}, {33005, 42534}, {33224, 44562}, {33703, 55687}, {33884, 61045}, {34380, 61869}, {34507, 60781}, {34595, 50952}, {34627, 38029}, {34628, 38146}, {34631, 38116}, {34632, 38035}, {34718, 38040}, {34747, 38191}, {34748, 38165}, {35840, 43255}, {35841, 43254}, {36006, 36740}, {36990, 61954}, {37188, 62196}, {37909, 47453}, {38093, 51190}, {38335, 55692}, {39561, 61884}, {39874, 61926}, {39884, 61933}, {39899, 61901}, {40107, 51179}, {41099, 46264}, {41310, 46845}, {41585, 53857}, {41983, 55629}, {41984, 61624}, {42149, 59409}, {42697, 62403}, {42785, 62115}, {43527, 60143}, {43621, 62135}, {44102, 52299}, {44456, 61847}, {44575, 51736}, {44576, 51746}, {44577, 51740}, {44882, 50687}, {45311, 52699}, {46219, 50962}, {46933, 50949}, {46935, 51215}, {47097, 52238}, {47313, 47454}, {47353, 61924}, {47596, 51744}, {48311, 51200}, {48312, 51203}, {48313, 51206}, {48314, 51207}, {48872, 62095}, {48876, 61864}, {48880, 62090}, {48881, 62059}, {48884, 61987}, {48889, 61959}, {48892, 62165}, {48895, 62049}, {48898, 62029}, {48901, 62130}, {48905, 62007}, {49529, 51105}, {49681, 51072}, {49684, 51066}, {49690, 51092}, {50084, 50129}, {50089, 50114}, {50098, 61344}, {50101, 50118}, {50107, 50109}, {50664, 61913}, {50689, 51022}, {50692, 51026}, {50793, 51743}, {50954, 61905}, {50966, 55617}, {50968, 62067}, {50972, 62078}, {50980, 55863}, {50984, 53097}, {50986, 55861}, {51129, 61982}, {51130, 61791}, {51132, 61863}, {51134, 62125}, {51139, 61804}, {51140, 61881}, {51152, 58433}, {51163, 62148}, {51166, 55614}, {51172, 61850}, {51174, 61876}, {51175, 61878}, {51176, 61921}, {51178, 55857}, {51211, 61788}, {53091, 61887}, {53092, 55856}, {53094, 62120}, {54174, 61844}, {54627, 60205}, {54628, 60204}, {55580, 61837}, {55586, 61833}, {55595, 61824}, {55601, 61822}, {55602, 61821}, {55604, 61819}, {55606, 61817}, {55620, 61813}, {55630, 61809}, {55646, 61796}, {55672, 62077}, {55673, 62081}, {55674, 62086}, {55676, 62094}, {55677, 62096}, {55679, 62113}, {55681, 62127}, {55685, 62169}, {55691, 62009}, {55695, 61973}, {55696, 61961}, {55699, 61958}, {55703, 61927}, {55705, 61920}, {55711, 61897}, {55717, 61859}, {55726, 55767}, {55732, 55764}, {55734, 55762}, {55737, 55761}, {55741, 55758}, {55742, 55757}, {55770, 55829}, {55771, 55823}, {55780, 55805}, {55783, 55801}, {59405, 60986}, {59411, 62048}, {60100, 60643}, {60284, 60287}, {61044, 61812}, {61545, 61879}, {61846, 62174}

X(63109) = midpoint of X(i) and X(j) for these {i,j}: {3, 51173}, {4, 51177}, {5, 51181}, {20, 51213}, {55705, 61920}
X(63109) = reflection of X(i) in X(j) for these {i,j}: {20, 50976}, {3, 50988}, {3146, 51164}, {3619, 2}, {4, 50964}, {50957, 5}, {50969, 3}, {50981, 140}, {51169, 10}, {51217, 4}, {55639, 19711}, {62094, 55676}
X(63109) = isotomic conjugate of X(60629)
X(63109) = X(i)-complementary conjugate of X(j) for these {i, j}: {54639, 2887}
X(63109) = pole of line {2, 54639} with respect to the Kiepert hyperbola
X(63109) = pole of line {6, 31885} with respect to the Stammler hyperbola
X(63109) = pole of line {2, 22246} with respect to the Wallace hyperbola
X(63109) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(21358)}}, {{A, B, C, X(6), X(60616)}}, {{A, B, C, X(67), X(51189)}}, {{A, B, C, X(69), X(60239)}}, {{A, B, C, X(83), X(21356)}}, {{A, B, C, X(141), X(18842)}}, {{A, B, C, X(524), X(18841)}}, {{A, B, C, X(597), X(60646)}}, {{A, B, C, X(599), X(54616)}}, {{A, B, C, X(671), X(3619)}}, {{A, B, C, X(1992), X(60238)}}, {{A, B, C, X(3055), X(46223)}}, {{A, B, C, X(3618), X(60645)}}, {{A, B, C, X(3620), X(60648)}}, {{A, B, C, X(3763), X(60143)}}, {{A, B, C, X(5485), X(20582)}}, {{A, B, C, X(9164), X(15480)}}, {{A, B, C, X(9300), X(46204)}}, {{A, B, C, X(10513), X(36889)}}, {{A, B, C, X(11163), X(23054)}}, {{A, B, C, X(22329), X(42349)}}, {{A, B, C, X(34573), X(60643)}}, {{A, B, C, X(43527), X(59373)}}, {{A, B, C, X(50994), X(60287)}}, {{A, B, C, X(51143), X(60281)}}, {{A, B, C, X(51186), X(60284)}}
X(63109) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3329, 9770}, {2, 5032, 141}, {2, 524, 3619}, {2, 597, 1992}, {140, 14848, 50967}, {547, 5050, 11180}, {549, 14853, 54170}, {1992, 3618, 597}, {3524, 5476, 51212}, {3839, 51737, 14927}, {5054, 18583, 54132}, {10168, 14561, 376}, {11179, 38317, 5071}, {14912, 61895, 11178}, {38072, 50983, 20}, {38087, 51006, 145}, {38317, 46267, 11179}, {50964, 51177, 51217}, {50988, 51173, 50969}, {54173, 58445, 15709}


X(63110) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49738), X(3), X(6))

Barycentrics    5*a^2-b^2+4*b*c-c^2+4*a*(b+c) : :
X(63110) = 2*X[5733]+X[36706]

X(63110) lies on these lines: {1, 1266}, {2, 6}, {7, 1319}, {8, 41847}, {37, 4795}, {75, 3241}, {76, 54624}, {77, 17079}, {145, 50088}, {190, 4747}, {314, 48858}, {319, 53620}, {320, 3246}, {332, 19276}, {344, 50115}, {376, 10446}, {443, 33955}, {519, 10436}, {527, 29597}, {545, 16777}, {551, 3664}, {579, 17207}, {598, 54831}, {903, 3672}, {1014, 17549}, {1444, 16370}, {1449, 41140}, {1509, 50739}, {2345, 17310}, {2667, 25570}, {2893, 50741}, {3247, 50090}, {3622, 4389}, {3623, 17160}, {3636, 4896}, {3663, 49614}, {3679, 3879}, {3739, 50131}, {3758, 5308}, {3828, 17270}, {3875, 4909}, {4001, 41930}, {4307, 49746}, {4340, 37038}, {4352, 51678}, {4357, 25055}, {4360, 32105}, {4363, 29585}, {4419, 29570}, {4470, 6542}, {4644, 16826}, {4657, 31138}, {4658, 37153}, {4664, 35578}, {4667, 16831}, {4670, 17281}, {4675, 17382}, {4677, 4967}, {4688, 50129}, {4699, 40891}, {4704, 17487}, {4715, 17257}, {4741, 29592}, {4748, 29612}, {4758, 17308}, {4798, 17374}, {4870, 10401}, {4888, 51105}, {4916, 48628}, {5287, 56084}, {5550, 17250}, {5625, 24248}, {5733, 36706}, {5749, 17317}, {5936, 51072}, {6172, 51057}, {7222, 17319}, {7229, 17315}, {8822, 50742}, {9780, 17360}, {10022, 17390}, {10444, 51705}, {10455, 50407}, {11109, 52710}, {11111, 17139}, {11354, 32836}, {13725, 28619}, {14033, 48840}, {16418, 63158}, {16672, 20073}, {16884, 31139}, {17118, 28309}, {17170, 34643}, {17180, 54308}, {17183, 31156}, {17189, 50428}, {17230, 26039}, {17248, 28641}, {17273, 32093}, {17290, 61302}, {17303, 50081}, {17322, 21296}, {17344, 28640}, {17348, 62682}, {17354, 29621}, {17365, 24441}, {17369, 29583}, {17377, 31145}, {17387, 29611}, {17393, 31995}, {17677, 32006}, {18145, 44147}, {18146, 44139}, {20057, 52709}, {20059, 31332}, {20072, 29595}, {20077, 51594}, {24471, 58560}, {24603, 36834}, {25590, 50099}, {26541, 44135}, {28653, 32099}, {29569, 54389}, {29574, 50107}, {29580, 50128}, {30939, 34284}, {31165, 54344}, {31313, 43287}, {32830, 51675}, {32837, 51612}, {33953, 51670}, {34060, 55082}, {34824, 62212}, {35960, 36224}, {36722, 62183}, {38023, 47595}, {41801, 63152}, {45221, 50793}, {47356, 51061}, {48813, 48868}, {48817, 48838}, {48830, 50301}, {48853, 50950}, {48854, 50999}, {48856, 51055}, {49518, 50111}, {49716, 51599}, {49733, 50120}, {49743, 54367}, {50079, 50125}, {50226, 58012}, {50282, 50299}, {50285, 50293}, {50302, 50316}, {50305, 51192}, {51108, 53598}, {53997, 55096}, {54623, 57826}, {54770, 60083}

X(63110) = isotomic conjugate of X(54786)
X(63110) = pole of line {4897, 43052} with respect to the incircle
X(63110) = pole of line {523, 47755} with respect to the Steiner circumellipse
X(63110) = pole of line {2, 4720} with respect to the Wallace hyperbola
X(63110) = pole of line {1125, 4896} with respect to the dual conic of Yff parabola
X(63110) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(17330)}}, {{A, B, C, X(6), X(54624)}}, {{A, B, C, X(7), X(5235)}}, {{A, B, C, X(333), X(39704)}}, {{A, B, C, X(391), X(54623)}}, {{A, B, C, X(599), X(54831)}}, {{A, B, C, X(966), X(60079)}}, {{A, B, C, X(1246), X(17259)}}, {{A, B, C, X(2287), X(2320)}}, {{A, B, C, X(4417), X(36889)}}, {{A, B, C, X(5485), X(17251)}}, {{A, B, C, X(6625), X(50074)}}, {{A, B, C, X(8814), X(17245)}}, {{A, B, C, X(16704), X(30712)}}, {{A, B, C, X(17346), X(54770)}}, {{A, B, C, X(17378), X(58012)}}, {{A, B, C, X(37654), X(60078)}}, {{A, B, C, X(37655), X(57822)}}, {{A, B, C, X(37656), X(57818)}}, {{A, B, C, X(49724), X(54760)}}
X(63110) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 50116, 50101}, {86, 3945, 69}, {551, 17274, 17321}, {551, 3664, 17274}, {16884, 31139, 50112}, {17320, 17394, 38314}, {17320, 39704, 7}, {17394, 39704, 17320}, {50101, 50116, 42697}


X(63111) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49812), X(3), X(6))

Barycentrics    6*sqrt(3)*a^2-5*S : :

X(63111) lies on circumconic {{A, B, C, X(299), X(54581)}} and on these lines: {2, 6}, {13, 49810}, {14, 43365}, {15, 42505}, {16, 49876}, {18, 61906}, {20, 41973}, {61, 15708}, {62, 3543}, {376, 43108}, {381, 22237}, {397, 61954}, {398, 15683}, {3091, 41122}, {3146, 42514}, {3411, 10303}, {3522, 42792}, {3523, 16963}, {3534, 42634}, {3545, 43247}, {3830, 42889}, {3839, 5344}, {3845, 43208}, {5056, 42953}, {5059, 43253}, {5071, 42989}, {5237, 10304}, {5238, 15692}, {5321, 42588}, {5334, 15640}, {5335, 41120}, {5339, 62032}, {5340, 61972}, {5349, 50687}, {5350, 42899}, {7486, 16267}, {9113, 36327}, {10645, 42933}, {10653, 12817}, {10654, 15697}, {11001, 11486}, {11481, 62072}, {11485, 15719}, {11542, 61915}, {11543, 41106}, {12101, 33603}, {15682, 42136}, {15690, 43482}, {15698, 42913}, {15702, 43479}, {15710, 42925}, {15721, 42149}, {16268, 41119}, {16773, 61812}, {16962, 61846}, {16964, 62166}, {16965, 62003}, {16967, 49860}, {18581, 49874}, {18582, 49904}, {19709, 43543}, {22235, 54594}, {22236, 61806}, {22238, 62120}, {33605, 41099}, {33607, 37835}, {34754, 42932}, {36843, 62081}, {40693, 61912}, {41108, 42100}, {41112, 42507}, {41121, 42982}, {41943, 61856}, {41944, 42520}, {42086, 42804}, {42089, 42976}, {42091, 43331}, {42103, 43006}, {42115, 62077}, {42117, 62135}, {42118, 62019}, {42120, 43326}, {42121, 61838}, {42125, 61979}, {42126, 62052}, {42129, 61902}, {42133, 43399}, {42142, 42778}, {42147, 62095}, {42148, 62048}, {42151, 62153}, {42153, 61944}, {42154, 42517}, {42155, 62030}, {42159, 61994}, {42163, 61962}, {42164, 43495}, {42419, 61777}, {42420, 61987}, {42494, 43236}, {42496, 61893}, {42497, 43306}, {42501, 43429}, {42506, 42910}, {42508, 42940}, {42511, 42977}, {42515, 43304}, {42518, 42898}, {42519, 43101}, {42543, 43632}, {42628, 61891}, {42633, 61843}, {42636, 42991}, {42688, 62165}, {42780, 62037}, {42815, 61939}, {42818, 43542}, {42903, 43001}, {42912, 61833}, {42917, 61860}, {42924, 62042}, {42943, 62132}, {42972, 50688}, {42974, 42987}, {42988, 61889}, {42993, 61982}, {43002, 61778}, {43031, 43243}, {43109, 62049}, {43242, 46334}, {43252, 61952}, {43293, 43369}, {43403, 49908}, {43416, 61961}, {43417, 43478}, {43426, 46935}, {43446, 61880}, {43463, 61857}, {43464, 61851}, {43481, 62040}, {43553, 43772}, {43557, 54578}, {43869, 61805}, {52079, 62065}, {52080, 62101}

X(63111) = pole of line {2, 42684} with respect to the Kiepert hyperbola
X(63111) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 49826, 61989}, {16, 49876, 62094}, {62, 41113, 49875}, {5321, 42588, 62018}, {5334, 41100, 15640}, {5335, 41120, 61966}, {10653, 42983, 43541}, {10653, 49824, 62007}, {12101, 42816, 33603}, {16268, 42998, 61936}, {18581, 49874, 61938}, {40694, 41107, 49873}, {41107, 49873, 3839}, {41108, 62160, 43466}, {41112, 42507, 43404}, {41112, 43404, 61958}, {41113, 49875, 3543}, {41122, 49825, 3091}, {42510, 49827, 20}, {42983, 62007, 49824}, {61719, 61924, 22235}


X(63112) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49813), X(3), X(6))

Barycentrics    6*sqrt(3)*a^2+5*S : :

X(63112) lies on circumconic {{A, B, C, X(298), X(54580)}} and on these lines: {2, 6}, {13, 43364}, {14, 49811}, {15, 49875}, {16, 42504}, {17, 61906}, {20, 41974}, {61, 3543}, {62, 15708}, {376, 43109}, {381, 22235}, {397, 15683}, {398, 61954}, {3091, 41121}, {3146, 42515}, {3412, 10303}, {3522, 42791}, {3523, 16962}, {3534, 42633}, {3545, 43246}, {3830, 42888}, {3839, 5343}, {3845, 43207}, {5056, 42952}, {5059, 43252}, {5071, 42988}, {5237, 15692}, {5238, 10304}, {5318, 42589}, {5334, 41119}, {5335, 15640}, {5339, 61972}, {5340, 62032}, {5349, 42898}, {5350, 50687}, {7486, 16268}, {9112, 35749}, {10646, 42932}, {10653, 15697}, {10654, 12816}, {11001, 11485}, {11480, 62072}, {11486, 15719}, {11542, 41106}, {11543, 61915}, {12101, 33602}, {15682, 42137}, {15690, 43481}, {15698, 42912}, {15702, 43480}, {15710, 42924}, {15721, 42152}, {16267, 41120}, {16772, 61812}, {16963, 61846}, {16964, 62003}, {16965, 62166}, {16966, 49859}, {18581, 49903}, {18582, 49873}, {19709, 43542}, {22236, 62120}, {22237, 54593}, {22238, 61806}, {33604, 41099}, {33606, 37832}, {34755, 42933}, {36836, 62081}, {40694, 61912}, {41107, 42099}, {41113, 42506}, {41122, 42983}, {41943, 42521}, {41944, 61856}, {42085, 42803}, {42090, 43330}, {42092, 42977}, {42106, 43007}, {42116, 62077}, {42117, 62019}, {42118, 62135}, {42119, 43327}, {42124, 61838}, {42127, 62052}, {42128, 61979}, {42132, 61902}, {42134, 43400}, {42139, 42777}, {42147, 62048}, {42148, 62095}, {42150, 62153}, {42154, 62030}, {42155, 42516}, {42156, 61944}, {42162, 61994}, {42165, 43496}, {42166, 61962}, {42419, 61987}, {42420, 61777}, {42495, 43237}, {42496, 43307}, {42497, 61893}, {42500, 43428}, {42507, 42911}, {42509, 42941}, {42510, 42976}, {42514, 43305}, {42518, 43104}, {42519, 42899}, {42544, 43633}, {42627, 61891}, {42634, 61843}, {42635, 42990}, {42689, 62165}, {42779, 62037}, {42816, 61939}, {42817, 43543}, {42902, 43000}, {42913, 61833}, {42916, 61860}, {42925, 62042}, {42942, 62132}, {42973, 50688}, {42975, 42986}, {42989, 61889}, {42992, 61982}, {43003, 61778}, {43030, 43242}, {43108, 62049}, {43243, 46335}, {43253, 61952}, {43292, 43368}, {43404, 49907}, {43416, 43477}, {43417, 61961}, {43427, 46935}, {43447, 61880}, {43463, 61851}, {43464, 61857}, {43482, 62040}, {43552, 43771}, {43556, 54579}, {43870, 61805}, {52079, 62101}, {52080, 62065}

X(63112) = pole of line {2, 42685} with respect to the Kiepert hyperbola
X(63112) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 49827, 61989}, {15, 49875, 62094}, {61, 41112, 49876}, {5318, 42589, 62018}, {5334, 41119, 61966}, {5335, 41101, 15640}, {10654, 42982, 43540}, {10654, 49825, 62007}, {12101, 42815, 33602}, {16267, 42999, 61936}, {18582, 49873, 61938}, {40693, 41108, 49874}, {41107, 62160, 43465}, {41108, 49874, 3839}, {41112, 49876, 3543}, {41113, 42506, 43403}, {41113, 43403, 61958}, {41121, 49824, 3091}, {42511, 49826, 20}, {42511, 61719, 49826}, {42896, 43232, 10653}, {42982, 62007, 49825}


X(63113) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49861), X(3), X(6))

Barycentrics    6*sqrt(3)*a^2-7*S : :

X(63113) lies on circumconic {{A, B, C, X(299), X(54580)}} and on these lines: {2, 6}, {13, 49859}, {14, 43397}, {15, 61805}, {16, 15697}, {18, 61912}, {20, 41108}, {61, 15721}, {62, 3839}, {397, 61944}, {398, 62120}, {549, 43480}, {3091, 16268}, {3411, 3523}, {3543, 5365}, {3545, 42989}, {3830, 33603}, {5056, 61719}, {5066, 43543}, {5071, 22235}, {5321, 42517}, {5334, 42510}, {5335, 41122}, {5339, 62048}, {5340, 61962}, {5343, 62037}, {5351, 10304}, {5352, 15692}, {6407, 15764}, {9113, 36331}, {10109, 42818}, {10303, 41944}, {10645, 42803}, {10653, 42507}, {10654, 42977}, {11001, 42123}, {11485, 61822}, {11486, 15682}, {11540, 42917}, {11542, 61913}, {11543, 41099}, {12817, 42804}, {15640, 19107}, {15683, 22238}, {15693, 43869}, {15695, 43482}, {15705, 42791}, {15708, 42149}, {15715, 42925}, {16773, 61806}, {16961, 43403}, {16962, 55864}, {16964, 62153}, {16965, 61994}, {16967, 42952}, {18581, 43233}, {19708, 42913}, {19709, 42497}, {21734, 43003}, {22236, 61812}, {33602, 61956}, {33604, 42974}, {33605, 42125}, {33606, 41107}, {33699, 42816}, {34754, 42481}, {36843, 62095}, {36970, 43242}, {37835, 42982}, {40693, 61906}, {41101, 62059}, {41106, 42987}, {41119, 49904}, {41121, 42580}, {42089, 42532}, {42092, 42520}, {42104, 43020}, {42115, 43108}, {42116, 42419}, {42117, 62115}, {42118, 62009}, {42119, 42792}, {42120, 62051}, {42121, 61833}, {42128, 43247}, {42129, 61904}, {42132, 43555}, {42133, 43032}, {42139, 42503}, {42141, 42508}, {42147, 62081}, {42148, 62032}, {42151, 42636}, {42153, 61954}, {42154, 62132}, {42155, 62018}, {42159, 62003}, {42160, 43019}, {42163, 61972}, {42165, 43202}, {42420, 61961}, {42436, 58204}, {42495, 61952}, {42496, 61891}, {42505, 42893}, {42519, 61930}, {42588, 50687}, {42589, 42943}, {42628, 61893}, {42633, 43464}, {42780, 62122}, {42801, 58184}, {42815, 61934}, {42817, 61890}, {42900, 54480}, {42911, 54593}, {42912, 61838}, {42923, 62118}, {42924, 62017}, {42942, 62072}, {42988, 61888}, {42991, 62067}, {42993, 50688}, {43015, 61796}, {43100, 61842}, {43207, 61910}, {43253, 62129}, {43417, 62019}, {43446, 61882}, {43463, 61860}, {43473, 54579}, {43477, 43501}, {43479, 61844}, {43542, 61908}, {43870, 61781}, {49874, 49908}, {52079, 62057}, {52080, 62109}

X(63113) = pole of line {2, 43421} with respect to the Kiepert hyperbola
X(63113) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14, 49875, 62007}, {16, 49827, 15697}, {62, 41120, 49826}, {5334, 42510, 62160}, {5335, 41122, 61958}, {10653, 42507, 49873}, {10653, 49873, 61989}, {15640, 42983, 41113}, {16268, 42521, 41112}, {16963, 42999, 15692}, {18581, 49825, 61943}, {33604, 61926, 43246}, {33605, 61987, 42125}, {40694, 41100, 49824}, {41100, 49824, 3543}, {41107, 43404, 61966}, {41107, 49810, 43404}, {41107, 61966, 43540}, {41120, 49826, 3839}, {42115, 43108, 62090}, {42119, 42792, 62099}, {42589, 42943, 62145}, {42974, 43246, 33604}, {49874, 49908, 61936}, {49875, 62007, 43465}


X(63114) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(49862), X(3), X(6))

Barycentrics    6*sqrt(3)*a^2+7*S : :

X(63114) lies on circumconic {{A, B, C, X(298), X(54581)}} and on these lines: {2, 6}, {13, 43398}, {14, 49860}, {15, 15697}, {16, 61805}, {17, 61912}, {20, 41107}, {61, 3839}, {62, 15721}, {397, 62120}, {398, 61944}, {549, 43479}, {3091, 16267}, {3412, 3523}, {3543, 5366}, {3545, 42988}, {3830, 33602}, {5066, 43542}, {5071, 22237}, {5318, 42516}, {5334, 41121}, {5335, 42511}, {5339, 61962}, {5340, 62048}, {5344, 62037}, {5351, 15692}, {5352, 10304}, {6408, 15764}, {9112, 35750}, {10109, 42817}, {10303, 41943}, {10646, 42804}, {10653, 42976}, {10654, 42506}, {11001, 42122}, {11485, 15682}, {11486, 61822}, {11540, 42916}, {11542, 41099}, {11543, 61913}, {12816, 42803}, {15640, 19106}, {15683, 22236}, {15693, 43870}, {15695, 43481}, {15705, 42792}, {15708, 42152}, {15715, 42924}, {16772, 61806}, {16960, 43404}, {16963, 55864}, {16964, 61994}, {16965, 62153}, {16966, 42953}, {18582, 43232}, {19708, 42912}, {19709, 42496}, {21734, 43002}, {22238, 61812}, {33603, 61956}, {33604, 42128}, {33605, 42975}, {33607, 41108}, {33699, 42815}, {34755, 42480}, {36836, 62095}, {36969, 43243}, {37832, 42983}, {40694, 61906}, {41100, 62059}, {41106, 42986}, {41120, 49903}, {41122, 42581}, {42089, 42521}, {42092, 42533}, {42105, 43021}, {42115, 42420}, {42116, 43109}, {42117, 62009}, {42118, 62115}, {42119, 62051}, {42120, 42791}, {42124, 61833}, {42125, 43246}, {42129, 43554}, {42132, 61904}, {42134, 43033}, {42140, 42509}, {42142, 42502}, {42147, 62032}, {42148, 62081}, {42150, 42635}, {42154, 62018}, {42155, 62132}, {42156, 61954}, {42161, 43018}, {42162, 62003}, {42164, 43201}, {42166, 61972}, {42419, 61961}, {42435, 58204}, {42494, 61952}, {42497, 61891}, {42504, 42892}, {42518, 61930}, {42588, 42942}, {42589, 50687}, {42627, 61893}, {42634, 43463}, {42779, 62122}, {42802, 58184}, {42816, 61934}, {42818, 61890}, {42901, 54479}, {42910, 54594}, {42913, 61838}, {42922, 62118}, {42925, 62017}, {42943, 62072}, {42989, 61888}, {42990, 62067}, {42992, 50688}, {43014, 61796}, {43107, 61842}, {43208, 61910}, {43252, 62129}, {43416, 62019}, {43447, 61882}, {43464, 61860}, {43474, 54578}, {43478, 43502}, {43480, 61844}, {43543, 61908}, {43869, 61781}, {49873, 49907}, {52079, 62109}, {52080, 62057}

X(63114) = pole of line {2, 43420} with respect to the Kiepert hyperbola
X(63114) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13, 49876, 62007}, {15, 49826, 15697}, {61, 41119, 49827}, {5334, 41121, 61958}, {5335, 42511, 62160}, {10654, 42506, 49874}, {10654, 49874, 61989}, {15640, 42982, 41112}, {16267, 42520, 41113}, {16962, 42998, 15692}, {18582, 49824, 61943}, {33604, 61987, 42128}, {33605, 61926, 43247}, {33699, 43207, 42815}, {40693, 41101, 49825}, {41101, 49825, 3543}, {41108, 43403, 61966}, {41108, 49811, 43403}, {41108, 61966, 43541}, {41119, 49827, 3839}, {42116, 43109, 62090}, {42120, 42791, 62099}, {42588, 42942, 62145}, {42975, 43247, 33605}, {49873, 49907, 61936}, {49876, 62007, 43466}


X(63115) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(50989), X(3), X(6))

Barycentrics    20*a^2-7*(b^2+c^2) : :
X(63115) = -7*X[2]+9*X[6], -9*X[182]+8*X[44580], -7*X[549]+8*X[55704], -6*X[575]+5*X[15713], -3*X[576]+2*X[5066], -9*X[1350]+11*X[62090], -9*X[1351]+5*X[61993], -9*X[1352]+11*X[61950], -9*X[1353]+5*X[15711], -9*X[1386]+8*X[41150], -7*X[3534]+3*X[55580], -8*X[3860]+9*X[5480] and many others

X(63115) lies on these lines: {2, 6}, {30, 55721}, {182, 44580}, {511, 19710}, {518, 51059}, {542, 33699}, {549, 55704}, {575, 15713}, {576, 5066}, {1350, 62090}, {1351, 61993}, {1352, 61950}, {1353, 15711}, {1386, 41150}, {1503, 50962}, {2854, 21969}, {3363, 41750}, {3534, 55580}, {3564, 12101}, {3860, 5480}, {4405, 49727}, {4663, 4745}, {4715, 49543}, {4725, 50100}, {5050, 50982}, {5071, 53858}, {5085, 51179}, {5093, 50961}, {5102, 50959}, {5476, 61934}, {5846, 50952}, {5847, 51124}, {5965, 38136}, {6776, 62135}, {7231, 50098}, {7277, 50077}, {7759, 8355}, {7762, 11054}, {7890, 39785}, {8550, 8703}, {8787, 36521}, {9027, 21849}, {9053, 51001}, {10109, 34507}, {10124, 22234}, {10168, 61845}, {10519, 51138}, {10541, 61805}, {11165, 15603}, {11178, 61624}, {11179, 55629}, {11180, 61979}, {11477, 15682}, {11482, 61908}, {11898, 61929}, {12007, 55692}, {12100, 55687}, {14561, 51175}, {14831, 40929}, {14853, 50958}, {14912, 50973}, {14976, 33683}, {15069, 41099}, {15687, 55718}, {15690, 44882}, {15691, 55583}, {15695, 50965}, {15697, 53097}, {15699, 22330}, {15716, 51174}, {15722, 50983}, {15759, 34380}, {15826, 47311}, {17504, 33749}, {18553, 61963}, {19708, 55641}, {19711, 21167}, {20112, 50280}, {20190, 61800}, {20423, 61974}, {25406, 50970}, {25555, 61890}, {28538, 49536}, {29181, 50974}, {29617, 62225}, {34379, 51107}, {37350, 41748}, {37904, 47546}, {38110, 51183}, {38191, 50949}, {40107, 61851}, {43273, 62115}, {44219, 49896}, {47280, 47314}, {47353, 51178}, {49524, 51070}, {49895, 49939}, {50955, 61941}, {50967, 55618}, {50971, 54174}, {50972, 55591}, {50977, 55707}, {50980, 55706}, {50998, 51097}, {51005, 51106}, {51022, 54132}, {51025, 51538}, {51091, 51147}, {51104, 51196}, {51139, 55703}, {51182, 61918}, {51215, 53023}, {52987, 62101}, {53092, 61854}, {53093, 61822}, {54131, 62009}, {54637, 54647}, {55588, 62111}, {55708, 61827}, {55724, 62163}

X(63115) = midpoint of X(i) and X(j) for these {i,j}: {1992, 6144}, {47353, 51178}, {51174, 54173}
X(63115) = reflection of X(i) in X(j) for these {i,j}: {141, 1992}, {11178, 61624}, {15687, 55718}, {3630, 597}, {40929, 14831}, {597, 3629}, {51022, 54132}, {51737, 51140}, {54169, 1353}, {54174, 50971}, {55583, 15691}
X(63115) = complement of X(51188)
X(63115) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54478, 2}
X(63115) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54478, 6327}
X(63115) = intersection, other than A, B, C, of circumconics {{A, B, C, X(83), X(41153)}}, {{A, B, C, X(3630), X(34898)}}, {{A, B, C, X(11160), X(25322)}}, {{A, B, C, X(17503), X(51187)}}, {{A, B, C, X(41149), X(45103)}}, {{A, B, C, X(41152), X(60216)}}, {{A, B, C, X(50989), X(60228)}}
X(63115) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {524, 1992, 141}, {524, 3629, 597}, {524, 597, 3630}, {1992, 6144, 524}, {5858, 5859, 9770}, {34380, 51140, 51737}


X(63116) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(50990), X(3), X(6))

Barycentrics    25*a^2-11*(b^2+c^2) : :
X(63116) = -11*X[2]+12*X[6], -11*X[20]+8*X[55583], -11*X[376]+10*X[55595], -16*X[575]+15*X[61844], -8*X[576]+7*X[61936], -12*X[1350]+13*X[62099], -6*X[1351]+5*X[41099], -12*X[1352]+13*X[61958], -6*X[1353]+5*X[15693], -77*X[3523]+80*X[55698], -6*X[3751]+5*X[51072], -4*X[3830]+3*X[5921] and many others

X(63116) lies on these lines: {2, 6}, {20, 55583}, {376, 55595}, {511, 51178}, {542, 15640}, {575, 61844}, {576, 61936}, {671, 60632}, {1350, 62099}, {1351, 41099}, {1352, 61958}, {1353, 15693}, {1503, 51214}, {2996, 11054}, {3523, 55698}, {3534, 34380}, {3564, 15682}, {3751, 51072}, {3830, 5921}, {3845, 50962}, {4669, 50952}, {4677, 49536}, {5050, 50985}, {5066, 11898}, {5093, 10109}, {5395, 60637}, {5485, 54642}, {5965, 36324}, {6392, 8352}, {6776, 15697}, {7758, 35287}, {8550, 62063}, {8703, 55616}, {9027, 62187}, {9925, 37939}, {10304, 55631}, {10519, 51140}, {11001, 61044}, {11148, 14712}, {11179, 55655}, {11180, 48889}, {11185, 53101}, {11477, 50687}, {11482, 61899}, {12100, 14912}, {14848, 61915}, {14853, 50961}, {15069, 61985}, {15685, 39874}, {15692, 55681}, {15701, 50978}, {15713, 51183}, {18440, 62009}, {18583, 61904}, {19708, 51179}, {19709, 51175}, {19710, 39899}, {20423, 61966}, {21850, 61987}, {22330, 46935}, {25406, 50973}, {27088, 51579}, {32599, 35493}, {33699, 44456}, {33748, 50977}, {33749, 61798}, {33878, 62115}, {34379, 51001}, {34507, 61924}, {36769, 51201}, {37904, 63174}, {37907, 47546}, {38136, 41106}, {38191, 50950}, {40107, 61846}, {41895, 47286}, {46267, 61863}, {46333, 55580}, {47867, 51204}, {48662, 62031}, {48876, 61822}, {48906, 62090}, {49824, 51207}, {49825, 51206}, {50691, 55721}, {50954, 61960}, {50956, 55717}, {50966, 62101}, {50967, 55603}, {51004, 51110}, {51023, 62018}, {51027, 51538}, {51092, 51192}, {51095, 51193}, {51103, 51197}, {51172, 61969}, {51177, 55593}, {51180, 55697}, {51212, 62030}, {51213, 62025}, {51216, 62022}, {51732, 61862}, {51737, 62054}, {52987, 62112}, {53091, 61851}, {53092, 61859}, {53093, 61825}, {53097, 62129}, {53858, 61914}, {54131, 62002}, {54170, 62132}, {54173, 55670}, {54639, 60286}, {54896, 60228}, {55584, 62138}, {55688, 61796}, {55705, 61823}, {55718, 61982}, {55724, 62042}, {55728, 55788}, {55805, 55826}, {55810, 55819}, {59399, 61893}, {60200, 60281}, {60282, 60628}, {61545, 61901}, {61624, 61910}

X(63116) = reflection of X(i) in X(j) for these {i,j}: {1992, 6144}, {51215, 54132}, {54174, 50974}, {62042, 55724}
X(63116) = inverse of X(41139) in Steiner circumellipse
X(63116) = anticomplement of X(50992)
X(63116) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32532, 2}
X(63116) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {31, 53856}, {32532, 6327}
X(63116) = pole of line {6467, 33879} with respect to the Jerabek hyperbola
X(63116) = pole of line {523, 41139} with respect to the Steiner circumellipse
X(63116) = intersection, other than A, B, C, of circumconics {{A, B, C, X(193), X(17503)}}, {{A, B, C, X(524), X(60632)}}, {{A, B, C, X(1992), X(54642)}}, {{A, B, C, X(2996), X(15533)}}, {{A, B, C, X(3620), X(60637)}}, {{A, B, C, X(4590), X(41139)}}, {{A, B, C, X(5032), X(60281)}}, {{A, B, C, X(8584), X(53101)}}, {{A, B, C, X(11160), X(54637)}}, {{A, B, C, X(15534), X(54896)}}, {{A, B, C, X(35511), X(41133)}}, {{A, B, C, X(50990), X(60200)}}, {{A, B, C, X(50991), X(60628)}}, {{A, B, C, X(51185), X(54639)}}
X(63116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 8584, 2}, {524, 6144, 1992}, {5862, 5863, 9766}, {5965, 54132, 51215}, {34380, 50974, 54174}, {36324, 36326, 62007}


X(63117) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(50992), X(3), X(6))

Barycentrics    29*a^2-7*(b^2+c^2) : :
X(63117) = -7*X[2]+12*X[6], 7*X[20]+8*X[55721], -24*X[182]+19*X[61805], -7*X[376]+2*X[55580], -16*X[575]+11*X[15721], -8*X[576]+3*X[3839], -6*X[1351]+X[15682], -12*X[1352]+17*X[61943], -6*X[1353]+X[3534], -49*X[3523]+64*X[55704], 2*X[3830]+3*X[50974], -8*X[3845]+3*X[5921] and many others

X(63117) lies on these lines: {2, 6}, {20, 55721}, {182, 61805}, {194, 53856}, {376, 55580}, {511, 15697}, {518, 50840}, {542, 62007}, {575, 15721}, {576, 3839}, {671, 54896}, {1351, 15682}, {1352, 61943}, {1353, 3534}, {1384, 51589}, {1503, 51029}, {2996, 7812}, {3523, 55704}, {3564, 41099}, {3830, 50974}, {3845, 5921}, {4677, 51001}, {4745, 51168}, {5050, 50980}, {5066, 5093}, {5068, 53858}, {5071, 11482}, {5095, 6995}, {5102, 51023}, {5395, 60627}, {5476, 51178}, {5847, 50953}, {6392, 11317}, {6776, 55719}, {7486, 22330}, {7620, 53101}, {8182, 15602}, {8550, 62120}, {8703, 14912}, {10109, 11898}, {10304, 55606}, {10488, 35369}, {10519, 51137}, {10989, 47546}, {11001, 51028}, {11179, 33751}, {11180, 61966}, {11477, 15683}, {11812, 51184}, {12007, 62054}, {12100, 55692}, {14848, 61926}, {14853, 50956}, {15069, 61954}, {15520, 50961}, {15531, 21969}, {15640, 29012}, {15692, 55687}, {15693, 34380}, {15698, 50979}, {15709, 53092}, {15713, 53091}, {16475, 51156}, {17503, 60632}, {18440, 61987}, {18583, 61913}, {19708, 55629}, {19710, 44456}, {20423, 61989}, {21849, 61692}, {21850, 62009}, {22234, 61856}, {25406, 50968}, {28301, 50129}, {28322, 50131}, {32532, 41895}, {32973, 39785}, {33550, 60216}, {33622, 51208}, {33624, 51209}, {33699, 39899}, {33748, 54173}, {33749, 62067}, {33750, 55621}, {33878, 62090}, {34379, 51105}, {34507, 61912}, {34511, 51579}, {35750, 49876}, {36331, 49875}, {37901, 47280}, {37909, 47549}, {39260, 54280}, {39874, 62040}, {41672, 52695}, {43273, 62132}, {44580, 55705}, {47277, 47314}, {47313, 47541}, {47466, 60455}, {47865, 51201}, {47866, 51204}, {48662, 62010}, {48876, 61833}, {48906, 62115}, {49135, 55718}, {49826, 51206}, {49827, 51207}, {50952, 51071}, {50955, 61932}, {50967, 55649}, {50978, 61843}, {51093, 51196}, {51125, 59406}, {51132, 62168}, {51167, 51538}, {51174, 61838}, {51175, 59399}, {51177, 62118}, {51182, 61891}, {51194, 60971}, {51212, 62051}, {51213, 62031}, {51214, 51737}, {51732, 61857}, {53093, 61812}, {53097, 62095}, {54131, 62018}, {54637, 54642}, {54639, 60638}, {55584, 62101}, {55641, 62063}, {55674, 61781}, {55697, 61800}, {55701, 61809}, {55724, 62130}, {55725, 55788}, {55805, 55820}, {55807, 55819}, {60200, 60284}, {60283, 60628}, {60641, 60648}, {61545, 61893}

X(63117) = reflection of X(i) in X(j) for these {i,j}: {5071, 11482}, {51211, 54132}, {54174, 50966}
X(63117) = anticomplement of X(50990)
X(63117) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60281, 2}
X(63117) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60281, 6327}
X(63117) = intersection, other than A, B, C, of circumconics {{A, B, C, X(193), X(45103)}}, {{A, B, C, X(524), X(54896)}}, {{A, B, C, X(2996), X(22165)}}, {{A, B, C, X(3620), X(60627)}}, {{A, B, C, X(5032), X(60284)}}, {{A, B, C, X(11160), X(32532)}}, {{A, B, C, X(15533), X(60632)}}, {{A, B, C, X(15534), X(53101)}}, {{A, B, C, X(41895), X(50992)}}, {{A, B, C, X(50993), X(60628)}}, {{A, B, C, X(50994), X(60200)}}
X(63117) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 1992, 5032}, {14912, 50962, 54174}, {29012, 54132, 51211}, {50962, 51180, 50966}, {50974, 51172, 51216}


X(63118) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(50994), X(3), X(6))

Barycentrics    23*a^2-13*(b^2+c^2) : :
X(63118) = -13*X[2]+12*X[6], -13*X[20]+16*X[55588], -13*X[376]+14*X[55602], -16*X[575]+17*X[61846], -8*X[576]+9*X[61924], -6*X[1351]+7*X[41106], -12*X[1352]+11*X[61966], -6*X[1353]+7*X[15701], -35*X[3523]+32*X[33749], -6*X[3751]+7*X[51068], -15*X[3839]+16*X[18553], -2*X[3845]+3*X[11898] and many others

X(63118) lies on these lines: {2, 6}, {20, 55588}, {316, 41895}, {376, 55602}, {487, 6487}, {488, 6486}, {511, 15640}, {542, 55581}, {575, 61846}, {576, 61924}, {1351, 41106}, {1352, 61966}, {1353, 15701}, {1503, 62168}, {2987, 46212}, {2996, 8352}, {3523, 33749}, {3564, 11001}, {3751, 51068}, {3830, 34380}, {3839, 18553}, {3845, 11898}, {4677, 34379}, {4745, 50952}, {5050, 61838}, {5066, 50962}, {5093, 61910}, {5395, 7877}, {5485, 54896}, {5921, 15682}, {5965, 15697}, {6390, 51589}, {6776, 55612}, {7396, 32244}, {7860, 11054}, {7905, 55725}, {8550, 15705}, {8591, 53856}, {8703, 50974}, {9027, 62188}, {10304, 55637}, {10519, 55685}, {11179, 55669}, {11180, 48901}, {11185, 45103}, {11477, 61985}, {11482, 61895}, {11540, 53091}, {11812, 50986}, {12101, 44456}, {14023, 35287}, {14848, 61913}, {14853, 61938}, {14912, 15693}, {15069, 50687}, {15690, 39899}, {15692, 55679}, {15698, 50985}, {15719, 48876}, {18440, 62019}, {18583, 61902}, {19708, 55648}, {19710, 39874}, {20423, 61958}, {21850, 61979}, {25406, 62072}, {29617, 52709}, {33748, 51140}, {33750, 51178}, {33878, 62135}, {34507, 61936}, {36768, 51201}, {37907, 47552}, {40107, 61844}, {41099, 50955}, {43273, 62099}, {47353, 51214}, {48662, 62043}, {48906, 62077}, {49505, 51097}, {49873, 51207}, {49874, 51206}, {50950, 51072}, {50954, 61963}, {50961, 54132}, {50966, 62109}, {50973, 62132}, {50977, 55700}, {50979, 61822}, {50999, 51092}, {51001, 51071}, {51004, 51105}, {51023, 62030}, {51094, 51193}, {51108, 51197}, {51110, 51196}, {51174, 61932}, {51176, 55610}, {51182, 61843}, {51184, 55697}, {51212, 62018}, {52987, 62122}, {53092, 61861}, {53093, 61830}, {53097, 62148}, {53101, 60627}, {53489, 60143}, {54169, 62054}, {54170, 62145}, {54637, 60632}, {54639, 60641}, {54642, 60216}, {55580, 62161}, {55584, 62154}, {55593, 62118}, {55690, 61805}, {55724, 62017}, {55729, 55791}, {55807, 55829}, {55812, 55820}, {59399, 61891}, {60283, 60285}, {60284, 60628}, {61545, 61908}, {61624, 61898}

X(63118) = reflection of X(i) in X(j) for these {i,j}: {51178, 54173}, {51214, 47353}, {54132, 50961}, {54174, 51179}, {62161, 55580}
X(63118) = isotomic conjugate of X(60632)
X(63118) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54637, 2}
X(63118) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54637, 6327}
X(63118) = pole of line {2, 60632} with respect to the Wallace hyperbola
X(63118) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(193), X(32532)}}, {{A, B, C, X(230), X(46212)}}, {{A, B, C, X(1992), X(54896)}}, {{A, B, C, X(2996), X(50992)}}, {{A, B, C, X(3620), X(60638)}}, {{A, B, C, X(5032), X(45103)}}, {{A, B, C, X(5486), X(48310)}}, {{A, B, C, X(8584), X(54642)}}, {{A, B, C, X(11160), X(60228)}}, {{A, B, C, X(15534), X(41895)}}, {{A, B, C, X(18823), X(41139)}}, {{A, B, C, X(20583), X(38005)}}, {{A, B, C, X(22165), X(60200)}}, {{A, B, C, X(50993), X(60285)}}, {{A, B, C, X(50994), X(60628)}}, {{A, B, C, X(51171), X(60283)}}
X(63118) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3564, 51179, 54174}, {5860, 5861, 7610}, {5862, 5863, 8667}, {36346, 36352, 15697}


X(63119) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51126), X(3), X(6))

Barycentrics    5*a^2+3*(b^2+c^2) : :
X(63119) = 5*X[1]+6*X[38191], 9*X[2]+2*X[6], 5*X[3]+6*X[38136], 3*X[4]+8*X[5092], 6*X[5]+5*X[12017], 6*X[10]+5*X[16491], -3*X[20]+14*X[55676], 8*X[140]+3*X[14853], X[194]+10*X[40332], 8*X[206]+3*X[32064], 9*X[373]+2*X[11574], 3*X[376]+8*X[19130] and many others

X(63119) lies on these lines: {1, 38191}, {2, 6}, {3, 38136}, {4, 5092}, {5, 12017}, {7, 17370}, {8, 17371}, {10, 16491}, {15, 37178}, {16, 37177}, {20, 55676}, {22, 31521}, {30, 55678}, {71, 56510}, {83, 18841}, {125, 19119}, {140, 14853}, {144, 17305}, {145, 17285}, {182, 1614}, {187, 16043}, {194, 40332}, {206, 32064}, {264, 33630}, {308, 63170}, {316, 33230}, {344, 3247}, {346, 17380}, {373, 11574}, {376, 19130}, {382, 33750}, {393, 52289}, {487, 6199}, {488, 6395}, {511, 3525}, {518, 5550}, {542, 61895}, {547, 18440}, {549, 55639}, {574, 7889}, {575, 60781}, {576, 61870}, {598, 60616}, {631, 3098}, {632, 1351}, {671, 60646}, {858, 47454}, {902, 29663}, {1078, 55762}, {1100, 29579}, {1125, 16496}, {1176, 19137}, {1249, 31886}, {1285, 7831}, {1350, 10303}, {1352, 5067}, {1353, 48154}, {1384, 8362}, {1386, 9780}, {1428, 10588}, {1444, 21514}, {1449, 29596}, {1495, 7392}, {1503, 5056}, {1656, 6776}, {1698, 38049}, {1843, 6688}, {1899, 46448}, {1974, 8889}, {2030, 5207}, {2330, 10589}, {2345, 17117}, {2548, 33221}, {2979, 58471}, {3087, 11331}, {3091, 5085}, {3146, 53094}, {3161, 17320}, {3241, 17240}, {3288, 55190}, {3313, 5640}, {3416, 19877}, {3522, 53023}, {3523, 5480}, {3524, 31670}, {3526, 10519}, {3528, 48901}, {3529, 17508}, {3533, 25555}, {3544, 20190}, {3545, 7919}, {3564, 5070}, {3616, 17263}, {3617, 38315}, {3622, 49524}, {3623, 59407}, {3627, 55682}, {3628, 5050}, {3634, 16475}, {3672, 17354}, {3681, 58562}, {3723, 17279}, {3731, 17321}, {3751, 19862}, {3759, 29611}, {3767, 6704}, {3785, 21309}, {3818, 5071}, {3832, 44882}, {3839, 48905}, {3855, 29012}, {3867, 4232}, {3873, 58633}, {3875, 50100}, {3933, 22246}, {3946, 50107}, {3973, 4357}, {4000, 17116}, {4026, 8692}, {4045, 14033}, {4253, 29492}, {4254, 21519}, {4256, 37176}, {4257, 56737}, {4265, 17572}, {4419, 17383}, {4422, 16677}, {4644, 17291}, {4657, 16814}, {4678, 51147}, {4699, 26039}, {4755, 49502}, {4916, 29577}, {5008, 7800}, {5024, 6337}, {5033, 7808}, {5047, 36741}, {5054, 21850}, {5055, 48906}, {5068, 36990}, {5072, 55692}, {5079, 39884}, {5093, 55858}, {5096, 16865}, {5104, 33001}, {5120, 21496}, {5159, 47456}, {5182, 6722}, {5189, 47453}, {5210, 32990}, {5222, 17289}, {5284, 12329}, {5296, 17400}, {5308, 17341}, {5315, 19784}, {5334, 11289}, {5335, 11290}, {5475, 33223}, {5476, 15702}, {5485, 60645}, {5622, 12900}, {5702, 53025}, {5749, 16706}, {5818, 38029}, {5839, 17292}, {5846, 46933}, {5921, 46936}, {5972, 25320}, {6172, 17249}, {6179, 55732}, {6200, 11291}, {6248, 50654}, {6393, 32839}, {6396, 11292}, {6604, 28780}, {6622, 19124}, {6646, 26104}, {6666, 29603}, {6676, 62209}, {6680, 32978}, {6683, 32970}, {6694, 42092}, {6695, 42089}, {6697, 41719}, {6698, 25321}, {6723, 52699}, {6803, 11430}, {6910, 33844}, {6997, 15080}, {7229, 37756}, {7375, 12323}, {7376, 12322}, {7388, 23249}, {7389, 23259}, {7398, 41424}, {7401, 37513}, {7405, 18925}, {7486, 10516}, {7493, 10545}, {7494, 34417}, {7514, 41465}, {7556, 52990}, {7605, 48912}, {7612, 39872}, {7714, 46026}, {7738, 12055}, {7752, 33194}, {7760, 18840}, {7769, 32952}, {7770, 43448}, {7786, 14069}, {7803, 16045}, {7804, 32986}, {7827, 52713}, {7828, 32957}, {7834, 32968}, {7852, 32969}, {7876, 53484}, {7913, 16041}, {7923, 33269}, {7944, 32823}, {7987, 38146}, {8227, 38118}, {8359, 15655}, {8363, 31404}, {8364, 32816}, {8550, 46935}, {8588, 33215}, {8589, 32985}, {8788, 22111}, {8797, 20204}, {9166, 14928}, {9335, 18183}, {9924, 58434}, {9969, 11451}, {9973, 40670}, {10007, 33000}, {10008, 32884}, {10124, 14848}, {10172, 39885}, {10219, 14913}, {10299, 48873}, {10304, 48910}, {10436, 31191}, {10485, 32998}, {10541, 15022}, {10546, 31267}, {10565, 31860}, {10576, 39875}, {10577, 39876}, {10582, 56179}, {10595, 38116}, {10645, 37173}, {10646, 37172}, {10754, 31274}, {10755, 31235}, {10979, 37188}, {10985, 37187}, {11001, 48895}, {11061, 15059}, {11178, 61889}, {11179, 55702}, {11180, 15699}, {11206, 23300}, {11230, 39898}, {11295, 42145}, {11296, 42144}, {11297, 42118}, {11298, 42117}, {11303, 42133}, {11304, 42134}, {11305, 42143}, {11306, 42146}, {11309, 43102}, {11310, 43103}, {11311, 11543}, {11312, 11542}, {11313, 18762}, {11314, 18538}, {11348, 20477}, {11411, 15037}, {11477, 61863}, {11482, 55862}, {11539, 50967}, {11541, 55679}, {11548, 19125}, {11645, 61932}, {11695, 21851}, {11898, 55860}, {12045, 61667}, {12108, 55629}, {12167, 52297}, {12215, 43291}, {12272, 61676}, {13331, 31276}, {14023, 14075}, {14269, 50975}, {14482, 32833}, {14535, 33184}, {14786, 18909}, {14810, 61814}, {14869, 55610}, {14912, 24206}, {15028, 19161}, {15069, 33748}, {15081, 15462}, {15082, 58555}, {15482, 33216}, {15485, 29633}, {15492, 17257}, {15583, 61680}, {15682, 48892}, {15689, 50988}, {15692, 38072}, {15694, 38079}, {15703, 39899}, {15705, 51024}, {15706, 50969}, {15708, 54131}, {15709, 20423}, {15710, 51137}, {15717, 29181}, {15719, 19924}, {15720, 55632}, {16051, 19126}, {16239, 59399}, {16474, 19836}, {16674, 17045}, {16774, 43697}, {16808, 37171}, {16809, 37170}, {16815, 16972}, {16818, 54981}, {16862, 37492}, {16884, 29583}, {16897, 20065}, {16966, 47520}, {16967, 47518}, {16971, 27248}, {16973, 29578}, {17014, 17233}, {17121, 29613}, {17163, 58384}, {17229, 50129}, {17266, 50030}, {17267, 29585}, {17286, 50114}, {17302, 25269}, {17304, 50115}, {17306, 54280}, {17314, 17358}, {17316, 17357}, {17322, 18230}, {17323, 20073}, {17338, 29614}, {17347, 61330}, {17355, 50101}, {17366, 61344}, {17394, 29627}, {17500, 37190}, {17504, 50963}, {17531, 36740}, {17538, 55674}, {17567, 47038}, {17578, 59411}, {17907, 52288}, {18046, 28809}, {18228, 19812}, {18424, 32983}, {18584, 32972}, {18842, 60238}, {18918, 37347}, {19132, 20079}, {19708, 48880}, {19786, 56084}, {19823, 41242}, {19875, 49684}, {19878, 59408}, {19883, 50999}, {20195, 51190}, {21167, 55607}, {21516, 36743}, {21540, 36744}, {21734, 48872}, {21735, 29317}, {21747, 26034}, {22491, 42894}, {22492, 42895}, {23327, 58450}, {23511, 56328}, {25318, 36950}, {25332, 31639}, {25561, 61913}, {25565, 41099}, {26864, 37439}, {26871, 55901}, {26872, 55903}, {27268, 49481}, {28641, 29581}, {29484, 34284}, {29607, 49775}, {29684, 33163}, {30745, 47455}, {31238, 49496}, {31239, 32451}, {31253, 51196}, {31400, 33217}, {31455, 33222}, {31492, 55780}, {31884, 61820}, {32247, 34128}, {32818, 55085}, {32829, 33185}, {32832, 42852}, {32960, 41413}, {32961, 42534}, {32971, 53419}, {32973, 53095}, {32974, 53418}, {32987, 39143}, {32999, 39141}, {33002, 51848}, {33632, 39668}, {33636, 41008}, {33751, 62147}, {34380, 55859}, {34595, 49511}, {34774, 61735}, {35222, 37184}, {35578, 48629}, {35707, 38402}, {36648, 52637}, {36696, 58427}, {36794, 52283}, {37340, 42115}, {37341, 42116}, {37344, 44180}, {37351, 42128}, {37352, 42125}, {37465, 41328}, {37485, 40916}, {37624, 38165}, {37911, 47279}, {38048, 40333}, {38168, 38762}, {38314, 49688}, {39870, 54447}, {40179, 41927}, {40685, 45016}, {41140, 59772}, {41584, 52292}, {41847, 60996}, {41984, 50978}, {43150, 50974}, {43273, 61924}, {46219, 48876}, {46267, 61888}, {47285, 57588}, {47353, 61912}, {47354, 61906}, {47478, 50987}, {47599, 50955}, {48662, 61911}, {48813, 48866}, {48817, 48843}, {48874, 61811}, {48885, 62066}, {48889, 61945}, {48891, 62042}, {48896, 62021}, {48904, 62127}, {48920, 62096}, {48943, 62161}, {49679, 51006}, {49681, 53620}, {49750, 62398}, {50112, 53664}, {50393, 51743}, {50398, 51738}, {50642, 57069}, {50689, 55684}, {50693, 51163}, {50957, 61917}, {50959, 62120}, {50964, 62029}, {50965, 61812}, {50971, 62032}, {50976, 58204}, {50977, 61861}, {50979, 61887}, {51022, 61962}, {51029, 62130}, {51129, 62003}, {51177, 61959}, {51194, 61001}, {51214, 61868}, {51217, 61983}, {51732, 55856}, {51737, 61936}, {52405, 56446}, {53091, 55857}, {53092, 55861}, {53097, 61848}, {54169, 61844}, {54173, 55723}, {54334, 58532}, {54616, 60239}, {55580, 61852}, {55582, 55864}, {55584, 61850}, {55593, 61840}, {55601, 61836}, {55609, 61833}, {55616, 61831}, {55624, 61826}, {55634, 61822}, {55636, 61817}, {55643, 61810}, {55648, 61808}, {55649, 61807}, {55651, 61804}, {55654, 61798}, {55655, 61795}, {55661, 61138}, {55669, 62084}, {55670, 62092}, {55671, 62097}, {55675, 62133}, {55677, 62146}, {55681, 62028}, {55687, 61964}, {55712, 61881}, {55715, 61873}, {55716, 61867}, {55724, 61858}, {55726, 55761}, {55729, 55760}, {55737, 55758}, {55738, 55757}, {55741, 55755}, {55743, 55754}, {55744, 55753}, {55745, 55752}, {55763, 55827}, {55764, 55823}, {55765, 55819}, {55766, 55816}, {55768, 55801}, {55769, 55800}, {55770, 55797}, {55771, 55794}, {55772, 55790}, {55776, 55787}, {55777, 55785}, {55778, 55783}, {56454, 62246}, {60183, 60644}, {61856, 62174}

X(63119) = midpoint of X(i) and X(j) for these {i,j}: {5072, 55692}
X(63119) = reflection of X(i) in X(j) for these {i,j}: {55648, 61808}, {62097, 55671}
X(63119) = isotomic conjugate of X(60183)
X(63119) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60644, 2}
X(63119) = X(i)-complementary conjugate of X(j) for these {i, j}: {60647, 2887}
X(63119) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60644, 6327}
X(63119) = X(i)-cross conjugate of X(j) for these {i, j}: {43136, 7408}
X(63119) = pole of line {7950, 44445} with respect to the anticomplementary circle
X(63119) = pole of line {2501, 7950} with respect to the polar circle
X(63119) = pole of line {2, 55729} with respect to the Kiepert hyperbola
X(63119) = pole of line {523, 37910} with respect to the Steiner inellipse
X(63119) = pole of line {2, 55762} with respect to the Wallace hyperbola
X(63119) = pole of line {525, 47133} with respect to the dual conic of anticomplementary circle
X(63119) = pole of line {3265, 3800} with respect to the dual conic of Orthic inconic
X(63119) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7408)}}, {{A, B, C, X(4), X(3763)}}, {{A, B, C, X(6), X(43136)}}, {{A, B, C, X(69), X(43527)}}, {{A, B, C, X(83), X(3619)}}, {{A, B, C, X(141), X(18841)}}, {{A, B, C, X(264), X(10513)}}, {{A, B, C, X(394), X(56072)}}, {{A, B, C, X(524), X(60646)}}, {{A, B, C, X(599), X(16774)}}, {{A, B, C, X(1992), X(60645)}}, {{A, B, C, X(2165), X(9300)}}, {{A, B, C, X(3618), X(60100)}}, {{A, B, C, X(5359), X(39389)}}, {{A, B, C, X(6144), X(17040)}}, {{A, B, C, X(6664), X(51127)}}, {{A, B, C, X(8797), X(37668)}}, {{A, B, C, X(14614), X(39968)}}, {{A, B, C, X(15589), X(36948)}}, {{A, B, C, X(16988), X(54122)}}, {{A, B, C, X(17283), X(58012)}}, {{A, B, C, X(17307), X(32022)}}, {{A, B, C, X(18840), X(34573)}}, {{A, B, C, X(18842), X(20582)}}, {{A, B, C, X(21356), X(60238)}}, {{A, B, C, X(21358), X(54616)}}, {{A, B, C, X(37665), X(51316)}}, {{A, B, C, X(43531), X(53665)}}
X(63119) = barycentric product X(i)*X(j) for these (i, j): {69, 7408}, {43136, 76}
X(63119) = barycentric quotient X(i)/X(j) for these (i, j): {2, 60183}, {7408, 4}, {43136, 6}
X(63119) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 193, 3763}, {2, 3589, 3618}, {2, 6, 3619}, {2, 7875, 7735}, {5, 25406, 51537}, {6, 3763, 3631}, {83, 32956, 32006}, {141, 1992, 69}, {491, 492, 10513}, {597, 3763, 193}, {631, 14561, 51212}, {1656, 38110, 6776}, {1656, 55705, 18358}, {1698, 38049, 51192}, {3091, 5085, 14927}, {3526, 18583, 10519}, {3618, 3619, 6}, {3628, 5050, 40330}, {5079, 55697, 39884}, {14069, 55774, 7786}, {14561, 58445, 631}, {14912, 61886, 24206}, {15694, 38079, 54132}, {17353, 29598, 17321}, {17368, 29630, 4000}, {18358, 38110, 55705}, {18841, 32956, 83}, {19130, 55672, 43621}, {19132, 23332, 20079}, {19137, 43650, 1176}, {31267, 36851, 35260}, {36794, 52283, 63155}, {42785, 55653, 31670}, {42786, 50664, 1352}, {43621, 55672, 376}, {51163, 55673, 50693}, {61044, 61834, 21167}


X(63120) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51127), X(3), X(6))

Barycentrics    7*a^2+5*(b^2+c^2) : :
X(63120) = 15*X[2]+2*X[6], 5*X[4]+12*X[17508], 16*X[5]+X[14927], -5*X[20]+22*X[55671], 16*X[140]+X[51212], 4*X[182]+13*X[5067], 9*X[376]+8*X[48895], 8*X[546]+9*X[33750], 12*X[547]+5*X[12017], -25*X[631]+8*X[14810], -20*X[632]+3*X[10519], -2*X[1350]+19*X[55864] and many others

X(63120) lies on these lines: {2, 6}, {4, 17508}, {5, 14927}, {20, 55671}, {140, 51212}, {182, 5067}, {315, 18841}, {316, 32956}, {344, 16673}, {376, 48895}, {511, 3533}, {542, 61888}, {546, 33750}, {547, 12017}, {631, 14810}, {632, 10519}, {1078, 55757}, {1350, 55864}, {1351, 16239}, {1352, 55706}, {1353, 61877}, {1386, 19877}, {1444, 21496}, {1503, 7486}, {1656, 48662}, {1698, 49684}, {1843, 52290}, {1974, 52299}, {1995, 31521}, {2345, 29630}, {2916, 14002}, {3090, 3818}, {3091, 48905}, {3098, 15702}, {3161, 17399}, {3313, 11451}, {3523, 48881}, {3524, 19130}, {3525, 14561}, {3526, 14853}, {3528, 48879}, {3543, 55676}, {3544, 29012}, {3545, 5092}, {3564, 55857}, {3616, 17341}, {3617, 49679}, {3624, 59406}, {3628, 6776}, {3634, 51192}, {3751, 19878}, {3828, 16491}, {3832, 53094}, {3845, 55678}, {3850, 55682}, {4254, 21527}, {4751, 31189}, {5050, 55856}, {5054, 55632}, {5056, 5085}, {5059, 55673}, {5068, 44882}, {5070, 38110}, {5071, 46264}, {5093, 61875}, {5096, 16859}, {5120, 21520}, {5206, 7889}, {5207, 31275}, {5222, 5564}, {5237, 37177}, {5238, 37178}, {5343, 11289}, {5344, 11290}, {5476, 55586}, {5480, 10303}, {5550, 38047}, {5749, 7321}, {5839, 29613}, {5846, 46932}, {5847, 19872}, {5972, 32255}, {6030, 6997}, {6337, 7820}, {6683, 18906}, {6704, 7844}, {6723, 11061}, {7375, 23269}, {7376, 23275}, {7388, 23253}, {7389, 23263}, {7392, 44082}, {7494, 44106}, {7571, 32064}, {7738, 16895}, {7763, 55767}, {7786, 55762}, {7803, 52713}, {7808, 31417}, {7846, 32960}, {7852, 32975}, {7859, 11185}, {7913, 32983}, {7998, 58471}, {8797, 60872}, {9818, 40196}, {10124, 54132}, {10168, 51023}, {10299, 48901}, {10516, 46936}, {11001, 25565}, {11179, 42786}, {11180, 55705}, {11206, 31267}, {11331, 63155}, {11482, 41992}, {11539, 33878}, {11541, 33751}, {11645, 61915}, {11695, 41716}, {11812, 55639}, {12045, 14913}, {14001, 37512}, {14061, 14928}, {14535, 32827}, {14848, 61869}, {14912, 43150}, {14994, 52718}, {15022, 36990}, {15059, 56565}, {15482, 33224}, {15688, 51029}, {15692, 48910}, {15694, 21850}, {15698, 48880}, {15699, 18440}, {15703, 18358}, {15705, 50959}, {15708, 55646}, {15709, 54170}, {15717, 53023}, {15719, 55653}, {15720, 38136}, {15721, 38072}, {15723, 38079}, {16042, 20987}, {16475, 51073}, {16496, 19883}, {16676, 17321}, {16706, 31995}, {16864, 37492}, {17014, 17285}, {17266, 50026}, {17273, 61330}, {17289, 32087}, {17350, 26104}, {17357, 26626}, {17367, 42696}, {17368, 42697}, {17383, 54389}, {17384, 26685}, {17400, 18230}, {17535, 36740}, {17536, 36741}, {17710, 61045}, {18583, 46219}, {18840, 60644}, {18911, 46448}, {19118, 52293}, {19137, 22112}, {19689, 45017}, {19708, 43621}, {19766, 56996}, {19924, 61833}, {20079, 61735}, {20108, 50636}, {20423, 61861}, {21167, 61842}, {21734, 51163}, {23046, 51217}, {23300, 35260}, {24206, 55708}, {24471, 31188}, {25332, 40478}, {25555, 55717}, {25561, 61902}, {26872, 55904}, {27812, 58384}, {28641, 29626}, {29181, 61820}, {29317, 61138}, {29607, 50013}, {30227, 44338}, {30535, 46223}, {31268, 41623}, {31276, 41747}, {31884, 61834}, {32002, 52283}, {32006, 53489}, {32978, 58448}, {33190, 60855}, {33248, 42534}, {33703, 55674}, {34380, 61876}, {35007, 39784}, {36851, 58450}, {37517, 61868}, {37911, 47447}, {38064, 39874}, {38071, 50975}, {38098, 51146}, {38315, 46933}, {38335, 50988}, {39884, 61905}, {40410, 42287}, {41106, 48884}, {41983, 50969}, {42785, 61838}, {43273, 61906}, {45757, 50957}, {45758, 50981}, {46333, 48943}, {46934, 49524}, {47354, 55699}, {47485, 52990}, {48817, 48836}, {48837, 48865}, {48872, 61791}, {48873, 55652}, {48874, 61832}, {48876, 55858}, {48885, 61787}, {48891, 62017}, {48898, 61964}, {48904, 62092}, {50030, 62398}, {50664, 61884}, {50689, 59411}, {50955, 61879}, {50963, 61827}, {50965, 61830}, {50967, 61864}, {50971, 61992}, {50974, 55710}, {50977, 61866}, {50979, 61882}, {50983, 61924}, {50984, 55607}, {51024, 61812}, {51129, 62037}, {51137, 62130}, {51139, 62056}, {51190, 58433}, {51213, 58184}, {51732, 55861}, {51737, 61912}, {52289, 62195}, {53091, 61878}, {54131, 61844}, {54173, 61865}, {54390, 56328}, {54616, 60645}, {55604, 61847}, {55630, 61836}, {55643, 61824}, {55648, 61821}, {55649, 61817}, {55651, 61816}, {55656, 61806}, {55665, 62086}, {55667, 62096}, {55669, 62113}, {55670, 62127}, {55691, 61913}, {55692, 61911}, {55718, 61870}, {55720, 61867}, {55726, 55756}, {55738, 55754}, {55741, 55753}, {55743, 55752}, {55744, 55751}, {55758, 55823}, {55760, 55797}, {55761, 55794}, {55763, 55787}, {55764, 55783}, {55765, 55780}, {55768, 55771}, {55862, 59399}, {60182, 60183}, {60238, 60616}, {60239, 60646}, {61044, 61848}

X(63120) = pole of line {2, 55735} with respect to the Kiepert hyperbola
X(63120) = pole of line {2, 55757} with respect to the Wallace hyperbola
X(63120) = pole of line {3265, 7927} with respect to the dual conic of Orthic inconic
X(63120) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(34573)}}, {{A, B, C, X(69), X(60100)}}, {{A, B, C, X(3618), X(60644)}}, {{A, B, C, X(3619), X(43527)}}, {{A, B, C, X(3763), X(18841)}}, {{A, B, C, X(3815), X(46223)}}, {{A, B, C, X(7736), X(46217)}}, {{A, B, C, X(7788), X(8797)}}, {{A, B, C, X(14930), X(46208)}}, {{A, B, C, X(15321), X(21358)}}, {{A, B, C, X(20582), X(60616)}}, {{A, B, C, X(36948), X(37671)}}, {{A, B, C, X(37668), X(40410)}}, {{A, B, C, X(43726), X(47355)}}, {{A, B, C, X(51128), X(60183)}}
X(63120) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3589, 69}, {2, 3618, 3619}, {69, 3589, 3618}, {315, 43527, 18841}, {3618, 3619, 1992}, {5056, 5085, 51537}, {5070, 38110, 40330}, {7763, 55767, 55774}, {10168, 61899, 51023}


X(63121) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51128), X(3), X(6))

Barycentrics    3*a^2+5*(b^2+c^2) : :
X(63121) = -15*X[2]+2*X[6], 8*X[3]+5*X[51537], -16*X[5]+3*X[51538], -5*X[20]+18*X[55654], 4*X[66]+9*X[35260], 12*X[140]+X[18440], -4*X[182]+17*X[3533], 9*X[376]+4*X[48884], 15*X[381]+11*X[55632], 12*X[547]+X[33878], -25*X[631]+12*X[17508], -50*X[632]+11*X[55701] and many others

X(63121) lies on these lines: {2, 6}, {3, 51537}, {4, 7937}, {5, 51538}, {7, 17371}, {8, 17370}, {20, 55654}, {66, 35260}, {76, 60183}, {140, 18440}, {159, 40916}, {182, 3533}, {192, 26104}, {344, 16676}, {346, 17305}, {376, 48884}, {381, 55632}, {511, 5067}, {518, 19877}, {542, 61859}, {547, 33878}, {625, 32968}, {626, 31417}, {631, 17508}, {632, 55701}, {858, 47451}, {1078, 55741}, {1176, 5651}, {1350, 5056}, {1351, 55856}, {1352, 3525}, {1353, 55862}, {1368, 45816}, {1444, 21526}, {1503, 10303}, {1656, 10519}, {1698, 49529}, {1843, 52299}, {1974, 16187}, {2345, 17291}, {2987, 46223}, {3066, 34817}, {3090, 7944}, {3091, 48910}, {3096, 16045}, {3098, 3545}, {3146, 21167}, {3161, 17249}, {3242, 46933}, {3416, 5550}, {3523, 10516}, {3524, 3818}, {3526, 6776}, {3528, 48891}, {3529, 55652}, {3543, 55646}, {3544, 48901}, {3564, 46219}, {3616, 3844}, {3617, 49690}, {3624, 51192}, {3628, 14853}, {3634, 49505}, {3661, 4371}, {3662, 7222}, {3672, 17285}, {3739, 49502}, {3751, 51073}, {3828, 16496}, {3832, 31884}, {3839, 48881}, {3845, 55639}, {3850, 55629}, {3853, 55643}, {3854, 51163}, {3855, 48873}, {3934, 33221}, {4000, 17292}, {4254, 21520}, {4265, 16859}, {4402, 16706}, {4419, 17358}, {4430, 58606}, {4644, 48633}, {4657, 29579}, {4661, 58676}, {4699, 49533}, {4748, 17338}, {5031, 14712}, {5050, 16239}, {5054, 18358}, {5055, 54170}, {5059, 55651}, {5068, 29181}, {5070, 48876}, {5071, 31670}, {5072, 48874}, {5085, 55864}, {5092, 15702}, {5093, 61878}, {5120, 21527}, {5159, 47447}, {5206, 6292}, {5207, 14069}, {5222, 17228}, {5237, 37178}, {5238, 37177}, {5296, 17341}, {5308, 17400}, {5343, 11290}, {5344, 11289}, {5476, 61888}, {5480, 7486}, {5485, 60279}, {5650, 9822}, {5749, 17227}, {5839, 29630}, {5846, 46934}, {5847, 34595}, {5921, 61856}, {6337, 8362}, {6389, 62196}, {6393, 32838}, {6467, 62184}, {6697, 32064}, {6723, 25320}, {7229, 17289}, {7375, 12322}, {7376, 12323}, {7388, 23263}, {7389, 23253}, {7392, 44106}, {7494, 44082}, {7703, 15435}, {7716, 52284}, {7738, 46226}, {7758, 39784}, {7763, 31268}, {7786, 41622}, {7790, 32956}, {7795, 53096}, {7800, 35007}, {7803, 10159}, {7820, 33215}, {7822, 16043}, {7831, 14039}, {7832, 32960}, {7853, 32983}, {7867, 32975}, {7914, 14064}, {7915, 32970}, {7998, 9969}, {8364, 32828}, {8589, 11147}, {8788, 19583}, {8797, 52251}, {8889, 46026}, {9342, 12329}, {10007, 31276}, {10008, 32883}, {10168, 61866}, {10192, 20079}, {10299, 29012}, {10302, 60643}, {10989, 47452}, {11001, 55653}, {11178, 15709}, {11179, 61861}, {11180, 11539}, {11185, 33230}, {11188, 15082}, {11206, 58437}, {11231, 39898}, {11331, 56022}, {11645, 61822}, {11812, 55678}, {11898, 55866}, {12167, 52293}, {12220, 33879}, {14269, 50980}, {14561, 55720}, {14848, 61880}, {14892, 50981}, {14912, 55708}, {15022, 53023}, {15246, 20987}, {15585, 61735}, {15692, 48905}, {15694, 48906}, {15698, 48892}, {15699, 50967}, {15703, 54132}, {15707, 50975}, {15708, 47354}, {15717, 36990}, {15719, 55672}, {15720, 33750}, {15721, 47353}, {15723, 55705}, {16475, 19878}, {16491, 19883}, {16673, 17284}, {16854, 37492}, {16896, 20065}, {17014, 17295}, {17045, 29583}, {17231, 26626}, {17236, 54389}, {17237, 26685}, {17250, 18230}, {17257, 17357}, {17270, 31191}, {17278, 28633}, {17282, 29604}, {17286, 50101}, {17304, 50107}, {17314, 17383}, {17316, 17384}, {17322, 29627}, {17326, 29629}, {17380, 29616}, {17535, 36741}, {17536, 36740}, {17538, 48889}, {17907, 52710}, {18553, 61836}, {18583, 55857}, {18841, 56059}, {18906, 32951}, {19662, 45018}, {19708, 25561}, {19924, 61926}, {20023, 55081}, {20208, 31886}, {20423, 61889}, {21296, 48638}, {21972, 36412}, {22112, 52016}, {24256, 33248}, {24273, 33004}, {24599, 32025}, {25318, 40478}, {25565, 55585}, {26039, 26806}, {26871, 55903}, {26872, 55901}, {28653, 60996}, {28780, 63152}, {29317, 61964}, {29323, 62092}, {29607, 50030}, {31239, 32969}, {31521, 63183}, {32099, 48639}, {32218, 60455}, {32459, 32990}, {32832, 33194}, {32867, 33186}, {32998, 40332}, {33021, 45017}, {33522, 37990}, {33703, 55649}, {34380, 55861}, {34507, 55709}, {36948, 42287}, {37517, 61884}, {37911, 52238}, {38064, 43150}, {38110, 55858}, {38136, 61905}, {38317, 55718}, {38335, 50969}, {39899, 61864}, {40107, 55717}, {40802, 46217}, {40920, 61774}, {41099, 43621}, {41106, 48895}, {41584, 52298}, {41719, 58450}, {41985, 50978}, {41992, 53092}, {43273, 61844}, {43372, 50860}, {43373, 50859}, {44110, 46448}, {44456, 61887}, {44833, 61743}, {44882, 61820}, {45759, 50957}, {46333, 51217}, {46932, 49524}, {46936, 62174}, {47598, 50955}, {48632, 61344}, {48662, 61840}, {48813, 48865}, {48872, 50689}, {48879, 62017}, {48885, 62028}, {48896, 62084}, {48898, 61138}, {49465, 53620}, {50664, 50974}, {50956, 62130}, {50960, 62032}, {50963, 61909}, {50965, 61954}, {50968, 62037}, {50976, 58184}, {50977, 55586}, {50979, 61871}, {50984, 55656}, {51022, 62095}, {51024, 61930}, {51029, 61967}, {51141, 61780}, {51214, 55716}, {51732, 61876}, {51737, 61846}, {52288, 63155}, {53091, 61875}, {53094, 61834}, {54131, 61906}, {54169, 61924}, {54173, 61895}, {55582, 61897}, {55593, 61911}, {55594, 61913}, {55604, 61920}, {55605, 61921}, {55607, 61927}, {55616, 61937}, {55621, 61945}, {55624, 61946}, {55634, 61961}, {55636, 61973}, {55642, 62009}, {55648, 62036}, {55655, 62127}, {55657, 62113}, {55659, 62096}, {55661, 62086}, {55673, 61816}, {55674, 61817}, {55682, 61837}, {55706, 61867}, {55726, 55740}, {55729, 55739}, {55732, 55738}, {55734, 55737}, {55742, 55823}, {55745, 55774}, {55746, 55762}, {55747, 55757}, {55859, 61545}, {58433, 59405}, {58532, 62187}, {58581, 61686}, {59399, 61877}, {59411, 61791}, {60131, 60143}, {60277, 60629}, {61044, 61914}

X(63121) = pole of line {2, 55770} with respect to the Kiepert hyperbola
X(63121) = pole of line {2, 43136} with respect to the Wallace hyperbola
X(63121) = pole of line {3265, 3806} with respect to the dual conic of Orthic inconic
X(63121) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7409)}}, {{A, B, C, X(4), X(47355)}}, {{A, B, C, X(6), X(60183)}}, {{A, B, C, X(66), X(21358)}}, {{A, B, C, X(69), X(60278)}}, {{A, B, C, X(95), X(10513)}}, {{A, B, C, X(230), X(46223)}}, {{A, B, C, X(597), X(60643)}}, {{A, B, C, X(1992), X(60279)}}, {{A, B, C, X(3589), X(18840)}}, {{A, B, C, X(3618), X(10159)}}, {{A, B, C, X(3619), X(56059)}}, {{A, B, C, X(5485), X(48310)}}, {{A, B, C, X(7735), X(46217)}}, {{A, B, C, X(8797), X(15589)}}, {{A, B, C, X(15534), X(17040)}}, {{A, B, C, X(16987), X(54122)}}, {{A, B, C, X(18841), X(51126)}}, {{A, B, C, X(20080), X(31360)}}, {{A, B, C, X(36948), X(37668)}}, {{A, B, C, X(47352), X(60629)}}, {{A, B, C, X(59373), X(60131)}}
X(63121) = barycentric product X(i)*X(j) for these (i, j): {69, 7409}
X(63121) = barycentric quotient X(i)/X(j) for these (i, j): {7409, 4}
X(63121) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 141, 3618}, {2, 3620, 3589}, {2, 3763, 3619}, {2, 7868, 1007}, {140, 40330, 25406}, {141, 3618, 69}, {3096, 16045, 32006}, {3523, 10516, 14927}, {3589, 3620, 1992}, {3618, 3619, 141}, {4402, 29611, 48630}, {7229, 48629, 42697}, {7803, 10159, 18840}, {14912, 61870, 58445}, {15720, 39884, 33750}, {16706, 29611, 42696}, {16706, 48630, 4402}, {17289, 48629, 7229}, {17291, 29613, 2345}, {17306, 29596, 344}, {17383, 29587, 17314}, {29630, 48634, 5839}, {31670, 42786, 5071}


X(63122) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51170), X(3), X(6))

Barycentrics    15*a^2-b^2-c^2 : :
X(63122) = -3*X[2]+16*X[6], X[20]+12*X[5093], X[23]+12*X[47463], 5*X[145]+8*X[49536], -32*X[182]+19*X[61791], -64*X[575]+25*X[61804], 11*X[576]+2*X[48885], 5*X[631]+8*X[61624], -16*X[1350]+29*X[62060], 8*X[1351]+5*X[3522], 8*X[1353]+5*X[3091], 12*X[1570]+X[14712] and many others

X(63122) lies on these lines: {2, 6}, {20, 5093}, {23, 47463}, {145, 49536}, {182, 61791}, {439, 30435}, {511, 21734}, {542, 61972}, {575, 61804}, {576, 48885}, {631, 61624}, {1199, 52404}, {1350, 62060}, {1351, 3522}, {1353, 3091}, {1570, 14712}, {1743, 29585}, {3088, 14627}, {3098, 62056}, {3146, 11482}, {3523, 53091}, {3564, 5068}, {3617, 51196}, {3621, 49529}, {3622, 49505}, {3623, 3751}, {3758, 4371}, {3759, 7222}, {3793, 32990}, {3818, 61962}, {3832, 18440}, {3839, 39899}, {3854, 5921}, {4402, 17121}, {4430, 58621}, {4661, 58694}, {4678, 38191}, {4821, 49496}, {4856, 50100}, {5050, 15717}, {5056, 59399}, {5059, 5097}, {5092, 54174}, {5102, 61044}, {5189, 47462}, {5286, 54097}, {5305, 52250}, {5476, 61952}, {5702, 27377}, {5839, 62228}, {6339, 39955}, {6392, 7894}, {6467, 11002}, {6500, 11292}, {6501, 11291}, {6776, 15520}, {7229, 17120}, {7378, 46444}, {7408, 11405}, {7486, 11898}, {7839, 32981}, {7921, 32980}, {8550, 50690}, {9606, 55819}, {10008, 32873}, {10303, 34380}, {10304, 44456}, {10519, 15516}, {11179, 48879}, {11477, 62078}, {11511, 45816}, {12007, 48910}, {12017, 15705}, {12167, 52301}, {12220, 16981}, {14035, 33684}, {14269, 51180}, {14848, 61944}, {14853, 22330}, {15022, 18583}, {15683, 48906}, {15692, 55705}, {15708, 50962}, {16668, 54280}, {17548, 37492}, {18358, 51215}, {20014, 49681}, {20049, 49684}, {20052, 51192}, {20105, 41622}, {20423, 62032}, {21309, 35287}, {22246, 33215}, {25406, 62124}, {31492, 55803}, {31670, 62048}, {32220, 60455}, {32973, 43136}, {32979, 47286}, {33750, 55720}, {33878, 62063}, {34379, 46934}, {37517, 62081}, {37760, 47277}, {37907, 47281}, {38110, 61848}, {39561, 61816}, {39874, 50687}, {40065, 56022}, {43981, 62213}, {45245, 52247}, {46933, 59408}, {46935, 61545}, {47549, 60456}, {48876, 61842}, {48880, 54132}, {50664, 50967}, {50974, 61954}, {50979, 62120}, {50986, 61899}, {51028, 55716}, {51132, 55676}, {51138, 55656}, {51172, 62130}, {51175, 61889}, {51176, 62037}, {51179, 61844}, {51181, 61780}, {51183, 61871}, {51194, 61006}, {51212, 53858}, {51732, 55864}, {53092, 61820}, {54444, 55914}, {55584, 62067}, {55593, 58188}, {55604, 62059}, {55624, 58186}, {55639, 62054}, {55692, 61783}, {55697, 61788}, {58555, 62187}

X(63122) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60145, 2}
X(63122) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60145, 6327}
X(63122) = pole of line {6467, 58470} with respect to the Jerabek hyperbola
X(63122) = pole of line {6, 10219} with respect to the Stammler hyperbola
X(63122) = pole of line {523, 47630} with respect to the Steiner circumellipse
X(63122) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1611), X(39955)}}, {{A, B, C, X(3763), X(6339)}}, {{A, B, C, X(13622), X(50989)}}, {{A, B, C, X(15271), X(38262)}}, {{A, B, C, X(22336), X(40341)}}, {{A, B, C, X(31489), X(52224)}}, {{A, B, C, X(37637), X(52223)}}
X(63122) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 8584, 69}, {141, 1992, 193}, {1351, 33748, 3522}, {7585, 7586, 230}


X(63123) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51171), X(3), X(6))

Barycentrics    9*a^2+b^2+c^2 : :
X(63123) = 3*X[2]+8*X[6], -X[8]+12*X[59408], -X[20]+12*X[5050], -X[23]+12*X[47459], -16*X[182]+5*X[3522], -3*X[376]+14*X[55705], 32*X[575]+X[3146], 16*X[576]+17*X[61820], 5*X[631]+6*X[5093], X[858]+10*X[47461], -8*X[1350]+19*X[61791], 4*X[1351]+7*X[3523] and many others

X(63123) lies on these lines: {2, 6}, {4, 18845}, {8, 59408}, {20, 5050}, {23, 47459}, {39, 439}, {83, 6392}, {145, 3790}, {159, 14002}, {182, 3522}, {192, 61330}, {239, 7229}, {344, 16666}, {376, 55705}, {487, 35771}, {488, 35770}, {511, 15717}, {542, 61944}, {567, 37460}, {575, 3146}, {576, 61820}, {598, 60113}, {631, 5093}, {858, 47461}, {894, 4402}, {1078, 55785}, {1131, 49229}, {1132, 49228}, {1176, 38005}, {1249, 56022}, {1350, 61791}, {1351, 3523}, {1352, 15022}, {1353, 3090}, {1386, 3623}, {1449, 26685}, {1503, 50689}, {1570, 31400}, {1692, 14712}, {1724, 19783}, {1743, 26626}, {1974, 11003}, {2548, 52250}, {2979, 58555}, {2987, 52224}, {2996, 60145}, {3088, 36753}, {3091, 7920}, {3098, 15705}, {3108, 6339}, {3161, 29584}, {3241, 17339}, {3521, 63184}, {3524, 44456}, {3525, 34380}, {3526, 61624}, {3528, 55697}, {3543, 14848}, {3545, 39899}, {3564, 5056}, {3616, 49505}, {3621, 49681}, {3622, 3751}, {3681, 58621}, {3729, 50108}, {3758, 7222}, {3759, 4371}, {3793, 16043}, {3818, 61954}, {3832, 6776}, {3839, 39874}, {3854, 8550}, {3873, 58694}, {3926, 5041}, {4188, 37492}, {4232, 12167}, {4254, 21537}, {4644, 48629}, {4678, 51192}, {4704, 49502}, {4772, 49496}, {4788, 49533}, {4821, 49481}, {4856, 50079}, {4916, 17342}, {5017, 33022}, {5024, 35287}, {5034, 7787}, {5038, 33244}, {5055, 51215}, {5059, 25406}, {5067, 11898}, {5068, 5921}, {5085, 21734}, {5092, 54132}, {5097, 10519}, {5102, 61816}, {5120, 21508}, {5138, 37267}, {5182, 20094}, {5189, 41256}, {5207, 33287}, {5222, 17120}, {5254, 5395}, {5286, 7878}, {5305, 32987}, {5346, 32838}, {5476, 61985}, {5480, 17578}, {5550, 34379}, {5640, 6467}, {5702, 9308}, {5749, 17121}, {5839, 48630}, {5847, 46933}, {5943, 12272}, {6172, 17396}, {6389, 15860}, {6417, 11291}, {6418, 11292}, {6995, 19118}, {7394, 18935}, {7396, 52719}, {7398, 11402}, {7408, 44102}, {7409, 46026}, {7665, 39024}, {7703, 14763}, {7745, 54097}, {7786, 55825}, {7790, 32982}, {7795, 41940}, {7797, 32980}, {7803, 7860}, {7827, 53845}, {7829, 32816}, {7839, 33198}, {7856, 31404}, {7921, 33180}, {7941, 33182}, {8369, 22246}, {8596, 14928}, {8889, 46444}, {9605, 32973}, {9777, 10565}, {9779, 39878}, {9780, 51196}, {9822, 15531}, {10168, 61830}, {10169, 36851}, {10299, 55584}, {10303, 11482}, {10304, 12017}, {10541, 62078}, {10583, 32831}, {11002, 12220}, {11175, 38262}, {11179, 48884}, {11180, 61930}, {11188, 22829}, {11451, 14913}, {11477, 61804}, {11539, 51179}, {11574, 62187}, {11645, 62002}, {13354, 44434}, {13366, 19122}, {13595, 19459}, {14023, 34571}, {14269, 51176}, {14683, 52699}, {14927, 50690}, {15024, 34382}, {15118, 25321}, {15246, 37491}, {15520, 61842}, {15683, 31670}, {15689, 51181}, {15692, 33878}, {15698, 55604}, {15709, 50962}, {15710, 50987}, {15715, 55632}, {15851, 37188}, {16667, 17316}, {16669, 17321}, {16670, 17257}, {16671, 54280}, {17014, 17350}, {17040, 61690}, {17353, 29583}, {17355, 50129}, {17504, 51172}, {17548, 36741}, {17907, 62213}, {18358, 50974}, {18842, 60625}, {18907, 33272}, {18919, 19125}, {19103, 45575}, {19104, 45574}, {19121, 59343}, {19126, 45816}, {19132, 23326}, {19689, 32840}, {19693, 42421}, {20014, 49690}, {20049, 49688}, {20052, 49524}, {20057, 49536}, {20059, 59405}, {20063, 52238}, {20065, 51860}, {20079, 23327}, {20081, 41622}, {20088, 33025}, {20099, 36696}, {20125, 39562}, {20218, 42287}, {20423, 48880}, {21296, 29630}, {21309, 33215}, {21735, 55692}, {22330, 61848}, {22491, 43031}, {22492, 43030}, {25555, 40330}, {29181, 62124}, {29570, 51194}, {29609, 62608}, {30435, 32990}, {30535, 52223}, {31145, 49684}, {32114, 32300}, {32965, 40825}, {32971, 47286}, {32991, 33684}, {33010, 53475}, {33011, 53484}, {33014, 50659}, {33630, 52281}, {36740, 37307}, {36794, 40138}, {37174, 40065}, {37517, 38064}, {37760, 47457}, {37893, 46327}, {37907, 47456}, {38049, 46934}, {38072, 61972}, {38079, 61912}, {38136, 61982}, {41135, 45018}, {41895, 60650}, {41984, 51183}, {43273, 62032}, {43621, 62168}, {44882, 62152}, {47353, 61952}, {47478, 51180}, {47599, 51175}, {48640, 62231}, {48662, 61964}, {48873, 55706}, {48874, 62083}, {48876, 55864}, {48879, 50975}, {48881, 62095}, {48891, 55709}, {48892, 62132}, {48895, 62018}, {48905, 62048}, {50692, 51538}, {50693, 51212}, {50955, 61906}, {50963, 62003}, {50967, 55716}, {50978, 61861}, {50983, 55582}, {50986, 61887}, {51023, 61962}, {51173, 62029}, {51177, 58204}, {51211, 62130}, {51737, 62129}, {52289, 56013}, {53094, 62060}, {53101, 54476}, {54131, 62148}, {54170, 55676}, {54173, 55715}, {54444, 55907}, {54639, 60635}, {55399, 55914}, {55400, 55909}, {55593, 61138}, {55610, 61788}, {55616, 61787}, {55629, 61783}, {55639, 61781}, {55646, 61778}, {55672, 62054}, {55678, 62059}, {55682, 58188}, {55691, 62072}, {55699, 62081}, {55701, 62097}, {55702, 62099}, {55703, 62102}, {55708, 62125}, {55713, 61914}, {55724, 61798}, {55729, 55777}, {55792, 55819}, {55797, 55814}, {60105, 60147}, {60118, 60184}, {60639, 60647}, {61545, 61886}

X(63123) = reflection of X(i) in X(j) for these {i,j}: {21735, 55692}
X(63123) = isotomic conjugate of X(60639)
X(63123) = X(i)-Ceva conjugate of X(j) for these {i, j}: {60647, 2}
X(63123) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {60647, 6327}
X(63123) = pole of line {5032, 6467} with respect to the Jerabek hyperbola
X(63123) = pole of line {523, 37910} with respect to the Steiner circumellipse
X(63123) = pole of line {2, 55785} with respect to the Wallace hyperbola
X(63123) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(66), X(22165)}}, {{A, B, C, X(69), X(18845)}}, {{A, B, C, X(83), X(51170)}}, {{A, B, C, X(141), X(38005)}}, {{A, B, C, X(193), X(60145)}}, {{A, B, C, X(230), X(52224)}}, {{A, B, C, X(393), X(31489)}}, {{A, B, C, X(599), X(60113)}}, {{A, B, C, X(1611), X(3108)}}, {{A, B, C, X(2987), X(17825)}}, {{A, B, C, X(3055), X(51316)}}, {{A, B, C, X(3589), X(6339)}}, {{A, B, C, X(3620), X(38259)}}, {{A, B, C, X(3815), X(52223)}}, {{A, B, C, X(5032), X(40405)}}, {{A, B, C, X(5275), X(39975)}}, {{A, B, C, X(5395), X(20080)}}, {{A, B, C, X(7897), X(60118)}}, {{A, B, C, X(10513), X(60105)}}, {{A, B, C, X(11160), X(17040)}}, {{A, B, C, X(11174), X(38262)}}, {{A, B, C, X(11175), X(21001)}}, {{A, B, C, X(17811), X(30535)}}, {{A, B, C, X(21356), X(60625)}}, {{A, B, C, X(37637), X(46952)}}, {{A, B, C, X(37682), X(39979)}}
X(63123) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 3589, 1992}, {6, 3618, 193}, {6, 3763, 8584}, {6, 597, 69}, {6, 6329, 3618}, {6, 69, 5032}, {193, 3618, 2}, {1449, 26685, 29585}, {1992, 3589, 3620}, {5085, 61044, 21734}, {5921, 14561, 5068}, {7585, 7586, 7736}, {14912, 18583, 3091}, {18583, 53092, 14912}, {36794, 40138, 43981}, {38064, 54174, 61806}, {53091, 59399, 4}


X(63124) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51185), X(3), X(6))

Barycentrics    10*a^2+b^2+c^2 : :
X(63124) = X[2]+3*X[6], X[5]+5*X[22234], X[140]+2*X[22330], -3*X[182]+X[8703], -X[376]+5*X[53093], X[546]+2*X[33749], -X[548]+4*X[55704], -X[550]+7*X[55708], 5*X[631]+7*X[53858], -3*X[1350]+7*X[15698], 3*X[1351]+5*X[15693], -3*X[1352]+7*X[61920] and many others

X(63124) lies on these lines: {2, 6}, {4, 60281}, {5, 22234}, {22, 37827}, {25, 8546}, {30, 575}, {39, 27088}, {44, 49737}, {51, 8705}, {61, 35303}, {62, 35304}, {76, 60287}, {83, 11054}, {115, 8787}, {140, 22330}, {182, 8703}, {239, 62225}, {376, 53093}, {381, 8550}, {427, 15471}, {428, 44102}, {441, 15860}, {511, 12100}, {518, 4532}, {519, 4535}, {538, 61046}, {542, 5066}, {545, 50114}, {546, 33749}, {547, 25555}, {548, 55704}, {549, 576}, {550, 55708}, {551, 4663}, {567, 44265}, {569, 44261}, {574, 19661}, {578, 44273}, {598, 17503}, {631, 53858}, {671, 53489}, {895, 12834}, {1078, 55786}, {1194, 46337}, {1350, 15698}, {1351, 15693}, {1352, 61920}, {1353, 11178}, {1386, 9041}, {1449, 41313}, {1503, 3845}, {1692, 8354}, {1743, 41312}, {1990, 52281}, {2393, 58470}, {2854, 5943}, {3053, 47061}, {3098, 15711}, {3108, 34898}, {3228, 25327}, {3363, 5309}, {3524, 11477}, {3530, 55718}, {3534, 5050}, {3564, 10109}, {3707, 25358}, {3751, 38023}, {3758, 4395}, {3759, 7227}, {3793, 15810}, {3818, 61956}, {3830, 5480}, {3849, 9731}, {3860, 19130}, {3946, 4912}, {3979, 34893}, {4364, 16670}, {4370, 29584}, {4399, 17121}, {4422, 16666}, {4478, 17368}, {4667, 40480}, {4669, 5846}, {4677, 47356}, {4745, 28538}, {4796, 17067}, {4852, 50118}, {4969, 29615}, {4971, 49543}, {4995, 8540}, {5007, 8359}, {5012, 32217}, {5024, 37809}, {5026, 15300}, {5038, 8598}, {5041, 7789}, {5054, 11482}, {5071, 15069}, {5085, 19708}, {5092, 15759}, {5093, 15701}, {5097, 10168}, {5102, 15719}, {5133, 25328}, {5182, 42421}, {5207, 33288}, {5254, 11317}, {5298, 19369}, {5395, 60632}, {5459, 11543}, {5460, 11542}, {5461, 41672}, {5640, 35266}, {5648, 61655}, {5845, 51195}, {5847, 51069}, {5921, 61938}, {5946, 18579}, {5969, 36521}, {6034, 8593}, {6593, 13366}, {6677, 32300}, {6688, 9027}, {6748, 37765}, {6749, 52282}, {6776, 38072}, {7228, 17120}, {7238, 17367}, {7263, 35578}, {7426, 15019}, {7620, 18842}, {7739, 11159}, {7745, 7827}, {7753, 37350}, {7757, 35954}, {7764, 8365}, {7767, 34571}, {7772, 8369}, {7786, 55826}, {7798, 59780}, {7804, 52229}, {7812, 7918}, {7817, 8355}, {7819, 41940}, {7829, 8360}, {7878, 8370}, {8182, 21309}, {8547, 17810}, {8586, 26613}, {8681, 40670}, {9004, 58560}, {9009, 38237}, {9019, 21849}, {9024, 51199}, {9053, 16475}, {9055, 36522}, {9140, 25329}, {9607, 33007}, {9830, 36523}, {10022, 16833}, {10124, 40107}, {10192, 11216}, {10304, 10541}, {10485, 52691}, {10488, 41135}, {10510, 53863}, {10516, 50974}, {10519, 61833}, {11001, 44882}, {11055, 32449}, {11161, 53484}, {11165, 22246}, {11180, 61932}, {11245, 15303}, {11255, 44213}, {11405, 41585}, {11540, 34380}, {11645, 12101}, {11737, 18553}, {11898, 61891}, {12017, 62073}, {13083, 42633}, {13084, 42634}, {13331, 22486}, {13413, 20301}, {14153, 32740}, {14482, 53142}, {14537, 53845}, {14561, 19709}, {14711, 24256}, {14763, 15118}, {14810, 61779}, {14853, 15682}, {14891, 55606}, {14912, 41106}, {14927, 62030}, {15004, 44210}, {15033, 54995}, {15043, 40929}, {15048, 42536}, {15311, 56966}, {15448, 20192}, {15520, 15713}, {15583, 31166}, {15585, 39125}, {15640, 51163}, {15685, 31670}, {15688, 55701}, {15690, 19924}, {15692, 53097}, {15695, 48881}, {15697, 51212}, {15699, 34507}, {15700, 55724}, {15705, 55614}, {15706, 55580}, {15712, 55721}, {15714, 55681}, {15715, 55626}, {15716, 33878}, {16226, 50649}, {16252, 44275}, {16431, 37503}, {16468, 49740}, {16667, 17243}, {16668, 17390}, {16669, 17045}, {16671, 17332}, {16776, 40673}, {16834, 28309}, {17225, 49481}, {17315, 59774}, {17318, 61330}, {17335, 61302}, {17340, 50121}, {17351, 50109}, {17353, 50125}, {17355, 28329}, {17359, 28337}, {17366, 50128}, {17369, 29617}, {17382, 28333}, {17395, 49748}, {17504, 52987}, {17508, 50987}, {17525, 51729}, {18358, 25565}, {18440, 61950}, {18755, 22355}, {18800, 39593}, {19153, 23326}, {19704, 36741}, {19705, 36740}, {19710, 21850}, {19711, 37517}, {20113, 21243}, {20190, 34200}, {20976, 58854}, {21497, 36744}, {21498, 36743}, {22332, 35287}, {22351, 33863}, {22495, 37351}, {22496, 37352}, {22579, 36329}, {22580, 35751}, {22829, 41579}, {24206, 61896}, {25406, 51024}, {25561, 61934}, {28297, 50112}, {29012, 62022}, {30489, 61345}, {31152, 52719}, {31694, 61719}, {31884, 51028}, {32218, 47457}, {32225, 61657}, {32366, 58532}, {32419, 44482}, {32421, 44481}, {32532, 60284}, {33699, 48906}, {33748, 51022}, {33750, 50968}, {33923, 55698}, {35752, 51012}, {36330, 51015}, {36757, 51017}, {36758, 51019}, {36767, 51202}, {36990, 61989}, {37283, 43650}, {38047, 50949}, {38049, 51003}, {38086, 51190}, {38087, 51072}, {38088, 51194}, {38089, 51196}, {38090, 51198}, {38186, 51151}, {38315, 50998}, {38317, 51140}, {39874, 61979}, {39884, 61963}, {39899, 61941}, {40330, 61904}, {41121, 51203}, {41122, 51200}, {41140, 49733}, {41490, 44474}, {41491, 44473}, {42037, 58761}, {42286, 47074}, {42912, 44497}, {42913, 44498}, {43957, 53777}, {44287, 44494}, {44456, 61797}, {44500, 44562}, {44580, 55716}, {44682, 55583}, {45759, 55687}, {46264, 62040}, {46332, 55695}, {46853, 55694}, {47097, 47549}, {47277, 47556}, {47311, 47461}, {47332, 51742}, {47358, 51110}, {47463, 47473}, {48810, 50283}, {48845, 48870}, {48861, 48867}, {48872, 62132}, {48873, 62109}, {48876, 55714}, {48898, 62157}, {48901, 62039}, {48905, 62049}, {48910, 62165}, {49465, 51104}, {49529, 51096}, {50097, 50131}, {50397, 51738}, {50781, 51155}, {50783, 51068}, {50789, 50953}, {50955, 61908}, {50962, 61847}, {50963, 62000}, {50966, 55654}, {50972, 51166}, {50997, 59405}, {51000, 59406}, {51023, 51131}, {51089, 51153}, {51129, 61969}, {51137, 55717}, {51150, 60963}, {51165, 51538}, {51172, 55610}, {51173, 62025}, {51181, 55707}, {52141, 58791}, {53094, 54170}, {53101, 54642}, {54174, 61805}, {54524, 54525}, {54616, 60637}, {55588, 61792}, {55597, 61790}, {55600, 61789}, {55611, 61785}, {55617, 61784}, {55631, 61782}, {55641, 61780}, {55646, 61777}, {55673, 62054}, {55676, 62055}, {55679, 58187}, {55684, 62063}, {55692, 62071}, {55697, 62076}, {55699, 62077}, {55706, 62101}, {55709, 62138}, {55715, 61823}, {55722, 61796}, {55725, 55781}, {55728, 55778}, {55791, 55820}, {55801, 55810}, {58445, 61624}, {59411, 62145}, {60228, 60283}, {60239, 60286}, {61044, 62072}

X(63124) = midpoint of X(i) and X(j) for these {i,j}: {2, 8584}, {6, 597}, {115, 8787}, {141, 1992}, {381, 8550}, {549, 576}, {551, 4663}, {599, 3629}, {1351, 54169}, {1353, 11178}, {3228, 25327}, {4852, 50118}, {5097, 10168}, {5102, 21167}, {5461, 41672}, {5476, 50979}, {5480, 11179}, {7426, 15826}, {7798, 59780}, {9140, 25329}, {10192, 11216}, {11255, 44213}, {15520, 38110}, {15583, 31166}, {16776, 40673}, {16834, 49726}, {17351, 50109}, {19153, 23326}, {20423, 51737}, {22330, 46267}, {22579, 51160}, {22580, 51159}, {25328, 34319}, {39561, 59399}, {44497, 45880}, {44498, 45879}, {44500, 44562}, {44882, 54131}, {47097, 47549}, {47277, 47556}, {47353, 51136}, {47356, 49524}, {47358, 51124}, {48810, 50283}, {48845, 48870}, {48861, 48867}, {50097, 50131}, {50112, 50127}, {50115, 50124}, {50781, 51155}, {50783, 51148}, {50965, 54132}, {51132, 54173}
X(63124) = reflection of X(i) in X(j) for these {i,j}: {140, 46267}, {10168, 51732}, {18358, 25565}, {18553, 11737}, {3589, 597}, {34200, 20190}, {40107, 10124}, {47353, 50960}, {47358, 51154}, {547, 25555}, {597, 6329}, {50959, 5476}, {50971, 51737}, {51737, 51138}, {54173, 50984}, {55606, 14891}
X(63124) = inverse of X(8859) in Steiner inellipse
X(63124) = isotomic conjugate of X(60638)
X(63124) = complement of X(22165)
X(63124) = anticomplement of X(51143)
X(63124) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 60638}, {51143, 51143}
X(63124) = X(i)-complementary conjugate of X(j) for these {i, j}: {45103, 2887}
X(63124) = pole of line {2, 6781} with respect to the Kiepert hyperbola
X(63124) = pole of line {6, 33879} with respect to the Stammler hyperbola
X(63124) = pole of line {523, 8859} with respect to the Steiner inellipse
X(63124) = pole of line {2, 55786} with respect to the Wallace hyperbola
X(63124) = pole of line {525, 44577} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63124) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(50990)}}, {{A, B, C, X(6), X(60287)}}, {{A, B, C, X(69), X(60281)}}, {{A, B, C, X(76), X(51186)}}, {{A, B, C, X(83), X(8584)}}, {{A, B, C, X(141), X(60216)}}, {{A, B, C, X(523), X(41136)}}, {{A, B, C, X(524), X(60282)}}, {{A, B, C, X(598), X(15533)}}, {{A, B, C, X(599), X(17503)}}, {{A, B, C, X(671), X(50991)}}, {{A, B, C, X(1989), X(3055)}}, {{A, B, C, X(3054), X(30537)}}, {{A, B, C, X(3108), X(11580)}}, {{A, B, C, X(3589), X(34898)}}, {{A, B, C, X(3620), X(60632)}}, {{A, B, C, X(5032), X(9516)}}, {{A, B, C, X(8617), X(11175)}}, {{A, B, C, X(8859), X(36953)}}, {{A, B, C, X(15534), X(60283)}}, {{A, B, C, X(20481), X(39951)}}, {{A, B, C, X(20582), X(25322)}}, {{A, B, C, X(20583), X(41909)}}, {{A, B, C, X(21356), X(42286)}}, {{A, B, C, X(21358), X(60286)}}, {{A, B, C, X(22165), X(45103)}}, {{A, B, C, X(32532), X(50994)}}, {{A, B, C, X(37675), X(39982)}}, {{A, B, C, X(37689), X(52188)}}, {{A, B, C, X(40511), X(41133)}}, {{A, B, C, X(41152), X(54478)}}, {{A, B, C, X(50992), X(60284)}}, {{A, B, C, X(50993), X(60228)}}, {{A, B, C, X(51143), X(60638)}}, {{A, B, C, X(51185), X(60239)}}
X(63124) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6, 8584}, {6, 599, 5032}, {141, 1992, 524}, {395, 396, 3055}, {524, 597, 3589}, {524, 6329, 597}, {597, 8584, 2}, {599, 5032, 3629}, {1351, 38064, 54169}, {1353, 38079, 11178}, {1503, 5476, 50959}, {3618, 5032, 599}, {5050, 51737, 51138}, {5085, 54132, 50965}, {5093, 54173, 51132}, {5476, 39561, 50979}, {11179, 14848, 5480}, {14848, 53091, 11179}, {14912, 47353, 51136}, {15516, 18583, 12007}, {16834, 49726, 28309}, {20423, 51138, 50971}, {20423, 51737, 29181}, {29181, 51138, 51737}, {39561, 59399, 1503}, {43273, 51130, 51026}, {50115, 50124, 4971}, {50979, 59399, 5476}


X(63125) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51187), X(3), X(6))

Barycentrics    23*a^2-4*(b^2+c^2) : :
X(63125) = -4*X[2]+9*X[6], -18*X[182]+13*X[61797], -2*X[381]+7*X[53858], -12*X[575]+7*X[15701], -6*X[576]+X[3830], -9*X[1350]+14*X[62073], 9*X[1351]+X[15685], -9*X[1352]+14*X[61939], 9*X[1353]+X[33699], 2*X[3534]+3*X[11477], -6*X[4663]+X[4677], -27*X[5050]+17*X[15722] and many others

X(63125) lies on these lines: {2, 6}, {30, 47466}, {155, 39487}, {182, 61797}, {381, 53858}, {511, 15695}, {518, 51097}, {542, 61993}, {575, 15701}, {576, 3830}, {1350, 62073}, {1351, 15685}, {1352, 61939}, {1353, 33699}, {1503, 51167}, {3534, 11477}, {3564, 50956}, {4663, 4677}, {5050, 15722}, {5055, 22330}, {5064, 5095}, {5066, 15069}, {5085, 15716}, {5093, 47353}, {5097, 38072}, {5102, 29012}, {5476, 50954}, {5480, 61979}, {5847, 51067}, {6776, 62049}, {7760, 11317}, {8550, 11001}, {8703, 53097}, {10516, 61934}, {10541, 12100}, {11159, 22487}, {11179, 15690}, {11287, 61046}, {11482, 19709}, {12007, 62090}, {12101, 20423}, {12161, 44266}, {14561, 50986}, {14711, 44500}, {14848, 61929}, {14853, 51027}, {14912, 50975}, {15300, 41672}, {15520, 50955}, {15681, 55718}, {15688, 33749}, {15689, 55721}, {15693, 53093}, {15694, 22234}, {15698, 55684}, {15707, 55708}, {15711, 53094}, {15718, 55704}, {15759, 31884}, {15810, 22246}, {19708, 55614}, {19710, 43273}, {19711, 50987}, {22331, 27088}, {25406, 51134}, {25555, 61891}, {28301, 49543}, {28313, 50131}, {28322, 50120}, {30435, 39785}, {32532, 54647}, {33748, 51214}, {34379, 51156}, {34380, 50980}, {34507, 61908}, {36767, 42520}, {36990, 62009}, {37904, 47280}, {38047, 51197}, {38315, 50952}, {38317, 51175}, {40107, 61854}, {46267, 61857}, {47311, 47464}, {47313, 47549}, {47356, 51091}, {47358, 51106}, {47445, 47544}, {47465, 47541}, {50783, 50953}, {50790, 51124}, {50961, 59399}, {50966, 51737}, {50967, 55673}, {50974, 53023}, {50977, 61828}, {51000, 51096}, {51001, 59407}, {51005, 51107}, {51028, 59411}, {51029, 51136}, {51138, 62174}, {51176, 54132}, {51201, 59410}, {52987, 62076}, {53092, 61843}, {55583, 62088}, {55588, 62080}, {55606, 62071}, {55626, 62065}, {55628, 58189}, {55651, 62055}, {55711, 61819}, {55724, 62109}

X(63125) = midpoint of X(i) and X(j) for these {i,j}: {51176, 54132}
X(63125) = reflection of X(i) in X(j) for these {i,j}: {15694, 22234}, {3620, 597}, {47353, 50963}, {47358, 51153}, {599, 3618}, {50783, 50953}, {50790, 51146}, {50954, 5476}, {50966, 51737}, {54173, 50987}
X(63125) = anticomplement of X(51142)
X(63125) = intersection, other than A, B, C, of circumconics {{A, B, C, X(598), X(41149)}}, {{A, B, C, X(671), X(50989)}}, {{A, B, C, X(3620), X(34898)}}, {{A, B, C, X(20481), X(36616)}}, {{A, B, C, X(41152), X(60228)}}, {{A, B, C, X(41153), X(60287)}}, {{A, B, C, X(45103), X(51187)}}, {{A, B, C, X(50992), X(54647)}}, {{A, B, C, X(51188), X(54478)}}
X(63125) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {524, 597, 3620}, {599, 5032, 6}, {1992, 5032, 3629}, {3629, 5032, 599}, {5093, 51140, 47353}, {22487, 22488, 11159}


X(63126) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(51415), X(3), X(6))

Barycentrics    a^3+3*a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2-6*b*c+c^2) : :

X(63126) lies on these lines: {1, 5316}, {2, 6}, {4, 3216}, {7, 16610}, {8, 17721}, {31, 59572}, {37, 27489}, {42, 26105}, {43, 497}, {44, 5744}, {56, 28239}, {57, 45204}, {58, 17567}, {142, 54390}, {144, 17595}, {145, 3699}, {218, 52659}, {226, 4859}, {238, 5218}, {239, 28808}, {320, 31233}, {329, 3752}, {345, 17339}, {386, 5084}, {387, 4187}, {388, 978}, {443, 17749}, {452, 4255}, {527, 62695}, {580, 6927}, {595, 59591}, {614, 25568}, {631, 1724}, {899, 2550}, {908, 4000}, {936, 5716}, {995, 3421}, {1054, 24695}, {1056, 49997}, {1058, 3293}, {1104, 27383}, {1191, 7080}, {1193, 2551}, {1279, 63168}, {1285, 35342}, {1453, 6700}, {1714, 3090}, {1722, 3485}, {1743, 3911}, {1751, 45098}, {1788, 54386}, {1834, 6919}, {1997, 1999}, {2051, 60107}, {2176, 28830}, {2177, 47357}, {2324, 2999}, {3008, 5219}, {3175, 8055}, {3210, 26791}, {3306, 4644}, {3475, 5272}, {3524, 52680}, {3663, 31142}, {3666, 18228}, {3677, 21060}, {3687, 17286}, {3751, 5121}, {3759, 37758}, {3772, 5748}, {3875, 62297}, {3886, 5212}, {3974, 59511}, {4256, 11111}, {4259, 33883}, {4266, 14556}, {4307, 4413}, {4340, 16408}, {4358, 17314}, {4419, 4850}, {4641, 5435}, {4654, 24175}, {4675, 31197}, {4689, 52653}, {4849, 36845}, {4896, 39963}, {4924, 51615}, {5096, 35988}, {5129, 19765}, {5205, 51192}, {5222, 5328}, {5226, 24789}, {5247, 7288}, {5269, 20103}, {5324, 16434}, {5398, 6970}, {5706, 6964}, {6542, 30861}, {6686, 50304}, {6688, 35612}, {6745, 7290}, {6790, 24277}, {6834, 16471}, {6848, 36745}, {6865, 37732}, {6931, 24883}, {6944, 36754}, {7308, 25072}, {7613, 61716}, {9776, 16602}, {10385, 60714}, {10584, 33142}, {10589, 33137}, {11814, 49488}, {12035, 51000}, {14837, 42762}, {16020, 17718}, {16483, 34619}, {16569, 26040}, {16670, 31190}, {16863, 49743}, {17020, 19785}, {17315, 18743}, {17316, 30829}, {17367, 30867}, {17372, 34255}, {17580, 49745}, {17723, 61686}, {17726, 39587}, {17740, 54389}, {17756, 41325}, {17776, 26688}, {20196, 39595}, {21283, 62296}, {24177, 28609}, {24217, 50282}, {24599, 30824}, {24620, 42697}, {24627, 54280}, {26685, 32851}, {26723, 30852}, {26727, 53530}, {28016, 34791}, {28634, 44417}, {29433, 32957}, {29639, 38057}, {30823, 31189}, {30827, 40940}, {33106, 36634}, {33849, 36741}, {34747, 36915}, {36698, 62371}, {40400, 41801}, {42049, 56082}, {44722, 50582}, {46873, 62208}, {50303, 56010}, {50535, 51196}, {60087, 60155}

X(63126) = pole of line {523, 59834} with respect to the Steiner circumellipse
X(63126) = pole of line {1293, 2415} with respect to the Yff parabola
X(63126) = pole of line {1125, 1697} with respect to the dual conic of Yff parabola
X(63126) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(14554)}}, {{A, B, C, X(81), X(42360)}}, {{A, B, C, X(86), X(52803)}}, {{A, B, C, X(2051), X(18141)}}, {{A, B, C, X(14829), X(60107)}}, {{A, B, C, X(18134), X(45098)}}, {{A, B, C, X(32022), X(37660)}}, {{A, B, C, X(53665), X(60251)}}
X(63126) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1999, 27130, 1997}, {3210, 26791, 56084}, {4850, 31018, 4419}, {5222, 5328, 17720}, {16569, 26098, 26040}, {17020, 27131, 19785}


X(63127) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(59373), X(3), X(6))

Barycentrics    13*a^2+b^2+c^2 : :
X(63127) = X[2]+4*X[6], -X[4]+6*X[14848], 4*X[10]+X[51001], -X[20]+16*X[575], -X[23]+16*X[47460], 4*X[140]+X[50962], X[144]+4*X[51002], X[145]+4*X[47359], X[148]+4*X[18800], X[149]+4*X[51008], -8*X[182]+3*X[10304], -X[376]+6*X[5050] and many others

X(63127) lies on these lines: {1, 51153}, {2, 6}, {3, 50966}, {4, 14848}, {5, 50954}, {8, 50953}, {10, 51001}, {20, 575}, {23, 47460}, {30, 47461}, {39, 35287}, {76, 60648}, {83, 60200}, {140, 50962}, {144, 51002}, {145, 47359}, {148, 18800}, {149, 51008}, {182, 10304}, {344, 16668}, {376, 5050}, {381, 14912}, {458, 5702}, {511, 15692}, {542, 3091}, {548, 51181}, {549, 5093}, {576, 3523}, {598, 41895}, {631, 11482}, {671, 5286}, {1125, 50952}, {1249, 52281}, {1285, 35955}, {1350, 15705}, {1351, 3524}, {1352, 25565}, {1353, 5055}, {1384, 47061}, {1503, 61985}, {1657, 51177}, {1692, 51224}, {2451, 45335}, {2482, 7772}, {2548, 5461}, {2987, 52188}, {2996, 8370}, {3087, 37765}, {3090, 38079}, {3098, 61781}, {3146, 43273}, {3228, 25319}, {3241, 16475}, {3398, 46327}, {3424, 54487}, {3448, 15303}, {3522, 50968}, {3525, 51179}, {3526, 50978}, {3528, 55701}, {3543, 11179}, {3545, 5921}, {3564, 5071}, {3616, 51156}, {3617, 28538}, {3621, 51000}, {3622, 4663}, {3623, 4473}, {3624, 51004}, {3627, 51173}, {3628, 50986}, {3634, 51197}, {3679, 59408}, {3734, 61046}, {3751, 38314}, {3818, 61958}, {3832, 8550}, {3839, 5476}, {3845, 39874}, {3854, 51136}, {3972, 53142}, {4232, 8541}, {4393, 61330}, {4678, 38087}, {4747, 29590}, {4821, 17225}, {5007, 32990}, {5008, 8182}, {5024, 19661}, {5034, 12150}, {5038, 33208}, {5041, 34511}, {5054, 51732}, {5056, 51215}, {5059, 51024}, {5066, 39899}, {5068, 47354}, {5070, 51175}, {5085, 54170}, {5092, 62059}, {5097, 15708}, {5102, 54169}, {5107, 26613}, {5120, 35276}, {5182, 7787}, {5222, 50128}, {5265, 19369}, {5281, 8540}, {5319, 32987}, {5355, 7615}, {5368, 32838}, {5459, 40694}, {5460, 40693}, {5477, 9166}, {5480, 50687}, {5485, 54639}, {5640, 40673}, {5645, 12039}, {5656, 10250}, {5749, 29617}, {5943, 15531}, {6034, 8787}, {6353, 11405}, {6427, 11291}, {6428, 11292}, {6467, 58470}, {6669, 51201}, {6670, 51204}, {6688, 61692}, {6995, 44102}, {7386, 52719}, {7398, 13366}, {7426, 47459}, {7486, 25555}, {7519, 22336}, {7714, 19118}, {7737, 53845}, {7762, 33230}, {7786, 55829}, {7790, 23334}, {7801, 41940}, {7812, 32974}, {7817, 32972}, {7856, 32988}, {7878, 32971}, {7920, 33006}, {8359, 43136}, {8587, 53099}, {8593, 41135}, {8596, 14035}, {8681, 11451}, {8703, 55705}, {8796, 54792}, {9140, 25321}, {9143, 52699}, {9605, 32985}, {9741, 35954}, {9780, 38089}, {9813, 12834}, {9939, 33202}, {10168, 10519}, {10169, 41719}, {10299, 55724}, {10303, 22330}, {10488, 33018}, {10516, 61927}, {10541, 21734}, {10565, 11416}, {10602, 26255}, {10754, 52695}, {10989, 47545}, {11001, 21850}, {11003, 19136}, {11161, 41672}, {11178, 61912}, {11180, 14561}, {11206, 23326}, {11477, 15717}, {11511, 53863}, {11539, 61624}, {11645, 62007}, {11898, 15699}, {12007, 47353}, {12017, 19708}, {12100, 44456}, {12220, 21849}, {13331, 33266}, {13434, 44489}, {13587, 37492}, {13595, 32621}, {14826, 44111}, {14891, 55593}, {14927, 62032}, {15022, 15069}, {15024, 32284}, {15038, 54184}, {15043, 44495}, {15118, 41720}, {15361, 18449}, {15640, 46264}, {15682, 48906}, {15683, 25406}, {15694, 34380}, {15697, 19924}, {15698, 33878}, {15702, 38110}, {15709, 48876}, {15711, 55604}, {15715, 55610}, {16042, 63180}, {16045, 60143}, {16468, 48830}, {16666, 29585}, {16667, 26685}, {16669, 41312}, {16670, 26626}, {16671, 17321}, {16834, 28313}, {17014, 20073}, {17120, 35578}, {17504, 55584}, {17578, 51167}, {17813, 20192}, {18230, 29622}, {18358, 61926}, {18440, 41106}, {18845, 60113}, {19130, 61966}, {19783, 50430}, {19875, 51196}, {20018, 51675}, {20059, 50997}, {20190, 62067}, {21537, 37503}, {22247, 32829}, {23046, 48662}, {24206, 61897}, {25320, 34319}, {28301, 50109}, {28322, 50101}, {29181, 62129}, {29580, 51194}, {29583, 50125}, {30435, 33215}, {30535, 52187}, {31105, 51744}, {31145, 47356}, {31670, 55712}, {31884, 61778}, {32155, 46084}, {32960, 55726}, {32994, 53475}, {33008, 40825}, {33272, 39764}, {33703, 51213}, {33749, 61982}, {33750, 55706}, {33751, 58194}, {34200, 55697}, {34507, 46936}, {35940, 53026}, {36181, 50149}, {36251, 42998}, {36252, 42999}, {36523, 45018}, {36757, 51484}, {36758, 51485}, {36990, 61992}, {37174, 62213}, {37517, 61796}, {37760, 47458}, {37901, 52238}, {37907, 47457}, {37909, 47544}, {38088, 50996}, {38136, 61980}, {38259, 60650}, {39358, 41145}, {39870, 50864}, {39878, 50802}, {39884, 61967}, {40065, 52282}, {40107, 61863}, {40246, 53499}, {40330, 61906}, {41311, 54280}, {42522, 44501}, {42523, 44502}, {43133, 44481}, {43134, 44482}, {43403, 51203}, {43404, 51200}, {43670, 54926}, {44575, 51746}, {44577, 51736}, {44882, 62148}, {45103, 54642}, {45759, 55692}, {46267, 61846}, {46932, 51155}, {46934, 51003}, {46935, 50961}, {47383, 47740}, {47465, 47556}, {48817, 48861}, {48873, 55709}, {48874, 62086}, {48881, 62099}, {48896, 58205}, {48898, 58204}, {48901, 62037}, {48905, 62051}, {48910, 62168}, {49505, 51110}, {49723, 56995}, {49817, 49818}, {50084, 50131}, {50089, 50115}, {50107, 50124}, {50121, 54389}, {50664, 62094}, {50689, 50959}, {50690, 51130}, {50693, 51134}, {50957, 61945}, {50969, 55704}, {50971, 62124}, {50973, 61842}, {50981, 61832}, {50985, 61870}, {50988, 61807}, {51132, 53858}, {51152, 60996}, {51166, 62102}, {51174, 61867}, {51182, 55860}, {51183, 55859}, {51190, 59375}, {51198, 59377}, {51212, 51737}, {51214, 61834}, {51537, 61962}, {51538, 62048}, {52987, 61788}, {53023, 62005}, {53094, 62056}, {53097, 61791}, {54444, 55908}, {54520, 54539}, {54616, 60628}, {54623, 54795}, {54764, 54892}, {54781, 54914}, {54803, 56270}, {54864, 60161}, {54896, 60281}, {55580, 61138}, {55595, 61787}, {55606, 61783}, {55616, 61782}, {55629, 61780}, {55632, 61779}, {55639, 61777}, {55674, 58184}, {55676, 62054}, {55678, 62055}, {55679, 58186}, {55682, 62058}, {55684, 62060}, {55687, 58188}, {55699, 62072}, {55703, 62081}, {55708, 62097}, {55714, 61844}, {55716, 61805}, {55718, 61798}, {55729, 55778}, {55734, 55770}, {55735, 55768}, {55739, 55764}, {55742, 55760}, {55788, 55823}, {55794, 55819}, {55801, 55812}, {59405, 60984}, {60145, 60635}, {60239, 60285}, {60284, 60632}, {61545, 61887}

X(63127) = midpoint of X(i) and X(j) for these {i,j}: {3, 51172}, {4, 51176}, {5, 51180}, {20, 51211}, {576, 51137}, {8550, 51129}
X(63127) = reflection of X(i) in X(j) for these {i,j}: {1, 51153}, {145, 51146}, {19708, 12017}, {2, 3618}, {20, 50975}, {3, 50987}, {3146, 51029}, {3620, 2}, {4, 50963}, {50954, 5}, {50966, 3}, {51168, 10}, {51184, 140}, {51193, 1}, {51216, 4}, {55604, 15711}, {8, 50953}
X(63127) = isotomic conjugate of X(60628)
X(63127) = X(i)-Ceva conjugate of X(j) for these {i, j}: {54616, 2}
X(63127) = X(i)-complementary conjugate of X(j) for these {i, j}: {54476, 2887}
X(63127) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {54616, 6327}
X(63127) = pole of line {8371, 59549} with respect to the orthocentroidal circle
X(63127) = pole of line {6467, 11002} with respect to the Jerabek hyperbola
X(63127) = pole of line {2, 5585} with respect to the Kiepert hyperbola
X(63127) = pole of line {6, 15082} with respect to the Stammler hyperbola
X(63127) = pole of line {523, 47312} with respect to the Steiner circumellipse
X(63127) = pole of line {2, 60628} with respect to the Wallace hyperbola
X(63127) = pole of line {525, 44568} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63127) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(60648)}}, {{A, B, C, X(67), X(50989)}}, {{A, B, C, X(69), X(53101)}}, {{A, B, C, X(83), X(5032)}}, {{A, B, C, X(141), X(60200)}}, {{A, B, C, X(193), X(18842)}}, {{A, B, C, X(230), X(52188)}}, {{A, B, C, X(393), X(3055)}}, {{A, B, C, X(524), X(5395)}}, {{A, B, C, X(598), X(11160)}}, {{A, B, C, X(599), X(22336)}}, {{A, B, C, X(671), X(3620)}}, {{A, B, C, X(1992), X(54639)}}, {{A, B, C, X(2996), X(21356)}}, {{A, B, C, X(3054), X(46952)}}, {{A, B, C, X(3407), X(9740)}}, {{A, B, C, X(3815), X(52187)}}, {{A, B, C, X(9164), X(50774)}}, {{A, B, C, X(9516), X(20583)}}, {{A, B, C, X(18823), X(50771)}}, {{A, B, C, X(20080), X(60650)}}, {{A, B, C, X(21358), X(60285)}}, {{A, B, C, X(22110), X(40429)}}, {{A, B, C, X(22165), X(54642)}}, {{A, B, C, X(31489), X(34288)}}, {{A, B, C, X(34229), X(57895)}}, {{A, B, C, X(37668), X(54487)}}, {{A, B, C, X(37675), X(39975)}}, {{A, B, C, X(38005), X(50991)}}, {{A, B, C, X(40802), X(59777)}}, {{A, B, C, X(50990), X(54896)}}, {{A, B, C, X(50994), X(60632)}}, {{A, B, C, X(51171), X(60239)}}, {{A, B, C, X(59373), X(60647)}}
X(63127) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5032, 193}, {2, 524, 3620}, {2, 6, 5032}, {2, 7766, 9740}, {6, 597, 1992}, {6, 6329, 69}, {182, 54132, 10304}, {524, 3618, 2}, {576, 38064, 50967}, {1351, 3524, 54174}, {3068, 3069, 3055}, {3543, 33748, 11179}, {5085, 54170, 62063}, {5476, 6776, 3839}, {8550, 38072, 51023}, {10304, 54132, 61044}, {11179, 14853, 3543}, {11180, 14561, 61936}, {14848, 50979, 4}, {14848, 53092, 50979}, {20423, 50975, 51211}, {25406, 54131, 15683}, {38023, 50999, 3622}, {38064, 50967, 3523}, {38072, 51023, 3832}, {38079, 50955, 3090}, {38089, 50950, 9780}, {50954, 51180, 50974}, {50963, 50979, 51176}, {50963, 51176, 51216}, {50966, 51172, 51028}, {50987, 51172, 50966}, {51212, 51737, 62120}


X(63128) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(59777), X(3), X(6))

Barycentrics    a^2*(a^2-b^2-4*b*c-c^2)*(a^2-b^2+4*b*c-c^2) : :

X(63128) lies on these lines: {2, 6}, {3, 373}, {4, 33534}, {5, 54012}, {9, 55437}, {20, 46945}, {22, 10545}, {23, 53094}, {25, 5092}, {51, 16419}, {57, 55438}, {74, 37475}, {110, 14924}, {125, 399}, {140, 10982}, {154, 10546}, {155, 5070}, {182, 11284}, {184, 55705}, {220, 35595}, {381, 1533}, {382, 44300}, {458, 52147}, {474, 61220}, {493, 41437}, {494, 41438}, {547, 18451}, {574, 37344}, {575, 6090}, {576, 15082}, {631, 32269}, {632, 36747}, {1350, 5640}, {1351, 5650}, {1480, 3753}, {1495, 3796}, {1498, 5056}, {1511, 37506}, {1514, 18537}, {1583, 6396}, {1584, 6200}, {1591, 42274}, {1592, 42277}, {1599, 6412}, {1600, 6411}, {1853, 37990}, {1899, 18358}, {1995, 5085}, {2207, 52289}, {3060, 5888}, {3090, 11456}, {3098, 5943}, {3124, 5013}, {3292, 53091}, {3305, 7190}, {3306, 22129}, {3524, 20192}, {3525, 37498}, {3526, 61644}, {3539, 23273}, {3540, 23267}, {3628, 15068}, {3819, 9777}, {3917, 44456}, {4256, 37248}, {4550, 5892}, {5024, 22111}, {5047, 36745}, {5050, 5651}, {5054, 21970}, {5067, 15032}, {5068, 15811}, {5071, 12112}, {5093, 62184}, {5094, 38317}, {5102, 15019}, {5198, 13347}, {5228, 31018}, {5284, 7074}, {5406, 6398}, {5407, 6221}, {5408, 6395}, {5409, 6199}, {5437, 55400}, {5480, 46336}, {5643, 5646}, {5644, 15004}, {5707, 17575}, {5711, 25011}, {5972, 9976}, {6388, 31455}, {6642, 37513}, {6723, 15106}, {6776, 35283}, {6800, 10541}, {6805, 23259}, {6806, 23249}, {7308, 52405}, {7393, 37478}, {7395, 11438}, {7485, 11451}, {7486, 15052}, {7492, 55673}, {7496, 31884}, {7503, 37487}, {7509, 11465}, {7516, 32205}, {7519, 59411}, {7571, 26913}, {7592, 54434}, {7667, 43621}, {7770, 36789}, {7859, 11331}, {7889, 11060}, {8167, 61397}, {8549, 61680}, {8550, 54013}, {8583, 16474}, {8589, 35302}, {9306, 10219}, {9786, 15028}, {9818, 37470}, {9909, 55678}, {10128, 31383}, {10168, 47597}, {10298, 41447}, {10300, 38136}, {10516, 18911}, {10542, 39024}, {10574, 33537}, {10979, 63154}, {10984, 11484}, {11002, 21766}, {11003, 55703}, {11130, 22236}, {11131, 22238}, {11305, 62690}, {11402, 55710}, {11403, 17704}, {11441, 46936}, {11464, 37476}, {11472, 40280}, {11480, 41477}, {11481, 41478}, {11539, 39522}, {11898, 61712}, {12161, 48154}, {12834, 44299}, {13154, 15026}, {13363, 33533}, {13394, 40132}, {14002, 55684}, {14165, 55415}, {14561, 30739}, {14789, 15081}, {14845, 35243}, {15024, 17834}, {15038, 15723}, {15047, 61878}, {15051, 17928}, {15059, 52171}, {15087, 61883}, {15235, 18538}, {15236, 18762}, {15246, 48912}, {15466, 41244}, {15694, 32225}, {15703, 18445}, {16063, 53023}, {16080, 43527}, {16266, 55859}, {16373, 54296}, {16408, 51340}, {16439, 21363}, {16472, 19872}, {16483, 19860}, {16842, 36754}, {16855, 37509}, {16862, 36742}, {16936, 17578}, {17116, 54284}, {17531, 36746}, {17572, 37501}, {18436, 33540}, {19130, 31152}, {19140, 45311}, {19149, 61735}, {19357, 43586}, {20190, 30734}, {21243, 42786}, {21849, 55585}, {22332, 46906}, {24206, 26869}, {25496, 25972}, {25889, 61358}, {26255, 50983}, {26635, 61012}, {26898, 38283}, {26932, 56455}, {26942, 56458}, {27003, 55406}, {27065, 55405}, {27355, 39568}, {31670, 43957}, {32139, 61900}, {32237, 55687}, {33884, 55722}, {34986, 55712}, {36749, 55858}, {36753, 55857}, {39588, 52290}, {40918, 45186}, {41376, 50678}, {45728, 61686}, {46868, 59231}, {50461, 61882}, {50659, 62702}, {51780, 52423}, {52099, 62040}, {52275, 53095}, {55594, 58470}

X(63128) = isogonal conjugate of X(52188)
X(63128) = pole of line {6467, 35237} with respect to the Jerabek hyperbola
X(63128) = pole of line {6, 3524} with respect to the Stammler hyperbola
X(63128) = pole of line {2, 52188} with respect to the Wallace hyperbola
X(63128) = pole of line {525, 12077} with respect to the dual conic of Steiner circle
X(63128) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3531)}}, {{A, B, C, X(81), X(52424)}}, {{A, B, C, X(86), X(7190)}}, {{A, B, C, X(111), X(37665)}}, {{A, B, C, X(333), X(3305)}}, {{A, B, C, X(493), X(19053)}}, {{A, B, C, X(494), X(19054)}}, {{A, B, C, X(999), X(8025)}}, {{A, B, C, X(1184), X(11060)}}, {{A, B, C, X(1383), X(14930)}}, {{A, B, C, X(1812), X(22129)}}, {{A, B, C, X(2287), X(55432)}}, {{A, B, C, X(3068), X(41437)}}, {{A, B, C, X(3069), X(41438)}}, {{A, B, C, X(3295), X(16704)}}, {{A, B, C, X(3763), X(16080)}}, {{A, B, C, X(4054), X(17234)}}, {{A, B, C, X(5032), X(30535)}}, {{A, B, C, X(5304), X(39389)}}, {{A, B, C, X(6580), X(26637)}}, {{A, B, C, X(7736), X(21448)}}, {{A, B, C, X(8770), X(9300)}}, {{A, B, C, X(11064), X(43527)}}, {{A, B, C, X(40802), X(59373)}}, {{A, B, C, X(59763), X(59776)}}
X(63128) = barycentric product X(i)*X(j) for these (i, j): {3295, 42697}, {3305, 3306}, {3753, 63158}, {3872, 7190}, {18535, 69}, {28808, 52424}, {35281, 48268}, {42696, 999}, {46951, 6}, {52422, 55432}
X(63128) = barycentric quotient X(i)/X(j) for these (i, j): {6, 52188}, {999, 3296}, {3295, 1000}, {18535, 4}, {22129, 30679}, {42696, 58029}, {46951, 76}, {55466, 30680}
X(63128) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3580, 3763}, {3, 373, 3066}, {3, 5544, 373}, {3, 62209, 34417}, {22, 10545, 31860}, {182, 11284, 35259}, {323, 5422, 6}, {373, 22112, 3}, {373, 34417, 62209}, {575, 12045, 16187}, {575, 16187, 6090}, {1495, 12017, 3796}, {1495, 43650, 12017}, {1656, 15805, 1181}, {1995, 15080, 41424}, {3306, 55432, 22129}, {5020, 12017, 1495}, {5085, 41424, 15080}, {5640, 40916, 1350}, {5644, 62217, 15004}, {5646, 11477, 7998}, {5943, 7484, 33586}, {7485, 11451, 17810}, {7485, 15107, 55646}, {7503, 43584, 37487}, {11002, 21766, 53097}, {13154, 15026, 37486}, {17810, 55646, 15107}, {31860, 55676, 22}


X(63129) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(62376), X(3), X(6))

Barycentrics    a^8-2*a^6*(b^2+c^2)+2*a^2*(b^2-c^2)^2*(b^2+c^2)-(b^4-c^4)^2 : :
X(63129) = -X[10602]+3*X[26869]

X(63129) lies on these lines: {2, 6}, {3, 16789}, {4, 67}, {32, 14376}, {50, 37188}, {66, 1843}, {125, 8541}, {159, 21213}, {182, 44673}, {184, 61683}, {186, 6776}, {317, 41760}, {340, 40814}, {389, 34507}, {427, 61737}, {468, 19153}, {511, 18390}, {542, 11438}, {571, 6389}, {576, 32257}, {578, 40107}, {1147, 5181}, {1177, 32285}, {1192, 18909}, {1216, 39571}, {1351, 2072}, {1352, 7706}, {1353, 44452}, {1370, 9019}, {1383, 41896}, {1495, 31166}, {1503, 10605}, {1609, 41005}, {1632, 36998}, {1899, 2393}, {2076, 35952}, {2271, 22366}, {2929, 2930}, {3153, 51212}, {3186, 41761}, {3313, 15812}, {3542, 34117}, {3548, 44469}, {3549, 44480}, {3564, 6644}, {3818, 21851}, {5017, 15013}, {5094, 51744}, {5120, 21500}, {5309, 45312}, {5486, 35371}, {5596, 20987}, {5621, 18931}, {5648, 50974}, {6146, 34787}, {6353, 18374}, {6403, 25739}, {6676, 53022}, {6997, 16776}, {7386, 54334}, {7493, 8262}, {7514, 48876}, {7577, 14853}, {7716, 11382}, {8537, 26917}, {8538, 43817}, {8550, 18916}, {8553, 40680}, {8573, 40995}, {9786, 11411}, {9813, 21243}, {9925, 32358}, {9973, 36851}, {10169, 11405}, {10298, 25406}, {10510, 16051}, {10519, 35921}, {10602, 26869}, {11061, 38851}, {11178, 18388}, {11179, 18475}, {11188, 11442}, {11206, 19596}, {11245, 32621}, {11416, 26913}, {11430, 50977}, {12167, 23300}, {12367, 39874}, {12828, 19136}, {13403, 52987}, {13622, 17040}, {14001, 18375}, {14533, 19166}, {14649, 41359}, {15073, 18912}, {15074, 18952}, {15311, 36990}, {15321, 16774}, {15818, 37485}, {16310, 52251}, {17710, 41256}, {18324, 48906}, {18440, 38321}, {18911, 41721}, {18947, 41618}, {19125, 58437}, {21637, 31267}, {26864, 47449}, {30227, 40889}, {32334, 32391}, {35260, 47450}, {36792, 36895}, {36894, 46154}, {37174, 53416}, {37347, 58891}, {37487, 43273}, {41583, 46264}, {41587, 44492}, {44102, 61645}, {44214, 47473}, {44491, 47525}, {47328, 61664}, {52275, 62338}, {54384, 61723}, {58550, 61676}

X(63129) = midpoint of X(i) and X(j) for these {i,j}: {69, 6515}
X(63129) = reflection of X(i) in X(j) for these {i,j}: {394, 141}, {34944, 66}, {63180, 8263}
X(63129) = X(i)-complementary conjugate of X(j) for these {i, j}: {39382, 4369}
X(63129) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {59098, 7192}
X(63129) = pole of line {9517, 44445} with respect to the anticomplementary circle
X(63129) = pole of line {2501, 9517} with respect to the polar circle
X(63129) = pole of line {66, 5486} with respect to the Jerabek hyperbola
X(63129) = pole of line {2, 5523} with respect to the Kiepert hyperbola
X(63129) = pole of line {2492, 3566} with respect to the Orthic inconic
X(63129) = pole of line {6, 58357} with respect to the Stammler hyperbola
X(63129) = pole of line {525, 51746} with respect to the dual conic of DeLongchamps circle
X(63129) = pole of line {525, 15423} with respect to the dual conic of orthoptic circle of the Steiner Inellipse
X(63129) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(4), X(22151)}}, {{A, B, C, X(66), X(11605)}}, {{A, B, C, X(67), X(394)}}, {{A, B, C, X(69), X(46105)}}, {{A, B, C, X(5486), X(41614)}}, {{A, B, C, X(9516), X(54347)}}, {{A, B, C, X(14376), X(39269)}}, {{A, B, C, X(45011), X(59373)}}
X(63129) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {67, 40949, 2892}, {69, 6515, 524}, {125, 8541, 23327}, {141, 524, 394}, {3564, 8263, 63180}, {6353, 41719, 18374}, {26926, 41584, 159}


X(63130) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(10), X(40))

Barycentrics    a*(a^3-b^3+3*b^2*c+3*b*c^2-c^3+a^2*(b+c)-a*(b^2+4*b*c+c^2)) : :
X(63130) = -5*X[1698]+4*X[3825], -3*X[10072]+4*X[58405], -3*X[16371]+2*X[24928]

X(63130) lies on these lines: {1, 88}, {2, 1697}, {3, 3872}, {4, 6735}, {8, 20}, {9, 3617}, {10, 1479}, {11, 37828}, {19, 3692}, {21, 9623}, {36, 38901}, {46, 519}, {55, 5836}, {56, 3880}, {57, 145}, {65, 224}, {72, 3426}, {78, 517}, {92, 11471}, {142, 10587}, {149, 9581}, {165, 2975}, {169, 1018}, {190, 44720}, {191, 4668}, {200, 3869}, {208, 1897}, {226, 10528}, {227, 60689}, {322, 18655}, {329, 20070}, {341, 56082}, {346, 2270}, {355, 1145}, {377, 31397}, {392, 9709}, {474, 9957}, {484, 3632}, {497, 24982}, {499, 49600}, {516, 3436}, {518, 8544}, {528, 1837}, {535, 4333}, {603, 35281}, {612, 37598}, {614, 24440}, {664, 7177}, {908, 962}, {910, 4513}, {920, 41684}, {936, 3877}, {938, 56936}, {944, 3359}, {946, 5552}, {950, 5554}, {952, 18802}, {956, 3579}, {958, 35258}, {968, 59311}, {993, 59316}, {997, 5697}, {1001, 3698}, {1125, 31452}, {1149, 11512}, {1155, 3893}, {1259, 10306}, {1265, 49991}, {1279, 56174}, {1282, 11689}, {1319, 10912}, {1329, 12701}, {1376, 3057}, {1388, 33895}, {1402, 35634}, {1420, 3680}, {1423, 62392}, {1445, 4848}, {1467, 35977}, {1476, 56096}, {1478, 10915}, {1482, 5440}, {1483, 9945}, {1532, 12700}, {1571, 16975}, {1616, 16610}, {1621, 53053}, {1698, 3825}, {1699, 11681}, {1708, 12625}, {1722, 3915}, {1753, 5081}, {1766, 5016}, {1768, 12531}, {1788, 26015}, {1836, 12607}, {2078, 37301}, {2082, 3501}, {2093, 3868}, {2098, 59691}, {2099, 56176}, {2285, 3169}, {2321, 54420}, {2339, 5835}, {2475, 3882}, {2476, 31434}, {2550, 22370}, {2646, 4421}, {2800, 17857}, {2886, 32157}, {2900, 15556}, {2932, 32612}, {3035, 11376}, {3085, 31266}, {3086, 31224}, {3146, 56545}, {3158, 3340}, {3174, 7672}, {3189, 37550}, {3208, 40131}, {3218, 3621}, {3219, 4678}, {3241, 3333}, {3243, 60938}, {3244, 3338}, {3245, 5904}, {3295, 3753}, {3303, 3812}, {3336, 3633}, {3337, 51093}, {3339, 3873}, {3361, 9352}, {3419, 5690}, {3421, 6361}, {3486, 34607}, {3509, 4050}, {3555, 36279}, {3576, 4861}, {3577, 56106}, {3616, 31393}, {3622, 5437}, {3623, 27003}, {3626, 41229}, {3646, 19877}, {3654, 37428}, {3679, 5086}, {3681, 4882}, {3689, 12635}, {3701, 51284}, {3704, 46553}, {3710, 7713}, {3729, 4696}, {3746, 54318}, {3748, 3922}, {3749, 3924}, {3751, 25304}, {3752, 37542}, {3811, 5903}, {3813, 24914}, {3827, 56179}, {3875, 20247}, {3886, 17751}, {3890, 8583}, {3897, 30282}, {3911, 10529}, {3912, 24590}, {3928, 31145}, {3935, 11523}, {3957, 11518}, {3987, 37610}, {3996, 24310}, {3998, 43213}, {4002, 11108}, {4004, 15934}, {4189, 35445}, {4190, 10106}, {4193, 9614}, {4197, 31436}, {4208, 7160}, {4209, 40872}, {4295, 31164}, {4301, 6745}, {4314, 34639}, {4345, 24558}, {4383, 21896}, {4413, 58679}, {4511, 7982}, {4512, 5260}, {4646, 5256}, {4677, 6763}, {4679, 9711}, {4720, 10461}, {4847, 43174}, {4860, 58609}, {4875, 42316}, {5011, 17742}, {5046, 9580}, {5057, 9589}, {5080, 41869}, {5082, 5657}, {5123, 10896}, {5126, 19537}, {5176, 5691}, {5183, 8168}, {5204, 11260}, {5218, 24541}, {5221, 34791}, {5223, 11684}, {5231, 9588}, {5247, 36277}, {5255, 16478}, {5269, 17016}, {5283, 31433}, {5284, 53052}, {5287, 37548}, {5288, 37572}, {5290, 20292}, {5303, 16192}, {5430, 55331}, {5435, 12541}, {5436, 61155}, {5438, 7962}, {5439, 6767}, {5493, 12527}, {5534, 38665}, {5573, 52183}, {5587, 13729}, {5603, 27385}, {5709, 12245}, {5722, 12732}, {5727, 20095}, {5731, 37560}, {5744, 37551}, {5748, 27525}, {5794, 34612}, {5795, 6872}, {5815, 17781}, {5844, 37532}, {5854, 37738}, {5880, 15888}, {5882, 59333}, {5919, 25524}, {6049, 37789}, {6154, 10950}, {6174, 34640}, {6224, 61296}, {6264, 17100}, {6684, 10527}, {6692, 10586}, {6737, 41338}, {6909, 12650}, {6911, 23340}, {6921, 44675}, {7293, 8192}, {7308, 46933}, {7330, 59388}, {7354, 32049}, {7580, 31798}, {7701, 61250}, {7702, 10956}, {7966, 37526}, {7967, 37534}, {8227, 27529}, {8257, 37723}, {8270, 52362}, {8543, 47375}, {8582, 12575}, {8666, 58887}, {8668, 37579}, {9312, 21272}, {9575, 17756}, {9579, 20060}, {9613, 17579}, {9669, 17619}, {9780, 31435}, {9802, 37704}, {9856, 51380}, {10056, 12609}, {10072, 58405}, {10085, 28236}, {10384, 61012}, {10444, 20895}, {10459, 17594}, {10609, 37727}, {10679, 11517}, {10884, 31788}, {10889, 24993}, {10916, 59342}, {10944, 13996}, {11011, 56177}, {11115, 18163}, {11235, 17606}, {11239, 21620}, {11373, 13747}, {11415, 21075}, {11519, 53056}, {11525, 35242}, {11530, 16865}, {11679, 24633}, {12047, 45701}, {12114, 13528}, {12331, 25413}, {12515, 61244}, {12528, 46685}, {12629, 15803}, {12630, 60948}, {12632, 36845}, {12645, 24467}, {12647, 17647}, {12672, 51379}, {12688, 17615}, {12699, 17757}, {12704, 28234}, {12705, 59387}, {13205, 17636}, {13464, 59587}, {14740, 31803}, {14986, 26062}, {15239, 54199}, {15829, 46917}, {16371, 24928}, {17015, 37554}, {17136, 25716}, {17480, 62300}, {17555, 40971}, {17578, 60935}, {17596, 59310}, {17648, 41426}, {18391, 55871}, {18421, 34195}, {18446, 37562}, {18491, 41389}, {18525, 35460}, {19843, 55867}, {20014, 23958}, {20223, 52346}, {20244, 40719}, {20367, 49451}, {20533, 26531}, {20691, 54382}, {21031, 24703}, {21068, 27522}, {21384, 41322}, {21872, 37658}, {22560, 34880}, {22793, 51362}, {22836, 25415}, {22837, 37618}, {24159, 50745}, {24174, 28011}, {24390, 26446}, {24393, 60949}, {24564, 26040}, {25011, 26105}, {25306, 59294}, {26364, 30384}, {26921, 59503}, {28174, 58798}, {30144, 30323}, {30147, 59337}, {30305, 41012}, {30568, 52353}, {31263, 45035}, {31272, 50444}, {31888, 60977}, {32141, 61146}, {34255, 39592}, {34711, 54408}, {34716, 36004}, {37552, 49487}, {37707, 59330}, {37714, 54370}, {37829, 40272}, {38200, 60958}, {41687, 41697}, {42696, 54404}, {45287, 49169}, {46932, 51780}, {48915, 49716}, {50579, 50581}, {51683, 53054}, {52959, 54406}, {53391, 56983}, {53997, 56544}, {54400, 61220}, {56287, 56972}, {59414, 61005}

X(63130) = midpoint of X(i) and X(j) for these {i,j}: {12702, 18518}
X(63130) = reflection of X(i) in X(j) for these {i,j}: {1, 25440}, {1479, 10}, {1837, 8256}, {11415, 21075}, {11682, 78}, {12649, 4848}, {12701, 1329}, {2098, 59691}, {30323, 30144}, {3436, 6736}, {36846, 56}, {36977, 4311}, {78, 5687}
X(63130) = anticomplement of X(12053)
X(63130) = perspector of circumconic {{A, B, C, X(3257), X(44327)}}
X(63130) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56287, 63}
X(63130) = pole of line {522, 53392} with respect to the Bevan circle
X(63130) = pole of line {2827, 58858} with respect to the incircle
X(63130) = pole of line {5048, 12635} with respect to the Feuerbach hyperbola
X(63130) = pole of line {2360, 52680} with respect to the Stammler hyperbola
X(63130) = pole of line {6332, 21222} with respect to the Steiner circumellipse
X(63130) = pole of line {651, 23704} with respect to the Yff parabola
X(63130) = pole of line {8822, 30939} with respect to the Wallace hyperbola
X(63130) = pole of line {908, 23511} with respect to the dual conic of Yff parabola
X(63130) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56939)}}, {{A, B, C, X(84), X(106)}}, {{A, B, C, X(88), X(189)}}, {{A, B, C, X(280), X(1320)}}, {{A, B, C, X(765), X(4855)}}, {{A, B, C, X(4674), X(39130)}}, {{A, B, C, X(7101), X(56942)}}, {{A, B, C, X(35262), X(55991)}}, {{A, B, C, X(44301), X(56940)}}
X(63130) = barycentric product X(i)*X(j) for these (i, j): {1, 56084}, {312, 34040}, {1332, 16231}, {1339, 31227}, {1897, 20296}, {38384, 5382}
X(63130) = barycentric quotient X(i)/X(j) for these (i, j): {16231, 17924}, {20296, 4025}, {34040, 57}, {56084, 75}
X(63130) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 100, 4855}, {1, 25440, 35262}, {8, 17784, 57287}, {8, 56288, 57279}, {10, 10624, 2478}, {10, 5119, 5250}, {40, 57279, 56288}, {40, 5881, 1158}, {55, 5836, 19860}, {56, 3880, 36846}, {57, 2136, 145}, {65, 3870, 11520}, {78, 517, 11682}, {100, 14923, 1}, {145, 2136, 51786}, {145, 37267, 4308}, {149, 25005, 9581}, {165, 4853, 2975}, {169, 1018, 55337}, {200, 3869, 3984}, {200, 7991, 3869}, {516, 6736, 3436}, {517, 5687, 78}, {519, 4311, 36977}, {528, 8256, 1837}, {946, 5552, 30852}, {956, 3579, 4652}, {958, 37568, 35258}, {962, 7080, 908}, {1155, 3893, 12513}, {1376, 3057, 19861}, {1420, 3680, 38460}, {1482, 5440, 56387}, {1697, 1706, 2}, {2093, 6765, 3868}, {3035, 13463, 11376}, {3158, 3340, 34772}, {3218, 3621, 6762}, {3303, 3812, 4666}, {3679, 11010, 12514}, {3870, 3913, 4917}, {3895, 54286, 3306}, {3911, 21627, 10529}, {3915, 4695, 1722}, {4188, 38460, 1420}, {4190, 12648, 10106}, {4646, 5710, 5256}, {4848, 5853, 12649}, {4882, 12526, 3681}, {4917, 11520, 3870}, {5128, 6762, 3218}, {5493, 12527, 44447}, {5541, 54286, 3895}, {5554, 20075, 950}, {5603, 59591, 27385}, {5903, 48696, 3811}, {8583, 9819, 3890}, {9623, 61763, 21}, {10106, 12640, 12648}, {12245, 48363, 5709}, {12331, 25413, 37700}, {12629, 15803, 54391}, {12688, 46677, 17615}, {21075, 28194, 11415}, {24440, 37588, 614}, {44447, 56879, 12527}, {44675, 59675, 6921}, {51433, 57287, 8}, {56288, 57279, 63}


X(63131) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(573), X(40))

Barycentrics    a^3-2*a^2*(b+c)+2*b*c*(b+c)+a*(b+c)^2 : :

X(63131) lies on circumconic {{A, B, C, X(84), X(29310)}} and on these lines: {1, 3896}, {2, 3755}, {8, 20}, {9, 4651}, {10, 968}, {42, 50314}, {55, 3696}, {57, 17135}, {75, 3870}, {78, 37529}, {81, 49495}, {100, 10434}, {165, 1150}, {171, 17156}, {200, 321}, {210, 5695}, {228, 5295}, {306, 2550}, {333, 35258}, {345, 25006}, {354, 49460}, {516, 4061}, {519, 3980}, {528, 3966}, {612, 740}, {614, 32941}, {750, 39594}, {846, 3679}, {850, 57067}, {894, 20012}, {936, 3702}, {940, 28581}, {956, 22060}, {1043, 19860}, {1281, 11177}, {1376, 3706}, {1621, 4384}, {1699, 5741}, {1706, 17751}, {1707, 32864}, {1738, 33171}, {1961, 49469}, {1962, 39586}, {2177, 21020}, {2321, 10327}, {2999, 24552}, {3158, 17163}, {3187, 5269}, {3242, 42051}, {3243, 17140}, {3247, 27804}, {3305, 3685}, {3306, 10453}, {3338, 50625}, {3416, 4046}, {3434, 3687}, {3474, 4001}, {3475, 50744}, {3509, 4007}, {3632, 32913}, {3677, 17495}, {3681, 3729}, {3699, 42034}, {3711, 3967}, {3740, 4387}, {3744, 4361}, {3745, 49486}, {3749, 32914}, {3751, 4418}, {3811, 4647}, {3873, 49451}, {3875, 3920}, {3883, 20075}, {3891, 17151}, {3923, 4685}, {3929, 4427}, {3935, 28605}, {3952, 62218}, {3961, 49474}, {3974, 49991}, {3995, 7322}, {4023, 24703}, {4038, 49678}, {4042, 4640}, {4054, 25568}, {4101, 4295}, {4104, 28580}, {4105, 17894}, {4113, 5220}, {4312, 32859}, {4344, 20043}, {4358, 8580}, {4362, 4709}, {4383, 49484}, {4416, 44447}, {4423, 4702}, {4461, 10025}, {4512, 5278}, {4659, 17165}, {4660, 21085}, {4666, 19804}, {4673, 19861}, {4689, 5737}, {4696, 4882}, {4697, 49497}, {4703, 17764}, {4714, 54318}, {4716, 17716}, {4720, 5208}, {4847, 17740}, {4968, 6765}, {4970, 36480}, {5223, 32933}, {5250, 9534}, {5256, 5263}, {5268, 32915}, {5272, 32943}, {5287, 49470}, {5437, 29824}, {5853, 56518}, {7080, 27287}, {7174, 17147}, {9623, 49492}, {9746, 26243}, {10436, 17018}, {10582, 24589}, {10914, 31778}, {11523, 17164}, {11529, 49687}, {12435, 14923}, {16496, 17155}, {16878, 56087}, {17064, 29846}, {17270, 33083}, {17272, 32950}, {17274, 33102}, {17282, 33173}, {17286, 29679}, {17294, 33078}, {17363, 20101}, {17594, 31330}, {17597, 49467}, {17781, 24280}, {18139, 38052}, {19998, 26223}, {21027, 29661}, {21283, 24392}, {21949, 30811}, {23681, 33122}, {24165, 49458}, {24169, 50311}, {24342, 42042}, {24715, 33084}, {25527, 33131}, {26241, 27474}, {27064, 59295}, {27184, 62392}, {27368, 37552}, {29667, 46918}, {29670, 62226}, {29828, 60714}, {29830, 41867}, {29855, 33132}, {29857, 32865}, {31327, 37573}, {32776, 50080}, {32930, 50126}, {32934, 49457}, {32939, 49450}, {33073, 49720}, {33075, 49719}, {33077, 33110}, {33090, 56511}, {33091, 56517}, {33139, 56519}, {33163, 49772}, {34790, 50044}, {36277, 37652}, {37642, 50758}, {41711, 49483}, {49446, 50106}, {49524, 50048}, {50306, 51192}, {54327, 54410}, {54335, 59337}, {54421, 59302}

X(63131) = reflection of X(i) in X(j) for these {i,j}: {5739, 4061}
X(63131) = pole of line {6332, 28878} with respect to the Steiner circumellipse
X(63131) = pole of line {16832, 23681} with respect to the dual conic of Yff parabola
X(63131) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 32932, 63}, {8, 9778, 14552}, {55, 3696, 5271}, {75, 3996, 3870}, {171, 49459, 17156}, {516, 4061, 5739}, {3685, 59296, 3305}, {4046, 34612, 3416}, {4651, 32929, 9}, {32860, 32945, 1}, {32865, 33160, 29857}, {33131, 33175, 25527}


X(63132) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(1512), X(40))

Barycentrics    a*(a^6+10*a^3*b*c*(b+c)-10*a*b*(b-c)^2*c*(b+c)-(b^2-c^2)^2*(b^2-4*b*c+c^2)-a^4*(3*b^2+2*b*c+3*c^2)+a^2*(3*b^4-2*b^3*c-18*b^2*c^2-2*b*c^3+3*c^4)) : :
X(63132) = -2*X[3816]+3*X[26446]

X(63132) lies on circumconic {{A, B, C, X(189), X(38307)}} and on these lines: {1, 6940}, {2, 12703}, {3, 3880}, {8, 20}, {9, 38127}, {10, 6893}, {46, 3476}, {57, 28234}, {90, 43734}, {104, 165}, {145, 59333}, {197, 51620}, {200, 2800}, {355, 33559}, {497, 1737}, {517, 997}, {519, 3359}, {528, 3654}, {946, 1706}, {956, 13528}, {962, 27131}, {1145, 20588}, {1329, 12700}, {1482, 10107}, {1697, 3086}, {1709, 59388}, {1768, 4677}, {2077, 3872}, {2136, 5882}, {2802, 37611}, {3244, 37534}, {3245, 15104}, {3306, 16200}, {3576, 3895}, {3586, 11010}, {3587, 5770}, {3626, 7330}, {3681, 12665}, {3811, 37562}, {3816, 26446}, {3899, 7991}, {3913, 31788}, {3929, 50827}, {4745, 60911}, {4853, 5450}, {4855, 11014}, {4882, 12666}, {4915, 52027}, {5082, 12616}, {5250, 25005}, {5281, 10165}, {5587, 33110}, {5687, 6261}, {5690, 12514}, {5704, 61122}, {5790, 54370}, {5836, 10306}, {5884, 6765}, {5887, 12702}, {6256, 6736}, {6850, 10915}, {6891, 49600}, {6923, 60973}, {7080, 12608}, {7171, 28236}, {7966, 51705}, {7982, 17572}, {8270, 24028}, {9588, 37563}, {9709, 45776}, {10265, 24392}, {10270, 12629}, {10310, 10914}, {10679, 54318}, {10916, 43174}, {11012, 38901}, {11372, 50796}, {11500, 31798}, {12559, 35004}, {12758, 60782}, {13600, 25524}, {13607, 37526}, {15726, 60884}, {18443, 25439}, {18446, 48696}, {18540, 38155}, {20070, 26792}, {22760, 37568}, {28194, 31142}, {31775, 32049}, {32159, 46677}, {32426, 37727}, {34718, 34740}, {35460, 59503}, {36846, 37561}, {41338, 48363}, {47746, 54176}, {51786, 61291}

X(63132) = midpoint of X(i) and X(j) for these {i,j}: {3476, 12245}
X(63132) = reflection of X(i) in X(j) for these {i,j}: {26333, 10}
X(63132) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 40, 1158}, {40, 57279, 40256}, {2136, 37560, 5882}, {48363, 50810, 41338}


X(63133) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(1706), X(40))

Barycentrics    a^4+4*a^3*(b+c)+(b^2-c^2)^2-2*a^2*(b^2+6*b*c+c^2)-4*a*(b^3-2*b^2*c-2*b*c^2+c^3) : :

X(63133) lies on these lines: {1, 26062}, {2, 3057}, {4, 1145}, {8, 20}, {10, 6919}, {56, 100}, {57, 12640}, {72, 50810}, {144, 56879}, {190, 42020}, {279, 21272}, {329, 6736}, {346, 2183}, {390, 5554}, {452, 5119}, {474, 1000}, {497, 8256}, {517, 6848}, {519, 15803}, {938, 3895}, {956, 37403}, {962, 5828}, {1018, 56937}, {1125, 31436}, {1155, 3621}, {1320, 6921}, {1482, 6970}, {1788, 3880}, {2098, 24558}, {2136, 4848}, {2550, 60919}, {2551, 3434}, {2802, 3086}, {3091, 51432}, {3146, 5176}, {3189, 41687}, {3241, 4855}, {3340, 63168}, {3421, 12702}, {3436, 20070}, {3474, 32049}, {3475, 10107}, {3476, 37267}, {3523, 4861}, {3600, 12648}, {3623, 20323}, {3632, 21578}, {3679, 5175}, {3680, 3911}, {3847, 9710}, {3869, 51378}, {3871, 37300}, {3885, 14986}, {3893, 24477}, {3922, 38053}, {3952, 6552}, {3957, 18221}, {4293, 49169}, {4295, 10915}, {4301, 5748}, {4678, 5086}, {4853, 5744}, {5082, 5690}, {5126, 47746}, {5177, 10039}, {5218, 32157}, {5252, 37435}, {5265, 38460}, {5274, 25005}, {5435, 36846}, {5541, 10573}, {5552, 6979}, {5657, 6926}, {5687, 6905}, {5731, 10270}, {5734, 27385}, {5903, 34619}, {6745, 11531}, {6857, 40587}, {6904, 54286}, {6963, 24390}, {7288, 10912}, {7491, 59503}, {7982, 27383}, {8582, 9819}, {9785, 24982}, {9797, 51786}, {9965, 37567}, {10589, 13463}, {10950, 34607}, {11036, 11239}, {11508, 37313}, {12529, 34790}, {12541, 26015}, {12632, 12649}, {12701, 37829}, {14563, 20057}, {15326, 36972}, {16200, 59587}, {17576, 37568}, {17658, 31798}, {18391, 56936}, {24466, 54134}, {24604, 40863}, {26272, 39570}, {28830, 34434}, {31145, 34610}, {34606, 49719}, {41426, 56089}

X(63133) = reflection of X(i) in X(j) for these {i,j}: {1, 59675}, {9614, 10}
X(63133) = pole of line {14544, 23831} with respect to the Kiepert parabola
X(63133) = pole of line {6332, 30725} with respect to the Steiner circumellipse
X(63133) = pole of line {5748, 23681} with respect to the dual conic of Yff parabola
X(63133) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(8686)}}, {{A, B, C, X(271), X(1811)}}, {{A, B, C, X(280), X(1120)}}, {{A, B, C, X(56642), X(56939)}}
X(63133) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10, 30305, 6919}, {2098, 59572, 24558}, {2136, 4848, 36845}, {4853, 43174, 5744}, {6736, 7991, 329}


X(63134) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(1766), X(40))

Barycentrics    2*a^3-b^3-b^2*c-b*c^2-c^3-a^2*(b+c) : :

X(63134) lies on these lines: {1, 26034}, {2, 3883}, {8, 20}, {9, 10327}, {10, 31}, {38, 519}, {42, 5847}, {55, 306}, {69, 3870}, {72, 42448}, {78, 1064}, {100, 3687}, {141, 3744}, {165, 17740}, {171, 33076}, {200, 5739}, {210, 49991}, {226, 6327}, {238, 33079}, {307, 8270}, {319, 3996}, {321, 516}, {329, 7172}, {333, 25006}, {345, 35258}, {390, 34255}, {518, 4001}, {527, 17165}, {528, 3706}, {553, 17140}, {612, 50295}, {672, 3686}, {674, 22275}, {748, 62673}, {752, 1215}, {846, 32847}, {894, 20101}, {896, 3626}, {902, 15523}, {908, 4388}, {950, 17751}, {956, 1473}, {982, 49506}, {1104, 25904}, {1125, 17469}, {1150, 1754}, {1155, 4914}, {1266, 33102}, {1376, 3966}, {1621, 3912}, {1707, 3679}, {1738, 32914}, {1836, 4054}, {2177, 4028}, {2221, 5710}, {2239, 3741}, {2321, 5282}, {2550, 5271}, {2887, 3011}, {2895, 3935}, {2975, 7293}, {3006, 5745}, {3052, 32777}, {3072, 5015}, {3187, 3755}, {3218, 33090}, {3219, 3717}, {3419, 5774}, {3434, 11679}, {3550, 32778}, {3578, 4712}, {3583, 51285}, {3617, 26065}, {3625, 36263}, {3663, 3891}, {3666, 5846}, {3677, 19993}, {3681, 4416}, {3683, 3932}, {3696, 34612}, {3701, 12572}, {3702, 10624}, {3703, 3977}, {3704, 37568}, {3705, 59491}, {3710, 12514}, {3714, 6284}, {3722, 33081}, {3729, 44447}, {3740, 41002}, {3745, 4026}, {3748, 4966}, {3749, 33171}, {3750, 32846}, {3752, 49987}, {3757, 4645}, {3769, 32773}, {3791, 4085}, {3811, 4101}, {3816, 62621}, {3831, 28242}, {3846, 4434}, {3873, 49466}, {3879, 17018}, {3886, 20075}, {3913, 10371}, {3914, 4362}, {3920, 4357}, {3929, 4901}, {3936, 13405}, {3938, 33080}, {3946, 17150}, {3957, 4684}, {3961, 33082}, {3974, 5698}, {3995, 50000}, {4046, 6154}, {4082, 51090}, {4126, 15481}, {4138, 31134}, {4292, 4968}, {4304, 49492}, {4349, 19684}, {4358, 40998}, {4365, 28580}, {4414, 32854}, {4429, 26723}, {4512, 17776}, {4514, 14829}, {4641, 49524}, {4650, 33169}, {4655, 32920}, {4666, 18141}, {4668, 16570}, {4683, 32927}, {4696, 12527}, {4865, 29639}, {4894, 10916}, {4933, 50786}, {4972, 40940}, {5220, 30615}, {5250, 54433}, {5256, 51192}, {5311, 50290}, {5552, 55902}, {5687, 5814}, {5711, 19716}, {5717, 26115}, {5741, 6745}, {5750, 21764}, {5853, 17135}, {5904, 50585}, {6646, 20056}, {6679, 28595}, {6685, 28512}, {7080, 55910}, {7123, 37658}, {7174, 20020}, {7191, 33086}, {7226, 49527}, {7262, 33165}, {7270, 24987}, {8616, 29674}, {10039, 36974}, {10106, 61412}, {10389, 17296}, {10453, 56508}, {10527, 55900}, {11246, 49483}, {15621, 23359}, {17017, 49684}, {17123, 60423}, {17126, 29667}, {17127, 17353}, {17153, 30097}, {17184, 20045}, {17319, 20069}, {17363, 20012}, {17594, 33088}, {17596, 32866}, {17599, 49681}, {17601, 32855}, {17715, 33087}, {17716, 32784}, {17763, 24210}, {17781, 32937}, {18250, 52353}, {19869, 49480}, {20064, 26223}, {20106, 48647}, {20335, 26237}, {23407, 29960}, {24169, 50023}, {24231, 32923}, {24239, 32844}, {24391, 36500}, {24586, 26241}, {24627, 29840}, {24632, 40910}, {24723, 32926}, {25453, 61647}, {25527, 26228}, {25958, 29665}, {25959, 29681}, {26038, 56510}, {26098, 29828}, {26117, 41261}, {26132, 26245}, {27065, 60459}, {27528, 56462}, {27529, 55903}, {28274, 57284}, {28498, 61652}, {28566, 44417}, {28606, 49476}, {29641, 54357}, {29663, 38049}, {29670, 32946}, {29835, 37639}, {29843, 37684}, {29865, 48650}, {30741, 55867}, {31006, 43223}, {31079, 56520}, {31091, 55868}, {32771, 50307}, {32779, 39597}, {32848, 59547}, {32856, 59730}, {32858, 61155}, {32861, 60714}, {32862, 56078}, {32864, 49772}, {32912, 49529}, {32917, 33072}, {32922, 33068}, {32924, 50017}, {32942, 49709}, {33064, 50304}, {33161, 59544}, {34790, 49716}, {36845, 37655}, {37538, 57876}, {42058, 50115}, {49470, 50292}, {49630, 50102}, {49994, 59517}, {50104, 50949}, {51196, 61358}, {56507, 59296}

X(63134) = midpoint of X(i) and X(j) for these {i,j}: {321, 4450}
X(63134) = reflection of X(i) in X(j) for these {i,j}: {3666, 44419}, {41011, 1215}
X(63134) = pole of line {23681, 29598} with respect to the dual conic of Yff parabola
X(63134) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(39958)}}, {{A, B, C, X(189), X(39716)}}, {{A, B, C, X(280), X(13575)}}
X(63134) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 26034, 54311}, {8, 54429, 57279}, {10, 31, 5294}, {31, 33074, 10}, {55, 3416, 306}, {100, 33075, 3687}, {321, 4450, 516}, {333, 32850, 25006}, {752, 1215, 41011}, {902, 15523, 59692}, {1150, 5014, 4847}, {1621, 33078, 3912}, {1707, 3679, 33163}, {2177, 32852, 4028}, {3052, 32777, 35263}, {3757, 4645, 5249}, {3891, 32950, 3663}, {3920, 33083, 4357}, {3938, 33080, 49511}, {3957, 32863, 4684}, {4362, 4660, 3914}, {4388, 7081, 908}, {4514, 14829, 26015}, {4865, 32916, 29639}, {5846, 44419, 3666}, {6327, 26227, 226}, {6679, 28595, 30768}, {17127, 29679, 17353}, {17469, 32781, 1125}, {17763, 32947, 24210}, {31134, 33127, 4138}, {32844, 32918, 24239}, {32914, 32948, 1738}, {32923, 33067, 24231}


X(63135) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(5493), X(40))

Barycentrics    a*(a^3-b^3-5*b^2*c-5*b*c^2-c^3+a^2*(b+c)-a*(b^2-4*b*c+c^2)) : :
X(63135) =

X(63135) lies on these lines: {1, 748}, {2, 6762}, {8, 20}, {9, 145}, {10, 3306}, {21, 6765}, {44, 37542}, {46, 3626}, {55, 4917}, {56, 4662}, {57, 3617}, {72, 1482}, {78, 956}, {100, 4882}, {191, 4677}, {200, 2975}, {210, 12513}, {388, 25006}, {452, 6764}, {517, 3951}, {518, 11520}, {519, 5250}, {908, 5815}, {936, 54391}, {952, 55104}, {958, 3870}, {960, 36846}, {962, 17781}, {988, 3214}, {997, 5288}, {999, 3697}, {1420, 62218}, {1445, 10106}, {1621, 5234}, {1697, 3219}, {1706, 3218}, {1708, 37709}, {1757, 59310}, {2136, 3929}, {2551, 26015}, {3057, 5220}, {3085, 55867}, {3158, 4189}, {3241, 31435}, {3243, 60958}, {3303, 5302}, {3304, 3740}, {3333, 9780}, {3336, 3679}, {3339, 62235}, {3340, 8545}, {3421, 5818}, {3434, 12527}, {3436, 4847}, {3452, 10529}, {3555, 9708}, {3576, 4420}, {3578, 48883}, {3601, 3935}, {3622, 7308}, {3623, 27065}, {3625, 5119}, {3632, 3895}, {3634, 51816}, {3646, 38314}, {3692, 49450}, {3711, 59691}, {3715, 58679}, {3751, 10459}, {3811, 5258}, {3868, 9623}, {3869, 4853}, {3871, 31424}, {3877, 12629}, {3913, 35258}, {3921, 16408}, {3924, 16496}, {3927, 10914}, {3940, 37624}, {3957, 5436}, {3983, 25524}, {4002, 5708}, {4005, 5289}, {4018, 40587}, {4067, 25415}, {4134, 22837}, {4188, 46917}, {4313, 20015}, {4416, 30616}, {4423, 58609}, {4430, 11518}, {4652, 5687}, {4661, 11523}, {4666, 34791}, {4668, 6763}, {4673, 56082}, {4696, 11679}, {4737, 24591}, {4816, 11010}, {4863, 57288}, {4866, 8583}, {4875, 50995}, {4915, 12526}, {5046, 24392}, {5049, 16842}, {5128, 51781}, {5176, 5536}, {5178, 5691}, {5187, 24386}, {5227, 54324}, {5231, 11681}, {5253, 8580}, {5255, 36277}, {5290, 33108}, {5314, 8192}, {5316, 10586}, {5437, 46933}, {5554, 24391}, {5587, 56880}, {5709, 59388}, {5730, 33179}, {5745, 10528}, {5795, 12649}, {5837, 12648}, {5853, 6872}, {5927, 8158}, {6172, 12541}, {6735, 10805}, {6737, 43175}, {6766, 9812}, {6910, 59722}, {7080, 59491}, {7174, 17016}, {7177, 33298}, {7330, 12245}, {7991, 11684}, {8168, 37568}, {8666, 35262}, {8897, 10371}, {9579, 33110}, {9710, 10404}, {9711, 17728}, {10085, 43174}, {10384, 61006}, {10389, 16865}, {10527, 21075}, {10912, 31165}, {12053, 31018}, {12536, 61024}, {12645, 26921}, {14829, 44720}, {15829, 38460}, {16490, 31318}, {16552, 49451}, {16859, 38316}, {17589, 18164}, {17595, 21896}, {17742, 49466}, {18391, 55870}, {18908, 22770}, {19843, 31266}, {20050, 31393}, {20076, 57284}, {21677, 32049}, {24467, 59503}, {24468, 61250}, {24477, 24982}, {24541, 25568}, {24564, 38057}, {24590, 50095}, {26790, 60927}, {27131, 50443}, {28236, 59340}, {28616, 54303}, {30318, 34489}, {30567, 52353}, {34625, 41012}, {37281, 37532}, {37435, 59413}, {37584, 37705}, {37612, 38112}, {37614, 49515}, {38127, 59333}, {38200, 60938}, {40273, 58798}, {46934, 51780}, {53364, 53395}, {59414, 60974}

X(63135) = reflection of X(i) in X(j) for these {i,j}: {10404, 9710}, {11520, 19860}, {3303, 5302}, {5250, 41229}
X(63135) = perspector of circumconic {{A, B, C, X(37212), X(44327)}}
X(63135) = pole of line {8822, 16709} with respect to the Wallace hyperbola
X(63135) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(1126)}}, {{A, B, C, X(189), X(1255)}}, {{A, B, C, X(280), X(32635)}}
X(63135) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3681, 3984}, {8, 57279, 63}, {72, 3872, 11682}, {200, 2975, 4855}, {210, 12513, 19861}, {518, 19860, 11520}, {519, 41229, 5250}, {956, 34790, 78}, {1697, 3621, 51786}, {3218, 4678, 1706}, {3219, 3621, 1697}, {3555, 9708, 54392}, {3632, 12514, 3895}, {4668, 6763, 54286}, {4853, 5223, 3869}, {4915, 12526, 14923}, {10527, 21075, 30852}, {21677, 34689, 32049}


X(63136) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(5587), X(40))

Barycentrics    a*(a^3-b^3+2*b^2*c+2*b*c^2-c^3+a^2*(b+c)-a*(b^2+3*b*c+c^2)) : :
X(63136) = -3*X[3582]+2*X[21630], -4*X[3911]+X[9802], -4*X[5123]+3*X[37375], -3*X[5587]+2*X[24042], -4*X[6681]+3*X[16173], -4*X[7743]+5*X[31272], X[9963]+2*X[36920], -2*X[25405]+3*X[35271]

X(63136) lies on these lines: {1, 1392}, {2, 5119}, {3, 4861}, {7, 11239}, {8, 20}, {9, 53620}, {10, 3583}, {12, 32157}, {21, 5836}, {23, 51629}, {30, 1145}, {36, 2802}, {46, 145}, {55, 37300}, {56, 3885}, {57, 3241}, {65, 3871}, {72, 16835}, {78, 7991}, {100, 517}, {149, 1737}, {165, 3872}, {169, 56244}, {171, 17015}, {190, 4723}, {191, 3626}, {238, 4695}, {329, 34632}, {346, 54420}, {390, 8257}, {404, 3057}, {474, 3890}, {484, 519}, {495, 20292}, {516, 5080}, {518, 5183}, {528, 37787}, {529, 26748}, {535, 15228}, {595, 3987}, {643, 1325}, {644, 910}, {672, 41322}, {758, 3245}, {902, 60353}, {908, 5180}, {912, 38665}, {944, 54177}, {946, 6979}, {962, 1519}, {999, 9352}, {1018, 5011}, {1054, 1149}, {1055, 4919}, {1125, 37563}, {1155, 3880}, {1318, 14193}, {1319, 1320}, {1339, 27834}, {1376, 3877}, {1389, 33596}, {1479, 25005}, {1572, 17756}, {1621, 3753}, {1697, 3616}, {1706, 5250}, {1727, 20085}, {1739, 7292}, {1749, 41684}, {1757, 49984}, {1768, 28236}, {1770, 10915}, {1914, 21888}, {2077, 4996}, {2093, 3870}, {2099, 4421}, {2136, 5128}, {2183, 16561}, {2270, 3161}, {2320, 30282}, {2390, 38512}, {2475, 10039}, {2550, 36976}, {2932, 22765}, {2975, 3579}, {3100, 45269}, {3219, 3679}, {3244, 3336}, {3306, 31393}, {3333, 20057}, {3337, 3635}, {3338, 3623}, {3359, 5731}, {3419, 3654}, {3421, 44447}, {3434, 5657}, {3436, 6361}, {3476, 34711}, {3501, 33950}, {3550, 49487}, {3582, 21630}, {3587, 5744}, {3617, 12514}, {3625, 6763}, {3648, 12527}, {3667, 4498}, {3689, 44663}, {3698, 5047}, {3730, 21373}, {3744, 54315}, {3746, 3754}, {3868, 3913}, {3869, 3940}, {3873, 36279}, {3889, 5221}, {3897, 5217}, {3902, 14829}, {3911, 9802}, {3915, 24440}, {3918, 5259}, {3920, 4424}, {3922, 51715}, {3929, 51072}, {3951, 4882}, {3957, 5902}, {4189, 59316}, {4193, 12701}, {4209, 28961}, {4242, 15500}, {4257, 49494}, {4293, 12648}, {4294, 5554}, {4295, 10528}, {4299, 49169}, {4301, 27385}, {4642, 5255}, {4646, 57280}, {4652, 4853}, {4674, 30117}, {4678, 41229}, {4717, 51285}, {4731, 15254}, {4737, 32933}, {4756, 59586}, {4855, 7982}, {4868, 17011}, {4917, 41863}, {5057, 17757}, {5082, 6899}, {5086, 5690}, {5088, 21272}, {5123, 37375}, {5172, 13205}, {5174, 6197}, {5175, 55104}, {5195, 33864}, {5204, 10912}, {5252, 17579}, {5253, 9957}, {5264, 17016}, {5282, 41319}, {5303, 31663}, {5315, 17020}, {5330, 59691}, {5433, 13463}, {5435, 11240}, {5445, 24387}, {5493, 6736}, {5535, 28234}, {5587, 24042}, {5603, 6970}, {5697, 25440}, {5722, 34611}, {5844, 10609}, {5853, 60989}, {5883, 29817}, {5903, 8715}, {5905, 34619}, {6001, 12532}, {6154, 44669}, {6284, 8256}, {6350, 15941}, {6681, 16173}, {6734, 43174}, {6742, 50462}, {6745, 28228}, {6762, 20053}, {6840, 51432}, {6909, 13528}, {6915, 45776}, {6926, 10527}, {6963, 11680}, {7080, 11415}, {7098, 41687}, {7183, 25718}, {7191, 37610}, {7280, 22837}, {7705, 10896}, {7743, 31272}, {7962, 35262}, {8582, 26127}, {8666, 37572}, {9623, 35258}, {9785, 26062}, {9963, 36920}, {10056, 31019}, {10087, 53615}, {10107, 37080}, {10129, 31479}, {10306, 37302}, {10529, 59342}, {10572, 20066}, {10582, 53052}, {10624, 24982}, {10950, 11015}, {11248, 45392}, {11249, 38901}, {11349, 28982}, {11376, 17566}, {11491, 37562}, {11500, 48697}, {11508, 37301}, {11531, 56387}, {11545, 12690}, {11681, 12699}, {11684, 34790}, {12245, 59318}, {12331, 14988}, {12515, 12531}, {12737, 23961}, {13278, 18838}, {13601, 57283}, {13996, 15326}, {14953, 40863}, {15679, 16140}, {15803, 36846}, {15863, 37006}, {16139, 52126}, {16370, 40587}, {16568, 32850}, {17080, 60689}, {17531, 58679}, {17777, 60367}, {18178, 35978}, {18259, 47033}, {18359, 23580}, {18391, 20075}, {18540, 59387}, {18802, 24466}, {19860, 61763}, {19875, 35595}, {19877, 31435}, {21740, 25413}, {24028, 52368}, {24280, 61087}, {24310, 49687}, {24390, 61524}, {24443, 37588}, {24590, 29627}, {25405, 35271}, {26877, 37727}, {27000, 28742}, {27086, 32760}, {28198, 51362}, {28212, 51409}, {28534, 56551}, {29531, 56311}, {30852, 31162}, {31053, 45701}, {31160, 50841}, {31224, 37704}, {32087, 54404}, {33094, 37716}, {33148, 50745}, {33794, 47357}, {33895, 37605}, {34195, 50193}, {34758, 59326}, {36002, 51379}, {36005, 44784}, {36534, 37555}, {37256, 45287}, {37307, 37618}, {37584, 50810}, {38462, 52409}, {45766, 53151}, {48849, 56511}, {51111, 59325}, {51284, 56082}, {53053, 54392}, {54318, 61155}, {54370, 54448}, {59337, 61157}

X(63136) = midpoint of X(i) and X(j) for these {i,j}: {484, 5541}, {3245, 48696}, {12702, 18524}, {13996, 15326}
X(63136) = reflection of X(i) in X(j) for these {i,j}: {149, 1737}, {1320, 1319}, {12690, 11545}, {12737, 23961}, {3218, 484}, {3583, 10}, {3935, 48696}, {31160, 50841}, {37006, 15863}, {38460, 36}, {4511, 100}, {48697, 11500}, {5057, 17757}, {5080, 6735}, {5176, 1145}, {5180, 908}, {51423, 6745}, {54391, 1155}, {6909, 13528}, {8, 51433}, {962, 1519}
X(63136) = anticomplement of X(30384)
X(63136) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55995, 69}
X(63136) = pole of line {522, 2136} with respect to the Bevan circle
X(63136) = pole of line {522, 11415} with respect to the DeLongchamps circle
X(63136) = pole of line {2360, 37605} with respect to the Stammler hyperbola
X(63136) = pole of line {6332, 6505} with respect to the Steiner circumellipse
X(63136) = pole of line {651, 3257} with respect to the Yff parabola
X(63136) = pole of line {23757, 57049} with respect to the dual conic of incircle
X(63136) = pole of line {23681, 31053} with respect to the dual conic of Yff parabola
X(63136) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(953)}}, {{A, B, C, X(189), X(8046)}}, {{A, B, C, X(280), X(1392)}}, {{A, B, C, X(1443), X(38462)}}, {{A, B, C, X(5440), X(52377)}}, {{A, B, C, X(41529), X(52479)}}
X(63136) = barycentric product X(i)*X(j) for these (i, j): {38385, 5376}
X(63136) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 40, 56288}, {30, 1145, 5176}, {36, 2802, 38460}, {40, 5881, 40256}, {57, 3895, 3241}, {100, 517, 4511}, {484, 519, 3218}, {484, 5541, 519}, {516, 6735, 5080}, {758, 48696, 3935}, {908, 28194, 5180}, {1155, 3880, 54391}, {1320, 13587, 1319}, {1706, 5250, 9780}, {1739, 40091, 7292}, {1770, 10915, 20060}, {3245, 48696, 758}, {3306, 31393, 38314}, {3579, 10914, 2975}, {3869, 5687, 4420}, {3913, 37567, 3868}, {4642, 5255, 5262}, {5119, 54286, 2}, {5687, 12702, 3869}, {5902, 25439, 3957}, {5903, 8715, 34772}, {6745, 28228, 51423}, {7080, 20070, 11415}, {11362, 57287, 8}, {13996, 15326, 38455}, {17757, 28174, 5057}, {25413, 32141, 21740}


X(63137) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(5657), X(40))

Barycentrics    a*(a^3-b^3+5*b^2*c+5*b*c^2-c^3+a^2*(b+c)-a*(b^2+6*b*c+c^2)) : :
X(63137) = -5*X[1698]+4*X[3816], -5*X[3697]+4*X[18227], -3*X[16417]+2*X[51788]

X(63137) lies on these lines: {1, 474}, {2, 3895}, {3, 4853}, {4, 6736}, {8, 20}, {9, 80}, {10, 497}, {46, 3632}, {55, 9623}, {56, 3893}, {57, 519}, {65, 6765}, {72, 1750}, {78, 6915}, {100, 3576}, {144, 34632}, {145, 3333}, {165, 956}, {169, 728}, {200, 517}, {223, 60689}, {226, 34619}, {312, 51284}, {329, 28194}, {355, 12705}, {381, 51362}, {392, 8580}, {404, 36846}, {405, 53053}, {442, 51784}, {480, 43166}, {484, 3928}, {516, 3421}, {518, 2093}, {551, 51779}, {614, 4695}, {908, 31162}, {936, 3057}, {938, 12632}, {944, 37560}, {946, 5748}, {952, 3359}, {958, 61763}, {962, 21075}, {988, 59310}, {993, 35445}, {997, 2802}, {1058, 8582}, {1107, 31426}, {1125, 37556}, {1191, 21896}, {1329, 9614}, {1377, 31432}, {1420, 25440}, {1453, 5255}, {1572, 52959}, {1573, 31433}, {1698, 3816}, {1699, 17757}, {1709, 37712}, {1722, 37588}, {1737, 24392}, {2099, 3689}, {2270, 2321}, {2550, 24409}, {2551, 10624}, {2800, 15239}, {2809, 39959}, {2886, 31434}, {2932, 7993}, {2975, 35242}, {3085, 58463}, {3086, 21627}, {3174, 50195}, {3218, 31145}, {3241, 3306}, {3243, 5902}, {3245, 5696}, {3303, 3698}, {3305, 53620}, {3338, 3633}, {3339, 3555}, {3340, 3811}, {3361, 11519}, {3434, 5587}, {3436, 41869}, {3452, 30305}, {3485, 59722}, {3501, 16572}, {3543, 60966}, {3577, 37569}, {3587, 3654}, {3601, 8715}, {3616, 59587}, {3617, 5250}, {3621, 23958}, {3625, 5128}, {3626, 12514}, {3646, 9780}, {3655, 9945}, {3697, 18227}, {3711, 31165}, {3729, 3732}, {3746, 5436}, {3749, 16485}, {3751, 9025}, {3754, 11518}, {3813, 37828}, {3832, 5828}, {3870, 11529}, {3871, 19860}, {3885, 19861}, {3911, 34625}, {3921, 30393}, {3929, 4669}, {3953, 52183}, {4007, 54420}, {4030, 10319}, {4050, 32847}, {4187, 51785}, {4294, 5795}, {4304, 34607}, {4342, 20103}, {4413, 5919}, {4420, 11682}, {4421, 30282}, {4423, 4731}, {4424, 7174}, {4487, 32933}, {4511, 16200}, {4512, 9708}, {4659, 4692}, {4668, 11010}, {4701, 41348}, {4711, 5220}, {4714, 21231}, {4723, 56082}, {4816, 6763}, {4847, 5657}, {4855, 4861}, {4863, 34720}, {4866, 33576}, {4900, 13462}, {5123, 11235}, {5176, 49719}, {5219, 45701}, {5223, 15726}, {5231, 26446}, {5249, 11239}, {5252, 34612}, {5258, 59316}, {5288, 58887}, {5534, 37562}, {5552, 8227}, {5564, 54404}, {5603, 6745}, {5659, 9588}, {5692, 62218}, {5697, 15829}, {5705, 26475}, {5726, 17532}, {5730, 11531}, {5777, 46677}, {5815, 20070}, {5853, 8257}, {5882, 37526}, {5883, 44841}, {5903, 11523}, {6001, 17658}, {6326, 39776}, {6361, 12527}, {6734, 61122}, {6737, 12245}, {6766, 20007}, {6767, 10582}, {6918, 13600}, {7160, 24987}, {7171, 28204}, {7177, 25718}, {7283, 56799}, {7288, 59675}, {7289, 49688}, {7290, 37610}, {7680, 51416}, {7713, 56876}, {7971, 17857}, {8583, 9709}, {9574, 16975}, {9578, 10915}, {9589, 58798}, {9612, 12607}, {9613, 32049}, {9624, 27385}, {9874, 11024}, {10056, 25525}, {10072, 31190}, {10310, 12650}, {10389, 25439}, {10396, 10573}, {10444, 63151}, {10527, 31423}, {10679, 58328}, {11111, 34639}, {11372, 59387}, {11373, 47742}, {11680, 54447}, {12053, 25522}, {12331, 61146}, {12333, 12654}, {12513, 15803}, {12526, 12702}, {12541, 14986}, {12565, 31798}, {12640, 57284}, {12686, 12751}, {12701, 21031}, {13463, 25681}, {13464, 27383}, {13528, 52027}, {13996, 54408}, {14217, 55016}, {14872, 54156}, {15299, 30286}, {16370, 31508}, {16408, 31792}, {16417, 51788}, {16418, 51787}, {16483, 23511}, {16486, 16602}, {16973, 21888}, {17151, 50083}, {17469, 54418}, {17615, 61705}, {17647, 37709}, {17742, 21372}, {17754, 50282}, {18419, 30318}, {18446, 38665}, {18477, 24028}, {18492, 52367}, {19875, 51780}, {20588, 59388}, {21060, 28228}, {21073, 23058}, {21578, 34716}, {21842, 45036}, {21868, 39248}, {24473, 60955}, {24590, 29616}, {24929, 40587}, {26066, 32157}, {26364, 49600}, {28039, 32920}, {30116, 37553}, {30384, 30827}, {30852, 38021}, {31231, 45700}, {31424, 37568}, {32945, 54373}, {34718, 37584}, {34744, 60990}, {35262, 38460}, {35460, 50798}, {37534, 37727}, {37550, 41687}, {37551, 43174}, {37567, 54422}, {38155, 54370}, {38462, 54397}, {38901, 59332}, {42012, 59503}, {44675, 59572}, {48849, 56518}, {48915, 49718}, {49500, 62325}, {50843, 51767}, {51093, 51816}, {51782, 60937}, {54386, 59294}, {59333, 61296}, {59413, 60981}

X(63137) = midpoint of X(i) and X(j) for these {i,j}: {8, 17784}, {1750, 7991}
X(63137) = reflection of X(i) in X(j) for these {i,j}: {1, 1376}, {10860, 40}, {30305, 3452}, {497, 10}, {4342, 20103}, {57, 54286}, {7962, 997}
X(63137) = perspector of circumconic {{A, B, C, X(27834), X(44327)}}
X(63137) = X(i)-Dao conjugate of X(j) for these {i, j}: {62695, 4346}
X(63137) = pole of line {522, 21385} with respect to the Bevan circle
X(63137) = pole of line {2098, 12629} with respect to the Feuerbach hyperbola
X(63137) = pole of line {2360, 16948} with respect to the Stammler hyperbola
X(63137) = pole of line {6332, 47772} with respect to the Steiner circumellipse
X(63137) = pole of line {1639, 3669} with respect to the Steiner inellipse
X(63137) = pole of line {651, 1023} with respect to the Yff parabola
X(63137) = pole of line {30198, 53523} with respect to the Suppa-Cucoanes circle
X(63137) = pole of line {3452, 17067} with respect to the dual conic of Yff parabola
X(63137) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(56940)}}, {{A, B, C, X(80), X(189)}}, {{A, B, C, X(84), X(2161)}}, {{A, B, C, X(280), X(3680)}}, {{A, B, C, X(5573), X(36125)}}, {{A, B, C, X(7966), X(28234)}}, {{A, B, C, X(39130), X(56174)}}, {{A, B, C, X(45818), X(52541)}}
X(63137) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1739, 5573}, {1, 48696, 3158}, {2, 3895, 31393}, {8, 17784, 515}, {8, 40, 57279}, {8, 57287, 5881}, {10, 12575, 5084}, {10, 1697, 31435}, {40, 515, 10860}, {40, 57279, 54290}, {40, 5881, 84}, {46, 3632, 6762}, {56, 3893, 12629}, {65, 6765, 41863}, {78, 14923, 7982}, {100, 3872, 3576}, {165, 4915, 956}, {355, 49163, 12705}, {404, 36846, 61762}, {519, 54286, 57}, {997, 2802, 7962}, {1145, 3419, 3679}, {3306, 51786, 3241}, {3434, 6735, 5587}, {3576, 11525, 3872}, {3679, 5119, 9}, {3679, 5541, 5119}, {3749, 60353, 16485}, {4668, 11010, 41229}, {4882, 7991, 72}, {7962, 46917, 997}, {8580, 9819, 392}, {9709, 9957, 8583}, {10912, 59691, 1}, {12702, 34790, 12526}, {17647, 49169, 37709}, {25439, 54318, 10389}, {26364, 49600, 50443}, {52790, 52791, 1145}


X(63138) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(5818), X(40))

Barycentrics    a*(3*a^3-3*b^3+7*b^2*c+7*b*c^2-3*c^3+3*a^2*(b+c)-a*(3*b^2+10*b*c+3*c^2)) : :
X(63138) =

X(63138) lies on circumconic {{A, B, C, X(189), X(5560)}} and on these lines: {1, 4004}, {8, 20}, {9, 5560}, {10, 5225}, {35, 56152}, {36, 3680}, {46, 2136}, {57, 3244}, {100, 7982}, {119, 12699}, {165, 10914}, {200, 12702}, {474, 9819}, {484, 6762}, {519, 5128}, {728, 5011}, {962, 27525}, {1125, 1697}, {1145, 5691}, {1155, 12629}, {1420, 2802}, {1698, 1706}, {1739, 52183}, {2093, 3913}, {2270, 2325}, {2975, 11525}, {3158, 5903}, {3218, 20054}, {3333, 3623}, {3340, 8715}, {3359, 34773}, {3421, 5493}, {3576, 14923}, {3579, 4853}, {3586, 8256}, {3622, 31393}, {3626, 3929}, {3632, 3928}, {3679, 57288}, {3753, 53053}, {3754, 10389}, {3871, 11529}, {3872, 5303}, {3878, 46917}, {3880, 15803}, {3885, 61762}, {3916, 4915}, {3987, 7290}, {4050, 36643}, {4293, 12640}, {4301, 59591}, {4677, 34620}, {4691, 12514}, {4855, 16200}, {4873, 54420}, {4882, 41860}, {5082, 43174}, {5175, 38127}, {5183, 54422}, {5231, 10943}, {5250, 35595}, {5251, 11530}, {5438, 5697}, {5440, 11531}, {5552, 31162}, {5687, 7991}, {5693, 51378}, {5836, 61763}, {6154, 41687}, {6361, 6736}, {6735, 41869}, {6737, 50810}, {6738, 34639}, {6765, 37567}, {7080, 28194}, {7962, 25440}, {7966, 59333}, {9579, 10915}, {9588, 24390}, {9589, 17757}, {9623, 37568}, {11518, 25439}, {11523, 48696}, {12119, 18802}, {12650, 13528}, {12703, 27385}, {12705, 18480}, {12953, 37829}, {16780, 21888}, {20070, 21075}, {25466, 31436}, {25522, 30305}, {27529, 38021}, {31231, 49600}, {31434, 32157}, {34595, 37563}, {41229, 51781}, {48661, 51362}

X(63138) = reflection of X(i) in X(j) for these {i,j}: {5225, 10}, {9614, 37828}
X(63138) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 40, 54290}, {8, 54290, 57279}, {46, 5541, 2136}, {1698, 9614, 3847}, {1706, 5119, 31435}, {2093, 3913, 41863}, {3847, 37828, 1698}


X(63139) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(6211), X(40))

Barycentrics    2*a^3-b^3-c^3-2*a^2*(b+c)+a*(b^2+b*c+c^2) : :

X(63139) lies on these lines: {1, 24169}, {2, 3749}, {3, 5100}, {8, 20}, {10, 8616}, {30, 4737}, {42, 50289}, {43, 17766}, {55, 25494}, {75, 4030}, {100, 3705}, {190, 30615}, {200, 4388}, {312, 528}, {320, 41711}, {321, 14458}, {341, 6284}, {344, 10385}, {345, 34607}, {497, 1997}, {516, 32937}, {519, 3210}, {614, 49704}, {750, 29843}, {902, 33117}, {982, 17765}, {1054, 29844}, {1261, 36002}, {1376, 4514}, {2177, 33072}, {2550, 3757}, {3052, 33118}, {3058, 18743}, {3242, 33068}, {3416, 3996}, {3434, 7081}, {3550, 29673}, {3586, 36926}, {3661, 32945}, {3662, 3938}, {3681, 4450}, {3685, 10327}, {3689, 4417}, {3699, 24703}, {3703, 6154}, {3722, 25957}, {3744, 4429}, {3748, 17234}, {3751, 20101}, {3790, 20095}, {3836, 17715}, {3868, 50583}, {3870, 4645}, {3871, 5300}, {3883, 59296}, {3895, 60452}, {3899, 49998}, {3913, 7270}, {3935, 6327}, {3961, 4660}, {4085, 17716}, {4090, 28562}, {4113, 17346}, {4126, 17336}, {4294, 56311}, {4358, 34611}, {4359, 50310}, {4383, 49709}, {4421, 32851}, {4434, 33141}, {4642, 50582}, {4680, 48696}, {4723, 11114}, {4849, 28566}, {4863, 14829}, {4865, 60714}, {4906, 49699}, {4952, 17276}, {4972, 29634}, {4975, 34719}, {5015, 5687}, {5081, 37391}, {5101, 56180}, {5119, 16086}, {5174, 11406}, {5272, 26073}, {5281, 30741}, {5423, 30332}, {5847, 20012}, {5853, 10453}, {5903, 50624}, {7179, 20553}, {7262, 49693}, {7962, 47624}, {8817, 14189}, {9580, 17777}, {9780, 37024}, {10624, 19582}, {10987, 20483}, {11238, 37758}, {11246, 49499}, {15171, 46937}, {16496, 26840}, {17363, 17759}, {17364, 50584}, {17367, 17469}, {17396, 29816}, {17592, 50288}, {17597, 49695}, {17780, 27131}, {18193, 58371}, {19786, 48829}, {19804, 49732}, {20045, 33131}, {20056, 62392}, {21282, 31053}, {24177, 49771}, {24342, 29669}, {24602, 31038}, {24715, 32920}, {25306, 51377}, {26227, 33110}, {26790, 59557}, {27538, 49991}, {28599, 33077}, {28606, 50286}, {29655, 56010}, {29670, 33109}, {29676, 59679}, {30829, 49736}, {31508, 59779}, {31993, 49720}, {32859, 62236}, {32923, 48627}, {32925, 49996}, {32927, 33094}, {32939, 49688}, {32941, 33079}, {33085, 49458}, {33121, 37540}, {33174, 49473}, {36534, 54311}, {37652, 49772}, {44307, 49746}, {44447, 62222}, {44720, 57288}, {51783, 62297}, {56313, 61763}

X(63139) = pole of line {23681, 27064} with respect to the dual conic of Yff parabola
X(63139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(14458)}}, {{A, B, C, X(5101), X(7185)}}, {{A, B, C, X(9369), X(34414)}}
X(63139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 17784, 32932}, {8, 20, 9369}, {55, 32850, 29641}, {100, 5014, 3705}, {3586, 51284, 36926}, {3938, 32948, 3662}, {3961, 4660, 27184}, {4030, 34612, 75}, {32929, 33091, 3790}, {32945, 33074, 3661}


X(63140) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(12717), X(40))

Barycentrics    3*a^3-b^3-b^2*c-b*c^2-c^3-a^2*(b+c)-a*(b^2+c^2) : :

X(63140) lies on these lines: {2, 31}, {6, 44419}, {7, 3757}, {8, 20}, {10, 1707}, {30, 5774}, {38, 145}, {42, 193}, {55, 69}, {57, 3883}, {75, 3474}, {78, 4300}, {100, 5739}, {109, 56367}, {141, 3052}, {144, 7172}, {149, 5372}, {165, 3687}, {190, 3974}, {200, 1742}, {210, 54280}, {306, 35258}, {312, 5698}, {320, 3475}, {321, 24280}, {329, 7081}, {333, 2550}, {344, 3683}, {345, 3416}, {346, 5282}, {347, 17797}, {390, 10453}, {391, 672}, {497, 14829}, {516, 11679}, {599, 21000}, {612, 17257}, {896, 3617}, {902, 3620}, {956, 37331}, {968, 17316}, {1001, 18141}, {1150, 3434}, {1155, 3966}, {1193, 37339}, {1211, 37540}, {1215, 24695}, {1330, 3085}, {1376, 14555}, {1460, 30479}, {1473, 2975}, {1791, 3556}, {1792, 37601}, {1824, 12530}, {1962, 29585}, {1997, 4679}, {2094, 50310}, {2177, 20080}, {2221, 57280}, {2223, 3785}, {2292, 20009}, {2308, 51171}, {2328, 24632}, {2899, 12572}, {3006, 55868}, {3011, 26132}, {3219, 10327}, {3421, 47041}, {3436, 15971}, {3550, 33082}, {3579, 5814}, {3600, 61412}, {3616, 37554}, {3621, 36263}, {3622, 17469}, {3666, 51192}, {3679, 16570}, {3685, 34255}, {3705, 5744}, {3717, 3929}, {3729, 44446}, {3745, 17321}, {3749, 49511}, {3769, 24723}, {3771, 50304}, {3870, 4001}, {3879, 37553}, {3912, 4512}, {3926, 37586}, {3996, 34607}, {4000, 33068}, {4042, 34612}, {4082, 25728}, {4294, 10449}, {4310, 26840}, {4357, 5269}, {4362, 24248}, {4392, 19993}, {4413, 41002}, {4414, 33088}, {4417, 5218}, {4419, 32926}, {4428, 4966}, {4434, 4703}, {4514, 24477}, {4641, 59406}, {4650, 33076}, {4655, 26245}, {4660, 33137}, {4678, 33162}, {4684, 10389}, {4734, 20043}, {4972, 24597}, {5205, 18228}, {5233, 59572}, {5273, 29641}, {5278, 52245}, {5294, 9780}, {5361, 33110}, {5423, 6172}, {5552, 55910}, {5687, 37425}, {5711, 13725}, {5745, 30741}, {5827, 61524}, {5847, 17594}, {5905, 26227}, {6690, 30828}, {6776, 37619}, {6872, 17751}, {6904, 28274}, {7080, 55912}, {7102, 56205}, {7226, 20020}, {7262, 33079}, {7322, 50093}, {7398, 21371}, {7676, 56182}, {8616, 33085}, {9588, 58822}, {9776, 16823}, {9965, 24349}, {10371, 37568}, {10527, 37530}, {10578, 21296}, {11246, 42697}, {11269, 32947}, {12514, 54433}, {13736, 59305}, {15589, 30946}, {15983, 50423}, {16466, 56737}, {17135, 20075}, {17165, 20078}, {17184, 26228}, {17206, 37580}, {17236, 29838}, {17277, 26040}, {17592, 50284}, {17601, 32861}, {17739, 30694}, {17740, 33075}, {17770, 29670}, {17776, 33078}, {18252, 40962}, {19591, 37109}, {19785, 32950}, {19789, 33102}, {20011, 31303}, {20056, 31302}, {20073, 32925}, {21747, 29663}, {22325, 37516}, {24703, 28808}, {25304, 26893}, {25568, 33066}, {25571, 28247}, {26038, 56507}, {26061, 46933}, {27529, 55902}, {28599, 31091}, {29668, 49705}, {29828, 41011}, {30567, 40998}, {30568, 51090}, {32773, 37642}, {32863, 61155}, {32913, 36479}, {33156, 35284}, {35261, 59692}, {36573, 56949}, {38000, 50289}, {50127, 53663}, {50215, 55913}, {51170, 61358}, {55086, 56460}

X(63140) = reflection of X(i) in X(j) for these {i,j}: {26098, 32916}
X(63140) = anticomplement of X(26098)
X(63140) = perspector of circumconic {{A, B, C, X(4586), X(44327)}}
X(63140) = pole of line {2360, 3736} with respect to the Stammler hyperbola
X(63140) = pole of line {824, 4529} with respect to the Steiner circumellipse
X(63140) = pole of line {651, 37215} with respect to the Yff parabola
X(63140) = pole of line {8822, 30966} with respect to the Wallace hyperbola
X(63140) = pole of line {17023, 23681} with respect to the dual conic of Yff parabola
X(63140) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(985)}}, {{A, B, C, X(189), X(14621)}}, {{A, B, C, X(280), X(52133)}}, {{A, B, C, X(2113), X(28026)}}, {{A, B, C, X(4307), X(7224)}}, {{A, B, C, X(39130), X(40718)}}
X(63140) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 20101, 4307}, {8, 9778, 32932}, {10, 1707, 26065}, {144, 7172, 32937}, {171, 50295, 2}, {321, 44447, 24280}, {752, 32916, 26098}, {896, 33074, 33163}, {902, 33080, 33171}, {1150, 4450, 3434}, {3219, 10327, 27549}, {3416, 4640, 345}, {4362, 24248, 30699}, {14552, 17784, 8}, {33074, 33163, 3617}, {33080, 33171, 3620}


X(63141) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(21628), X(40))

Barycentrics    a*(a^6-(b^2-c^2)^2*(b^2-4*b*c+c^2)-3*a^4*(b^2+4*b*c+c^2)+a^2*(3*b^4+8*b^3*c+2*b^2*c^2+8*b*c^3+3*c^4)) : :
X(63141) =

X(63141) lies on circumconic {{A, B, C, X(39130), X(62178)}} and on these lines: {1, 7411}, {2, 37551}, {3, 3306}, {4, 3305}, {7, 1697}, {8, 20}, {9, 3146}, {10, 10431}, {21, 165}, {27, 11471}, {30, 55104}, {46, 4304}, {57, 3522}, {65, 7675}, {78, 7580}, {85, 18655}, {224, 11682}, {376, 5709}, {377, 516}, {411, 4855}, {412, 5342}, {452, 59418}, {464, 25935}, {517, 10884}, {548, 37532}, {550, 37584}, {728, 5279}, {908, 37421}, {920, 4324}, {936, 36002}, {946, 37112}, {950, 1445}, {958, 7964}, {962, 5249}, {971, 3951}, {1004, 19861}, {1012, 3579}, {1071, 12702}, {1259, 6244}, {1478, 7162}, {1490, 3984}, {1593, 5314}, {1621, 12651}, {1657, 26921}, {1698, 10883}, {1699, 4197}, {1706, 5273}, {1721, 2292}, {1742, 54421}, {1750, 3876}, {1766, 48890}, {1768, 9963}, {2136, 60990}, {2951, 9961}, {3088, 56464}, {3091, 61122}, {3218, 9841}, {3219, 5059}, {3220, 33524}, {3241, 6766}, {3339, 11020}, {3359, 59345}, {3528, 37534}, {3529, 7330}, {3534, 24467}, {3576, 37105}, {3601, 5665}, {3646, 9779}, {3651, 37531}, {3692, 7270}, {3781, 11381}, {3832, 7308}, {3868, 3895}, {3869, 12565}, {3870, 7957}, {3871, 7994}, {3912, 37419}, {3915, 12652}, {3928, 62120}, {3929, 15683}, {4208, 9812}, {4292, 5119}, {4296, 7070}, {4297, 41338}, {4384, 19645}, {4652, 37022}, {4666, 8273}, {5047, 21153}, {5068, 51780}, {5221, 10178}, {5227, 14927}, {5256, 15852}, {5285, 11413}, {5437, 15717}, {5541, 13243}, {5584, 19860}, {5587, 37433}, {5691, 38154}, {5758, 31164}, {5759, 52684}, {5780, 37411}, {5781, 21872}, {6223, 17781}, {6361, 6916}, {6604, 18650}, {6684, 6837}, {6762, 12536}, {6838, 30852}, {6839, 41869}, {6847, 55867}, {6884, 31423}, {6894, 52835}, {6908, 31266}, {6926, 31224}, {6987, 55871}, {6993, 18483}, {7013, 34059}, {7171, 17538}, {7293, 37198}, {7400, 56462}, {7713, 37104}, {7982, 18444}, {7992, 11684}, {8251, 44243}, {8545, 9579}, {8703, 37612}, {8822, 16284}, {9441, 54418}, {9943, 16465}, {9960, 54156}, {10304, 37526}, {10391, 37567}, {10404, 38454}, {10434, 10451}, {10444, 20880}, {10805, 49163}, {11036, 31393}, {11220, 54422}, {11518, 60938}, {11531, 63159}, {12514, 59355}, {12520, 41853}, {12625, 60974}, {13867, 32636}, {14021, 24590}, {15071, 43178}, {15832, 41339}, {16117, 37700}, {16862, 33575}, {16936, 55405}, {17126, 35658}, {17578, 27065}, {18446, 37585}, {18540, 26878}, {19642, 34196}, {21734, 27003}, {23958, 62102}, {26446, 37447}, {26893, 46850}, {26935, 39568}, {28164, 41229}, {28194, 55109}, {31424, 54286}, {31425, 59350}, {31775, 34352}, {31803, 41860}, {31806, 50528}, {33521, 34925}, {34772, 35986}, {35238, 37302}, {35239, 37287}, {35242, 37106}, {35258, 37228}, {35262, 35976}, {35595, 50689}, {37201, 50861}, {37285, 59320}, {37300, 59326}, {37358, 50031}, {37434, 54357}, {37436, 59385}, {41006, 54420}, {44238, 59318}, {45738, 52346}, {50695, 57284}, {50701, 55870}, {50725, 60969}, {52404, 56456}

X(63141) = midpoint of X(i) and X(j) for these {i,j}: {6361, 10532}
X(63141) = reflection of X(i) in X(j) for these {i,j}: {10884, 37426}, {11520, 10884}, {19860, 5584}, {5250, 59340}
X(63141) = pole of line {2360, 7987} with respect to the Stammler hyperbola
X(63141) = pole of line {7274, 23681} with respect to the dual conic of Yff parabola
X(63141) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 40, 63}, {20, 54398, 10430}, {20, 59417, 9799}, {40, 10860, 56288}, {411, 6282, 4855}, {517, 10884, 11520}, {517, 37426, 10884}, {962, 37108, 5249}, {2951, 12526, 9961}, {3218, 50693, 9841}, {5732, 7991, 3868}, {15852, 37537, 5256}, {26878, 33703, 18540}


X(63142) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(43174), X(40))

Barycentrics    a*(a^3-b^3+7*b^2*c+7*b*c^2-c^3+a^2*(b+c)-a*(b^2+8*b*c+c^2)) : :

X(63142) lies on these lines: {1, 3833}, {2, 2136}, {8, 20}, {9, 4678}, {10, 3895}, {46, 3625}, {57, 3621}, {65, 8168}, {78, 1482}, {100, 4853}, {145, 1706}, {200, 11531}, {404, 12629}, {484, 4816}, {516, 56879}, {517, 3984}, {519, 3338}, {936, 3885}, {956, 31663}, {1145, 62354}, {1376, 3893}, {1385, 3872}, {1697, 3305}, {2975, 4915}, {3218, 20052}, {3333, 20050}, {3336, 3632}, {3340, 3935}, {3419, 61510}, {3434, 6736}, {3436, 51118}, {3523, 7966}, {3626, 5119}, {3679, 5178}, {3680, 46917}, {3681, 7991}, {3692, 54324}, {3698, 4666}, {3702, 51284}, {3869, 4882}, {3870, 5836}, {3871, 9623}, {3880, 19861}, {3890, 8580}, {3913, 19860}, {3922, 42871}, {3951, 12702}, {4002, 6767}, {4050, 40131}, {4060, 54420}, {4420, 7982}, {4668, 5541}, {4669, 41229}, {4861, 11525}, {4863, 8256}, {5082, 5818}, {5086, 38154}, {5260, 53053}, {5438, 38460}, {5440, 37624}, {5554, 5853}, {5691, 49719}, {5795, 20075}, {6734, 10806}, {6762, 31145}, {6765, 11520}, {7080, 30852}, {9350, 56630}, {9578, 33110}, {9780, 31393}, {10107, 41711}, {10270, 38669}, {10389, 11530}, {10528, 31266}, {10529, 31224}, {12529, 46685}, {12648, 57284}, {17294, 24590}, {17597, 56174}, {17781, 20070}, {20014, 27003}, {21896, 37542}, {24392, 25005}, {24467, 51515}, {30389, 32634}, {31435, 53620}, {31828, 34790}, {32049, 34612}, {33108, 51784}, {33179, 56387}, {37571, 48696}, {41869, 56880}, {44720, 56082}, {46934, 51779}, {49163, 59388}, {49984, 54386}, {55104, 59503}, {59414, 60949}

X(63142) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(189), X(39962)}}, {{A, B, C, X(280), X(56091)}}, {{A, B, C, X(39130), X(56135)}}
X(63142) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {145, 1706, 3306}, {200, 14923, 11682}, {1376, 3893, 36846}, {1697, 3617, 3305}, {1697, 51781, 3617}, {3872, 5687, 4855}, {4668, 5541, 12514}


X(63143) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(48363), X(40))

Barycentrics    a^4-5*a^3*(b+c)+5*a*(b-c)^2*(b+c)-2*(b^2-c^2)^2+a^2*(b^2+10*b*c+c^2) : :
X(63143) = -5*X[1]+8*X[140], 2*X[3]+X[3632], -X[4]+4*X[3626], -4*X[5]+X[11531], 5*X[8]+X[20], -10*X[10]+7*X[3090], -X[145]+4*X[6684], -5*X[355]+2*X[3627], -8*X[547]+3*X[58241], -4*X[549]+3*X[30392], 2*X[550]+X[61244], -10*X[551]+13*X[61859] and many others

X(63143) lies on these lines: {1, 140}, {2, 16200}, {3, 3632}, {4, 3626}, {5, 11531}, {8, 20}, {9, 6976}, {10, 3090}, {30, 37712}, {46, 37709}, {55, 36920}, {57, 12647}, {78, 11014}, {80, 9580}, {145, 6684}, {165, 952}, {200, 1145}, {210, 381}, {355, 3627}, {376, 28236}, {484, 37708}, {495, 18421}, {516, 4669}, {519, 3158}, {547, 58241}, {549, 30392}, {550, 61244}, {551, 61859}, {573, 4007}, {631, 3244}, {632, 61277}, {936, 8256}, {944, 3625}, {946, 3617}, {956, 2077}, {962, 4678}, {970, 59313}, {1000, 11019}, {1006, 25439}, {1125, 61867}, {1385, 3633}, {1482, 1698}, {1483, 30389}, {1512, 62218}, {1656, 11278}, {1697, 10573}, {1702, 49233}, {1703, 49232}, {1706, 12704}, {1737, 7962}, {1766, 4034}, {1788, 61762}, {2093, 5252}, {2099, 31434}, {2136, 49168}, {2324, 61693}, {2800, 3681}, {2802, 24392}, {3036, 14217}, {3057, 58643}, {3241, 10165}, {3243, 49626}, {3333, 4848}, {3340, 10039}, {3475, 11529}, {3523, 13607}, {3525, 3636}, {3526, 33179}, {3530, 61289}, {3533, 15808}, {3534, 50871}, {3543, 28232}, {3545, 38098}, {3555, 15016}, {3577, 25006}, {3579, 4816}, {3616, 61863}, {3621, 5882}, {3624, 10222}, {3634, 10595}, {3653, 61283}, {3655, 14891}, {3656, 7988}, {3680, 10916}, {3697, 45776}, {3753, 57005}, {3817, 4745}, {3828, 34631}, {3845, 61257}, {3850, 58248}, {3861, 12699}, {3893, 31786}, {3901, 35004}, {3913, 10902}, {3919, 6173}, {4002, 13374}, {4297, 4701}, {4299, 41348}, {4301, 4691}, {4420, 40257}, {4532, 10711}, {4662, 12672}, {4711, 18908}, {4746, 6361}, {4847, 11525}, {4863, 13996}, {4873, 21942}, {4882, 17857}, {4900, 37364}, {4901, 6210}, {4915, 6282}, {5073, 5691}, {5119, 5727}, {5128, 45287}, {5219, 25415}, {5223, 12751}, {5251, 10679}, {5258, 11248}, {5259, 37622}, {5272, 26727}, {5290, 50193}, {5355, 9620}, {5493, 62171}, {5534, 16132}, {5535, 54286}, {5537, 22758}, {5541, 19914}, {5554, 31435}, {5564, 10444}, {5687, 11012}, {5693, 34790}, {5697, 9581}, {5722, 9819}, {5726, 39542}, {5731, 31145}, {5734, 46933}, {5771, 30282}, {5817, 38210}, {5836, 37625}, {5886, 11224}, {5901, 16189}, {5903, 9578}, {5904, 37562}, {6256, 56879}, {6264, 11219}, {6546, 28292}, {6713, 26726}, {6762, 49169}, {6769, 21677}, {6951, 60933}, {7508, 51817}, {7688, 8168}, {7987, 31425}, {7989, 12811}, {8148, 9956}, {8193, 9626}, {8236, 38130}, {8666, 59332}, {8715, 59331}, {9579, 37710}, {9589, 18480}, {9610, 54295}, {9613, 37567}, {9623, 37569}, {9625, 37546}, {9746, 28870}, {9779, 50872}, {9780, 13464}, {9812, 50796}, {10175, 38021}, {10246, 15701}, {10247, 11231}, {10283, 61869}, {10303, 20057}, {10578, 14563}, {10827, 61703}, {10915, 11523}, {10944, 15803}, {10950, 61763}, {11001, 50814}, {11010, 26921}, {11041, 13405}, {11194, 33956}, {11280, 37692}, {11372, 24393}, {11539, 61280}, {11812, 51094}, {12100, 50830}, {12101, 28212}, {12513, 37561}, {12619, 12653}, {12625, 55104}, {12629, 32426}, {12649, 61122}, {13600, 25917}, {13624, 61794}, {13893, 35641}, {13947, 35642}, {14839, 22697}, {14853, 38191}, {14869, 61281}, {14872, 31798}, {14892, 38034}, {14923, 31806}, {15178, 61831}, {15180, 37587}, {15685, 28160}, {15689, 28204}, {15691, 28224}, {15693, 31662}, {15704, 61246}, {15712, 61292}, {15716, 17502}, {15717, 20054}, {15719, 51085}, {15888, 41870}, {16173, 38128}, {16191, 19876}, {16192, 34773}, {16236, 50194}, {16475, 38116}, {16569, 32486}, {16667, 59680}, {17652, 58666}, {18357, 61976}, {18391, 31393}, {18395, 30323}, {18481, 44245}, {18525, 28168}, {18526, 31663}, {20052, 62078}, {20070, 31673}, {20423, 50953}, {21165, 34701}, {21271, 41010}, {22759, 59329}, {22793, 61991}, {23340, 58630}, {24391, 37526}, {25005, 25522}, {28150, 34632}, {28154, 62050}, {28164, 34627}, {28172, 50864}, {28178, 61251}, {28186, 44903}, {28190, 37705}, {28194, 50687}, {28198, 62027}, {28473, 62634}, {28862, 53018}, {30308, 61263}, {30315, 61268}, {31436, 37080}, {31447, 32900}, {32049, 54422}, {34595, 61276}, {37563, 37721}, {37701, 38129}, {37706, 59316}, {37707, 58887}, {37728, 53054}, {37730, 53053}, {37732, 59294}, {38036, 38200}, {38074, 61983}, {38081, 61262}, {38121, 59372}, {38138, 61995}, {38201, 59386}, {38213, 59391}, {38214, 59392}, {40273, 61258}, {41099, 51120}, {41229, 49163}, {41990, 61260}, {44430, 48851}, {44580, 50824}, {47354, 51125}, {47359, 51132}, {47534, 54995}, {50789, 51737}, {50802, 51067}, {50805, 51105}, {50808, 62115}, {50818, 62055}, {50868, 62049}, {50949, 50958}, {50950, 50961}, {50951, 51130}, {50952, 51174}, {50955, 51168}, {51070, 61979}, {51071, 58441}, {51080, 62090}, {51095, 61833}, {51110, 61279}, {51705, 61781}, {51709, 61901}, {58231, 61813}, {58237, 61875}, {58244, 61937}, {61252, 62038}, {61253, 62036}

X(63143) = midpoint of X(i) and X(j) for these {i,j}: {8, 59417}, {165, 4677}, {5603, 12245}, {5731, 31145}, {16200, 50817}, {34718, 59503}, {50810, 59388}
X(63143) = reflection of X(i) in X(j) for these {i,j}: {1, 26446}, {165, 3654}, {10246, 50821}, {10247, 11231}, {1482, 11230}, {1699, 5790}, {11224, 5886}, {14853, 38191}, {16173, 38128}, {16200, 2}, {16475, 38116}, {18908, 4711}, {2, 38127}, {25055, 38066}, {26446, 5690}, {355, 59400}, {381, 38176}, {3241, 10165}, {3545, 38098}, {3576, 5657}, {3656, 38042}, {3679, 59503}, {3817, 4745}, {31162, 5587}, {34747, 61287}, {37701, 38129}, {38021, 53620}, {38036, 38200}, {38127, 50827}, {38155, 3626}, {4, 38155}, {40, 59417}, {5587, 3679}, {5603, 10}, {50811, 165}, {5817, 38210}, {5886, 38112}, {51071, 58441}, {51087, 31662}, {51093, 10246}, {59372, 38121}, {59386, 38201}, {59388, 4669}, {59391, 38213}, {59392, 38214}, {59417, 11362}, {6264, 11219}, {61283, 61614}, {61287, 549}, {61291, 3576}, {61294, 3655}, {61705, 18908}, {7967, 10164}, {7982, 5603}, {8236, 38130}, {9812, 50796}
X(63143) = pole of line {6006, 47804} with respect to the orthoptic circle of the Steiner Inellipse
X(63143) = pole of line {28225, 54239} with respect to the polar circle
X(63143) = pole of line {5727, 9957} with respect to the Feuerbach hyperbola
X(63143) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(189), X(45098)}}, {{A, B, C, X(280), X(5559)}}, {{A, B, C, X(34414), X(47745)}}
X(63143) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16200, 61275}, {2, 28234, 16200}, {3, 3632, 61296}, {8, 20, 47745}, {8, 40, 5881}, {8, 59417, 515}, {10, 12245, 7982}, {10, 5603, 54447}, {10, 7982, 8227}, {165, 4677, 952}, {165, 952, 50811}, {355, 7991, 41869}, {515, 11362, 59417}, {515, 59417, 40}, {516, 4669, 59388}, {517, 38176, 381}, {517, 5587, 31162}, {517, 5790, 1699}, {517, 59503, 3679}, {519, 10164, 7967}, {519, 3576, 61291}, {519, 5657, 3576}, {549, 61287, 30392}, {944, 43174, 35242}, {952, 3654, 165}, {1385, 3633, 61288}, {1482, 1698, 9624}, {1699, 3679, 5790}, {1699, 5790, 5587}, {1737, 7962, 37704}, {3523, 20050, 13607}, {3625, 43174, 944}, {3626, 28228, 38155}, {3633, 9588, 1385}, {3654, 50804, 8703}, {3654, 50823, 4677}, {3656, 38042, 7988}, {5119, 41684, 5727}, {5657, 7967, 10164}, {5690, 5844, 26446}, {5844, 26446, 1}, {5886, 38112, 19875}, {7982, 54447, 5603}, {7987, 61524, 31425}, {7988, 51066, 38042}, {7989, 58245, 22791}, {8148, 9956, 11522}, {9819, 30286, 5722}, {10175, 38021, 61265}, {10246, 51093, 61285}, {10247, 11231, 25055}, {10247, 38066, 11231}, {11224, 19875, 5886}, {12699, 61510, 37714}, {16191, 19876, 61274}, {16200, 50817, 28234}, {18395, 30323, 50443}, {28174, 59400, 355}, {28228, 38155, 4}, {28234, 38127, 2}, {28234, 50827, 38127}, {30392, 34747, 61287}, {34718, 59503, 517}, {37563, 37721, 41864}, {37727, 61524, 7987}, {50810, 59388, 516}, {58221, 61294, 3655}, {61283, 61614, 3653}


X(63144) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(51118), X(40))

Barycentrics    a*(3*a^3-3*b^3+b^2*c+b*c^2-3*c^3+3*a^2*(b+c)-a*(3*b^2+4*b*c+3*c^2)) : :

X(63144) lies on these lines: {1, 4757}, {2, 5128}, {3, 11682}, {8, 20}, {9, 41348}, {10, 44447}, {21, 2093}, {46, 1125}, {55, 11520}, {57, 3622}, {65, 35258}, {72, 43719}, {78, 3579}, {100, 3984}, {145, 3928}, {165, 3869}, {191, 16558}, {200, 11684}, {329, 27525}, {341, 25734}, {411, 54156}, {484, 1698}, {517, 4652}, {518, 4917}, {527, 10528}, {553, 10587}, {573, 58822}, {631, 51423}, {758, 59316}, {958, 5183}, {962, 59491}, {997, 37572}, {1155, 19861}, {1334, 36643}, {1621, 3339}, {1697, 3218}, {1706, 3219}, {1707, 4642}, {1748, 11471}, {1759, 55337}, {1761, 3692}, {2082, 41319}, {2136, 20054}, {2975, 7991}, {3085, 31164}, {3244, 5119}, {3256, 20846}, {3340, 4189}, {3359, 6988}, {3361, 3890}, {3434, 5493}, {3436, 43174}, {3474, 24987}, {3617, 3929}, {3633, 3895}, {3650, 16139}, {3707, 54420}, {3822, 4338}, {3847, 24914}, {3868, 61763}, {3870, 37568}, {3871, 54422}, {3872, 3916}, {3873, 53053}, {3877, 15803}, {3878, 35262}, {3951, 5687}, {3962, 4421}, {4004, 16418}, {4084, 59337}, {4188, 15829}, {4190, 5837}, {4295, 31266}, {4511, 35242}, {4640, 10107}, {4666, 5221}, {4848, 6872}, {5046, 60947}, {5180, 8227}, {5217, 44663}, {5253, 53056}, {5267, 25415}, {5698, 24982}, {5709, 6935}, {5727, 15680}, {5730, 31663}, {5744, 20070}, {5880, 47516}, {6361, 6734}, {6684, 11415}, {6737, 50808}, {6762, 20014}, {6831, 12699}, {6907, 55104}, {6962, 54198}, {7080, 17781}, {7308, 46930}, {7330, 48363}, {7995, 36002}, {8583, 9352}, {9588, 11681}, {9589, 11680}, {10527, 28194}, {10609, 12515}, {10895, 28534}, {11518, 61155}, {12625, 20066}, {13384, 17548}, {16126, 51817}, {16370, 50193}, {16566, 61087}, {18526, 24467}, {19535, 50194}, {20067, 37709}, {20075, 24391}, {21165, 37562}, {25728, 52353}, {31224, 41012}, {34647, 52793}, {34744, 41575}, {34772, 35445}, {36277, 54418}, {36279, 54392}, {42697, 54404}, {52362, 54295}, {60905, 60966}

X(63144) = pole of line {522, 48341} with respect to the Bevan circle
X(63144) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(28163)}}, {{A, B, C, X(189), X(54756)}}
X(63144) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 56288, 54290}, {40, 54290, 8}, {40, 56288, 63}, {46, 5250, 3306}, {100, 12526, 3984}, {165, 3869, 4855}, {3878, 58887, 35262}, {4640, 37567, 19860}, {6684, 11415, 30852}


X(63145) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(54370), X(40))

Barycentrics    4*a^3+2*a*b*c-3*a^2*(b+c)-(b-c)^2*(b+c) : :
X(63145) = -2*X[1387]+3*X[35271], -2*X[5087]+3*X[6174], -3*X[13587]+2*X[44675], -3*X[36004]+X[38460]

X(63145) lies on these lines: {2, 9580}, {8, 20}, {10, 11114}, {30, 6735}, {35, 404}, {36, 13279}, {55, 1004}, {57, 20075}, {78, 6361}, {79, 41550}, {100, 516}, {142, 61155}, {145, 2094}, {149, 3911}, {165, 3434}, {190, 49991}, {200, 17781}, {224, 6769}, {228, 22010}, {320, 50744}, {376, 3872}, {377, 61763}, {390, 3306}, {517, 10609}, {518, 6154}, {519, 3245}, {527, 3935}, {528, 1155}, {550, 10914}, {553, 3957}, {643, 18653}, {678, 32856}, {896, 49772}, {902, 1738}, {950, 20066}, {962, 4855}, {971, 46685}, {1145, 28160}, {1260, 18524}, {1266, 20045}, {1376, 4679}, {1387, 35271}, {1512, 5840}, {1519, 3149}, {1697, 4190}, {1698, 2478}, {1706, 6872}, {1770, 8715}, {1836, 4421}, {1936, 35281}, {2078, 3254}, {2136, 20076}, {2177, 50307}, {2325, 16548}, {2550, 35258}, {2802, 21578}, {2975, 12512}, {3006, 4781}, {3011, 24715}, {3052, 26723}, {3158, 5905}, {3218, 5853}, {3244, 3873}, {3340, 3623}, {3359, 37000}, {3474, 3870}, {3550, 3914}, {3579, 6734}, {3601, 3622}, {3633, 36977}, {3650, 31938}, {3651, 16004}, {3667, 4380}, {3681, 5696}, {3683, 49732}, {3687, 4450}, {3689, 17768}, {3712, 46553}, {3717, 4427}, {3722, 24231}, {3755, 17126}, {3838, 4995}, {3869, 5493}, {3871, 4292}, {3880, 15326}, {3882, 46519}, {3895, 4293}, {3977, 32850}, {3996, 4001}, {3999, 53534}, {4002, 50241}, {4188, 12053}, {4193, 59675}, {4297, 14923}, {4302, 54286}, {4316, 5541}, {4356, 9347}, {4429, 35263}, {4432, 60423}, {4434, 17764}, {4511, 28194}, {4640, 25006}, {4652, 5082}, {4666, 10385}, {4693, 49990}, {4847, 49719}, {4857, 58405}, {5080, 28150}, {5086, 43174}, {5087, 6174}, {5128, 12649}, {5176, 28164}, {5180, 28232}, {5183, 44669}, {5217, 24541}, {5253, 12575}, {5274, 31224}, {5281, 31266}, {5303, 59320}, {5316, 61156}, {5439, 10386}, {5440, 28174}, {5552, 41869}, {5745, 33110}, {5795, 15680}, {5836, 15338}, {5842, 13528}, {5847, 14459}, {5850, 62236}, {6068, 15726}, {6224, 28234}, {6284, 24982}, {6684, 52367}, {6743, 11684}, {6921, 9614}, {6934, 49163}, {7280, 49600}, {7354, 34687}, {7359, 51376}, {8261, 10107}, {9352, 11019}, {9371, 16586}, {9578, 31295}, {9579, 10528}, {9812, 30852}, {9945, 28212}, {10106, 37256}, {10164, 11680}, {10167, 34773}, {10483, 10915}, {10527, 35242}, {10916, 37572}, {11010, 17647}, {11373, 19537}, {11661, 11681}, {11682, 20070}, {12625, 41348}, {12912, 37034}, {12953, 37828}, {13199, 48363}, {13405, 20292}, {13463, 37605}, {13587, 44675}, {13729, 24042}, {15228, 48696}, {15310, 51377}, {17025, 50294}, {17579, 31397}, {17601, 29639}, {17718, 61153}, {17757, 28146}, {17763, 28580}, {18201, 49989}, {18483, 27529}, {20015, 28610}, {21000, 24789}, {21093, 28550}, {24390, 31663}, {24466, 39776}, {24611, 61087}, {24692, 50748}, {24709, 50535}, {24987, 37568}, {25440, 41012}, {28154, 51362}, {28198, 51409}, {28526, 32927}, {29229, 38389}, {29353, 56878}, {29636, 50091}, {30305, 35262}, {31018, 46917}, {31019, 61157}, {31053, 59584}, {31164, 63168}, {31789, 61524}, {32007, 33765}, {32948, 59692}, {33072, 59547}, {33117, 59544}, {34605, 34639}, {34707, 36279}, {35595, 46916}, {36004, 38460}, {37248, 37601}, {37524, 49627}, {37531, 56387}, {37567, 41575}, {38454, 44785}, {40910, 54059}, {41011, 60714}, {49704, 62300}, {49709, 49987}, {49710, 49988}, {50579, 50585}, {61154, 61716}

X(63145) = midpoint of X(i) and X(j) for these {i,j}: {3218, 20095}, {4316, 5541}, {13199, 48363}, {15228, 48696}
X(63145) = reflection of X(i) in X(j) for these {i,j}: {149, 3911}, {26015, 1155}, {46685, 51378}, {5057, 6745}, {51423, 5440}, {908, 100}
X(63145) = perspector of circumconic {{A, B, C, X(44327), X(56081)}}
X(63145) = pole of line {29641, 47808} with respect to the excircles-radical circle
X(63145) = pole of line {3161, 6332} with respect to the Steiner circumellipse
X(63145) = pole of line {651, 3676} with respect to the Yff parabola
X(63145) = pole of line {23681, 31164} with respect to the dual conic of Yff parabola
X(63145) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(2717)}}, {{A, B, C, X(189), X(54735)}}, {{A, B, C, X(56939), X(61437)}}
X(63145) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {100, 5057, 6745}, {100, 516, 908}, {165, 3434, 59491}, {200, 44447, 17781}, {516, 6745, 5057}, {2550, 35258, 54357}, {3474, 34607, 3870}, {4640, 34612, 25006}, {5440, 28174, 51423}, {9352, 34611, 11019}, {9778, 17784, 63}


X(63146) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(55104), X(40))

Barycentrics    2*a^4-a^3*(b+c)-a^2*(b+c)^2+a*(b+c)^3-(b^2-c^2)^2 : :
X(63146) = -3*X[210]+X[6284], -3*X[354]+4*X[12436], -3*X[3058]+5*X[25917], -5*X[3616]+4*X[40270], -5*X[3697]+3*X[11113], -3*X[3753]+2*X[6738], -2*X[3812]+3*X[49732], -5*X[5439]+4*X[6744], -3*X[22278]+2*X[58493]

X(63146) lies on these lines: {1, 142}, {2, 59587}, {3, 4847}, {4, 200}, {5, 6745}, {7, 41863}, {8, 20}, {9, 4294}, {10, 55}, {11, 6700}, {12, 3689}, {19, 2321}, {21, 25006}, {28, 40910}, {30, 12527}, {35, 5745}, {42, 5717}, {46, 24391}, {56, 4863}, {65, 519}, {71, 3686}, {72, 516}, {78, 946}, {100, 5178}, {145, 8000}, {149, 41012}, {169, 51972}, {210, 6284}, {226, 3811}, {306, 379}, {329, 41869}, {354, 12436}, {355, 6736}, {377, 3870}, {380, 2345}, {387, 5269}, {388, 6765}, {390, 31435}, {392, 10866}, {404, 26015}, {442, 13405}, {474, 11019}, {497, 936}, {498, 59584}, {499, 24386}, {517, 5907}, {518, 4292}, {527, 1770}, {528, 960}, {551, 57005}, {631, 5231}, {674, 22300}, {758, 10123}, {908, 4420}, {944, 4853}, {952, 13369}, {956, 4297}, {958, 4304}, {962, 20007}, {971, 31777}, {976, 3914}, {993, 37601}, {997, 12053}, {1010, 60721}, {1043, 32850}, {1058, 8583}, {1089, 1842}, {1103, 34231}, {1125, 3925}, {1145, 3626}, {1210, 1376}, {1260, 11496}, {1420, 34625}, {1453, 4339}, {1479, 3452}, {1698, 17552}, {1706, 12625}, {1724, 21059}, {1802, 1855}, {1839, 3949}, {1861, 41227}, {1869, 4680}, {1877, 56198}, {1891, 54294}, {2057, 26333}, {2077, 6705}, {2093, 3632}, {2264, 17355}, {2301, 2329}, {2325, 54324}, {2340, 3191}, {2475, 3935}, {2551, 3586}, {2800, 15094}, {2809, 18732}, {2886, 13411}, {2893, 62386}, {2894, 5249}, {2901, 43214}, {2975, 7688}, {3058, 25917}, {3074, 3939}, {3085, 3158}, {3086, 5438}, {3146, 5815}, {3190, 37529}, {3198, 5295}, {3219, 20066}, {3244, 56997}, {3333, 6904}, {3421, 4882}, {3436, 31673}, {3474, 54422}, {3476, 12629}, {3486, 9623}, {3600, 6764}, {3601, 19843}, {3616, 40270}, {3617, 11106}, {3625, 36972}, {3634, 17590}, {3661, 17691}, {3679, 5234}, {3681, 28150}, {3682, 40960}, {3687, 5015}, {3697, 11113}, {3701, 49991}, {3710, 32929}, {3711, 12953}, {3713, 10445}, {3717, 7283}, {3722, 28027}, {3753, 6738}, {3779, 5847}, {3812, 49732}, {3813, 44675}, {3826, 51715}, {3869, 28194}, {3871, 24987}, {3872, 5882}, {3883, 9534}, {3886, 54433}, {3911, 10916}, {3912, 17682}, {3913, 5794}, {3916, 7964}, {3938, 23536}, {3940, 12699}, {3947, 17532}, {3951, 44447}, {3961, 13161}, {3984, 11415}, {3996, 7270}, {4011, 59685}, {4061, 5814}, {4101, 6327}, {4187, 20103}, {4208, 10578}, {4293, 6762}, {4295, 11523}, {4301, 5730}, {4302, 24393}, {4303, 35338}, {4305, 34701}, {4311, 12513}, {4313, 59413}, {4347, 43035}, {4413, 9843}, {4421, 26066}, {4423, 51724}, {4431, 11683}, {4511, 13464}, {4647, 18673}, {4662, 57288}, {4666, 37462}, {4669, 57006}, {4677, 34744}, {4679, 9670}, {4685, 11355}, {4701, 5183}, {4709, 49561}, {4848, 37550}, {4855, 10165}, {4861, 13607}, {4917, 11239}, {5044, 15171}, {5084, 8580}, {5086, 6735}, {5090, 11406}, {5119, 5837}, {5175, 5587}, {5177, 63168}, {5218, 5705}, {5219, 31418}, {5247, 49772}, {5250, 20075}, {5259, 6666}, {5266, 37326}, {5271, 14021}, {5274, 25522}, {5288, 21578}, {5293, 24210}, {5415, 13883}, {5416, 13936}, {5436, 19855}, {5439, 6744}, {5530, 60714}, {5534, 6850}, {5540, 52528}, {5552, 6886}, {5657, 10268}, {5693, 12529}, {5722, 8582}, {5744, 35242}, {5750, 16783}, {5768, 37560}, {5787, 6244}, {5828, 54448}, {5836, 8261}, {5840, 14740}, {5880, 41570}, {5930, 8270}, {6197, 56877}, {6198, 30686}, {6245, 10310}, {6246, 55016}, {6260, 17857}, {6361, 12526}, {7081, 7385}, {7308, 41864}, {7330, 20588}, {7486, 62710}, {8074, 40997}, {8168, 32049}, {8227, 27383}, {8273, 43175}, {8726, 12777}, {9578, 34619}, {9581, 46917}, {9612, 25568}, {9780, 17554}, {9858, 12915}, {9945, 13624}, {10039, 47033}, {10172, 27529}, {10404, 41711}, {10529, 35262}, {10580, 17580}, {10582, 17582}, {10591, 30827}, {10822, 17766}, {11036, 59412}, {11041, 45636}, {11235, 25681}, {11238, 24954}, {11248, 51755}, {11375, 31140}, {11525, 61296}, {11679, 36698}, {11680, 27385}, {11826, 14872}, {12059, 40263}, {12432, 14054}, {12528, 25722}, {12565, 35514}, {12573, 37544}, {12640, 12647}, {12679, 59687}, {13728, 19868}, {14923, 28234}, {15310, 29958}, {15733, 44547}, {15803, 24477}, {15829, 30305}, {16863, 18530}, {17052, 59641}, {17064, 36573}, {17314, 54424}, {17362, 21866}, {17527, 18527}, {17597, 24171}, {17757, 19925}, {18357, 51362}, {18641, 50441}, {18908, 46677}, {19284, 29835}, {19854, 59337}, {20015, 37435}, {20018, 50289}, {20117, 51379}, {20262, 55111}, {21060, 51118}, {21096, 40131}, {22278, 58493}, {24914, 59675}, {24929, 31419}, {25639, 59719}, {26047, 37024}, {28043, 54305}, {29843, 56768}, {30144, 49600}, {30282, 30478}, {31393, 56936}, {31769, 58689}, {31789, 58643}, {32636, 51463}, {33110, 34772}, {33131, 36565}, {33137, 37552}, {36568, 39559}, {37000, 42012}, {37076, 56810}, {37225, 54327}, {37551, 43161}, {37739, 40587}, {40659, 45120}, {40942, 54316}, {49524, 50054}, {50307, 50584}, {51380, 58631}

X(63146) = midpoint of X(i) and X(j) for these {i,j}: {8, 57287}, {1770, 5904}, {3632, 45287}, {3893, 10944}, {6253, 7957}, {11826, 14872}
X(63146) = reflection of X(i) in X(j) for these {i,j}: {1, 57284}, {10106, 17647}, {10572, 5795}, {10624, 960}, {12527, 34790}, {12575, 12447}, {14054, 12432}, {15171, 5044}, {3555, 4298}, {31769, 58689}, {31789, 58643}, {57288, 4662}, {6284, 12572}, {72, 6743}, {950, 10}
X(63146) = perspector of circumconic {{A, B, C, X(37206), X(44327)}}
X(63146) = X(i)-complementary conjugate of X(j) for these {i, j}: {56137, 1329}
X(63146) = pole of line {72, 12053} with respect to the Feuerbach hyperbola
X(63146) = pole of line {6332, 47676} with respect to the Steiner circumellipse
X(63146) = pole of line {3676, 47795} with respect to the Steiner inellipse
X(63146) = pole of line {9, 3782} with respect to the dual conic of Yff parabola
X(63146) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(2191)}}, {{A, B, C, X(189), X(277)}}, {{A, B, C, X(280), X(596)}}, {{A, B, C, X(34414), X(57279)}}, {{A, B, C, X(39130), X(41506)}}, {{A, B, C, X(40161), X(56944)}}, {{A, B, C, X(52571), X(61114)}}
X(63146) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 200, 21075}, {8, 17784, 40}, {8, 20, 57279}, {8, 57287, 515}, {8, 9778, 54398}, {10, 4314, 405}, {12, 3689, 59722}, {30, 34790, 12527}, {78, 3434, 946}, {100, 5178, 6734}, {100, 6734, 6684}, {145, 56999, 11037}, {210, 6284, 12572}, {377, 3870, 21620}, {519, 17647, 10106}, {519, 4298, 3555}, {528, 960, 10624}, {908, 52367, 18483}, {976, 3914, 34937}, {1706, 12625, 18391}, {1770, 5904, 527}, {1802, 1855, 40869}, {2550, 3189, 1}, {2886, 56176, 13411}, {3059, 7957, 72}, {3419, 5687, 10}, {3555, 11112, 4298}, {3679, 10572, 5795}, {3697, 11113, 18250}, {3813, 59691, 44675}, {3893, 10944, 519}, {3913, 5794, 31397}, {3925, 37080, 1125}, {4420, 52367, 908}, {4855, 10527, 10165}, {4882, 5691, 3421}, {5044, 15171, 40998}, {5175, 7080, 5587}, {5436, 38200, 19855}, {5438, 24392, 3086}, {5722, 9709, 8582}, {6154, 21677, 37568}, {6253, 7957, 516}, {6904, 36845, 3333}, {9778, 54398, 54290}, {10916, 25440, 3911}, {10944, 34720, 3893}, {12447, 12575, 392}, {21060, 51118, 58798}, {47033, 48696, 10039}, {49168, 54286, 4848}


X(63147) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(61087), X(40))

Barycentrics    b^3+b^2*c+b*c^2+c^3+a^2*(b+c)-2*a*(b^2+c^2) : :
X(63147) = -X[3891]+3*X[33114], -X[3938]+3*X[33161], -4*X[20106]+3*X[33122]

X(63147) lies on these lines: {1, 3710}, {2, 3677}, {8, 20}, {10, 38}, {11, 3967}, {31, 519}, {35, 50607}, {42, 49529}, {55, 3977}, {57, 4901}, {75, 1233}, {81, 49476}, {100, 1261}, {142, 17140}, {145, 26065}, {190, 4514}, {200, 17740}, {209, 306}, {226, 3006}, {244, 62673}, {307, 18018}, {312, 26015}, {321, 4712}, {341, 24982}, {344, 4666}, {345, 3870}, {346, 2257}, {354, 3932}, {497, 56082}, {516, 5014}, {527, 6327}, {537, 2887}, {672, 2321}, {726, 3914}, {896, 3625}, {902, 59544}, {908, 3705}, {946, 22010}, {950, 36500}, {956, 7085}, {958, 2218}, {960, 52354}, {968, 36479}, {982, 33165}, {984, 33169}, {1072, 4385}, {1089, 10916}, {1125, 26061}, {1203, 50589}, {1210, 3701}, {1211, 49515}, {1215, 29639}, {1265, 19861}, {1266, 33131}, {1376, 30615}, {1473, 5687}, {1621, 49466}, {1707, 3632}, {1738, 17155}, {1757, 32866}, {2177, 59547}, {2239, 4685}, {2260, 3610}, {2308, 49684}, {2886, 4054}, {2968, 17658}, {2975, 5314}, {3011, 4438}, {3052, 49690}, {3218, 33091}, {3219, 3883}, {3242, 32777}, {3244, 17469}, {3305, 27549}, {3416, 4001}, {3434, 3729}, {3452, 3952}, {3555, 3695}, {3596, 24996}, {3621, 36277}, {3626, 33074}, {3663, 4972}, {3666, 4884}, {3679, 26034}, {3681, 3687}, {3686, 5282}, {3720, 4078}, {3740, 4126}, {3744, 9053}, {3751, 33088}, {3755, 17147}, {3757, 54357}, {3782, 28582}, {3790, 10453}, {3791, 17769}, {3816, 4009}, {3820, 59586}, {3823, 40688}, {3836, 42055}, {3846, 42054}, {3873, 3912}, {3879, 33093}, {3891, 33114}, {3920, 33170}, {3925, 49483}, {3935, 33168}, {3938, 33161}, {3957, 32849}, {3961, 33167}, {3966, 5220}, {3971, 29655}, {3974, 24477}, {3989, 29685}, {3995, 29835}, {3996, 49698}, {4011, 29844}, {4025, 62430}, {4028, 32848}, {4030, 4640}, {4070, 61651}, {4082, 4358}, {4101, 5904}, {4138, 32856}, {4292, 5300}, {4353, 32774}, {4357, 7226}, {4383, 49987}, {4388, 17781}, {4392, 29679}, {4416, 33075}, {4425, 49520}, {4430, 4684}, {4431, 29036}, {4513, 7123}, {4641, 5846}, {4651, 24393}, {4661, 33077}, {4677, 16570}, {4697, 50288}, {4722, 51196}, {4737, 6735}, {4848, 61412}, {4854, 49523}, {4863, 5695}, {4865, 32935}, {4883, 17243}, {4942, 11235}, {5016, 12527}, {5223, 5739}, {5249, 24349}, {5256, 59406}, {5269, 20020}, {5284, 25101}, {5332, 50026}, {5542, 18139}, {5552, 55900}, {5698, 25734}, {5741, 21060}, {5744, 7172}, {5745, 26227}, {5774, 48804}, {5847, 32854}, {5850, 32859}, {5853, 32929}, {5905, 31091}, {6057, 51463}, {6535, 31136}, {6541, 42057}, {7080, 55905}, {7081, 59491}, {7191, 17353}, {7262, 49506}, {7290, 19993}, {8582, 52353}, {9041, 50104}, {9436, 31130}, {9776, 39570}, {10164, 51583}, {10481, 21432}, {10527, 55902}, {11031, 31397}, {12053, 25253}, {13161, 36568}, {13405, 33113}, {13407, 30172}, {15481, 41002}, {15523, 49511}, {16496, 33171}, {17054, 25967}, {17063, 60423}, {17184, 20068}, {17279, 17597}, {17355, 24552}, {17449, 29687}, {17527, 59582}, {17598, 33159}, {17599, 38047}, {17674, 24171}, {17716, 49534}, {17728, 62621}, {17751, 24391}, {17884, 26665}, {17889, 49532}, {18134, 49499}, {19785, 49446}, {20045, 56520}, {20106, 33122}, {20196, 59599}, {20352, 53129}, {20556, 56024}, {21077, 30171}, {21084, 21442}, {21085, 49510}, {21620, 57808}, {21949, 49525}, {22343, 50611}, {24175, 24988}, {24210, 32925}, {24216, 30957}, {24231, 25957}, {24239, 32931}, {24821, 33099}, {24841, 33124}, {24954, 59598}, {25079, 28018}, {25453, 49455}, {25496, 50313}, {25881, 52541}, {25904, 37549}, {26128, 30768}, {26223, 29832}, {26228, 56519}, {26723, 32922}, {26770, 51972}, {27003, 60459}, {27064, 29840}, {27184, 31302}, {27529, 55901}, {27627, 59685}, {28269, 46827}, {28526, 33094}, {29594, 48648}, {29653, 49479}, {29654, 49464}, {29819, 38049}, {29843, 41839}, {29857, 33144}, {29861, 33152}, {29872, 33153}, {29873, 33148}, {30179, 33888}, {30741, 31266}, {31161, 33105}, {32773, 49447}, {32778, 49448}, {32782, 39597}, {32844, 32938}, {32847, 32913}, {32850, 32939}, {32852, 34379}, {32860, 49772}, {32861, 49712}, {32865, 49493}, {32923, 33115}, {32926, 33121}, {32927, 33119}, {32940, 33072}, {33078, 62235}, {33081, 49505}, {33084, 49503}, {33092, 49490}, {33127, 50752}, {33154, 49517}, {33158, 49675}, {37639, 50000}, {37663, 59596}, {38191, 46901}, {41711, 50744}, {49700, 59664}, {49766, 54352}, {56508, 59296}

X(63147) = midpoint of X(i) and X(j) for these {i,j}: {5014, 32933}, {32854, 32912}
X(63147) = reflection of X(i) in X(j) for these {i,j}: {306, 3703}, {3744, 44416}, {3891, 40940}, {3914, 29673}, {3938, 59692}
X(63147) = X(i)-Dao conjugate of X(j) for these {i, j}: {25066, 4000}, {62279, 663}
X(63147) = pole of line {693, 44448} with respect to the dual conic of Bevan circle
X(63147) = pole of line {321, 17284} with respect to the dual conic of Yff parabola
X(63147) = intersection, other than A, B, C, of circumconics {{A, B, C, X(84), X(596)}}, {{A, B, C, X(189), X(39749)}}, {{A, B, C, X(280), X(18018)}}, {{A, B, C, X(7291), X(40399)}}
X(63147) = barycentric product X(i)*X(j) for these (i, j): {17625, 312}, {25066, 75}
X(63147) = barycentric quotient X(i)/X(j) for these (i, j): {17625, 57}, {25066, 1}
X(63147) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 33163, 5294}, {10, 38, 54311}, {38, 33162, 10}, {57, 4901, 10327}, {518, 3703, 306}, {726, 29673, 3914}, {1376, 30615, 49991}, {3006, 17165, 226}, {3219, 33090, 3883}, {3681, 33089, 3687}, {3687, 4899, 3681}, {3705, 32937, 908}, {3744, 44416, 35263}, {3873, 32862, 3912}, {3891, 33114, 40940}, {3938, 33161, 59692}, {3989, 29685, 50290}, {4082, 11019, 4358}, {4388, 62222, 17781}, {4430, 32858, 4684}, {4438, 32920, 3011}, {4865, 32935, 41011}, {4884, 49524, 3666}, {5014, 32933, 516}, {7191, 33166, 17353}, {7226, 29667, 4357}, {9053, 44416, 3744}, {17155, 33117, 1738}, {20068, 31079, 17184}, {24349, 29641, 5249}, {32854, 32912, 5847}, {32922, 33118, 26723}, {32925, 33120, 24210}, {32940, 33072, 50307}, {41011, 50743, 4865}, {49466, 56078, 1621}, {50752, 59730, 33127}


X(63148) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(3), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(a^3-a*b^2+b^2*(b-c)-a^2*(b+c))*(a^3-a*c^2+c^2*(-b+c)-a^2*(b+c)) : :

X(63148) lies on these lines: {6, 57792}, {7, 2175}, {171, 3664}, {894, 25001}, {927, 21746}, {1275, 17365}, {3063, 24002}, {4644, 30705}, {7175, 9454}

X(63148) = isogonal conjugate of X(16588)
X(63148) = isotomic conjugate of X(40997)
X(63148) = trilinear pole of line {4367, 8638}
X(63148) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16588}, {9, 21746}, {31, 40997}, {33, 22070}, {41, 2886}, {42, 16699}, {55, 17451}, {57, 52562}, {75, 9449}, {86, 21819}, {92, 22368}, {284, 21804}, {650, 46177}, {1334, 18165}, {2175, 20236}, {2194, 21029}, {2311, 51464}, {18088, 40972}, {46388, 61184}
X(63148) = X(i)-vertex conjugate of X(j) for these {i, j}: {2175, 63148}
X(63148) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 40997}, {3, 16588}, {206, 9449}, {223, 17451}, {478, 21746}, {1214, 21029}, {3160, 2886}, {5452, 52562}, {22391, 22368}, {40590, 21804}, {40592, 16699}, {40593, 20236}, {40600, 21819}, {40615, 21118}
X(63148) = X(i)-cross conjugate of X(j) for these {i, j}: {6, 3449}, {665, 927}, {21791, 109}
X(63148) = pole of line {9449, 16588} with respect to the Stammler hyperbola
X(63148) = pole of line {16588, 16699} with respect to the Wallace hyperbola
X(63148) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9440)}}, {{A, B, C, X(2), X(13405)}}, {{A, B, C, X(6), X(2175)}}, {{A, B, C, X(7), X(1275)}}, {{A, B, C, X(57), X(87)}}, {{A, B, C, X(76), X(39695)}}, {{A, B, C, X(81), X(801)}}, {{A, B, C, X(83), X(1170)}}, {{A, B, C, X(85), X(34399)}}, {{A, B, C, X(86), X(10509)}}, {{A, B, C, X(89), X(23586)}}, {{A, B, C, X(95), X(37130)}}, {{A, B, C, X(279), X(1509)}}, {{A, B, C, X(286), X(37214)}}, {{A, B, C, X(665), X(21746)}}, {{A, B, C, X(1016), X(56314)}}, {{A, B, C, X(1086), X(17365)}}, {{A, B, C, X(1221), X(34084)}}, {{A, B, C, X(1223), X(42310)}}, {{A, B, C, X(2982), X(2985)}}, {{A, B, C, X(3062), X(55941)}}, {{A, B, C, X(4000), X(4644)}}, {{A, B, C, X(5228), X(6180)}}, {{A, B, C, X(5845), X(51150)}}, {{A, B, C, X(6185), X(9309)}}, {{A, B, C, X(7277), X(17366)}}, {{A, B, C, X(21453), X(23618)}}, {{A, B, C, X(23062), X(39704)}}, {{A, B, C, X(31618), X(43762)}}, {{A, B, C, X(40408), X(56005)}}, {{A, B, C, X(46740), X(57816)}}, {{A, B, C, X(51190), X(59405)}}, {{A, B, C, X(56144), X(56265)}}, {{A, B, C, X(60913), X(60914)}}
X(63148) = barycentric product X(i)*X(j) for these (i, j): {3449, 6063}, {40419, 7}, {63188, 75}
X(63148) = barycentric quotient X(i)/X(j) for these (i, j): {2, 40997}, {6, 16588}, {7, 2886}, {32, 9449}, {55, 52562}, {56, 21746}, {57, 17451}, {65, 21804}, {81, 16699}, {85, 20236}, {109, 46177}, {184, 22368}, {213, 21819}, {222, 22070}, {226, 21029}, {927, 61184}, {1014, 18165}, {1284, 51464}, {3449, 55}, {3676, 21118}, {40419, 8}, {63188, 1}


X(63149) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(673), X(3), X(7))

Barycentrics    (a+b-c)*(a-b+c)*(a^4-a^3*(b+c)+b*(b-c)^2*(b+c)-a^2*c*(b+c)-a*(b-c)*(b+c)^2)*(a^4-a^3*(b+c)-a^2*b*(b+c)+(b-c)^2*c*(b+c)+a*(b-c)*(b+c)^2) : :

X(63149) lies on these lines: {6, 3668}, {7, 284}, {9, 1441}, {55, 226}, {278, 2299}, {333, 6063}, {948, 5759}, {1436, 60992}, {1445, 39943}, {2195, 4331}, {2259, 52560}, {2263, 60673}, {2291, 54366}, {2316, 12848}, {2337, 60991}, {2343, 61003}, {2364, 60982}, {4312, 5757}, {6354, 14827}, {7077, 15556}, {8232, 33635}, {8804, 34820}, {18655, 60937}, {39063, 54233}, {39273, 42309}, {60722, 60883}

X(63149) = trilinear pole of line {663, 676}
X(63149) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 41228}, {9, 991}, {55, 24635}, {212, 37448}
X(63149) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 41228}, {223, 24635}, {478, 991}, {40837, 37448}
X(63149) = X(i)-cross conjugate of X(j) for these {i, j}: {60883, 7}
X(63149) = pole of line {5728, 56144} with respect to the Feuerbach hyperbola
X(63149) = pole of line {5228, 5805} with respect to the dual conic of Yff parabola
X(63149) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(954)}}, {{A, B, C, X(2), X(13405)}}, {{A, B, C, X(4), X(279)}}, {{A, B, C, X(6), X(9)}}, {{A, B, C, X(7), X(226)}}, {{A, B, C, X(27), X(2184)}}, {{A, B, C, X(79), X(1847)}}, {{A, B, C, X(92), X(15909)}}, {{A, B, C, X(222), X(55086)}}, {{A, B, C, X(329), X(60992)}}, {{A, B, C, X(522), X(39455)}}, {{A, B, C, X(527), X(54366)}}, {{A, B, C, X(553), X(8232)}}, {{A, B, C, X(943), X(1170)}}, {{A, B, C, X(949), X(37389)}}, {{A, B, C, X(1223), X(25430)}}, {{A, B, C, X(1434), X(5665)}}, {{A, B, C, X(1445), X(1708)}}, {{A, B, C, X(1836), X(23062)}}, {{A, B, C, X(1890), X(50861)}}, {{A, B, C, X(2006), X(17718)}}, {{A, B, C, X(2263), X(42309)}}, {{A, B, C, X(2346), X(2982)}}, {{A, B, C, X(3911), X(12848)}}, {{A, B, C, X(4031), X(60995)}}, {{A, B, C, X(5219), X(60982)}}, {{A, B, C, X(5435), X(61014)}}, {{A, B, C, X(6598), X(9311)}}, {{A, B, C, X(8804), X(18623)}}, {{A, B, C, X(13478), X(36101)}}, {{A, B, C, X(14621), X(34018)}}, {{A, B, C, X(15556), X(16609)}}, {{A, B, C, X(21446), X(43762)}}, {{A, B, C, X(39721), X(60227)}}, {{A, B, C, X(42483), X(60167)}}, {{A, B, C, X(43751), X(56153)}}, {{A, B, C, X(52393), X(60170)}}, {{A, B, C, X(52835), X(52840)}}
X(63149) = barycentric product X(i)*X(j) for these (i, j): {56, 58024}, {56144, 7}
X(63149) = barycentric quotient X(i)/X(j) for these (i, j): {1, 41228}, {56, 991}, {57, 24635}, {278, 37448}, {56144, 8}, {58024, 3596}


X(63150) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(34855), X(1), X(6))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^3+b^3-b^2*c+b*c^2-c^3-a^2*(b+c)+a*(-b^2-2*b*c+c^2))*(a^3-b^3+b^2*c-b*c^2+c^3-a^2*(b+c)+a*(b^2-2*b*c-c^2)) : :

X(63150) lies on these lines: {1, 348}, {6, 77}, {7, 2191}, {31, 56359}, {34, 279}, {56, 3423}, {57, 1438}, {106, 6183}, {218, 7131}, {269, 30682}, {326, 2340}, {614, 1088}, {998, 1323}, {1014, 1474}, {1027, 3676}, {1038, 8813}, {1440, 7129}, {2297, 17353}, {3445, 27832}, {5308, 28739}, {5572, 10579}, {7053, 63178}, {18611, 34444}, {56220, 56809}

X(63150) = isogonal conjugate of X(28043)
X(63150) = trilinear pole of line {649, 43049}
X(63150) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 28043}, {8, 37580}, {9, 40131}, {55, 2550}, {100, 6182}, {200, 2263}, {220, 948}, {1334, 16054}, {3939, 47123}
X(63150) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 28043}, {223, 2550}, {478, 40131}, {6609, 2263}, {8054, 6182}, {40617, 47123}
X(63150) = X(i)-cross conjugate of X(j) for these {i, j}: {1471, 57}, {3423, 39273}
X(63150) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6)}}, {{A, B, C, X(2), X(61373)}}, {{A, B, C, X(7), X(1170)}}, {{A, B, C, X(19), X(9442)}}, {{A, B, C, X(27), X(37064)}}, {{A, B, C, X(28), X(36706)}}, {{A, B, C, X(31), X(614)}}, {{A, B, C, X(33), X(2115)}}, {{A, B, C, X(57), X(241)}}, {{A, B, C, X(63), X(39732)}}, {{A, B, C, X(77), X(279)}}, {{A, B, C, X(81), X(479)}}, {{A, B, C, X(105), X(40779)}}, {{A, B, C, X(294), X(9309)}}, {{A, B, C, X(326), X(7053)}}, {{A, B, C, X(513), X(28849)}}, {{A, B, C, X(593), X(41081)}}, {{A, B, C, X(757), X(53597)}}, {{A, B, C, X(949), X(3423)}}, {{A, B, C, X(969), X(1119)}}, {{A, B, C, X(1174), X(56330)}}, {{A, B, C, X(1471), X(2263)}}, {{A, B, C, X(2982), X(40154)}}, {{A, B, C, X(3577), X(55983)}}, {{A, B, C, X(4341), X(10481)}}, {{A, B, C, X(5222), X(25930)}}, {{A, B, C, X(5256), X(5308)}}, {{A, B, C, X(18025), X(41790)}}, {{A, B, C, X(34036), X(55086)}}, {{A, B, C, X(39728), X(55985)}}, {{A, B, C, X(40148), X(61376)}}, {{A, B, C, X(43760), X(56264)}}
X(63150) = barycentric product X(i)*X(j) for these (i, j): {269, 58004}, {279, 56098}, {514, 6183}, {1088, 949}, {3423, 85}, {39273, 7}
X(63150) = barycentric quotient X(i)/X(j) for these (i, j): {6, 28043}, {56, 40131}, {57, 2550}, {269, 948}, {604, 37580}, {649, 6182}, {949, 200}, {1014, 16054}, {1407, 2263}, {3423, 9}, {3669, 47123}, {6183, 190}, {39273, 8}, {56098, 346}, {58004, 341}, {58944, 56183}


X(63151) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3452), X(1), X(8))

Barycentrics    b*c*(-a+b+c)*(a^2+(b-c)^2+2*a*(b+c)) : :

X(63151) lies on these lines: {7, 8}, {78, 4360}, {86, 3872}, {145, 24993}, {192, 3965}, {200, 3875}, {239, 3713}, {273, 56026}, {309, 58029}, {312, 2321}, {314, 3680}, {321, 20921}, {333, 40979}, {346, 30854}, {347, 31627}, {519, 44735}, {1212, 27544}, {2136, 10889}, {3617, 24547}, {3672, 4646}, {3673, 4882}, {3681, 21273}, {3705, 30758}, {3718, 4901}, {3729, 36973}, {3885, 17183}, {3932, 9711}, {4007, 4858}, {4051, 20258}, {4073, 49521}, {4357, 6736}, {4452, 26563}, {4461, 30807}, {4511, 17393}, {4513, 27420}, {4657, 27526}, {4751, 28797}, {4847, 4967}, {4853, 10436}, {4861, 17394}, {4875, 26059}, {4915, 25590}, {5224, 6735}, {5295, 5806}, {5437, 11679}, {5552, 17322}, {5814, 6259}, {5936, 56074}, {6743, 17861}, {7046, 54314}, {7080, 17321}, {7172, 26234}, {7377, 21074}, {10446, 10914}, {10527, 28653}, {14923, 20245}, {16706, 28795}, {16777, 27399}, {17158, 17863}, {17233, 20946}, {17370, 28813}, {17400, 28789}, {19786, 23600}, {20237, 28609}, {20905, 29616}, {20937, 30596}, {23062, 50560}, {24540, 38460}, {25878, 40872}, {25895, 26048}, {50095, 60972}

X(63151) = isotomic conjugate of X(7091)
X(63151) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 7091}, {32, 63164}, {56, 7050}, {184, 11546}, {604, 2297}, {663, 58985}, {1219, 1397}, {6574, 57181}
X(63151) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 7050}, {2, 7091}, {2345, 2285}, {2999, 34046}, {3161, 2297}, {3672, 60937}, {4646, 37593}, {5437, 3304}, {6376, 63164}, {18228, 3361}, {62585, 1219}, {62605, 11546}
X(63151) = pole of line {18344, 50523} with respect to the polar circle
X(63151) = pole of line {2194, 16947} with respect to the Stammler hyperbola
X(63151) = pole of line {4885, 59971} with respect to the Steiner inellipse
X(63151) = pole of line {21, 1412} with respect to the Wallace hyperbola
X(63151) = pole of line {4130, 47793} with respect to the dual conic of incircle
X(63151) = pole of line {4554, 4626} with respect to the dual conic of Feuerbach hyperbola
X(63151) = pole of line {3663, 24174} with respect to the dual conic of Yff parabola
X(63151) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(312)}}, {{A, B, C, X(8), X(30693)}}, {{A, B, C, X(9), X(8581)}}, {{A, B, C, X(65), X(1697)}}, {{A, B, C, X(69), X(52406)}}, {{A, B, C, X(75), X(59761)}}, {{A, B, C, X(85), X(3596)}}, {{A, B, C, X(309), X(42697)}}, {{A, B, C, X(314), X(39126)}}, {{A, B, C, X(318), X(4968)}}, {{A, B, C, X(322), X(58029)}}, {{A, B, C, X(1122), X(3452)}}, {{A, B, C, X(1441), X(30713)}}, {{A, B, C, X(2999), X(3687)}}, {{A, B, C, X(3212), X(4110)}}, {{A, B, C, X(4087), X(10030)}}, {{A, B, C, X(4451), X(24349)}}, {{A, B, C, X(5936), X(31994)}}, {{A, B, C, X(7321), X(20570)}}, {{A, B, C, X(15587), X(42015)}}, {{A, B, C, X(31995), X(56349)}}, {{A, B, C, X(52715), X(55984)}}, {{A, B, C, X(56074), X(57877)}}
X(63151) = barycentric product X(i)*X(j) for these (i, j): {312, 3672}, {314, 4656}, {1191, 28659}, {1697, 76}, {2999, 3596}, {18228, 75}, {28660, 4646}, {40137, 4572}
X(63151) = barycentric quotient X(i)/X(j) for these (i, j): {2, 7091}, {8, 2297}, {9, 7050}, {75, 63164}, {92, 11546}, {312, 1219}, {651, 58985}, {1191, 604}, {1697, 6}, {2999, 56}, {3672, 57}, {3699, 6574}, {4012, 40175}, {4646, 1400}, {4656, 65}, {8712, 43924}, {18228, 1}, {40137, 663}, {51413, 1457}
X(63151) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 75, 39126}, {75, 16284, 7}, {75, 322, 85}, {312, 4110, 30693}, {346, 30854, 56085}, {1441, 32087, 75}


X(63152) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(52803), X(1), X(2))

Barycentrics    (a+b-c)*(a-b+c)*(a^3+b^3+b^2*c+b*c^2+c^3-a^2*(b+c)-a*(b^2-4*b*c+c^2)) : :

X(63152) lies on these lines: {1, 59688}, {2, 1407}, {7, 8}, {57, 4416}, {77, 1457}, {86, 285}, {190, 60934}, {193, 5228}, {226, 17298}, {241, 17257}, {269, 348}, {344, 8545}, {346, 60998}, {347, 4389}, {478, 17074}, {497, 49537}, {651, 3618}, {664, 3672}, {948, 3662}, {1418, 4643}, {1419, 17023}, {1445, 54280}, {1456, 3616}, {1788, 60731}, {2345, 40862}, {3598, 45962}, {3619, 28739}, {3663, 9312}, {3664, 11019}, {3668, 17079}, {3686, 61022}, {3729, 60961}, {3879, 4328}, {3883, 4321}, {3912, 60937}, {3945, 55082}, {4021, 25716}, {4104, 7271}, {4306, 13725}, {4327, 51192}, {4334, 50295}, {4360, 53997}, {4384, 60992}, {4644, 41246}, {4648, 26125}, {4657, 6610}, {4684, 12560}, {5226, 37758}, {5232, 33298}, {5249, 26871}, {5296, 31225}, {5739, 21454}, {5816, 24237}, {5905, 26591}, {5927, 41004}, {5942, 20905}, {6515, 26842}, {7056, 8048}, {7091, 30479}, {7153, 27501}, {7196, 30946}, {7232, 52023}, {7274, 11519}, {7365, 27184}, {8232, 17234}, {8582, 10436}, {8732, 17277}, {8817, 19604}, {9776, 18928}, {9801, 31391}, {9856, 17170}, {10446, 35645}, {10452, 35613}, {10481, 12447}, {12848, 17347}, {16706, 54425}, {17151, 25719}, {17263, 60995}, {17296, 60953}, {17297, 60967}, {17304, 43035}, {18026, 32000}, {18228, 63164}, {18623, 19786}, {20289, 21279}, {23618, 56264}, {26134, 26149}, {27509, 58457}, {27549, 60909}, {30959, 30962}, {31623, 55110}, {32939, 55112}, {34048, 56460}, {34399, 40154}, {37781, 39063}, {42020, 52803}, {43983, 45789}, {47386, 57792}, {50107, 60952}, {55394, 56869}

X(63152) = perspector of circumconic {{A, B, C, X(4554), X(6613)}}
X(63152) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 56218}
X(63152) = X(i)-Dao conjugate of X(j) for these {i, j}: {1038, 612}, {3160, 56218}
X(63152) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57923, 348}
X(63152) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7320, 329}, {44794, 8}
X(63152) = pole of line {3669, 3798} with respect to the incircle
X(63152) = pole of line {497, 9801} with respect to the Feuerbach hyperbola
X(63152) = pole of line {2194, 7074} with respect to the Stammler hyperbola
X(63152) = pole of line {693, 42337} with respect to the Steiner circumellipse
X(63152) = pole of line {4885, 42337} with respect to the Steiner inellipse
X(63152) = pole of line {21, 5281} with respect to the Wallace hyperbola
X(63152) = pole of line {348, 3663} with respect to the dual conic of Yff parabola
X(63152) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(20895)}}, {{A, B, C, X(4), X(5836)}}, {{A, B, C, X(8), X(285)}}, {{A, B, C, X(65), X(1413)}}, {{A, B, C, X(75), X(40420)}}, {{A, B, C, X(86), X(322)}}, {{A, B, C, X(388), X(7091)}}, {{A, B, C, X(518), X(17040)}}, {{A, B, C, X(1122), X(1407)}}, {{A, B, C, X(1231), X(34400)}}, {{A, B, C, X(1440), X(1441)}}, {{A, B, C, X(2550), X(3062)}}, {{A, B, C, X(3262), X(8797)}}, {{A, B, C, X(3890), X(56879)}}, {{A, B, C, X(6180), X(59507)}}, {{A, B, C, X(6604), X(34399)}}, {{A, B, C, X(7195), X(19604)}}, {{A, B, C, X(8817), X(39126)}}, {{A, B, C, X(13577), X(21296)}}, {{A, B, C, X(21596), X(58012)}}, {{A, B, C, X(30712), X(30806)}}, {{A, B, C, X(31643), X(42697)}}, {{A, B, C, X(32099), X(55022)}}, {{A, B, C, X(34546), X(55406)}}
X(63152) = barycentric product X(i)*X(j) for these (i, j): {12709, 274}, {19861, 85}
X(63152) = barycentric quotient X(i)/X(j) for these (i, j): {7, 56218}, {12709, 37}, {19861, 9}
X(63152) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1441, 42697}, {7, 31994, 31995}, {7, 69, 6604}, {7, 8, 39126}, {269, 4357, 348}, {1122, 10401, 7}, {7271, 17272, 9436}, {57266, 57267, 5836}


X(63153) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5327), X(1), X(4))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^5+b^5+b^4*c-2*b^2*c^3-b*c^4+c^5-a^4*(b+3*c)-2*a^3*(b^2-c^2)+2*a^2*c*(b^2+b*c+c^2)+a*(b^4+2*b^2*c^2-3*c^4))*(a^5+b^5-b^4*c-2*b^3*c^2+b*c^4+c^5-a^4*(3*b+c)+2*a^3*(b^2-c^2)+2*a^2*b*(b^2+b*c+c^2)+a*(-3*b^4+2*b^2*c^2+c^4)) : :

X(63153) lies on the Feuerbach hyperbola and on these lines: {1, 37258}, {7, 243}, {8, 60681}, {33, 1937}, {34, 60662}, {79, 51282}, {80, 39531}, {1896, 5327}, {53821, 57818}

X(63153) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(6), X(296)}}, {{A, B, C, X(29), X(37258)}}, {{A, B, C, X(33), X(243)}}, {{A, B, C, X(34), X(60681)}}, {{A, B, C, X(77), X(37142)}}, {{A, B, C, X(92), X(7012)}}, {{A, B, C, X(275), X(41081)}}, {{A, B, C, X(2322), X(43764)}}, {{A, B, C, X(5379), X(34398)}}, {{A, B, C, X(6198), X(51282)}}, {{A, B, C, X(37371), X(56374)}}, {{A, B, C, X(53821), X(54405)}}


X(63154) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5562), X(2), X(3))

Barycentrics    a^2*(a^2-b^2-c^2)*(a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(2*b^2+c^2))*(a^4+b^4-4*b^2*c^2+3*c^4-2*a^2*(b^2+2*c^2)) : :

X(63154) lies on these lines: {2, 53}, {3, 51}, {5, 22270}, {6, 97}, {20, 11282}, {22, 5481}, {30, 46412}, {95, 56296}, {154, 54375}, {216, 394}, {276, 2052}, {297, 59757}, {343, 3926}, {418, 3066}, {631, 1217}, {1073, 46832}, {1214, 3306}, {1297, 7485}, {1656, 22268}, {1993, 52703}, {1995, 26909}, {2351, 19357}, {3346, 3523}, {3526, 14938}, {3796, 6641}, {5013, 11433}, {5020, 26907}, {5407, 26922}, {5422, 36748}, {5943, 26865}, {6503, 60839}, {6509, 62196}, {6720, 34579}, {7484, 40801}, {7503, 45301}, {7516, 34225}, {7542, 32132}, {14489, 16419}, {14919, 17811}, {15421, 35361}, {15693, 18317}, {17810, 26874}, {17821, 61111}, {17825, 31626}, {19129, 55159}, {19188, 37872}, {22129, 40152}, {23041, 56308}, {26898, 35259}, {33924, 44299}, {37638, 52350}, {39171, 60825}, {40022, 53245}, {46760, 54973}, {54114, 60700}, {55477, 55885}

X(63154) = isogonal conjugate of X(3087)
X(63154) = trilinear pole of line {15451, 520}
X(63154) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3087}, {19, 631}, {63, 61348}, {92, 11402}, {158, 36748}, {162, 47122}, {1973, 44149}, {2167, 6755}
X(63154) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3087}, {6, 631}, {125, 47122}, {1147, 36748}, {3162, 61348}, {6337, 44149}, {22391, 11402}, {40588, 6755}
X(63154) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8797, 3527}
X(63154) = X(i)-cross conjugate of X(j) for these {i, j}: {10979, 3}, {63176, 8797}
X(63154) = pole of line {8797, 11433} with respect to the Kiepert hyperbola
X(63154) = pole of line {631, 3087} with respect to the Stammler hyperbola
X(63154) = pole of line {3087, 44149} with respect to the Wallace hyperbola
X(63154) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(3)}}, {{A, B, C, X(4), X(10982)}}, {{A, B, C, X(5), X(37068)}}, {{A, B, C, X(6), X(51)}}, {{A, B, C, X(24), X(19357)}}, {{A, B, C, X(25), X(43718)}}, {{A, B, C, X(54), X(459)}}, {{A, B, C, X(63), X(3306)}}, {{A, B, C, X(64), X(275)}}, {{A, B, C, X(69), X(10601)}}, {{A, B, C, X(74), X(56346)}}, {{A, B, C, X(76), X(45186)}}, {{A, B, C, X(77), X(40424)}}, {{A, B, C, X(83), X(41244)}}, {{A, B, C, X(88), X(222)}}, {{A, B, C, X(95), X(15394)}}, {{A, B, C, X(184), X(8770)}}, {{A, B, C, X(248), X(39951)}}, {{A, B, C, X(287), X(34817)}}, {{A, B, C, X(297), X(6641)}}, {{A, B, C, X(404), X(21482)}}, {{A, B, C, X(418), X(37067)}}, {{A, B, C, X(441), X(7485)}}, {{A, B, C, X(493), X(6414)}}, {{A, B, C, X(494), X(6413)}}, {{A, B, C, X(577), X(36751)}}, {{A, B, C, X(588), X(6416)}}, {{A, B, C, X(589), X(6415)}}, {{A, B, C, X(801), X(30541)}}, {{A, B, C, X(895), X(54771)}}, {{A, B, C, X(1011), X(21940)}}, {{A, B, C, X(1173), X(54867)}}, {{A, B, C, X(1176), X(33586)}}, {{A, B, C, X(1181), X(52014)}}, {{A, B, C, X(1255), X(1433)}}, {{A, B, C, X(1795), X(25430)}}, {{A, B, C, X(1796), X(41081)}}, {{A, B, C, X(1807), X(56041)}}, {{A, B, C, X(1972), X(17039)}}, {{A, B, C, X(1993), X(5961)}}, {{A, B, C, X(3108), X(60674)}}, {{A, B, C, X(3265), X(59756)}}, {{A, B, C, X(3343), X(42457)}}, {{A, B, C, X(3426), X(60161)}}, {{A, B, C, X(3431), X(38253)}}, {{A, B, C, X(3521), X(13579)}}, {{A, B, C, X(3523), X(6617)}}, {{A, B, C, X(3527), X(8796)}}, {{A, B, C, X(3532), X(43530)}}, {{A, B, C, X(3796), X(36212)}}, {{A, B, C, X(3964), X(36948)}}, {{A, B, C, X(4846), X(6504)}}, {{A, B, C, X(5158), X(52703)}}, {{A, B, C, X(5392), X(5446)}}, {{A, B, C, X(5409), X(55477)}}, {{A, B, C, X(5462), X(15316)}}, {{A, B, C, X(6391), X(30535)}}, {{A, B, C, X(6503), X(10607)}}, {{A, B, C, X(6509), X(52147)}}, {{A, B, C, X(6638), X(60700)}}, {{A, B, C, X(6676), X(52275)}}, {{A, B, C, X(7100), X(56352)}}, {{A, B, C, X(7123), X(8606)}}, {{A, B, C, X(7484), X(37188)}}, {{A, B, C, X(7494), X(37344)}}, {{A, B, C, X(7578), X(45788)}}, {{A, B, C, X(8431), X(23582)}}, {{A, B, C, X(10979), X(36748)}}, {{A, B, C, X(11064), X(11589)}}, {{A, B, C, X(11270), X(60137)}}, {{A, B, C, X(11350), X(25876)}}, {{A, B, C, X(11433), X(17040)}}, {{A, B, C, X(11538), X(21400)}}, {{A, B, C, X(13472), X(54710)}}, {{A, B, C, X(13585), X(18550)}}, {{A, B, C, X(13855), X(31617)}}, {{A, B, C, X(14528), X(16080)}}, {{A, B, C, X(14861), X(60255)}}, {{A, B, C, X(15077), X(54797)}}, {{A, B, C, X(15466), X(35602)}}, {{A, B, C, X(15577), X(23041)}}, {{A, B, C, X(15740), X(60114)}}, {{A, B, C, X(15805), X(42021)}}, {{A, B, C, X(16081), X(22263)}}, {{A, B, C, X(16373), X(22359)}}, {{A, B, C, X(16835), X(54531)}}, {{A, B, C, X(17505), X(54765)}}, {{A, B, C, X(17531), X(21503)}}, {{A, B, C, X(17928), X(26906)}}, {{A, B, C, X(18842), X(55978)}}, {{A, B, C, X(20835), X(25932)}}, {{A, B, C, X(21448), X(51336)}}, {{A, B, C, X(21495), X(25907)}}, {{A, B, C, X(21511), X(25947)}}, {{A, B, C, X(22334), X(60120)}}, {{A, B, C, X(31371), X(54785)}}, {{A, B, C, X(32533), X(54764)}}, {{A, B, C, X(34258), X(51367)}}, {{A, B, C, X(34384), X(43711)}}, {{A, B, C, X(34428), X(43679)}}, {{A, B, C, X(34801), X(40393)}}, {{A, B, C, X(34802), X(54792)}}, {{A, B, C, X(34828), X(55074)}}, {{A, B, C, X(34990), X(57482)}}, {{A, B, C, X(36987), X(59764)}}, {{A, B, C, X(37873), X(51030)}}, {{A, B, C, X(39284), X(52518)}}, {{A, B, C, X(40441), X(56002)}}, {{A, B, C, X(41435), X(42287)}}, {{A, B, C, X(41891), X(42352)}}, {{A, B, C, X(43719), X(60193)}}, {{A, B, C, X(43724), X(60155)}}, {{A, B, C, X(43756), X(56071)}}, {{A, B, C, X(43908), X(56270)}}, {{A, B, C, X(44794), X(55117)}}, {{A, B, C, X(51477), X(60495)}}, {{A, B, C, X(52037), X(60169)}}, {{A, B, C, X(54926), X(55977)}}, {{A, B, C, X(55577), X(55893)}}, {{A, B, C, X(55579), X(55897)}}, {{A, B, C, X(56004), X(60241)}}, {{A, B, C, X(59169), X(60225)}}
X(63154) = barycentric product X(i)*X(j) for these (i, j): {3, 8797}, {394, 8796}, {3265, 58950}, {3527, 69}, {34818, 3926}, {56033, 63}, {63176, 95}
X(63154) = barycentric quotient X(i)/X(j) for these (i, j): {3, 631}, {6, 3087}, {25, 61348}, {51, 6755}, {69, 44149}, {184, 11402}, {418, 26907}, {577, 36748}, {578, 45062}, {647, 47122}, {3527, 4}, {8796, 2052}, {8797, 264}, {15004, 58878}, {18535, 58879}, {31505, 14978}, {34818, 393}, {56033, 92}, {58950, 107}, {63176, 5}
X(63154) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8796, 8797}


X(63155) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(15077), X(2), X(4))

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4+3*b^4-2*b^2*c^2+3*c^4-6*a^2*(b^2+c^2)) : :

X(63155) lies on these lines: {2, 6748}, {4, 69}, {6, 37174}, {20, 45198}, {24, 44180}, {25, 1007}, {30, 40680}, {53, 193}, {95, 3090}, {183, 7378}, {186, 55560}, {253, 50688}, {297, 3087}, {325, 6995}, {381, 41008}, {382, 41005}, {393, 1992}, {427, 34229}, {458, 3619}, {467, 11427}, {491, 55569}, {492, 55573}, {524, 43981}, {966, 54372}, {1494, 62011}, {1585, 32805}, {1586, 32806}, {1595, 3785}, {1596, 32827}, {1598, 3964}, {1990, 51170}, {1994, 8746}, {2052, 54785}, {3091, 8797}, {3146, 20477}, {3517, 32829}, {3518, 55551}, {3520, 55561}, {3529, 46724}, {3535, 32812}, {3536, 32813}, {3543, 6527}, {3544, 52712}, {3545, 54105}, {3575, 40697}, {3830, 40995}, {3926, 6756}, {4417, 6994}, {5076, 40996}, {5081, 42696}, {6337, 7487}, {6353, 34803}, {6504, 47732}, {6749, 51171}, {6755, 14826}, {6820, 18928}, {7282, 42697}, {7408, 37668}, {7409, 15589}, {8356, 39662}, {8795, 15077}, {9308, 11008}, {10594, 52437}, {11433, 37192}, {12173, 62338}, {14927, 37200}, {16264, 51023}, {17321, 56814}, {17907, 40065}, {18494, 32815}, {21356, 52281}, {25314, 35142}, {32810, 55474}, {32811, 55480}, {32986, 33843}, {35510, 36889}, {36794, 52283}, {37439, 58878}, {37669, 52280}, {37688, 52284}, {40410, 61921}, {44442, 62698}, {51833, 55552}, {57822, 61967}, {57894, 61980}, {57927, 61889}, {61873, 63173}

X(63155) = anticomplement of X(36748)
X(63155) = X(i)-isoconjugate-of-X(j) for these {i, j}: {810, 53862}, {9247, 54636}
X(63155) = X(i)-Dao conjugate of X(j) for these {i, j}: {36748, 36748}, {39062, 53862}, {62576, 54636}
X(63155) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {3527, 6360}, {8796, 8}, {8797, 4329}, {34818, 192}, {56033, 20}, {58950, 4560}
X(63155) = pole of line {512, 50644} with respect to the polar circle
X(63155) = pole of line {5254, 11427} with respect to the Kiepert hyperbola
X(63155) = pole of line {184, 36751} with respect to the Stammler hyperbola
X(63155) = pole of line {850, 23290} with respect to the Steiner circumellipse
X(63155) = pole of line {6753, 52613} with respect to the dual conic of Orthic inconic
X(63155) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(3517)}}, {{A, B, C, X(69), X(54785)}}, {{A, B, C, X(76), X(32829)}}, {{A, B, C, X(264), X(60161)}}, {{A, B, C, X(5562), X(15077)}}, {{A, B, C, X(6748), X(18854)}}, {{A, B, C, X(8795), X(32001)}}, {{A, B, C, X(11412), X(38442)}}, {{A, B, C, X(35510), X(44133)}}
X(63155) = barycentric product X(i)*X(j) for these (i, j): {3517, 76}, {32829, 4}
X(63155) = barycentric quotient X(i)/X(j) for these (i, j): {264, 54636}, {648, 53862}, {3517, 6}, {32829, 69}
X(63155) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 32001, 264}, {264, 317, 32001}, {264, 32001, 69}, {297, 3087, 3618}, {317, 32002, 4}, {393, 27377, 1992}, {1586, 55473, 32806}, {7282, 55393, 42697}, {17907, 40065, 59373}, {27377, 52282, 393}


X(63156) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(193), X(2), X(6))

Barycentrics    (a^4+a^2*(-10*b^2+c^2)+b^2*(b^2+c^2))*(a^4+a^2*(b^2-10*c^2)+c^2*(b^2+c^2)) : :

X(63156) lies on these lines: {32, 5032}, {1992, 39238}, {2056, 8584}, {2207, 7894}, {51170, 53059}

X(63156) = trilinear pole of line {669, 35298}
X(63156) = X(i)-vertex conjugate of X(j) for these {i, j}: {39238, 63156}
X(63156) = X(i)-cross conjugate of X(j) for these {i, j}: {8644, 99}
X(63156) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5032)}}, {{A, B, C, X(4), X(35287)}}, {{A, B, C, X(6), X(32)}}, {{A, B, C, X(67), X(53106)}}, {{A, B, C, X(69), X(53105)}}, {{A, B, C, X(193), X(18845)}}, {{A, B, C, X(524), X(8584)}}, {{A, B, C, X(597), X(20583)}}, {{A, B, C, X(598), X(1992)}}, {{A, B, C, X(671), X(5486)}}, {{A, B, C, X(895), X(34386)}}, {{A, B, C, X(1173), X(56007)}}, {{A, B, C, X(1994), X(37784)}}, {{A, B, C, X(2996), X(17040)}}, {{A, B, C, X(2998), X(60187)}}, {{A, B, C, X(3228), X(11169)}}, {{A, B, C, X(3629), X(32455)}}, {{A, B, C, X(4590), X(54906)}}, {{A, B, C, X(6094), X(15464)}}, {{A, B, C, X(6096), X(20251)}}, {{A, B, C, X(6339), X(18840)}}, {{A, B, C, X(7578), X(56006)}}, {{A, B, C, X(7608), X(9227)}}, {{A, B, C, X(9307), X(60234)}}, {{A, B, C, X(10302), X(34898)}}, {{A, B, C, X(14485), X(35146)}}, {{A, B, C, X(14492), X(35511)}}, {{A, B, C, X(17983), X(60198)}}, {{A, B, C, X(21399), X(55977)}}, {{A, B, C, X(25322), X(43676)}}, {{A, B, C, X(31360), X(60210)}}, {{A, B, C, X(32085), X(57926)}}, {{A, B, C, X(34288), X(60073)}}, {{A, B, C, X(38005), X(53109)}}, {{A, B, C, X(38262), X(45857)}}, {{A, B, C, X(44556), X(60178)}}, {{A, B, C, X(52187), X(60093)}}, {{A, B, C, X(52188), X(60096)}}, {{A, B, C, X(52223), X(60263)}}, {{A, B, C, X(52224), X(56067)}}, {{A, B, C, X(57408), X(60184)}}, {{A, B, C, X(57822), X(60280)}}, {{A, B, C, X(59373), X(60287)}}


X(63157) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3876), X(2), X(21))

Barycentrics    a*(a+b)*(a+c)*(a^2+b^2-2*b*c-3*c^2-2*a*(b+c))*(a^2-3*b^2-2*b*c+c^2-2*a*(b+c)) : :

X(63157) lies on these lines: {1, 2287}, {2, 1043}, {21, 57}, {28, 2326}, {29, 278}, {37, 1257}, {58, 39980}, {78, 25430}, {81, 1098}, {86, 279}, {89, 16948}, {105, 51715}, {274, 17863}, {277, 1010}, {285, 1422}, {405, 51223}, {938, 11110}, {958, 1002}, {959, 1001}, {1125, 37887}, {1255, 34772}, {1426, 4183}, {1621, 2282}, {2006, 6740}, {3615, 52374}, {4313, 16054}, {4653, 8056}, {4720, 56228}, {5235, 12649}, {5253, 35981}, {5333, 15474}, {5703, 56218}, {5738, 13736}, {6734, 17557}, {6986, 39797}, {8822, 11106}, {15933, 56018}, {15936, 20077}, {16865, 19716}, {17581, 24929}, {25417, 40571}, {25526, 34578}, {39947, 54318}, {51496, 57278}

X(63157) = trilinear pole of line {1021, 513}
X(63157) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 1869}, {10, 4252}, {42, 3945}, {65, 3601}, {71, 7490}, {1042, 20007}, {1400, 5273}, {45784, 59305}
X(63157) = X(i)-Dao conjugate of X(j) for these {i, j}: {36103, 1869}, {40582, 5273}, {40592, 3945}, {40602, 3601}
X(63157) = X(i)-cross conjugate of X(j) for these {i, j}: {2257, 27}, {10582, 86}, {46385, 100}
X(63157) = pole of line {3601, 4252} with respect to the Stammler hyperbola
X(63157) = pole of line {3945, 20007} with respect to the Wallace hyperbola
X(63157) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(8), X(286)}}, {{A, B, C, X(9), X(5436)}}, {{A, B, C, X(10), X(25081)}}, {{A, B, C, X(21), X(29)}}, {{A, B, C, X(34), X(941)}}, {{A, B, C, X(37), X(1104)}}, {{A, B, C, X(56), X(19765)}}, {{A, B, C, X(72), X(30588)}}, {{A, B, C, X(78), X(1444)}}, {{A, B, C, X(79), X(13583)}}, {{A, B, C, X(84), X(30712)}}, {{A, B, C, X(85), X(57820)}}, {{A, B, C, X(104), X(54972)}}, {{A, B, C, X(273), X(17097)}}, {{A, B, C, X(405), X(60082)}}, {{A, B, C, X(518), X(51715)}}, {{A, B, C, X(811), X(53683)}}, {{A, B, C, X(893), X(1042)}}, {{A, B, C, X(936), X(3622)}}, {{A, B, C, X(938), X(19860)}}, {{A, B, C, X(943), X(23617)}}, {{A, B, C, X(958), X(1001)}}, {{A, B, C, X(1010), X(4233)}}, {{A, B, C, X(1014), X(5331)}}, {{A, B, C, X(1125), X(34772)}}, {{A, B, C, X(1220), X(2346)}}, {{A, B, C, X(1320), X(58001)}}, {{A, B, C, X(1333), X(3445)}}, {{A, B, C, X(1389), X(42285)}}, {{A, B, C, X(1476), X(60041)}}, {{A, B, C, X(1982), X(35981)}}, {{A, B, C, X(2160), X(31503)}}, {{A, B, C, X(2203), X(38252)}}, {{A, B, C, X(2217), X(10013)}}, {{A, B, C, X(2218), X(2298)}}, {{A, B, C, X(2363), X(56048)}}, {{A, B, C, X(3296), X(39695)}}, {{A, B, C, X(4653), X(16948)}}, {{A, B, C, X(5251), X(5259)}}, {{A, B, C, X(5333), X(40571)}}, {{A, B, C, X(5558), X(58002)}}, {{A, B, C, X(5665), X(43533)}}, {{A, B, C, X(5703), X(19861)}}, {{A, B, C, X(6605), X(56146)}}, {{A, B, C, X(6762), X(38316)}}, {{A, B, C, X(7054), X(52158)}}, {{A, B, C, X(7100), X(52389)}}, {{A, B, C, X(7498), X(27174)}}, {{A, B, C, X(9843), X(38460)}}, {{A, B, C, X(10179), X(11260)}}, {{A, B, C, X(10308), X(43972)}}, {{A, B, C, X(10582), X(20007)}}, {{A, B, C, X(11110), X(54340)}}, {{A, B, C, X(12649), X(54318)}}, {{A, B, C, X(14534), X(56204)}}, {{A, B, C, X(16615), X(54516)}}, {{A, B, C, X(30598), X(40436)}}, {{A, B, C, X(30690), X(39130)}}, {{A, B, C, X(32014), X(40403)}}, {{A, B, C, X(33576), X(54623)}}, {{A, B, C, X(34791), X(42819)}}, {{A, B, C, X(36101), X(58012)}}, {{A, B, C, X(39974), X(48846)}}, {{A, B, C, X(40395), X(56047)}}, {{A, B, C, X(40401), X(48862)}}, {{A, B, C, X(49739), X(52372)}}, {{A, B, C, X(52919), X(56235)}}, {{A, B, C, X(54624), X(55992)}}, {{A, B, C, X(54745), X(55924)}}, {{A, B, C, X(56003), X(57662)}}
X(63157) = barycentric product X(i)*X(j) for these (i, j): {333, 5665}, {43533, 81}, {50392, 58329}, {59079, 693}
X(63157) = barycentric quotient X(i)/X(j) for these (i, j): {19, 1869}, {21, 5273}, {28, 7490}, {81, 3945}, {284, 3601}, {1333, 4252}, {2287, 20007}, {5665, 226}, {43533, 321}, {59079, 100}


X(63158) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5250), X(2), X(21))

Barycentrics    a*(a+b)*(a+c)*(a^2-b^2-4*b*c-c^2) : :

X(63158) lies on these lines: {2, 36744}, {7, 21}, {9, 41610}, {37, 81}, {69, 405}, {75, 1621}, {77, 51654}, {100, 28653}, {286, 4183}, {314, 943}, {319, 5260}, {332, 1057}, {333, 344}, {662, 24557}, {757, 16948}, {759, 1310}, {969, 1707}, {1006, 10446}, {1010, 4294}, {1030, 6707}, {1486, 4184}, {1708, 17185}, {1770, 25526}, {1817, 25507}, {2975, 17394}, {3295, 42696}, {3683, 54344}, {3736, 40934}, {3746, 4967}, {3879, 5251}, {3945, 16865}, {4026, 14005}, {4221, 31394}, {4228, 4872}, {4357, 5259}, {4384, 4483}, {4653, 54308}, {4657, 5333}, {4877, 18206}, {4921, 41313}, {5047, 5224}, {5232, 16859}, {5235, 17279}, {5248, 10436}, {5324, 30966}, {6337, 19528}, {7474, 21279}, {8025, 20078}, {10889, 54430}, {15668, 21511}, {16046, 59631}, {16049, 20291}, {16700, 28022}, {16826, 38871}, {16858, 17378}, {16861, 17271}, {16912, 26045}, {16992, 44140}, {17167, 18589}, {17173, 27127}, {17245, 21516}, {17300, 19237}, {17398, 21495}, {18147, 37670}, {18166, 56834}, {18747, 31049}, {18755, 28252}, {19525, 44180}, {24944, 37675}, {25508, 26643}, {25521, 31926}, {25660, 26243}, {27640, 54423}, {28358, 38814}, {31435, 55391}, {33295, 56239}, {35997, 52086}, {38869, 51488}, {40592, 41311}, {41312, 42025}, {45962, 59358}, {49740, 51669}, {54392, 54404}, {56048, 56203}

X(63158) = perspector of circumconic {{A, B, C, X(4573), X(4596)}}
X(63158) = X(i)-isoconjugate-of-X(j) for these {i, j}: {10, 61375}, {42, 3296}, {2333, 30679}
X(63158) = X(i)-Dao conjugate of X(j) for these {i, j}: {3305, 12609}, {40592, 3296}
X(63158) = pole of line {644, 662} with respect to the Kiepert parabola
X(63158) = pole of line {55, 1100} with respect to the Stammler hyperbola
X(63158) = pole of line {8043, 17069} with respect to the Steiner inellipse
X(63158) = pole of line {8, 443} with respect to the Wallace hyperbola
X(63158) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(1255)}}, {{A, B, C, X(9), X(38053)}}, {{A, B, C, X(37), X(3649)}}, {{A, B, C, X(56), X(943)}}, {{A, B, C, X(104), X(6580)}}, {{A, B, C, X(286), X(17169)}}, {{A, B, C, X(348), X(31618)}}, {{A, B, C, X(759), X(5323)}}, {{A, B, C, X(1014), X(1171)}}, {{A, B, C, X(1284), X(48340)}}, {{A, B, C, X(1434), X(40438)}}, {{A, B, C, X(1778), X(39949)}}, {{A, B, C, X(1804), X(40443)}}, {{A, B, C, X(2346), X(9105)}}, {{A, B, C, X(3616), X(56203)}}, {{A, B, C, X(4917), X(16948)}}, {{A, B, C, X(7181), X(47965)}}, {{A, B, C, X(17321), X(42032)}}, {{A, B, C, X(41804), X(48268)}}
X(63158) = barycentric product X(i)*X(j) for these (i, j): {21, 52422}, {274, 3295}, {286, 55466}, {314, 52424}, {333, 7190}, {1014, 42032}, {1509, 3697}, {3305, 86}, {4623, 58299}, {34016, 56843}, {42696, 81}, {47965, 99}, {48268, 662}, {48340, 799}
X(63158) = barycentric quotient X(i)/X(j) for these (i, j): {81, 3296}, {1333, 61375}, {1444, 30679}, {3295, 37}, {3305, 10}, {3697, 594}, {4917, 3950}, {7190, 226}, {42032, 3701}, {42696, 321}, {47965, 523}, {48268, 1577}, {48340, 661}, {52422, 1441}, {52424, 65}, {53861, 8736}, {55466, 72}, {56843, 8818}, {58299, 4705}
X(63158) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 17201, 86}, {9, 60721, 41610}, {21, 1014, 56934}, {86, 56934, 1014}, {1014, 56934, 1444}, {1030, 6707, 25946}


X(63159) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(72), X(5), X(1))

Barycentrics    a*(a^3+2*b^3-b^2*c-b*c^2+2*c^3-2*a^2*(b+c)-a*(b^2+3*b*c+c^2)) : :
X(63159) = -2*X[3219]+3*X[16858]

X(63159) lies on these lines: {1, 21}, {2, 3940}, {3, 23958}, {6, 57217}, {7, 528}, {8, 3475}, {9, 16861}, {20, 1482}, {30, 17483}, {42, 54315}, {57, 13587}, {65, 3871}, {72, 5047}, {75, 4720}, {78, 5437}, {100, 5902}, {144, 31156}, {145, 377}, {149, 39542}, {224, 13375}, {226, 17577}, {329, 15933}, {354, 4511}, {379, 4393}, {388, 17097}, {392, 29817}, {404, 942}, {411, 24474}, {443, 20013}, {495, 59416}, {517, 3957}, {518, 8539}, {519, 5249}, {551, 4867}, {644, 51058}, {912, 6912}, {938, 4193}, {944, 55109}, {952, 6839}, {956, 4430}, {995, 3315}, {999, 37300}, {1004, 1159}, {1012, 10247}, {1071, 10222}, {1100, 5279}, {1125, 41696}, {1255, 48855}, {1259, 3304}, {1389, 37727}, {1483, 37468}, {1994, 23071}, {2064, 3702}, {2098, 4313}, {2320, 11194}, {2475, 6147}, {2476, 3487}, {3058, 5180}, {3218, 17549}, {3219, 16858}, {3242, 9054}, {3243, 3872}, {3244, 41702}, {3245, 4744}, {3295, 37285}, {3305, 17547}, {3306, 36006}, {3340, 3885}, {3419, 6175}, {3485, 10957}, {3488, 5905}, {3586, 31164}, {3616, 12635}, {3621, 4208}, {3622, 5730}, {3635, 4292}, {3649, 52367}, {3679, 21026}, {3681, 54318}, {3746, 4084}, {3748, 44663}, {3753, 3935}, {3812, 4420}, {3870, 11529}, {3876, 7308}, {3895, 18421}, {3902, 17143}, {3916, 17574}, {3919, 48696}, {3927, 16865}, {3951, 5436}, {3962, 51715}, {3984, 17546}, {4067, 5259}, {4188, 5708}, {4198, 11396}, {4251, 21372}, {4304, 51071}, {4654, 15679}, {4661, 9708}, {4757, 11010}, {4860, 56177}, {4861, 34791}, {5044, 17534}, {5046, 12433}, {5048, 10391}, {5086, 13407}, {5122, 33595}, {5177, 20008}, {5178, 12609}, {5253, 18398}, {5260, 5904}, {5273, 5289}, {5284, 5692}, {5303, 37571}, {5439, 17535}, {5535, 59421}, {5603, 10883}, {5711, 36565}, {5722, 31053}, {5728, 60935}, {5732, 11224}, {5734, 9799}, {5761, 6943}, {5780, 7486}, {5901, 6884}, {5919, 15570}, {6284, 14450}, {6583, 37733}, {6646, 49735}, {6734, 58463}, {6744, 41012}, {6767, 20835}, {6837, 10595}, {6906, 24475}, {6909, 37533}, {6915, 37700}, {6986, 37615}, {6993, 59388}, {7080, 18221}, {7269, 52385}, {7373, 37248}, {7419, 22458}, {7504, 11374}, {7675, 7962}, {7680, 9803}, {7982, 10884}, {8148, 37426}, {9962, 61086}, {9964, 12737}, {10246, 37106}, {10707, 18393}, {10912, 12536}, {10980, 35262}, {11011, 58609}, {11041, 12648}, {11111, 20078}, {11112, 26842}, {11113, 15935}, {11220, 16200}, {11346, 17350}, {11551, 20292}, {12000, 37287}, {12001, 37302}, {12245, 37112}, {12528, 18540}, {12532, 61722}, {12539, 55173}, {12702, 37105}, {14021, 29585}, {16086, 18139}, {16137, 24390}, {16465, 38460}, {16474, 49682}, {16568, 41230}, {17015, 49478}, {17018, 37467}, {17024, 25494}, {17236, 50321}, {17246, 49739}, {17393, 58786}, {17449, 37617}, {17614, 50192}, {17706, 24982}, {18391, 59415}, {18419, 37541}, {18446, 36002}, {19245, 20760}, {19645, 58820}, {19767, 37549}, {19860, 41863}, {20007, 37462}, {20060, 37730}, {21620, 41575}, {22791, 37433}, {23537, 26729}, {24349, 49492}, {24470, 37256}, {26140, 51150}, {26728, 33129}, {26877, 33596}, {29569, 37111}, {29815, 37090}, {30115, 37633}, {30117, 32911}, {30144, 50190}, {31145, 40587}, {31165, 42819}, {31775, 61597}, {33146, 48837}, {33150, 48847}, {33153, 37715}, {33155, 39544}, {35457, 50824}, {37080, 56288}, {37307, 37545}, {37547, 59354}, {48890, 48909}, {49487, 49490}, {49686, 53114}, {50586, 50637}, {51779, 60990}, {59350, 61278}, {59392, 62354}

X(63159) = midpoint of X(i) and X(j) for these {i,j}: {145, 33110}
X(63159) = reflection of X(i) in X(j) for these {i,j}: {1621, 1}, {20292, 11551}, {7411, 18444}, {8, 3925}
X(63159) = pole of line {6003, 30725} with respect to the incircle
X(63159) = pole of line {2646, 35976} with respect to the Feuerbach hyperbola
X(63159) = pole of line {4453, 4560} with respect to the Steiner circumellipse
X(63159) = pole of line {14838, 44902} with respect to the Steiner inellipse
X(63159) = pole of line {101, 13589} with respect to the Hutson-Moses hyperbola
X(63159) = pole of line {4887, 5249} with respect to the dual conic of Yff parabola
X(63159) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(52680)}}, {{A, B, C, X(21), X(903)}}, {{A, B, C, X(58), X(56049)}}, {{A, B, C, X(596), X(35016)}}, {{A, B, C, X(1320), X(2328)}}, {{A, B, C, X(1780), X(17097)}}, {{A, B, C, X(3897), X(39702)}}, {{A, B, C, X(4653), X(56149)}}, {{A, B, C, X(17194), X(53240)}}, {{A, B, C, X(49480), X(53114)}}
X(63159) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11520, 3868}, {1, 12559, 3869}, {1, 16126, 3878}, {1, 2650, 57280}, {1, 3868, 21}, {1, 3873, 54391}, {1, 3874, 2975}, {1, 3894, 993}, {1, 3901, 5248}, {1, 6763, 35016}, {1, 758, 1621}, {1, 8666, 51683}, {75, 49687, 4720}, {145, 11036, 377}, {517, 18444, 7411}, {942, 5440, 27003}, {944, 55109, 59355}, {1320, 14151, 10031}, {2099, 3241, 1320}, {2099, 42871, 3241}, {3419, 31019, 6175}, {3487, 12649, 2476}, {3876, 54392, 17536}, {3901, 5248, 11684}, {5440, 27003, 404}, {5722, 31053, 37375}, {5904, 30143, 5260}, {11523, 54392, 3876}, {18398, 22836, 5253}, {24473, 24929, 3218}, {42871, 51099, 14151}


X(63160) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(31626), X(5), X(2))

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(2*a^4+2*b^4-3*b^2*c^2+c^4-a^2*(4*b^2+3*c^2))*(2*a^4+b^4-3*b^2*c^2+2*c^4-a^2*(3*b^2+4*c^2)) : :

X(63160) lies on these lines: {2, 10985}, {5, 14129}, {30, 31846}, {68, 3090}, {97, 31617}, {216, 31610}, {233, 324}, {343, 57805}, {1656, 60007}, {1994, 40410}, {5056, 18855}, {8836, 52203}, {8838, 52204}, {18027, 40684}, {52704, 56302}

X(63160) = trilinear pole of line {6368, 20577}
X(63160) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 4994}, {1656, 2148}, {2167, 15004}, {2190, 10979}
X(63160) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 10979}, {216, 1656}, {1249, 4994}, {40588, 15004}
X(63160) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5)}}, {{A, B, C, X(51), X(111)}}, {{A, B, C, X(53), X(60161)}}, {{A, B, C, X(97), X(216)}}, {{A, B, C, X(275), X(13450)}}, {{A, B, C, X(288), X(2383)}}, {{A, B, C, X(311), X(8836)}}, {{A, B, C, X(467), X(3090)}}, {{A, B, C, X(1568), X(46106)}}, {{A, B, C, X(1993), X(11422)}}, {{A, B, C, X(4993), X(34836)}}, {{A, B, C, X(5395), X(27356)}}, {{A, B, C, X(5562), X(31626)}}, {{A, B, C, X(6504), X(17500)}}, {{A, B, C, X(7578), X(56272)}}, {{A, B, C, X(8796), X(61110)}}, {{A, B, C, X(8798), X(55982)}}, {{A, B, C, X(13579), X(40449)}}, {{A, B, C, X(14918), X(19188)}}, {{A, B, C, X(32832), X(60114)}}, {{A, B, C, X(36809), X(39284)}}, {{A, B, C, X(39668), X(60524)}}, {{A, B, C, X(39998), X(59197)}}, {{A, B, C, X(41536), X(46952)}}, {{A, B, C, X(41597), X(52032)}}, {{A, B, C, X(54783), X(57811)}}, {{A, B, C, X(57875), X(60171)}}
X(63160) = barycentric product X(i)*X(j) for these (i, j): {5, 63173}, {324, 56338}, {343, 60120}, {13472, 311}
X(63160) = barycentric quotient X(i)/X(j) for these (i, j): {4, 4994}, {5, 1656}, {51, 15004}, {216, 10979}, {418, 61394}, {6755, 58878}, {13472, 54}, {56338, 97}, {60120, 275}, {63173, 95}
X(63160) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 56338, 63173}, {60120, 63173, 56338}


X(63161) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(9), X(8))

Barycentrics    (a^4+b*(b-c)^2*(b+c)-a^3*(4*b+c)+a^2*(6*b^2+b*c-c^2)+a*(-4*b^3+b^2*c-2*b*c^2+c^3))*(a^4+(b-c)^2*c*(b+c)-a^3*(b+4*c)+a^2*(-b^2+b*c+6*c^2)+a*(b^3-2*b^2*c+b*c^2-4*c^3)) : :

X(63161) lies on these lines: {8, 7677}, {341, 6765}, {346, 20015}, {1043, 49698}, {3870, 20946}, {17263, 31397}

X(63161) = trilinear pole of line {3239, 60366}
X(63161) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 17642}
X(63161) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 17642}
X(63161) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6765)}}, {{A, B, C, X(2), X(20015)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(85), X(344)}}, {{A, B, C, X(86), X(765)}}, {{A, B, C, X(92), X(36807)}}, {{A, B, C, X(282), X(14942)}}, {{A, B, C, X(519), X(31397)}}, {{A, B, C, X(1016), X(31618)}}, {{A, B, C, X(1120), X(3577)}}, {{A, B, C, X(1121), X(57791)}}, {{A, B, C, X(1220), X(7160)}}, {{A, B, C, X(1226), X(3717)}}, {{A, B, C, X(1441), X(49698)}}, {{A, B, C, X(2985), X(36796)}}, {{A, B, C, X(3870), X(21453)}}, {{A, B, C, X(4358), X(17263)}}, {{A, B, C, X(6904), X(56936)}}, {{A, B, C, X(17264), X(20905)}}, {{A, B, C, X(18816), X(52549)}}, {{A, B, C, X(36629), X(39959)}}, {{A, B, C, X(41798), X(56026)}}, {{A, B, C, X(56088), X(58002)}}, {{A, B, C, X(56314), X(60041)}}
X(63161) = barycentric quotient X(i)/X(j) for these (i, j): {9, 17642}


X(63162) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(10), X(104))

Barycentrics    a*(a^3-a^2*b+b^3-a*(b-c)^2-b*c^2)*(a^3-a*(b-c)^2-a^2*c-b^2*c+c^3)*(a^3+b^3-2*b^2*c-2*b*c^2+c^3-a^2*(b+c)-a*(b^2-5*b*c+c^2)) : :

X(63162) lies on these lines: {3, 8}, {145, 40218}, {1210, 61481}, {1309, 2718}, {1420, 37136}, {1476, 43728}, {1795, 10700}, {10428, 14923}, {14812, 37628}, {14986, 56638}, {19861, 36819}, {36037, 36846}, {39776, 56938}

X(63162) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1457, 12641}, {1769, 2743}
X(63162) = X(i)-Dao conjugate of X(j) for these {i, j}: {6735, 55016}
X(63162) = X(i)-cross conjugate of X(j) for these {i, j}: {41554, 38460}
X(63162) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1145)}}, {{A, B, C, X(3), X(2718)}}, {{A, B, C, X(8), X(38460)}}, {{A, B, C, X(84), X(952)}}, {{A, B, C, X(100), X(1476)}}, {{A, B, C, X(956), X(15446)}}, {{A, B, C, X(1156), X(12531)}}, {{A, B, C, X(5744), X(37789)}}, {{A, B, C, X(6224), X(55921)}}, {{A, B, C, X(17740), X(37758)}}
X(63162) = barycentric product X(i)*X(j) for these (i, j): {104, 37758}, {13136, 2827}, {34234, 38460}, {36795, 5193}, {37789, 51565}, {39776, 59196}, {40218, 56938}
X(63162) = barycentric quotient X(i)/X(j) for these (i, j): {2827, 10015}, {5193, 1465}, {32641, 2743}, {37758, 3262}, {37789, 22464}, {38460, 908}, {39776, 26611}, {41554, 52659}, {52663, 12641}, {58369, 46393}
X(63162) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 52178, 34234}, {104, 36944, 56757}, {14266, 36944, 51565}, {36944, 52178, 8}


X(63163) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(1), X(10), X(1319))

Barycentrics    a*(a+b-c)*(a-b+c)*(2*a^2+2*b^2+b*c-c^2+a*(-4*b+c))*(2*a^2-b^2+a*(b-4*c)+b*c+2*c^2) : :

X(63163) lies on the Feuerbach hyperbola and on these lines: {1, 18419}, {2, 34918}, {4, 4308}, {7, 20323}, {8, 1319}, {9, 1404}, {21, 1388}, {56, 1320}, {65, 1392}, {79, 3600}, {80, 3086}, {100, 15347}, {104, 18467}, {145, 12641}, {314, 18811}, {885, 2496}, {942, 14497}, {943, 10246}, {997, 4866}, {999, 1389}, {1000, 1385}, {1156, 22760}, {1420, 3680}, {1458, 3551}, {1482, 56040}, {1737, 43731}, {2346, 34471}, {2646, 7320}, {3254, 37256}, {3296, 4323}, {3304, 17097}, {3523, 5559}, {3576, 56038}, {3577, 61762}, {3616, 30513}, {3868, 56106}, {3874, 56117}, {4298, 43732}, {4315, 5561}, {4321, 31507}, {5129, 51111}, {5154, 10106}, {5435, 56089}, {5563, 21398}, {5704, 43734}, {5887, 55918}, {5903, 24302}, {6598, 10529}, {6924, 24297}, {6961, 24927}, {7098, 56100}, {10305, 54052}, {11510, 34758}, {11715, 46435}, {12114, 34256}, {12758, 56036}, {13602, 37571}, {13606, 37525}, {15173, 37602}, {15178, 56027}, {16615, 57283}, {23838, 43924}, {30392, 45830}, {36846, 56096}, {38901, 41426}, {53058, 62178}

X(63163) = isogonal conjugate of X(2098)
X(63163) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 2098}, {6, 30827}, {8, 32577}, {55, 4862}, {57, 34524}, {106, 44784}, {190, 17424}, {220, 47444}, {312, 34543}
X(63163) = X(i)-vertex conjugate of X(j) for these {i, j}: {8, 56}, {90, 15617}, {39392, 39392}
X(63163) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 2098}, {9, 30827}, {214, 44784}, {223, 4862}, {5452, 34524}, {55053, 17424}
X(63163) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63167, 55989}
X(63163) = X(i)-cross conjugate of X(j) for these {i, j}: {4394, 651}, {30198, 100}
X(63163) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(3), X(24928)}}, {{A, B, C, X(6), X(11260)}}, {{A, B, C, X(28), X(6921)}}, {{A, B, C, X(34), X(8686)}}, {{A, B, C, X(55), X(20323)}}, {{A, B, C, X(56), X(59)}}, {{A, B, C, X(65), X(1388)}}, {{A, B, C, X(77), X(4308)}}, {{A, B, C, X(105), X(59572)}}, {{A, B, C, X(106), X(15617)}}, {{A, B, C, X(145), X(765)}}, {{A, B, C, X(269), X(1420)}}, {{A, B, C, X(273), X(39702)}}, {{A, B, C, X(279), X(4564)}}, {{A, B, C, X(354), X(34471)}}, {{A, B, C, X(479), X(53623)}}, {{A, B, C, X(513), X(33956)}}, {{A, B, C, X(673), X(56355)}}, {{A, B, C, X(942), X(10246)}}, {{A, B, C, X(945), X(1318)}}, {{A, B, C, X(953), X(7163)}}, {{A, B, C, X(959), X(24914)}}, {{A, B, C, X(961), X(7288)}}, {{A, B, C, X(963), X(3478)}}, {{A, B, C, X(997), X(3616)}}, {{A, B, C, X(999), X(1385)}}, {{A, B, C, X(1037), X(3435)}}, {{A, B, C, X(1120), X(40446)}}, {{A, B, C, X(1167), X(28233)}}, {{A, B, C, X(1219), X(7318)}}, {{A, B, C, X(1280), X(36620)}}, {{A, B, C, X(1311), X(56358)}}, {{A, B, C, X(1391), X(52186)}}, {{A, B, C, X(1411), X(37738)}}, {{A, B, C, X(1422), X(8051)}}, {{A, B, C, X(1440), X(6553)}}, {{A, B, C, X(1442), X(3600)}}, {{A, B, C, X(1458), X(48330)}}, {{A, B, C, X(1482), X(25405)}}, {{A, B, C, X(1807), X(11373)}}, {{A, B, C, X(2137), X(56049)}}, {{A, B, C, X(2217), X(37828)}}, {{A, B, C, X(2496), X(34855)}}, {{A, B, C, X(2646), X(3304)}}, {{A, B, C, X(3086), X(4511)}}, {{A, B, C, X(3295), X(51788)}}, {{A, B, C, X(3576), X(61762)}}, {{A, B, C, X(3924), X(47624)}}, {{A, B, C, X(4188), X(4248)}}, {{A, B, C, X(4323), X(7190)}}, {{A, B, C, X(4570), X(39458)}}, {{A, B, C, X(5563), X(13472)}}, {{A, B, C, X(5704), X(56387)}}, {{A, B, C, X(6557), X(42467)}}, {{A, B, C, X(6979), X(17515)}}, {{A, B, C, X(7131), X(27818)}}, {{A, B, C, X(7373), X(24929)}}, {{A, B, C, X(7987), X(53058)}}, {{A, B, C, X(9311), X(55986)}}, {{A, B, C, X(10529), X(34772)}}, {{A, B, C, X(10570), X(40450)}}, {{A, B, C, X(15347), X(30198)}}, {{A, B, C, X(17100), X(36944)}}, {{A, B, C, X(18398), X(24926)}}, {{A, B, C, X(18419), X(18815)}}, {{A, B, C, X(18467), X(22464)}}, {{A, B, C, X(27789), X(44733)}}, {{A, B, C, X(28219), X(57708)}}, {{A, B, C, X(28471), X(38273)}}, {{A, B, C, X(34434), X(43947)}}, {{A, B, C, X(34447), X(38882)}}, {{A, B, C, X(36621), X(43760)}}, {{A, B, C, X(37571), X(37602)}}, {{A, B, C, X(37624), X(50194)}}, {{A, B, C, X(38254), X(39959)}}, {{A, B, C, X(44178), X(44559)}}, {{A, B, C, X(44301), X(56940)}}, {{A, B, C, X(53899), X(57727)}}
X(63163) = barycentric product X(i)*X(j) for these (i, j): {1, 63167}, {18811, 6}, {34523, 56}, {55989, 7}
X(63163) = barycentric quotient X(i)/X(j) for these (i, j): {1, 30827}, {6, 2098}, {44, 44784}, {55, 34524}, {57, 4862}, {269, 47444}, {604, 32577}, {667, 17424}, {1397, 34543}, {5193, 25580}, {18811, 76}, {34523, 3596}, {46004, 21120}, {55989, 8}, {63167, 75}


X(63164) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(40), X(57))

Barycentrics    (a+b-c)*(a-b+c)*(a^2+2*a*(b-c)+(b+c)^2)*(a^2-2*a*(b-c)+(b+c)^2) : :

X(63164) lies on these lines: {2, 269}, {7, 312}, {8, 57}, {29, 1396}, {85, 479}, {92, 1119}, {189, 3306}, {226, 6557}, {241, 31359}, {333, 1014}, {345, 63192}, {940, 1462}, {1311, 58985}, {1407, 5749}, {1466, 56182}, {2994, 27003}, {3911, 56201}, {4321, 7172}, {4461, 21454}, {4997, 5226}, {5219, 38255}, {5228, 9797}, {5249, 50442}, {5273, 32008}, {5328, 42339}, {5423, 8581}, {5554, 63169}, {5744, 40435}, {6574, 15728}, {7020, 55110}, {7090, 61401}, {8051, 42020}, {8055, 52803}, {10430, 37104}, {12647, 33795}, {14121, 61400}, {16706, 18624}, {18228, 63152}, {18623, 41791}, {19804, 31994}, {26065, 55988}, {28660, 57785}, {30568, 60998}, {32086, 40154}, {36845, 42315}, {42290, 60668}, {43067, 43930}, {43983, 56335}, {52715, 55984}

X(63164) = isotomic conjugate of X(18228)
X(63164) = trilinear pole of line {3669, 48280}
X(63164) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1697}, {9, 1191}, {31, 18228}, {32, 63151}, {41, 3672}, {55, 2999}, {109, 40137}, {284, 4646}, {2194, 4656}, {2342, 51413}, {3699, 8662}, {3939, 8712}, {14556, 52428}
X(63164) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18228}, {9, 1697}, {11, 40137}, {223, 2999}, {478, 1191}, {1214, 4656}, {3160, 3672}, {6376, 63151}, {40194, 28070}, {40590, 4646}, {40617, 8712}
X(63164) = X(i)-cross conjugate of X(j) for these {i, j}: {388, 7}, {2297, 1219}, {4778, 664}, {5437, 2}, {8582, 75}, {47915, 32038}
X(63164) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6762)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(1706)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(21), X(37276)}}, {{A, B, C, X(27), X(6904)}}, {{A, B, C, X(63), X(9776)}}, {{A, B, C, X(75), X(30501)}}, {{A, B, C, X(79), X(36603)}}, {{A, B, C, X(80), X(51781)}}, {{A, B, C, X(81), X(5558)}}, {{A, B, C, X(86), X(37655)}}, {{A, B, C, X(88), X(5556)}}, {{A, B, C, X(142), X(5273)}}, {{A, B, C, X(226), X(4848)}}, {{A, B, C, X(241), X(940)}}, {{A, B, C, X(253), X(58001)}}, {{A, B, C, X(273), X(57866)}}, {{A, B, C, X(277), X(10429)}}, {{A, B, C, X(278), X(10106)}}, {{A, B, C, X(279), X(3600)}}, {{A, B, C, X(282), X(56182)}}, {{A, B, C, X(286), X(58002)}}, {{A, B, C, X(329), X(3306)}}, {{A, B, C, X(331), X(40013)}}, {{A, B, C, X(345), X(20905)}}, {{A, B, C, X(348), X(57876)}}, {{A, B, C, X(388), X(40180)}}, {{A, B, C, X(514), X(56218)}}, {{A, B, C, X(673), X(60167)}}, {{A, B, C, X(959), X(46331)}}, {{A, B, C, X(1088), X(56264)}}, {{A, B, C, X(1320), X(56230)}}, {{A, B, C, X(1392), X(56354)}}, {{A, B, C, X(1407), X(56155)}}, {{A, B, C, X(1422), X(1476)}}, {{A, B, C, X(1427), X(60086)}}, {{A, B, C, X(1441), X(8808)}}, {{A, B, C, X(1751), X(42318)}}, {{A, B, C, X(1809), X(41081)}}, {{A, B, C, X(2006), X(37709)}}, {{A, B, C, X(2185), X(55986)}}, {{A, B, C, X(2320), X(55987)}}, {{A, B, C, X(2339), X(36101)}}, {{A, B, C, X(3296), X(39980)}}, {{A, B, C, X(3427), X(37887)}}, {{A, B, C, X(3616), X(34255)}}, {{A, B, C, X(3911), X(5226)}}, {{A, B, C, X(3912), X(10580)}}, {{A, B, C, X(4391), X(37874)}}, {{A, B, C, X(4461), X(19804)}}, {{A, B, C, X(4564), X(8046)}}, {{A, B, C, X(4998), X(56331)}}, {{A, B, C, X(5249), X(5744)}}, {{A, B, C, X(5308), X(10453)}}, {{A, B, C, X(5328), X(6692)}}, {{A, B, C, X(5423), X(19605)}}, {{A, B, C, X(5437), X(18228)}}, {{A, B, C, X(5905), X(27003)}}, {{A, B, C, X(5936), X(58008)}}, {{A, B, C, X(6063), X(36620)}}, {{A, B, C, X(6542), X(26103)}}, {{A, B, C, X(6604), X(32086)}}, {{A, B, C, X(7196), X(30669)}}, {{A, B, C, X(7319), X(39963)}}, {{A, B, C, X(7320), X(25430)}}, {{A, B, C, X(8055), X(42020)}}, {{A, B, C, X(11604), X(60114)}}, {{A, B, C, X(14534), X(30705)}}, {{A, B, C, X(15474), X(60615)}}, {{A, B, C, X(16054), X(37104)}}, {{A, B, C, X(17758), X(24391)}}, {{A, B, C, X(18025), X(56074)}}, {{A, B, C, X(20568), X(60254)}}, {{A, B, C, X(20615), X(40151)}}, {{A, B, C, X(23617), X(56076)}}, {{A, B, C, X(23618), X(55937)}}, {{A, B, C, X(23958), X(26842)}}, {{A, B, C, X(26745), X(34401)}}, {{A, B, C, X(27186), X(55868)}}, {{A, B, C, X(28739), X(56460)}}, {{A, B, C, X(28780), X(56444)}}, {{A, B, C, X(29627), X(36845)}}, {{A, B, C, X(30513), X(34546)}}, {{A, B, C, X(31618), X(60206)}}, {{A, B, C, X(35160), X(56348)}}, {{A, B, C, X(36621), X(52374)}}, {{A, B, C, X(37222), X(57722)}}, {{A, B, C, X(38009), X(60083)}}, {{A, B, C, X(38253), X(43742)}}, {{A, B, C, X(38955), X(56226)}}, {{A, B, C, X(39749), X(40012)}}, {{A, B, C, X(39962), X(60155)}}, {{A, B, C, X(43740), X(60237)}}, {{A, B, C, X(44733), X(44794)}}, {{A, B, C, X(44792), X(60077)}}, {{A, B, C, X(52422), X(60203)}}, {{A, B, C, X(55983), X(56026)}}, {{A, B, C, X(55995), X(56041)}}, {{A, B, C, X(56033), X(56234)}}, {{A, B, C, X(56157), X(60243)}}, {{A, B, C, X(56274), X(62528)}}
X(63164) = barycentric product X(i)*X(j) for these (i, j): {1219, 7}, {2297, 85}, {6063, 7050}, {7091, 75}, {11546, 69}, {24002, 6574}, {35519, 58985}
X(63164) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1697}, {2, 18228}, {7, 3672}, {56, 1191}, {57, 2999}, {65, 4646}, {75, 63151}, {226, 4656}, {650, 40137}, {1219, 8}, {1465, 51413}, {2297, 9}, {3669, 8712}, {6574, 644}, {7050, 55}, {7091, 1}, {11546, 4}, {40175, 28070}, {57181, 8662}, {58985, 109}


X(63165) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(40), X(3062))

Barycentrics    (a-b-c)*(a^2-2*a*b+b^2+2*a*c+2*b*c-3*c^2)*(a^2-3*b^2+2*a*(b-c)+2*b*c+c^2) : :

X(63165) lies on these lines: {7, 4081}, {8, 144}, {9, 24856}, {75, 31627}, {280, 3616}, {318, 9780}, {344, 62710}, {346, 19605}, {2370, 53622}, {2968, 9779}, {3161, 6559}, {3241, 51565}, {3705, 56349}, {3717, 6556}, {5552, 36624}, {7046, 9778}, {23618, 31994}, {25728, 28131}, {27383, 36626}, {31995, 56264}, {32017, 60813}, {39130, 54228}, {50107, 56118}

X(63165) = isotomic conjugate of X(3160)
X(63165) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 1419}, {31, 3160}, {32, 31627}, {34, 22117}, {41, 9533}, {55, 17106}, {56, 165}, {57, 3207}, {144, 604}, {560, 50560}, {1397, 16284}, {1408, 21060}, {1412, 21872}, {1415, 7658}, {1418, 33634}, {1973, 50559}, {2175, 50561}, {2203, 50563}, {6614, 58835}, {50562, 57657}
X(63165) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 165}, {2, 3160}, {9, 1419}, {223, 17106}, {1146, 7658}, {3160, 9533}, {3161, 144}, {5452, 3207}, {6337, 50559}, {6374, 50560}, {6376, 31627}, {6741, 55285}, {10405, 32079}, {11019, 45228}, {11517, 22117}, {19605, 2124}, {40593, 50561}, {40599, 21872}, {59573, 43182}, {59577, 21060}, {62564, 50563}, {62570, 50562}, {62585, 16284}
X(63165) = X(i)-Ceva conjugate of X(j) for these {i, j}: {44186, 10405}
X(63165) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 8}, {522, 53640}, {19605, 10405}, {23058, 2}, {23970, 4391}, {41006, 312}
X(63165) = pole of line {4163, 59926} with respect to the DeLongchamps circle
X(63165) = pole of line {3160, 50559} with respect to the Wallace hyperbola
X(63165) = pole of line {4163, 57064} with respect to the dual conic of incircle
X(63165) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(7991)}}, {{A, B, C, X(2), X(144)}}, {{A, B, C, X(4), X(5691)}}, {{A, B, C, X(7), X(281)}}, {{A, B, C, X(8), X(75)}}, {{A, B, C, X(9), X(5223)}}, {{A, B, C, X(21), X(12526)}}, {{A, B, C, X(29), X(3146)}}, {{A, B, C, X(78), X(3951)}}, {{A, B, C, X(80), X(37712)}}, {{A, B, C, X(84), X(7995)}}, {{A, B, C, X(85), X(30695)}}, {{A, B, C, X(158), X(10429)}}, {{A, B, C, X(189), X(5942)}}, {{A, B, C, X(264), X(4397)}}, {{A, B, C, X(273), X(36991)}}, {{A, B, C, X(282), X(1156)}}, {{A, B, C, X(294), X(8769)}}, {{A, B, C, X(309), X(7101)}}, {{A, B, C, X(312), X(4461)}}, {{A, B, C, X(344), X(44448)}}, {{A, B, C, X(345), X(25001)}}, {{A, B, C, X(650), X(9309)}}, {{A, B, C, X(1229), X(50107)}}, {{A, B, C, X(1440), X(56263)}}, {{A, B, C, X(2123), X(12527)}}, {{A, B, C, X(3062), X(19605)}}, {{A, B, C, X(3160), X(23058)}}, {{A, B, C, X(3161), X(3717)}}, {{A, B, C, X(3241), X(6735)}}, {{A, B, C, X(3254), X(39709)}}, {{A, B, C, X(3616), X(7080)}}, {{A, B, C, X(3729), X(6557)}}, {{A, B, C, X(4373), X(14942)}}, {{A, B, C, X(4391), X(55948)}}, {{A, B, C, X(4416), X(34277)}}, {{A, B, C, X(4488), X(36807)}}, {{A, B, C, X(4518), X(56076)}}, {{A, B, C, X(4560), X(44559)}}, {{A, B, C, X(4768), X(52746)}}, {{A, B, C, X(5222), X(56897)}}, {{A, B, C, X(5423), X(6063)}}, {{A, B, C, X(5552), X(27383)}}, {{A, B, C, X(5558), X(20070)}}, {{A, B, C, X(6601), X(36588)}}, {{A, B, C, X(7040), X(10309)}}, {{A, B, C, X(7056), X(9778)}}, {{A, B, C, X(7110), X(28626)}}, {{A, B, C, X(7319), X(10570)}}, {{A, B, C, X(7996), X(36644)}}, {{A, B, C, X(9365), X(39956)}}, {{A, B, C, X(9442), X(41680)}}, {{A, B, C, X(9950), X(32023)}}, {{A, B, C, X(10308), X(36610)}}, {{A, B, C, X(15629), X(37741)}}, {{A, B, C, X(15742), X(58003)}}, {{A, B, C, X(15998), X(39711)}}, {{A, B, C, X(17038), X(40779)}}, {{A, B, C, X(18328), X(60583)}}, {{A, B, C, X(28058), X(29627)}}, {{A, B, C, X(30625), X(31618)}}, {{A, B, C, X(31623), X(45738)}}, {{A, B, C, X(31994), X(41006)}}, {{A, B, C, X(36916), X(55076)}}, {{A, B, C, X(38307), X(40437)}}, {{A, B, C, X(42483), X(52156)}}, {{A, B, C, X(43736), X(53086)}}, {{A, B, C, X(44040), X(59760)}}, {{A, B, C, X(44130), X(48878)}}, {{A, B, C, X(45097), X(52665)}}, {{A, B, C, X(56200), X(60668)}}
X(63165) = barycentric product X(i)*X(j) for these (i, j): {346, 36620}, {3062, 312}, {3239, 53640}, {3700, 55284}, {4397, 61240}, {5423, 60831}, {10405, 8}, {11051, 3596}, {19605, 75}, {36796, 56718}, {44186, 9}, {52622, 53622}
X(63165) = barycentric quotient X(i)/X(j) for these (i, j): {1, 1419}, {2, 3160}, {7, 9533}, {8, 144}, {9, 165}, {55, 3207}, {57, 17106}, {69, 50559}, {75, 31627}, {76, 50560}, {85, 50561}, {210, 21872}, {219, 22117}, {306, 50563}, {312, 16284}, {522, 7658}, {646, 62533}, {1441, 50562}, {2321, 21060}, {3062, 57}, {3700, 55285}, {4081, 13609}, {4130, 58835}, {4163, 57064}, {10405, 7}, {10482, 33634}, {11051, 56}, {19605, 1}, {24856, 1699}, {36620, 279}, {41006, 43182}, {44186, 85}, {53622, 1461}, {53640, 658}, {55284, 4573}, {56718, 241}, {57064, 58877}, {59170, 60992}, {60831, 479}, {61240, 934}, {61380, 7023}, {62544, 7195}


X(63166) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(7), X(13405))

Barycentrics    (a+b-c)*(a-b+c)*(2*a^2+2*b^2-b*c-c^2-a*(4*b+c))*(2*a^2-b^2-b*c+2*c^2-a*(b+4*c)) : :

X(63166) lies on these lines: {2, 6603}, {7, 1155}, {75, 6745}, {273, 23710}, {650, 60479}, {673, 5219}, {675, 58105}, {903, 40719}, {1088, 1323}, {1223, 20195}, {1996, 56274}, {3911, 27475}, {9436, 39704}, {10578, 31721}, {10580, 38254}, {17093, 56348}, {18815, 62697}, {28626, 56927}, {32851, 39749}, {51567, 55082}

X(63166) = isotomic conjugate of X(5231)
X(63166) = trilinear pole of line {50573, 514}
X(63166) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 34522}, {31, 5231}, {41, 6173}, {55, 4860}, {56, 42014}, {57, 32578}, {651, 17425}, {1253, 21314}, {34068, 44785}
X(63166) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 42014}, {2, 5231}, {9, 34522}, {223, 4860}, {3160, 6173}, {5452, 32578}, {17113, 21314}, {35110, 44785}, {38991, 17425}
X(63166) = X(i)-cross conjugate of X(j) for these {i, j}: {28292, 190}, {30181, 664}, {46919, 658}, {55920, 55954}, {61008, 85}
X(63166) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(650)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(55), X(54474)}}, {{A, B, C, X(80), X(17718)}}, {{A, B, C, X(85), X(4998)}}, {{A, B, C, X(200), X(13405)}}, {{A, B, C, X(312), X(40419)}}, {{A, B, C, X(341), X(60158)}}, {{A, B, C, X(765), X(34525)}}, {{A, B, C, X(1000), X(1065)}}, {{A, B, C, X(1037), X(39737)}}, {{A, B, C, X(2346), X(41798)}}, {{A, B, C, X(2481), X(30608)}}, {{A, B, C, X(3160), X(31721)}}, {{A, B, C, X(3911), X(40719)}}, {{A, B, C, X(5219), X(9436)}}, {{A, B, C, X(5561), X(43672)}}, {{A, B, C, X(7035), X(56081)}}, {{A, B, C, X(10582), X(20103)}}, {{A, B, C, X(13577), X(44186)}}, {{A, B, C, X(18025), X(50442)}}, {{A, B, C, X(18810), X(55954)}}, {{A, B, C, X(19605), X(56330)}}, {{A, B, C, X(20121), X(58816)}}, {{A, B, C, X(25430), X(56359)}}, {{A, B, C, X(30571), X(52013)}}, {{A, B, C, X(34234), X(55983)}}, {{A, B, C, X(40434), X(43736)}}, {{A, B, C, X(40438), X(56287)}}, {{A, B, C, X(42289), X(56158)}}, {{A, B, C, X(42311), X(56060)}}
X(63166) = barycentric product X(i)*X(j) for these (i, j): {200, 34521}, {3261, 58105}, {18810, 9}, {55920, 85}, {55954, 7}
X(63166) = barycentric quotient X(i)/X(j) for these (i, j): {1, 34522}, {2, 5231}, {7, 6173}, {9, 42014}, {55, 32578}, {57, 4860}, {279, 21314}, {527, 44785}, {663, 17425}, {8545, 15346}, {10509, 58809}, {18810, 85}, {34521, 1088}, {46003, 21127}, {55920, 9}, {55954, 8}, {58105, 101}


X(63167) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(7), X(13405))

Barycentrics    (a+b-c)*(a-b+c)*(2*a^2+2*b^2+b*c-c^2+a*(-4*b+c))*(2*a^2-b^2+a*(b-4*c)+b*c+2*c^2) : :

X(63167) lies on these lines: {2, 55989}, {7, 38255}, {8, 1319}, {9, 42339}, {57, 4997}, {85, 6692}, {257, 31225}, {312, 3911}, {333, 31231}, {348, 56335}, {3550, 14942}, {3669, 60480}, {4488, 5435}, {17740, 56086}, {18359, 54284}, {20103, 60668}, {31188, 56201}, {31190, 40420}, {31224, 34234}, {37646, 52517}

X(63167) = isotomic conjugate of X(30827)
X(63167) = trilinear pole of line {522, 53528}
X(63167) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2098}, {8, 34543}, {9, 32577}, {31, 30827}, {41, 4862}, {56, 34524}, {100, 17424}, {1253, 47444}, {9456, 44784}
X(63167) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 34524}, {2, 30827}, {9, 2098}, {478, 32577}, {3160, 4862}, {4370, 44784}, {8054, 17424}, {17113, 47444}
X(63167) = X(i)-cross conjugate of X(j) for these {i, j}: {3667, 664}, {25005, 75}
X(63167) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(11260)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(9), X(6692)}}, {{A, B, C, X(27), X(6921)}}, {{A, B, C, X(57), X(1319)}}, {{A, B, C, X(86), X(36948)}}, {{A, B, C, X(95), X(58001)}}, {{A, B, C, X(226), X(31231)}}, {{A, B, C, X(241), X(3550)}}, {{A, B, C, X(279), X(5435)}}, {{A, B, C, X(514), X(33956)}}, {{A, B, C, X(673), X(10307)}}, {{A, B, C, X(908), X(31224)}}, {{A, B, C, X(1016), X(18743)}}, {{A, B, C, X(1088), X(4998)}}, {{A, B, C, X(1376), X(9442)}}, {{A, B, C, X(1434), X(44794)}}, {{A, B, C, X(2006), X(37738)}}, {{A, B, C, X(3306), X(59491)}}, {{A, B, C, X(3452), X(31190)}}, {{A, B, C, X(3500), X(3752)}}, {{A, B, C, X(4384), X(20103)}}, {{A, B, C, X(5226), X(31188)}}, {{A, B, C, X(5437), X(5745)}}, {{A, B, C, X(7131), X(8056)}}, {{A, B, C, X(7196), X(31225)}}, {{A, B, C, X(7285), X(39963)}}, {{A, B, C, X(8817), X(62528)}}, {{A, B, C, X(13478), X(37828)}}, {{A, B, C, X(14554), X(37829)}}, {{A, B, C, X(17740), X(19804)}}, {{A, B, C, X(23618), X(42318)}}, {{A, B, C, X(24914), X(44733)}}, {{A, B, C, X(28650), X(58008)}}, {{A, B, C, X(30598), X(31643)}}, {{A, B, C, X(31227), X(56084)}}, {{A, B, C, X(32851), X(54284)}}, {{A, B, C, X(35160), X(36620)}}, {{A, B, C, X(38254), X(56264)}}, {{A, B, C, X(40029), X(60254)}}, {{A, B, C, X(40419), X(56074)}}, {{A, B, C, X(43759), X(60107)}}, {{A, B, C, X(44186), X(56365)}}
X(63167) = barycentric product X(i)*X(j) for these (i, j): {1, 18811}, {34523, 57}, {55989, 85}, {63163, 75}
X(63167) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2098}, {2, 30827}, {7, 4862}, {9, 34524}, {56, 32577}, {279, 47444}, {519, 44784}, {604, 34543}, {649, 17424}, {18811, 75}, {34523, 312}, {36846, 15347}, {37789, 25580}, {46004, 6615}, {55989, 9}, {63163, 1}


X(63168) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(9), X(200))

Barycentrics    3*a^3-5*a^2*(b+c)+(b-c)^2*(b+c)+a*(b+c)^2 : :

X(63168) lies on these lines: {1, 2}, {7, 100}, {12, 3189}, {21, 5815}, {55, 329}, {57, 59584}, {63, 5281}, {142, 46917}, {144, 35258}, {149, 5660}, {165, 9965}, {226, 3158}, {281, 1897}, {344, 3699}, {354, 59572}, {388, 56176}, {390, 908}, {404, 11037}, {452, 21075}, {461, 41013}, {480, 60959}, {495, 37363}, {497, 5087}, {518, 5218}, {527, 35445}, {631, 3555}, {664, 1996}, {678, 24725}, {942, 26062}, {943, 13615}, {944, 37374}, {946, 56936}, {962, 3871}, {1056, 5440}, {1058, 26129}, {1145, 11041}, {1155, 2094}, {1266, 40719}, {1280, 51564}, {1331, 17126}, {1376, 3475}, {1449, 8568}, {1466, 35977}, {1490, 9800}, {1621, 18228}, {1836, 34607}, {2099, 13996}, {2550, 3689}, {2551, 37080}, {3035, 42871}, {3160, 37780}, {3161, 3952}, {3174, 8232}, {3176, 37769}, {3243, 3911}, {3262, 62697}, {3306, 11038}, {3333, 59587}, {3419, 8164}, {3421, 24929}, {3434, 5226}, {3436, 4313}, {3452, 10389}, {3474, 4421}, {3476, 56177}, {3485, 3913}, {3486, 12607}, {3487, 5687}, {3488, 14022}, {3600, 4855}, {3648, 31660}, {3649, 11501}, {3660, 3873}, {3681, 5273}, {3693, 54389}, {3694, 5749}, {3697, 16845}, {3711, 38057}, {3748, 26105}, {3885, 5734}, {3889, 6921}, {4000, 17724}, {4005, 61722}, {4018, 31788}, {4029, 40869}, {4080, 56144}, {4232, 7719}, {4294, 21077}, {4295, 8715}, {4298, 37267}, {4323, 14923}, {4343, 27282}, {4413, 37703}, {4419, 4689}, {4427, 4488}, {4512, 21060}, {4551, 54425}, {4644, 37540}, {4661, 55868}, {4679, 47357}, {4860, 6174}, {4863, 61648}, {4899, 59779}, {4917, 12632}, {5045, 17567}, {5057, 30332}, {5082, 11374}, {5086, 12536}, {5178, 10585}, {5219, 5853}, {5261, 57287}, {5274, 30852}, {5290, 37435}, {5316, 38316}, {5328, 8236}, {5423, 17776}, {5432, 24477}, {5534, 6847}, {5537, 5905}, {5603, 38665}, {5686, 54357}, {5728, 51380}, {5731, 50371}, {5758, 6361}, {5761, 19541}, {5772, 32779}, {5904, 31452}, {6154, 61716}, {6172, 34919}, {6260, 41869}, {6604, 37757}, {6684, 41863}, {6692, 44841}, {6769, 37421}, {6857, 34790}, {6904, 21620}, {7288, 34791}, {7411, 10310}, {7672, 51378}, {7674, 21617}, {7680, 10883}, {8727, 18525}, {9371, 24499}, {9578, 12437}, {9812, 20075}, {10025, 20073}, {10164, 11407}, {10177, 18230}, {10385, 24703}, {10394, 17615}, {10431, 11015}, {10707, 50839}, {11018, 17658}, {11681, 52254}, {12527, 17576}, {12848, 41570}, {14740, 18412}, {14942, 50442}, {15733, 60995}, {16608, 30619}, {17169, 35983}, {17234, 43290}, {17350, 35261}, {17484, 61157}, {17613, 36996}, {17768, 61153}, {17896, 58835}, {20173, 49462}, {20195, 46916}, {20214, 31508}, {21453, 42361}, {23693, 52428}, {25081, 27811}, {25439, 30305}, {25522, 40270}, {30828, 32850}, {31018, 52653}, {31019, 59412}, {32849, 53661}, {33108, 59413}, {33144, 33149}, {34610, 37600}, {35988, 40910}, {37400, 54327}, {40127, 51058}, {40269, 46685}, {46694, 61718}, {54391, 54445}

X(63168) = reflection of X(i) in X(j) for these {i,j}: {5744, 5218}
X(63168) = anticomplement of X(5231)
X(63168) = X(i)-isoconjugate-of-X(j) for these {i, j}: {513, 28291}
X(63168) = X(i)-Dao conjugate of X(j) for these {i, j}: {5231, 5231}, {39026, 28291}
X(63168) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63166, 2}
X(63168) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {18810, 21280}, {55920, 3436}, {55954, 21286}, {58105, 513}, {63166, 6327}
X(63168) = pole of line {1638, 7649} with respect to the polar circle
X(63168) = pole of line {3057, 5766} with respect to the Feuerbach hyperbola
X(63168) = pole of line {514, 50573} with respect to the Steiner circumellipse
X(63168) = pole of line {3239, 3887} with respect to the dual conic of incircle
X(63168) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(15728)}}, {{A, B, C, X(2), X(12848)}}, {{A, B, C, X(7), X(26015)}}, {{A, B, C, X(8), X(51567)}}, {{A, B, C, X(78), X(41798)}}, {{A, B, C, X(200), X(34894)}}, {{A, B, C, X(281), X(6745)}}, {{A, B, C, X(519), X(28292)}}, {{A, B, C, X(936), X(943)}}, {{A, B, C, X(938), X(60077)}}, {{A, B, C, X(1280), X(3872)}}, {{A, B, C, X(1389), X(12629)}}, {{A, B, C, X(1998), X(34525)}}, {{A, B, C, X(3870), X(56331)}}, {{A, B, C, X(3912), X(50442)}}, {{A, B, C, X(3935), X(56314)}}, {{A, B, C, X(4847), X(41570)}}, {{A, B, C, X(5231), X(34919)}}, {{A, B, C, X(5558), X(11240)}}, {{A, B, C, X(9623), X(39959)}}, {{A, B, C, X(10309), X(10916)}}, {{A, B, C, X(17389), X(42360)}}, {{A, B, C, X(18359), X(29616)}}, {{A, B, C, X(21453), X(36845)}}, {{A, B, C, X(25930), X(56234)}}, {{A, B, C, X(34619), X(60158)}}
X(63168) = barycentric product X(i)*X(j) for these (i, j): {190, 28292}, {12848, 8}, {32008, 41570}, {43960, 4998}, {47375, 85}
X(63168) = barycentric quotient X(i)/X(j) for these (i, j): {101, 28291}, {12848, 7}, {28292, 514}, {41570, 142}, {43960, 11}, {47375, 9}, {57457, 60479}
X(63168) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6745, 2}, {2, 3935, 8}, {12, 3189, 5175}, {55, 25568, 329}, {200, 3811, 3935}, {200, 6745, 7080}, {226, 3158, 17784}, {942, 59591, 26062}, {1376, 3475, 9776}, {3689, 17718, 2550}, {4413, 37703, 38053}, {5432, 41711, 24477}, {20075, 31053, 9812}, {31018, 61155, 52653}, {41570, 47375, 12848}


X(63169) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(10), X(3617))

Barycentrics    (5*a^2-6*a*b+5*b^2+2*a*c+2*b*c-3*c^2)*(5*a^2-3*b^2+2*a*(b-3*c)+2*b*c+5*c^2) : :

X(63169) lies on these lines: {2, 6049}, {8, 3973}, {9, 46872}, {145, 6557}, {312, 3621}, {333, 4678}, {3617, 56201}, {3623, 4997}, {5554, 63164}, {10107, 41439}, {17350, 36605}, {20014, 56075}, {20052, 56086}, {36596, 56936}, {45789, 56335}

X(63169) = isogonal conjugate of X(8572)
X(63169) = isotomic conjugate of X(45789)
X(63169) = trilinear pole of line {2490, 2496}
X(63169) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 8572}, {31, 45789}, {163, 7657}
X(63169) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 45789}, {3, 8572}, {115, 7657}
X(63169) = X(i)-cross conjugate of X(j) for these {i, j}: {14350, 190}
X(63169) = pole of line {8572, 45789} with respect to the Wallace hyperbola
X(63169) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3621)}}, {{A, B, C, X(2), X(8)}}, {{A, B, C, X(4), X(6553)}}, {{A, B, C, X(7), X(145)}}, {{A, B, C, X(57), X(39123)}}, {{A, B, C, X(80), X(1219)}}, {{A, B, C, X(346), X(34918)}}, {{A, B, C, X(519), X(3296)}}, {{A, B, C, X(957), X(36604)}}, {{A, B, C, X(979), X(41446)}}, {{A, B, C, X(996), X(43533)}}, {{A, B, C, X(1000), X(60077)}}, {{A, B, C, X(1016), X(57826)}}, {{A, B, C, X(1120), X(5556)}}, {{A, B, C, X(1222), X(4373)}}, {{A, B, C, X(1252), X(2334)}}, {{A, B, C, X(1280), X(62178)}}, {{A, B, C, X(1392), X(55991)}}, {{A, B, C, X(2297), X(31509)}}, {{A, B, C, X(2985), X(45100)}}, {{A, B, C, X(3241), X(20014)}}, {{A, B, C, X(3244), X(20049)}}, {{A, B, C, X(3616), X(20052)}}, {{A, B, C, X(3617), X(5936)}}, {{A, B, C, X(3622), X(31145)}}, {{A, B, C, X(3632), X(13602)}}, {{A, B, C, X(3680), X(23617)}}, {{A, B, C, X(3870), X(20008)}}, {{A, B, C, X(4421), X(10107)}}, {{A, B, C, X(4452), X(10106)}}, {{A, B, C, X(5395), X(6185)}}, {{A, B, C, X(5853), X(43983)}}, {{A, B, C, X(6556), X(10570)}}, {{A, B, C, X(7317), X(43531)}}, {{A, B, C, X(7320), X(30712)}}, {{A, B, C, X(15232), X(56258)}}, {{A, B, C, X(16615), X(56140)}}, {{A, B, C, X(17097), X(56314)}}, {{A, B, C, X(17350), X(20059)}}, {{A, B, C, X(18812), X(39458)}}, {{A, B, C, X(18845), X(38247)}}, {{A, B, C, X(24297), X(56220)}}, {{A, B, C, X(34434), X(39975)}}, {{A, B, C, X(43731), X(59760)}}
X(63169) = barycentric quotient X(i)/X(j) for these (i, j): {2, 45789}, {6, 8572}, {523, 7657}
X(63169) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3632, 10106, 4031}


X(63170) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(2), X(76), X(3978))

Barycentrics    b^2*c^2*(-3*a^4+2*b^2*c^2-a^2*(b^2+c^2)) : :

X(63170) lies on cubics K056, K295 and on these lines: {2, 39}, {3, 56442}, {4, 6331}, {6, 30736}, {83, 54413}, {99, 33705}, {144, 34086}, {145, 1978}, {193, 6374}, {263, 25332}, {290, 1007}, {315, 18911}, {327, 34803}, {670, 1992}, {850, 5652}, {886, 34344}, {1502, 3618}, {1975, 37338}, {3051, 11333}, {3231, 7754}, {3552, 33756}, {3619, 33769}, {4563, 7760}, {4572, 12848}, {5012, 60727}, {5106, 7781}, {5222, 18891}, {5254, 59765}, {5395, 40162}, {5640, 62301}, {5967, 14382}, {6386, 41316}, {6620, 51843}, {8842, 14251}, {9211, 9214}, {9230, 51171}, {9292, 20022}, {9998, 53375}, {11338, 20965}, {16045, 46328}, {16989, 35540}, {18022, 52288}, {18024, 42287}, {18841, 40016}, {25278, 56802}, {25303, 41318}, {26913, 40876}, {29585, 59518}, {31630, 60183}, {32472, 57459}, {33873, 38527}, {36803, 56850}, {37335, 38907}, {44144, 52289}, {47846, 62303}

X(63170) = isogonal conjugate of X(51918)
X(63170) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 51918}, {560, 60180}, {798, 39639}
X(63170) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 51918}, {6374, 60180}, {31998, 39639}
X(63170) = X(i)-cross conjugate of X(j) for these {i, j}: {41622, 14614}
X(63170) = pole of line {888, 2489} with respect to the polar circle
X(63170) = pole of line {141, 44152} with respect to the Kiepert hyperbola
X(63170) = pole of line {32, 51918} with respect to the Stammler hyperbola
X(63170) = pole of line {6, 37338} with respect to the Wallace hyperbola
X(63170) = pole of line {850, 3804} with respect to the dual conic of half Moses circle
X(63170) = pole of line {850, 8651} with respect to the dual conic of Moses circle
X(63170) = pole of line {850, 8651} with respect to the dual conic of Brocard inellipse
X(63170) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(14614)}}, {{A, B, C, X(4), X(538)}}, {{A, B, C, X(39), X(9292)}}, {{A, B, C, X(83), X(7757)}}, {{A, B, C, X(194), X(5395)}}, {{A, B, C, X(262), X(9764)}}, {{A, B, C, X(263), X(3229)}}, {{A, B, C, X(305), X(34087)}}, {{A, B, C, X(598), X(11055)}}, {{A, B, C, X(1645), X(42068)}}, {{A, B, C, X(3117), X(11175)}}, {{A, B, C, X(3266), X(14387)}}, {{A, B, C, X(3406), X(13085)}}, {{A, B, C, X(3934), X(60183)}}, {{A, B, C, X(5485), X(14711)}}, {{A, B, C, X(5967), X(45330)}}, {{A, B, C, X(6309), X(60633)}}, {{A, B, C, X(7786), X(60100)}}, {{A, B, C, X(9466), X(18840)}}, {{A, B, C, X(9865), X(60177)}}, {{A, B, C, X(11054), X(54752)}}, {{A, B, C, X(20081), X(38259)}}, {{A, B, C, X(34537), X(39460)}}, {{A, B, C, X(36212), X(42287)}}
X(63170) = barycentric product X(i)*X(j) for these (i, j): {308, 41622}, {1502, 41412}, {11059, 60866}, {14614, 76}, {32472, 670}
X(63170) = barycentric quotient X(i)/X(j) for these (i, j): {6, 51918}, {76, 60180}, {99, 39639}, {14614, 6}, {32472, 512}, {41412, 32}, {41622, 39}, {60866, 21448}
X(63170) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3978, 20023}, {6, 30736, 44152}


X(63171) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3), X(1), X(7100))

Barycentrics    (a+b-c)*(a-b+c)*(b+c)*(a^2-b^2-c^2)*(a^2+a*b+b^2-c^2)*(a^2-b^2+a*c+c^2) : :

X(63171) lies on these lines: {1, 30}, {2, 2349}, {7, 40214}, {63, 11064}, {72, 21912}, {92, 445}, {226, 8818}, {293, 35912}, {1001, 26700}, {2167, 17483}, {2184, 7110}, {2697, 36064}, {3434, 6742}, {3487, 57710}, {3615, 40431}, {6757, 12609}, {7741, 56677}, {8767, 52485}, {18588, 56382}, {22122, 23119}, {22130, 50433}, {31937, 58740}, {41804, 46809}, {44708, 51664}

X(63171) = isogonal conjugate of X(41502)
X(63171) = trilinear pole of line {656, 9033}
X(63171) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 41502}, {4, 35192}, {6, 11107}, {19, 35193}, {25, 56440}, {28, 52405}, {29, 2174}, {33, 40214}, {35, 1172}, {112, 35057}, {162, 9404}, {186, 2341}, {281, 17104}, {284, 6198}, {319, 2204}, {333, 14975}, {607, 56934}, {1399, 2322}, {1442, 2332}, {1474, 4420}, {1793, 52418}, {1825, 7054}, {2003, 4183}, {2189, 3678}, {2194, 52412}, {2203, 42033}, {2212, 34016}, {2299, 3219}, {2326, 2594}, {5546, 54244}, {8748, 52408}, {14591, 52356}, {21741, 59482}, {22342, 36421}, {31938, 40570}, {32676, 57066}, {52914, 55210}
X(63171) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 41502}, {6, 35193}, {9, 11107}, {125, 9404}, {226, 3219}, {647, 6741}, {1214, 52412}, {6505, 56440}, {15526, 57066}, {18593, 14920}, {34591, 35057}, {36033, 35192}, {39170, 62694}, {40590, 6198}, {40591, 52405}, {51574, 4420}, {56847, 281}, {59608, 7282}, {62564, 42033}, {62565, 319}
X(63171) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30690, 43682}
X(63171) = X(i)-cross conjugate of X(j) for these {i, j}: {125, 17094}, {6368, 4566}, {42761, 14592}
X(63171) = pole of line {8818, 55010} with respect to the Kiepert hyperbola
X(63171) = pole of line {35193, 41502} with respect to the Stammler hyperbola
X(63171) = pole of line {9404, 57066} with respect to the dual conic of polar circle
X(63171) = pole of line {553, 56402} with respect to the dual conic of Yff parabola
X(63171) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(63)}}, {{A, B, C, X(2), X(30)}}, {{A, B, C, X(3), X(445)}}, {{A, B, C, X(7), X(6356)}}, {{A, B, C, X(10), X(41869)}}, {{A, B, C, X(37), X(18588)}}, {{A, B, C, X(69), X(37631)}}, {{A, B, C, X(76), X(48899)}}, {{A, B, C, X(77), X(47057)}}, {{A, B, C, X(79), X(43682)}}, {{A, B, C, X(90), X(1717)}}, {{A, B, C, X(94), X(56845)}}, {{A, B, C, X(201), X(11553)}}, {{A, B, C, X(222), X(1464)}}, {{A, B, C, X(265), X(56402)}}, {{A, B, C, X(278), X(13853)}}, {{A, B, C, X(305), X(50178)}}, {{A, B, C, X(307), X(4654)}}, {{A, B, C, X(321), X(12699)}}, {{A, B, C, X(345), X(10543)}}, {{A, B, C, X(348), X(3649)}}, {{A, B, C, X(523), X(16272)}}, {{A, B, C, X(656), X(55919)}}, {{A, B, C, X(1231), X(10404)}}, {{A, B, C, X(1439), X(56848)}}, {{A, B, C, X(1799), X(50181)}}, {{A, B, C, X(1812), X(33857)}}, {{A, B, C, X(1836), X(15320)}}, {{A, B, C, X(2051), X(52524)}}, {{A, B, C, X(2294), X(56269)}}, {{A, B, C, X(3521), X(57721)}}, {{A, B, C, X(3710), X(41864)}}, {{A, B, C, X(4052), X(31162)}}, {{A, B, C, X(4080), X(22791)}}, {{A, B, C, X(5441), X(52351)}}, {{A, B, C, X(5495), X(31626)}}, {{A, B, C, X(6284), X(60188)}}, {{A, B, C, X(7056), X(17094)}}, {{A, B, C, X(7073), X(8818)}}, {{A, B, C, X(7100), X(30690)}}, {{A, B, C, X(8808), X(9579)}}, {{A, B, C, X(13408), X(60156)}}, {{A, B, C, X(14592), X(52200)}}, {{A, B, C, X(15171), X(60229)}}, {{A, B, C, X(15174), X(30680)}}, {{A, B, C, X(15175), X(16577)}}, {{A, B, C, X(15474), X(41492)}}, {{A, B, C, X(16132), X(41081)}}, {{A, B, C, X(16137), X(30679)}}, {{A, B, C, X(17758), X(48897)}}, {{A, B, C, X(18481), X(30588)}}, {{A, B, C, X(18550), X(54929)}}, {{A, B, C, X(20336), X(50068)}}, {{A, B, C, X(24851), X(60245)}}, {{A, B, C, X(31019), X(40152)}}, {{A, B, C, X(34919), X(52355)}}, {{A, B, C, X(36952), X(48933)}}, {{A, B, C, X(39704), X(40715)}}, {{A, B, C, X(39751), X(57243)}}, {{A, B, C, X(41854), X(52389)}}, {{A, B, C, X(43683), X(49177)}}, {{A, B, C, X(44708), X(52610)}}, {{A, B, C, X(48903), X(60071)}}, {{A, B, C, X(49743), X(57826)}}, {{A, B, C, X(49744), X(57876)}}, {{A, B, C, X(49745), X(60076)}}, {{A, B, C, X(50865), X(60267)}}, {{A, B, C, X(52372), X(52390)}}, {{A, B, C, X(56226), X(56944)}}
X(63171) = barycentric product X(i)*X(j) for these (i, j): {226, 52381}, {265, 41804}, {306, 52374}, {307, 79}, {348, 8818}, {1214, 30690}, {1231, 2160}, {1439, 52344}, {1441, 7100}, {1464, 328}, {3615, 6356}, {6757, 77}, {14208, 26700}, {15455, 51664}, {17094, 6742}, {17216, 34922}, {20336, 52372}, {20565, 73}, {20902, 35049}, {26942, 52393}, {38340, 525}, {39791, 57885}, {43682, 63}, {52375, 57807}, {52382, 69}, {52388, 7}, {52390, 75}, {55010, 57860}, {55209, 55234}, {56382, 7110}
X(63171) = barycentric quotient X(i)/X(j) for these (i, j): {1, 11107}, {3, 35193}, {6, 41502}, {48, 35192}, {63, 56440}, {65, 6198}, {71, 52405}, {72, 4420}, {73, 35}, {77, 56934}, {79, 29}, {125, 6741}, {201, 3678}, {222, 40214}, {226, 52412}, {265, 6740}, {306, 42033}, {307, 319}, {348, 34016}, {525, 57066}, {603, 17104}, {647, 9404}, {656, 35057}, {1214, 3219}, {1231, 33939}, {1254, 1825}, {1402, 14975}, {1409, 2174}, {1410, 1399}, {1425, 2594}, {1439, 1442}, {1464, 186}, {1789, 1098}, {2160, 1172}, {3615, 59482}, {3668, 7282}, {4017, 54244}, {6186, 2299}, {6356, 40999}, {6742, 36797}, {6757, 318}, {7073, 4183}, {7100, 21}, {7110, 2322}, {7138, 22342}, {8606, 2328}, {8818, 281}, {13486, 52914}, {17094, 4467}, {18210, 53524}, {18593, 52414}, {20565, 44130}, {22094, 3024}, {22341, 52408}, {23070, 35195}, {26700, 162}, {26942, 3969}, {30690, 31623}, {36064, 1304}, {37755, 16577}, {38340, 648}, {39791, 500}, {41804, 340}, {43682, 92}, {51640, 23226}, {51664, 14838}, {52372, 28}, {52373, 2003}, {52374, 27}, {52375, 270}, {52381, 333}, {52382, 4}, {52388, 8}, {52390, 1}, {52391, 56422}, {52393, 46103}, {54360, 4354}, {55010, 445}, {55209, 55233}, {55234, 55210}, {55236, 3064}, {56193, 56183}, {56382, 17095}, {56399, 62694}, {56839, 31938}, {56844, 17515}, {57243, 7265}, {61058, 22094}
X(63171) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {226, 43682, 8818}, {554, 1081, 56402}, {1836, 52002, 41504}


X(63172) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3), X(5), X(54))

Barycentrics    a^2*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+b^4-b^2*c^2+c^4-2*a^2*(b^2+c^2)) : :
X(63172) = -3*X[2]+2*X[34520]

X(63172) lies on cubic K257 and on these lines: {2, 34520}, {3, 59143}, {6, 18315}, {49, 32002}, {54, 69}, {76, 57765}, {97, 56338}, {110, 54105}, {184, 57010}, {264, 18831}, {275, 13579}, {288, 5422}, {317, 9545}, {511, 59241}, {648, 21449}, {933, 55560}, {1147, 62603}, {1993, 57474}, {1994, 57489}, {8795, 16867}, {11003, 54062}, {11422, 15958}, {13434, 40410}, {25043, 57776}, {25044, 44180}, {31617, 63173}, {32535, 39286}, {32737, 60034}, {34148, 46724}, {34385, 57899}

X(63172) = isotomic conjugate of X(25043)
X(63172) = anticomplement of X(34520)
X(63172) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 25043}, {51, 2962}, {93, 62266}, {252, 62259}, {1096, 60824}, {1953, 2963}, {2179, 11140}, {2181, 3519}, {2618, 32737}, {12077, 36148}
X(63172) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 25043}, {97, 21975}, {6503, 60824}, {10639, 36300}, {10640, 36301}, {22052, 233}, {34520, 34520}, {37636, 1209}, {39018, 12077}, {53986, 51513}, {62603, 11140}
X(63172) = X(i)-Ceva conjugate of X(j) for these {i, j}: {76, 57474}, {18831, 41298}, {31617, 97}
X(63172) = X(i)-cross conjugate of X(j) for these {i, j}: {1493, 1994}, {1510, 18315}, {15345, 2}, {25044, 57489}, {62589, 7769}
X(63172) = pole of line {51, 3078} with respect to the Stammler hyperbola
X(63172) = pole of line {5, 25043} with respect to the Wallace hyperbola
X(63172) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(45799)}}, {{A, B, C, X(3), X(143)}}, {{A, B, C, X(4), X(12325)}}, {{A, B, C, X(6), X(1510)}}, {{A, B, C, X(49), X(1092)}}, {{A, B, C, X(54), X(25044)}}, {{A, B, C, X(61), X(628)}}, {{A, B, C, X(62), X(627)}}, {{A, B, C, X(69), X(1994)}}, {{A, B, C, X(95), X(57489)}}, {{A, B, C, X(182), X(2965)}}, {{A, B, C, X(195), X(15345)}}, {{A, B, C, X(264), X(1273)}}, {{A, B, C, X(631), X(3518)}}, {{A, B, C, X(3431), X(34418)}}, {{A, B, C, X(6150), X(27357)}}, {{A, B, C, X(7763), X(7769)}}, {{A, B, C, X(10411), X(18831)}}, {{A, B, C, X(11271), X(13472)}}, {{A, B, C, X(12161), X(34833)}}, {{A, B, C, X(14355), X(44809)}}, {{A, B, C, X(14528), X(32348)}}, {{A, B, C, X(20564), X(57474)}}, {{A, B, C, X(51371), X(51440)}}
X(63172) = barycentric product X(i)*X(j) for these (i, j): {54, 7769}, {275, 44180}, {276, 49}, {1493, 31617}, {1994, 95}, {2964, 62276}, {2965, 34384}, {10411, 2413}, {18315, 41298}, {25044, 76}, {32002, 97}, {34386, 3518}, {37084, 42405}, {52939, 57135}, {57489, 69}
X(63172) = barycentric quotient X(i)/X(j) for these (i, j): {2, 25043}, {49, 216}, {54, 2963}, {61, 36301}, {62, 36300}, {95, 11140}, {97, 3519}, {143, 36412}, {275, 93}, {276, 20572}, {288, 1487}, {394, 60824}, {1493, 233}, {1510, 12077}, {1994, 5}, {2167, 2962}, {2413, 10412}, {2964, 1953}, {2965, 51}, {3518, 53}, {7769, 311}, {14129, 60828}, {14533, 51477}, {14577, 62261}, {14586, 32737}, {15345, 34520}, {18315, 930}, {18831, 38342}, {25044, 6}, {32002, 324}, {36134, 36148}, {37084, 17434}, {41298, 18314}, {44180, 343}, {44809, 2081}, {47424, 24862}, {51440, 60524}, {52417, 11062}, {52603, 2439}, {57135, 57195}, {57489, 4}, {57805, 45793}, {62589, 1209}


X(63173) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3), X(5), X(631))

Barycentrics    (2*a^4+2*b^4-3*b^2*c^2+c^4-a^2*(4*b^2+3*c^2))*(2*a^4+b^4-3*b^2*c^2+2*c^4-a^2*(3*b^2+4*c^2)) : :

X(63173) lies on these lines: {2, 10985}, {3, 40410}, {69, 575}, {95, 3526}, {140, 264}, {183, 57852}, {253, 55864}, {287, 3763}, {302, 40711}, {303, 40712}, {305, 37688}, {317, 3533}, {340, 61856}, {631, 8797}, {1441, 17566}, {1494, 15694}, {1656, 57927}, {1972, 23583}, {3589, 42313}, {5054, 46724}, {5070, 54105}, {7483, 57877}, {9229, 33015}, {11091, 32807}, {11539, 45198}, {13747, 57831}, {15709, 36889}, {16419, 55551}, {20477, 55863}, {31617, 63172}, {36794, 42351}, {40680, 61848}, {41005, 61852}, {41008, 61858}, {51128, 60872}, {57823, 61853}, {57894, 61855}, {57895, 61864}, {57896, 61849}, {57897, 61850}, {61873, 63155}

X(63173) = isogonal conjugate of X(15004)
X(63173) = isotomic conjugate of X(1656)
X(63173) = trilinear pole of line {41298, 525}
X(63173) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 15004}, {19, 10979}, {31, 1656}, {158, 61394}, {4994, 62266}
X(63173) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1656}, {3, 15004}, {6, 10979}, {1147, 61394}
X(63173) = X(i)-cross conjugate of X(j) for these {i, j}: {632, 2}, {13472, 60120}
X(63173) = pole of line {10979, 15004} with respect to the Stammler hyperbola
X(63173) = pole of line {1656, 15004} with respect to the Wallace hyperbola
X(63173) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(69)}}, {{A, B, C, X(3), X(140)}}, {{A, B, C, X(4), X(3525)}}, {{A, B, C, X(5), X(3526)}}, {{A, B, C, X(6), X(575)}}, {{A, B, C, X(17), X(41897)}}, {{A, B, C, X(18), X(41898)}}, {{A, B, C, X(20), X(55864)}}, {{A, B, C, X(21), X(17566)}}, {{A, B, C, X(30), X(15694)}}, {{A, B, C, X(66), X(7608)}}, {{A, B, C, X(67), X(60144)}}, {{A, B, C, X(68), X(60171)}}, {{A, B, C, X(76), X(302)}}, {{A, B, C, X(98), X(43726)}}, {{A, B, C, X(183), X(3589)}}, {{A, B, C, X(216), X(40800)}}, {{A, B, C, X(252), X(57718)}}, {{A, B, C, X(261), X(57884)}}, {{A, B, C, X(262), X(15321)}}, {{A, B, C, X(265), X(13599)}}, {{A, B, C, X(290), X(43527)}}, {{A, B, C, X(308), X(60248)}}, {{A, B, C, X(325), X(3763)}}, {{A, B, C, X(327), X(7871)}}, {{A, B, C, X(376), X(15709)}}, {{A, B, C, X(381), X(11539)}}, {{A, B, C, X(382), X(61853)}}, {{A, B, C, X(384), X(33015)}}, {{A, B, C, X(393), X(11169)}}, {{A, B, C, X(405), X(13747)}}, {{A, B, C, X(474), X(7483)}}, {{A, B, C, X(491), X(60194)}}, {{A, B, C, X(492), X(60196)}}, {{A, B, C, X(520), X(17039)}}, {{A, B, C, X(546), X(61855)}}, {{A, B, C, X(547), X(61864)}}, {{A, B, C, X(548), X(61849)}}, {{A, B, C, X(549), X(5054)}}, {{A, B, C, X(550), X(61850)}}, {{A, B, C, X(598), X(57908)}}, {{A, B, C, X(631), X(1217)}}, {{A, B, C, X(632), X(1656)}}, {{A, B, C, X(847), X(43666)}}, {{A, B, C, X(1093), X(60160)}}, {{A, B, C, X(1232), X(54907)}}, {{A, B, C, X(1268), X(57816)}}, {{A, B, C, X(1294), X(46412)}}, {{A, B, C, X(1502), X(42332)}}, {{A, B, C, X(1657), X(61852)}}, {{A, B, C, X(2041), X(2042)}}, {{A, B, C, X(2165), X(44658)}}, {{A, B, C, X(2963), X(9307)}}, {{A, B, C, X(2980), X(30537)}}, {{A, B, C, X(3090), X(3533)}}, {{A, B, C, X(3091), X(61856)}}, {{A, B, C, X(3522), X(61848)}}, {{A, B, C, X(3523), X(10303)}}, {{A, B, C, X(3524), X(15702)}}, {{A, B, C, X(3530), X(55863)}}, {{A, B, C, X(3534), X(61851)}}, {{A, B, C, X(3545), X(61859)}}, {{A, B, C, X(3567), X(43651)}}, {{A, B, C, X(3613), X(11669)}}, {{A, B, C, X(3628), X(46219)}}, {{A, B, C, X(3830), X(11540)}}, {{A, B, C, X(3843), X(45760)}}, {{A, B, C, X(3845), X(61854)}}, {{A, B, C, X(3851), X(61858)}}, {{A, B, C, X(4590), X(56067)}}, {{A, B, C, X(4998), X(57883)}}, {{A, B, C, X(5025), X(16923)}}, {{A, B, C, X(5055), X(10124)}}, {{A, B, C, X(5056), X(61863)}}, {{A, B, C, X(5066), X(61857)}}, {{A, B, C, X(5067), X(61867)}}, {{A, B, C, X(5070), X(16239)}}, {{A, B, C, X(5071), X(61861)}}, {{A, B, C, X(5486), X(10185)}}, {{A, B, C, X(5641), X(60131)}}, {{A, B, C, X(5936), X(46136)}}, {{A, B, C, X(6656), X(33233)}}, {{A, B, C, X(6664), X(11167)}}, {{A, B, C, X(6675), X(16408)}}, {{A, B, C, X(6676), X(16419)}}, {{A, B, C, X(6857), X(17567)}}, {{A, B, C, X(6878), X(6880)}}, {{A, B, C, X(6889), X(6967)}}, {{A, B, C, X(6891), X(6989)}}, {{A, B, C, X(6910), X(6921)}}, {{A, B, C, X(7321), X(18811)}}, {{A, B, C, X(7393), X(7542)}}, {{A, B, C, X(7484), X(7499)}}, {{A, B, C, X(7495), X(40916)}}, {{A, B, C, X(7612), X(32085)}}, {{A, B, C, X(7788), X(51128)}}, {{A, B, C, X(7791), X(33000)}}, {{A, B, C, X(7807), X(11285)}}, {{A, B, C, X(7824), X(7907)}}, {{A, B, C, X(7876), X(33245)}}, {{A, B, C, X(8362), X(32954)}}, {{A, B, C, X(8703), X(61847)}}, {{A, B, C, X(8795), X(43530)}}, {{A, B, C, X(8801), X(10155)}}, {{A, B, C, X(9221), X(13139)}}, {{A, B, C, X(10109), X(61862)}}, {{A, B, C, X(10159), X(54124)}}, {{A, B, C, X(10194), X(55021)}}, {{A, B, C, X(10195), X(55020)}}, {{A, B, C, X(10304), X(61846)}}, {{A, B, C, X(11064), X(43752)}}, {{A, B, C, X(11108), X(52264)}}, {{A, B, C, X(11812), X(15701)}}, {{A, B, C, X(12100), X(61843)}}, {{A, B, C, X(12108), X(61832)}}, {{A, B, C, X(13434), X(15043)}}, {{A, B, C, X(13477), X(61127)}}, {{A, B, C, X(14001), X(32978)}}, {{A, B, C, X(14064), X(32977)}}, {{A, B, C, X(14067), X(16897)}}, {{A, B, C, X(14069), X(32960)}}, {{A, B, C, X(14458), X(45108)}}, {{A, B, C, X(14494), X(34285)}}, {{A, B, C, X(14869), X(15720)}}, {{A, B, C, X(14890), X(15718)}}, {{A, B, C, X(14938), X(15318)}}, {{A, B, C, X(14941), X(40329)}}, {{A, B, C, X(15033), X(15045)}}, {{A, B, C, X(15692), X(61844)}}, {{A, B, C, X(15693), X(15713)}}, {{A, B, C, X(15699), X(15723)}}, {{A, B, C, X(15700), X(61841)}}, {{A, B, C, X(15703), X(47598)}}, {{A, B, C, X(15707), X(61839)}}, {{A, B, C, X(15708), X(15721)}}, {{A, B, C, X(15712), X(61840)}}, {{A, B, C, X(15716), X(61845)}}, {{A, B, C, X(15717), X(61842)}}, {{A, B, C, X(15719), X(61838)}}, {{A, B, C, X(16043), X(32970)}}, {{A, B, C, X(16263), X(54969)}}, {{A, B, C, X(16774), X(53098)}}, {{A, B, C, X(16863), X(50205)}}, {{A, B, C, X(16864), X(17590)}}, {{A, B, C, X(16924), X(33003)}}, {{A, B, C, X(16925), X(33001)}}, {{A, B, C, X(17040), X(17983)}}, {{A, B, C, X(17711), X(34110)}}, {{A, B, C, X(18020), X(40705)}}, {{A, B, C, X(18550), X(46452)}}, {{A, B, C, X(18816), X(30598)}}, {{A, B, C, X(18817), X(57909)}}, {{A, B, C, X(18840), X(35142)}}, {{A, B, C, X(19709), X(61860)}}, {{A, B, C, X(20572), X(57902)}}, {{A, B, C, X(24243), X(34091)}}, {{A, B, C, X(24244), X(34089)}}, {{A, B, C, X(30608), X(40422)}}, {{A, B, C, X(31363), X(43699)}}, {{A, B, C, X(32951), X(32959)}}, {{A, B, C, X(32956), X(33189)}}, {{A, B, C, X(32964), X(33188)}}, {{A, B, C, X(32965), X(33204)}}, {{A, B, C, X(33012), X(33206)}}, {{A, B, C, X(33043), X(33044)}}, {{A, B, C, X(33054), X(33055)}}, {{A, B, C, X(33194), X(33195)}}, {{A, B, C, X(33221), X(33222)}}, {{A, B, C, X(33258), X(33262)}}, {{A, B, C, X(34208), X(46217)}}, {{A, B, C, X(34229), X(51171)}}, {{A, B, C, X(34393), X(56061)}}, {{A, B, C, X(34816), X(36953)}}, {{A, B, C, X(35140), X(56059)}}, {{A, B, C, X(35381), X(61956)}}, {{A, B, C, X(36952), X(40208)}}, {{A, B, C, X(37638), X(45198)}}, {{A, B, C, X(38005), X(60334)}}, {{A, B, C, X(39287), X(46746)}}, {{A, B, C, X(39968), X(60093)}}, {{A, B, C, X(40416), X(60096)}}, {{A, B, C, X(40428), X(42349)}}, {{A, B, C, X(42407), X(60101)}}, {{A, B, C, X(43664), X(60104)}}, {{A, B, C, X(45090), X(54645)}}, {{A, B, C, X(45758), X(61931)}}, {{A, B, C, X(46133), X(56062)}}, {{A, B, C, X(46137), X(56060)}}, {{A, B, C, X(47599), X(61872)}}, {{A, B, C, X(48154), X(55866)}}, {{A, B, C, X(51316), X(53859)}}, {{A, B, C, X(52224), X(60102)}}, {{A, B, C, X(52717), X(53099)}}, {{A, B, C, X(54171), X(60616)}}, {{A, B, C, X(54644), X(57408)}}, {{A, B, C, X(55553), X(57900)}}, {{A, B, C, X(55856), X(55858)}}, {{A, B, C, X(55857), X(55859)}}, {{A, B, C, X(55860), X(55862)}}, {{A, B, C, X(55861), X(61875)}}, {{A, B, C, X(55884), X(55889)}}, {{A, B, C, X(55895), X(55899)}}, {{A, B, C, X(55972), X(60183)}}, {{A, B, C, X(57907), X(60277)}}, {{A, B, C, X(59256), X(60644)}}, {{A, B, C, X(60781), X(61873)}}, {{A, B, C, X(61811), X(61837)}}, {{A, B, C, X(61814), X(61836)}}, {{A, B, C, X(61818), X(61835)}}, {{A, B, C, X(61820), X(61834)}}, {{A, B, C, X(61822), X(61833)}}, {{A, B, C, X(61824), X(61831)}}, {{A, B, C, X(61825), X(61830)}}, {{A, B, C, X(61827), X(61829)}}, {{A, B, C, X(61865), X(61899)}}, {{A, B, C, X(61866), X(61895)}}, {{A, B, C, X(61868), X(61888)}}, {{A, B, C, X(61869), X(61887)}}, {{A, B, C, X(61870), X(61886)}}, {{A, B, C, X(61871), X(61885)}}, {{A, B, C, X(61874), X(61883)}}, {{A, B, C, X(61876), X(61878)}}
X(63173) = barycentric product X(i)*X(j) for these (i, j): {264, 56338}, {13472, 76}, {60120, 69}, {63160, 95}
X(63173) = barycentric quotient X(i)/X(j) for these (i, j): {2, 1656}, {3, 10979}, {6, 15004}, {275, 4994}, {577, 61394}, {3087, 58878}, {13472, 6}, {56338, 3}, {60120, 4}, {63160, 5}
X(63173) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 56338, 63160}, {56338, 63160, 60120}


X(63174) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(3), X(6), X(155))

Barycentrics    (a^2-b^2-c^2)*(5*a^4+(b^2-c^2)^2-2*a^2*(b^2+c^2)) : :
X(63174) = -X[4]+4*X[155], X[20]+2*X[12164], 2*X[52]+X[12271], -4*X[68]+7*X[3090], -4*X[389]+X[12282], -5*X[631]+8*X[1147], -5*X[3091]+2*X[12429], -3*X[3524]+4*X[47391], -11*X[3525]+8*X[12359], -7*X[3528]+4*X[12163], -X[3529]+4*X[12118], -5*X[3567]+2*X[21651] and many others

X(63174) lies on these lines: {2, 3167}, {3, 11850}, {4, 155}, {6, 7392}, {20, 12164}, {23, 9925}, {24, 12166}, {25, 193}, {51, 1992}, {52, 12271}, {68, 3090}, {69, 184}, {110, 6353}, {141, 17809}, {154, 524}, {195, 7528}, {237, 19597}, {317, 61348}, {323, 1370}, {371, 13002}, {372, 13005}, {376, 2979}, {389, 12282}, {394, 6776}, {418, 20794}, {427, 5921}, {450, 14361}, {460, 6392}, {464, 22139}, {487, 8223}, {488, 8222}, {511, 11206}, {539, 3545}, {542, 32064}, {569, 11487}, {631, 1147}, {648, 6524}, {912, 3877}, {1056, 3157}, {1058, 1069}, {1092, 18909}, {1181, 10996}, {1199, 19458}, {1204, 53050}, {1249, 53848}, {1285, 35919}, {1351, 6995}, {1352, 11427}, {1353, 5020}, {1368, 39899}, {1495, 11008}, {1503, 37672}, {1568, 18918}, {1899, 3292}, {1994, 6997}, {2854, 34751}, {3060, 7714}, {3091, 12429}, {3410, 9716}, {3475, 9028}, {3518, 9937}, {3524, 47391}, {3525, 12359}, {3528, 12163}, {3529, 12118}, {3567, 21651}, {3580, 38282}, {3618, 13366}, {3619, 44109}, {3620, 7499}, {3629, 17810}, {3796, 10519}, {3819, 11179}, {3855, 9927}, {3873, 34381}, {3917, 25406}, {3955, 26872}, {4176, 12215}, {4232, 8780}, {4563, 19583}, {5056, 61544}, {5067, 9820}, {5071, 14852}, {5200, 26503}, {5408, 12257}, {5409, 12256}, {5422, 54013}, {5448, 61964}, {5449, 61886}, {5504, 12317}, {5562, 18925}, {5640, 61666}, {5651, 18928}, {5818, 9896}, {5874, 55887}, {5875, 55892}, {5965, 35260}, {6241, 12058}, {6278, 8968}, {6337, 52144}, {6391, 7398}, {6618, 56013}, {6620, 7754}, {6676, 11898}, {6803, 7592}, {6820, 41204}, {6857, 41608}, {7193, 26871}, {7378, 18440}, {7391, 14683}, {7394, 11004}, {7400, 19347}, {7401, 12161}, {7404, 31831}, {7408, 21850}, {7409, 39884}, {7484, 44833}, {7487, 12160}, {7493, 9544}, {7500, 46818}, {7512, 9908}, {7581, 10665}, {7582, 10666}, {7689, 21735}, {7703, 8889}, {7758, 42671}, {8164, 10055}, {8548, 34545}, {8550, 17811}, {9027, 45979}, {9143, 14984}, {9306, 11225}, {9704, 47525}, {9909, 34380}, {9928, 12245}, {9932, 44879}, {9938, 35475}, {10071, 47743}, {10201, 50708}, {10299, 12038}, {10565, 20080}, {10594, 12309}, {11002, 41713}, {11064, 23291}, {11160, 44210}, {11412, 59346}, {11456, 35513}, {12007, 17825}, {12221, 52286}, {12222, 52287}, {12272, 47328}, {12301, 14865}, {12324, 13346}, {12420, 47528}, {13428, 49048}, {13439, 49049}, {13886, 49224}, {13939, 49225}, {14001, 34396}, {14593, 34208}, {14787, 55039}, {15068, 18537}, {15069, 23292}, {15682, 17702}, {16266, 34938}, {17847, 34944}, {17932, 51820}, {17977, 55112}, {18531, 50461}, {18913, 35602}, {18917, 22115}, {18919, 22151}, {18931, 51394}, {18935, 20806}, {18951, 61753}, {20086, 37254}, {20090, 37103}, {22128, 26929}, {22136, 37179}, {23128, 34945}, {23307, 52295}, {23332, 30775}, {23606, 37188}, {24981, 31383}, {26494, 52291}, {28376, 42461}, {31412, 35836}, {32063, 34621}, {32603, 54376}, {32605, 37197}, {32661, 46453}, {32817, 35926}, {33878, 59343}, {34781, 37498}, {35259, 61658}, {35264, 41628}, {35266, 51178}, {35837, 42561}, {37201, 43605}, {37367, 37652}, {37394, 40571}, {37439, 51171}, {37643, 59543}, {37649, 40330}, {39647, 59211}, {40065, 60028}, {40337, 44084}, {40697, 60776}, {41720, 44082}, {41724, 52290}, {43839, 61870}, {44108, 50992}, {44158, 61814}, {47296, 59551}, {48906, 62217}, {49086, 55573}, {49087, 55569}, {49355, 55881}, {49356, 55882}, {51140, 61677}, {51481, 61381}

X(63174) = reflection of X(i) in X(j) for these {i,j}: {2, 3167}, {34608, 11206}, {34621, 32063}
X(63174) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 6464}, {92, 10318}, {493, 19217}, {494, 19218}
X(63174) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 6464}, {22391, 10318}, {33364, 24243}, {33365, 24244}
X(63174) = X(i)-Ceva conjugate of X(j) for these {i, j}: {32085, 3}
X(63174) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {55999, 4329}
X(63174) = pole of line {11574, 18919} with respect to the Jerabek hyperbola
X(63174) = pole of line {7386, 37637} with respect to the Kiepert hyperbola
X(63174) = pole of line {925, 3565} with respect to the Kiepert parabola
X(63174) = pole of line {419, 2501} with respect to the MacBeath circumconic
X(63174) = pole of line {155, 1351} with respect to the Stammler hyperbola
X(63174) = pole of line {35297, 57065} with respect to the Steiner circumellipse
X(63174) = pole of line {427, 1007} with respect to the Wallace hyperbola
X(63174) = pole of line {3800, 54259} with respect to the dual conic of DeLongchamps circle
X(63174) = intersection, other than A, B, C, of circumconics {{A, B, C, X(254), X(487)}}, {{A, B, C, X(263), X(52016)}}, {{A, B, C, X(1176), X(10132)}}, {{A, B, C, X(6337), X(14593)}}, {{A, B, C, X(6339), X(6504)}}, {{A, B, C, X(6353), X(57763)}}, {{A, B, C, X(6524), X(47389)}}, {{A, B, C, X(13472), X(34756)}}, {{A, B, C, X(40819), X(61390)}}
X(63174) = barycentric product X(i)*X(j) for these (i, j): {3068, 487}, {3069, 488}, {4563, 6562}, {5200, 8223}, {46742, 6424}, {46743, 6423}, {52291, 8222}
X(63174) = barycentric quotient X(i)/X(j) for these (i, j): {3, 6464}, {184, 10318}, {487, 5490}, {488, 5491}, {3068, 24243}, {3069, 24244}, {6423, 8946}, {6424, 8948}, {6562, 2501}, {10132, 494}, {10133, 493}, {19446, 45726}, {19447, 45727}
X(63174) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 45968, 18950}, {6, 14826, 7392}, {69, 184, 7494}, {110, 6515, 6353}, {155, 52077, 1993}, {155, 6193, 4}, {394, 6776, 7386}, {511, 11206, 34608}, {1147, 11411, 631}, {1147, 45184, 9936}, {1147, 9936, 11411}, {1352, 34986, 11427}, {1899, 37669, 16051}, {3167, 3564, 2}, {7398, 51170, 9777}, {8780, 41588, 4232}, {9306, 11433, 40132}, {9544, 45794, 7493}, {11442, 37645, 8889}, {12429, 61607, 3091}, {18950, 50974, 45968}


X(63175) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5), X(2), X(8799))

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8-2*b^2*c^2*(b^2-c^2)^2-3*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^4+4*b^2*c^2+3*c^4)) : :

X(63175) lies on these lines: {2, 216}, {3, 37871}, {5, 51}, {49, 9379}, {95, 8613}, {262, 60221}, {275, 56290}, {373, 59532}, {401, 46760}, {418, 11197}, {467, 36412}, {511, 57528}, {577, 52253}, {648, 19188}, {1994, 4993}, {2548, 11433}, {3060, 44924}, {3090, 3168}, {3091, 8799}, {3628, 15912}, {5640, 59660}, {6503, 9818}, {7486, 22257}, {10003, 42453}, {10601, 41334}, {16310, 23292}, {16311, 44911}, {18475, 19176}, {19179, 37127}, {21243, 34965}, {24206, 57529}, {26907, 32428}, {30476, 57195}, {34986, 41205}, {37439, 47202}, {41480, 52251}, {45793, 52032}, {52350, 56272}

X(63175) = isotomic conjugate of X(37872)
X(63175) = perspector of circumconic {{A, B, C, X(6528), X(14570)}}
X(63175) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 37872}, {2148, 13599}, {2616, 6570}, {57909, 62269}
X(63175) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 37872}, {216, 13599}
X(63175) = X(i)-Ceva conjugate of X(j) for these {i, j}: {8797, 5}
X(63175) = X(i)-complementary conjugate of X(j) for these {i, j}: {60007, 18589}
X(63175) = pole of line {570, 13567} with respect to the Kiepert hyperbola
X(63175) = pole of line {16229, 52317} with respect to the Orthic inconic
X(63175) = pole of line {54, 577} with respect to the Stammler hyperbola
X(63175) = pole of line {520, 18314} with respect to the Steiner inellipse
X(63175) = pole of line {95, 394} with respect to the Wallace hyperbola
X(63175) = pole of line {16040, 41300} with respect to the dual conic of DeLongchamps circle
X(63175) = pole of line {52613, 62428} with respect to the dual conic of polar circle
X(63175) = pole of line {3269, 8901} with respect to the dual conic of Wallace hyperbola
X(63175) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(5562)}}, {{A, B, C, X(5), X(2052)}}, {{A, B, C, X(51), X(393)}}, {{A, B, C, X(52), X(578)}}, {{A, B, C, X(262), X(41365)}}, {{A, B, C, X(264), X(343)}}, {{A, B, C, X(275), X(45997)}}, {{A, B, C, X(276), X(46832)}}, {{A, B, C, X(311), X(34836)}}, {{A, B, C, X(1154), X(14165)}}, {{A, B, C, X(1568), X(46106)}}, {{A, B, C, X(2963), X(5647)}}, {{A, B, C, X(21447), X(41588)}}, {{A, B, C, X(31504), X(37872)}}, {{A, B, C, X(37778), X(41586)}}, {{A, B, C, X(59197), X(60221)}}
X(63175) = barycentric product X(i)*X(j) for these (i, j): {69, 8887}, {311, 578}, {41365, 52347}
X(63175) = barycentric quotient X(i)/X(j) for these (i, j): {2, 37872}, {5, 13599}, {311, 57909}, {578, 54}, {1625, 6570}, {8887, 4}, {41365, 8884}
X(63175) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 264, 46832}, {2, 324, 216}, {2, 40684, 6509}, {5, 343, 34836}, {418, 11197, 39530}


X(63176) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(5), X(2), X(8887))

Barycentrics    a^2*(a^2-b^2-c^2)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^4+3*b^4-4*b^2*c^2+c^4-2*a^2*(2*b^2+c^2))*(a^4+b^4-4*b^2*c^2+3*c^4-2*a^2*(b^2+2*c^2)) : :

X(63176) lies on these lines: {2, 14363}, {3, 51}, {5, 31505}, {216, 62260}, {264, 3090}, {3091, 8796}, {3146, 11282}, {3525, 52441}, {3628, 6662}, {5158, 43844}, {5562, 61378}, {8798, 42441}, {14576, 34818}, {14845, 46025}, {16226, 26897}, {18401, 58950}, {26876, 58470}, {37505, 54375}, {50463, 52153}

X(63176) = X(i)-isoconjugate-of-X(j) for these {i, j}: {631, 2190}, {2167, 3087}, {11402, 40440}, {44149, 62268}, {61348, 62277}
X(63176) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 631}, {15450, 47122}, {40588, 3087}, {52032, 44149}
X(63176) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(5)}}, {{A, B, C, X(4), X(11424)}}, {{A, B, C, X(51), X(1173)}}, {{A, B, C, X(52), X(5158)}}, {{A, B, C, X(53), X(10982)}}, {{A, B, C, X(311), X(45186)}}, {{A, B, C, X(324), X(55982)}}, {{A, B, C, X(343), X(10601)}}, {{A, B, C, X(418), X(3090)}}, {{A, B, C, X(520), X(22268)}}, {{A, B, C, X(632), X(62334)}}, {{A, B, C, X(3519), X(55074)}}, {{A, B, C, X(5446), X(56272)}}, {{A, B, C, X(8800), X(44413)}}, {{A, B, C, X(14371), X(57686)}}, {{A, B, C, X(15077), X(17500)}}, {{A, B, C, X(22334), X(61110)}}, {{A, B, C, X(32533), X(40449)}}, {{A, B, C, X(36809), X(46848)}}, {{A, B, C, X(42459), X(46353)}}, {{A, B, C, X(43650), X(53174)}}, {{A, B, C, X(43844), X(52032)}}
X(63176) = barycentric product X(i)*X(j) for these (i, j): {5, 63154}, {216, 8797}, {343, 3527}, {5562, 8796}, {31505, 31626}, {34818, 52347}, {44706, 56033}, {58950, 60597}
X(63176) = barycentric quotient X(i)/X(j) for these (i, j): {51, 3087}, {216, 631}, {217, 11402}, {343, 44149}, {418, 36748}, {3199, 61348}, {3527, 275}, {8796, 8795}, {8797, 276}, {15451, 47122}, {31505, 40684}, {34818, 8884}, {46394, 26907}, {56033, 40440}, {58950, 16813}, {62260, 6755}, {63154, 95}


X(63177) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(1), X(18621))

Barycentrics    a^2*(a^6-2*a^5*(b+c)+2*a^3*b*c*(b+c)+a^4*(b^2+c^2)-(b^3-b^2*c+b*c^2-c^3)^2-a^2*(b^4+2*b^3*c-2*b^2*c^2+2*b*c^3+c^4)+2*a*(b^5-b^3*c^2-b^2*c^3+c^5)) : :

X(63177) lies on these lines: {3, 9}, {6, 3423}, {7, 1486}, {20, 11677}, {25, 51400}, {55, 7289}, {63, 12329}, {77, 18621}, {105, 43916}, {159, 1626}, {197, 7411}, {241, 1041}, {269, 1617}, {692, 23144}, {1004, 53279}, {1463, 37579}, {1473, 10391}, {1474, 3286}, {1777, 7742}, {3556, 10884}, {4292, 13730}, {4350, 63178}, {7675, 22769}, {8822, 16876}, {9798, 37426}, {16678, 18615}, {18610, 18655}, {18725, 58326}, {20780, 36741}, {20992, 37578}, {21239, 28044}, {23850, 37287}, {25881, 37248}, {39475, 43177}, {40910, 60990}

X(63177) = perspector of circumconic {{A, B, C, X(13138), X(58989)}}
X(63177) = X(i)-Dao conjugate of X(j) for these {i, j}: {30706, 6554}
X(63177) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30705, 6}
X(63177) = pole of line {3900, 4025} with respect to the circumcircle
X(63177) = pole of line {1817, 37577} with respect to the Stammler hyperbola
X(63177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 60897, 198}, {1602, 1633, 1486}


X(63178) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(1), X(34855))

Barycentrics    a*(a+b-c)^3*(a-b+c)^3*(a^2-2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2) : :

X(63178) lies on these lines: {6, 7177}, {9, 348}, {19, 279}, {55, 77}, {57, 30682}, {269, 2195}, {479, 54425}, {673, 23062}, {1014, 2299}, {1024, 58817}, {1041, 43736}, {1440, 7008}, {2339, 62192}, {4350, 63177}, {4626, 6169}, {6168, 56243}, {7053, 63150}

X(63178) = isogonal conjugate of X(28070)
X(63178) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 28070}, {6, 4012}, {8, 30706}, {9, 4319}, {55, 6554}, {200, 2082}, {219, 1863}, {220, 497}, {346, 7083}, {480, 4000}, {614, 728}, {644, 17115}, {1040, 7079}, {1633, 4130}, {1697, 40175}, {2287, 40965}, {3673, 6602}, {3692, 40987}, {3732, 4105}, {4515, 5324}, {5423, 16502}, {7046, 7124}, {7071, 27509}, {16583, 56182}, {32674, 58776}, {40176, 54295}, {58329, 61160}
X(63178) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 28070}, {9, 4012}, {223, 6554}, {478, 4319}, {6609, 2082}, {35072, 58776}
X(63178) = X(i)-cross conjugate of X(j) for these {i, j}: {57, 7131}, {14524, 7}, {43049, 934}, {43924, 4626}
X(63178) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(30621)}}, {{A, B, C, X(6), X(9)}}, {{A, B, C, X(27), X(35987)}}, {{A, B, C, X(59), X(1445)}}, {{A, B, C, X(77), X(279)}}, {{A, B, C, X(269), X(23062)}}, {{A, B, C, X(282), X(9503)}}, {{A, B, C, X(738), X(7023)}}, {{A, B, C, X(1037), X(7131)}}, {{A, B, C, X(6168), X(28017)}}, {{A, B, C, X(8809), X(52156)}}, {{A, B, C, X(8829), X(23618)}}, {{A, B, C, X(30705), X(56359)}}, {{A, B, C, X(43762), X(56287)}}, {{A, B, C, X(56049), X(60831)}}
X(63178) = barycentric product X(i)*X(j) for these (i, j): {269, 8817}, {279, 7131}, {479, 56179}, {1037, 1088}, {1041, 7056}, {3676, 8269}, {4617, 48070}, {14935, 24011}, {19604, 62538}, {23062, 7123}, {30701, 738}, {30705, 57}, {56359, 7}, {57880, 7084}, {57925, 7023}
X(63178) = barycentric quotient X(i)/X(j) for these (i, j): {1, 4012}, {6, 28070}, {34, 1863}, {56, 4319}, {57, 6554}, {269, 497}, {479, 3673}, {521, 58776}, {604, 30706}, {738, 4000}, {1037, 200}, {1041, 7046}, {1042, 40965}, {1106, 7083}, {1398, 40987}, {1407, 2082}, {4617, 3732}, {6614, 1633}, {7023, 614}, {7053, 1040}, {7084, 480}, {7099, 7124}, {7123, 728}, {7131, 346}, {7177, 27509}, {7366, 16502}, {8269, 3699}, {8817, 341}, {14935, 24010}, {19604, 62543}, {30701, 30693}, {30705, 312}, {43924, 17115}, {56179, 5423}, {56359, 8}, {59128, 56183}, {62192, 16583}, {62538, 44720}


X(63179) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(2), X(69))

Barycentrics    (3*a^4+3*b^4+2*b^2*c^2-c^4+a^2*(-6*b^2+2*c^2))*(3*a^4-b^4+2*b^2*c^2+3*c^4+2*a^2*(b^2-3*c^2)) : :

X(63179) lies on these lines: {69, 468}, {76, 10604}, {193, 3266}, {523, 32815}, {524, 3053}, {1992, 11336}, {4062, 52396}, {5967, 6394}, {7620, 57539}, {8681, 9292}, {11160, 51541}, {16511, 44658}, {20080, 33632}, {21874, 42713}

X(63179) = isogonal conjugate of X(62702)
X(63179) = isotomic conjugate of X(43448)
X(63179) = trilinear pole of line {3265, 8651}
X(63179) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 62702}, {19, 10602}, {31, 43448}, {923, 24855}, {1973, 16051}
X(63179) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 43448}, {3, 62702}, {6, 10602}, {2482, 24855}, {6337, 16051}
X(63179) = X(i)-Ceva conjugate of X(j) for these {i, j}: {10604, 10603}
X(63179) = pole of line {10602, 62702} with respect to the Stammler hyperbola
X(63179) = pole of line {16051, 24855} with respect to the Wallace hyperbola
X(63179) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(468)}}, {{A, B, C, X(4), X(32985)}}, {{A, B, C, X(6), X(193)}}, {{A, B, C, X(66), X(6339)}}, {{A, B, C, X(67), X(2996)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(99), X(32815)}}, {{A, B, C, X(141), X(20080)}}, {{A, B, C, X(249), X(43697)}}, {{A, B, C, X(253), X(18023)}}, {{A, B, C, X(287), X(56268)}}, {{A, B, C, X(393), X(9227)}}, {{A, B, C, X(394), X(53021)}}, {{A, B, C, X(511), X(44152)}}, {{A, B, C, X(598), X(1992)}}, {{A, B, C, X(599), X(11160)}}, {{A, B, C, X(895), X(56004)}}, {{A, B, C, X(1177), X(56362)}}, {{A, B, C, X(1494), X(40824)}}, {{A, B, C, X(1502), X(35510)}}, {{A, B, C, X(2165), X(56360)}}, {{A, B, C, X(2482), X(7620)}}, {{A, B, C, X(2998), X(34285)}}, {{A, B, C, X(3228), X(3424)}}, {{A, B, C, X(3407), X(52187)}}, {{A, B, C, X(3618), X(11008)}}, {{A, B, C, X(3620), X(40341)}}, {{A, B, C, X(3629), X(51170)}}, {{A, B, C, X(4232), X(11336)}}, {{A, B, C, X(5020), X(53019)}}, {{A, B, C, X(5032), X(15534)}}, {{A, B, C, X(5095), X(34161)}}, {{A, B, C, X(6090), X(14919)}}, {{A, B, C, X(6144), X(51171)}}, {{A, B, C, X(6391), X(52041)}}, {{A, B, C, X(8681), X(9306)}}, {{A, B, C, X(8781), X(36889)}}, {{A, B, C, X(8797), X(60198)}}, {{A, B, C, X(8801), X(60177)}}, {{A, B, C, X(9307), X(60186)}}, {{A, B, C, X(9813), X(34986)}}, {{A, B, C, X(10008), X(62338)}}, {{A, B, C, X(14913), X(52016)}}, {{A, B, C, X(16774), X(60219)}}, {{A, B, C, X(17040), X(18841)}}, {{A, B, C, X(17983), X(60263)}}, {{A, B, C, X(18845), X(38005)}}, {{A, B, C, X(18850), X(41174)}}, {{A, B, C, X(21356), X(50992)}}, {{A, B, C, X(22336), X(53101)}}, {{A, B, C, X(31360), X(60183)}}, {{A, B, C, X(34289), X(56006)}}, {{A, B, C, X(34898), X(41895)}}, {{A, B, C, X(36948), X(56067)}}, {{A, B, C, X(39453), X(54906)}}, {{A, B, C, X(40416), X(52223)}}, {{A, B, C, X(42287), X(44877)}}, {{A, B, C, X(43537), X(57926)}}, {{A, B, C, X(44556), X(60093)}}, {{A, B, C, X(46952), X(60098)}}, {{A, B, C, X(52188), X(60190)}}, {{A, B, C, X(57822), X(60212)}}, {{A, B, C, X(59373), X(60283)}}
X(63179) = barycentric product X(i)*X(j) for these (i, j): {305, 63181}, {10603, 69}, {10604, 3}
X(63179) = barycentric quotient X(i)/X(j) for these (i, j): {2, 43448}, {3, 10602}, {6, 62702}, {69, 16051}, {524, 24855}, {10603, 4}, {10604, 264}, {63181, 25}


X(63180) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(2), X(159))

Barycentrics    a^2*(a^6-b^6+5*b^4*c^2+5*b^2*c^4-c^6+a^4*(b^2+c^2)-a^2*(b^4+6*b^2*c^2+c^4)) : :
X(63180) = -3*X[10516]+2*X[18390]

X(63180) lies on these lines: {2, 32621}, {3, 67}, {5, 9925}, {6, 1196}, {22, 69}, {23, 11160}, {24, 47558}, {25, 524}, {110, 19153}, {141, 1899}, {157, 3964}, {184, 61667}, {186, 47473}, {193, 13595}, {343, 61683}, {378, 11180}, {394, 2393}, {511, 18451}, {576, 7529}, {597, 11284}, {1092, 8549}, {1350, 6000}, {1351, 9971}, {1352, 9818}, {1384, 9872}, {1486, 3879}, {1503, 21312}, {1568, 23049}, {1597, 47353}, {1598, 11477}, {1609, 15993}, {1632, 1975}, {1992, 1995}, {1993, 11188}, {2070, 11898}, {2071, 5921}, {2073, 47554}, {2854, 6090}, {2871, 40802}, {2892, 22647}, {3292, 8541}, {3313, 9924}, {3564, 6644}, {3618, 61655}, {3619, 31521}, {3620, 15246}, {4653, 36740}, {5050, 9703}, {5093, 21308}, {5201, 41266}, {5562, 34787}, {5651, 40673}, {6593, 32240}, {7396, 36851}, {7485, 21356}, {7545, 50962}, {8546, 20582}, {8548, 32245}, {8780, 18374}, {9027, 19136}, {9715, 15582}, {9777, 16776}, {9909, 15533}, {10249, 51394}, {10516, 18390}, {10539, 44492}, {10541, 45248}, {10601, 61676}, {11064, 23327}, {11216, 22151}, {11414, 15581}, {11416, 12272}, {11442, 61737}, {11484, 12242}, {12082, 50967}, {12111, 38885}, {12164, 37473}, {12167, 51994}, {12309, 17814}, {12367, 33878}, {12824, 49125}, {14984, 15068}, {15141, 41743}, {16419, 21358}, {18124, 43725}, {18440, 62381}, {18535, 54131}, {19127, 26864}, {19924, 44454}, {20583, 30734}, {20850, 20987}, {22165, 35707}, {23300, 28419}, {25051, 41238}, {32244, 32262}, {32246, 58726}, {35243, 54173}, {35452, 48662}, {36747, 43130}, {37546, 50950}, {37645, 51744}, {37745, 51239}, {37777, 47546}, {37945, 54174}, {37949, 55584}, {37962, 47545}, {37969, 47551}, {37972, 47276}, {38907, 57150}, {39562, 61665}, {39568, 53097}, {39653, 59545}, {41719, 53021}, {41761, 53481}, {43719, 55626}, {44200, 44395}, {45921, 52251}, {46151, 56015}, {47352, 59551}, {47559, 54096}, {53777, 55977}, {54334, 62217}, {59543, 62375}

X(63180) = reflection of X(i) in X(j) for these {i,j}: {1619, 159}, {1899, 141}, {52077, 52016}, {6, 9306}
X(63180) = perspector of circumconic {{A, B, C, X(3565), X(17708)}}
X(63180) = X(i)-Dao conjugate of X(j) for these {i, j}: {62702, 43448}
X(63180) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63179, 6}
X(63180) = pole of line {690, 3265} with respect to the circumcircle
X(63180) = pole of line {1368, 43291} with respect to the Kiepert hyperbola
X(63180) = pole of line {112, 1296} with respect to the Kiepert parabola
X(63180) = pole of line {512, 57202} with respect to the MacBeath circumconic
X(63180) = pole of line {23, 159} with respect to the Stammler hyperbola
X(63180) = pole of line {2489, 14417} with respect to the Steiner inellipse
X(63180) = pole of line {316, 1370} with respect to the Wallace hyperbola
X(63180) = intersection, other than A, B, C, of circumconics {{A, B, C, X(67), X(8770)}}, {{A, B, C, X(3455), X(34207)}}, {{A, B, C, X(6391), X(34897)}}, {{A, B, C, X(7652), X(14357)}}
X(63180) = barycentric product X(i)*X(j) for these (i, j): {7652, 99}
X(63180) = barycentric quotient X(i)/X(j) for these (i, j): {7652, 523}
X(63180) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 159, 37485}, {69, 63183, 159}, {110, 41614, 19153}, {5020, 19588, 53019}, {8681, 52016, 52077}, {9813, 52016, 34986}, {11442, 62382, 61737}, {12272, 20806, 34777}, {14913, 34986, 9813}, {14913, 52016, 6}, {20987, 40341, 37491}


X(63181) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(2), X(19118))

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4+3*b^4+2*b^2*c^2-c^4+a^2*(-6*b^2+2*c^2))*(3*a^4-b^4+2*b^2*c^2+3*c^4+2*a^2*(b^2-3*c^2)) : :

X(63181) lies on the Jerabek hyperbola and on these lines: {3, 11470}, {24, 55976}, {25, 895}, {67, 26958}, {69, 468}, {235, 15077}, {265, 32250}, {1351, 5504}, {1843, 38263}, {1885, 31371}, {1974, 6391}, {2489, 10097}, {3167, 5095}, {3515, 57648}, {3517, 15316}, {4232, 56268}, {4846, 5050}, {5166, 8778}, {5486, 15471}, {8550, 14457}, {11482, 55980}, {14380, 46953}, {14483, 39588}, {14528, 50649}, {17040, 19125}, {32534, 56068}, {41593, 43725}, {53777, 55977}

X(63181) = isogonal conjugate of X(16051)
X(63181) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16051}, {63, 43448}, {75, 10602}, {304, 62702}
X(63181) = X(i)-vertex conjugate of X(j) for these {i, j}: {55977, 63181}
X(63181) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 16051}, {206, 10602}, {3162, 43448}
X(63181) = X(i)-cross conjugate of X(j) for these {i, j}: {8644, 112}, {20186, 110}, {61776, 1304}
X(63181) = pole of line {10602, 16051} with respect to the Stammler hyperbola
X(63181) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(4)}}, {{A, B, C, X(25), X(250)}}, {{A, B, C, X(235), X(3515)}}, {{A, B, C, X(393), X(34233)}}, {{A, B, C, X(1061), X(34916)}}, {{A, B, C, X(1063), X(34893)}}, {{A, B, C, X(1073), X(41511)}}, {{A, B, C, X(1351), X(3003)}}, {{A, B, C, X(1384), X(15471)}}, {{A, B, C, X(1597), X(35485)}}, {{A, B, C, X(1885), X(3516)}}, {{A, B, C, X(1974), X(19118)}}, {{A, B, C, X(1990), X(46953)}}, {{A, B, C, X(2763), X(15384)}}, {{A, B, C, X(2987), X(56270)}}, {{A, B, C, X(3167), X(41615)}}, {{A, B, C, X(3424), X(34570)}}, {{A, B, C, X(3517), X(3542)}}, {{A, B, C, X(5050), X(5063)}}, {{A, B, C, X(5095), X(41616)}}, {{A, B, C, X(6090), X(39238)}}, {{A, B, C, X(6353), X(21313)}}, {{A, B, C, X(6749), X(39588)}}, {{A, B, C, X(8573), X(44492)}}, {{A, B, C, X(8749), X(40801)}}, {{A, B, C, X(9192), X(32708)}}, {{A, B, C, X(9516), X(60133)}}, {{A, B, C, X(11470), X(17983)}}, {{A, B, C, X(15369), X(46444)}}, {{A, B, C, X(16080), X(40802)}}, {{A, B, C, X(18325), X(44269)}}, {{A, B, C, X(19136), X(19153)}}, {{A, B, C, X(20186), X(61449)}}, {{A, B, C, X(22151), X(26958)}}, {{A, B, C, X(22263), X(56306)}}, {{A, B, C, X(25322), X(43678)}}, {{A, B, C, X(30535), X(60193)}}, {{A, B, C, X(32220), X(32741)}}, {{A, B, C, X(40102), X(60125)}}, {{A, B, C, X(41890), X(43537)}}, {{A, B, C, X(41891), X(53099)}}, {{A, B, C, X(41894), X(47586)}}, {{A, B, C, X(42286), X(60266)}}, {{A, B, C, X(45299), X(53098)}}, {{A, B, C, X(52238), X(57655)}}, {{A, B, C, X(56007), X(56362)}}
X(63181) = barycentric product X(i)*X(j) for these (i, j): {25, 63179}, {10603, 6}, {10604, 32}
X(63181) = barycentric quotient X(i)/X(j) for these (i, j): {6, 16051}, {25, 43448}, {32, 10602}, {1974, 62702}, {10603, 76}, {10604, 1502}, {44102, 24855}, {63179, 305}


X(63182) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(5), X(69))

Barycentrics    (2*a^4+2*b^4+b^2*c^2-c^4+a^2*(-4*b^2+c^2))*(2*a^4-b^4+b^2*c^2+2*c^4+a^2*(b^2-4*c^2)) : :

X(63182) lies on these lines: {69, 38282}, {76, 60428}, {187, 439}, {512, 12272}, {6394, 40995}, {11008, 57467}, {22468, 55972}, {40316, 57518}

X(63182) = isogonal conjugate of X(34481)
X(63182) = isotomic conjugate of X(44518)
X(63182) = trilinear pole of line {351, 3265}
X(63182) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 34481}, {31, 44518}, {1973, 30771}
X(63182) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 44518}, {3, 34481}, {6337, 30771}
X(63182) = pole of line {30771, 34481} with respect to the Wallace hyperbola
X(63182) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(20080)}}, {{A, B, C, X(4), X(193)}}, {{A, B, C, X(6), X(187)}}, {{A, B, C, X(66), X(41909)}}, {{A, B, C, X(67), X(60209)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(83), X(17040)}}, {{A, B, C, X(95), X(56067)}}, {{A, B, C, X(110), X(12272)}}, {{A, B, C, X(141), X(40341)}}, {{A, B, C, X(253), X(8781)}}, {{A, B, C, X(264), X(4590)}}, {{A, B, C, X(287), X(59543)}}, {{A, B, C, X(308), X(57822)}}, {{A, B, C, X(599), X(3630)}}, {{A, B, C, X(671), X(6339)}}, {{A, B, C, X(801), X(56267)}}, {{A, B, C, X(1351), X(27377)}}, {{A, B, C, X(1494), X(42407)}}, {{A, B, C, X(1502), X(57823)}}, {{A, B, C, X(1992), X(11008)}}, {{A, B, C, X(2052), X(56006)}}, {{A, B, C, X(2207), X(39128)}}, {{A, B, C, X(2987), X(54496)}}, {{A, B, C, X(2998), X(60218)}}, {{A, B, C, X(3431), X(54682)}}, {{A, B, C, X(3564), X(9308)}}, {{A, B, C, X(3619), X(50992)}}, {{A, B, C, X(3620), X(11160)}}, {{A, B, C, X(3629), X(6144)}}, {{A, B, C, X(3631), X(15533)}}, {{A, B, C, X(5486), X(14023)}}, {{A, B, C, X(5921), X(56013)}}, {{A, B, C, X(6391), X(56004)}}, {{A, B, C, X(6393), X(40995)}}, {{A, B, C, X(7762), X(12167)}}, {{A, B, C, X(7855), X(9516)}}, {{A, B, C, X(9307), X(35511)}}, {{A, B, C, X(10604), X(47389)}}, {{A, B, C, X(13481), X(36953)}}, {{A, B, C, X(14458), X(38262)}}, {{A, B, C, X(18440), X(56021)}}, {{A, B, C, X(21447), X(40120)}}, {{A, B, C, X(30535), X(54910)}}, {{A, B, C, X(34208), X(56360)}}, {{A, B, C, X(35510), X(40824)}}, {{A, B, C, X(36609), X(40802)}}, {{A, B, C, X(40162), X(55033)}}, {{A, B, C, X(40316), X(40318)}}, {{A, B, C, X(40413), X(57518)}}, {{A, B, C, X(41530), X(57872)}}, {{A, B, C, X(42313), X(61646)}}, {{A, B, C, X(44518), X(59545)}}, {{A, B, C, X(45857), X(60096)}}, {{A, B, C, X(46442), X(56015)}}, {{A, B, C, X(51126), X(51188)}}, {{A, B, C, X(51316), X(60103)}}, {{A, B, C, X(52223), X(54906)}}, {{A, B, C, X(52224), X(54905)}}, {{A, B, C, X(52443), X(60262)}}, {{A, B, C, X(56007), X(57388)}}
X(63182) = barycentric product X(i)*X(j) for these (i, j): {305, 63184}, {56362, 76}
X(63182) = barycentric quotient X(i)/X(j) for these (i, j): {2, 44518}, {6, 34481}, {69, 30771}, {56362, 6}, {63184, 25}


X(63183) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(5), X(159))

Barycentrics    a^2*(a^6-b^6+3*b^4*c^2+3*b^2*c^4-c^6+a^4*(b^2+c^2)-a^2*(b^4+4*b^2*c^2+c^4)) : :

X(63183) lies on these lines: {2, 18935}, {3, 3620}, {6, 110}, {20, 39879}, {22, 69}, {23, 20080}, {24, 3564}, {25, 193}, {26, 11898}, {66, 62382}, {141, 7485}, {154, 19121}, {155, 6403}, {157, 1634}, {184, 14913}, {206, 41614}, {297, 41757}, {343, 15585}, {378, 12168}, {394, 9924}, {439, 39653}, {511, 11441}, {524, 20987}, {542, 15078}, {858, 28419}, {1147, 39588}, {1350, 12111}, {1351, 9925}, {1352, 7503}, {1353, 7506}, {1503, 11413}, {1599, 19406}, {1600, 19407}, {1843, 1993}, {1899, 26156}, {1974, 8681}, {2393, 20806}, {2936, 45018}, {3047, 32251}, {3060, 7716}, {3089, 12309}, {3148, 20794}, {3167, 12167}, {3186, 56017}, {3618, 32621}, {3619, 40916}, {3631, 35707}, {3763, 23293}, {3818, 61744}, {3964, 33582}, {5020, 51171}, {5085, 11449}, {5093, 13861}, {5198, 32605}, {5422, 9822}, {6391, 8780}, {6467, 9306}, {6642, 14912}, {6644, 18932}, {6660, 22152}, {6697, 12827}, {6776, 17928}, {6800, 19126}, {7487, 12166}, {7517, 34380}, {7530, 44456}, {8185, 34379}, {8263, 26926}, {8546, 51126}, {8573, 37465}, {8907, 34507}, {9308, 53350}, {9544, 19125}, {9682, 39893}, {9707, 19131}, {9909, 11160}, {9937, 11382}, {9969, 27365}, {10117, 32244}, {10323, 48876}, {10387, 11446}, {10516, 58922}, {10539, 34382}, {11064, 15583}, {11363, 34381}, {11414, 62174}, {11440, 31884}, {11454, 55646}, {11456, 37511}, {11574, 15066}, {12082, 12112}, {12084, 48662}, {12278, 36990}, {13452, 55629}, {13595, 51170}, {15068, 18438}, {15069, 15577}, {15435, 37990}, {16386, 61088}, {19137, 40673}, {19596, 40341}, {22151, 34777}, {23300, 28408}, {25321, 32240}, {32113, 62291}, {32114, 40914}, {33532, 55604}, {33851, 41428}, {34417, 58555}, {34787, 41716}, {35228, 38446}, {35296, 44200}, {35502, 39884}, {37940, 51215}, {37956, 51175}, {39568, 61044}, {40867, 40947}, {41463, 55639}, {41735, 52071}, {44837, 50955}

X(63183) = reflection of X(i) in X(j) for these {i,j}: {193, 46444}, {35219, 159}, {40318, 1974}
X(63183) = X(i)-Dao conjugate of X(j) for these {i, j}: {34481, 44518}
X(63183) = X(i)-Ceva conjugate of X(j) for these {i, j}: {63182, 6}
X(63183) = pole of line {351, 3265} with respect to the circumcircle
X(63183) = pole of line {21639, 40318} with respect to the Jerabek hyperbola
X(63183) = pole of line {858, 1611} with respect to the Kiepert hyperbola
X(63183) = pole of line {112, 3565} with respect to the Kiepert parabola
X(63183) = pole of line {9517, 57202} with respect to the MacBeath circumconic
X(63183) = pole of line {159, 524} with respect to the Stammler hyperbola
X(63183) = pole of line {57069, 57071} with respect to the Steiner circumellipse
X(63183) = pole of line {1370, 3266} with respect to the Wallace hyperbola
X(63183) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(2506)}}, {{A, B, C, X(111), X(13575)}}, {{A, B, C, X(895), X(6339)}}, {{A, B, C, X(15369), X(32740)}}, {{A, B, C, X(39129), X(46154)}}
X(63183) = barycentric product X(i)*X(j) for these (i, j): {2506, 99}
X(63183) = barycentric quotient X(i)/X(j) for these (i, j): {2506, 523}
X(63183) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 20080, 37491}, {25, 19588, 193}, {69, 159, 22}, {110, 12272, 6}, {159, 63180, 69}, {394, 9924, 12220}, {1974, 8681, 40318}, {3964, 33582, 37183}, {6391, 19118, 37784}, {6391, 8780, 19118}, {6467, 9306, 26206}, {23300, 28408, 30744}, {28419, 36851, 858}, {35264, 40318, 1974}


X(63184) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(5), X(44102))

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^4+2*b^4+b^2*c^2-c^4+a^2*(-4*b^2+c^2))*(2*a^4-b^4+b^2*c^2+2*c^4+a^2*(b^2-4*c^2)) : :

X(63184) lies on the Jerabek hyperbola and on these lines: {3, 56362}, {25, 38263}, {68, 6622}, {69, 38282}, {193, 41616}, {248, 46432}, {265, 6623}, {575, 31371}, {895, 1974}, {2207, 57688}, {2211, 30496}, {3431, 52000}, {5486, 41593}, {6353, 40317}, {6391, 8780}, {6776, 22466}, {10097, 57204}, {14457, 14912}, {17040, 21637}, {19128, 57648}, {21400, 44226}, {39588, 52518}

X(63184) = isogonal conjugate of X(30771)
X(63184) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 30771}, {63, 44518}, {304, 34481}
X(63184) = X(i)-vertex conjugate of X(j) for these {i, j}: {6391, 63184}
X(63184) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 30771}, {3162, 44518}
X(63184) = X(i)-cross conjugate of X(j) for these {i, j}: {8651, 112}, {44680, 107}
X(63184) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3), X(4)}}, {{A, B, C, X(24), X(6622)}}, {{A, B, C, X(25), X(38282)}}, {{A, B, C, X(98), X(41894)}}, {{A, B, C, X(186), X(6623)}}, {{A, B, C, X(193), X(249)}}, {{A, B, C, X(250), X(393)}}, {{A, B, C, X(253), X(46426)}}, {{A, B, C, X(263), X(61646)}}, {{A, B, C, X(459), X(2987)}}, {{A, B, C, X(511), X(46432)}}, {{A, B, C, X(1383), X(60124)}}, {{A, B, C, X(1485), X(44556)}}, {{A, B, C, X(1974), X(44102)}}, {{A, B, C, X(1976), X(59543)}}, {{A, B, C, X(2207), X(19118)}}, {{A, B, C, X(3563), X(34233)}}, {{A, B, C, X(5966), X(46208)}}, {{A, B, C, X(6339), X(52583)}}, {{A, B, C, X(7612), X(41890)}}, {{A, B, C, X(8749), X(34208)}}, {{A, B, C, X(8753), X(15369)}}, {{A, B, C, X(9307), X(51967)}}, {{A, B, C, X(10155), X(45299)}}, {{A, B, C, X(14494), X(41891)}}, {{A, B, C, X(19136), X(41593)}}, {{A, B, C, X(21844), X(44226)}}, {{A, B, C, X(29011), X(35510)}}, {{A, B, C, X(30535), X(56346)}}, {{A, B, C, X(34570), X(60150)}}, {{A, B, C, X(37942), X(47485)}}, {{A, B, C, X(38253), X(40802)}}, {{A, B, C, X(39588), X(40065)}}, {{A, B, C, X(39955), X(60125)}}, {{A, B, C, X(40144), X(55023)}}, {{A, B, C, X(40405), X(60133)}}, {{A, B, C, X(44879), X(44960)}}
X(63184) = barycentric product X(i)*X(j) for these (i, j): {4, 56362}, {25, 63182}
X(63184) = barycentric quotient X(i)/X(j) for these (i, j): {6, 30771}, {25, 44518}, {1974, 34481}, {56362, 69}, {63182, 305}


X(63185) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(3))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4-a^3*c+b*(b-c)^2*(b+c)+a*c*(b+c)^2-a^2*(2*b^2-b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b+c)^2-a^2*(b^2-b*c+2*c^2)) : :

X(63185) lies on these lines: {2, 268}, {3, 347}, {7, 404}, {56, 55015}, {57, 2289}, {77, 37526}, {255, 269}, {273, 6909}, {479, 1804}, {934, 61115}, {1014, 62402}, {1396, 1465}, {1436, 34813}, {1441, 1809}, {1442, 17603}, {6356, 6940}, {6915, 7282}, {13437, 60847}, {13459, 60848}, {15804, 40154}, {17531, 53821}, {37267, 55119}, {38859, 56544}

X(63185) = isogonal conjugate of X(1864)
X(63185) = trilinear pole of line {3669, 36054}
X(63185) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1864}, {8, 40958}, {9, 1108}, {29, 3611}, {33, 1071}, {37, 40979}, {41, 17862}, {55, 1210}, {200, 37566}, {284, 21933}, {318, 23204}, {522, 53288}, {650, 61237}, {663, 61185}, {1226, 2175}, {1532, 2342}, {1783, 40628}, {2192, 6260}, {2328, 57285}, {3239, 61212}, {3900, 61227}, {7073, 41562}, {7074, 52571}
X(63185) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 1864}, {57, 6260}, {223, 1210}, {478, 1108}, {3160, 17862}, {6609, 37566}, {36908, 57285}, {39006, 40628}, {40589, 40979}, {40590, 21933}, {40593, 1226}
X(63185) = X(i)-cross conjugate of X(j) for these {i, j}: {1167, 40399}, {1459, 651}
X(63185) = pole of line {1864, 40979} with respect to the Stammler hyperbola
X(63185) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(9375)}}, {{A, B, C, X(2), X(77)}}, {{A, B, C, X(3), X(21)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(8), X(3345)}}, {{A, B, C, X(9), X(972)}}, {{A, B, C, X(28), X(106)}}, {{A, B, C, X(40), X(37526)}}, {{A, B, C, X(59), X(284)}}, {{A, B, C, X(69), X(36100)}}, {{A, B, C, X(81), X(60041)}}, {{A, B, C, X(86), X(7045)}}, {{A, B, C, X(87), X(9372)}}, {{A, B, C, X(88), X(273)}}, {{A, B, C, X(95), X(1444)}}, {{A, B, C, X(105), X(1037)}}, {{A, B, C, X(165), X(10857)}}, {{A, B, C, X(223), X(55015)}}, {{A, B, C, X(277), X(7318)}}, {{A, B, C, X(285), X(775)}}, {{A, B, C, X(411), X(37277)}}, {{A, B, C, X(453), X(6824)}}, {{A, B, C, X(757), X(21453)}}, {{A, B, C, X(942), X(37582)}}, {{A, B, C, X(943), X(3431)}}, {{A, B, C, X(961), X(2213)}}, {{A, B, C, X(998), X(17097)}}, {{A, B, C, X(1041), X(39956)}}, {{A, B, C, X(1155), X(17603)}}, {{A, B, C, X(1156), X(39943)}}, {{A, B, C, X(1167), X(57422)}}, {{A, B, C, X(1243), X(55924)}}, {{A, B, C, X(1246), X(55938)}}, {{A, B, C, X(1261), X(56305)}}, {{A, B, C, X(1320), X(51497)}}, {{A, B, C, X(1323), X(1442)}}, {{A, B, C, X(1439), X(1441)}}, {{A, B, C, X(1440), X(56359)}}, {{A, B, C, X(1443), X(3663)}}, {{A, B, C, X(1617), X(15804)}}, {{A, B, C, X(1816), X(37275)}}, {{A, B, C, X(2077), X(61115)}}, {{A, B, C, X(2078), X(34881)}}, {{A, B, C, X(2287), X(23707)}}, {{A, B, C, X(2316), X(14493)}}, {{A, B, C, X(2359), X(5481)}}, {{A, B, C, X(4224), X(13588)}}, {{A, B, C, X(4228), X(35977)}}, {{A, B, C, X(5122), X(24929)}}, {{A, B, C, X(5708), X(37545)}}, {{A, B, C, X(5709), X(37534)}}, {{A, B, C, X(6282), X(21164)}}, {{A, B, C, X(6675), X(37294)}}, {{A, B, C, X(6910), X(37418)}}, {{A, B, C, X(7012), X(23617)}}, {{A, B, C, X(7053), X(53995)}}, {{A, B, C, X(7054), X(47487)}}, {{A, B, C, X(7131), X(56972)}}, {{A, B, C, X(7549), X(15777)}}, {{A, B, C, X(8056), X(8809)}}, {{A, B, C, X(9776), X(56544)}}, {{A, B, C, X(9940), X(37623)}}, {{A, B, C, X(11349), X(16054)}}, {{A, B, C, X(13587), X(36011)}}, {{A, B, C, X(17080), X(51612)}}, {{A, B, C, X(17102), X(23661)}}, {{A, B, C, X(17518), X(27621)}}, {{A, B, C, X(17531), X(52012)}}, {{A, B, C, X(28258), X(35991)}}, {{A, B, C, X(33325), X(35985)}}, {{A, B, C, X(36057), X(41890)}}, {{A, B, C, X(37532), X(37612)}}, {{A, B, C, X(40399), X(40424)}}, {{A, B, C, X(40412), X(40443)}}
X(63185) = barycentric product X(i)*X(j) for these (i, j): {1167, 85}, {1434, 56259}, {40397, 69}, {40399, 7}, {40424, 57}, {40444, 77}, {40527, 55346}, {40702, 57422}
X(63185) = barycentric quotient X(i)/X(j) for these (i, j): {6, 1864}, {7, 17862}, {56, 1108}, {57, 1210}, {58, 40979}, {65, 21933}, {85, 1226}, {109, 61237}, {222, 1071}, {223, 6260}, {604, 40958}, {651, 61185}, {1167, 9}, {1407, 37566}, {1409, 3611}, {1415, 53288}, {1419, 41561}, {1422, 52571}, {1427, 57285}, {1459, 40628}, {1461, 61227}, {1465, 1532}, {2003, 41562}, {40397, 4}, {40399, 8}, {40424, 312}, {40444, 318}, {40527, 2968}, {52411, 23204}, {56259, 2321}, {57422, 282}, {58984, 40117}


X(63186) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(4))

Barycentrics    (a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+a^3*c-a*(b-c)^2*c+b*(b-c)*(b+c)^2-a^2*(2*b^2+b*c+c^2))*(a^4+a^3*b-a*b*(b-c)^2-(b-c)*c*(b+c)^2-a^2*(b^2+b*c+2*c^2)) : :

X(63186) lies on these lines: {2, 7011}, {4, 1440}, {7, 412}, {27, 34050}, {75, 7013}, {77, 37420}, {273, 47372}, {318, 56544}, {342, 1088}, {947, 21620}, {1804, 11109}, {7020, 56972}, {7318, 52248}

X(63186) = isogonal conjugate of X(40945)
X(63186) = trilinear pole of line {514, 57166}
X(63186) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 40945}, {9, 22063}, {48, 20262}, {55, 17102}, {63, 40957}, {184, 23528}, {212, 946}, {219, 2262}, {255, 1856}, {268, 40943}, {521, 61202}, {652, 61224}, {2192, 52097}, {7079, 59178}
X(63186) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 40945}, {57, 52097}, {223, 17102}, {478, 22063}, {1249, 20262}, {3162, 40957}, {6523, 1856}, {40837, 946}, {62605, 23528}
X(63186) = X(i)-cross conjugate of X(j) for these {i, j}: {44426, 653}
X(63186) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(41344)}}, {{A, B, C, X(2), X(7)}}, {{A, B, C, X(4), X(342)}}, {{A, B, C, X(28), X(37278)}}, {{A, B, C, X(29), X(412)}}, {{A, B, C, X(57), X(7011)}}, {{A, B, C, X(77), X(34234)}}, {{A, B, C, X(79), X(45091)}}, {{A, B, C, X(189), X(347)}}, {{A, B, C, X(264), X(34398)}}, {{A, B, C, X(270), X(1476)}}, {{A, B, C, X(279), X(55119)}}, {{A, B, C, X(286), X(55346)}}, {{A, B, C, X(322), X(54451)}}, {{A, B, C, X(1210), X(4292)}}, {{A, B, C, X(1838), X(21620)}}, {{A, B, C, X(2262), X(6129)}}, {{A, B, C, X(2322), X(43764)}}, {{A, B, C, X(3342), X(61121)}}, {{A, B, C, X(3559), X(52248)}}, {{A, B, C, X(3668), X(17094)}}, {{A, B, C, X(7091), X(51498)}}, {{A, B, C, X(7131), X(56287)}}, {{A, B, C, X(8748), X(36122)}}, {{A, B, C, X(8809), X(13478)}}, {{A, B, C, X(8822), X(36100)}}, {{A, B, C, X(9579), X(9581)}}, {{A, B, C, X(14377), X(55118)}}, {{A, B, C, X(40417), X(55987)}}, {{A, B, C, X(41082), X(55938)}}, {{A, B, C, X(51790), X(51792)}}, {{A, B, C, X(52392), X(57838)}}, {{A, B, C, X(55460), X(55461)}}
X(63186) = barycentric product X(i)*X(j) for these (i, j): {264, 57418}, {273, 55987}, {278, 40417}, {331, 947}, {40396, 85}
X(63186) = barycentric quotient X(i)/X(j) for these (i, j): {4, 20262}, {6, 40945}, {25, 40957}, {34, 2262}, {56, 22063}, {57, 17102}, {92, 23528}, {108, 61224}, {208, 40943}, {223, 52097}, {278, 946}, {393, 1856}, {947, 219}, {7053, 59178}, {32674, 61202}, {40396, 9}, {40417, 345}, {55987, 78}, {56195, 3694}, {57418, 3}


X(63187) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(19))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^3-a^2*b-a*b^2+b^3-c^3)*(a^3-b^3-a^2*c-a*c^2+c^3) : :

X(63187) lies on these lines: {3, 3100}, {19, 7177}, {63, 7079}, {103, 52776}, {222, 607}, {273, 14377}, {1790, 2332}, {2322, 17206}, {7154, 55117}

X(63187) = trilinear pole of line {1459, 54244}
X(63187) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3, 46835}, {9, 20277}, {48, 17860}, {55, 17073}, {63, 4336}, {71, 17188}, {219, 1836}, {281, 53847}, {284, 21912}, {1332, 2520}, {3939, 23727}
X(63187) = X(i)-vertex conjugate of X(j) for these {i, j}: {1803, 2332}
X(63187) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 17073}, {478, 20277}, {1249, 17860}, {3162, 4336}, {36103, 46835}, {40590, 21912}, {40617, 23727}
X(63187) = X(i)-cross conjugate of X(j) for these {i, j}: {663, 36118}
X(63187) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(52781)}}, {{A, B, C, X(2), X(775)}}, {{A, B, C, X(3), X(27)}}, {{A, B, C, X(4), X(7128)}}, {{A, B, C, X(19), X(607)}}, {{A, B, C, X(28), X(1847)}}, {{A, B, C, X(29), X(37378)}}, {{A, B, C, X(75), X(26215)}}, {{A, B, C, X(270), X(279)}}, {{A, B, C, X(273), X(1170)}}, {{A, B, C, X(278), X(6198)}}, {{A, B, C, X(961), X(56147)}}, {{A, B, C, X(1445), X(56544)}}, {{A, B, C, X(2006), X(37729)}}, {{A, B, C, X(2125), X(47850)}}, {{A, B, C, X(2160), X(8761)}}, {{A, B, C, X(2184), X(54226)}}, {{A, B, C, X(7131), X(56287)}}, {{A, B, C, X(8144), X(52374)}}, {{A, B, C, X(10429), X(14256)}}, {{A, B, C, X(37741), X(55965)}}, {{A, B, C, X(40411), X(55994)}}
X(63187) = barycentric product X(i)*X(j) for these (i, j): {1, 34398}, {34, 34409}, {273, 37741}, {278, 55965}, {1459, 54968}, {4025, 52776}, {4091, 42389}, {56005, 92}
X(63187) = barycentric quotient X(i)/X(j) for these (i, j): {4, 17860}, {19, 46835}, {25, 4336}, {28, 17188}, {34, 1836}, {56, 20277}, {57, 17073}, {65, 21912}, {603, 53847}, {1835, 51462}, {3669, 23727}, {34398, 75}, {34409, 3718}, {37741, 78}, {52776, 1897}, {55965, 345}, {56005, 63}


X(63188) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(31))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^3-a*b^2+b^2*(b-c)-a^2*(b+c))*(a^3-a*c^2+c^2*(-b+c)-a^2*(b+c)) : :

X(63188) lies on these lines: {31, 1088}, {57, 9447}, {171, 3664}, {172, 241}, {3449, 9455}, {3676, 55086}

X(63188) = trilinear pole of line {20981, 53544}
X(63188) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 16588}, {6, 40997}, {7, 52562}, {8, 21746}, {9, 17451}, {21, 21804}, {37, 16699}, {41, 20236}, {55, 2886}, {76, 9449}, {210, 18165}, {264, 22368}, {274, 21819}, {281, 22070}, {284, 21029}, {522, 46177}, {926, 61184}, {3688, 18088}, {3939, 21118}, {51464, 56154}
X(63188) = X(i)-vertex conjugate of X(j) for these {i, j}: {2194, 21453}
X(63188) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 40997}, {223, 2886}, {478, 17451}, {3160, 20236}, {32664, 16588}, {40589, 16699}, {40590, 21029}, {40611, 21804}, {40617, 21118}
X(63188) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(13405)}}, {{A, B, C, X(6), X(9440)}}, {{A, B, C, X(27), X(36016)}}, {{A, B, C, X(31), X(9447)}}, {{A, B, C, X(56), X(171)}}, {{A, B, C, X(57), X(241)}}, {{A, B, C, X(58), X(775)}}, {{A, B, C, X(75), X(39947)}}, {{A, B, C, X(81), X(14828)}}, {{A, B, C, X(82), X(51476)}}, {{A, B, C, X(89), X(479)}}, {{A, B, C, X(109), X(55086)}}, {{A, B, C, X(269), X(757)}}, {{A, B, C, X(593), X(7339)}}, {{A, B, C, X(675), X(2167)}}, {{A, B, C, X(1014), X(17074)}}, {{A, B, C, X(1471), X(9316)}}, {{A, B, C, X(2163), X(24013)}}, {{A, B, C, X(2194), X(59019)}}, {{A, B, C, X(2349), X(7357)}}, {{A, B, C, X(2982), X(15728)}}, {{A, B, C, X(3218), X(39728)}}, {{A, B, C, X(4564), X(56358)}}, {{A, B, C, X(9315), X(51838)}}, {{A, B, C, X(40415), X(55991)}}
X(63188) = barycentric product X(i)*X(j) for these (i, j): {1, 63148}, {3449, 85}, {40419, 57}
X(63188) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40997}, {7, 20236}, {31, 16588}, {41, 52562}, {56, 17451}, {57, 2886}, {58, 16699}, {65, 21029}, {560, 9449}, {603, 22070}, {604, 21746}, {1400, 21804}, {1412, 18165}, {1415, 46177}, {1918, 21819}, {3449, 9}, {3669, 21118}, {9247, 22368}, {36146, 61184}, {40419, 312}, {63148, 75}


X(63189) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(35))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4-a^3*c+b*(b-c)^2*(b+c)-a^2*(2*b^2-b*c+c^2)+a*c*(b^2+4*b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b^2+4*b*c+c^2)-a^2*(b^2-b*c+2*c^2)) : :

X(63189) lies on these lines: {269, 58887}, {479, 7279}, {1119, 38295}

X(63189) = X(i)-isoconjugate-of-X(j) for these {i, j}: {33, 13369}
X(63189) = X(i)-cross conjugate of X(j) for these {i, j}: {2605, 651}
X(63189) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(38295)}}, {{A, B, C, X(2), X(56356)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(35), X(943)}}, {{A, B, C, X(59), X(2259)}}, {{A, B, C, X(77), X(52351)}}, {{A, B, C, X(95), X(43363)}}, {{A, B, C, X(104), X(54969)}}, {{A, B, C, X(105), X(41431)}}, {{A, B, C, X(759), X(951)}}, {{A, B, C, X(972), X(2346)}}, {{A, B, C, X(1037), X(2164)}}, {{A, B, C, X(1255), X(1442)}}, {{A, B, C, X(2337), X(7163)}}, {{A, B, C, X(7045), X(40438)}}, {{A, B, C, X(7318), X(56359)}}, {{A, B, C, X(11509), X(37579)}}, {{A, B, C, X(18398), X(34419)}}, {{A, B, C, X(42326), X(43736)}}
X(63189) = barycentric quotient X(i)/X(j) for these (i, j): {222, 13369}


X(63190) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(36))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^4-a^3*c+b*(b-c)^2*(b+c)+a*c*(b^2+c^2)-a^2*(2*b^2-b*c+c^2))*(a^4-a^3*b+(b-c)^2*c*(b+c)+a*b*(b^2+c^2)-a^2*(b^2-b*c+2*c^2)) : :

X(63190) lies on these lines: {7, 1470}, {36, 22464}, {57, 1813}, {104, 18815}, {269, 36052}, {915, 934}, {1358, 1804}, {1396, 4565}, {1442, 10202}, {1443, 15381}, {1462, 32655}, {6099, 15728}, {10090, 52392}, {37141, 37203}, {38859, 39173}, {46133, 54953}

X(63190) = trilinear pole of line {222, 3669}
X(63190) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 8609}, {33, 912}, {41, 48380}, {55, 1737}, {119, 2342}, {200, 18838}, {281, 2252}, {607, 914}, {650, 61239}, {663, 56881}, {2340, 52456}, {3658, 4041}, {3900, 61231}, {3939, 55126}, {4845, 12831}, {6735, 51824}, {7046, 51649}, {11570, 52371}
X(63190) = X(i)-vertex conjugate of X(j) for these {i, j}: {1411, 45393}
X(63190) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 1737}, {478, 8609}, {3160, 48380}, {6609, 18838}, {40617, 55126}, {52879, 12831}
X(63190) = X(i)-cross conjugate of X(j) for these {i, j}: {36052, 2990}, {44805, 100}, {52407, 81}, {53314, 651}, {62402, 7}
X(63190) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(6), X(42843)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(21), X(7501)}}, {{A, B, C, X(28), X(37300)}}, {{A, B, C, X(36), X(104)}}, {{A, B, C, X(46), X(5553)}}, {{A, B, C, X(56), X(1470)}}, {{A, B, C, X(59), X(105)}}, {{A, B, C, X(77), X(6505)}}, {{A, B, C, X(88), X(1443)}}, {{A, B, C, X(272), X(1790)}}, {{A, B, C, X(757), X(60041)}}, {{A, B, C, X(915), X(15381)}}, {{A, B, C, X(934), X(1813)}}, {{A, B, C, X(943), X(34419)}}, {{A, B, C, X(951), X(52375)}}, {{A, B, C, X(972), X(1156)}}, {{A, B, C, X(1320), X(47645)}}, {{A, B, C, X(1440), X(56356)}}, {{A, B, C, X(1444), X(9723)}}, {{A, B, C, X(1929), X(1937)}}, {{A, B, C, X(2316), X(2717)}}, {{A, B, C, X(2346), X(2364)}}, {{A, B, C, X(2687), X(55966)}}, {{A, B, C, X(3737), X(8759)}}, {{A, B, C, X(7012), X(37129)}}, {{A, B, C, X(10202), X(37582)}}, {{A, B, C, X(34578), X(43736)}}, {{A, B, C, X(36100), X(55022)}}, {{A, B, C, X(40400), X(52377)}}
X(63190) = barycentric product X(i)*X(j) for these (i, j): {222, 46133}, {279, 45393}, {348, 915}, {1465, 57753}, {2990, 7}, {3657, 4573}, {4569, 61214}, {7182, 913}, {24002, 6099}, {32655, 6063}, {36052, 85}, {37203, 77}
X(63190) = barycentric quotient X(i)/X(j) for these (i, j): {7, 48380}, {56, 8609}, {57, 1737}, {77, 914}, {109, 61239}, {222, 912}, {603, 2252}, {651, 56881}, {913, 33}, {915, 281}, {1407, 18838}, {1461, 61231}, {1462, 52456}, {1465, 119}, {2990, 8}, {3657, 3700}, {3669, 55126}, {4565, 3658}, {6099, 644}, {6610, 12831}, {7099, 51649}, {15381, 52663}, {32655, 55}, {32698, 56183}, {34051, 14266}, {36052, 9}, {37203, 318}, {45393, 346}, {46133, 7017}, {57753, 36795}, {61214, 3900}


X(63191) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(37))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^2+2*b^2+a*(b-2*c)+b*c+c^2)*(a^2+b^2+b*c+2*c^2+a*(-2*b+c)) : :

X(63191) lies on these lines: {936, 1445}, {1170, 17625}, {1434, 25244}, {3219, 38811}, {3969, 6604}, {4350, 16577}, {6198, 37594}, {33939, 42712}

X(63191) = trilinear pole of line {43049, 52089}
X(63191) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 40998}, {55, 3946}, {58, 38930}, {81, 42446}, {220, 10521}, {284, 4854}, {593, 21673}, {3939, 23729}
X(63191) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 40998}, {10, 38930}, {223, 3946}, {40586, 42446}, {40590, 4854}, {40617, 23729}
X(63191) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(5223)}}, {{A, B, C, X(2), X(84)}}, {{A, B, C, X(7), X(1170)}}, {{A, B, C, X(21), X(27475)}}, {{A, B, C, X(37), X(42712)}}, {{A, B, C, X(57), X(3361)}}, {{A, B, C, X(81), X(3296)}}, {{A, B, C, X(85), X(1476)}}, {{A, B, C, X(88), X(14377)}}, {{A, B, C, X(90), X(56217)}}, {{A, B, C, X(104), X(17758)}}, {{A, B, C, X(105), X(3497)}}, {{A, B, C, X(226), X(502)}}, {{A, B, C, X(277), X(7284)}}, {{A, B, C, X(279), X(4321)}}, {{A, B, C, X(335), X(1257)}}, {{A, B, C, X(514), X(15179)}}, {{A, B, C, X(951), X(1262)}}, {{A, B, C, X(1037), X(56005)}}, {{A, B, C, X(1156), X(32008)}}, {{A, B, C, X(1214), X(37594)}}, {{A, B, C, X(1258), X(60086)}}, {{A, B, C, X(1280), X(40403)}}, {{A, B, C, X(1389), X(60083)}}, {{A, B, C, X(1432), X(8686)}}, {{A, B, C, X(1434), X(43760)}}, {{A, B, C, X(1462), X(20615)}}, {{A, B, C, X(1791), X(56382)}}, {{A, B, C, X(2346), X(55965)}}, {{A, B, C, X(2990), X(34485)}}, {{A, B, C, X(3062), X(60092)}}, {{A, B, C, X(3577), X(56355)}}, {{A, B, C, X(4258), X(42316)}}, {{A, B, C, X(4564), X(17097)}}, {{A, B, C, X(5558), X(39273)}}, {{A, B, C, X(8545), X(60995)}}, {{A, B, C, X(10308), X(60075)}}, {{A, B, C, X(17625), X(59181)}}, {{A, B, C, X(23617), X(30701)}}, {{A, B, C, X(25430), X(56075)}}, {{A, B, C, X(32009), X(60229)}}, {{A, B, C, X(36605), X(56038)}}, {{A, B, C, X(40399), X(60156)}}, {{A, B, C, X(40434), X(55918)}}, {{A, B, C, X(41790), X(56043)}}, {{A, B, C, X(45100), X(56230)}}, {{A, B, C, X(54622), X(62180)}}, {{A, B, C, X(55921), X(56054)}}, {{A, B, C, X(55948), X(56029)}}, {{A, B, C, X(56234), X(60071)}}, {{A, B, C, X(56354), X(60170)}}
X(63191) = barycentric product X(i)*X(j) for these (i, j): {321, 38811}, {38825, 85}
X(63191) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40998}, {37, 38930}, {42, 42446}, {57, 3946}, {65, 4854}, {269, 10521}, {756, 21673}, {3669, 23729}, {38811, 81}, {38825, 9}


X(63192) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(55))

Barycentrics    a*(a+b-c)*(a-b+c)*(a^3+b*(b-c)^2-a^2*(b+2*c)+a*(-b^2+4*b*c+c^2))*(a^3+(b-c)^2*c-a^2*(2*b+c)+a*(b^2+4*b*c-c^2)) : :

X(63192) lies on these lines: {1, 56870}, {7, 480}, {55, 479}, {57, 6602}, {165, 269}, {279, 6244}, {345, 63164}, {404, 56929}, {651, 1200}, {1119, 3672}, {1155, 61373}, {1462, 3752}, {5574, 8545}, {6180, 11051}, {9446, 28071}, {11227, 38459}, {19605, 60937}, {29007, 30624}, {37448, 55110}, {37541, 40154}, {38859, 53056}, {56182, 57785}

X(63192) = isogonal conjugate of X(14100)
X(63192) = trilinear pole of line {3669, 20980}
X(63192) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 14100}, {2, 1200}, {6, 41006}, {8, 20978}, {9, 40133}, {33, 10167}, {41, 20905}, {55, 11019}, {145, 45229}, {220, 60992}, {281, 22088}, {284, 21049}, {1334, 26818}, {1743, 45202}, {3062, 45228}, {9439, 59573}, {11051, 45203}
X(63192) = X(i)-vertex conjugate of X(j) for these {i, j}: {55, 61373}
X(63192) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 14100}, {9, 41006}, {223, 11019}, {478, 40133}, {3160, 20905}, {32664, 1200}, {40590, 21049}
X(63192) = X(i)-cross conjugate of X(j) for these {i, j}: {663, 651}, {15599, 100}
X(63192) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(165)}}, {{A, B, C, X(2), X(25930)}}, {{A, B, C, X(7), X(57)}}, {{A, B, C, X(9), X(3599)}}, {{A, B, C, X(21), X(103)}}, {{A, B, C, X(55), X(480)}}, {{A, B, C, X(59), X(1174)}}, {{A, B, C, X(77), X(345)}}, {{A, B, C, X(81), X(7045)}}, {{A, B, C, X(88), X(1088)}}, {{A, B, C, X(105), X(1376)}}, {{A, B, C, X(354), X(1155)}}, {{A, B, C, X(663), X(1200)}}, {{A, B, C, X(672), X(9446)}}, {{A, B, C, X(893), X(1458)}}, {{A, B, C, X(1002), X(17097)}}, {{A, B, C, X(1318), X(2717)}}, {{A, B, C, X(1419), X(60937)}}, {{A, B, C, X(1617), X(37541)}}, {{A, B, C, X(1796), X(40443)}}, {{A, B, C, X(1817), X(37448)}}, {{A, B, C, X(2078), X(3256)}}, {{A, B, C, X(2291), X(41431)}}, {{A, B, C, X(3263), X(3752)}}, {{A, B, C, X(5936), X(8809)}}, {{A, B, C, X(7218), X(7320)}}, {{A, B, C, X(8049), X(55938)}}, {{A, B, C, X(8056), X(36620)}}, {{A, B, C, X(9357), X(9445)}}, {{A, B, C, X(10389), X(35445)}}, {{A, B, C, X(10429), X(51498)}}, {{A, B, C, X(10980), X(53056)}}, {{A, B, C, X(13577), X(36100)}}, {{A, B, C, X(18810), X(55924)}}, {{A, B, C, X(26745), X(56348)}}, {{A, B, C, X(28626), X(43744)}}, {{A, B, C, X(38254), X(39963)}}, {{A, B, C, X(39293), X(40415)}}, {{A, B, C, X(40399), X(51567)}}, {{A, B, C, X(43363), X(55987)}}, {{A, B, C, X(53632), X(61240)}}, {{A, B, C, X(56048), X(60041)}}
X(63192) = barycentric product X(i)*X(j) for these (i, j): {1, 23618}, {14493, 348}, {56026, 57}
X(63192) = barycentric quotient X(i)/X(j) for these (i, j): {1, 41006}, {6, 14100}, {7, 20905}, {31, 1200}, {56, 40133}, {57, 11019}, {65, 21049}, {165, 45203}, {222, 10167}, {269, 60992}, {603, 22088}, {604, 20978}, {1014, 26818}, {1419, 43182}, {3207, 45228}, {3445, 45202}, {6180, 59573}, {14493, 281}, {23618, 75}, {38266, 45229}, {56026, 312}


X(63193) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(58))

Barycentrics    a*(a+b)*(a+b-c)*(a+c)*(a-b+c)*(a^3-a^2*b+b^3-b*c^2-a*(b+c)^2)*(a^3-a^2*c-b^2*c+c^3-a*(b+c)^2) : :

X(63193) lies on these lines: {7, 56840}, {57, 2150}, {58, 3668}, {77, 757}, {81, 1214}, {86, 283}, {270, 273}, {873, 7182}, {943, 37594}, {1014, 1175}, {2259, 42302}, {8808, 40395}, {26638, 40435}, {36048, 52560}

X(63193) = isogonal conjugate of X(40967)
X(63193) = trilinear pole of line {1019, 51664}
X(63193) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 40967}, {8, 40952}, {9, 2294}, {10, 14547}, {12, 8021}, {33, 56839}, {37, 40937}, {42, 6734}, {55, 442}, {72, 1859}, {181, 51978}, {210, 942}, {219, 1865}, {220, 55010}, {281, 18591}, {284, 21675}, {312, 40978}, {522, 61169}, {594, 46882}, {650, 61161}, {661, 61233}, {756, 54356}, {1234, 2175}, {1334, 5249}, {1838, 2318}, {1841, 3694}, {1896, 59177}, {2260, 2321}, {3700, 61197}, {3701, 40956}, {3939, 23752}, {3949, 46884}, {4041, 61220}, {4069, 50354}, {4183, 41393}, {4303, 53008}, {4552, 33525}, {7046, 39791}, {8611, 61236}, {23207, 41013}, {41509, 45038}, {52355, 53323}, {55091, 55378}
X(63193) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 40967}, {223, 442}, {478, 2294}, {36830, 61233}, {40589, 40937}, {40590, 21675}, {40592, 6734}, {40593, 1234}, {40617, 23752}
X(63193) = X(i)-cross conjugate of X(j) for these {i, j}: {3676, 1414}
X(63193) = pole of line {14547, 40937} with respect to the Stammler hyperbola
X(63193) = pole of line {6734, 40967} with respect to the Wallace hyperbola
X(63193) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(27), X(1444)}}, {{A, B, C, X(56), X(54339)}}, {{A, B, C, X(57), X(77)}}, {{A, B, C, X(58), X(270)}}, {{A, B, C, X(81), X(86)}}, {{A, B, C, X(82), X(56003)}}, {{A, B, C, X(272), X(2185)}}, {{A, B, C, X(279), X(1442)}}, {{A, B, C, X(1459), X(2260)}}, {{A, B, C, X(2349), X(8044)}}, {{A, B, C, X(2982), X(60041)}}, {{A, B, C, X(3361), X(37594)}}, {{A, B, C, X(4565), X(59151)}}, {{A, B, C, X(15474), X(57883)}}
X(63193) = barycentric product X(i)*X(j) for these (i, j): {1014, 40435}, {1019, 54952}, {1175, 85}, {1412, 40422}, {1414, 56320}, {1434, 943}, {1444, 40573}, {2185, 52560}, {2259, 57785}, {2982, 86}, {15439, 7199}, {18155, 32651}, {36048, 4560}, {40395, 77}, {40412, 57}, {40570, 7182}, {60041, 81}, {60188, 757}
X(63193) = barycentric quotient X(i)/X(j) for these (i, j): {6, 40967}, {34, 1865}, {56, 2294}, {57, 442}, {58, 40937}, {65, 21675}, {81, 6734}, {85, 1234}, {109, 61161}, {110, 61233}, {222, 56839}, {269, 55010}, {593, 54356}, {603, 18591}, {604, 40952}, {849, 46882}, {943, 2321}, {1014, 5249}, {1175, 9}, {1333, 14547}, {1396, 1838}, {1397, 40978}, {1408, 2260}, {1412, 942}, {1415, 61169}, {1474, 1859}, {1794, 3694}, {2150, 8021}, {2185, 51978}, {2259, 210}, {2982, 10}, {3669, 23752}, {4565, 61220}, {7099, 39791}, {15439, 1018}, {16947, 40956}, {32651, 4551}, {36048, 4552}, {40152, 59163}, {40214, 31938}, {40395, 318}, {40412, 312}, {40422, 30713}, {40435, 3701}, {40570, 33}, {40573, 41013}, {52373, 41393}, {52560, 6358}, {54952, 4033}, {56320, 4086}, {60041, 321}, {60188, 1089}


X(63194) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(57), X(1), X(81))

Barycentrics    a*(a+b)*(a+b-c)*(a+c)*(a-b+c)*(a^2+b^2-b*c-2*c^2-a*(2*b+c))*(a^2-2*b^2-b*c+c^2-a*(b+2*c)) : :

X(63194) lies on these lines: {21, 65}, {34, 270}, {57, 2185}, {81, 1427}, {85, 52379}, {226, 333}, {643, 5173}, {3219, 56204}, {3339, 17512}, {3340, 56946}, {5228, 40432}, {21454, 52393}, {40442, 54339}

X(63194) = isogonal conjugate of X(21811)
X(63194) = trilinear pole of line {3737, 4017}
X(63194) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 21811}, {6, 21677}, {9, 2650}, {10, 21748}, {37, 2646}, {41, 18698}, {42, 5745}, {55, 17056}, {71, 40950}, {101, 62566}, {219, 407}, {284, 21674}, {661, 53388}, {663, 22003}, {1334, 3664}, {1400, 6737}, {1826, 22361}, {2194, 42708}, {3694, 40985}, {3700, 53324}, {3709, 17136}, {3939, 23755}, {5549, 30604}
X(63194) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 21811}, {9, 21677}, {223, 17056}, {478, 2650}, {1015, 62566}, {1214, 42708}, {3160, 18698}, {36830, 53388}, {40582, 6737}, {40589, 2646}, {40590, 21674}, {40592, 5745}, {40617, 23755}
X(63194) = X(i)-cross conjugate of X(j) for these {i, j}: {513, 1414}
X(63194) = pole of line {2646, 21748} with respect to the Stammler hyperbola
X(63194) = pole of line {5745, 21811} with respect to the Wallace hyperbola
X(63194) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(21), X(27)}}, {{A, B, C, X(34), X(57)}}, {{A, B, C, X(69), X(26751)}}, {{A, B, C, X(89), X(189)}}, {{A, B, C, X(171), X(5228)}}, {{A, B, C, X(286), X(757)}}, {{A, B, C, X(553), X(41542)}}, {{A, B, C, X(1170), X(40420)}}, {{A, B, C, X(1171), X(52378)}}, {{A, B, C, X(1414), X(17933)}}, {{A, B, C, X(2982), X(4564)}}, {{A, B, C, X(3062), X(4416)}}, {{A, B, C, X(3219), X(21454)}}, {{A, B, C, X(4573), X(31615)}}, {{A, B, C, X(5325), X(60955)}}, {{A, B, C, X(8261), X(55090)}}, {{A, B, C, X(17484), X(26748)}}, {{A, B, C, X(18163), X(18164)}}, {{A, B, C, X(18165), X(53083)}}, {{A, B, C, X(27475), X(39947)}}, {{A, B, C, X(35049), X(60139)}}, {{A, B, C, X(37543), X(54339)}}, {{A, B, C, X(40412), X(40438)}}, {{A, B, C, X(40430), X(60235)}}, {{A, B, C, X(41610), X(41629)}}, {{A, B, C, X(42302), X(56020)}}, {{A, B, C, X(54697), X(56320)}}, {{A, B, C, X(55965), X(60167)}}
X(63194) = barycentric product X(i)*X(j) for these (i, j): {34, 57833}, {57, 60235}, {273, 57668}, {286, 40442}, {1414, 56321}, {17097, 86}, {40430, 7}
X(63194) = barycentric quotient X(i)/X(j) for these (i, j): {1, 21677}, {6, 21811}, {7, 18698}, {21, 6737}, {28, 40950}, {34, 407}, {56, 2650}, {57, 17056}, {58, 2646}, {65, 21674}, {81, 5745}, {110, 53388}, {226, 42708}, {513, 62566}, {651, 22003}, {1014, 3664}, {1333, 21748}, {1414, 17136}, {1437, 22361}, {3669, 23755}, {17097, 10}, {40430, 8}, {40442, 72}, {56321, 4086}, {57668, 78}, {57833, 3718}, {60235, 312}


X(63195) = PERSPECTOR OF THESE TRIANGLES: ABC AND PTC(X(6), X(20), X(69))

Barycentrics    (a^2-2*a*b+b^2+c^2)*(a^2+2*a*b+b^2+c^2)*(a^2+b^2-2*a*c+c^2)*(a^2+b^2+2*a*c+c^2) : :

X(63195) lies on these lines: {2, 40831}, {6, 3926}, {25, 69}, {37, 30701}, {42, 52396}, {76, 393}, {111, 3620}, {141, 8770}, {193, 251}, {263, 59257}, {599, 36616}, {1231, 1880}, {1383, 20080}, {1400, 7131}, {1427, 30705}, {1975, 18935}, {1976, 6394}, {1989, 46951}, {2165, 32828}, {2339, 30676}, {2963, 32838}, {3108, 51171}, {3618, 39951}, {3619, 21448}, {3785, 37485}, {5032, 34572}, {6338, 40323}, {7763, 46952}, {7799, 52188}, {8794, 57790}, {8882, 34386}, {10008, 60775}, {30479, 56853}, {31400, 39968}, {32815, 36851}, {32830, 52223}, {32831, 52224}, {32833, 52187}, {32834, 51316}, {32836, 34288}, {32885, 52154}, {34403, 41489}, {39955, 51170}, {40144, 41614}, {40405, 53021}, {42407, 53033}, {48070, 50541}

X(63195) = isogonal conjugate of X(1184)
X(63195) = isotomic conjugate of X(5286)
X(63195) = trilinear pole of line {3265, 512}
X(63195) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 1184}, {19, 19459}, {31, 5286}, {612, 16502}, {614, 54416}, {1010, 21750}, {1460, 2082}, {1633, 2484}, {1910, 51412}, {1973, 7386}, {2285, 7083}, {2286, 40987}, {2303, 40934}, {2474, 4599}, {3732, 8646}, {4206, 23620}, {4320, 30706}, {16583, 44119}
X(63195) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 5286}, {3, 1184}, {6, 19459}, {3124, 2474}, {6337, 7386}, {11672, 51412}
X(63195) = pole of line {1184, 19459} with respect to the Stammler hyperbola
X(63195) = pole of line {1184, 5286} with respect to the Wallace hyperbola
X(63195) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6)}}, {{A, B, C, X(3), X(37491)}}, {{A, B, C, X(4), X(14001)}}, {{A, B, C, X(66), X(2996)}}, {{A, B, C, X(67), X(43681)}}, {{A, B, C, X(68), X(13562)}}, {{A, B, C, X(69), X(76)}}, {{A, B, C, X(74), X(54558)}}, {{A, B, C, X(95), X(60212)}}, {{A, B, C, X(141), X(193)}}, {{A, B, C, X(249), X(56072)}}, {{A, B, C, X(253), X(1502)}}, {{A, B, C, X(264), X(40824)}}, {{A, B, C, X(276), X(55474)}}, {{A, B, C, X(287), X(14826)}}, {{A, B, C, X(511), X(19126)}}, {{A, B, C, X(523), X(56334)}}, {{A, B, C, X(524), X(3620)}}, {{A, B, C, X(599), X(20080)}}, {{A, B, C, X(801), X(42287)}}, {{A, B, C, X(1176), X(56004)}}, {{A, B, C, X(1916), X(8801)}}, {{A, B, C, X(1992), X(3619)}}, {{A, B, C, X(3224), X(46712)}}, {{A, B, C, X(3424), X(40416)}}, {{A, B, C, X(3426), X(54779)}}, {{A, B, C, X(3589), X(51171)}}, {{A, B, C, X(3613), X(60260)}}, {{A, B, C, X(3618), X(43527)}}, {{A, B, C, X(3631), X(11160)}}, {{A, B, C, X(3763), X(51170)}}, {{A, B, C, X(3767), X(53033)}}, {{A, B, C, X(3934), X(31400)}}, {{A, B, C, X(4590), X(9473)}}, {{A, B, C, X(5032), X(34573)}}, {{A, B, C, X(5286), X(7795)}}, {{A, B, C, X(5395), X(25322)}}, {{A, B, C, X(5485), X(16774)}}, {{A, B, C, X(5490), X(24243)}}, {{A, B, C, X(5491), X(24244)}}, {{A, B, C, X(6391), X(14376)}}, {{A, B, C, X(6393), X(40680)}}, {{A, B, C, X(7131), X(30676)}}, {{A, B, C, X(7763), X(32828)}}, {{A, B, C, X(7769), X(32838)}}, {{A, B, C, X(7799), X(46951)}}, {{A, B, C, X(8024), X(39129)}}, {{A, B, C, X(8781), X(8797)}}, {{A, B, C, X(9229), X(60232)}}, {{A, B, C, X(9230), X(18906)}}, {{A, B, C, X(9307), X(60213)}}, {{A, B, C, X(10008), X(40697)}}, {{A, B, C, X(11008), X(21356)}}, {{A, B, C, X(11382), X(40691)}}, {{A, B, C, X(13481), X(57857)}}, {{A, B, C, X(13622), X(60639)}}, {{A, B, C, X(15321), X(38259)}}, {{A, B, C, X(17040), X(18840)}}, {{A, B, C, X(22336), X(60145)}}, {{A, B, C, X(28419), X(41614)}}, {{A, B, C, X(30541), X(41435)}}, {{A, B, C, X(31618), X(59759)}}, {{A, B, C, X(32829), X(32832)}}, {{A, B, C, X(32831), X(32834)}}, {{A, B, C, X(32833), X(32836)}}, {{A, B, C, X(32871), X(32897)}}, {{A, B, C, X(32879), X(32882)}}, {{A, B, C, X(34285), X(54122)}}, {{A, B, C, X(34436), X(56362)}}, {{A, B, C, X(34817), X(56339)}}, {{A, B, C, X(36889), X(60202)}}, {{A, B, C, X(36948), X(60101)}}, {{A, B, C, X(38005), X(60647)}}, {{A, B, C, X(40826), X(60262)}}, {{A, B, C, X(42313), X(60221)}}, {{A, B, C, X(45838), X(56360)}}, {{A, B, C, X(45857), X(60099)}}, {{A, B, C, X(52583), X(57388)}}, {{A, B, C, X(57408), X(60215)}}
X(63195) = barycentric product X(i)*X(j) for these (i, j): {30479, 8817}, {37215, 48070}, {40403, 60197}, {40831, 6}, {56179, 57923}, {56328, 57925}
X(63195) = barycentric quotient X(i)/X(j) for these (i, j): {2, 5286}, {3, 19459}, {6, 1184}, {69, 7386}, {511, 51412}, {1036, 7083}, {1037, 1460}, {1039, 40987}, {1245, 40934}, {1310, 1633}, {2221, 16502}, {2281, 21750}, {2339, 2082}, {3005, 2474}, {3618, 40179}, {7123, 54416}, {7131, 2285}, {8817, 388}, {30479, 497}, {30701, 2345}, {30705, 7365}, {37215, 3732}, {37485, 40125}, {40403, 2303}, {40831, 76}, {48070, 6590}, {56179, 612}, {56219, 16583}, {56328, 614}, {56359, 4320}, {57923, 3673}, {57925, 4385}, {60197, 53510}


X(63196) = ISOGONAL CONJUGATE OF X(54524)

Barycentrics    a^2*(-4*a^2 + 5*b^2 + 5*c^2 + 4*Sqrt[3]*S) : :
X(63196) = 3 X[15] - X[10645]

X(63196) lies on these lines: {3, 6}, {115, 42912}, {303, 31173}, {531, 23302}, {1506, 42925}, {3055, 6109}, {3589, 52022}, {3849, 62984}, {5472, 42942}, {6671, 53469}, {7603, 10654}, {7684, 42101}, {9113, 43021}, {11488, 18424}, {11614, 42092}, {14138, 43197}, {14537, 42511}, {16644, 39601}, {16962, 39563}, {20428, 42114}, {23303, 45879}, {33518, 42143}, {36993, 42134}, {39565, 42152}, {39590, 42147}, {42102, 44666}, {42111, 59403}, {42117, 43457}, {42133, 59397}, {43029, 50855}, {43619, 63032}

X(63196) = isogonal conjugate of X(54524)
X(63196) = Schoutte-circle-inverse of X(21401)
X(63196) = X(1)-isoconjugate of X(54524)
X(63196) = barycentric quotient X(6)/X(54524)
X(63196) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 42116, 8588}, {15, 16, 21401}


X(63197) = ISOGONAL CONJUGATE OF X(54525)

Barycentrics    a^2*(-4*a^2 + 5*b^2 + 5*c^2 - 4*Sqrt[3]*S) : :
X(63197) = 3 X[16] - X[10646]

X(63197) lies on these lines: {3, 6}, {115, 42913}, {302, 31173}, {530, 23303}, {1506, 42924}, {3055, 6108}, {3589, 52021}, {3849, 62983}, {5471, 42943}, {6672, 53458}, {7603, 10653}, {7685, 42102}, {9112, 43020}, {11489, 18424}, {11614, 42089}, {14139, 43198}, {14537, 42510}, {16645, 39601}, {16963, 39563}, {20429, 42111}, {23302, 45880}, {33517, 42146}, {36995, 42133}, {39565, 42149}, {39590, 42148}, {42101, 44667}, {42114, 59404}, {42118, 43457}, {42134, 59398}, {43028, 50858}, {43619, 63033}

X(63197) = isogonal conjugate of X(54525)
X(63197) = Schoutte-circle-inverse of X(21402)
X(63197) = X(1)-isoconjugate of X(54525)
X(63197) = barycentric quotient X(6)/X(54525)
X(63197) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 42115, 8588}, {15, 16, 21402}


X(63198) = ISOGONAL CONJUGATE OF X(54617)

Barycentrics    a^2*(-a^2 + 2*b^2 + 2*c^2 - Sqrt[3]*S) : :

X(63198) lies on these lines: {3, 6}, {13, 31489}, {14, 44526}, {18, 44518}, {30, 61331}, {111, 11131}, {115, 5463}, {202, 31477}, {302, 7841}, {395, 2549}, {397, 31401}, {1506, 5340}, {2548, 42148}, {3054, 42089}, {3055, 18582}, {3767, 16773}, {3815, 10653}, {5054, 62198}, {5077, 6775}, {5254, 42149}, {5318, 31415}, {5321, 43619}, {5335, 37464}, {5339, 7756}, {5471, 42154}, {5475, 42155}, {6772, 52021}, {6781, 42625}, {7737, 42943}, {7745, 42151}, {7746, 43239}, {7747, 43193}, {7748, 42153}, {7749, 42491}, {7795, 59542}, {7833, 62983}, {7887, 62601}, {9113, 36967}, {9300, 42510}, {10097, 57122}, {11304, 11489}, {11306, 23303}, {11648, 49906}, {11742, 42099}, {12155, 42849}, {13192, 38431}, {15048, 42913}, {16242, 37637}, {16808, 18584}, {16964, 44519}, {18424, 42095}, {18581, 53419}, {31406, 42924}, {31451, 54437}, {31455, 42156}, {31492, 42990}, {35931, 37641}, {35955, 37785}, {42086, 53418}, {42088, 43618}, {42094, 43457}, {42121, 43291}, {42125, 43452}, {49901, 49948}

X(63198) = isogonal conjugate of X(54617)
X(63198) = X(1)-isoconjugate of X(54617)
X(63198) = barycentric quotient X(6)/X(54617)
X(63198) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5210, 41407}, {6, 11481, 187}, {6, 19780, 21309}, {6, 53095, 15}, {16, 14538, 11481}, {5024, 11486, 6}, {10646, 41407, 5210}, {42115, 55639, 10646}


X(63199) = ISOGONAL CONJUGATE OF X(54618)

Barycentrics    a^2*(-a^2 + 2*b^2 + 2*c^2 + Sqrt[3]*S) : :

X(63199) lies on these lines: {3, 6}, {13, 44526}, {14, 31489}, {17, 44518}, {30, 61332}, {111, 11130}, {115, 5464}, {203, 31477}, {303, 7841}, {396, 2549}, {398, 31401}, {599, 36775}, {1506, 5339}, {2307, 31448}, {2548, 42147}, {3054, 42092}, {3055, 18581}, {3767, 16772}, {3815, 10654}, {5054, 62197}, {5077, 6772}, {5254, 42152}, {5318, 43619}, {5321, 31415}, {5334, 37463}, {5340, 7756}, {5472, 42155}, {5475, 42154}, {6775, 52022}, {6781, 42626}, {7737, 42942}, {7745, 42150}, {7746, 43238}, {7747, 43194}, {7748, 42156}, {7749, 42490}, {7795, 59541}, {7833, 62984}, {7887, 62600}, {9112, 36968}, {9300, 42511}, {10097, 57123}, {11303, 11488}, {11305, 23302}, {11648, 49905}, {11742, 42100}, {12154, 42849}, {13192, 38432}, {15048, 42912}, {16241, 37637}, {16809, 18584}, {16965, 44519}, {18424, 42098}, {18582, 53419}, {23259, 41018}, {31406, 42925}, {31451, 54438}, {31455, 42153}, {31492, 42991}, {35932, 37640}, {35955, 37786}, {42085, 53418}, {42087, 43618}, {42093, 43457}, {42124, 43291}, {42128, 43451}, {49902, 49947}

X(63199) = isogonal conjugate of X(54618)
X(63199) = X(1)-isoconjugate of X(54618)
X(63199) = barycentric quotient X(6)/X(54618)
X(63199) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 5210, 41406}, {6, 11480, 187}, {6, 19781, 21309}, {6, 53095, 16}, {15, 14539, 11480}, {5024, 11485, 6}, {10645, 41406, 5210}, {42116, 55639, 10645}


X(63200) = ISOGONAL CONJUGATE OF X(62933)

Barycentrics    a^2*(-a^2 + 5*b^2 + 5*c^2 - 2*Sqrt[3]*S) : :

X(63200) lies on these lines: {2, 22573}, {3, 6}, {13, 3815}, {14, 2549}, {17, 31401}, {18, 5254}, {111, 61632}, {115, 37835}, {202, 2276}, {230, 16242}, {298, 7831}, {302, 7790}, {395, 5463}, {397, 31406}, {597, 9885}, {1250, 16784}, {2275, 7006}, {2548, 16965}, {3054, 33416}, {3055, 16966}, {3200, 9604}, {3206, 9603}, {3411, 9607}, {3412, 31450}, {3457, 39389}, {5286, 42149}, {5305, 16773}, {5309, 41944}, {5318, 53466}, {5355, 62199}, {5471, 41108}, {5475, 36969}, {5858, 40344}, {6114, 61634}, {6770, 47864}, {6775, 50855}, {7005, 31448}, {7736, 10653}, {7737, 36968}, {7738, 40694}, {7739, 16963}, {7745, 42158}, {7746, 42937}, {7747, 43633}, {7748, 42814}, {7756, 42432}, {7819, 59542}, {7828, 62601}, {7835, 30472}, {9113, 10654}, {9300, 41100}, {9606, 42990}, {11648, 41122}, {12155, 63101}, {13083, 37640}, {13881, 42489}, {14537, 46334}, {15484, 42155}, {16785, 19373}, {16808, 31415}, {16809, 53419}, {16967, 43620}, {18424, 42918}, {18581, 36252}, {18582, 62993}, {18584, 42919}, {18907, 42943}, {19106, 53418}, {19107, 43619}, {21843, 61317}, {23303, 43291}, {31400, 40693}, {31404, 42162}, {31455, 42488}, {31461, 54437}, {31467, 42156}, {31489, 37832}, {36970, 44526}, {37785, 52691}, {41621, 51484}, {42089, 62992}, {42100, 43618}, {42510, 63024}, {43484, 62233}, {43632, 44519}, {61332, 61719}

X(63200) = isogonal conjugate of X(62933)
X(63200) = Brocard-circle-inverse of X(41407)
X(63200) = X(1)-isoconjugate of X(62933)
X(63200) = crossdifference of every pair of points on line {523, 13305}
X(63200) = barycentric quotient X(6)/X(62933)
X(63200) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6, 41407}, {6, 16, 41406}, {6, 574, 15}, {6, 9600, 51728}, {6, 10646, 41409}, {6, 11481, 1384}, {6, 19780, 5008}, {6, 42115, 41408}, {16, 3106, 15}, {2549, 61331, 14}, {9735, 11485, 15}, {42115, 55653, 10646}


X(63201) = ISOGONAL CONJUGATE OF X(62934)

Barycentrics    a^2*(-a^2 + 5*b^2 + 5*c^2 + 2*Sqrt[3]*S) : :

X(63201) lies on these lines: {2, 22574}, {3, 6}, {13, 2549}, {14, 3815}, {17, 5254}, {18, 31401}, {111, 61633}, {115, 37832}, {203, 2276}, {230, 16241}, {299, 7831}, {303, 7790}, {396, 5464}, {398, 31406}, {597, 9886}, {2275, 7005}, {2548, 16964}, {3054, 33417}, {3055, 16967}, {3201, 9604}, {3205, 9603}, {3411, 31450}, {3412, 9607}, {3458, 39389}, {5286, 42152}, {5305, 16772}, {5309, 41943}, {5321, 53455}, {5355, 62200}, {5472, 41107}, {5475, 36970}, {5859, 40344}, {6115, 36776}, {6772, 50858}, {6773, 47863}, {7006, 31448}, {7051, 16785}, {7736, 10654}, {7737, 36967}, {7738, 40693}, {7739, 16962}, {7745, 42157}, {7746, 42936}, {7747, 43632}, {7748, 42813}, {7756, 42431}, {7819, 59541}, {7828, 62600}, {7835, 30471}, {9112, 10653}, {9300, 41101}, {9606, 42991}, {10638, 16784}, {11648, 41121}, {12154, 63101}, {13084, 37641}, {13881, 42488}, {14537, 46335}, {15484, 42154}, {16808, 53419}, {16809, 31415}, {16966, 43620}, {18424, 42919}, {18581, 62993}, {18582, 36251}, {18584, 42918}, {18907, 42942}, {19106, 43619}, {19107, 53418}, {21843, 61318}, {23302, 43291}, {31400, 40694}, {31404, 42159}, {31455, 424n the Brocard Axis

X(63201) = Brocard-circle-inverse of X(41406)
X(63201) = X(1)-isoconjugate of X(62934)
X(63201) = crossdifference of every pair of points on line {523, 13304}
X(63201) = barycentric quotient X(6)/X(62934)
X(63201) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6, 41406}, {6, 15, 41407}, {6, 574, 16}, {6, 10645, 41408}, {6, 11480, 1384}, {6, 19781, 5008}, {6, 42116, 41409}, {15, 3107, 16}, {2549, 61332, 13}, {9736, 11486, 16}, {42116, 55653, 10645}


X(63202) = TRILINEAR UNARY(6) OF (5)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)^2*(a - b + c)^2*(b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 - a*c + c^2) : :

X(63202) lies on these lines: {1, 2597}, {655, 24029}, {1020, 7178}, {1618, 2222}, {2594, 62766}

X(63202) = isogonal conjugate of X(62746)
X(63202) = X(i)-cross conjugate of X(j) for these (i,j): {2081, 1}, {2624, 2594}
X(63202) = X(i)-isoconjugate of X(j) for these (i,j): {1, 62746}, {476, 35128}, {654, 3615}, {1021, 56844}, {52393, 53285}
X(63202) = X(3)-Dao conjugate of X(62746)
X(63202) = cevapoint of X(i) and X(j) for these (i,j): {2290, 2605}, {2594, 2624}
X(63202) = crosssum of X(654) and X(2600)
X(63202) = trilinear pole of line {2594, 2599}
X(63202) = barycentric product X(i)*X(j) for these {i,j}: {655, 16577}, {1020, 41226}, {2222, 40999}, {2594, 35174}, {2624, 57568}, {4566, 56422}, {21741, 46405}, {23592, 32679}
X(63202) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 62746}, {1825, 44428}, {2222, 3615}, {2594, 3738}, {2599, 6369}, {2624, 35128}, {16577, 3904}, {20982, 46384}, {21741, 654}, {23592, 32680}, {53321, 56844}, {56422, 7253}


X(63203) = TRILINEAR UNARY(6) OF X(7)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a*b - b^2 + a*c + 2*b*c - c^2) : :

X(63203) lies on these lines: {1, 1362}, {7, 17761}, {9, 17044}, {36, 58320}, {40, 2124}, {57, 1358}, {59, 1308}, {100, 58103}, {101, 651}, {109, 1292}, {163, 1019}, {169, 7177}, {223, 21363}, {226, 54497}, {279, 4253}, {348, 16552}, {514, 4566}, {517, 43064}, {519, 6168}, {572, 34028}, {658, 3732}, {664, 1018}, {672, 1323}, {738, 16572}, {883, 4568}, {905, 61224}, {999, 6180}, {1387, 50908}, {1416, 16479}, {1419, 3576}, {1423, 13462}, {1475, 10481}, {1565, 39063}, {1759, 7183}, {1764, 18623}, {2170, 59813}, {2272, 2391}, {2283, 4551}, {2293, 14519}, {2310, 14760}, {2809, 53547}, {3160, 3730}, {3333, 15251}, {3669, 4559}, {4635, 34085}, {5179, 51364}, {6282, 34488}, {6516, 35342}, {6649, 61235}, {8012, 55327}, {9312, 16549}, {9436, 45751}, {11728, 54370}, {14074, 53622}, {15730, 17439}, {15937, 24929}, {17095, 46196}, {17474, 58816}, {18164, 52023}, {20367, 43035}, {21375, 47848}, {28391, 37609}, {34492, 37569}, {34855, 43065}, {35312, 35341}, {36059, 61225}, {36118, 61236}, {43062, 49997}, {59457, 60065}

X(63203) = isogonal conjugate of X(62747)
X(63203) = X(i)-Ceva conjugate of X(j) for these (i,j): {59, 57}, {651, 35326}, {658, 61241}, {1308, 23890}, {35312, 35338}, {59457, 1}
X(63203) = X(i)-cross conjugate of X(j) for these (i,j): {10581, 1}, {21104, 18164}, {21127, 354}, {35326, 35338}, {48151, 10481}
X(63203) = X(i)-isoconjugate of X(j) for these (i,j): {1, 62747}, {6, 62725}, {9, 58322}, {55, 56322}, {513, 6605}, {514, 10482}, {522, 1174}, {649, 56118}, {650, 2346}, {657, 21453}, {663, 32008}, {693, 59141}, {1146, 53243}, {1170, 3900}, {1252, 56284}, {3063, 57815}, {3064, 47487}, {3737, 56255}, {4105, 10509}, {4130, 61373}, {6606, 14936}, {7252, 56157}, {8641, 31618}, {10581, 59475}, {21789, 60229}, {23351, 62728}, {42311, 57180}, {45755, 59193}
X(63203) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 62747}, {9, 62725}, {142, 3239}, {223, 56322}, {478, 58322}, {661, 56284}, {1111, 34387}, {1212, 4391}, {3119, 4081}, {5375, 56118}, {10001, 57815}, {39026, 6605}, {40606, X(63203) = 522}
X(63203) = cevapoint of X(i) and X(j) for these (i,j): {354, 21127}, {513, 1202}, {657, 3748}, {1475, 48151}, {21104, 52023}
X(63203) = crosspoint of X(i) and X(j) for these (i,j): {100, 42301}, {651, 658}, {35312, 61241}
X(63203) = crosssum of X(i) and X(j) for these (i,j): {11, 56284}, {650, 657}
X(63203) = trilinear pole of line {354, 1418}
X(63203) = crossdifference of every pair of points on line {2310, 24012}
X(63203) = X(14760)-line conjugate of X(2310)
X(63203) = barycentric product X(i)*X(j) for these {i,j}: {1, 35312}, {7, 35338}, {9, 61241}, {85, 35326}, {100, 10481}, {101, 59181}, {109, 20880}, {142, 651}, {190, 1418}, {279, 35341}, {354, 664}, {658, 1212}, {662, 52023}, {668, 61376}, {934, 4847}, {1020, 16713}, {1025, 53241}, {1229, 1461}, {1233, 1415}, {1252, 23599}, {1275, 21127}, {1331, 53237}, {1414, 3925}, {1434, 35310}, {1475, 4554}, {2293, 4569}, {3059, 4626}, {3939, 53242}, {4551, 17169}, {4552, 18164}, {4559, 16708}, {4564, 21104}, {4566, 17194}, {4573, 21808}, {4616, 21039}, {4617, 51972}, {4625, 52020}, {4635, 21795}, {4998, 48151}, {6362, 7045}, {6607, 24011}, {6608, 59457}, {8012, 36838}, {18026, 22053}, {20229, 46406}, {23703, 53240}, {23890, 62731}, {36146, 51384}, {43915, 53649}
X(63203) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 62725}, {6, 62747}, {56, 58322}, {57, 56322}, {100, 56118}, {101, 6605}, {109, 2346}, {142, 4391}, {244, 56284}, {354, 522}, {651, 32008}, {658, 31618}, {664, 57815}, {692, 10482}, {934, 21453}, {1020, 60229}, {1212, 3239}, {1229, 52622}, {1415, 1174}, {1418, 514}, {1461, 1170}, {1475, 650}, {2293, 3900}, {2488, 2310}, {3059, 4163}, {3925, 4086}, {4551, 56157}, {4552, 56127}, {4559, 56255}, {4617, 10509}, {4626, 42311}, {4847, 4397}, {6362, 24026}, {6607, 24010}, {6608, 4081}, {6614, 61373}, {7045, 6606}, {8012, 4130}, {10481, 693}, {10581, 3119}, {15185, 44448}, {17169, 18155}, {17194, 7253}, {18164, 4560}, {20229, 657}, {20880, 35519}, {21104, 4858}, {21127, 1146}, {21795, 4171}, {21808, 3700}, {22053, 521}, {22079, 57108}, {23599, 23989}, {23890, 62728}, {24027, 53243}, {32739, 59141}, {35310, 2321}, {35312, 75}, {35326, 9}, {35335, 3703}, {35338, 8}, {35341, 346}, {36059, 47487}, {40983, 18344}, {43915, 4151}, {48151, 11}, {51424, 14304}, {51463, 4768}, {52020, 4041}, {52023, 1577}, {53237, 46107}, {53238, 57215}, {53242, 52621}, {59181, 3261}, {61034, 4147}, {61241, 85}, {61376, 513}
X(63203) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {101, 934, 23890}, {651, 934, 101}, {651, 1020, 21362}, {664, 1025, 1018}, {3669, 4559, 62754}


X(63204) = TRILINEAR UNARY(6) OF X(11)

Barycentrics    a*(a - b)*(a - c)*(a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + 2*a*b^2*c - b^3*c - a^2*c^2 + 2*a*b*c^2 - a*c^3 - b*c^3 + c^4) : :

X(63204) lies on these lines: {1, 52303}, {40, 29374}, {655, 24029}, {2222, 2742}, {21363, 52212}

X(63204) = isogonal conjugate of X(62750)
X(63204) = X(57645)-Ceva conjugate of X(4551)
X(63204) = X(i)-isoconjugate of X(j) for these (i,j): {1, 62750}, {654, 40450}
X(63204) = X(3)-Dao conjugate of X(62750)
X(63204) = crosssum of X(654) and X(46384)
X(63204) = barycentric product X(i)*X(j) for these {i,j}: {655, 16578}, {21742, 46405}, {51562, 59813}
X(63204) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 62750}, {1830, 44428}, {2222, 40450}, {16578, 3904}, {21742, 654}, {59813, 4453}


X(63205) = TRILINEAR UNARY(8) OF X(11)

Barycentrics    a^2*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + 2*a*b^2*c - b^3*c - a^2*c^2 + 2*a*b*c^2 - a*c^3 - b*c^3 + c^4)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c - a^3*b*c + 4*a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^3*b*c + 2*a^2*b^2*c - 2*a*b^3*c + b^4*c + 2*a^3*c^2 - 4*a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 + a*b*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :

X(63205) lies on this line:: {1, 655}

X(63205) = isogonal conjugate of X(62762)
X(63205) = X(i)-isoconjugate of X(j) for these (i,j): {1, 62762}, {40450, 45885}
X(63205) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 62762}, {21742, 45885}


X(63206) = 29th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(4*a^3+3*(b+c)*a^2-4*(b^2+b*c+c^2)*a-3*(b^2-c^2)*(b-c)) : :
X(63206) = 3*X(1)-7*X(7280) = 5*X(1)-7*X(21842) = 8*X(1)-7*X(33176) = X(1)-7*X(37572) = 4*X(1)-7*X(37605)

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63206) lies on these lines: {1, 3}, {11, 5493}, {21, 3922}, {100, 3962}, {191, 3983}, {210, 56288}, {376, 41687}, {516, 17606}, {759, 58124}, {896, 21896}, {946, 7294}, {1046, 21870}, {1058, 50809}, {1376, 63144}, {1770, 61524}, {1836, 10588}, {1837, 9778}, {2183, 15492}, {3474, 5261}, {3522, 37740}, {3534, 37711}, {3585, 50821}, {3647, 4002}, {3649, 52638}, {3654, 4299}, {3671, 4995}, {3698, 4640}, {3841, 17530}, {3893, 63136}, {4189, 10107}, {4295, 61648}, {4333, 5790}, {4338, 31479}, {4679, 6933}, {4731, 31445}, {4745, 34606}, {4848, 15338}, {5433, 28194}, {5445, 22793}, {5698, 6871}, {6154, 24391}, {6361, 10591}, {6684, 17605}, {7288, 34632}, {7354, 43174}, {7741, 28198}, {9352, 58679}, {9588, 10895}, {10950, 12512}, {11362, 15326}, {11376, 20070}, {11520, 61153}, {11681, 28534}, {12514, 61686}, {12688, 40256}, {12701, 47743}, {15228, 18480}, {17636, 46684}, {17637, 41539}, {18395, 28146}, {18481, 36920}, {18514, 28202}, {19297, 21871}, {20049, 34711}, {20052, 63133}, {20067, 32537}, {23958, 58609}, {25440, 31165}, {31730, 40663}, {34707, 41709}, {37738, 50810}, {37828, 44447}, {43734, 62146}, {50038, 51090}, {54288, 57004}

X(63206) = reflection of X(33176) in X(37605)
X(63206) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (46, 37568, 354), (56, 63215, 40), (65, 63213, 35), (484, 3579, 65), (12702, 58887, 1319)


X(63207) = 30th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(7*a^2-4*(b+c)*a-3*(b-c)^2) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63207) lies on these lines: {1, 3}, {9, 30295}, {10, 57000}, {63, 46917}, {100, 3928}, {105, 58124}, {109, 36636}, {376, 5727}, {497, 50808}, {498, 31425}, {516, 10589}, {553, 5281}, {750, 25430}, {902, 5573}, {910, 16885}, {1376, 3929}, {1706, 4652}, {1770, 31423}, {1788, 12512}, {1836, 5326}, {2269, 41456}, {3052, 62695}, {3158, 3218}, {3474, 5219}, {3522, 4848}, {3577, 6950}, {3679, 15326}, {3828, 26040}, {3911, 5274}, {4031, 10578}, {4188, 15829}, {4292, 8164}, {4312, 5432}, {4323, 61791}, {4333, 5445}, {4421, 62823}, {4512, 8167}, {4640, 7308}, {4654, 5218}, {5177, 19877}, {5273, 37435}, {5284, 5437}, {5338, 54397}, {5433, 9589}, {5438, 56288}, {5493, 7288}, {5698, 20196}, {5837, 37267}, {6361, 50443}, {6684, 9579}, {6856, 51073}, {6859, 61265}, {6942, 7971}, {7319, 62152}, {7322, 56010}, {7354, 9588}, {7972, 50817}, {8666, 63138}, {9581, 31730}, {9613, 61524}, {9654, 31447}, {9965, 59584}, {10175, 51790}, {10178, 41539}, {10860, 46684}, {11041, 19708}, {11502, 41853}, {11682, 37307}, {12943, 19875}, {15731, 58108}, {16570, 56009}, {16814, 42316}, {17726, 31326}, {19878, 25522}, {21578, 63143}, {24392, 63145}, {25440, 54290}, {25734, 59599}, {26745, 60666}, {27003, 38316}, {27625, 28272}, {28150, 51792}, {30332, 51791}, {30827, 44447}, {31142, 59572}, {31145, 34716}, {33923, 37739}, {34930, 38692}, {37709, 43174}, {38200, 55868}, {51780, 62838}, {55922, 60944}, {58560, 61159}, {61157, 62815}

X(63207) = X(60957)-reciprocal conjugate of-X(75)
X(63207) = X(63211)-zayin conjugate of-X(1)
X(63207) = pole of the line {513, 58162} with respect to the (circumcircle, incircle)-inverter)
X(63207) = pole of the line {672, 7982} with respect to the Gheorghe circle
X(63207) = pole of the line {910, 7982} with respect to the Stevanovic circle
X(63207) = pole of the line {21, 45036} with respect to the Stammler hyperbola
X(63207) = barycentric product X(1)*X(60957)
X(63207) = trilinear product X(6)*X(60957)
X(63207) = trilinear quotient X(60957)/X(2)
X(63207) = X(37453)-of-excentral triangle, when ABC is acute
X(63207) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (36, 7962, 1420), (55, 53056, 57), (57, 63214, 55), (165, 1155, 57), (165, 53056, 55), (1155, 63212, 165), (35445, 44841, 55), (37572, 58887, 40)


X(63208) = 31st TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a+b-c)*(a-b+c)*(5*a-3*b-3*c) : :
X(63208) = 4*X(1)+X(41348)

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63208) lies on these lines: {1, 3}, {2, 6049}, {7, 25723}, {8, 31231}, {9, 1404}, {12, 25055}, {73, 16485}, {78, 37736}, {90, 56036}, {100, 3680}, {104, 7971}, {105, 58108}, {108, 28235}, {145, 3911}, {200, 11260}, {222, 1616}, {226, 3622}, {388, 551}, {496, 3655}, {499, 5881}, {515, 10591}, {519, 7288}, {553, 4323}, {603, 40091}, {604, 3247}, {614, 15839}, {738, 38459}, {936, 3921}, {944, 6969}, {956, 4533}, {997, 4015}, {1125, 3476}, {1149, 4322}, {1191, 2003}, {1210, 7967}, {1279, 1419}, {1317, 3632}, {1387, 9614}, {1394, 54319}, {1405, 1449}, {1421, 21147}, {1428, 16496}, {1447, 25716}, {1457, 56804}, {1458, 33633}, {1469, 16491}, {1476, 1621}, {1478, 9624}, {1479, 50811}, {1572, 9341}, {1698, 7294}, {1706, 4861}, {1708, 62832}, {1737, 61296}, {1745, 32486}, {1788, 3244}, {2136, 4855}, {2268, 38855}, {2270, 19297}, {2286, 16488}, {2320, 7091}, {2975, 3929}, {3086, 5727}, {3158, 36846}, {3160, 47444}, {3241, 4848}, {3243, 7677}, {3436, 34716}, {3445, 34039}, {3452, 24558}, {3485, 3636}, {3522, 4345}, {3577, 37518}, {3582, 37711}, {3585, 38021}, {3586, 11373}, {3600, 4654}, {3616, 5219}, {3623, 5435}, {3624, 5252}, {3633, 40663}, {3671, 51103}, {3679, 5433}, {3689, 11519}, {3869, 5083}, {3872, 5438}, {3889, 15556}, {3897, 5436}, {3928, 11682}, {3947, 51789}, {3973, 22147}, {4127, 8666}, {4134, 30144}, {4292, 10595}, {4293, 13464}, {4294, 51705}, {4297, 9580}, {4299, 31162}, {4305, 41864}, {4311, 5603}, {4321, 42819}, {4511, 6762}, {4551, 21214}, {4646, 26742}, {4652, 5330}, {4666, 51683}, {4678, 31188}, {4853, 46917}, {4857, 18961}, {4881, 63130}, {5259, 22759}, {5260, 7308}, {5289, 62824}, {5290, 15950}, {5298, 41687}, {5427, 16126}, {5434, 51105}, {5440, 12629}, {5554, 31190}, {5573, 32577}, {5587, 6981}, {5691, 11376}, {5731, 12053}, {5795, 20196}, {5886, 9613}, {5901, 9612}, {6261, 11715}, {6949, 15866}, {6973, 8227}, {7296, 9575}, {7354, 11522}, {7963, 16610}, {8236, 60992}, {8543, 38316}, {8572, 62695}, {8686, 58124}, {9336, 43039}, {9589, 15326}, {9623, 17614}, {9655, 51709}, {9943, 17622}, {10085, 12740}, {10179, 12709}, {10283, 57282}, {10529, 12625}, {10572, 37704}, {10573, 61291}, {11194, 12526}, {11237, 51110}, {11372, 30538}, {11374, 51700}, {11523, 54391}, {12047, 61275}, {12647, 31423}, {12735, 38760}, {12953, 34628}, {13607, 18391}, {14986, 37723}, {15015, 20586}, {15325, 37727}, {15368, 50419}, {15601, 53531}, {15808, 51782}, {15854, 17054}, {16475, 19369}, {16483, 34046}, {16486, 34040}, {16489, 34043}, {16676, 54377}, {16969, 52635}, {17606, 37712}, {17625, 58679}, {17728, 37734}, {18492, 23708}, {18990, 61276}, {19784, 56467}, {19836, 56469}, {19907, 24467}, {20076, 28609}, {21578, 41869}, {22837, 63137}, {27385, 36977}, {28236, 54361}, {29573, 43053}, {29585, 62774}, {29597, 41245}, {30148, 54292}, {30312, 51102}, {30332, 60993}, {31806, 46681}, {34753, 61283}, {36920, 39781}, {37710, 54447}, {37739, 50824}, {39542, 61277}, {41418, 55323}, {41539, 58609}, {41863, 62825}, {44635, 51842}, {44636, 51841}, {45219, 62875}, {51714, 54318}, {52563, 62705}, {58320, 60666}, {59414, 61016}, {61294, 61649}

X(63208) = cevapoint of X(21000) and X(38296)
X(63208) = crosssum of X(i) and X(j) for these {i, j}: {1, 11531}, {2170, 4162}
X(63208) = X(i)-beth conjugate of X(j) for these (i, j): (21, 7982), (3621, 3621)
X(63208) = X(19604)-Ceva conjugate of-X(57)
X(63208) = X(21000)-cross conjugate of-X(3973)
X(63208) = X(i)-Dao conjugate of X(j) for these (i, j): (9, 38255), (145, 44720), (223, 36606), (478, 36603), (3160, 40026)
X(63208) = X(i)-isoconjugate of X(j) for these {i, j}: {6, 38255}, {9, 36603}, {41, 40026}, {55, 36606}, {220, 36621}, {522, 8699}, {663, 58131}
X(63208) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 38255), (7, 40026), (56, 36603), (57, 36606), (269, 36621), (651, 58131), (1415, 8699), (2516, 522), (3621, 312), (3973, 8), (4072, 3701), (4962, 4391), (20942, 3596), (21000, 9), (22147, 78), (38296, 1), (58154, 650), (59589, 4086)
X(63208) = X(2516)-zayin conjugate of-X(650)
X(63208) = Cundy-Parry-Phi-transform of X(16200)
X(63208) = pole of the line {672, 5687} with respect to the Gheorghe circle
X(63208) = pole of the line {513, 29820} with respect to the incircle
X(63208) = pole of the line {910, 14974} with respect to the Stevanovic circle
X(63208) = pole of the line {226, 46871} with respect to the circumhyperbola dual of Yff parabola
X(63208) = pole of the line {513, 29820} with respect to the de Longchamps ellipse
X(63208) = pole of the line {3667, 11067} with respect to the excentral-hexyl ellipse
X(63208) = pole of the line {1, 50801} with respect to the Feuerbach circumhyperbola
X(63208) = pole of the line {7736, 50036} with respect to the Kiepert circumhyperbola
X(63208) = pole of the line {21, 5085} with respect to the Stammler hyperbola
X(63208) = pole of the line {314, 15589} with respect to the Steiner-Wallace hyperbola
X(63208) = barycentric product X(i)*X(j) for these {i, j}: {7, 3973}, {56, 20942}, {57, 3621}, {75, 38296}, {85, 21000}, {273, 22147}, {651, 4962}, {664, 2516}, {1014, 4072}, {1414, 59589}, {4554, 58154}
X(63208) = trilinear product X(i)*X(j) for these {i, j}: {2, 38296}, {7, 21000}, {56, 3621}, {57, 3973}, {109, 4962}, {278, 22147}, {604, 20942}, {651, 2516}, {664, 58154}, {1412, 4072}, {4565, 59589}
X(63208) = trilinear quotient X(i)/X(j) for these (i, j): (2, 38255), (7, 36606), (57, 36603), (85, 40026), (109, 8699), (279, 36621), (664, 58131), (2516, 650), (3621, 8), (3973, 9), (4072, 2321), (4962, 522), (20942, 312), (21000, 55), (22147, 219), (38296, 6), (58154, 663), (59589, 3700)
X(63208) = X(15750)-of-intouch triangle, when ABC is acute
X(63208) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 1420, 57), (1, 13462, 65), (1, 30389, 55), (1, 37618, 40), (3, 25405, 1), (56, 3340, 57), (942, 37624, 1), (999, 15178, 1), (1319, 1388, 1), (1420, 3340, 56), (1429, 59215, 57), (1617, 44841, 57), (2098, 37605, 165), (3304, 61630, 57), (3601, 34489, 57), (3660, 35445, 57), (5193, 7962, 57), (7280, 30323, 40), (10246, 24928, 1), (11518, 37583, 57), (20323, 34471, 1)


X(63209) = 32nd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^3-6*(b+c)*a^2-(b^2-14*b*c+c^2)*a+6*(b^2-c^2)*(b-c)) : :
X(63209) = 7*X(1)-5*X(46) = 6*X(1)-5*X(56) = 4*X(1)-5*X(2098) = 11*X(1)-10*X(24928) = 3*X(1)-5*X(30323) = 8*X(1)-5*X(37567) = 13*X(1)-10*X(37582) = 6*X(46)-7*X(56) = 4*X(46)-7*X(2098) = 3*X(46)-7*X(30323) = 8*X(46)-7*X(37567) = 2*X(56)-3*X(2098) = X(56)-2*X(30323) = 4*X(56)-3*X(37567)

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63209) lies on these lines: {1, 3}, {145, 17768}, {388, 50872}, {519, 12953}, {1000, 3649}, {1317, 6361}, {1329, 53620}, {1657, 7972}, {3241, 15338}, {3436, 31145}, {3680, 3962}, {3711, 10914}, {3715, 3878}, {3828, 31246}, {3885, 41711}, {4005, 11525}, {4294, 34631}, {4301, 10895}, {4669, 31141}, {4691, 21616}, {4816, 51792}, {5432, 5734}, {5433, 50810}, {5559, 9654}, {5657, 7294}, {5854, 9802}, {7741, 34718}, {8256, 46933}, {9614, 36920}, {10591, 12245}, {11238, 41687}, {12701, 28234}, {16675, 17451}, {17449, 38496}, {18514, 50798}, {20014, 38455}, {28194, 37738}, {36972, 58798}, {37707, 48661}, {37821, 61249}, {40663, 47743}, {54134, 61247}

X(63209) = reflection of X(i) in X(j) for these (i, j): (56, 30323), (36972, 58798), (37567, 2098)
X(63209) = (X(12702), X(63210))-harmonic conjugate of X(1388)


X(63210) = 33rd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^3-2*(b+c)*a^2-(b^2-5*b*c+c^2)*a+2*(b^2-c^2)*(b-c)) : :
X(63210) = 2*X(1)-X(36) = 3*X(1)-X(484) = 5*X(1)-2*X(1155) = 3*X(1)-2*X(1319) = 4*X(1)-X(3245) = X(1)-2*X(5048) = 9*X(1)-4*X(5122) = 7*X(1)-4*X(5126) = 7*X(1)-3*X(5131) = 7*X(1)-2*X(5183) = 5*X(1)-4*X(25405) = 3*X(36)-2*X(484) = 5*X(36)-4*X(1155) = 3*X(36)-4*X(1319) = 2*X(36)-X(3245) = X(36)-4*X(5048) = 9*X(36)-8*X(5122) = 7*X(36)-8*X(5126) = 7*X(36)-6*X(5131) = 7*X(36)-4*X(5183) = 5*X(36)-8*X(25405) = 5*X(484)-6*X(1155) = X(484)-2*X(1319) = 4*X(484)-3*X(3245) = X(484)-6*X(5048) = 3*X(484)-4*X(5122) = 7*X(484)-9*X(5131) = 7*X(484)-6*X(5183) = 3*X(1155)-5*X(1319) = 8*X(1155)-5*X(3245) = X(1155)-5*X(5048) = 9*X(1155)-10*X(5122) = 7*X(1155)-10*X(5126) = 7*X(1155)-5*X(5183) = X(1155)-2*X(25405)

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63210) lies on these lines: {1, 3}, {4, 37707}, {8, 3814}, {10, 5330}, {11, 5844}, {30, 1317}, {72, 33895}, {79, 10106}, {80, 519}, {90, 6762}, {104, 24302}, {145, 1479}, {214, 63136}, {226, 54698}, {244, 47622}, {498, 10595}, {499, 12245}, {513, 48282}, {515, 7972}, {516, 14151}, {518, 51768}, {535, 3241}, {551, 5444}, {758, 2611}, {901, 17449}, {912, 6264}, {944, 32905}, {946, 37710}, {952, 3583}, {956, 3899}, {962, 10483}, {1000, 10056}, {1203, 15955}, {1318, 4792}, {1387, 3582}, {1389, 5443}, {1392, 8666}, {1483, 6284}, {1519, 12749}, {1537, 41698}, {1699, 37708}, {1727, 44663}, {1737, 16173}, {1739, 47623}, {1797, 39148}, {1807, 56691}, {1830, 1870}, {1845, 15500}, {1866, 6198}, {1878, 11396}, {2066, 35810}, {2161, 2323}, {2170, 5526}, {2222, 28203}, {2392, 22461}, {2718, 58123}, {2802, 4511}, {3024, 13756}, {3036, 17533}, {3058, 37728}, {3219, 3878}, {3242, 9037}, {3244, 5057}, {3299, 35641}, {3301, 35642}, {3326, 56825}, {3419, 34640}, {3465, 13541}, {3584, 15950}, {3585, 10944}, {3586, 28609}, {3616, 6681}, {3621, 10591}, {3623, 4294}, {3632, 5087}, {3633, 9614}, {3635, 5441}, {3656, 5252}, {3679, 5123}, {3680, 56152}, {3811, 51786}, {3869, 5288}, {3872, 5692}, {3877, 5251}, {3880, 12653}, {3884, 5259}, {3885, 22836}, {3890, 30147}, {3940, 4677}, {4084, 62837}, {4301, 45287}, {4302, 7967}, {4304, 51071}, {4305, 20057}, {4316, 12735}, {4324, 34773}, {4330, 61286}, {4345, 18391}, {4674, 25580}, {4695, 45763}, {4857, 10950}, {4864, 51769}, {4880, 10058}, {4887, 56049}, {4919, 57015}, {4930, 34747}, {5011, 17439}, {5226, 5734}, {5239, 7150}, {5315, 49487}, {5353, 7052}, {5357, 33655}, {5414, 35811}, {5432, 10283}, {5434, 11552}, {5440, 5541}, {5445, 11362}, {5497, 17460}, {5533, 6882}, {5540, 6603}, {5557, 12577}, {5603, 7951}, {5854, 17757}, {5881, 51792}, {5904, 11682}, {6001, 13253}, {6126, 51654}, {6286, 7979}, {6550, 21343}, {6763, 11260}, {6905, 10087}, {6909, 10074}, {7173, 61510}, {7320, 15173}, {7727, 7984}, {7743, 37718}, {7978, 19470}, {8275, 31434}, {9580, 61291}, {9623, 62357}, {9629, 23152}, {10043, 49168}, {10057, 54154}, {10070, 50883}, {10072, 34631}, {10573, 37720}, {10696, 52129}, {10703, 23153}, {10827, 11522}, {10896, 12645}, {11238, 50805}, {11373, 41687}, {11376, 18395}, {11526, 41861}, {11571, 20586}, {12047, 51782}, {12053, 37702}, {12629, 17615}, {12699, 37738}, {12701, 37727}, {12737, 14988}, {12953, 18526}, {13391, 48903}, {13606, 17097}, {14497, 15175}, {14883, 16140}, {14923, 30144}, {15079, 50443}, {15171, 37734}, {15228, 21578}, {15326, 28212}, {16126, 34791}, {16489, 30117}, {17018, 40109}, {17098, 56038}, {17135, 30981}, {17556, 34710}, {17620, 43166}, {18514, 18525}, {19860, 25542}, {19875, 40587}, {21271, 24202}, {21864, 62211}, {22942, 53618}, {25055, 31190}, {25416, 38455}, {25485, 41553}, {25917, 58641}, {28204, 48667}, {28224, 62617}, {28534, 42871}, {30116, 62352}, {30331, 41572}, {31162, 51790}, {31397, 37701}, {31512, 32856}, {34464, 51361}, {37721, 51785}, {37737, 45081}, {37787, 55335}, {41700, 53055}, {41722, 54428}, {44784, 51362}, {48292, 61637}, {49498, 60698}, {49682, 62848}, {50617, 50637}, {51382, 56950}, {51700, 52793}, {53619, 53799}, {56030, 56035}, {56036, 56040}

X(63210) = midpoint of X(i) and X(j) for these (i, j): {145, 5080}, {1320, 62826}, {4867, 41702}, {8148, 35000}, {25416, 51409}
X(63210) = reflection of X(i) in X(j) for these (i, j): (1, 5048), (8, 3814), (36, 1), (80, 30384), (484, 1319), (1155, 25405), (1482, 23960), (3245, 36), (4867, 62826), (4880, 54391), (5176, 11813), (5183, 5126), (5541, 5440), (5903, 53615), (7991, 13528), (10225, 15178), (15228, 21578), (27247, 20323), (37006, 3583), (40663, 1387), (41684, 11), (41698, 1537), (41700, 53055), (41702, 1320), (44784, 51362), (48696, 4511), (53615, 18839), (56825, 3326), (63136, 214)
X(63210) = isogonal conjugate of X(56036)
X(63210) = crossdifference of every pair of points on the line X(650)X(16669)
X(63210) = crosspoint of X(1) and X(13143)
X(63210) = crosssum of X(902) and X(2317)
X(63210) = X(15446)-anticomplementary conjugate of-X(21290)
X(63210) = X(56040)-Ceva conjugate of-X(1)
X(63210) = X(513)-vertex conjugate of-X(7280)
X(63210) = Gibert-Burek-Moses concurrent circles image of X(7982)
X(63210) = perspector of the circumconic through X(651) and X(39962)
X(63210) = inverse of X(7280) in circumcircle
X(63210) = inverse of X(9957) in: incircle, de Longchamps ellipse
X(63210) = inverse of X(37587) in mixtilinear incircles radical circle
X(63210) = inverse of X(63211) in (circumcircle, incircle)-inverter)
X(63210) = pole of the line {513, 7280} with respect to the circumcircle
X(63210) = pole of the line {513, 63211} with respect to the (circumcircle, incircle)-inverter)
X(63210) = pole of the line {1319, 1756} with respect to the 1st Evans circle
X(63210) = pole of the line {513, 9957} with respect to the incircle
X(63210) = pole of the line {513, 37587} with respect to the mixtilinear incircles radical circle
X(63210) = pole of the line {88, 226} with respect to the circumhyperbola dual of Yff parabola
X(63210) = pole of the line {513, 9957} with respect to the de Longchamps ellipse
X(63210) = pole of the line {1, 6797} with respect to the Feuerbach circumhyperbola
X(63210) = pole of the line {21, 10074} with respect to the Stammler hyperbola
X(63210) = pole of the line {17496, 60480} with respect to the Steiner circumellipse
X(63210) = pole of the line {905, 21198} with respect to the Steiner inellipse
X(63210) = pole of the line {314, 56036} with respect to the Steiner-Wallace hyperbola
X(63210) = X(36)-of-5th mixtilinear triangle
X(63210) = X(403)-of-excenters-reflections triangle, when ABC is acute
X(63210) = X(2070)-of-Hutson intouch triangle, when ABC is acute
X(63210) = X(5048)-of-Aquila triangle
X(63210) = X(11563)-of-Ursa-minor triangle, when ABC is acute
X(63210) = X(12531)-of-anti-inner-Garcia triangle
X(63210) = X(18859)-of-intouch triangle, when ABC is acute
X(63210) = X(22765)-of-Mandart-incircle triangle
X(63210) = X(35000)-of-2nd anti-circumperp-tangential triangle
X(63210) = X(35452)-of-incircle-circles triangle, when ABC is acute
X(63210) = X(44246)-of-hexyl triangle, when ABC is acute
X(63210) = X(57584)-of-excentral triangle, when ABC is acute
X(63210) = (5th mixtilinear)-isogonal conjugate-of-X(7972)
X(63210) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (1, 5697, 35), (1, 11280, 65), (1, 11531, 46), (55, 10247, 1), (484, 1319, 36), (1385, 33176, 1), (1482, 2098, 1), (2099, 35457, 484), (2646, 33179, 1), (3057, 10222, 1), (5119, 37525, 35), (5126, 5131, 36), (5538, 5570, 36), (5538, 18421, 484), (5919, 50194, 1), (7962, 16200, 1), (9957, 11011, 1), (24474, 24929, 57)


X(63211) = 34th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(4*a^2-3*(b+c)*a-(b-c)^2) : :
X(63211) = X(1)-5*X(5010) = 3*X(1)-5*X(37525) = 2*X(1)-5*X(37600)

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63211) lies on these lines: {1, 3}, {10, 15338}, {11, 10164}, {12, 31730}, {21, 3698}, {42, 9340}, {63, 3689}, {80, 50821}, {100, 210}, {105, 28218}, {191, 4005}, {226, 4995}, {227, 51654}, {228, 23845}, {321, 4781}, {376, 5252}, {390, 17728}, {497, 61649}, {516, 5432}, {528, 59491}, {548, 45287}, {549, 30384}, {550, 10039}, {553, 37703}, {614, 21000}, {631, 12701}, {650, 21856}, {672, 4271}, {759, 6014}, {896, 4849}, {901, 47058}, {902, 3752}, {910, 16814}, {946, 52793}, {1000, 19708}, {1030, 21871}, {1145, 4669}, {1253, 6610}, {1255, 4682}, {1317, 51705}, {1376, 3305}, {1387, 12100}, {1532, 7965}, {1657, 10827}, {1698, 12953}, {1836, 5218}, {1858, 58637}, {1914, 31443}, {2280, 4268}, {2348, 16885}, {2478, 19877}, {2886, 63145}, {2975, 3893}, {3058, 3911}, {3158, 61154}, {3175, 4434}, {3306, 4428}, {3452, 6174}, {3474, 5281}, {3476, 10304}, {3523, 11376}, {3524, 30305}, {3583, 11231}, {3584, 15228}, {3614, 51118}, {3647, 3697}, {3651, 16140}, {3654, 36920}, {3711, 3929}, {3715, 46917}, {3722, 21342}, {3740, 62838}, {3742, 9352}, {3817, 5326}, {3828, 11113}, {3841, 4187}, {3870, 61153}, {3873, 61157}, {3890, 37307}, {3895, 11194}, {3913, 4652}, {3916, 8715}, {3928, 41711}, {3962, 56176}, {3967, 4427}, {3982, 11246}, {3983, 31445}, {4004, 35016}, {4184, 18191}, {4186, 5338}, {4188, 58679}, {4189, 5836}, {4294, 24914}, {4302, 26446}, {4304, 40663}, {4305, 41687}, {4311, 45081}, {4324, 18480}, {4330, 5445}, {4333, 9654}, {4413, 4512}, {4519, 32929}, {4641, 21870}, {4679, 59572}, {4691, 37829}, {4731, 5251}, {4847, 6154}, {4848, 10543}, {4863, 5744}, {4914, 17740}, {5054, 23708}, {5123, 11114}, {5176, 37299}, {5267, 10914}, {5273, 53620}, {5299, 31430}, {5303, 11260}, {5341, 16675}, {5433, 10624}, {5435, 10385}, {5440, 31165}, {5444, 51709}, {5745, 34612}, {5918, 17613}, {6015, 29151}, {6284, 6684}, {6361, 11375}, {6796, 12688}, {6872, 37828}, {6929, 61263}, {6942, 45776}, {7074, 62207}, {7354, 12512}, {7414, 53861}, {7676, 14100}, {7951, 28146}, {8012, 15855}, {8545, 11495}, {8580, 61152}, {8616, 16610}, {8683, 22313}, {8703, 21578}, {9582, 18996}, {9616, 19037}, {9657, 51784}, {9670, 31425}, {10167, 17660}, {10327, 59536}, {10572, 11545}, {10589, 30332}, {10895, 51790}, {10896, 31423}, {10950, 43174}, {11238, 31231}, {11491, 12680}, {11501, 37426}, {11502, 17604}, {12511, 17634}, {12513, 51786}, {12515, 41541}, {12635, 63144}, {12749, 38754}, {12943, 31434}, {13747, 19878}, {14646, 41706}, {14872, 32141}, {14923, 17548}, {14936, 40606}, {15326, 31397}, {15599, 44319}, {15621, 22060}, {15726, 60944}, {15731, 53243}, {15950, 28194}, {16117, 45065}, {16370, 54286}, {16502, 31422}, {17235, 29848}, {17549, 63136}, {17635, 24309}, {17637, 41538}, {17638, 33814}, {18220, 61804}, {18393, 28198}, {18513, 28154}, {20196, 50836}, {20214, 25568}, {22376, 55362}, {25440, 25917}, {25734, 59597}, {27003, 42819}, {28250, 28257}, {28534, 31053}, {28566, 29849}, {29007, 41695}, {29673, 59665}, {30818, 59679}, {31145, 44784}, {31452, 57282}, {31658, 51768}, {32918, 49484}, {32932, 55095}, {33079, 50104}, {33117, 59769}, {33595, 62822}, {33597, 40256}, {35669, 37402}, {37006, 38176}, {37290, 61259}, {37639, 49475}, {37692, 48661}, {37740, 59417}, {38127, 62616}, {41430, 49537}, {42387, 52412}, {43151, 60919}, {44307, 56010}, {47357, 62773}, {49732, 54357}, {56543, 59601}, {58451, 61156}, {58560, 62862}, {61159, 62856}

X(63211) = reflection of X(i) in X(j) for these (i, j): (17605, 5432), (37600, 5010)
X(63211) = crossdifference of every pair of points on the line X(650)X(48282)
X(63211) = X(62400)-Ceva conjugate of-X(60942)
X(63211) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (60942, 75), (62400, 274)
X(63211) = inverse of X(63210) in (circumcircle, incircle)-inverter)
X(63211) = pole of the line {513, 48282} with respect to the (circumcircle, incircle)-inverter)
X(63211) = pole of the line {672, 1385} with respect to the Gheorghe circle
X(63211) = pole of the line {910, 1385} with respect to the Stevanovic circle
X(63211) = pole of the line {1, 29007} with respect to the Feuerbach circumhyperbola
X(63211) = barycentric product X(i)*X(j) for these {i, j}: {1, 60942}, {37, 62400}
X(63211) = trilinear product X(i)*X(j) for these {i, j}: {6, 60942}, {42, 62400}
X(63211) = trilinear quotient X(i)/X(j) for these (i, j): (60942, 2), (62400, 86)
X(63211) = X(31074)-of-Ursa-minor triangle, when ABC is acute
X(63211) = X(37913)-of-intouch triangle, when ABC is acute
X(63211) = X(62958)-of-excentral triangle, when ABC is acute
X(63211) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 5119, 1319), (35, 3256, 55), (35, 3579, 65), (55, 165, 1155), (55, 1155, 354), (55, 63212, 57), (57, 3748, 354), (57, 31508, 55), (57, 63212, 1155), (165, 31508, 57), (165, 35445, 55), (484, 24929, 65), (1155, 3748, 57), (3579, 24929, 484), (5122, 51787, 1), (30350, 53056, 57), (35242, 61763, 56)


X(63212) = 35th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(5*a^2-3*(b+c)*a-2*(b-c)^2) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63212) lies on these lines: {1, 3}, {6, 9340}, {7, 4995}, {10, 56998}, {11, 9778}, {63, 3711}, {80, 3534}, {100, 4661}, {105, 58123}, {210, 61152}, {214, 19705}, {244, 21000}, {329, 6174}, {376, 40663}, {381, 15228}, {382, 5445}, {548, 10573}, {550, 11545}, {672, 5036}, {910, 15492}, {1001, 9352}, {1317, 50810}, {1376, 3219}, {1657, 18395}, {1698, 51790}, {1788, 15338}, {1836, 10164}, {1837, 12512}, {2280, 4287}, {2475, 26040}, {3035, 44447}, {3058, 5435}, {3218, 4421}, {3305, 4413}, {3474, 5226}, {3522, 10950}, {3524, 15950}, {3584, 18541}, {3654, 21578}, {3683, 51780}, {3689, 3928}, {3754, 19535}, {3870, 61154}, {3873, 61153}, {3878, 19537}, {3911, 11238}, {3982, 17718}, {4114, 13405}, {4191, 23845}, {4214, 5338}, {4295, 52793}, {4299, 61524}, {4302, 61717}, {4309, 34753}, {4312, 61648}, {4316, 5790}, {4333, 9956}, {4423, 35258}, {4428, 27003}, {4654, 52638}, {5054, 18393}, {5176, 34620}, {5218, 11246}, {5273, 17579}, {5289, 13587}, {5298, 30305}, {5433, 6361}, {5443, 15720}, {5444, 15693}, {5493, 11376}, {5657, 15326}, {5744, 34612}, {6015, 29177}, {6154, 24477}, {6684, 10895}, {6830, 7965}, {7052, 11481}, {7082, 10860}, {7580, 46684}, {9337, 49448}, {9350, 16885}, {9580, 61649}, {9612, 31425}, {9656, 31447}, {9657, 51782}, {10947, 35514}, {11194, 63136}, {11480, 33655}, {11495, 11502}, {12943, 26446}, {12953, 24914}, {15104, 17660}, {15837, 60953}, {16677, 41423}, {17606, 51792}, {17783, 32857}, {20076, 32157}, {21454, 37703}, {21870, 62820}, {23708, 28198}, {23958, 42871}, {24470, 31452}, {28534, 30852}, {29817, 61159}, {30295, 60944}, {31140, 59491}, {34200, 37728}, {34607, 51463}, {34716, 44784}, {36920, 50811}, {36975, 59503}, {43151, 61021}, {43713, 52391}, {49732, 55868}, {51781, 62824}, {59691, 63144}, {61397, 62207}

X(63212) = crossdifference of every pair of points on the line X(650)X(48287)
X(63212) = X(60977)-reciprocal conjugate of-X(75)
X(63212) = pole of the line {513, 15746} with respect to the (circumcircle, incircle)-inverter)
X(63212) = pole of the line {672, 1482} with respect to the Gheorghe circle
X(63212) = pole of the line {910, 1482} with respect to the Stevanovic circle
X(63212) = barycentric product X(1)*X(60977)
X(63212) = trilinear product X(6)*X(60977)
X(63212) = trilinear quotient X(60977)/X(2)
X(63212) = X(30744)-of-1st circumperp triangle, when ABC is acute
X(63212) = X(52297)-of-excentral triangle, when ABC is acute
X(63212) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (57, 63211, 55), (165, 1155, 55), (165, 63207, 1155), (354, 35445, 55), (1155, 63211, 57), (3256, 34879, 55), (3579, 58887, 56), (3748, 31508, 55), (5119, 5122, 56), (6244, 37578, 55), (7280, 12702, 1388), (35445, 53056, 354)


X(63213) = 36th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(8*a^3+3*(b+c)*a^2-8*(b^2+b*c+c^2)*a-3*(b^2-c^2)*(b-c)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63213) lies on these lines: {1, 3}, {12, 50808}, {100, 4005}, {3583, 31447}, {3714, 4781}, {3841, 17533}, {3983, 4640}, {4324, 50821}, {4731, 5260}, {5187, 46930}, {5493, 52793}, {6931, 52653}, {7294, 10164}, {9778, 10588}, {10304, 37738}, {12735, 62064}, {37708, 62100}, {54422, 61154}

X(63213) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (35, 63206, 65), (3579, 63211, 65), (63206, 63211, 35)


X(63214) = 37th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(11*a^2-8*(b+c)*a-3*(b-c)^2) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63214) lies on these lines: {1, 3}, {100, 3929}, {1253, 33633}, {1479, 31425}, {1699, 5326}, {2268, 41456}, {3158, 62236}, {3522, 37709}, {3680, 5303}, {4312, 4995}, {4316, 50812}, {4345, 15705}, {4640, 46917}, {4654, 5281}, {5218, 50808}, {5219, 9778}, {5267, 63138}, {5274, 31231}, {5332, 9574}, {6049, 62060}, {7308, 35258}, {8164, 9579}, {8168, 62824}, {9352, 38316}, {9578, 12512}, {9580, 10164}, {9588, 15338}, {9589, 52793}, {9814, 15837}, {10590, 31730}, {15492, 42316}, {15731, 58106}, {21000, 62695}, {30295, 60937}, {30393, 61152}, {61153, 62823}

X(63214) = X(52298)-of-excentral triangle, when ABC is acute
X(63214) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (55, 63207, 57), (165, 31508, 1155), (165, 35445, 57), (1155, 10389, 57), (10980, 31508, 55), (16192, 37568, 1420), (35445, 63207, 55), (44841, 53056, 57)


X(63215) = 38th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(7*a^3+6*(b+c)*a^2-(7*b^2+10*b*c+7*c^2)*a-6*(b^2-c^2)*(b-c)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, May 2, 2024.

X(63215) lies on these lines: {1, 3}, {962, 7294}, {2551, 62969}, {4018, 61154}, {4294, 50809}, {5433, 34632}, {5493, 10896}, {9897, 62131}, {12943, 43174}, {34606, 51068}, {41687, 50808}

X(63215) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (40, 63206, 56), (7280, 63209, 1388), (12702, 63212, 1388)


X(63216) = UNARY(1) OF X(44)

Barycentrics    b*(a + b - 2*c)*(b - c)*(-a + 2*b - c)*c*(-a + 2*b + 2*c) : :

X(63216) lies on these lines: {75, 693}, {874, 34762}, {3762, 4080}, {4671, 4791}, {42482, 42697}

X(63216) = isotomic conjugate of X(52924)
X(63216) = isotomic conjugate of the isogonal conjugate of X(23352)
X(63216) = X(58955)-anticomplementary conjugate of X(17487)
X(63216) = X(i)-isoconjugate of X(j) for these (i,j): {31, 52924}, {44, 34073}, {902, 4588}, {1023, 28607}, {1404, 5549}, {2163, 23344}, {2251, 4604}, {2364, 61210}, {4597, 9459}, {17455, 58955}
X(63216) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 52924}, {9460, 4604}, {36911, 1023}, {40587, 23344}, {40594, 4588}, {40595, 34073}, {55045, 902}, {61073, 44}
X(63216) = cevapoint of X(4777) and X(23884)
X(63216) = trilinear pole of line {4791, 4957}
X(63216) = barycentric product X(i)*X(j) for these {i,j}: {75, 23598}, {76, 23352}, {693, 4945}, {903, 4791}, {3261, 4792}, {3762, 36594}, {4555, 4957}, {4671, 6548}, {4777, 20568}, {4893, 57995}, {23884, 57788}, {23989, 52925}
X(63216) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 52924}, {45, 23344}, {88, 4588}, {106, 34073}, {903, 4604}, {1022, 2163}, {1168, 58955}, {1320, 5549}, {2099, 61210}, {3679, 1023}, {4049, 53114}, {4125, 4169}, {4411, 29908}, {4555, 5385}, {4671, 17780}, {4770, 52963}, {4775, 2251}, {4777, 44}, {4791, 519}, {4792, 101}, {4833, 3285}, {4893, 902}, {4931, 21805}, {4944, 3689}, {4945, 100}, {4957, 900}, {5219, 23703}, {6548, 89}, {20568, 4597}, {23345, 28607}, {23352, 6}, {23598, 1}, {23838, 2364}, {23884, 214}, {36594, 3257}, {43052, 1319}, {47683, 52680}, {49280, 5440}, {52925, 1252}, {55244, 28658}, {60480, 2320}


X(63217) = UNARY(1) OF X(45)

Barycentrics    b*(-2*a + b - 2*c)*(b - c)*(2*a + 2*b - c)*c*(-2*a + b + c) : :

X(63217) lies on these lines: {668, 4597}, {693, 900}, {1111, 1647}, {3762, 6544}, {3766, 20569}, {4791, 47779}, {21116, 23888}, {21183, 23796}, {21297, 23836}, {47780, 48291}

X(63217) = isotomic conjugate of X(52925)
X(63217) = X(59068)-anticomplementary conjugate of X(17488)
X(63217) = X(i)-isoconjugate of X(j) for these (i,j): {31, 52925}, {45, 32665}, {692, 4792}, {901, 2177}, {1110, 23352}, {1405, 5548}, {3679, 32719}, {4752, 9456}, {4775, 9268}, {4945, 32739}, {20973, 32686}, {23598, 23990}
X(63217) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 52925}, {514, 23352}, {1086, 4792}, {4370, 4752}, {6544, 4893}, {35092, 45}, {38979, 2177}, {40619, 4945}, {51402, 3711}, {62571, 4767}
X(63217) = barycentric product X(i)*X(j) for these {i,j}: {900, 20569}, {3762, 39704}, {4358, 52620}, {23989, 52924}
X(63217) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 52925}, {89, 901}, {514, 4792}, {519, 4752}, {693, 4945}, {900, 45}, {1086, 23352}, {1111, 23598}, {1635, 2177}, {1639, 3711}, {1647, 4893}, {2087, 4775}, {2163, 32665}, {2320, 5548}, {3762, 3679}, {4358, 4767}, {4530, 4814}, {4597, 5376}, {4604, 9268}, {4768, 4873}, {5385, 6551}, {20569, 4555}, {23888, 17461}, {28607, 32719}, {30725, 2099}, {33920, 52966}, {39704, 3257}, {40426, 36091}, {40833, 4618}, {52620, 88}, {52924, 1252}, {53528, 1405}


X(63218) = UNARY(1) OF X(220)

Barycentrics    b^2*(b - c)*(-a + b - c)*(a + b - c)*c^2*(-(a*b) + b^2 - a*c - 2*b*c + c^2) : :

X(63218) lies on these lines: {693, 6362}, {6607, 46402}, {7192, 43930}, {21104, 59181}, {24002, 26546}

X(63218) = X(10509)-anticomplementary conjugate of X(34547)
X(63218) = X(i)-isoconjugate of X(j) for these (i,j): {101, 59141}, {692, 10482}, {1253, 53243}, {6066, 58322}, {6605, 32739}, {23990, 62747}
X(63218) = X(i)-Dao conjugate of X(j) for these (i,j): {1015, 59141}, {1086, 10482}, {1111, 9}, {1212, 3939}, {3119, 6602}, {6362, 6607}, {17113, 53243}, {40615, 1174}, {40619, 6605}
X(63218) = barycentric product X(i)*X(j) for these {i,j}: {75, 23599}, {142, 52621}, {693, 59181}, {1229, 59941}, {1233, 3676}, {1418, 40495}, {3261, 10481}, {4077, 16708}, {4391, 53242}, {6063, 21104}, {6362, 57792}, {7178, 53236}, {15413, 53237}, {20567, 48151}, {20880, 24002}, {23989, 35312}, {34387, 61241}, {52023, 52619}
X(63218) = barycentric quotient X(i)/X(j) for these {i,j}: {142, 3939}, {279, 53243}, {513, 59141}, {514, 10482}, {693, 6605}, {1111, 62747}, {1229, 4578}, {1233, 3699}, {1418, 692}, {2488, 14827}, {3261, 56118}, {3676, 1174}, {4077, 56255}, {6362, 220}, {6608, 6602}, {10481, 101}, {16708, 643}, {17169, 5546}, {20880, 644}, {21104, 55}, {21127, 1253}, {23599, 1}, {23989, 62725}, {24002, 2346}, {35312, 1252}, {35326, 6066}, {40154, 53244}, {48151, 41}, {52023, 4557}, {52621, 32008}, {53236, 645}, {53237, 1783}, {53240, 5548}, {53241, 52927}, {53242, 651}, {55282, 1334}, {57252, 8012}, {57792, 6606}, {59181, 100}, {59941, 1170}, {61241, 59}, {61376, 32739}, {63203, 1110}


X(63219) = UNARY(1) OF X(238)

Barycentrics    b*(b - c)*c*(b^2 - a*c)*(a*b - c^2)*(b^2 + b*c + c^2) : :

X(63219) lies on these lines: {321, 693}, {850, 2528}, {876, 47690}, {3572, 47660}, {3805, 7033}, {4088, 30639}, {4122, 33931}, {4639, 17935}, {14296, 50342}, {21303, 30665}, {23596, 62415}, {30870, 46567}

X(63219) = X(30648)-anticomplementary conjugate of X(39345)
X(63219) = X(41072)-Ceva conjugate of X(334)
X(63219) = X(i)-isoconjugate of X(j) for these (i,j): {238, 34069}, {789, 18892}, {825, 1914}, {1492, 2210}, {1933, 30670}, {4586, 14599}, {18894, 37133}, {23597, 23990}
X(63219) = X(i)-Dao conjugate of X(j) for these (i,j): {824, 30665}, {9470, 34069}, {27481, 3573}, {33568, 30655}, {36906, 825}, {38995, 2210}, {55049, 14599}, {61065, 238}, {62557, 1492}
X(63219) = crosspoint of X(334) and X(41072)
X(63219) = crosssum of X(2210) and X(58864)
X(63219) = crossdifference of every pair of points on line {2210, 14602}
X(63219) = barycentric product X(i)*X(j) for these {i,j}: {75, 23596}, {292, 30870}, {334, 824}, {335, 62415}, {561, 30671}, {788, 44170}, {1491, 18895}, {3250, 44172}, {3261, 3864}, {3805, 18896}, {3862, 40495}, {4122, 40017}, {4444, 33931}, {41072, 61065}, {44160, 58862}, {56441, 56981}
X(63219) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 825}, {292, 34069}, {334, 4586}, {335, 1492}, {788, 14599}, {824, 238}, {876, 40746}, {1111, 23597}, {1491, 1914}, {1916, 30670}, {3250, 2210}, {3661, 3573}, {3805, 1691}, {3862, 692}, {3864, 101}, {4122, 2238}, {4444, 985}, {4475, 8632}, {4481, 5009}, {4486, 8300}, {4522, 3684}, {4562, 5384}, {8630, 18894}, {18895, 789}, {23596, 1}, {30639, 53681}, {30665, 51328}, {30671, 31}, {30870, 1921}, {33931, 3570}, {35352, 40747}, {40098, 30664}, {40834, 33514}, {44170, 46132}, {44172, 37133}, {45882, 1933}, {46386, 18892}, {56441, 56980}, {56696, 56982}, {58862, 14602}, {60577, 2344}, {61065, 30665}, {62414, 58864}, {62415, 239}


X(63220) = UNARY(1) OF X(405)

Barycentrics    b*(b^2 - c^2)*c*(-a^2 + b^2 + c^2)*(-(a^2*b) + b^3 - 2*a^2*c - 2*a*b*c - 2*a*c^2 - b*c^2)*(2*a^2*b + 2*a*b^2 + a^2*c + 2*a*b*c + b^2*c - c^3) : :

X(63220) lies on these lines: {520, 7192}, {525, 693}, {2859, 36080}, {2867, 36077}, {3265, 15413}, {34767, 57831}

X(63220) = X(i)-isoconjugate of X(j) for these (i,j): {162, 5320}, {405, 32676}, {692, 56831}, {1576, 39585}, {5271, 61206}, {23964, 46382}
X(63220) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 5320}, {1086, 56831}, {4858, 39585}, {15526, 405}, {40622, 54394}
X(63220) = barycentric product X(i)*X(j) for these {i,j}: {525, 57831}, {3267, 51223}, {36077, 36793}
X(63220) = barycentric quotient X(i)/X(j) for these {i,j}: {514, 56831}, {525, 405}, {647, 5320}, {1577, 39585}, {2215, 32676}, {2632, 46382}, {3267, 44140}, {4466, 46385}, {7178, 54394}, {14208, 5271}, {17094, 37543}, {36077, 23964}, {51223, 112}, {51664, 1451}, {54970, 5379}, {57831, 648}


X(63221) = UNARY(1) OF X(518)

Barycentrics    b*(b - c)*c*(a^2 + b^2 - a*c - b*c)*(-a^2 + a*b + a*c + 2*b*c)*(-a^2 + a*b + b*c - c^2) : :

X(63211) lies on the cubic Kk015 and these lines: {2, 650}, {850, 17163}, {885, 2481}, {4384, 45755}, {4724, 40719}, {7192, 43930}, {17780, 51560}, {20518, 53583}, {34085, 56543}, {36803, 41314}

X(63221) = anticomplement of X(33570)
X(63221) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {36138, 39350}, {53227, 20552}
X(63221) = X(i)-Ceva conjugate of X(j) for these (i,j): {53227, 2481}, {57537, 61076}
X(63221) = X(61076)-cross conjugate of X(57537)
X(63221) = X(i)-isoconjugate of X(j) for these (i,j): {672, 8693}, {1002, 54325}, {2223, 37138}, {2279, 2284}, {2283, 60673}, {4712, 32724}, {6184, 36138}, {9454, 32041}, {32739, 62622}
X(63221) = X(i)-Dao conjugate of X(j) for these (i,j): {33675, 32041}, {39012, 6184}, {40619, 62622}, {55059, 20683}, {61076, 518}, {62554, 8693}, {62599, 37138}
X(63221) = crosspoint of X(2481) and X(53227)
X(63221) = trilinear pole of line {4762, 39012}
X(63221) = crossdifference of every pair of points on line {2223, 39686}
X(63221) = barycentric product X(i)*X(j) for these {i,j}: {885, 60720}, {1027, 21615}, {2481, 4762}, {4441, 62635}, {4724, 18031}, {28809, 43930}, {53227, 61076}
X(63221) = barycentric quotient X(i)/X(j) for these {i,j}: {105, 8693}, {673, 37138}, {693, 62622}, {885, 40779}, {1001, 2284}, {1024, 60673}, {1027, 2279}, {2280, 54325}, {2481, 32041}, {4384, 1026}, {4441, 42720}, {4724, 672}, {4762, 518}, {4804, 3930}, {5228, 2283}, {28132, 59269}, {31926, 4238}, {33570, 23612}, {40719, 1025}, {41934, 32724}, {42309, 41353}, {43930, 42290}, {45322, 1642}, {45755, 2340}, {51838, 36138}, {57537, 53227}, {60720, 883}, {60721, 54353}, {62635, 1002}
X(63221) = {X(28132),X(62635)}-harmonic conjugate of X(17494)


X(63222) = UNARY(1) OF X(984)

Barycentrics    b*(a^2 + a*b + b^2)*(b - c)*c*(-a^2 + b*c)*(a^2 + a*c + c^2) : :

X(63222) lies on these lines: {100, 789}, {649, 693}, {659, 14296}, {669, 804}, {870, 47070}, {3766, 4107}, {3808, 7192}, {30665, 47694}, {46403, 62638}, {47776, 52652}

X(63222) = X(41072)-Ceva conjugate of X(870)
X(63222) = X(i)-isoconjugate of X(j) for these (i,j): {101, 3862}, {660, 869}, {692, 3864}, {788, 5378}, {813, 2276}, {984, 34067}, {1252, 30671}, {1911, 3799}, {1922, 3807}, {3116, 8684}, {3774, 4584}, {4505, 14598}, {4562, 40728}, {4583, 18900}, {23596, 23990}
X(63222) = X(i)-Dao conjugate of X(j) for these (i,j): {661, 30671}, {812, 30665}, {1015, 3862}, {1086, 3864}, {6651, 3799}, {18277, 4505}, {35119, 984}, {39028, 3807}, {40623, 2276}, {62443, 5378}, {62552, 1491}, {62558, 3250}
X(63222) = crosspoint of X(870) and X(41072)
X(63222) = crosssum of X(869) and X(58864)
X(63222) = crossdifference of every pair of points on line {869, 3117}
X(63222) = barycentric product X(i)*X(j) for these {i,j}: {75, 23597}, {350, 4817}, {789, 27918}, {812, 870}, {871, 8632}, {874, 43266}, {3114, 3808}, {3766, 14621}, {14296, 40738}, {27846, 37133}, {35119, 41072}, {43041, 52652}
X(63222) = barycentric quotient X(i)/X(j) for these {i,j}: {239, 3799}, {244, 30671}, {350, 3807}, {513, 3862}, {514, 3864}, {659, 2276}, {812, 984}, {870, 4562}, {985, 813}, {1111, 23596}, {1921, 4505}, {3407, 8684}, {3766, 3661}, {3808, 3094}, {4107, 40790}, {4375, 3783}, {4435, 4517}, {4455, 3774}, {4586, 5378}, {4817, 291}, {8632, 869}, {14621, 660}, {23597, 1}, {27846, 3250}, {27855, 3797}, {27918, 1491}, {35119, 30665}, {40746, 34067}, {41072, 57566}, {43041, 7146}, {43266, 876}, {50456, 3736}, {52652, 36801}


X(63223) = UNARY(1) OF X(1001)

Barycentrics    b*(b - c)*c*(-(a*b) + b^2 - 2*a*c - b*c)*(2*a*b + a*c + b*c - c^2)*(-(a*b) + b^2 - a*c + c^2) : :

X(63223) lies on these lines: {693, 918}, {883, 3952}, {926, 7192}, {4453, 60668}, {20901, 23989}, {27475, 30565}

X(63223) = X(58989)-anticomplementary conjugate of X(27484)
X(63223) = X(53227)-Ceva conjugate of X(59255)
X(63223) = X(i)-isoconjugate of X(j) for these (i,j): {919, 2280}, {1001, 32666}, {1471, 52927}, {36086, 60722}
X(63223) = X(i)-Dao conjugate of X(j) for these (i,j): {17755, 54440}, {35094, 1001}, {38980, 2280}, {38989, 60722}
X(63223) = crosspoint of X(53227) and X(59255)
X(63223) = trilinear pole of line {35094, 62429}
X(63223) = barycentric product X(i)*X(j) for these {i,j}: {693, 62622}, {918, 59255}, {32041, 62429}, {35094, 53227}, {50333, 62946}
X(63223) = barycentric quotient X(i)/X(j) for these {i,j}: {665, 60722}, {918, 1001}, {1002, 919}, {2254, 2280}, {2279, 32666}, {3912, 54440}, {4088, 59207}, {23829, 60721}, {27475, 36086}, {32041, 5377}, {40779, 52927}, {42290, 32735}, {43042, 5228}, {50333, 37658}, {53227, 57536}, {53544, 1471}, {59255, 666}, {62429, 4762}, {62622, 100}, {62784, 36146}, {62946, 927}


X(63224) = UNARY(1) OF X(1107)

Barycentrics    (b - c)*(-(a*b) - a*c + b*c)*(a^2*b + a*b^2 + a^2*c + b^2*c)*(a^2*b + a^2*c + a*c^2 + b*c^2) : :

X(63224) lies on these lines: {661, 40849}, {693, 2533}, {3835, 26776}, {4024, 23886}, {17217, 24533}, {20906, 25142}, {40418, 62638}

X(63224) = X(59094)-anticomplementary conjugate of X(30660)
X(63224) = X(i)-isoconjugate of X(j) for these (i,j): {87, 53268}, {99, 45209}, {799, 45217}, {932, 2309}, {1107, 34071}, {1197, 4598}, {2162, 61234}, {7121, 53338}, {32739, 61417}
X(63224) = X(i)-Dao conjugate of X(j) for these (i,j): {3835, 50510}, {6377, 3741}, {38986, 45209}, {38996, 45217}, {40598, 53338}, {40610, 1107}, {40619, 61417}
X(63224) = cevapoint of X(i) and X(j) for these (i,j): {3835, 50491}, {21051, 23886}
X(63224) = crosssum of X(23473) and X(50510)
X(63224) = trilinear pole of line {21138, 40610}
X(63224) = crossdifference of every pair of points on line {1197, 45216}
X(63224) = barycentric product X(i)*X(j) for these {i,j}: {1221, 4083}, {1258, 20906}, {3835, 40418}, {17217, 60230}, {21051, 40409}
X(63224) = barycentric quotient X(i)/X(j) for these {i,j}: {43, 61234}, {192, 53338}, {669, 45217}, {693, 61417}, {798, 45209}, {1221, 18830}, {1258, 932}, {2176, 53268}, {3835, 3741}, {3971, 61165}, {4083, 1107}, {6377, 50510}, {8640, 1197}, {17217, 16738}, {18107, 18091}, {18197, 18169}, {20906, 20891}, {20979, 2309}, {21051, 21024}, {21834, 3728}, {22090, 22065}, {23886, 59565}, {40409, 56053}, {40418, 4598}, {50491, 21838}, {57050, 45216}, {57399, 34071}



preamble forthcoming

X(63225) = BARYCENTRIC QUOTIENT OF X(63216) AND X(514)

Barycentrics    b*(a + b - 2*c)*(-a + 2*b - c)*c*(-a + 2*b + 2*c) : :

X(63225) lies on these lines: {75, 537}, {88, 37660}, {996, 20569}, {1320, 49460}, {3262, 4358}, {3264, 40075}, {4495, 4555}, {4671, 4945}, {4792, 4793}, {9460, 20924}, {17160, 32927}, {20893, 54974}, {25036, 41138}

X(63225) = isotomic conjugate of the isogonal conjugate of X(4792)
X(63225) = X(i)-isoconjugate of X(j) for these (i,j): {44, 28607}, {89, 2251}, {667, 52924}, {902, 2163}, {1404, 2364}, {1635, 34073}, {1960, 4588}, {3285, 28658}, {9459, 39704}
X(63225) = X(i)-Dao conjugate of X(j) for these (i,j): {6631, 52924}, {9460, 89}, {36911, 44}, {36912, 678}, {40587, 902}, {40594, 2163}, {40595, 28607}, {55045, 1960}, {61073, 1635}, {62582, 2320}
X(63225) = cevapoint of X(3679) and X(27757)
X(63225) = trilinear pole of line {4671, 4791}
X(63225) = barycentric product X(i)*X(j) for these {i,j}: {45, 57995}, {75, 4945}, {76, 4792}, {190, 63216}, {668, 23598}, {903, 4671}, {1978, 23352}, {3261, 52925}, {3679, 20568}, {4049, 55245}, {4358, 36594}, {4555, 4791}, {4634, 4931}, {4908, 57929}, {4957, 62536}, {27757, 57788}, {36593, 40029}
X(63225) = barycentric quotient X(i)/X(j) for these {i,j}: {45, 902}, {88, 2163}, {106, 28607}, {190, 52924}, {901, 34073}, {903, 89}, {1320, 2364}, {2099, 1404}, {2177, 2251}, {3257, 4588}, {3261, 63217}, {3679, 44}, {3761, 29908}, {3940, 22356}, {4049, 55246}, {4080, 53114}, {4125, 3943}, {4555, 4604}, {4653, 3285}, {4671, 519}, {4674, 28658}, {4717, 4969}, {4752, 23344}, {4767, 1023}, {4770, 14407}, {4777, 1635}, {4791, 900}, {4792, 6}, {4867, 17455}, {4873, 3689}, {4893, 1960}, {4908, 678}, {4931, 4730}, {4944, 4895}, {4945, 1}, {4957, 1647}, {4997, 2320}, {5219, 1319}, {5235, 52680}, {20568, 39704}, {23352, 649}, {23598, 513}, {23884, 53535}, {27757, 214}, {28603, 14437}, {36593, 16670}, {36594, 88}, {43052, 53528}, {49280, 53532}, {52755, 52901}, {52925, 101}, {57929, 40833}, {57995, 20569}, {62536, 5385}, {63216, 514}
X(63225) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 20568, 903}, {75, 20937, 4738}


X(63226) = BARYCENTRIC QUOTIENT OF X(63217) AND X(514)

Barycentrics    b*(-2*a + b - 2*c)*(2*a + 2*b - c)*c*(-2*a + b + c) : :

X(63226) lies on these lines: {75, 519}, {80, 320}, {89, 4671}, {693, 900}, {903, 17449}, {1120, 17160}, {1227, 4358}, {1266, 39697}, {1647, 57948}, {2863, 4588}, {3264, 4738}, {3912, 25036}, {4389, 24217}, {4597, 35175}, {5718, 24589}, {7035, 62659}, {17146, 21283}, {24858, 40833}, {30608, 30829}, {39995, 40040}

X(63226) = isotomic conjugate of X(4792)
X(63226) = X(40426)-anticomplementary conjugate of X(21290)
X(63226) = X(i)-isoconjugate of X(j) for these (i,j): {31, 4792}, {32, 4945}, {45, 9456}, {106, 2177}, {667, 52925}, {692, 23352}, {901, 4775}, {1405, 2316}, {1417, 3711}, {4777, 32719}, {4893, 32665}, {4908, 41935}, {9459, 36594}, {23598, 32739}
X(63226) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 4792}, {214, 2177}, {1086, 23352}, {3936, 4867}, {4370, 45}, {6376, 4945}, {6631, 52925}, {35092, 4893}, {38979, 4775}, {40619, 23598}, {51402, 4814}, {52659, 2099}, {52871, 3711}, {62571, 3679}
X(63226) = cevapoint of X(i) and X(j) for these (i,j): {519, 62621}, {1647, 23888}
X(63226) = trilinear pole of line {3762, 6544}
X(63226) = barycentric product X(i)*X(j) for these {i,j}: {89, 3264}, {190, 63217}, {519, 20569}, {3261, 52924}, {3762, 4597}, {4358, 39704}, {4738, 40833}, {24004, 52620}, {29908, 57948}, {30588, 30939}, {55246, 55262}
X(63226) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 4792}, {44, 2177}, {75, 4945}, {89, 106}, {190, 52925}, {514, 23352}, {519, 45}, {693, 23598}, {900, 4893}, {1227, 27757}, {1319, 1405}, {1635, 4775}, {1639, 4814}, {1644, 52966}, {2163, 9456}, {2320, 2316}, {2325, 3711}, {3261, 63216}, {3264, 4671}, {3762, 4777}, {3911, 2099}, {3977, 3940}, {4120, 4770}, {4358, 3679}, {4588, 32665}, {4597, 3257}, {4604, 901}, {4723, 4873}, {4738, 4908}, {4768, 4944}, {5385, 9268}, {16704, 4653}, {17780, 4752}, {20568, 36594}, {20569, 903}, {24004, 4767}, {29908, 750}, {30588, 4674}, {30608, 1320}, {30829, 36593}, {30939, 5235}, {34073, 32719}, {39704, 88}, {40833, 679}, {51583, 4867}, {52620, 1022}, {52680, 4273}, {52924, 101}, {55246, 55263}, {55262, 55245}, {55979, 36058}, {62620, 17461}, {62621, 40587}, {63217, 514}
X(63226) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {75, 39704, 20569}, {75, 49780, 50751}


X(63227) = BARYCENTRIC QUOTIENT OF X(63218) AND X(514)

Barycentrics    b^2*(-a + b - c)*(a + b - c)*c^2*(-(a*b) + b^2 - a*c - 2*b*c + c^2) : :

X(63227) lies on these lines: {75, 1088}, {85, 17234}, {86, 4625}, {313, 20567}, {344, 61413}, {348, 17075}, {349, 40704}, {1229, 1233}, {1269, 57918}, {4554, 17263}, {4569, 7321}, {6067, 20880}, {7196, 37686}, {10481, 53236}, {16706, 34018}, {17277, 40864}, {20905, 23989}, {24199, 52980}

X(63227) = isotomic conjugate of X(10482)
X(63227) = isotomic conjugate of the isogonal conjugate of X(10481)
X(63227) = X(i)-Ceva conjugate of X(j) for these (i,j): {4554, 52621}, {6063, 20880}
X(63227) = X(20880)-cross conjugate of X(1233)
X(63227) = X(i)-isoconjugate of X(j) for these (i,j): {6, 59141}, {31, 10482}, {32, 6605}, {41, 1174}, {560, 56118}, {1170, 14827}, {2175, 2346}, {2212, 47487}, {8641, 53243}, {9447, 32008}, {9448, 57815}, {32739, 62747}, {56255, 57657}
X(63227) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 10482}, {7, 33634}, {9, 59141}, {142, 1253}, {1111, 650}, {1212, 55}, {3119, 57180}, {3160, 1174}, {6374, 56118}, {6376, 6605}, {40593, 2346}, {40606, 41}, {40619, 62747}, {62570, 56255}
X(63227) = cevapoint of X(20880) and X(59181)
X(63227) = trilinear pole of line {23599, 63218}
X(63227) = barycentric product X(i)*X(j) for these {i,j}: {7, 1233}, {75, 59181}, {76, 10481}, {85, 20880}, {142, 6063}, {190, 63218}, {226, 53236}, {304, 53237}, {310, 52023}, {312, 53242}, {349, 17169}, {354, 20567}, {561, 1418}, {668, 23599}, {1088, 1229}, {1441, 16708}, {1475, 41283}, {1502, 61376}, {3261, 35312}, {4572, 21104}, {4847, 57792}, {6362, 46406}, {18033, 53239}, {35519, 61241}, {40495, 63203}, {51972, 57880}, {59202, 62946}
X(63227) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 59141}, {2, 10482}, {7, 1174}, {75, 6605}, {76, 56118}, {85, 2346}, {142, 55}, {348, 47487}, {349, 56157}, {354, 41}, {658, 53243}, {693, 62747}, {1088, 1170}, {1212, 1253}, {1229, 200}, {1233, 8}, {1418, 31}, {1441, 56255}, {1475, 2175}, {1855, 7071}, {2293, 14827}, {3059, 6602}, {3160, 33634}, {3261, 62725}, {3925, 1334}, {4847, 220}, {6063, 32008}, {6067, 8012}, {6362, 657}, {6608, 57180}, {7056, 1803}, {10481, 6}, {13156, 2192}, {16708, 21}, {16713, 2328}, {17169, 284}, {18164, 2194}, {20567, 57815}, {20880, 9}, {21104, 663}, {21127, 8641}, {22053, 52425}, {23062, 61373}, {23100, 56284}, {23599, 513}, {24002, 58322}, {31526, 38835}, {35312, 101}, {46406, 6606}, {48151, 3063}, {51384, 2340}, {51972, 480}, {52023, 42}, {52621, 56322}, {53236, 333}, {53237, 19}, {53238, 2299}, {53239, 7077}, {53240, 2316}, {53241, 2195}, {53242, 57}, {55282, 3709}, {57252, 10581}, {57792, 21453}, {57880, 10509}, {59181, 1}, {59202, 37658}, {61241, 109}, {61376, 32}, {62731, 4845}, {62946, 59193}, {63203, 692}, {63218, 514}
X(63227) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4554, 31618, 17263}, {6063, 57792, 75}


X(63228) = BARYCENTRIC QUOTIENT OF X(63219) AND X(514)

Barycentrics    b*c*(b^2 - a*c)*(a*b - c^2)*(b^2 + b*c + c^2) : :

X(63228) lies on these lines: {75, 141}, {86, 38810}, {292, 17289}, {313, 1934}, {319, 7077}, {325, 3932}, {1502, 44170}, {1966, 32846}, {2345, 30669}, {3314, 33931}, {3773, 3864}, {3783, 32922}, {4562, 43099}, {4876, 17233}, {5224, 41531}, {9470, 32850}, {18895, 35538}

X(63228) = isotomic conjugate of the isogonal conjugate of X(3864)
X(63228) = X(i)-isoconjugate of X(j) for these (i,j): {659, 34069}, {825, 8632}, {870, 18892}, {985, 2210}, {1914, 40746}, {1933, 40763}, {14599, 14621}, {14602, 40738}, {23597, 32739}
X(63228) = X(i)-Dao conjugate of X(j) for these (i,j): {3789, 2210}, {10335, 56805}, {19584, 1914}, {27481, 238}, {36906, 40746}, {40619, 23597}, {61065, 659}, {62557, 985}
X(63228) = trilinear pole of line {23596, 62415}
X(63228) = barycentric product X(i)*X(j) for these {i,j}: {76, 3864}, {190, 63219}, {334, 3661}, {335, 33931}, {561, 3862}, {668, 23596}, {813, 30870}, {824, 4583}, {869, 44170}, {984, 18895}, {2276, 44172}, {3773, 40017}, {4122, 4639}, {4444, 4505}, {4562, 62415}, {6386, 30671}, {18896, 40790}
X(63228) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 40746}, {334, 14621}, {335, 985}, {660, 825}, {693, 23597}, {813, 34069}, {824, 659}, {869, 14599}, {984, 1914}, {1491, 8632}, {1916, 40763}, {1934, 40738}, {2276, 2210}, {3261, 63222}, {3314, 56805}, {3661, 238}, {3773, 2238}, {3783, 51328}, {3790, 3684}, {3797, 8300}, {3807, 3573}, {3862, 31}, {3864, 6}, {4122, 21832}, {4505, 3570}, {4518, 2344}, {4522, 4435}, {4562, 1492}, {4583, 4586}, {7146, 1428}, {7179, 1429}, {16603, 1284}, {18895, 870}, {18900, 18894}, {23596, 513}, {30671, 667}, {33931, 239}, {40728, 18892}, {40773, 5009}, {40790, 1691}, {43534, 40747}, {44170, 871}, {45782, 51321}, {51837, 34252}, {56784, 33891}, {62415, 812}, {63219, 514}


X(63229) = BARYCENTRIC QUOTIENT OF X(63221) AND X(514)

Barycentrics    b*c*(a^2 + b^2 - a*c - b*c)*(-a^2 + a*b + a*c + 2*b*c)*(-a^2 + a*b + b*c - c^2) : :

X(63229) lies on these lines: {9, 75}, {86, 4625}, {105, 16992}, {313, 56118}, {334, 36807}, {350, 14942}, {870, 40739}, {1001, 60720}, {3886, 21615}, {4366, 56896}, {4437, 20345}, {4441, 37658}, {51845, 55975}, {59202, 60735}

X(63229) = X(i)-isoconjugate of X(j) for these (i,j): {32, 62622}, {665, 8693}, {672, 2279}, {1002, 2223}, {1458, 60673}, {3126, 32724}, {9454, 27475}, {9455, 59255}, {20683, 51443}, {39258, 42302}, {40779, 52635}
X(63229) = X(i)-Dao conjugate of X(j) for these (i,j): {6376, 62622}, {33675, 27475}, {61076, 2254}, {62554, 2279}, {62599, 1002}
X(63229) = trilinear pole of line {4384, 45755}
X(63229) = barycentric product X(i)*X(j) for these {i,j}: {105, 21615}, {190, 63221}, {673, 4441}, {1001, 18031}, {2481, 4384}, {3886, 34018}, {4724, 36803}, {4762, 51560}, {13576, 60735}, {14942, 60720}, {28809, 56783}, {36796, 40719}, {45755, 46135}
X(63229) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 62622}, {105, 2279}, {294, 60673}, {666, 37138}, {673, 1002}, {1001, 672}, {1471, 52635}, {2280, 2223}, {2481, 27475}, {3261, 63223}, {3696, 3930}, {3886, 3693}, {4044, 3932}, {4384, 518}, {4441, 3912}, {4702, 14439}, {4724, 665}, {4762, 2254}, {4804, 24290}, {5228, 1458}, {6559, 59269}, {13576, 60677}, {14942, 40779}, {18031, 59255}, {21615, 3263}, {23151, 1818}, {28809, 3717}, {31926, 54407}, {34018, 62784}, {36086, 8693}, {36796, 60668}, {37658, 2340}, {40719, 241}, {42309, 34855}, {45755, 926}, {51560, 32041}, {54440, 2284}, {56783, 42290}, {59202, 51384}, {59207, 20683}, {60720, 9436}, {60721, 3286}, {60722, 9454}, {60735, 30941}, {63221, 514}
X(63229) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {673, 6559, 17277}, {2481, 36796, 75}


X(63230) = BARYCENTRIC QUOTIENT OF X(63222) AND X(514)

Barycentrics    b*(a^2 + a*b + b^2)*c*(-a^2 + b*c)*(a^2 + a*c + c^2) : :

X(63230) lies on these lines: {6, 75}, {76, 12194}, {82, 308}, {86, 1178}, {183, 1001}, {238, 1921}, {313, 983}, {350, 385}, {673, 37207}, {765, 5388}, {789, 2382}, {871, 55970}, {985, 17031}, {1428, 10030}, {3226, 32922}, {3329, 60706}, {3403, 16468}, {3733, 7199}, {3783, 5263}, {4107, 4406}, {4441, 7766}, {4479, 14614}, {4586, 53219}, {4649, 60683}, {5009, 30940}, {17289, 20148}, {37756, 43266}, {40746, 55975}, {40748, 60735}, {49706, 52151}, {51838, 57537}

X(63230) = isotomic conjugate of X(3864)
X(63230) = X(17031)-cross conjugate of X(239)
X(63230) = X(i)-isoconjugate of X(j) for these (i,j): {6, 3862}, {31, 3864}, {101, 30671}, {291, 869}, {292, 2276}, {334, 18900}, {335, 40728}, {660, 788}, {813, 3250}, {875, 3799}, {984, 1911}, {1469, 7077}, {1491, 34067}, {1922, 3661}, {1967, 40790}, {3774, 37128}, {3797, 51856}, {4562, 46386}, {4583, 8630}, {4876, 56556}, {7146, 51858}, {7179, 18265}, {14598, 33931}, {16514, 52205}, {23596, 32739}, {40730, 52029}, {40736, 40848}, {51973, 52655}
X(63230) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 3864}, {9, 3862}, {1015, 30671}, {1966, 3797}, {6651, 984}, {8290, 40790}, {18277, 33931}, {19557, 2276}, {35119, 1491}, {39028, 3661}, {39029, 869}, {40619, 23596}, {40623, 3250}, {62443, 660}, {62552, 4475}, {62553, 3773}
X(63230) = trilinear pole of line {3766, 4107}
X(63230) = crossdifference of every pair of points on line {788, 3774}
X(63230) = barycentric product X(i)*X(j) for these {i,j}: {190, 63222}, {239, 870}, {350, 14621}, {659, 37133}, {668, 23597}, {789, 812}, {871, 1914}, {874, 4817}, {985, 1921}, {1447, 52652}, {1966, 40738}, {2344, 18033}, {3113, 33891}, {3114, 56805}, {3766, 4586}, {3978, 40763}, {4375, 41072}, {5388, 27846}, {8632, 46132}, {10030, 52133}, {18891, 40746}, {27855, 37207}, {30940, 40718}
X(63230) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3862}, {2, 3864}, {238, 2276}, {239, 984}, {350, 3661}, {385, 40790}, {513, 30671}, {659, 3250}, {693, 23596}, {789, 4562}, {812, 1491}, {825, 34067}, {870, 335}, {871, 18895}, {874, 3807}, {985, 292}, {1428, 56556}, {1429, 1469}, {1447, 7146}, {1492, 813}, {1914, 869}, {1921, 33931}, {2210, 40728}, {2344, 7077}, {3261, 63219}, {3570, 3799}, {3684, 4517}, {3747, 3774}, {3766, 824}, {3948, 3773}, {3975, 3790}, {4107, 3805}, {4164, 45882}, {4366, 3783}, {4375, 30665}, {4586, 660}, {4817, 876}, {6652, 3802}, {6654, 52029}, {8300, 16514}, {8632, 788}, {10030, 7179}, {14599, 18900}, {14621, 291}, {19625, 32931}, {20142, 40774}, {20769, 3781}, {23597, 513}, {27853, 4505}, {27855, 4486}, {27918, 4475}, {27950, 3792}, {30940, 30966}, {33295, 40773}, {33891, 51836}, {34252, 52655}, {37133, 4583}, {39044, 3797}, {39914, 45782}, {40738, 1581}, {40745, 18787}, {40746, 1911}, {40763, 694}, {52133, 4876}, {52136, 41531}, {52652, 4518}, {56805, 3094}, {62785, 7204}, {63222, 514}
X(63230) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {870, 52652, 75}, {14621, 52136, 6}


X(63231) = BARYCENTRIC QUOTIENT OF X(63223) AND X(514)

Barycentrics    b*c*(-(a*b) + b^2 - 2*a*c - b*c)*(2*a*b + a*c + b*c - c^2)*(-(a*b) + b^2 - a*c + c^2) : :

X(63231) lies on these lines: {69, 59269}, {75, 142}, {86, 2340}, {313, 20567}, {344, 40779}, {350, 36807}, {1002, 30962}, {3261, 4086}, {3263, 4437}, {3717, 18157}, {3932, 40704}, {17264, 32041}, {18025, 33677}, {30758, 60668}, {59260, 62946}

X(63231) = X(i)-isoconjugate of X(j) for these (i,j): {105, 60722}, {1438, 2280}, {1471, 2195}, {4724, 32666}
X(63231) = X(i)-Dao conjugate of X(j) for these (i,j): {6184, 2280}, {17755, 1001}, {35094, 4724}, {36905, 5228}, {39046, 60722}, {39063, 1471}, {62587, 4384}
X(63231) = trilinear pole of line {53583, 63223}
X(63231) = barycentric product X(i)*X(j) for these {i,j}: {75, 62622}, {190, 63223}, {3263, 27475}, {3717, 62946}, {3912, 59255}, {40704, 60668}, {53227, 53583}, {59260, 62786}
X(63231) = barycentric quotient X(i)/X(j) for these {i,j}: {241, 1471}, {518, 2280}, {672, 60722}, {918, 4724}, {1002, 1438}, {3261, 63221}, {3263, 4384}, {3717, 37658}, {3912, 1001}, {3932, 59207}, {8693, 32666}, {9436, 5228}, {27475, 105}, {30941, 60721}, {32041, 36086}, {37138, 919}, {40704, 40719}, {40779, 2195}, {42290, 1416}, {42720, 54440}, {50333, 45755}, {51384, 59217}, {59255, 673}, {59260, 6559}, {60668, 294}, {60677, 56853}, {62622, 1}, {62784, 1462}, {62786, 59242}, {62946, 56783}, {63223, 514}


X(63232) = BARYCENTRIC QUOTIENT OF X(63224) AND X(514)

Barycentrics    (a*b + a*c - b*c)*(a^2*b + a*b^2 + a^2*c + b^2*c)*(a^2*b + a^2*c + a*c^2 + b*c^2) : :

X(63232) lies on these lines: {6, 330}, {37, 257}, {43, 75}, {192, 53145}, {594, 53675}, {2998, 36645}, {3226, 57399}, {4360, 41527}, {6376, 53676}, {7034, 40088}, {7233, 24471}, {33296, 51902}, {40409, 55947}

X(63232) = isotomic conjugate of the complement of X(43225)
X(63232) = X(1258)-Ceva conjugate of X(40418)
X(63232) = X(i)-cross conjugate of X(j) for these (i,j): {3971, 60230}, {50491, 4595}
X(63232) = X(i)-isoconjugate of X(j) for these (i,j): {32, 61417}, {86, 45209}, {87, 2309}, {274, 45217}, {330, 1197}, {932, 50510}, {1107, 2162}, {3741, 7121}, {16738, 21759}, {18169, 23493}, {30097, 57264}, {43931, 53268}, {45216, 53678}
X(63232) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 20891}, {6376, 61417}, {40598, 3741}, {40600, 45209}
X(63232) = cevapoint of X(i) and X(j) for these (i,j): {2, 43225}, {43, 17752}, {3971, 53675}
X(63232) = trilinear pole of line {3835, 26776}
X(63232) = barycentric product X(i)*X(j) for these {i,j}: {43, 1221}, {190, 63224}, {192, 40418}, {1258, 6376}, {3971, 40409}, {6382, 57399}, {23886, 59094}, {33296, 60230}
X(63232) = barycentric quotient X(i)/X(j) for these {i,j}: {43, 1107}, {75, 61417}, {192, 3741}, {213, 45209}, {1221, 6384}, {1258, 87}, {1918, 45217}, {2176, 2309}, {2209, 1197}, {3212, 30097}, {3971, 21024}, {4595, 53338}, {6376, 20891}, {17752, 51575}, {20284, 23473}, {20691, 3728}, {20760, 22065}, {20979, 50510}, {27644, 18169}, {33296, 16738}, {40418, 330}, {50491, 40627}, {52923, 61234}, {53145, 45216}, {53675, 59565}, {57399, 2162}, {59094, 32039}, {59102, 34071}, {60230, 42027}, {62537, 18091}, {63224, 514}


X(63233) = BARYCENTRIC QUOTIENT OF X(63217) AND X(693)

Barycentrics    (2*a - b - c)*(2*a + 2*b - c)*(2*a - b + 2*c) : :

X(63233) lies on these lines: {2, 44}, {88, 40833}, {190, 36591}, {239, 4597}, {514, 1635}, {519, 678}, {551, 17450}, {903, 2161}, {996, 1150}, {1000, 2320}, {1016, 5385}, {1227, 4358}, {2726, 4588}, {3306, 21373}, {3911, 41801}, {4448, 34764}, {4604, 37222}, {6630, 40891}, {8028, 49701}, {16610, 39982}, {16704, 16723}, {16975, 30644}, {17495, 39699}, {17740, 31145}, {20569, 24589}, {27754, 37684}, {30577, 62413}, {32013, 37633}, {34234, 40437}, {35170, 43757}, {36914, 62669}, {36915, 62621}, {36954, 41141}, {37680, 40400}, {55979, 63060}

X(63233) = isotomic conjugate of X(4945)
X(63233) = anticomplement of X(27751)
X(63233) = X(40833)-Ceva conjugate of X(39704)
X(63233) = X(62620)-cross conjugate of X(4358)
X(63233) = X(i)-isoconjugate of X(j) for these (i,j): {6, 4792}, {31, 4945}, {45, 106}, {88, 2177}, {101, 23352}, {649, 52925}, {692, 23598}, {901, 4893}, {1320, 1405}, {1417, 4873}, {2099, 2316}, {2251, 36594}, {3257, 4775}, {3679, 9456}, {3940, 8752}, {4273, 4674}, {4591, 4770}, {4752, 23345}, {4777, 32665}, {4791, 32719}, {32739, 63216}
X(63233) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 4945}, {9, 4792}, {44, 4867}, {214, 45}, {519, 4908}, {1015, 23352}, {1086, 23598}, {3936, 27757}, {4370, 3679}, {5375, 52925}, {9460, 36594}, {35092, 4777}, {38979, 4893}, {40619, 63216}, {51402, 4944}, {52659, 5219}, {52871, 4873}, {55055, 4775}, {62571, 4671}
X(63233) = cevapoint of X(i) and X(j) for these (i,j): {1647, 14435}, {22560, 55432}
X(63233) = crosspoint of X(39704) and X(40833)
X(63233) = trilinear pole of line {900, 3251}
X(63233) = crossdifference of every pair of points on line {2177, 4775}
X(63233) = barycentric product X(i)*X(j) for these {i,j}: {44, 20569}, {89, 4358}, {100, 63217}, {519, 39704}, {693, 52924}, {900, 4597}, {2163, 3264}, {3762, 4604}, {3911, 30608}, {4370, 40833}, {16704, 30588}, {17780, 52620}, {30939, 53114}, {40426, 62620}, {46109, 55979}, {55243, 55246}, {56094, 62789}
X(63233) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 4792}, {2, 4945}, {44, 45}, {89, 88}, {100, 52925}, {214, 4867}, {513, 23352}, {514, 23598}, {519, 3679}, {693, 63216}, {900, 4777}, {902, 2177}, {903, 36594}, {1023, 4752}, {1145, 51362}, {1317, 36920}, {1319, 2099}, {1404, 1405}, {1635, 4893}, {1639, 4944}, {1960, 4775}, {2163, 106}, {2320, 1320}, {2325, 4873}, {2364, 2316}, {3241, 36593}, {3285, 4273}, {3689, 3711}, {3762, 4791}, {3911, 5219}, {3992, 4125}, {4120, 4931}, {4358, 4671}, {4370, 4908}, {4432, 4693}, {4448, 4800}, {4588, 901}, {4597, 4555}, {4604, 3257}, {4730, 4770}, {4895, 4814}, {4922, 4774}, {4975, 4717}, {5298, 4870}, {5385, 5376}, {5440, 3940}, {5549, 5548}, {16704, 5235}, {17780, 4767}, {20569, 20568}, {23888, 21130}, {28607, 9456}, {29908, 4363}, {30583, 28603}, {30588, 4080}, {30608, 4997}, {30725, 43052}, {34073, 32665}, {36944, 36921}, {39704, 903}, {40833, 54974}, {41801, 36589}, {51583, 27757}, {52620, 6548}, {52680, 4653}, {52901, 52900}, {52924, 100}, {53114, 4674}, {55243, 55245}, {55246, 55244}, {55979, 1797}, {62789, 62780}, {63217, 693}
X(63233) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 89, 39704}, {2, 30564, 16590}, {2, 39704, 30588}, {89, 30608, 30588}, {16590, 58414, 2}, {30608, 39704, 2}


X(63234) = BARYCENTRIC QUOTIENT OF X(63219) AND X(693)

Barycentrics    (b^2 - a*c)*(a*b - c^2)*(b^2 + b*c + c^2) : :

X(63234) lies on these lines: {2, 38}, {81, 4621}, {292, 62803}, {321, 1916}, {334, 3263}, {337, 30669}, {561, 8024}, {612, 18787}, {660, 37208}, {813, 9075}, {876, 31131}, {1911, 3920}, {1959, 3930}, {3219, 51858}, {3314, 33931}, {3661, 3864}, {3681, 7077}, {3807, 3862}, {4444, 21115}, {4486, 30671}, {4562, 43097}, {5276, 40740}, {5992, 6653}, {16514, 33854}, {28606, 51973}, {29593, 40848}, {30997, 33891}, {51225, 60459}

X(63234) = isotomic conjugate of the isogonal conjugate of X(3862)
X(63234) = X(i)-isoconjugate of X(j) for these (i,j): {238, 40746}, {659, 825}, {692, 23597}, {812, 34069}, {870, 14599}, {871, 18894}, {985, 1914}, {1428, 2344}, {1492, 8632}, {1691, 40763}, {1933, 40738}, {2210, 14621}, {5009, 40747}, {18898, 56805}, {32739, 63222}, {40745, 61385}
X(63234) = X(i)-Dao conjugate of X(j) for these (i,j): {1086, 23597}, {3789, 1914}, {9470, 40746}, {10335, 33891}, {19584, 238}, {27481, 239}, {36906, 985}, {38995, 8632}, {40619, 63222}, {61065, 812}, {62557, 14621}
X(63234) = trilinear pole of line {824, 3773}
X(63234) = barycentric product X(i)*X(j) for these {i,j}: {75, 3864}, {76, 3862}, {100, 63219}, {190, 23596}, {291, 33931}, {334, 984}, {335, 3661}, {660, 62415}, {824, 4562}, {869, 44172}, {876, 4505}, {1491, 4583}, {1934, 40790}, {1978, 30671}, {2276, 18895}, {3773, 18827}, {3790, 7233}, {3797, 40098}, {3807, 4444}, {4122, 4589}, {4518, 7179}, {16603, 36800}, {30870, 34067}, {30966, 43534}, {40728, 44170}, {40848, 51837}
X(63234) = barycentric quotient X(i)/X(j) for these {i,j}: {291, 985}, {292, 40746}, {334, 870}, {335, 14621}, {514, 23597}, {660, 1492}, {693, 63222}, {813, 825}, {824, 812}, {869, 2210}, {984, 238}, {1469, 1428}, {1491, 659}, {1581, 40763}, {1916, 40738}, {2276, 1914}, {3250, 8632}, {3314, 33891}, {3661, 239}, {3736, 5009}, {3773, 740}, {3774, 41333}, {3775, 4974}, {3781, 7193}, {3783, 8300}, {3790, 3685}, {3797, 4366}, {3799, 3573}, {3805, 4164}, {3807, 3570}, {3862, 6}, {3864, 1}, {4122, 4010}, {4439, 4432}, {4444, 4817}, {4475, 27846}, {4481, 50456}, {4486, 4375}, {4505, 874}, {4518, 52133}, {4522, 3716}, {4562, 4586}, {4583, 789}, {4818, 4830}, {4876, 2344}, {4951, 4800}, {5378, 5384}, {7146, 1429}, {7179, 1447}, {16514, 51328}, {16603, 16609}, {18900, 18892}, {23596, 514}, {27495, 20142}, {30669, 40745}, {30671, 649}, {30966, 33295}, {31909, 31905}, {33931, 350}, {34067, 34069}, {40728, 14599}, {40790, 1580}, {40848, 52136}, {43534, 40718}, {44172, 871}, {45782, 34252}, {51836, 56805}, {51837, 39914}, {52655, 51321}, {62415, 3766}, {63219, 693}
X(63234) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {335, 4518, 2}, {40217, 43534, 335}


X(63235) = BARYCENTRIC QUOTIENT OF X(63220) AND X(693)

Barycentrics    (b + c)*(-a^2 + b^2 + c^2)*(-(a^2*b) + b^3 - 2*a^2*c - 2*a*b*c - 2*a*c^2 - b*c^2)*(2*a^2*b + 2*a*b^2 + a^2*c + 2*a*b*c + b^2*c - c^3) : :

X(63235) lies on these lines: {2, 72}, {8, 57874}, {37, 57858}, {69, 3998}, {78, 57876}, {81, 3990}, {253, 6360}, {264, 321}, {306, 52387}, {1257, 40414}, {1441, 26942}, {1494, 54970}, {2215, 5227}, {2287, 40406}, {2335, 26872}, {2373, 36080}, {7100, 57860}, {32782, 57831}, {32858, 57820}

X(63235) = X(i)-isoconjugate of X(j) for these (i,j): {6, 56831}, {27, 5320}, {112, 46385}, {284, 54394}, {405, 1474}, {1172, 1451}, {1333, 39585}, {1882, 2150}, {2203, 5271}, {2299, 37543}, {23882, 32676}, {46382, 52920}
X(63235) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 56831}, {37, 39585}, {226, 37543}, {15526, 23882}, {34591, 46385}, {40590, 54394}, {51574, 405}, {56325, 1882}, {62564, 5271}, {62614, 44140}
X(63235) = trilinear pole of line {525, 57109}
X(63235) = barycentric product X(i)*X(j) for these {i,j}: {72, 57831}, {100, 63220}, {525, 54970}, {1231, 2335}, {2215, 40071}, {3267, 36080}, {20336, 51223}
X(63235) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 56831}, {10, 39585}, {12, 1882}, {65, 54394}, {72, 405}, {73, 1451}, {228, 5320}, {306, 5271}, {525, 23882}, {656, 46385}, {1214, 37543}, {2215, 1474}, {2335, 1172}, {3695, 5295}, {15413, 15417}, {20336, 44140}, {36077, 52920}, {36080, 112}, {51223, 28}, {51875, 30733}, {54970, 648}, {57831, 286}, {63220, 693}


X(63236) = BARYCENTRIC QUOTIENT OF X(63221) AND X(693)

Barycentrics    (a^2 - a*b - a*c - 2*b*c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2) : :

X(63236) lies on these lines: {2, 11}, {31, 24600}, {81, 1462}, {239, 294}, {321, 6605}, {335, 1280}, {1438, 54419}, {1814, 43190}, {2280, 40719}, {3935, 46798}, {4384, 54440}, {4393, 56895}, {4441, 37658}, {4453, 62635}, {4712, 17738}, {5276, 62697}, {6652, 32096}, {9436, 24712}, {14621, 40757}, {17014, 56783}, {20553, 51384}, {26626, 31637}, {26981, 35990}, {27484, 51352}, {28132, 30565}, {29590, 62599}, {29616, 56088}, {41140, 61477}, {43930, 47871}, {51351, 55937}

X(63236) = isotomic conjugate of X(62622)
X(63236) = X(i)-isoconjugate of X(j) for these (i,j): {31, 62622}, {241, 60673}, {518, 2279}, {665, 37138}, {672, 1002}, {1458, 40779}, {2223, 27475}, {2254, 8693}, {2340, 42290}, {3126, 36138}, {3286, 60677}, {3930, 51443}, {9454, 59255}, {20683, 42302}, {32724, 53583}, {32739, 63223}, {52635, 60668}
X(63236) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 62622}, {33675, 59255}, {39012, 3126}, {40619, 63223}, {55059, 24290}, {61076, 918}, {62554, 1002}, {62599, 27475}
X(63236) = trilinear pole of line {1001, 4762}
X(63236) = barycentric product X(i)*X(j) for these {i,j}: {100, 63221}, {105, 4441}, {294, 60720}, {666, 4762}, {673, 4384}, {1001, 2481}, {1438, 21615}, {1462, 28809}, {2280, 18031}, {3886, 56783}, {4724, 51560}, {5228, 36796}, {6559, 42309}, {14942, 40719}, {18785, 60735}, {23151, 54235}, {34018, 37658}, {34085, 45755}
X(63236) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 62622}, {105, 1002}, {294, 40779}, {666, 32041}, {673, 27475}, {693, 63223}, {919, 8693}, {1001, 518}, {1438, 2279}, {1462, 42290}, {1471, 1458}, {2195, 60673}, {2280, 672}, {2481, 59255}, {3696, 3932}, {3886, 3717}, {4384, 3912}, {4441, 3263}, {4724, 2254}, {4762, 918}, {4804, 4088}, {5228, 241}, {14942, 60668}, {18785, 60677}, {23151, 25083}, {28071, 59269}, {31926, 15149}, {34018, 62946}, {36086, 37138}, {37658, 3693}, {40719, 9436}, {42309, 62786}, {54440, 1026}, {56783, 62784}, {59207, 3930}, {59242, 34855}, {60720, 40704}, {60721, 18206}, {60722, 2223}, {60735, 18157}, {63221, 693}
X(63236) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 41845, 52164}, {105, 28071, 1621}, {673, 6654, 105}, {673, 14942, 2}, {13576, 52210, 673}


X(63237) = BARYCENTRIC QUOTIENT OF X(63222) AND X(693)

Barycentrics    (a^2 + a*b + b^2)*(a^2 - b*c)*(a^2 + a*c + c^2) : :

X(63237) lies on these lines: {2, 31}, {6, 24574}, {81, 32010}, {105, 30664}, {183, 21793}, {239, 1281}, {251, 3112}, {321, 2205}, {350, 385}, {593, 873}, {789, 9111}, {825, 9073}, {870, 16998}, {1252, 7035}, {2280, 2344}, {3329, 60697}, {3776, 4817}, {4164, 47762}, {4384, 51291}, {4455, 26249}, {4586, 18822}, {4613, 20045}, {5057, 5990}, {5276, 16514}, {6654, 27914}, {14614, 20162}, {16826, 60686}, {20332, 33854}, {29586, 40722}, {30179, 33075}, {33295, 33891}, {40739, 62622}

X(63237) = isogonal conjugate of X(3862)
X(63237) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3862}, {6, 3864}, {100, 30671}, {291, 2276}, {292, 984}, {334, 40728}, {335, 869}, {660, 3250}, {692, 23596}, {694, 40790}, {788, 4562}, {813, 1491}, {824, 34067}, {875, 3807}, {1469, 4876}, {1911, 3661}, {1922, 33931}, {3252, 52029}, {3572, 3799}, {3773, 18268}, {3774, 18827}, {3783, 52205}, {4518, 56556}, {4583, 46386}, {7077, 7146}, {7179, 51858}, {16514, 30663}, {18895, 18900}, {32739, 63219}, {41531, 52655}, {45782, 51973}
X(63237) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3862}, {9, 3864}, {1086, 23596}, {6651, 3661}, {8054, 30671}, {16591, 16603}, {19557, 984}, {35068, 3773}, {35119, 824}, {39028, 33931}, {39029, 2276}, {39043, 40790}, {40619, 63219}, {40623, 1491}, {62443, 4562}, {62558, 4475}
X(63237) = crosssum of X(3783) and X(40790)
X(63237) = trilinear pole of line {812, 4164}
X(63237) = crossdifference of every pair of points on line {3250, 30671}
X(63237) = barycentric product X(i)*X(j) for these {i,j}: {100, 63222}, {190, 23597}, {238, 870}, {239, 14621}, {350, 985}, {385, 40738}, {659, 789}, {812, 4586}, {871, 2210}, {1429, 52652}, {1447, 52133}, {1492, 3766}, {1921, 40746}, {1966, 40763}, {2344, 10030}, {3113, 56805}, {3407, 33891}, {3570, 4817}, {4375, 37207}, {8632, 37133}, {14296, 30670}, {17493, 40745}, {27855, 30664}, {30940, 40747}, {33295, 40718}, {39914, 52136}
X(63237) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 3864}, {6, 3862}, {238, 984}, {239, 3661}, {350, 33931}, {514, 23596}, {649, 30671}, {659, 1491}, {693, 63219}, {740, 3773}, {789, 4583}, {812, 824}, {825, 813}, {870, 334}, {871, 44172}, {874, 4505}, {985, 291}, {1428, 1469}, {1429, 7146}, {1447, 7179}, {1492, 660}, {1580, 40790}, {1914, 2276}, {2210, 869}, {2344, 4876}, {3570, 3807}, {3573, 3799}, {3685, 3790}, {3716, 4522}, {3766, 62415}, {4010, 4122}, {4164, 3805}, {4366, 3797}, {4375, 4486}, {4432, 4439}, {4586, 4562}, {4800, 4951}, {4817, 4444}, {4830, 4818}, {4974, 3775}, {5009, 3736}, {5384, 5378}, {7193, 3781}, {8300, 3783}, {8632, 3250}, {14599, 40728}, {14621, 335}, {16609, 16603}, {18892, 18900}, {20142, 27495}, {23597, 514}, {27846, 4475}, {31905, 31909}, {33295, 30966}, {33891, 3314}, {34069, 34067}, {34252, 45782}, {39914, 51837}, {40718, 43534}, {40738, 1916}, {40745, 30669}, {40746, 292}, {40763, 1581}, {41333, 3774}, {50456, 4481}, {51321, 52655}, {51328, 16514}, {52133, 4518}, {52136, 40848}, {56805, 51836}, {63222, 693}
X(63237) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {870, 40746, 40745}, {14621, 52133, 2}


X(63238) = BARYCENTRIC QUOTIENT OF X(63224) AND X(693)

Barycentrics    a*(a*b + a*c - b*c)*(a^2*b + a*b^2 + a^2*c + b^2*c)*(a^2*b + a^2*c + a*c^2 + b*c^2) : :

X(63238) lies on these lines: {2, 1258}, {31, 87}, {42, 256}, {100, 7168}, {192, 53145}, {756, 17038}, {9082, 59102}, {17752, 31008}, {27644, 51319}, {33779, 40409}

X(63238) = isotomic conjugate of X(61417)
X(63238) = X(57399)-Ceva conjugate of X(1258)
X(63238) = X(i)-isoconjugate of X(j) for these (i,j): {31, 61417}, {87, 1107}, {274, 45209}, {310, 45217}, {330, 2309}, {1197, 6384}, {2053, 30097}, {2162, 3741}, {4598, 50510}, {7121, 20891}, {16606, 18169}, {16738, 23493}, {40627, 56053}, {43931, 61234}, {45216, 53677}, {51575, 51974}, {53146, 59565}
X(63238) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 61417}, {40598, 20891}
X(63238) = cevapoint of X(i) and X(j) for these (i,j): {2176, 51902}, {20691, 53676}
X(63238) = barycentric product X(i)*X(j) for these {i,j}: {43, 40418}, {100, 63224}, {192, 1258}, {1221, 2176}, {6376, 57399}, {20691, 40409}, {20906, 59102}, {25142, 59094}, {27644, 60230}
X(63238) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 61417}, {43, 3741}, {192, 20891}, {1221, 6383}, {1258, 330}, {1423, 30097}, {1918, 45209}, {2176, 1107}, {2205, 45217}, {2209, 2309}, {8640, 50510}, {20691, 21024}, {27644, 16738}, {38832, 18169}, {40418, 6384}, {51902, 51575}, {52923, 53338}, {53676, 59565}, {56806, 23473}, {57399, 87}, {59102, 932}, {60230, 60244}, {62420, 1197}, {63224, 693}


X(63239) = BARYCENTRIC QUOTIENT OF X(63225) AND X(513)

Barycentrics    b*c*(-a + b + c)*(a^2 - 2*a*b + b^2 - a*c - b*c)*(-a^2 + a*b + 2*a*c + b*c - c^2) : :

X(63239) lies on these lines: {8, 59260}, {76, 346}, {274, 3693}, {304, 42311}, {312, 728}, {341, 3886}, {668, 51972}, {1170, 32017}, {4515, 36796}, {7017, 42032}, {7323, 30854}, {28809, 59761}, {33939, 57996}

X(63239) = isotomic conjugate of X(1418)
X(63239) = isotomic conjugate of the isogonal conjugate of X(6605)
X(63239) = X(i)-cross conjugate of X(j) for these (i,j): {4163, 668}, {35519, 646}, {56118, 57815}
X(63239) = X(i)-isoconjugate of X(j) for these (i,j): {6, 61376}, {31, 1418}, {32, 10481}, {56, 1475}, {142, 1397}, {222, 40983}, {269, 20229}, {354, 604}, {560, 59181}, {608, 22053}, {667, 63203}, {1106, 1212}, {1233, 41280}, {1402, 18164}, {1407, 2293}, {1408, 21808}, {1412, 52020}, {1415, 48151}, {1435, 22079}, {1461, 2488}, {1827, 7099}, {1919, 35312}, {2206, 52023}, {3059, 7366}, {3925, 16947}, {4847, 52410}, {6614, 10581}, {7023, 8012}, {9247, 53237}, {9447, 53242}, {35326, 43924}, {35338, 57181}
X(63239) = X(i)-Dao conjugate of X(j) for these (i,j): {1, 1475}, {2, 1418}, {9, 61376}, {1146, 48151}, {2968, 21127}, {3161, 354}, {6374, 59181}, {6376, 10481}, {6552, 1212}, {6600, 20229}, {6631, 63203}, {9296, 35312}, {24771, 2293}, {35508, 2488}, {40599, 52020}, {40603, 52023}, {40605, 18164}, {40624, 21104}, {59577, 21808}, {62576, 53237}, {62585, 142}, {62647, 22053}
X(63239) = cevapoint of X(312) and X(346)
X(63239) = trilinear pole of line {4397, 62725}
X(63239) = barycentric product X(i)*X(j) for these {i,j}: {8, 57815}, {75, 56118}, {76, 6605}, {312, 32008}, {314, 56157}, {333, 56127}, {341, 21453}, {346, 31618}, {561, 10482}, {646, 56322}, {668, 62725}, {1170, 59761}, {1174, 28659}, {1502, 59141}, {1978, 62747}, {2346, 3596}, {4086, 55281}, {4397, 6606}, {5423, 42311}, {10509, 30693}, {28660, 56255}, {28809, 42310}, {56284, 57950}
X(63239) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 61376}, {2, 1418}, {8, 354}, {9, 1475}, {33, 40983}, {75, 10481}, {76, 59181}, {78, 22053}, {190, 63203}, {200, 2293}, {210, 52020}, {220, 20229}, {264, 53237}, {312, 142}, {314, 17169}, {321, 52023}, {333, 18164}, {341, 4847}, {346, 1212}, {522, 48151}, {644, 35326}, {668, 35312}, {728, 8012}, {1043, 17194}, {1170, 1407}, {1174, 604}, {1260, 22079}, {1803, 7099}, {2321, 21808}, {2346, 56}, {3239, 21127}, {3261, 23599}, {3596, 20880}, {3699, 35338}, {3701, 3925}, {3886, 59217}, {3900, 2488}, {3996, 55340}, {4082, 21039}, {4086, 55282}, {4130, 10581}, {4163, 6608}, {4391, 21104}, {4397, 6362}, {4515, 21795}, {4554, 61241}, {4651, 43915}, {4723, 51463}, {5423, 3059}, {6063, 53242}, {6558, 35341}, {6605, 6}, {6606, 934}, {7046, 1827}, {7101, 1855}, {10482, 31}, {10509, 738}, {21453, 269}, {27538, 61034}, {28659, 1233}, {28660, 16708}, {30693, 51972}, {30730, 35310}, {31618, 279}, {31623, 53238}, {32008, 57}, {34404, 13156}, {36796, 53241}, {40072, 53236}, {40443, 7053}, {40495, 63218}, {42310, 42290}, {42311, 479}, {47487, 603}, {55281, 1414}, {56118, 1}, {56127, 226}, {56157, 65}, {56255, 1400}, {56284, 764}, {56322, 3669}, {57815, 7}, {58322, 43924}, {59141, 32}, {59475, 61373}, {59761, 1229}, {60229, 1427}, {61373, 7023}, {62725, 513}, {62728, 6610}, {62747, 649}
X(63239) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {312, 728, 17143}, {32008, 56127, 57815}


X(63240) = BARYCENTRIC QUOTIENT OF X(63217) AND X(513)

Barycentrics    b^2*(-2*a + b - 2*c)*(2*a + 2*b - c)*c^2*(-2*a + b + c) : :

X(63240) lies on these lines: {76, 4358}, {668, 36919}, {3261, 3762}, {3264, 4738}, {3834, 20568}, {4506, 31625}, {4597, 53218}, {18145, 36805}, {18359, 20924}, {20925, 21592}, {39704, 58027}

X(63240) = X(i)-isoconjugate of X(j) for these (i,j): {32, 4792}, {560, 4945}, {1919, 52925}, {2177, 9456}, {4775, 32665}, {4893, 32719}, {23352, 32739}
X(63240) = X(i)-Dao conjugate of X(j) for these (i,j): {4370, 2177}, {6374, 4945}, {6376, 4792}, {9296, 52925}, {35092, 4775}, {40619, 23352}, {52659, 1405}, {62571, 45}
X(63240) = barycentric product X(i)*X(j) for these {i,j}: {668, 63217}, {3264, 39704}, {4358, 20569}, {36791, 40833}, {40495, 52924}
X(63240) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 4792}, {76, 4945}, {89, 9456}, {519, 2177}, {668, 52925}, {693, 23352}, {900, 4775}, {1227, 4867}, {3261, 23598}, {3264, 3679}, {3762, 4893}, {3911, 1405}, {4358, 45}, {4588, 32719}, {4597, 901}, {4604, 32665}, {4723, 3711}, {4768, 4814}, {16704, 4273}, {20569, 88}, {24004, 4752}, {29908, 2242}, {30608, 2316}, {30939, 4653}, {36791, 4908}, {39704, 106}, {40495, 63216}, {40833, 2226}, {52620, 23345}, {52924, 692}, {55979, 32659}, {57995, 36594}, {62620, 20973}, {63217, 513}


X(63241) = BARYCENTRIC QUOTIENT OF X(63219) AND X(513)

Barycentrics    b^2*c^2*(b^2 - a*c)*(a*b - c^2)*(b^2 + b*c + c^2) : :

X(63241) lies on these lines: {76, 334}, {274, 40834}, {291, 33941}, {1928, 44170}, {4518, 33932}, {4876, 33939}, {18036, 46238}, {18896, 27801}, {33935, 40848}

X(63241) = X(i)-isoconjugate of X(j) for these (i,j): {870, 18894}, {985, 14599}, {2210, 40746}, {8632, 34069}, {14602, 40763}, {14621, 18892}
X(63241) = X(i)-Dao conjugate of X(j) for these (i,j): {3789, 14599}, {19584, 2210}, {27481, 1914}, {61065, 8632}, {62557, 40746}
X(63241) = barycentric product X(i)*X(j) for these {i,j}: {334, 33931}, {561, 3864}, {660, 30870}, {668, 63219}, {984, 44172}, {1502, 3862}, {1978, 23596}, {2276, 44170}, {3661, 18895}, {4583, 62415}
X(63241) = barycentric quotient X(i)/X(j) for these {i,j}: {334, 985}, {335, 40746}, {660, 34069}, {824, 8632}, {869, 18892}, {984, 2210}, {1934, 40763}, {2276, 14599}, {3261, 23597}, {3661, 1914}, {3773, 3747}, {3797, 51328}, {3862, 32}, {3864, 31}, {4122, 4455}, {4505, 3573}, {4562, 825}, {4583, 1492}, {7179, 1428}, {18895, 14621}, {18896, 40738}, {23596, 649}, {30671, 1919}, {30870, 3766}, {30966, 5009}, {33931, 238}, {40495, 63222}, {40728, 18894}, {40790, 1933}, {44172, 870}, {51837, 51321}, {56784, 56805}, {62415, 659}, {63219, 513}


X(63242) = BARYCENTRIC QUOTIENT OF X(63222) AND X(513)

Barycentrics    b^2*(a^2 + a*b + b^2)*c^2*(-a^2 + b*c)*(a^2 + a*c + c^2) : :

X(63242) lies on these lines: {1, 76}, {83, 18833}, {213, 3114}, {238, 1921}, {239, 3978}, {274, 33891}, {789, 14665}, {871, 14621}, {1016, 5388}, {1019, 4817}, {1429, 18033}, {1509, 57992}, {2481, 41072}, {3403, 4384}, {3797, 39971}, {4378, 14296}, {4393, 20023}, {16816, 63170}, {16826, 60707}, {18205, 30940}, {20963, 40752}, {21615, 52138}, {35172, 46132}, {60683, 60719}

X(63242) = isotomic conjugate of X(3862)
X(63242) = X(i)-isoconjugate of X(j) for these (i,j): {31, 3862}, {32, 3864}, {291, 40728}, {292, 869}, {335, 18900}, {660, 46386}, {692, 30671}, {741, 3774}, {788, 813}, {984, 1922}, {1469, 51858}, {1911, 2276}, {3250, 34067}, {3661, 14598}, {3783, 51856}, {3797, 18267}, {4562, 8630}, {7077, 56556}, {7146, 18265}, {9468, 40790}, {18897, 33931}, {40736, 41531}
X(63242) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 3862}, {1086, 30671}, {1966, 3783}, {6376, 3864}, {6651, 2276}, {8299, 3774}, {18277, 3661}, {19557, 869}, {35119, 3250}, {39028, 984}, {39029, 40728}, {39044, 40790}, {40623, 788}, {62443, 813}
X(63242) = trilinear pole of line {659, 14296}
X(63242) = barycentric product X(i)*X(j) for these {i,j}: {238, 871}, {350, 870}, {659, 46132}, {668, 63222}, {789, 3766}, {812, 37133}, {985, 18891}, {1921, 14621}, {1926, 40763}, {1978, 23597}, {3114, 33891}, {3978, 40738}, {4817, 27853}, {5388, 27918}, {8632, 52611}, {10030, 52652}, {18033, 52133}, {27855, 41072}, {40746, 44169}, {46281, 56805}
X(63242) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 3862}, {75, 3864}, {238, 869}, {239, 2276}, {350, 984}, {514, 30671}, {659, 788}, {789, 660}, {812, 3250}, {870, 291}, {871, 334}, {874, 3799}, {985, 1911}, {1429, 56556}, {1447, 1469}, {1492, 34067}, {1914, 40728}, {1921, 3661}, {1966, 40790}, {2210, 18900}, {2238, 3774}, {2344, 51858}, {3261, 23596}, {3685, 4517}, {3766, 1491}, {3863, 42061}, {4087, 3790}, {4107, 45882}, {4164, 58862}, {4366, 16514}, {4586, 813}, {4817, 3572}, {8632, 46386}, {10030, 7146}, {14296, 3805}, {14621, 292}, {18033, 7179}, {18891, 33931}, {23597, 649}, {27853, 3807}, {27855, 30665}, {30940, 40773}, {33295, 3736}, {33891, 3094}, {35544, 3773}, {37133, 4562}, {39044, 3783}, {39914, 52655}, {40495, 63219}, {40738, 694}, {40746, 1922}, {40763, 1967}, {46132, 4583}, {51321, 40736}, {52133, 7077}, {52136, 51973}, {52652, 4876}, {56660, 3797}, {56805, 3116}, {63222, 513}


X(63243) = BARYCENTRIC QUOTIENT OF X(63224) AND X(513)

Barycentrics    b*c*(-(a*b) - a*c + b*c)*(a^2*b + a*b^2 + a^2*c + b^2*c)*(a^2*b + a^2*c + a*c^2 + b*c^2) : :

X(63243) lies on these lines: {1, 6384}, {10, 7018}, {76, 192}, {1089, 8026}, {1258, 32020}, {6376, 53676}, {6382, 53675}, {17752, 31008}, {20284, 27255}, {20287, 32023}

X(63243) = X(40418)-Ceva conjugate of X(1221)
X(63243) = X(21834)-cross conjugate of X(36863)
X(63243) = X(i)-isoconjugate of X(j) for these (i,j): {81, 45209}, {86, 45217}, {87, 1197}, {560, 61417}, {1107, 7121}, {2162, 2309}, {18169, 21759}, {34071, 50510}, {45216, 53146}
X(63243) = X(i)-Dao conjugate of X(j) for these (i,j): {75, 3741}, {3061, 23473}, {6374, 61417}, {40586, 45209}, {40598, 1107}, {40600, 45217}, {40610, 50510}
X(63243) = cevapoint of X(i) and X(j) for these (i,j): {192, 41318}, {6376, 20691}
X(63243) = crosssum of X(45209) and X(45217)
X(63243) = trilinear pole of line {20906, 25142}
X(63243) = barycentric product X(i)*X(j) for these {i,j}: {192, 1221}, {668, 63224}, {1258, 6382}, {6376, 40418}, {31008, 60230}
X(63243) = barycentric quotient X(i)/X(j) for these {i,j}: {42, 45209}, {43, 2309}, {76, 61417}, {192, 1107}, {213, 45217}, {1221, 330}, {1258, 2162}, {2176, 1197}, {3971, 3728}, {4083, 50510}, {4595, 61234}, {6376, 3741}, {6382, 20891}, {8026, 59565}, {20691, 21838}, {20760, 22389}, {21834, 40627}, {22370, 22065}, {30545, 30097}, {31008, 16738}, {33296, 18169}, {36863, 53338}, {40418, 87}, {41318, 51575}, {41886, 23473}, {52923, 53268}, {53676, 45216}, {57399, 7121}, {60230, 16606}, {63224, 513}


X(63244) = X(649)X(21438)∩X(669)X(804)

Barycentrics    b*(a^2 - a*b + b^2)*(b - c)*c*(a^2 + b*c)*(a^2 - a*c + c^2) : :

X(63244) lies on these lines: {649, 21438}, {669, 804}, {693, 3907}, {3805, 7033}, {4107, 27980}, {14296, 24533}, {26148, 63224}

X(63244) = X(i)-isoconjugate of X(j) for these (i,j): {101, 3863}, {692, 3865}, {904, 3888}, {1178, 62753}, {1431, 40499}, {3056, 29055}, {3116, 30670}, {3903, 7032}, {4594, 40935}, {4603, 16584}, {7104, 33946}, {7260, 21751}, {20284, 58981}, {20665, 37137}
X(63244) = X(i)-Dao conjugate of X(j) for these (i,j): {1015, 3863}, {1086, 3865}, {16587, 7239}, {16592, 982}, {35078, 18904}, {62650, 3888}
X(63244) = crossdifference of every pair of points on line {3117, 20665}
X(63244) = barycentric product X(i)*X(j) for these {i,j}: {804, 40834}, {2533, 38810}, {3114, 3805}, {3963, 7255}, {4369, 7033}, {4374, 17743}, {7034, 20981}, {16737, 56196}, {45882, 46281}
X(63244) = barycentric quotient X(i)/X(j) for these {i,j}: {513, 3863}, {514, 3865}, {804, 18904}, {894, 3888}, {1215, 7239}, {1909, 33946}, {2295, 62753}, {2329, 40499}, {2533, 3721}, {3287, 3056}, {3407, 30670}, {3805, 3094}, {3907, 3061}, {4107, 56805}, {4367, 2275}, {4369, 982}, {4374, 3662}, {4529, 4073}, {7033, 27805}, {7132, 29055}, {7200, 3777}, {7234, 16584}, {7255, 40432}, {14296, 33891}, {16737, 33947}, {17743, 3903}, {20981, 7032}, {24533, 20284}, {38810, 4594}, {40415, 4603}, {40834, 18829}, {45882, 3116}, {56196, 56257}, {56358, 37137}, {57234, 3778}, {58862, 3117}


X(63245) = X(448)X(525)∩X(520)X(7192)

Barycentrics    (b - c)*(-a^2 + b^2 + c^2)*(a^3 - a^2*b - a*b^2 + b^3 - 2*a*b*c - a*c^2 - b*c^2)*(-a^3 + a*b^2 + a^2*c + 2*a*b*c + b^2*c + a*c^2 - c^3) : :

X(63245) lies on these lines: {448, 525}, {520, 7192}, {521, 693}, {677, 14544}, {850, 7253}, {4025, 57241}, {4608, 9033}, {6081, 58993}, {6332, 57057}, {6368, 17161}, {17136, 54952}, {34767, 40412}, {40395, 43673}

X(63245) = isogonal conjugate of X(53323)
X(63245) = isotomic conjugate of X(61180)
X(63245) = isotomic conjugate of the polar conjugate of X(56320)
X(63245) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {15439, 3151}, {32651, 3152}, {36048, 2897}, {40395, 33650}, {40570, 39351}, {40573, 3448}, {58993, 2893}, {60041, 13219}
X(63245) = X(i)-isoconjugate of X(j) for these (i,j): {1, 53323}, {6, 61236}, {19, 61197}, {25, 61220}, {28, 61169}, {31, 61180}, {101, 1841}, {108, 14547}, {109, 1859}, {112, 2294}, {162, 40952}, {163, 1865}, {442, 32676}, {608, 61233}, {648, 40978}, {692, 1838}, {942, 8750}, {1018, 46890}, {1474, 61161}, {1783, 2260}, {1897, 40956}, {4557, 46883}, {4559, 46884}, {7128, 33525}, {18591, 24019}, {23207, 36127}, {23595, 23990}, {32674, 40937}, {32713, 56839}
X(63245) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 61180}, {3, 53323}, {6, 61197}, {9, 61236}, {11, 1859}, {115, 1865}, {125, 40952}, {1015, 1841}, {1086, 1838}, {6505, 61220}, {8287, 1844}, {15526, 442}, {26932, 942}, {34467, 40956}, {34591, 2294}, {35071, 18591}, {35072, 40937}, {38983, 14547}, {39006, 2260}, {39007, 37993}, {40591, 61169}, {40618, 5249}, {40626, 6734}, {51574, 61161}, {55066, 40978}, {55067, 46884}, {62647, 61233}
X(63245) = cevapoint of X(i) and X(j) for these (i,j): {520, 905}, {521, 525}
X(63245) = crosspoint of X(40422) and X(54952)
X(63245) = trilinear pole of line {15526, 16595}
X(63245) = barycentric product X(i)*X(j) for these {i,j}: {69, 56320}, {525, 40412}, {905, 40422}, {943, 15413}, {1175, 3267}, {1794, 3261}, {2982, 35518}, {3265, 40395}, {3926, 14775}, {4025, 40435}, {4131, 40447}, {4467, 57860}, {6332, 60041}, {15411, 52560}, {23983, 58993}, {26932, 54952}, {40570, 52617}, {40573, 52616}
X(63245) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 61236}, {2, 61180}, {3, 61197}, {6, 53323}, {63, 61220}, {71, 61169}, {72, 61161}, {78, 61233}, {513, 1841}, {514, 1838}, {520, 18591}, {521, 40937}, {523, 1865}, {525, 442}, {647, 40952}, {650, 1859}, {652, 14547}, {656, 2294}, {810, 40978}, {905, 942}, {943, 1783}, {1019, 46883}, {1111, 23595}, {1175, 112}, {1364, 52306}, {1459, 2260}, {1794, 101}, {2259, 8750}, {2605, 44095}, {2982, 108}, {3267, 1234}, {3270, 33525}, {3733, 46890}, {3737, 46884}, {3942, 50354}, {4025, 5249}, {4064, 21675}, {4091, 4303}, {4131, 18607}, {4466, 23752}, {4467, 445}, {6332, 6734}, {8611, 40967}, {14775, 393}, {14838, 1844}, {15411, 51978}, {15439, 7115}, {17094, 55010}, {22383, 40956}, {23090, 8021}, {23189, 46882}, {23224, 14597}, {24018, 56839}, {36048, 7128}, {36054, 23207}, {40395, 107}, {40412, 648}, {40422, 6335}, {40435, 1897}, {40570, 32713}, {40573, 36127}, {52306, 37993}, {52560, 52607}, {54952, 46102}, {56320, 4}, {57860, 6742}, {58993, 23984}, {60041, 653}, {60188, 61178}


X(63246) = X(2)X(514)∩X(8)X(513)

Barycentrics    (b - c)*(a^3 + 2*a^2*b + a*b^2 + 2*a^2*c - 13*a*b*c + 3*b^2*c + a*c^2 + 3*b*c^2) : :
X(63246) = X[2403] - 3 X[31992], 3 X[6548] - 4 X[21198], 3 X[44009] - 2 X[62634], 4 X[764] - 7 X[9780], 3 X[3241] - 4 X[3251], 5 X[3616] - 4 X[14421], 3 X[4448] - 2 X[9269], 4 X[4448] - 3 X[38314], 8 X[9269] - 9 X[38314], 4 X[6161] - X[20050], X[23764] - 4 X[32212], 8 X[23814] - 11 X[46933], 4 X[24093] - X[49303], X[24128] + 2 X[50351], 4 X[30583] - 3 X[53620]

X(63246) lies on these lines: {2, 514}, {8, 513}, {329, 4462}, {764, 9780}, {812, 17487}, {891, 17794}, {1635, 21222}, {2832, 20344}, {3241, 3251}, {3616, 14421}, {3762, 21297}, {4391, 8055}, {4448, 9269}, {4543, 6006}, {6161, 20050}, {8046, 46781}, {16816, 48320}, {17090, 43052}, {17230, 60346}, {21132, 28147}, {21385, 30579}, {23354, 44008}, {23764, 32212}, {23814, 46933}, {23888, 47772}, {24004, 61186}, {24093, 28175}, {24128, 50351}, {27797, 31290}, {28229, 41921}, {29579, 48335}, {30583, 53620}, {39349, 39362}, {43930, 52715}

X(63246) = reflection of X(i) in X(j) for these {i,j}: {21222, 1635}, {21297, 3762}, {60480, 21129}
X(63246) = anticomplement of X(1022)
X(63246) = anticomplement of the isogonal conjugate of X(1023)
X(63246) = anticomplement of the isotomic conjugate of X(24004)
X(63246) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {6, 20042}, {44, 149}, {59, 4453}, {100, 320}, {101, 519}, {109, 1266}, {110, 17160}, {190, 21282}, {519, 150}, {644, 5176}, {662, 17145}, {692, 17495}, {765, 21297}, {813, 24715}, {901, 903}, {902, 4440}, {919, 24841}, {1017, 39349}, {1023, 8}, {1110, 21222}, {1252, 900}, {1293, 4887}, {1331, 3007}, {1404, 58371}, {1960, 54102}, {2251, 9263}, {2325, 33650}, {2429, 3621}, {2702, 53601}, {3285, 17154}, {3689, 37781}, {3939, 908}, {3943, 3448}, {3992, 21294}, {4169, 1330}, {4358, 21293}, {4555, 32032}, {4557, 63071}, {4570, 53333}, {4600, 53368}, {5546, 62826}, {5548, 12531}, {6551, 4555}, {9268, 6548}, {9459, 21224}, {15378, 48286}, {17780, 69}, {21805, 21221}, {23344, 2}, {23703, 7}, {24004, 6327}, {30731, 3436}, {32641, 1320}, {32686, 4792}, {32719, 46722}, {34067, 31061}, {34071, 17449}, {36086, 53381}, {40150, 42754}, {43077, 24692}, {46541, 17220}, {52924, 42697}, {52963, 148}, {52978, 34188}, {53582, 21290}, {55243, 17137}, {55262, 17138}, {57731, 61186}, {59149, 17780}, {61171, 2475}, {61210, 145}, {62669, 3434}
X(63246) = X(i)-Ceva conjugate of X(j) for these (i,j): {24004, 2}, {61186, 8}
X(63246) = crosspoint of X(668) and X(54974)
X(63246) = crosssum of X(i) and X(j) for these (i,j): {649, 20972}, {667, 1017}
X(63246) = crossdifference of every pair of points on line {902, 23539}


X(63247) = X(2)X(525)∩X(4)X(520)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(-a^12 + 5*a^10*b^2 - 10*a^8*b^4 + 10*a^6*b^6 - 5*a^4*b^8 + a^2*b^10 + 5*a^10*c^2 + 3*a^8*b^2*c^2 - 6*a^6*b^4*c^2 - 14*a^4*b^6*c^2 + 9*a^2*b^8*c^2 + 3*b^10*c^2 - 10*a^8*c^4 - 6*a^6*b^2*c^4 + 38*a^4*b^4*c^4 - 10*a^2*b^6*c^4 - 12*b^8*c^4 + 10*a^6*c^6 - 14*a^4*b^2*c^6 - 10*a^2*b^4*c^6 + 18*b^6*c^6 - 5*a^4*c^8 + 9*a^2*b^2*c^8 - 12*b^4*c^8 + a^2*c^10 + 3*b^2*c^10) : :
X(63247) = 4 X[14566] - 3 X[34767], 3 X[376] - 4 X[58345]

X(632) lies on these lines: {2, 525}, {4, 520}, {69, 52624}, {146, 9517}, {376, 58345}, {523, 5656}, {9007, 54132}, {14361, 14618}, {44427, 51968}

X(63247) = anticomplement of X(62665)
X(63247) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {19, 45289}, {1096, 62639}, {1784, 13219}, {2173, 34186}, {4240, 4329}, {23347, 6360}, {23999, 53369}, {24000, 3268}, {24001, 1370}, {24019, 30}, {32676, 62308}, {32713, 18668}, {36126, 340}, {52661, 21294}, {52920, 18661}, {52956, 34188}, {56829, 20}, {58071, 21270}
X(63247) = crosspoint of X(6528) and X(31621)
X(63247) = crosssum of X(i) and X(j) for these (i,j): {647, 47433}, {9408, 39201}


X(63248) = X(2)X(525)∩X(20)X(523)

Barycentrics    (b^2 - c^2)*(-5*a^8 + 11*a^6*b^2 - 3*a^4*b^4 - 7*a^2*b^6 + 4*b^8 + 11*a^6*c^2 - 23*a^4*b^2*c^2 + 13*a^2*b^4*c^2 - b^6*c^2 - 3*a^4*c^4 + 13*a^2*b^2*c^4 - 6*b^4*c^4 - 7*a^2*c^6 - b^2*c^6 + 4*c^8) : :
3 X[2] - 4 X[5664], 9 X[2] - 8 X[14566], 7 X[2] - 8 X[45681], 3 X[2394] - 4 X[14566], 7 X[2394] - 12 X[45681], 3 X[5664] - 2 X[14566], 7 X[5664] - 6 X[45681], 7 X[14566] - 9 X[45681], 5 X[3091] - 4 X[42733], 5 X[3522] - 4 X[18556], 7 X[3523] - 4 X[5489], 3 X[3543] - 4 X[58346], 3 X[10304] - 2 X[53383], 8 X[39491] - 9 X[61954]

X(63248) lies on the Kiepert circumhyperbola of the anticomplementary triangle and these lines: {2, 525}, {20, 523}, {146, 147}, {148, 12066}, {194, 62307}, {616, 23870}, {617, 23871}, {850, 52624}, {2799, 8591}, {3091, 42733}, {3268, 41077}, {3522, 18556}, {3523, 5489}, {3543, 58346}, {3906, 6194}, {4226, 14611}, {10304, 53383}, {13678, 54029}, {13798, 54028}, {14999, 62613}, {15421, 31296}, {15475, 59428}, {15683, 62510}, {22089, 35493}, {23872, 33610}, {23873, 33611}, {39491, 61954}, {44427, 46229}

X(63248) = reflection of X(i) in X(j) for these {i,j}: {148, 14223}, {2394, 5664}, {3268, 41077}
X(63248) = anticomplement of X(2394)
X(63248) = anticomplement of the isogonal conjugate of X(2420)
X(63248) = anticomplement of the isotomic conjugate of X(2407)
X(63248) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {30, 21294}, {31, 62639}, {48, 45289}, {162, 340}, {163, 30}, {1101, 3268}, {1495, 21221}, {1576, 18668}, {2173, 3448}, {2407, 6327}, {2420, 8}, {4240, 21270}, {9406, 148}, {9407, 21220}, {18653, 21293}, {23347, 5905}, {24001, 11442}, {24019, 50435}, {24041, 53369}, {32671, 6740}, {32676, 3580}, {32678, 265}, {34072, 15107}, {36034, 1494}, {36084, 53348}, {36131, 10733}, {36142, 9140}, {36145, 25739}, {51420, 150}, {52949, 33650}, {56829, 4}
X(63248) = X(2407)-Ceva conjugate of X(2)
X(63248) = X(2159)-isoconjugate of X(43941)
X(63248) = X(3163)-Dao conjugate of X(43941)
X(63248) = crosspoint of X(99) and X(31621)
X(63248) = crosssum of X(512) and X(9408)
X(63248) = crossdifference of every pair of points on line {1495, 40135}
X(63248) = barycentric product X(i)*X(j) for these {i,j}: {850, 15051}, {3260, 57147}
X(63248) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 43941}, {15051, 110}, {57147, 74}
X(63248) = {X(2394),X(5664)}-harmonic conjugate of X(2)


X(63249) = X(2)X(525)∩X(520)X(568)

Barycentrics    (b^2 - c^2)*(-a^2 + b^2 + c^2)*(3*a^12 - 8*a^10*b^2 + 4*a^8*b^4 + 4*a^6*b^6 - a^4*b^8 - 4*a^2*b^10 + 2*b^12 - 8*a^10*c^2 + 15*a^8*b^2*c^2 - 9*a^6*b^4*c^2 - a^4*b^6*c^2 + 9*a^2*b^8*c^2 - 6*b^10*c^2 + 4*a^8*c^4 - 9*a^6*b^2*c^4 + 4*a^4*b^4*c^4 - 5*a^2*b^6*c^4 + 6*b^8*c^4 + 4*a^6*c^6 - a^4*b^2*c^6 - 5*a^2*b^4*c^6 - 4*b^6*c^6 - a^4*c^8 + 9*a^2*b^2*c^8 + 6*b^4*c^8 - 4*a^2*c^10 - 6*b^2*c^10 + 2*c^12) : :
X(63249) = 3 X[14401] - 2 X[14566]

X(63249) lies on these lines: {2, 525}, {3, 6368}, {520, 568}, {2420, 16237}, {2931, 32119}, {6193, 8057}, {6334, 14345}, {14391, 24978}, {15412, 43988}, {15466, 18314}, {58352, 62510}

X(63249) = reflection of X(i) in X(j) for these {i,j}: {6334, 14345}, {14391, 24978}, {23616, 45681}, {62665, 5664}
X(63249) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2148, 45289}, {56829, 2888}, {62268, 62639}
X(63249) = crosspoint of X(18831) and X(31621)
X(63249) = crosssum of X(i) and X(j) for these (i,j): {647, 39176}, {9408, 15451}
X(63249) = crossdifference of every pair of points on line {1495, 11062}


X(63250) = X(2)X(525)∩X(520)X(568)

Barycentrics    (b^2 - c^2)*(a^6 + 2*a^4*b^2 + a^2*b^4 + 2*a^4*c^2 - 13*a^2*b^2*c^2 + 3*b^4*c^2 + a^2*c^4 + 3*b^2*c^4) : :
X(63250) = 3 X[5466] - 4 X[18310], 3 X[9168] - 2 X[18311], 3 X[4] - 4 X[18309], 5 X[631] - 4 X[9175], 3 X[1992] - 4 X[54274], 3 X[5652] - 2 X[54274], 3 X[3524] - 2 X[21732], 5 X[3618] - 4 X[9171], 7 X[3619] - 4 X[22260], 3 X[10519] - 2 X[21733], 4 X[11183] - 3 X[59373], 3 X[21356] - 2 X[34290], 8 X[45693] - 7 X[63109]

X(63250) lies on these lines: {2, 523}, {4, 18309}, {69, 512}, {75, 16737}, {351, 6131}, {631, 9175}, {804, 8591}, {888, 25052}, {1272, 55122}, {1499, 50967}, {1992, 5652}, {2489, 38282}, {2872, 53369}, {3267, 19583}, {3524, 21732}, {3618, 9171}, {3619, 22260}, {4108, 63029}, {6088, 14360}, {7493, 9137}, {9023, 53331}, {9035, 9135}, {9131, 9156}, {9741, 23878}, {9979, 47139}, {10519, 21733}, {11001, 32472}, {11183, 59373}, {11634, 47293}, {14272, 14610}, {14417, 55140}, {14606, 25054}, {17135, 17159}, {20351, 53368}, {21006, 37913}, {21356, 34290}, {23342, 62642}, {45693, 63109}, {47285, 56957}, {52710, 53149}, {60028, 60143}

X(63250) = reflection of X(i) in X(j) for these {i,j}: {351, 6131}, {1992, 5652}, {2408, 1649}, {9979, 47139}, {14272, 14610}, {14977, 55271}, {25054, 14606}, {53365, 35522}
X(63250) = anticomplement of X(9178)
X(63250) = anticomplement of the isogonal conjugate of X(5468)
X(63250) = anticomplementary isogonal conjugate of X(45291)
X(63250) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {1, 45291}, {99, 17491}, {110, 17497}, {162, 47286}, {187, 21220}, {524, 21221}, {662, 524}, {670, 21298}, {799, 316}, {811, 41724}, {896, 148}, {922, 25054}, {1414, 4442}, {2642, 54104}, {3266, 21294}, {4235, 5905}, {4567, 53339}, {4592, 858}, {4600, 30709}, {4622, 53372}, {5467, 192}, {5468, 8}, {6629, 149}, {14210, 3448}, {16702, 4440}, {16741, 150}, {23889, 2}, {24037, 53365}, {24039, 69}, {24041, 690}, {36036, 53346}, {36084, 10754}, {36085, 671}, {37134, 11646}, {37216, 8352}, {42081, 39356}, {42721, 1330}, {52935, 17162}, {61207, 21216}
X(63250) = X(53367)-Ceva conjugate of X(69)
X(63250) = crosspoint of X(i) and X(j) for these (i,j): {99, 44182}, {670, 57539}
X(63250) = crosssum of X(669) and X(39689)
X(63250) = barycentric product X(3266)*X(57085)
X(63250) = barycentric quotient X(57085)/X(111)


X(63251) = X(2)X(522)∩X(144)X(514)

Barycentrics    (b - c)*(-5*a^4 + 11*a^3*b - 3*a^2*b^2 - 7*a*b^3 + 4*b^4 + 11*a^3*c - 23*a^2*b*c + 13*a*b^2*c - b^3*c - 3*a^2*c^2 + 13*a*b*c^2 - 6*b^2*c^2 - 7*a*c^3 - b*c^3 + 4*c^4) : :

X(63251) lies on these lines: {2, 522}, {144, 514}, {192, 17496}, {900, 20533}, {918, 17487}, {1654, 21120}, {4440, 62733}, {4762, 17488}, {4777, 27484}, {17014, 23757}, {17494, 60483}, {44009, 53337}

X(63251) = anticomplement of X(60479)
X(63251) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {41, 45293}, {101, 5057}, {163, 62235}, {527, 21293}, {692, 527}, {919, 53382}, {1055, 149}, {1110, 30565}, {1155, 150}, {1252, 53364}, {1415, 26015}, {2149, 6366}, {6603, 33650}, {23346, 7}, {23890, 3434}, {32665, 10707}, {34067, 24712}, {56543, 21285}
X(63251) = crosspoint of X(190) and X(57565)
X(63251) = crosssum of X(649) and X(59798)


X(63252) = X(2)X(514)∩X(145)X(522)

Barycentrics    (b - c)*(5*a^3 - 4*a^2*b - 5*a*b^2 + 4*b^3 - 4*a^2*c + 11*a*b*c - 3*b^2*c - 5*a*c^2 - 3*b*c^2 + 4*c^3) : :
X(63252) = 9 X[2] - 8 X[21198], 2 X[21129] - 3 X[31992], 4 X[21198] - 3 X[60480], 3 X[44009] - 4 X[62634], X[145] - 4 X[21105], 7 X[3622] - 4 X[21132], 4 X[4543] - 3 X[31145]

X(63252) lies on these lines: {2, 514}, {89, 2401}, {145, 522}, {918, 17487}, {2398, 45290}, {3177, 62306}, {3210, 17496}, {3622, 21132}, {3904, 27781}, {4391, 46938}, {4453, 30577}, {4543, 31145}, {4881, 53401}, {4977, 5484}, {6366, 52164}, {8046, 50943}, {17778, 48280}, {21222, 23884}, {23764, 28225}, {28155, 41920}, {30573, 53361}, {39349, 39353}, {39351, 62733}, {39699, 46781}, {47676, 53045}

X(63252) = reflection of X(i) in X(j) for these {i,j}: {4453, 30725}, {47772, 3904}, {53361, 30573}
X(63252) = anticomplement of X(60480)
X(63252) = anticomplement of the isogonal conjugate of X(61210)
X(63252) = anticomplement of the isotomic conjugate of X(62669)
X(63252) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {44, 33650}, {59, 21297}, {101, 5176}, {109, 320}, {163, 62826}, {604, 20042}, {651, 21282}, {692, 908}, {902, 37781}, {1023, 3436}, {1319, 150}, {1404, 149}, {1415, 519}, {2149, 900}, {2251, 39351}, {3911, 21293}, {4565, 17145}, {17780, 21286}, {22356, 34188}, {23344, 329}, {23703, 69}, {24027, 4453}, {32665, 12531}, {32669, 1320}, {32675, 80}, {32735, 53381}, {36059, 3007}, {36141, 10707}, {40663, 21294}, {61171, 1330}, {61210, 8}, {62669, 6327}
X(63252) = X(62669)-Ceva conjugate of X(2)
X(63252) = X(59999)-Dao conjugate of X(4370)
X(63252) = crosspoint of X(664) and X(54974)
X(63252) = crosssum of X(663) and X(1017)
X(63252) = barycentric product X(664)*X(59999)
X(63252) = barycentric quotient X(59999)/X(522)


X(63253) = X(2)X(522)∩X(7)X(3900)

Barycentrics    (a - b - c)*(b - c)*(a^6 - 5*a^5*b + 10*a^4*b^2 - 10*a^3*b^3 + 5*a^2*b^4 - a*b^5 - 5*a^5*c - 3*a^4*b*c + 6*a^3*b^2*c + 14*a^2*b^3*c - 9*a*b^4*c - 3*b^5*c + 10*a^4*c^2 + 6*a^3*b*c^2 - 38*a^2*b^2*c^2 + 10*a*b^3*c^2 + 12*b^4*c^2 - 10*a^3*c^3 + 14*a^2*b*c^3 + 10*a*b^2*c^3 - 18*b^3*c^3 + 5*a^2*c^4 - 9*a*b*c^4 + 12*b^2*c^4 - a*c^5 - 3*b*c^5) : :

X(63253) lies on these lines: {2, 522}, {7, 3900}, {347, 30181}, {24002, 31527}

X(63253) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {56, 45293}, {934, 5057}, {1262, 30565}, {1323, 33650}, {1461, 527}, {6610, 37781}, {6614, 26015}, {7045, 53364}, {7339, 6366}, {23346, 144}, {23890, 329}, {56543, 3436}
X(63253) = crosspoint of X(4569) and X(57565)
X(63253) = crosssum of X(8641) and X(59798)



leftri

Points related to the 1st and 2nd Pavlov triangles: X(63254)-X(63456)

rightri

This preamble and centers X(63254)-X(63456) were contributed by Ivan Pavlov on May 16, 2024.

Let A'B'C' be the cevian triangle of the incenter I for any triangle ABC. Denote with Ab the projection of A' upon BI, and with Ba the projection of B' upon AI.Similarly define Bc, Cb, Ac, and Ca. Lines AbBa, BcCb, and AcCa form a triangle A1B1C1, called here the 1st Pavlov triangle. Lines AbAc, Ba BC, and CaCb form a triangle A2B2C2, called here the 2nd Pavlov triangle.
For more infomation see Euclud 6171.


X(63254) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND 1ST ZANIAH

Barycentrics    a^7*(b+c)-(b-c)^6*(b+c)^2-a^6*(3*b^2+4*b*c+3*c^2)+a^5*(b^3+6*b^2*c+6*b*c^2+c^3)+a*(b-c)^4*(3*b^3+4*b^2*c+4*b*c^2+3*c^3)-a^3*(b-c)^2*(5*b^3+b^2*c+b*c^2+5*c^3)+a^4*(5*b^4-8*b^3*c-8*b*c^3+5*c^4)-a^2*(b^6+b^4*c^2-4*b^3*c^3+b^2*c^4+c^6) : :

X(63254) lies on these lines: {1, 37771}, {2, 63264}, {7, 1768}, {11, 5572}, {35, 63262}, {100, 142}, {226, 1156}, {516, 33593}, {518, 63270}, {528, 11281}, {942, 38055}, {946, 53055}, {1155, 30379}, {2254, 63334}, {2801, 10122}, {3336, 18223}, {5249, 10427}, {5542, 12755}, {5836, 13996}, {5851, 41857}, {5856, 63268}, {6594, 60978}, {7671, 10129}, {8236, 21630}, {9803, 11038}, {11023, 60926}, {11544, 63266}, {12917, 13995}, {18224, 51768}, {21635, 61013}, {26015, 61030}, {38060, 41012}, {60991, 63265}

X(63254) = midpoint of X(i) and X(j) for these {i,j}: {11, 63258}
X(63254) = pole of line {5526, 15730} with respect to the dual conic of Yff parabola


X(63255) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND AQUILA

Barycentrics    a*(9*a^6-12*a^5*(b+c)+(b^2-c^2)^2*(3*b^2-8*b*c+3*c^2)-3*a^4*(5*b^2+11*b*c+5*c^2)-a*(b-c)^2*(12*b^3+41*b^2*c+41*b*c^2+12*c^3)+a^3*(24*b^3+29*b^2*c+29*b*c^2+24*c^3)+a^2*(3*b^4+41*b^3*c+80*b^2*c^2+41*b*c^3+3*c^4)) : :

X(63255) lies on these lines: {46, 56035}, {191, 37080}, {2346, 5223}, {3303, 12653}, {3601, 18217}, {3612, 11034}, {3632, 10389}, {3813, 38316}, {3868, 51576}, {4312, 6147}, {4330, 13407}, {5290, 63287}, {5586, 59337}, {5691, 63257}, {12409, 13995}


X(63256) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND 5TH EXTOUCH

Barycentrics    -((b-c)^4*(b+c)^3)+a*(b-c)^2*(b+c)^4-2*a^3*(b+c)^2*(b^2+4*b*c+c^2)+a^5*(b^2+10*b*c+c^2)+2*a^2*(b-c)^2*(b^3+6*b^2*c+6*b*c^2+c^3)-a^4*(b^3+9*b^2*c+9*b*c^2+c^3) : :

X(63256) lies on these lines: {1, 6881}, {8, 63261}, {55, 550}, {65, 5542}, {388, 2346}, {515, 10543}, {1056, 37601}, {3244, 3925}, {5559, 11529}, {7288, 63263}, {10404, 38454}, {10902, 44255}, {17718, 18242}, {37106, 37579}

X(63256) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {15888, 63287, 63257}, {45081, 63258, 65}


X(63257) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND HUTSON INTOUCH

Barycentrics    a^5*(b+c)^2-(b-c)^4*(b+c)^3+a*(b^2-c^2)^2*(b^2+c^2)-2*a^3*(b-c)^2*(b^2+3*b*c+c^2)+2*a^2*(b-c)^2*(b^3+4*b^2*c+4*b*c^2+c^3)-a^4*(b^3+5*b^2*c+5*b*c^2+c^3) : :
X(63257) = -5*X[1698]+3*X[5659]

X(63257) lies on these lines: {1, 6831}, {2, 22770}, {3, 10532}, {4, 390}, {5, 8}, {11, 11011}, {12, 946}, {30, 12877}, {40, 5735}, {55, 26332}, {65, 41552}, {100, 37281}, {119, 9955}, {145, 6828}, {149, 7548}, {226, 12672}, {354, 12616}, {355, 3870}, {377, 10306}, {381, 10531}, {388, 1012}, {442, 517}, {496, 6830}, {498, 22753}, {515, 10543}, {516, 63268}, {523, 42440}, {546, 59392}, {942, 38055}, {944, 8727}, {952, 6841}, {956, 6824}, {962, 6907}, {971, 63265}, {999, 6833}, {1006, 31799}, {1056, 6847}, {1058, 6844}, {1071, 8581}, {1072, 3931}, {1158, 10404}, {1329, 8227}, {1385, 37374}, {1478, 11496}, {1479, 10894}, {1512, 5806}, {1537, 12047}, {1621, 31789}, {1697, 5715}, {1698, 5659}, {1699, 18242}, {1737, 13374}, {2098, 26481}, {2800, 3649}, {2829, 5270}, {2886, 7982}, {3085, 3149}, {3090, 3820}, {3303, 48482}, {3421, 6846}, {3428, 10198}, {3436, 6913}, {3555, 51755}, {3577, 5559}, {3600, 6935}, {3616, 6922}, {3617, 6991}, {3622, 6943}, {3656, 17530}, {3746, 5842}, {3753, 55108}, {3757, 37360}, {3813, 16200}, {3816, 9624}, {3817, 17648}, {3822, 4301}, {3824, 31798}, {3826, 38036}, {3845, 34745}, {3850, 11698}, {3851, 10598}, {3871, 6839}, {3920, 37362}, {3925, 11362}, {4187, 5886}, {4197, 59417}, {4654, 54156}, {4857, 52850}, {5048, 10957}, {5082, 6843}, {5248, 11827}, {5249, 31788}, {5250, 5812}, {5290, 12705}, {5434, 5450}, {5499, 28212}, {5552, 6918}, {5587, 6765}, {5657, 8728}, {5687, 6826}, {5690, 6881}, {5691, 63255}, {5710, 5713}, {5719, 21740}, {5758, 47510}, {5794, 37569}, {5841, 57002}, {5901, 6882}, {5920, 7682}, {6001, 13407}, {6244, 6897}, {6256, 11237}, {6261, 17718}, {6361, 37424}, {6690, 11012}, {6767, 12116}, {6829, 12245}, {6832, 9708}, {6834, 31479}, {6835, 10528}, {6836, 10587}, {6842, 10129}, {6845, 7967}, {6848, 8164}, {6854, 9709}, {6860, 10529}, {6862, 10680}, {6864, 7080}, {6888, 54391}, {6906, 18990}, {6912, 20060}, {6917, 10679}, {6927, 63263}, {6929, 11929}, {6938, 9655}, {6941, 7956}, {6946, 47742}, {6951, 31777}, {6952, 15325}, {6956, 14986}, {6974, 20076}, {6990, 59388}, {7160, 15909}, {7173, 39777}, {7373, 10785}, {7483, 11249}, {7672, 20330}, {7674, 38149}, {7686, 10039}, {7958, 10175}, {7965, 31673}, {9669, 10596}, {9710, 63143}, {9711, 54447}, {9799, 63261}, {9956, 25006}, {10043, 10523}, {10056, 11500}, {10165, 50031}, {10172, 50038}, {10222, 26470}, {10246, 37356}, {10247, 10943}, {10526, 11113}, {10609, 33596}, {10698, 17097}, {10786, 19541}, {10895, 10965}, {10902, 44238}, {10914, 51416}, {10949, 33176}, {10956, 12743}, {11112, 11248}, {11230, 17575}, {11246, 40256}, {11491, 20420}, {12617, 14872}, {12688, 41543}, {12702, 37438}, {12704, 26066}, {13257, 31937}, {13405, 33597}, {13747, 40255}, {13865, 18483}, {15016, 25557}, {15843, 24703}, {15862, 25639}, {16160, 28224}, {17444, 50036}, {17529, 26446}, {17533, 51709}, {18492, 42356}, {18525, 32213}, {18908, 61030}, {18962, 62333}, {19925, 37725}, {26286, 37298}, {28174, 37401}, {28452, 32141}, {29839, 37365}, {31870, 40663}, {31948, 45168}, {33179, 37726}, {34640, 38021}, {36976, 52682}, {37363, 37531}, {37622, 37820}, {37714, 41709}, {37837, 63259}, {47516, 55109}

X(63257) = midpoint of X(i) and X(j) for these {i,j}: {22791, 34352}
X(63257) = reflection of X(i) in X(j) for these {i,j}: {44238, 10902}, {61032, 10175}
X(63257) = pole of line {1532, 28217} with respect to the nine-point circle
X(63257) = pole of line {6362, 37305} with respect to the polar circle
X(63257) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7680, 6831}, {5, 1482, 24390}, {12, 946, 1532}, {55, 26332, 37468}, {1699, 37719, 18242}, {3822, 4301, 15908}, {5603, 5818, 5804}, {6829, 12245, 31419}, {6830, 10595, 496}, {6833, 10597, 999}, {6952, 45977, 15325}, {7951, 11522, 7681}, {7956, 10592, 6941}, {7958, 21031, 10175}, {10531, 10599, 381}, {12047, 45776, 1537}, {15888, 63287, 63256}


X(63258) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND INTOUCH

Barycentrics    (-(b-c)^2+a*(b+c))*(2*a^3-3*a^2*(b+c)+(b-c)^2*(b+c)) : :

X(63258) lies on these lines: {1, 5805}, {5, 41861}, {7, 55}, {9, 17718}, {11, 5572}, {12, 5728}, {40, 5586}, {65, 5542}, {142, 354}, {145, 2550}, {224, 5880}, {226, 7965}, {390, 63260}, {480, 60987}, {495, 18412}, {516, 3649}, {518, 8261}, {523, 2294}, {527, 63268}, {528, 39778}, {553, 7964}, {554, 30357}, {908, 58608}, {954, 37579}, {971, 13407}, {1001, 10941}, {1071, 8581}, {1081, 30356}, {1155, 60945}, {1317, 38055}, {1445, 5432}, {1709, 11218}, {1836, 4326}, {2293, 52023}, {2646, 12573}, {2801, 33667}, {2886, 30628}, {2951, 4654}, {3012, 3723}, {3085, 41712}, {3174, 6173}, {3189, 59412}, {3304, 38053}, {3338, 38122}, {3487, 11496}, {3652, 5843}, {3683, 61003}, {3779, 51150}, {3782, 4335}, {3947, 10392}, {3957, 33558}, {4312, 6147}, {4343, 4854}, {4860, 8732}, {4995, 60932}, {5218, 60939}, {5219, 30330}, {5249, 15587}, {5326, 61016}, {5415, 60914}, {5416, 60913}, {5435, 63263}, {5559, 45834}, {5584, 21151}, {5659, 10980}, {5732, 10404}, {5762, 10902}, {5809, 10895}, {5833, 41863}, {5844, 11529}, {5845, 19133}, {5853, 39783}, {6154, 10427}, {6666, 61648}, {6690, 60970}, {6769, 41870}, {7269, 59458}, {7354, 7675}, {7671, 42356}, {8232, 60910}, {10044, 60924}, {10052, 60923}, {10306, 59380}, {10865, 11020}, {11025, 61008}, {11374, 15299}, {11518, 38052}, {11570, 50195}, {12047, 13865}, {12913, 17768}, {13405, 15837}, {13995, 33859}, {15298, 26921}, {15726, 41857}, {15733, 60991}, {15950, 42884}, {16006, 63266}, {16112, 61027}, {17245, 21346}, {17365, 21059}, {17602, 62372}, {17728, 20195}, {20057, 56030}, {23599, 28473}, {25466, 41228}, {25568, 60959}, {25722, 31019}, {27475, 31346}, {30329, 40663}, {30331, 39782}, {30340, 37567}, {30379, 58563}, {31658, 63259}, {34502, 37568}, {34607, 59375}, {37601, 52783}, {37787, 59476}, {38041, 61287}, {38056, 39781}, {40659, 60978}, {41166, 60961}, {41571, 60969}, {58433, 61649}

X(63258) = midpoint of X(i) and X(j) for these {i,j}: {7, 2346}, {41857, 63265}
X(63258) = reflection of X(i) in X(j) for these {i,j}: {11, 63254}, {63287, 63261}
X(63258) = inverse of X(5572) in Feuerbach hyperbola
X(63258) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2346, 13404}, {43344, 58322}
X(63258) = X(i)-Dao conjugate of X(j) for these {i, j}: {13405, 8}, {52818, 32008}
X(63258) = X(i)-Ceva conjugate of X(j) for these {i, j}: {7, 52819}, {664, 21104}
X(63258) = pole of line {6362, 6608} with respect to the incircle
X(63258) = pole of line {5173, 5572} with respect to the Feuerbach hyperbola
X(63258) = pole of line {16601, 45227} with respect to the dual conic of Yff parabola
X(63258) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(6067)}}, {{A, B, C, X(142), X(10509)}}, {{A, B, C, X(354), X(61373)}}, {{A, B, C, X(2259), X(46003)}}, {{A, B, C, X(2346), X(3059)}}, {{A, B, C, X(4847), X(13405)}}, {{A, B, C, X(10390), X(61033)}}, {{A, B, C, X(53242), X(58809)}}
X(63258) = barycentric product X(i)*X(j) for these (i, j): {1233, 61399}, {4847, 52819}, {13405, 142}, {15837, 59181}, {25001, 354}, {52818, 7}
X(63258) = barycentric quotient X(i)/X(j) for these (i, j): {1475, 13404}, {13405, 32008}, {15837, 6605}, {25001, 57815}, {35326, 43344}, {52818, 8}, {52819, 21453}, {61399, 1174}
X(63258) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 11495, 11246}, {7, 2346, 38454}, {7, 63261, 2346}, {65, 63256, 45081}, {142, 15185, 6067}, {142, 3059, 3925}, {142, 41548, 61035}, {142, 41570, 3059}, {142, 61033, 41555}, {6067, 15185, 51463}, {7671, 61013, 42356}, {38454, 63261, 63287}, {41857, 63265, 15726}


X(63259) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND K798E

Barycentrics    2*a^4-a^3*(b+c)+a*(b-c)^2*(b+c)+(b^2-c^2)^2-a^2*(3*b^2+4*b*c+3*c^2) : :

X(63259) lies on these lines: {1, 2}, {3, 10404}, {4, 59337}, {5, 37080}, {7, 58887}, {12, 6841}, {21, 21077}, {35, 79}, {36, 21620}, {37, 3003}, {40, 5761}, {46, 3487}, {55, 6985}, {57, 41870}, {65, 5719}, {72, 6690}, {81, 56535}, {90, 41564}, {100, 12609}, {109, 45138}, {140, 354}, {142, 59587}, {165, 5758}, {210, 6675}, {388, 3612}, {404, 51706}, {442, 56176}, {484, 3671}, {495, 2646}, {496, 3748}, {497, 6896}, {515, 6845}, {516, 61013}, {518, 7483}, {549, 32636}, {553, 37524}, {631, 3296}, {632, 61649}, {908, 5248}, {942, 5432}, {946, 3746}, {950, 6990}, {954, 5880}, {1056, 37618}, {1058, 23708}, {1155, 6147}, {1385, 15888}, {1389, 13606}, {1478, 3601}, {1479, 5219}, {1482, 31480}, {1621, 21616}, {1699, 4309}, {1784, 41013}, {1792, 25526}, {1837, 31479}, {1962, 23555}, {2166, 18359}, {2346, 6915}, {3035, 5439}, {3057, 37737}, {3058, 9955}, {3075, 9440}, {3189, 6856}, {3295, 11375}, {3303, 5886}, {3336, 10164}, {3337, 5542}, {3452, 5259}, {3485, 5119}, {3486, 8164}, {3488, 10588}, {3526, 17728}, {3555, 4999}, {3579, 3649}, {3583, 4314}, {3585, 3947}, {3647, 17781}, {3650, 4640}, {3678, 10122}, {3689, 31419}, {3742, 13747}, {3753, 11281}, {3817, 4857}, {3822, 57287}, {3874, 58404}, {3911, 18398}, {3914, 24160}, {3929, 41852}, {3971, 59723}, {4134, 58449}, {4187, 51715}, {4193, 62870}, {4256, 23536}, {4292, 5010}, {4294, 5226}, {4295, 5281}, {4297, 5270}, {4298, 7280}, {4299, 5290}, {4301, 37563}, {4302, 9612}, {4305, 5261}, {4311, 37616}, {4312, 5766}, {4313, 10590}, {4317, 7987}, {4330, 51118}, {4338, 9778}, {4653, 17584}, {4654, 35242}, {4848, 5425}, {4863, 31493}, {4867, 5837}, {4870, 22791}, {5045, 5433}, {5057, 32760}, {5122, 52783}, {5217, 57282}, {5249, 25440}, {5251, 21075}, {5252, 18526}, {5266, 5718}, {5300, 30834}, {5302, 15670}, {5316, 25542}, {5325, 63286}, {5434, 13624}, {5440, 25466}, {5441, 31673}, {5443, 12053}, {5560, 19925}, {5563, 10165}, {5687, 28628}, {5728, 59476}, {5745, 5904}, {5764, 50307}, {5790, 37724}, {5818, 37721}, {5887, 61533}, {5901, 5919}, {5902, 6684}, {6198, 37799}, {6666, 41861}, {6740, 56417}, {6767, 11376}, {6824, 17857}, {6825, 37569}, {6857, 25568}, {6910, 62858}, {6935, 10085}, {6954, 12704}, {6988, 41338}, {7173, 18527}, {7288, 51816}, {7680, 33597}, {8069, 37284}, {8227, 10389}, {9613, 53054}, {9624, 37556}, {9776, 18223}, {9957, 15950}, {10021, 63289}, {10106, 37525}, {10172, 15079}, {10175, 37702}, {10222, 45081}, {10303, 11038}, {10624, 18393}, {10944, 32900}, {11230, 37722}, {11237, 18481}, {11238, 61268}, {11246, 31663}, {11263, 31660}, {11518, 31423}, {11531, 31436}, {12433, 17606}, {12437, 47033}, {12514, 17699}, {12577, 37587}, {13995, 22936}, {15170, 61272}, {15171, 17605}, {15174, 18357}, {15298, 60974}, {15325, 17609}, {15671, 32635}, {15934, 24914}, {16152, 63280}, {16153, 20292}, {16173, 38665}, {16193, 58640}, {17567, 38053}, {17590, 58451}, {17719, 37573}, {17724, 37592}, {17783, 19765}, {18243, 63266}, {18514, 54342}, {18990, 37600}, {19270, 33126}, {20116, 61016}, {20323, 38028}, {21155, 37623}, {21630, 38063}, {21635, 63281}, {22793, 63273}, {22935, 63270}, {23537, 33127}, {24161, 60714}, {24387, 38062}, {24443, 26728}, {24474, 31659}, {24475, 61520}, {24953, 34790}, {25522, 38316}, {26487, 37533}, {26725, 59584}, {28629, 59591}, {31260, 51463}, {31458, 63135}, {31658, 63258}, {31835, 61722}, {36152, 54430}, {37285, 59334}, {37559, 63339}, {37568, 39542}, {37582, 52793}, {37589, 49745}, {37723, 54447}, {37837, 63257}, {38047, 56779}, {41686, 62864}, {43178, 61027}, {43180, 55920}, {46897, 56778}, {48935, 49744}, {50205, 61686}, {54290, 59335}, {54432, 61024}, {58461, 59572}, {58463, 63146}, {58630, 61663}, {60905, 60923}, {60911, 63265}

X(63259) = midpoint of X(i) and X(j) for these {i,j}: {37571, 37719}
X(63259) = pole of line {514, 9404} with respect to the Steiner inellipse
X(63259) = pole of line {3667, 23752} with respect to the Suppa-Cucoanes circle
X(63259) = pole of line {2, 52405} with respect to the dual conic of Yff parabola
X(63259) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(8), X(45138)}}, {{A, B, C, X(79), X(6734)}}, {{A, B, C, X(943), X(4420)}}, {{A, B, C, X(997), X(40430)}}, {{A, B, C, X(1698), X(2166)}}, {{A, B, C, X(3296), X(10527)}}, {{A, B, C, X(12649), X(62883)}}, {{A, B, C, X(27558), X(41013)}}
X(63259) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3584, 10}, {1, 498, 1737}, {3, 17718, 13407}, {12, 10543, 18480}, {35, 226, 1770}, {35, 37731, 226}, {35, 79, 31730}, {46, 3487, 11551}, {55, 11374, 12047}, {140, 63282, 354}, {226, 31730, 79}, {388, 3612, 21578}, {495, 2646, 45287}, {631, 3475, 3338}, {1125, 6745, 1698}, {3085, 5703, 1}, {3295, 11375, 30384}, {3486, 8164, 10827}, {3487, 5218, 46}, {3488, 10588, 10826}, {3649, 4995, 3579}, {3746, 37701, 946}, {3947, 4304, 3585}, {4295, 5281, 59316}, {4330, 61703, 51118}, {4640, 28645, 3650}, {5290, 30282, 4299}, {5433, 37703, 5045}, {5719, 61524, 16137}, {6684, 63274, 5902}, {10543, 18480, 10572}, {16137, 61524, 65}, {18480, 24929, 10543}, {24160, 33771, 3914}, {37080, 61648, 5}, {37571, 37719, 515}


X(63260) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND 5TH MIXTILINEAR

Barycentrics    a*(9*a^6-15*a^5*(b+c)-3*a^4*(4*b^2+b*c+4*c^2)+(b^2-c^2)^2*(6*b^2-11*b*c+6*c^2)+2*a^3*(15*b^3+7*b^2*c+7*b*c^2+15*c^3)-a*(b-c)^2*(15*b^3+29*b^2*c+29*b*c^2+15*c^3)+a^2*(-3*b^4+14*b^3*c+38*b^2*c^2+14*b*c^3-3*c^4)) : :

X(63260) lies on these lines: {1, 56030}, {145, 18231}, {390, 63258}, {944, 8727}, {2346, 2975}, {3487, 5556}, {3868, 51576}, {5441, 13407}, {13100, 13995}, {18221, 34471}, {34195, 37080}, {62870, 63264}

X(63260) = reflection of X(i) in X(j) for these {i,j}: {56030, 1}


X(63261) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND SODDY

Barycentrics    a^5-5*a^4*(b+c)-4*a^2*(b-c)^2*(b+c)+(b-c)^4*(b+c)-a*(b-c)^2*(b^2+3*b*c+c^2)+a^3*(8*b^2+5*b*c+8*c^2) : :

X(63261) lies on circumconic {{A, B, C, X(34917), X(58809)}} and on these lines: {1, 37771}, {2, 61030}, {7, 55}, {8, 63256}, {142, 3957}, {484, 5542}, {1699, 61013}, {3241, 38053}, {3487, 10386}, {3616, 42886}, {3871, 9782}, {3935, 60978}, {4343, 33152}, {5572, 61017}, {5603, 8236}, {5659, 61019}, {5719, 53055}, {5844, 11041}, {5902, 11038}, {7671, 17718}, {7679, 61717}, {9799, 63257}, {10164, 60948}, {11025, 17728}, {11218, 61027}, {12848, 34917}, {13405, 37787}, {15909, 56028}, {16116, 63282}, {25568, 61023}, {36845, 60996}, {41555, 62863}, {41570, 60981}, {61011, 61155}

X(63261) = midpoint of X(i) and X(j) for these {i,j}: {63258, 63287}
X(63261) = reflection of X(i) in X(j) for these {i,j}: {2346, 63287}
X(63261) = pole of line {37787, 58816} with respect to the dual conic of Yff parabola
X(63261) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2346, 63258, 7}, {38454, 63287, 2346}, {63258, 63287, 38454}


X(63262) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND INNER-YFF

Barycentrics    a*(a^9-2*a^8*(b+c)-a^5*b*c*(b+c)^2-b*(b-c)^4*c*(b+c)^3+a^7*(-2*b^2+b*c-2*c^2)+a^6*(6*b^3+5*b^2*c+5*b*c^2+6*c^3)-a*(b^2-c^2)^2*(b^4-b^3*c-2*b^2*c^2-b*c^3+c^4)+a^2*(b-c)^2*(2*b^5+7*b^4*c+9*b^3*c^2+9*b^2*c^3+7*b*c^4+2*c^5)-a^4*(6*b^5+5*b^4*c+3*b^3*c^2+3*b^2*c^3+5*b*c^4+6*c^5)+a^3*(2*b^6-b^5*c+10*b^3*c^3-b*c^5+2*c^6)) : :

X(63262) lies on these lines: {1, 3215}, {3, 18223}, {35, 63254}, {55, 37438}, {90, 2346}, {224, 59337}, {912, 3652}, {943, 10395}, {1001, 11517}, {1071, 10058}, {1478, 11496}, {1621, 3885}, {3295, 7489}, {3746, 24987}, {5251, 5559}, {5840, 37621}, {5844, 10965}, {5904, 18232}, {7742, 38454}, {8069, 10044}, {10052, 60923}, {10057, 10572}, {10389, 45632}, {11045, 22766}, {13128, 13995}, {13407, 16152}, {14882, 41552}, {56583, 63264}


X(63263) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND GEMINI 108

Barycentrics    3*a^6-6*a^5*(b+c)+2*(b-c)^4*(b+c)^2+a^4*(-2*b^2+3*b*c-2*c^2)-3*a^2*(b-c)^2*(b^2+3*b*c+c^2)+5*a^3*(2*b^3+b^2*c+b*c^2+2*c^3)-a*(b-c)^2*(4*b^3+3*b^2*c+3*b*c^2+4*c^3) : :

X(63263) lies on these lines: {2, 2346}, {3533, 14986}, {3616, 8256}, {5226, 38454}, {5432, 7677}, {5435, 63258}, {5659, 13405}, {6927, 63257}, {7288, 63256}, {10580, 63287}, {11025, 31231}, {12640, 24541}, {41570, 59491}


X(63264) = PERSPECTOR OF THESE TRIANGLES: 1ST PAVLOV AND ANTICEVIAN-OF-X(9)

Barycentrics    a*(a^7-3*a^6*(b+c)+3*a*(b^2-c^2)^2*(b^2+b*c+c^2)+a^5*(b^2+3*b*c+c^2)-(b-c)^4*(b^3+5*b^2*c+5*b*c^2+c^3)+a^4*(5*b^3+9*b^2*c+9*b*c^2+5*c^3)-a^3*(5*b^4+14*b^3*c+2*b^2*c^2+14*b*c^3+5*c^4)-a^2*(b^5-3*b^4*c+14*b^3*c^2+14*b^2*c^3-3*b*c^4+c^5)) : :

X(63264) lies on these lines: {1, 61030}, {2, 63254}, {9, 17718}, {40, 5735}, {55, 5528}, {142, 5536}, {191, 527}, {1001, 6326}, {1490, 5248}, {2136, 34720}, {2346, 3174}, {2550, 5541}, {2949, 10198}, {2950, 60896}, {2951, 60964}, {3254, 3925}, {5856, 63270}, {8545, 62838}, {10902, 15726}, {12660, 13995}, {13146, 63281}, {15733, 37080}, {16550, 54324}, {34919, 61004}, {37550, 60953}, {41570, 60981}, {56583, 63262}, {60969, 63265}, {62870, 63260}

X(63264) = X(i)-Ceva conjugate of X(j) for these {i, j}: {41570, 3174}, {60981, 9}


X(63265) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND AGUILERA

Barycentrics    -2*a*b*(b-c)^2*c+3*a^4*(b+c)+6*a^2*(b-c)^2*(b+c)-(b-c)^4*(b+c)+a^3*(-8*b^2+2*b*c-8*c^2) : :
X(63265) =

X(63265) lies on circumconic {{A, B, C, X(3255), X(10481)}} and on these lines: {1, 7}, {9, 61651}, {55, 41572}, {119, 15607}, {142, 7671}, {144, 41570}, {518, 45081}, {527, 2346}, {908, 41548}, {971, 63257}, {1621, 61002}, {3059, 6735}, {3062, 61027}, {3256, 7676}, {5218, 60947}, {5249, 17668}, {5572, 30379}, {7679, 10392}, {8255, 14100}, {10389, 44447}, {10391, 17620}, {10427, 58564}, {10578, 60934}, {11019, 60988}, {11025, 60992}, {11495, 60932}, {13405, 29007}, {15726, 41857}, {15837, 50573}, {16112, 17718}, {16133, 63274}, {17768, 37080}, {20292, 60980}, {21060, 60983}, {27385, 60958}, {30295, 60945}, {30330, 61019}, {31249, 60996}, {31397, 40269}, {34919, 60966}, {35258, 60950}, {43151, 60948}, {58608, 61035}, {60910, 61015}, {60911, 63259}, {60942, 62838}, {60969, 63264}, {60991, 63254}, {63266, 63282}

X(63265) = midpoint of X(i) and X(j) for these {i,j}: {4312, 4330}
X(63265) = reflection of X(i) in X(j) for these {i,j}: {16133, 63274}, {41857, 63258}
X(63265) = pole of line {354, 41572} with respect to the Feuerbach hyperbola
X(63265) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {390, 11038, 5734}, {4312, 4330, 516}, {8255, 14100, 21617}, {15726, 63258, 41857}


X(63266) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND EXTOUCH

Barycentrics    a*(2*a^6-a^5*(b+c)+a^4*(-5*b^2+6*b*c-5*c^2)-(b^2-c^2)^2*(b^2+4*b*c+c^2)+2*a^2*(b-c)^2*(2*b^2+3*b*c+2*c^2)+2*a^3*(b^3+2*b^2*c+2*b*c^2+c^3)-a*(b-c)^2*(b^3+5*b^2*c+5*b*c^2+c^3)) : :

X(63266) lies on these lines: {1, 84}, {4, 2355}, {5, 17613}, {30, 24987}, {40, 5302}, {90, 41539}, {165, 41872}, {484, 16616}, {515, 45081}, {516, 3647}, {517, 3652}, {518, 7701}, {912, 48668}, {946, 11246}, {962, 62827}, {971, 2346}, {1155, 6831}, {1156, 44861}, {1158, 5221}, {1385, 9961}, {1519, 61272}, {1532, 3634}, {1537, 34502}, {1538, 6952}, {1699, 37524}, {1768, 13374}, {2777, 13442}, {3149, 11372}, {3683, 31730}, {3697, 35448}, {3753, 37234}, {3916, 10527}, {4420, 5777}, {4512, 37426}, {4640, 5705}, {5440, 31937}, {5537, 58631}, {5550, 6935}, {5558, 10595}, {5603, 34862}, {5687, 18540}, {5805, 6847}, {5927, 11248}, {6244, 51572}, {6253, 31673}, {6361, 31445}, {6833, 61268}, {6845, 22793}, {6906, 9856}, {6912, 31788}, {6920, 31787}, {6958, 17618}, {8758, 52372}, {9800, 59345}, {9812, 37623}, {9955, 20292}, {10306, 18908}, {10310, 54370}, {10894, 52860}, {10902, 15726}, {10914, 18761}, {10915, 34697}, {11374, 60925}, {11544, 63254}, {11826, 12617}, {12571, 46684}, {12688, 33597}, {12702, 26921}, {12738, 12775}, {13405, 41543}, {13528, 19925}, {16006, 63258}, {16112, 17857}, {16127, 17718}, {18243, 63259}, {18482, 30312}, {21628, 37468}, {22936, 28198}, {22937, 28202}, {28194, 63276}, {28534, 49177}, {32635, 58643}, {35258, 37411}, {36279, 63437}, {37287, 43178}, {46847, 53002}, {53055, 58576}, {56176, 61705}, {56941, 58588}, {63265, 63282}

X(63266) = pole of line {56, 41562} with respect to the Feuerbach hyperbola
X(63266) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1433), X(56203)}}, {{A, B, C, X(52037), X(60203)}}
X(63266) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1012, 12705, 12672}, {1709, 11496, 1071}


X(63267) = ORTHOLOGIC CENTER OF THESE TRIANGLES: ANTICEVIAN-OF-X(9) AND 1ST PAVLOV

Barycentrics    a*(a^6-2*a^5*(b+c)+(b^2-c^2)^2*(b^2+4*b*c+c^2)-a^4*(b^2+9*b*c+c^2)-a*(b-c)^2*(2*b^3+b^2*c+b*c^2+2*c^3)+a^3*(4*b^3-b^2*c-b*c^2+4*c^3)-a^2*(b^4-5*b^3*c-4*b^2*c^2-5*b*c^3+c^4)) : :
X(63267) = -3*X[165]+2*X[3652], -5*X[1698]+4*X[22798], -3*X[1699]+4*X[49107], -3*X[3576]+2*X[21669], -3*X[5587]+4*X[37401], -6*X[6175]+5*X[18492], -5*X[7987]+4*X[31649], -2*X[8148]+3*X[16126], -8*X[12104]+9*X[58221], -2*X[12738]+3*X[13146], -4*X[31794]+3*X[54145], -13*X[34595]+12*X[44257] and many others

X(63267) lies on these lines: {1, 30}, {3, 5506}, {9, 2173}, {20, 6326}, {21, 3646}, {40, 3681}, {78, 63280}, {165, 3652}, {191, 210}, {200, 3650}, {381, 41862}, {516, 16116}, {758, 2136}, {952, 13144}, {1045, 1048}, {1490, 16113}, {1698, 22798}, {1699, 49107}, {1750, 31423}, {2475, 18406}, {2771, 5541}, {2949, 7580}, {2950, 11500}, {2951, 17857}, {3174, 16006}, {3576, 21669}, {3648, 4420}, {3870, 63285}, {3885, 41863}, {5221, 10399}, {5249, 18483}, {5259, 13624}, {5302, 7688}, {5499, 41859}, {5538, 15704}, {5587, 37401}, {5691, 47032}, {5732, 8227}, {5881, 12565}, {5905, 20066}, {6175, 18492}, {6361, 28647}, {6841, 41867}, {6851, 14526}, {6903, 51569}, {6985, 37524}, {7987, 31649}, {8148, 16126}, {8583, 17525}, {10884, 16125}, {10902, 15726}, {11001, 22836}, {11263, 38053}, {12104, 58221}, {12738, 13146}, {15678, 19861}, {15679, 19860}, {15682, 30143}, {15803, 16141}, {16139, 16558}, {16140, 61763}, {16150, 28146}, {16160, 41858}, {22937, 32632}, {31794, 54145}, {34595, 44257}, {37105, 56203}, {37426, 61705}, {37733, 62155}, {46947, 57002}, {47033, 61250}, {51572, 58658}

X(63267) = reflection of X(i) in X(j) for these {i,j}: {40, 33557}, {191, 16117}, {3648, 31730}, {5691, 47032}, {7701, 3651}, {10308, 3647}, {16132, 16143}, {41869, 79}, {48668, 3579}
X(63267) = perspector of circumconic {{A, B, C, X(38340), X(55185)}}
X(63267) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3648, 191}, {4420, 1}, {17781, 9}, {31730, 40}
X(63267) = pole of line {942, 48668} with respect to the Feuerbach hyperbola
X(63267) = pole of line {35193, 35242} with respect to the Stammler hyperbola
X(63267) = intersection, other than A, B, C, of circumconics {{A, B, C, X(9), X(56847)}}, {{A, B, C, X(3579), X(16553)}}, {{A, B, C, X(3647), X(56846)}}, {{A, B, C, X(10308), X(52374)}}, {{A, B, C, X(33671), X(52372)}}
X(63267) = barycentric product X(i)*X(j) for these (i, j): {33671, 4359}
X(63267) = barycentric quotient X(i)/X(j) for these (i, j): {33671, 1255}
X(63267) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 16143, 16132}, {30, 79, 41869}, {500, 56843, 1}, {3579, 48668, 191}, {3647, 10308, 7701}, {3647, 3651, 35242}, {3651, 10308, 3647}, {16117, 48668, 3579}, {16143, 41860, 79}, {41869, 41870, 31162}, {41869, 50811, 41864}


X(63268) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND ANTIPEDAL-OF-X(9)

Barycentrics    a*(2*a^4-5*a^3*(b+c)+3*a^2*(b+c)^2-(b-c)^2*(b^2+4*b*c+c^2)+a*(b^3+b^2*c+b*c^2+c^3)) : :

X(63268) lies on these lines: {1, 6}, {55, 17668}, {142, 5432}, {354, 60994}, {516, 63257}, {527, 63258}, {971, 16138}, {1155, 60980}, {1621, 17620}, {2346, 15733}, {3475, 60950}, {3683, 37703}, {3745, 63387}, {3920, 63384}, {4423, 20588}, {4428, 16112}, {4512, 60965}, {4640, 60933}, {4666, 60947}, {5761, 31658}, {5805, 26487}, {5832, 10198}, {5853, 45081}, {5856, 63254}, {6067, 6666}, {6594, 31235}, {6600, 61028}, {7671, 61025}, {8730, 47375}, {12743, 15006}, {13405, 41548}, {13407, 17768}, {14100, 61004}, {14872, 60911}, {28204, 47357}, {37623, 38122}, {37787, 58564}, {38454, 60991}, {40659, 60981}, {55920, 60996}, {58563, 60989}, {58648, 62800}, {60957, 62838}

X(63268) = midpoint of X(i) and X(j) for these {i,j}: {2346, 60969}
X(63268) = pole of line {55, 41577} with respect to the Feuerbach hyperbola
X(63268) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 60964, 17668}, {13405, 61002, 41548}


X(63269) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND ANTIPEDAL-OF-X(21)

Barycentrics    a*(a^6-a^5*(b+c)-b*c*(b^2-c^2)^2-2*a^4*(b^2+b*c+c^2)+2*a^3*(b^3+b^2*c+b*c^2+c^3)+a^2*(b^4+3*b^3*c+5*b^2*c^2+3*b*c^3+c^4)-a*(b^5+b^4*c-3*b^3*c^2-3*b^2*c^3+b*c^4+c^5)) : :

X(63269) lies on these lines: {1, 21}, {30, 12877}, {35, 11263}, {55, 2475}, {79, 14795}, {100, 442}, {110, 42443}, {229, 3724}, {388, 15680}, {404, 26725}, {411, 49177}, {944, 13743}, {1001, 15674}, {1006, 16139}, {1125, 35204}, {1484, 10021}, {2346, 6597}, {2646, 39778}, {3487, 14450}, {3616, 37308}, {3648, 37292}, {3649, 5172}, {3651, 16159}, {3653, 21161}, {3871, 47033}, {4428, 15677}, {5253, 11281}, {5259, 58449}, {5260, 21677}, {5284, 6675}, {5303, 16137}, {5428, 22765}, {5499, 11849}, {5535, 6986}, {5880, 35979}, {6175, 10197}, {6583, 22937}, {6905, 33592}, {6906, 33858}, {6920, 62354}, {7677, 41547}, {9961, 16132}, {11277, 35000}, {11491, 37230}, {11496, 37433}, {12913, 17768}, {13405, 41550}, {14526, 32760}, {14804, 17549}, {15175, 30143}, {15676, 30478}, {15888, 33961}, {17164, 56946}, {25713, 58382}, {27065, 58638}, {28443, 38314}, {29817, 41542}, {31254, 41859}, {31649, 38669}, {33667, 45065}, {34772, 44782}, {44669, 45081}, {63270, 63272}

X(63269) = pole of line {5949, 17796} with respect to the Kiepert hyperbola
X(63269) = pole of line {100, 39630} with respect to the Kiepert parabola
X(63269) = pole of line {101, 39630} with respect to the Hutson-Moses hyperbola
X(63269) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10), X(47319)}}, {{A, B, C, X(943), X(5127)}}, {{A, B, C, X(6597), X(17194)}}, {{A, B, C, X(11604), X(54356)}}
X(63269) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 191, 47319}, {21, 34195, 2975}, {191, 5248, 21}, {442, 31660, 100}, {11281, 27086, 5253}, {16159, 32613, 3651}


X(63270) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND FUHRMANN

Barycentrics    a^5*(b+c)^2-a^4*(b+c)^3+2*a^2*(b-c)^2*(b+c)^3-(b-c)^4*(b+c)^3+a*(b^2-c^2)^2*(b^2-b*c+c^2)-a^3*(2*b^4+b^3*c-10*b^2*c^2+b*c^3+2*c^4) : :

X(63270) lies on these lines: {1, 5}, {2, 22560}, {30, 63281}, {55, 6951}, {56, 6972}, {100, 25466}, {104, 5434}, {149, 3303}, {153, 11237}, {226, 17638}, {354, 10265}, {377, 13205}, {442, 2802}, {517, 33593}, {518, 63254}, {528, 2346}, {1145, 3925}, {1320, 2886}, {1329, 31272}, {1478, 38756}, {1532, 16174}, {1737, 58587}, {1768, 10404}, {2771, 13407}, {2800, 3649}, {2801, 33667}, {2829, 21669}, {3035, 17531}, {3036, 62236}, {3058, 10738}, {3475, 9803}, {3584, 61562}, {3746, 56790}, {3814, 33709}, {3822, 5919}, {4187, 32557}, {4193, 32558}, {4309, 48680}, {4654, 12767}, {4995, 33814}, {4996, 6690}, {5172, 6909}, {5270, 46816}, {5298, 6713}, {5432, 10090}, {5499, 37563}, {5563, 61566}, {5840, 37621}, {5856, 63264}, {6067, 55016}, {6068, 15296}, {6147, 11571}, {6174, 10197}, {6284, 10724}, {6583, 12619}, {6702, 17757}, {6797, 10039}, {6831, 11715}, {6907, 14217}, {6940, 37564}, {7354, 10058}, {7965, 52836}, {9657, 12248}, {10056, 12331}, {10532, 22775}, {11246, 12515}, {12607, 59415}, {12617, 17661}, {12736, 40663}, {12758, 26200}, {12764, 42356}, {12832, 30329}, {13375, 33592}, {13405, 41541}, {14795, 15338}, {14804, 38602}, {15170, 61601}, {17605, 39779}, {17636, 31397}, {17660, 21620}, {18240, 20118}, {18242, 59391}, {21031, 34122}, {21154, 26286}, {22935, 63259}, {24466, 28458}, {25438, 34612}, {31936, 34503}, {41558, 44840}, {42871, 61717}, {44847, 59376}, {47320, 61722}, {50749, 63365}, {63269, 63272}

X(63270) = midpoint of X(i) and X(j) for these {i,j}: {11, 15888}, {3746, 56790}, {5270, 46816}
X(63270) = pole of line {517, 41558} with respect to the Feuerbach hyperbola
X(63270) = pole of line {3911, 25076} with respect to the dual conic of Yff parabola
X(63270) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11, 15888, 952}, {80, 37703, 1317}, {1387, 8068, 11}, {23477, 23517, 37702}, {37718, 37719, 11698}


X(63271) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND CEVIAN OF X(79)

Barycentrics    a*(4*a^3-a^2*(b+c)+(b-c)^2*(b+c)-2*a*(2*b^2+5*b*c+2*c^2)) : :
X(63271) = -3*X[1962]+X[47484]

X(63271) lies on these lines: {1, 3}, {8, 17561}, {10, 48859}, {12, 31795}, {44, 55100}, {72, 61155}, {79, 28202}, {200, 51572}, {210, 41872}, {226, 10386}, {381, 41864}, {390, 11374}, {474, 62856}, {495, 4314}, {496, 3826}, {497, 61268}, {498, 18527}, {516, 11544}, {518, 3647}, {519, 15174}, {551, 13463}, {631, 8236}, {678, 27628}, {943, 3935}, {950, 18357}, {971, 2346}, {1058, 5550}, {1100, 24047}, {1125, 15170}, {1279, 33771}, {1386, 41454}, {1621, 4420}, {1770, 37703}, {1962, 47484}, {2160, 3723}, {2293, 5399}, {2355, 6198}, {3058, 9955}, {3085, 61261}, {3158, 11108}, {3486, 61244}, {3488, 3617}, {3555, 62827}, {3621, 37739}, {3626, 37730}, {3649, 28198}, {3681, 56203}, {3689, 5259}, {3753, 62870}, {3811, 4428}, {3870, 31445}, {3880, 35016}, {3916, 3957}, {3921, 16859}, {4309, 17718}, {4330, 28154}, {4848, 15935}, {4857, 61648}, {5178, 5722}, {5225, 18782}, {5248, 5302}, {5267, 58609}, {5270, 28168}, {5441, 28208}, {5587, 31480}, {5603, 40262}, {5714, 50696}, {5719, 10624}, {5806, 11491}, {5853, 6675}, {6762, 17571}, {6764, 50739}, {6765, 16418}, {7741, 52638}, {7743, 13411}, {8715, 51715}, {10056, 18480}, {10385, 12699}, {10543, 22798}, {10578, 57282}, {11231, 31452}, {11237, 33697}, {11373, 46934}, {12575, 37737}, {13405, 15171}, {13407, 28146}, {15008, 15837}, {15254, 18233}, {15325, 40270}, {15338, 31776}, {15888, 28160}, {16137, 28194}, {16408, 38316}, {16853, 46917}, {17527, 51724}, {17563, 51723}, {17765, 59723}, {17782, 28082}, {19526, 63135}, {19535, 62832}, {22277, 56894}, {25440, 42819}, {28174, 63274}, {31397, 37705}, {31436, 59503}, {31660, 58619}, {37721, 38176}, {48927, 49557}, {49716, 50744}, {49736, 59719}, {51784, 61256}, {52495, 62807}

X(63271) = midpoint of X(i) and X(j) for these {i,j}: {13407, 63273}
X(63271) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(354), X(10308)}}, {{A, B, C, X(942), X(32635)}}, {{A, B, C, X(943), X(32636)}}, {{A, B, C, X(1156), X(50192)}}, {{A, B, C, X(2346), X(3579)}}, {{A, B, C, X(3295), X(41431)}}, {{A, B, C, X(5708), X(55920)}}, {{A, B, C, X(7320), X(8148)}}, {{A, B, C, X(11529), X(31509)}}
X(63271) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3579, 942}, {1, 55, 3579}, {35, 3748, 5045}, {35, 5045, 5122}, {3058, 63259, 9955}, {4309, 17718, 22793}, {13407, 63273, 28146}, {13411, 15172, 7743}, {51724, 59584, 17527}, {63273, 63287, 13407}


X(63272) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND CIRCUMCEVIAN OF X(79)

Barycentrics    a*(2*a^6-2*a^5*(b+c)-2*a*(b-c)^2*(b+c)^3-b*c*(b^2-c^2)^2+a^2*(b+c)^2*(2*b^2-b*c+2*c^2)-2*a^4*(2*b^2+b*c+2*c^2)+4*a^3*(b^3+b^2*c+b*c^2+c^3)) : :

X(63272) lies on these lines: {1, 7508}, {4, 12}, {21, 5855}, {35, 28174}, {100, 6668}, {528, 31660}, {529, 15677}, {758, 37080}, {902, 31880}, {952, 3746}, {1001, 31260}, {1155, 58566}, {1621, 4999}, {2346, 5852}, {2646, 2800}, {2801, 45065}, {2975, 3303}, {3058, 26470}, {3295, 37734}, {3584, 61512}, {3649, 10902}, {3689, 58636}, {4428, 11240}, {4995, 11849}, {5433, 11507}, {5434, 10267}, {5690, 15175}, {5719, 14795}, {5841, 15888}, {5919, 51111}, {6763, 10389}, {6796, 38039}, {8715, 38058}, {10525, 31452}, {11248, 21155}, {12699, 37701}, {14882, 52793}, {26285, 38033}, {31480, 51518}, {32141, 38109}, {33814, 38063}, {37564, 45977}, {37733, 59337}, {51377, 58476}, {63269, 63270}, {63282, 63288}

X(63272) = midpoint of X(i) and X(j) for these {i,j}: {12, 63273}
X(63272) = pole of line {31838, 44547} with respect to the Feuerbach hyperbola
X(63272) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {12, 63273, 5842}, {11491, 11496, 52837}


X(63273) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND ANTICEVIAN-OF-X(79)

Barycentrics    4*a^4-3*a^2*(b+c)^2-(b^2-c^2)^2 : :

X(63273) lies on these lines: {1, 550}, {2, 9670}, {3, 3058}, {4, 12}, {5, 4995}, {10, 6154}, {11, 35}, {20, 3303}, {21, 528}, {30, 3746}, {36, 15172}, {39, 22711}, {56, 390}, {65, 4314}, {73, 53529}, {79, 28178}, {100, 37162}, {149, 4999}, {165, 41864}, {218, 56744}, {354, 31730}, {376, 3304}, {377, 4428}, {381, 31452}, {382, 10056}, {388, 5059}, {397, 10638}, {398, 1250}, {404, 49736}, {405, 34612}, {452, 34607}, {468, 5310}, {484, 12433}, {495, 62036}, {496, 5010}, {497, 3523}, {498, 3851}, {499, 15720}, {515, 45081}, {516, 3649}, {517, 10543}, {519, 57002}, {529, 15680}, {546, 3584}, {548, 5563}, {549, 37720}, {612, 10301}, {631, 11238}, {902, 1834}, {950, 37568}, {952, 3065}, {958, 20075}, {999, 62100}, {1001, 37462}, {1056, 62147}, {1058, 5204}, {1071, 1317}, {1210, 63211}, {1253, 7299}, {1319, 12575}, {1362, 33521}, {1385, 24466}, {1387, 37616}, {1388, 9785}, {1478, 5073}, {1479, 1656}, {1480, 4549}, {1482, 30264}, {1486, 17523}, {1621, 20066}, {1657, 3295}, {1697, 1709}, {1737, 31795}, {1837, 61763}, {2067, 9649}, {2098, 4305}, {2099, 4313}, {2478, 4421}, {2646, 10624}, {3006, 59592}, {3021, 37575}, {3022, 33520}, {3023, 10992}, {3024, 30714}, {3027, 10991}, {3028, 10990}, {3056, 8550}, {3086, 10299}, {3090, 9671}, {3146, 11237}, {3270, 10619}, {3434, 24953}, {3476, 7320}, {3485, 30332}, {3488, 37567}, {3516, 10831}, {3517, 10833}, {3529, 9657}, {3530, 3582}, {3534, 4317}, {3543, 9656}, {3576, 12700}, {3583, 3614}, {3585, 62026}, {3600, 8162}, {3601, 5805}, {3627, 37719}, {3648, 5852}, {3654, 37721}, {3679, 50241}, {3683, 63146}, {3689, 12572}, {3712, 5015}, {3748, 4292}, {3749, 50065}, {3750, 49745}, {3812, 63145}, {3813, 4189}, {3825, 31235}, {3830, 31480}, {3854, 10588}, {3858, 7951}, {3871, 56880}, {3884, 10609}, {3897, 13463}, {3913, 6872}, {3916, 51463}, {3920, 9628}, {3925, 5248}, {4005, 51090}, {4030, 7283}, {4187, 6174}, {4190, 34626}, {4251, 41326}, {4293, 62127}, {4297, 5919}, {4299, 6767}, {4300, 63295}, {4316, 62136}, {4324, 18990}, {4325, 12103}, {4326, 60883}, {4366, 33021}, {4854, 5266}, {4863, 31424}, {5047, 34501}, {5056, 5218}, {5068, 5225}, {5119, 10950}, {5178, 18253}, {5183, 6738}, {5221, 9778}, {5229, 50691}, {5230, 21000}, {5252, 53053}, {5254, 10987}, {5260, 20095}, {5261, 50690}, {5265, 62060}, {5274, 61834}, {5326, 7741}, {5353, 42925}, {5357, 42924}, {5427, 59320}, {5552, 61153}, {5558, 8236}, {5697, 37734}, {5722, 59316}, {5840, 37621}, {5894, 32065}, {5903, 54342}, {6020, 14900}, {6285, 44762}, {6690, 52367}, {6857, 31140}, {6871, 34706}, {6876, 34629}, {6904, 47357}, {6910, 11235}, {7158, 52057}, {7280, 62069}, {7288, 61791}, {7355, 15105}, {7373, 62107}, {7753, 31462}, {7892, 26590}, {7901, 26629}, {7991, 37724}, {8715, 11113}, {8960, 13901}, {9580, 11375}, {9581, 31508}, {9627, 35491}, {9643, 44239}, {9648, 13904}, {9654, 62023}, {9655, 49139}, {9659, 35477}, {9660, 35809}, {9669, 46219}, {9710, 16865}, {9819, 37738}, {10039, 51787}, {10086, 52090}, {10149, 10295}, {10267, 11826}, {10387, 39897}, {10389, 10404}, {10483, 62159}, {10572, 62616}, {10589, 61856}, {10591, 61886}, {10592, 18514}, {10593, 55859}, {10679, 11827}, {10707, 37291}, {10738, 31659}, {10949, 26357}, {11010, 37730}, {11108, 34707}, {11111, 34720}, {11114, 12607}, {11189, 34782}, {11239, 50244}, {11248, 50031}, {11376, 30282}, {11680, 31260}, {11681, 61157}, {11803, 47378}, {12053, 37600}, {12437, 31165}, {12512, 32636}, {12513, 34699}, {12699, 59337}, {12943, 49135}, {13081, 45570}, {13082, 45571}, {13407, 28146}, {13958, 58866}, {14100, 41538}, {14537, 31478}, {14986, 62067}, {15174, 28212}, {15325, 59325}, {15682, 31410}, {15908, 32613}, {15931, 31777}, {16118, 28182}, {16137, 28216}, {16454, 49740}, {17526, 48829}, {17563, 25055}, {17609, 30331}, {17718, 41869}, {17724, 24851}, {17728, 35242}, {18483, 61648}, {18861, 20418}, {18965, 31500}, {18966, 41964}, {19535, 45700}, {20417, 46687}, {21154, 26086}, {21578, 31792}, {22791, 37571}, {22793, 63259}, {23711, 37289}, {24387, 34649}, {24914, 35445}, {25466, 61155}, {25917, 61028}, {28194, 44238}, {30305, 34471}, {31479, 61970}, {31499, 35802}, {31775, 34486}, {32945, 49728}, {33519, 56762}, {33925, 34630}, {34746, 37234}, {34749, 57006}, {35250, 44455}, {36568, 59580}, {37290, 37725}, {37299, 62837}, {37701, 40273}, {37702, 61524}, {37703, 57282}, {37709, 53052}, {42150, 54435}, {42151, 54436}, {44244, 62736}, {47743, 61817}, {48831, 56992}, {49460, 54429}, {50444, 51791}, {59319, 62064}, {59591, 61154}

X(63273) = midpoint of X(i) and X(j) for these {i,j}: {3746, 4330}, {5441, 37563}
X(63273) = reflection of X(i) in X(j) for these {i,j}: {11, 63281}, {12, 63272}, , {79, 63282}, {13407, 63271}, {15888, 3746}, {3649, 37080}, {5178, 18253}
X(63273) = pole of line {4977, 53532} with respect to the incircle
X(63273) = pole of line {5045, 12242} with respect to the Feuerbach hyperbola
X(63273) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 15228, 24470}, {1, 15338, 15326}, {3, 3058, 37722}, {3, 37722, 5298}, {3, 4309, 3058}, {11, 35, 52793}, {11, 52793, 7294}, {20, 10385, 3303}, {20, 3303, 5434}, {30, 3746, 15888}, {35, 4857, 140}, {55, 12953, 3085}, {55, 4294, 6284}, {55, 6284, 12}, {140, 15171, 4857}, {140, 4857, 11}, {497, 5217, 5433}, {516, 37080, 3649}, {548, 15170, 5563}, {950, 37568, 40663}, {1479, 5432, 7173}, {3295, 4302, 7354}, {3601, 12701, 15950}, {3746, 4330, 30}, {3813, 4189, 31157}, {3913, 6872, 34606}, {5047, 49732, 34501}, {5441, 37563, 952}, {6253, 11496, 7965}, {8715, 11113, 21031}, {11496, 37000, 6253}, {13407, 63271, 63287}, {16865, 49719, 9710}, {28146, 63271, 13407}, {28178, 63282, 79}


X(63274) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND CEVIAN OF X(86)

Barycentrics    2*a^4-3*a^3*(b+c)+3*a*(b-c)^2*(b+c)-3*a^2*(b+c)^2+(b^2-c^2)^2 : :

X(63274) lies on these lines: {1, 4}, {2, 3984}, {3, 553}, {7, 3522}, {8, 4035}, {9, 1475}, {10, 3711}, {11, 6744}, {12, 6738}, {20, 4654}, {21, 527}, {35, 11551}, {36, 943}, {55, 3671}, {56, 954}, {57, 3523}, {65, 12563}, {72, 354}, {78, 142}, {79, 28150}, {85, 59605}, {140, 942}, {200, 28629}, {284, 31903}, {329, 3622}, {377, 12437}, {386, 26728}, {405, 551}, {442, 519}, {452, 28609}, {516, 3649}, {517, 16137}, {518, 11281}, {550, 3982}, {908, 37162}, {912, 10122}, {938, 5056}, {951, 60041}, {962, 10389}, {1001, 61003}, {1006, 5563}, {1210, 1656}, {1260, 25524}, {1319, 12577}, {1420, 11037}, {1657, 4304}, {1682, 20358}, {1697, 10578}, {1706, 63168}, {1708, 3333}, {1737, 17706}, {1836, 4314}, {1837, 3947}, {1858, 12564}, {1901, 3723}, {2294, 8756}, {2325, 56318}, {2646, 4298}, {2650, 3011}, {2900, 21627}, {3057, 37703}, {3085, 4848}, {3091, 15933}, {3244, 3419}, {3247, 5746}, {3303, 4301}, {3338, 10165}, {3339, 5218}, {3340, 54366}, {3452, 54392}, {3576, 5758}, {3600, 13384}, {3623, 5175}, {3634, 61648}, {3636, 12572}, {3651, 3746}, {3654, 31480}, {3656, 37411}, {3663, 19765}, {3664, 3665}, {3674, 14828}, {3678, 61663}, {3686, 4101}, {3704, 50753}, {3726, 60586}, {3743, 8758}, {3748, 12575}, {3753, 59722}, {3812, 6745}, {3850, 12433}, {3851, 5722}, {3858, 15935}, {3868, 5745}, {3873, 24541}, {3876, 6666}, {3881, 14054}, {3913, 37240}, {3925, 6743}, {3929, 17558}, {3946, 19767}, {3951, 5325}, {3962, 18249}, {4031, 10299}, {4114, 21735}, {4252, 62240}, {4255, 24177}, {4297, 10404}, {4313, 5059}, {4315, 34471}, {4317, 51705}, {4323, 5665}, {4355, 53054}, {4658, 25516}, {4667, 62809}, {4847, 28628}, {4870, 8226}, {4887, 54387}, {4888, 24797}, {5045, 12242}, {5049, 5777}, {5068, 5226}, {5083, 16193}, {5122, 61792}, {5128, 5281}, {5129, 31142}, {5221, 10164}, {5249, 34772}, {5261, 5727}, {5425, 10039}, {5435, 61834}, {5437, 27383}, {5438, 9776}, {5439, 6700}, {5440, 12436}, {5441, 28172}, {5552, 44848}, {5559, 28234}, {5570, 58566}, {5586, 16192}, {5704, 46935}, {5708, 15720}, {5728, 15950}, {5734, 37421}, {5750, 22021}, {5759, 7987}, {5761, 18443}, {5766, 30340}, {5795, 56880}, {5809, 18220}, {5812, 10246}, {5817, 61274}, {5853, 60991}, {5881, 6843}, {5883, 59719}, {5902, 6684}, {5905, 62829}, {6173, 6904}, {6598, 56030}, {6692, 27385}, {6734, 58463}, {6737, 25466}, {6829, 37719}, {6832, 10072}, {6846, 9624}, {6857, 54422}, {6872, 31164}, {6877, 31399}, {6889, 10056}, {6907, 10222}, {6908, 7982}, {6913, 61276}, {6990, 37720}, {7288, 10980}, {7373, 57278}, {7483, 24473}, {7593, 8242}, {8080, 11924}, {8232, 10392}, {8236, 52835}, {8583, 38053}, {8804, 16777}, {9589, 10385}, {9656, 34648}, {9780, 18221}, {9812, 41864}, {10198, 12559}, {10395, 11019}, {10398, 30343}, {10527, 62861}, {10529, 62815}, {10543, 28164}, {10573, 14563}, {10580, 50443}, {10587, 11682}, {10588, 30315}, {10624, 39542}, {10950, 51782}, {11011, 57285}, {11024, 46917}, {11113, 51103}, {11191, 12694}, {11237, 37724}, {11239, 12640}, {11246, 12512}, {11376, 21625}, {11415, 61011}, {11544, 28146}, {11623, 59815}, {12513, 37224}, {12536, 37161}, {12609, 63146}, {12649, 31266}, {12701, 30331}, {13442, 37631}, {13615, 34647}, {14986, 44841}, {15174, 28160}, {15178, 31789}, {15325, 50192}, {15368, 49743}, {15712, 37582}, {16133, 63265}, {16173, 36946}, {16534, 59818}, {16845, 25055}, {16865, 17781}, {17523, 51687}, {17526, 50115}, {17532, 51071}, {17699, 40256}, {17728, 19862}, {18397, 50190}, {18541, 62131}, {18593, 37528}, {19843, 41863}, {19860, 56879}, {19861, 51723}, {19878, 61649}, {20417, 59817}, {21075, 54318}, {21077, 30143}, {21454, 61791}, {21808, 40869}, {22836, 51706}, {24328, 37260}, {24470, 33923}, {24987, 34195}, {25557, 59691}, {25645, 39559}, {25904, 46897}, {28174, 63271}, {28228, 63287}, {28619, 47512}, {28661, 56937}, {29574, 37445}, {29597, 37169}, {30329, 41538}, {30478, 62823}, {30949, 52542}, {31019, 57287}, {31231, 61856}, {31259, 60986}, {31436, 50810}, {31730, 59337}, {33925, 37284}, {33993, 51784}, {34701, 37435}, {36845, 45039}, {37022, 43177}, {37244, 60972}, {37545, 61803}, {37600, 43180}, {37700, 55108}, {37721, 50796}, {37822, 61277}, {38316, 61010}, {39792, 43158}, {40998, 51715}, {48819, 56959}, {49757, 49768}, {50741, 51093}, {51118, 61716}, {57283, 62800}

X(63274) = midpoint of X(i) and X(j) for these {i,j}: {1, 13407}, {3649, 37080}, {16133, 63265}, {16137, 63282}, {24987, 34195}
X(63274) = pole of line {522, 55282} with respect to the incircle
X(63274) = pole of line {65, 4314} with respect to the Feuerbach hyperbola
X(63274) = pole of line {1901, 16814} with respect to the Kiepert hyperbola
X(63274) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(225), X(34917)}}, {{A, B, C, X(278), X(5558)}}, {{A, B, C, X(950), X(60041)}}, {{A, B, C, X(951), X(14547)}}, {{A, B, C, X(1838), X(5557)}}, {{A, B, C, X(3488), X(54972)}}
X(63274) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 13407, 515}, {1, 21620, 10106}, {1, 226, 950}, {1, 30384, 40270}, {1, 3485, 12053}, {1, 3487, 226}, {1, 5290, 3486}, {1, 9612, 3488}, {2, 11520, 24391}, {12, 44840, 6738}, {56, 954, 54430}, {329, 3622, 5436}, {942, 13411, 3911}, {942, 5719, 13411}, {954, 5542, 52819}, {3085, 11529, 4848}, {3091, 15933, 37723}, {3241, 5177, 12625}, {3649, 37080, 516}, {4292, 6147, 3982}, {5045, 37737, 44675}, {5249, 34772, 57284}, {5703, 11036, 57}, {5766, 30340, 60982}, {6147, 24929, 4292}, {11374, 15934, 1210}, {12563, 13405, 65}, {16137, 63282, 517}


X(63275) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND PEDAL-OF-X(165)

Barycentrics    a*(2*a^4-3*a^3*(b+c)+7*a*(b-c)^2*(b+c)-3*a^2*(b^2-6*b*c+c^2)-(b-c)^2*(3*b^2+14*b*c+3*c^2)) : :

X(63275) lies on these lines: {1, 971}, {7, 10589}, {144, 5880}, {210, 60965}, {354, 16112}, {516, 45081}, {942, 41694}, {1155, 29007}, {1156, 58563}, {1836, 60934}, {2346, 15726}, {3683, 60964}, {3689, 17668}, {4312, 9654}, {5231, 60933}, {5851, 41857}, {8545, 11495}, {9814, 63207}, {11246, 60942}, {17768, 24987}, {18493, 59372}, {32636, 60911}, {38107, 61265}, {42356, 60952}, {52819, 57285}, {56551, 58634}, {60910, 60953}

X(63275) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8545, 31391, 15837}


X(63276) = ORTHOLOGIC CENTER OF THESE TRIANGLES: PEDAL-OF-X(165) AND 1ST PAVLOV

Barycentrics    (2*a+b+c)*(4*a^2-(b-c)^2-3*a*(b+c)) : :
X(63276) = -2*X[11281]+3*X[15672], -2*X[11544]+5*X[63286], -X[14450]+3*X[15671], -10*X[15673]+7*X[51110], -5*X[20084]+29*X[46930], 13*X[31425]+5*X[41691]

X(63276) lies on these lines: {2, 10032}, {9, 41695}, {21, 3304}, {30, 40}, {63, 3058}, {145, 4831}, {210, 50808}, {442, 44847}, {516, 61032}, {519, 57002}, {527, 63258}, {553, 1125}, {758, 5919}, {846, 37631}, {896, 4854}, {1046, 49739}, {1071, 31165}, {1707, 50068}, {2771, 44255}, {3219, 49732}, {3474, 3648}, {3578, 4046}, {3704, 50215}, {3899, 50824}, {3925, 5325}, {4418, 49730}, {4421, 35989}, {4423, 16133}, {4640, 4995}, {4654, 63277}, {5282, 17340}, {5434, 12514}, {5692, 8703}, {5698, 11238}, {5805, 30308}, {5852, 63287}, {6172, 11495}, {6174, 13257}, {6763, 15170}, {11281, 15672}, {11496, 28461}, {11544, 63286}, {13465, 28460}, {14450, 15671}, {15015, 15759}, {15673, 51110}, {15678, 44669}, {20078, 37703}, {20084, 46930}, {28194, 63266}, {31157, 51709}, {31425, 41691}, {56846, 61225}, {60942, 63211}

X(63276) = midpoint of X(i) and X(j) for these {i,j}: {2, 10032}, {191, 63278}, {3648, 6175}, {3650, 15670}, {11684, 15677}, {13465, 28460}
X(63276) = reflection of X(i) in X(j) for these {i,j}: {10543, 15677}, {15670, 3647}, {3649, 15670}, {6175, 18253}
X(63276) = intersection, other than A, B, C, of circumconics {{A, B, C, X(553), X(60942)}}, {{A, B, C, X(3649), X(5558)}}
X(63276) = barycentric product X(i)*X(j) for these (i, j): {1125, 60942}, {1213, 62400}, {4359, 63211}
X(63276) = barycentric quotient X(i)/X(j) for these (i, j): {60942, 1268}, {62400, 32014}, {63211, 1255}
X(63276) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 10032, 17768}, {191, 63278, 30}, {3647, 3650, 3649}, {3647, 41546, 3683}, {4640, 17781, 4995}


X(63277) = ORTHOLOGIC CENTER OF THESE TRIANGLES: X(1)-CIRCUMCONCEVIAN-OF-X(9) AND 1ST PAVLOV

Barycentrics    3*a^6-3*a^5*(b+c)-a*(b-c)^4*(b+c)-(b-c)^4*(b+c)^2-a^4*(5*b^2+11*b*c+5*c^2)+2*a^3*(2*b^3+b^2*c+b*c^2+2*c^3)+a^2*(3*b^4+7*b^3*c+4*b^2*c^2+7*b*c^3+3*c^4) : :
X(63277) = -3*X[2]+2*X[13159], -3*X[21]+2*X[5542], -4*X[142]+5*X[63286], -3*X[5817]+2*X[16125], -4*X[6701]+5*X[18230], -4*X[12104]+3*X[38030], -4*X[15673]+3*X[38024], -X[16116]+3*X[21168], -X[16150]+3*X[51516], -4*X[16617]+3*X[38036], -X[20084]+5*X[61006], -4*X[24393]+3*X[47033] and many others

X(63277) lies on these lines: {2, 13159}, {7, 3647}, {9, 46}, {21, 5542}, {30, 5223}, {100, 10032}, {142, 63286}, {144, 3648}, {390, 758}, {480, 16117}, {516, 5178}, {518, 5441}, {527, 63278}, {971, 16113}, {1770, 41694}, {2951, 17857}, {3065, 5856}, {3189, 4302}, {3255, 42885}, {3651, 61003}, {3652, 5762}, {4533, 17668}, {4654, 63276}, {5129, 5883}, {5259, 11551}, {5698, 41861}, {5817, 16125}, {6067, 16160}, {6701, 18230}, {10399, 60950}, {12104, 38030}, {15673, 38024}, {16116, 21168}, {16133, 51090}, {16140, 60883}, {16141, 60919}, {16142, 60910}, {16150, 51516}, {16617, 38036}, {17552, 41872}, {18977, 60909}, {20084, 61006}, {22798, 31671}, {24393, 47033}, {34195, 43179}, {41863, 57002}, {49107, 59381}, {63366, 63384}

X(63277) = midpoint of X(i) and X(j) for these {i,j}: {144, 3648}
X(63277) = reflection of X(i) in X(j) for these {i,j}: {7, 3647}, {79, 9}, {16133, 51090}, {31671, 22798}
X(63277) = X(i)-Dao conjugate of X(j) for these {i, j}: {13159, 13159}
X(63277) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 17768, 79}


X(63278) = ORTHOLOGIC CENTER OF THESE TRIANGLES: GEMINI 107 AND 1ST PAVLOV

Barycentrics    5*a^4+3*a^3*(b+c)-(b^2-c^2)^2-a^2*(4*b^2+3*b*c+4*c^2)-3*a*(b^3+b^2*c+b*c^2+c^3) : :
X(63278) = X[1]+2*X[3650], 2*X[3]+X[41691], -3*X[21]+2*X[551], -6*X[442]+7*X[19876], -4*X[1125]+5*X[15675], -3*X[3524]+X[16116], -3*X[3545]+2*X[16125], -7*X[3624]+4*X[11544], -3*X[3653]+4*X[12104], -4*X[3828]+3*X[6175], -3*X[5054]+2*X[49107], -3*X[5055]+X[16150] and many others

X(63278) lies on these lines: {1, 3650}, {2, 79}, {3, 41691}, {10, 15679}, {21, 551}, {30, 40}, {35, 17781}, {319, 32042}, {376, 5692}, {442, 19876}, {519, 5441}, {524, 63279}, {527, 63277}, {528, 3065}, {553, 5259}, {758, 3241}, {846, 49744}, {896, 3017}, {1125, 15675}, {1707, 50066}, {1749, 11113}, {1770, 5325}, {2771, 28460}, {3058, 6763}, {3219, 15228}, {3524, 16116}, {3534, 48668}, {3545, 16125}, {3582, 3916}, {3584, 4640}, {3624, 11544}, {3649, 15673}, {3653, 12104}, {3655, 3899}, {3656, 31649}, {3828, 6175}, {3830, 22798}, {4418, 49729}, {4427, 50215}, {4428, 63288}, {5054, 49107}, {5055, 16150}, {5064, 16114}, {5258, 21669}, {5434, 16140}, {5698, 10072}, {5902, 31156}, {6173, 15670}, {7865, 16123}, {10122, 28610}, {10269, 28443}, {10308, 31730}, {10543, 51093}, {10680, 28453}, {11237, 18977}, {11238, 16142}, {11246, 50202}, {11263, 15671}, {13159, 59374}, {13846, 49242}, {13847, 49243}, {14450, 15672}, {15015, 34200}, {15680, 31145}, {15699, 61552}, {16118, 18253}, {16132, 44255}, {16137, 51105}, {16154, 45701}, {16155, 45700}, {16159, 44257}, {16370, 41693}, {16617, 38021}, {17527, 27197}, {17549, 48698}, {19079, 32788}, {19080, 32787}, {22936, 49177}, {22937, 49178}, {26202, 28198}, {31146, 54302}, {31888, 35016}, {33557, 50808}, {34747, 57002}, {35193, 50148}, {35204, 43182}, {37447, 50865}, {46816, 50891}, {47032, 50821}, {50836, 60990}, {63343, 63366}

X(63278) = midpoint of X(i) and X(j) for these {i,j}: {2, 3648}, {21, 10032}, {3534, 48668}, {3650, 17525}, {11684, 15678}, {15679, 63280}
X(63278) = reflection of X(i) in X(j) for these {i,j}: {1, 17525}, {2, 3647}, {79, 2}, {191, 63276}, {3649, 15673}, {3656, 31649}, {3830, 22798}, {5441, 15678}, {15679, 10}, {16132, 44255}, {16159, 44257}, {33557, 50808}, {47032, 50821}, {50865, 37447}, {50891, 46816}, {51093, 10543}
X(63278) = pole of line {23883, 45671} with respect to the Steiner circumellipse
X(63278) = pole of line {23883, 45669} with respect to the Steiner inellipse
X(63278) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 63276, 191}, {79, 3647, 63286}, {519, 15678, 5441}, {3647, 3648, 79}, {3649, 15673, 25055}, {11684, 15678, 519}


X(63279) = ORTHOLOGIC CENTER OF THESE TRIANGLES: X(3)-CIRCUMCONCEVIAN-OF-X(6) AND 1ST PAVLOV

Barycentrics    3*a^6+a^5*(b+c)-4*a^3*b*c*(b+c)-(b^2-c^2)^2*(b^2+c^2)-a^4*(3*b^2+5*b*c+3*c^2)+a^2*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)-a*(b^5-b^4*c-b*c^4+c^5) : :
X(63279) = -3*X[21]+2*X[49511], -4*X[141]+5*X[63286], -5*X[3618]+4*X[6701], -2*X[3649]+3*X[16475], -3*X[5050]+2*X[49107], -3*X[5093]+X[16150], -2*X[13159]+3*X[59405], -3*X[14853]+2*X[16125], -3*X[14912]+X[16116], -4*X[16137]+5*X[16491], -X[20084]+5*X[51170], -3*X[26725]+4*X[51729] and many others

X(63279) lies on these lines: {6, 79}, {21, 49511}, {30, 3751}, {69, 3647}, {141, 63286}, {191, 5227}, {193, 3648}, {511, 16113}, {518, 5441}, {524, 63278}, {758, 51192}, {3065, 5848}, {3564, 3652}, {3618, 6701}, {3649, 16475}, {5039, 16115}, {5050, 49107}, {5093, 16150}, {5847, 11684}, {10543, 16496}, {12167, 16114}, {13159, 59405}, {14853, 16125}, {14912, 16116}, {16119, 19459}, {16137, 16491}, {16140, 39897}, {16141, 39873}, {16154, 45729}, {16155, 45728}, {17637, 34381}, {17768, 51194}, {18440, 22798}, {20084, 51170}, {26725, 51729}, {39899, 48668}, {47033, 49524}, {59399, 61552}, {63366, 63385}

X(63279) = midpoint of X(i) and X(j) for these {i,j}: {193, 3648}, {39899, 48668}
X(63279) = reflection of X(i) in X(j) for these {i,j}: {16496, 10543}, {18440, 22798}, {69, 3647}, {79, 6}
X(63279) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {16130, 19079, 79}


X(63280) = ORTHOLOGIC CENTER OF THESE TRIANGLES: X(9)-CIRCUMCONCEVIAN-OF-X(8) AND 1ST PAVLOV

Barycentrics    5*a^4+2*a^3*(b+c)-2*(b^2-c^2)^2-a^2*(3*b^2+b*c+3*c^2)-a*(2*b^3+b^2*c+b*c^2+2*c^3) : :
X(63280) = -2*X[1]+3*X[15678], -4*X[10]+3*X[15679], -5*X[1698]+6*X[3647], -2*X[3244]+3*X[5441], -5*X[3616]+4*X[11544], -7*X[3622]+6*X[3649], -14*X[3624]+15*X[15675], -3*X[3652]+2*X[18480], -11*X[5550]+12*X[15673], -8*X[6701]+9*X[15671], -3*X[16150]+5*X[18493], -2*X[16159]+3*X[28461] and many others

X(63280) lies on these lines: {1, 15678}, {8, 30}, {10, 15679}, {21, 36}, {78, 63267}, {100, 16113}, {191, 16558}, {390, 2098}, {515, 41691}, {758, 3633}, {1621, 10404}, {1698, 3647}, {1770, 5260}, {2475, 2551}, {2975, 12699}, {3218, 16141}, {3244, 5441}, {3616, 11544}, {3622, 3649}, {3624, 15675}, {3651, 45392}, {3652, 18480}, {3816, 27197}, {3873, 41864}, {3876, 4333}, {3916, 26202}, {4067, 9963}, {4652, 16125}, {5080, 47032}, {5178, 28150}, {5550, 15673}, {6284, 62235}, {6701, 15671}, {7701, 52841}, {9342, 12572}, {9579, 62838}, {11037, 14450}, {11415, 16116}, {11680, 37447}, {11681, 37401}, {15338, 17484}, {15489, 61729}, {16132, 56387}, {16138, 52126}, {16142, 62837}, {16150, 18493}, {16152, 63259}, {16159, 28461}, {16948, 24851}, {17491, 52352}, {20054, 31888}, {20066, 62236}, {27385, 49178}, {28460, 51409}, {28645, 34772}, {31938, 41852}, {34773, 62826}, {37572, 59670}, {41228, 60905}, {41869, 62827}, {41870, 62870}, {44217, 56203}, {51073, 63286}, {52414, 52845}

X(63280) = reflection of X(i) in X(j) for these {i,j}: {8, 3650}, {11684, 3648}, {14450, 57002}, {15679, 63278}, {16118, 3647}, {16150, 31649}, {20084, 3649}, {33557, 16113}, {34195, 15680}, {52841, 7701}, {63285, 1}
X(63280) = pole of line {3742, 17637} with respect to the Feuerbach hyperbola
X(63280) = pole of line {17069, 57066} with respect to the Steiner circumellipse
X(63280) = intersection, other than A, B, C, of circumconics {{A, B, C, X(10308), X(52375)}}, {{A, B, C, X(52393), X(56947)}}
X(63280) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 3648, 3650}, {30, 3648, 11684}, {30, 3650, 8}, {3647, 16118, 6175}, {3648, 11684, 10032}, {11544, 17525, 3616}, {15677, 20084, 3649}, {15678, 63285, 1}, {15680, 17768, 34195}


X(63281) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND ANTI-INNER-GARCIA

Barycentrics    a*(a^6-a^5*(b+c)-b*c*(b^2-c^2)^2-2*a^4*(b^2-b*c+c^2)+a^3*(2*b^3+b^2*c+b*c^2+2*c^3)+a^2*(b^4-b^3*c-3*b^2*c^2-b*c^3+c^4)-a*(b^5-b^3*c^2-b^2*c^3+c^5)) : :

X(63281) lies on circumconic {{A, B, C, X(34051), X(43758)}} and on these lines: {1, 104}, {3, 14217}, {11, 35}, {21, 2802}, {30, 63270}, {36, 1387}, {55, 80}, {100, 1698}, {119, 3584}, {149, 4309}, {153, 10056}, {200, 45393}, {214, 1621}, {404, 32557}, {405, 13205}, {484, 12736}, {516, 33593}, {517, 41542}, {528, 15670}, {548, 34890}, {946, 38063}, {950, 53616}, {952, 3746}, {956, 26726}, {993, 1320}, {1001, 2932}, {1125, 17100}, {1145, 5251}, {1155, 58587}, {1479, 6949}, {1484, 3058}, {1532, 3583}, {2077, 3582}, {2078, 4316}, {2098, 15446}, {2310, 56422}, {2346, 2801}, {2771, 37080}, {2829, 5270}, {3035, 5259}, {3036, 48696}, {3256, 12832}, {3295, 7972}, {3303, 12773}, {3336, 46684}, {3337, 18240}, {3467, 3678}, {3560, 12751}, {3585, 52836}, {3632, 13278}, {3679, 25438}, {3689, 58659}, {3871, 15863}, {4188, 32558}, {4324, 14798}, {4325, 38761}, {4326, 51768}, {4330, 5840}, {4995, 61562}, {4996, 21630}, {5010, 7676}, {5258, 5854}, {5284, 58453}, {5288, 25416}, {5427, 28212}, {5441, 37621}, {5541, 9623}, {5563, 38602}, {5886, 38722}, {5902, 12515}, {6224, 61155}, {6246, 11491}, {6265, 37571}, {6284, 14795}, {6326, 59337}, {6796, 59391}, {6797, 37568}, {6905, 16174}, {6914, 12737}, {6924, 45035}, {7951, 12764}, {8069, 18393}, {8583, 15015}, {8715, 59415}, {9670, 51517}, {9897, 10087}, {10267, 12119}, {10624, 14794}, {10738, 32613}, {10742, 37719}, {11218, 16152}, {11219, 12332}, {11237, 38756}, {11496, 34789}, {11849, 12619}, {12053, 14792}, {12531, 25439}, {12611, 37701}, {12740, 37525}, {13146, 63264}, {13995, 63282}, {14804, 22791}, {14882, 20118}, {15180, 56036}, {15228, 41345}, {15931, 24466}, {16128, 17718}, {16370, 22560}, {16858, 50841}, {17009, 28194}, {17638, 24929}, {18395, 62333}, {19077, 44590}, {19078, 44591}, {20988, 35221}, {21154, 59326}, {21635, 63259}, {22753, 59334}, {24025, 38458}, {25440, 31272}, {25542, 31235}, {26285, 37720}, {27065, 58698}, {29817, 58625}, {37561, 38032}, {37722, 61566}, {39692, 58421}, {51377, 58501}, {51817, 60782}

X(63281) = midpoint of X(i) and X(j) for these {i,j}: {11, 63273}, {3746, 46816}, {4330, 56790}
X(63281) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 16767, 12005}, {3746, 46816, 952}, {4330, 56790, 5840}


X(63282) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST PAVLOV AND FEUERBACH

Barycentrics    2*a^4-2*a^3*(b+c)+2*a*(b-c)^2*(b+c)+(b^2-c^2)^2-a^2*(3*b^2+8*b*c+3*c^2) : :
X(63282) = -3*X[442]+X[5178]

X(63282) lies on these lines: {1, 5}, {3, 3475}, {30, 13407}, {35, 24470}, {55, 6147}, {79, 28178}, {100, 9782}, {140, 354}, {165, 41870}, {210, 50205}, {226, 15171}, {442, 5178}, {515, 15174}, {516, 11544}, {517, 16137}, {518, 6675}, {519, 11281}, {528, 11263}, {529, 35016}, {537, 59723}, {549, 3338}, {550, 10404}, {551, 11260}, {553, 31663}, {631, 11038}, {632, 17728}, {938, 31479}, {942, 6684}, {943, 41345}, {946, 15170}, {962, 3295}, {999, 5703}, {1056, 6836}, {1086, 33771}, {1125, 3740}, {1385, 31799}, {1836, 10386}, {1873, 23710}, {2346, 3651}, {3035, 58565}, {3058, 40273}, {3085, 15934}, {3149, 20330}, {3189, 17528}, {3296, 3523}, {3303, 22791}, {3304, 38028}, {3333, 58813}, {3336, 4995}, {3337, 52793}, {3421, 3622}, {3485, 6767}, {3488, 9654}, {3530, 32636}, {3582, 36946}, {3600, 37606}, {3616, 9708}, {3628, 61648}, {3636, 5795}, {3647, 5852}, {3649, 3746}, {3656, 37556}, {3695, 29839}, {3742, 52264}, {3748, 12047}, {3757, 41014}, {3811, 8728}, {3820, 54392}, {3824, 63146}, {3870, 31419}, {3873, 7483}, {3874, 6690}, {3881, 4999}, {3911, 50192}, {3919, 32157}, {3931, 39544}, {3940, 45085}, {3957, 24390}, {3979, 24161}, {4205, 33126}, {4297, 18990}, {4309, 61716}, {4313, 9655}, {4330, 28182}, {4420, 17529}, {4646, 26728}, {5010, 52783}, {5045, 13411}, {5083, 58569}, {5126, 12577}, {5131, 5557}, {5218, 5708}, {5221, 31452}, {5226, 9669}, {5266, 49743}, {5270, 10543}, {5432, 18398}, {5433, 50190}, {5434, 37571}, {5439, 47742}, {5441, 28190}, {5542, 37582}, {5657, 31480}, {5690, 10056}, {5714, 9668}, {5730, 10587}, {5762, 10902}, {5791, 41863}, {5818, 15933}, {5842, 16125}, {5855, 15862}, {5902, 61524}, {6583, 31659}, {6738, 11545}, {6889, 12245}, {7743, 40270}, {9440, 52408}, {9709, 63168}, {10039, 44840}, {10072, 61551}, {10310, 31657}, {10385, 48661}, {10389, 12699}, {10591, 18530}, {11036, 36279}, {11108, 25568}, {11113, 62870}, {11496, 16127}, {11518, 26446}, {11551, 37568}, {12005, 13226}, {12563, 50193}, {12607, 30143}, {13728, 33122}, {13995, 63281}, {14882, 24465}, {15570, 49627}, {16116, 63261}, {16201, 31821}, {16216, 44547}, {16239, 61649}, {16408, 38053}, {17061, 59301}, {17552, 51572}, {17609, 61653}, {17658, 27385}, {17758, 52826}, {18244, 63290}, {19854, 41711}, {19862, 24393}, {20116, 59476}, {20323, 51700}, {21077, 51715}, {21616, 42819}, {24475, 61533}, {24934, 61728}, {25440, 25557}, {26363, 42871}, {31493, 36845}, {33124, 56734}, {33144, 50067}, {35242, 59372}, {37424, 37569}, {37526, 38030}, {41861, 61511}, {49598, 50748}, {50749, 63354}, {51706, 56176}, {58564, 58649}, {63265, 63266}, {63272, 63288}

X(63282) = midpoint of X(i) and X(j) for these {i,j}: {1, 15888}, {79, 63273}, {3649, 3746}, {5270, 10543}, {13407, 37080}, {18244, 63290}
X(63282) = reflection of X(i) in X(j) for these {i,j}: {16137, 63274}
X(63282) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 11374, 496}, {1, 12, 12433}, {1, 15888, 952}, {1, 17718, 5}, {1, 1837, 15935}, {1, 37701, 37722}, {1, 37731, 11}, {1, 495, 37730}, {12, 12433, 12019}, {79, 63273, 28178}, {517, 63274, 16137}, {3295, 3487, 39542}, {3487, 10578, 3295}, {3649, 3746, 28174}, {3649, 63287, 3746}, {3742, 59719, 52264}, {5045, 13411, 15325}, {5270, 10543, 28186}, {5432, 18398, 34753}, {10404, 59337, 550}, {13407, 37080, 30}, {21620, 24929, 18990}


X(63283) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 1ST MOSES-MIYAMOTO-APOLLONIUS TRIANGLE AND 1ST PAVLOV

Barycentrics    (a-b-c)*(a+b-c)*(a-b+c)*(2*a^3-(b-c)^2*(b+c)-a*(b^2+c^2))-2*(a+b-c)*(a-b+c)*(b+c)*(2*a+b+c)*S : :

X(63283) lies on circumconic {{A, B, C, X(42013), X(56934)}} and on these lines: {7, 21}, {30, 52805}, {79, 30426}, {191, 6204}, {442, 30314}, {2475, 52811}, {3651, 30297}, {5441, 30432}, {6675, 30277}, {6841, 30307}, {10122, 30347}, {10543, 30334}, {10910, 62831}, {11246, 16441}, {11263, 30381}, {16120, 30289}, {16126, 30320}, {16132, 30401}, {16137, 30342}, {16143, 30355}, {16146, 30369}, {16147, 30419}, {16151, 30407}, {17637, 30376}, {18253, 30413}, {18460, 33858}

X(63283) = reflection of X(i) in X(j) for these {i,j}: {63284, 3649}
X(63283) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3649, 17768, 63284}


X(63284) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND MOSES-MIYAMOTO-APOLLONIUS TRIANGLE AND 1ST PAVLOV

Barycentrics    (a-b-c)*(a+b-c)*(a-b+c)*(2*a^3-(b-c)^2*(b+c)-a*(b^2+c^2))+2*(a+b-c)*(a-b+c)*(b+c)*(2*a+b+c)*S : :

X(63284) lies on circumconic {{A, B, C, X(7133), X(56934)}} and on these lines: {7, 21}, {30, 52808}, {79, 7133}, {191, 6203}, {442, 30313}, {2475, 52813}, {3651, 30296}, {5441, 30431}, {6675, 30276}, {6841, 30306}, {10122, 30346}, {10543, 30333}, {10911, 62831}, {11246, 16440}, {11263, 30380}, {16120, 30288}, {16126, 30319}, {16132, 30400}, {16137, 30341}, {16143, 30354}, {16146, 30368}, {16147, 30418}, {16151, 30406}, {17637, 30375}, {18253, 30412}, {18458, 33858}

X(63284) = reflection of X(i) in X(j) for these {i,j}: {63283, 3649}
X(63284) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3649, 17768, 63283}


X(63285) = ORTHOLOGIC CENTER OF THESE TRIANGLES: GEMINI 29 AND 1ST PAVLOV

Barycentrics    3*a^4+4*a^3*(b+c)-2*(b^2-c^2)^2-a^2*(b^2-b*c+c^2)+a*(-4*b^3+b^2*c+b*c^2-4*c^3) : :
X(63285) = -4*X[1]+3*X[15678], -3*X[2]+2*X[3650], -2*X[8]+3*X[15679], -2*X[10]+3*X[79], -16*X[1125]+15*X[15675], -7*X[3622]+6*X[17525], -7*X[3624]+6*X[3647], -4*X[3635]+3*X[5441], -8*X[4746]+9*X[47033], -6*X[10543]+7*X[20057], -9*X[11263]+8*X[19878], -4*X[15174]+3*X[15680] and many others

X(63285) lies on these lines: {1, 15678}, {2, 3650}, {7, 21}, {8, 15679}, {10, 79}, {30, 145}, {191, 3305}, {442, 31888}, {758, 3632}, {946, 41691}, {1125, 15675}, {1320, 16005}, {1329, 27197}, {1836, 28646}, {2475, 3421}, {2771, 4018}, {3218, 3652}, {3622, 17525}, {3624, 3647}, {3635, 5441}, {3651, 35000}, {3681, 4338}, {3868, 41869}, {3870, 63267}, {3871, 5905}, {3876, 4312}, {3889, 60933}, {4420, 28645}, {4430, 48661}, {4746, 47033}, {5057, 16153}, {5087, 41697}, {5260, 11552}, {5330, 18977}, {5693, 59356}, {9782, 17546}, {9965, 37447}, {10308, 12699}, {10543, 20057}, {11246, 17531}, {11263, 19878}, {15174, 15680}, {15673, 46934}, {15677, 16137}, {16125, 18492}, {16140, 56288}, {16142, 63159}, {16150, 18525}, {16159, 22798}, {17491, 27558}, {18243, 36002}, {18253, 19877}, {18481, 62830}, {20060, 47032}, {21161, 33668}, {21669, 22791}, {22836, 36005}, {26015, 49177}, {27368, 28558}, {27577, 33097}, {31053, 49107}, {31301, 37369}, {33098, 57280}, {33593, 41693}, {37524, 59670}, {41695, 52126}, {44006, 56018}

X(63285) = reflection of X(i) in X(j) for these {i,j}: {10308, 12699}, {11684, 79}, {21, 14450}, {3648, 3649}, {3650, 11544}, {31888, 442}, {33557, 16116}, {41691, 946}, {63280, 1}
X(63285) = X(i)-Dao conjugate of X(j) for these {i, j}: {3650, 3650}
X(63285) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {10308, 2891}
X(63285) = pole of line {4467, 41800} with respect to the Steiner circumellipse
X(63285) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1014), X(57419)}}, {{A, B, C, X(1434), X(60139)}}, {{A, B, C, X(32635), X(56934)}}, {{A, B, C, X(43745), X(62400)}}
X(63285) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {79, 11684, 6175}, {3648, 14450, 3649}, {3649, 17768, 3648}, {3650, 11544, 2}, {14450, 17768, 21}


X(63286) = ORTHOLOGIC CENTER OF THESE TRIANGLES: GEMINI 109 AND 1ST PAVLOV

Barycentrics    3*a^4+a^3*(b+c)+(b^2-c^2)^2-a^2*(4*b^2+5*b*c+4*c^2)-a*(b^3+5*b^2*c+5*b*c^2+c^3) : :
X(63286) = -X[1]+6*X[15670], -6*X[2]+X[79], 3*X[3]+2*X[22798], 4*X[5]+X[16113], X[8]+9*X[15672], 2*X[10]+3*X[21], X[40]+4*X[16617], 4*X[141]+X[63279], 4*X[142]+X[63277], -X[145]+21*X[15676], 3*X[165]+2*X[37447], X[355]+4*X[12104] and many others

X(63286) lies on circumconic {{A, B, C, X(319), X(6701)}} and on these lines: {1, 15670}, {2, 79}, {3, 22798}, {5, 16113}, {8, 15672}, {10, 21}, {30, 1698}, {36, 24564}, {40, 16617}, {57, 191}, {58, 27577}, {140, 1768}, {141, 63279}, {142, 63277}, {145, 15676}, {165, 37447}, {355, 12104}, {442, 16118}, {519, 15675}, {590, 19080}, {615, 19079}, {758, 3616}, {1001, 63288}, {1125, 4880}, {1213, 16553}, {1749, 7483}, {1929, 42326}, {2475, 19877}, {2771, 25917}, {3035, 3065}, {3090, 16125}, {3219, 37731}, {3452, 14526}, {3525, 16116}, {3526, 41691}, {3584, 5302}, {3632, 5426}, {3634, 6175}, {3636, 34195}, {3650, 34595}, {3679, 10543}, {3683, 9955}, {3828, 15678}, {3841, 15228}, {3925, 16160}, {4018, 8261}, {4127, 47319}, {4413, 16117}, {4533, 58638}, {4668, 44669}, {4679, 16159}, {4867, 18249}, {4999, 38063}, {5044, 17637}, {5047, 48698}, {5054, 48668}, {5070, 16150}, {5094, 16114}, {5131, 17529}, {5259, 5745}, {5273, 5904}, {5325, 63259}, {5428, 18481}, {5432, 16141}, {5499, 38411}, {5692, 6857}, {6361, 19854}, {6684, 21669}, {6841, 41869}, {7294, 24465}, {7308, 7701}, {7484, 16119}, {7741, 55867}, {7808, 16115}, {7914, 16123}, {8252, 49243}, {8253, 49242}, {9342, 35982}, {9780, 15677}, {10021, 16139}, {10164, 33557}, {10427, 13089}, {11231, 47032}, {11263, 19878}, {11277, 16138}, {11544, 63276}, {12699, 44257}, {13159, 60996}, {13743, 35238}, {15096, 20117}, {15184, 16129}, {15254, 16153}, {15680, 46932}, {15702, 45084}, {16132, 28465}, {16133, 38059}, {16137, 25055}, {16148, 32785}, {16149, 32786}, {16154, 26364}, {16155, 26363}, {16865, 37702}, {17525, 19875}, {17768, 20195}, {18480, 28460}, {18525, 28443}, {19919, 24954}, {21616, 38410}, {22936, 49178}, {24697, 25669}, {24851, 24902}, {25542, 59491}, {25645, 59624}, {26446, 31649}, {27065, 52126}, {28453, 35251}, {31204, 36250}, {31253, 31254}, {31423, 37401}, {31424, 44256}, {31445, 41542}, {31446, 59337}, {31650, 33858}, {33160, 54399}, {33856, 38752}, {35637, 37870}, {41695, 52264}, {41812, 59574}, {51073, 63280}, {52680, 63319}, {55856, 61552}, {58658, 61686}, {63344, 63366}

X(63286) = pole of line {23883, 49274} with respect to the Steiner circumellipse
X(63286) = pole of line {33129, 63343} with respect to the dual conic of Yff parabola
X(63286) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3647, 79}, {2, 3648, 6701}, {10, 21, 5441}, {10, 5441, 47033}, {79, 3647, 63278}, {191, 3624, 3649}, {191, 6675, 26725}, {3632, 5426, 15174}, {3647, 6701, 3648}, {3649, 6675, 3624}, {11684, 15671, 1125}, {15670, 18253, 1}, {31650, 61622, 33858}


X(63287) = X(2) OF THE 1ST PAVLOV TRIANGLE

Barycentrics    4*a^3+a*(b-c)^2-6*a^2*(b+c)+(b-c)^2*(b+c) : :
X(63287) = X[3649]+2*X[3746], 2*X[9957]+X[13375], X[13995]+2*X[63288], 2*X[16137]+X[37563]

X(63287) lies on circumconic {{A, B, C, X(5559), X(21453)}} and on these lines: {1, 140}, {2, 61032}, {7, 55}, {11, 3748}, {12, 38140}, {37, 61651}, {57, 11034}, {165, 38030}, {210, 10177}, {354, 4995}, {515, 10543}, {523, 1962}, {551, 3968}, {952, 44257}, {1125, 34501}, {1211, 50748}, {1621, 26792}, {1699, 3058}, {3035, 29817}, {3085, 61717}, {3158, 38093}, {3303, 5603}, {3304, 54445}, {3649, 3746}, {3683, 61000}, {3689, 58433}, {3722, 17056}, {3742, 6174}, {3745, 4909}, {3750, 4854}, {3757, 4046}, {3816, 62862}, {3892, 37298}, {3957, 6690}, {3979, 35466}, {4030, 29839}, {4423, 63168}, {4819, 32914}, {4860, 5281}, {4914, 50753}, {5045, 52793}, {5049, 5298}, {5249, 6154}, {5270, 28190}, {5290, 63255}, {5308, 31203}, {5326, 11019}, {5434, 59337}, {5542, 63211}, {5560, 37719}, {5718, 17715}, {5790, 10056}, {5852, 63276}, {6767, 15950}, {6884, 10950}, {8236, 11238}, {9957, 13375}, {10385, 61716}, {10391, 27778}, {10580, 63263}, {11230, 37722}, {11510, 12260}, {11551, 51787}, {12607, 62870}, {12616, 32905}, {13407, 28146}, {13995, 63288}, {14746, 14936}, {15170, 37701}, {15171, 61703}, {15172, 37731}, {15338, 21620}, {15570, 59491}, {16137, 37563}, {17602, 36488}, {17605, 30331}, {21031, 51715}, {28228, 63274}, {31260, 49627}, {33105, 53534}, {34123, 50841}, {44447, 61159}, {50038, 59722}

X(63287) = midpoint of X(i) and X(j) for these {i,j}: {2346, 63261}
X(63287) = reflection of X(i) in X(j) for these {i,j}: {61032, 2}, {63258, 63261}
X(63287) = inverse of X(43179) in Feuerbach hyperbola
X(63287) = pole of line {21104, 28217} with respect to the incircle
X(63287) = pole of line {5572, 9957} with respect to the Feuerbach hyperbola
X(63287) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 10578, 37703}, {55, 3475, 11246}, {2346, 63261, 38454}, {3746, 63282, 3649}, {3750, 17724, 4854}, {3957, 6690, 51463}, {11246, 37703, 3475}, {15888, 37080, 10543}, {38454, 63261, 63258}, {39777, 45081, 5559}, {63256, 63257, 15888}, {63288, 63289, 13995}


X(63288) = X(3) OF THE 1ST PAVLOV TRIANGLE

Barycentrics    a*(a^6-a^5*(b+c)-b*c*(b^2-c^2)^2-2*a^4*(b^2+b*c+c^2)-a*(b-c)^2*(b^3+4*b^2*c+4*b*c^2+c^3)+a^3*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)+a^2*(b^4+3*b^3*c+5*b^2*c^2+3*b*c^3+c^4)) : :
X(63288) = -X[13995]+3*X[63287]

X(63288) lies on circumconic {{A, B, C, X(2166), X(10122)}} and on these lines: {1, 21}, {30, 3746}, {35, 3649}, {36, 16137}, {55, 79}, {100, 6701}, {354, 22937}, {442, 3584}, {474, 26725}, {484, 943}, {954, 16153}, {1001, 63286}, {1155, 58586}, {1317, 15174}, {2475, 10056}, {2771, 37080}, {3058, 16160}, {3295, 5441}, {3303, 13743}, {3304, 28443}, {3582, 6675}, {3648, 61155}, {3651, 4338}, {3689, 58658}, {3724, 52375}, {3748, 45065}, {3913, 47033}, {3957, 52126}, {4309, 37433}, {4325, 44238}, {4428, 63278}, {4857, 6841}, {4995, 11277}, {5045, 41542}, {5160, 22461}, {5259, 18253}, {5290, 16118}, {5424, 34471}, {5428, 5563}, {5453, 6126}, {5557, 41341}, {5586, 7280}, {5902, 16139}, {6147, 14799}, {6154, 56790}, {6175, 8715}, {6985, 49177}, {7676, 13159}, {7701, 10389}, {10021, 37722}, {10072, 15674}, {10267, 16113}, {10382, 36599}, {11263, 31660}, {11281, 34123}, {11491, 16125}, {11849, 49107}, {13146, 16120}, {13375, 37563}, {13405, 14526}, {13411, 33593}, {13995, 63287}, {16132, 59337}, {16155, 18393}, {16159, 17718}, {16617, 37726}, {17768, 18244}, {18398, 41697}, {19079, 44590}, {19080, 44591}, {29817, 59670}, {31649, 61286}, {33592, 37251}, {33858, 37571}, {34871, 57283}, {37230, 37719}, {63272, 63282}

X(63288) = midpoint of X(i) and X(j) for these {i,j}: {13995, 63290}
X(63288) = reflection of X(i) in X(j) for these {i,j}: {13995, 63289}
X(63288) = pole of line {5949, 52405} with respect to the Kiepert hyperbola
X(63288) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1749, 10122}, {21, 34195, 8666}, {191, 16126, 54422}, {13995, 63287, 63289}, {63287, 63290, 13995}


X(63289) = X(5) OF THE 1ST PAVLOV TRIANGLE

Barycentrics    2*a^7-4*a^6*(b+c)-6*a^2*(b-c)^2*(b+c)^3+(b-c)^4*(b+c)^3+a*(b^2-c^2)^2*(b^2-3*b*c+c^2)-a^5*(3*b^2+10*b*c+3*c^2)+a^3*b*c*(13*b^2+20*b*c+13*c^2)+a^4*(9*b^3+11*b^2*c+11*b*c^2+9*c^3) : :
X(63289) = X[13995]+3*X[63287]

X(63289) lies on these lines: {1, 5499}, {30, 13407}, {79, 10386}, {354, 11277}, {950, 9955}, {3475, 16117}, {3585, 5719}, {3740, 6675}, {3748, 14526}, {9957, 16137}, {10021, 63259}, {10389, 16159}, {10404, 31651}, {11276, 32636}, {11281, 51103}, {13995, 63287}, {15170, 33592}, {16160, 17718}

X(63289) = midpoint of X(i) and X(j) for these {i,j}: {13995, 63288}
X(63289) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13995, 63287, 63288}


X(63290) = X(20) OF THE 1ST PAVLOV TRIANGLE

Barycentrics    4*a^7-2*a^6*(b+c)-6*a^2*b*(b-c)^2*c*(b+c)-(b-c)^4*(b+c)^3-a*(b^2-c^2)^2*(b^2+3*b*c+c^2)-a^5*(9*b^2+2*b*c+9*c^2)+a^4*(3*b^3+7*b^2*c+7*b*c^2+3*c^3)+a^3*(6*b^4+5*b^3*c+10*b^2*c^2+5*b*c^3+6*c^4) : :
X(63290) = -2*X[13995]+3*X[63287]

X(63290) lies on these lines: {11, 45065}, {30, 37563}, {36, 3649}, {1317, 2771}, {2475, 32157}, {3058, 7701}, {3065, 15172}, {11276, 11544}, {12913, 17768}, {13995, 63287}, {14450, 17549}, {16142, 41546}, {17525, 20323}, {18244, 63282}, {22936, 37722}, {31663, 49107}, {51463, 52126}

X(63290) = reflection of X(i) in X(j) for these {i,j}: {13995, 63288}, {18244, 63282}
X(63290) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13995, 63288, 63287}


X(63291) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ABC-X3 REFLECTIONS

Barycentrics    a*(a^6-3*a^5*(b+c)+a^2*(b+c)^4-b*c*(b^2-c^2)^2-a^4*(2*b^2+3*b*c+2*c^2)+2*a^3*(3*b^3+b^2*c+b*c^2+3*c^3)-a*(b-c)^2*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)) : :

X(63291) lies on these lines: {1, 3651}, {2, 63318}, {3, 81}, {4, 17056}, {5, 63344}, {20, 13408}, {21, 500}, {30, 26131}, {35, 63339}, {36, 63340}, {40, 63354}, {55, 7421}, {56, 7430}, {58, 21161}, {63, 63447}, {69, 63357}, {73, 943}, {78, 16585}, {84, 63445}, {99, 63345}, {100, 63346}, {110, 63348}, {112, 63349}, {140, 31204}, {165, 63310}, {182, 63294}, {186, 54371}, {323, 4189}, {371, 63299}, {372, 63298}, {376, 4340}, {382, 63317}, {394, 63448}, {411, 50317}, {511, 63385}, {515, 63319}, {517, 63333}, {550, 63374}, {581, 1006}, {631, 35466}, {940, 6876}, {944, 7413}, {971, 63384}, {991, 6906}, {1071, 63396}, {1151, 63328}, {1152, 63329}, {1181, 6950}, {1296, 63454}, {1350, 63359}, {1385, 4220}, {1449, 37508}, {1490, 63361}, {1498, 63371}, {1593, 63293}, {1657, 63296}, {1870, 2646}, {2077, 63309}, {2323, 5267}, {3098, 63315}, {3182, 3601}, {3428, 63316}, {3430, 3576}, {3487, 30266}, {3522, 41810}, {3524, 4255}, {3528, 50677}, {3612, 45126}, {3743, 16132}, {4221, 48893}, {4296, 24929}, {4297, 63370}, {4653, 21669}, {5262, 13151}, {5396, 6986}, {5428, 16948}, {5473, 63355}, {5474, 63364}, {5703, 18625}, {5718, 6903}, {5732, 63387}, {5759, 63381}, {6200, 63330}, {6284, 63327}, {6396, 63331}, {6776, 63394}, {6841, 24936}, {6875, 36746}, {6998, 16020}, {7354, 63326}, {7412, 55303}, {7415, 48941}, {7464, 63451}, {7688, 59301}, {7691, 63375}, {9540, 63336}, {10310, 63304}, {11012, 63308}, {11110, 48877}, {11248, 63341}, {11249, 63342}, {11257, 63372}, {11414, 63311}, {11822, 63312}, {11823, 63313}, {11824, 63321}, {11825, 63322}, {11826, 63324}, {11827, 63325}, {12117, 63347}, {12118, 63353}, {12119, 63365}, {12120, 63369}, {12121, 63352}, {12122, 63373}, {12123, 63350}, {12124, 63351}, {12245, 63415}, {12305, 63300}, {12306, 63301}, {12556, 63376}, {13666, 63377}, {13743, 48927}, {13786, 63378}, {13935, 63337}, {16111, 63455}, {16113, 63366}, {17018, 35239}, {17557, 48887}, {17778, 48935}, {18446, 25080}, {21312, 63452}, {22676, 63358}, {22843, 63362}, {22890, 63363}, {22951, 63368}, {24813, 63426}, {26294, 63305}, {26295, 63306}, {30273, 63398}, {31254, 45926}, {32233, 63379}, {32330, 63367}, {33557, 48903}, {36001, 37571}, {36742, 37106}, {36987, 63453}, {38749, 63456}, {43574, 54417}, {44238, 49743}, {45498, 63302}, {45499, 63303}, {52374, 57710}, {63443, 63444}

X(63291) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5453, 81}, {3, 63338, 63307}, {20, 37635, 13408}, {3601, 47057, 63446}, {4653, 48897, 21669}, {5428, 51340, 16948}, {5453, 63307, 63338}, {17056, 63386, 4}


X(63292) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-AQUILA

Barycentrics    a*(2*a^3+b^3+2*a*b*c+c^3+a^2*(b+c)) : :
X(63292) = -3*X[2]+X[36974], -X[1330]+5*X[3616], -X[3430]+3*X[3576], 7*X[3622]+X[20077], -3*X[5886]+X[37823], -9*X[30392]+X[54209]

X(63292) lies on these lines: {1, 21}, {2, 36974}, {3, 63356}, {6, 22836}, {10, 4434}, {11, 30446}, {23, 5322}, {30, 36250}, {35, 4868}, {36, 5262}, {56, 2915}, {65, 49682}, {80, 54355}, {106, 38470}, {171, 3754}, {172, 16600}, {214, 1193}, {323, 5315}, {405, 27784}, {442, 50757}, {511, 1385}, {515, 7683}, {517, 63307}, {519, 3704}, {535, 13161}, {540, 551}, {550, 29032}, {614, 4239}, {759, 2363}, {764, 4367}, {940, 30143}, {942, 11700}, {944, 54136}, {946, 13408}, {952, 61536}, {956, 30145}, {958, 30142}, {960, 63396}, {986, 4257}, {995, 16478}, {997, 1453}, {999, 11365}, {1001, 63387}, {1010, 54335}, {1064, 51717}, {1104, 1125}, {1201, 51714}, {1203, 4511}, {1279, 3636}, {1319, 2392}, {1330, 3616}, {1420, 47057}, {1455, 4298}, {1682, 2646}, {1698, 31204}, {1724, 10176}, {1757, 3988}, {2217, 54336}, {2242, 16974}, {2298, 59727}, {2303, 25081}, {2605, 53535}, {2792, 13464}, {2802, 5255}, {2825, 11714}, {2842, 11717}, {3244, 3712}, {3285, 53037}, {3295, 63304}, {3336, 54315}, {3430, 3576}, {3555, 49686}, {3585, 33133}, {3600, 18625}, {3612, 5256}, {3622, 20077}, {3624, 63344}, {3649, 63366}, {3666, 5267}, {3670, 4973}, {3678, 5247}, {3746, 17015}, {3918, 60353}, {3920, 5258}, {3924, 5883}, {3953, 54310}, {4015, 5293}, {4067, 4641}, {4293, 31293}, {4297, 63386}, {4299, 19785}, {4311, 46553}, {4315, 6357}, {4387, 56992}, {4432, 63426}, {4646, 37589}, {4647, 11115}, {4719, 13624}, {4850, 7280}, {4854, 57002}, {5264, 49487}, {5277, 16611}, {5280, 24036}, {5291, 28594}, {5398, 31806}, {5443, 33107}, {5530, 58404}, {5542, 63381}, {5603, 63297}, {5711, 30147}, {5716, 26363}, {5886, 37823}, {5901, 63374}, {5903, 17126}, {6261, 63445}, {6645, 30168}, {6701, 24161}, {6738, 46974}, {7968, 63328}, {7969, 63329}, {8143, 31649}, {8225, 45398}, {8715, 37552}, {9955, 63317}, {10246, 63338}, {10572, 46487}, {11011, 61047}, {11019, 33305}, {11263, 49745}, {11281, 49743}, {11363, 63293}, {11364, 63294}, {11366, 63312}, {11367, 63313}, {11368, 63315}, {11370, 63321}, {11371, 63322}, {11373, 63324}, {11374, 63325}, {11375, 63326}, {11376, 63327}, {11705, 63355}, {11706, 63364}, {11709, 63348}, {11710, 63345}, {11715, 63346}, {11721, 63454}, {11723, 63455}, {11724, 63456}, {11739, 63363}, {11740, 63362}, {11831, 63320}, {12047, 63334}, {12114, 63361}, {12258, 63347}, {12259, 63353}, {12260, 63369}, {12261, 63352}, {12262, 63371}, {12263, 63372}, {12264, 63373}, {12265, 63349}, {12266, 63375}, {12267, 63376}, {12268, 63350}, {12269, 63351}, {12432, 55101}, {13667, 63377}, {13787, 63378}, {13883, 63336}, {13936, 63337}, {14964, 40978}, {15888, 50749}, {16466, 30144}, {16475, 63385}, {16859, 31318}, {16865, 27785}, {17061, 18990}, {17200, 59509}, {17647, 40940}, {17733, 48863}, {18493, 63296}, {18991, 63298}, {18992, 63299}, {19284, 28611}, {19767, 37571}, {22276, 24929}, {22461, 46816}, {22475, 63358}, {22476, 63368}, {22791, 29097}, {24046, 37608}, {24167, 32636}, {24325, 63398}, {24883, 47033}, {24928, 41682}, {25055, 63343}, {25440, 54418}, {26131, 26725}, {26369, 63305}, {26370, 63306}, {26686, 30170}, {29665, 37719}, {30117, 37607}, {30392, 54209}, {31546, 45399}, {32238, 63379}, {32331, 63367}, {33858, 51340}, {35762, 63330}, {35763, 63331}, {36742, 63447}, {36750, 37733}, {37525, 41329}, {37554, 54318}, {37583, 54292}, {37642, 49168}, {37693, 38062}, {37717, 45939}, {39870, 63357}, {41813, 52352}, {42031, 50054}, {44545, 51637}, {45500, 63302}, {45501, 63303}, {49489, 50588}, {49511, 63394}, {50023, 63443}, {50587, 56176}, {51693, 63451}, {51695, 63452}, {51705, 63449}

X(63292) = midpoint of X(i) and X(j) for these {i,j}: {1, 58}, {944, 54136}, {5255, 15955}, {10544, 10974}
X(63292) = reflection of X(i) in X(j) for these {i,j}: {10, 6693}, {3454, 1125}, {54180, 1385}
X(63292) = complement of X(36974)
X(63292) = X(i)-complementary conjugate of X(j) for these {i, j}: {15618, 10}, {26751, 2887}
X(63292) = pole of line {3733, 48350} with respect to the circumcircle
X(63292) = pole of line {4132, 53527} with respect to the DeLongchamps ellipse
X(63292) = pole of line {2646, 3743} with respect to the Feuerbach hyperbola
X(63292) = pole of line {5750, 5949} with respect to the Kiepert hyperbola
X(63292) = pole of line {14838, 21124} with respect to the Steiner inellipse
X(63292) = pole of line {5249, 6703} with respect to the dual conic of Yff parabola
X(63292) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(82), X(3878)}}, {{A, B, C, X(758), X(2363)}}, {{A, B, C, X(759), X(2292)}}, {{A, B, C, X(969), X(12559)}}, {{A, B, C, X(1247), X(11533)}}, {{A, B, C, X(3743), X(40430)}}, {{A, B, C, X(3869), X(54336)}}, {{A, B, C, X(26751), X(36974)}}, {{A, B, C, X(34195), X(53114)}}
X(63292) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1468, 3874}, {1, 21, 3743}, {1, 31, 3878}, {1, 37817, 5248}, {1, 3915, 3898}, {1, 4653, 58380}, {1, 52680, 2292}, {1, 5429, 58}, {1, 58, 758}, {1, 595, 3884}, {35, 17016, 4868}, {511, 1385, 54180}, {1125, 38456, 3454}, {1125, 63370, 17056}, {1385, 1386, 50604}, {2292, 52680, 3647}, {3924, 37522, 5883}, {5255, 15955, 2802}, {11115, 39766, 4647}, {30117, 37607, 58565}, {35466, 63360, 10}


X(63293) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-ARA

Barycentrics    a*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(2*a^2*b*c+2*a^3*(b+c)-b*c*(b^2+c^2)-2*a*(b^3+c^3)) : :

X(63293) lies on these lines: {4, 5453}, {24, 63307}, {25, 81}, {33, 63332}, {34, 63295}, {235, 63318}, {323, 62971}, {427, 17056}, {428, 37631}, {468, 35466}, {1593, 63291}, {1598, 63338}, {1824, 63393}, {1829, 63354}, {1843, 63359}, {1862, 2356}, {1870, 1884}, {1876, 18593}, {1885, 63386}, {1902, 63356}, {3192, 61661}, {3575, 13408}, {4233, 44097}, {5064, 63343}, {5090, 63319}, {5094, 63344}, {5410, 63299}, {5411, 63298}, {5412, 63328}, {5413, 63329}, {6756, 63374}, {6995, 41819}, {7487, 63297}, {7713, 63310}, {10301, 63401}, {11363, 63292}, {11380, 63294}, {11381, 63371}, {11383, 63304}, {11384, 63312}, {11385, 63313}, {11386, 63315}, {11388, 63321}, {11389, 63322}, {11390, 63324}, {11391, 63325}, {11392, 63326}, {11393, 63327}, {11396, 63333}, {11398, 63339}, {11399, 63340}, {11400, 63341}, {11401, 63342}, {11576, 63375}, {11832, 63320}, {12131, 63345}, {12132, 63347}, {12133, 63348}, {12134, 63353}, {12135, 63360}, {12136, 63361}, {12137, 63365}, {12138, 63346}, {12139, 63369}, {12140, 63352}, {12141, 63364}, {12142, 63355}, {12143, 63372}, {12144, 63373}, {12145, 63349}, {12146, 63376}, {12147, 63350}, {12148, 63351}, {12167, 63385}, {13668, 63377}, {13788, 63378}, {13884, 63336}, {13937, 63337}, {15473, 63455}, {16114, 63366}, {18494, 63296}, {22479, 63316}, {22480, 63358}, {22481, 63362}, {22482, 63363}, {22483, 63368}, {24814, 63426}, {26375, 63305}, {26376, 63306}, {26377, 63308}, {26378, 63309}, {31204, 37453}, {32239, 63379}, {32332, 63367}, {35764, 63330}, {35765, 63331}, {39871, 63357}, {45400, 63300}, {45401, 63301}, {45502, 63302}, {45503, 63303}, {49542, 63370}, {60879, 63381}, {62962, 63449}

X(63293) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44113, 54407, 468}


X(63294) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 5TH ANTI-BROCARD

Barycentrics    a*(a^6-a^4*b*c+b^3*c^3-a^5*(b+c)+a*b^2*c^2*(b+c)+a^2*b*c*(b^2+b*c+c^2)+2*a^3*(b^3+c^3)) : :

X(63294) lies on these lines: {32, 81}, {83, 17056}, {98, 63318}, {182, 63291}, {384, 63372}, {1078, 35466}, {2080, 63307}, {3398, 5453}, {5039, 63385}, {7787, 37635}, {7808, 63344}, {7815, 31204}, {10788, 63297}, {10789, 63310}, {10790, 63311}, {10791, 63319}, {10792, 63321}, {10793, 63322}, {10794, 63324}, {10795, 63325}, {10796, 63323}, {10797, 63326}, {10798, 63327}, {10799, 63332}, {10800, 63333}, {10801, 63339}, {10802, 63340}, {10803, 63341}, {10804, 63342}, {11364, 63292}, {11380, 63293}, {11490, 63304}, {11837, 63312}, {11838, 63313}, {11839, 63320}, {11842, 63338}, {12110, 13408}, {12150, 37631}, {12176, 63345}, {12191, 63347}, {12192, 63348}, {12193, 63353}, {12194, 63354}, {12195, 63360}, {12196, 63361}, {12197, 63356}, {12198, 63365}, {12199, 63346}, {12200, 63369}, {12201, 63352}, {12202, 63371}, {12203, 63386}, {12204, 63364}, {12205, 63355}, {12206, 63373}, {12207, 63349}, {12208, 63375}, {12209, 63376}, {12210, 63350}, {12211, 63351}, {12212, 63359}, {12835, 63295}, {13672, 63377}, {13792, 63378}, {13885, 63336}, {13938, 63337}, {16115, 63366}, {18501, 63296}, {18502, 63317}, {18993, 63298}, {18994, 63299}, {22520, 63316}, {22521, 63358}, {22522, 63362}, {22523, 63363}, {22524, 63368}, {24815, 63426}, {26429, 63305}, {26430, 63306}, {26431, 63308}, {26432, 63309}, {32134, 63374}, {32242, 63379}, {32335, 63367}, {35766, 63330}, {35767, 63331}, {39872, 63357}, {44586, 63328}, {44587, 63329}, {45402, 63300}, {45403, 63301}, {45504, 63302}, {45505, 63303}, {49545, 63370}, {60882, 63381}


X(63295) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND ANTI-CIRCUMPERP-TANGENTIAL

Barycentrics    a*(a+b-c)*(a-b+c)*(b+c)*(2*a^3-b*c*(b+c)-2*a*(b^2+c^2)) : :

X(63295) lies on these lines: {1, 30}, {3, 63339}, {4, 63327}, {11, 63318}, {12, 73}, {21, 8614}, {34, 63293}, {36, 63307}, {55, 7421}, {56, 81}, {57, 63310}, {58, 5427}, {65, 4868}, {323, 2975}, {388, 37635}, {960, 16585}, {978, 5433}, {999, 63338}, {1042, 35576}, {1064, 37722}, {1193, 5298}, {1284, 1388}, {1319, 2392}, {1364, 2646}, {1399, 60682}, {1406, 19765}, {1442, 26751}, {1458, 63401}, {1469, 63359}, {1470, 63309}, {1478, 63323}, {2067, 63328}, {2099, 15832}, {2292, 53537}, {2594, 3293}, {3023, 63345}, {3024, 63348}, {3057, 63356}, {3325, 63454}, {3485, 18625}, {3585, 63317}, {3600, 41819}, {3628, 6127}, {4017, 53535}, {4293, 63297}, {4300, 63273}, {4303, 15326}, {4306, 52783}, {4337, 15338}, {5221, 19767}, {5252, 63319}, {5428, 6149}, {6020, 63349}, {6285, 63371}, {6357, 10571}, {6502, 63329}, {7294, 28257}, {7508, 58738}, {8581, 63387}, {9630, 18444}, {9655, 63296}, {10106, 63370}, {10944, 63360}, {11011, 39793}, {11237, 63343}, {11509, 63304}, {12680, 63445}, {12688, 63361}, {12835, 63294}, {16589, 61170}, {17378, 41804}, {18360, 37573}, {18954, 63311}, {18955, 63312}, {18956, 63313}, {18957, 63315}, {18958, 63320}, {18959, 63321}, {18960, 63322}, {18961, 63324}, {18962, 63325}, {18965, 63336}, {18966, 63337}, {18967, 63342}, {18968, 63352}, {18969, 63347}, {18970, 63353}, {18971, 63358}, {18972, 63362}, {18973, 63363}, {18974, 63355}, {18975, 63364}, {18976, 63365}, {18977, 63366}, {18978, 63368}, {18979, 63369}, {18982, 63372}, {18983, 63373}, {18984, 63375}, {18985, 63376}, {18986, 63377}, {18987, 63378}, {18988, 63351}, {18989, 63350}, {18995, 63298}, {18996, 63299}, {22350, 52793}, {24806, 63415}, {24816, 63426}, {26435, 63305}, {26436, 63306}, {26437, 63308}, {30726, 51641}, {32243, 63379}, {32336, 63367}, {35768, 63330}, {35769, 63331}, {39873, 63357}, {39897, 63394}, {45404, 63300}, {45405, 63301}, {45506, 63302}, {45507, 63303}, {60883, 63381}, {60909, 63384}

X(63295) = X(i)-Dao conjugate of X(j) for these {i, j}: {5267, 13746}
X(63295) = pole of line {523, 51659} with respect to the incircle
X(63295) = pole of line {1400, 8818} with respect to the Kiepert hyperbola
X(63295) = pole of line {958, 35193} with respect to the Stammler hyperbola
X(63295) = pole of line {124, 6741} with respect to the dual conic of Wallace hyperbola
X(63295) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(74), X(48903)}}, {{A, B, C, X(79), X(5267)}}, {{A, B, C, X(959), X(52382)}}, {{A, B, C, X(4225), X(59305)}}, {{A, B, C, X(40160), X(52374)}}
X(63295) = barycentric product X(i)*X(j) for these (i, j): {226, 5267}
X(63295) = barycentric quotient X(i)/X(j) for these (i, j): {5267, 333}
X(63295) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1464, 3649}, {1, 16132, 38336}, {1, 500, 10543}, {1, 5453, 63332}, {388, 37635, 63326}, {999, 63338, 63340}, {2594, 37558, 40663}, {18593, 63354, 65}


X(63296) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-EHRMANN-MID

Barycentrics    3*a^7+a^6*(b+c)-2*(b-c)^4*(b+c)^3+2*a*(b-c)^2*(b+c)^4+a^5*(-4*b^2+b*c-4*c^2)-2*a^4*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)+a^2*(b-c)^2*(5*b^3+13*b^2*c+13*b*c^2+5*c^3)-a^3*(b^4+5*b^3*c+2*b^2*c^2+5*b*c^3+c^4) : :

X(63296) lies on these lines: {3, 5713}, {4, 41819}, {5, 63297}, {30, 37635}, {81, 381}, {265, 63455}, {323, 17532}, {382, 5453}, {399, 63352}, {999, 63327}, {1656, 31204}, {1657, 63291}, {3295, 63326}, {3534, 63343}, {3830, 37631}, {3843, 63318}, {5054, 63344}, {5055, 35466}, {5073, 63386}, {6321, 63456}, {8143, 16150}, {8148, 63360}, {9654, 63339}, {9655, 63295}, {9668, 63332}, {9669, 63340}, {12164, 63353}, {12699, 63370}, {12702, 63319}, {13665, 63328}, {13785, 63329}, {14269, 63401}, {15684, 63449}, {16117, 26131}, {18435, 63453}, {18440, 63359}, {18480, 63310}, {18493, 63292}, {18494, 63293}, {18499, 63393}, {18501, 63294}, {18503, 63315}, {18508, 63320}, {18510, 63298}, {18512, 63299}, {18518, 63325}, {18519, 63324}, {18524, 63304}, {18525, 63354}, {18526, 63333}, {18539, 63305}, {18541, 18593}, {18542, 63309}, {18543, 63342}, {18544, 63308}, {18545, 63341}, {19709, 61661}, {23251, 63330}, {23261, 63331}, {26321, 63316}, {26336, 63321}, {26346, 63322}, {26438, 63306}, {31671, 63387}, {38744, 63345}, {38756, 63346}, {38790, 63348}, {39899, 63385}, {44229, 63007}, {44456, 63394}, {45375, 63300}, {45376, 63301}, {45377, 63302}, {45378, 63303}, {45379, 63312}, {45380, 63313}, {45384, 63336}, {45385, 63337}, {45923, 50461}, {45924, 51340}, {48655, 63355}, {48656, 63364}, {48657, 63347}, {48658, 63349}, {48659, 63350}, {48660, 63351}, {48661, 63356}, {48662, 63357}, {48663, 63358}, {48664, 63361}, {48665, 63362}, {48666, 63363}, {48667, 63365}, {48668, 63366}, {48669, 63367}, {48670, 63368}, {48671, 63369}, {48672, 63371}, {48673, 63372}, {48674, 63373}, {48675, 63375}, {48676, 63376}, {48677, 63377}, {48678, 63378}, {48679, 63379}, {60884, 63381}

X(63296) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 63374, 63338}, {81, 63317, 381}, {13408, 63323, 3}


X(63297) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-EULER

Barycentrics    3*a^7+a^6*(b+c)+3*a^2*(b-c)^2*(b+c)^3-(b-c)^4*(b+c)^3+a^5*(-5*b^2+b*c-5*c^2)+a*(b^2-c^2)^2*(b^2+3*b*c+c^2)-a^4*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)+a^3*(b^4-4*b^3*c-2*b^2*c^2-4*b*c^3+c^4) : :

X(63297) lies on these lines: {2, 63307}, {3, 37635}, {4, 81}, {5, 63296}, {6, 6900}, {7, 63388}, {20, 5453}, {24, 63311}, {30, 63338}, {40, 63370}, {86, 48935}, {99, 63456}, {104, 63316}, {110, 63455}, {323, 377}, {376, 4340}, {388, 63339}, {497, 63340}, {515, 63310}, {631, 17056}, {940, 6903}, {944, 63354}, {1587, 63328}, {1588, 63329}, {2475, 45923}, {3019, 52524}, {3085, 63326}, {3086, 63327}, {3090, 35466}, {3091, 63317}, {3332, 3529}, {3448, 63352}, {3487, 63446}, {3524, 63343}, {3525, 63344}, {3545, 61661}, {3648, 8143}, {3651, 49743}, {4292, 47057}, {4293, 63295}, {4294, 63332}, {5067, 31204}, {5603, 63292}, {5657, 63319}, {5706, 6951}, {5712, 6876}, {5713, 6852}, {5759, 63387}, {5890, 63453}, {6361, 63356}, {6560, 63330}, {6561, 63331}, {6770, 63355}, {6773, 63364}, {6776, 63359}, {6826, 12161}, {6840, 45931}, {6853, 37530}, {6873, 37642}, {6894, 36750}, {6901, 56292}, {7487, 63293}, {7581, 63299}, {7582, 63298}, {7709, 63358}, {7967, 63333}, {8982, 63306}, {9862, 63315}, {10404, 12383}, {10783, 63321}, {10784, 63322}, {10785, 63324}, {10786, 63325}, {10788, 63294}, {10805, 63341}, {10806, 63342}, {11001, 63449}, {11411, 63353}, {11491, 63304}, {11843, 63312}, {11844, 63313}, {11845, 63320}, {12115, 63309}, {12116, 63308}, {12243, 63347}, {12244, 63348}, {12245, 63360}, {12246, 63361}, {12247, 63365}, {12248, 63346}, {12249, 63369}, {12250, 63371}, {12251, 63372}, {12252, 63373}, {12253, 63349}, {12254, 63375}, {12255, 63376}, {12256, 63350}, {12257, 63351}, {13199, 37529}, {13674, 63377}, {13794, 63378}, {13886, 63336}, {13939, 63337}, {14654, 63454}, {14912, 63385}, {16113, 58380}, {16116, 63366}, {18533, 63452}, {18625, 57282}, {21168, 63384}, {22531, 63362}, {22532, 63363}, {22533, 63368}, {24817, 63426}, {26441, 63305}, {32247, 63379}, {32337, 63367}, {36996, 63381}, {37000, 63393}, {37433, 51340}, {37685, 44229}, {39874, 63357}, {45406, 63300}, {45407, 63301}, {45510, 63302}, {45511, 63303}, {63394, 63428}, {63398, 63427}

X(63297) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 63374, 37635}, {20, 41819, 5453}, {81, 13408, 4}


X(63298) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-INNER-GREBE

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))-a*(a+b)*(a+c)*S : :

X(63298) lies on these lines: {2, 6}, {372, 63291}, {1587, 63318}, {1588, 13408}, {1703, 63356}, {3299, 63339}, {3301, 63340}, {3311, 63307}, {3312, 5453}, {5411, 63293}, {6418, 63338}, {6420, 63331}, {6460, 63386}, {7582, 63297}, {7584, 63323}, {7968, 63333}, {13785, 63317}, {13936, 63319}, {18510, 63296}, {18593, 51842}, {18991, 63292}, {18992, 63354}, {18993, 63294}, {18995, 63295}, {18999, 63304}, {19003, 63310}, {19005, 63311}, {19007, 63312}, {19009, 63313}, {19011, 63315}, {19013, 63316}, {19017, 63320}, {19023, 63324}, {19025, 63325}, {19027, 63326}, {19029, 63327}, {19037, 63332}, {19047, 63341}, {19049, 63342}, {19051, 63352}, {19055, 63345}, {19057, 63347}, {19059, 63348}, {19061, 63353}, {19063, 63358}, {19065, 63360}, {19067, 63361}, {19069, 63362}, {19071, 63363}, {19073, 63355}, {19075, 63364}, {19077, 63365}, {19079, 63366}, {19080, 36250}, {19081, 63346}, {19083, 63368}, {19085, 63369}, {19087, 63371}, {19089, 63372}, {19091, 63373}, {19093, 63349}, {19095, 63375}, {19097, 63376}, {19099, 63377}, {19101, 63378}, {19102, 63351}, {19104, 63350}, {19116, 63374}, {24818, 63426}, {26458, 63308}, {26459, 63309}, {32252, 63379}, {32342, 63367}, {35770, 63330}, {39875, 63357}, {45512, 63302}, {45514, 63303}, {49547, 63370}


X(63299) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-OUTER-GREBE

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))+a*(a+b)*(a+c)*S : :

X(63299) lies on these lines: {2, 6}, {371, 63291}, {1587, 13408}, {1588, 63318}, {1702, 63356}, {3299, 63340}, {3301, 63339}, {3311, 5453}, {3312, 63307}, {5410, 63293}, {6417, 63338}, {6419, 63330}, {6459, 63386}, {7581, 63297}, {7583, 63323}, {7969, 63333}, {13665, 63317}, {13883, 63319}, {18512, 63296}, {18593, 51841}, {18991, 63354}, {18992, 63292}, {18994, 63294}, {18996, 63295}, {19000, 63304}, {19004, 63310}, {19006, 63311}, {19008, 63312}, {19010, 63313}, {19012, 63315}, {19014, 63316}, {19018, 63320}, {19024, 63324}, {19026, 63325}, {19028, 63326}, {19030, 63327}, {19038, 63332}, {19048, 63341}, {19050, 63342}, {19052, 63352}, {19056, 63345}, {19058, 63347}, {19060, 63348}, {19062, 63353}, {19064, 63358}, {19066, 63360}, {19068, 63361}, {19070, 63363}, {19072, 63362}, {19074, 63355}, {19076, 63364}, {19078, 63365}, {19079, 36250}, {19080, 63366}, {19082, 63346}, {19084, 63368}, {19086, 63369}, {19088, 63371}, {19090, 63372}, {19092, 63373}, {19094, 63349}, {19096, 63375}, {19098, 63376}, {19100, 63378}, {19103, 63351}, {19105, 63350}, {19117, 63374}, {22541, 63377}, {24819, 63426}, {26464, 63308}, {26465, 63309}, {32253, 63379}, {32343, 63367}, {35771, 63331}, {39876, 63357}, {45513, 63303}, {45515, 63302}, {49548, 63370}, {60887, 63381}


X(63300) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST ANTI-KENMOTU CENTERS

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))+2*a*(a+b)*(a+c)*S : :

X(63300) lies on these lines: {2, 6}, {3, 63302}, {3102, 63331}, {5453, 9733}, {6289, 63323}, {8225, 45398}, {12305, 63291}, {13408, 13748}, {43119, 63307}, {45375, 63296}, {45400, 63293}, {45402, 63294}, {45404, 63295}, {45406, 63297}, {45411, 63303}, {45416, 63304}, {45422, 63308}, {45424, 63309}, {45426, 63310}, {45428, 63311}, {45430, 63312}, {45432, 63313}, {45434, 63315}, {45436, 63316}, {45438, 63317}, {45440, 63318}, {45444, 63319}, {45446, 63320}, {45454, 63324}, {45456, 63325}, {45458, 63326}, {45460, 63327}, {45462, 63330}, {45470, 63332}, {45476, 63333}, {45488, 63338}, {45490, 63339}, {45492, 63340}, {45494, 63341}, {45496, 63342}, {45713, 63354}, {48684, 63346}, {49305, 63355}, {49307, 63364}, {49309, 63345}, {49311, 63347}, {49313, 63348}, {49315, 63349}, {49317, 63350}, {49319, 63352}, {49321, 63353}, {49323, 63356}, {49325, 63357}, {49327, 63358}, {49329, 63360}, {49331, 63361}, {49333, 63362}, {49335, 63363}, {49337, 63365}, {49339, 63366}, {49341, 63367}, {49343, 63368}, {49345, 63369}, {49347, 63370}, {49349, 63371}, {49351, 63372}, {49353, 63373}, {49355, 63374}, {49357, 63375}, {49359, 63376}, {49361, 63377}, {49363, 63378}, {49365, 63379}, {60888, 63381}


X(63301) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND ANTI-KENMOTU CENTERS

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))-2*a*(a+b)*(a+c)*S : :

X(63301) lies on these lines: {2, 6}, {3, 63303}, {3103, 63330}, {5453, 9732}, {6290, 63323}, {12306, 63291}, {13408, 13749}, {31546, 45399}, {43118, 63307}, {45376, 63296}, {45401, 63293}, {45403, 63294}, {45405, 63295}, {45407, 63297}, {45410, 63302}, {45417, 63304}, {45423, 63308}, {45425, 63309}, {45427, 63310}, {45429, 63311}, {45431, 63312}, {45433, 63313}, {45435, 63315}, {45437, 63316}, {45439, 63317}, {45441, 63318}, {45445, 63319}, {45447, 63320}, {45455, 63324}, {45457, 63325}, {45459, 63326}, {45461, 63327}, {45463, 63331}, {45471, 63332}, {45477, 63333}, {45489, 63338}, {45491, 63339}, {45493, 63340}, {45495, 63341}, {45497, 63342}, {45714, 63354}, {48685, 63346}, {49306, 63355}, {49308, 63364}, {49310, 63345}, {49312, 63347}, {49314, 63348}, {49316, 63349}, {49318, 63351}, {49320, 63352}, {49322, 63353}, {49324, 63356}, {49326, 63357}, {49328, 63358}, {49330, 63360}, {49332, 63361}, {49334, 63362}, {49336, 63363}, {49338, 63365}, {49340, 63366}, {49342, 63367}, {49344, 63368}, {49346, 63369}, {49348, 63370}, {49350, 63371}, {49352, 63372}, {49354, 63373}, {49356, 63374}, {49358, 63375}, {49360, 63376}, {49362, 63377}, {49364, 63378}, {49366, 63379}, {60889, 63381}


X(63302) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST ANTI-KENMOTU-FREE-VERTICES

Barycentrics    a*(2*a^6-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+b*c*(b^2-c^2)^2-4*a^4*(b^2+c^2)+a^2*(2*b^4-b^3*c-b*c^3+2*c^4))-2*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63302) lies on these lines: {3, 63300}, {39, 63329}, {81, 372}, {182, 63303}, {641, 17056}, {5062, 63328}, {5453, 9739}, {13408, 48466}, {37631, 41490}, {37635, 45508}, {45377, 63296}, {45410, 63301}, {45498, 63291}, {45500, 63292}, {45502, 63293}, {45504, 63294}, {45506, 63295}, {45510, 63297}, {45512, 63298}, {45515, 63299}, {45520, 63304}, {45522, 63305}, {45525, 63306}, {45526, 63308}, {45528, 63309}, {45530, 63310}, {45532, 63311}, {45534, 63312}, {45536, 63313}, {45538, 63315}, {45540, 63316}, {45542, 63317}, {45544, 63318}, {45546, 63319}, {45548, 63320}, {45550, 63321}, {45553, 63322}, {45554, 63323}, {45556, 63324}, {45558, 63325}, {45560, 63326}, {45562, 63327}, {45565, 63331}, {45570, 63332}, {45572, 63333}, {45574, 63336}, {45577, 63337}, {45578, 63338}, {45580, 63339}, {45582, 63340}, {45584, 63341}, {45586, 63342}, {45715, 63354}, {48686, 63346}, {48722, 63355}, {48724, 63364}, {48726, 63345}, {48728, 63347}, {48730, 63348}, {48732, 63349}, {48734, 63350}, {48736, 63352}, {48738, 63353}, {48740, 63356}, {48742, 63357}, {48744, 63358}, {48746, 63360}, {48748, 63361}, {48750, 63362}, {48752, 63363}, {48754, 63365}, {48756, 63366}, {48758, 63367}, {48760, 63368}, {48762, 63369}, {48764, 63370}, {48766, 63371}, {48768, 63372}, {48770, 63373}, {48772, 63374}, {48774, 63375}, {48776, 63376}, {48778, 63377}, {48781, 63378}, {48782, 63379}, {60890, 63381}

X(63302) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63307, 63359, 63303}


X(63303) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND ANTI-KENMOTU-FREE-VERTICES

Barycentrics    a*(2*a^6-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+b*c*(b^2-c^2)^2-4*a^4*(b^2+c^2)+a^2*(2*b^4-b^3*c-b*c^3+2*c^4))+2*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63303) lies on these lines: {3, 63301}, {39, 63328}, {81, 371}, {182, 63302}, {642, 17056}, {5058, 63329}, {5453, 9738}, {13408, 48467}, {37631, 41491}, {37635, 45509}, {45378, 63296}, {45411, 63300}, {45499, 63291}, {45501, 63292}, {45503, 63293}, {45505, 63294}, {45507, 63295}, {45511, 63297}, {45513, 63299}, {45514, 63298}, {45521, 63304}, {45523, 63306}, {45524, 63305}, {45527, 63308}, {45529, 63309}, {45531, 63310}, {45533, 63311}, {45535, 63312}, {45537, 63313}, {45539, 63315}, {45541, 63316}, {45543, 63317}, {45545, 63318}, {45547, 63319}, {45549, 63320}, {45551, 63322}, {45552, 63321}, {45555, 63323}, {45557, 63324}, {45559, 63325}, {45561, 63326}, {45563, 63327}, {45564, 63330}, {45571, 63332}, {45573, 63333}, {45575, 63337}, {45576, 63336}, {45579, 63338}, {45581, 63339}, {45583, 63340}, {45585, 63341}, {45587, 63342}, {45716, 63354}, {48687, 63346}, {48723, 63355}, {48725, 63364}, {48727, 63345}, {48729, 63347}, {48731, 63348}, {48733, 63349}, {48735, 63351}, {48737, 63352}, {48739, 63353}, {48741, 63356}, {48743, 63357}, {48745, 63358}, {48747, 63360}, {48749, 63361}, {48751, 63362}, {48753, 63363}, {48755, 63365}, {48757, 63366}, {48759, 63367}, {48761, 63368}, {48763, 63369}, {48765, 63370}, {48767, 63371}, {48769, 63372}, {48771, 63373}, {48773, 63374}, {48775, 63375}, {48777, 63376}, {48779, 63378}, {48780, 63377}, {48783, 63379}, {60891, 63381}

X(63303) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63307, 63359, 63302}


X(63304) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-MANDART-INCIRCLE

Barycentrics    a^2*(a^4-b^4+3*a^2*b*c+4*b^2*c^2-c^4-2*a^3*(b+c)+a*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)) : :

X(63304) lies on these lines: {1, 6596}, {3, 63316}, {35, 63310}, {55, 81}, {56, 63333}, {100, 37635}, {197, 63311}, {480, 63384}, {1001, 11269}, {1376, 17056}, {2177, 13205}, {3256, 47057}, {3295, 63292}, {3811, 63396}, {3913, 63360}, {4413, 63344}, {4421, 37631}, {4423, 31204}, {4428, 61661}, {5453, 11248}, {5687, 63319}, {6600, 63387}, {8715, 63370}, {10267, 63307}, {10306, 63356}, {10310, 63291}, {11383, 63293}, {11490, 63294}, {11491, 63297}, {11492, 63312}, {11493, 63313}, {11494, 63315}, {11495, 63381}, {11496, 63318}, {11497, 63321}, {11498, 63322}, {11499, 63323}, {11500, 13408}, {11501, 63326}, {11502, 63327}, {11507, 63339}, {11508, 63340}, {11509, 63295}, {11510, 63342}, {11848, 63320}, {11849, 63338}, {12178, 63345}, {12326, 63347}, {12327, 63348}, {12328, 63353}, {12329, 63359}, {12330, 63361}, {12331, 63365}, {12332, 63346}, {12333, 63369}, {12334, 63352}, {12335, 63371}, {12336, 63364}, {12337, 63355}, {12338, 63372}, {12339, 63373}, {12340, 63349}, {12341, 63375}, {12342, 63376}, {12343, 63350}, {12344, 63351}, {12513, 63415}, {13675, 63377}, {13795, 63378}, {13887, 63336}, {13940, 63337}, {15569, 58328}, {16117, 63366}, {17061, 62800}, {17718, 63334}, {18491, 63317}, {18524, 63296}, {18593, 37541}, {18999, 63298}, {19000, 63299}, {22556, 63358}, {22557, 63362}, {22558, 63363}, {22559, 63368}, {24820, 63426}, {26512, 63305}, {26513, 63306}, {32141, 63374}, {32256, 63379}, {32347, 63367}, {35772, 63330}, {35773, 63331}, {39877, 63357}, {41811, 41819}, {44590, 63328}, {44591, 63329}, {45416, 63300}, {45417, 63301}, {45520, 63302}, {45521, 63303}, {61153, 63401}

X(63304) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 63354, 63316}


X(63305) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 3RD ANTI-TRI-SQUARES-CENTRAL

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))+(3*a^3+5*a^2*(b+c)-(b-c)^2*(b+c)+a*(b^2+5*b*c+c^2))*S : :

X(63305) lies on these lines: {2, 6}, {4, 63351}, {5453, 49038}, {13408, 48476}, {15682, 63377}, {18539, 63296}, {26294, 63291}, {26300, 63310}, {26306, 63311}, {26314, 63315}, {26324, 63316}, {26330, 63318}, {26355, 63332}, {26369, 63292}, {26375, 63293}, {26429, 63294}, {26435, 63295}, {26441, 63297}, {26444, 63319}, {26449, 63320}, {26468, 63323}, {26473, 63327}, {26479, 63326}, {26485, 63325}, {26490, 63324}, {26512, 63304}, {26514, 63333}, {26516, 63307}, {26517, 63308}, {26518, 63309}, {26519, 63342}, {26520, 63341}, {45522, 63302}, {45524, 63303}, {45719, 63354}, {48692, 63346}, {49012, 63312}, {49014, 63313}, {49016, 63317}, {49018, 63330}, {49028, 63338}, {49030, 63339}, {49032, 63340}, {49034, 63355}, {49036, 63364}, {49040, 63345}, {49042, 63347}, {49044, 63348}, {49046, 63349}, {49048, 63350}, {49050, 63352}, {49052, 63353}, {49054, 63356}, {49056, 63357}, {49058, 63358}, {49060, 63360}, {49062, 63361}, {49064, 63362}, {49066, 63363}, {49068, 63365}, {49070, 63366}, {49072, 63367}, {49074, 63368}, {49076, 63369}, {49078, 63370}, {49080, 63371}, {49082, 63372}, {49084, 63373}, {49086, 63374}, {49088, 63375}, {49090, 63376}, {49092, 63378}, {49094, 63379}, {60894, 63381}


X(63306) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 4TH ANTI-TRI-SQUARES-CENTRAL

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))+(-3*a^3-5*a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+5*b*c+c^2))*S : :

X(63306) lies on these lines: {2, 6}, {4, 63350}, {5453, 49039}, {8982, 63297}, {13408, 48477}, {15682, 63378}, {26295, 63291}, {26301, 63310}, {26307, 63311}, {26315, 63315}, {26325, 63316}, {26331, 63318}, {26356, 63332}, {26370, 63292}, {26376, 63293}, {26430, 63294}, {26436, 63295}, {26438, 63296}, {26445, 63319}, {26450, 63320}, {26469, 63323}, {26474, 63327}, {26480, 63326}, {26486, 63325}, {26491, 63324}, {26513, 63304}, {26515, 63333}, {26521, 63307}, {26522, 63308}, {26523, 63309}, {26524, 63342}, {26525, 63341}, {45523, 63303}, {45525, 63302}, {45720, 63354}, {48693, 63346}, {49013, 63312}, {49015, 63313}, {49017, 63317}, {49019, 63331}, {49029, 63338}, {49031, 63339}, {49033, 63340}, {49035, 63355}, {49037, 63364}, {49041, 63345}, {49043, 63347}, {49045, 63348}, {49047, 63349}, {49049, 63351}, {49051, 63352}, {49053, 63353}, {49055, 63356}, {49057, 63357}, {49059, 63358}, {49061, 63360}, {49063, 63361}, {49065, 63362}, {49067, 63363}, {49069, 63365}, {49071, 63366}, {49073, 63367}, {49075, 63368}, {49077, 63369}, {49079, 63370}, {49081, 63371}, {49083, 63372}, {49085, 63373}, {49087, 63374}, {49089, 63375}, {49091, 63376}, {49093, 63377}, {49095, 63379}


X(63307) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-X3-ABC REFLECTIONS

Barycentrics    a*(2*a^6-2*a^3*b*c*(b+c)+2*a*b*(b-c)^2*c*(b+c)+b*c*(b^2-c^2)^2-4*a^4*(b^2+c^2)+a^2*(2*b^4-b^3*c-b*c^3+2*c^4)) : :

X(63307) lies on circumconic {{A, B, C, X(5453), X(40412)}} and on these lines: {1, 5424}, {2, 63297}, {3, 81}, {5, 1724}, {21, 45923}, {24, 63293}, {30, 58}, {31, 22791}, {35, 63332}, {36, 63295}, {47, 39542}, {55, 63340}, {56, 63339}, {57, 44220}, {125, 63352}, {140, 580}, {162, 44225}, {171, 61524}, {182, 63302}, {238, 61272}, {255, 6147}, {270, 15762}, {283, 6675}, {323, 404}, {371, 63329}, {372, 63328}, {411, 36750}, {498, 63326}, {499, 63327}, {517, 63292}, {548, 37469}, {549, 582}, {550, 1754}, {602, 38028}, {603, 6357}, {620, 63456}, {631, 37635}, {896, 5492}, {942, 63446}, {952, 3072}, {1006, 45931}, {1154, 10974}, {1199, 6905}, {1385, 63354}, {1468, 34773}, {1483, 63415}, {1511, 32636}, {1656, 31204}, {1717, 16141}, {1780, 16617}, {1936, 12433}, {2080, 63294}, {2361, 37737}, {3073, 40273}, {3075, 34753}, {3193, 37308}, {3286, 6097}, {3311, 63298}, {3312, 63299}, {3357, 63371}, {3523, 41819}, {3526, 63344}, {3530, 13329}, {3576, 63310}, {3579, 4868}, {3647, 8143}, {3649, 6149}, {3651, 48927}, {3743, 22937}, {3916, 16585}, {4653, 12104}, {5050, 63385}, {5054, 63343}, {5127, 10021}, {5247, 18357}, {5499, 49745}, {5690, 63360}, {5706, 6914}, {5719, 52408}, {5892, 63453}, {5972, 63455}, {6200, 63331}, {6396, 63330}, {6583, 49118}, {6642, 63311}, {6644, 63452}, {6684, 63370}, {6771, 63355}, {6774, 63364}, {6796, 39523}, {6841, 56840}, {6869, 37666}, {6876, 37685}, {6924, 12161}, {7575, 63451}, {7583, 63336}, {7584, 63337}, {8144, 62810}, {8703, 63449}, {9940, 63382}, {10246, 63333}, {10267, 63304}, {10269, 63309}, {10610, 63375}, {11246, 58738}, {12041, 63348}, {12042, 63345}, {12359, 63353}, {12432, 33649}, {12619, 63365}, {12702, 17126}, {13743, 16948}, {14650, 63454}, {15068, 16471}, {15670, 35193}, {15803, 47057}, {16202, 63342}, {16203, 63341}, {17127, 18493}, {18593, 37582}, {23071, 57283}, {24470, 52407}, {24597, 44229}, {24883, 37230}, {26316, 63315}, {26341, 63321}, {26348, 63322}, {26446, 63319}, {26451, 63320}, {26487, 63325}, {26492, 63324}, {26516, 63305}, {26521, 63306}, {31649, 48903}, {31657, 63381}, {31658, 63387}, {31837, 63396}, {32141, 44414}, {32613, 63393}, {32911, 37251}, {33592, 50757}, {34862, 63361}, {37527, 48930}, {37584, 62809}, {38602, 63346}, {38624, 63349}, {40108, 63358}, {43118, 63301}, {43119, 63300}, {44257, 56402}, {45924, 46028}, {48876, 63394}, {48906, 63357}, {49102, 63347}, {49103, 63350}, {49104, 63351}, {49105, 63362}, {49106, 63363}, {49107, 63366}, {49108, 63367}, {49109, 63368}, {49110, 63369}, {49111, 63372}, {49112, 63373}, {49113, 63376}, {49114, 63377}, {49115, 63378}, {49116, 63379}, {59381, 63384}, {62318, 62804}

X(63307) = pole of line {2278, 32431} with respect to the Kiepert hyperbola
X(63307) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63297, 63323}, {3, 63338, 63291}, {3, 81, 5453}, {5, 13408, 63317}, {81, 63291, 63338}, {140, 63374, 17056}, {896, 5492, 19919}, {13408, 35466, 5}, {48903, 52680, 31649}, {52408, 54339, 5719}, {63302, 63303, 63359}


X(63308) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-INNER-YFF

Barycentrics    a*(a^6+a^5*(b+c)+a^4*(-2*b^2+b*c-2*c^2)+b*c*(b^2-c^2)^2-2*a^3*(b^3+4*b^2*c+4*b*c^2+c^3)+a^2*(b^4-6*b^3*c-10*b^2*c^2-6*b*c^3+c^4)+a*(b^5+3*b^4*c-6*b^3*c^2-6*b^2*c^3+3*b*c^4+c^5)) : :

X(63308) lies on these lines: {1, 21}, {3, 63393}, {5, 63325}, {940, 49168}, {4868, 15932}, {5453, 11249}, {5709, 63356}, {6261, 63447}, {6734, 63319}, {10198, 35466}, {10267, 63304}, {10527, 37635}, {10529, 41819}, {10680, 63338}, {10916, 63370}, {10943, 63324}, {11012, 63291}, {12116, 63297}, {13408, 48482}, {16474, 24987}, {17018, 36152}, {17056, 26363}, {18544, 63296}, {19049, 63329}, {19050, 63328}, {26308, 63311}, {26317, 63315}, {26332, 63318}, {26342, 63321}, {26349, 63322}, {26357, 63332}, {26377, 63293}, {26431, 63294}, {26437, 63295}, {26452, 63320}, {26458, 63298}, {26464, 63299}, {26470, 63323}, {26475, 63327}, {26481, 63326}, {26517, 63305}, {26522, 63306}, {34046, 55010}, {37559, 41575}, {37583, 59301}, {37631, 45700}, {37887, 51706}, {45422, 63300}, {45423, 63301}, {45526, 63302}, {45527, 63303}, {45625, 63312}, {45626, 63313}, {45630, 63317}, {45640, 63330}, {45641, 63331}, {45650, 63336}, {45651, 63337}, {45728, 63359}, {48694, 63346}, {49143, 63355}, {49145, 63364}, {49147, 63345}, {49149, 63347}, {49151, 63348}, {49153, 63349}, {49155, 63350}, {49157, 63351}, {49159, 63352}, {49161, 63353}, {49164, 63357}, {49166, 63358}, {49170, 63361}, {49172, 63362}, {49174, 63363}, {49176, 63365}, {49177, 63366}, {49179, 63367}, {49181, 63368}, {49183, 63369}, {49185, 63371}, {49187, 63372}, {49189, 63373}, {49191, 63375}, {49193, 63376}, {49195, 63377}, {49197, 63378}, {49199, 63379}, {60895, 63381}

X(63308) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 54302, 3743}


X(63309) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-OUTER-YFF

Barycentrics    a*(a^6+a^5*(b+c)+a^4*(-2*b^2+b*c-2*c^2)+b*c*(b^2-c^2)^2-2*a^3*(b^3-2*b^2*c-2*b*c^2+c^3)+a^2*(b^4+2*b^3*c+6*b^2*c^2+2*b*c^3+c^4)+a*(b^5-b^4*c+2*b^3*c^2+2*b^2*c^3-b*c^4+c^5)) : :

X(63309) lies on these lines: {1, 21}, {5, 63324}, {119, 63323}, {323, 5554}, {1158, 63450}, {1470, 63295}, {2077, 63291}, {3256, 59301}, {5453, 11248}, {5552, 37635}, {5706, 60896}, {5711, 63401}, {6256, 13408}, {6735, 63319}, {10200, 35466}, {10269, 63307}, {10528, 41819}, {10679, 63338}, {10915, 63370}, {10942, 63325}, {12115, 63297}, {12751, 63365}, {17056, 26364}, {18542, 63296}, {19047, 63329}, {19048, 63328}, {26309, 63311}, {26318, 63315}, {26333, 63318}, {26343, 63321}, {26350, 63322}, {26358, 63332}, {26378, 63293}, {26432, 63294}, {26453, 63320}, {26459, 63298}, {26465, 63299}, {26476, 63327}, {26482, 63326}, {26518, 63305}, {26523, 63306}, {37534, 63382}, {37631, 45701}, {45424, 63300}, {45425, 63301}, {45528, 63302}, {45529, 63303}, {45627, 63312}, {45628, 63313}, {45631, 63317}, {45642, 63330}, {45643, 63331}, {45652, 63336}, {45653, 63337}, {45729, 63359}, {48695, 63346}, {49144, 63355}, {49146, 63364}, {49148, 63345}, {49150, 63347}, {49152, 63348}, {49154, 63349}, {49156, 63350}, {49158, 63351}, {49160, 63352}, {49162, 63353}, {49163, 63356}, {49165, 63357}, {49167, 63358}, {49169, 63360}, {49171, 63361}, {49173, 63362}, {49175, 63363}, {49178, 63366}, {49180, 63367}, {49182, 63368}, {49184, 63369}, {49186, 63371}, {49188, 63372}, {49190, 63373}, {49192, 63375}, {49194, 63376}, {49196, 63377}, {49198, 63378}, {49200, 63379}


X(63310) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND AQUILA

Barycentrics    a*(a^3-b^3+3*b^2*c+3*b*c^2-c^3+5*a^2*(b+c)+a*(3*b^2+7*b*c+3*c^2)) : :

X(63310) lies on these lines: {1, 21}, {8, 41812}, {10, 37635}, {35, 63304}, {36, 63316}, {40, 5453}, {57, 63295}, {65, 2940}, {73, 63314}, {165, 63291}, {267, 17016}, {323, 19860}, {355, 63374}, {484, 59301}, {515, 63297}, {517, 63338}, {1449, 1781}, {1697, 63332}, {1698, 17056}, {1699, 63318}, {1768, 63346}, {2941, 7982}, {2960, 3340}, {3099, 63315}, {3244, 4418}, {3336, 19767}, {3339, 18593}, {3576, 63307}, {3624, 35466}, {3632, 24342}, {3633, 63415}, {3671, 18625}, {3679, 37631}, {3751, 63359}, {4067, 17019}, {4084, 5483}, {4312, 63381}, {4427, 20057}, {4667, 10572}, {5119, 63393}, {5223, 63387}, {5313, 11512}, {5587, 63323}, {5588, 63322}, {5589, 63321}, {5691, 13408}, {5904, 63396}, {6326, 45931}, {7373, 53280}, {7713, 63293}, {7991, 63356}, {7992, 63361}, {8185, 63311}, {8186, 63312}, {8187, 63313}, {9578, 63326}, {9581, 63327}, {9860, 63345}, {9864, 63456}, {9875, 63347}, {9896, 63353}, {9897, 63365}, {9898, 63369}, {9899, 63371}, {9900, 63364}, {9901, 63355}, {9902, 63372}, {9903, 63373}, {9904, 63348}, {9905, 63375}, {9906, 63350}, {9907, 63351}, {10789, 63294}, {10826, 63324}, {10827, 63325}, {11010, 17018}, {11529, 63388}, {11852, 63320}, {12368, 63455}, {12407, 63352}, {12408, 63349}, {12409, 63376}, {13679, 63377}, {13799, 63378}, {13888, 63336}, {13942, 63337}, {14996, 22836}, {15015, 37522}, {15803, 63382}, {16118, 63366}, {16132, 45923}, {18480, 63296}, {18492, 63317}, {18991, 63328}, {18992, 63329}, {19003, 63298}, {19004, 63299}, {19875, 63343}, {20145, 30139}, {22650, 63358}, {22651, 63362}, {22652, 63363}, {22653, 63368}, {24821, 63426}, {25055, 61661}, {26300, 63305}, {26301, 63306}, {30143, 37685}, {31204, 34595}, {32261, 63379}, {32356, 63367}, {35774, 63330}, {35775, 63331}, {36974, 42045}, {37594, 41696}, {39878, 63357}, {45426, 63300}, {45427, 63301}, {45530, 63302}, {45531, 63303}, {47033, 49743}, {49474, 63398}, {49682, 56289}, {50016, 63443}

X(63310) = intersection, other than A, B, C, of circumconics {{A, B, C, X(191), X(53114)}}, {{A, B, C, X(267), X(4653)}}, {{A, B, C, X(2363), X(5426)}}
X(63310) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2650, 16126}, {1, 58, 5426}, {8, 41819, 63370}, {2650, 4658, 1}


X(63311) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND ARA

Barycentrics    a^2*(a^7-a^6*(b+c)+a^4*(b-c)^2*(b+c)-(b-c)^4*(b+c)^3-a^3*(b^2+c^2)^2-a^5*(b^2+b*c+c^2)+a^2*(b^5+b^4*c-6*b^3*c^2-6*b^2*c^3+b*c^4+c^5)+a*(b^6+b^5*c-b^4*c^2-6*b^3*c^3-b^2*c^4+b*c^5+c^6)) : :

X(63311) lies on these lines: {3, 5713}, {22, 37635}, {23, 41819}, {24, 63297}, {25, 81}, {26, 63374}, {55, 1719}, {154, 63453}, {159, 63359}, {197, 63304}, {999, 11365}, {1284, 1617}, {1598, 63318}, {2931, 63455}, {3167, 37538}, {5020, 35466}, {5248, 37292}, {5453, 7387}, {5594, 63322}, {5595, 63321}, {6642, 63307}, {7484, 63344}, {7517, 63338}, {8185, 63310}, {8190, 63312}, {8191, 63313}, {8192, 63333}, {8193, 63319}, {9798, 63354}, {9818, 63317}, {9861, 63345}, {9876, 63347}, {9908, 63353}, {9909, 37631}, {9910, 63361}, {9911, 63356}, {9912, 63365}, {9913, 63346}, {9914, 63371}, {9915, 63364}, {9916, 63355}, {9917, 63372}, {9918, 63373}, {9919, 63348}, {9920, 63375}, {9921, 63350}, {9922, 63351}, {10037, 63339}, {10046, 63340}, {10790, 63294}, {10828, 63315}, {10829, 63324}, {10830, 63325}, {10831, 63326}, {10832, 63327}, {10833, 63332}, {10834, 63341}, {10835, 63342}, {11284, 31204}, {11414, 63291}, {11853, 63320}, {12410, 63360}, {12411, 63369}, {12412, 63352}, {12413, 63349}, {12414, 63376}, {13680, 63377}, {13800, 63378}, {13889, 63336}, {13943, 63337}, {16119, 63366}, {18954, 63295}, {19005, 63298}, {19006, 63299}, {19459, 63385}, {20850, 63401}, {22655, 63358}, {22656, 63362}, {22657, 63363}, {22658, 63368}, {24822, 63426}, {26306, 63305}, {26307, 63306}, {26308, 63308}, {26309, 63309}, {32262, 63379}, {32357, 63367}, {35776, 63330}, {35777, 63331}, {37491, 63394}, {37547, 63396}, {37972, 63451}, {39568, 63386}, {39828, 63456}, {39879, 63357}, {44598, 63328}, {44599, 63329}, {45428, 63300}, {45429, 63301}, {45532, 63302}, {45533, 63303}, {49553, 63370}, {60897, 63381}


X(63312) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST AURIGA

Barycentrics    a^2*(a-b-c)*(a+b+c)*(2*r+3*R)+2*a*(b+c)*(3*a^2-b^2+3*b*c-c^2+2*a*(b+c))*sqrt(R*(r+4*R)) : :

X(63312) lies on these lines: {55, 63313}, {81, 5597}, {5453, 11252}, {5598, 63333}, {5599, 17056}, {5601, 37635}, {8186, 63310}, {8190, 63311}, {8196, 63318}, {8197, 63319}, {8198, 63321}, {8199, 63322}, {8200, 63323}, {9834, 13408}, {11207, 37631}, {11366, 63292}, {11384, 63293}, {11492, 63304}, {11493, 63316}, {11822, 63291}, {11837, 63294}, {11843, 63297}, {11861, 63315}, {11863, 63320}, {11865, 63324}, {11867, 63325}, {11869, 63326}, {11871, 63327}, {11873, 63332}, {11875, 63338}, {11877, 63339}, {11879, 63340}, {11881, 63341}, {11883, 63342}, {12179, 63345}, {12345, 63347}, {12365, 63348}, {12415, 63353}, {12452, 63359}, {12454, 63360}, {12455, 63415}, {12456, 63361}, {12458, 63356}, {12460, 63365}, {12462, 63346}, {12464, 63369}, {12466, 63352}, {12468, 63371}, {12470, 63364}, {12472, 63355}, {12474, 63372}, {12476, 63373}, {12478, 63349}, {12480, 63375}, {12482, 63376}, {12484, 63350}, {12486, 63351}, {13682, 63377}, {13803, 63378}, {13890, 63336}, {13944, 63337}, {16121, 63366}, {18495, 63317}, {18955, 63295}, {19007, 63298}, {19008, 63299}, {22668, 63358}, {22669, 63362}, {22670, 63363}, {22671, 63368}, {24823, 63426}, {32146, 63374}, {32265, 63379}, {32360, 63367}, {35778, 63330}, {35781, 63331}, {39880, 63357}, {44600, 63328}, {44601, 63329}, {45379, 63296}, {45430, 63300}, {45431, 63301}, {45534, 63302}, {45535, 63303}, {45625, 63308}, {45627, 63309}, {49012, 63305}, {49013, 63306}, {49555, 63370}, {60898, 63381}

X(63312) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 63354, 63313}


X(63313) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND AURIGA

Barycentrics    a^2*(a-b-c)*(a+b+c)*(2*r+3*R)-2*a*(b+c)*(3*a^2-b^2+3*b*c-c^2+2*a*(b+c))*sqrt(R*(r+4*R)) : :

X(63313) lies on these lines: {55, 63312}, {81, 5598}, {5453, 11253}, {5597, 63333}, {5600, 17056}, {5602, 37635}, {8187, 63310}, {8191, 63311}, {8203, 63318}, {8204, 63319}, {8205, 63321}, {8206, 63322}, {8207, 63323}, {9835, 13408}, {11208, 37631}, {11367, 63292}, {11385, 63293}, {11492, 63316}, {11493, 63304}, {11823, 63291}, {11838, 63294}, {11844, 63297}, {11862, 63315}, {11864, 63320}, {11866, 63324}, {11868, 63325}, {11870, 63326}, {11872, 63327}, {11874, 63332}, {11876, 63338}, {11878, 63339}, {11880, 63340}, {11882, 63341}, {11884, 63342}, {12180, 63345}, {12346, 63347}, {12366, 63348}, {12416, 63353}, {12453, 63359}, {12454, 63415}, {12455, 63360}, {12457, 63361}, {12459, 63356}, {12461, 63365}, {12463, 63346}, {12465, 63369}, {12467, 63352}, {12469, 63371}, {12471, 63364}, {12473, 63355}, {12475, 63372}, {12477, 63373}, {12479, 63349}, {12481, 63375}, {12483, 63376}, {12485, 63350}, {12487, 63351}, {13683, 63377}, {13802, 63378}, {13891, 63336}, {13945, 63337}, {16122, 63366}, {18497, 63317}, {18956, 63295}, {19009, 63298}, {19010, 63299}, {22672, 63358}, {22673, 63362}, {22674, 63363}, {22675, 63368}, {24824, 63426}, {32147, 63374}, {32266, 63379}, {32361, 63367}, {35779, 63331}, {35780, 63330}, {39881, 63357}, {44602, 63328}, {44603, 63329}, {45380, 63296}, {45432, 63300}, {45433, 63301}, {45536, 63302}, {45537, 63303}, {45626, 63308}, {45628, 63309}, {49014, 63305}, {49015, 63306}, {49556, 63370}, {60899, 63381}

X(63313) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {55, 63354, 63312}


X(63314) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND BEVAN ANTIPODAL

Barycentrics    a*(a+b-c)*(a-b+c)*(a^6-2*a^5*(b+c)-a^2*(b+c)^2*(b^2-7*b*c+c^2)+(b^2-c^2)^2*(b^2-4*b*c+c^2)-a^4*(b^2+b*c+c^2)+a^3*(4*b^3-b^2*c-b*c^2+4*c^3)+a*(-2*b^5+3*b^4*c+7*b^3*c^2+7*b^2*c^3+3*b*c^4-2*c^5)) : :

X(63314) lies on these lines: {1, 3651}, {7, 63334}, {57, 2245}, {73, 63310}, {81, 223}, {1427, 47057}, {1445, 63344}, {2006, 52023}, {2124, 6357}, {3182, 13408}, {16572, 35466}, {47848, 55010}

X(63314) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37635, 47057}


X(63315) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 5TH BROCARD

Barycentrics    a*(2*a^5*(b+c)+2*a^3*b*c*(b+c)+2*a^4*(b^2+b*c+c^2)+b*c*(b^4+b^2*c^2+c^4)+a^2*(b^4+b^3*c+b^2*c^2+b*c^3+c^4)+a*(b^5+b^4*c+b^3*c^2+b^2*c^3+b*c^4+c^5)) : :

X(63315) lies on these lines: {32, 81}, {2896, 37635}, {3094, 63359}, {3096, 17056}, {3098, 63291}, {3099, 63310}, {5453, 9821}, {7811, 37631}, {7846, 35466}, {7865, 63343}, {7914, 63344}, {9301, 63338}, {9857, 63319}, {9862, 63297}, {9873, 13408}, {9878, 63347}, {9923, 63353}, {9941, 63354}, {9981, 63364}, {9982, 63355}, {9983, 63372}, {9984, 63348}, {9985, 63375}, {9986, 63350}, {9987, 63351}, {9993, 63318}, {9994, 63321}, {9995, 63322}, {9996, 63323}, {9997, 63333}, {10038, 63339}, {10047, 63340}, {10828, 63311}, {10871, 63324}, {10872, 63325}, {10873, 63326}, {10874, 63327}, {10877, 63332}, {10878, 63341}, {10879, 63342}, {11368, 63292}, {11386, 63293}, {11494, 63304}, {11861, 63312}, {11862, 63313}, {11885, 63320}, {12495, 63360}, {12496, 63361}, {12497, 63356}, {12498, 63365}, {12499, 63346}, {12500, 63369}, {12501, 63352}, {12502, 63371}, {12503, 63349}, {12504, 63376}, {13685, 63377}, {13805, 63378}, {13892, 63336}, {13946, 63337}, {16123, 63366}, {16787, 18593}, {18500, 63317}, {18503, 63296}, {18957, 63295}, {19011, 63298}, {19012, 63299}, {22678, 63358}, {22744, 63316}, {22745, 63362}, {22746, 63363}, {22747, 63368}, {24825, 63426}, {26314, 63305}, {26315, 63306}, {26316, 63307}, {26317, 63308}, {26318, 63309}, {32151, 63374}, {32268, 63379}, {32362, 63367}, {35782, 63330}, {35783, 63331}, {39882, 63357}, {44604, 63328}, {44605, 63329}, {45434, 63300}, {45435, 63301}, {45538, 63302}, {45539, 63303}, {49561, 63370}, {60900, 63381}


X(63316) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND CIRCUMPERP TANGENTIAL

Barycentrics    a^2*(a^5-b^5+3*b^4*c-4*b^3*c^2-4*b^2*c^3+3*b*c^4-c^5-a^4*(b+c)-a^3*(2*b^2+b*c+2*c^2)+2*a^2*(b^3-3*b^2*c-3*b*c^2+c^3)+a*(b^4-3*b^3*c-6*b^2*c^2-3*b*c^3+c^4)) : :

X(63316) lies on these lines: {1, 37286}, {3, 63304}, {36, 63310}, {55, 63333}, {56, 81}, {104, 63297}, {956, 63319}, {958, 17056}, {999, 11365}, {1001, 63381}, {1386, 5563}, {2975, 37635}, {3428, 63291}, {3913, 63415}, {5453, 11249}, {8666, 63370}, {10269, 63307}, {10404, 63334}, {10966, 63332}, {11194, 37631}, {11492, 63313}, {11493, 63312}, {12114, 13408}, {12513, 63360}, {12773, 63365}, {13743, 63366}, {15832, 18593}, {18237, 63361}, {18761, 63317}, {19013, 63298}, {19014, 63299}, {19159, 63349}, {19478, 63352}, {22479, 63293}, {22504, 63345}, {22520, 63294}, {22565, 63347}, {22583, 63348}, {22595, 63350}, {22624, 63351}, {22659, 63353}, {22680, 63358}, {22744, 63315}, {22753, 63318}, {22755, 63320}, {22756, 63321}, {22757, 63322}, {22758, 63323}, {22759, 63326}, {22760, 63327}, {22763, 63336}, {22764, 63337}, {22765, 63338}, {22766, 63339}, {22767, 63340}, {22768, 63341}, {22769, 63359}, {22770, 63356}, {22771, 63362}, {22772, 63363}, {22773, 63355}, {22774, 63364}, {22775, 63346}, {22776, 63368}, {22777, 63369}, {22778, 63371}, {22779, 63372}, {22780, 63373}, {22781, 63375}, {22782, 63376}, {22783, 63377}, {22784, 63378}, {24826, 63426}, {25524, 35466}, {26321, 63296}, {26324, 63305}, {26325, 63306}, {32153, 63374}, {32270, 63379}, {32363, 63367}, {35784, 63330}, {35785, 63331}, {39883, 63357}, {40726, 61661}, {41402, 55010}, {44606, 63328}, {44607, 63329}, {45436, 63300}, {45437, 63301}, {45540, 63302}, {45541, 63303}, {62858, 63396}

X(63316) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 63354, 63304}


X(63317) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND EHRMANN-MID

Barycentrics    2*a^7-2*(b-c)^4*(b+c)^3-2*a^5*(b^2+c^2)+a*(b^2-c^2)^2*(2*b^2+3*b*c+2*c^2)-2*a^4*(b^3+2*b^2*c+2*b*c^2+c^3)+2*a^2*(b-c)^2*(2*b^3+5*b^2*c+5*b*c^2+2*c^3)-a^3*(2*b^4+3*b^3*c+3*b*c^3+2*c^4) : :

X(63317) lies on these lines: {3, 63344}, {4, 5453}, {5, 1724}, {30, 4653}, {58, 46028}, {81, 381}, {113, 63352}, {323, 17577}, {382, 63291}, {442, 35193}, {500, 44258}, {546, 45942}, {1478, 63327}, {1479, 63326}, {1539, 63348}, {3091, 63297}, {3583, 63332}, {3585, 63295}, {3627, 63386}, {3818, 63359}, {3830, 63343}, {3839, 41819}, {3843, 63338}, {3845, 37631}, {5055, 31204}, {5066, 61661}, {6564, 63328}, {6565, 63329}, {7687, 63455}, {8143, 16125}, {9612, 37729}, {9818, 63311}, {9955, 63292}, {10895, 63339}, {10896, 63340}, {12611, 63365}, {12699, 63319}, {13665, 63299}, {13785, 63298}, {14881, 63372}, {15687, 63449}, {16160, 49745}, {18407, 63393}, {18440, 63385}, {18480, 63354}, {18482, 63387}, {18483, 63370}, {18491, 63304}, {18492, 63310}, {18495, 63312}, {18497, 63313}, {18500, 63315}, {18502, 63294}, {18507, 63320}, {18509, 63321}, {18511, 63322}, {18516, 63324}, {18517, 63325}, {18525, 63333}, {18538, 63336}, {18542, 63341}, {18544, 63342}, {18572, 63451}, {18761, 63316}, {18762, 63337}, {19160, 63349}, {21850, 63394}, {22136, 46870}, {22505, 63345}, {22566, 63347}, {22596, 63350}, {22625, 63351}, {22660, 63353}, {22681, 63358}, {22791, 33104}, {22792, 63361}, {22793, 63356}, {22794, 63362}, {22795, 63363}, {22796, 63355}, {22797, 63364}, {22798, 63366}, {22799, 63346}, {22800, 63368}, {22801, 63369}, {22802, 63371}, {22803, 63373}, {22804, 63375}, {22805, 63376}, {22806, 63377}, {22807, 63378}, {24827, 63426}, {26131, 48927}, {31671, 63384}, {32271, 63379}, {32364, 63367}, {35786, 63330}, {35787, 63331}, {37705, 63415}, {39884, 63357}, {44229, 63008}, {44257, 52680}, {45438, 63300}, {45439, 63301}, {45542, 63302}, {45543, 63303}, {45630, 63308}, {45631, 63309}, {49016, 63305}, {49017, 63306}, {51340, 52269}, {60901, 63381}

X(63317) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 13408, 63307}, {381, 63296, 81}


X(63318) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND EULER

Barycentrics    (2*a*b*c+a^2*(b+c)-(b-c)^2*(b+c))*(2*a^4-a^3*(b+c)+a*(b-c)^2*(b+c)-(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(63318) lies on these lines: {1, 6841}, {2, 63291}, {3, 1714}, {4, 81}, {5, 581}, {6, 63357}, {10, 63356}, {11, 63295}, {12, 63332}, {30, 58}, {34, 5722}, {47, 6284}, {98, 63294}, {115, 63345}, {125, 63348}, {127, 63349}, {226, 63447}, {235, 63293}, {323, 5046}, {355, 612}, {371, 63336}, {372, 63337}, {381, 37631}, {386, 37356}, {387, 6851}, {407, 18180}, {442, 500}, {496, 10571}, {515, 7683}, {546, 45942}, {582, 37428}, {631, 31204}, {938, 18625}, {940, 44229}, {942, 1838}, {944, 8229}, {946, 63354}, {950, 63446}, {991, 37438}, {1060, 1837}, {1064, 26470}, {1210, 18593}, {1352, 63394}, {1437, 1884}, {1478, 63340}, {1479, 60691}, {1482, 63415}, {1587, 63298}, {1588, 63299}, {1596, 63452}, {1598, 63311}, {1699, 63310}, {1724, 28459}, {1738, 40296}, {1865, 46882}, {3070, 63329}, {3071, 63328}, {3090, 63344}, {3091, 37635}, {3545, 63343}, {3574, 63375}, {3651, 24883}, {3832, 41819}, {3843, 63296}, {4205, 48887}, {4653, 16617}, {4658, 45924}, {4854, 5492}, {5051, 48877}, {5292, 6985}, {5396, 6831}, {5478, 63355}, {5479, 63364}, {5480, 63359}, {5499, 48927}, {5512, 63454}, {5587, 63319}, {5603, 63333}, {5711, 18517}, {5712, 6866}, {5767, 36496}, {5777, 63396}, {5787, 57276}, {5805, 63381}, {5817, 63384}, {6201, 63322}, {6202, 63321}, {6245, 63361}, {6246, 63365}, {6247, 63371}, {6248, 63372}, {6249, 63373}, {6250, 63351}, {6251, 63350}, {6260, 63445}, {6564, 63331}, {6565, 63330}, {6734, 16585}, {6836, 36754}, {6845, 19767}, {6869, 37642}, {6882, 37732}, {6900, 37633}, {6903, 32911}, {6917, 36746}, {6928, 36747}, {6929, 17814}, {7680, 37698}, {8143, 22798}, {8196, 63312}, {8203, 63313}, {9581, 47057}, {9880, 63347}, {9927, 63353}, {9993, 63315}, {10113, 63352}, {10479, 50324}, {10531, 63341}, {10532, 63342}, {10893, 63324}, {10894, 63325}, {10895, 63326}, {10896, 63327}, {11496, 63304}, {11799, 63451}, {11897, 63320}, {12599, 63369}, {12600, 63376}, {12699, 54421}, {13369, 23537}, {13567, 63448}, {13687, 63377}, {13754, 18178}, {13807, 63378}, {14853, 63385}, {16125, 63366}, {16704, 48935}, {18406, 37559}, {18443, 37887}, {18480, 37594}, {18990, 51424}, {19925, 63370}, {22682, 63358}, {22753, 63316}, {22831, 63362}, {22832, 63363}, {22833, 63368}, {24210, 31937}, {24828, 63426}, {25080, 51755}, {26098, 45630}, {26330, 63305}, {26331, 63306}, {26332, 63308}, {26333, 63309}, {28452, 37522}, {30444, 48937}, {32274, 63379}, {32369, 63367}, {33137, 35239}, {37230, 49745}, {37251, 37634}, {37401, 48897}, {37447, 48903}, {37730, 51421}, {44225, 56814}, {45440, 63300}, {45441, 63301}, {45544, 63302}, {45545, 63303}, {46686, 63455}

X(63318) = pole of line {579, 32431} with respect to the Kiepert hyperbola
X(63318) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1838), X(10572)}}, {{A, B, C, X(39791), X(57667)}}, {{A, B, C, X(55010), X(60156)}}
X(63318) = barycentric product X(i)*X(j) for these (i, j): {10572, 5249}
X(63318) = barycentric quotient X(i)/X(j) for these (i, j): {10572, 40435}
X(63318) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 81, 13408}, {5, 5453, 17056}, {381, 63338, 63323}, {500, 45926, 442}, {546, 63374, 63317}, {35466, 63386, 3}, {37230, 51340, 49745}, {63323, 63338, 37631}


X(63319) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-GARCIA

Barycentrics    a^4+a^3*(b+c)+a*(b+c)^3-(b^2-c^2)^2+a^2*(2*b^2+5*b*c+2*c^2) : :

X(63319) lies on circumconic {{A, B, C, X(1224), X(41501)}} and on these lines: {1, 442}, {2, 36974}, {4, 27785}, {8, 27812}, {10, 81}, {35, 16049}, {37, 3585}, {40, 13408}, {58, 21674}, {65, 63326}, {72, 63325}, {79, 2292}, {80, 59305}, {100, 63365}, {191, 49745}, {355, 5453}, {388, 18593}, {495, 63388}, {515, 63291}, {516, 63384}, {517, 63323}, {519, 63333}, {612, 858}, {750, 5445}, {758, 26131}, {956, 63316}, {975, 7951}, {984, 63398}, {1046, 49744}, {1125, 63344}, {1203, 5717}, {1478, 25080}, {1698, 5725}, {1737, 63340}, {1837, 63332}, {2475, 3743}, {2478, 31318}, {2550, 63387}, {3057, 63327}, {3085, 63446}, {3416, 63359}, {3436, 16585}, {3583, 6051}, {3617, 41814}, {3632, 63415}, {3634, 31204}, {3679, 37631}, {3704, 50169}, {3751, 63394}, {3841, 17016}, {3878, 33112}, {3920, 31100}, {4647, 26051}, {4653, 5441}, {5046, 27784}, {5090, 63293}, {5223, 63381}, {5251, 47512}, {5252, 63295}, {5261, 18625}, {5290, 55010}, {5443, 33105}, {5492, 49178}, {5563, 29639}, {5587, 63318}, {5657, 63297}, {5687, 63304}, {5688, 63322}, {5689, 63321}, {5690, 63374}, {5691, 63386}, {5726, 6357}, {5790, 63338}, {5847, 63385}, {6175, 36250}, {6734, 63308}, {6735, 63309}, {8143, 47032}, {8193, 63311}, {8197, 63312}, {8204, 63313}, {8666, 29664}, {9578, 47057}, {9857, 63315}, {9864, 63345}, {9881, 63347}, {9928, 63353}, {10039, 63339}, {10483, 62871}, {10791, 63294}, {10826, 17022}, {10914, 63324}, {10915, 63341}, {10916, 63342}, {11237, 52374}, {11684, 63366}, {11900, 63320}, {12368, 63348}, {12609, 63334}, {12667, 63361}, {12699, 63317}, {12702, 63296}, {12751, 63346}, {12777, 63369}, {12778, 63352}, {12779, 63371}, {12780, 63364}, {12781, 63355}, {12782, 63372}, {12783, 63373}, {12784, 63349}, {12785, 63375}, {12786, 63376}, {12787, 63350}, {12788, 63351}, {13688, 63377}, {13808, 63378}, {13883, 63299}, {13893, 63336}, {13911, 63328}, {13936, 63298}, {13947, 63337}, {13973, 63329}, {16830, 19929}, {16948, 58449}, {18492, 25430}, {19875, 51667}, {20131, 30119}, {21677, 49743}, {22697, 63358}, {22851, 63362}, {22896, 63363}, {22941, 63368}, {24715, 63426}, {24936, 35016}, {26444, 63305}, {26445, 63306}, {26446, 63307}, {29682, 36975}, {30115, 37731}, {30116, 37710}, {30358, 45066}, {31254, 50757}, {32278, 63379}, {32371, 63367}, {32847, 63443}, {35788, 63330}, {35789, 63331}, {39885, 63357}, {41859, 54418}, {42334, 63401}, {45444, 63300}, {45445, 63301}, {45546, 63302}, {45547, 63303}, {50924, 63454}, {52680, 63286}

X(63319) = pole of line {1203, 56840} with respect to the Stammler hyperbola
X(63319) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 37635, 63354}, {10, 63370, 81}, {17056, 63360, 1}


X(63320) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND GOSSARD

Barycentrics    (b+c)*(-2*a^4+(b^2-c^2)^2+a^2*(b^2+c^2))*(2*a^10+a^9*(b+c)+a^8*(-3*b^2+2*b*c-3*c^2)+a^5*b*c*(-5*b^3+6*b^2*c+6*b*c^2-5*c^3)-2*a^7*(b^3+c^3)+(b-c)^4*(b+c)^2*(b^4+3*b^2*c^2+c^4)-2*a^6*(2*b^4+b^3*c-7*b^2*c^2+b*c^3+2*c^4)-2*a^2*(b^2-c^2)^2*(3*b^4-3*b^3*c+7*b^2*c^2-3*b*c^3+3*c^4)+a^4*(b-c)^2*(10*b^4+16*b^3*c+11*b^2*c^2+16*b*c^3+10*c^4)+2*a^3*(b-c)^2*(b^5+5*b^4*c+6*b^3*c^2+6*b^2*c^3+5*b*c^4+c^5)-a*(b^9+2*b^8*c+2*b^6*c^3-5*b^5*c^4-5*b^4*c^5+2*b^3*c^6+2*b*c^8+c^9)) : :

X(63320) lies on these lines: {30, 26131}, {81, 402}, {1650, 17056}, {1651, 37631}, {4240, 37635}, {5453, 11251}, {11831, 63292}, {11832, 63293}, {11839, 63294}, {11845, 63297}, {11848, 63304}, {11852, 63310}, {11853, 63311}, {11863, 63312}, {11864, 63313}, {11885, 63315}, {11897, 63318}, {11900, 63319}, {11901, 63321}, {11902, 63322}, {11903, 63324}, {11904, 63325}, {11905, 63326}, {11906, 63327}, {11909, 63332}, {11910, 63333}, {11911, 63338}, {11912, 63339}, {11913, 63340}, {11914, 63341}, {11915, 63342}, {12113, 13408}, {12181, 63345}, {12347, 63347}, {12369, 63348}, {12418, 63353}, {12438, 63354}, {12583, 63359}, {12626, 63360}, {12668, 63361}, {12696, 63356}, {12729, 63365}, {12752, 63346}, {12789, 63369}, {12790, 63352}, {12791, 63371}, {12792, 63364}, {12793, 63355}, {12794, 63372}, {12795, 63373}, {12796, 63349}, {12797, 63375}, {12798, 63376}, {12799, 63350}, {12800, 63351}, {13689, 63377}, {13809, 63378}, {13894, 63336}, {13948, 63337}, {15183, 35466}, {15184, 63344}, {16129, 63366}, {18507, 63317}, {18508, 63296}, {18958, 63295}, {19017, 63298}, {19018, 63299}, {22698, 63358}, {22755, 63316}, {22852, 63362}, {22897, 63363}, {22943, 63368}, {24830, 63426}, {26449, 63305}, {26450, 63306}, {26451, 63307}, {26452, 63308}, {26453, 63309}, {32162, 63374}, {32279, 63379}, {32372, 63367}, {35790, 63330}, {35791, 63331}, {39886, 63357}, {44610, 63328}, {44611, 63329}, {45446, 63300}, {45447, 63301}, {45548, 63302}, {45549, 63303}, {49585, 63370}, {60906, 63381}


X(63321) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND INNER-GREBE

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))-a*(a+b)*(a+c)*S : :

X(63321) lies on these lines: {2, 6}, {1161, 5453}, {3641, 63354}, {5589, 63310}, {5595, 63311}, {5605, 63333}, {5689, 63319}, {5871, 13408}, {5875, 63374}, {6202, 63318}, {6215, 63323}, {6227, 63345}, {6258, 63361}, {6263, 63365}, {6267, 63371}, {6270, 63355}, {6271, 63364}, {6273, 63372}, {6275, 63373}, {6277, 63375}, {6279, 63351}, {6281, 63350}, {7725, 63348}, {8198, 63312}, {8205, 63313}, {9882, 63347}, {9929, 63353}, {9994, 63315}, {10040, 63339}, {10048, 63340}, {10783, 63297}, {10792, 63294}, {10919, 63324}, {10921, 63325}, {10923, 63326}, {10925, 63327}, {10927, 63332}, {10929, 63341}, {10931, 63342}, {11370, 63292}, {11388, 63293}, {11497, 63304}, {11824, 63291}, {11901, 63320}, {11916, 63338}, {12627, 63360}, {12697, 63356}, {12753, 63346}, {12801, 63369}, {12803, 63352}, {12805, 63349}, {12807, 63376}, {13690, 63377}, {13810, 63378}, {16130, 63366}, {18509, 63317}, {18959, 63295}, {22699, 63358}, {22756, 63316}, {22853, 63362}, {22898, 63363}, {22945, 63368}, {24831, 63426}, {26336, 63296}, {26341, 63307}, {26342, 63308}, {26343, 63309}, {32280, 63379}, {32373, 63367}, {35792, 63330}, {35795, 63331}, {39887, 63357}, {45550, 63302}, {45552, 63303}, {49586, 63370}, {60907, 63381}


X(63322) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-GREBE

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))+a*(a+b)*(a+c)*S : :

X(63322) lies on these lines: {2, 6}, {1160, 5453}, {3640, 63354}, {5588, 63310}, {5594, 63311}, {5604, 63333}, {5688, 63319}, {5870, 13408}, {5874, 63374}, {6201, 63318}, {6214, 63323}, {6226, 63345}, {6257, 63361}, {6262, 63365}, {6266, 63371}, {6268, 63355}, {6269, 63364}, {6272, 63372}, {6274, 63373}, {6276, 63375}, {6278, 63351}, {6280, 63350}, {7726, 63348}, {8199, 63312}, {8206, 63313}, {9883, 63347}, {9930, 63353}, {9995, 63315}, {10041, 63339}, {10049, 63340}, {10784, 63297}, {10793, 63294}, {10920, 63324}, {10922, 63325}, {10924, 63326}, {10926, 63327}, {10928, 63332}, {10930, 63341}, {10932, 63342}, {11371, 63292}, {11389, 63293}, {11498, 63304}, {11825, 63291}, {11902, 63320}, {11917, 63338}, {12628, 63360}, {12698, 63356}, {12754, 63346}, {12802, 63369}, {12804, 63352}, {12806, 63349}, {12808, 63376}, {13691, 63377}, {13811, 63378}, {16131, 63366}, {18511, 63317}, {18960, 63295}, {22700, 63358}, {22757, 63316}, {22854, 63362}, {22899, 63363}, {22947, 63368}, {24832, 63426}, {26346, 63296}, {26348, 63307}, {26349, 63308}, {26350, 63309}, {32281, 63379}, {32374, 63367}, {35793, 63331}, {35794, 63330}, {39888, 63357}, {45551, 63303}, {45553, 63302}, {49587, 63370}, {60908, 63381}


X(63323) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND JOHNSON

Barycentrics    a^7+a^6*(b+c)-(b-c)^4*(b+c)^3+a*(b-c)^2*(b+c)^4-a^5*(b^2-b*c+c^2)-3*a^4*(b^3+b^2*c+b*c^2+c^3)+a^2*(b-c)^2*(3*b^3+7*b^2*c+7*b*c^2+3*c^3)-a^3*(b^4+3*b^3*c+2*b^2*c^2+3*b*c^3+c^4) : :

X(63323) lies on these lines: {1, 18407}, {2, 63297}, {3, 5713}, {4, 5453}, {5, 81}, {11, 63340}, {12, 23071}, {30, 26131}, {79, 8143}, {110, 63352}, {115, 63456}, {119, 63309}, {125, 63455}, {140, 63344}, {155, 63353}, {226, 18447}, {265, 56417}, {323, 2476}, {355, 63324}, {381, 37631}, {382, 63386}, {442, 3193}, {485, 63328}, {486, 63329}, {500, 45924}, {517, 63319}, {946, 63370}, {952, 63333}, {1351, 63394}, {1352, 63359}, {1478, 63295}, {1479, 63332}, {1482, 63360}, {1656, 35466}, {3091, 41819}, {3095, 63372}, {3564, 63385}, {3628, 31204}, {3652, 63366}, {3743, 16159}, {3830, 48846}, {3851, 63401}, {3945, 6866}, {4658, 45926}, {5055, 61661}, {5396, 45933}, {5428, 24936}, {5492, 33097}, {5587, 63310}, {5613, 63364}, {5617, 63355}, {5712, 44229}, {5714, 18625}, {5718, 37251}, {5762, 63384}, {5779, 63381}, {5787, 63445}, {5805, 63387}, {5878, 63371}, {5886, 37823}, {5891, 63453}, {6033, 63345}, {6214, 63322}, {6215, 63321}, {6259, 63361}, {6265, 63365}, {6287, 63373}, {6288, 63375}, {6289, 63300}, {6290, 63301}, {6564, 63330}, {6565, 63331}, {6829, 56292}, {6841, 49743}, {6873, 14996}, {6881, 37509}, {6980, 36747}, {7574, 63451}, {7583, 63299}, {7584, 63298}, {7697, 63358}, {7728, 63348}, {8200, 63312}, {8207, 63313}, {8724, 63347}, {8976, 63336}, {9612, 47057}, {9970, 63379}, {9996, 63315}, {10021, 16948}, {10742, 63346}, {10748, 63454}, {10796, 63294}, {10942, 63341}, {10943, 63342}, {11374, 63446}, {11499, 63304}, {12645, 63415}, {12699, 63356}, {12856, 63369}, {12918, 63349}, {12919, 63376}, {13692, 63377}, {13743, 49745}, {13812, 63378}, {13951, 63337}, {14526, 38336}, {16125, 58380}, {16585, 58798}, {16626, 63363}, {16627, 63362}, {18440, 63357}, {18493, 26098}, {18531, 63452}, {18593, 57282}, {20430, 63398}, {22758, 63316}, {22791, 33112}, {22955, 63368}, {24474, 63396}, {24833, 63426}, {25080, 37826}, {26468, 63305}, {26469, 63306}, {26470, 63308}, {32379, 63367}, {33107, 61272}, {37433, 48927}, {37820, 63393}, {45554, 63302}, {45555, 63303}, {47032, 48903}

X(63323) = pole of line {5124, 5747} with respect to the Kiepert hyperbola
X(63323) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63297, 63307}, {3, 63296, 13408}, {5, 63374, 81}, {381, 63338, 63318}, {5453, 63317, 4}, {13408, 17056, 3}, {37631, 63318, 63338}, {63324, 63325, 63354}, {63326, 63327, 1}


X(63324) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND INNER-JOHNSON

Barycentrics    a^6-(b-c)^4*(b+c)^2-a^4*(b^2-b*c+c^2)+a^3*(-2*b^3+3*b^2*c+3*b*c^2-2*c^3)+a^2*(b^4+c^4)+2*a*(b^5-b^4*c-b*c^4+c^5) : :

X(63324) lies on these lines: {5, 63309}, {11, 81}, {12, 63341}, {355, 63323}, {1376, 17056}, {3434, 37635}, {5453, 10525}, {10523, 63339}, {10785, 63297}, {10794, 63294}, {10826, 63310}, {10829, 63311}, {10871, 63315}, {10893, 63318}, {10912, 63360}, {10914, 63319}, {10919, 63321}, {10920, 63322}, {10943, 63308}, {10944, 63326}, {10947, 63332}, {10948, 63340}, {10949, 63342}, {11235, 37631}, {11373, 63292}, {11390, 63293}, {11826, 63291}, {11865, 63312}, {11866, 63313}, {11903, 63320}, {11928, 63338}, {12114, 13408}, {12182, 63345}, {12348, 63347}, {12371, 63348}, {12422, 63353}, {12586, 63359}, {12676, 63361}, {12700, 63356}, {12737, 63365}, {12761, 63346}, {12857, 63369}, {12889, 63352}, {12920, 63371}, {12921, 63364}, {12922, 63355}, {12923, 63372}, {12924, 63373}, {12925, 63349}, {12926, 63375}, {12927, 63376}, {12928, 63350}, {12929, 63351}, {13693, 63377}, {13813, 63378}, {13895, 63336}, {13952, 63337}, {16112, 63381}, {16138, 63366}, {18516, 63317}, {18519, 63296}, {18961, 63295}, {19023, 63298}, {19024, 63299}, {22703, 63358}, {22857, 63362}, {22902, 63363}, {22956, 63368}, {24834, 63426}, {26098, 63401}, {26490, 63305}, {26491, 63306}, {26492, 63307}, {32287, 63379}, {32380, 63367}, {34612, 63343}, {35796, 63330}, {35797, 63331}, {39889, 63357}, {44618, 63328}, {44619, 63329}, {45454, 63300}, {45455, 63301}, {45556, 63302}, {45557, 63303}, {49600, 63370}

X(63324) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63323, 63354, 63325}


X(63325) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-JOHNSON

Barycentrics    a^7+a^6*(b+c)-3*a^4*(b+c)^3-(b-c)^4*(b+c)^3+a*(b-c)^2*(b+c)^4-a^5*(b^2-b*c+c^2)-a^3*(b^4+7*b^3*c+10*b^2*c^2+7*b*c^3+c^4)+a^2*(3*b^5+3*b^4*c-8*b^3*c^2-8*b^2*c^3+3*b*c^4+3*c^5) : :

X(63325) lies on these lines: {4, 63393}, {5, 63308}, {11, 63342}, {12, 81}, {72, 63319}, {355, 63323}, {958, 17056}, {3436, 37635}, {5220, 63381}, {5453, 10526}, {5791, 63382}, {5812, 63356}, {10523, 63340}, {10786, 63297}, {10795, 63294}, {10827, 63310}, {10830, 63311}, {10872, 63315}, {10894, 63318}, {10921, 63321}, {10922, 63322}, {10942, 63309}, {10950, 63327}, {10953, 63332}, {10954, 63339}, {10955, 63341}, {11236, 37631}, {11374, 63292}, {11391, 63293}, {11500, 13408}, {11827, 63291}, {11867, 63312}, {11868, 63313}, {11904, 63320}, {11929, 63338}, {12183, 63345}, {12349, 63347}, {12372, 63348}, {12423, 63353}, {12587, 63359}, {12635, 63360}, {12677, 63361}, {12738, 63365}, {12762, 63346}, {12858, 63369}, {12890, 63352}, {12930, 63371}, {12931, 63364}, {12932, 63355}, {12933, 63372}, {12934, 63373}, {12935, 63349}, {12936, 63375}, {12937, 63376}, {12938, 63350}, {12939, 63351}, {13694, 63377}, {13814, 63378}, {13896, 63336}, {13953, 63337}, {16139, 63366}, {18517, 63317}, {18518, 63296}, {18962, 63295}, {19025, 63298}, {19026, 63299}, {21077, 63370}, {21677, 26131}, {22704, 63358}, {22858, 63362}, {22903, 63363}, {22957, 63368}, {24835, 63426}, {24953, 63344}, {26485, 63305}, {26486, 63306}, {26487, 63307}, {32288, 63379}, {32381, 63367}, {34606, 63343}, {35798, 63330}, {35799, 63331}, {39890, 63357}, {44620, 63328}, {44621, 63329}, {45456, 63300}, {45457, 63301}, {45558, 63302}, {45559, 63303}

X(63325) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63323, 63354, 63324}


X(63326) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST JOHNSON-YFF

Barycentrics    (a+b-c)*(a-b+c)*(a^5+a^3*b*c+a^4*(b+c)-2*a^2*(b+c)^3+(b-c)^2*(b+c)^3-a*(b+c)^4) : :

X(63326) lies on these lines: {1, 18407}, {4, 63332}, {5, 63340}, {12, 81}, {55, 13408}, {56, 17056}, {65, 63319}, {226, 63370}, {388, 37635}, {495, 63339}, {498, 63307}, {1478, 5453}, {1479, 63317}, {1836, 63356}, {2099, 63360}, {3085, 63297}, {3157, 63353}, {3295, 63296}, {3649, 26131}, {5252, 63354}, {5261, 41819}, {5290, 47057}, {5427, 24936}, {5433, 63344}, {5434, 63343}, {7354, 63291}, {8143, 16152}, {8614, 49743}, {9578, 63310}, {9654, 63338}, {10088, 63352}, {10404, 18593}, {10797, 63294}, {10831, 63311}, {10873, 63315}, {10895, 63318}, {10923, 63321}, {10924, 63322}, {10944, 63324}, {10956, 63341}, {10957, 63342}, {11237, 37631}, {11375, 63292}, {11392, 63293}, {11501, 63304}, {11869, 63312}, {11870, 63313}, {11905, 63320}, {12184, 63345}, {12350, 63347}, {12373, 63348}, {12588, 63359}, {12678, 63361}, {12739, 63365}, {12763, 63346}, {12837, 63372}, {12859, 63369}, {12940, 63371}, {12941, 63364}, {12942, 63355}, {12943, 63386}, {12944, 63373}, {12945, 63349}, {12946, 63375}, {12947, 63376}, {12948, 63350}, {12949, 63351}, {13407, 63388}, {13695, 63377}, {13815, 63378}, {13897, 63336}, {13954, 63337}, {16140, 63366}, {17718, 63446}, {19027, 63298}, {19028, 63299}, {22705, 63358}, {22759, 63316}, {22859, 63362}, {22904, 63363}, {22958, 63368}, {24836, 63426}, {26479, 63305}, {26480, 63306}, {26481, 63308}, {26482, 63309}, {31472, 63328}, {32289, 63379}, {32382, 63367}, {35800, 63330}, {35801, 63331}, {39891, 63357}, {39897, 63385}, {44622, 63329}, {45458, 63300}, {45459, 63301}, {45560, 63302}, {45561, 63303}, {60883, 63384}, {60909, 63381}

X(63326) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63323, 63327}


X(63327) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND JOHNSON-YFF

Barycentrics    (a-b-c)*(a^5+a^3*b*c+a^4*(b+c)-2*a^2*(b-c)^2*(b+c)+(b-c)^4*(b+c)-a*(b^2-c^2)^2) : :

X(63327) lies on these lines: {1, 18407}, {4, 63295}, {5, 63339}, {11, 81}, {55, 851}, {56, 13408}, {323, 11680}, {496, 63340}, {497, 37635}, {499, 63307}, {999, 63296}, {1069, 63353}, {1464, 45924}, {1478, 63317}, {1479, 5453}, {1699, 47057}, {1717, 49107}, {1836, 18593}, {1837, 63354}, {2098, 63360}, {3057, 63319}, {3058, 33112}, {3086, 63297}, {3120, 7073}, {5274, 41819}, {5432, 63344}, {6284, 63291}, {6357, 34029}, {6841, 8614}, {8143, 16153}, {9581, 63310}, {9629, 40960}, {9669, 63338}, {10091, 63352}, {10543, 26131}, {10798, 63294}, {10832, 63311}, {10874, 63315}, {10896, 63318}, {10925, 63321}, {10926, 63322}, {10950, 63325}, {10958, 63341}, {10959, 63342}, {11238, 26098}, {11263, 38336}, {11375, 63446}, {11376, 63292}, {11393, 63293}, {11502, 63304}, {11871, 63312}, {11872, 63313}, {11906, 63320}, {12047, 63388}, {12053, 63370}, {12185, 63345}, {12351, 63347}, {12374, 63348}, {12589, 63359}, {12679, 63361}, {12701, 63356}, {12740, 63365}, {12764, 63346}, {12836, 63372}, {12860, 63369}, {12904, 17605}, {12950, 63371}, {12951, 63364}, {12952, 63355}, {12953, 63386}, {12954, 63373}, {12955, 63349}, {12956, 63375}, {12957, 63376}, {12958, 63350}, {12959, 63351}, {13696, 63377}, {13816, 63378}, {13898, 63336}, {13955, 63337}, {16141, 63366}, {16585, 24703}, {19029, 63298}, {19030, 63299}, {22706, 63358}, {22760, 63316}, {22860, 63362}, {22905, 63363}, {22959, 63368}, {24837, 63426}, {26473, 63305}, {26474, 63306}, {26475, 63308}, {26476, 63309}, {32290, 63379}, {32383, 63367}, {33097, 53524}, {34471, 51716}, {35802, 63330}, {35803, 63331}, {39873, 63385}, {39892, 63357}, {44623, 63328}, {44624, 63329}, {45460, 63300}, {45461, 63301}, {45562, 63302}, {45563, 63303}, {55010, 61716}, {60910, 63381}, {60919, 63384}

X(63327) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 63323, 63326}, {496, 63374, 63340}, {497, 37635, 63332}


X(63328) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST KENMOTU-CENTERS

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))+2*a*(a+b)*(a+c)*S : :

X(63328) lies on these lines: {2, 6}, {39, 63303}, {371, 5453}, {372, 63307}, {485, 63323}, {1124, 63340}, {1151, 63291}, {1335, 63339}, {1587, 63297}, {2066, 63332}, {2067, 63295}, {3070, 13408}, {3071, 63318}, {3311, 63338}, {5062, 63302}, {5412, 63293}, {6419, 63331}, {6564, 63317}, {7583, 63374}, {7968, 63292}, {7969, 63354}, {13665, 63296}, {13883, 63370}, {13911, 63319}, {18991, 63310}, {19048, 63309}, {19050, 63308}, {31472, 63326}, {36250, 49243}, {41945, 63449}, {42258, 63386}, {44586, 63294}, {44590, 63304}, {44598, 63311}, {44600, 63312}, {44602, 63313}, {44604, 63315}, {44606, 63316}, {44610, 63320}, {44618, 63324}, {44620, 63325}, {44623, 63327}, {44635, 63333}, {44643, 63341}, {44645, 63342}, {44647, 63351}, {47057, 51841}, {48700, 63346}, {49208, 63355}, {49210, 63364}, {49212, 63345}, {49214, 63347}, {49216, 63348}, {49218, 63349}, {49220, 63350}, {49222, 63352}, {49224, 63353}, {49226, 63356}, {49228, 63357}, {49230, 63358}, {49232, 63360}, {49234, 63361}, {49236, 63362}, {49238, 63363}, {49240, 63365}, {49242, 63366}, {49244, 63367}, {49246, 63368}, {49248, 63369}, {49250, 63371}, {49252, 63372}, {49254, 63373}, {49256, 63375}, {49258, 63376}, {49260, 63377}, {49262, 63378}, {49264, 63379}, {60913, 63381}, {62248, 63453}

X(63328) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {371, 63330, 5453}


X(63329) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND KENMOTU-CENTERS

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))-2*a*(a+b)*(a+c)*S : :

X(63329) lies on these lines: {2, 6}, {39, 63302}, {371, 63307}, {372, 5453}, {486, 63323}, {1124, 63339}, {1152, 63291}, {1335, 63340}, {1588, 63297}, {3070, 63318}, {3071, 13408}, {3312, 63338}, {5058, 63303}, {5413, 63293}, {5414, 63332}, {6420, 63330}, {6502, 63295}, {6565, 63317}, {7584, 63374}, {7968, 63354}, {7969, 63292}, {13785, 63296}, {13936, 63370}, {13973, 63319}, {18992, 63310}, {19047, 63309}, {19049, 63308}, {36250, 49242}, {41946, 63449}, {42259, 63386}, {44587, 63294}, {44591, 63304}, {44599, 63311}, {44601, 63312}, {44603, 63313}, {44605, 63315}, {44607, 63316}, {44611, 63320}, {44619, 63324}, {44621, 63325}, {44622, 63326}, {44624, 63327}, {44636, 63333}, {44644, 63341}, {44646, 63342}, {44648, 63350}, {47057, 51842}, {48701, 63346}, {49209, 63355}, {49211, 63364}, {49213, 63345}, {49215, 63347}, {49217, 63348}, {49219, 63349}, {49221, 63351}, {49223, 63352}, {49225, 63353}, {49227, 63356}, {49229, 63357}, {49231, 63358}, {49233, 63360}, {49235, 63361}, {49237, 63362}, {49239, 63363}, {49241, 63365}, {49243, 63366}, {49245, 63367}, {49247, 63368}, {49249, 63369}, {49251, 63371}, {49253, 63372}, {49255, 63373}, {49257, 63375}, {49259, 63376}, {49261, 63377}, {49263, 63378}, {49265, 63379}, {60914, 63381}, {62247, 63453}

X(63329) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {372, 63331, 5453}


X(63330) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST KENMOTU-FREE-VERTICES

Barycentrics    a*(a*(a+3*b)*(a^2-b^2)^2+(a-b)*(a+b)*(3*a^3+3*a^2*b-a*b^2-2*b^3)*c-2*a*(a+b)*(a^2+a*b+2*b^2)*c^2-(6*a^3+5*a^2*b+4*a*b^2+4*b^3)*c^3+a*(a+b)*c^4+(3*a+2*b)*c^5)-2*a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))*S : :

X(63330) lies on these lines: {6, 63331}, {81, 372}, {371, 5453}, {485, 37635}, {1587, 41819}, {3070, 63374}, {3103, 63301}, {6200, 63291}, {6396, 63307}, {6419, 63299}, {6420, 63329}, {6560, 63297}, {6564, 63323}, {6565, 63318}, {10576, 17056}, {12965, 63375}, {13408, 35820}, {23251, 63296}, {35610, 63356}, {35641, 63354}, {35698, 63347}, {35753, 63355}, {35762, 63292}, {35764, 63293}, {35766, 63294}, {35768, 63295}, {35769, 63340}, {35770, 63298}, {35772, 63304}, {35774, 63310}, {35776, 63311}, {35778, 63312}, {35780, 63313}, {35782, 63315}, {35784, 63316}, {35786, 63317}, {35788, 63319}, {35790, 63320}, {35792, 63321}, {35794, 63322}, {35796, 63324}, {35798, 63325}, {35800, 63326}, {35802, 63327}, {35808, 63332}, {35809, 63339}, {35810, 63333}, {35812, 63336}, {35814, 63337}, {35816, 63341}, {35818, 63342}, {35822, 37631}, {35824, 63345}, {35826, 63348}, {35828, 63349}, {35830, 63350}, {35832, 63351}, {35834, 63352}, {35836, 63353}, {35838, 63358}, {35840, 63359}, {35842, 63360}, {35844, 63361}, {35846, 63362}, {35848, 63363}, {35850, 63364}, {35852, 63365}, {35854, 63366}, {35856, 63346}, {35858, 63367}, {35860, 63368}, {35862, 63369}, {35864, 63371}, {35866, 63372}, {35868, 63373}, {35870, 63376}, {35872, 63377}, {35874, 63378}, {35876, 63379}, {39893, 63357}, {42266, 63386}, {45462, 63300}, {45564, 63303}, {45640, 63308}, {45642, 63309}, {49018, 63305}, {49601, 63370}, {50720, 63456}, {60915, 63381}

X(63330) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 63338, 63331}, {5453, 63328, 371}


X(63331) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 2ND KENMOTU-FREE-VERTICES

Barycentrics    a*(a*(a+3*b)*(a^2-b^2)^2+(a-b)*(a+b)*(3*a^3+3*a^2*b-a*b^2-2*b^3)*c-2*a*(a+b)*(a^2+a*b+2*b^2)*c^2-(6*a^3+5*a^2*b+4*a*b^2+4*b^3)*c^3+a*(a+b)*c^4+(3*a+2*b)*c^5)+2*a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))*S : :

X(63331) lies on these lines: {6, 63330}, {81, 371}, {372, 5453}, {486, 37635}, {1588, 41819}, {3071, 63374}, {3102, 63300}, {6200, 63307}, {6396, 63291}, {6419, 63328}, {6420, 63298}, {6561, 63297}, {6564, 63318}, {6565, 63323}, {10577, 17056}, {12971, 63375}, {13408, 35821}, {23261, 63296}, {35611, 63356}, {35642, 63354}, {35699, 63347}, {35754, 63355}, {35763, 63292}, {35765, 63293}, {35767, 63294}, {35768, 63340}, {35769, 63295}, {35771, 63299}, {35773, 63304}, {35775, 63310}, {35777, 63311}, {35779, 63313}, {35781, 63312}, {35783, 63315}, {35785, 63316}, {35787, 63317}, {35789, 63319}, {35791, 63320}, {35793, 63322}, {35795, 63321}, {35797, 63324}, {35799, 63325}, {35801, 63326}, {35803, 63327}, {35808, 63339}, {35809, 63332}, {35811, 63333}, {35813, 63337}, {35815, 63336}, {35817, 63341}, {35819, 63342}, {35823, 37631}, {35825, 63345}, {35827, 63348}, {35829, 63349}, {35831, 63351}, {35833, 63350}, {35835, 63352}, {35837, 63353}, {35839, 63358}, {35841, 63359}, {35843, 63360}, {35845, 63361}, {35847, 63363}, {35849, 63362}, {35851, 63364}, {35853, 63365}, {35855, 63366}, {35857, 63346}, {35859, 63367}, {35861, 63368}, {35863, 63369}, {35865, 63371}, {35867, 63372}, {35869, 63373}, {35871, 63376}, {35873, 63377}, {35875, 63378}, {35877, 63379}, {39894, 63357}, {42267, 63386}, {45463, 63301}, {45565, 63302}, {45641, 63308}, {45643, 63309}, {49019, 63306}, {49602, 63370}, {50719, 63456}, {60916, 63381}

X(63331) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5453, 63329, 372}


X(63332) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND MANDART-INCIRCLE

Barycentrics    a*(a-b-c)*(4*a^2*b*c-b*(b-c)^2*c+2*a^3*(b+c)-2*a*(b-c)^2*(b+c)) : :

X(63332) lies on these lines: {1, 30}, {3, 63340}, {4, 63326}, {11, 3136}, {12, 63318}, {33, 63293}, {35, 63307}, {42, 4995}, {43, 5432}, {55, 81}, {56, 7430}, {65, 63356}, {323, 1621}, {354, 18593}, {390, 41819}, {497, 37635}, {518, 16585}, {950, 63370}, {991, 11246}, {1317, 63346}, {1362, 2772}, {1479, 63323}, {1682, 2646}, {1697, 63310}, {1837, 63319}, {1858, 63396}, {1961, 52371}, {1962, 53524}, {2066, 63328}, {2098, 63333}, {2293, 63401}, {3023, 6025}, {3027, 63345}, {3028, 63348}, {3056, 63359}, {3057, 63354}, {3295, 63338}, {3320, 63349}, {3475, 18625}, {3583, 63317}, {3743, 17637}, {4294, 63297}, {4511, 41002}, {5414, 63329}, {5496, 57002}, {6019, 63454}, {6357, 37703}, {7355, 63371}, {8240, 34471}, {9555, 10950}, {9668, 63296}, {10799, 63294}, {10833, 63311}, {10877, 63315}, {10927, 63321}, {10928, 63322}, {10947, 63324}, {10953, 63325}, {10965, 63341}, {10966, 63316}, {11238, 29814}, {11873, 63312}, {11874, 63313}, {11909, 63320}, {12354, 63347}, {12428, 63353}, {12680, 63361}, {12688, 63445}, {12743, 63365}, {12863, 63369}, {12896, 63352}, {13075, 63364}, {13076, 63355}, {13077, 63372}, {13078, 63373}, {13079, 63375}, {13080, 63376}, {13081, 63350}, {13082, 63351}, {13699, 63377}, {13819, 63378}, {13901, 63336}, {13958, 63337}, {14100, 63387}, {16142, 63366}, {19037, 63298}, {19038, 63299}, {21677, 54356}, {22711, 63358}, {22865, 63362}, {22910, 63363}, {22965, 63368}, {24840, 63426}, {26355, 63305}, {26356, 63306}, {26357, 63308}, {26358, 63309}, {29817, 40612}, {32297, 63379}, {32390, 63367}, {35808, 63330}, {35809, 63331}, {37080, 63446}, {39543, 63453}, {39873, 63394}, {39897, 63357}, {45470, 63300}, {45471, 63301}, {45570, 63302}, {45571, 63303}, {60910, 63384}, {60919, 63381}

X(63332) = pole of line {4784, 48382} with respect to the circumcircle
X(63332) = pole of line {523, 53554} with respect to the incircle
X(63332) = pole of line {942, 3743} with respect to the Feuerbach hyperbola
X(63332) = pole of line {672, 8818} with respect to the Kiepert hyperbola
X(63332) = pole of line {1001, 35193} with respect to the Stammler hyperbola
X(63332) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1002), X(52382)}}, {{A, B, C, X(42302), X(52374)}}, {{A, B, C, X(51443), X(52372)}}
X(63332) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 48897, 11553}, {1, 500, 3649}, {1, 5453, 63295}, {497, 37635, 63327}


X(63333) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 5TH MIXTILINEAR

Barycentrics    a*(a^3+2*b^3-3*b^2*c-3*b*c^2+2*c^3-4*a^2*(b+c)-a*(3*b^2+5*b*c+3*c^2)) : :

X(63333) lies on these lines: {1, 21}, {8, 17056}, {10, 63344}, {35, 53114}, {55, 63316}, {56, 63304}, {73, 17097}, {145, 26051}, {390, 63381}, {517, 63291}, {518, 63384}, {519, 63319}, {851, 17018}, {944, 13408}, {952, 63323}, {962, 63386}, {1125, 31204}, {1482, 5453}, {1483, 63374}, {2098, 63332}, {2099, 15832}, {2648, 56030}, {3241, 37631}, {3242, 63359}, {3243, 63387}, {3244, 32923}, {3315, 50604}, {3340, 18593}, {3555, 63396}, {3601, 63382}, {3616, 35466}, {3623, 41813}, {4067, 33761}, {4318, 11011}, {4323, 18625}, {4344, 15590}, {4650, 17574}, {4720, 49598}, {4861, 49478}, {5262, 44840}, {5425, 59301}, {5441, 63366}, {5597, 63313}, {5598, 63312}, {5603, 63318}, {5604, 63322}, {5605, 63321}, {5719, 54355}, {5730, 29814}, {7967, 63297}, {7968, 63298}, {7969, 63299}, {7970, 63345}, {7971, 63361}, {7972, 63365}, {7973, 63371}, {7974, 63364}, {7975, 63355}, {7976, 63372}, {7977, 63373}, {7978, 63348}, {7979, 63375}, {7980, 63350}, {7981, 63351}, {7982, 63356}, {8000, 63369}, {8192, 63311}, {9884, 63347}, {9933, 63353}, {9997, 63315}, {10246, 63307}, {10247, 63338}, {10698, 63346}, {10704, 63454}, {10800, 63294}, {10944, 63324}, {10950, 63325}, {11015, 50307}, {11281, 24883}, {11396, 63293}, {11910, 63320}, {12433, 33107}, {12650, 63445}, {12898, 63352}, {13099, 63349}, {13100, 63376}, {13702, 63377}, {13822, 63378}, {13902, 63336}, {13959, 63337}, {15934, 28258}, {17024, 25495}, {18525, 63317}, {18526, 63296}, {19767, 54315}, {21620, 63334}, {21677, 24936}, {22713, 63358}, {22836, 37633}, {22867, 63362}, {22912, 63363}, {22969, 63368}, {24841, 63426}, {26131, 44669}, {26514, 63305}, {26515, 63306}, {30143, 32911}, {31503, 37539}, {32298, 63379}, {32394, 63367}, {35810, 63330}, {35811, 63331}, {38314, 61661}, {39898, 63357}, {44635, 63328}, {44636, 63329}, {45476, 63300}, {45477, 63301}, {45572, 63302}, {45573, 63303}, {49470, 63398}, {50194, 63388}, {51192, 63394}

X(63333) = pole of line {5296, 5949} with respect to the Kiepert hyperbola
X(63333) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2651), X(56030)}}, {{A, B, C, X(3897), X(39739)}}, {{A, B, C, X(17097), X(51290)}}, {{A, B, C, X(35016), X(53114)}}
X(63333) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 12559, 28606}, {1, 16126, 3743}, {1, 2650, 21}, {145, 37635, 63360}


X(63334) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST SAVIN

Barycentrics    a^5*(b+c)-(b-c)^4*(b+c)^2-a^4*(b^2+c^2)+a^3*(-2*b^3+b^2*c+b*c^2-2*c^3)+2*a^2*(b^4-b^2*c^2+c^4)+a*(b^5-b^3*c^2-b^2*c^3+c^5) : :

X(63334) lies on these lines: {1, 149}, {7, 63314}, {44, 908}, {81, 226}, {88, 142}, {442, 63396}, {1086, 3666}, {1331, 17719}, {1637, 10015}, {1834, 41550}, {2254, 63254}, {2323, 33129}, {2990, 37887}, {3011, 5985}, {3452, 31204}, {3454, 6734}, {3663, 25094}, {3904, 36038}, {4054, 17760}, {4892, 26015}, {5256, 37771}, {8557, 31164}, {10198, 41812}, {10404, 63316}, {12047, 63292}, {12609, 63319}, {13407, 63354}, {13408, 13442}, {16601, 26611}, {16719, 17205}, {17011, 24145}, {17718, 63304}, {18593, 22464}, {18625, 34052}, {21617, 52659}, {21620, 63333}, {24541, 25906}, {24987, 25984}, {26228, 44431}, {27186, 31326}, {29639, 49563}, {30684, 37631}, {31582, 55876}, {31583, 55877}, {41819, 41825}, {41857, 63381}, {60991, 63387}

X(63334) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4585, 514}
X(63334) = pole of line {2323, 5127} with respect to the Stammler hyperbola
X(63334) = pole of line {4707, 9803} with respect to the Steiner circumellipse
X(63334) = pole of line {5620, 10265} with respect to the Steiner inellipse
X(63334) = pole of line {3904, 36038} with respect to the dual conic of excentral-hexyl ellipse
X(63334) = pole of line {36, 214} with respect to the dual conic of Yff parabola
X(63334) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2006), X(5620)}}, {{A, B, C, X(11604), X(24624)}}
X(63334) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21907, 37635, 40612}


X(63335) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 1ST SCHIFFLER

Barycentrics    a*(a-b-c)*(a^3+b^3+b^2*c-3*b*c^2+c^3+a^2*(b+c)+a*(b^2+3*b*c-3*c^2))*(a^3+b^3-3*b^2*c+b*c^2+c^3+a^2*(b+c)+a*(-3*b^2+3*b*c+c^2)) : :

X(63335) lies on the Feuerbach hyperbola and on these lines: {4, 63366}, {9, 5348}, {79, 63376}, {80, 7277}, {1389, 63354}, {2346, 63387}, {3751, 43731}, {5559, 63360}, {15909, 63381}

X(63335) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4)}}, {{A, B, C, X(57), X(5348)}}, {{A, B, C, X(267), X(3615)}}, {{A, B, C, X(270), X(43972)}}, {{A, B, C, X(969), X(2364)}}, {{A, B, C, X(3737), X(13610)}}


X(63336) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 3RD TRI-SQUARES-CENTRAL

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))+(2*a^3+(b-c)^2*(b+c)-a*(b^2+c^2))*S : :

X(63336) lies on these lines: {2, 6}, {371, 63318}, {485, 13408}, {1151, 63386}, {5453, 8981}, {7583, 63307}, {8976, 63323}, {8980, 63345}, {8983, 63354}, {8987, 63361}, {8988, 63365}, {8991, 63371}, {8992, 63372}, {8993, 63373}, {8994, 63348}, {8995, 63375}, {9540, 63291}, {13848, 63378}, {13879, 63351}, {13883, 63292}, {13884, 63293}, {13885, 63294}, {13886, 63297}, {13887, 63304}, {13888, 63310}, {13889, 63311}, {13890, 63312}, {13891, 63313}, {13892, 63315}, {13893, 63319}, {13894, 63320}, {13895, 63324}, {13896, 63325}, {13897, 63326}, {13898, 63327}, {13901, 63332}, {13902, 63333}, {13903, 63338}, {13904, 63339}, {13905, 63340}, {13906, 63341}, {13907, 63342}, {13908, 63347}, {13909, 63353}, {13911, 63360}, {13912, 63356}, {13913, 63346}, {13914, 63369}, {13915, 63352}, {13916, 63364}, {13917, 63355}, {13918, 63349}, {13919, 63376}, {13920, 63377}, {13921, 63350}, {13925, 63374}, {16148, 63366}, {18538, 63317}, {18965, 63295}, {19145, 63357}, {22720, 63358}, {22763, 63316}, {22876, 63362}, {22921, 63363}, {22976, 63368}, {24842, 63426}, {32303, 63379}, {32399, 63367}, {35812, 63330}, {35815, 63331}, {44635, 63415}, {45384, 63296}, {45574, 63302}, {45576, 63303}, {45650, 63308}, {45652, 63309}, {49618, 63370}, {60920, 63381}


X(63337) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND 4TH TRI-SQUARES-CENTRAL

Barycentrics    a^2*(a^3-a^2*(b+c)+(b-c)^2*(b+c)-a*(b^2+b*c+c^2))+(-2*a^3-(b-c)^2*(b+c)+a*(b^2+c^2))*S : :

X(63337) lies on these lines: {2, 6}, {372, 63318}, {486, 13408}, {1152, 63386}, {5453, 13966}, {7584, 63307}, {13849, 63378}, {13880, 63351}, {13933, 63350}, {13935, 63291}, {13936, 63292}, {13937, 63293}, {13938, 63294}, {13939, 63297}, {13940, 63304}, {13942, 63310}, {13943, 63311}, {13944, 63312}, {13945, 63313}, {13946, 63315}, {13947, 63319}, {13948, 63320}, {13951, 63323}, {13952, 63324}, {13953, 63325}, {13954, 63326}, {13955, 63327}, {13958, 63332}, {13959, 63333}, {13961, 63338}, {13962, 63339}, {13963, 63340}, {13964, 63341}, {13965, 63342}, {13967, 63345}, {13968, 63347}, {13969, 63348}, {13970, 63353}, {13971, 63354}, {13973, 63360}, {13974, 63361}, {13975, 63356}, {13976, 63365}, {13977, 63346}, {13978, 63369}, {13979, 63352}, {13980, 63371}, {13981, 63364}, {13982, 63355}, {13983, 63372}, {13984, 63373}, {13985, 63349}, {13986, 63375}, {13987, 63376}, {13988, 63377}, {13993, 63374}, {16149, 63366}, {18762, 63317}, {18966, 63295}, {19146, 63357}, {22721, 63358}, {22764, 63316}, {22877, 63362}, {22922, 63363}, {22977, 63368}, {24843, 63426}, {32304, 63379}, {32400, 63367}, {35813, 63331}, {35814, 63330}, {44636, 63415}, {45385, 63296}, {45575, 63303}, {45577, 63302}, {45651, 63308}, {45653, 63309}, {49619, 63370}, {60921, 63381}


X(63338) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND X3-ABC REFLECTIONS

Barycentrics    a*(a^6+3*a^5*(b+c)+a^4*(-2*b^2+3*b*c-2*c^2)+2*b*c*(b^2-c^2)^2-2*a^3*(3*b^3+2*b^2*c+2*b*c^2+3*c^3)+a*(b-c)^2*(3*b^3+7*b^2*c+7*b*c^2+3*c^3)+a^2*(b^4-5*b^3*c-6*b^2*c^2-5*b*c^3+c^4)) : :

X(63338) lies on these lines: {1, 399}, {3, 81}, {4, 41819}, {5, 37635}, {6, 63330}, {30, 63297}, {58, 28443}, {191, 32167}, {195, 63375}, {323, 405}, {355, 63370}, {381, 37631}, {382, 5733}, {500, 4658}, {517, 63310}, {581, 45931}, {940, 37251}, {942, 47057}, {999, 63295}, {1351, 63359}, {1482, 63354}, {1598, 63293}, {1656, 17056}, {1657, 63386}, {1724, 36750}, {2334, 34718}, {3193, 37292}, {3295, 63332}, {3311, 63328}, {3312, 63329}, {3526, 35466}, {3534, 63449}, {3652, 58380}, {3743, 13465}, {3843, 63317}, {3927, 16585}, {3945, 44229}, {5054, 61661}, {5055, 63343}, {5070, 63344}, {5093, 63385}, {5396, 45976}, {5483, 24475}, {5708, 18593}, {5751, 18436}, {5779, 63387}, {5790, 63319}, {6033, 63456}, {6147, 18625}, {6417, 63299}, {6418, 63298}, {7489, 36742}, {7517, 63311}, {7728, 63455}, {9301, 63315}, {9654, 63326}, {9669, 63327}, {10246, 63292}, {10247, 63333}, {10618, 22936}, {10620, 63348}, {10679, 63309}, {10680, 63308}, {11258, 63454}, {11842, 63294}, {11849, 63304}, {11875, 63312}, {11876, 63313}, {11898, 63394}, {11911, 63320}, {11916, 63321}, {11917, 63322}, {11928, 63324}, {11929, 63325}, {12000, 63341}, {12001, 63342}, {12162, 14520}, {12188, 63345}, {12331, 37698}, {12355, 63347}, {12429, 63353}, {12601, 63350}, {12602, 63351}, {12645, 63360}, {12684, 63361}, {12702, 63356}, {12747, 63365}, {12872, 63369}, {12902, 63352}, {13093, 63371}, {13102, 63364}, {13103, 63355}, {13108, 63372}, {13111, 63373}, {13115, 63349}, {13126, 63376}, {13713, 63377}, {13836, 63378}, {13903, 63336}, {13961, 63337}, {15934, 63388}, {16150, 63366}, {16628, 63362}, {16629, 63363}, {18524, 37559}, {18534, 63452}, {22136, 54356}, {22728, 63358}, {22765, 63316}, {22979, 63368}, {24844, 63426}, {28619, 48887}, {31204, 46219}, {32306, 63379}, {32402, 63367}, {35000, 59301}, {37230, 49743}, {37924, 63451}, {39899, 63357}, {45488, 63300}, {45489, 63301}, {45578, 63302}, {45579, 63303}, {49028, 63305}, {49029, 63306}, {51516, 63384}, {60922, 63381}

X(63338) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 51340, 13743}, {4, 41819, 63374}, {4, 63374, 63296}, {81, 63291, 63307}, {500, 45923, 16117}, {500, 4658, 45923}, {581, 45931, 62359}, {5453, 63307, 63291}, {37631, 63318, 63323}, {63291, 63307, 3}, {63295, 63340, 999}, {63318, 63323, 381}, {63330, 63331, 6}, {63332, 63339, 3295}


X(63339) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND INNER-YFF

Barycentrics    a*(a^6+a^5*(b+c)+b*c*(b^2-c^2)^2-a^4*(2*b^2+b*c+2*c^2)-2*a^3*(b^3+c^3)+a^2*(b^4+c^4)+a*(b^5-b^4*c-b*c^4+c^5)) : :

X(63339) lies on these lines: {1, 21}, {3, 63295}, {5, 63327}, {6, 7359}, {8, 323}, {10, 56535}, {12, 23071}, {30, 8614}, {35, 63291}, {40, 47057}, {46, 18593}, {55, 5453}, {56, 63307}, {65, 5504}, {79, 6126}, {80, 35197}, {221, 6357}, {222, 4299}, {388, 63297}, {495, 63326}, {498, 7078}, {499, 35466}, {611, 63359}, {651, 3585}, {938, 16472}, {1124, 63329}, {1335, 63328}, {1399, 10058}, {1478, 3157}, {1479, 60691}, {1709, 63361}, {1718, 31870}, {1737, 54301}, {1744, 18675}, {1770, 5930}, {1784, 3194}, {1993, 49168}, {2003, 10572}, {2771, 38336}, {2779, 7414}, {2906, 35201}, {3075, 10090}, {3085, 37635}, {3295, 63332}, {3299, 63298}, {3301, 63299}, {3584, 63343}, {3649, 45923}, {4295, 18625}, {4302, 63386}, {5119, 63356}, {5492, 7073}, {5706, 55010}, {5711, 10056}, {5903, 59285}, {6127, 6915}, {6906, 58738}, {7280, 17074}, {7354, 23070}, {8143, 16140}, {9630, 24475}, {9654, 63296}, {10037, 63311}, {10038, 63315}, {10039, 63319}, {10040, 63321}, {10041, 63322}, {10053, 63345}, {10054, 63347}, {10055, 63353}, {10057, 63365}, {10059, 63369}, {10060, 63371}, {10061, 63364}, {10062, 63355}, {10063, 63372}, {10064, 63373}, {10065, 63348}, {10066, 63375}, {10067, 63350}, {10068, 63351}, {10072, 16466}, {10087, 54350}, {10523, 63324}, {10543, 51340}, {10573, 56293}, {10801, 63294}, {10895, 63317}, {10954, 63325}, {11398, 63293}, {11507, 63304}, {11570, 33178}, {11877, 63312}, {11878, 63313}, {11912, 63320}, {12647, 63360}, {12903, 63352}, {13116, 63349}, {13128, 63376}, {13714, 63377}, {13837, 63378}, {13904, 63336}, {13962, 63337}, {15298, 63387}, {15501, 36921}, {16152, 63366}, {16153, 36250}, {16473, 18391}, {17647, 22128}, {21677, 22136}, {22729, 63358}, {22766, 63316}, {22884, 63362}, {22929, 63363}, {22980, 63368}, {24845, 63426}, {31397, 63370}, {32307, 63379}, {32403, 63367}, {35200, 36050}, {35808, 63331}, {35809, 63330}, {37227, 53324}, {37305, 43610}, {37559, 63259}, {39900, 63357}, {45490, 63300}, {45491, 63301}, {45580, 63302}, {45581, 63303}, {49030, 63305}, {49031, 63306}, {52524, 61225}, {60923, 63381}

X(63339) = pole of line {3700, 23090} with respect to the MacBeath circumconic
X(63339) = intersection, other than A, B, C, of circumconics {{A, B, C, X(21), X(36053)}}, {{A, B, C, X(65), X(1725)}}, {{A, B, C, X(283), X(5504)}}
X(63339) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 1725}, {1, 6149, 21}, {495, 63374, 63326}, {3075, 54427, 10090}, {3295, 63338, 63332}


X(63340) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-YFF

Barycentrics    a*(a^6+a^5*(b+c)+a^4*(-2*b^2+3*b*c-2*c^2)+b*c*(b^2-c^2)^2-2*a^3*(b^3+2*b^2*c+2*b*c^2+c^3)+a*(b-c)^2*(b^3+5*b^2*c+5*b*c^2+c^3)+a^2*(b^4-4*b^3*c-4*b^2*c^2-4*b*c^3+c^4)) : :

X(63340) lies on these lines: {1, 21}, {3, 63332}, {5, 63326}, {11, 63323}, {36, 63291}, {46, 63356}, {55, 63307}, {56, 5453}, {323, 3616}, {354, 63388}, {496, 63327}, {497, 63297}, {498, 35466}, {499, 17056}, {613, 63359}, {942, 4351}, {999, 63295}, {1124, 63328}, {1210, 63370}, {1335, 63329}, {1478, 63318}, {1479, 13408}, {1737, 63319}, {3086, 37635}, {3299, 63299}, {3301, 63298}, {3333, 47057}, {3338, 18593}, {3582, 63343}, {3649, 51340}, {4299, 37543}, {5703, 16473}, {6357, 34046}, {8069, 63393}, {8143, 16141}, {8614, 16137}, {9669, 63296}, {10046, 63311}, {10047, 63315}, {10048, 63321}, {10049, 63322}, {10056, 61661}, {10069, 63345}, {10070, 63347}, {10071, 63353}, {10072, 37631}, {10073, 63365}, {10074, 63346}, {10075, 63369}, {10076, 63371}, {10077, 63364}, {10078, 63355}, {10079, 63372}, {10080, 63373}, {10081, 63348}, {10082, 63375}, {10083, 63350}, {10084, 63351}, {10085, 63361}, {10091, 17609}, {10523, 63325}, {10543, 45923}, {10573, 63360}, {10802, 63294}, {10896, 63317}, {10948, 63324}, {11399, 63293}, {11508, 63304}, {11879, 63312}, {11880, 63313}, {11913, 63320}, {12904, 63352}, {13117, 63349}, {13129, 63376}, {13715, 63377}, {13838, 63378}, {13905, 63336}, {13963, 63337}, {14986, 41819}, {15299, 63387}, {16152, 36250}, {16153, 63366}, {22730, 63358}, {22767, 63316}, {22885, 63362}, {22930, 63363}, {22981, 63368}, {24846, 63426}, {31452, 44414}, {32308, 63379}, {32404, 63367}, {35768, 63331}, {35769, 63330}, {39901, 63357}, {45492, 63300}, {45493, 63301}, {45582, 63302}, {45583, 63303}, {49032, 63305}, {49033, 63306}, {60924, 63381}

X(63340) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {496, 63374, 63327}, {999, 63338, 63295}


X(63341) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND INNER-YFF TANGENTS

Barycentrics    a*(a^6+a^5*(b+c)+b*c*(b^2-c^2)^2-a^4*(2*b^2+b*c+2*c^2)-2*a^3*(b^3-3*b^2*c-3*b*c^2+c^3)+a^2*(b^4+4*b^3*c+8*b^2*c^2+4*b*c^3+c^4)+a*(b^5-3*b^4*c+4*b^3*c^2+4*b^2*c^3-3*b*c^4+c^5)) : :

X(63341) lies on these lines: {1, 21}, {12, 63324}, {5453, 10679}, {5552, 17056}, {5710, 63401}, {10200, 31204}, {10528, 37635}, {10531, 63318}, {10803, 63294}, {10805, 63297}, {10834, 63311}, {10878, 63315}, {10915, 63319}, {10929, 63321}, {10930, 63322}, {10942, 63323}, {10955, 63325}, {10956, 63326}, {10958, 63327}, {10965, 63332}, {11239, 37631}, {11248, 63291}, {11400, 63293}, {11509, 63295}, {11881, 63312}, {11882, 63313}, {11914, 63320}, {12000, 63338}, {12115, 13408}, {12189, 63345}, {12356, 63347}, {12381, 63348}, {12430, 63353}, {12594, 63359}, {12648, 63360}, {12686, 63361}, {12703, 63356}, {12749, 63365}, {12775, 63346}, {12874, 63369}, {12905, 63352}, {13094, 63371}, {13104, 63364}, {13105, 63355}, {13109, 63372}, {13112, 63373}, {13118, 63349}, {13121, 63375}, {13130, 63376}, {13132, 63350}, {13134, 63351}, {13716, 63377}, {13839, 63378}, {13906, 63336}, {13964, 63337}, {16154, 63366}, {16203, 63307}, {18542, 63317}, {18545, 63296}, {19047, 63298}, {19048, 63299}, {22731, 63358}, {22768, 63316}, {22886, 63362}, {22931, 63363}, {22982, 63368}, {24847, 63426}, {26364, 63344}, {26520, 63305}, {26525, 63306}, {32213, 63374}, {32309, 63379}, {32405, 63367}, {35816, 63330}, {35817, 63331}, {39902, 63357}, {44643, 63328}, {44644, 63329}, {45494, 63300}, {45495, 63301}, {45584, 63302}, {45585, 63303}, {45701, 63343}, {45729, 63385}, {49626, 63370}, {60925, 63381}


X(63342) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-YFF TANGENTS

Barycentrics    a*(a^6+a^5*(b+c)+a^4*(-2*b^2+3*b*c-2*c^2)+b*c*(b^2-c^2)^2-2*a^3*(b^3+5*b^2*c+5*b*c^2+c^3)+a^2*(b^4-8*b^3*c-12*b^2*c^2-8*b*c^3+c^4)+a*(b^5+5*b^4*c-8*b^3*c^2-8*b^2*c^3+5*b*c^4+c^5)) : :

X(63342) lies on these lines: {1, 21}, {11, 63325}, {56, 63393}, {5453, 10680}, {10198, 31204}, {10527, 17056}, {10529, 37635}, {10532, 63318}, {10804, 63294}, {10806, 63297}, {10835, 63311}, {10879, 63315}, {10916, 63319}, {10931, 63321}, {10932, 63322}, {10943, 63323}, {10949, 63324}, {10957, 63326}, {10959, 63327}, {10966, 63316}, {11240, 37631}, {11249, 63291}, {11401, 63293}, {11510, 63304}, {11883, 63312}, {11884, 63313}, {11915, 63320}, {12001, 63338}, {12116, 13408}, {12190, 63345}, {12357, 63347}, {12382, 63348}, {12431, 63353}, {12595, 63359}, {12649, 63360}, {12687, 63361}, {12704, 63356}, {12750, 63365}, {12776, 63346}, {12875, 63369}, {12906, 63352}, {13095, 63371}, {13106, 63364}, {13107, 63355}, {13110, 63372}, {13113, 63373}, {13119, 63349}, {13122, 63375}, {13131, 63376}, {13133, 63350}, {13135, 63351}, {13717, 63377}, {13840, 63378}, {13907, 63336}, {13965, 63337}, {16155, 63366}, {16202, 63307}, {18543, 63296}, {18544, 63317}, {18967, 63295}, {19049, 63298}, {19050, 63299}, {22732, 63358}, {22887, 63362}, {22932, 63363}, {22983, 63368}, {24848, 63426}, {26363, 63344}, {26519, 63305}, {26524, 63306}, {32214, 63374}, {32310, 63379}, {32406, 63367}, {35818, 63330}, {35819, 63331}, {37633, 49168}, {39903, 63357}, {44645, 63328}, {44646, 63329}, {45496, 63300}, {45497, 63301}, {45586, 63302}, {45587, 63303}, {45700, 63343}, {45728, 63385}, {49627, 63370}, {60926, 63381}


X(63343) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND GEMINI 107

Barycentrics    a^3+5*a^2*(b+c)-2*(b-c)^2*(b+c)+a*(2*b^2+5*b*c+2*c^2) : :

X(63343) lies on these lines: {1, 6175}, {2, 6}, {4, 63449}, {21, 49744}, {30, 26131}, {58, 15671}, {99, 63347}, {226, 1255}, {376, 13408}, {381, 5453}, {519, 63319}, {527, 63384}, {540, 17553}, {549, 63374}, {551, 63370}, {846, 10032}, {903, 63426}, {1999, 30588}, {2475, 49739}, {2975, 48825}, {3058, 33112}, {3241, 63360}, {3524, 63297}, {3534, 63296}, {3543, 63386}, {3545, 63318}, {3582, 63340}, {3584, 63339}, {3651, 56402}, {3679, 63354}, {3830, 63317}, {3917, 63453}, {4102, 31025}, {4197, 48857}, {4653, 15678}, {4654, 18593}, {4658, 31254}, {4664, 63398}, {4682, 9140}, {5054, 63307}, {5055, 63338}, {5064, 63293}, {5226, 6357}, {5287, 26738}, {5434, 63326}, {5463, 63355}, {5464, 63364}, {5703, 31155}, {6054, 63345}, {6055, 63456}, {6172, 63381}, {6173, 63387}, {6986, 45933}, {7757, 63372}, {7865, 63315}, {10478, 54586}, {10706, 63348}, {10711, 63346}, {10717, 63454}, {10989, 63451}, {11110, 50215}, {11180, 63357}, {11237, 63295}, {11238, 29814}, {11684, 27577}, {13712, 63377}, {13835, 63378}, {15670, 16948}, {15675, 52680}, {15677, 49745}, {17019, 40612}, {17310, 63443}, {17549, 48868}, {17557, 49729}, {17577, 48855}, {17677, 38314}, {17781, 33761}, {18625, 56846}, {19767, 44217}, {19875, 63310}, {21104, 47774}, {21907, 56037}, {22712, 63358}, {24473, 63396}, {25055, 63292}, {25080, 31164}, {25525, 62801}, {29624, 43066}, {29682, 62235}, {31019, 50068}, {31140, 63393}, {31145, 63415}, {31152, 63452}, {31153, 33151}, {31154, 63388}, {31162, 63356}, {31168, 63373}, {34319, 63379}, {34606, 63325}, {34612, 63324}, {35652, 36591}, {43260, 56810}, {44257, 51340}, {45700, 63342}, {45701, 63341}, {48827, 62870}, {48828, 62802}, {48846, 62969}, {50226, 51669}, {50859, 63363}, {50860, 63362}, {55040, 63350}, {55041, 63351}, {63278, 63366}

X(63343) = pole of line {1125, 4880} with respect to the dual conic of Yff parabola
X(63343) = intersection, other than A, B, C, of circumconics {{A, B, C, X(226), X(3578)}}, {{A, B, C, X(321), X(49730)}}, {{A, B, C, X(333), X(60139)}}, {{A, B, C, X(1255), X(56440)}}, {{A, B, C, X(5278), X(54586)}}, {{A, B, C, X(8025), X(52374)}}, {{A, B, C, X(30588), X(37631)}}, {{A, B, C, X(37783), X(56037)}}
X(63343) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3578, 5235}, {323, 940, 81}, {24936, 49743, 16948}


X(63344) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND GEMINI 109

Barycentrics    a^3-3*a^2*(b+c)+2*(b-c)^2*(b+c)-a*(2*b^2+3*b*c+2*c^2) : :

X(63344) lies on these lines: {1, 31254}, {2, 6}, {3, 63317}, {5, 63291}, {9, 26738}, {10, 63333}, {37, 27493}, {88, 142}, {100, 29640}, {140, 63323}, {226, 33761}, {442, 24936}, {631, 13408}, {632, 63374}, {894, 30588}, {908, 25072}, {1125, 63319}, {1255, 33133}, {1445, 63314}, {1621, 29661}, {1656, 5453}, {1698, 63354}, {3090, 63318}, {3091, 63386}, {3315, 29639}, {3454, 17557}, {3525, 63297}, {3526, 63307}, {3616, 63360}, {3617, 63415}, {3624, 63292}, {3729, 27754}, {3739, 27757}, {3772, 62851}, {3946, 33129}, {4413, 63304}, {4653, 6175}, {4658, 24902}, {4687, 63398}, {4698, 30823}, {4850, 4859}, {5054, 63296}, {5070, 63338}, {5071, 63449}, {5094, 63293}, {5219, 18593}, {5226, 31256}, {5284, 33105}, {5432, 63327}, {5433, 63326}, {5439, 63396}, {6548, 21104}, {6675, 16948}, {7484, 63311}, {7786, 63372}, {7808, 63294}, {7914, 63315}, {8227, 63356}, {10707, 16484}, {14005, 25645}, {15184, 63320}, {15671, 52680}, {15674, 49745}, {16585, 30852}, {17064, 62840}, {17253, 30991}, {17266, 63443}, {17273, 31029}, {17276, 31019}, {17339, 41242}, {17536, 37693}, {17551, 24931}, {17758, 62920}, {17775, 26792}, {18230, 63381}, {18625, 30841}, {19862, 63370}, {20195, 63387}, {21674, 34195}, {21907, 37691}, {24161, 27577}, {24953, 63325}, {25080, 31266}, {25525, 28606}, {26363, 63342}, {26364, 63341}, {26806, 51583}, {27121, 44307}, {27191, 63426}, {28634, 33077}, {29571, 30839}, {29626, 30855}, {29664, 62814}, {29681, 62855}, {29682, 33130}, {29690, 62863}, {29814, 31245}, {30745, 63451}, {30950, 31272}, {31255, 63452}, {31257, 63388}, {31268, 63373}, {31280, 53034}, {32917, 50304}, {36770, 63355}, {38794, 63352}, {40330, 63357}, {52659, 61017}, {62795, 63382}, {63286, 63366}

X(63344) = pole of line {1125, 4867} with respect to the dual conic of Yff parabola
X(63344) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1255), X(56439)}}, {{A, B, C, X(5235), X(60251)}}, {{A, B, C, X(8025), X(37887)}}, {{A, B, C, X(14534), X(31204)}}, {{A, B, C, X(21907), X(26860)}}, {{A, B, C, X(24624), X(31205)}}, {{A, B, C, X(30588), X(35466)}}, {{A, B, C, X(31229), X(43531)}}, {{A, B, C, X(37783), X(40434)}}
X(63344) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3936, 5235}, {6675, 26131, 16948}


X(63345) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST ANTI-BROCARD

Barycentrics    -(a^9*(b-c)^2)+2*a^10*(b+c)+b^2*(b-c)^4*c^2*(b+c)^3+2*a^2*(b-c)^4*(b+c)^3*(b^2+b*c+c^2)-a^8*(5*b^3+3*b^2*c+3*b*c^2+5*c^3)+2*a^7*(b^4-2*b^3*c-2*b*c^3+c^4)+a*b*c*(b^2-c^2)^2*(b^4-b^3*c-2*b^2*c^2-b*c^3+c^4)+a^6*(6*b^5+4*b^4*c+4*b*c^4+6*c^5)-a^5*(b^6-5*b^5*c-5*b*c^5+c^6)-2*a^3*b*c*(2*b^6+b^5*c-b^4*c^2-2*b^3*c^3-b^2*c^4+b*c^5+2*c^6)-a^4*(5*b^7+3*b^6*c-4*b^5*c^2-4*b^2*c^5+3*b*c^6+5*c^7) : :

X(63345) lies on these lines: {30, 63347}, {81, 98}, {99, 63291}, {114, 17056}, {115, 63318}, {147, 37635}, {323, 5985}, {500, 2795}, {542, 3745}, {543, 63449}, {690, 63348}, {2782, 5453}, {2784, 63370}, {2787, 63346}, {2790, 63452}, {2793, 63454}, {2794, 13408}, {2799, 63349}, {3023, 63295}, {3027, 63332}, {5984, 41819}, {6033, 63323}, {6036, 35466}, {6054, 63343}, {6055, 61661}, {6226, 63322}, {6227, 63321}, {7970, 63333}, {8980, 63336}, {9860, 63310}, {9861, 63311}, {9862, 63297}, {9864, 63319}, {10053, 63339}, {10069, 63340}, {10753, 63385}, {11710, 63292}, {12042, 63307}, {12131, 63293}, {12176, 63294}, {12178, 63304}, {12179, 63312}, {12180, 63313}, {12181, 63320}, {12182, 63324}, {12183, 63325}, {12184, 63326}, {12185, 63327}, {12188, 63338}, {12189, 63341}, {12190, 63342}, {13967, 63337}, {18593, 24472}, {19055, 63298}, {19056, 63299}, {22504, 63316}, {22505, 63317}, {23698, 63386}, {35824, 63330}, {35825, 63331}, {38744, 63296}, {39844, 63388}, {41022, 63364}, {41023, 63355}, {48726, 63302}, {48727, 63303}, {49040, 63305}, {49041, 63306}, {49147, 63308}, {49148, 63309}, {49212, 63328}, {49213, 63329}, {49309, 63300}, {49310, 63301}, {62490, 63451}, {63358, 63359}, {63373, 63374}


X(63346) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-INNER-GARCIA

Barycentrics    a*(a^8*(b+c)-a^7*(b+c)^2+b*(b-c)^4*c*(b+c)^3+a^6*(-3*b^3+2*b^2*c+2*b*c^2-3*c^3)+3*a^4*(b-c)^2*(b^3+c^3)+a*(b^2-c^2)^2*(b^4-3*b^3*c+3*b^2*c^2-3*b*c^3+c^4)+a^5*(3*b^4+b^3*c-2*b^2*c^2+b*c^3+3*c^4)-a^2*(b-c)^2*(b^5+3*b^3*c^2+3*b^2*c^3+c^5)+a^3*(-3*b^6+4*b^5*c+2*b^4*c^2-8*b^3*c^3+2*b^2*c^4+4*b*c^5-3*c^6)) : :

X(63346) lies on these lines: {1, 399}, {11, 63295}, {81, 104}, {100, 63291}, {119, 17056}, {153, 37635}, {515, 63365}, {528, 63449}, {581, 62354}, {952, 5453}, {1064, 1484}, {1193, 61566}, {1317, 63332}, {1385, 18191}, {1387, 1457}, {1399, 10058}, {1464, 33593}, {1768, 63310}, {2783, 12737}, {2787, 63345}, {2800, 63354}, {2801, 63387}, {2802, 63356}, {2806, 63349}, {2828, 63388}, {2829, 13408}, {2830, 63454}, {5396, 10265}, {5840, 63386}, {5848, 63357}, {6326, 50317}, {6713, 35466}, {6797, 37558}, {8674, 63348}, {9913, 63311}, {10074, 63340}, {10698, 63333}, {10711, 63343}, {10742, 63323}, {10759, 63385}, {11698, 59305}, {11715, 63292}, {12138, 63293}, {12199, 63294}, {12247, 37698}, {12248, 63297}, {12332, 63304}, {12462, 63312}, {12463, 63313}, {12499, 63315}, {12736, 18593}, {12751, 63319}, {12752, 63320}, {12753, 63321}, {12754, 63322}, {12761, 63324}, {12762, 63325}, {12763, 63326}, {12764, 63327}, {12775, 63341}, {12776, 63342}, {13913, 63336}, {13977, 63337}, {19081, 63298}, {19082, 63299}, {22775, 63316}, {22799, 63317}, {35856, 63330}, {35857, 63331}, {38602, 63307}, {38756, 63296}, {40612, 56426}, {48684, 63300}, {48685, 63301}, {48686, 63302}, {48687, 63303}, {48692, 63305}, {48693, 63306}, {48694, 63308}, {48695, 63309}, {48700, 63328}, {48701, 63329}, {48903, 63366}


X(63347) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-MCCAY

Barycentrics    4*a^7+2*a^6*(b+c)-a^4*(b+c)^3+a^5*(-5*b^2+2*b*c-5*c^2)+2*a^3*(b^4-b^3*c+2*b^2*c^2-b*c^3+c^4)+a*(b-c)^2*(2*b^4+9*b^3*c+13*b^2*c^2+9*b*c^3+2*c^4)-(b-c)^2*(2*b^5+2*b^4*c-5*b^3*c^2-5*b^2*c^3+2*b*c^4+2*c^5)+a^2*(4*b^5+6*b^4*c-8*b^3*c^2-8*b^2*c^3+6*b*c^4+4*c^5) : :

X(63347) lies on these lines: {30, 63345}, {81, 671}, {99, 63343}, {115, 61661}, {530, 63364}, {531, 63355}, {542, 13408}, {543, 37631}, {2051, 55003}, {2482, 17056}, {2782, 63358}, {2795, 49744}, {2796, 63370}, {5461, 35466}, {5969, 63372}, {8591, 37635}, {8593, 63385}, {8596, 41819}, {8724, 63323}, {9830, 63359}, {9875, 63310}, {9876, 63311}, {9878, 63315}, {9880, 63318}, {9881, 63319}, {9882, 63321}, {9883, 63322}, {9884, 63333}, {10054, 63339}, {10070, 63340}, {12117, 63291}, {12132, 63293}, {12191, 63294}, {12243, 63297}, {12258, 63292}, {12326, 63304}, {12345, 63312}, {12346, 63313}, {12347, 63320}, {12348, 63324}, {12349, 63325}, {12350, 63326}, {12351, 63327}, {12354, 63332}, {12355, 63338}, {12356, 63341}, {12357, 63342}, {13908, 63336}, {13968, 63337}, {18969, 63295}, {19057, 63298}, {19058, 63299}, {22565, 63316}, {22566, 63317}, {23698, 63449}, {35698, 63330}, {35699, 63331}, {48657, 63296}, {48728, 63302}, {48729, 63303}, {49042, 63305}, {49043, 63306}, {49102, 63307}, {49149, 63308}, {49150, 63309}, {49214, 63328}, {49215, 63329}, {49311, 63300}, {49312, 63301}


X(63348) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTI-ORTHOCENTROIDAL

Barycentrics    a*(-(a^10*(b-c)^2)+2*a^11*(b+c)+b*c*(b^2-c^2)^4*(b^2+c^2)-2*a^7*b*c*(b^3-6*b^2*c-6*b*c^2+c^3)-a^9*(5*b^3+3*b^2*c+3*b*c^2+5*c^3)+4*a^8*(b^4-b^3*c-b^2*c^2-b*c^3+c^4)+a*(b-c)^4*(b+c)^3*(3*b^4+2*b^3*c+7*b^2*c^2+2*b*c^3+3*c^4)-2*a^3*(b-c)^2*(b+c)^3*(5*b^4-5*b^3*c+8*b^2*c^2-5*b*c^3+5*c^4)-a^2*(b^2-c^2)^2*(b^6+5*b^5*c+8*b^4*c^2+6*b^3*c^3+8*b^2*c^4+5*b*c^5+c^6)-a^6*(6*b^6+b^5*c-5*b^4*c^2-12*b^3*c^3-5*b^2*c^4+b*c^5+6*c^6)+a^5*(10*b^7+4*b^6*c-19*b^5*c^2+b^4*c^3+b^3*c^4-19*b^2*c^5+4*b*c^6+10*c^7)+a^4*(4*b^8+7*b^7*c+6*b^6*c^2-9*b^5*c^3-20*b^4*c^4-9*b^3*c^5+6*b^2*c^6+7*b*c^7+4*c^8)) : :

X(63348) lies on these lines: {30, 63352}, {74, 81}, {110, 63291}, {113, 17056}, {125, 63318}, {146, 37635}, {500, 2292}, {541, 37631}, {542, 63394}, {690, 63345}, {1503, 63379}, {1539, 63317}, {2777, 13408}, {2780, 63454}, {2781, 63359}, {3024, 63295}, {3028, 63332}, {5453, 5663}, {6699, 35466}, {7725, 63321}, {7726, 63322}, {7728, 63323}, {7978, 63333}, {8674, 63346}, {8994, 63336}, {9517, 63349}, {9904, 63310}, {9919, 63311}, {9984, 63315}, {10065, 63339}, {10081, 63340}, {10620, 63338}, {10628, 63375}, {10706, 63343}, {10752, 63385}, {11709, 63292}, {12041, 63307}, {12133, 63293}, {12192, 63294}, {12244, 63297}, {12327, 63304}, {12365, 63312}, {12366, 63313}, {12368, 63319}, {12369, 63320}, {12371, 63324}, {12372, 63325}, {12373, 63326}, {12374, 63327}, {12381, 63341}, {12382, 63342}, {13969, 63337}, {14915, 63451}, {17702, 63353}, {18593, 59818}, {19059, 63298}, {19060, 63299}, {19505, 63388}, {22583, 63316}, {35826, 63330}, {35827, 63331}, {38790, 63296}, {48730, 63302}, {48731, 63303}, {49044, 63305}, {49045, 63306}, {49151, 63308}, {49152, 63309}, {49216, 63328}, {49217, 63329}, {49313, 63300}, {49314, 63301}


X(63349) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST ANTI-ORTHOSYMMEDIAL

Barycentrics    a*(-(a^14*(b-c)^2)+2*a^15*(b+c)+2*a^7*(b-c)^4*(b+c)^3*(b^2+c^2)-a^13*(5*b^3+3*b^2*c+3*b*c^2+5*c^3)+2*a^12*(b^4-2*b^3*c-2*b*c^3+c^4)+2*a^4*(b-c)^2*(b+c)^6*(b^4-b^3*c+2*b^2*c^2-b*c^3+c^4)+2*a^11*(2*b^5+b^4*c+2*b^3*c^2+2*b^2*c^3+b*c^4+2*c^5)+b*c*(b^2-c^2)^4*(b^6+b^4*c^2+b^2*c^4+c^6)+a^10*(b^6+3*b^5*c-2*b^4*c^2+4*b^3*c^3-2*b^2*c^4+3*b*c^5+c^6)+a^5*(b-c)^2*(b+c)^3*(5*b^6+2*b^5*c+9*b^4*c^2+9*b^2*c^4+2*b*c^5+5*c^6)-a^9*(3*b^7+3*b^6*c-2*b^4*c^3-2*b^3*c^4+3*b*c^6+3*c^7)+a^8*(-4*b^8-3*b^7*c+4*b^6*c^2+b^5*c^3+b^3*c^5+4*b^2*c^6-3*b*c^7-4*c^8)-a^2*(b-c)^2*(b+c)^4*(b^8+3*b^7*c-b^6*c^2+5*b^5*c^3+5*b^3*c^5-b^2*c^6+3*b*c^7+c^8)+a*(b-c)^4*(b+c)^3*(3*b^8+2*b^7*c+5*b^6*c^2+2*b^5*c^3+8*b^4*c^4+2*b^3*c^5+5*b^2*c^6+2*b*c^7+3*c^8)-2*a^3*(b-c)^2*(b+c)^3*(4*b^8-3*b^7*c+7*b^6*c^2-5*b^5*c^3+10*b^4*c^4-5*b^3*c^5+7*b^2*c^6-3*b*c^7+4*c^8)+a^6*(b^10-b^8*c^2-b^2*c^8+c^10)) : :

X(63349) lies on these lines: {81, 1297}, {112, 63291}, {127, 63318}, {132, 17056}, {2794, 63386}, {2799, 63345}, {2806, 63346}, {2831, 4137}, {3320, 63332}, {5453, 53795}, {6020, 63295}, {9517, 63348}, {9530, 37631}, {12145, 63293}, {12207, 63294}, {12253, 63297}, {12265, 63292}, {12340, 63304}, {12384, 37635}, {12408, 63310}, {12413, 63311}, {12478, 63312}, {12479, 63313}, {12503, 63315}, {12784, 63319}, {12796, 63320}, {12805, 63321}, {12806, 63322}, {12918, 63323}, {12925, 63324}, {12935, 63325}, {12945, 63326}, {12955, 63327}, {13099, 63333}, {13115, 63338}, {13116, 63339}, {13117, 63340}, {13118, 63341}, {13119, 63342}, {13918, 63336}, {13985, 63337}, {18593, 59821}, {19093, 63298}, {19094, 63299}, {19159, 63316}, {19160, 63317}, {34841, 35466}, {35828, 63330}, {35829, 63331}, {38624, 63307}, {48658, 63296}, {48732, 63302}, {48733, 63303}, {49046, 63305}, {49047, 63306}, {49153, 63308}, {49154, 63309}, {49218, 63328}, {49219, 63329}, {49315, 63300}, {49316, 63301}, {62506, 63454}


X(63350) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 3RD ANTI-TRI-SQUARES

Barycentrics    2*a^7+2*a^6*(b+c)-(b-c)^4*(b+c)^3+a^5*(-3*b^2+2*b*c-3*c^2)-5*a^4*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+3*b*c+c^2)+2*a^2*(b-c)^2*(b+c)*(2*b^2+ 3*b*c+2*c^2)-a^3*b*c*(5*b^2+4*b*c+5*c^2)+2*a*(2*a^3*(b+c)+ 2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S ::

X(63350) lies on these lines: {4, 63306}, {30, 63378}, {81, 486}, {487, 37635}, {642, 17056}, {3564, 63351}, {6119, 35466}, {6251, 63318}, {6280, 63322}, {6281, 63321}, {6290, 63301}, {7596, 13408}, {7980, 63333}, {9906, 63310}, {9921, 63311}, {9986, 63315}, {10067, 63339}, {10083, 63340}, {12123, 63291}, {12147, 63293}, {12210, 63294}, {12221, 41819}, {12256, 63297}, {12268, 63292}, {12343, 63304}, {12484, 63312}, {12485, 63313}, {12601, 63338}, {12787, 63319}, {12799, 63320}, {12928, 63324}, {12938, 63325}, {12948, 63326}, {12958, 63327}, {13081, 63332}, {13132, 63341}, {13133, 63342}, {13921, 63336}, {13933, 63337}, {18989, 63295}, {19104, 63298}, {19105, 63299}, {22595, 63316}, {22596, 63317}, {31583, 32419}, {35830, 63330}, {35833, 63331}, {44648, 63329}, {48659, 63296}, {48734, 63302}, {49048, 63305}, {49103, 63307}, {49155, 63308}, {49156, 63309}, {49220, 63328}, {49317, 63300}, {55040, 63343}

X(63350) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63359, 63374, 63351}


X(63351) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 4TH ANTI-TRI-SQUARES

Barycentrics    2*a^7+2*a^6*(b+c)-(b-c)^4*(b+c)^3+a^5*(-3*b^2+2*b*c-3*c^2)-5*a^4*(b+c)*(b^2+c^2)+a*(b^2-c^2)^2*(b^2+3*b*c+c^2)+2*a^2*(b-c)^2*(b+c)*(2*b^2+3*b*c+2*c^2)-a^3*b*c*(5*b^2+4*b*c+5*c^2)-2*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S

X(63351) lies on these lines: {4, 63305}, {30, 63377}, {81, 485}, {488, 37635}, {641, 17056}, {3564, 63350}, {6118, 35466}, {6250, 63318}, {6278, 63322}, {6279, 63321}, {6289, 63300}, {7981, 63333}, {9907, 63310}, {9922, 63311}, {9987, 63315}, {10068, 63339}, {10084, 63340}, {12124, 63291}, {12148, 63293}, {12211, 63294}, {12222, 41819}, {12257, 63297}, {12269, 63292}, {12344, 63304}, {12486, 63312}, {12487, 63313}, {12602, 63338}, {12788, 63319}, {12800, 63320}, {12929, 63324}, {12939, 63325}, {12949, 63326}, {12959, 63327}, {13082, 63332}, {13134, 63341}, {13135, 63342}, {13879, 63336}, {13880, 63337}, {18988, 63295}, {19102, 63298}, {19103, 63299}, {22624, 63316}, {22625, 63317}, {31582, 32421}, {35831, 63331}, {35832, 63330}, {44647, 63328}, {48660, 63296}, {48735, 63303}, {49049, 63306}, {49104, 63307}, {49157, 63308}, {49158, 63309}, {49221, 63329}, {49318, 63301}, {55041, 63343}

X(63351) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63359, 63374, 63350}


X(63352) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND AAOA

Barycentrics    2*a^13-2*a^10*b*c*(b+c)-6*a^11*(b^2+c^2)-(b-c)^6*(b+c)^5*(b^2+c^2)+a*(b-c)^4*(b+c)^6*(b^2+c^2)+a^7*b*c*(b^4-8*b^3*c+2*b^2*c^2-8*b*c^3+c^4)+4*a^2*(b-c)^4*(b+c)^3*(b^4+b^3*c+b^2*c^2+b*c^3+c^4)+a^9*(5*b^4-b^3*c+12*b^2*c^2-b*c^3+5*c^4)-a^8*(b^5-3*b^4*c-2*b^3*c^2-2*b^2*c^3-3*b*c^4+c^5)-a^3*(b^2-c^2)^2*(2*b^6+5*b^5*c+2*b^4*c^2+b^3*c^3+2*b^2*c^4+5*b*c^5+2*c^6)+a^5*b*c*(3*b^6+2*b^5*c-4*b^4*c^2-4*b^2*c^4+2*b*c^5+3*c^6)+2*a^6*(2*b^7+b^6*c-b^5*c^2-3*b^4*c^3-3*b^3*c^4-b^2*c^5+b*c^6+2*c^7)-2*a^4*(b-c)^2*(3*b^7+8*b^6*c+8*b^5*c^2+4*b^4*c^3+4*b^3*c^4+8*b^2*c^5+8*b*c^6+3*c^7) : :

X(63352) lies on these lines: {30, 63348}, {81, 265}, {110, 63323}, {113, 63317}, {125, 63307}, {399, 63296}, {511, 63379}, {542, 63355}, {1511, 17056}, {2771, 63365}, {2777, 63371}, {3448, 63297}, {5453, 17702}, {5663, 13408}, {7343, 56402}, {10088, 63326}, {10091, 63327}, {10113, 63318}, {10628, 63367}, {12121, 63291}, {12140, 63293}, {12201, 63294}, {12261, 63292}, {12334, 63304}, {12383, 37635}, {12407, 63310}, {12412, 63311}, {12466, 63312}, {12467, 63313}, {12501, 63315}, {12778, 63319}, {12790, 63320}, {12803, 63321}, {12804, 63322}, {12889, 63324}, {12890, 63325}, {12896, 63332}, {12898, 63333}, {12902, 63338}, {12903, 63339}, {12904, 63340}, {12905, 63341}, {12906, 63342}, {13407, 32423}, {13915, 63336}, {13979, 63337}, {14984, 63394}, {18968, 63295}, {19051, 63298}, {19052, 63299}, {19478, 63316}, {20304, 35466}, {35834, 63330}, {35835, 63331}, {38794, 63344}, {48736, 63302}, {48737, 63303}, {49050, 63305}, {49051, 63306}, {49159, 63308}, {49160, 63309}, {49222, 63328}, {49223, 63329}, {49319, 63300}, {49320, 63301}, {50711, 63456}


X(63353) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ARIES

Barycentrics    (a^2-b^2-c^2)*(2*a^11+a^8*(b-c)^2*(b+c)+(b-c)^6*(b+c)^5-a*(b-c)^4*(b+c)^6-5*a^9*(b^2+c^2)+2*a^3*(b-c)^2*(b+c)^4*(b^2+c^2)-4*a^2*(b-c)^4*(b+c)^3*(b^2+b*c+c^2)+4*a^7*(b^4+b^2*c^2+c^4)-4*a^6*(b^5+c^5)+2*a^4*(b-c)^2*(3*b^5+7*b^4*c+8*b^3*c^2+8*b^2*c^3+7*b*c^4+3*c^5)-2*a^5*(b^6+b^5*c+b^4*c^2+b^2*c^4+b*c^5+c^6)) : :

X(63353) lies on these lines: {30, 63371}, {65, 13408}, {68, 81}, {155, 63323}, {539, 37631}, {1069, 63327}, {1147, 17056}, {1154, 63367}, {3157, 63326}, {3564, 63350}, {5449, 35466}, {5453, 44665}, {6193, 37635}, {9896, 63310}, {9908, 63311}, {9923, 63315}, {9927, 63318}, {9928, 63319}, {9929, 63321}, {9930, 63322}, {9933, 63333}, {10055, 63339}, {10071, 63340}, {11411, 63297}, {12118, 63291}, {12134, 63293}, {12164, 63296}, {12193, 63294}, {12259, 63292}, {12328, 63304}, {12359, 63307}, {12415, 63312}, {12416, 63313}, {12418, 63320}, {12422, 63324}, {12423, 63325}, {12428, 63332}, {12429, 63338}, {12430, 63341}, {12431, 63342}, {13909, 63336}, {13970, 63337}, {14984, 63379}, {17702, 63348}, {18970, 63295}, {19061, 63298}, {19062, 63299}, {22659, 63316}, {22660, 63317}, {34382, 63394}, {35836, 63330}, {35837, 63331}, {48738, 63302}, {48739, 63303}, {49052, 63305}, {49053, 63306}, {49161, 63308}, {49162, 63309}, {49224, 63328}, {49225, 63329}, {49321, 63300}, {49322, 63301}


X(63354) = INCENTER OF THE 2ND PAVLOV TRIANGLE

Barycentrics    a*(b+c)*(3*a^2-b^2+3*b*c-c^2+2*a*(b+c)) : :
X(63354) = -5*X[8]+9*X[27812], -3*X[551]+2*X[58386], 3*X[3241]+X[17164], -2*X[3626]+3*X[27798], -X[3632]+3*X[21020], X[3633]+3*X[46895], -X[4065]+3*X[51071], -3*X[5049]+2*X[58393], -3*X[10179]+2*X[58395], -3*X[10246]+2*X[58392], 3*X[17163]+X[20050], -7*X[20057]+3*X[27804] and many others

X(63354) lies on these lines: {1, 21}, {3, 63304}, {6, 25081}, {8, 27812}, {10, 4035}, {30, 63366}, {37, 4067}, {40, 63291}, {42, 3754}, {55, 63312}, {65, 4868}, {145, 4647}, {214, 37607}, {323, 16474}, {354, 50604}, {355, 63323}, {386, 5883}, {387, 37887}, {515, 13408}, {516, 63381}, {517, 5453}, {518, 63359}, {519, 37631}, {537, 63426}, {551, 58386}, {714, 49491}, {730, 63372}, {740, 3244}, {756, 3988}, {940, 22836}, {942, 4719}, {944, 63297}, {946, 63318}, {952, 63365}, {1125, 35466}, {1126, 60353}, {1193, 58565}, {1385, 63307}, {1389, 63335}, {1449, 2294}, {1482, 63338}, {1698, 63344}, {1829, 63293}, {1834, 11263}, {1837, 63327}, {2099, 4347}, {2800, 63346}, {3017, 24161}, {3057, 63332}, {3214, 3968}, {3216, 3833}, {3241, 17164}, {3247, 3958}, {3293, 3918}, {3340, 47057}, {3624, 31204}, {3626, 27798}, {3632, 21020}, {3633, 46895}, {3636, 4883}, {3640, 63322}, {3641, 63321}, {3649, 36250}, {3664, 17647}, {3671, 5930}, {3678, 59305}, {3679, 63343}, {3724, 5563}, {3728, 49498}, {3751, 63385}, {3753, 50587}, {3919, 4646}, {3931, 4084}, {3945, 18698}, {4002, 21870}, {4015, 56191}, {4016, 16884}, {4018, 37593}, {4065, 51071}, {4251, 42669}, {4424, 4757}, {4539, 56237}, {4540, 21805}, {4667, 8680}, {5049, 58393}, {5223, 63384}, {5252, 63326}, {5396, 31870}, {5425, 17016}, {5692, 27784}, {5712, 49168}, {5847, 63394}, {5902, 19767}, {5903, 17018}, {6001, 63361}, {6738, 24030}, {7968, 63329}, {7969, 63328}, {8983, 63336}, {9798, 63311}, {9941, 63315}, {9957, 20718}, {10179, 58395}, {10246, 58392}, {10912, 24394}, {11281, 50757}, {11529, 18673}, {11545, 53040}, {11553, 53537}, {12194, 63294}, {12432, 37558}, {12438, 63320}, {13407, 63334}, {13750, 24025}, {13971, 63337}, {16611, 20970}, {16667, 40977}, {17163, 20050}, {17476, 58397}, {17778, 36974}, {18480, 63317}, {18525, 63296}, {18991, 63299}, {18992, 63298}, {20018, 28612}, {20057, 27804}, {24883, 26725}, {24928, 42443}, {25255, 62997}, {26131, 47033}, {28194, 63449}, {31806, 50317}, {33858, 45923}, {34586, 58566}, {34772, 37559}, {35641, 63330}, {35642, 63331}, {37527, 54180}, {37731, 54355}, {37733, 45931}, {38062, 45939}, {44661, 59285}, {44662, 63452}, {44669, 49743}, {45713, 63300}, {45714, 63301}, {45715, 63302}, {45716, 63303}, {45719, 63305}, {45720, 63306}, {50749, 63282}, {51103, 58387}, {53037, 62212}, {54335, 56018}, {55962, 60116}

X(63354) = midpoint of X(i) and X(j) for these {i,j}: {1, 2650}, {145, 4647}, {3728, 49498}, {63360, 63415}
X(63354) = reflection of X(i) in X(j) for these {i,j}: {2292, 58380}, {3743, 1}, {4065, 58399}, {63356, 5453}, {63360, 63370}
X(63354) = pole of line {6003, 36975} with respect to the incircle
X(63354) = pole of line {3737, 4132} with respect to the DeLongchamps ellipse
X(63354) = pole of line {5257, 5949} with respect to the Kiepert hyperbola
X(63354) = pole of line {4560, 48568} with respect to the Steiner circumellipse
X(63354) = pole of line {14838, 16754} with respect to the Steiner inellipse
X(63354) = pole of line {5249, 17235} with respect to the dual conic of Yff parabola
X(63354) = pole of line {1109, 62221} with respect to the dual conic of Wallace hyperbola
X(63354) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(21), X(53114)}}, {{A, B, C, X(58), X(31503)}}, {{A, B, C, X(65), X(4653)}}, {{A, B, C, X(81), X(56226)}}, {{A, B, C, X(2363), X(35016)}}, {{A, B, C, X(8666), X(39739)}}
X(63354) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1046, 4653}, {1, 2292, 58380}, {1, 2650, 758}, {1, 3901, 28606}, {1, 54421, 5248}, {1, 58, 35016}, {1, 758, 3743}, {8, 37635, 63319}, {65, 59301, 4868}, {65, 63295, 18593}, {758, 58380, 2292}, {942, 4719, 24167}, {1046, 4653, 3647}, {4065, 51071, 58399}, {13408, 63447, 63445}, {37631, 63360, 63370}, {37631, 63415, 63360}, {53114, 59301, 65}, {63324, 63325, 63323}, {63360, 63415, 519}


X(63355) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND BANKOFF

Barycentrics    4*a^7+2*a^6*(b+c)-2*(b-c)^4*(b+c)^3+a*(b-c)^2*(b+c)^2*(2*b+c)*(b+2*c)+a^5*(-6*b^2+2*b*c-6*c^2)-2*a^4*(b+c)*(3*b^2+b*c+3*c^2)+2*a^2*(b-c)^2*(b+c)*(3*b^2+5*b*c+3*c^2)-a^3*b*c*(7*b^2+4*b*c+7*c^2)-2*sqrt(3)*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63355) lies on these lines: {13, 81}, {530, 37631}, {531, 63347}, {542, 63352}, {616, 37635}, {618, 17056}, {5453, 63363}, {5459, 61661}, {5463, 63343}, {5473, 63291}, {5478, 63318}, {5617, 63323}, {6268, 63322}, {6270, 63321}, {6669, 35466}, {6770, 63297}, {6771, 63307}, {7975, 63333}, {9901, 63310}, {9916, 63311}, {9982, 63315}, {10062, 63339}, {10078, 63340}, {11705, 63292}, {12142, 63293}, {12205, 63294}, {12337, 63304}, {12472, 63312}, {12473, 63313}, {12781, 63319}, {12793, 63320}, {12922, 63324}, {12932, 63325}, {12942, 63326}, {12952, 63327}, {13076, 63332}, {13103, 63338}, {13105, 63341}, {13107, 63342}, {13408, 41022}, {13917, 63336}, {13982, 63337}, {18974, 63295}, {19073, 63298}, {19074, 63299}, {22773, 63316}, {22796, 63317}, {35753, 63330}, {35754, 63331}, {36770, 63344}, {41023, 63345}, {48655, 63296}, {48722, 63302}, {48723, 63303}, {49034, 63305}, {49035, 63306}, {49143, 63308}, {49144, 63309}, {49208, 63328}, {49209, 63329}, {49305, 63300}, {49306, 63301}, {51200, 63385}, {63362, 63374}


X(63356) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND BEVAN ANTIPODAL

Barycentrics    a*(a^5*(b+c)+(b^2-c^2)^2*(b^2-b*c+c^2)+a^4*(b^2+6*b*c+c^2)+a*(b-c)^2*(b^3+4*b^2*c+4*b*c^2+c^3)-a^3*(2*b^3+3*b^2*c+3*b*c^2+2*c^3)-a^2*(2*b^4+5*b^3*c+2*b^2*c^2+5*b*c^3+2*c^4)) : :
X(63356) = -3*X[1962]+X[52524]

X(63356) lies on these lines: {1, 3651}, {3, 63292}, {4, 27785}, {8, 16585}, {10, 63318}, {30, 3743}, {35, 54292}, {37, 31673}, {40, 81}, {46, 63340}, {55, 59285}, {65, 63332}, {241, 17706}, {381, 27784}, {500, 758}, {515, 13442}, {516, 13408}, {517, 5453}, {519, 63449}, {581, 31806}, {946, 15852}, {962, 37635}, {991, 5884}, {1385, 4906}, {1697, 34498}, {1702, 63299}, {1703, 63298}, {1836, 63326}, {1902, 63293}, {1962, 52524}, {2292, 48897}, {2771, 48927}, {2800, 4300}, {2802, 63346}, {3057, 63295}, {3295, 4347}, {3545, 31318}, {3579, 4868}, {3746, 7464}, {3931, 31730}, {4646, 61661}, {5119, 63339}, {5492, 48916}, {5709, 63308}, {5812, 63325}, {5840, 63365}, {5847, 63357}, {6001, 63371}, {6051, 18483}, {6361, 63297}, {6684, 35466}, {7280, 26740}, {7688, 17016}, {7982, 63333}, {7991, 63310}, {8227, 63344}, {9840, 58392}, {9911, 63311}, {10306, 63304}, {10572, 16577}, {11372, 63384}, {12197, 63294}, {12458, 63312}, {12459, 63313}, {12497, 63315}, {12696, 63320}, {12697, 63321}, {12698, 63322}, {12699, 63323}, {12700, 63324}, {12701, 63327}, {12702, 63338}, {12703, 63341}, {12704, 63342}, {13912, 63336}, {13975, 63337}, {16139, 51340}, {16579, 17647}, {20070, 41819}, {21620, 55010}, {22770, 63316}, {22793, 63317}, {26131, 49177}, {28174, 63374}, {28194, 37548}, {28234, 63415}, {29032, 52685}, {29054, 63398}, {31162, 63343}, {31204, 31423}, {33100, 49178}, {35610, 63330}, {35611, 63331}, {36250, 37401}, {37585, 59301}, {37592, 51705}, {41869, 62831}, {48661, 63296}, {48740, 63302}, {48741, 63303}, {48903, 58380}, {49054, 63305}, {49055, 63306}, {49163, 63309}, {49226, 63328}, {49227, 63329}, {49323, 63300}, {49324, 63301}, {63369, 63381}

X(63356) = midpoint of X(i) and X(j) for these {i,j}: {2292, 48897}, {5492, 48916}, {63360, 63386}
X(63356) = reflection of X(i) in X(j) for these {i,j}: {13408, 63370}, {48903, 58380}, {63354, 5453}, {9840, 58392}
X(63356) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {516, 63370, 13408}, {517, 5453, 63354}, {25080, 63386, 63361}, {37528, 63386, 25080}, {63360, 63386, 515}


X(63357) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 9TH BROCARD

Barycentrics    2*a^9-4*a^8*(b+c)+a^2*(b-c)^4*(b+c)^3-(b-c)^4*(b+c)^3*(b^2+c^2)-a^7*(5*b^2+4*b*c+5*c^2)+a^6*(7*b^3+b^2*c+b*c^2+7*c^3)+a*(b^4-c^4)^2+a^5*(5*b^4+4*b^3*c+10*b^2*c^2+4*b*c^3+5*c^4)+a^4*(-3*b^5+3*b^4*c+8*b^3*c^2+8*b^2*c^3+3*b*c^4-3*c^5)+a^3*(-3*b^6+3*b^4*c^2+8*b^3*c^3+3*b^2*c^4-3*c^6) : :

X(63357) lies on these lines: {4, 63385}, {6, 63318}, {69, 63291}, {81, 6776}, {182, 35466}, {511, 14110}, {524, 63448}, {542, 3745}, {1352, 17056}, {1503, 13408}, {3564, 5453}, {5847, 63356}, {5848, 63346}, {5921, 37635}, {9028, 63447}, {11179, 61661}, {11180, 63343}, {18440, 63323}, {19145, 63336}, {19146, 63337}, {39870, 63292}, {39871, 63293}, {39872, 63294}, {39873, 63295}, {39874, 63297}, {39875, 63298}, {39876, 63299}, {39877, 63304}, {39878, 63310}, {39879, 63311}, {39880, 63312}, {39881, 63313}, {39882, 63315}, {39883, 63316}, {39884, 63317}, {39885, 63319}, {39886, 63320}, {39887, 63321}, {39888, 63322}, {39889, 63324}, {39890, 63325}, {39891, 63326}, {39892, 63327}, {39893, 63330}, {39894, 63331}, {39897, 63332}, {39898, 63333}, {39899, 63338}, {39900, 63339}, {39901, 63340}, {39902, 63341}, {39903, 63342}, {40330, 63344}, {45926, 51747}, {48662, 63296}, {48742, 63302}, {48743, 63303}, {48906, 63307}, {49056, 63305}, {49057, 63306}, {49164, 63308}, {49165, 63309}, {49228, 63328}, {49229, 63329}, {49325, 63300}, {49326, 63301}

X(63357) = reflection of X(i) in X(j) for these {i,j}: {13408, 63359}, {63394, 5453}
X(63357) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1503, 63359, 13408}, {3564, 5453, 63394}


X(63358) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST BROCARD-REFLECTED

Barycentrics    -(b^2*(b-c)^4*c^2*(b+c)^3)+3*a^9*(b^2+c^2)+a*b^2*c^2*(b^2-c^2)^2*(b^2+4*b*c+c^2)+3*a^8*(b^3+b^2*c+b*c^2+c^3)+a^7*(-4*b^4+3*b^3*c-4*b^2*c^2+3*b*c^3-4*c^4)-2*a^2*(b-c)^2*(b+c)^3*(b^4-2*b^3*c-2*b*c^3+c^4)-a^5*(b+c)^2*(b^4+6*b^3*c+b^2*c^2+6*b*c^3+c^4)-2*a^6*(4*b^5+4*b^4*c+7*b^3*c^2+7*b^2*c^3+4*b*c^4+4*c^5)+a^4*(7*b^7+3*b^6*c-8*b^5*c^2-14*b^4*c^3-14*b^3*c^4-8*b^2*c^5+3*b*c^6+7*c^7)+a^3*(2*b^8+5*b^7*c+2*b^6*c^2-11*b^5*c^3-8*b^4*c^4-11*b^3*c^5+2*b^2*c^6+5*b*c^7+2*c^8) : :

X(63358) lies on these lines: {81, 262}, {354, 511}, {2782, 63347}, {5453, 63373}, {6194, 37635}, {7697, 63323}, {7709, 63297}, {15819, 17056}, {18971, 63295}, {19063, 63298}, {19064, 63299}, {22475, 63292}, {22480, 63293}, {22521, 63294}, {22556, 63304}, {22650, 63310}, {22655, 63311}, {22668, 63312}, {22672, 63313}, {22676, 63291}, {22678, 63315}, {22680, 63316}, {22681, 63317}, {22682, 63318}, {22697, 63319}, {22698, 63320}, {22699, 63321}, {22700, 63322}, {22703, 63324}, {22704, 63325}, {22705, 63326}, {22706, 63327}, {22711, 63332}, {22712, 63343}, {22713, 63333}, {22720, 63336}, {22721, 63337}, {22728, 63338}, {22729, 63339}, {22730, 63340}, {22731, 63341}, {22732, 63342}, {32515, 63372}, {35838, 63330}, {35839, 63331}, {40108, 63307}, {41819, 44434}, {48663, 63296}, {48744, 63302}, {48745, 63303}, {49058, 63305}, {49059, 63306}, {49166, 63308}, {49167, 63309}, {49230, 63328}, {49231, 63329}, {49327, 63300}, {49328, 63301}, {63345, 63359}


X(63359) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST EHRMANN

Barycentrics    a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2)) : :
X(63359) = -2*X[17235]+3*X[50173], -X[17276]+3*X[50178]

X(63359) lies on circumconic {{A, B, C, X(15985), X(25322)}} and on these lines: {2, 6}, {30, 62828}, {58, 51729}, {159, 63311}, {182, 63302}, {213, 17332}, {511, 1385}, {518, 63354}, {538, 3997}, {542, 63352}, {611, 63339}, {613, 63340}, {674, 63393}, {698, 32453}, {732, 63372}, {742, 63398}, {1203, 49716}, {1350, 63291}, {1351, 63338}, {1352, 63323}, {1469, 63295}, {1503, 13408}, {1843, 63293}, {2245, 54308}, {2295, 7227}, {2300, 17045}, {2393, 63452}, {2781, 63348}, {2854, 63454}, {3056, 63332}, {3094, 63315}, {3242, 63333}, {3416, 63319}, {3564, 63350}, {3751, 63310}, {3818, 63317}, {3882, 4272}, {4719, 35203}, {5315, 13745}, {5480, 63318}, {5710, 49734}, {5845, 63381}, {5846, 63360}, {5847, 63370}, {5965, 63362}, {6776, 63297}, {8705, 63451}, {9053, 63415}, {9055, 63426}, {9830, 63347}, {12212, 63294}, {12329, 63304}, {12452, 63312}, {12453, 63313}, {12583, 63320}, {12586, 63324}, {12587, 63325}, {12588, 63326}, {12589, 63327}, {12594, 63341}, {12595, 63342}, {15447, 17126}, {16466, 49728}, {16585, 43216}, {16784, 50235}, {17235, 50173}, {17246, 62813}, {17276, 50178}, {17768, 50177}, {18440, 63296}, {18593, 24471}, {22769, 63316}, {25080, 34377}, {25466, 49743}, {29181, 43161}, {34146, 63371}, {35840, 63330}, {35841, 63331}, {44668, 63375}, {45728, 63308}, {45729, 63309}, {49737, 61036}, {49739, 62848}, {49745, 57280}, {50179, 54981}, {50995, 63384}, {63345, 63358}, {63377, 63378}

X(63359) = midpoint of X(i) and X(j) for these {i,j}: {13408, 63357}
X(63359) = pole of line {523, 24900} with respect to the Steiner inellipse
X(63359) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13408, 63357, 1503}, {63302, 63303, 63307}, {63350, 63351, 63374}


X(63360) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND EXCENTERS-MIDPOINTS

Barycentrics    2*a^4-(b^2-c^2)^2+a^2*(b^2+4*b*c+c^2)+2*a*(b^3+b^2*c+b*c^2+c^3) : :
X(63360) = -3*X[13745]+4*X[58386], -X[17164]+3*X[50171], -3*X[49739]+4*X[58380]

X(63360) lies on circumconic {{A, B, C, X(41501), X(59760)}} and on these lines: {1, 442}, {8, 81}, {10, 4434}, {12, 30115}, {30, 2292}, {37, 10572}, {38, 18990}, {55, 37227}, {58, 21677}, {78, 5725}, {145, 26051}, {355, 612}, {388, 37098}, {390, 63384}, {474, 12642}, {495, 976}, {515, 13442}, {517, 13408}, {518, 63381}, {519, 37631}, {528, 63426}, {550, 4414}, {758, 49745}, {846, 57002}, {859, 8240}, {940, 49168}, {944, 7413}, {950, 6051}, {952, 5453}, {975, 1837}, {986, 11112}, {1211, 36974}, {1220, 16086}, {1385, 29639}, {1482, 63323}, {2098, 63327}, {2099, 63326}, {2650, 49743}, {2802, 63365}, {2960, 5119}, {3241, 63343}, {3486, 25516}, {3585, 4415}, {3616, 63344}, {3621, 41819}, {3626, 59628}, {3632, 24342}, {3666, 17647}, {3679, 61661}, {3695, 54331}, {3720, 12433}, {3724, 48930}, {3841, 49682}, {3897, 29664}, {3901, 17365}, {3913, 63304}, {3923, 50391}, {3924, 8728}, {3931, 57287}, {3987, 49732}, {3989, 28186}, {4018, 50307}, {4160, 21104}, {4187, 37717}, {4234, 56313}, {4647, 49734}, {4653, 10543}, {4656, 31673}, {5086, 37715}, {5177, 60751}, {5178, 17015}, {5252, 6357}, {5266, 24987}, {5277, 21965}, {5293, 17757}, {5440, 5530}, {5559, 63335}, {5690, 63307}, {5716, 16466}, {5717, 6737}, {5718, 22836}, {5730, 26098}, {5844, 63374}, {5846, 63359}, {5853, 63387}, {6147, 49454}, {6675, 21674}, {7174, 9613}, {7379, 39587}, {8148, 63296}, {9555, 10950}, {9780, 31204}, {10106, 18593}, {10544, 18180}, {10573, 63340}, {10912, 63324}, {10914, 35104}, {10944, 63295}, {11533, 24851}, {12135, 63293}, {12195, 63294}, {12245, 63297}, {12410, 63311}, {12454, 63312}, {12455, 63313}, {12495, 63315}, {12513, 63316}, {12626, 63320}, {12627, 63321}, {12628, 63322}, {12635, 63325}, {12645, 63338}, {12647, 63339}, {12648, 63341}, {12649, 63342}, {13745, 58386}, {13911, 63336}, {13973, 63337}, {14839, 63372}, {15174, 27577}, {17164, 50171}, {17614, 24239}, {17726, 50604}, {18235, 19531}, {18253, 52680}, {19065, 63298}, {19066, 63299}, {22791, 33104}, {24248, 50239}, {24391, 63382}, {26131, 34195}, {27690, 56778}, {28204, 63449}, {31397, 63446}, {31419, 49487}, {33105, 37737}, {33112, 62830}, {35842, 63330}, {35843, 63331}, {37709, 47057}, {37730, 59305}, {38456, 49716}, {40663, 55101}, {48746, 63302}, {48747, 63303}, {49060, 63305}, {49061, 63306}, {49169, 63309}, {49232, 63328}, {49233, 63329}, {49329, 63300}, {49330, 63301}, {49739, 58380}, {50288, 51575}, {51192, 63385}

X(63360) = reflection of X(i) in X(j) for these {i,j}: {2650, 49743}, {4647, 49734}, {63354, 63370}, {63386, 63356}, {63415, 63354}
X(63360) = pole of line {16466, 56840} with respect to the Stammler hyperbola
X(63360) = pole of line {7178, 47682} with respect to the Steiner inellipse
X(63360) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 47033, 1834}, {1, 63319, 17056}, {10, 63292, 35466}, {145, 37635, 63333}, {515, 63356, 63386}, {519, 63354, 63415}, {37631, 63415, 63354}, {63354, 63370, 37631}, {63394, 63398, 63381}


X(63361) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND EXTOUCH

Barycentrics    a*(-4*a^7*b*c+a^8*(b+c)+4*a^3*b*c*(b^2-c^2)^2+4*a^5*b*c*(b^2+b*c+c^2)-4*a*b*c*(b^2-c^2)^2*(b^2+b*c+c^2)+(b-c)^4*(b+c)^3*(b^2+3*b*c+c^2)+a^6*(-4*b^3+3*b^2*c+3*b*c^2-4*c^3)-a^2*(b-c)^2*(4*b^5+7*b^4*c+13*b^3*c^2+13*b^2*c^3+7*b*c^4+4*c^5)+a^4*(6*b^5-7*b^4*c+5*b^3*c^2+5*b^2*c^3-7*b*c^4+6*c^5)) : :

X(63361) lies on these lines: {1, 10308}, {4, 18593}, {20, 16585}, {81, 84}, {515, 13442}, {946, 55010}, {971, 5453}, {1012, 63446}, {1214, 31673}, {1490, 63291}, {1709, 63339}, {2829, 63365}, {4227, 5450}, {6001, 63354}, {6223, 37635}, {6245, 63318}, {6257, 63322}, {6258, 63321}, {6259, 63323}, {6260, 17056}, {6357, 53592}, {6705, 35466}, {7464, 59320}, {7971, 63333}, {7992, 63310}, {8987, 63336}, {9910, 63311}, {10085, 63340}, {12114, 63292}, {12136, 63293}, {12196, 63294}, {12246, 63297}, {12330, 63304}, {12456, 63312}, {12457, 63313}, {12496, 63315}, {12667, 63319}, {12668, 63320}, {12676, 63324}, {12677, 63325}, {12678, 63326}, {12679, 63327}, {12680, 63332}, {12684, 63338}, {12686, 63341}, {12687, 63342}, {12688, 63295}, {13408, 63450}, {13974, 63337}, {15836, 47057}, {18237, 63316}, {18625, 37434}, {19067, 63298}, {19068, 63299}, {22792, 63317}, {34862, 63307}, {35844, 63330}, {35845, 63331}, {48664, 63296}, {48748, 63302}, {48749, 63303}, {49062, 63305}, {49063, 63306}, {49170, 63308}, {49171, 63309}, {49234, 63328}, {49235, 63329}, {49331, 63300}, {49332, 63301}, {63369, 63393}

X(63361) = reflection of X(i) in X(j) for these {i,j}: {63445, 5453}
X(63361) = pole of line {17898, 35057} with respect to the incircle
X(63361) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {971, 5453, 63445}, {25080, 63386, 63356}


X(63362) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND INNER-FERMAT

Barycentrics    4*a^7+6*a^6*(b+c)-2*(b-c)^4*(b+c)^3-6*a^5*(b^2-b*c+c^2)+a*(b^2-c^2)^2*(2*b^2+7*b*c+2*c^2)+2*a^2*(b-c)^2*(b+c)*(5*b^2+7*b*c+5*c^2)-2*a^4*(b+c)*(7*b^2-b*c+7*c^2)-a^3*b*c*(13*b^2+12*b*c+13*c^2)+2*sqrt(3)*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63362) lies on these lines: {18, 81}, {533, 37631}, {628, 37635}, {630, 17056}, {5453, 63364}, {5965, 63359}, {6674, 35466}, {11740, 63292}, {13408, 44667}, {16627, 63323}, {16628, 63338}, {18972, 63295}, {19069, 63298}, {19072, 63299}, {22114, 41819}, {22481, 63293}, {22522, 63294}, {22531, 63297}, {22557, 63304}, {22651, 63310}, {22656, 63311}, {22669, 63312}, {22673, 63313}, {22745, 63315}, {22771, 63316}, {22794, 63317}, {22831, 63318}, {22843, 63291}, {22851, 63319}, {22852, 63320}, {22853, 63321}, {22854, 63322}, {22857, 63324}, {22858, 63325}, {22859, 63326}, {22860, 63327}, {22865, 63332}, {22867, 63333}, {22876, 63336}, {22877, 63337}, {22884, 63339}, {22885, 63340}, {22886, 63341}, {22887, 63342}, {33464, 63401}, {35846, 63330}, {35849, 63331}, {48665, 63296}, {48750, 63302}, {48751, 63303}, {49064, 63305}, {49065, 63306}, {49105, 63307}, {49172, 63308}, {49173, 63309}, {49236, 63328}, {49237, 63329}, {49333, 63300}, {49334, 63301}, {50860, 63343}, {51209, 63385}, {63355, 63374}


X(63363) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND OUTER-FERMAT

Barycentrics    4*a^7+6*a^6*(b+c)-2*(b-c)^4*(b+c)^3-6*a^5*(b^2-b*c+c^2)+a*(b^2-c^2)^2*(2*b^2+7*b*c+2*c^2)+2*a^2*(b-c)^2*(b+c)*(5*b^2+7*b*c+5*c^2)-2*a^4*(b+c)*(7*b^2-b*c+7*c^2)-a^3*b*c*(13*b^2+12*b*c+13*c^2)-2*sqrt(3)*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63363) lies on these lines: {17, 81}, {532, 37631}, {627, 37635}, {629, 17056}, {5453, 63355}, {5965, 63359}, {6673, 35466}, {11739, 63292}, {13408, 44666}, {16626, 63323}, {16629, 63338}, {18973, 63295}, {19070, 63299}, {19071, 63298}, {22113, 41819}, {22482, 63293}, {22523, 63294}, {22532, 63297}, {22558, 63304}, {22652, 63310}, {22657, 63311}, {22670, 63312}, {22674, 63313}, {22746, 63315}, {22772, 63316}, {22795, 63317}, {22832, 63318}, {22890, 63291}, {22896, 63319}, {22897, 63320}, {22898, 63321}, {22899, 63322}, {22902, 63324}, {22903, 63325}, {22904, 63326}, {22905, 63327}, {22910, 63332}, {22912, 63333}, {22921, 63336}, {22922, 63337}, {22929, 63339}, {22930, 63340}, {22931, 63341}, {22932, 63342}, {33465, 63401}, {35847, 63331}, {35848, 63330}, {48666, 63296}, {48752, 63302}, {48753, 63303}, {49066, 63305}, {49067, 63306}, {49106, 63307}, {49174, 63308}, {49175, 63309}, {49238, 63328}, {49239, 63329}, {49335, 63300}, {49336, 63301}, {50859, 63343}, {51208, 63385}, {63364, 63374}


X(63364) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 8TH FERMAT-DAO

Barycentrics    4*a^7+2*a^6*(b+c)-2*(b-c)^4*(b+c)^3+a*(b-c)^2*(b+c)^2*(2*b+c)*(b+2*c)+a^5*(-6*b^2+2*b*c-6*c^2)-2*a^4*(b+c)*(3*b^2+b*c+3*c^2)+2*a^2*(b-c)^2*(b+c)*(3*b^2+5*b*c+3*c^2)-a^3*b*c*(7*b^2+4*b*c+7*c^2)+2*sqrt(3)*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63364) lies on these lines: {14, 81}, {530, 63347}, {531, 37631}, {542, 63352}, {617, 37635}, {619, 17056}, {5453, 63362}, {5460, 61661}, {5464, 63343}, {5474, 63291}, {5479, 63318}, {5613, 63323}, {6269, 63322}, {6271, 63321}, {6670, 35466}, {6773, 63297}, {6774, 63307}, {7974, 63333}, {9900, 63310}, {9915, 63311}, {9981, 63315}, {10061, 63339}, {10077, 63340}, {11706, 63292}, {12141, 63293}, {12204, 63294}, {12336, 63304}, {12470, 63312}, {12471, 63313}, {12780, 63319}, {12792, 63320}, {12921, 63324}, {12931, 63325}, {12941, 63326}, {12951, 63327}, {13075, 63332}, {13102, 63338}, {13104, 63341}, {13106, 63342}, {13408, 41023}, {13916, 63336}, {13981, 63337}, {18975, 63295}, {19075, 63298}, {19076, 63299}, {22774, 63316}, {22797, 63317}, {35850, 63330}, {35851, 63331}, {41022, 63345}, {48656, 63296}, {48724, 63302}, {48725, 63303}, {49036, 63305}, {49037, 63306}, {49145, 63308}, {49146, 63309}, {49210, 63328}, {49211, 63329}, {49307, 63300}, {49308, 63301}, {51203, 63385}, {63363, 63374}


X(63365) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND FUHRMANN

Barycentrics    2*a^7-2*a^5*(b-c)^2-a^6*(b+c)+a^4*(b-c)^2*(b+c)-(b-c)^4*(b+c)^3+2*a*(b^2-c^2)^2*(b^2+c^2)-2*a^3*(b^4+b^3*c-3*b^2*c^2+b*c^3+c^4)+a^2*(b^5+3*b^4*c-3*b^3*c^2-3*b^2*c^3+3*b*c^4+c^5) : :

X(63365) lies on these lines: {1, 149}, {11, 30446}, {80, 81}, {100, 63319}, {214, 17056}, {515, 63346}, {519, 20887}, {528, 63387}, {952, 63354}, {2771, 63352}, {2800, 13408}, {2801, 63381}, {2802, 63360}, {2829, 63361}, {5840, 63356}, {6246, 63318}, {6262, 63322}, {6263, 63321}, {6265, 63323}, {6702, 35466}, {7972, 63333}, {8988, 63336}, {9897, 63310}, {9912, 63311}, {10057, 63339}, {10073, 63340}, {12119, 63291}, {12137, 63293}, {12198, 63294}, {12247, 63297}, {12331, 63304}, {12460, 63312}, {12461, 63313}, {12498, 63315}, {12611, 63317}, {12619, 63307}, {12729, 63320}, {12737, 63324}, {12738, 63325}, {12739, 63326}, {12740, 63327}, {12743, 63332}, {12747, 63338}, {12749, 63341}, {12750, 63342}, {12751, 63309}, {12773, 63316}, {13976, 63337}, {17378, 17861}, {18976, 63295}, {19077, 63298}, {19078, 63299}, {20085, 41819}, {35852, 63330}, {35853, 63331}, {45931, 62354}, {45939, 59419}, {48667, 63296}, {48754, 63302}, {48755, 63303}, {49068, 63305}, {49069, 63306}, {49176, 63308}, {49240, 63328}, {49241, 63329}, {49337, 63300}, {49338, 63301}, {49745, 63376}, {50749, 63270}

X(63365) = pole of line {3218, 51465} with respect to the dual conic of Yff parabola


X(63366) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 2ND FUHRMANN

Barycentrics    2*a^4+3*a^3*(b+c)-(b^2-c^2)^2+a^2*(b^2+4*b*c+c^2)-a*(b^3-2*b^2*c-2*b*c^2+c^3) : :
X(63366) = -3*X[551]+2*X[12579], -X[2292]+3*X[49744], -3*X[37631]+2*X[58380]

X(63366) lies on these lines: {1, 5180}, {4, 63335}, {10, 894}, {30, 63354}, {58, 11263}, {65, 2392}, {79, 81}, {191, 26131}, {226, 1399}, {513, 942}, {516, 48897}, {519, 17164}, {540, 49598}, {551, 12579}, {553, 24167}, {758, 49745}, {896, 58449}, {1125, 6536}, {1126, 24715}, {1457, 4298}, {1770, 59301}, {2292, 49744}, {2771, 63352}, {2796, 4065}, {3216, 61707}, {3315, 5557}, {3337, 33107}, {3454, 4697}, {3626, 42437}, {3647, 17056}, {3648, 37635}, {3649, 63292}, {3652, 63323}, {3664, 17139}, {3671, 49682}, {3743, 17768}, {3825, 37520}, {3841, 4641}, {3874, 17365}, {4307, 30145}, {4418, 21081}, {4655, 43531}, {4658, 24851}, {4683, 25526}, {4757, 5724}, {4892, 6693}, {5441, 63333}, {5620, 46441}, {5905, 30142}, {6147, 49480}, {6149, 14526}, {6701, 35466}, {6763, 33112}, {6841, 63382}, {8143, 63374}, {10106, 53537}, {10404, 62828}, {10572, 53114}, {10916, 62240}, {11552, 17016}, {11684, 63319}, {11813, 37607}, {12436, 49992}, {12699, 62844}, {13407, 50749}, {13743, 63316}, {16113, 63291}, {16114, 63293}, {16115, 63294}, {16116, 63297}, {16117, 63304}, {16118, 63310}, {16119, 63311}, {16121, 63312}, {16122, 63313}, {16123, 63315}, {16125, 63318}, {16129, 63320}, {16130, 63321}, {16131, 63322}, {16138, 63324}, {16139, 63325}, {16140, 63326}, {16141, 63327}, {16142, 63332}, {16148, 63336}, {16149, 63337}, {16150, 63338}, {16152, 63339}, {16153, 63340}, {16154, 63341}, {16155, 63342}, {16159, 51340}, {16732, 52569}, {16948, 26725}, {18977, 63295}, {19079, 63298}, {19080, 63299}, {20077, 54335}, {20718, 49557}, {22798, 63317}, {23537, 23823}, {24725, 37522}, {26064, 41812}, {28558, 50226}, {31737, 49537}, {35854, 63330}, {35855, 63331}, {37631, 58380}, {48668, 63296}, {48756, 63302}, {48757, 63303}, {48903, 63346}, {48927, 63393}, {49070, 63305}, {49071, 63306}, {49107, 63307}, {49177, 63308}, {49178, 63309}, {49242, 63328}, {49243, 63329}, {49339, 63300}, {49340, 63301}, {52564, 53541}, {57282, 62805}, {63277, 63384}, {63278, 63343}, {63279, 63385}, {63286, 63344}

X(63366) = reflection of X(i) in X(j) for these {i,j}: {1125, 43972}, {2292, 63370}, {3743, 49743}, {4065, 49564}, {8143, 63374}
X(63366) = pole of line {4024, 21192} with respect to the Steiner circumellipse
X(63366) = pole of line {6626, 32025} with respect to the Wallace hyperbola
X(63366) = pole of line {2185, 8025} with respect to the dual conic of Yff parabola
X(63366) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(10266), X(43680)}}, {{A, B, C, X(30602), X(43972)}}
X(63366) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {58, 11263, 50757}, {58, 33097, 11263}, {79, 81, 36250}, {1125, 43972, 23812}, {2292, 49744, 63370}, {2796, 49564, 4065}, {17768, 49743, 3743}


X(63367) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND HATZIPOLAKIS-MOSES

Barycentrics    2*a^19-2*a^16*b*c*(b+c)-8*a^17*(b^2+c^2)-(b-c)^8*(b+c)^7*(b^2+c^2)^2+a*(b-c)^6*(b+c)^8*(b^2+c^2)^2+a^15*(9*b^4-b^3*c+20*b^2*c^2-b*c^3+9*c^4)-a^14*(b^5-5*b^4*c-4*b^3*c^2-4*b^2*c^3-5*b*c^4+c^5)+a^13*(3*b^6+2*b^5*c-11*b^4*c^2+4*b^3*c^3-11*b^2*c^4+2*b*c^5+3*c^6)+a^8*(b-c)^2*(b+c)^3*(5*b^6+3*b^4*c^2+4*b^3*c^3+3*b^2*c^4+5*c^6)+a^2*(b-c)^6*(b+c)^5*(5*b^6+4*b^5*c+11*b^4*c^2+8*b^3*c^3+11*b^2*c^4+4*b*c^5+5*c^6)+a^12*(5*b^7+b^6*c+b^5*c^2-5*b^4*c^3-5*b^3*c^4+b^2*c^5+b*c^6+5*c^7)+a^7*(b^2-c^2)^2*(3*b^8+5*b^7*c+2*b^6*c^2+5*b^5*c^3-2*b^4*c^4+5*b^3*c^5+2*b^2*c^6+5*b*c^7+3*c^8)-a^3*(b^2-c^2)^4*(3*b^8+7*b^7*c+8*b^6*c^2+12*b^5*c^3+10*b^4*c^4+12*b^3*c^5+8*b^2*c^6+7*b*c^7+3*c^8)+a^6*(b-c)^2*(b+c)^3*(5*b^8+2*b^7*c+8*b^6*c^2-2*b^5*c^3+14*b^4*c^4-2*b^3*c^5+8*b^2*c^6+2*b*c^7+5*c^8)-a^4*(b-c)^4*(b+c)^3*(9*b^8+14*b^7*c+22*b^6*c^2+24*b^5*c^3+30*b^4*c^4+24*b^3*c^5+22*b^2*c^6+14*b*c^7+9*c^8)-a^11*(11*b^8-3*b^7*c+4*b^6*c^2+2*b^5*c^3-6*b^4*c^4+2*b^3*c^5+4*b^2*c^6-3*b*c^7+11*c^8)-a^10*(9*b^9+11*b^8*c+2*b^7*c^2-2*b^6*c^3+4*b^5*c^4+4*b^4*c^5-2*b^3*c^6+2*b^2*c^7+11*b*c^8+9*c^9)+a^5*(b^2-c^2)^2*(b^10+6*b^9*c+5*b^8*c^2+8*b^7*c^3+10*b^6*c^4+12*b^5*c^5+10*b^4*c^6+8*b^3*c^7+5*b^2*c^8+6*b*c^9+c^10)+a^9*(3*b^10-10*b^9*c+3*b^8*c^2-6*b^6*c^4-4*b^5*c^5-6*b^4*c^6+3*b^2*c^8-10*b*c^9+3*c^10) : :

X(63367) lies on these lines: {81, 6145}, {1154, 63353}, {5453, 18400}, {10628, 63352}, {17056, 32391}, {32330, 63291}, {32331, 63292}, {32332, 63293}, {32335, 63294}, {32336, 63295}, {32337, 63297}, {32342, 63298}, {32343, 63299}, {32347, 63304}, {32354, 37635}, {32356, 63310}, {32357, 63311}, {32360, 63312}, {32361, 63313}, {32362, 63315}, {32363, 63316}, {32364, 63317}, {32369, 63318}, {32371, 63319}, {32372, 63320}, {32373, 63321}, {32374, 63322}, {32379, 63323}, {32380, 63324}, {32381, 63325}, {32382, 63326}, {32383, 63327}, {32390, 63332}, {32394, 63333}, {32399, 63336}, {32400, 63337}, {32402, 63338}, {32403, 63339}, {32404, 63340}, {32405, 63341}, {32406, 63342}, {35858, 63330}, {35859, 63331}, {44668, 63394}, {48669, 63296}, {48758, 63302}, {48759, 63303}, {49072, 63305}, {49073, 63306}, {49108, 63307}, {49179, 63308}, {49180, 63309}, {49244, 63328}, {49245, 63329}, {49341, 63300}, {49342, 63301}


X(63368) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 3RD HATZIPOLAKIS

Barycentrics    2*a^19-2*a^16*b*c*(b+c)-8*a^17*(b^2+c^2)-(b-c)^8*(b+c)^7*(b^2+c^2)^2+a*(b-c)^6*(b+c)^8*(b^2+c^2)^2+a^2*(b-c)^6*(b+c)^7*(5*b^4-6*b^3*c+10*b^2*c^2-6*b*c^3+5*c^4)+a^15*(9*b^4-b^3*c+36*b^2*c^2-b*c^3+9*c^4)-a^14*(b^5-5*b^4*c-4*b^3*c^2-4*b^2*c^3-5*b*c^4+c^5)+a^13*(3*b^6+2*b^5*c-55*b^4*c^2+4*b^3*c^3-55*b^2*c^4+2*b*c^5+3*c^6)+a^6*(b-c)^2*(b+c)^5*(5*b^6-8*b^5*c-13*b^4*c^2+24*b^3*c^3-13*b^2*c^4-8*b*c^5+5*c^6)-a^4*(b-c)^4*(b+c)^5*(9*b^6-4*b^5*c-7*b^4*c^2+10*b^3*c^3-7*b^2*c^4-4*b*c^5+9*c^6)+a^12*(5*b^7+b^6*c-3*b^5*c^2-25*b^4*c^3-25*b^3*c^4-3*b^2*c^5+b*c^6+5*c^7)+a^11*(-11*b^8+3*b^7*c+20*b^6*c^2-14*b^5*c^3+94*b^4*c^4-14*b^3*c^5+20*b^2*c^6+3*b*c^7-11*c^8)-a^3*(b^2-c^2)^4*(3*b^8+7*b^7*c-4*b^5*c^3-6*b^4*c^4-4*b^3*c^5+7*b*c^7+3*c^8)+a^10*(-9*b^9-11*b^8*c+6*b^7*c^2+34*b^6*c^3+12*b^5*c^4+12*b^4*c^5+34*b^3*c^6+6*b^2*c^7-11*b*c^8-9*c^9)+a^5*(b^2-c^2)^2*(b^10+6*b^9*c-7*b^8*c^2-28*b^7*c^3+6*b^6*c^4+12*b^5*c^5+6*b^4*c^6-28*b^3*c^7-7*b^2*c^8+6*b*c^9+c^10)+a^9*(3*b^10-10*b^9*c+27*b^8*c^2+20*b^7*c^3-62*b^6*c^4+12*b^5*c^5-62*b^4*c^6+20*b^3*c^7+27*b^2*c^8-10*b*c^9+3*c^10)+a^8*(5*b^11+5*b^10*c+b^9*c^2+13*b^8*c^3+6*b^7*c^4-62*b^6*c^5-62*b^5*c^6+6*b^4*c^7+13*b^3*c^8+b^2*c^9+5*b*c^10+5*c^11)+a^7*(3*b^12+5*b^11*c-20*b^10*c^2+7*b^9*c^3+5*b^8*c^4-28*b^7*c^5+24*b^6*c^6-28*b^5*c^7+5*b^4*c^8+7*b^3*c^9-20*b^2*c^10+5*b*c^11+3*c^12) : :

X(63368) lies on these lines: {81, 22466}, {17056, 22966}, {18978, 63295}, {19083, 63298}, {19084, 63299}, {22476, 63292}, {22483, 63293}, {22524, 63294}, {22533, 63297}, {22559, 63304}, {22647, 37635}, {22653, 63310}, {22658, 63311}, {22671, 63312}, {22675, 63313}, {22747, 63315}, {22776, 63316}, {22800, 63317}, {22833, 63318}, {22941, 63319}, {22943, 63320}, {22945, 63321}, {22947, 63322}, {22951, 63291}, {22955, 63323}, {22956, 63324}, {22957, 63325}, {22958, 63326}, {22959, 63327}, {22965, 63332}, {22969, 63333}, {22976, 63336}, {22977, 63337}, {22979, 63338}, {22980, 63339}, {22981, 63340}, {22982, 63341}, {22983, 63342}, {35860, 63330}, {35861, 63331}, {48670, 63296}, {48760, 63302}, {48761, 63303}, {49074, 63305}, {49075, 63306}, {49109, 63307}, {49181, 63308}, {49182, 63309}, {49246, 63328}, {49247, 63329}, {49343, 63300}, {49344, 63301}


X(63369) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND HUTSON EXTOUCH

Barycentrics    a*(-4*a^7*b*c+a^8*(b+c)+4*a^5*b*c*(b^2-7*b*c+c^2)+(b-c)^4*(b+c)^3*(b^2+3*b*c+c^2)-4*a*b*c*(b^2-c^2)^2*(b^2+5*b*c+c^2)-a^6*(4*b^3+29*b^2*c+29*b*c^2+4*c^3)+4*a^3*b*c*(b^4+28*b^3*c+46*b^2*c^2+28*b*c^3+c^4)+a^4*(6*b^5+57*b^4*c+133*b^3*c^2+133*b^2*c^3+57*b*c^4+6*c^5)-a^2*(4*b^7+31*b^6*c+35*b^5*c^2-102*b^4*c^3-102*b^3*c^4+35*b^2*c^5+31*b*c^6+4*c^7)) : :

X(63369) lies on these lines: {1, 12867}, {81, 7160}, {8000, 63333}, {9874, 37635}, {9898, 63310}, {10059, 63339}, {10075, 63340}, {12120, 63291}, {12139, 63293}, {12200, 63294}, {12249, 63297}, {12260, 63292}, {12333, 63304}, {12411, 63311}, {12464, 63312}, {12465, 63313}, {12500, 63315}, {12599, 63318}, {12777, 63319}, {12789, 63320}, {12801, 63321}, {12802, 63322}, {12856, 63323}, {12857, 63324}, {12858, 63325}, {12859, 63326}, {12860, 63327}, {12863, 63332}, {12864, 17056}, {12872, 63338}, {12874, 63341}, {12875, 63342}, {13914, 63336}, {13978, 63337}, {18979, 63295}, {19085, 63298}, {19086, 63299}, {22777, 63316}, {22801, 63317}, {35862, 63330}, {35863, 63331}, {48671, 63296}, {48762, 63302}, {48763, 63303}, {49076, 63305}, {49077, 63306}, {49110, 63307}, {49183, 63308}, {49184, 63309}, {49248, 63328}, {49249, 63329}, {49345, 63300}, {49346, 63301}, {63356, 63381}, {63361, 63393}


X(63370) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST JENKINS

Barycentrics    2*a^4+3*a^3*(b+c)-(b^2-c^2)^2+a^2*(3*b^2+8*b*c+3*c^2)+a*(b^3+4*b^2*c+4*b*c^2+c^3) : :
X(63370) = X[2292]+3*X[49744]

X(63370) lies on circumconic {{A, B, C, X(1224), X(5620)}} and on these lines: {1, 149}, {8, 41812}, {10, 81}, {30, 32167}, {40, 63297}, {58, 58449}, {86, 36974}, {226, 63326}, {323, 24987}, {355, 63338}, {388, 47057}, {515, 5453}, {516, 13408}, {517, 63374}, {519, 37631}, {540, 58386}, {551, 63343}, {726, 63372}, {758, 49743}, {946, 63323}, {950, 63332}, {986, 48868}, {1010, 21081}, {1104, 1125}, {1210, 63340}, {2292, 49744}, {2392, 49557}, {2784, 63345}, {2787, 24099}, {2796, 63347}, {3244, 32923}, {3585, 17019}, {3626, 4733}, {3634, 35466}, {3636, 4892}, {3743, 49745}, {3822, 37594}, {3828, 61661}, {3945, 49168}, {4297, 63291}, {4298, 18593}, {5270, 5483}, {5290, 18625}, {5712, 22836}, {5847, 63359}, {5850, 63381}, {5883, 50610}, {6684, 63307}, {8666, 63316}, {8715, 63304}, {9347, 37719}, {10106, 63295}, {10915, 63309}, {10916, 63308}, {12053, 63327}, {12527, 16585}, {12579, 58387}, {12699, 63296}, {13405, 63446}, {13883, 63328}, {13936, 63329}, {17766, 63373}, {18483, 63317}, {19862, 63344}, {19925, 63318}, {21077, 63325}, {21620, 63388}, {27577, 52680}, {28164, 63386}, {30984, 43223}, {31204, 51073}, {31397, 63339}, {34379, 63394}, {48764, 63302}, {48765, 63303}, {49078, 63305}, {49079, 63306}, {49347, 63300}, {49348, 63301}, {49542, 63293}, {49545, 63294}, {49547, 63298}, {49548, 63299}, {49553, 63311}, {49555, 63312}, {49556, 63313}, {49561, 63315}, {49585, 63320}, {49586, 63321}, {49587, 63322}, {49600, 63324}, {49601, 63330}, {49602, 63331}, {49618, 63336}, {49619, 63337}, {49626, 63341}, {49627, 63342}, {51090, 63384}, {51196, 63385}

X(63370) = midpoint of X(i) and X(j) for these {i,j}: {2292, 63366}, {3743, 49745}, {13408, 63356}, {63354, 63360}
X(63370) = reflection of X(i) in X(j) for these {i,j}: {12579, 58387}
X(63370) = pole of line {1203, 5127} with respect to the Stammler hyperbola
X(63370) = pole of line {21124, 24899} with respect to the Steiner inellipse
X(63370) = pole of line {3218, 6703} with respect to the dual conic of Yff parabola
X(63370) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 26131, 11263}, {8, 41819, 63310}, {81, 63319, 10}, {2292, 49744, 63366}, {13408, 63356, 516}, {17056, 63292, 1125}, {37631, 63360, 63354}, {63354, 63360, 519}


X(63371) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND MIDHEIGHT

Barycentrics    a*(2*a^11*(b+c)+b*c*(b^2-c^2)^4*(b^2+c^2)-2*a^10*(b^2-b*c+c^2)+4*a^5*(b-c)^2*(b+c)^3*(4*b^2-3*b*c+4*c^2)-2*a^9*(2*b^3+b^2*c+b*c^2+2*c^3)+2*a*(b-c)^4*(b+c)^3*(2*b^4+b^3*c+6*b^2*c^2+b*c^3+2*c^4)+2*a^4*(b^2-c^2)^2*(4*b^4+5*b^3*c+12*b^2*c^2+5*b*c^3+4*c^4)-2*a^3*(b-c)^2*(b+c)^3*(7*b^4-8*b^3*c+14*b^2*c^2-8*b*c^3+7*c^4)+a^8*(8*b^4-3*b^3*c-8*b^2*c^2-3*b*c^3+8*c^4)-4*a^7*(b^5+b^4*c-4*b^3*c^2-4*b^2*c^3+b*c^4+c^5)-2*a^2*(b^2-c^2)^2*(b^6+3*b^5*c+7*b^4*c^2+6*b^3*c^3+7*b^2*c^4+3*b*c^5+c^6)-4*a^6*(3*b^6+b^5*c-3*b^4*c^2-4*b^3*c^3-3*b^2*c^4+b*c^5+3*c^6)) : :

X(63371) lies on these lines: {30, 63353}, {64, 81}, {944, 1503}, {1498, 63291}, {2777, 63352}, {2883, 17056}, {3357, 63307}, {5453, 6000}, {5878, 63323}, {6001, 63356}, {6225, 37635}, {6247, 63318}, {6266, 63322}, {6267, 63321}, {6285, 63295}, {6696, 35466}, {7355, 63332}, {7973, 63333}, {8991, 63336}, {9899, 63310}, {9914, 63311}, {10060, 63339}, {10076, 63340}, {11381, 63293}, {12202, 63294}, {12250, 63297}, {12262, 63292}, {12335, 63304}, {12468, 63312}, {12469, 63313}, {12502, 63315}, {12779, 63319}, {12791, 63320}, {12920, 63324}, {12930, 63325}, {12940, 63326}, {12950, 63327}, {13093, 63338}, {13094, 63341}, {13095, 63342}, {13408, 15311}, {13980, 63337}, {19087, 63298}, {19088, 63299}, {22778, 63316}, {22802, 63317}, {34146, 63359}, {35864, 63330}, {35865, 63331}, {36201, 63379}, {48672, 63296}, {48766, 63302}, {48767, 63303}, {49080, 63305}, {49081, 63306}, {49185, 63308}, {49186, 63309}, {49250, 63328}, {49251, 63329}, {49349, 63300}, {49350, 63301}


X(63372) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST NEUBERG

Barycentrics    2*a^2*b^2*c^2*(b+c)-b^2*(b-c)^2*c^2*(b+c)+a*b^2*c^2*(b+c)^2+a^5*(b^2+c^2)+a^3*b*c*(b^2+c^2)+a^4*(b^3+b^2*c+b*c^2+c^3) : :

X(63372) lies on these lines: {39, 17056}, {76, 81}, {194, 37635}, {384, 63294}, {511, 13408}, {538, 3175}, {726, 63370}, {730, 63354}, {732, 63359}, {2782, 5453}, {3095, 63323}, {3934, 35466}, {5969, 63347}, {6248, 63318}, {6272, 63322}, {6273, 63321}, {7757, 63343}, {7786, 63344}, {7976, 63333}, {8992, 63336}, {9466, 61661}, {9902, 63310}, {9917, 63311}, {9983, 63315}, {10063, 63339}, {10079, 63340}, {11257, 63291}, {12143, 63293}, {12251, 63297}, {12263, 63292}, {12338, 63304}, {12474, 63312}, {12475, 63313}, {12782, 63319}, {12794, 63320}, {12836, 63327}, {12837, 63326}, {12923, 63324}, {12933, 63325}, {13077, 63332}, {13108, 63338}, {13109, 63341}, {13110, 63342}, {13983, 63337}, {14839, 63360}, {14881, 63317}, {18982, 63295}, {19089, 63298}, {19090, 63299}, {20081, 41819}, {22779, 63316}, {25080, 46179}, {32451, 63385}, {32515, 63358}, {35866, 63330}, {35867, 63331}, {46182, 55010}, {48673, 63296}, {48768, 63302}, {48769, 63303}, {49082, 63305}, {49083, 63306}, {49111, 63307}, {49187, 63308}, {49188, 63309}, {49252, 63328}, {49253, 63329}, {49351, 63300}, {49352, 63301}

X(63372) = pole of line {24921, 47837} with respect to the Steiner inellipse


X(63373) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 2ND NEUBERG

Barycentrics    2*a^6*(b+c)-b^2*(b-c)^2*c^2*(b+c)+2*a^3*(b+c)^2*(b^2+c^2)+a^5*(3*b^2+2*b*c+3*c^2)+2*a^2*b*c*(b^3+2*b^2*c+2*b*c^2+c^3)+a^4*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)+a*b*c*(b^4+b^3*c+4*b^2*c^2+b*c^3+c^4) : :

X(63373) lies on these lines: {81, 83}, {732, 63359}, {754, 37631}, {2896, 37635}, {5453, 63358}, {6249, 63318}, {6274, 63322}, {6275, 63321}, {6287, 63323}, {6292, 17056}, {6704, 35466}, {7977, 63333}, {8993, 63336}, {9903, 63310}, {9918, 63311}, {10064, 63339}, {10080, 63340}, {12122, 63291}, {12144, 63293}, {12206, 63294}, {12252, 63297}, {12264, 63292}, {12339, 63304}, {12476, 63312}, {12477, 63313}, {12783, 63319}, {12795, 63320}, {12924, 63324}, {12934, 63325}, {12944, 63326}, {12954, 63327}, {13078, 63332}, {13111, 63338}, {13112, 63341}, {13113, 63342}, {13408, 29012}, {13984, 63337}, {17766, 63370}, {18983, 63295}, {19091, 63298}, {19092, 63299}, {20088, 41819}, {20432, 40886}, {22780, 63316}, {22803, 63317}, {31168, 63343}, {31268, 63344}, {35868, 63330}, {35869, 63331}, {48674, 63296}, {48770, 63302}, {48771, 63303}, {49084, 63305}, {49085, 63306}, {49112, 63307}, {49189, 63308}, {49190, 63309}, {49254, 63328}, {49255, 63329}, {49353, 63300}, {49354, 63301}, {63345, 63374}


X(63374) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ORTHIC AXES

Barycentrics    2*a^7+2*a^6*(b+c)-(b-c)^4*(b+c)^3+a^5*(-3*b^2+2*b*c-3*c^2)+a*(b^2-c^2)^2*(b^2+3*b*c+c^2)-a^3*b*c*(5*b^2+4*b*c+5*c^2)-5*a^4*(b^3+b^2*c+b*c^2+c^3)+2*a^2*(b-c)^2*(2*b^3+5*b^2*c+5*b*c^2+2*c^3) : :
X(63374) =

X(63374) lies on circumconic {{A, B, C, X(51500), X(52382)}} and on these lines: {1, 30}, {3, 37635}, {4, 41819}, {5, 81}, {12, 35197}, {26, 63311}, {58, 10021}, {140, 580}, {195, 6881}, {323, 442}, {355, 63310}, {495, 63326}, {496, 63327}, {511, 6583}, {517, 63370}, {546, 45942}, {547, 45939}, {549, 63343}, {550, 63291}, {632, 63344}, {942, 1154}, {952, 63354}, {1353, 63385}, {1483, 63333}, {2782, 63456}, {3070, 63330}, {3071, 63331}, {3564, 63350}, {3628, 35466}, {5397, 21230}, {5499, 26131}, {5535, 48924}, {5663, 63455}, {5690, 63319}, {5707, 16266}, {5719, 63446}, {5762, 63387}, {5843, 63381}, {5844, 63360}, {5874, 63322}, {5875, 63321}, {5901, 63292}, {5965, 9956}, {6756, 63293}, {7583, 63328}, {7584, 63329}, {8143, 63366}, {10942, 63309}, {10943, 63308}, {13391, 49557}, {13407, 32423}, {13925, 63336}, {13993, 63337}, {14795, 15447}, {16160, 51340}, {18593, 24470}, {19116, 63298}, {19117, 63299}, {22765, 48930}, {24936, 31650}, {28174, 63356}, {31204, 55856}, {32134, 63294}, {32141, 63304}, {32146, 63312}, {32147, 63313}, {32151, 63315}, {32153, 63316}, {32162, 63320}, {32213, 63341}, {32214, 63342}, {32515, 63358}, {34380, 63394}, {36250, 61552}, {37607, 61566}, {46441, 50461}, {48772, 63302}, {48773, 63303}, {49086, 63305}, {49087, 63306}, {49355, 63300}, {49356, 63301}, {63345, 63373}, {63355, 63362}, {63363, 63364}

X(63374) = midpoint of X(i) and X(j) for these {i,j}: {5453, 13408}, {8143, 63366}
X(63374) = pole of line {5124, 8818} with respect to the Kiepert hyperbola
X(63374) = X(5) of 2nd Pavlov triangle
X(63374) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 41819, 63338}, {81, 63323, 5}, {5453, 13408, 30}, {13408, 37631, 5453}, {63296, 63338, 4}, {63317, 63318, 546}, {63326, 63339, 495}, {63350, 63351, 63359}


X(63375) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND REFLECTION

Barycentrics    a*(2*a^11*(b+c)+a^10*(b+c)^2+b*c*(b^2-c^2)^4*(b^2+c^2)+a*(b-c)^4*(b+c)^3*(b^2+b*c+c^2)^2-a^9*(7*b^3+5*b^2*c+5*b*c^2+7*c^3)-2*a^3*(b-c)^2*(b+c)^3*(b^4+b^3*c+2*b^2*c^2+b*c^3+c^4)-2*a^8*(2*b^4+3*b^3*c+4*b^2*c^2+3*b*c^3+2*c^4)+2*a^7*(4*b^5+b^4*c+2*b^3*c^2+2*b^2*c^3+b*c^4+4*c^5)+a^2*(b^2-c^2)^2*(b^6-3*b^5*c-2*b^4*c^2-6*b^3*c^3-2*b^2*c^4-3*b*c^5+c^6)+a^6*(6*b^6+5*b^5*c+9*b^4*c^2+4*b^3*c^3+9*b^2*c^4+5*b*c^5+6*c^6)+a^5*(-2*b^7+4*b^6*c+5*b^5*c^2+5*b^4*c^3+5*b^3*c^4+5*b^2*c^5+4*b*c^6-2*c^7)+a^4*(-4*b^8+b^7*c+2*b^6*c^2+5*b^5*c^3+4*b^4*c^4+5*b^3*c^5+2*b^2*c^6+b*c^7-4*c^8)) : :

X(63375) lies on these lines: {54, 81}, {195, 63338}, {539, 37631}, {1154, 2646}, {1209, 17056}, {2888, 37635}, {3574, 63318}, {5965, 63394}, {6276, 63322}, {6277, 63321}, {6288, 63323}, {6689, 35466}, {7691, 63291}, {7979, 63333}, {8995, 63336}, {9905, 63310}, {9920, 63311}, {9985, 63315}, {10066, 63339}, {10082, 63340}, {10610, 63307}, {10628, 63348}, {11576, 63293}, {12208, 63294}, {12254, 63297}, {12266, 63292}, {12341, 63304}, {12480, 63312}, {12481, 63313}, {12785, 63319}, {12797, 63320}, {12926, 63324}, {12936, 63325}, {12946, 63326}, {12956, 63327}, {12965, 63330}, {12971, 63331}, {13079, 63332}, {13121, 63341}, {13122, 63342}, {13407, 32423}, {13408, 18400}, {13986, 63337}, {18984, 63295}, {19095, 63298}, {19096, 63299}, {22781, 63316}, {22804, 63317}, {32350, 63388}, {44668, 63359}, {48675, 63296}, {48774, 63302}, {48775, 63303}, {49088, 63305}, {49089, 63306}, {49191, 63308}, {49192, 63309}, {49256, 63328}, {49257, 63329}, {49357, 63300}, {49358, 63301}


X(63376) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST SCHIFFLER

Barycentrics    2*a^7+2*a^6*(b+c)-(b-c)^4*(b+c)^3+a^5*(-5*b^2+2*b*c-5*c^2)-a*(b^2-c^2)^2*(b^2-b*c+c^2)-a^4*(5*b^3+9*b^2*c+9*b*c^2+5*c^3)+a^3*(4*b^4-9*b^3*c-16*b^2*c^2-9*b*c^3+4*c^4)+4*a^2*(b^5-2*b^3*c^2-2*b^2*c^3+c^5) : :

X(63376) lies on these lines: {79, 63335}, {81, 10266}, {10122, 44409}, {12146, 63293}, {12209, 63294}, {12255, 63297}, {12267, 63292}, {12342, 63304}, {12409, 63310}, {12414, 63311}, {12482, 63312}, {12483, 63313}, {12504, 63315}, {12556, 63291}, {12600, 63318}, {12786, 63319}, {12798, 63320}, {12807, 63321}, {12808, 63322}, {12849, 37635}, {12919, 63323}, {12927, 63324}, {12937, 63325}, {12947, 63326}, {12957, 63327}, {13080, 63332}, {13089, 17056}, {13100, 63333}, {13126, 63338}, {13128, 63339}, {13129, 63340}, {13130, 63341}, {13131, 63342}, {13919, 63336}, {13987, 63337}, {18985, 63295}, {19097, 63298}, {19098, 63299}, {22782, 63316}, {22805, 63317}, {35870, 63330}, {35871, 63331}, {48676, 63296}, {48776, 63302}, {48777, 63303}, {49090, 63305}, {49091, 63306}, {49113, 63307}, {49193, 63308}, {49194, 63309}, {49258, 63328}, {49259, 63329}, {49359, 63300}, {49360, 63301}, {49745, 63365}


X(63377) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 1ST TRI-SQUARES-CENTRAL

Barycentrics    10*a^7+2*a^6*(b+c)-5*(b-c)^4*(b+c)^3+a^5*(-15*b^2+2*b*c-15*c^2)+a*(b^2-c^2)^2*(5*b^2+11*b*c+5*c^2)+2*a^2*(b-c)^2*(b+c)*(6*b^2+11*b*c+6*c^2)-a^4*(b+c)*(9*b^2+8*b*c+9*c^2)-a^3*b*c*(13*b^2+4*b*c+13*c^2)-6*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63377) lies on these lines: {30, 63351}, {81, 1327}, {13666, 63291}, {13667, 63292}, {13668, 63293}, {13672, 63294}, {13674, 63297}, {13675, 63304}, {13678, 37635}, {13679, 63310}, {13680, 63311}, {13682, 63312}, {13683, 63313}, {13685, 63315}, {13687, 63318}, {13688, 63319}, {13689, 63320}, {13690, 63321}, {13691, 63322}, {13692, 63323}, {13693, 63324}, {13694, 63325}, {13695, 63326}, {13696, 63327}, {13699, 63332}, {13701, 17056}, {13702, 63333}, {13712, 63343}, {13713, 63338}, {13714, 63339}, {13715, 63340}, {13716, 63341}, {13717, 63342}, {13920, 63336}, {13988, 63337}, {15682, 63305}, {18986, 63295}, {19099, 63298}, {22541, 63299}, {22783, 63316}, {22806, 63317}, {35872, 63330}, {35873, 63331}, {37631, 49614}, {48677, 63296}, {48778, 63302}, {48780, 63303}, {49093, 63306}, {49114, 63307}, {49195, 63308}, {49196, 63309}, {49260, 63328}, {49261, 63329}, {49361, 63300}, {49362, 63301}, {63359, 63378}


X(63378) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND 2ND TRI-SQUARES-CENTRAL

Barycentrics    10*a^7+2*a^6*(b+c)-5*(b-c)^4*(b+c)^3+a^5*(-15*b^2+2*b*c-15*c^2)+a*(b^2-c^2)^2*(5*b^2+11*b*c+5*c^2)+2*a^2*(b-c)^2*(b+c)*(6*b^2+11*b*c+6*c^2)-a^4*(b+c)*(9*b^2+8*b*c+9*c^2)-a^3*b*c*(13*b^2+4*b*c+13*c^2)+6*a*(2*a^3*(b+c)+2*a*b*c*(b+c)+b*c*(b^2+c^2)+2*a^2*(b^2+b*c+c^2))*S : :

X(63378) lies on these lines: {30, 63350}, {81, 1328}, {13786, 63291}, {13787, 63292}, {13788, 63293}, {13792, 63294}, {13794, 63297}, {13795, 63304}, {13798, 37635}, {13799, 63310}, {13800, 63311}, {13802, 63313}, {13803, 63312}, {13805, 63315}, {13807, 63318}, {13808, 63319}, {13809, 63320}, {13810, 63321}, {13811, 63322}, {13812, 63323}, {13813, 63324}, {13814, 63325}, {13815, 63326}, {13816, 63327}, {13819, 63332}, {13821, 17056}, {13822, 63333}, {13835, 63343}, {13836, 63338}, {13837, 63339}, {13838, 63340}, {13839, 63341}, {13840, 63342}, {13848, 63336}, {13849, 63337}, {15682, 63306}, {18987, 63295}, {19100, 63299}, {19101, 63298}, {22784, 63316}, {22807, 63317}, {35874, 63330}, {35875, 63331}, {37631, 49616}, {48678, 63296}, {48779, 63303}, {48781, 63302}, {49092, 63305}, {49115, 63307}, {49197, 63308}, {49198, 63309}, {49262, 63328}, {49263, 63329}, {49363, 63300}, {49364, 63301}, {63359, 63377}


X(63379) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND WALSMITH

Barycentrics    2*a^11-2*a^9*(b^2+c^2)-(b-c)^4*(b+c)^3*(b^2+c^2)^2-a^7*(b+c)^2*(b^2-3*b*c+c^2)+a*(b+c)^4*(b^3-b^2*c+b*c^2-c^3)^2+2*a^8*(b^3+c^3)+a^2*(b-c)^2*(b+c)^3*(3*b^4-2*b^3*c+6*b^2*c^2-2*b*c^3+3*c^4)-a^6*(3*b^5+b^4*c+b*c^4+3*c^5)+a^5*(b^6-2*b^5*c-b^4*c^2-b^2*c^4-2*b*c^5+c^6)-a^4*(b^7+b^6*c-3*b^5*c^2-b^4*c^3-b^3*c^4-3*b^2*c^5+b*c^6+c^7)-a^3*(b^8+b^7*c-2*b^5*c^3-2*b^4*c^4-2*b^3*c^5+b*c^7+c^8) : :

X(63379) lies on these lines: {67, 81}, {511, 63352}, {542, 5453}, {1503, 63348}, {2781, 13408}, {2836, 63396}, {2854, 63394}, {6593, 17056}, {6698, 35466}, {9970, 63323}, {11061, 37635}, {14984, 63353}, {32233, 63291}, {32238, 63292}, {32239, 63293}, {32242, 63294}, {32243, 63295}, {32247, 63297}, {32252, 63298}, {32253, 63299}, {32256, 63304}, {32261, 63310}, {32262, 63311}, {32265, 63312}, {32266, 63313}, {32268, 63315}, {32270, 63316}, {32271, 63317}, {32274, 63318}, {32278, 63319}, {32279, 63320}, {32280, 63321}, {32281, 63322}, {32287, 63324}, {32288, 63325}, {32289, 63326}, {32290, 63327}, {32297, 63332}, {32298, 63333}, {32303, 63336}, {32304, 63337}, {32306, 63338}, {32307, 63339}, {32308, 63340}, {32309, 63341}, {32310, 63342}, {34319, 63343}, {35876, 63330}, {35877, 63331}, {36201, 63371}, {48679, 63296}, {48782, 63302}, {48783, 63303}, {49094, 63305}, {49095, 63306}, {49116, 63307}, {49199, 63308}, {49200, 63309}, {49264, 63328}, {49265, 63329}, {49365, 63300}, {49366, 63301}


X(63380) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 4TH VIJAY-PAASCHE-HUTSON AND 2ND PAVLOV

Barycentrics    a*(4*a*b*(a+b-c)*c*(a-b+c)*(b+c)+a^4*(-3*b^2+2*b*c-3*c^2)+3*a^2*(b^2-c^2)^2+(a^3+b^3+b^2*c-b*c^2-c^3)*(a^3-b^3-b^2*c+b*c^2+c^3)+8*S^3) : :

X(63380) lies on these lines: {1, 84}, {3, 40651}, {4, 1123}, {40, 30556}, {198, 6212}, {946, 13388}, {962, 55398}, {1158, 13389}, {2262, 6213}, {6502, 38003}, {9799, 30333}, {12514, 61095}, {14121, 38015}, {30335, 60903}, {31573, 37426}, {38487, 49234}

X(63380) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1413), X(48308)}}, {{A, B, C, X(1422), X(46433)}}, {{A, B, C, X(1433), X(7133)}}


X(63381) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND AGUILERA

Barycentrics    2*a^5-2*a^4*(b+c)-(b-c)^4*(b+c)+a*(b^2-c^2)^2-a^3*(3*b^2+4*b*c+3*c^2)+a^2*(3*b^3-5*b^2*c-5*b*c^2+3*c^3) : :
X(63381) = -3*X[15936]+X[25255]

X(63381) lies on circumconic {{A, B, C, X(27), X(3255)}} and on these lines: {1, 3255}, {6, 24779}, {7, 27}, {9, 17056}, {142, 35466}, {144, 37635}, {171, 41548}, {219, 4644}, {390, 63333}, {516, 63354}, {518, 63360}, {524, 18698}, {527, 25080}, {942, 1842}, {971, 13408}, {1001, 63316}, {1214, 41572}, {1723, 4675}, {2257, 4888}, {2801, 63365}, {3664, 40937}, {3668, 4667}, {4312, 63310}, {5220, 63325}, {5223, 63319}, {5453, 5762}, {5542, 63292}, {5706, 60896}, {5712, 60950}, {5718, 60994}, {5728, 56814}, {5759, 63291}, {5779, 63323}, {5805, 63318}, {5843, 63374}, {5845, 63359}, {5850, 63370}, {5853, 63415}, {6007, 15185}, {6172, 63343}, {6173, 37887}, {7359, 18635}, {11495, 63304}, {13159, 36250}, {15909, 63335}, {15936, 25255}, {16112, 63324}, {16585, 60979}, {17378, 25252}, {17668, 50307}, {18230, 63344}, {18593, 52819}, {20059, 41819}, {25664, 59574}, {31204, 60996}, {31657, 63307}, {36996, 63297}, {38454, 63393}, {40940, 60980}, {41857, 63334}, {41874, 56020}, {49743, 56839}, {51190, 63385}, {60879, 63293}, {60882, 63294}, {60883, 63295}, {60884, 63296}, {60887, 63299}, {60888, 63300}, {60889, 63301}, {60890, 63302}, {60891, 63303}, {60894, 63305}, {60895, 63308}, {60897, 63311}, {60898, 63312}, {60899, 63313}, {60900, 63315}, {60901, 63317}, {60906, 63320}, {60907, 63321}, {60908, 63322}, {60909, 63326}, {60910, 63327}, {60913, 63328}, {60914, 63329}, {60915, 63330}, {60916, 63331}, {60919, 63332}, {60920, 63336}, {60921, 63337}, {60922, 63338}, {60923, 63339}, {60924, 63340}, {60925, 63341}, {60926, 63342}, {63356, 63369}

X(63381) = pole of line {17094, 28473} with respect to the incircle
X(63381) = pole of line {25525, 62322} with respect to the Kiepert hyperbola
X(63381) = pole of line {4292, 57002} with respect to the dual conic of Yff parabola
X(63381) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {144, 37635, 63384}, {63394, 63398, 63360}


X(63382) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND CEVIAN OF X(89)

Barycentrics    a*(2*a^2-(b-c)^2+a*(b+c))*(a^3+b^3-2*b^2*c-2*b*c^2+c^3-a^2*(b+c)-a*(b^2+b*c+c^2)) : :

X(63382) lies on these lines: {3, 63304}, {57, 77}, {89, 5744}, {142, 35466}, {187, 37597}, {940, 25080}, {942, 11700}, {2650, 53388}, {3601, 63333}, {3664, 5745}, {5453, 37623}, {5709, 63308}, {5791, 63325}, {6245, 13408}, {6841, 63366}, {9940, 63307}, {12437, 63415}, {15803, 63310}, {18261, 37543}, {24391, 63360}, {24929, 53114}, {31204, 41867}, {34050, 55010}, {37534, 63309}, {37584, 62844}, {37642, 37887}, {60974, 63387}, {62795, 63344}

X(63382) = perspector of circumconic {{A, B, C, X(1414), X(17136)}}
X(63382) = X(i)-complementary conjugate of X(j) for these {i, j}: {26750, 2887}
X(63382) = pole of line {312, 60235} with respect to the Wallace hyperbola
X(63382) = pole of line {11281, 12047} with respect to the dual conic of Yff parabola
X(63382) = intersection, other than A, B, C, of circumconics {{A, B, C, X(57), X(17056)}}, {{A, B, C, X(81), X(5745)}}, {{A, B, C, X(1014), X(3664)}}


X(63383) = X(4)X(1385)∩X(57)X(89)

Barycentrics    a*(2*a+2*b-c)*(2*a-b+2*c)*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2) : :

X(63383) lies on these lines: {4, 1385}, {57, 89}, {189, 30608}, {937, 2163}, {972, 4588}, {4604, 36100}, {28658, 57744}

X(63383) = X(i)-isoconjugate-of-X(j) for these {i, j}: {45, 84}, {189, 2177}, {280, 1405}, {282, 2099}, {1413, 4873}, {1422, 3711}, {1436, 3679}, {1903, 4653}, {2192, 5219}, {2208, 4671}, {2357, 5235}, {3940, 7129}, {4273, 39130}, {4775, 44327}, {4777, 36049}, {4791, 32652}, {4814, 37141}, {4893, 13138}, {4944, 8059}, {7367, 62780}
X(63383) = X(i)-Dao conjugate of X(j) for these {i, j}: {57, 5219}, {5514, 4777}, {16596, 4791}, {55044, 4944}
X(63383) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30608, 89}
X(63383) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(40)}}, {{A, B, C, X(198), X(1404)}}, {{A, B, C, X(347), X(1443)}}, {{A, B, C, X(1385), X(7011)}}, {{A, B, C, X(2320), X(55979)}}, {{A, B, C, X(2349), X(31361)}}, {{A, B, C, X(6611), X(40985)}}, {{A, B, C, X(7080), X(17012)}}, {{A, B, C, X(27398), X(37685)}}
X(63383) = barycentric product X(i)*X(j) for these (i, j): {198, 20569}, {223, 30608}, {329, 89}, {1817, 30588}, {2163, 322}, {2320, 347}, {2364, 40702}, {4597, 6129}, {14837, 4604}, {17896, 4588}, {39704, 40}, {53114, 8822}
X(63383) = barycentric quotient X(i)/X(j) for these (i, j): {40, 3679}, {89, 189}, {198, 45}, {221, 2099}, {223, 5219}, {329, 4671}, {1817, 5235}, {2163, 84}, {2187, 2177}, {2199, 1405}, {2320, 280}, {2324, 4873}, {2360, 4653}, {2364, 282}, {4588, 13138}, {4604, 44327}, {6129, 4777}, {7074, 3711}, {7078, 3940}, {14298, 4944}, {14837, 4791}, {15501, 36921}, {20569, 44190}, {21075, 4125}, {28607, 1436}, {28658, 1903}, {30608, 34404}, {34073, 36049}, {39704, 309}, {53114, 39130}, {55212, 4931}, {55979, 41081}


X(63384) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND X(1)-CIRCUMCONCEVIAN-OF-X(9)

Barycentrics    a*(a^4-3*a^3*(b+c)+a^2*(b^2+7*b*c+c^2)-(b-c)^2*(2*b^2+5*b*c+2*c^2)+a*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)) : :

X(63384) lies on these lines: {7, 17056}, {9, 81}, {37, 651}, {45, 60983}, {88, 142}, {144, 37635}, {323, 61025}, {390, 63360}, {480, 63304}, {516, 63319}, {518, 63333}, {527, 63343}, {673, 63426}, {971, 63291}, {1014, 21811}, {2292, 16133}, {2346, 2648}, {3920, 63268}, {5223, 63354}, {5453, 5779}, {5728, 63396}, {5759, 13408}, {5762, 63323}, {5817, 63318}, {6172, 37631}, {6666, 31204}, {8545, 25080}, {11372, 63356}, {16585, 60966}, {17022, 60947}, {17768, 26131}, {18230, 35466}, {18593, 60937}, {21168, 63297}, {25417, 54358}, {27785, 60911}, {28606, 60964}, {31671, 63317}, {33761, 60942}, {36991, 63386}, {37633, 60994}, {41819, 61006}, {41825, 60957}, {42014, 63393}, {50995, 63359}, {51052, 63398}, {51090, 63370}, {51190, 63394}, {51516, 63338}, {59381, 63307}, {60883, 63326}, {60909, 63295}, {60910, 63332}, {60919, 63327}, {60933, 62796}, {61023, 61661}, {63277, 63366}

X(63384) = pole of line {4867, 12563} with respect to the dual conic of Yff parabola
X(63384) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9, 63387, 81}, {144, 37635, 63381}


X(63385) = PERSPECTOR OF THESE TRIANGLES: 2ND PAVLOV AND X(3)-CIRCUMCONCEVIAN-OF-X(6)

Barycentrics    a*(a^4-3*a^3*(b+c)-b*c*(b^2+c^2)-3*a^2*(b^2+b*c+c^2)+a*(b^3-3*b^2*c-3*b*c^2+c^3)) : :

X(63385) lies on these lines: {2, 6}, {4, 63357}, {511, 63291}, {518, 63333}, {1351, 5453}, {1353, 63374}, {3564, 63323}, {3751, 63354}, {5039, 63294}, {5050, 63307}, {5093, 63338}, {5794, 57280}, {5847, 63319}, {6776, 13408}, {8593, 63347}, {10602, 63452}, {10752, 63348}, {10753, 63345}, {10759, 63346}, {10765, 63454}, {12167, 63293}, {14853, 63318}, {14912, 63297}, {16475, 63292}, {16948, 51729}, {18440, 63317}, {19459, 63311}, {24883, 51747}, {32029, 63426}, {32451, 63372}, {39873, 63327}, {39897, 63326}, {39899, 63296}, {40673, 63453}, {45728, 63342}, {45729, 63341}, {48827, 62828}, {49496, 63398}, {51190, 63381}, {51192, 63360}, {51194, 63387}, {51196, 63370}, {51200, 63355}, {51203, 63364}, {51208, 63363}, {51209, 63362}, {51212, 63386}, {54132, 63449}, {63279, 63366}


X(63386) = X(1)X(30)∩X(20)X(81)

Barycentrics    2*a^7-4*a^6*(b+c)+4*a^3*b*c*(b+c)^2-(b-c)^4*(b+c)^3+a*(b^2-c^2)^2*(b^2+c^2)-a^5*(3*b^2+4*b*c+3*c^2)+a^4*(7*b^3+b^2*c+b*c^2+7*c^3)-2*a^2*(b^5-b^4*c-b*c^4+c^5) : :
X(63386) = -3*X[5731]+X[48890]

X(63386) lies on circumconic {{A, B, C, X(51502), X(52382)}} and on these lines: {1, 30}, {3, 1714}, {4, 17056}, {20, 81}, {58, 44238}, {221, 4294}, {278, 4305}, {323, 15680}, {376, 387}, {382, 63323}, {386, 37428}, {511, 14110}, {515, 13442}, {516, 63354}, {517, 63415}, {524, 48935}, {550, 1754}, {940, 6869}, {944, 1503}, {950, 18593}, {962, 63333}, {971, 63396}, {991, 37468}, {1151, 63336}, {1152, 63337}, {1214, 10572}, {1399, 15338}, {1498, 6938}, {1657, 63338}, {1742, 11826}, {1834, 3651}, {1838, 2646}, {1885, 63293}, {2328, 57002}, {2794, 63349}, {3057, 6000}, {3091, 63344}, {3146, 37635}, {3332, 3529}, {3428, 37425}, {3523, 31204}, {3543, 63343}, {3576, 37887}, {3612, 37695}, {3627, 63317}, {3682, 57288}, {4255, 6899}, {4297, 63292}, {4299, 37543}, {4300, 5842}, {4302, 63339}, {4304, 5930}, {4313, 18625}, {4653, 37447}, {5059, 41819}, {5073, 63296}, {5691, 63319}, {5731, 48890}, {5840, 63346}, {6459, 63299}, {6460, 63298}, {6737, 49716}, {6851, 19765}, {6868, 37498}, {6876, 37646}, {6897, 50677}, {6900, 17245}, {6903, 37662}, {6934, 37501}, {7414, 54371}, {9958, 18525}, {11500, 28381}, {12082, 38879}, {12203, 63294}, {12943, 63326}, {12953, 63327}, {15447, 59317}, {15931, 48930}, {16585, 57287}, {17647, 40937}, {17702, 63348}, {18444, 26729}, {19843, 49734}, {23698, 63345}, {24936, 52269}, {26131, 52841}, {28164, 63370}, {29181, 43161}, {34746, 59311}, {36991, 63384}, {37028, 56864}, {37426, 48837}, {38850, 43574}, {39568, 63311}, {41338, 48915}, {42258, 63328}, {42259, 63329}, {42266, 63330}, {42267, 63331}, {44669, 56839}, {48877, 49728}, {48882, 59340}, {48893, 53794}, {51212, 63385}

X(63386) = reflection of X(i) in X(j) for these {i,j}: {13408, 5453}, {18525, 9958}, {37631, 63449}, {48877, 49728}, {49745, 500}, {63360, 63356}
X(63386) = pole of line {5746, 8818} with respect to the Kiepert hyperbola
X(63386) = pole of line {35193, 37300} with respect to the Stammler hyperbola
X(63386) = X(20) of the 2nd Pavlov triangle
X(63386) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 63318, 35466}, {4, 63291, 17056}, {30, 500, 49745}, {30, 5453, 13408}, {30, 63449, 37631}, {515, 63356, 63360}, {13408, 63449, 5453}, {25080, 63356, 37528}, {63356, 63361, 25080}


X(63387) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(9)

Barycentrics    a*(a^3*(b+c)+(b-c)^2*(b^2+3*b*c+c^2)-a^2*(b^2+6*b*c+c^2)-a*(b^3+4*b^2*c+4*b*c^2+c^3)) : :

X(63387) lies on these lines: {1, 60964}, {7, 18593}, {9, 81}, {37, 4667}, {142, 2092}, {144, 16585}, {323, 60969}, {500, 58380}, {516, 13408}, {518, 63354}, {524, 25081}, {527, 25080}, {528, 63365}, {940, 60994}, {954, 63446}, {971, 5453}, {1001, 63292}, {2003, 17019}, {2346, 63335}, {2550, 63319}, {2801, 63346}, {3243, 63333}, {3247, 60965}, {3666, 60980}, {3743, 17768}, {3745, 63268}, {3945, 60950}, {4670, 59733}, {4909, 8609}, {5223, 63310}, {5732, 63291}, {5759, 63297}, {5762, 63374}, {5779, 63338}, {5805, 63323}, {5853, 63360}, {6173, 63343}, {6600, 63304}, {6666, 35466}, {8581, 63295}, {14100, 63332}, {15298, 63339}, {15299, 63340}, {15733, 63393}, {16112, 62183}, {16577, 41572}, {16579, 61002}, {17390, 59727}, {17392, 25065}, {17668, 37593}, {18164, 21811}, {18482, 63317}, {20195, 63344}, {20984, 58607}, {21104, 23810}, {26740, 60988}, {28606, 60933}, {30142, 42885}, {31658, 63307}, {31671, 63296}, {36742, 60911}, {47057, 60937}, {51194, 63385}, {52374, 60967}, {56848, 62816}, {60974, 63382}, {60986, 61661}, {60991, 63334}, {63398, 63426}

X(63387) = pole of line {4017, 24900} with respect to the Steiner inellipse
X(63387) = pole of line {960, 11551} with respect to the dual conic of Yff parabola


X(63388) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(28)

Barycentrics    a*(a^6+a^3*b*c*(b+c)-a*b*(b-c)^2*c*(b+c)-a^4*(b^2-b*c+c^2)+(b^2-c^2)^2*(b^2-b*c+c^2)-a^2*(b^4-4*b^2*c^2+c^4)) : :

X(63388) lies on these lines: {1, 30}, {3, 18593}, {4, 18625}, {7, 63297}, {28, 60}, {34, 5722}, {57, 44220}, {58, 44253}, {65, 5504}, {226, 18447}, {323, 3868}, {354, 63340}, {405, 16585}, {442, 52362}, {495, 63319}, {758, 22136}, {975, 1060}, {999, 11365}, {1062, 1448}, {1063, 5090}, {1725, 3652}, {1770, 9627}, {2646, 4351}, {2828, 63346}, {3295, 4347}, {3468, 5396}, {3487, 37635}, {4292, 18455}, {4296, 24929}, {4318, 9957}, {5728, 54150}, {5791, 54289}, {6149, 41697}, {6198, 52845}, {9612, 37729}, {10122, 51340}, {11018, 54185}, {11020, 54186}, {11036, 31293}, {11373, 34036}, {11529, 63310}, {12047, 63327}, {12515, 18360}, {13407, 63326}, {13746, 30690}, {15556, 23071}, {15934, 63338}, {16138, 53524}, {18210, 37227}, {18389, 23070}, {19505, 63348}, {21147, 37739}, {21620, 63370}, {24470, 33178}, {24928, 28029}, {31154, 63343}, {31257, 63344}, {32350, 63375}, {34195, 52368}, {34772, 40612}, {35466, 37697}, {39844, 63345}, {41402, 63450}, {41804, 48935}, {44661, 59285}, {50194, 63333}

X(63388) = reflection of X(i) in X(j) for these {i,j}: {20831, 51698}
X(63388) = pole of line {942, 38336} with respect to the Feuerbach hyperbola
X(63388) = pole of line {8818, 54405} with respect to the Kiepert hyperbola
X(63388) = pole of line {72, 35193} with respect to the Stammler hyperbola
X(63388) = intersection, other than A, B, C, of circumconics {{A, B, C, X(28), X(52382)}}, {{A, B, C, X(60), X(5504)}}, {{A, B, C, X(79), X(270)}}, {{A, B, C, X(81), X(63171)}}, {{A, B, C, X(1442), X(5453)}}, {{A, B, C, X(6198), X(10149)}}, {{A, B, C, X(38336), X(57710)}}
X(63388) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1464, 33858}, {1, 1717, 10149}, {1, 47057, 5453}, {1, 79, 38336}, {1, 9579, 8144}, {13408, 55010, 57282}, {18593, 63446, 3}


X(63389) = REFLECTION OF X(42) IN X(3)

Barycentrics    a^2*(-b^5-3*b^4*c-3*b*c^4-c^5+a^4*(b+c)+2*a^2*b*c*(b+c)+2*a^3*(b^2+c^2)-2*a*(b^2+c^2)^2) : :
X(63389) = -4*X[5]+5*X[31241], -3*X[549]+2*X[61526], -5*X[631]+4*X[6685], -5*X[3522]+X[20011]

X(63389) lies on these lines: {1, 19262}, {3, 42}, {4, 3741}, {5, 31241}, {20, 17135}, {30, 31136}, {38, 517}, {40, 376}, {71, 993}, {74, 28483}, {103, 1296}, {104, 6010}, {106, 28532}, {511, 1064}, {515, 1764}, {518, 30272}, {549, 61526}, {573, 1449}, {581, 10882}, {631, 6685}, {674, 1350}, {859, 25941}, {899, 19550}, {946, 48883}, {953, 2705}, {997, 2183}, {1006, 41239}, {1042, 11573}, {1193, 5752}, {1201, 14815}, {1293, 28211}, {1385, 14636}, {1423, 60751}, {1455, 40152}, {1496, 37547}, {2333, 22065}, {3430, 7430}, {3522, 20011}, {3682, 23361}, {4293, 24310}, {4300, 37482}, {5247, 37431}, {5603, 6210}, {5657, 20368}, {5767, 32853}, {5901, 50421}, {9840, 35631}, {10165, 21363}, {10310, 15621}, {10459, 31778}, {14110, 56839}, {14872, 14973}, {16528, 59420}, {17209, 17512}, {17614, 28270}, {19241, 25889}, {21370, 57279}, {27627, 34466}, {28159, 28560}, {28203, 28548}, {30271, 44671}, {31394, 39550}, {37536, 59305}, {37619, 45955}, {41600, 44706}

X(63389) = midpoint of X(i) and X(j) for these {i,j}: {20, 17135}
X(63389) = reflection of X(i) in X(j) for these {i,j}: {4, 3741}, {42, 3}, {1064, 37620}, {14872, 14973}
X(63389) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {104, 63400, 63423}, {1350, 3428, 30269}


X(63390) = REFLECTION OF X(44) IN X(3)

Barycentrics    a*(2*a^5-3*a^4*(b+c)+(b-c)^2*(b+c)^3+4*a^3*(b^2-b*c+c^2)+2*a^2*(b^3+b^2*c+b*c^2+c^3)+a*(-6*b^4+4*b^3*c-4*b^2*c^2+4*b*c^3-6*c^4)) : :
X(63390) = -4*X[5]+5*X[31243], -3*X[165]+X[49712], -3*X[238]+5*X[7987], -3*X[549]+2*X[61528], -5*X[631]+4*X[6687], -3*X[1757]+7*X[16192], -2*X[3246]+3*X[3576], -5*X[3522]+X[20072], -6*X[3823]+5*X[5818], -3*X[3836]+2*X[19925], -X[5691]+3*X[31151], -3*X[5731]+X[49709] and many others

X(63390) lies on these lines: {3, 44}, {4, 3834}, {5, 31243}, {20, 320}, {30, 31138}, {40, 518}, {78, 41772}, {103, 2743}, {104, 28293}, {165, 49712}, {238, 7987}, {376, 4715}, {405, 25891}, {513, 50371}, {536, 24813}, {549, 61528}, {631, 6687}, {752, 4297}, {990, 1482}, {991, 1279}, {1100, 48908}, {1463, 37080}, {1757, 16192}, {3246, 3576}, {3430, 31805}, {3522, 20072}, {3823, 5818}, {3836, 19925}, {4670, 36489}, {4708, 36543}, {4912, 24817}, {5440, 21362}, {5691, 31151}, {5731, 49709}, {5784, 54324}, {5882, 49699}, {9840, 28362}, {11362, 49702}, {11531, 49675}, {15733, 53298}, {17237, 36474}, {24828, 41310}, {27637, 61109}, {30269, 63432}, {43174, 49701}, {49676, 51118}, {49714, 59417}

X(63390) = midpoint of X(i) and X(j) for these {i,j}: {20, 320}, {24813, 63444}
X(63390) = reflection of X(i) in X(j) for these {i,j}: {4, 3834}, {44, 3}, {49699, 5882}, {49701, 43174}, {49702, 11362}
X(63390) = pole of line {25925, 25939} with respect to the Steiner inellipse
X(63390) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1350, 5732, 30271}


X(63391) = REFLECTION OF X(46) IN X(3)

Barycentrics    a*(a^6-2*a^5*(b+c)+(b-c)^4*(b+c)^2-a^4*(b^2-8*b*c+c^2)-2*a*(b-c)^2*(b^3+c^3)+a^3*(4*b^3-2*b^2*c-2*b*c^2+4*c^3)-a^2*(b^4+6*b^3*c-6*b^2*c^2+6*b*c^3+c^4)) : :
X(63391) = -3*X[549]+2*X[61530], -3*X[5731]+X[20076], -10*X[31246]+9*X[54447], -4*X[54176]+3*X[61291]

X(63391) lies on these lines: {1, 3}, {4, 997}, {5, 24954}, {8, 6890}, {10, 6833}, {11, 54304}, {20, 224}, {30, 12679}, {34, 37414}, {48, 1766}, {63, 5450}, {72, 12114}, {78, 515}, {80, 32554}, {84, 5693}, {102, 13397}, {104, 56278}, {191, 54212}, {200, 5881}, {326, 10444}, {355, 21031}, {376, 12520}, {377, 946}, {386, 998}, {392, 11496}, {442, 7681}, {474, 7686}, {516, 6934}, {529, 37428}, {549, 61530}, {602, 37817}, {631, 54318}, {758, 63399}, {908, 6256}, {912, 10085}, {936, 1329}, {944, 3811}, {960, 1012}, {962, 4190}, {993, 55104}, {1071, 12635}, {1076, 56819}, {1103, 34039}, {1125, 6889}, {1158, 3869}, {1295, 36082}, {1455, 7078}, {1490, 2829}, {1512, 26364}, {1532, 25681}, {1657, 41860}, {1698, 6862}, {1699, 6917}, {1709, 5887}, {1728, 22760}, {1737, 6891}, {1750, 37001}, {1753, 37117}, {1770, 6948}, {1800, 2360}, {1828, 37194}, {1836, 31775}, {1837, 6922}, {2057, 12751}, {2182, 2324}, {2191, 56804}, {2194, 15952}, {2217, 56259}, {2245, 3554}, {2278, 3553}, {2716, 6099}, {2800, 11682}, {2951, 44785}, {3149, 59691}, {3215, 38857}, {3306, 31870}, {3430, 7414}, {3485, 6916}, {3486, 6865}, {3616, 37112}, {3646, 37224}, {3654, 31157}, {3655, 34749}, {3817, 6984}, {3870, 5882}, {3872, 6966}, {3940, 14872}, {4221, 54323}, {4293, 5758}, {4297, 18446}, {4301, 6955}, {4305, 6987}, {4853, 63143}, {4855, 6796}, {4861, 59417}, {4867, 7171}, {4882, 54134}, {5086, 6943}, {5267, 21165}, {5288, 15104}, {5289, 12672}, {5440, 11500}, {5603, 6897}, {5657, 6977}, {5691, 5720}, {5692, 7330}, {5727, 55302}, {5730, 6001}, {5731, 20076}, {5732, 16113}, {5761, 13407}, {5763, 18990}, {5784, 11372}, {5812, 7354}, {5854, 6264}, {5880, 38036}, {5886, 15908}, {5901, 44222}, {6245, 6737}, {6265, 24466}, {6603, 22153}, {6684, 6910}, {6765, 38455}, {6827, 10572}, {6842, 37692}, {6850, 12047}, {6860, 10175}, {6882, 10826}, {6906, 12514}, {6907, 11375}, {6913, 25917}, {6925, 12608}, {6926, 18391}, {6928, 55298}, {7483, 31423}, {7580, 37837}, {7701, 44782}, {7971, 10860}, {8256, 9623}, {9327, 54385}, {9549, 10974}, {9581, 54154}, {9624, 28628}, {9708, 58645}, {9928, 21375}, {10164, 30147}, {10165, 54392}, {10595, 35514}, {10785, 10916}, {10786, 59719}, {10864, 12664}, {10884, 63438}, {10950, 50031}, {11112, 12651}, {11520, 12005}, {11523, 63430}, {11826, 12699}, {11827, 18481}, {12115, 21077}, {12123, 31563}, {12124, 31564}, {12245, 24477}, {12511, 51717}, {12526, 52027}, {12625, 49176}, {12654, 22992}, {12671, 58808}, {12705, 15829}, {13734, 54305}, {14923, 63132}, {16137, 31657}, {17528, 38021}, {17538, 43178}, {17614, 22753}, {21147, 22350}, {21214, 50426}, {21669, 54370}, {22758, 31837}, {22791, 31777}, {24953, 26446}, {26333, 41012}, {28234, 36846}, {30264, 37733}, {30284, 59418}, {31246, 54447}, {31435, 37228}, {31730, 40257}, {31799, 34773}, {32486, 56630}, {33597, 56177}, {34647, 37429}, {35016, 52769}, {35262, 35979}, {37364, 37730}, {37424, 37737}, {37468, 41869}, {37469, 54421}, {45230, 59345}, {48482, 57287}, {52684, 60885}, {54176, 61291}, {54289, 63397}, {54420, 58894}, {54427, 56418}

X(63391) = midpoint of X(i) and X(j) for these {i,j}: {20, 11415}, {5730, 37022}
X(63391) = reflection of X(i) in X(j) for these {i,j}: {4, 21616}, {46, 3}, {80, 32554}, {1837, 6922}, {3149, 59691}, {5691, 37821}, {12751, 55016}, {17857, 78}, {36977, 5882}, {37002, 4297}
X(63391) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56100, 1}
X(63391) = pole of line {21, 1158} with respect to the Stammler hyperbola
X(63391) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(40), X(56101)}}, {{A, B, C, X(46), X(1295)}}, {{A, B, C, X(56), X(56148)}}, {{A, B, C, X(65), X(42464)}}, {{A, B, C, X(102), X(37579)}}, {{A, B, C, X(104), X(34489)}}, {{A, B, C, X(484), X(54226)}}, {{A, B, C, X(517), X(56278)}}, {{A, B, C, X(947), X(26357)}}, {{A, B, C, X(2217), X(37566)}}, {{A, B, C, X(2716), X(18838)}}, {{A, B, C, X(2745), X(32760)}}, {{A, B, C, X(3345), X(37583)}}, {{A, B, C, X(3428), X(42019)}}, {{A, B, C, X(6261), X(17857)}}, {{A, B, C, X(6596), X(37531)}}, {{A, B, C, X(8071), X(52185)}}, {{A, B, C, X(11248), X(53915)}}, {{A, B, C, X(36052), X(59317)}}
X(63391) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6282, 40}, {3, 2646, 3576}, {3, 517, 46}, {8, 6890, 12616}, {20, 4511, 6261}, {20, 6261, 50528}, {78, 515, 17857}, {200, 12650, 5881}, {376, 21740, 12520}, {3869, 6909, 1158}, {4297, 22836, 18446}, {5603, 6897, 12609}, {5730, 37022, 6001}, {5794, 6831, 5587}, {6796, 54192, 4855}


X(63392) = REFLECTION OF X(49) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6+2*(b^2-c^2)^2*(b^2+c^2)-3*a^2*(b^4-b^2*c^2+c^4)) : :
X(63392) = -3*X[549]+2*X[15806], -5*X[631]+4*X[58407]

X(63392) lies on these lines: {3, 49}, {4, 3581}, {20, 30522}, {24, 18435}, {26, 18439}, {30, 11440}, {52, 14130}, {64, 12083}, {74, 550}, {110, 15331}, {143, 7527}, {156, 10298}, {186, 5876}, {195, 11430}, {265, 12359}, {378, 6243}, {382, 46730}, {399, 10282}, {427, 15800}, {549, 15806}, {567, 1199}, {568, 7526}, {631, 58407}, {632, 43597}, {1154, 3520}, {1511, 17506}, {1568, 20191}, {1656, 11438}, {1657, 3357}, {1658, 10540}, {2070, 12162}, {2071, 6101}, {2072, 44158}, {2888, 13619}, {2937, 6000}, {2979, 11468}, {3098, 11898}, {3153, 13561}, {3518, 45959}, {3521, 15760}, {3523, 33533}, {3534, 46728}, {3580, 52070}, {3627, 15062}, {3628, 15053}, {3845, 43613}, {3851, 4550}, {3858, 38848}, {4549, 26937}, {5449, 18403}, {5655, 34351}, {5663, 7488}, {5889, 18570}, {5890, 13353}, {5891, 43809}, {5899, 11381}, {5907, 32110}, {5944, 43605}, {5946, 35500}, {6240, 6288}, {6241, 7502}, {7503, 37481}, {7509, 40280}, {7512, 13491}, {7517, 15811}, {7525, 15072}, {7545, 44870}, {7555, 8718}, {7574, 20299}, {7592, 14805}, {7722, 11597}, {7728, 15761}, {8549, 33878}, {8567, 37483}, {9730, 34864}, {9818, 37490}, {9927, 18562}, {10018, 14643}, {10226, 43574}, {10263, 14865}, {10296, 18379}, {10545, 61940}, {10574, 13339}, {10575, 10620}, {10606, 37486}, {10610, 15032}, {10625, 12307}, {10627, 12041}, {11204, 54048}, {11250, 11412}, {11413, 13340}, {11441, 18324}, {11459, 37814}, {11585, 15061}, {11591, 22467}, {12084, 37484}, {12085, 37494}, {12086, 13391}, {12106, 15058}, {12107, 14157}, {12289, 18356}, {12290, 17714}, {12370, 34005}, {12429, 35257}, {12893, 22584}, {12897, 41586}, {13382, 37513}, {13445, 15704}, {13568, 37347}, {13595, 45958}, {13621, 15030}, {13630, 35921}, {14516, 44242}, {14627, 14831}, {15043, 49671}, {15060, 44802}, {15068, 32534}, {15089, 22815}, {15107, 62036}, {15138, 34785}, {15305, 37440}, {15646, 31834}, {15712, 40113}, {15720, 37470}, {16003, 44829}, {16010, 33542}, {16266, 35477}, {17835, 41725}, {18377, 23293}, {18430, 52843}, {18472, 39643}, {18945, 25738}, {20127, 52071}, {20957, 51451}, {21659, 52104}, {21844, 61753}, {25563, 51392}, {26879, 52073}, {31802, 44218}, {31831, 37931}, {32139, 38444}, {32171, 38448}, {33541, 37924}, {34007, 34798}, {34417, 61970}, {34469, 35243}, {34801, 45788}, {35487, 58885}, {36753, 54994}, {37496, 54202}, {37498, 47524}, {37938, 43608}, {41171, 45971}, {41398, 61752}, {41462, 61792}, {41482, 43895}, {43394, 56292}, {43584, 55856}, {43595, 44285}, {43720, 55978}, {43814, 51737}, {43821, 52069}, {44076, 44249}, {44106, 46852}, {44214, 59659}, {45956, 61134}, {45957, 52525}, {49133, 52055}

X(63392) = midpoint of X(i) and X(j) for these {i,j}: {41482, 43895}
X(63392) = reflection of X(i) in X(j) for these {i,j}: {4, 34826}, {49, 3}, {43605, 5944}, {37495, 3520}, {52863, 58922}, {56292, 43394}
X(63392) = X(i)-isoconjugate-of-X(j) for these {i, j}: {158, 16665}
X(63392) = X(i)-Dao conjugate of X(j) for these {i, j}: {1147, 16665}
X(63392) = pole of line {4, 16665} with respect to the Stammler hyperbola
X(63392) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(49), X(74)}}, {{A, B, C, X(265), X(12038)}}, {{A, B, C, X(3519), X(45821)}}, {{A, B, C, X(3521), X(13367)}}, {{A, B, C, X(3532), X(18445)}}, {{A, B, C, X(5562), X(11273)}}, {{A, B, C, X(11270), X(34783)}}, {{A, B, C, X(14861), X(18475)}}, {{A, B, C, X(14889), X(32710)}}, {{A, B, C, X(22115), X(43689)}}, {{A, B, C, X(45788), X(47391)}}
X(63392) = barycentric quotient X(i)/X(j) for these (i, j): {577, 16665}
X(63392) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12163, 34783}, {3, 13754, 49}, {3, 18436, 22115}, {3, 50461, 12038}, {30, 58922, 52863}, {74, 7691, 550}, {186, 5876, 18350}, {195, 18364, 11430}, {265, 18442, 18563}, {1154, 3520, 37495}, {1216, 21663, 3}, {1658, 12111, 10540}, {3357, 37478, 1657}, {5907, 32110, 45735}, {6101, 32210, 2071}, {6102, 14118, 567}, {10620, 13564, 10575}, {11250, 11412, 37477}, {11412, 11454, 11250}, {12038, 45187, 50461}, {12307, 18859, 10625}, {12359, 18563, 265}, {13630, 35921, 37471}, {14130, 32608, 52}


X(63393) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(55)

Barycentrics    a*(2*a^4*(b+c)+b*(b-c)^2*c*(b+c)-2*a^3*(b^2+b*c+c^2)-2*a^2*(b^3+2*b^2*c+2*b*c^2+c^3)+a*(2*b^4-b^3*c-4*b^2*c^2-b*c^3+2*c^4)) : :

X(63393) lies on these lines: {1, 442}, {3, 63308}, {4, 63325}, {42, 6690}, {55, 81}, {56, 63342}, {517, 5453}, {518, 25080}, {528, 37631}, {674, 63359}, {1824, 63293}, {2099, 15832}, {3240, 31204}, {3428, 63291}, {3434, 37635}, {4854, 41571}, {5119, 63310}, {5173, 18593}, {5743, 22836}, {5842, 13408}, {5855, 63415}, {6001, 63447}, {7680, 37698}, {8069, 63340}, {10679, 63309}, {11018, 24025}, {12081, 49739}, {15733, 63387}, {16465, 37593}, {18407, 63317}, {18499, 63296}, {20075, 41819}, {22276, 24929}, {29814, 31245}, {31140, 63343}, {31880, 33961}, {32613, 63307}, {37000, 63297}, {37730, 44411}, {37820, 63323}, {38454, 63381}, {42014, 63384}, {42042, 61661}, {44670, 63452}, {48927, 63366}, {63361, 63369}

X(63393) = pole of line {1001, 56840} with respect to the Stammler hyperbola
X(63393) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1002), X(41501)}}, {{A, B, C, X(37887), X(42302)}}
X(63393) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 52544, 11281}


X(63394) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(69)

Barycentrics    2*a^5-b^5+b^4*c+b*c^4-c^5-a^3*(b^2+c^2)+a*(b+c)^2*(b^2+c^2)+a^2*(3*b^3+b^2*c+b*c^2+3*c^3) : :
X(63394) = -4*X[17235]+3*X[50167], -2*X[17351]+3*X[50168]

X(63394) lies on these lines: {2, 6}, {30, 17276}, {511, 13408}, {518, 63360}, {542, 63348}, {944, 1503}, {1104, 17344}, {1351, 63323}, {1352, 63318}, {2854, 63379}, {2893, 53417}, {3564, 5453}, {3751, 63319}, {3868, 17365}, {5845, 63426}, {5846, 63415}, {5847, 63354}, {5965, 63375}, {6776, 63291}, {7222, 50171}, {9013, 21104}, {9028, 25080}, {11898, 63338}, {14984, 63352}, {16485, 49723}, {16496, 34690}, {17118, 49734}, {17235, 50167}, {17253, 49728}, {17351, 50168}, {21850, 63317}, {34379, 63370}, {34380, 63374}, {34381, 63396}, {34382, 63353}, {37491, 63311}, {39873, 63332}, {39897, 63295}, {44456, 63296}, {44668, 63367}, {48876, 63307}, {49511, 63292}, {51190, 63384}, {51192, 63333}, {63297, 63428}

X(63394) = reflection of X(i) in X(j) for these {i,j}: {63357, 5453}
X(63394) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3564, 5453, 63357}, {63360, 63381, 63398}


X(63395) = REFLECTION OF X(71) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(-b^5+b^4*c+b*c^4-c^5+a^4*(b+c)-2*a^2*b*c*(b+c)+2*a*(b^2-c^2)^2-2*a^3*(b^2+c^2)) : :
X(63395) = -3*X[549]+2*X[61546], -5*X[631]+4*X[58410], -3*X[3576]+X[33536]

X(63395) lies on these lines: {1, 7}, {2, 2947}, {3, 48}, {4, 15669}, {42, 1754}, {103, 110}, {104, 36516}, {165, 3190}, {212, 3173}, {255, 23144}, {549, 61546}, {581, 1449}, {610, 21160}, {631, 58410}, {674, 1350}, {946, 55340}, {971, 40937}, {1064, 1386}, {1066, 30621}, {1071, 56839}, {1172, 54411}, {1201, 51717}, {1214, 7004}, {1498, 8053}, {1617, 7125}, {1626, 10537}, {1630, 3220}, {1745, 54425}, {1794, 47487}, {1839, 41854}, {2256, 50677}, {2260, 5751}, {2635, 37695}, {2954, 3219}, {3576, 33536}, {3736, 37570}, {4847, 58035}, {5173, 44708}, {5720, 61668}, {6776, 9028}, {7411, 62798}, {7580, 14547}, {7691, 59320}, {7987, 37297}, {8726, 9121}, {9943, 37528}, {11220, 62857}, {12669, 24635}, {14110, 20718}, {17216, 49511}, {17702, 38535}, {21153, 56809}, {22057, 62266}, {23171, 52373}, {23207, 39796}, {29015, 44065}, {37609, 50658}, {38852, 40589}, {40940, 40958}, {54358, 62183}

X(63395) = midpoint of X(i) and X(j) for these {i,j}: {20, 17220}
X(63395) = reflection of X(i) in X(j) for these {i,j}: {4, 34830}, {71, 3}
X(63395) = inverse of X(2328) in Stammler hyperbola
X(63395) = perspector of circumconic {{A, B, C, X(658), X(1331)}}
X(63395) = X(i)-isoconjugate-of-X(j) for these {i, j}: {17924, 59063}
X(63395) = X(i)-Dao conjugate of X(j) for these {i, j}: {51758, 51758}
X(63395) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6183, 4091}
X(63395) = pole of line {4091, 8676} with respect to the circumcircle
X(63395) = pole of line {4243, 14543} with respect to the Kiepert parabola
X(63395) = pole of line {27, 516} with respect to the Stammler hyperbola
X(63395) = pole of line {1043, 35517} with respect to the Wallace hyperbola
X(63395) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1802)}}, {{A, B, C, X(3), X(279)}}, {{A, B, C, X(7), X(219)}}, {{A, B, C, X(48), X(269)}}, {{A, B, C, X(71), X(103)}}, {{A, B, C, X(77), X(2289)}}, {{A, B, C, X(110), X(23973)}}, {{A, B, C, X(347), X(55111)}}, {{A, B, C, X(516), X(2328)}}, {{A, B, C, X(1042), X(2200)}}, {{A, B, C, X(1536), X(4184)}}, {{A, B, C, X(1794), X(10481)}}, {{A, B, C, X(1815), X(3682)}}, {{A, B, C, X(2192), X(3332)}}, {{A, B, C, X(4306), X(57501)}}, {{A, B, C, X(30265), X(56098)}}, {{A, B, C, X(47621), X(57108)}}
X(63395) = barycentric product X(i)*X(j) for these (i, j): {1536, 1815}, {5728, 63}, {25935, 3}
X(63395) = barycentric quotient X(i)/X(j) for these (i, j): {5728, 92}, {25935, 264}, {32656, 59063}
X(63395) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 916, 71}, {20, 17220, 516}, {219, 1818, 3682}, {23207, 39796, 40152}


X(63396) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(72)

Barycentrics    a*(a^5*(b+c)-a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+2*a^2*(b^2+b*c+c^2)^2+a^3*(-2*b^3+b^2*c+b*c^2-2*c^3)+a*(b^5+2*b^4*c+5*b^3*c^2+5*b^2*c^3+2*b*c^4+c^5)) : :

X(63396) lies on these lines: {1, 15910}, {65, 63319}, {72, 81}, {215, 2646}, {442, 63334}, {500, 2292}, {517, 13408}, {518, 63354}, {758, 49743}, {912, 5453}, {942, 10974}, {960, 63292}, {971, 63386}, {1071, 63291}, {1858, 63332}, {2836, 63379}, {3555, 63333}, {3811, 63304}, {3868, 37635}, {4067, 4667}, {5044, 35466}, {5439, 63344}, {5693, 62183}, {5694, 36742}, {5728, 63384}, {5777, 63318}, {5904, 63310}, {6001, 63356}, {6583, 29639}, {9957, 53534}, {17653, 33100}, {24473, 63343}, {24474, 63323}, {24929, 41608}, {27785, 61722}, {30115, 52408}, {31837, 63307}, {34381, 63394}, {37547, 63311}, {62858, 63316}


X(63397) = REFLECTION OF X(73) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)^2*(a^2*(b-c)^2+a^3*(b+c)-a*(b-c)^2*(b+c)-(b^2-c^2)^2) : :
X(63397) = -3*X[2]+2*X[51759], -3*X[549]+2*X[61547], -5*X[631]+4*X[58411]

X(63397) lies on these lines: {2, 51759}, {3, 73}, {4, 34831}, {8, 20}, {71, 43724}, {72, 24031}, {102, 110}, {185, 22345}, {517, 44706}, {549, 61547}, {573, 610}, {580, 28274}, {601, 36740}, {631, 58411}, {916, 22458}, {1064, 4267}, {1071, 18673}, {1172, 4269}, {1214, 51490}, {1259, 53815}, {1350, 8679}, {1364, 22341}, {1400, 37530}, {1433, 7011}, {1452, 5709}, {1465, 5909}, {1482, 18477}, {1498, 3428}, {1715, 4292}, {1753, 7330}, {1935, 37305}, {1936, 7412}, {2077, 7691}, {2183, 3149}, {2347, 37732}, {3073, 5324}, {3198, 12671}, {3561, 10902}, {3576, 44075}, {3682, 5562}, {4100, 22054}, {4549, 26921}, {6210, 27509}, {6211, 28731}, {6260, 33811}, {6776, 7289}, {7004, 54360}, {7013, 37526}, {7114, 56293}, {7335, 53847}, {11821, 55104}, {11827, 15232}, {12118, 24467}, {14055, 26892}, {14110, 56839}, {17102, 40945}, {17818, 26927}, {20368, 56367}, {20838, 26884}, {28788, 57672}, {30493, 40946}, {37623, 45046}, {37836, 45248}, {54289, 63391}

X(63397) = reflection of X(i) in X(j) for these {i,j}: {4, 34831}, {73, 3}
X(63397) = inverse of X(2360) in Stammler hyperbola
X(63397) = perspector of circumconic {{A, B, C, X(1813), X(44327)}}
X(63397) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 40396}, {33, 63186}, {158, 947}, {393, 55987}, {1096, 40417}, {8747, 56195}
X(63397) = X(i)-Dao conjugate of X(j) for these {i, j}: {946, 47372}, {1147, 947}, {6503, 40417}, {20262, 92}, {36033, 40396}, {40943, 2052}, {51759, 51759}
X(63397) = X(i)-Ceva conjugate of X(j) for these {i, j}: {100, 57241}
X(63397) = pole of line {53295, 57241} with respect to the circumcircle
X(63397) = pole of line {7450, 14544} with respect to the Kiepert parabola
X(63397) = pole of line {29, 515} with respect to the Stammler hyperbola
X(63397) = pole of line {8822, 35516} with respect to the Wallace hyperbola
X(63397) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(280)}}, {{A, B, C, X(8), X(1804)}}, {{A, B, C, X(73), X(102)}}, {{A, B, C, X(84), X(603)}}, {{A, B, C, X(189), X(222)}}, {{A, B, C, X(212), X(40945)}}, {{A, B, C, X(255), X(271)}}, {{A, B, C, X(515), X(2360)}}, {{A, B, C, X(2262), X(19349)}}, {{A, B, C, X(7335), X(57502)}}, {{A, B, C, X(15394), X(54398)}}, {{A, B, C, X(28788), X(35097)}}, {{A, B, C, X(40152), X(56944)}}
X(63397) = barycentric product X(i)*X(j) for these (i, j): {348, 40945}, {394, 946}, {1804, 20262}, {2262, 326}, {4131, 61224}, {17102, 63}, {22063, 69}, {23528, 7125}, {30805, 61202}, {40957, 7055}, {41081, 52097}, {59178, 8}
X(63397) = barycentric quotient X(i)/X(j) for these (i, j): {48, 40396}, {222, 63186}, {255, 55987}, {394, 40417}, {577, 947}, {946, 2052}, {2262, 158}, {3990, 56195}, {7335, 57418}, {17102, 92}, {22063, 4}, {40943, 47372}, {40945, 281}, {40957, 1857}, {59178, 7}
X(63397) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 21228, 20}, {40, 84, 36984}, {63, 271, 57279}


X(63398) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(75)

Barycentrics    (b+c)*(-a^4-3*a^2*b*c+b*(b-c)^2*c-a^3*(b+c)-a*b*c*(b+c)) : :

X(63398) lies on these lines: {6, 18698}, {7, 4016}, {37, 226}, {75, 81}, {192, 37635}, {518, 63360}, {536, 37631}, {726, 63370}, {740, 3244}, {742, 63359}, {744, 25124}, {758, 17365}, {894, 35550}, {984, 63319}, {1278, 41819}, {2292, 10404}, {2294, 4675}, {3739, 35466}, {3743, 17246}, {4000, 53037}, {4273, 24435}, {4363, 18697}, {4647, 17118}, {4648, 25255}, {4664, 63343}, {4687, 63344}, {4688, 61661}, {4751, 31204}, {5453, 29010}, {7222, 17164}, {17245, 25081}, {17278, 40977}, {20430, 63323}, {24325, 63292}, {25136, 33943}, {28581, 63415}, {29054, 63356}, {30273, 63291}, {37633, 62305}, {49470, 63333}, {49474, 63310}, {49496, 63385}, {51052, 63384}, {63297, 63427}, {63387, 63426}

X(63398) = pole of line {656, 24893} with respect to the Steiner inellipse
X(63398) = pole of line {7058, 28606} with respect to the Wallace hyperbola
X(63398) = pole of line {942, 17235} with respect to the dual conic of Yff parabola
X(63398) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1427), X(56047)}}, {{A, B, C, X(3668), X(58279)}}
X(63398) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63360, 63381, 63394}


X(63399) = REFLECTION OF X(78) IN X(3)

Barycentrics    a*(a^2-b^2-c^2)*(a^4-2*a^2*(b-c)^2+(b^2-c^2)^2) : :
X(63399) = -3*X[549]+2*X[61551], -3*X[5657]+2*X[6736], -X[37001]+3*X[61717], -X[41704]+3*X[61709]

X(63399) lies on these lines: {1, 104}, {2, 5811}, {3, 63}, {4, 57}, {5, 3306}, {7, 3358}, {8, 3359}, {9, 631}, {10, 6897}, {11, 7702}, {19, 1075}, {20, 3218}, {21, 18443}, {24, 3220}, {27, 55105}, {30, 37532}, {33, 3075}, {36, 920}, {40, 376}, {46, 515}, {55, 12675}, {56, 6001}, {58, 4227}, {65, 12114}, {77, 1069}, {81, 63450}, {90, 499}, {99, 55416}, {100, 5534}, {103, 26706}, {140, 3305}, {142, 6832}, {145, 49163}, {153, 25005}, {155, 22128}, {165, 6763}, {169, 39006}, {182, 26923}, {185, 3937}, {191, 7987}, {200, 10270}, {222, 1181}, {226, 6705}, {255, 1040}, {271, 2968}, {315, 55470}, {318, 34234}, {329, 6926}, {354, 11496}, {355, 11112}, {377, 51755}, {388, 14647}, {389, 26892}, {404, 5720}, {405, 9940}, {411, 11220}, {474, 5777}, {487, 55387}, {488, 55388}, {516, 12116}, {517, 36846}, {518, 10310}, {522, 42464}, {549, 61551}, {550, 37584}, {553, 946}, {578, 26889}, {602, 1707}, {610, 1741}, {614, 3073}, {637, 55452}, {638, 55453}, {758, 63391}, {774, 1106}, {908, 6891}, {936, 6940}, {938, 54052}, {942, 1012}, {943, 10383}, {950, 6938}, {952, 18802}, {956, 31788}, {962, 2094}, {971, 1445}, {972, 41790}, {988, 1064}, {990, 37530}, {997, 5693}, {999, 12672}, {1001, 58585}, {1006, 8726}, {1038, 44706}, {1058, 14646}, {1062, 52407}, {1068, 34050}, {1078, 55417}, {1092, 7193}, {1148, 1767}, {1155, 11500}, {1376, 14872}, {1385, 5250}, {1389, 18421}, {1394, 1870}, {1407, 1498}, {1413, 43058}, {1420, 7971}, {1436, 9119}, {1454, 7354}, {1466, 18238}, {1470, 1858}, {1478, 12616}, {1479, 17437}, {1482, 24473}, {1490, 1708}, {1512, 1788}, {1519, 3086}, {1532, 6259}, {1537, 11373}, {1565, 7177}, {1593, 26866}, {1617, 12330}, {1697, 7967}, {1699, 3337}, {1706, 59388}, {1715, 5767}, {1720, 51616}, {1727, 37618}, {1728, 3911}, {1735, 21147}, {1737, 6256}, {1753, 45766}, {1762, 21162}, {1765, 54405}, {1770, 48482}, {1776, 7288}, {1777, 34036}, {1837, 2829}, {1864, 56889}, {2003, 7592}, {2077, 3811}, {2093, 12650}, {2184, 60799}, {2272, 7719}, {2339, 13323}, {2771, 32612}, {2801, 17857}, {2808, 7131}, {3062, 10308}, {3088, 55905}, {3090, 5437}, {3091, 18540}, {3146, 23958}, {3157, 60415}, {3219, 3523}, {3244, 12703}, {3304, 45776}, {3333, 3671}, {3336, 5691}, {3361, 7992}, {3419, 31775}, {3428, 9943}, {3452, 6967}, {3487, 6935}, {3497, 7350}, {3500, 7351}, {3509, 36697}, {3522, 3587}, {3524, 3929}, {3525, 7308}, {3528, 37551}, {3529, 58808}, {3533, 51780}, {3538, 26939}, {3541, 56445}, {3542, 20266}, {3546, 56456}, {3547, 56457}, {3555, 10306}, {3560, 10202}, {3576, 5267}, {3601, 6950}, {3624, 35010}, {3632, 63132}, {3647, 52769}, {3651, 5732}, {3652, 15670}, {3666, 36746}, {3784, 5562}, {3785, 55419}, {3868, 6909}, {3869, 37611}, {3870, 11248}, {3872, 37562}, {3874, 37569}, {3895, 12515}, {3901, 5538}, {3913, 13528}, {3955, 10984}, {4084, 7982}, {4187, 37822}, {4189, 18444}, {4221, 10461}, {4293, 37550}, {4294, 54408}, {4298, 10532}, {4303, 54320}, {4311, 12687}, {4317, 7284}, {4413, 58631}, {4466, 6173}, {4640, 58567}, {4641, 36745}, {4650, 37570}, {4666, 13373}, {4860, 13374}, {4973, 50528}, {5119, 5882}, {5128, 48363}, {5173, 58588}, {5204, 37837}, {5219, 6952}, {5220, 58657}, {5221, 7686}, {5227, 10519}, {5249, 6824}, {5256, 36742}, {5273, 37407}, {5285, 10323}, {5433, 7082}, {5435, 6223}, {5439, 6913}, {5587, 6901}, {5657, 6736}, {5658, 6927}, {5690, 63135}, {5704, 37789}, {5705, 6937}, {5714, 6956}, {5715, 6845}, {5727, 12248}, {5731, 56288}, {5744, 6908}, {5745, 6889}, {5758, 9965}, {5759, 60990}, {5770, 6734}, {5779, 16408}, {5787, 37468}, {5789, 17528}, {5805, 37447}, {5812, 37374}, {5843, 60966}, {5851, 6691}, {5881, 12247}, {5887, 10269}, {5904, 59326}, {5905, 6890}, {5927, 6918}, {6241, 26914}, {6282, 37403}, {6326, 18861}, {6361, 10860}, {6457, 26930}, {6675, 31657}, {6684, 10786}, {6692, 6983}, {6759, 26884}, {6769, 62823}, {6776, 7289}, {6796, 58887}, {6825, 59491}, {6830, 9612}, {6831, 57282}, {6837, 55108}, {6846, 9776}, {6852, 25525}, {6854, 12436}, {6862, 31266}, {6880, 41561}, {6883, 55870}, {6884, 27186}, {6888, 31019}, {6896, 60985}, {6898, 9843}, {6911, 40263}, {6914, 37615}, {6922, 58798}, {6942, 52026}, {6946, 8257}, {6947, 12572}, {6948, 57287}, {6949, 31231}, {6955, 57284}, {6958, 30852}, {6959, 31224}, {6961, 27385}, {6964, 62773}, {6972, 31053}, {6977, 13411}, {6989, 54357}, {6998, 56518}, {7013, 41004}, {7053, 56972}, {7059, 7344}, {7060, 7345}, {7183, 17170}, {7383, 56366}, {7400, 56367}, {7404, 55900}, {7537, 18634}, {7567, 55875}, {7580, 37623}, {7675, 37287}, {7680, 10404}, {7681, 12679}, {7704, 50444}, {7741, 11219}, {7995, 45977}, {8545, 11374}, {8715, 46684}, {8727, 24470}, {8884, 26931}, {9352, 18528}, {9709, 18908}, {9799, 50701}, {9862, 24469}, {9952, 37705}, {9956, 44217}, {10265, 10826}, {10267, 35258}, {10303, 27065}, {10531, 11019}, {10624, 10806}, {10805, 31397}, {10855, 50203}, {10916, 45632}, {10982, 52424}, {11012, 12520}, {11047, 12686}, {11227, 31445}, {11372, 30424}, {11376, 20418}, {11414, 37581}, {11520, 24475}, {11682, 14988}, {12111, 26910}, {12332, 17660}, {12635, 50371}, {12645, 63142}, {12678, 18242}, {12684, 19541}, {12688, 22753}, {12702, 30283}, {12761, 20118}, {12773, 17654}, {13257, 13747}, {13464, 51816}, {14058, 54396}, {14786, 55901}, {14923, 38669}, {15016, 54318}, {15299, 60992}, {15622, 53296}, {15644, 26893}, {16410, 17612}, {16560, 24813}, {17616, 37229}, {17649, 18237}, {18243, 41706}, {18481, 59318}, {18838, 22760}, {18909, 26871}, {18990, 33899}, {19067, 51841}, {19068, 51842}, {19513, 21371}, {19860, 22758}, {19862, 60911}, {21153, 61005}, {21454, 37434}, {21554, 40131}, {22084, 37732}, {22094, 62321}, {22153, 51376}, {22775, 34880}, {26201, 32613}, {26363, 60896}, {26890, 37515}, {30268, 36984}, {30503, 62824}, {31146, 34629}, {31435, 50739}, {31658, 60949}, {31730, 37000}, {31805, 37426}, {32153, 61146}, {32815, 55448}, {33520, 34925}, {34773, 63144}, {34789, 37720}, {34956, 45963}, {35072, 53844}, {35460, 51786}, {35595, 55864}, {36483, 36484}, {36540, 36543}, {36572, 36575}, {36752, 54444}, {36991, 60948}, {37001, 61717}, {37106, 55872}, {37112, 55868}, {37356, 37826}, {37498, 55399}, {37501, 37528}, {37514, 55400}, {37524, 44425}, {37529, 62819}, {37535, 40266}, {37566, 57278}, {37706, 59330}, {37725, 37828}, {37787, 52684}, {38122, 60958}, {41365, 55433}, {41543, 62776}, {41562, 54441}, {41704, 61709}, {42884, 58576}, {43818, 43856}, {44222, 61539}, {45508, 55423}, {45509, 55422}, {50834, 60912}, {54406, 62371}

X(63399) = midpoint of X(i) and X(j) for these {i,j}: {20, 12649}, {46, 10085}
X(63399) = reflection of X(i) in X(j) for these {i,j}: {4, 1210}, {78, 3}, {3149, 37582}, {10698, 41554}, {12679, 7681}, {17857, 25440}, {45770, 32612}, {58798, 6922}
X(63399) = perspector of circumconic {{A, B, C, X(1332), X(37136)}}
X(63399) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4, 42019}, {19, 56354}, {33, 56287}, {71, 837}, {281, 53995}, {607, 34401}, {2200, 57978}, {3195, 34413}
X(63399) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 56354}, {24005, 306}, {36033, 42019}, {38015, 92}, {40650, 46745}, {49171, 4}
X(63399) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1897, 1459}, {54284, 3554}
X(63399) = pole of line {15313, 53305} with respect to the circumcircle
X(63399) = pole of line {3738, 21172} with respect to the incircle
X(63399) = pole of line {8058, 16231} with respect to the polar circle
X(63399) = pole of line {1319, 12114} with respect to the Feuerbach hyperbola
X(63399) = pole of line {856, 22076} with respect to the Jerabek hyperbola
X(63399) = pole of line {28, 1819} with respect to the Stammler hyperbola
X(63399) = pole of line {3738, 21186} with respect to the Suppa-Cucoanes circle
X(63399) = pole of line {278, 4341} with respect to the dual conic of Yff parabola
X(63399) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1519)}}, {{A, B, C, X(4), X(15501)}}, {{A, B, C, X(63), X(10305)}}, {{A, B, C, X(72), X(3554)}}, {{A, B, C, X(77), X(5553)}}, {{A, B, C, X(78), X(104)}}, {{A, B, C, X(84), X(1259)}}, {{A, B, C, X(109), X(42464)}}, {{A, B, C, X(208), X(7053)}}, {{A, B, C, X(271), X(56941)}}, {{A, B, C, X(522), X(1158)}}, {{A, B, C, X(1069), X(1260)}}, {{A, B, C, X(1433), X(49171)}}, {{A, B, C, X(1444), X(18909)}}, {{A, B, C, X(3998), X(8808)}}, {{A, B, C, X(43078), X(51629)}}, {{A, B, C, X(54400), X(58894)}}
X(63399) = barycentric product X(i)*X(j) for these (i, j): {1, 26871}, {3, 54284}, {286, 836}, {1444, 24005}, {2185, 26955}, {3086, 63}, {3554, 69}, {13387, 38003}, {17869, 1790}, {19354, 85}, {30223, 348}, {38015, 56972}, {40650, 6213}, {53994, 77}
X(63399) = barycentric quotient X(i)/X(j) for these (i, j): {3, 56354}, {28, 837}, {48, 42019}, {77, 34401}, {222, 56287}, {286, 57978}, {603, 53995}, {836, 72}, {3086, 92}, {3554, 4}, {19354, 9}, {24005, 41013}, {26871, 75}, {26955, 6358}, {30223, 281}, {38003, 13386}, {40650, 46744}, {41081, 34413}, {53994, 318}, {54284, 264}, {58894, 1785}
X(63399) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1768, 1158}, {1, 52027, 6906}, {3, 1071, 18446}, {3, 13369, 10884}, {3, 24467, 63}, {3, 26928, 1473}, {3, 37700, 4855}, {3, 3916, 21165}, {3, 912, 78}, {4, 26877, 57}, {5, 37612, 3306}, {9, 37526, 631}, {20, 3218, 5709}, {36, 15071, 6261}, {40, 6762, 12245}, {40, 63430, 944}, {40, 9841, 376}, {46, 10085, 515}, {226, 6705, 6833}, {404, 12528, 5720}, {404, 13243, 12528}, {411, 11220, 41854}, {550, 37584, 63141}, {936, 21164, 6940}, {942, 34862, 1012}, {971, 37582, 3149}, {1155, 12680, 11500}, {1473, 26927, 3}, {1490, 15803, 6905}, {1709, 3338, 946}, {1788, 12667, 1512}, {2771, 32612, 45770}, {2800, 41554, 10698}, {2801, 25440, 17857}, {3333, 12705, 5603}, {3524, 26878, 61122}, {3555, 17613, 10306}, {3560, 10202, 54392}, {3868, 6909, 37531}, {3911, 6260, 6834}, {3928, 9841, 40}, {3929, 61122, 26878}, {4292, 6245, 4}, {5435, 6223, 6848}, {5450, 5884, 1}, {5709, 7171, 20}, {5887, 10269, 19861}, {6914, 37615, 62829}, {7330, 37534, 2}, {7701, 8227, 54370}, {8726, 31424, 1006}, {11372, 60955, 59386}, {12678, 24914, 18242}, {12679, 17728, 7681}, {12684, 37545, 19541}, {12688, 32636, 22753}, {15803, 30304, 1490}, {15803, 54432, 1708}, {18446, 63437, 55104}, {22758, 34339, 19860}, {24470, 61556, 8727}, {24475, 37533, 11520}, {32612, 45770, 35262}, {37560, 57279, 5657}


X(63400) = REFLECTION OF X(81) IN X(3)

Barycentrics    a*(a^6+a^5*(b+c)-b*c*(b^2-c^2)^2+a^4*(2*b^2+5*b*c+2*c^2)-a^2*(b+c)^2*(3*b^2-2*b*c+3*c^2)+2*a^3*(b^3+b^2*c+b*c^2+c^3)-a*(3*b^5+3*b^4*c+2*b^3*c^2+2*b^2*c^3+3*b*c^4+3*c^5)) : :
X(63400) = -4*X[5]+5*X[31247], -3*X[549]+2*X[61554], -5*X[631]+4*X[6703], -5*X[3522]+X[20086]

X(63400) lies on these lines: {3, 81}, {4, 1211}, {5, 31247}, {20, 2895}, {21, 48882}, {28, 22076}, {30, 31143}, {40, 758}, {72, 3101}, {74, 1292}, {98, 28474}, {104, 6010}, {125, 31154}, {376, 524}, {500, 37402}, {511, 4221}, {517, 3920}, {549, 61554}, {573, 1006}, {602, 1695}, {631, 6703}, {842, 2746}, {970, 37431}, {972, 36516}, {997, 54420}, {1010, 48941}, {1297, 44059}, {1764, 6905}, {3428, 7430}, {3522, 20086}, {3576, 37508}, {3682, 38856}, {3877, 4239}, {3990, 36080}, {5603, 6998}, {5657, 7413}, {5752, 37399}, {5759, 30266}, {6011, 28159}, {7414, 14110}, {7421, 10310}, {8682, 63444}, {9549, 54388}, {9566, 13732}, {10176, 16547}, {11111, 33586}, {11116, 25897}, {14005, 48931}, {15952, 48928}, {15988, 17512}, {17834, 59345}, {21669, 48883}, {28469, 53905}, {30267, 31793}, {33557, 48915}, {37422, 48877}, {48875, 49128}, {54371, 62843}

X(63400) = midpoint of X(i) and X(j) for these {i,j}: {20, 2895}
X(63400) = reflection of X(i) in X(j) for these {i,j}: {4, 1211}, {81, 3}
X(63400) = pole of line {5650, 7523} with respect to the Jerabek hyperbola
X(63400) = pole of line {405, 35259} with respect to the Stammler hyperbola
X(63400) = pole of line {32815, 44140} with respect to the Wallace hyperbola
X(63400) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40, 3430, 3651}, {63389, 63423, 104}


X(63401) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(86)

Barycentrics    4*a^2-(b-c)^2+2*a*(b+c) : :
X(63401) = -4*X[3626]+5*X[4733], -X[3632]+5*X[24342], -7*X[15808]+5*X[25354], -4*X[35018]+5*X[61558]

X(63401) lies on these lines: {1, 3255}, {2, 6}, {7, 16884}, {30, 3019}, {37, 4667}, {44, 25072}, {45, 60983}, {142, 16666}, {144, 16672}, {145, 17118}, {269, 47057}, {319, 4472}, {320, 17045}, {382, 5733}, {513, 4890}, {523, 21135}, {527, 3723}, {545, 17319}, {546, 45942}, {550, 991}, {594, 3879}, {740, 3244}, {894, 3943}, {1014, 1030}, {1086, 1100}, {1125, 17344}, {1278, 7231}, {1279, 3636}, {1418, 4031}, {1419, 6357}, {1449, 4675}, {1458, 63295}, {1834, 4658}, {2092, 16726}, {2191, 34916}, {2245, 18164}, {2293, 63332}, {2294, 7202}, {2321, 50125}, {2667, 53541}, {3008, 16668}, {3241, 7222}, {3247, 49742}, {3271, 58571}, {3284, 18643}, {3332, 3529}, {3528, 50677}, {3530, 13329}, {3616, 17253}, {3626, 4733}, {3632, 24342}, {3672, 62223}, {3704, 49564}, {3729, 4795}, {3739, 4969}, {3758, 17243}, {3759, 34824}, {3782, 62801}, {3851, 63323}, {3875, 49727}, {3882, 17207}, {3982, 6610}, {4000, 62212}, {4001, 37869}, {4026, 50304}, {4340, 57000}, {4344, 15590}, {4360, 7228}, {4363, 17388}, {4364, 17329}, {4393, 7263}, {4395, 26806}, {4402, 31139}, {4405, 4772}, {4415, 37595}, {4416, 28639}, {4422, 17120}, {4431, 4889}, {4464, 4726}, {4478, 28604}, {4644, 16777}, {4657, 61302}, {4665, 17377}, {4681, 4796}, {4725, 4967}, {4739, 49770}, {4747, 17314}, {4798, 17270}, {4851, 17286}, {4852, 50116}, {4888, 17301}, {4916, 7229}, {4966, 33682}, {4971, 17116}, {5308, 16885}, {5564, 28337}, {5710, 63341}, {5711, 63309}, {5749, 17311}, {5750, 17374}, {6172, 16677}, {6542, 7227}, {6651, 29625}, {6666, 16671}, {7232, 26626}, {7238, 17302}, {7290, 24697}, {7321, 29584}, {7390, 55722}, {7826, 56734}, {7845, 16052}, {7855, 17698}, {9332, 29640}, {10022, 48628}, {10108, 10974}, {10301, 63293}, {10436, 17362}, {11269, 14969}, {12007, 21554}, {14269, 63296}, {15681, 63449}, {15808, 25354}, {16667, 17278}, {16669, 29571}, {16675, 29624}, {16826, 17332}, {17023, 17376}, {17117, 49733}, {17242, 49726}, {17252, 25358}, {17258, 28333}, {17262, 29585}, {17273, 29586}, {17316, 17340}, {17325, 21296}, {17328, 29612}, {17347, 29570}, {17351, 29574}, {17361, 17397}, {17363, 41847}, {17368, 17387}, {17373, 48636}, {17380, 48631}, {17386, 50097}, {17393, 50128}, {17396, 49741}, {17609, 41682}, {18907, 48840}, {20050, 63415}, {20850, 63311}, {21104, 23728}, {23681, 39948}, {23905, 33770}, {25417, 33146}, {25590, 50098}, {26098, 63324}, {28558, 50294}, {28619, 49716}, {30939, 53478}, {31995, 50120}, {33104, 62821}, {33464, 63362}, {33465, 63363}, {33633, 43261}, {35018, 61558}, {35024, 52969}, {37900, 63451}, {39704, 48627}, {39710, 59267}, {40438, 53427}, {41311, 53598}, {42334, 63319}, {44100, 62981}, {48823, 62828}, {48847, 48868}, {49497, 49725}, {49533, 51055}, {49685, 50299}, {49765, 49776}, {50076, 59772}, {50259, 62755}, {50262, 53426}, {50588, 50596}, {61153, 63304}

X(63401) = reflection of X(i) in X(j) for these {i,j}: {1213, 86}, {1654, 6707}, {3723, 4909}
X(63401) = pole of line {4897, 28473} with respect to the incircle
X(63401) = pole of line {11997, 58571} with respect to the Feuerbach hyperbola
X(63401) = pole of line {2, 62322} with respect to the Kiepert hyperbola
X(63401) = pole of line {523, 24924} with respect to the Steiner inellipse
X(63401) = pole of line {1125, 17235} with respect to the dual conic of Yff parabola
X(63401) = intersection, other than A, B, C, of circumconics {{A, B, C, X(86), X(58279)}}, {{A, B, C, X(333), X(3255)}}, {{A, B, C, X(34916), X(41610)}}
X(63401) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17365, 17246}, {7, 16884, 17395}, {37, 4667, 7277}, {86, 1654, 6707}, {524, 6707, 1654}, {527, 4909, 3723}, {894, 17390, 3943}, {1100, 3664, 1086}, {1449, 4675, 17366}, {1654, 6707, 1213}, {3758, 17391, 17243}, {3879, 4670, 594}, {4644, 16777, 17334}, {4658, 49743, 1834}, {5750, 17374, 48635}, {17364, 17394, 4364}


X(63402) = REFLECTION OF X(86) IN X(3)

Barycentrics    a^6+5*a^5*(b+c)-a*(b-c)^2*(b+c)^3-b*c*(b^2-c^2)^2+a^4*(2*b^2+5*b*c+2*c^2)-a^2*(b+c)^2*(3*b^2-2*b*c+3*c^2)-4*a^3*(b^3+b^2*c+b*c^2+c^3) : :
X(63402) = -4*X[5]+5*X[31248], -3*X[549]+2*X[61558], -5*X[631]+4*X[6707], -5*X[3522]+X[20090], -3*X[3576]+2*X[5625], -2*X[4733]+3*X[5657], X[24697]+2*X[31730]

X(63402) lies on these lines: {3, 86}, {4, 1213}, {5, 31248}, {20, 1654}, {27, 22080}, {30, 31144}, {40, 740}, {74, 44876}, {98, 1293}, {125, 31153}, {165, 7413}, {376, 524}, {511, 4229}, {515, 42334}, {516, 6998}, {549, 61558}, {631, 6707}, {842, 2740}, {1030, 5327}, {2938, 29057}, {3430, 12512}, {3522, 20090}, {3528, 50677}, {3576, 5625}, {3651, 5759}, {3923, 26244}, {4055, 28624}, {4220, 9778}, {4733, 5657}, {6650, 29243}, {6996, 48886}, {11104, 25898}, {15988, 35915}, {17277, 49129}, {20142, 37416}, {24280, 26243}, {24697, 31730}, {24813, 30271}, {30268, 36986}, {33536, 36028}, {35203, 37422}, {43261, 57710}, {48925, 54388}

X(63402) = midpoint of X(i) and X(j) for these {i,j}: {20, 1654}
X(63402) = reflection of X(i) in X(j) for these {i,j}: {4, 1213}, {86, 3}, {6998, 37508}
X(63402) = pole of line {4170, 4960} with respect to the Conway circle
X(63402) = pole of line {5650, 7573} with respect to the Jerabek hyperbola
X(63402) = pole of line {387, 36677} with respect to the Kiepert hyperbola
X(63402) = pole of line {1011, 35259} with respect to the Stammler hyperbola
X(63402) = pole of line {10449, 32815} with respect to the Wallace hyperbola


X(63403) = REFLECTION OF X(116) IN X(3)

Barycentrics    4*a^8-4*a^7*(b+c)+a*(b-c)^4*(b+c)^3-4*a^6*(b^2-b*c+c^2)-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^5*(b^3+7*b^2*c+7*b*c^2+c^3)-2*a^2*(b-c)^2*(b^4+b^3*c+2*b^2*c^2+b*c^3+c^4)+a^4*(3*b^4-7*b^3*c-7*b*c^3+3*c^4)+2*a^3*(b^5-b^4*c-b*c^4+c^5) : :
X(63403) = -3*X[2]+X[10725], -2*X[5]+3*X[38772], -X[103]+3*X[376], -X[150]+5*X[3522], -3*X[165]+X[50896], -3*X[381]+5*X[38774], -X[382]+3*X[38764], -3*X[549]+2*X[61577], -5*X[631]+4*X[58418], -X[3146]+4*X[20401], -7*X[3523]+5*X[31273], 3*X[3534]+X[38572] and many others

X(63403) lies on these lines: {2, 10725}, {3, 116}, {4, 6710}, {5, 38772}, {20, 101}, {30, 118}, {103, 376}, {150, 3522}, {165, 50896}, {381, 38774}, {382, 38764}, {516, 11712}, {548, 38601}, {549, 61577}, {550, 2808}, {631, 58418}, {928, 38785}, {1362, 15326}, {1657, 10741}, {2772, 16111}, {2774, 16163}, {2777, 53747}, {2784, 12512}, {2786, 38738}, {2794, 53730}, {2801, 38761}, {2807, 63404}, {2809, 4297}, {2810, 44882}, {2811, 3184}, {2812, 63407}, {2813, 63408}, {2822, 63411}, {2824, 38805}, {2825, 63410}, {2829, 53739}, {3022, 15338}, {3046, 52525}, {3146, 20401}, {3523, 31273}, {3529, 10727}, {3534, 38572}, {3576, 11726}, {3627, 38775}, {3887, 24466}, {4304, 11028}, {4314, 14760}, {5731, 10695}, {5840, 53746}, {6361, 10697}, {9518, 14689}, {10304, 10708}, {10710, 11001}, {10756, 25406}, {10770, 38693}, {11728, 12699}, {12103, 51526}, {13598, 58505}, {15681, 38768}, {15696, 38574}, {16836, 58507}, {17044, 31851}, {17538, 38666}, {17702, 53712}, {17704, 58540}, {17800, 38767}, {20096, 38668}, {23698, 53721}, {28164, 28346}, {30282, 34929}, {33703, 38770}, {33923, 61565}, {34200, 61602}, {37853, 53714}, {38644, 54996}, {38645, 44251}, {38656, 54993}, {38726, 53751}, {38736, 53732}, {38759, 53750}, {43574, 58057}, {44245, 51528}, {61604, 62151}

X(63403) = midpoint of X(i) and X(j) for these {i,j}: {20, 101}, {103, 63416}, {1657, 10741}, {3529, 10727}, {6361, 10697}, {10710, 11001}, {20096, 38668}, {33520, 38773}, {38572, 38765}, {38666, 63418}, {61604, 62151}
X(63403) = reflection of X(i) in X(j) for these {i,j}: {4, 6710}, {103, 38771}, {116, 3}, {118, 38599}, {3627, 61579}, {10727, 38769}, {10739, 6712}, {12699, 11728}, {13598, 58505}, {31851, 17044}, {33521, 38773}, {38601, 548}, {38769, 35024}, {38773, 550}, {53714, 37853}, {53732, 38736}, {53750, 38759}, {53751, 38726}, {58540, 17704}, {61565, 33923}
X(63403) = complement of X(10725)
X(63403) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10739, 6712}, {4, 38690, 6710}, {30, 38599, 118}, {103, 376, 38771}, {103, 63416, 544}, {150, 3522, 38692}, {376, 63416, 103}, {381, 38774, 58420}, {550, 2808, 38773}, {2808, 38773, 33521}, {3534, 38572, 38765}, {15696, 38574, 38766}, {33520, 38773, 2808}


X(63404) = REFLECTION OF X(117) IN X(3)

Barycentrics    4*a^10-6*a^8*(b-c)^2-4*a^9*(b+c)+a*(b-c)^6*(b+c)^3-(b^2-c^2)^4*(b^2-b*c+c^2)+a^3*(b-c)^4*(b^3-5*b^2*c-5*b*c^2+c^3)-a^5*(b-c)^2*(9*b^3-5*b^2*c-5*b*c^2+9*c^3)+a^7*(11*b^3-7*b^2*c-7*b*c^2+11*c^3)-a^2*(b^2-c^2)^2*(3*b^4-7*b^3*c+16*b^2*c^2-7*b*c^3+3*c^4)-a^6*(5*b^4+15*b^3*c-36*b^2*c^2+15*b*c^3+5*c^4)+a^4*(b-c)^2*(11*b^4+17*b^3*c+17*b*c^3+11*c^4) : :
X(63404) = -3*X[2]+X[10726], -2*X[5]+3*X[38784], -X[109]+3*X[376], -X[151]+5*X[3522], -3*X[165]+X[50899], -3*X[381]+5*X[38786], -X[382]+3*X[38776], -3*X[549]+2*X[61578], -5*X[631]+4*X[58419], 3*X[3534]+X[38573], -3*X[3576]+2*X[11727], -2*X[3627]+5*X[38787] and many others

X(63404) lies on these lines: {2, 10726}, {3, 117}, {4, 6711}, {5, 38784}, {20, 102}, {30, 124}, {109, 376}, {151, 3522}, {165, 50899}, {381, 38786}, {382, 38776}, {515, 2968}, {516, 11713}, {548, 38607}, {549, 61578}, {550, 2818}, {631, 58419}, {928, 38773}, {1361, 15338}, {1364, 15326}, {1657, 10747}, {2773, 16111}, {2777, 53749}, {2779, 16163}, {2785, 38749}, {2792, 38738}, {2794, 53731}, {2800, 10609}, {2807, 63403}, {2814, 63405}, {2815, 63406}, {2816, 3184}, {2817, 4297}, {2819, 63408}, {2829, 53740}, {2846, 63411}, {2852, 38805}, {2853, 63410}, {3529, 10732}, {3534, 38573}, {3576, 11727}, {3627, 38787}, {3738, 38761}, {4304, 59816}, {5731, 10696}, {5840, 53748}, {6361, 10703}, {9532, 14689}, {10304, 10709}, {10716, 11001}, {10757, 25406}, {10771, 38693}, {11734, 12699}, {12103, 51527}, {12512, 14690}, {13598, 58506}, {15681, 38780}, {15696, 38579}, {16836, 58513}, {17538, 38667}, {17702, 53713}, {17704, 58541}, {17800, 38779}, {33703, 38782}, {33923, 61571}, {34200, 61603}, {37853, 53717}, {38674, 50693}, {38726, 53758}, {38736, 53734}, {38747, 53724}, {38759, 53752}, {43574, 58051}, {44245, 51534}, {47115, 51705}, {52525, 58060}

X(63404) = midpoint of X(i) and X(j) for these {i,j}: {20, 102}, {109, 63417}, {1657, 10747}, {3529, 10732}, {6361, 10703}, {10716, 11001}, {38573, 38777}
X(63404) = reflection of X(i) in X(j) for these {i,j}: {4, 6711}, {109, 38783}, {117, 3}, {124, 38600}, {3627, 61585}, {10732, 38781}, {10740, 6718}, {12699, 11734}, {13598, 58506}, {14690, 12512}, {38607, 548}, {38785, 550}, {53717, 37853}, {53724, 38747}, {53734, 38736}, {53752, 38759}, {53758, 38726}, {58541, 17704}, {61571, 33923}
X(63404) = complement of X(10726)
X(63404) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10740, 6718}, {109, 376, 38783}, {376, 63417, 109}, {550, 2818, 38785}, {6718, 10740, 117}, {15696, 38579, 38778}


X(63405) = REFLECTION OF X(120) IN X(3)

Barycentrics    4*a^8-8*a^7*(b+c)-(b-c)^4*(b+c)^2*(b^2+c^2)+a^6*(5*b^2+6*b*c+5*c^2)-2*a^5*(b^3-3*b^2*c-3*b*c^2+c^3)-a^4*(3*b^4+6*b^3*c+2*b^2*c^2+6*b*c^3+3*c^4)-a^2*(b-c)^2*(5*b^4+4*b^3*c+10*b^2*c^2+4*b*c^3+5*c^4)+2*a*(b-c)^2*(b^5+b^4*c+b*c^4+c^5)+a^3*(8*b^5-4*b^4*c-4*b*c^4+8*c^5) : :
X(63405) = -3*X[2]+X[10729], -3*X[165]+X[50911], -X[382]+3*X[57299], -3*X[549]+2*X[61581], -5*X[631]+4*X[58422], -5*X[3522]+X[20344], 3*X[3534]+X[38575], -3*X[3576]+2*X[11730], -3*X[5731]+X[10699], -3*X[10304]+X[10712], -X[10760]+3*X[25406], -X[10773]+3*X[38693] and many others

X(63405) lies on these lines: {2, 10729}, {3, 120}, {4, 6714}, {11, 57600}, {20, 105}, {30, 5511}, {104, 376}, {165, 50911}, {382, 57299}, {516, 11716}, {548, 38619}, {549, 61581}, {550, 28915}, {631, 58422}, {1358, 5088}, {1657, 15521}, {2775, 16111}, {2777, 53756}, {2788, 38749}, {2795, 38738}, {2809, 4297}, {2814, 63404}, {2820, 38773}, {2826, 38761}, {2829, 46409}, {2832, 63406}, {2833, 3184}, {2834, 44241}, {2835, 38785}, {2836, 16163}, {2837, 63408}, {2838, 14689}, {3021, 15338}, {3522, 20344}, {3529, 44983}, {3534, 38575}, {3576, 11730}, {4304, 59814}, {5731, 10699}, {9519, 59420}, {9520, 63411}, {9522, 38805}, {9523, 63410}, {10304, 10712}, {10760, 25406}, {10773, 38693}, {12103, 51530}, {13598, 58509}, {15696, 38589}, {17538, 38670}, {20097, 38684}, {38647, 54996}, {38658, 54993}, {43574, 58055}, {52525, 58053}

X(63405) = midpoint of X(i) and X(j) for these {i,j}: {20, 105}, {1657, 15521}, {3529, 44983}, {20097, 38684}
X(63405) = reflection of X(i) in X(j) for these {i,j}: {4, 6714}, {120, 3}, {13598, 58509}, {38619, 548}, {5511, 38603}
X(63405) = complement of X(10729)
X(63405) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 38603, 5511}, {3522, 20344, 38712}


X(63406) = REFLECTION OF X(121) IN X(3)

Barycentrics    4*a^7-8*a^6*(b+c)-(b-c)^2*(b+c)^3*(b^2-3*b*c+c^2)+a*(b^2-c^2)^2*(2*b^2-9*b*c+2*c^2)-2*a^5*(5*b^2-18*b*c+5*c^2)+a^4*(11*b^3-7*b^2*c-7*b*c^2+11*c^3)+a^3*(4*b^4-27*b^3*c+26*b^2*c^2-27*b*c^3+4*c^4)-a^2*(2*b^5-13*b^4*c+7*b^3*c^2+7*b^2*c^3-13*b*c^4+2*c^5) : :
X(63406) = -3*X[2]+X[10730], -3*X[165]+X[50914], -3*X[376]+X[1293], -X[382]+3*X[57300], -3*X[549]+2*X[61582], -5*X[631]+4*X[58423], -5*X[3522]+X[21290], 3*X[3534]+X[38576], -3*X[3576]+2*X[11731], -3*X[5731]+X[10700], -3*X[10304]+X[10713], -X[10761]+3*X[25406] and many others

X(63406) lies on these lines: {2, 10730}, {3, 121}, {4, 6715}, {20, 106}, {30, 5510}, {165, 50914}, {376, 1293}, {382, 57300}, {515, 14664}, {516, 11717}, {548, 38620}, {549, 61582}, {550, 53790}, {631, 58423}, {1357, 15326}, {1657, 15522}, {2776, 16111}, {2789, 38749}, {2796, 38738}, {2802, 4297}, {2810, 44882}, {2815, 63404}, {2821, 38773}, {2827, 38761}, {2832, 63405}, {2839, 3184}, {2840, 63407}, {2841, 38785}, {2842, 16163}, {2843, 63408}, {2844, 14689}, {3522, 21290}, {3529, 44984}, {3534, 38576}, {3576, 11731}, {4304, 59812}, {5731, 10700}, {6018, 15338}, {9524, 63411}, {9526, 38805}, {9527, 63410}, {10304, 10713}, {10761, 25406}, {10774, 38693}, {12103, 51531}, {13598, 58510}, {15696, 38590}, {17538, 38671}, {20098, 38685}, {38648, 54996}, {38659, 54993}, {43574, 58054}, {52525, 58052}

X(63406) = midpoint of X(i) and X(j) for these {i,j}: {20, 106}, {1657, 15522}, {3529, 44984}, {20098, 38685}
X(63406) = reflection of X(i) in X(j) for these {i,j}: {4, 6715}, {121, 3}, {13598, 58510}, {38620, 548}, {5510, 38604}
X(63406) = complement of X(10730)
X(63406) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 38695, 6715}, {30, 38604, 5510}, {3522, 21290, 38713}


X(63407) = REFLECTION OF X(123) IN X(3)

Barycentrics    (a^2-b^2-c^2)*(4*a^11-4*a^10*(b+c)+7*a^8*(b-c)^2*(b+c)+2*a^2*(b-c)^6*(b+c)^3+(b-c)^6*(b+c)^5+a^9*(-7*b^2+18*b*c-7*c^2)-a*(b^2-c^2)^4*(b^2-4*b*c+c^2)-2*a^7*(b-c)^2*(b^2+9*b*c+c^2)+2*a^6*(b-c)^2*(b^3+11*b^2*c+11*b*c^2+c^3)-2*a^3*(b^2-c^2)^2*(b^4-7*b^3*c+8*b^2*c^2-7*b*c^3+c^4)+2*a^5*(b-c)^2*(4*b^4-3*b^3*c-18*b^2*c^2-3*b*c^3+4*c^4)-8*a^4*(b^7-4*b^5*c^2+3*b^4*c^3+3*b^3*c^4-4*b^2*c^5+c^7)) : :
X(63407) = -3*X[2]+X[10731], -3*X[165]+X[50917], -3*X[376]+X[1295], -X[382]+3*X[57302], -3*X[549]+2*X[61584], -5*X[631]+4*X[58425], -5*X[3522]+X[34188], 3*X[3534]+X[38578], -3*X[3576]+2*X[11733], -3*X[5731]+X[10702], -3*X[10304]+X[10715], -X[10763]+3*X[25406] and many others

X(63407) lies on these lines: {2, 10731}, {3, 119}, {4, 6717}, {20, 108}, {30, 25640}, {165, 50917}, {376, 1295}, {382, 57302}, {516, 11719}, {548, 38622}, {549, 61584}, {631, 58425}, {1359, 15326}, {1657, 33566}, {2778, 9943}, {2791, 38749}, {2798, 38738}, {2804, 24466}, {2812, 63403}, {2817, 4297}, {2823, 38773}, {2834, 44241}, {2840, 63406}, {2845, 3184}, {2849, 38785}, {2850, 16163}, {2851, 63408}, {3318, 15338}, {3522, 34188}, {3529, 44986}, {3534, 38578}, {3576, 11733}, {4304, 59820}, {5731, 10702}, {9528, 63411}, {9531, 38805}, {10304, 10715}, {10763, 25406}, {10776, 38693}, {12103, 51533}, {13598, 58512}, {15696, 38592}, {17538, 38673}, {38687, 50693}, {43574, 58063}, {52525, 58050}, {62503, 63410}

X(63407) = midpoint of X(i) and X(j) for these {i,j}: {20, 108}, {1657, 33566}, {3529, 44986}
X(63407) = reflection of X(i) in X(j) for these {i,j}: {4, 6717}, {123, 3}, {13598, 58512}, {25640, 38606}, {38622, 548}
X(63407) = complement of X(10731)
X(63407) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 2829, 123}, {4, 38696, 6717}, {30, 38606, 25640}, {3522, 34188, 38715}


X(63408) = REFLECTION OF X(126) IN X(3)

Barycentrics    4*a^10-14*a^8*(b^2+c^2)-3*a^6*(b^4-22*b^2*c^2+c^4)-(b^2-c^2)^2*(b^6-3*b^4*c^2-3*b^2*c^4+c^6)+a^4*(15*b^6-41*b^4*c^2-41*b^2*c^4+15*c^6)-a^2*(b^8+8*b^6*c^2-34*b^4*c^4+8*b^2*c^6+c^8) : :
X(63408) = -3*X[2]+X[10734], -2*X[5]+3*X[38804], -3*X[165]+X[50924], -3*X[381]+5*X[38806], -X[382]+3*X[38796], -3*X[549]+2*X[40340], -5*X[631]+4*X[58427], -5*X[3522]+X[14360], X[3529]+2*X[38801], 3*X[3534]+X[11258], -2*X[3627]+5*X[38807], -3*X[5731]+X[10704] and many others

X(63408) lies on these lines: {2, 10734}, {3, 126}, {4, 6719}, {5, 38804}, {20, 111}, {30, 5512}, {98, 376}, {115, 57599}, {165, 50924}, {381, 38806}, {382, 38796}, {511, 53764}, {516, 11721}, {548, 38623}, {549, 40340}, {550, 33962}, {631, 58427}, {1657, 22338}, {2777, 9129}, {2780, 16111}, {2793, 38749}, {2794, 53736}, {2805, 24466}, {2813, 63403}, {2819, 63404}, {2824, 38773}, {2829, 53744}, {2830, 38761}, {2837, 63405}, {2843, 63406}, {2847, 3184}, {2851, 63407}, {2852, 38785}, {2854, 15151}, {3048, 52525}, {3325, 15326}, {3522, 14360}, {3529, 38801}, {3534, 11258}, {3627, 38807}, {4304, 59819}, {5731, 10704}, {5840, 53754}, {6019, 15338}, {8703, 32424}, {9529, 63411}, {10304, 10717}, {10765, 25406}, {10779, 38693}, {12103, 51535}, {13598, 58514}, {14689, 44241}, {15560, 18533}, {15563, 44831}, {15681, 38800}, {15696, 38593}, {15697, 37749}, {17538, 38675}, {17702, 53718}, {17800, 38799}, {20099, 38688}, {23698, 53726}, {28662, 29181}, {31884, 36883}, {33703, 38802}, {35447, 38788}, {36696, 51212}, {38651, 54996}, {38662, 54993}, {40544, 56368}, {43574, 58059}, {44280, 47325}, {46994, 47031}, {62506, 63410}

X(63408) = midpoint of X(i) and X(j) for these {i,j}: {20, 111}, {1296, 14654}, {1657, 22338}, {3529, 44987}, {3534, 14666}, {11258, 38797}, {20099, 38688}
X(63408) = reflection of X(i) in X(j) for these {i,j}: {4, 6719}, {126, 3}, {1296, 38803}, {5512, 14650}, {10748, 40556}, {13598, 58514}, {38623, 548}, {38805, 550}, {44987, 38801}
X(63408) = complement of X(10734)
X(63408) = pole of line {2408, 30786} with respect to the orthoptic circle of the Steiner Inellipse
X(63408) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10748, 40556}, {30, 14650, 5512}, {376, 1296, 38803}, {376, 14654, 1296}, {550, 33962, 38805}, {1296, 14654, 543}, {3522, 14360, 38716}, {3534, 11258, 38797}, {5512, 14650, 9172}, {10748, 40556, 126}, {14666, 38797, 11258}, {15696, 38593, 38798}, {23699, 40556, 10748}


X(63409) = REFLECTION OF X(128) IN X(3)

Barycentrics    4*a^16-18*a^14*(b^2+c^2)-(b^2-c^2)^6*(b^4+b^2*c^2+c^4)+a^12*(34*b^4+52*b^2*c^2+34*c^4)+a^2*(b^2-c^2)^4*(b^6+c^6)-a^10*(39*b^6+53*b^4*c^2+53*b^2*c^4+39*c^6)+a^4*(b^2-c^2)^2*(8*b^8+3*b^6*c^2+3*b^2*c^6+8*c^8)+a^8*(35*b^8+16*b^6*c^2+30*b^4*c^4+16*b^2*c^6+35*c^8)-3*a^6*(8*b^10-5*b^8*c^2+3*b^6*c^4+3*b^4*c^6-5*b^2*c^8+8*c^10) : :
X(63409) = -3*X[2]+X[44981], -2*X[4]+3*X[23516], -3*X[376]+X[930], -3*X[381]+4*X[58432], -X[382]+3*X[57324], -3*X[546]+4*X[25339], -3*X[549]+2*X[61587], -5*X[631]+4*X[58429], -5*X[3522]+3*X[38706], 3*X[3534]+X[38587], -3*X[8703]+X[14072], X[13504]+3*X[15072] and many others

X(63409) lies on these lines: {2, 44981}, {3, 128}, {4, 23516}, {20, 1141}, {30, 137}, {376, 930}, {381, 58432}, {382, 57324}, {546, 25339}, {548, 12041}, {549, 61587}, {550, 25150}, {631, 58429}, {1263, 15704}, {2071, 14652}, {3327, 15326}, {3522, 38706}, {3529, 44976}, {3534, 38587}, {3627, 61594}, {6592, 33923}, {7159, 15338}, {8703, 14072}, {12060, 27196}, {12295, 45258}, {13504, 15072}, {13512, 15696}, {14073, 62104}, {15366, 52262}, {15712, 23237}, {15760, 23319}, {16111, 45147}, {17538, 38683}, {23238, 62106}, {25147, 62036}, {34584, 43966}, {38640, 62093}, {38681, 50693}, {43574, 58062}, {52525, 58068}

X(63409) = midpoint of X(i) and X(j) for these {i,j}: {20, 1141}, {1263, 15704}, {3529, 44976}
X(63409) = reflection of X(i) in X(j) for these {i,j}: {4, 34837}, {128, 3}, {137, 38618}, {3627, 61594}, {6592, 33923}, {12295, 45258}, {23516, 38710}, {31656, 13372}, {38615, 548}, {63412, 550}
X(63409) = complement of X(44981)
X(63409) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 31656, 13372}, {4, 34837, 23516}, {4, 38710, 34837}, {30, 38618, 137}, {548, 32423, 38615}, {550, 25150, 63412}, {3529, 47065, 44976}, {13372, 31656, 128}


X(63410) = REFLECTION OF X(132) IN X(3)

Barycentrics    4*a^14-6*a^12*(b^2+c^2)-2*a^6*(b^4-c^4)^2+a^10*(b^4+10*b^2*c^2+c^4)-a^2*(b^4-c^4)^2*(3*b^4+2*b^2*c^2+3*c^4)-a^8*(b^6+b^4*c^2+b^2*c^4+c^6)-(b^2-c^2)^4*(b^6+b^4*c^2+b^2*c^4+c^6)+4*a^4*(b^2-c^2)^2*(2*b^6+3*b^4*c^2+3*b^2*c^4+2*c^6) : :
X(63410) = -3*X[2]+X[44988], -X[112]+3*X[376], -3*X[165]+X[12784], -3*X[381]+4*X[58428], -X[382]+3*X[57332], -3*X[549]+2*X[61591], -5*X[631]+4*X[58430], -5*X[3522]+X[12384], 3*X[3534]+X[13115], -3*X[5731]+X[13099], -4*X[9729]+3*X[16224]

X(63410) lies on circumconic {{A, B, C, X(1294), X(34129)}} and on these lines: {2, 44988}, {3, 132}, {4, 34841}, {20, 99}, {22, 34217}, {30, 127}, {112, 376}, {122, 2409}, {140, 19160}, {165, 12784}, {381, 58428}, {382, 57332}, {516, 12265}, {548, 38608}, {549, 61591}, {550, 14689}, {631, 58430}, {1657, 10749}, {2781, 3313}, {2799, 9409}, {2806, 38761}, {2825, 63403}, {2831, 24466}, {2848, 63411}, {2853, 63404}, {3014, 21312}, {3070, 13918}, {3071, 13985}, {3164, 12503}, {3320, 15338}, {3522, 12384}, {3529, 10735}, {3534, 13115}, {3565, 53931}, {3627, 61586}, {4299, 13116}, {4302, 13117}, {5204, 12955}, {5217, 12945}, {5731, 13099}, {6020, 15326}, {6200, 13923}, {6361, 10705}, {6396, 13992}, {6459, 19093}, {6460, 19094}, {9157, 59343}, {9517, 16111}, {9518, 38773}, {9523, 63405}, {9527, 63406}, {9532, 38785}, {9541, 19115}, {9729, 16224}, {10718, 11001}, {11414, 19165}, {12796, 16190}, {13200, 17538}, {13310, 15696}, {14983, 44837}, {15562, 33524}, {15681, 48681}, {16836, 58515}, {19164, 59346}, {33923, 61573}, {34186, 35278}, {35880, 51911}, {35881, 51910}, {37853, 53719}, {38639, 62093}, {38652, 44251}, {38676, 50693}, {38726, 53760}, {38736, 53737}, {38759, 53755}, {41077, 55129}, {42258, 49219}, {42259, 49218}, {43574, 58049}, {44245, 51536}, {52525, 58064}, {62503, 63407}, {62506, 63408}

X(63410) = midpoint of X(i) and X(j) for these {i,j}: {20, 1297}, {112, 12253}, {1657, 10749}, {3529, 10735}, {6361, 10705}, {10718, 11001}, {13200, 38689}
X(63410) = reflection of X(i) in X(j) for these {i,j}: {4, 34841}, {127, 38624}, {132, 3}, {3627, 61586}, {12918, 6720}, {14689, 550}, {14900, 14689}, {19160, 140}, {38608, 548}, {53719, 37853}, {53737, 38736}, {53755, 38759}, {53760, 38726}, {61573, 33923}
X(63410) = complement of X(44988)
X(63410) = pole of line {42671, 44436} with respect to the Stammler hyperbola
X(63410) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12918, 6720}, {3, 48658, 57304}, {20, 1297, 2794}, {30, 38624, 127}, {112, 12253, 9530}, {376, 12253, 112}, {550, 53795, 14689}, {6720, 12918, 132}, {14689, 53795, 14900}


X(63411) = REFLECTION OF X(133) IN X(3)

Barycentrics    4*a^16-6*a^14*(b^2+c^2)+a^12*(-23*b^4+58*b^2*c^2-23*c^4)-(b^2-c^2)^6*(b^4+4*b^2*c^2+c^4)-a^8*(b^2-c^2)^2*(55*b^4+184*b^2*c^2+55*c^4)-2*a^2*(b^2-c^2)^4*(b^6+12*b^4*c^2+12*b^2*c^4+c^6)+6*a^6*(b^2-c^2)^2*(b^6+25*b^4*c^2+25*b^2*c^4+c^6)+a^10*(66*b^6-68*b^4*c^2-68*b^2*c^4+66*c^6)+a^4*(b^2-c^2)^2*(11*b^8-12*b^6*c^2-126*b^4*c^4-12*b^2*c^6+11*c^8) : :
X(63411) = -3*X[2]+X[44985], -X[107]+3*X[376], -3*X[381]+4*X[58424], -X[382]+3*X[57329], -3*X[549]+2*X[61592], -5*X[631]+4*X[58431], -5*X[3522]+3*X[23239], -X[5667]+5*X[17538], -5*X[15696]+X[38577]

X(63411) lies on these lines: {2, 44985}, {3, 133}, {4, 34842}, {5, 38956}, {20, 110}, {26, 40082}, {30, 122}, {107, 376}, {381, 58424}, {382, 57329}, {548, 38605}, {549, 61592}, {550, 3184}, {631, 58431}, {1657, 10745}, {2790, 36988}, {2797, 38749}, {2803, 38761}, {2811, 38773}, {2816, 38785}, {2822, 63403}, {2828, 24466}, {2846, 63404}, {2847, 38805}, {2848, 63410}, {2972, 46472}, {3324, 15338}, {3522, 23239}, {3529, 10152}, {3534, 9530}, {3627, 61583}, {5667, 17538}, {6361, 10701}, {7158, 15326}, {9033, 16111}, {9520, 63405}, {9524, 63406}, {9528, 63407}, {9529, 63408}, {10714, 11001}, {11414, 14703}, {11732, 12699}, {12103, 55304}, {15696, 38577}, {16386, 62501}, {16836, 58511}, {21312, 23181}, {33923, 61569}, {37853, 53716}, {38649, 44251}, {38672, 50693}, {38726, 53757}, {38747, 53723}, {43574, 58048}, {44245, 51532}, {52525, 58067}

X(63411) = midpoint of X(i) and X(j) for these {i,j}: {20, 1294}, {1657, 10745}, {3529, 10152}, {5667, 38686}, {6361, 10701}, {10714, 11001}, {23240, 38591}
X(63411) = reflection of X(i) in X(j) for these {i,j}: {4, 34842}, {122, 38621}, {133, 3}, {3184, 550}, {3627, 61583}, {12699, 11732}, {22337, 6716}, {36520, 38714}, {38605, 548}, {38956, 5}, {52057, 3184}, {53716, 37853}, {53723, 38747}, {53757, 38726}, {61569, 33923}
X(63411) = complement of X(44985)
X(63411) = pole of line {52737, 55127} with respect to the circumcircle
X(63411) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 22337, 6716}, {4, 34842, 36520}, {4, 38714, 34842}, {20, 1294, 2777}, {30, 38621, 122}, {550, 53803, 3184}, {3534, 38591, 23240}, {6716, 22337, 133}, {23240, 38591, 9530}


X(63412) = REFLECTION OF X(137) IN X(3)

Barycentrics    4*a^16-20*a^14*(b^2+c^2)-(b^2-c^2)^6*(b^4-b^2*c^2+c^4)+a^12*(44*b^4+64*b^2*c^2+44*c^4)+a^2*(b^2-c^2)^4*(b^6-6*b^4*c^2-6*b^2*c^4+c^6)-a^10*(59*b^6+77*b^4*c^2+77*b^2*c^4+59*c^6)+a^4*(b^2-c^2)^2*(10*b^8+13*b^6*c^2+10*b^4*c^4+13*b^2*c^6+10*c^8)+a^8*(55*b^8+36*b^6*c^2+46*b^4*c^4+36*b^2*c^6+55*c^8)-a^6*(34*b^10-7*b^8*c^2+9*b^6*c^4+9*b^4*c^6-7*b^2*c^8+34*c^10) : :
X(63412) = -3*X[2]+X[44976], -4*X[140]+3*X[23516], -3*X[376]+X[1141], -3*X[381]+4*X[58429], -X[382]+3*X[57316], -3*X[549]+2*X[61594], -5*X[631]+4*X[58432], -X[1263]+3*X[8703], -5*X[3522]+X[11671], -7*X[3528]+3*X[47065], 3*X[3534]+X[13512], -X[5073]+9*X[38640]

X(63412) lies on these lines: {2, 44976}, {3, 137}, {4, 13372}, {20, 930}, {22, 23320}, {30, 128}, {140, 23516}, {376, 1141}, {381, 58429}, {382, 57316}, {548, 38618}, {549, 61594}, {550, 25150}, {631, 58432}, {1263, 8703}, {1657, 31656}, {3327, 15338}, {3522, 11671}, {3528, 47065}, {3529, 44981}, {3534, 13512}, {3627, 61587}, {5073, 38640}, {7159, 15326}, {11414, 15959}, {12026, 33923}, {12103, 16111}, {14072, 15704}, {14073, 15686}, {14652, 16661}, {15366, 16197}, {15696, 38587}, {15712, 25147}, {16163, 45147}, {17538, 38681}, {23237, 62036}, {23238, 62126}, {38683, 50693}, {38727, 45258}, {43574, 58068}, {52525, 58062}

X(63412) = midpoint of X(i) and X(j) for these {i,j}: {20, 930}, {1657, 31656}, {3529, 44981}, {14072, 15704}
X(63412) = reflection of X(i) in X(j) for these {i,j}: {4, 13372}, {128, 38615}, {137, 3}, {3627, 61587}, {12026, 33923}, {38618, 548}, {63409, 550}
X(63412) = complement of X(44976)
X(63412) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {550, 25150, 63409}


X(63413) = REFLECTION OF X(142) IN X(3)

Barycentrics    4*a^6-7*a^5*(b+c)-(b-c)^4*(b+c)^2+a*(b-c)^2*(b+c)^3-2*a^2*(b-c)^2*(b^2+c^2)-a^4*(b^2+6*b*c+c^2)+6*a^3*(b^3+b^2*c+b*c^2+c^3) : :
X(63413) = -3*X[2]+X[52835], -4*X[5]+5*X[61001], -X[7]+5*X[3522], -3*X[165]+X[2550], -X[382]+3*X[38108], -2*X[546]+3*X[38318], -3*X[549]+2*X[61595], -5*X[631]+3*X[38150], -X[962]+3*X[38316], -X[3146]+5*X[18230], -X[3243]+3*X[5731], -X[3254]+3*X[38693] and many others

X(63413) lies on these lines: {1, 60945}, {2, 52835}, {3, 142}, {4, 6666}, {5, 61001}, {7, 3522}, {9, 20}, {30, 31658}, {40, 5768}, {55, 12573}, {57, 390}, {78, 61003}, {84, 61005}, {140, 18482}, {144, 3984}, {165, 2550}, {226, 7411}, {277, 60846}, {284, 4229}, {376, 527}, {382, 38108}, {480, 12527}, {515, 3358}, {517, 43175}, {518, 4297}, {528, 13226}, {546, 38318}, {548, 5762}, {549, 61595}, {550, 971}, {610, 41325}, {631, 38150}, {908, 35986}, {942, 5493}, {950, 1445}, {954, 4292}, {962, 38316}, {991, 4667}, {1657, 31672}, {1890, 4219}, {2801, 38761}, {2829, 6594}, {2951, 5698}, {3146, 18230}, {3243, 5731}, {3254, 38693}, {3452, 7580}, {3474, 10383}, {3523, 20195}, {3524, 60999}, {3528, 5735}, {3529, 5817}, {3534, 5779}, {3579, 5771}, {3627, 38113}, {3664, 50677}, {3707, 48878}, {3755, 9441}, {3826, 8727}, {3830, 38067}, {3929, 10430}, {3947, 59476}, {4294, 15006}, {4299, 15298}, {4301, 42819}, {4302, 15299}, {4304, 5728}, {4312, 30282}, {4313, 60939}, {4314, 5572}, {4847, 7964}, {5257, 13727}, {5285, 28071}, {5316, 36002}, {5542, 24929}, {5691, 38057}, {5744, 63145}, {5750, 36706}, {5766, 60937}, {5787, 43174}, {5837, 59340}, {5843, 44245}, {5851, 9945}, {5856, 38759}, {5882, 37585}, {6172, 62120}, {6173, 10304}, {6361, 8726}, {6409, 60920}, {6410, 60921}, {6675, 38204}, {6684, 6851}, {6762, 7674}, {6826, 28150}, {6847, 35242}, {6857, 16192}, {6869, 54370}, {6904, 52653}, {6948, 61004}, {6987, 8257}, {6989, 18483}, {7290, 52542}, {7308, 50696}, {7354, 15837}, {7675, 52819}, {7677, 12053}, {7957, 15185}, {7987, 38053}, {8232, 9579}, {8236, 11518}, {8273, 51723}, {8544, 60961}, {8581, 15326}, {8703, 31657}, {8728, 38059}, {8732, 30332}, {9581, 62775}, {9812, 41867}, {9841, 60990}, {9842, 37411}, {10176, 15726}, {10178, 11018}, {10392, 37787}, {10394, 61014}, {10443, 29181}, {10445, 49131}, {10596, 21164}, {10624, 42884}, {10857, 47357}, {10860, 55869}, {11372, 50701}, {12116, 35514}, {12571, 50726}, {13598, 58473}, {13624, 20330}, {14100, 15338}, {15254, 20420}, {15680, 61012}, {15682, 38075}, {15683, 61023}, {15688, 60922}, {15691, 61596}, {15692, 38093}, {15698, 38073}, {15704, 60901}, {15712, 38171}, {15717, 60996}, {15934, 28228}, {17538, 21168}, {17576, 60959}, {17704, 58472}, {17768, 43182}, {18443, 28194}, {18525, 38126}, {20059, 62102}, {21734, 62778}, {21735, 59386}, {22935, 54205}, {25406, 51194}, {31670, 38117}, {31673, 38130}, {31884, 47595}, {33697, 38179}, {33699, 38082}, {34200, 61509}, {34789, 41853}, {37105, 60991}, {37106, 60978}, {37256, 60969}, {37270, 40998}, {37382, 52840}, {37407, 38037}, {37533, 51705}, {37537, 54358}, {37583, 60992}, {38025, 50865}, {38065, 62073}, {38080, 62057}, {38088, 51024}, {38097, 50864}, {38101, 50862}, {38111, 62069}, {38137, 44682}, {38139, 62036}, {38143, 55676}, {38145, 48910}, {38186, 53094}, {40659, 58637}, {42638, 60887}, {50695, 60958}, {50699, 56518}, {50995, 59411}, {51516, 62131}, {57287, 60970}, {59374, 62063}, {59375, 62081}, {59380, 62085}, {60884, 62121}, {60933, 62097}, {60963, 62094}, {60971, 62099}, {60977, 62110}, {60983, 62125}, {60984, 62095}, {61006, 62124}, {61020, 62083}

X(63413) = midpoint of X(i) and X(j) for these {i,j}: {9, 20}, {40, 43161}, {1657, 31672}, {2951, 5698}, {5493, 30331}, {5732, 5759}, {6361, 43166}, {6762, 7674}, {7957, 15185}, {15704, 60901}
X(63413) = reflection of X(i) in X(j) for these {i,j}: {4, 6666}, {142, 3}, {946, 52769}, {4301, 42819}, {5735, 60980}, {5880, 43151}, {11495, 12512}, {13598, 58473}, {18482, 140}, {20330, 13624}, {24391, 60974}, {40659, 58637}, {51118, 42356}, {58472, 17704}, {60962, 43177}
X(63413) = complement of X(52835)
X(63413) = pole of line {44435, 59984} with respect to the orthoptic circle of the Steiner Inellipse
X(63413) = intersection, other than A, B, C, of circumconics {{A, B, C, X(142), X(41905)}}, {{A, B, C, X(10429), X(14377)}}
X(63413) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 31671, 38122}, {3, 516, 142}, {4, 21153, 6666}, {20, 37551, 57284}, {376, 5759, 5732}, {516, 12512, 11495}, {516, 43151, 5880}, {516, 52769, 946}, {631, 38150, 58433}, {1657, 59381, 31672}, {3146, 18230, 59389}, {3523, 59385, 20195}, {4297, 31793, 12437}, {5735, 21151, 60980}, {5762, 43177, 60962}, {5853, 60974, 24391}, {38059, 51118, 42356}


X(63414) = REFLECTION OF X(143) IN X(3)

Barycentrics    a^2*(a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4-b^2*c^2+c^4)-a^4*(3*b^4+10*b^2*c^2+3*c^4)+3*a^2*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)) : :
X(63414) = -3*X[2]+4*X[11592], -3*X[4]+4*X[11017], -7*X[5]+9*X[5650], -3*X[51]+5*X[15712], -X[52]+3*X[8703], -7*X[140]+6*X[6688], -X[185]+3*X[550], -9*X[373]+11*X[61837], -3*X[376]+X[6102], -3*X[382]+7*X[15056], -3*X[549]+2*X[10095], -3*X[568]+7*X[3528] and many others

X(63414) lies on these lines: {2, 11592}, {3, 143}, {4, 11017}, {5, 5650}, {6, 33543}, {20, 5663}, {22, 32171}, {30, 1216}, {51, 15712}, {52, 8703}, {54, 37496}, {74, 12291}, {110, 47748}, {140, 6688}, {155, 33532}, {156, 11414}, {184, 23060}, {185, 550}, {373, 61837}, {376, 6102}, {382, 15056}, {389, 13421}, {427, 13565}, {477, 54049}, {511, 548}, {517, 23157}, {546, 5447}, {549, 10095}, {568, 3528}, {631, 32205}, {632, 18874}, {1092, 16165}, {1112, 21844}, {1350, 12084}, {1511, 2937}, {1593, 33533}, {1656, 54041}, {1657, 2979}, {1658, 25487}, {2393, 61540}, {3146, 15060}, {3313, 48874}, {3520, 6152}, {3522, 6243}, {3523, 15026}, {3529, 23039}, {3530, 5446}, {3534, 11412}, {3627, 3917}, {3628, 13598}, {3819, 3850}, {3830, 7999}, {3843, 7998}, {3853, 11793}, {3861, 10170}, {5059, 18435}, {5066, 44871}, {5073, 11444}, {5171, 46172}, {5189, 6288}, {5351, 36980}, {5352, 36978}, {5462, 12100}, {5562, 15704}, {5640, 61811}, {5889, 15696}, {5890, 62100}, {5891, 62036}, {5892, 61792}, {5943, 12108}, {5944, 13564}, {6000, 62144}, {6241, 54048}, {6403, 55575}, {6636, 10610}, {6746, 35473}, {7512, 37477}, {7525, 13346}, {7555, 12038}, {7667, 12370}, {7689, 14984}, {7691, 18859}, {8718, 50461}, {9019, 55606}, {9729, 14449}, {9730, 46853}, {9781, 15720}, {10304, 37481}, {10574, 15688}, {10575, 15686}, {10984, 32136}, {11001, 18439}, {11002, 55320}, {11249, 59234}, {11250, 46728}, {11381, 62159}, {11413, 32210}, {11430, 44056}, {11439, 49134}, {11451, 61832}, {11455, 49139}, {11459, 17800}, {11465, 15701}, {11561, 38726}, {11649, 55597}, {11695, 13451}, {12083, 61753}, {12087, 18350}, {12103, 13754}, {12111, 15681}, {12161, 37198}, {12162, 62155}, {12220, 55593}, {12279, 62143}, {12289, 54376}, {12316, 43602}, {12358, 18562}, {12812, 44863}, {13353, 44832}, {13358, 16270}, {13416, 18404}, {14094, 52100}, {14130, 43576}, {14156, 18282}, {14531, 45956}, {14540, 18863}, {14541, 18864}, {14641, 62136}, {14831, 62098}, {14845, 55859}, {14891, 21849}, {14915, 15606}, {15024, 15693}, {15028, 61803}, {15030, 62041}, {15058, 49136}, {15062, 35001}, {15072, 62121}, {15073, 33878}, {15074, 53097}, {15103, 22584}, {15107, 43809}, {15305, 49137}, {15532, 54202}, {15714, 16226}, {16194, 62044}, {16266, 19347}, {16836, 16881}, {16981, 58188}, {17538, 34783}, {17704, 62064}, {17710, 55587}, {18364, 32196}, {18379, 37444}, {19357, 37483}, {20791, 62082}, {21312, 32138}, {21734, 40280}, {21735, 62187}, {21969, 45759}, {25337, 58407}, {27355, 55861}, {28154, 31751}, {28168, 31752}, {29181, 31830}, {32046, 37498}, {32062, 62047}, {32140, 52398}, {32191, 55653}, {33544, 43600}, {33703, 33884}, {33879, 61911}, {34584, 41673}, {34798, 44458}, {37440, 43652}, {37482, 46623}, {37924, 43598}, {38723, 38898}, {40647, 44245}, {41983, 58470}, {44299, 61919}, {44324, 62026}, {44668, 55594}, {44682, 58533}, {44870, 62034}, {45957, 62126}, {46849, 62038}, {46850, 62123}, {51392, 61750}, {61136, 62102}

X(63414) = midpoint of X(i) and X(j) for these {i,j}: {20, 6101}, {550, 10625}, {1657, 5876}, {3313, 48874}, {5562, 15704}, {6102, 37484}, {11381, 62159}, {11412, 13491}, {12162, 62155}, {15074, 53097}, {15532, 54202}, {17710, 55587}, {31834, 62151}
X(63414) = reflection of X(i) in X(j) for these {i,j}: {4, 32142}, {140, 13348}, {143, 3}, {382, 45958}, {389, 33923}, {546, 5447}, {3627, 14128}, {3853, 11793}, {5446, 3530}, {10263, 12006}, {10627, 15644}, {11561, 38726}, {11591, 10627}, {13364, 54044}, {13421, 389}, {13598, 3628}, {13630, 548}, {14449, 9729}, {14641, 62136}, {16881, 58190}, {21849, 14891}, {31834, 15606}, {32137, 11591}, {32191, 55653}, {40647, 44245}, {45186, 10095}, {45959, 1216}, {46850, 62123}, {62034, 44870}, {62038, 46849}
X(63414) = pole of line {140, 10540} with respect to the Stammler hyperbola
X(63414) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 10263, 12006}, {4, 54042, 32142}, {20, 13340, 6101}, {20, 6101, 5663}, {30, 11591, 32137}, {30, 1216, 45959}, {30, 15644, 10627}, {140, 13348, 54044}, {376, 37484, 6102}, {382, 15067, 45958}, {511, 548, 13630}, {549, 45186, 10095}, {550, 10625, 1154}, {1216, 45959, 11591}, {1657, 2979, 5876}, {3530, 5446, 13363}, {3534, 11412, 13491}, {3627, 3917, 14128}, {5073, 54047, 11444}, {6636, 37495, 10610}, {10263, 12006, 143}, {10625, 36987, 550}, {10627, 45959, 1216}, {12006, 13391, 10263}, {13451, 61810, 11695}, {13564, 43574, 5944}, {14915, 15606, 31834}, {16881, 58190, 16836}, {17538, 62188, 34783}, {31834, 62151, 14915}, {54048, 62131, 6241}


X(63415) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(145)

Barycentrics    2*a^4-6*a^3*(b+c)-(b^2-c^2)^2-a^2*(3*b^2+4*b*c+3*c^2)+a*(4*b^3-2*b^2*c-2*b*c^2+4*c^3) : :
X(63415) = -2*X[2292]+3*X[49739]

X(63415) lies on these lines: {1, 5791}, {8, 17056}, {81, 145}, {517, 63386}, {519, 37631}, {952, 13408}, {1046, 10543}, {1482, 63318}, {1483, 63307}, {1834, 34195}, {2292, 49739}, {2650, 44669}, {3241, 56313}, {3244, 3712}, {3340, 55010}, {3617, 63344}, {3621, 37635}, {3622, 31204}, {3632, 63319}, {3633, 63310}, {3751, 37724}, {3782, 12559}, {3913, 63316}, {3979, 45081}, {4964, 30726}, {5453, 5844}, {5718, 49168}, {5724, 41575}, {5835, 49687}, {5846, 63394}, {5853, 63381}, {5855, 63393}, {9041, 63426}, {9053, 63359}, {10944, 49490}, {12245, 63291}, {12437, 63382}, {12454, 63313}, {12455, 63312}, {12513, 63304}, {12645, 63323}, {15174, 52680}, {16610, 17706}, {20014, 41819}, {20050, 63401}, {22836, 37634}, {24806, 63295}, {25080, 37548}, {28234, 63356}, {28581, 63398}, {31145, 63343}, {37705, 63317}, {37715, 41696}, {44635, 63336}, {44636, 63337}

X(63415) = reflection of X(i) in X(j) for these {i,j}: {49745, 2650}, {63360, 63354}
X(63415) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 63333, 17056}, {519, 63354, 63360}, {2650, 44669, 49745}, {63354, 63360, 37631}


X(63416) = REFLECTION OF X(150) IN X(3)

Barycentrics    3*a^8-3*a^7*(b+c)-a^3*(b-c)^2*(b+c)^3+a*(b-c)^4*(b+c)^3+a^6*(-4*b^2+3*b*c-4*c^2)+a^2*b*c*(b^2-c^2)^2-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^5*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)+a^4*(2*b^4-5*b^3*c-2*b^2*c^2-5*b*c^3+2*c^4) : :
X(63416) = -3*X[2]+2*X[10739], -2*X[103]+3*X[376], -4*X[116]+5*X[631], -3*X[381]+4*X[61563], -3*X[549]+2*X[61602], -7*X[3090]+8*X[6710], -5*X[3091]+6*X[38764], -5*X[3522]+4*X[38601], -7*X[3523]+6*X[57297], -9*X[3524]+8*X[6712], -11*X[3525]+10*X[31273], -7*X[3528]+6*X[38692] and many others

X(63416) lies on these lines: {2, 10739}, {3, 150}, {4, 101}, {20, 2808}, {30, 152}, {40, 2784}, {103, 376}, {116, 631}, {381, 61563}, {390, 52509}, {515, 1282}, {549, 61602}, {550, 38574}, {944, 2809}, {972, 38665}, {1362, 4293}, {2724, 52164}, {2772, 12244}, {2774, 12383}, {2786, 13172}, {2801, 5759}, {2807, 48918}, {2810, 6776}, {2811, 5667}, {2813, 14654}, {2825, 12253}, {3022, 4294}, {3090, 6710}, {3091, 38764}, {3146, 10741}, {3486, 18413}, {3488, 11028}, {3522, 38601}, {3523, 57297}, {3524, 6712}, {3525, 31273}, {3528, 38692}, {3529, 38666}, {3533, 58418}, {3544, 38775}, {3627, 38767}, {3832, 61579}, {3855, 35024}, {3887, 13199}, {5071, 58420}, {5185, 7487}, {5587, 28346}, {5603, 11712}, {5657, 50896}, {5817, 28345}, {7967, 10695}, {9518, 13200}, {9781, 58505}, {10710, 15682}, {10727, 33703}, {10756, 14912}, {10770, 53746}, {10784, 34112}, {11676, 38656}, {14651, 53721}, {15045, 58507}, {17538, 38668}, {20401, 61964}, {31730, 39156}, {33521, 62127}, {38630, 49140}, {38766, 50693}, {38769, 62028}, {50701, 52823}, {61604, 62036}

X(63416) = midpoint of X(i) and X(j) for these {i,j}: {20, 20096}
X(63416) = reflection of X(i) in X(j) for these {i,j}: {4, 101}, {101, 33520}, {103, 63403}, {150, 3}, {152, 38572}, {3146, 10741}, {10725, 118}, {10739, 38599}, {10741, 51526}, {10770, 53746}, {15682, 10710}, {33703, 10727}, {38574, 550}, {38668, 38773}, {39156, 31730}, {62036, 61604}, {63418, 20}
X(63416) = X(i)-Dao conjugate of X(j) for these {i, j}: {10739, 10739}
X(63416) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 20096, 2808}, {20, 2808, 63418}, {30, 38572, 152}, {101, 10725, 118}, {103, 63403, 376}, {116, 38690, 631}, {118, 10725, 4}, {544, 63403, 103}, {10739, 38599, 2}, {10739, 38774, 61577}, {31273, 38772, 3525}, {38599, 61577, 38774}


X(63417) = REFLECTION OF X(151) IN X(3)

Barycentrics    3*a^10-3*a^9*(b+c)+8*a^7*(b-c)^2*(b+c)-8*a^3*b*(b-c)^4*c*(b+c)+a*(b-c)^6*(b+c)^3-3*a^8*(b^2-3*b*c+c^2)-(b^2-c^2)^4*(b^2-b*c+c^2)-8*a^6*(b-c)^2*(b^2+3*b*c+c^2)-2*a^5*(b-c)^2*(3*b^3-5*b^2*c-5*b*c^2+3*c^3)-a^2*(b^2-c^2)^2*(3*b^4-8*b^3*c+18*b^2*c^2-8*b*c^3+3*c^4)+2*a^4*(b-c)^2*(6*b^4+7*b^3*c-2*b^2*c^2+7*b*c^3+6*c^4) : :
X(63417) = -3*X[2]+2*X[10740], -2*X[109]+3*X[376], -4*X[117]+5*X[631], -3*X[381]+4*X[61564], -3*X[549]+2*X[61603], -7*X[3090]+8*X[6711], -5*X[3091]+6*X[38776], -5*X[3522]+4*X[38607], -7*X[3523]+6*X[57303], -9*X[3524]+8*X[6718], -11*X[3525]+12*X[38784], -7*X[3528]+6*X[38697] and many others

X(63417) lies on these lines: {1, 2816}, {2, 10740}, {3, 151}, {4, 102}, {20, 2818}, {30, 33650}, {109, 376}, {117, 631}, {381, 61564}, {549, 61603}, {550, 38579}, {928, 63418}, {944, 2817}, {1361, 4294}, {1364, 4293}, {1610, 54081}, {1845, 3486}, {2773, 12244}, {2779, 12383}, {2785, 9862}, {2792, 13172}, {2800, 6361}, {2807, 48918}, {2819, 14654}, {2853, 12253}, {3090, 6711}, {3091, 38776}, {3146, 10747}, {3488, 59816}, {3522, 38607}, {3523, 57303}, {3524, 6718}, {3525, 38784}, {3528, 38697}, {3529, 38667}, {3533, 58419}, {3544, 38787}, {3627, 38779}, {3738, 12248}, {3832, 61585}, {4302, 52129}, {5071, 58426}, {5603, 11713}, {5657, 50899}, {7967, 10696}, {9532, 13200}, {9781, 58506}, {10716, 15682}, {10732, 33703}, {10757, 14912}, {10771, 53748}, {15045, 58513}, {17538, 38674}, {38778, 50693}, {38781, 62028}, {47115, 50901}, {50701, 52824}

X(63417) = reflection of X(i) in X(j) for these {i,j}: {4, 102}, {109, 63404}, {151, 3}, {3146, 10747}, {10726, 124}, {10740, 38600}, {10747, 51527}, {10771, 53748}, {15682, 10716}, {33650, 38573}, {33703, 10732}, {38579, 550}, {38674, 38785}
X(63417) = X(i)-Dao conjugate of X(j) for these {i, j}: {10740, 10740}
X(63417) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {109, 63404, 376}, {124, 10726, 4}, {10740, 38600, 2}, {10740, 38786, 61578}, {38600, 61578, 38786}


X(63418) = REFLECTION OF X(152) IN X(3)

Barycentrics    3*a^8+3*a^6*b*c-3*a^7*(b+c)-5*a^5*(b-c)^2*(b+c)+a*(b-c)^4*(b+c)^3-(b-c)^4*(b+c)^2*(b^2+b*c+c^2)+a^4*(b-c)^2*(2*b^2-b*c+2*c^2)+a^3*(b-c)^2*(7*b^3+13*b^2*c+13*b*c^2+7*c^3)-a^2*(b-c)^2*(4*b^4+7*b^3*c+14*b^2*c^2+7*b*c^3+4*c^4) : :
X(63418) = -3*X[2]+2*X[10741], -2*X[101]+3*X[376], -4*X[118]+5*X[631], -4*X[140]+3*X[38767], -3*X[381]+4*X[61565], -3*X[549]+2*X[61604], -7*X[3090]+8*X[6712], -5*X[3091]+6*X[57297], -5*X[3522]+4*X[38599], -7*X[3523]+6*X[38764], -9*X[3524]+8*X[6710], -11*X[3525]+8*X[38769] and many others

X(63418) lies on these lines: {2, 10741}, {3, 152}, {4, 103}, {5, 38768}, {19, 2822}, {20, 2808}, {30, 150}, {101, 376}, {118, 631}, {140, 38767}, {381, 61565}, {515, 39156}, {544, 11001}, {549, 61604}, {550, 38572}, {928, 63417}, {1282, 31730}, {1362, 4294}, {2096, 2823}, {2772, 12383}, {2774, 12244}, {2784, 13172}, {2786, 9862}, {2801, 13199}, {2807, 37000}, {2809, 6361}, {2824, 14654}, {2825, 13200}, {3022, 4293}, {3090, 6712}, {3091, 57297}, {3146, 10739}, {3474, 18413}, {3488, 59813}, {3522, 38599}, {3523, 38764}, {3524, 6710}, {3525, 38769}, {3528, 35024}, {3529, 38668}, {3533, 58420}, {3545, 31273}, {3832, 61577}, {3887, 12248}, {5071, 58418}, {5603, 11714}, {5657, 50903}, {7470, 38656}, {7967, 10697}, {9518, 12253}, {9781, 58507}, {10299, 38772}, {10708, 15682}, {10725, 33703}, {10758, 14912}, {10772, 53750}, {15045, 58505}, {15717, 38774}, {17538, 38666}, {20401, 61814}, {28346, 35242}, {33520, 62127}, {38770, 61817}, {38775, 61807}, {50693, 51526}, {50701, 52825}, {61602, 62036}

X(63418) = reflection of X(i) in X(j) for these {i,j}: {4, 103}, {20, 38765}, {101, 38773}, {103, 33521}, {150, 38574}, {152, 3}, {1282, 31730}, {3146, 10739}, {10727, 116}, {10739, 51528}, {10741, 38601}, {10772, 53750}, {15682, 10708}, {33703, 10725}, {38572, 550}, {38666, 63403}, {38768, 5}, {62036, 61602}, {63416, 20}
X(63418) = X(i)-Dao conjugate of X(j) for these {i, j}: {10741, 10741}
X(63418) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 2808, 63416}, {101, 38773, 376}, {116, 10727, 4}, {2808, 38765, 20}, {38599, 38766, 3522}, {38690, 38771, 3528}


X(63419) = REFLECTION OF X(157) IN X(3)

Barycentrics    a^2*(a^10-3*a^8*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)^3+2*a^6*(2*b^4+5*b^2*c^2+2*c^4)+a^2*(b^2-c^2)^2*(3*b^4+4*b^2*c^2+3*c^4)-4*a^4*(b^6+b^4*c^2+b^2*c^4+c^6)) : :
X(63419) = -3*X[549]+2*X[61609], -5*X[631]+4*X[58436], -3*X[5085]+2*X[19156]

X(63419) lies on circumconic {{A, B, C, X(157), X(34168)}} and on these lines: {3, 66}, {4, 23333}, {20, 41761}, {22, 23181}, {26, 40278}, {53, 1593}, {64, 17849}, {154, 426}, {185, 571}, {378, 33971}, {382, 18380}, {549, 61609}, {570, 19124}, {577, 34146}, {631, 58436}, {1204, 6751}, {1350, 2871}, {1513, 45030}, {1576, 19149}, {1660, 6509}, {1853, 6641}, {2790, 33813}, {2980, 7509}, {3148, 36990}, {3260, 9723}, {3964, 59548}, {5063, 12294}, {5085, 19156}, {5421, 11424}, {5621, 41275}, {6638, 14673}, {6776, 52279}, {7503, 20792}, {9142, 10608}, {10605, 39231}, {11414, 16391}, {11479, 58408}, {12084, 32428}, {14927, 37183}, {18913, 18953}, {19172, 19212}, {21312, 36988}, {22089, 46614}, {28783, 46373}, {31861, 61532}, {36751, 52028}, {37081, 44679}, {37188, 41735}, {37335, 51537}, {50669, 59411}, {63431, 63433}

X(63419) = midpoint of X(i) and X(j) for these {i,j}: {20, 41761}, {64, 17849}
X(63419) = reflection of X(i) in X(j) for these {i,j}: {4, 23333}, {157, 3}, {382, 18380}
X(63419) = pole of line {525, 44252} with respect to the circumcircle
X(63419) = pole of line {315, 12111} with respect to the Wallace hyperbola
X(63419) = pole of line {40494, 57069} with respect to the dual conic of polar circle
X(63419) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1503, 157}, {3, 63420, 63421}


X(63420) = REFLECTION OF X(159) IN X(3)

Barycentrics    a^2*(a^10-a^8*(b^2+c^2)+2*a^4*(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-c^4)^2-2*a^6*(b^4-4*b^2*c^2+c^4)-(b^2-c^2)^2*(b^6+7*b^4*c^2+7*b^2*c^4+c^6)) : :
X(63420) = -3*X[381]+4*X[20300], -3*X[549]+2*X[61610], -5*X[631]+4*X[58437], -5*X[3618]+X[6225], 3*X[5050]+X[13093], -2*X[5097]+3*X[10250], -3*X[5102]+4*X[39125], -X[5878]+3*X[14561], -4*X[6697]+3*X[10516], -X[7973]+3*X[38315]

X(63420) lies on these lines: {2, 1619}, {3, 66}, {4, 9914}, {6, 64}, {9, 3556}, {20, 36851}, {22, 14927}, {24, 58378}, {25, 125}, {30, 37488}, {40, 3827}, {57, 7169}, {69, 11413}, {74, 6403}, {154, 5646}, {182, 6000}, {184, 38396}, {186, 47451}, {193, 12086}, {206, 1498}, {378, 6776}, {381, 20300}, {382, 18382}, {427, 34944}, {511, 3357}, {518, 12262}, {524, 54992}, {542, 12302}, {549, 61610}, {575, 34779}, {611, 10076}, {613, 10060}, {631, 58437}, {1177, 3426}, {1181, 45015}, {1192, 7716}, {1204, 1843}, {1350, 2393}, {1351, 2781}, {1428, 6285}, {1594, 18948}, {1597, 5480}, {1627, 29180}, {1660, 17811}, {1691, 12202}, {1754, 33811}, {1974, 11381}, {1975, 59224}, {1995, 51537}, {2071, 5921}, {2330, 7355}, {2777, 23049}, {2854, 11598}, {2883, 3589}, {2935, 16010}, {3098, 33543}, {3515, 20987}, {3516, 10619}, {3520, 39874}, {3564, 12084}, {3566, 44823}, {3618, 6225}, {3818, 6642}, {3867, 13568}, {4219, 5800}, {5017, 33877}, {5020, 23332}, {5050, 13093}, {5092, 6759}, {5094, 32125}, {5097, 10250}, {5102, 39125}, {5133, 41736}, {5422, 41715}, {5596, 7503}, {5622, 17854}, {5663, 15141}, {5878, 14561}, {5894, 15583}, {5895, 11403}, {5925, 48910}, {6145, 34436}, {6644, 39884}, {6697, 10516}, {7387, 14852}, {7464, 63428}, {7485, 11206}, {7509, 34781}, {7526, 48906}, {7527, 41719}, {7973, 38315}, {8550, 55571}, {8567, 9924}, {9007, 46613}, {9786, 9969}, {9899, 16475}, {9908, 23335}, {9937, 32140}, {9967, 54183}, {9968, 41593}, {10169, 13596}, {10192, 16419}, {10282, 17508}, {10541, 19132}, {10575, 19131}, {10601, 41580}, {10602, 44439}, {10605, 19161}, {11179, 41729}, {11202, 55674}, {11204, 14810}, {11284, 15126}, {11414, 48905}, {11438, 61664}, {11440, 12220}, {11645, 14070}, {11898, 18859}, {12007, 35501}, {12017, 12315}, {12111, 20806}, {12167, 34469}, {12168, 32233}, {12174, 19125}, {12250, 14853}, {12279, 19121}, {12290, 19128}, {12307, 33878}, {12584, 25564}, {12779, 38047}, {13203, 31133}, {13445, 41614}, {14118, 20079}, {14530, 55682}, {14865, 14912}, {14915, 41613}, {14926, 32063}, {14982, 15116}, {15055, 38885}, {15069, 22549}, {15078, 51023}, {15139, 26864}, {15321, 34438}, {16252, 31267}, {17510, 40221}, {17813, 32127}, {17821, 55676}, {17825, 45979}, {17845, 37198}, {17928, 35219}, {18018, 34168}, {18383, 48884}, {18400, 35243}, {18434, 34437}, {18535, 23324}, {18583, 31861}, {18925, 43725}, {19119, 30100}, {19126, 46850}, {19130, 22802}, {19137, 44870}, {19596, 55576}, {20190, 23042}, {20427, 31670}, {22581, 22658}, {22769, 63429}, {23325, 48889}, {23329, 24206}, {29323, 34786}, {31166, 51737}, {32191, 61723}, {32445, 50659}, {33542, 55610}, {33544, 55629}, {33581, 46831}, {33583, 34426}, {33887, 53091}, {34785, 48892}, {34809, 53496}, {35260, 40916}, {35452, 55584}, {36983, 43815}, {37638, 41603}, {37944, 61044}, {38317, 61749}, {39568, 41362}, {39871, 63129}, {41257, 52069}, {41584, 43903}, {41738, 61700}, {43273, 54994}, {50414, 55681}, {51212, 54050}, {58445, 61747}

X(63420) = midpoint of X(i) and X(j) for these {i,j}: {4, 61088}, {6, 64}, {20, 36851}, {2935, 16010}, {5596, 12324}, {5894, 15583}, {5925, 48910}, {8549, 34778}, {14216, 46264}, {20427, 31670}
X(63420) = reflection of X(i) in X(j) for these {i,j}: {3, 44883}, {4, 23300}, {66, 6247}, {141, 6696}, {159, 3}, {382, 18382}, {1350, 63431}, {1498, 206}, {2883, 3589}, {3818, 20299}, {6759, 5092}, {9914, 34207}, {9968, 41593}, {9969, 58492}, {12584, 25564}, {14982, 15116}, {15577, 15578}, {15581, 35228}, {18440, 34118}, {19149, 182}, {19153, 10249}, {22802, 19130}, {31166, 51737}, {34775, 18381}, {34777, 8549}, {34778, 3357}, {34779, 575}, {34785, 48892}, {34787, 3098}, {36989, 44882}, {36990, 51756}, {39879, 15577}, {39884, 61542}, {44883, 15579}, {48884, 18383}, {61683, 23328}
X(63420) = inverse of X(25) in Jerabek hyperbola
X(63420) = complement of X(41735)
X(63420) = perspector of circumconic {{A, B, C, X(1301), X(44766)}}
X(63420) = X(i)-Dao conjugate of X(j) for these {i, j}: {45141, 52283}
X(63420) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42287, 6}
X(63420) = pole of line {520, 32621} with respect to the 1st Brocard circle
X(63420) = pole of line {525, 42658} with respect to the circumcircle
X(63420) = pole of line {2506, 8673} with respect to the cosine circle
X(63420) = pole of line {41079, 58757} with respect to the 1st DrozFarny circle
X(63420) = pole of line {25, 34146} with respect to the Jerabek hyperbola
X(63420) = pole of line {235, 2138} with respect to the Kiepert hyperbola
X(63420) = pole of line {520, 47125} with respect to the Orthic inconic
X(63420) = pole of line {22, 35260} with respect to the Stammler hyperbola
X(63420) = pole of line {315, 37201} with respect to the Wallace hyperbola
X(63420) = pole of line {53569, 55069} with respect to the dual conic of Wallace hyperbola
X(63420) = intersection, other than A, B, C, of circumconics {{A, B, C, X(64), X(14376)}}, {{A, B, C, X(66), X(41489)}}, {{A, B, C, X(159), X(34168)}}, {{A, B, C, X(1073), X(34146)}}, {{A, B, C, X(2138), X(57414)}}, {{A, B, C, X(3172), X(34426)}}, {{A, B, C, X(10229), X(14390)}}, {{A, B, C, X(14642), X(34207)}}
X(63420) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 64, 34146}, {64, 1593, 46373}, {64, 19087, 49349}, {64, 19088, 49350}, {182, 19149, 19153}, {182, 6000, 19149}, {185, 19124, 6}, {511, 3357, 34778}, {511, 8549, 34777}, {1350, 10606, 63431}, {1498, 5085, 206}, {1503, 15577, 39879}, {1503, 15578, 15577}, {1503, 15579, 44883}, {1503, 23328, 61683}, {1503, 34118, 18440}, {1503, 35228, 15581}, {1503, 44882, 36989}, {1503, 44883, 3}, {1503, 6247, 66}, {1503, 6696, 141}, {1853, 36990, 51756}, {2393, 63431, 1350}, {5092, 6759, 23041}, {5894, 15583, 29181}, {8549, 34778, 511}, {8567, 9924, 31884}, {9786, 17822, 58492}, {10249, 19149, 182}, {10606, 63422, 21312}, {12324, 25406, 5596}, {14216, 46264, 1503}, {15577, 39879, 159}, {15577, 44883, 15578}, {18381, 29012, 34775}, {20299, 32321, 6642}, {36201, 51756, 36990}


X(63421) = REFLECTION OF X(160) IN X(3)

Barycentrics    a^2*(a^8*(b^2+c^2)-2*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)-a^6*(3*b^4+b^2*c^2+3*c^4)+a^4*(3*b^6+b^4*c^2+b^2*c^4+3*c^6)-a^2*(b^8-b^6*c^2-b^2*c^6+c^8)) : :
X(63421) = -3*X[549]+2*X[61611], -5*X[631]+4*X[58438], -5*X[8567]+X[31382], -2*X[39530]+3*X[61738]

X(63421) lies on these lines: {2, 1624}, {3, 66}, {4, 34845}, {6, 54003}, {20, 8266}, {24, 16264}, {64, 26897}, {182, 1576}, {183, 59224}, {185, 570}, {216, 34146}, {237, 36990}, {418, 1853}, {549, 61611}, {571, 19124}, {631, 58438}, {852, 61735}, {1204, 6752}, {1350, 47620}, {1593, 1609}, {1634, 5921}, {2393, 63433}, {2781, 30258}, {3001, 41716}, {3003, 12294}, {3091, 35222}, {3135, 11550}, {3516, 44200}, {3520, 5877}, {3523, 17707}, {3541, 31381}, {5085, 54004}, {5116, 57261}, {5201, 51212}, {5480, 32444}, {5481, 19158}, {5621, 37457}, {6636, 35225}, {6638, 23332}, {6776, 53246}, {7488, 33801}, {7525, 58735}, {8567, 31382}, {8922, 42826}, {10002, 52604}, {11424, 13345}, {11442, 50947}, {12163, 61629}, {14096, 53094}, {14361, 55354}, {14927, 37184}, {18570, 39841}, {20300, 44231}, {20975, 44439}, {22062, 31884}, {23635, 37473}, {24206, 53568}, {25406, 41328}, {26874, 32064}, {29180, 38862}, {29181, 31952}, {36748, 52028}, {37465, 51537}, {39530, 61738}, {39884, 44221}, {40981, 53023}, {53015, 60514}, {59220, 59231}

X(63421) = midpoint of X(i) and X(j) for these {i,j}: {64, 41373}
X(63421) = reflection of X(i) in X(j) for these {i,j}: {160, 3}, {4, 34845}
X(63421) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42330, 6}
X(63421) = pole of line {525, 35474} with respect to the circumcircle
X(63421) = pole of line {684, 14618} with respect to the nine-point circle
X(63421) = pole of line {44227, 59932} with respect to the polar circle
X(63421) = pole of line {217, 3767} with respect to the Kiepert hyperbola
X(63421) = pole of line {315, 54033} with respect to the Wallace hyperbola
X(63421) = intersection, other than A, B, C, of circumconics {{A, B, C, X(160), X(34168)}}, {{A, B, C, X(14376), X(43679)}}
X(63421) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1503, 160}, {3, 59363, 15270}, {3, 63420, 63419}, {15578, 37813, 3}


X(63422) = REFLECTION OF X(161) IN X(3)

Barycentrics    a^2*(a^14-3*a^12*(b^2+c^2)+a^10*(b^4+16*b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(b^6-9*b^4*c^2-9*b^2*c^4+c^6)-(b^2-c^2)^4*(b^6+7*b^4*c^2+7*b^2*c^4+c^6)+a^8*(5*b^6-21*b^4*c^2-21*b^2*c^4+5*c^6)+a^6*(-5*b^8+26*b^4*c^4-5*c^8)+a^2*(3*b^12-11*b^8*c^4+16*b^6*c^6-11*b^4*c^8+3*c^12)) : :
X(63422) = -3*X[549]+2*X[61612], -5*X[631]+4*X[58439], -4*X[44201]+3*X[61685]

X(63422) lies on these lines: {3, 161}, {24, 41362}, {25, 13851}, {49, 40285}, {64, 12085}, {154, 9818}, {159, 47353}, {184, 1498}, {376, 36851}, {378, 1503}, {382, 32321}, {542, 2935}, {549, 61612}, {631, 58439}, {1350, 2393}, {1597, 1619}, {1660, 15030}, {1995, 23324}, {2071, 32064}, {2883, 35502}, {3357, 10625}, {5656, 13596}, {5895, 47527}, {6000, 13352}, {6247, 11413}, {6293, 36747}, {6759, 16194}, {7395, 17821}, {7503, 34782}, {7506, 18383}, {7517, 34786}, {7526, 9833}, {7527, 11206}, {7576, 18382}, {8549, 10605}, {9786, 47328}, {9919, 15684}, {9938, 14790}, {10117, 12295}, {11202, 16187}, {11479, 58447}, {12084, 12118}, {12086, 12324}, {12140, 19457}, {12290, 46372}, {12412, 19479}, {13289, 51519}, {14070, 56924}, {14865, 34781}, {15033, 34117}, {15139, 47391}, {15577, 35921}, {17835, 21649}, {18918, 45173}, {31861, 61619}, {32125, 44441}, {34207, 48910}, {34751, 37489}, {35450, 35452}, {36749, 41725}, {37944, 54050}, {44201, 61685}, {46730, 61666}

X(63422) = reflection of X(i) in X(j) for these {i,j}: {161, 3}, {1498, 184}, {11442, 6247}
X(63422) = pole of line {7488, 35260} with respect to the Stammler hyperbola
X(63422) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 18400, 161}, {12085, 12301, 37498}, {17845, 32345, 3}, {21312, 63420, 10606}


X(63423) = REFLECTION OF X(171) IN X(3)

Barycentrics    a*(a^6+5*a^4*b*c-b*c*(b^2-c^2)^2+2*a^3*(b^3+c^3)-a^2*(b^4+4*b^3*c-2*b^2*c^2+4*b*c^3+c^4)-2*a*(b^5+b^3*c^2+b^2*c^3+c^5)) : :
X(63423) = -3*X[549]+2*X[61616], -5*X[631]+4*X[58443], -5*X[3522]+X[20101]

X(63423) lies on these lines: {1, 3}, {4, 3846}, {6, 9549}, {20, 4388}, {99, 102}, {104, 6010}, {238, 49128}, {329, 52092}, {376, 752}, {515, 3687}, {549, 61616}, {573, 993}, {631, 58443}, {741, 30243}, {946, 1010}, {958, 9548}, {970, 5247}, {978, 37415}, {997, 1766}, {1012, 6210}, {1064, 3736}, {1193, 37399}, {1295, 29055}, {1350, 9025}, {1457, 22421}, {2049, 8227}, {2050, 5587}, {2703, 2716}, {3073, 15952}, {3430, 4297}, {3522, 20101}, {5251, 21363}, {5603, 50302}, {5657, 32916}, {5692, 21375}, {5774, 63143}, {6326, 21078}, {6684, 19270}, {7119, 22447}, {10448, 61109}, {11358, 22753}, {11496, 19533}, {13588, 24550}, {15908, 15973}, {19273, 31423}, {19276, 31162}, {19277, 38021}, {19861, 37091}, {24271, 56959}, {24541, 37232}, {29056, 30241}, {37305, 57652}, {51558, 54331}

X(63423) = midpoint of X(i) and X(j) for these {i,j}: {20, 4388}
X(63423) = reflection of X(i) in X(j) for these {i,j}: {171, 3}, {4, 3846}
X(63423) = pole of line {314, 515} with respect to the Wallace hyperbola
X(63423) = intersection, other than A, B, C, of circumconics {{A, B, C, X(65), X(34393)}}, {{A, B, C, X(102), X(1402)}}, {{A, B, C, X(171), X(1295)}}, {{A, B, C, X(332), X(46974)}}, {{A, B, C, X(2716), X(5061)}}, {{A, B, C, X(2745), X(5143)}}, {{A, B, C, X(6010), X(23981)}}, {{A, B, C, X(37619), X(53915)}}
X(63423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 517, 171}, {104, 63400, 63389}, {376, 30269, 63442}


X(63424) = REFLECTION OF X(183) IN X(3)

Barycentrics    a^8+2*b^2*c^2*(b^2-c^2)^2-7*a^6*(b^2+c^2)-a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(7*b^4+8*b^2*c^2+7*c^4) : :
X(63424) = -3*X[549]+2*X[61618], -5*X[631]+4*X[58446], -5*X[3522]+X[63046], -3*X[3524]+2*X[11168]

X(63424) lies on these lines: {2, 52771}, {3, 76}, {4, 3815}, {6, 7709}, {20, 7774}, {30, 9744}, {114, 7841}, {147, 7833}, {182, 1003}, {184, 35941}, {187, 9755}, {262, 5024}, {376, 524}, {378, 33971}, {381, 43461}, {382, 40278}, {384, 32522}, {511, 31859}, {538, 8722}, {542, 35955}, {549, 61618}, {550, 36998}, {574, 10837}, {599, 60653}, {631, 58446}, {671, 40248}, {1351, 7757}, {1352, 8356}, {1513, 2549}, {1899, 35937}, {2080, 14614}, {2453, 37991}, {2696, 48260}, {3522, 63046}, {3523, 17128}, {3524, 11168}, {3528, 39647}, {3534, 47618}, {3545, 55794}, {3564, 14907}, {3734, 21163}, {3796, 35926}, {3972, 5050}, {4221, 59225}, {4226, 6800}, {4227, 59230}, {5077, 6054}, {5085, 35925}, {5171, 7754}, {5188, 7781}, {5210, 21445}, {6037, 48259}, {6248, 11285}, {6721, 7887}, {6770, 35932}, {6773, 35931}, {6795, 7472}, {7464, 11594}, {7610, 12243}, {7694, 43619}, {7756, 39838}, {7761, 14981}, {7770, 13334}, {7790, 37071}, {7811, 11898}, {7816, 37479}, {7851, 37466}, {8591, 60654}, {8598, 11179}, {8860, 11632}, {8982, 35947}, {9301, 32519}, {9466, 52770}, {9605, 12110}, {9734, 58849}, {9753, 15048}, {9754, 43291}, {9756, 53095}, {9774, 12117}, {9862, 44541}, {9863, 33260}, {10519, 32817}, {10541, 35950}, {10601, 35919}, {10602, 13479}, {11003, 35933}, {11171, 11174}, {11185, 37451}, {12150, 53091}, {12176, 39560}, {12256, 35945}, {12257, 35944}, {13335, 33235}, {14651, 37637}, {15702, 50571}, {15815, 37334}, {18533, 59228}, {19459, 46724}, {20477, 20775}, {21312, 42329}, {22676, 33878}, {26441, 35946}, {26864, 35278}, {26870, 61113}, {30247, 43660}, {30273, 59237}, {30435, 32467}, {31652, 52854}, {32134, 32523}, {32444, 39682}, {32833, 48876}, {33234, 54393}, {33706, 51122}, {34504, 38738}, {35473, 41377}, {35921, 59220}, {35938, 43119}, {35939, 43118}, {35948, 45511}, {35949, 45510}, {35951, 53093}, {35954, 38064}, {36990, 55008}, {37190, 59211}, {37446, 44518}, {37930, 47326}, {39663, 43448}, {39906, 41275}, {40814, 52277}, {41235, 59707}, {42258, 45406}, {42259, 45407}, {43183, 54222}, {44876, 53904}, {46264, 54996}, {47353, 57633}, {50955, 55164}, {51412, 55306}, {54869, 62922}

X(63424) = midpoint of X(i) and X(j) for these {i,j}: {20, 7774}, {31859, 54993}
X(63424) = reflection of X(i) in X(j) for these {i,j}: {183, 3}, {11185, 37451}, {13860, 574}, {4, 3815}
X(63424) = pole of line {9148, 59982} with respect to the orthoptic circle of the Steiner Inellipse
X(63424) = pole of line {17994, 39533} with respect to the polar circle
X(63424) = pole of line {5650, 37067} with respect to the Jerabek hyperbola
X(63424) = pole of line {14853, 53475} with respect to the Kiepert hyperbola
X(63424) = pole of line {237, 35259} with respect to the Stammler hyperbola
X(63424) = pole of line {511, 32815} with respect to the Wallace hyperbola
X(63424) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(183), X(48259)}}, {{A, B, C, X(290), X(54488)}}, {{A, B, C, X(14494), X(57799)}}
X(63424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 11257, 39646}, {3, 2782, 183}, {6, 11676, 39656}, {6, 8719, 11676}, {99, 38642, 38654}, {376, 9741, 50967}, {7709, 11676, 6}, {7782, 12203, 3}, {11171, 35930, 11174}, {31859, 54993, 511}, {43448, 58883, 39663}, {44882, 63440, 376}


X(63425) = REFLECTION OF X(184) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)^2*(a^4-2*(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(63425) = -5*X[631]+4*X[58447], -X[11456]+3*X[44837], -4*X[52262]+3*X[61743], -X[52842]+3*X[61700]

X(63425) lies on these lines: {2, 1568}, {3, 49}, {4, 14860}, {5, 61645}, {6, 14831}, {20, 2888}, {22, 6000}, {23, 15305}, {24, 5907}, {25, 15030}, {26, 12162}, {30, 343}, {32, 22416}, {51, 9818}, {52, 7526}, {64, 161}, {68, 21659}, {69, 74}, {76, 35474}, {110, 10298}, {113, 10201}, {125, 4549}, {182, 5890}, {186, 9306}, {206, 12168}, {265, 18564}, {287, 35952}, {373, 32620}, {378, 511}, {381, 1531}, {389, 5422}, {403, 18418}, {524, 44285}, {549, 11064}, {550, 32138}, {568, 15004}, {569, 6102}, {574, 3289}, {576, 15033}, {577, 3269}, {578, 1994}, {631, 58447}, {858, 23329}, {1078, 57008}, {1154, 13352}, {1303, 18401}, {1350, 2393}, {1352, 18533}, {1495, 14070}, {1498, 9715}, {1503, 16789}, {1593, 17834}, {1596, 32269}, {1597, 33586}, {1658, 5876}, {1986, 34155}, {1993, 11430}, {2070, 18435}, {2071, 2979}, {2387, 30270}, {2777, 12827}, {2781, 41612}, {2807, 15177}, {2875, 3428}, {2883, 58439}, {2931, 21650}, {2937, 18439}, {3060, 7527}, {3146, 15062}, {3153, 23293}, {3313, 44883}, {3484, 57474}, {3515, 17814}, {3516, 37498}, {3518, 15058}, {3520, 11412}, {3523, 43601}, {3524, 37669}, {3525, 43597}, {3543, 15107}, {3549, 43831}, {3567, 35500}, {3580, 18390}, {3785, 44141}, {3818, 7576}, {3855, 38848}, {5092, 20806}, {5171, 52279}, {5188, 14917}, {5206, 19627}, {5448, 6639}, {5449, 18404}, {5462, 37490}, {5621, 54334}, {5622, 11511}, {5651, 5891}, {5656, 10565}, {5663, 7502}, {5878, 59349}, {5888, 15721}, {5892, 22112}, {5946, 49671}, {6001, 41605}, {6090, 55576}, {6101, 11250}, {6241, 7512}, {6243, 14130}, {6636, 15072}, {6640, 20191}, {6643, 26937}, {6759, 7488}, {7386, 18931}, {7387, 11381}, {7395, 9786}, {7399, 13568}, {7414, 10441}, {7464, 11649}, {7484, 37475}, {7485, 16836}, {7492, 15054}, {7493, 15063}, {7509, 9729}, {7514, 9730}, {7525, 13491}, {7530, 16194}, {7542, 22660}, {7550, 15045}, {7556, 14157}, {7558, 32348}, {7699, 54000}, {7706, 37347}, {7723, 12893}, {7750, 44252}, {7767, 44248}, {8717, 10620}, {9545, 51033}, {9927, 18563}, {10250, 11416}, {10272, 15330}, {10274, 41726}, {10282, 11441}, {10295, 34507}, {10296, 18392}, {10311, 54082}, {10323, 46850}, {10519, 61113}, {10545, 61936}, {10574, 37126}, {10594, 44870}, {10601, 16226}, {10625, 12084}, {10627, 32210}, {11270, 57648}, {11410, 37497}, {11411, 19467}, {11413, 15644}, {11425, 12160}, {11444, 22467}, {11449, 38448}, {11455, 37925}, {11456, 44837}, {11457, 44829}, {11470, 44470}, {11472, 18534}, {11585, 44158}, {11591, 37814}, {11750, 32140}, {11793, 17928}, {11821, 22581}, {11999, 62085}, {12041, 41673}, {12083, 14915}, {12085, 37486}, {12088, 12290}, {12106, 15060}, {12225, 18381}, {12250, 52404}, {12270, 45839}, {12294, 37488}, {12307, 37484}, {12324, 59346}, {12359, 12605}, {12825, 13289}, {13336, 13630}, {13340, 18859}, {13355, 41274}, {13366, 37506}, {13419, 31304}, {13434, 63076}, {13567, 34664}, {13598, 35502}, {13620, 35265}, {13851, 14852}, {14110, 34935}, {14516, 34785}, {14531, 36747}, {14719, 22751}, {14805, 15087}, {14826, 37460}, {15052, 37940}, {15055, 33884}, {15056, 44802}, {15066, 15078}, {15068, 18324}, {15069, 15138}, {15246, 20791}, {15311, 41602}, {15331, 31834}, {15360, 37077}, {15466, 40664}, {15692, 41462}, {15702, 62708}, {15760, 44201}, {16051, 38729}, {16063, 20417}, {16072, 26958}, {16261, 52294}, {16386, 54040}, {16391, 61363}, {16657, 41588}, {16661, 52093}, {17508, 61136}, {17811, 37487}, {18281, 51392}, {18377, 34826}, {18438, 19457}, {18442, 18562}, {18472, 22146}, {18478, 18479}, {18537, 61506}, {18559, 41171}, {19121, 34779}, {20299, 37444}, {20427, 37201}, {21735, 53050}, {21969, 44413}, {21971, 63128}, {22165, 47031}, {23324, 47339}, {23328, 47090}, {24929, 62402}, {25738, 52104}, {27082, 62092}, {28454, 51420}, {29012, 44831}, {31670, 46026}, {32223, 62961}, {32401, 41590}, {33522, 35513}, {33878, 54992}, {34351, 51425}, {34469, 37198}, {34776, 46442}, {34778, 37485}, {34786, 58922}, {34864, 37481}, {35259, 55572}, {35469, 47068}, {35470, 47066}, {35473, 43574}, {35486, 59543}, {35928, 42313}, {37440, 45959}, {37477, 54048}, {37636, 38323}, {37954, 44077}, {40280, 54006}, {41463, 55631}, {41586, 49669}, {43576, 55587}, {43598, 44879}, {44135, 58785}, {44213, 46817}, {44241, 48876}, {44249, 44665}, {44441, 51360}, {44832, 55649}, {47582, 62962}, {48912, 61985}, {50464, 51254}, {50967, 53021}, {50977, 62382}, {51391, 61736}, {52055, 62158}, {52262, 61743}, {52842, 61700}, {60765, 63428}

X(63425) = midpoint of X(i) and X(j) for these {i,j}: {20, 11442}, {64, 161}
X(63425) = reflection of X(i) in X(j) for these {i,j}: {184, 3}, {1993, 11430}, {13352, 18570}, {15760, 44201}, {18445, 18475}, {2883, 58439}, {343, 44683}, {4, 21243}, {45186, 47328}
X(63425) = isogonal conjugate of X(16263)
X(63425) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 16263}, {19, 43530}, {158, 3431}, {1096, 57822}, {1784, 22455}, {6520, 56266}, {24006, 58994}, {57806, 58941}
X(63425) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 16263}, {6, 43530}, {381, 47392}, {1147, 3431}, {4550, 4}, {6503, 57822}, {18388, 18388}, {37867, 56266}
X(63425) = X(i)-Ceva conjugate of X(j) for these {i, j}: {37638, 5158}
X(63425) = pole of line {924, 15138} with respect to the circumcircle
X(63425) = pole of line {3, 10938} with respect to the Jerabek hyperbola
X(63425) = pole of line {9722, 14836} with respect to the Kiepert hyperbola
X(63425) = pole of line {2407, 23181} with respect to the Kiepert parabola
X(63425) = pole of line {4, 1495} with respect to the Stammler hyperbola
X(63425) = pole of line {3268, 60597} with respect to the Steiner circumellipse
X(63425) = pole of line {30, 264} with respect to the Wallace hyperbola
X(63425) = pole of line {850, 9033} with respect to the dual conic of polar circle
X(63425) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(381)}}, {{A, B, C, X(4), X(13367)}}, {{A, B, C, X(64), X(19357)}}, {{A, B, C, X(68), X(12038)}}, {{A, B, C, X(69), X(1531)}}, {{A, B, C, X(74), X(184)}}, {{A, B, C, X(97), X(46808)}}, {{A, B, C, X(185), X(11270)}}, {{A, B, C, X(283), X(18477)}}, {{A, B, C, X(394), X(30541)}}, {{A, B, C, X(577), X(3581)}}, {{A, B, C, X(1147), X(43689)}}, {{A, B, C, X(1181), X(3532)}}, {{A, B, C, X(3167), X(21970)}}, {{A, B, C, X(3269), X(16186)}}, {{A, B, C, X(3292), X(32225)}}, {{A, B, C, X(3519), X(22451)}}, {{A, B, C, X(4846), X(18475)}}, {{A, B, C, X(4993), X(31626)}}, {{A, B, C, X(5562), X(44135)}}, {{A, B, C, X(6148), X(51254)}}, {{A, B, C, X(10605), X(43713)}}, {{A, B, C, X(11589), X(18487)}}, {{A, B, C, X(13754), X(42487)}}, {{A, B, C, X(19347), X(44763)}}, {{A, B, C, X(20421), X(21663)}}, {{A, B, C, X(26907), X(61363)}}, {{A, B, C, X(32710), X(51458)}}, {{A, B, C, X(34801), X(40909)}}, {{A, B, C, X(34802), X(51993)}}, {{A, B, C, X(36875), X(52144)}}, {{A, B, C, X(46751), X(50461)}}, {{A, B, C, X(46832), X(56338)}}
X(63425) = barycentric product X(i)*X(j) for these (i, j): {3, 37638}, {381, 394}, {4993, 5562}, {5158, 69}, {14314, 60053}, {14919, 1531}, {18477, 63}, {18478, 323}, {18479, 7799}, {21970, 60839}, {34417, 3926}, {44135, 577}, {46808, 51394}, {50433, 52149}
X(63425) = barycentric quotient X(i)/X(j) for these (i, j): {3, 43530}, {6, 16263}, {381, 2052}, {394, 57822}, {577, 3431}, {1092, 56266}, {1531, 46106}, {3581, 14165}, {4993, 8795}, {5158, 4}, {14314, 44427}, {14585, 58941}, {18477, 92}, {18478, 94}, {18479, 1989}, {18487, 52661}, {18877, 22455}, {21970, 21447}, {32225, 37778}, {32661, 58994}, {34416, 2207}, {34417, 393}, {37638, 264}, {44135, 18027}, {50433, 18316}, {51394, 46809}, {58785, 8794}
X(63425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1216, 43652}, {3, 12163, 185}, {3, 12164, 19357}, {3, 155, 13367}, {3, 18436, 1147}, {3, 18445, 18475}, {3, 185, 10984}, {3, 394, 51394}, {3, 5562, 1092}, {3, 58891, 47391}, {3, 63392, 7689}, {3, 7689, 1204}, {20, 11440, 3357}, {20, 11442, 18400}, {20, 2888, 12278}, {20, 7691, 46728}, {26, 12162, 26883}, {30, 44683, 343}, {52, 7526, 11424}, {110, 10298, 11202}, {186, 11459, 9306}, {1154, 18570, 13352}, {1350, 10606, 21312}, {1350, 21312, 36987}, {1593, 17834, 45186}, {1658, 5876, 10539}, {2070, 18435, 46261}, {2070, 46261, 44082}, {2071, 11454, 11204}, {2071, 2979, 37480}, {3153, 23293, 23325}, {3357, 46728, 20}, {3520, 11412, 13346}, {3580, 52069, 18390}, {3581, 4550, 34417}, {3917, 21663, 3}, {5562, 51394, 394}, {5889, 14118, 578}, {5890, 35921, 182}, {5891, 6644, 5651}, {7488, 12111, 6759}, {9818, 37489, 51}, {10574, 37126, 37515}, {11204, 37480, 2071}, {11441, 38444, 10282}, {11472, 18534, 32062}, {12164, 19357, 43844}, {13367, 45187, 155}, {13754, 18475, 18445}, {14070, 18451, 1495}, {15068, 18324, 51393}, {15331, 31834, 61753}, {15760, 44201, 61644}, {18445, 18475, 184}, {33522, 54050, 35513}, {47391, 58891, 3292}


X(63426) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(190)

Barycentrics    -4*a^3*b*c+2*a^4*(b+c)-b*(b-c)^2*c*(b+c)-a^2*(b^3+b^2*c+b*c^2+c^3)+a*(b^4+2*b^3*c-2*b^2*c^2+2*b*c^3+c^4) : :

X(63426) lies on these lines: {37, 17197}, {81, 190}, {528, 63360}, {536, 63443}, {537, 63354}, {545, 37631}, {673, 63384}, {900, 14752}, {903, 63343}, {1086, 3666}, {2796, 63347}, {4358, 4422}, {4370, 35652}, {4432, 63292}, {4440, 37635}, {4681, 4796}, {5845, 63394}, {9041, 63415}, {9055, 63359}, {9957, 53534}, {13408, 29243}, {16726, 22003}, {17351, 22048}, {24715, 63319}, {24813, 63291}, {24814, 63293}, {24815, 63294}, {24816, 63295}, {24817, 63297}, {24818, 63298}, {24819, 63299}, {24820, 63304}, {24821, 63310}, {24822, 63311}, {24823, 63312}, {24824, 63313}, {24825, 63315}, {24826, 63316}, {24827, 63317}, {24828, 63318}, {24830, 63320}, {24831, 63321}, {24832, 63322}, {24833, 63323}, {24834, 63324}, {24835, 63325}, {24836, 63326}, {24837, 63327}, {24840, 63332}, {24841, 63333}, {24842, 63336}, {24843, 63337}, {24844, 63338}, {24845, 63339}, {24846, 63340}, {24847, 63341}, {24848, 63342}, {27191, 63344}, {29541, 31035}, {32029, 63385}, {50747, 62740}, {63387, 63398}

X(63426) = pole of line {24885, 24920} with respect to the Steiner inellipse


X(63427) = REFLECTION OF X(192) IN X(3)

Barycentrics    3*a^4*b*c+a^5*(b+c)-a*(b-c)^2*(b+c)^3+b*c*(b^2-c^2)^2-4*a^2*b*c*(b^2+c^2) : :
X(63427) = -3*X[2]+2*X[20430], -4*X[5]+5*X[4699], -4*X[37]+5*X[631], -8*X[140]+7*X[27268], -3*X[165]+X[49445], -2*X[984]+3*X[5657], -7*X[3090]+8*X[3739], -5*X[3091]+7*X[4772], -X[3146]+5*X[4821], -5*X[3522]+X[4788], -7*X[3523]+5*X[4704], -3*X[3524]+2*X[4664] and many others

X(63427) lies on these lines: {2, 20430}, {3, 192}, {4, 75}, {5, 4699}, {20, 1278}, {30, 4740}, {37, 631}, {40, 726}, {104, 39631}, {140, 27268}, {165, 49445}, {376, 536}, {381, 51048}, {515, 49474}, {516, 50117}, {517, 24349}, {518, 12245}, {537, 50810}, {549, 51039}, {740, 944}, {742, 6776}, {746, 36998}, {984, 5657}, {990, 36489}, {1058, 11997}, {1350, 9055}, {1766, 36697}, {3090, 3739}, {3091, 4772}, {3146, 4821}, {3210, 4192}, {3487, 7201}, {3522, 4788}, {3523, 4704}, {3524, 4664}, {3525, 4687}, {3528, 3644}, {3529, 4686}, {3533, 4698}, {3543, 51040}, {3545, 4688}, {3576, 3993}, {3655, 51054}, {3696, 59388}, {3797, 36698}, {3855, 4739}, {4008, 12721}, {4297, 28522}, {4360, 37474}, {4681, 10299}, {4709, 5881}, {4718, 21735}, {4726, 33703}, {4751, 5067}, {4755, 15709}, {4764, 17538}, {4812, 36575}, {5071, 51038}, {5603, 24325}, {5720, 27492}, {5732, 63444}, {5759, 24817}, {5779, 27484}, {5882, 49469}, {6361, 29054}, {6822, 54284}, {6865, 20171}, {6906, 54410}, {7709, 32453}, {7967, 49470}, {7982, 49479}, {7991, 49532}, {9548, 59565}, {9781, 58499}, {10476, 42027}, {10519, 49509}, {11180, 51051}, {11362, 49448}, {12610, 36651}, {12618, 36473}, {14853, 49481}, {14912, 49496}, {15682, 52852}, {15692, 51045}, {15702, 51049}, {17147, 37400}, {17225, 43273}, {17350, 37510}, {17490, 19540}, {17495, 19647}, {17927, 27509}, {19546, 24620}, {21151, 51058}, {21168, 51052}, {24357, 36543}, {28234, 49498}, {29069, 48918}, {30943, 48380}, {31162, 51060}, {31238, 61886}, {31302, 59417}, {33888, 48875}, {34200, 51047}, {34474, 51062}, {34627, 50086}, {34628, 51037}, {34631, 51055}, {34632, 51056}, {38074, 50096}, {43174, 49520}, {49510, 63143}, {51041, 61980}, {51065, 62042}, {63297, 63398}

X(63427) = midpoint of X(i) and X(j) for these {i,j}: {20, 1278}, {7991, 49532}, {34628, 51037}, {34632, 51056}
X(63427) = reflection of X(i) in X(j) for these {i,j}: {192, 3}, {11180, 51051}, {376, 51044}, {381, 51048}, {30273, 30271}, {3543, 51040}, {31162, 51060}, {34627, 50086}, {34631, 51055}, {4, 75}, {49448, 11362}, {49469, 5882}, {49520, 43174}, {5881, 4709}, {51039, 549}, {51043, 376}, {51047, 34200}, {51054, 3655}, {51064, 381}, {62042, 51065}, {7982, 49479}
X(63427) = X(i)-Dao conjugate of X(j) for these {i, j}: {20430, 20430}
X(63427) = pole of line {26640, 46383} with respect to the Steiner circumellipse
X(63427) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20, 1278, 29010}, {376, 536, 51043}, {536, 30271, 30273}, {12245, 36996, 63428}, {30271, 30273, 376}, {30273, 51044, 30271}


X(63428) = REFLECTION OF X(193) IN X(3)

Barycentrics    a^6-7*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(7*b^4+2*b^2*c^2+7*c^4) : :
X(63428) = -3*X[2]+2*X[1351], -4*X[5]+5*X[3620], -4*X[6]+5*X[631], -4*X[140]+3*X[5093], -8*X[141]+7*X[3090], -4*X[182]+3*X[1992], -3*X[186]+2*X[32220], -4*X[548]+5*X[55604], -4*X[549]+3*X[5032], -8*X[576]+11*X[3525], -8*X[597]+9*X[15709], -4*X[599]+3*X[3545] and many others

X(63428) lies on these lines: {2, 1351}, {3, 193}, {4, 69}, {5, 3620}, {6, 631}, {20, 3564}, {22, 63174}, {24, 37491}, {30, 5921}, {40, 34379}, {52, 6803}, {54, 19126}, {68, 16774}, {74, 20187}, {86, 7410}, {98, 14645}, {114, 60657}, {140, 5093}, {141, 3090}, {159, 12088}, {182, 1992}, {184, 33522}, {186, 32220}, {323, 7493}, {325, 10008}, {343, 8889}, {376, 524}, {378, 53021}, {381, 50978}, {384, 50685}, {391, 21554}, {394, 6353}, {443, 63070}, {487, 9733}, {488, 9732}, {489, 49038}, {490, 49039}, {518, 12245}, {542, 11001}, {548, 55604}, {549, 5032}, {550, 39899}, {575, 53860}, {576, 3525}, {597, 15709}, {599, 3545}, {944, 5847}, {1006, 37492}, {1056, 1469}, {1058, 3056}, {1092, 19128}, {1147, 19121}, {1161, 21736}, {1216, 6804}, {1270, 6811}, {1271, 6813}, {1285, 5017}, {1370, 3448}, {1503, 3529}, {1511, 25321}, {1513, 37668}, {1614, 52016}, {1993, 7494}, {2076, 61126}, {2080, 32985}, {2456, 7793}, {2698, 36892}, {2781, 41735}, {2854, 12317}, {2895, 26118}, {2930, 15580}, {2967, 37187}, {2979, 6515}, {3060, 7392}, {3068, 35840}, {3069, 35841}, {3088, 12167}, {3089, 41584}, {3091, 7939}, {3094, 63043}, {3095, 16043}, {3098, 3528}, {3146, 18440}, {3147, 20806}, {3167, 10565}, {3292, 35260}, {3313, 15073}, {3410, 62964}, {3416, 59388}, {3515, 46444}, {3522, 48906}, {3523, 5050}, {3526, 59399}, {3530, 55705}, {3533, 3589}, {3534, 63118}, {3537, 5890}, {3538, 11574}, {3543, 39884}, {3544, 19130}, {3563, 55023}, {3576, 51196}, {3580, 16051}, {3619, 5067}, {3629, 5085}, {3630, 15069}, {3631, 3855}, {3655, 51001}, {3751, 5657}, {3763, 61886}, {3819, 18928}, {3832, 18358}, {3917, 11433}, {3926, 51374}, {3945, 6998}, {3964, 52276}, {4048, 35951}, {4232, 6090}, {4259, 6897}, {4293, 39897}, {4294, 39873}, {5028, 7735}, {5039, 10359}, {5052, 7736}, {5054, 51732}, {5068, 38136}, {5071, 20423}, {5082, 25304}, {5092, 61138}, {5095, 15035}, {5097, 15702}, {5107, 62992}, {5171, 6337}, {5181, 10752}, {5188, 7758}, {5232, 7380}, {5304, 37450}, {5446, 11487}, {5462, 42021}, {5476, 55719}, {5477, 21166}, {5485, 54488}, {5486, 61136}, {5596, 34787}, {5603, 49511}, {5611, 37172}, {5615, 37173}, {5759, 63444}, {5800, 6951}, {5845, 24817}, {5848, 13199}, {5860, 45510}, {5861, 45511}, {5862, 6773}, {5863, 6770}, {5889, 10996}, {5965, 12254}, {5972, 37669}, {5999, 63046}, {6101, 6643}, {6144, 8550}, {6193, 37486}, {6194, 7774}, {6225, 45187}, {6243, 7401}, {6329, 53858}, {6393, 32818}, {6467, 15644}, {6676, 63092}, {6857, 15988}, {6875, 36740}, {6916, 54383}, {6947, 37516}, {6997, 62187}, {7374, 32814}, {7379, 17343}, {7385, 17375}, {7387, 63183}, {7390, 62999}, {7394, 15108}, {7400, 12160}, {7413, 14552}, {7417, 38940}, {7464, 63420}, {7484, 63031}, {7485, 63012}, {7495, 63082}, {7499, 63030}, {7505, 28419}, {7512, 19119}, {7556, 15577}, {7612, 37667}, {7694, 7845}, {7709, 32451}, {7714, 14826}, {7778, 9752}, {7779, 37182}, {7826, 59363}, {7855, 8721}, {7967, 51192}, {7982, 49505}, {7998, 63084}, {8584, 15719}, {8681, 12283}, {8703, 55616}, {8722, 34511}, {9306, 62979}, {9541, 49228}, {9744, 33706}, {9755, 63042}, {9770, 43461}, {9781, 9822}, {9924, 34781}, {9936, 41464}, {9970, 20125}, {9983, 54188}, {10124, 51184}, {10155, 62922}, {10168, 55714}, {10303, 11482}, {10304, 55629}, {10323, 19459}, {10541, 61795}, {10608, 39647}, {10625, 11411}, {10627, 18951}, {10733, 32275}, {10753, 50567}, {10754, 14651}, {10759, 51007}, {10788, 14039}, {10983, 32990}, {10992, 45018}, {11064, 52290}, {11178, 41106}, {11179, 14810}, {11180, 15533}, {11206, 24981}, {11291, 45488}, {11292, 45489}, {11414, 19588}, {11427, 43653}, {11442, 44442}, {11484, 11850}, {11488, 51206}, {11489, 51207}, {11513, 46621}, {11514, 46622}, {11541, 29317}, {11645, 50961}, {11649, 60466}, {11676, 32817}, {11737, 51173}, {11821, 12241}, {11824, 12256}, {11825, 12257}, {12007, 15534}, {12017, 15717}, {12082, 39879}, {12100, 55692}, {12111, 40317}, {12164, 52404}, {12325, 32337}, {12383, 36989}, {13340, 18917}, {13562, 37122}, {13725, 48909}, {13754, 35513}, {13860, 15589}, {14023, 30270}, {14069, 35389}, {14094, 32114}, {14485, 60143}, {14531, 21851}, {14555, 37521}, {14644, 32257}, {14693, 32970}, {14893, 50954}, {14940, 28408}, {15054, 46349}, {15066, 40132}, {15516, 38064}, {15520, 61836}, {15606, 39571}, {15681, 51175}, {15683, 50985}, {15686, 51183}, {15692, 50979}, {15703, 51172}, {15708, 63000}, {15710, 51737}, {15712, 55697}, {15715, 55674}, {15718, 50987}, {15812, 18912}, {15819, 63041}, {16063, 37779}, {16163, 32234}, {16266, 63063}, {16434, 63037}, {16981, 62937}, {17508, 61787}, {17702, 32244}, {18531, 54048}, {18537, 23039}, {18925, 46728}, {18931, 37480}, {18947, 41673}, {19131, 34148}, {19145, 43509}, {19146, 43510}, {19154, 22115}, {19544, 63057}, {19649, 63009}, {19877, 38167}, {19924, 51023}, {20425, 37170}, {20426, 37171}, {20582, 61889}, {21151, 51194}, {21167, 32455}, {21168, 51190}, {21358, 50982}, {21734, 55639}, {21843, 39764}, {22165, 41099}, {22533, 47528}, {23061, 37645}, {25320, 49116}, {25555, 55717}, {25561, 61959}, {26156, 41587}, {26870, 63433}, {26871, 26893}, {26872, 26892}, {28538, 50818}, {29012, 49138}, {30739, 63081}, {31162, 51004}, {31305, 46442}, {31423, 59408}, {31669, 51729}, {31730, 39878}, {32621, 44832}, {32810, 45554}, {32811, 45555}, {32823, 37446}, {32960, 35439}, {32968, 49111}, {33749, 55672}, {33750, 55646}, {33751, 55608}, {33884, 37644}, {33923, 55624}, {34200, 50986}, {34474, 51198}, {34573, 61881}, {34627, 50950}, {34631, 50999}, {34938, 37484}, {35021, 60185}, {35404, 51216}, {36207, 47076}, {36662, 48934}, {36698, 48875}, {36706, 48908}, {37124, 40065}, {37451, 62988}, {37455, 63017}, {37498, 39588}, {37638, 62960}, {37643, 41586}, {37690, 38227}, {37925, 63180}, {37943, 47581}, {38021, 50787}, {38040, 46934}, {38072, 50991}, {38074, 50781}, {38076, 50788}, {38317, 55718}, {38738, 47102}, {39561, 61817}, {39562, 61548}, {39663, 44395}, {39893, 42260}, {39894, 42261}, {40673, 54041}, {40825, 46453}, {40911, 43957}, {41204, 56013}, {41371, 52283}, {44434, 63044}, {44439, 63129}, {45406, 49048}, {45407, 49049}, {46853, 55632}, {47279, 62344}, {47352, 51132}, {47353, 51163}, {47354, 61980}, {47355, 61870}, {47569, 52238}, {47595, 59386}, {48880, 55588}, {48881, 55591}, {48892, 55596}, {48898, 55590}, {48904, 62029}, {48905, 62147}, {48910, 62028}, {49536, 63143}, {49862, 59409}, {50425, 56018}, {50600, 63089}, {50693, 55595}, {50957, 61972}, {50959, 61951}, {50963, 61944}, {50980, 61825}, {50981, 61829}, {50983, 61809}, {50989, 61987}, {50993, 61915}, {50994, 61932}, {51024, 62011}, {51027, 62169}, {51140, 55655}, {51174, 55648}, {51182, 62088}, {51186, 61902}, {51187, 55622}, {51188, 62135}, {51211, 62005}, {51213, 62015}, {52288, 60693}, {53023, 61964}, {53092, 61820}, {55592, 62115}, {55594, 62113}, {55602, 62097}, {55603, 62096}, {55606, 62092}, {55612, 62086}, {55614, 62084}, {55620, 62083}, {55643, 62067}, {55649, 62061}, {55669, 61777}, {55671, 61780}, {55678, 61788}, {55682, 61791}, {55701, 61804}, {55716, 61867}, {55723, 61945}, {59411, 62117}, {60765, 63425}, {61838, 63124}, {61861, 63109}, {62055, 63115}, {63297, 63394}

X(63428) = midpoint of X(i) and X(j) for these {i,j}: {20, 20080}, {376, 51179}, {5921, 61044}, {11160, 54174}, {11898, 55584}, {15069, 55582}, {15681, 51175}, {15683, 51215}, {15686, 51183}, {18440, 55580}, {40341, 53097}, {50992, 54170}
X(63428) = reflection of X(i) in X(j) for these {i,j}: {4, 69}, {20, 33878}, {193, 3}, {376, 50967}, {381, 50978}, {1351, 48876}, {1992, 54173}, {3146, 18440}, {3543, 50955}, {5596, 34787}, {5889, 37511}, {5921, 11898}, {6144, 8550}, {6467, 15644}, {6776, 1350}, {7982, 49505}, {10733, 32275}, {10752, 5181}, {10753, 50567}, {10759, 51007}, {11001, 54170}, {11180, 15533}, {11477, 141}, {11676, 51438}, {12220, 10625}, {12317, 32247}, {14094, 32114}, {14531, 21851}, {14912, 62174}, {14927, 48873}, {15069, 3630}, {15073, 3313}, {15534, 54169}, {15682, 11180}, {18438, 6101}, {31162, 51004}, {31670, 34507}, {32220, 47468}, {32234, 16163}, {34627, 50950}, {34631, 50999}, {34781, 9924}, {37517, 40107}, {39874, 20}, {39878, 31730}, {39899, 550}, {44456, 5}, {45018, 10992}, {45186, 14913}, {46264, 52987}, {48873, 55587}, {48880, 55588}, {48898, 55590}, {50962, 549}, {50974, 376}, {50986, 34200}, {51001, 3655}, {51028, 381}, {51212, 1352}, {54131, 22165}, {54132, 599}, {55720, 24206}, {55721, 19130}, {55722, 5480}, {55724, 21850}, {61044, 55584}, {62042, 51023}, {62344, 47279}, {63064, 11179}
X(63428) = inverse of X(13449) in anticomplementary circle
X(63428) = X(i)-Dao conjugate of X(j) for these {i, j}: {1351, 1351}
X(63428) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {1, 9742}, {7612, 8}, {42298, 21270}, {47735, 5905}, {56267, 4329}
X(63428) = pole of line {512, 13449} with respect to the anticomplementary circle
X(63428) = pole of line {512, 39533} with respect to the polar circle
X(63428) = pole of line {1899, 5650} with respect to the Jerabek hyperbola
X(63428) = pole of line {3090, 5254} with respect to the Kiepert hyperbola
X(63428) = pole of line {184, 373} with respect to the Stammler hyperbola
X(63428) = pole of line {850, 47122} with respect to the Steiner circumellipse
X(63428) = pole of line {3, 32815} with respect to the Wallace hyperbola
X(63428) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(46320)}}, {{A, B, C, X(68), X(32006)}}, {{A, B, C, X(76), X(56339)}}, {{A, B, C, X(264), X(11169)}}, {{A, B, C, X(317), X(16774)}}, {{A, B, C, X(2698), X(5140)}}, {{A, B, C, X(3260), X(56268)}}, {{A, B, C, X(5486), X(52710)}}, {{A, B, C, X(14912), X(40413)}}, {{A, B, C, X(40801), X(43999)}}, {{A, B, C, X(44145), X(55023)}}, {{A, B, C, X(54488), X(58782)}}
X(63428) = barycentric product X(i)*X(j) for these (i, j): {52277, 76}
X(63428) = barycentric quotient X(i)/X(j) for these (i, j): {52277, 6}
X(63428) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 193, 14912}, {3, 34380, 193}, {6, 10519, 631}, {20, 20080, 3564}, {20, 3564, 39874}, {30, 55584, 61044}, {140, 5093, 51171}, {141, 11477, 14853}, {141, 14853, 3090}, {193, 62174, 3}, {376, 51179, 524}, {376, 524, 50974}, {511, 1352, 51212}, {511, 14913, 45186}, {511, 34507, 31670}, {524, 1350, 6776}, {542, 48873, 14927}, {549, 61624, 53091}, {599, 5480, 40330}, {637, 638, 32006}, {1350, 6776, 376}, {1351, 48876, 2}, {1352, 31670, 48889}, {1352, 48901, 51537}, {1352, 51212, 4}, {1992, 54173, 3524}, {2854, 32247, 12317}, {2979, 6515, 7386}, {3098, 25406, 3528}, {3523, 51170, 5050}, {3619, 14561, 5067}, {3630, 29181, 15069}, {5480, 40330, 3545}, {5480, 55722, 54132}, {5921, 11160, 11898}, {5965, 52987, 46264}, {6090, 47582, 4232}, {6144, 31884, 8550}, {6193, 37486, 59346}, {6515, 7386, 18950}, {6776, 50967, 1350}, {10303, 63123, 38110}, {10625, 11411, 52398}, {10625, 34382, 12220}, {11160, 54174, 30}, {11160, 61044, 5921}, {11482, 38110, 63123}, {12245, 36996, 63427}, {12509, 12510, 20}, {14561, 40107, 3619}, {14826, 33586, 7714}, {14927, 48873, 11001}, {14927, 54170, 48873}, {15069, 55582, 29181}, {15534, 53094, 12007}, {15692, 63027, 50979}, {15717, 63061, 33748}, {19924, 51023, 62042}, {20423, 21356, 5071}, {21167, 32455, 53093}, {24206, 55720, 20423}, {32220, 47468, 186}, {33750, 55646, 62066}, {34507, 48889, 1352}, {37517, 40107, 14561}, {37667, 56370, 7612}, {38317, 63121, 60781}, {39899, 55593, 550}, {40330, 54132, 5480}, {40341, 53097, 1503}, {45794, 62188, 1370}, {48873, 55587, 54170}, {48906, 55610, 3522}, {50962, 53091, 61624}, {50965, 51178, 51176}, {50966, 50974, 51177}, {50967, 50973, 51179}, {50967, 50974, 50966}, {50967, 50975, 50970}, {50967, 51178, 50965}, {50992, 54170, 542}, {51212, 51537, 48901}, {53091, 61624, 5032}, {54174, 61044, 55584}


X(63429) = REFLECTION OF X(197) IN X(3)

Barycentrics    a^2*(a^8-2*a^5*b*c*(b+c)+4*a^3*b*(b-c)^2*c*(b+c)-2*a*b*(b-c)^4*c*(b+c)-4*a^4*b*c*(b^2-4*b*c+c^2)-2*a^6*(b^2-b*c+c^2)-(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)+2*a^2*(b-c)^2*(b^4+3*b^3*c+3*b*c^3+c^4)) : :
X(63429) = -3*X[549]+2*X[61626]

X(63429) lies on circumconic {{A, B, C, X(197), X(41904)}} and on these lines: {1, 7169}, {3, 10}, {4, 23304}, {6, 34457}, {11, 37391}, {20, 36844}, {25, 52848}, {33, 56}, {36, 36985}, {55, 1455}, {64, 34046}, {65, 26927}, {84, 3556}, {104, 378}, {549, 61626}, {999, 2823}, {1012, 1486}, {1208, 1451}, {1597, 22753}, {1610, 9799}, {1622, 23383}, {1633, 54052}, {2975, 11413}, {3428, 21312}, {3435, 7412}, {4219, 4293}, {4221, 43161}, {4320, 11471}, {5584, 22060}, {5691, 37034}, {6282, 12329}, {6642, 18761}, {6909, 37577}, {7354, 37194}, {7414, 37002}, {7416, 40292}, {8069, 15626}, {8193, 37022}, {8273, 37246}, {8679, 63436}, {9818, 10269}, {10268, 15592}, {10606, 53291}, {10864, 57281}, {11194, 54992}, {11249, 12085}, {11479, 25524}, {12084, 32153}, {12262, 12675}, {12330, 23844}, {13095, 39791}, {17516, 37001}, {22769, 63420}, {26357, 37195}, {31861, 61518}

X(63429) = midpoint of X(i) and X(j) for these {i,j}: {20, 36844}
X(63429) = reflection of X(i) in X(j) for these {i,j}: {197, 3}, {4, 23304}
X(63429) = pole of line {2812, 6129} with respect to the mixtilinear incircles radical circle
X(63429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12114, 22654}, {3, 515, 197}, {1622, 37252, 23383}


X(63430) = REFLECTION OF X(200) IN X(3)

Barycentrics    a*(a^6-4*a^3*b*c*(b+c)+4*a*b*(b-c)^2*c*(b+c)-(b-c)^2*(b+c)^4+a^4*(-3*b^2+10*b*c-3*c^2)+a^2*(b-c)^2*(3*b^2-2*b*c+3*c^2)) : :
X(63430) = -4*X[5]+5*X[31249], 3*X[165]+X[18452], -3*X[549]+2*X[61628], -5*X[631]+4*X[20103], -2*X[1376]+3*X[21164], -5*X[3522]+X[20015]

X(63430) lies on these lines: {1, 84}, {3, 200}, {4, 1435}, {5, 31249}, {8, 37560}, {9, 48}, {10, 37526}, {11, 12678}, {20, 36845}, {30, 31146}, {36, 52026}, {40, 376}, {46, 36975}, {55, 52027}, {56, 1490}, {57, 515}, {63, 5731}, {65, 12650}, {90, 21842}, {165, 18452}, {258, 9837}, {355, 37534}, {388, 6245}, {390, 54052}, {496, 6259}, {516, 2096}, {517, 7171}, {518, 6282}, {549, 61628}, {551, 54370}, {601, 51476}, {631, 20103}, {912, 37611}, {936, 14872}, {946, 4654}, {952, 3359}, {956, 10167}, {958, 8726}, {962, 62832}, {971, 999}, {1058, 12246}, {1064, 50614}, {1124, 19068}, {1125, 59687}, {1158, 1697}, {1210, 12667}, {1317, 2950}, {1319, 30223}, {1335, 19067}, {1376, 21164}, {1385, 7330}, {1420, 6261}, {1445, 54051}, {1467, 9942}, {1519, 37704}, {1699, 51816}, {1706, 5881}, {1728, 37837}, {1750, 22753}, {1753, 18283}, {1768, 5119}, {2077, 3158}, {2332, 4227}, {2733, 59058}, {2800, 7962}, {2829, 3586}, {2975, 10884}, {3057, 54156}, {3085, 6705}, {3086, 6260}, {3149, 3361}, {3243, 37569}, {3295, 34862}, {3297, 49234}, {3298, 49235}, {3304, 12688}, {3305, 54445}, {3306, 59387}, {3338, 5691}, {3340, 5884}, {3358, 24929}, {3428, 5732}, {3522, 20015}, {3555, 6769}, {3577, 5902}, {3600, 9799}, {3601, 5450}, {3870, 6909}, {3872, 38669}, {3874, 7982}, {3877, 13243}, {3916, 10268}, {3929, 51705}, {3947, 6956}, {4311, 62810}, {4315, 62839}, {4511, 56545}, {4666, 6912}, {4847, 6916}, {4853, 31788}, {4857, 52860}, {4880, 7991}, {5126, 52684}, {5231, 6907}, {5250, 50742}, {5269, 37469}, {5290, 6831}, {5437, 5587}, {5438, 17857}, {5536, 34628}, {5542, 5603}, {5687, 10270}, {5693, 15829}, {5709, 18481}, {5715, 10404}, {5720, 10269}, {5777, 8583}, {5787, 18990}, {5886, 18540}, {6212, 34910}, {6213, 34909}, {6223, 14986}, {6256, 9581}, {6264, 45633}, {6361, 6766}, {6763, 59340}, {6765, 10310}, {6847, 21620}, {6865, 12527}, {6911, 18528}, {6913, 10582}, {6925, 26015}, {6926, 21075}, {6935, 13405}, {7079, 22088}, {7308, 10165}, {7373, 9856}, {7415, 18206}, {7501, 7719}, {7701, 28461}, {7967, 31393}, {7987, 33597}, {7993, 17654}, {8192, 26927}, {8227, 10785}, {8580, 18908}, {8666, 12520}, {9578, 12616}, {9579, 48482}, {9669, 22792}, {9708, 11227}, {9943, 12513}, {9947, 16408}, {9961, 62837}, {10050, 10074}, {10202, 18519}, {10476, 39594}, {10573, 59336}, {10786, 31423}, {11037, 37434}, {11220, 54391}, {11249, 41854}, {11491, 35242}, {11500, 15803}, {11518, 12005}, {11523, 63391}, {11529, 62852}, {12116, 41869}, {12247, 51781}, {12526, 31786}, {12528, 19861}, {12565, 22770}, {12577, 21628}, {12608, 50443}, {12629, 15347}, {12669, 62873}, {12679, 37722}, {12703, 61291}, {12704, 37002}, {12773, 61146}, {13226, 26446}, {13373, 18761}, {13462, 15299}, {13607, 37556}, {14110, 54422}, {14647, 31397}, {15298, 53054}, {15626, 23206}, {16132, 45632}, {16138, 61277}, {16203, 40263}, {17604, 51772}, {18239, 41426}, {18421, 24645}, {18443, 22758}, {18525, 37612}, {18526, 63138}, {22769, 63420}, {24467, 34773}, {26321, 37615}, {28236, 54286}, {29649, 36697}, {31162, 60895}, {35010, 37714}, {37518, 43730}, {37531, 41863}, {37727, 49163}, {37736, 48695}, {40257, 63208}, {41561, 44675}, {43161, 60990}, {44692, 60799}, {45287, 59335}, {56583, 59320}

X(63430) = midpoint of X(i) and X(j) for these {i,j}: {1, 30304}, {20, 36845}, {1864, 12680}
X(63430) = reflection of X(i) in X(j) for these {i,j}: {4, 11019}, {200, 3}, {1750, 22753}, {5720, 10269}, {6765, 52804}, {10860, 7171}, {17625, 12675}, {18528, 6911}, {59687, 1125}, {63137, 3359}
X(63430) = perspector of circumconic {{A, B, C, X(36037), X(37141)}}
X(63430) = pole of line {23224, 53286} with respect to the circumcircle
X(63430) = pole of line {3900, 53313} with respect to the mixtilinear incircles radical circle
X(63430) = pole of line {56, 12705} with respect to the Feuerbach hyperbola
X(63430) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(40), X(34040)}}, {{A, B, C, X(84), X(11546)}}, {{A, B, C, X(104), X(1422)}}, {{A, B, C, X(280), X(12705)}}, {{A, B, C, X(909), X(963)}}, {{A, B, C, X(1433), X(7091)}}, {{A, B, C, X(2733), X(52007)}}, {{A, B, C, X(12672), X(44692)}}
X(63430) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 10085, 84}, {1, 15071, 7971}, {1, 2956, 34040}, {1, 30304, 6001}, {1, 7992, 12672}, {1, 7995, 45776}, {1, 84, 12705}, {40, 61296, 2136}, {40, 9845, 944}, {56, 12680, 1490}, {104, 18446, 3576}, {517, 7171, 10860}, {956, 10167, 30503}, {958, 58567, 8726}, {1158, 5882, 1697}, {1385, 7330, 31435}, {3333, 10864, 4}, {3428, 63432, 5732}, {3555, 37022, 6769}, {4297, 62858, 40}, {5881, 59333, 1706}, {6001, 12675, 17625}, {7373, 12684, 9856}, {7987, 41229, 61122}, {12114, 12675, 1}, {17857, 37561, 5438}


X(63431) = REFLECTION OF X(206) IN X(3)

Barycentrics    a^2*(a^10-2*(b^2-c^2)^2*(b^2+c^2)^3+a^6*(-4*b^4+2*b^2*c^2-4*c^4)+a^2*(b^2-c^2)^2*(3*b^4+4*b^2*c^2+3*c^4)+2*a^4*(b^6+b^4*c^2+b^2*c^4+c^6)) : :
X(63431) = -3*X[154]+7*X[55651], -3*X[376]+X[36989], -5*X[631]+4*X[58450], -X[1177]+3*X[15055], -X[1351]+3*X[10249], -X[1498]+5*X[55646], 3*X[1853]+X[48872], -X[2883]+3*X[21167], -5*X[3522]+X[5596], -7*X[3523]+5*X[31267], -5*X[3763]+X[5895], -3*X[5085]+2*X[41593]

X(63431) lies on circumconic {{A, B, C, X(3532), X(52041)}} and on these lines: {3, 206}, {4, 6697}, {6, 1204}, {20, 66}, {30, 34177}, {64, 159}, {69, 11440}, {74, 5486}, {141, 5894}, {154, 55651}, {182, 2781}, {184, 13171}, {376, 36989}, {378, 19161}, {511, 7689}, {512, 46614}, {550, 1503}, {631, 58450}, {1176, 43813}, {1177, 15055}, {1350, 2393}, {1351, 10249}, {1352, 16111}, {1498, 55646}, {1593, 9969}, {1657, 34775}, {1660, 3917}, {1853, 48872}, {2071, 41716}, {2777, 4550}, {2883, 21167}, {3313, 11413}, {3522, 5596}, {3523, 31267}, {3564, 32138}, {3581, 23049}, {3618, 43601}, {3763, 5895}, {3827, 12262}, {3852, 30270}, {5085, 41593}, {5092, 34117}, {5157, 14118}, {5447, 32321}, {5480, 11438}, {5621, 44439}, {5651, 10117}, {5893, 34573}, {5925, 10516}, {6000, 8717}, {6247, 44683}, {6696, 23300}, {6759, 15067}, {7395, 58547}, {7484, 45979}, {7485, 41580}, {7525, 44679}, {7527, 61723}, {7691, 36851}, {8542, 11598}, {8549, 33878}, {8675, 46613}, {9306, 13416}, {9786, 58471}, {9924, 55614}, {10193, 58445}, {10250, 55720}, {10282, 55653}, {10304, 31166}, {10519, 61088}, {11202, 55655}, {11216, 55722}, {11381, 20987}, {11454, 41744}, {11477, 39125}, {12294, 19136}, {12315, 55643}, {13093, 55639}, {13347, 41589}, {13445, 14927}, {13562, 44247}, {13598, 58494}, {15126, 37638}, {15139, 35268}, {15246, 41715}, {15579, 44668}, {15580, 55633}, {15581, 55631}, {15582, 55637}, {17508, 34779}, {17821, 55654}, {17825, 58544}, {17834, 58492}, {18381, 48880}, {18382, 20299}, {18400, 48885}, {19124, 37473}, {19130, 25563}, {19132, 55673}, {19150, 32401}, {19153, 53094}, {19459, 34469}, {20079, 50693}, {20300, 23329}, {22658, 43652}, {22769, 53291}, {23042, 55672}, {23325, 48904}, {23327, 51212}, {23332, 51163}, {29012, 34118}, {32063, 55648}, {32125, 61644}, {32210, 44470}, {32767, 48895}, {33533, 61610}, {34417, 61735}, {34777, 52028}, {34786, 48879}, {34787, 55610}, {34788, 55585}, {34944, 43653}, {35219, 36982}, {35260, 41462}, {35450, 39879}, {35481, 54146}, {36990, 37196}, {37478, 48873}, {38885, 41467}, {40686, 48910}, {41725, 52990}, {41735, 54050}, {50414, 55650}, {63419, 63433}

X(63431) = midpoint of X(i) and X(j) for these {i,j}: {3, 34778}, {20, 66}, {64, 159}, {141, 5894}, {1350, 63420}, {1657, 34775}, {3098, 3357}, {6247, 48881}, {8549, 33878}, {18381, 48880}, {34777, 53097}, {34786, 48879}, {34788, 55585}, {35481, 54146}, {54050, 61683}
X(63431) = reflection of X(i) in X(j) for these {i,j}: {4, 6697}, {182, 15578}, {206, 3}, {2883, 58437}, {5893, 34573}, {6759, 35228}, {9968, 206}, {10282, 55653}, {11477, 39125}, {13598, 58494}, {15577, 14810}, {18382, 20299}, {19130, 25563}, {23300, 6696}, {34117, 5092}, {48895, 32767}, {48901, 20300}
X(63431) = perspector of circumconic {{A, B, C, X(44060), X(56008)}}
X(63431) = pole of line {9517, 25644} with respect to the 1st Brocard circle
X(63431) = pole of line {1370, 26881} with respect to the Stammler hyperbola
X(63431) = pole of line {7802, 52071} with respect to the Wallace hyperbola
X(63431) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 34146, 206}, {3, 34778, 34146}, {64, 31884, 159}, {182, 11204, 15578}, {206, 34146, 9968}, {1350, 10606, 63420}, {1350, 63420, 2393}, {2781, 15578, 182}, {2883, 21167, 58437}, {3098, 3357, 1503}, {6000, 14810, 15577}, {6696, 29181, 23300}, {6759, 55649, 35228}, {20299, 29317, 18382}, {35450, 55629, 39879}, {52028, 53097, 34777}


X(63432) = REFLECTION OF X(210) IN X(3)

Barycentrics    a*(a^5*(b+c)+a*(b-c)^2*(b+c)^3-(b-c)^2*(b+c)^4-a^4*(b^2-10*b*c+c^2)-2*a^3*(b^3+b^2*c+b*c^2+c^3)+2*a^2*(b^4-4*b^3*c+2*b^2*c^2-4*b*c^3+c^4)) : :
X(63432) = -X[40]+4*X[31805], -2*X[355]+3*X[4731], -X[382]+4*X[13373], -4*X[549]+3*X[61686], -4*X[550]+X[7957], -5*X[631]+4*X[58451], -X[3057]+4*X[34773], -X[3146]+4*X[13374], -5*X[3522]+X[4661], -7*X[3523]+4*X[58631], -3*X[3524]+2*X[3740], -7*X[3528]+4*X[58637] and many others

X(63432) lies on these lines: {1, 17634}, {3, 210}, {4, 3742}, {20, 3873}, {30, 354}, {36, 1864}, {40, 31805}, {55, 7171}, {56, 41854}, {65, 4299}, {84, 4512}, {355, 4731}, {376, 518}, {382, 13373}, {392, 17525}, {515, 3753}, {516, 3892}, {517, 3534}, {549, 61686}, {550, 7957}, {631, 58451}, {674, 36987}, {758, 1071}, {944, 3880}, {971, 3576}, {993, 5784}, {999, 14100}, {1074, 51424}, {1385, 5426}, {1478, 17603}, {1490, 37244}, {1898, 37605}, {2096, 43161}, {2771, 28460}, {2801, 4134}, {3057, 34773}, {3059, 7688}, {3146, 13374}, {3158, 9841}, {3295, 9850}, {3338, 37411}, {3428, 5732}, {3522, 4661}, {3523, 58631}, {3524, 3740}, {3528, 58637}, {3545, 3848}, {3555, 31730}, {3579, 6763}, {3586, 3660}, {3600, 12710}, {3655, 5919}, {3681, 10304}, {3689, 35238}, {3698, 18525}, {3833, 34648}, {3877, 5731}, {3893, 18526}, {3898, 12672}, {3899, 15071}, {3921, 6684}, {3956, 10164}, {4293, 10391}, {4302, 17642}, {4304, 17625}, {4311, 12711}, {4325, 54145}, {4355, 5045}, {4413, 18528}, {4423, 18540}, {4430, 62120}, {4711, 5657}, {4881, 18239}, {5049, 31162}, {5439, 31673}, {5450, 12664}, {5563, 16143}, {5587, 11227}, {5603, 15726}, {5691, 9940}, {5777, 7987}, {5881, 31787}, {5890, 9037}, {5902, 34628}, {5927, 10165}, {6361, 34791}, {6827, 12678}, {6851, 10404}, {6985, 32636}, {7330, 8273}, {8581, 24929}, {8726, 10855}, {9004, 43273}, {9579, 16193}, {9848, 24928}, {9947, 31423}, {9961, 45776}, {10156, 54447}, {10157, 33574}, {10202, 28160}, {10572, 37566}, {10679, 45633}, {10721, 58601}, {10722, 58590}, {10723, 58589}, {10724, 58595}, {10725, 58594}, {10726, 58600}, {10727, 58592}, {10728, 58591}, {10732, 58593}, {10733, 58582}, {10884, 12114}, {10902, 34862}, {11278, 26089}, {11496, 62856}, {12575, 17624}, {12616, 38058}, {12699, 17609}, {13624, 18515}, {15036, 58671}, {15072, 23155}, {15322, 28193}, {15325, 17604}, {15682, 58560}, {15698, 58629}, {15908, 24386}, {16192, 58643}, {17612, 34697}, {17646, 51111}, {17660, 38761}, {18243, 41012}, {18446, 50371}, {18450, 62873}, {21312, 22769}, {21616, 41543}, {21669, 51715}, {22791, 58813}, {22793, 49178}, {24474, 26201}, {24477, 37427}, {30269, 63390}, {30271, 44671}, {31391, 39542}, {31798, 61296}, {34790, 35242}, {36746, 62845}, {37105, 62827}, {37403, 56176}, {37426, 62858}, {37447, 51706}, {37460, 41611}, {37592, 48897}, {37620, 53252}, {37704, 51774}, {40262, 59332}, {41860, 51816}, {44682, 58632}, {44983, 58596}, {44984, 58597}, {44985, 58598}, {44986, 58599}, {44987, 58602}, {44988, 58603}, {45186, 58617}, {48910, 58562}, {53296, 63439}, {55676, 58633}, {58561, 62036}, {58605, 62034}, {58675, 61784}

X(63432) = midpoint of X(i) and X(j) for these {i,j}: {20, 3873}, {210, 12680}, {3899, 15071}, {5731, 11220}, {5902, 34628}, {15072, 23155}
X(63432) = reflection of X(i) in X(j) for these {i,j}: {10157, 33574}, {12672, 3898}, {14872, 210}, {18908, 10164}, {210, 3}, {392, 51705}, {3742, 58567}, {3873, 12675}, {3899, 31786}, {31162, 5049}, {34648, 3833}, {4, 3742}, {5587, 11227}, {5657, 10178}, {5919, 3655}, {5927, 10165}
X(63432) = pole of line {3333, 11551} with respect to the Feuerbach hyperbola
X(63432) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 12680, 14872}, {1071, 4297, 14110}, {5731, 11220, 6001}, {5732, 63430, 3428}, {13369, 18481, 65}, {13624, 40263, 25917}, {18525, 40296, 3698}


X(63433) = REFLECTION OF X(216) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)^2*(-2*a^2*(b^2-c^2)^2+3*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)) : :
X(63433) = -3*X[2]+2*X[44924], -3*X[376]+X[42329], -3*X[381]+5*X[40329], -3*X[549]+2*X[10003], -5*X[631]+4*X[58454], -X[3164]+5*X[3522], -3*X[10304]+X[47383], X[40896]+7*X[50693], 3*X[47740]+X[61044]

X(63433) lies on these lines: {2, 44924}, {3, 6}, {4, 14767}, {20, 264}, {30, 39530}, {97, 933}, {160, 34146}, {185, 20775}, {237, 12294}, {376, 42329}, {381, 40329}, {394, 26880}, {417, 22078}, {418, 2972}, {516, 57289}, {549, 10003}, {550, 32428}, {631, 58454}, {852, 5650}, {1368, 13611}, {1503, 41008}, {1843, 54003}, {2393, 63421}, {2979, 26874}, {3164, 3522}, {3627, 42862}, {3781, 35072}, {3819, 6638}, {5562, 42487}, {6194, 62698}, {6389, 10519}, {6394, 60702}, {7525, 37081}, {7998, 44436}, {8798, 11444}, {9530, 35937}, {10304, 47383}, {10996, 44443}, {13367, 14575}, {13409, 26907}, {15066, 34147}, {15107, 54375}, {15466, 59660}, {15526, 42353}, {15577, 42671}, {18437, 34507}, {18592, 37521}, {21969, 61378}, {22352, 23606}, {24206, 44231}, {26870, 63428}, {26892, 26901}, {26893, 26900}, {35228, 61748}, {36212, 41716}, {37188, 42287}, {38738, 44249}, {40680, 62174}, {40896, 50693}, {41145, 54169}, {47740, 61044}, {63419, 63431}

X(63433) = midpoint of X(i) and X(j) for these {i,j}: {20, 264}, {31388, 42556}
X(63433) = reflection of X(i) in X(j) for these {i,j}: {216, 3}, {3627, 42862}, {4, 14767}, {5562, 42487}
X(63433) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 42330}, {158, 5481}
X(63433) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 42330}, {1147, 5481}, {5480, 10002}, {44924, 44924}
X(63433) = pole of line {684, 34983} with respect to the Johnson circumconic
X(63433) = pole of line {2, 1629} with respect to the Stammler hyperbola
X(63433) = pole of line {31296, 58796} with respect to the Steiner circumellipse
X(63433) = pole of line {76, 37200} with respect to the Wallace hyperbola
X(63433) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(34861)}}, {{A, B, C, X(6), X(5480)}}, {{A, B, C, X(182), X(42287)}}, {{A, B, C, X(216), X(1297)}}, {{A, B, C, X(394), X(5085)}}, {{A, B, C, X(1350), X(42313)}}, {{A, B, C, X(2710), X(54082)}}, {{A, B, C, X(3926), X(37479)}}, {{A, B, C, X(5092), X(17974)}}, {{A, B, C, X(5562), X(41334)}}
X(63433) = barycentric product X(i)*X(j) for these (i, j): {394, 5480}
X(63433) = barycentric quotient X(i)/X(j) for these (i, j): {3, 42330}, {577, 5481}, {5480, 2052}
X(63433) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 511, 216}, {418, 3917, 6509}, {3819, 6638, 46831}, {13409, 34003, 26907}


X(63434) = REFLECTION OF X(219) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^5-a^4*(b+c)-2*a^2*(b-c)^2*(b+c)-3*a*(b^2-c^2)^2+2*a^3*(b^2+c^2)+(b-c)^2*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)) : :
X(63434) = -5*X[631]+4*X[58457], -5*X[3522]+X[20110], -3*X[21160]+2*X[59681]

X(63434) lies on these lines: {1, 64}, {3, 48}, {4, 16608}, {19, 971}, {20, 56927}, {40, 518}, {55, 103}, {65, 990}, {185, 7078}, {516, 41004}, {517, 30265}, {631, 58457}, {912, 15941}, {942, 11471}, {944, 30268}, {1001, 33536}, {1037, 1433}, {1192, 57281}, {1473, 3611}, {1490, 2270}, {1715, 11500}, {1750, 17810}, {1842, 6259}, {1869, 5787}, {2550, 26932}, {2772, 35273}, {2808, 24320}, {2947, 11347}, {3101, 11220}, {3197, 3220}, {3303, 39791}, {3522, 20110}, {4219, 37543}, {5720, 37475}, {5751, 54358}, {5779, 54324}, {5927, 9816}, {6254, 13730}, {6769, 8271}, {7071, 45963}, {7291, 12669}, {7355, 34040}, {7431, 46882}, {7580, 24310}, {7688, 59233}, {7957, 18732}, {8251, 13369}, {9799, 54294}, {10167, 10319}, {10374, 34036}, {10605, 18446}, {10884, 52385}, {11406, 26892}, {11435, 52424}, {14597, 50677}, {16389, 44547}, {17784, 26871}, {17834, 41854}, {21160, 59681}, {22440, 26927}, {22769, 53291}, {30620, 63146}, {38288, 52373}

X(63434) = midpoint of X(i) and X(j) for these {i,j}: {20, 56927}
X(63434) = reflection of X(i) in X(j) for these {i,j}: {219, 3}, {4, 16608}
X(63434) = pole of line {8676, 53300} with respect to the circumcircle
X(63434) = pole of line {27, 9812} with respect to the Stammler hyperbola
X(63434) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(41790)}}, {{A, B, C, X(64), X(1802)}}, {{A, B, C, X(103), X(219)}}, {{A, B, C, X(1037), X(55111)}}, {{A, B, C, X(1818), X(52213)}}, {{A, B, C, X(2289), X(36056)}}
X(63434) = barycentric product X(i)*X(j) for these (i, j): {1541, 1815}
X(63434) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 9899, 10373}, {3, 916, 219}, {55, 39796, 222}, {10605, 18446, 63436}


X(63435) = REFLECTION OF X(221) IN X(3)

Barycentrics    a^2*(a^8-4*a^5*b*c*(b+c)+8*a^3*b*(b-c)^2*c*(b+c)-4*a*b*(b-c)^4*c*(b+c)+8*a^2*(b^2-c^2)^2*(b^2-b*c+c^2)+a^4*(-6*b^4+4*b^3*c+12*b^2*c^2+4*b*c^3-6*c^4)-(b^2-c^2)^2*(3*b^4-4*b^3*c+10*b^2*c^2-4*b*c^3+3*c^4)) : :
X(63435) = -5*X[631]+4*X[58459], -4*X[14529]+5*X[17821]

X(63435) lies on circumconic {{A, B, C, X(102), X(44692)}} and on these lines: {1, 51490}, {3, 102}, {4, 20306}, {40, 64}, {65, 9786}, {151, 17555}, {154, 11012}, {165, 10076}, {227, 55311}, {517, 1854}, {573, 3197}, {631, 58459}, {999, 44075}, {1350, 3827}, {1498, 3428}, {1503, 48935}, {1593, 42448}, {1622, 4306}, {1753, 12688}, {2077, 8567}, {2192, 22770}, {2390, 10310}, {2778, 13094}, {3357, 6244}, {5584, 7355}, {5925, 11826}, {6000, 7959}, {6282, 12262}, {7686, 17810}, {7991, 10060}, {8273, 32065}, {12114, 21228}, {12163, 14988}, {12250, 35514}, {14216, 31799}, {14529, 17821}, {20427, 31777}, {21767, 37499}, {34339, 37475}, {36984, 61150}, {40660, 49185}, {52097, 54295}

X(63435) = reflection of X(i) in X(j) for these {i,j}: {1498, 3556}, {221, 3}, {4, 20306}
X(63435) = pole of line {8677, 57241} with respect to the circumcircle
X(63435) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 2818, 221}


X(63436) = REFLECTION OF X(222) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6-4*a^3*b*c*(b+c)+4*a*b*(b-c)^2*c*(b+c)+a^4*(b+c)^2-5*a^2*(b^2-c^2)^2+(b^2-c^2)^2*(3*b^2-2*b*c+3*c^2)) : :
X(63436) = -5*X[631]+4*X[58460]

X(63436) lies on these lines: {1, 9786}, {3, 73}, {4, 41883}, {8, 37420}, {33, 517}, {34, 5909}, {40, 64}, {56, 40944}, {101, 102}, {631, 58460}, {962, 14004}, {971, 36984}, {1038, 51490}, {1064, 4254}, {1066, 1622}, {1260, 53815}, {1350, 6282}, {1433, 56414}, {1498, 57281}, {1730, 22753}, {1745, 10076}, {1753, 5777}, {1766, 1903}, {3421, 7358}, {3430, 10310}, {3465, 10060}, {3990, 37499}, {5584, 7066}, {5759, 30266}, {7713, 12672}, {8679, 63429}, {10605, 18446}, {11012, 37058}, {11398, 34040}, {11425, 54301}, {12163, 37700}, {14110, 44662}, {15498, 21147}, {17834, 37531}, {18443, 37475}, {18477, 60744}, {21228, 37022}, {22076, 26935}, {23154, 26927}, {31793, 36986}, {34048, 37305}, {37489, 37533}

X(63436) = reflection of X(i) in X(j) for these {i,j}: {222, 3}, {4, 41883}
X(63436) = perspector of circumconic {{A, B, C, X(1813), X(56235)}}
X(63436) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(15629)}}, {{A, B, C, X(64), X(603)}}, {{A, B, C, X(102), X(222)}}, {{A, B, C, X(573), X(1542)}}, {{A, B, C, X(37380), X(46009)}}
X(63436) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10605, 18446, 63434}


X(63437) = REFLECTION OF X(224) IN X(3)

Barycentrics    a*(a^2-b^2-c^2)*(a^7-a^6*(b+c)+(b-c)^4*(b+c)^3+3*a^3*(b^2-c^2)^2-3*a^5*(b^2+c^2)-a*(b^2-c^2)^2*(b^2+c^2)+a^4*(3*b^3+b^2*c+b*c^2+3*c^3)-a^2*(b-c)^2*(3*b^3+5*b^2*c+5*b*c^2+3*c^3)) : :

X(63437) lies on these lines: {1, 3215}, {3, 63}, {4, 46}, {5, 55871}, {9, 2252}, {20, 55873}, {35, 41685}, {40, 12625}, {55, 41537}, {57, 6833}, {65, 11496}, {84, 6934}, {104, 56278}, {140, 55870}, {155, 6505}, {165, 2949}, {169, 2253}, {226, 10044}, {377, 7330}, {405, 34339}, {442, 3652}, {631, 55869}, {914, 11411}, {944, 59340}, {950, 10051}, {1006, 12514}, {1155, 12664}, {1181, 1214}, {1445, 5805}, {1454, 7702}, {1490, 1768}, {1715, 1726}, {1749, 1750}, {2096, 6897}, {2829, 54304}, {3090, 8257}, {3218, 5758}, {3219, 37112}, {3306, 6862}, {3336, 5715}, {3487, 6977}, {3523, 55872}, {5450, 15556}, {5709, 6836}, {5720, 35979}, {5759, 6899}, {5840, 12515}, {5884, 54430}, {5887, 37249}, {6253, 40663}, {6282, 54302}, {6350, 18909}, {6832, 12609}, {6848, 37787}, {6906, 62810}, {6910, 37534}, {6987, 56288}, {6990, 54370}, {7592, 45126}, {10382, 41569}, {10531, 15299}, {10785, 12704}, {11248, 14054}, {11456, 15836}, {11509, 44547}, {12115, 41229}, {12116, 41338}, {12513, 14110}, {12528, 35976}, {15071, 59321}, {17647, 37002}, {18397, 59327}, {18861, 59339}, {18916, 45206}, {26878, 45084}, {32554, 58798}, {36033, 37817}, {36279, 63266}, {36996, 61005}, {37310, 40660}, {37356, 37532}, {37407, 62777}, {41544, 41708}, {52027, 54432}

X(63437) = midpoint of X(i) and X(j) for these {i,j}: {40, 45632}
X(63437) = reflection of X(i) in X(j) for these {i,j}: {224, 3}, {4, 10395}
X(63437) = pole of line {1898, 18446} with respect to the Feuerbach hyperbola
X(63437) = pole of line {28, 1800} with respect to the Stammler hyperbola
X(63437) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(63), X(5553)}}, {{A, B, C, X(78), X(7040)}}, {{A, B, C, X(90), X(1259)}}, {{A, B, C, X(104), X(224)}}, {{A, B, C, X(3998), X(60249)}}, {{A, B, C, X(51379), X(56278)}}
X(63437) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 912, 224}, {9, 59333, 6889}, {1158, 1708, 4}, {55104, 63399, 18446}


X(63438) = REFLECTION OF X(226) IN X(3)

Barycentrics    4*a^7-3*a^6*(b+c)-a^2*(b-c)^4*(b+c)-(b-c)^4*(b+c)^3-8*a^5*(b^2+c^2)+4*a^3*(b^2+c^2)^2+a^4*(5*b^3-b^2*c-b*c^2+5*c^3) : :
X(63438) = -3*X[165]+X[1478], -5*X[631]+4*X[58463], -5*X[3091]+7*X[55867], -X[3146]+5*X[55868], -5*X[3522]+X[5905], -7*X[3523]+5*X[31266], -2*X[3822]+3*X[10164], -X[8545]+3*X[59418], -3*X[10304]+X[31164], X[20078]+7*X[50693]

X(63438) lies on these lines: {1, 45636}, {3, 226}, {4, 5705}, {7, 3576}, {8, 20}, {9, 50701}, {10, 11827}, {21, 946}, {30, 5771}, {57, 6987}, {72, 12671}, {99, 102}, {142, 1006}, {144, 54051}, {165, 1478}, {225, 22361}, {255, 5930}, {329, 52026}, {376, 527}, {377, 6684}, {388, 10268}, {411, 6260}, {516, 993}, {517, 4304}, {535, 13528}, {550, 912}, {553, 18443}, {573, 15656}, {631, 58463}, {758, 1071}, {944, 54422}, {950, 5709}, {962, 17576}, {997, 61002}, {1210, 31789}, {1259, 6796}, {1350, 9028}, {1385, 16137}, {1729, 41006}, {1770, 59320}, {1785, 51281}, {2077, 7411}, {2801, 24466}, {3091, 55867}, {3146, 55868}, {3149, 12572}, {3220, 36029}, {3306, 6992}, {3452, 6905}, {3474, 30503}, {3522, 5905}, {3523, 31266}, {3579, 5841}, {3587, 6948}, {3601, 5758}, {3647, 12617}, {3822, 10164}, {3868, 5882}, {3911, 6827}, {3916, 6245}, {3928, 5768}, {4031, 10202}, {4114, 13151}, {4208, 31423}, {4299, 59340}, {4301, 59347}, {4302, 41338}, {4311, 31786}, {4313, 7982}, {4314, 62852}, {4652, 6705}, {4847, 5842}, {4848, 35250}, {5122, 37364}, {5188, 46179}, {5249, 10165}, {5273, 5587}, {5307, 37379}, {5316, 6911}, {5603, 5735}, {5693, 9960}, {5715, 6857}, {5731, 9965}, {5762, 24929}, {5785, 21168}, {5805, 16418}, {5806, 50241}, {5818, 31446}, {5830, 10445}, {5853, 37000}, {6326, 60979}, {6666, 6854}, {6692, 6947}, {6837, 18483}, {6839, 10175}, {6840, 59491}, {6865, 15803}, {6869, 7330}, {6904, 61122}, {6908, 9579}, {6934, 55104}, {6955, 61004}, {6988, 9612}, {6993, 10172}, {7675, 36976}, {7682, 11113}, {7688, 30295}, {7957, 15338}, {8227, 17558}, {8545, 59418}, {8680, 30271}, {10122, 24474}, {10304, 31164}, {10310, 12512}, {10431, 28150}, {10476, 44075}, {10572, 54432}, {10624, 22770}, {10884, 63391}, {10902, 21620}, {11249, 12053}, {11257, 46180}, {11500, 12527}, {11520, 13607}, {11608, 23698}, {12119, 13243}, {12704, 62836}, {13464, 55109}, {13598, 58491}, {13734, 22060}, {15178, 58813}, {15908, 37447}, {18444, 51705}, {20078, 50693}, {20420, 31445}, {22345, 37409}, {22753, 40998}, {24391, 54302}, {25353, 36489}, {28610, 50811}, {31162, 50742}, {31399, 59356}, {31673, 59355}, {34377, 44882}, {34486, 62800}, {34742, 37428}, {35242, 37108}, {37423, 37526}, {37434, 41869}, {37625, 62864}, {43161, 60990}, {43177, 50371}, {50202, 61595}

X(63438) = midpoint of X(i) and X(j) for these {i,j}: {20, 63}, {4302, 41338}
X(63438) = reflection of X(i) in X(j) for these {i,j}: {226, 3}, {4, 5745}, {13598, 58491}
X(63438) = inverse of X(8822) in Wallace hyperbola
X(63438) = pole of line {2360, 10902} with respect to the Stammler hyperbola
X(63438) = pole of line {515, 8822} with respect to the Wallace hyperbola
X(63438) = pole of line {23681, 37543} with respect to the dual conic of Yff parabola
X(63438) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(102), X(2357)}}, {{A, B, C, X(280), X(54972)}}, {{A, B, C, X(515), X(8822)}}, {{A, B, C, X(34393), X(39130)}}
X(63438) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 5812, 13411}, {4, 21165, 5745}, {20, 54052, 58808}, {20, 63, 515}, {376, 2096, 5732}, {376, 5759, 6282}, {1071, 44238, 4297}, {4652, 6836, 6705}, {6839, 54357, 10175}, {6934, 55104, 57284}, {31789, 37623, 1210}, {55109, 62829, 13464}


X(63439) = REFLECTION OF X(228) IN X(3)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^5*(b+c)+2*b*c*(b^2-c^2)^2-2*a^2*b*c*(b^2+c^2)-2*a^3*(b^3+c^3)+a*(b^5-b^4*c-b*c^4+c^5)) : :
X(63439) =

X(63439) lies on these lines: {1, 18608}, {3, 63}, {4, 27339}, {20, 20242}, {99, 104}, {103, 36516}, {255, 40946}, {348, 5603}, {517, 7416}, {766, 30269}, {851, 51755}, {971, 7420}, {993, 43160}, {999, 1804}, {1006, 1944}, {1011, 18443}, {1012, 18655}, {1064, 37575}, {1385, 17524}, {1410, 37565}, {2096, 19262}, {2771, 35289}, {2975, 10538}, {3428, 21312}, {3579, 15623}, {4184, 18444}, {4191, 5720}, {4303, 5562}, {5709, 37195}, {5768, 37400}, {5777, 16453}, {6001, 16678}, {6097, 24475}, {6905, 60705}, {7330, 13738}, {7395, 55875}, {9840, 30078}, {9940, 16287}, {12528, 16451}, {13528, 15621}, {15071, 39578}, {18477, 62736}, {22341, 44706}, {22758, 37241}, {24320, 37310}, {37287, 37547}, {53296, 63432}

X(63439) = midpoint of X(i) and X(j) for these {i,j}: {20, 20242}
X(63439) = reflection of X(i) in X(j) for these {i,j}: {228, 3}
X(63439) = pole of line {15313, 53270} with respect to the circumcircle
X(63439) = pole of line {36746, 62333} with respect to the Feuerbach hyperbola
X(63439) = pole of line {286, 517} with respect to the Wallace hyperbola
X(63439) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(72), X(18816)}}, {{A, B, C, X(104), X(228)}}, {{A, B, C, X(314), X(51379)}}
X(63439) = barycentric product X(i)*X(j) for these (i, j): {394, 39529}
X(63439) = barycentric quotient X(i)/X(j) for these (i, j): {39529, 2052}
X(63439) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 24467, 22345}, {3, 912, 228}


X(63440) = REFLECTION OF X(230) IN X(3)

Barycentrics    6*a^8-(b^2-c^2)^4-11*a^6*(b^2+c^2)+a^4*(11*b^4+10*b^2*c^2+11*c^4)-a^2*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6) : :
X(63440) = -2*X[5]+3*X[10256], -X[147]+3*X[59634], -3*X[165]+X[50254], -X[385]+5*X[3522], -4*X[549]+3*X[41139], -5*X[631]+3*X[39663], -X[1513]+3*X[21166], -X[3146]+5*X[7925], -3*X[3524]+2*X[44401], -7*X[3528]+3*X[21445], -X[3543]+3*X[41133], X[7779]+7*X[50693] and many others

X(63440) lies on these lines: {3, 230}, {4, 44377}, {5, 10256}, {20, 325}, {30, 114}, {99, 1503}, {147, 59634}, {165, 50254}, {376, 524}, {378, 44389}, {385, 3522}, {477, 1296}, {511, 38736}, {515, 50772}, {523, 41077}, {538, 38747}, {548, 5188}, {549, 41139}, {550, 30270}, {631, 39663}, {637, 35946}, {638, 35947}, {698, 38642}, {1003, 5480}, {1007, 53017}, {1285, 5102}, {1297, 16386}, {1513, 21166}, {2794, 6390}, {2966, 54975}, {3055, 37348}, {3146, 7925}, {3524, 44401}, {3528, 21445}, {3543, 41133}, {3564, 38749}, {3589, 35925}, {4226, 11064}, {5159, 46982}, {5182, 8598}, {7472, 62509}, {7473, 47166}, {7745, 9737}, {7757, 12007}, {7779, 50693}, {7840, 62120}, {8550, 31859}, {8703, 8722}, {8859, 62063}, {9734, 37451}, {9756, 32815}, {9863, 32820}, {9877, 12117}, {10011, 38748}, {10304, 22329}, {10519, 44395}, {10723, 33228}, {10992, 58849}, {11053, 57617}, {11257, 35700}, {11634, 52727}, {11676, 29181}, {11799, 47246}, {11824, 51910}, {11825, 51911}, {12305, 35945}, {12306, 35944}, {14538, 16530}, {14539, 16529}, {14639, 40336}, {15069, 32817}, {15704, 40278}, {15980, 38730}, {15993, 31884}, {18533, 44388}, {20582, 57633}, {21312, 36988}, {21734, 63047}, {23292, 35926}, {23698, 53419}, {33244, 39101}, {34473, 47286}, {34808, 40888}, {34815, 60746}, {35002, 38731}, {35485, 40879}, {35822, 45499}, {35823, 45498}, {35922, 47296}, {35927, 51212}, {35948, 44393}, {35949, 44400}, {35955, 54169}, {38664, 47287}, {38737, 43291}, {41136, 62129}, {44367, 46944}, {44369, 62174}, {46634, 47245}, {46981, 47242}, {46999, 47243}, {48881, 54993}, {50248, 62102}, {50251, 62097}, {50983, 52691}, {55622, 56434}, {60765, 62237}

X(63440) = midpoint of X(i) and X(j) for these {i,j}: {20, 325}, {99, 54996}, {10992, 58849}, {15980, 38730}, {18860, 38738}, {38664, 47287}
X(63440) = reflection of X(i) in X(j) for these {i,j}: {230, 3}, {4, 44377}, {1513, 32459}, {16320, 46987}, {46982, 5159}, {47242, 46981}, {47245, 46634}, {53419, 56370}
X(63440) = pole of line {9168, 16051} with respect to the orthoptic circle of the Steiner Inellipse
X(63440) = pole of line {6623, 39533} with respect to the polar circle
X(63440) = pole of line {1352, 23514} with respect to the Kiepert hyperbola
X(63440) = pole of line {35259, 52275} with respect to the Stammler hyperbola
X(63440) = pole of line {2794, 5921} with respect to the Wallace hyperbola
X(63440) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 46987, 16320}, {99, 54996, 1503}, {376, 53142, 43273}, {376, 63424, 44882}, {631, 39663, 44381}, {1513, 21166, 32459}, {18860, 38738, 30}, {23698, 56370, 53419}


X(63441) = REFLECTION OF X(235) IN X(3)

Barycentrics    4*a^10-7*a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-14*b^2*c^2+c^4)-2*a^2*(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)+8*a^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6) : :
X(63441) = -3*X[3576]+2*X[51702], -3*X[5085]+2*X[51734], -3*X[16836]+2*X[58482]

X(63441) lies on these lines: {2, 3}, {74, 22528}, {394, 20427}, {1092, 15311}, {1294, 59039}, {1568, 51491}, {2055, 23240}, {2777, 59495}, {2883, 51394}, {3576, 51702}, {5085, 51734}, {5449, 58871}, {5562, 5894}, {5656, 53050}, {5878, 35602}, {5925, 43695}, {10564, 22660}, {10575, 12058}, {10625, 16111}, {10990, 45187}, {11064, 22802}, {11411, 34469}, {11440, 54040}, {11442, 61540}, {12111, 50434}, {12220, 48874}, {12302, 23307}, {12359, 43903}, {12364, 37483}, {13445, 14516}, {13754, 54217}, {15072, 31804}, {15075, 16318}, {16163, 34782}, {16836, 58482}, {20725, 37480}, {20771, 38726}, {24466, 36986}, {30264, 36984}, {41587, 43604}, {44470, 48880}, {44479, 48892}, {44492, 48873}, {44668, 48881}, {44882, 50649}

X(63441) = reflection of X(i) in X(j) for these {i,j}: {235, 3}, {20771, 38726}, {41587, 43604}
X(63441) = X(i)-Dao conjugate of X(j) for these {i, j}: {44226, 44226}
X(63441) = pole of line {185, 59659} with respect to the Jerabek hyperbola
X(63441) = pole of line {3, 36983} with respect to the Stammler hyperbola
X(63441) = pole of line {69, 20427} with respect to the Wallace hyperbola
X(63441) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(235), X(1294)}}, {{A, B, C, X(2693), X(37917)}}, {{A, B, C, X(5897), X(22467)}}, {{A, B, C, X(6623), X(43695)}}, {{A, B, C, X(10293), X(44960)}}, {{A, B, C, X(38263), X(47527)}}, {{A, B, C, X(39434), X(52071)}}, {{A, B, C, X(46587), X(59039)}}, {{A, B, C, X(52403), X(53934)}}
X(63441) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 30, 235}, {20, 1370, 1657}


X(63442) = REFLECTION OF X(238) IN X(3)

Barycentrics    a*(a^5-a^4*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(b^2-3*b*c+c^2)+a^2*(b^3+2*b^2*c+2*b*c^2+c^3)+a*(-2*b^4+b^3*c-2*b^2*c^2+b*c^3-2*c^4)) : :
X(63442) = -4*X[5]+5*X[31252], -2*X[44]+5*X[35242], -3*X[165]+X[1757], X[320]+2*X[31730], -5*X[631]+4*X[31289], -2*X[1279]+3*X[3576], -4*X[3579]+X[49712], -4*X[3823]+3*X[5587], -4*X[3834]+X[41869], -3*X[5657]+2*X[49693], -3*X[5731]+X[49704], -3*X[7967]+2*X[49691] and many others

X(63442) lies on circumconic {{A, B, C, X(3500), X(41790)}} and on these lines: {1, 5575}, {3, 238}, {4, 3836}, {5, 31252}, {20, 4645}, {21, 25903}, {30, 31151}, {40, 518}, {44, 35242}, {55, 1463}, {102, 2737}, {103, 53891}, {104, 28520}, {165, 1757}, {171, 49127}, {320, 31730}, {376, 752}, {511, 9441}, {513, 2077}, {515, 32850}, {516, 24692}, {517, 49675}, {572, 16786}, {631, 31289}, {726, 19589}, {740, 63444}, {944, 17765}, {952, 49677}, {971, 6211}, {991, 24309}, {1279, 3576}, {1292, 12032}, {1293, 29348}, {1633, 1818}, {1764, 38485}, {1766, 43178}, {2201, 20729}, {2239, 37400}, {2699, 6011}, {2951, 12717}, {3220, 35338}, {3428, 47641}, {3430, 12512}, {3579, 49712}, {3823, 5587}, {3834, 41869}, {4297, 12122}, {4300, 28026}, {4649, 48908}, {4693, 29327}, {4716, 29331}, {4864, 7982}, {5657, 49693}, {5696, 16551}, {5731, 49704}, {5853, 53298}, {5882, 49695}, {7175, 37576}, {7580, 20368}, {7609, 31658}, {7967, 49691}, {10310, 47639}, {11362, 49698}, {11824, 31544}, {11825, 31545}, {13329, 29353}, {16376, 24563}, {17767, 24817}, {21554, 45305}, {24728, 30273}, {28838, 39634}, {29211, 36716}, {29243, 32857}, {31884, 49706}, {32784, 36474}, {34381, 53394}, {34773, 49708}, {36489, 50302}, {36543, 50298}, {37607, 39543}, {43174, 49697}, {46475, 54474}, {49694, 63143}, {49707, 59417}

X(63442) = midpoint of X(i) and X(j) for these {i,j}: {20, 4645}
X(63442) = reflection of X(i) in X(j) for these {i,j}: {238, 3}, {4, 3836}, {49695, 5882}, {49697, 43174}, {49698, 11362}, {7982, 4864}
X(63442) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56111, 1}
X(63442) = pole of line {3309, 5709} with respect to the Bevan circle
X(63442) = pole of line {40, 4083} with respect to the circumcircle
X(63442) = pole of line {17597, 24430} with respect to the Feuerbach hyperbola
X(63442) = pole of line {25091, 25098} with respect to the Steiner inellipse
X(63442) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 15310, 238}, {376, 30269, 63423}, {1350, 11495, 40}


X(63443) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(239)

Barycentrics    -2*a*b^2*c^2+a^4*(b+c)-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(b^2+c^2) : :
X(63443) =

X(63443) lies on these lines: {2, 41805}, {81, 239}, {241, 514}, {519, 37631}, {536, 63426}, {742, 63359}, {760, 23682}, {1048, 37558}, {1432, 37887}, {2292, 50178}, {2795, 3747}, {3125, 16752}, {3782, 3878}, {3912, 17056}, {4044, 59512}, {4739, 49770}, {5453, 29331}, {6542, 31025}, {7200, 18206}, {16585, 49758}, {16732, 52897}, {17189, 44302}, {17266, 63344}, {17310, 63343}, {17734, 19931}, {17789, 40859}, {17861, 28365}, {17946, 21907}, {18698, 28369}, {20016, 41819}, {20236, 28350}, {20432, 40886}, {20880, 54282}, {25080, 46180}, {27272, 49753}, {27643, 30690}, {29607, 31204}, {32847, 63319}, {33943, 41232}, {35114, 35119}, {41140, 61661}, {50016, 63310}, {50023, 63292}, {63291, 63444}

X(63443) = midpoint of X(i) and X(j) for these {i,j}: {20432, 40886}
X(63443) = reflection of X(i) in X(j) for these {i,j}: {49760, 3008}
X(63443) = inverse of X(514) in Moses-Feuerbach circumconic
X(63443) = perspector of circumconic {{A, B, C, X(7), X(4623)}}
X(63443) = X(i)-isoconjugate-of-X(j) for these {i, j}: {101, 60031}
X(63443) = X(i)-Dao conjugate of X(j) for these {i, j}: {1015, 60031}
X(63443) = pole of line {1486, 16692} with respect to the circumcircle
X(63443) = pole of line {7, 60031} with respect to the incircle
X(63443) = pole of line {4357, 8287} with respect to the Kiepert hyperbola
X(63443) = pole of line {213, 5546} with respect to the Stammler hyperbola
X(63443) = pole of line {145, 17166} with respect to the Steiner circumellipse
X(63443) = pole of line {1, 2533} with respect to the Steiner inellipse
X(63443) = pole of line {37, 645} with respect to the Wallace hyperbola
X(63443) = pole of line {345, 55232} with respect to the dual conic of polar circle
X(63443) = pole of line {11, 4425} with respect to the dual conic of Yff parabola
X(63443) = pole of line {3700, 21833} with respect to the dual conic of Wallace hyperbola
X(63443) = intersection, other than A, B, C, of circumconics {{A, B, C, X(81), X(7180)}}, {{A, B, C, X(274), X(7178)}}, {{A, B, C, X(514), X(52379)}}, {{A, B, C, X(650), X(7058)}}, {{A, B, C, X(666), X(49760)}}, {{A, B, C, X(873), X(3676)}}, {{A, B, C, X(1509), X(3669)}}, {{A, B, C, X(4369), X(37887)}}, {{A, B, C, X(7304), X(43051)}}, {{A, B, C, X(18593), X(55237)}}
X(63443) = barycentric quotient X(i)/X(j) for these (i, j): {513, 60031}
X(63443) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {514, 3008, 49760}


X(63444) = REFLECTION OF X(239) IN X(3)

Barycentrics    a^6-2*a^5*(b+c)+b*c*(b^2-c^2)^2+a^4*(2*b^2-b*c+2*c^2)+2*a^3*(b^3+b^2*c+b*c^2+c^3)-a^2*(3*b^4+2*b^2*c^2+3*c^4) : :
X(63444) = -4*X[5]+5*X[17266], -8*X[140]+7*X[29607], -3*X[165]+X[50016], -5*X[631]+4*X[3008], -7*X[3090]+8*X[62398], -5*X[3522]+X[20016], -7*X[3523]+5*X[29590], -3*X[3524]+2*X[41140], -7*X[3528]+2*X[49770], X[3529]+4*X[49765], -3*X[3545]+4*X[41141], -3*X[3576]+2*X[50023] and many others

X(63444) lies on these lines: {1, 20731}, {3, 239}, {4, 3912}, {5, 17266}, {10, 36543}, {20, 6542}, {30, 17310}, {40, 376}, {104, 53891}, {140, 29607}, {165, 50016}, {238, 22399}, {242, 1818}, {320, 29243}, {514, 44827}, {515, 18788}, {516, 49764}, {517, 62872}, {527, 24817}, {536, 24813}, {631, 3008}, {740, 63442}, {742, 1350}, {894, 48908}, {1012, 40872}, {1064, 6196}, {1385, 13634}, {1490, 49757}, {1503, 49752}, {1999, 49127}, {3090, 62398}, {3332, 49776}, {3522, 20016}, {3523, 29590}, {3524, 41140}, {3528, 49770}, {3529, 49765}, {3545, 41141}, {3576, 50023}, {3661, 36474}, {3685, 3888}, {5587, 49769}, {5603, 49768}, {5657, 49772}, {5731, 50015}, {5732, 63427}, {5759, 63428}, {6361, 49763}, {6906, 40863}, {7967, 49771}, {8682, 63400}, {10027, 37331}, {10304, 40891}, {10519, 50011}, {12251, 18446}, {14853, 49775}, {14912, 49783}, {16376, 26639}, {16377, 24559}, {16826, 36477}, {17023, 36484}, {17244, 36526}, {17264, 24828}, {17284, 36473}, {17292, 36530}, {17538, 49761}, {19262, 40859}, {21735, 50019}, {25406, 50030}, {29575, 36490}, {29578, 36527}, {35242, 50018}, {35474, 45766}, {38554, 44248}, {39874, 49750}, {41869, 49767}, {63291, 63443}

X(63444) = midpoint of X(i) and X(j) for these {i,j}: {20, 6542}
X(63444) = reflection of X(i) in X(j) for these {i,j}: {239, 3}, {4, 3912}, {24813, 63390}
X(63444) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 29331, 239}, {536, 63390, 24813}


X(63445) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTICEVIAN-OF-X(282)

Barycentrics    a*(3*a^8*(b+c)-a^2*b*(b-c)^2*c*(b+c)^3-4*a^7*(b^2+c^2)-(b-c)^4*(b+c)^3*(b^2+b*c+c^2)-a^6*(8*b^3+7*b^2*c+7*b*c^2+8*c^3)+2*a*(b^2-c^2)^2*(2*b^4-b^3*c+4*b^2*c^2-b*c^3+2*c^4)+2*a^5*(6*b^4-b^3*c-2*b^2*c^2-b*c^3+6*c^4)+a^4*(6*b^5+5*b^4*c+5*b^3*c^2+5*b^2*c^3+5*b*c^4+6*c^5)+4*a^3*(-3*b^6+b^5*c+2*b^4*c^2+2*b^2*c^4+b*c^5-3*c^6)) : :

X(63445) lies on these lines: {81, 1490}, {84, 63291}, {500, 3743}, {515, 13408}, {971, 5453}, {1071, 18593}, {5787, 63323}, {6001, 63356}, {6245, 17056}, {6260, 63318}, {6261, 63292}, {9799, 37635}, {12528, 16585}, {12650, 63333}, {12680, 63295}, {12688, 63332}, {18446, 63446}

X(63445) = reflection of X(i) in X(j) for these {i,j}: {63361, 5453}
X(63445) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {971, 5453, 63361}, {13408, 63447, 63354}


X(63446) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND ANTIPEDAL-OF-X(283)

Barycentrics    a*(2*a^6-a^5*(b+c)-3*a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2-b*c+c^2)+a^2*b*c*(b^2+6*b*c+c^2)+a^3*(2*b^3+b^2*c+b*c^2+2*c^3)-a*(b^5-b^3*c^2-b^2*c^3+c^5)) : :

X(63446) lies on these lines: {1, 21}, {3, 18593}, {20, 18625}, {35, 2071}, {37, 3284}, {55, 59285}, {77, 3612}, {226, 13408}, {270, 1844}, {323, 34772}, {376, 52374}, {394, 22836}, {859, 51698}, {942, 63307}, {950, 63318}, {954, 63387}, {975, 25909}, {1012, 63361}, {1060, 54430}, {1104, 61661}, {1125, 62569}, {1210, 35466}, {1364, 2646}, {1935, 41562}, {3085, 63319}, {3157, 63447}, {3182, 3601}, {3487, 63297}, {3945, 41808}, {4015, 56812}, {4292, 44243}, {4304, 5930}, {4305, 18623}, {4347, 40292}, {5267, 18607}, {5453, 13754}, {5492, 41546}, {5703, 37635}, {5719, 63374}, {8614, 33857}, {11374, 63323}, {11375, 63327}, {13405, 63370}, {13411, 17056}, {15556, 52408}, {16577, 18447}, {17718, 63326}, {18446, 63445}, {31397, 63360}, {31660, 52368}, {37080, 63332}, {37227, 44661}, {37371, 56814}, {37539, 37631}, {45175, 52427}, {48897, 51654}

X(63446) = pole of line {5949, 40942} with respect to the Kiepert hyperbola
X(63446) = pole of line {14838, 57243} with respect to the Steiner inellipse
X(63446) = pole of line {5249, 11064} with respect to the dual conic of Yff parabola
X(63446) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(775), X(18389)}}, {{A, B, C, X(2363), X(10122)}}
X(63446) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 255, 18389}, {1, 58, 10122}, {3, 63388, 18593}


X(63447) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND X(1)-CIRCUMCONCEVIAN-OF-X(4)

Barycentrics    a*(3*a^8*(b+c)-5*a^2*b*(b-c)^2*c*(b+c)^3-(b-c)^4*(b+c)^3*(b^2-b*c+c^2)-4*a^7*(b^2+b*c+c^2)-a^6*(8*b^3+7*b^2*c+7*b*c^2+8*c^3)+4*a*(b^2-c^2)^2*(b^4-b^3*c+b^2*c^2-b*c^3+c^4)+4*a^5*(3*b^4+b^3*c-b^2*c^2+b*c^3+3*c^4)+a^4*(6*b^5+7*b^4*c+11*b^3*c^2+11*b^2*c^3+7*b*c^4+6*c^5)-4*a^3*(3*b^6-b^5*c-3*b^4*c^2-3*b^2*c^4-b*c^5+3*c^6)) : :

X(63447) lies on these lines: {63, 63291}, {81, 18446}, {226, 63318}, {500, 758}, {515, 13408}, {527, 63449}, {912, 5453}, {2801, 63346}, {3157, 63446}, {6001, 63393}, {6261, 63308}, {9028, 63357}, {17056, 51755}, {18389, 18593}, {36742, 63292}

X(63447) = reflection of X(i) in X(j) for these {i,j}: {25080, 5453}
X(63447) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {912, 5453, 25080}, {63354, 63445, 13408}


X(63448) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND X(3)-CIRCUMCONCEVIAN-OF-X(4)

Barycentrics    a*(2*a^11*(b+c)+b*c*(b^2-c^2)^4*(b^2+c^2)-2*a^10*(b^2-b*c+c^2)-2*a^9*(2*b^3+b^2*c+b*c^2+2*c^3)+2*a*(b-c)^4*(b+c)^3*(2*b^4+b^3*c+4*b^2*c^2+b*c^3+2*c^4)+4*a^5*(b+c)^3*(4*b^4-11*b^3*c+13*b^2*c^2-11*b*c^3+4*c^4)-2*a^3*(b-c)^2*(b+c)^3*(7*b^4-8*b^3*c+10*b^2*c^2-8*b*c^3+7*c^4)+a^8*(8*b^4-3*b^3*c-3*b*c^3+8*c^4)-4*a^7*(b^5+b^4*c-4*b^3*c^2-4*b^2*c^3+b*c^4+c^5)-2*a^2*(b^2-c^2)^2*(b^6+3*b^5*c+5*b^4*c^2+2*b^3*c^3+5*b^2*c^4+3*b*c^5+c^6)-4*a^6*(3*b^6+b^5*c-4*b^3*c^3+b*c^5+3*c^6)+2*a^4*(4*b^8+5*b^7*c+4*b^6*c^2-9*b^5*c^3-16*b^4*c^4-9*b^3*c^5+4*b^2*c^6+5*b*c^7+4*c^8)) : :

X(63448) lies on these lines: {81, 10605}, {394, 63291}, {500, 12514}, {524, 63357}, {2781, 63348}, {5453, 13754}, {6000, 63452}, {13408, 15311}, {13567, 63318}


X(63449) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND X(4)-CIRCUMCONCEVIAN-OF-X(4)

Barycentrics    2*a^7-8*a^6*(b+c)+a*(b-c)^4*(b+c)^2-(b-c)^4*(b+c)^3-a^5*(3*b^2+8*b*c+3*c^2)+2*a^3*b*c*(5*b^2+8*b*c+5*c^2)+5*a^4*(3*b^3+b^2*c+b*c^2+3*c^3)-2*a^2*(b-c)^2*(3*b^3+5*b^2*c+5*b*c^2+3*c^3) : :

X(63449) lies on these lines: {1, 30}, {2, 63291}, {3, 48857}, {4, 63343}, {58, 44255}, {81, 376}, {323, 15677}, {381, 17056}, {519, 63356}, {524, 63357}, {527, 63447}, {528, 63346}, {542, 63348}, {543, 63345}, {549, 35466}, {581, 28459}, {582, 48861}, {991, 28458}, {2278, 14836}, {3534, 63338}, {3543, 37635}, {3830, 48846}, {3998, 16585}, {5071, 63344}, {5919, 14915}, {6357, 24929}, {8703, 63307}, {11001, 63297}, {15681, 63401}, {15683, 41819}, {15684, 63296}, {15687, 63317}, {15702, 31204}, {23698, 63347}, {24564, 48887}, {28194, 63354}, {28204, 63360}, {28460, 51340}, {30231, 30726}, {41945, 63328}, {41946, 63329}, {44284, 48842}, {48935, 50256}, {49729, 55091}, {51705, 63292}, {54132, 63385}, {62962, 63293}

X(63449) = midpoint of X(i) and X(j) for these {i,j}: {37631, 63386}, {48935, 50256}
X(63449) = reflection of X(i) in X(j) for these {i,j}: {13408, 37631}, {37631, 5453}
X(63449) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 37631, 13408}, {30, 5453, 37631}, {37631, 63386, 30}


X(63450) = ORTHOLOGIC CENTER OF THESE TRIANGLES: 2ND PAVLOV AND X(9)-CIRCUMCONCEVIAN-OF-X(4)

Barycentrics    a*(-2*a^5*b*(b-c)^2*c+a^8*(b+c)-2*a*b*c*(b^2-c^2)^2*(b^2+c^2)+(b-c)^4*(b+c)^3*(b^2+b*c+c^2)+a^6*(-4*b^3+3*b^2*c+3*b*c^2-4*c^3)+4*a^3*b*c*(b^4-b^3*c-2*b^2*c^2-b*c^3+c^4)-a^2*(b-c)^2*(4*b^5+3*b^4*c+b^3*c^2+b^2*c^3+3*b*c^4+4*c^5)+a^4*(6*b^5-9*b^4*c-b^3*c^2-b^2*c^3-9*b*c^4+6*c^5)) : :

X(63450) lies on these lines: {78, 16585}, {81, 63399}, {519, 63356}, {912, 5453}, {1158, 63309}, {1210, 18593}, {2800, 63346}, {10072, 52374}, {13408, 63361}, {41402, 63388}


X(63451) = X(23) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    a*(2*a^6*b*c-a^4*b*(b-c)^2*c+2*a^7*(b+c)-2*a^3*(b-c)^2*(b+c)^3+b*c*(b^2-c^2)^2*(b^2+c^2)-2*a^5*(b^3+c^3)-a^2*b*c*(2*b^4+b^3*c-4*b^2*c^2+b*c^3+2*c^4)+a*(2*b^7-3*b^5*c^2+b^4*c^3+b^3*c^4-3*b^2*c^5+2*c^7)) : :

X(63451) lies on these lines: {1, 30}, {6, 7469}, {23, 81}, {468, 35466}, {858, 17056}, {940, 37959}, {1325, 19767}, {3216, 44898}, {4053, 16307}, {5189, 37635}, {7426, 61661}, {7464, 63291}, {7574, 63323}, {7575, 63307}, {8705, 63359}, {10989, 63343}, {11799, 63318}, {14915, 63348}, {15447, 18593}, {18572, 63317}, {19765, 37960}, {20063, 41819}, {30745, 63344}, {37900, 63401}, {37924, 63338}, {37972, 63311}, {51693, 63292}, {62490, 63345}


X(63452) = X(25) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    a*(2*a^6*b*c+2*a^7*(b+c)+b*c*(b^2-c^2)^2*(b^2+c^2)-a^4*b*c*(b^2-4*b*c+c^2)+2*a*(b-c)^2*(b+c)^3*(b^2-b*c+c^2)-2*a^5*(b^3+c^3)-2*a^2*b*c*(b^4-4*b^2*c^2+c^4)-2*a^3*(b^5+b^4*c-4*b^3*c^2-4*b^2*c^3+b*c^4+c^5)) : :

X(63452) lies on these lines: {1, 30}, {25, 81}, {1368, 17056}, {1370, 37635}, {1596, 63318}, {2393, 63359}, {2790, 63345}, {6000, 63448}, {6357, 57652}, {6644, 63307}, {6677, 35466}, {7500, 41819}, {10602, 63385}, {18531, 63323}, {18533, 63297}, {18534, 63338}, {21312, 63291}, {31152, 63343}, {31255, 63344}, {44212, 61661}, {44662, 63354}, {44670, 63393}, {51695, 63292}


X(63453) = X(51) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    a^2*(-((b-c)^4*(b+c)^3)+a^5*(b^2+c^2)-a^4*(b^3+b^2*c+b*c^2+c^3)-a^3*(2*b^4+b^3*c+6*b^2*c^2+b*c^3+2*c^4)+2*a^2*(b^5-4*b^3*c^2-4*b^2*c^3+c^5)+a*(b^6+b^5*c-b^4*c^2-8*b^3*c^3-b^2*c^4+b*c^5+c^6)) : :

X(63453) lies on these lines: {51, 81}, {154, 63311}, {323, 40952}, {354, 511}, {942, 1154}, {2393, 63359}, {2979, 35612}, {3819, 17056}, {3917, 63343}, {5453, 24928}, {5890, 63297}, {5891, 63323}, {5892, 63307}, {5943, 61661}, {5965, 61663}, {6000, 13408}, {6688, 35466}, {18435, 63296}, {36987, 63291}, {39543, 63332}, {40673, 63385}, {41819, 62187}, {62247, 63329}, {62248, 63328}


X(63454) = X(111) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    a*(-(a^6*(b-c)^2)+2*a^7*(b+c)-a^5*(5*b^3+3*b^2*c+3*b*c^2+5*c^3)-2*a^4*(b^4+2*b^3*c-4*b^2*c^2+2*b*c^3+c^4)-2*a^3*(2*b^5+3*b^4*c-10*b^3*c^2-10*b^2*c^3+3*b*c^4+2*c^5)+b*c*(b^6-3*b^4*c^2-3*b^2*c^4+c^6)-a^2*(b^6+5*b^5*c-20*b^3*c^3+5*b*c^5+c^6)+a*(3*b^7-b^6*c-10*b^5*c^2+4*b^4*c^3+4*b^3*c^4-10*b^2*c^5-b*c^6+3*c^7)) : :

X(63454) lies on these lines: {81, 111}, {126, 17056}, {543, 37631}, {1296, 63291}, {2667, 2805}, {2780, 63348}, {2793, 63345}, {2830, 63346}, {2854, 63359}, {3325, 63295}, {5453, 33962}, {5512, 63318}, {6019, 63332}, {6719, 35466}, {9172, 61661}, {10704, 63333}, {10717, 63343}, {10748, 63323}, {10765, 63385}, {11258, 63338}, {11721, 63292}, {13408, 23699}, {14360, 37635}, {14650, 63307}, {14654, 63297}, {20099, 41819}, {50924, 63319}, {62506, 63349}


X(63455) = X(113) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    2*a^13+2*a^12*(b+c)+a^11*(-4*b^2+2*b*c-4*c^2)-8*a^10*(b+c)*(b^2+c^2)-(b-c)^6*(b+c)^5*(b^2+c^2)+a*(b-c)^4*(b+c)^4*(b^2+c^2)*(b^2+3*b*c+c^2)+2*a^2*(b-c)^4*(b+c)^3*(2*b^4+3*b^3*c+b^2*c^2+3*b*c^3+2*c^4)-a^9*(3*b^4+8*b^3*c-8*b^2*c^2+8*b*c^3+3*c^4)-a^3*b*c*(b^2-c^2)^2*(7*b^4-2*b^3*c-2*b^2*c^2-2*b*c^3+7*c^4)+a^8*(b+c)*(11*b^4-4*b^3*c+12*b^2*c^2-4*b*c^3+11*c^4)-2*a^4*(b-c)^2*(b+c)*(2*b^6+7*b^5*c+3*b^4*c^2-2*b^3*c^3+3*b^2*c^4+7*b*c^5+2*c^6)+a^7*(12*b^6+9*b^5*c-6*b^4*c^2+8*b^3*c^3-6*b^2*c^4+9*b*c^5+12*c^6)-2*a^6*(2*b^7-3*b^6*c+7*b^4*c^3+7*b^3*c^4-3*b*c^6+2*c^7)+a^5*(-8*b^8+b^7*c+2*b^6*c^2-7*b^5*c^3+4*b^4*c^4-7*b^3*c^5+2*b^2*c^6+b*c^7-8*c^8) : :

X(63455) lies on these lines: {74, 37635}, {81, 113}, {110, 63297}, {125, 63323}, {146, 41819}, {265, 63296}, {541, 37631}, {542, 63352}, {690, 63456}, {2777, 5453}, {2931, 63311}, {5663, 63374}, {5972, 63307}, {6699, 17056}, {7687, 63317}, {7728, 63338}, {11723, 63292}, {12368, 63310}, {12900, 35466}, {13408, 17702}, {15473, 63293}, {16111, 63291}, {46686, 63318}


X(63456) = X(114) OF THE 2ND PAVLOV TRIANGLE

Barycentrics    2*a^11+2*a^10*(b+c)+a^9*(-4*b^2+2*b*c-4*c^2)-8*a^8*(b^3+b^2*c+b*c^2+c^3)-(b-c)^4*(b+c)^3*(b^4+c^4)+a*(b-c)^2*(b+c)^4*(b^4+b^3*c-2*b^2*c^2+b*c^3+c^4)+a^7*(3*b^4-8*b^3*c-4*b^2*c^2-8*b*c^3+3*c^4)+a^6*(13*b^5+9*b^4*c+4*b^3*c^2+4*b^2*c^3+9*b*c^4+13*c^5)+a^5*(-b^6+11*b^5*c+7*b^4*c^2+4*b^3*c^3+7*b^2*c^4+11*b*c^5-c^6)+a^4*(-11*b^7-5*b^6*c+3*b^5*c^2+b^4*c^3+b^3*c^4+3*b^2*c^5-5*b*c^6-11*c^7)+a^2*(b-c)^2*(5*b^7+11*b^6*c+7*b^5*c^2-3*b^4*c^3-3*b^3*c^4+7*b^2*c^5+11*b*c^6+5*c^7)-a^3*(b^8+8*b^7*c+6*b^6*c^2-2*b^5*c^3-6*b^4*c^4-2*b^3*c^5+6*b^2*c^6+8*b*c^7+c^8) : :

X(63456) lies on these lines: {81, 114}, {98, 37635}, {99, 63297}, {115, 63323}, {147, 41819}, {542, 3745}, {620, 63307}, {690, 63455}, {2782, 63374}, {2794, 5453}, {6033, 63338}, {6036, 17056}, {6055, 63343}, {6321, 63296}, {6721, 35466}, {9864, 63310}, {11724, 63292}, {13408, 23698}, {38749, 63291}, {39828, 63311}, {50711, 63352}, {50719, 63331}, {50720, 63330}


X(63457) = (name pending)

Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^16*b^2 - 8*a^14*b^4 + 28*a^12*b^6 - 56*a^10*b^8 + 70*a^8*b^10 - 56*a^6*b^12 + 28*a^4*b^14 - 8*a^2*b^16 + b^18 + a^16*c^2 + 6*a^14*b^2*c^2 - 28*a^12*b^4*c^2 + 46*a^10*b^6*c^2 - 66*a^8*b^8*c^2 + 98*a^6*b^10*c^2 - 92*a^4*b^12*c^2 + 42*a^2*b^14*c^2 - 7*b^16*c^2 - 8*a^14*c^4 - 28*a^12*b^2*c^4 + 76*a^10*b^4*c^4 - 44*a^8*b^6*c^4 - 40*a^6*b^8*c^4 + 116*a^4*b^10*c^4 - 92*a^2*b^12*c^4 + 20*b^14*c^4 + 28*a^12*c^6 + 46*a^10*b^2*c^6 - 44*a^8*b^4*c^6 + 28*a^6*b^6*c^6 - 52*a^4*b^8*c^6 + 118*a^2*b^10*c^6 - 28*b^12*c^6 - 56*a^10*c^8 - 66*a^8*b^2*c^8 - 40*a^6*b^4*c^8 - 52*a^4*b^6*c^8 - 120*a^2*b^8*c^8 + 14*b^10*c^8 + 70*a^8*c^10 + 98*a^6*b^2*c^10 + 116*a^4*b^4*c^10 + 118*a^2*b^6*c^10 + 14*b^8*c^10 - 56*a^6*c^12 - 92*a^4*b^2*c^12 - 92*a^2*b^4*c^12 - 28*b^6*c^12 + 28*a^4*c^14 + 42*a^2*b^2*c^14 + 20*b^4*c^14 - 8*a^2*c^16 - 7*b^2*c^16 + c^18) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6166.

X(63457) lies on this line: {3, 49}

X(63457) = midpoint of X(i) and X(j) for these {i,j}: {3, 12004}, {9720, 12095}


X(63458) = 76TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    2*a^16 - 5*a^14*b^2 - 5*a^12*b^4 + 31*a^10*b^6 - 45*a^8*b^8 + 33*a^6*b^10 - 15*a^4*b^12 + 5*a^2*b^14 - b^16 - 5*a^14*c^2 + 10*a^12*b^2*c^2 - 3*a^10*b^4*c^2 - 4*a^8*b^6*c^2 - 3*a^6*b^8*c^2 + 18*a^4*b^10*c^2 - 21*a^2*b^12*c^2 + 8*b^14*c^2 - 5*a^12*c^4 - 3*a^10*b^2*c^4 + 18*a^8*b^4*c^4 - 14*a^6*b^6*c^4 - a^4*b^8*c^4 + 33*a^2*b^10*c^4 - 28*b^12*c^4 + 31*a^10*c^6 - 4*a^8*b^2*c^6 - 14*a^6*b^4*c^6 - 4*a^4*b^6*c^6 - 17*a^2*b^8*c^6 + 56*b^10*c^6 - 45*a^8*c^8 - 3*a^6*b^2*c^8 - a^4*b^4*c^8 - 17*a^2*b^6*c^8 - 70*b^8*c^8 + 33*a^6*c^10 + 18*a^4*b^2*c^10 + 33*a^2*b^4*c^10 + 56*b^6*c^10 - 15*a^4*c^12 - 21*a^2*b^2*c^12 - 28*b^4*c^12 + 5*a^2*c^14 + 8*b^2*c^14 - c^16 : :

See Antreas Hatzipolakis and Peter Moses, euclid 6166.

X(63458) lies on these lines: {2, 3}, {9826, 12004}


X(63459) = 39th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^3+(b-c)*a^2-(5*b^2+2*b*c+c^2)*a+(3*b+c)*(b-c)^2)*(a-b+c)*(a+b-c)*(a^3-(b-c)*a^2-(b^2+2*b*c+5*c^2)*a+(b+3*c)*(b-c)^2) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, problem 2024/05/13.

X(63459) lies on these lines: {1, 2942}, {7, 4847}, {57, 1212}, {269, 354}, {479, 10481}, {1014, 17194}, {1462, 62812}, {6575, 15728}

X(63459) = cevapoint of X(i) and X(j) for these {i, j}: {57, 44841}, {2310, 47921}
X(63459) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 10578), (1015, 14282), (40617, 8713)
X(63459) = X(i)-isoconjugate of X(j) for these {i, j}: {55, 10578}, {101, 14282}, {220, 60939}, {3939, 8713}, {5546, 14324}
X(63459) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (57, 10578), (269, 60939), (513, 14282), (3669, 8713), (4017, 14324), (6575, 644), (10579, 9), (42015, 346), (48151, 14283)
X(63459) = trilinear pole of the line {3669, 21127} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(63459) = pole of the line {4328, 10579} with respect to the Feuerbach circumhyperbola
X(63459) = barycentric product X(i)*X(j) for these {i,j}: {85, 10579}, {279, 42015}, {6575, 24002}
X(63459) = trilinear product X(i)*X(j) for these {i,j}: {7, 10579}, {269, 42015}, {3676, 6575}
X(63459) = trilinear quotient X(i)/X(j) for these (i,j): (7, 10578), (279, 60939), (514, 14282), (3676, 8713), (6575, 3939), (7178, 14324), (10579, 55), (14283, 58810), (21104, 14283), (42015, 200)


X(63460) = X(1)X(7248)∩X(7)X(8)

Barycentrics    a^2*(a + b - c)*(a - b + c)*(a*b^2 + b^3 + a*b*c - 2*b^2*c + a*c^2 - 2*b*c^2 + c^3) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6167.

X(63460) lies on these lines: {1, 7248}, {7, 8}, {34, 9432}, {56, 1149}, {57, 21214}, {73, 38286}, {221, 1428}, {738, 7143}, {960, 25879}, {1042, 1403}, {1266, 35634}, {1284, 8421}, {1319, 38512}, {1357, 1420}, {1401, 3340}, {2275, 23544}, {2390, 17054}, {3339, 8951}, {3485, 26093}, {3671, 3840}, {4014, 5691}, {5221, 27627}, {5435, 28389}, {5575, 7991}, {10571, 62739}, {18421, 50626}, {18838, 28074}, {24231, 31785}, {28016, 37566}, {28037, 60689}, {37598, 41777}

X(63460) = crossdifference of every pair of points on line {3063, 4521}
X(63460) = barycentric product X(i)*X(j) for these {i,j}: {7, 62214}, {57, 24440}
X(63460) = barycentric quotient X(i)/X(j) for these {i,j}: {24440, 312}, {62214, 8}
X(63460) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17114, 7248}, {65, 1463, 8}


X(63461) = 40th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^3*(-a+b+c)*(b^2-c^2) : :

See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 16/05/2024.

X(63461) lies on these lines: {1, 4369}, {8, 27527}, {10, 21962}, {42, 661}, {43, 25666}, {55, 7252}, {78, 27400}, {312, 30584}, {512, 810}, {513, 23655}, {514, 23793}, {523, 53556}, {649, 50483}, {650, 663}, {667, 4507}, {669, 798}, {788, 8640}, {872, 58289}, {890, 50521}, {926, 52326}, {1027, 58322}, {1459, 50336}, {1919, 8646}, {2274, 22387}, {2489, 4079}, {2533, 17478}, {2605, 9508}, {3063, 8641}, {3250, 50506}, {3709, 4524}, {3716, 4086}, {3720, 24924}, {3737, 4913}, {3768, 20983}, {3804, 50492}, {3907, 18155}, {3920, 26248}, {3961, 27929}, {4040, 48000}, {4122, 53563}, {4449, 43067}, {4455, 50491}, {4511, 28938}, {4651, 27045}, {4724, 24769}, {4730, 50544}, {4790, 54251}, {4807, 31286}, {4826, 8663}, {4874, 48302}, {4879, 24533}, {4897, 53553}, {5098, 42079}, {7063, 15615}, {7192, 17018}, {7659, 43924}, {7662, 48303}, {8632, 21005}, {8635, 57096}, {14407, 58303}, {16874, 20981}, {17072, 25511}, {17135, 27114}, {20011, 26775}, {21007, 23865}, {21302, 26114}, {21806, 40471}, {21831, 48395}, {22090, 48136}, {24666, 47761}, {24749, 47760}, {25299, 42327}, {25900, 25941}, {26983, 29822}, {28758, 59297}, {28840, 42042}, {29051, 29771}, {29487, 48337}, {42043, 45315}, {42664, 50496}, {47920, 47929}, {48029, 48340}, {48282, 49291}, {48292, 54265}, {48293, 49292}, {51659, 52024}, {55210, 58286}

X(63461) = reflection of X(51641) in X(810)
X(63461) = isogonal conjugate of X(4625)
X(63461) = isotomic conjugate of X(55213)
X(63461) = crossdifference of every pair of points on the line X(57)X(85)
X(63461) = crosspoint of X(i) and X(j) for these {i, j}: {9, 7257}, {512, 3709}, {643, 56245}, {663, 3063}, {1018, 56196}, {1334, 4069}, {4041, 55206}
X(63461) = crosssum of X(i) and X(j) for these {i, j}: {1, 4369}, {6, 23400}, {7, 17096}, {57, 51641}, {75, 18160}, {85, 4077}, {86, 7199}, {99, 4573}, {274, 18155}, {333, 58329}, {514, 24210}, {664, 4554}, {1434, 7203}, {3674, 3676}, {6063, 52619}, {7192, 18600}, {7253, 16713}
X(63461) = X(i)-beth conjugate of X(j) for these (i, j): (55, 661), (4524, 4524)
X(63461) = X(i)-Ceva conjugate of X(j) for these (i, j): (512, 798), (643, 40972), (663, 3709), (4069, 1334), (7257, 9), (30457, 52064), (60817, 14936)
X(63461) = X(3063)-daleth conjugate of-X(46388)
X(63461) = X(i)-Dao conjugate of X(j) for these (i, j): (1, 670), (2, 55213), (6, 55205), (10, 4572), (11, 310), (115, 20567), (125, 7182), (136, 57787), (206, 1414), (244, 6063), (478, 4635), (512, 4017), (1084, 85), (1146, 6385), (2968, 40072), (3005, 4077), (3161, 4602), (3271, 33947), (4858, 41283), (5139, 273), (5452, 799), (6600, 7257), (6615, 52619), (6741, 561), (7952, 57968), (8054, 57785), (11517, 55202), (14714, 314), (17115, 18155), (17423, 77), (20620, 57796), (24771, 62534), (32664, 4573), (34591, 57918), (34961, 24037), (35508, 28660), (36908, 52937), (38966, 44130), (38985, 7055), (38986, 7), (38991, 274), (38992, 16739), (38996, 57), (39014, 18157), (39025, 86), (40582, 52612), (40586, 4554), (40590, 46406), (40599, 1978), (40600, 664)
X(63461) = X(4455)-hirst inverse of-X(50491)
X(63461) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 4573}, {7, 99}, {8, 4616}, {9, 4635}, {19, 55205}, {21, 4569}, {31, 55213}, {34, 55202}, {56, 670}, {57, 799}, {58, 4572}, {59, 52619}, {65, 4623}, {73, 55229}, {75, 1414}, {76, 4565}, {77, 811}, {81, 4554}, {85, 662}, {86, 664}, {100, 57785}, {107, 7055}, {109, 310}, {110, 6063}, {112, 57918}, {162, 7182}, {163, 20567}, {190, 1434}, {222, 6331}, {223, 55211}, {226, 4610}, {261, 4566}, {269, 7257}, {273, 4592}, {274, 651}, {278, 4563}, {279, 645}, {284, 46406}, {286, 6516}, {312, 4637}, {314, 934}, {331, 4558}, {332, 36118}, {333, 658}, {348, 648}, {349, 4556}, {479, 7256}, {514, 4620}, {523, 7340}, {552, 3952}
X(63461) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (2, 55213), (3, 55205), (8, 4602), (9, 670), (21, 52612), (31, 4573), (32, 1414), (33, 6331), (37, 4572), (41, 99), (42, 4554), (55, 799), (56, 4635), (65, 46406), (78, 52608), (163, 7340), (200, 62534), (210, 1978), (212, 4563), (213, 664), (219, 55202), (220, 7257), (281, 57968), (284, 4623), (312, 4609), (480, 7258), (512, 85), (522, 6385), (523, 20567), (560, 4565), (604, 4616), (607, 811), (643, 34537), (647, 7182), (649, 57785), (650, 310), (656, 57918), (657, 314), (661, 6063), (663, 274), (667, 1434), (669, 57), (692, 4620), (798, 7), (810, 348), (822, 7055), (872, 4552), (926, 18157), (1021, 18021), (1042, 36838)
X(63461) = perspector of the circumconic through X(9) and X(41)
X(63461) = pole of the line {198, 1755} with respect to the circumcircle
X(63461) = pole of the line {14100, 39780} with respect to the incircle
X(63461) = pole of the line {273, 310} with respect to the polar circle
X(63461) = pole of the line {798, 971} with respect to the Stevanovic circle
X(63461) = pole of the line {2347, 20229} with respect to the Brocard inellipse
X(63461) = pole of the line {210, 4095} with respect to the Mandart inellipse
X(63461) = pole of the line {1414, 4623} with respect to the Stammler hyperbola
X(63461) = pole of the line {3177, 20248} with respect to the Steiner circumellipse
X(63461) = pole of the line {4625, 55213} with respect to the Steiner-Wallace hyperbola
X(63461) = barycentric product X(i)*X(j) for these {i,j}: {1, 3709}, {3, 55206}, {6, 4041}, {8, 798}, {9, 512}, {10, 3063}, {21, 4079}, {25, 8611}, {31, 3700}, {32, 4086}, {33, 647}, {37, 663}, {41, 523}, {42, 650}, {55, 661}, {56, 4171}, {57, 4524}, {65, 657}, {71, 18344}, {78, 2489}
X(63461) = trilinear product X(i)*X(j) for these {i,j}: {6, 3709}, {8, 669}, {9, 798}, {21, 50487}, {31, 4041}, {32, 3700}, {33, 810}, {37, 3063}, {41, 661}, {42, 663}, {48, 55206}, {55, 512}, {56, 4524}, {60, 58289}, {65, 8641}, {99, 7063}, {181, 21789}, {200, 51641}, {210, 667}, {213, 650}
X(63461) = trilinear quotient X(i)/X(j) for these (i,j): (6, 4573), (8, 670), (9, 799), (10, 4572), (11, 52619), (21, 4623), (29, 55229), (31, 1414), (32, 4565), (33, 811), (37, 4554), (41, 662), (42, 664), (55, 99), (56, 4616), (57, 4635), (63, 55205), (65, 4569), (75, 55213), (78, 55202)
X(63461) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (669, 50487, 798), (4524, 8653, 3709)


X(63462) = 41st TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(-a+b+c)*(b-c)^2*(b^2-c^2) : :

See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 16/05/2024.

X(63462) lies on these lines: {1, 5098}, {60, 7252}, {65, 55261}, {213, 512}, {513, 41015}, {514, 24214}, {523, 3721}, {650, 960}, {661, 4642}, {693, 26562}, {798, 55219}, {850, 21435}, {1042, 7180}, {1334, 3709}, {3249, 8661}, {3287, 33950}, {3569, 21832}, {3700, 3701}, {3735, 50351}, {4024, 22202}, {4530, 14393}, {17424, 17425}, {21905, 50497}, {40627, 42661}

X(63462) = isogonal conjugate of X(55194)
X(63462) = crossdifference of every pair of points on the line X(59)X(4600)
X(63462) = crosspoint of X(i) and X(j) for these {i, j}: {512, 3125}, {2170, 4041}, {3122, 7180}, {3271, 7252}, {3700, 4516}, {4560, 18101}
X(63462) = crosssum of X(i) and X(j) for these {i, j}: {99, 4567}, {645, 4600}, {1252, 4579}, {1414, 4564}, {4552, 4998}, {4573, 4620}
X(63462) = X(i)-Ceva conjugate of X(j) for these (i, j): (798, 3124), (2489, 3121), (3700, 4516), (7180, 3122), (7252, 3271), (55208, 61052)
X(63462) = X(i)-Dao conjugate of X(j) for these (i, j): (11, 4601), (512, 4559), (513, 4573), (522, 62534), (650, 670), (656, 55207), (661, 4625), (905, 52608), (1084, 4998), (1577, 4602), (3005, 4552), (3126, 55260), (4988, 4572), (5139, 46102), (6608, 7258), (6615, 799), (6741, 31625), (8054, 4620), (17115, 645), (17423, 44717), (38986, 4564), (38991, 4600), (38996, 59), (39025, 4567), (40599, 57950), (40600, 31615), (40608, 1016), (40625, 34537), (40627, 664), (40628, 55202), (50330, 4554), (50497, 651), (55060, 1275), (55064, 7035), (55067, 24037), (62566, 1978)
X(63462) = X(i)-isoconjugate of X(j) for these {i, j}: {59, 799}, {86, 31615}, {99, 4564}, {100, 4620}, {109, 4601}, {201, 55270}, {314, 4619}, {643, 1275}, {645, 7045}, {651, 4600}, {662, 4998}, {664, 4567}, {668, 52378}, {670, 2149}, {765, 4573}, {811, 44717}, {1014, 6632}, {1016, 1414}, {1018, 7340}, {1020, 6064}, {1252, 4625}, {1262, 7257}, {1412, 57950}, {1434, 57731}, {2171, 31614}, {4076, 4637}, {4551, 4590}, {4552, 24041}, {4554, 4570}, {4559, 24037}, {4563, 7012}, {4565, 7035}, {4592, 46102}, {4635, 6065}, {6358, 59152}, {7115, 55202}, {7258, 7339}, {7259, 59457}, {18157, 59101}, {23067, 46254}, {23990, 55213}, {24027, 62534}, {47443, 57807}, {52377, 55237}, {57785, 59149}, {61178, 62719}
X(63462) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (11, 670), (60, 31614), (210, 57950), (213, 31615), (244, 4625), (512, 4998), (649, 4620), (650, 4601), (663, 4600), (669, 59), (764, 57785), (798, 4564), (1015, 4573), (1084, 4559), (1111, 55213), (1146, 62534), (1334, 6632), (1356, 53321), (1357, 4616), (1919, 52378), (1924, 2149), (1977, 4565), (2170, 799), (2189, 55270), (2310, 7257), (2489, 46102), (2971, 61178), (3022, 7256), (3049, 44717), (3063, 4567), (3119, 7258), (3120, 4572), (3121, 651), (3122, 664), (3124, 4552), (3125, 4554), (3248, 1414), (3249, 1412), (3271, 99), (3700, 31625), (3709, 1016), (3733, 7340), (3737, 24037), (3942, 55205), (4041, 7035), (4092, 27808), (4128, 6649), (4516, 668), (4524, 4076), (4530, 55262)
X(63462) = perspector of the circumconic through X(11) and X(3122)
X(63462) = pole of the line {4601, 46102} with respect to the polar circle
X(63462) = pole of the line {41333, 52426} with respect to the Brocard inellipse
X(63462) = barycentric product X(i)*X(j) for these {i,j}: {6, 55195}, {8, 8034}, {11, 512}, {42, 21132}, {60, 8029}, {115, 7252}, {181, 56283}, {210, 764}, {213, 40166}, {244, 4041}, {261, 22260}, {284, 21131}, {513, 4516}, {522, 3122}, {523, 3271}, {647, 8735}, {649, 21044}, {650, 3125}, {657, 53545}, {661, 2170}
X(63462) = trilinear product X(i)*X(j) for these {i,j}: {9, 8034}, {11, 798}, {31, 55195}, {210, 21143}, {213, 21132}, {244, 3709}, {512, 2170}, {522, 3121}, {649, 4516}, {650, 3122}, {657, 53540}, {661, 3271}, {663, 3125}, {667, 21044}, {669, 4858}, {764, 1334}, {810, 8735}, {1015, 4041}, {1021, 61052}, {1084, 18155}
X(63462) = trilinear quotient X(i)/X(j) for these (i,j): (11, 799), (42, 31615), (210, 6632), (244, 4573), (270, 55270), (512, 4564), (513, 4620), (522, 4601), (650, 4600), (661, 4998), (663, 4567), (667, 52378), (669, 2149), (764, 1434), (798, 59), (810, 44717), (1015, 1414), (1019, 7340), (1021, 6064), (1086, 4625)


X(63463) = 42nd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(b^2-c^2)^2*((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^6-2*(b^2+c^2)*a^4+(b^4-5*b^2*c^2+c^4)*a^2+(b^2+c^2)*b^2*c^2) : :

See Tran Viet Hung and César Lozada, Tran Viet Hung, problem 16/05/2024.

X(63463) lies on these lines: {2971, 51513}, {6140, 20975}, {8902, 53570}

X(63463) = X(2)-Ceva conjugate of-X(55219)
X(63463) = X(31)-complementary conjugate of-X(55219)
X(63463) = X(55219)-Dao conjugate of-X(2)
X(63463) = center of the circumconic with perspector X(55219)
X(63463) = perspector of the circumconic with center X(55219)


X(63464) = X(2)X(6)∩X(3)X(525)

Barycentrics    (a^2 - b^2 - c^2)*(a^8 - a^6*b^2 - a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 - 2*b^4*c^4 + b^2*c^6) : :
X(63464) = X[20] + 2 X[47616]

See Antreas Hatzipolakis and Peter Moses, euclid 6174.

X(63464) lies on these lines: {2, 6}, {3, 525}, {20, 47616}, {22, 53371}, {76, 249}, {112, 59698}, {339, 32661}, {381, 33509}, {538, 51394}, {543, 16163}, {754, 1568}, {1078, 22416}, {1092, 7751}, {1316, 44127}, {1352, 54380}, {1495, 37926}, {1531, 3849}, {1971, 30737}, {1976, 47211}, {2420, 40856}, {2502, 48540}, {2799, 32119}, {4235, 34360}, {4240, 35259}, {5562, 7780}, {5642, 46459}, {6103, 15595}, {6394, 47406}, {6793, 23583}, {6795, 23878}, {7793, 57008}, {7998, 17708}, {9129, 14697}, {9832, 53379}, {14510, 61734}, {14585, 41009}, {18332, 59775}, {18870, 51360}, {32761, 52628}, {33988, 61680}, {34359, 39000}, {35266, 46869}, {36874, 39646}, {39078, 47229}, {52170, 53174}, {61644, 62594}

X(63464) = reflection of X(i) in X(j) for these {i,j}: {381, 33509}, {60704, 3}
X(63464) = isotomic conjugate of the polar conjugate of X(1316)
X(63464) = isogonal conjugate of the polar conjugate of X(44155)
X(63464) = X(44155)-Ceva conjugate of X(1316)
X(63464) = X(i)-isoconjugate of X(j) for these (i,j): {19, 9513}, {240, 53700}, {661, 53699}, {32676, 46245}, {53229, 57653}
X(63464) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 9513}, {5661, 57583}, {15526, 46245}, {36830, 53699}, {39078, 4}, {39085, 53700}
X(63464) = crossdifference of every pair of points on line {232, 512}
X(63464) = barycentric product X(i)*X(j) for these {i,j}: {3, 44155}, {69, 1316}, {305, 44127}, {525, 40866}, {3267, 46249}, {4563, 47229}, {6333, 43113}, {6390, 48983}, {12215, 38947}, {17932, 31953}
X(63464) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 9513}, {110, 53699}, {248, 53700}, {287, 53229}, {525, 46245}, {1316, 4}, {13414, 16071}, {13415, 16070}, {31953, 16230}, {39469, 43112}, {40866, 648}, {43113, 685}, {44127, 25}, {44155, 264}, {46249, 112}, {47229, 2501}, {48983, 17983}
X(63464) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 34211, 6}, {8115, 8116, 3289}


X(63465) = X(4)X(6)∩X(879)X(1499)

Barycentrics    a^14 - 8*a^8*b^6 + 9*a^6*b^8 - 2*a^2*b^12 - 3*a^10*b^2*c^2 + 9*a^8*b^4*c^2 - 6*a^6*b^6*c^2 - 6*a^4*b^8*c^2 + 9*a^2*b^10*c^2 - 3*b^12*c^2 + 9*a^8*b^2*c^4 - 6*a^6*b^4*c^4 + 6*a^4*b^6*c^4 - 18*a^2*b^8*c^4 + 9*b^10*c^4 - 8*a^8*c^6 - 6*a^6*b^2*c^6 + 6*a^4*b^4*c^6 + 22*a^2*b^6*c^6 - 6*b^8*c^6 + 9*a^6*c^8 - 6*a^4*b^2*c^8 - 18*a^2*b^4*c^8 - 6*b^6*c^8 + 9*a^2*b^2*c^10 + 9*b^4*c^10 - 2*a^2*c^12 - 3*b^2*c^12 : :

See Antreas Hatzipolakis and Peter Moses, euclid 6174.

X(63465) lies on these lines: {4, 6}, {879, 1499}, {1316, 1495}, {1384, 34156}, {2409, 41424}, {2794, 13202}, {3543, 34211}, {7422, 9756}, {10752, 22265}, {11381, 31850}, {14458, 54808}, {29181, 47616}, {31383, 57598}, {36191, 47296}

X(63465) = {X(4),X(6794)}-harmonic conjugate of X(5480)


X(63466) = X(3)X(34360)∩X(125)X(1987)

Barycentrics    (a^8*b^4 - 2*a^6*b^6 + a^4*b^8 + a^10*c^2 - a^8*b^2*c^2 - a^2*b^8*c^2 + b^10*c^2 - 2*a^8*c^4 + 3*a^6*b^2*c^4 + a^4*b^4*c^4 + 3*a^2*b^6*c^4 - 2*b^8*c^4 - 4*a^4*b^2*c^6 - 4*a^2*b^4*c^6 + 2*a^4*c^8 + 3*a^2*b^2*c^8 + 2*b^4*c^8 - a^2*c^10 - b^2*c^10)*(a^10*b^2 - 2*a^8*b^4 + 2*a^4*b^8 - a^2*b^10 - a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 4*a^4*b^6*c^2 + 3*a^2*b^8*c^2 - b^10*c^2 + a^8*c^4 + a^4*b^4*c^4 - 4*a^2*b^6*c^4 + 2*b^8*c^4 - 2*a^6*c^6 + 3*a^2*b^4*c^6 + a^4*c^8 - a^2*b^2*c^8 - 2*b^4*c^8 + b^2*c^10) : :(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 + a^10*c^2 - a^8*b^2*c^2 - a^2*b^8*c^2 + b^10*c^2 - 2*a^8*c^4 + 3*a^6*b^2*c^4 + a^4*b^4*c^4 + 3*a^2*b^6*c^4 - 2*b^8*c^4 - 4*a^4*b^2*c^6 - 4*a^2*b^4*c^6 + 2*a^4*c^8 + 3*a^2*b^2*c^8 + 2*b^4*c^8 - a^2*c^10 - b^2*c^10)*(a^10*b^2 - 2*a^8*b^4 + 2*a^4*b^8 - a^2*b^10 - a^8*b^2*c^2 + 3*a^6*b^4*c^2 - 4*a^4*b^6*c^2 + 3*a^2*b^8*c^2 - b^10*c^2 + a^8*c^4 + a^4*b^4*c^4 - 4*a^2*b^6*c^4 + 2*b^8*c^4 - 2*a^6*c^6 + 3*a^2*b^4*c^6 + a^4*c^8 - a^2*b^2*c^8 - 2*b^4*c^8 + b^2*c^10) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6174.

X(63466) lies on the Jerabek circumhyperbola and these lines: {3, 34360}, {54, 18338}, {125, 1987}, {1853, 35364}, {2782, 5504}, {9513, 57583}, {36201, 43702}lies on the Jerabek circumhyperbola and these lines: {3, 34360}, {54, 18338}, {125, 1987}, {1853, 35364}, {2782, 5504}, {9513, 57583}, {36201, 43702}

X(63466) = reflection of X(1987) in X(125)
X(63466) = isogonal conjugate of X(37918)
X(63466) = antigonal image of X(1987)
X(63466) = isogonal conjugate of the anticomplement of X(57583)
X(63466) = X(i)-isoconjugate of X(j) for these (i,j): {1, 37918}, {662, 47233}
X(63466) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 37918}, {1084, 47233}
X(63466) = trilinear pole of line {647, 61691}
X(63466) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 37918}, {512, 47233}


X(63467) = X(4)X(34211)∩X(6)X(868)

Barycentrics    (a^8 - a^6*b^2 - a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 - 2*b^4*c^4 + b^2*c^6)*(a^10 - a^8*b^2 - 2*a^4*b^6 + 3*a^2*b^8 - b^10 - a^8*c^2 + a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 3*a^2*b^6*c^2 + b^8*c^2 + 2*a^4*b^2*c^4 - 2*a^4*c^6 - 3*a^2*b^2*c^6 + 3*a^2*c^8 + b^2*c^8 - c^10) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6174.

X(63467) lies on the Feuerbach circumhyperbola of the orthic triangle and these lines: {4, 34211}, {6, 868}, {110, 39931}, {185, 18338}, {879, 38359}, {1316, 44127}, {2794, 13202}, {2871, 40949}, {32119, 60509}

X(63467) = orthic isogonal conjugate of X(1316)
X(63467) = X(4)-Ceva conjugate of X(1316)
X(63467) = crosspoint of X(4) and X(36191)orthic isogonal conjugate of X(1316)
X(63467) = X(4)-Ceva conjugate of X(1316)
X(63467) = crosspoint of X(4) and X(36191)


X(63468) = 43rd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(3*a^3+5*(b+c)*a^2-(b+3*c)*(3*b+c)*a-5*(b-c)*(b^2-c^2)) : :
X(63468) = 5*X(1)-8*X(3) = X(1)-4*X(40) = X(1)-2*X(165) = 11*X(1)-8*X(1482) = 3*X(1)-4*X(3576) = 7*X(1)-4*X(7982) = 7*X(1)-10*X(7987) = X(1)+2*X(7991) = 17*X(1)-8*X(8148) = 7*X(1)-8*X(10246) = 9*X(1)-8*X(10247) = 3*X(1)-2*X(11224) = 5*X(1)-2*X(11531) = X(1)+8*X(12702) = 13*X(1)-10*X(16189) = 4*X(1)-3*X(16191) = 4*X(1)-7*X(16192) = 5*X(1)-4*X(16200) = 5*X(1)-6*X(30392) = 2*X(1)-3*X(58221) = 5*X(1)-3*X(58241) = 8*X(1)-3*X(58243) = 4*X(1)-X(58245) = 10*X(1)-X(58248) = 2*X(3)-5*X(40) = 4*X(3)-5*X(165) = 13*X(3)-10*X(1385) = 11*X(3)-5*X(1482) = 6*X(3)-5*X(3576) = 7*X(3)-10*X(3579) = 14*X(3)-5*X(7982) = 4*X(3)+5*X(7991) = 19*X(3)-10*X(10222) = 7*X(3)-5*X(10246) = 9*X(3)-5*X(10247) = 12*X(3)-5*X(11224) = 5*X(3)-2*X(11278) = 4*X(3)-X(11531) = X(3)+5*X(12702) = 2*X(3)-X(16200) = 11*X(3)-10*X(17502) = 4*X(3)-3*X(30392) = 5*X(3)-4*X(31662) = 7*X(3)-4*X(33179) = 8*X(3)-3*X(58241) = 2*X(40)-X(165) = 13*X(40)-4*X(1385) = 11*X(40)-2*X(1482) = 3*X(40)-X(3576) = 7*X(40)-4*X(3579)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 17/05/2024.

X(63468) lies on these lines: {1, 3}, {2, 28228}, {4, 28232}, {8, 5059}, {10, 3832}, {20, 3632}, {30, 37712}, {63, 4915}, {72, 63138}, {145, 12512}, {200, 63136}, {355, 28178}, {376, 28234}, {515, 4677}, {516, 3543}, {518, 55591}, {519, 9778}, {547, 7988}, {548, 61289}, {549, 61275}, {550, 61296}, {551, 61806}, {944, 62113}, {946, 5067}, {952, 15686}, {962, 1698}, {1054, 46943}, {1125, 61834}, {1293, 58793}, {1478, 35514}, {1695, 6048}, {1699, 3545}, {1702, 35611}, {1703, 35610}, {1706, 3740}, {1750, 63132}, {1766, 3973}, {1788, 51785}, {1836, 5726}, {2801, 2951}, {3146, 3626}, {3158, 44663}, {3241, 62081}, {3242, 55622}, {3244, 3522}, {3421, 60905}, {3476, 8275}, {3528, 13607}, {3529, 47745}, {3533, 6684}, {3534, 50817}, {3586, 5759}, {3616, 61816}, {3617, 51118}, {3624, 4301}, {3627, 61256}, {3633, 4297}, {3636, 15717}, {3654, 3845}, {3655, 62089}, {3656, 11812}, {3681, 4882}, {3751, 55722}, {3753, 17542}, {3828, 9779}, {3830, 38176}, {3850, 7989}, {3853, 5690}, {3871, 12511}, {3877, 36006}, {3880, 3928}, {3895, 62823}, {4295, 51784}, {4312, 31397}, {4342, 5435}, {4512, 16858}, {4668, 5691}, {4669, 28158}, {4745, 51119}, {4853, 56288}, {4866, 62180}, {5008, 9620}, {5041, 9593}, {5220, 51781}, {5223, 15726}, {5234, 5836}, {5250, 17536}, {5288, 37022}, {5302, 11530}, {5436, 10107}, {5531, 50528}, {5534, 16143}, {5603, 15702}, {5731, 50808}, {5790, 28198}, {5844, 15690}, {5853, 34744}, {5854, 34716}, {5855, 34701}, {5881, 28186}, {5882, 62096}, {5886, 11539}, {5901, 61824}, {6001, 15104}, {6429, 7969}, {6430, 7968}, {6431, 19004}, {6432, 19003}, {6437, 9616}, {6480, 9583}, {6484, 9582}, {6485, 35642}, {7411, 25439}, {7580, 48696}, {7967, 62086}, {7993, 12515}, {7995, 18908}, {8227, 55856}, {8580, 10176}, {8703, 51094}, {9580, 40663}, {9624, 61837}, {9856, 58688}, {9955, 61911}, {9956, 61946}, {10164, 15708}, {10165, 15719}, {10171, 61897}, {10172, 61913}, {10283, 19711}, {10483, 31777}, {10914, 54290}, {11220, 54422}, {11230, 15723}, {11231, 38021}, {11519, 62858}, {11684, 63142}, {12127, 62874}, {12245, 31730}, {12527, 63133}, {12571, 46933}, {12650, 40256}, {12653, 46684}, {13407, 31436}, {13464, 61817}, {14923, 62824}, {15228, 37708}, {15640, 50801}, {15682, 50827}, {15683, 34641}, {15687, 61257}, {15695, 51087}, {15697, 51082}, {15704, 61244}, {15712, 61277}, {15808, 61820}, {16239, 22791}, {16475, 55703}, {16496, 55607}, {16673, 37499}, {16854, 31435}, {17504, 61280}, {18480, 62016}, {18481, 62123}, {18492, 48661}, {18493, 61875}, {18525, 62170}, {19708, 51077}, {19710, 50804}, {20050, 50693}, {20054, 62124}, {20057, 21734}, {22793, 61975}, {24914, 50444}, {26726, 38759}, {28146, 59503}, {28154, 35400}, {28160, 34718}, {28168, 50798}, {28172, 34627}, {28182, 59400}, {28190, 50823}, {28202, 62033}, {28204, 62140}, {28208, 51515}, {28224, 62144}, {30271, 49498}, {30308, 50821}, {30315, 61937}, {31145, 34638}, {31165, 46917}, {31425, 61821}, {33956, 34620}, {34773, 41981}, {37720, 50031}, {37727, 62106}, {38028, 41983}, {38029, 55685}, {38066, 38140}, {38068, 61868}, {38098, 50687}, {38138, 62014}, {38191, 51538}, {41991, 61261}, {41992, 61272}, {42316, 52705}, {44447, 51433}, {46332, 50824}, {47359, 51166}, {48924, 52524}, {49536, 61044}, {50796, 62009}, {50809, 51097}, {50816, 51096}, {50830, 62138}, {50862, 51072}, {50869, 51067}, {50872, 51105}, {50949, 51025}, {50950, 51027}, {50951, 51165}, {50952, 51214}, {50953, 51024}, {51022, 51125}, {51023, 51168}, {51071, 62072}, {51085, 62059}, {51709, 61847}, {51786, 62235}, {53620, 61992}, {61246, 62159}, {61253, 62044}, {61263, 61949}, {61265, 61917}, {61269, 61890}, {61281, 62069}, {61291, 62098}, {61292, 62104}

X(63468) = midpoint of X(i) and X(j) for these (i, j): {165, 7991}, {6361, 59388}, {9812, 20070}, {34632, 59417}
X(63468) = reflection of X(i) in X(j) for these (i, j): (1, 165), (4, 38127), (165, 40), (962, 3817), (1482, 17502), (1699, 5657), (3543, 38155), (3679, 59417), (3817, 43174), (3830, 38176), (4301, 58441), (5587, 3654), (5691, 59388), (5731, 50808), (7982, 10246), (9589, 9812), (9812, 10), (9856, 58688), (10246, 3579), (11224, 3576), (11278, 31662), (11531, 16200), (12699, 38042), (16191, 58221), (16200, 3), (31162, 26446), (37625, 10273), (37712, 63143), (50687, 38098), (50865, 5587), (51093, 5731), (51538, 38191), (58241, 30392), (58243, 16191), (59388, 11362), (61247, 50823), (61287, 8703), (61294, 50811)
X(63468) = X(8)-beth conjugate of-X(9812)
X(63468) = X(4900)-Ceva conjugate of-X(1)
X(63468) = X(i)-zayin conjugate of X(j) for these (i, j): (3711, 165), (4792, 12767), (7962, 1)
X(63468) = Gibert-Burek-Moses concurrent circles image of X(5126)
X(63468) = inverse of X(5537) in Nguyen-Moses circle
X(63468) = pole of the line {1756, 53056} with respect to the 1st Evans circle
X(63468) = pole of the line {672, 62711} with respect to the Gheorghe circle
X(63468) = pole of the line {28161, 48304} with respect to the incircle of anticomplementary triangle
X(63468) = pole of the line {513, 5537} with respect to the Nguyen-Moses circle
X(63468) = pole of the line {28225, 44429} with respect to the orthoptic circle of Steiner inellipse
X(63468) = pole of the line {28229, 44426} with respect to the polar circle
X(63468) = pole of the line {910, 16670} with respect to the Stevanovic circle
X(63468) = pole of the line {13463, 50036} with respect to the Kiepert circumhyperbola
X(63468) = pole of the line {905, 45334} with respect to the Steiner inellipse
X(63468) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 11531, 1), (40, 7991, 1), (40, 41338, 484), (55, 18421, 1), (57, 9819, 1), (65, 53053, 1), (165, 30392, 3), (1385, 16189, 1), (1482, 30389, 1), (1697, 3339, 1), (2093, 5119, 1), (2099, 53054, 1), (3057, 3361, 1), (3333, 30337, 1), (3576, 11224, 1), (3579, 33179, 3), (5697, 15803, 1), (5903, 61763, 1), (6767, 30350, 1), (7962, 13462, 1), (7982, 7987, 1), (10980, 31393, 1), (16192, 58245, 1), (16200, 30392, 1), (16208, 37625, 1), (25415, 30282, 1)


X(63469) = 44th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(5*a^3+3*a^2*(b+c)-3*(b-c)^2*(b+c)-a*(5*b^2+6*b*c+5*c^2)) : :
X(63469) = 3*X(1)-8*X(3) = X(1)+4*X(40) = X(1)-6*X(165) = 13*X(1)-8*X(1482) = 9*X(1)-4*X(7982) = X(1)-2*X(7987) = 3*X(1)+2*X(7991) = 11*X(1)-6*X(11224) = 7*X(1)-2*X(11531) = 3*X(1)-2*X(16189) = 14*X(1)-9*X(16191) = 2*X(1)-7*X(16192) = X(1)-4*X(35242) = 7*X(1)-8*X(37624) = 2*X(1)-5*X(58217) = 4*X(1)-9*X(58221) = 3*X(1)-5*X(58229) = 8*X(1)-5*X(58239) = 19*X(1)-9*X(58241) = 12*X(1)-5*X(58242) = 6*X(1)-X(58245) = 2*X(3)+3*X(40) = 4*X(3)-9*X(165) = 11*X(3)-6*X(1385) = 13*X(3)-3*X(1482) = 14*X(3)-9*X(3576) = X(3)-6*X(3579) = 6*X(3)-X(7982) = 4*X(3)-3*X(7987) = 4*X(3)+X(7991) = 7*X(3)-2*X(10222) = 19*X(3)-9*X(10246) = 7*X(3)+3*X(12702) = 9*X(3)-4*X(15178) = 4*X(3)-X(16189) = 12*X(3)-7*X(30389) = 3*X(3)-2*X(31666) = 2*X(3)-3*X(35242) = 7*X(3)-3*X(37624) = 8*X(3)-5*X(58229) = 2*X(40)+3*X(165) = 7*X(40)+3*X(3576) = X(40)+4*X(3579) = 9*X(40)+X(7982) = 2*X(40)+X(7987) = 6*X(40)-X(7991) = 7*X(40)-2*X(12702) = 6*X(40)+X(16189) = 7*X(40)+2*X(37624) = 7*X(165)-2*X(3576)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 17/05/2024.

X(63469) lies on these lines: {1, 3}, {2, 5493}, {4, 9588}, {5, 19876}, {8, 12512}, {9, 62180}, {10, 3146}, {20, 3679}, {30, 37714}, {63, 4882}, {71, 18594}, {72, 43691}, {100, 3984}, {140, 31162}, {145, 62078}, {191, 2938}, {200, 3951}, {227, 34033}, {355, 15704}, {376, 4677}, {381, 30315}, {382, 50821}, {515, 4668}, {516, 1698}, {518, 55614}, {519, 3522}, {546, 7989}, {548, 50811}, {549, 9624}, {550, 3654}, {551, 15717}, {573, 3973}, {631, 11522}, {632, 8227}, {944, 62092}, {946, 3525}, {952, 62104}, {956, 63138}, {958, 11530}, {962, 3624}, {972, 58106}, {1054, 38685}, {1071, 15104}, {1125, 20070}, {1210, 59418}, {1282, 38668}, {1293, 10563}, {1386, 55684}, {1479, 35514}, {1490, 16558}, {1571, 7772}, {1572, 31421}, {1656, 28198}, {1699, 3090}, {1702, 6420}, {1703, 6419}, {1706, 4640}, {1742, 3293}, {1743, 62181}, {1750, 55104}, {1768, 38665}, {1770, 31434}, {1902, 55578}, {2100, 15156}, {2101, 15157}, {2948, 15054}, {3085, 4312}, {3241, 21734}, {3474, 5290}, {3475, 5586}, {3523, 4301}, {3524, 13464}, {3526, 38021}, {3528, 5882}, {3529, 5657}, {3530, 3656}, {3544, 18483}, {3555, 10178}, {3582, 6926}, {3584, 4338}, {3592, 9616}, {3594, 19003}, {3616, 28228}, {3617, 28164}, {3626, 59420}, {3627, 5587}, {3628, 7988}, {3632, 4297}, {3633, 5731}, {3634, 9812}, {3653, 44682}, {3655, 33923}, {3671, 5281}, {3678, 9961}, {3680, 11194}, {3697, 15726}, {3731, 34820}, {3751, 53097}, {3753, 19526}, {3817, 19872}, {3828, 3832}, {3843, 28202}, {3871, 62823}, {3895, 12127}, {3911, 51785}, {3913, 3928}, {3915, 62695}, {3916, 63137}, {3929, 4866}, {4192, 36634}, {4292, 51784}, {4300, 5312}, {4309, 37423}, {4330, 6987}, {4342, 5265}, {4421, 11523}, {4512, 5047}, {4652, 4853}, {4669, 62120}, {4745, 15683}, {4816, 28236}, {4857, 6865}, {4915, 62824}, {4917, 62235}, {5007, 9593}, {5059, 34638}, {5067, 38068}, {5072, 22793}, {5076, 18492}, {5079, 11231}, {5084, 50836}, {5223, 5687}, {5250, 17531}, {5258, 37022}, {5270, 6916}, {5435, 12575}, {5531, 12515}, {5540, 38684}, {5541, 38669}, {5603, 61814}, {5690, 12103}, {5692, 58637}, {5704, 51783}, {5726, 9579}, {5727, 15338}, {5734, 15692}, {5735, 37112}, {5758, 11552}, {5759, 9612}, {5779, 58834}, {5790, 49137}, {5818, 28150}, {5886, 14869}, {5901, 61808}, {5904, 9943}, {5918, 34790}, {6425, 18991}, {6426, 18992}, {6427, 31439}, {6453, 9582}, {6454, 35775}, {6519, 9585}, {6796, 54156}, {6982, 16004}, {7074, 34043}, {7162, 31507}, {7411, 8715}, {7486, 50802}, {7713, 11403}, {7741, 50031}, {7992, 11500}, {7993, 51529}, {7995, 44425}, {7996, 51294}, {8580, 12446}, {8583, 17572}, {8703, 37727}, {8951, 56009}, {9537, 30265}, {9575, 22332}, {9580, 24914}, {9583, 35611}, {9592, 31422}, {9620, 35007}, {9709, 30393}, {9779, 51073}, {9780, 50689}, {9825, 34657}, {9860, 23235}, {9881, 10991}, {9897, 24466}, {9899, 40660}, {9904, 14094}, {9955, 55857}, {9956, 61984}, {10056, 37108}, {10165, 61807}, {10175, 61964}, {10248, 46932}, {10304, 51093}, {10431, 31446}, {10483, 31799}, {10541, 16475}, {10572, 30286}, {10827, 15228}, {10860, 41229}, {11038, 18217}, {11230, 61850}, {11541, 31673}, {12102, 38042}, {12108, 22791}, {12245, 62084}, {12408, 38676}, {12437, 34744}, {12518, 55169}, {12571, 19877}, {12632, 34639}, {12640, 34610}, {12653, 38693}, {12697, 45550}, {12698, 45551}, {12701, 31231}, {12778, 51522}, {12812, 28216}, {13174, 38664}, {13221, 38689}, {13253, 34474}, {13541, 38713}, {13893, 53513}, {13947, 53516}, {14664, 38671}, {14690, 38674}, {15017, 38763}, {15326, 37709}, {15686, 61249}, {15696, 28204}, {15705, 51103}, {15712, 61276}, {15720, 51709}, {16139, 16143}, {16386, 47492}, {16474, 37501}, {16491, 53094}, {16496, 31884}, {16569, 19647}, {16570, 59294}, {16833, 37416}, {16862, 31435}, {16865, 35258}, {17504, 61278}, {17800, 38066}, {18253, 38200}, {18357, 62044}, {18480, 49136}, {18481, 44245}, {18493, 61840}, {18525, 62134}, {19646, 21363}, {19708, 51097}, {19862, 61848}, {19883, 61834}, {19925, 50688}, {20400, 34789}, {20420, 34618}, {21075, 60905}, {21735, 51705}, {24174, 60846}, {24391, 34607}, {24443, 62875}, {24644, 31658}, {26062, 40998}, {28154, 62035}, {28160, 62143}, {28178, 61261}, {28186, 61250}, {28208, 62131}, {28212, 61274}, {28232, 60781}, {30271, 49448}, {30304, 37426}, {30326, 37411}, {31145, 50815}, {31424, 54286}, {32537, 34620}, {33697, 62053}, {33703, 50796}, {34200, 51094}, {34627, 62127}, {34631, 62061}, {34641, 50816}, {34648, 49135}, {34718, 62100}, {34773, 61294}, {36158, 47273}, {37364, 37720}, {37400, 42043}, {37424, 37719}, {37723, 63273}, {38022, 61821}, {38028, 61801}, {38029, 55681}, {38034, 55862}, {38074, 49138}, {38076, 61982}, {38081, 62164}, {38083, 61953}, {38098, 62149}, {38112, 61256}, {38127, 62146}, {38140, 61991}, {38314, 61791}, {38666, 39156}, {40273, 61900}, {41991, 61263}, {41992, 61269}, {43151, 59372}, {46853, 61288}, {47114, 47489}, {48154, 50825}, {48883, 48919}, {48897, 48924}, {49140, 59387}, {49465, 55651}, {50581, 62820}, {50687, 51069}, {50692, 50862}, {50798, 62121}, {50799, 62006}, {50806, 55866}, {50813, 50871}, {50817, 62085}, {50820, 62105}, {50823, 62106}, {50824, 58190}, {50827, 62117}, {50828, 61138}, {50829, 55864}, {50872, 61788}, {51067, 62145}, {51068, 62148}, {51070, 62132}, {51071, 62063}, {51072, 62129}, {51085, 58186}, {51091, 62072}, {51107, 62054}, {51108, 61806}, {51109, 61812}, {51120, 61816}, {55861, 61268}, {58441, 61863}, {58630, 61705}, {59388, 62133}, {59503, 62119}, {61248, 62126}, {61255, 62159}, {61258, 62036}, {61272, 61852}, {61275, 61802}, {61282, 62062}, {61286, 62069}, {61291, 62079}, {61296, 62091}, {61510, 62141}, {62827, 63142}

X(63469) = midpoint of X(i) and X(j) for these (i, j): {40, 35242}, {7991, 16189}, {12702, 37624}, {51072, 62129}
X(63469) = reflection of X(i) in X(j) for these (i, j): (1, 7987), (4, 31399), (1656, 31447), (7987, 35242), (11522, 631), (16491, 53094), (51105, 15692), (61276, 15712)
X(63469) = crosspoint of X(4606) and X(7045)
X(63469) = crosssum of X(2310) and X(4790)
X(63469) = X(i)-aleph conjugate of X(j) for these (i, j): (188, 3646), (25430, 62820)
X(63469) = X(i)-Ceva conjugate of X(j) for these (i, j): (3929, 3731), (4866, 1)
X(63469) = X(i)-zayin conjugate of X(j) for these (i, j): (1697, 1), (2269, 941), (3715, 165), (17418, 3667), (34820, 3731)
X(63469) = Gibert-Burek-Moses concurrent circles image of X(5122)
X(63469) = inverse of X(30389) in Hung circle
X(63469) = pole of the line {672, 3731} with respect to the Gheorghe circle
X(63469) = pole of the line {513, 30389} with respect to the Hung circle
X(63469) = pole of the line {44429, 47996} with respect to the orthoptic circle of Steiner inellipse
X(63469) = pole of the line {28191, 44426} with respect to the polar circle
X(63469) = pole of the line {910, 1449} with respect to the Stevanovic circle
X(63469) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 7991, 1), (35, 2093, 1), (40, 165, 1), (40, 3579, 165), (46, 61763, 1), (55, 3339, 1), (56, 9819, 1), (57, 53053, 1), (165, 7991, 3), (484, 59316, 1), (999, 30337, 1), (1385, 11224, 1), (1482, 30392, 1), (1697, 3361, 1), (3057, 13462, 1), (3295, 10980, 1), (3340, 53054, 1), (3576, 11531, 1), (3601, 18421, 1), (5119, 15803, 1), (5584, 6244, 35), (5709, 16208, 1), (5903, 30282, 1), (6767, 30343, 1), (7982, 30389, 1), (10222, 31663, 3), (11010, 58887, 1), (16209, 49163, 1), (35445, 41348, 65)


X(63470) = X(2)X(98)∩X(7)X(8)

Barycentrics    a^6-(b^2-b*c+c^2)*a^4+(b+c)*b*c*a^3+(b^2+c^2)*(b^2+b*c+c^2)*a^2+(b+c)*(b^2+c^2)*b*c*a-(b^4-c^4)*(b^2-c^2) : :

See Antreas Hatzipolakis and César Lozada, euclid 6178.

X(63470) lies on these lines: {2, 98}, {3, 25713}, {4, 63070}, {6, 2476}, {7, 8}, {21, 1503}, {66, 1798}, {141, 404}, {193, 5177}, {323, 31100}, {343, 59353}, {405, 18440}, {442, 3564}, {511, 2475}, {524, 6175}, {613, 11680}, {858, 26637}, {958, 39891}, {1001, 39892}, {1330, 15983}, {1350, 17579}, {1351, 17532}, {2393, 41718}, {2886, 39897}, {2893, 15982}, {3056, 52367}, {3098, 37256}, {3580, 4239}, {3589, 7504}, {3616, 12589}, {3618, 6933}, {3619, 6921}, {3620, 6904}, {3763, 17566}, {3794, 37456}, {3818, 5046}, {4187, 18358}, {4189, 46264}, {4190, 10519}, {4193, 10516}, {4197, 15069}, {4223, 26530}, {4228, 26542}, {4307, 21280}, {5051, 25898}, {5091, 24251}, {5092, 37291}, {5141, 14561}, {5249, 26000}, {5263, 21293}, {5480, 17577}, {5757, 37445}, {5767, 16062}, {5847, 27368}, {6856, 14912}, {6857, 39874}, {6871, 14853}, {6910, 25406}, {7483, 48906}, {10198, 39900}, {11064, 30770}, {11112, 48876}, {11113, 39884}, {11114, 36990}, {11246, 23922}, {11645, 15677}, {11898, 17528}, {12587, 59406}, {12609, 24432}, {14810, 36004}, {15680, 29012}, {15985, 26064}, {15991, 21287}, {16418, 48662}, {17530, 18583}, {17549, 44882}, {18553, 37162}, {19310, 26540}, {19860, 39885}, {20080, 37161}, {24541, 39870}, {25459, 51171}, {25466, 39873}, {25985, 39871}, {26131, 28369}, {26363, 39901}, {28204, 48813}, {31156, 51023}, {32779, 56886}, {32782, 37099}, {33104, 50635}, {33878, 50239}, {34146, 41734}, {36740, 54313}, {37299, 48898}, {37346, 45923}, {37435, 62174}, {39766, 51192}, {41728, 44668}, {44217, 50955}, {48901, 62969}, {49524, 59416}, {50755, 51196}, {55610, 56998}

X(63470) = reflection of X(i) in X(j) for these (i, j): (21, 26543), (15988, 442)
X(63470) = anticomplement of the Psi-transform of X(37959)
X(63470) = crossdifference of every pair of points on the line X(3063)X(3569)
X(63470) = perspector of the circumconic through X(2966) and X(4554)
X(63470) = pole of the line {16230, 18344} with respect to the polar circle
X(63470) = pole of the line {21, 230} with respect to the Kiepert circumhyperbola
X(63470) = pole of the line {511, 2194} with respect to the Stammler hyperbola
X(63470) = pole of the line {693, 2799} with respect to the Steiner circumellipse
X(63470) = pole of the line {2799, 4885} with respect to the Steiner inellipse
X(63470) = pole of the line {21, 325} with respect to the Steiner-Wallace hyperbola


X(63471) = X(2)X(98)∩X(63)X(69)

Barycentrics    (-a^2+b^2+c^2)*(a^6+3*(b+c)*a^5+(b^2+3*b*c+c^2)*a^4+(b^2-c^2)^2*a^2+(b^2-c^2)^2*(b+c)*a+(b+c)*(b^2-c^2)*(b^3-c^3)) : :

See Antreas Hatzipolakis and César Lozada, euclid 6178.

X(63471) lies on these lines: {2, 98}, {6, 469}, {27, 1503}, {63, 69}, {141, 7573}, {185, 6999}, {323, 31102}, {440, 3564}, {511, 3151}, {524, 31153}, {857, 3193}, {1181, 7377}, {1654, 44093}, {1999, 37185}, {3580, 26252}, {5224, 44101}, {5800, 37181}, {6146, 6996}, {6542, 25270}, {7406, 18945}, {7490, 39874}, {7522, 18440}, {7536, 48906}, {7560, 46264}, {11064, 30772}, {18686, 41363}, {18909, 36698}, {19467, 37416}, {29012, 31292}, {30227, 34342}, {37191, 41233}

X(63471) = perspector of the circumconic through X(2966) and X(4561)
X(63471) = pole of the line {511, 1654} with respect to the Jerabek circumhyperbola
X(63471) = pole of the line {27, 230} with respect to the Kiepert circumhyperbola
X(63471) = pole of the line {511, 1474} with respect to the Stammler hyperbola
X(63471) = pole of the line {2799, 20294} with respect to the Steiner circumellipse
X(63471) = pole of the line {2799, 20315} with respect to the Steiner inellipse
X(63471) = pole of the line {27, 325} with respect to the Steiner-Wallace hyperbola
X(63471) = pole of the line {1331, 53344} with respect to the Yff parabola


X(63472) = X(2)X(51)∩X(6)X(4230)

Barycentrics    a^2*(b^4*c^4*(b^2-c^2)^2*(b^2+c^2)+a^10*(b^4+3*b^2*c^2+c^4)-2*a^8*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)+a^6*(2*b^6*c^2+5*b^4*c^4+2*b^2*c^6)-a^2*(b^2-c^2)^2*(b^8-b^6*c^2+b^4*c^4-b^2*c^6+c^8)+a^4*(2*b^10-4*b^8*c^2+b^6*c^4+b^4*c^6-4*b^2*c^8+2*c^10)) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6183.

X(63472) lies on the circumconic {{A, B, C, X(9513), X(42313)}} and on these lines: {2, 51}, {4, 60869}, {6, 4230}, {32, 43754}, {182, 37918}, {250, 19136}, {520, 1992}, {576, 40804}, {1351, 56961}, {1995, 61198}, {2393, 37765}, {2882, 35278}, {3150, 21850}, {5480, 57583}, {6403, 36191}, {6793, 46303}, {15407, 51822}, {35360, 46247}, {51263, 60695}

X(63472) = pole of line {3815, 57583} with respect to the Kiepert hyperbola
X(63472) = pole of line {182, 63464} with respect to the Stammler hyperbola
X(63472) = pole of line {23878, 47233} with respect to the Steiner inellipse


X(63473) = X(6)X(4230)∩X(23)X(110)

Barycentrics    a^2*(a^14-2*a^12*(b^2+c^2)+3*a^10*(b^2+c^2)^2-a^8*(5*b^6+6*b^4*c^2+6*b^2*c^4+5*c^6)+a^6*(b^8+4*b^6*c^2+9*b^4*c^4+4*b^2*c^6+c^8)-a^2*(b^2-c^2)^2*(5*b^8+4*b^6*c^2+9*b^4*c^4+4*b^2*c^6+5*c^8)+(b^2-c^2)^2*(b^10+2*b^6*c^4+2*b^4*c^6+c^10)+a^4*(6*b^10-6*b^8*c^2-3*b^6*c^4-3*b^4*c^6-6*b^2*c^8+6*c^10)) : :
X(63473) = -2*X[3284]+3*X[52699]

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6183.

X(63473) lies on these lines: {6, 4230}, {23, 110}, {187, 43754}, {520, 41617}, {542, 40885}, {3284, 52699}, {13169, 45312}, {44769, 53777}

X(63473) = reflection of X(i) in X(j) for these {i,j}: {13169, 45312}, {44769, 53777}
X(63473) = perspector of circumconic {{A, B, C, X(5649), X(53699)}}
X(63473) = pole of line {542, 63464} with respect to the Stammler hyperbola


X(63474) = X(4)X(94)∩X(1154)X(7687)

Barycentrics    a^2*(a^12*b^2 - 4*a^10*b^4 + 5*a^8*b^6 - 5*a^4*b^10 + 4*a^2*b^12 - b^14 + a^12*c^2 - 8*a^10*b^2*c^2 + 11*a^8*b^4*c^2 - 3*a^6*b^6*c^2 + 8*a^4*b^8*c^2 - 17*a^2*b^10*c^2 + 8*b^12*c^2 - 4*a^10*c^4 + 11*a^8*b^2*c^4 - 18*a^6*b^4*c^4 + 29*a^2*b^8*c^4 - 18*b^10*c^4 + 5*a^8*c^6 - 3*a^6*b^2*c^6 - 32*a^2*b^6*c^6 + 11*b^8*c^6 + 8*a^4*b^2*c^8 + 29*a^2*b^4*c^8 + 11*b^6*c^8 - 5*a^4*c^10 - 17*a^2*b^2*c^10 - 18*b^4*c^10 + 4*a^2*c^12 + 8*b^2*c^12 - c^14) : :
X(63474) = 3 X[143] - X[1986], X[1539] + 3 X[45237], X[1986] + 3 X[10113], X[12133] + 3 X[12236], 3 X[51] - X[11561], 9 X[381] - X[12273], X[1511] - 3 X[13364], 3 X[3845] + X[21649], 3 X[5946] + X[10733], 7 X[9781] + X[12902], X[10263] + 3 X[14644], X[10627] - 3 X[23515], X[11557] - 3 X[13451], X[12121] - 5 X[15026], X[12270] - 9 X[13321], X[12284] + 7 X[61984], 3 X[13363] - X[16163], 4 X[15465] - X[32142], 3 X[34128] - X[63414]

See Antreas Hatzipolakis and Peter Moses, euclid 6184.

X(63474) lies on these lines: {4, 94}, {30, 58498}, {51, 11561}, {381, 12273}, {546, 11800}, {1154, 7687}, {1511, 10545}, {3574, 61574}, {3845, 21649}, {3853, 11806}, {5446, 11801}, {5946, 10733}, {5972, 18874}, {9781, 12902}, {10095, 17702}, {10110, 32423}, {10263, 14644}, {10627, 23515}, {10821, 37945}, {11557, 13451}, {11702, 14483}, {11746, 12006}, {12099, 15107}, {12121, 15026}, {12270, 13321}, {12284, 61984}, {12295, 13630}, {13363, 16163}, {13391, 20304}, {13598, 61548}, {14984, 19130}, {15088, 15465}, {15089, 34484}, {15151, 34584}, {17855, 62026}, {30522, 44084}, {32205, 43809}, {34128, 63414}

X(63474) = midpoint of X(i) and X(j) for these {i,j}: {4, 13358}, {143, 10113}, {546, 11800}, {3853, 11806}, {5446, 11801}, {12295, 13630}, {13598, 61548}, {17855, 62026}
X(63474) = reflection of X(i) in X(j) for these {i,j}: {5972, 18874}, {12006, 11746}, {15088, 15465}, {32142, 15088}


X(63475) = X(5)X(1843)∩X(6)X(156)

Barycentrics    a^2*(a^8*b^2 - 2*a^6*b^4 + 2*a^2*b^8 - b^10 + a^8*c^2 - 4*a^6*b^2*c^2 - a^4*b^4*c^2 + 4*b^8*c^2 - 2*a^6*c^4 - a^4*b^2*c^4 - 8*a^2*b^4*c^4 - 3*b^6*c^4 - 3*b^4*c^6 + 2*a^2*c^8 + 4*b^2*c^8 - c^10) : :
X(63475) = 3 X[5] - X[9967], 3 X[1843] + X[9967], 3 X[51] - X[1353], X[143] + 2 X[43130], 2 X[182] - 3 X[13363], X[182] - 3 X[16776], 3 X[381] + X[6403], 3 X[568] + X[5921], X[1352] + 3 X[9971], X[1351] + 3 X[11188], X[13630] + 4 X[43129], 5 X[1656] - X[12220], 3 X[13364] - 2 X[18583], 3 X[3060] + X[11898], 5 X[3091] - X[18438], 5 X[3567] - X[39899], 5 X[3620] - X[37484], 3 X[3845] - X[12294], 3 X[5050] - 5 X[15026], 3 X[5093] - 7 X[9781], 3 X[5093] + X[12272], 7 X[9781] + X[12272], 9 X[5640] - X[12283], 9 X[5640] - 5 X[53091], X[12283] - 5 X[53091], 3 X[5890] + X[48662], 3 X[5943] - 2 X[51732], 3 X[5946] - X[6776], X[6467] - 3 X[59399], 3 X[10516] - 2 X[14128], 3 X[13451] - X[61624], X[9973] + 3 X[14561], X[9973] + 4 X[18874], 3 X[14561] - X[15074], 3 X[14561] - 4 X[18874], X[15074] - 4 X[18874], 3 X[29959] - X[48876], X[13421] + 2 X[34507], 11 X[15024] - 7 X[55705], 13 X[15028] - 9 X[55697], 3 X[15060] - X[41716], 3 X[15067] - 5 X[40330], X[17710] - 3 X[38317], 4 X[32205] - 3 X[38110], 3 X[40670] - 2 X[58445], 5 X[37481] - X[39874], 3 X[38136] - X[50649]

See Antreas Hatzipolakis and Peter Moses, euclid 6185.

X(63475) lies on these lines: {3, 11387}, {5, 1843}, {6, 156}, {25, 19154}, {26, 7716}, {30, 51994}, {51, 1353}, {69, 10263}, {140, 9822}, {141, 10627}, {143, 3564}, {159, 32046}, {182, 12106}, {381, 6403}, {427, 13416}, {511, 546}, {542, 13358}, {568, 5921}, {575, 58532}, {1154, 1352}, {1350, 31861}, {1351, 11188}, {1503, 13630}, {1656, 12220}, {2393, 13364}, {2781, 48889}, {2854, 5097}, {2871, 61532}, {2876, 61517}, {3060, 11898}, {3091, 11576}, {3313, 32142}, {3518, 19129}, {3567, 39899}, {3589, 44232}, {3620, 37484}, {3627, 37511}, {3628, 11574}, {3818, 45959}, {3845, 12294}, {3867, 13371}, {5050, 15026}, {5093, 9781}, {5446, 14913}, {5480, 14984}, {5640, 12283}, {5663, 19161}, {5890, 48662}, {5943, 15448}, {5946, 6776}, {5965, 44056}, {6102, 18440}, {6467, 59399}, {7403, 41584}, {7506, 39588}, {7529, 11255}, {7564, 10516}, {8681, 13451}, {9019, 24206}, {9827, 19131}, {9973, 14561}, {10110, 34382}, {11416, 21308}, {11649, 46031}, {11817, 12088}, {12006, 48906}, {12007, 58549}, {12212, 52951}, {13391, 29959}, {13421, 34507}, {13621, 19128}, {15024, 55705}, {15028, 55697}, {15060, 41716}, {15067, 40330}, {16983, 37242}, {17710, 38317}, {17714, 19126}, {18350, 63063}, {18378, 19121}, {18571, 55674}, {18952, 36851}, {19124, 37814}, {19130, 44235}, {19140, 32299}, {20300, 20304}, {29012, 45971}, {32137, 34146}, {32205, 38110}, {32218, 40670}, {36749, 63183}, {37481, 39874}, {38136, 50649}, {38321, 44573}, {44236, 54044}, {48884, 50006}, {58407, 58437}

X(63475) = midpoint of X(i) and X(j) for these {i,j}: {5, 1843}, {69, 10263}, {3627, 37511}, {5446, 14913}, {5480, 41714}, {6102, 18440}, {9969, 43130}, {9973, 15074}, {16983, 37242}, {19140, 32299}, {19161, 39884}
X(63475) = reflection of X(i) in X(j) for these {i,j}: {6, 10095}, {140, 9822}, {143, 9969}, {575, 58532}, {3313, 32142}, {10627, 141}, {11574, 3628}, {11591, 18358}, {12007, 58549}, {13363, 16776}, {45959, 3818}, {48906, 12006}
X(63475) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5640, 12283, 53091}, {9781, 12272, 5093}, {9973, 14561, 15074}, {18583, 61610, 61619}


X(63476) = X(5)X(1843)∩X(25)X(9722)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*(a^8*b^2 - 4*a^6*b^4 + 6*a^4*b^6 - 4*a^2*b^8 + b^10 + a^8*c^2 - 4*a^6*b^2*c^2 - 6*a^4*b^4*c^2 + 4*a^2*b^6*c^2 - 3*b^8*c^2 - 4*a^6*c^4 - 6*a^4*b^2*c^4 + 2*b^6*c^4 + 6*a^4*c^6 + 4*a^2*b^2*c^6 + 2*b^4*c^6 - 4*a^2*c^8 - 3*b^2*c^8 + c^10) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6185.

X(63476) lies on these lines: {5, 1843}, {25, 9722}, {235, 30549}, {427, 15271}, {3767, 19595}, {34845, 54381}


X(63477) = X(511)X(546)∩X(7403)X(7795)

Barycentrics    2*a^12 - 3*a^10*b^2 - 3*a^8*b^4 + 10*a^6*b^6 - 12*a^4*b^8 + 9*a^2*b^10 - 3*b^12 - 3*a^10*c^2 - 10*a^8*b^2*c^2 - 6*a^6*b^4*c^2 + 24*a^4*b^6*c^2 - 23*a^2*b^8*c^2 + 18*b^10*c^2 - 3*a^8*c^4 - 6*a^6*b^2*c^4 - 24*a^4*b^4*c^4 + 14*a^2*b^6*c^4 - 45*b^8*c^4 + 10*a^6*c^6 + 24*a^4*b^2*c^6 + 14*a^2*b^4*c^6 + 60*b^6*c^6 - 12*a^4*c^8 - 23*a^2*b^2*c^8 - 45*b^4*c^8 + 9*a^2*c^10 + 18*b^2*c^10 - 3*c^12 : :

See Antreas Hatzipolakis and Peter Moses, euclid 6185.

X(63477) lies on these lines: {235, 30549}, {511, 546}, {1609, 10594}, {6756, 45838}, {7403, 7795}, {7886, 13383}, {21841, 34981}


leftri

Bicevian centroidal collineation images: X(63478)-X(63628)

rightri

This preamble and centers X(63478)-X(63628) were contributed by Ivan Pavlov on May 21, 2024.

We will call {P,Q}-bicevian centroidal collineation the collineation which brings the cevian triangle of P = (u:v:w) into the cevian triangle of Q=(p:q:r) and has a fixed point in the centroid G of the reference triangle.

The general formula for the image of X=(x:y:z) in barycentrics is:
𝓒𝓛(X,P,Q; G) = ( p (u (v + w) - v w) (v w (p u (q - r) (v - w) - q r v w) x + u (w y - v z) (p v w (q - r) - q r u (v - w))) : : )

This transformation has the obvious inverse: 𝓒𝓛(X,P,Q; G)-1 = 𝓒𝓛(X,Q,P; G).

Some existing triangle centers are presented in the table below:

XPQ𝓒𝓛(X,P,Q; G)
X(1)X(1)X(2)X(6376)
X(6)X(1)X(2)X(41886)
X(37)X(1)X(2)X(34832)
X(38)X(1)X(2)X(21250)
X(9)X(2)X(1)X(3056)
X(10)X(2)X(1)X(17448)
X(44)X(2)X(1)X(23633)
X(3)X(3)X(2)X(62576)
X(3)X(2)X(4)X(44518)
X(4)X(4)X(2)X(6337)
X(5)X(5)X(2)X(62603)
X(10)X(2)X(6)X(23652)
X(37)X(2)X(6)X(21759)
X(39)X(2)X(6)X(9490)
X(6)X(6)X(2)X(6374)
X(1)X(2)X(10)X(23903)


X(63478) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(8)

Barycentrics    (-(b*c)+a*(b+c))*(a^3*(b-c)^2+a*b^2*c^2+a^2*(b-c)^2*(b+c)-b^2*c^2*(b+c)) : :

X(63478) lies on circumconic {{A, B, C, X(3224), X(40881)}} and on these lines: {2, 330}, {8, 38986}, {10, 14823}, {192, 27137}, {1125, 59168}, {1213, 63491}, {1329, 5518}, {1376, 57505}, {1574, 40610}, {3224, 37673}, {3634, 34832}, {9780, 63480}, {17353, 24502}, {21892, 63488}, {26042, 33159}

X(63478) = X(i)-complementary conjugate of X(j) for these {i, j}: {979, 20255}, {2209, 62585}, {53625, 21191}, {56279, 20545}
X(63478) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63490, 6376}


X(63479) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(31)

Barycentrics    a*(-(b*c)+a*(b+c))*(b^3-b^2*c+b*(a-c)*c+c^3) : :

X(63479) lies on these lines: {2, 27434}, {9, 1575}, {223, 16968}, {226, 20271}, {257, 312}, {908, 3981}, {3094, 3452}, {3124, 31053}, {3944, 3959}, {4426, 14823}, {5518, 20623}, {9259, 39049}, {15310, 21780}, {20859, 27131}, {21138, 30545}, {23980, 40610}, {39063, 63489}, {41883, 53475}

X(63479) = X(i)-Dao conjugate of X(j) for these {i, j}: {20254, 2}
X(63479) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 20254}, {651, 4083}
X(63479) = X(i)-complementary conjugate of X(j) for these {i, j}: {19, 20255}, {25, 3840}, {31, 20254}, {33, 20545}, {43, 1368}, {607, 20258}, {608, 20257}, {1096, 20256}, {1395, 17063}, {1403, 34822}, {1423, 18639}, {1783, 21191}, {1973, 75}, {1974, 16604}, {2155, 20261}, {2176, 18589}, {2209, 3}, {2212, 3061}, {3209, 20260}, {7154, 20259}, {8640, 2968}, {8750, 4083}, {21834, 127}, {41526, 17073}, {50491, 34846}, {62420, 1214}
X(63479) = X(i)-cross conjugate of X(j) for these {i, j}: {23669, 3959}
X(63479) = pole of line {75, 20254} with respect to the Kiepert hyperbola
X(63479) = pole of line {4083, 31286} with respect to the dual conic of DeLongchamps circle
X(63479) = pole of line {20254, 20257} with respect to the dual conic of Yff parabola
X(63479) = intersection, other than A, B, C, of circumconics {{A, B, C, X(257), X(3959)}}, {{A, B, C, X(3551), X(3944)}}, {{A, B, C, X(17596), X(62422)}}
X(63479) = barycentric product X(i)*X(j) for these (i, j): {1, 23669}, {192, 3959}, {3944, 43}
X(63479) = barycentric quotient X(i)/X(j) for these (i, j): {3944, 6384}, {3959, 330}, {23526, 23086}, {23669, 75}
X(63479) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {41886, 63483, 63481}


X(63480) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(39)

Barycentrics    a*(-(b*c)+a*(b+c))*(a^2*(b-c)^2+2*b^2*c^2) : :

X(63480) lies on these lines: {1, 668}, {2, 27437}, {194, 24745}, {899, 21877}, {2230, 27627}, {2234, 3647}, {3614, 5518}, {3617, 63490}, {3625, 59168}, {5217, 57505}, {9780, 63478}, {19862, 34832}, {20530, 23652}, {23427, 24739}, {24527, 25661}, {62711, 63482}

X(63480) = X(i)-complementary conjugate of X(j) for these {i, j}: {2209, 40585}, {34443, 3840}
X(63480) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6376, 14823, 38986}


X(63481) = COMPLEMENT OF X(6384)

Barycentrics    a*(-(b*c)+a*(b+c))*(a*(b-c)^2+b*c*(b+c)) : :

X(63481) lies on these lines: {2, 330}, {6, 22140}, {9, 1575}, {37, 6375}, {39, 6686}, {42, 38986}, {43, 2176}, {190, 32011}, {354, 21893}, {440, 63484}, {650, 62558}, {726, 21884}, {893, 6651}, {899, 21877}, {1213, 34832}, {1329, 9367}, {2229, 62646}, {2238, 2347}, {2276, 3161}, {2300, 21904}, {3185, 62459}, {3452, 18904}, {3666, 27481}, {3739, 21895}, {3752, 17755}, {3840, 17448}, {3971, 6377}, {4358, 21345}, {4370, 40610}, {4871, 22199}, {5513, 5518}, {5743, 21250}, {16584, 24003}, {16593, 20528}, {16742, 31008}, {16746, 62709}, {18743, 20363}, {18905, 62673}, {19540, 20606}, {20284, 27538}, {20532, 21086}, {23447, 46827}, {24735, 27314}, {25116, 27091}, {26103, 63493}, {26688, 30647}, {30947, 63509}, {33946, 41784}, {40562, 59505}, {61018, 63489}

X(63481) = midpoint of X(i) and X(j) for these {i,j}: {6384, 41840}
X(63481) = complement of X(6384)
X(63481) = perspector of circumconic {{A, B, C, X(18830), X(25312)}}
X(63481) = center of circumconic {{A, B, C, X(190), X(61183)}}
X(63481) = X(i)-isoconjugate-of-X(j) for these {i, j}: {330, 57400}, {2162, 32011}
X(63481) = X(i)-Dao conjugate of X(j) for these {i, j}: {3123, 514}, {3840, 2}, {17448, 62419}, {59168, 1278}, {59676, 330}
X(63481) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 3840}, {190, 4083}, {22343, 17448}
X(63481) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 20255}, {25, 20256}, {31, 3840}, {32, 75}, {41, 20258}, {43, 2887}, {55, 20545}, {101, 21191}, {184, 20254}, {192, 626}, {560, 16604}, {604, 20257}, {692, 4083}, {1252, 40562}, {1397, 17063}, {1403, 2886}, {1423, 17046}, {1918, 21024}, {1974, 20271}, {2175, 3061}, {2176, 141}, {2199, 20260}, {2209, 10}, {3208, 21244}, {3212, 17047}, {4083, 21252}, {4595, 21262}, {6376, 21235}, {6382, 40379}, {7104, 30038}, {7118, 20259}, {8640, 11}, {14598, 20363}, {14642, 20261}, {16695, 53564}, {20691, 21245}, {20760, 1368}, {20979, 116}, {21051, 53575}, {21762, 6547}, {21834, 21253}, {27644, 21240}, {32739, 31286}, {36860, 21263}, {38832, 3741}, {40367, 40380}, {41526, 142}, {50491, 125}, {51973, 20541}, {52923, 21260}, {53145, 21250}, {57074, 17761}, {62420, 2}, {62421, 20549}, {62530, 23301}
X(63481) = pole of line {4083, 14408} with respect to the Steiner inellipse
X(63481) = pole of line {61183, 61235} with respect to the Yff parabola
X(63481) = pole of line {3840, 20255} with respect to the dual conic of Yff parabola
X(63481) = {X(1),X(2)}-bicevian centroidal collineation image of X(42)
X(63481) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(22343)}}, {{A, B, C, X(43), X(3551)}}, {{A, B, C, X(330), X(2176)}}, {{A, B, C, X(893), X(40881)}}, {{A, B, C, X(3208), X(27424)}}, {{A, B, C, X(4083), X(32011)}}, {{A, B, C, X(6376), X(59168)}}, {{A, B, C, X(16569), X(62422)}}, {{A, B, C, X(20691), X(21025)}}, {{A, B, C, X(20892), X(61417)}}, {{A, B, C, X(27499), X(51973)}}, {{A, B, C, X(27805), X(61235)}}
X(63481) = barycentric product X(i)*X(j) for these (i, j): {3835, 61235}, {3840, 43}, {4083, 61183}, {16722, 37}, {17178, 20691}, {17448, 192}, {18192, 3971}, {20892, 2176}, {21025, 27644}, {22167, 33296}, {22343, 6376}, {23213, 264}, {25312, 513}, {59168, 87}, {59676, 62422}
X(63481) = barycentric quotient X(i)/X(j) for these (i, j): {43, 32011}, {2209, 57400}, {3840, 6384}, {16722, 274}, {17448, 330}, {20691, 56197}, {20892, 6383}, {21025, 60244}, {22167, 42027}, {22343, 87}, {23213, 3}, {25312, 668}, {59168, 6376}, {59676, 62419}, {61183, 18830}, {61235, 4598}
X(63481) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 16606, 16604}, {2, 41840, 6384}, {1575, 37673, 21892}, {3971, 6377, 17459}, {6376, 63482, 2}, {41886, 63483, 63479}


X(63482) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(43)

Barycentrics    (-(b*c)+a*(b+c))*(2*a^2*(b-c)^2-b^2*c^2+a*b*c*(b+c)) : :

X(63482) lies on circumconic {{A, B, C, X(9315), X(40881)}} and on these lines: {2, 330}, {43, 4595}, {1015, 40027}, {3501, 32011}, {4687, 59565}, {5241, 21250}, {5745, 63483}, {6377, 8026}, {6686, 17353}, {9315, 30610}, {14823, 16569}, {25287, 27105}, {62711, 63480}

X(63482) = X(i)-complementary conjugate of X(j) for these {i, j}: {2209, 40598}, {29227, 21191}, {36598, 20255}, {36614, 3840}, {36630, 20545}
X(63482) = pole of line {4083, 57235} with respect to the Steiner inellipse
X(63482) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63481, 6376}


X(63483) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(55)

Barycentrics    a*(a-b-c)*(-(b*c)+a*(b+c))*(b^2-3*b*c+c^2) : :

X(63483) lies on these lines: {2, 27433}, {9, 1575}, {2329, 14823}, {3038, 16588}, {3061, 3452}, {5745, 63482}, {17493, 18228}, {19584, 59511}, {21250, 41796}, {23636, 27130}, {24003, 52657}, {56466, 63485}

X(63483) = center of circumconic {{A, B, C, X(4499), X(4562)}}
X(63483) = X(i)-Dao conjugate of X(j) for these {i, j}: {17063, 2}, {55062, 25576}
X(63483) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 17063}, {27834, 4083}
X(63483) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 20257}, {9, 20255}, {31, 17063}, {33, 20256}, {41, 75}, {43, 2886}, {55, 3840}, {192, 17046}, {198, 20260}, {200, 20545}, {212, 20254}, {220, 20258}, {644, 21191}, {1253, 3061}, {1403, 11019}, {1423, 21258}, {2175, 16604}, {2176, 142}, {2209, 1}, {2212, 20271}, {3208, 141}, {3939, 4083}, {4083, 17059}, {4110, 626}, {4147, 21252}, {6376, 17047}, {7367, 20259}, {8640, 3756}, {18265, 20363}, {20691, 17052}, {20760, 34822}, {20979, 4904}, {22370, 18639}, {27538, 2887}, {27644, 17050}, {38832, 3742}, {41526, 4000}, {50491, 8286}, {52923, 17072}, {53145, 20528}, {53675, 20547}, {53676, 20338}, {56181, 3741}, {62420, 3752}
X(63483) = pole of line {17063, 20257} with respect to the dual conic of Yff parabola
X(63483) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3551), X(4941)}}, {{A, B, C, X(4051), X(9311)}}, {{A, B, C, X(17063), X(27538)}}
X(63483) = barycentric product X(i)*X(j) for these (i, j): {192, 4051}, {3208, 48627}, {4110, 63493}, {4147, 4499}, {4941, 8}, {17063, 27538}, {48643, 56181}
X(63483) = barycentric quotient X(i)/X(j) for these (i, j): {3208, 56353}, {4051, 330}, {4941, 7}, {48627, 7209}, {63493, 7153}
X(63483) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63479, 63481, 41886}


X(63484) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(65)

Barycentrics    (-(b*c)+a*(b+c))*(a^3*(b-c)^2-a^2*b*c*(b+c)+b*(b-c)^2*c*(b+c)-a*(b^2-c^2)^2) : :

X(63484) lies on these lines: {118, 5518}, {226, 20271}, {440, 63481}, {469, 37865}, {3061, 3452}, {3454, 34832}, {6260, 41886}, {17353, 24502}, {17748, 27559}, {23640, 27092}, {26012, 41883}

X(63484) = X(i)-complementary conjugate of X(j) for these {i, j}: {4, 20255}, {6, 20254}, {19, 3840}, {25, 75}, {33, 20258}, {34, 20257}, {43, 18589}, {64, 20261}, {192, 1368}, {208, 20260}, {281, 20545}, {393, 20256}, {607, 3061}, {608, 17063}, {1403, 17073}, {1423, 34822}, {1783, 4083}, {1897, 21191}, {1973, 16604}, {2176, 3}, {2207, 20271}, {2209, 1214}, {2333, 21024}, {3208, 34823}, {3212, 18639}, {7008, 20259}, {8750, 31286}, {15742, 40562}, {17921, 53564}, {20691, 21530}, {20760, 6389}, {20979, 2968}, {21051, 127}, {21834, 34846}, {41526, 17102}, {50491, 15526}, {62420, 216}, {62530, 52598}, {62537, 11574}
X(63484) = pole of line {21348, 23886} with respect to the dual conic of DeLongchamps circle
X(63484) = pole of line {17063, 20254} with respect to the dual conic of Yff parabola
X(63484) = barycentric quotient X(i)/X(j) for these (i, j): {23519, 15373}


X(63485) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(69)

Barycentrics    (-(b*c)+a*(b+c))*(a^4*(b-c)^2-b^2*c^2*(b^2+c^2)+a^2*(b^4-b^2*c^2+c^4)) : :

X(63485) lies on these lines: {2, 256}, {238, 34248}, {5750, 20528}, {6376, 17289}, {14823, 29991}, {17353, 24502}, {27105, 28402}, {27341, 49537}, {28739, 63489}, {29604, 34832}, {56466, 63483}

X(63485) = X(i)-complementary conjugate of X(j) for these {i, j}: {7093, 20255}, {15370, 75}


X(63486) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(81)

Barycentrics    (b^2+a*c)*(-(b*c)+a*(b+c))*(a*b+c^2) : :

X(63486) lies on these lines: {2, 256}, {81, 4594}, {226, 335}, {239, 39917}, {257, 312}, {321, 44187}, {893, 6651}, {904, 14823}, {1281, 27997}, {1432, 17316}, {1999, 7015}, {3687, 3797}, {3863, 18743}, {3865, 3912}, {3944, 5025}, {3975, 59480}, {3995, 56257}, {4110, 8026}, {4220, 27982}, {4835, 34832}, {7093, 14621}, {7104, 32911}, {16050, 40432}, {17493, 18228}, {17685, 63627}, {25248, 26753}, {27538, 53675}, {30545, 33890}, {40738, 56165}, {40848, 41318}, {40873, 62998}, {60245, 60261}

X(63486) = trilinear pole of line {4147, 23886}
X(63486) = X(i)-isoconjugate-of-X(j) for these {i, j}: {87, 172}, {171, 2162}, {330, 7122}, {894, 7121}, {932, 20981}, {2053, 7175}, {2330, 7153}, {4367, 34071}, {4598, 56242}, {7009, 15373}, {7119, 23086}, {7176, 57264}, {17103, 21759}, {18787, 51321}, {24533, 58958}, {27455, 59159}, {51319, 53678}, {51902, 53146}
X(63486) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 1909}, {3061, 7184}, {6377, 4369}, {21024, 51575}, {40598, 894}, {40610, 4367}, {52651, 52211}, {55062, 3287}
X(63486) = X(i)-Ceva conjugate of X(j) for these {i, j}: {256, 257}, {4594, 4083}
X(63486) = X(i)-complementary conjugate of X(j) for these {i, j}: {2209, 6626}, {2248, 3840}, {13610, 20255}, {18757, 75}, {41526, 63628}
X(63486) = X(i)-cross conjugate of X(j) for these {i, j}: {59565, 6376}
X(63486) = pole of line {18208, 30038} with respect to the dual conic of Yff parabola
X(63486) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6376)}}, {{A, B, C, X(43), X(3661)}}, {{A, B, C, X(57), X(62422)}}, {{A, B, C, X(81), X(4083)}}, {{A, B, C, X(92), X(21608)}}, {{A, B, C, X(192), X(312)}}, {{A, B, C, X(226), X(3835)}}, {{A, B, C, X(239), X(56657)}}, {{A, B, C, X(321), X(20691)}}, {{A, B, C, X(1211), X(27644)}}, {{A, B, C, X(2227), X(25142)}}, {{A, B, C, X(3208), X(33890)}}, {{A, B, C, X(3687), X(17752)}}, {{A, B, C, X(3797), X(41318)}}, {{A, B, C, X(6063), X(27497)}}, {{A, B, C, X(7018), X(27447)}}, {{A, B, C, X(17762), X(33296)}}, {{A, B, C, X(18050), X(18359)}}, {{A, B, C, X(20332), X(21250)}}, {{A, B, C, X(22174), X(55971)}}, {{A, B, C, X(25430), X(40780)}}, {{A, B, C, X(27483), X(51863)}}, {{A, B, C, X(30710), X(40844)}}, {{A, B, C, X(40773), X(40795)}}, {{A, B, C, X(51575), X(59565)}}
X(63486) = barycentric product X(i)*X(j) for these (i, j): {43, 7018}, {192, 257}, {256, 6376}, {1432, 4110}, {2176, 44187}, {3212, 4451}, {4083, 56241}, {6382, 893}, {17493, 40848}, {17752, 40099}, {20906, 3903}, {21051, 4594}, {21834, 7260}, {27447, 53675}, {27538, 7249}, {27805, 3835}, {31008, 52651}, {32010, 3971}, {40367, 7104}, {58377, 58981}, {59171, 63232}, {63492, 86}
X(63486) = barycentric quotient X(i)/X(j) for these (i, j): {43, 171}, {192, 894}, {256, 87}, {257, 330}, {893, 2162}, {904, 7121}, {1423, 7175}, {1432, 7153}, {2176, 172}, {2209, 7122}, {3123, 53541}, {3208, 2329}, {3212, 7176}, {3835, 4369}, {3903, 932}, {3971, 1215}, {4083, 4367}, {4110, 17787}, {4147, 3907}, {4451, 7155}, {4594, 56053}, {4595, 18047}, {4941, 7240}, {4970, 4697}, {6376, 1909}, {6382, 1920}, {7015, 23086}, {7018, 6384}, {7116, 15373}, {8026, 41318}, {8640, 56242}, {17217, 17212}, {17493, 39914}, {17752, 6645}, {18107, 18111}, {18197, 18200}, {18786, 34252}, {20691, 2295}, {20760, 3955}, {20906, 4374}, {20979, 20981}, {21051, 2533}, {21138, 7200}, {21834, 57234}, {21835, 21755}, {22090, 22093}, {25142, 24533}, {27447, 53677}, {27538, 7081}, {27805, 4598}, {30545, 7196}, {31008, 8033}, {33296, 17103}, {33890, 7187}, {39917, 40741}, {40099, 27447}, {40729, 21759}, {40848, 30669}, {41531, 18787}, {41886, 7184}, {44187, 6383}, {50491, 7234}, {51974, 53146}, {52136, 40745}, {52651, 16606}, {52923, 4579}, {53145, 51319}, {53675, 17752}, {53676, 51902}, {56241, 18830}, {58981, 58958}, {59480, 51974}, {59565, 51575}, {63232, 59158}, {63492, 10}
X(63486) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7018, 52651, 257}


X(63487) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(86)

Barycentrics    (-(b*c)+a*(b+c))*(-(a^2*b^2*c^2)-b^3*c^3+a^3*(b-c)^2*(b+c)-a*b^2*c^2*(b+c)) : :

X(63487) lies on these lines: {2, 256}, {37, 6386}, {1978, 22201}, {4687, 6376}, {5257, 20528}, {6375, 24732}, {6378, 19567}, {24505, 27289}, {25850, 44187}, {27069, 52043}, {29571, 34832}, {31336, 63491}

X(63487) = X(i)-complementary conjugate of X(j) for these {i, j}: {2209, 34021}, {40737, 20255}, {40770, 3840}


X(63488) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(87)

Barycentrics    (-(b*c)+a*(b+c))*(-(a^2*b*(b-c)^2*c)-b^3*c^3+2*a^3*(b-c)^2*(b+c)) : :

X(63488) lies on these lines: {2, 62419}, {37, 2998}, {75, 40610}, {4687, 25113}, {6686, 17353}, {8026, 23643}, {14823, 45209}, {17248, 21250}, {17322, 27289}, {18194, 38986}, {21892, 63478}

X(63488) = complement of X(62574)
X(63488) = X(i)-complementary conjugate of X(j) for these {i, j}: {2209, 62574}, {43115, 2887}
X(63488) = pole of line {25142, 57235} with respect to the Steiner inellipse
X(63488) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 63491, 6376}


X(63489) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(105)

Barycentrics    (a+b-c)*(a-b+c)*(-b^2+a*c)*(-(b*c)+a*(b+c))*(a*b-c^2) : :

X(63489) lies on these lines: {2, 27433}, {7, 291}, {12, 85}, {226, 335}, {292, 7176}, {651, 1922}, {1441, 18895}, {1447, 1463}, {1911, 56358}, {3212, 40848}, {3252, 36905}, {3674, 3864}, {4444, 53544}, {6063, 44172}, {8026, 30545}, {28739, 63485}, {30663, 62786}, {39063, 63479}, {43040, 62557}, {61018, 63481}

X(63489) = X(i)-isoconjugate-of-X(j) for these {i, j}: {9, 51321}, {41, 39914}, {55, 34252}, {238, 2053}, {239, 57264}, {1914, 2319}, {2162, 3684}, {2210, 7155}, {3685, 7121}, {4435, 34071}, {14024, 22381}, {14599, 27424}
X(63489) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 3975}, {223, 34252}, {478, 51321}, {3160, 39914}, {6377, 3716}, {9470, 2053}, {36906, 2319}, {40598, 3685}, {40610, 4435}, {62557, 7155}
X(63489) = X(i)-complementary conjugate of X(j) for these {i, j}: {2115, 20258}, {2209, 62599}, {9499, 20255}, {9500, 3840}
X(63489) = X(i)-cross conjugate of X(j) for these {i, j}: {41531, 40848}
X(63489) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6376)}}, {{A, B, C, X(43), X(60108)}}, {{A, B, C, X(85), X(3212)}}, {{A, B, C, X(87), X(41886)}}, {{A, B, C, X(105), X(4083)}}, {{A, B, C, X(192), X(30758)}}, {{A, B, C, X(334), X(1916)}}, {{A, B, C, X(1423), X(7179)}}, {{A, B, C, X(1463), X(59806)}}, {{A, B, C, X(4518), X(30663)}}, {{A, B, C, X(5518), X(9082)}}, {{A, B, C, X(6063), X(7185)}}, {{A, B, C, X(22116), X(51973)}}, {{A, B, C, X(27644), X(37664)}}, {{A, B, C, X(33296), X(33943)}}, {{A, B, C, X(39954), X(62422)}}
X(63489) = barycentric product X(i)*X(j) for these (i, j): {192, 7233}, {291, 30545}, {1403, 18895}, {1423, 334}, {3212, 335}, {33680, 43040}, {40848, 7}, {41526, 44172}, {41531, 85}, {43051, 4583}, {51973, 6063}
X(63489) = barycentric quotient X(i)/X(j) for these (i, j): {7, 39914}, {43, 3684}, {56, 51321}, {57, 34252}, {192, 3685}, {291, 2319}, {292, 2053}, {334, 27424}, {335, 7155}, {1403, 1914}, {1423, 238}, {1911, 57264}, {3208, 58327}, {3212, 239}, {3835, 3716}, {3971, 3985}, {4083, 4435}, {4147, 4148}, {6376, 3975}, {6382, 4087}, {7233, 330}, {20691, 4433}, {21138, 4124}, {30545, 350}, {33680, 36799}, {40848, 8}, {41526, 2210}, {41531, 9}, {43040, 56663}, {43051, 659}, {51973, 55}, {52089, 8848}, {62791, 1429}


X(63490) = {X(1),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(145)

Barycentrics    (-(b*c)+a*(b+c))*(a^3*(b-c)^2+3*a*b^2*c^2+a^2*(b-c)^2*(b+c)-b^2*c^2*(b+c)) : :

X(63490) lies on these lines: {1, 59168}, {2, 330}, {8, 14823}, {9, 21379}, {100, 57505}, {145, 38986}, {1698, 34832}, {2176, 4595}, {3617, 63480}, {5518, 11681}, {18140, 26143}, {26029, 41886}, {26772, 27057}

X(63490) = X(i)-complementary conjugate of X(j) for these {i, j}: {39969, 20255}
X(63490) = intersection, other than A, B, C, of circumconics {{A, B, C, X(330), X(62421)}}, {{A, B, C, X(2176), X(40881)}}, {{A, B, C, X(52043), X(53675)}}
X(63490) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6376, 63478, 2}


X(63491) = COMPLEMENT OF X(53677)

Barycentrics    (-(b*c)+a*(b+c))^2*(a^2*(b-c)^2+b^2*c^2) : :

X(63491) lies on these lines: {2, 87}, {9, 21379}, {37, 2998}, {190, 56247}, {192, 23643}, {1213, 63478}, {3161, 26752}, {5224, 21250}, {14823, 18194}, {17755, 41886}, {21838, 26772}, {26756, 40614}, {27481, 59565}, {31336, 63487}, {41838, 59481}, {53675, 53676}

X(63491) = complement of X(53677)
X(63491) = X(i)-isoconjugate-of-X(j) for these {i, j}: {53146, 56357}
X(63491) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 23886}
X(63491) = X(i)-complementary conjugate of X(j) for these {i, j}: {43, 20255}, {692, 23886}, {1403, 20257}, {2176, 3840}, {2209, 75}, {3208, 20545}, {8026, 626}, {23886, 21252}, {25142, 116}, {41526, 17063}, {52923, 21191}, {53145, 10}, {53675, 2887}, {53676, 141}, {57050, 11}, {62420, 16604}
X(63491) = pole of line {20983, 23886} with respect to the Steiner circumellipse
X(63491) = pole of line {23886, 25142} with respect to the Steiner inellipse
X(63491) = {X(1),X(2)}-bicevian centroidal collineation image of X(192)
X(63491) = intersection, other than A, B, C, of circumconics {{A, B, C, X(87), X(14823)}}, {{A, B, C, X(2998), X(18194)}}, {{A, B, C, X(18832), X(53675)}}, {{A, B, C, X(23538), X(59182)}}, {{A, B, C, X(23886), X(56247)}}
X(63491) = barycentric product X(i)*X(j) for these (i, j): {14823, 6376}, {18194, 8026}
X(63491) = barycentric quotient X(i)/X(j) for these (i, j): {14823, 87}, {18194, 53678}, {23538, 53146}, {53675, 56247}, {53676, 56357}
X(63491) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6376, 63488, 37}


X(63492) = {X(1),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(1)

Barycentrics    (b+c)*(b^2+a*c)*(b*c-a*(b+c))*(a*b+c^2) : :

X(63492) lies on these lines: {1, 27805}, {8, 63627}, {10, 52651}, {12, 21941}, {256, 56276}, {1698, 32010}, {3701, 3773}, {3790, 40099}, {23897, 23935}, {23922, 23947}, {27538, 53675}, {40849, 46032}

X(63492) = X(i)-isoconjugate-of-X(j) for these {i, j}: {7121, 17103}, {18200, 34071}, {56053, 56242}
X(63492) = X(i)-Dao conjugate of X(j) for these {i, j}: {75, 8033}, {6377, 17212}, {21051, 7207}, {40598, 17103}, {40610, 18200}
X(63492) = X(i)-Ceva conjugate of X(j) for these {i, j}: {27805, 21834}
X(63492) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(21834)}}, {{A, B, C, X(10), X(53675)}}, {{A, B, C, X(12), X(6376)}}, {{A, B, C, X(43), X(20653)}}, {{A, B, C, X(192), X(27569)}}, {{A, B, C, X(979), X(21706)}}, {{A, B, C, X(1089), X(21713)}}, {{A, B, C, X(3701), X(3971)}}, {{A, B, C, X(3704), X(4110)}}, {{A, B, C, X(3773), X(20691)}}, {{A, B, C, X(6382), X(59261)}}, {{A, B, C, X(6757), X(20906)}}, {{A, B, C, X(27570), X(31008)}}
X(63492) = barycentric product X(i)*X(j) for these (i, j): {10, 63486}, {257, 3971}, {20691, 7018}, {20906, 56257}, {21051, 27805}, {21834, 56241}, {27538, 60245}, {52651, 6376}
X(63492) = barycentric quotient X(i)/X(j) for these (i, j): {192, 17103}, {3835, 17212}, {3971, 894}, {4083, 18200}, {6376, 8033}, {20691, 171}, {20906, 16737}, {21051, 4369}, {21834, 4367}, {27538, 27958}, {27805, 56053}, {40729, 7121}, {50491, 20981}, {52651, 87}, {56257, 932}, {63486, 86}
X(63492) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23897, 23946, 23944}


X(63493) = COMPLEMENT OF X(25278)

Barycentrics    a^2*(b^2-3*b*c+c^2) : :

X(63493) lies on these lines: {1, 39}, {2, 17448}, {3, 10987}, {6, 1201}, {7, 27498}, {8, 16604}, {11, 63534}, {32, 5563}, {35, 15515}, {36, 2241}, {37, 3622}, {41, 9259}, {55, 15815}, {56, 1914}, {65, 62370}, {85, 27918}, {106, 4251}, {115, 37720}, {145, 1575}, {172, 999}, {193, 28366}, {244, 3959}, {330, 350}, {354, 20284}, {386, 16971}, {388, 9599}, {497, 9597}, {551, 5283}, {574, 3746}, {614, 3291}, {672, 16969}, {940, 61325}, {978, 3780}, {982, 3727}, {995, 20963}, {1056, 9596}, {1058, 9598}, {1100, 2277}, {1107, 3616}, {1125, 16975}, {1149, 1475}, {1191, 60697}, {1203, 9346}, {1279, 61326}, {1388, 43039}, {1400, 21785}, {1432, 51974}, {1449, 15839}, {1469, 13330}, {1506, 37719}, {1572, 3338}, {1573, 3624}, {1574, 3632}, {1743, 46189}, {1759, 22460}, {1909, 31276}, {2162, 7248}, {2170, 20271}, {2238, 21214}, {2242, 5299}, {2260, 21769}, {2280, 21008}, {3056, 23633}, {3058, 63548}, {3061, 3726}, {3227, 18140}, {3230, 4253}, {3241, 20691}, {3271, 9439}, {3290, 5304}, {3303, 5013}, {3333, 54382}, {3582, 7746}, {3583, 9651}, {3584, 31455}, {3585, 9665}, {3621, 21868}, {3623, 17756}, {3633, 52959}, {3666, 51579}, {3669, 24796}, {3673, 7200}, {3721, 3976}, {3723, 5069}, {3735, 3953}, {3752, 17014}, {3765, 27166}, {3767, 10072}, {3815, 15888}, {3885, 21888}, {3915, 33863}, {3920, 15302}, {3945, 28358}, {3973, 21826}, {4051, 17063}, {4161, 7032}, {4317, 7737}, {4383, 28371}, {4386, 5253}, {4423, 31490}, {4426, 54391}, {4465, 56025}, {4479, 40908}, {4517, 20456}, {4644, 57037}, {4657, 26807}, {4857, 7748}, {4941, 7240}, {5019, 16488}, {5021, 16483}, {5022, 16486}, {5254, 37722}, {5259, 31456}, {5270, 5475}, {5274, 63536}, {5280, 37602}, {5291, 62825}, {5434, 7745}, {5526, 9351}, {5839, 28244}, {6376, 9263}, {6377, 62422}, {6604, 43062}, {6767, 31448}, {7031, 37587}, {7191, 9465}, {7208, 7264}, {7292, 39576}, {7373, 54416}, {7772, 16785}, {7982, 62371}, {9574, 37556}, {9670, 44526}, {10056, 31401}, {11238, 44518}, {11376, 11998}, {16589, 25055}, {16592, 23903}, {16602, 24599}, {16667, 21796}, {16705, 18172}, {16720, 39731}, {16726, 17301}, {16742, 17169}, {16744, 30941}, {16780, 61762}, {16833, 31198}, {16968, 28011}, {16973, 19861}, {17027, 34063}, {17152, 24691}, {17244, 24625}, {17299, 39798}, {17351, 24762}, {17378, 28397}, {17451, 46190}, {18194, 63520}, {18905, 29843}, {20090, 28395}, {20363, 24349}, {20688, 49532}, {20977, 63503}, {21025, 30957}, {21226, 30963}, {21814, 62866}, {21827, 62865}, {21830, 49498}, {21893, 30829}, {22172, 23524}, {22199, 26102}, {23543, 29820}, {23632, 29814}, {24326, 25918}, {24575, 24661}, {24598, 29584}, {24736, 25628}, {25716, 43063}, {26103, 63481}, {26626, 37596}, {26801, 31997}, {27091, 27195}, {27455, 30962}, {28352, 37673}, {28370, 37657}, {29586, 62803}, {30038, 30945}, {30117, 53165}, {30646, 62819}, {31645, 57023}, {32065, 32445}, {33854, 62837}, {34460, 37727}, {35768, 45514}, {35769, 45515}, {38346, 46150}, {38986, 63553}, {39244, 49509}, {39248, 62874}, {40432, 51356}, {40986, 63354}, {41015, 52541}, {50443, 53561}, {51194, 56630}, {52655, 56805}, {63494, 63507}, {63496, 63500}

X(63493) = reflection of X(i) in X(j) for these {i,j}: {25278, 25107}
X(63493) = isogonal conjugate of X(56353)
X(63493) = complement of X(25278)
X(63493) = anticomplement of X(25107)
X(63493) = perspector of circumconic {{A, B, C, X(660), X(1293)}}
X(63493) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 56353}, {100, 25576}
X(63493) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 56353}, {4014, 4885}, {8054, 25576}, {17063, 4110}, {25107, 25107}, {63483, 75}
X(63493) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30610, 513}
X(63493) = X(i)-complementary conjugate of X(j) for these {i, j}: {41439, 2887}, {42343, 21262}
X(63493) = X(i)-cross conjugate of X(j) for these {i, j}: {22172, 17063}
X(63493) = pole of line {8643, 21003} with respect to the circumcircle
X(63493) = pole of line {6373, 8643} with respect to the Brocard inellipse
X(63493) = pole of line {17389, 41629} with respect to the Stammler hyperbola
X(63493) = pole of line {665, 2516} with respect to the Steiner inellipse
X(63493) = pole of line {30940, 56353} with respect to the Wallace hyperbola
X(63493) = pole of line {20335, 24494} with respect to the dual conic of Yff parabola
X(63493) = {X(2),X(1)}-bicevian centroidal collineation image of X(1)
X(63493) = intersection, other than A, B, C, of circumconics {{A, B, C, X(291), X(3445)}}, {{A, B, C, X(292), X(23524)}}, {{A, B, C, X(2295), X(56042)}}, {{A, B, C, X(2429), X(25577)}}, {{A, B, C, X(3208), X(7153)}}, {{A, B, C, X(3551), X(25280)}}, {{A, B, C, X(4051), X(4876)}}, {{A, B, C, X(21951), X(22172)}}, {{A, B, C, X(22116), X(23765)}}, {{A, B, C, X(25278), X(41439)}}
X(63493) = barycentric product X(i)*X(j) for these (i, j): {1, 17063}, {100, 23765}, {101, 48415}, {256, 7240}, {4051, 57}, {4499, 513}, {4941, 87}, {21951, 81}, {22172, 86}, {23524, 75}, {25577, 514}, {48627, 6}, {48643, 58}, {63483, 7153}
X(63493) = barycentric quotient X(i)/X(j) for these (i, j): {6, 56353}, {649, 25576}, {4051, 312}, {4499, 668}, {4941, 6376}, {7240, 1909}, {17063, 75}, {21951, 321}, {22172, 10}, {23524, 1}, {23765, 693}, {25577, 190}, {48415, 3261}, {48627, 76}, {48643, 313}, {63483, 4110}
X(63493) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1015, 2275}, {1, 2275, 2276}, {1, 9336, 1015}, {2, 25278, 25107}, {2, 31999, 25303}, {2, 63499, 17448}, {2, 63508, 63509}, {2, 63509, 24528}, {2, 63524, 63499}, {56, 16781, 1914}, {172, 16502, 5332}, {999, 16502, 172}, {1149, 1475, 2176}, {1201, 17474, 6}, {2242, 5299, 7296}, {2280, 32577, 21008}, {4051, 17063, 21951}, {4253, 56804, 3230}, {5563, 16784, 32}, {24654, 24737, 2}, {63500, 63501, 63496}, {63503, 63505, 63513}, {63510, 63514, 63507}


X(63494) = COMPLEMENT OF X(25275)

Barycentrics    a^2*(a^2-b^2-c^2)*(b^3-b^2*c+b*(a-c)*c+c^3) : :

X(63494) lies on these lines: {1, 23619}, {2, 24664}, {3, 17972}, {6, 41}, {63, 22447}, {78, 20727}, {348, 3942}, {1108, 28389}, {1953, 3485}, {3061, 6554}, {3784, 22066}, {3795, 18673}, {3949, 30681}, {3958, 34259}, {3975, 4417}, {4855, 20729}, {6467, 20753}, {7117, 23154}, {9549, 18446}, {14963, 22836}, {15373, 23412}, {17084, 18161}, {17475, 47411}, {17788, 21589}, {18674, 19582}, {20783, 20824}, {20812, 22350}, {20902, 21414}, {22169, 23526}, {28391, 34371}, {63493, 63507}, {63497, 63506}, {63499, 63521}, {63513, 63517}

X(63494) = reflection of X(i) in X(j) for these {i,j}: {25275, 25104}
X(63494) = complement of X(25275)
X(63494) = anticomplement of X(25104)
X(63494) = X(i)-Dao conjugate of X(j) for these {i, j}: {25104, 25104}, {63479, 75}
X(63494) = X(i)-Ceva conjugate of X(j) for these {i, j}: {27805, 656}
X(63494) = X(i)-cross conjugate of X(j) for these {i, j}: {22169, 20254}
X(63494) = pole of line {333, 423} with respect to the Stammler hyperbola
X(63494) = pole of line {4148, 6589} with respect to the Steiner inellipse
X(63494) = {X(2),X(1)}-bicevian centroidal collineation image of X(3)
X(63494) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6), X(3959)}}, {{A, B, C, X(56), X(17972)}}, {{A, B, C, X(73), X(3944)}}, {{A, B, C, X(222), X(21008)}}, {{A, B, C, X(604), X(23526)}}, {{A, B, C, X(1400), X(22169)}}, {{A, B, C, X(13738), X(37373)}}
X(63494) = barycentric product X(i)*X(j) for these (i, j): {1, 20254}, {3, 3944}, {3959, 63}, {22169, 86}, {23086, 23669}, {23526, 75}, {37373, 73}
X(63494) = barycentric quotient X(i)/X(j) for these (i, j): {3944, 264}, {3959, 92}, {20254, 75}, {22169, 10}, {23526, 1}, {37373, 44130}
X(63494) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25274, 25131}, {2, 25275, 25104}, {2, 63495, 63496}


X(63495) = ANTICOMPLEMENT OF X(25131)

Barycentrics    a*(a^4*b*c+2*a^3*(b-c)^2*(b+c)-b*c*(b^2-c^2)^2-2*a*(b^5-b^4*c-b*c^4+c^5)) : :

X(63495) lies on these lines: {1, 23620}, {2, 24664}, {8, 20727}, {19, 1042}, {279, 3942}, {959, 2260}, {3056, 17448}, {5744, 22447}, {14963, 49168}, {18391, 23619}, {18725, 62791}, {20273, 34591}, {63499, 63517}, {63501, 63510}, {63515, 63518}

X(63495) = anticomplement of X(25131)
X(63495) = {X(2),X(1)}-bicevian centroidal collineation image of X(4)
X(63495) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63494, 63496, 2}


X(63496) = COMPLEMENT OF X(25274)

Barycentrics    a*(a^3*(b-c)^2*(b+c)-b*c*(b^2-c^2)^2+a^2*b*c*(b^2+c^2)-a*(b^5-b^4*c-b*c^4+c^5)) : :

X(63496) lies on these lines: {1, 23621}, {2, 24664}, {6, 45208}, {48, 37523}, {65, 1108}, {85, 3942}, {1737, 23619}, {2170, 2275}, {3212, 18161}, {6734, 20727}, {7146, 37642}, {17448, 20359}, {17451, 24512}, {20271, 22197}, {20707, 49509}, {20729, 57287}, {21318, 23491}, {22168, 23440}, {22447, 59491}, {51210, 54392}, {63493, 63500}

X(63496) = reflection of X(i) in X(j) for these {i,j}: {25274, 25103}
X(63496) = complement of X(25274)
X(63496) = anticomplement of X(25103)
X(63496) = X(i)-Dao conjugate of X(j) for these {i, j}: {20256, 22370}, {25103, 25103}
X(63496) = X(i)-cross conjugate of X(j) for these {i, j}: {22168, 20256}
X(63496) = {X(2),X(1)}-bicevian centroidal collineation image of X(5)
X(63496) = barycentric product X(i)*X(j) for these (i, j): {1, 20256}, {22168, 86}, {23440, 75}
X(63496) = barycentric quotient X(i)/X(j) for these (i, j): {20256, 75}, {22168, 10}, {23440, 1}
X(63496) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25274, 25103}, {2, 25275, 25131}, {2, 25276, 25104}, {2, 63495, 63494}, {63500, 63501, 63493}


X(63497) = COMPLEMENT OF X(25291)

Barycentrics    a^2*(-b^3+b^2*c-c^3+b*c*(a+c)) : :

X(63497) lies on these lines: {1, 3778}, {2, 3728}, {6, 2054}, {7, 3123}, {9, 20456}, {31, 1486}, {38, 17321}, {39, 4890}, {42, 2277}, {86, 4443}, {192, 291}, {239, 17065}, {244, 4000}, {256, 17379}, {330, 21299}, {350, 17157}, {354, 3116}, {518, 28366}, {573, 20984}, {579, 3747}, {583, 39688}, {714, 18147}, {749, 17336}, {869, 17053}, {966, 22174}, {982, 17302}, {986, 23928}, {1015, 4116}, {1045, 24598}, {1100, 3764}, {1210, 23663}, {1400, 2209}, {1449, 23659}, {1478, 23686}, {1716, 62853}, {1933, 44081}, {2085, 18398}, {2178, 18266}, {2227, 30962}, {2228, 4851}, {2275, 2309}, {2345, 22167}, {2667, 4261}, {3009, 3779}, {3056, 23633}, {3271, 23524}, {3723, 4735}, {3765, 21257}, {3783, 27641}, {3873, 28395}, {4022, 4657}, {4068, 4286}, {4360, 4446}, {4393, 24478}, {4440, 4941}, {4484, 16777}, {5224, 24437}, {6554, 22219}, {6646, 24456}, {7121, 23443}, {8610, 22277}, {12782, 17319}, {17300, 41886}, {17355, 22214}, {17463, 20274}, {17754, 23462}, {17861, 53559}, {20464, 63509}, {20711, 32937}, {20863, 63503}, {20978, 61326}, {21725, 23927}, {21835, 63557}, {21963, 61716}, {22199, 59481}, {22200, 23543}, {23668, 24443}, {23688, 24173}, {24513, 63066}, {25280, 25624}, {28403, 38053}, {29423, 41683}, {39780, 56806}, {40955, 56836}, {44671, 46838}, {63494, 63506}, {63502, 63514}, {63526, 63527}

X(63497) = reflection of X(i) in X(j) for these {i,j}: {25291, 25120}
X(63497) = complement of X(25291)
X(63497) = anticomplement of X(25120)
X(63497) = X(i)-Dao conjugate of X(j) for these {i, j}: {25120, 25120}
X(63497) = X(i)-cross conjugate of X(j) for these {i, j}: {22200, 20271}
X(63497) = pole of line {5029, 43060} with respect to the circumcircle
X(63497) = pole of line {5179, 29962} with respect to the dual conic of Yff parabola
X(63497) = {X(2),X(1)}-bicevian centroidal collineation image of X(6)
X(63497) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2054), X(17889)}}, {{A, B, C, X(17962), X(20271)}}
X(63497) = barycentric product X(i)*X(j) for these (i, j): {1, 20271}, {17889, 6}, {22200, 86}, {23543, 75}
X(63497) = barycentric quotient X(i)/X(j) for these (i, j): {17889, 76}, {20271, 75}, {22200, 10}, {23543, 1}
X(63497) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25291, 25120}, {2, 63515, 21330}, {1015, 21746, 7032}, {2260, 40934, 31}, {2667, 46905, 4261}, {3056, 63493, 63504}, {4484, 16777, 21035}, {17053, 52020, 869}, {23633, 63504, 3056}, {24575, 63520, 2}, {28403, 46190, 38053}


X(63498) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(7)

Barycentrics    a*(-(b*(b-c)^2*c)-2*a*(b-c)^2*(b+c)+a^2*(2*b^2-3*b*c+2*c^2)) : :

X(63498) lies on circumconic {{A, B, C, X(8693), X(41439)}} and on these lines: {1, 2347}, {2, 3056}, {6, 105}, {7, 3271}, {11, 26540}, {57, 20978}, {144, 20358}, {244, 41777}, {344, 25048}, {354, 62997}, {511, 16020}, {513, 41439}, {518, 39567}, {613, 4223}, {674, 37650}, {959, 1104}, {1428, 37254}, {3057, 58608}, {3161, 14839}, {3240, 28353}, {3623, 58620}, {3688, 18230}, {3779, 37681}, {3873, 51170}, {4014, 63576}, {4266, 55340}, {4402, 6007}, {4747, 58583}, {4859, 29353}, {4869, 9025}, {5222, 21746}, {5640, 26228}, {5749, 17049}, {5838, 52029}, {5839, 57024}, {7064, 61023}, {7613, 15310}, {7671, 40965}, {8540, 63088}, {9024, 17265}, {10578, 23638}, {10755, 28965}, {11680, 26530}, {14936, 23461}, {17756, 24478}, {18191, 26818}, {18194, 63499}, {20535, 23483}, {28364, 29814}, {29311, 60846}, {37516, 38053}, {46149, 51190}, {49537, 62778}, {63526, 63619}, {63587, 63597}

X(63498) = barycentric product X(i)*X(j) for these (i, j): {1, 63587}, {57, 63597}, {279, 63602}
X(63498) = barycentric quotient X(i)/X(j) for these (i, j): {63587, 75}, {63597, 312}, {63602, 346}
X(63498) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63523, 3056}, {7, 3271, 9309}, {3056, 63522, 2}, {18194, 63515, 63499}


X(63499) = COMPLEMENT OF X(25296)

Barycentrics    a*(b*c*(b+c)+a*(2*b^2-5*b*c+2*c^2)) : :

X(63499) lies on these lines: {1, 672}, {2, 17448}, {6, 38869}, {8, 1015}, {10, 9336}, {37, 61330}, {39, 3241}, {76, 3227}, {145, 2275}, {149, 9597}, {244, 4051}, {330, 4441}, {1107, 3622}, {1149, 21384}, {1201, 37657}, {1500, 20057}, {1573, 5550}, {1575, 3621}, {2170, 3976}, {2229, 10453}, {2238, 28370}, {2276, 3623}, {2319, 23455}, {2321, 39956}, {2975, 16781}, {3056, 63619}, {3177, 24403}, {3208, 23649}, {3304, 5276}, {3445, 37658}, {3551, 41439}, {3616, 16589}, {3617, 16604}, {3669, 24797}, {3684, 32577}, {3693, 63622}, {3727, 4392}, {3869, 62370}, {5021, 62848}, {5283, 38314}, {5284, 31490}, {5286, 11240}, {5299, 62825}, {7745, 34605}, {8610, 37654}, {8666, 16784}, {9335, 21951}, {9575, 62832}, {9599, 20060}, {10529, 17737}, {10707, 44518}, {10987, 17548}, {11238, 63537}, {11239, 31400}, {12513, 33854}, {16502, 54391}, {16552, 56804}, {16592, 23942}, {16971, 19767}, {17014, 37596}, {17018, 53145}, {17759, 54098}, {18172, 18600}, {18194, 63498}, {20052, 21868}, {20053, 52959}, {20080, 28395}, {20286, 21342}, {20363, 31302}, {20594, 63500}, {21893, 30861}, {24598, 50129}, {24625, 29579}, {25718, 43063}, {26242, 40133}, {28358, 62999}, {28366, 63001}, {34611, 63548}, {54319, 54330}, {62214, 62985}, {63494, 63521}, {63495, 63517}, {63507, 63513}

X(63499) = complement of X(25296)
X(63499) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1002), X(40027)}}, {{A, B, C, X(2279), X(38247)}}, {{A, B, C, X(3551), X(25278)}}, {{A, B, C, X(22214), X(60677)}}, {{A, B, C, X(24524), X(41439)}}
X(63499) = {X(2),X(1)}-bicevian centroidal collineation image of X(8)
X(63499) = barycentric product X(i)*X(j) for these (i, j): {22214, 86}, {63586, 9}
X(63499) = barycentric quotient X(i)/X(j) for these (i, j): {22214, 10}, {63586, 85}
X(63499) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17474, 63066}, {2, 63524, 63493}, {145, 2275, 17756}, {17448, 63493, 2}, {18194, 63515, 63498}


X(63500) = COMPLEMENT OF X(25310)

Barycentrics    a*(b-c)^2*(a^2*(b+c)-b*c*(b+c)-a*(b^2-b*c+c^2)) : :

X(63500) lies on these lines: {1, 23622}, {2, 25110}, {244, 665}, {661, 23450}, {1647, 20974}, {2171, 56546}, {3119, 4521}, {3942, 27918}, {3999, 20593}, {4051, 24620}, {4876, 58371}, {11019, 23636}, {16727, 17197}, {17449, 20706}, {17450, 21808}, {17463, 23500}, {17474, 45208}, {18184, 23824}, {20594, 63499}, {21139, 40619}, {22210, 23456}, {24578, 38478}, {39244, 46909}, {63493, 63496}

X(63500) = reflection of X(i) in X(j) for these {i,j}: {25310, 25139}
X(63500) = complement of X(25310)
X(63500) = anticomplement of X(25139)
X(63500) = center of circumconic {{A, B, C, X(20923), X(39970)}}
X(63500) = X(i)-isoconjugate-of-X(j) for these {i, j}: {190, 59113}, {765, 39970}, {1016, 34445}, {1110, 40025}, {1252, 39741}
X(63500) = X(i)-Dao conjugate of X(j) for these {i, j}: {513, 39970}, {514, 40025}, {661, 39741}, {3835, 40171}, {25139, 25139}, {55053, 59113}
X(63500) = X(i)-Ceva conjugate of X(j) for these {i, j}: {39966, 661}, {39970, 513}
X(63500) = pole of line {3835, 4905} with respect to the dual conic of Yff parabola
X(63500) = {X(2),X(1)}-bicevian centroidal collineation image of X(11)
X(63500) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1015), X(23456)}}, {{A, B, C, X(1646), X(20923)}}, {{A, B, C, X(2087), X(21384)}}, {{A, B, C, X(2170), X(16727)}}, {{A, B, C, X(3121), X(53538)}}, {{A, B, C, X(3125), X(22210)}}, {{A, B, C, X(10453), X(27846)}}, {{A, B, C, X(14936), X(17197)}}
X(63500) = barycentric product X(i)*X(j) for these (i, j): {1015, 20923}, {1086, 21384}, {1111, 20992}, {10453, 244}, {16726, 21071}, {17920, 3942}, {22210, 86}, {23456, 75}, {27523, 53538}
X(63500) = barycentric quotient X(i)/X(j) for these (i, j): {244, 39741}, {667, 59113}, {1015, 39970}, {1086, 40025}, {3248, 34445}, {6377, 40171}, {10453, 7035}, {20923, 31625}, {20992, 765}, {21384, 1016}, {22210, 10}, {23456, 1}
X(63500) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25310, 25139}, {63493, 63496, 63501}


X(63501) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(12)

Barycentrics    a*(a^3*(b-c)^2*(b+c)-b*c*(b^2-c^2)^2-a^2*b*c*(b^2-6*b*c+c^2)-a*(b^5-b^4*c-b*c^4+c^5)) : :

X(63501) lies on these lines: {1, 41}, {2, 20594}, {1201, 45208}, {1953, 21769}, {2171, 2300}, {3741, 22173}, {3890, 17452}, {4051, 10453}, {17448, 63514}, {20707, 39244}, {23637, 31397}, {63493, 63496}, {63495, 63510}

X(63501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63496, 63500}


X(63502) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(19)

Barycentrics    a^2*(2*a^2*b*(b-c)^2*c+a^4*(b^2-b*c+c^2)-(b^2-c^2)^2*(b^2+b*c+c^2)) : :

X(63502) lies on these lines: {1, 6467}, {1843, 3554}, {2275, 23635}, {3056, 17448}, {3553, 40673}, {3937, 18725}, {7129, 34854}, {8681, 55391}, {9973, 62211}, {11574, 55392}, {12167, 16502}, {12272, 26639}, {18194, 63513}, {63497, 63514}, {63504, 63510}

X(63502) = barycentric product X(i)*X(j) for these (i, j): {1, 20273}
X(63502) = barycentric quotient X(i)/X(j) for these (i, j): {20273, 75}
X(63502) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3056, 63507, 63516}


X(63503) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(31)

Barycentrics    a^2*(-b^4+b^3*c-c^4+b*c*(a^2+c^2)) : :

X(63503) lies on these lines: {1, 20859}, {2, 24525}, {51, 1015}, {56, 42295}, {612, 8041}, {614, 3124}, {1469, 3051}, {1501, 5322}, {1977, 26892}, {2275, 20965}, {3094, 3920}, {3938, 20861}, {3959, 33150}, {3981, 7191}, {5345, 8627}, {6377, 61366}, {9651, 11550}, {16781, 33586}, {20863, 63497}, {20974, 23543}, {20977, 63493}, {22171, 29677}, {63509, 63521}

X(63503) = barycentric product X(i)*X(j) for these (i, j): {1, 20274}
X(63503) = barycentric quotient X(i)/X(j) for these (i, j): {20274, 75}
X(63503) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20977, 63505, 63513}, {63497, 63510, 63508}


X(63504) = COMPLEMENT OF X(25292)

Barycentrics    a^2*(a*(b-c)^2-b*c*(b+c)) : :

X(63504) lies on these lines: {1, 87}, {2, 18194}, {6, 3009}, {8, 26077}, {9, 23524}, {10, 26963}, {31, 21769}, {37, 3248}, {42, 1100}, {44, 23540}, {45, 23539}, {86, 670}, {142, 27846}, {238, 23578}, {672, 16525}, {727, 51449}, {741, 38814}, {869, 1449}, {872, 16666}, {899, 3759}, {902, 3941}, {984, 23579}, {1015, 3778}, {1045, 29584}, {1107, 23457}, {1125, 23652}, {1178, 1963}, {1193, 27641}, {1201, 1386}, {1279, 20323}, {1429, 41350}, {1459, 29362}, {1740, 4393}, {1911, 16503}, {1918, 16679}, {2087, 21804}, {2092, 46908}, {2209, 21010}, {2234, 4852}, {2293, 17440}, {2300, 20985}, {2664, 17121}, {3056, 23633}, {3123, 49537}, {3214, 49489}, {3216, 4991}, {3271, 22172}, {3616, 26069}, {3663, 53541}, {3688, 20456}, {3720, 17149}, {3728, 17448}, {3791, 28248}, {4128, 23928}, {4440, 7240}, {4670, 17445}, {4699, 25528}, {4741, 25572}, {4787, 9336}, {4890, 23634}, {4974, 27627}, {5283, 23427}, {7184, 17302}, {7189, 17391}, {8054, 28639}, {9359, 17261}, {10459, 45242}, {14897, 37677}, {16604, 20971}, {16696, 46901}, {16710, 24165}, {16969, 36635}, {17049, 20862}, {17053, 23659}, {17118, 55919}, {17187, 45221}, {17300, 56805}, {17373, 25573}, {17393, 24696}, {17459, 59182}, {18792, 49477}, {20228, 20964}, {20683, 46189}, {20863, 63505}, {21257, 27166}, {21757, 21827}, {21759, 21762}, {23460, 43223}, {23485, 31997}, {24182, 24765}, {24524, 24662}, {25120, 25298}, {26975, 28597}, {27912, 29820}, {28279, 50293}, {29814, 31313}, {40790, 63053}, {63502, 63510}, {63514, 63516}, {63520, 63526}

X(63504) = reflection of X(i) in X(j) for these {i,j}: {25292, 25121}, {36856, 18133}
X(63504) = isogonal conjugate of X(55997)
X(63504) = complement of X(25292)
X(63504) = anticomplement of X(25121)
X(63504) = perspector of circumconic {{A, B, C, X(4598), X(43077)}}
X(63504) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 55997}, {2, 56011}, {4083, 35572}
X(63504) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 55997}, {3248, 513}, {16604, 6382}, {25121, 25121}, {32664, 56011}, {34832, 75}
X(63504) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 17459}, {668, 649}, {21757, 20971}
X(63504) = X(i)-cross conjugate of X(j) for these {i, j}: {16604, 59182}, {17459, 20971}, {21827, 16604}
X(63504) = pole of line {3726, 17452} with respect to the Feuerbach hyperbola
X(63504) = pole of line {6043, 38832} with respect to the Stammler hyperbola
X(63504) = pole of line {3009, 32928} with respect to the Wallace hyperbola
X(63504) = pole of line {3662, 24491} with respect to the dual conic of Yff parabola
X(63504) = {X(2),X(1)}-bicevian centroidal collineation image of X(37)
X(63504) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(20971)}}, {{A, B, C, X(2), X(32033)}}, {{A, B, C, X(6), X(40720)}}, {{A, B, C, X(87), X(21757)}}, {{A, B, C, X(192), X(2162)}}, {{A, B, C, X(330), X(16604)}}, {{A, B, C, X(726), X(34832)}}, {{A, B, C, X(727), X(3993)}}, {{A, B, C, X(893), X(17319)}}, {{A, B, C, X(2176), X(32095)}}, {{A, B, C, X(3226), X(23493)}}, {{A, B, C, X(20979), X(33681)}}, {{A, B, C, X(21827), X(24165)}}
X(63504) = barycentric product X(i)*X(j) for these (i, j): {1, 16604}, {101, 48406}, {192, 59182}, {2162, 34832}, {2176, 52573}, {3733, 61175}, {16710, 42}, {17459, 87}, {20899, 7121}, {20971, 330}, {21128, 34071}, {21757, 75}, {21827, 86}, {22378, 92}, {24165, 6}
X(63504) = barycentric quotient X(i)/X(j) for these (i, j): {6, 55997}, {31, 56011}, {16604, 75}, {16710, 310}, {17459, 6376}, {20971, 192}, {21757, 1}, {21827, 10}, {22378, 63}, {24165, 76}, {34071, 35572}, {34832, 6382}, {48406, 3261}, {52573, 6383}, {59182, 330}, {61175, 27808}
X(63504) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 7032, 2309}, {1, 87, 192}, {2, 25284, 25140}, {2, 25292, 25121}, {2, 63527, 18194}, {37, 3248, 22343}, {86, 18170, 21352}, {1100, 1964, 42}, {3009, 23532, 6}, {3056, 63493, 63497}, {3056, 63497, 23633}, {18194, 24661, 2}, {21010, 21785, 2209}, {21759, 23561, 21762}


X(63505) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(38)

Barycentrics    a^2*(a^2*(b-c)^2-2*b*c*(b^2-b*c+c^2)) : :

X(63505) lies on these lines: {1, 20965}, {2, 24670}, {6, 4430}, {614, 3231}, {982, 1977}, {1015, 20859}, {1870, 61346}, {3051, 7191}, {4392, 23538}, {8054, 22199}, {16781, 42295}, {17449, 21757}, {20863, 63504}, {20977, 63493}, {21760, 29818}, {23417, 46901}, {23660, 29819}

X(63505) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63513, 63503}, {63503, 63513, 20977}


X(63506) = COMPLEMENT OF X(25293)

Barycentrics    a^3*(a*(b-c)^2*(b+c)-b*c*(b^2+c^2)) : :

X(63506) lies on these lines: {1, 668}, {2, 24527}, {6, 904}, {42, 4161}, {386, 3795}, {1107, 23652}, {1193, 1386}, {1575, 20971}, {1911, 21008}, {2162, 20996}, {2176, 41268}, {2275, 3248}, {2667, 19582}, {3510, 34063}, {3616, 25311}, {3739, 23508}, {4117, 46904}, {4128, 24443}, {6196, 33296}, {7121, 34077}, {9025, 27455}, {17017, 45232}, {17448, 20464}, {17477, 17723}, {21264, 23485}, {21904, 45216}, {22201, 23546}, {24519, 24575}, {24531, 25104}, {33071, 56805}, {49477, 57020}, {63494, 63497}

X(63506) = reflection of X(i) in X(j) for these {i,j}: {25293, 25122}
X(63506) = complement of X(25293)
X(63506) = anticomplement of X(25122)
X(63506) = X(i)-Dao conjugate of X(j) for these {i, j}: {21250, 75}, {21755, 4369}, {25122, 25122}
X(63506) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 21337}, {27805, 798}
X(63506) = pole of line {20590, 20594} with respect to the Feuerbach hyperbola
X(63506) = pole of line {18792, 27891} with respect to the Wallace hyperbola
X(63506) = {X(2),X(1)}-bicevian centroidal collineation image of X(39)
X(63506) = intersection, other than A, B, C, of circumconics {{A, B, C, X(667), X(18140)}}, {{A, B, C, X(3226), X(23546)}}, {{A, B, C, X(6376), X(7121)}}, {{A, B, C, X(16744), X(32020)}}, {{A, B, C, X(23643), X(34077)}}, {{A, B, C, X(24524), X(40735)}}
X(63506) = barycentric product X(i)*X(j) for these (i, j): {16744, 42}, {21250, 7121}, {21337, 2162}, {22201, 86}, {23219, 92}, {23546, 75}, {23643, 87}, {25376, 40735}
X(63506) = barycentric quotient X(i)/X(j) for these (i, j): {16744, 310}, {21337, 6382}, {21426, 40367}, {22201, 10}, {23219, 63}, {23546, 1}, {23643, 6376}
X(63506) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 14823, 30963}, {2, 25285, 25141}, {2, 25293, 25122}, {1193, 40935, 1964}, {2275, 63553, 3248}, {20971, 23493, 1575}, {24662, 24745, 2}


X(63507) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(40)

Barycentrics    a^2*(a^3*(b^2-b*c+c^2)+a^2*(b^3+c^3)-(b-c)^2*(b^3+4*b^2*c+4*b*c^2+c^3)-a*(b^4-3*b^3*c+8*b^2*c^2-3*b*c^3+c^4)) : :

X(63507) lies on these lines: {1, 23630}, {198, 4322}, {2262, 3600}, {2275, 23637}, {3056, 17448}, {3554, 28386}, {3784, 4051}, {3959, 7248}, {9592, 50580}, {63493, 63494}, {63499, 63513}, {63517, 63528}

X(63507) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63502, 63516, 3056}, {63510, 63514, 63493}


X(63508) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(42)

Barycentrics    a^2*(b*(b-c)^2*c+a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63508) lies on these lines: {1, 23632}, {2, 17448}, {42, 1015}, {43, 9336}, {292, 3957}, {354, 3121}, {1201, 21753}, {1475, 7109}, {1575, 20011}, {1909, 26815}, {1977, 23415}, {2229, 42057}, {2275, 17018}, {3227, 31008}, {3669, 24800}, {3720, 22199}, {3873, 8620}, {4651, 16604}, {16584, 62867}, {16592, 63604}, {16606, 29824}, {16742, 39734}, {17140, 21345}, {17154, 17459}, {17165, 20363}, {17379, 23432}, {18905, 29835}, {20863, 63497}, {20974, 22200}, {21264, 26814}, {21327, 49479}, {21757, 38346}, {21814, 49478}, {23532, 24513}, {23533, 29818}, {25720, 43063}, {30647, 62819}, {63519, 63521}

X(63508) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63509, 2}, {63497, 63510, 63503}, {63519, 63521, 63525}


X(63509) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(43)

Barycentrics    a^2*(b*c*(b^2-b*c+c^2)+a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63509) lies on these lines: {1, 21838}, {2, 17448}, {6, 18613}, {39, 42042}, {42, 2275}, {43, 1015}, {145, 21877}, {292, 3870}, {350, 21223}, {672, 21785}, {749, 1100}, {893, 62819}, {1575, 20012}, {2277, 4272}, {3121, 3873}, {3227, 34020}, {3669, 24801}, {3751, 30646}, {4184, 10987}, {4394, 38238}, {4430, 8620}, {7109, 23560}, {8049, 62619}, {9263, 17149}, {9284, 29843}, {9336, 16569}, {10453, 16606}, {16584, 49490}, {16592, 33141}, {16604, 59296}, {16746, 30941}, {16975, 43223}, {18743, 21893}, {20363, 32937}, {20464, 63497}, {21345, 24349}, {21827, 49448}, {23415, 23538}, {23432, 37677}, {23462, 23524}, {25721, 43063}, {28606, 31314}, {30947, 63481}, {33103, 39786}, {37657, 62214}, {63503, 63521}

X(63509) = intersection, other than A, B, C, of circumconics {{A, B, C, X(749), X(34445)}}, {{A, B, C, X(30651), X(38247)}}
X(63509) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63508, 63493}, {3121, 3873, 20284}, {17018, 23632, 2276}, {23415, 23579, 23538}, {24528, 63493, 2}


X(63510) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(55)

Barycentrics    a^2*(a^2*b*c-(b-c)^2*(b^2+c^2)+a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63510) lies on these lines: {1, 23636}, {2, 25110}, {1015, 23638}, {3056, 63528}, {3938, 20860}, {5364, 23653}, {17715, 24484}, {20684, 62850}, {20863, 63497}, {22769, 51947}, {23154, 23535}, {23415, 26892}, {63493, 63494}, {63495, 63501}, {63502, 63504}

X(63510) = barycentric product X(i)*X(j) for these (i, j): {1, 20275}
X(63510) = barycentric quotient X(i)/X(j) for these (i, j): {20275, 75}
X(63510) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63507, 63514}, {63503, 63508, 63497}


X(63511) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(57)

Barycentrics    a^2*(a^2*(b^2-b*c+c^2)-(b-c)^2*(b^2+3*b*c+c^2)) : :

X(63511) lies on these lines: {1, 5943}, {2, 3056}, {11, 11436}, {25, 1428}, {34, 44079}, {43, 28353}, {51, 614}, {55, 17825}, {56, 17810}, {57, 3271}, {92, 4124}, {105, 29363}, {181, 7290}, {244, 7248}, {329, 20358}, {354, 63007}, {373, 612}, {375, 3242}, {394, 8540}, {497, 18928}, {511, 5272}, {518, 63037}, {613, 5020}, {674, 37679}, {748, 26893}, {1191, 58493}, {1401, 5573}, {1682, 5436}, {1853, 6285}, {2175, 52423}, {2275, 3981}, {2330, 10601}, {2999, 21746}, {3030, 3158}, {3060, 7292}, {3083, 6283}, {3084, 6405}, {3305, 4517}, {3688, 7308}, {3742, 37516}, {3779, 4383}, {3781, 17123}, {3784, 17063}, {3920, 11451}, {4014, 63583}, {4459, 54284}, {5092, 7298}, {5121, 37521}, {5268, 6688}, {5310, 43650}, {5322, 34417}, {5640, 7191}, {6238, 10593}, {7004, 20276}, {7083, 52424}, {7196, 54128}, {7355, 41580}, {7392, 12588}, {7741, 21243}, {8054, 61365}, {8583, 10544}, {9025, 18141}, {9309, 21454}, {9776, 49537}, {9777, 19369}, {10404, 57666}, {10591, 23291}, {11433, 12589}, {12109, 54386}, {14839, 30568}, {16980, 28011}, {17054, 42450}, {17611, 26635}, {17728, 18191}, {18743, 25048}, {19366, 58550}, {21334, 26105}, {23483, 56882}, {24175, 29353}, {26884, 61396}, {30148, 58474}, {38346, 61366}, {42448, 63460}, {54326, 55432}, {61640, 62850}, {63493, 63494}

X(63511) = pole of line {192, 30694} with respect to the Feuerbach hyperbola
X(63511) = barycentric product X(i)*X(j) for these (i, j): {23535, 75}
X(63511) = barycentric quotient X(i)/X(j) for these (i, j): {23535, 1}
X(63511) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63513, 3056}, {51, 614, 1469}, {244, 26892, 7248}


X(63512) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(58)

Barycentrics    a^2*(-b^5+a^3*b*c+b^3*c^2+b^2*c^3-c^5+a^2*b*c*(b+c)-a*(b^4-3*b^2*c^2+c^4)) : :

X(63512) lies on these lines: {1, 23639}, {2, 25136}, {904, 3122}, {1015, 58469}, {2245, 28631}, {3959, 33135}, {17448, 63525}, {20271, 24161}, {20977, 63493}, {23443, 34077}, {63494, 63497}, {63520, 63627}


X(63513) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(63)

Barycentrics    a^2*(-b^4-b^3*c+2*b^2*c^2-b*c^3-c^4+a^2*(b^2-b*c+c^2)) : :

X(63513) lies on these lines: {1, 51}, {2, 3056}, {11, 343}, {22, 1428}, {25, 613}, {35, 43650}, {55, 10601}, {56, 33586}, {63, 3271}, {181, 62834}, {182, 5310}, {238, 26893}, {244, 3784}, {312, 25048}, {354, 37516}, {373, 5268}, {496, 41588}, {497, 11433}, {499, 43653}, {511, 614}, {518, 19993}, {611, 9777}, {612, 5943}, {674, 4383}, {748, 3781}, {982, 26892}, {1469, 3060}, {1479, 1899}, {1682, 62829}, {1818, 27639}, {1914, 42295}, {1993, 8540}, {2275, 20859}, {2276, 20965}, {2330, 5422}, {2810, 62850}, {2979, 7292}, {3305, 3688}, {3315, 23155}, {3583, 11550}, {3749, 51377}, {3779, 32911}, {3789, 63100}, {3870, 23638}, {3917, 5272}, {3920, 5640}, {3924, 28356}, {3937, 18193}, {3938, 20962}, {3955, 61396}, {4014, 63584}, {4517, 27065}, {4906, 9037}, {5225, 6285}, {5256, 21746}, {5297, 11451}, {5710, 58493}, {5905, 20358}, {6238, 9669}, {6283, 56384}, {6405, 56427}, {6515, 12589}, {6997, 12588}, {7083, 55399}, {7155, 19811}, {7186, 17063}, {7288, 33522}, {7295, 26889}, {7298, 22352}, {7355, 41715}, {8679, 17597}, {9309, 9965}, {10387, 17825}, {10544, 19861}, {11002, 17024}, {11435, 41230}, {12109, 54421}, {14523, 14557}, {14839, 56082}, {15171, 45298}, {16475, 40952}, {16496, 61640}, {17017, 20961}, {17723, 18165}, {18194, 63502}, {19860, 50621}, {20977, 63493}, {24177, 29353}, {30145, 58474}, {31383, 39901}, {36742, 58575}, {37549, 42450}, {37720, 41586}, {39873, 61658}, {54326, 55400}, {56878, 62806}, {63494, 63517}, {63499, 63507}, {63515, 63516}, {63521, 63528}

X(63513) = pole of line {192, 10528} with respect to the Feuerbach hyperbola
X(63513) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3056, 63511, 2}, {3060, 7191, 1469}, {20977, 63505, 63503}, {63503, 63505, 63493}


X(63514) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(65)

Barycentrics    a^2*(a^3*(b-c)^2+a^2*b*c*(b+c)-3*b*(b-c)^2*c*(b+c)-a*(b-c)^2*(b^2+c^2)) : :

X(63514) lies on these lines: {1, 23640}, {2, 24529}, {1015, 23619}, {2170, 23443}, {17448, 63501}, {17451, 20460}, {18194, 63498}, {21951, 22066}, {40955, 53165}, {63493, 63494}, {63497, 63502}, {63504, 63516}

X(63514) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63507, 63510}


X(63515) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(69)

Barycentrics    a*(a^2*b*c-2*a*(b-c)^2*(b+c)-b*c*(b^2+c^2)) : :

X(63515) lies on these lines: {1, 573}, {2, 3728}, {8, 17065}, {69, 3122}, {145, 24478}, {256, 3945}, {291, 346}, {518, 62214}, {966, 24437}, {980, 4890}, {982, 3672}, {2276, 58620}, {2998, 39925}, {3729, 22214}, {3778, 17316}, {3976, 4310}, {4022, 17321}, {4346, 4941}, {4443, 4648}, {4446, 17314}, {4484, 17243}, {4869, 41886}, {6007, 25570}, {17053, 35892}, {17257, 22172}, {18194, 63498}, {20456, 26685}, {21835, 63562}, {22220, 27549}, {23633, 25304}, {33171, 61365}, {63495, 63518}, {63513, 63516}, {63523, 63526}

X(63515) = pole of line {6005, 48049} with respect to the incircle
X(63515) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21330, 63497, 2}, {63498, 63499, 18194}


X(63516) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(71)

Barycentrics    a^2*(a^2*b*(b-c)^2*c-b*c*(b^2-c^2)^2+a^3*(b^3+c^3)-a*(b^5+b^3*c^2+b^2*c^3+c^5)) : :

X(63516) lies on these lines: {295, 26998}, {1108, 5360}, {2269, 23440}, {3056, 17448}, {3672, 26892}, {4361, 22412}, {16834, 50646}, {16971, 21746}, {20863, 63497}, {63504, 63514}, {63513, 63515}

X(63516) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3056, 63507, 63502}


X(63517) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(72)

Barycentrics    a^2*(a^3*(b-c)^2+a^2*b*c*(b+c)-a*(b^2-c^2)^2+b*c*(-3*b^3+b^2*c+b*c^2-3*c^3)) : :

X(63517) lies on these lines: {1, 40955}, {244, 22066}, {1015, 20727}, {2260, 62802}, {3056, 23633}, {3721, 23443}, {3726, 20460}, {3727, 23415}, {3735, 23530}, {17448, 63501}, {22065, 28082}, {63494, 63513}, {63495, 63499}, {63507, 63528}


X(63518) = COMPLEMENT OF X(25273)

Barycentrics    a*(b^3*c^3+a^3*(b-c)^2*(b+c)) : :

X(63518) lies on circumconic {{A, B, C, X(37), X(22218)}} and on these lines: {1, 6}, {2, 24527}, {75, 23485}, {330, 3248}, {1909, 63553}, {3226, 4485}, {3759, 45216}, {4116, 17034}, {4161, 17027}, {6376, 23652}, {6384, 23460}, {7032, 34063}, {8026, 32915}, {14823, 20530}, {17033, 40935}, {18172, 18195}, {20464, 24524}, {22218, 63563}, {23478, 23505}, {23629, 30114}, {24661, 25130}, {24696, 33296}, {31999, 63527}, {37686, 56806}, {63495, 63515}

X(63518) = reflection of X(i) in X(j) for these {i,j}: {25273, 25141}
X(63518) = complement of X(25273)
X(63518) = anticomplement of X(25141)
X(63518) = {X(2),X(1)}-bicevian centroidal collineation image of X(76)
X(63518) = pole of line {4083, 21191} with respect to the DeLongchamps ellipse
X(63518) = pole of line {55, 23385} with respect to the Feuerbach hyperbola
X(63518) = barycentric product X(i)*X(j) for these (i, j): {22218, 86}, {63563, 75}
X(63518) = barycentric quotient X(i)/X(j) for these (i, j): {22218, 10}, {63563, 1}
X(63518) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25273, 25141}, {23485, 23493, 75}


X(63519) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(81)

Barycentrics    a^2*(a*b+b^2+b*c-c^2)*(-b^2+b*c+c*(a+c)) : :

X(63519) lies on these lines: {1, 20966}, {2, 3728}, {81, 3122}, {244, 33135}, {256, 8025}, {291, 3995}, {1255, 21035}, {3123, 26842}, {3187, 17065}, {3219, 22172}, {3720, 4476}, {3725, 61728}, {3764, 62801}, {3778, 17019}, {5009, 6186}, {20456, 27065}, {20977, 63493}, {21020, 24923}, {22220, 33166}, {24437, 41809}, {24450, 41818}, {24911, 33160}, {25426, 61324}, {63508, 63521}

X(63519) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63508, 63525, 63521}


X(63520) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(86)

Barycentrics    a*(a^2*b*c+b^2*c^2-a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63520) lies on these lines: {1, 2092}, {2, 3728}, {7, 24456}, {37, 291}, {86, 256}, {171, 40934}, {172, 16800}, {238, 1778}, {244, 17302}, {354, 28366}, {714, 25660}, {740, 24923}, {894, 22172}, {982, 17321}, {1015, 59481}, {1045, 4890}, {1213, 24437}, {1575, 58620}, {1654, 22174}, {1909, 21257}, {2228, 17317}, {2257, 39954}, {2663, 21796}, {2664, 52020}, {2667, 24530}, {3056, 24661}, {3086, 24161}, {3123, 26806}, {3247, 12782}, {3742, 28358}, {3751, 47299}, {3764, 17394}, {3778, 16826}, {3783, 28244}, {4000, 17063}, {4022, 17322}, {4443, 15668}, {4446, 16777}, {4648, 41886}, {4941, 42697}, {4947, 7321}, {6707, 24450}, {7228, 24338}, {9445, 37887}, {10436, 24463}, {12194, 16488}, {17260, 20456}, {17314, 46032}, {18194, 63493}, {21699, 31248}, {21725, 63606}, {21835, 63566}, {22167, 28604}, {23668, 24372}, {24654, 24752}, {29388, 41683}, {40875, 59716}, {50658, 58034}, {57037, 58583}, {57039, 58571}, {63504, 63526}, {63512, 63627}

X(63520) = X(i)-complementary conjugate of X(j) for these {i, j}: {604, 34021}, {40737, 1329}, {40770, 3452}, {54117, 21244}
X(63520) = pole of line {21246, 29968} with respect to the dual conic of Yff parabola
X(63520) = barycentric product X(i)*X(j) for these (i, j): {23944, 81}
X(63520) = barycentric quotient X(i)/X(j) for these (i, j): {23944, 321}
X(63520) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 17065, 24478}, {2, 63497, 24575}, {86, 3122, 256}


X(63521) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(100)

Barycentrics    a^2*(-b^4+a^2*b*c+2*b^3*c-b^2*c^2+2*b*c^3-c^4+a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63521) lies on these lines: {1, 20974}, {2, 25110}, {2170, 33148}, {3722, 24484}, {3870, 20860}, {3920, 20465}, {3957, 23636}, {21224, 44353}, {21341, 23450}, {23656, 63526}, {34230, 35326}, {63494, 63499}, {63503, 63509}, {63508, 63519}, {63513, 63528}

X(63521) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63508, 63525, 63519}


X(63522) = COMPLEMENT OF X(25279)

Barycentrics    a*(a^2*(b-c)^2-b*(b-c)^2*c-a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63522) lies on these lines: {2, 3056}, {6, 354}, {9, 20358}, {11, 25964}, {37, 17445}, {57, 36635}, {65, 238}, {86, 9432}, {87, 17063}, {105, 2330}, {142, 3271}, {210, 3757}, {244, 22343}, {373, 3011}, {517, 15485}, {518, 17349}, {673, 14100}, {674, 17337}, {942, 16468}, {1001, 3057}, {1125, 50594}, {1155, 20992}, {1212, 20459}, {1279, 2209}, {1428, 4223}, {1441, 4124}, {1469, 16020}, {1740, 16610}, {2309, 3752}, {2347, 59217}, {3008, 21746}, {3688, 6666}, {3698, 5263}, {3742, 17379}, {3753, 49482}, {3758, 58583}, {3779, 37650}, {3873, 63050}, {3967, 17142}, {4014, 63589}, {4393, 58620}, {4423, 21334}, {4459, 20905}, {4517, 18230}, {4649, 17609}, {4890, 50114}, {5272, 28365}, {5439, 33682}, {5919, 13541}, {7064, 60986}, {7155, 30090}, {7321, 24482}, {8053, 63211}, {8540, 37659}, {9025, 17234}, {9309, 62778}, {9440, 58368}, {10177, 40965}, {11451, 29681}, {11997, 58608}, {12723, 53602}, {13476, 16669}, {14547, 28250}, {14839, 25101}, {16482, 17351}, {16583, 23660}, {16666, 58571}, {17000, 43216}, {17049, 17353}, {17259, 29828}, {17263, 25048}, {17348, 57024}, {17448, 21330}, {17451, 20361}, {17605, 34830}, {18161, 20275}, {18165, 27644}, {20257, 21927}, {20470, 37605}, {22172, 27846}, {22173, 23415}, {23904, 40608}, {24182, 59676}, {24742, 25106}, {26728, 37999}, {28366, 56805}, {28600, 63053}, {30097, 52195}, {31391, 62383}, {32636, 37507}, {37080, 37502}, {37593, 45223}, {50611, 62673}, {53391, 55340}, {58560, 63108}

X(63522) = reflection of X(i) in X(j) for these {i,j}: {25279, 25108}
X(63522) = complement of X(25279)
X(63522) = anticomplement of X(25108)
X(63522) = X(i)-Dao conjugate of X(j) for these {i, j}: {20257, 27538}, {25108, 25108}
X(63522) = X(i)-cross conjugate of X(j) for these {i, j}: {22173, 20257}
X(63522) = pole of line {192, 3870} with respect to the Feuerbach hyperbola
X(63522) = {X(2),X(1)}-bicevian centroidal collineation image of X(142)
X(63522) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2191), X(20257)}}, {{A, B, C, X(21927), X(22173)}}, {{A, B, C, X(23415), X(57656)}}, {{A, B, C, X(23744), X(57469)}}
X(63522) = barycentric product X(i)*X(j) for these (i, j): {1, 20257}, {100, 23744}, {21927, 81}, {22173, 86}, {23415, 75}
X(63522) = barycentric quotient X(i)/X(j) for these (i, j): {20257, 75}, {21927, 321}, {22173, 10}, {23415, 1}, {23744, 693}
X(63522) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25279, 25108}, {2, 25306, 25137}, {2, 63498, 3056}, {142, 3271, 49537}, {3008, 21746, 61034}, {24655, 24738, 2}


X(63523) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(144)

Barycentrics    a*(-(b*(b-c)^2*c)+a^2*(4*b^2-5*b*c+4*c^2)+a*(-4*b^3+2*b^2*c+2*b*c^2-4*c^3)) : :

X(63523) lies on these lines: {2, 3056}, {105, 63088}, {144, 3271}, {145, 20864}, {346, 25048}, {613, 37254}, {674, 37681}, {4014, 63590}, {4430, 63061}, {9024, 53665}, {9309, 20059}, {11038, 37516}, {17014, 21746}, {26668, 60354}, {63515, 63526}, {63524, 63527}

X(63523) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3056, 63498, 2}, {9309, 20358, 20059}


X(63524) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(145)

Barycentrics    a*(b*c*(b+c)+a*(4*b^2-11*b*c+4*c^2)) : :

X(63524) lies on circumconic {{A, B, C, X(25296), X(41439)}} and on these lines: {1, 23649}, {2, 17448}, {8, 9336}, {145, 1015}, {1575, 20014}, {2275, 3623}, {3161, 39975}, {3227, 18135}, {3304, 63004}, {3445, 63087}, {3622, 5283}, {4678, 16604}, {8610, 63086}, {11998, 18220}, {16592, 63607}, {16975, 46934}, {62837, 63075}, {63523, 63527}

X(63524) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63493, 63499, 2}


X(63525) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(171)

Barycentrics    a^2*(-b^4+b^3*c+b^2*c^2-c^4+b*c*(a^2+c^2)) : :

X(63525) lies on these lines: {1, 3981}, {2, 24525}, {292, 23636}, {612, 3094}, {1015, 5943}, {1469, 1613}, {1691, 5322}, {2162, 26892}, {2330, 10329}, {3124, 7191}, {3125, 33147}, {3920, 20859}, {3959, 19785}, {3961, 20861}, {5297, 8041}, {16781, 17810}, {17448, 63512}, {19369, 45843}, {20464, 63497}, {21954, 32922}, {22171, 29637}, {63493, 63494}, {63508, 63519}

X(63525) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63519, 63521, 63508}


X(63526) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(190)

Barycentrics    a*(b^2*c^2+a^2*(2*b^2-3*b*c+2*c^2)-a*(b^3+c^3)) : :

X(63526) lies on these lines: {1, 2810}, {2, 24671}, {6, 983}, {238, 1332}, {256, 18170}, {291, 3248}, {513, 4947}, {519, 646}, {662, 8297}, {982, 3942}, {3056, 18194}, {3244, 36798}, {3716, 53532}, {3888, 27846}, {4422, 16495}, {4553, 16507}, {7032, 20862}, {9016, 41531}, {9025, 56805}, {9359, 14839}, {11609, 63292}, {17715, 24498}, {20356, 36294}, {22096, 51634}, {23634, 29584}, {23656, 63521}, {63497, 63527}, {63498, 63619}, {63504, 63520}, {63515, 63523}

X(63526) = barycentric product X(i)*X(j) for these (i, j): {100, 24130}
X(63526) = barycentric quotient X(i)/X(j) for these (i, j): {24130, 693}
X(63526) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3056, 18194, 24575}, {3248, 25048, 291}


X(63527) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(192)

Barycentrics    a*(2*a^2*(b-c)^2+b^2*c^2-a*b*c*(b+c)) : :

X(63527) lies on these lines: {1, 4704}, {2, 18194}, {6, 23560}, {7, 43924}, {87, 1278}, {192, 3248}, {749, 1100}, {1015, 23643}, {1045, 4393}, {1386, 20323}, {1964, 3240}, {3009, 63050}, {3720, 31313}, {3879, 7189}, {4128, 63609}, {4974, 27625}, {8054, 30947}, {9359, 25269}, {17127, 21769}, {17262, 37129}, {17375, 56805}, {17379, 18170}, {21299, 26821}, {23493, 54098}, {23561, 63563}, {25304, 63619}, {26135, 27011}, {29814, 40721}, {31999, 63518}, {40148, 59296}, {63497, 63526}, {63523, 63524}

X(63527) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4595, 649}
X(63527) = pole of line {24509, 27007} with respect to the dual conic of Yff parabola
X(63527) = intersection, other than A, B, C, of circumconics {{A, B, C, X(749), X(38247)}}, {{A, B, C, X(30651), X(36598)}}
X(63527) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 22343, 4704}, {1, 23524, 17350}, {1, 23532, 37677}, {1, 23579, 31302}, {18194, 63504, 2}


X(63528) = {X(2),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(200)

Barycentrics    a^2*(b^4-5*b^3*c+4*b^2*c^2-5*b*c^3+c^4+a^2*(b^2-3*b*c+c^2)-2*a*(b^3-2*b^2*c-2*b*c^2+c^3)) : :

X(63528) lies on these lines: {1, 21795}, {2, 17448}, {200, 1015}, {1575, 20015}, {2275, 3870}, {2276, 3957}, {3056, 63510}, {3744, 61326}, {8580, 9336}, {24403, 43989}, {62214, 63087}, {63507, 63517}, {63513, 63521}


X(63529) = {X(2),X(3)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(3)

Barycentrics    a^4*(a^2-b^2-c^2)^2*(-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(b^4-3*b^2*c^2+c^4)+(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)) : :

X(63529) lies on these lines: {2, 38256}, {3, 1625}, {20, 46841}, {216, 3523}, {417, 577}, {2549, 9243}, {6389, 7836}, {6509, 51579}, {16089, 54114}, {22401, 53844}, {22416, 47409}

X(63529) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43188, 520}
X(63529) = pole of line {401, 15466} with respect to the Stammler hyperbola
X(63529) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1987), X(14642)}}, {{A, B, C, X(14379), X(14941)}}


X(63530) = {X(2),X(3)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(5)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^8*(b^2-c^2)^2-b^2*c^2*(b^2-c^2)^4+a^4*(b^2-c^2)^2*(3*b^4+7*b^2*c^2+3*c^4)+a^6*(-3*b^6+2*b^4*c^2+2*b^2*c^4-3*c^6)-a^2*(b^10-b^6*c^4-b^4*c^6+c^10)) : :

X(63530) lies on these lines: {2, 38256}, {3, 6}, {4, 46841}, {5, 35071}, {115, 9243}, {264, 54114}, {276, 54950}, {401, 6509}, {458, 46831}, {550, 46394}, {9289, 43711}, {9290, 54976}, {10314, 14379}, {13561, 39019}, {37124, 53844}, {46832, 51350}

X(63530) = intersection, other than A, B, C, of circumconics {{A, B, C, X(577), X(38256)}}, {{A, B, C, X(30258), X(51030)}}


X(63531) = {X(2),X(3)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    a^4*(a^2-b^2-c^2)*(b^8-b^6*c^2-b^2*c^6+c^8-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(b^4-b^2*c^2+c^4)) : :

X(63531) lies on these lines: {2, 63532}, {3, 57686}, {4, 35709}, {6, 1987}, {20, 185}, {51, 3087}, {69, 43711}, {130, 63552}, {160, 44088}, {184, 418}, {317, 1899}, {1181, 4173}, {1298, 21449}, {2387, 39913}, {2393, 6751}, {2979, 40897}, {3269, 23635}, {3270, 23440}, {5667, 5890}, {6748, 15649}, {11412, 17401}, {12167, 40951}, {14941, 40800}, {18353, 24862}, {18913, 63555}, {19209, 52249}, {26937, 63556}, {34845, 53576}, {52463, 61506}

X(63531) = reflection of X(i) in X(j) for these {i,j}: {52177, 34980}
X(63531) = perspector of circumconic {{A, B, C, X(32661), X(43188)}}
X(63531) = X(i)-Dao conjugate of X(j) for these {i, j}: {34980, 520}
X(63531) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6528, 647}
X(63531) = pole of line {16229, 62521} with respect to the polar circle
X(63531) = pole of line {2524, 30451} with respect to the Brocard inellipse
X(63531) = pole of line {2, 216} with respect to the Jerabek hyperbola
X(63531) = pole of line {2524, 39469} with respect to the Orthic inconic
X(63531) = pole of line {264, 436} with respect to the Stammler hyperbola
X(63531) = pole of line {1975, 9291} with respect to the Wallace hyperbola
X(63531) = pole of line {42331, 44173} with respect to the dual conic of polar circle
X(63531) = intersection, other than A, B, C, of circumconics {{A, B, C, X(184), X(9307)}}, {{A, B, C, X(418), X(52249)}}, {{A, B, C, X(577), X(1987)}}, {{A, B, C, X(3164), X(51336)}}, {{A, B, C, X(9292), X(14575)}}, {{A, B, C, X(18890), X(47739)}}, {{A, B, C, X(19209), X(23606)}}
X(63531) = barycentric product X(i)*X(j) for these (i, j): {19209, 216}, {19210, 27358}, {52249, 577}
X(63531) = barycentric quotient X(i)/X(j) for these (i, j): {19209, 276}, {27358, 62275}, {52249, 18027}
X(63531) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6752, 34980, 6}


X(63532) = {X(2),X(3)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(141)

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6*(b^2-c^2)^2+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+a^2*(b^4-c^4)^2+a^4*(-2*b^6+b^4*c^2+b^2*c^4-2*c^6)) : :

X(63532) lies on these lines: {2, 63531}, {51, 36794}, {95, 5650}, {141, 34980}, {182, 185}, {287, 6467}, {297, 35709}, {426, 577}, {3313, 51740}, {3589, 6752}, {3819, 43980}, {41328, 44088}, {52463, 61644}

X(63532) = pole of line {22, 385} with respect to the Jerabek hyperbola
X(63532) = pole of line {17907, 44443} with respect to the Stammler hyperbola


X(63533) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(4)

Barycentrics    a^4-5*(b^2-c^2)^2 : :

X(63533) lies on these lines: {2, 15815}, {4, 32}, {5, 5024}, {6, 1131}, {20, 5210}, {39, 3545}, {69, 7885}, {76, 16041}, {99, 32969}, {141, 33200}, {148, 6337}, {183, 32982}, {187, 33703}, {194, 9770}, {230, 3146}, {325, 2996}, {376, 7746}, {381, 5286}, {382, 43291}, {385, 32996}, {393, 37197}, {538, 32823}, {574, 5067}, {620, 32958}, {625, 32818}, {626, 33292}, {631, 7748}, {671, 7763}, {966, 23897}, {1007, 32966}, {1078, 33238}, {1184, 7409}, {1196, 62975}, {1327, 45515}, {1328, 45514}, {1384, 3853}, {1506, 3544}, {1975, 32972}, {2482, 39142}, {2548, 3855}, {2549, 3090}, {3053, 3543}, {3054, 15717}, {3055, 61914}, {3087, 23047}, {3091, 5254}, {3314, 33290}, {3316, 62206}, {3317, 62205}, {3329, 32995}, {3520, 44527}, {3522, 37637}, {3523, 44526}, {3524, 7756}, {3528, 7749}, {3533, 37512}, {3552, 44531}, {3618, 16044}, {3619, 7933}, {3734, 32951}, {3785, 33229}, {3788, 32822}, {3815, 5068}, {3839, 7745}, {3843, 5305}, {3845, 30435}, {3850, 9605}, {3851, 15048}, {3854, 37665}, {3858, 15484}, {3926, 33228}, {3934, 7615}, {4045, 32957}, {4232, 47298}, {5013, 5056}, {5023, 5059}, {5058, 23275}, {5062, 23269}, {5071, 11648}, {5072, 31406}, {5116, 63120}, {5206, 11001}, {5304, 50689}, {5306, 61985}, {5309, 34571}, {5319, 39590}, {5368, 61979}, {5475, 41940}, {5585, 62102}, {5712, 23903}, {5739, 23942}, {5895, 53496}, {6034, 51023}, {6292, 33232}, {6392, 7773}, {6423, 23253}, {6424, 23263}, {6623, 27376}, {6655, 34229}, {6722, 32959}, {6781, 11541}, {6784, 9292}, {7620, 11318}, {7739, 41106}, {7750, 63029}, {7753, 61967}, {7754, 32827}, {7758, 32457}, {7765, 31415}, {7771, 33247}, {7774, 32993}, {7776, 37350}, {7782, 32977}, {7783, 32963}, {7784, 32834}, {7789, 33199}, {7790, 32968}, {7792, 32979}, {7793, 33279}, {7795, 18546}, {7797, 33016}, {7803, 15031}, {7806, 14068}, {7807, 32826}, {7816, 33189}, {7820, 32953}, {7822, 33196}, {7823, 63034}, {7828, 14033}, {7832, 11185}, {7834, 47617}, {7841, 32828}, {7844, 14069}, {7847, 32978}, {7851, 32971}, {7853, 18840}, {7857, 33239}, {7861, 32956}, {7864, 32962}, {7879, 46951}, {7886, 33191}, {7887, 32815}, {7891, 33277}, {7893, 14041}, {7898, 50570}, {7900, 11008}, {7904, 33278}, {7923, 33269}, {7931, 33287}, {7935, 55732}, {7942, 14001}, {8356, 32838}, {8553, 12087}, {8588, 62113}, {8716, 32835}, {8778, 13473}, {8860, 55819}, {9166, 32985}, {9300, 61954}, {9575, 12571}, {9597, 10589}, {9598, 10588}, {9606, 18584}, {10019, 45141}, {10172, 31421}, {10304, 44535}, {10542, 47354}, {11174, 32991}, {11403, 34809}, {12279, 15575}, {12290, 50387}, {12815, 61817}, {12963, 52666}, {12968, 52667}, {13509, 60501}, {13711, 35821}, {13834, 35820}, {13850, 26289}, {13932, 26288}, {14031, 16984}, {14061, 32970}, {14062, 20065}, {14118, 44524}, {14537, 61983}, {14904, 60222}, {15022, 31489}, {15271, 33025}, {15513, 62127}, {15515, 15702}, {15655, 62155}, {16589, 50741}, {16989, 33018}, {17004, 32997}, {17008, 33019}, {17128, 33283}, {17538, 21843}, {17578, 37689}, {18907, 61984}, {18918, 39643}, {19877, 31443}, {20998, 62708}, {21309, 61990}, {21356, 44453}, {21841, 47297}, {22110, 32841}, {22467, 44528}, {23055, 33192}, {23249, 49221}, {23251, 44595}, {23259, 49220}, {23261, 44596}, {26457, 42571}, {26462, 42570}, {31034, 63607}, {31276, 33251}, {31403, 42273}, {31407, 61946}, {32816, 47286}, {32830, 34505}, {32832, 32986}, {32974, 59635}, {33011, 63083}, {33023, 37688}, {34481, 52299}, {34511, 36523}, {35488, 41361}, {37466, 38229}, {37643, 39691}, {37667, 54097}, {39601, 61921}, {40350, 52290}, {42494, 61332}, {42495, 61331}, {43136, 61975}, {43618, 62021}, {44541, 61791}, {44594, 53513}, {44597, 53516}, {46453, 62028}, {48476, 53497}, {48477, 53498}, {51212, 53475}, {52284, 62702}, {53095, 55864}, {53418, 61982}, {63545, 63546}

X(63533) = pole of line {193, 1503} with respect to the Kiepert hyperbola
X(63533) = pole of line {5023, 36212} with respect to the Stammler hyperbola
X(63533) = pole of line {6393, 20080} with respect to the Wallace hyperbola
X(63533) = intersection, other than A, B, C, of circumconics {{A, B, C, X(98), X(15749)}}, {{A, B, C, X(6531), X(38259)}}, {{A, B, C, X(36616), X(57260)}}
X(63533) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63536, 44518}, {5, 43448, 7738}, {5, 7738, 62993}, {20, 13881, 62992}, {1975, 32972, 37690}, {2548, 18424, 3855}, {2549, 39565, 3090}, {2996, 32980, 325}, {3054, 44519, 15717}, {3091, 5254, 7736}, {3851, 15048, 31404}, {7748, 43620, 631}, {7749, 43619, 3528}, {7783, 32963, 34803}, {7803, 15031, 32983}, {7847, 53127, 32978}, {7864, 32962, 63041}, {7923, 33269, 63119}, {13881, 53419, 20}, {33292, 52713, 626}, {44518, 63534, 2}, {44518, 63540, 63550}, {44518, 63541, 63540}, {44518, 63543, 63536}


X(63534) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(5)

Barycentrics    -3*(b^2-c^2)^2+a^2*(b^2+c^2) : :

X(63534) lies on these lines: {2, 15815}, {3, 3054}, {4, 230}, {5, 39}, {6, 3091}, {11, 63493}, {20, 37637}, {30, 5206}, {32, 546}, {53, 235}, {61, 46079}, {62, 46080}, {69, 32980}, {76, 33228}, {83, 60280}, {98, 54873}, {99, 33249}, {140, 7748}, {141, 5025}, {148, 32967}, {183, 14063}, {187, 3627}, {325, 20081}, {343, 20977}, {376, 44535}, {381, 3767}, {384, 44531}, {385, 32993}, {403, 16308}, {411, 44517}, {427, 3291}, {485, 49086}, {486, 49087}, {489, 590}, {490, 615}, {524, 7773}, {547, 11648}, {549, 7756}, {550, 7749}, {566, 13160}, {574, 3628}, {597, 7797}, {599, 32834}, {625, 3933}, {631, 44526}, {632, 37512}, {671, 7769}, {682, 53264}, {858, 39576}, {1007, 2996}, {1015, 10593}, {1078, 33229}, {1321, 1322}, {1384, 61984}, {1500, 10592}, {1504, 18538}, {1505, 18762}, {1594, 49123}, {1596, 27371}, {1609, 5198}, {1611, 7378}, {1656, 2549}, {1657, 21843}, {1692, 39884}, {1834, 36687}, {1968, 10151}, {1971, 41362}, {1975, 32961}, {1990, 46256}, {1995, 47298}, {2076, 51163}, {2079, 3520}, {2275, 7173}, {2276, 3614}, {2548, 3851}, {2896, 14045}, {3055, 3090}, {3070, 45510}, {3071, 45511}, {3124, 45303}, {3146, 5023}, {3199, 44960}, {3329, 33024}, {3363, 7817}, {3523, 44519}, {3525, 53095}, {3529, 5210}, {3544, 18584}, {3545, 5286}, {3589, 7851}, {3618, 32991}, {3629, 7785}, {3630, 15514}, {3634, 31443}, {3734, 8361}, {3763, 33180}, {3788, 18546}, {3829, 17448}, {3832, 7735}, {3843, 7737}, {3845, 7747}, {3847, 16604}, {3850, 5305}, {3854, 5304}, {3857, 5007}, {3858, 7755}, {3859, 5346}, {3861, 62203}, {3926, 22110}, {3934, 33184}, {3944, 21965}, {3959, 62221}, {4277, 50036}, {5008, 41991}, {5024, 5079}, {5028, 18358}, {5052, 38136}, {5055, 31401}, {5056, 7738}, {5066, 5309}, {5068, 7736}, {5071, 31400}, {5072, 9605}, {5076, 43618}, {5116, 51126}, {5133, 9465}, {5141, 37661}, {5275, 6871}, {5283, 17530}, {5319, 15484}, {5368, 61956}, {5461, 7886}, {5480, 13330}, {5523, 16868}, {5585, 50693}, {5718, 23903}, {5741, 23942}, {5743, 23897}, {5893, 53496}, {5913, 31857}, {5999, 44530}, {6034, 47354}, {6337, 32988}, {6390, 7862}, {6392, 9766}, {6421, 42274}, {6422, 42277}, {6423, 13834}, {6424, 13711}, {6564, 45515}, {6565, 45514}, {6622, 59229}, {6655, 37688}, {6661, 7942}, {6722, 7816}, {6749, 16310}, {6781, 62036}, {6909, 44542}, {7384, 37646}, {7395, 9609}, {7503, 44524}, {7526, 44527}, {7527, 44533}, {7529, 9608}, {7615, 7795}, {7617, 7872}, {7620, 32822}, {7739, 19709}, {7750, 13468}, {7752, 47286}, {7753, 34571}, {7762, 14568}, {7764, 32457}, {7767, 7825}, {7771, 19695}, {7772, 12811}, {7777, 33011}, {7778, 32972}, {7783, 37647}, {7784, 16041}, {7789, 7887}, {7790, 32992}, {7791, 58446}, {7792, 16044}, {7793, 14062}, {7801, 8355}, {7802, 8352}, {7803, 44543}, {7806, 33018}, {7807, 14061}, {7810, 16509}, {7815, 8357}, {7819, 7844}, {7820, 33186}, {7822, 8360}, {7823, 22329}, {7826, 31173}, {7828, 8370}, {7833, 15597}, {7841, 11168}, {7856, 53489}, {7857, 19687}, {7861, 8362}, {7863, 31275}, {7864, 33002}, {7868, 33283}, {7877, 48913}, {7885, 37671}, {7900, 50251}, {7921, 8584}, {7923, 33020}, {7925, 32820}, {7939, 22165}, {7941, 19570}, {7948, 51128}, {8252, 33364}, {8253, 33365}, {8353, 43459}, {8550, 11646}, {8571, 12359}, {8588, 12103}, {8589, 14869}, {8667, 32006}, {8716, 32829}, {8770, 8889}, {8860, 33192}, {9603, 43598}, {9604, 13434}, {9619, 61268}, {9620, 61261}, {9651, 15325}, {9771, 41135}, {9821, 15980}, {10019, 16318}, {10297, 10316}, {10311, 23047}, {10418, 52293}, {10516, 10542}, {10568, 58907}, {10588, 31477}, {10591, 16781}, {11174, 32962}, {11285, 53127}, {11381, 15575}, {11614, 61852}, {11681, 21956}, {11742, 62097}, {11801, 14901}, {12173, 42391}, {12812, 53096}, {12815, 15712}, {12962, 43879}, {12963, 42283}, {12968, 42284}, {12969, 43880}, {13334, 51520}, {13335, 20398}, {13567, 52247}, {13925, 62241}, {13993, 62242}, {14044, 14712}, {14046, 46226}, {14118, 44523}, {14230, 53498}, {14233, 53497}, {14482, 31407}, {14537, 23046}, {14540, 43276}, {14541, 43277}, {14639, 44534}, {15022, 22332}, {15030, 61675}, {15271, 32974}, {15302, 37990}, {15480, 32827}, {15491, 16921}, {15513, 15704}, {15602, 41992}, {15655, 49136}, {15717, 44541}, {16306, 37984}, {16925, 44381}, {16989, 32995}, {16990, 33290}, {17004, 33019}, {17006, 33260}, {17008, 32996}, {17928, 44528}, {18122, 31644}, {18573, 53416}, {19130, 44500}, {19780, 42102}, {19781, 42101}, {20065, 50774}, {21043, 23898}, {21309, 61968}, {22331, 37689}, {22467, 34866}, {23251, 62202}, {23261, 62201}, {23311, 53479}, {23312, 53480}, {25629, 48821}, {31450, 61911}, {31457, 61894}, {31467, 61919}, {31492, 61914}, {31652, 61900}, {32452, 61550}, {32459, 33233}, {32815, 32969}, {32816, 50771}, {32826, 32970}, {32838, 32986}, {32867, 33215}, {32870, 33210}, {32963, 59546}, {32981, 63104}, {32982, 34229}, {32985, 41139}, {33007, 44401}, {33885, 44959}, {34569, 59657}, {35007, 61988}, {35487, 39575}, {35488, 60428}, {35500, 44537}, {35921, 44525}, {37126, 44521}, {37182, 44540}, {37336, 44536}, {37444, 53414}, {37446, 40923}, {37648, 39691}, {37981, 47182}, {38323, 44529}, {39593, 61939}, {41408, 43226}, {41409, 43227}, {42147, 62198}, {42148, 62197}, {42580, 63200}, {42581, 63201}, {42940, 62232}, {42941, 62233}, {43136, 61955}, {45769, 56292}, {46154, 54347}, {52299, 63611}, {61944, 63024}, {61954, 63006}, {63544, 63547}

X(63534) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43188, 523}
X(63534) = pole of line {804, 2489} with respect to the nine-point circle
X(63534) = pole of line {3172, 57071} with respect to the orthocentroidal circle
X(63534) = pole of line {2501, 9147} with respect to the orthoptic circle of the Steiner Inellipse
X(63534) = pole of line {20, 185} with respect to the Kiepert hyperbola
X(63534) = pole of line {5023, 37672} with respect to the Stammler hyperbola
X(63534) = pole of line {3569, 54259} with respect to the Steiner inellipse
X(63534) = pole of line {5033, 7793} with respect to the Wallace hyperbola
X(63534) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7612), X(15077)}}, {{A, B, C, X(36616), X(60095)}}, {{A, B, C, X(38259), X(47735)}}
X(63534) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 32819, 59545}, {2, 44518, 63548}, {2, 63533, 44518}, {4, 13881, 230}, {5, 115, 5254}, {5, 15048, 1506}, {5, 31406, 7603}, {32, 18424, 546}, {115, 23514, 2023}, {115, 39565, 5}, {115, 39601, 15048}, {381, 3767, 7745}, {546, 43291, 32}, {1506, 15048, 9606}, {1506, 9606, 3815}, {1879, 9722, 53}, {1975, 32961, 44377}, {3090, 43448, 5013}, {3090, 5013, 3055}, {3146, 62992, 5023}, {3544, 31404, 18584}, {3767, 7745, 5306}, {3815, 5254, 9607}, {3850, 5305, 5475}, {3858, 18907, 39590}, {5025, 59635, 141}, {5056, 7738, 31489}, {5072, 9605, 31415}, {5461, 47617, 8369}, {7603, 7765, 31406}, {7755, 39590, 18907}, {7767, 37350, 7825}, {7828, 15031, 8370}, {7851, 16924, 3589}, {7887, 11185, 7789}, {9166, 15031, 7828}, {13711, 42268, 6424}, {13834, 42269, 6423}, {16041, 32828, 7784}, {18424, 43291, 53418}, {31412, 42561, 5921}, {32984, 34505, 22110}, {44518, 63533, 63543}, {44518, 63541, 63542}


X(63535) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+2*(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(63535) lies on these lines: {2, 63545}, {4, 193}, {6, 8754}, {25, 53}, {126, 136}, {159, 53416}, {264, 670}, {317, 44369}, {378, 35453}, {381, 2971}, {393, 460}, {427, 1007}, {428, 63034}, {491, 32588}, {492, 32587}, {868, 20208}, {1595, 35716}, {2970, 26869}, {3068, 26376}, {3069, 26375}, {3087, 11405}, {3186, 52282}, {5064, 9766}, {6467, 44518}, {7507, 39530}, {8800, 12166}, {9307, 14639}, {10151, 16326}, {10607, 23698}, {12131, 37074}, {12171, 49039}, {12172, 49038}, {12173, 31976}, {15928, 39809}, {18384, 56403}, {37174, 41584}, {37196, 58309}, {37453, 53274}, {40947, 41221}, {44637, 45479}, {44638, 45478}

X(63535) = reflection of X(i) in X(j) for these {i,j}: {30550, 40697}, {44200, 2165}
X(63535) = X(i)-isoconjugate-of-X(j) for these {i, j}: {63, 55999}
X(63535) = X(i)-Dao conjugate of X(j) for these {i, j}: {3162, 55999}, {8754, 523}, {63610, 69}
X(63535) = X(i)-Ceva conjugate of X(j) for these {i, j}: {99, 2501}
X(63535) = pole of line {2501, 44680} with respect to the circumcircle
X(63535) = pole of line {16229, 57154} with respect to the 2nd DrozFarny circle
X(63535) = pole of line {3566, 6562} with respect to the polar circle
X(63535) = pole of line {1899, 44518} with respect to the Kiepert hyperbola
X(63535) = pole of line {21731, 58757} with respect to the MacBeath inconic
X(63535) = pole of line {55122, 57071} with respect to the Orthic inconic
X(63535) = pole of line {3167, 9723} with respect to the Stammler hyperbola
X(63535) = pole of line {6337, 52144} with respect to the Wallace hyperbola
X(63535) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1351), X(19118)}}, {{A, B, C, X(2165), X(2996)}}, {{A, B, C, X(2351), X(6391)}}, {{A, B, C, X(14248), X(35142)}}, {{A, B, C, X(14593), X(34208)}}, {{A, B, C, X(41521), X(52454)}}
X(63535) = barycentric product X(i)*X(j) for these (i, j): {13881, 4}, {17890, 19}
X(63535) = barycentric quotient X(i)/X(j) for these (i, j): {25, 55999}, {13881, 69}, {17890, 304}
X(63535) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63545, 63549}, {2, 63551, 63545}, {4, 34208, 193}, {53, 41762, 25}, {393, 460, 19118}, {24243, 24244, 1007}, {41515, 41516, 230}


X(63536) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(20)

Barycentrics    3*a^4-9*(b^2-c^2)^2-2*a^2*(b^2+c^2) : :

X(63536) lies on circumconic {{A, B, C, X(3424), X(18296)}} and on these lines: {2, 15815}, {4, 3172}, {6, 18296}, {20, 115}, {32, 50688}, {39, 3091}, {148, 32972}, {187, 49140}, {193, 32996}, {230, 5059}, {385, 54097}, {574, 46936}, {599, 32894}, {671, 3926}, {1285, 3853}, {1384, 62028}, {1916, 2996}, {2549, 5056}, {3053, 3146}, {3054, 61804}, {3291, 7396}, {3522, 13881}, {3523, 7748}, {3529, 43291}, {3543, 3767}, {3544, 5024}, {3620, 44453}, {3734, 33182}, {3832, 5254}, {3839, 5286}, {3854, 7736}, {3855, 15048}, {3945, 23903}, {5013, 15022}, {5023, 62152}, {5068, 7738}, {5073, 46453}, {5210, 62125}, {5274, 63493}, {5306, 62005}, {5309, 61989}, {6392, 14041}, {7378, 9465}, {7486, 31457}, {7615, 7872}, {7620, 7795}, {7735, 17578}, {7739, 61966}, {7745, 61985}, {7746, 10304}, {7747, 62007}, {7749, 62067}, {7756, 15692}, {7783, 52250}, {7825, 36523}, {7841, 32834}, {7844, 33183}, {7864, 32991}, {7879, 32874}, {7883, 32868}, {7911, 46951}, {7944, 11185}, {8356, 32870}, {8588, 58195}, {9300, 61962}, {9605, 61964}, {9740, 9939}, {10303, 15515}, {11318, 32822}, {11648, 31400}, {11742, 50693}, {12102, 21309}, {13711, 43408}, {13834, 43407}, {14484, 60619}, {14552, 23942}, {15589, 32982}, {15655, 62146}, {15708, 18362}, {15717, 44526}, {15905, 51316}, {16041, 32830}, {20094, 33277}, {21734, 37637}, {21843, 62110}, {23249, 45515}, {23251, 61322}, {23259, 45514}, {23261, 61323}, {31276, 32974}, {31401, 61924}, {31406, 61945}, {31443, 46931}, {31455, 61912}, {32027, 32888}, {32815, 33199}, {32823, 37350}, {32826, 33181}, {32828, 33210}, {32831, 33228}, {32835, 32984}, {32897, 33215}, {32980, 63098}, {32993, 62988}, {33014, 44531}, {33018, 51171}, {33019, 37667}, {33025, 59635}, {33207, 55819}, {34569, 45245}, {34571, 61982}, {35494, 44537}, {37512, 61863}, {39647, 43537}, {41895, 62905}, {43136, 61988}, {43376, 44594}, {43377, 44597}, {43619, 62097}, {44519, 61791}, {44535, 62063}, {53095, 61848}, {53475, 61044}, {54429, 62396}, {54519, 54846}, {61972, 63024}, {61992, 63006}

X(63536) = pole of line {193, 17578} with respect to the Kiepert hyperbola
X(63536) = pole of line {50642, 59549} with respect to the Steiner inellipse
X(63536) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2996, 14063, 37668}, {3832, 5254, 37665}, {18424, 31404, 3091}, {44518, 63533, 2}, {44518, 63542, 63550}, {44518, 63543, 63533}


X(63537) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(21)

Barycentrics    a^4-a*b*c*(b+c)-2*(b^2-c^2)^2-a^2*(b^2+b*c+c^2) : :

X(63537) lies on these lines: {2, 15815}, {4, 5276}, {21, 115}, {39, 37375}, {81, 23903}, {148, 17669}, {230, 15680}, {274, 671}, {333, 23942}, {404, 7748}, {1571, 7705}, {1655, 14041}, {2303, 53421}, {2475, 37675}, {2478, 43448}, {2549, 4193}, {2996, 45962}, {3767, 11114}, {3871, 9664}, {4188, 44526}, {4189, 13881}, {4653, 62322}, {5013, 5154}, {5046, 5254}, {5187, 7738}, {5235, 23897}, {5283, 17577}, {5333, 23905}, {6175, 16589}, {7504, 39565}, {7746, 17549}, {7756, 13587}, {7790, 17541}, {7841, 18135}, {7851, 16920}, {7911, 18145}, {9598, 11681}, {10707, 17448}, {11185, 17550}, {11238, 63499}, {16704, 63607}, {16997, 33019}, {17548, 37637}, {17677, 27040}, {17737, 57288}, {21044, 24851}, {21965, 33100}, {21997, 31057}, {33824, 37670}, {37307, 44519}, {43291, 57002}

X(63537) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5046, 5254, 33854}


X(63538) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(22)

Barycentrics    a^6-2*(b^2-c^2)^2*(b^2+c^2)+a^2*(-3*b^4+4*b^2*c^2-3*c^4) : :

X(63538) lies on these lines: {2, 15815}, {4, 3162}, {6, 37349}, {22, 115}, {111, 30771}, {230, 20062}, {251, 62976}, {305, 671}, {381, 1180}, {382, 1627}, {427, 9745}, {1184, 62967}, {1196, 31133}, {1611, 5189}, {1656, 38862}, {2549, 37990}, {2996, 40123}, {3767, 34603}, {3981, 61700}, {5064, 9465}, {5254, 7394}, {5913, 7396}, {6636, 13881}, {6997, 43448}, {7386, 20481}, {7391, 53419}, {7485, 7748}, {7571, 39565}, {7773, 8267}, {7841, 39998}, {7851, 16932}, {8770, 31101}, {8878, 14062}, {8891, 18546}, {9609, 18353}, {15246, 44526}, {30744, 34481}, {30745, 63611}, {31074, 62702}, {35488, 40938}, {53023, 62991}

X(63538) = pole of line {193, 62967} with respect to the Kiepert hyperbola
X(63538) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63539, 63541}, {44518, 63541, 2}, {44518, 63542, 63540}


X(63539) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(23)

Barycentrics    a^6-2*(b^2-c^2)^2*(b^2+c^2)+a^2*(-3*b^4+5*b^2*c^2-3*c^4) : :

X(63539) lies on these lines: {2, 15815}, {4, 5354}, {23, 115}, {111, 30745}, {230, 20063}, {385, 31644}, {671, 3266}, {858, 16317}, {1383, 62968}, {3291, 10989}, {3767, 62963}, {5169, 15880}, {5189, 11580}, {5254, 7533}, {5286, 7394}, {5913, 60455}, {6636, 7746}, {7492, 13881}, {7496, 7748}, {7570, 39565}, {7745, 34482}, {7756, 15246}, {7911, 39998}, {7932, 16932}, {7941, 8267}, {11648, 15302}, {14045, 31076}, {19577, 41135}, {20977, 44555}, {26276, 62427}, {31857, 62702}, {37760, 47298}, {37900, 43291}, {37978, 44529}, {43448, 62937}

X(63539) = pole of line {193, 16176} with respect to the Kiepert hyperbola
X(63539) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63538, 63541, 2}


X(63540) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(24)

Barycentrics    a^10-2*a^8*(b^2+c^2)+4*a^4*(b^2-c^2)^2*(b^2+c^2)-2*(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4-3*b^2*c^2+c^4)+a^2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4) : :

X(63540) lies on these lines: {2, 15815}, {6, 34799}, {24, 115}, {230, 31304}, {2165, 12225}, {2549, 14788}, {3767, 7576}, {5254, 7544}, {7401, 43448}, {7488, 13881}, {7509, 7748}, {7569, 39565}, {7746, 44837}, {8882, 12173}, {31180, 39563}, {37126, 44526}, {37444, 53419}

X(63540) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44518, 63541, 63533}, {44518, 63542, 63538}, {63533, 63550, 44518}


X(63541) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(25)

Barycentrics    a^6-3*a^2*(b^2-c^2)^2-2*(b^2-c^2)^2*(b^2+c^2) : :

X(63541) lies on these lines: {2, 15815}, {4, 1184}, {6, 7394}, {22, 13881}, {25, 115}, {32, 62976}, {111, 30744}, {230, 7500}, {381, 1194}, {427, 62702}, {428, 3767}, {671, 57518}, {858, 8770}, {1196, 5064}, {1370, 53419}, {1611, 7391}, {1853, 3124}, {2502, 59551}, {2549, 37439}, {3051, 53023}, {3053, 34603}, {3291, 34609}, {3839, 15437}, {5013, 37990}, {5023, 20062}, {5094, 34481}, {5254, 6997}, {5359, 37349}, {6353, 47298}, {6636, 37637}, {7392, 43448}, {7408, 7735}, {7484, 7748}, {7485, 44526}, {7499, 43620}, {7539, 39565}, {7765, 39951}, {7784, 39998}, {7841, 40022}, {7851, 16950}, {7887, 16276}, {8024, 34505}, {8267, 9766}, {10516, 20859}, {14063, 45201}, {15246, 44519}, {18353, 44524}, {26958, 39691}, {31099, 40326}, {31152, 39563}, {33228, 34254}, {33586, 53475}, {36990, 42295}, {37453, 40350}, {59343, 62992}

X(63541) = pole of line {193, 7391} with respect to the Kiepert hyperbola
X(63541) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63538, 44518}, {2, 63539, 63538}, {111, 30744, 63611}


X(63542) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(26)

Barycentrics    a^10-2*a^6*(b^2-c^2)^2-2*a^8*(b^2+c^2)-2*(b^2-c^2)^4*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)+a^4*(4*b^6-2*b^4*c^2-2*b^2*c^4+4*c^6) : :

X(63542) lies on these lines: {2, 15815}, {26, 115}, {53, 2138}, {230, 31305}, {3767, 7540}, {5254, 7528}, {7503, 18353}, {7512, 13881}, {7516, 7748}, {14790, 53419}, {31181, 39563}, {39565, 53999}

X(63542) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44518, 63541, 63534}, {63536, 63550, 44518}


X(63543) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(30)

Barycentrics    2*a^4-7*(b^2-c^2)^2-a^2*(b^2+c^2) : :
X(63543) = X[148]+2*X[44377], 2*X[316]+X[15480], 3*X[671]+X[7799], 2*X[6321]+X[63440], -3*X[9166]+X[35297], 2*X[11599]+X[50772], -5*X[14061]+2*X[32459], -4*X[14120]+X[47245], 2*X[38734]+X[56370]

X(63543) lies on circumconic {{A, B, C, X(43699), X(60150)}} and on these lines: {2, 15815}, {4, 5306}, {5, 11648}, {6, 3839}, {30, 115}, {32, 15687}, {39, 5066}, {53, 34288}, {98, 54767}, {141, 33251}, {148, 44377}, {183, 33278}, {316, 15480}, {376, 13881}, {381, 2548}, {524, 5207}, {538, 36523}, {543, 10150}, {546, 7753}, {547, 39565}, {549, 7748}, {574, 15699}, {597, 33016}, {599, 32874}, {671, 7799}, {1384, 62020}, {1503, 6034}, {1506, 11737}, {1989, 34570}, {1990, 6128}, {2071, 44533}, {2079, 37948}, {2549, 3055}, {3053, 15682}, {3054, 3524}, {3091, 9607}, {3153, 61656}, {3291, 47311}, {3520, 44537}, {3545, 3815}, {3578, 23942}, {3767, 3830}, {3832, 63024}, {3845, 5309}, {3850, 7765}, {3851, 9606}, {3853, 7755}, {3858, 7772}, {3860, 39593}, {3861, 5007}, {5013, 5071}, {5023, 15683}, {5024, 61933}, {5054, 43620}, {5068, 22332}, {5206, 19710}, {5210, 62130}, {5286, 41099}, {5304, 61992}, {5305, 14537}, {5319, 61984}, {5355, 41987}, {5475, 23046}, {5585, 62095}, {6000, 61675}, {6103, 13473}, {6321, 63440}, {6749, 18386}, {7426, 47298}, {7603, 14892}, {7610, 33272}, {7615, 11287}, {7620, 33285}, {7735, 50687}, {7736, 61954}, {7737, 38335}, {7738, 61936}, {7746, 8703}, {7747, 12101}, {7749, 34200}, {7756, 12100}, {7784, 46951}, {7788, 14063}, {7809, 47286}, {7811, 33229}, {7857, 53105}, {7884, 8370}, {7924, 59635}, {7929, 37671}, {8352, 14568}, {8556, 33210}, {8588, 62111}, {8589, 61827}, {8716, 32984}, {8860, 33207}, {9166, 35297}, {9698, 12811}, {10124, 37512}, {10304, 37637}, {10311, 42391}, {11063, 37945}, {11168, 32885}, {11185, 33219}, {11599, 50772}, {11742, 62112}, {12108, 12815}, {13468, 33017}, {13586, 44401}, {13857, 14471}, {14061, 32459}, {14120, 47245}, {14269, 53418}, {15022, 31492}, {15048, 18424}, {15078, 44528}, {15484, 61971}, {15513, 15691}, {15515, 15713}, {15597, 33008}, {15688, 43619}, {15689, 21843}, {15692, 44519}, {15705, 44541}, {15709, 53095}, {16041, 32836}, {16306, 47310}, {16308, 47332}, {17578, 22331}, {18546, 33184}, {18907, 61995}, {19708, 44535}, {19780, 43401}, {19781, 43402}, {20112, 44543}, {23897, 49730}, {23903, 37631}, {27376, 62974}, {30435, 61993}, {31400, 61932}, {31401, 61920}, {31404, 61947}, {31406, 61942}, {31415, 61948}, {31417, 61955}, {31450, 61919}, {31455, 61910}, {31457, 61900}, {31467, 61931}, {31489, 61924}, {31652, 35018}, {32826, 33224}, {32966, 59546}, {32996, 63093}, {34866, 37941}, {35007, 62026}, {35822, 49261}, {35823, 49262}, {37665, 61962}, {37689, 62032}, {38734, 56370}, {39590, 61978}, {39601, 47478}, {39691, 44569}, {41254, 44576}, {41895, 63107}, {42087, 62232}, {42088, 62233}, {42093, 61317}, {42094, 61318}, {42399, 57071}, {42940, 62200}, {42941, 62199}, {43457, 61965}, {43618, 62027}, {44280, 44529}, {44453, 50991}, {44579, 47296}, {47186, 47334}, {50215, 62396}, {50256, 63607}, {52154, 53414}, {61930, 62993}, {61985, 63006}, {62001, 62203}, {62120, 62992}

X(63543) = midpoint of X(i) and X(j) for these {i,j}: {115, 39563}, {148, 59634}, {671, 33228}, {7809, 47286}, {8352, 14568}
X(63543) = reflection of X(i) in X(j) for these {i,j}: {13586, 44401}, {22110, 33228}, {41139, 9166}, {50771, 7809}, {53419, 39563}, {59634, 44377}
X(63543) = inverse of X(39809) in Kiepert hyperbola
X(63543) = pole of line {5466, 60185} with respect to the orthoptic circle of the Steiner Inellipse
X(63543) = pole of line {146, 148} with respect to the Kiepert hyperbola
X(63543) = pole of line {33799, 57216} with respect to the Kiepert parabola
X(63543) = pole of line {18808, 34208} with respect to the Orthic inconic
X(63543) = pole of line {5023, 54439} with respect to the Stammler hyperbola
X(63543) = pole of line {8029, 59549} with respect to the Steiner circumellipse
X(63543) = pole of line {1640, 10189} with respect to the Steiner inellipse
X(63543) = pole of line {5477, 20080} with respect to the Wallace hyperbola
X(63543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 39563, 53419}, {115, 39563, 30}, {115, 53419, 230}, {381, 5254, 9300}, {3845, 5309, 7745}, {5305, 14893, 14537}, {44518, 63533, 63534}, {44518, 63534, 63548}, {63533, 63536, 44518}


X(63544) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(39)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^4-6*b^2*c^2+c^4+a^2*(b^2+c^2)) : :

X(63544) lies on these lines: {2, 63546}, {4, 69}, {5, 5139}, {6, 14248}, {25, 5023}, {39, 2971}, {373, 42068}, {460, 15575}, {512, 14384}, {1968, 44099}, {2207, 39238}, {2996, 8681}, {3146, 51412}, {3199, 46522}, {5020, 15261}, {5254, 8754}, {6467, 44518}, {7783, 36898}, {8770, 40321}, {8946, 12313}, {8948, 12314}, {9292, 47735}, {9822, 32979}, {9823, 12361}, {9824, 12360}, {11574, 32982}, {12102, 16983}, {12171, 45401}, {12172, 45400}, {12220, 54097}, {14593, 15591}, {15010, 34854}, {27369, 33842}, {32972, 52545}, {63534, 63547}

X(63544) = midpoint of X(i) and X(j) for these {i,j}: {6291, 6406}
X(63544) = reflection of X(i) in X(j) for these {i,j}: {12360, 9824}, {12361, 9823}
X(63544) = pole of line {1899, 44518} with respect to the Jerabek hyperbola
X(63544) = pole of line {5254, 63549} with respect to the Kiepert hyperbola
X(63544) = pole of line {2489, 8651} with respect to the Orthic inconic
X(63544) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(39238)}}, {{A, B, C, X(76), X(57688)}}, {{A, B, C, X(317), X(15591)}}, {{A, B, C, X(2207), X(58782)}}, {{A, B, C, X(14248), X(40324)}}
X(63544) = barycentric product X(i)*X(j) for these (i, j): {16745, 1824}
X(63544) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 40325, 1843}, {4, 5140, 40325}, {6291, 6406, 511}


X(63545) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(69)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+5*b^4-6*b^2*c^2+5*c^4-2*a^2*(b^2+c^2)) : :

X(63545) lies on these lines: {2, 63535}, {4, 6}, {69, 8754}, {136, 16051}, {264, 42377}, {427, 63077}, {485, 35807}, {486, 35806}, {1368, 40809}, {2165, 7612}, {2971, 16041}, {2996, 6339}, {3186, 62955}, {6353, 41762}, {6619, 40887}, {6622, 39569}, {7494, 14593}, {8796, 15809}, {8889, 34803}, {14248, 32982}, {32817, 42407}, {32972, 63615}, {36898, 37690}, {37892, 54867}, {38282, 44381}, {43981, 57533}, {44395, 62237}, {63533, 63546}

X(63545) = X(i)-isoconjugate-of-X(j) for these {i, j}: {48, 56360}
X(63545) = X(i)-Dao conjugate of X(j) for these {i, j}: {1249, 56360}, {63615, 69}
X(63545) = pole of line {4, 57688} with respect to the Kiepert hyperbola
X(63545) = pole of line {15526, 51610} with respect to the dual conic of Wallace hyperbola
X(63545) = intersection, other than A, B, C, of circumconics {{A, B, C, X(4), X(32972)}}, {{A, B, C, X(2207), X(42377)}}, {{A, B, C, X(37892), X(40065)}}
X(63545) = barycentric product X(i)*X(j) for these (i, j): {32972, 4}
X(63545) = barycentric quotient X(i)/X(j) for these (i, j): {4, 56360}, {32972, 69}
X(63545) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63551, 63535}, {69, 8754, 34208}


X(63546) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(76)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(b^2*c^2*(b^2+c^2)+a^2*(2*b^4-5*b^2*c^2+2*c^4)) : :

X(63546) lies on these lines: {2, 63544}, {4, 39}, {76, 2971}, {183, 14248}, {264, 10010}, {1975, 36898}, {3143, 41009}, {5025, 5139}, {7408, 18845}, {7891, 41360}, {8024, 47847}, {9289, 44114}, {33023, 52454}, {63533, 63545}

X(63546) = barycentric product X(i)*X(j) for these (i, j): {264, 63562}
X(63546) = barycentric quotient X(i)/X(j) for these (i, j): {63562, 3}


X(63547) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(115)

Barycentrics    (b-c)^2*(b+c)^2*(-a^2+b^2-c^2)*(a^2+b^2-c^2)*(-5*a^2+3*(b^2+c^2)) : :

X(63547) lies on these lines: {4, 6036}, {25, 34866}, {115, 2971}, {125, 57609}, {127, 14120}, {148, 41360}, {868, 13611}, {1562, 58907}, {1974, 5622}, {3563, 38734}, {5203, 44377}, {5512, 53983}, {10151, 44099}, {11176, 53577}, {63534, 63544}

X(63547) = X(i)-isoconjugate-of-X(j) for these {i, j}: {4592, 58097}, {24041, 38263}, {36616, 62719}
X(63547) = X(i)-Dao conjugate of X(j) for these {i, j}: {3005, 38263}, {5139, 58097}
X(63547) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6353, 523}, {36611, 2501}
X(63547) = pole of line {99, 58097} with respect to the polar circle
X(63547) = pole of line {3566, 57071} with respect to the Kiepert hyperbola
X(63547) = pole of line {6388, 8754} with respect to the Orthic inconic
X(63547) = pole of line {69, 30771} with respect to the dual conic of Wallace hyperbola
X(63547) = intersection, other than A, B, C, of circumconics {{A, B, C, X(115), X(60073)}}, {{A, B, C, X(9293), X(55122)}}
X(63547) = barycentric product X(i)*X(j) for these (i, j): {115, 38282}, {2501, 59549}, {2970, 5023}, {20080, 8754}
X(63547) = barycentric quotient X(i)/X(j) for these (i, j): {2489, 58097}, {2971, 36616}, {3124, 38263}, {8754, 38259}, {16570, 62719}, {20080, 47389}, {38282, 4590}, {59549, 4563}
X(63547) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 5139, 8754}


X(63548) = COMPLEMENT OF X(32819)

Barycentrics    2*a^4-(b^2-c^2)^2-3*a^2*(b^2+c^2) : :
X(63548) = -X[76]+3*X[8356], -3*X[7757]+X[7762], -5*X[7786]+3*X[8370], X[7823]+3*X[33264], X[7877]+3*X[11057], -5*X[7904]+X[20081]

X(63548) lies on these lines: {1, 9594}, {2, 15815}, {3, 230}, {4, 3815}, {5, 574}, {6, 20}, {10, 31443}, {15, 22843}, {16, 22890}, {30, 39}, {32, 550}, {53, 1593}, {55, 9597}, {56, 9598}, {69, 33023}, {76, 8356}, {83, 19687}, {99, 6656}, {112, 35491}, {115, 140}, {141, 1975}, {148, 7824}, {160, 11325}, {172, 15326}, {183, 32965}, {186, 44525}, {187, 548}, {194, 524}, {216, 31829}, {232, 1885}, {315, 31859}, {316, 19695}, {325, 6655}, {338, 26166}, {355, 1571}, {376, 3053}, {378, 27376}, {381, 31401}, {382, 2548}, {384, 3589}, {385, 33260}, {388, 31477}, {397, 16941}, {398, 16940}, {401, 10329}, {468, 59768}, {485, 9600}, {495, 9651}, {496, 9664}, {511, 55309}, {523, 13237}, {528, 17448}, {529, 20691}, {538, 7767}, {543, 3934}, {546, 1506}, {547, 39563}, {549, 7746}, {566, 26216}, {570, 3575}, {590, 11293}, {597, 33007}, {599, 32830}, {615, 11294}, {620, 7861}, {626, 6390}, {631, 3054}, {698, 54189}, {754, 32450}, {1003, 7803}, {1007, 32982}, {1015, 15171}, {1030, 37328}, {1078, 47286}, {1180, 52397}, {1194, 7667}, {1196, 10691}, {1213, 4201}, {1285, 62127}, {1384, 5319}, {1478, 31448}, {1500, 18990}, {1503, 3094}, {1504, 42216}, {1505, 42215}, {1562, 13367}, {1575, 57288}, {1609, 37198}, {1614, 9603}, {1657, 7737}, {1658, 9700}, {1691, 44251}, {1834, 33863}, {1901, 5110}, {1914, 15338}, {1968, 1990}, {1970, 44252}, {2023, 13334}, {2275, 6284}, {2276, 7354}, {2475, 37661}, {2482, 7874}, {2493, 34664}, {2550, 31490}, {2794, 12830}, {2896, 3631}, {2975, 21956}, {2996, 34229}, {3058, 63493}, {3070, 45511}, {3071, 45510}, {3091, 31489}, {3146, 7736}, {3199, 13488}, {3269, 6146}, {3291, 43957}, {3314, 32820}, {3329, 6658}, {3520, 5523}, {3522, 5023}, {3523, 37637}, {3524, 44535}, {3526, 43620}, {3528, 5210}, {3530, 7749}, {3534, 7739}, {3552, 7792}, {3564, 32152}, {3585, 31460}, {3618, 32981}, {3627, 5475}, {3628, 39565}, {3629, 20065}, {3734, 8362}, {3763, 33202}, {3785, 33226}, {3788, 7872}, {3793, 7805}, {3832, 31492}, {3843, 31415}, {3849, 7838}, {3850, 7603}, {3853, 9698}, {3855, 18584}, {3861, 43457}, {3926, 7784}, {3933, 7761}, {3972, 33250}, {4045, 7816}, {4136, 8720}, {4190, 5275}, {4195, 17398}, {4294, 16781}, {4299, 54416}, {4302, 16502}, {4316, 5280}, {4324, 5299}, {4325, 16785}, {4330, 16784}, {4339, 16884}, {4352, 17392}, {5007, 6781}, {5008, 62123}, {5017, 48881}, {5021, 48837}, {5025, 44377}, {5028, 48906}, {5034, 21850}, {5038, 12110}, {5039, 48880}, {5041, 62144}, {5059, 37665}, {5065, 42459}, {5073, 15484}, {5077, 7776}, {5104, 12122}, {5111, 12007}, {5124, 37399}, {5133, 38862}, {5206, 5309}, {5276, 37256}, {5283, 11112}, {5303, 17737}, {5304, 22331}, {5339, 61331}, {5340, 61332}, {5346, 62104}, {5355, 35007}, {5368, 15690}, {5480, 50659}, {5585, 21734}, {5587, 31421}, {5691, 9574}, {6034, 12117}, {6200, 49220}, {6329, 7787}, {6337, 7778}, {6392, 8667}, {6396, 49221}, {6409, 62201}, {6410, 62202}, {6421, 6561}, {6422, 6560}, {6423, 42261}, {6424, 42260}, {6444, 31465}, {6661, 7859}, {6680, 32456}, {6707, 17688}, {6749, 37196}, {6756, 33843}, {6772, 37341}, {6775, 37340}, {6986, 44517}, {6999, 37662}, {7386, 40326}, {7387, 9608}, {7388, 32494}, {7389, 32497}, {7488, 44521}, {7495, 47298}, {7503, 44528}, {7527, 50660}, {7583, 62206}, {7584, 62205}, {7618, 11318}, {7752, 33229}, {7754, 14907}, {7755, 15513}, {7757, 7762}, {7763, 7841}, {7764, 7842}, {7769, 33228}, {7772, 15704}, {7773, 33017}, {7774, 32997}, {7777, 33019}, {7782, 7790}, {7785, 33256}, {7786, 8370}, {7788, 33263}, {7793, 33275}, {7795, 11287}, {7796, 7910}, {7797, 13586}, {7799, 7911}, {7801, 7935}, {7806, 33014}, {7810, 52229}, {7813, 7873}, {7817, 27088}, {7818, 51123}, {7820, 8364}, {7823, 33264}, {7827, 8598}, {7828, 35297}, {7831, 47287}, {7834, 8369}, {7835, 7918}, {7836, 7924}, {7839, 14712}, {7849, 15301}, {7851, 16925}, {7852, 8368}, {7853, 7863}, {7855, 14929}, {7876, 34573}, {7877, 11057}, {7879, 32833}, {7889, 19697}, {7891, 7933}, {7895, 14148}, {7898, 7906}, {7904, 20081}, {7907, 44381}, {7913, 33185}, {7920, 33268}, {7923, 33225}, {7931, 19690}, {7932, 33246}, {8358, 9466}, {8375, 9681}, {8376, 19102}, {8550, 36998}, {8556, 32834}, {8588, 46853}, {8591, 20582}, {8743, 35481}, {8861, 34369}, {8981, 9674}, {8982, 49228}, {9112, 41974}, {9113, 41973}, {9592, 41869}, {9596, 12943}, {9599, 12953}, {9604, 34148}, {9613, 31426}, {9619, 12699}, {9620, 18481}, {9655, 31409}, {9699, 17714}, {9722, 14806}, {9766, 32006}, {9771, 33006}, {9855, 63124}, {10192, 56372}, {10295, 10312}, {10316, 44249}, {10350, 13196}, {10542, 43273}, {10592, 31501}, {10624, 62370}, {10895, 31497}, {10996, 36751}, {11163, 33192}, {11164, 48310}, {11168, 32828}, {11174, 14035}, {11185, 11285}, {11326, 60514}, {11539, 18362}, {11614, 45760}, {11646, 23235}, {11799, 47186}, {12054, 38730}, {12055, 53484}, {12203, 34870}, {12362, 22401}, {12605, 14961}, {12829, 38749}, {13172, 34873}, {13188, 43449}, {13468, 33008}, {14023, 22253}, {14118, 34866}, {14482, 62147}, {14568, 43459}, {14585, 15341}, {14614, 33207}, {14901, 34153}, {14930, 62152}, {15109, 37126}, {15271, 32990}, {15311, 32445}, {15491, 16924}, {15602, 16239}, {15603, 58192}, {15655, 62085}, {15680, 33854}, {15683, 63024}, {15717, 62992}, {15820, 47315}, {16041, 32829}, {16043, 32815}, {16196, 40349}, {16657, 53494}, {16836, 61675}, {16895, 51127}, {16898, 51126}, {16964, 63200}, {16965, 63201}, {16987, 19692}, {16989, 33244}, {17004, 33022}, {17005, 32993}, {17128, 20094}, {17334, 25242}, {17337, 17691}, {17596, 21965}, {17747, 21008}, {17800, 43618}, {17907, 37199}, {17928, 44524}, {18480, 31398}, {18492, 31428}, {18560, 39575}, {19116, 62242}, {19117, 62241}, {19691, 63018}, {19924, 44500}, {20583, 34604}, {20965, 46518}, {21043, 23900}, {21166, 44534}, {21309, 62121}, {21358, 53141}, {22240, 52071}, {22246, 62150}, {22467, 44523}, {23047, 42391}, {23055, 55819}, {23251, 31463}, {23903, 37634}, {24275, 56734}, {26257, 62310}, {26441, 49229}, {26446, 31422}, {28530, 32117}, {30471, 44382}, {30472, 44383}, {31396, 31673}, {31407, 62021}, {31416, 31468}, {31417, 31470}, {31419, 31456}, {31441, 61261}, {31444, 61258}, {31644, 44386}, {31789, 62371}, {31804, 39913}, {32448, 32452}, {32515, 46283}, {32816, 33238}, {32826, 32968}, {32831, 33210}, {32839, 32984}, {32966, 37647}, {32979, 63041}, {32980, 34803}, {32996, 63083}, {33004, 37688}, {33190, 53033}, {33198, 47355}, {33200, 37690}, {33209, 63017}, {33214, 63045}, {33274, 44401}, {33749, 44496}, {33823, 37664}, {34460, 37290}, {34571, 62138}, {34611, 63499}, {34828, 53477}, {35018, 39601}, {35060, 58211}, {35937, 40814}, {37106, 44520}, {37336, 59236}, {37416, 37646}, {37455, 44530}, {38524, 62508}, {40693, 63199}, {40694, 63198}, {41406, 42433}, {41407, 42434}, {41410, 51911}, {41411, 51910}, {41413, 48885}, {41940, 62141}, {42266, 45513}, {42267, 45512}, {42625, 61318}, {42626, 61317}, {42637, 44595}, {42638, 44596}, {42944, 62197}, {42945, 62198}, {43136, 62131}, {45862, 53502}, {45863, 53503}, {46336, 62702}, {46453, 62092}, {50065, 54317}, {51848, 59695}, {53097, 63043}, {53489, 55085}, {54097, 63077}, {61560, 62356}, {62036, 62203}, {62102, 63097}, {62120, 63006}, {62124, 63005}

X(63548) = midpoint of X(i) and X(j) for these {i,j}: {39, 7756}, {194, 7750}, {7757, 8353}, {7762, 7802}, {33264, 41624}
X(63548) = reflection of X(i) in X(j) for these {i,j}: {7745, 39}, {7767, 7830}, {9466, 8358}
X(63548) = inverse of X(5941) in 2nd Brocard circle
X(63548) = complement of X(32819)
X(63548) = pole of line {25, 669} with respect to the 2nd Brocard circle
X(63548) = pole of line {523, 2524} with respect to the half Moses circle
X(63548) = pole of line {15575, 40326} with respect to the Jerabek hyperbola
X(63548) = pole of line {193, 576} with respect to the Kiepert hyperbola
X(63548) = pole of line {55225, 57216} with respect to the Kiepert parabola
X(63548) = pole of line {5023, 17811} with respect to the Stammler hyperbola
X(63548) = pole of line {17414, 59549} with respect to the Steiner circumellipse
X(63548) = pole of line {9210, 59549} with respect to the Steiner inellipse
X(63548) = pole of line {20065, 20080} with respect to the Wallace hyperbola
X(63548) = {X(2),X(4)}-bicevian centroidal collineation image of X(140)
X(63548) = intersection, other than A, B, C, of circumconics {{A, B, C, X(14494), X(15740)}}, {{A, B, C, X(36616), X(60218)}}, {{A, B, C, X(38259), X(52223)}}
X(63548) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44518, 63534}, {3, 2549, 5254}, {3, 5254, 230}, {4, 5013, 3815}, {5, 7748, 53419}, {6, 44519, 20}, {6, 7738, 9607}, {20, 7738, 6}, {30, 39, 7745}, {39, 7745, 9300}, {39, 7756, 30}, {99, 7847, 6656}, {115, 37512, 140}, {187, 7765, 5305}, {194, 7750, 524}, {194, 7833, 7750}, {325, 7783, 59546}, {376, 5286, 3053}, {382, 2548, 53418}, {382, 5024, 2548}, {538, 7830, 7767}, {548, 5305, 187}, {550, 15048, 32}, {574, 53419, 3055}, {574, 7748, 5}, {620, 7861, 8361}, {631, 43448, 13881}, {1657, 9605, 7737}, {1975, 7791, 141}, {2548, 43619, 382}, {2548, 5024, 9606}, {3053, 5286, 5306}, {3522, 7735, 5023}, {3530, 43291, 7749}, {3552, 7864, 7792}, {3627, 31406, 5475}, {3788, 7872, 33184}, {3843, 31467, 31415}, {3926, 32986, 7784}, {4045, 7816, 7819}, {5013, 44526, 4}, {5023, 44541, 3522}, {5475, 53096, 31406}, {6337, 32974, 7778}, {6390, 8357, 626}, {6655, 7783, 325}, {7748, 31457, 18424}, {7757, 7802, 7762}, {7761, 7781, 3933}, {7762, 8353, 7802}, {7767, 8354, 7830}, {7782, 7790, 7807}, {7782, 7807, 32459}, {7824, 59635, 58446}, {7839, 33267, 14712}, {7904, 20081, 37671}, {9651, 31451, 495}, {9655, 31461, 31409}, {9681, 19105, 8375}, {11648, 15515, 7746}, {13881, 53095, 631}, {15815, 44518, 2}, {18480, 31430, 31398}, {18560, 39575, 60428}, {31415, 31450, 31467}, {31470, 62008, 31417}, {31859, 33234, 315}, {33215, 34505, 11168}, {42258, 42259, 44882}, {43448, 53095, 3054}, {44518, 63534, 63543}


X(63549) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(141)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(-3*b^4+2*b^2*c^2-3*c^4+a^2*(b^2+c^2)) : :

X(63549) lies on circumconic {{A, B, C, X(3613), X(5395)}} and on these lines: {2, 63535}, {4, 5050}, {53, 232}, {76, 47730}, {136, 30739}, {141, 8754}, {235, 39569}, {297, 3186}, {311, 2970}, {393, 57533}, {460, 17907}, {468, 41762}, {868, 41005}, {1316, 20204}, {1990, 46444}, {2450, 42459}, {2971, 33184}, {3068, 32588}, {3069, 32587}, {3620, 34208}, {5117, 56022}, {5203, 43448}, {6795, 10151}, {7499, 14593}, {9722, 34981}, {12167, 37174}, {13473, 42854}, {14248, 32974}, {23300, 53416}

X(63549) = pole of line {51, 63544} with respect to the Kiepert hyperbola
X(63549) = pole of line {14618, 33228} with respect to the Orthic inconic
X(63549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63545, 63535}


X(63550) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(186)

Barycentrics    a^10-2*a^8*(b^2+c^2)+4*a^4*(b^2-c^2)^2*(b^2+c^2)-2*(b^2-c^2)^4*(b^2+c^2)+a^6*(-2*b^4+7*b^2*c^2-2*c^4)+a^2*(b^2-c^2)^2*(b^4-b^2*c^2+c^4) : :

X(63550) lies on these lines: {2, 15815}, {115, 186}, {3153, 38463}, {3767, 18559}, {7748, 35921}, {10298, 13881}, {18420, 43448}, {31644, 44375}, {37941, 44529}, {39565, 54000}, {52403, 53416}

X(63550) = pole of line {193, 18382} with respect to the Kiepert hyperbola
X(63550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {44518, 63540, 63533}, {44518, 63542, 63536}


X(63551) = {X(2),X(4)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(193)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(3*a^4+9*b^4-14*b^2*c^2+9*c^4-4*a^2*(b^2+c^2)) : :

X(63551) lies on circumconic {{A, B, C, X(38259), X(39143)}} and on these lines: {2, 63535}, {4, 1353}, {53, 6995}, {136, 30769}, {193, 8754}, {253, 62645}, {3088, 35716}, {3186, 37174}, {4232, 41762}, {7378, 62988}, {10565, 14593}, {14248, 54097}, {20080, 34208}, {52454, 53419}

X(63551) = barycentric product X(i)*X(j) for these (i, j): {39143, 4}
X(63551) = barycentric quotient X(i)/X(j) for these (i, j): {39143, 69}
X(63551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63535, 63545, 2}


X(63552) = {X(2),X(5)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^10-3*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+3*a^6*(b^4+b^2*c^2+c^4)-a^2*(b^2-c^2)^2*(2*b^4+b^2*c^2+2*c^4)) : :

X(63552) lies on these lines: {4, 21449}, {6, 24862}, {51, 3078}, {130, 63531}, {137, 61743}, {193, 576}, {3613, 60036}, {15451, 23635}, {19712, 19713}, {44082, 53386}

X(63552) = X(i)-Dao conjugate of X(j) for these {i, j}: {24862, 6368}
X(63552) = X(i)-Ceva conjugate of X(j) for these {i, j}: {18831, 12077}
X(63552) = pole of line {34986, 63172} with respect to the Stammler hyperbola


X(63553) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(1)

Barycentrics    a^3*(-(b^2*c^2)+a*(b-c)^2*(b+c)) : :

X(63553) lies on circumconic {{A, B, C, X(24514), X(40770)}} and on these lines: {1, 1655}, {2, 23460}, {6, 40935}, {8, 20464}, {41, 1911}, {42, 3501}, {672, 41268}, {904, 1468}, {1193, 7032}, {1475, 20667}, {1909, 63518}, {2275, 3248}, {2309, 19767}, {3117, 21757}, {3510, 17033}, {3616, 26069}, {3959, 4128}, {4116, 20963}, {6196, 17027}, {16780, 40958}, {17750, 23629}, {18194, 26801}, {21759, 63557}, {23485, 34284}, {32946, 56805}, {38986, 63493}, {63563, 63566}

X(63553) = barycentric product X(i)*X(j) for these (i, j): {101, 23768}, {17065, 6}, {21954, 58}
X(63553) = barycentric quotient X(i)/X(j) for these (i, j): {17065, 76}, {21954, 313}, {23768, 3261}
X(63553) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3248, 63506, 2275}, {20464, 23493, 8}, {21759, 63557, 63558}, {23524, 56806, 1475}


X(63554) = ANTICOMPLEMENT OF X(3491)

Barycentrics    a^4*(a^2-b^2-c^2)*(b^4-b^2*c^2+c^4) : :
X(63554) = -3*X[2]+2*X[3491]

X(63554) lies on these lines: {2, 3491}, {3, 1808}, {4, 19222}, {6, 695}, {20, 185}, {32, 184}, {51, 6620}, {69, 43714}, {76, 19590}, {83, 61727}, {125, 626}, {263, 60601}, {287, 8870}, {315, 1899}, {512, 7748}, {682, 3289}, {694, 3224}, {754, 41262}, {766, 43218}, {1204, 30270}, {1975, 34383}, {2794, 21659}, {2882, 10602}, {2896, 52658}, {3010, 20667}, {3060, 20088}, {3269, 32452}, {3270, 23420}, {3492, 60694}, {3552, 61101}, {3767, 5167}, {3785, 3917}, {5017, 6752}, {5984, 12111}, {6071, 18321}, {6655, 32547}, {6784, 13881}, {7754, 55005}, {7759, 14962}, {7763, 35060}, {7785, 61745}, {7900, 33873}, {9418, 15270}, {9490, 63557}, {10317, 40373}, {13335, 13367}, {14265, 53174}, {15630, 31848}, {16925, 51427}, {19558, 44162}, {19575, 20968}, {20975, 22416}, {21639, 44499}, {27374, 30435}, {32442, 35704}, {32445, 51324}, {39643, 43183}, {39647, 54032}, {40319, 43652}, {51386, 52545}, {58556, 63017}, {63562, 63616}, {63564, 63567}

X(63554) = anticomplement of X(3491)
X(63554) = perspector of circumconic {{A, B, C, X(1576), X(43188)}}
X(63554) = X(i)-isoconjugate-of-X(j) for these {i, j}: {75, 62935}
X(63554) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 62935}, {3491, 3491}, {40379, 1843}, {50666, 51843}, {63617, 76}
X(63554) = X(i)-Ceva conjugate of X(j) for these {i, j}: {670, 647}, {43715, 2}
X(63554) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {43715, 6327}, {51246, 8}
X(63554) = pole of line {2491, 47642} with respect to the 2nd Brocard circle
X(63554) = pole of line {16229, 54272} with respect to the polar circle
X(63554) = pole of line {2524, 3049} with respect to the Brocard inellipse
X(63554) = pole of line {2, 39} with respect to the Jerabek hyperbola
X(63554) = pole of line {34845, 63534} with respect to the Kiepert hyperbola
X(63554) = pole of line {688, 3804} with respect to the Orthic inconic
X(63554) = pole of line {76, 419} with respect to the Stammler hyperbola
X(63554) = pole of line {1502, 1975} with respect to the Wallace hyperbola
X(63554) = pole of line {3221, 14295} with respect to the dual conic of polar circle
X(63554) = {X(2),X(6)}-bicevian centroidal collineation image of X(3)
X(63554) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14602)}}, {{A, B, C, X(32), X(9307)}}, {{A, B, C, X(184), X(695)}}, {{A, B, C, X(194), X(51336)}}, {{A, B, C, X(237), X(5025)}}, {{A, B, C, X(1501), X(9292)}}, {{A, B, C, X(3051), X(14820)}}, {{A, B, C, X(3117), X(10547)}}, {{A, B, C, X(3504), X(11325)}}, {{A, B, C, X(14585), X(19222)}}
X(63554) = barycentric product X(i)*X(j) for these (i, j): {3, 3981}, {184, 5025}, {3504, 63617}, {10547, 40379}, {14820, 1799}, {50666, 6}
X(63554) = barycentric quotient X(i)/X(j) for these (i, j): {32, 62935}, {3981, 264}, {5025, 18022}, {14820, 427}, {40377, 1843}, {50666, 76}, {63617, 51843}
X(63554) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63555, 63556}, {2, 63559, 63555}, {6467, 48445, 6776}, {9490, 63561, 63557}, {63555, 63559, 63560}


X(63555) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(4)

Barycentrics    a^2*(-(b^2*c^2*(b^2-c^2)^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(2*b^4-3*b^2*c^2+2*c^4)) : :

X(63555) lies on these lines: {2, 3491}, {4, 9292}, {6, 682}, {32, 263}, {511, 39647}, {631, 4173}, {2393, 15575}, {3926, 35060}, {5921, 48445}, {6337, 34383}, {6392, 58212}, {6467, 9729}, {7735, 40951}, {13346, 40319}, {14023, 14962}, {14063, 32547}, {15513, 35704}, {18913, 63531}, {23652, 63558}, {31850, 59363}, {32964, 61101}, {32989, 51427}, {35687, 46303}, {37466, 46172}, {51170, 58556}, {63561, 63567}, {63562, 63564}, {63568, 63616}

X(63555) = pole of line {194, 63092} with respect to the Jerabek hyperbola
X(63555) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63559, 63554}, {63554, 63560, 63559}


X(63556) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(5)

Barycentrics    a^2*(a^4*(b^2-c^2)^2-b^2*c^2*(b^2-c^2)^2-a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(63556) lies on these lines: {2, 3491}, {5, 46172}, {32, 51}, {39, 21444}, {76, 35060}, {83, 373}, {98, 185}, {140, 4173}, {148, 14135}, {182, 6467}, {230, 40951}, {511, 7793}, {512, 39565}, {682, 59208}, {1078, 3917}, {1186, 40130}, {1352, 48445}, {1691, 1843}, {2080, 45186}, {2387, 7749}, {2393, 39560}, {2996, 35687}, {3091, 9292}, {3111, 7816}, {3165, 54297}, {3166, 54298}, {3203, 44109}, {3291, 33786}, {3972, 58500}, {5008, 58486}, {5038, 40673}, {5167, 7746}, {5254, 6784}, {5462, 11842}, {5562, 10104}, {5650, 7815}, {5943, 7787}, {6248, 14265}, {7766, 58556}, {7780, 14962}, {7783, 46303}, {7857, 61727}, {7907, 51427}, {9490, 63568}, {9969, 59232}, {10110, 10788}, {10358, 27355}, {10359, 11695}, {10551, 38834}, {10583, 34236}, {10789, 58469}, {10790, 34417}, {11364, 16980}, {11380, 44079}, {11424, 40319}, {14913, 39141}, {15030, 41330}, {17970, 37334}, {21637, 41277}, {23440, 23619}, {26937, 63531}, {27375, 35007}, {32547, 32966}, {33259, 61101}, {40643, 44110}, {63565, 63567}

X(63556) = pole of line {804, 2489} with respect to the Brocard inellipse
X(63556) = pole of line {194, 401} with respect to the Jerabek hyperbola
X(63556) = pole of line {23333, 59910} with respect to the Kiepert hyperbola
X(63556) = barycentric product X(i)*X(j) for these (i, j): {1, 23491}
X(63556) = barycentric quotient X(i)/X(j) for these (i, j): {23491, 75}
X(63556) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63554, 63569}, {2, 63555, 63554}, {63554, 63555, 63560}


X(63557) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    a^4*(b^2-b*c-c^2)*(b^2+b*c-c^2) : :

X(63557) lies on these lines: {2, 32746}, {4, 40821}, {6, 694}, {7, 6377}, {8, 6378}, {32, 11326}, {39, 32973}, {69, 6375}, {193, 3229}, {941, 21838}, {1194, 63045}, {1196, 5304}, {1400, 23543}, {1692, 61305}, {1974, 14602}, {2998, 3978}, {3224, 58212}, {3291, 63048}, {3618, 45210}, {3765, 22218}, {5296, 21827}, {5309, 51906}, {6144, 52961}, {6374, 25054}, {8601, 30496}, {8623, 56428}, {9233, 56918}, {9490, 63554}, {21759, 63553}, {21835, 63497}, {23635, 47430}, {26206, 43183}, {26626, 59481}, {26685, 59454}, {40981, 41278}, {61364, 62420}, {63564, 63565}

X(63557) = X(i)-Ceva conjugate of X(j) for these {i, j}: {43188, 512}
X(63557) = pole of line {5027, 54273} with respect to the Brocard inellipse
X(63557) = pole of line {385, 57518} with respect to the Stammler hyperbola
X(63557) = pole of line {3978, 21001} with respect to the Wallace hyperbola
X(63557) = intersection, other than A, B, C, of circumconics {{A, B, C, X(694), X(53059)}}, {{A, B, C, X(9468), X(38262)}}, {{A, B, C, X(36214), X(40319)}}, {{A, B, C, X(38279), X(51951)}}
X(63557) = barycentric product X(i)*X(j) for these (i, j): {17891, 31}
X(63557) = barycentric quotient X(i)/X(j) for these (i, j): {17891, 561}
X(63557) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63562, 63570}, {6, 34811, 59994}, {9490, 63561, 63554}


X(63558) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(9)

Barycentrics    a^3*(a-b-c)*(b^2*c^2+a*(b-c)^2*(b+c)) : :

X(63558) lies on these lines: {2, 63571}, {41, 904}, {43, 165}, {2082, 17033}, {2170, 21330}, {4039, 40968}, {14936, 20864}, {15966, 20460}, {21759, 63553}, {23652, 63555}, {24509, 26685}, {40957, 56557}

X(63558) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4598, 663}
X(63558) = intersection, other than A, B, C, of circumconics {{A, B, C, X(904), X(9309)}}, {{A, B, C, X(7104), X(9315)}}
X(63558) = barycentric product X(i)*X(j) for these (i, j): {1, 23497}
X(63558) = barycentric quotient X(i)/X(j) for these (i, j): {23497, 75}
X(63558) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {21759, 63557, 63553}


X(63559) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(20)

Barycentrics    a^2*(-(b^2*c^2*(b^2-c^2)^2)+a^4*(4*b^4-5*b^2*c^2+4*c^4)+a^2*(-4*b^6+2*b^4*c^2+2*b^2*c^4-4*c^6)) : :

X(63559) lies on these lines: {2, 3491}, {439, 61101}, {682, 60028}, {2996, 46303}, {3146, 9292}, {3523, 4173}, {5304, 40951}, {6467, 10574}, {32547, 32982}, {32831, 35060}

X(63559) = pole of line {194, 11348} with respect to the Jerabek hyperbola
X(63559) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63554, 63560, 63555}


X(63560) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(30)

Barycentrics    a^2*(-(b^2*c^2*(b^2-c^2)^2)+a^4*(3*b^4-4*b^2*c^2+3*c^4)+a^2*(-3*b^6+2*b^4*c^2+2*b^2*c^4-3*c^6)) : : >

X(63560) lies on these lines: {2, 3491}, {51, 2386}, {512, 39563}, {542, 48445}, {549, 4173}, {2387, 47638}, {3543, 9292}, {5306, 40951}, {6034, 52460}, {6467, 11179}, {7799, 35060}, {13851, 52451}, {21849, 34604}, {34383, 59634}

X(63560) = reflection of X(i) in X(j) for these {i,j}: {7799, 35060}, {52460, 6034}
X(63560) = pole of line {194, 37645} with respect to the Jerabek hyperbola
X(63560) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63554, 63555, 63556}, {63554, 63556, 63569}, {63555, 63559, 63554}


X(63561) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(32)

Barycentrics    a^4*(-b^6+b^4*c^2-c^6+b^2*c^2*(a^2+c^2)) : :

X(63561) lies on these lines: {2, 63565}, {6, 14820}, {32, 19575}, {194, 694}, {695, 7787}, {1084, 40951}, {1186, 52536}, {1501, 2909}, {3118, 7772}, {3124, 3767}, {3981, 7797}, {7785, 63617}, {7803, 20859}, {9490, 63554}, {18899, 27374}, {20960, 56915}, {63555, 63567}


X(63562) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(69)

Barycentrics    a^2*(b^2*c^2*(b^2+c^2)+a^2*(2*b^4-5*b^2*c^2+2*c^4)) : :

X(63562) lies on circumconic {{A, B, C, X(38262), X(46319)}} and on these lines: {2, 32746}, {6, 160}, {39, 439}, {69, 1084}, {1194, 63005}, {1502, 3228}, {1992, 8265}, {2998, 20023}, {3117, 51170}, {3229, 20080}, {3620, 6375}, {3629, 34811}, {21835, 63515}, {43183, 63069}, {45210, 51171}, {47430, 50666}, {59994, 62995}, {63554, 63616}, {63555, 63564}

X(63562) = pole of line {20023, 21001} with respect to the Wallace hyperbola
X(63562) = barycentric product X(i)*X(j) for these (i, j): {3, 63546}
X(63562) = barycentric quotient X(i)/X(j) for these (i, j): {63546, 264}
X(63562) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63557, 63570, 2}


X(63563) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(75)

Barycentrics    a^2*(b^3*c^3+a^3*(b-c)^2*(b+c)) : :

X(63563) lies on circumconic {{A, B, C, X(42), X(22218)}} and on these lines: {1, 23428}, {2, 21759}, {6, 31}, {86, 27188}, {87, 1977}, {2319, 27663}, {3224, 23485}, {3765, 20332}, {17065, 21755}, {17350, 23566}, {18194, 19606}, {20669, 27136}, {21757, 37677}, {22218, 63518}, {23423, 23571}, {23433, 23470}, {23443, 23579}, {23475, 23576}, {23561, 63527}, {23652, 63564}, {63553, 63566}

X(63563) = barycentric product X(i)*X(j) for these (i, j): {1, 63518}, {22218, 81}
X(63563) = barycentric quotient X(i)/X(j) for these (i, j): {22218, 321}, {63518, 75}
X(63563) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 23538, 22343}, {23428, 23546, 1}


X(63564) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(76)

Barycentrics    a^2*(b^4*c^4+a^4*(b^2-c^2)^2) : :

X(63564) lies on these lines: {2, 9490}, {3, 6}, {76, 3224}, {385, 33786}, {512, 30496}, {538, 3360}, {1613, 6179}, {1916, 32541}, {1975, 9431}, {2086, 5025}, {2998, 42486}, {3499, 14614}, {3981, 32546}, {7780, 21001}, {7793, 32748}, {7816, 36615}, {7907, 45914}, {9307, 51246}, {12829, 32445}, {16985, 42295}, {20968, 51318}, {23652, 63563}, {63554, 63567}, {63555, 63562}, {63557, 63565}

X(63564) = pole of line {5, 50665} with respect to the Kiepert hyperbola
X(63564) = intersection, other than A, B, C, of circumconics {{A, B, C, X(54), X(50665)}}, {{A, B, C, X(30496), X(41337)}}
X(63564) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 9427, 3224}, {6179, 44164, 1613}


X(63565) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(83)

Barycentrics    a^2*(a^4*b^2*c^2+b^4*c^4-a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(63565) lies on these lines: {2, 63561}, {6, 19597}, {39, 694}, {83, 695}, {512, 8601}, {1207, 52536}, {2548, 63617}, {3118, 55085}, {3124, 7797}, {3229, 58556}, {3329, 14820}, {3981, 7803}, {5017, 40689}, {6387, 14561}, {14822, 62696}, {15031, 52625}, {27374, 51983}, {31268, 59167}, {63556, 63567}, {63557, 63564}


X(63566) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(86)

Barycentrics    a^2*(-(b^3*c^3)-a*b^2*c^2*(b+c)+a^2*(b^4-3*b^2*c^2+c^4)) : :

X(63566) lies on these lines: {2, 32746}, {81, 40729}, {86, 1084}, {256, 3121}, {291, 22201}, {310, 54117}, {1909, 22218}, {2663, 21815}, {3117, 37677}, {3229, 20090}, {6375, 17300}, {6377, 26806}, {6378, 6542}, {8265, 46922}, {21835, 63520}, {29586, 59481}, {45210, 63053}, {63553, 63563}

X(63566) = barycentric product X(i)*X(j) for these (i, j): {23946, 58}
X(63566) = barycentric quotient X(i)/X(j) for these (i, j): {23946, 313}


X(63567) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(98)

Barycentrics    a^2*(a^8*b^2*c^2-b^4*c^4*(b^2-c^2)^2+a^6*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^4*(3*b^6*c^2-5*b^4*c^4+3*b^2*c^6)-a^2*(b^10-b^6*c^4-b^4*c^6+c^10)) : :

X(63567) lies on these lines: {2, 63568}, {25, 61305}, {98, 17980}, {694, 52009}, {2971, 14651}, {9753, 56920}, {11610, 44089}, {16098, 21906}, {36214, 36849}, {46316, 60526}, {63554, 63564}, {63555, 63561}, {63556, 63565}

X(63567) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {98, 58260, 17980}


X(63568) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(114)

Barycentrics    a^2*(-b^4-c^4+a^2*(b^2+c^2))*(b^2*c^2*(b^2-c^2)^2+a^4*(b^4+c^4)+a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(63568) lies on circumconic {{A, B, C, X(5186), X(5976)}} and on these lines: {2, 63567}, {4, 147}, {51, 1196}, {114, 58260}, {262, 9307}, {511, 56437}, {2023, 14772}, {5093, 46303}, {9475, 11326}, {9490, 63556}, {19562, 57518}, {19590, 44137}, {38651, 38652}, {55122, 58262}, {59802, 59805}, {63555, 63616}

X(63568) = X(i)-Dao conjugate of X(j) for these {i, j}: {58260, 512}
X(63568) = X(i)-Ceva conjugate of X(j) for these {i, j}: {670, 3569}


X(63569) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(140)

Barycentrics    a^2*(b^2*c^2*(b^2-c^2)^2+a^4*(b^4+c^4)-a^2*(b^6+2*b^4*c^2+2*b^2*c^4+c^6)) : :

X(63569) lies on these lines: {2, 3491}, {5, 4173}, {32, 47638}, {39, 5167}, {51, 2548}, {125, 34850}, {147, 5907}, {182, 48445}, {185, 9744}, {194, 6310}, {211, 7753}, {315, 3917}, {384, 51427}, {389, 11674}, {511, 7785}, {512, 37512}, {1352, 6467}, {1495, 23208}, {1506, 2387}, {2896, 3819}, {2979, 7900}, {3094, 52460}, {3493, 16068}, {3523, 9292}, {3815, 40951}, {5207, 11574}, {5650, 7800}, {6786, 7789}, {6787, 7847}, {7769, 35060}, {7775, 41262}, {7793, 61745}, {7836, 59571}, {7873, 52042}, {7929, 7998}, {8721, 11381}, {8841, 54003}, {11673, 20088}, {13334, 31848}, {13367, 52128}, {15513, 32442}, {16044, 61101}, {26883, 35709}, {32547, 33004}, {34383, 59635}, {43450, 51412}, {58556, 63018}

X(63569) = pole of line {194, 6515} with respect to the Jerabek hyperbola
X(63569) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63554, 63556}, {63554, 63556, 63560}


X(63570) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(141)

Barycentrics    a^2*(a^2*(b^2-c^2)^2+b^2*c^2*(b^2+c^2)) : :

X(63570) lies on these lines: {1, 59481}, {2, 32746}, {3, 6}, {9, 59454}, {38, 22201}, {69, 3229}, {76, 2998}, {115, 45160}, {141, 1084}, {193, 3117}, {308, 3228}, {385, 1196}, {524, 8265}, {538, 8264}, {1015, 17065}, {1194, 7766}, {1502, 6379}, {3125, 23484}, {3225, 9229}, {3271, 23433}, {3504, 3981}, {3629, 59994}, {3630, 52961}, {3661, 6378}, {3662, 6377}, {3767, 8920}, {3778, 20462}, {3787, 18899}, {3917, 32748}, {6467, 51322}, {7826, 52536}, {9230, 25054}, {9307, 19222}, {9427, 19606}, {9468, 40405}, {9488, 41440}, {14602, 19121}, {17248, 21827}, {18806, 37891}, {20081, 36648}, {20859, 23444}, {20861, 23619}, {20868, 22343}, {20913, 40525}, {20974, 23423}, {21257, 23488}, {21330, 21835}, {22218, 52043}, {23652, 63571}, {31981, 46712}, {34811, 40341}, {36229, 41178}, {37676, 40729}, {41293, 44102}, {62696, 63038}

X(63570) = inverse of X(35060) in Moses circle
X(63570) = inverse of X(35060) in Brocard inellipse
X(63570) = X(i)-Ceva conjugate of X(j) for these {i, j}: {3222, 512}
X(63570) = X(i)-complementary conjugate of X(j) for these {i, j}: {30496, 2887}
X(63570) = pole of line {512, 625} with respect to the Moses circle
X(63570) = pole of line {512, 625} with respect to the Brocard inellipse
X(63570) = pole of line {184, 32748} with respect to the Jerabek hyperbola
X(63570) = pole of line {76, 11333} with respect to the Wallace hyperbola
X(63570) = intersection, other than A, B, C, of circumconics {{A, B, C, X(32), X(38262)}}, {{A, B, C, X(58), X(23478)}}, {{A, B, C, X(308), X(33875)}}, {{A, B, C, X(1691), X(40405)}}, {{A, B, C, X(3228), X(41331)}}, {{A, B, C, X(5118), X(42371)}}
X(63570) = barycentric product X(i)*X(j) for these (i, j): {1, 23478}
X(63570) = barycentric quotient X(i)/X(j) for these (i, j): {23478, 75}
X(63570) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63562, 63557}, {22199, 23643, 3778}


X(63571) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(142)

Barycentrics    a^2*(-(b^2*(b-c)^2*c^2)+a^3*(b-c)^2*(b+c)+a*b^2*c^2*(b+c)-a^2*(b^2-c^2)^2) : :

X(63571) lies on these lines: {2, 63558}, {511, 23443}, {573, 16779}, {1015, 23561}, {1400, 16782}, {1475, 20228}, {6210, 23535}, {9440, 51858}, {20462, 20667}, {23652, 63570}

X(63571) = pole of line {43051, 51641} with respect to the Brocard inellipse
X(63571) = barycentric product X(i)*X(j) for these (i, j): {1, 23483}
X(63571) = barycentric quotient X(i)/X(j) for these (i, j): {23483, 75}
X(63571) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {20667, 23415, 21746}


X(63572) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(183)

Barycentrics    a^2*(2*b^4*c^4+a^4*(b^4-3*b^2*c^2+c^4)+a^2*(b^6+c^6)) : :

X(63572) lies on circumconic {{A, B, C, X(38262), X(46308)}} and on these lines: {2, 32746}, {6, 20885}, {32, 60694}, {39, 32964}, {183, 1084}, {800, 1194}, {1196, 63048}, {3117, 7766}, {3229, 63046}, {3291, 37667}, {6375, 16990}, {8265, 14614}, {16989, 45210}, {63554, 63564}


X(63573) = {X(2),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(194)

Barycentrics    a^2*(b^4*c^4+2*a^4*(b^2-c^2)^2-a^2*b^2*c^2*(b^2+c^2)) : :

X(63573) lies on these lines: {2, 9490}, {4, 30217}, {6, 3552}, {194, 9427}, {729, 7781}, {2086, 32966}, {3117, 5007}, {3224, 20081}, {3499, 7766}, {6195, 7760}, {7780, 8617}, {9463, 44164}, {37657, 53675}, {55999, 60028}

X(63573) = X(i)-Ceva conjugate of X(j) for these {i, j}: {57150, 669}
X(63573) = pole of line {7751, 21001} with respect to the Stammler hyperbola
X(63573) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {9490, 63564, 2}


X(63574) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(1)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+2*(b-c)^2-a*(b+c)) : :

X(63574) lies on these lines: {1, 1358}, {7, 145}, {10, 24797}, {43, 24800}, {56, 21314}, {57, 169}, {85, 668}, {226, 8055}, {269, 34489}, {279, 1420}, {1111, 9581}, {1323, 63208}, {1357, 23416}, {1565, 50443}, {1698, 24798}, {3057, 4862}, {3175, 3970}, {3339, 20121}, {3598, 62788}, {3624, 24805}, {3663, 37556}, {3665, 5219}, {3669, 9336}, {4014, 63601}, {4056, 51790}, {4384, 24803}, {4848, 51351}, {4901, 21432}, {4902, 11531}, {6173, 17451}, {7185, 17084}, {9580, 17170}, {16569, 24801}, {17089, 25716}, {21139, 63592}, {30617, 37709}, {37583, 59242}, {63576, 63626}, {63583, 63585}, {63586, 63588}

X(63574) = X(i)-isoconjugate-of-X(j) for these {i, j}: {41, 56081}, {55, 56314}
X(63574) = X(i)-Dao conjugate of X(j) for these {i, j}: {223, 56314}, {1358, 514}, {3160, 56081}, {4859, 6555}, {63620, 8}
X(63574) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 3676}
X(63574) = pole of line {6084, 30719} with respect to the incircle
X(63574) = pole of line {497, 4862} with respect to the dual conic of Yff parabola
X(63574) = intersection, other than A, B, C, of circumconics {{A, B, C, X(277), X(4373)}}, {{A, B, C, X(1420), X(3243)}}, {{A, B, C, X(3676), X(56081)}}, {{A, B, C, X(3680), X(24392)}}, {{A, B, C, X(5853), X(44720)}}, {{A, B, C, X(17107), X(19604)}}, {{A, B, C, X(33933), X(59941)}}
X(63574) = barycentric product X(i)*X(j) for these (i, j): {1434, 21949}, {4859, 7}, {24392, 279}
X(63574) = barycentric quotient X(i)/X(j) for these (i, j): {7, 56081}, {57, 56314}, {4859, 8}, {21949, 2321}, {24392, 346}, {63620, 6555}
X(63574) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1358, 47444}, {7, 27818, 145}, {7, 43983, 10106}, {7, 52563, 3340}, {169, 17107, 57}, {1358, 24796, 1}, {63575, 63579, 4862}, {63575, 63582, 63581}, {63579, 63581, 63582}


X(63575) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    (a+b-c)*(a-b+c)*(a^3-a^2*(b+c)+2*(b-c)^2*(b+c)) : :

X(63575) lies on these lines: {6, 53545}, {7, 528}, {56, 2218}, {226, 59585}, {347, 1388}, {1122, 62780}, {1953, 53538}, {3057, 4862}, {3303, 3663}, {4863, 53594}, {4888, 47444}, {7195, 62783}, {10896, 41010}, {11510, 22464}, {17861, 61717}, {24797, 31995}, {24798, 25590}, {24803, 48627}, {25651, 40622}, {38296, 43035}, {53540, 61716}

X(63575) = pole of line {30725, 58794} with respect to the incircle
X(63575) = pole of line {4887, 41004} with respect to the dual conic of Yff parabola
X(63575) = intersection, other than A, B, C, of circumconics {{A, B, C, X(903), X(17885)}}, {{A, B, C, X(1320), X(2218)}}
X(63575) = barycentric product X(i)*X(j) for these (i, j): {17885, 57}
X(63575) = barycentric quotient X(i)/X(j) for these (i, j): {17885, 312}
X(63575) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4862, 63574, 63579}, {4862, 63579, 63582}, {63579, 63581, 4862}


X(63576) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(7)

Barycentrics    a^2-5*(b-c)^2 : :

X(63576) lies on these lines: {2, 4488}, {6, 7}, {8, 7613}, {37, 59374}, {44, 60976}, {75, 21356}, {141, 52709}, {142, 4346}, {144, 4859}, {244, 9779}, {320, 4402}, {329, 37687}, {344, 903}, {553, 62208}, {1054, 62710}, {1266, 4869}, {1743, 60984}, {2094, 33129}, {2345, 20582}, {3008, 4902}, {3161, 4440}, {3616, 24248}, {3662, 29611}, {3663, 5308}, {3664, 59375}, {3672, 6173}, {3755, 30340}, {3912, 4373}, {3945, 60980}, {3946, 61020}, {4014, 63498}, {4310, 59412}, {4363, 51128}, {4384, 45789}, {4398, 62424}, {4399, 7232}, {4419, 60996}, {4445, 7263}, {4452, 17298}, {4454, 17282}, {4460, 4889}, {4461, 21255}, {4686, 36588}, {4772, 49448}, {4888, 17014}, {4896, 62997}, {4910, 17376}, {5550, 17324}, {5749, 7321}, {5839, 7238}, {5905, 63096}, {5936, 17237}, {6172, 17278}, {7222, 17290}, {7228, 48310}, {7229, 17289}, {7282, 62349}, {8056, 46873}, {9776, 33146}, {9780, 17236}, {10248, 28080}, {11160, 17363}, {15590, 32850}, {16020, 32857}, {16706, 35578}, {16834, 32093}, {17067, 37681}, {17254, 62608}, {17276, 18230}, {17334, 61023}, {17337, 60983}, {17350, 31189}, {17364, 63027}, {17375, 20050}, {18228, 40688}, {18991, 21170}, {21454, 23681}, {24599, 33800}, {24789, 28610}, {28626, 41311}, {29605, 32105}, {29616, 53594}, {29627, 53600}, {31183, 61006}, {37650, 60957}, {37756, 63064}, {48632, 51186}, {60992, 62783}, {60993, 62787}, {63574, 63626}, {63577, 63585}

X(63576) = perspector of circumconic {{A, B, C, X(927), X(58131)}}
X(63576) = pole of line {4962, 47695} with respect to the Steiner circumellipse
X(63576) = pole of line {676, 4962} with respect to the Steiner inellipse
X(63576) = pole of line {145, 516} with respect to the dual conic of Yff parabola
X(63576) = intersection, other than A, B, C, of circumconics {{A, B, C, X(673), X(38255)}}, {{A, B, C, X(1462), X(36603)}}, {{A, B, C, X(36606), X(56783)}}
X(63576) = barycentric product X(i)*X(j) for these (i, j): {279, 63593}
X(63576) = barycentric quotient X(i)/X(j) for these (i, j): {63593, 346}
X(63576) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63590, 4862}, {3662, 31995, 29611}, {3663, 62778, 5308}, {4859, 4887, 144}, {4862, 63589, 2}, {7613, 24231, 8}, {17067, 60933, 37681}


X(63577) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(8)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+5*b^2-6*b*c+5*c^2-2*a*(b+c)) : :

X(63577) lies on these lines: {1, 7}, {8, 1358}, {145, 47444}, {277, 42318}, {3061, 53538}, {3616, 24796}, {3665, 5226}, {4014, 63602}, {4373, 6553}, {5222, 24803}, {5273, 40154}, {5328, 40615}, {5435, 7195}, {9780, 24798}, {15829, 19604}, {17089, 25718}, {17107, 33950}, {24800, 59297}, {24801, 59298}, {34640, 63581}, {51351, 52563}, {58679, 63579}, {63576, 63585}

X(63577) = pole of line {7, 16078} with respect to the dual conic of Yff parabola
X(63577) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1088), X(4308)}}, {{A, B, C, X(5543), X(7249)}}, {{A, B, C, X(6049), X(6553)}}
X(63577) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 279, 4308}, {8, 1358, 27818}, {1358, 24797, 8}, {3665, 32086, 5226}


X(63578) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(10)

Barycentrics    (a+b-c)*(a-b+c)*(-3*b^2+2*b*c-3*c^2+a*(b+c)) : :

X(63578) lies on these lines: {1, 24797}, {7, 1420}, {8, 47444}, {10, 1358}, {57, 33950}, {142, 26690}, {226, 241}, {279, 10106}, {388, 21314}, {1125, 24796}, {1323, 30617}, {1565, 12053}, {3212, 4848}, {3340, 51351}, {3617, 27818}, {3676, 24172}, {3911, 7195}, {4014, 63603}, {5219, 32086}, {5316, 40615}, {6685, 24801}, {9578, 43983}, {10029, 31302}, {16888, 60992}, {17023, 24803}, {17089, 25719}, {21139, 63595}, {24800, 43223}, {35160, 49466}, {39244, 50092}

X(63578) = X(i)-Dao conjugate of X(j) for these {i, j}: {21255, 3158}, {63622, 8}
X(63578) = X(i)-cross conjugate of X(j) for these {i, j}: {21342, 21255}
X(63578) = pole of line {4462, 10029} with respect to the incircle
X(63578) = pole of line {354, 4888} with respect to the dual conic of Yff parabola
X(63578) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1420), X(62528)}}, {{A, B, C, X(17758), X(21255)}}
X(63578) = barycentric product X(i)*X(j) for these (i, j): {1441, 18186}, {21255, 7}, {21342, 85}, {21432, 57}, {22435, 331}, {23649, 6063}, {25272, 3676}, {62528, 63622}
X(63578) = barycentric quotient X(i)/X(j) for these (i, j): {18186, 21}, {21255, 8}, {21342, 9}, {21432, 312}, {22435, 219}, {23649, 55}, {25272, 3699}, {63622, 3158}
X(63578) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1358, 24798, 10}, {3665, 10481, 226}, {7185, 9436, 52563}, {9436, 52563, 4848}


X(63579) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(37)

Barycentrics    a*(a+b-c)*(a-b+c)*(b^2-6*b*c+c^2+a*(b+c)) : :

X(63579) lies on these lines: {2, 25730}, {7, 8}, {37, 53538}, {56, 5666}, {57, 3973}, {142, 40617}, {210, 53598}, {269, 1319}, {354, 4888}, {960, 45789}, {1358, 3663}, {1418, 52896}, {1442, 56049}, {2099, 7274}, {3057, 4862}, {3664, 17609}, {3880, 4373}, {3983, 17272}, {4003, 53540}, {4014, 14100}, {4328, 11011}, {4357, 24798}, {5437, 24151}, {5575, 60937}, {6610, 7225}, {6646, 24803}, {10436, 24805}, {11037, 35671}, {14524, 60993}, {15601, 32636}, {16484, 51765}, {20347, 24800}, {20615, 62789}, {24797, 25917}, {24801, 30946}, {32093, 34791}, {34855, 41439}, {40154, 52803}, {41839, 42304}, {58679, 63577}

X(63579) = complement of X(25731)
X(63579) = X(i)-Dao conjugate of X(j) for these {i, j}: {16602, 44720}
X(63579) = pole of line {3669, 4394} with respect to the incircle
X(63579) = pole of line {497, 4862} with respect to the Feuerbach hyperbola
X(63579) = pole of line {3663, 56798} with respect to the dual conic of Yff parabola
X(63579) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(16079)}}, {{A, B, C, X(8), X(3893)}}, {{A, B, C, X(75), X(16602)}}, {{A, B, C, X(513), X(49698)}}, {{A, B, C, X(3696), X(21826)}}, {{A, B, C, X(6604), X(52803)}}, {{A, B, C, X(19604), X(39126)}}
X(63579) = barycentric product X(i)*X(j) for these (i, j): {279, 3893}, {16602, 7}, {21826, 57785}, {22376, 331}, {24002, 8683}, {53594, 57}
X(63579) = barycentric quotient X(i)/X(j) for these (i, j): {3893, 346}, {8683, 644}, {16602, 8}, {21826, 210}, {22376, 219}, {53594, 312}
X(63579) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 1122, 65}, {7, 63152, 30617}, {4862, 63574, 63575}, {4862, 63575, 63581}, {19604, 47636, 16079}, {63575, 63582, 4862}


X(63580) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(39)

Barycentrics    a^2*(a+b-c)*(a-b+c)*(b^3-3*b^2*c-3*b*c^2+c^3+a*(b^2+c^2)) : :
X(63580) = -4*X[942]+X[33551]

X(63580) lies on circumconic {{A, B, C, X(3596), X(33963)}} and on these lines: {1, 1357}, {7, 3596}, {56, 40091}, {57, 21214}, {65, 519}, {181, 3339}, {388, 56799}, {942, 33551}, {1042, 62739}, {1463, 4848}, {1837, 4014}, {3304, 14261}, {3340, 7248}, {4306, 38286}, {4642, 53538}, {5221, 17749}, {9026, 56174}, {10475, 59173}, {14584, 30493}, {15888, 40617}, {15999, 20323}, {16945, 56795}, {24443, 53540}

X(63580) = X(i)-Dao conjugate of X(j) for these {i, j}: {2885, 8}
X(63580) = pole of line {6085, 8643} with respect to the incircle
X(63580) = pole of line {12053, 56798} with respect to the Feuerbach hyperbola
X(63580) = barycentric product X(i)*X(j) for these (i, j): {2885, 40151}, {16736, 65}, {23218, 331}
X(63580) = barycentric quotient X(i)/X(j) for these (i, j): {2885, 44723}, {16736, 314}, {23218, 219}
X(63580) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {65, 17114, 1401}, {65, 20615, 10944}


X(63581) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(44)

Barycentrics    (a+b-c)*(a-b+c)*(2*a^3-3*a^2*(b+c)+4*(b-c)^2*(b+c)-a*(b^2-6*b*c+c^2)) : :

X(63581) lies on these lines: {7, 1392}, {65, 62780}, {1319, 22464}, {1358, 4887}, {1482, 4902}, {3057, 4862}, {3663, 37080}, {4346, 24796}, {4389, 24805}, {17444, 53538}, {19604, 30323}, {24798, 42697}, {34640, 63577}

X(63581) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4862, 63574, 63582}, {4862, 63575, 63579}, {63575, 63582, 63574}


X(63582) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(45)

Barycentrics    (a+b-c)*(a-b+c)*(a^3-3*a^2*(b+c)+2*(b-c)^2*(b+c)-2*a*(b^2-6*b*c+c^2)) : :

X(63582) lies on these lines: {2, 25737}, {7, 21}, {40, 4902}, {1358, 4346}, {1388, 62789}, {3057, 4862}, {4415, 40151}, {4419, 40617}, {4887, 24796}, {4888, 20323}, {31230, 40862}, {49747, 53538}

X(63582) = pole of line {7178, 58794} with respect to the incircle
X(63582) = pole of line {3664, 37743} with respect to the dual conic of Yff parabola
X(63582) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4862, 63574, 63581}, {4862, 63579, 63575}, {63579, 63581, 63574}


X(63583) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(57)

Barycentrics    a^3-3*a*(b-c)^2-2*(b-c)^2*(b+c) : :

X(63583) lies on these lines: {1, 4190}, {2, 4488}, {7, 2999}, {9, 40688}, {38, 38052}, {42, 59372}, {57, 1020}, {63, 4859}, {88, 30852}, {142, 62818}, {200, 24231}, {226, 62695}, {244, 1699}, {269, 34052}, {329, 4887}, {553, 4000}, {614, 4312}, {748, 60905}, {903, 18743}, {908, 8056}, {1111, 54284}, {1266, 18141}, {1453, 24470}, {1698, 33166}, {1738, 62823}, {1836, 5573}, {3008, 9965}, {3011, 53056}, {3210, 17298}, {3219, 31183}, {3306, 33146}, {3339, 23536}, {3474, 62875}, {3632, 32863}, {3663, 9776}, {3666, 6173}, {3677, 5880}, {3752, 4654}, {3782, 5437}, {3914, 10980}, {3928, 24789}, {3929, 17278}, {3944, 31249}, {3973, 20078}, {3982, 63089}, {3999, 24392}, {4001, 16833}, {4014, 63511}, {4031, 37642}, {4114, 4644}, {4295, 24171}, {4346, 4656}, {4355, 54418}, {4359, 17272}, {4383, 60933}, {4384, 26840}, {4440, 30568}, {4666, 33102}, {4847, 7613}, {4855, 26729}, {4888, 5256}, {4896, 63007}, {4902, 5905}, {5222, 62240}, {5231, 17889}, {5272, 32857}, {5290, 24443}, {5586, 54421}, {5712, 60980}, {7290, 11246}, {7308, 17276}, {7991, 23675}, {9579, 17054}, {9589, 28011}, {9612, 24046}, {10248, 28092}, {10582, 24248}, {11679, 48627}, {12526, 24178}, {15803, 24159}, {16602, 31142}, {16610, 28609}, {17064, 18201}, {17147, 29573}, {17246, 25430}, {17274, 19804}, {17282, 32939}, {17296, 42051}, {17595, 25525}, {20276, 53540}, {21454, 40940}, {24200, 32946}, {24778, 27287}, {25509, 32930}, {25527, 48629}, {25557, 37553}, {25590, 54311}, {26723, 62820}, {26728, 30282}, {28080, 51118}, {30304, 53599}, {30813, 53600}, {33144, 59593}, {34255, 53594}, {40012, 40875}, {41825, 59375}, {44447, 60846}, {46943, 51423}, {63574, 63585}

X(63583) = pole of line {4962, 53522} with respect to the Steiner inellipse
X(63583) = pole of line {145, 515} with respect to the dual conic of Yff parabola
X(63583) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2006), X(38255)}}, {{A, B, C, X(2161), X(51341)}}
X(63583) = barycentric product X(i)*X(j) for these (i, j): {50443, 7}
X(63583) = barycentric quotient X(i)/X(j) for these (i, j): {50443, 8}
X(63583) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63584, 4862}, {7, 24177, 2999}, {57, 1086, 23681}, {88, 30852, 63621}, {329, 24175, 54390}, {553, 4000, 62812}, {3663, 9776, 17022}, {4887, 24175, 329}, {4902, 23511, 5905}, {5256, 26842, 4888}


X(63584) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(63)

Barycentrics    a^3-2*(b-c)^2*(b+c)+a*(-3*b^2+4*b*c-3*c^2) : :

X(63584) lies on these lines: {1, 20066}, {2, 4488}, {7, 223}, {57, 21368}, {63, 1086}, {88, 30827}, {165, 33148}, {312, 903}, {553, 19785}, {614, 32857}, {1790, 7225}, {2094, 62208}, {2999, 4902}, {3008, 20078}, {3120, 18193}, {3218, 23681}, {3219, 4859}, {3305, 17276}, {3306, 3782}, {3315, 9580}, {3601, 26729}, {3663, 5287}, {3677, 20292}, {3752, 31164}, {3870, 24231}, {3928, 33129}, {3929, 26724}, {3946, 4114}, {3982, 63008}, {4014, 63513}, {4031, 63078}, {4312, 7191}, {4338, 30148}, {4346, 9776}, {4355, 17016}, {4359, 17274}, {4373, 34255}, {4440, 56082}, {4452, 50292}, {4494, 40013}, {4652, 24159}, {4654, 4850}, {4659, 33172}, {4666, 24248}, {4675, 62816}, {4887, 5905}, {4888, 17011}, {5057, 5573}, {5271, 26840}, {5272, 33098}, {5437, 33151}, {5880, 62833}, {6173, 28606}, {7226, 38052}, {7232, 42051}, {7243, 16727}, {7613, 25006}, {8056, 27131}, {9965, 26723}, {10582, 33100}, {10980, 33134}, {11246, 62834}, {11415, 24171}, {17018, 59372}, {17147, 17298}, {17151, 32863}, {17282, 32933}, {17296, 50106}, {17301, 62808}, {17484, 23511}, {17595, 31266}, {19822, 50092}, {20195, 33761}, {21296, 50306}, {21454, 62780}, {24175, 31018}, {24470, 62809}, {24715, 62850}, {26792, 54390}, {27186, 62818}, {29665, 53056}, {31053, 62695}, {32777, 48631}, {32911, 60933}, {32939, 48629}, {33131, 62823}, {33149, 62819}, {33150, 62812}, {41867, 62796}, {42697, 54311}, {44307, 49747}, {48632, 50048}, {50080, 62867}

X(63584) = pole of line {145, 4295} with respect to the dual conic of Yff parabola
X(63584) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2999, 4902, 17483}, {4862, 63583, 2}, {4887, 24177, 5905}, {17276, 40688, 3305}, {26840, 48627, 5271}


X(63585) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(65)

Barycentrics    -2*a^2*(b-c)^2-4*b*(b-c)^2*c+a^3*(b+c)-3*a*(b-c)^2*(b+c) : :

X(63585) lies on these lines: {2, 25735}, {37, 24214}, {1086, 10481}, {1930, 49525}, {3752, 4059}, {4675, 7738}, {4862, 58679}, {17205, 52541}, {17753, 45219}, {20880, 21342}, {30806, 56174}, {63574, 63583}, {63576, 63577}

X(63585) = pole of line {15726, 43172} with respect to the dual conic of Yff parabola


X(63586) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(75)

Barycentrics    (a+b-c)*(a-b+c)*(b*c*(b+c)+a*(2*b^2-5*b*c+2*c^2)) : :

X(63586) lies on circumconic {{A, B, C, X(37), X(22214)}} and on these lines: {2, 25730}, {7, 37}, {57, 42338}, {75, 53538}, {85, 10009}, {321, 42304}, {1122, 27343}, {1358, 48627}, {3662, 40617}, {4014, 63597}, {4384, 19604}, {7271, 41245}, {17236, 24798}, {24796, 26806}, {32941, 51765}, {39126, 41777}, {63574, 63588}, {63576, 63577}

X(63586) = pole of line {4941, 5542} with respect to the dual conic of Yff parabola
X(63586) = barycentric product X(i)*X(j) for these (i, j): {22214, 57785}, {63499, 85}
X(63586) = barycentric quotient X(i)/X(j) for these (i, j): {22214, 210}, {63499, 9}


X(63587) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(85)

Barycentrics    -(b*(b-c)^2*c)-2*a*(b-c)^2*(b+c)+a^2*(2*b^2-3*b*c+2*c^2) : :

X(63587) lies on circumconic {{A, B, C, X(9311), X(60673)}} and on these lines: {1, 673}, {2, 3057}, {7, 40133}, {8, 59525}, {11, 26531}, {12, 27183}, {56, 27000}, {72, 51053}, {75, 3061}, {85, 2170}, {169, 24203}, {239, 12635}, {312, 30036}, {341, 49774}, {960, 27304}, {1086, 7185}, {1212, 51052}, {1319, 4209}, {1320, 28961}, {1334, 31269}, {1836, 26839}, {2082, 55082}, {3340, 24600}, {3673, 17761}, {3885, 28742}, {3912, 21627}, {4051, 16284}, {4323, 5222}, {4358, 30057}, {4384, 15829}, {4673, 29960}, {4875, 30946}, {4904, 17181}, {5543, 5838}, {5603, 41785}, {5919, 27253}, {7176, 62383}, {10912, 40872}, {11680, 26526}, {13463, 16593}, {16816, 27489}, {17451, 62697}, {17490, 30079}, {17671, 30384}, {17753, 43065}, {18191, 26802}, {18743, 30030}, {20244, 26690}, {26548, 33108}, {40940, 44733}, {45227, 62790}, {63498, 63597}, {63576, 63577}

X(63587) = X(i)-complementary conjugate of X(j) for these {i, j}: {87, 2884}, {2162, 43182}, {3062, 21250}, {7121, 3160}, {11051, 34832}, {36620, 20547}
X(63587) = pole of line {145, 41837} with respect to the Feuerbach hyperbola
X(63587) = pole of line {41886, 43182} with respect to the dual conic of Yff parabola
X(63587) = barycentric product X(i)*X(j) for these (i, j): {7, 63597}, {1088, 63602}, {63498, 75}
X(63587) = barycentric quotient X(i)/X(j) for these (i, j): {63498, 1}, {63597, 8}, {63602, 200}
X(63587) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {85, 2170, 9311}, {4051, 20335, 16284}


X(63588) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(86)

Barycentrics    (a+b-c)*(a-b+c)*(a^3+2*b^3-3*b^2*c-3*b*c^2+2*c^3-a*(b^2+b*c+c^2)) : :

X(63588) lies on these lines: {7, 524}, {85, 46238}, {86, 53545}, {226, 42033}, {1358, 26806}, {16888, 55096}, {17324, 24805}, {24199, 24803}, {24796, 48627}, {24909, 41804}, {63574, 63586}

X(63588) = barycentric product X(i)*X(j) for these (i, j): {1434, 23942}
X(63588) = barycentric quotient X(i)/X(j) for these (i, j): {23942, 2321}


X(63589) = COMPLEMENT OF X(25728)

Barycentrics    -3*(b-c)^2+a*(b+c) : :

X(63589) lies on these lines: {1, 7613}, {2, 4488}, {6, 4896}, {7, 1743}, {9, 4887}, {10, 3662}, {37, 142}, {38, 61029}, {44, 60962}, {45, 58433}, {75, 4058}, {85, 10029}, {141, 4739}, {144, 4902}, {192, 29600}, {226, 16610}, {238, 30424}, {277, 58816}, {344, 17132}, {346, 41141}, {514, 24096}, {519, 17298}, {527, 16885}, {551, 17302}, {553, 24789}, {894, 31191}, {903, 17263}, {984, 38204}, {1111, 20905}, {1125, 17304}, {1266, 3644}, {1278, 3912}, {1449, 3664}, {1723, 60938}, {1738, 5542}, {2140, 30097}, {2321, 3834}, {2325, 17265}, {3244, 17300}, {3452, 31197}, {3620, 3626}, {3625, 17117}, {3668, 17092}, {3671, 24178}, {3672, 59374}, {3686, 7232}, {3707, 17345}, {3729, 62398}, {3731, 4346}, {3739, 48631}, {3751, 43180}, {3755, 25557}, {3817, 17063}, {3879, 37756}, {3914, 17450}, {3946, 4675}, {3947, 24174}, {3973, 20059}, {3982, 4383}, {3986, 4389}, {4014, 63522}, {4021, 4648}, {4031, 35466}, {4052, 18743}, {4061, 33069}, {4082, 25961}, {4098, 17244}, {4114, 4641}, {4310, 38052}, {4312, 16020}, {4328, 30275}, {4356, 33149}, {4357, 4751}, {4373, 29627}, {4384, 53598}, {4395, 17376}, {4402, 50019}, {4419, 20195}, {4431, 17232}, {4440, 25101}, {4452, 29573}, {4464, 17387}, {4480, 15828}, {4644, 61020}, {4656, 33146}, {4659, 53665}, {4667, 16668}, {4669, 17287}, {4674, 31397}, {4686, 50100}, {4688, 48632}, {4698, 49741}, {4709, 49676}, {4732, 49511}, {4772, 48633}, {4788, 29582}, {4821, 29577}, {4847, 17449}, {4850, 5249}, {4868, 51706}, {4869, 17151}, {4888, 5222}, {4929, 15590}, {4967, 17227}, {5226, 8056}, {5257, 17235}, {5750, 17290}, {6180, 60993}, {6381, 30090}, {6666, 17276}, {7228, 17356}, {7238, 17348}, {7321, 17353}, {8732, 62780}, {9776, 23681}, {10164, 33130}, {10481, 24181}, {11019, 17889}, {12436, 24159}, {12609, 24171}, {16671, 17365}, {16706, 50116}, {16814, 61001}, {16832, 62608}, {16833, 21296}, {16975, 17050}, {17023, 26806}, {17116, 29596}, {17133, 17311}, {17236, 24603}, {17257, 31211}, {17279, 50118}, {17280, 50119}, {17282, 17355}, {17284, 31995}, {17288, 50095}, {17295, 50099}, {17303, 31139}, {17313, 50108}, {17326, 51073}, {17334, 60986}, {17337, 60942}, {17340, 31243}, {17341, 49722}, {17351, 40480}, {17357, 49727}, {17362, 31138}, {17364, 41140}, {17375, 49770}, {17385, 49733}, {17390, 50109}, {17391, 51071}, {17756, 30949}, {20271, 24274}, {20367, 28351}, {21060, 33103}, {21342, 61031}, {22464, 60988}, {24715, 30331}, {25351, 49529}, {25590, 29604}, {26723, 26842}, {29607, 31300}, {29820, 51783}, {32857, 51090}, {33891, 49554}, {34361, 62388}, {37650, 60933}, {37800, 62789}, {38094, 50291}, {38210, 49503}, {43177, 53599}, {49747, 60999}, {50282, 51098}, {51302, 62783}, {52023, 61022}, {53602, 62383}

X(63589) = X(i)-Dao conjugate of X(j) for these {i, j}: {21139, 4885}, {24386, 4936}
X(63589) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30610, 514}
X(63589) = X(i)-complementary conjugate of X(j) for these {i, j}: {41439, 141}, {42343, 21260}
X(63589) = pole of line {59941, 60407} with respect to the incircle
X(63589) = pole of line {4382, 4962} with respect to the Steiner circumellipse
X(63589) = pole of line {2254, 4962} with respect to the Steiner inellipse
X(63589) = pole of line {144, 145} with respect to the dual conic of Yff parabola
X(63589) = {X(2),X(7)}-bicevian centroidal collineation image of X(142)
X(63589) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(24386), X(38255)}}, {{A, B, C, X(36603), X(39742)}}, {{A, B, C, X(36606), X(60236)}}
X(63589) = barycentric product X(i)*X(j) for these (i, j): {24386, 7}
X(63589) = barycentric quotient X(i)/X(j) for these (i, j): {24386, 8}
X(63589) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63576, 4862}, {6, 60980, 4896}, {7, 4859, 3008}, {75, 21255, 29594}, {142, 1086, 3663}, {142, 3663, 29571}, {226, 24175, 45204}, {1266, 17234, 3950}, {1278, 3912, 4072}, {3662, 24199, 10}, {3664, 4000, 50114}, {3739, 48631, 50092}, {4000, 6173, 3664}, {4072, 53594, 1278}, {4346, 60996, 3731}, {4373, 29627, 55998}, {4480, 17338, 15828}, {4869, 17151, 49765}, {4902, 31183, 144}, {7228, 17356, 50115}, {9776, 23681, 39595}, {17067, 60980, 6}, {17235, 34824, 5257}, {17282, 42697, 17355}, {26723, 26842, 62240}


X(63590) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(144)

Barycentrics    3*a^2-9*(b-c)^2-2*a*(b+c) : :

X(63590) lies on circumconic {{A, B, C, X(38255), X(55937)}} and on these lines: {2, 4488}, {7, 1419}, {37, 4346}, {88, 34524}, {144, 1086}, {145, 4780}, {239, 33800}, {335, 1278}, {346, 903}, {1743, 4887}, {3617, 7613}, {3622, 24248}, {3644, 4869}, {3663, 29624}, {3672, 17392}, {4000, 16671}, {4007, 36588}, {4014, 63523}, {4416, 62403}, {4440, 62390}, {4454, 48629}, {4739, 5232}, {4859, 61006}, {4902, 5222}, {6354, 21454}, {7232, 36525}, {17067, 60957}, {17307, 42697}, {17375, 32105}, {24199, 62608}, {30833, 53600}, {36640, 60993}, {45789, 48627}

X(63590) = pole of line {145, 4312} with respect to the dual conic of Yff parabola
X(63590) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4862, 63576, 2}


X(63591) = {X(2),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(145)

Barycentrics    (a+b-c)*(a-b+c)*(3*a^2+9*b^2-14*b*c+9*c^2-4*a*(b+c)) : :

X(63591) lies on these lines: {7, 3623}, {145, 1358}, {3212, 51351}, {3617, 24797}, {3621, 27818}, {3622, 24796}, {4059, 25237}, {5222, 10481}, {11682, 19604}, {21139, 63599}, {24599, 24803}, {24798, 46932}

X(63591) = pole of line {4902, 9812} with respect to the dual conic of Yff parabola
X(63591) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7, 47444, 3623}


X(63592) = COMPLEMENT OF X(25718)

Barycentrics    (a-b-c)*(a^3-3*a*(b-c)^2+2*(b-c)^2*(b+c)) : :

X(63592) lies on these lines: {1, 1146}, {2, 25716}, {7, 10405}, {8, 9}, {10, 10186}, {85, 1121}, {101, 61296}, {142, 31994}, {145, 40869}, {169, 5881}, {220, 3632}, {281, 1449}, {496, 5514}, {519, 6554}, {527, 30695}, {944, 8074}, {1212, 3679}, {1698, 34522}, {1706, 24247}, {1741, 63141}, {1837, 4534}, {1855, 11529}, {1997, 3912}, {2170, 9581}, {3160, 62388}, {3241, 27541}, {3244, 5199}, {3247, 20262}, {3452, 29616}, {3633, 6603}, {3730, 63143}, {3959, 17435}, {4051, 24392}, {4251, 36921}, {4853, 40997}, {5179, 7982}, {5258, 32561}, {5540, 37711}, {5665, 7003}, {5722, 56857}, {5839, 59646}, {5942, 60937}, {6506, 37720}, {6604, 60933}, {9311, 18025}, {9312, 26531}, {9578, 17451}, {10573, 16572}, {10915, 60444}, {11019, 19605}, {11531, 17747}, {14100, 63594}, {14584, 36910}, {16284, 17296}, {16485, 52530}, {16829, 26068}, {16834, 37774}, {17294, 20942}, {17754, 56173}, {18634, 34059}, {20008, 27382}, {20082, 33633}, {21044, 50443}, {21139, 63574}, {23893, 42455}, {24524, 36796}, {24928, 54079}, {25525, 25935}, {26001, 59215}, {28609, 30807}, {28827, 29574}, {29573, 34852}, {30625, 60977}, {32086, 61020}, {32098, 60963}, {37709, 40131}, {42048, 58816}, {51406, 61294}, {61291, 61730}

X(63592) = midpoint of X(i) and X(j) for these {i,j}: {30695, 32003}
X(63592) = reflection of X(i) in X(j) for these {i,j}: {25718, 59610}
X(63592) = complement of X(25718)
X(63592) = anticomplement of X(59610)
X(63592) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 56355}
X(63592) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 56355}, {59610, 59610}
X(63592) = pole of line {4859, 62388} with respect to the dual conic of Yff parabola
X(63592) = {X(2),X(8)}-bicevian centroidal collineation image of X(1)
X(63592) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(38254)}}, {{A, B, C, X(9), X(60910)}}, {{A, B, C, X(346), X(36605)}}, {{A, B, C, X(390), X(34918)}}, {{A, B, C, X(728), X(1121)}}
X(63592) = barycentric product X(i)*X(j) for these (i, j): {1538, 51565}, {60910, 75}
X(63592) = barycentric quotient X(i)/X(j) for these (i, j): {9, 56355}, {1538, 22464}, {60910, 1}
X(63592) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1146, 23058}, {2, 25718, 59610}, {2, 63593, 63595}, {2, 63599, 63593}, {8, 41006, 9}, {26531, 39351, 9312}, {30695, 32003, 527}


X(63593) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(8)

Barycentrics    (a-b-c)^2*(a^2-5*(b-c)^2) : :

X(63593) lies on these lines: {2, 25716}, {8, 220}, {9, 4678}, {10, 11200}, {145, 23058}, {348, 1121}, {519, 27541}, {1212, 53620}, {3119, 4051}, {3160, 39351}, {3241, 46835}, {3617, 41006}, {3621, 40869}, {3632, 5199}, {4460, 27547}, {4534, 54361}, {5328, 17230}, {5554, 5749}, {5828, 57015}, {6603, 20053}, {9436, 10405}, {19877, 34522}, {21258, 52715}, {25278, 36796}, {26531, 31994}, {27382, 62246}, {30694, 32003}, {32098, 42048}, {63594, 63624}

X(63593) = intersection, other than A, B, C, of circumconics {{A, B, C, X(6559), X(36605)}}, {{A, B, C, X(14942), X(38254)}}
X(63593) = barycentric product X(i)*X(j) for these (i, j): {346, 63576}
X(63593) = barycentric quotient X(i)/X(j) for these (i, j): {63576, 279}
X(63593) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63599, 63592}, {63592, 63595, 2}


X(63594) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(9)

Barycentrics    (a-b-c)^2*(a^3+a*(b-c)^2-2*(b-c)^2*(b+c)) : :

X(63594) lies on these lines: {1, 23529}, {2, 63598}, {8, 144}, {9, 4081}, {33, 200}, {75, 4569}, {280, 62824}, {318, 39531}, {347, 4847}, {480, 4873}, {956, 34143}, {1146, 4907}, {1441, 17860}, {2968, 5231}, {3059, 4007}, {3161, 28131}, {3419, 50917}, {3679, 24010}, {3731, 28118}, {3872, 52368}, {4034, 42014}, {4073, 4901}, {4319, 52335}, {4659, 30620}, {4853, 21147}, {5696, 62391}, {11679, 17797}, {12565, 39130}, {14100, 63592}, {17355, 28124}, {18697, 63151}, {20989, 36641}, {23663, 23681}, {63593, 63624}

X(63594) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1407, 55986}
X(63594) = X(i)-Dao conjugate of X(j) for these {i, j}: {4081, 522}, {23058, 9533}, {24771, 55986}, {63625, 7}
X(63594) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 3239}
X(63594) = pole of line {3239, 59926} with respect to the DeLongchamps circle
X(63594) = intersection, other than A, B, C, of circumconics {{A, B, C, X(33), X(1699)}}, {{A, B, C, X(281), X(10405)}}, {{A, B, C, X(516), X(50561)}}, {{A, B, C, X(7101), X(40869)}}
X(63594) = barycentric product X(i)*X(j) for these (i, j): {1699, 346}, {23058, 8}
X(63594) = barycentric quotient X(i)/X(j) for these (i, j): {200, 55986}, {1699, 279}, {23058, 7}, {24856, 36620}, {63625, 9533}
X(63594) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {8, 63165, 144}, {2321, 4012, 200}


X(63595) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(10)

Barycentrics    (a-b-c)*(2*a*(b-c)^2+a^2*(b+c)-3*(b-c)^2*(b+c)) : :
X(63595) = -3*X[2]+X[25716]

X(63595) lies on these lines: {2, 25716}, {8, 23058}, {9, 3617}, {10, 1146}, {101, 47745}, {142, 26531}, {220, 3626}, {226, 48381}, {281, 3686}, {355, 8074}, {519, 46835}, {527, 30694}, {1121, 17095}, {1855, 17746}, {2321, 3965}, {2324, 4060}, {3036, 30618}, {3207, 28236}, {3452, 3661}, {3625, 6603}, {3634, 34522}, {3679, 6554}, {3730, 38127}, {4007, 27508}, {4034, 27382}, {4035, 6708}, {4051, 24386}, {4534, 17606}, {4847, 45203}, {4858, 26563}, {5011, 31673}, {5179, 11362}, {5257, 24987}, {5514, 24390}, {5745, 51579}, {5750, 53994}, {5819, 37714}, {6181, 31490}, {6506, 24387}, {6735, 51972}, {8568, 25005}, {9312, 62388}, {9436, 20089}, {10915, 21096}, {12053, 21044}, {12649, 40942}, {17275, 59646}, {17294, 28827}, {17435, 21951}, {21139, 63578}, {21950, 23675}, {25280, 36796}, {29594, 34852}, {37709, 40127}, {37774, 50095}, {50115, 54283}, {59725, 62245}

X(63595) = complement of X(25716)
X(63595) = X(i)-Dao conjugate of X(j) for these {i, j}: {3817, 1419}
X(63595) = X(i)-Ceva conjugate of X(j) for these {i, j}: {30610, 522}
X(63595) = X(i)-complementary conjugate of X(j) for these {i, j}: {41439, 2886}
X(63595) = pole of line {23638, 63596} with respect to the Feuerbach hyperbola
X(63595) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3817), X(7319)}}, {{A, B, C, X(41441), X(42317)}}
X(63595) = barycentric product X(i)*X(j) for these (i, j): {3817, 8}
X(63595) = barycentric quotient X(i)/X(j) for these (i, j): {3817, 7}
X(63595) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 25719, 59610}, {2, 63593, 63592}, {8, 23058, 40869}, {10, 1146, 41006}, {3626, 5199, 220}, {6736, 40997, 2321}


X(63596) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(39)

Barycentrics    a^2*(a-b-c)*(-2*a*(b-c)^2*(b+c)+a^2*(b^2+c^2)+(b-c)^2*(b^2+4*b*c+c^2)) : :

X(63596) lies on these lines: {1, 52823}, {497, 62547}, {2082, 3022}, {2170, 39789}, {2784, 31803}, {3057, 3059}, {3271, 63601}, {3340, 52020}, {3779, 11531}, {4050, 4517}, {4516, 17451}, {6007, 20535}, {40608, 53111}

X(63596) = X(i)-Dao conjugate of X(j) for these {i, j}: {2884, 7}
X(63596) = pole of line {4847, 45203} with respect to the Feuerbach hyperbola
X(63596) = barycentric quotient X(i)/X(j) for these (i, j): {2884, 50560}
X(63596) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3057, 52562, 3688}


X(63597) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(75)

Barycentrics    (a-b-c)*(-(b*(b-c)^2*c)-2*a*(b-c)^2*(b+c)+a^2*(2*b^2-3*b*c+2*c^2)) : :

X(63597) lies on these lines: {2, 14100}, {9, 14942}, {11, 3662}, {55, 17260}, {75, 2310}, {85, 45305}, {312, 4073}, {497, 17257}, {894, 60910}, {950, 31359}, {1111, 24802}, {1156, 28968}, {1253, 17335}, {1742, 31225}, {2293, 4687}, {3057, 58693}, {3759, 4336}, {4014, 63586}, {4319, 17277}, {4384, 4907}, {5057, 40905}, {5572, 26125}, {10177, 25521}, {11238, 17254}, {13727, 15299}, {14749, 49470}, {16112, 40862}, {17333, 60919}, {17349, 41339}, {21629, 33298}, {24389, 40880}, {27420, 42014}, {30330, 40719}, {40269, 51055}, {63498, 63587}

X(63597) = X(i)-complementary conjugate of X(j) for these {i, j}: {38266, 40593}
X(63597) = pole of line {144, 17759} with respect to the Feuerbach hyperbola
X(63597) = barycentric product X(i)*X(j) for these (i, j): {312, 63498}, {63587, 8}, {63602, 85}
X(63597) = barycentric quotient X(i)/X(j) for these (i, j): {63498, 57}, {63587, 7}, {63602, 9}
X(63597) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63600, 14100}


X(63598) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(142)

Barycentrics    (a-b-c)*(a^2*(b-c)^2+a^3*(b+c)-5*a*(b-c)^2*(b+c)+(b-c)^2*(3*b^2+2*b*c+3*c^2)) : :

X(63598) lies on these lines: {2, 63594}, {8, 25101}, {10, 26669}, {142, 4081}, {1441, 24026}, {2321, 3693}, {2325, 30620}, {3932, 6736}, {4012, 6745}, {5231, 32087}, {17860, 61029}, {23529, 29571}, {25072, 28118}, {62778, 63165}

X(63598) = X(i)-Ceva conjugate of X(j) for these {i, j}: {42303, 3239}


X(63599) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(145)

Barycentrics    (a-b-c)*(3*a^3-11*a*(b-c)^2-a^2*(b+c)+9*(b-c)^2*(b+c)) : :

X(63599) lies on circumconic {{A, B, C, X(38254), X(56088)}} and on these lines: {2, 25716}, {8, 4936}, {145, 1146}, {279, 1121}, {1212, 3617}, {3623, 23058}, {4678, 41006}, {5199, 20050}, {6554, 31145}, {10405, 20089}, {20014, 40869}, {21139, 63591}, {25296, 36796}, {34522, 46931}

X(63599) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63592, 63593, 2}


X(63600) = {X(2),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(192)

Barycentrics    (a-b-c)*(b*(b-c)^2*c+a^3*(b+c)+3*a*(b-c)^2*(b+c)+a^2*(-4*b^2+7*b*c-4*c^2)) : :

X(63600) lies on these lines: {2, 14100}, {192, 2310}, {239, 4907}, {497, 6646}, {2293, 27268}, {4319, 17349}, {4326, 17260}, {7671, 26125}, {14942, 17350}, {15006, 50093}, {41339, 63050}

X(63600) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {14100, 63597, 2}, {14942, 60910, 17350}


X(63601) = {X(2),X(9)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(1)

Barycentrics    a^2*(a-b-c)*(-2*a*(b-c)^2*(b+c)+a^2*(b^2-b*c+c^2)+(b-c)^2*(b^2+b*c+c^2)) : :

X(63601) lies on these lines: {1, 1362}, {2, 63602}, {7, 43750}, {9, 52562}, {11, 21258}, {41, 55}, {144, 145}, {210, 28057}, {354, 9533}, {497, 6604}, {950, 28849}, {1475, 38285}, {1721, 29957}, {1837, 13576}, {1854, 2654}, {1864, 28124}, {2310, 17451}, {3271, 63596}, {3297, 30336}, {3298, 30335}, {3304, 52013}, {3340, 4907}, {3688, 4326}, {3779, 4319}, {4014, 63574}, {4253, 62738}, {5022, 38287}, {5432, 58458}, {7071, 19133}, {7131, 14935}, {7671, 56933}, {10950, 36639}, {11189, 61398}, {11190, 20988}, {15658, 58816}, {17464, 56931}, {17718, 60229}, {20323, 56741}, {45974, 56098}, {58326, 60722}

X(63601) = reflection of X(i) in X(j) for these {i,j}: {52001, 3022}
X(63601) = perspector of circumconic {{A, B, C, X(3939), X(30610)}}
X(63601) = X(i)-Dao conjugate of X(j) for these {i, j}: {3022, 3900}
X(63601) = X(i)-Ceva conjugate of X(j) for these {i, j}: {4569, 650}
X(63601) = pole of line {926, 4162} with respect to the incircle
X(63601) = pole of line {2, 85} with respect to the Feuerbach hyperbola
X(63601) = pole of line {31287, 52594} with respect to the Steiner inellipse
X(63601) = intersection, other than A, B, C, of circumconics {{A, B, C, X(41), X(9309)}}, {{A, B, C, X(55), X(9311)}}, {{A, B, C, X(220), X(9442)}}, {{A, B, C, X(2340), X(26531)}}, {{A, B, C, X(6602), X(43750)}}
X(63601) = barycentric product X(i)*X(j) for these (i, j): {26531, 55}
X(63601) = barycentric quotient X(i)/X(j) for these (i, j): {26531, 6063}
X(63601) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2808, 3022, 52001}, {3022, 39789, 1}, {4319, 42447, 3779}


X(63602) = {X(2),X(9)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(8)

Barycentrics    a*(a-b-c)^2*(-(b*(b-c)^2*c)-2*a*(b-c)^2*(b+c)+a^2*(2*b^2-3*b*c+2*c^2)) : :

X(63602) lies on these lines: {2, 63601}, {8, 3022}, {220, 28071}, {497, 21285}, {518, 10939}, {2310, 3061}, {3616, 39789}, {4014, 63577}, {4323, 21746}, {4907, 15829}, {6168, 41680}, {11260, 56741}, {14100, 58679}, {63498, 63587}

X(63602) = pole of line {3177, 17490} with respect to the Feuerbach hyperbola
X(63602) = barycentric product X(i)*X(j) for these (i, j): {200, 63587}, {346, 63498}, {63597, 9}
X(63602) = barycentric quotient X(i)/X(j) for these (i, j): {63498, 279}, {63587, 1088}, {63597, 85}
X(63602) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63601, 63603, 2}


X(63603) = {X(2),X(9)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(10)

Barycentrics    a*(a-b-c)*(a^3*(b-c)^2+b*(b-c)^2*c*(b+c)+a*(b^2-c^2)^2+a^2*(-2*b^3+b^2*c+b*c^2-2*c^3)) : :

X(63603) lies on these lines: {2, 63601}, {10, 3022}, {11, 17046}, {33, 210}, {65, 48900}, {224, 1001}, {257, 3057}, {354, 55082}, {1125, 39789}, {1864, 41239}, {2310, 39244}, {3740, 43984}, {4014, 63578}, {14872, 38572}, {16552, 62738}, {17603, 25500}, {20359, 42397}, {21384, 38285}, {32008, 61686}, {40869, 52562}

X(63603) = X(i)-Dao conjugate of X(j) for these {i, j}: {45305, 31526}
X(63603) = pole of line {63, 194} with respect to the Feuerbach hyperbola
X(63603) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(7079), X(45305)}}, {{A, B, C, X(26802), X(28044)}}
X(63603) = barycentric product X(i)*X(j) for these (i, j): {210, 26802}, {45305, 9}
X(63603) = barycentric quotient X(i)/X(j) for these (i, j): {26802, 57785}, {45305, 85}
X(63603) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 63602, 63601}


X(63604) = {X(2),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(42)

Barycentrics    (b+c)^2*(a^4+a^2*b*c+b*(b-c)^2*c+a^3*(b+c)+a*(b-c)^2*(b+c)) : :

X(63604) lies on these lines: {2, 23897}, {42, 115}, {1834, 21753}, {2248, 5196}, {2350, 7765}, {3124, 3914}, {3755, 61324}, {4037, 27700}, {5949, 60724}, {9280, 29682}, {10026, 20011}, {16592, 63508}, {17056, 31031}, {17135, 53426}, {21057, 27567}, {24330, 53508}, {24512, 53427}, {33134, 52651}, {37676, 53509}, {42042, 62322}, {59297, 62396}

X(63604) = pole of line {1654, 33110} with respect to the Kiepert hyperbola
X(63604) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23903, 63605, 2}


X(63605) = {X(2),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(43)

Barycentrics    (b+c)*(a^4*(b+c)+b*(b-c)^2*c*(b+c)+a^3*(b^2+b*c+c^2)+a*(b^4-3*b^2*c^2+c^4)) : :

X(63605) lies on these lines: {2, 23897}, {43, 115}, {2238, 53417}, {3124, 33131}, {3914, 52651}, {4037, 27701}, {4713, 53508}, {8818, 21904}, {10026, 20012}, {10453, 53426}, {16592, 33141}, {17759, 27688}, {21877, 21935}, {23914, 23944}, {42043, 62322}, {59298, 62396}

X(63605) = pole of line {1654, 3434} with respect to the Kiepert hyperbola
X(63605) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 23942, 23917}, {2, 63604, 23903}


X(63606) = COMPLEMENT OF X(24374)

Barycentrics    (b+c)*(a^4+b^4-b^2*c^2+c^4+2*a^3*(b+c)+2*a*b*c*(b+c)+a^2*(b^2+4*b*c+c^2)) : :

X(63606) lies on these lines: {1, 25687}, {2, 23901}, {10, 37}, {86, 21043}, {894, 21089}, {1010, 36934}, {3178, 21695}, {6542, 21728}, {7227, 36632}, {16894, 29653}, {21085, 21705}, {21725, 63520}, {23903, 23944}, {23928, 63608}

X(63606) = {X(2),X(10)}-bicevian centroidal collineation image of X(86)


X(63607) = {X(2),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(145)

Barycentrics    (b+c)*(3*a^3+4*b^3-5*b^2*c-5*b*c^2+4*c^3+2*a^2*(b+c)-a*(b^2-b*c+c^2)) : :

X(63607) lies on these lines: {1, 62396}, {2, 23897}, {115, 145}, {3241, 62322}, {3617, 6537}, {3621, 53426}, {4037, 27708}, {4454, 53508}, {10026, 20014}, {16592, 63524}, {16704, 63537}, {21057, 27571}, {31034, 63533}, {37639, 44518}, {37655, 53509}, {50256, 63543}

X(63607) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23903, 23942, 2}


X(63608) = {X(2),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(190)

Barycentrics    (b+c)*(a^4+b^4-b^2*c^2+c^4-2*a*(b-c)^2*(b+c)-a^2*(b^2+c^2)) : :

X(63608) lies on these lines: {2, 23936}, {8, 2640}, {10, 2643}, {519, 662}, {594, 9278}, {897, 3626}, {1145, 34895}, {3244, 17467}, {3621, 39339}, {3679, 26081}, {3950, 39256}, {4092, 21089}, {9509, 17299}, {11599, 21043}, {21047, 46912}, {23902, 23944}, {23927, 63609}, {23928, 63606}, {24362, 24363}

X(63608) = reflection of X(i) in X(j) for these {i,j}: {21089, 4092}


X(63609) = {X(2),X(10)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(192)

Barycentrics    (b+c)*(-(b^2*c^2)+a^3*(b+c)+2*a*(b-c)^2*(b+c)+a^2*(b^2+b*c+c^2)) : :

X(63609) lies on these lines: {2, 23913}, {145, 20360}, {192, 2643}, {523, 4398}, {2294, 17784}, {4000, 21295}, {4128, 63527}, {17232, 57040}, {17262, 46912}, {17470, 17495}, {23668, 25295}, {23927, 63608}, {42066, 59295}

X(63609) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23928, 23944, 2}


X(63610) = {X(4),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(6)

Barycentrics    (a^2-b^2-c^2)*(3*a^2-b^2-c^2)*(a^4+2*(b^2-c^2)^2-a^2*(b^2+c^2)) : :
X(63610) = -3*X[2]+X[34208], -X[193]+3*X[40819]

X(63610) lies on these lines: {2, 34208}, {3, 69}, {6, 15525}, {114, 30549}, {131, 381}, {193, 40819}, {216, 37637}, {264, 2974}, {590, 24245}, {615, 24246}, {1656, 34853}, {1657, 59369}, {2453, 46086}, {6389, 30771}, {6527, 56370}, {10608, 12429}, {14001, 30558}, {25681, 34851}, {32954, 59566}, {38736, 52874}

X(63610) = complement of X(34208)
X(63610) = center of circumconic {{A, B, C, X(925), X(9133)}}
X(63610) = X(i)-Dao conjugate of X(j) for these {i, j}: {13881, 2}
X(63610) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 13881}, {925, 3566}
X(63610) = X(i)-complementary conjugate of X(j) for these {i, j}: {3, 4138}, {31, 13881}, {48, 69}, {163, 14341}, {184, 16605}, {193, 20305}, {255, 30771}, {603, 17064}, {906, 59751}, {1707, 5}, {3053, 226}, {3167, 10}, {4575, 3566}, {6091, 4892}, {6337, 2887}, {10607, 18589}, {18156, 21243}, {19118, 24005}, {52430, 22401}, {57216, 21259}, {62194, 16583}
X(63610) = pole of line {58757, 58766} with respect to the polar circle
X(63610) = pole of line {25, 40809} with respect to the Stammler hyperbola
X(63610) = intersection, other than A, B, C, of circumconics {{A, B, C, X(69), X(40819)}}, {{A, B, C, X(193), X(10008)}}, {{A, B, C, X(3167), X(9723)}}, {{A, B, C, X(3926), X(57857)}}, {{A, B, C, X(6337), X(13881)}}
X(63610) = barycentric product X(i)*X(j) for these (i, j): {13881, 6337}
X(63610) = barycentric quotient X(i)/X(j) for these (i, j): {3167, 55999}, {13881, 34208}
X(63610) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {40697, 51611, 19588}


X(63611) = COMPLEMENT OF X(6340)

Barycentrics    (3*a^2-b^2-c^2)*(a^4-2*(b^2-c^2)^2-a^2*(b^2+c^2)) : :

X(63611) lies on these lines: {2, 1975}, {6, 6387}, {25, 1560}, {111, 30744}, {183, 37895}, {216, 37637}, {230, 1249}, {232, 14091}, {233, 31489}, {468, 1611}, {1368, 44526}, {1370, 24855}, {1613, 40601}, {1853, 20998}, {3053, 6353}, {3163, 15525}, {3167, 6388}, {3290, 56905}, {3291, 37453}, {3787, 21970}, {3981, 59767}, {5023, 10154}, {5210, 10565}, {5275, 40582}, {6587, 10190}, {6676, 44535}, {7392, 18584}, {7735, 45245}, {9766, 57150}, {15504, 63174}, {15595, 26958}, {16317, 52297}, {18311, 47125}, {30745, 63538}, {30771, 34481}, {34609, 40350}, {39078, 51610}, {43188, 57493}, {52299, 63534}, {63104, 63615}

X(63611) = midpoint of X(i) and X(j) for these {i,j}: {6340, 18287}
X(63611) = complement of X(6340)
X(63611) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8769, 56362}, {38252, 63182}
X(63611) = X(i)-Dao conjugate of X(j) for these {i, j}: {30771, 2}, {51579, 63182}
X(63611) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 30771}, {648, 3566}
X(63611) = X(i)-complementary conjugate of X(j) for these {i, j}: {25, 4138}, {31, 30771}, {560, 22401}, {1395, 17064}, {1707, 1368}, {1973, 69}, {1974, 16605}, {3053, 18589}, {6353, 2887}, {8651, 34846}, {19118, 10}, {32676, 3566}, {54412, 21235}, {57071, 21253}, {62194, 1214}
X(63611) = pole of line {14341, 57071} with respect to the polar circle
X(63611) = pole of line {69, 30771} with respect to the Kiepert hyperbola
X(63611) = pole of line {3053, 5866} with respect to the Stammler hyperbola
X(63611) = pole of line {3566, 57071} with respect to the Steiner inellipse
X(63611) = pole of line {193, 63182} with respect to the Wallace hyperbola
X(63611) = pole of line {3566, 14341} with respect to the dual conic of DeLongchamps circle
X(63611) = {X(4),X(2)}-bicevian centroidal collineation image of X(25)
X(63611) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2996), X(40323)}}, {{A, B, C, X(3053), X(60839)}}, {{A, B, C, X(6340), X(6353)}}, {{A, B, C, X(8770), X(34481)}}
X(63611) = barycentric product X(i)*X(j) for these (i, j): {193, 44518}, {30771, 6353}, {34481, 57518}
X(63611) = barycentric quotient X(i)/X(j) for these (i, j): {193, 63182}, {3053, 56362}, {19118, 63184}, {30771, 6340}, {34481, 8770}, {44518, 2996}
X(63611) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 18287, 6340}, {2, 8770, 13881}, {111, 30744, 63541}, {6353, 40326, 3053}, {10418, 40347, 2079}, {30771, 34481, 44518}


X(63612) = COMPLEMENT OF X(6391)

Barycentrics    (a^2-b^2-c^2)*(3*a^2-b^2-c^2)*((b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(63612) = -3*X[2]+X[6391], -X[193]+3*X[3167], -2*X[8548]+3*X[38110], -4*X[9820]+3*X[59399]

X(63612) lies on these lines: {2, 6391}, {3, 69}, {5, 14913}, {6, 6387}, {30, 9924}, {68, 61545}, {110, 40316}, {113, 1596}, {141, 8681}, {155, 34380}, {193, 3167}, {206, 524}, {427, 12272}, {468, 40318}, {511, 2883}, {525, 21905}, {542, 11598}, {599, 7734}, {800, 11672}, {960, 34381}, {1147, 1353}, {1209, 61667}, {1351, 3089}, {1352, 33537}, {1368, 6467}, {1993, 40317}, {2854, 15116}, {3589, 8542}, {3629, 6593}, {4550, 44665}, {5181, 63614}, {5254, 59561}, {5648, 56918}, {5965, 32391}, {6144, 32113}, {6403, 31802}, {6676, 52077}, {6804, 61544}, {7399, 12271}, {8057, 41167}, {8548, 38110}, {8550, 22966}, {9007, 60342}, {9820, 59399}, {10565, 20080}, {10602, 28419}, {11188, 38136}, {11597, 19138}, {12164, 52404}, {13488, 39884}, {13562, 63180}, {15048, 59566}, {15531, 26156}, {16197, 17836}, {16254, 24206}, {16789, 40341}, {18358, 18537}, {19121, 41615}, {19139, 21841}, {19141, 61753}, {32263, 61692}, {33878, 35513}, {37971, 47279}, {42065, 63613}, {44492, 61610}, {46432, 59651}

X(63612) = midpoint of X(i) and X(j) for these {i,j}: {69, 19588}, {6193, 11898}, {6467, 40337}, {12164, 63428}
X(63612) = reflection of X(i) in X(j) for these {i,j}: {68, 61545}, {1351, 61607}, {1353, 1147}, {44492, 61610}
X(63612) = inverse of X(57388) in Stammler hyperbola
X(63612) = complement of X(6391)
X(63612) = center of circumconic {{A, B, C, X(110), X(53350)}}
X(63612) = X(i)-isoconjugate-of-X(j) for these {i, j}: {8769, 57388}, {38252, 40413}
X(63612) = X(i)-Dao conjugate of X(j) for these {i, j}: {69, 40405}, {1196, 2996}, {1368, 14248}, {22401, 2}, {51579, 40413}, {59561, 34208}
X(63612) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 22401}, {110, 3566}, {5254, 1368}
X(63612) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 30771}, {4, 4138}, {19, 69}, {25, 16605}, {31, 22401}, {34, 17064}, {162, 3566}, {193, 18589}, {1096, 13881}, {1707, 3}, {1783, 59751}, {3053, 1214}, {3566, 34846}, {4028, 21530}, {5139, 24040}, {6353, 10}, {8651, 16573}, {17081, 34822}, {18156, 1368}, {19118, 37}, {21447, 20305}, {21874, 440}, {24019, 14341}, {32676, 2489}, {41584, 21249}, {54412, 2887}, {56891, 18588}, {57071, 8287}
X(63612) = pole of line {13881, 22401} with respect to the Kiepert hyperbola
X(63612) = pole of line {3049, 3566} with respect to the MacBeath circumconic
X(63612) = pole of line {25, 6391} with respect to the Stammler hyperbola
X(63612) = pole of line {4, 6340} with respect to the Wallace hyperbola
X(63612) = pole of line {2489, 2506} with respect to the dual conic of DeLongchamps circle
X(63612) = {X(4),X(2)}-bicevian centroidal collineation image of X(53) X(63612) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(6467)}}, {{A, B, C, X(6), X(40337)}}, {{A, B, C, X(69), X(1368)}}, {{A, B, C, X(193), X(3926)}}, {{A, B, C, X(1196), X(19588)}}, {{A, B, C, X(3167), X(3964)}}, {{A, B, C, X(3566), X(5866)}}, {{A, B, C, X(3933), X(41584)}}, {{A, B, C, X(5254), X(6337)}}, {{A, B, C, X(6091), X(34883)}}, {{A, B, C, X(6391), X(22401)}}, {{A, B, C, X(17206), X(18648)}}, {{A, B, C, X(39653), X(40325)}}, {{A, B, C, X(40819), X(50572)}}, {{A, B, C, X(41588), X(52347)}}
X(63612) = barycentric product X(i)*X(j) for these (i, j): {1368, 193}, {1707, 21406}, {5254, 6337}, {18156, 18671}, {18648, 4028}, {22401, 54412}, {40326, 69}, {57518, 6467}
X(63612) = barycentric quotient X(i)/X(j) for these (i, j): {193, 40413}, {682, 53059}, {1196, 14248}, {1368, 2996}, {3053, 57388}, {5254, 34208}, {6337, 40405}, {6467, 8770}, {18671, 8769}, {22401, 6391}, {40326, 4}, {57518, 683}, {61199, 3565}
X(63612) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 40316, 46444}, {193, 41584, 41588}, {6193, 11898, 3564}


X(63613) = {X(4),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(98)

Barycentrics    (3*a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+2*b^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^4+b^4-b^2*c^2+2*c^4-a^2*(2*b^2+c^2)) : :

X(63613) lies on cubic K954 and on these lines: {4, 99}, {98, 51610}, {264, 2974}, {393, 63615}, {648, 15525}, {2987, 63092}, {6353, 57216}, {6530, 10011}, {10425, 40120}, {30558, 32989}, {32697, 35297}, {39462, 40428}, {40413, 57872}, {42065, 63612}, {43188, 57493}, {60073, 60338}

X(63613) = trilinear pole of line {193, 57071}
X(63613) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1733, 40319}, {3564, 38252}, {6391, 8772}, {8769, 52144}
X(63613) = X(i)-Dao conjugate of X(j) for these {i, j}: {3566, 51610}, {51579, 3564}
X(63613) = X(i)-complementary conjugate of X(j) for these {i, j}: {57253, 4138}
X(63613) = X(i)-cross conjugate of X(j) for these {i, j}: {51374, 54412}
X(63613) = pole of line {3564, 31842} with respect to the Wallace hyperbola
X(63613) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(439)}}, {{A, B, C, X(4), X(6353)}}, {{A, B, C, X(98), X(3566)}}, {{A, B, C, X(99), X(30610)}}, {{A, B, C, X(114), X(6530)}}, {{A, B, C, X(193), X(264)}}, {{A, B, C, X(232), X(51337)}}, {{A, B, C, X(262), X(56891)}}, {{A, B, C, X(1297), X(6091)}}, {{A, B, C, X(2374), X(5139)}}, {{A, B, C, X(2974), X(10011)}}, {{A, B, C, X(3053), X(9737)}}, {{A, B, C, X(3167), X(14489)}}, {{A, B, C, X(5966), X(14669)}}, {{A, B, C, X(6330), X(46236)}}, {{A, B, C, X(7763), X(57518)}}, {{A, B, C, X(8651), X(60526)}}, {{A, B, C, X(8781), X(57553)}}, {{A, B, C, X(14494), X(40819)}}, {{A, B, C, X(17983), X(41360)}}, {{A, B, C, X(19118), X(56307)}}
X(63613) = barycentric product X(i)*X(j) for these (i, j): {193, 35142}, {2987, 54412}, {3563, 57518}, {6353, 8781}, {21447, 43705}, {57216, 60338}
X(63613) = barycentric quotient X(i)/X(j) for these (i, j): {193, 3564}, {2987, 6391}, {3053, 52144}, {3563, 8770}, {6353, 230}, {8781, 6340}, {15525, 51610}, {19118, 1692}, {21447, 44145}, {32654, 40319}, {32697, 3565}, {35142, 2996}, {43705, 60839}, {51374, 62590}, {54412, 51481}, {57071, 55122}, {59707, 47406}
X(63613) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3563, 8781, 35142}


X(63614) = {X(4),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(136)

Barycentrics    (b-c)^2*(b+c)^2*(-3*a^2+b^2+c^2)*(a^6+b^6-3*b^4*c^2-3*b^2*c^4+c^6-a^4*(b^2+c^2)-a^2*(b^4-8*b^2*c^2+c^4)) : :

X(63614) lies on these lines: {2, 56006}, {6, 52881}, {69, 56007}, {125, 5139}, {1648, 62573}, {5181, 63612}, {6337, 37643}, {13567, 62590}, {15525, 15526}, {15595, 26958}

X(63614) = midpoint of X(i) and X(j) for these {i,j}: {69, 56007}
X(63614) = center of circumconic {{A, B, C, X(69), X(40318)}}
X(63614) = X(i)-Dao conjugate of X(j) for these {i, j}: {2489, 15591}, {57071, 4}
X(63614) = X(i)-Ceva conjugate of X(j) for these {i, j}: {69, 3566}
X(63614) = X(i)-complementary conjugate of X(j) for these {i, j}: {19, 3566}, {661, 30771}, {798, 22401}, {1096, 14341}, {1824, 59751}, {1973, 2489}, {2489, 16605}, {2501, 4138}, {3566, 18589}, {5139, 8287}, {6353, 4369}, {6388, 34846}, {8651, 1214}, {17876, 127}, {18156, 52598}, {19118, 14838}, {21447, 21259}, {21874, 20315}, {47430, 16573}, {54412, 42327}, {55208, 17064}, {57071, 10}
X(63614) = pole of line {2489, 14341} with respect to the Kiepert hyperbola
X(63614) = pole of line {5139, 57087} with respect to the Steiner inellipse
X(63614) = pole of line {1368, 8770} with respect to the dual conic of Wallace hyperbola
X(63614) = barycentric quotient X(i)/X(j) for these (i, j): {5139, 15591}, {6388, 40323}


X(63615) = {X(4),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(193)

Barycentrics    (3*a^2-b^2-c^2)^2*(a^4+5*b^4-6*b^2*c^2+5*c^4-2*a^2*(b^2+c^2)) : :

X(63615) lies on these lines: {2, 34208}, {6, 6337}, {193, 15525}, {233, 32987}, {393, 63613}, {648, 56360}, {1249, 32989}, {3523, 37895}, {16925, 45245}, {32972, 63545}, {63104, 63611}

X(63615) = complement of X(57857)
X(63615) = X(i)-Dao conjugate of X(j) for these {i, j}: {32972, 2}
X(63615) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 32972}
X(63615) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 32972}, {439, 2887}, {3053, 4138}, {58766, 21253}, {62194, 16605}
X(63615) = intersection, other than A, B, C, of circumconics {{A, B, C, X(439), X(32972)}}, {{A, B, C, X(30558), X(34208)}}
X(63615) = barycentric product X(i)*X(j) for these (i, j): {32972, 439}
X(63615) = barycentric quotient X(i)/X(j) for these (i, j): {439, 56360}, {32972, 57857}
X(63615) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6337, 30558, 32973}


X(63616) = {X(4),X(6)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(4)

Barycentrics    a^2*(3*a^2-b^2-c^2)*(-(b^2*c^2*(b^2+c^2))+a^2*(2*b^4-3*b^2*c^2+2*c^4)) : :

X(63616) lies on these lines: {6, 9292}, {193, 47733}, {194, 5052}, {2025, 38527}, {3051, 3167}, {3095, 59802}, {5093, 35687}, {19562, 63170}, {63554, 63562}, {63555, 63568}

X(63616) = X(i)-Ceva conjugate of X(j) for these {i, j}: {670, 8651}


X(63617) = {X(6),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(32)

Barycentrics    a^2*(-(b^2*c^2)+a^2*(b^2+c^2))*(b^4-b^2*c^2+c^4) : :

X(63617) lies on these lines: {2, 695}, {3, 3229}, {4, 694}, {6, 3491}, {32, 19576}, {39, 19602}, {76, 141}, {194, 47642}, {206, 1691}, {960, 9367}, {1147, 2056}, {1513, 2883}, {1613, 11325}, {2548, 63565}, {3095, 42061}, {3124, 32966}, {3224, 47643}, {3981, 5025}, {6593, 44164}, {6658, 9998}, {7781, 30229}, {7785, 63561}, {7869, 30495}, {7933, 20859}, {8770, 33537}, {9490, 61745}, {13330, 27374}, {15116, 16278}, {20271, 28087}, {21444, 39072}, {34870, 53500}, {51982, 53981}

X(63617) = midpoint of X(i) and X(j) for these {i,j}: {3360, 30496}
X(63617) = complement of X(43714)
X(63617) = X(i)-Dao conjugate of X(j) for these {i, j}: {40379, 19606}, {50666, 2}
X(63617) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 50666}, {110, 3221}
X(63617) = X(i)-complementary conjugate of X(j) for these {i, j}: {25, 21257}, {31, 50666}, {162, 3221}, {1395, 17065}, {1424, 18639}, {1613, 18589}, {1740, 1368}, {1973, 76}, {1974, 16606}, {3186, 2887}, {3221, 34846}, {8750, 25142}, {9491, 16573}, {11325, 10}, {23503, 15526}, {32676, 44451}, {41293, 16584}, {51843, 21235}, {51913, 141}, {56836, 3}
X(63617) = pole of line {76, 50666} with respect to the Kiepert hyperbola
X(63617) = pole of line {1501, 3552} with respect to the Stammler hyperbola
X(63617) = pole of line {2524, 23301} with respect to the Steiner inellipse
X(63617) = pole of line {32, 39927} with respect to the Wallace hyperbola
X(63617) = pole of line {3221, 24675} with respect to the dual conic of DeLongchamps circle
X(63617) = intersection, other than A, B, C, of circumconics {{A, B, C, X(76), X(3981)}}, {{A, B, C, X(141), X(14820)}}, {{A, B, C, X(194), X(14603)}}, {{A, B, C, X(694), X(63554)}}, {{A, B, C, X(695), X(6374)}}, {{A, B, C, X(1502), X(5025)}}, {{A, B, C, X(1613), X(40050)}}, {{A, B, C, X(3186), X(43714)}}, {{A, B, C, X(40379), X(52568)}}
X(63617) = barycentric product X(i)*X(j) for these (i, j): {194, 3981}, {1613, 5025}, {3186, 50666}, {38834, 40379}, {51843, 63554}
X(63617) = barycentric quotient X(i)/X(j) for these (i, j): {3981, 2998}, {5025, 40162}, {11325, 62935}, {40377, 19606}, {50666, 43714}, {63554, 3504}
X(63617) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5025, 14820, 3981}


X(63618) = COMPLEMENT OF X(3223)

Barycentrics    (b+c)*(a*(b-c)+b*c)*(b*c+a*(-b+c))*(b^2*c^2-a^2*(b^2+c^2)) : :
X(63618) = -3*X[2]+X[3223]

X(63618) lies on cubic K1036 and on these lines: {2, 3223}, {10, 16606}, {43, 25273}, {75, 982}, {87, 59312}, {171, 4598}, {330, 31330}, {932, 13588}, {1740, 53147}, {2162, 50302}, {2887, 21257}, {3840, 21240}, {3993, 17459}, {6376, 62615}, {18830, 31008}, {20486, 27432}, {30989, 62574}, {51575, 52211}, {56211, 60244}

X(63618) = complement of X(3223)
X(63618) = center of circumconic {{A, B, C, X(932), X(18830)}}
X(63618) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3222, 8640}, {3223, 38832}, {3224, 27644}, {31008, 51951}, {33296, 34248}
X(63618) = X(i)-Dao conjugate of X(j) for these {i, j}: {16606, 2}, {21257, 14823}, {32746, 33296}
X(63618) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 16606}, {23493, 42027}
X(63618) = X(i)-complementary conjugate of X(j) for these {i, j}: {1, 21257}, {3, 50666}, {6, 76}, {31, 16606}, {32, 6375}, {56, 17065}, {99, 3221}, {100, 25142}, {109, 24675}, {110, 44451}, {194, 141}, {1424, 142}, {1613, 2}, {1634, 9494}, {1740, 10}, {2524, 15526}, {3186, 5}, {3221, 115}, {6374, 626}, {7075, 3452}, {9491, 1084}, {11325, 6}, {17082, 2886}, {17149, 2887}, {18837, 21235}, {20794, 3}, {20910, 21253}, {21080, 3454}, {21191, 116}, {21877, 1211}, {22028, 21245}, {23301, 125}, {23503, 16592}, {23572, 1086}, {23807, 21252}, {25128, 124}, {38834, 3589}, {40519, 23657}, {40811, 7778}, {47642, 325}, {50516, 11}, {51427, 114}, {51843, 21243}, {51913, 226}, {56836, 37}, {57150, 512}
X(63618) = X(i)-cross conjugate of X(j) for these {i, j}: {22028, 21080}
X(63618) = pole of line {16606, 21257} with respect to the Kiepert hyperbola
X(63618) = pole of line {20910, 21191} with respect to the Steiner inellipse
X(63618) = pole of line {76, 16606} with respect to the dual conic of Yff parabola
X(63618) = {X(6),X(2)}-bicevian centroidal collineation image of X(42)
X(63618) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(6374)}}, {{A, B, C, X(10), X(6382)}}, {{A, B, C, X(37), X(39467)}}, {{A, B, C, X(42), X(3221)}}, {{A, B, C, X(75), X(1740)}}, {{A, B, C, X(194), X(60090)}}, {{A, B, C, X(226), X(18275)}}, {{A, B, C, X(4087), X(25128)}}, {{A, B, C, X(23301), X(35538)}}
X(63618) = barycentric product X(i)*X(j) for these (i, j): {194, 42027}, {1740, 60244}, {16606, 17149}, {18837, 21759}, {20910, 932}, {21056, 56053}, {21080, 330}, {21144, 5383}, {21877, 6384}, {22028, 87}, {23301, 4598}, {23493, 6374}
X(63618) = barycentric quotient X(i)/X(j) for these (i, j): {194, 33296}, {1613, 38832}, {1740, 27644}, {2524, 22090}, {3221, 20979}, {4598, 3222}, {7075, 56181}, {16606, 3223}, {17149, 31008}, {20910, 20906}, {21056, 21051}, {21080, 192}, {21144, 21138}, {21191, 17217}, {21759, 34248}, {21877, 43}, {22028, 6376}, {23301, 3835}, {23493, 3224}, {23503, 8640}, {23572, 16695}, {25128, 27527}, {42027, 2998}, {50516, 18197}, {60244, 18832}


X(63619) = {X(7),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(7)

Barycentrics    a*(3*a-b-c)*(-(b*c*(b+c))+a*(2*b^2-3*b*c+2*c^2)) : :

X(63619) lies on circumconic {{A, B, C, X(27496), X(39956)}} and on these lines: {1, 9309}, {6, 4578}, {42, 1449}, {145, 27496}, {192, 3623}, {3056, 63499}, {4947, 41439}, {19589, 38266}, {25304, 63527}, {28369, 38315}, {63498, 63526}

X(63619) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1, 20286}, {668, 4394}
X(63619) = barycentric product X(i)*X(j) for these (i, j): {1, 63623}
X(63619) = barycentric quotient X(i)/X(j) for these (i, j): {63623, 75}


X(63620) = {X(7),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(1)

Barycentrics    (a-b-c)*(3*a-b-c)*(a^2+2*(b-c)^2-a*(b+c)) : :

X(63620) lies on these lines: {1, 3039}, {2, 16078}, {8, 9}, {1212, 16602}, {2885, 23058}, {3452, 30833}, {4521, 23764}, {4534, 4936}, {5219, 26793}, {6173, 24796}, {6554, 30827}, {11530, 17355}, {26690, 31190}, {45036, 53579}, {53647, 56081}

X(63620) = midpoint of X(i) and X(j) for these {i,j}: {53647, 62525}
X(63620) = complement of X(27818)
X(63620) = center of circumconic {{A, B, C, X(37206), X(53647)}}
X(63620) = X(i)-isoconjugate-of-X(j) for these {i, j}: {16945, 56081}, {40151, 56314}
X(63620) = X(i)-Dao conjugate of X(j) for these {i, j}: {8, 56081}, {4859, 2}, {21949, 27823}
X(63620) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 4859}, {4859, 24392}, {37206, 3667}, {53647, 4943}, {62525, 5853}
X(63620) = X(i)-complementary conjugate of X(j) for these {i, j}: {6, 24386}, {31, 4859}, {41, 8}, {55, 21255}, {145, 17046}, {1253, 30827}, {1420, 21258}, {1743, 2886}, {2175, 16602}, {3052, 142}, {3158, 141}, {3161, 2887}, {4162, 116}, {4394, 17059}, {4521, 21252}, {4849, 17052}, {4855, 18639}, {4936, 1329}, {6066, 25097}, {6555, 21244}, {7118, 50443}, {8643, 4904}, {16948, 17050}, {18743, 17047}, {20818, 34822}, {30720, 21260}, {33628, 3742}, {34080, 4943}, {44720, 626}, {44723, 21235}, {44729, 21253}, {52352, 21240}, {57192, 17072}
X(63620) = pole of line {4468, 4943} with respect to the Steiner circumellipse
X(63620) = pole of line {4162, 4521} with respect to the Steiner inellipse
X(63620) = pole of line {4859, 21267} with respect to the dual conic of Yff parabola
X(63620) = intersection, other than A, B, C, of circumconics {{A, B, C, X(8), X(16078)}}, {{A, B, C, X(145), X(10005)}}, {{A, B, C, X(3158), X(55337)}}, {{A, B, C, X(3161), X(4859)}}, {{A, B, C, X(5853), X(44720)}}
X(63620) = barycentric product X(i)*X(j) for these (i, j): {145, 24392}, {3161, 4859}, {6555, 63574}, {21949, 52352}
X(63620) = barycentric quotient X(i)/X(j) for these (i, j): {3158, 56314}, {3161, 56081}, {4859, 27818}, {24392, 4373}


X(63621) = COMPLEMENT OF X(6557)

Barycentrics    (3*a-b-c)*(a^2-2*(b-c)^2-a*(b+c)) : :

X(63621) lies on these lines: {1, 6692}, {2, 2415}, {8, 7963}, {10, 45047}, {37, 31326}, {43, 39046}, {57, 21362}, {88, 30852}, {165, 5121}, {223, 3911}, {527, 33795}, {664, 63167}, {978, 40611}, {1054, 1699}, {1212, 16602}, {1214, 16610}, {1698, 2885}, {1723, 43056}, {1743, 5435}, {1997, 55998}, {2999, 6505}, {3008, 3160}, {3035, 5573}, {3158, 3756}, {3616, 46875}, {3624, 4424}, {3752, 31190}, {3928, 51415}, {4384, 62650}, {4595, 29573}, {4779, 60380}, {4862, 25580}, {4887, 46873}, {4888, 37662}, {4902, 36603}, {5437, 17056}, {5657, 46943}, {6555, 52907}, {7613, 10171}, {7658, 10196}, {8256, 15839}, {9588, 21214}, {10164, 60846}, {13463, 52183}, {16020, 58441}, {16585, 31204}, {16586, 31224}, {17595, 20196}, {18743, 31227}, {21186, 62579}, {24386, 52180}, {24440, 58466}, {24918, 35110}, {26727, 51093}, {27130, 30577}, {29598, 59509}, {30610, 36905}, {31233, 56519}, {33141, 50441}, {37887, 39963}, {41802, 56523}, {54390, 59491}, {62773, 63007}, {62820, 63126}

X(63621) = complement of X(6557)
X(63621) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3445, 55989}, {46004, 59095}
X(63621) = X(i)-Dao conjugate of X(j) for these {i, j}: {4534, 522}, {30827, 2}, {45036, 55989}
X(63621) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 30827}, {664, 3667}, {47444, 4862}
X(63621) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 30827}, {56, 21255}, {145, 21244}, {604, 8}, {1106, 4859}, {1397, 16602}, {1407, 24386}, {1415, 3667}, {1420, 141}, {1743, 1329}, {3052, 3452}, {4394, 124}, {4848, 21245}, {5435, 2887}, {8643, 26932}, {16948, 21246}, {20818, 34823}, {30719, 21252}, {33628, 960}, {39126, 626}, {51656, 116}, {57192, 59971}, {62787, 17046}
X(63621) = perspector of circumconic {{A, B, C, X(25737), X(53647)}}
X(63621) = pole of line {3667, 4162} with respect to the Steiner inellipse
X(63621) = pole of line {514, 17424} with respect to the dual conic of excircles-radical circle
X(63621) = pole of line {8, 18220} with respect to the dual conic of Yff parabola
X(63621) = {X(7),X(2)}-bicevian centroidal collineation image of X(57)
X(63621) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(47444)}}, {{A, B, C, X(57), X(25580)}}, {{A, B, C, X(1743), X(34524)}}, {{A, B, C, X(2415), X(25737)}}, {{A, B, C, X(4373), X(4862)}}, {{A, B, C, X(5435), X(6557)}}, {{A, B, C, X(8056), X(31227)}}
X(63621) = barycentric product X(i)*X(j) for these (i, j): {145, 4862}, {2098, 39126}, {3161, 47444}, {25737, 514}, {30827, 5435}
X(63621) = barycentric quotient X(i)/X(j) for these (i, j): {1420, 63163}, {1743, 55989}, {2098, 3680}, {4862, 4373}, {5435, 63167}, {18743, 34523}, {25737, 190}, {30827, 6557}, {32577, 3445}, {34543, 38266}, {39126, 18811}, {47444, 27818}
X(63621) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8056, 4859}, {88, 30852, 63583}, {5435, 45204, 1743}


X(63622) = COMPLEMENT OF X(40014)

Barycentrics    a*(3*a-b-c)*(-3*b^2+2*b*c-3*c^2+a*(b+c)) : :
X(63622) = -3*X[2]+X[40014]

X(63622) lies on these lines: {2, 40014}, {9, 7963}, {37, 2275}, {44, 3207}, {536, 24737}, {1212, 16602}, {1743, 45036}, {2885, 25614}, {3445, 59216}, {3693, 63499}, {3752, 26690}, {6184, 12640}, {15854, 41391}, {21342, 23649}, {21896, 43065}, {24036, 52541}

X(63622) = complement of X(40014)
X(63622) = center of circumconic {{A, B, C, X(25272), X(54118)}}
X(63622) = X(i)-Dao conjugate of X(j) for these {i, j}: {21255, 2}
X(63622) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 21255}, {54118, 3667}
X(63622) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 21255}, {32, 8}, {145, 626}, {560, 16602}, {604, 24386}, {1397, 4859}, {1420, 17046}, {1576, 2487}, {1743, 2887}, {2175, 30827}, {3052, 141}, {3158, 21244}, {4394, 21252}, {4729, 21253}, {4849, 21245}, {5435, 17047}, {8643, 116}, {14321, 53575}, {16948, 21240}, {18743, 21235}, {20818, 1368}, {32739, 3667}, {33628, 3741}, {43290, 21262}, {57192, 21260}
X(63622) = pole of line {4162, 4394} with respect to the Steiner inellipse
X(63622) = pole of line {21255, 24386} with respect to the dual conic of Yff parabola
X(63622) = {X(7),X(2)}-bicevian centroidal collineation image of X(65) X(63622) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1743), X(21255)}}, {{A, B, C, X(21342), X(34860)}}, {{A, B, C, X(23649), X(39956)}}
X(63622) = barycentric product X(i)*X(j) for these (i, j): {145, 21342}, {1743, 21255}, {3158, 63578}, {18186, 3950}, {18743, 23649}, {21432, 3052}, {25272, 4394}
X(63622) = barycentric quotient X(i)/X(j) for these (i, j): {21255, 40014}, {21342, 4373}, {23649, 8056}, {63578, 62528}


X(63623) = {X(7),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(85)

Barycentrics    (3*a-b-c)*(-(b*c*(b+c))+a*(2*b^2-3*b*c+2*c^2)) : :

X(63623) lies on these lines: {1, 6558}, {2, 9311}, {37, 2275}, {2885, 3815}, {3665, 40617}, {3673, 46914}, {6376, 29571}, {12640, 19584}, {18743, 27496}, {29598, 59509}

X(63623) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1978, 3667}
X(63623) = X(i)-complementary conjugate of X(j) for these {i, j}: {1420, 20338}, {1743, 21250}, {2162, 21255}, {3052, 34832}, {5435, 20547}, {7121, 8}, {8643, 5518}, {27496, 626}, {57264, 30827}
X(63623) = pole of line {4394, 4504} with respect to the Steiner inellipse
X(63623) = intersection, other than A, B, C, of circumconics {{A, B, C, X(18743), X(20286)}}, {{A, B, C, X(27496), X(39956)}}
X(63623) = barycentric product X(i)*X(j) for these (i, j): {20286, 27496}, {63619, 75}
X(63623) = barycentric quotient X(i)/X(j) for these (i, j): {63619, 1}


X(63624) = {X(7),X(8)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(7)

Barycentrics    (a-b-c)^2*(3*a-b-c)*(a^2+3*(b-c)^2) : :

X(63624) lies on these lines: {144, 3621}, {200, 346}, {3161, 4953}, {3756, 4000}, {4318, 34039}, {4452, 9436}, {5838, 60910}, {9950, 11519}, {13243, 60003}, {14942, 63165}, {63593, 63594}

X(63624) = X(i)-Dao conjugate of X(j) for these {i, j}: {4953, 522}, {5573, 3680}
X(63624) = X(i)-Ceva conjugate of X(j) for these {i, j}: {664, 4521}
X(63624) = intersection, other than A, B, C, of circumconics {{A, B, C, X(200), X(4907)}}, {{A, B, C, X(5274), X(6555)}}
X(63624) = barycentric product X(i)*X(j) for these (i, j): {3161, 5274}, {18743, 4907}, {39126, 5574}
X(63624) = barycentric quotient X(i)/X(j) for these (i, j): {4907, 8056}, {5274, 27818}, {5574, 3680}


X(63625) = {X(8),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(9)

Barycentrics    (3*a^2-(b-c)^2-2*a*(b+c))*(a^3+a*(b-c)^2-2*(b-c)^2*(b+c)) : :
X(63625) = -3*X[2]+X[63165]

X(63625) lies on these lines: {1, 7}, {2, 63165}, {9, 23972}, {75, 24014}, {223, 14522}, {1698, 7952}, {3062, 43035}, {3624, 17102}, {3946, 30330}, {4000, 62388}, {7988, 44901}, {17301, 18216}, {23058, 24856}, {24009, 59620}, {24025, 26669}, {25055, 51616}, {35593, 50933}, {38288, 41853}

X(63625) = complement of X(63165)
X(63625) = center of circumconic {{A, B, C, X(1897), X(53640)}}
X(63625) = X(i)-isoconjugate-of-X(j) for these {i, j}: {11051, 55986}
X(63625) = X(i)-Dao conjugate of X(j) for these {i, j}: {23058, 2}
X(63625) = X(i)-Ceva conjugate of X(j) for these {i, j}: {2, 23058}, {23058, 1699}
X(63625) = X(i)-complementary conjugate of X(j) for these {i, j}: {31, 23058}, {56, 3817}, {144, 21244}, {165, 1329}, {604, 7}, {1397, 40133}, {1419, 141}, {3160, 2887}, {3207, 3452}, {9533, 17046}, {17106, 2886}, {22117, 34823}, {31627, 626}, {50560, 21235}, {50561, 17047}
X(63625) = pole of line {7, 23058} with respect to the dual conic of Yff parabola
X(63625) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(1699)}}, {{A, B, C, X(77), X(165)}}, {{A, B, C, X(144), X(10004)}}, {{A, B, C, X(516), X(50561)}}, {{A, B, C, X(3160), X(23058)}}
X(63625) = barycentric product X(i)*X(j) for these (i, j): {144, 1699}, {23058, 3160}, {63594, 9533}
X(63625) = barycentric quotient X(i)/X(j) for these (i, j): {165, 55986}, {1699, 10405}, {23058, 63165}


X(63626) = {X(8),X(7)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(8)

Barycentrics    (3*a^2-(b-c)^2-2*a*(b+c))*(a^2+3*(b-c)^2) : :
X(63626) = -3*X[1699]+2*X[59170]

X(63626) lies on these lines: {7, 9311}, {8, 41792}, {57, 279}, {145, 516}, {673, 27818}, {1699, 59170}, {2098, 3021}, {3160, 3207}, {3175, 36854}, {3912, 8055}, {3975, 21605}, {5328, 6554}, {5845, 25718}, {9812, 20089}, {10520, 56043}, {20535, 21296}, {63574, 63576}

X(63626) = X(i)-Dao conjugate of X(j) for these {i, j}: {5574, 3062}
X(63626) = X(i)-Ceva conjugate of X(j) for these {i, j}: {190, 7658}
X(63626) = pole of line {4546, 7658} with respect to the Steiner circumellipse
X(63626) = pole of line {4528, 52596} with respect to the Steiner inellipse
X(63626) = pole of line {1699, 63576} with respect to the dual conic of Yff parabola
X(63626) = intersection, other than A, B, C, of circumconics {{A, B, C, X(738), X(5575)}}, {{A, B, C, X(2124), X(4907)}}, {{A, B, C, X(5274), X(9311)}}
X(63626) = barycentric product X(i)*X(j) for these (i, j): {3160, 5274}, {4907, 50561}, {16284, 5573}
X(63626) = barycentric quotient X(i)/X(j) for these (i, j): {5274, 63165}, {5573, 3062}


X(63627) = {X(10),X(1)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(10)

Barycentrics    a*(b^2+a*c)*(a^2-b^2-b*c-c^2-a*(b+c))*(a*b+c^2) : :

X(63627) lies on cubic K1040 and on these lines: {1, 2653}, {8, 63492}, {10, 27805}, {21, 238}, {73, 15168}, {257, 17793}, {740, 39917}, {960, 3783}, {984, 40792}, {1125, 32010}, {1432, 28389}, {1581, 25917}, {1682, 3022}, {1916, 16823}, {3485, 60245}, {3685, 40099}, {3846, 17669}, {3903, 20700}, {8298, 8936}, {17084, 63628}, {17685, 63486}, {24519, 24575}, {63512, 63520}

X(63627) = X(i)-isoconjugate-of-X(j) for these {i, j}: {171, 13610}, {172, 6625}, {894, 2248}, {1909, 18757}, {2533, 53628}, {7122, 51865}, {7234, 53655}, {20964, 40164}
X(63627) = X(i)-Dao conjugate of X(j) for these {i, j}: {86, 8033}, {6627, 4374}, {18755, 27967}, {63486, 75}
X(63627) = X(i)-Ceva conjugate of X(j) for these {i, j}: {52651, 256}
X(63627) = pole of line {17611, 49760} with respect to the Feuerbach hyperbola
X(63627) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(38814)}}, {{A, B, C, X(21), X(846)}}, {{A, B, C, X(56), X(51332)}}, {{A, B, C, X(238), X(6626)}}, {{A, B, C, X(291), X(8937)}}, {{A, B, C, X(740), X(8845)}}, {{A, B, C, X(1178), X(59480)}}, {{A, B, C, X(1193), X(21085)}}, {{A, B, C, X(1654), X(27644)}}, {{A, B, C, X(2653), X(36934)}}, {{A, B, C, X(3736), X(17762)}}, {{A, B, C, X(3783), X(27954)}}, {{A, B, C, X(27691), X(28287)}}
X(63627) = barycentric product X(i)*X(j) for these (i, j): {257, 846}, {1178, 27569}, {1654, 256}, {17762, 893}, {18755, 7018}, {21085, 40432}, {21196, 3903}, {21879, 32010}, {51857, 904}, {52651, 6626}
X(63627) = barycentric quotient X(i)/X(j) for these (i, j): {256, 6625}, {257, 51865}, {846, 894}, {893, 13610}, {904, 2248}, {1654, 1909}, {4603, 53655}, {6626, 8033}, {7104, 18757}, {17084, 7196}, {17762, 1920}, {18755, 171}, {21085, 3963}, {21196, 4374}, {21879, 1215}, {27569, 1237}, {38814, 17103}, {40432, 40164}, {40751, 40745}


X(63628) = {X(10),X(2)}-BICEVIAN CENTROIDAL COLLINEATION IMAGE OF X(37)

Barycentrics    (a^2-b^2-b*c-c^2-a*(b+c))*(a^3+a*b*c+a^2*(b+c)-(b-c)^2*(b+c)) : :

X(63628) lies on these lines: {1, 53424}, {2, 40777}, {58, 86}, {256, 39040}, {846, 14844}, {3663, 38220}, {3946, 24239}, {17053, 33130}, {17073, 33111}, {17084, 63627}, {24161, 28358}, {42334, 51417}

X(63628) = X(i)-complementary conjugate of X(j) for these {i, j}: {604, 86}, {846, 1329}, {1106, 33135}, {1402, 62680}, {1654, 21244}, {17084, 2887}, {18755, 3452}, {22139, 34823}, {27691, 21245}, {38814, 21246}, {41526, 63486}
X(63628) = intersection, other than A, B, C, of circumconics {{A, B, C, X(86), X(33097)}}, {{A, B, C, X(261), X(14844)}}, {{A, B, C, X(27691), X(51370)}}
X(63628) = barycentric product X(i)*X(j) for these (i, j): {1654, 33097}, {14844, 24922}
X(63628) = barycentric quotient X(i)/X(j) for these (i, j): {33097, 6625}


X(63629) = X(235)X(1843)∩X(403)X(973)

Barycentrics    3*a^14*(b^2+c^2)-2*(b^2-c^2)^6*(b^2+c^2)^2-2*a^12*(5*b^4+2*b^2*c^2+5*c^4)+a^2*(b^2-c^2)^4*(5*b^6+4*b^4*c^2+4*b^2*c^4+5*c^6)+a^10*(7*b^6-2*b^4*c^2-2*b^2*c^4+7*c^6)-a^6*(b^2-c^2)^2*(15*b^6+7*b^4*c^2+7*b^2*c^4+15*c^6)+2*a^4*(b^2-c^2)^2*(b^8-6*b^4*c^4+c^8)+2*a^8*(5*b^8-4*b^6*c^2+10*b^4*c^4-4*b^2*c^6+5*c^8) : :
X(63629) = 3*X[4]+X[32330], X[5]+X[32364], -3*X[381]+X[32369], 3*X[1699]+X[32371], -5*X[3091]+X[6145], -9*X[3545]+X[32337], -3*X[3817]+X[32331], 7*X[3832]+X[32354], 7*X[3851]+X[48669], 11*X[3855]+X[32359], X[5893]+X[20376], X[10274]+X[22804], X[32365]+3*X[61747], X[32394]+3*X[59387]

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6186.

X(63629) lies on these lines: {4, 32330}, {5, 32364}, {54, 35488}, {235, 1843}, {381, 32369}, {403, 973}, {546, 8254}, {1154, 5448}, {1503, 32393}, {1699, 32371}, {2781, 13160}, {2917, 10594}, {3091, 6145}, {3545, 32337}, {3817, 32331}, {3832, 32354}, {3851, 48669}, {3855, 32359}, {5893, 20376}, {6689, 46686}, {7403, 32351}, {7566, 32395}, {10274, 22804}, {10628, 13565}, {10895, 32383}, {10896, 32382}, {11262, 18388}, {11479, 32357}, {12242, 22968}, {17824, 18504}, {23047, 32332}, {23358, 37440}, {31412, 32343}, {32342, 42561}, {32365, 61747}, {32394, 59387}, {32399, 42265}, {32400, 42262}, {42270, 49245}, {42273, 49244}, {50138, 61749}

X(63629) = midpoint of X(i) and X(j) for these {i,j}: {4, 32391}, {5, 32364}, {5893, 20376}, {10274, 22804}, {32369, 32379}
X(63629) = reflection of X(20376) in X(32396)
X(63629) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {235, 3574, 11743}, {381, 32379, 32369}


X(63630) = X(8)X(6909)∩X(11)X(8256)

Barycentrics    2*(b+c)*a^6-(3*b^2+8*b*c+3*c^2)*a^5-3*(b+c)*(b^2-6*b*c+c^2)*a^4+2*(3*b^4-16*b^2*c^2+3*c^4)*a^3-4*(b+c)*(4*b^2-9*b*c+4*c^2)*b*c*a^2-(b^2-c^2)^2*(3*b^2-8*b*c+3*c^2)*a+(b^2-c^2)^3*(b-c) : :

See Antreas Hatzipolakis and César Lozada, euclid 6190.

X(63630) lies on these lines: {2, 45080}, {5, 39776}, {8, 6909}, {11, 8256}, {100, 10944}, {355, 1145}, {496, 17652}, {1376, 10966}, {2551, 3434}, {2802, 10948}, {5690, 6734}, {6735, 12672}, {6736, 17615}, {10529, 10912}, {10593, 17619}, {10949, 13996}, {10950, 13205}, {11362, 51378}, {11826, 63136}, {17622, 24982}, {17648, 26015}, {37705, 57287}, {38455, 38901}

X(63630) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (8256, 27870, 11), (17652, 17665, 496)


X(63631) = X(3)X(68)∩X(20)X(394)

Barycentrics    (-a^2+b^2+c^2)*(4*a^8-5*(b^2+c^2)*a^6-(b^4-10*b^2*c^2+c^4)*a^4+(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4) : :
X(63631) = 3*X(3)-X(25738), X(4)-2*X(59659), 5*X(631)-3*X(61701), X(1204)-2*X(44247), 2*X(37814)-X(41587)

See Antreas Hatzipolakis and César Lozada, euclid 6190.

X(63631) lies on these lines: {2, 53050}, {3, 68}, {4, 11064}, {5, 15807}, {20, 394}, {30, 1092}, {64, 30552}, {69, 3522}, {110, 2883}, {140, 39242}, {141, 14118}, {154, 37201}, {184, 31829}, {185, 44241}, {417, 23181}, {511, 46444}, {539, 43604}, {548, 63425}, {550, 5562}, {631, 61701}, {858, 12278}, {974, 43587}, {1192, 6515}, {1204, 3564}, {1216, 44249}, {1352, 3516}, {1368, 21659}, {1370, 17845}, {1503, 11413}, {1511, 15761}, {1531, 62036}, {1568, 3627}, {1614, 44458}, {1853, 41427}, {1885, 9306}, {1993, 13568}, {2071, 6247}, {2888, 35497}, {2929, 13567}, {3146, 37669}, {3515, 32269}, {3523, 37638}, {3546, 18396}, {3548, 12293}, {3575, 13346}, {3796, 10996}, {5068, 62708}, {5894, 12111}, {6000, 63441}, {6101, 44242}, {6193, 10605}, {6240, 43574}, {6642, 16657}, {6696, 11442}, {6776, 17818}, {6815, 11425}, {6823, 13367}, {7399, 11430}, {7464, 16659}, {7488, 54040}, {7495, 51033}, {7691, 32233}, {8550, 10574}, {8567, 15069}, {9730, 43595}, {9786, 61658}, {9825, 11424}, {9833, 21312}, {9927, 10257}, {10018, 15035}, {10192, 11449}, {10282, 16165}, {10295, 11412}, {10564, 23335}, {10619, 48906}, {11444, 34005}, {11459, 35491}, {11479, 35283}, {11585, 17702}, {12038, 15760}, {12084, 12134}, {12085, 16655}, {12121, 18563}, {12163, 12420}, {12225, 15139}, {12233, 34148}, {12241, 17928}, {12279, 44762}, {12362, 43652}, {12383, 34224}, {12897, 43586}, {13352, 31833}, {13754, 44240}, {15059, 43592}, {15068, 34350}, {15075, 15341}, {15105, 50434}, {15120, 50008}, {15331, 22109}, {15438, 25712}, {15606, 32903}, {15644, 44239}, {15873, 44802}, {16252, 44440}, {16654, 47527}, {16976, 61544}, {17821, 59349}, {18381, 47090}, {18436, 44246}, {18533, 37498}, {18567, 46114}, {18925, 61113}, {20427, 20725}, {20806, 29181}, {22115, 22660}, {22528, 22662}, {22555, 52403}, {23332, 58922}, {26879, 61128}, {28419, 36990}, {28708, 53023}, {33537, 54013}, {33923, 44683}, {34785, 37480}, {37197, 59543}, {37458, 45186}, {37495, 38321}, {37814, 41587}, {37931, 46730}, {37948, 43607}, {38723, 63392}, {41482, 52397}, {41597, 43577}, {41716, 48881}, {43601, 45968}, {43831, 59553}, {47084, 51451}

X(63631) = midpoint of X(20) and X(11441)
X(63631) = reflection of X(i) in X(j) for these (i, j): (4, 59659), (1204, 44247), (41587, 37814)
X(63631) = isotomic conjugate of the polar conjugate of X(59657)
X(63631) = cevapoint of X(1498) and X(2929)
X(63631) = crossdifference of every pair of points on the line X(6753)X(58895)
X(63631) = crosssum of X(25) and X(46432)
X(63631) = X(i)-Dao conjugate of X(j) for these (i, j): (33553, 4), (59657, 26958)
X(63631) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (33553, 26958), (59657, 4)
X(63631) = pole of the line {5562, 16196} with respect to the Jerabek circumhyperbola
X(63631) = pole of the line {2165, 41894} with respect to the Kiepert circumhyperbola
X(63631) = pole of the line {107, 36841} with respect to the Kiepert parabola
X(63631) = pole of the line {30451, 57201} with respect to the MacBeath circumconic
X(63631) = pole of the line {24, 1192} with respect to the Stammler hyperbola
X(63631) = pole of the line {317, 3146} with respect to the Steiner-Wallace hyperbola
X(63631) = barycentric product X(69)*X(59657)
X(63631) = trilinear product X(63)*X(59657)
X(63631) = trilinear quotient X(59657)/X(19)
X(63631) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (3, 12118, 6146), (3, 12429, 26937), (4, 35602, 11064), (69, 27082, 3522), (110, 52071, 2883), (858, 12278, 41362), (2071, 14516, 6247), (5562, 16163, 550), (6815, 11425, 37649), (6823, 13367, 13394), (12111, 16386, 5894), (12241, 17928, 37648), (12279, 46818, 44762), (13352, 31833, 45089), (34148, 38323, 12233)


X(63632) = X(2)X(51)∩X(6)X(5544)

Barycentrics    a^2*((b^2+c^2)*a^2-b^4+12*b^2*c^2-c^4) : :
X(63632) = 5*X(2)+X(51), 4*X(2)-X(3819), 7*X(2)-X(3917), 3*X(2)+X(5640), 2*X(2)+X(5943), X(2)+2*X(6688), 5*X(2)-X(7998), X(2)-4*X(10219), 7*X(2)+X(11002), X(2)-2*X(12045), 2*X(2)-X(15082), 8*X(2)+X(21849), 7*X(2)-3*X(33879), 9*X(2)-X(33884), 7*X(2)+2*X(58470), 5*X(2)-3*X(62184), X(51)-5*X(373), 11*X(51)-5*X(3060), 4*X(51)+5*X(3819), 3*X(51)-5*X(5640), 3*X(51)+5*X(5650), 2*X(51)-5*X(5943) , X(51)-10*X(6688), 7*X(51)-5*X(11002), 2*X(51)+5*X(15082), 3*X(51)-X(16981), 8*X(51)-5*X(21849), 7*X(51)-10*X(58470), X(51)+3*X(62184), 5*X(51)+X(62188), 11*X(373)-X(3060), 4*X(373)+X(3819), 7*X(373)+X(3917), 3*X(373)-X(5640), 3*X(373)+X(5650), 2*X(373)-X(5943), X(373)-2*X(6688), 5*X(373)+X(7998), X(373)+4*X(10219), 7*X(373)-X(11002), 7*X(373)-5*X(11451), X(373)+2*X(12045), 2*X(373)+X(15082), 8*X(373)-X(21849), 7*X(373)+3*X(33879), 9*X(373)+X(33884), 7*X(373)-2*X(58470), 5*X(373)+3*X(62184), 7*X(3819)-4*X(3917), 3*X(3819)+4*X(5640)

See Antreas Hatzipolakis and César Lozada, euclid 6194.

X(63632) lies on these lines: {2, 51}, {3, 14924}, {5, 13474}, {6, 5544}, {22, 55670}, {23, 55674}, {25, 17508}, {30, 55166}, {52, 55857}, {110, 50664}, {140, 13598}, {143, 61877}, {154, 55697}, {182, 11284}, {184, 55706}, {185, 7486}, {323, 5643}, {375, 3848}, {376, 13570}, {389, 3628}, {394, 15520}, {468, 58445}, {512, 14762}, {542, 35283}, {546, 55286}, {547, 5663}, {548, 12046}, {568, 5070}, {575, 5651}, {597, 9027}, {632, 15644}, {899, 39543}, {970, 16842}, {991, 16421}, {1154, 47599}, {1196, 13331}, {1216, 32205}, {1350, 62209}, {1495, 16042}, {1656, 5907}, {1843, 52290}, {1995, 5092}, {2393, 48310}, {2842, 3833}, {2854, 3589}, {3030, 16484}, {3055, 61675}, {3066, 3098}, {3090, 6241}, {3091, 17704}, {3231, 44500}, {3292, 15018}, {3523, 27355}, {3525, 13348}, {3526, 10110}, {3533, 45186}, {3567, 61881}, {3618, 61667}, {3619, 58555}, {3624, 23841}, {3740, 9049}, {3742, 9026}, {3753, 53790}, {3796, 55693}, {3818, 54012}, {3934, 59765}, {4751, 58554}, {4890, 17779}, {5020, 5085}, {5047, 15489}, {5050, 9306}, {5052, 62712}, {5054, 14845}, {5055, 6000}, {5056, 15072}, {5067, 11459}, {5071, 16261}, {5093, 17811}, {5097, 15066}, {5116, 40350}, {5159, 52520}, {5396, 19253}, {5400, 50658}, {5422, 55713}, {5446, 16239}, {5447, 55859}, {5462, 15067}, {5562, 11465}, {5642, 46267}, {5644, 37672}, {5646, 33878}, {5752, 16855}, {5888, 55601}, {5890, 61895}, {5891, 15703}, {5946, 61885}, {6090, 10601}, {6636, 55664}, {6699, 55293}, {6723, 37454}, {6784, 12093}, {6800, 43650}, {7484, 55649}, {7485, 55657}, {7492, 55668}, {7496, 10545}, {7519, 48891}, {7570, 15059}, {8681, 47352}, {8705, 40670}, {9052, 61686}, {9734, 37344}, {9777, 55717}, {9780, 58535}, {9781, 61870}, {9822, 9973}, {9909, 55673}, {9969, 51127}, {10095, 55862}, {10124, 13364}, {10168, 13394}, {10263, 61876}, {10301, 48892}, {10546, 55696}, {10575, 61919}, {10625, 55858}, {11003, 55704}, {11064, 25555}, {11171, 59707}, {11174, 61689}, {11178, 26869}, {11188, 63119}, {11328, 21163}, {11381, 15022}, {11438, 32620}, {11455, 61926}, {11540, 54044}, {11548, 15011}, {11574, 16776}, {11580, 31609}, {11624, 23303}, {11626, 23302}, {12006, 61894}, {12162, 61905}, {12294, 62960}, {12367, 38402}, {12811, 14641}, {12824, 44321}, {13334, 37338}, {13340, 46219}, {13391, 47598}, {13595, 55680}, {13754, 15699}, {14002, 55679}, {14135, 33269}, {14810, 34417}, {14831, 61888}, {14855, 19709}, {15012, 15028}, {15019, 55715}, {15024, 16625}, {15026, 55861}, {15043, 46935}, {15045, 61899}, {15060, 61898}, {15080, 55688}, {15107, 55631}, {15246, 44106}, {15305, 61912}, {15491, 51427}, {15606, 61878}, {15702, 36987}, {15712, 44863}, {15739, 32396}, {16063, 48895}, {16194, 61920}, {16223, 54000}, {16226, 61889}, {16296, 35203}, {16297, 48893}, {16373, 48886}, {16419, 31884}, {16576, 63520}, {17049, 24003}, {17534, 22076}, {17810, 55610}, {18435, 61901}, {18553, 18911}, {19130, 30739}, {19510, 20113}, {20791, 61924}, {21401, 41477}, {21402, 41478}, {21448, 42852}, {21746, 62711}, {21766, 55594}, {21971, 41716}, {22104, 53793}, {22352, 55686}, {23039, 61883}, {23061, 44107}, {23515, 37347}, {23638, 25502}, {24206, 37648}, {25561, 61700}, {25565, 47097}, {29317, 43957}, {30734, 55687}, {32062, 61936}, {32125, 50139}, {32267, 50983}, {32911, 61670}, {33586, 55603}, {33751, 37899}, {33957, 46862}, {33958, 46863}, {34507, 63084}, {35018, 40647}, {35260, 38064}, {35265, 55700}, {35299, 43121}, {35300, 43120}, {35500, 43804}, {37439, 45303}, {37471, 50414}, {37481, 40247}, {37680, 61728}, {37687, 40952}, {38110, 61507}, {39530, 52147}, {39576, 40130}, {40284, 61903}, {40673, 63109}, {41462, 55612}, {44079, 52299}, {44084, 52293}, {44109, 55709}, {44300, 51360}, {44420, 50652}, {44673, 55292}, {44871, 62155}, {45760, 63414}, {45956, 61900}, {46336, 48901}, {48889, 62937}, {48896, 62968}, {48912, 55636}, {51073, 58469}, {51128, 58471}, {51171, 61692}, {54041, 61861}, {54042, 61869}, {55582, 61774}, {55618, 61773}, {58534, 60996}

X(63632) = midpoint of X(i) and X(j) for these (i, j): {2, 373}, {51, 7998}, {3917, 11002}, {5054, 14845}, {5640, 5650}, {5943, 15082}, {6688, 12045}, {6784, 12093}, {15030, 61136}, {40670, 61045}
X(63632) = reflection of X(i) in X(j) for these (i, j): (2, 12045), (373, 6688), (3819, 15082), (5943, 373), (11002, 58470), (12045, 10219), (15082, 2), (61136, 9729)
X(63632) = complement of X(5650)
X(63632) = pole of the line {5650, 57618} with respect to the Hutson-Parry circle
X(63632) = pole of the line {6776, 15683} with respect to the Jerabek circumhyperbola
X(63632) = pole of the line {3815, 62701} with respect to the Kiepert circumhyperbola
X(63632) = pole of the line {182, 5032} with respect to the Stammler hyperbola
X(63632) = pole of the line {11054, 23878} with respect to the Steiner inellipse
X(63632) = pole of the line {2, 576} with respect to the Thomson-Gibert-Moses hyperbola
X(63632) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 5640, 5650), (2, 5943, 3819), (2, 6688, 5943), (2, 11451, 3917), (5, 16836, 46847), (51, 62184, 7998), (373, 5650, 5640), (373, 12045, 15082), (373, 62184, 51), (1656, 11695, 5907), (1995, 5092, 32237), (1995, 22112, 5092), (3292, 15018, 15516), (3628, 13363, 10170), (3819, 5943, 21849), (5640, 7998, 16981), (5640, 16981, 51), (6090, 10601, 39561), (6090, 39561, 34986), (6688, 10219, 2), (6800, 43650, 55695), (10170, 13363, 389), (11002, 33879, 3917), (11284, 63128, 182), (11451, 33879, 11002), (11451, 58470, 5943), (11465, 61886, 5562), (16836, 46847, 46850), (32205, 48154, 1216), (34417, 40916, 14810)


X(63633) = X(6)X(30)∩X(32)X(548)

Barycentrics    2*a^4+5*(b^2+c^2)*a^2+(b^2-c^2)^2 : :
X(63633) = 3*X(2)+X(22253), 3*X(6)+X(2549), 5*X(6)-X(7737), X(6)+3*X(7739), 3*X(6)-X(18907), 7*X(6)+X(44526), 3*X(51)-X(16983), X(193)+3*X(11287), 3*X(597)-X(3734), 5*X(2549)+3*X(7737), X(2549)-9*X(7739), X(2549)-3*X(15048), 11*X(2549)-3*X(43619), 7*X(2549)-3*X(44526), X(3630)-3*X(7865), 3*X(4045)-X(7848), 3*X(5032)+X(5077), 2*X(6329)-X(7804), X(7737)+5*X(15048), 3*X(7737)-5*X(18907), 13*X(7737)-5*X(43618), 3*X(7739)-X(15048), 9*X(7739)+X(18907), X(11159)-5*X(63127), 3*X(11286)-7*X(51171), 3*X(11287)-X(14929), 3*X(15048)+X(18907), 11*X(15048)-X(43619), 7*X(15048)-X(44526), 13*X(18907)-3*X(43618), 7*X(18907)+3*X(44526), X(20583)-2*X(61046), X(32815)-9*X(59373), 3*X(32986)+5*X(51170), X(35930)-3*X(59399), 3*X(47352)-X(59780)

See Antreas Hatzipolakis and César Lozada, euclid 6194.

X(63633) lies on these lines: {2, 14482}, {3, 5304}, {4, 14930}, {5, 5286}, {6, 30}, {20, 43136}, {32, 548}, {39, 140}, {51, 16983}, {115, 5066}, {141, 7798}, {148, 53489}, {187, 34200}, {193, 11287}, {194, 7819}, {262, 40927}, {325, 7827}, {376, 21309}, {381, 22246}, {384, 47287}, {385, 8359}, {391, 11359}, {511, 40281}, {523, 46337}, {524, 4045}, {538, 3589}, {543, 63124}, {546, 5254}, {547, 3815}, {549, 5024}, {550, 7738}, {574, 5306}, {578, 41369}, {597, 3734}, {632, 31400}, {754, 32455}, {966, 48815}, {1003, 63045}, {1180, 6676}, {1184, 7734}, {1194, 6677}, {1249, 1597}, {1285, 3534}, {1353, 37242}, {1383, 47312}, {1384, 8703}, {1506, 12812}, {1555, 16657}, {1572, 28212}, {1595, 41361}, {1596, 45141}, {1975, 19697}, {1990, 33843}, {2386, 22829}, {2548, 3850}, {2782, 18583}, {2794, 12007}, {3018, 44468}, {3039, 59477}, {3053, 33923}, {3054, 47598}, {3055, 47599}, {3247, 48820}, {3311, 26463}, {3312, 26456}, {3329, 47286}, {3524, 63097}, {3530, 5013}, {3564, 9996}, {3628, 3767}, {3629, 7761}, {3630, 7865}, {3731, 48819}, {3755, 28915}, {3793, 7766}, {3845, 15484}, {3849, 20583}, {3853, 5041}, {3857, 63533}, {3861, 44518}, {3926, 33185}, {3933, 7803}, {3973, 48818}, {4424, 57019}, {4854, 56532}, {5007, 6781}, {5008, 15690}, {5023, 58190}, {5028, 61624}, {5032, 5077}, {5054, 37689}, {5112, 61657}, {5159, 9745}, {5206, 62064}, {5210, 15759}, {5280, 18990}, {5283, 50205}, {5299, 15171}, {5346, 53096}, {5354, 43957}, {5359, 10691}, {5368, 37512}, {5523, 53026}, {5613, 11542}, {5617, 11543}, {5690, 9593}, {5844, 9620}, {6199, 61323}, {6329, 7804}, {6390, 7757}, {6395, 61322}, {6564, 36725}, {6565, 36724}, {6656, 7779}, {6661, 63020}, {6680, 59546}, {6707, 48860}, {6772, 35751}, {6775, 36329}, {6792, 11007}, {7555, 9609}, {7583, 45512}, {7584, 45513}, {7603, 47478}, {7667, 34482}, {7746, 9606}, {7747, 41940}, {7748, 62026}, {7750, 7894}, {7751, 15598}, {7753, 14893}, {7754, 8362}, {7756, 62151}, {7760, 7767}, {7762, 7864}, {7774, 33184}, {7778, 33213}, {7789, 7829}, {7790, 7926}, {7797, 7925}, {7807, 7920}, {7810, 15480}, {7817, 44377}, {7834, 7908}, {7841, 63017}, {7846, 32820}, {7853, 50771}, {7878, 32819}, {7906, 8363}, {7921, 33229}, {7923, 13571}, {8354, 63038}, {8355, 11163}, {8358, 14614}, {8365, 34511}, {8367, 11174}, {8369, 16989}, {8370, 62994}, {8588, 58187}, {8589, 61782}, {8743, 13488}, {8744, 62962}, {9112, 36383}, {9113, 36382}, {9465, 16317}, {9575, 22791}, {9592, 38028}, {9619, 51700}, {9698, 61894}, {9699, 12105}, {9818, 59657}, {10109, 43620}, {10124, 37637}, {10513, 33230}, {11112, 63004}, {11113, 63075}, {11159, 63127}, {11286, 51171}, {11295, 63080}, {11296, 63079}, {11297, 63033}, {11298, 63032}, {11318, 62988}, {11539, 62992}, {11648, 12101}, {11737, 31415}, {12108, 22332}, {12362, 22120}, {13337, 16310}, {13357, 32516}, {13366, 51431}, {13468, 15482}, {13644, 19054}, {13665, 36726}, {13763, 19053}, {13785, 36723}, {13881, 35018}, {13925, 49220}, {13993, 49221}, {14033, 63123}, {14075, 62138}, {14537, 62022}, {14891, 53095}, {15122, 47184}, {15170, 16784}, {15172, 16502}, {15515, 61784}, {15516, 23698}, {15603, 62063}, {15655, 45759}, {15699, 62993}, {15815, 61792}, {16198, 27376}, {16239, 31401}, {16419, 40179}, {16509, 42849}, {16552, 50177}, {16895, 20105}, {17061, 24036}, {17128, 51860}, {17337, 48840}, {17352, 48838}, {17381, 48869}, {17398, 48864}, {18388, 44909}, {18424, 61957}, {18494, 40065}, {18584, 61934}, {19116, 44597}, {19117, 44594}, {19695, 20088}, {19717, 50168}, {19742, 50167}, {19743, 50170}, {21841, 39575}, {22146, 3X(63633) 4945}, {22331, 62087}, {25338, 47169}, {26035, 50153}, {31450, 44535}, {31455, 55862}, {31467, 55856}, {31470, 61853}, {31492, 45760}, {31652, 61801}, {32447, 56370}, {32467, 43460}, {32815, 59373}, {32817, 33237}, {32823, 33241}, {32836, 63119}, {32841, 32952}, {32986, 51170}, {33190, 63091}, {33211, 53033}, {33228, 63018}, {33240, 63098}, {33272, 63122}, {33871, 52948}, {34380, 63043}, {34571, 62156}, {34664, 52058}, {35297, 63019}, {35930, 59399}, {36157, 47155}, {36701, 40243}, {36703, 40244}, {37350, 63028}, {39544, 57015}, {39563, 41987}, {41939, 57588}, {42496, 61332}, {42497, 61331}, {42912, 63201}, {42913, 63200}, {43457, 61965}, {44519, 62136}, {44541, 62101}, {44562, 58446}, {44839, 51212}, {47352, 59780}, {48813, 62985}, {49812, 49961}, {49813, 49962}, {50057, 63009}, {55085, 59635}, {61317, 63199}, {61318, 63198}, {61940, 63534}, {61970, 63536}, {62015, 62203}

X(63633) = midpoint of X(i) and X(j) for these (i, j): {6, 15048}, {141, 7798}, {193, 14929}, {1353, 37242}, {2549, 18907}, {3629, 7761}
X(63633) = reflection of X(i) in X(j) for these (i, j): (7804, 6329), (20583, 61046)
X(63633) = crosssum of X(6) and X(5650)
X(63633) = pole of the line {6128, 7745} with respect to the Moses-Parry circle
X(63633) = pole of the line {2, 41424} with respect to the Evans conic
X(63633) = pole of the line {381, 1350} with respect to the Kiepert circumhyperbola
X(63633) = pole of the line {15066, 21309} with respect to the Stammler hyperbola
X(63633) = pole of the line {3288, 9209} with respect to the Steiner inellipse
X(63633) = pole of the line {32833, 59373} with respect to the Steiner-Wallace hyperbola
X(63633) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6, 2549, 18907), (6, 7739, 15048), (39, 5305, 140), (39, 5355, 230), (193, 11287, 14929), (230, 5355, 5305), (376, 63005, 21309), (381, 22246, 37665), (3767, 31406, 3628), (3815, 5309, 43291), (3815, 43291, 547), (3933, 7803, 8364), (5024, 7735, 549), (5041, 7765, 7745), (5286, 9605, 5), (6390, 7792, 8368), (7738, 30435, 550), (7757, 7792, 6390), (7760, 7831, 50251), (7762, 7864, 8357), (7766, 8356, 3793), (7829, 32450, 7789), (7831, 50251, 7767), (15048, 18907, 2549), (15484, 43448, 3845), (16989, 31859, 8369), (42215, 42216, 46264), (43448, 63024, 15484)


X(63634) = X(4)X(216)∩X(6)X(25)

Barycentrics    a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((b^2+c^2)*a^6-3*(b^4+c^4)*a^4+3*(b^4-c^4)*(b^2-c^2)*a^2-(b^4+c^4)*(b^2-c^2)^2) : :
Barycentrics    SB*SC*(SB+SC)*(S^2+(4*R^2-SW)*SA) : :

See Antreas Hatzipolakis and César Lozada, euclid 6194.

X(63634) lies on these lines: {4, 216}, {6, 25}, {22, 26899}, {24, 577}, {32, 8745}, {39, 3087}, {53, 235}, {136, 138}, {185, 41373}, {186, 22052}, {187, 41758}, {233, 1594}, {264, 59197}, {317, 36212}, {378, 10979}, {393, 800}, {403, 36412}, {566, 12173}, {570, 3575}, {1586, 8963}, {1593, 36751}, {1596, 42459}, {1609, 1968}, {1841, 8607}, {1990, 14577}, {2207, 8573}, {2965, 52952}, {3284, 3518}, {3515, 36748}, {3517, 15905}, {4232, 15355}, {5158, 10594}, {5198, 52703}, {5421, 6749}, {6623, 18424}, {6747, 27362}, {6995, 22240}, {7412, 18591}, {8746, 13345}, {8749, 33631}, {8882, 52418}, {10151, 16328}, {13341, 62213}, {14767, 44893}, {14961, 37458}, {15191, 26912}, {15559, 62701}, {17849, 26883}, {20233, 62337}, {21767, 56818}, {31364, 42400}, {33843, 43619}, {34818, 41489}, {34836, 45198}, {34854, 40981}, {35502, 62196}, {37200, 59224}, {37491, 40801}, {39176, 47226}, {39575, 40065}, {52295, 52704}

X(63634) = polar conjugate of X(42333)
X(63634) = isogonal conjugate of the isotomic conjugate of X(52280)
X(63634) = crossdifference of every pair of points on the line X(525)X(15781)
X(63634) = crosspoint of X(i) and X(j) for these {i, j}: {4, 8794}, {6, 8612}, {393, 8882}
X(63634) = crosssum of X(i) and X(j) for these {i, j}: {2, 8613}, {6, 34782}, {343, 394}
X(63634) = X(i)-Ceva conjugate of X(j) for these (i, j): (14586, 6753), (52280, 389), (61193, 2501)
X(63634) = X(i)-Dao conjugate of X(j) for these (i, j): (1249, 42333), (3162, 40448), (15259, 40402), (34836, 3926), (46832, 28706), (53576, 15414)
X(63634) = X(i)-isoconjugate of X(j) for these {i, j}: {48, 42333}, {63, 40448}, {326, 40402}, {14208, 59009}
X(63634) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (4, 42333), (25, 40448), (389, 69), (2207, 40402), (6750, 311), (19170, 34386), (34836, 28706), (42441, 52347), (45198, 305), (45224, 304), (45225, 75), (46832, 3926), (51887, 95), (52280, 76), (61206, 59009)
X(63634) = pole of the line {3, 14165} with respect to the Moses circles radical circle
X(63634) = pole of the line {850, 52613} with respect to the polar circle
X(63634) = pole of the the tripolar of X(8612) with respect to the Brocard inellipse
X(63634) = pole of the line {6, 8612} with respect to the Jerabek circumhyperbola
X(63634) = pole of the line {185, 427} with respect to the Kiepert circumhyperbola
X(63634) = pole of the the tripolar of X(8794) with respect to the orthic inconic
X(63634) = pole of the line {69, 26899} with respect to the Stammler hyperbola
X(63634) = pole of the line {2485, 58895} with respect to the Steiner inellipse
X(63634) = barycentric product X(i)*X(j) for these {i,j}: {1, 45225}, {4, 389}, {5, 51887}, {6, 52280}, {19, 45224}, {25, 45198}, {53, 19170}, {54, 6750}, {393, 46832}, {8882, 34836}, {8884, 42441}
X(63634) = trilinear product X(i)*X(j) for these {i,j}: {6, 45225}, {19, 389}, {25, 45224}, {31, 52280}, {1096, 46832}, {1953, 51887}, {1973, 45198}, {2148, 6750}, {2181, 19170}, {34836, 62268}
X(63634) = trilinear quotient X(i)/X(j) for these (i,j): (19, 40448), (92, 42333), (389, 63), (1096, 40402), (6750, 14213), (19170, 62277), (32676, 59009), (34836, 18695), (45198, 304), (45224, 69), (45225, 2), (46832, 326), (51887, 2167), (52280, 75)
X(63634) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (6, 14576, 232), (232, 10311, 1194), (800, 3199, 393), (2207, 8573, 51936), (5412, 5413, 184), (6748, 11062, 570), (10641, 10642, 1495)


X(63635) = X(57)X(978)∩X(65)X(214)

Barycentrics    a*(a+b-c)*(a-b+c)*(2*a^4-3*(b^2+c^2)*a^2+(b^2-c^2)*(b-c)*a+2*(b^2-c^2)^2) : :

See Antreas Hatzipolakis and César Lozada, euclid 6195.

X(63635) lies on these lines: {7, 7769}, {57, 978}, {65, 214}, {4014, 26877}, {25643, 32636}


X(63636) = X(52)X(403)∩X(135)X(18402)

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4-2*(b^2+c^2)*a^2+b^4+c^4)*((b^2+c^2)*a^12-2*(2*b^4+b^2*c^2+2*c^4)*a^10+(b^2+c^2)*(7*b^4-8*b^2*c^2+7*c^4)*a^8-8*(b^6-c^6)*(b^2-c^2)*a^6+(b^4-c^4)*(b^2-c^2)*(7*b^4-8*b^2*c^2+7*c^4)*a^4-2*(b^2-c^2)^4*(2*b^4+b^2*c^2+2*c^4)*a^2+(b^2+c^2)*(b^2-c^2)^6) : :

See Antreas Hatzipolakis and César Lozada, euclid 6195.

X(63636) lies on these lines: {52, 403}, {135, 18402}, {235, 27362}, {1594, 10615}


X(63637) = X(4)X(51)∩X(13855)X(53844)

Barycentrics    a^2*((b^4-c^4)*(b^2-c^2)*a^26-(11*b^8+11*c^8-6*(2*b^4+b^2*c^2+2*c^4)*b^2*c^2)*a^24+(b^2+c^2)*(55*b^8+55*c^8-(118*b^4-99*b^2*c^2+118*c^4)*b^2*c^2)*a^22-(165*b^12+165*c^12-2*(95*b^8+95*c^8+(33*b^4-38*b^2*c^2+33*c^4)*b^2*c^2)*b^2*c^2)*a^20+(b^2+c^2)*(330*b^12+330*c^12-(690*b^8+690*c^8-(449*b^4-210*b^2*c^2+449*c^4)*b^2*c^2)*b^2*c^2)*a^18-(b^2-c^2)^2*(462*b^12+462*c^12+(492*b^8+492*c^8-(121*b^4+280*b^2*c^2+121*c^4)*b^2*c^2)*b^2*c^2)*a^16+2*(b^4-c^4)*(b^2-c^2)*(231*b^12+231*c^12+2*(42*b^8+42*c^8-(131*b^4-19*b^2*c^2+131*c^4)*b^2*c^2)*b^2*c^2)*a^14-2*(b^2-c^2)^4*(165*b^12+165*c^12+2*(321*b^8+321*c^8+(437*b^4+446*b^2*c^2+437*c^4)*b^2*c^2)*b^2*c^2)*a^12+(b^4-c^4)*(b^2-c^2)^3*(165*b^12+165*c^12+(630*b^8+630*c^8+(385*b^4+296*b^2*c^2+385*c^4)*b^2*c^2)*b^2*c^2)*a^10-(b^2-c^2)^4*(55*b^16+55*c^16+2*(180*b^12+180*c^12+(227*b^8+227*c^8-(30*b^4+41*b^2*c^2+30*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8+(b^2-c^2)^6*(b^2+c^2)*(11*b^12+11*c^12+2*(62*b^8+62*c^8+(147*b^4+131*b^2*c^2+147*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^6*(b^16+c^16+(24*b^12+24*c^12+(91*b^8+91*c^8+2*(61*b^4+18*b^2*c^2+61*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^4+(b^2-c^2)^8*(b^2+c^2)*(2*b^4+5*b^2*c^2+c^4)*(b^4+5*b^2*c^2+2*c^4)*b^2*c^2*a^2-(b^2-c^2)^10*(b^4+c^4)*b^4*c^4) : :

See Antreas Hatzipolakis and César Lozada, euclid 6198.

X(63637) lies on these lines: {4, 51}, {13855, 53844}

X(63637) = midpoint of X(1075) and X(47602)


X(63638) = X(1)X(4)∩X(578)X(3075)

Barycentrics    a*((b^2+c^2)*a^10-(b+c)*b*c*a^9-(4*b^4+4*c^4-b*c*(b^2-b*c+c^2))*a^8+4*(b^3+c^3)*b*c*a^7+2*(3*b^4+3*c^4+4*b*c*(b^2+b*c+c^2))*(b-c)^2*a^6-6*(b^4-c^4)*b*c*(b-c)*a^5-2*(b^2-c^2)^2*(2*b^4+2*c^4-3*b*c*(b^2-b*c+c^2))*a^4+4*(b^2-c^2)*(b-c)^2*b*c*(b^3-c^3)*a^3+(b^2-c^2)^2*(b-c)^2*(b^4+c^4-2*b*c*(b^2+b*c+c^2))*a^2-(b^2-c^2)^3*(b-c)^3*b*c*a+(b^2-c^2)^3*(b-c)*(b^3+c^3)*b*c) : :

See Antreas Hatzipolakis and César Lozada, euclid 6198.

X(63638) lies on these lines: {1, 4}, {389, 30493}, {578, 3075}, {1771, 43610}, {2818, 40944}, {21228, 55311}

X(63638) = midpoint of X(1745) and X(47605)


X(63639) = CENTER OF 2ND HATZIPOLAKIS CIRCLE

Barycentrics    a*((b - c)*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c - 3*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - c^3)*(Cos[B/2] + Cos[C/2]) + (2*a - b - c)*((a - b)*b*(a + b - c)*(Cos[A/2] + Cos[B/2]) - (a - c)*c*(a - b + c)*(Cos[A/2] + Cos[C/2]))) : :

The center of the 1st Hatzipolakis Circle is X(5453).

See Antreas Hatzipolakis and Peter Moses, euclid 6202.

X(63639) lies on these lines: {1, 3}, {178, 519}, {971, 8111}




leftri  Hatzipolakis-Euler images: X(63640) - X(63655)  rightri

This preamble and centers X(63640)-X(63655) were contributed by César Eliud Lozada, May 28, 2024.

Let ABC be a triangle, P a point and Q a point on its Euler line. Let Qa, Qb, Qc the same to Q points on the Euler lines of the triangles PBC, PCA, PAB, respectively. Let pa, pb, pc be parallel lines to PA, PB, PC through Qa, Qb, Qc, respectively. What is the locus of P such that pa, pb, pc concur?. (Antreas Hatzipolakis, euclid 6199.)

If Q is such that OΔQΔ/OΔHΔ = t = constant number, for a triangle Δ, then the lines pa, pb, pc concur for every P. (César Lozada, euclid 6200.)

The point of intersection of the given three lines is named here the Q-Hatzipolakis-Euler image of P.

Note that the Dao image of P, defined in the preamble just before X(15345), is the X(3)-Hatzipolakis-Euler image of P. In general, if PD is the Dao image of P, G is the centroid X(2) of ABC, and Z is the Q-Hatzipolakis-Euler of P, then GZ=(1-3*t)*GPD. From this, it is clear that, for t=1/3, i.e., for Q=X(2), the X(2)-Hatzipolakis-Euler image of P is X(2), for every P.

Another interesting property of this image is that Q-Hatzipolakis-Euler image of X(13) = Q-Hatzipolakis-Euler image of X(14) = X(2), for every Q.

Some Q-Hatzipolakis-Euler images of P are showed in the following table:

Q t (i, j) in this column means that the Q-Hatzipolakis-Euler of X(i) is X(j)
X(3) 0 (1, 1), (2, 11165), (3, 1147), (4, 3), (5, 15345), (6, 8542), (7, 15346), (8, 15347), (9, 15348), (10, 15349), (13, 2), (14, 2), (15, 11127), (16, 11126), (17, 44029), (18, 44031), (36, 6149), (46, 17437), (61, 44033), (62, 44035), (67, 8542), (79, 13089), (80, 1), (84, 49171), (113, 39234), (265, 1147), (371, 1504), (372, 1505), (485, 13882), (486, 13934), (671, 11165), (1156, 15346), (1263, 15345), (1320, 15347), (2009, 39), (2010, 39), (3065, 13089), (3254, 15348), (5000, 41196), (5001, 41197), (10215, 188), (11599, 15349), (11600, 11127), (11601, 11126), (11602, 44029), (11603, 44031), (32618, 6), (32619, 6), (33599, 6149), (34135, 206), (34136, 206), (34219, 44033), (34220, 44035), (34221, 141), (34222, 141), (39144, 9), (39145, 9), (39162, 40990), (39163, 40989), (40565, 6600), (40566, 6600), (42617, 188), (42809, 41196), (42810, 41197), (43538, 10335), (43539, 10335), (46435, 49171)
X(4) 1 (1, 8), (2, 5485), (3, 68), (4, 4), (5, 25043), (6, 5486), (7, 34919), (8, 56089), (10, 43677), (11, 42455), (13, 2), (14, 2), (15, 19778), (16, 19779), (17, 5487), (18, 5488), (20, 33893), (54, 13418), (64, 43695), (67, 5486), (79, 10266), (80, 8), (84, 10309), (113, 34104), (115, 23105), (125, 5489), (186, 562), (265, 68), (468, 52477), (485, 5490), (486, 5491), (502, 6757), (671, 5485), (1156, 34919), (1263, 25043), (2009, 76), (2010, 76), (3065, 10266), (3346, 42465), (3479, 36304), (3480, 36305), (5000, 44780), (5001, 44781), (5203, 52477), (5620, 6757), (5961, 43973), (5962, 562), (5964, 43973), (6328, 23105), (10152, 33893), (10215, 7057), (11599, 43677), (11600, 19778), (11601, 19779), (11602, 5487), (11603, 5488), (11744, 43695), (32618, 69), (32619, 69), (33565, 13418), (34135, 66), (34136, 66), (34221, 6), (34222, 6), (39134, 36304), (39135, 36305), (39144, 7), (39145, 7), (39162, 42427), (39163, 42428), (40565, 6601), (40566, 6601), (41522, 46081), (42617, 7057), (42809, 44780), (42810, 44781), (43538, 43688), (43539, 43688), (46435, 10309)
X(5) 1/2 (1, 10), (2, 16509), (3, 5449), (4, 5), (5, 32551), (6, 16511), (11, 33528), (13, 2), (14, 2), (15, 33529), (16, 33530), (17, 44030), (18, 44032), (20, 33531), (61, 44034), (62, 44036), (67, 16511), (80, 10), (265, 5449), (671, 16509), (1263, 32551), (2009, 3934), (2010, 3934), (10152, 33531), (10215, 178), (11600, 33529), (11601, 33530), (11602, 44030), (11603, 44032), (32618, 141), (32619, 141), (34135, 6697), (34136, 6697), (34219, 44034), (34220, 44036), (34221, 3589), (34222, 3589), (39144, 142), (39145, 142), (42617, 178)
X(20) -1 (1, 145), (2, 11148), (3, 6193), (4, 20), (13, 2), (14, 2), (79, 12849), (80, 145), (265, 6193), (485, 6462), (486, 6463), (671, 11148), (2009, 194), (2010, 194), (3065, 12849), (32618, 193), (32619, 193), (34135, 5596), (34136, 5596), (34221, 69), (34222, 69), (39144, 144), (39145, 144), (40565, 7674), (40566, 7674)
X(140) 1/4 (1, 1125), (3, 43839), (4, 140), (13, 2), (14, 2), (80, 1125), (265, 43839), (2009, 6683), (2010, 6683), (32618, 3589), (32619, 3589), (34221, 34573), (34222, 34573), (39144, 6666), (39145, 6666)
X(376) -1/3 (1, 3241), (2, 9741), (4, 376), (13, 2), (14, 2), (80, 3241), (671, 9741), (2009, 7757), (2010, 7757), (32618, 1992), (32619, 1992), (34135, 31166), (34136, 31166), (34221, 599), (34222, 599), (39144, 6172), (39145, 6172)
X(382) 2 (1, 3632), (4, 382), (13, 2), (14, 2), (80, 3632), (32618, 40341), (32619, 40341), (34221, 3629), (34222, 3629)
X(550) -1/2 (1, 3244), (4, 550), (13, 2), (14, 2), (80, 3244), (2009, 32450), (2010, 32450), (32618, 3629), (32619, 3629), (34221, 3631), (34222, 3631)

underbar

X(63640) = X(3)-HATZIPOLAKIS-EULER IMAGE OF X(20)

Barycentrics (-a^2+b^2+c^2)*(3*a^4-2*(b^2+c^2)*a^2-(b^2-c^2)^2)*(a^6-3*(b^2-c^2)^2*a^2+2*(b^4-c^4)*(b^2-c^2))*(5*a^4-2*(b^2+c^2)*a^2-3*(b^2-c^2)^2) : :

X(63640) lies on these lines: {2, 31361}, {3, 5893}, {5, 16253}, {20, 1249}, {30, 6523}, {107, 33897}, {133, 382}, {1503, 30517}, {1657, 14363}, {2777, 33546}, {3053, 23976}, {3146, 14572}, {3184, 33892}, {3529, 45037}, {3534, 33549}, {5894, 20208}, {6621, 16251}, {15948, 20329}, {18017, 50709}, {18213, 38292}, {33553, 40995}, {45248, 52874}

X(63640) = midpoint of X(i) and X(j) for these (i, j): {107, 33897}, {3529, 45037}
X(63640) = reflection of X(i) in X(j) for these (i, j): (20329, 15948), (33892, 3184), (33893, 33531)
X(63640) = anticomplement of X(33531)
X(63640) = complement of X(33893)
X(63640) = crosspoint of X(3146) and X(27082)
X(63640) = X(i)-complementary conjugate of X(j) for these (i, j): (3146, 20308), (14572, 20305), (18594, 20207), (19614, 20), (38292, 36908)
X(63640) = X(i)-Dao conjugate of X(j) for these (i, j): (20, 18848), (26958, 35510), (33531, 33531)
X(63640) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (5895, 38253), (45245, 18848)
X(63640) = Dao image of X(i) for these i: {20, 10152}
X(63640) = center of the circumconic through X(107) and X(33897)
X(63640) = pole of the line {34403, 34410} with respect to the Steiner-Wallace hyperbola
X(63640) = barycentric product X(i)*X(j) for these {i,j}: {26958, 27082}, {40995, 45245}
X(63640) = (X(2), X(33893))-harmonic conjugate of X(33531)


X(63641) = X(4)-HATZIPOLAKIS-EULER IMAGE OF X(12)

Barycentrics b*c*(b+c)^2*((b+c)*a^5+(b-c)*c*a^4-(2*b+c)*(b^2-b*c+2*c^2)*a^3+(b^3+2*c^3-b*c*(5*b+2*c))*c*a^2+(b^2-c^2)*(b^3-c^3+b*c*(b-2*c))*a+(b^2-c^2)^2*(b-c)*c)*((b+c)*a^5-(b-c)*b*a^4-(b+2*c)*(2*b^2-b*c+c^2)*a^3+(2*b^3+c^3-b*c*(2*b+5*c))*b*a^2+(b^2-c^2)*(b^3-c^3+b*c*(2*b-c))*a-(b^2-c^2)^2*(b-c)*b) : :

X(63641) lies on these lines: {442, 42005}, {11491, 51760}

X(63641) = isotomic conjugate of the anticomplement of X(34532)
X(63641) = X(34532)-cross conjugate of-X(2)
X(63641) = perspector of the inconic with center X(34532)


X(63642) = X(4)-HATZIPOLAKIS-EULER IMAGE OF X(36)

Barycentrics (-a+b+c)*(a^2+b*a+b^2-c^2)*(a^2+c*a-b^2+c^2)*(a^2-b^2+b*c-c^2) : :

X(63642) lies on these lines: {2, 6149}, {8, 79}, {69, 20565}, {265, 5080}, {765, 4645}, {1098, 3615}, {1154, 48877}, {1749, 18120}, {3738, 4985}, {4351, 4511}, {4388, 50215}, {5180, 33650}, {21274, 21294}, {27529, 37154}, {40436, 52372}

X(63642) = anticomplementary conjugate of the anticomplement of X(2166)
X(63642) = anticomplement of X(6149)
X(63642) = isotomic conjugate of the anticomplement of X(34544)
X(63642) = crosssum of X(14270) and X(20982)
X(63642) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (2, 1272), (4, 12383), (6, 18301), (13, 617), (14, 616), (79, 6224), (80, 3648), (94, 69), (265, 20), (328, 1370), (476, 523), (523, 14731), (847, 39118), (1138, 1138), (1141, 3), (1300, 15454), (1989, 2), (2006, 41808), (2166, 8), (5627, 30), (6344, 4), (10412, 3448), (11060, 194), (11077, 43988), (12028, 2071), (14254, 146), (14356, 147), (14559, 44010), (14560, 31296), (14582, 39352), (14583, 39358), (14592, 13219), (14859, 1154), (15392, 44450), (15475, 148), (18316, 376), (18384, 193), (18817, 11442), (18883, 40697), (20573, 315), (23588, 2407), (30529, 45799), (32678, 4560), (32680, 7192), (34209, 34193), (35139, 512), (36129, 7253), (39290, 3268), (39295, 99), (40427, 3260)
X(63642) = X(34544)-cross conjugate of-X(2)
X(63642) = X(i)-Dao conjugate of X(j) for these (i, j): (3161, 41226), (6149, 6149), (11597, 2477), (13089, 47054), (34586, 2594), (35069, 16577), (35128, 14838), (35204, 35), (38984, 2605), (40584, 2003), (40604, 7279), (40612, 1442), (51583, 40999), (56847, 52383)
X(63642) = X(i)-isoconjugate of X(j) for these {i, j}: {35, 1411}, {50, 34535}, {80, 1399}, {604, 41226}, {759, 2594}, {1442, 6187}, {2003, 2161}, {2006, 2174}, {2166, 2477}, {2222, 2605}, {14838, 32675}, {14975, 52392}, {16577, 34079}, {17104, 52383}, {21741, 24624}, {52377, 53542} = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (8, 41226), (36, 2003), (50, 2477), (79, 2006), (215, 50), (320, 17095), (323, 7279), (654, 2605), (758, 16577), (2160, 1411), (2166, 34535), (2245, 2594), (2323, 35), (2361, 2174), (3218, 1442), (3615, 24624), (3724, 21741), (3738, 14838), (3904, 4467), (3936, 40999), (4282, 17104), (4511, 3219), (4996, 323), (5081, 52412), (6742, 655), (7073, 2161), (7110, 80), (7113, 1399), (8606, 52431), (8818, 52383), (15455, 35174), (17923, 7282), (20924, 52421), (30690, 18815), (32851, 319), (34544, 6149), (52344, 18359), (52381, 52392), (53285, 9404), (53525, 7202), (56844, 57)
X(63642) = perspector of the inconic with center X(34544)
X(63642) = pole of the line {1825, 54244} with respect to the polar circle
X(63642) = pole of the line {2477, 2594} with respect to the Stammler hyperbola
X(63642) = pole of the line {1577, 14213} with respect to the Steiner circumellipse
X(63642) = pole of the line {7279, 40999} with respect to the Steiner-Wallace hyperbola
X(63642) = barycentric product X(i)*X(j) for these {i,j}: {79, 32851}, {94, 4996}, {215, 20573}, {312, 56844}, {320, 7110}, {2323, 20565}, {3218, 52344}, {3615, 3936}, {3738, 15455}, {3904, 6742}, {4511, 30690}, {5081, 52381}, {7073, 20924}
X(63642) = trilinear product X(i)*X(j) for these {i,j}: {8, 56844}, {36, 52344}, {79, 4511}, {94, 34544}, {320, 7073}, {654, 15455}, {758, 3615}, {860, 1789}, {2160, 32851}, {2166, 4996}, {2323, 30690}, {2361, 20565}, {3218, 7110}, {3738, 6742}, {5081, 7100}, {17515, 52388}
X(63642) = trilinear quotient X(i)/X(j) for these (i,j): (36, 1399), (79, 1411), (94, 34535), (312, 41226), (320, 1442), (758, 2594), (860, 1825), (2245, 21741), (2323, 2174), (3218, 2003), (3615, 759), (3738, 2605), (3904, 14838), (3936, 16577), (4053, 21794), (4511, 35), (4996, 6149), (5081, 6198), (6149, 2477), (6742, 2222)


X(63643) = X(5)-HATZIPOLAKIS-EULER IMAGE OF X(7)

Barycentrics 2*(b+c)*a^4-(5*b^2-8*b*c+5*c^2)*a^3+(b+c)*(3*b^2-16*b*c+3*c^2)*a^2+(b^2-c^2)^2*a-(b^2-c^2)*(b-c)^3 : :
X(63643) = 3*X(2)+X(34919)

X(63643) lies on these lines: {2, 1156}, {5, 15726}, {9, 17718}, {10, 12710}, {142, 5087}, {405, 4295}, {513, 20328}, {527, 1125}, {1001, 1387}, {2550, 12690}, {3085, 5729}, {3826, 6702}, {4679, 6173}, {5851, 6713}, {6675, 15297}, {6705, 18243}, {9814, 37692}, {10177, 26015}, {20330, 27869}, {22791, 38454}, {38025, 38055}

X(63643) = midpoint of X(15346) and X(34919)
X(63643) = reflection of X(20330) in X(27869)
X(63643) = complement of X(15346)
X(63643) = (X(2), X(34919))-harmonic conjugate of X(15346)


X(63644) = X(5)-HATZIPOLAKIS-EULER IMAGE OF X(8)

Barycentrics (-a+b+c)*(2*a^5*(b+c)-(b-c)^2*(b^2-c^2)^2-4*a^3*(b+c)*(b^2-4*b*c+c^2)+2*a*(b-c)*(b^2-c^2)*(b^2-4*b*c+c^2)-a^4*(b^2+12*b*c+c^2)+2*a^2*(b^4+c^4+b*c*(7*b^2-20*b*c+7*c^2))) : :

X(63644) lies on these lines: {1, 45080}, {2, 15347}, {5, 3880}, {8, 4578}, {142, 5836}, {519, 6705}, {1125, 33895}, {1387, 10912}, {2136, 5252}, {2802, 18242}, {2804, 24093}, {3680, 11376}, {3813, 6702}, {5123, 21627}, {5690, 5854}, {5853, 32537}, {6735, 17648}, {8058, 23808}, {11496, 49169}, {27870, 33899}

X(63644) = reflection of X(33899) in X(27870)
X(63644) = complement of X(15347)


X(63645) = X(20)-HATZIPOLAKIS-EULER IMAGE OF X(5)

Barycentrics ((b^2+c^2)*a^2-(b^2-c^2)^2)*(a^12-5*(b^2+c^2)*a^10+5*(2*b^4+3*b^2*c^2+2*c^4)*a^8-2*(b^2+c^2)*(5*b^4+2*b^2*c^2+5*c^4)*a^6+(5*b^8+5*c^8+4*(b^4+c^4)*b^2*c^2)*a^4-(b^4-c^4)^2*(b^2+c^2)*a^2+(b^2-c^2)^4*b^2*c^2) : :
X(63645) = 3*X(2)-4*X(15345), 9*X(2)-8*X(32551), X(3)-2*X(35720), 7*X(3090)-8*X(13856), 7*X(3523)-8*X(18016), X(11671)-2*X(38899), 2*X(15345)-X(25043), 3*X(15345)-2*X(32551), 3*X(25043)-4*X(32551)

X(63645) lies on these lines: {2, 3459}, {3, 19553}, {4, 11671}, {20, 1154}, {143, 14570}, {195, 13512}, {930, 25044}, {1147, 6368}, {3090, 13856}, {3523, 18016}, {5071, 34768}, {7486, 46954}, {7525, 8266}, {13372, 39171}, {16266, 20477}, {20424, 23238}, {27361, 39113}, {32829, 40697}

X(63645) = reflection of X(i) in X(j) for these (i, j): (3, 35720), (11671, 38899), (25043, 15345)
X(63645) = anticomplementary conjugate of the Cundy-Parry-Psi-transform of X(6288)
X(63645) = anticomplementary conjugate of the Cundy-Parry-Phi-transform of X(15620)
X(63645) = anticomplement of X(25043)
X(63645) = anticomplementary conjugate of the anticomplement of X(25044)
X(63645) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (2964, 2888), (25044, 8), (36134, 1510)
X(63645) = X(25043)-Dao conjugate of-X(25043)
X(63645) = pole of the line {15787, 18350} with respect to the Stammler hyperbola
X(63645) = pole of the the tripolar of X(63172) with respect to the Steiner circumellipse
X(63645) = pole of the line {18354, 56292} with respect to the Steiner-Wallace hyperbola
X(63645) = (X(15345), X(25043))-harmonic conjugate of X(2)


X(63646) = X(20)-HATZIPOLAKIS-EULER IMAGE OF X(6)

Barycentrics 3*a^8-8*(b^2+c^2)*a^6-2*(b^4-12*b^2*c^2+c^4)*a^4+8*(b^4-3*b^2*c^2+c^4)*(b^2+c^2)*a^2-(b^4-c^4)^2 : :
X(63646) = 3*X(2)-4*X(8542), 9*X(2)-8*X(16511), X(20)-3*X(53021), X(3448)-2*X(5505), X(5486)-2*X(8542), 3*X(5486)-4*X(16511), 3*X(8542)-2*X(16511), 8*X(12039)-7*X(51171)

X(63646) lies on these lines: {2, 895}, {4, 524}, {6, 40132}, {20, 2393}, {69, 858}, {141, 18919}, {146, 5921}, {193, 9027}, {389, 6193}, {523, 32815}, {599, 16051}, {631, 19360}, {973, 11271}, {974, 2854}, {1352, 7687}, {1992, 1995}, {2888, 32393}, {2892, 11442}, {3448, 5505}, {3546, 40107}, {3832, 22968}, {3868, 9004}, {4232, 53777}, {5032, 9716}, {5596, 12272}, {6090, 47277}, {6642, 9925}, {6696, 8549}, {7464, 50967}, {7493, 41614}, {9545, 43815}, {9813, 9972}, {10297, 50955}, {10602, 30739}, {11160, 31099}, {11216, 37669}, {12039, 51171}, {14826, 32246}, {14984, 49669}, {17162, 17220}, {17928, 32621}, {18440, 47309}, {19510, 23327}, {23291, 25328}, {25321, 49125}, {31133, 50992}, {37777, 47549}, {41612, 43697}, {42007, 43448}

X(63646) = reflection of X(i) in X(j) for these (i, j): (3448, 5505), (5486, 8542)
X(63646) = anticomplement of X(5486)
X(63646) = anticomplementary conjugate of X(16063)
X(63646) = isotomic conjugate of the cyclocevian conjugate of X(41896)
X(63646) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (1, 16063), (162, 30209), (1101, 48539), (1995, 8), (11185, 6327), (14209, 13219), (19136, 192), (29959, 21289), (41614, 4329)
X(63646) = X(11185)-Ceva conjugate of-X(2)
X(63646) = X(5486)-Dao conjugate of-X(5486)
X(63646) = pole of the line {16051, 24855} with respect to the Kiepert circumhyperbola
X(63646) = pole of the line {1296, 30247} with respect to the Kiepert parabola
X(63646) = pole of the line {19153, 53777} with respect to the Stammler hyperbola
X(63646) = pole of the the tripolar of X(11185) with respect to the Steiner circumellipse
X(63646) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (5486, 8542, 2), (19510, 23327, 30769)


X(63647) = X(140)-HATZIPOLAKIS-EULER IMAGE OF X(2)

Barycentrics 14*a^4-29*(b^2+c^2)*a^2+11*b^4-14*b^2*c^2+11*c^4 : :
X(63647) = 9*X(2)-X(5485), 7*X(2)+X(9741), 3*X(2)+X(11165), 5*X(2)-X(40727), 5*X(2)+X(51123), 5*X(5485)+3*X(11148), X(5485)+3*X(11165), X(5485)+9*X(12040), X(5485)-3*X(16509), 5*X(5485)-9*X(40727), 15*X(9741)-7*X(11148), 3*X(9741)-7*X(11165), X(9741)-7*X(12040), 3*X(9741)+7*X(16509), 11*X(9741)-7*X(51122), 5*X(9741)-7*X(51123), X(11148)-5*X(11165), X(11148)+5*X(16509), X(11148)+3*X(40727), X(11148)-3*X(51123)

X(63647) lies on these lines: {2, 2418}, {3, 23334}, {5, 7618}, {30, 7622}, {39, 41139}, {140, 524}, {538, 47598}, {543, 547}, {546, 32479}, {549, 8182}, {574, 8355}, {597, 13720}, {598, 11149}, {620, 14762}, {632, 34511}, {1656, 7620}, {2482, 3055}, {3090, 53141}, {3363, 11164}, {3530, 7775}, {3589, 22247}, {3628, 7617}, {3849, 12100}, {3850, 34504}, {4472, 17132}, {5054, 9770}, {5055, 53142}, {5077, 34803}, {5215, 9300}, {5569, 11812}, {7610, 11539}, {7615, 15699}, {7751, 45760}, {7767, 41136}, {7769, 8359}, {8365, 48310}, {8367, 31455}, {8368, 9167}, {8598, 17005}, {9740, 15709}, {9761, 42912}, {9763, 42913}, {9766, 15713}, {9830, 18358}, {10109, 20112}, {10124, 15597}, {10542, 31401}, {11147, 11159}, {11318, 32839}, {11540, 13468}, {12042, 25486}, {12156, 26613}, {12812, 47617}, {13681, 36726}, {13801, 36723}, {15711, 44678}, {15810, 22110}, {18583, 42536}, {19711, 47102}, {21356, 32829}, {22253, 23053}, {23303, 36775}, {30516, 37745}, {32871, 33190}, {33474, 42497}, {33475, 42496}, {37350, 37647}, {37454, 42008}, {44580, 47101}

X(63647) = midpoint of X(i) and X(j) for these (i, j): {2, 12040}, {5, 7618}, {549, 11184}, {7622, 9771}, {11165, 16509}, {12042, 25486}, {40727, 51123}
X(63647) = reflection of X(i) in X(j) for these (i, j): (140, 7619), (5569, 11812), (7617, 3628), (15597, 10124), (20112, 10109)
X(63647) = complement of X(16509)
X(63647) = pole of the line {599, 55950} with respect to the Kiepert circumhyperbola
X(63647) = pole of the line {1384, 15019} with respect to the Stammler hyperbola
X(63647) = pole of the line {1499, 9485} with respect to the Steiner inellipse
X(63647) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 11165, 16509), (11148, 11165, 51123), (11165, 40727, 11148), (12040, 16509, 11165)


X(63648) = X(140)-HATZIPOLAKIS-EULER IMAGE OF X(6)

Barycentrics 2*a^8-2*(b^2+c^2)*a^6-(3*b^4+4*b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*(b^4-8*b^2*c^2+c^4)*a^2+(b^4-c^4)^2 : :
X(63648) = 9*X(2)-X(5486), 3*X(2)+X(8542), X(5486)+3*X(8542), X(5486)-3*X(16511), X(8546)-3*X(10168)

X(63648) lies on these lines: {2, 895}, {140, 2393}, {141, 12039}, {511, 25488}, {524, 3628}, {542, 32154}, {3589, 9027}, {7495, 29959}, {8546, 10168}, {8681, 43839}, {11178, 16534}, {12161, 12585}, {12900, 24206}, {15464, 17430}, {19510, 37454}, {29012, 37283}, {36201, 50008}, {46935, 53021}

X(63648) = midpoint of X(i) and X(j) for these (i, j): {141, 12039}, {8542, 16511}
X(63648) = complement of X(16511)
X(63648) = (X(2), X(8542))-harmonic conjugate of X(16511)


X(63649) = X(376)-HATZIPOLAKIS-EULER IMAGE OF X(3)

Barycentrics (-a^2+b^2+c^2)*(5*a^8-10*(b^2+c^2)*a^6+6*(b^4+c^4)*a^4-2*(b^4-c^4)*(b^2-c^2)*a^2+(b^2-c^2)^4) : :
X(63649) = 2*X(2)-X(68), X(2)-2*X(1147), 5*X(2)-4*X(5449), 7*X(2)-8*X(43839), 2*X(3)+X(9936), X(4)-4*X(41597), X(20)+2*X(15083), X(68)-4*X(1147), 5*X(68)-8*X(5449), X(68)+2*X(6193), 2*X(155)+X(12118), X(381)-3*X(3167), 2*X(381)-3*X(5654), 5*X(1147)-2*X(5449), 2*X(1147)+X(6193), 7*X(1147)-4*X(43839), 2*X(3167)-X(5654), 4*X(5449)+5*X(6193), 7*X(5449)-10*X(43839), X(9833)+2*X(16266)

X(63649) lies on these lines: {2, 54}, {3, 9936}, {4, 41597}, {6, 10127}, {20, 15083}, {24, 41628}, {30, 155}, {66, 542}, {69, 18475}, {317, 18831}, {376, 2979}, {381, 3167}, {428, 36747}, {511, 31166}, {519, 9928}, {524, 14070}, {547, 14852}, {549, 599}, {912, 3655}, {1069, 3058}, {1216, 18925}, {1899, 22115}, {1992, 34382}, {1993, 7576}, {3157, 5434}, {3292, 18531}, {3522, 43806}, {3523, 52104}, {3524, 11411}, {3534, 12164}, {3543, 9143}, {3545, 9927}, {3546, 10116}, {3582, 10071}, {3584, 10055}, {3830, 22660}, {3839, 5448}, {3845, 12293}, {4846, 12364}, {5054, 12359}, {5055, 9820}, {5064, 12134}, {5446, 7714}, {5447, 33523}, {5609, 44276}, {5892, 14912}, {5965, 11202}, {6515, 51393}, {6623, 16534}, {6644, 9925}, {7558, 9706}, {7689, 10304}, {7739, 23128}, {7865, 9923}, {8703, 12163}, {8909, 19062}, {9896, 19875}, {10653, 10661}, {10654, 10662}, {10691, 31804}, {11232, 18950}, {11237, 18970}, {11238, 12428}, {11271, 44879}, {11425, 31831}, {11433, 43586}, {11457, 44450}, {11464, 45794}, {11898, 44201}, {12259, 25055}, {12422, 34612}, {12423, 34606}, {12430, 45701}, {12431, 45700}, {13490, 19139}, {13846, 49224}, {13847, 49225}, {14156, 23291}, {14984, 34319}, {15069, 52262}, {15330, 50708}, {15693, 44158}, {15708, 20191}, {16226, 21651}, {17814, 43595}, {18420, 34986}, {18474, 37645}, {18533, 30714}, {18564, 50461}, {18917, 51394}, {19061, 32788}, {19908, 44837}, {23061, 44831}, {23236, 31723}, {31180, 40112}, {31670, 56568}, {34148, 43894}, {43604, 53050}

X(63649) = midpoint of X(i) and X(j) for these (i, j): {2, 6193}, {3534, 12164}
X(63649) = reflection of X(i) in X(j) for these (i, j): (2, 1147), (68, 2), (3830, 22660), (5654, 3167), (12163, 8703), (12293, 3845), (20423, 19139)
X(63649) = pole of the line {2623, 6587} with respect to the MacBeath circumconic
X(63649) = pole of the line {52, 10594} with respect to the Stammler hyperbola
X(63649) = (X(1147), X(6193))-harmonic conjugate of X(68)


X(63650) = X(376)-HATZIPOLAKIS-EULER IMAGE OF X(6)

Barycentrics 5*a^8-12*(b^2+c^2)*a^6-4*(b^4-8*b^2*c^2+c^4)*a^4+4*(b^2-3*c^2)*(3*b^2-c^2)*(b^2+c^2)*a^2-(b^4-c^4)^2 : :
X(63650) = 5*X(2)-4*X(16511), X(3543)+3*X(53021), X(5486)-4*X(8542), 5*X(5486)-8*X(16511), 5*X(8542)-2*X(16511)

lies on these lines: {2, 895}, {6, 16317}, {69, 7703}, {141, 40920}, {193, 7693}, {376, 2393}, {381, 524}, {427, 15533}, {523, 2444}, {542, 4846}, {599, 17813}, {892, 11185}, {1992, 5640}, {2549, 42007}, {2854, 11179}, {3543, 53021}, {3589, 21968}, {5020, 8584}, {7426, 41614}, {7618, 9145}, {9004, 24473}, {10706, 11180}, {15534, 38005}, {19510, 30775}, {26255, 53777}, {30771, 50991}, {35259, 47545}, {37638, 47473}, {38064, 39562}, {43576, 50967}, {47310, 47353}

X(63650) = reflection of X(i) in X(j) for these (i, j): (2, 8542), (5486, 2)
X(63650) = pole of the line {5926, 34519} with respect to the circumcircle
X(63650) = pole of the line {4846, 9169} with respect to the Hutson-Parry circle
X(63650) = pole of the line {2549, 24855} with respect to the Kiepert circumhyperbola


X(63651) = X(382)-HATZIPOLAKIS-EULER IMAGE OF X(2)

Barycentrics 7*a^4-19*(b^2+c^2)*a^2-8*(b^2+c^2)^2+72*b^2*c^2 : :
X(63651) = 3*X(2)-5*X(5485), 7*X(2)-5*X(9741), 9*X(2)-5*X(11148), 6*X(2)-5*X(11165), 11*X(2)-10*X(12040), 9*X(2)-10*X(16509), 4*X(2)-5*X(40727), 8*X(2)-5*X(51122), 13*X(2)-10*X(51123), 7*X(5485)-3*X(9741), 3*X(5485)-X(11148), 11*X(5485)-6*X(12040), 3*X(5485)-2*X(16509), 4*X(5485)-3*X(40727), 8*X(5485)-3*X(51122), 13*X(5485)-6*X(51123), 9*X(9741)-7*X(11148), 6*X(9741)-7*X(11165), 4*X(9741)-7*X(40727), 8*X(9741)-7*X(51122)

X(63651) lies on these lines: {2, 2418}, {382, 524}, {538, 14269}, {543, 15681}, {546, 7620}, {598, 22253}, {1153, 8716}, {1384, 11054}, {3528, 53141}, {3626, 4643}, {3851, 7764}, {5079, 34511}, {6392, 19661}, {7610, 15707}, {7618, 15720}, {8182, 15688}, {8359, 32868}, {8591, 15655}, {9770, 38071}, {15687, 23334}, {17504, 53142}, {32479, 49139}, {42011, 43676}

X(63651) = reflection of X(i) in X(j) for these (i, j): (382, 53143), (11148, 16509), (11165, 5485), (51122, 40727)
X(63651) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (5485, 11148, 16509), (5485, 11165, 40727), (11148, 16509, 11165)


X(63652) = X(382)-HATZIPOLAKIS-EULER IMAGE OF X(3)

Barycentrics (-a^2+b^2+c^2)*(3*a^8-6*(b^2+c^2)*a^6+5*(b^4+c^4)*a^4-4*(b^4-c^4)*(b^2-c^2)*a^2+2*(b^2-c^2)^4) : :
X(63652) = 3*X(2)-5*X(68), 6*X(2)-5*X(1147), 9*X(2)-10*X(5449), 9*X(2)-5*X(6193), 3*X(68)-2*X(5449), 3*X(68)-X(6193), 7*X(68)-4*X(43839), 5*X(155)-7*X(3851), 3*X(382)-5*X(12293), X(382)-5*X(12429), 4*X(546)-5*X(9927), 8*X(546)-5*X(15083), 6*X(546)-5*X(22660), 3*X(1147)-4*X(5449), 3*X(1147)-2*X(6193), 7*X(1147)-8*X(43839), 7*X(5449)-6*X(43839), 3*X(9927)-2*X(22660), X(12293)-3*X(12429), 3*X(15083)-4*X(22660)

X(63652) lies on these lines: {2, 54}, {20, 44796}, {155, 3851}, {182, 11264}, {382, 6243}, {546, 576}, {550, 7689}, {568, 6153}, {3528, 12118}, {3529, 11411}, {3530, 12359}, {3544, 5654}, {3632, 9896}, {3636, 12259}, {3855, 5448}, {4550, 12370}, {5079, 14852}, {5965, 18569}, {6515, 45286}, {9908, 20850}, {9929, 26339}, {9930, 26340}, {9933, 20057}, {10301, 12134}, {10323, 45730}, {11232, 36752}, {11442, 18488}, {11750, 45794}, {12038, 15720}, {12163, 15681}, {12164, 14269}, {13346, 18356}, {13352, 35482}, {15069, 32284}, {17504, 44158}, {21660, 23039}, {32423, 46730}, {34382, 40341}, {34799, 37478}

X(63652) = midpoint of X(i) and X(j) for these (i, j): {9929, 49052}, {9930, 49053}
X(63652) = reflection of X(i) in X(j) for these (i, j): (1147, 68), (6193, 5449), (9936, 5448), (12118, 52104), (13346, 18356), (15083, 9927)
X(63652) = pole of the line {7748, 53414} with respect to the Kiepert circumhyperbola
X(63652) = pole of the line {52, 47485} with respect to the Stammler hyperbola
X(63652) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (68, 6193, 5449), (5449, 6193, 1147)


X(63653) = X(382)-HATZIPOLAKIS-EULER IMAGE OF X(6)

Barycentrics 3*a^8-10*(b^2+c^2)*a^6-(b^4-36*b^2*c^2+c^4)*a^4+2*(b^2+c^2)*(5*b^4-12*b^2*c^2+5*c^4)*a^2-2*(b^4-c^4)^2 : :
X(63653) = 3*X(2)-5*X(5486), 6*X(2)-5*X(8542), 9*X(2)-10*X(16511), 3*X(5486)-2*X(16511), 3*X(8542)-4*X(16511), 5*X(16510)-4*X(40342)

X(63653) lies on these lines: {2, 895}, {206, 3629}, {382, 2393}, {524, 550}, {3528, 43616}, {6467, 9027}, {7575, 51140}, {10602, 19510}, {11008, 41464}, {15534, 44110}, {16510, 40342}, {33556, 33749}

X(63653) = reflection of X(8542) in X(5486)
X(63653) = pole of the line {34519, 62568} with respect to the circumcircle


X(63654) = X(550)-HATZIPOLAKIS-EULER IMAGE OF X(2)

Barycentrics 16*a^4-37*(b^2+c^2)*a^2+b^4+38*b^2*c^2+c^4 : :
X(63654) = 9*X(2)-5*X(5485), X(2)-5*X(9741), 3*X(2)+5*X(11148), 3*X(2)-5*X(11165), 4*X(2)-5*X(12040), 6*X(2)-5*X(16509), 7*X(2)-5*X(40727), X(2)+5*X(51122), 2*X(2)-5*X(51123), 5*X(5)-4*X(53144), 3*X(382)-5*X(23334), 2*X(546)-5*X(34511), 2*X(546)-X(53143), X(550)-10*X(7781), 7*X(550)-10*X(34504), X(5485)-9*X(9741), X(5485)+3*X(11148), X(5485)-3*X(11165), 4*X(5485)-9*X(12040), 2*X(5485)-3*X(16509), 7*X(5485)-9*X(40727), X(5485)+9*X(51122), 2*X(5485)-9*X(51123), 7*X(7781)-X(34504), 3*X(9741)+X(11148), 3*X(9741)-X(11165), 4*X(9741)-X(12040), 6*X(9741)-X(16509), 7*X(9741)-X(40727), 2*X(9741)-X(51123), 4*X(11148)+3*X(12040), 2*X(11148)+X(16509), 7*X(11148)+3*X(40727), X(11148)-3*X(51122)

lies on these lines: {2, 2418}, {5, 53144}, {194, 19661}, {382, 23334}, {524, 550}, {538, 17504}, {543, 15687}, {546, 34511}, {1153, 14869}, {3529, 53141}, {3530, 7618}, {3629, 8787}, {3636, 4670}, {3851, 7620}, {3933, 32480}, {5503, 33698}, {7615, 47478}, {8176, 38071}, {8182, 8716}, {8584, 15301}, {9740, 15710}, {9770, 14269}, {11164, 18907}, {11184, 11737}, {15688, 53142}, {34505, 35018}

X(63654) = midpoint of X(i) and X(j) for these (i, j): {9741, 51122}, {11148, 11165}
X(63654) = reflection of X(i) in X(j) for these (i, j): (12040, 51123), (16509, 11165), (51123, 9741), (53143, 546)
X(63654) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (9741, 11148, 11165), (11165, 16509, 12040), (11165, 51122, 11148), (16509, 51123, 11165)


X(63655) = X(550)-HATZIPOLAKIS-EULER IMAGE OF X(6)

Barycentrics 4*a^8-10*(b^2+c^2)*a^6-(3*b^4-28*b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*(5*b^4-16*b^2*c^2+5*c^4)*a^2-(b^4-c^4)^2 : :
X(63655) = 9*X(2)-5*X(5486), 3*X(2)-5*X(8542), 6*X(2)-5*X(16511), X(5486)-3*X(8542), 2*X(5486)-3*X(16511), 4*X(6329)-5*X(12039), 2*X(8542)-X(16511)

X(63655) lies on these lines: {2, 895}, {524, 546}, {550, 2393}, {3629, 9027}, {3631, 6697}, {6329, 12039}, {12167, 40341}, {23048, 34507}, {49135, 53021}

X(63655) = reflection of X(16511) in X(8542)



leftri

Points related to the 2nd Hatzipolakis-Moses triangle: X(63656)-X(63740)

rightri

This preamble and centers X(63656)-X(63740) were contributed by Ivan Pavlov on May 29, 2024.

Let ABC be a triangle and A'B'C' the orthic triangle. Denote Nab, Nac = the NPC centers of AHB', AHC'. Similarly define Nbc, Nba and Nca, Ncb.
Let A"B"C"= triangle bounded by NabNac NbcNba, NcaNcb. It can be shown that A'B'C' and A"B"C" are homothetic and this consutrction can be generalized for any pedal triangle.
For more information see this Euclid thread.

Below we call A"B"C" the 2nd Hatzipolakis-Moses triangle. The barycentric coordinates of its A-vertex are: (
a^2 (-2 a^2 (b^2 - c^2)^2 + a^4 (b^2 + c^2) + (b^2 - c^2)^2 (b^2 + c^2)) :
-2 a^8 + (b^2 - c^2)^3 (b^2 + c^2) - a^4 (b^2 + 3 c^2)^2 + a^6 (4 b^2 + 7 c^2) - a^2 (2 b^6 + 3 b^4 c^2 - 5 c^6) :
-2 a^8 - (b^2 - c^2)^3 (b^2 + c^2) - a^4 (3 b^2 + c^2)^2 + a^6 (7 b^2 + 4 c^2) - a^2 (-5 b^6 + 3 b^2 c^4 + 2 c^6)
)

Note that the unary cofactor triangle of a given triangle, which is used in the definition of some centers is defined here: https://mathworld.wolfram.com/UnaryCofactorTriangle.html


X(63656) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-ATIK

Barycentrics    (a^2-b^2-c^2)*(a^14-5*a^12*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)-a^2*(b^2-c^2)^4*(5*b^4-4*b^2*c^2+5*c^4)-a^6*(b^2-c^2)^2*(5*b^4+22*b^2*c^2+5*c^4)+a^10*(9*b^4+4*b^2*c^2+9*c^4)+a^8*(-5*b^6+17*b^4*c^2+17*b^2*c^4-5*c^6)+a^4*(b^2-c^2)^2*(9*b^6-5*b^4*c^2-5*b^2*c^4+9*c^6)) : :

X(63656) lies on these lines: {4, 41589}, {69, 63667}, {235, 11433}, {546, 18909}, {1589, 63718}, {1590, 63717}, {1899, 63666}, {6515, 63657}, {6643, 63683}, {6756, 18945}, {6776, 10594}, {7403, 23291}, {11411, 63674}, {12324, 63662}, {13406, 18951}, {14912, 63658}, {18911, 63660}, {18912, 63661}, {18913, 63084}, {18914, 63665}, {18915, 63669}, {18916, 35488}, {18917, 63671}, {18918, 63672}, {18919, 63673}, {18921, 63675}, {18922, 63676}, {18923, 63677}, {18924, 63678}, {18925, 37440}, {18928, 58378}, {18929, 63680}, {18930, 63681}, {18931, 63682}, {18932, 63685}, {18933, 63684}, {18934, 63686}, {18935, 63688}, {18936, 63690}, {18943, 63691}, {18944, 63692}, {18946, 63693}, {18947, 63695}, {19119, 63663}, {19166, 63668}, {32241, 63694}, {32334, 63629}, {39571, 63697}, {39804, 63687}, {39833, 63696}

X(63656) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1899, 63670, 63666}


X(63657) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 1ST ANTI-CIRCUMPERP

Barycentrics    a^10-4*a^8*(b^2+c^2)+2*(b^2-c^2)^4*(b^2+c^2)-5*a^2*(b^2-c^2)^2*(b^4+c^4)+a^6*(4*b^4-2*b^2*c^2+4*c^4)+2*a^4*(b^6+b^4*c^2+b^2*c^4+c^6) : :

X(63657) lies on these lines: {2, 3}, {69, 63699}, {74, 63685}, {97, 63668}, {98, 63687}, {99, 63696}, {110, 63695}, {154, 58922}, {476, 63715}, {477, 63708}, {511, 63670}, {1498, 23293}, {1614, 14852}, {2979, 63660}, {3060, 63659}, {3100, 63676}, {3101, 63675}, {3763, 63723}, {4296, 63669}, {5012, 63658}, {5449, 11456}, {5562, 63697}, {5895, 11454}, {6515, 63656}, {7592, 63735}, {7691, 63629}, {8227, 63698}, {9538, 31479}, {9544, 12429}, {9707, 9927}, {10516, 19121}, {10574, 26958}, {11411, 63686}, {11412, 63661}, {11416, 63673}, {11417, 42262}, {11418, 42265}, {11420, 42095}, {11421, 42098}, {11441, 61747}, {11442, 16252}, {11449, 61680}, {11464, 12293}, {12111, 37638}, {12219, 63684}, {12220, 63688}, {12226, 63693}, {12250, 41428}, {12278, 17821}, {12279, 40686}, {13009, 63691}, {13010, 63692}, {13380, 42410}, {13881, 22240}, {15605, 41730}, {17845, 18392}, {18405, 41482}, {19357, 50435}, {20080, 63702}, {22528, 63690}, {26864, 34799}, {26883, 61700}, {31807, 43823}, {32244, 63694}, {41465, 63721}, {43831, 61646}, {45794, 61607}, {55566, 63718}, {55567, 63717}, {58434, 63631}

X(63657) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2980), X(12173)}}, {{A, B, C, X(6240), X(13380)}}, {{A, B, C, X(7547), X(45300)}}, {{A, B, C, X(35473), X(57414)}}
X(63657) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11412, 63661, 63683}


X(63658) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-CONWAY

Barycentrics    a^2*(a^14-4*a^12*(b^2+c^2)-3*a^8*b^2*c^2*(b^2+c^2)+b^2*c^2*(b^2-c^2)^4*(b^2+c^2)-a^2*(b^2-c^2)^4*(b^4+4*b^2*c^2+c^4)+a^10*(5*b^4+8*b^2*c^2+5*c^4)+2*a^4*(b^2-c^2)^2*(2*b^6+3*b^4*c^2+3*b^2*c^4+2*c^6)-a^6*(5*b^8+6*b^4*c^4+5*c^8)) : :

X(63658) lies on these lines:, {6, 1173}, {54, 35488}, {110, 11425}, {156, 546}, {182, 63667}, {184, 235}, {389, 32237}, {567, 63671}, {569, 63674}, {1147, 63686}, {1181, 41589}, {1593, 63728}, {1594, 51739}, {1598, 11743}, {3088, 15139}, {5012, 63657}, {5448, 13403}, {6756, 6759}, {6816, 58357}, {7403, 10539}, {9306, 63679}, {9652, 11429}, {9667, 19365}, {9786, 52525}, {10606, 43617}, {11422, 63660}, {11424, 63662}, {11426, 63665}, {11427, 63666}, {11428, 63675}, {11430, 61753}, {11438, 12107}, {11746, 36753}, {12088, 37473}, {12161, 63683}, {12227, 63684}, {12228, 63685}, {12234, 63693}, {13011, 63691}, {13012, 63692}, {13198, 63695}, {13336, 47296}, {13366, 63670}, {13383, 13567}, {13406, 18390}, {14912, 63656}, {15087, 43829}, {15873, 44077}, {16657, 52432}, {18388, 63672}, {22529, 63690}, {26958, 61134}, {32245, 63694}, {34782, 44080}, {39805, 63687}, {39834, 63696}, {43844, 50649}, {44439, 56292}

X(63658) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63659}


X(63659) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 2ND ANTI-CONWAY

Barycentrics    a^2*(a^12*(b^2+c^2)+8*a^6*b^2*c^2*(b^4+c^4)-4*a^10*(b^4+b^2*c^2+c^4)+4*a^2*(b^2-c^2)^4*(b^4+b^2*c^2+c^4)+5*a^8*(b^6+c^6)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)-a^4*(b^2-c^2)^2*(5*b^6+9*b^4*c^2+9*b^2*c^4+5*c^6)) : :

X(63659) lies on these lines: {4, 41589}, {5, 63683}, {6, 1173}, {51, 235}, {52, 63674}, {143, 13406}, {185, 23324}, {389, 546}, {403, 973}, {511, 63667}, {568, 63671}, {578, 5944}, {1112, 3574}, {1192, 15024}, {1495, 11576}, {1594, 2781}, {2854, 43844}, {3060, 63657}, {3090, 37473}, {3155, 63717}, {3156, 63718}, {3567, 35488}, {5446, 13383}, {5462, 13568}, {5640, 9786}, {5943, 63679}, {5946, 52003}, {6153, 16534}, {6756, 10110}, {7403, 13567}, {7745, 58529}, {9792, 63668}, {9969, 63699}, {11017, 13365}, {11387, 41424}, {11430, 12107}, {11432, 63665}, {11433, 63666}, {11435, 63675}, {11436, 63676}, {11438, 15026}, {11745, 44084}, {12235, 63686}, {12236, 63685}, {12242, 25338}, {12362, 58480}, {13013, 63691}, {13014, 63692}, {13364, 50138}, {13391, 34577}, {13630, 18567}, {14717, 58476}, {14865, 16105}, {14913, 63702}, {15028, 37487}, {15151, 32184}, {15738, 54001}, {16252, 47328}, {17702, 58488}, {18390, 63672}, {19161, 58532}, {19366, 63669}, {22530, 63690}, {31830, 58546}, {31978, 63726}, {32205, 44673}, {32246, 63694}, {32411, 44961}, {34117, 51994}, {34939, 62376}, {39806, 63687}, {39835, 63696}, {40645, 58518}, {41670, 44802}, {43841, 44439}, {44547, 63698}

X(63659) = midpoint of X(i) and X(j) for these {i,j}: {5446, 44516}, {6746, 43831}
X(63659) = pole of line {12241, 34565} with respect to the Jerabek hyperbola
X(63659) = pole of line {15559, 52945} with respect to the Kiepert hyperbola
X(63659) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63658}, {51, 43823, 58559}, {51, 63670, 235}, {185, 63662, 63728}, {389, 10095, 11746}, {5640, 63660, 63664}, {6756, 10110, 11743}, {9781, 63661, 10594}, {10110, 58489, 40240}, {10110, 58550, 12241}, {10110, 63697, 6756}


X(63660) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 3RD ANTI-EULER

Barycentrics    a^2*(a^12*(b^2+c^2)-a^10*(4*b^4+5*b^2*c^2+4*c^4)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)+a^6*(8*b^6*c^2-6*b^4*c^4+8*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-3*b^6*c^2+8*b^4*c^4-3*b^2*c^6+4*c^8)-a^4*(5*b^10+b^8*c^2-2*b^6*c^4-2*b^4*c^6+b^2*c^8+5*c^10)) : :

X(63660) lies on these lines: {2, 63670}, {3, 63661}, {20, 63697}, {110, 10594}, {235, 3060}, {546, 568}, {2979, 63657}, {5102, 12272}, {5640, 9786}, {5889, 35488}, {5890, 43821}, {6756, 12278}, {7403, 23293}, {7998, 63667}, {10110, 11442}, {11412, 13406}, {11422, 63658}, {11439, 63662}, {11441, 63665}, {11443, 63673}, {11444, 63674}, {11445, 63675}, {11446, 63676}, {11447, 63677}, {11448, 63678}, {11449, 37440}, {11451, 63679}, {11452, 63680}, {11453, 63681}, {11454, 15024}, {11459, 63671}, {12173, 12824}, {12220, 63699}, {12270, 63684}, {12271, 63686}, {12273, 63685}, {12279, 41589}, {12280, 63693}, {12290, 18567}, {13015, 63691}, {13016, 63692}, {13201, 63695}, {18392, 63672}, {18418, 32352}, {18911, 63656}, {19122, 63663}, {19167, 63668}, {19367, 63669}, {22534, 63690}, {32248, 63694}, {32338, 63629}, {34577, 54041}, {37490, 58516}, {39807, 63687}, {39836, 63696}

X(63660) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {63659, 63664, 5640}


X(63661) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 4TH ANTI-EULER

Barycentrics    a^2*(a^12*(b^2+c^2)-a^10*(4*b^4+3*b^2*c^2+4*c^4)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^8*(5*b^6-2*b^4*c^2-2*b^2*c^4+5*c^6)-a^4*(b^2-c^2)^2*(5*b^6+7*b^4*c^2+7*b^2*c^4+5*c^6)+a^6*(8*b^6*c^2-2*b^4*c^4+8*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-5*b^6*c^2+4*b^4*c^4-5*b^2*c^6+4*c^8)) : :

X(63661) lies on these lines: {3, 63660}, {4, 63670}, {6, 1173}, {74, 15024}, {235, 3567}, {546, 5640}, {3521, 10574}, {5889, 13406}, {5890, 35488}, {6403, 63699}, {6756, 12289}, {7403, 23294}, {7592, 43823}, {7731, 63695}, {7999, 63667}, {10095, 11456}, {11412, 63657}, {11451, 43608}, {11455, 63662}, {11457, 63666}, {11459, 63674}, {11460, 63675}, {11461, 63676}, {11464, 37440}, {11465, 63679}, {11468, 15028}, {12111, 63671}, {12279, 18567}, {12281, 63684}, {12282, 63686}, {12284, 63685}, {12290, 41589}, {12291, 63693}, {13017, 63691}, {13018, 63692}, {18394, 63672}, {18912, 63656}, {19168, 63668}, {19368, 63669}, {22535, 63690}, {31371, 61136}, {32249, 63694}, {32339, 63629}, {36753, 58516}, {39808, 63687}, {39837, 63696}

X(63661) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {10594, 63659, 9781}, {63670, 63697, 4}


X(63662) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-EXCENTERS-REFLECTIONS

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(4*a^6-3*a^4*(b^2+c^2)+5*(b^2-c^2)^2*(b^2+c^2)+a^2*(-6*b^4+4*b^2*c^2-6*c^4)) : :

X(63662) lies on these lines: {2, 3}, {6, 38436}, {33, 63669}, {34, 63676}, {53, 51032}, {64, 63726}, {185, 23324}, {1112, 14448}, {1699, 12135}, {1843, 63723}, {1862, 59390}, {1902, 63698}, {2883, 11572}, {5480, 46444}, {5893, 11550}, {5921, 63702}, {6146, 18376}, {6746, 12162}, {11264, 18379}, {11363, 12571}, {11381, 41589}, {11424, 63658}, {11439, 63660}, {11455, 63661}, {11470, 63673}, {11471, 63675}, {11472, 63721}, {11473, 63677}, {11474, 63678}, {11475, 63680}, {11476, 63681}, {11562, 12133}, {11743, 32352}, {12143, 22682}, {12167, 51537}, {12233, 13851}, {12278, 59553}, {12292, 63684}, {12293, 63686}, {12294, 63688}, {12295, 63685}, {12300, 63693}, {12324, 63656}, {13019, 63691}, {13020, 63692}, {13202, 63695}, {13474, 63697}, {13884, 42273}, {13937, 42270}, {15432, 18488}, {16264, 63713}, {18296, 63022}, {19124, 63663}, {19169, 63668}, {21659, 61690}, {22538, 63690}, {23332, 43903}, {27376, 39590}, {31802, 50435}, {32250, 63694}, {32340, 63629}, {32369, 32377}, {36990, 63699}, {39809, 63687}, {39838, 63696}, {40065, 63536}, {40240, 45089}, {40634, 59275}, {41362, 43831}, {44870, 47328}, {59389, 60879}

X(63662) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(38436)}}, {{A, B, C, X(6), X(38438)}}, {{A, B, C, X(8801), X(17578)}}, {{A, B, C, X(10254), X(61133)}}, {{A, B, C, X(38305), X(58805)}}, {{A, B, C, X(46208), X(50689)}}
X(63662) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 546, 235}, {11381, 63670, 41589}, {63659, 63728, 185}


X(63663) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-HONSBERGER

Barycentrics    a^2*(a^10-2*a^6*b^2*c^2-a^2*(b^2-c^2)^4-2*a^8*(b^2+c^2)+b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(2*b^6-b^4*c^2-b^2*c^4+2*c^6)) : :
X(63663) = X[11470]+3*X[44082]

X(63663) lies on these lines: {3, 43811}, {4, 18374}, {5, 19127}, {6, 1173}, {24, 2781}, {25, 15135}, {49, 20423}, {110, 11477}, {141, 13383}, {156, 576}, {182, 546}, {184, 10301}, {206, 578}, {235, 1503}, {237, 61748}, {382, 15462}, {428, 44078}, {511, 37440}, {524, 10539}, {575, 61752}, {599, 43598}, {1176, 7566}, {1177, 32274}, {1386, 63698}, {1428, 63669}, {1495, 15582}, {1598, 19153}, {1620, 34778}, {2207, 28343}, {2330, 63676}, {3098, 12107}, {3518, 37473}, {3542, 34118}, {3589, 7403}, {3618, 63666}, {3818, 13406}, {4232, 15139}, {5050, 63665}, {5085, 63664}, {5092, 14641}, {5476, 32046}, {5621, 12290}, {5889, 56568}, {6467, 15580}, {6593, 7530}, {6759, 8550}, {6776, 56918}, {7517, 9019}, {8538, 8705}, {8540, 9652}, {9306, 37897}, {9667, 19369}, {9786, 19149}, {9968, 11438}, {9969, 63697}, {9971, 34484}, {10095, 44494}, {10249, 15811}, {10516, 19121}, {10540, 63722}, {10984, 16656}, {11255, 34155}, {11381, 15579}, {11470, 44082}, {11663, 18449}, {11743, 19125}, {12088, 54334}, {12105, 52987}, {12294, 35228}, {13347, 19137}, {13353, 14561}, {13434, 38072}, {13861, 16776}, {14157, 43812}, {14530, 32621}, {15073, 19596}, {16655, 62375}, {16658, 47455}, {18378, 45016}, {18567, 48884}, {19119, 63656}, {19122, 63660}, {19124, 63662}, {19126, 63667}, {19128, 35488}, {19129, 63671}, {19130, 63672}, {19131, 63674}, {19133, 63675}, {19138, 63685}, {19139, 32048}, {19140, 63684}, {19141, 63686}, {19142, 63690}, {19147, 63691}, {19148, 63692}, {19150, 63693}, {19161, 44091}, {19171, 63668}, {20987, 44668}, {21637, 63670}, {23324, 37984}, {25338, 34507}, {31166, 39571}, {31670, 37495}, {32217, 44470}, {32344, 63629}, {33591, 54169}, {34148, 54131}, {35707, 44479}, {37200, 52915}, {38317, 50138}, {39811, 63687}, {39840, 63696}, {43273, 43815}, {44077, 51742}, {44495, 50414}, {47352, 61134}, {52016, 63702}, {52525, 53093}, {63420, 63728}

X(63663) = reflection of X(i) in X(j) for these {i,j}: {51730, 1974}
X(63663) = pole of line {1968, 15559} with respect to the Kiepert hyperbola
X(63663) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63688}, {6, 63688, 63673}, {1495, 50649, 15582}, {1503, 1974, 51730}, {6756, 63699, 5480}, {6759, 19136, 8550}, {13861, 44480, 16776}


X(63664) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-HUTSON INTOUCH

Barycentrics    a^2*(a^8+6*a^4*b^2*c^2-2*a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4+8*b^2*c^2+c^4)+2*a^2*(b^6+b^4*c^2+b^2*c^4+c^6)) : :

X(63664) lies on these lines: {2, 3}, {6, 12111}, {40, 63698}, {52, 4550}, {54, 18451}, {55, 63669}, {56, 63676}, {64, 10574}, {74, 15024}, {110, 11425}, {155, 15033}, {159, 51537}, {182, 11381}, {184, 44870}, {185, 5422}, {394, 15056}, {567, 32139}, {569, 11456}, {576, 40318}, {578, 11441}, {590, 9694}, {974, 15054}, {1131, 19006}, {1132, 19005}, {1151, 63677}, {1152, 63678}, {1173, 34801}, {1176, 10541}, {1181, 13434}, {1192, 3066}, {1204, 5943}, {1350, 63688}, {1498, 5012}, {1614, 16261}, {1879, 63540}, {1993, 5907}, {1994, 12164}, {2207, 26216}, {2883, 37649}, {2935, 15059}, {3357, 63697}, {3410, 12429}, {3567, 12163}, {3618, 6225}, {3796, 15811}, {3815, 44528}, {3818, 21659}, {4993, 19172}, {5013, 15355}, {5050, 12174}, {5085, 63663}, {5158, 8745}, {5225, 10831}, {5229, 10832}, {5253, 63429}, {5261, 16541}, {5392, 45300}, {5584, 63675}, {5640, 9786}, {5663, 36753}, {5876, 36749}, {5889, 10982}, {5890, 43613}, {5895, 44883}, {6241, 11472}, {6247, 18911}, {6696, 37648}, {6800, 26883}, {7592, 12162}, {7691, 11743}, {7823, 17035}, {7999, 37483}, {8193, 9812}, {8538, 39588}, {9545, 15052}, {9707, 46261}, {9723, 32819}, {9779, 11365}, {9781, 37489}, {9914, 63726}, {10095, 37490}, {10110, 63425}, {10249, 43815}, {10545, 37487}, {10605, 15043}, {10606, 11451}, {10620, 63684}, {10984, 13474}, {11402, 43605}, {11412, 44413}, {11423, 14094}, {11442, 12241}, {11444, 37498}, {11449, 35259}, {11455, 61134}, {11459, 36747}, {11469, 51171}, {11477, 41716}, {11480, 63680}, {11481, 63681}, {11598, 15021}, {11638, 36202}, {12161, 18435}, {12290, 43651}, {12293, 41171}, {12301, 63686}, {12302, 63685}, {12307, 63693}, {13021, 63691}, {13022, 63692}, {13142, 45794}, {13336, 14915}, {13346, 15066}, {13348, 21766}, {13367, 35264}, {13380, 40393}, {13445, 17825}, {14061, 39841}, {15026, 32138}, {15028, 37475}, {15068, 37472}, {15072, 37514}, {15087, 33539}, {15177, 18483}, {15581, 34775}, {15739, 15801}, {16010, 63694}, {16252, 63422}, {17704, 22112}, {17814, 34148}, {17821, 51033}, {18436, 39522}, {18440, 34799}, {18445, 32136}, {18475, 46852}, {18913, 63084}, {18925, 46818}, {18928, 46373}, {19124, 26206}, {19149, 52028}, {21663, 27355}, {22241, 32823}, {22549, 63690}, {26913, 40686}, {26927, 27003}, {26935, 27065}, {26944, 43816}, {31371, 34207}, {32345, 63629}, {32620, 37486}, {33541, 63729}, {34469, 41428}, {35450, 63714}, {37476, 52525}, {37485, 51538}, {37557, 51118}, {39812, 63687}, {40917, 62708}, {43598, 47391}, {43650, 46850}, {43821, 61702}, {51170, 63702}, {53860, 56292}, {54105, 55561}, {54550, 60225}, {54658, 62899}

X(63664) = pole of line {69, 10574} with respect to the Wallace hyperbola
X(63664) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(24), X(45300)}}, {{A, B, C, X(140), X(34801)}}, {{A, B, C, X(376), X(57414)}}, {{A, B, C, X(427), X(22334)}}, {{A, B, C, X(1173), X(18533)}}, {{A, B, C, X(1176), X(3522)}}, {{A, B, C, X(1370), X(31371)}}, {{A, B, C, X(1594), X(13380)}}, {{A, B, C, X(3516), X(34207)}}, {{A, B, C, X(3541), X(16835)}}, {{A, B, C, X(6815), X(15077)}}, {{A, B, C, X(7383), X(55978)}}, {{A, B, C, X(7576), X(54550)}}, {{A, B, C, X(10154), X(40801)}}, {{A, B, C, X(12173), X(41489)}}, {{A, B, C, X(18420), X(32533)}}, {{A, B, C, X(18848), X(34603)}}, {{A, B, C, X(31180), X(60121)}}, {{A, B, C, X(34439), X(35477)}}
X(63664) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {64, 10601, 10574}, {394, 33537, 15056}, {578, 15030, 11441}, {5012, 11439, 1498}, {5640, 63660, 63659}, {11472, 36752, 6241}, {13434, 15305, 1181}, {15033, 15058, 155}, {15043, 15062, 10605}


X(63665) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-INCIRCLE-CIRCLES

Barycentrics    a^2*(a^8-6*a^4*b^2*c^2-2*a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4-10*b^2*c^2+c^4)+2*a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(63665) lies on these lines: {2, 3}, {184, 44863}, {195, 11743}, {399, 37493}, {576, 43129}, {999, 63669}, {1181, 63670}, {1351, 63688}, {1482, 63698}, {1498, 63697}, {3295, 63676}, {3311, 63677}, {3312, 63678}, {3527, 15087}, {5050, 63663}, {5504, 15039}, {7689, 44106}, {9781, 32139}, {9861, 63696}, {9919, 63695}, {9920, 63629}, {10095, 11456}, {10110, 18445}, {10306, 63675}, {10540, 10982}, {11426, 63658}, {11432, 63659}, {11439, 38848}, {11441, 63660}, {11477, 41714}, {11482, 63673}, {11485, 63680}, {11486, 63681}, {11820, 63727}, {12164, 61724}, {12236, 14094}, {12308, 63684}, {12309, 63686}, {12310, 63685}, {12315, 41589}, {12316, 41713}, {13023, 63691}, {13024, 63692}, {13093, 63728}, {13175, 63687}, {15038, 19347}, {15083, 21651}, {15317, 52518}, {15873, 25738}, {16658, 18952}, {17810, 34783}, {18350, 44413}, {18475, 44871}, {18914, 63656}, {19173, 63668}, {22550, 63690}, {26883, 36753}, {32063, 43845}, {32254, 63694}, {33878, 63723}, {34417, 37490}, {35259, 37495}, {36749, 43844}, {39590, 44524}, {39879, 63699}, {46852, 63425}

X(63665) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3426), X(35491)}}, {{A, B, C, X(3523), X(15317)}}, {{A, B, C, X(3527), X(10018)}}, {{A, B, C, X(5504), X(10299)}}, {{A, B, C, X(7505), X(52518)}}, {{A, B, C, X(22334), X(35481)}}


X(63666) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-INVERSE-IN-INCIRCLE

Barycentrics    a^10-a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4+3*b^2*c^2+c^4)+a^2*(b^2-c^2)^2*(b^4+12*b^2*c^2+c^4)+2*a^4*(b^6-3*b^4*c^2-3*b^2*c^4+c^6) : :

X(63666) lies on these lines: {2, 3}, {8, 63698}, {69, 63688}, {388, 63669}, {497, 63676}, {1614, 63036}, {1899, 63656}, {1992, 63673}, {2550, 63675}, {2888, 11743}, {3068, 63677}, {3069, 63678}, {3527, 45968}, {3618, 63663}, {5422, 16655}, {5446, 45794}, {5480, 11441}, {5640, 14216}, {6225, 63728}, {9781, 37644}, {9815, 15072}, {10110, 11442}, {11002, 11411}, {11426, 46818}, {11427, 63658}, {11433, 63659}, {11444, 31670}, {11457, 63661}, {11487, 62188}, {11488, 63680}, {11489, 63681}, {12256, 63717}, {12257, 63718}, {12317, 63684}, {12318, 63686}, {12319, 63685}, {12324, 41589}, {12325, 63693}, {13025, 63691}, {13026, 63692}, {13203, 63695}, {13338, 18353}, {13434, 31383}, {14561, 52525}, {15077, 22336}, {15435, 62174}, {15436, 18489}, {15801, 20423}, {16658, 36752}, {18474, 44863}, {19130, 26883}, {19174, 63668}, {22555, 63690}, {32064, 43816}, {32255, 63694}, {32346, 63629}, {32834, 63477}, {36851, 63699}, {39813, 63687}, {39842, 63696}, {47353, 52518}, {51212, 63723}, {54736, 60255}, {54909, 62925}

X(63666) = pole of line {69, 45308} with respect to the Wallace hyperbola
X(63666) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(69), X(45308)}}, {{A, B, C, X(3515), X(22336)}}, {{A, B, C, X(7391), X(14860)}}, {{A, B, C, X(7496), X(15077)}}
X(63666) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1899, 63670, 63656}


X(63667) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 6TH ANTI-MIXTILINEAR

Barycentrics    (a^2-b^2-c^2)*(2*a^8-3*(b^2-c^2)^4-5*a^6*(b^2+c^2)+5*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(b^4-10*b^2*c^2+c^4)) : :

X(63667) lies on these lines: {2, 3}, {51, 31807}, {69, 63656}, {95, 63668}, {141, 63699}, {143, 45118}, {182, 63658}, {184, 61544}, {206, 16254}, {343, 61607}, {511, 63659}, {620, 63696}, {1038, 63669}, {1040, 63676}, {1173, 18449}, {1209, 51425}, {1216, 63683}, {1351, 43841}, {1352, 19132}, {1614, 19129}, {2165, 52703}, {3055, 22401}, {3462, 59661}, {3564, 21637}, {3574, 32269}, {3917, 63670}, {5408, 63717}, {5409, 63718}, {5448, 44201}, {5449, 18914}, {5891, 63714}, {5894, 63726}, {5907, 32392}, {5972, 63695}, {6036, 63687}, {6699, 63685}, {6723, 17704}, {7752, 41008}, {7998, 63660}, {7999, 63661}, {8538, 18583}, {9729, 47296}, {9781, 18438}, {10319, 63675}, {10539, 61606}, {10628, 40247}, {10634, 42143}, {10635, 42146}, {10897, 18762}, {10898, 18538}, {11511, 63673}, {11513, 42583}, {11514, 42582}, {11515, 63680}, {11516, 63681}, {11574, 63688}, {11743, 32396}, {11745, 32223}, {11793, 63697}, {12233, 61646}, {12241, 58447}, {12358, 63684}, {12359, 63686}, {12363, 63693}, {12900, 13416}, {13027, 63691}, {13028, 63692}, {13142, 23292}, {13292, 32136}, {14852, 31804}, {15905, 31404}, {16252, 21243}, {16625, 58550}, {18357, 24301}, {18358, 19131}, {19126, 63663}, {22104, 63715}, {22581, 63690}, {22660, 44683}, {26883, 45303}, {31379, 63708}, {31831, 61608}, {32257, 63694}, {32348, 63629}, {32832, 41005}, {34573, 52520}, {35254, 63721}, {37613, 63698}, {40685, 44573}, {44516, 44665}, {46850, 63728}

X(63667) = X(i)-complementary conjugate of X(j) for these {i, j}: {54629, 20305}
X(63667) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(12173), X(13380)}}, {{A, B, C, X(23047), X(45300)}}, {{A, B, C, X(41891), X(44802)}}, {{A, B, C, X(43970), X(61736)}}


X(63668) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 1ST ANTI-SHARYGIN

Barycentrics    (a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^4+b^4-b^2*c^2-a^2*(2*b^2+c^2))*(a^4-b^2*c^2+c^4-a^2*(b^2+2*c^2))*(a^10-3*a^8*(b^2+c^2)+2*(b^2-c^2)^4*(b^2+c^2)+a^6*(b^4+c^4)-2*a^2*(b^2-c^2)^2*(3*b^4+b^2*c^2+3*c^4)+a^4*(5*b^6-b^4*c^2-b^2*c^4+5*c^6)) : :

X(63668) lies on circumconic {{A, B, C, X(45090), X(45300)}} and on these lines: {54, 35488}, {95, 63667}, {97, 63657}, {235, 275}, {546, 8884}, {4993, 19172}, {4994, 10594}, {6756, 19205}, {7403, 23295}, {7566, 61362}, {9792, 63659}, {13406, 19210}, {19166, 63656}, {19167, 63660}, {19168, 63661}, {19169, 63662}, {19171, 63663}, {19173, 63665}, {19174, 63666}, {19175, 63669}, {19176, 63671}, {19177, 63672}, {19178, 63673}, {19179, 63674}, {19181, 63675}, {19182, 63676}, {19183, 63677}, {19184, 63678}, {19185, 37440}, {19188, 63679}, {19190, 63680}, {19191, 63681}, {19192, 63682}, {19193, 63685}, {19194, 63683}, {19195, 63684}, {19196, 63686}, {19197, 63688}, {19198, 63690}, {19203, 63691}, {19204, 63692}, {19206, 41589}, {19207, 63693}, {19208, 63695}, {21638, 63670}, {32258, 63694}, {39814, 63687}, {39843, 63696}


X(63669) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-TANGENTIAL-MIDARC

Barycentrics    a*(a^6-a^4*(b-c)^2+(b^2-c^2)^2*(b^2-3*b*c+c^2)-a^2*(b-c)^2*(b^2+b*c+c^2)) : :

X(63669) lies on these lines: {1, 546}, {4, 9628}, {11, 34}, {12, 7403}, {33, 63662}, {35, 63682}, {36, 37440}, {55, 63664}, {56, 10594}, {65, 63675}, {388, 63666}, {614, 10301}, {999, 63665}, {1038, 63667}, {1060, 7173}, {1425, 63670}, {1428, 63663}, {1469, 63688}, {1718, 12699}, {1870, 10896}, {2067, 63677}, {2217, 42753}, {3056, 63723}, {3585, 63672}, {4296, 63657}, {4347, 17606}, {5225, 9627}, {5262, 61716}, {5272, 37897}, {5432, 19372}, {5433, 13383}, {6284, 37697}, {6285, 63728}, {6502, 63678}, {6756, 7354}, {7051, 63680}, {7191, 9657}, {7280, 12107}, {7352, 63683}, {7355, 41589}, {7356, 63693}, {7566, 10895}, {7741, 13406}, {7951, 50138}, {8144, 18514}, {9667, 19365}, {10483, 38458}, {10950, 34036}, {11743, 18984}, {18447, 63671}, {18915, 63656}, {19175, 63668}, {19366, 63659}, {19367, 63660}, {19368, 63661}, {19369, 63673}, {19373, 63681}, {19469, 63685}, {19470, 63684}, {19471, 63686}, {19472, 63690}, {19475, 63691}, {19476, 63692}, {19505, 63695}, {32065, 43820}, {32259, 63694}, {32350, 63629}, {39815, 63687}, {39844, 63696}

X(63669) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 546, 63676}


X(63670) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-WASAT

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10*(b^2+c^2)-3*a^2*(b^2-c^2)^4*(b^2+c^2)+(b^2-c^2)^4*(b^4-4*b^2*c^2+c^4)+2*a^4*(b^2-c^2)^2*(b^4+5*b^2*c^2+c^4)-a^8*(3*b^4+2*b^2*c^2+3*c^4)+2*a^6*(b^6-3*b^4*c^2-3*b^2*c^4+c^6)) : :

X(63670) lies on these lines: {2, 63660}, {4, 63661}, {5, 54384}, {51, 235}, {52, 13406}, {125, 7403}, {184, 10110}, {185, 546}, {373, 63679}, {389, 35488}, {511, 63657}, {973, 44960}, {1181, 63665}, {1204, 5943}, {1425, 63669}, {1843, 63699}, {1899, 63656}, {3270, 63676}, {3611, 63675}, {3857, 15738}, {3917, 63667}, {5562, 63674}, {6467, 63688}, {6756, 16657}, {7394, 51757}, {10301, 10619}, {10575, 18567}, {11381, 41589}, {11572, 41580}, {13366, 63658}, {13367, 37440}, {13383, 45186}, {13417, 63695}, {13754, 63671}, {13851, 63672}, {14845, 50138}, {21637, 63663}, {21638, 63668}, {21639, 63673}, {21640, 63677}, {21641, 63678}, {21647, 63680}, {21648, 63681}, {21649, 63685}, {21650, 63684}, {21651, 63686}, {21652, 63690}, {21657, 63691}, {21658, 63692}, {21660, 63693}, {21663, 63682}, {25338, 48914}, {30443, 63726}, {32062, 63714}, {32260, 63694}, {32352, 63629}, {39817, 63687}, {39846, 63696}, {44263, 58546}

X(63670) = pole of line {3627, 12241} with respect to the Jerabek hyperbola
X(63670) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 63661, 63697}, {12233, 43823, 51}, {41589, 63662, 11381}


X(63671) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND EHRMANN-SIDE

Barycentrics    (a^2-b^2-c^2)*(a^8+3*(b^2-c^2)^4+2*a^6*(b^2+c^2)-2*a^2*(b^2-c^2)^2*(b^2+c^2)-2*a^4*(2*b^4-5*b^2*c^2+2*c^4)) : :

X(63671) lies on these lines: {2, 3}, {265, 63685}, {567, 63658}, {568, 63659}, {569, 7687}, {974, 15027}, {1879, 5158}, {3521, 26937}, {6033, 63696}, {6288, 63629}, {6321, 63687}, {7728, 63695}, {8538, 19130}, {9833, 18430}, {9927, 43844}, {10316, 43457}, {11459, 63660}, {11559, 31371}, {11743, 12606}, {12111, 63661}, {12162, 63697}, {12429, 63686}, {13754, 63670}, {14644, 18952}, {17505, 56071}, {18436, 63683}, {18438, 63688}, {18439, 41589}, {18440, 63699}, {18442, 63724}, {18447, 63669}, {18449, 63673}, {18453, 63675}, {18455, 63676}, {18457, 42268}, {18459, 42269}, {18468, 42103}, {18470, 42106}, {18504, 41171}, {18909, 38724}, {18917, 63656}, {19129, 63663}, {19176, 63668}, {20957, 63708}, {22584, 63684}, {22808, 63690}, {22813, 63691}, {22814, 63692}, {22815, 63693}, {25738, 43831}, {32272, 63694}, {44863, 45118}

X(63671) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(265), X(52296)}}, {{A, B, C, X(3516), X(11559)}}, {{A, B, C, X(6143), X(15077)}}, {{A, B, C, X(7547), X(17505)}}, {{A, B, C, X(7577), X(32533)}}, {{A, B, C, X(13619), X(31371)}}, {{A, B, C, X(17506), X(56071)}}


X(63672) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND EHRMANN-VERTEX

Barycentrics    a^10-a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^4+c^4)+a^2*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+a^4*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6) : :

X(63672) lies on these lines: {2, 3}, {6, 45731}, {143, 18474}, {155, 20424}, {156, 3574}, {206, 34786}, {265, 9781}, {389, 34514}, {542, 63673}, {568, 18356}, {1352, 31815}, {1493, 61751}, {1503, 44494}, {3060, 6288}, {3521, 11455}, {3583, 63676}, {3585, 63669}, {3818, 5876}, {5480, 12370}, {5946, 18381}, {6243, 41171}, {6564, 63677}, {6565, 63678}, {6689, 34513}, {7706, 13491}, {9704, 61715}, {9786, 10264}, {9927, 11743}, {9969, 48889}, {10984, 61299}, {11424, 30522}, {11459, 15800}, {11550, 13630}, {11804, 12412}, {12293, 19139}, {13419, 61752}, {13565, 61644}, {13851, 63670}, {14216, 45956}, {14627, 34799}, {14805, 41482}, {15072, 15084}, {16808, 63680}, {16809, 63681}, {16881, 25738}, {17834, 21230}, {18376, 43865}, {18382, 38136}, {18383, 63697}, {18388, 63658}, {18390, 63659}, {18392, 63660}, {18394, 63661}, {18406, 63675}, {18480, 63698}, {18488, 32138}, {18918, 63656}, {19130, 63663}, {19177, 63668}, {19479, 63685}, {19506, 63695}, {22661, 63686}, {22802, 51756}, {22816, 63690}, {22821, 63691}, {22822, 63692}, {32046, 61139}, {32171, 61743}, {32273, 63694}, {32365, 61747}, {32423, 36749}, {37490, 61700}, {39818, 63687}, {39847, 63696}, {44863, 58550}, {47065, 50471}, {48901, 63723}

X(63672) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(3521), X(7525)}}, {{A, B, C, X(7577), X(34449)}}, {{A, B, C, X(13564), X(18550)}}, {{A, B, C, X(14860), X(44288)}}, {{A, B, C, X(17505), X(49671)}}, {{A, B, C, X(21400), X(34864)}}, {{A, B, C, X(45178), X(61133)}}
X(63672) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {26, 381, 5}


X(63673) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 2ND EHRMANN

Barycentrics    a^2*(a^10-4*a^8*(b^2+c^2)-5*a^2*(b^4-c^4)^2+a^6*(4*b^4+6*b^2*c^2+4*c^4)+(b^2-c^2)^2*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6)+a^4*(2*b^6+5*b^4*c^2+5*b^2*c^4+2*c^6)) : :

X(63673) lies on these lines: {3, 9019}, {6, 1173}, {182, 12107}, {235, 8541}, {511, 63682}, {524, 7403}, {542, 63672}, {546, 576}, {567, 11663}, {569, 8705}, {575, 9969}, {578, 12061}, {597, 13383}, {895, 52518}, {1351, 9972}, {1843, 15582}, {1992, 63666}, {2393, 37505}, {2781, 35502}, {2854, 36749}, {3090, 10510}, {3518, 9971}, {3527, 11216}, {3628, 51744}, {4663, 63698}, {5198, 11743}, {5476, 11255}, {6593, 13861}, {6756, 8550}, {7405, 25488}, {7507, 32274}, {7566, 15069}, {8537, 35488}, {8538, 63674}, {8539, 63675}, {8540, 63676}, {8548, 63683}, {8549, 41589}, {9813, 63679}, {9926, 63686}, {9970, 61984}, {9976, 63684}, {9977, 63693}, {10110, 22330}, {10301, 15004}, {11416, 63657}, {11443, 63660}, {11470, 63662}, {11477, 41716}, {11482, 63665}, {11511, 63667}, {12039, 15644}, {12105, 51733}, {12596, 63685}, {13037, 63691}, {13038, 63692}, {13248, 63695}, {14865, 37473}, {15019, 17810}, {15579, 19161}, {15826, 15873}, {16776, 44469}, {17714, 19127}, {18449, 63671}, {18919, 63656}, {19136, 22234}, {19178, 63668}, {19369, 63669}, {21639, 63670}, {22830, 63690}, {32191, 39588}, {32368, 63629}, {34507, 50138}, {39819, 63687}, {39848, 63696}, {41597, 43130}

X(63673) = pole of line {7748, 15559} with respect to the Kiepert hyperbola
X(63673) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 63688, 63663}


X(63674) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 2ND EULER

Barycentrics    (a^2-b^2-c^2)*(3*(b^2-c^2)^4+3*a^6*(b^2+c^2)-3*a^2*(b^2-c^2)^2*(b^2+c^2)+a^4*(-3*b^4+10*b^2*c^2-3*c^4)) : :

X(63674) lies on these lines: {2, 3}, {52, 63659}, {68, 63686}, {113, 16254}, {114, 63696}, {115, 63687}, {125, 63685}, {265, 31804}, {343, 5448}, {569, 63658}, {1060, 7173}, {1062, 3614}, {1209, 63629}, {1352, 63699}, {3258, 63708}, {3817, 63698}, {4549, 63721}, {5158, 9722}, {5562, 63670}, {5907, 63697}, {7723, 63684}, {8251, 63675}, {8538, 63673}, {9967, 63688}, {10110, 45118}, {10575, 23332}, {10592, 18455}, {10593, 18447}, {10634, 42107}, {10635, 42110}, {10897, 42270}, {10898, 42273}, {11411, 63656}, {11444, 63660}, {11459, 63661}, {11743, 12363}, {11750, 23324}, {11898, 63702}, {12134, 61747}, {12162, 41589}, {12233, 63735}, {12358, 13417}, {12359, 43831}, {12370, 61690}, {12606, 63693}, {13039, 63691}, {13040, 63692}, {15075, 31489}, {16252, 18474}, {16625, 18388}, {18396, 32533}, {18435, 63714}, {18438, 38136}, {18445, 61544}, {18468, 42135}, {18470, 42138}, {18931, 31371}, {19129, 39884}, {19131, 63663}, {19179, 63668}, {19925, 24301}, {20427, 63726}, {22660, 45187}, {22834, 63690}, {23115, 31415}, {23515, 44573}, {25641, 63715}, {31815, 47582}, {32275, 63694}, {35240, 63724}, {37511, 63723}, {39510, 54260}, {43595, 50435}, {43839, 63631}

X(63674) = complement of X(35477)
X(63674) = pole of line {6, 7689} with respect to the Kiepert hyperbola
X(63674) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(12173), X(43917)}}, {{A, B, C, X(17505), X(23047)}}, {{A, B, C, X(18386), X(61133)}}
X(63674) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5562, 63670, 63683}


X(63675) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND EXTANGENTS

Barycentrics    a*(a^9+a^5*b*(b-c)^2*c+a^8*(b+c)-a^4*b*c*(b+c)^3-2*a^7*(b^2+c^2)-a*(b-c)^2*(b+c)^4*(b^2-3*b*c+c^2)+2*a^3*(b^2-c^2)^2*(b^2-b*c+c^2)+2*a^2*(b-c)^2*(b+c)^3*(b^2+b*c+c^2)-(b-c)^4*(b+c)^3*(b^2+3*b*c+c^2)-2*a^6*(b^3+b^2*c+b*c^2+c^3)) : :

X(63675) lies on these lines: {19, 235}, {40, 546}, {55, 10594}, {65, 63669}, {2550, 63666}, {3101, 63657}, {3611, 63670}, {3779, 63688}, {3925, 7403}, {5415, 63677}, {5416, 63678}, {5584, 63664}, {6197, 35488}, {6237, 63683}, {6253, 6756}, {6254, 41589}, {6255, 63693}, {7688, 63682}, {7724, 63684}, {8141, 13406}, {8251, 63674}, {8539, 63673}, {9816, 63679}, {10119, 63695}, {10306, 63665}, {10319, 63667}, {10636, 63680}, {10637, 63681}, {10902, 37440}, {11428, 63658}, {11435, 63659}, {11445, 63660}, {11460, 63661}, {11471, 63662}, {12417, 63686}, {12661, 63685}, {13041, 63691}, {13042, 63692}, {18406, 63672}, {18453, 63671}, {18921, 63656}, {19133, 63663}, {19181, 63668}, {22840, 63690}, {32277, 63694}, {32370, 63629}, {39821, 63687}, {39850, 63696}


X(63676) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND INTANGENTS

Barycentrics    a*(a^6-a^4*(b+c)^2+(b^2-c^2)^2*(b^2+3*b*c+c^2)-a^2*(b^4+b^3*c+b*c^3+c^4)) : :

X(63676) lies on these lines: {1, 546}, {2, 9628}, {11, 7403}, {12, 33}, {34, 63662}, {35, 37440}, {36, 63682}, {55, 10594}, {56, 63664}, {497, 63666}, {612, 10301}, {1040, 63667}, {1062, 3614}, {1250, 63681}, {1469, 63723}, {1490, 63295}, {1717, 26446}, {2066, 63677}, {2330, 63663}, {2476, 9639}, {3056, 63688}, {3057, 63698}, {3085, 9629}, {3091, 9630}, {3100, 63657}, {3270, 63670}, {3295, 63665}, {3583, 63672}, {3585, 37729}, {3920, 9670}, {4354, 31479}, {5010, 12107}, {5268, 37897}, {5414, 63678}, {5432, 13383}, {5433, 9817}, {5587, 38336}, {6198, 10895}, {6238, 63683}, {6284, 6756}, {6285, 41589}, {6286, 63693}, {7073, 37699}, {7354, 37696}, {7355, 63728}, {7566, 10896}, {7727, 63684}, {7741, 50138}, {7951, 8144}, {8540, 63673}, {9539, 10588}, {9551, 10407}, {9627, 10590}, {9640, 11681}, {9652, 11429}, {9931, 63686}, {10118, 63695}, {10149, 37984}, {10638, 63680}, {11189, 43819}, {11436, 63659}, {11446, 63660}, {11461, 63661}, {11743, 13079}, {12888, 63685}, {13043, 63691}, {13044, 63692}, {15338, 54401}, {18455, 63671}, {18513, 18567}, {18922, 63656}, {19182, 63668}, {22954, 63690}, {32286, 63694}, {32378, 63629}, {37529, 52371}, {39822, 63687}, {39851, 63696}

X(63676) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 546, 63669}


X(63677) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 1ST KENMOTU DIAGONALS

Barycentrics    a^2*(a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))+2*a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-2*(a^2+2*b^2)*c^2+c^4)*S : :

X(63677) lies on these lines: {6, 1173}, {235, 3071}, {371, 546}, {372, 37440}, {590, 7403}, {615, 13383}, {1151, 63664}, {2066, 63676}, {2067, 63669}, {3068, 63666}, {3070, 6756}, {3311, 63665}, {5415, 63675}, {6200, 63682}, {6396, 12107}, {6413, 63718}, {6454, 12105}, {6564, 63672}, {6565, 11265}, {7566, 42265}, {7969, 63698}, {8855, 37897}, {10576, 50138}, {10665, 63683}, {10880, 23261}, {10897, 42270}, {10961, 63679}, {11417, 42262}, {11447, 63660}, {11473, 63662}, {11513, 42583}, {11743, 49256}, {12375, 63684}, {12424, 63686}, {12891, 63685}, {12964, 41589}, {12965, 63693}, {13045, 63691}, {13046, 63692}, {13287, 63695}, {18457, 42268}, {18923, 63656}, {19183, 63668}, {21640, 63670}, {22960, 63690}, {25338, 58866}, {26920, 63717}, {32291, 63694}, {32384, 63629}, {33591, 52046}, {39823, 63687}, {39852, 63696}, {49250, 63728}

X(63677) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63678}


X(63678) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 2ND KENMOTU DIAGONALS

Barycentrics    a^2*(a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))-2*a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-2*(a^2+2*b^2)*c^2+c^4)*S : :

X(63678) lies on these lines: {6, 1173}, {235, 3070}, {371, 37440}, {372, 546}, {590, 13383}, {615, 7403}, {1152, 63664}, {3069, 63666}, {3071, 6756}, {3312, 63665}, {5414, 63676}, {5416, 63675}, {6200, 12107}, {6396, 63682}, {6414, 63717}, {6453, 12105}, {6502, 63669}, {6564, 11266}, {6565, 63672}, {7566, 42262}, {7968, 63698}, {8854, 31454}, {8911, 63718}, {8960, 25338}, {10577, 50138}, {10666, 63683}, {10881, 23251}, {10898, 42273}, {10963, 63679}, {11418, 42265}, {11448, 63660}, {11474, 63662}, {11514, 42582}, {11743, 49257}, {12376, 63684}, {12425, 63686}, {12892, 63685}, {12970, 41589}, {12971, 63693}, {13047, 63691}, {13048, 63692}, {13288, 63695}, {18459, 42269}, {18924, 63656}, {19184, 63668}, {21641, 63670}, {22961, 63690}, {32292, 63694}, {32385, 63629}, {33591, 52045}, {39824, 63687}, {39853, 63696}, {49251, 63728}

X(63678) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63677}


X(63679) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND SUBMEDIAL

Barycentrics    2*a^10-5*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-4*a^2*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+2*a^6*(b^4+4*b^2*c^2+c^4)+4*a^4*(b^6+b^4*c^2+b^2*c^4+c^6) : :
X(63679) = -X[31804]+3*X[37506]

X(63679) lies on these lines: {2, 3}, {6, 63702}, {52, 44683}, {141, 13346}, {182, 6247}, {185, 37649}, {343, 11424}, {373, 63670}, {389, 18583}, {569, 18914}, {578, 3564}, {1192, 9815}, {1352, 11425}, {1353, 11411}, {3589, 6696}, {3618, 18913}, {3818, 34782}, {4550, 22660}, {5050, 18909}, {5286, 47297}, {5432, 19372}, {5433, 9817}, {5446, 44201}, {5462, 44158}, {5480, 46730}, {5892, 63714}, {5893, 20376}, {5907, 23292}, {5943, 63659}, {6684, 63698}, {6690, 58403}, {6691, 58402}, {6721, 63687}, {6722, 63696}, {6723, 63695}, {7789, 14767}, {9306, 63658}, {9605, 59657}, {9786, 14561}, {9813, 63673}, {9816, 63675}, {9820, 63686}, {9822, 13348}, {9826, 61548}, {9827, 63693}, {9833, 39884}, {10601, 26937}, {10643, 63680}, {10644, 63681}, {10961, 63677}, {10963, 63678}, {10982, 41588}, {11017, 58435}, {11245, 13434}, {11427, 12164}, {11430, 18358}, {11432, 59399}, {11441, 61690}, {11451, 63660}, {11465, 63661}, {11695, 25563}, {11743, 13598}, {11745, 19130}, {12111, 14389}, {12241, 21243}, {12900, 63685}, {13053, 63691}, {13054, 63692}, {13335, 63713}, {13347, 19137}, {13352, 61545}, {13394, 26883}, {14216, 37476}, {15012, 25555}, {15045, 43607}, {15252, 37592}, {15325, 37696}, {15873, 61646}, {16252, 44870}, {16318, 26216}, {17704, 58445}, {17814, 59553}, {17834, 21850}, {18440, 18925}, {18488, 37513}, {18928, 58378}, {19188, 63668}, {22973, 63690}, {23328, 38317}, {25066, 59483}, {26927, 55900}, {26935, 55902}, {27364, 60839}, {31804, 37506}, {32205, 55295}, {32300, 63694}, {34380, 36747}, {36749, 40318}, {36752, 51732}, {37498, 48876}, {37514, 38110}, {40647, 61540}, {44451, 44931}, {44516, 61606}, {45089, 63425}, {45138, 59004}, {45300, 60241}, {45958, 61608}, {45959, 61619}, {55294, 63632}, {55304, 59566}, {63704, 63729}

X(63679) = midpoint of X(i) and X(j) for these {i,j}: {3, 1595}
X(63679) = complement of X(6823)
X(63679) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1217), X(10565)}}, {{A, B, C, X(1594), X(45138)}}, {{A, B, C, X(3547), X(6662)}}, {{A, B, C, X(6636), X(57414)}}, {{A, B, C, X(6677), X(14938)}}, {{A, B, C, X(6803), X(60007)}}, {{A, B, C, X(7507), X(13380)}}, {{A, B, C, X(9825), X(40448)}}, {{A, B, C, X(40410), X(58465)}}
X(63679) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 1595, 30}, {343, 11424, 13142}, {3589, 6696, 9729}, {3589, 63723, 63699}, {5907, 23292, 61607}, {11411, 11426, 1353}, {12241, 21243, 61544}, {14216, 37476, 48906}, {44870, 58447, 16252}


X(63680) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND INNER TRI-EQUILATERAL

Barycentrics    sqrt(3)*a^2*(a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))+6*a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-2*(a^2+2*b^2)*c^2+c^4)*S : :

X(63680) lies on these lines: {6, 1173}, {15, 546}, {16, 37440}, {18, 25338}, {235, 5321}, {397, 10301}, {3443, 9142}, {5237, 12105}, {5318, 6756}, {5349, 37984}, {7051, 63669}, {7403, 23302}, {7566, 42098}, {10632, 35488}, {10634, 42107}, {10636, 63675}, {10638, 63676}, {10643, 63679}, {10645, 63682}, {10646, 12107}, {10657, 63684}, {10659, 63686}, {10661, 63683}, {10663, 63685}, {10675, 41589}, {10677, 63693}, {10681, 63695}, {11267, 13406}, {11420, 42095}, {11452, 63660}, {11475, 63662}, {11480, 63664}, {11485, 63665}, {11488, 63666}, {11515, 63667}, {13057, 63691}, {13058, 63692}, {13383, 23303}, {16773, 37897}, {16808, 63672}, {16966, 50138}, {18468, 42103}, {18929, 63656}, {19190, 63668}, {21647, 63670}, {22238, 37775}, {22974, 63690}, {32301, 63694}, {32397, 63629}, {33416, 34577}, {39829, 63687}, {39858, 63696}, {42814, 44961}

X(63680) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63681}


X(63681) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND OUTER TRI-EQUILATERAL

Barycentrics    sqrt(3)*a^2*(a-b-c)*(a+b-c)*(a-b+c)*(a+b+c)*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))-6*a^2*(a^2+b^2-c^2)*(a^2-b^2+c^2)*((a^2-b^2)^2-2*(a^2+2*b^2)*c^2+c^4)*S : :

X(63681) lies on these lines: {6, 1173}, {15, 37440}, {16, 546}, {17, 25338}, {235, 5318}, {398, 10301}, {1250, 63676}, {3442, 9142}, {5238, 12105}, {5321, 6756}, {5350, 37984}, {7403, 23303}, {7566, 42095}, {10633, 35488}, {10635, 42110}, {10637, 63675}, {10644, 63679}, {10645, 12107}, {10646, 63682}, {10658, 63684}, {10660, 63686}, {10662, 63683}, {10664, 63685}, {10676, 41589}, {10678, 63693}, {10682, 63695}, {11268, 13406}, {11421, 42098}, {11453, 63660}, {11476, 63662}, {11481, 63664}, {11486, 63665}, {11489, 63666}, {11516, 63667}, {13059, 63691}, {13060, 63692}, {13383, 23302}, {16772, 37897}, {16809, 63672}, {16967, 50138}, {18470, 42106}, {18930, 63656}, {19191, 63668}, {19373, 63669}, {21648, 63670}, {22236, 37776}, {22975, 63690}, {32302, 63694}, {32398, 63629}, {33417, 34577}, {39830, 63687}, {39859, 63696}, {42813, 44961}

X(63681) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63680}


X(63682) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND TRINH

Barycentrics    a^2*(a^8+4*a^4*b^2*c^2-2*a^6*(b^2+c^2)-(b^2-c^2)^2*(b^4+5*b^2*c^2+c^4)+a^2*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)) : :

X(63682) lies on these lines: {2, 3}, {35, 63669}, {36, 63676}, {49, 15058}, {54, 18435}, {74, 63684}, {143, 63425}, {156, 15030}, {182, 9968}, {184, 45959}, {511, 63673}, {567, 11423}, {568, 1173}, {569, 5663}, {578, 1493}, {1092, 14128}, {1147, 15060}, {1154, 11424}, {1204, 12006}, {1209, 61744}, {1614, 14805}, {1993, 31834}, {3098, 63688}, {3357, 41589}, {3410, 43818}, {3567, 63392}, {3579, 63698}, {3581, 9781}, {3818, 15582}, {3833, 43901}, {4549, 31815}, {5012, 18439}, {5092, 14641}, {5563, 37729}, {5892, 63697}, {5907, 41597}, {5944, 46261}, {5946, 7689}, {6200, 63677}, {6241, 13353}, {6396, 63678}, {6689, 61749}, {6759, 10610}, {7688, 63675}, {7691, 63693}, {7706, 34798}, {7999, 37477}, {9306, 43394}, {9730, 32138}, {9813, 55583}, {9822, 55631}, {9827, 37478}, {9938, 59553}, {9972, 44439}, {10264, 18952}, {10539, 45958}, {10606, 15805}, {10625, 33533}, {10645, 63680}, {10646, 63681}, {11381, 37513}, {11425, 15068}, {11430, 61753}, {11438, 15026}, {11440, 37481}, {11442, 45970}, {11444, 37495}, {11454, 15024}, {11459, 37472}, {11468, 15028}, {11472, 37476}, {11550, 13470}, {11591, 13352}, {11695, 43604}, {12022, 18356}, {12162, 32046}, {12228, 14094}, {12307, 62187}, {12901, 63685}, {12902, 25714}, {13061, 63691}, {13062, 63692}, {13293, 34128}, {13346, 15067}, {13363, 32210}, {13434, 34783}, {13452, 61136}, {13472, 15087}, {13754, 37505}, {14635, 34292}, {14708, 15151}, {15033, 15801}, {15056, 22115}, {15062, 43651}, {15072, 37471}, {15177, 40273}, {15562, 19163}, {15578, 38317}, {15581, 39884}, {15860, 52953}, {16657, 63734}, {16835, 61134}, {17814, 40111}, {18390, 34826}, {18475, 44870}, {18931, 63656}, {19137, 55681}, {19192, 63668}, {21663, 63670}, {22804, 34786}, {22978, 63690}, {23060, 32137}, {23293, 43821}, {25738, 43575}, {28178, 37557}, {31401, 34866}, {32139, 37506}, {32171, 39242}, {32305, 55708}, {32401, 63629}, {32599, 53858}, {32607, 61574}, {32620, 37498}, {33537, 47391}, {34127, 39860}, {34513, 46847}, {36752, 45956}, {38110, 44883}, {39481, 44926}, {39831, 63687}, {41940, 52950}, {52019, 63721}, {63421, 63713}

X(63682) = pole of line {185, 17714} with respect to the Jerabek hyperbola
X(63682) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1105), X(17714)}}, {{A, B, C, X(1173), X(18559)}}, {{A, B, C, X(1594), X(13381)}}, {{A, B, C, X(16835), X(52295)}}, {{A, B, C, X(31371), X(46450)}}
X(63682) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {578, 4550, 5876}, {1493, 5876, 15083}, {5012, 43613, 18439}


X(63683) = ORTHOCENTER OF THE 2ND HATZIPOLAKIS-MOSES TRIANGLE

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10*(b^2+c^2)+(b^2-c^2)^4*(b^4-b^2*c^2+c^4)-a^8*(3*b^4+2*b^2*c^2+3*c^4)-3*a^2*(b^2-c^2)^2*(b^6+c^6)+a^6*(2*b^6-3*b^4*c^2-3*b^2*c^4+2*c^6)+a^4*(2*b^8+3*b^6*c^2-6*b^4*c^4+3*b^2*c^6+2*c^8)) : :
X(63683) = X[155]+3*X[3060], -5*X[3567]+X[12163], 3*X[5654]+X[6243], -3*X[5946]+X[7689], -9*X[11002]+X[11411], X[12164]+3*X[61724], -X[12235]+3*X[21849], -3*X[13363]+2*X[20191], -X[52104]+4*X[58533]

X(63683) lies on these lines: {3, 63717}, {4, 63724}, {5, 63659}, {26, 32391}, {30, 41589}, {51, 7403}, {52, 113}, {140, 58480}, {143, 546}, {155, 3060}, {156, 44668}, {381, 973}, {389, 63727}, {511, 9820}, {539, 44056}, {912, 31757}, {1147, 10263}, {1154, 5448}, {1216, 63667}, {1351, 58726}, {2781, 13371}, {3518, 12824}, {3564, 43129}, {3567, 12163}, {5446, 6756}, {5449, 10095}, {5462, 44158}, {5562, 63670}, {5654, 6243}, {5663, 18383}, {5889, 35488}, {5890, 43837}, {5946, 7689}, {6000, 63726}, {6102, 18390}, {6237, 63675}, {6238, 63676}, {6240, 25711}, {6643, 63656}, {6746, 12162}, {7352, 63669}, {7552, 41590}, {7566, 9781}, {8548, 63673}, {9019, 17714}, {9704, 11577}, {9927, 11743}, {9938, 44413}, {10020, 58546}, {10116, 11692}, {10627, 34577}, {10661, 63680}, {10662, 63681}, {10665, 63677}, {10666, 63678}, {11002, 11411}, {11262, 18379}, {11412, 63657}, {11585, 54384}, {11649, 50414}, {12038, 12107}, {12161, 63658}, {12164, 61724}, {12235, 21849}, {13363, 20191}, {13417, 23306}, {13421, 25338}, {13630, 63729}, {14449, 45780}, {14708, 34798}, {14984, 16982}, {15136, 44802}, {17702, 63684}, {18436, 63671}, {19139, 32048}, {19194, 63668}, {19479, 38898}, {19908, 39522}, {21850, 23307}, {32138, 32184}, {34382, 63702}, {37514, 52019}, {37984, 63709}, {43823, 63735}, {52104, 58533}

X(63683) = midpoint of X(i) and X(j) for these {i,j}: {52, 22660}, {1147, 10263}, {13417, 23306}, {14449, 61607}, {19479, 38898}
X(63683) = reflection of X(i) in X(j) for these {i,j}: {5449, 10095}, {9820, 58545}, {10020, 58546}, {10627, 43839}, {13383, 63697}, {32138, 32184}, {44158, 5462}, {63728, 18567}
X(63683) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 58545, 9820}, {511, 63697, 13383}, {5562, 63670, 63674}, {5663, 18567, 63728}, {5889, 63660, 35488}, {11412, 63661, 63657}


X(63684) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTI-ORTHOCENTROIDAL

Barycentrics    a^2*(a^12*(b^2+c^2)+2*a^6*b^2*c^2*(b^4+b^2*c^2+c^4)-2*a^10*(2*b^4+b^2*c^2+2*c^4)-(b^2-c^2)^4*(b^6+b^4*c^2+b^2*c^4+c^6)+a^8*(5*b^6-b^4*c^2-b^2*c^4+5*c^6)+a^2*(b^2-c^2)^2*(4*b^8+5*b^4*c^4+4*c^8)-a^4*(5*b^10-5*b^8*c^2+3*b^6*c^4+3*b^4*c^6-5*b^2*c^8+5*c^10)) : :
X(63684) = -X[5]+3*X[12824], 3*X[110]+X[6243], -3*X[113]+X[5876], -3*X[125]+5*X[15026], -3*X[265]+7*X[9781], 3*X[568]+X[14094], -3*X[1511]+X[10625], -3*X[1539]+X[11381], 3*X[3060]+X[23236], -2*X[3628]+3*X[41670], -9*X[5640]+5*X[15027], -3*X[5642]+X[6101] and many others

X(63684) lies on these lines: {5, 12824}, {26, 45016}, {30, 16104}, {52, 5609}, {74, 63682}, {110, 6243}, {113, 5876}, {125, 15026}, {140, 2781}, {143, 542}, {235, 1986}, {265, 9781}, {389, 546}, {399, 10594}, {511, 12105}, {541, 13630}, {568, 14094}, {1112, 6756}, {1154, 16534}, {1511, 10625}, {1539, 11381}, {2771, 63698}, {2777, 11561}, {3060, 23236}, {3518, 51882}, {3628, 41670}, {3850, 15738}, {3853, 63721}, {5462, 20379}, {5640, 15027}, {5642, 6101}, {5655, 5889}, {5943, 20396}, {5946, 16003}, {5972, 32142}, {6102, 15063}, {6241, 7728}, {6593, 7555}, {7403, 10264}, {7525, 15462}, {7566, 38724}, {7722, 35488}, {7723, 63674}, {7724, 63675}, {7727, 63676}, {7731, 11444}, {9730, 51522}, {9826, 61548}, {9970, 12106}, {9976, 63673}, {10263, 30714}, {10272, 13383}, {10620, 63664}, {10628, 13565}, {10657, 63680}, {10658, 63681}, {10706, 34783}, {11017, 11802}, {11426, 12412}, {11694, 33591}, {11702, 21660}, {11743, 63474}, {11805, 12300}, {12006, 20417}, {12041, 16223}, {12061, 25329}, {12099, 58531}, {12219, 63657}, {12227, 63658}, {12270, 63660}, {12281, 63661}, {12292, 63662}, {12308, 63665}, {12317, 63666}, {12358, 63667}, {12375, 63677}, {12376, 63678}, {13148, 37984}, {13201, 38794}, {13340, 15020}, {13363, 20397}, {13392, 41673}, {13754, 44961}, {14449, 14984}, {14641, 34584}, {14708, 63729}, {15012, 38626}, {15021, 40280}, {15028, 15061}, {15034, 37484}, {15043, 20126}, {15054, 37481}, {15067, 38795}, {15074, 15303}, {15101, 23515}, {16625, 38632}, {17702, 63683}, {18933, 63656}, {19140, 63663}, {19195, 63668}, {19470, 63669}, {20304, 41671}, {21650, 63670}, {22584, 63671}, {32046, 34155}, {32205, 45311}, {37853, 55286}, {40685, 54376}, {43811, 58770}, {58536, 63724}

X(63684) = midpoint of X(i) and X(j) for these {i,j}: {52, 5609}, {113, 38898}, {1511, 13417}, {1539, 11562}, {5876, 14448}, {6102, 15063}, {10263, 30714}
X(63684) = reflection of X(i) in X(j) for these {i,j}: {11801, 58516}, {15738, 3850}, {20304, 41671}, {20379, 5462}, {20417, 12006}, {36253, 10095}, {41673, 13392}, {54376, 40685}, {61548, 9826}, {63695, 63697}
X(63684) = pole of line {44267, 61299} with respect to the Jerabek hyperbola
X(63684) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52, 61679, 5609}, {113, 14448, 5876}, {5663, 10095, 36253}, {5663, 58516, 11801}, {5876, 38898, 14448}, {10628, 63697, 63695}


X(63685) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND AAOA

Barycentrics    (a^2-b^2-c^2)*(3*a^12*(b^2+c^2)-a^8*b^2*c^2*(b^2+c^2)+2*(b^2-c^2)^6*(b^2+c^2)+a^10*(-7*b^4+6*b^2*c^2-7*c^4)-a^2*(b^2-c^2)^4*(3*b^4-7*b^2*c^2+3*c^4)-a^4*(b^2-c^2)^2*(5*b^6-2*b^4*c^2-2*b^2*c^4+5*c^6)+a^6*(10*b^8-29*b^6*c^2+42*b^4*c^4-29*b^2*c^6+10*c^8)) : :
X(63685) = X[68]+3*X[5655], 3*X[110]+X[12293], -5*X[3091]+X[15133], 5*X[3843]+3*X[45082], X[6193]+3*X[63710], 3*X[10706]+X[12163], X[14094]+3*X[14852]

X(63685) lies on these lines: {4, 45025}, {5, 63727}, {30, 63715}, {52, 113}, {68, 5655}, {74, 63657}, {110, 12293}, {125, 63674}, {155, 10294}, {265, 63671}, {403, 25711}, {523, 63708}, {541, 44158}, {542, 63696}, {546, 9820}, {578, 10113}, {690, 63687}, {1539, 12893}, {2771, 58580}, {2777, 13383}, {2781, 15761}, {2931, 10594}, {3091, 15133}, {3564, 63694}, {3843, 45082}, {5448, 14984}, {5449, 5663}, {5609, 9927}, {6000, 15114}, {6193, 63710}, {6699, 63667}, {6756, 46686}, {7403, 23306}, {9517, 39509}, {9729, 20304}, {10024, 15738}, {10663, 63680}, {10664, 63681}, {10706, 12163}, {11799, 16105}, {12107, 34584}, {12133, 18488}, {12228, 63658}, {12236, 63659}, {12273, 63660}, {12284, 63661}, {12295, 63662}, {12302, 63664}, {12310, 63665}, {12319, 63666}, {12359, 15063}, {12596, 63673}, {12661, 63675}, {12824, 44958}, {12888, 63676}, {12891, 63677}, {12892, 63678}, {12900, 63679}, {12901, 63682}, {13148, 63735}, {13754, 44961}, {14094, 14852}, {14644, 36752}, {16165, 18404}, {16534, 37984}, {18914, 36253}, {18932, 63656}, {19138, 63663}, {19193, 63668}, {19469, 63669}, {19479, 63672}, {21649, 63670}, {32223, 38791}, {32274, 44480}, {32423, 63629}, {33547, 50138}

X(63685) = midpoint of X(i) and X(j) for these {i,j}: {1539, 12893}, {5609, 9927}, {12359, 15063}
X(63685) = reflection of X(i) in X(j) for these {i,j}: {63695, 13406}
X(63685) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5663, 13406, 63695}


X(63686) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ARIES

Barycentrics    (a^2-b^2-c^2)*(2*a^14-8*a^2*b^2*c^2*(b^2-c^2)^4-9*a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)+a^8*(b^2+c^2)^3+4*a^10*(3*b^4+b^2*c^2+3*c^4)+3*a^4*(b^2-c^2)^2*(3*b^6+b^4*c^2+b^2*c^4+3*c^6)-2*a^6*(7*b^8-10*b^6*c^2+14*b^4*c^4-10*b^2*c^6+7*c^8)) : :
X(63686) = -X[9938]+3*X[59553]

X(63686) lies on these lines: {30, 46374}, {68, 63674}, {140, 63729}, {155, 235}, {539, 63629}, {546, 5448}, {1147, 63658}, {3564, 13406}, {5654, 7403}, {6193, 35488}, {6756, 22660}, {9820, 63679}, {9926, 63673}, {9931, 63676}, {9932, 37440}, {9937, 10594}, {9938, 59553}, {10024, 19362}, {10659, 63680}, {10660, 63681}, {11411, 63657}, {12235, 63659}, {12271, 63660}, {12282, 63661}, {12293, 63662}, {12301, 63664}, {12309, 63665}, {12318, 63666}, {12359, 63667}, {12417, 63675}, {12424, 63677}, {12425, 63678}, {12429, 63671}, {13383, 13754}, {18934, 63656}, {19141, 63663}, {19196, 63668}, {19471, 63669}, {20302, 50138}, {21651, 63670}, {22661, 63672}, {32166, 61544}, {34382, 63688}, {44961, 63704}


X(63687) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 7TH BROCARD

Barycentrics    3*a^12*(b^2+c^2)+2*a^6*(b^4+c^4)^2-4*a^10*(2*b^4+b^2*c^2+2*c^4)-(b^2-c^2)^4*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)+a^8*(6*b^6+b^4*c^2+b^2*c^4+6*c^6)+2*a^2*(b^2-c^2)^2*(3*b^8-2*b^6*c^2+4*b^4*c^4-2*b^2*c^6+3*c^8)-a^4*(7*b^10-9*b^8*c^2+6*b^6*c^4+6*b^4*c^6-9*b^2*c^8+7*c^10) : :

X(63687) lies on these lines: {5, 34981}, {98, 63657}, {99, 35488}, {114, 235}, {115, 63674}, {542, 16252}, {546, 20399}, {690, 63685}, {2782, 13406}, {2794, 13383}, {6036, 63667}, {6321, 63671}, {6721, 63679}, {7403, 36519}, {10594, 39828}, {13175, 63665}, {22505, 37440}, {39804, 63656}, {39805, 63658}, {39806, 63659}, {39807, 63660}, {39808, 63661}, {39809, 63662}, {39811, 63663}, {39812, 63664}, {39813, 63666}, {39814, 63668}, {39815, 63669}, {39817, 63670}, {39818, 63672}, {39819, 63673}, {39821, 63675}, {39822, 63676}, {39823, 63677}, {39824, 63678}, {39829, 63680}, {39830, 63681}, {39831, 63682}, {62489, 63708}, {62490, 63715}, {63629, 63629}

X(63687) = midpoint of X(i) and X(j) for these {i,j}: {22505, 39825}
X(63687) = reflection of X(i) in X(j) for these {i,j}: {63696, 13406}
X(63687) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2782, 13406, 63696}


X(63688) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 1ST EHRMANN

Barycentrics    a^2*(a^8*(b^2+c^2)-3*a^4*b^2*c^2*(b^2+c^2)-2*a^6*(b^2+c^2)^2+2*a^2*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)-(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :
X(63688) = -X[3]+3*X[16776], -3*X[51]+X[8550], -2*X[140]+3*X[40670], -3*X[182]+5*X[15026], 3*X[1352]+X[6243], 3*X[3060]+X[15069], -7*X[3090]+3*X[54334], -3*X[3818]+X[5876], -9*X[5085]+13*X[15028], 3*X[5102]+X[12272], -2*X[5447]+3*X[20582], -3*X[5476]+X[15074] and many others

X(63688) lies on these lines: {3, 16776}, {4, 67}, {5, 9019}, {6, 1173}, {24, 51739}, {30, 63727}, {51, 8550}, {54, 19596}, {69, 63666}, {140, 40670}, {141, 7403}, {143, 542}, {159, 11426}, {182, 15026}, {235, 1843}, {389, 1503}, {511, 546}, {518, 63698}, {524, 5446}, {569, 35707}, {575, 10095}, {576, 2854}, {578, 15582}, {1154, 18553}, {1192, 44883}, {1350, 63664}, {1351, 63665}, {1352, 6243}, {1469, 63669}, {1598, 19362}, {2393, 10110}, {3056, 63676}, {3060, 15069}, {3090, 54334}, {3098, 63682}, {3527, 32621}, {3564, 43129}, {3589, 13383}, {3779, 63675}, {3818, 5876}, {3867, 20300}, {5085, 15028}, {5092, 12107}, {5102, 12272}, {5447, 20582}, {5448, 14984}, {5476, 15074}, {5562, 47354}, {5622, 35218}, {5640, 31860}, {5889, 47353}, {5943, 37897}, {5965, 63693}, {6101, 11178}, {6241, 36990}, {6247, 61664}, {6403, 35488}, {6467, 63670}, {6593, 7545}, {7517, 19127}, {7530, 44480}, {7566, 10516}, {7716, 11387}, {8549, 17810}, {8681, 63702}, {8705, 44479}, {9707, 20987}, {9822, 13348}, {9967, 63674}, {9970, 32299}, {9973, 14853}, {10168, 32205}, {10263, 34507}, {10311, 58529}, {10312, 28343}, {10541, 15024}, {11188, 11477}, {11381, 19161}, {11438, 15579}, {11574, 63667}, {11645, 13630}, {11649, 44961}, {11695, 33591}, {11746, 34417}, {12007, 58471}, {12105, 13363}, {12220, 63657}, {12294, 63662}, {13364, 25338}, {13391, 40107}, {13406, 19130}, {13491, 52989}, {13621, 15462}, {13754, 63721}, {13861, 44469}, {14002, 41670}, {14128, 25561}, {14561, 17710}, {15043, 43273}, {15465, 63695}, {15531, 53858}, {15559, 62376}, {15644, 61676}, {16618, 25488}, {17714, 44491}, {18369, 43811}, {18374, 34484}, {18438, 63671}, {18567, 48895}, {18935, 63656}, {19136, 58559}, {19197, 63668}, {21841, 51744}, {21850, 22800}, {24206, 32142}, {29012, 63729}, {29959, 45186}, {34146, 63726}, {34382, 63686}, {34577, 58445}, {37511, 51163}, {37984, 47446}, {39588, 51730}, {43823, 44102}, {44106, 51733}, {44494, 61752}, {44863, 50959}, {48889, 63724}, {48892, 55286}

X(63688) = midpoint of X(i) and X(j) for these {i,j}: {1843, 5480}, {5446, 43130}, {9970, 32299}, {10263, 34507}, {12061, 50649}, {21850, 41714}, {32274, 40949}, {37511, 51163}
X(63688) = reflection of X(i) in X(j) for these {i,j}: {182, 58532}, {575, 10095}, {12007, 58471}, {32191, 9969}, {41579, 63475}, {63723, 546}
X(63688) = pole of line {11245, 34565} with respect to the Jerabek hyperbola
X(63688) = pole of line {5523, 7765} with respect to the Kiepert hyperbola
X(63688) = pole of line {2492, 3050} with respect to the Orthic inconic
X(63688) = pole of line {43459, 45308} with respect to the Wallace hyperbola
X(63688) = center of circle {{ X(i), X(j), X(k) }} for these {i, j, k}: {{1112, 13166, 39835}}
X(63688) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(1173), X(46105)}}, {{A, B, C, X(33631), X(43458)}}
X(63688) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6, 10594, 63663}, {511, 546, 63723}, {511, 63475, 41579}, {1503, 9969, 32191}, {1843, 50649, 12061}, {5480, 12061, 50649}, {12061, 50649, 44668}, {32274, 40949, 2781}, {63663, 63673, 6}


X(63689) = ISOGONAL CONJUGATE OF X(3298)

Barycentrics    (2 a b - S) (2 a c - S)

X(63689) lies on these lines: {1, 7585}, {57, 175}, {81, 3297}, {274, 32793}, {390, 2362}, {1336, 14986}, {3084, 56230}, {3085, 3300}, {3086, 3302}, {3600, 42013}, {5405, 8056}, {5493, 52808}, {17802, 31432}, {56354, 56427}

X(63689) = isogonal conjugate of X(3298)
X(63689) = isotomic conjugate of X(32794)
X(63689) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3298}, {31, 32794}
X(63689) = X(i)-cross conjugate of X(j) for these {i, j}: {6352, 2}
X(63689) = pole of line {3298, 32794} with respect to the Wallace hyperbola
X(63689) = center of mutual polar conic of these triangles: ABC AND Aguilera-Pavlov
X(63689) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2)}}, {{A, B, C, X(7), X(175)}}, {{A, B, C, X(8), X(1132)}}, {{A, B, C, X(37), X(3297)}}, {{A, B, C, X(79), X(43560)}}, {{A, B, C, X(80), X(43561)}}, {{A, B, C, X(346), X(42013)}}, {{A, B, C, X(371), X(57707)}}, {{A, B, C, X(372), X(57708)}}, {{A, B, C, X(485),X(3296)}}, {{A, B, C, X(486), X(1000)}}, {{A, B, C, X(589), X(42019)}}, {{A, B, C, X(1016), X(60205)}}, {{A, B, C, X(1327), X(43733)}}, {{A, B, C, X(1328), X(43734)}}, {{A, B, C, X(1476), X(30557)}}, {{A, B, C, X(1509), X(60204)}}, {{A, B, C, X(1659), X(3590)}}, {{A, B, C, X(2346), X(30556)}}, {{A, B, C, X(3085), X(56384)}}, {{A, B, C, X(3086), X(56427)}}, {{A, B, C, X(3316), X(18490)}}, {{A, B, C, X(3591), X(7090)}}, {{A, B, C, X(5551), X(14241)}}, {{A, B, C, X(5556), X(43566)}}, {{A, B, C, X(5557), X(60291)}}, {{A, B, C, X(5559), X(60292)}}, {{A, B, C, X(7091), X(15891)}}, {{A, B, C, X(7317), X(14226)}}, {{A, B, C, X(7319), X(43567)}}, {{A, B, C, X(13602), X(60312)}}, {{A, B, C, X(15175), X(38234)}}, {{A, B, C, X(17501), X(54543)}}, {{A, B, C, X(30335), X(40779)}}, {{A, B, C, X(54598), X(61770)}}, {{A, B, C, X(56264), X(57266)}}
X(63689) = barycentric quotient X(i)/X(j) for these (i, j): {2, 32794}, {6, 3298}, {1124, 55442}


X(63690) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND 3RD HATZIPOLAKIS

Barycentrics    (-2*a^2*(b^2-c^2)^2+a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2))*(3*a^10-4*a^8*(b^2+c^2)-2*(b^2-c^2)^4*(b^2+c^2)+a^6*(-4*b^4+17*b^2*c^2-4*c^4)+a^2*(b^2-c^2)^2*(b^4-13*b^2*c^2+c^4)+a^4*(6*b^6-4*b^4*c^2-4*b^2*c^4+6*c^6)) : :

X(63690) lies on circumconic {{A, B, C, X(13472), X(52003)}} and on these lines: {185, 235}, {546, 44686}, {2929, 10594}, {7403, 23308}, {7699, 22750}, {12007, 63699}, {12242, 22968}, {13406, 63727}, {13472, 22466}, {18936, 63656}, {19142, 63663}, {19198, 63668}, {19472, 63669}, {21652, 63670}, {21850, 22800}, {22528, 63657}, {22529, 63658}, {22530, 63659}, {22534, 63660}, {22535, 63661}, {22538, 63662}, {22549, 63664}, {22550, 63665}, {22555, 63666}, {22581, 63667}, {22808, 63671}, {22816, 63672}, {22830, 63673}, {22834, 63674}, {22840, 63675}, {22954, 63676}, {22960, 63677}, {22961, 63678}, {22962, 37440}, {22973, 63679}, {22974, 63680}, {22975, 63681}, {22978, 63682}, {44961, 63729}

X(63690) = midpoint of X(i) and X(j) for these {i,j}: {22750, 22833}
X(63690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {22750, 22971, 22833}


X(63691) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND LUCAS REFLECTION

Barycentrics    -3*b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)-a^8*(b^4+c^4)-2*a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)-a^6*(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)+a^4*(5*b^8-5*b^6*c^2-8*b^4*c^4-5*b^2*c^6+5*c^8)+2*(a^8*(b^2+c^2)-4*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^2+c^2)^2+2*a^2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4))*S : :

X(63691) lies on these lines: {235, 13051}, {3613, 7403}, {10594, 13055}, {13009, 63657}, {13011, 63658}, {13013, 63659}, {13015, 63660}, {13017, 63661}, {13019, 63662}, {13021, 63664}, {13023, 63665}, {13025, 63666}, {13027, 63667}, {13035, 35488}, {13037, 63673}, {13039, 63674}, {13041, 63675}, {13043, 63676}, {13045, 63677}, {13047, 63678}, {13049, 37440}, {13053, 63679}, {13057, 63680}, {13059, 63681}, {13061, 63682}, {18943, 63656}, {19147, 63663}, {19203, 63668}, {19475, 63669}, {21657, 63670}, {22813, 63671}, {22821, 63672}, {63629, 63629}


X(63692) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND LUCAS(-1) REFLECTION

Barycentrics    3*b^2*c^2*(b^2-c^2)^4-a^10*(b^2+c^2)+a^8*(b^4+c^4)+2*a^2*(b-c)^2*(b+c)^2*(b^2+c^2)*(b^4-5*b^2*c^2+c^4)+a^6*(b^2+c^2)*(3*b^4+2*b^2*c^2+3*c^4)-a^4*(5*b^8-5*b^6*c^2-8*b^4*c^4-5*b^2*c^6+5*c^8)+2*(a^8*(b^2+c^2)-4*a^4*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)-2*a^6*(b^2+c^2)^2+2*a^2*(b^2-c^2)^2*(b^4+4*b^2*c^2+c^4))*S : :

X(63692) lies on these lines: {235, 13052}, {3613, 7403}, {10594, 13056}, {13010, 63657}, {13012, 63658}, {13014, 63659}, {13016, 63660}, {13018, 63661}, {13020, 63662}, {13022, 63664}, {13024, 63665}, {13026, 63666}, {13028, 63667}, {13036, 35488}, {13038, 63673}, {13040, 63674}, {13042, 63675}, {13044, 63676}, {13046, 63677}, {13048, 63678}, {13050, 37440}, {13054, 63679}, {13058, 63680}, {13060, 63681}, {13062, 63682}, {18944, 63656}, {19148, 63663}, {19204, 63668}, {19476, 63669}, {21658, 63670}, {22814, 63671}, {22822, 63672}, {63629, 63629}


X(63693) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND REFLECTION

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)-2*a^10*(2*b^4+3*b^2*c^2+2*c^4)+5*a^8*(b^6+b^4*c^2+b^2*c^4+c^6)+2*a^6*(3*b^6*c^2+b^4*c^4+3*b^2*c^6)+a^2*(b^2-c^2)^2*(4*b^8-3*b^4*c^4+4*c^8)-a^4*(5*b^10+3*b^8*c^2-5*b^6*c^4-5*b^4*c^6+3*b^2*c^8+5*c^10)) : :
X(63693) = -3*X[5]+X[41590], -3*X[51]+X[10610], 3*X[3060]+X[6288], -5*X[3843]+X[41726], 3*X[7730]+X[15800], -X[10115]+3*X[21849], -9*X[11002]+X[12254], X[12316]+3*X[41713], -3*X[13364]+2*X[32396]

X(63693) lies on these lines: {5, 41590}, {25, 47360}, {30, 973}, {51, 10610}, {52, 22804}, {54, 37440}, {143, 11262}, {195, 10594}, {235, 6152}, {389, 11565}, {511, 13565}, {539, 44056}, {546, 1154}, {1112, 6756}, {1209, 10263}, {2917, 39522}, {3060, 6288}, {3574, 13406}, {3843, 41726}, {3853, 63726}, {5965, 63688}, {6102, 32340}, {6242, 35488}, {6255, 63675}, {6286, 63676}, {6689, 10095}, {7356, 63669}, {7403, 21230}, {7530, 32341}, {7691, 63682}, {7730, 15800}, {8254, 13383}, {9827, 63679}, {9977, 63673}, {10115, 21849}, {10677, 63680}, {10678, 63681}, {11002, 12254}, {11692, 58533}, {11801, 32393}, {11802, 13598}, {11803, 63704}, {12105, 58481}, {12226, 63657}, {12234, 63658}, {12242, 25338}, {12280, 63660}, {12291, 63661}, {12300, 63662}, {12307, 63664}, {12316, 41713}, {12325, 63666}, {12363, 63667}, {12606, 63674}, {12965, 63677}, {12971, 63678}, {13364, 32396}, {13365, 13391}, {13754, 63724}, {15137, 18369}, {18567, 32352}, {18946, 63656}, {19150, 63663}, {19207, 63668}, {21660, 63670}, {22051, 44668}, {22815, 63671}, {44961, 63629}, {58557, 63697}

X(63693) = midpoint of X(i) and X(j) for these {i,j}: {52, 22804}, {1209, 10263}, {3574, 32196}, {5446, 11808}, {6102, 32340}, {6152, 20424}, {11802, 13598}
X(63693) = reflection of X(i) in X(j) for these {i,j}: {546, 11743}, {6689, 10095}, {32348, 13365}
X(63693) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1154, 11743, 546}, {5446, 11808, 1154}


X(63694) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND WALSMITH

Barycentrics    a^2*(4*a^10-13*a^8*(b^2+c^2)+2*a^6*(5*b^4+2*b^2*c^2+5*c^4)+(b^2-c^2)^2*(5*b^6+6*b^4*c^2+6*b^2*c^4+5*c^6)+a^4*(8*b^6-b^4*c^2-b^2*c^4+8*c^6)-2*a^2*(7*b^8-7*b^6*c^2+8*b^4*c^4-7*b^2*c^6+7*c^8)) : :
X(63694) = X[4]+3*X[34319], 3*X[6]+X[14094], -3*X[67]+7*X[3090], -3*X[74]+7*X[10541], 3*X[110]+X[11477], -3*X[141]+5*X[38795], -3*X[182]+X[51522], 3*X[399]+5*X[11482], -3*X[597]+X[16003], -5*X[632]+3*X[49116], -3*X[1350]+7*X[15020], -3*X[1511]+X[52987] and many others

X(63694) lies on circumconic {{A, B, C, X(18876), X(54483)}} and on these lines: {3, 1177}, {4, 34319}, {6, 14094}, {67, 3090}, {74, 10541}, {110, 11477}, {113, 25329}, {141, 38795}, {182, 51522}, {235, 5095}, {399, 11482}, {511, 12105}, {524, 16534}, {542, 546}, {575, 5663}, {576, 2854}, {597, 16003}, {632, 49116}, {895, 52518}, {1350, 15020}, {1503, 38791}, {1511, 52987}, {2836, 63698}, {2930, 10594}, {3091, 11061}, {3146, 32233}, {3303, 32290}, {3304, 32289}, {3525, 32247}, {3564, 63685}, {3589, 20397}, {3627, 32271}, {3628, 6698}, {5072, 32306}, {5085, 15021}, {5480, 56565}, {5643, 52171}, {5655, 63722}, {7403, 25328}, {7982, 32278}, {8550, 15063}, {8584, 56567}, {9019, 37967}, {10510, 16105}, {10516, 15029}, {10620, 55701}, {10752, 15034}, {10990, 51737}, {11579, 53092}, {12041, 55687}, {12102, 63724}, {12107, 55588}, {12584, 37440}, {12812, 61543}, {12824, 14002}, {13148, 44102}, {14561, 15027}, {14644, 25336}, {14982, 25321}, {14984, 16982}, {15023, 55646}, {15035, 55614}, {15039, 55724}, {15040, 55602}, {15051, 55641}, {15054, 51941}, {15069, 41720}, {16010, 63664}, {16042, 41670}, {17702, 63721}, {18374, 37953}, {18553, 25566}, {20301, 50138}, {20379, 25555}, {20423, 23236}, {22234, 34155}, {32234, 35488}, {32241, 63656}, {32244, 63657}, {32245, 63658}, {32246, 63659}, {32248, 63660}, {32249, 63661}, {32250, 63662}, {32254, 63665}, {32255, 63666}, {32257, 63667}, {32258, 63668}, {32259, 63669}, {32260, 63670}, {32272, 63671}, {32273, 63672}, {32275, 63674}, {32277, 63675}, {32286, 63676}, {32291, 63677}, {32292, 63678}, {32300, 63679}, {32301, 63680}, {32302, 63681}, {32305, 55708}, {32609, 55580}, {36201, 63726}, {38626, 55704}, {43879, 49264}, {43880, 49265}, {50649, 61679}, {63629, 63629}, {63695, 63699}

X(63694) = midpoint of X(i) and X(j) for these {i,j}: {113, 25329}, {576, 5609}, {5480, 56565}, {6593, 9970}, {8550, 15063}, {8584, 56567}, {10752, 33851}, {11061, 32274}
X(63694) = reflection of X(i) in X(j) for these {i,j}: {20379, 25555}, {63695, 63699}
X(63694) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {113, 25329, 45163}, {576, 5609, 51536}
X(63694) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {576, 19140, 5609}, {576, 5609, 2854}, {6593, 9970, 2781}, {9970, 15462, 48679}, {9970, 45016, 6593}, {10752, 15034, 53097}, {10752, 52697, 33851}, {12824, 57271, 62516}, {51941, 53093, 15054}, {52697, 53097, 15034}


X(63695) = PARALLELOGIC CENTER OF 2ND HATZIPOLAKIS-MOSES AND AAOA

Barycentrics    a^14*(b^2+c^2)-2*(b^2-c^2)^6*(b^2+c^2)^2-2*a^12*(b^4+c^4)+10*a^8*(b^2-c^2)^2*(b^4+c^4)+a^10*(-3*b^6+4*b^4*c^2+4*b^2*c^4-3*c^6)-a^6*(b^2-c^2)^2*(5*b^6-3*b^4*c^2-3*b^2*c^4+5*c^6)+a^2*(b^2-c^2)^4*(7*b^6+2*b^4*c^2+2*b^2*c^4+7*c^6)-2*a^4*(b^2-c^2)^2*(3*b^8-4*b^6*c^2+10*b^4*c^4-4*b^2*c^6+3*c^8) : :
X(63695) = 3*X[74]+X[5895], 3*X[265]+X[9833], X[1498]+3*X[9140], -X[2935]+5*X[15059], -7*X[3090]+3*X[15131], -X[5609]+3*X[61747], X[5878]+3*X[20126], -X[5925]+5*X[15021], 3*X[9934]+X[34780], -3*X[10192]+X[30714], -3*X[10606]+7*X[15057], -X[11598]+3*X[15061] and many others

X(63695) lies on these lines: {5, 2781}, {30, 63708}, {74, 5895}, {110, 63657}, {113, 16254}, {125, 235}, {265, 9833}, {403, 15738}, {523, 63715}, {541, 5893}, {542, 16252}, {546, 2777}, {690, 63696}, {974, 26879}, {1112, 3574}, {1177, 32274}, {1498, 9140}, {1503, 36253}, {1594, 16105}, {2778, 58652}, {2883, 16003}, {2935, 15059}, {3090, 15131}, {5449, 5663}, {5609, 61747}, {5878, 20126}, {5925, 15021}, {5972, 63667}, {6000, 20379}, {6622, 32264}, {6723, 63679}, {6756, 7687}, {7403, 23315}, {7728, 63671}, {7731, 63661}, {9919, 63665}, {9934, 34780}, {10024, 25711}, {10113, 13289}, {10117, 10594}, {10118, 63676}, {10119, 63675}, {10192, 30714}, {10301, 23324}, {10606, 15057}, {10628, 13565}, {10681, 63680}, {10682, 63681}, {10990, 43903}, {11017, 14076}, {11598, 15061}, {11744, 12250}, {12233, 12828}, {13148, 43831}, {13160, 41670}, {13198, 63658}, {13201, 63660}, {13202, 63662}, {13203, 63666}, {13248, 63673}, {13287, 63677}, {13288, 63678}, {13293, 34128}, {13383, 17702}, {13417, 63670}, {14216, 15027}, {15034, 61680}, {15044, 18405}, {15081, 63716}, {15088, 32743}, {15126, 15311}, {15127, 26937}, {15465, 63688}, {15579, 23325}, {16534, 31831}, {18400, 25338}, {18567, 34584}, {18947, 63656}, {19208, 63668}, {19505, 63669}, {19506, 63672}, {20299, 20396}, {22802, 51522}, {23328, 38729}, {32369, 34484}, {55121, 59741}, {63694, 63699}

X(63695) = midpoint of X(i) and X(j) for these {i,j}: {265, 15647}, {1177, 32274}, {2883, 16003}, {10113, 13289}, {10990, 51491}, {22802, 51522}
X(63695) = reflection of X(i) in X(j) for these {i,j}: {6696, 20397}, {20299, 20396}, {32743, 15088}, {63684, 63697}, {63685, 13406}, {63694, 63699}
X(63695) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2777, 20397, 6696}, {5663, 13406, 63685}, {10628, 63697, 63684}


X(63696) = PARALLELOGIC CENTER OF 2ND HATZIPOLAKIS-MOSES AND 7TH BROCARD

Barycentrics    a^12*(b^2+c^2)-2*a^6*(b^4-c^4)^2-4*a^10*(b^4-b^2*c^2+c^4)+2*a^2*(b^2-c^2)^4*(3*b^4+2*b^2*c^2+3*c^4)-(b^2-c^2)^4*(2*b^6-b^4*c^2-b^2*c^4+2*c^6)-a^4*(b^2-c^2)^2*(5*b^6-b^4*c^2-b^2*c^4+5*c^6)+a^8*(6*b^6-5*b^4*c^2-5*b^2*c^4+6*c^6) : :
X(63696) = -5*X[14061]+X[39841], -3*X[34127]+X[39860]

X(63696) lies on these lines: {98, 35488}, {99, 63657}, {114, 63674}, {115, 235}, {542, 63685}, {546, 2794}, {620, 63667}, {690, 63695}, {2782, 13406}, {6033, 63671}, {6140, 39509}, {6722, 63679}, {7403, 23514}, {9861, 63665}, {10594, 14639}, {11623, 37984}, {13383, 23698}, {14061, 39841}, {15092, 50138}, {22515, 37440}, {34127, 39860}, {39833, 63656}, {39834, 63658}, {39835, 63659}, {39836, 63660}, {39837, 63661}, {39838, 63662}, {39840, 63663}, {39842, 63666}, {39843, 63668}, {39844, 63669}, {39846, 63670}, {39847, 63672}, {39848, 63673}, {39850, 63675}, {39851, 63676}, {39852, 63677}, {39853, 63678}, {39858, 63680}, {39859, 63681}, {62489, 63715}, {62490, 63708}, {63629, 63629}

X(63696) = midpoint of X(i) and X(j) for these {i,j}: {22515, 39854}
X(63696) = reflection of X(i) in X(j) for these {i,j}: {63687, 13406}
X(63696) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2782, 13406, 63687}


X(63697) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND CEVIAN-OF-X(3)

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)+6*a^6*b^2*c^2*(b^4+c^4)-2*a^10*(2*b^4+b^2*c^2+2*c^4)+a^8*(5*b^6-3*b^4*c^2-3*b^2*c^4+5*c^6)+4*a^2*(b^2-c^2)^2*(b^8-b^6*c^2+b^4*c^4-b^2*c^6+c^8)-5*a^4*(b^10-b^8*c^2-b^2*c^8+c^10)) : :
X(63697) = 3*X[51]+X[6759], 3*X[381]+X[41725], X[2883]+3*X[5946], 7*X[3851]+X[6293], -9*X[5640]+X[14216], X[5878]+7*X[15043], -X[5925]+9*X[40280], -X[6247]+5*X[15026], -X[6696]+3*X[13363], 3*X[9730]+X[22802], 7*X[9781]+X[9833], -3*X[10182]+X[15644] and many others

X(63697) lies on these lines: {4, 63661}, {5, 34115}, {20, 63660}, {30, 58546}, {51, 6759}, {52, 61685}, {143, 16252}, {185, 35488}, {235, 389}, {381, 41725}, {403, 32364}, {511, 9820}, {542, 32166}, {546, 5462}, {1495, 10274}, {1498, 63665}, {1503, 10095}, {2393, 22330}, {2777, 9729}, {2781, 3628}, {2883, 5946}, {3357, 63664}, {3851, 6293}, {5446, 10282}, {5447, 34577}, {5562, 63657}, {5640, 14216}, {5878, 15043}, {5892, 63682}, {5907, 63674}, {5925, 40280}, {5943, 7403}, {6146, 43823}, {6247, 15026}, {6696, 13363}, {6756, 10110}, {7505, 54384}, {7566, 23325}, {9730, 22802}, {9781, 9833}, {9969, 63663}, {10117, 13353}, {10182, 15644}, {10192, 10263}, {10301, 45185}, {10627, 58434}, {10628, 13565}, {11202, 45186}, {11695, 25563}, {11746, 18914}, {11793, 63667}, {11803, 25338}, {12006, 15311}, {12007, 58471}, {12162, 63671}, {12824, 13160}, {13382, 37984}, {13406, 13754}, {13474, 63662}, {13861, 34117}, {14449, 61606}, {14530, 34751}, {14862, 58483}, {14915, 18567}, {15045, 20427}, {15139, 18369}, {16625, 58481}, {18381, 41580}, {18383, 63672}, {23332, 44544}, {32379, 34484}, {32391, 37936}, {32767, 34146}, {37484, 61680}, {39571, 63656}, {41729, 43129}, {43831, 52000}, {45780, 61608}, {49108, 50137}, {58469, 63698}, {58557, 63693}, {63726, 63727}

X(63697) = midpoint of X(i) and X(j) for these {i,j}: {143, 16252}, {389, 61749}, {546, 41589}, {5446, 10282}, {5893, 13630}, {13383, 63683}, {41729, 43129}, {63684, 63695}
X(63697) = reflection of X(i) in X(j) for these {i,j}: {25563, 11695}
X(63697) = pole of line {35490, 61744} with respect to the Jerabek hyperbola
X(63697) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 63661, 63670}, {389, 44084, 58482}, {546, 41589, 6000}, {546, 63714, 41589}, {5446, 45979, 10282}, {6756, 63659, 10110}, {13383, 63683, 511}, {63684, 63695, 10628}


X(63698) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTIPEDAL-OF-X(65)

Barycentrics    a*(-2*a^7*b*c+2*a^5*b*(b-c)^2*c+a^8*(b+c)-(b-c)^4*(b+c)^3*(b^2+c^2)-2*a*b*c*(b^2-c^2)^2*(b^2-3*b*c+c^2)+2*a^3*b*(b-c)^2*c*(b^2+b*c+c^2)-2*a^6*(b^3+c^3)-2*a^4*b*c*(b^3+c^3)+2*a^2*(b^7-b^5*c^2-b^2*c^5+c^7)) : :
X(63698) = -X[31806]+3*X[41581], X[37625]+3*X[41717]

X(63698) lies on these lines: {1, 10594}, {8, 63666}, {10, 7403}, {24, 51707}, {40, 63664}, {65, 63669}, {235, 946}, {515, 6756}, {517, 546}, {518, 63688}, {912, 31757}, {1125, 13383}, {1385, 37440}, {1386, 63663}, {1482, 63665}, {1699, 35488}, {1900, 24042}, {1902, 63662}, {2771, 63684}, {2800, 44545}, {2836, 63694}, {3057, 63676}, {3579, 63682}, {3817, 63674}, {3827, 31870}, {4663, 63673}, {5587, 7566}, {5806, 63629}, {5882, 10301}, {6001, 41589}, {6684, 63679}, {7517, 51692}, {7968, 63678}, {7969, 63677}, {8227, 63657}, {9955, 13406}, {9956, 50138}, {12107, 13624}, {13464, 44662}, {18480, 63672}, {21841, 51718}, {31806, 41581}, {31871, 63721}, {33591, 50828}, {34381, 63702}, {37613, 63667}, {37625, 41717}, {44547, 63659}, {58469, 63697}

X(63698) = midpoint of X(i) and X(j) for these {i,j}: {946, 1829}


X(63699) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTIPEDAL-OF-X(66)

Barycentrics    2*a^12-7*a^10*(b^2+c^2)+a^2*(b^2-c^2)^4*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)^2-4*a^4*(b^2-c^2)^2*(2*b^4+b^2*c^2+2*c^4)+a^8*(5*b^4-2*b^2*c^2+5*c^4)+2*a^6*(3*b^6+b^4*c^2+b^2*c^4+3*c^6) : :
X(63699) = X[4]+3*X[19153], -X[64]+9*X[47352], 3*X[182]+X[22802], 3*X[597]+X[2883], -X[1350]+5*X[31267], X[1498]+3*X[23327], -7*X[3090]+3*X[61737], 5*X[3091]+3*X[41719], -3*X[3589]+X[6696], 15*X[3618]+X[6225], -9*X[5085]+X[5925], 3*X[5476]+X[6759] and many others

X(63699) lies on these lines: {4, 19153}, {5, 34117}, {6, 235}, {30, 63721}, {64, 47352}, {69, 63657}, {140, 2781}, {141, 63667}, {154, 10301}, {159, 10594}, {182, 22802}, {185, 62375}, {206, 578}, {468, 37473}, {511, 9820}, {524, 61607}, {542, 63685}, {546, 575}, {576, 47581}, {597, 2883}, {1177, 34664}, {1350, 31267}, {1352, 63674}, {1498, 23327}, {1619, 63085}, {1843, 63670}, {2393, 10110}, {2777, 20190}, {3090, 61737}, {3091, 41719}, {3564, 13406}, {3575, 18374}, {3589, 6696}, {3618, 6225}, {3818, 41729}, {3827, 31870}, {5085, 5925}, {5422, 41602}, {5476, 6759}, {5596, 7566}, {5654, 44492}, {5878, 10249}, {5893, 32300}, {5895, 10541}, {6000, 25555}, {6247, 9968}, {6403, 63661}, {6677, 58480}, {6776, 35488}, {7403, 14216}, {7550, 32262}, {8549, 10169}, {8550, 18390}, {9833, 23049}, {9969, 63659}, {10024, 45016}, {10182, 55606}, {10192, 37897}, {11438, 47454}, {11470, 54347}, {11477, 61683}, {12007, 63690}, {12107, 35228}, {12220, 63660}, {12233, 19136}, {12362, 19127}, {13451, 61612}, {13488, 51739}, {14984, 61608}, {15577, 21850}, {15800, 32344}, {17821, 54131}, {18358, 63704}, {18382, 38136}, {18440, 63671}, {19132, 36989}, {20300, 50138}, {20423, 34787}, {20427, 38064}, {22051, 44668}, {22660, 44470}, {23041, 31670}, {23042, 48901}, {23292, 45979}, {25338, 61606}, {29012, 63724}, {29317, 32903}, {31166, 38072}, {32191, 58482}, {34774, 51756}, {34779, 38317}, {36851, 63666}, {36990, 63662}, {37649, 41580}, {38110, 44883}, {39879, 63665}, {41735, 51171}, {43831, 44102}, {44380, 59530}, {45089, 51745}, {46363, 58471}, {51491, 51737}, {53097, 61680}, {58439, 58481}, {63629, 63629}, {63694, 63695}

X(63699) = midpoint of X(i) and X(j) for these {i,j}: {5, 34117}, {206, 5480}, {575, 61749}, {3818, 41729}, {6247, 9968}, {15577, 21850}, {19149, 23300}, {22660, 44470}, {34774, 51756}, {41589, 63723}, {63694, 63695}
X(63699) = pole of line {1593, 7747} with respect to the Kiepert hyperbola
X(63699) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {5, 34117, 43278}, {5972, 6720, 13526}
X(63699) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {575, 61749, 1503}, {3589, 63723, 63679}, {5480, 63663, 6756}, {14561, 19149, 23300}, {41589, 63723, 34146}


X(63700) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(67) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^12-3*a^10*(b^2+c^2)-14*a^6*b^2*c^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)^2+3*a^8*(b^4+5*b^2*c^2+c^4)+a^2*(b^2-c^2)^2*(3*b^6-b^4*c^2-b^2*c^4+3*c^6)+a^4*(-3*b^8+7*b^6*c^2+4*b^4*c^4+7*b^2*c^6-3*c^8) : :
X(63700) = -2*X[6]+3*X[14643], -4*X[140]+3*X[5622], -4*X[182]+5*X[38794], -5*X[1656]+4*X[15118], -4*X[3098]+3*X[38788], -7*X[3619]+6*X[34128], -3*X[5050]+4*X[5972]

X(63700) lies on these lines: {3, 67}, {4, 14984}, {5, 895}, {6, 14643}, {30, 41737}, {49, 8550}, {69, 5663}, {74, 48876}, {110, 468}, {113, 1351}, {140, 5622}, {141, 11579}, {146, 63428}, {155, 5095}, {182, 38794}, {193, 10294}, {235, 15801}, {265, 1352}, {399, 11898}, {511, 7728}, {524, 5655}, {1177, 3519}, {1181, 32285}, {1205, 1216}, {1350, 20127}, {1353, 10272}, {1503, 12121}, {1511, 6776}, {1539, 51212}, {1656, 15118}, {1657, 34787}, {2393, 7574}, {2777, 33878}, {2781, 5878}, {2836, 5887}, {3098, 38788}, {3448, 44833}, {3521, 40929}, {3542, 41616}, {3581, 32113}, {3619, 34128}, {4232, 20772}, {5050, 5972}, {5094, 12827}, {5609, 11061}, {5921, 12383}, {5965, 19140}, {6243, 40949}, {6288, 18553}, {6403, 12273}, {6593, 63722}, {6759, 32264}, {7493, 9143}, {8262, 32599}, {8549, 15116}, {9140, 30739}, {9976, 24206}, {10088, 39873}, {10091, 39897}, {10104, 62289}, {10264, 61545}, {10519, 12041}, {10733, 39884}, {10752, 34380}, {10819, 49228}, {10820, 49229}, {11005, 47211}, {11178, 20301}, {11180, 49669}, {11472, 17702}, {11477, 32271}, {11487, 32255}, {12017, 38793}, {12061, 15800}, {12244, 62174}, {12896, 39892}, {14094, 32244}, {14516, 15062}, {14644, 18358}, {14853, 61574}, {15027, 25328}, {15035, 48906}, {15063, 48679}, {15122, 62382}, {15131, 41603}, {15471, 51425}, {15472, 39871}, {16111, 55610}, {16176, 44492}, {16270, 32241}, {18350, 38851}, {18449, 47280}, {18968, 39891}, {20125, 25321}, {20304, 25320}, {21313, 32263}, {22115, 54215}, {32220, 46817}, {32259, 32308}, {32286, 32307}, {32300, 38795}, {32609, 39899}, {33851, 38723}, {34319, 41731}, {34382, 63710}, {37477, 62381}, {37480, 55293}, {37853, 55629}, {38789, 44456}, {38790, 55584}, {38791, 55724}, {40114, 62377}, {40341, 51941}, {45237, 62937}, {48375, 55678}, {56391, 62569}, {63629, 63629}

X(63700) = midpoint of X(i) and X(j) for these {i,j}: {146, 63428}, {399, 11898}, {2930, 15069}, {5921, 12383}, {6403, 12273}, {14094, 32244}, {23236, 32272}, {32254, 32306}, {38790, 55584}, {40341, 51941}
X(63700) = reflection of X(i) in X(j) for these {i,j}: {3, 5181}, {67, 34507}, {74, 48876}, {265, 1352}, {895, 5}, {1205, 1216}, {1351, 113}, {1353, 10272}, {3581, 32113}, {5095, 16534}, {6243, 40949}, {6776, 1511}, {7728, 14982}, {8549, 15116}, {9976, 24206}, {10264, 61545}, {10733, 39884}, {11061, 5609}, {11477, 32271}, {11579, 141}, {16003, 32257}, {16010, 49116}, {20126, 599}, {20127, 1350}, {23236, 2930}, {32220, 46817}, {32233, 12584}, {32264, 6759}, {32272, 15069}, {32273, 18553}, {32305, 40107}, {32306, 32275}, {32599, 8262}, {37477, 62381}, {46264, 33851}, {48679, 15063}, {51212, 1539}, {63722, 6593}
X(63700) = inverse of X(41615) in Stammler hyperbola
X(63700) = pole of line {15122, 43291} with respect to the Kiepert hyperbola
X(63700) = pole of line {23, 14984} with respect to the Stammler hyperbola
X(63700) = pole of line {316, 5866} with respect to the Wallace hyperbola
X(63700) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {399, 11898, 13188}, {14094, 23235, 32244}
X(63700) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(59426)}}, {{A, B, C, X(67), X(40118)}}, {{A, B, C, X(3455), X(10293)}}, {{A, B, C, X(14357), X(58080)}}, {{A, B, C, X(14984), X(41615)}}
X(63700) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 11579, 15061}, {511, 14982, 7728}, {542, 12584, 32233}, {542, 15069, 32272}, {542, 2930, 23236}, {542, 32257, 16003}, {542, 34507, 67}, {542, 40107, 32305}, {542, 49116, 16010}, {542, 5181, 3}, {599, 16010, 49116}, {1352, 2854, 265}, {1353, 10272, 52699}, {5095, 16534, 45016}, {5648, 32233, 12584}, {16010, 49116, 20126}, {23236, 32272, 542}, {25320, 40330, 20304}, {32254, 50955, 32306}, {32306, 50955, 32275}, {33851, 46264, 38723}


X(63701) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(68) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(a^14-3*a^12*(b^2+c^2)+3*a^4*(b^2-c^2)^4*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)-a^6*(b^2+c^2)^2*(b^4-6*b^2*c^2+c^4)-a^2*(b^2-c^2)^4*(3*b^4-2*b^2*c^2+3*c^4)+a^10*(3*b^4+14*b^2*c^2+3*c^4)-a^8*(b^6+15*b^4*c^2+15*b^2*c^4+c^6)) : :
X(63701) = -3*X[14852]+2*X[23307]

X(63701) lies on these lines: {3, 68}, {4, 27365}, {5, 14457}, {110, 3542}, {155, 235}, {468, 51933}, {539, 32379}, {1147, 22529}, {1181, 12421}, {1351, 22660}, {1352, 9927}, {1885, 11472}, {3564, 19149}, {5654, 36749}, {5663, 43695}, {5878, 13754}, {6241, 11411}, {6243, 7728}, {6288, 15739}, {6759, 12420}, {6816, 11487}, {7401, 58496}, {9820, 11426}, {9833, 32048}, {9931, 10055}, {9936, 11799}, {9970, 15083}, {10071, 19471}, {11442, 15062}, {11457, 30552}, {12235, 18420}, {12271, 50435}, {14216, 17702}, {14852, 23307}, {14984, 18569}, {15760, 19458}, {18390, 43587}, {20302, 50143}, {32125, 37498}, {32140, 61540}, {34938, 41738}, {35602, 54217}, {63629, 63629}

X(63701) = midpoint of X(i) and X(j) for these {i,j}: {12309, 12429}
X(63701) = reflection of X(i) in X(j) for these {i,j}: {9833, 32048}, {12118, 9932}, {12301, 12359}, {12420, 6759}, {15316, 5}
X(63701) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(39437)}}, {{A, B, C, X(14457), X(34853)}}, {{A, B, C, X(43695), X(54061)}}
X(63701) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {68, 12118, 1899}, {9932, 44665, 12118}, {12309, 12429, 44665}, {12359, 44665, 12301}


X(63702) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTIPEDAL-OF-X(69)

Barycentrics    (a^2-b^2-c^2)*(6*a^10-15*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)-10*a^2*(b^2-c^2)^2*(b^4+c^4)+4*a^6*(b^4-3*b^2*c^2+c^4)+2*a^4*(7*b^6-3*b^4*c^2-3*b^2*c^4+7*c^6)) : :
X(63702) = 3*X[1351]+X[6193], 3*X[1992]+X[12164], -X[11411]+5*X[11482], -X[12163]+3*X[50979], -X[12293]+3*X[21850], -3*X[19153]+2*X[44277]

X(63702) lies on these lines: {6, 63679}, {69, 63656}, {140, 44480}, {193, 235}, {511, 41589}, {524, 61607}, {546, 576}, {1147, 33591}, {1351, 6193}, {1503, 63726}, {1992, 12164}, {3167, 37897}, {5093, 7403}, {5449, 18583}, {5921, 63662}, {5965, 63629}, {8538, 18914}, {8681, 63688}, {10301, 63174}, {10594, 19588}, {11411, 11482}, {11470, 13142}, {11898, 63674}, {12163, 50979}, {12293, 21850}, {13383, 19139}, {13754, 44495}, {14449, 14984}, {14913, 63659}, {16196, 22151}, {19153, 44277}, {20080, 63657}, {21841, 45016}, {25338, 47446}, {32455, 63723}, {34381, 63698}, {34382, 63683}, {34577, 44493}, {44479, 63729}, {44665, 63721}, {51170, 63664}, {52016, 63663}, {58465, 63129}


X(63703) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(69) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(a^10-3*a^2*(b^2-c^2)^4-3*a^8*(b^2+c^2)+(b^2-c^2)^4*(b^2+c^2)+2*a^6*(b^4+10*b^2*c^2+c^4)+2*a^4*(b^6-5*b^4*c^2-5*b^2*c^4+c^6)) : :
X(63703) = -4*X[1147]+3*X[14912], -2*X[1353]+3*X[3167], -3*X[1992]+4*X[19139], -5*X[3618]+4*X[8548], -5*X[3620]+4*X[12359], -3*X[5093]+4*X[61607], -8*X[9820]+7*X[51171], -2*X[12163]+3*X[62174], -8*X[19154]+9*X[35260]

X(63703) lies on these lines: {2, 52077}, {3, 69}, {4, 12271}, {5, 6391}, {6, 59659}, {68, 6804}, {110, 6353}, {155, 193}, {511, 5878}, {524, 19149}, {1092, 18910}, {1147, 14912}, {1351, 1596}, {1352, 8681}, {1353, 3167}, {1370, 12283}, {1992, 19139}, {2854, 12319}, {2974, 19583}, {3542, 40318}, {3547, 17836}, {3618, 8548}, {3620, 12359}, {5093, 61607}, {5656, 12164}, {5663, 35512}, {5887, 34381}, {5889, 40317}, {5921, 11472}, {5965, 32379}, {6053, 9970}, {6467, 6643}, {6815, 12282}, {7392, 61666}, {7401, 14913}, {7728, 14984}, {9820, 51171}, {9924, 31305}, {9937, 11382}, {10565, 45794}, {11422, 63084}, {11441, 40316}, {11456, 20080}, {12118, 39874}, {12163, 62174}, {12309, 16543}, {13488, 18440}, {13754, 35513}, {15316, 39588}, {15585, 41729}, {18911, 44833}, {18928, 53091}, {19142, 22955}, {19154, 35260}, {32220, 37971}, {34966, 37669}, {39871, 54164}, {43574, 54219}, {45088, 56268}, {58726, 63063}, {63629, 63629}

X(63703) = midpoint of X(i) and X(j) for these {i,j}: {12271, 12272}
X(63703) = reflection of X(i) in X(j) for these {i,j}: {3, 63612}, {193, 155}, {6193, 19588}, {6391, 5}, {11411, 69}, {21651, 14913}, {31305, 9924}, {39874, 12118}, {63722, 52016}
X(63703) = inverse of X(41619) in Stammler hyperbola
X(63703) = pole of line {3546, 13881} with respect to the Kiepert hyperbola
X(63703) = pole of line {4558, 57625} with respect to the Kiepert parabola
X(63703) = pole of line {3049, 57071} with respect to the MacBeath circumconic
X(63703) = pole of line {25, 34382} with respect to the Stammler hyperbola
X(63703) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(15591)}}, {{A, B, C, X(69), X(40120)}}, {{A, B, C, X(3926), X(56006)}}, {{A, B, C, X(5866), X(35512)}}, {{A, B, C, X(6337), X(45011)}}, {{A, B, C, X(9723), X(17040)}}, {{A, B, C, X(34382), X(41619)}}
X(63703) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 3564, 11411}, {3564, 19588, 6193}, {3564, 63612, 3}, {6353, 63174, 41619}


X(63704) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND ANTIPEDAL-OF-X(70)

Barycentrics    2*a^16-11*a^14*(b^2+c^2)-a^2*(b^2-c^2)^6*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)^2+a^12*(21*b^4+22*b^2*c^2+21*c^4)-a^10*(11*b^6+5*b^4*c^2+5*b^2*c^4+11*c^6)-5*a^8*(3*b^8+2*b^4*c^4+3*c^8)-a^4*(b^2-c^2)^2*(9*b^8+4*b^6*c^2+10*b^4*c^4+4*b^2*c^6+9*c^8)+a^6*(23*b^10-21*b^8*c^2+10*b^6*c^4+10*b^4*c^6-21*b^2*c^8+23*c^10) : :
X(63704) = -3*X[5]+X[70], -3*X[547]+2*X[58409]

X(63704) lies on these lines: {5, 70}, {30, 34116}, {140, 41589}, {235, 2904}, {546, 12241}, {547, 58409}, {3628, 34115}, {3850, 51757}, {3853, 63724}, {8907, 37440}, {10272, 13383}, {11803, 63693}, {13406, 31831}, {14449, 45780}, {18358, 63699}, {18914, 20303}, {44961, 63686}, {63629, 63629}, {63679, 63729}

X(63704) = reflection of X(i) in X(j) for these {i,j}: {34115, 3628}, {51757, 3850}


X(63705) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(70) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^16-4*a^14*(b^2+c^2)-(b^2-c^2)^6*(b^2+c^2)^2+2*a^12*(3*b^4+8*b^2*c^2+3*c^4)+4*a^2*(b^2-c^2)^4*(b^6+b^4*c^2+b^2*c^4+c^6)-4*a^10*(b^6+6*b^4*c^2+6*b^2*c^4+c^6)+4*a^8*(4*b^6*c^2+5*b^4*c^4+4*b^2*c^6)-6*a^4*(b^2-c^2)^2*(b^8+c^8)+4*a^6*(b^10-2*b^8*c^2-b^6*c^4-b^4*c^6-2*b^2*c^8+c^10) : :

X(63705) lies on these lines: {2, 22533}, {3, 70}, {4, 45780}, {5, 15317}, {49, 18912}, {68, 110}, {155, 403}, {343, 34438}, {1092, 12827}, {1351, 37197}, {1352, 12272}, {1899, 11449}, {2888, 32379}, {3448, 58378}, {5878, 12111}, {5925, 52071}, {7728, 12825}, {10018, 51933}, {11422, 39571}, {11441, 15761}, {11472, 18560}, {12271, 50435}, {12278, 15062}, {15069, 19149}, {16386, 17845}, {18911, 19357}, {22661, 63710}, {23293, 58409}, {25738, 44452}, {32539, 51393}, {43808, 58266}, {44752, 57582}, {63629, 63629}

X(63705) = reflection of X(i) in X(j) for these {i,j}: {15317, 5}
X(63705) = pole of line {26, 45780} with respect to the Stammler hyperbola
X(63705) = intersection, other than A, B, C, of circumconics {{A, B, C, X(70), X(45781)}}, {{A, B, C, X(38534), X(59162)}}


X(63706) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(71) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(a^2-b^2-c^2)*(a^10*(b+c)-6*a^5*(b^2-c^2)^2*(b^2+c^2)-2*a*(b^2-c^2)^4*(b^2+c^2)-5*a^8*(b^3+b^2*c+b*c^2+c^3)+2*a^7*(b^4+c^4)+(b-c)^4*(b+c)^3*(b^4+c^4)+6*a^3*(b^2-c^2)^2*(b^4+c^4)-a^2*(b-c)^2*(b+c)^3*(b^4-6*b^3*c+4*b^2*c^2-6*b*c^3+c^4)+2*a^6*(4*b^5+5*b^4*c+4*b^3*c^2+4*b^2*c^3+5*b*c^4+4*c^5)-2*a^4*(2*b^7+5*b^6*c+2*b^5*c^2-b^4*c^3-b^3*c^4+2*b^2*c^5+5*b*c^6+2*c^7)) : :

X(63706) lies on these lines: {3, 48}, {5, 28786}, {155, 14053}, {516, 5878}, {674, 19149}, {1352, 9028}, {3173, 11435}, {5770, 11487}, {13726, 18444}, {34335, 41510}, {63629, 63629}

X(63706) = reflection of X(i) in X(j) for these {i,j}: {28786, 5}


X(63707) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(72) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a*(a^2-b^2-c^2)*(a^9*(b+c)+4*a^5*b^2*c^2*(b+c)-a^8*(b+c)^2-a*(b-c)^4*(b+c)^5+(b^2-c^2)^4*(b^2+c^2)-2*a^2*(b-c)^4*(b+c)^2*(b^2+b*c+c^2)-2*a^4*b*c*(b+c)^2*(3*b^2-4*b*c+3*c^2)-2*a^7*(b^3+b^2*c+b*c^2+c^3)+2*a^6*(b^4+3*b^3*c+2*b^2*c^2+3*b*c^3+c^4)+2*a^3*(b-c)^2*(b^5+3*b^4*c+2*b^3*c^2+2*b^2*c^3+3*b*c^4+c^5)) : :

X(63707) lies on these lines: {3, 63}, {5, 28787}, {110, 30733}, {155, 14054}, {517, 5878}, {518, 19149}, {1352, 5777}, {3157, 44547}, {3211, 9119}, {5728, 36750}, {5927, 6288}, {7728, 54150}, {15763, 24474}, {24475, 52259}, {34332, 41507}, {63629, 63629}

X(63707) = reflection of X(i) in X(j) for these {i,j}: {28787, 5}
X(63707) = pole of line {22383, 57094} with respect to the MacBeath circumconic


X(63708) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND CIRCUMCEVIAN-OF-X(186)

Barycentrics    3*a^20*(b^2+c^2)-2*a^18*(7*b^4+2*b^2*c^2+7*c^4)+10*a^16*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)-(b^2-c^2)^8*(2*b^6+7*b^4*c^2+7*b^2*c^4+2*c^6)+2*a^14*(b^8-30*b^6*c^2+38*b^4*c^4-30*b^2*c^6+c^8)+2*a^2*(b^2-c^2)^6*(4*b^8+b^6*c^2-7*b^4*c^4+b^2*c^6+4*c^8)-a^4*(b^2-c^2)^4*(7*b^10-32*b^8*c^2+38*b^6*c^4+38*b^4*c^6-32*b^2*c^8+7*c^10)-a^12*(28*b^10-81*b^8*c^2+58*b^6*c^4+58*b^4*c^6-81*b^2*c^8+28*c^10)-2*a^6*(b^2-c^2)^2*(5*b^12-10*b^10*c^2-45*b^8*c^4+86*b^6*c^6-45*b^4*c^8-10*b^2*c^10+5*c^12)+2*a^10*(7*b^12+19*b^10*c^2-102*b^8*c^4+164*b^6*c^6-102*b^4*c^8+19*b^2*c^10+7*c^12)+a^8*(14*b^14-131*b^12*c^2+271*b^10*c^4-158*b^8*c^6-158*b^6*c^8+271*b^4*c^10-131*b^2*c^12+14*c^14) : :

X(63708) lies on these lines: {30, 63695}, {235, 16178}, {476, 35488}, {477, 63657}, {523, 63685}, {3258, 63674}, {13406, 16168}, {20957, 63671}, {31379, 63667}, {62489, 63687}, {62490, 63696}, {63629, 63629}

X(63708) = reflection of X(i) in X(j) for these {i,j}: {63715, 13406}
X(63708) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13406, 16168, 63715}


X(63709) = ORTHOLOGY CENTER OF THESE TRIANGLES: PEDAL-OF-X(235) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^10-3*a^8*(b^2+c^2)+a^6*(2*b^4+9*b^2*c^2+2*c^4)+(b^2-c^2)^2*(b^6+c^6)+a^4*(2*b^6-11*b^4*c^2-11*b^2*c^4+2*c^6)+a^2*(-3*b^8+7*b^6*c^2+7*b^2*c^6-3*c^8)) : :
X(63709) =

X(63709) lies on circumconic {{A, B, C, X(5), X(45299)}} and on these lines: {5, 51}, {24, 14984}, {110, 22550}, {265, 32337}, {389, 13142}, {511, 16196}, {1112, 5889}, {1351, 3567}, {1593, 3060}, {3548, 6243}, {5159, 32411}, {5446, 13488}, {5663, 44271}, {5907, 13487}, {5944, 19468}, {5946, 36747}, {6102, 18433}, {6403, 14914}, {6756, 12235}, {8548, 12167}, {8780, 12271}, {9715, 15074}, {10112, 41589}, {10263, 12041}, {11431, 37481}, {12006, 13352}, {13358, 34584}, {13421, 15122}, {13567, 49109}, {13598, 31978}, {13754, 44226}, {15073, 16195}, {18555, 44267}, {18917, 44544}, {19458, 61724}, {22530, 44241}, {32110, 63414}, {37984, 63683}, {44084, 61607}, {58482, 59659}, {63629, 63629}

X(63709) = midpoint of X(i) and X(j) for these {i,j}: {52, 41587}
X(63709) = reflection of X(i) in X(j) for these {i,j}: {59659, 58482}
X(63709) = pole of line {6146, 44920} with respect to the Jerabek hyperbola
X(63709) = pole of line {54, 22663} with respect to the Stammler hyperbola
X(63709) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 52, 31802}, {52, 41587, 1154}


X(63710) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(265) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(a^14+9*a^10*b^2*c^2-2*a^12*(b^2+c^2)+a^4*b^2*c^2*(b^2-c^2)^2*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)-2*a^2*(b^2-c^2)^4*(b^4-b^2*c^2+c^4)+a^8*(b^6-6*b^4*c^2-6*b^2*c^4+c^6)+a^6*(b^8-7*b^6*c^2+16*b^4*c^4-7*b^2*c^6+c^8)) : :
X(63710) = -2*X[1147]+3*X[14643], -3*X[5654]+4*X[61574], -X[6193]+4*X[63685], -4*X[12038]+5*X[38794], -X[12164]+3*X[38789], -3*X[14070]+4*X[41674], -3*X[14644]+2*X[23306], -3*X[15055]+4*X[44158]

X(63710) lies on these lines: {3, 125}, {4, 12825}, {5, 5504}, {30, 63716}, {68, 5663}, {74, 12359}, {110, 403}, {113, 155}, {146, 11411}, {399, 12429}, {511, 19506}, {539, 5655}, {542, 19149}, {912, 12368}, {1147, 14643}, {1181, 10111}, {1351, 46686}, {1352, 10113}, {1511, 12118}, {1899, 44573}, {2777, 12163}, {3024, 10055}, {3028, 10071}, {3448, 17854}, {3542, 20771}, {3548, 59495}, {3564, 9970}, {5651, 33547}, {5654, 61574}, {5972, 18390}, {6193, 63685}, {6238, 12374}, {6288, 15030}, {6759, 12419}, {7352, 12373}, {7505, 12383}, {7689, 20127}, {7722, 53781}, {7728, 13417}, {9140, 44458}, {9627, 12888}, {9826, 39571}, {9937, 12168}, {10088, 12428}, {10091, 18970}, {10112, 12227}, {10264, 61544}, {10564, 15123}, {10721, 62288}, {10733, 15062}, {11442, 12292}, {11472, 12295}, {11487, 12319}, {11562, 19477}, {11746, 18420}, {12038, 38794}, {12164, 38789}, {12228, 12370}, {12235, 21649}, {12375, 35837}, {12376, 35836}, {12897, 22979}, {12904, 19469}, {13198, 15760}, {13346, 32743}, {14070, 41674}, {14644, 23306}, {15035, 43866}, {15055, 44158}, {15115, 23515}, {15131, 15136}, {15463, 45177}, {15761, 32379}, {15801, 22660}, {16386, 25739}, {17838, 19458}, {18358, 23296}, {18403, 45780}, {18439, 32539}, {18440, 32239}, {18531, 41673}, {18569, 54148}, {19138, 32233}, {22661, 63705}, {30714, 51933}, {32227, 45025}, {34153, 44452}, {34382, 63700}, {35488, 54163}, {36201, 37488}, {37917, 63735}, {44263, 61724}, {63629, 63629}

X(63710) = midpoint of X(i) and X(j) for these {i,j}: {146, 11411}, {399, 12429}, {2931, 12293}, {12295, 32263}, {12310, 12902}
X(63710) = reflection of X(i) in X(j) for these {i,j}: {3, 46085}, {74, 12359}, {155, 113}, {265, 9927}, {5504, 5}, {10264, 61544}, {10564, 15123}, {12118, 1511}, {12121, 12893}, {12302, 125}, {12419, 6759}, {12901, 5449}, {13346, 32743}, {15085, 32263}, {15133, 265}, {20127, 7689}, {21649, 12235}, {23296, 18358}, {32233, 19138}
X(63710) = inverse of X(131) in 2nd DrozFarny circle
X(63710) = inverse of X(39119) in circumcircle of the Johnson triangle
X(63710) = pole of line {113, 131} with respect to the 2nd DrozFarny circle
X(63710) = pole of line {39119, 63716} with respect to the circumcircle of the Johnson triangle
X(63710) = pole of line {17854, 62339} with respect to the polar circle
X(63710) = pole of line {186, 53781} with respect to the Stammler hyperbola
X(63710) = intersection, other than A, B, C, of circumconics {{A, B, C, X(265), X(48376)}}, {{A, B, C, X(5961), X(11744)}}, {{A, B, C, X(22466), X(39170)}}
X(63710) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {125, 17702, 12302}, {265, 17702, 15133}, {3448, 44440, 17854}, {5449, 12901, 15061}, {5449, 17702, 12901}, {9927, 17702, 265}, {10733, 58922, 44795}, {12302, 14852, 125}, {12310, 12902, 17702}, {12893, 17702, 12121}, {17702, 46085, 3}, {35488, 54163, 58726}


X(63711) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(290) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    b^2*c^2*(-a^12+b^2*c^2*(b^2-c^2)^4+a^10*(b^2+c^2)+a^2*(b^2-c^2)^4*(b^2+c^2)-a^8*(4*b^4+b^2*c^2+4*c^4)+2*a^6*(3*b^6+b^4*c^2+b^2*c^4+3*c^6)+a^4*(-3*b^8+4*b^6*c^2-10*b^4*c^4+4*b^2*c^6-3*c^8)) : :

X(63711) lies on these lines: {3, 76}, {5, 36214}, {110, 419}, {155, 7754}, {1351, 43976}, {1352, 34383}, {3564, 17984}, {3767, 11672}, {8920, 11898}, {16081, 57258}, {19222, 46303}, {42065, 47736}, {63629, 63629}

X(63711) = reflection of X(i) in X(j) for these {i,j}: {36214, 5}
X(63711) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 14265, 59367}


X(63712) = ORTHOLOGY CENTER OF THESE TRIANGLES: PEDAL-OF-X(297) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^8+b^8-b^6*c^2-b^2*c^6+c^8-2*a^6*(b^2+c^2)+a^4*(2*b^4+3*b^2*c^2+2*c^4)-2*a^2*(b^6+c^6)) : :

X(63712) lies on circumconic {{A, B, C, X(14569), X(27362)}} and on these lines: {5, 51}, {25, 23128}, {418, 41480}, {441, 511}, {458, 3060}, {2871, 42671}, {6524, 11411}, {6751, 42459}, {13754, 34854}, {14569, 61363}, {41334, 61378}, {51513, 58305}, {60521, 60522}, {63629, 63629}

X(63712) = pole of line {53, 6368} with respect to the Johnson circumconic
X(63712) = pole of line {18314, 53173} with respect to the Steiner inellipse


X(63713) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND X(2)-CIRCUMCONCEVIAN-OF-X(3)

Barycentrics    2*a^12-5*a^10*(b^2+c^2)-(b^2-c^2)^4*(b^4-b^2*c^2+c^4)+2*a^8*(b^4+b^2*c^2+c^4)+a^2*(b^2-c^2)^2*(4*b^6-3*b^4*c^2-3*b^2*c^4+4*c^6)+a^6*(5*b^6+2*b^4*c^2+2*b^2*c^4+5*c^6)-7*a^4*(b^8-b^6*c^2-b^2*c^6+c^8) : :

X(63713) lies on these lines: {5, 1576}, {30, 50648}, {39, 6748}, {160, 37440}, {235, 51031}, {546, 575}, {3398, 7403}, {7566, 7797}, {13335, 63679}, {13383, 61611}, {16264, 63662}, {34577, 34804}, {34845, 50138}, {40279, 44469}, {63421, 63682}, {63629, 63629}

X(63713) = pole of line {7747, 58312} with respect to the Kiepert hyperbola


X(63714) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND X(3)-CIRCUMCONCEVIAN-OF-X(3)

Barycentrics    a^2*(2*a^12*(b^2+c^2)-2*a^10*(4*b^4+b^2*c^2+4*c^4)-(b^2-c^2)^4*(2*b^6+b^4*c^2+b^2*c^4+2*c^6)-2*a^4*(b^2-c^2)^2*(5*b^6+3*b^4*c^2+3*b^2*c^4+5*c^6)+a^8*(10*b^6-7*b^4*c^2-7*b^2*c^4+10*c^6)+a^6*(6*b^6*c^2+8*b^4*c^4+6*b^2*c^6)+4*a^2*(b^2-c^2)^2*(2*b^8-b^6*c^2+b^4*c^4-b^2*c^6+2*c^8)) : :
X(63714) = 5*X[5]+X[6293], 2*X[3850]+X[41725], X[6759]+2*X[16881], X[11206]+3*X[13321], -4*X[12006]+X[61540], -X[18358]+4*X[58547], -X[18381]+4*X[58531], X[32392]+2*X[45958], -4*X[58484]+X[61544]

X(63714) lies on these lines: {5, 6293}, {26, 19153}, {51, 6146}, {52, 37897}, {140, 2781}, {143, 2393}, {154, 12161}, {185, 16227}, {235, 5890}, {511, 33591}, {546, 5462}, {1154, 13383}, {3518, 15135}, {3567, 10301}, {3850, 41725}, {5891, 63667}, {5892, 63679}, {5946, 41580}, {6759, 16881}, {7403, 41715}, {7715, 9971}, {10282, 12105}, {10594, 32063}, {10606, 15805}, {11202, 12107}, {11206, 13321}, {11455, 63661}, {11695, 63723}, {12006, 61540}, {12106, 34117}, {12359, 13406}, {12824, 34664}, {13363, 34146}, {13451, 18400}, {16252, 25338}, {18358, 58547}, {18381, 58531}, {18435, 63674}, {22802, 40928}, {23332, 50138}, {26944, 35488}, {32062, 63670}, {32392, 45958}, {34577, 44324}, {35450, 63664}, {37777, 43590}, {37935, 54384}, {44961, 61749}, {58484, 61544}, {63629, 63629}, {63726, 63729}

X(63714) = midpoint of X(i) and X(j) for these {i,j}: {5946, 41580}, {22802, 40928}
X(63714) = reflection of X(i) in X(j) for these {i,j}: {13364, 58544}, {44324, 58434}, {61606, 45979}
X(63714) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1154, 45979, 61606}, {6000, 58544, 13364}, {41589, 63697, 546}


X(63715) = PARALLELOGIC CENTER OF 2ND HATZIPOLAKIS-MOSES AND CIRCUMCEVIAN-OF-X(186)

Barycentrics    a^20*(b^2+c^2)-2*a^18*(b^2+c^2)^2-(b^2-c^2)^8*(2*b^6+5*b^4*c^2+5*b^2*c^4+2*c^6)-2*a^16*(4*b^6-7*b^4*c^2-7*b^2*c^4+4*c^6)+2*a^2*(b^2-c^2)^6*(4*b^8+b^6*c^2-5*b^4*c^4+b^2*c^6+4*c^8)-2*a^10*(b^2-c^2)^2*(7*b^8-25*b^6*c^2+13*b^4*c^4-25*b^2*c^6+7*c^8)+a^14*(30*b^8-32*b^6*c^2-4*b^4*c^4-32*b^2*c^6+30*c^8)+a^12*(-28*b^10+11*b^8*c^2+18*b^6*c^4+18*b^4*c^6+11*b^2*c^8-28*c^10)-a^4*(b^2-c^2)^4*(5*b^10-32*b^8*c^2+10*b^6*c^4+10*b^4*c^6-32*b^2*c^8+5*c^10)+a^8*(b^2-c^2)^2*(42*b^10-37*b^8*c^2+33*b^6*c^4+33*b^4*c^6-37*b^2*c^8+42*c^10)-2*a^6*(b^2-c^2)^2*(11*b^12+4*b^10*c^2-31*b^8*c^4+56*b^6*c^6-31*b^4*c^8+4*b^2*c^10+11*c^12) : :

X(63715) lies on these lines: {30, 63685}, {235, 3258}, {476, 63657}, {477, 35488}, {523, 63695}, {13406, 16168}, {22104, 63667}, {25641, 63674}, {44961, 62501}, {62489, 63696}, {62490, 63687}, {63629, 63629}

X(63715) = reflection of X(i) in X(j) for these {i,j}: {63708, 13406}
X(63715) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {13406, 16168, 63708}


X(63716) = ORTHOLOGY CENTER OF THESE TRIANGLES: ANTIPEDAL-OF-X(265) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^12-a^10*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)^2-a^8*(b^4-3*b^2*c^2+c^4)+a^4*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+a^2*(b^2-c^2)^2*(b^6-3*b^4*c^2-3*b^2*c^4+c^6) : :
X(63716) = -3*X[2]+2*X[15647], -3*X[154]+4*X[5972]

X(63716) lies on these lines: {2, 15647}, {4, 974}, {5, 9934}, {6, 32264}, {20, 11598}, {25, 125}, {30, 63710}, {64, 265}, {66, 67}, {74, 6145}, {110, 858}, {113, 1498}, {141, 38885}, {146, 12324}, {154, 5972}, {159, 15116}, {161, 12827}, {399, 34780}, {427, 13198}, {542, 17847}, {895, 15583}, {1112, 1899}, {1147, 12419}, {1177, 15321}, {1352, 13416}, {1370, 41673}, {1495, 15126}, {1511, 9833}, {1539, 5878}, {1974, 15128}, {1986, 6293}, {2781, 3448}, {2854, 2892}, {2935, 9937}, {3047, 31074}, {3357, 18565}, {3548, 20771}, {3818, 6723}, {5181, 9924}, {5189, 44668}, {5504, 23335}, {5596, 6593}, {5663, 14216}, {5894, 58922}, {5895, 13202}, {5925, 9927}, {6000, 7728}, {6001, 12368}, {6144, 25335}, {6146, 15472}, {6285, 12374}, {6288, 38788}, {6696, 15055}, {6699, 40686}, {6759, 14643}, {7355, 12373}, {7387, 46085}, {7519, 61088}, {7687, 17812}, {8567, 37853}, {8998, 17819}, {9140, 34603}, {9629, 10118}, {9786, 15473}, {9909, 41674}, {9919, 38724}, {10111, 36747}, {10113, 44276}, {10264, 11819}, {10282, 38794}, {10293, 18434}, {10606, 16111}, {10628, 14864}, {10721, 15311}, {10733, 41362}, {11061, 20079}, {11382, 32246}, {11572, 31978}, {11597, 32359}, {12041, 34514}, {12121, 13293}, {12167, 32285}, {12227, 17824}, {12302, 63422}, {12315, 38789}, {12824, 41736}, {12825, 37444}, {12893, 44407}, {12903, 19505}, {13093, 38790}, {13248, 47277}, {13289, 15061}, {13417, 34146}, {13990, 17820}, {14644, 16654}, {14677, 61540}, {15035, 34782}, {15059, 23332}, {15081, 63695}, {15113, 61680}, {15142, 46264}, {15462, 41602}, {15463, 34224}, {16163, 17845}, {17821, 38793}, {18382, 45237}, {18390, 61721}, {18952, 58516}, {20427, 34584}, {20998, 40347}, {23328, 41171}, {23329, 38728}, {25564, 34785}, {29012, 37928}, {32345, 32607}, {34774, 52699}, {34778, 61739}, {34799, 46374}, {38791, 58795}, {41580, 41671}, {43599, 51491}, {44883, 61700}, {53320, 55121}, {63629, 63629}

X(63716) = midpoint of X(i) and X(j) for these {i,j}: {146, 12324}, {399, 34780}, {2892, 36851}, {3448, 13203}, {11061, 20079}, {13093, 38790}
X(63716) = reflection of X(i) in X(j) for these {i,j}: {20, 11598}, {67, 66}, {74, 6247}, {110, 23315}, {159, 15116}, {161, 12827}, {265, 18381}, {895, 15583}, {1177, 23300}, {1495, 15126}, {1498, 113}, {5504, 23335}, {5596, 6593}, {5878, 1539}, {5895, 13202}, {6293, 1986}, {6759, 32743}, {7387, 46085}, {7728, 19506}, {9833, 1511}, {9924, 5181}, {9934, 5}, {10117, 125}, {10733, 41362}, {11744, 4}, {12121, 13293}, {12419, 1147}, {13289, 20299}, {14677, 61540}, {15139, 32125}, {17835, 16003}, {17845, 16163}, {20127, 3357}, {32264, 6}, {32359, 11597}, {34785, 25564}, {38885, 141}, {56924, 41603}
X(63716) = X(i)-Dao conjugate of X(j) for these {i, j}: {15647, 15647}
X(63716) = pole of line {5972, 13526} with respect to the Orthic inconic
X(63716) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {110, 23315, 15131}, {125, 36201, 10117}, {1503, 23315, 110}, {1503, 32125, 15139}, {2777, 16003, 17835}, {2777, 18381, 265}, {2892, 36851, 2854}, {3448, 13203, 2781}, {6000, 19506, 7728}, {6759, 32743, 14643}, {13203, 32064, 3448}, {13289, 20299, 15061}, {13293, 18400, 12121}, {25564, 34785, 38723}, {29012, 41603, 56924}


X(63717) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF INNER-SQUARES

Barycentrics    a^2*(a^2-b^2-c^2)*(a^12-4*a^10*(b^2+c^2)+8*a^6*b^2*c^2*(b^2+c^2)+4*a^2*(b^2-c^2)^4*(b^2+c^2)-(b^2-c^2)^4*(b^4-4*b^2*c^2+c^4)+a^8*(5*b^4+4*b^2*c^2+5*c^4)-a^4*(b^2-c^2)^2*(5*b^4+14*b^2*c^2+5*c^4)+8*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))*S^3) : :

X(63717) lies on these lines: {3, 63683}, {235, 372}, {1590, 63656}, {3155, 63659}, {5408, 63667}, {6414, 63678}, {10133, 10594}, {12256, 63666}, {26920, 63677}, {55567, 63657}, {63629, 63629}


X(63718) = PERSPECTOR OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF OUTER-SQUARES

Barycentrics    a^2*(a^2-b^2-c^2)*(a^12-4*a^10*(b^2+c^2)+8*a^6*b^2*c^2*(b^2+c^2)+4*a^2*(b^2-c^2)^4*(b^2+c^2)-(b^2-c^2)^4*(b^4-4*b^2*c^2+c^4)+a^8*(5*b^4+4*b^2*c^2+5*c^4)-a^4*(b^2-c^2)^2*(5*b^4+14*b^2*c^2+5*c^4)-8*(a^6-a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-a^2*(b^4+c^4))*S^3) : :

X(63718) lies on these lines: {3, 63683}, {235, 371}, {1589, 63656}, {3156, 63659}, {5409, 63667}, {6413, 63677}, {8911, 63678}, {10132, 10594}, {12257, 63666}, {55566, 63657}, {63629, 63629}


X(63719) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF 2ND BROCARD AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(2*a^8-3*b^8+8*b^6*c^2-14*b^4*c^4+8*b^2*c^6-3*c^8-4*a^6*(b^2+c^2)+a^4*(b^4+4*b^2*c^2+c^4)+a^2*(4*b^6-2*b^4*c^2-2*b^2*c^4+4*c^6)) : :

X(63719) lies on circumconic {{A, B, C, X(3563), X(60176)}} and on these lines: {2, 6321}, {3, 111}, {4, 7665}, {5, 7664}, {23, 2080}, {25, 110}, {126, 10992}, {182, 3124}, {351, 11616}, {468, 54395}, {511, 2502}, {543, 14694}, {576, 39689}, {842, 53690}, {1194, 15516}, {1350, 20998}, {1511, 46131}, {1995, 9155}, {2493, 5467}, {2780, 11631}, {2782, 7417}, {3095, 14002}, {3291, 47113}, {3569, 14696}, {3830, 9759}, {5097, 20976}, {5106, 18860}, {5611, 37776}, {5615, 37775}, {5651, 36790}, {7467, 14810}, {8585, 9734}, {9129, 33998}, {9142, 33900}, {9157, 13310}, {9175, 17993}, {9465, 11842}, {9775, 13188}, {9979, 47258}, {10418, 23698}, {10554, 50962}, {10836, 34787}, {11284, 54439}, {11477, 46276}, {11580, 38225}, {12117, 52141}, {12355, 42008}, {14669, 54066}, {15398, 38702}, {20975, 59227}, {26276, 32515}, {36168, 46634}, {37184, 46316}, {38611, 46783}, {38613, 39528}, {39024, 53091}, {40915, 48876}, {53351, 56390}, {63629, 63629}

X(63719) = reflection of X(i) in X(j) for these {i,j}: {57607, 10418}
X(63719) = pole of line {6088, 6132} with respect to the circumcircle
X(63719) = pole of line {23, 111} with respect to the Parry circle
X(63719) = pole of line {3564, 8593} with respect to the Stammler hyperbola
X(63719) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {{23, 111, 7417}}
X(63719) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {23, 44420, 5191}, {10418, 23698, 57607}


X(63720) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF 4TH BROCARD AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(a^2-b^2-c^2)*(a^6-4*a^4*(b^2+c^2)-2*(b^2-c^2)^2*(b^2+c^2)+a^2*(5*b^4-3*b^2*c^2+5*c^4)) : :
X(63720) = -6*X[1495]+5*X[37923], -6*X[1511]+5*X[37952], -3*X[1568]+2*X[36253], -3*X[2071]+2*X[51522], -6*X[2072]+5*X[15027], -2*X[3580]+3*X[14643], -3*X[5093]+2*X[32127], -3*X[7728]+2*X[62288], -3*X[10706]+2*X[44267], -4*X[11064]+3*X[15061], -6*X[14156]+5*X[38729], -3*X[14157]+2*X[37967] and many others

X(63720) lies on these lines: {3, 49}, {5, 15019}, {23, 1154}, {30, 14094}, {52, 7545}, {54, 31834}, {110, 3581}, {113, 5965}, {156, 7556}, {182, 40258}, {186, 13148}, {195, 5907}, {265, 895}, {323, 5663}, {381, 576}, {399, 511}, {524, 5655}, {539, 18403}, {542, 7574}, {546, 6288}, {547, 5643}, {567, 11422}, {568, 1995}, {575, 5891}, {1173, 12811}, {1199, 14128}, {1351, 9027}, {1493, 35500}, {1495, 37923}, {1511, 37952}, {1531, 12902}, {1568, 36253}, {1614, 7555}, {1993, 18435}, {1994, 15060}, {2071, 51522}, {2072, 15027}, {2393, 32254}, {2917, 50414}, {3090, 18951}, {3284, 22146}, {3448, 51391}, {3519, 10024}, {3530, 43602}, {3580, 14643}, {3627, 14516}, {5066, 53863}, {5093, 32127}, {5446, 12316}, {5504, 43720}, {5876, 7527}, {5889, 12106}, {5946, 16042}, {6000, 35001}, {6101, 43605}, {6152, 16982}, {6243, 7530}, {6593, 32599}, {7492, 61752}, {7496, 13339}, {7550, 11591}, {7605, 44834}, {7723, 12364}, {7728, 62288}, {8542, 50955}, {9149, 18322}, {9936, 18404}, {9968, 32063}, {10109, 12834}, {10170, 15037}, {10294, 15362}, {10298, 58266}, {10564, 10620}, {10706, 44267}, {11003, 33533}, {11064, 15061}, {11444, 37471}, {11456, 13340}, {11477, 18451}, {11511, 39899}, {11793, 43845}, {11935, 39242}, {12082, 32139}, {12083, 53097}, {12111, 37495}, {12134, 15800}, {12308, 14915}, {13363, 54434}, {13391, 37946}, {13432, 18555}, {14156, 38729}, {14157, 37967}, {14531, 18378}, {14926, 15516}, {15004, 19709}, {15020, 15646}, {15021, 34152}, {15029, 46031}, {15034, 18571}, {15038, 22330}, {15039, 32608}, {15054, 37950}, {15063, 18325}, {15066, 40280}, {15122, 20126}, {15317, 17836}, {15360, 25338}, {16051, 18917}, {16239, 43600}, {16266, 18439}, {16534, 41586}, {16625, 18369}, {16881, 43614}, {17845, 48672}, {18323, 44665}, {18534, 55724}, {20190, 54006}, {20379, 30745}, {21659, 45184}, {31726, 38791}, {32110, 32609}, {32358, 43821}, {32423, 58789}, {40115, 62657}, {41628, 46030}, {44533, 45769}, {45016, 53777}, {47276, 56567}, {52987, 54048}, {53124, 61933}, {63629, 63629}

X(63720) = midpoint of X(i) and X(j) for these {i,j}: {12308, 37496}, {14094, 23061}
X(63720) = reflection of X(i) in X(j) for these {i,j}: {3, 3292}, {23, 5609}, {3448, 51391}, {3581, 110}, {10620, 10564}, {12902, 1531}, {15054, 37950}, {15089, 15091}, {18325, 15063}, {20126, 40112}, {22115, 50461}, {32599, 6593}, {32608, 51393}, {37477, 323}, {41586, 16534}, {41615, 155}, {41724, 5}
X(63720) = perspector of circumconic {{A, B, C, X(4558), X(55982)}}
X(63720) = X(i)-isoconjugate-of-X(j) for these {i, j}: {19, 55957}
X(63720) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 55957}, {4550, 52173}
X(63720) = X(i)-Ceva conjugate of X(j) for these {i, j}: {34802, 3}
X(63720) = pole of line {924, 11202} with respect to the circumcircle
X(63720) = pole of line {924, 32063} with respect to the Stammler circle
X(63720) = pole of line {647, 5158} with respect to the MacBeath circumconic
X(63720) = pole of line {4, 5609} with respect to the Stammler hyperbola
X(63720) = pole of line {850, 44148} with respect to the dual conic of polar circle
X(63720) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(14536)}}, {{A, B, C, X(265), X(3292)}}, {{A, B, C, X(394), X(44555)}}, {{A, B, C, X(895), X(22115)}}, {{A, B, C, X(5609), X(23236)}}, {{A, B, C, X(9703), X(47390)}}, {{A, B, C, X(13754), X(43720)}}, {{A, B, C, X(15362), X(63425)}}, {{A, B, C, X(16186), X(51258)}}, {{A, B, C, X(17505), X(41597)}}
X(63720) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {{14094, 23061, 53770}}
X(63720) = barycentric product X(i)*X(j) for these (i, j): {3, 44555}, {11064, 39239}, {15362, 56266}
X(63720) = barycentric quotient X(i)/X(j) for these (i, j): {3, 55957}, {5158, 52173}, {39239, 16080}, {44555, 264}
X(63720) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 50461, 3292}, {23, 5609, 10540}, {155, 13754, 41615}, {155, 18436, 49}, {323, 5663, 37477}, {1154, 5609, 23}, {3292, 13754, 3}, {5876, 56292, 37472}, {11422, 11459, 49671}, {11422, 49671, 567}, {12308, 37496, 14915}, {13754, 50461, 22115}, {14094, 23061, 30}, {15032, 15067, 13339}, {15039, 32608, 37958}, {15039, 37958, 51393}, {15054, 43574, 37950}, {18445, 58891, 23039}


X(63721) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF 10TH BROCARD

Barycentrics    (a^2-b^2-c^2)*(6*a^14-8*a^2*b^2*c^2*(b^2-c^2)^4-3*a^12*(b^2+c^2)+5*(b^2-c^2)^6*(b^2+c^2)-4*a^10*(7*b^4-3*b^2*c^2+7*c^4)+a^8*(27*b^6-31*b^4*c^2-31*b^2*c^4+27*c^6)-a^4*(b^2-c^2)^2*(29*b^6-17*b^4*c^2-17*b^2*c^4+29*c^6)+2*a^6*(11*b^8-10*b^6*c^2+6*b^4*c^4-10*b^2*c^6+11*c^8)) : :

X(63721) lies on these lines: {30, 63699}, {235, 40909}, {546, 5449}, {3853, 63684}, {4549, 63674}, {5462, 63727}, {6756, 22660}, {11472, 63662}, {13383, 63629}, {13754, 63688}, {14915, 41589}, {17702, 63694}, {18567, 63726}, {31871, 63698}, {35254, 63667}, {41465, 63657}, {44665, 63702}, {52019, 63682}


X(63722) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF 2ND EHRMANN AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    3*a^6-5*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+a^2*(3*b^4-2*b^2*c^2+3*c^4) : :
X(63722) = -3*X[2]+4*X[575], -2*X[5]+3*X[6], -3*X[51]+2*X[43130], -2*X[76]+3*X[31958], -4*X[140]+3*X[599], -6*X[141]+7*X[3526], -4*X[143]+3*X[9971], -3*X[376]+2*X[52987], -X[382]+3*X[1351], -4*X[546]+3*X[47353], -4*X[547]+5*X[51185], -4*X[548]+3*X[1350] and many others

X(63722) lies on these lines: {2, 575}, {3, 524}, {4, 542}, {5, 6}, {20, 185}, {22, 41628}, {25, 61658}, {30, 11477}, {32, 5477}, {49, 8262}, {51, 43130}, {52, 2393}, {54, 69}, {61, 51200}, {62, 51203}, {66, 15317}, {67, 18281}, {76, 31958}, {98, 7774}, {110, 37644}, {114, 7735}, {125, 37645}, {140, 599}, {141, 3526}, {143, 9971}, {147, 7766}, {154, 37897}, {156, 18374}, {159, 9714}, {183, 44508}, {184, 6515}, {195, 15141}, {262, 63017}, {263, 25046}, {287, 32545}, {298, 44514}, {299, 44513}, {302, 44506}, {303, 44505}, {315, 39099}, {317, 41204}, {323, 18911}, {325, 9755}, {343, 11402}, {355, 4663}, {373, 54013}, {376, 52987}, {381, 8584}, {382, 1351}, {385, 9744}, {387, 37823}, {389, 6193}, {394, 11245}, {399, 25329}, {427, 63094}, {487, 43121}, {488, 43120}, {491, 44509}, {492, 44510}, {518, 37727}, {520, 62307}, {532, 44465}, {533, 44461}, {539, 9972}, {546, 47353}, {547, 51185}, {548, 1350}, {549, 10541}, {550, 43273}, {568, 2854}, {569, 16511}, {578, 11411}, {597, 1656}, {611, 15888}, {613, 37722}, {621, 44488}, {622, 44487}, {626, 43456}, {629, 33419}, {630, 33418}, {632, 21358}, {637, 44486}, {638, 44485}, {732, 18768}, {858, 1899}, {1007, 6036}, {1147, 5181}, {1154, 15074}, {1181, 44492}, {1199, 14789}, {1249, 39569}, {1270, 44484}, {1271, 44483}, {1368, 37672}, {1386, 61276}, {1469, 4317}, {1478, 19369}, {1479, 8540}, {1498, 13142}, {1513, 14614}, {1587, 44502}, {1588, 44501}, {1657, 50962}, {1843, 37122}, {1906, 39871}, {1994, 5169}, {2070, 15582}, {2330, 31452}, {2781, 20427}, {2782, 7737}, {2783, 24695}, {2792, 49488}, {2794, 7798}, {2888, 9977}, {2930, 12106}, {2937, 35707}, {3056, 4309}, {3060, 7519}, {3066, 61657}, {3068, 44656}, {3069, 44657}, {3070, 9974}, {3071, 9975}, {3087, 39530}, {3090, 7856}, {3091, 5032}, {3095, 59363}, {3098, 3528}, {3146, 11645}, {3167, 13567}, {3180, 6773}, {3181, 6770}, {3242, 61286}, {3332, 48938}, {3398, 7795}, {3410, 62990}, {3411, 36758}, {3412, 36757}, {3416, 38116}, {3448, 9976}, {3517, 41585}, {3522, 50967}, {3523, 11160}, {3524, 50992}, {3525, 7909}, {3529, 19924}, {3530, 5085}, {3534, 55580}, {3542, 43844}, {3543, 63117}, {3544, 63062}, {3545, 63022}, {3548, 19510}, {3567, 11188}, {3589, 5070}, {3618, 5067}, {3619, 55710}, {3620, 33748}, {3627, 54131}, {3628, 47352}, {3630, 12017}, {3631, 55705}, {3642, 22685}, {3643, 22683}, {3751, 5881}, {3763, 16239}, {3785, 13334}, {3818, 3832}, {3830, 41149}, {3843, 5093}, {3845, 63125}, {3850, 38072}, {3851, 14848}, {3853, 5102}, {3855, 15520}, {3856, 38136}, {3858, 50964}, {3861, 39884}, {3926, 13335}, {4197, 15988}, {4260, 6885}, {4301, 51196}, {4416, 46475}, {5012, 43653}, {5028, 7765}, {5034, 9698}, {5038, 10104}, {5054, 22165}, {5055, 63124}, {5056, 51215}, {5059, 51028}, {5068, 25561}, {5073, 51132}, {5092, 10519}, {5107, 7748}, {5138, 6892}, {5182, 16925}, {5286, 44499}, {5306, 37071}, {5334, 20429}, {5335, 20428}, {5418, 48772}, {5420, 48773}, {5462, 29959}, {5493, 51197}, {5562, 40673}, {5609, 34319}, {5613, 37641}, {5617, 37640}, {5621, 11250}, {5622, 15057}, {5651, 61712}, {5655, 63694}, {5734, 39898}, {5735, 51194}, {5739, 37527}, {5847, 11362}, {5848, 37726}, {5849, 45729}, {5907, 44495}, {5943, 14826}, {5967, 43754}, {5972, 37643}, {5999, 7837}, {6054, 63065}, {6055, 9770}, {6090, 37648}, {6101, 54334}, {6102, 12118}, {6146, 10602}, {6194, 50248}, {6230, 13773}, {6231, 13653}, {6243, 9019}, {6248, 44500}, {6309, 35430}, {6329, 61905}, {6337, 50567}, {6391, 14542}, {6419, 37343}, {6420, 37342}, {6593, 63700}, {6640, 6698}, {6642, 63180}, {6643, 11511}, {6644, 9925}, {6676, 17809}, {6721, 63104}, {6723, 62708}, {6759, 41719}, {6771, 63106}, {6774, 63105}, {6792, 52668}, {6811, 45420}, {6813, 45421}, {6845, 41610}, {6936, 10477}, {6995, 21849}, {6997, 15004}, {6998, 17346}, {7379, 63052}, {7380, 46922}, {7385, 63049}, {7394, 53863}, {7398, 58470}, {7401, 9813}, {7404, 37505}, {7486, 15516}, {7487, 16625}, {7500, 21969}, {7507, 11405}, {7517, 15581}, {7545, 32254}, {7552, 43697}, {7558, 11423}, {7574, 15826}, {7575, 47276}, {7581, 44474}, {7582, 44473}, {7585, 44482}, {7586, 44481}, {7592, 41614}, {7612, 34803}, {7709, 14907}, {7738, 32152}, {7739, 37242}, {7762, 39646}, {7775, 11623}, {7777, 10486}, {7781, 14645}, {7788, 37450}, {7791, 32467}, {7826, 37479}, {7839, 9863}, {7877, 12203}, {7890, 30270}, {8149, 13354}, {8538, 18531}, {8547, 37494}, {8549, 14216}, {8586, 43619}, {8593, 23235}, {8667, 37451}, {8703, 51187}, {8724, 8787}, {9003, 62438}, {9027, 9730}, {9028, 43165}, {9143, 14002}, {9306, 11225}, {9544, 37760}, {9589, 39878}, {9624, 16475}, {9656, 39891}, {9671, 39892}, {9703, 51733}, {9705, 19128}, {9715, 19459}, {9729, 53021}, {9738, 12256}, {9739, 12257}, {9754, 63047}, {9766, 56370}, {9815, 11432}, {9820, 62375}, {9967, 32366}, {10111, 13248}, {10114, 12319}, {10116, 14790}, {10124, 51186}, {10222, 47356}, {10250, 20299}, {10297, 47464}, {10299, 55681}, {10303, 55704}, {10304, 55631}, {10510, 14791}, {10539, 19136}, {10540, 63663}, {10542, 15048}, {10783, 44471}, {10784, 44472}, {11002, 11800}, {11003, 37779}, {11064, 26869}, {11156, 32973}, {11161, 33006}, {11255, 11264}, {11416, 15801}, {11427, 21243}, {11431, 14913}, {11456, 32220}, {11458, 25739}, {11464, 41721}, {11539, 50993}, {11555, 22826}, {11556, 22827}, {11574, 15606}, {11579, 13352}, {11799, 18445}, {11812, 50989}, {12100, 51188}, {12134, 37493}, {12163, 43595}, {12164, 12241}, {12215, 35424}, {12233, 12429}, {12251, 50249}, {12272, 41714}, {12280, 32248}, {12289, 29012}, {12322, 49048}, {12323, 49049}, {12359, 54347}, {12588, 37719}, {12589, 37720}, {12601, 14230}, {12602, 14233}, {13087, 48734}, {13088, 48735}, {13346, 18909}, {13449, 43448}, {13464, 51005}, {13598, 34781}, {13622, 56071}, {13748, 49028}, {13749, 49029}, {13754, 32284}, {13860, 41624}, {13862, 63038}, {14035, 22486}, {14234, 54127}, {14238, 54126}, {14763, 43841}, {14810, 21734}, {14831, 18533}, {14927, 29317}, {15019, 62937}, {15032, 41617}, {15066, 54012}, {15083, 58806}, {15118, 32275}, {15136, 18580}, {15178, 47358}, {15274, 44228}, {15303, 16534}, {15448, 21970}, {15559, 39588}, {15578, 35498}, {15589, 15819}, {15688, 55602}, {15692, 55679}, {15694, 50991}, {15696, 33878}, {15698, 55675}, {15702, 50990}, {15709, 50994}, {15712, 50978}, {15713, 51189}, {15720, 50983}, {15905, 42353}, {16010, 16176}, {16063, 23061}, {16266, 43588}, {16496, 61288}, {16964, 51207}, {16965, 51206}, {17008, 43461}, {17378, 21554}, {17508, 61138}, {17538, 54170}, {17578, 48901}, {17770, 24257}, {17800, 29181}, {17811, 45298}, {17813, 31802}, {17834, 31804}, {18383, 23048}, {18396, 47277}, {18400, 34788}, {18404, 18449}, {18435, 63723}, {18572, 47466}, {18800, 32985}, {18912, 22151}, {18914, 37498}, {18925, 46730}, {18928, 32068}, {18933, 19481}, {18950, 37669}, {18952, 32165}, {19121, 59351}, {19131, 47525}, {19132, 61610}, {19140, 25321}, {19142, 22955}, {19145, 31454}, {19153, 41587}, {19161, 34382}, {19588, 45045}, {19596, 37440}, {19708, 55644}, {20063, 62187}, {20301, 34470}, {20398, 32984}, {20582, 46219}, {21167, 61799}, {21735, 51179}, {21843, 39560}, {22236, 40922}, {22238, 40921}, {22712, 63046}, {23291, 30769}, {23293, 55038}, {24981, 34417}, {25335, 32140}, {25565, 61921}, {25898, 37039}, {26288, 35945}, {26289, 35944}, {26864, 32269}, {26879, 62382}, {26883, 54149}, {26958, 37911}, {27377, 33971}, {29323, 50692}, {31395, 50284}, {31450, 50659}, {31815, 45731}, {31884, 46853}, {32006, 51396}, {32223, 35260}, {32247, 32305}, {32272, 32274}, {32428, 39910}, {32448, 44453}, {32831, 51397}, {32833, 35925}, {33004, 39498}, {33225, 39141}, {33258, 50652}, {33586, 37899}, {33750, 55653}, {33751, 55603}, {33923, 50973}, {34165, 57467}, {34200, 55641}, {34351, 47558}, {34379, 39870}, {34573, 55866}, {34774, 39879}, {34779, 41735}, {34787, 37489}, {35018, 38079}, {35266, 62981}, {35482, 53860}, {35840, 39894}, {35841, 39893}, {36989, 44668}, {37124, 44134}, {37172, 51012}, {37173, 51015}, {37182, 63093}, {37196, 53778}, {37463, 37786}, {37464, 37785}, {37472, 51739}, {37487, 47468}, {37514, 53022}, {37638, 61690}, {37714, 39885}, {37725, 51198}, {37784, 54162}, {37824, 42998}, {37825, 42999}, {38029, 49511}, {38115, 47595}, {38144, 61255}, {38227, 63048}, {38263, 38443}, {38282, 61681}, {38315, 61278}, {39125, 51756}, {39804, 57011}, {40258, 54216}, {41020, 51201}, {41021, 51204}, {41152, 61843}, {41153, 61901}, {41595, 45016}, {41691, 63279}, {41981, 50968}, {42011, 43537}, {42992, 59409}, {43574, 43812}, {43756, 56633}, {44109, 61644}, {44475, 45510}, {44476, 45511}, {44477, 62984}, {44478, 62983}, {44555, 52300}, {44569, 52292}, {44654, 45406}, {44655, 45407}, {44682, 53094}, {44883, 47524}, {45029, 51860}, {45248, 63612}, {45488, 61096}, {45489, 61097}, {45862, 48660}, {45863, 48659}, {46261, 56565}, {47355, 48154}, {47391, 47552}, {48310, 55857}, {48662, 62008}, {48872, 62151}, {48874, 55582}, {48881, 55584}, {48884, 51538}, {48885, 55585}, {48889, 55715}, {48892, 55587}, {48896, 55723}, {48905, 55722}, {48910, 62041}, {49133, 51166}, {49465, 61282}, {49947, 52266}, {49948, 52263}, {50693, 54174}, {50954, 61937}, {50958, 61919}, {50959, 61970}, {50963, 61975}, {50965, 51174}, {50966, 62096}, {50970, 62093}, {50971, 62107}, {50975, 62110}, {50980, 61813}, {50982, 61803}, {50984, 61815}, {50985, 61792}, {50987, 61824}, {51022, 51172}, {51024, 62036}, {51126, 61878}, {51137, 61817}, {51138, 61832}, {51142, 61847}, {51143, 61864}, {51164, 62026}, {51176, 51214}, {51180, 55856}, {51182, 62069}, {51183, 61789}, {51524, 51798}, {52233, 59423}, {52350, 54034}, {52672, 53174}, {53015, 58851}, {55591, 62106}, {55593, 62105}, {55594, 62102}, {55597, 62097}, {55600, 62092}, {55610, 62085}, {55611, 62084}, {55616, 58192}, {55617, 62083}, {55620, 62082}, {55623, 62078}, {55629, 62075}, {55646, 58190}, {55647, 62067}, {55649, 62066}, {55650, 62063}, {55651, 62062}, {55652, 62061}, {55659, 58186}, {55673, 61785}, {55674, 61788}, {55676, 61790}, {55677, 61791}, {55682, 61793}, {55694, 61814}, {55695, 61816}, {55697, 61818}, {55698, 61820}, {55699, 61821}, {55703, 61837}, {55706, 61842}, {55712, 61881}, {55713, 61914}, {55714, 61945}, {58533, 63475}, {58550, 61666}, {58728, 60862}, {58849, 63091}, {58883, 63034}, {59403, 63032}, {59404, 63033}, {61743, 63082}, {61886, 63109}, {63629, 63629}

X(63722) = midpoint of X(i) and X(j) for these {i,j}: {193, 6776}, {376, 63064}, {895, 32234}, {1350, 6144}, {1351, 39899}, {1657, 55724}, {1992, 50974}, {5889, 15073}, {11008, 63428}, {11160, 51178}, {16010, 16176}, {39874, 51212}, {48896, 55723}, {48905, 55722}, {54149, 54219}
X(63722) = reflection of X(i) in X(j) for these {i,j}: {3, 8550}, {4, 576}, {6, 1353}, {68, 8548}, {69, 182}, {114, 41672}, {141, 12007}, {159, 41729}, {355, 4663}, {381, 8584}, {399, 25329}, {599, 50979}, {621, 44488}, {622, 44487}, {637, 44486}, {638, 44485}, {1350, 48906}, {1351, 3629}, {1352, 6}, {1992, 51140}, {2888, 9977}, {3448, 9976}, {3818, 5097}, {5480, 32455}, {5562, 44479}, {5907, 44495}, {5921, 3818}, {6248, 44500}, {7574, 15826}, {8724, 8787}, {9967, 32366}, {9970, 5095}, {10297, 47464}, {11061, 41731}, {11160, 50977}, {11180, 5476}, {11799, 47549}, {11898, 141}, {12177, 5477}, {12272, 41714}, {13449, 44496}, {14216, 8549}, {15069, 5}, {15533, 549}, {18440, 5480}, {18553, 22330}, {18569, 11255}, {20423, 1992}, {20428, 44498}, {20429, 44497}, {21850, 61624}, {31670, 1351}, {32244, 49116}, {32247, 32305}, {32272, 32274}, {32275, 15118}, {32306, 25328}, {33878, 44882}, {34507, 575}, {36990, 21850}, {37473, 6102}, {37824, 44512}, {37825, 44511}, {39879, 34774}, {40107, 33749}, {40341, 48876}, {41735, 34779}, {41737, 32271}, {43150, 15516}, {43621, 51212}, {44453, 32448}, {46264, 6776}, {47276, 7575}, {47354, 20583}, {48873, 46264}, {48889, 55715}, {48901, 55716}, {50649, 32284}, {50955, 597}, {50961, 599}, {51212, 37517}, {51538, 55717}, {51756, 39125}, {53097, 550}, {54173, 11179}, {54183, 54218}, {54393, 44499}, {55582, 48874}, {55584, 48881}, {55585, 48885}, {55587, 48892}, {61044, 48880}, {63428, 3098}, {63700, 6593}, {63703, 52016}
X(63722) = perspector of circumconic {{A, B, C, X(925), X(35178)}}
X(63722) = X(i)-Dao conjugate of X(j) for these {i, j}: {34507, 34507}
X(63722) = pole of line {32478, 39499} with respect to the 1st Brocard circle
X(63722) = pole of line {1499, 35934} with respect to the 2nd Brocard circle
X(63722) = pole of line {1499, 34952} with respect to the circumcircle
X(63722) = pole of line {3566, 22159} with respect to the cosine circle
X(63722) = pole of line {690, 16229} with respect to the polar circle
X(63722) = pole of line {2524, 34952} with respect to the Brocard inellipse
X(63722) = pole of line {2, 15073} with respect to the Jerabek hyperbola
X(63722) = pole of line {3, 3054} with respect to the Kiepert hyperbola
X(63722) = pole of line {9145, 53350} with respect to the Kiepert parabola
X(63722) = pole of line {51, 576} with respect to the Stammler hyperbola
X(63722) = pole of line {647, 9979} with respect to the Steiner circumellipse
X(63722) = pole of line {2501, 44564} with respect to the Steiner inellipse
X(63722) = pole of line {5, 1975} with respect to the Wallace hyperbola
X(63722) = pole of line {523, 47464} with respect to the dual conic of DeLongchamps circle
X(63722) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {148, 3448, 13527}, {193, 6776, 48945}, {376, 14916, 63064}
X(63722) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(7763)}}, {{A, B, C, X(54), X(8753)}}, {{A, B, C, X(68), X(671)}}, {{A, B, C, X(95), X(2165)}}, {{A, B, C, X(576), X(3292)}}, {{A, B, C, X(847), X(43620)}}, {{A, B, C, X(895), X(55549)}}, {{A, B, C, X(1352), X(56006)}}, {{A, B, C, X(3432), X(38463)}}, {{A, B, C, X(14246), X(55980)}}, {{A, B, C, X(14542), X(56891)}}, {{A, B, C, X(15073), X(51336)}}, {{A, B, C, X(31415), X(57718)}}, {{A, B, C, X(43291), X(45195)}}, {{A, B, C, X(56892), X(60198)}}
X(63722) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 8550, 11179}, {4, 1992, 576}, {4, 576, 20423}, {5, 15069, 1352}, {5, 3564, 15069}, {6, 10516, 18583}, {6, 1352, 14561}, {110, 37644, 61506}, {140, 50979, 53093}, {140, 53093, 38064}, {141, 12007, 5050}, {147, 7766, 9753}, {155, 13292, 39571}, {182, 40107, 631}, {182, 5965, 69}, {184, 41586, 7493}, {193, 6776, 511}, {485, 486, 43620}, {485, 6280, 49355}, {486, 6279, 49356}, {511, 46264, 48873}, {511, 48880, 61044}, {511, 6776, 46264}, {524, 11179, 54173}, {524, 8550, 3}, {542, 32271, 41737}, {542, 41731, 11061}, {542, 5095, 9970}, {542, 51140, 1992}, {542, 576, 4}, {599, 53093, 140}, {627, 628, 7763}, {1147, 12585, 63129}, {1350, 6144, 34380}, {1351, 1503, 31670}, {1351, 39899, 1503}, {1353, 32358, 8548}, {1353, 3564, 6}, {1503, 3629, 1351}, {1656, 53092, 597}, {1992, 50974, 542}, {1993, 45968, 1899}, {3091, 11180, 18553}, {3167, 13567, 59543}, {3522, 50967, 55606}, {3763, 55711, 38110}, {3818, 5097, 14853}, {5012, 45794, 43653}, {5050, 11898, 141}, {5085, 40341, 48876}, {5093, 18440, 5480}, {5102, 36990, 21850}, {5476, 18553, 3091}, {5480, 32455, 5093}, {5622, 32244, 49116}, {5874, 7583, 6289}, {5875, 7584, 6290}, {5889, 15531, 15073}, {5921, 14853, 3818}, {5965, 33749, 40107}, {6102, 14984, 37473}, {6515, 7493, 41586}, {6776, 15073, 19467}, {7592, 41614, 44480}, {9306, 11225, 11433}, {11008, 25406, 63428}, {11178, 22234, 25555}, {11178, 25555, 3090}, {11422, 41724, 2}, {11433, 63174, 9306}, {12161, 32358, 68}, {13754, 32284, 50649}, {14826, 63031, 5943}, {14853, 51170, 5097}, {15516, 38317, 51171}, {15516, 43150, 38317}, {16625, 61751, 7487}, {18553, 22330, 5476}, {20190, 50977, 3523}, {20583, 47354, 14848}, {21850, 61624, 5102}, {22234, 25555, 59373}, {24206, 39561, 3618}, {25406, 63428, 3098}, {29012, 37517, 51212}, {29012, 51212, 43621}, {32306, 39562, 25328}, {33749, 40107, 182}, {34380, 48906, 1350}, {38064, 50961, 599}, {38110, 61545, 3763}, {38317, 43150, 40330}, {39874, 51212, 29012}, {39874, 62996, 37517}, {40693, 40694, 3767}, {42783, 42784, 43291}, {43273, 53097, 550}, {49317, 49318, 5}, {50955, 53092, 1656}, {55582, 59411, 48874}, {55595, 62100, 50965}


X(63723) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF 5TH EULER

Barycentrics    a^2*(a^8*(b^2+c^2)+3*a^4*b^2*c^2*(b^2+c^2)-2*a^6*(b^4+c^4)-(b^2-c^2)^2*(b^6+4*b^4*c^2+4*b^2*c^4+c^6)+2*a^2*(b^8-b^6*c^2+4*b^4*c^4-b^2*c^6+c^8)) : :
X(63723) = 3*X[6]+X[12111], -X[52]+3*X[5480], -X[185]+3*X[597], -3*X[599]+7*X[15056], -3*X[1350]+7*X[7999], -5*X[3091]+3*X[16776], X[3146]+3*X[54334], -5*X[3567]+9*X[38072], -7*X[3832]+3*X[9971], -3*X[5476]+X[6102], -X[6241]+5*X[53093], -9*X[7998]+5*X[55614] and many others

X(63723) lies on these lines: {3, 43811}, {4, 9019}, {5, 2781}, {6, 12111}, {52, 5480}, {54, 56568}, {141, 235}, {182, 9968}, {185, 597}, {373, 54376}, {511, 546}, {524, 5907}, {542, 45959}, {575, 5663}, {576, 5876}, {599, 15056}, {1350, 7999}, {1351, 9972}, {1352, 22833}, {1469, 63676}, {1503, 44479}, {1843, 63662}, {1906, 16789}, {2393, 44870}, {2854, 15030}, {3056, 63669}, {3091, 16776}, {3098, 37440}, {3146, 54334}, {3313, 51163}, {3567, 38072}, {3589, 6696}, {3763, 63657}, {3818, 22804}, {3819, 37897}, {3832, 9971}, {3917, 10301}, {4550, 44470}, {5449, 10095}, {5476, 6102}, {5621, 15062}, {5622, 43613}, {6241, 53093}, {6593, 7527}, {6756, 15644}, {7503, 19127}, {7566, 11743}, {7998, 55614}, {8550, 12162}, {8705, 46847}, {9818, 34117}, {9973, 51537}, {10110, 50959}, {10516, 35488}, {10541, 15072}, {10574, 47352}, {10575, 51737}, {10620, 43814}, {10627, 19924}, {11017, 25561}, {11179, 18439}, {11412, 54131}, {11444, 53097}, {11459, 11477}, {11472, 44503}, {11592, 12107}, {11645, 32137}, {11663, 18438}, {11695, 63714}, {11746, 45303}, {12105, 55631}, {12290, 43273}, {13363, 20397}, {13406, 24206}, {13630, 25555}, {14118, 18374}, {14128, 40107}, {14130, 15462}, {14561, 37481}, {14984, 18553}, {15026, 52989}, {15058, 15069}, {15060, 34507}, {15067, 52987}, {15073, 47353}, {15582, 46261}, {16010, 43812}, {16836, 61045}, {17710, 36990}, {18435, 63722}, {18436, 20423}, {18567, 48889}, {19137, 63431}, {19149, 37476}, {19161, 58532}, {21650, 25329}, {23047, 51994}, {26883, 35707}, {29959, 40929}, {31670, 37484}, {31861, 44469}, {32142, 55606}, {32455, 63702}, {33539, 39562}, {33878, 63665}, {34573, 52520}, {34990, 54003}, {37511, 63674}, {44491, 49671}, {48901, 63672}, {51212, 63666}, {52003, 62375}, {55286, 55677}, {63629, 63629}

X(63723) = midpoint of X(i) and X(j) for these {i,j}: {141, 12294}, {576, 5876}, {3313, 51163}, {8550, 12162}, {17710, 36990}, {21650, 25329}
X(63723) = reflection of X(i) in X(j) for these {i,j}: {13630, 25555}, {18553, 45958}, {19161, 58532}, {32191, 19130}, {40107, 14128}, {41589, 63699}, {52520, 34573}, {55606, 32142}, {63688, 546}
X(63723) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {511, 546, 63688}, {3091, 37473, 16776}, {14984, 45958, 18553}, {15062, 43815, 5621}, {34146, 63699, 41589}, {63679, 63699, 3589}


X(63724) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(4*a^14-3*a^12*(b^2+c^2)+4*(b^2-c^2)^6*(b^2+c^2)+a^10*(-15*b^4+14*b^2*c^2-15*c^4)-a^2*(b^2-c^2)^4*(3*b^4+b^2*c^2+3*c^4)-3*a^4*(b^2-c^2)^2*(5*b^6-4*b^4*c^2-4*b^2*c^4+5*c^6)+a^8*(14*b^6-15*b^4*c^2-15*b^2*c^4+14*c^6)+a^6*(14*b^8-29*b^6*c^2+34*b^4*c^4-29*b^2*c^6+14*c^8)) : :
X(63724) = -5*X[3843]+X[43689]

X(63724) lies on these lines: {4, 63683}, {30, 63629}, {235, 46027}, {546, 20193}, {3843, 43689}, {3853, 63704}, {6756, 46686}, {7706, 15026}, {9019, 44279}, {12102, 63694}, {13754, 63693}, {15432, 18488}, {18442, 63671}, {18567, 41589}, {29012, 63699}, {35240, 63674}, {48889, 63688}, {58536, 63684}


X(63725) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF HATZIPOLAKIS-MOSES AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(a^14-5*a^12*(b^2+c^2)+(b^2-c^2)^6*(b^2+c^2)-a^6*(b^2-c^2)^2*(5*b^4+12*b^2*c^2+5*c^4)+a^10*(9*b^4+19*b^2*c^2+9*c^4)-a^8*(5*b^6+19*b^4*c^2+19*b^2*c^4+5*c^6)-a^2*(b^2-c^2)^2*(5*b^8+3*b^6*c^2+8*b^4*c^4+3*b^2*c^6+5*c^8)+a^4*(9*b^10+5*b^8*c^2-6*b^6*c^4-6*b^4*c^6+5*b^2*c^8+9*c^10)) : :

X(63725) lies on these lines: {3, 6}, {30, 17824}, {155, 30522}, {394, 7547}, {1154, 42059}, {3167, 40276}, {7502, 56071}, {12293, 16266}, {15800, 46027}, {17814, 18386}, {17847, 18569}, {50461, 52863}, {63629, 63629}


X(63726) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF 2ND HYACINTH

Barycentrics    6*a^16-25*a^12*(b^2-c^2)^2-9*a^14*(b^2+c^2)-5*(b^2-c^2)^6*(b^2+c^2)^2-5*a^8*(b^2-c^2)^2*(b^4+18*b^2*c^2+c^4)+a^2*(b^2-c^2)^4*(5*b^6-29*b^4*c^2-29*b^2*c^4+5*c^6)-a^6*(b^2-c^2)^2*(51*b^6-35*b^4*c^2-35*b^2*c^4+51*c^6)+a^10*(55*b^6-47*b^4*c^2-47*b^2*c^4+55*c^6)+a^4*(b^2-c^2)^2*(29*b^8+36*b^6*c^2-66*b^4*c^4+36*b^2*c^6+29*c^8) : :

X(63726) lies on these lines: {30, 46374}, {64, 63662}, {182, 22802}, {235, 1192}, {546, 15311}, {1503, 63702}, {2777, 13383}, {3853, 63693}, {5893, 20376}, {5894, 63667}, {6000, 63683}, {6293, 13473}, {6756, 51491}, {9914, 63664}, {10594, 46373}, {18567, 63721}, {20427, 63674}, {30443, 63670}, {31978, 63659}, {34146, 63688}, {36201, 63694}, {63697, 63727}, {63714, 63729}


X(63727) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF 1ST LEMOINE-DAO

Barycentrics    a^2*(a^12*(b^2+c^2)-4*a^6*b^2*c^2*(b^4-8*b^2*c^2+c^4)-4*a^10*(b^4-b^2*c^2+c^4)+5*a^8*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)-(b^2-c^2)^4*(b^6+4*b^4*c^2+4*b^2*c^4+c^6)+4*a^2*(b^2-c^2)^2*(b^8-7*b^4*c^4+c^8)+a^4*(-5*b^10+17*b^8*c^2+17*b^2*c^8-5*c^10)) : :
X(63727) = 3*X[4549]+X[6243], X[6241]+3*X[11472], -3*X[7706]+5*X[15026], -7*X[9781]+3*X[40909], -X[10625]+3*X[35254], -5*X[11444]+9*X[32620], X[37473]+3*X[49669]

X(63727) lies on these lines: {5, 63685}, {30, 63688}, {373, 44573}, {389, 63683}, {541, 13630}, {546, 9729}, {575, 5663}, {578, 1493}, {1192, 52019}, {4549, 6243}, {5462, 63721}, {5643, 15072}, {5892, 37984}, {6000, 25555}, {6241, 11472}, {6756, 14641}, {7403, 11381}, {7706, 15026}, {8254, 45959}, {8717, 37440}, {9781, 40909}, {9820, 63679}, {10301, 14855}, {10594, 35237}, {10625, 35254}, {11444, 32620}, {11820, 63665}, {12107, 55286}, {13383, 17704}, {13406, 63690}, {13754, 44495}, {15018, 17854}, {15028, 35488}, {15037, 45019}, {31861, 44480}, {37473, 49669}, {50138, 61749}, {63697, 63726}


X(63728) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF ORTHIC AXES

Barycentrics    a^2*(-12*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-4*a^10*(b^4-b^2*c^2+c^4)-(b^2-c^2)^4*(b^6+8*b^4*c^2+8*b^2*c^4+c^6)-a^4*(b^2-c^2)^2*(5*b^6-7*b^4*c^2-7*b^2*c^4+5*c^6)+a^8*(5*b^6-6*b^4*c^2-6*b^2*c^4+5*c^6)+4*a^2*(b^12-5*b^8*c^4+8*b^6*c^6-5*b^4*c^8+c^12)) : :
X(63728) = -X[185]+3*X[23324], 3*X[1853]+X[12290], -3*X[3845]+X[41725], -X[6102]+3*X[18376], -X[10575]+3*X[23332], X[12111]+3*X[18405], -X[12279]+5*X[40686], -X[13491]+3*X[23325], -3*X[15030]+X[34782], -5*X[15058]+X[17845], -3*X[15060]+X[34785], -3*X[32062]+X[51491]

X(63728) lies on these lines: {4, 973}, {64, 10594}, {125, 235}, {185, 23324}, {546, 5462}, {1498, 5012}, {1503, 44479}, {1593, 63658}, {1853, 12290}, {2781, 3627}, {2883, 7403}, {3357, 37440}, {3845, 41725}, {5663, 18383}, {5876, 34786}, {6102, 18376}, {6225, 63666}, {6240, 15738}, {6285, 63669}, {6696, 13383}, {6756, 13474}, {6759, 10610}, {7355, 63676}, {7723, 52863}, {10282, 45958}, {10301, 15105}, {10575, 23332}, {11403, 15135}, {12111, 18405}, {12162, 41362}, {12279, 40686}, {12606, 18435}, {13093, 63665}, {13363, 63729}, {13406, 20299}, {13491, 23325}, {14157, 32345}, {14865, 15139}, {15030, 34782}, {15058, 17845}, {15060, 34785}, {15138, 44802}, {16252, 44870}, {17505, 38443}, {17824, 22950}, {18381, 22816}, {18400, 45959}, {22802, 51756}, {25563, 34577}, {31861, 40285}, {31978, 37984}, {32062, 51491}, {32351, 43831}, {34146, 63688}, {46850, 63667}, {49108, 61750}, {49250, 63677}, {49251, 63678}, {50138, 61749}, {63420, 63663}

X(63728) = midpoint of X(i) and X(j) for these {i,j}: {5876, 34786}, {6247, 11381}, {12162, 41362}
X(63728) = reflection of X(i) in X(j) for these {i,j}: {5893, 46849}, {10282, 45958}, {13491, 32184}, {16252, 44870}, {41589, 546}, {63683, 18567}
X(63728) = pole of line {11572, 15311} with respect to the Jerabek hyperbola
X(63728) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {185, 63662, 63659}, {546, 6000, 41589}, {5663, 18567, 63683}, {6000, 46849, 5893}, {13491, 23325, 32184}


X(63729) = ORTHOLOGY CENTER OF THESE TRIANGLES: 2ND HATZIPOLAKIS-MOSES AND UNARY COFACTOR TRIANGLE OF REFLECTION

Barycentrics    a^2*(a^12*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)^3+a^10*(-4*b^4+2*b^2*c^2-4*c^4)-2*a^6*b^2*c^2*(b^4-9*b^2*c^2+c^4)+a^8*(5*b^6-7*b^4*c^2-7*b^2*c^4+5*c^6)+a^2*(b^2-c^2)^2*(4*b^8-11*b^4*c^4+4*c^8)-a^4*(5*b^10-13*b^8*c^2+3*b^6*c^4+3*b^4*c^6-13*b^2*c^8+5*c^10)) : :
X(63729) = -X[3521]+5*X[10574], 3*X[5890]+X[18442], -3*X[5946]+X[46027], 15*X[15072]+X[15084], -X[15103]+9*X[20791]

X(63729) lies on these lines: {30, 973}, {140, 63686}, {235, 22948}, {546, 5943}, {3521, 10574}, {3628, 15738}, {5663, 6689}, {5890, 18442}, {5946, 46027}, {6000, 63629}, {6102, 35240}, {8718, 15053}, {9019, 12103}, {9729, 20304}, {9730, 18567}, {10594, 52100}, {11560, 12041}, {13363, 63728}, {13406, 43817}, {13491, 18488}, {13630, 63683}, {14708, 63684}, {15062, 43651}, {15072, 15084}, {15103, 20791}, {29012, 63688}, {33541, 63664}, {34577, 44673}, {35488, 43846}, {37471, 44753}, {38626, 55704}, {44479, 63702}, {44961, 63690}, {63679, 63704}, {63714, 63726}

X(63729) = midpoint of X(i) and X(j) for these {i,j}: {6102, 35240}, {11560, 12041}, {13491, 18488}


X(63730) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF SUBMEDIAL AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(3*a^8-8*a^6*(b^2+c^2)+2*a^4*(b^4+12*b^2*c^2+c^4)-(b^2-c^2)^2*(5*b^4-6*b^2*c^2+5*c^4)+8*a^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)) : :

X(63730) lies on circumconic {{A, B, C, X(57688), X(60775)}} and on these lines: {3, 8770}, {5, 63611}, {6, 1147}, {24, 1611}, {26, 2079}, {30, 36616}, {111, 11413}, {140, 2549}, {493, 8913}, {1151, 12978}, {1152, 12979}, {1184, 44802}, {1498, 20998}, {2165, 44535}, {3053, 3199}, {3124, 35602}, {3291, 3515}, {3532, 10097}, {3546, 44518}, {3563, 40322}, {5585, 7525}, {5913, 31304}, {6388, 12429}, {7487, 40326}, {10279, 21732}, {12106, 22331}, {17928, 62702}, {23335, 49123}, {39568, 40350}, {42459, 44277}, {63629, 63629}

X(63730) = pole of line {11585, 11898} with respect to the Kiepert hyperbola
X(63730) = pole of line {439, 6515} with respect to the Stammler hyperbola
X(63730) = pole of line {2519, 6753} with respect to the Steiner inellipse


X(63731) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF INNER TRI-EQUILATERAL AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(2*a^4+(b^2-c^2)^2-a^2*(b^2+c^2))+2*sqrt(3)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*S : :

X(63731) lies on these lines: {2, 59384}, {3, 302}, {4, 5615}, {5, 6}, {14, 2782}, {16, 20428}, {18, 10104}, {30, 9761}, {61, 59403}, {62, 16626}, {114, 5471}, {182, 623}, {381, 37785}, {383, 48655}, {511, 33482}, {531, 7622}, {542, 33477}, {574, 33518}, {576, 7684}, {624, 34507}, {1080, 20426}, {1351, 41040}, {2452, 58912}, {3060, 11143}, {3181, 20425}, {3642, 6774}, {3818, 7685}, {5050, 11305}, {5321, 43452}, {5460, 11178}, {5475, 6782}, {5611, 7777}, {5613, 37835}, {5651, 62690}, {5965, 34509}, {6299, 33388}, {6778, 41098}, {7503, 45257}, {8550, 44506}, {8838, 11422}, {9113, 61575}, {9736, 44666}, {10359, 11289}, {10654, 52650}, {11185, 52194}, {11485, 61513}, {11489, 61514}, {11842, 47519}, {14693, 41407}, {14813, 48773}, {14814, 48772}, {16634, 43416}, {16645, 44223}, {16771, 38431}, {16809, 20429}, {16965, 31703}, {18424, 33517}, {18440, 41041}, {19781, 38230}, {20252, 42974}, {20253, 43404}, {20416, 24206}, {20423, 52649}, {22509, 46054}, {22687, 25560}, {29012, 33469}, {32428, 46702}, {32447, 37333}, {33464, 51753}, {33529, 61644}, {36363, 41043}, {36958, 42432}, {37242, 61331}, {37332, 59398}, {41104, 49908}, {41122, 59402}, {42989, 61538}, {42999, 61537}, {44289, 47353}, {44461, 47611}, {44465, 63106}, {59401, 61719}, {63629, 63629}

X(63731) = midpoint of X(i) and X(j) for these {i,j}: {5872, 63732}
X(63731) = reflection of X(i) in X(j) for these {i,j}: {5873, 63732}, {63732, 5}
X(63731) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(54115)}}, {{A, B, C, X(2165), X(41897)}}, {{A, B, C, X(3443), X(60501)}}
X(63731) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 62983, 5615}, {5, 1353, 11542}, {5, 3564, 63732}, {1352, 18581, 5}, {3564, 63732, 5873}, {5872, 63732, 3564}, {49355, 49356, 5872}


X(63732) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF OUTER TRI-EQUILATERAL AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b^2-c^2)*(2*a^4+(b^2-c^2)^2-a^2*(b^2+c^2))-2*sqrt(3)*(-(b^2-c^2)^2+a^2*(b^2+c^2))*S : :

X(63732) lies on these lines: {2, 59383}, {3, 303}, {4, 5611}, {5, 6}, {13, 2782}, {15, 20429}, {17, 10104}, {30, 9763}, {61, 16627}, {62, 59404}, {114, 5472}, {182, 624}, {381, 37786}, {383, 20425}, {511, 33483}, {530, 7622}, {542, 33476}, {574, 33517}, {576, 7685}, {623, 34507}, {1080, 48656}, {1351, 41041}, {2452, 58913}, {3060, 11144}, {3180, 20426}, {3643, 6771}, {3818, 7684}, {5050, 11306}, {5318, 43451}, {5459, 11178}, {5475, 6783}, {5615, 7777}, {5617, 37832}, {5965, 34508}, {6298, 33389}, {6777, 41094}, {7503, 45256}, {8550, 44505}, {8836, 11422}, {9112, 61575}, {9735, 44667}, {10359, 11290}, {10653, 44223}, {11163, 44219}, {11185, 52193}, {11486, 61514}, {11488, 61513}, {11842, 47517}, {14693, 41406}, {14813, 48772}, {14814, 48773}, {16635, 43417}, {16644, 52650}, {16770, 38432}, {16808, 20428}, {16964, 31704}, {18424, 33518}, {18440, 41040}, {19780, 38230}, {20252, 43403}, {20253, 42975}, {20415, 24206}, {20423, 44289}, {22507, 46053}, {22689, 25559}, {29012, 33468}, {32428, 46703}, {32447, 37332}, {33465, 51754}, {33530, 61644}, {36362, 41042}, {36765, 41105}, {36959, 42431}, {37242, 61332}, {37333, 59397}, {41121, 59401}, {42988, 61537}, {42998, 61538}, {44461, 63105}, {44465, 47610}, {47353, 52649}, {63629, 63629}

X(63732) = midpoint of X(i) and X(j) for these {i,j}: {5873, 63731}
X(63732) = reflection of X(i) in X(j) for these {i,j}: {5872, 63731}, {63731, 5}
X(63732) = intersection, other than A, B, C, of circumconics {{A, B, C, X(68), X(54116)}}, {{A, B, C, X(2165), X(41898)}}, {{A, B, C, X(3442), X(60501)}}
X(63732) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 62984, 5611}, {5, 1353, 11543}, {5, 3564, 63731}, {1352, 18582, 5}, {3564, 63731, 5872}, {5873, 63731, 3564}, {49355, 49356, 5873}


X(63733) = ORTHOLOGY CENTER OF THESE TRIANGLES: UNARY COFACTOR TRIANGLE OF 7TH BROCARD AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    a^2*(b-c)*(b+c)*(2*a^4+3*b^4-2*b^2*c^2+3*c^4-3*a^2*(b^2+c^2)) : :
X(63733) = -3*X[9148]+2*X[53331], -2*X[24284]+3*X[34290], -2*X[32121]+3*X[36255]

X(63733) lies on these lines: {110, 58097}, {187, 237}, {523, 44369}, {684, 35364}, {690, 42553}, {1499, 14316}, {1510, 2514}, {2872, 39232}, {9148, 53331}, {10097, 14498}, {24284, 34290}, {32121, 36255}, {63629, 63629}

X(63733) = reflection of X(i) in X(j) for these {i,j}: {684, 35364}, {42663, 3569}
X(63733) = perspector of circumconic {{A, B, C, X(6), X(1570)}}
X(63733) = X(i)-isoconjugate-of-X(j) for these {i, j}: {662, 60073}
X(63733) = X(i)-Dao conjugate of X(j) for these {i, j}: {1084, 60073}
X(63733) = X(i)-Ceva conjugate of X(j) for these {i, j}: {1692, 44114}, {2987, 3124}
X(63733) = pole of line {6, 14060} with respect to the circumcircle
X(63733) = pole of line {262, 60073} with respect to the orthoptic circle of the Steiner Inellipse
X(63733) = pole of line {9142, 44456} with respect to the Stammler circle
X(63733) = pole of line {6, 14060} with respect to the Brocard inellipse
X(63733) = pole of line {669, 9909} with respect to the Kiepert parabola
X(63733) = pole of line {3124, 3167} with respect to the MacBeath circumconic
X(63733) = pole of line {99, 59549} with respect to the Stammler hyperbola
X(63733) = pole of line {194, 1007} with respect to the Steiner circumellipse
X(63733) = pole of line {3124, 57518} with respect to the dual conic of 2nd Brocard circle
X(63733) = pole of line {305, 2974} with respect to the dual conic of polar circle
X(63733) = pole of line {850, 57518} with respect to the dual conic of Wallace hyperbola
X(63733) = intersection, other than A, B, C, of circumconics {{A, B, C, X(187), X(1570)}}, {{A, B, C, X(512), X(58097)}}, {{A, B, C, X(3124), X(8651)}}, {{A, B, C, X(3231), X(44377)}}, {{A, B, C, X(35364), X(42663)}}, {{A, B, C, X(43705), X(52144)}}
X(63733) = barycentric product X(i)*X(j) for these (i, j): {1570, 523}, {44377, 512}
X(63733) = barycentric quotient X(i)/X(j) for these (i, j): {512, 60073}, {1570, 99}, {44377, 670}
X(63733) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {512, 3569, 42663}, {3569, 42663, 351}, {3569, 9135, 5113}


X(63734) = COMPLEMENT OF X(16266)

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^6-3*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+3*a^2*(b^4+c^4)) : :
X(63734) = -3*X[2]+X[16266], -X[155]+3*X[10201], X[5895]+3*X[12163], -X[9925]+3*X[61683], -2*X[12038]+3*X[34477], -X[12118]+3*X[18324], X[12429]+3*X[14070], -X[14790]+3*X[61702], 3*X[14852]+X[17834], -X[15083]+3*X[61747], -2*X[16252]+3*X[44278], -3*X[18281]+X[37498]

X(63734) lies on these lines: {2, 16266}, {3, 3580}, {5, 51}, {22, 25738}, {26, 68}, {30, 3357}, {53, 25043}, {113, 45187}, {125, 10625}, {140, 578}, {141, 576}, {155, 10201}, {156, 206}, {184, 32358}, {195, 41628}, {235, 5876}, {252, 54062}, {265, 12225}, {323, 14940}, {403, 18436}, {427, 10263}, {467, 60828}, {468, 52432}, {511, 5449}, {524, 9820}, {539, 10282}, {550, 13470}, {568, 13160}, {569, 7568}, {632, 37648}, {858, 37484}, {1092, 44452}, {1147, 10020}, {1352, 13861}, {1353, 32136}, {1368, 10627}, {1493, 61690}, {1503, 17714}, {1594, 6243}, {1596, 45959}, {1614, 41724}, {1656, 9777}, {1658, 44665}, {1993, 6639}, {2070, 14516}, {2072, 11412}, {2888, 3518}, {2904, 7505}, {2937, 34224}, {2979, 26917}, {3060, 5576}, {3410, 34484}, {3448, 12088}, {3519, 18350}, {3542, 15068}, {3547, 18951}, {3549, 6515}, {3567, 37347}, {3581, 6240}, {3629, 11536}, {3850, 15873}, {3917, 43817}, {5446, 21243}, {5480, 50138}, {5663, 36982}, {5889, 10024}, {5895, 12163}, {5899, 16659}, {5907, 46030}, {5946, 7399}, {5965, 41593}, {6000, 52104}, {6101, 11585}, {6102, 15760}, {6146, 7502}, {6288, 7576}, {6636, 43808}, {6676, 13292}, {6689, 37505}, {6755, 35719}, {6759, 61612}, {6823, 13630}, {7387, 32140}, {7405, 15026}, {7488, 12254}, {7495, 13353}, {7507, 31815}, {7514, 39571}, {7516, 43653}, {7517, 11442}, {7540, 15360}, {7552, 44555}, {7553, 34514}, {7556, 34799}, {7558, 36753}, {8550, 32165}, {9306, 44232}, {9781, 50137}, {9786, 50008}, {9925, 61683}, {10018, 22115}, {10112, 18475}, {10192, 10274}, {10264, 15704}, {10982, 60763}, {11064, 60780}, {11245, 34002}, {11250, 44158}, {11264, 31804}, {11265, 49225}, {11266, 49224}, {11411, 32139}, {11441, 46817}, {11444, 50143}, {11457, 12083}, {11799, 12111}, {11819, 18474}, {11898, 19118}, {12038, 34477}, {12041, 63441}, {12107, 13289}, {12118, 18324}, {12134, 32269}, {12233, 46029}, {12241, 44201}, {12325, 37943}, {12429, 14070}, {13142, 52262}, {13346, 23336}, {13391, 13561}, {13406, 22660}, {13450, 14918}, {13451, 50136}, {13754, 15761}, {14389, 14627}, {14449, 39504}, {14561, 53999}, {14790, 61702}, {14791, 37486}, {14852, 17834}, {14984, 23307}, {15074, 16789}, {15083, 61747}, {15646, 63631}, {15780, 42453}, {16252, 44278}, {16618, 18914}, {16619, 26883}, {16657, 63682}, {16982, 21850}, {17702, 44242}, {18281, 37498}, {18358, 23411}, {18390, 52073}, {18439, 47096}, {18555, 61744}, {18560, 63392}, {18563, 50435}, {18859, 43607}, {18917, 59349}, {19136, 34507}, {20302, 45780}, {20773, 41674}, {21651, 32263}, {21841, 31831}, {23324, 32365}, {24206, 58471}, {25337, 43588}, {26875, 55533}, {26944, 35243}, {27361, 56272}, {31834, 44235}, {32142, 48876}, {32171, 34351}, {33332, 45303}, {34004, 45969}, {34115, 37444}, {34397, 46443}, {34986, 44516}, {35488, 58885}, {36747, 37638}, {37118, 37495}, {37779, 56292}, {41602, 44544}, {43651, 45967}, {46200, 60592}, {52070, 63425}, {52295, 62187}, {58435, 59553}, {63629, 63629}

X(63734) = midpoint of X(i) and X(j) for these {i,j}: {26, 68}, {7387, 32140}, {9927, 46730}, {11411, 32139}, {17714, 18356}, {17834, 18569}
X(63734) = reflection of X(i) in X(j) for these {i,j}: {155, 61608}, {156, 13383}, {1147, 10020}, {11250, 44158}, {13346, 23336}, {13371, 5449}, {20773, 41674}, {22660, 13406}, {23335, 13561}, {34782, 12107}
X(63734) = complement of X(16266)
X(63734) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2148, 13579}, {2190, 15317}, {2616, 46963}
X(63734) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 15317}, {216, 13579}, {6663, 27361}
X(63734) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56272, 5}
X(63734) = pole of line {5876, 6146} with respect to the Jerabek hyperbola
X(63734) = pole of line {570, 31455} with respect to the Kiepert hyperbola
X(63734) = pole of line {54, 6644} with respect to the Stammler hyperbola
X(63734) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(7505)}}, {{A, B, C, X(52), X(2904)}}, {{A, B, C, X(53), X(143)}}, {{A, B, C, X(343), X(25043)}}, {{A, B, C, X(1154), X(8800)}}, {{A, B, C, X(5562), X(27353)}}, {{A, B, C, X(9827), X(30536)}}, {{A, B, C, X(11591), X(27356)}}
X(63734) = barycentric product X(i)*X(j) for these (i, j): {311, 8553}, {343, 7505}, {14570, 59744}, {45794, 5}
X(63734) = barycentric quotient X(i)/X(j) for these (i, j): {5, 13579}, {216, 15317}, {1625, 46963}, {7505, 275}, {8553, 54}, {36412, 27361}, {45794, 95}, {59744, 15412}
X(63734) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 41588, 143}, {155, 10201, 61608}, {343, 41587, 5}, {511, 5449, 13371}, {569, 61644, 7568}, {1147, 61646, 10020}, {3549, 12161, 61619}, {3564, 13383, 156}, {6676, 13292, 32046}, {9927, 46730, 30}, {10263, 34826, 427}, {12107, 32423, 34782}, {12134, 32269, 37440}, {13391, 13561, 23335}, {17714, 18356, 1503}, {37779, 58805, 56292}


X(63735) = COMPLEMENT OF X(43574)

Barycentrics    (-(b^2-c^2)^2+a^2*(b^2+c^2))*(a^4*(b^2+c^2)+(b^2-c^2)^2*(b^2+c^2)-2*a^2*(b^4-b^2*c^2+c^4)) : :
X(63735) = -X[323]+4*X[12900], -4*X[468]+X[30714], X[1533]+2*X[10264], -7*X[3090]+X[23061], -X[3153]+3*X[14644], -2*X[3292]+5*X[38795], X[3581]+2*X[7687], -3*X[5642]+2*X[40111], -4*X[6723]+X[37477], -X[7464]+4*X[20397]

X(63735) lies on these lines: {2, 13352}, {3, 2929}, {4, 5449}, {5, 51}, {20, 26917}, {22, 61701}, {23, 25739}, {24, 9927}, {25, 14852}, {26, 11750}, {30, 125}, {49, 10112}, {54, 44516}, {68, 3542}, {74, 52403}, {110, 539}, {113, 403}, {140, 18555}, {184, 10201}, {185, 15761}, {186, 17702}, {235, 12162}, {265, 2070}, {323, 12900}, {376, 26913}, {381, 17810}, {382, 10606}, {389, 10024}, {468, 30714}, {511, 2072}, {524, 51742}, {542, 10540}, {546, 34826}, {567, 58447}, {568, 10254}, {569, 3549}, {575, 45967}, {578, 6639}, {599, 1351}, {1147, 7505}, {1352, 19136}, {1493, 12010}, {1503, 37971}, {1511, 44234}, {1531, 23323}, {1533, 10264}, {1594, 5446}, {1596, 16194}, {1614, 10116}, {1656, 17811}, {1658, 21659}, {1853, 18534}, {1885, 44158}, {2071, 6699}, {2420, 10413}, {2777, 31726}, {2888, 21451}, {2931, 37954}, {2937, 44829}, {3003, 39021}, {3060, 7577}, {3066, 56965}, {3090, 23061}, {3146, 23294}, {3147, 12118}, {3153, 14644}, {3292, 38795}, {3357, 31725}, {3448, 14157}, {3515, 12293}, {3518, 45286}, {3520, 12897}, {3547, 13336}, {3564, 37942}, {3581, 7687}, {3627, 13561}, {3628, 13142}, {3839, 51993}, {5012, 7552}, {5094, 44413}, {5448, 5889}, {5462, 13160}, {5576, 10110}, {5621, 5899}, {5642, 40111}, {5654, 6515}, {5663, 11563}, {5876, 44235}, {5943, 37347}, {5944, 10619}, {5946, 46029}, {5965, 14643}, {5972, 22115}, {6000, 11799}, {6101, 49673}, {6102, 13406}, {6146, 13383}, {6243, 10255}, {6288, 13621}, {6368, 18314}, {6622, 11411}, {6640, 13346}, {6643, 33522}, {6644, 61645}, {6676, 37513}, {6689, 13434}, {6697, 31670}, {6723, 37477}, {6750, 60828}, {6759, 25738}, {6761, 41203}, {7403, 15873}, {7464, 20397}, {7514, 61644}, {7517, 18381}, {7530, 11550}, {7542, 12241}, {7575, 30522}, {7592, 63657}, {7706, 44754}, {9703, 61681}, {9730, 13567}, {9818, 37638}, {9967, 16789}, {10018, 12038}, {10020, 12370}, {10096, 32423}, {10115, 58488}, {10125, 43394}, {10170, 37636}, {10224, 10263}, {10257, 10564}, {10272, 11702}, {10282, 44076}, {10610, 34577}, {10625, 11585}, {10733, 13619}, {10984, 18952}, {10990, 44267}, {11064, 44911}, {11225, 15087}, {11442, 46261}, {11451, 14789}, {11459, 62947}, {11472, 62966}, {11572, 11819}, {11649, 41583}, {11793, 50143}, {11807, 13446}, {11818, 34417}, {12022, 18475}, {12086, 43608}, {12111, 44958}, {12121, 37955}, {12134, 21841}, {12163, 37197}, {12233, 63674}, {12242, 14627}, {12278, 44879}, {12893, 37970}, {12902, 37922}, {13148, 63685}, {13163, 20193}, {13202, 44283}, {13366, 61619}, {13371, 45186}, {13391, 20304}, {13413, 13451}, {13419, 18378}, {13431, 52675}, {13450, 56272}, {13490, 44106}, {13491, 44866}, {13595, 41171}, {13598, 32767}, {13630, 61750}, {14070, 18396}, {14076, 15800}, {14915, 47096}, {14918, 36831}, {14940, 34148}, {15027, 37924}, {15030, 46030}, {15037, 32068}, {15061, 18859}, {15063, 44961}, {15067, 50140}, {15081, 15107}, {15114, 16105}, {15123, 37981}, {15133, 21284}, {15137, 32396}, {15329, 39170}, {15644, 37452}, {15646, 16163}, {16222, 58551}, {16532, 34153}, {16534, 41724}, {16657, 52262}, {18128, 43808}, {18325, 20417}, {18386, 40909}, {18392, 18559}, {18404, 46730}, {18420, 61506}, {18445, 61747}, {18494, 21970}, {18531, 37478}, {18570, 61744}, {18931, 40196}, {19132, 39899}, {22352, 25337}, {23325, 31723}, {26879, 40647}, {26882, 34799}, {26883, 32140}, {30771, 37483}, {31724, 49108}, {32123, 32263}, {32138, 44271}, {32165, 34149}, {32275, 53777}, {32348, 34864}, {32358, 43844}, {32379, 32412}, {32762, 57314}, {34152, 38727}, {34380, 44912}, {34664, 44201}, {34783, 61749}, {34829, 48887}, {35240, 43865}, {36518, 46031}, {37440, 61139}, {37453, 47391}, {37470, 37643}, {37917, 63710}, {37941, 38726}, {37944, 38725}, {37947, 61299}, {37950, 38729}, {38793, 44452}, {39522, 61743}, {40686, 47527}, {43576, 44450}, {43577, 50009}, {43604, 52071}, {43816, 61134}, {43818, 51033}, {43823, 63683}, {43898, 63631}, {44278, 61752}, {44683, 44920}, {44803, 46849}, {47334, 56567}, {53863, 61715}, {63629, 63629}

X(63735) = midpoint of X(i) and X(j) for these {i,j}: {23, 25739}, {74, 52403}, {186, 50435}, {265, 2070}, {403, 3580}, {1533, 13399}, {1568, 41586}, {3448, 14157}, {3581, 18403}, {10264, 43893}, {10733, 13619}, {15107, 46450}, {36831, 62345}
X(63735) = reflection of X(i) in X(j) for these {i,j}: {3, 44673}, {113, 403}, {1511, 44234}, {1531, 23323}, {1533, 43893}, {1568, 5}, {2070, 32223}, {2071, 6699}, {5642, 44282}, {10257, 47296}, {10564, 10257}, {11064, 44911}, {11807, 13446}, {13202, 44283}, {13399, 10264}, {16111, 21663}, {16163, 15646}, {18403, 7687}, {22115, 5972}, {25739, 36253}, {30714, 51393}, {37938, 20304}, {38793, 61691}, {43574, 14156}, {46114, 3628}, {51360, 37938}, {51392, 2072}, {51393, 468}, {51394, 44452}, {51403, 11563}, {51425, 37942}
X(63735) = inverse of X(52) in Johnson circumconic
X(63735) = complement of X(43574)
X(63735) = perspector of circumconic {{A, B, C, X(324), X(14570)}}
X(63735) = center of circumconic {{A, B, C, X(15329), X(36831)}}
X(63735) = X(i)-isoconjugate-of-X(j) for these {i, j}: {54, 36053}, {1300, 2169}, {2148, 2986}, {2167, 14910}, {2168, 52505}, {2190, 5504}, {2616, 10420}, {15328, 36134}, {23286, 36114}, {40832, 62269}, {57829, 62268}
X(63735) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 5504}, {113, 54}, {137, 15328}, {216, 2986}, {3003, 43768}, {6663, 60035}, {14156, 14156}, {14363, 1300}, {15450, 61216}, {17433, 15470}, {18402, 38936}, {34834, 95}, {39005, 23286}, {39019, 15421}, {39021, 15412}, {39174, 46090}, {40588, 14910}, {52032, 57829}, {52869, 15454}
X(63735) = X(i)-Ceva conjugate of X(j) for these {i, j}: {14918, 52945}, {15329, 55121}, {36831, 6368}, {39170, 113}
X(63735) = X(i)-complementary conjugate of X(j) for these {i, j}: {661, 62598}, {43766, 21231}, {43917, 10}
X(63735) = pole of line {43083, 58735} with respect to the circumcircle
X(63735) = pole of line {1510, 18488} with respect to the nine-point circle
X(63735) = pole of line {54, 15328} with respect to the polar circle
X(63735) = pole of line {5663, 6146} with respect to the Jerabek hyperbola
X(63735) = pole of line {52, 6368} with respect to the Johnson circumconic
X(63735) = pole of line {570, 3018} with respect to the Kiepert hyperbola
X(63735) = pole of line {54, 5504} with respect to the Stammler hyperbola
X(63735) = pole of line {18314, 34836} with respect to the Steiner inellipse
X(63735) = pole of line {95, 22468} with respect to the Wallace hyperbola
X(63735) = pole of line {3154, 8901} with respect to the dual conic of Wallace hyperbola
X(63735) = center of circles {{ X(i), X(j), X(k) }} for these {i, j, k}: {4, 34150, 61440}, {74, 36164, 52403}, {265, 2070, 36184}, {403, 3580, 47348}, {10264, 16340, 43893}
X(63735) = intersection, other than A, B, C, of circumconics {{A, B, C, X(3), X(53781)}}, {{A, B, C, X(5), X(403)}}, {{A, B, C, X(51), X(44084)}}, {{A, B, C, X(52), X(3003)}}, {{A, B, C, X(53), X(16172)}}, {{A, B, C, X(113), X(1568)}}, {{A, B, C, X(143), X(57211)}}, {{A, B, C, X(311), X(5891)}}, {{A, B, C, X(343), X(3580)}}, {{A, B, C, X(1154), X(1986)}}, {{A, B, C, X(1263), X(39985)}}, {{A, B, C, X(3574), X(40449)}}, {{A, B, C, X(5562), X(6368)}}, {{A, B, C, X(11591), X(14264)}}, {{A, B, C, X(12825), X(44715)}}, {{A, B, C, X(12827), X(53174)}}, {{A, B, C, X(12828), X(41586)}}, {{A, B, C, X(17500), X(56403)}}, {{A, B, C, X(34104), X(62345)}}
X(63735) = barycentric product X(i)*X(j) for these (i, j): {52, 52504}, {53, 62338}, {113, 62722}, {216, 44138}, {343, 403}, {1154, 57486}, {1273, 56403}, {2315, 62273}, {3003, 311}, {3580, 5}, {12077, 61188}, {13754, 324}, {14213, 1725}, {14570, 55121}, {14918, 39170}, {15329, 18314}, {16237, 6368}, {28706, 44084}, {35360, 6334}, {39113, 62361}, {41078, 41512}, {52451, 60524}
X(63735) = barycentric quotient X(i)/X(j) for these (i, j): {5, 2986}, {51, 14910}, {52, 52505}, {53, 1300}, {113, 43768}, {216, 5504}, {311, 40832}, {343, 57829}, {403, 275}, {686, 23286}, {1625, 10420}, {1725, 2167}, {1953, 36053}, {2081, 15470}, {2315, 2169}, {3003, 54}, {3580, 95}, {6334, 62428}, {6368, 15421}, {11062, 38936}, {12077, 15328}, {13754, 97}, {14570, 18878}, {15329, 18315}, {15451, 61216}, {16237, 18831}, {21731, 2623}, {23181, 43755}, {35360, 687}, {36412, 60035}, {44084, 8882}, {44138, 276}, {52504, 34385}, {52604, 32708}, {52945, 15454}, {55121, 15412}, {56403, 1141}, {57486, 46138}, {61209, 933}, {62338, 34386}, {62361, 96}, {62722, 40423}
X(63735) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 1154, 1568}, {5, 143, 3574}, {5, 21230, 14128}, {5, 343, 5891}, {5, 41587, 52}, {5, 63734, 5562}, {23, 25739, 44407}, {30, 21663, 16111}, {54, 58805, 44516}, {68, 3542, 10539}, {186, 50435, 17702}, {235, 12359, 12162}, {265, 2070, 18400}, {403, 13754, 113}, {403, 3580, 13754}, {468, 44665, 51393}, {568, 10254, 18388}, {1568, 41586, 1154}, {2888, 21451, 43598}, {3448, 46451, 14157}, {3518, 58922, 45286}, {3564, 37942, 51425}, {5663, 11563, 51403}, {5889, 16868, 5448}, {6102, 13406, 43831}, {6689, 58807, 13434}, {7530, 61702, 11550}, {11442, 62961, 46261}, {12897, 20191, 3520}, {13391, 37938, 51360}, {13565, 18874, 5}, {13567, 15760, 9730}, {14940, 34148, 43839}, {18282, 45970, 5944}, {18390, 61646, 3}, {18400, 32223, 2070}, {21841, 61544, 12134}, {23515, 51392, 2072}, {32358, 61608, 43844}, {34577, 43575, 10610}, {43808, 52525, 18128}, {51394, 61691, 44452}


X(63736) = ORTHOLOGY CENTER OF THESE TRIANGLES: PEDAL-OF-X(237) AND 2ND HATZIPOLAKIS-MOSES

Barycentrics    (a^2-b*c)*(a^2+b*c)*(-(b^2-c^2)^2+a^2*(b^2+c^2)) : :
X(63736) = X[46518]+3*X[53346]

X(63736) lies on these lines: {2, 3095}, {3, 40814}, {5, 51}, {22, 14880}, {23, 51523}, {30, 47207}, {76, 11328}, {98, 6660}, {125, 21536}, {193, 59569}, {237, 2782}, {297, 47202}, {311, 40981}, {338, 5201}, {339, 44894}, {385, 419}, {401, 2080}, {511, 21531}, {538, 44215}, {732, 36213}, {826, 4142}, {1194, 5305}, {1576, 44376}, {2450, 3580}, {2967, 44893}, {3060, 14881}, {3148, 10104}, {3767, 3981}, {3917, 32521}, {3934, 5943}, {3978, 5976}, {4074, 18806}, {5020, 40022}, {6321, 40853}, {6638, 41009}, {7668, 9019}, {7751, 9306}, {7805, 34986}, {7829, 10191}, {9301, 41254}, {9821, 37190}, {10003, 41169}, {10350, 33301}, {10796, 41231}, {11360, 23158}, {11675, 33548}, {12042, 37183}, {12188, 20854}, {12203, 21512}, {12829, 14602}, {13754, 44227}, {15143, 44146}, {15360, 49102}, {22138, 53490}, {22329, 47211}, {22566, 44555}, {22803, 37349}, {32225, 47208}, {32428, 53245}, {32515, 36212}, {33813, 35296}, {34380, 45847}, {35298, 51524}, {35362, 60517}, {37071, 61359}, {37184, 39906}, {37906, 42671}, {37914, 38664}, {40820, 56976}, {43453, 56376}, {44347, 47200}, {46518, 53346}, {52251, 59532}, {63629, 63629}

X(63736) = midpoint of X(i) and X(j) for these {i,j}: {237, 51481}, {338, 5201}
X(63736) = reflection of X(i) in X(j) for these {i,j}: {36212, 52261}
X(63736) = perspector of circumconic {{A, B, C, X(1031), X(14570)}}
X(63736) = center of circumconic {{A, B, C, X(35362), X(56980)}}
X(63736) = X(i)-isoconjugate-of-X(j) for these {i, j}: {54, 1581}, {95, 1967}, {694, 2167}, {805, 2616}, {1916, 2148}, {1927, 34384}, {1934, 54034}, {2190, 36214}, {2623, 37134}, {9468, 62276}, {16030, 43763}, {17970, 40440}, {17980, 62277}, {18896, 62269}, {40708, 62268}
X(63736) = X(i)-Dao conjugate of X(j) for these {i, j}: {5, 36214}, {216, 1916}, {338, 56981}, {8290, 95}, {19576, 54}, {35078, 15412}, {36213, 16030}, {39031, 2148}, {39043, 2167}, {39044, 62276}, {40588, 694}, {52032, 40708}, {52878, 14251}, {62610, 34384}, {63463, 882}
X(63736) = X(i)-Ceva conjugate of X(j) for these {i, j}: {56980, 804}, {60517, 5}
X(63736) = X(i)-complementary conjugate of X(j) for these {i, j}: {82, 114}, {98, 21249}, {251, 16591}, {1821, 21248}, {1910, 6292}, {1976, 16587}, {18070, 36471}, {36084, 3005}, {36104, 23285}, {46289, 11672}, {55240, 35088}, {56971, 46840}
X(63736) = pole of line {570, 11672} with respect to the Kiepert hyperbola
X(63736) = pole of line {54, 3398} with respect to the Stammler hyperbola
X(63736) = pole of line {83, 2422} with respect to the Steiner inellipse
X(63736) = pole of line {95, 40708} with respect to the Wallace hyperbola
X(63736) = center of circle {{23, 125, 36189}}
X(63736) = intersection, other than A, B, C, of circumconics {{A, B, C, X(5), X(419)}}, {{A, B, C, X(51), X(44089)}}, {{A, B, C, X(52), X(1691)}}, {{A, B, C, X(343), X(385)}}, {{A, B, C, X(804), X(1154)}}, {{A, B, C, X(1568), X(51430)}}, {{A, B, C, X(3978), X(59197)}}, {{A, B, C, X(5562), X(17984)}}, {{A, B, C, X(12077), X(40820)}}, {{A, B, C, X(20026), X(60517)}}, {{A, B, C, X(39931), X(53245)}}
X(63736) = barycentric product X(i)*X(j) for these (i, j): {343, 419}, {385, 5}, {1691, 311}, {1926, 2179}, {1933, 62272}, {1953, 1966}, {2618, 56982}, {3978, 51}, {5976, 60517}, {12077, 17941}, {12215, 53}, {13450, 58354}, {14213, 1580}, {14295, 1625}, {14570, 804}, {14602, 62278}, {14603, 40981}, {17167, 4039}, {17500, 732}, {17984, 216}, {18314, 56980}, {18695, 56828}, {24284, 35360}, {28706, 44089}, {36213, 53245}, {39931, 53174}, {40820, 60524}, {41586, 60863}, {46888, 60594}, {51430, 62722}, {55219, 880}
X(63736) = barycentric quotient X(i)/X(j) for these (i, j): {5, 1916}, {51, 694}, {216, 36214}, {217, 17970}, {311, 18896}, {343, 40708}, {385, 95}, {419, 275}, {804, 15412}, {880, 55218}, {1580, 2167}, {1625, 805}, {1691, 54}, {1933, 2148}, {1953, 1581}, {1966, 62276}, {2179, 1967}, {2617, 37134}, {3199, 17980}, {3978, 34384}, {4039, 56246}, {5027, 2623}, {8623, 16030}, {12215, 34386}, {14213, 1934}, {14570, 18829}, {14602, 54034}, {17500, 14970}, {17984, 276}, {18314, 56981}, {18902, 14573}, {24284, 62428}, {32542, 1298}, {35319, 46161}, {40981, 9468}, {44089, 8882}, {51324, 19189}, {51430, 43768}, {52967, 14251}, {55219, 882}, {56828, 2190}, {56976, 39287}, {56979, 41488}, {56980, 18315}, {59197, 8842}, {60517, 36897}, {61194, 17938}, {62278, 44160}
X(63736) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {51, 59197, 5}, {237, 51481, 2782}, {3060, 37988, 14881}


X(63737) = CENTROID OF THE 2ND HATZIPOLAKIS-MOSES TRIANGLE

Barycentrics    a^2*(a^12*(b^2+c^2)+4*a^2*(b^2-c^2)^4*(b^4+c^4)-4*a^10*(b^4+b^2*c^2+c^4)-(b^2-c^2)^4*(b^6-4*b^4*c^2-4*b^2*c^4+c^6)+a^8*(5*b^6-2*b^4*c^2-2*b^2*c^4+5*c^6)-a^4*(b^2-c^2)^2*(5*b^6+9*b^4*c^2+9*b^2*c^4+5*c^6)+4*a^6*(3*b^6*c^2-2*b^4*c^4+3*b^2*c^6)) : :
X(63737) = -3*X[373]+X[23328], 11*X[3855]+X[6293], 5*X[3858]+X[41725], 15*X[5640]+X[54039], X[5895]+11*X[15024], -X[5925]+13*X[15028], -5*X[8567]+17*X[11465], -3*X[9730]+X[40928], 2*X[10095]+X[61749], -X[10606]+5*X[11451], 5*X[15026]+X[22802], 3*X[15045]+X[61721] and many others

X(63737) lies on these lines: {5, 2781}, {51, 235}, {54, 154}, {143, 44961}, {185, 12099}, {373, 23328}, {389, 37984}, {546, 5462}, {567, 15647}, {973, 44958}, {1154, 5448}, {1503, 43573}, {1598, 19153}, {1853, 43836}, {2393, 10110}, {2777, 13363}, {2935, 43584}, {2979, 63657}, {3089, 9971}, {3521, 43695}, {3527, 11216}, {3819, 63667}, {3855, 6293}, {3858, 41725}, {5640, 54039}, {5890, 35488}, {5891, 63674}, {5892, 43577}, {5895, 15024}, {5925, 15028}, {5943, 15311}, {6688, 63679}, {6756, 13403}, {6759, 22234}, {7403, 14845}, {7566, 41715}, {8567, 11465}, {9730, 40928}, {9934, 15037}, {10095, 61749}, {10301, 34782}, {10606, 11451}, {11189, 43819}, {11190, 63675}, {11202, 37440}, {11204, 63682}, {11241, 63677}, {11242, 63678}, {11243, 63680}, {11244, 63681}, {11402, 63658}, {12006, 63727}, {13383, 43839}, {13598, 37897}, {15026, 22802}, {15045, 61721}, {15806, 61606}, {16105, 37118}, {16227, 52003}, {18376, 43865}, {18378, 32391}, {18435, 63671}, {18874, 20299}, {18950, 63656}, {19209, 63668}, {23324, 41580}, {32062, 63662}, {32063, 43845}, {32064, 43816}, {32065, 43820}, {34577, 54044}, {38323, 41670}, {44668, 61747}, {44920, 58480}, {45959, 63684}

X(63737) = midpoint of X(i) and X(j) for these {i,j}: {546, 63714}, {23324, 41580}
X(63737) = reflection of X(i) in X(j) for these {i,j}: {41589, 63714}, {63714, 63697}
X(63737) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {235, 63670, 63659}, {546, 41589, 63728}, {546, 63697, 41589}, {546, 63714, 6000}, {6000, 63697, 63714}, {13406, 63683, 63740}, {13406, 63738, 63683}, {15026, 22802, 32184}


X(63738) = X(5) OF THE 2ND HATZIPOLAKIS-MOSES TRIANGLE

Barycentrics    a^2*(a^12*(b^2+c^2)-4*a^10*(b^4+b^2*c^2+c^4)+5*a^8*(b^6+c^6)-(b^2-c^2)^4*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)+a^6*(8*b^6*c^2-4*b^4*c^4+8*b^2*c^6)+2*a^2*(b^2-c^2)^2*(2*b^8-2*b^6*c^2+3*b^4*c^4-2*b^2*c^6+2*c^8)+a^4*(-5*b^10+b^8*c^2+2*b^6*c^4+2*b^4*c^6+b^2*c^8-5*c^10)) : :
X(63738) = 7*X[9781]+X[32139], -3*X[13363]+X[32210], -5*X[15026]+X[32138]

X(63738) lies on these lines: {3, 63660}, {5, 54384}, {30, 58546}, {143, 235}, {156, 1493}, {389, 546}, {1154, 5448}, {5097, 63688}, {5446, 61608}, {5876, 63671}, {6101, 63657}, {6102, 35488}, {6756, 30522}, {7403, 13364}, {9730, 34563}, {9781, 32139}, {10110, 58806}, {11591, 63674}, {12140, 12370}, {13352, 32171}, {13363, 32210}, {13376, 18128}, {13383, 13391}, {14156, 34577}, {15026, 32138}, {15132, 18369}, {16881, 58559}, {18379, 63672}, {18567, 41589}, {18874, 50138}, {18952, 63656}, {19155, 63663}, {19211, 63668}, {32136, 63658}, {32137, 63662}, {32140, 63666}, {32142, 63667}, {32143, 63669}, {32155, 63673}, {32158, 63675}, {32168, 63676}, {32169, 63677}, {32170, 63678}, {32205, 55295}, {32207, 63680}, {32208, 63681}

X(63738) = midpoint of X(i) and X(j) for these {i,j}: {5446, 61608}, {13406, 63683}, {18567, 41589}
X(63738) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {389, 58516, 10095}, {63683, 63737, 13406}


X(63739) = X(6) OF THE 2ND HATZIPOLAKIS-MOSES TRIANGLE

Barycentrics    2*a^8*b^2*c^2+3*a^2*(b^2-c^2)^4*(b^2+c^2)-(b^2-c^2)^4*(b^4-b^2*c^2+c^4)-a^4*(b^2-c^2)^2*(3*b^4+5*b^2*c^2+3*c^4)+a^6*(b^6+b^4*c^2+b^2*c^4+c^6) : :

X(63739) lies on these lines: {4, 1576}, {53, 235}, {157, 10594}, {546, 575}, {2790, 63696}, {2871, 63688}, {2980, 40449}, {6751, 63670}, {7403, 23333}, {13383, 58436}, {13406, 32428}, {18380, 63672}, {18437, 63671}, {18953, 63656}, {19156, 63663}, {19212, 63668}, {20477, 63657}, {33971, 35488}, {34828, 63667}, {34845, 39569}, {37440, 37813}, {41761, 63666}, {42353, 63674}, {58408, 63679}, {63419, 63664}, {63629, 63629}

X(63739) = pole of line {185, 7747} with respect to the Kiepert hyperbola


X(63740) = X(20) OF THE 2ND HATZIPOLAKIS-MOSES TRIANGLE

Barycentrics    a^2*(-4*a^6*b^2*c^2*(b^2-c^2)^2+a^12*(b^2+c^2)-4*a^10*(b^4+b^2*c^2+c^4)-(b^2-c^2)^4*(b^6+4*b^4*c^2+4*b^2*c^4+c^6)+a^8*(5*b^6+6*b^4*c^2+6*b^2*c^4+5*c^6)+a^4*(-5*b^10+b^8*c^2-4*b^6*c^4-4*b^4*c^6+b^2*c^8-5*c^10)+4*a^2*(b^12-3*b^8*c^4+4*b^6*c^6-3*b^4*c^8+c^12)) : :
X(63740) = -X[6102]+3*X[61646], -7*X[7999]+3*X[37497], -3*X[10154]+X[41725], -5*X[11444]+X[37498], -X[13346]+3*X[15067]

X(63740) lies on these lines: {3, 63658}, {26, 40285}, {30, 63728}, {52, 63659}, {235, 5562}, {381, 11743}, {389, 63667}, {511, 546}, {1154, 5448}, {1216, 12897}, {3060, 15739}, {5663, 12107}, {5876, 37440}, {5889, 63657}, {5891, 7403}, {5907, 6756}, {6102, 61646}, {6243, 63671}, {7566, 15056}, {7999, 37497}, {9019, 18569}, {9927, 44668}, {10154, 41725}, {10594, 11459}, {10625, 12295}, {11412, 35488}, {11444, 37498}, {11793, 63679}, {12225, 15738}, {12241, 45118}, {13346, 15067}, {13383, 13754}, {13391, 18567}, {13630, 34577}, {14128, 50138}, {14448, 45187}, {14531, 63670}, {15060, 63672}, {15083, 44470}, {18390, 31807}, {31751, 63698}, {32142, 63727}, {37488, 63663}, {41726, 46451}, {45186, 63662}, {63695, 63734}

X(63740) = midpoint of X(i) and X(j) for these {i,j}: {5876, 46730}
X(63740) = reflection of X(i) in X(j) for these {i,j}: {41589, 13383}, {63683, 13406}
X(63740) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {52, 63674, 63659}, {1154, 13406, 63683}, {13383, 13754, 41589}, {13383, 63686, 16252}, {13406, 63683, 63737}





leftri   PERSPECTORS ASSOCIATED WITH TRIANGLES T(u_1,P*): X(63741)-X(63745)  rightri

Contributed by Clark Kimberling and Peter Moses, May 29, 2024.

Let P = p : q : r be a triangle center and
A' = (q - r)/(q + r) : - (q + 2r)/q : (2q + r)/r
B' = (2r + p)/p : (r - p)/(r + p) : - (r + 2p)/r
C' = - (p + 2q)/p : (2p + q)/q : (p - q)/(p + q)

The triangle A'B'C' is here denoted by T(u_1, P*)
If P lies on the Steiner circumellipse, then A'B'C' is perspective to ABC, and the perspector is the barycentric quotient U/P, where U = reflection of P in X(2). This perspector lies on the Tucker nodal cubic, K015. The appearance of (i,j) in the following list means that X(i) is on the Steiner circumellipse, and the X(j) is the perspector of ABC and T(u_1, X(i)*).

(99,5466), (190,6548), (648,34767), (664,63743), (668,43928), (670,63744), (671,5468), (892,34763), (903,17780), (1121,56543), (1494,4240), (2966,34765), (3227,41314), (3228,63742), (4555,34764), (4562,47070), (5641,34761), (6189,30508), (6190,30509), (16077,47071), (18823,34760), (32041,63221), (35153,34766), (35168,34762)

underbar



X(63741) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_1, X(290))

Barycentrics    a^2*(a^2 - b^2)*(a^2 - c^2)*(a^2*b^2 - b^4 + 2*a^2*c^2 + b^2*c^2)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4) : :
X(63741) = X[2] + 2 X[23611], 3 X[23611] + X[62596], X[147] + 8 X[43935]

X(63741) lies on the cubic K015 and these lines: {2, 51}, {110, 14966}, {147, 43935}, {805, 4226}, {877, 4576}, {2396, 15631}, {2799, 36886}, {4630, 15958}, {5466, 55143}, {5968, 51543}, {9155, 51229}, {9513, 43718}, {32716, 56980}, {37465, 51997}, {43942, 46606}, {53196, 63741}

X(63741) = isotomic conjugate of X(63741)
anticomplement of X(62596)
X(63741) = isotomic conjugate of the anticomplement of X(33569)
X(63741) = X(i)-cross conjugate of X(j) for these (i,j): {33569, 2}, {41167, 40803}
X(63741) = X(i)-isoconjugate of X(j) for these (i,j): {31, 63741}, {661, 46806}, {879, 60685}, {1577, 51542}, {1821, 3288}, {1910, 23878}, {2395, 52134}, {2422, 3403}, {6784, 36036}
X(63741) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 63741}, {2679, 6784}, {11672, 23878}, {36830, 46806}, {40601, 3288}
X(63741) = cevapoint of X(23611) and X(33569)
X(63741) = crosssum of X(3288) and X(9420)
X(63741) = trilinear pole of line {511, 11672}
X(63741) = crossdifference of every pair of points on line {3288, 59804}
X(63741) = barycentric product X(i)*X(j) for these {i,j}: {99, 51543}, {110, 46807}, {262, 2421}, {263, 2396}, {325, 26714}, {327, 14966}, {877, 43718}, {4230, 42313}, {6037, 36790}, {11672, 53196}, {32458, 32716}, {36885, 46787}, {39681, 40810}, {58070, 59257}
X(63741) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 63741}, {110, 46806}, {237, 3288}, {262, 43665}, {263, 2395}, {511, 23878}, {877, 44144}, {1576, 51542}, {2396, 20023}, {2421, 183}, {2491, 6784}, {4230, 458}, {6037, 34536}, {9419, 9420}, {9420, 59804}, {14251, 39680}, {14966, 182}, {15631, 51373}, {23611, 33569}, {23997, 52134}, {26714, 98}, {32716, 41932}, {33569, 62596}, {36885, 46786}, {39681, 14382}, {42717, 42711}, {43718, 879}, {46319, 2422}, {46807, 850}, {51543, 523}, {52631, 51441}, {52926, 60517}, {53196, 57541}, {54032, 53173}, {58070, 33971}
X(63741) = {X(6037),X(39681)}-harmonic conjugate of X(4226)


X(63742) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_1, X(666))

Barycentrics    (b - c)*(a*b - b^2 + a*c - c^2)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - b^2*c + 2*a*c^2 + 2*b*c^2 - 2*c^3)*(a^3 - a^2*b + 2*a*b^2 - 2*b^3 - a^2*c + 2*b^2*c - a*c^2 - b*c^2 + c^3) : :

X(63742) lies on the cubic K015 and these lines: {2, 918}, {693, 62429}, {840, 2862}, {883, 4998}, {2400, 53361}, {3263, 62430}, {3912, 52228}, {6548, 52305}, {18821, 36240}, {56365, 62726}, {59255, 63223}, {60481, 60491}

X(63742) = X(i)-isoconjugate of X(j) for these (i,j): {6, 52227}, {101, 51922}, {528, 32666}, {692, 61477}, {919, 2246}, {1438, 52985}, {36146, 52969}
X(63742) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 52227}, {1015, 51922}, {1086, 61477}, {6184, 52985}, {17435, 1642}, {35094, 528}, {35509, 52946}, {38980, 2246}, {39014, 52969}, {62587, 42722}
X(63742) = cevapoint of X(528) and X(40540)
X(63742) = trilinear pole of line {918, 35094}
X(63742) = barycentric product X(i)*X(j) for these {i,j}: {75, 52228}, {883, 60491}, {918, 18821}, {3261, 61480}, {62726, 62733}
X(63742) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 52227}, {513, 51922}, {514, 61477}, {518, 52985}, {840, 919}, {883, 62721}, {918, 528}, {926, 52969}, {2254, 2246}, {3126, 1642}, {3263, 42722}, {3675, 1643}, {18821, 666}, {37131, 36086}, {42770, 42763}, {43042, 5723}, {52228, 1}, {52304, 14393}, {52305, 52946}, {60491, 885}, {61480, 101}, {62726, 62729}, {62733, 35313}


X(63743) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_1, X(2481))

Barycentrics    a*(a - b)*(a - c)*(a*b - b^2 + 2*a*c + b*c)*(a*b - b^2 + a*c - c^2)*(2*a*b + a*c + b*c - c^2) : :
X(63743) = X[2] + 2 X[23612], X[20344] + 8 X[43937]

X(63743) lies on the cubic K015 and these lines: {2, 210}, {100, 2284}, {660, 53337}, {883, 3952}, {1642, 14947}, {3573, 6078}, {3799, 32041}, {9330, 17435}, {20344, 43937}, {35293, 46793}, {53227, 63221}

X(63743) = isotomic conjugate of X(63221)
X(63743) = isotomic conjugate of the anticomplement of X(33570)
X(63743) = X(53227)-Ceva conjugate of X(32041)
X(63743) = X(33570)-cross conjugate of X(2)
X(63743) = X(i)-isoconjugate of X(j) for these (i,j): {31, 63221}, {105, 4724}, {649, 63236}, {667, 63229}, {884, 40719}, {885, 1471}, {1001, 1027}, {1024, 5228}, {1438, 4762}, {1462, 45755}, {2280, 62635}, {4384, 43929}, {36138, 61076}, {43921, 54440}, {55261, 60721}
X(63743) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 63221}, {5375, 63236}, {6184, 4762}, {6631, 63229}, {39012, 61076}, {39046, 4724}
X(63743) = cevapoint of X(23612) and X(33570)
X(63743) = crosspoint of X(32041) and X(53227)
X(63743) = trilinear pole of line {518, 6184}
X(63743) = barycentric product X(i)*X(j) for these {i,j}: {100, 62622}, {101, 63231}, {518, 32041}, {883, 40779}, {1002, 42720}, {1025, 60668}, {1026, 27475}, {1252, 63223}, {2284, 59255}, {3263, 8693}, {3912, 37138}, {3930, 51563}, {6184, 53227}
X(63743) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 63221}, {100, 63236}, {190, 63229}, {518, 4762}, {672, 4724}, {883, 60720}, {1002, 62635}, {1025, 40719}, {1026, 4384}, {1642, 45322}, {2279, 1027}, {2283, 5228}, {2284, 1001}, {2340, 45755}, {3930, 4804}, {4238, 31926}, {8693, 105}, {23612, 33570}, {32041, 2481}, {32724, 41934}, {36138, 51838}, {37138, 673}, {40779, 885}, {41353, 42309}, {42290, 43930}, {42720, 4441}, {53227, 57537}, {54325, 2280}, {54353, 60721}, {59269, 28132}, {60673, 1024}, {62622, 693}, {63223, 23989}, {63231, 3261}


X(63744) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_1, X(18026))

Barycentrics    a*(a - b - c)*(b - c)*(a^2 - b^2 - c^2)*(2*a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + 2*a*b^4 - a^4*c + 2*a^2*b^2*c - b^4*c + a^3*c^2 - a^2*b*c^2 - a*b^2*c^2 + b^3*c^2 + a^2*c^3 + b^2*c^3 - a*c^4 - b*c^4)*(a^4*b - a^3*b^2 - a^2*b^3 + a*b^4 - 2*a^4*c + a^2*b^2*c + b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 + a*b^2*c^2 - b^3*c^2 + 2*a^2*c^3 - b^2*c^3 - 2*a*c^4 + b*c^4) : :
X(63744) = X[2] + 2 X[23614], X[34188] + 8 X[43939]

X(63744) lies on the cubic K015 and these lines: {2, 521}, {21, 23090}, {63, 57241}, {78, 57057}, {348, 4131}, {7253, 31623}, {14414, 40843}, {23707, 36100}, {26703, 32726}, {34188, 43939}, {43737, 53353}

X(63744) = isotomic conjugate of the anticomplement of X(33572)
X(63744) = X(33572)-cross conjugate of X(2)
X(63744) = X(i)-isoconjugate of X(j) for these (i,j): {108, 2635}, {1415, 52982}, {2637, 23984}, {7012, 30691}, {36127, 62736}, {53321, 62757}
X(63744) = X(i)-Dao conjugate of X(j) for these (i,j): {1146, 52982}, {38983, 2635}, {55068, 62757}
X(63744) = cevapoint of X(23614) and X(33572)
X(63744) = trilinear pole of line {521, 35072}
X(63744) = barycentric product X(i)*X(j) for these {i,j}: {6332, 23707}, {32726, 35518}
X(63744) = barycentric quotient X(i)/X(j) for these {i,j}: {522, 52982}, {652, 2635}, {1021, 62757}, {2638, 2637}, {7117, 30691}, {23090, 52889}, {23614, 33572}, {23707, 653}, {32726, 108}, {32727, 23985}, {34078, 32674}, {36054, 62736}, {36140, 24033}, {62742, 54240}, {62765, 1020}


X(63745) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_1, X(18821))

Barycentrics    (a - b)*(a - c)*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2)*(2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c + b^2*c + a*c^2 + b*c^2 - c^3) : :

X(63745) lies on the cubic K015 and these lines: {2, 11}, {666, 885}, {901, 927}, {17780, 36802}, {24407, 56896}, {28132, 51562}, {36086, 37143}, {46790, 61477}, {51922, 52761}

X(63745) = X(57536)-Ceva conjugate of X(35113)
X(63745) = X(i)-cross conjugate of X(j) for these (i,j): {1642, 62721}, {14393, 62729}, {35113, 57536}, {52873, 62715}
X(63745) = X(i)-isoconjugate of X(j) for these (i,j): {6, 52228}, {513, 61480}, {665, 37131}, {840, 2254}
X(63745) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 52228}, {35113, 918}, {39026, 61480}, {52873, 52305}, {52884, 518}
X(63745) = trilinear pole of line {528, 35113}
X(63745) = crossdifference of every pair of points on line {665, 35505}
X(63745) = barycentric product X(i)*X(j) for these {i,j}: {75, 52227}, {105, 42722}, {190, 61477}, {528, 666}, {668, 51922}, {885, 62721}, {2246, 51560}, {2481, 52985}, {5723, 36802}, {35313, 62729}, {46135, 52969}
X(63745) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 52228}, {101, 61480}, {528, 918}, {666, 18821}, {885, 60491}, {919, 840}, {1642, 3126}, {1643, 3675}, {2246, 2254}, {5723, 43042}, {14393, 52304}, {35313, 62733}, {36086, 37131}, {42722, 3263}, {42763, 42770}, {51922, 513}, {52227, 1}, {52946, 52305}, {52969, 926}, {52985, 518}, {61477, 514}, {62721, 883}, {62729, 62726}
X(63745) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {673, 14942, 10707}, {885, 5377, 35313}, {927, 39293, 56543}, {2398, 53362, 36236}





leftri   PERSPECTORS ASSOCIATED WITH TRIANGLES T(u_2,P*): X(63746)-X(63749)  rightri

Contributed by Clark Kimberling and Peter Moses, May 29, 2024.

Let P = p : q : r be a triangle center and
A' = (q + r)/(q - r) : - q/(q + 2r) : r/(2q + r)
B' = p/(2r + p) : (r + p)/(r - p) : -r/(r + 2p)
C' = -p/(p + 2q) : q/(2p + q) : (p + q)/(p - q)

The triangle A'B'C' is here denoted by T(u_2, P*). If P lies on the Steiner circumellipse, then A'B'C' is perspective to ABC, and the perspector is the barycentric quotient P/U, where U = reflection of P in X(2). This perspector lies on the Tucker nodal cubic, K015. The appearance of (i,j) in the following list means that X(i) is on the Steiner circumellipse, and the X(j) is the perspector of ABC and T(u_2, X(i)*).

(99,5468), (190,17780), (290, 63746), (648,4240), (664,56543), (668,41314), (670,63747), (671,5466), (892,34760), (903,6548), (1121,63748), (1494,34767), (2481,63221), (2966,34761), (3227,43928), (4555,34762), (5641,34765), (6189,30509), (6190,30508), (18822,47070), (18823,34763), (3228,63749), (35148,34766), (35168,34764), (53201,47071)

underbar



X(63746) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_2, X(290))

Barycentrics    b^2*(b^2 - c^2)*c^2*(a^4 - a^2*b^2 - a^2*c^2 - 2*b^2*c^2)*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(a^4 - a^2*b^2 - b^2*c^2 + c^4) : :

X(63746) lies on the cubic K015 and these lines: {2, 647}, {290, 879}, {458, 3288}, {4240, 22456}, {5468, 43187}, {14382, 46512}, {34384, 62428}, {46104, 53149}, {56981, 62645}

X(63746) = anticomplement of X(33569)
X(63746) = isotomic conjugate of the anticomplement of X(62596)
X(63746) = X(36132)-anticomplementary conjugate of X(39355)
X(63746) = X(53196)-Ceva conjugate of X(290)
X(63746) = X(62596)-cross conjugate of X(2)
X(63746) = X(i)-isoconjugate of X(j) for these (i,j): {163, 51543}, {263, 23997}, {1755, 26714}, {2186, 14966}, {2421, 3402}, {6037, 42075}, {11672, 36132}, {23996, 32716}
X(63746) = X(i)-Dao conjugate of X(j) for these (i,j): {115, 51543}, {36899, 26714}, {36901, 46807}, {38997, 237}, {39009, 11672}, {51580, 2421}, {62562, 263}, {62596, 23611}
X(63746) = crosspoint of X(290) and X(53196)
X(63746) = crosssum of X(237) and X(9420)
X(63746) = trilinear pole of line {23878, 39009}
X(63746) = crossdifference of every pair of points on line {237, 9419}
X(63746) = barycentric product X(i)*X(j) for these {i,j}: {183, 43665}, {290, 23878}, {850, 46806}, {879, 44144}, {2395, 20023}, {3288, 18024}, {44173, 51542}
X(63746) = barycentric quotient X(i)/X(j) for these {i,j}: {98, 26714}, {182, 14966}, {183, 2421}, {458, 4230}, {523, 51543}, {850, 46807}, {879, 43718}, {2395, 263}, {2422, 46319}, {3288, 237}, {6784, 2491}, {9420, 9419}, {14382, 39681}, {20023, 2396}, {23878, 511}, {33569, 23611}, {33971, 58070}, {34536, 6037}, {39680, 14251}, {41932, 32716}, {42711, 42717}, {43665, 262}, {44144, 877}, {46786, 36885}, {46806, 110}, {51373, 15631}, {51441, 52631}, {51542, 1576}, {52134, 23997}, {53173, 54032}, {57541, 53196}, {59804, 9420}, {60517, 52926}, {62596, 33569}
X(63746) = {X(2395),X(53173)}-harmonic conjugate of X(31296)


X(63747) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_2, X(670))

Barycentrics    b^2*(a^2 - b^2)*(a^2 - c^2)*c^2*(a^2*b^2 + a^2*c^2 - 2*b^2*c^2) : :

X(63747) lies on the cubic K015 and these lines: {2, 39}, {99, 9066}, {670, 888}, {880, 5468}, {1975, 11332}, {5466, 53080}, {18896, 31125}, {30736, 52756}, {34767, 57988}, {35139, 54955}

X(63747) = anticomplement of X(1645)
X(63747) = isotomic conjugate of the anticomplement of X(62611)
X(63747) = isotomic conjugate of the complement of X(44007)
X(63747) = isotomic conjugate of the isogonal conjugate of X(23342)
X(63747) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {886, 21221}, {9150, 21220}, {24037, 39361}, {36133, 25054}, {57993, 21294}
X(63747) = X(i)-Ceva conjugate of X(j) for these (i,j): {886, 670}, {44168, 35073}
X(63747) = X(i)-cross conjugate of X(j) for these (i,j): {888, 538}, {35073, 44168}, {62611, 2}
X(63747) = X(i)-isoconjugate of X(j) for these (i,j): {560, 60028}, {669, 37132}, {729, 798}, {1084, 36133}, {1924, 3228}, {4117, 9150}
X(63747) = X(i)-Dao conjugate of X(j) for these (i,j): {538, 888}, {888, 33918}, {6374, 60028}, {9428, 3228}, {31998, 729}, {35073, 512}, {38998, 669}, {39010, 1084}, {52876, 688}, {62611, 23610}
X(63747) = cevapoint of X(i) and X(j) for these (i,j): {2, 44007}, {538, 888}
X(63747) = crosspoint of X(670) and X(886)
X(63747) = crosssum of X(669) and X(887)
X(63747) = trilinear pole of line {538, 30736}
X(63747) = crossdifference of every pair of points on line {669, 9427}
X(63747) = barycentric product X(i)*X(j) for these {i,j}: {76, 23342}, {99, 30736}, {538, 670}, {668, 30938}, {886, 35073}, {888, 44168}, {1502, 5118}, {2234, 4602}, {3231, 4609}, {9148, 34537}, {42371, 52961}, {45672, 53080}, {52067, 57993}
X(63747) = barycentric quotient X(i)/X(j) for these {i,j}: {76, 60028}, {99, 729}, {538, 512}, {670, 3228}, {799, 37132}, {880, 51510}, {886, 57540}, {887, 9427}, {888, 1084}, {1645, 23610}, {2234, 798}, {2396, 52765}, {3231, 669}, {4576, 46156}, {4590, 32717}, {4609, 34087}, {5118, 32}, {5468, 41309}, {6786, 2491}, {8024, 35366}, {9148, 3124}, {23342, 6}, {24037, 36133}, {30736, 523}, {30938, 513}, {33875, 9426}, {34537, 9150}, {35073, 888}, {36822, 2422}, {39010, 33918}, {44168, 886}, {45672, 351}, {46522, 57204}, {52067, 887}, {52625, 23099}, {52756, 9178}, {52893, 50487}, {52894, 53581}, {52961, 688}, {62611, 1645}, {63170, 57459}
X(63747) = {X(880),X(34537)}-harmonic conjugate of X(5468)


X(63748) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_2, X(1121))

Barycentrics    (a - b - c)*(b - c)*(a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(a^2 + a*b - 2*b^2 - 2*a*c + b*c + c^2) : :
X(63748) = X[2] + 2 X[23615], 6 X[14476] - X[45290], 3 X[14476] - X[62579], 6 X[23615] + X[45290], 3 X[23615] + X[62579], 8 X[15280] + X[49273], X[33650] + 8 X[43940]

X(63748) lies on the cubic K015 and these lines: {2, 522}, {8, 3239}, {29, 17926}, {85, 693}, {92, 44426}, {312, 4397}, {333, 7253}, {514, 9779}, {521, 55956}, {1121, 6366}, {1156, 34234}, {1309, 14733}, {1311, 2291}, {1639, 14942}, {1952, 53356}, {2398, 51562}, {2399, 15633}, {2400, 4453}, {2988, 60047}, {3900, 55954}, {4391, 55984}, {4468, 10405}, {4944, 28143}, {4997, 50333}, {5468, 17931}, {6548, 52305}, {14430, 52517}, {14432, 17947}, {15280, 49273}, {17780, 36802}, {17923, 60583}, {18359, 52356}, {29212, 45700}, {32008, 62725}, {33650, 43940}, {35157, 56543}, {40420, 56323}, {47772, 62731}, {52780, 53152}, {60480, 60579}

X(63748) = midpoint of X(14476) and X(23615)
X(63748) = reflection of X(i) in X(j) for these {i,j}: {2, 14476}, {45290, 62579}
X(63748) = isogonal conjugate of X(23346)
X(63748) = isotomic conjugate of X(56543)
X(63748) = complement of X(45290)
X(63748) = anticomplement of X(62579)
X(63748) = isotomic conjugate of the anticomplement of X(33573)
X(63748) = isotomic conjugate of the complement of X(45293)
X(63748) = isotomic conjugate of the isogonal conjugate of X(23351)
X(63748) = X(36141)-anticomplementary conjugate of X(39357)
X(63748) = X(i)-Ceva conjugate of X(j) for these (i,j): {35157, 1121}, {57565, 1146}
X(63748) = X(i)-cross conjugate of X(j) for these (i,j): {1146, 57565}, {6366, 522}, {23893, 60479}, {30565, 62725}, {33573, 2}
X(63748) = X(i)-isoconjugate of X(j) for these (i,j): {1, 23346}, {6, 23890}, {31, 56543}, {59, 14413}, {101, 6610}, {109, 1155}, {527, 1415}, {651, 1055}, {692, 1323}, {1461, 6603}, {1638, 2149}, {6139, 7045}, {6366, 24027}, {6510, 32674}, {7339, 14392}, {14733, 42082}, {23710, 36059}, {32656, 38461}, {32660, 37805}, {32735, 35293}, {32739, 37780}, {35110, 36141}, {36040, 51408}, {37139, 59798}, {53321, 62756}
X(63748) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 56543}, {3, 23346}, {9, 23890}, {11, 1155}, {522, 6366}, {650, 1638}, {656, 14414}, {1015, 6610}, {1086, 1323}, {1146, 527}, {2968, 6745}, {6608, 14392}, {6615, 14413}, {10017, 51408}, {17115, 6139}, {20620, 23710}, {35072, 6510}, {35091, 35110}, {35125, 15730}, {35508, 6603}, {38991, 1055}, {40619, 37780}, {40624, 30806}, {40629, 3321}, {51402, 6174}, {55068, 62756}, {62566, 30574}
X(63748) = cevapoint of X(i) and X(j) for these (i,j): {2, 45293}, {522, 6366}, {527, 17044}, {23615, 33573}
X(63748) = crosspoint of X(1121) and X(35157)
X(63748) = crosssum of X(1055) and X(6139)
X(63748) = trilinear pole of line {522, 1146}
X(63748) = crossdifference of every pair of points on line {1055, 59798}
X(63748) = barycentric product X(i)*X(j) for these {i,j}: {8, 60479}, {75, 23893}, {76, 23351}, {190, 60579}, {312, 35348}, {522, 1121}, {693, 41798}, {1146, 35157}, {1156, 4391}, {2291, 35519}, {3239, 62723}, {3261, 4845}, {4081, 60487}, {4397, 34056}, {6366, 57565}, {14733, 23978}, {18889, 40495}, {24026, 37139}, {46110, 60047}, {52746, 60480}, {56665, 60483}, {62725, 62731}
X(63748) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 23890}, {2, 56543}, {6, 23346}, {11, 1638}, {513, 6610}, {514, 1323}, {521, 6510}, {522, 527}, {650, 1155}, {663, 1055}, {693, 37780}, {1021, 62756}, {1121, 664}, {1146, 6366}, {1156, 651}, {1638, 3321}, {1639, 6174}, {2170, 14413}, {2291, 109}, {3064, 23710}, {3119, 14392}, {3239, 6745}, {3716, 24685}, {3887, 15730}, {3900, 6603}, {3907, 6647}, {4391, 30806}, {4530, 30573}, {4845, 101}, {5532, 52334}, {6139, 59798}, {6366, 35110}, {14476, 14477}, {14733, 1262}, {14936, 6139}, {15734, 1308}, {17924, 38461}, {17926, 52891}, {18889, 692}, {21044, 30574}, {23351, 6}, {23615, 33573}, {23893, 1}, {32728, 23979}, {33573, 62579}, {34056, 934}, {34068, 1415}, {34591, 14414}, {35015, 42762}, {35157, 1275}, {35348, 57}, {36141, 24027}, {37139, 7045}, {41798, 100}, {44426, 37805}, {52334, 3328}, {52746, 62669}, {57457, 12848}, {57565, 35157}, {60047, 1813}, {60479, 7}, {60480, 36887}, {60487, 59457}, {60579, 514}, {62723, 658}, {62725, 62728}, {62731, 35312}, {62764, 1020}
X(63748) = {X(2),X(45290)}-harmonic conjugate of X(62579)


X(63749) = PERSPECTOR OF THESE TRIANGLES: ABC AND T(u_2, X(3228))

Barycentrics    a^2*(b^2 - c^2)*(2*a^2*b^2 - a^2*c^2 - b^2*c^2)*(a^2*b^2 - 2*a^2*c^2 + b^2*c^2) : :
X(63749) = X[2] + 2 X[23610], X[2] - 4 X[38237], X[23610] + 2 X[38237], 6 X[23610] + X[44007], 3 X[23610] + X[62611], 12 X[38237] - X[44007], 6 X[38237] - X[62611], X[44007] - 6 X[52721], 3 X[52721] - X[62611], X[148] + 8 X[38017]

X(63749) lies on the the circumconic {{A,B,C,X(2),X(6)}}, cubic K015 and these lines: {2, 512}, {6, 669}, {25, 57204}, {37, 50487}, {42, 53581}, {111, 729}, {148, 38017}, {263, 8644}, {308, 53347}, {351, 694}, {523, 9462}, {690, 55959}, {805, 5468}, {865, 2433}, {875, 37128}, {888, 3228}, {1989, 2872}, {2086, 9178}, {2395, 15630}, {2998, 31296}, {3124, 14606}, {3221, 11002}, {3288, 21448}, {5926, 50672}, {6088, 6094}, {9023, 34898}, {9135, 46316}, {9171, 14948}, {14318, 39389}, {14398, 16098}, {14404, 54980}, {16081, 53149}, {17414, 52660}, {31290, 54117}, {32717, 32729}, {33918, 57540}, {34087, 53365}

X(63749) = midpoint of X(23610) and X(52721)
X(63749) = reflection of X(i) in X(j) for these {i,j}: {2, 52721}, {44007, 62611}, {52721, 38237}
X(63749) = isogonal conjugate of X(23342)
X(63749) = complement of X(44007)
X(63749) = anticomplement of X(62611)
X(63749) = isotomic conjugate of the anticomplement of X(1645)
X(63749) = isogonal conjugate of the isotomic conjugate of X(60028)
X(63749) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {36133, 39361}, {57540, 21221}, {57571, 21305}
X(63749) = X(i)-Ceva conjugate of X(j) for these (i,j): {886, 3228}, {9150, 46156}, {32717, 729}, {57540, 1084}
X(63749) = X(i)-cross conjugate of X(j) for these (i,j): {888, 512}, {1084, 57540}, {1645, 2}, {33918, 1084}
X(63749) = X(i)-isoconjugate of X(j) for these (i,j): {1, 23342}, {75, 5118}, {99, 2234}, {101, 30938}, {163, 30736}, {538, 662}, {799, 3231}, {888, 24037}, {4593, 52961}, {4602, 33875}, {4610, 52893}, {4623, 52894}, {6786, 36036}, {9148, 24041}, {14609, 24039}, {23889, 52756}, {35073, 36133}, {36085, 45672}, {46522, 55202}
X(63749) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 23342}, {115, 30736}, {206, 5118}, {512, 888}, {1015, 30938}, {1084, 538}, {2679, 6786}, {3005, 9148}, {38986, 2234}, {38988, 45672}, {38996, 3231}, {39010, 35073}, {55050, 52961}
X(63749) = cevapoint of X(i) and X(j) for these (i,j): {512, 888}, {538, 36950}, {1084, 33918}, {1645, 23610}
X(63749) = crosspoint of X(i) and X(j) for these (i,j): {729, 32717}, {886, 3228}
X(63749) = crosssum of X(i) and X(j) for these (i,j): {538, 9148}, {887, 3231}, {888, 52961}
X(63749) = trilinear pole of line {512, 1084}
X(63749) = crossdifference of every pair of points on line {538, 3231}
X(63749) = barycentric product X(i)*X(j) for these {i,j}: {6, 60028}, {115, 32717}, {251, 35366}, {512, 3228}, {523, 729}, {661, 37132}, {669, 34087}, {882, 51510}, {886, 1084}, {888, 57540}, {2395, 52765}, {2433, 52752}, {2643, 36133}, {3124, 9150}, {5466, 41309}, {9178, 14608}, {9427, 57993}, {33918, 57571}, {46156, 58784}
X(63749) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 23342}, {32, 5118}, {351, 45672}, {512, 538}, {513, 30938}, {523, 30736}, {669, 3231}, {688, 52961}, {729, 99}, {798, 2234}, {886, 44168}, {887, 52067}, {888, 35073}, {1084, 888}, {1645, 62611}, {2422, 36822}, {2491, 6786}, {3124, 9148}, {3228, 670}, {9150, 34537}, {9178, 52756}, {9426, 33875}, {9427, 887}, {23099, 52625}, {23610, 1645}, {32717, 4590}, {33918, 39010}, {34087, 4609}, {35366, 8024}, {36133, 24037}, {37132, 799}, {41309, 5468}, {46156, 4576}, {50487, 52893}, {51510, 880}, {52765, 2396}, {53581, 52894}, {57204, 46522}, {57459, 63170}, {57540, 886}, {60028, 76}
X(63749) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 44007, 62611}, {23610, 38237, 2}


X(63750) = 45th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    (a+b-c)*(a-b+c)*(a^2-a*b+b^2-c^2)^2*(a^2-b^2-a*c+c^2)^2 : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 28/05/2024.

X(63750) lies on these lines: {11, 953}, {12, 14513}, {55, 39173}, {56, 6075}, {80, 517}, {149, 13756}, {513, 13273}, {515, 14204}, {528, 36590}, {655, 40663}, {759, 859}, {945, 10896}, {1168, 2099}, {1319, 2006}, {1411, 1457}, {2161, 2183}, {3259, 34431}, {3419, 51975}, {5080, 14616}, {5123, 52351}, {5176, 18359}, {5252, 14628}, {5532, 14629}, {13272, 34151}, {17101, 38389}, {36804, 36926}, {44669, 51562}

X(63750) = reflection of X(34431) in X(3259)
X(63750) = isogonal conjugate of X(4996)
X(63750) = antigonal conjugate of X(34431)
X(63750) = cevapoint of X(14584) and X(52383)
X(63750) = X(80)-beth conjugate of-X(2222)
X(63750) = X(i)-cross conjugate of X(j) for these (i, j): (31, 1989), (51, 34079), (512, 32675)
X(63750) = X(i)-Dao conjugate of X(j) for these (i, j): (206, 215), (513, 3025), (14993, 63642), (15267, 3028), (15898, 4511), (32664, 34544)
X(63750) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 34544}, {36, 4511}, {60, 4736}, {75, 215}, {312, 52059}, {320, 2361}, {341, 41282}, {654, 4585}, {765, 3025}, {1098, 3028}, {1983, 3904}, {2185, 35069}, {2323, 3218}, {3936, 4282}, {4564, 35128}, {5081, 52407}, {6149, 63642}, {7113, 32851}, {20924, 52426}, {34586, 56757}
X(63750) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (31, 34544), (32, 215), (80, 32851), (181, 35069), (1015, 3025), (1397, 52059), (1411, 3218), (1989, 63642), (2006, 320), (2161, 4511), (2171, 4736), (2222, 4585), (3271, 35128), (6187, 2323), (14584, 51583), (14628, 1227), (18815, 20924), (23592, 4998), (34535, 75), (46649, 1016), (52383, 3936), (52410, 41282)
X(63750) = X(59)-vertex conjugate of-X(60)
X(63750) = perspector of the central inconic through X(181) and X(3271)
X(63750) = pole of the line {215, 4996} with respect to the Stammler hyperbola
X(63750) = barycentric product X(i)*X(j) for these {i,j}: {1, 34535}, {11, 23592}, {80, 2006}, {1086, 46649}, {1168, 14628}, {1411, 18359}, {2161, 18815}, {24624, 52383}, {40437, 52212}, {43052, 52934}
X(63750) = trilinear product X(i)*X(j) for these {i,j}: {6, 34535}, {80, 1411}, {244, 46649}, {759, 52383}, {1168, 14584}, {2006, 2161}, {2170, 23592}, {6187, 18815}
X(63750) = trilinear quotient X(i)/X(j) for these (i,j): (6, 34544), (12, 4736), (31, 215), (80, 4511), (244, 3025), (604, 52059), (655, 4585), (1106, 41282), (1254, 3028), (1411, 36), (2006, 3218), (2161, 2323), (2166, 63642), (2170, 35128), (2171, 35069), (6187, 2361), (14584, 214), (14628, 51583), (18359, 32851), (18815, 320)
X(63750) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (14584, 52212, 2099), (38938, 39270, 14584)


X(63751) = 46th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(25*a^3-(25*b^2+4*b*c+25*c^2)*a+10*b*c*(b+c)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63751) lies on these lines: {1, 19537}, {3, 4691}, {21, 4413}, {100, 8168}, {958, 32633}, {1001, 16417}, {1376, 19704}, {4421, 51091}, {5010, 17542}, {5732, 15481}, {6261, 31663}, {6667, 34626}, {11495, 34474}, {16860, 51073}, {16862, 25542}, {17571, 22266}

X(63751) = pole of the line {1320, 56177} with respect to the Feuerbach circumhyperbola


X(63752) = 47th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(16*a^3-4*(4*b^2+b*c+4*c^2)*a+8*b*c*(b+c)) : :
X(63752) = 3*X(1)-2*X(1392) = 5*X(1698)-2*X(5560) = 5*X(1698)-4*X(7705) = 7*X(3624)-4*X(45035)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63752) lies on these lines: {1, 1392}, {2, 4330}, {3, 3679}, {10, 17548}, {21, 1698}, {35, 474}, {36, 3633}, {40, 6265}, {46, 16126}, {55, 17573}, {56, 16236}, {78, 34600}, {100, 3632}, {165, 6261}, {191, 35242}, {404, 25055}, {484, 4855}, {498, 37435}, {519, 37307}, {550, 6174}, {749, 3736}, {993, 32633}, {1125, 51817}, {1155, 3901}, {1376, 19535}, {1657, 31160}, {1699, 26285}, {2077, 6985}, {2163, 50581}, {3336, 11520}, {3361, 12521}, {3526, 31159}, {3530, 34612}, {3579, 3899}, {3583, 6931}, {3584, 4190}, {3680, 5541}, {3746, 16371}, {3811, 5131}, {3871, 37587}, {3894, 37524}, {4189, 19875}, {4302, 6919}, {4316, 5552}, {4324, 26364}, {4325, 45701}, {4333, 45392}, {4413, 16866}, {4421, 5563}, {4816, 5687}, {4857, 6921}, {4995, 17563}, {5204, 48696}, {5217, 11108}, {5248, 17535}, {5259, 16863}, {5440, 37572}, {5587, 26086}, {5692, 31663}, {5705, 34871}, {5732, 16192}, {6796, 34474}, {6905, 9589}, {6924, 11522}, {6942, 7991}, {6950, 37714}, {7771, 32104}, {8703, 21031}, {8715, 13587}, {9612, 12524}, {10056, 37267}, {12513, 19705}, {12953, 31263}, {15696, 31141}, {15720, 31140}, {16117, 35204}, {16347, 19871}, {16829, 33022}, {16833, 21537}, {16865, 19876}, {18513, 27529}, {19308, 29573}, {21842, 33895}, {30323, 45036}, {31157, 44682}, {31423, 33862}, {33923, 34606}, {35262, 37563}

X(63752) = reflection of X(5560) in X(7705)
X(63752) = reciprocal conjugate of X(29878) and X(3760) and barycentric quotient X(29878)/X(3760)
X(63752) = pole of the line {4926, 48696} with respect to the circumcircle
X(63752) = pole of the line {748, 7280} with respect to the Stammler hyperbola
X(63752) = pole of the line {3760, 17361} with respect to the Steiner-Wallace hyperbola
X(63752) = barycentric product X(749)*X(29878)
X(63752) = trilinear product X(29878)*X(30651)
X(63752) = trilinear quotient X(29878)/X(4361)
X(63752) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (100, 7280, 3632), (4421, 19537, 5563), (5010, 25440, 1698)


X(63753) = 48th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(9*a^3-(9*b^2+4*b*c+9*c^2)*a+6*b*c*(b+c)) : :
X(63753) = X(1)-3*X(45036) = 3*X(7319)-7*X(9780)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63753) lies on these lines: {1, 4004}, {3, 3626}, {20, 35023}, {21, 1376}, {35, 16842}, {55, 17572}, {56, 39777}, {100, 3621}, {224, 1155}, {1001, 16408}, {3035, 5225}, {3158, 53057}, {3579, 6261}, {3617, 32633}, {3625, 11194}, {3632, 19705}, {3634, 16857}, {4413, 17570}, {4428, 5550}, {4816, 5687}, {4900, 11260}, {5128, 12635}, {5220, 5732}, {5552, 34739}, {6265, 12702}, {7080, 34620}, {7280, 8168}, {11500, 33814}, {12512, 48664}, {13587, 20050}, {15808, 16417}, {16862, 51817}, {26364, 34626}, {34600, 37572}


X(63754) = 49th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(9*a^3-(9*b^2+4*b*c+9*c^2)*a-6*b*c*(b+c)) : :
X(63754) = X(1)+3*X(51576) = 5*X(3617)-9*X(18231) = 11*X(5550)-3*X(5556)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63754) lies on these lines: {1, 3052}, {2, 32633}, {3, 3634}, {21, 4423}, {55, 17574}, {56, 34502}, {100, 958}, {224, 15823}, {499, 17525}, {549, 45631}, {631, 10728}, {993, 3625}, {1001, 5267}, {1376, 19535}, {1698, 19704}, {3528, 3826}, {3614, 6910}, {3626, 4421}, {3647, 37606}, {3841, 15696}, {4999, 5225}, {5259, 19539}, {5303, 40726}, {5331, 16948}, {5436, 53057}, {5732, 15254}, {6261, 13624}, {6691, 11106}, {6872, 7173}, {6906, 11495}, {7280, 8167}, {7508, 12114}, {9780, 17549}, {10198, 34620}, {10267, 51529}, {10896, 15677}, {11111, 45310}, {11496, 35252}, {16371, 19872}, {16401, 16828}, {16418, 19862}, {19843, 34626}, {26363, 34706}

X(63754) = pole of the line {28161, 48343} with respect to the circumcircle
X(63754) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (5267, 17571, 1001), (7280, 19526, 8167)


X(63755) = 50th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(2*a^3-2*a^2*b+2*b^3-b*c^2+c^3-a*(2*b^2-b*c+c^2))*(2*a^3+b^3-2*a^2*c-b^2*c+2*c^3-a*(b^2-b*c+2*c^2)) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63755) lies on these lines: {10, 14584}, {44, 24036}, {100, 1168}, {106, 46972}, {214, 513}, {519, 3722}, {758, 1319}, {860, 1877}, {4511, 52680}, {39704, 52759}

X(63755) = midpoint of X(4511) and X(52680)
X(63755) = cevapoint of X(1) and X(15015)
X(63755) = X(24457)-cross conjugate of-X(100)
X(63755) = X(39026)-Dao conjugate of-X(14513)
X(63755) = X(513)-isoconjugate of-X(14513)
X(63755) = reciprocal conjugate of X(101) and X(14513) and barycentric quotient X(101)/X(14513)
X(63755) = trilinear pole of the line {1635, 13277} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(63755) = trilinear quotient X(100)/X(14513)


X(63756) = 51st TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a^2*(5*(-a^2+b^2+c^2)+2*b*c) : :
Barycentrics    sin(A)*(5*cos(A)+1) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 31/05/2024.

X(63756) lies on these lines: {1, 3}, {2, 12953}, {4, 52793}, {9, 43730}, {10, 19535}, {11, 3523}, {12, 376}, {20, 5432}, {21, 4413}, {33, 15750}, {34, 11410}, {73, 43713}, {100, 17548}, {140, 4302}, {172, 5210}, {187, 31448}, {198, 16814}, {215, 10984}, {381, 4324}, {388, 4995}, {404, 4423}, {405, 51073}, {474, 19878}, {495, 33923}, {496, 12100}, {497, 15717}, {498, 550}, {499, 3530}, {548, 1478}, {549, 1479}, {609, 31461}, {611, 14810}, {613, 17508}, {631, 6284}, {956, 4701}, {958, 17549}, {991, 38293}, {993, 4691}, {1001, 4188}, {1030, 16885}, {1058, 5298}, {1125, 19537}, {1126, 4257}, {1151, 19037}, {1152, 19038}, {1192, 11429}, {1201, 21000}, {1350, 19369}, {1376, 4189}, {1405, 37499}, {1500, 8588}, {1621, 37307}, {1657, 7951}, {1696, 16675}, {1698, 17571}, {1709, 40262}, {1788, 10543}, {1836, 12512}, {1837, 10164}, {1914, 15815}, {2066, 6410}, {2067, 6411}, {2178, 16674}, {2241, 8589}, {2275, 53095}, {2276, 5023}, {2307, 11480}, {2330, 31884}, {2334, 33771}, {2551, 6174}, {2933, 16064}, {2975, 4421}, {3024, 15051}, {3035, 6872}, {3053, 7296}, {3056, 53094}, {3058, 7288}, {3085, 3528}, {3086, 10299}, {3091, 5326}, {3100, 38438}, {3146, 3614}, {3207, 41423}, {3299, 6450}, {3301, 6449}, {3516, 52427}, {3520, 11398}, {3522, 5218}, {3524, 4294}, {3525, 7173}, {3526, 3583}, {3534, 3585}, {3582, 15700}, {3584, 9655}, {3624, 17573}, {3634, 19526}, {3683, 5438}, {3715, 31424}, {3814, 50242}, {3828, 16370}, {3871, 11194}, {3912, 21518}, {3913, 20053}, {4190, 6690}, {4293, 21735}, {4299, 8703}, {4304, 24914}, {4305, 40663}, {4309, 15325}, {4314, 17728}, {4316, 9654}, {4330, 9669}, {4366, 33022}, {4400, 8716}, {4428, 5253}, {4640, 4855}, {4669, 5267}, {4999, 31140}, {5024, 7031}, {5054, 7741}, {5055, 18514}, {5082, 31157}, {5132, 36635}, {5160, 37952}, {5206, 9341}, {5225, 10303}, {5229, 50693}, {5248, 16371}, {5259, 16417}, {5265, 10385}, {5281, 15888}, {5290, 52638}, {5303, 12513}, {5332, 22332}, {5393, 21573}, {5405, 21574}, {5414, 6409}, {5420, 9660}, {5434, 19708}, {5443, 48661}, {5444, 18493}, {5703, 11246}, {5842, 6977}, {6198, 35472}, {6200, 18996}, {6253, 6935}, {6285, 17821}, {6361, 15950}, {6396, 18995}, {6412, 6502}, {6452, 31474}, {6459, 13958}, {6460, 13901}, {6560, 13897}, {6561, 13954}, {6781, 31501}, {6825, 24466}, {6833, 36999}, {6850, 21155}, {6875, 34474}, {6910, 31245}, {6916, 10953}, {6919, 31235}, {6942, 11496}, {6950, 11500}, {6954, 11826}, {6956, 52837}, {7005, 10646}, {7006, 10645}, {7023, 7279}, {7127, 36836}, {7298, 16419}, {7302, 11284}, {7355, 8567}, {7585, 9648}, {7727, 15040}, {8167, 17572}, {8540, 10541}, {8543, 11495}, {8668, 34758}, {8692, 27625}, {8722, 10799}, {9541, 19027}, {9645, 18324}, {9646, 42261}, {9656, 10483}, {9658, 35243}, {9668, 15720}, {9780, 17574}, {10056, 34200}, {10060, 10282}, {10072, 10386}, {10076, 11204}, {10165, 12701}, {10192, 12950}, {10590, 17538}, {10592, 12103}, {10593, 12108}, {10606, 26888}, {11113, 31246}, {11235, 20066}, {11375, 31730}, {11392, 37931}, {11399, 32534}, {11499, 38138}, {11502, 37106}, {11517, 51570}, {11681, 37299}, {12184, 38747}, {12185, 38748}, {12373, 37853}, {12374, 38793}, {12559, 33595}, {12589, 21167}, {12763, 38759}, {12764, 38760}, {12836, 21163}, {12896, 38728}, {12903, 38726}, {12904, 38727}, {13182, 38736}, {13183, 38737}, {13274, 21154}, {13587, 25524}, {15170, 15711}, {15171, 15712}, {15452, 34473}, {15513, 31451}, {15624, 22344}, {16502, 37512}, {16668, 36743}, {16669, 36744}, {16860, 19872}, {17023, 21524}, {17545, 31253}, {17800, 18513}, {18541, 37731}, {18990, 31452}, {19289, 19858}, {19349, 21663}, {19366, 37487}, {19705, 51108}, {20060, 34620}, {20988, 37257}, {21510, 29596}, {22361, 50677}, {26561, 33008}, {26590, 32964}, {26629, 32965}, {27020, 33235}, {28146, 37692}, {30478, 34612}, {31260, 31418}, {34626, 52367}, {37711, 50821}, {37738, 51705}, {37740, 43174}, {39891, 44882}, {47929, 48387}, {48065, 48386}

X(63756) = crossdifference of every pair of points on the line X(650)X(28155)
X(63756) = crosspoint of X(59) and X(28226)
X(63756) = crosssum of X(11) and X(28225)
X(63756) = X(643)-beth conjugate of-X(4678)
X(63756) = perspector of the circumconic through X(651) and X(28156)
X(63756) = pole of the line {513, 4729} with respect to the circumcircle
X(63756) = pole of the line {20980, 58172} with respect to the Brocard inellipse
X(63756) = pole of the line {21, 8167} with respect to the Stammler hyperbola
X(63756) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 15338, 12953), (3, 35, 56), (3, 5217, 55), (20, 5432, 10895), (35, 56, 55), (36, 7373, 56), (56, 5217, 35), (140, 4302, 10896), (498, 550, 12943), (631, 10591, 7294), (3085, 3528, 15326), (3085, 15326, 9657), (3295, 7280, 56), (3522, 5218, 7354), (3524, 4294, 5433), (3601, 16192, 1155), (5119, 13624, 1388), (6284, 7294, 10591), (8162, 51817, 55), (30282, 35242, 65)


X(63757) = X(11)X(521)∩X(123)X(513)

Barycentrics    (a - b - c)*(b - c)^2*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c - 2*a^4*b*c + 2*a^3*b^2*c + 2*a^2*b^3*c - 3*a*b^4*c - a^4*c^2 + 2*a^3*b*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a^2*b*c^3 + 2*a^2*c^4 - 3*a*b*c^4 + b^2*c^4 + a*c^5 - c^6) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6213.

X(63757) lies on the nine-point circle and these lines: {2, 2720}, {4, 2745}, {11, 521}, {115, 55153}, {116, 46396}, {117, 3814}, {119, 5123}, {123, 513}, {124, 20316}, {131, 47081}, {355, 39535}, {517, 25640}, {960, 42422}, {1329, 31841}, {1376, 50933}, {2804, 57445}, {2886, 50940}, {3258, 55146}, {3326, 52114}, {5087, 44993}, {5521, 44013}, {6667, 28347}, {15635, 26932}, {17615, 20621}, {20314, 53833}, {24250, 33331}, {34049, 52659}, {38972, 60339}, {42423, 60427}}. midpoint of X(i) and X(j) for these {i,j}: {{4, 2745}, {3326, 52114}

X(63757) = midpoint of X(i) and X(j) for these {i,j}: {4, 2745}, {3326, 52114}
X(63757) = reflection of X(28347) in X(6667)
X(63757) = complement of X(2720)
X(63757) = complement of the isogonal conjugate of X(2804)
X(63757) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 2804}, {104, 59998}, {109, 34345}, {318, 8677}, {513, 44675}, {517, 522}, {522, 517}, {650, 3911}, {656, 856}, {663, 8609}, {908, 4885}, {1457, 6129}, {1465, 7658}, {1769, 1}, {1785, 521}, {1875, 21172}, {2183, 905}, {2397, 21232}, {2427, 16578}, {2804, 10}, {3064, 26011}, {3262, 17072}, {3310, 3752}, {3326, 57434}, {3737, 15325}, {4041, 2245}, {4768, 56750}, {6735, 513}, {7004, 35014}, {8677, 17102}, {10015, 142}, {14010, 34589}, {14571, 14837}, {21801, 1577}, {22350, 59973}, {22464, 3900}, {23706, 15252}, {23757, 1145}, {23788, 3742}, {23838, 1387}, {23981, 24025}, {24029, 17044}, {35014, 2968}, {35015, 11}, {36038, 2886}, {37629, 952}, {39534, 1210}, {42752, 16613}, {42753, 3756}, {42754, 4904}, {42758, 50441}, {42759, 8286}, {42767, 50440}, {42768, 6739}, {46393, 2}, {51379, 20315}, {51380, 4521}, {52031, 44902}, {52307, 1214}, {53046, 16586}, {53530, 23757}, {53549, 37}, {54364, 676}, {56416, 3738}, {60339, 52659}
X(63757) = X(4)-Ceva conjugate of X(2804)


X(63758) = X(126)X(2393)∩X(524)X(1560)

Barycentrics    (b^2 - c^2)^2*(-2*a^2 + b^2 + c^2)*(-a^4 + b^4 - 4*b^2*c^2 + c^4)*(-a^8 + 4*a^6*b^2 - 4*a^2*b^6 + b^8 + 4*a^6*c^2 - 11*a^4*b^2*c^2 + 8*a^2*b^4*c^2 - b^6*c^2 + 8*a^2*b^2*c^4 - 4*b^4*c^4 - 4*a^2*c^6 - b^2*c^6 + c^8) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6213.

X(63758) lies on the nine-point circle and these lines: {2, 35188}, {4, 23701}, {115, 15638}, {126, 2393}, {131, 47077}, {524, 1560}, {1499, 14672}, {3258, 55148}, {5512, 30209}, {6092, 15098}, {8542, 31655}, {9193, 62551}

X(63758) = midpoint of X(4) and X(23701)
X(63758) = complement of X(35188)
X(63758) = complement of the isogonal conjugate of X(55135)
X(63758) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 55135}, {661, 24855}, {1577, 19510}, {2642, 574}, {14209, 5159}, {37855, 8062}, {53777, 14838}, {55135, 10}
X(63758) = X(4)-Ceva conjugate of X(55135)


X(63759) = X(6)X(50)∩X(184)X(186)

Barycentrics    csc(3*A) : :
Barycentrics    X(63759) = b^3*c^3*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(-a^2 + b^2 - a*c - c^2)*(-a^2 + b^2 + a*c - c^2) : :

X(63759) lies on these lines: {75, 2166}, {92, 20941}, {94, 321}, {313, 20573}, {328, 1441}, {811, 40440}, {1821, 16568}, {6757, 58026}, {14616, 35139}, {15455, 16578}, {18817, 57809}, {35174, 46138}

X(63759) = isotomic conjugate of X(6149)
X(63759) = isotomic conjugate of the complement of X(63642)
X(63759) = isotomic conjugate of the isogonal conjugate of X(2166)
X(63759) = X(14206)-cross conjugate of X(1969)
X(63759) = X(i)-isoconjugate of X(j) for these (i,j): {2, 19627}, {3, 34397}, {6, 50}, {15, 34395}, {16, 34394}, {25, 22115}, {30, 61354}, {31, 6149}, {32, 323}, {35, 52434}, {110, 14270}, {163, 2624}, {184, 186}, {187, 52668}, {237, 14355}, {340, 14575}, {351, 51478}, {476, 57136}, {512, 52603}, {526, 1576}, {577, 52418}, {647, 14591}, {669, 10411}, {1154, 54034}, {1273, 14573}, {1399, 2361}, {1495, 14385}, {1501, 7799}, {1511, 40352}, {1974, 52437}, {2003, 52426}, {2081, 14586}, {2088, 23357}, {2148, 2290}, {2151, 2152}, {2174, 7113}, {2351, 52416}, {3003, 52557}, {3043, 52153}, {3049, 14590}, {3268, 14574}, {3581, 58941}, {3724, 17104}, {4282, 21741}, {5191, 52179}, {5962, 52435}, {8552, 61206}, {8603, 11135}, {8604, 11136}, {8739, 46113}, {8740, 46112}, {9247, 52414}, {11062, 14533}, {11134, 51891}, {11137, 51890}, {11597, 34448}, {14165, 14585}, {14560, 62173}, {14601, 51383}, {14918, 62270}, {14966, 60777}, {14975, 52407}, {16186, 57655}, {17938, 39495}, {18877, 39176}, {23963, 62551}, {32640, 52743}, {32661, 47230}, {32729, 44814}, {32734, 44808}, {32737, 44809}, {34396, 57268}, {36423, 50433}, {37802, 52436}, {39201, 53176}, {39371, 51821}, {42667, 44068}, {42668, 44067}, {51477, 52417}, {51801, 62267}
X(63759) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 6149}, {9, 50}, {115, 2624}, {216, 2290}, {244, 14270}, {1989, 19303}, {4858, 526}, {6376, 323}, {6505, 22115}, {14993, 31}, {15295, 560}, {32664, 19627}, {36103, 34397}, {36901, 32679}, {39052, 14591}, {39054, 52603}, {40578, 2152}, {40579, 2151}, {56399, 2315}, {56847, 3724}, {62576, 52414}, {62605, 186}
X(63759) = cevapoint of X(2) and X(63642)
X(63759) = trilinear pole of line {1577, 14213}
X(63759) = barycentric product X(i)*X(j) for these {i,j}: {1, 20573}, {63, 18817}, {75, 94}, {76, 2166}, {92, 328}, {265, 1969}, {304, 6344}, {476, 20948}, {561, 1989}, {799, 10412}, {811, 14592}, {850, 32680}, {1141, 62272}, {1577, 35139}, {1928, 11060}, {1978, 43082}, {3267, 36129}, {4602, 15475}, {5627, 46234}, {5961, 57898}, {14208, 46456}, {14213, 46138}, {14254, 33805}, {14356, 46273}, {14582, 57968}, {18359, 20565}, {18384, 40364}, {18883, 20571}, {20566, 30690}, {23994, 39295}, {32678, 44173}, {43083, 57973}, {43084, 46277}, {43088, 55215}, {56395, 57999}
X(63759) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 50}, {2, 6149}, {5, 2290}, {13, 2152}, {14, 2151}, {19, 34397}, {31, 19627}, {63, 22115}, {75, 323}, {79, 7113}, {80, 2174}, {92, 186}, {94, 1}, {158, 52418}, {162, 14591}, {264, 52414}, {265, 48}, {304, 52437}, {313, 42701}, {324, 51801}, {328, 63}, {476, 163}, {523, 2624}, {561, 7799}, {661, 14270}, {662, 52603}, {799, 10411}, {811, 14590}, {823, 53176}, {850, 32679}, {897, 52668}, {1109, 2088}, {1141, 2148}, {1577, 526}, {1748, 52416}, {1784, 39176}, {1821, 14355}, {1969, 340}, {1989, 31}, {2006, 1399}, {2153, 34395}, {2154, 34394}, {2159, 61354}, {2160, 52434}, {2166, 6}, {2349, 14385}, {2580, 44067}, {2581, 44068}, {2618, 2081}, {2624, 57136}, {3376, 11137}, {3383, 11134}, {3615, 4282}, {5627, 2159}, {5961, 563}, {6344, 19}, {6740, 35192}, {6742, 1983}, {6757, 2245}, {7073, 52426}, {7110, 2361}, {8818, 3724}, {8836, 35198}, {8838, 35199}, {9219, 18578}, {10412, 661}, {11060, 560}, {11077, 62267}, {11078, 1095}, {11092, 1094}, {14206, 1511}, {14207, 9126}, {14208, 8552}, {14213, 1154}, {14254, 2173}, {14356, 1755}, {14582, 810}, {14583, 9406}, {14592, 656}, {14616, 40214}, {14993, 19303}, {15475, 798}, {18359, 35}, {18384, 1973}, {18815, 2003}, {18817, 92}, {18883, 47}, {20565, 3218}, {20566, 3219}, {20571, 37802}, {20573, 75}, {20902, 16186}, {20948, 3268}, {23994, 62551}, {24006, 47230}, {24624, 17104}, {30529, 2964}, {30690, 36}, {32678, 1576}, {32679, 62173}, {32680, 110}, {35139, 662}, {36035, 52743}, {36053, 52557}, {36061, 32661}, {36085, 51478}, {36102, 34210}, {36129, 112}, {37779, 51802}, {39170, 2315}, {39290, 36034}, {39295, 1101}, {40427, 36053}, {43082, 649}, {43083, 822}, {43084, 896}, {43087, 2247}, {43088, 55216}, {43089, 2312}, {43682, 1464}, {43707, 36151}, {46106, 35201}, {46138, 2167}, {46234, 6148}, {46238, 51383}, {46456, 162}, {50433, 52430}, {51479, 2642}, {52153, 9247}, {52344, 2323}, {52351, 52408}, {52356, 9404}, {52374, 52440}, {52381, 52407}, {52383, 21741}, {52409, 52405}, {52414, 3043}, {56395, 922}, {56844, 52059}, {57486, 1725}, {57716, 5962}, {57806, 14165}, {58725, 2314}, {60053, 4575}, {60074, 2605}, {60091, 2594}, {62272, 1273}, {62273, 14918}, {63642, 34544}
X(63759) = {X(20565),X(20566)}-harmonic conjugate of X(328)


X(63760) = X(2)X(34544)∩X(48)X(63)

Barycentrics    cos(3*A) : :
Barycentrics    a^3*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(63760) lies on these lines: {2, 34544}, {48, 63}, {662, 2167}, {1813, 44708}, {1954, 2617}, {2174, 54444}, {4575, 62266}, {18042, 20879}

X(63760) = isotomic conjugate of the polar conjugate of X(2964)
X(63760) = X(i)-isoconjugate of X(j) for these (i,j): {4, 2963}, {6, 93}, {17, 8742}, {18, 8741}, {19, 2962}, {25, 11140}, {32, 20572}, {53, 252}, {110, 55251}, {393, 3519}, {512, 38342}, {562, 1989}, {669, 55217}, {930, 2501}, {1487, 6748}, {2052, 51477}, {2165, 14111}, {2489, 46139}, {3199, 57765}, {8882, 25043}, {14618, 32737}, {24006, 36148}
X(63760) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 2962}, {9, 93}, {244, 55251}, {6376, 20572}, {6505, 11140}, {34544, 562}, {36033, 2963}, {39018, 24006}, {39054, 38342}
X(63760) = barycentric product X(i)*X(j) for these {i,j}: {1, 44180}, {48, 7769}, {49, 75}, {63, 1994}, {69, 2964}, {143, 62277}, {255, 32002}, {293, 51440}, {304, 2965}, {326, 3518}, {811, 37084}, {1510, 4592}, {2169, 57805}, {4575, 41298}, {18695, 25044}, {44706, 63172}
X(63760) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 93}, {3, 2962}, {47, 14111}, {48, 2963}, {49, 1}, {63, 11140}, {75, 20572}, {255, 3519}, {661, 55251}, {662, 38342}, {799, 55217}, {1510, 24006}, {1994, 92}, {2169, 252}, {2964, 4}, {2965, 19}, {3518, 158}, {4575, 930}, {4592, 46139}, {6149, 562}, {7769, 1969}, {25044, 2190}, {32002, 57806}, {32661, 36148}, {37084, 656}, {44180, 75}, {44706, 25043}, {51440, 40703}, {52430, 51477}, {57135, 2618}, {57805, 62273}, {62277, 57765}, {63172, 40440}
X(63760) = {X(662),X(2167)}-harmonic conjugate of X(14213)


X(63761) = X(69)X(265)∩X(94)X(6515)

Barycentrics    cot(3*A) : :
Barycentrics    (a^2 - b^2 - c^2)*(a^2 - a*b + b^2 - c^2)*(a^2 + a*b + b^2 - c^2)*(a^2 - b^2 - a*c + c^2)*(a^2 - b^2 + a*c + c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(63761) lies on these lines: {69, 265}, {94, 6515}, {193, 56408}, {317, 18817}, {1989, 1992}, {1994, 30529}, {6344, 63155}, {9723, 31676}, {11427, 18883}, {14859, 35139}, {16770, 36978}, {16771, 36980}, {20573, 44128}, {57805, 63172}

X(63761) = isotomic conjugate of X(562)
X(63761) = isotomic conjugate of the polar conjugate of X(30529)
X(63761) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2166, 18301}, {14859, 17479}, {57546, 21295}
X(63761) = X(i)-isoconjugate of X(j) for these (i,j): {31, 562}, {2962, 34397}, {36148, 47230}
X(63761) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 562}, {39018, 47230}
X(63761) = barycentric product X(i)*X(j) for these {i,j}: {49, 20573}, {69, 30529}, {94, 44180}, {265, 7769}, {328, 1994}, {41298, 60053}
X(63761) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 562}, {49, 50}, {94, 93}, {143, 11062}, {265, 2963}, {328, 11140}, {1510, 47230}, {1994, 186}, {2965, 34397}, {3518, 52418}, {7769, 340}, {10412, 55251}, {18883, 14111}, {20573, 20572}, {23181, 2439}, {30529, 4}, {32002, 14165}, {32662, 32737}, {35139, 38342}, {36061, 36148}, {41298, 44427}, {44180, 323}, {50433, 51477}, {50468, 8604}, {50469, 8603}, {52417, 36423}, {57135, 2081}, {57805, 14918}, {60053, 930}


X(63762) = X(2)X(95)∩X(50)X(1993)

Barycentrics    cos(4*A) : :
Barycentrics    a^4*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 + 8*a^4*b^2*c^2 - 4*a^2*b^4*c^2 + 6*a^4*c^4 - 4*a^2*b^2*c^4 - 4*a^2*c^6 + c^8) : :

X(63762) lies on these lines: {2, 95}, {32, 62990}, {50, 1993}, {571, 1994}, {1968, 46924}, {2165, 13579}, {4558, 45794}, {5063, 34545}, {5065, 63076}, {10316, 35296}, {13398, 59189}, {15958, 59176}, {34197, 37478}, {37444, 53171}

X(63762) = X(57717)-anticomplementary conjugate of X(40697)
X(63762) = X(55553)-Ceva conjugate of X(1147)
X(63762) = X(577)-Dao conjugate of X(43973)
X(63762) = barycentric product X(i)*X(j) for these {i,j}: {1147, 55552}, {55537, 55539}, {55538, 55540}, {55566, 55567}
X(63762) = barycentric quotient X(i)/X(j) for these {i,j}: {1147, 43973}, {55537, 55541}, {55538, 55542}, {55539, 55538}, {55540, 55537}, {55552, 55553}, {55566, 55530}, {55567, 55529}


X(63763) = X(2)X(94)∩X(264)X(275)

Barycentrics    cos(2*B - 2*C) : :
Barycentrics    b^2*c^2*(a^4*b^4 - 2*a^2*b^6 + b^8 + 2*a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(63763) lies on these lines: {2, 94}, {3, 55529}, {76, 54666}, {264, 275}, {311, 37636}, {324, 3580}, {467, 44138}, {565, 34826}, {1594, 56272}, {2052, 42410}, {2970, 23293}, {5422, 41760}, {5889, 14978}, {6101, 25043}, {6504, 32000}, {7762, 41628}, {11140, 13585}, {35264, 61381}, {42354, 44176}, {53474, 61658}, {55535, 55543}, {55536, 55544}

X(63763) = isotomic conjugate of the isogonal conjugate of X(1879)
X(63763) = polar conjugate of the isogonal conjugate of X(5449)
X(63763) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {252, 4329}, {2190, 45799}
X(63763) = X(18315)-Ceva conjugate of X(18314)
X(63763) = X(6)-isoconjugate of X(57717)
X(63763) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 57717}, {1879, 156}
X(63763) = cevapoint of X(1879) and X(5449)
X(63763) = crosspoint of X(76) and X(57770)
X(63763) = barycentric product X(i)*X(j) for these {i,j}: {75, 564}, {76, 1879}, {264, 5449}, {15226, 57765}
X(63763) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 57717}, {564, 1}, {1879, 6}, {5449, 3}, {15226, 143}, {25043, 12044}
X(63763) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {264, 5392, 1993}, {338, 45793, 2}, {55529, 55530, 3}


X(63764) = ISOTOMIC CONJUGATE OF X(63760)

Barycentrics    sec(3*A) : :
Barycentrics    X(63764) = b^3*c^3*(-a^2 + b^2 - c^2)*(a^2 + b^2 - c^2)*(a^4 - a^2*b^2 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^4 - 2*a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63764) lies on these lines: {93, 41013}, {158, 2962}, {562, 63642}, {11140, 40149}, {63759, 63760}

X(63764) = isotomic conjugate of X(63760)
X(63764) = polar conjugate of X(2964)
X(63764) = polar conjugate of the isogonal conjugate of X(2962)
X(63764) = X(6149)-cross conjugate of X(63759)
X(63764) = X(i)-isoconjugate of X(j) for these (i,j): {3, 2965}, {6, 49}, {31, 63760}, {32, 44180}, {48, 2964}, {112, 37084}, {143, 14533}, {184, 1994}, {216, 25044}, {217, 63172}, {418, 57489}, {577, 3518}, {1510, 32661}, {7769, 14575}, {9380, 34418}, {11135, 50469}, {11136, 50468}, {14129, 62256}, {14577, 19210}, {14585, 32002}, {14586, 57135}, {14587, 47424}, {14600, 51440}, {15787, 34433}, {15958, 57137}, {19627, 63761}, {32662, 44809}, {50433, 52417}, {57805, 62270}
X(63764) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 63760}, {9, 49}, {1249, 2964}, {6376, 44180}, {21975, 48}, {34591, 37084}, {36103, 2965}, {46604, 9247}, {62605, 1994}
X(63764) = barycentric product X(i)*X(j) for these {i,j}: {1, 20572}, {75, 93}, {92, 11140}, {252, 62273}, {264, 2962}, {562, 63759}, {661, 55217}, {799, 55251}, {1577, 38342}, {1969, 2963}, {3519, 57806}, {14111, 20571}, {24006, 46139}, {25043, 40440}
X(63764) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 49}, {2, 63760}, {4, 2964}, {19, 2965}, {75, 44180}, {92, 1994}, {93, 1}, {158, 3518}, {252, 2169}, {562, 6149}, {656, 37084}, {930, 4575}, {1969, 7769}, {2190, 25044}, {2618, 57135}, {2962, 3}, {2963, 48}, {3519, 255}, {11140, 63}, {14111, 47}, {20572, 75}, {24006, 1510}, {25043, 44706}, {36148, 32661}, {38342, 662}, {40440, 63172}, {40703, 51440}, {46139, 4592}, {51477, 52430}, {55217, 799}, {55251, 661}, {57765, 62277}, {57806, 32002}, {62273, 57805}, {63759, 63761}


X(63765) = ISOTOMIC CONJUGATE OF X(63762)

Barycentrics    sec(4*A) : :
Barycentrics    b^4*c^4*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^4*b^2*c^2 + 8*a^2*b^4*c^2 - 4*b^6*c^2 - 4*a^2*b^2*c^4 + 6*b^4*c^4 - 4*b^2*c^6 + c^8)*(a^8 + b^8 - 4*a^6*c^2 - 4*a^4*b^2*c^2 - 4*a^2*b^4*c^2 - 4*b^6*c^2 + 6*a^4*c^4 + 8*a^2*b^2*c^4 + 6*b^4*c^4 - 4*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(63765) lies on these lines: {68, 43973}, {55531, 55534}, {55532, 55533}, {55553, 63762}


X(63765) = isotomic conjugate of X(63762)
X(63765) = X(i)-cross conjugate of X(j) for these (i,j): {1147, 55553}, {55531, 55541}, {55532, 55542}
X(63765) = X(31)-isoconjugate of X(63762)
X(63765) = X(2)-Dao conjugate of X(63762)
X(63765) = cevapoint of X(55531) and X(55532)
X(63765) = barycentric product X(i)*X(j) for these {i,j}: {43973, 55553}, {55529, 55530}, {55537, 55542}, {55538, 55541}
X(63765) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 63762}, {43973, 1147}, {55529, 55567}, {55530, 55566}, {55537, 55540}, {55538, 55539}, {55541, 55537}, {55542, 55538}, {55553, 55552}
X(63765) = {X(55537),X(55538)}-harmonic conjugate of X(43973)


X(63766) = ISOTOMIC CONJUGATE OF X(63763)

Barycentrics    sec(2*B-2*C) : :
Barycentrics    X(63766) = a^2*(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 2*a^6*c^2 + 2*a^4*b^2*c^2 + 2*a^2*b^4*c^2 - 2*b^6*c^2 + a^4*c^4 + b^4*c^4)*(a^8 - 2*a^6*b^2 + a^4*b^4 - 4*a^6*c^2 + 2*a^4*b^2*c^2 + 6*a^4*c^4 + 2*a^2*b^2*c^4 + b^4*c^4 - 4*a^2*c^6 - 2*b^2*c^6 + c^8) : :

X(63766) lies on these lines: {52, 186}, {323, 52032}, {343, 37802}, {467, 14165}, {18315, 63763}

X(63766) = isogonal conjugate of X(1879)
X(63766) = isotomic conjugate of X(63763)
X(63766) = X(18314)-cross conjugate of X(18315)
X(63766) = X(i)-isoconjugate of X(j) for these (i,j): {1, 1879}, {6, 564}, {19, 5449}, {31, 63763}
X(63766) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 63763}, {3, 1879}, {6, 5449}, {9, 564}
X(63766) = cevapoint of X(i) and X(j) for these (i,j): {6, 156}, {1510, 47421}, {32661, 34968}
X(63766) = trilinear pole of line {526, 54073}
X(63766) = barycentric product X(i)*X(j) for these {i,j}: {75, 57717}, {12044, 63172}
X(63766) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 564}, {2, 63763}, {3, 5449}, {6, 1879}, {143, 15226}, {12044, 25043}, {57717, 1}


X(63767) = X(2)X(98)∩X(3)X(669)

Barycentrics    2*a^10 - 5*a^8*b^2 + 5*a^6*b^4 - a^4*b^6 - a^2*b^8 - 5*a^8*c^2 + 8*a^6*b^2*c^2 - 6*a^4*b^4*c^2 + 6*a^2*b^6*c^2 - b^8*c^2 + 5*a^6*c^4 - 6*a^4*b^2*c^4 - 6*a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 + 6*a^2*b^2*c^6 + b^4*c^6 - a^2*c^8 - b^2*c^8 : :

Let u1 be the unary operation as in the preamble just before X(62733). Let P = X(99) and P' = q+r : -q : -r. Let A' = u1(P'), and define B' and C' cyclically. The points A', B', C' lie on the cubic K015, and the triangle A'B'C' is perspective to ABC with perspector on K015. The point X(2)-of-A'B'C' is X(2). The points X(3)-of-A'B'C'and X(4)-of-A'B'C' are X(63767) and X(63768), respectively. (Peter Moses, June 2, 2024)

X(63767) lies on these lines: {2, 98}, {3, 669}, {4, 18020}, {5, 41939}, {6, 5914}, {30, 1641}, {69, 51429}, {99, 57617}, {511, 5468}, {523, 33928}, {524, 14694}, {599, 46986}, {647, 52006}, {868, 11064}, {1316, 3233}, {1495, 4226}, {1503, 11053}, {1511, 57612}, {1648, 3564}, {1992, 21460}, {1995, 46124}, {2396, 56430}, {2502, 2782}, {2698, 9150}, {2709, 2770}, {3258, 36163}, {5965, 45291}, {5968, 14999}, {5969, 63719}, {6248, 46512}, {6792, 52668}, {8371, 34810}, {8550, 32525}, {9125, 47082}, {9129, 18332}, {9832, 15066}, {11007, 31945}, {11676, 34245}, {13449, 13857}, {18860, 45330}, {20428, 57596}, {20429, 57597}, {22265, 50941}, {32120, 46987}, {33813, 45672}, {34290, 46633}, {34380, 62658}, {34760, 48983}, {35266, 45662}, {36207, 63464}, {36255, 51457}, {38664, 60863}, {53605, 53690}

X(63767) = midpoint of X(5468) and X(7417)
X(63767) = reflection of X(57607) in X(11053)
X(63767) = Parry-isodynamic-circle-inverse of X(35606)
X(63767) = psi-transform of X(7472)
X(63767) = crossdifference of every pair of points on line {3291, 3569}
X(63767) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 110, 5967}, {110, 9775, 12177}, {47049, 53725, 52772}, {52772, 53725, 35912}


X(63768) = X(2)X(98)∩X(4)X(1499)

Barycentrics    2*a^10 - 3*a^8*b^2 + 5*a^6*b^4 - 7*a^4*b^6 + 5*a^2*b^8 - 2*b^10 - 3*a^8*c^2 - 4*a^6*b^2*c^2 + 6*a^4*b^4*c^2 - 8*a^2*b^6*c^2 + 5*b^8*c^2 + 5*a^6*c^4 + 6*a^4*b^2*c^4 + 6*a^2*b^4*c^4 - 3*b^6*c^4 - 7*a^4*c^6 - 8*a^2*b^2*c^6 - 3*b^4*c^6 + 5*a^2*c^8 + 5*b^2*c^8 - 2*c^10 : :

Let u1 be the unary operation as in the preamble just before X(62733). Let P = X(99) and P' = q+r : -q : -r. Let A' = u1(P'), and define B' and C' cyclically. The points A', B', C' lie on the cubic K015, and the triangle A'B'C' is perspective to ABC with perspector on K015. The point X(2)-of-A'B'C' is X(2). The points X(3)-of-A'B'C'and X(4)-of-A'B'C' are X(63767) and X(63768), respectively. (Peter Moses, June 2, 2024)

X(63768) lies on these lines: {2, 98}, {4, 1499}, {193, 53379}, {476, 23700}, {511, 45291}, {850, 14265}, {1316, 12079}, {1503, 1648}, {1992, 16092}, {2395, 51943}, {2794, 35606}, {3564, 5468}, {3580, 4226}, {5108, 15069}, {5640, 11751}, {6077, 38940}, {8550, 41939}, {9168, 36875}, {9169, 47353}, {9862, 57617}, {9880, 10557}, {10264, 57612}, {14981, 47047}, {16315, 34211}, {39647, 60606}, {42736, 52469}, {47239, 61213}, {54554, 62671}

X(63768) = reflection of X(i) in X(j) for these {i,j}: {5468, 57607}, {7417, 1648}
X(63768) = psi-transform of X(14120)
X(63768) = crossdifference of every pair of points on line {3292, 3569}
X(63768) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {125, 5967, 2}, {5967, 51820, 60506}


X(63769) = X(1)X(399)∩X(65)X(110)

Barycentrics    a*(a + b - c)*(a - b + c)*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 + c^3)*(2*a^4 + a^3*b - a^2*b^2 - a*b^3 - b^4 + a^3*c - a^2*c^2 + 2*b^2*c^2 - a*c^3 - c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6218.

X(63769) lies on the cubic K1160 and these lines: {1, 399}, {3, 11670}, {46, 32609}, {65, 110}, {74, 37600}, {265, 17605}, {354, 10091}, {515, 39761}, {542, 4870}, {1155, 1511}, {1319, 3028}, {1385, 19470}, {1386, 32259}, {1411, 56405}, {1414, 1442}, {1718, 45923}, {1737, 10272}, {1770, 34153}, {1836, 12383}, {2099, 2948}, {2646, 5663}, {2778, 38555}, {3024, 37080}, {3057, 10088}, {3448, 11375}, {3485, 14683}, {3612, 10620}, {5127, 16164}, {5217, 9904}, {7727, 24929}, {8674, 41541}, {10081, 37605}, {10118, 40658}, {10895, 12407}, {12047, 32423}, {13605, 15950}, {13751, 58601}, {14643, 17606}, {14882, 54078}, {15040, 58887}, {18391, 20125}, {32636, 59817}, {33535, 34471}, {33901, 39756}, {34977, 35193}, {37692, 38724}, {44840, 59818}

X(63769) = incircle inverse of X(33667)
X(63769) = barycentric product X(37783)*X(39751)
X(63769) = barycentric quotient X(15586)/X(11604)
X(63769) = {X(3028),X(11720)}-harmonic conjugate of X(1319)


X(63770) = X(1)X(1537)∩X(3)X(108)

Barycentrics    (a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3)*(2*a^7 - a^6*b - 4*a^5*b^2 + a^4*b^3 + 2*a^3*b^4 + a^2*b^5 - b^7 - a^6*c + 8*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c + a^2*b^4*c - 4*a*b^5*c + b^6*c - 4*a^5*c^2 - a^4*b*c^2 + 4*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + 3*b^5*c^2 + a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 + 8*a*b^3*c^3 - 3*b^4*c^3 + 2*a^3*c^4 + a^2*b*c^4 - 3*b^3*c^4 + a^2*c^5 - 4*a*b*c^5 + 3*b^2*c^5 + b*c^6 - c^7) : :
X(63770) = 3 X[108] - 2 X[52829], 3 X[38506] + 2 X[52829], X[38517] - 3 X[38696]

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63770) lies on the cubic K1160 and these lines: {1, 1537}, {3, 108}, {10, 52112}, {11, 11798}, {30, 15500}, {55, 49207}, {119, 34345}, {123, 4187}, {347, 6925}, {971, 51618}, {999, 61492}, {1145, 1769}, {1317, 39763}, {1319, 1359}, {1361, 2817}, {1439, 2823}, {1465, 1532}, {1846, 35014}, {2478, 34188}, {2834, 43916}, {5930, 18239}, {6087, 42757}, {6717, 13747}, {6929, 10746}, {6959, 57302}, {8069, 54064}, {10731, 34231}, {13528, 51375}, {13539, 52116}, {37743, 39756}, {46974, 63407}

X(63770) = midpoint of X(i) and X(j) for these {i,j}: {108, 38506}, {3318, 56888}
X(63770) = reflection of X(i) in X(j) for these {i,j}: {1, 10271}, {11, 11798}, {1359, 11719}, {52112, 10}
X(63770) = incircle inverse of X(1537)
X(63770) = X(i)-Ceva conjugate of X(j) for these (i,j): {347, 1465}, {36118, 10015}
X(63770) = X(104)-isoconjugate of X(53915)
X(63770) = X(40613)-Dao conjugate of X(53915)
X(63770) = crosspoint of X(2397) and X(55346)
X(63770) = crosssum of X(2423) and X(3270)
X(63770) = barycentric quotient X(2183)/X(53915)


X(63771) = X(1)X(6952)∩X(33903)X(39762)

Barycentrics    (3*a^3 - a^2*b - 3*a*b^2 + b^3 - a^2*c + 5*a*b*c - b^2*c - 3*a*c^2 - b*c^2 + c^3)*(2*a^7 - 7*a^6*b + 2*a^5*b^2 + 13*a^4*b^3 - 10*a^3*b^4 - 5*a^2*b^5 + 6*a*b^6 - b^7 - 7*a^6*c + 26*a^5*b*c - 22*a^4*b^2*c - 13*a^3*b^3*c + 28*a^2*b^4*c - 13*a*b^5*c + b^6*c + 2*a^5*c^2 - 22*a^4*b*c^2 + 46*a^3*b^2*c^2 - 23*a^2*b^3*c^2 - 6*a*b^4*c^2 + 3*b^5*c^2 + 13*a^4*c^3 - 13*a^3*b*c^3 - 23*a^2*b^2*c^3 + 26*a*b^3*c^3 - 3*b^4*c^3 - 10*a^3*c^4 + 28*a^2*b*c^4 - 6*a*b^2*c^4 - 3*b^3*c^4 - 5*a^2*c^5 - 13*a*b*c^5 + 3*b^2*c^5 + 6*a*c^6 + b*c^6 - c^7) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63771) lies on the cubic K1160 and these lines: {1, 6952}, {33903, 39762}, {39751, 39756}, {39758, 63769}

X(63771) = midpoint of X(1) and X(11696)


X(63772) = X(1)X(11219)∩X(1323)X(39756)

Barycentrics    (4*a^3 - a^2*b - 4*a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - 4*a*c^2 - b*c^2 + c^3)*(2*a^7 - 9*a^6*b + 4*a^5*b^2 + 17*a^4*b^3 - 14*a^3*b^4 - 7*a^2*b^5 + 8*a*b^6 - b^7 - 9*a^6*c + 40*a^5*b*c - 33*a^4*b^2*c - 20*a^3*b^3*c + 41*a^2*b^4*c - 20*a*b^5*c + b^6*c + 4*a^5*c^2 - 33*a^4*b*c^2 + 68*a^3*b^2*c^2 - 34*a^2*b^3*c^2 - 8*a*b^4*c^2 + 3*b^5*c^2 + 17*a^4*c^3 - 20*a^3*b*c^3 - 34*a^2*b^2*c^3 + 40*a*b^3*c^3 - 3*b^4*c^3 - 14*a^3*c^4 + 41*a^2*b*c^4 - 8*a*b^2*c^4 - 3*b^3*c^4 - 7*a^2*c^5 - 20*a*b*c^5 + 3*b^2*c^5 + 8*a*c^6 + b*c^6 - c^7) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63772) lies on the cubic K1160 and these lines: {1, 11219}, {1323, 39756}, {15730, 39758}, {39762, 56741}


X(63773) = X(1)X(12248)∩X(35)X(5951)

Barycentrics    (a^3 + a^2*b - a*b^2 - b^3 + a^2*c - a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(2*a^7 + a^6*b - 6*a^5*b^2 - 3*a^4*b^3 + 6*a^3*b^4 + 3*a^2*b^5 - 2*a*b^6 - b^7 + a^6*c + 10*a^5*b*c + 2*a^4*b^2*c - 5*a^3*b^3*c - 4*a^2*b^4*c - 5*a*b^5*c + b^6*c - 6*a^5*c^2 + 2*a^4*b*c^2 - 2*a^3*b^2*c^2 + a^2*b^3*c^2 + 2*a*b^4*c^2 + 3*b^5*c^2 - 3*a^4*c^3 - 5*a^3*b*c^3 + a^2*b^2*c^3 + 10*a*b^3*c^3 - 3*b^4*c^3 + 6*a^3*c^4 - 4*a^2*b*c^4 + 2*a*b^2*c^4 - 3*b^3*c^4 + 3*a^2*c^5 - 5*a*b*c^5 + 3*b^2*c^5 - 2*a*c^6 + b*c^6 - c^7) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63773) lies on the cubic K1160 and these lines: {1, 12248}, {35, 5951}, {1319, 1354}, {33901, 39762}


X(63774) = X(1)X(88)∩X(1293)X(1420)

Barycentrics    a*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 5*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + c^3)*(2*a^3 - 3*a^2*b - 4*a*b^2 + b^3 - 3*a^2*c + 12*a*b*c - b^2*c - 4*a*c^2 - b*c^2 + c^3) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63774) lies on the cubic K1160 and these lines: {1, 88}, {121, 44675}, {145, 22942}, {269, 47636}, {515, 39752}, {1279, 56795}, {1293, 1420}, {1319, 6018}, {1323, 39760}, {1357, 20323}, {1385, 33555}, {1697, 38695}, {2827, 41554}, {3038, 11260}, {3057, 14664}, {3086, 50914}, {4308, 34548}, {5126, 38620}, {5510, 10106}, {6715, 31397}, {9614, 10730}, {9957, 38604}, {10624, 63406}, {10744, 11373}, {11700, 39753}, {15524, 39756}, {24928, 53790}, {39754, 56741}, {50195, 58597}

X(63774) = incircle inverse of X(39776)
X(63774) = crosspoint of X(7) and X(37758)


X(63775) = X(1319)X(59807)∩X(1323)X(37743)

Barycentrics    a*(a^3*b - a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c + 2*a*b^2*c - 3*b^3*c - a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 - a*c^3 - 3*b*c^3 + c^4)*(2*a^8 - 9*a^7*b + 16*a^6*b^2 - 11*a^5*b^3 - 6*a^4*b^4 + 17*a^3*b^5 - 12*a^2*b^6 + 3*a*b^7 - 9*a^7*c + 34*a^6*b*c - 52*a^5*b^2*c + 53*a^4*b^3*c - 53*a^3*b^4*c + 40*a^2*b^5*c - 14*a*b^6*c + b^7*c + 16*a^6*c^2 - 52*a^5*b*c^2 + 38*a^4*b^2*c^2 - 36*a^2*b^4*c^2 + 20*a*b^5*c^2 - 2*b^6*c^2 - 11*a^5*c^3 + 53*a^4*b*c^3 + 32*a^2*b^3*c^3 - 9*a*b^4*c^3 - b^5*c^3 - 6*a^4*c^4 - 53*a^3*b*c^4 - 36*a^2*b^2*c^4 - 9*a*b^3*c^4 + 4*b^4*c^4 + 17*a^3*c^5 + 40*a^2*b*c^5 + 20*a*b^2*c^5 - b^3*c^5 - 12*a^2*c^6 - 14*a*b*c^6 - 2*b^2*c^6 + 3*a*c^7 + b*c^7) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63775) lies on the cubic K1160 and these lines: {1319, 59807}, {1323, 37743}


X(63776) = X(1)X(8674)∩X(1319)X(302)

Barycentrics    a*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + a^3*b^2*c - 2*a*b^4*c - a^4*c^2 + a^3*b*c^2 - 2*a^2*b^2*c^2 + a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + a*b^2*c^3 + 2*a^2*c^4 - 2*a*b*c^4 + b^2*c^4 + a*c^5 - c^6)*(2*a^9 - a^8*b - 3*a^7*b^2 + 3*a^6*b^3 - 3*a^5*b^4 - 3*a^4*b^5 + 7*a^3*b^6 + a^2*b^7 - 3*a*b^8 - a^8*c + 2*a^7*b*c - a^6*b^2*c - 2*a^5*b^3*c + 4*a^4*b^4*c - 2*a^3*b^5*c - a^2*b^6*c + 2*a*b^7*c - b^8*c - 3*a^7*c^2 - a^6*b*c^2 + 12*a^5*b^2*c^2 - 2*a^4*b^3*c^2 - 8*a^3*b^4*c^2 + 2*a^2*b^5*c^2 - a*b^6*c^2 + b^7*c^2 + 3*a^6*c^3 - 2*a^5*b*c^3 - 2*a^4*b^2*c^3 + 6*a^3*b^3*c^3 - 2*a^2*b^4*c^3 - 2*a*b^5*c^3 + 3*b^6*c^3 - 3*a^5*c^4 + 4*a^4*b*c^4 - 8*a^3*b^2*c^4 - 2*a^2*b^3*c^4 + 8*a*b^4*c^4 - 3*b^5*c^4 - 3*a^4*c^5 - 2*a^3*b*c^5 + 2*a^2*b^2*c^5 - 2*a*b^3*c^5 - 3*b^4*c^5 + 7*a^3*c^6 - a^2*b*c^6 - a*b^2*c^6 + 3*b^3*c^6 + a^2*c^7 + 2*a*b*c^7 + b^2*c^7 - 3*a*c^8 - b*c^8) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63776) lies on the cubic K1160 and these lines: {1, 8674}, {515, 39751}, {1319, 3024}, {11700, 63769}


X(63777) = X(1)X(53529)∩X(55)X(934)

Barycentrics    (2*a^2 - a*b - b^2 - a*c + 2*b*c - c^2)*(2*a^5 - a^4*b - 8*a^3*b^2 + 10*a^2*b^3 - 2*a*b^4 - b^5 - a^4*c + 16*a^3*b*c - 10*a^2*b^2*c - 8*a*b^3*c + 3*b^4*c - 8*a^3*c^2 - 10*a^2*b*c^2 + 20*a*b^2*c^2 - 2*b^3*c^2 + 10*a^2*c^3 - 8*a*b*c^3 - 2*b^2*c^3 - 2*a*c^4 + 3*b*c^4 - c^5) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6220.

X(63777) lies on the cubic K1160 and these lines: {1, 53529}, {11, 34056}, {55, 934}, {1155, 52879}, {1317, 39759}, {1319, 1360}, {1323, 28344}, {1638, 6174}, {3160, 4626}, {3576, 53804}, {4534, 17728}, {4860, 61493}, {5514, 34522}, {11246, 62792}, {15725, 37600}, {33902, 39762}, {37743, 39754}

X(63777) = X(i)-Ceva conjugate of X(j) for these (i,j): {3160, 1323}, {4626, 1638}, {52870, 3321}
X(63777) = crosssum of X(4845) and X(56637)
X(63777) = barycentric product X(37780)*X(56741)
X(63777) = barycentric quotient X(56741)/X(41798)


X(63778) = ISOTOMIC CONJUGATE OF X(63642)

Barycentrics    tan(3*A/2) : :
Barycentrics    (a + b - c)*(a - b + c)*(a^2 - a*b + b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 - a*c + c^2) : :

X(63778) lies on these lines: {2, 34544}, {7, 80}, {69, 20566}, {265, 52560}, {329, 2994}, {1029, 41910}, {1442, 56422}, {2006, 5226}, {2161, 60944}, {2893, 21272}, {3219, 41226}, {4552, 21221}, {4564, 31175}, {5080, 14616}, {5273, 52351}, {6172, 36910}, {7261, 52377}, {7279, 40999}, {8044, 52391}, {10590, 56419}, {14584, 56928}, {17484, 34535}, {20553, 46405}, {21273, 52442}, {24624, 60188}, {32099, 52409}, {37771, 56415}, {38955, 55022}, {40438, 52383}, {60782, 63190}, {63642, 63759}

X(63778) = isotomic conjugate of X(63642)
X(63778) = anticomplement of X(34544)
X(63778) = anticomplement of the isogonal conjugate of X(34535)
X(63778) = isotomic conjugate of the anticomplement of X(6149)
X(63778) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {2006, 6224}, {23592, 100}, {34535, 8}, {46649, 190}, {57555, 35614}, {57568, 3888}, {57645, 69}, {57789, 315}, {62713, 54107}, {63750, 2}
X(63778) = X(i)-cross conjugate of X(j) for these (i,j): {1154, 40214}, {6149, 2}, {56422, 41226}
X(63778) = X(i)-isoconjugate of X(j) for these (i,j): {31, 63642}, {36, 7073}, {55, 56844}, {79, 2361}, {215, 2166}, {1789, 44113}, {1870, 8606}, {1989, 34544}, {2160, 2323}, {3615, 3724}, {4282, 8818}, {4511, 6186}, {4559, 62746}, {6742, 8648}, {7100, 52427}, {7110, 7113}, {13486, 53562}, {26700, 53285}, {30690, 52426}, {52344, 52434}, {52372, 58328}
X(63778) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 63642}, {223, 56844}, {8287, 3738}, {11597, 215}, {15898, 7073}, {40604, 4996}, {55042, 53285}, {55067, 62746}
X(63778) = cevapoint of X(526) and X(8287)
X(63778) = crosspoint of X(14616) and X(39277)
X(63778) = trilinear pole of line {14838, 16577}
X(63778) = barycentric product X(i)*X(j) for these {i,j}: {7, 41226}, {50, 57789}, {80, 17095}, {85, 56422}, {94, 7279}, {319, 2006}, {323, 57645}, {655, 4467}, {1411, 33939}, {1442, 18359}, {2003, 20566}, {2161, 52421}, {2222, 18160}, {2477, 20573}, {2605, 46405}, {3219, 18815}, {7282, 52351}, {7799, 63750}, {14616, 16577}, {14838, 35174}, {18155, 63202}, {24624, 40999}, {34016, 52383}, {52392, 52412}, {56934, 60091}
X(63778) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 63642}, {35, 2323}, {50, 215}, {57, 56844}, {80, 7110}, {319, 32851}, {323, 4996}, {655, 6742}, {1399, 7113}, {1411, 2160}, {1442, 3218}, {2003, 36}, {2006, 79}, {2161, 7073}, {2174, 2361}, {2477, 50}, {2594, 2245}, {2605, 654}, {3219, 4511}, {3737, 62746}, {4467, 3904}, {6149, 34544}, {7202, 53525}, {7279, 323}, {7282, 17923}, {9404, 53285}, {14838, 3738}, {16577, 758}, {17095, 320}, {17104, 4282}, {18359, 52344}, {18815, 30690}, {21741, 3724}, {24624, 3615}, {34535, 2166}, {35174, 15455}, {40999, 3936}, {41226, 8}, {52383, 8818}, {52392, 52381}, {52405, 58328}, {52412, 5081}, {52421, 20924}, {52431, 8606}, {55210, 53562}, {56422, 9}, {57645, 94}, {57789, 20573}, {60091, 6757}, {63202, 4551}, {63750, 1989}
X(63778) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {80, 52392, 18815}, {18815, 52392, 7}, {63759, 63761, 63642}


X(63779) = BARYCENTRIC QUOTIENT X(36)/X(174)

Barycentrics    Cos[(3*A)/2] : :

X(63779) lies on these lines: {174, 188}, {214, 10231}, {758, 1130}

X(63779) = X(i)-isoconjugate of X(j) for these (i,j): {80, 266}, {174, 2161}, {188, 1411}, {259, 2006}, {655, 6729}, {759, 6724}, {2222, 6728}, {4146, 6187}, {6727, 52383}, {7370, 36910}, {7371, 52371}, {18815, 60539}, {24624, 60533}
X(63779) = X(i)-Dao conjugate of X(j) for these (i,j): {236, 18359}, {15495, 18815}, {34586, 6724}, {35204, 188}, {38984, 6728}, {40584, 174}, {40612, 4146}
X(63779) = crossdifference of every pair of points on line {6729, 60533}
X(63779) = barycentric product X(i)*X(j) for these {i,j}: {36, 556}, {174, 4511}, {188, 3218}, {259, 320}, {266, 32851}, {555, 58328}, {1443, 6731}, {2323, 4146}, {3904, 6733}, {3936, 6727}, {4585, 6728}, {6726, 17078}, {20924, 60539}
X(63779) = barycentric quotient X(i)/X(j) for these {i,j}: {36, 174}, {174, 18815}, {188, 18359}, {259, 80}, {266, 2006}, {556, 20566}, {654, 6728}, {1443, 555}, {1983, 6733}, {2245, 6724}, {2323, 188}, {2361, 259}, {3218, 4146}, {3724, 60533}, {4282, 6727}, {4511, 556}, {6724, 60091}, {6725, 15065}, {6726, 36910}, {6727, 24624}, {6728, 60074}, {6730, 52356}, {6731, 52409}, {6733, 655}, {7113, 266}, {8648, 6729}, {52426, 60539}, {52440, 7370}, {53285, 6730}, {58328, 6731}, {60533, 52383}, {60539, 2161}


X(63780) = BARYCENTRIC QUOTIENT X(35)/X(188)

Barycentrics    Sin[(3*A)/2] : :

X(63780) lies on these lines: {174, 259}, {6727, 7591}

X(63780) = X(i)-isoconjugate of X(j) for these (i,j): {79, 259}, {174, 7073}, {188, 2160}, {266, 7110}, {556, 6186}, {3615, 60533}, {6725, 52375}, {6726, 52374}, {6727, 8818}, {6729, 6742}, {6730, 26700}, {6731, 52372}, {30690, 60539}
X(63780) = X(i)-Dao conjugate of X(j) for these (i,j): {236, 52344}, {15495, 30690}, {55042, 6730}
X(63780) = barycentric product X(i)*X(j) for these {i,j}: {35, 4146}, {174, 3219}, {188, 1442}, {259, 17095}, {266, 319}, {555, 52405}, {556, 2003}, {4420, 7371}, {4467, 6733}, {6724, 56934}, {6727, 40999}, {7370, 42033}, {34016, 60533}, {52421, 60539}
X(63780) = barycentric quotient X(i)/X(j) for these {i,j}: {35, 188}, {174, 30690}, {188, 52344}, {259, 7110}, {266, 79}, {1399, 266}, {1442, 4146}, {2003, 174}, {2174, 259}, {2594, 6724}, {2605, 6728}, {3219, 556}, {4146, 20565}, {4420, 7027}, {6724, 6757}, {6727, 3615}, {6733, 6742}, {7370, 52374}, {7591, 52388}, {9404, 6730}, {17104, 6727}, {21741, 60533}, {22342, 7591}, {52405, 6731}, {60533, 8818}, {60539, 7073}


X(63781) = (name pending)

Barycentrics    a*(3*a^11-(b+c)*a^10-(15*b^2-11*b*c+15*c^2)*a^9+(b+c)*(5*b^2-2*b*c+5*c^2)*a^8+(30*b^4+30*c^4-(32*b^2-33*b*c+32*c^2)*b*c)*a^7-(b+c)*(10*b^4+10*c^4+b*c*(4*b^2-15*b*c+4*c^2))*a^6-(30*b^6+30*c^6-(42*b^4+42*c^4-b*c*(24*b^2-11*b*c+24*c^2))*b*c)*a^5+2*(b+c)*(5*b^6+5*c^6+(6*b^4+6*c^4-b*c*(24*b^2-29*b*c+24*c^2))*b*c)*a^4+(15*b^6+15*c^6-(2*b^4+2*c^4+b*c*(10*b^2+7*b*c+10*c^2))*b*c)*(b-c)^2*a^3-(b^2-c^2)*(b-c)*(5*b^6+5*c^6+2*(7*b^4+7*c^4-b*c*(4*b^2-b*c+4*c^2))*b*c)*a^2-(b^2-c^2)^2*(b-c)^2*(3*b^4+3*c^4-b*c*(5*b^2+4*b*c+5*c^2))*a+(b^2-c^2)^5*(b-c)) : :

See Antreas Hatzipolakis and César Lozada, euclid 6226.

X(63781) lies on this line: {1, 3}


X(63782) = X(7)X(4393)∩X(190)X(644)

Barycentrics    (a-b)*(a-c)*(a+b-c)*(a-b+c)*(2*a+b+c) : :

See Antreas Hatzipolakis and César Lozada, euclid 6226.

X(63782) lies on these lines: {1, 23821}, {2, 21739}, {7, 4393}, {69, 17075}, {77, 4384}, {86, 40625}, {99, 26733}, {109, 4781}, {190, 644}, {239, 1443}, {323, 18668}, {514, 14543}, {524, 41804}, {553, 4982}, {662, 2407}, {1020, 46480}, {1086, 41801}, {1404, 43040}, {1419, 4659}, {1441, 4670}, {1442, 16826}, {1456, 4702}, {1458, 50023}, {1461, 4566}, {1464, 39766}, {1465, 24593}, {1654, 41808}, {1813, 35312}, {1943, 52358}, {2398, 35338}, {3160, 39035}, {3187, 56848}, {3578, 56846}, {3759, 17092}, {3882, 17136}, {3936, 6357}, {3942, 5773}, {4440, 41803}, {4551, 8050}, {4555, 6648}, {4565, 4573}, {4597, 32038}, {4767, 14594}, {4977, 35327}, {5018, 50016}, {5723, 40480}, {6180, 17318}, {6510, 30807}, {7100, 48877}, {8545, 25716}, {16609, 51653}, {16704, 18593}, {17778, 18625}, {18623, 28774}, {18654, 29382}, {20016, 40892}, {20082, 27509}, {20211, 27540}, {24237, 45749}, {25726, 40862}, {28739, 29616}, {28741, 29627}, {28780, 29587}, {31144, 41807}, {50256, 52374}

X(63782) = reflection of X(41804) in X(43066)
X(63782) = anticomplement of the polar conjugate of X(34922)
X(63782) = isotomic conjugate of the isogonal conjugate of X(36075)
X(63782) = cevapoint of X(i) and X(j) for these {i, j}: {514, 37631}, {553, 30724}, {1100, 4977}, {1125, 4976}, {3982, 7178}
X(63782) = crossdifference of every pair of points on the line X(3271)X(42657)
X(63782) = crosspoint of X(664) and X(4573)
X(63782) = crosssum of X(663) and X(3709)
X(63782) = X(i)-anticomplementary conjugate of X(j) for these (i, j): (2149, 3648), (24027, 41808), (26700, 150), (34922, 21270), (35049, 17135), (38340, 21293)
X(63782) = X(4620)-Ceva conjugate of-X(7)
X(63782) = X(i)-cross conjugate of X(j) for these (i, j): (4976, 1125), (4978, 8025), (30724, 553), (35342, 4427)
X(63782) = X(i)-Dao conjugate of X(j) for these (i, j): (223, 47947), (478, 50344), (553, 41800), (1100, 35057), (1125, 3700), (1213, 522), (1214, 31010), (3120, 21044), (3160, 4608), (3647, 650), (5375, 32635), (6631, 4102), (10001, 1268), (16726, 17197), (35076, 11), (39026, 33635), (56846, 514)
X(63782) = X(i)-isoconjugate of X(j) for these {i, j}: {9, 50344}, {41, 4608}, {55, 47947}, {513, 33635}, {522, 28615}, {649, 32635}, {650, 1126}, {663, 1255}, {667, 4102}, {1171, 4041}, {1268, 3063}, {1796, 18344}, {2170, 8701}, {2194, 31010}, {3271, 37212}, {3709, 40438}, {3737, 52555}, {4516, 4629}
X(63782) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (7, 4608), (56, 50344), (57, 47947), (59, 8701), (100, 32635), (101, 33635), (109, 1126), (190, 4102), (226, 31010), (553, 514), (651, 1255), (664, 1268), (1100, 650), (1125, 522), (1213, 3700), (1269, 35519), (1414, 40438), (1415, 28615), (1813, 1796), (1839, 3064), (1962, 4041), (2308, 663), (2355, 18344), (3647, 35057), (3649, 523), (3683, 3900), (3686, 3239), (3702, 4397), (3775, 4522), (3916, 521), (3958, 8611), (4001, 6332), (4115, 2321), (4359, 4391), (4427, 8), (4552, 6539), (4554, 32018), (4559, 52555), (4564, 37212), (4565, 1171), (4573, 32014), (4620, 4632), (4647, 4086), (4697, 3907), (4856, 4521), (4870, 4777), (4966, 50333), (4969, 1639), (4970, 4147), (4973, 3738)
X(63782) = X(i)-zayin conjugate of X(j) for these (i, j): (3293, 650), (3579, 649), (4641, 657), (48897, 661)
X(63782) = trilinear pole of the line {553, 1125} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(63782) = perspector of: the circumconic through X(4998) and X(7340), the central inconic through X(4976) and X(30724)
X(63782) = pole of the line {3582, 32857} with respect to the circumhyperbola dual of Yff parabola
X(63782) = pole of the line {75, 18661} with respect to the Kiepert parabola
X(63782) = pole of the line {3709, 7252} with respect to the Stammler hyperbola
X(63782) = pole of the line {100, 4458} with respect to the Steiner circumellipse
X(63782) = pole of the line {3700, 4560} with respect to the Steiner-Wallace hyperbola
X(63782) = pole of the line {8, 30} with respect to the Yff parabola
X(63782) = barycentric product X(i)*X(j) for these {i,j}: {7, 4427}, {76, 36075}, {85, 35342}, {99, 3649}, {109, 1269}, {190, 553}, {279, 30729}, {651, 4359}, {653, 4001}, {658, 3686}, {664, 1125}, {668, 32636}, {927, 4966}, {934, 3702}, {1016, 30724}, {1100, 4554}, {1213, 4573}, {1230, 4565}, {1275, 4976}, {1414, 4647}
X(63782) = trilinear product X(i)*X(j) for these {i,j}: {7, 35342}, {57, 4427}, {59, 4978}, {75, 36075}, {85, 35327}, {100, 553}, {108, 4001}, {109, 4359}, {190, 32636}, {269, 30729}, {651, 1125}, {653, 3916}, {655, 4973}, {658, 3683}, {662, 3649}, {664, 1100}, {765, 30724}, {934, 3686}, {1014, 4115}, {1213, 1414}
X(63782) = trilinear quotient X(i)/X(j) for these (i,j): (7, 47947), (57, 50344), (85, 4608), (100, 33635), (109, 28615), (190, 32635), (553, 513), (651, 1126), (664, 1255), (668, 4102), (1100, 663), (1125, 650), (1213, 4041), (1230, 4086), (1269, 4391), (1414, 1171), (1441, 31010), (1839, 18344), (1962, 3709), (2308, 3063)
X(63782) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (323, 18668, 39767), (651, 664, 4552)


X(63783) = X(2)X(17404)∩X(553)X(1125)

Barycentrics    (2*a+b+c)*(a^3+(b+c)*a^2-(b^2+b*c+c^2)*a-(b^2-c^2)*(b-c))*(2*a^5-(b+c)*a^4-2*(2*b^2-3*b*c+2*c^2)*a^3+(b+c)*(2*b^2-3*b*c+2*c^2)*a^2+(2*b^2+b*c+2*c^2)*(b-c)^2*a-(b^2-c^2)^2*(b+c)) : :

See Antreas Hatzipolakis and César Lozada, euclid 6226.

X(63783) lies on these lines: {2, 17404}, {553, 1125}, {6174, 45668}

X(63783) = midpoint of X(2) and X(17404)


X(63784) = X(2421)X(35356)∩X(5968)X(63028)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^2*b^2 - b^4 + 5*a^2*c^2 + b^2*c^2)*(5*a^2*b^2 + a^2*c^2 + b^2*c^2 - c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6227.

X(63784) lies on these lines: {2421, 35356}, {5968, 63028}, {9143, 9513}, {11794, 23878}

X(63784) = isogonal conjugate of X(63785)
X(63784) = isotomic conjugate of X(63786)
X(63784) = isotomic conjugate of the anticomplement of X(36900)
X(63784) = X(36900)-cross conjugate of X(2)
X(63784) = cevapoint of X(523) and X(7603)
X(63784) = trilinear pole of line {511, 549}


X(63785) = X(6)X(523)∩X(512)X(5104)

Barycentrics    a^2*(b^2 - c^2)*(a^4 - a^2*b^2 - a^2*c^2 - 5*b^2*c^2) : :
X(63785) = 7 X[6] - 6 X[2451], 5 X[6] - 6 X[3049], 2 X[6] - 3 X[3050], 13 X[6] - 12 X[39520], 5 X[2451] - 7 X[3049], 4 X[2451] - 7 X[3050], 3 X[2451] - 7 X[3288], 13 X[2451] - 14 X[39520], 4 X[3049] - 5 X[3050], 3 X[3049] - 5 X[3288], 13 X[3049] - 10 X[39520], 3 X[3050] - 4 X[3288], 13 X[3050] - 8 X[39520], 13 X[3288] - 6 X[39520], 5 X[3763] - 4 X[54262], 2 X[14318] - 3 X[21006], 4 X[45335] - 3 X[47352], 10 X[51126] - 9 X[55190]

See Antreas Hatzipolakis and Peter Moses, euclid 6227.

X(63785) lies on these lines: {6, 523}, {338, 59804}, {512, 5104}, {647, 53255}, {1632, 26714}, {2872, 3005}, {3763, 54262}, {3800, 59928}, {4139, 21007}, {5210, 42660}, {7927, 47138}, {9012, 42663}, {14318, 21006}, {16685, 50349}, {17414, 62712}, {45335, 47352}, {51126, 55190}, {55121, 55280}

X(63785) = reflection of X(6) in X(3288)
X(63785) = isogonal conjugate of X(63784)
X(63785) = crosspoint of X(110) and X(20251)
X(63785) = crosssum of X(523) and X(7603)
X(63785) = crossdifference of every pair of points on line {511, 549}
X(63785) = {X(6),X(3288)}-harmonic conjugate of X(3050)


X(63786) = X(2)X(647)∩X(523)X(7840)

Barycentrics    (b^2 - c^2)*(-a^4 + a^2*b^2 + a^2*c^2 + 5*b^2*c^2) : :
X(63786) = 5 X[2] - 4 X[647], 7 X[2] - 8 X[30476], 4 X[2] - 5 X[31072], 3 X[2] - 4 X[31174], 19 X[2] - 20 X[31277], 13 X[2] - 8 X[41300], 9 X[2] - 8 X[44560], 2 X[647] - 5 X[850], 7 X[647] - 10 X[30476], 16 X[647] - 25 X[31072], 3 X[647] - 5 X[31174], 19 X[647] - 25 X[31277], 8 X[647] - 5 X[31296], 6 X[647] - 5 X[36900], 13 X[647] - 10 X[41300], 9 X[647] - 10 X[44560], 7 X[850] - 4 X[30476], 8 X[850] - 5 X[31072], 3 X[850] - 2 X[31174], 19 X[850] - 10 X[31277], 4 X[850] - X[31296], 3 X[850] - X[36900], 13 X[850] - 4 X[41300], 9 X[850] - 4 X[44560], 32 X[30476] - 35 X[31072], 6 X[30476] - 7 X[31174], 38 X[30476] - 35 X[31277], 16 X[30476] - 7 X[31296], 12 X[30476] - 7 X[36900], 13 X[30476] - 7 X[41300], 9 X[30476] - 7 X[44560], 15 X[31072] - 16 X[31174], 19 X[31072] - 16 X[31277], 5 X[31072] - 2 X[31296], 15 X[31072] - 8 X[36900], 65 X[31072] - 32 X[41300], 45 X[31072] - 32 X[44560], 19 X[31174] - 15 X[31277], 8 X[31174] - 3 X[31296], 13 X[31174] - 6 X[41300], 3 X[31174] - 2 X[44560], 40 X[31277] - 19 X[31296], 30 X[31277] - 19 X[36900], 65 X[31277] - 38 X[41300], 45 X[31277] - 38 X[44560], 3 X[31296] - 4 X[36900], 13 X[31296] - 16 X[41300], 9 X[31296] - 16 X[44560], 13 X[36900] - 12 X[41300], 3 X[36900] - 4 X[44560], 9 X[41300] - 13 X[44560], 3 X[23] - 4 X[46995], X[23] + 2 X[47257], 2 X[46995] + 3 X[47257], 2 X[31176] - 3 X[53365], 3 X[9147] - 4 X[45317], 3 X[9148] - 2 X[45333], 3 X[9979] - 4 X[44568], X[20063] - 4 X[47254], 5 X[30745] - 4 X[46983], X[31299] - 4 X[47128], 3 X[37907] - 4 X[46989], 3 X[37907] - 2 X[47258], 3 X[37909] - 4 X[47004], 2 X[47001] - 3 X[47259]

See Antreas Hatzipolakis and Peter Moses, euclid 6227.

X(63786) lies on these lines: {2, 647}, {23, 46995}, {523, 7840}, {525, 14391}, {1992, 9030}, {2394, 54807}, {2799, 44554}, {3175, 58361}, {3448, 39359}, {3543, 30209}, {3906, 34290}, {7426, 47256}, {8591, 62489}, {8675, 11160}, {9147, 45317}, {9148, 45333}, {9979, 44568}, {13307, 13308}, {18155, 50106}, {20063, 47254}, {25423, 58784}, {30745, 46983}, {31299, 47128}, {37907, 46989}, {37909, 47004}, {47001, 47259}, {47175, 47313}, {53843, 57127}, {54269, 62188}, {54272, 62187}

X(63786) = reflection of X(i) in X(j) for these {i,j}: {2, 850}, {31296, 2}, {36900, 31174}, {47258, 46989}, {47313, 47175}
X(63786) = isotomic conjugate of X(63784)
X(63786) = anticomplement of X(36900)
X(63786) = anticomplement of the isotomic conjugate of X(36886)
X(63786) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {18575, 21294}, {36886, 6327}
X(63786) = X(36886)-Ceva conjugate of X(2)
X(63786) = crossdifference of every pair of points on line {237, 5008}
X(63786) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {850, 31296, 31072}, {850, 36900, 31174}, {31174, 36900, 2}, {46989, 47258, 37907}




leftri  Dao-Zeeman perspectors: X(63787) - X(63794)  rightri

This preamble and centers X(63787)-X(63794) were contributed by César Eliud Lozada, June 9, 2024.

Let ABC be a triangle, U a point on its plane, 𝓁 the tripolar of U with respect to ABC and P, Q any two distinct points on 𝓁.
Let A', B', C' be the intersections of 𝓁 with BC, CA, AB, respectively.
Denote AP the intersection of the parallel line to CP through B' and the parallel line to BP through C', and define BP, CP cyclically.
Denote AQ the intersection of the parallel line to CQ through B' and the parallel line to BQ through C', and define BQ, CQ cyclically.
Then the triangle A"B"C" bounded by the lines APAQ, BPBQ, CPCQ is congruent and homothetic with ABC and the homothetic center H(P, Q) lies on the line 𝓁.

  1. When PQ is the Euler line this result is Gossard perspector theorem.(See here)
  2. When PQ parallel to the Euler line, this result due to Zeeman generalization. (See here)
  3. When P is the centroid this result is the Yiu’s generalization.
Dao Thanh Oai - June 8, 2024.

Notes added by César Eliud Lozada:

The points A", B", C", H(P, Q) are independent of P and Q and depend only on U or, still better, on 𝓁. Therefore, H(P, Q) can be more simply expressed as H(U) or H(𝓁), this last form preferred here. H(𝓁) is referred here as the Dao-Zeeman perspector of the line 𝓁.

If U = x:y:z (barycentrics) then H(U) = x*(y-z)*(x-y-z) : :. It can be deduced that, algebraically, Q(U) = Complement(IsotomicConjugate(Cevapoint(U, IdealPointOfTripolar(U)))).

The appearance of (𝓁, n) in the following list means that H(𝓁) = X(n):

(antiorthic axis X(44)X(513), 650), (Brocard axis X(3)X(6), 34349), (Brocard line X(39)X(512), 63787), (De Longchamps line X(325)X(523), 23301), (Euler line X(2)X(3), 402), (Fermat axis X(6)X(13), 63788), (Gergonne line X(241)X(514), 7658), (IO line X(1)X(3), 34345), (Lemoine axis X(187)X(237), 647), (Nagel line X(1)X(2), 62630), (Napoleon axis X(6)X(7), 63789), (orthic axis X(230)X(231), 6587), (Sherman line X(3259)X(3326), 45950), (Soddy line X(1)X(7), 63790), (van Aubel line X(4)X(6), 63791), (X(1)X(4), 63792), (X(1)X(6), 63793), (X(2)X(6), 11053), (X(4)X(6), 63794)
The appearance of (i, j) in the following list means that H(X(i)) = X(j):
(1, 650), (3, 647), (4, 6587), (5, 17434), (6, 647), (7, 7658), (8, 4521), (9, 650), (10, 661), (11, 17435), (25, 52588), (30, 14401), (37, 661), (39, 3005), (42, 52592), (57, 6129), (75, 3835), (76, 23301), (81, 31947), (86, 21196), (99, 11053), (110, 34349), (115, 1648), (125, 41172), (126, 21905), (140, 35441), (141, 3005), (142, 6608), (178, 6730), (216, 17434), (223, 6129), (226, 656), (233, 35441), (239, 27929), (244, 39786), (279, 17427), (281, 14298), (306, 52599), (321, 31946), (323, 8562), (335, 25381), (350, 27854), (395, 35444), (396, 35443), (485, 17431), (486, 17432), (511, 33569), (512, 1645), (513, 1646), (514, 1647), (518, 33570), (519, 6544), (520, 33571), (521, 33572), (522, 33573), (523, 1648), (524, 1649), (525, 1650), (536, 14434), (597, 17436), (618, 35443), (619, 35444), (647, 41172), (648, 402), (650, 17435), (651, 34345), (661, 39786), (690, 41176), (752, 33568), (868, 41181), (905, 35014), (1015, 1646), (1084, 1645), (1086, 1647), (1125, 4988), (1146, 33573), (1210, 40628), (1211, 50330), (1212, 6608), (1213, 4988), (1214, 656), (1249, 6587), (1489, 10492), (1645, 39010), (1646, 39011), (1647, 35092), (1648, 23992), (1649, 23992), (1650, 39008), (2090, 6728), (2401, 33646), (2407, 31945), (2482, 1649), (3005, 41178), (3124, 41178), (3150, 39000), (3160, 7658), (3161, 4521), (3162, 52588), (3163, 14401), (3291, 21905), (3413, 13636), (3414, 13722), (3452, 6615), (3666, 50330), (3679, 52593), (3739, 50497), (3741, 40627), (3752, 6615), (3911, 23757), (4000, 17115), (4370, 6544), (5408, 52584), (5409, 52584), (5664, 3258), (6184, 33570), (6374, 23301), (6376, 3835), (6388, 51610), (6544, 35092), (6554, 17115), (6626, 21196), (6651, 27929), (7952, 14298), (8371, 41177), (8770, 2519), (10015, 45950), (11672, 33569), (13388, 905), (13389, 905), (13466, 14434), (13636, 115), (13722, 115), (14401, 39008), (14434, 39011), (15526, 1650), (15810, 17436), (16015, 6728), (16016, 6730), (16589, 50497), (16662, 52596), (16663, 52596), (17113, 17427), (21044, 41182), (21129, 5516), (21838, 40627), (23992, 41176), (24245, 17432), (24246, 17431), (26932, 35014), (27854, 38978), (27918, 38989), (31998, 11053), (33569, 39009), (33570, 39012), (33573, 35091), (35071, 33571), (35072, 33572), (36830, 34349), (36911, 52593), (36954, 40472), (39022, 13722), (39023, 13636), (39028, 27854), (39062, 402), (40586, 52592), (40592, 31947), (40603, 31946), (40604, 8562), (41378, 52590), (41379, 52590), (41885, 10492), (41887, 5664), (41888, 5664), (46398, 45950), (52659, 23757)

underbar

X(63787) = DAO-ZEEMAN PERSPECTOR OF THE BROCARD LINE X(39)X(512)

Barycentrics    a^2*(b^2-c^2)*((b^4+b^2*c^2+c^4)*a^6-(b^2+c^2)*(b^4+c^4)*a^4-(b^4-b^2*c^2+c^4)*b^2*c^2*a^2+b^4*c^4*(b^2+c^2)) : :

X(63787) lies on these lines: {2, 647}, {32, 52728}, {39, 512}, {262, 32472}, {669, 20965}, {804, 2023}, {1084, 45690}, {3117, 11182}, {3229, 45692}, {3804, 23610}, {8644, 52721}, {9300, 25423}, {9469, 18010}, {9491, 11326}, {11175, 63749}, {31953, 37742}

X(63787) = crossdifference of every pair of points on the line X(237)X(385)
X(63787) = crosspoint of X(6) and X(39291)
X(63787) = X(i)-Ceva conjugate of X(j) for these (i, j): (804, 512), (2491, 647), (2507, 52588), (7656, 2519)
X(63787) = X(i)-complementary conjugate of X(j) for these (i, j): (1927, 35078), (1967, 2679), (17938, 19563), (41517, 21253)
X(63787) = X(i)-Dao conjugate of X(j) for these (i, j): (694, 18829), (1084, 41520), (2679, 52009)
X(63787) = X(i)-isoconjugate of X(j) for these {i, j}: {662, 41520}, {36036, 52009}
X(63787) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (512, 41520), (2491, 52009), (3511, 99), (25332, 670), (39092, 18829), (39941, 43187), (51327, 2966)
X(63787) = PK-transform of X(i) for these i: {3511, 41520}
X(63787) = perspector of the circumconic through X(290) and X(694)
X(63787) = inverse of X(16068) in: Gallatly circle, Brocard inellipse
X(63787) = pole of the line {2076, 60514} with respect to the circumcircle
X(63787) = pole of the line {98, 385} with respect to the Gallatly circle
X(63787) = pole of the line {230, 511} with respect to the half-Moses circle
X(63787) = pole of the line {511, 6321} with respect to the Moses circle
X(63787) = pole of the line {232, 17984} with respect to the polar circle
X(63787) = pole of the line {98, 385} with respect to the Brocard inellipse
X(63787) = pole of the the tripolar of X(2491) with respect to the Jerabek circumhyperbola
X(63787) = pole of the line {14966, 17941} with respect to the Stammler hyperbola
X(63787) = pole of the line {511, 40858} with respect to the Steiner circumellipse
X(63787) = pole of the line {511, 694} with respect to the Steiner inellipse
X(63787) = pole of the line {880, 2421} with respect to the Steiner-Wallace hyperbola
X(63787) = barycentric product X(i)*X(j) for these {i,j}: {512, 25332}, {523, 3511}, {804, 39092}, {2799, 51327}, {3569, 39941}
X(63787) = trilinear product X(i)*X(j) for these {i,j}: {661, 3511}, {798, 25332}
X(63787) = trilinear quotient X(i)/X(j) for these (i,j): (661, 41520), (3511, 662), (25332, 799), (39092, 37134), (39941, 36036), (51327, 36084)
X(63787) = (X(2395), X(33569))-harmonic conjugate of X(647)


X(63788) = DAO-ZEEMAN PERSPECTOR OF THE FERMAT AXIS X(6)X(13)

Barycentrics    (2*a^6-2*(b^2+c^2)*a^4+(b^4+c^4)*a^2-(b^4-c^4)*(b^2-c^2))*(a^12-2*(b^2+c^2)*a^10+3*(b^4+c^4)*a^8-2*(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^6+(5*b^8+5*c^8-b^2*c^2*(b^2+2*c^2)*(2*b^2+c^2))*a^4-4*(b^4-c^4)*(b^2-c^2)*b^2*c^2*a^2-(b^2-c^2)^4*(b^4+c^4)) : :

X(63788) lies on these lines: {6, 13}, {14566, 24975}

X(63788) = crossdifference of every pair of points on the line X(526)X(34191)
X(63788) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (5191, 34191), (14731, 5641)
X(63788) = perspector of the circumconic through X(476) and X(14731)
X(63788) = pole of the line {476, 1637} with respect to the Steiner inellipse
X(63788) = barycentric product X(542)*X(14731)
X(63788) = trilinear product X(2247)*X(14731)
X(63788) = trilinear quotient X(2247)/X(34191)


X(63789) = DAO-ZEEMAN PERSPECTOR OF THE NAPOLEON AXIS X(6)X(17)

Barycentrics    -((2*a^6-4*a^4*(b^2+c^2)-(b^2-c^2)^2*(b^2+c^2)+3*a^2*(b^4+c^4))*(a^12-(b^2-c^2)^6-4*a^10*(b^2+c^2)+a^8*(7*b^4+8*b^2*c^2+7*c^4)+2*a^2*(b^2-c^2)^2*(b^6-2*b^4*c^2-2*b^2*c^4+c^6)-6*a^6*(b^6+b^4*c^2+b^2*c^4+c^6)+a^4*(b^8+4*b^6*c^2-b^4*c^4+4*b^2*c^6+c^8))) : :

X(63789) lies on these lines: {6, 17}

X(63789) = perspector of the circumconic through X(930) and X(11671)
X(63789) = pole of the line {930, 12077} with respect to the Steiner inellipse
X(63789) = barycentric product X(5965)*X(11671)


X(63790) = DAO-ZEEMAN PERSPECTOR OF THE SODDY LINE X(1)X(7}

Barycentrics    (2*a^3-(b+c)*a^2-(b^2-c^2)*(b-c))*(a^6-(b+c)*a^5+(b^2-b*c+c^2)*a^4-6*(b^2-c^2)*(b-c)*a^3+(7*b^2+12*b*c+7*c^2)*(b-c)^2*a^2-(b^2-c^2)*(b-c)*(b^2+6*b*c+c^2)*a-(b^3-c^3)*(b-c)^3) : :

X(63790) lies on these lines: {1, 7}, {17044, 24009}

X(63790) = X(i)-complementary conjugate of X(j) for these (i, j): (23971, 39063), (24013, 118), (24016, 5514), (32642, 17426), (32668, 13609)
X(63790) = reciprocal conjugate of X(39156) and X(36101) and barycentric quotient X(39156)/X(36101)
X(63790) = center of the central inconic through X(103) and X(516)
X(63790) = pole of the line {658, 7658} with respect to the Steiner inellipse
X(63790) = barycentric product X(30807)*X(39156)
X(63790) = trilinear product X(516)*X(39156)
X(63790) = trilinear quotient X(39156)/X(103)


X(63791) = DAO-ZEEMAN PERSPECTOR OF THE VAN AUBEL LINE X(4)X(6)

Barycentrics    (2*a^6-(b^2+c^2)*a^4-(b^4-c^4)*(b^2-c^2))*(a^12-(b^2+c^2)*a^10+(b^4-b^2*c^2+c^4)*a^8-6*(b^4-c^4)*(b^2-c^2)*a^6+(b^2-c^2)^2*(7*b^4+12*b^2*c^2+7*c^4)*a^4-(b^4-c^4)*(b^2-c^2)*(b^4+6*b^2*c^2+c^4)*a^2-(b^6-c^6)*(b^2-c^2)^3) : :

X(63791) lies on these lines: {4, 6}, {13526, 46099}, {23583, 39473}

X(63791) = crossdifference of every pair of points on the line X(520)X(34185)
X(63791) = X(39473)-Ceva conjugate of-X(1503)
X(63791) = X(24022)-complementary conjugate of-X(132)
X(63791) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (34186, 35140), (42671, 34185), (52011, 6330)
X(63791) = perspector of the circumconic through X(107) and X(34186)
X(63791) = pole of the line {525, 52011} with respect to the polar circle
X(63791) = pole of the line {107, 6587} with respect to the Steiner inellipse
X(63791) = barycentric product X(i)*X(j) for these {i,j}: {441, 52011}, {1503, 34186}
X(63791) = trilinear product X(i)*X(j) for these {i,j}: {2312, 34186}, {8766, 52011}
X(63791) = trilinear quotient X(i)/X(j) for these (i,j): (2312, 34185), (52011, 8767)


X(63792) = DAO-ZEEMAN PERSPECTOR OF THE LINE X(1)X(4)

Barycentrics    (2*a^4-(b+c)*a^3-(b-c)^2*a^2+(b^2-c^2)*(b-c)*a-(b^2-c^2)^2)*(a^8-(b+c)*a^7+b*c*a^6+(b^2-c^2)*(b-c)*a^5-(4*b^2+7*b*c+4*c^2)*(b-c)^2*a^4+(b^2-c^2)*(b-c)*(b^2+6*b*c+c^2)*a^3+(4*b^2-5*b*c+4*c^2)*(b^2-c^2)^2*a^2-(b^2-c^2)*(b-c)*(b^4+c^4+2*b*c*(2*b^2-b*c+2*c^2))*a-(b^2-c^2)*(b-c)^3*(b^3+c^3)) : :

X(63792) lies on these lines: {1, 4}, {6087, 10271}, {15252, 24030}

X(63792) = X(39471)-Ceva conjugate of-X(515)
X(63792) = X(i)-complementary conjugate of X(j) for these (i, j): (24033, 117), (32667, 16596), (36067, 123)
X(63792) = center of the central inconic through X(102) and X(515)
X(63792) = perspector of the circumconic through X(653) and X(39053)
X(63792) = pole of the line {653, 14837} with respect to the Steiner inellipse
X(63792) = barycentric product X(39053)*X(39471)
X(63792) = trilinear product X(39053)*X(46391)


X(63793) = DAO-ZEEMAN PERSPECTOR OF THE LINE X(1)X(6)

Barycentrics    a*((b+c)*a-b^2-c^2)*(a^3-(b+c)*a^2+(b^2-b*c+c^2)*a-(b^2-c^2)*(b-c)) : :

X(63793) lies on these lines: {1, 6}, {918, 3960}, {3035, 25096}, {5540, 16686}, {6667, 25069}, {7834, 17356}, {17095, 17263}, {17302, 25261}, {18151, 37771}, {20331, 47231}, {21254, 25095}, {23988, 34977}, {24486, 26690}, {25066, 45282}, {39786, 49758}

X(63793) = midpoint of X(2284) and X(17435)
X(63793) = complement of X(62429)
X(63793) = crossdifference of every pair of points on the line X(513)X(3446)
X(63793) = crosspoint of X(2) and X(5377)
X(63793) = crosssum of X(6) and X(3675)
X(63793) = X(918)-Ceva conjugate of-X(518)
X(63793) = X(i)-complementary conjugate of X(j) for these (i, j): (663, 35967), (919, 116), (1110, 120), (1252, 20540), (2149, 17060), (2195, 46100), (5377, 2887), (23990, 16593), (32666, 11), (32735, 17059), (32739, 35094), (36086, 21252), (39293, 17047), (52927, 124)
X(63793) = X(5540)-daleth conjugate of-X(21889)
X(63793) = X(i)-Dao conjugate of X(j) for these (i, j): (100, 666), (6184, 8047), (39014, 42552)
X(63793) = X(i)-isoconjugate of X(j) for these {i, j}: {673, 3446}, {1438, 8047}, {36146, 42552}
X(63793) = X(5540)-line conjugate of-X(16686)
X(63793) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (149, 2481), (518, 8047), (926, 42552), (1421, 56783), (2223, 3446), (5375, 666), (5540, 673), (11193, 885), (16686, 105), (18151, 18031), (21889, 13576), (22144, 1814), (37771, 34018), (40577, 927)
X(63793) = center of the inconic with perspector X(5377)
X(63793) = perspector of the circumconic through X(100) and X(149)
X(63793) = pole of the line {55, 1252} with respect to the Feuerbach circumhyperbola
X(63793) = pole of the line {11927, 13271} with respect to the Privalov conic
X(63793) = pole of the line {17494, 20095} with respect to the Steiner circumellipse
X(63793) = pole of the line {100, 650} with respect to the Steiner inellipse
X(63793) = barycentric product X(i)*X(j) for these {i,j}: {149, 518}, {672, 18151}, {883, 11193}, {918, 5375}, {1026, 21201}, {1421, 3717}, {3263, 16686}, {3675, 11607}, {3693, 37771}, {3912, 5540}, {17435, 31633}, {18206, 21090}, {21889, 30941}, {22144, 46108}, {40577, 50333}
X(63793) = trilinear product X(i)*X(j) for these {i,j}: {149, 672}, {518, 5540}, {1025, 11193}, {1421, 3693}, {1861, 22144}, {2223, 18151}, {2254, 5375}, {2284, 21201}, {2340, 37771}, {3286, 21090}, {3912, 16686}, {18206, 21889}
X(63793) = trilinear quotient X(i)/X(j) for these (i,j): (149, 673), (672, 3446), (1421, 1462), (3912, 8047), (5375, 36086), (5540, 105), (11193, 1024), (16686, 1438), (18151, 2481), (21090, 13576), (21889, 18785), (22144, 36057), (31633, 39293), (37771, 56783), (40577, 36146)
X(63793) = (X(1642), X(17435))-harmonic conjugate of X(2284)


X(63794) = X(2)X(3)∩X(239)X(4680)

Barycentrics    a^3*b^2 + a^2*b^3 + a*b^4 + b^5 + b^4*c + a^3*c^2 - a*b^2*c^2 + a^2*c^3 + a*c^4 + b*c^4 + c^5 : :

X(63794) lies on these lines: {2, 3}, {239, 4680}, {626, 24598}, {3096, 20913}, {3314, 62636}, {3891, 6542}, {3948, 7790}, {4393, 26561}, {5254, 31060}, {7861, 30819}, {7864, 31036}, {7918, 30830}, {7938, 24621}, {17381, 53486}, {20541, 62803}, {26582, 29593}, {26590, 29570}

X(63794) = pole of line {620, 24598} with respect to the Kiepert circumhyperbola of the Brocard triangle
X(63794) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 6655, 11320}, {6656, 37096, 2}, {7866, 11329, 2}, {17670, 26601, 2}, {33736, 33840, 2}


X(63795) = X(2)X(3)∩X(39)X(31120)

Barycentrics    a^4*b - a^3*b^2 - a^2*b^3 - b^5 + a^4*c - a^3*c^2 + a*b^2*c^2 - a^2*c^3 - c^5 : :

X(63795) lies on these lines: {2, 3}, {39, 31120}, {194, 3936}, {1150, 2896}, {1975, 30811}, {3120, 32117}, {7738, 30828}, {7750, 35466}, {7797, 26282}, {7839, 31034}, {7847, 24296}, {7893, 16704}, {10445, 25997}, {14712, 31229}, {18744, 24530}, {20065, 24597}, {29579, 41842}, {49562, 50755}


X(63795) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 33823, 37233}


X(63796) = X(2)X(3)∩X(6)X(21220)

Barycentrics    a^5*b + a^5*c - a*b^4*c + a*b^3*c^2 + a*b^2*c^3 + b^3*c^3 - a*b*c^4 : :

X(63796) lies on these lines: {2, 3}, {6, 21220}, {76, 2240}, {316, 30954}, {4366, 29830}, {6645, 29829}, {7761, 30987}

X(63796) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {11339, 47522, 2}


X(63797) = X(2)X(3)&capX(pending)

Barycentrics    b^6+c^6+a^2(b^4+c^4) : :

X(63797) lies on this line: {2,3}


X(63798) = X(2)X(3)&capX(pending)

Barycentrics    b^7 + c^7 + a^5 (b^2 + c^2) - a^4 (b^3 + c^3) + a^2 (b^3 c^2 + b^2 c^3) + a^2 (b^5 + c^5) : :


X(63799) = X(2)X(3)&capX(pending)

Barycentrics    b^6 c + b c^6 - a^5 (b^2 + c^2) + a^4 (b^3 + c^3) - a^2 (b^3 c^2 + b^2 c^3) + a^3 (b^4 + c^4) + a^2 (b^4 c + b c^4) + a (b^6 + c^6) : :


X(63800) = X(1)X(312)∩X(10)X(37)

Barycentrics    (b + c)*(-a^3 - a^2*b - a^2*c - a*b*c + b^2*c + b*c^2) : :
X(63800) = X[8] + 3 X[32915], X[65] + 3 X[3175], X[72] - 3 X[3971], 3 X[210] - X[59302], X[960] - 3 X[35652], 2 X[3678] - 3 X[4096], 4 X[4075] - 3 X[4096], 2 X[596] - 3 X[42053], 3 X[42053] - 4 X[58565], X[3555] - 3 X[42057], 5 X[3697] - 3 X[4685], 3 X[3833] - 2 X[24176], X[3868] + 3 X[32925], 7 X[4002] - 3 X[50083], 3 X[4891] - X[34791], 2 X[5044] - 3 X[59517], X[59303] - 3 X[59517], 5 X[5439] - 3 X[24165], X[5904] - 3 X[42054], 7 X[9780] - 3 X[32860], X[10914] + 3 X[50122], X[12435] + 3 X[54035], 5 X[18398] - 3 X[42055]

See Antreas Hatzipolakis and Peter Moses, euclid 6233.

X(63800) lies on these lines: {1, 312}, {3, 29649}, {4, 1840}, {5, 29671}, {8, 756}, {10, 37}, {12, 3178}, {21, 17763}, {35, 4434}, {42, 3701}, {43, 37042}, {46, 32934}, {65, 3175}, {72, 3971}, {145, 3952}, {171, 7283}, {190, 1046}, {192, 986}, {210, 59302}, {213, 3985}, {239, 16918}, {306, 26601}, {321, 49598}, {341, 872}, {350, 1237}, {386, 59511}, {405, 4362}, {442, 29653}, {496, 20545}, {518, 35633}, {519, 960}, {536, 3812}, {537, 3874}, {595, 4432}, {596, 42053}, {726, 942}, {730, 5717}, {758, 3159}, {958, 17733}, {964, 5311}, {978, 18743}, {984, 10449}, {988, 30567}, {1010, 1961}, {1018, 4099}, {1043, 5293}, {1125, 17061}, {1193, 4358}, {1254, 4552}, {1329, 17748}, {1330, 32846}, {1479, 4865}, {1722, 3875}, {1724, 3791}, {1757, 56018}, {1807, 10570}, {1962, 26115}, {1999, 5247}, {2171, 43677}, {2176, 4574}, {2292, 3995}, {2295, 4037}, {2476, 29643}, {2478, 33088}, {2551, 3949}, {2650, 3994}, {2802, 34434}, {3086, 28830}, {3185, 8715}, {3208, 9548}, {3210, 24174}, {3214, 3896}, {3216, 24003}, {3293, 3725}, {3339, 55998}, {3340, 7276}, {3555, 42057}, {3666, 3831}, {3670, 49999}, {3679, 4102}, {3685, 5255}, {3688, 50623}, {3697, 4685}, {3702, 10459}, {3716, 18003}, {3720, 4968}, {3752, 46827}, {3769, 54354}, {3771, 56764}, {3797, 41240}, {3811, 45131}, {3821, 50067}, {3833, 24176}, {3836, 23537}, {3840, 37592}, {3868, 32925}, {3881, 59717}, {3891, 28082}, {3907, 49290}, {3912, 6656}, {3913, 4557}, {3923, 5711}, {3933, 24241}, {3969, 20653}, {3980, 50044}, {4002, 50083}, {4011, 16466}, {4028, 21075}, {4125, 58399}, {4193, 29849}, {4197, 29854}, {4202, 29687}, {4360, 33938}, {4387, 5710}, {4415, 56949}, {4438, 5292}, {4447, 37425}, {4645, 24851}, {4647, 56191}, {4662, 28581}, {4672, 62805}, {4682, 50054}, {4697, 37559}, {4734, 26029}, {4849, 50590}, {4891, 34791}, {4918, 40663}, {5015, 32847}, {5044, 59303}, {5046, 33093}, {5047, 32914}, {5051, 15523}, {5192, 17017}, {5223, 35629}, {5230, 17776}, {5260, 27368}, {5262, 32928}, {5290, 29573}, {5291, 28631}, {5439, 24165}, {5847, 12572}, {5883, 28516}, {5904, 42054}, {6535, 27714}, {6542, 17685}, {6682, 50605}, {6684, 59547}, {6690, 59723}, {6762, 39584}, {7081, 19312}, {8258, 44416}, {8669, 24929}, {8720, 37582}, {9780, 32860}, {10914, 50122}, {11108, 16825}, {11319, 62847}, {12109, 14839}, {12435, 54035}, {12609, 48643}, {13741, 29821}, {15171, 17766}, {15488, 29054}, {15973, 59720}, {16062, 29674}, {16478, 17697}, {16577, 52357}, {16828, 27798}, {16886, 23903}, {17034, 17755}, {17054, 49453}, {17147, 24443}, {17150, 56983}, {17164, 62227}, {17242, 37716}, {17243, 25466}, {17390, 49564}, {17698, 29645}, {17719, 25650}, {18249, 59585}, {18391, 52387}, {18398, 42055}, {19767, 32931}, {19874, 21020}, {19925, 29016}, {20018, 27538}, {20947, 33296}, {21021, 60724}, {21840, 27040}, {21902, 23447}, {21935, 57808}, {22040, 42289}, {22045, 22306}, {22061, 56530}, {22220, 56185}, {23536, 50319}, {23841, 35104}, {24161, 37759}, {24440, 49452}, {24883, 33115}, {26030, 46904}, {28629, 42047}, {29683, 56778}, {30142, 48863}, {30145, 49473}, {30568, 54386}, {32778, 52258}, {32842, 37162}, {32849, 54355}, {32853, 41229}, {32862, 36568}, {32916, 62871}, {32930, 57280}, {32936, 56288}, {32946, 58798}, {33072, 52367}, {33939, 59509}, {34527, 36926}, {38456, 57288}, {39594, 57279}, {43531, 50293}, {49469, 59294}, {52369, 54418}, {54421, 56082}, {56221, 58381}, {56282, 60089}

X(63800) = midpoint of X(i) and X(j) for these {i,j}: {10, 2901}, {3811, 45131}, {3874, 24068}, {22045, 22306}
X(63800) = reflection of X(i) in X(j) for these {i,j}: {596, 58565}, {3678, 4075}, {59303, 5044}
X(63800) = X(i)-complementary conjugate of X(j) for these (i,j): {57749, 141}, {58025, 626}
X(63800) = X(i)-Ceva conjugate of X(j) for these (i,j): {2171, 1215}, {34527, 594}, {60086, 10}
X(63800) = X(16613)-cross conjugate of X(6002)
X(63800) = X(i)-isoconjugate of X(j) for these (i,j): {849, 43677}, {1019, 6010}, {54986, 57129}
X(63800) = X(i)-Dao conjugate of X(j) for these (i,j): {4075, 43677}, {7180, 53538}, {16613, 4560}, {34528, 26840}
X(63800) = crosspoint of X(4552) and X(7035)
X(63800) = crosssum of X(3248) and X(7252)
X(63800) = crossdifference of every pair of points on line {3733, 22384}
X(63800) = barycentric product X(i)*X(j) for these {i,j}: {10, 1999}, {226, 56311}, {321, 5247}, {3952, 6002}, {7035, 16613}, {14624, 39774}, {15349, 34527}
X(63800) = barycentric quotient X(i)/X(j) for these {i,j}: {594, 43677}, {1999, 86}, {3952, 54986}, {4557, 6010}, {5247, 81}, {6002, 7192}, {15349, 26840}, {16613, 244}, {24560, 15419}, {39774, 16705}, {55060, 53538}, {56311, 333}, {57079, 7203}
X(63800) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 1089, 1215}, {10, 37, 58386}, {10, 3993, 3931}, {10, 4065, 4868}, {10, 6541, 3695}, {37, 3714, 10}, {171, 7283, 24850}, {321, 59305, 49598}, {341, 49470, 50581}, {596, 58565, 42053}, {960, 14973, 3678}, {1018, 24049, 4099}, {1193, 4358, 25079}, {1220, 34064, 1}, {1834, 3932, 10}, {1999, 56311, 5247}, {2650, 3994, 56318}, {3678, 4075, 4096}, {3685, 41261, 5255}, {3695, 37715, 10}, {3896, 52353, 3214}, {3995, 17751, 2292}, {59303, 59517, 5044}





leftri   Trigonometric Sums: X(63801)-X(63809)  rightri

Contributed by Clark Kimbering and Peter Moses, June 11, 2024

This section treats triangle centers of the forms sin(nB+mC)+sin(mB+nC) and cos(nB+mC)+cos(mB+nC). The appearance of (n,m,k) in the following list means that X(k) = sin(nB+mC)+sin(mB+nC):

(5,3,63801), (4,4,1147), (4,2,1154), (4,0,5449), (4,-2,565), (3,3,6149), (3,2,63801),(3,1,44706),(3,0,63803), (3,-1,564), (2,2,3), (2,0,5),(2,1,63804) (1,1,1), (1,0,10).

The appearance of (n,m,k) in the next list means that X(k) = cos(nB+mC)+cos(mB+nC):

(4,4,63762), (4,2,63805), (4,0,63806), (3,3,63760), (3,2,73807), (3,1,63808), (2,2,1993), (2,1,16577), (2,0,343), (2,-1,63809), (2,-2,63763), (1,1,63), (1,0,226), (1,-1,14213).

underbar



X(63801) = CROSSPOINT OF X(1) AND X(47)

Barycentrics    Sin[5*B + 3*C] + Sin[3*B + 5*C] : :
Barycentrics    a^3*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :

X(63801) lies on these lines: {1, 91}, {47, 18605}, {48, 255}, {601, 60794}, {662, 2190}, {1064, 2646}, {1393, 39271}, {2169, 63760}, {2964, 4575}, {6149, 57717}, {6513, 54401}, {16697, 44706}, {17442, 17462}

X(63801) = isotomic conjugate of the polar conjugate of X(2180)
X(63801) = X(i)-Ceva conjugate of X(j) for these (i,j): {1, 44706}, {662, 55216}
X(63801) = X(i)-isoconjugate of X(j) for these (i,j): {4, 96}, {25, 34385}, {54, 847}, {68, 8884}, {91, 2190}, {92, 2168}, {95, 14593}, {264, 41271}, {275, 2165}, {276, 60501}, {393, 57875}, {648, 55253}, {1141, 5962}, {2052, 57703}, {2148, 57716}, {2351, 8795}, {2623, 30450}, {5392, 8882}, {8794, 55549}, {8883, 52582}, {14518, 40698}, {14618, 32692}, {16032, 41516}, {16037, 41515}, {20563, 61362}, {20571, 62268}, {27367, 41488}, {46134, 58756}, {54034, 55553}, {57898, 62269}, {57904, 62271}
X(63801) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 91}, {216, 57716}, {343, 75}, {577, 2167}, {6505, 34385}, {15450, 55250}, {22391, 2168}, {34116, 2190}, {36033, 96}, {47421, 1577}, {52032, 20571}, {55066, 55253}, {55073, 656}
X(63801) = crosspoint of X(1) and X(47)
X(63801) = crosssum of X(1) and X(91)
X(63801) = crossdifference of every pair of points on line {24006, 55216}
X(63801) = barycentric product X(i)*X(j) for these {i,j}: {1, 52032}, {47, 343}, {48, 39113}, {52, 63}, {69, 2180}, {216, 44179}, {255, 467}, {311, 563}, {326, 14576}, {571, 18695}, {810, 55252}, {1147, 14213}, {1748, 5562}, {1953, 9723}, {1993, 44706}, {2617, 52584}, {4592, 52317}, {7763, 62266}, {15451, 55249}, {42700, 44709}, {52435, 62272}
X(63801) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 57716}, {47, 275}, {48, 96}, {52, 92}, {63, 34385}, {184, 2168}, {216, 91}, {255, 57875}, {311, 57898}, {343, 20571}, {418, 1820}, {467, 57806}, {563, 54}, {571, 2190}, {810, 55253}, {1147, 2167}, {1748, 8795}, {1953, 847}, {1993, 40440}, {2179, 14593}, {2180, 4}, {2290, 5962}, {2617, 30450}, {3133, 1748}, {9247, 41271}, {9723, 62276}, {14213, 55553}, {14576, 158}, {15451, 55250}, {18695, 57904}, {30451, 2616}, {39113, 1969}, {44179, 276}, {44706, 5392}, {52032, 75}, {52317, 24006}, {52430, 57703}, {52435, 2148}, {52436, 62268}, {55252, 57968}, {62266, 2165}


X(63802) = X(1)X(2476)∩X(3)X(31728)

Barycentrics    Sin[3*B + 2*C] + Sin[2*B + 3*C] : :
Barycentrics    a^2*(b + c)*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c - b^3*c - 2*a^2*c^2 + b^2*c^2 - b*c^3 + c^4) : :

X(63802) lies on these lines: {1, 2476}, {3, 31728}, {10, 2594}, {42, 3754}, {72, 58737}, {73, 758}, {100, 63339}, {101, 23619}, {214, 54427}, {226, 5496}, {386, 2274}, {519, 5399}, {521, 33649}, {581, 3073}, {912, 59729}, {1042, 4757}, {1064, 3884}, {1066, 3881}, {1125, 5396}, {1147, 37812}, {1464, 4084}, {1993, 36152}, {2200, 14963}, {2318, 3988}, {3216, 6681}, {3678, 3682}, {3755, 12609}, {3825, 37732}, {4245, 58474}, {4420, 41822}, {5453, 6690}, {5754, 20470}, {5930, 21077}, {16453, 62352}, {16473, 37300}, {16586, 62859}, {22098, 23621}, {22345, 23156}, {22836, 59285}, {23383, 31757}, {30147, 37698}, {34772, 52368}, {35197, 35204}, {45287, 60089}, {45392, 58738}

X(63802) = X(759)-isoconjugate of X(33599)
X(63802) = X(34586)-Dao conjugate of X(33599)
X(63802) = barycentric product X(i)*X(j) for these {i,j}: {226, 45392}, {321, 58738}, {3936, 10260}
X(63802) = barycentric quotient X(i)/X(j) for these {i,j}: {2245, 33599}, {10260, 24624}, {45392, 333}, {58738, 81}


X(63803) = X(2)X(6149)∩X(10)X(12)

Barycentrics    Sin[3*B] + Sin[3*C] : :
Barycentrics    (b + c)*(-a^2 + b^2 - b*c + c^2)*(-(a^2*b^2) + b^4 + a^2*b*c - a^2*c^2 - 2*b^2*c^2 + c^4) : :
X(63803) = 3 X[2] + X[63642]

X(63803) lies on these lines: {2, 6149}, {5, 15049}, {10, 12}, {124, 11813}, {562, 34544}, {1154, 25639}, {1725, 18120}, {3738, 8062}, {3814, 20304}, {3846, 49729}, {21234, 21253}, {26064, 26363}

X(63803) = midpoint of X(6149) and X(63642)
X(63803) = complement of X(6149)
X(63803) = complement of the isogonal conjugate of X(2166)
X(63803) = complement of the isotomic conjugate of X(63759)
X(63803) = X(i)-complementary conjugate of X(j) for these (i,j): {4, 1511}, {5, 128}, {6, 34834}, {13, 619}, {14, 618}, {30, 31378}, {74, 47055}, {79, 214}, {80, 3647}, {94, 141}, {110, 8562}, {265, 3}, {328, 1368}, {476, 523}, {512, 18334}, {523, 3258}, {1138, 45694}, {1141, 140}, {1989, 2}, {2160, 16586}, {2161, 16585}, {2166, 10}, {3457, 40696}, {3458, 40695}, {5627, 30}, {6344, 5}, {6757, 31845}, {10412, 125}, {11060, 39}, {11071, 323}, {11077, 46832}, {11079, 44436}, {11080, 41888}, {11082, 46834}, {11085, 41887}, {11087, 46833}, {11138, 11131}, {11139, 11130}, {11581, 33526}, {11582, 33527}, {11744, 14385}, {12028, 10257}, {14254, 113}, {14356, 114}, {14372, 15}, {14373, 16}, {14559, 1649}, {14560, 647}, {14582, 15526}, {14583, 3163}, {14592, 127}, {14595, 3284}, {14781, 45801}, {14859, 1154}, {15328, 56792}, {15475, 115}, {18316, 549}, {18384, 6}, {18817, 21243}, {20573, 626}, {20578, 43962}, {20579, 43961}, {23588, 24975}, {32650, 45681}, {32662, 52584}, {32678, 14838}, {32680, 4369}, {34209, 25641}, {35139, 512}, {36129, 8062}, {38896, 45180}, {39170, 131}, {39295, 620}, {39374, 52006}, {39375, 52010}, {40355, 3003}, {41392, 5664}, {41512, 60342}, {43082, 11}, {43083, 122}, {43084, 126}, {43087, 16188}, {43088, 136}, {43089, 132}, {43090, 42426}, {43707, 5663}, {46138, 3819}, {46155, 3005}, {46456, 30476}, {48374, 403}, {50433, 6509}, {51349, 47084}, {51479, 5099}, {52153, 216}, {52382, 6739}, {52415, 1147}, {52449, 6593}, {54554, 542}, {56395, 2482}, {56401, 15819}, {56403, 62569}, {56404, 40604}, {58704, 18402}, {58733, 11597}, {59274, 45183}, {59428, 11598}, {63750, 6149}, {63759, 2887}
X(63803) = crosspoint of X(2) and X(63759)
X(63803) = crossdifference of every pair of points on line {7252, 21768}
X(63803) = barycentric product X(3936)*X(7741)
X(63803) = barycentric quotient X(7741)/X(24624)
X(63803) = {X(2),X(63642)}-harmonic conjugate of X(6149)


X(63804) = X(10)X(15065)∩X(35)X(18359)

Barycentrics    Sin[2*B - C] + Sin[-B + 2*C] : :
Barycentrics    b*c*(b + c)*(-(a^2*b^2) + b^4 + a^2*b*c - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63804) lies on these lines: {10, 15065}, {35, 18359}, {226, 6757}, {321, 3678}, {349, 17886}, {758, 1825}, {1441, 6701}, {2802, 23528}, {3754, 17869}, {3822, 23555}, {3825, 4858}, {3841, 6358}, {3874, 48380}, {4127, 52345}, {4647, 54288}, {8715, 17860}, {9369, 16821}, {14213, 25639}, {17862, 58565}, {17864, 21207}, {20887, 30171}, {21807, 39583}, {24026, 24387}, {49600, 56942}

X(63804) = barycentric product X(321)*X(7741)
X(63804) = barycentric quotient X(7741)/X(81)
X(63804) = {X(18359),X(52344)}-harmonic conjugate of X(35)


X(63805) = X(2)X(94)∩X(3)X(19362)

Barycentrics    Cos[4*B + 2C] + Cos[2*B + 4*C] : :
Barycentrics    a^2*(a^2 - b^2 - c^2)*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(63805) lies on these lines: {2, 94}, {3, 19362}, {5, 15869}, {49, 34833}, {52, 15848}, {110, 56308}, {143, 15345}, {216, 343}, {394, 31626}, {427, 50648}, {467, 11062}, {570, 37649}, {973, 3133}, {1993, 8553}, {1994, 2965}, {3003, 61658}, {3053, 63094}, {5562, 46025}, {6101, 50728}, {7767, 36212}, {11064, 46832}, {13351, 63085}, {13409, 41673}, {14129, 14577}, {15226, 31376}, {23181, 61378}, {32078, 44716}, {32762, 54034}, {50468, 52348}, {50469, 52349}

X(63805) = complement of X(63763)
X(63805) = complement of the isotomic conjugate of X(63766)
X(63805) = isotomic conjugate of the polar conjugate of X(143)
X(63805) = isogonal conjugate of the polar conjugate of X(57805)
X(63805) = X(i)-complementary conjugate of X(j) for these (i,j): {57717, 141}, {63766, 2887}
X(63805) = X(i)-Ceva conjugate of X(j) for these (i,j): {7769, 57805}, {57805, 143}
X(63805) = X(47424)-cross conjugate of X(57135)
X(63805) = X(i)-isoconjugate of X(j) for these (i,j): {19, 252}, {93, 2148}, {1973, 57765}, {2168, 14111}, {2190, 2963}, {2962, 8882}, {11140, 62268}, {20572, 62269}, {36134, 55251}, {54034, 63764}
X(63805) = X(i)-Dao conjugate of X(j) for these (i,j): {5, 2963}, {6, 252}, {137, 55251}, {216, 93}, {6337, 57765}, {12077, 2970}, {34520, 6143}, {35591, 47230}, {52032, 11140}, {53986, 15422}
X(63805) = cevapoint of X(47424) and X(57135)
X(63805) = crosspoint of X(i) and X(j) for these (i,j): {2, 63766}, {249, 14570}, {7769, 44180}
X(63805) = crosssum of X(i) and X(j) for these (i,j): {6, 1879}, {115, 2623}
X(63805) = crossdifference of every pair of points on line {14270, 58756}
X(63805) = barycentric product X(i)*X(j) for these {i,j}: {3, 57805}, {5, 44180}, {49, 311}, {69, 143}, {99, 57135}, {216, 7769}, {343, 1994}, {394, 14129}, {1154, 63761}, {2964, 18695}, {2965, 28706}, {3518, 52347}, {3926, 14577}, {4558, 20577}, {4563, 57137}, {4590, 47424}, {5562, 32002}, {14213, 63760}, {23181, 41298}, {51440, 53174}
X(63805) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 252}, {5, 93}, {49, 54}, {52, 14111}, {69, 57765}, {137, 2970}, {143, 4}, {216, 2963}, {311, 20572}, {343, 11140}, {418, 51477}, {1154, 562}, {1994, 275}, {2964, 2190}, {2965, 8882}, {3518, 8884}, {4563, 55283}, {5562, 3519}, {7769, 276}, {10216, 60828}, {12077, 55251}, {14129, 2052}, {14213, 63764}, {14570, 38342}, {14577, 393}, {15345, 6143}, {20577, 14618}, {23181, 930}, {32002, 8795}, {37084, 23286}, {44180, 95}, {44706, 2962}, {45083, 40631}, {47390, 57639}, {47424, 115}, {57135, 523}, {57137, 2501}, {57805, 264}, {63760, 2167}, {63761, 46138}
X(63805) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14570, 45793}, {216, 52032, 343}


X(63806) = X(2)X(95)∩X(343)X(34827)

Barycentrics    Cos[4*B] + Cos[4*C] : :
Barycentrics    (a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^4*b^4 - 2*a^2*b^6 + b^8 + 2*a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + 2*a^2*b^2*c^4 + 6*b^4*c^4 - 2*a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(63806) lies on these lines: {2, 95}, {343, 34827}, {1147, 43973}, {1658, 34101}, {1879, 63763}, {1993, 18883}, {7751, 45794}

X(63806) = complement of X(63762)
X(63806) = complement of the isotomic conjugate of X(63765)
X(63806) = X(63765)-complementary conjugate of X(2887)
X(63806) = X(2165)-isoconjugate of X(57717)
X(63806) = X(5449)-Dao conjugate of X(577)
X(63806) = crosspoint of X(i) and X(j) for these (i,j): {2, 63765}, {317, 18027}
X(63806) = crosssum of X(2351) and X(14585)
X(63806) = barycentric product X(i)*X(j) for these {i,j}: {317, 5449}, {564, 44179}, {1879, 7763}, {1993, 63763}
X(63806) = barycentric quotient X(i)/X(j) for these {i,j}: {47, 57717}, {564, 91}, {1879, 2165}, {1993, 63766}, {5449, 68}, {63763, 5392}
X(63806) = {X(55531),X(55532)}-harmonic conjugate of X(1147)


X(63807) = X(71)X(16577)∩X(226)X(2245)

Barycentrics    Cos[3*B + 2C] + Cos[2*B + 3*C] : :
Barycentrics    a^2*(a + b - c)*(a - b + c)*(b + c)*(a^4 - 2*a^2*b^2 + b^4 - a^2*b*c + b^3*c - 2*a^2*c^2 + b^2*c^2 + b*c^3 + c^4) : :

X(63807) lies on these lines: {71, 16577}, {226, 2245}, {307, 18590}, {5036, 34048}, {8804, 60249}, {18593, 40152}, {22001, 60091}, {26740, 28274}


X(63808) = X(1)X(21)∩X(92)X(18041)

Barycentrics    Cos[3*B + C] + Cos[B + 3*C] : :
Barycentrics    a*(a^2*b^2 - b^4 + a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :

X(63808) lies on these lines: {1, 21}, {92, 18041}, {908, 45206}, {914, 1848}, {1748, 44179}, {1953, 14213}, {2181, 2617}, {3061, 55902}, {4575, 62268}, {6505, 55472}, {6508, 14206}, {6513, 55478}, {7146, 55900}, {18716, 18750}, {18729, 26871}

X(63808) = isogonal conjugate of X(2168)
X(63808) = isotomic conjugate of the isogonal conjugate of X(2180)
X(63808) = X(i)-Ceva conjugate of X(j) for these (i,j): {92, 14213}, {62273, 44706}
X(63808) = X(i)-isoconjugate of X(j) for these (i,j): {1, 2168}, {2, 41271}, {4, 57703}, {6, 96}, {25, 57875}, {32, 34385}, {54, 2165}, {68, 8882}, {91, 2148}, {95, 60501}, {97, 14593}, {110, 55253}, {275, 2351}, {523, 32692}, {847, 14533}, {925, 2623}, {1820, 2190}, {2616, 36145}, {5392, 54034}, {5962, 11077}, {6753, 52932}, {8576, 16032}, {8577, 16037}, {8794, 59176}, {8884, 55549}, {14573, 57904}, {15412, 32734}, {20563, 62271}, {20571, 62269}, {30450, 58308}, {36134, 55250}, {52350, 61362}, {55553, 62270}, {57716, 62267}
X(63808) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 2168}, {5, 1820}, {9, 96}, {134, 55216}, {137, 55250}, {139, 24006}, {216, 91}, {244, 55253}, {343, 63}, {577, 2169}, {6376, 34385}, {6505, 57875}, {32664, 41271}, {34116, 2148}, {36033, 57703}, {39013, 2616}, {47421, 656}, {55073, 822}
X(63808) = crosspoint of X(92) and X(1748)
X(63808) = crosssum of X(48) and X(1820)
X(63808) = barycentric product X(i)*X(j) for these {i,j}: {1, 39113}, {5, 44179}, {24, 18695}, {47, 311}, {52, 75}, {63, 467}, {76, 2180}, {92, 52032}, {304, 14576}, {317, 44706}, {343, 1748}, {563, 62274}, {571, 62272}, {661, 55252}, {799, 52317}, {1147, 62273}, {1953, 7763}, {1993, 14213}, {2617, 6563}, {3133, 20571}, {12077, 55249}, {17167, 42700}, {33808, 40678}
X(63808) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 96}, {5, 91}, {6, 2168}, {24, 2190}, {31, 41271}, {47, 54}, {48, 57703}, {52, 1}, {63, 57875}, {75, 34385}, {163, 32692}, {216, 1820}, {311, 20571}, {317, 40440}, {324, 57716}, {467, 92}, {563, 14533}, {571, 2148}, {661, 55253}, {924, 2616}, {1087, 56272}, {1147, 2169}, {1625, 36145}, {1748, 275}, {1953, 2165}, {1993, 2167}, {2179, 60501}, {2180, 6}, {2181, 14593}, {2617, 925}, {3133, 47}, {7763, 62276}, {9723, 62277}, {12077, 55250}, {14213, 5392}, {14576, 19}, {18695, 20563}, {27362, 17871}, {39113, 75}, {40678, 921}, {42700, 56246}, {44077, 62268}, {44179, 95}, {44706, 68}, {51801, 5962}, {52032, 63}, {52317, 661}, {52435, 62267}, {52436, 62269}, {55216, 2623}, {55252, 799}, {55397, 16032}, {55398, 16037}, {62266, 2351}, {62272, 57904}, {62273, 55553}, {62274, 57898}
X(63808) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1959, 45224, 63}, {55397, 55398, 47}


X(63809) = X(226)X4605)∩X(1441)X(16577)

Barycentrics    Cos[2*B - C] + Cos[-B + 2*C] : :
Barycentrics    b*(-a + b - c)*(a + b - c)*c*(b + c)*(-(a^2*b^2) + b^4 + a^2*b*c - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63809) lies on these lines: {226, 4605}, {1441, 16577}, {1708, 17885}, {1826, 18590}, {2003, 18815}, {3668, 43682}, {6358, 26580}, {18593, 40149}

X(63809) = barycentric product X(1441)*X(7741)
X(63809) = barycentric quotient X(7741)/X(21)
X(63809) = {X(18815),X(30690)}-harmonic conjugate of X(2003)


X(63810) = X(2)X(3)∩X(10)X(486)

Barycentrics    (a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) - 2*(a + b + c)^2*S : :

X(63810) lies on these lines: {2, 3}, {10, 486}, {40, 7596}, {86, 638}, {387, 3069}, {391, 7582}, {485, 13333}, {491, 1330}, {492, 10449}, {615, 1834}, {637, 5224}, {966, 1588}, {1213, 3071}, {1587, 63055}, {3070, 17398}, {3316, 60077}, {3317, 43533}, {3590, 54624}, {3591, 54786}, {5257, 31562}, {5295, 56385}, {5393, 5717}, {5706, 31473}, {5750, 31561}, {5814, 56386}, {7090, 40937}, {10194, 60079}, {10195, 60078}, {10858, 17306}, {12323, 63014}, {31472, 53064}, {31594, 59725}, {37823, 45555}, {43564, 54623}, {56018, 62987}

X(63810) = orthocentroidal-circle-inverse of X(2047)
X(63810) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4, 2047}, {2, 11294, 21909}, {3, 4205, 2047}, {4, 3090, 36691}, {4, 36680, 3091}, {5, 2049, 2047}, {140, 54367, 2047}, {443, 5084, 3540}, {1656, 37150, 2047}, {5051, 37151, 2047}, {6998, 16062, 2047}, {7380, 13740, 2047}, {13728, 37320, 2047}, {14007, 36687, 2047}, {36672, 37153, 2047}, {37144, 37146, 2047}, {37145, 37147, 2047}, {46219, 52246, 2047}


X(63811) = X(511)X(21844)∩X(525)X(7782)

Barycentrics    a^2*(2*a^4 - 4*a^2*b^2 + 2*b^4 - c^4)*(2*a^4 - b^4 - 4*a^2*c^2 + 2*c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6234.

X(63811) lies on these lines: {511, 21844}, {525, 7782}, {3630, 6393}, {7771, 36952}, {15513, 36212}


X(63812) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(6)X(22199)

Barycentrics    (b - c)*(b^2*c + b*c^2 + a*(b^2 + c^2)) : :

X(63812) lies on these lines: {1, 48305}, {2, 47872}, {30, 511}, {659, 4560}, {661, 48265}, {663, 48289}, {667, 48248}, {693, 3777}, {764, 4978}, {876, 48396}, {890, 17494}, {905, 4874}, {1491, 4391}, {1577, 2530}, {2254, 2533}, {3004, 3766}, {3250, 3700}, {3261, 23807}, {3287, 21791}, {3669, 7662}, {3762, 4705}, {3801, 16892}, {3835, 48100}, {3960, 52601}, {4010, 4992}, {4024, 53533}, {4040, 48288}, {4041, 50341}, {4086, 50345}, {4106, 48616}, {4122, 48278}, {4129, 48059}, {4147, 48017}, {4367, 17496}, {4449, 48301}, {4462, 4490}, {4774, 21302}, {4791, 21260}, {4800, 47840}, {4801, 23765}, {4804, 48279}, {4806, 14349}, {4823, 23815}, {4824, 47918}, {4879, 48298}, {4905, 50352}, {4922, 48322}, {4976, 21832}, {4985, 50330}, {6332, 49286}, {6590, 54249}, {7178, 50348}, {14419, 47818}, {14431, 47816}, {14433, 42454}, {17072, 50335}, {17166, 21222}, {17989, 47660}, {21111, 21121}, {21120, 56324}, {21124, 21132}, {21146, 48151}, {21301, 50328}, {23738, 47672}, {23745, 47673}, {23746, 47671}, {24719, 48122}, {30709, 48160}, {30725, 51641}, {39547, 48281}, {44550, 47820}, {45314, 45671}, {45323, 45664}, {45324, 45340}, {45328, 45332}, {47666, 47913}, {47683, 47970}, {47793, 47827}, {47794, 47829}, {47795, 47875}, {47796, 47833}, {47815, 48226}, {47819, 48184}, {47828, 47835}, {47832, 47841}, {47834, 47889}, {47836, 48244}, {47837, 48229}, {47839, 48183}, {47906, 47946}, {47915, 47953}, {47949, 47993}, {47957, 47996}, {47959, 48002}, {47962, 48618}, {47964, 48609}, {47967, 48010}, {48043, 48093}, {48063, 48331}, {48080, 48123}, {48090, 48137}, {48099, 59590}, {48142, 48341}, {48180, 48553}, {48214, 48561}, {48233, 48569}, {48269, 58297}, {48273, 48335}, {48282, 48291}, {48325, 48330}, {48326, 55282}, {48333, 48339}, {48336, 53343}, {50326, 60349}, {50355, 50356}, {50507, 59672}, {50523, 53536}, {55285, 60350}

X(63812) = isogonal conjugate of X(59102)
X(63812) = isotomic conjugate of the isogonal conjugate of X(50510)
X(63812) = crossdifference of every pair of points on line {6, 22199}
X(63812) = barycentric product X(18686)*X(35672)
X(63812) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {693, 3777, 48406}, {764, 48393, 4978}, {1491, 4391, 21051}, {1577, 2530, 3837}, {3762, 4705, 48401}, {3762, 48409, 4705}, {3777, 48392, 693}, {4010, 48131, 4992}, {4391, 48410, 1491}, {4462, 47975, 4490}, {4791, 21260, 59521}, {4791, 48066, 21260}, {4804, 48334, 48279}, {14349, 48267, 4806}, {16892, 21118, 3801}, {17166, 21222, 48323}, {17496, 47694, 4367}, {23765, 48120, 4801}, {47794, 47888, 47829}, {47795, 47875, 48206}, {47872, 47893, 2}, {47949, 50449, 47993}, {48131, 48264, 4010}, {48151, 50457, 21146}


X(63813) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(6)X(23402)

Barycentrics    -((b - c)*(-b^4 - c^4 + a*(b^3 + c^3))) : :

X(63813) lies on these lines: {30, 511}, {3739, 47137}, {4670, 53522}, {16732, 17878}, {21114, 48084}, {23585, 23988}

X(63813) = crossdifference of every pair of points on line {6, 23402}
X(63813) = barycentric quotient X(18405)/X(13074)


X(63814) = CROSSDIFFERENCE OF EVERY PAIR OF POINTS ON X(6)X(1917)

Barycentrics    (b - c)*(b^4 + b^3*c + b^2*c^2 + b*c^3 + c^4) : :

X(63814) lies on these lines: {30, 511}, {8060, 21178}, {20948, 33315}, {21110, 62415}

X(63814) = isogonal conjugate of X(59001)
X(63814) = crossdifference of every pair of points on line {6, 1917}
X(63814) = barycentric quotient X(49690)/X(4685)


638

X(63815) = (name pending)

Barycentrics    (2*a^12*b^2 - 6*a^10*b^4 + 4*a^8*b^6 + 4*a^6*b^8 - 6*a^4*b^10 + 2*a^2*b^12 + a^12*c^2 - 5*a^10*b^2*c^2 + 5*a^8*b^4*c^2 - 2*a^6*b^6*c^2 + 5*a^4*b^8*c^2 - 5*a^2*b^10*c^2 + b^12*c^2 - 5*a^10*c^4 + 2*a^8*b^2*c^4 + 3*a^6*b^4*c^4 + 3*a^4*b^6*c^4 + 2*a^2*b^8*c^4 - 5*b^10*c^4 + 10*a^8*c^6 + 5*a^6*b^2*c^6 + 5*a^2*b^6*c^6 + 10*b^8*c^6 - 10*a^6*c^8 - 7*a^4*b^2*c^8 - 7*a^2*b^4*c^8 - 10*b^6*c^8 + 5*a^4*c^10 + 4*a^2*b^2*c^10 + 5*b^4*c^10 - a^2*c^12 - b^2*c^12)*(a^12*b^2 - 5*a^10*b^4 + 10*a^8*b^6 - 10*a^6*b^8 + 5*a^4*b^10 - a^2*b^12 + 2*a^12*c^2 - 5*a^10*b^2*c^2 + 2*a^8*b^4*c^2 + 5*a^6*b^6*c^2 - 7*a^4*b^8*c^2 + 4*a^2*b^10*c^2 - b^12*c^2 - 6*a^10*c^4 + 5*a^8*b^2*c^4 + 3*a^6*b^4*c^4 - 7*a^2*b^8*c^4 + 5*b^10*c^4 + 4*a^8*c^6 - 2*a^6*b^2*c^6 + 3*a^4*b^4*c^6 + 5*a^2*b^6*c^6 - 10*b^8*c^6 + 4*a^6*c^8 + 5*a^4*b^2*c^8 + 2*a^2*b^4*c^8 + 10*b^6*c^8 - 6*a^4*c^10 - 5*a^2*b^2*c^10 - 5*b^4*c^10 + 2*a^2*c^12 + b^2*c^12) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6235.

X(63815) lies on these lines: { }


X(63816) = X(3)X(161)∩X(578)X(8883)

Barycentrics    a^2*(2*a^12*b^2 - 10*a^10*b^4 + 20*a^8*b^6 - 20*a^6*b^8 + 10*a^4*b^10 - 2*a^2*b^12 + 2*a^12*c^2 - 10*a^10*b^2*c^2 + 18*a^8*b^4*c^2 - 11*a^6*b^6*c^2 - 5*a^4*b^8*c^2 + 9*a^2*b^10*c^2 - 3*b^12*c^2 - 10*a^10*c^4 + 18*a^8*b^2*c^4 - 4*a^6*b^4*c^4 - 5*a^4*b^6*c^4 - 8*a^2*b^8*c^4 + 9*b^10*c^4 + 20*a^8*c^6 - 11*a^6*b^2*c^6 - 5*a^4*b^4*c^6 + 2*a^2*b^6*c^6 - 6*b^8*c^6 - 20*a^6*c^8 - 5*a^4*b^2*c^8 - 8*a^2*b^4*c^8 - 6*b^6*c^8 + 10*a^4*c^10 + 9*a^2*b^2*c^10 + 9*b^4*c^10 - 2*a^2*c^12 - 3*b^2*c^12) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6235.

X(63816) lies on these lines: {3, 161}, {186, 32904}, {550, 31867}, {578, 8883}, {2777, 26897}, {3520, 35717}, {5876, 15869}, {6750, 19192}, {10274, 61111}, {10628, 46025}, {13630, 30259}, {14865, 35884}, {18570, 34101}, {23325, 26876}, {26874, 34786}, {52102, 63421}

X(63816) = midpoint of X(550) and X(31867)
X(63816) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 6288, 15848}, {3, 56308, 23358}


X(63817) = X(1)X(2)∩X(32)X(4950)

Barycentrics    a*b^3 - b^4 + a*c^3 - c^4 : :

X(63817) lies on these lines: {1, 2}, {32, 4950}, {116, 3263}, {315, 1759}, {325, 57015}, {626, 3721}, {754, 2243}, {758, 4766}, {824, 1577}, {1739, 26582}, {1930, 4136}, {3125, 20541}, {3583, 17738}, {3670, 6656}, {3782, 33184}, {3905, 20267}, {3933, 40997}, {3953, 26561}, {4022, 16894}, {4119, 4986}, {4150, 16574}, {4153, 17137}, {4165, 33936}, {4168, 31284}, {4178, 17447}, {4424, 26590}, {4437, 17757}, {4482, 5176}, {4568, 33864}, {4680, 24586}, {4799, 7818}, {4872, 33952}, {5011, 20553}, {5074, 53332}, {6381, 21044}, {7270, 29473}, {7752, 18055}, {7866, 37549}, {8360, 39544}, {11287, 17595}, {16600, 24995}, {16886, 21240}, {20632, 21207}, {20888, 21029}, {21019, 59519}, {24046, 33840}, {24318, 49781}, {24618, 32851}, {25345, 46902}, {30816, 49454}, {30945, 34542}, {42720, 49782}, {57024, 57032}

X(63817) = X(i)-isoconjugate of X(j) for these (i,j): {32, 767}, {1415, 60572}, {1501, 57951}
X(63817) = X(i)-Dao conjugate of X(j) for these (i,j): {1146, 60572}, {6376, 767}
X(63817) = crossdifference of every pair of points on line {560, 649}
X(63817) = barycentric product X(i)*X(j) for these {i,j}: {75, 35552}, {190, 63813}, {312, 45267}, {561, 766}, {1928, 8629}
X(63817) = barycentric quotient X(i)/X(j) for these {i,j}: {75, 767}, {522, 60572}, {561, 57951}, {766, 31}, {8629, 560}, {35552, 1}, {45267, 57}, {63813, 514}
X(63817) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 2, 30886}, {2, 8, 30108}, {2, 10, 30915}, {2, 145, 30884}, {2, 3621, 30907}, {2, 6542, 30908}, {2, 10453, 30896}, {2, 17135, 30895}, {2, 30178, 19867}, {626, 3721, 17211}, {3912, 25007, 29401}, {4136, 17046, 1930}, {6735, 49773, 23891}, {7818, 36283, 4799}, {30119, 30122, 1}, {30124, 30125, 1}


X(63818) = X(1)X(2)∩X(31)X(291)

Barycentrics    a*(a^3*b + a*b^3 + a^3*c - b^2*c^2 + a*c^3) : :

X(63818) lies on these lines: {1, 2}, {6, 26241}, {22, 17798}, {31, 291}, {39, 23407}, {105, 29363}, {192, 40934}, {251, 40746}, {321, 54291}, {350, 3891}, {385, 26232}, {672, 17127}, {982, 2239}, {1008, 4968}, {1180, 23632}, {1194, 22199}, {1390, 62851}, {1575, 3744}, {1621, 2276}, {1716, 6646}, {1918, 4446}, {2112, 51949}, {2209, 24478}, {2223, 24598}, {2238, 3681}, {3060, 20863}, {3097, 8616}, {3263, 3896}, {3290, 21904}, {3416, 30965}, {3662, 17153}, {3677, 56508}, {3745, 28600}, {3747, 12782}, {3751, 56517}, {3758, 4749}, {3779, 27644}, {3795, 17715}, {3873, 37676}, {4184, 37586}, {4368, 32925}, {4383, 49706}, {4392, 56509}, {4414, 56512}, {4426, 37325}, {4664, 39688}, {4865, 30969}, {5247, 17522}, {6998, 37698}, {7290, 56507}, {7379, 37529}, {7385, 37699}, {7766, 20464}, {8299, 62806}, {13576, 20242}, {15624, 24530}, {16476, 20456}, {16687, 26746}, {16690, 21035}, {17065, 20964}, {17155, 24259}, {17165, 24514}, {17594, 56511}, {17754, 62834}, {17759, 32929}, {23655, 26277}, {24512, 62807}, {25279, 28350}, {25287, 52151}, {25308, 28368}, {26231, 37646}, {26234, 37632}, {27804, 31087}, {30646, 51973}, {30945, 33078}, {30953, 32844}, {30961, 33153}, {30985, 33148}, {31006, 33073}, {31084, 33136}, {31126, 33141}, {32771, 40718}, {32912, 56513}, {33102, 33869}, {33867, 39732}, {60724, 62840}

X(63818) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4651, 29679}, {2, 17018, 3920}, {2, 17024, 3720}, {2, 19993, 10453}, {2, 20012, 10327}, {2, 33090, 31330}, {43, 614, 2}


X(63819) = X(1)X(2)∩X(826)X(850)

Barycentrics    a*b^4 - b^5 + a*c^4 - c^5 : :

X(63819) lies on these lines: {1, 2}, {826, 850}, {1760, 21275}, {2244, 33911}, {3264, 21045}, {4118, 21235}, {4121, 20890}, {4150, 17138}, {4178, 17047}, {4769, 24587}, {17446, 26176}, {20891, 21023}, {25346, 46903}

X(63819) = crossdifference of every pair of points on line {649, 1501}
X(63819) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3006, 48381, 20352}, {4178, 17047, 20234}


X(63820) = X(1)X(522)∩X(513)X(15178)

Barycentrics    a*(a - b - c)*(b - c)*(2*a^5 - 4*a^3*b^2 + 2*a*b^4 + 3*a^3*b*c + a^2*b^2*c - 3*a*b^3*c - b^4*c - 4*a^3*c^2 + a^2*b*c^2 + 3*a*b^2*c^2 + b^3*c^2 - 3*a*b*c^3 + b^2*c^3 + 2*a*c^4 - b*c^4) : :

X(63820) lies on these lines: {1, 522}, {513, 15178}, {2605, 21201}, {3738, 14315}, {24457, 48294}, {26287, 32475}, {28147, 53406}, {37535, 39226}


X(63821) = 77TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    6*a^10 - a^8*b^2 - 22*a^6*b^4 + 12*a^4*b^6 + 16*a^2*b^8 - 11*b^10 - a^8*c^2 + 24*a^6*b^2*c^2 - 4*a^4*b^4*c^2 - 52*a^2*b^6*c^2 + 33*b^8*c^2 - 22*a^6*c^4 - 4*a^4*b^2*c^4 + 72*a^2*b^4*c^4 - 22*b^6*c^4 + 12*a^4*c^6 - 52*a^2*b^2*c^6 - 22*b^4*c^6 + 16*a^2*c^8 + 33*b^2*c^8 - 11*c^10 : :
X(63821) = 11 X[5] - 3 X[15646], X[5] + 3 X[23323], 7 X[5] - 3 X[44452], 5 X[5] - 3 X[44911], 4 X[5] - 3 X[44912], 5 X[5] - X[47335], X[20] + 3 X[13473], X[20] - 3 X[16976], X[23] - 17 X[3854], 3 X[186] - 19 X[61945], 15 X[381] + X[7574], 3 X[381] + X[10297], 9 X[381] - X[11799], 33 X[381] - X[37924], 3 X[381] - X[37984], 5 X[381] - X[47332], X[382] + 3 X[10257], 3 X[403] - 11 X[3855], 3 X[403] - X[37897], 11 X[403] - 3 X[37939], 3 X[403] + X[47339], X[468] - 5 X[3091], 3 X[468] + X[10296], 11 X[468] - 7 X[37957], 4 X[546] + X[47629], 5 X[631] - 3 X[47114], 5 X[631] + 3 X[57584], X[858] + 7 X[3832], X[858] + 3 X[10151], 11 X[858] - 3 X[37944], 7 X[858] - 3 X[47091], 5 X[858] + 3 X[52403], 5 X[1656] - X[47308], 3 X[2071] + 13 X[61982], 3 X[2072] + 5 X[3843], 3 X[2072] + X[47309], 15 X[3091] + X[10296], 55 X[3091] - 7 X[37957], 3 X[3153] + X[37899], 17 X[3544] - X[56369], 9 X[3545] - X[10295], 7 X[3832] - 3 X[10151], 77 X[3832] + 3 X[37944], 49 X[3832] + 3 X[47091], 35 X[3832] - 3 X[52403], 3 X[3839] + X[47097], 9 X[3839] + X[47337], 9 X[3839] - X[62288], 5 X[3843] - X[47309], 3 X[3845] + X[15122], 9 X[3850] - X[44264], 8 X[3850] - X[47316], 7 X[3851] + X[18323], 7 X[3851] - X[37934], 11 X[3855] - X[37897], 121 X[3855] - 9 X[37939], 11 X[3855] + X[47339], 7 X[3857] + X[18572], 21 X[3857] - X[47342], 14 X[3857] - X[47630], 5 X[3858] - X[47336], 5 X[3859] - X[44961], 11 X[5056] - 3 X[44280], 11 X[5070] - 3 X[44246], 5 X[5071] - X[47031], 11 X[5072] - 3 X[44214], X[7426] - 9 X[61954], X[7464] + 15 X[41099], X[7464] + 3 X[47310], X[7574] - 5 X[10297], 3 X[7574] + 5 X[11799], 11 X[7574] + 5 X[37924], X[7574] + 5 X[37984], X[7574] + 3 X[47332], X[7575] - 9 X[38071], 11 X[10151] + X[37944], 7 X[10151] + X[47091], 5 X[10151] - X[52403], 11 X[10296] + 21 X[37957], 3 X[10297] + X[11799], 11 X[10297] + X[37924], 5 X[10297] + 3 X[47332], X[10989] + 15 X[61962], 11 X[11799] - 3 X[37924], X[11799] - 3 X[37984], 5 X[11799] - 9 X[47332], X[15646] + 11 X[23323], 6 X[15646] - 11 X[37911], 7 X[15646] - 11 X[44452], 5 X[15646] - 11 X[44911], 4 X[15646] - 11 X[44912], 15 X[15646] - 11 X[47335], 3 X[16386] + 5 X[17578], X[18325] - 17 X[61968], 3 X[18403] + 13 X[61953], X[18571] - 5 X[61940], 3 X[18572] + X[47342], 2 X[18572] + X[47630], X[18579] - 5 X[61942], 5 X[19709] - X[47333], 9 X[23046] - X[44267], 6 X[23323] + X[37911], 7 X[23323] + X[44452], 5 X[23323] + X[44911], 4 X[23323] + X[44912], 15 X[23323] + X[47335], X[25338] - 9 X[61957], 5 X[30745] + 11 X[50689], 3 X[34152] + 5 X[62006], 11 X[37897] - 9 X[37939], X[37904] - 13 X[61958], 3 X[37907] - 19 X[61952], 7 X[37911] - 6 X[44452], 5 X[37911] - 6 X[44911], 2 X[37911] - 3 X[44912], 5 X[37911] - 2 X[47335], X[37924] - 11 X[37984], 5 X[37924] - 33 X[47332], 3 X[37935] - 17 X[61946], 9 X[37939] + 11 X[47339], 9 X[37941] - 25 X[61914], 3 X[37942] - 13 X[61953], 7 X[37944] - 11 X[47091], 5 X[37944] + 11 X[52403], 9 X[37948] + 7 X[62021], X[37950] + 7 X[61976], 5 X[37952] - 21 X[61936], 3 X[37968] - 7 X[61894], 5 X[37984] - 3 X[47332], 5 X[41099] - X[47310], 21 X[41106] - X[47340], 11 X[41991] + X[47341], 8 X[44264] - 9 X[47316], X[44265] - 9 X[61948], 5 X[44452] - 7 X[44911], 4 X[44452] - 7 X[44912], 15 X[44452] - 7 X[47335], 4 X[44911] - 5 X[44912], 3 X[44911] - X[47335], 15 X[44912] - 4 X[47335], 5 X[47091] + 7 X[52403], X[47092] + 27 X[61967], X[47095] + 3 X[47096], 3 X[47097] - X[47337], 3 X[47097] + X[62288], X[47311] + 11 X[61966], X[47315] + 13 X[61964], X[47334] - 5 X[61956], 2 X[47342] - 3 X[47630], X[54995] + 7 X[61980], 3 X[60466] + 5 X[62344], 3 X[3817] - X[51725], 5 X[5734] - X[47536], X[5921] + 3 X[47463], 5 X[8227] - X[47469], 5 X[11522] - X[47489], 5 X[30308] - X[47472], 5 X[37714] - X[47490]

See Antreas Hatzipolakis and Peter Moses, euclid 6236.

X(63821) lies on these lines: {2, 3}, {115, 34569}, {523, 44925}, {1503, 32300}, {3564, 7687}, {3817, 51725}, {3818, 23326}, {5160, 19372}, {5734, 47536}, {5921, 47463}, {7286, 9817}, {8227, 47469}, {11522, 47489}, {13754, 15465}, {18418, 23324}, {30308, 47472}, {37714, 47490}, {50958, 63655}

X(63821) = midpoint of X(i) and X(j) for these {i,j}: {4, 5159}, {10297, 37984}, {13473, 16976}, {18323, 37934}, {18403, 37942}, {37897, 47339}, {46517, 47338}, {47114, 57584}, {47337, 62288}
X(63821) = reflection of X(37911) in X(5)
X(63821) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 34622, 3627}, {5, 18580, 547}, {5, 37911, 44912}, {5, 47335, 44911}, {381, 10297, 37984}, {403, 47339, 37897}, {858, 3832, 10151}, {2072, 3843, 47309}, {10297, 47332, 7574}, {18537, 47332, 44911}, {47097, 62288, 47337}


X(63822) = X(1)X(256)∩X(187)X(237)

Barycentrics    a^2*(a^2*b^3 - a*b^4 + 2*a^3*b*c - a^2*b^2*c - a*b^3*c + b^4*c - a^2*b*c^2 + 2*a*b^2*c^2 - b^3*c^2 + a^2*c^3 - a*b*c^3 - b^2*c^3 - a*c^4 + b*c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6236.

X(63822) lies on these lines: {1, 256}, {65, 48932}, {187, 237}, {213, 1692}, {230, 40608}, {385, 3903}, {392, 12723}, {612, 40966}, {758, 41193}, {1326, 2360}, {1486, 2076}, {1570, 20963}, {1691, 2175}, {2030, 54981}, {2080, 37590}, {2328, 5060}, {2701, 59019}, {2703, 9082}, {3022, 45272}, {4014, 5088}, {4116, 40984}, {5107, 16971}, {5360, 8772}, {18860, 37575}, {40499, 51928}, {44669, 51464}

X(63822) = midpoint of X(385) and X(3903)
X(63822) = reflection of X(40608) in X(230)
X(63822) = incircle inverse of X(21746)
X(63822) = crossdifference of every pair of points on line {2, 3287}


X(63823) = X(1)X(256)∩X(2030)X(3230)

Barycentrics    a^2*(a^3*b^3 - a*b^5 + 4*a^4*b*c + a^3*b^2*c - 3*a^2*b^3*c - a*b^4*c + 3*b^5*c + a^3*b*c^2 + a^3*c^3 - 3*a^2*b*c^3 - 4*b^3*c^3 - a*b*c^4 - a*c^5 + 3*b*c^5) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6236.

X(63823) lies on these lines: {1, 256}, {187, 37590}, {512, 48064}, {1691, 16969}, {1692, 2176}, {2030, 3230}, {2223, 47113}, {10179, 12722}, {16971, 44496}, {35006, 36647}

X(63823) = midpoint of X(1) and X(63822)
X(63823) = crossdifference of every pair of points on line {3287, 37673}


X(63824) = X(4)X(64)∩X(8057)X(52585)

Barycentrics    (a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8 - 4*a^6*c^2 - 4*a^4*b^2*c^2 + 4*a^2*b^4*c^2 + 4*b^6*c^2 + 6*a^4*c^4 + 4*a^2*b^2*c^4 - 10*b^4*c^4 - 4*a^2*c^6 + 4*b^2*c^6 + c^8)*(2*a^14 - a^12*b^2 - 4*a^10*b^4 - 11*a^8*b^6 + 34*a^6*b^8 - 23*a^4*b^10 + 3*b^14 - a^12*c^2 + 8*a^10*b^2*c^2 + 11*a^8*b^4*c^2 - 56*a^6*b^6*c^2 + 37*a^4*b^8*c^2 + 16*a^2*b^10*c^2 - 15*b^12*c^2 - 4*a^10*c^4 + 11*a^8*b^2*c^4 + 44*a^6*b^4*c^4 - 14*a^4*b^6*c^4 - 64*a^2*b^8*c^4 + 27*b^10*c^4 - 11*a^8*c^6 - 56*a^6*b^2*c^6 - 14*a^4*b^4*c^6 + 96*a^2*b^6*c^6 - 15*b^8*c^6 + 34*a^6*c^8 + 37*a^4*b^2*c^8 - 64*a^2*b^4*c^8 - 15*b^6*c^8 - 23*a^4*c^10 + 16*a^2*b^2*c^10 + 27*b^4*c^10 - 15*b^2*c^12 + 3*c^14) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6237.

X(63824) lies on these lines: {4, 64}, {8057, 52585}

X(63824) = midpoint of X(4) and X(15427)
X(63824) = polar circle inverse of X(41425)
X(63824) = X(i)-complementary conjugate of X(j) for these (i,j): {1712, 113}, {2159, 1073}, {8749, 8808}, {35200, 59361}, {36119, 6247}





leftri   Trigonometric Differences and Products: X(63825)-X(63837)  rightri

Contributed by Clark Kimbering and Peter Moses, June 14, 2024

This section treats triangle centers of the forms sin(nB+mC)-sin(mB+nC) and cos(nB+mC)-cos(mB+nC) and also of the forms sin(nB+mC)*sin(mB+nC) and cos(nB+mC)*cos(mB+nC), etc.

The appearance of (n,m,k) in the following list means that X(k) = sin(nB+mC)-sin(mB+nC):

(1,-1,1577), (1,0,514), (2,-2,18314), (2,0,525), (2,-1,63825), (2,1,14838), (3,1,63827), (3,2,63828), (3,3,63826), (4,2,63830), (4,4,63829)

The appearance of (n,m,k) in the next list means that X(k) = cos(nB+mC)-cos(mB+nC):

(1,0,522), (2,0,523), (2,1,3738), (3,-1,2618), (3,1,656), (3,2,63831), (4,0,6368), (4,2,526), (5,3,63832)

The appearance of (n,m,k) in the next list means that X(k) = sin(nB+mC)*sin(mB+nC):

(1,-1,338), (1,0,75), (1,1,6), (2,0,264), (2,1,662), (2,2,577), (3,0,63759), (3,1,63833), (3,3,63834), (4,0,55553), (4,2,18315)

The appearance of (n,m,k) in the next list means that X(k) = cos(nB+mC)*cos(mB+nC):

(1,-1,45793), (1,0,92), (1,1,394), (2,0,5392), (2,1,2167), (2,2,63835), (3,0,63764), (3,1,63836), (4,0,63765), (4,2,63766)

The appearance of (n,m,k) in the next list means that X(k) = cot(nB+mC) + cot(mB+nC):

(1,0,6}, (1,1,69}, (2,0,577}, (2,1,526}, (2,2,317}, (3,0,63834}, (3,3,63761}, (4,4,55552}

The appearance of (n,m,k) in the next list means that X(k) = tan(nB+mC) + tan(mB+nC):

(1,0,3), (1,1,4), (2,0,1147), (2,1,1154), (2,2,68), (3,0,63837), (3,3,562), (4,4,43973)

For midpoints of trigonometric points, see the preamble just before X(63839).

underbar



X(63825) = X(226)X(514)∩X(522)X(4823)

Barycentrics    Sin[2B - C] - Sin[-B + 2C] : :
Barycentrics    b*(b - c)*c*(-(a^2*b^2) + b^4 - a^2*b*c - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63825) lies on these lines: {226, 514}, {522, 4823}, {693, 3960}, {1577, 2610}, {4391, 23884}, {14838, 17924}, {23595, 24006}

X(63825) = midpoint of X(1577) and X(36038)
X(63825) = crossdifference of every pair of points on line {2174, 2361}
X(63825) = barycentric product X(i)*X(j) for these {i,j}: {693, 7951}, {18116, 20565}
X(63825) = barycentric quotient X(i)/X(j) for these {i,j}: {7951, 100}, {18116, 35}


X(63826) = X(30)X(511)∩X(661)X(45754)

Barycentrics    Sin[3B] - Sin[3C] : :
Barycentrics    (b - c)*(-a^2 + b^2 + b*c + c^2)*(-(a^2*b^2) + b^4 - a^2*b*c - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63826) lies on these lines: {30, 511}, {661, 45754}, {1577, 14213}, {3700, 18118}, {4560, 17479}, {14838, 16577}, {22000, 57068}


X(63827) = X(514)X(661)∩X(656)X(1955)

Barycentrics    Sin[3B + C] - Sin[B +3C] : :
Barycentrics    a*(b - c)*(b + c)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :

X(63827) lies on these lines: {514, 661}, {656, 1955}, {1211, 52599}, {1924, 2172}, {4592, 36145}, {4707, 51664}, {5712, 17925}, {7265, 8611}, {9001, 47842}, {17899, 55182}, {46393, 47794}, {50329, 55126}

X(63827) = isogonal conjugate of X(36145)
X(63827) = isotomic conjugate of the isogonal conjugate of X(55216)
X(63827) = X(i)-complementary conjugate of X(j) for these (i,j): {2164, 34589}, {4559, 41540}, {36082, 3739}, {55248, 46100}, {60249, 21252}
X(63827) = X(i)-Ceva conjugate of X(j) for these (i,j): {4592, 1}, {55215, 75}, {55249, 44179}
X(63827) = X(i)-isoconjugate of X(j) for these (i,j): {1, 36145}, {2, 32734}, {5, 32692}, {6, 925}, {32, 46134}, {68, 112}, {91, 163}, {96, 1625}, {99, 60501}, {107, 55549}, {110, 2165}, {155, 39416}, {162, 1820}, {184, 30450}, {485, 39384}, {486, 39383}, {560, 55215}, {648, 2351}, {847, 32661}, {1101, 55250}, {1576, 5392}, {2168, 2617}, {2489, 57763}, {2501, 44174}, {2971, 55277}, {3564, 58961}, {3565, 56891}, {4558, 14593}, {5962, 32662}, {6529, 16391}, {8576, 54031}, {8577, 54030}, {10420, 62361}, {13398, 47731}, {14560, 37802}, {14570, 41271}, {14574, 57904}, {14576, 52932}, {14586, 56272}, {15352, 59176}, {16310, 46969}, {16813, 61363}, {20563, 61206}, {32713, 52350}, {34385, 61194}, {35360, 57703}, {52604, 57875}
X(63827) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 36145}, {9, 925}, {115, 91}, {125, 1820}, {134, 2180}, {135, 19}, {244, 2165}, {523, 55250}, {577, 4575}, {924, 55216}, {2501, 24006}, {4858, 5392}, {6374, 55215}, {6376, 46134}, {32664, 32734}, {34116, 163}, {34591, 68}, {35588, 2315}, {36901, 20571}, {38985, 55549}, {38986, 60501}, {39013, 1}, {47421, 44706}, {52584, 1577}, {55066, 2351}, {62605, 30450}
X(63827) = crosspoint of X(i) and X(j) for these (i,j): {75, 55215}, {92, 662}, {799, 40440}, {44179, 55249}
X(63827) = crosssum of X(i) and X(j) for these (i,j): {48, 661}, {798, 62266}
X(63827) = crossdifference of every pair of points on line {31, 1820}
X(63827) = barycentric product X(i)*X(j) for these {i,j}: {1, 6563}, {24, 14208}, {47, 850}, {63, 57065}, {75, 924}, {76, 55216}, {92, 52584}, {110, 17881}, {115, 55249}, {136, 4592}, {304, 6753}, {313, 34948}, {317, 656}, {514, 42700}, {523, 44179}, {525, 1748}, {561, 34952}, {571, 20948}, {661, 7763}, {799, 47421}, {1577, 1993}, {1969, 30451}, {2616, 39113}, {3708, 55227}, {8773, 57154}, {9723, 24006}, {11547, 24018}, {14397, 33805}, {15412, 63808}, {17879, 52917}, {18605, 52623}, {18883, 32679}, {20902, 41679}, {39013, 55215}, {44808, 63759}, {52317, 62276}, {54028, 55398}, {54029, 55397}, {55278, 62719}
X(63827) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 925}, {6, 36145}, {24, 162}, {31, 32734}, {47, 110}, {52, 2617}, {75, 46134}, {76, 55215}, {92, 30450}, {115, 55250}, {136, 24006}, {317, 811}, {523, 91}, {563, 32661}, {571, 163}, {647, 1820}, {656, 68}, {661, 2165}, {798, 60501}, {810, 2351}, {822, 55549}, {850, 20571}, {924, 1}, {1147, 4575}, {1577, 5392}, {1748, 648}, {1993, 662}, {2148, 32692}, {2180, 1625}, {2616, 96}, {2618, 56272}, {2623, 2168}, {4575, 44174}, {4592, 57763}, {5961, 36061}, {6563, 75}, {6753, 19}, {7763, 799}, {8745, 24019}, {9723, 4592}, {11547, 823}, {14208, 20563}, {14397, 2173}, {14618, 57716}, {15423, 1748}, {17881, 850}, {18605, 4556}, {18883, 32680}, {20948, 57904}, {24006, 847}, {24018, 52350}, {30451, 48}, {31635, 36036}, {32679, 37802}, {34948, 58}, {34952, 31}, {39013, 55216}, {42700, 190}, {43088, 2166}, {44077, 32676}, {44179, 99}, {44808, 6149}, {47421, 661}, {52317, 1953}, {52415, 36129}, {52584, 63}, {52917, 24000}, {52952, 56829}, {55216, 6}, {55227, 46254}, {55249, 4590}, {55397, 54031}, {55398, 54030}, {57065, 92}, {57154, 1733}, {62719, 55277}, {63801, 23181}, {63808, 14570}
X(63827) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {661, 24018, 1577}, {1577, 32679, 24018}


X(63828) = X(63)X(23875)∩X(514)X(654)

Barycentrics    Sin[3B + 2C] - Sin[2B +3C] : :
Barycentrics    a^2*(b - c)*(a^4 - 2*a^2*b^2 + b^4 - a^2*b*c + b^3*c - 2*a^2*c^2 + b^2*c^2 + b*c^3 + c^4) : :

X(63828) lies on these lines: {63, 23875}, {514, 654}, {649, 15309}, {652, 14838}, {1946, 2774}, {3960, 4091}, {22160, 53301}, {22383, 52597}, {48018, 53300}

X(63828) = barycentric product X(4560)*X(63807)
X(63828) = barycentric quotient X(63807)/X(4552)


X(63829) = X(3)X(58756)∩X(30)X(511)

Barycentrics    Sin[4B] - Sin[4C] : :
Barycentrics    (b - c)*(b + c)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(-(a^2*b^2) + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

X(63829) lies on these lines: {3, 58756}, {5, 51513}, {30, 511}, {381, 44926}, {1116, 61736}, {1658, 39481}, {2394, 54666}, {6334, 14618}, {6563, 6753}, {7781, 63645}, {12077, 18314}, {13371, 39512}, {15412, 41298}, {16040, 24978}, {16229, 44921}, {34225, 53173}, {34952, 57154}, {39183, 44554}, {39201, 62438}, {39533, 44932}, {44918, 58757}

X(63829) = isogonal conjugate of X(32692)
X(63829) = isogonal conjugate of the anticomplement of X(46655)
X(63829) = isotomic conjugate of the isogonal conjugate of X(52317)
X(63829) = trilinear pole of line {55072, 55073}
X(63829) = crossdifference of every pair of points on line {6, 2351}
X(63829) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {6563, 57065, 52584}, {12077, 60597, 18314}, {18314, 20577, 12077}, {18314, 41078, 60597}, {20577, 41078, 18314}, {57065, 57070, 6753}


X(63830) = X(2)X(2413)∩X(3)X(15451)

Barycentrics    Sin[4B + 2C] - Sin[2B +4C] : :
Barycentrics    a^2*(b - c)*(b + c)*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :
X(63830) = 3 X[2] + X[15412], 2 X[647] + X[8552], 3 X[647] + X[52613], 3 X[8552] - 2 X[52613], 3 X[52584] - X[52613], 3 X[9126] - 2 X[44680], 3 X[44560] - X[52585]

X(63830) lies on these lines: {2, 2413}, {3, 15451}, {5, 27363}, {249, 32662}, {441, 525}, {512, 5926}, {523, 44452}, {826, 6689}, {1147, 58308}, {1510, 6150}, {2501, 15423}, {3566, 11615}, {3800, 46953}, {6140, 32478}, {6292, 52591}, {6368, 14156}, {6671, 23872}, {6672, 23873}, {6709, 18310}, {7254, 23114}, {8562, 43083}, {9517, 39201}, {14838, 16579}, {16040, 24978}, {16229, 39510}, {16760, 34837}, {17434, 39181}, {20577, 41298}, {42653, 58395}, {44560, 46425}, {45681, 58417}, {47221, 62510}, {47230, 57065}

X(63830) = midpoint of X(i) and X(j) for these {i,j}: {3, 15451}, {647, 52584}, {15412, 18314}, {20577, 41298}, {37084, 57135}
X(63830) = reflection of X(i) in X(j) for these {i,j}: {8552, 52584}, {16229, 39510}, {44810, 39228}
X(63830) = isotomic conjugate of X(38342)
X(63830) = complement of X(18314)
X(63830) = complement of the isogonal conjugate of X(14586)
X(63830) = complement of the isotomic conjugate of X(18315)
X(63830) = isotomic conjugate of the polar conjugate of X(1510)
X(63830) = isogonal conjugate of the polar conjugate of X(41298)
X(63830) = polar conjugate of the isogonal conjugate of X(37084)
X(63830) = X(18349)-anticomplementary conjugate of X(21294)
X(63830) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 55073}, {47, 46655}, {48, 20625}, {54, 21253}, {163, 1209}, {933, 20305}, {2148, 125}, {2167, 53575}, {2169, 127}, {9247, 39019}, {14533, 34846}, {14573, 16592}, {14586, 10}, {14587, 4369}, {15958, 18589}, {18315, 2887}, {19306, 46439}, {23995, 18314}, {32676, 34836}, {32692, 34825}, {36134, 141}, {54034, 8287}, {62256, 16595}, {62267, 15526}, {62269, 115}, {62270, 16573}
X(63830) = X(i)-Ceva conjugate of X(j) for these (i,j): {41298, 1510}, {62724, 520}
X(63830) = X(i)-cross conjugate of X(j) for these (i,j): {47424, 3}, {57135, 41298}
X(63830) = X(i)-isoconjugate of X(j) for these (i,j): {4, 36148}, {19, 930}, {31, 38342}, {92, 32737}, {93, 163}, {112, 2962}, {162, 2963}, {560, 55217}, {562, 32678}, {823, 51477}, {1101, 55251}, {1576, 63764}, {1973, 46139}, {3519, 24019}, {11140, 32676}, {14111, 36145}
X(63830) = X(i)-Dao conjugate of X(j) for these (i,j): {2, 38342}, {6, 930}, {115, 93}, {125, 2963}, {523, 55251}, {4858, 63764}, {6337, 46139}, {6374, 55217}, {12077, 23290}, {15526, 11140}, {18334, 562}, {22052, 35311}, {22391, 32737}, {34591, 2962}, {35071, 3519}, {35591, 11062}, {36033, 36148}, {36901, 20572}, {37636, 41677}, {39013, 14111}, {39018, 4}, {39019, 25043}, {53986, 393}
X(63830) = crosspoint of X(i) and X(j) for these (i,j): {2, 18315}, {4558, 31626}, {40427, 43755}
X(63830) = crosssum of X(i) and X(j) for these (i,j): {6, 12077}, {523, 11245}, {2489, 47328}, {2501, 6748}
X(63830) = crossdifference of every pair of points on line {25, 2934}
X(63830) = barycentric product X(i)*X(j) for these {i,j}: {3, 41298}, {49, 850}, {69, 1510}, {95, 57135}, {97, 20577}, {143, 62428}, {264, 37084}, {328, 44809}, {520, 32002}, {523, 44180}, {525, 1994}, {526, 63761}, {647, 7769}, {879, 51440}, {1493, 62724}, {1577, 63760}, {2964, 14208}, {2965, 3267}, {3265, 3518}, {6368, 63172}, {8552, 30529}, {14577, 15414}, {15412, 63805}, {23286, 57805}, {23872, 52349}, {23873, 52348}, {34386, 57137}, {57489, 60597}
X(63830) = barycentric quotient X(i)/X(j) for these {i,j}: {2, 38342}, {3, 930}, {48, 36148}, {49, 110}, {69, 46139}, {76, 55217}, {115, 55251}, {137, 23290}, {143, 35360}, {184, 32737}, {520, 3519}, {523, 93}, {525, 11140}, {526, 562}, {647, 2963}, {656, 2962}, {850, 20572}, {924, 14111}, {1493, 35311}, {1510, 4}, {1577, 63764}, {1994, 648}, {2964, 162}, {2965, 112}, {3518, 107}, {6368, 25043}, {7769, 6331}, {14577, 61193}, {15958, 57639}, {18212, 30248}, {20574, 58988}, {20577, 324}, {23286, 252}, {25044, 933}, {30210, 31392}, {30529, 46456}, {32002, 6528}, {34386, 55283}, {34418, 52998}, {34433, 39419}, {37084, 3}, {39180, 1487}, {39201, 51477}, {41298, 264}, {44180, 99}, {44809, 186}, {47424, 12077}, {51440, 877}, {52348, 32037}, {52349, 32036}, {52417, 53176}, {55221, 8742}, {55223, 8741}, {57135, 5}, {57137, 53}, {57211, 13450}, {57489, 16813}, {62428, 57765}, {62589, 41677}, {63172, 18831}, {63760, 662}, {63761, 35139}, {63805, 14570}
X(63830) = {X(2),X(15412)}-harmonic conjugate of X(18314)


X(63831) = X(513)X(1385)∩X(521)X(31947)

Barycentrics    Cos[3B + 2C] - Cos[2B +3C] : :
Barycentrics    a^2*(a - b - c)*(b - c)*(a^4 - 2*a^2*b^2 + b^4 + a^2*b*c - b^3*c - 2*a^2*c^2 + b^2*c^2 - b*c^3 + c^4) : :
X(63831) = X[4105] - 5 X[57241], X[7629] - 3 X[14414]

X(63831) lies on these lines: {513, 1385}, {521, 31947}, {522, 2605}, {1459, 3738}, {2773, 23224}, {4105, 35057}, {7629, 14414}, {8677, 39226}, {21172, 21180}, {23187, 53295}, {23800, 51646}, {34589, 38984}, {47887, 48281}, {48283, 63820}

X(63831) = midpoint of X(23187) and X(53295)
X(63831) = reflection of X(48283) in X(63820)
X(63831) = X(2222)-isoconjugate of X(33599)
X(63831) = X(38984)-Dao conjugate of X(33599)
X(63831) = barycentric product X(i)*X(j) for these {i,j}: {514, 45392}, {3904, 10260}, {4391, 58738}, {4560, 63802}
X(63831) = barycentric quotient X(i)/X(j) for these {i,j}: {654, 33599}, {10260, 655}, {45392, 190}, {58738, 651}, {63802, 4552}


X(63832) = X(1)X(24006)∩X(48)X(798)

Barycentrics    Cos[5B + 3C] - Cos[3B +5C] : :
Barycentrics    a^3*(b - c)*(b + c)*(a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4) : :

X(63832) lies on these lines: {1, 24006}, {48, 798}, {73, 3657}, {521, 656}, {581, 54244}, {1577, 2616}, {2618, 17478}, {34948, 55216}, {38983, 38984}

X(63832) = isotomic conjugate of the polar conjugate of X(55216)
X(63832) = X(i)-Ceva conjugate of X(j) for these (i,j): {1577, 822}, {2616, 656}
X(63832) = X(i)-isoconjugate of X(j) for these (i,j): {4, 925}, {6, 30450}, {25, 46134}, {68, 107}, {91, 162}, {92, 36145}, {96, 35360}, {99, 14593}, {110, 847}, {112, 5392}, {163, 57716}, {264, 32734}, {324, 32692}, {476, 5962}, {648, 2165}, {687, 62361}, {689, 27367}, {823, 1820}, {933, 56272}, {1302, 51833}, {1576, 55553}, {1973, 55215}, {2351, 6528}, {6331, 60501}, {6515, 39416}, {6529, 52350}, {15352, 55549}, {20563, 32713}, {20571, 32676}, {32697, 60519}, {32708, 52504}, {34385, 52604}, {41515, 54030}, {41516, 54031}, {51481, 58961}, {52779, 61363}, {52918, 57415}, {57763, 58757}, {57875, 61193}, {57904, 61206}
X(63832) = X(i)-Dao conjugate of X(j) for these (i,j): {9, 30450}, {115, 57716}, {125, 91}, {135, 158}, {244, 847}, {577, 662}, {4858, 55553}, {6337, 55215}, {6505, 46134}, {15526, 20571}, {22391, 36145}, {34116, 162}, {34591, 5392}, {35588, 1725}, {36033, 925}, {36901, 57898}, {38985, 68}, {38986, 14593}, {39013, 92}, {47421, 14213}, {55066, 2165}, {55073, 44706}
X(63832) = crosspoint of X(i) and X(j) for these (i,j): {1, 4575}, {1331, 52185}, {2167, 4592}
X(63832) = crosssum of X(i) and X(j) for these (i,j): {1, 24006}, {7649, 12047}
X(63832) = crossdifference of every pair of points on line {19, 91}
X(63832) = barycentric product X(i)*X(j) for these {i,j}: {1, 52584}, {24, 24018}, {47, 525}, {48, 6563}, {63, 924}, {69, 55216}, {75, 30451}, {255, 57065}, {304, 34952}, {306, 34948}, {317, 822}, {326, 6753}, {520, 1748}, {563, 850}, {571, 14208}, {647, 44179}, {656, 1993}, {661, 9723}, {810, 7763}, {1147, 1577}, {1459, 42700}, {2180, 62428}, {2616, 52032}, {2632, 41679}, {4064, 18605}, {4592, 47421}, {5961, 32679}, {15412, 63801}, {17879, 61208}, {17881, 32661}, {20948, 52435}, {20975, 55249}, {23286, 63808}, {52317, 62277}
X(63832) = barycentric quotient X(i)/X(j) for these {i,j}: {1, 30450}, {24, 823}, {47, 648}, {48, 925}, {63, 46134}, {69, 55215}, {184, 36145}, {317, 57973}, {523, 57716}, {525, 20571}, {563, 110}, {571, 162}, {647, 91}, {656, 5392}, {661, 847}, {798, 14593}, {810, 2165}, {822, 68}, {850, 57898}, {924, 92}, {1147, 662}, {1577, 55553}, {1748, 6528}, {1993, 811}, {2180, 35360}, {2624, 5962}, {5961, 32680}, {6563, 1969}, {6753, 158}, {7763, 57968}, {8745, 36126}, {9247, 32734}, {9723, 799}, {14208, 57904}, {14397, 1784}, {20975, 55250}, {24018, 20563}, {30451, 1}, {34948, 27}, {34952, 19}, {39201, 1820}, {41679, 23999}, {44077, 24019}, {44179, 6331}, {44808, 52414}, {47421, 24006}, {51393, 24001}, {51776, 36036}, {52435, 163}, {52436, 32676}, {52584, 75}, {55216, 4}, {57065, 57806}, {58308, 2168}, {61208, 24000}, {62267, 32692}, {63801, 14570}


X(63833) = X(2)X(6)∩X(4)X(32181)

Barycentrics    Sin[3B + C]*Sin[B +3C] : :
Barycentrics    (a^2 - b^2 - b*c)*(a^2 - b^2 + b*c)*(a^2 - b*c - c^2)*(a^2 + b*c - c^2) : :

X(63833) lies on these lines: {2, 6}, {4, 32181}, {50, 264}, {95, 566}, {160, 9512}, {338, 577}, {8553, 9308}, {9220, 32002}, {15109, 43980}, {16310, 41008}, {18353, 53507}, {18564, 38733}, {20975, 45838}, {21637, 61684}, {21844, 41204}, {22261, 31388}, {32520, 34864}, {33971, 35471}, {41335, 52712}, {44145, 61748}, {46724, 48540}, {63762, 63763}

X(63833) = X(661)-isoconjugate of X(14719)
X(63833) = X(36830)-Dao conjugate of X(14719)
X(63833) = barycentric quotient X(110)/X(14719)
X(63833) = {X(44375),X(56290)}-harmonic conjugate of X(6)


X(63834) = X(2)X(63761)∩X(6)X(1511)

Barycentrics    Sin[3B +3C]*Sin[3B +3C] : :
Barycentrics    a^6*(a^2 - b^2 - b*c - c^2)^2*(a^2 - b^2 + b*c - c^2)^2 : :

X(63834) lies on these lines: {2, 63761}, {6, 1511}, {50, 18334}, {110, 38872}, {186, 18578}, {249, 60013}, {338, 18315}, {394, 34834}, {566, 50433}, {571, 9696}, {1971, 3258}, {1989, 32761}, {3043, 36423}, {3124, 14579}, {3269, 14533}, {6149, 34544}, {8041, 50660}, {9408, 59500}, {11130, 19294}, {11131, 19295}, {12383, 56408}, {14385, 14585}, {14591, 34210}, {15111, 59002}, {45793, 63766}

X(63834) = complement of X(63761)
X(63834) = complement of the isotomic conjugate of X(562)
X(63834) = isogonal conjugate of the polar conjugate of X(3043)
X(63834) = X(562)-complementary conjugate of X(2887)
X(63834) = X(i)-Ceva conjugate of X(j) for these (i,j): {249, 52603}, {18315, 526}, {52557, 50}, {63766, 1154}
X(63834) = X(i)-isoconjugate of X(j) for these (i,j): {94, 2166}, {1969, 14595}, {1989, 63759}, {2643, 57546}, {10412, 32680}, {14213, 14859}, {14592, 36129}, {23588, 23994}
X(63834) = X(i)-Dao conjugate of X(j) for these (i,j): {526, 338}, {1154, 45793}, {11597, 94}, {34544, 63759}, {40604, 20573}
X(63834) = crosspoint of X(i) and X(j) for these (i,j): {2, 562}, {249, 52603}, {323, 51256}
X(63834) = crosssum of X(i) and X(j) for these (i,j): {2, 46723}, {115, 10412}, {1989, 58733}
X(63834) = crossdifference of every pair of points on line {10412, 46008}
X(63834) = barycentric product X(i)*X(j) for these {i,j}: {3, 3043}, {50, 323}, {99, 57136}, {110, 62173}, {186, 22115}, {215, 7279}, {249, 18334}, {394, 36423}, {526, 52603}, {1094, 1095}, {1511, 14385}, {2477, 4996}, {3200, 37850}, {3201, 37848}, {6148, 61354}, {6149, 6149}, {7799, 19627}, {8552, 14591}, {10411, 14270}, {11597, 51256}, {23108, 58979}, {23963, 23965}, {34397, 52437}, {34834, 52557}, {44814, 51478}
X(63834) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 94}, {186, 18817}, {249, 57546}, {323, 20573}, {2477, 57645}, {3043, 264}, {6149, 63759}, {7279, 57789}, {14270, 10412}, {14575, 14595}, {14591, 46456}, {18334, 338}, {19627, 1989}, {22115, 328}, {23963, 23588}, {34397, 6344}, {36423, 2052}, {52557, 40427}, {52603, 35139}, {54034, 14859}, {57136, 523}, {61354, 5627}, {62173, 850}


X(63835) = X(2)X(95)∩X(50)X(394)

Barycentrics    Cos[2B+2C]*Cos[2B +2C] : :
Barycentrics    a^4*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)^2 : :

X(63835) lies on these lines: {2, 95}, {24, 12095}, {32, 1994}, {50, 394}, {115, 13579}, {511, 44208}, {569, 51255}, {571, 1993}, {1609, 56361}, {2351, 27365}, {2965, 63094}, {3133, 52432}, {4558, 6515}, {5063, 5422}, {5065, 34545}, {5392, 44375}, {6193, 8883}, {10316, 52275}, {10317, 35302}, {10539, 14889}, {11547, 41679}, {23357, 62194}, {33871, 63076}, {36416, 55551}

X(63835) = isotomic conjugate of the polar conjugate of X(52432)
X(63835) = isogonal conjugate of the polar conjugate of X(55551)
X(63835) = X(i)-Ceva conjugate of X(j) for these (i,j): {317, 1147}, {41679, 15423}, {55551, 52432}
X(63835) = X(3133)-cross conjugate of X(55551)
X(63835) = X(i)-isoconjugate of X(j) for these (i,j): {91, 2165}, {847, 1820}, {925, 55250}, {2168, 56272}, {2351, 57716}, {20571, 60501}
X(63835) = X(i)-Dao conjugate of X(j) for these (i,j): {134, 12077}, {577, 68}, {924, 115}, {34116, 2165}
X(63835) = crosspoint of X(55531) and X(55532)
X(63835) = barycentric product X(i)*X(j) for these {i,j}: {3, 55551}, {24, 9723}, {47, 44179}, {69, 52432}, {95, 3133}, {317, 1147}, {571, 7763}, {1599, 1600}, {1993, 1993}, {3926, 36416}, {4558, 15423}, {4563, 58760}, {4590, 39013}, {6754, 47389}, {18605, 42700}, {30451, 55227}, {34756, 59155}, {41679, 52584}, {55216, 55249}
X(63835) = barycentric quotient X(i)/X(j) for these {i,j}: {24, 847}, {47, 91}, {52, 56272}, {317, 55553}, {563, 1820}, {571, 2165}, {1147, 68}, {1748, 57716}, {1993, 5392}, {3133, 5}, {6754, 8754}, {7763, 57904}, {9723, 20563}, {15423, 14618}, {15958, 52932}, {34338, 2970}, {34756, 52582}, {36416, 393}, {39013, 115}, {41213, 41221}, {41679, 30450}, {44077, 14593}, {44179, 20571}, {52416, 5962}, {52432, 4}, {52435, 2351}, {52436, 60501}, {55216, 55250}, {55249, 55215}, {55551, 264}, {58760, 2501}, {59162, 57415}
X(63835) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 317, 63806}, {2, 63762, 577}


X(63836) = X(2)X(13585)∩X(50)X(5392)

Barycentrics    Cos[3B +C]*Cos[B +3C] : :
Barycentrics    (a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 - a^2*b^2*c^2 + 2*b^4*c^2 - b^2*c^4)*(a^6 - a^4*b^2 - 3*a^4*c^2 - a^2*b^2*c^2 - b^4*c^2 + 3*a^2*c^4 + 2*b^2*c^4 - c^6) : :

X(63836) lies on these lines: {2, 13585}, {50, 5392}, {394, 401}, {577, 45793}, {925, 34751}, {8613, 37638}, {13351, 40393}, {37649, 63548}, {39910, 54034}, {63762, 63763}


X(63837) = X(2)X(562)∩X(3)X(54)

Barycentrics    Tan[3*B] + Tan[3*C] : :
Barycentrics    a^6*(a^2 - b^2 - c^2)*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 - b^2*c^2 + c^4) : :

X(73837) lies on these lines {2, 562}, {3, 54}, {137, 13557}, {265, 14889}, {526, 54073}, {8154, 32423}, {9703, 52435}, {10317, 39018}

X(63837) = complement of X(562)
X(63837) = complement of the isotomic conjugate of X(63761)
X(63837) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 63834}, {2166, 34826}, {2964, 1511}, {30529, 20305}, {36061, 1510}, {63761, 2887}
X(63837) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 63834}, {10420, 1510}
X(63837) = X(i)-isoconjugate of X(j) for these (i,j): {93, 2166}, {1989, 63764}, {2962, 6344}, {32680, 55251}
X(63837) = X(i)-Dao conjugate of X(j) for these (i,j): {11597, 93}, {34544, 63764}, {35591, 23290}, {40604, 20572}, {63834, 2}
X(63837) = crosspoint of X(2) and X(63761)
X(63837) = crossdifference of every pair of points on line {1879, 12077}
X(63837) = barycentric product X(i)*X(j) for these {i,j}: {49, 323}, {50, 44180}, {394, 52417}, {1994, 22115}, {2965, 52437}, {4558, 44809}, {6149, 63760}, {14590, 37084}, {52603, 63830}, {63761, 63834}
X(63837) = barycentric quotient X(i)/X(j) for these {i,j}: {49, 94}, {50, 93}, {323, 20572}, {1994, 18817}, {2965, 6344}, {6149, 63764}, {10411, 55217}, {14270, 55251}, {22115, 11140}, {37084, 14592}, {44180, 20573}, {44809, 14618}, {52417, 2052}, {52603, 38342}, {63760, 63759}, {63834, 562}


X(63838) = 78TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    2*a^10 + a^8*b^2 - 10*a^6*b^4 + 4*a^4*b^6 + 8*a^2*b^8 - 5*b^10 + a^8*c^2 + 8*a^6*b^2*c^2 - 24*a^2*b^6*c^2 + 15*b^8*c^2 - 10*a^6*c^4 + 32*a^2*b^4*c^4 - 10*b^6*c^4 + 4*a^4*c^6 - 24*a^2*b^2*c^6 - 10*b^4*c^6 + 8*a^2*c^8 + 15*b^2*c^8 - 5*c^10 : :
X(63838) = 3 X[2] + X[57584], 3 X[4] + X[16386], 5 X[4] + 3 X[37948], 5 X[5] - X[15646], 5 X[5] - 2 X[37911], 3 X[5] - X[44452], 3 X[5] - 2 X[44912], 7 X[5] - X[47335], X[5] + 2 X[63821], X[23] - 5 X[403], X[23] - 25 X[3091], 3 X[23] + 5 X[3153], X[23] + 5 X[10297], 3 X[23] - 5 X[37971], 7 X[23] - 15 X[46451], X[186] - 9 X[3545], 3 X[381] + X[2072], 3 X[381] - X[10151], 15 X[381] + X[18859], 9 X[381] - X[31726], 9 X[381] + X[47090], 5 X[381] + X[47097], 7 X[381] - X[47310], X[403] - 5 X[3091], 3 X[403] + X[3153], 3 X[403] - X[37971], 7 X[403] - 3 X[46451], X[468] - 7 X[3851], 5 X[468] - 3 X[37922], and many others

See Antreas Hatzipolakis and Peter Moses, euclid 6238.

X(63838) lies on these lines: {2, 3}, {523, 44918}, {3817, 51713}, {3818, 10250}, {5448, 13292}, {5907, 32411}, {6000, 9826}, {7687, 44665}, {10149, 37697}, {11746, 13754}, {12118, 59551}, {13553, 61593}, {13851, 36518}, {14845, 16227}, {15311, 46686}, {15851, 47183}, {18418, 23325}, {18504, 34224}, {18553, 47464}, {23324, 46261}, {23327, 39884}, {44928, 62494}, {47469, 61268}, {47490, 61258}, {47593, 50799}

X(63838) = midpoint of X(i) and X(j) for these {i,j}: {3, 13473}, {4, 10257}, {5, 23323}, {403, 10297}, {468, 18403}, {2070, 47339}, {2071, 47309}, {2072, 10151}, {3153, 37971}, {5907, 32411}, {7574, 47093}, {13851, 51425}, {15122, 44283}, {18323, 37931}, {18325, 47091}, {31726, 47090}, {37938, 47336}, {37949, 47095}, {43893, 47341}
X(63838) = reflection of X(i) in X(j) for these {i,j}: {15646, 37911}, {16531, 15350}, {23323, 63821}, {37934, 44234}, {37942, 46031}, {44452, 44912}, {44911, 5}, {47114, 140}
X(63838) = first Droz-Farney circle inverse of X(30552)
X(63838) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 5, 16238}, {5, 546, 31833}, {5, 3845, 6644}, {5, 18570, 547}, {5, 44263, 6677}, {5, 44452, 44912}, {5, 52070, 3628}, {381, 427, 546}, {381, 2072, 10151}, {381, 3851, 6997}, {403, 3153, 37971}, {427, 546, 44804}, {546, 3850, 13487}, {546, 6677, 44263}, {546, 10224, 13488}, {1885, 10255, 32144}, {2072, 18420, 44452}, {2072, 18859, 47097}, {2072, 31726, 47090}, {3545, 9818, 5}, {3856, 12811, 23409}, {5020, 47097, 37911}, {5066, 44920, 5}, {5159, 13487, 37984}, {6677, 44263, 31833}, {10151, 47090, 31726}, {10297, 37971, 3153}, {13851, 36518, 51425}, {44452, 44912, 44911}, {61940, 63679, 5}





leftri   Trigonometric Midpoints: X(63839)-X(63846)  rightri

Contributed by Clark Kimbering and Peter Moses, June 17, 2024

The appearance of (n,m,k) in the following list means that X(k) = midpoint of sin(nB+mC) : : and sin(mB+nC) : : .

(1,0,10), (1,2,25639), (1,-2,3814), (1,-3,34825), (2,0,5), (2,-4,34826), (3,0,63803), (3,1,63840), (3,-2,63841), (4,0,5449), (4,2,63839)

The appearance of (n,m,k) in the following list means that X(k) = midpoint of cos(nB+mC) : : and cos(mB+nC) : : .

(1,0,142), (1,1,226), (2,0,13567), (2,1,63844), (2,2,343), (3,1,63843), (4,0,63842), (4,4,63806)

The appearance of (n,m,k) in the following list means that X(k) = midpoint of cot(nB+mC) : : and cot(mB+nC) : : .

(1,1,6), (1,2,3284), (1,-2,216), (2,2,577), (3,1,63845), (3,3,63834), (3,-1,63846)

Midpoints of pairs such as tan(kB)+tan(kC) : : and tan(kC)+tan(kB) : : can be found elsewhere in ETC using the identity tan(kB)+tan(kC) = sin(2kA); e.g., X(63837) = sin(6A) : : .

For more trigonometric triangle centers, see the preamble just before X(63825).

underbar



X(63839) = X(2)X(567)∩X(30)X(125)

Barycentrics    Sin[2*B] + Sin[4*B] + Sin[2*C] + Sin[4*C] : :
Barycentrics    a^6*b^4 - 3*a^4*b^6 + 3*a^2*b^8 - b^10 + 2*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 2*a^4*b^2*c^4 + 4*a^2*b^4*c^4 - 2*b^6*c^4 - 3*a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + 3*a^2*c^8 + 3*b^2*c^8 - c^10 : :
X(63839) = X[23] + 5 X[15027], 2 X[11801] + X[32110], 5 X[12041] - 2 X[20725], X[15361] - 4 X[44569], X[858] - 4 X[20396], X[3580] + 2 X[20304], 2 X[3580] + X[51391], 4 X[20304] - X[51391], X[3292] - 4 X[3628], X[1511] - 4 X[47296], X[1568] - 3 X[23515], 5 X[1656] + X[41724], 5 X[1656] - X[50461], and many others

X(63839) lies on these lines: {2, 567}, {3, 26913}, {4, 13561}, {5, 389}, {23, 15027}, {25, 34514}, {30, 125}, {49, 11264}, {51, 39504}, {52, 10224}, {54, 58407}, {68, 59543}, {74, 31726}, {113, 16227}, {140, 12370}, {143, 1594}, {156, 7505}, {185, 13406}, {186, 265}, {343, 15067}, {381, 23293}, {382, 23294}, {403, 5663}, {511, 11692}, {539, 5972}, {542, 44282}, {568, 7577}, {597, 1353}, {632, 43595}, {858, 13391}, {1112, 57582}, {1147, 60780}, {1154, 2072}, {1204, 44279}, {1209, 1493}, {1368, 54042}, {1495, 10096}, {1511, 44452}, {1539, 10151}, {1568, 23515}, {1614, 45732}, {1656, 5422}, {1853, 7530}, {1899, 10201}, {1994, 61711}, {2070, 25739}, {2071, 15061}, {2777, 44283}, {3090, 18951}, {3153, 3581}, {3357, 44271}, {3448, 10540}, {3542, 32140}, {3549, 18952}, {3564, 44911}, {3574, 16881}, {3627, 5894}, {3845, 44872}, {3861, 18488}, {5094, 39522}, {5133, 13364}, {5446, 32767}, {5562, 49673}, {5576, 10095}, {5609, 51425}, {5889, 10255}, {5890, 10254}, {5891, 50140}, {5944, 6146}, {6000, 10264}, {6097, 52388}, {6101, 11585}, {6143, 37472}, {6240, 18379}, {6243, 45622}, {6288, 44802}, {6639, 18912}, {6644, 14852}, {6697, 21850}, {6699, 34152}, {6723, 14156}, {7488, 13470}, {7502, 61646}, {7514, 37638}, {7542, 10610}, {7547, 37490}, {7575, 18400}, {7579, 13321}, {7723, 53781}, {8261, 9956}, {8262, 11649}, {9140, 14157}, {9730, 46029}, {9820, 32358}, {9927, 37814}, {10018, 32171}, {10024, 13630}, {10110, 33332}, {10112, 43839}, {10125, 13367}, {10257, 34128}, {10263, 13371}, {10272, 15350}, {10282, 45731}, {10539, 18356}, {10564, 40685}, {10605, 43589}, {10627, 37452}, {11245, 61619}, {11438, 44263}, {11557, 58551}, {11750, 12107}, {11793, 21230}, {11799, 20379}, {11818, 61506}, {12006, 13160}, {12046, 34939}, {12106, 18474}, {12121, 37941}, {12134, 44232}, {12162, 44235}, {12585, 25555}, {12897, 25563}, {12902, 37955}, {13142, 32144}, {13340, 31101}, {13352, 61736}, {13353, 43816}, {13363, 37347}, {13366, 45969}, {13403, 20191}, {13445, 18325}, {13491, 15761}, {13565, 14788}, {14076, 16625}, {14118, 43821}, {14128, 50143}, {14130, 15807}, {14254, 35235}, {14389, 45967}, {14644, 18403}, {14826, 41615}, {14915, 43893}, {14984, 62376}, {15059, 43574}, {15114, 37981}, {15120, 53415}, {15134, 43836}, {15136, 39571}, {15311, 47336}, {15331, 21659}, {15646, 17702}, {15806, 32165}, {16003, 44961}, {16080, 50464}, {16163, 37968}, {16238, 61544}, {16340, 62501}, {16657, 44236}, {16868, 34783}, {18324, 18396}, {18364, 43835}, {18381, 37440}, {18390, 18570}, {18420, 37643}, {18430, 18559}, {18435, 62947}, {18439, 44958}, {18560, 32210}, {18874, 50137}, {20300, 34177}, {20302, 33563}, {20397, 37950}, {20417, 44267}, {22804, 31830}, {23306, 45780}, {23325, 44288}, {29012, 37947}, {31180, 37494}, {31181, 33586}, {31283, 36747}, {31831, 58465}, {32123, 32282}, {32127, 61545}, {32196, 32351}, {32223, 37936}, {32423, 44234}, {34330, 61713}, {34545, 41730}, {36749, 52296}, {37942, 46817}, {37948, 38728}, {38898, 52000}, {39019, 46841}, {40647, 61750}, {41586, 51392}, {43573, 58447}, {43592, 58409}, {43808, 58805}, {43865, 44158}, {44110, 45730}, {44270, 46261}, {44413, 61735}, {45735, 58922}, {45957, 61749}, {53777, 61543}, {56924, 62358}, {58885, 63838}

X(63839) = midpoint of sin(4B)+sin(2C) : : and sin(2B)+sin(4C) : :
X(63839) = midpoint of X(i) and X(j) for these {i,j}: {3, 50435}, {74, 31726}, {125, 63735}, {186, 265}, {2070, 25739}, {2072, 3580}, {3153, 3581}, {3448, 10540}, {7723, 53781}, {10264, 11563}, {13445, 18325}, {13851, 32110}, {16003, 51403}, {41586, 51392}, {41724, 50461}
X(63839) = reflection of X(i) in X(j) for these {i,j}: {113, 46031}, {1495, 10096}, {1511, 44452}, {1539, 10151}, {2072, 20304}, {5609, 51425}, {10272, 15350}, {11557, 58551}, {13851, 11801}, {14156, 6723}, {15646, 44673}, {16163, 37968}, {34152, 6699}, {37936, 32223}, {38898, 52000}, {40111, 5972}, {44452, 47296}, {46817, 37942}, {51391, 2072}, {51393, 44234}, {51394, 140}, {51403, 44961}, {51548, 11563}, {58885, 63838}
X(63839) = complement of X(22115)
X(63839) = complement of the isogonal conjugate of X(6344)
X(63839) = complement of the isotomic conjugate of X(18817)
X(63839) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 34834}, {94, 18589}, {158, 1511}, {162, 8562}, {1784, 31378}, {1989, 1214}, {2166, 3}, {6344, 10}, {10412, 34846}, {14582, 16595}, {15475, 16573}, {18384, 37}, {18817, 2887}, {24006, 3258}, {32678, 52584}, {36119, 47055}, {36129, 523}, {43082, 2968}, {46456, 4369}, {52153, 828}, {63759, 1368}
X(63839) = crosspoint of X(2) and X(18817)
X(63839) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 5449, 34826}, {5, 12359, 5876}, {5, 13567, 5946}, {25, 61702, 34514}, {49, 14940, 58435}, {140, 12370, 43394}, {1899, 10201, 61752}, {2070, 38724, 25739}, {3448, 37943, 10540}, {3580, 20304, 51391}, {5889, 11704, 10255}, {6146, 10020, 5944}, {6639, 18912, 32046}, {7505, 25738, 156}, {8254, 12899, 1493}, {10018, 44076, 32171}, {10024, 26879, 13630}, {10125, 45970, 13367}, {11264, 58435, 49}, {11585, 63734, 6101}, {13371, 41587, 10263}, {13565, 32205, 14788}, {14852, 26958, 6644}, {18474, 61645, 12106}, {51393, 61691, 44234}



X(63840) = X(2)X(255)∩X(10)X(12)

Barycentrics    Sin[B] + Sin[3*B] + Sin[C] + Sin[3*C] : :
Barycentrics    (b + c)*(a^4*b^2 - 2*a^2*b^4 + b^6 - a^4*b*c + 2*a^2*b^3*c - b^5*c + a^4*c^2 - b^4*c^2 + 2*a^2*b*c^3 + 2*b^3*c^3 - 2*a^2*c^4 - b^2*c^4 - b*c^5 + c^6) : :
X(63840) = 3 X[2] + X[5906]

X(63840) lies on these lines: {1, 5081}, {2, 255}, {5, 34831}, {10, 12}, {42, 23518}, {73, 860}, {124, 946}, {389, 3042}, {498, 25970}, {499, 26010}, {1071, 52121}, {1210, 24030}, {1446, 17216}, {1745, 5125}, {1785, 45131}, {2654, 11105}, {3120, 17869}, {3465, 5174}, {3468, 17923}, {3682, 3936}, {3814, 31849}, {3836, 23693}, {3846, 5713}, {4643, 56552}, {5715, 39585}, {5742, 40942}, {5884, 50368}, {6831, 14058}, {7680, 20306}, {7681, 15873}, {11019, 20264}, {15669, 18642}, {16607, 21253}, {19839, 30076}, {19843, 25760}, {21912, 37154}, {22350, 24984}, {25639, 48888}, {31680, 57434}, {34846, 52389}, {55472, 56842}, {57930, 57974}

X(63840) = midpoint of sin(3B)+sin(C) : : and sin(B)+sin(3C) : :
X(63840) = midpoint of X(255) and X(5906)
X(63840) = complement of X(255)
X(63840) = complement of the isogonal conjugate of X(158)
X(63840) = complement of the isotomic conjugate of X(57806)
X(63840) = isotomic conjugate of the polar conjugate of X(1881)
X(63840) = X(i)-complementary conjugate of X(j) for these (i,j): {2, 6389}, {4, 3}, {5, 10600}, {6, 6509}, {19, 1214}, {20, 31377}, {25, 216}, {28, 37565}, {29, 34851}, {31, 828}, {34, 17102}, {64, 53844}, {66, 53852}, {92, 18589}, {93, 37452}, {107, 523}, {108, 59973}, {112, 52584}, {158, 10}, {225, 18641}, {254, 3548}, {262, 42353}, {264, 1368}, {273, 34822}, {275, 34828}, {278, 17073}, {318, 34823}, {331, 18639}, {393, 2}, {403, 131}, {459, 20208}, {460, 35067}, {512, 35071}, {513, 55044}, {523, 122}, {661, 16595}, {683, 52545}, {823, 4369}, {847, 11585}, {850, 55069}, {1093, 5}, {1096, 37}, {1105, 16196}, {1118, 1}, {1179, 7542}, {1217, 3546}, {1300, 10257}, {1552, 47087}, {1824, 18591}, {1826, 440}, {1857, 9}, {1880, 18592}, {1896, 960}, {1897, 20315}, {2052, 141}, {2207, 39}, {2501, 15526}, {3064, 16596}, {3346, 59361}, {3518, 34833}, {3542, 34853}, {5200, 24246}, {5317, 3666}, {6059, 16588}, {6331, 52598}, {6344, 2072}, {6353, 63610}, {6520, 226}, {6521, 20305}, {6524, 6}, {6525, 1249}, {6526, 4}, {6528, 512}, {6529, 525}, {6530, 114}, {6531, 441}, {7046, 42018}, {7337, 17053}, {7649, 2968}, {8741, 465}, {8742, 466}, {8745, 52032}, {8747, 1125}, {8748, 5745}, {8749, 44436}, {8753, 14961}, {8794, 14767}, {8795, 3819}, {8801, 7386}, {8882, 46832}, {8884, 140}, {10002, 7710}, {10151, 52874}, {11744, 12096}, {13450, 1209}, {14222, 56792}, {14248, 22401}, {14249, 2883}, {14569, 233}, {14593, 577}, {14618, 127}, {14860, 12362}, {15352, 30476}, {15422, 338}, {15424, 10024}, {15451, 38976}, {16263, 549}, {17983, 5159}, {17994, 38974}, {18027, 626}, {18344, 35072}, {18384, 3284}, {18808, 1650}, {18855, 6643}, {20031, 2799}, {23290, 20625}, {23582, 620}, {23590, 23583}, {23964, 34990}, {23984, 17044}, {23985, 23585}, {23999, 21254}, {24000, 16598}, {24006, 34846}, {24019, 14838}, {24021, 23998}, {24033, 24025}, {27375, 46394}, {27376, 6292}, {31942, 52543}, {32085, 6676}, {32230, 5972}, {32695, 8552}, {32713, 647}, {33971, 15819}, {34170, 11598}, {34208, 30771}, {34538, 59698}, {34854, 11672}, {36125, 60415}, {36126, 8062}, {36127, 522}, {36417, 8265}, {36419, 17045}, {36434, 3767}, {37197, 33553}, {37778, 126}, {39267, 1062}, {39464, 55127}, {39534, 10017}, {40149, 18642}, {41013, 21530}, {41489, 46831}, {41515, 55885}, {41516, 55890}, {41521, 40349}, {41766, 3162}, {41937, 23584}, {42465, 33546}, {43695, 14379}, {43726, 26880}, {43933, 35014}, {44145, 31842}, {44426, 123}, {44705, 39020}, {46104, 11574}, {46151, 3005}, {47372, 6260}, {47735, 37188}, {51385, 133}, {51513, 39019}, {52291, 24245}, {52415, 12095}, {52418, 34834}, {52439, 1196}, {52448, 206}, {52487, 18531}, {52583, 14376}, {52661, 113}, {52919, 21196}, {52920, 31947}, {52938, 17072}, {53149, 41172}, {53151, 42769}, {53176, 8562}, {53813, 10165}, {54100, 52042}, {54239, 55058}, {54240, 4885}, {55110, 55118}, {55116, 55113}, {56271, 14059}, {57677, 5907}, {57684, 9306}, {57806, 2887}, {57973, 42327}, {58071, 57128}, {58757, 115}, {58784, 47413}, {58993, 59990}, {59915, 38977}, {59932, 53822}, {59935, 53833}, {60133, 54075}, {60428, 2482}, {60801, 14058}, {61193, 18314}, {61349, 800}, {61362, 570}, {61392, 31534}, {61393, 31535}, {62521, 130}
X(63840) = X(2)-Ceva conjugate of X(828)
X(63840) = X(i)-isoconjugate of X(j) for these (i,j): {577, 829}, {14585, 57974}
X(63840) = X(828)-Dao conjugate of X(2)
X(63840) = crosspoint of X(2) and X(57806)
X(63840) = crosssum of X(6) and X(52430)
X(63840) = barycentric product X(i)*X(j) for these {i,j}: {69, 1881}, {349, 11436}, {828, 57806}
X(63840) = barycentric quotient X(i)/X(j) for these {i,j}: {158, 829}, {828, 255}, {1881, 4}, {11436, 284}, {57806, 57974}
X(63840) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 5906, 255}, {10, 34825, 2887}, {10, 63803, 34825}, {6831, 26932, 14058}


X(63841) = X(2)X(58738)∩X(3)X(15050)

Barycentrics    Sin[2*B] - Sin[3*B] + Sin[2*C] - Sin[3*C] : :
Barycentrics    a^4*b^3 - 2*a^2*b^5 + b^7 - a^3*b^3*c + a*b^5*c + a^2*b^3*c^2 - 2*b^5*c^2 + a^4*c^3 - a^3*b*c^3 + a^2*b^2*c^3 - 2*a*b^3*c^3 + b^4*c^3 + b^3*c^4 - 2*a^2*c^5 + a*b*c^5 - 2*b^2*c^5 + c^7 : :

X(63841) lies on these lines: {2, 58738}, {3, 15050}, {5, 15049}, {10, 5694}, {124, 3878}, {564, 63804}, {993, 3417}, {3454, 10176}, {3814, 31847}, {25639, 48888}

X(63841) = midpoint of sin(2B)-sin(3C) : : and -sin(3B)+sin(2C) : :
X(63841) = complement of X(58738)
X(63841) = X(33599)-complementary conjugate of X(214)


X(63842) = X(2)X(95)∩X(5)X(31807)

Barycentrics    2 + Cos[4*B] + Cos[4*C] : :
Barycentrics    a^8*b^4 - 4*a^6*b^6 + 6*a^4*b^8 - 4*a^2*b^10 + b^12 - 4*a^4*b^6*c^2 + 8*a^2*b^8*c^2 - 4*b^10*c^2 + a^8*c^4 + 4*a^4*b^4*c^4 - 4*a^2*b^6*c^4 + 7*b^8*c^4 - 4*a^6*c^6 - 4*a^4*b^2*c^6 - 4*a^2*b^4*c^6 - 8*b^6*c^6 + 6*a^4*c^8 + 8*a^2*b^2*c^8 + 7*b^4*c^8 - 4*a^2*c^10 - 4*b^2*c^10 + c^12 : :

X(63842) lies on these lines: {2, 95}, {5, 31807}, {115, 5392}, {343, 9722}, {467, 63634}, {511, 27362}, {626, 37636}, {1879, 45793}, {3767, 6515}, {5422, 7829}, {11585, 44899}, {13567, 34827}, {16336, 61713}, {44388, 52032}

X(63842) = midpoint of cos(4B)+cos(0) : : and : : and cos(0)+cos(4C) : :
X(63842) = complement of X(63835)
X(63842) = X(55250)-complementary conjugate of X(136)
X(63842) = crosspoint of X(18027) and X(55031)
X(63842) = crosssum of X(14585) and X(60776)


X(63843) = X(12)X(43220)∩X(55)X(32594)

Barycentrics    Cos[B] + Cos[3*B] + Cos[C] + Cos[3*C] : :
Barycentrics    (a + b - c)*(a - b + c)*(b + c)*(a^4*b^2 - 2*a^2*b^4 + b^6 - a^4*b*c + b^5*c + a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 - 2*b^3*c^3 - 2*a^2*c^4 - b^2*c^4 + b*c^5 + c^6) : :

X(63843) lies on these lines: {12, 43220}, {55, 32594}, {65, 14873}, {226, 7363}, {1214, 8287}, {1751, 19721}, {1786, 7282}, {4909, 5718}, {10175, 10395}, {16600, 16603}, {16607, 16609}

X(63843) = midpoint of cos(4B)+cos(C) : : and : : and cos(B)+cos(4C) : :
X(63843) = complement of the isotomic conjugate of X(57716)
X(63843) = X(i)-complementary conjugate of X(j) for these (i,j): {25, 52032}, {53, 34835}, {68, 6389}, {91, 18589}, {96, 34828}, {393, 1147}, {847, 141}, {1989, 12095}, {2165, 3}, {2207, 40939}, {2351, 6509}, {2489, 39013}, {2501, 136}, {5392, 1368}, {14593, 2}, {23290, 46655}, {30450, 512}, {32734, 52584}, {41271, 46832}, {41515, 642}, {41516, 641}, {41525, 40678}, {46134, 52598}, {47731, 34853}, {55250, 34846}, {55253, 2972}, {55553, 626}, {56891, 63610}, {57716, 2887}, {57898, 21235}, {58961, 6132}, {59189, 394}, {60501, 216}, {60519, 31842}, {62361, 131}
X(63843) = crosspoint of X(2) and X(57716)
X(63843) = crosssum of X(6) and X(563)
X(63843) = barycentric product X(6238)*X(57809)
X(63843) = barycentric quotient X(6238)/X(283)


X(63844) = X(2)X(2323)∩X(10)X(141)

Barycentrics    Cos[B] + Cos[2*B] + Cos[C] + Cos[2*C] : :
Barycentrics    a^3*b^2 - a^2*b^3 - a*b^4 + b^5 + a*b^3*c - b^4*c + a^3*c^2 - a^2*c^3 + a*b*c^3 - a*c^4 - b*c^4 + c^5 : :

X(63844) lies on these lines: {2, 2323}, {5, 31836}, {7, 54283}, {9, 26540}, {10, 141}, {44, 62676}, {57, 53816}, {63, 56540}, {78, 17296}, {116, 31841}, {226, 343}, {297, 52982}, {498, 4648}, {521, 4885}, {524, 36949}, {527, 26932}, {674, 21252}, {758, 60427}, {908, 3580}, {914, 18593}, {940, 22123}, {1086, 24209}, {1209, 34830}, {1211, 30823}, {1352, 51687}, {2325, 51390}, {3187, 20268}, {3218, 52351}, {3452, 13567}, {3814, 21237}, {3912, 16578}, {4000, 10573}, {4643, 61004}, {4657, 30147}, {4851, 17073}, {4858, 48381}, {4869, 5552}, {4904, 17067}, {5249, 37636}, {5294, 26542}, {5316, 37648}, {5437, 33172}, {5745, 26942}, {5750, 26543}, {6510, 17374}, {6594, 17060}, {6666, 25964}, {6745, 36956}, {8257, 17284}, {9842, 15873}, {13411, 18635}, {15526, 44360}, {15668, 45931}, {17043, 17390}, {17044, 18644}, {17047, 17792}, {17052, 34829}, {17197, 26012}, {17238, 25521}, {17272, 60964}, {17306, 19860}, {17353, 26530}, {18261, 20270}, {18589, 18638}, {20111, 27509}, {20305, 24220}, {20335, 26013}, {20872, 29043}, {21091, 29069}, {21277, 24630}, {21293, 40910}, {25365, 48876}, {25525, 32782}, {26167, 40661}, {29611, 60987}, {36589, 36910}, {48380, 60091}, {56445, 56927}, {58412, 59719}

X(63844) = midpoint of X(i) and X(j) for these {i,j}: {21293, 40910}, {36589, 36910}
X(63844) = complement of X(2323)
X(63844) = complement of the isogonal conjugate of X(2006)
X(63844) = X(i)-complementary conjugate of X(j) for these (i,j): {56, 16586}, {57, 214}, {80, 3452}, {226, 31845}, {513, 46398}, {649, 35128}, {655, 513}, {759, 5745}, {1399, 34834}, {1400, 35069}, {1411, 2}, {1427, 6739}, {2006, 10}, {2160, 34544}, {2161, 9}, {2222, 514}, {2341, 59646}, {3669, 51402}, {6187, 1212}, {14584, 16594}, {14616, 21246}, {14628, 121}, {18359, 1329}, {18815, 141}, {20566, 21244}, {24624, 960}, {26743, 11813}, {32675, 650}, {34079, 40937}, {34535, 3814}, {34857, 38930}, {35174, 3835}, {36804, 59971}, {46405, 21260}, {51562, 20317}, {52212, 119}, {52351, 34823}, {52371, 6554}, {52377, 4422}, {52383, 1211}, {52391, 440}, {52392, 18589}, {57645, 21237}, {60074, 124}, {60091, 3454}, {63750, 908}
X(63844) = crosssum of X(6) and X(52426)
X(63844) = barycentric product X(i)*X(j) for these {i,j}: {86, 21920}, {190, 23737}
X(63844) = barycentric quotient X(i)/X(j) for these {i,j}: {21920, 10}, {23737, 514}
X(63844) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {141, 16608, 142}, {17296, 18634, 53996}


X(63845) = X(6)X(1511)∩X(50)X(1154)

Barycentrics    Cot[B] + Cot[3*B] + Cot[C] + Cot[3*C] : :
Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(2*a^8 - 3*a^6*b^2 + a^4*b^4 - a^2*b^6 + b^8 - 3*a^6*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 + a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(63845) lies the cubic K500 and these lines: {6, 1511}, {50, 1154}, {343, 46184}, {524, 62590}, {526, 2081}, {571, 37867}, {1986, 36423}, {1993, 4558}, {2323, 6149}, {3258, 8779}, {3284, 18334}, {5063, 22391}, {5663, 38872}, {8749, 15468}, {14385, 15291}, {16310, 44665}, {18877, 56792}, {23292, 34836}, {30522, 53416}, {32761, 50433}, {45780, 62335}, {52416, 52418}

X(63845) = midpoint of X(1993) and X(4558)
X(63845) = reflection of X(343) in X(46184)
X(63845) = complement of the isotomic conjugate of X(5962)
X(63845) = X(i)-complementary conjugate of X(j) for these (i,j): {31, 12095}, {5962, 2887}, {14593, 63803}
X(63845) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 12095}, {1993, 1154}, {4558, 526}, {34834, 1511}
X(63845) = X(i)-isoconjugate of X(j) for these (i,j): {2166, 43756}, {32680, 43709}
X(63845) = X(i)-Dao conjugate of X(j) for these (i,j): {131, 94}, {11597, 43756}, {12095, 2}, {15454, 40427}, {35235, 14618}
X(63845) = crosspoint of X(i) and X(j) for these (i,j): {2, 5962}, {249, 53176}, {323, 38936}
X(63845) = crosssum of X(i) and X(j) for these (i,j): {6, 5961}, {115, 43083}, {1989, 39170}
X(63845) = crossdifference of every pair of points on line {265, 13556}
X(63845) = barycentric product X(i)*X(j) for these {i,j}: {131, 38936}, {186, 44665}, {323, 16310}, {526, 30512}, {1511, 56686}, {1986, 53788}, {2314, 52414}, {3043, 58725}, {5962, 12095}
X(63845) = barycentric quotient X(i)/X(j) for these {i,j}: {50, 43756}, {14270, 43709}, {16310, 94}, {30512, 35139}, {34397, 1299}, {38936, 57760}, {44665, 328}


X(63846) = X(2)X(94)∩X(50)X(186)

Barycentrics    Cot[B] - Cot[3*B] + Cot[C] - Cot[3*C] : :
Barycentrics    a^2*(a^2 - b^2 - b*c - c^2)*(a^2 - b^2 + b*c - c^2)*(a^6*b^2 - a^4*b^4 - a^2*b^6 + b^8 + a^6*c^2 + a^2*b^4*c^2 - 4*b^6*c^2 - a^4*c^4 + a^2*b^2*c^4 + 6*b^4*c^4 - a^2*c^6 - 4*b^2*c^6 + c^8) : :

X(63846) lies on these lines: {2, 94}, {3, 38872}, {6, 1511}, {39, 6128}, {50, 186}, {112, 8553}, {115, 128}, {187, 47167}, {216, 3018}, {232, 1560}, {1154, 18578}, {1249, 46262}, {2072, 53416}, {2485, 60510}, {2492, 8562}, {3003, 3163}, {3162, 52166}, {6103, 40938}, {7577, 9220}, {8749, 14385}, {11063, 52951}, {14401, 46425}, {15468, 18877}, {15595, 62376}, {16310, 44452}, {18311, 44817}, {18371, 40601}, {18573, 44535}, {20304, 56408}, {21525, 40949}, {35069, 40582}, {37637, 44467}, {39081, 44375}, {44816, 47230}, {46130, 61665}

X(63846) = complement of X(328)
X(63846) = complement of the isogonal conjugate of X(34397)
X(63846) = complement of the isotomic conjugate of X(186)
X(63846) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 34827}, {25, 63803}, {31, 2072}, {50, 18589}, {186, 2887}, {340, 21235}, {560, 3284}, {1973, 3580}, {2624, 127}, {6149, 1368}, {14270, 34846}, {14590, 42327}, {14591, 4369}, {14975, 3814}, {19627, 1214}, {32676, 526}, {34397, 10}, {47230, 21253}, {52413, 21236}, {52414, 626}, {52418, 20305}, {53176, 21259}, {62268, 1154}
X(63846) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 2072}, {648, 526}, {5392, 1154}
X(63846) = X(i)-Dao conjugate of X(j) for these (i,j): {2072, 2}, {16186, 525}
X(63846) = crosspoint of X(i) and X(j) for these (i,j): {2, 186}, {14165, 38936}
X(63846) = crosssum of X(i) and X(j) for these (i,j): {6, 265}, {115, 43088}, {39170, 50433}
X(63846) = crossdifference of every pair of points on line {5961, 13289}
X(63846) = barycentric product X(i)*X(j) for these {i,j}: {186, 2072}, {323, 53416}, {3043, 58723}, {3268, 53329}, {5962, 45780}, {38936, 46085}
X(63846) = barycentric quotient X(i)/X(j) for these {i,j}: {2072, 328}, {34397, 38534}, {53329, 476}, {53416, 94}
X(63846) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {570, 47226, 115}, {40695, 40696, 34834}


X(63847) = X(2)X(311)∩X(6)X(578)

Barycentrics    2 + Sec[2*B] + Sec[2*C] : :

X(63847) lies on these lines: {2, 311}, {5, 578}, {6, 34836}, {25, 132}, {140, 15827}, {343, 16310}, {467, 571}, {1656, 34835}, {1879, 52253}, {1993, 18883}, {3542, 6523}, {6503, 46184}, {6676, 15508}, {7507, 31976}, {7514, 58417}, {9722, 37649}, {11547, 14576}, {12095, 18531}, {18381, 34449}, {20207, 47296}, {26958, 62583}, {27362, 44077}, {55072, 61645}

X(63847) = complement of X(52350)
X(63847) = complement of the isogonal conjugate of X(8745)
X(63847) = complement of the isotomic conjugate of X(11547)
X(63847) = X(i)-complementary conjugate of X(j) for these (i,j): {19, 11585}, {24, 18589}, {25, 18588}, {34, 18638}, {47, 6389}, {393, 34825}, {1096, 343}, {1748, 1368}, {1973, 577}, {2180, 10600}, {6520, 5449}, {6753, 34846}, {8745, 10}, {11547, 2887}, {24019, 924}, {34952, 16595}, {44077, 1214}, {52436, 828}, {52917, 4369}, {55216, 122}, {63827, 55069}
X(63847) = X(i)-Ceva conjugate of X(j) for these (i,j): {6528, 924}, {16039, 63829}
X(63847) = crosspoint of X(2) and X(11547)
X(63847) = crosssum of X(6) and X(55549)


X(63848) = X(1)X(577)∩X(37)X(216)

Barycentrics    Csc[B] + Csc[2*B] + Csc[C] + Csc[2*C] : :

X(63848) lies on these lines: {1, 577}, {3, 16777}, {6, 8558}, {9, 5158}, {37, 216}, {268, 34522}, {441, 17045}, {553, 1214}, {1040, 41269}, {1086, 18643}, {1100, 3284}, {1213, 2968}, {1785, 36412}, {1962, 23207}, {1990, 59483}, {2193, 18455}, {2269, 35014}, {2289, 18477}, {2294, 40946}, {3163, 15670}, {3247, 10979}, {3666, 18592}, {3723, 22052}, {3990, 44706}, {4357, 15526}, {4364, 41005}, {5736, 28606}, {6356, 17246}, {6389, 17321}, {7004, 14597}, {15851, 16885}, {15860, 16669}, {15905, 16884}, {16672, 36751}, {16673, 62196}, {16675, 42018}, {17073, 17301}, {17253, 40995}, {17314, 25876}, {17325, 20208}, {17390, 41008}, {18591, 37565}, {18674, 22345}, {20182, 21482}, {22401, 37592}, {37599, 40349}, {38292, 62212}

X(63848) = complement of the isotomic conjugate of X(7100)
X(63848) = X(i)-complementary conjugate of X(j) for these (i,j): {79, 21243}, {184, 3647}, {2160, 20305}, {6186, 5}, {7100, 2887}, {8606, 1329}, {9247, 16585}, {13486, 21259}, {52153, 3814}, {52381, 626}, {52434, 1511}
X(63848) = crosspoint of X(2) and X(7100)
X(63848) = crosssum of X(6) and X(6198)
X(63848) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {37, 17102, 216}, {7004, 18675, 14597}, {16675, 52703, 42018}


X(63849) = X(3)X(45)∩X(37)X(216)

Barycentrics    Csc[B] - Csc[2*B] + Csc[C] - Csc[2*C] : :

X(63849) lies on these lines: {1, 5158}, {3, 45}, {6, 42018}, {9, 577}, {19, 28077}, {37, 216}, {44, 3284}, {190, 21940}, {233, 4187}, {268, 34524}, {344, 6389}, {441, 4422}, {756, 23207}, {1785, 52945}, {1990, 15252}, {2252, 53560}, {2968, 3943}, {3239, 6586}, {3731, 10979}, {3912, 15526}, {4419, 25932}, {5179, 14873}, {6356, 17245}, {8609, 46101}, {15776, 56830}, {15851, 16884}, {15860, 16666}, {15905, 16885}, {16578, 44360}, {16672, 52703}, {16675, 36751}, {16676, 62196}, {16814, 22052}, {17243, 41005}, {17267, 20208}, {17311, 40995}, {17332, 41008}, {18447, 62238}, {18455, 62239}, {18592, 44307}, {22401, 25066}, {35072, 61066}, {45272, 56911}, {49758, 60427}, {53850, 54324}

X(63849) = complement of the isotomic conjugate of X(1807)
X(63849) = X(i)-complementary conjugate of X(j) for these (i,j): {80, 21243}, {184, 214}, {228, 31845}, {1807, 2887}, {2161, 20305}, {6187, 5}, {9247, 16586}, {32675, 46396}, {34079, 34830}, {52153, 25639}, {52351, 626}, {52392, 17047}, {52431, 141}, {57736, 3741}
X(63849) = crosspoint of X(2) and X(1807)
X(63849) = crosssum of X(6) and X(1870)
X(63849) = crossdifference of every pair of points on line {23383, 39199}
X(63849) = {X(44),X(46974)}-harmonic conjugate of X(3284)


X(63850) = X(2)X(52408)∩X(5)X(34831)

Barycentrics    Sin[B] + Sin[2*B] + Sin[3*B] + Sin[C] + Sin[2*C] + Sin[3*C] : :
Barycentrics    a^4*b^3 - 2*a^2*b^5 + b^7 + a^3*b^3*c - a*b^5*c + 2*a^2*b^3*c^2 - 2*b^5*c^2 + a^4*c^3 + a^3*b*c^3 + 2*a^2*b^2*c^3 + 2*a*b^3*c^3 + b^4*c^3 + b^3*c^4 - 2*a^2*c^5 - a*b*c^5 - 2*b^2*c^5 + c^7 : :

X(63850) lies on these lines: {2, 52408}, {5, 34831}, {10, 61541}, {124, 9955}, {1154, 25639}, {2886, 34825}, {2887, 31419}, {3042, 5462}, {3823, 58645}, {3836, 47742}, {5885, 50368}, {6841, 26932}, {7100, 17923}, {8286, 23537}, {9709, 25957}, {24881, 26884}, {25760, 31493}

X(63850) = complement of X(52408)
X(63850) = X(i)-complementary conjugate of X(j) for these (i,j): {4, 3647}, {19, 16585}, {79, 3}, {2160, 1214}, {2166, 60427}, {3615, 34851}, {6186, 216}, {6344, 3814}, {6742, 20315}, {6757, 21530}, {7649, 6741}, {8818, 440}, {18384, 44}, {20565, 1368}, {26700, 59973}, {30690, 18589}, {34922, 3035}, {43682, 18642}, {52344, 34823}, {52372, 17102}, {52374, 17073}, {52375, 37565}, {52381, 6389}, {52382, 18641}, {52413, 34834}, {55209, 52598}, {55236, 15526}


X(63851) = X(2)X(514)∩X(4)X(145)

Barycentrics    (a + b - 2*c)*(a - 2*b + c)*(2*a^3 - a^2*b - b^3 - a^2*c + b^2*c + b*c^2 - c^3) : :
X(63851) = 7 X[3622] - 4 X[47043]

X(63851) lies on the cubic K295 and these lines: {2, 514}, {4, 145}, {7, 60578}, {88, 279}, {106, 9057}, {144, 3257}, {390, 14190}, {516, 2398}, {901, 2724}, {903, 1992}, {1797, 5773}, {2316, 12848}, {3622, 47043}, {3672, 52900}, {3911, 23766}, {4346, 51908}, {4555, 29616}, {4945, 31048}, {4997, 10405}, {5222, 6549}, {6185, 17014}, {11038, 34230}, {17753, 25049}, {17960, 24248}, {21454, 40215}, {24608, 42026}, {27081, 36155}, {28169, 52746}, {30807, 42719}, {31227, 31232}, {34529, 47058}, {36590, 54448}, {52553, 62778}, {57995, 63170}

X(63851) = isogonal conjugate of X(45144)
X(63851) = X(i)-cross conjugate of X(j) for these (i,j): {42756, 23973}, {51406, 516}
X(63851) = X(i)-isoconjugate of X(j) for these (i,j): {1, 45144}, {44, 103}, {519, 911}, {677, 1635}, {900, 36039}, {902, 36101}, {1023, 2424}, {1319, 2338}, {2251, 18025}, {3762, 32642}, {4528, 32668}, {8756, 36056}, {9459, 57996}, {14427, 24016}, {22356, 36122}, {23202, 52781}, {32657, 38462}, {40116, 53532}
X(63851) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 45144}, {516, 51406}, {1566, 900}, {9460, 18025}, {20622, 8756}, {23972, 519}, {39077, 14439}, {40594, 36101}, {40595, 103}, {46095, 22356}, {50441, 2325}, {62591, 3977}
X(63851) = cevapoint of X(516) and X(51406)
X(63851) = trilinear pole of line {516, 676}
X(63851) = crossdifference of every pair of points on line {902, 22086}
X(63851) = barycentric product X(i)*X(j) for these {i,j}: {88, 30807}, {106, 35517}, {516, 903}, {676, 4555}, {910, 20568}, {1022, 42719}, {2398, 6548}, {4080, 14953}, {4997, 43035}, {6336, 26006}, {9268, 58259}, {51406, 54974}, {55256, 55263}
X(63851) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 45144}, {88, 36101}, {106, 103}, {516, 519}, {676, 900}, {901, 677}, {903, 18025}, {910, 44}, {1360, 53529}, {1456, 1319}, {1797, 1815}, {1886, 8756}, {2316, 2338}, {2398, 17780}, {2426, 23344}, {4241, 46541}, {4555, 57928}, {6336, 52781}, {6548, 2400}, {6549, 15634}, {9456, 911}, {9502, 14439}, {14953, 16704}, {17747, 3943}, {20568, 57996}, {23345, 2424}, {23972, 51406}, {26006, 3977}, {30807, 4358}, {32659, 32657}, {32665, 36039}, {32719, 32642}, {35517, 3264}, {36058, 36056}, {36125, 36122}, {40869, 2325}, {41339, 3689}, {42719, 24004}, {42756, 23757}, {43035, 3911}, {46392, 14427}, {51376, 52978}, {51406, 4370}, {51435, 4432}, {51436, 52963}, {53529, 1317}, {53547, 53531}, {55256, 55262}, {55263, 55257}, {56049, 43736}
X(63851) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {17953, 60868, 2}, {36887, 46790, 2}


X(63852) = X(2)X(513)∩X(4)X(6335)

Barycentrics    a*(2*a*b - a*c - b*c)*(a*b - 2*a*c + b*c)*(a^2*b - b^3 + a^2*c - 2*a*b*c + b^2*c + b*c^2 - c^3) : :

X(63852) lies on the cubic K295 and these lines: {2, 513}, {4, 6335}, {56, 651}, {145, 25048}, {517, 2397}, {739, 9058}, {889, 36216}, {898, 953}, {957, 1992}, {1457, 24029}, {5698, 38512}, {14260, 15507}, {17139, 55258}, {30962, 31002}, {37657, 46018}

X(63852) = isogonal conjugate of X(45145)
X(63852) = X(61672)-cross conjugate of X(517)
X(63852) = X(i)-isoconjugate of X(j) for these (i,j): {1, 45145}, {104, 899}, {536, 909}, {891, 36037}, {2250, 52897}, {2342, 43037}, {2423, 23891}, {2720, 14430}, {3230, 34234}, {3768, 13136}, {4526, 37136}, {4728, 32641}, {6381, 34858}, {36819, 52902}, {38955, 62740}, {51565, 62739}, {52663, 52896}
X(63852) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 45145}, {517, 61672}, {1145, 4009}, {3259, 891}, {16586, 6381}, {23980, 536}, {38981, 14430}, {40613, 899}
X(63852) = cevapoint of X(517) and X(61672)
X(63852) = trilinear pole of line {517, 3310}
X(63852) = crossdifference of every pair of points on line {3230, 4526}
X(63852) = barycentric product X(i)*X(j) for these {i,j}: {517, 3227}, {739, 3262}, {859, 60288}, {889, 3310}, {898, 10015}, {908, 37129}, {1465, 36798}, {1769, 4607}, {2183, 31002}, {2397, 43928}, {5381, 42753}, {34075, 36038}, {36872, 52031}, {57542, 61672}
X(63852) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 45145}, {517, 536}, {739, 104}, {859, 52897}, {898, 13136}, {908, 6381}, {1457, 52896}, {1465, 43037}, {1769, 4728}, {2183, 899}, {2397, 41314}, {2427, 23343}, {3227, 18816}, {3262, 35543}, {3310, 891}, {14260, 52900}, {15507, 4465}, {21801, 3994}, {23349, 2423}, {23980, 61672}, {32718, 32641}, {34075, 36037}, {36798, 36795}, {37129, 34234}, {42753, 52626}, {42757, 42764}, {43928, 2401}, {46393, 14430}, {51377, 52959}, {51987, 52902}, {52031, 52755}, {53549, 4526}, {54364, 36816}, {60288, 57984}, {61672, 13466}, {62763, 2250}


X(63853) = X(2)X(99)∩X(6)X(17948)

Barycentrics    (a^2 + b^2 - 2*c^2)*(a^2 - 2*b^2 + c^2)*(4*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 4*b^2*c^2 + c^4) : :

X(63853) lies on the cubic K295 and these lines: {2, 99}, {6, 17948}, {76, 54607}, {512, 598}, {524, 52756}, {597, 60867}, {892, 1992}, {1316, 16092}, {1640, 62629}, {1641, 47286}, {1648, 8352}, {2396, 52229}, {3618, 52551}, {4226, 26613}, {5032, 39061}, {5468, 11054}, {5485, 47389}, {5967, 9154}, {5968, 57618}, {6055, 57617}, {7827, 46512}, {8370, 14263}, {8430, 45329}, {9169, 11317}, {9753, 58043}, {11159, 45143}, {11166, 18818}, {11179, 48983}, {12243, 63767}, {17937, 17952}, {22329, 34245}, {34094, 51258}, {40871, 62204}, {47352, 52758}, {53080, 63170}

X(63853) = isogonal conjugate of X(51927)
X(63853) = psi-transform of X(16341)
X(63853) = X(18800)-cross conjugate of X(22329)
X(63853) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51927}, {922, 5503}, {2642, 2709}
X(63853) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51927}, {35586, 33921}, {39061, 5503}, {61071, 690}, {62578, 524}
X(63853) = cevapoint of X(18800) and X(22329)
X(63853) = trilinear pole of line {2793, 22329}
X(63853) = crossdifference of every pair of points on line {351, 62657}
X(63853) = barycentric product X(i)*X(j) for these {i,j}: {671, 22329}, {892, 2793}, {2030, 18023}, {2408, 17937}, {5466, 34245}, {9135, 53080}, {17952, 52141}, {18800, 57539}
X(63853) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 51927}, {671, 5503}, {691, 2709}, {892, 46144}, {2030, 187}, {2793, 690}, {5466, 34246}, {9135, 351}, {17937, 2418}, {17968, 57467}, {17999, 58754}, {18800, 2482}, {22329, 524}, {34245, 5468}, {52035, 54965}
X(63853) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 8591, 47047}, {2, 52450, 671}, {671, 60863, 2}


X(63854) = X(2)X(1499)∩X(99)X(1285)

Barycentrics    (2*a^2 - b^2 - c^2)*(a^4 - 10*a^2*b^2 + b^4 + 5*a^2*c^2 + 5*b^2*c^2 - 2*c^4)*(a^4 + 5*a^2*b^2 - 2*b^4 - 10*a^2*c^2 + 5*b^2*c^2 + c^4) : :
X(63854) = 4 X[18775] - 3 X[59373]

X(638) lies on the cubic K295 and these lines: {2, 1499}, {99, 1285}, {524, 2418}, {690, 37860}, {4235, 15471}, {5468, 27088}, {5485, 9487}, {11159, 62672}, {13608, 32985}, {18775, 39296}, {21356, 55851}, {22100, 33007}, {37746, 57624}

X(63854) = isogonal conjugate of X(45143)
X(63854) = X(12036)-cross conjugate of X(524)
X(63854) = X(i)-isoconjugate of X(j) for these (i,j): {1, 45143}, {923, 52229}
X(63854) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 45143}, {524, 12036}, {2482, 52229}
X(63854) = cevapoint of X(i) and X(j) for these (i,j): {524, 12036}, {52021, 52022}
X(63854) = trilinear pole of line {524, 9125}
X(63854) = barycentric product X(i)*X(j) for these {i,j}: {3266, 52230}, {5468, 43674}, {37860, 52235}
X(63854) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 45143}, {524, 52229}, {2482, 12036}, {27088, 37745}, {43674, 5466}, {52230, 111}


X(63855) = X(2)X(1495)∩X(6)X(11058)

Barycentrics    (a^2 - 2*b^2 - 2*c^2)*(2*a^4 + 2*a^2*b^2 + 2*b^4 - a^2*c^2 - b^2*c^2 - c^4)*(2*a^4 - a^2*b^2 - b^4 + 2*a^2*c^2 - b^2*c^2 + 2*c^4) : :
X(63855) = 3 X[47352] - X[51230]

X(63855) lies on the cubic K295 and these lines: {2, 1495}, {6, 11058}, {67, 14003}, {69, 40829}, {125, 6325}, {597, 13377}, {3589, 19601}, {9211, 9214}, {9464, 13857}, {34213, 61743}, {44558, 50146}, {47352, 51230}

X(63855) = midpoint of X(6) and X(11058)
X(63855) = reflection of X(19601) in X(3589)
X(63855) = X(3098)-isoconjugate of X(55927)
X(63855) = X(i)-Dao conjugate of X(j) for these (i,j): {8542, 3098}, {11165, 7788}, {17413, 9210}
X(63855) = barycentric product X(i)*X(j) for these {i,j}: {574, 14387}, {599, 14458}, {5094, 60872}, {9211, 17414}
X(63855) = barycentric quotient X(i)/X(j) for these {i,j}: {574, 3098}, {599, 7788}, {5094, 11331}, {14387, 40826}, {14458, 598}, {17414, 9210}, {43706, 43697}, {59136, 11636}


X(63856) = X(2)X(525)∩X(4)X(74)

Barycentrics    (a^4 - 2*a^2*b^2 + b^4 + a^2*c^2 + b^2*c^2 - 2*c^4)*(a^4 + a^2*b^2 - 2*b^4 - 2*a^2*c^2 + b^2*c^2 + c^4)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6) : :

X(63856) lies on the cubic K295 and these lines: {2, 525}, {4, 74}, {69, 44769}, {441, 34211}, {879, 32112}, {1056, 60798}, {1249, 15459}, {1304, 35260}, {1316, 12079}, {1494, 1992}, {1503, 2409}, {5656, 52646}, {5967, 14912}, {6389, 51964}, {6776, 17986}, {7763, 34403}, {9476, 52288}, {9717, 15000}, {10653, 61475}, {10654, 61473}, {11004, 62730}, {11427, 57487}, {12022, 56686}, {13567, 44549}, {14003, 46147}, {14376, 14919}, {14853, 35908}, {15595, 36894}, {16077, 30227}, {18338, 61680}, {18420, 50464}, {18877, 63129}, {20208, 56576}, {21466, 36308}, {21467, 36311}, {25053, 37644}, {32640, 37188}, {32715, 41719}, {34156, 35282}, {40384, 60496}, {46751, 63120}, {58875, 59373}

X(63856) = isogonal conjugate of X(51937)
X(63856) = polar conjugate of X(52485)
X(63856) = X(i)-cross conjugate of X(j) for these (i,j): {6793, 1503}, {53568, 30737}
X(63856) = X(i)-isoconjugate of X(j) for these (i,j): {1, 51937}, {48, 52485}, {1297, 2173}, {1636, 36092}, {2435, 56829}, {2631, 44770}, {3284, 8767}, {9033, 36046}, {9406, 35140}
X(63856) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 51937}, {441, 51389}, {1249, 52485}, {1503, 6793}, {9410, 35140}, {15595, 11064}, {23976, 30}, {33504, 9033}, {36896, 1297}, {39071, 3284}, {50938, 1990}
X(63856) = cevapoint of X(1503) and X(6793)
X(63856) = crossdifference of every pair of points on line {1495, 1636}
X(63856) = barycentric product X(i)*X(j) for these {i,j}: {74, 30737}, {441, 16080}, {1494, 1503}, {2312, 33805}, {2394, 34211}, {2409, 34767}, {6793, 31621}, {10152, 16096}, {14919, 60516}, {15459, 39473}, {35910, 57490}, {36875, 56572}, {40423, 53568}
X(63856) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 52485}, {6, 51937}, {74, 1297}, {441, 11064}, {1304, 44770}, {1494, 35140}, {1503, 30}, {2312, 2173}, {2394, 43673}, {2409, 4240}, {2433, 34212}, {2445, 23347}, {6793, 3163}, {8749, 43717}, {8779, 3284}, {10152, 14944}, {14380, 2435}, {15595, 51389}, {16080, 6330}, {16318, 1990}, {17986, 47105}, {23976, 6793}, {28343, 52951}, {30737, 3260}, {32695, 32687}, {32715, 32649}, {34156, 35912}, {34211, 2407}, {34767, 2419}, {35282, 5642}, {35908, 39265}, {36119, 8767}, {36131, 36046}, {36875, 56687}, {39473, 41077}, {42671, 1495}, {43045, 6357}, {43089, 14254}, {46147, 46164}, {51363, 52945}, {51437, 14581}, {51647, 51654}, {51963, 35906}, {53568, 113}, {56572, 36891}, {57490, 60869}, {60516, 46106}
X(63856) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 51227, 36890}, {51227, 60870, 2}


X(63857) = X(2)X(522)∩X(4)X(653)

Barycentrics    (a^2 - 2*a*b + b^2 + a*c + b*c - 2*c^2)*(a^2 + a*b - 2*b^2 - 2*a*c + b*c + c^2)*(2*a^4 - a^3*b - a^2*b^2 + a*b^3 - b^4 - a^3*c + 2*a^2*b*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4) : :

X(63857) lies on the cubic K295 and these lines: {2, 522}, {4, 653}, {145, 10570}, {280, 44327}, {515, 2406}, {1121, 1992}, {2291, 9056}, {2734, 14733}, {3086, 24225}, {14629, 54448}, {18391, 60579}, {30228, 35157}, {34232, 40437}

X(63857) = X(51408)-cross conjugate of X(515)
X(63857) = X(i)-isoconjugate of X(j) for these (i,j): {102, 1155}, {527, 32677}, {1055, 36100}, {2432, 23890}, {6366, 36040}, {6610, 15629}, {14414, 36067}, {23710, 36055}
X(63857) = X(i)-Dao conjugate of X(j) for these (i,j): {515, 51408}, {10017, 6366}, {23986, 527}, {51221, 23710}
X(63857) = cevapoint of X(515) and X(51408)
X(63857) = barycentric product X(i)*X(j) for these {i,j}: {515, 1121}, {2291, 35516}, {2406, 63748}, {14304, 37139}, {35348, 42718}, {51408, 57565}
X(63857) = barycentric quotient X(i)/X(j) for these {i,j}: {515, 527}, {1121, 34393}, {1156, 36100}, {1455, 6610}, {2182, 1155}, {2291, 102}, {2406, 56543}, {2425, 23346}, {4845, 15629}, {8755, 23710}, {23351, 2432}, {23986, 51408}, {32728, 32643}, {34050, 1323}, {34068, 32677}, {36141, 36040}, {42755, 42762}, {46391, 14414}, {46974, 6510}, {51361, 6603}, {51408, 35110}, {53522, 1638}, {63748, 2399}


X(63858) = X(2)X(690)∩X(476)X(843)

Barycentrics    (a^4 - 4*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 2*c^4)*(a^4 + 2*a^2*b^2 - 2*b^4 - 4*a^2*c^2 + 2*b^2*c^2 + c^4)*(2*a^6 - 2*a^4*b^2 + a^2*b^4 - b^6 - 2*a^4*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6) : :

X(63858) lies on the cubic K295 and these lines: {2, 690}, {476, 843}, {542, 50941}, {1640, 16092}, {1648, 36196}, {1992, 2966}, {9170, 36890}, {11179, 57617}, {14357, 17708}, {14999, 45662}, {53605, 53690}

X(63858) = X(i)-Dao conjugate of X(j) for these (i,j): {23967, 543}, {35582, 33921}
X(63858) = barycentric product X(i)*X(j) for these {i,j}: {542, 18823}, {1640, 9170}, {9180, 14999}, {16092, 51226}, {34763, 50941}
X(63858) = barycentric quotient X(i)/X(j) for these {i,j}: {542, 543}, {843, 842}, {1640, 8371}, {5191, 2502}, {6041, 9171}, {9170, 6035}, {9180, 14223}, {14999, 9182}, {16092, 17948}, {18823, 5641}, {34763, 50942}, {45662, 1641}, {50941, 34760}, {51226, 52094}


X(63859) = X(2)X(647)∩X(4)X(263)

Barycentrics    b^2*c^2*(a^4 + b^4 - a^2*c^2 - b^2*c^2)*(-a^4 + a^2*b^2 + b^2*c^2 - c^4)*(-3*a^6*b^2 + 2*a^4*b^4 + a^2*b^6 - 3*a^6*c^2 + 2*a^4*b^2*c^2 - a^2*b^4*c^2 + 2*b^6*c^2 + 2*a^4*c^4 - a^2*b^2*c^4 - 4*b^4*c^4 + a^2*c^6 + 2*b^2*c^6) : :

X(63859) lies on the cubic K295 and these lines: {2, 647}, {4, 263}, {98, 34098}, {287, 14383}, {290, 1992}, {5967, 34536}, {14912, 60594}, {15258, 52641}, {18024, 42287}, {20023, 43187}, {40814, 46124}, {47740, 53245}, {53196, 54033}


X(63860) = 79TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    (a^2 - b^2 - c^2)*(6*a^8 - 11*a^6*b^2 - a^4*b^4 + 11*a^2*b^6 - 5*b^8 - 11*a^6*c^2 + 18*a^4*b^2*c^2 - 11*a^2*b^4*c^2 + 20*b^6*c^2 - a^4*c^4 - 11*a^2*b^2*c^4 - 30*b^4*c^4 + 11*a^2*c^6 + 20*b^2*c^6 - 5*c^8) : :
X(63860) = 15 X[2] + X[37944], 3 X[2] + X[47090], 9 X[2] - X[47096], 3 X[3] + 5 X[2072], X[3] + 5 X[5159], X[3] - 5 X[10257], 7 X[3] + 5 X[10297], 3 X[3] - 5 X[16976], 19 X[3] + 5 X[18323], 11 X[3] + 5 X[18403], 13 X[3] - 5 X[44246], 7 X[3] - 5 X[47114], 17 X[3] - 5 X[47308], 3 X[140] - X[16531], 2 X[140] + X[47629], 5 X[186] - 21 X[15702], X[186] + 3 X[47097], 5 X[403] - 13 X[5067], 5 X[468] - 17 X[3533], 5 X[468] - X[37925], 21 X[547] - 5 X[11558], 6 X[547] - 5 X[44912], 9 X[547] - 5 X[46031], 5 X[631] - X[37931], 5 X[858] + 3 X[37940], 5 X[858] + 19 X[55864], 5 X[1656] + X[47337], 5 X[2071] + 11 X[5056], X[2072] - 3 X[5159], X[2072] + 3 X[10257], 7 X[2072] - 3 X[10297], 19 X[2072] - 3 X[18323], 11 X[2072] - 3 X[18403], 13 X[2072] + 3 X[44246], 7 X[2072] + 3 X[47114], 17 X[2072] + 3 X[47308], 5 X[3153] + 27 X[15708], 11 X[3525] + X[46517], 7 X[3526] - X[37897], 17 X[3533] - X[37925], 3 X[3543] + 5 X[16386], 9 X[3545] - 5 X[10151], 3 X[3845] + 5 X[34152], 3 X[3845] - 5 X[63838], 2 X[3853] - 5 X[63821], 11 X[5056] - 5 X[37984], 7 X[5159] - X[10297], 3 X[5159] + X[16976], 19 X[5159] - X[18323], 11 X[5159] - X[18403], 13 X[5159] + X[44246], 7 X[5159] + X[47114], 17 X[5159] + X[47308], 5 X[5899] - 69 X[61862], 3 X[10124] - X[44900], 7 X[10257] + X[10297], 3 X[10257] - X[16976], 19 X[10257] + X[18323], 11 X[10257] + X[18403], 13 X[10257] - X[44246], 7 X[10257] - X[47114], 17 X[10257] - X[47308], 5 X[10295] - 29 X[61817], 3 X[10297] + 7 X[16976], 19 X[10297] - 7 X[18323], 11 X[10297] - 7 X[18403], 13 X[10297] + 7 X[44246], 17 X[10297] + 7 X[47308], 13 X[10303] - X[47340], 3 X[11001] + 5 X[57584], 9 X[11539] - X[37936], 9 X[11539] - 5 X[44452], 2 X[11558] - 7 X[44912], 3 X[11558] - 7 X[46031], X[11563] + 3 X[15122], X[11563] - 3 X[44911], 5 X[11563] - 21 X[55856], 5 X[11799] - 29 X[61878], 5 X[13473] - X[33703], X[13473] + 3 X[37948], 5 X[15122] + 7 X[55856], 5 X[15350] - 9 X[41985], 5 X[15646] - 13 X[61824], 7 X[15702] + 5 X[47097], 33 X[15723] - 5 X[37971], 8 X[16239] - 5 X[37911], 2 X[16531] + 3 X[47629], 19 X[16976] + 3 X[18323], 11 X[16976] + 3 X[18403], 13 X[16976] - 3 X[44246], 7 X[16976] - 3 X[47114], 17 X[16976] - 3 X[47308], 11 X[18323] - 19 X[18403], 13 X[18323] + 19 X[44246], 7 X[18323] + 19 X[47114], 17 X[18323] + 19 X[47308], 13 X[18403] + 11 X[44246], 7 X[18403] + 11 X[47114], 17 X[18403] + 11 X[47308], 5 X[18579] - 17 X[61845], 5 X[18859] + 27 X[61887], 5 X[23323] - X[62036], 5 X[30745] + X[37934], 25 X[30745] + 23 X[61834], 5 X[31726] - 21 X[61920], X[33703] + 15 X[37948], X[37900] - 25 X[61856], 3 X[37904] + X[60466], 5 X[37934] - 23 X[61834], 5 X[37935] - 3 X[37940], 5 X[37935] - 19 X[55864], X[37936] - 5 X[44452], 5 X[37938] + 11 X[61837], 3 X[37939] + X[47095], 3 X[37940] - 19 X[55864], 3 X[37941] + X[47339], 15 X[37941] - 31 X[61816], 5 X[37942] + X[37944], 3 X[37942] - X[47096], 3 X[37943] + X[47091], X[37944] - 5 X[47090], 3 X[37944] + 5 X[47096], 5 X[37968] - 9 X[41983], 5 X[44214] - 13 X[61847], 7 X[44246] - 13 X[47114], 17 X[44246] - 13 X[47308], 5 X[44280] - 13 X[61806], 3 X[44450] + X[47093], 5 X[44911] - 7 X[55856], 3 X[44912] - 2 X[46031], 3 X[46451] + X[47092], 5 X[47031] - 17 X[61796], 3 X[47090] + X[47096], 5 X[47094] - 81 X[61868], 17 X[47114] - 7 X[47308], 5 X[47309] - 17 X[61946], 5 X[47310] - 17 X[61927], X[47312] - 13 X[61859], 5 X[47332] - 17 X[61893], 5 X[47339] + 31 X[61816], X[47342] - 13 X[61853], 5 X[54995] + 19 X[61913], 5 X[14156] + 3 X[38725]

See Antreas Hatzipolakis and Peter Moses, euclid 6256.

X(63860) lies on these lines: {2, 3}, {141, 10250}, {3564, 14156}, {11695, 15887}, {11793, 32184}, {34128, 34380}

X(63860) = midpoint of X(i) and X(j) for these {i,j}: {858, 37935}, {2070, 47315}, {2071, 37984}, {2072, 16976}, {5159, 10257}, {10297, 47114}, {15122, 44911}, {34152, 63838}, {35452, 47338}, {37942, 47090}
X(63860) = reflection of X(47316) in X(44234)
X(63860) = complement of X(37942)
X(63860) = ninepoint circle of the medial triangle inverse of X(16197)
X(63860) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 47090, 37942}, {140, 32144, 9825}, {632, 3546, 16197}, {2072, 10257, 16976}, {5159, 16976, 2072}, {6640, 16196, 3628}, {11539, 37936, 44452}, {47612, 47613, 37897}, {47629, 63821, 13371}


X(63861) = 80TH HATZIPOLAKIS-MOSES-EULER POINT

Barycentrics    10*a^10 + a^8*b^2 - 42*a^6*b^4 + 20*a^4*b^6 + 32*a^2*b^8 - 21*b^10 + a^8*c^2 + 40*a^6*b^2*c^2 - 4*a^4*b^4*c^2 - 100*a^2*b^6*c^2 + 63*b^8*c^2 - 42*a^6*c^4 - 4*a^4*b^2*c^4 + 136*a^2*b^4*c^4 - 42*b^6*c^4 + 20*a^4*c^6 - 100*a^2*b^2*c^6 - 42*b^4*c^6 + 32*a^2*c^8 + 63*b^2*c^8 - 21*c^10 : :
X(63861) = 21 X[5] - 5 X[15646], 3 X[5] + 5 X[23323], 11 X[5] - 5 X[37911], 13 X[5] - 5 X[44452], 9 X[5] - 5 X[44911], 7 X[5] - 5 X[44912], 29 X[5] - 5 X[47335], X[5] + 5 X[63821], X[5] - 5 X[63838], 3 X[376] + 5 X[13473], 11 X[403] - 3 X[37904], 5 X[403] - 21 X[41106], X[1657] - 5 X[16976], 5 X[2071] + 27 X[3839], 5 X[2072] - X[47337], 5 X[2072] + 11 X[61970], 35 X[3091] - 3 X[37940], 5 X[3091] - X[37942], 25 X[3091] - X[47340], 11 X[3525] + 5 X[57584], and many more

See Antreas Hatzipolakis and Peter Moses, euclid 6256.

X(63861) lies on this line: {2, 3}

X(63861) = midpoint of X(63821) and X(63838)


X(63862) = X(2782)X(11800)∩X(25150)X(63684)

Barycentrics    a^8*b^4 - 3*a^6*b^6 + 3*a^4*b^8 - a^2*b^10 + 4*a^8*b^2*c^2 - 3*a^6*b^4*c^2 - 2*a^4*b^6*c^2 + b^10*c^2 + a^8*c^4 - 3*a^6*b^2*c^4 + 4*a^4*b^4*c^4 + a^2*b^6*c^4 - 4*b^8*c^4 - 3*a^6*c^6 - 2*a^4*b^2*c^6 + a^2*b^4*c^6 + 6*b^6*c^6 + 3*a^4*c^8 - 4*b^4*c^8 - a^2*c^10 + b^2*c^10 : :

See Antreas Hatzipolakis and Peter Moses, euclid 6257.

X(63862) lies on these lines: {2782, 11800}, {25150, 63684}


X(63863) = X(15115)X(55308)∩X(15738)X(62490)

Barycentrics    a^12*b^4 - 5*a^10*b^6 + 10*a^8*b^8 - 10*a^6*b^10 + 5*a^4*b^12 - a^2*b^14 + 4*a^12*b^2*c^2 - 5*a^10*b^4*c^2 - 8*a^8*b^6*c^2 + 13*a^6*b^8*c^2 - a^4*b^10*c^2 - 4*a^2*b^12*c^2 + b^14*c^2 + a^12*c^4 - 5*a^10*b^2*c^4 + 18*a^8*b^4*c^4 - 7*a^6*b^6*c^4 - 19*a^4*b^8*c^4 + 18*a^2*b^10*c^4 - 6*b^12*c^4 - 5*a^10*c^6 - 8*a^8*b^2*c^6 - 7*a^6*b^4*c^6 + 30*a^4*b^6*c^6 - 13*a^2*b^8*c^6 + 15*b^10*c^6 + 10*a^8*c^8 + 13*a^6*b^2*c^8 - 19*a^4*b^4*c^8 - 13*a^2*b^6*c^8 - 20*b^8*c^8 - 10*a^6*c^10 - a^4*b^2*c^10 + 18*a^2*b^4*c^10 + 15*b^6*c^10 + 5*a^4*c^12 - 4*a^2*b^2*c^12 - 6*b^4*c^12 - a^2*c^14 + b^2*c^14 : :

See Antreas Hatzipolakis and Peter Moses, euclid 6257.

X(63863) lies on these lines: {15115, 55308}, {15738, 62490}


X(63864) = X(64)X(3146)∩X(3346)X(60822)

Barycentrics    (a^2 - b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 + 2*a^2*c^2 + 2*b^2*c^2 - 3*c^4)*(2*a^4 - a^2*b^2 - b^4 - a^2*c^2 + 2*b^2*c^2 - c^4)*(a^4 + 2*a^2*b^2 - 3*b^4 - 2*a^2*c^2 + 2*b^2*c^2 + c^4)*(3*a^4 + 2*a^2*b^2 + 3*b^4 - 6*a^2*c^2 - 6*b^2*c^2 + 3*c^4)*(3*a^4 - 6*a^2*b^2 + 3*b^4 + 2*a^2*c^2 - 6*b^2*c^2 + 3*c^4) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6263.

X(63864) lies on these lines: {64, 3146}, {3346, 60822}, {11589, 52874}

X(63864) = symgonal image of X(63824)
X(63864) = X(i)-isoconjugate of X(j) for these (i,j): {34286, 35200}, {36119, 45248}
X(63864) = X(i)-Dao conjugate of X(j) for these (i,j): {133, 34286}, {1511, 45248}
X(63864) = barycentric quotient X(i)/X(j) for these {i,j}: {1990, 34286}, {3284, 45248}, {11589, 37672}, {33585, 8749}, {51316, 10152}


X(63865) = X(1)-CROSS CONJUGATE OF X(38)

Barycentrics    a*(b^2+c^2)*(a^4+b^4+b^2*c^2-c^4+a^2*(b^2+c^2))*(a^4-b^4+b^2*c^2+c^4+a^2*(b^2+c^2)) : :

X(63865) lies on cubic K863 and on these lines: {38, 1582}, {1925, 18834}

X(63865) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 14885}, {6, 41884}, {82, 16556}, {83, 10329}, {251, 2896}, {4628, 21194}, {20934, 46289}, {21880, 52376}, {22138, 32085}, {39938, 46228}, {40035, 46288}
X(63865) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 41884}, {39, 20934}, {141, 16556}, {32664, 14885}, {40585, 2896}
X(63865) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 38}
X(63865) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(16556)}}, {{A, B, C, X(38), X(1934)}}, {{A, B, C, X(75), X(17957)}}, {{A, B, C, X(82), X(8061)}}, {{A, B, C, X(141), X(257)}}, {{A, B, C, X(427), X(7249)}}, {{A, B, C, X(1101), X(1964)}}, {{A, B, C, X(1581), X(1582)}}, {{A, B, C, X(2084), X(9288)}}, {{A, B, C, X(2530), X(7194)}}, {{A, B, C, X(19555), X(20883)}}
X(63865) = barycentric product X(i)*X(j) for these (i, j): {1, 33665}, {141, 39725}, {1031, 38}, {14370, 1930}, {18834, 39}, {21355, 75}
X(63865) = barycentric quotient X(i)/X(j) for these (i, j): {1, 41884}, {31, 14885}, {38, 2896}, {39, 16556}, {141, 20934}, {1031, 3112}, {1930, 40035}, {1964, 10329}, {2530, 21194}, {3954, 21083}, {4020, 22138}, {14370, 82}, {17957, 39938}, {18834, 308}, {21035, 21880}, {21355, 1}, {33665, 75}, {39725, 83}


X(63866) = X(1)-CROSS CONJUGATE OF X(40)

Barycentrics    a*(a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2)*(a^6+2*a^5*(b-c)-4*a^3*(b-c)*(b+c)^2+(b-3*c)*(b-c)^2*(b+c)^3+2*a*(b-c)*(b+c)^4-a^4*(b^2-6*b*c+5*c^2)-a^2*(b^4+4*b^3*c-2*b^2*c^2+4*b*c^3-7*c^4))*(a^6-2*a^5*(b-c)+4*a^3*(b-c)*(b+c)^2-(b-c)^2*(3*b-c)*(b+c)^3-2*a*(b-c)*(b+c)^4-a^4*(5*b^2-6*b*c+c^2)+a^2*(7*b^4-4*b^3*c+2*b^2*c^2-4*b*c^3-c^4)) : :

X(63866) lies on cubic K199 and on these lines: {8, 60599}, {40, 2956}, {34909, 34910}

X(63866) = X(i)-isoconjugate-of-X(j) for these {i, j}: {56, 60599}, {84, 2956}, {282, 34499}, {1436, 20211}
X(63866) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 60599}
X(63866) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 40}
X(63866) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2956)}}, {{A, B, C, X(8), X(40)}}, {{A, B, C, X(84), X(14298)}}, {{A, B, C, X(221), X(56038)}}, {{A, B, C, X(2331), X(7160)}}, {{A, B, C, X(3342), X(7020)}}, {{A, B, C, X(3577), X(41088)}}, {{A, B, C, X(6129), X(45818)}}, {{A, B, C, X(52063), X(56354)}}
X(63866) = barycentric quotient X(i)/X(j) for these (i, j): {9, 60599}, {40, 20211}, {198, 2956}, {221, 34499}


X(63867) = X(1)-CROSS CONJUGATE OF X(42)

Barycentrics    a^2*(b+c)*(-(b^2*c^2)-a*b*c*(b+c)+a^2*(b^2-b*c-c^2))*(b^2*c^2+a*b*c*(b+c)+a^2*(b^2+b*c-c^2)) : :

X(63867) lies on cubic K775 and on these lines: {42, 894}, {172, 1918}, {872, 2295}, {1911, 38814}, {7109, 20964}, {39441, 53631}

X(63867) = isogonal conjugate of X(39915)
X(63867) = trilinear pole of line {7234, 53581}
X(63867) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39915}, {6, 34021}, {58, 51863}, {75, 51330}, {81, 1655}, {86, 1045}, {274, 21779}, {286, 23079}, {310, 18756}, {513, 57115}, {1178, 27890}, {1509, 21883}, {3736, 40743}, {4623, 9402}, {40752, 40773}
X(63867) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39915}, {9, 34021}, {10, 51863}, {206, 51330}, {39026, 57115}, {40586, 1655}, {40600, 1045}
X(63867) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40737, 63886}
X(63867) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 42}, {2670, 6}, {40729, 1400}
X(63867) = pole of line {39915, 51330} with respect to the Stammler hyperbola
X(63867) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1045)}}, {{A, B, C, X(6), X(2107)}}, {{A, B, C, X(37), X(17759)}}, {{A, B, C, X(42), X(872)}}, {{A, B, C, X(82), X(2054)}}, {{A, B, C, X(86), X(798)}}, {{A, B, C, X(172), X(292)}}, {{A, B, C, X(213), X(2663)}}, {{A, B, C, X(256), X(512)}}, {{A, B, C, X(291), X(6378)}}, {{A, B, C, X(694), X(52208)}}, {{A, B, C, X(941), X(9292)}}, {{A, B, C, X(1914), X(38814)}}, {{A, B, C, X(2162), X(30661)}}, {{A, B, C, X(2296), X(34248)}}, {{A, B, C, X(2346), X(3747)}}, {{A, B, C, X(2357), X(32932)}}, {{A, B, C, X(2670), X(51330)}}, {{A, B, C, X(3510), X(21759)}}, {{A, B, C, X(4455), X(40769)}}, {{A, B, C, X(40770), X(54117)}}, {{A, B, C, X(41350), X(42289)}}, {{A, B, C, X(51973), X(60724)}}, {{A, B, C, X(56222), X(58301)}}
X(63867) = barycentric product X(i)*X(j) for these (i, j): {1, 63886}, {10, 40770}, {37, 40737}, {42, 54117}, {292, 39926}, {1918, 43684}, {4079, 53631}, {18298, 213}, {40718, 40778}
X(63867) = barycentric quotient X(i)/X(j) for these (i, j): {1, 34021}, {6, 39915}, {32, 51330}, {37, 51863}, {42, 1655}, {101, 57115}, {213, 1045}, {872, 21883}, {1918, 21779}, {2200, 23079}, {2205, 18756}, {2295, 27890}, {18298, 6385}, {39926, 1921}, {40737, 274}, {40747, 40743}, {40770, 86}, {40778, 30966}, {53581, 9402}, {53631, 52612}, {54117, 310}, {63886, 75}


X(63868) = X(1)-CROSS CONJUGATE OF X(80)

Barycentrics    (a^2-a*b+b^2-c^2)*(a^2-b^2-a*c+c^2)*(a^3+a^2*(-b+c)+(b-c)*(b+c)^2-a*(b^2-b*c+c^2))*(a^3+a^2*(b-c)-(b-c)*(b+c)^2-a*(b^2-b*c+c^2)) : :
X(63868) = X[9897]+2*X[31524]

X(63868) lies on cubic K058 and on these lines: {1, 18285}, {10, 36590}, {30, 80}, {79, 5627}, {519, 6740}, {523, 16173}, {1737, 54528}, {1784, 37799}, {2074, 8756}, {2166, 3582}, {2687, 46816}, {3943, 7359}, {3992, 32849}, {9897, 31524}, {10260, 37955}, {15079, 38514}, {34921, 43655}, {37702, 46037}, {37718, 53809}, {37720, 47273}, {39150, 46078}, {39151, 46074}, {40437, 52640}, {56950, 62713}

X(63868) = reflection of X(i) in X(j) for these {i,j}: {50148, 3582}
X(63868) = isogonal conjugate of X(6126)
X(63868) = trilinear pole of line {4120, 8674}
X(63868) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6126}, {6, 40612}, {15, 46071}, {16, 46075}, {36, 484}, {57, 26744}, {186, 50462}, {323, 11076}, {1870, 23071}, {3218, 19297}, {3724, 56935}, {6149, 50148}, {7113, 17484}, {17455, 47058}, {17791, 52434}
X(63868) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 6126}, {9, 40612}, {5452, 26744}, {14993, 50148}, {15898, 484}
X(63868) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 80}, {11075, 26743}
X(63868) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(484)}}, {{A, B, C, X(2), X(2752)}}, {{A, B, C, X(10), X(519)}}, {{A, B, C, X(21), X(1749)}}, {{A, B, C, X(29), X(30)}}, {{A, B, C, X(36), X(650)}}, {{A, B, C, X(37), X(39149)}}, {{A, B, C, X(80), X(2166)}}, {{A, B, C, X(280), X(2694)}}, {{A, B, C, X(284), X(51803)}}, {{A, B, C, X(468), X(47883)}}, {{A, B, C, X(476), X(51562)}}, {{A, B, C, X(477), X(5557)}}, {{A, B, C, X(759), X(1989)}}, {{A, B, C, X(765), X(1224)}}, {{A, B, C, X(1168), X(36909)}}, {{A, B, C, X(1577), X(35161)}}, {{A, B, C, X(1727), X(7040)}}, {{A, B, C, X(1807), X(15392)}}, {{A, B, C, X(2688), X(3638)}}, {{A, B, C, X(2691), X(39272)}}, {{A, B, C, X(2771), X(46816)}}, {{A, B, C, X(3467), X(54727)}}, {{A, B, C, X(3582), X(4420)}}, {{A, B, C, X(3584), X(4511)}}, {{A, B, C, X(6095), X(24302)}}, {{A, B, C, X(7284), X(19605)}}, {{A, B, C, X(7478), X(11105)}}, {{A, B, C, X(9503), X(34578)}}, {{A, B, C, X(12030), X(40430)}}, {{A, B, C, X(12515), X(44693)}}, {{A, B, C, X(15173), X(54758)}}, {{A, B, C, X(16173), X(53611)}}, {{A, B, C, X(35056), X(36037)}}, {{A, B, C, X(36210), X(39150)}}, {{A, B, C, X(36211), X(39151)}}, {{A, B, C, X(36626), X(54757)}}, {{A, B, C, X(39954), X(53943)}}, {{A, B, C, X(42033), X(54700)}}, {{A, B, C, X(43732), X(60740)}}, {{A, B, C, X(47054), X(52380)}}, {{A, B, C, X(56416), X(56425)}}
X(63868) = barycentric product X(i)*X(j) for these (i, j): {2161, 40716}, {7343, 94}, {11075, 75}, {14147, 693}, {18359, 3065}, {19302, 20566}, {21739, 80}, {26743, 8}, {51562, 60486}
X(63868) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40612}, {6, 6126}, {55, 26744}, {80, 17484}, {1168, 47058}, {1989, 50148}, {2153, 46071}, {2154, 46075}, {2161, 484}, {3065, 3218}, {6187, 19297}, {7343, 323}, {11075, 1}, {14147, 100}, {14452, 17483}, {18359, 17791}, {19302, 36}, {21739, 320}, {24624, 56935}, {26743, 7}, {34857, 21864}, {40716, 20924}, {52431, 23071}, {60486, 4453}
X(63868) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2166, 14993, 50148}


X(63869) = X(1)-CROSS CONJUGATE OF X(175)

Barycentrics    (a+b+c)*(a^8+8*a^7*(b+c)+8*a^3*(b-c)^4*(b+c)-16*a^5*(b+c)^3-4*a^6*(3*b+c)*(b+3*c)+(b^2-c^2)^4-4*a^2*(b-c)^2*(3*b^4+16*b^3*c+30*b^2*c^2+16*b*c^3+3*c^4)+2*a^4*(11*b^4+72*b^3*c+26*b^2*c^2+72*b*c^3+11*c^4))-4*a*(a^6-2*a^5*(b+c)+4*a^3*(b+c)^3-3*(b-c)^2*(b+c)^4-5*a^4*(b^2+6*b*c+c^2)-2*a*(b-c)^2*(b+c)*(b^2+6*b*c+c^2)+a^2*(7*b^4+36*b^3*c+106*b^2*c^2+36*b*c^3+7*c^4))*S : :

X(63869) lies on cubic K199 and on these lines: {40, 175}, {30557, 34910}, {34912, 60599}

X(63869) = X(i)-isoconjugate-of-X(j) for these {i, j}: {30336, 34495}
X(63869) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 175}
X(63869) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(34495)}}, {{A, B, C, X(8), X(175)}}, {{A, B, C, X(30557), X(52420)}}
X(63869) = barycentric quotient X(i)/X(j) for these (i, j): {ca, 34495}


X(63870) = X(1)-CROSS CONJUGATE OF X(176)

Barycentrics    (a+b+c)*(a^8+8*a^7*(b+c)+8*a^3*(b-c)^4*(b+c)-16*a^5*(b+c)^3-4*a^6*(3*b+c)*(b+3*c)+(b^2-c^2)^4-4*a^2*(b-c)^2*(3*b^4+16*b^3*c+30*b^2*c^2+16*b*c^3+3*c^4)+2*a^4*(11*b^4+72*b^3*c+26*b^2*c^2+72*b*c^3+11*c^4))+4*a*(a^6-2*a^5*(b+c)+4*a^3*(b+c)^3-3*(b-c)^2*(b+c)^4-5*a^4*(b^2+6*b*c+c^2)-2*a*(b-c)^2*(b+c)*(b^2+6*b*c+c^2)+a^2*(7*b^4+36*b^3*c+106*b^2*c^2+36*b*c^3+7*c^4))*S : :

X(63870) lies on cubic K199 and on these lines: {40, 176}, {30556, 34909}, {34911, 60599}

X(63870) = X(i)-isoconjugate-of-X(j) for these {i, j}: {30335, 34494}
X(63870) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 176}
X(63870) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(34494)}}, {{A, B, C, X(8), X(176)}}, {{A, B, C, X(30556), X(52419)}}
X(63870) = barycentric quotient X(i)/X(j) for these (i, j): {51842, 34494}


X(63871) = X(1)-CROSS CONJUGATE OF X(188)

Barycentrics    sqrt(a*sa)*(-(a*s*sa)+(b+c)*sb*sc+2*sa*sqrt(b*c*sb*sc)) : :

X(63871) lies on cubic K199 and on these lines: {8, 60598}, {40, 164}, {236, 13443}, {483, 34910}, {3082, 34909}

X(63871) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 15495}, {56, 60598}, {164, 266}
X(63871) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 60598}, {9, 15495}, {236, 16017}, {6728, 21618}
X(63871) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 188}
X(63871) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(164)}}, {{A, B, C, X(8), X(188)}}, {{A, B, C, X(266), X(45877)}}, {{A, B, C, X(483), X(30557)}}, {{A, B, C, X(3082), X(30556)}}
X(63871) = barycentric product X(i)*X(j) for these (i, j): {505, 556}, {16664, 8}
X(63871) = barycentric quotient X(i)/X(j) for these (i, j): {1, 15495}, {9, 60598}, {188, 16017}, {259, 164}, {505, 174}, {16664, 7}, {60555, 266}


X(63872) = X(1)-CROSS CONJUGATE OF X(238)

Barycentrics    a*(a^2-b*c)*(a^3*(b-c)+a^2*(b^2+b*c-c^2)+b*c*(-b^2+b*c+c^2)-a*(b^3+b^2*c-b*c^2+c^3))*(a^3*(b-c)+a^2*(b^2-b*c-c^2)-b*c*(b^2+b*c-c^2)+a*(b^3-b^2*c+b*c^2+c^3)) : :

X(63872) lies on cubic K961 and on these lines: {105, 39420}, {238, 1575}, {291, 20332}, {1281, 8843}, {4366, 8298}, {8300, 17475}, {8850, 8853}, {8935, 16363}, {62637, 63237}

X(63872) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 62557}, {291, 2108}, {292, 33888}, {335, 52127}, {813, 25381}, {1911, 52151}, {27920, 52205}
X(63872) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 62557}, {6651, 52151}, {19557, 33888}, {39029, 2108}, {40623, 25381}
X(63872) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 238}
X(63872) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2108)}}, {{A, B, C, X(105), X(238)}}, {{A, B, C, X(239), X(1929)}}, {{A, B, C, X(242), X(1281)}}, {{A, B, C, X(291), X(350)}}, {{A, B, C, X(727), X(8632)}}, {{A, B, C, X(740), X(6158)}}, {{A, B, C, X(741), X(1914)}}, {{A, B, C, X(985), X(6654)}}, {{A, B, C, X(1282), X(4334)}}, {{A, B, C, X(3253), X(63884)}}, {{A, B, C, X(4649), X(8849)}}, {{A, B, C, X(11599), X(21832)}}, {{A, B, C, X(16363), X(40718)}}
X(63872) = barycentric product X(i)*X(j) for these (i, j): {238, 62637}, {2109, 350}, {27855, 39420}
X(63872) = barycentric quotient X(i)/X(j) for these (i, j): {1, 62557}, {238, 33888}, {239, 52151}, {659, 25381}, {1914, 2108}, {2109, 291}, {2210, 52127}, {3253, 33679}, {8300, 27920}, {62637, 334}


X(63873) = X(1)-CROSS CONJUGATE OF X(257)

Barycentrics    (b^2+a*c)*(a*b+c^2)*(-a^3+b^3-a*b*c-c^3)*(a^3+b^3+a*b*c-c^3) : :

X(63873) lies on cubic K863 and on these lines: {38, 7224}, {257, 384}, {335, 40847}, {427, 7249}, {1925, 18835}, {3703, 7019}, {17280, 33299}

X(63873) = isotomic conjugate of X(17797)
X(63873) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 40597}, {31, 17797}, {171, 23868}, {172, 3496}, {894, 51947}, {4388, 7122}, {7119, 23150}
X(63873) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 17797}, {9, 40597}
X(63873) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 257}
X(63873) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3496)}}, {{A, B, C, X(21), X(38)}}, {{A, B, C, X(29), X(56376)}}, {{A, B, C, X(75), X(1031)}}, {{A, B, C, X(76), X(24291)}}, {{A, B, C, X(172), X(1491)}}, {{A, B, C, X(257), X(1934)}}, {{A, B, C, X(335), X(384)}}, {{A, B, C, X(904), X(41882)}}, {{A, B, C, X(3497), X(18836)}}, {{A, B, C, X(3512), X(18760)}}, {{A, B, C, X(7019), X(7249)}}, {{A, B, C, X(19555), X(63875)}}
X(63873) = barycentric product X(i)*X(j) for these (i, j): {257, 7224}, {3497, 7018}, {18836, 893}, {34250, 44187}
X(63873) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40597}, {2, 17797}, {256, 3496}, {257, 4388}, {893, 23868}, {904, 51947}, {3497, 171}, {7015, 23150}, {7018, 17788}, {7224, 894}, {7249, 17086}, {18836, 1920}, {34250, 172}, {44187, 18835}


X(63874) = X(1)-CROSS CONJUGATE OF X(292)

Barycentrics    a^2*(-b^2+a*c)*(a*b-c^2)*(a*b*(b-c)*c-b^2*c^2+a^2*(b^2+b*c-c^2))*(a*b*(b-c)*c+b^2*c^2+a^2*(b^2-b*c-c^2)) : :

X(63874) lies on cubic K775 and on these lines: {239, 2669}, {292, 2238}, {1911, 3747}, {1914, 18268}, {2107, 3009}, {24576, 40737}, {40747, 40769}, {53624, 59045}

X(63874) = isogonal conjugate of X(39916)
X(63874) = trilinear pole of line {875, 2107}
X(63874) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39916}, {6, 39028}, {75, 51331}, {100, 27854}, {238, 17759}, {239, 2664}, {350, 21788}, {740, 2106}, {1914, 52049}, {2238, 2669}, {3747, 40874}, {3802, 40742}, {3948, 56837}, {4366, 40796}, {4601, 38978}, {5009, 58367}, {17755, 56856}, {21897, 33295}, {35544, 56388}, {41333, 41535}
X(63874) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39916}, {9, 39028}, {206, 51331}, {8054, 27854}, {9470, 17759}, {36906, 52049}
X(63874) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 292}
X(63874) = pole of line {39916, 51331} with respect to the Stammler hyperbola
X(63874) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2664)}}, {{A, B, C, X(6), X(2111)}}, {{A, B, C, X(42), X(81)}}, {{A, B, C, X(172), X(1458)}}, {{A, B, C, X(292), X(1911)}}, {{A, B, C, X(512), X(35173)}}, {{A, B, C, X(694), X(18827)}}, {{A, B, C, X(870), X(2162)}}, {{A, B, C, X(1931), X(20985)}}, {{A, B, C, X(2363), X(12031)}}, {{A, B, C, X(2665), X(51333)}}, {{A, B, C, X(3009), X(16826)}}, {{A, B, C, X(3226), X(51326)}}, {{A, B, C, X(9361), X(39967)}}, {{A, B, C, X(36906), X(52205)}}
X(63874) = barycentric product X(i)*X(j) for these (i, j): {1, 63892}, {292, 39925}, {335, 51333}, {2665, 291}, {18268, 43685}, {18827, 2107}, {30663, 40769}, {37128, 54980}, {53216, 875}, {53624, 876}
X(63874) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39028}, {6, 39916}, {32, 51331}, {291, 52049}, {292, 17759}, {649, 27854}, {741, 2669}, {1911, 2664}, {1922, 21788}, {2107, 740}, {2665, 350}, {18268, 2106}, {18827, 41535}, {37128, 40874}, {39925, 1921}, {40769, 39044}, {51333, 239}, {53624, 874}, {54980, 3948}, {63892, 75}


X(63875) = X(1)-CROSS CONJUGATE OF X(335)

Barycentrics    (b^2-a*c)*(a*b-c^2)*(a^3+b^3-a*b*c-c^3)*(-a^3+b^3+a*b*c-c^3) : :

X(63875) lies on K769, K863 and on these lines: {2, 56693}, {37, 40781}, {291, 41352}, {325, 3932}, {335, 385}, {350, 1934}, {423, 5089}, {518, 7061}, {1909, 52085}, {1926, 18034}, {1959, 3930}, {7249, 36897}

X(63875) = isogonal conjugate of X(19561)
X(63875) = isotomic conjugate of X(1281)
X(63875) = trilinear pole of line {23596, 24287}
X(63875) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 19561}, {2, 18038}, {6, 19557}, {31, 1281}, {32, 18037}, {238, 17798}, {239, 19554}, {350, 18262}, {385, 41882}, {1580, 41532}, {1691, 40873}, {1914, 3509}, {1933, 52135}, {2201, 20741}, {2210, 4645}, {5009, 20715}, {8868, 18274}, {14599, 17789}, {27951, 32739}
X(63875) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 1281}, {3, 19561}, {9, 19557}, {6376, 18037}, {9470, 17798}, {32664, 18038}, {36906, 3509}, {39092, 41532}, {40619, 27951}, {62557, 4645}
X(63875) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 335}, {5988, 2}, {8045, 4639}
X(63875) = pole of line {1281, 19561} with respect to the Wallace hyperbola
X(63875) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(3509)}}, {{A, B, C, X(2), X(423)}}, {{A, B, C, X(7), X(35150)}}, {{A, B, C, X(37), X(518)}}, {{A, B, C, X(75), X(33889)}}, {{A, B, C, X(81), X(325)}}, {{A, B, C, X(86), X(7779)}}, {{A, B, C, X(92), X(7224)}}, {{A, B, C, X(98), X(35141)}}, {{A, B, C, X(105), X(20531)}}, {{A, B, C, X(257), X(350)}}, {{A, B, C, X(291), X(1581)}}, {{A, B, C, X(334), X(9477)}}, {{A, B, C, X(335), X(1934)}}, {{A, B, C, X(514), X(1447)}}, {{A, B, C, X(524), X(28894)}}, {{A, B, C, X(876), X(9506)}}, {{A, B, C, X(903), X(60271)}}, {{A, B, C, X(1281), X(5988)}}, {{A, B, C, X(1491), X(1914)}}, {{A, B, C, X(1916), X(18827)}}, {{A, B, C, X(2966), X(51568)}}, {{A, B, C, X(3512), X(18036)}}, {{A, B, C, X(4374), X(53198)}}, {{A, B, C, X(4583), X(18829)}}, {{A, B, C, X(5641), X(60139)}}, {{A, B, C, X(7261), X(40845)}}, {{A, B, C, X(9311), X(47647)}}, {{A, B, C, X(11606), X(35162)}}, {{A, B, C, X(18034), X(52205)}}, {{A, B, C, X(24720), X(56654)}}, {{A, B, C, X(35154), X(53811)}}, {{A, B, C, X(40881), X(51861)}}
X(63875) = barycentric product X(i)*X(j) for these (i, j): {1, 63895}, {291, 40845}, {334, 3512}, {335, 7261}, {1581, 40846}, {1916, 7061}, {1934, 41534}, {4444, 51614}, {18036, 292}, {18895, 8852}, {24479, 75}, {30633, 8875}, {30648, 76}
X(63875) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19557}, {2, 1281}, {6, 19561}, {31, 18038}, {75, 18037}, {291, 3509}, {292, 17798}, {295, 20741}, {334, 17789}, {335, 4645}, {693, 27951}, {694, 41532}, {1581, 40873}, {1911, 19554}, {1916, 52135}, {1922, 18262}, {1967, 41882}, {3512, 238}, {4444, 4458}, {7061, 385}, {7261, 239}, {7281, 3684}, {8852, 1914}, {8875, 19580}, {18036, 1921}, {24479, 1}, {24576, 8868}, {30648, 6}, {40098, 52085}, {40781, 8299}, {40845, 350}, {40846, 1966}, {41534, 1580}, {43534, 4071}, {51614, 3570}, {52030, 40754}, {52209, 40724}, {56706, 27916}, {63895, 75}


X(63876) = X(1)-CROSS CONJUGATE OF X(342)

Barycentrics    b*c*(-a^3-a^2*(b+c)+(b-c)^2*(b+c)+a*(b+c)^2)*(-a^5+a^4*(b-c)+2*a^3*(b-c)^2+(b-c)^3*(b+c)^2-2*a^2*(b^3-b^2*c+b*c^2-c^3)-a*(b^4-4*b^3*c-2*b^2*c^2+4*b*c^3+c^4))*(a^5+a^4*(b-c)-2*a^3*(b-c)^2+(b-c)^3*(b+c)^2-2*a^2*(b^3-b^2*c+b*c^2-c^3)+a*(b^4+4*b^3*c-2*b^2*c^2-4*b*c^3+c^4)) : :

X(63876) lies on cubic K972 and on these lines: {2, 31600}, {318, 24982}, {342, 1767}, {938, 1034}, {1226, 34404}

X(63876) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1436, 10310}, {1767, 2188}, {2208, 56545}
X(63876) = X(i)-Dao conjugate of X(j) for these {i, j}: {1108, 18239}, {61075, 30201}
X(63876) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 342}
X(63876) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1767)}}, {{A, B, C, X(2), X(318)}}, {{A, B, C, X(57), X(14837)}}, {{A, B, C, X(75), X(31600)}}, {{A, B, C, X(196), X(56218)}}, {{A, B, C, X(342), X(1226)}}, {{A, B, C, X(1088), X(17896)}}, {{A, B, C, X(19605), X(57049)}}, {{A, B, C, X(40399), X(61493)}}, {{A, B, C, X(41081), X(57245)}}
X(63876) = barycentric product X(i)*X(j) for these (i, j): {10309, 322}
X(63876) = barycentric quotient X(i)/X(j) for these (i, j): {40, 10310}, {196, 1767}, {329, 56545}, {6260, 18239}, {7080, 2057}, {8058, 30201}, {8602, 1436}, {10309, 84}, {30239, 8059}


X(63877) = X(1)-CROSS CONJUGATE OF X(347)

Barycentrics    (a^3+a^2*(b+c)-(b-c)^2*(b+c)-a*(b+c)^2)*(a^6+2*a^5*(b-c)-a^4*(b-c)^2+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2-4*a^3*(b^3-c^3)+2*a*(b^5+b^4*c-b*c^4-c^5))*(a^6-2*a^5*(b-c)-a^4*(b-c)^2+(b-c)^4*(b+c)^2-a^2*(b^2-c^2)^2+4*a^3*(b^3-c^3)-2*a*(b^5+b^4*c-b*c^4-c^5)) : :

X(63877) lies on cubic K034 and on these lines: {1, 57643}, {7, 1032}, {8, 1034}, {63, 347}, {75, 44189}, {46352, 55015}, {47634, 55112}

X(63877) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 47438}, {6, 3341}, {19, 46881}, {32, 47436}, {84, 3197}, {207, 268}, {282, 1035}, {604, 46350}, {1436, 1490}, {2188, 40837}, {2192, 47848}, {2208, 56943}, {3352, 28784}, {5932, 7118}, {8885, 41087}
X(63877) = X(i)-Dao conjugate of X(j) for these {i, j}: {6, 46881}, {9, 3341}, {57, 47848}, {281, 3176}, {3161, 46350}, {3342, 47851}, {3351, 1}, {6376, 47436}, {32664, 47438}, {61075, 14302}
X(63877) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {7149, 32001}, {7152, 3146}, {41514, 32064}, {60800, 54111}
X(63877) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 347}, {196, 329}, {3342, 46352}
X(63877) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(196)}}, {{A, B, C, X(2), X(1895)}}, {{A, B, C, X(7), X(14361)}}, {{A, B, C, X(8), X(63)}}, {{A, B, C, X(75), X(347)}}, {{A, B, C, X(278), X(14837)}}, {{A, B, C, X(2052), X(17896)}}, {{A, B, C, X(2192), X(14298)}}, {{A, B, C, X(3342), X(7149)}}, {{A, B, C, X(7013), X(58002)}}, {{A, B, C, X(46352), X(47634)}}
X(63877) = barycentric product X(i)*X(j) for these (i, j): {1, 47634}, {40, 56596}, {208, 57782}, {322, 3345}, {329, 41514}, {342, 57643}, {1034, 347}, {3342, 75}, {8806, 8822}, {40702, 47850}, {46352, 8}, {57454, 76}
X(63877) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3341}, {3, 46881}, {8, 46350}, {31, 47438}, {40, 1490}, {75, 47436}, {196, 40837}, {198, 3197}, {208, 207}, {221, 1035}, {223, 47848}, {322, 33672}, {329, 56943}, {347, 5932}, {1034, 280}, {3194, 8885}, {3342, 1}, {3345, 84}, {3351, 47851}, {7007, 7008}, {7037, 2192}, {7149, 40836}, {7152, 1436}, {7952, 3176}, {8058, 14302}, {8806, 39130}, {8811, 52384}, {40838, 7003}, {41082, 47637}, {41514, 189}, {46352, 7}, {47634, 75}, {47850, 282}, {56596, 309}, {57454, 6}, {57643, 271}, {57782, 57783}, {60800, 60803}


X(63878) = X(1)-CROSS CONJUGATE OF X(350)

Barycentrics    (a^2-b*c)*(a^3*b-b^4+a*b^2*c-2*a^2*c^2+b*c^3)*(-2*a^2*b^2+a^3*c+b^3*c+a*b*c^2-c^4) : :

X(63878) lies on cubic K769 and on these lines: {37, 63891}, {291, 53600}, {335, 20364}, {350, 3509}, {518, 2113}, {4366, 18264}, {6651, 8299}, {17475, 34253}, {20539, 41842}, {27942, 40793}, {40881, 41352}

X(63878) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 9470}, {32, 18034}, {291, 2112}, {292, 8301}, {1911, 17738}, {1922, 20345}, {14598, 20446}, {18268, 20716}
X(63878) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 9470}, {6376, 18034}, {6651, 17738}, {18277, 20446}, {19557, 8301}, {35068, 20716}, {39028, 20345}, {39029, 2112}, {62553, 20496}
X(63878) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 350}, {20365, 18795}, {27942, 239}
X(63878) = pole of line {9505, 52209} with respect to the dual conic of Yff parabola
X(63878) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(17738)}}, {{A, B, C, X(2), X(3253)}}, {{A, B, C, X(7), X(6654)}}, {{A, B, C, X(37), X(20694)}}, {{A, B, C, X(82), X(25050)}}, {{A, B, C, X(238), X(291)}}, {{A, B, C, X(239), X(6542)}}, {{A, B, C, X(335), X(350)}}, {{A, B, C, X(694), X(1914)}}, {{A, B, C, X(2054), X(21832)}}, {{A, B, C, X(2113), X(9472)}}, {{A, B, C, X(3912), X(53600)}}, {{A, B, C, X(3975), X(4435)}}, {{A, B, C, X(6158), X(16609)}}, {{A, B, C, X(18264), X(18783)}}, {{A, B, C, X(27916), X(27942)}}, {{A, B, C, X(39957), X(40769)}}
X(63878) = barycentric product X(i)*X(j) for these (i, j): {75, 9472}, {2113, 350}, {18264, 561}, {18783, 1921}, {18891, 41528}
X(63878) = barycentric quotient X(i)/X(j) for these (i, j): {1, 9470}, {75, 18034}, {238, 8301}, {239, 17738}, {350, 20345}, {740, 20716}, {1914, 2112}, {1921, 20446}, {2113, 291}, {3766, 20518}, {3948, 20496}, {4366, 27916}, {9472, 1}, {18264, 31}, {18783, 292}, {20769, 20742}, {41528, 1911}


X(63879) = X(1)-CROSS CONJUGATE OF X(366)

Barycentrics    sqrt(a)*(sqrt(a)+sqrt(b)-sqrt(c))*(sqrt(a)-sqrt(b)+sqrt(c)) : :

X(63879) lies on cubic K363 and on these lines: {2, 4182}, {9, 364}

X(63879) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 40374}, {364, 365}, {366, 20673}, {18753, 20534}
X(63879) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 40374}, {40374, 20534}
X(63879) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 366}
X(63879) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(366)}}, {{A, B, C, X(9), X(4182)}}
X(63879) = barycentric product X(i)*X(j) for these (i, j): {60552, 62249}
X(63879) = barycentric quotient X(i)/X(j) for these (i, j): {1, 40374}, {365, 364}, {366, 20534}, {18753, 20673}, {60548, 20695}, {60552, 365}
X(63879) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 4182, 40374}


X(63880) = X(1)-CROSS CONJUGATE OF X(518)

Barycentrics    a*(-b^2-c^2+a*(b+c))*(a^4+b^4-b^3*c+2*b^2*c^2-b*c^3-c^4-a^3*(b+c)+a^2*c*(-b+2*c)-a*(b^3+b^2*c-3*b*c^2+c^3))*(a^4-b^4+a^2*b*(2*b-c)-b^3*c+2*b^2*c^2-b*c^3+c^4-a^3*(b+c)-a*(b^3-3*b^2*c+b*c^2+c^3)) : :

X(63880) lies on cubic K769 and on these lines: {105, 36101}, {335, 14942}, {350, 40704}, {518, 910}, {676, 918}, {4437, 50441}, {4712, 9502}, {6542, 52164}, {8299, 53547}

X(63880) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 62599}, {105, 1282}, {294, 2114}, {673, 20672}, {1438, 20533}, {2195, 52160}, {8934, 56856}, {20761, 36124}, {27945, 51866}
X(63880) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 62599}, {2238, 27945}, {6184, 20533}, {39046, 1282}, {39063, 52160}
X(63880) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 518}
X(63880) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1282)}}, {{A, B, C, X(2), X(8301)}}, {{A, B, C, X(105), X(676)}}, {{A, B, C, X(110), X(9507)}}, {{A, B, C, X(241), X(291)}}, {{A, B, C, X(335), X(518)}}, {{A, B, C, X(350), X(3684)}}, {{A, B, C, X(694), X(1458)}}, {{A, B, C, X(1001), X(52164)}}, {{A, B, C, X(2356), X(8852)}}, {{A, B, C, X(3509), X(4458)}}, {{A, B, C, X(3912), X(40845)}}, {{A, B, C, X(9451), X(22116)}}, {{A, B, C, X(23829), X(43672)}}
X(63880) = barycentric product X(i)*X(j) for these (i, j): {2115, 40704}, {3263, 9500}, {3912, 9499}
X(63880) = barycentric quotient X(i)/X(j) for these (i, j): {1, 62599}, {241, 52160}, {518, 20533}, {672, 1282}, {1458, 2114}, {2115, 294}, {2223, 20672}, {8299, 27945}, {9499, 673}, {9500, 105}, {20683, 20692}, {20752, 20761}


X(63881) = X(1)-CROSS CONJUGATE OF X(741)

Barycentrics    a^2*(-b^2+a*c)*(a*b^2+a^2*(b-c)-b^2*c)*(a*b-c^2)*(a^2*(b-c)-a*c^2+b*c^2) : :

X(63881) lies on cubic K775 and on these lines: {1, 3253}, {6, 51856}, {172, 18263}, {238, 660}, {291, 8851}, {292, 20669}, {727, 813}, {741, 3510}, {2109, 52205}, {3226, 32922}, {3248, 30663}, {3685, 46803}, {4649, 40755}, {7121, 51634}, {8300, 18267}, {21759, 63893}, {22343, 40794}, {40155, 40735}, {52030, 54251}

X(63881) = isogonal conjugate of X(17793)
X(63881) = trilinear pole of line {292, 8632}
X(63881) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 17793}, {2, 17475}, {6, 62553}, {8, 8850}, {43, 56663}, {75, 20663}, {86, 20681}, {92, 20750}, {190, 62558}, {238, 726}, {239, 1575}, {350, 3009}, {659, 23354}, {740, 18792}, {874, 6373}, {1463, 3685}, {1914, 52043}, {1921, 21760}, {1978, 38367}, {2210, 35538}, {2238, 62636}, {3573, 3837}, {3684, 43040}, {4366, 52656}, {4432, 36814}, {19579, 40782}, {20777, 40717}, {21830, 30940}, {39044, 40155}, {40767, 59724}
X(63881) = X(i)-vertex conjugate of X(j) for these {i, j}: {58, 1016}, {238, 63881}
X(63881) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 17793}, {9, 62553}, {206, 20663}, {9470, 726}, {22391, 20750}, {32664, 17475}, {33678, 1921}, {36906, 52043}, {40600, 20681}, {55053, 62558}, {62557, 35538}
X(63881) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 741}, {6, 20332}, {667, 813}, {38986, 875}, {40155, 292}, {63506, 1967}
X(63881) = pole of line {17793, 20663} with respect to the Stammler hyperbola
X(63881) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(667)}}, {{A, B, C, X(6), X(82)}}, {{A, B, C, X(58), X(14665)}}, {{A, B, C, X(59), X(1169)}}, {{A, B, C, X(87), X(43924)}}, {{A, B, C, X(105), X(38878)}}, {{A, B, C, X(291), X(694)}}, {{A, B, C, X(660), X(813)}}, {{A, B, C, X(726), X(35958)}}, {{A, B, C, X(727), X(20332)}}, {{A, B, C, X(740), X(798)}}, {{A, B, C, X(741), X(1911)}}, {{A, B, C, X(1016), X(1126)}}, {{A, B, C, X(1168), X(2703)}}, {{A, B, C, X(1458), X(4334)}}, {{A, B, C, X(2162), X(63884)}}, {{A, B, C, X(2209), X(20464)}}, {{A, B, C, X(2334), X(9265)}}, {{A, B, C, X(2726), X(3451)}}, {{A, B, C, X(3226), X(34077)}}, {{A, B, C, X(3510), X(21759)}}, {{A, B, C, X(3572), X(30663)}}, {{A, B, C, X(3736), X(32922)}}, {{A, B, C, X(4083), X(51634)}}, {{A, B, C, X(4649), X(21788)}}, {{A, B, C, X(5018), X(41350)}}, {{A, B, C, X(7128), X(7132)}}, {{A, B, C, X(9505), X(52205)}}, {{A, B, C, X(16468), X(20669)}}, {{A, B, C, X(23579), X(39969)}}, {{A, B, C, X(28517), X(51333)}}, {{A, B, C, X(34248), X(56138)}}, {{A, B, C, X(41434), X(59053)}}
X(63881) = barycentric product X(i)*X(j) for these (i, j): {292, 3226}, {334, 34077}, {335, 727}, {1911, 32020}, {2162, 33680}, {3253, 52205}, {3572, 8709}, {18793, 37128}, {20332, 291}, {23355, 4562}, {24576, 40755}, {27809, 741}, {40155, 57535}, {62638, 813}
X(63881) = barycentric quotient X(i)/X(j) for these (i, j): {1, 62553}, {6, 17793}, {31, 17475}, {32, 20663}, {184, 20750}, {213, 20681}, {291, 52043}, {292, 726}, {335, 35538}, {604, 8850}, {667, 62558}, {727, 239}, {741, 62636}, {813, 23354}, {876, 20908}, {1911, 1575}, {1922, 3009}, {1980, 38367}, {2162, 56663}, {3226, 1921}, {3253, 56660}, {3572, 3837}, {8709, 27853}, {8851, 3975}, {14598, 21760}, {18268, 18792}, {18793, 3948}, {20332, 350}, {23355, 812}, {27809, 35544}, {32020, 18891}, {33680, 6382}, {34077, 238}, {36799, 4087}, {40155, 20532}, {40755, 19581}, {51856, 40155}


X(63882) = X(1)-CROSS CONJUGATE OF X(870)

Barycentrics    (a^2+a*b+b^2)*(b*(-b+c)+a*(b+2*c))*((b-c)*c+a*(2*b+c))*(a^2+a*c+c^2) : :

X(63882) lies on cubic K1018 and on these lines: {57, 25425}, {869, 37138}, {870, 2279}, {985, 56895}, {1001, 14621}, {1002, 4393}, {1475, 55946}, {2344, 51356}, {5222, 43266}, {5228, 40747}, {8693, 62813}, {17738, 18791}, {41354, 42290}, {42302, 52652}

X(63882) = isotomic conjugate of X(27474)
X(63882) = trilinear pole of line {4724, 4817}
X(63882) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 40732}, {6, 3789}, {31, 27474}, {55, 40784}, {869, 4384}, {984, 2280}, {1001, 2276}, {1469, 37658}, {3250, 54440}, {3661, 60722}, {3736, 59207}, {3886, 56556}, {4441, 40728}, {4517, 5228}, {18900, 21615}, {19587, 56705}
X(63882) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 27474}, {9, 3789}, {223, 40784}, {32664, 40732}
X(63882) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 870}, {649, 37138}, {1475, 40746}, {17474, 40763}, {40757, 40739}
X(63882) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(673)}}, {{A, B, C, X(2), X(16826)}}, {{A, B, C, X(6), X(2111)}}, {{A, B, C, X(7), X(52209)}}, {{A, B, C, X(57), X(292)}}, {{A, B, C, X(81), X(23407)}}, {{A, B, C, X(86), X(20131)}}, {{A, B, C, X(239), X(3253)}}, {{A, B, C, X(330), X(39716)}}, {{A, B, C, X(598), X(35173)}}, {{A, B, C, X(649), X(869)}}, {{A, B, C, X(812), X(56697)}}, {{A, B, C, X(870), X(14621)}}, {{A, B, C, X(876), X(7146)}}, {{A, B, C, X(985), X(4817)}}, {{A, B, C, X(1258), X(1476)}}, {{A, B, C, X(2279), X(42302)}}, {{A, B, C, X(2344), X(25425)}}, {{A, B, C, X(3227), X(60239)}}, {{A, B, C, X(4369), X(24628)}}, {{A, B, C, X(7176), X(41354)}}, {{A, B, C, X(17023), X(36480)}}, {{A, B, C, X(24593), X(47762)}}, {{A, B, C, X(27475), X(59255)}}, {{A, B, C, X(27483), X(31319)}}, {{A, B, C, X(32009), X(34860)}}, {{A, B, C, X(35163), X(60083)}}, {{A, B, C, X(39717), X(39721)}}, {{A, B, C, X(41527), X(55937)}}
X(63882) = barycentric product X(i)*X(j) for these (i, j): {1002, 870}, {2344, 62946}, {14621, 27475}, {32041, 4817}, {40739, 7}, {40757, 85}, {42290, 52652}, {52133, 62784}, {59255, 985}
X(63882) = barycentric quotient X(i)/X(j) for these (i, j): {1, 3789}, {2, 27474}, {31, 40732}, {57, 40784}, {870, 4441}, {985, 1001}, {1002, 984}, {1492, 54440}, {2279, 2276}, {2344, 37658}, {4817, 4762}, {14621, 4384}, {27475, 3661}, {32041, 3807}, {37138, 3799}, {40718, 3696}, {40739, 8}, {40746, 2280}, {40747, 59207}, {40757, 9}, {42290, 7146}, {42302, 40773}, {47647, 56705}, {51443, 3736}, {52133, 3886}, {52652, 28809}, {59255, 33931}, {60668, 3790}, {60673, 4517}, {62784, 7179}


X(63883) = X(1)-CROSS CONJUGATE OF X(904)

Barycentrics    a^3*(b^2+a*c)*(a*b+c^2)*(-(a^2*b^2*c^2)-b^3*c^3+a^3*(b^3-c^3))*(a^2*b^2*c^2+b^3*c^3+a^3*(b^3-c^3)) : :

X(63883) lies on cubic K991 and on these lines: {384, 904}, {1932, 57265}

X(63883) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 39928}, {75, 51909}, {171, 24732}, {1909, 6196}, {1920, 34251}, {3978, 51981}
X(63883) = X(i)-Dao conjugate of X(j) for these {i, j}: {206, 51909}, {32664, 39928}
X(63883) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 904}
X(63883) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(6196)}}, {{A, B, C, X(29), X(51950)}}, {{A, B, C, X(31), X(17743)}}, {{A, B, C, X(257), X(40849)}}, {{A, B, C, X(384), X(1911)}}, {{A, B, C, X(904), X(1927)}}, {{A, B, C, X(1909), X(46386)}}, {{A, B, C, X(1964), X(19606)}}, {{A, B, C, X(33954), X(51907)}}
X(63883) = barycentric product X(i)*X(j) for these (i, j): {1, 63903}, {1967, 39934}, {7346, 893}
X(63883) = barycentric quotient X(i)/X(j) for these (i, j): {31, 39928}, {32, 51909}, {893, 24732}, {1927, 51981}, {7104, 6196}, {7346, 1920}, {39934, 1926}, {63903, 75}


X(63884) = X(1)-CROSS CONJUGATE OF X(985)

Barycentrics    a*(a^2+a*b+b^2)*(a*(b-c)+b*(2*b+c))*(a*(b-c)-c*(b+2*c))*(a^2+a*c+c^2) : :

X(63884) lies on cubic K1018 and on these lines: {6, 40748}, {894, 56653}, {985, 16468}, {1001, 60665}, {4393, 4649}, {5263, 53648}, {20132, 56702}, {40718, 40720}, {46032, 56011}, {51356, 51449}, {55971, 59243}

X(63884) = isogonal conjugate of X(3795)
X(63884) = trilinear pole of line {4782, 54249}
X(63884) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 3795}, {2, 40733}, {6, 27481}, {43, 40783}, {869, 30963}, {984, 16468}, {2276, 4393}, {3661, 21793}, {3736, 3993}, {3773, 34476}, {3799, 4782}, {10009, 40728}, {19587, 56664}, {21904, 40773}
X(63884) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 3795}, {9, 27481}, {32664, 40733}
X(63884) = X(i)-cross conjugate of X(j) for these {i, j}: {1, 985}, {28600, 1}
X(63884) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(4393)}}, {{A, B, C, X(2), X(9505)}}, {{A, B, C, X(6), X(741)}}, {{A, B, C, X(7), X(87)}}, {{A, B, C, X(81), X(20145)}}, {{A, B, C, X(86), X(32921)}}, {{A, B, C, X(238), X(1001)}}, {{A, B, C, X(513), X(984)}}, {{A, B, C, X(679), X(55919)}}, {{A, B, C, X(985), X(14621)}}, {{A, B, C, X(1002), X(31314)}}, {{A, B, C, X(1929), X(60873)}}, {{A, B, C, X(2162), X(63881)}}, {{A, B, C, X(3795), X(28600)}}, {{A, B, C, X(4817), X(63902)}}, {{A, B, C, X(5018), X(41354)}}, {{A, B, C, X(5223), X(16779)}}, {{A, B, C, X(16604), X(46032)}}, {{A, B, C, X(27480), X(30571)}}, {{A, B, C, X(27494), X(52654)}}, {{A, B, C, X(40735), X(51449)}}
X(63884) = barycentric product X(i)*X(j) for these (i, j): {330, 40756}, {14621, 52654}, {27494, 985}, {40718, 55971}, {40747, 55947}, {60665, 870}
X(63884) = barycentric quotient X(i)/X(j) for these (i, j): {1, 27481}, {6, 3795}, {31, 40733}, {870, 10009}, {985, 4393}, {2162, 40783}, {14621, 30963}, {27494, 33931}, {40718, 59212}, {40735, 2276}, {40746, 16468}, {40747, 3993}, {40756, 192}, {43077, 3799}, {47647, 56664}, {51449, 40773}, {52654, 3661}, {53648, 4505}, {55971, 30966}, {59192, 3736}, {60665, 984}


X(63885) = X(2)-CROSS CONJUGATE OF X(10)

Barycentrics    (b+c)*(-a^2+b^2-b*c-c^2-a*(b+c))*(a^2+b^2+b*c-c^2+a*(b+c)) : :

X(63885) lies on cubic K868 and on these lines: {1, 36934}, {10, 894}, {12, 3842}, {37, 6543}, {86, 21043}, {87, 25775}, {142, 35352}, {256, 21725}, {313, 1920}, {334, 20339}, {502, 1125}, {594, 1215}, {1089, 3178}, {1268, 32780}, {1826, 4213}, {2372, 53628}, {6538, 21081}, {11599, 23928}, {17300, 23901}, {17379, 23927}, {17778, 23930}, {17788, 25385}

X(63885) = isotomic conjugate of X(6626)
X(63885) = trilinear pole of line {2533, 4024}
X(63885) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 38814}, {28, 22139}, {31, 6626}, {48, 2905}, {58, 846}, {81, 18755}, {163, 21196}, {238, 51867}, {593, 21879}, {667, 57060}, {849, 21085}, {1333, 1654}, {1437, 4213}, {1576, 50451}, {1914, 45783}, {1931, 51332}, {2150, 27691}, {2194, 17084}, {2206, 17762}, {2210, 52207}, {3736, 40751}, {8937, 56837}, {14844, 17104}
X(63885) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6626}, {9, 38814}, {10, 846}, {37, 1654}, {115, 21196}, {1214, 17084}, {1249, 2905}, {4075, 21085}, {4858, 50451}, {6631, 57060}, {9470, 51867}, {16587, 27954}, {36906, 45783}, {40586, 18755}, {40591, 22139}, {40603, 17762}, {56325, 27691}, {56847, 14844}, {62557, 52207}
X(63885) = X(i)-Ceva conjugate of X(j) for these {i, j}: {6625, 52208}
X(63885) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 10}, {523, 53655}, {20337, 43534}, {21709, 4024}, {62680, 2}
X(63885) = pole of line {4425, 23905} with respect to the Kiepert hyperbola
X(63885) = pole of line {99, 22033} with respect to the Yff parabola
X(63885) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(1046)}}, {{A, B, C, X(2), X(1654)}}, {{A, B, C, X(4), X(26051)}}, {{A, B, C, X(10), X(12)}}, {{A, B, C, X(37), X(765)}}, {{A, B, C, X(42), X(29653)}}, {{A, B, C, X(75), X(8818)}}, {{A, B, C, X(85), X(17739)}}, {{A, B, C, X(86), X(523)}}, {{A, B, C, X(226), X(335)}}, {{A, B, C, X(256), X(661)}}, {{A, B, C, X(264), X(1330)}}, {{A, B, C, X(291), X(2171)}}, {{A, B, C, X(306), X(43223)}}, {{A, B, C, X(308), X(17499)}}, {{A, B, C, X(321), X(28604)}}, {{A, B, C, X(897), X(21353)}}, {{A, B, C, X(996), X(34895)}}, {{A, B, C, X(1125), X(21081)}}, {{A, B, C, X(1213), X(56061)}}, {{A, B, C, X(1411), X(53114)}}, {{A, B, C, X(1441), X(4071)}}, {{A, B, C, X(1921), X(34021)}}, {{A, B, C, X(2321), X(3842)}}, {{A, B, C, X(3668), X(50307)}}, {{A, B, C, X(3952), X(53341)}}, {{A, B, C, X(4086), X(7110)}}, {{A, B, C, X(4416), X(42335)}}, {{A, B, C, X(4425), X(18036)}}, {{A, B, C, X(4535), X(5257)}}, {{A, B, C, X(5620), X(60078)}}, {{A, B, C, X(5936), X(59261)}}, {{A, B, C, X(6539), X(43985)}}, {{A, B, C, X(13610), X(51865)}}, {{A, B, C, X(14534), X(56291)}}, {{A, B, C, X(14624), X(43534)}}, {{A, B, C, X(15909), X(18698)}}, {{A, B, C, X(17038), X(52651)}}, {{A, B, C, X(18070), X(40004)}}, {{A, B, C, X(20072), X(30588)}}, {{A, B, C, X(20499), X(57886)}}, {{A, B, C, X(27701), X(29673)}}, {{A, B, C, X(30602), X(43972)}}, {{A, B, C, X(31010), X(55949)}}, {{A, B, C, X(32014), X(46707)}}, {{A, B, C, X(34208), X(58012)}}, {{A, B, C, X(36897), X(57554)}}, {{A, B, C, X(40430), X(57646)}}, {{A, B, C, X(43677), X(59760)}}, {{A, B, C, X(56044), X(60245)}}, {{A, B, C, X(57831), X(60109)}}
X(63885) = barycentric product X(i)*X(j) for these (i, j): {10, 6625}, {37, 51865}, {2248, 313}, {4024, 53655}, {13610, 321}, {15377, 264}, {18757, 27801}, {40164, 594}, {52208, 75}, {52623, 53628}
X(63885) = barycentric quotient X(i)/X(j) for these (i, j): {1, 38814}, {2, 6626}, {4, 2905}, {10, 1654}, {12, 27691}, {37, 846}, {42, 18755}, {71, 22139}, {190, 57060}, {226, 17084}, {291, 45783}, {292, 51867}, {313, 51857}, {321, 17762}, {335, 52207}, {523, 21196}, {594, 21085}, {756, 21879}, {1089, 27569}, {1215, 27954}, {1577, 50451}, {1826, 4213}, {2054, 51332}, {2248, 58}, {6625, 86}, {8818, 14844}, {11599, 39921}, {13610, 81}, {15377, 3}, {18757, 1333}, {21043, 6627}, {40164, 1509}, {40718, 40722}, {40747, 40751}, {40777, 40773}, {43223, 17689}, {51865, 274}, {52208, 1}, {52555, 38836}, {52651, 63627}, {53628, 4556}, {53655, 4610}, {54980, 8937}
X(63885) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {86, 21043, 63606}, {1654, 23934, 10}


X(63886) = X(2)-CROSS CONJUGATE OF X(37)

Barycentrics    a*(b+c)*(-(b^2*c^2)-a*b*c*(b+c)+a^2*(b^2-b*c-c^2))*(b^2*c^2+a*b*c*(b+c)+a^2*(b^2+b*c-c^2)) : :

X(63886) lies on cubic K136 and on these lines: {37, 1655}, {85, 25850}, {171, 213}, {257, 21823}, {274, 52065}, {291, 63627}, {292, 6626}, {872, 2295}, {1215, 1500}, {2375, 53631}, {3842, 6378}

X(63886) = isotomic conjugate of X(34021)
X(63886) = trilinear pole of line {9402, 50487}
X(63886) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 51330}, {6, 39915}, {27, 23079}, {31, 34021}, {58, 1655}, {81, 1045}, {86, 21779}, {274, 18756}, {649, 57115}, {757, 21883}, {1333, 51863}, {3736, 40752}, {4610, 9402}
X(63886) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 34021}, {9, 39915}, {10, 1655}, {37, 51863}, {5375, 57115}, {16587, 27890}, {32664, 51330}, {40586, 1045}, {40600, 21779}, {40607, 21883}
X(63886) = X(i)-Ceva conjugate of X(j) for these {i, j}: {40737, 63867}
X(63886) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 37}
X(63886) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(40749)}}, {{A, B, C, X(2), X(1655)}}, {{A, B, C, X(6), X(26110)}}, {{A, B, C, X(10), X(2664)}}, {{A, B, C, X(37), X(213)}}, {{A, B, C, X(65), X(171)}}, {{A, B, C, X(83), X(2135)}}, {{A, B, C, X(85), X(43686)}}, {{A, B, C, X(87), X(18754)}}, {{A, B, C, X(238), X(6626)}}, {{A, B, C, X(257), X(661)}}, {{A, B, C, X(274), X(512)}}, {{A, B, C, X(335), X(7148)}}, {{A, B, C, X(1218), X(3224)}}, {{A, B, C, X(1575), X(54277)}}, {{A, B, C, X(2238), X(32008)}}, {{A, B, C, X(3842), X(20691)}}, {{A, B, C, X(4559), X(39291)}}, {{A, B, C, X(9258), X(31359)}}, {{A, B, C, X(18278), X(19565)}}, {{A, B, C, X(18298), X(40737)}}, {{A, B, C, X(21877), X(31993)}}, {{A, B, C, X(39738), X(59272)}}, {{A, B, C, X(39949), X(55240)}}, {{A, B, C, X(40413), X(60081)}}, {{A, B, C, X(40770), X(54117)}}, {{A, B, C, X(51641), X(51974)}}, {{A, B, C, X(56158), X(58294)}}, {{A, B, C, X(57162), X(57554)}}
X(63886) = barycentric product X(i)*X(j) for these (i, j): {10, 40737}, {37, 54117}, {213, 43684}, {291, 39926}, {321, 40770}, {4705, 53631}, {18298, 42}, {63867, 75}
X(63886) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39915}, {2, 34021}, {10, 51863}, {31, 51330}, {37, 1655}, {42, 1045}, {100, 57115}, {213, 21779}, {228, 23079}, {1215, 27890}, {1500, 21883}, {1918, 18756}, {18298, 310}, {39926, 350}, {40718, 40743}, {40737, 86}, {40747, 40752}, {40770, 81}, {40778, 40773}, {43684, 6385}, {50487, 9402}, {53631, 4623}, {54117, 274}, {63867, 1}


X(63887) = X(2)-CROSS CONJUGATE OF X(39)

Barycentrics    a^2*(b^2+c^2)*(-(b^4*c^4)-a^2*b^2*c^2*(b^2+c^2)+a^4*(b^4-b^2*c^2-c^4))*(b^4*c^4+a^2*b^2*c^2*(b^2+c^2)+a^4*(b^4+b^2*c^2-c^4)) : :

X(63887) lies on cubic K787 and on these lines: {39, 8790}, {1915, 41331}, {4074, 9496}, {9468, 41884}, {51981, 51985}

X(63887) = isogonal conjugate of X(38817)
X(63887) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 38817}, {75, 51958}, {82, 52637}, {3112, 3499}
X(63887) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 38817}, {141, 52637}, {206, 51958}, {34452, 3499}
X(63887) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 39}
X(63887) = pole of line {38817, 51958} with respect to the Stammler hyperbola
X(63887) = pole of line {3499, 38817} with respect to the Wallace hyperbola
X(63887) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(52637)}}, {{A, B, C, X(39), X(9468)}}, {{A, B, C, X(95), X(8623)}}, {{A, B, C, X(141), X(41517)}}, {{A, B, C, X(308), X(688)}}, {{A, B, C, X(694), X(1843)}}, {{A, B, C, X(893), X(1964)}}, {{A, B, C, X(1691), X(41884)}}, {{A, B, C, X(3005), X(9229)}}, {{A, B, C, X(3224), X(8790)}}, {{A, B, C, X(10007), X(47642)}}, {{A, B, C, X(15391), X(20775)}}, {{A, B, C, X(19566), X(19606)}}, {{A, B, C, X(33665), X(51982)}}, {{A, B, C, X(39746), X(50521)}}, {{A, B, C, X(41296), X(52591)}}, {{A, B, C, X(51974), X(51981)}}
X(63887) = barycentric product X(i)*X(j) for these (i, j): {39, 39953}
X(63887) = barycentric quotient X(i)/X(j) for these (i, j): {6, 38817}, {32, 51958}, {39, 52637}, {3051, 3499}, {20775, 23174}, {39953, 308}


X(63888) = X(2)-CROSS CONJUGATE OF X(171)

Barycentrics    a*(a^2+b*c)*(2*a*b^4*c+a^2*b^2*c^2+b^3*c^3+a^3*(b^3-c^3))*(-(a^2*b^2*c^2)-b^3*c^3-2*a*b*c^4+a^3*(b^3-c^3)) : :

X(63888) lies on cubic K136 and on these lines: {37, 40795}, {171, 19565}, {2664, 28391}

X(63888) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 39917}, {256, 18754}, {893, 30661}, {16362, 18786}
X(63888) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 39917}, {40597, 30661}
X(63888) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 171}
X(63888) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(8033)}}, {{A, B, C, X(2), X(30661)}}, {{A, B, C, X(37), X(1215)}}, {{A, B, C, X(171), X(292)}}, {{A, B, C, X(238), X(27963)}}, {{A, B, C, X(291), X(7196)}}, {{A, B, C, X(1920), X(19565)}}, {{A, B, C, X(2664), X(7081)}}, {{A, B, C, X(3287), X(39924)}}, {{A, B, C, X(3805), X(7018)}}, {{A, B, C, X(17103), X(39966)}}
X(63888) = barycentric product X(i)*X(j) for these (i, j): {52176, 894}
X(63888) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39917}, {171, 30661}, {172, 18754}, {40795, 63486}, {52176, 257}


X(63889) = X(2)-CROSS CONJUGATE OF X(182)

Barycentrics    a^2*(a^4-2*b^2*c^2-a^2*(b^2+c^2))*(4*a^2*b^2*c^6*(b^2-c^2)-b^4*c^4*(b^2-c^2)^2+a^8*(b^4-c^4)-2*a^6*(b^6-c^6)+a^4*(b^8+5*b^4*c^4+4*b^2*c^6-c^8))*(4*a^2*b^6*c^2*(b^2-c^2)+b^4*c^4*(b^2-c^2)^2+a^8*(b^4-c^4)-2*a^6*(b^6-c^6)+a^4*(b^8-4*b^6*c^2-5*b^4*c^4-c^8)) : :

X(63889) lies on cubic K1179 and on these lines: {182, 40807}, {11328, 40805}, {40806, 40812}

X(63889) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 182}
X(63889) = intersection, other than A, B, C, of circumconics {{A, B, C, X(182), X(40799)}}, {{A, B, C, X(183), X(39683)}}, {{A, B, C, X(458), X(3114)}}, {{A, B, C, X(3288), X(19222)}}, {{A, B, C, X(40807), X(43727)}}, {{A, B, C, X(40809), X(40811)}}


X(63890) = X(2)-CROSS CONJUGATE OF X(238)

Barycentrics    a*(a^2-b*c)*(-2*a*b^4*c+a^2*b^2*c^2+b^3*c^3+a^3*(b^3-c^3))*(-(a^2*b^2*c^2)-b^3*c^3+2*a*b*c^4+a^3*(b^3-c^3)) : :

X(63890) lies on cubic K136 and on these lines: {238, 19565}, {1575, 2664}, {3802, 17793}, {8850, 16361}, {17755, 56663}, {18277, 39044}, {19580, 51328}

X(63890) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 39918}, {291, 18794}, {292, 30667}, {1911, 52044}, {16363, 18787}
X(63890) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 39918}, {6651, 52044}, {19557, 30667}, {39029, 18794}
X(63890) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 238}
X(63890) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(24578)}}, {{A, B, C, X(2), X(30667)}}, {{A, B, C, X(171), X(27916)}}, {{A, B, C, X(238), X(292)}}, {{A, B, C, X(239), X(2664)}}, {{A, B, C, X(241), X(17755)}}, {{A, B, C, X(291), X(350)}}, {{A, B, C, X(334), X(30665)}}, {{A, B, C, X(1581), X(1921)}}, {{A, B, C, X(3253), X(60665)}}, {{A, B, C, X(30654), X(51920)}}
X(63890) = barycentric product X(i)*X(j) for these (i, j): {16361, 257}, {18795, 239}
X(63890) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39918}, {238, 30667}, {239, 52044}, {1914, 18794}, {16361, 894}, {18795, 335}


X(63891) = X(2)-CROSS CONJUGATE OF X(241)

Barycentrics    a*(-b^2-c^2+a*(b+c))*(b^2*c^2*(-b+c)+a^3*(b^2+b*c-c^2)+a*b*c*(-b^2+b*c+c^2)-a^2*(b^3-b^2*c+b*c^2+c^3))*(b^2*c^2*(-b+c)+a^3*(b^2-b*c-c^2)-a*b*c*(b^2+b*c-c^2)+a^2*(b^3+b^2*c-b*c^2+c^3)) : :

X(63891) lies on cubic K136 and on these lines: {37, 63878}, {238, 2110}, {241, 10030}, {292, 673}, {665, 812}, {1575, 54456}, {6184, 17755}, {8299, 42079}, {41531, 43751}

X(63891) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 33674}, {105, 24578}, {294, 52161}, {673, 2110}, {1438, 17794}, {8849, 18785}, {20762, 36124}
X(63891) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 33674}, {6184, 17794}, {39046, 24578}
X(63891) = X(i)-Ceva conjugate of X(j) for these {i, j}: {33701, 518}
X(63891) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 241}, {3252, 518}
X(63891) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(2110)}}, {{A, B, C, X(82), X(40764)}}, {{A, B, C, X(87), X(18794)}}, {{A, B, C, X(238), X(291)}}, {{A, B, C, X(241), X(292)}}, {{A, B, C, X(335), X(2254)}}, {{A, B, C, X(672), X(37128)}}, {{A, B, C, X(926), X(36796)}}, {{A, B, C, X(1581), X(2664)}}, {{A, B, C, X(3693), X(7077)}}, {{A, B, C, X(9319), X(39957)}}, {{A, B, C, X(27475), X(39341)}}, {{A, B, C, X(37138), X(40526)}}, {{A, B, C, X(41531), X(56718)}}, {{A, B, C, X(46388), X(51995)}}
X(63891) = barycentric product X(i)*X(j) for these (i, j): {291, 33701}, {518, 54456}, {2111, 3912}
X(63891) = barycentric quotient X(i)/X(j) for these (i, j): {1, 33674}, {518, 17794}, {672, 24578}, {1458, 52161}, {2111, 673}, {2223, 2110}, {3252, 36906}, {3286, 8849}, {20683, 20694}, {20752, 20762}, {33701, 350}, {54456, 2481}


X(63892) = X(2)-CROSS CONJUGATE OF X(291)

Barycentrics    a*(-b^2+a*c)*(a*b-c^2)*(a*b*(b-c)*c-b^2*c^2+a^2*(b^2+b*c-c^2))*(a*b*(b-c)*c+b^2*c^2+a^2*(b^2-b*c-c^2)) : :

X(63892) lies on cubic K136 and on these lines: {37, 40796}, {171, 40761}, {238, 741}, {291, 740}, {292, 2238}, {350, 18827}, {1284, 8934}, {1575, 54980}, {1964, 36269}, {2201, 15148}, {3122, 35166}, {3571, 9506}, {40718, 40742}, {40794, 56131}

X(63892) = isotomic conjugate of X(39028)
X(63892) = trilinear pole of line {3572, 21832}
X(63892) = X(i)-isoconjugate-of-X(j) for these {i, j}: {2, 51331}, {6, 39916}, {31, 39028}, {101, 27854}, {238, 2664}, {239, 21788}, {242, 20796}, {740, 56837}, {1914, 17759}, {2106, 2238}, {2210, 52049}, {2669, 3747}, {3802, 40772}, {3948, 56388}, {4600, 38978}, {8299, 56856}, {8300, 40796}, {40874, 41333}
X(63892) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 39028}, {9, 39916}, {1015, 27854}, {9470, 2664}, {32664, 51331}, {36906, 17759}, {50497, 38978}, {62557, 52049}
X(63892) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 291}, {513, 53216}
X(63892) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(39252)}}, {{A, B, C, X(2), X(2106)}}, {{A, B, C, X(10), X(30570)}}, {{A, B, C, X(37), X(86)}}, {{A, B, C, X(43), X(26113)}}, {{A, B, C, X(87), X(3510)}}, {{A, B, C, X(98), X(9442)}}, {{A, B, C, X(171), X(241)}}, {{A, B, C, X(291), X(292)}}, {{A, B, C, X(310), X(43687)}}, {{A, B, C, X(1575), X(4784)}}, {{A, B, C, X(1581), X(40017)}}, {{A, B, C, X(2663), X(24727)}}, {{A, B, C, X(2665), X(39925)}}, {{A, B, C, X(3228), X(57542)}}, {{A, B, C, X(4817), X(34252)}}, {{A, B, C, X(9295), X(17038)}}, {{A, B, C, X(14534), X(24479)}}, {{A, B, C, X(17731), X(24512)}}, {{A, B, C, X(30663), X(36906)}}, {{A, B, C, X(32020), X(51934)}}, {{A, B, C, X(53216), X(53624)}}
X(63892) = barycentric product X(i)*X(j) for these (i, j): {291, 39925}, {334, 51333}, {2107, 40017}, {2665, 335}, {3572, 53216}, {4444, 53624}, {18827, 54980}, {40098, 40769}, {43685, 741}, {63874, 75}
X(63892) = barycentric quotient X(i)/X(j) for these (i, j): {1, 39916}, {2, 39028}, {31, 51331}, {291, 17759}, {292, 2664}, {335, 52049}, {513, 27854}, {741, 2106}, {1911, 21788}, {2107, 2238}, {2196, 20796}, {2665, 239}, {3121, 38978}, {8934, 27945}, {18268, 56837}, {18827, 40874}, {37128, 2669}, {39925, 350}, {40017, 41535}, {40769, 4366}, {43534, 58367}, {43685, 35544}, {51333, 238}, {51866, 56856}, {52205, 40796}, {53216, 27853}, {53624, 3570}, {54980, 740}, {63874, 1}


X(63893) = X(2)-CROSS CONJUGATE OF X(292)

Barycentrics    a^2*(-b^2+a*c)*(a*b-c^2)*(a^2*b^2*c^2-b^3*c^3+a^3*(b^3-c^3))*(-(a^2*b^2*c^2)+b^3*c^3+a^3*(b^3-c^3)) : :

X(63893) lies on K136, K787 and on these lines: {37, 33680}, {39, 8868}, {171, 40772}, {238, 9468}, {292, 1966}, {1575, 2669}, {1691, 14598}, {2664, 3229}, {21759, 63881}, {21760, 56837}, {21788, 51907}

X(63893) = isogonal conjugate of X(19579)
X(63893) = isotomic conjugate of X(18277)
X(63893) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 19579}, {2, 19580}, {6, 19581}, {31, 18277}, {75, 18274}, {76, 30634}, {238, 19565}, {239, 3510}, {350, 18278}, {1281, 8875}, {1580, 40849}, {1914, 19567}, {1966, 51979}, {2210, 18275}, {3978, 57265}, {17793, 40755}, {51328, 51868}
X(63893) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 18277}, {3, 19579}, {9, 19581}, {206, 18274}, {9467, 51979}, {9470, 19565}, {32664, 19580}, {36906, 19567}, {39092, 40849}, {62557, 18275}
X(63893) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 292}
X(63893) = pole of line {18274, 19579} with respect to the Stammler hyperbola
X(63893) = pole of line {18277, 19579} with respect to the Wallace hyperbola
X(63893) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(2664)}}, {{A, B, C, X(2), X(19565)}}, {{A, B, C, X(6), X(3508)}}, {{A, B, C, X(37), X(798)}}, {{A, B, C, X(86), X(51983)}}, {{A, B, C, X(171), X(238)}}, {{A, B, C, X(232), X(21348)}}, {{A, B, C, X(241), X(18758)}}, {{A, B, C, X(274), X(667)}}, {{A, B, C, X(291), X(694)}}, {{A, B, C, X(292), X(9468)}}, {{A, B, C, X(334), X(51981)}}, {{A, B, C, X(649), X(39914)}}, {{A, B, C, X(733), X(1911)}}, {{A, B, C, X(788), X(1921)}}, {{A, B, C, X(813), X(37134)}}, {{A, B, C, X(1967), X(37128)}}, {{A, B, C, X(3224), X(7346)}}, {{A, B, C, X(7168), X(51919)}}, {{A, B, C, X(9506), X(40409)}}, {{A, B, C, X(19566), X(63903)}}, {{A, B, C, X(36800), X(47642)}}, {{A, B, C, X(41517), X(63895)}}
X(63893) = barycentric product X(i)*X(j) for these (i, j): {1, 24576}, {291, 7168}, {335, 51919}, {1581, 51920}, {1967, 52175}, {24479, 8868}, {30633, 31}, {39933, 694}
X(63893) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19581}, {2, 18277}, {6, 19579}, {31, 19580}, {32, 18274}, {291, 19567}, {292, 19565}, {335, 18275}, {560, 30634}, {694, 40849}, {1911, 3510}, {1922, 18278}, {1927, 57265}, {7168, 350}, {8868, 18037}, {9468, 51979}, {24576, 75}, {30633, 561}, {30663, 51868}, {39933, 3978}, {40782, 62553}, {51919, 239}, {51920, 1966}, {52175, 1926}


X(63894) = X(2)-CROSS CONJUGATE OF X(325)

Barycentrics    (-b^4-c^4+a^2*(b^2+c^2))*(a^8+b^8-b^6*c^2+2*b^4*c^4-b^2*c^6-c^8-a^6*(b^2+c^2)+a^4*(-(b^2*c^2)+2*c^4)-a^2*(b^6+b^4*c^2-3*b^2*c^4+c^6))*(a^8-b^8-b^6*c^2+2*b^4*c^4-b^2*c^6+c^8-a^6*(b^2+c^2)+a^4*(2*b^4-b^2*c^2)-a^2*(b^6-3*b^4*c^2+b^2*c^4+c^6)) : :

X(63894) lies on cubic K1023 and on these lines: {98, 35140}, {132, 5976}, {147, 325}, {15595, 32458}, {18896, 57799}

X(63894) = isotomic conjugate of X(36899)
X(63894) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 36899}, {293, 57262}, {1910, 52162}, {1976, 16559}, {9417, 61496}
X(63894) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 36899}, {132, 57262}, {5976, 147}, {11672, 52162}, {39040, 16559}, {39058, 61496}
X(63894) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 325}
X(63894) = pole of line {147, 36899} with respect to the Wallace hyperbola
X(63894) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(147)}}, {{A, B, C, X(76), X(5989)}}, {{A, B, C, X(98), X(132)}}, {{A, B, C, X(114), X(56064)}}, {{A, B, C, X(232), X(51982)}}, {{A, B, C, X(262), X(57504)}}, {{A, B, C, X(297), X(1916)}}, {{A, B, C, X(325), X(8781)}}, {{A, B, C, X(334), X(40703)}}, {{A, B, C, X(511), X(47619)}}, {{A, B, C, X(827), X(9478)}}, {{A, B, C, X(3569), X(17980)}}, {{A, B, C, X(5207), X(8840)}}, {{A, B, C, X(5976), X(6393)}}, {{A, B, C, X(14356), X(60215)}}, {{A, B, C, X(35005), X(46807)}}, {{A, B, C, X(40801), X(40804)}}, {{A, B, C, X(40824), X(46236)}}, {{A, B, C, X(41517), X(52009)}}
X(63894) = barycentric product X(i)*X(j) for these (i, j): {325, 9473}
X(63894) = barycentric quotient X(i)/X(j) for these (i, j): {2, 36899}, {232, 57262}, {290, 61496}, {325, 147}, {511, 52162}, {1959, 16559}, {9473, 98}, {34130, 1976}


X(63895) = X(2)-CROSS CONJUGATE OF X(334)

Barycentrics    b*c*(b^2-a*c)*(a*b-c^2)*(a^3+b^3-a*b*c-c^3)*(-a^3+b^3+a*b*c-c^3) : :

X(63895) lies on K868, K1023 and on these lines: {10, 33676}, {325, 3932}, {334, 1966}, {1920, 51859}, {1921, 18896}, {3912, 24479}, {14603, 44170}, {18036, 46238}, {32922, 51614}, {40834, 41534}

X(63895) = isogonal conjugate of X(18038)
X(63895) = isotomic conjugate of X(19557)
X(63895) = trilinear pole of line {4088, 30639}
X(63895) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 18038}, {6, 19561}, {31, 19557}, {32, 1281}, {238, 19554}, {239, 18262}, {560, 18037}, {1580, 41882}, {1691, 41532}, {1914, 17798}, {1933, 40873}, {2210, 3509}, {4645, 14599}, {8868, 30634}, {14602, 52135}, {17789, 18892}, {20741, 57654}
X(63895) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 19557}, {3, 18038}, {9, 19561}, {6374, 18037}, {6376, 1281}, {9470, 19554}, {36906, 17798}, {39092, 41882}, {62557, 3509}
X(63895) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 334}
X(63895) = pole of line {18038, 19557} with respect to the Wallace hyperbola
X(63895) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(4645)}}, {{A, B, C, X(10), X(349)}}, {{A, B, C, X(75), X(4601)}}, {{A, B, C, X(76), X(52662)}}, {{A, B, C, X(85), X(18760)}}, {{A, B, C, X(86), X(325)}}, {{A, B, C, X(238), X(824)}}, {{A, B, C, X(292), X(51982)}}, {{A, B, C, X(334), X(18896)}}, {{A, B, C, X(335), X(1916)}}, {{A, B, C, X(673), X(20531)}}, {{A, B, C, X(693), X(10030)}}, {{A, B, C, X(1920), X(1921)}}, {{A, B, C, X(1934), X(40017)}}, {{A, B, C, X(4444), X(9505)}}, {{A, B, C, X(5207), X(40415)}}, {{A, B, C, X(9470), X(30663)}}, {{A, B, C, X(18036), X(40845)}}, {{A, B, C, X(32023), X(63902)}}, {{A, B, C, X(41517), X(63893)}}
X(63895) = barycentric product X(i)*X(j) for these (i, j): {334, 7261}, {335, 40845}, {1916, 40846}, {1934, 7061}, {18036, 291}, {18895, 3512}, {18896, 41534}, {24479, 76}, {30648, 561}, {44172, 8852}, {63875, 75}
X(63895) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19561}, {2, 19557}, {6, 18038}, {75, 1281}, {76, 18037}, {291, 17798}, {292, 19554}, {334, 4645}, {335, 3509}, {694, 41882}, {1581, 41532}, {1911, 18262}, {1916, 40873}, {1934, 52135}, {3261, 27951}, {3512, 1914}, {7061, 1580}, {7233, 5018}, {7261, 238}, {8852, 2210}, {8875, 18274}, {18036, 350}, {18895, 17789}, {24479, 6}, {30648, 31}, {40845, 239}, {40846, 385}, {41534, 1691}, {43534, 20715}, {51614, 3573}, {52209, 40754}, {63875, 1}


X(63896) = X(2)-CROSS CONJUGATE OF X(335)

Barycentrics    (b^2-a*c)*(a*b-c^2)*(a^2+b^2+a*(b-c)-b*c-c^2)*(-a^2+b^2+a*(b-c)+b*c-c^2) : :

X(63896) lies on cubic K868 and on these lines: {2, 19936}, {10, 40098}, {239, 9278}, {242, 423}, {334, 3948}, {335, 740}, {876, 18014}, {3125, 35173}, {3912, 11599}, {6625, 24479}, {7233, 16609}, {16826, 40724}, {35080, 39718}, {37128, 49760}, {40217, 51353}

X(63896) = reflection of X(i) in X(j) for these {i,j}: {39718, 35080}
X(63896) = isotomic conjugate of X(6651)
X(63896) = trilinear pole of line {4010, 4444}
X(63896) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 8298}, {31, 6651}, {48, 52468}, {101, 38348}, {238, 17735}, {239, 18266}, {560, 18035}, {692, 27929}, {1326, 2238}, {1757, 1914}, {1911, 27926}, {1931, 3747}, {2176, 8843}, {2201, 17976}, {2210, 6542}, {3573, 5029}, {5009, 20693}, {14599, 20947}, {17731, 41333}, {17943, 21832}, {40794, 51328}
X(63896) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6651}, {9, 8298}, {1015, 38348}, {1086, 27929}, {1249, 52468}, {6374, 18035}, {6651, 27926}, {9470, 17735}, {36906, 1757}, {62557, 6542}
X(63896) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 335}, {514, 35148}, {3125, 18014}, {5988, 7}, {62675, 2}
X(63896) = pole of line {335, 6543} with respect to the Kiepert hyperbola
X(63896) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(423)}}, {{A, B, C, X(10), X(239)}}, {{A, B, C, X(65), X(20337)}}, {{A, B, C, X(75), X(62637)}}, {{A, B, C, X(85), X(4645)}}, {{A, B, C, X(334), X(335)}}, {{A, B, C, X(666), X(60055)}}, {{A, B, C, X(671), X(6185)}}, {{A, B, C, X(673), X(6653)}}, {{A, B, C, X(1016), X(1224)}}, {{A, B, C, X(1581), X(24479)}}, {{A, B, C, X(1920), X(4369)}}, {{A, B, C, X(3008), X(29615)}}, {{A, B, C, X(3912), X(16826)}}, {{A, B, C, X(6543), X(9278)}}, {{A, B, C, X(6630), X(31359)}}, {{A, B, C, X(6650), X(18032)}}, {{A, B, C, X(7192), X(19975)}}, {{A, B, C, X(17266), X(29574)}}, {{A, B, C, X(19936), X(32014)}}, {{A, B, C, X(20016), X(60710)}}, {{A, B, C, X(20913), X(40874)}}, {{A, B, C, X(24378), X(27818)}}, {{A, B, C, X(29576), X(50016)}}, {{A, B, C, X(29590), X(51353)}}, {{A, B, C, X(29619), X(62398)}}
X(63896) = barycentric product X(i)*X(j) for these (i, j): {75, 9505}, {76, 9506}, {335, 6650}, {1502, 18263}, {1929, 334}, {11599, 18827}, {17930, 35352}, {17962, 18895}, {17982, 337}, {18014, 4589}, {18032, 291}, {35148, 4444}, {40017, 9278}, {40098, 40725}
X(63896) = barycentric quotient X(i)/X(j) for these (i, j): {1, 8298}, {2, 6651}, {4, 52468}, {76, 18035}, {87, 8843}, {239, 27926}, {291, 1757}, {292, 17735}, {295, 17976}, {334, 20947}, {335, 6542}, {513, 38348}, {514, 27929}, {741, 1326}, {876, 9508}, {1911, 18266}, {1929, 238}, {2054, 3747}, {3572, 5029}, {4444, 2786}, {4589, 17934}, {6543, 4037}, {6625, 39922}, {6650, 239}, {9278, 2238}, {9505, 1}, {9506, 6}, {11599, 740}, {17962, 1914}, {17972, 7193}, {17982, 242}, {18001, 4455}, {18014, 4010}, {18032, 350}, {18263, 32}, {18827, 17731}, {30663, 40794}, {35148, 3570}, {35352, 18004}, {37128, 1931}, {37135, 3573}, {40017, 52137}, {40725, 4366}, {40767, 8300}, {40793, 3802}, {43534, 6541}


X(63897) = X(2)-CROSS CONJUGATE OF X(344)

Barycentrics    (a+b-c)*(a-b+c)*(a^2+b^2+c^2-2*a*(b+c))*(a^3+(b-c)^3-a^2*(b+3*c)+a*(-b^2+2*b*c+3*c^2))*(a^3-(b-c)^3-a^2*(3*b+c)+a*(3*b^2+2*b*c-c^2)) : :

X(63897) lies on cubic K1069 and on these lines: {8, 53653}, {85, 344}, {21453, 42361}, {31618, 60832}, {40701, 56667}

X(63897) = X(i)-isoconjugate-of-X(j) for these {i, j}: {3174, 57656}
X(63897) = X(i)-Dao conjugate of X(j) for these {i, j}: {4904, 59979}
X(63897) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 344}, {4468, 53653}, {55337, 6604}
X(63897) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(55337)}}, {{A, B, C, X(8), X(4468)}}, {{A, B, C, X(85), X(6604)}}, {{A, B, C, X(277), X(3309)}}, {{A, B, C, X(344), X(31618)}}, {{A, B, C, X(348), X(56667)}}, {{A, B, C, X(1445), X(8232)}}, {{A, B, C, X(7719), X(21446)}}, {{A, B, C, X(30705), X(31638)}}, {{A, B, C, X(40701), X(56668)}}, {{A, B, C, X(56060), X(56085)}}
X(63897) = barycentric product X(i)*X(j) for these (i, j): {31605, 53653}, {42361, 6604}
X(63897) = barycentric quotient X(i)/X(j) for these (i, j): {344, 56937}, {1445, 16572}, {1617, 21002}, {3870, 3174}, {6604, 36845}, {17093, 8732}, {21609, 20946}, {23144, 22153}, {42361, 6601}, {55337, 24771}


X(63898) = X(2)-CROSS CONJUGATE OF X(385)

Barycentrics    (a^2-b*c)*(a^2+b*c)*(-(b^6*c^2)+b^4*c^4+b^2*c^6+a^6*(b^2-c^2)+a^4*(b^4+b^2*c^2-c^4)-a^2*(b^6+b^4*c^2-b^2*c^4+c^6))*(a^6*(b^2-c^2)+a^4*(b^4-b^2*c^2-c^4)-b^2*c^2*(b^4+b^2*c^2-c^4)+a^2*(b^6-b^4*c^2+b^2*c^4+c^6)) : :

X(63898) lies on K699, K828 and on these lines: {385, 698}, {1916, 3225}, {4027, 39080}, {8784, 52462}, {10352, 47646}

X(63898) = X(i)-isoconjugate-of-X(j) for these {i, j}: {694, 51930}, {1967, 8782}
X(63898) = X(i)-Dao conjugate of X(j) for these {i, j}: {8290, 8782}, {39043, 51930}
X(63898) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 385}, {32544, 39927}
X(63898) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(8782)}}, {{A, B, C, X(98), X(385)}}, {{A, B, C, X(419), X(10997)}}, {{A, B, C, X(698), X(804)}}, {{A, B, C, X(699), X(5027)}}, {{A, B, C, X(733), X(1691)}}, {{A, B, C, X(1966), X(7061)}}, {{A, B, C, X(3407), X(5989)}}, {{A, B, C, X(3978), X(11606)}}, {{A, B, C, X(5976), X(60104)}}, {{A, B, C, X(40820), X(60184)}}, {{A, B, C, X(51510), X(60129)}}
X(63898) = barycentric quotient X(i)/X(j) for these (i, j): {385, 8782}, {1580, 51930}


X(63899) = X(2)-CROSS CONJUGATE OF X(393)

Barycentrics    (a^2+b^2-c^2)^2*(a^2-b^2+c^2)^2*(a^4+2*a^2*(b^2-3*c^2)+(b^2+c^2)^2)*(a^4+(b^2+c^2)^2+a^2*(-6*b^2+2*c^2)) : :

X(63899) lies on cubic K1046 and on these lines: {393, 6339}, {1611, 2207}, {3926, 54956}, {15369, 52439}, {30558, 32989}

X(63899) = isogonal conjugate of X(6461)
X(63899) = isotomic conjugate of X(6338)
X(63899) = trilinear pole of line {6562, 57071}
X(63899) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 6461}, {3, 2128}, {31, 6338}, {48, 19583}, {63, 19588}, {255, 6392}, {326, 1611}, {394, 33781}, {577, 33787}, {2519, 4592}
X(63899) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 6338}, {3, 6461}, {1249, 19583}, {3162, 19588}, {5139, 2519}, {6342, 3926}, {6523, 6392}, {15259, 1611}, {36103, 2128}
X(63899) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 393}, {512, 54956}, {6387, 2}, {14248, 4}, {15369, 55023}
X(63899) = pole of line {6338, 6461} with respect to the Wallace hyperbola
X(63899) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(1611)}}, {{A, B, C, X(4), X(6353)}}, {{A, B, C, X(76), X(36878)}}, {{A, B, C, X(83), X(3068)}}, {{A, B, C, X(393), X(2207)}}, {{A, B, C, X(460), X(32989)}}, {{A, B, C, X(512), X(3926)}}, {{A, B, C, X(2501), X(2996)}}, {{A, B, C, X(3224), X(46712)}}, {{A, B, C, X(5395), X(14593)}}, {{A, B, C, X(6338), X(6387)}}, {{A, B, C, X(6339), X(15369)}}, {{A, B, C, X(8753), X(52583)}}, {{A, B, C, X(38259), X(41521)}}, {{A, B, C, X(40323), X(57688)}}, {{A, B, C, X(52187), X(56344)}}, {{A, B, C, X(57553), X(58757)}}
X(63899) = barycentric product X(i)*X(j) for these (i, j): {4, 55023}, {393, 6339}, {2052, 40322}, {2129, 92}, {15369, 264}
X(63899) = barycentric quotient X(i)/X(j) for these (i, j): {2, 6338}, {4, 19583}, {6, 6461}, {19, 2128}, {25, 19588}, {158, 33787}, {393, 6392}, {1096, 33781}, {2129, 63}, {2207, 1611}, {2489, 2519}, {6339, 3926}, {15369, 3}, {34854, 51426}, {40322, 394}, {53067, 10607}, {55023, 69}, {58757, 58882}


X(63900) = X(2)-CROSS CONJUGATE OF X(468)

Barycentrics    (2*a^2-b^2-c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)*(a^6-4*a^4*b^2+3*b^6-2*b^4*c^2-4*b^2*c^4+c^6+a^2*(-2*b^4+7*b^2*c^2))*(a^6+b^6-4*a^4*c^2-4*b^4*c^2-2*b^2*c^4+3*c^6+a^2*(7*b^2*c^2-2*c^4)) : :

X(63900) lies on cubic K533 and on these lines: {126, 5095}, {468, 7665}, {671, 2374}, {9134, 14273}

X(63900) = isotomic conjugate of X(62607)
X(63900) = trilinear pole of line {44915, 55271}
X(63900) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 62607}, {7665, 36060}
X(63900) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 62607}, {1560, 7665}
X(63900) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 468}
X(63900) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(7665)}}, {{A, B, C, X(99), X(47293)}}, {{A, B, C, X(126), X(671)}}, {{A, B, C, X(468), X(2374)}}, {{A, B, C, X(690), X(30786)}}, {{A, B, C, X(2373), X(16103)}}, {{A, B, C, X(3266), X(9076)}}, {{A, B, C, X(23287), X(40347)}}, {{A, B, C, X(46111), X(52477)}}
X(63900) = barycentric product X(i)*X(j) for these (i, j): {15390, 264}
X(63900) = barycentric quotient X(i)/X(j) for these (i, j): {2, 62607}, {468, 7665}, {15390, 3}


X(63901) = X(2)-CROSS CONJUGATE OF X(694)

Barycentrics    a^2*(-b^2+a*c)*(b^2+a*c)*(a*b-c^2)*(a*b+c^2)*(-(b^4*c^4)+a^2*b^2*c^2*(b^2-c^2)+a^4*(b^4+b^2*c^2-c^4))*(b^4*c^4+a^2*b^2*c^2*(b^2-c^2)+a^4*(b^4-b^2*c^2-c^4)) : :

X(63901) lies on cubic K787 and on these lines: {39, 8871}, {694, 732}, {3978, 14970}, {8623, 9468}, {51979, 51985}, {53621, 59048}

X(63901) = isogonal conjugate of X(38382)
X(63901) = isotomic conjugate of X(62610)
X(63901) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 38382}, {31, 62610}, {75, 51325}, {1580, 40858}, {1966, 51983}
X(63901) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 62610}, {3, 38382}, {206, 51325}, {9467, 51983}, {39092, 40858}
X(63901) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 694}, {51249, 51326}
X(63901) = pole of line {38382, 51325} with respect to the Stammler hyperbola
X(63901) = pole of line {38382, 62610} with respect to the Wallace hyperbola
X(63901) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(40858)}}, {{A, B, C, X(6), X(41520)}}, {{A, B, C, X(39), X(83)}}, {{A, B, C, X(232), X(1915)}}, {{A, B, C, X(292), X(24576)}}, {{A, B, C, X(694), X(9468)}}, {{A, B, C, X(1987), X(46322)}}, {{A, B, C, X(3224), X(8871)}}, {{A, B, C, X(3229), X(14318)}}, {{A, B, C, X(8842), X(47642)}}, {{A, B, C, X(17042), X(46274)}}, {{A, B, C, X(39092), X(41517)}}, {{A, B, C, X(39935), X(51992)}}, {{A, B, C, X(39939), X(51326)}}, {{A, B, C, X(40418), X(52205)}}, {{A, B, C, X(43094), X(57540)}}, {{A, B, C, X(44182), X(46316)}}, {{A, B, C, X(51974), X(51979)}}, {{A, B, C, X(51981), X(51995)}}
X(63901) = barycentric product X(i)*X(j) for these (i, j): {1581, 51934}, {1916, 51326}, {36897, 51249}, {39939, 694}, {53621, 882}
X(63901) = barycentric quotient X(i)/X(j) for these (i, j): {2, 62610}, {6, 38382}, {32, 51325}, {694, 40858}, {9468, 51983}, {34238, 8870}, {39939, 3978}, {51249, 5976}, {51326, 385}, {51934, 1966}, {53621, 880}


X(63902) = X(2)-CROSS CONJUGATE OF X(870)

Barycentrics    b*(a^2+a*b+b^2)*c*(a^2+a*c+c^2)*(b*(b-c)*c+a^2*(-b+c)+a*(b^2+b*c+c^2))*(a^2*(b-c)+b*c*(-b+c)+a*(b^2+b*c+c^2)) : :

X(63902) lies on cubic K1014 and on these lines: {1, 39923}, {75, 56653}, {183, 1001}, {870, 18906}, {3403, 4384}, {5228, 14621}, {7220, 40718}, {19579, 20172}

X(63902) = isogonal conjugate of X(19587)
X(63902) = isotomic conjugate of X(19584)
X(63902) = trilinear pole of line {4724, 63222}
X(63902) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 19587}, {6, 19586}, {31, 19584}, {42, 25429}, {869, 17754}, {2276, 21010}, {3799, 54275}, {18900, 20917}, {24349, 40728}
X(63902) = X(i)-Dao conjugate of X(j) for these {i, j}: {2, 19584}, {3, 19587}, {9, 19586}, {40592, 25429}
X(63902) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 870}, {25425, 47647}
X(63902) = pole of line {19584, 19587} with respect to the Wallace hyperbola
X(63902) = intersection, other than A, B, C, of circumconics {{A, B, C, X(1), X(673)}}, {{A, B, C, X(2), X(10030)}}, {{A, B, C, X(6), X(7167)}}, {{A, B, C, X(75), X(10009)}}, {{A, B, C, X(85), X(18299)}}, {{A, B, C, X(86), X(183)}}, {{A, B, C, X(274), X(41259)}}, {{A, B, C, X(812), X(984)}}, {{A, B, C, X(870), X(3114)}}, {{A, B, C, X(1966), X(8033)}}, {{A, B, C, X(3224), X(3500)}}, {{A, B, C, X(3407), X(14621)}}, {{A, B, C, X(4817), X(63884)}}, {{A, B, C, X(5263), X(60857)}}, {{A, B, C, X(7033), X(30940)}}, {{A, B, C, X(18906), X(32010)}}, {{A, B, C, X(20172), X(56852)}}, {{A, B, C, X(32023), X(63895)}}, {{A, B, C, X(40409), X(40412)}}
X(63902) = barycentric product X(i)*X(j) for these (i, j): {25425, 274}, {41527, 870}, {47647, 75}
X(63902) = barycentric quotient X(i)/X(j) for these (i, j): {1, 19586}, {2, 19584}, {6, 19587}, {81, 25429}, {870, 24349}, {985, 21010}, {4817, 54249}, {7220, 4517}, {14621, 17754}, {25425, 37}, {41527, 984}, {47647, 1}, {56664, 27481}, {56705, 3789}


X(63903) = X(2)-CROSS CONJUGATE OF X(893)

Barycentrics    a^2*(b^2+a*c)*(a*b+c^2)*(-(a^2*b^2*c^2)-b^3*c^3+a^3*(b^3-c^3))*(a^2*b^2*c^2+b^3*c^3+a^3*(b^3-c^3)) : :

X(63903) lies on cubic K787 and on these lines: {39, 7346}, {893, 1965}, {1915, 51979}, {9468, 40597}, {47642, 51985}, {51983, 51986}

X(63903) = isogonal conjugate of X(39928)
X(63903) = X(i)-isoconjugate-of-X(j) for these {i, j}: {1, 39928}, {2, 51909}, {172, 24732}, {894, 6196}, {1909, 34251}, {1966, 51981}
X(63903) = X(i)-Dao conjugate of X(j) for these {i, j}: {3, 39928}, {9467, 51981}, {32664, 51909}
X(63903) = X(i)-cross conjugate of X(j) for these {i, j}: {2, 893}
X(63903) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(51981)}}, {{A, B, C, X(6), X(7033)}}, {{A, B, C, X(39), X(31008)}}, {{A, B, C, X(292), X(1915)}}, {{A, B, C, X(333), X(51983)}}, {{A, B, C, X(663), X(39936)}}, {{A, B, C, X(694), X(51986)}}, {{A, B, C, X(788), X(1920)}}, {{A, B, C, X(893), X(9468)}}, {{A, B, C, X(1691), X(40597)}}, {{A, B, C, X(3224), X(8872)}}, {{A, B, C, X(7018), X(41517)}}, {{A, B, C, X(7116), X(15391)}}, {{A, B, C, X(19566), X(63893)}}, {{A, B, C, X(31623), X(51988)}}, {{A, B, C, X(32010), X(47642)}}
X(63903) = barycentric product X(i)*X(j) for these (i, j): {256, 7346}, {39934, 694}, {63883, 75}
X(63903) = barycentric quotient X(i)/X(j) for these (i, j): {6, 39928}, {31, 51909}, {256, 24732}, {904, 6196}, {7104, 34251}, {7346, 1909}, {9468, 51981}, {39934, 3978}, {63883, 1}


X(63904) = X(7)-CROSS CONJUGATE OF X(8)

Barycentrics    (a-b-c)*(a^4+4*a^3*(b-c)+(b-c)^4+4*a*(b-c)*(b+c)^2+a^2*(-10*b^2+4*b*c+6*c^2))*(a^4-4*a^3*(b-c)+(b-c)^4-4*a*(b-c)*(b+c)^2+2*a^2*(3*b^2+2*b*c-5*c^2)) : :

X(63904) lies on cubic K200 and on these lines: {8, 31527}, {144, 200}, {175, 34912}, {176, 34911}, {728, 2125}

X(63904) = isotomic conjugate of X(31527)
X(63904) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 2124}, {31, 31527}, {41, 17113}, {56, 2951}, {57, 1615}, {109, 17427}, {604, 30695}
X(63904) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 2951}, {2, 31527}, {9, 2124}, {11, 17427}, {3160, 17113}, {3161, 30695}, {5452, 1615}
X(63904) = X(i)-anticomplementary conjugate of X(j) for these {i, j}: {8917, 9812}
X(63904) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 8}, {2125, 42483}, {10939, 9}, {19605, 2}
X(63904) = intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(144)}}, {{A, B, C, X(7), X(2951)}}, {{A, B, C, X(8), X(200)}}, {{A, B, C, X(175), X(176)}}, {{A, B, C, X(281), X(56331)}}, {{A, B, C, X(346), X(56026)}}, {{A, B, C, X(479), X(650)}}, {{A, B, C, X(522), X(36620)}}, {{A, B, C, X(1034), X(5556)}}, {{A, B, C, X(2125), X(8917)}}, {{A, B, C, X(4182), X(20534)}}, {{A, B, C, X(6553), X(14942)}}, {{A, B, C, X(6601), X(36627)}}, {{A, B, C, X(7080), X(10578)}}, {{A, B, C, X(17093), X(44448)}}, {{A, B, C, X(41798), X(42361)}}
X(63904) = barycentric product X(i)*X(j) for these (i, j): {312, 8917}, {346, 56275}, {2125, 75}, {42483, 8}
X(63904) = barycentric quotient X(i)/X(j) for these (i, j): {1, 2124}, {2, 31527}, {7, 17113}, {8, 30695}, {9, 2951}, {55, 1615}, {650, 17427}, {2125, 1}, {8917, 57}, {42483, 7}, {56275, 279}


X(63905) = X(7)-CROSS CONJUGATE OF X(9)

Barycentrics    a*(a-b-c)*(a^5*(b-c)-b*(b-c)^4*c+a*(b-c)^3*(b+c)^2-a^4*(4*b^2+b*c-4*c^2)+2*a^3*(3*b^3+b^2*c-b*c^2-3*c^3)+a^2*(-4*b^4+2*b^3*c-4*b^2*c^2+2*b*c^3+4*c^4))*(a^5*(b-c)+b*(b-c)^4*c+a*(b-c)^3*(b+c)^2+a^4*(-4*b^2+b*c+4*c^2)+2*a^3*(3*b^3+b^2*c-b*c^2-3*c^3)-2*a^2*(2*b^4+b^3*c-2*b^2*c^2+b*c^3-2*c^4)) : :

X(63905) lies on cubic K977 and on these lines: {9, 56309}, {170, 220}, {2125, 60955}, {6559, 57774}, {23062, 52064}, {32008, 40593}

X(63905) = X(i)-isoconjugate-of-X(j) for these {i, j}: {6, 56310}, {57, 170}
X(63905) = X(i)-Dao conjugate of X(j) for these {i, j}: {9, 56310}, {5452, 170}
X(63905) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 9}
X(63905) = intersection, other than A, B, C, of circumconics {{A, B, C, X(7), X(170)}}, {{A, B, C, X(9), X(220)}}, {{A, B, C, X(142), X(40593)}}, {{A, B, C, X(522), X(60811)}}, {{A, B, C, X(650), X(23062)}}, {{A, B, C, X(2319), X(6601)}}, {{A, B, C, X(3062), X(62747)}}, {{A, B, C, X(10390), X(11495)}}
X(63905) = barycentric product X(i)*X(j) for these (i, j): {55, 57774}, {57641, 8}
X(63905) = barycentric quotient X(i)/X(j) for these (i, j): {1, 56310}, {55, 170}, {57641, 7}, {57774, 6063}


X(63906) = X(7)-CROSS CONJUGATE OF X(190)

Barycentrics    (a-b)^2*(a-c)^2*(a^2-2*a*b+(b-c)^2)*(a^2+(b-c)^2-2*a*c) : :

X(63906) lies on the Hutson-Moses hyperbola and on these lines: {190, 31605}, {277, 5376}, {344, 4076}, {644, 24002}, {666, 1332}, {765, 26015}, {898, 1292}, {1016, 37788}, {2191, 5378}, {2397, 2414}, {3257, 37206}, {4564, 30379}, {5377, 6601}, {5381, 57656}, {5382, 37756}, {5387, 18743}, {13136, 42722}

X(63906) = isotomic conjugate of X(4904)
X(63906) = trilinear pole of line {100, 1292}
X(63906) = X(i)-isoconjugate-of-X(j) for these {i, j}: {31, 4904}, {41, 40615}, {56, 38375}, {218, 244}, {344, 3248}, {514, 8642}, {649, 3309}, {650, 51652}, {663, 43049}, {667, 4468}, {692, 23760}, {1015, 3870}, {1086, 21059}, {1333, 21945}, {1357, 55337}, {1445, 3271}, {1617, 2170}, {2254, 2440}, {3063, 31605}, {3122, 41610}, {3937, 7719}, {4350, 14936}, {4878, 16726}, {6600, 53538}, {44448, 57181}
X(63906) = X(i)-Dao conjugate of X(j) for these {i, j}: {1, 38375}, {2, 4904}, {37, 21945}, {1086, 23760}, {3008, 5519}, {3160, 40615}, {5375, 3309}, {6631, 4468}, {10001, 31605}, {35113, 57443}
X(63906) = X(i)-cross conjugate of X(j) for these {i, j}: {7, 190}, {218, 100}, {277, 37206}, {3434, 668}, {3873, 99}, {6065, 4998}, {6601, 54987}, {16465, 54952}, {17682, 799}, {20292, 6540}, {28740, 4554}, {30628, 6606}, {36845, 664}, {40534, 2}, {57656, 1292}
X(63906) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(2), X(24002)}}, {{A, B, C, X(7), X(344)}}, {{A, B, C, X(8), X(48070)}}, {{A, B, C, X(83), X(39704)}}, {{A, B, C, X(86), X(42310)}}, {{A, B, C, X(190), X(4076)}}, {{A, B, C, X(666), X(765)}}, {{A, B, C, X(2397), X(42722)}}, {{A, B, C, X(3008), X(58817)}}, {{A, B, C, X(3912), X(44184)}}, {{A, B, C, X(4904), X(40534)}}, {{A, B, C, X(4998), X(35171)}}, {{A, B, C, X(6185), X(46972)}}, {{A, B, C, X(6335), X(31625)}}, {{A, B, C, X(6601), X(57791)}}, {{A, B, C, X(7035), X(24011)}}, {{A, B, C, X(17093), X(36845)}}, {{A, B, C, X(17264), X(53212)}}, {{A, B, C, X(18743), X(37756)}}, {{A, B, C, X(20946), X(23062)}}, {{A, B, C, X(28420), X(57918)}}, {{A, B, C, X(37857), X(42724)}}, {{A, B, C, X(53219), X(57754)}}
X(63906) = barycentric product X(i)*X(j) for these (i, j): {100, 54987}, {190, 37206}, {1016, 277}, {1252, 57791}, {1292, 668}, {2191, 7035}, {2414, 666}, {2428, 36803}, {4567, 60265}, {4998, 6601}, {31625, 57656}, {40154, 4076}
X(63906) = barycentric quotient X(i)/X(j) for these (i, j): {2, 4904}, {7, 40615}, {9, 38375}, {10, 21945}, {59, 1617}, {100, 3309}, {109, 51652}, {190, 4468}, {277, 1086}, {514, 23760}, {528, 57443}, {651, 43049}, {664, 31605}, {666, 2402}, {692, 8642}, {765, 3870}, {919, 2440}, {1016, 344}, {1110, 21059}, {1252, 218}, {1275, 17093}, {1292, 513}, {1332, 24562}, {2191, 244}, {2414, 918}, {2428, 665}, {3434, 5511}, {3699, 44448}, {4564, 1445}, {4567, 41610}, {4998, 6604}, {5379, 4233}, {5382, 27819}, {6065, 6600}, {6601, 11}, {7045, 4350}, {15402, 3433}, {16593, 5519}, {17107, 53538}, {17784, 38386}, {32644, 43929}, {36041, 1027}, {37206, 514}, {40154, 1358}, {44717, 23144}, {52210, 56793}, {53358, 55137}, {54987, 693}, {57469, 3675}, {57656, 1015}, {57791, 23989}, {60265, 16732}


X(63907) = TOUCHPOINT OF MOSES CIRCLE AND 1st MIYAMOTO-LOZADA CIRCLE

Barycentrics    a^2*(b-c)^2*(2*a^3+(b+c)*a^2+(b+c)*b*c-(b^2+3*b*c+c^2)*a) : :

Moses circle, centered at X(39) and passing through X(115) is defined at X(1015). 1st Miyamoto-Lozada circle, with center X(53002) and through X(1357) was introduced in X(53002). Keyta Miyamoto noted that these two circles are tangent and César Lozada found that they are internally tangent with touchpoint X(63907) (Jun 22, 2024).

X(63907) lies on the Moses circle, the 1st Miyamoto-Lozada circle and these lines: {6, 38590}, {32, 101}, {39, 53002}, {115, 44948}, {574, 17222}, {649, 16614}, {1015, 1357}, {1506, 20551}, {1569, 25607}, {1572, 16557}, {2241, 22163}, {3125, 23470}, {9561, 53005}, {16669, 20972}, {44938, 62203}

X(63907) = cross-difference of every pair of points on the line X(3699)X(3837)
X(63907) = crosssum of X(190) and X(3210)
X(63907) = X(7252)-beth conjugate of-X(16614)
X(63907) = perspector of the circumconic through X(23837) and X(43924)


X(63908) = MOSES CIRCLE ANTIPODE OF X(63907)

Barycentrics    a^2*((b^4-c^4)*(b-c)*a^4-(b^6+c^6-b*c*(b^2+4*b*c+c^2)*(b^2-b*c+c^2))*a^3-(b+c)*(2*b^6+2*c^6-(3*b^4+3*c^4-b*c*(7*b^2-4*b*c+7*c^2))*b*c)*a^2+(4*b^6+4*c^6-b*c*(b^2+b*c+c^2)*(b^2-6*b*c+c^2))*b*c*a-b^2*c^2*(b+c)*(2*b^2-b*c+c^2)*(b^2-b*c+2*c^2)) : :

X(63908) lies on the Moses circle and these lines: {32, 28469}, {39, 53002}, {115, 3454}, {574, 727}, {1506, 44948}, {32452, 38522}


X(63909) = 1st MIYAMOTO-LOZADA CIRCLE ANTIPODE OF X(63907)

Barycentrics    a^2*((b-c)^4*a^8+(b^3+c^3)*(b-c)^2*a^7-(b^6+c^6-b^2*c^2*(7*b^2-10*b*c+7*c^2))*a^6-2*(b+c)*(2*b^2-3*b*c+2*c^2)*(b^2+c^2)*b*c*a^5+(b^6+c^6+b*c*(b+2*c)*(2*b+c)*(2*b^2-b*c+2*c^2))*(b-c)^2*a^4-(b+c)*(b^8+c^8-(5*b^6+5*c^6-(4*b^4+4*c^4-b*c*(11*b^2-2*b*c+11*c^2))*b*c)*b*c)*a^3-(b^10+c^10-(2*b^8+2*c^8-(11*b^4+11*c^4+b*c*(15*b^2+16*b*c+15*c^2))*(b^2-b*c+c^2)*b*c)*b*c)*a^2+2*(b+c)*(b^8+c^8-2*(b^6+c^6-(3*b^4+3*c^4-2*b*c*(b-c)^2)*b*c)*b*c)*b*c*a-(b^3+c^3)*(b+c)*b^2*c^2*(b^4+c^4-2*b*c*(b-c)^2)) : :

X(63909) lies on these lines: {39, 53002}, {595, 28469}, {982, 1357}


X(63910) = MIYAMOTO-GARCÍA CAPITÁN POINT

Barycentrics    (b+c)*(2*a+b+c)*(a^3+a^2*b+a*b^2+b^3+a^2*c-2*a*b*c+b^2*c-a*c^2-b*c^2-c^3)*(-a^3-a^2*b+a*b^2+b^3-a^2*c+2*a*b*c+b^2*c-a*c^2-b*c^2-c^3) : :

Let (EA) be the A-excircle, and define (EB) and (EC) cyclically. Let MA be the midpoint of BC, and define MB and MC cyclically. Let (FA) be the circle passing through MB and MC, and internally tangent to (EA), and define (FB) and (FC) cyclically. Let TA be the touchpoint of (EA) and (FA), and let tA be the tangent line to (EA) at TA. Define tB and tC cyclically. Then, the triangle formed by tA, tB and tC is perspective to ABC, and the perspector is X(63910). (Francisco Javier García Capitán, Keita Miyamoto, December 24, 2023)

X(63910) lies on these lines: {2,36744}, {594,3697}, {4272,8818}


X(63911) = 52nd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(3*a^6-4*(b+c)*a^5-(3*b^2-8*b*c+3*c^2)*a^4+2*(b+c)*(5*b^2-7*b*c+5*c^2)*a^3-(b^2+11*b*c+c^2)*(b^2-b*c+c^2)*a^2-2*(b+c)*(3*b^4+3*c^4-7*b*c*(b^2-b*c+c^2))*a+(b^2-c^2)^2*(b+c)^2) : :
X(63911) = X(1)+2*X(14513) = 2*X(953)+X(5531) = 5*X(1698)-8*X(55317) = 7*X(3624)-4*X(6075) = 2*X(6326)+X(34464)

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63911) lies on these lines: {1, 1168}, {36, 44}, {214, 40594}, {484, 9324}, {513, 15015}, {517, 3689}, {678, 39148}, {953, 5531}, {1698, 55317}, {2948, 5131}, {3576, 52005}, {3624, 6075}, {5219, 63750}, {6127, 49997}, {6550, 62634}, {10176, 51991}, {27751, 31160}, {39343, 52680}

X(63911) = X(i)-aleph conjugate of X(j) for these (i, j): (1, 4674), (100, 901), (188, 12515), (366, 2161), (3218, 52031), (63779, 52005)
X(63911) = X(i)-Ceva conjugate of X(j) for these (i, j): (214, 1), (40594, 44)
X(63911) = X(36945)-reciprocal conjugate of-X(4358)
X(63911) = barycentric product X(88)*X(36945)
X(63911) = trilinear product X(106)*X(36945)
X(63911) = trilinear quotient X(36945)/X(519)


X(63912) = 53rd TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(-27*a^6-234*(b+c)*a^5-3*(51*b^2+154*b*c+51*c^2)*a^4+36*(b+c)*(5*b^2-4*b*c+5*c^2)*a^3+(99*b^4+99*c^4+2*b*c*(150*b^2+137*b*c+150*c^2))*a^2+6*(b+c)*(9*b^4+9*c^4+2*b*c*(12*b^2-17*b*c+12*c^2))*a+81*(b^2-c^2)^2*(b+c)^2) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63912) lies on these lines: {1, 61767}, {3731, 5217}, {62218, 63469}

X(63912) = X(100)-aleph conjugate of-X(28162)
X(63912) = X(63916)-Ceva conjugate of-X(1)


X(63913) = 54th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(7*a-5*b-5*c)*(5*a^2-5*b^2-5*c^2+2*b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63913) lies on these lines: {1, 3689}, {1420, 62236}, {3921, 13384}, {31145, 31188}

X(63913) = pole of the line {7962, 35258} with respect to the Feuerbach circumhyperbola


X(63914) = 55th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(3*a-2*b-2*c)*(2*a^2-2*b^2-2*c^2+b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63914) lies on these lines: {1, 3833}, {9, 2174}, {1388, 3632}, {3361, 3894}, {3576, 63916}, {3624, 12625}, {3679, 24926}, {3697, 37525}, {3897, 4540}, {3899, 4855}, {4067, 7280}, {5440, 5697}, {5506, 53054}, {5730, 63752}, {11571, 15015}, {15570, 17614}, {18398, 59691}, {22836, 27003}, {37618, 63915}

X(63914) = X(51577)-Dao conjugate of-X(5560)
X(63914) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (7280, 26745), (16885, 5560), (62246, 1392)
X(63914) = barycentric product X(i)*X(j) for these {i, j}: {4067, 4921}, {16885, 17361}
X(63914) = trilinear product X(i)*X(j) for these {i, j}: {3632, 7280}, {31231, 62246}
X(63914) = trilinear quotient X(i)/X(j) for these (i, j): (3632, 5560), (17361, 39707)


X(63915) = 56th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(5*a-3*b-3*c)*(3*a^2-3*b^2-3*c^2+2*b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63915) lies on these lines: {1, 474}, {214, 6762}, {2646, 51780}, {2975, 63916}, {3576, 3678}, {3621, 63208}, {3928, 3962}, {4511, 5128}, {5217, 15829}, {7991, 63753}, {9780, 13384}, {12635, 53057}, {30389, 62218}, {37618, 63914}

X(63915) = X(36603)-isoconjugate of-X(41441)
X(63915) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3928, 36606), (3973, 7319), (5204, 36603), (21000, 41441), (21296, 40026)
X(63915) = pole of the line {3669, 20056} with respect to the Steiner inellipse
X(63915) = barycentric product X(i)*X(j) for these {i, j}: {3621, 3928}, {3973, 21296}, {5204, 20942}, {21000, 21605}
X(63915) = trilinear product X(i)*X(j) for these {i, j}: {3621, 5204}, {3928, 3973}, {17917, 22147}, {21000, 21296}
X(63915) = trilinear quotient X(i)/X(j) for these (i, j): (3621, 7319), (3928, 36603), (3973, 41441), (21296, 36606), (21605, 40026)


X(63916) = 57th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a-3*b-3*c)*(3*a^2-3*b^2-3*c^2-2*b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63916) lies on these lines: {1, 210}, {72, 5128}, {214, 57279}, {1420, 3681}, {1768, 12738}, {2975, 63915}, {3243, 46934}, {3340, 3617}, {3576, 63914}, {3601, 3678}, {3621, 15829}, {3625, 7962}, {3634, 11518}, {3679, 10592}, {3876, 10389}, {3929, 4005}, {3951, 63207}, {3988, 54290}, {4420, 35445}, {4539, 31424}, {4816, 12019}, {5204, 5223}, {5225, 6743}, {5229, 21060}, {5550, 44841}, {6594, 62827}, {7982, 12811}, {9780, 11523}, {11520, 46931}, {19862, 41863}

X(63916) = cevapoint of X(1) and X(63912)
X(63916) = X(11530)-Dao conjugate of-X(5556)
X(63916) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (3731, 5556), (3929, 30712), (4005, 56226), (5217, 39980)
X(63916) = barycentric product X(i)*X(j) for these {i, j}: {3617, 3929}, {3731, 32099}, {5217, 42034}
X(63916) = trilinear product X(i)*X(j) for these {i, j}: {3617, 5217}, {3731, 3929}
X(63916) = trilinear quotient X(i)/X(j) for these (i, j): (3617, 5556), (3929, 39980), (4005, 31503), (32099, 30712)
X(63916) = (X(3984), X(62218))-harmonic conjugate of X(3340)


X(63917) = 58th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a^5-2*(b+c)*a^4+2*b*c*a^3+2*(b^3+c^3)*a^2-(b^4+c^4-(b^2-3*b*c+c^2)*b*c)*a-(b^2-c^2)*(b-c)*b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63917) lies on these lines: {1, 56121}, {2, 11}, {21, 214}, {36, 48698}, {80, 5047}, {104, 8652}, {119, 6902}, {404, 5443}, {405, 6224}, {943, 1387}, {952, 5260}, {960, 39778}, {1006, 6265}, {1125, 35204}, {1145, 12433}, {1320, 30147}, {1768, 52769}, {2346, 6594}, {2800, 6986}, {2975, 5692}, {3218, 58591}, {3219, 17660}, {3296, 45393}, {3305, 5531}, {3523, 12332}, {3622, 22560}, {3651, 12611}, {3681, 37736}, {3935, 58663}, {4996, 5253}, {5083, 7677}, {5248, 15015}, {5251, 33337}, {5258, 33812}, {5375, 23988}, {5840, 6901}, {6702, 17536}, {6875, 38693}, {6883, 12247}, {6912, 12119}, {6917, 10724}, {6924, 34474}, {6942, 12775}, {7411, 34789}, {9780, 12331}, {10087, 18395}, {10090, 38063}, {10176, 41689}, {11491, 38752}, {11570, 11684}, {14740, 62236}, {15931, 21635}, {16598, 38982}, {16859, 20085}, {17100, 19524}, {17484, 41341}, {17531, 58453}, {18240, 62800}, {20470, 50378}, {22775, 37106}, {25542, 59419}, {28443, 38602}, {31650, 61566}, {33814, 38038}, {34894, 56028}, {37621, 61562}, {56878, 58504}

X(63917) = pole of the line {518, 48698} with respect to the Feuerbach circumhyperbola
X(63917) = pole of the line {484, 3286} with respect to the Stammler hyperbola
X(63917) = pole of the line {17791, 30941} with respect to the Steiner-Wallace hyperbola
X(63917) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (100, 5284, 11), (4996, 34123, 5253)


X(63918) = 59th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    a*(a-b)^2*(a-c)^2*((b+c)*a+b*c-c^2)*((b+c)*a-b^2+b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 21/06/2024.

X(63918) lies on these lines: {100, 17494}, {1252, 1621}, {4557, 7192}, {4998, 40216}, {29824, 37686}, {43076, 53685}, {45751, 62236}

X(63918) = isogonal conjugate of the complement of X(4553)
X(63918) = isotomic conjugate of X(40619)
X(63918) = cevapoint of X(i) and X(j) for these {i, j}: {1, 4557}, {2, 54118}, {100, 5284}, {1018, 40607}, {3952, 17135}
X(63918) = crosssum of X(38346) and X(38365)
X(63918) = X(i)-cross conjugate of X(j) for these (i, j): (1, 53649), (2, 100), (4253, 651), (16552, 190), (16684, 99), (16687, 110), (18206, 660), (20990, 101), (40607, 1018), (46196, 37212)
X(63918) = X(i)-Dao conjugate of X(j) for these (i, j): (2, 40619), (9, 17761), (10, 2486), (11, 42454), (5375, 17494), (5452, 38347), (6631, 20954), (10001, 57247), (17758, 53564), (32664, 38346), (36830, 57148), (39026, 4040)
X(63918) = X(i)-isoconjugate of X(j) for these {i, j}: {2, 38346}, {6, 17761}, {7, 38365}, {11, 55086}, {31, 40619}, {57, 38347}, {58, 2486}, {109, 42454}, {244, 1621}, {513, 4040}, {514, 21007}, {649, 17494}, {650, 58324}, {661, 57148}, {663, 57167}, {667, 20954}, {1015, 17277}, {1086, 4251}, {1357, 3996}, {1977, 18152}, {2310, 38859}, {2350, 26846}, {3063, 57247}, {3248, 17143}, {3271, 55082}, {3294, 16726}, {3733, 4151}, {3937, 14004}, {7649, 22160}, {14936, 33765}, {57129, 58361}
X(63918) = X(i)-reciprocal conjugate of X(j), and barycentric quotient X(i)/X(j), for these (i, j): (1, 17761), (2, 40619), (31, 38346), (37, 2486), (41, 38365), (55, 38347), (100, 17494), (101, 4040), (109, 58324), (110, 57148), (190, 20954), (650, 42454), (651, 57167), (664, 57247), (692, 21007), (765, 17277), (906, 22160), (1016, 17143), (1018, 4151), (1110, 4251), (1252, 1621), (1262, 38859), (1621, 26846), (2149, 55086), (2350, 244), (2975, 26847), (3952, 58361), (4564, 55082), (7035, 18152), (7045, 33765), (13476, 1086), (17758, 1111), (31625, 40088), (39734, 16727), (39950, 17205), (40216, 23989), (43076, 1019), (53649, 7199), (54118, 693), (55076, 4858), (60478, 40166)
X(63918) = trilinear pole of the line {1018, 2284} and intersection, other than {A, B, C}, of every pair of circumconics with perspectors on this line
X(63918) = 1st Saragossa point of X(18108)
X(63918) = perspector of the central inconic through X(13476) and X(40607)
X(63918) = pole of the the tripolar of X(57148) with respect to the Stammler hyperbola
X(63918) = barycentric product X(i)*X(j) for these {i, j}: {100, 54118}, {765, 17758}, {1016, 13476}, {1018, 53649}, {1252, 40216}, {2350, 7035}, {4033, 43076}, {4564, 55076}, {31615, 60478}
X(63918) = trilinear product X(i)*X(j) for these {i, j}: {59, 55076}, {101, 54118}, {765, 13476}, {1016, 2350}, {1110, 40216}, {1252, 17758}, {3952, 43076}, {4557, 53649}
X(63918) = trilinear quotient X(i)/X(j) for these (i, j): (2, 17761), (6, 38346), (9, 38347), (10, 2486), (55, 38365), (59, 55086), (75, 40619), (100, 4040), (101, 21007), (190, 17494), (522, 42454), (651, 58324), (662, 57148), (664, 57167), (668, 20954), (765, 1621), (1016, 17277), (1252, 4251), (1275, 33765), (1331, 22160)


X(63919) = X(3)X(5203)∩X(5)X(6)

Barycentrics    2*a^14 - 7*a^12*b^2 + 14*a^10*b^4 - 15*a^8*b^6 - 2*a^6*b^8 + 19*a^4*b^10 - 14*a^2*b^12 + 3*b^14 - 7*a^12*c^2 + 16*a^10*b^2*c^2 - 25*a^8*b^4*c^2 + 44*a^6*b^6*c^2 - 77*a^4*b^8*c^2 + 68*a^2*b^10*c^2 - 19*b^12*c^2 + 14*a^10*c^4 - 25*a^8*b^2*c^4 - 4*a^6*b^4*c^4 + 42*a^4*b^6*c^4 - 114*a^2*b^8*c^4 + 39*b^10*c^4 - 15*a^8*c^6 + 44*a^6*b^2*c^6 + 42*a^4*b^4*c^6 + 120*a^2*b^6*c^6 - 23*b^8*c^6 - 2*a^6*c^8 - 77*a^4*b^2*c^8 - 114*a^2*b^4*c^8 - 23*b^6*c^8 + 19*a^4*c^10 + 68*a^2*b^2*c^10 + 39*b^4*c^10 - 14*a^2*c^12 - 19*b^2*c^12 + 3*c^14 : :
X(63919) = X[45768] + 3 X[49123], X[468] - 3 X[57375], 3 X[10257] - X[53895]

See Antreas Hatzipolakis and Peter Moses, euclid 6272.

X(63919) lies on these lines: {3, 5203}, {5, 6}, {30, 31842}, {468, 57375}, {3566, 44921}, {5866, 6642}, {6334, 52476}, {6721, 44911}, {10257, 53895}, {10297, 40118}, {11479, 35463}, {16238, 59545}

X(63919) = midpoint of X(i) and X(j) for these {i,j}: {3, 5203}, {6334, 52476}, {10297, 40118}


X(63920) = X(4)X(51)∩X(578)X(6760)

Barycentrics    a^2*(a^16*b^4 - 7*a^14*b^6 + 21*a^12*b^8 - 35*a^10*b^10 + 35*a^8*b^12 - 21*a^6*b^14 + 7*a^4*b^16 - a^2*b^18 - 2*a^16*b^2*c^2 + 6*a^14*b^4*c^2 - 7*a^12*b^6*c^2 + 12*a^10*b^8*c^2 - 25*a^8*b^10*c^2 + 22*a^6*b^12*c^2 - a^4*b^14*c^2 - 8*a^2*b^16*c^2 + 3*b^18*c^2 + a^16*c^4 + 6*a^14*b^2*c^4 - 26*a^12*b^4*c^4 + 23*a^10*b^6*c^4 + 3*a^8*b^8*c^4 + 12*a^6*b^10*c^4 - 48*a^4*b^12*c^4 + 39*a^2*b^14*c^4 - 10*b^16*c^4 - 7*a^14*c^6 - 7*a^12*b^2*c^6 + 23*a^10*b^4*c^6 - 26*a^8*b^6*c^6 - 13*a^6*b^8*c^6 + 89*a^4*b^10*c^6 - 59*a^2*b^12*c^6 + 21*a^12*c^8 + 12*a^10*b^2*c^8 + 3*a^8*b^4*c^8 - 13*a^6*b^6*c^8 - 94*a^4*b^8*c^8 + 29*a^2*b^10*c^8 + 42*b^12*c^8 - 35*a^10*c^10 - 25*a^8*b^2*c^10 + 12*a^6*b^4*c^10 + 89*a^4*b^6*c^10 + 29*a^2*b^8*c^10 - 70*b^10*c^10 + 35*a^8*c^12 + 22*a^6*b^2*c^12 - 48*a^4*b^4*c^12 - 59*a^2*b^6*c^12 + 42*b^8*c^12 - 21*a^6*c^14 - a^4*b^2*c^14 + 39*a^2*b^4*c^14 + 7*a^4*c^16 - 8*a^2*b^2*c^16 - 10*b^4*c^16 - a^2*c^18 + 3*b^2*c^18) : :
X(63920) = X[389] - 4 X[46057]

See Antreas Hatzipolakis and Peter Moses, euclid 6272.

X(63920) lies on these lines: {4, 51}, {5, 35062}, {520, 52585}, {578, 6760}, {11430, 12096}, {34147, 37505}

X(63920) = midpoint of X(6761) and X(52463)
X(63920) = reflection of X(35062) in X(5)
X(63920) = polar circle inverse of X(1075)
X(63920) = X(158)-complementary conjugate of X(47606)
X(63920) = crossdifference of every pair of points on line {32320, 41373}


X(63921) = 60th TRAN VIET HUNG-LOZADA CENTER

Barycentrics    (b+c)*((3*b^2+2*b*c+3*c^2)*a^7+4*(b+c)*b*c*a^6-(9*b^4+9*c^4+b*c*(9*b^2+4*b*c+9*c^2))*a^5-3*(b+c)*(5*b^2+2*b*c+5*c^2)*b*c*a^4+(9*b^4+9*c^4-2*b*c*(5*b^2+3*b*c+5*c^2))*(b+c)^2*a^3+14*(b^2-c^2)^2*(b+c)*b*c*a^2-(b^2-c^2)^2*(3*b^4+3*c^4+b*c*(b^2-12*b*c+c^2))*a-3*(b^2-c^2)^3*(b-c)*b*c) : :

See Tran Viet Hung and César Lozada, Romantics of Geometry, TVH problem 25/06/2024.

X(63921) lies on these lines: {12, 41501}, {442, 6684}, {50036, 61668}


X(63922) = X(4)X(538)∩X(5)X(543)

Barycentrics    2*a^4 - a^2*b^2 - 2*b^4 - a^2*c^2 + 6*b^2*c^2 - 2*c^4 : :
X(63922) = X[3] - 3 X[18546], 5 X[4] - X[7758], 3 X[4] - X[7759], 3 X[7758] - 5 X[7759], 2 X[7758] - 5 X[7843], 2 X[7759] - 3 X[7843], 11 X[5] - 9 X[9771], 13 X[5] - 9 X[12040], 7 X[5] - 9 X[20112], 2 X[5] - 3 X[47617], 13 X[9771] - 11 X[12040], 7 X[9771] - 11 X[20112], 6 X[9771] - 11 X[47617], 7 X[12040] - 13 X[20112], and many others

X(63922) lies on these lines: {2, 55802}, {3, 18546}, {4, 538}, {5, 543}, {20, 7620}, {30, 7780}, {32, 32457}, {39, 148}, {76, 7842}, {99, 32967}, {115, 7807}, {187, 33257}, {194, 39590}, {316, 7882}, {381, 7781}, {382, 3849}, {384, 671}, {524, 3853}, {546, 7764}, {548, 34506}, {550, 46893}, {620, 63534}, {625, 1975}, {626, 53419}, {631, 7615}, {698, 48889}, {732, 48895}, {754, 3627}, {1078, 33267}, {1153, 3530}, {2482, 33249}, {2549, 6683}, {2996, 7737}, {3363, 9606}, {3526, 7617}, {3528, 5569}, {3529, 47101}, {3543, 14023}, {3734, 7861}, {3767, 32826}, {3788, 32815}, {3832, 34511}, {3843, 7775}, {3850, 59546}, {3851, 8716}, {3855, 8176}, {3857, 51123}, {3861, 52229}, {3934, 7748}, {5007, 11361}, {5025, 7880}, {5067, 7618}, {5070, 7622}, {5073, 8667}, {5254, 7804}, {5309, 14035}, {5475, 32450}, {5485, 62021}, {5969, 18553}, {6248, 6287}, {6655, 9466}, {6658, 14568}, {6722, 59545}, {7486, 53142}, {7603, 7783}, {7610, 15696}, {7619, 48154}, {7739, 32979}, {7746, 32456}, {7747, 7805}, {7754, 62203}, {7755, 19687}, {7756, 59635}, {7757, 33018}, {7760, 14042}, {7761, 33238}, {7763, 15301}, {7765, 8370}, {7768, 14711}, {7769, 20094}, {7770, 11648}, {7790, 16895}, {7794, 33229}, {7795, 33200}, {7796, 14062}, {7799, 32993}, {7801, 14063}, {7809, 14044}, {7810, 19695}, {7812, 14066}, {7814, 39785}, {7815, 44526}, {7821, 14041}, {7825, 7895}, {7834, 33198}, {7838, 53418}, {7841, 7849}, {7845, 20081}, {7847, 31239}, {7853, 17128}, {7854, 33017}, {7856, 14034}, {7863, 33228}, {7878, 39593}, {7891, 31275}, {7902, 11286}, {7909, 14045}, {7926, 20105}, {7934, 53105}, {8177, 29323}, {8178, 38732}, {8259, 40671}, {8260, 40672}, {8361, 63543}, {8369, 36523}, {8596, 33024}, {9166, 33245}, {9766, 61984}, {9877, 10486}, {11165, 61946}, {11184, 61953}, {11303, 35693}, {11304, 35697}, {13108, 13449}, {13468, 15704}, {13881, 58448}, {14866, 38675}, {15597, 44682}, {16509, 46853}, {16921, 31652}, {16924, 44562}, {17800, 40727}, {18362, 33233}, {19568, 37349}, {31455, 33009}, {31457, 32999}, {32828, 43619}, {32833, 32996}, {32836, 54097}, {32955, 63533}, {32977, 43620}, {33015, 37512}, {33225, 41135}, {33234, 40344}, {33265, 50570}, {44237, 61600}, {44543, 53096}, {44678, 50688}, {47102, 49135}, {49138, 63029}, {51122, 61970}, {53141, 61914}

X(63922) = vmidpoint of X(i) and X(j) for these {i,j}: {382, 7751}, {8176, 53143}
X(63922) = reflection of X(i) in X(j) for these {i,j}: {1153, 53144}, {7764, 546}, {7843, 4}, {59546, 3850}
X(63922) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 7842, 7848}, {76, 33019, 7873}, {115, 7816, 7886}, {115, 32819, 7816}, {382, 34505, 7751}, {3734, 7861, 7915}, {3734, 44518, 7861}, {6658, 14568, 35007}, {7747, 47286, 7805}, {7748, 11185, 3934}, {7760, 14042, 14537}, {7783, 15031, 7603}, {7796, 14062, 31173}, {7841, 17130, 7849}, {7873, 33019, 7842}


X(63923) = X(4)X(524)∩X(5)X(538)

Barycentrics    a^2*b^2 + b^4 + a^2*c^2 - 6*b^2*c^2 + c^4 : :
X(63923) = 2 X[3] - 3 X[13468], X[4] - 9 X[5485], 5 X[4] - 9 X[7620], 13 X[4] - 9 X[23334], X[4] - 3 X[34505], 5 X[5485] - X[7620], 13 X[5485] - X[23334], 3 X[5485] - X[34505], 13 X[7620] - 5 X[23334], 3 X[7620] - 5 X[34505], 3 X[23334] - 13 X[34505], 3 X[5] - 2 X[7764], X[20] - 3 X[8667], 3 X[76] - X[35700], 10 X[140] - 9 X[7622], and many others

X(63923) lies on these lines: {2, 9607}, {3, 13468}, {4, 524}, {5, 538}, {6, 6392}, {20, 8667}, {30, 7751}, {39, 15491}, {53, 54412}, {69, 2996}, {76, 141}, {83, 60250}, {115, 3933}, {140, 7622}, {148, 7750}, {183, 32965}, {194, 3815}, {230, 1975}, {315, 3630}, {325, 20081}, {381, 7758}, {382, 14023}, {384, 5306}, {385, 6658}, {419, 59699}, {525, 10279}, {536, 12607}, {543, 550}, {546, 7759}, {591, 53516}, {597, 7770}, {599, 32974}, {626, 32457}, {631, 8716}, {632, 51123}, {671, 7768}, {732, 5480}, {754, 3627}, {1656, 9771}, {1991, 53513}, {1992, 32979}, {2548, 22253}, {2549, 15598}, {3053, 32815}, {3054, 16923}, {3091, 9766}, {3522, 63029}, {3523, 7610}, {3526, 51122}, {3533, 9741}, {3552, 22329}, {3589, 5286}, {3629, 7745}, {3631, 7784}, {3673, 7263}, {3734, 5305}, {3767, 7789}, {3785, 33247}, {3788, 43291}, {3845, 7843}, {3849, 62036}, {3850, 7775}, {3851, 7615}, {3858, 47617}, {3926, 13881}, {3934, 15048}, {3959, 40028}, {4364, 13161}, {4385, 4665}, {4396, 7354}, {4400, 6284}, {5013, 32828}, {5023, 37667}, {5056, 11184}, {5059, 9740}, {5068, 9770}, {5076, 44678}, {5309, 7819}, {5319, 11286}, {5395, 62995}, {5569, 61792}, {5862, 43202}, {5863, 43201}, {6179, 19687}, {6309, 7697}, {6310, 34383}, {6337, 37637}, {6390, 7746}, {6655, 37671}, {6661, 7856}, {6664, 27376}, {6872, 47037}, {7388, 43880}, {7389, 43879}, {7470, 12243}, {7617, 35018}, {7618, 15720}, {7619, 63654}, {7735, 33201}, {7738, 15271}, {7748, 7767}, {7755, 8369}, {7757, 9606}, {7760, 8370}, {7762, 53418}, {7765, 8362}, {7773, 50771}, {7774, 32995}, {7777, 20105}, {7778, 32830}, {7782, 47287}, {7783, 37688}, {7788, 14063}, {7792, 17128}, {7793, 33268}, {7794, 14711}, {7796, 33228}, {7797, 19694}, {7799, 33249}, {7801, 8361}, {7803, 51126}, {7805, 18907}, {7807, 14568}, {7808, 63633}, {7811, 19695}, {7813, 39565}, {7817, 33185}, {7823, 50251}, {7824, 11168}, {7827, 48310}, {7837, 33018}, {7840, 32993}, {7841, 22165}, {7842, 14929}, {7854, 8357}, {7860, 8352}, {7869, 8360}, {7880, 33186}, {7887, 32833}, {7890, 39590}, {7894, 53489}, {7902, 8364}, {7903, 18424}, {7905, 15031}, {7907, 59634}, {7946, 14062}, {8149, 61550}, {8176, 61940}, {8177, 39646}, {8182, 62100}, {8556, 32990}, {8591, 33276}, {8754, 47730}, {8860, 33206}, {9300, 16924}, {10159, 60216}, {10299, 53142}, {10513, 63536}, {11148, 61856}, {11160, 54097}, {11163, 32962}, {11165, 46219}, {11289, 33475}, {11290, 33474}, {11303, 33458}, {11304, 33459}, {11317, 63115}, {12040, 55859}, {12103, 47101}, {12215, 44530}, {13108, 31981}, {13567, 51481}, {13571, 33013}, {14031, 63065}, {14035, 14614}, {14045, 41135}, {14064, 32836}, {14068, 63093}, {14645, 38734}, {15480, 20065}, {15712, 34506}, {15815, 34229}, {16043, 46951}, {16044, 41624}, {16509, 55856}, {17670, 18145}, {17800, 47102}, {18840, 60636}, {19568, 37439}, {20582, 32956}, {20943, 26582}, {21965, 49518}, {22110, 32821}, {22331, 32981}, {23311, 51401}, {23312, 51395}, {31406, 32450}, {31859, 32832}, {32006, 40341}, {32189, 32448}, {32479, 62159}, {32817, 32959}, {32824, 32970}, {32825, 32984}, {32837, 32976}, {32840, 37690}, {32869, 33180}, {32874, 33202}, {32892, 33223}, {32967, 50570}, {33020, 63101}, {33190, 50991}, {33230, 51143}, {33923, 34504}, {37668, 63533}, {37672, 62950}, {39576, 62299}, {40123, 63541}, {41747, 53484}, {46853, 46893}, {49139, 53143}, {53141, 62067}, {56015, 60428}, {59541, 62198}, {59542, 62197}, {60200, 60285}, {60209, 60228}, {63464, 63631}

X(63923) = midpoint of X(i) and X(j) for these {i,j}: {382, 14023}, {7618, 63651}, {13108, 31981}
X(63923) = reflection of X(i) in X(j) for these {i,j}: {550, 7780}, {7759, 546}, {7781, 140}, {8149, 61550}, {9771, 40727}, {32448, 32189}, {44882, 8177}, {63654, 7619}
X(63923) = anticomplement of X(59546)
X(63923) = X(47430)-Dao conjugate of X(8651)
X(63923) = crosspoint of X(76) and X(2996)
X(63923) = crosssum of X(32) and X(3053)
X(63923) = barycentric product X(i)*X(j) for these {i,j}: {305, 63544}, {321, 16745}
X(63923) = barycentric quotient X(i)/X(j) for these {i,j}: {16745, 81}, {63544, 25}
X(63923) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 2996, 44518}, {76, 5254, 141}, {76, 47286, 5254}, {148, 17129, 7750}, {194, 59635, 3815}, {230, 1975, 59545}, {671, 7768, 33229}, {3926, 13881, 44377}, {5013, 32828, 58446}, {5309, 17130, 7819}, {7738, 32834, 15271}, {7745, 7754, 3629}, {7748, 17131, 7767}, {7754, 11185, 7745}, {7757, 32992, 9606}, {7759, 18546, 546}, {7765, 9466, 8362}, {7854, 11648, 8357}, {32821, 32961, 22110}, {32981, 63034, 22331}


X(63924) = X(4)X(754)∩X(5)X(538)

Barycentrics    b^4 - 4*b^2*c^2 + c^4 : :
X(63924) = 7 X[3] - 9 X[5569], 5 X[3] - 9 X[7610], 5 X[3] - 3 X[34504], X[3] + 3 X[34505], 2 X[3] - 3 X[34506], X[3] - 9 X[40727], 5 X[5569] - 7 X[7610], 15 X[5569] - 7 X[34504], 3 X[5569] + 7 X[34505], 6 X[5569] - 7 X[34506], X[5569] - 7 X[40727], 3 X[7610] - X[34504], 3 X[7610] + 5 X[34505], 6 X[7610] - 5 X[34506], and many others

X(63924) lies on these lines: {2, 7765}, {3, 543}, {4, 754}, {5, 538}, {30, 7780}, {32, 11185}, {39, 32992}, {69, 7825}, {76, 115}, {83, 5355}, {99, 7749}, {114, 13108}, {126, 39576}, {141, 7861}, {148, 1078}, {183, 7748}, {187, 32819}, {194, 1506}, {230, 7816}, {315, 17131}, {316, 7826}, {325, 39565}, {381, 7759}, {382, 8667}, {384, 7755}, {385, 7747}, {439, 32815}, {524, 546}, {525, 5449}, {542, 40279}, {548, 46893}, {550, 13468}, {574, 32832}, {620, 1975}, {625, 3933}, {632, 7619}, {671, 6655}, {698, 24206}, {732, 19130}, {736, 6248}, {1153, 12108}, {1657, 47101}, {2387, 6310}, {2482, 7907}, {2548, 6392}, {2549, 2996}, {2782, 32189}, {3054, 15301}, {3090, 5485}, {3091, 7615}, {3146, 7620}, {3525, 7622}, {3526, 8716}, {3529, 63029}, {3544, 9770}, {3583, 4400}, {3585, 4396}, {3620, 32868}, {3627, 3849}, {3628, 52229}, {3734, 3767}, {3788, 6722}, {3813, 33908}, {3815, 32450}, {3851, 9766}, {3857, 20112}, {3926, 7862}, {3934, 4045}, {3972, 14032}, {4721, 21935}, {5007, 8370}, {5070, 51122}, {5072, 8176}, {5077, 41147}, {5079, 11184}, {5149, 44530}, {5206, 17008}, {5286, 7808}, {5305, 7804}, {5309, 7770}, {5319, 32971}, {5368, 7787}, {5461, 7801}, {5475, 7754}, {5969, 40107}, {5976, 62356}, {5984, 18769}, {6179, 11361}, {6292, 7790}, {6321, 32152}, {6656, 9466}, {6683, 15048}, {6704, 7803}, {6781, 7793}, {7618, 10303}, {7697, 8149}, {7738, 15482}, {7739, 32968}, {7745, 7805}, {7752, 7813}, {7753, 7760}, {7757, 9698}, {7761, 44518}, {7762, 39590}, {7763, 14148}, {7767, 7842}, {7768, 14041}, {7772, 16924}, {7773, 7855}, {7782, 17004}, {7785, 7890}, {7789, 7886}, {7791, 11648}, {7795, 7844}, {7796, 32966}, {7797, 7889}, {7799, 32967}, {7800, 7872}, {7806, 14038}, {7809, 32993}, {7811, 33019}, {7812, 33018}, {7817, 7819}, {7818, 14063}, {7820, 7828}, {7821, 14711}, {7822, 7851}, {7832, 14047}, {7836, 14061}, {7841, 7854}, {7849, 33184}, {7858, 11054}, {7860, 14062}, {7865, 32974}, {7869, 14064}, {7870, 14971}, {7873, 33229}, {7880, 8361}, {7883, 41135}, {7884, 16895}, {7888, 18362}, {7891, 31274}, {7896, 63533}, {7908, 32830}, {7909, 9166}, {7911, 63044}, {7916, 32816}, {7918, 16986}, {7919, 46226}, {7920, 60855}, {7935, 16990}, {8150, 12203}, {8177, 29012}, {8178, 14651}, {8182, 17538}, {9607, 44562}, {9740, 50688}, {9741, 60781}, {9771, 61900}, {9830, 38627}, {9863, 39838}, {10104, 23698}, {11140, 63806}, {11159, 22331}, {11165, 55857}, {12040, 55861}, {13085, 14981}, {13571, 33024}, {14262, 38801}, {14645, 34507}, {14869, 15597}, {14907, 33271}, {14928, 39560}, {15300, 33274}, {15704, 32479}, {18145, 33841}, {19568, 37990}, {19687, 22329}, {19690, 31168}, {19696, 51224}, {20065, 62203}, {21448, 58427}, {22515, 32151}, {25043, 63829}, {25264, 31476}, {26235, 59768}, {27371, 54412}, {31107, 39998}, {31455, 31859}, {32027, 62427}, {32456, 33227}, {32820, 33249}, {32822, 62992}, {32825, 43681}, {32826, 37667}, {32836, 32972}, {32874, 33200}, {33016, 41748}, {33020, 55085}, {33186, 59780}, {33482, 36252}, {33483, 36251}, {33703, 47102}, {35022, 37637}, {37512, 37688}, {41136, 51238}, {41622, 53484}, {51123, 55856}, {53141, 61804}, {53142, 61820}, {53143, 62097}, {58448, 59545}, {61892, 63651}

X(63924) = midpoint of X(i) and X(j) for these {i,j}: {4, 7751}, {5485, 7617}
X(63924) = reflection of X(i) in X(j) for these {i,j}: {7619, 16509}, {7764, 5}, {7843, 546}, {59546, 3628}
X(63924) = complement of X(7781)
X(63924) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 115, 626}, {76, 5025, 7794}, {115, 7794, 5025}, {148, 1078, 7756}, {183, 7748, 7830}, {316, 17129, 7826}, {384, 14568, 7755}, {1975, 7746, 620}, {2548, 6392, 7798}, {2549, 32828, 7815}, {2996, 32828, 2549}, {3091, 7758, 7775}, {3734, 3767, 6680}, {3788, 13881, 6722}, {3926, 43620, 7862}, {3933, 63534, 625}, {3934, 5254, 4045}, {3934, 32457, 5254}, {5025, 7794, 626}, {5309, 7770, 7829}, {5475, 7754, 7838}, {7615, 7758, 3091}, {7751, 18546, 4}, {7752, 20081, 7813}, {7757, 16921, 9698}, {7760, 16044, 7753}, {7767, 53419, 7842}, {7785, 15031, 43457}, {7789, 43291, 7886}, {7790, 31276, 6292}, {7800, 43448, 7872}, {7828, 17128, 7820}, {7843, 47617, 546}, {7855, 18424, 7773}, {7873, 39563, 33229}, {7888, 18362, 32961}, {7890, 43457, 7785}, {16044, 19570, 7760}, {19687, 22329, 35007}, {32833, 32961, 7888}, {32834, 43448, 7800}, {33229, 37671, 7873}, {47286, 59635, 39}


X(63925) = X(2)X(55776)∩X(3)X(538)

Barycentrics    2*a^4 + a^2*b^2 + a^2*c^2 - 6*b^2*c^2 : :
X(63925) = X[3] - 3 X[7751], 2 X[3] - 3 X[7780], 5 X[3] - 3 X[7781], 5 X[3] - 9 X[8667], 13 X[3] - 9 X[8716], 8 X[3] - 9 X[46893], 17 X[3] - 9 X[51122], 5 X[7751] - X[7781], 5 X[7751] - 3 X[8667], 13 X[7751] - 3 X[8716], 8 X[7751] - 3 X[46893], 17 X[7751] - 3 X[51122], 5 X[7780] - 2 X[7781], 5 X[7780] - 6 X[8667], , and many others

> X(63925) lies on these lines: {2, 55776}, {3, 538}, {39, 17129}, {69, 7861}, {76, 5007}, {115, 7882}, {183, 32450}, {187, 20081}, {194, 31652}, {315, 32457}, {384, 14711}, {385, 7816}, {524, 546}, {543, 15704}, {575, 732}, {599, 7902}, {625, 7855}, {632, 15597}, {698, 55606}, {754, 3627}, {1153, 10303}, {3090, 7758}, {3091, 7759}, {3146, 3849}, {3628, 7764}, {3746, 4400}, {3767, 7895}, {3788, 63104}, {3926, 58448}, {3933, 7886}, {3934, 7754}, {4396, 5563}, {5008, 17128}, {5041, 31276}, {5072, 7775}, {5076, 34505}, {5079, 9766}, {5097, 61550}, {5206, 15301}, {5254, 7848}, {5305, 7915}, {5309, 7849}, {5569, 61804}, {5858, 42993}, {5859, 42992}, {5969, 38627}, {6248, 13111}, {6392, 7761}, {6655, 11054}, {6683, 7798}, {7496, 19568}, {7603, 7905}, {7610, 61850}, {7617, 61923}, {7618, 61795}, {7622, 61831}, {7747, 50251}, {7748, 63046}, {7755, 7880}, {7760, 9466}, {7765, 37671}, {7768, 19570}, {7770, 41748}, {7771, 20105}, {7779, 39565}, {7794, 7817}, {7815, 22253}, {7821, 14568}, {7825, 40341}, {7826, 7842}, {7839, 31239}, {7860, 39563}, {7863, 22329}, {7871, 31275}, {7876, 39593}, {7877, 39590}, {7890, 59635}, {7907, 39785}, {7916, 13881}, {7941, 39601}, {7946, 31173}, {8177, 20190}, {8182, 62078}, {9740, 34504}, {11055, 33004}, {11184, 61892}, {12108, 34506}, {13468, 14869}, {14614, 17130}, {16044, 41750}, {18546, 61984}, {19333, 50179}, {19334, 50174}, {19337, 50155}, {19526, 47037}, {22869, 36756}, {22914, 36755}, {31407, 32893}, {32479, 49137}, {32868, 51170}, {33227, 36521}, {34571, 60855}, {40727, 61955}, {44245, 52229}, {47101, 50693}, {47102, 62152}, {51123, 61802}, {61814, 63029}

X(63925) = reflection of X(7780) in X(7751)
X(63925) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 7805, 7804}, {7751, 7781, 8667}, {7754, 17131, 3934}, {7826, 47286, 7842}


X(63926) = X(2)X(55757)∩X(5)X(524)

Barycentrics    4*a^4 + a^2*b^2 - b^4 + a^2*c^2 - 6*b^2*c^2 - c^4 : :
X(63926) = 4 X[3] - 3 X[51123], 17 X[5] - 18 X[7617], 3 X[5] - 2 X[7759], 7 X[5] - 6 X[7775], 19 X[5] - 18 X[8176], 8 X[5] - 9 X[16509], 9 X[7617] - 17 X[7751], 27 X[7617] - 17 X[7759], 21 X[7617] - 17 X[7775], 19 X[7617] - 17 X[8176], 16 X[7617] - 17 X[16509], 3 X[7751] - X[7759], 7 X[7751] - 3 X[7775], 19 X[7751] - 9 X[8176], , and many others

X(63926) lies on these lines: {2, 55757}, {3, 51123}, {5, 524}, {20, 52229}, {30, 14023}, {32, 15480}, {69, 5305}, {76, 18907}, {140, 7758}, {141, 7805}, {183, 31406}, {193, 32968}, {230, 7855}, {384, 44367}, {385, 3933}, {495, 4400}, {496, 4396}, {538, 550}, {543, 62155}, {549, 7780}, {599, 5319}, {626, 3630}, {631, 9740}, {632, 7764}, {698, 48874}, {732, 32521}, {754, 3627}, {1353, 49111}, {1384, 32830}, {1975, 3793}, {2548, 6144}, {3522, 51122}, {3526, 63029}, {3528, 63654}, {3530, 34511}, {3628, 9766}, {3629, 3934}, {3631, 7834}, {3767, 40341}, {3785, 22253}, {3788, 50774}, {3815, 7890}, {3832, 40727}, {3849, 62041}, {3853, 34505}, {3856, 7615}, {3858, 7843}, {5070, 9770}, {5254, 7826}, {5306, 7794}, {5485, 17578}, {5860, 11314}, {5861, 11313}, {5862, 11306}, {5863, 11305}, {6179, 8369}, {6390, 32964}, {6392, 33238}, {6675, 47037}, {6683, 15598}, {7610, 16239}, {7618, 61790}, {7620, 62008}, {7745, 17131}, {7746, 50771}, {7754, 7767}, {7755, 33186}, {7760, 8362}, {7762, 16044}, {7766, 16895}, {7768, 33184}, {7770, 63093}, {7776, 20080}, {7779, 32967}, {7781, 8703}, {7788, 8361}, {7796, 22329}, {7800, 63633}, {7808, 32455}, {7810, 9607}, {7819, 14614}, {7837, 32992}, {7840, 33249}, {7845, 63534}, {7849, 22165}, {7854, 41748}, {7869, 33211}, {7877, 59635}, {7881, 63048}, {7893, 33019}, {7905, 37688}, {7916, 44377}, {7946, 33228}, {8177, 38110}, {8182, 58190}, {8355, 51188}, {8360, 15533}, {8367, 15534}, {8715, 17224}, {8716, 33923}, {9605, 15589}, {9698, 11168}, {9741, 21734}, {9939, 19695}, {11008, 32828}, {11148, 62102}, {11160, 14064}, {11165, 15717}, {11184, 48154}, {11318, 50992}, {12102, 44678}, {12251, 44251}, {14067, 62204}, {14645, 51523}, {15484, 32834}, {15597, 61876}, {15712, 59546}, {16897, 63044}, {18546, 61988}, {18840, 63005}, {19570, 33229}, {20081, 33257}, {23334, 61990}, {28405, 40996}, {30435, 33198}, {32840, 46453}, {32954, 63034}, {32955, 37668}, {32977, 37667}, {32984, 63118}, {33217, 63065}, {33227, 59634}, {34504, 62106}, {34506, 61837}, {40268, 53015}, {46893, 61789}, {47101, 62104}, {47102, 62144}, {49102, 51183}, {53141, 62117}, {53142, 62085}, {55864, 63647}

X(63926) = reflection of X(i) in X(j) for these {i,j}: {5, 7751}, {7758, 140}, {12040, 9740}
X(63926) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {599, 5319, 8364}, {5254, 7826, 14929}, {5306, 7794, 33185}, {7754, 7767, 15048}, {7754, 63046, 7767}, {7758, 8667, 140}, {7760, 37671, 8362}, {7764, 13468, 632}, {17129, 50248, 7762}


X(63927) = X(2)X(55746)∩X(4)X(754)

Barycentrics    4*a^4 - b^4 - 4*b^2*c^2 - c^4 : :
X(63927) = X[4] - 3 X[7751], X[4] + 3 X[14023], 7 X[4] - 9 X[18546], 13 X[4] - 9 X[44678], 7 X[7751] - 3 X[18546], 13 X[7751] - 3 X[44678], 7 X[14023] + 3 X[18546], 13 X[14023] + 3 X[44678], 13 X[18546] - 7 X[44678], 26 X[140] - 27 X[1153], 28 X[140] - 27 X[7619], 4 X[140] - 3 X[7764], 2 X[140] - 3 X[7780], 8 X[140] - 9 X[34506], 29 X[140] - 27 X[63647], , and many others

X(63927) lies on these lines: {2, 55746}, {4, 754}, {32, 14037}, {39, 50251}, {69, 6680}, {76, 14034}, {115, 7860}, {140, 524}, {183, 7838}, {187, 32820}, {193, 7815}, {230, 7882}, {315, 33290}, {385, 626}, {538, 550}, {543, 1657}, {620, 7855}, {736, 35430}, {1078, 7890}, {1506, 7877}, {1656, 7759}, {2896, 5355}, {3096, 5368}, {3411, 5858}, {3412, 5859}, {3522, 7781}, {3523, 7758}, {3629, 6683}, {3630, 7895}, {3631, 7915}, {3785, 7798}, {3788, 40341}, {3793, 7816}, {3849, 62036}, {3850, 7843}, {3858, 20112}, {4045, 7767}, {4396, 4857}, {4400, 5270}, {5007, 37671}, {5023, 35022}, {5056, 7775}, {5206, 14148}, {5304, 7914}, {5305, 7848}, {5306, 7849}, {5319, 7865}, {5346, 7879}, {5569, 61815}, {6179, 7794}, {6292, 7766}, {6704, 16990}, {6722, 7776}, {6781, 20081}, {7610, 55860}, {7618, 61783}, {7622, 61817}, {7735, 7896}, {7747, 17129}, {7749, 7779}, {7752, 12815}, {7753, 33020}, {7754, 7830}, {7760, 7810}, {7765, 7811}, {7772, 63093}, {7791, 41748}, {7793, 7813}, {7800, 63042}, {7808, 15589}, {7818, 33283}, {7821, 22329}, {7829, 7854}, {7837, 9698}, {7861, 14929}, {7862, 37667}, {7867, 63048}, {7871, 31274}, {7886, 50774}, {7889, 10159}, {7903, 17008}, {7916, 20080}, {7917, 63047}, {7949, 17004}, {8177, 25555}, {8182, 62061}, {8716, 62082}, {9607, 40344}, {9766, 46219}, {9770, 61873}, {10299, 34511}, {11008, 31401}, {11054, 33256}, {11055, 33275}, {11184, 61875}, {13355, 39603}, {13468, 55856}, {14031, 17130}, {14045, 14568}, {14711, 19687}, {15300, 33268}, {15533, 32954}, {16986, 43527}, {17131, 20065}, {22165, 33185}, {32027, 63019}, {32970, 50992}, {32978, 63064}, {32992, 41750}, {34504, 62107}, {34505, 62023}, {34507, 35431}, {40332, 41623}, {46893, 59546}, {47101, 62100}, {47102, 62147}, {49135, 53143}, {51122, 62093}, {52229, 62136}, {61886, 63029}

X(63927) = midpoint of X(7751) and X(14023)
X(63927) = reflection of X(7764) in X(7780)
X(63927) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {385, 7768, 7755}, {385, 7826, 626}, {1078, 50248, 7890}, {7755, 7768, 626}, {7755, 7826, 7768}, {7764, 7780, 34506}, {7767, 7805, 4045}, {7767, 15480, 7805}, {7854, 14614, 7829}


X(63928) = X(3)X(524)∩X(5)X(754)

Barycentrics    4*a^4 - a^2*b^2 - b^4 - a^2*c^2 - 2*b^2*c^2 - c^4 : :
X(63928) = 11 X[3] - 9 X[7618], 3 X[3] - X[7758], 7 X[3] - 9 X[8182], 13 X[3] - 9 X[11165], 5 X[3] - 3 X[34511], 3 X[3] - 2 X[59546], 27 X[7618] - 11 X[7758], 7 X[7618] - 11 X[8182], 13 X[7618] - 11 X[11165], 9 X[7618] + 11 X[14023], 15 X[7618] - 11 X[34511], 27 X[7618] - 22 X[59546], 7 X[7758] - 27 X[8182], 13 X[7758] - 27 X[11165], and many others

X(63928) lies on these lines: {2, 55729}, {3, 524}, {4, 8667}, {5, 754}, {6, 3785}, {30, 7751}, {32, 141}, {39, 3629}, {69, 3053}, {76, 19687}, {140, 7759}, {160, 19597}, {183, 7745}, {187, 3630}, {193, 5013}, {194, 33275}, {230, 315}, {316, 63534}, {325, 7793}, {377, 47037}, {384, 37671}, {385, 5254}, {439, 11160}, {538, 550}, {543, 15704}, {546, 20112}, {548, 7781}, {549, 7764}, {591, 11291}, {597, 5007}, {599, 14001}, {620, 7882}, {626, 14929}, {631, 9766}, {632, 9771}, {698, 9821}, {732, 5188}, {736, 32521}, {1007, 44535}, {1078, 3815}, {1153, 61852}, {1353, 13334}, {1384, 3631}, {1657, 47102}, {1975, 33244}, {1991, 11292}, {1992, 32990}, {2031, 5031}, {2482, 33227}, {2548, 58446}, {2896, 7792}, {3054, 7752}, {3090, 7610}, {3091, 63029}, {3146, 9740}, {3398, 6308}, {3522, 8716}, {3525, 11184}, {3564, 5171}, {3589, 7800}, {3627, 3849}, {3628, 7775}, {3767, 50774}, {3813, 62467}, {3843, 44678}, {3853, 18546}, {3857, 16509}, {3926, 5023}, {3934, 15598}, {4364, 5266}, {4396, 6284}, {4400, 7354}, {4643, 37552}, {5008, 6292}, {5025, 9939}, {5076, 40727}, {5201, 27369}, {5206, 6390}, {5210, 6337}, {5305, 7761}, {5306, 6179}, {5309, 8357}, {5319, 11287}, {5337, 5743}, {5346, 7935}, {5480, 8177}, {5485, 11541}, {5569, 12108}, {5858, 37173}, {5859, 37172}, {5860, 39664}, {5861, 39657}, {5969, 10991}, {6144, 15815}, {6329, 43136}, {6392, 44526}, {6680, 7848}, {6749, 37337}, {7615, 61984}, {7617, 12811}, {7620, 62028}, {7622, 61810}, {7735, 7784}, {7738, 63042}, {7749, 7845}, {7754, 14907}, {7755, 7873}, {7760, 8356}, {7763, 50771}, {7766, 7904}, {7768, 7807}, {7771, 7877}, {7772, 8359}, {7773, 17008}, {7774, 33012}, {7776, 44377}, {7778, 33189}, {7783, 50248}, {7785, 16922}, {7788, 16925}, {7791, 14614}, {7794, 8369}, {7796, 35297}, {7802, 47286}, {7805, 7830}, {7806, 7929}, {7809, 33249}, {7812, 11168}, {7813, 15513}, {7815, 15491}, {7818, 8361}, {7823, 33018}, {7824, 9606}, {7825, 43291}, {7837, 33004}, {7838, 31406}, {7840, 33259}, {7849, 33185}, {7850, 7857}, {7851, 63048}, {7860, 33228}, {7865, 8364}, {7869, 8368}, {7883, 8363}, {7885, 63047}, {7889, 51128}, {7890, 37512}, {7900, 17004}, {7905, 43459}, {7928, 63019}, {7941, 37647}, {8176, 12812}, {8354, 41748}, {8556, 32968}, {8860, 32998}, {9300, 11285}, {9301, 48674}, {9605, 32455}, {9698, 41750}, {9737, 34380}, {9741, 62084}, {9761, 37178}, {9763, 37177}, {9770, 10303}, {10192, 15257}, {10608, 39647}, {11008, 53095}, {11057, 19695}, {11148, 58195}, {11163, 33001}, {12040, 61808}, {12103, 52229}, {12607, 62463}, {13335, 48876}, {13571, 33273}, {13586, 32820}, {13881, 32006}, {14044, 50570}, {14066, 19569}, {14568, 33229}, {14712, 17129}, {15270, 34774}, {15271, 32957}, {15533, 32985}, {15534, 22332}, {15712, 46893}, {15810, 41940}, {16060, 17392}, {16061, 17330}, {16342, 50265}, {16347, 50261}, {16962, 33458}, {16963, 33459}, {17128, 19693}, {17251, 37176}, {17378, 22267}, {19284, 50274}, {19570, 33256}, {19692, 63044}, {19702, 47005}, {19761, 49728}, {21309, 34573}, {22110, 33233}, {23055, 32988}, {23334, 61964}, {29181, 59363}, {31652, 63115}, {32479, 62162}, {32494, 62987}, {32497, 62986}, {32816, 32976}, {32821, 32964}, {32825, 33216}, {32833, 33235}, {32836, 33239}, {32965, 63093}, {32974, 63034}, {33014, 59634}, {33021, 63038}, {33202, 63006}, {33236, 46453}, {33237, 50991}, {33250, 51224}, {33260, 44367}, {33279, 53419}, {33651, 40326}, {33706, 35700}, {34504, 44245}, {34883, 40316}, {35287, 50992}, {35701, 37455}, {36187, 47242}, {37339, 63054}, {44230, 47354}, {44453, 50253}, {46853, 51123}, {47061, 51187}, {47617, 61988}, {51122, 62100}, {53142, 62092}

X(63928) = midpoint of X(3) and X(14023)
X(63928) = reflection of X(i) in X(j) for these {i,j}: {5, 7780}, {5480, 8177}, {7758, 59546}, {7759, 140}, {7781, 548}
X(63928) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7758, 59546}, {5, 7780, 13468}, {32, 7767, 141}, {32, 7854, 7819}, {69, 3053, 7789}, {183, 20065, 7745}, {187, 3933, 59545}, {187, 7826, 3933}, {385, 7750, 5254}, {599, 22331, 14001}, {1078, 7762, 3815}, {3630, 59545, 3933}, {3793, 7767, 32}, {3926, 5023, 32459}, {3933, 7826, 3630}, {5007, 7810, 8362}, {5007, 8362, 597}, {5023, 40341, 3926}, {5206, 7855, 6390}, {6179, 6656, 5306}, {6179, 7811, 6656}, {6179, 7936, 7856}, {7754, 14907, 63548}, {7755, 7873, 33184}, {7760, 8356, 9607}, {7767, 7819, 7854}, {7781, 47101, 548}, {7793, 7893, 325}, {7793, 7946, 7907}, {7794, 35007, 8369}, {7800, 30435, 3589}, {7805, 7830, 15048}, {7811, 7856, 7936}, {7819, 7854, 141}, {7823, 59635, 53418}, {7824, 41624, 9606}, {7856, 7936, 6656}, {7893, 7907, 7946}, {7907, 7946, 325}, {14712, 17129, 32819}, {15480, 63548, 7754}, {32006, 37667, 13881}


X(63929) = X(20)X(538)∩X(140)X(524)

Barycentrics    6*a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 - 6*b^2*c^2 - 2*c^4 : :
X(63929) = X[20] - 5 X[14023], 11 X[20] - 15 X[47102], 11 X[14023] - 3 X[47102], 44 X[140] - 45 X[1153], 46 X[140] - 45 X[7619], 6 X[140] - 5 X[7764], 4 X[140] - 5 X[7780], 14 X[140] - 15 X[34506], 47 X[140] - 45 X[63647], 23 X[1153] - 22 X[7619], 27 X[1153] - 22 X[7764], 9 X[1153] - 11 X[7780], 21 X[1153] - 22 X[34506], and many others

X(63929) lies on these lines: {20, 538}, {39, 50248}, {69, 7915}, {140, 524}, {193, 6683}, {381, 7751}, {385, 7821}, {543, 62159}, {626, 15480}, {754, 3627}, {3090, 7759}, {3524, 7758}, {3630, 6680}, {3788, 20080}, {3849, 5073}, {3934, 63046}, {5007, 16895}, {5008, 19689}, {5070, 8667}, {5355, 6656}, {6144, 7815}, {6179, 7880}, {7768, 7817}, {7775, 61919}, {7781, 62100}, {7834, 63042}, {7842, 7893}, {7845, 32966}, {7849, 14614}, {7854, 63093}, {7855, 16925}, {7869, 15533}, {7877, 16921}, {7895, 32954}, {7916, 58448}, {7926, 33010}, {7936, 39593}, {9740, 46935}, {9766, 55858}, {11008, 32978}, {13468, 55861}, {14891, 59546}, {16986, 34571}, {18546, 61991}, {32189, 35439}, {32450, 32965}, {32479, 62171}, {32825, 63118}, {34511, 61791}, {44682, 46893}, {47101, 62092}, {47617, 61976}

X(63929) = reflection of X(7843) in X(7751)
X(63929) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {385, 7882, 7886}, {7805, 7826, 7848}, {7826, 50251, 7805}


X(63930) = X(5)X(754)∩X(20)X(538)

Barycentrics    6*a^4 - a^2*b^2 - 2*b^4 - a^2*c^2 - 2*b^2*c^2 - 2*c^4 : :
X(63930) = 2 X[5] - 3 X[7780], 4 X[5] - 3 X[7843], 7 X[5] - 9 X[13468], 7 X[7780] - 6 X[13468], 7 X[7843] - 12 X[13468], X[20] + 3 X[14023], 5 X[20] - 9 X[47102], 5 X[14023] + 3 X[47102], X[382] - 3 X[7751], 5 X[382] - 9 X[34505], 5 X[7751] - 3 X[34505], 25 X[631] - 27 X[5569], 5 X[631] - 3 X[7759], 35 X[631] - 27 X[9770], and many others

X(63930) lies on these lines: {5, 754}, {20, 538}, {32, 7848}, {187, 7796}, {315, 7886}, {382, 3849}, {385, 7842}, {524, 548}, {543, 62155}, {626, 3793}, {631, 5569}, {1153, 61853}, {1384, 7896}, {2896, 5008}, {3053, 7895}, {3528, 7758}, {3530, 7764}, {3785, 6683}, {3832, 23334}, {3843, 8667}, {3861, 47617}, {3934, 20065}, {5007, 7811}, {5023, 7916}, {5041, 7904}, {5070, 7775}, {5188, 12252}, {5319, 7761}, {6179, 7817}, {6658, 14711}, {6680, 14929}, {7610, 61911}, {7750, 7765}, {7756, 50251}, {7762, 9698}, {7767, 7804}, {7768, 7880}, {7772, 40344}, {7774, 31457}, {7776, 58448}, {7779, 15513}, {7781, 15696}, {7787, 55738}, {7793, 7814}, {7816, 7826}, {7818, 33218}, {7821, 33245}, {7824, 41750}, {7830, 9607}, {7831, 51860}, {7837, 31652}, {7838, 9606}, {7850, 7874}, {7852, 7929}, {7854, 16898}, {7855, 32456}, {7869, 22331}, {7877, 37512}, {7905, 8589}, {7914, 21309}, {8182, 61788}, {8716, 62105}, {9766, 61811}, {11054, 19691}, {11184, 61849}, {12150, 16896}, {14907, 32450}, {15810, 55085}, {16239, 34506}, {18546, 62008}, {20088, 31239}, {21734, 34511}, {32479, 49138}, {33014, 39785}, {33021, 41940}, {33234, 41748}, {33258, 44562}, {34504, 62113}, {44678, 61982}, {58190, 59546}, {61945, 63029}

X(63930) = reflection of X(7843) in X(7780)
X(63930) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 7848, 7915}, {187, 7893, 7882}, {6179, 7873, 7817}, {6179, 9939, 7873}, {7768, 35007, 7880}


X(63931) = X(2)X(55817)∩X(4)X(754)

Barycentrics    3*a^4 - 2*b^4 + 2*b^2*c^2 - 2*c^4 : :
X(63931) = 8 X[3] - 9 X[7622], 2 X[3] - 3 X[7775], 7 X[3] - 9 X[11184], 3 X[7622] - 4 X[7775], 9 X[7622] - 16 X[7843], 7 X[7622] - 8 X[11184], 3 X[7775] - 4 X[7843], 7 X[7775] - 6 X[11184], 14 X[7843] - 9 X[11184], 3 X[4] - X[14023], 4 X[4] - 3 X[18546], X[4] - 3 X[44678], 3 X[7751] - 2 X[14023], 2 X[7751] - 3 X[18546], and many others

X(63931) lies on these lines: {2, 55817}, {3, 3849}, {4, 754}, {6, 7842}, {20, 7764}, {30, 7759}, {32, 316}, {39, 33234}, {76, 14042}, {83, 7898}, {99, 7900}, {115, 20065}, {140, 47101}, {148, 7877}, {182, 18548}, {183, 39590}, {187, 7773}, {315, 3734}, {325, 33250}, {381, 7780}, {382, 538}, {384, 7818}, {385, 14044}, {439, 620}, {524, 3627}, {543, 3146}, {546, 20112}, {574, 7785}, {598, 7936}, {625, 3053}, {626, 7737}, {631, 47102}, {632, 5569}, {698, 48904}, {732, 48884}, {736, 36997}, {1003, 7821}, {1078, 33002}, {1153, 55858}, {1384, 7886}, {1506, 14907}, {1657, 9766}, {1975, 7845}, {2482, 33244}, {2548, 7830}, {2549, 7838}, {2794, 8178}, {3090, 34506}, {3091, 7617}, {3314, 14032}, {3329, 7910}, {3525, 8182}, {3526, 46893}, {3529, 34511}, {3552, 7809}, {3628, 8176}, {3785, 32991}, {3793, 63534}, {3843, 8667}, {3850, 13468}, {3926, 43618}, {3972, 7867}, {4045, 33025}, {4396, 18514}, {4400, 18513}, {5007, 7841}, {5008, 7851}, {5072, 7610}, {5076, 34505}, {5103, 41412}, {5206, 7752}, {5309, 33229}, {5319, 32982}, {5461, 32980}, {5475, 7750}, {6179, 14041}, {6243, 18321}, {6655, 7772}, {6658, 7796}, {6680, 32951}, {6683, 15484}, {6781, 7763}, {7615, 50689}, {7618, 50693}, {7619, 61820}, {7739, 33238}, {7745, 7761}, {7748, 7762}, {7749, 32998}, {7753, 7791}, {7755, 14063}, {7756, 7774}, {7757, 33256}, {7760, 11648}, {7765, 33017}, {7767, 53418}, {7768, 11361}, {7769, 8588}, {7770, 7865}, {7776, 7816}, {7777, 15515}, {7782, 7941}, {7783, 7926}, {7784, 7804}, {7787, 7911}, {7790, 20088}, {7793, 33011}, {7799, 33257}, {7801, 19687}, {7805, 44518}, {7810, 16924}, {7811, 16044}, {7814, 13586}, {7824, 11057}, {7826, 11185}, {7829, 32974}, {7832, 14038}, {7833, 7858}, {7834, 18907}, {7840, 19696}, {7847, 7921}, {7849, 11286}, {7850, 17128}, {7854, 8370}, {7855, 32819}, {7856, 34604}, {7861, 30435}, {7863, 33007}, {7878, 7924}, {7887, 31173}, {7893, 17131}, {7907, 51224}, {7920, 14075}, {7928, 60855}, {7933, 12150}, {7934, 14047}, {8150, 10358}, {8354, 9606}, {8716, 17800}, {9698, 32965}, {9770, 17538}, {9771, 12108}, {9939, 33018}, {10356, 18502}, {11163, 31652}, {11165, 62143}, {11318, 22331}, {12040, 62091}, {12110, 39603}, {12812, 15597}, {13571, 19691}, {14062, 14568}, {14976, 33004}, {15704, 34504}, {16343, 50221}, {16458, 50229}, {16509, 41991}, {18362, 32993}, {19695, 41624}, {31417, 32978}, {32450, 44526}, {32479, 49136}, {32827, 32988}, {32831, 35022}, {32832, 43457}, {32833, 33280}, {32967, 48913}, {33189, 37809}, {37314, 50228}, {40727, 61991}, {44230, 54393}, {47617, 61984}, {49134, 51122}, {51123, 62159}, {52229, 62034}, {53142, 62152}, {61964, 63029}

X(63931) = midpoint of X(3146) and X(7758)
X(63931) = reflection of X(i) in X(j) for these {i,j}: {3, 7843}, {20, 7764}, {7617, 23334}, {7751, 4}, {7781, 7759}, {15704, 59546}
X(63931) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7843, 7775}, {4, 7751, 18546}, {6, 7842, 7872}, {32, 316, 7825}, {32, 7825, 7844}, {83, 7898, 7935}, {99, 7900, 7903}, {187, 7773, 7862}, {315, 3734, 7896}, {315, 7747, 3734}, {315, 14035, 7794}, {316, 7823, 32}, {384, 7818, 7869}, {384, 7860, 7818}, {1975, 7845, 7916}, {2548, 7830, 15482}, {3552, 7809, 7888}, {3972, 7885, 7867}, {5007, 7841, 7902}, {5475, 7750, 7815}, {6655, 7812, 7772}, {7737, 32006, 626}, {7745, 7761, 7808}, {7747, 7794, 14035}, {7748, 7762, 7798}, {7752, 14712, 5206}, {7760, 33019, 11648}, {7768, 11361, 17130}, {7770, 7873, 7865}, {7776, 7816, 7908}, {7784, 7804, 7914}, {7785, 7802, 574}, {7787, 7911, 7913}, {7794, 14035, 3734}, {7833, 7858, 53096}, {7873, 14537, 7770}, {15704, 59546, 34504}, {31173, 35007, 7887}


X(63932) = X(3)X(754)∩X(4)X(524)

Barycentrics    3*a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 - 2*c^4 : :
X(63932) = 3 X[3] - 4 X[7764], 2 X[3] - 3 X[9766], 7 X[3] - 6 X[47101], 3 X[7759] - 2 X[7764], 4 X[7759] - 3 X[9766], 7 X[7759] - 3 X[47101], 8 X[7764] - 9 X[9766], 14 X[7764] - 9 X[47101], 7 X[9766] - 4 X[47101], 13 X[4] - 9 X[5485], 11 X[4] - 9 X[7620], 7 X[4] - 9 X[23334], 4 X[4] - 3 X[34505], 11 X[5485] - 13 X[7620], , and many others

X(63932) lies on these lines: {2, 55729}, {3, 754}, {4, 524}, {5, 8667}, {6, 315}, {20, 8716}, {30, 7758}, {32, 7776}, {69, 7745}, {76, 40341}, {83, 3763}, {99, 7949}, {140, 11184}, {141, 16045}, {183, 7785}, {187, 7903}, {193, 5254}, {194, 33256}, {230, 32816}, {297, 37672}, {316, 6144}, {325, 3053}, {376, 59546}, {381, 7751}, {382, 538}, {384, 7788}, {385, 7773}, {420, 59551}, {511, 35700}, {543, 5073}, {548, 47102}, {550, 34511}, {591, 3594}, {597, 32956}, {598, 60640}, {599, 7768}, {626, 30435}, {698, 48910}, {732, 36990}, {736, 48673}, {1003, 7796}, {1078, 7926}, {1285, 53033}, {1351, 54393}, {1384, 3788}, {1613, 20022}, {1656, 7610}, {1657, 3849}, {1975, 6658}, {1991, 3592}, {1992, 32974}, {2476, 47037}, {2548, 7767}, {2896, 7921}, {3090, 13468}, {3096, 47355}, {3314, 19689}, {3329, 7929}, {3523, 9770}, {3533, 9771}, {3552, 7840}, {3627, 44678}, {3629, 5286}, {3734, 7882}, {3785, 3815}, {3858, 7615}, {3913, 62467}, {3926, 33239}, {3933, 7737}, {3934, 15484}, {3972, 7881}, {4361, 4911}, {4363, 5015}, {4396, 10896}, {4400, 10895}, {4799, 37549}, {4805, 16466}, {5007, 7818}, {5008, 7867}, {5013, 7750}, {5023, 7763}, {5024, 7830}, {5025, 14614}, {5041, 7935}, {5056, 63029}, {5068, 9740}, {5306, 14064}, {5319, 33184}, {5475, 7826}, {5569, 61832}, {5858, 11303}, {5859, 11304}, {6179, 7809}, {6248, 11898}, {6392, 11008}, {6655, 7837}, {6680, 21309}, {7470, 43273}, {7617, 61937}, {7618, 33923}, {7622, 61803}, {7735, 33199}, {7738, 63091}, {7739, 8357}, {7747, 7855}, {7748, 7890}, {7752, 37637}, {7753, 7854}, {7755, 11318}, {7757, 33234}, {7760, 7841}, {7761, 7838}, {7766, 7851}, {7772, 7873}, {7787, 7868}, {7789, 33201}, {7791, 41624}, {7793, 7941}, {7794, 11286}, {7795, 18907}, {7798, 7842}, {7799, 33235}, {7800, 14929}, {7802, 7905}, {7804, 7896}, {7805, 7825}, {7807, 22331}, {7808, 7848}, {7810, 42849}, {7811, 7858}, {7814, 33233}, {7816, 7916}, {7817, 33241}, {7824, 9939}, {7833, 13571}, {7834, 43136}, {7839, 7898}, {7856, 33219}, {7869, 33237}, {7878, 7883}, {7880, 33242}, {7888, 11288}, {7892, 34604}, {7894, 7911}, {7904, 63018}, {7906, 14712}, {7909, 33220}, {7922, 12150}, {7928, 62994}, {7933, 63038}, {7936, 55085}, {8176, 61919}, {8182, 15712}, {8352, 51187}, {8356, 22332}, {8370, 15533}, {8556, 32992}, {8584, 33190}, {9300, 16043}, {9606, 32990}, {9607, 32986}, {9741, 62147}, {9761, 11289}, {9763, 11290}, {9880, 51174}, {10159, 51186}, {10349, 59232}, {10983, 32152}, {11160, 32979}, {11165, 62100}, {11168, 32975}, {11317, 51188}, {11842, 39603}, {12040, 61792}, {12103, 51123}, {12513, 62463}, {13740, 17251}, {14062, 19570}, {14063, 63093}, {14537, 17130}, {14645, 55724}, {14907, 15815}, {14976, 33267}, {15480, 32827}, {15597, 61886}, {16343, 50157}, {16454, 50186}, {16456, 50228}, {16457, 50161}, {16458, 50232}, {16509, 61940}, {16924, 37671}, {17008, 33270}, {17054, 24699}, {17131, 39590}, {17313, 17681}, {17800, 51122}, {18546, 61984}, {18584, 33010}, {18841, 51127}, {19569, 19696}, {19597, 60514}, {19687, 32833}, {20080, 53418}, {20583, 33232}, {22110, 32970}, {22329, 32961}, {31404, 58446}, {32027, 60855}, {32459, 32831}, {32479, 49133}, {32818, 59545}, {32820, 33007}, {32823, 32959}, {32825, 32985}, {32958, 44401}, {32972, 63034}, {32993, 44367}, {32995, 59635}, {33021, 63028}, {33180, 63006}, {33202, 63024}, {33230, 63124}, {33244, 59634}, {33247, 63548}, {33283, 63065}, {33940, 62223}, {33941, 62224}, {34380, 53017}, {34504, 62131}, {34506, 46219}, {37314, 50265}, {40727, 61970}, {41237, 63094}, {43527, 60645}, {43676, 54493}, {43681, 54642}, {46893, 61811}, {47617, 61975}, {52229, 62036}, {53142, 62127}, {60209, 62945}, {60285, 60650}

X(63932) = reflection of X(i) in X(j) for these {i,j}: {3, 7759}, {1657, 7781}, {7751, 7843}, {14023, 5}
X(63932) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7759, 9766}, {5, 14023, 8667}, {6, 315, 7784}, {32, 7776, 7778}, {32, 7821, 32954}, {32, 7845, 7776}, {83, 7850, 7879}, {83, 7879, 3763}, {193, 32006, 5254}, {315, 7762, 6}, {316, 7754, 44518}, {316, 7877, 7754}, {325, 20065, 3053}, {384, 7946, 7788}, {385, 7773, 13881}, {385, 7900, 7773}, {1656, 7780, 7610}, {2548, 7767, 15271}, {2896, 7921, 11174}, {3552, 7840, 32821}, {3972, 7917, 7881}, {5007, 7818, 7866}, {6144, 44518, 7754}, {6179, 7809, 7887}, {7748, 7890, 22253}, {7750, 7774, 5013}, {7751, 7843, 381}, {7754, 7877, 6144}, {7760, 7860, 7841}, {7761, 7838, 9605}, {7766, 7885, 7851}, {7768, 7770, 599}, {7768, 7812, 7770}, {7772, 7873, 11287}, {7775, 7780, 1656}, {7776, 32954, 7821}, {7779, 7823, 1975}, {7785, 7893, 183}, {7787, 7939, 7868}, {7802, 7905, 31859}, {7802, 31859, 44519}, {7811, 7858, 11285}, {7821, 32954, 7778}, {7873, 41750, 7772}, {7888, 35007, 11288}, {7922, 12150, 33217}


X(63933) = X(3)X(538)∩X(4)X(524)

Barycentrics    a^4 + a^2*b^2 + a^2*c^2 - 4*b^2*c^2 : :
X(63933) = 3 X[3] - 4 X[7780], 3 X[3] - 2 X[7781], 2 X[3] - 3 X[8667], 4 X[3] - 3 X[8716], 11 X[3] - 12 X[46893], 5 X[3] - 3 X[51122], 3 X[7751] - 2 X[7780], 3 X[7751] - X[7781], 4 X[7751] - 3 X[8667], 8 X[7751] - 3 X[8716], 11 X[7751] - 6 X[46893], 10 X[7751] - 3 X[51122], 8 X[7780] - 9 X[8667], 16 X[7780] - 9 X[8716], , and many others

X(63933) lies on these lines: {2, 9606}, {3, 538}, {4, 524}, {5, 7758}, {6, 76}, {21, 47037}, {30, 14023}, {39, 15271}, {55, 4400}, {56, 4396}, {69, 5254}, {99, 5023}, {115, 7776}, {140, 7610}, {141, 5286}, {148, 7893}, {183, 194}, {193, 7745}, {230, 3926}, {305, 1611}, {315, 33229}, {325, 13881}, {339, 23115}, {350, 16781}, {381, 7759}, {382, 754}, {384, 14614}, {385, 1975}, {394, 41238}, {458, 37672}, {525, 12163}, {536, 3913}, {543, 1657}, {550, 52229}, {591, 7388}, {597, 16045}, {599, 6656}, {625, 7916}, {626, 33241}, {631, 13468}, {671, 7860}, {698, 1350}, {736, 13108}, {940, 4754}, {1003, 6179}, {1078, 15815}, {1151, 33453}, {1152, 33452}, {1184, 8024}, {1191, 4713}, {1232, 26214}, {1351, 6248}, {1384, 7816}, {1613, 20023}, {1655, 16992}, {1656, 7764}, {1991, 7389}, {1992, 32971}, {2207, 44146}, {2549, 7767}, {2996, 20080}, {3054, 32829}, {3055, 32838}, {3314, 7851}, {3522, 9740}, {3523, 63029}, {3530, 51123}, {3533, 15597}, {3629, 52713}, {3630, 43448}, {3631, 33232}, {3673, 4361}, {3734, 7805}, {3760, 16502}, {3761, 54416}, {3763, 7803}, {3767, 3933}, {3785, 33226}, {3815, 32828}, {3843, 7843}, {3849, 5073}, {3850, 7615}, {3851, 7775}, {3853, 44678}, {3854, 20112}, {3934, 7798}, {3978, 21001}, {4352, 26244}, {4363, 4385}, {4643, 13161}, {4721, 16466}, {5007, 11286}, {5024, 7815}, {5025, 7788}, {5056, 9770}, {5085, 8177}, {5093, 10358}, {5171, 8719}, {5210, 7793}, {5275, 34284}, {5305, 7795}, {5306, 14001}, {5309, 7794}, {5319, 7819}, {5346, 7820}, {5355, 7822}, {5395, 63061}, {5475, 7890}, {5569, 61803}, {5710, 24330}, {5858, 11304}, {5859, 11303}, {5861, 31414}, {5965, 53017}, {5969, 38664}, {6144, 7762}, {6309, 49111}, {6337, 37667}, {6658, 44367}, {7484, 19568}, {7617, 61919}, {7618, 15712}, {7622, 61832}, {7735, 7789}, {7736, 32834}, {7738, 15589}, {7739, 8362}, {7746, 7813}, {7748, 7826}, {7750, 32997}, {7755, 7801}, {7757, 8556}, {7763, 37637}, {7765, 7854}, {7766, 17128}, {7768, 7841}, {7772, 9466}, {7773, 7779}, {7774, 32962}, {7783, 20105}, {7790, 7879}, {7791, 37671}, {7796, 7887}, {7797, 7868}, {7799, 33233}, {7800, 15048}, {7804, 43136}, {7807, 32833}, {7811, 33234}, {7817, 7869}, {7821, 11318}, {7823, 50248}, {7825, 7882}, {7827, 21358}, {7828, 7881}, {7837, 16044}, {7838, 15484}, {7839, 11174}, {7840, 32966}, {7844, 7895}, {7848, 7872}, {7849, 7902}, {7856, 33217}, {7858, 44543}, {7861, 7896}, {7863, 11288}, {7864, 63044}, {7871, 14061}, {7873, 11648}, {7886, 7908}, {7891, 63047}, {7903, 39565}, {7909, 33218}, {7918, 32027}, {7920, 46226}, {7922, 33219}, {7926, 15031}, {7946, 14041}, {8176, 61937}, {8182, 33923}, {8352, 51188}, {8370, 15534}, {8591, 33268}, {8743, 56016}, {8860, 16923}, {9300, 32968}, {9308, 54412}, {9607, 16043}, {9741, 10299}, {9756, 31981}, {9761, 11290}, {9763, 11289}, {9764, 32467}, {9771, 61886}, {9880, 51175}, {9917, 60514}, {9939, 33256}, {10159, 60277}, {10302, 62941}, {11008, 53418}, {11148, 62067}, {11160, 32982}, {11163, 13571}, {11165, 15720}, {11168, 32978}, {11317, 51187}, {11333, 36650}, {11898, 54393}, {12203, 31884}, {12243, 50973}, {12607, 17224}, {14034, 34604}, {14035, 63093}, {14037, 63065}, {14907, 44519}, {14930, 32894}, {15301, 15655}, {15480, 32815}, {15514, 39266}, {15696, 47101}, {15704, 47102}, {16055, 62702}, {16060, 48838}, {16061, 48869}, {16062, 17251}, {16342, 50184}, {16343, 50179}, {16454, 50155}, {16456, 50163}, {16457, 50174}, {16458, 50160}, {16509, 35018}, {16924, 41624}, {16925, 22329}, {16997, 40908}, {17008, 33206}, {17118, 33941}, {17119, 33940}, {17313, 33838}, {17503, 43676}, {17733, 35102}, {17739, 49518}, {17811, 40814}, {18768, 44224}, {18840, 34573}, {18844, 60636}, {19697, 59780}, {19761, 50156}, {20065, 32819}, {20181, 20888}, {20943, 26687}, {21735, 53142}, {22110, 32825}, {22165, 33190}, {25264, 31477}, {30749, 40126}, {31400, 58446}, {31489, 32832}, {32189, 32447}, {32448, 52771}, {32479, 49139}, {32816, 50771}, {32817, 50774}, {32818, 32958}, {32824, 32985}, {32831, 62992}, {32837, 32977}, {32840, 37689}, {32869, 33198}, {32874, 63024}, {32880, 63097}, {32882, 63005}, {32959, 44401}, {32964, 59634}, {32973, 63034}, {33003, 37688}, {33020, 63028}, {33195, 53033}, {33230, 50991}, {34504, 62100}, {35136, 57688}, {35602, 63464}, {37004, 43183}, {37186, 52703}, {37915, 47284}, {38303, 52568}, {39647, 63440}, {40122, 63573}, {41231, 63094}, {41747, 50659}, {43527, 60638}, {43681, 53101}, {47617, 61970}, {53141, 62110}, {55582, 61102}, {60210, 62940}, {60640, 62939}, {61784, 63654}, {62712, 63170}

X(63933) = reflection of X(i) in X(j) for these {i,j}: {3, 7751}, {6309, 49111}, {7758, 5}, {7781, 7780}, {8716, 8667}
X(63933) = X(i)-anticomplementary conjugate of X(j) for these (i,j): {82, 19583}, {8769, 1369}, {8770, 21289}, {38252, 2896}, {53059, 21217}
X(63933) = crosspoint of X(34537) and X(35136)
X(63933) = crosssum of X(1084) and X(8651)
X(63933) = barycentric product X(1)*X(18068)
X(63933) = barycentric quotient X(18068)/X(75)
X(63933) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 7751, 8667}, {5, 7758, 9766}, {69, 5254, 7784}, {69, 6392, 5254}, {76, 7754, 6}, {76, 7760, 7770}, {115, 7855, 7776}, {183, 194, 5013}, {194, 17129, 183}, {315, 47286, 44518}, {385, 1975, 3053}, {385, 20081, 1975}, {1003, 6179, 22331}, {1078, 31859, 15815}, {1656, 7764, 11184}, {2996, 20080, 32006}, {2996, 32006, 53419}, {3734, 7805, 30435}, {3767, 3933, 7778}, {3934, 7798, 9605}, {5007, 14711, 17130}, {5007, 17130, 11286}, {5309, 7794, 7866}, {7735, 32830, 7789}, {7751, 7781, 7780}, {7754, 7770, 7760}, {7755, 7801, 32954}, {7757, 11285, 22332}, {7760, 7770, 6}, {7765, 7854, 11287}, {7780, 7781, 3}, {7796, 14568, 7887}, {7815, 32450, 5024}, {7839, 31276, 11174}, {7843, 18546, 3843}, {7882, 32457, 7825}, {8556, 22332, 11285}, {12251, 39646, 1350}, {13468, 59546, 631}, {13571, 16921, 11163}, {14711, 41748, 11286}, {17130, 41748, 5007}, {17131, 22253, 15271}, {22329, 32820, 16925}, {32819, 50251, 20065}, {32825, 32969, 22110}, {40341, 44518, 315}, {44146, 56015, 2207}, {50771, 63534, 32816}


X(63934) = X(5)X(524)∩X(20)X(538)

Barycentrics    3*a^4 + a^2*b^2 - b^4 + a^2*c^2 - 4*b^2*c^2 - c^4 : :
X(63934) = 26 X[5] - 27 X[7617], 2 X[5] - 3 X[7751], 4 X[5] - 3 X[7759], 10 X[5] - 9 X[7775], 28 X[5] - 27 X[8176], 25 X[5] - 27 X[16509], 9 X[7617] - 13 X[7751], 18 X[7617] - 13 X[7759], 15 X[7617] - 13 X[7775], 14 X[7617] - 13 X[8176], 25 X[7617] - 26 X[16509], 5 X[7751] - 3 X[7775], 14 X[7751] - 9 X[8176], and many others

X(63934) lies on these lines: {2, 41940}, {5, 524}, {6, 6704}, {20, 538}, {32, 50251}, {39, 33258}, {69, 5319}, {76, 20088}, {183, 7890}, {193, 3934}, {230, 7916}, {382, 754}, {385, 3788}, {543, 17800}, {548, 7781}, {599, 7829}, {625, 39143}, {626, 40341}, {631, 7758}, {1078, 31457}, {2548, 11008}, {3180, 62877}, {3181, 62876}, {3314, 5346}, {3526, 7764}, {3528, 9741}, {3629, 7808}, {3630, 5305}, {3631, 7914}, {3767, 7882}, {3785, 32450}, {3832, 7843}, {3849, 33703}, {3861, 18546}, {3933, 15480}, {4396, 37720}, {4400, 37719}, {5007, 16898}, {5023, 14148}, {5041, 16990}, {5070, 9766}, {5286, 7848}, {5304, 7915}, {5306, 7869}, {5309, 7768}, {5355, 7879}, {5368, 7868}, {5475, 7877}, {5569, 61811}, {5858, 11312}, {5859, 11311}, {6144, 7838}, {6179, 7801}, {6392, 7842}, {6656, 41748}, {6683, 15589}, {7610, 55866}, {7622, 61821}, {7735, 7895}, {7746, 7779}, {7748, 7893}, {7754, 7761}, {7755, 7788}, {7760, 7854}, {7762, 17131}, {7766, 7822}, {7767, 7798}, {7772, 37671}, {7794, 14614}, {7795, 63042}, {7815, 9606}, {7817, 11160}, {7821, 33248}, {7830, 22253}, {7860, 19570}, {7862, 50771}, {7866, 15533}, {7871, 63047}, {7872, 14929}, {7874, 63048}, {7886, 37668}, {7888, 22329}, {7894, 51860}, {7900, 18424}, {7905, 31455}, {7906, 62362}, {7920, 32027}, {7946, 14568}, {8149, 13354}, {8182, 58188}, {8364, 22165}, {8367, 63115}, {8716, 62085}, {9466, 33269}, {9740, 55864}, {9770, 61881}, {11054, 33019}, {11055, 33260}, {11184, 61878}, {11305, 42506}, {11306, 42507}, {11318, 51188}, {13468, 16239}, {14035, 14711}, {14064, 50992}, {14463, 61743}, {15696, 34504}, {15717, 34511}, {16896, 63038}, {16924, 41750}, {16986, 55767}, {31239, 63017}, {31407, 63091}, {31417, 32828}, {32006, 32457}, {32818, 58448}, {32833, 35007}, {32964, 39785}, {32968, 63064}, {32972, 63118}, {32987, 63116}, {33222, 63034}, {34505, 62008}, {34506, 55863}, {44682, 59546}, {46893, 61138}, {48913, 50570}, {51122, 62105}, {51123, 62062}, {52229, 62151}, {61867, 63029}

X(63934) = reflection of X(i) in X(j) for these {i,j}: {7758, 7780}, {7759, 7751}
X(63934) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {69, 5319, 7849}, {69, 7805, 7834}, {385, 7855, 3788}, {3630, 5305, 7896}, {3767, 20080, 7882}, {5319, 7849, 7834}, {7754, 7826, 7761}, {7805, 7849, 5319}, {7877, 17129, 5475}, {7894, 55738, 51860}, {51860, 63044, 55738}


X(63935) = X(3)X(754)∩X(20)X(538)

Barycentrics    3*a^4 - a^2*b^2 - b^4 - a^2*c^2 - c^4 : :
X(63935) = 3 X[3] - 2 X[7764], 5 X[3] - 3 X[9766], 2 X[3] - 3 X[47101], 3 X[7759] - 4 X[7764], 5 X[7759] - 6 X[9766], X[7759] - 3 X[47101], 10 X[7764] - 9 X[9766], 4 X[7764] - 9 X[47101], 2 X[9766] - 5 X[47101], 7 X[4] - 9 X[7615], 5 X[4] - 6 X[47617], 5 X[4] - 9 X[63029], 9 X[7615] - 14 X[7780], 15 X[7615] - 14 X[47617], and many others

X(63935) lies on these lines: {2, 7843}, {3, 754}, {4, 3849}, {6, 7830}, {20, 538}, {26, 15562}, {30, 7751}, {32, 6656}, {39, 14907}, {69, 7816}, {76, 6658}, {83, 7904}, {99, 7855}, {140, 5569}, {141, 19697}, {183, 7747}, {187, 315}, {193, 32450}, {230, 7825}, {262, 18769}, {316, 7746}, {325, 5206}, {376, 7758}, {382, 8667}, {384, 7811}, {385, 7748}, {524, 550}, {543, 1657}, {546, 13468}, {574, 7762}, {591, 6454}, {598, 33020}, {620, 5023}, {625, 32006}, {626, 3053}, {631, 46893}, {637, 6566}, {638, 6567}, {698, 48880}, {732, 48898}, {736, 9821}, {1003, 7794}, {1078, 5475}, {1153, 3533}, {1384, 6680}, {1656, 8176}, {1975, 6781}, {1991, 6453}, {1992, 33226}, {2080, 39603}, {2482, 32821}, {2548, 32978}, {2549, 7805}, {2896, 3972}, {3091, 44678}, {3096, 19694}, {3522, 34511}, {3523, 8182}, {3552, 7768}, {3627, 18546}, {3734, 7767}, {3767, 7842}, {3785, 3934}, {3793, 5254}, {3818, 32151}, {3850, 7617}, {3851, 7610}, {3926, 7882}, {4045, 30435}, {4400, 10483}, {5007, 7791}, {5008, 7803}, {5013, 7838}, {5059, 32479}, {5068, 23334}, {5073, 34505}, {5188, 8149}, {5305, 7872}, {5306, 7902}, {5309, 6179}, {5319, 32986}, {5346, 7790}, {5476, 34510}, {6308, 12110}, {6309, 22676}, {6390, 7916}, {6392, 43619}, {7618, 21735}, {7619, 61832}, {7620, 50691}, {7622, 15712}, {7735, 7861}, {7739, 33023}, {7745, 7815}, {7749, 7773}, {7752, 16923}, {7753, 11285}, {7754, 7756}, {7755, 7841}, {7757, 33260}, {7760, 7833}, {7763, 7845}, {7765, 14614}, {7766, 7847}, {7769, 7900}, {7770, 7810}, {7771, 7785}, {7772, 8356}, {7774, 37512}, {7777, 43459}, {7779, 7782}, {7783, 7877}, {7786, 20088}, {7787, 7831}, {7788, 7863}, {7789, 7896}, {7795, 7848}, {7796, 13586}, {7797, 7910}, {7798, 63548}, {7799, 7946}, {7800, 7804}, {7806, 7911}, {7807, 7818}, {7808, 18907}, {7809, 7907}, {7812, 7824}, {7814, 33259}, {7817, 32974}, {7819, 7865}, {7820, 7879}, {7828, 7898}, {7829, 11287}, {7832, 7929}, {7835, 7939}, {7836, 7850}, {7837, 33275}, {7840, 33276}, {7846, 7928}, {7849, 14001}, {7856, 7924}, {7857, 7885}, {7858, 33004}, {7866, 22331}, {7869, 8369}, {7876, 12150}, {7878, 33021}, {7880, 32973}, {7883, 7892}, {7884, 19690}, {7886, 33199}, {7888, 35297}, {7890, 31859}, {7891, 7917}, {7903, 8588}, {7908, 59545}, {7909, 33246}, {7918, 63019}, {7922, 33225}, {7937, 10583}, {8150, 10796}, {8177, 48901}, {8353, 41748}, {8354, 9607}, {8598, 32820}, {8666, 62467}, {8703, 59546}, {8715, 62463}, {8716, 15696}, {8859, 14045}, {8860, 12815}, {9466, 14035}, {9740, 49135}, {9770, 10299}, {10991, 33997}, {11160, 32824}, {11165, 62082}, {11184, 15720}, {11648, 19695}, {12040, 61789}, {14537, 16924}, {14568, 14976}, {14645, 53097}, {14711, 33193}, {15301, 20080}, {15597, 35018}, {16043, 40344}, {16342, 50232}, {16343, 50228}, {16347, 50186}, {16454, 50157}, {16458, 50161}, {16509, 61976}, {16895, 31168}, {16949, 42052}, {17008, 39565}, {17130, 19687}, {17131, 32819}, {19569, 33018}, {19570, 19691}, {19692, 47005}, {21843, 32816}, {22253, 44519}, {22329, 33229}, {26160, 36414}, {31173, 32961}, {31457, 33273}, {31652, 33008}, {32134, 38317}, {32825, 35287}, {32832, 32995}, {32833, 33244}, {32959, 58448}, {32990, 44562}, {33181, 37809}, {33208, 39785}, {33238, 63034}, {33253, 63093}, {33263, 39593}, {33279, 39563}, {34507, 52994}, {37314, 50221}, {40727, 62023}, {41624, 53096}, {44224, 50977}, {47037, 50239}, {51122, 62121}, {51123, 62104}, {52229, 62144}, {53142, 62110}, {59635, 62203}

X(63935) = midpoint of X(20) and X(14023)
X(63935) = reflection of X(i) in X(j) for these {i,j}: {4, 7780}, {7759, 3}, {7781, 550}, {8149, 5188}, {48901, 8177}, {54393, 39603}
X(63935) = anticomplement of X(7843)
X(63935) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 7750, 7761}, {32, 7761, 7834}, {32, 7935, 7792}, {99, 7893, 7855}, {187, 315, 3788}, {187, 7821, 16925}, {315, 16925, 7821}, {316, 7793, 7746}, {384, 7811, 7854}, {385, 7802, 7748}, {550, 7781, 34504}, {1078, 7823, 5475}, {1384, 7784, 6680}, {2896, 3972, 7822}, {3552, 7768, 7801}, {3552, 9939, 7768}, {3785, 7737, 3934}, {5023, 7776, 620}, {5306, 8357, 7902}, {6179, 6655, 5309}, {6179, 11057, 6655}, {6781, 7826, 1975}, {7759, 47101, 3}, {7768, 51224, 3552}, {7771, 7785, 31455}, {7788, 33235, 7863}, {7789, 14929, 7896}, {7821, 16925, 3788}, {7845, 15513, 7763}, {7873, 35007, 2}, {7878, 55164, 33021}, {7882, 32456, 3926}, {7946, 33014, 7799}, {9939, 51224, 7801}, {14023, 47102, 20}, {14614, 33234, 7765}, {14907, 20065, 39}, {19687, 37671, 17130}, {33021, 34604, 7878}


X(63936) = X(2)X(55744)∩X(3)X(524)

Barycentrics    5*a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 - 4*b^2*c^2 - 2*c^4 : :
X(63936) = 19 X[3] - 18 X[7618], 3 X[3] - 2 X[7758], 17 X[3] - 18 X[8182], 10 X[3] - 9 X[11165], 7 X[3] - 6 X[34511], 9 X[3] - 8 X[59546], 27 X[7618] - 19 X[7758], 17 X[7618] - 19 X[8182], 20 X[7618] - 19 X[11165], 9 X[7618] - 19 X[14023], 21 X[7618] - 19 X[34511], 81 X[7618] - 76 X[59546], 17 X[7758] - 27 X[8182], and many others

X(63936) lies on these lines: {2, 55744}, {3, 524}, {6, 6292}, {32, 33242}, {39, 6144}, {69, 7819}, {141, 43136}, {183, 7858}, {193, 7767}, {315, 50251}, {381, 7751}, {382, 754}, {385, 7776}, {538, 1657}, {543, 49137}, {546, 40727}, {550, 51122}, {599, 5007}, {632, 9770}, {1384, 3933}, {1656, 7759}, {1991, 31487}, {1992, 8362}, {3053, 7855}, {3090, 9740}, {3526, 7780}, {3528, 51123}, {3529, 52229}, {3544, 16509}, {3628, 63029}, {3629, 7800}, {3630, 7795}, {3767, 15480}, {3785, 5024}, {3793, 3926}, {3849, 49136}, {4396, 9669}, {4400, 9654}, {5013, 7890}, {5023, 7813}, {5025, 44367}, {5054, 7764}, {5070, 13468}, {5076, 34505}, {5079, 7775}, {5286, 14929}, {5304, 33194}, {5305, 33180}, {5485, 50688}, {5862, 37341}, {5863, 37340}, {6179, 7788}, {6337, 15655}, {6390, 51579}, {6655, 7754}, {6656, 63093}, {7610, 55857}, {7615, 61968}, {7620, 12102}, {7735, 33186}, {7750, 22253}, {7755, 33240}, {7760, 7936}, {7762, 15484}, {7766, 7879}, {7768, 7856}, {7772, 15534}, {7774, 31467}, {7778, 7882}, {7779, 7907}, {7781, 15696}, {7784, 7805}, {7794, 15533}, {7796, 11288}, {7801, 22331}, {7818, 33241}, {7824, 31470}, {7837, 11285}, {7838, 15271}, {7840, 33233}, {7845, 13881}, {7850, 7851}, {7873, 41748}, {7903, 37637}, {8359, 63064}, {8361, 63034}, {8363, 63065}, {8364, 63006}, {8369, 50992}, {8716, 62100}, {9741, 62097}, {9821, 39899}, {9939, 33234}, {10316, 40995}, {10513, 33183}, {11148, 62125}, {11160, 14001}, {11184, 55858}, {12040, 61814}, {14047, 62204}, {14930, 55732}, {15589, 32957}, {16060, 50133}, {16061, 50074}, {16343, 50261}, {16457, 50265}, {16458, 50274}, {17129, 33018}, {17251, 56735}, {18546, 61990}, {19687, 20065}, {19696, 20081}, {22332, 51187}, {23334, 61988}, {28696, 40996}, {31406, 63091}, {31859, 33275}, {32976, 37667}, {32985, 63118}, {33189, 37668}, {33215, 63116}, {33279, 47286}, {34506, 61850}, {35007, 51188}, {39785, 51589}, {40268, 59363}, {44230, 50955}, {44678, 62008}, {46893, 61794}, {47101, 62085}, {47102, 62131}, {53141, 62133}, {53142, 62104}, {56734, 63054}, {62044, 63651}

X(63936) = reflection of X(i) in X(j) for these {i,j}: {3, 14023}, {40268, 59363}
X(63936) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {193, 7767, 9605}, {385, 7946, 7887}, {6179, 7788, 32954}, {7759, 8667, 1656}, {7768, 14614, 7866}, {7780, 9766, 3526}, {7887, 7946, 7776}, {7893, 50248, 7754}


X(63937) = X(2)X(55731)∩X(4)X(754)

Barycentrics    5*a^4 - 2*b^4 - 2*b^2*c^2 - 2*c^4 : :
X(63937) = 2 X[4] - 3 X[7751], X[4] - 3 X[14023], 8 X[4] - 9 X[18546], 11 X[4] - 9 X[44678], 4 X[7751] - 3 X[18546], 11 X[7751] - 6 X[44678], 8 X[14023] - 3 X[18546], 11 X[14023] - 3 X[44678], 11 X[18546] - 8 X[44678], 4 X[140] - 3 X[7759], 4 X[550] - 3 X[7781], 10 X[550] - 9 X[34504], 37 X[550] - 27 X[63654], and many others

X(63937) lies on these lines: {2, 55731}, {4, 754}, {32, 3314}, {140, 7759}, {187, 7916}, {193, 7830}, {315, 7755}, {385, 7825}, {524, 550}, {538, 1657}, {543, 5059}, {574, 7877}, {620, 32825}, {1384, 7895}, {1656, 7610}, {3053, 7882}, {3522, 7758}, {3523, 7622}, {3533, 34506}, {3734, 7826}, {3785, 7838}, {3788, 3793}, {3849, 5073}, {3851, 7843}, {5007, 7865}, {5008, 7879}, {5068, 7617}, {5206, 7779}, {5569, 61824}, {6144, 32450}, {6179, 7818}, {6655, 41748}, {7618, 62060}, {7747, 63046}, {7748, 50251}, {7750, 7798}, {7760, 9939}, {7762, 7815}, {7765, 63093}, {7766, 7935}, {7767, 7808}, {7772, 7811}, {7787, 10159}, {7788, 35007}, {7793, 7903}, {7794, 14037}, {7802, 50248}, {7805, 7872}, {7812, 33020}, {7816, 40341}, {7823, 17131}, {7834, 14929}, {7837, 53096}, {7845, 7862}, {7848, 7914}, {7850, 7867}, {7855, 32820}, {7859, 14075}, {7873, 7902}, {7880, 22331}, {7888, 7946}, {7890, 14907}, {7905, 15515}, {7906, 8588}, {7913, 7929}, {7915, 21309}, {7936, 63038}, {8176, 44904}, {8178, 10991}, {8182, 61787}, {8716, 62107}, {9766, 15720}, {9770, 61836}, {11055, 33267}, {11184, 61855}, {11285, 41750}, {12815, 17008}, {13468, 35018}, {14034, 17130}, {14463, 35268}, {15300, 33214}, {17129, 62203}, {19697, 22165}, {20080, 32824}, {21735, 34511}, {32151, 37517}, {33226, 63064}, {33239, 50992}, {33923, 47101}, {34505, 62016}, {36523, 54097}, {46893, 61803}, {47102, 62127}, {52229, 62156}, {59546, 62069}, {61921, 63029}

X(63937) = reflection of X(7751) in X(14023)
X(63937) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 7768, 7869}, {3053, 7882, 7908}, {3785, 7838, 15482}, {7768, 7869, 7896}, {7826, 20065, 3734}, {7848, 30435, 7914}, {7873, 14614, 7902}


X(63938) = X(3)X(754)∩X(20)X(524)

Barycentrics    5*a^4 - a^2*b^2 - 2*b^4 - a^2*c^2 - 2*c^4 : :
X(63938) = 3 X[3] - 2 X[7759], 5 X[3] - 4 X[7764], 4 X[3] - 3 X[9766], 5 X[3] - 6 X[47101], 5 X[7759] - 6 X[7764], 8 X[7759] - 9 X[9766], 5 X[7759] - 9 X[47101], 16 X[7764] - 15 X[9766], 2 X[7764] - 3 X[47101], 5 X[9766] - 8 X[47101], 2 X[4] - 3 X[8667], 8 X[5] - 9 X[7610], 17 X[20] - 9 X[11148], 13 X[20] - 9 X[53141], and many others

X(63938) lies on these lines: {2, 22331}, {3, 754}, {4, 8667}, {5, 7610}, {6, 7750}, {20, 524}, {30, 14023}, {32, 7784}, {69, 32981}, {141, 33198}, {183, 7823}, {187, 7776}, {193, 63548}, {194, 6144}, {230, 32006}, {315, 3053}, {316, 13881}, {325, 5023}, {340, 37199}, {381, 7780}, {382, 3849}, {384, 599}, {385, 33019}, {538, 1657}, {543, 17800}, {546, 44678}, {548, 34511}, {550, 7758}, {591, 6426}, {597, 33202}, {626, 1384}, {631, 11184}, {698, 48872}, {732, 48905}, {1003, 7768}, {1153, 3526}, {1350, 36998}, {1351, 32152}, {1656, 7843}, {1975, 7893}, {1991, 6425}, {1992, 9607}, {2475, 47037}, {2896, 3763}, {3091, 13468}, {3522, 59546}, {3530, 8182}, {3534, 7781}, {3552, 7788}, {3629, 7738}, {3630, 32830}, {3767, 3793}, {3785, 7745}, {3832, 63029}, {3855, 23334}, {3856, 16509}, {3861, 7615}, {3913, 62463}, {3972, 7879}, {4045, 43136}, {4195, 17251}, {4339, 4364}, {4396, 12953}, {4400, 12943}, {5007, 11287}, {5008, 7935}, {5013, 7762}, {5024, 7838}, {5070, 34506}, {5076, 18546}, {5077, 7765}, {5201, 11325}, {5206, 7845}, {5210, 7763}, {5254, 33238}, {5306, 32974}, {5319, 8357}, {5569, 55863}, {5695, 49562}, {6179, 7841}, {6308, 10796}, {6337, 50771}, {6392, 15480}, {6655, 14614}, {6781, 7855}, {7486, 15597}, {7617, 61946}, {7618, 46853}, {7620, 62021}, {7622, 61799}, {7735, 33200}, {7737, 7767}, {7752, 44535}, {7754, 7802}, {7756, 22253}, {7760, 11057}, {7761, 7829}, {7770, 7811}, {7773, 7793}, {7774, 15815}, {7783, 44541}, {7785, 31489}, {7787, 16897}, {7795, 14929}, {7796, 33235}, {7800, 18907}, {7809, 33233}, {7812, 11285}, {7815, 15484}, {7818, 32954}, {7821, 11288}, {7830, 9605}, {7833, 15534}, {7834, 21309}, {7837, 33260}, {7840, 33014}, {7849, 33237}, {7850, 7881}, {7851, 7898}, {7854, 11286}, {7860, 7887}, {7868, 7929}, {7869, 33242}, {7876, 34604}, {7877, 31859}, {7883, 33217}, {7903, 15513}, {7904, 11174}, {7916, 32456}, {7922, 33220}, {7926, 43459}, {7936, 12150}, {7946, 13586}, {8176, 61905}, {8177, 53023}, {8556, 16924}, {9300, 32990}, {9606, 33215}, {9740, 17578}, {9741, 62117}, {9770, 15717}, {9771, 55864}, {9855, 51188}, {9863, 36990}, {9873, 48910}, {9917, 53273}, {9988, 42155}, {9989, 42154}, {10350, 59232}, {10516, 12110}, {11159, 17130}, {11163, 31492}, {11165, 62085}, {11168, 32987}, {11315, 39865}, {11316, 39866}, {12040, 61790}, {12513, 62467}, {13571, 33275}, {14035, 37671}, {14042, 19569}, {14063, 22329}, {14645, 55580}, {14976, 33256}, {15533, 33007}, {15720, 46893}, {16342, 50186}, {16343, 50232}, {16456, 50161}, {16457, 50228}, {16458, 50157}, {16898, 21358}, {17313, 17691}, {19691, 44367}, {22110, 32989}, {22332, 32965}, {22728, 32189}, {23055, 52250}, {32459, 32818}, {32479, 62170}, {32816, 32977}, {32819, 63046}, {32820, 33244}, {32828, 53418}, {32833, 33250}, {32982, 63034}, {32997, 63093}, {33009, 37688}, {33025, 63006}, {33254, 59634}, {33258, 63101}, {33262, 41133}, {34504, 62121}, {37667, 63534}, {37668, 59545}, {40727, 62008}, {41750, 53096}, {44245, 51123}, {47617, 61990}, {51122, 62131}, {52229, 62155}, {53142, 62113}, {54097, 63543}, {55085, 55164}

X(63938) = reflection of X(i) in X(j) for these {i,j}: {382, 7751}, {7758, 550}, {8716, 47102}
X(63938) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 7873, 7866}, {315, 3053, 7778}, {382, 7751, 34505}, {550, 7758, 8716}, {1975, 7893, 40341}, {1992, 33023, 9607}, {3785, 7745, 15271}, {6144, 44519, 194}, {7750, 20065, 6}, {7754, 7802, 44526}, {7758, 47102, 550}, {7760, 11057, 33234}, {7762, 14907, 5013}, {7764, 47101, 3}, {7773, 7793, 37637}, {7796, 51224, 33235}, {7818, 35007, 32954}, {7866, 7873, 7784}, {7893, 14712, 1975}, {7904, 20088, 11174}, {7946, 13586, 32821}, {11163, 33004, 31492}, {32965, 41624, 22332}


X(63939) = X(2)X(5007)∩X(30)X(511)

Barycentrics    4*a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 - 2*b^2*c^2 - 2*c^4 : :

X(63939) lies on these lines: {1, 50220}, {2, 5007}, {6, 7848}, {30, 511}, {32, 7788}, {39, 7811}, {61, 5859}, {62, 5858}, {69, 7804}, {76, 14537}, {115, 50251}, {187, 7779}, {193, 7739}, {194, 11057}, {315, 5309}, {316, 19570}, {325, 31274}, {340, 14581}, {376, 7758}, {381, 7751}, {385, 625}, {549, 7764}, {599, 12212}, {620, 3793}, {626, 5306}, {633, 5862}, {634, 5863}, {635, 33459}, {636, 33458}, {1153, 9770}, {1384, 7908}, {1495, 14463}, {2549, 11008}, {2896, 5041}, {3053, 7916}, {3314, 5008}, {3398, 5054}, {3524, 46893}, {3534, 7781}, {3578, 3661}, {3629, 4045}, {3630, 18907}, {3734, 40341}, {3839, 47617}, {3934, 7753}, {4363, 48800}, {4393, 50178}, {4643, 48824}, {4644, 48798}, {5055, 7775}, {5077, 51187}, {5107, 50249}, {5215, 41136}, {5319, 33223}, {5475, 63046}, {5485, 54917}, {5569, 15708}, {6144, 7798}, {6661, 7794}, {6683, 7767}, {6722, 50774}, {6781, 15301}, {7603, 7926}, {7610, 61887}, {7615, 61967}, {7617, 61933}, {7618, 15710}, {7619, 61841}, {7620, 62003}, {7622, 15707}, {7737, 20080}, {7750, 7890}, {7754, 7842}, {7757, 9939}, {7760, 7873}, {7766, 7850}, {7773, 18362}, {7776, 7886}, {7787, 47005}, {7793, 7949}, {7796, 33246}, {7800, 63024}, {7801, 33255}, {7810, 41624}, {7812, 9466}, {7813, 32456}, {7816, 7855}, {7817, 7818}, {7834, 63006}, {7840, 10352}, {7841, 41748}, {7852, 7939}, {7859, 34571}, {7874, 7917}, {7876, 41940}, {7883, 63038}, {7894, 7929}, {7896, 7915}, {7900, 39565}, {7905, 37512}, {7906, 15513}, {7914, 43136}, {7921, 31239}, {8149, 33706}, {8176, 9740}, {8182, 15705}, {8716, 15689}, {8782, 52088}, {8859, 10150}, {9771, 61874}, {9996, 55716}, {10304, 34511}, {10333, 12150}, {11055, 33264}, {11159, 51188}, {11165, 62070}, {11184, 61864}, {11286, 15533}, {11287, 15534}, {11361, 14711}, {11539, 34506}, {13468, 15699}, {13571, 31652}, {13586, 39785}, {14033, 50992}, {14269, 18546}, {14568, 31173}, {14962, 63560}, {15597, 61879}, {17023, 37631}, {17129, 39590}, {17346, 48860}, {17378, 48844}, {19569, 20081}, {20055, 50154}, {23334, 61992}, {29604, 49730}, {29659, 49744}, {31275, 63047}, {31415, 32885}, {32189, 44422}, {32986, 63064}, {33272, 63116}, {34200, 59546}, {34504, 47102}, {34505, 38335}, {36534, 50182}, {37779, 51372}, {40250, 55718}, {40727, 61971}, {41149, 61046}, {42045, 50173}, {44678, 50687}, {48673, 55007}, {48840, 50133}, {48864, 50074}, {49716, 50224}, {49723, 50225}, {49724, 50227}, {49749, 50266}, {50157, 50174}, {50159, 50269}, {50160, 50186}, {50161, 50265}, {50163, 50232}, {50164, 50233}, {50179, 50221}, {50253, 51396}, {50260, 50264}, {50272, 50278}, {51122, 62137}, {51123, 62098}, {53142, 62112}, {61899, 63029}

X(63939) = crossdifference of every pair of points on line {6, 8665}
X(63939) = X(7848)-line conjugate of X(6)
X(63939) = barycentric quotient X(i)/X(j) for these {i,j}: {22425, 36579}, {46935, 44590}, {53691, 8052}
X(63939) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 7788, 7880}, {32, 7882, 7895}, {39, 7811, 40344}, {315, 7805, 7861}, {315, 63093, 5309}, {316, 19570, 39563}, {385, 7845, 625}, {3578, 50181, 50162}, {3629, 14929, 4045}, {3793, 50771, 620}, {5007, 7768, 7849}, {5309, 63093, 7805}, {6179, 7946, 7821}, {7750, 7890, 32450}, {7753, 7826, 37671}, {7753, 37671, 3934}, {7759, 14023, 7780}, {7760, 7924, 39593}, {7762, 7826, 3934}, {7762, 37671, 7753}, {7766, 7850, 7853}, {7767, 7838, 6683}, {7788, 7880, 7895}, {7810, 41624, 44562}, {7811, 7837, 39}, {7811, 7877, 7837}, {7818, 14614, 7817}, {7837, 7893, 7811}, {7855, 20065, 7816}, {7873, 39593, 7924}, {7877, 7893, 39}, {7880, 7882, 7788}, {7896, 30435, 7915}, {19570, 39563, 32457}, {42045, 50217, 50173}, {49716, 50231, 50224}, {50157, 50261, 50174}, {50160, 50186, 50229}, {50178, 50267, 50219}, {50232, 50274, 50163}, {50256, 50267, 50178}, {50269, 50277, 50159}


X(63940) = X(2)X(7762)∩X(30)X(511)

Barycentrics    6*a^4 + a^2*b^2 - 3*b^4 + a^2*c^2 - 2*b^2*c^2 - 3*c^4 : :

X(63940) lies on these lines: {2, 7762}, {5, 8667}, {6, 14929}, {20, 51122}, {30, 511}, {32, 8368}, {39, 8358}, {69, 11286}, {115, 15480}, {140, 7759}, {187, 50771}, {193, 15048}, {194, 8353}, {230, 7845}, {315, 5305}, {316, 50251}, {325, 3793}, {376, 51123}, {385, 33228}, {546, 7751}, {547, 7775}, {549, 9766}, {550, 7758}, {597, 7865}, {625, 50774}, {626, 33213}, {1003, 3933}, {1270, 13644}, {1271, 13763}, {1285, 10513}, {1384, 33191}, {1992, 11287}, {2482, 12830}, {2548, 8556}, {2549, 6144}, {3524, 12040}, {3530, 7764}, {3545, 9740}, {3578, 50168}, {3589, 7848}, {3628, 7780}, {3629, 7761}, {3630, 3734}, {3631, 7804}, {3785, 31406}, {3839, 40727}, {3850, 7843}, {4045, 32455}, {4799, 39544}, {5007, 8364}, {5024, 63091}, {5054, 9770}, {5055, 63029}, {5077, 63064}, {5254, 41748}, {5304, 33196}, {5306, 7818}, {5485, 50687}, {5569, 61827}, {5860, 8416}, {5861, 8396}, {5862, 11296}, {5863, 11295}, {6179, 8361}, {6390, 7779}, {6656, 63038}, {6661, 34604}, {7610, 15699}, {7615, 23046}, {7617, 14892}, {7618, 45759}, {7619, 14890}, {7620, 38335}, {7622, 41983}, {7735, 33240}, {7737, 40341}, {7739, 10542}, {7745, 7826}, {7747, 14711}, {7750, 7757}, {7753, 8367}, {7754, 33017}, {7760, 8357}, {7768, 7819}, {7781, 12103}, {7788, 8369}, {7789, 7882}, {7792, 7850}, {7794, 19697}, {7799, 27088}, {7802, 11055}, {7807, 7946}, {7809, 22329}, {7810, 9300}, {7811, 8359}, {7812, 37671}, {7837, 8356}, {7838, 44562}, {7840, 35297}, {7841, 63093}, {7890, 63548}, {7916, 59545}, {7926, 37688}, {8176, 47478}, {8182, 17504}, {8352, 19570}, {8550, 55167}, {8703, 34511}, {9462, 13562}, {9741, 62120}, {9764, 9821}, {9771, 47598}, {9909, 19597}, {10124, 34506}, {10304, 11165}, {10796, 61545}, {11008, 22253}, {11148, 62148}, {11159, 32836}, {11160, 14033}, {11184, 11539}, {11318, 63034}, {11359, 63054}, {13085, 32151}, {13745, 50261}, {14041, 44367}, {14269, 23334}, {14467, 35279}, {14568, 37350}, {14893, 18546}, {15013, 40996}, {15484, 15589}, {15597, 47599}, {15687, 34505}, {15689, 53142}, {15691, 34504}, {17131, 53418}, {19661, 33220}, {20112, 61965}, {21973, 63736}, {31859, 33207}, {33016, 63046}, {33219, 63065}, {33923, 59546}, {34200, 47101}, {35578, 48798}, {37631, 50217}, {40889, 56021}, {42045, 50167}, {44334, 52950}, {46333, 53141}, {47286, 50248}, {47617, 61978}, {49716, 50278}, {49718, 50275}, {49723, 50231}, {49724, 50181}, {49728, 50225}, {49730, 50227}, {49743, 49749}, {50157, 50265}, {50166, 50256}, {50169, 50186}, {50170, 50277}, {50185, 50263}, {51224, 59634}, {53489, 63044}, {55823, 61844}, {62037, 63651}, {62130, 63654}

X(63940) = X(14929)-line conjugate of X(6)
X(63940) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {315, 14614, 33184}, {3578, 50269, 50168}, {3629, 7761, 63633}, {5306, 7818, 8360}, {7750, 7757, 8354}, {7758, 47102, 8716}, {7762, 7893, 7767}, {7775, 13468, 547}, {7810, 41750, 9300}, {7811, 41624, 8359}, {7837, 9939, 8356}, {8716, 47102, 550}, {14614, 33184, 5305}, {34505, 44678, 15687}, {42045, 50267, 50167}, {50186, 50274, 50169}


X(63941) = X(2)X(3053)∩X(30)X(511)

Barycentrics    6*a^4 - a^2*b^2 - 3*b^4 - a^2*c^2 + 2*b^2*c^2 - 3*c^4 : :

X(63941) lies on these lines: {2, 3053}, {3, 47102}, {4, 8667}, {6, 32986}, {20, 8716}, {30, 511}, {32, 33184}, {39, 8354}, {99, 50771}, {115, 3793}, {140, 7843}, {141, 7737}, {148, 50251}, {183, 33016}, {187, 31274}, {193, 44526}, {230, 316}, {315, 1003}, {325, 13586}, {376, 9766}, {381, 13468}, {382, 14023}, {385, 53419}, {428, 40325}, {546, 7780}, {547, 34506}, {548, 7764}, {549, 7775}, {550, 7759}, {591, 41946}, {597, 11287}, {599, 14033}, {625, 44381}, {626, 8368}, {671, 60280}, {1007, 5210}, {1153, 47598}, {1285, 33196}, {1384, 33240}, {1657, 7758}, {1975, 33193}, {1990, 40889}, {1991, 41945}, {1992, 33272}, {2549, 3629}, {3055, 7771}, {3524, 11184}, {3534, 34511}, {3543, 9863}, {3545, 7610}, {3589, 7761}, {3627, 7751}, {3630, 43618}, {3631, 3734}, {3785, 8556}, {3815, 14907}, {3839, 20112}, {3845, 32151}, {4045, 6329}, {5007, 8357}, {5023, 32816}, {5054, 8182}, {5055, 15597}, {5077, 7739}, {5184, 50772}, {5201, 46522}, {5254, 14614}, {5305, 7842}, {5306, 7841}, {5475, 58446}, {5485, 60325}, {5569, 11539}, {6179, 33229}, {6308, 18502}, {6390, 6781}, {6655, 63038}, {6656, 12150}, {6661, 7883}, {6680, 33213}, {7615, 14269}, {7617, 38071}, {7618, 15688}, {7619, 61827}, {7620, 62017}, {7622, 17504}, {7747, 7767}, {7748, 41748}, {7753, 8359}, {7757, 7762}, {7760, 19695}, {7768, 19687}, {7774, 33207}, {7776, 59545}, {7778, 33191}, {7781, 15704}, {7785, 33273}, {7788, 33007}, {7792, 7898}, {7796, 33250}, {7799, 8598}, {7804, 34573}, {7807, 7860}, {7809, 22110}, {7810, 14537}, {7811, 8370}, {7812, 8356}, {7818, 8369}, {7819, 7873}, {7826, 14711}, {7830, 8358}, {7831, 53489}, {7833, 14976}, {7837, 33264}, {7840, 33265}, {7849, 19697}, {7865, 20582}, {7877, 11055}, {7893, 32819}, {7924, 34604}, {7946, 32820}, {8176, 15699}, {8352, 14568}, {8361, 35007}, {8597, 19570}, {9606, 32965}, {9607, 33234}, {9740, 50687}, {9741, 46333}, {9770, 10304}, {9888, 38741}, {9909, 15270}, {9939, 11361}, {10256, 38225}, {10691, 52545}, {11148, 58204}, {11159, 22165}, {11163, 33008}, {11165, 15689}, {11168, 44543}, {11295, 33458}, {11296, 33459}, {11297, 33475}, {11298, 33474}, {12040, 45759}, {12151, 53499}, {13571, 33267}, {13644, 45871}, {13745, 50232}, {13763, 45872}, {14041, 22329}, {14064, 22331}, {14893, 47617}, {15048, 32455}, {15480, 47286}, {15484, 15491}, {15533, 32836}, {15686, 34504}, {15687, 18546}, {16095, 52979}, {16509, 23046}, {17251, 48817}, {21969, 40951}, {22253, 43619}, {22332, 33226}, {24855, 26276}, {31173, 44401}, {32152, 44422}, {32445, 37672}, {32815, 40341}, {32821, 33244}, {32827, 37637}, {33192, 63093}, {33210, 63006}, {33278, 63065}, {37631, 50166}, {38335, 40727}, {41312, 48827}, {41983, 63647}, {46511, 60428}, {47296, 51372}, {47298, 52898}, {47582, 51431}, {49716, 50275}, {49724, 50170}, {49728, 50158}, {49730, 50168}, {49735, 50186}, {49743, 50264}, {49744, 50235}, {49745, 49749}, {50157, 50169}, {50161, 50229}, {50165, 50261}, {50167, 50181}, {50172, 50274}, {50176, 50259}, {50185, 50260}, {50219, 50227}, {50220, 50230}, {50221, 50228}, {50231, 50236}, {53095, 62988}, {53141, 62153}, {53142, 62130}, {55823, 61889}

X(63941) = X(32986)-line conjugate of X(6)
X(63941) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {115, 3793, 50774}, {550, 7759, 59546}, {3734, 14929, 3631}, {3785, 32983, 8556}, {6781, 7845, 6390}, {7750, 7823, 7745}, {7757, 7802, 8353}, {7757, 8353, 63548}, {7761, 18907, 3589}, {7762, 7802, 63548}, {7762, 8353, 7757}, {7775, 47101, 549}, {7809, 35297, 22110}, {7809, 51224, 35297}, {7812, 8356, 9300}, {7812, 11057, 8356}, {7830, 44562, 8358}, {7840, 33265, 59634}, {7946, 33257, 32820}, {8352, 14568, 63543}, {9939, 11361, 37671}, {9939, 19569, 11361}, {14614, 33017, 5254}, {15686, 51123, 34504}, {20065, 33017, 14614}, {49735, 50186, 50265}, {50166, 50269, 37631}, {50168, 50217, 49730}, {50170, 50267, 49724}


X(63942) = X(2)X(5008)∩X(30)X(511)

Barycentrics    8*a^4 + a^2*b^2 - 4*b^4 + a^2*c^2 - 2*b^2*c^2 - 4*c^4 : :

X(63942) lies on these lines: {2, 5008}, {30, 511}, {32, 8366}, {39, 9939}, {187, 7840}, {315, 5346}, {316, 41135}, {325, 9167}, {385, 9166}, {597, 14929}, {598, 9466}, {599, 7804}, {625, 14971}, {631, 5569}, {632, 9771}, {1153, 11184}, {1656, 7610}, {1692, 41137}, {1992, 7761}, {2549, 63064}, {3091, 7843}, {3329, 55778}, {3522, 34511}, {3630, 59780}, {3734, 15533}, {3793, 22110}, {3843, 7751}, {3845, 53144}, {3858, 20112}, {3934, 7812}, {4045, 8584}, {5007, 7883}, {5071, 8176}, {5076, 34505}, {5077, 7798}, {5188, 9774}, {5485, 60326}, {6683, 7762}, {7615, 41099}, {7617, 8667}, {7618, 19708}, {7619, 15713}, {7620, 44678}, {7622, 9766}, {7737, 11160}, {7739, 63027}, {7753, 14762}, {7758, 9741}, {7764, 12040}, {7768, 19689}, {7779, 32456}, {7781, 62131}, {7801, 7882}, {7805, 7841}, {7809, 8859}, {7811, 15810}, {7813, 8598}, {7826, 8370}, {7827, 7873}, {7833, 7877}, {7837, 52691}, {7838, 8359}, {7855, 33007}, {7865, 47352}, {7870, 7946}, {7886, 63107}, {7895, 8369}, {7896, 33237}, {7928, 34571}, {7934, 62204}, {7936, 41940}, {7949, 15513}, {8182, 15692}, {8352, 32457}, {8355, 50774}, {8716, 62116}, {10033, 34623}, {10104, 32414}, {11054, 50248}, {11055, 14976}, {11057, 32480}, {11159, 40341}, {11165, 14093}, {11297, 42635}, {11298, 42636}, {11317, 17131}, {13468, 61910}, {14712, 15301}, {15597, 61885}, {15682, 53143}, {15684, 63651}, {15686, 63654}, {15697, 47102}, {16509, 61942}, {18546, 61993}, {18907, 22165}, {22253, 51187}, {23334, 61985}, {26613, 41136}, {27088, 50771}, {32455, 61046}, {32815, 63118}, {37668, 37809}, {40344, 41624}, {41149, 63633}, {42045, 50219}, {44555, 51372}, {49716, 50230}, {50162, 50269}, {50163, 50186}, {50164, 50236}, {50173, 50267}, {50221, 50261}, {50229, 50274}, {50260, 50266}, {51123, 62108}, {53141, 62145}, {55829, 63077}

X(63942) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5569, 7759, 9770}, {7779, 51224, 39785}, {7811, 41750, 44562}, {7811, 63028, 15810}, {15810, 41750, 63028}, {15810, 63028, 44562}, {39785, 51224, 32456}


X(63943) = X(2)X(7843)∩X(30)X(511)

Barycentrics    8*a^4 - a^2*b^2 - 4*b^4 - a^2*c^2 + 2*b^2*c^2 - 4*c^4 : :

X(63943) lies on these lines: {2, 7843}, {30, 511}, {32, 33219}, {39, 11057}, {76, 19569}, {187, 7809}, {315, 7880}, {316, 63047}, {376, 7759}, {381, 7780}, {385, 39563}, {671, 36859}, {1153, 61864}, {2549, 62996}, {3524, 47101}, {3543, 14023}, {3618, 7761}, {3620, 7737}, {3763, 7804}, {3830, 7751}, {3839, 44678}, {3934, 7811}, {5007, 7924}, {5008, 7884}, {5054, 7775}, {5055, 10358}, {5077, 63125}, {5306, 7861}, {5309, 7842}, {5569, 15709}, {6655, 39593}, {6661, 7849}, {6683, 7750}, {6781, 59634}, {7610, 61933}, {7615, 61983}, {7617, 61948}, {7618, 62086}, {7622, 15706}, {7739, 51170}, {7747, 37671}, {7748, 63093}, {7757, 14976}, {7758, 11001}, {7764, 8703}, {7768, 19686}, {7779, 15301}, {7781, 15681}, {7788, 7816}, {7793, 48913}, {7799, 7845}, {7801, 33187}, {7802, 7837}, {7805, 11648}, {7812, 44562}, {7817, 33251}, {7818, 33220}, {7821, 33246}, {7830, 9300}, {7833, 41750}, {7882, 32833}, {7886, 32006}, {7900, 15513}, {7926, 8589}, {7929, 47005}, {8176, 61899}, {8182, 15708}, {8667, 14269}, {8716, 62137}, {9466, 9939}, {9740, 62003}, {9766, 15688}, {9770, 15710}, {9771, 61841}, {10304, 47102}, {11159, 50989}, {11184, 15707}, {11286, 50993}, {11287, 51185}, {11297, 41943}, {11298, 41944}, {13468, 38071}, {14033, 50990}, {15597, 61909}, {15690, 59546}, {15699, 34506}, {17397, 50181}, {18546, 38335}, {18907, 51126}, {23334, 61954}, {29593, 50162}, {32986, 63022}, {33265, 39785}, {33272, 63117}, {34504, 62130}, {34505, 62020}, {34511, 62120}, {50157, 50229}, {50173, 50269}, {50174, 50186}, {50220, 50233}, {50221, 50232}, {50225, 50236}, {50263, 50264}, {51122, 58202}, {61967, 63029}

X(63943) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7750, 7753, 40344}, {7753, 40344, 6683}, {7811, 7823, 14537}, {7811, 14537, 3934}, {7845, 14712, 32456}


X(63944) = X(2)X(55729)∩X(30)X(511)

Barycentrics    10*a^4 + a^2*b^2 - 5*b^4 + a^2*c^2 - 2*b^2*c^2 - 5*c^4 : :

X(63944) lies on these lines: {2, 55729}, {30, 511}, {230, 7809}, {315, 5306}, {316, 15480}, {381, 14023}, {547, 7780}, {549, 7759}, {3055, 7926}, {3524, 9766}, {3534, 7758}, {3545, 8667}, {3589, 7865}, {3629, 7739}, {3630, 7737}, {3631, 18907}, {3793, 7845}, {3845, 7751}, {4363, 48798}, {4364, 48824}, {4643, 48827}, {4665, 48800}, {4795, 48807}, {5023, 32837}, {5055, 13468}, {5066, 7843}, {5077, 63115}, {5254, 33278}, {6661, 7768}, {7610, 61899}, {7615, 61971}, {7618, 62070}, {7745, 7893}, {7750, 7837}, {7753, 7767}, {7761, 32455}, {7762, 7786}, {7764, 12100}, {7775, 15699}, {7779, 59634}, {7781, 15686}, {7784, 63006}, {7788, 7789}, {7799, 32459}, {7826, 14537}, {7838, 40344}, {7848, 34573}, {7877, 11057}, {7946, 33246}, {8176, 61917}, {8182, 15706}, {8357, 39593}, {8359, 41750}, {8584, 11287}, {8703, 59546}, {8716, 62120}, {9740, 61954}, {9770, 15708}, {9771, 61864}, {9939, 41624}, {11008, 44526}, {11165, 62080}, {11184, 15709}, {11286, 22165}, {11297, 33458}, {11298, 33459}, {14033, 15533}, {14614, 33251}, {15484, 15598}, {15534, 32986}, {15597, 61887}, {15688, 34511}, {15689, 47102}, {17308, 49730}, {18546, 61995}, {19569, 32819}, {19570, 50251}, {20112, 61967}, {22331, 33224}, {23334, 61983}, {26626, 37631}, {32821, 33266}, {32836, 40341}, {32896, 33239}, {33272, 63064}, {34505, 50687}, {34506, 47598}, {38335, 44678}, {40727, 61981}, {41983, 46893}, {41987, 47617}, {45759, 47101}, {49716, 50233}, {49724, 50269}, {49728, 50231}, {51122, 62140}, {51123, 62111}, {53418, 63046}, {61924, 63029}

X(63944) = barycentric quotient X(49494)/X(19469)
X(63944) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3793, 7845, 44377}, {7762, 7811, 9300}


X(63945) = X(2)X(1285)∩X(30)X(511)

Barycentrics    10*a^4 - a^2*b^2 - 5*b^4 - a^2*c^2 + 2*b^2*c^2 - 5*c^4 : :

X(63945) lies on these lines: {2, 1285}, {3, 9770}, {4, 9740}, {5, 7610}, {20, 9741}, {30, 511}, {32, 8360}, {69, 11159}, {140, 5569}, {183, 3363}, {187, 9167}, {230, 8355}, {315, 8369}, {316, 3793}, {325, 27088}, {376, 11165}, {381, 16509}, {385, 8352}, {546, 20112}, {547, 8176}, {548, 7759}, {549, 8182}, {550, 34511}, {591, 52048}, {597, 7761}, {598, 7811}, {599, 7737}, {625, 44401}, {626, 8365}, {1153, 10124}, {1991, 52047}, {1992, 5077}, {2482, 7845}, {2549, 15534}, {3314, 35954}, {3534, 51123}, {3543, 5485}, {3627, 14023}, {3628, 7843}, {3734, 22165}, {3830, 7620}, {3845, 7615}, {3850, 7780}, {3853, 7751}, {3861, 47617}, {3933, 33007}, {4045, 63124}, {5023, 50571}, {5032, 32986}, {5066, 7617}, {5305, 7841}, {5475, 11168}, {5503, 54800}, {5858, 43109}, {5859, 43108}, {5860, 43256}, {5861, 43257}, {6033, 9877}, {6054, 16508}, {6144, 43619}, {6390, 7840}, {6656, 34604}, {6781, 39785}, {7618, 8703}, {7619, 11812}, {7622, 12100}, {7745, 7810}, {7750, 7786}, {7753, 15810}, {7754, 33192}, {7758, 15704}, {7762, 7833}, {7764, 33923}, {7767, 7823}, {7774, 35955}, {7776, 32985}, {7778, 37809}, {7779, 9855}, {7781, 62144}, {7804, 20582}, {7809, 26613}, {7818, 8368}, {7819, 7883}, {7827, 8357}, {7837, 8353}, {7848, 50991}, {7860, 8361}, {7873, 8364}, {7900, 33274}, {7946, 33250}, {8354, 11057}, {8356, 63028}, {8358, 9300}, {8584, 63633}, {8597, 44367}, {8716, 15686}, {8859, 33228}, {9761, 42913}, {9763, 42912}, {10033, 34733}, {11001, 51122}, {11054, 50251}, {11147, 32837}, {11148, 15683}, {11163, 14907}, {11164, 32833}, {11167, 54814}, {11286, 21356}, {11287, 59373}, {11318, 32006}, {12101, 18546}, {12103, 34504}, {13586, 41136}, {13745, 50186}, {15655, 63098}, {15681, 63654}, {16317, 62294}, {19911, 51872}, {22253, 63064}, {22331, 33186}, {22512, 42036}, {22513, 42035}, {23055, 32827}, {30435, 33190}, {31406, 33215}, {32815, 50992}, {32968, 55729}, {33272, 63027}, {36775, 42942}, {40246, 50248}, {40341, 43618}, {42008, 47311}, {44245, 59546}, {44569, 51372}, {47061, 62988}, {47291, 47314}, {47558, 50146}, {49718, 50272}, {49728, 50230}, {49743, 50235}, {49745, 50260}, {50156, 50279}, {50157, 50216}, {50167, 50269}, {50168, 50267}, {50177, 50259}, {50250, 50886}, {51737, 55167}, {52942, 63046}, {53143, 62039}, {53144, 61997}, {55805, 63077}, {62042, 63651}

X(63945) = barycentric quotient X(i)/X(j) for these {i,j}: {3092, 15459}, {11314, 52547}, {20266, 22269}, {39782, 11862}
X(63945) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 18842, 14535}, {3, 9770, 12040}, {4, 9740, 40727}, {69, 11159, 59780}, {230, 31173, 8355}, {316, 3793, 43291}, {316, 22329, 37350}, {325, 51224, 27088}, {381, 63029, 16509}, {549, 11184, 63647}, {1992, 5077, 15048}, {3793, 37350, 22329}, {5569, 7775, 9771}, {5569, 9771, 140}, {7745, 7810, 8367}, {7750, 7812, 8359}, {7750, 63101, 55164}, {7809, 26613, 41133}, {7812, 55164, 63101}, {7823, 9939, 8370}, {7837, 14976, 8353}, {7840, 8598, 6390}, {7840, 14712, 8598}, {8176, 15597, 547}, {8182, 11184, 549}, {8370, 9939, 7767}, {8597, 44367, 47286}, {8667, 44678, 3845}, {9766, 47102, 8703}, {11057, 41624, 8354}, {13644, 13763, 46453}, {22329, 37350, 43291}, {23334, 63029, 381}, {50235, 50263, 49743}, {55164, 63101, 8359}


X(63946) = X(2)X(55727)∩X(30)X(511)

Barycentrics    12*a^4 + a^2*b^2 - 6*b^4 + a^2*c^2 - 2*b^2*c^2 - 6*c^4 : :

X(63946) lies on these lines: {2, 55727}, {30, 511}, {625, 63047}, {1003, 7882}, {3090, 7780}, {3523, 7759}, {3620, 7804}, {3763, 7848}, {3832, 14023}, {3851, 7843}, {5569, 61830}, {7739, 63117}, {7751, 61984}, {7758, 62127}, {7761, 51170}, {7762, 44562}, {7764, 44682}, {7768, 19692}, {7775, 15703}, {7781, 62134}, {7823, 14711}, {7842, 41748}, {7845, 7925}, {7849, 12150}, {7861, 14614}, {7873, 63038}, {7890, 8353}, {7893, 9466}, {7895, 20065}, {8716, 62121}, {9766, 15700}, {9939, 40344}, {13468, 61916}, {13586, 52886}, {14929, 51126}, {18546, 61996}, {32986, 62996}, {34504, 62122}, {34506, 61869}, {34511, 62094}, {39563, 44367}, {44678, 62005}, {47101, 62063}, {47102, 50693}, {47617, 61980}, {51122, 62142}

X(63946) = barycentric quotient X(54105)/X(33344)
X(63946) = {X(9939),X(41750)}-harmonic conjugate of X(40344)


X(63947) = X(2)X(55824)∩X(30)X(511)

Barycentrics    12*a^4 - a^2*b^2 - 6*b^4 - a^2*c^2 + 2*b^2*c^2 - 6*c^4 : :

X(63947) lies on these lines: {2, 55824}, {30, 511}, {385, 62427}, {631, 46893}, {1003, 7895}, {1153, 61861}, {1656, 7843}, {3091, 7780}, {3522, 7759}, {3619, 7804}, {3843, 8667}, {5007, 19690}, {5076, 7751}, {5346, 7861}, {5569, 61844}, {7750, 44562}, {7758, 62147}, {7761, 51171}, {7764, 46853}, {7768, 19693}, {7775, 15694}, {7781, 62143}, {7805, 33017}, {7812, 40344}, {7818, 8366}, {7823, 9466}, {7838, 8354}, {7842, 14614}, {7845, 13586}, {7848, 11286}, {7849, 19689}, {7855, 33193}, {7873, 7948}, {7893, 14711}, {8176, 61906}, {8182, 61812}, {8353, 32450}, {8716, 62131}, {9766, 14093}, {9770, 61780}, {9939, 14537}, {10356, 19709}, {11057, 41750}, {13468, 61942}, {14023, 17578}, {15692, 47101}, {15697, 34511}, {18546, 35403}, {18907, 51128}, {23334, 61962}, {32986, 62995}, {34504, 62129}, {34505, 35434}, {34506, 61885}, {44678, 47617}, {50186, 50221}, {50219, 50269}, {50220, 50236}, {51122, 62150}, {53144, 61995}, {61959, 63029}

X(63947) = barycentric product X(i)*X(j) for these {i,j}: {2004, 41144}, {37805, 54203}
X(63947) = barycentric quotient X(57886)/X(41849)


X(63948) = X(20)X(538)∩X(381)X(754)

Barycentrics    9*a^4 - a^2*b^2 - 3*b^4 - a^2*c^2 - 4*b^2*c^2 - 3*c^4 : :
X(63948) = X[20] + 5 X[14023], 3 X[20] - 5 X[47102], 3 X[14023] + X[47102], 8 X[140] - 5 X[7759], 3 X[381] - 5 X[8667], 4 X[8703] - 5 X[47101], 7 X[8703] - 5 X[51123], 7 X[47101] - 4 X[51123], 7 X[3090] - 10 X[7780], 9 X[3524] - 10 X[46893], 2 X[3627] - 5 X[7751], 15 X[5485] - 7 X[15682], 13 X[5068] - 10 X[7843], and many others

X(63948) lies on these lines: {2, 5008}, {20, 538}, {140, 7759}, {381, 754}, {524, 3098}, {543, 15685}, {1003, 7826}, {1992, 40344}, {3090, 7780}, {3524, 46893}, {3627, 7751}, {3629, 8358}, {3785, 44562}, {3788, 7893}, {3849, 5485}, {3934, 5395}, {5068, 7843}, {5309, 9939}, {5355, 7761}, {5569, 9766}, {7610, 61901}, {7615, 61979}, {7617, 61939}, {7618, 62055}, {7622, 44580}, {7750, 41748}, {7758, 21735}, {7764, 61811}, {7775, 15699}, {7781, 44245}, {7798, 8354}, {7805, 32986}, {7811, 63038}, {7854, 10159}, {7855, 13586}, {7877, 33273}, {7895, 33191}, {7896, 8368}, {8176, 10109}, {8177, 42785}, {8182, 61781}, {8353, 50251}, {8716, 62100}, {9466, 20065}, {9740, 44678}, {9770, 61838}, {11054, 14976}, {11055, 50248}, {11057, 44367}, {11184, 61854}, {12101, 18546}, {14711, 63046}, {15689, 34504}, {16509, 41990}, {20080, 32456}, {32479, 62168}, {34505, 62027}, {34506, 61864}, {34511, 62063}, {36521, 51188}, {47617, 61983}, {53143, 62049}, {53144, 61993}, {61932, 63029}, {62108, 63654}, {62167, 63651}


X(63949) = X(20)X(538)∩X(182)X(524)

Barycentrics    9*a^4 + a^2*b^2 - 3*b^4 + a^2*c^2 - 8*b^2*c^2 - 3*c^4 : :
X(63949) = X[20] - 7 X[14023], 5 X[20] - 7 X[47102], 5 X[14023] - X[47102], 20 X[549] - 21 X[5569], 22 X[549] - 21 X[7622], 23 X[549] - 21 X[12040], 11 X[5569] - 10 X[7622], 23 X[5569] - 20 X[12040], 23 X[7622] - 22 X[12040], 4 X[546] - 7 X[7751], 5 X[3830] - 7 X[34505], 10 X[1656] - 7 X[7759], 5 X[1656] - 7 X[8667], and many others

X(63949) lies on these lines: {2, 7882}, {20, 538}, {182, 524}, {193, 44562}, {543, 62158}, {546, 7751}, {754, 3830}, {1656, 7759}, {3525, 7780}, {3630, 8368}, {3849, 53143}, {3854, 7843}, {5309, 44367}, {5368, 7826}, {7757, 50248}, {7758, 10299}, {7761, 41748}, {7764, 55863}, {7775, 10109}, {7781, 62104}, {7838, 8556}, {7848, 63042}, {7854, 16897}, {7855, 7891}, {7880, 11160}, {8176, 61925}, {8716, 15688}, {9466, 63046}, {9740, 61912}, {9766, 61864}, {12252, 33706}, {13468, 47599}, {14711, 20065}, {15480, 33184}, {15690, 34504}, {15705, 34511}, {18546, 61995}, {23334, 61985}, {34506, 61847}, {44678, 62003}, {47617, 61979}, {51122, 62107}, {61888, 63029}

X(63949) = reflection of X(i) in X(j) for these {i,j}: {7758, 46893}, {7759, 8667}
X(63949) = {X(41490),X(41491)}-harmonic conjugate of X(51141)


X(63950) = X(2)X(7762)∩X(3)X(524)

Barycentrics    7*a^4 - a^2*b^2 - 2*b^4 - a^2*c^2 - 4*b^2*c^2 - 2*c^4 : :
X(63950) = 7 X[3] - 6 X[7618], 5 X[3] - 2 X[7758], 5 X[3] - 6 X[8182], 4 X[3] - 3 X[11165], X[3] + 2 X[14023], 3 X[3] - 2 X[34511], 11 X[3] - 8 X[59546], 15 X[7618] - 7 X[7758], 5 X[7618] - 7 X[8182], 8 X[7618] - 7 X[11165], 3 X[7618] + 7 X[14023], 9 X[7618] - 7 X[34511], 33 X[7618] - 28 X[59546], X[7758] - 3 X[8182], and many others

X(63950) lies on these lines: {2, 7762}, {3, 524}, {4, 9740}, {5, 63029}, {6, 7810}, {20, 52229}, {32, 599}, {39, 15534}, {69, 1384}, {76, 11159}, {140, 9770}, {141, 21309}, {183, 7812}, {187, 40341}, {193, 5024}, {194, 35955}, {315, 11318}, {376, 51122}, {381, 754}, {382, 3849}, {385, 7841}, {532, 60661}, {533, 60660}, {536, 34707}, {538, 3534}, {543, 1657}, {546, 23334}, {548, 53142}, {574, 6144}, {597, 7800}, {635, 9761}, {636, 9763}, {940, 50260}, {1078, 11163}, {1153, 61850}, {1351, 37345}, {1656, 7610}, {1975, 51224}, {1992, 3785}, {2080, 11898}, {2482, 5023}, {2548, 11168}, {2549, 15480}, {3053, 7801}, {3091, 16509}, {3095, 50962}, {3146, 5485}, {3314, 8366}, {3363, 32828}, {3398, 5054}, {3522, 9741}, {3523, 12040}, {3526, 7759}, {3529, 63651}, {3627, 7620}, {3763, 5008}, {3843, 7615}, {3926, 27088}, {3933, 11160}, {4396, 9668}, {4400, 9655}, {5007, 47352}, {5032, 16043}, {5055, 13468}, {5070, 15597}, {5072, 7617}, {5077, 7750}, {5079, 8176}, {5188, 43273}, {5206, 39785}, {5210, 7813}, {5215, 7888}, {5304, 33230}, {5305, 33190}, {5569, 7764}, {5862, 35303}, {5863, 35304}, {6179, 7866}, {6390, 15655}, {6656, 63065}, {7619, 61840}, {7622, 61811}, {7735, 8360}, {7752, 8860}, {7753, 8556}, {7754, 7833}, {7755, 33241}, {7760, 55164}, {7768, 32954}, {7770, 34604}, {7772, 15810}, {7779, 33274}, {7781, 62100}, {7784, 7817}, {7788, 7870}, {7789, 37809}, {7793, 7840}, {7794, 22331}, {7795, 22165}, {7796, 26613}, {7802, 11054}, {7811, 7827}, {7815, 42849}, {7818, 33240}, {7819, 21356}, {7822, 50993}, {7823, 11317}, {7845, 37637}, {7854, 21358}, {7860, 9166}, {7887, 8859}, {7890, 15815}, {7903, 44535}, {7907, 41136}, {7929, 62204}, {7946, 33233}, {8356, 63093}, {8361, 63107}, {8362, 59373}, {8367, 42850}, {8370, 20065}, {8716, 15688}, {8724, 51175}, {9301, 18440}, {9771, 46219}, {9855, 20081}, {9983, 22564}, {10303, 55823}, {10304, 51123}, {10317, 20208}, {10513, 46453}, {10991, 53097}, {11148, 50693}, {11285, 63028}, {11286, 37671}, {11291, 43884}, {11292, 43883}, {13085, 48673}, {13334, 51140}, {13881, 31173}, {14001, 19661}, {14269, 44678}, {14645, 14830}, {14907, 22253}, {14981, 16508}, {15048, 63042}, {15589, 18907}, {15681, 47102}, {15696, 34504}, {15700, 46893}, {16351, 50261}, {17528, 47037}, {17538, 53141}, {18546, 38335}, {19290, 50274}, {19761, 49723}, {20112, 61970}, {20583, 51588}, {21843, 50771}, {21937, 50133}, {22246, 32455}, {23055, 32816}, {31168, 41650}, {31859, 50248}, {32006, 37350}, {32479, 49137}, {32821, 41134}, {32984, 37667}, {32990, 63027}, {33007, 63046}, {33184, 63034}, {33192, 47286}, {36775, 36836}, {44162, 62965}, {47061, 63116}, {47617, 61984}, {53143, 62053}, {55734, 60239}, {62097, 63654}

X(63950) = reflection of X(i) in X(j) for these {i,j}: {381, 8667}, {382, 34505}, {7759, 34506}, {7775, 7780}, {8716, 47101}, {15681, 47102}, {34505, 7751}, {40727, 9740}, {48673, 13085}, {51122, 376}
X(63950) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {32, 599, 33237}, {69, 3793, 1384}, {315, 22329, 11318}, {385, 9939, 7841}, {1992, 3785, 8359}, {1992, 8359, 9605}, {3053, 15533, 7801}, {7610, 7775, 1656}, {7759, 34506, 11184}, {7775, 7780, 7610}, {7794, 22331, 33242}, {7801, 7826, 15533}, {7811, 14614, 11287}, {7833, 44367, 7754}, {8716, 47101, 15688}, {11160, 32985, 3933}, {11184, 34506, 3526}, {14907, 50251, 22253}


X(63951) = X(2)X(6)∩X(30)X(14023)

Barycentrics    7*a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 - 8*b^2*c^2 - 2*c^4 : :
X(63951) = 8 X[2] - 9 X[7610], 2 X[2] - 3 X[8667], 5 X[2] - 9 X[9740], 4 X[2] - 3 X[9766], 11 X[2] - 9 X[9770], 19 X[2] - 18 X[9771], 10 X[2] - 9 X[11184], 5 X[2] - 6 X[13468], 17 X[2] - 18 X[15597], 7 X[2] - 9 X[63029], 3 X[7610] - 4 X[8667], 5 X[7610] - 8 X[9740], 3 X[7610] - 2 X[9766], 11 X[7610] - 8 X[9770], 19 X[7610] - 16 X[9771], and many others

X(63951) lies on these lines: {2, 6}, {30, 14023}, {381, 7751}, {538, 3534}, {543, 15685}, {549, 7758}, {732, 33706}, {754, 3830}, {3053, 32833}, {3849, 62040}, {3860, 7615}, {4396, 11238}, {4400, 11237}, {5023, 59634}, {5054, 7780}, {5055, 7759}, {5309, 7784}, {5485, 62019}, {5569, 15722}, {5984, 48872}, {6179, 33220}, {7617, 61929}, {7618, 15711}, {7620, 62009}, {7622, 61819}, {7739, 7767}, {7745, 46951}, {7754, 7811}, {7764, 15694}, {7768, 33219}, {7775, 61920}, {7781, 15688}, {7798, 40344}, {7805, 7865}, {7809, 13881}, {7845, 18362}, {7879, 7884}, {7893, 19570}, {7926, 18584}, {8182, 15759}, {8703, 8716}, {9741, 62077}, {9756, 34380}, {11055, 35955}, {11057, 44526}, {11159, 14711}, {11165, 15716}, {11167, 54734}, {11287, 39593}, {12040, 61823}, {12054, 15693}, {12100, 34511}, {12101, 44678}, {13571, 31492}, {14033, 32892}, {14148, 15655}, {14458, 48910}, {14537, 17131}, {15692, 59546}, {15695, 47101}, {16509, 61934}, {18546, 61993}, {19710, 47102}, {20112, 61961}, {21505, 54409}, {22331, 33255}, {23334, 61987}, {32006, 63543}, {32820, 33266}, {32896, 32985}, {34504, 62109}, {34506, 61843}, {36859, 44536}, {40727, 61974}, {44422, 50962}, {47617, 61977}, {53142, 62090}, {54582, 60181}, {54608, 60180}

X(63951) = reflection of X(i) in X(j) for these {i,j}: {381, 7751}, {7758, 549}, {9766, 8667}, {11184, 9740}, {51122, 47101}
X(63951) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {183, 50248, 6144}, {385, 40341, 7778}, {591, 1991, 21358}, {5858, 5859, 599}, {5862, 5863, 11160}, {5862, 37785, 5858}, {5863, 37786, 5859}, {8556, 41624, 42849}, {8667, 9766, 7610}, {8667, 11184, 13468}, {9740, 13468, 8667}, {33458, 33459, 20582}, {37671, 50251, 63093}, {37671, 63093, 6}, {50251, 63046, 6}, {63046, 63093, 37671}


X(63952) = X(2)X(5007)∩X(30)X(7751)

Barycentrics    5*a^4 - a^2*b^2 - b^4 - a^2*c^2 - 4*b^2*c^2 - c^4 : :
X(63952) = X[7759] - 4 X[7780], X[7759] + 2 X[14023], 2 X[7780] + X[14023], 8 X[549] - 9 X[5569], 10 X[549] - 9 X[7622], 11 X[549] - 9 X[12040], 5 X[5569] - 4 X[7622], 11 X[5569] - 8 X[12040], 11 X[7622] - 10 X[12040], 4 X[376] - 3 X[34504], 2 X[376] - 3 X[47101], X[381] - 3 X[8667], 11 X[15681] + 9 X[63651], 4 X[547] - 3 X[7775], and many others

X(63952) lies on these lines: {2, 5007}, {30, 7751}, {32, 6661}, {39, 63093}, {69, 7880}, {76, 19686}, {182, 524}, {183, 7753}, {187, 32833}, {376, 538}, {381, 754}, {385, 5309}, {439, 32896}, {543, 15681}, {547, 7775}, {574, 50251}, {620, 40341}, {625, 37667}, {1078, 7837}, {1153, 61846}, {1992, 44562}, {2896, 5346}, {3524, 7758}, {3543, 3849}, {3545, 7843}, {3629, 15482}, {3630, 7908}, {3734, 3793}, {3785, 7739}, {3788, 7788}, {5008, 16990}, {5054, 7764}, {5071, 8176}, {5206, 59634}, {5210, 14148}, {5306, 7767}, {5476, 8177}, {5858, 11302}, {5859, 11301}, {6683, 63024}, {7610, 15703}, {7615, 61980}, {7617, 11737}, {7618, 15715}, {7735, 7848}, {7737, 46951}, {7746, 7809}, {7748, 11057}, {7750, 11648}, {7755, 33219}, {7757, 44367}, {7771, 50248}, {7781, 8703}, {7791, 39593}, {7793, 7799}, {7794, 33220}, {7798, 15480}, {7800, 63006}, {7801, 33246}, {7804, 15589}, {7810, 14614}, {7815, 9300}, {7816, 32836}, {7817, 33223}, {7818, 22329}, {7844, 14929}, {7845, 17008}, {7850, 63047}, {7853, 63048}, {7873, 33251}, {7877, 31455}, {8182, 62063}, {8356, 41748}, {8368, 22165}, {8716, 14093}, {9766, 15694}, {9770, 61859}, {9939, 14568}, {10033, 34615}, {11054, 33264}, {11184, 15723}, {11288, 15533}, {11632, 34734}, {13571, 31457}, {14537, 20065}, {14711, 33007}, {15597, 61880}, {15655, 35022}, {15683, 47102}, {15684, 34505}, {15687, 18546}, {15691, 52229}, {15692, 34511}, {15714, 51123}, {16509, 61949}, {17504, 59546}, {19761, 50224}, {20080, 21843}, {23334, 61972}, {32479, 62161}, {32892, 32981}, {33216, 50992}, {33255, 35007}, {35403, 40727}, {37668, 58448}, {44217, 47037}, {44678, 47617}, {47005, 63044}, {51122, 62088}

X(63952) = midpoint of X(2) and X(14023)
X(63952) = reflection of X(i) in X(j) for these {i,j}: {2, 7780}, {5476, 8177}, {7759, 2}, {7775, 13468}, {7781, 8703}, {8176, 63029}, {9766, 34506}, {34504, 47101}, {34511, 46893}, {44678, 47617}
X(63952) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {385, 7811, 5309}, {3785, 7739, 40344}, {5306, 7767, 7865}, {5306, 7865, 7834}, {5309, 7811, 7761}, {7780, 14023, 7759}, {7805, 40344, 7739}, {11057, 19570, 7748}, {14929, 50774, 7844}


X(63953) = X(2)X(5041)∩X(5)X(524)

Barycentrics    5*a^4 + a^2*b^2 - b^4 + a^2*c^2 - 8*b^2*c^2 - c^4 : :
X(63953) = 14 X[5] - 15 X[7617], 2 X[5] - 5 X[7751], 8 X[5] - 5 X[7759], 6 X[5] - 5 X[7775], 16 X[5] - 15 X[8176], 13 X[5] - 15 X[16509], 3 X[7617] - 7 X[7751], 12 X[7617] - 7 X[7759], 9 X[7617] - 7 X[7775], 8 X[7617] - 7 X[8176], 13 X[7617] - 14 X[16509], 4 X[7751] - X[7759], 3 X[7751] - X[7775], 8 X[7751] - 3 X[8176], and many others

X(63953) lies on these lines: {2, 5041}, {5, 524}, {32, 35954}, {69, 7817}, {76, 34604}, {376, 538}, {385, 7801}, {543, 1657}, {599, 7834}, {625, 20080}, {626, 15533}, {671, 7893}, {754, 3830}, {1153, 61842}, {1992, 3934}, {2548, 63064}, {3146, 3849}, {3523, 5569}, {3525, 7758}, {3629, 8367}, {3630, 7844}, {3734, 15480}, {3767, 11160}, {3788, 22329}, {3839, 47617}, {3843, 53144}, {5023, 36521}, {5054, 8667}, {5305, 22165}, {5309, 7883}, {5319, 21356}, {5461, 7776}, {5475, 50248}, {5485, 62021}, {6683, 42850}, {6704, 51185}, {7610, 7764}, {7615, 7843}, {7618, 61138}, {7619, 61849}, {7622, 12108}, {7746, 7840}, {7748, 9939}, {7754, 7810}, {7761, 63046}, {7781, 33923}, {7796, 8859}, {7798, 8359}, {7804, 63042}, {7808, 8584}, {7812, 17129}, {7826, 7841}, {7827, 7854}, {7829, 21358}, {7832, 62204}, {7845, 33006}, {7848, 33190}, {7860, 41135}, {7877, 33013}, {7880, 63034}, {7882, 50992}, {7890, 11163}, {7896, 8360}, {7908, 50774}, {7914, 50991}, {7916, 22110}, {8182, 21734}, {8370, 17131}, {8716, 62073}, {9167, 32821}, {9466, 63093}, {9741, 62061}, {9766, 15703}, {9770, 61886}, {9771, 61877}, {10124, 13468}, {10302, 16895}, {11165, 61799}, {11184, 55857}, {11318, 40341}, {12103, 52229}, {13881, 51188}, {14645, 50973}, {14762, 63027}, {14893, 18546}, {15597, 55862}, {15705, 46893}, {17800, 63651}, {20081, 51224}, {32450, 33215}, {32479, 49138}, {32816, 63118}, {32830, 37809}, {33703, 53143}, {37671, 41748}, {40727, 61970}, {44678, 62005}, {46853, 63654}, {47102, 62148}, {48913, 51238}, {51122, 62080}, {53142, 62083}, {59546, 61802}

X(63953) = reflection of X(i) in X(j) for these {i,j}: {5569, 9740}, {34511, 7780}
X(63953) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {7780, 34511, 5569}, {9740, 34511, 7780}, {9939, 11054, 7748}


X(63954) = X(2)X(3933)∩X(3)X(538)

Barycentrics    3*a^4 + a^2*b^2 + a^2*c^2 - 8*b^2*c^2 : :
X(63954) = X[3] - 4 X[7751], 5 X[3] - 8 X[7780], 7 X[3] - 4 X[7781], 3 X[3] - 2 X[8716], 7 X[3] - 8 X[46893], 5 X[7751] - 2 X[7780], 7 X[7751] - X[7781], 6 X[7751] - X[8716], 7 X[7751] - 2 X[46893], 8 X[7751] - X[51122], 14 X[7780] - 5 X[7781], 4 X[7780] - 5 X[8667], 12 X[7780] - 5 X[8716], 7 X[7780] - 5 X[46893], and many others

X(63954) lies on these lines: {2, 3933}, {3, 538}, {6, 9466}, {32, 14711}, {39, 8556}, {69, 33184}, {76, 11286}, {99, 15655}, {115, 40341}, {183, 5024}, {193, 15484}, {339, 15905}, {376, 9740}, {381, 524}, {382, 14023}, {385, 1003}, {519, 48900}, {543, 15681}, {547, 9770}, {549, 11165}, {599, 5309}, {698, 55610}, {732, 5050}, {754, 3830}, {999, 4396}, {1078, 11055}, {1656, 7758}, {1657, 47102}, {1992, 46951}, {3295, 4400}, {3363, 63064}, {3524, 51123}, {3543, 5485}, {3734, 21309}, {3763, 5355}, {3767, 33240}, {3785, 8354}, {3793, 32815}, {3849, 15684}, {3851, 7759}, {5054, 13468}, {5055, 9766}, {5070, 7764}, {5071, 16509}, {5077, 7811}, {5093, 7697}, {5306, 33237}, {5475, 6144}, {5569, 15718}, {5862, 31694}, {5863, 31693}, {5969, 12188}, {5971, 21448}, {6194, 32474}, {6390, 33216}, {6392, 7767}, {6661, 63065}, {7610, 7619}, {7617, 61925}, {7618, 15700}, {7620, 15687}, {7622, 61829}, {7735, 8368}, {7737, 15480}, {7738, 8358}, {7753, 15534}, {7762, 33016}, {7770, 63038}, {7775, 19709}, {7776, 33228}, {7788, 11318}, {7798, 15271}, {7805, 43136}, {7813, 37637}, {7818, 15533}, {7826, 44518}, {7837, 44543}, {7841, 19570}, {7843, 61970}, {7855, 13881}, {8176, 61931}, {8177, 12017}, {8182, 14093}, {8367, 63024}, {8369, 32836}, {8370, 63093}, {9741, 15692}, {9764, 49111}, {9771, 61883}, {10983, 13085}, {11148, 62063}, {11160, 16041}, {11184, 15703}, {11185, 50251}, {11287, 37671}, {11288, 22329}, {11361, 44367}, {11632, 14645}, {12040, 15702}, {12122, 33706}, {12191, 36859}, {13586, 20081}, {14039, 32869}, {14269, 18546}, {14532, 38664}, {14893, 23334}, {14929, 43448}, {15048, 15589}, {15301, 15603}, {15514, 31173}, {15597, 15723}, {15689, 47101}, {15695, 34504}, {15701, 34506}, {15715, 63654}, {15720, 59546}, {16351, 50184}, {16418, 47037}, {17224, 45701}, {18907, 52713}, {19290, 50155}, {19332, 50160}, {23055, 32837}, {31470, 32978}, {31859, 33273}, {32419, 36719}, {32421, 36733}, {32830, 33191}, {33017, 47286}, {33231, 37689}, {34200, 53142}, {37350, 50992}, {37668, 43291}, {38335, 44678}, {43620, 50771}, {45141, 56016}, {46511, 56015}, {47617, 61974}, {55823, 61806}, {61859, 63647}

X(63954) = reflection of X(i) in X(j) for these {i,j}: {3, 8667}, {1657, 47102}, {3830, 34505}, {7781, 46893}, {8667, 7751}, {9764, 49111}, {11165, 63029}, {34511, 13468}, {51122, 3}
X(63954) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {76, 14614, 11286}, {183, 22253, 5024}, {7788, 14568, 11318}, {9466, 41748, 6}, {11286, 14614, 30435}, {13468, 34511, 5054}, {14039, 32869, 59780}, {17131, 41748, 9466}, {22329, 32833, 11288}, {32836, 63034, 8369}, {52713, 63042, 18907}


X(63955) = X(2)X(39)∩X(4)X(754)

Barycentrics    a^4 + b^4 - 6*b^2*c^2 + c^4 : :
X(63955) = 4 X[76] - X[18768], 2 X[76] + X[31981], X[194] - 4 X[32189], 4 X[3934] - X[6309], 2 X[8149] - 5 X[31276], X[18768] + 2 X[31981], X[4] + 2 X[7751], 2 X[4] + X[14023], 4 X[7751] - X[14023], 4 X[7751] + X[44678], X[14023] + 4 X[18546], 4 X[18546] - X[44678], 4 X[5] - X[7758], X[20] - 4 X[7780], and many others

X(63955) lies on these lines: {2, 39}, {3, 13468}, {4, 754}, {5, 7758}, {20, 7780}, {30, 8667}, {32, 14033}, {69, 115}, {98, 376}, {99, 17008}, {140, 51123}, {148, 14907}, {183, 2549}, {187, 32815}, {193, 5475}, {230, 11288}, {315, 14041}, {316, 63046}, {325, 43620}, {339, 6389}, {381, 524}, {385, 7737}, {439, 43681}, {485, 1991}, {486, 591}, {525, 53266}, {536, 45701}, {547, 11184}, {549, 7610}, {574, 34229}, {599, 33184}, {620, 32817}, {625, 37668}, {626, 33285}, {631, 7781}, {637, 5861}, {638, 5860}, {671, 7811}, {732, 7697}, {736, 9753}, {940, 50185}, {1003, 22329}, {1007, 7813}, {1078, 33008}, {1153, 11148}, {1384, 50774}, {1478, 4396}, {1479, 4400}, {1975, 35297}, {1992, 7753}, {2353, 9909}, {2482, 23055}, {2548, 7754}, {2782, 9890}, {2996, 3785}, {3090, 7764}, {3091, 7759}, {3314, 14046}, {3363, 15534}, {3524, 34506}, {3526, 59546}, {3543, 3849}, {3545, 7775}, {3564, 7694}, {3618, 5355}, {3619, 7913}, {3620, 7853}, {3629, 15484}, {3734, 7735}, {3815, 22253}, {3832, 7843}, {3839, 47617}, {3933, 13881}, {3972, 63048}, {4721, 5230}, {5007, 32971}, {5024, 58446}, {5054, 51122}, {5071, 7617}, {5152, 8591}, {5254, 7800}, {5304, 7804}, {5306, 11286}, {5319, 7770}, {5569, 15692}, {5858, 31694}, {5859, 31693}, {5969, 11632}, {6031, 20099}, {6055, 9888}, {6179, 14035}, {6329, 14535}, {6337, 7749}, {6390, 37637}, {6722, 7908}, {7603, 62988}, {7612, 38737}, {7619, 61859}, {7622, 9741}, {7736, 7798}, {7738, 7815}, {7755, 14001}, {7760, 16924}, {7761, 15589}, {7765, 16043}, {7767, 44518}, {7768, 14063}, {7772, 32968}, {7774, 31415}, {7776, 63534}, {7777, 53127}, {7778, 43291}, {7788, 33228}, {7790, 16990}, {7793, 33265}, {7794, 14064}, {7796, 32961}, {7809, 33006}, {7810, 11648}, {7812, 33016}, {7814, 32963}, {7821, 32972}, {7825, 63533}, {7826, 32006}, {7829, 16045}, {7837, 33013}, {7841, 37671}, {7845, 18424}, {7849, 33180}, {7854, 32974}, {7855, 32816}, {7856, 16898}, {7858, 31417}, {7860, 32996}, {7862, 32818}, {7863, 32970}, {7865, 33190}, {7869, 32951}, {7873, 32982}, {7877, 15031}, {7878, 33269}, {7883, 33251}, {7888, 32969}, {7902, 32956}, {7909, 33248}, {7914, 18840}, {7916, 32823}, {7922, 33283}, {7939, 33291}, {7946, 32993}, {8176, 61936}, {8177, 12188}, {8359, 8556}, {8368, 59780}, {8370, 14614}, {8859, 33246}, {9149, 35924}, {9462, 34288}, {9698, 32975}, {9754, 32469}, {9761, 37351}, {9763, 37352}, {9771, 15703}, {9873, 15682}, {10000, 62204}, {10124, 12040}, {10302, 60232}, {10304, 34504}, {10611, 37170}, {10612, 37171}, {11008, 43457}, {11057, 33192}, {11113, 47037}, {11160, 31173}, {11165, 15597}, {11167, 49788}, {11179, 35429}, {12150, 63065}, {13086, 49111}, {13571, 33002}, {13586, 38907}, {13711, 45473}, {13834, 45472}, {14036, 17128}, {14981, 58883}, {15048, 15271}, {15480, 53418}, {15533, 37350}, {15681, 53143}, {15683, 32479}, {15700, 63651}, {15715, 55823}, {16052, 17251}, {17984, 34096}, {18362, 32984}, {20481, 62299}, {21248, 41916}, {21356, 33223}, {23334, 61985}, {25157, 43455}, {25167, 43454}, {26288, 45510}, {26289, 45511}, {26613, 33266}, {31411, 45420}, {31859, 37688}, {32419, 48467}, {32421, 48466}, {32474, 60659}, {32820, 33233}, {32821, 33249}, {32824, 32989}, {32825, 32988}, {32966, 50570}, {32978, 53096}, {32981, 35007}, {33193, 51224}, {33224, 63107}, {33253, 43676}, {33263, 55164}, {33842, 43981}, {33908, 34625}, {34341, 35078}, {34624, 37182}, {36719, 61096}, {36733, 61097}, {36775, 41943}, {37348, 63722}, {43688, 54749}, {50280, 63116}, {51906, 63562}, {53141, 62063}, {53144, 61980}, {54126, 60195}, {60093, 60200}, {60143, 60213}, {60186, 60627}, {60216, 62905}, {60855, 63045}, {61839, 63654}, {61869, 63647}

X(63955) = midpoint of X(i) and X(j) for these {i,j}: {5485, 63029}, {7620, 9740}, {7751, 18546}, {8667, 34505}, {14023, 44678}
X(63955) = reflection of X(i) in X(j) for these {i,j}: {3, 13468}, {4, 18546}, {20, 47101}, {7615, 40727}, {7618, 7610}, {7758, 9766}, {8182, 63029}, {8716, 549}, {9741, 7622}, {9766, 5}, {9770, 7617}, {9888, 6055}, {11165, 15597}, {11184, 16509}, {34504, 46893}, {34511, 2}, {44678, 4}, {47101, 7780}, {49788, 11167}, {51123, 140}, {53142, 5569}
X(63955) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 14568, 3767}, {2, 32836, 7801}, {2, 46951, 9466}, {4, 7751, 14023}, {69, 16041, 7818}, {76, 3767, 7795}, {76, 14568, 2}, {76, 31981, 18768}, {99, 17008, 21843}, {115, 7818, 16041}, {115, 17131, 69}, {148, 14907, 43619}, {183, 47286, 2549}, {194, 32832, 31401}, {385, 11185, 7737}, {549, 8716, 7618}, {671, 7811, 33017}, {1992, 32983, 7753}, {2996, 3785, 7748}, {5286, 32834, 3934}, {5309, 9466, 2}, {6392, 32828, 39}, {6722, 7908, 37690}, {7610, 8716, 549}, {7735, 52713, 3734}, {7753, 41748, 1992}, {7754, 44543, 41624}, {7754, 59635, 2548}, {7755, 17130, 14001}, {7761, 32457, 43448}, {7801, 14711, 32836}, {7810, 11648, 32986}, {7845, 18424, 32827}, {7855, 39565, 32816}, {7858, 32962, 31417}, {14033, 63034, 32}, {15589, 43448, 7761}, {20080, 32827, 7845}, {32815, 37667, 187}, {32817, 62992, 620}, {33016, 63093, 7812}, {34504, 46893, 10304}, {41624, 44543, 2548}, {41624, 59635, 44543}


X(63956) = X(2)X(187)∩X(4)X(538)

Barycentrics    3*a^4 + a^2*b^2 - 3*b^4 + a^2*c^2 + 4*b^2*c^2 - 3*c^4 : :
X(63956) = 7 X[2] - 6 X[1153], 4 X[2] - 3 X[5569], 2 X[2] - 3 X[8176], 5 X[2] - 3 X[8182], X[2] + 3 X[23334], 8 X[1153] - 7 X[5569], 4 X[1153] - 7 X[8176], 10 X[1153] - 7 X[8182], 2 X[1153] + 7 X[23334], 6 X[1153] + 7 X[44678], 9 X[1153] - 7 X[46893], 12 X[1153] - 7 X[47101], 18 X[1153] - 7 X[47102], 5 X[5569] - 4 X[8182], and many others

X(63956) lies on these lines: {2, 187}, {4, 538}, {30, 7775}, {32, 33228}, {39, 33017}, {115, 14614}, {148, 7926}, {183, 43457}, {193, 32457}, {315, 9466}, {325, 62203}, {381, 754}, {382, 7764}, {385, 18424}, {524, 3818}, {543, 3830}, {546, 7751}, {574, 8353}, {626, 11286}, {671, 7837}, {1003, 3788}, {1007, 32456}, {1384, 6722}, {1993, 3016}, {2548, 7842}, {3060, 6787}, {3091, 7780}, {3534, 11184}, {3543, 34511}, {3627, 7781}, {3734, 53418}, {3815, 8354}, {3832, 14023}, {3839, 47617}, {3860, 20112}, {3934, 32006}, {4045, 15484}, {5007, 14063}, {5025, 12150}, {5055, 34506}, {5066, 7617}, {5167, 21969}, {5207, 22486}, {5306, 37350}, {5309, 7812}, {5346, 20088}, {5476, 35377}, {5485, 54582}, {5503, 54584}, {5858, 12816}, {5859, 12817}, {5969, 22505}, {6179, 32993}, {6658, 7814}, {6680, 33240}, {7610, 19709}, {7615, 41099}, {7618, 11001}, {7619, 15693}, {7620, 61989}, {7622, 8703}, {7745, 7825}, {7746, 7823}, {7748, 7757}, {7752, 13586}, {7753, 7841}, {7760, 14062}, {7762, 41748}, {7763, 33193}, {7768, 33018}, {7772, 33229}, {7788, 11317}, {7796, 14042}, {7798, 53419}, {7801, 7809}, {7802, 31455}, {7810, 44543}, {7811, 33013}, {7816, 32816}, {7817, 16041}, {7818, 8370}, {7821, 14035}, {7822, 7885}, {7838, 44518}, {7844, 18907}, {7845, 11185}, {7849, 32971}, {7854, 7860}, {7855, 7900}, {7856, 14045}, {7858, 33019}, {7870, 19686}, {7873, 16924}, {7880, 14033}, {7888, 19687}, {7893, 15031}, {7903, 32819}, {7909, 14034}, {7913, 53489}, {7936, 33020}, {8352, 11648}, {8358, 15482}, {8588, 37647}, {8589, 63083}, {9698, 33234}, {9740, 61966}, {9741, 62019}, {9761, 41100}, {9763, 41101}, {9765, 60651}, {9770, 15682}, {9771, 12100}, {9888, 10722}, {10109, 15597}, {10242, 32447}, {11058, 36882}, {11165, 62040}, {11646, 15534}, {12040, 19710}, {12101, 52229}, {13449, 44422}, {14269, 34505}, {14458, 54822}, {14645, 54131}, {14880, 18548}, {15300, 25486}, {15640, 53142}, {15759, 63647}, {16509, 61956}, {17008, 39601}, {17503, 60271}, {18362, 22329}, {18502, 39603}, {19695, 53096}, {20065, 39565}, {20428, 36385}, {20429, 36384}, {31417, 32990}, {31450, 33247}, {31457, 33260}, {31652, 32997}, {32961, 35007}, {33207, 37512}, {33268, 62362}, {33699, 51123}, {36519, 39656}, {39563, 41750}, {39785, 52942}, {40727, 61974}, {41106, 63029}, {43619, 62988}, {50977, 52993}, {53141, 62030}, {53144, 61977}, {54904, 60181}, {55823, 61904}, {59546, 62036}

X(63956) = midpoint of X(i) and X(j) for these {i,j}: {2, 44678}, {382, 8716}, {3543, 34511}, {3830, 9766}, {9888, 10722}, {33699, 51123}
X(63956) = reflection of X(i) in X(j) for these {i,j}: {5569, 8176}, {8716, 7764}, {13468, 5066}, {18546, 3845}, {47101, 2}, {47102, 46893}
X(63956) = complement of X(47102)
X(63956) = anticomplement of X(46893)
X(63956) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19569, 51224}, {2, 23334, 44678}, {2, 47101, 5569}, {2, 47102, 46893}, {4, 7843, 7759}, {315, 33016, 9466}, {316, 5475, 7761}, {1007, 43618, 32456}, {2548, 32986, 44562}, {5066, 13468, 7617}, {7737, 32827, 625}, {7745, 7825, 7834}, {7747, 7773, 3788}, {7809, 11361, 7801}, {7812, 14041, 5309}, {7842, 44562, 32986}, {7860, 16044, 7854}, {8176, 47101, 2}, {8352, 41624, 11648}, {9466, 39590, 33016}, {14537, 31173, 2}, {46893, 47102, 47101}


X(63957) = X(2)X(7748)∩X(4)X(538)

Barycentrics    3*a^4 - a^2*b^2 - 3*b^4 - a^2*c^2 + 8*b^2*c^2 - 3*c^4 : :
X(63957) = X[34504] - 4 X[47617], 7 X[4] - X[7758], 4 X[4] - X[7759], 5 X[4] - 2 X[7843], 4 X[7758] - 7 X[7759], 5 X[7758] - 14 X[7843], 5 X[7759] - 8 X[7843], 2 X[13468] - 5 X[18546], 8 X[13468] - 5 X[47101], 4 X[18546] - X[47101], 4 X[381] - 3 X[8176], 3 X[381] - X[8716], 7 X[381] - 3 X[11165], 5 X[381] - 3 X[11184], and many others

X(63957) lies on these lines: {2, 7748}, {4, 538}, {20, 46893}, {30, 5171}, {39, 33016}, {99, 18424}, {114, 381}, {115, 1003}, {148, 5475}, {187, 33193}, {315, 14711}, {376, 5569}, {382, 8667}, {524, 15687}, {546, 7781}, {547, 7622}, {549, 7617}, {625, 32815}, {671, 3407}, {754, 3830}, {1007, 15301}, {1153, 15692}, {2549, 32983}, {2996, 7805}, {3146, 7780}, {3534, 34506}, {3543, 3849}, {3627, 7751}, {3734, 33184}, {3788, 32819}, {3818, 5969}, {3839, 34511}, {3843, 7764}, {3845, 7775}, {3858, 59546}, {3934, 32986}, {5007, 14068}, {5071, 7618}, {5215, 33266}, {5461, 11288}, {5485, 60326}, {6032, 20099}, {6034, 52669}, {7610, 15681}, {7619, 15703}, {7737, 32457}, {7746, 13586}, {7747, 14614}, {7753, 11317}, {7760, 14066}, {7761, 9466}, {7785, 11055}, {7790, 16987}, {7796, 14044}, {7798, 53418}, {7801, 14041}, {7804, 43448}, {7811, 8597}, {7815, 8354}, {7817, 14033}, {7818, 8352}, {7821, 32996}, {7830, 8556}, {7834, 11286}, {7844, 8368}, {7848, 52713}, {7849, 32982}, {7854, 33019}, {7873, 33279}, {7880, 16041}, {7886, 33191}, {7915, 33196}, {8182, 15683}, {8353, 59635}, {8369, 63543}, {8370, 11648}, {8589, 53127}, {9166, 33246}, {9741, 61973}, {9766, 14269}, {9770, 53143}, {9771, 11737}, {9888, 14639}, {10796, 61600}, {11159, 36523}, {11164, 14971}, {11301, 33477}, {11302, 33476}, {12040, 61942}, {14023, 17578}, {14042, 63038}, {14645, 47353}, {14893, 52229}, {15031, 31455}, {15597, 34200}, {15684, 40727}, {15686, 16509}, {15810, 33263}, {17130, 33229}, {18362, 35297}, {19686, 41135}, {23046, 51123}, {23334, 62005}, {31173, 32833}, {31457, 33002}, {31652, 32962}, {31859, 43457}, {32456, 33216}, {32832, 33207}, {33272, 40344}, {33280, 35007}, {35930, 38734}, {41748, 47286}, {44678, 50687}, {53141, 61944}, {53142, 61936}, {61922, 63647}, {62042, 63029}

X(63957) = midpoint of X(i) and X(j) for these {i,j}: {382, 8667}, {3146, 47102}, {3830, 34505}, {9770, 53143}
X(63957) = reflection of X(i) in X(j) for these {i,j}: {2, 47617}, {20, 46893}, {3534, 34506}, {5569, 7615}, {7610, 53144}, {7622, 20112}, {7775, 3845}, {34504, 2}, {47102, 7780}, {51122, 7764}
X(63957) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {671, 11361, 5309}, {2549, 32983, 44562}, {9466, 33017, 7761}, {11185, 33017, 9466}


X(63958) = X(68)X(136)∩X(925)X(4558)

Barycentrics    (a^2 - b^2)*(a^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*b^2*c^2 + c^4)*(a^4 + b^4 - 2*a^2*c^2 - 2*b^2*c^2 + c^4)*(a^6 - a^4*b^2 - a^2*b^4 + b^6 - 3*a^4*c^2 + 2*a^2*b^2*c^2 - 3*b^4*c^2 + 3*a^2*c^4 + 3*b^2*c^4 - c^6)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - a^4*c^2 + 2*a^2*b^2*c^2 + 3*b^4*c^2 - a^2*c^4 - 3*b^2*c^4 + c^6) : :

See Antreas Hatzipolakis and Peter Moses, euclid 6283.

X(63958) lies on the MacBeath circumconic and these lines: {68, 136}, {96, 40678}, {110, 39416}, {847, 34756}, {925, 4558}, {2351, 57484}, {2986, 15316}, {2987, 6504}, {4563, 46134}, {5392, 39109}, {5962, 16172}, {8800, 57647}, {14919, 32132}, {34843, 34853}, {43755, 57638}

X(63958) = isogonal conjugate of X(63959)
X(63958) = polar conjugate of X(57070)
X(63958) = isotomic conjugate of the polar conjugate of X(39416)
X(63958) = X(i)-cross conjugate of X(j) for these (i,j): {523, 254}, {924, 96}, {2501, 5392}, {15316, 57638}, {30451, 57484}
X(63958) = X(i)-isoconjugate of X(j) for these (i,j): {48, 57070}, {135, 4575}, {656, 35603}, {920, 924}, {1609, 63827}, {3542, 63832}, {6515, 55216}, {33808, 34952} X(63958) = X(i)-Dao conjugate of X(j) for these (i,j): {136, 135}, {1249, 57070}, {40596, 35603}
X(63958) = cevapoint of X(i) and X(j) for these (i,j): {{68, 523}, {924, 40678}, {2351, 30451}, {2501, 39109}
X(63958) = trilinear pole of line {3, 2165}
X(63958) = barycentric product X(i)*X(j) for these {i,j}: {69, 39416}, {648, 32132}, {925, 6504}, {4558, 52582}, {4563, 59189}, {5392, 13398}, {14618, 57638}, {15316, 30450}, {36145, 57998}, {39114, 52932}, {46134, 60775}
X(63958) = barycentric quotient X(i)/X(j) for these {i,j}: {4, 57070}, {112, 35603}, {155, 58792}, {254, 57065}, {921, 63827}, {925, 6515}, {2501, 135}, {4558, 59155}, {6504, 6563}, {8800, 63829}, {13398, 1993}, {15316, 52584}, {32132, 525}, {32692, 8883}, {32734, 1609}, {34756, 15423}, {36145, 920}, {39109, 6753}, {39416, 4}, {52582, 14618}, {57638, 4558}, {59189, 2501}, {60775, 924}


X(63959) = X(110)X(44174)∩X(230)X(231)

Barycentrics    a^2*(b^2 - c^2)*(a^4 - 2*a^2*b^2 + b^4 - 2*a^2*c^2 + c^4)*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 3*a^4*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + 3*a^2*c^4 + b^2*c^4 - c^6) : :
X(63959) = X[647] + 2 X[47193]

See Antreas Hatzipolakis and Peter Moses, euclid 6283.

X(63959) lies on these lines: {110, 44174}, {230, 231}, {512, 32762}, {924, 12095}, {1510, 44680}, {15423, 55136}, {27087, 44816}, {34116, 60342}, {53263, 58359}, {59744, 60597}

X(63959) = isogonal conjugate of X(63958)
X(63959) = isogonal conjugate of the polar conjugate of X(57070)
X(63959) = X(i)-Ceva conjugate of X(j) for these (i,j): {110, 155}, {925, 52}, {3542, 135}, {4558, 571}, {15423, 6753}, {30450, 47731}
X(63959) = X(i)-isoconjugate of X(j) for these (i,j): {63, 39416}, {91, 13398}, {162, 32132}, {921, 925}, {4575, 52582}, {4592, 59189}, {6504, 36145}, {24006, 57638}, {32734, 57998}
X(63959) = X(i)-Dao conjugate of X(j) for these (i,j): {125, 32132}, {134, 40678}, {135, 254}, {136, 52582}, {3162, 39416}, {5139, 59189}, {6753, 14618}, {34116, 13398}, {39013, 6504}
X(63959) = crosspoint of X(i) and X(j) for these (i,j): {24, 110}, {317, 30450}, {4558, 40697}
X(63959) = crosssum of X(i) and X(j) for these (i,j): {68, 523}, {924, 40678}, {2351, 30451}, {2501, 39109}
X(63959) = crossdifference of every pair of points on line {3, 2165}
X(63959) = barycentric product X(i)*X(j) for these {i,j}: {3, 57070}, {135, 4558}, {155, 57065}, {254, 58792}, {525, 35603}, {920, 63827}, {924, 6515}, {1609, 6563}, {2501, 59155}, {3542, 52584}, {6753, 40697}, {8883, 63829}, {15423, 34853}, {18883, 44816}, {33808, 55216}
X(63959) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 39416}, {135, 14618}, {571, 13398}, {647, 32132}, {924, 6504}, {1609, 925}, {2489, 59189}, {2501, 52582}, {3542, 30450}, {6515, 46134}, {6753, 254}, {30451, 15316}, {32661, 57638}, {33808, 55215}, {34952, 60775}, {35603, 648}, {44816, 37802}, {52317, 8800}, {55216, 921}, {57065, 46746}, {57070, 264}, {58760, 34756}, {58792, 40697}, {59155, 4563}, {63827, 57998}


This is the end of PART 32: Centers X(62001) - X(64000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)